
new/exception_lists/copyright 1

**
 18553 Thu Dec 26 13:48:07 2013
new/exception_lists/copyright
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
22 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
22 # Copyright (c) 2011 by Delphix. All rights reserved.
23 # Copyright 2013 Nexenta Systems, Inc. All rights reserved.
24 #

26 syntax: glob
27 exception_lists/closed-bins
28 exception_lists/copyright
29 exception_lists/cstyle
30 exception_lists/hdrchk
31 usr/src/cmd/dtrace/test/tst/common/*/*.out
32 usr/src/cmd/krb5/kadmin/cli/kadmin_ct.c
33 usr/src/cmd/krb5/kadmin/cli/kadmin.h
34 usr/src/cmd/krb5/kadmin/cli/ss_wrapper.c
35 usr/src/cmd/krb5/kadmin/dbutil/nstrtok.h
36 usr/src/cmd/krb5/kadmin/dbutil/ovload.c
37 usr/src/cmd/krb5/kadmin/dbutil/string_table.c
38 usr/src/cmd/krb5/kadmin/dbutil/strtok.c
39 usr/src/cmd/krb5/kadmin/dbutil/util.c
40 usr/src/cmd/krb5/kadmin/kpasswd/kpasswd_strings.h
41 usr/src/cmd/krb5/kadmin/kpasswd/kpasswd.h
42 usr/src/cmd/krb5/kadmin/ktutil/ktutil.h
43 usr/src/cmd/krb5/kadmin/server/server_glue_v1.c
44 usr/src/cmd/krb5/krb5kdc/extern.c
45 usr/src/cmd/krb5/krb5kdc/kdc_util.c
46 usr/src/cmd/krb5/krb5kdc/policy.c
47 usr/src/cmd/krb5/krb5kdc/replay.c
48 usr/src/cmd/krb5/krb5kdc/sock2p.c
49 usr/src/cmd/krb5/ldap_util/kdb5_ldap_list.c
50 usr/src/cmd/krb5/ldap_util/kdb5_ldap_list.h
51 usr/src/cmd/krb5/ldap_util/kdb5_ldap_policy.h
52 usr/src/cmd/krb5/ldap_util/kdb5_ldap_realm.h
53 usr/src/cmd/krb5/ldap_util/kdb5_ldap_services.h
54 usr/src/cmd/smbsrv/smbd/eventlog.dll
55 usr/src/cmd/terminfo/termcap.src
56 usr/src/cmd/terminfo/terminfo.src
57 usr/src/common/acpica
58 usr/src/common/bzip2/LICENSE
59 usr/src/common/bzip2/Solaris.README.txt
60 usr/src/common/bzip2/bzlib.h

new/exception_lists/copyright 2

61 usr/src/common/bzip2/crctable.c
62 usr/src/common/bzip2/randtable.c
63 usr/src/common/bzip2/blocksort.c
64 usr/src/common/bzip2/compress.c
65 usr/src/common/bzip2/bzlib.c
66 usr/src/common/bzip2/decompress.c
67 usr/src/common/bzip2/bzlib_private.h
68 usr/src/common/bzip2/huffman.c
69 usr/src/common/openssl/crypto/krb5/krb5_asn.c
70 usr/src/common/openssl/crypto/krb5/krb5_asn.h
71 usr/src/grub/grub-0.97/stage2/Makefile.am
72 usr/src/lib/gss_mechs/mech_krb5/crypto/cksumtype_to_string.c
73 usr/src/lib/gss_mechs/mech_krb5/crypto/coll_proof_cksum.c
74 usr/src/lib/gss_mechs/mech_krb5/crypto/enctype_compare.c
75 usr/src/lib/gss_mechs/mech_krb5/crypto/keyed_checksum_types.c
76 usr/src/lib/gss_mechs/mech_krb5/crypto/keyed_cksum.c
77 usr/src/lib/gss_mechs/mech_krb5/crypto/keylengths.c
78 usr/src/lib/gss_mechs/mech_krb5/crypto/old/des_stringtokey.c
79 usr/src/lib/gss_mechs/mech_krb5/crypto/random_to_key.c
80 usr/src/lib/gss_mechs/mech_krb5/crypto/string_to_cksumtype.c
81 usr/src/lib/gss_mechs/mech_krb5/crypto/string_to_enctype.c
82 usr/src/lib/gss_mechs/mech_krb5/crypto/valid_cksumtype.c
83 usr/src/lib/gss_mechs/mech_krb5/et/error_table.h
84 usr/src/lib/gss_mechs/mech_krb5/et/internal.h
85 usr/src/lib/gss_mechs/mech_krb5/et/mit-sipb-copyright.h
86 usr/src/lib/gss_mechs/mech_krb5/include/cache-addrinfo.h
87 usr/src/lib/gss_mechs/mech_krb5/include/cm.h
88 usr/src/lib/gss_mechs/mech_krb5/include/db-config.h
89 usr/src/lib/gss_mechs/mech_krb5/include/db.h
90 usr/src/lib/gss_mechs/mech_krb5/include/fake-addrinfo.h
91 usr/src/lib/gss_mechs/mech_krb5/include/foreachaddr.h
92 usr/src/lib/gss_mechs/mech_krb5/include/k5-int-pkinit.h
93 usr/src/lib/gss_mechs/mech_krb5/include/k5-utf8.h
94 usr/src/lib/gss_mechs/mech_krb5/include/kdb_kt.h
95 usr/src/lib/gss_mechs/mech_krb5/include/krb5_libinit.h
96 usr/src/lib/gss_mechs/mech_krb5/include/krb5/adm_defs.h
97 usr/src/lib/gss_mechs/mech_krb5/include/krb5/adm_proto.h
98 usr/src/lib/gss_mechs/mech_krb5/include/krb5/adm.h
99 usr/src/lib/gss_mechs/mech_krb5/include/krb5/copyright.h
100 usr/src/lib/gss_mechs/mech_krb5/include/krb5/k5-err.h
101 usr/src/lib/gss_mechs/mech_krb5/include/krb5/k5-plugin.h
102 usr/src/lib/gss_mechs/mech_krb5/include/locate_plugin.h
103 usr/src/lib/gss_mechs/mech_krb5/include/port-sockets.h
104 usr/src/lib/gss_mechs/mech_krb5/include/preauth_plugin.h
105 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_decode.c
106 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_decode.h
107 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_encode.c
108 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_encode.h
109 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_get.c
110 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_get.h
111 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_k_decode.h
112 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_k_encode.h
113 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_make.c
114 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_make.h
115 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_misc.c
116 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_misc.h
117 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1buf.h
118 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/krb5_decode.c
119 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/krb5_encode.c
120 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/krbasn1.h
121 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/ldap_key_seq.c
122 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/cc-int.h
123 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/cccopy.c
124 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/ccdefault.c
125 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/ccdefops.c
126 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/ccfns.c

new/exception_lists/copyright 3

127 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/fcc.h
128 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/scc.h
129 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/ser_cc.c
130 usr/src/lib/gss_mechs/mech_krb5/krb5/error_tables/adm_err.h
131 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/kt-int.h
132 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/ktadd.c
133 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/ktdefault.c
134 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/ktfns.c
135 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/ktremove.c
136 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/read_servi.c
137 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/addr_comp.c
138 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/addr_order.c
139 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/addr_srch.c
140 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/appdefault.c
141 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/bld_pr_ext.c
142 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/bld_princ.c
143 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/chk_trans.c
144 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/cleanup.h
145 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/copy_addrs.c
146 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/copy_creds.c
147 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/copy_data.c
148 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/copy_tick.c
149 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/decode_kdc.c
150 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/decrypt_tk.c
151 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/deltat.c
152 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/enc_helper.c
153 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/encode_kdc.c
154 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/encrypt_tk.c
155 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/free_rtree.c
156 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/gc_via_tkt.c
157 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/gen_subkey.c
158 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/gic_opt.c
159 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/init_keyblock.c
160 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/int-proto.h
161 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/kdc_rep_dc.c
162 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/kerrs.c
163 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/mk_error.c
164 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/mk_rep.c
165 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/pr_to_salt.c
166 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/preauth.c
167 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/rd_error.c
168 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/rd_rep.c
169 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/rd_req.c
170 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/rd_safe.c
171 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/tgtname.c
172 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/valid_times.c
173 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/vic_opt.c
174 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/walk_rtree.c
175 usr/src/lib/gss_mechs/mech_krb5/krb5/os/accessor.c
176 usr/src/lib/gss_mechs/mech_krb5/krb5/os/changepw.c
177 usr/src/lib/gss_mechs/mech_krb5/krb5/os/dnssrv.c
178 usr/src/lib/gss_mechs/mech_krb5/krb5/os/free_hstrl.c
179 usr/src/lib/gss_mechs/mech_krb5/krb5/os/free_krbhs.c
180 usr/src/lib/gss_mechs/mech_krb5/krb5/os/full_ipadr.c
181 usr/src/lib/gss_mechs/mech_krb5/krb5/os/gen_port.c
182 usr/src/lib/gss_mechs/mech_krb5/krb5/os/gen_rname.c
183 usr/src/lib/gss_mechs/mech_krb5/krb5/os/genaddrs.c
184 usr/src/lib/gss_mechs/mech_krb5/krb5/os/get_krbhst.c
185 usr/src/lib/gss_mechs/mech_krb5/krb5/os/gmt_mktime.c
186 usr/src/lib/gss_mechs/mech_krb5/krb5/os/hostaddr.c
187 usr/src/lib/gss_mechs/mech_krb5/krb5/os/localaddr.c
188 usr/src/lib/gss_mechs/mech_krb5/krb5/os/lock_file.c
189 usr/src/lib/gss_mechs/mech_krb5/krb5/os/mk_faddr.c
190 usr/src/lib/gss_mechs/mech_krb5/krb5/os/net_read.c
191 usr/src/lib/gss_mechs/mech_krb5/krb5/os/net_write.c
192 usr/src/lib/gss_mechs/mech_krb5/krb5/os/os-proto.h

new/exception_lists/copyright 4

193 usr/src/lib/gss_mechs/mech_krb5/krb5/os/osconfig.c
194 usr/src/lib/gss_mechs/mech_krb5/krb5/os/port2ip.c
195 usr/src/lib/gss_mechs/mech_krb5/krb5/os/prompter.c
196 usr/src/lib/gss_mechs/mech_krb5/krb5/os/promptusr.c
197 usr/src/lib/gss_mechs/mech_krb5/krb5/os/read_msg.c
198 usr/src/lib/gss_mechs/mech_krb5/krb5/os/read_pwd.c
199 usr/src/lib/gss_mechs/mech_krb5/krb5/os/realm_dom.c
200 usr/src/lib/gss_mechs/mech_krb5/krb5/os/realm_iter.c
201 usr/src/lib/gss_mechs/mech_krb5/krb5/os/thread_safe.c
202 usr/src/lib/gss_mechs/mech_krb5/krb5/os/unlck_file.c
203 usr/src/lib/gss_mechs/mech_krb5/krb5/os/ustime.c
204 usr/src/lib/gss_mechs/mech_krb5/krb5/os/write_msg.c
205 usr/src/lib/gss_mechs/mech_krb5/krb5/posix/daemon.c
206 usr/src/lib/gss_mechs/mech_krb5/krb5/posix/setenv.c
207 usr/src/lib/gss_mechs/mech_krb5/krb5/rcache/rc_base.h
208 usr/src/lib/gss_mechs/mech_krb5/krb5/rcache/rc_conv.c
209 usr/src/lib/gss_mechs/mech_krb5/krb5/rcache/rc_io.h
210 usr/src/lib/gss_mechs/mech_krb5/krb5/rcache/rc_none.c
211 usr/src/lib/gss_mechs/mech_krb5/krb5/rcache/rc-int.h
212 usr/src/lib/gss_mechs/mech_krb5/krb5/rcache/rcfns.c
213 usr/src/lib/gss_mechs/mech_krb5/mech/add_cred.c
214 usr/src/lib/gss_mechs/mech_krb5/mech/compare_name.c
215 usr/src/lib/gss_mechs/mech_krb5/mech/context_time.c
216 usr/src/lib/gss_mechs/mech_krb5/mech/copy_ccache.c
217 usr/src/lib/gss_mechs/mech_krb5/mech/disp_com_err_status.c
218 usr/src/lib/gss_mechs/mech_krb5/mech/disp_major_status.c
219 usr/src/lib/gss_mechs/mech_krb5/mech/disp_name.c
220 usr/src/lib/gss_mechs/mech_krb5/mech/disp_status.c
221 usr/src/lib/gss_mechs/mech_krb5/mech/export_name.c
222 usr/src/lib/gss_mechs/mech_krb5/mech/export_sec_context.c
223 usr/src/lib/gss_mechs/mech_krb5/mech/gss_libinit.h
224 usr/src/lib/gss_mechs/mech_krb5/mech/import_name.c
225 usr/src/lib/gss_mechs/mech_krb5/mech/indicate_mechs.c
226 usr/src/lib/gss_mechs/mech_krb5/mech/inq_cred.c
227 usr/src/lib/gss_mechs/mech_krb5/mech/inq_names.c
228 usr/src/lib/gss_mechs/mech_krb5/mech/oid_ops.c
229 usr/src/lib/gss_mechs/mech_krb5/mech/process_context_token.c
230 usr/src/lib/gss_mechs/mech_krb5/mech/rel_cred.c
231 usr/src/lib/gss_mechs/mech_krb5/mech/rel_name.c
232 usr/src/lib/gss_mechs/mech_krb5/mech/rel_oid.c
233 usr/src/lib/gss_mechs/mech_krb5/mech/set_allowable_enctypes.c
234 usr/src/lib/gss_mechs/mech_krb5/mech/util_buffer.c
235 usr/src/lib/gss_mechs/mech_krb5/mech/util_ctxsetup.c
236 usr/src/lib/gss_mechs/mech_krb5/mech/util_dup.c
237 usr/src/lib/gss_mechs/mech_krb5/mech/utl_nohash_validate.c
238 usr/src/lib/gss_mechs/mech_krb5/profile/prof_err.h
239 usr/src/lib/gss_mechs/mech_krb5/profile/prof_get.c
240 usr/src/lib/gss_mechs/mech_krb5/profile/prof_set.c
241 usr/src/lib/gss_mechs/mech_krb5/support/errors.c
242 usr/src/lib/gss_mechs/mech_krb5/support/fake-addrinfo.c
243 usr/src/lib/gss_mechs/mech_krb5/support/init-addrinfo.c
244 usr/src/lib/gss_mechs/mech_krb5/support/supp-int.h
245 usr/src/lib/gss_mechs/mech_krb5/support/threads.c
246 usr/src/lib/gss_mechs/mech_krb5/support/utf8.c
247 usr/src/lib/krb5/dyn/dyn_append.c
248 usr/src/lib/krb5/dyn/dyn_create.c
249 usr/src/lib/krb5/dyn/dyn_debug.c
250 usr/src/lib/krb5/dyn/dyn_delete.c
251 usr/src/lib/krb5/dyn/dyn_initzero.c
252 usr/src/lib/krb5/dyn/dyn_insert.c
253 usr/src/lib/krb5/dyn/dyn_paranoid.c
254 usr/src/lib/krb5/dyn/dyn_put.c
255 usr/src/lib/krb5/dyn/dyn_realloc.c
256 usr/src/lib/krb5/dyn/dyn_size.c
257 usr/src/lib/krb5/kadm5/admin_internal.h
258 usr/src/lib/krb5/kadm5/admin_xdr.h

new/exception_lists/copyright 5

259 usr/src/lib/krb5/kadm5/chpass_util_strings.h
260 usr/src/lib/krb5/kadm5/clnt/client_handle.c
261 usr/src/lib/krb5/kadm5/clnt/clnt_chpass_util.c
262 usr/src/lib/krb5/kadm5/kadm_rpc.h
263 usr/src/lib/krb5/kadm5/misc_free.c
264 usr/src/lib/krb5/kadm5/srv/server_dict.c
265 usr/src/lib/krb5/kadm5/srv/server_handle.c
266 usr/src/lib/krb5/kadm5/srv/server_misc.c
267 usr/src/lib/krb5/kadm5/srv/svr_iters.c
268 usr/src/lib/krb5/kadm5/srv/svr_misc_free.c
269 usr/src/lib/krb5/kadm5/srv/svr_policy.c
270 usr/src/lib/krb5/kadm5/srv/xdr_alloc.c
271 usr/src/lib/krb5/kdb/adb_err.h
272 usr/src/lib/krb5/kdb/kdb5.h
273 usr/src/lib/krb5/kdb/keytab.c
274 usr/src/lib/krb5/plugins/kdb/db2/adb_policy.c
275 usr/src/lib/krb5/plugins/kdb/db2/kdb_db2.h
276 usr/src/lib/krb5/plugins/kdb/db2/kdb_xdr.c
277 usr/src/lib/krb5/plugins/kdb/db2/kdb_xdr.h
278 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_close.c
279 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_conv.c
280 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_delete.c
281 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_get.c
282 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_open.c
283 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_overflow.c
284 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_page.c
285 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_put.c
286 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_search.c
287 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_split.c
288 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_utils.c
289 usr/src/lib/krb5/plugins/kdb/db2/libdb2/db/db.c
290 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/hash_bigkey.c
291 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/hash_func.c
292 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/hash_log2.c
293 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/hash_page.c
294 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/hash.c
295 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/hsearch.c
296 usr/src/lib/krb5/plugins/kdb/db2/libdb2/include/db-ndbm.h
297 usr/src/lib/krb5/plugins/kdb/db2/libdb2/mpool/mpool.c
298 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/rec_close.c
299 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/rec_delete.c
300 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/rec_get.c
301 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/rec_open.c
302 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/rec_put.c
303 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/rec_search.c
304 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/rec_seq.c
305 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/rec_utils.c
306 usr/src/lib/krb5/plugins/kdb/db2/pol_xdr.c
307 usr/src/lib/krb5/plugins/kdb/db2/policy_db.h
308 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/kdb_xdr.c
309 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/kdb_xdr.h
310 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_err.c
311 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_err.h
312 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_fetch_mkey.c
313 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_handle.c
314 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_handle.h
315 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_krbcontainer.c
316 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_krbcontainer.h
317 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_principal.h
318 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_pwd_policy.h
319 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_realm.h
320 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_service_rights.c
321 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_service_stash.h
322 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_services.c
323 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_services.h
324 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_tkt_policy.c

new/exception_lists/copyright 6

325 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_tkt_policy.h
326 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_accessor.c
327 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_accessor.h
328 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_lib.c
329 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_profile.c
330 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_srv.c
331 usr/src/lib/krb5/ss/copyright.h
332 usr/src/lib/krb5/ss/mit-sipb-copyright.h
333 usr/src/lib/krb5/ss/options.c
334 usr/src/lib/krb5/ss/std_rqs.c
335 usr/src/lib/krb5/ss/utils.c
336 usr/src/lib/librstp/common/*.[ch]
337 usr/src/lib/librstp/common/[CRT]*
338 usr/src/test/zfs-tests/tests/functional/history/*Z
339 usr/src/test/zfs-tests/tests/functional/history/*txt
340 usr/src/uts/intel/nsmb/ioc_check.ref
341 usr/src/uts/intel/os/splashimage.xpm
342 usr/src/uts/common/gssapi/mechs/krb5/crypto/block_size.c
343 usr/src/uts/common/gssapi/mechs/krb5/crypto/checksum_length.c
344 usr/src/uts/common/gssapi/mechs/krb5/crypto/des/f_parity.c
345 usr/src/uts/common/gssapi/mechs/krb5/crypto/des/weak_key.c
346 usr/src/uts/common/gssapi/mechs/krb5/crypto/encrypt_length.c
347 usr/src/uts/common/gssapi/mechs/krb5/crypto/hash_provider/hash_crc32.c
348 usr/src/uts/common/gssapi/mechs/krb5/include/aes_s2k.h
349 usr/src/uts/common/gssapi/mechs/krb5/include/auth_con.h
350 usr/src/uts/common/gssapi/mechs/krb5/include/cksumtypes.h
351 usr/src/uts/common/gssapi/mechs/krb5/include/crc-32.h
352 usr/src/uts/common/gssapi/mechs/krb5/include/dk.h
353 usr/src/uts/common/gssapi/mechs/krb5/include/enc_provider.h
354 usr/src/uts/common/gssapi/mechs/krb5/include/etypes.h
355 usr/src/uts/common/gssapi/mechs/krb5/include/raw.h
356 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/copy_auth.c
357 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/ser_adata.c
358 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/ser_addr.c
359 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/ser_auth.c
360 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/ser_cksum.c
361 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/ser_ctx.c
362 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/ser_key.c
363 usr/src/uts/common/gssapi/mechs/krb5/krb5/os/toffset.c
364 usr/src/uts/common/gssapi/mechs/krb5/mech/util_seed.c
365 usr/src/uts/common/gssapi/mechs/krb5/mech/util_seqnum.c
366 usr/src/uts/common/gssapi/mechs/krb5/mech/val_cred.c
367 usr/src/uts/common/io/ixgbe/ixgbe_82598.c
368 usr/src/uts/common/io/ixgbe/ixgbe_82599.c
369 usr/src/uts/common/io/ixgbe/ixgbe_api.c
370 usr/src/uts/common/io/ixgbe/ixgbe_api.h
371 usr/src/uts/common/io/ixgbe/ixgbe_common.c
372 usr/src/uts/common/io/ixgbe/ixgbe_common.h
373 usr/src/uts/common/io/ixgbe/ixgbe_osdep.h
374 usr/src/uts/common/io/ixgbe/ixgbe_phy.c
375 usr/src/uts/common/io/ixgbe/ixgbe_phy.h
376 usr/src/uts/common/io/ixgbe/ixgbe_type.h
377 usr/src/uts/common/fs/zfs/THIRDPARTYLICENSE.lz4.descrip
378 usr/src/uts/sparc/nsmb/ioc_check.ref

new/exception_lists/cstyle 1

**
 34946 Thu Dec 26 13:48:07 2013
new/exception_lists/cstyle
PANKOVs restructure
**

1 usr/src/cmd/krb5/kadmin/cli/kadmin_ct.c
2 usr/src/cmd/krb5/kadmin/cli/kadmin.c
3 usr/src/cmd/krb5/kadmin/cli/kadmin.h
4 usr/src/cmd/krb5/kadmin/cli/keytab.c
5 usr/src/cmd/krb5/kadmin/cli/ss_wrapper.c
6 usr/src/cmd/krb5/kadmin/dbutil/dump.c
7 usr/src/cmd/krb5/kadmin/dbutil/import_err.h
8 usr/src/cmd/krb5/kadmin/dbutil/kadm5_create.c
9 usr/src/cmd/krb5/kadmin/dbutil/kdb5_create.c

10 usr/src/cmd/krb5/kadmin/dbutil/kdb5_destroy.c
11 usr/src/cmd/krb5/kadmin/dbutil/kdb5_stash.c
12 usr/src/cmd/krb5/kadmin/dbutil/kdb5_util.c
13 usr/src/cmd/krb5/kadmin/dbutil/kdb5_util.h
14 usr/src/cmd/krb5/kadmin/dbutil/nstrtok.h
15 usr/src/cmd/krb5/kadmin/dbutil/ovload.c
16 usr/src/cmd/krb5/kadmin/dbutil/string_table.c
17 usr/src/cmd/krb5/kadmin/dbutil/string_table.h
18 usr/src/cmd/krb5/kadmin/dbutil/strtok.c
19 usr/src/cmd/krb5/kadmin/dbutil/util.c
20 usr/src/cmd/krb5/kadmin/kpasswd/kpasswd_strings.h
21 usr/src/cmd/krb5/kadmin/kpasswd/kpasswd.c
22 usr/src/cmd/krb5/kadmin/kpasswd/kpasswd.h
23 usr/src/cmd/krb5/kadmin/kpasswd/tty_kpasswd.c
24 usr/src/cmd/krb5/kadmin/ktutil/ktutil_ct.c
25 usr/src/cmd/krb5/kadmin/ktutil/ktutil_funcs.c
26 usr/src/cmd/krb5/kadmin/ktutil/ktutil.c
27 usr/src/cmd/krb5/kadmin/ktutil/ktutil.h
28 usr/src/cmd/krb5/kadmin/server/kadm_rpc_svc.c
29 usr/src/cmd/krb5/kadmin/server/misc.c
30 usr/src/cmd/krb5/kadmin/server/misc.h
31 usr/src/cmd/krb5/kadmin/server/ovsec_kadmd.c
32 usr/src/cmd/krb5/kadmin/server/server_glue_v1.c
33 usr/src/cmd/krb5/kadmin/server/server_stubs.c
34 usr/src/cmd/krb5/kdestroy/kdestroy.c
35 usr/src/cmd/krb5/kinit/kinit.c
36 usr/src/cmd/krb5/klist/klist.c
37 usr/src/cmd/krb5/krb5kdc/dispatch.c
38 usr/src/cmd/krb5/krb5kdc/do_as_req.c
39 usr/src/cmd/krb5/krb5kdc/do_tgs_req.c
40 usr/src/cmd/krb5/krb5kdc/extern.c
41 usr/src/cmd/krb5/krb5kdc/extern.h
42 usr/src/cmd/krb5/krb5kdc/kdc_preauth.c
43 usr/src/cmd/krb5/krb5kdc/kdc_util.c
44 usr/src/cmd/krb5/krb5kdc/kdc_util.h
45 usr/src/cmd/krb5/krb5kdc/main.c
46 usr/src/cmd/krb5/krb5kdc/network.c
47 usr/src/cmd/krb5/krb5kdc/policy.c
48 usr/src/cmd/krb5/krb5kdc/policy.h
49 usr/src/cmd/krb5/krb5kdc/replay.c
50 usr/src/cmd/krb5/krb5kdc/sock2p.c
51 usr/src/cmd/krb5/ldap_util/kdb5_ldap_list.c
52 usr/src/cmd/krb5/ldap_util/kdb5_ldap_list.h
53 usr/src/cmd/krb5/ldap_util/kdb5_ldap_policy.c
54 usr/src/cmd/krb5/ldap_util/kdb5_ldap_policy.h
55 usr/src/cmd/krb5/ldap_util/kdb5_ldap_realm.c
56 usr/src/cmd/krb5/ldap_util/kdb5_ldap_realm.h
57 usr/src/cmd/krb5/ldap_util/kdb5_ldap_services.c
58 usr/src/cmd/krb5/ldap_util/kdb5_ldap_services.h
59 usr/src/cmd/krb5/ldap_util/kdb5_ldap_util.c
60 usr/src/cmd/krb5/ldap_util/kdb5_ldap_util.h
61 usr/src/cmd/krb5/slave/kprop.c

new/exception_lists/cstyle 2

62 usr/src/cmd/krb5/slave/kprop.h
63 usr/src/cmd/krb5/slave/kpropd.c
64 usr/src/common/bzip2/bzlib.h
65 usr/src/common/bzip2/crctable.c
66 usr/src/common/bzip2/randtable.c
67 usr/src/common/bzip2/blocksort.c
68 usr/src/common/bzip2/compress.c
69 usr/src/common/bzip2/bzlib.c
70 usr/src/common/bzip2/decompress.c
71 usr/src/common/bzip2/bzlib_private.h
72 usr/src/common/bzip2/huffman.c
73 usr/src/common/openssl/crypto/krb5/krb5_asn.c
74 usr/src/common/openssl/crypto/krb5/krb5_asn.h
75 usr/src/lib/gss_mechs/mech_krb5/crypto/aes/aes_s2k.c
76 usr/src/lib/gss_mechs/mech_krb5/crypto/cksumtype_to_string.c
77 usr/src/lib/gss_mechs/mech_krb5/crypto/coll_proof_cksum.c
78 usr/src/lib/gss_mechs/mech_krb5/crypto/crc32/crc.c
79 usr/src/lib/gss_mechs/mech_krb5/crypto/des/afsstring2key.c
80 usr/src/lib/gss_mechs/mech_krb5/crypto/des/string2key.c
81 usr/src/lib/gss_mechs/mech_krb5/crypto/dk/stringtokey.c
82 usr/src/lib/gss_mechs/mech_krb5/crypto/enctype_compare.c
83 usr/src/lib/gss_mechs/mech_krb5/crypto/enctype_to_string.c
84 usr/src/lib/gss_mechs/mech_krb5/crypto/hash_provider/hash_md5.c
85 usr/src/lib/gss_mechs/mech_krb5/crypto/hash_provider/hash_sha1.c
86 usr/src/lib/gss_mechs/mech_krb5/crypto/keyed_checksum_types.c
87 usr/src/lib/gss_mechs/mech_krb5/crypto/keyed_cksum.c
88 usr/src/lib/gss_mechs/mech_krb5/crypto/keyhash_provider/hmac_md5.c
89 usr/src/lib/gss_mechs/mech_krb5/crypto/keyhash_provider/k5_md5des.c
90 usr/src/lib/gss_mechs/mech_krb5/crypto/keylengths.c
91 usr/src/lib/gss_mechs/mech_krb5/crypto/make_random_key.c
92 usr/src/lib/gss_mechs/mech_krb5/crypto/md4/md4.c
93 usr/src/lib/gss_mechs/mech_krb5/crypto/old_api_glue.c
94 usr/src/lib/gss_mechs/mech_krb5/crypto/old/des_stringtokey.c
95 usr/src/lib/gss_mechs/mech_krb5/crypto/pbkdf2.c
96 usr/src/lib/gss_mechs/mech_krb5/crypto/random_to_key.c
97 usr/src/lib/gss_mechs/mech_krb5/crypto/state.c
98 usr/src/lib/gss_mechs/mech_krb5/crypto/string_to_cksumtype.c
99 usr/src/lib/gss_mechs/mech_krb5/crypto/string_to_enctype.c
100 usr/src/lib/gss_mechs/mech_krb5/crypto/string_to_key.c
101 usr/src/lib/gss_mechs/mech_krb5/crypto/valid_cksumtype.c
102 usr/src/lib/gss_mechs/mech_krb5/crypto/valid_enctype.c
103 usr/src/lib/gss_mechs/mech_krb5/et/com_err.c
104 usr/src/lib/gss_mechs/mech_krb5/et/error_message.c
105 usr/src/lib/gss_mechs/mech_krb5/et/error_table.h
106 usr/src/lib/gss_mechs/mech_krb5/et/internal.h
107 usr/src/lib/gss_mechs/mech_krb5/et/mit-sipb-copyright.h
108 usr/src/lib/gss_mechs/mech_krb5/include/cache-addrinfo.h
109 usr/src/lib/gss_mechs/mech_krb5/include/cm.h
110 usr/src/lib/gss_mechs/mech_krb5/include/com_err.h
111 usr/src/lib/gss_mechs/mech_krb5/include/db-config.h
112 usr/src/lib/gss_mechs/mech_krb5/include/db.h
113 usr/src/lib/gss_mechs/mech_krb5/include/fake-addrinfo.h
114 usr/src/lib/gss_mechs/mech_krb5/include/foreachaddr.h
115 usr/src/lib/gss_mechs/mech_krb5/include/k5-int-pkinit.h
116 usr/src/lib/gss_mechs/mech_krb5/include/k5-utf8.h
117 usr/src/lib/gss_mechs/mech_krb5/include/kdb_kt.h
118 usr/src/lib/gss_mechs/mech_krb5/include/krb5_libinit.h
119 usr/src/lib/gss_mechs/mech_krb5/include/krb5/adm_defs.h
120 usr/src/lib/gss_mechs/mech_krb5/include/krb5/adm_proto.h
121 usr/src/lib/gss_mechs/mech_krb5/include/krb5/adm.h
122 usr/src/lib/gss_mechs/mech_krb5/include/krb5/copyright.h
123 usr/src/lib/gss_mechs/mech_krb5/include/krb5/k5-err.h
124 usr/src/lib/gss_mechs/mech_krb5/include/krb5/k5-plugin.h
125 usr/src/lib/gss_mechs/mech_krb5/include/krb5/kdb_dbc.h
126 usr/src/lib/gss_mechs/mech_krb5/include/krb5/kdb.h
127 usr/src/lib/gss_mechs/mech_krb5/include/locate_plugin.h

new/exception_lists/cstyle 3

128 usr/src/lib/gss_mechs/mech_krb5/include/osconf.h
129 usr/src/lib/gss_mechs/mech_krb5/include/port-sockets.h
130 usr/src/lib/gss_mechs/mech_krb5/include/preauth_plugin.h
131 usr/src/lib/gss_mechs/mech_krb5/include/socket-utils.h
132 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_decode.c
133 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_decode.h
134 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_encode.c
135 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_encode.h
136 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_get.c
137 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_get.h
138 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_k_decode.c
139 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_k_decode.h
140 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_k_encode.c
141 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_k_encode.h
142 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_make.c
143 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_make.h
144 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_misc.c
145 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_misc.h
146 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1buf.h
147 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/krb5_decode.c
148 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/krb5_encode.c
149 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/krbasn1.h
150 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/ldap_key_seq.c
151 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/cc_file.c
152 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/cc_memory.c
153 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/cc_retr.c
154 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/cc-int.h
155 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/ccbase.c
156 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/cccopy.c
157 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/ccdefault.c
158 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/ccdefops.c
159 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/ccfns.c
160 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/fcc.h
161 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/scc.h
162 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/ser_cc.c
163 usr/src/lib/gss_mechs/mech_krb5/krb5/error_tables/adm_err.h
164 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/file/ktfile.h
165 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/kt_file.c
166 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/kt_srvtab.c
167 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/kt-int.h
168 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/ktadd.c
169 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/ktbase.c
170 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/ktdefault.c
171 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/ktfns.c
172 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/ktfr_entry.c
173 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/ktremove.c
174 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/read_servi.c
175 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/addr_comp.c
176 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/addr_order.c
177 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/addr_srch.c
178 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/appdefault.c
179 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/bld_pr_ext.c
180 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/bld_princ.c
181 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/chk_trans.c
182 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/cleanup.h
183 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/conv_princ.c
184 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/copy_addrs.c
185 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/copy_creds.c
186 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/copy_data.c
187 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/copy_tick.c
188 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/cp_key_cnt.c
189 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/decode_kdc.c
190 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/decrypt_tk.c
191 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/deltat.c
192 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/enc_helper.c
193 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/encode_kdc.c

new/exception_lists/cstyle 4

194 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/encrypt_tk.c
195 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/free_rtree.c
196 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/fwd_tgt.c
197 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/gc_frm_kdc.c
198 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/gc_via_tkt.c
199 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/gen_seqnum.c
200 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/gen_subkey.c
201 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/get_creds.c
202 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/get_in_tkt.c
203 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/gic_keytab.c
204 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/gic_opt.c
205 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/gic_pwd.c
206 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/init_keyblock.c
207 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/int-proto.h
208 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/kdc_rep_dc.c
209 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/kerrs.c
210 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/mk_error.c
211 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/mk_priv.c
212 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/mk_rep.c
213 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/mk_req_ext.c
214 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/mk_req.c
215 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/mk_safe.c
216 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/pac.c
217 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/pr_to_salt.c
218 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/preauth.c
219 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/preauth2.c
220 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/princ_comp.c
221 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/rd_cred.c
222 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/rd_error.c
223 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/rd_priv.c
224 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/rd_rep.c
225 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/rd_req_dec.c
226 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/rd_req.c
227 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/rd_safe.c
228 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/recvauth.c
229 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/send_tgs.c
230 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/sendauth.c
231 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/set_realm.c
232 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/srv_rcache.c
233 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/str_conv.c
234 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/tgtname.c
235 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/valid_times.c
236 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/vic_opt.c
237 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/walk_rtree.c
238 usr/src/lib/gss_mechs/mech_krb5/krb5/os/accessor.c
239 usr/src/lib/gss_mechs/mech_krb5/krb5/os/an_to_ln.c
240 usr/src/lib/gss_mechs/mech_krb5/krb5/os/ccdefname.c
241 usr/src/lib/gss_mechs/mech_krb5/krb5/os/changepw.c
242 usr/src/lib/gss_mechs/mech_krb5/krb5/os/def_realm.c
243 usr/src/lib/gss_mechs/mech_krb5/krb5/os/dnsglue.c
244 usr/src/lib/gss_mechs/mech_krb5/krb5/os/dnsglue.h
245 usr/src/lib/gss_mechs/mech_krb5/krb5/os/dnssrv.c
246 usr/src/lib/gss_mechs/mech_krb5/krb5/os/foreachaddr.c
247 usr/src/lib/gss_mechs/mech_krb5/krb5/os/free_hstrl.c
248 usr/src/lib/gss_mechs/mech_krb5/krb5/os/free_krbhs.c
249 usr/src/lib/gss_mechs/mech_krb5/krb5/os/full_ipadr.c
250 usr/src/lib/gss_mechs/mech_krb5/krb5/os/gen_port.c
251 usr/src/lib/gss_mechs/mech_krb5/krb5/os/gen_rname.c
252 usr/src/lib/gss_mechs/mech_krb5/krb5/os/genaddrs.c
253 usr/src/lib/gss_mechs/mech_krb5/krb5/os/get_krbhst.c
254 usr/src/lib/gss_mechs/mech_krb5/krb5/os/gmt_mktime.c
255 usr/src/lib/gss_mechs/mech_krb5/krb5/os/hostaddr.c
256 usr/src/lib/gss_mechs/mech_krb5/krb5/os/hst_realm.c
257 usr/src/lib/gss_mechs/mech_krb5/krb5/os/ktdefname.c
258 usr/src/lib/gss_mechs/mech_krb5/krb5/os/kuserok.c
259 usr/src/lib/gss_mechs/mech_krb5/krb5/os/localaddr.c

new/exception_lists/cstyle 5

260 usr/src/lib/gss_mechs/mech_krb5/krb5/os/locate_kdc.c
261 usr/src/lib/gss_mechs/mech_krb5/krb5/os/lock_file.c
262 usr/src/lib/gss_mechs/mech_krb5/krb5/os/mk_faddr.c
263 usr/src/lib/gss_mechs/mech_krb5/krb5/os/net_read.c
264 usr/src/lib/gss_mechs/mech_krb5/krb5/os/net_write.c
265 usr/src/lib/gss_mechs/mech_krb5/krb5/os/os-proto.h
266 usr/src/lib/gss_mechs/mech_krb5/krb5/os/osconfig.c
267 usr/src/lib/gss_mechs/mech_krb5/krb5/os/port2ip.c
268 usr/src/lib/gss_mechs/mech_krb5/krb5/os/prompter.c
269 usr/src/lib/gss_mechs/mech_krb5/krb5/os/promptusr.c
270 usr/src/lib/gss_mechs/mech_krb5/krb5/os/read_msg.c
271 usr/src/lib/gss_mechs/mech_krb5/krb5/os/read_pwd.c
272 usr/src/lib/gss_mechs/mech_krb5/krb5/os/realm_dom.c
273 usr/src/lib/gss_mechs/mech_krb5/krb5/os/realm_iter.c
274 usr/src/lib/gss_mechs/mech_krb5/krb5/os/sendto_kdc.c
275 usr/src/lib/gss_mechs/mech_krb5/krb5/os/sn2princ.c
276 usr/src/lib/gss_mechs/mech_krb5/krb5/os/thread_safe.c
277 usr/src/lib/gss_mechs/mech_krb5/krb5/os/unlck_file.c
278 usr/src/lib/gss_mechs/mech_krb5/krb5/os/ustime.c
279 usr/src/lib/gss_mechs/mech_krb5/krb5/os/write_msg.c
280 usr/src/lib/gss_mechs/mech_krb5/krb5/posix/daemon.c
281 usr/src/lib/gss_mechs/mech_krb5/krb5/posix/setenv.c
282 usr/src/lib/gss_mechs/mech_krb5/krb5/rcache/rc_base.h
283 usr/src/lib/gss_mechs/mech_krb5/krb5/rcache/rc_conv.c
284 usr/src/lib/gss_mechs/mech_krb5/krb5/rcache/rc_io.h
285 usr/src/lib/gss_mechs/mech_krb5/krb5/rcache/rc_none.c
286 usr/src/lib/gss_mechs/mech_krb5/krb5/rcache/rc-int.h
287 usr/src/lib/gss_mechs/mech_krb5/krb5/rcache/rcdef.c
288 usr/src/lib/gss_mechs/mech_krb5/krb5/rcache/rcfns.c
289 usr/src/lib/gss_mechs/mech_krb5/krb5/rcache/ser_rc.c
290 usr/src/lib/gss_mechs/mech_krb5/mech/accept_sec_context.c
291 usr/src/lib/gss_mechs/mech_krb5/mech/acquire_cred_with_pw.c
292 usr/src/lib/gss_mechs/mech_krb5/mech/acquire_cred.c
293 usr/src/lib/gss_mechs/mech_krb5/mech/add_cred.c
294 usr/src/lib/gss_mechs/mech_krb5/mech/compare_name.c
295 usr/src/lib/gss_mechs/mech_krb5/mech/context_time.c
296 usr/src/lib/gss_mechs/mech_krb5/mech/copy_ccache.c
297 usr/src/lib/gss_mechs/mech_krb5/mech/disp_com_err_status.c
298 usr/src/lib/gss_mechs/mech_krb5/mech/disp_major_status.c
299 usr/src/lib/gss_mechs/mech_krb5/mech/disp_name.c
300 usr/src/lib/gss_mechs/mech_krb5/mech/disp_status.c
301 usr/src/lib/gss_mechs/mech_krb5/mech/export_name.c
302 usr/src/lib/gss_mechs/mech_krb5/mech/export_sec_context.c
303 usr/src/lib/gss_mechs/mech_krb5/mech/get_tkt_flags.c
304 usr/src/lib/gss_mechs/mech_krb5/mech/gss_libinit.h
305 usr/src/lib/gss_mechs/mech_krb5/mech/import_name.c
306 usr/src/lib/gss_mechs/mech_krb5/mech/indicate_mechs.c
307 usr/src/lib/gss_mechs/mech_krb5/mech/init_sec_context.c
308 usr/src/lib/gss_mechs/mech_krb5/mech/inq_context.c
309 usr/src/lib/gss_mechs/mech_krb5/mech/inq_cred.c
310 usr/src/lib/gss_mechs/mech_krb5/mech/inq_names.c
311 usr/src/lib/gss_mechs/mech_krb5/mech/krb5_gss_glue.c
312 usr/src/lib/gss_mechs/mech_krb5/mech/lucid_context.c
313 usr/src/lib/gss_mechs/mech_krb5/mech/oid_ops.c
314 usr/src/lib/gss_mechs/mech_krb5/mech/process_context_token.c
315 usr/src/lib/gss_mechs/mech_krb5/mech/rel_buffer.c
316 usr/src/lib/gss_mechs/mech_krb5/mech/rel_cred.c
317 usr/src/lib/gss_mechs/mech_krb5/mech/rel_name.c
318 usr/src/lib/gss_mechs/mech_krb5/mech/rel_oid_set.c
319 usr/src/lib/gss_mechs/mech_krb5/mech/rel_oid.c
320 usr/src/lib/gss_mechs/mech_krb5/mech/set_allowable_enctypes.c
321 usr/src/lib/gss_mechs/mech_krb5/mech/set_ccache.c
322 usr/src/lib/gss_mechs/mech_krb5/mech/util_buffer_set.c
323 usr/src/lib/gss_mechs/mech_krb5/mech/util_buffer.c
324 usr/src/lib/gss_mechs/mech_krb5/mech/util_cksum.c
325 usr/src/lib/gss_mechs/mech_krb5/mech/util_ctxsetup.c

new/exception_lists/cstyle 6

326 usr/src/lib/gss_mechs/mech_krb5/mech/util_dup.c
327 usr/src/lib/gss_mechs/mech_krb5/mech/util_localhost.c
328 usr/src/lib/gss_mechs/mech_krb5/mech/utl_nohash_validate.c
329 usr/src/lib/gss_mechs/mech_krb5/profile/prof_err.h
330 usr/src/lib/gss_mechs/mech_krb5/profile/prof_get.c
331 usr/src/lib/gss_mechs/mech_krb5/profile/prof_set.c
332 usr/src/lib/gss_mechs/mech_krb5/support/errors.c
333 usr/src/lib/gss_mechs/mech_krb5/support/fake-addrinfo.c
334 usr/src/lib/gss_mechs/mech_krb5/support/init-addrinfo.c
335 usr/src/lib/gss_mechs/mech_krb5/support/plugins.c
336 usr/src/lib/gss_mechs/mech_krb5/support/supp-int.h
337 usr/src/lib/gss_mechs/mech_krb5/support/threads.c
338 usr/src/lib/gss_mechs/mech_krb5/support/utf8_conv.c
339 usr/src/lib/gss_mechs/mech_krb5/support/utf8.c
340 usr/src/lib/krb5/dyn/dyn_append.c
341 usr/src/lib/krb5/dyn/dyn_create.c
342 usr/src/lib/krb5/dyn/dyn_debug.c
343 usr/src/lib/krb5/dyn/dyn_delete.c
344 usr/src/lib/krb5/dyn/dyn_initzero.c
345 usr/src/lib/krb5/dyn/dyn_insert.c
346 usr/src/lib/krb5/dyn/dyn_paranoid.c
347 usr/src/lib/krb5/dyn/dyn_put.c
348 usr/src/lib/krb5/dyn/dyn_realloc.c
349 usr/src/lib/krb5/dyn/dyn_size.c
350 usr/src/lib/krb5/kadm5/admin_internal.h
351 usr/src/lib/krb5/kadm5/admin_xdr.h
352 usr/src/lib/krb5/kadm5/admin.h
353 usr/src/lib/krb5/kadm5/alt_prof.c
354 usr/src/lib/krb5/kadm5/chpass_util_strings.h
355 usr/src/lib/krb5/kadm5/chpass_util.c
356 usr/src/lib/krb5/kadm5/clnt/changepw.c
357 usr/src/lib/krb5/kadm5/clnt/client_handle.c
358 usr/src/lib/krb5/kadm5/clnt/client_init.c
359 usr/src/lib/krb5/kadm5/clnt/client_internal.h
360 usr/src/lib/krb5/kadm5/clnt/client_principal.c
361 usr/src/lib/krb5/kadm5/clnt/client_rpc.c
362 usr/src/lib/krb5/kadm5/clnt/clnt_chpass_util.c
363 usr/src/lib/krb5/kadm5/clnt/clnt_policy.c
364 usr/src/lib/krb5/kadm5/clnt/clnt_privs.c
365 usr/src/lib/krb5/kadm5/clnt/logger.c
366 usr/src/lib/krb5/kadm5/kadm_err.h
367 usr/src/lib/krb5/kadm5/kadm_rpc_xdr.c
368 usr/src/lib/krb5/kadm5/kadm_rpc.h
369 usr/src/lib/krb5/kadm5/misc_free.c
370 usr/src/lib/krb5/kadm5/server_internal.h
371 usr/src/lib/krb5/kadm5/srv/adb_xdr.c
372 usr/src/lib/krb5/kadm5/srv/chgpwd.c
373 usr/src/lib/krb5/kadm5/srv/logger.c
374 usr/src/lib/krb5/kadm5/srv/server_acl.c
375 usr/src/lib/krb5/kadm5/srv/server_acl.h
376 usr/src/lib/krb5/kadm5/srv/server_dict.c
377 usr/src/lib/krb5/kadm5/srv/server_handle.c
378 usr/src/lib/krb5/kadm5/srv/server_init.c
379 usr/src/lib/krb5/kadm5/srv/server_kdb.c
380 usr/src/lib/krb5/kadm5/srv/server_misc.c
381 usr/src/lib/krb5/kadm5/srv/svr_chpass_util.c
382 usr/src/lib/krb5/kadm5/srv/svr_iters.c
383 usr/src/lib/krb5/kadm5/srv/svr_misc_free.c
384 usr/src/lib/krb5/kadm5/srv/svr_policy.c
385 usr/src/lib/krb5/kadm5/srv/svr_principal.c
386 usr/src/lib/krb5/kadm5/srv/xdr_alloc.c
387 usr/src/lib/krb5/kadm5/str_conv.c
388 usr/src/lib/krb5/kdb/adb_err.h
389 usr/src/lib/krb5/kdb/decrypt_key.c
390 usr/src/lib/krb5/kdb/encrypt_key.c
391 usr/src/lib/krb5/kdb/kdb_cpw.c

new/exception_lists/cstyle 7

392 usr/src/lib/krb5/kdb/kdb_default.c
393 usr/src/lib/krb5/kdb/kdb5.c
394 usr/src/lib/krb5/kdb/kdb5.h
395 usr/src/lib/krb5/kdb/keytab.c
396 usr/src/lib/krb5/plugins/kdb/db2/adb_openclose.c
397 usr/src/lib/krb5/plugins/kdb/db2/adb_policy.c
398 usr/src/lib/krb5/plugins/kdb/db2/db2_exp.c
399 usr/src/lib/krb5/plugins/kdb/db2/kdb_compat.h
400 usr/src/lib/krb5/plugins/kdb/db2/kdb_db2.c
401 usr/src/lib/krb5/plugins/kdb/db2/kdb_db2.h
402 usr/src/lib/krb5/plugins/kdb/db2/kdb_xdr.c
403 usr/src/lib/krb5/plugins/kdb/db2/kdb_xdr.h
404 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_close.c
405 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_conv.c
406 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_debug.c
407 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_delete.c
408 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_get.c
409 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_open.c
410 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_overflow.c
411 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_page.c
412 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_put.c
413 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_search.c
414 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_seq.c
415 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_split.c
416 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/bt_utils.c
417 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/btree.h
418 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/extern.h
419 usr/src/lib/krb5/plugins/kdb/db2/libdb2/db/db.c
420 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/dbm.c
421 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/extern.h
422 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/hash_bigkey.c
423 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/hash_func.c
424 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/hash_log2.c
425 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/hash_page.c
426 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/hash.c
427 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/hash.h
428 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/hsearch.c
429 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/page.h
430 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/search.h
431 usr/src/lib/krb5/plugins/kdb/db2/libdb2/include/db-int.h
432 usr/src/lib/krb5/plugins/kdb/db2/libdb2/include/db-ndbm.h
433 usr/src/lib/krb5/plugins/kdb/db2/libdb2/include/db-queue.h
434 usr/src/lib/krb5/plugins/kdb/db2/libdb2/mpool/mpool.c
435 usr/src/lib/krb5/plugins/kdb/db2/libdb2/mpool/mpool.h
436 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/extern.h
437 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/rec_close.c
438 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/rec_delete.c
439 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/rec_get.c
440 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/rec_open.c
441 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/rec_put.c
442 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/rec_search.c
443 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/rec_seq.c
444 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/rec_utils.c
445 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/recno.h
446 usr/src/lib/krb5/plugins/kdb/db2/pol_xdr.c
447 usr/src/lib/krb5/plugins/kdb/db2/policy_db.h
448 usr/src/lib/krb5/plugins/kdb/ldap/ldap_exp.c
449 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/kdb_ldap_conn.c
450 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/kdb_ldap.c
451 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/kdb_ldap.h
452 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/kdb_xdr.c
453 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/kdb_xdr.h
454 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_create.c
455 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_err.c
456 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_err.h
457 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_fetch_mkey.c

new/exception_lists/cstyle 8

458 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_handle.c
459 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_handle.h
460 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_krbcontainer.c
461 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_krbcontainer.h
462 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_main.h
463 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_misc.c
464 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_misc.h
465 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_principal.c
466 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_principal.h
467 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_principal2.c
468 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_pwd_policy.c
469 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_pwd_policy.h
470 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_realm.c
471 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_realm.h
472 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_service_rights.c
473 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_service_stash.c
474 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_service_stash.h
475 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_services.c
476 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_services.h
477 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_tkt_policy.c
478 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_tkt_policy.h
479 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_accessor.c
480 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_accessor.h
481 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_clnt.c
482 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_crypto_openssl.c
483 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_crypto_openssl.h
484 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_crypto.h
485 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_identity.c
486 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_lib.c
487 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_matching.c
488 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_profile.c
489 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_srv.c
490 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit.h
491 usr/src/lib/krb5/ss/copyright.h
492 usr/src/lib/krb5/ss/data.c
493 usr/src/lib/krb5/ss/error.c
494 usr/src/lib/krb5/ss/execute_cmd.c
495 usr/src/lib/krb5/ss/help.c
496 usr/src/lib/krb5/ss/invocation.c
497 usr/src/lib/krb5/ss/list_rqs.c
498 usr/src/lib/krb5/ss/listen.c
499 usr/src/lib/krb5/ss/mit-sipb-copyright.h
500 usr/src/lib/krb5/ss/mk_cmds.c
501 usr/src/lib/krb5/ss/options.c
502 usr/src/lib/krb5/ss/pager.c
503 usr/src/lib/krb5/ss/parse.c
504 usr/src/lib/krb5/ss/prompt.c
505 usr/src/lib/krb5/ss/request_tbl.c
506 usr/src/lib/krb5/ss/requests.c
507 usr/src/lib/krb5/ss/ss_internal.h
508 usr/src/lib/krb5/ss/ss.h
509 usr/src/lib/krb5/ss/std_rqs.c
510 usr/src/lib/krb5/ss/utils.c
511 usr/src/lib/libgss/g_glue.c
512 usr/src/lib/librstp/common/base.h
513 usr/src/lib/librstp/common/choose.h
514 usr/src/lib/librstp/common/edge.c
515 usr/src/lib/librstp/common/edge.h
516 usr/src/lib/librstp/common/migrate.c
517 usr/src/lib/librstp/common/migrate.h
518 usr/src/lib/librstp/common/p2p.c
519 usr/src/lib/librstp/common/p2p.h
520 usr/src/lib/librstp/common/pcost.c
521 usr/src/lib/librstp/common/pcost.h
522 usr/src/lib/librstp/common/port.c
523 usr/src/lib/librstp/common/port.h

new/exception_lists/cstyle 9

524 usr/src/lib/librstp/common/portinfo.c
525 usr/src/lib/librstp/common/portinfo.h
526 usr/src/lib/librstp/common/rolesel.c
527 usr/src/lib/librstp/common/rolesel.h
528 usr/src/lib/librstp/common/roletrns.c
529 usr/src/lib/librstp/common/roletrns.h
530 usr/src/lib/librstp/common/statmch.c
531 usr/src/lib/librstp/common/statmch.h
532 usr/src/lib/librstp/common/stp_bpdu.h
533 usr/src/lib/librstp/common/stp_in.c
534 usr/src/lib/librstp/common/stp_in.h
535 usr/src/lib/librstp/common/stp_to.h
536 usr/src/lib/librstp/common/stp_vectors.h
537 usr/src/lib/librstp/common/stpm.c
538 usr/src/lib/librstp/common/stpm.h
539 usr/src/lib/librstp/common/stpmgmt.c
540 usr/src/lib/librstp/common/sttrans.c
541 usr/src/lib/librstp/common/sttrans.h
542 usr/src/lib/librstp/common/times.c
543 usr/src/lib/librstp/common/times.h
544 usr/src/lib/librstp/common/topoch.c
545 usr/src/lib/librstp/common/topoch.h
546 usr/src/lib/librstp/common/transmit.c
547 usr/src/lib/librstp/common/transmit.h
548 usr/src/lib/librstp/common/uid_stp.h
549 usr/src/lib/librstp/common/vector.c
550 usr/src/lib/librstp/common/vector.h
551 usr/src/uts/common/gssapi/gssapi.h
552 usr/src/uts/common/gssapi/mechs/krb5/crypto/block_size.c
553 usr/src/uts/common/gssapi/mechs/krb5/crypto/checksum_length.c
554 usr/src/uts/common/gssapi/mechs/krb5/crypto/cksumtypes.c
555 usr/src/uts/common/gssapi/mechs/krb5/crypto/combine_keys.c
556 usr/src/uts/common/gssapi/mechs/krb5/crypto/crc32/crc32.c
557 usr/src/uts/common/gssapi/mechs/krb5/crypto/decrypt.c
558 usr/src/uts/common/gssapi/mechs/krb5/crypto/default_state.c
559 usr/src/uts/common/gssapi/mechs/krb5/crypto/des/d3_cbc.c
560 usr/src/uts/common/gssapi/mechs/krb5/crypto/des/f_cbc.c
561 usr/src/uts/common/gssapi/mechs/krb5/crypto/des/f_parity.c
562 usr/src/uts/common/gssapi/mechs/krb5/crypto/des/weak_key.c
563 usr/src/uts/common/gssapi/mechs/krb5/crypto/dk/checksum.c
564 usr/src/uts/common/gssapi/mechs/krb5/crypto/dk/derive.c
565 usr/src/uts/common/gssapi/mechs/krb5/crypto/dk/dk_decrypt.c
566 usr/src/uts/common/gssapi/mechs/krb5/crypto/dk/dk_encrypt.c
567 usr/src/uts/common/gssapi/mechs/krb5/crypto/enc_provider/arcfour_provider.c
568 usr/src/uts/common/gssapi/mechs/krb5/crypto/enc_provider/des.c
569 usr/src/uts/common/gssapi/mechs/krb5/crypto/enc_provider/des3.c
570 usr/src/uts/common/gssapi/mechs/krb5/crypto/encrypt_length.c
571 usr/src/uts/common/gssapi/mechs/krb5/crypto/encrypt.c
572 usr/src/uts/common/gssapi/mechs/krb5/crypto/etypes.c
573 usr/src/uts/common/gssapi/mechs/krb5/crypto/hash_provider/hash_crc32.c
574 usr/src/uts/common/gssapi/mechs/krb5/crypto/hash_provider/hash_kmd5.c
575 usr/src/uts/common/gssapi/mechs/krb5/crypto/hash_provider/hash_ksha1.c
576 usr/src/uts/common/gssapi/mechs/krb5/crypto/hmac.c
577 usr/src/uts/common/gssapi/mechs/krb5/crypto/keyhash_provider/descbc.c
578 usr/src/uts/common/gssapi/mechs/krb5/crypto/keyhash_provider/k_hmac_md5.c
579 usr/src/uts/common/gssapi/mechs/krb5/crypto/keyhash_provider/k5_kmd5des.c
580 usr/src/uts/common/gssapi/mechs/krb5/crypto/make_checksum.c
581 usr/src/uts/common/gssapi/mechs/krb5/crypto/mandatory_sumtype.c
582 usr/src/uts/common/gssapi/mechs/krb5/crypto/nfold.c
583 usr/src/uts/common/gssapi/mechs/krb5/crypto/old/old_decrypt.c
584 usr/src/uts/common/gssapi/mechs/krb5/crypto/old/old_encrypt.c
585 usr/src/uts/common/gssapi/mechs/krb5/crypto/prng.c
586 usr/src/uts/common/gssapi/mechs/krb5/crypto/raw/raw_decrypt.c
587 usr/src/uts/common/gssapi/mechs/krb5/crypto/raw/raw_encrypt.c
588 usr/src/uts/common/gssapi/mechs/krb5/crypto/verify_checksum.c
589 usr/src/uts/common/gssapi/mechs/krb5/include/aes_s2k.h

new/exception_lists/cstyle 10

590 usr/src/uts/common/gssapi/mechs/krb5/include/auth_con.h
591 usr/src/uts/common/gssapi/mechs/krb5/include/cksumtypes.h
592 usr/src/uts/common/gssapi/mechs/krb5/include/crc-32.h
593 usr/src/uts/common/gssapi/mechs/krb5/include/des_int.h
594 usr/src/uts/common/gssapi/mechs/krb5/include/dk.h
595 usr/src/uts/common/gssapi/mechs/krb5/include/enc_provider.h
596 usr/src/uts/common/gssapi/mechs/krb5/include/etypes.h
597 usr/src/uts/common/gssapi/mechs/krb5/include/gssapi_generic.h
598 usr/src/uts/common/gssapi/mechs/krb5/include/gssapi_krb5.h
599 usr/src/uts/common/gssapi/mechs/krb5/include/gssapiP_generic.h
600 usr/src/uts/common/gssapi/mechs/krb5/include/gssapiP_krb5.h
601 usr/src/uts/common/gssapi/mechs/krb5/include/hash_provider.h
602 usr/src/uts/common/gssapi/mechs/krb5/include/k5-int.h
603 usr/src/uts/common/gssapi/mechs/krb5/include/k5-platform-load_16.h
604 usr/src/uts/common/gssapi/mechs/krb5/include/k5-platform-load_32.h
605 usr/src/uts/common/gssapi/mechs/krb5/include/k5-platform-load_64.h
606 usr/src/uts/common/gssapi/mechs/krb5/include/k5-platform-store_16.h
607 usr/src/uts/common/gssapi/mechs/krb5/include/k5-platform-store_32.h
608 usr/src/uts/common/gssapi/mechs/krb5/include/k5-platform-store_64.h
609 usr/src/uts/common/gssapi/mechs/krb5/include/k5-platform.h
610 usr/src/uts/common/gssapi/mechs/krb5/include/k5-thread.h
611 usr/src/uts/common/gssapi/mechs/krb5/include/keyhash_provider.h
612 usr/src/uts/common/gssapi/mechs/krb5/include/krb5.h
613 usr/src/uts/common/gssapi/mechs/krb5/include/old.h
614 usr/src/uts/common/gssapi/mechs/krb5/include/raw.h
615 usr/src/uts/common/gssapi/mechs/krb5/include/rsa-md4.h
616 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/copy_athctr.c
617 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/copy_auth.c
618 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/copy_cksum.c
619 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/copy_key.c
620 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/copy_princ.c
621 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/init_ctx.c
622 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/kfree.c
623 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/parse.c
624 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/ser_actx.c
625 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/ser_adata.c
626 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/ser_addr.c
627 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/ser_auth.c
628 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/ser_cksum.c
629 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/ser_ctx.c
630 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/ser_key.c
631 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/ser_princ.c
632 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/serialize.c
633 usr/src/uts/common/gssapi/mechs/krb5/krb5/krb/unparse.c
634 usr/src/uts/common/gssapi/mechs/krb5/krb5/os/c_ustime.c
635 usr/src/uts/common/gssapi/mechs/krb5/krb5/os/init_os_ctx.c
636 usr/src/uts/common/gssapi/mechs/krb5/krb5/os/timeofday.c
637 usr/src/uts/common/gssapi/mechs/krb5/krb5/os/toffset.c
638 usr/src/uts/common/gssapi/mechs/krb5/mech/delete_sec_context.c
639 usr/src/uts/common/gssapi/mechs/krb5/mech/gssapi_krb5.c
640 usr/src/uts/common/gssapi/mechs/krb5/mech/import_sec_context.c
641 usr/src/uts/common/gssapi/mechs/krb5/mech/k5seal.c
642 usr/src/uts/common/gssapi/mechs/krb5/mech/k5sealv3.c
643 usr/src/uts/common/gssapi/mechs/krb5/mech/k5unseal.c
644 usr/src/uts/common/gssapi/mechs/krb5/mech/seal.c
645 usr/src/uts/common/gssapi/mechs/krb5/mech/ser_sctx.c
646 usr/src/uts/common/gssapi/mechs/krb5/mech/sign.c
647 usr/src/uts/common/gssapi/mechs/krb5/mech/unseal.c
648 usr/src/uts/common/gssapi/mechs/krb5/mech/util_crypt.c
649 usr/src/uts/common/gssapi/mechs/krb5/mech/util_ordering.c
650 usr/src/uts/common/gssapi/mechs/krb5/mech/util_seed.c
651 usr/src/uts/common/gssapi/mechs/krb5/mech/util_seqnum.c
652 usr/src/uts/common/gssapi/mechs/krb5/mech/util_set.c
653 usr/src/uts/common/gssapi/mechs/krb5/mech/util_token.c
654 usr/src/uts/common/gssapi/mechs/krb5/mech/util_validate.c
655 usr/src/uts/common/gssapi/mechs/krb5/mech/val_cred.c

new/exception_lists/cstyle 11

656 usr/src/uts/common/gssapi/mechs/krb5/mech/verify.c
657 usr/src/uts/common/gssapi/mechs/krb5/mech/wrap_size_limit.c
658 usr/src/uts/common/io/e1000api/e1000_80003es2lan.c
659 usr/src/uts/common/io/e1000api/e1000_80003es2lan.h
660 usr/src/uts/common/io/e1000api/e1000_82540.c
661 usr/src/uts/common/io/e1000api/e1000_82541.c
662 usr/src/uts/common/io/e1000api/e1000_82541.h
663 usr/src/uts/common/io/e1000api/e1000_82542.c
664 usr/src/uts/common/io/e1000api/e1000_82543.c
665 usr/src/uts/common/io/e1000api/e1000_82543.h
666 usr/src/uts/common/io/e1000api/e1000_82571.c
667 usr/src/uts/common/io/e1000api/e1000_82571.h
668 usr/src/uts/common/io/e1000api/e1000_82575.c
669 usr/src/uts/common/io/e1000api/e1000_82575.h
670 usr/src/uts/common/io/e1000api/e1000_api.c
671 usr/src/uts/common/io/e1000api/e1000_api.h
672 usr/src/uts/common/io/e1000api/e1000_defines.h
673 usr/src/uts/common/io/e1000api/e1000_hw.h
674 usr/src/uts/common/io/e1000api/e1000_i210.c
675 usr/src/uts/common/io/e1000api/e1000_i210.h
676 usr/src/uts/common/io/e1000api/e1000_ich8lan.c
677 usr/src/uts/common/io/e1000api/e1000_ich8lan.h
678 usr/src/uts/common/io/e1000api/e1000_mac.c
679 usr/src/uts/common/io/e1000api/e1000_mac.h
680 usr/src/uts/common/io/e1000api/e1000_manage.c
681 usr/src/uts/common/io/e1000api/e1000_manage.h
682 usr/src/uts/common/io/e1000api/e1000_mbx.c
683 usr/src/uts/common/io/e1000api/e1000_mbx.h
684 usr/src/uts/common/io/e1000api/e1000_nvm.c
685 usr/src/uts/common/io/e1000api/e1000_nvm.h
686 usr/src/uts/common/io/e1000api/e1000_phy.c
687 usr/src/uts/common/io/e1000api/e1000_phy.h
688 usr/src/uts/common/io/e1000api/e1000_regs.h
689 usr/src/uts/common/io/e1000api/e1000_vf.c
690 usr/src/uts/common/io/e1000api/e1000_vf.h
691 usr/src/uts/common/io/ixgbe/ixgbe_82598.c
692 usr/src/uts/common/io/ixgbe/ixgbe_82598.h
693 usr/src/uts/common/io/ixgbe/ixgbe_82599.c
694 usr/src/uts/common/io/ixgbe/ixgbe_82599.h
695 usr/src/uts/common/io/ixgbe/ixgbe_api.c
696 usr/src/uts/common/io/ixgbe/ixgbe_api.h
697 usr/src/uts/common/io/ixgbe/ixgbe_common.c
698 usr/src/uts/common/io/ixgbe/ixgbe_common.h
699 usr/src/uts/common/io/ixgbe/ixgbe_mbx.c
700 usr/src/uts/common/io/ixgbe/ixgbe_mbx.h
701 usr/src/uts/common/io/ixgbe/ixgbe_osdep.h
702 usr/src/uts/common/io/ixgbe/ixgbe_phy.c
703 usr/src/uts/common/io/ixgbe/ixgbe_phy.h
704 usr/src/uts/common/io/ixgbe/ixgbe_type.h
705 usr/src/uts/common/io/ixgbe/ixgbe_x540.c
706 usr/src/uts/common/io/ixgbe/ixgbe_x540.h
707 usr/src/common/acpica
707 usr/src/uts/intel/io/acpica/debugger/dbcmds.c
708 usr/src/uts/intel/io/acpica/debugger/dbdisply.c
709 usr/src/uts/intel/io/acpica/debugger/dbexec.c
710 usr/src/uts/intel/io/acpica/debugger/dbfileio.c
711 usr/src/uts/intel/io/acpica/debugger/dbhistry.c
712 usr/src/uts/intel/io/acpica/debugger/dbinput.c
713 usr/src/uts/intel/io/acpica/debugger/dbmethod.c
714 usr/src/uts/intel/io/acpica/debugger/dbnames.c
715 usr/src/uts/intel/io/acpica/debugger/dbstats.c
716 usr/src/uts/intel/io/acpica/debugger/dbutils.c
717 usr/src/uts/intel/io/acpica/debugger/dbxface.c
718 usr/src/uts/intel/io/acpica/disassembler/dmbuffer.c
719 usr/src/uts/intel/io/acpica/disassembler/dmnames.c
720 usr/src/uts/intel/io/acpica/disassembler/dmobject.c

new/exception_lists/cstyle 12

721 usr/src/uts/intel/io/acpica/disassembler/dmopcode.c
722 usr/src/uts/intel/io/acpica/disassembler/dmresrc.c
723 usr/src/uts/intel/io/acpica/disassembler/dmresrcl.c
724 usr/src/uts/intel/io/acpica/disassembler/dmresrcs.c
725 usr/src/uts/intel/io/acpica/disassembler/dmutils.c
726 usr/src/uts/intel/io/acpica/disassembler/dmwalk.c
727 usr/src/uts/intel/io/acpica/dispatcher/dsargs.c
728 usr/src/uts/intel/io/acpica/dispatcher/dscontrol.c
729 usr/src/uts/intel/io/acpica/dispatcher/dsfield.c
730 usr/src/uts/intel/io/acpica/dispatcher/dsinit.c
731 usr/src/uts/intel/io/acpica/dispatcher/dsmethod.c
732 usr/src/uts/intel/io/acpica/dispatcher/dsmthdat.c
733 usr/src/uts/intel/io/acpica/dispatcher/dsobject.c
734 usr/src/uts/intel/io/acpica/dispatcher/dsopcode.c
735 usr/src/uts/intel/io/acpica/dispatcher/dsutils.c
736 usr/src/uts/intel/io/acpica/dispatcher/dswexec.c
737 usr/src/uts/intel/io/acpica/dispatcher/dswload.c
738 usr/src/uts/intel/io/acpica/dispatcher/dswload2.c
739 usr/src/uts/intel/io/acpica/dispatcher/dswscope.c
740 usr/src/uts/intel/io/acpica/dispatcher/dswstate.c
741 usr/src/uts/intel/io/acpica/events/evevent.c
742 usr/src/uts/intel/io/acpica/events/evglock.c
743 usr/src/uts/intel/io/acpica/events/evgpe.c
744 usr/src/uts/intel/io/acpica/events/evgpeblk.c
745 usr/src/uts/intel/io/acpica/events/evgpeinit.c
746 usr/src/uts/intel/io/acpica/events/evgpeutil.c
747 usr/src/uts/intel/io/acpica/events/evmisc.c
748 usr/src/uts/intel/io/acpica/events/evregion.c
749 usr/src/uts/intel/io/acpica/events/evrgnini.c
750 usr/src/uts/intel/io/acpica/events/evsci.c
751 usr/src/uts/intel/io/acpica/events/evxface.c
752 usr/src/uts/intel/io/acpica/events/evxfevnt.c
753 usr/src/uts/intel/io/acpica/events/evxfgpe.c
754 usr/src/uts/intel/io/acpica/events/evxfregn.c
755 usr/src/uts/intel/io/acpica/executer/exconfig.c
756 usr/src/uts/intel/io/acpica/executer/exconvrt.c
757 usr/src/uts/intel/io/acpica/executer/excreate.c
758 usr/src/uts/intel/io/acpica/executer/exdebug.c
759 usr/src/uts/intel/io/acpica/executer/exdump.c
760 usr/src/uts/intel/io/acpica/executer/exfield.c
761 usr/src/uts/intel/io/acpica/executer/exfldio.c
762 usr/src/uts/intel/io/acpica/executer/exmisc.c
763 usr/src/uts/intel/io/acpica/executer/exmutex.c
764 usr/src/uts/intel/io/acpica/executer/exnames.c
765 usr/src/uts/intel/io/acpica/executer/exoparg1.c
766 usr/src/uts/intel/io/acpica/executer/exoparg2.c
767 usr/src/uts/intel/io/acpica/executer/exoparg3.c
768 usr/src/uts/intel/io/acpica/executer/exoparg6.c
769 usr/src/uts/intel/io/acpica/executer/exprep.c
770 usr/src/uts/intel/io/acpica/executer/exregion.c
771 usr/src/uts/intel/io/acpica/executer/exresnte.c
772 usr/src/uts/intel/io/acpica/executer/exresolv.c
773 usr/src/uts/intel/io/acpica/executer/exresop.c
774 usr/src/uts/intel/io/acpica/executer/exstore.c
775 usr/src/uts/intel/io/acpica/executer/exstoren.c
776 usr/src/uts/intel/io/acpica/executer/exstorob.c
777 usr/src/uts/intel/io/acpica/executer/exsystem.c
778 usr/src/uts/intel/io/acpica/executer/exutils.c
779 usr/src/uts/intel/io/acpica/hardware/hwacpi.c
780 usr/src/uts/intel/io/acpica/hardware/hwgpe.c
781 usr/src/uts/intel/io/acpica/hardware/hwpci.c
782 usr/src/uts/intel/io/acpica/hardware/hwregs.c
783 usr/src/uts/intel/io/acpica/hardware/hwsleep.c
784 usr/src/uts/intel/io/acpica/hardware/hwtimer.c
785 usr/src/uts/intel/io/acpica/hardware/hwvalid.c
786 usr/src/uts/intel/io/acpica/hardware/hwxface.c

new/exception_lists/cstyle 13

787 usr/src/uts/intel/io/acpica/namespace/nsaccess.c
788 usr/src/uts/intel/io/acpica/namespace/nsalloc.c
789 usr/src/uts/intel/io/acpica/namespace/nsdump.c
790 usr/src/uts/intel/io/acpica/namespace/nsdumpdv.c
791 usr/src/uts/intel/io/acpica/namespace/nseval.c
792 usr/src/uts/intel/io/acpica/namespace/nsinit.c
793 usr/src/uts/intel/io/acpica/namespace/nsload.c
794 usr/src/uts/intel/io/acpica/namespace/nsnames.c
795 usr/src/uts/intel/io/acpica/namespace/nsobject.c
796 usr/src/uts/intel/io/acpica/namespace/nsparse.c
797 usr/src/uts/intel/io/acpica/namespace/nspredef.c
798 usr/src/uts/intel/io/acpica/namespace/nsrepair.c
799 usr/src/uts/intel/io/acpica/namespace/nsrepair2.c
800 usr/src/uts/intel/io/acpica/namespace/nssearch.c
801 usr/src/uts/intel/io/acpica/namespace/nsutils.c
802 usr/src/uts/intel/io/acpica/namespace/nswalk.c
803 usr/src/uts/intel/io/acpica/namespace/nsxfeval.c
804 usr/src/uts/intel/io/acpica/namespace/nsxfname.c
805 usr/src/uts/intel/io/acpica/namespace/nsxfobj.c
806 usr/src/uts/intel/io/acpica/parser/psargs.c
807 usr/src/uts/intel/io/acpica/parser/psloop.c
808 usr/src/uts/intel/io/acpica/parser/psopcode.c
809 usr/src/uts/intel/io/acpica/parser/psparse.c
810 usr/src/uts/intel/io/acpica/parser/psscope.c
811 usr/src/uts/intel/io/acpica/parser/pstree.c
812 usr/src/uts/intel/io/acpica/parser/psutils.c
813 usr/src/uts/intel/io/acpica/parser/pswalk.c
814 usr/src/uts/intel/io/acpica/parser/psxface.c
815 usr/src/uts/intel/io/acpica/resources/rsaddr.c
816 usr/src/uts/intel/io/acpica/resources/rscalc.c
817 usr/src/uts/intel/io/acpica/resources/rscreate.c
818 usr/src/uts/intel/io/acpica/resources/rsdump.c
819 usr/src/uts/intel/io/acpica/resources/rsinfo.c
820 usr/src/uts/intel/io/acpica/resources/rsio.c
821 usr/src/uts/intel/io/acpica/resources/rsirq.c
822 usr/src/uts/intel/io/acpica/resources/rslist.c
823 usr/src/uts/intel/io/acpica/resources/rsmemory.c
824 usr/src/uts/intel/io/acpica/resources/rsmisc.c
825 usr/src/uts/intel/io/acpica/resources/rsutils.c
826 usr/src/uts/intel/io/acpica/resources/rsxface.c
827 usr/src/uts/intel/io/acpica/tables/tbfadt.c
828 usr/src/uts/intel/io/acpica/tables/tbfind.c
829 usr/src/uts/intel/io/acpica/tables/tbinstal.c
830 usr/src/uts/intel/io/acpica/tables/tbutils.c
831 usr/src/uts/intel/io/acpica/tables/tbxface.c
832 usr/src/uts/intel/io/acpica/tables/tbxfroot.c
833 usr/src/uts/intel/io/acpica/utilities/utalloc.c
834 usr/src/uts/intel/io/acpica/utilities/utcache.c
835 usr/src/uts/intel/io/acpica/utilities/utclib.c
836 usr/src/uts/intel/io/acpica/utilities/utcopy.c
837 usr/src/uts/intel/io/acpica/utilities/utdebug.c
838 usr/src/uts/intel/io/acpica/utilities/utdecode.c
839 usr/src/uts/intel/io/acpica/utilities/utdelete.c
840 usr/src/uts/intel/io/acpica/utilities/uteval.c
841 usr/src/uts/intel/io/acpica/utilities/utglobal.c
842 usr/src/uts/intel/io/acpica/utilities/utids.c
843 usr/src/uts/intel/io/acpica/utilities/utinit.c
844 usr/src/uts/intel/io/acpica/utilities/utlock.c
845 usr/src/uts/intel/io/acpica/utilities/utmath.c
846 usr/src/uts/intel/io/acpica/utilities/utmisc.c
847 usr/src/uts/intel/io/acpica/utilities/utmutex.c
848 usr/src/uts/intel/io/acpica/utilities/utobject.c
849 usr/src/uts/intel/io/acpica/utilities/utosi.c
850 usr/src/uts/intel/io/acpica/utilities/utresrc.c
851 usr/src/uts/intel/io/acpica/utilities/utstate.c
852 usr/src/uts/intel/io/acpica/utilities/uttrack.c

new/exception_lists/cstyle 14

853 usr/src/uts/intel/io/acpica/utilities/utxface.c
854 usr/src/uts/intel/io/acpica/utilities/utxferror.c
855 usr/src/uts/intel/sys/acpi/acapps.h
856 usr/src/uts/intel/sys/acpi/accommon.h
857 usr/src/uts/intel/sys/acpi/acconfig.h
858 usr/src/uts/intel/sys/acpi/acdebug.h
859 usr/src/uts/intel/sys/acpi/acdisasm.h
860 usr/src/uts/intel/sys/acpi/acdispat.h
861 usr/src/uts/intel/sys/acpi/acevents.h
862 usr/src/uts/intel/sys/acpi/acexcep.h
863 usr/src/uts/intel/sys/acpi/acglobal.h
864 usr/src/uts/intel/sys/acpi/achware.h
865 usr/src/uts/intel/sys/acpi/acinterp.h
866 usr/src/uts/intel/sys/acpi/aclocal.h
867 usr/src/uts/intel/sys/acpi/acmacros.h
868 usr/src/uts/intel/sys/acpi/acnames.h
869 usr/src/uts/intel/sys/acpi/acnamesp.h
870 usr/src/uts/intel/sys/acpi/acobject.h
871 usr/src/uts/intel/sys/acpi/acopcode.h
872 usr/src/uts/intel/sys/acpi/acoutput.h
873 usr/src/uts/intel/sys/acpi/acparser.h
874 usr/src/uts/intel/sys/acpi/acpi.h
875 usr/src/uts/intel/sys/acpi/acpiosxf.h
876 usr/src/uts/intel/sys/acpi/acpixf.h
877 usr/src/uts/intel/sys/acpi/acpredef.h
878 usr/src/uts/intel/sys/acpi/acresrc.h
879 usr/src/uts/intel/sys/acpi/acrestyp.h
880 usr/src/uts/intel/sys/acpi/acstruct.h
881 usr/src/uts/intel/sys/acpi/actables.h
882 usr/src/uts/intel/sys/acpi/actbl.h
883 usr/src/uts/intel/sys/acpi/actbl1.h
884 usr/src/uts/intel/sys/acpi/actbl2.h
885 usr/src/uts/intel/sys/acpi/actypes.h
886 usr/src/uts/intel/sys/acpi/acutils.h
887 usr/src/uts/intel/sys/acpi/amlcode.h
888 usr/src/uts/intel/sys/acpi/amlresrc.h
889 usr/src/uts/intel/sys/acpi/platform/accygwin.h
890 usr/src/uts/intel/sys/acpi/platform/acefi.h
891 usr/src/uts/intel/sys/acpi/platform/acenv.h
892 usr/src/uts/intel/sys/acpi/platform/acfreebsd.h
893 usr/src/uts/intel/sys/acpi/platform/acgcc.h
894 usr/src/uts/intel/sys/acpi/platform/acintel.h
895 usr/src/uts/intel/sys/acpi/platform/aclinux.h
896 usr/src/uts/intel/sys/acpi/platform/acmsvc.h
897 usr/src/uts/intel/sys/acpi/platform/acnetbsd.h
898 usr/src/uts/intel/sys/acpi/platform/acos2.h
899 usr/src/uts/intel/sys/acpi/platform/acsolaris.h
900 usr/src/uts/intel/sys/acpi/platform/acwin.h
901 usr/src/uts/intel/sys/acpi/platform/acwin64.h

new/exception_lists/hdrchk 1

**
 8480 Thu Dec 26 13:48:08 2013
new/exception_lists/hdrchk
PANKOVs restructure
**

1 usr/src/cmd/krb5/kadmin/cli/kadmin.h
2 usr/src/cmd/krb5/kadmin/dbutil/import_err.h
3 usr/src/cmd/krb5/kadmin/dbutil/kdb5_util.h
4 usr/src/cmd/krb5/kadmin/dbutil/nstrtok.h
5 usr/src/cmd/krb5/kadmin/dbutil/string_table.h
6 usr/src/cmd/krb5/kadmin/kpasswd/kpasswd_strings.h
7 usr/src/cmd/krb5/kadmin/kpasswd/kpasswd.h
8 usr/src/cmd/krb5/kadmin/ktutil/ktutil.h
9 usr/src/cmd/krb5/kadmin/server/misc.h

10 usr/src/cmd/krb5/krb5kdc/extern.h
11 usr/src/cmd/krb5/krb5kdc/kdc_util.h
12 usr/src/cmd/krb5/krb5kdc/policy.h
13 usr/src/cmd/krb5/ldap_util/kdb5_ldap_list.h
14 usr/src/cmd/krb5/ldap_util/kdb5_ldap_policy.h
15 usr/src/cmd/krb5/ldap_util/kdb5_ldap_realm.h
16 usr/src/cmd/krb5/ldap_util/kdb5_ldap_services.h
17 usr/src/cmd/krb5/ldap_util/kdb5_ldap_util.h
18 usr/src/cmd/krb5/slave/kprop.h
19 usr/src/cmd/localedef/localedef.h
20 usr/src/common/openssl/crypto/krb5/krb5_asn.h
21 usr/src/lib/gss_mechs/mech_krb5/et/error_table.h
22 usr/src/lib/gss_mechs/mech_krb5/et/internal.h
23 usr/src/lib/gss_mechs/mech_krb5/et/mit-sipb-copyright.h
24 usr/src/lib/gss_mechs/mech_krb5/include/cache-addrinfo.h
25 usr/src/lib/gss_mechs/mech_krb5/include/cm.h
26 usr/src/lib/gss_mechs/mech_krb5/include/com_err.h
27 usr/src/lib/gss_mechs/mech_krb5/include/db-config.h
28 usr/src/lib/gss_mechs/mech_krb5/include/db.h
29 usr/src/lib/gss_mechs/mech_krb5/include/fake-addrinfo.h
30 usr/src/lib/gss_mechs/mech_krb5/include/foreachaddr.h
31 usr/src/lib/gss_mechs/mech_krb5/include/k5-int-pkinit.h
32 usr/src/lib/gss_mechs/mech_krb5/include/k5-utf8.h
33 usr/src/lib/gss_mechs/mech_krb5/include/kdb_kt.h
34 usr/src/lib/gss_mechs/mech_krb5/include/krb5_libinit.h
35 usr/src/lib/gss_mechs/mech_krb5/include/krb5/adm_defs.h
36 usr/src/lib/gss_mechs/mech_krb5/include/krb5/adm_proto.h
37 usr/src/lib/gss_mechs/mech_krb5/include/krb5/adm.h
38 usr/src/lib/gss_mechs/mech_krb5/include/krb5/copyright.h
39 usr/src/lib/gss_mechs/mech_krb5/include/krb5/k5-err.h
40 usr/src/lib/gss_mechs/mech_krb5/include/krb5/k5-plugin.h
41 usr/src/lib/gss_mechs/mech_krb5/include/krb5/kdb_dbc.h
42 usr/src/lib/gss_mechs/mech_krb5/include/krb5/kdb.h
43 usr/src/lib/gss_mechs/mech_krb5/include/locate_plugin.h
44 usr/src/lib/gss_mechs/mech_krb5/include/osconf.h
45 usr/src/lib/gss_mechs/mech_krb5/include/port-sockets.h
46 usr/src/lib/gss_mechs/mech_krb5/include/preauth_plugin.h
47 usr/src/lib/gss_mechs/mech_krb5/include/socket-utils.h
48 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_decode.h
49 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_encode.h
50 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_get.h
51 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_k_decode.h
52 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_k_encode.h
53 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_make.h
54 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1_misc.h
55 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/asn1buf.h
56 usr/src/lib/gss_mechs/mech_krb5/krb5/asn.1/krbasn1.h
57 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/cc-int.h
58 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/fcc.h
59 usr/src/lib/gss_mechs/mech_krb5/krb5/ccache/scc.h
60 usr/src/lib/gss_mechs/mech_krb5/krb5/error_tables/adm_err.h
61 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/file/ktfile.h

new/exception_lists/hdrchk 2

62 usr/src/lib/gss_mechs/mech_krb5/krb5/keytab/kt-int.h
63 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/cleanup.h
64 usr/src/lib/gss_mechs/mech_krb5/krb5/krb/int-proto.h
65 usr/src/lib/gss_mechs/mech_krb5/krb5/os/dnsglue.h
66 usr/src/lib/gss_mechs/mech_krb5/krb5/os/os-proto.h
67 usr/src/lib/gss_mechs/mech_krb5/krb5/rcache/rc_base.h
68 usr/src/lib/gss_mechs/mech_krb5/krb5/rcache/rc_io.h
69 usr/src/lib/gss_mechs/mech_krb5/krb5/rcache/rc-int.h
70 usr/src/lib/gss_mechs/mech_krb5/mech/gss_libinit.h
71 usr/src/lib/gss_mechs/mech_krb5/profile/prof_err.h
72 usr/src/lib/gss_mechs/mech_krb5/support/supp-int.h
73 usr/src/lib/krb5/kadm5/admin_internal.h
74 usr/src/lib/krb5/kadm5/admin_xdr.h
75 usr/src/lib/krb5/kadm5/admin.h
76 usr/src/lib/krb5/kadm5/chpass_util_strings.h
77 usr/src/lib/krb5/kadm5/clnt/client_internal.h
78 usr/src/lib/krb5/kadm5/kadm_err.h
79 usr/src/lib/krb5/kadm5/kadm_rpc.h
80 usr/src/lib/krb5/kadm5/server_internal.h
81 usr/src/lib/krb5/kadm5/srv/server_acl.h
82 usr/src/lib/krb5/kdb/adb_err.h
83 usr/src/lib/krb5/kdb/kdb5.h
84 usr/src/lib/krb5/plugins/kdb/db2/kdb_compat.h
85 usr/src/lib/krb5/plugins/kdb/db2/kdb_db2.h
86 usr/src/lib/krb5/plugins/kdb/db2/kdb_xdr.h
87 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/btree.h
88 usr/src/lib/krb5/plugins/kdb/db2/libdb2/btree/extern.h
89 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/extern.h
90 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/hash.h
91 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/page.h
92 usr/src/lib/krb5/plugins/kdb/db2/libdb2/hash/search.h
93 usr/src/lib/krb5/plugins/kdb/db2/libdb2/include/db-int.h
94 usr/src/lib/krb5/plugins/kdb/db2/libdb2/include/db-ndbm.h
95 usr/src/lib/krb5/plugins/kdb/db2/libdb2/include/db-queue.h
96 usr/src/lib/krb5/plugins/kdb/db2/libdb2/mpool/mpool.h
97 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/extern.h
98 usr/src/lib/krb5/plugins/kdb/db2/libdb2/recno/recno.h
99 usr/src/lib/krb5/plugins/kdb/db2/policy_db.h
100 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/kdb_ldap.h
101 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/kdb_xdr.h
102 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_err.h
103 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_handle.h
104 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_krbcontainer.h
105 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_main.h
106 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_misc.h
107 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_principal.h
108 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_pwd_policy.h
109 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_realm.h
110 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_service_stash.h
111 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_services.h
112 usr/src/lib/krb5/plugins/kdb/ldap/libkdb_ldap/ldap_tkt_policy.h
113 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_accessor.h
114 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_crypto_openssl.h
115 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit_crypto.h
116 usr/src/lib/krb5/plugins/preauth/pkinit/pkinit.h
117 usr/src/lib/krb5/ss/copyright.h
118 usr/src/lib/krb5/ss/mit-sipb-copyright.h
119 usr/src/lib/krb5/ss/ss_internal.h
120 usr/src/lib/krb5/ss/ss.h
121 usr/src/lib/libc/port/locale/utils.h
122 usr/src/lib/librstp/common/base.h
123 usr/src/lib/librstp/common/choose.h
124 usr/src/lib/librstp/common/edge.h
125 usr/src/lib/librstp/common/migrate.h
126 usr/src/lib/librstp/common/p2p.h
127 usr/src/lib/librstp/common/pcost.h

new/exception_lists/hdrchk 3

128 usr/src/lib/librstp/common/port.h
129 usr/src/lib/librstp/common/portinfo.h
130 usr/src/lib/librstp/common/rolesel.h
131 usr/src/lib/librstp/common/roletrns.h
132 usr/src/lib/librstp/common/statmch.h
133 usr/src/lib/librstp/common/stp_bpdu.h
134 usr/src/lib/librstp/common/stp_in.h
135 usr/src/lib/librstp/common/stp_to.h
136 usr/src/lib/librstp/common/stp_vectors.h
137 usr/src/lib/librstp/common/stpm.h
138 usr/src/lib/librstp/common/sttrans.h
139 usr/src/lib/librstp/common/times.h
140 usr/src/lib/librstp/common/topoch.h
141 usr/src/lib/librstp/common/transmit.h
142 usr/src/lib/librstp/common/uid_stp.h
143 usr/src/lib/librstp/common/vector.h
144 usr/src/uts/common/gssapi/mechs/krb5/include/aes_s2k.h
145 usr/src/uts/common/gssapi/mechs/krb5/include/auth_con.h
146 usr/src/uts/common/gssapi/mechs/krb5/include/cksumtypes.h
147 usr/src/uts/common/gssapi/mechs/krb5/include/crc-32.h
148 usr/src/uts/common/gssapi/mechs/krb5/include/des_int.h
149 usr/src/uts/common/gssapi/mechs/krb5/include/dk.h
150 usr/src/uts/common/gssapi/mechs/krb5/include/enc_provider.h
151 usr/src/uts/common/gssapi/mechs/krb5/include/etypes.h
152 usr/src/uts/common/gssapi/mechs/krb5/include/gssapi_generic.h
153 usr/src/uts/common/gssapi/mechs/krb5/include/gssapi_krb5.h
154 usr/src/uts/common/gssapi/mechs/krb5/include/gssapiP_generic.h
155 usr/src/uts/common/gssapi/mechs/krb5/include/gssapiP_krb5.h
156 usr/src/uts/common/gssapi/mechs/krb5/include/hash_provider.h
157 usr/src/uts/common/gssapi/mechs/krb5/include/k5-int.h
158 usr/src/uts/common/gssapi/mechs/krb5/include/k5-platform-load_16.h
159 usr/src/uts/common/gssapi/mechs/krb5/include/k5-platform-load_32.h
160 usr/src/uts/common/gssapi/mechs/krb5/include/k5-platform-load_64.h
161 usr/src/uts/common/gssapi/mechs/krb5/include/k5-platform-store_16.h
162 usr/src/uts/common/gssapi/mechs/krb5/include/k5-platform-store_32.h
163 usr/src/uts/common/gssapi/mechs/krb5/include/k5-platform-store_64.h
164 usr/src/uts/common/gssapi/mechs/krb5/include/k5-platform.h
165 usr/src/uts/common/gssapi/mechs/krb5/include/k5-thread.h
166 usr/src/uts/common/gssapi/mechs/krb5/include/keyhash_provider.h
167 usr/src/uts/common/gssapi/mechs/krb5/include/krb5.h
168 usr/src/uts/common/gssapi/mechs/krb5/include/old.h
169 usr/src/uts/common/gssapi/mechs/krb5/include/raw.h
170 usr/src/uts/common/gssapi/mechs/krb5/include/rsa-md4.h
171 usr/src/uts/common/io/ixgbe/ixgbe_common.h
172 usr/src/common/acpica
172 usr/src/uts/intel/sys/acpi/acdebug.h
173 usr/src/uts/intel/sys/acpi/acdisasm.h
174 usr/src/uts/intel/sys/acpi/acevents.h
175 usr/src/uts/intel/sys/acpi/acinterp.h
176 usr/src/uts/intel/sys/acpi/acmacros.h
177 usr/src/uts/intel/sys/acpi/acnames.h
178 usr/src/uts/intel/sys/acpi/acpredef.h
179 usr/src/uts/intel/sys/acpi/acresrc.h
180 usr/src/uts/intel/sys/acpi/acstruct.h
181 usr/src/uts/intel/sys/acpi/amlresrc.h
182 usr/src/uts/intel/sys/acpi/platform/acwin64.h

new/usr/src/Makefile.master 1

**
 35161 Thu Dec 26 13:48:08 2013
new/usr/src/Makefile.master
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright (c) 2012 by Delphix. All rights reserved.
25 # Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 #

28 #
29 # Makefile.master, global definitions for system source
30 #
31 ROOT= /proto

33 #
34 # Adjunct root, containing an additional proto area to be used for headers
35 # and libraries.
36 #
37 ADJUNCT_PROTO=

39 #
40 # Adjunct for building things that run on the build machine.
41 #
42 NATIVE_ADJUNCT= /usr

44 #
45 # RELEASE_BUILD should be cleared for final release builds.
46 # NOT_RELEASE_BUILD is exactly what the name implies.
47 #
48 # INTERNAL_RELEASE_BUILD is a subset of RELEASE_BUILD. It mostly controls
49 # identification strings. Enabling RELEASE_BUILD automatically enables
50 # INTERNAL_RELEASE_BUILD.
51 #
52 # STRIP_COMMENTS toggles comment section striping. Generally the same setting
53 # as INTERNAL_RELEASE_BUILD.
54 #
55 # __GNUC toggles the building of ON components using gcc and related tools.
56 # Normally set to ‘#’, set it to ‘’ to do gcc build.
57 #
58 # The declaration POUND_SIGN is always ’#’. This is needed to get around the
59 # make feature that ’#’ is always a comment delimiter, even when escaped or
60 # quoted. We use this macro expansion method to get POUND_SIGN rather than
61 # always breaking out a shell because the general case can cause a noticable

new/usr/src/Makefile.master 2

62 # slowdown in build times when so many Makefiles include Makefile.master.
63 #
64 # While the majority of users are expected to override the setting below
65 # with an env file (via nightly or bldenv), if you aren’t building that way
66 # (ie, you’re using "ws" or some other bootstrapping method) then you need
67 # this definition in order to avoid the subshell invocation mentioned above.
68 #

70 PRE_POUND= pre\#
71 POUND_SIGN= $(PRE_POUND:pre\%=%)

73 NOT_RELEASE_BUILD=
74 INTERNAL_RELEASE_BUILD= $(POUND_SIGN)
75 RELEASE_BUILD= $(POUND_SIGN)
76 $(RELEASE_BUILD)NOT_RELEASE_BUILD= $(POUND_SIGN)
77 $(RELEASE_BUILD)INTERNAL_RELEASE_BUILD=
78 PATCH_BUILD= $(POUND_SIGN)

80 # SPARC_BLD is ’#’ for an Intel build.
81 # INTEL_BLD is ’#’ for a Sparc build.
82 SPARC_BLD_1= $(MACH:i386=$(POUND_SIGN))
83 SPARC_BLD= $(SPARC_BLD_1:sparc=)
84 INTEL_BLD_1= $(MACH:sparc=$(POUND_SIGN))
85 INTEL_BLD= $(INTEL_BLD_1:i386=)

87 STRIP_COMMENTS= $(INTERNAL_RELEASE_BUILD)

89 # The variables below control the compilers used during the build.
90 # There are a number of permutations.
91 #
92 # __GNUC and __SUNC control (and indicate) the primary compiler. Whichever
93 # one is not POUND_SIGN is the primary, with the other as the shadow. They
94 # may also be used to control entirely compiler-specific Makefile assignments.
95 # __SUNC and Sun Studio are the default.
96 #
97 # __GNUC64 indicates that the 64bit build should use the GNU C compiler.
98 # There is no Sun C analogue.
99 #
100 # The following version-specific options are operative regardless of which
101 # compiler is primary, and control the versions of the given compilers to be
102 # used. They also allow compiler-version specific Makefile fragments.
103 #

105 __GNUC= $(POUND_SIGN)
106 $(__GNUC)__SUNC= $(POUND_SIGN)
107 __GNUC64= $(__GNUC)

109 # CLOSED is the root of the tree that contains source which isn’t released
110 # as open source
111 CLOSED= $(SRC)/../closed

113 # BUILD_TOOLS is the root of all tools including compilers.
114 # ONBLD_TOOLS is the root of all the tools that are part of SUNWonbld.

116 BUILD_TOOLS= /ws/onnv-tools
117 ONBLD_TOOLS= $(BUILD_TOOLS)/onbld

119 JAVA_ROOT= /usr/java

121 SFW_ROOT= /usr/sfw
122 SFWINCDIR= $(SFW_ROOT)/include
123 SFWLIBDIR= $(SFW_ROOT)/lib
124 SFWLIBDIR64= $(SFW_ROOT)/lib/$(MACH64)

126 GCC_ROOT= /opt/gcc/4.4.4
127 GCCLIBDIR= $(GCC_ROOT)/lib

new/usr/src/Makefile.master 3

128 GCCLIBDIR64= $(GCC_ROOT)/lib/$(MACH64)

130 DOCBOOK_XSL_ROOT= /usr/share/sgml/docbook/xsl-stylesheets

132 RPCGEN= /usr/bin/rpcgen
133 STABS= $(ONBLD_TOOLS)/bin/$(MACH)/stabs
134 ELFEXTRACT= $(ONBLD_TOOLS)/bin/$(MACH)/elfextract
135 MBH_PATCH= $(ONBLD_TOOLS)/bin/$(MACH)/mbh_patch
136 ECHO= echo
137 INS= install
138 TRUE= true
139 SYMLINK= /usr/bin/ln -s
140 LN= /usr/bin/ln
141 CHMOD= /usr/bin/chmod
142 MV= /usr/bin/mv -f
143 RM= /usr/bin/rm -f
144 CUT= /usr/bin/cut
145 NM= /usr/ccs/bin/nm
146 DIFF= /usr/bin/diff
147 GREP= /usr/bin/grep
148 EGREP= /usr/bin/egrep
149 ELFWRAP= /usr/bin/elfwrap
150 KSH93= /usr/bin/ksh93
151 SED= /usr/bin/sed
152 NAWK= /usr/bin/nawk
153 CP= /usr/bin/cp -f
154 MCS= /usr/ccs/bin/mcs
155 CAT= /usr/bin/cat
156 ELFDUMP= /usr/ccs/bin/elfdump
157 M4= /usr/ccs/bin/m4
158 STRIP= /usr/ccs/bin/strip
159 LEX= /usr/ccs/bin/lex
160 FLEX= /usr/bin/flex
159 FLEX= $(SFW_ROOT)/bin/flex
161 YACC= /usr/ccs/bin/yacc
162 BISON= /usr/bin/bison
163 CPP= /usr/lib/cpp
164 JAVAC= $(JAVA_ROOT)/bin/javac
165 JAVAH= $(JAVA_ROOT)/bin/javah
166 JAVADOC= $(JAVA_ROOT)/bin/javadoc
167 RMIC= $(JAVA_ROOT)/bin/rmic
168 JAR= $(JAVA_ROOT)/bin/jar
169 CTFCONVERT= $(ONBLD_TOOLS)/bin/$(MACH)/ctfconvert
170 CTFMERGE= $(ONBLD_TOOLS)/bin/$(MACH)/ctfmerge
171 CTFSTABS= $(ONBLD_TOOLS)/bin/$(MACH)/ctfstabs
172 CTFSTRIP= $(ONBLD_TOOLS)/bin/$(MACH)/ctfstrip
173 NDRGEN= $(ONBLD_TOOLS)/bin/$(MACH)/ndrgen
174 GENOFFSETS= $(ONBLD_TOOLS)/bin/genoffsets
175 CTFCVTPTBL= $(ONBLD_TOOLS)/bin/ctfcvtptbl
176 CTFFINDMOD= $(ONBLD_TOOLS)/bin/ctffindmod
177 XREF= $(ONBLD_TOOLS)/bin/xref
178 FIND= /usr/bin/find
179 PERL= /usr/bin/perl
180 PYTHON_26= /usr/bin/python2.6
181 PYTHON= $(PYTHON_26)
182 SORT= /usr/bin/sort
183 TOUCH= /usr/bin/touch
184 WC= /usr/bin/wc
185 XARGS= /usr/bin/xargs
186 ELFEDIT= /usr/bin/elfedit
187 ELFSIGN= /usr/bin/elfsign
188 DTRACE= /usr/sbin/dtrace -xnolibs
189 UNIQ= /usr/bin/uniq
190 TAR= /usr/bin/tar
191 ASTBINDIR= /usr/ast/bin
192 MSGCC= $(ASTBINDIR)/msgcc

new/usr/src/Makefile.master 4

194 FILEMODE= 644
195 DIRMODE= 755

197 #
198 # The version of the patch makeup table optimized for build-time use. Used
199 # during patch builds only.
200 $(PATCH_BUILD)PMTMO_FILE=$(SRC)/patch_makeup_table.mo

202 # Declare that nothing should be built in parallel.
203 # Individual Makefiles can use the .PARALLEL target to declare otherwise.
204 .NO_PARALLEL:

206 # For stylistic checks
207 #
208 # Note that the X and C checks are not used at this time and may need
209 # modification when they are actually used.
210 #
211 CSTYLE= $(ONBLD_TOOLS)/bin/cstyle
212 CSTYLE_TAIL=
213 HDRCHK= $(ONBLD_TOOLS)/bin/hdrchk
214 HDRCHK_TAIL=
215 JSTYLE= $(ONBLD_TOOLS)/bin/jstyle

217 DOT_H_CHECK= \
218 @$(ECHO) "checking $<"; $(CSTYLE) $< $(CSTYLE_TAIL); \
219 $(HDRCHK) $< $(HDRCHK_TAIL)

221 DOT_X_CHECK= \
222 @$(ECHO) "checking $<"; $(RPCGEN) -C -h $< | $(CSTYLE) $(CSTYLE_TAIL); \
223 $(RPCGEN) -C -h $< | $(HDRCHK) $< $(HDRCHK_TAIL)

225 DOT_C_CHECK= \
226 @$(ECHO) "checking $<"; $(CSTYLE) $< $(CSTYLE_TAIL)

228 MANIFEST_CHECK= \
229 @$(ECHO) "checking $<"; \
230 SVCCFG_DTD=$(SRC)/cmd/svc/dtd/service_bundle.dtd.1 \
231 SVCCFG_REPOSITORY=$(SRC)/cmd/svc/seed/global.db \
232 SVCCFG_CONFIGD_PATH=$(SRC)/cmd/svc/configd/svc.configd-native \
233 $(SRC)/cmd/svc/svccfg/svccfg-native validate $<

235 INS.file= $(RM) $@; $(INS) -s -m $(FILEMODE) -f $(@D) $<
236 INS.dir= $(INS) -s -d -m $(DIRMODE) $@
237 # installs and renames at once
238 #
239 INS.rename= $(INS.file); $(MV) $(@D)/$(<F) $@

241 # install a link
242 INSLINKTARGET= $<
243 INS.link= $(RM) $@; $(LN) $(INSLINKTARGET) $@
244 INS.symlink= $(RM) $@; $(SYMLINK) $(INSLINKTARGET) $@

246 #
247 # Python bakes the mtime of the .py file into the compiled .pyc and
248 # rebuilds if the baked-in mtime != the mtime of the source file
249 # (rather than only if it’s less than), thus when installing python
250 # files we must make certain to not adjust the mtime of the source
251 # (.py) file.
252 #
253 INS.pyfile= $(INS.file); $(TOUCH) -r $< $@

255 # MACH must be set in the shell environment per uname -p on the build host
256 # More specific architecture variables should be set in lower makefiles.
257 #
258 # MACH64 is derived from MACH, and BUILD64 is set to ‘#’ for

new/usr/src/Makefile.master 5

259 # architectures on which we do not build 64-bit versions.
260 # (There are no such architectures at the moment.)
261 #
262 # Set BUILD64=# in the environment to disable 64-bit amd64
263 # builds on i386 machines.

265 MACH64_1= $(MACH:sparc=sparcv9)
266 MACH64= $(MACH64_1:i386=amd64)

268 MACH32_1= $(MACH:sparc=sparcv7)
269 MACH32= $(MACH32_1:i386=i86)

271 sparc_BUILD64=
272 i386_BUILD64=
273 BUILD64= $($(MACH)_BUILD64)

275 #
276 # C compiler mode. Future compilers may change the default on us,
277 # so force extended ANSI mode globally. Lower level makefiles can
278 # override this by setting CCMODE.
279 #
280 CCMODE= -Xa
281 CCMODE64= -Xa

283 #
284 # C compiler verbose mode. This is so we can enable it globally,
285 # but turn it off in the lower level makefiles of things we cannot
286 # (or aren’t going to) fix.
287 #
288 CCVERBOSE= -v

290 # set this to the secret flag "-Wc,-Qiselect-v9abiwarn=1" to get warnings
291 # from the compiler about places the -xarch=v9 may differ from -xarch=v9c.
292 V9ABIWARN=

294 # set this to the secret flag "-Wc,-Qiselect-regsym=0" to disable register
295 # symbols (used to detect conflicts between objects that use global registers)
296 # we disable this now for safety, and because genunix doesn’t link with
297 # this feature (the v9 default) enabled.
298 #
299 # REGSYM is separate since the C++ driver syntax is different.
300 CCREGSYM= -Wc,-Qiselect-regsym=0
301 CCCREGSYM= -Qoption cg -Qiselect-regsym=0

303 # Prevent the removal of static symbols by the SPARC code generator (cg).
304 # The x86 code generator (ube) does not remove such symbols and as such
305 # using this workaround is not applicable for x86.
306 #
307 CCSTATICSYM= -Wc,-Qassembler-ounrefsym=0
308 #
309 # generate 32-bit addresses in the v9 kernel. Saves memory.
310 CCABS32= -Wc,-xcode=abs32
311 #
312 # generate v9 code which tolerates callers using the v7 ABI, for the sake of
313 # system calls.
314 CC32BITCALLERS= -_gcc=-massume-32bit-callers

316 # GCC, especially, is increasingly beginning to auto-inline functions and
317 # sadly does so separately not under the general -fno-inline-functions
318 # Additionally, we wish to prevent optimisations which cause GCC to clone
319 # functions -- in particular, these may cause unhelpful symbols to be
320 # emitted instead of function names
321 CCNOAUTOINLINE= -_gcc=-fno-inline-small-functions \
322 -_gcc=-fno-inline-functions-called-once \
323 -_gcc=-fno-ipa-cp

new/usr/src/Makefile.master 6

325 # One optimization the compiler might perform is to turn this:
326 # #pragma weak foo
327 # extern int foo;
328 # if (&foo)
329 # foo = 5;
330 # into
331 # foo = 5;
332 # Since we do some of this (foo might be referenced in common kernel code
333 # but provided only for some cpu modules or platforms), we disable this
334 # optimization.
335 #
336 sparc_CCUNBOUND = -Wd,-xsafe=unboundsym
337 i386_CCUNBOUND =
338 CCUNBOUND = $($(MACH)_CCUNBOUND)

340 #
341 # compiler ’-xarch’ flag. This is here to centralize it and make it
342 # overridable for testing.
343 sparc_XARCH= -m32
344 sparcv9_XARCH= -m64
345 i386_XARCH=
346 amd64_XARCH= -m64 -Ui386 -U__i386

348 # assembler ’-xarch’ flag. Different from compiler ’-xarch’ flag.
349 sparc_AS_XARCH= -xarch=v8plus
350 sparcv9_AS_XARCH= -xarch=v9
351 i386_AS_XARCH=
352 amd64_AS_XARCH= -xarch=amd64 -P -Ui386 -U__i386

354 #
355 # These flags define what we need to be ’standalone’ i.e. -not- part
356 # of the rather more cosy userland environment. This basically means
357 # the kernel.
358 #
359 # XX64 future versions of gcc will make -mcmodel=kernel imply -mno-red-zone
360 #
361 sparc_STAND_FLAGS= -_gcc=-ffreestanding
362 sparcv9_STAND_FLAGS= -_gcc=-ffreestanding
363 # Disabling MMX also disables 3DNow, disabling SSE also disables all later
364 # additions to SSE (SSE2, AVX ,etc.)
365 NO_SIMD= -_gcc=-mno-mmx -_gcc=-mno-sse
366 i386_STAND_FLAGS= -_gcc=-ffreestanding $(NO_SIMD)
367 amd64_STAND_FLAGS= -xmodel=kernel $(NO_SIMD)

369 SAVEARGS= -Wu,-save_args
370 amd64_STAND_FLAGS += $(SAVEARGS)

372 STAND_FLAGS_32 = $($(MACH)_STAND_FLAGS)
373 STAND_FLAGS_64 = $($(MACH64)_STAND_FLAGS)

375 #
376 # disable the incremental linker
377 ILDOFF= -xildoff
378 #
379 XDEPEND= -xdepend
380 XFFLAG= -xF=%all
381 XESS= -xs
382 XSTRCONST= -xstrconst

384 #
385 # turn warnings into errors (C)
386 CERRWARN = -errtags=yes -errwarn=%all
387 CERRWARN += -erroff=E_EMPTY_TRANSLATION_UNIT
388 CERRWARN += -erroff=E_STATEMENT_NOT_REACHED

390 CERRWARN += -_gcc=-Wno-missing-braces

new/usr/src/Makefile.master 7

391 CERRWARN += -_gcc=-Wno-sign-compare
392 CERRWARN += -_gcc=-Wno-unknown-pragmas
393 CERRWARN += -_gcc=-Wno-unused-parameter
394 CERRWARN += -_gcc=-Wno-missing-field-initializers

396 # Unfortunately, this option can misfire very easily and unfixably.
397 CERRWARN += -_gcc=-Wno-array-bounds

399 # DEBUG v. -nd make for frequent unused variables, empty conditions, etc. in
400 # -nd builds
401 $(RELEASE_BUILD)CERRWARN += -_gcc=-Wno-unused
402 $(RELEASE_BUILD)CERRWARN += -_gcc=-Wno-empty-body

404 #
405 # turn warnings into errors (C++)
406 CCERRWARN= -xwe

408 # C99 mode
409 C99_ENABLE= -xc99=%all
410 C99_DISABLE= -xc99=%none
411 C99MODE= $(C99_DISABLE)
412 C99LMODE= $(C99MODE:-xc99%=-Xc99%)

414 # In most places, assignments to these macros should be appended with +=
415 # (CPPFLAGS.master allows values to be prepended to CPPFLAGS).
416 sparc_CFLAGS= $(sparc_XARCH) $(CCSTATICSYM)
417 sparcv9_CFLAGS= $(sparcv9_XARCH) -dalign $(CCVERBOSE) $(V9ABIWARN) $(CCREGSYM) \
418 $(CCSTATICSYM)
419 i386_CFLAGS= $(i386_XARCH)
420 amd64_CFLAGS= $(amd64_XARCH)

422 sparc_ASFLAGS= $(sparc_AS_XARCH)
423 sparcv9_ASFLAGS=$(sparcv9_AS_XARCH)
424 i386_ASFLAGS= $(i386_AS_XARCH)
425 amd64_ASFLAGS= $(amd64_AS_XARCH)

427 #
428 sparc_COPTFLAG= -xO3
429 sparcv9_COPTFLAG= -xO3
430 i386_COPTFLAG= -O
431 amd64_COPTFLAG= -xO3

433 COPTFLAG= $($(MACH)_COPTFLAG)
434 COPTFLAG64= $($(MACH64)_COPTFLAG)

436 # When -g is used, the compiler globalizes static objects
437 # (gives them a unique prefix). Disable that.
438 CNOGLOBAL= -W0,-noglobal

440 # Direct the Sun Studio compiler to use a static globalization prefix based on t
441 # name of the module rather than something unique. Otherwise, objects
442 # will not build deterministically, as subsequent compilations of identical
443 # source will yeild objects that always look different.
444 #
445 # In the same spirit, this will also remove the date from the N_OPT stab.
446 CGLOBALSTATIC= -W0,-xglobalstatic

448 # Sometimes we want all symbols and types in debugging information even
449 # if they aren’t used.
450 CALLSYMS= -W0,-xdbggen=no%usedonly

452 #
453 # Default debug format for Sun Studio 11 is dwarf, so force it to
454 # generate stabs.
455 #
456 DEBUGFORMAT= -xdebugformat=stabs

new/usr/src/Makefile.master 8

458 #
459 # Flags used to build in debug mode for ctf generation. Bugs in the Devpro
460 # compilers currently prevent us from building with cc-emitted DWARF.
461 #
462 CTF_FLAGS_sparc = -g -Wc,-Qiselect-T1 $(C99MODE) $(CNOGLOBAL) $(CDWARFSTR)
463 CTF_FLAGS_i386 = -g $(C99MODE) $(CNOGLOBAL) $(CDWARFSTR)

465 CTF_FLAGS_sparcv9 = $(CTF_FLAGS_sparc)
466 CTF_FLAGS_amd64 = $(CTF_FLAGS_i386)

468 # Sun Studio produces broken userland code when saving arguments.
469 $(__GNUC)CTF_FLAGS_amd64 += $(SAVEARGS)

471 CTF_FLAGS_32 = $(CTF_FLAGS_$(MACH)) $(DEBUGFORMAT)
472 CTF_FLAGS_64 = $(CTF_FLAGS_$(MACH64)) $(DEBUGFORMAT)
473 CTF_FLAGS = $(CTF_FLAGS_32)

475 #
476 # Flags used with genoffsets
477 #
478 GOFLAGS = -_noecho \
479 $(CALLSYMS) \
480 $(CDWARFSTR)

482 OFFSETS_CREATE = $(GENOFFSETS) -s $(CTFSTABS) -r $(CTFCONVERT) \
483 $(CC) $(GOFLAGS) $(CFLAGS) $(CPPFLAGS)

485 OFFSETS_CREATE64 = $(GENOFFSETS) -s $(CTFSTABS) -r $(CTFCONVERT) \
486 $(CC) $(GOFLAGS) $(CFLAGS64) $(CPPFLAGS)

488 #
489 # tradeoff time for space (smaller is better)
490 #
491 sparc_SPACEFLAG = -xspace -W0,-Lt
492 sparcv9_SPACEFLAG = -xspace -W0,-Lt
493 i386_SPACEFLAG = -xspace
494 amd64_SPACEFLAG =

496 SPACEFLAG = $($(MACH)_SPACEFLAG)
497 SPACEFLAG64 = $($(MACH64)_SPACEFLAG)

499 #
500 # The Sun Studio 11 compiler has changed the behaviour of integer
501 # wrap arounds and so a flag is needed to use the legacy behaviour
502 # (without this flag panics/hangs could be exposed within the source).
503 #
504 sparc_IROPTFLAG = -W2,-xwrap_int
505 sparcv9_IROPTFLAG = -W2,-xwrap_int
506 i386_IROPTFLAG =
507 amd64_IROPTFLAG =

509 IROPTFLAG = $($(MACH)_IROPTFLAG)
510 IROPTFLAG64 = $($(MACH64)_IROPTFLAG)

512 sparc_XREGSFLAG = -xregs=no%appl
513 sparcv9_XREGSFLAG = -xregs=no%appl
514 i386_XREGSFLAG =
515 amd64_XREGSFLAG =

517 XREGSFLAG = $($(MACH)_XREGSFLAG)
518 XREGSFLAG64 = $($(MACH64)_XREGSFLAG)

520 # dmake SOURCEDEBUG=yes ... enables source-level debugging information, and
521 # avoids stripping it.
522 SOURCEDEBUG = $(POUND_SIGN)

new/usr/src/Makefile.master 9

523 SRCDBGBLD = $(SOURCEDEBUG:yes=)

525 #
526 # These variables are intended ONLY for use by developers to safely pass extra
527 # flags to the compilers without unintentionally overriding Makefile-set
528 # flags. They should NEVER be set to any value in a Makefile.
529 #
530 # They come last in the associated FLAGS variable such that they can
531 # explicitly override things if necessary, there are gaps in this, but it’s
532 # the best we can manage.
533 #
534 CUSERFLAGS =
535 CUSERFLAGS64 = $(CUSERFLAGS)
536 CCUSERFLAGS =
537 CCUSERFLAGS64 = $(CCUSERFLAGS)

539 CSOURCEDEBUGFLAGS =
540 CCSOURCEDEBUGFLAGS =
541 $(SRCDBGBLD)CSOURCEDEBUGFLAGS = -g -xs
542 $(SRCDBGBLD)CCSOURCEDEBUGFLAGS = -g -xs

544 CFLAGS= $(COPTFLAG) $($(MACH)_CFLAGS) $(SPACEFLAG) $(CCMODE) \
545 $(ILDOFF) $(CERRWARN) $(C99MODE) $(CCUNBOUND) $(IROPTFLAG) \
546 $(CGLOBALSTATIC) $(CCNOAUTOINLINE) $(CSOURCEDEBUGFLAGS) \
547 $(CUSERFLAGS)
548 CFLAGS64= $(COPTFLAG64) $($(MACH64)_CFLAGS) $(SPACEFLAG64) $(CCMODE64) \
549 $(ILDOFF) $(CERRWARN) $(C99MODE) $(CCUNBOUND) $(IROPTFLAG64) \
550 $(CGLOBALSTATIC) $(CCNOAUTOINLINE) $(CSOURCEDEBUGFLAGS) \
551 $(CUSERFLAGS64)
552 #
553 # Flags that are used to build parts of the code that are subsequently
554 # run on the build machine (also known as the NATIVE_BUILD).
555 #
556 NATIVE_CFLAGS= $(COPTFLAG) $($(NATIVE_MACH)_CFLAGS) $(CCMODE) \
557 $(ILDOFF) $(CERRWARN) $(C99MODE) $($(NATIVE_MACH)_CCUNBOUND) \
558 $(IROPTFLAG) $(CGLOBALSTATIC) $(CCNOAUTOINLINE) \
559 $(CSOURCEDEBUGFLAGS) $(CUSERFLAGS)

561 DTEXTDOM=-DTEXT_DOMAIN=\"$(TEXT_DOMAIN)\" # For messaging.
562 DTS_ERRNO=-D_TS_ERRNO
563 CPPFLAGS.master=$(DTEXTDOM) $(DTS_ERRNO) \
564 $(ENVCPPFLAGS1) $(ENVCPPFLAGS2) $(ENVCPPFLAGS3) $(ENVCPPFLAGS4) \
565 $(ADJUNCT_PROTO:%=-I%/usr/include)
566 CPPFLAGS.native=$(ENVCPPFLAGS1) $(ENVCPPFLAGS2) $(ENVCPPFLAGS3) \
567 $(ENVCPPFLAGS4) -I$(NATIVE_ADJUNCT)/include
568 CPPFLAGS= $(CPPFLAGS.master)
569 AS_CPPFLAGS= $(CPPFLAGS.master)
570 JAVAFLAGS= -deprecation

572 #
573 # For source message catalogue
574 #
575 .SUFFIXES: $(SUFFIXES) .i .po
576 MSGROOT= $(ROOT)/catalog
577 MSGDOMAIN= $(MSGROOT)/$(TEXT_DOMAIN)
578 MSGDOMAINPOFILE = $(MSGDOMAIN)/$(POFILE)
579 DCMSGDOMAIN= $(MSGROOT)/LC_TIME/$(TEXT_DOMAIN)
580 DCMSGDOMAINPOFILE = $(DCMSGDOMAIN)/$(DCFILE:.dc=.po)

582 CLOBBERFILES += $(POFILE) $(POFILES)
583 COMPILE.cpp= $(CC) -E -C $(CFLAGS) $(CPPFLAGS)
584 XGETTEXT= /usr/bin/xgettext
585 XGETFLAGS= -c TRANSLATION_NOTE
586 GNUXGETTEXT= /usr/gnu/bin/xgettext
587 GNUXGETFLAGS= --add-comments=TRANSLATION_NOTE --keyword=_ \
588 --strict --no-location --omit-header

new/usr/src/Makefile.master 10

589 BUILD.po= $(XGETTEXT) $(XGETFLAGS) -d $(<F) $<.i ;\
590 $(RM) $@ ;\
591 $(SED) "/^domain/d" < $(<F).po > $@ ;\
592 $(RM) $(<F).po $<.i

594 #
595 # This is overwritten by local Makefile when PROG is a list.
596 #
597 POFILE= $(PROG).po

599 sparc_CCFLAGS= -cg92 -compat=4 \
600 -Qoption ccfe -messages=no%anachronism \
601 $(CCERRWARN)
602 sparcv9_CCFLAGS= $(sparcv9_XARCH) -dalign -compat=5 \
603 -Qoption ccfe -messages=no%anachronism \
604 -Qoption ccfe -features=no%conststrings \
605 $(CCCREGSYM) \
606 $(CCERRWARN)
607 i386_CCFLAGS= -compat=4 \
608 -Qoption ccfe -messages=no%anachronism \
609 -Qoption ccfe -features=no%conststrings \
610 $(CCERRWARN)
611 amd64_CCFLAGS= $(amd64_XARCH) -compat=5 \
612 -Qoption ccfe -messages=no%anachronism \
613 -Qoption ccfe -features=no%conststrings \
614 $(CCERRWARN)

616 sparc_CCOPTFLAG= -O
617 sparcv9_CCOPTFLAG= -O
618 i386_CCOPTFLAG= -O
619 amd64_CCOPTFLAG= -O

621 CCOPTFLAG= $($(MACH)_CCOPTFLAG)
622 CCOPTFLAG64= $($(MACH64)_CCOPTFLAG)
623 CCFLAGS= $(CCOPTFLAG) $($(MACH)_CCFLAGS) $(CCSOURCEDEBUGFLAGS) \
624 $(CCUSERFLAGS)
625 CCFLAGS64= $(CCOPTFLAG64) $($(MACH64)_CCFLAGS) $(CCSOURCEDEBUGFLAGS) \
626 $(CCUSERFLAGS64)

628 #
629 #
630 #
631 ELFWRAP_FLAGS =
632 ELFWRAP_FLAGS64 = -64

634 #
635 # Various mapfiles that are used throughout the build, and delivered to
636 # /usr/lib/ld.
637 #
638 MAPFILE.NED_i386 = $(SRC)/common/mapfiles/common/map.noexdata
639 MAPFILE.NED_sparc =
640 MAPFILE.NED = $(MAPFILE.NED_$(MACH))
641 MAPFILE.PGA = $(SRC)/common/mapfiles/common/map.pagealign
642 MAPFILE.NES = $(SRC)/common/mapfiles/common/map.noexstk
643 MAPFILE.FLT = $(SRC)/common/mapfiles/common/map.filter
644 MAPFILE.LEX = $(SRC)/common/mapfiles/common/map.lex.yy

646 #
647 # Generated mapfiles that are compiler specific, and used throughout the
648 # build. These mapfiles are not delivered in /usr/lib/ld.
649 #
650 MAPFILE.NGB_sparc= $(SRC)/common/mapfiles/gen/sparc_cc_map.noexeglobs
651 $(__GNUC64)MAPFILE.NGB_sparc= \
652 $(SRC)/common/mapfiles/gen/sparc_gcc_map.noexeglobs
653 MAPFILE.NGB_sparcv9= $(SRC)/common/mapfiles/gen/sparcv9_cc_map.noexeglobs
654 $(__GNUC64)MAPFILE.NGB_sparcv9= \

new/usr/src/Makefile.master 11

655 $(SRC)/common/mapfiles/gen/sparcv9_gcc_map.noexeglobs
656 MAPFILE.NGB_i386= $(SRC)/common/mapfiles/gen/i386_cc_map.noexeglobs
657 $(__GNUC64)MAPFILE.NGB_i386= \
658 $(SRC)/common/mapfiles/gen/i386_gcc_map.noexeglobs
659 MAPFILE.NGB_amd64= $(SRC)/common/mapfiles/gen/amd64_cc_map.noexeglobs
660 $(__GNUC64)MAPFILE.NGB_amd64= \
661 $(SRC)/common/mapfiles/gen/amd64_gcc_map.noexeglobs
662 MAPFILE.NGB = $(MAPFILE.NGB_$(MACH))

664 #
665 # A generic interface mapfile name, used by various dynamic objects to define
666 # the interfaces and interposers the object must export.
667 #
668 MAPFILE.INT = mapfile-intf

670 #
671 # LDLIBS32 can be set in the environment to override the following assignment.
672 # LDLIBS64 can be set to override the assignment made in Makefile.master.64.
673 # These environment settings make sure that no libraries are searched outside
674 # of the local workspace proto area:
675 # LDLIBS32=-YP,$ROOT/lib:$ROOT/usr/lib
676 # LDLIBS64=-YP,$ROOT/lib/$MACH64:$ROOT/usr/lib/$MACH64
677 #
678 LDLIBS32 = $(ENVLDLIBS1) $(ENVLDLIBS2) $(ENVLDLIBS3)
679 LDLIBS32 += $(ADJUNCT_PROTO:%=-L%/usr/lib -L%/lib)
680 LDLIBS.cmd = $(LDLIBS32)
681 LDLIBS.lib = $(LDLIBS32)
682 #
683 # Define compilation macros.
684 #
685 COMPILE.c= $(CC) $(CFLAGS) $(CPPFLAGS) -c
686 COMPILE64.c= $(CC) $(CFLAGS64) $(CPPFLAGS) -c
687 COMPILE.cc= $(CCC) $(CCFLAGS) $(CPPFLAGS) -c
688 COMPILE64.cc= $(CCC) $(CCFLAGS64) $(CPPFLAGS) -c
689 COMPILE.s= $(AS) $(ASFLAGS) $(AS_CPPFLAGS)
690 COMPILE64.s= $(AS) $(ASFLAGS) $($(MACH64)_AS_XARCH) $(AS_CPPFLAGS)
691 COMPILE.d= $(DTRACE) -G -32
692 COMPILE64.d= $(DTRACE) -G -64
693 COMPILE.b= $(ELFWRAP) $(ELFWRAP_FLAGS$(CLASS))
694 COMPILE64.b= $(ELFWRAP) $(ELFWRAP_FLAGS$(CLASS))

696 CLASSPATH= .
697 COMPILE.java= $(JAVAC) $(JAVAFLAGS) -classpath $(CLASSPATH)

699 #
700 # Link time macros
701 #
702 CCNEEDED = -lC
703 CCEXTNEEDED = -lCrun -lCstd
704 $(__GNUC)CCNEEDED = -L$(GCCLIBDIR) -lstdc++ -lgcc_s
705 $(__GNUC)CCEXTNEEDED = $(CCNEEDED)

707 LINK.c= $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS)
708 LINK64.c= $(CC) $(CFLAGS64) $(CPPFLAGS) $(LDFLAGS)
709 NORUNPATH= -norunpath -nolib
710 LINK.cc= $(CCC) $(CCFLAGS) $(CPPFLAGS) $(NORUNPATH) \
711 $(LDFLAGS) $(CCNEEDED)
712 LINK64.cc= $(CCC) $(CCFLAGS64) $(CPPFLAGS) $(NORUNPATH) \
713 $(LDFLAGS) $(CCNEEDED)

715 #
716 # lint macros
717 #
718 # Note that the undefine of __PRAGMA_REDEFINE_EXTNAME can be removed once
719 # ON is built with a version of lint that has the fix for 4484186.
720 #

new/usr/src/Makefile.master 12

721 ALWAYS_LINT_DEFS = -errtags=yes -s
722 ALWAYS_LINT_DEFS += -erroff=E_PTRDIFF_OVERFLOW
723 ALWAYS_LINT_DEFS += -erroff=E_ASSIGN_NARROW_CONV
724 ALWAYS_LINT_DEFS += -U__PRAGMA_REDEFINE_EXTNAME
725 ALWAYS_LINT_DEFS += $(C99LMODE)
726 ALWAYS_LINT_DEFS += -errsecurity=$(SECLEVEL)
727 ALWAYS_LINT_DEFS += -erroff=E_SEC_CREAT_WITHOUT_EXCL
728 ALWAYS_LINT_DEFS += -erroff=E_SEC_FORBIDDEN_WARN_CREAT
729 # XX64 -- really only needed for amd64 lint
730 ALWAYS_LINT_DEFS += -erroff=E_ASSIGN_INT_TO_SMALL_INT
731 ALWAYS_LINT_DEFS += -erroff=E_CAST_INT_CONST_TO_SMALL_INT
732 ALWAYS_LINT_DEFS += -erroff=E_CAST_INT_TO_SMALL_INT
733 ALWAYS_LINT_DEFS += -erroff=E_CAST_TO_PTR_FROM_INT
734 ALWAYS_LINT_DEFS += -erroff=E_COMP_INT_WITH_LARGE_INT
735 ALWAYS_LINT_DEFS += -erroff=E_INTEGRAL_CONST_EXP_EXPECTED
736 ALWAYS_LINT_DEFS += -erroff=E_PASS_INT_TO_SMALL_INT
737 ALWAYS_LINT_DEFS += -erroff=E_PTR_CONV_LOSES_BITS

739 # This forces lint to pick up note.h and sys/note.h from Devpro rather than
740 # from the proto area. The note.h that ON delivers would disable NOTE().
741 ONLY_LINT_DEFS = -I$(SPRO_VROOT)/prod/include/lint

743 SECLEVEL= core
744 LINT.c= $(LINT) $(ONLY_LINT_DEFS) $(LINTFLAGS) $(CPPFLAGS) \
745 $(ALWAYS_LINT_DEFS)
746 LINT64.c= $(LINT) $(ONLY_LINT_DEFS) $(LINTFLAGS64) $(CPPFLAGS) \
747 $(ALWAYS_LINT_DEFS)
748 LINT.s= $(LINT.c)

750 # For some future builds, NATIVE_MACH and MACH might be different.
751 # Therefore, NATIVE_MACH needs to be redefined in the
752 # environment as ‘uname -p‘ to override this macro.
753 #
754 # For now at least, we cross-compile amd64 on i386 machines.
755 NATIVE_MACH= $(MACH:amd64=i386)

757 # Define native compilation macros
758 #

760 # Base directory where compilers are loaded.
761 # Defined here so it can be overridden by developer.
762 #
763 SPRO_ROOT= $(BUILD_TOOLS)/SUNWspro
764 SPRO_VROOT= $(SPRO_ROOT)/SS12
765 GNU_ROOT= $(SFW_ROOT)

767 # Till SS12u1 formally becomes the NV CBE, LINT is hard
768 # coded to be picked up from the $SPRO_ROOT/sunstudio12.1/
769 # location. Impacted variables are sparc_LINT, sparcv9_LINT,
770 # i386_LINT, amd64_LINT.
771 # Reset them when SS12u1 is rolled out.
772 #

774 # Specify platform compiler versions for languages
775 # that we use (currently only c and c++).
776 #
777 sparc_CC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_cc
778 $(__GNUC)sparc_CC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_gcc
779 sparc_CCC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_CC
780 $(__GNUC)sparc_CCC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_g++
781 sparc_CPP= /usr/ccs/lib/cpp
782 sparc_AS= /usr/ccs/bin/as -xregsym=no
783 sparc_LD= /usr/ccs/bin/ld
784 sparc_LINT= $(SPRO_ROOT)/sunstudio12.1/bin/lint

786 sparcv9_CC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_cc

new/usr/src/Makefile.master 13

787 $(__GNUC64)sparcv9_CC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_gcc
788 sparcv9_CCC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_CC
789 $(__GNUC64)sparcv9_CCC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_g++
790 sparcv9_CPP= /usr/ccs/lib/cpp
791 sparcv9_AS= /usr/ccs/bin/as -xregsym=no
792 sparcv9_LD= /usr/ccs/bin/ld
793 sparcv9_LINT= $(SPRO_ROOT)/sunstudio12.1/bin/lint

795 i386_CC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_cc
796 $(__GNUC)i386_CC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_gcc
797 i386_CCC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_CC
798 $(__GNUC)i386_CCC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_g++
799 i386_CPP= /usr/ccs/lib/cpp
800 i386_AS= /usr/ccs/bin/as
801 $(__GNUC)i386_AS= $(ONBLD_TOOLS)/bin/$(MACH)/aw
802 i386_LD= /usr/ccs/bin/ld
803 i386_LINT= $(SPRO_ROOT)/sunstudio12.1/bin/lint

805 amd64_CC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_cc
806 $(__GNUC64)amd64_CC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_gcc
807 amd64_CCC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_CC
808 $(__GNUC64)amd64_CCC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_g++
809 amd64_CPP= /usr/ccs/lib/cpp
810 amd64_AS= $(ONBLD_TOOLS)/bin/$(MACH)/aw
811 amd64_LD= /usr/ccs/bin/ld
812 amd64_LINT= $(SPRO_ROOT)/sunstudio12.1/bin/lint

814 NATIVECC= $($(NATIVE_MACH)_CC)
815 NATIVECCC= $($(NATIVE_MACH)_CCC)
816 NATIVECPP= $($(NATIVE_MACH)_CPP)
817 NATIVEAS= $($(NATIVE_MACH)_AS)
818 NATIVELD= $($(NATIVE_MACH)_LD)
819 NATIVELINT= $($(NATIVE_MACH)_LINT)

821 #
822 # Makefile.master.64 overrides these settings
823 #
824 CC= $(NATIVECC)
825 CCC= $(NATIVECCC)
826 CPP= $(NATIVECPP)
827 AS= $(NATIVEAS)
828 LD= $(NATIVELD)
829 LINT= $(NATIVELINT)

831 # The real compilers used for this build
832 CW_CC_CMD= $(CC) -_compiler
833 CW_CCC_CMD= $(CCC) -_compiler
834 REAL_CC= $(CW_CC_CMD:sh)
835 REAL_CCC= $(CW_CCC_CMD:sh)

837 # Pass -Y flag to cpp (method of which is release-dependent)
838 CCYFLAG= -Y I,

840 BDIRECT= -Bdirect
841 BDYNAMIC= -Bdynamic
842 BLOCAL= -Blocal
843 BNODIRECT= -Bnodirect
844 BREDUCE= -Breduce
845 BSTATIC= -Bstatic

847 ZDEFS= -zdefs
848 ZDIRECT= -zdirect
849 ZIGNORE= -zignore
850 ZINITFIRST= -zinitfirst
851 ZINTERPOSE= -zinterpose
852 ZLAZYLOAD= -zlazyload

new/usr/src/Makefile.master 14

853 ZLOADFLTR= -zloadfltr
854 ZMULDEFS= -zmuldefs
855 ZNODEFAULTLIB= -znodefaultlib
856 ZNODEFS= -znodefs
857 ZNODELETE= -znodelete
858 ZNODLOPEN= -znodlopen
859 ZNODUMP= -znodump
860 ZNOLAZYLOAD= -znolazyload
861 ZNOLDYNSYM= -znoldynsym
862 ZNORELOC= -znoreloc
863 ZNOVERSION= -znoversion
864 ZRECORD= -zrecord
865 ZREDLOCSYM= -zredlocsym
866 ZTEXT= -ztext
867 ZVERBOSE= -zverbose

869 GSHARED= -G
870 CCMT= -mt

872 # Handle different PIC models on different ISAs
873 # (May be overridden by lower-level Makefiles)

875 sparc_C_PICFLAGS = -K pic
876 sparcv9_C_PICFLAGS = -K pic
877 i386_C_PICFLAGS = -K pic
878 amd64_C_PICFLAGS = -K pic
879 C_PICFLAGS = $($(MACH)_C_PICFLAGS)
880 C_PICFLAGS64 = $($(MACH64)_C_PICFLAGS)

882 sparc_C_BIGPICFLAGS = -K PIC
883 sparcv9_C_BIGPICFLAGS = -K PIC
884 i386_C_BIGPICFLAGS = -K PIC
885 amd64_C_BIGPICFLAGS = -K PIC
886 C_BIGPICFLAGS = $($(MACH)_C_BIGPICFLAGS)
887 C_BIGPICFLAGS64 = $($(MACH64)_C_BIGPICFLAGS)

889 # CC requires there to be no space between ’-K’ and ’pic’ or ’PIC’.
890 sparc_CC_PICFLAGS = -Kpic
891 sparcv9_CC_PICFLAGS = -KPIC
892 i386_CC_PICFLAGS = -Kpic
893 amd64_CC_PICFLAGS = -Kpic
894 CC_PICFLAGS = $($(MACH)_CC_PICFLAGS)
895 CC_PICFLAGS64 = $($(MACH64)_CC_PICFLAGS)

897 AS_PICFLAGS= $(C_PICFLAGS)
898 AS_BIGPICFLAGS= $(C_BIGPICFLAGS)

900 #
901 # Default label for CTF sections
902 #
903 CTFCVTFLAGS= -i -L VERSION
904 $(SRCDBGBLD)CTFCVTFLAGS += -g

906 #
907 # Override to pass module-specific flags to ctfmerge. Currently used only by
908 # krtld to turn on fuzzy matching, and source-level debugging to inhibit
909 # stripping.
910 #
911 CTFMRGFLAGS=
912 $(SRCDBGBLD)CTFMRGFLAGS += -g

915 CTFCONVERT_O = $(CTFCONVERT) $(CTFCVTFLAGS) $@

917 ELFSIGN_O= $(TRUE)
918 ELFSIGN_CRYPTO= $(ELFSIGN_O)

new/usr/src/Makefile.master 15

919 ELFSIGN_OBJECT= $(ELFSIGN_O)

921 # Rules (normally from make.rules) and macros which are used for post
922 # processing files. Normally, these do stripping of the comment section
923 # automatically.
924 # RELEASE_CM: Should be editted to reflect the release.
925 # POST_PROCESS_O: Post-processing for ‘.o’ files.
926 # POST_PROCESS_A: Post-processing for ‘.a’ files (currently null).
927 # POST_PROCESS_SO: Post-processing for ‘.so’ files.
928 # POST_PROCESS: Post-processing for executable files (no suffix).
929 # Note that these macros are not completely generalized as they are to be
930 # used with the file name to be processed following.
931 #
932 # It is left as an exercise to Release Engineering to embellish the generation
933 # of the release comment string.
934 #
935 # If this is a standard development build:
936 # compress the comment section (mcs -c)
937 # add the standard comment (mcs -a $(RELEASE_CM))
938 # add the development specific comment (mcs -a $(DEV_CM))
939 #
940 # If this is an installation build:
941 # delete the comment section (mcs -d)
942 # add the standard comment (mcs -a $(RELEASE_CM))
943 # add the development specific comment (mcs -a $(DEV_CM))
944 #
945 # If this is an release build:
946 # delete the comment section (mcs -d)
947 # add the standard comment (mcs -a $(RELEASE_CM))
948 #
949 # The following list of macros are used in the definition of RELEASE_CM
950 # which is used to label all binaries in the build:
951 #
952 # RELEASE Specific release of the build, eg: 5.2
953 # RELEASE_MAJOR Major version number part of $(RELEASE)
954 # RELEASE_MINOR Minor version number part of $(RELEASE)
955 # VERSION Version of the build (alpha, beta, Generic)
956 # PATCHID If this is a patch this value should contain
957 # the patchid value (eg: "Generic 100832-01"), otherwise
958 # it will be set to $(VERSION)
959 # RELEASE_DATE Date of the Release Build
960 # PATCH_DATE Date the patch was created, if this is blank it
961 # will default to the RELEASE_DATE
962 #
963 RELEASE_MAJOR= 5
964 RELEASE_MINOR= 11
965 RELEASE= $(RELEASE_MAJOR).$(RELEASE_MINOR)
966 VERSION= SunOS Development
967 PATCHID= $(VERSION)
968 RELEASE_DATE= release date not set
969 PATCH_DATE= $(RELEASE_DATE)
970 RELEASE_CM= "@($(POUND_SIGN))SunOS $(RELEASE) $(PATCHID) $(PATCH_DATE)"
971 DEV_CM= "@($(POUND_SIGN))SunOS Internal Development: non-nightly build"

973 PROCESS_COMMENT= @?${MCS} -c -a $(RELEASE_CM) -a $(DEV_CM)
974 $(STRIP_COMMENTS)PROCESS_COMMENT= @?${MCS} -d -a $(RELEASE_CM) -a $(DEV_CM)
975 $(RELEASE_BUILD)PROCESS_COMMENT= @?${MCS} -d -a $(RELEASE_CM)

977 STRIP_STABS= :
978 $(RELEASE_BUILD)STRIP_STABS= $(STRIP) -x $@
979 $(SRCDBGBLD)STRIP_STABS= :

981 POST_PROCESS_O= $(PROCESS_COMMENT) $@
982 POST_PROCESS_A=
983 POST_PROCESS_SO= $(PROCESS_COMMENT) $@ ; $(STRIP_STABS) ; \
984 $(ELFSIGN_OBJECT)

new/usr/src/Makefile.master 16

985 POST_PROCESS= $(PROCESS_COMMENT) $@ ; $(STRIP_STABS) ; \
986 $(ELFSIGN_OBJECT)

988 #
989 # chk4ubin is a tool that inspects a module for a symbol table
990 # ELF section size which can trigger an OBP bug on older platforms.
991 # This problem affects only specific sun4u bootable modules.
992 #
993 CHK4UBIN= $(ONBLD_TOOLS)/bin/$(MACH)/chk4ubin
994 CHK4UBINFLAGS=
995 CHK4UBINARY= $(CHK4UBIN) $(CHK4UBINFLAGS) $@

997 #
998 # PKGARCHIVE specifies the default location where packages should be
999 # placed if built.

1000 #
1001 $(RELEASE_BUILD)PKGARCHIVESUFFIX= -nd
1002 PKGARCHIVE=$(SRC)/../../packages/$(MACH)/nightly$(PKGARCHIVESUFFIX)

1004 #
1005 # The repositories will be created with these publisher settings. To
1006 # update an image to the resulting repositories, this must match the
1007 # publisher name provided to "pkg set-publisher."
1008 #
1009 PKGPUBLISHER_REDIST= on-nightly
1010 PKGPUBLISHER_NONREDIST= on-extra

1012 # Default build rules which perform comment section post-processing.
1013 #
1014 .c:
1015 $(LINK.c) -o $@ $< $(LDLIBS)
1016 $(POST_PROCESS)
1017 .c.o:
1018 $(COMPILE.c) $(OUTPUT_OPTION) $< $(CTFCONVERT_HOOK)
1019 $(POST_PROCESS_O)
1020 .c.a:
1021 $(COMPILE.c) -o $% $<
1022 $(PROCESS_COMMENT) $%
1023 $(AR) $(ARFLAGS) $@ $%
1024 $(RM) $%
1025 .s.o:
1026 $(COMPILE.s) -o $@ $<
1027 $(POST_PROCESS_O)
1028 .s.a:
1029 $(COMPILE.s) -o $% $<
1030 $(PROCESS_COMMENT) $%
1031 $(AR) $(ARFLAGS) $@ $%
1032 $(RM) $%
1033 .cc:
1034 $(LINK.cc) -o $@ $< $(LDLIBS)
1035 $(POST_PROCESS)
1036 .cc.o:
1037 $(COMPILE.cc) $(OUTPUT_OPTION) $<
1038 $(POST_PROCESS_O)
1039 .cc.a:
1040 $(COMPILE.cc) -o $% $<
1041 $(AR) $(ARFLAGS) $@ $%
1042 $(PROCESS_COMMENT) $%
1043 $(RM) $%
1044 .y:
1045 $(YACC.y) $<
1046 $(LINK.c) -o $@ y.tab.c $(LDLIBS)
1047 $(POST_PROCESS)
1048 $(RM) y.tab.c
1049 .y.o:
1050 $(YACC.y) $<

new/usr/src/Makefile.master 17

1051 $(COMPILE.c) -o $@ y.tab.c $(CTFCONVERT_HOOK)
1052 $(POST_PROCESS_O)
1053 $(RM) y.tab.c
1054 .l:
1055 $(RM) $*.c
1056 $(LEX.l) $< > $*.c
1057 $(LINK.c) -o $@ $*.c -ll $(LDLIBS)
1058 $(POST_PROCESS)
1059 $(RM) $*.c
1060 .l.o:
1061 $(RM) $*.c
1062 $(LEX.l) $< > $*.c
1063 $(COMPILE.c) -o $@ $*.c $(CTFCONVERT_HOOK)
1064 $(POST_PROCESS_O)
1065 $(RM) $*.c

1067 .bin.o:
1068 $(COMPILE.b) -o $@ $<
1069 $(POST_PROCESS_O)

1071 .java.class:
1072 $(COMPILE.java) $<

1074 # Bourne and Korn shell script message catalog build rules.
1075 # We extract all gettext strings with sed(1) (being careful to permit
1076 # multiple gettext strings on the same line), weed out the dups, and
1077 # build the catalogue with awk(1).

1079 .sh.po .ksh.po:
1080 $(SED) -n -e ":a" \
1081 -e "h" \
1082 -e "s/.*gettext *\(\"[^\"]*\"\).*/\1/p" \
1083 -e "x" \
1084 -e "s/\(.*\)gettext *\"[^\"]*\"\(.*\)/\1\2/" \
1085 -e "t a" \
1086 $< | sort -u | awk ’{ print "msgid\t" $$0 "\nmsgstr" }’ > $@

1088 #
1089 # Python and Perl executable and message catalog build rules.
1090 #
1091 .SUFFIXES: .pl .pm .py .pyc

1093 .pl:
1094 $(RM) $@;
1095 $(SED) -e "s@TEXT_DOMAIN@\"$(TEXT_DOMAIN)\"@" $< > $@;
1096 $(CHMOD) +x $@

1098 .py:
1099 $(RM) $@; $(CAT) $< > $@; $(CHMOD) +x $@

1101 .py.pyc:
1102 $(RM) $@
1103 $(PYTHON) -mpy_compile $<
1104 @[$(<)c = $@] || $(MV) $(<)c $@

1106 .py.po:
1107 $(GNUXGETTEXT) $(GNUXGETFLAGS) -d $(<F:%.py=%) $< ;

1109 .pl.po .pm.po:
1110 $(XGETTEXT) $(XGETFLAGS) -d $(<F) $< ;
1111 $(RM) $@ ;
1112 $(SED) "/^domain/d" < $(<F).po > $@ ;
1113 $(RM) $(<F).po

1115 #
1116 # When using xgettext, we want messages to go to the default domain,

new/usr/src/Makefile.master 18

1117 # rather than the specified one. This special version of the
1118 # COMPILE.cpp macro effectively prevents expansion of TEXT_DOMAIN,
1119 # causing xgettext to put all messages into the default domain.
1120 #
1121 CPPFORPO=$(COMPILE.cpp:\"$(TEXT_DOMAIN)\"=TEXT_DOMAIN)

1123 .c.i:
1124 $(CPPFORPO) $< > $@

1126 .h.i:
1127 $(CPPFORPO) $< > $@

1129 .y.i:
1130 $(YACC) -d $<
1131 $(CPPFORPO) y.tab.c > $@
1132 $(RM) y.tab.c

1134 .l.i:
1135 $(LEX) $<
1136 $(CPPFORPO) lex.yy.c > $@
1137 $(RM) lex.yy.c

1139 .c.po:
1140 $(CPPFORPO) $< > $<.i
1141 $(BUILD.po)

1143 .y.po:
1144 $(YACC) -d $<
1145 $(CPPFORPO) y.tab.c > $<.i
1146 $(BUILD.po)
1147 $(RM) y.tab.c

1149 .l.po:
1150 $(LEX) $<
1151 $(CPPFORPO) lex.yy.c > $<.i
1152 $(BUILD.po)
1153 $(RM) lex.yy.c

1155 #
1156 # Rules to perform stylistic checks
1157 #
1158 .SUFFIXES: .x .xml .check .xmlchk

1160 .h.check:
1161 $(DOT_H_CHECK)

1163 .x.check:
1164 $(DOT_X_CHECK)

1166 .xml.xmlchk:
1167 $(MANIFEST_CHECK)

1169 #
1170 # Include rules to render automated sccs get rules "safe".
1171 #
1172 include $(SRC)/Makefile.noget

new/usr/src/cmd/Makefile 1

**
 10884 Thu Dec 26 13:48:09 2013
new/usr/src/cmd/Makefile
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 # Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright 2010 Nexenta Systems, Inc. All rights reserved.
24 # Copyright (c) 2012 Joyent, Inc. All rights reserved.
25 # Copyright (c) 2012 by Delphix. All rights reserved.
26 # Copyright (c) 2013 DEY Storage Systems, Inc. All rights reserved.

28 include ../Makefile.master

30 #
31 # Note that the commands ’agents’, ’lp’, ’perl’, and ’man’ are first in
32 # the list, violating alphabetical order. This is because they are very
33 # long-running and should be given the most wall-clock time for a
34 # parallel build.
35 #
36 # Commands in the FIRST_SUBDIRS list are built before starting the build
37 # of other commands. Currently this includes only ’isaexec’ and
38 # ’platexec’. This is necessary because $(ROOT)/usr/lib/isaexec or
39 # $(ROOT)/usr/lib/platexec must exist when some other commands are built
40 # because their ’make install’ creates a hard link to one of them.
41 #
42 # Commands are listed one per line so that TeamWare can auto-merge most
43 # changes.
44 #

46 FIRST_SUBDIRS= \
47 isaexec \
48 platexec

50 COMMON_SUBDIRS= \
51 allocate \
52 availdevs \
53 lp \
54 perl \
55 man \
56 Adm \
57 abi \
58 adbgen \
59 acct \
60 acctadm \
61 acpitools \

new/usr/src/cmd/Makefile 2

62 arch \
63 asa \
64 ast \
65 audio \
66 auths \
67 autopush \
68 avs \
69 awk \
70 awk_xpg4 \
71 backup \
72 banner \
73 bart \
74 basename \
75 bc \
76 bdiff \
77 beadm \
78 bfs \
79 bnu \
80 boot \
81 busstat \
82 cal \
83 calendar \
84 captoinfo \
85 cat \
86 cdrw \
87 cfgadm \
88 checkeq \
89 checknr \
90 chgrp \
91 chmod \
92 chown \
93 chroot \
94 clear \
95 clinfo \
96 cmd-crypto \
97 cmd-inet \
98 col \
99 compress \
100 consadm \
101 coreadm \
102 cpio \
103 cpc \
104 cron \
105 crypt \
106 csh \
107 csplit \
108 ctrun \
109 ctstat \
110 ctwatch \
111 datadm \
112 date \
113 dc \
114 dd \
115 deroff \
116 devfsadm \
117 syseventd \
118 devctl \
119 devinfo \
120 devmgmt \
121 devprop \
122 dfs.cmds \
123 diff \
124 diff3 \
125 diffmk \
126 dircmp \
127 dirname \

new/usr/src/cmd/Makefile 3

128 dis \
129 diskmgtd \
130 dispadmin \
131 dladm \
132 dlstat \
133 dmesg \
134 dodatadm \
135 dtrace \
136 du \
137 dumpadm \
138 dumpcs \
139 echo \
140 ed \
141 eeprom \
142 egrep \
143 eject \
144 emul64ioctl \
145 enhance \
146 env \
147 eqn \
148 expand \
149 expr \
150 exstr \
151 factor \
152 false \
153 fcinfo \
154 fcoesvc \
155 fdetach \
156 fdformat \
157 fdisk \
158 filesync \
159 fgrep \
160 file \
161 filebench \
162 find \
163 flowadm \
164 flowstat \
165 fm \
166 fmt \
167 fmthard \
168 fmtmsg \
169 fold \
170 format \
171 fs.d \
172 fstyp \
173 fuser \
174 fwflash \
175 gcore \
176 gencat \
177 geniconvtbl \
178 genmsg \
179 getconf \
180 getdevpolicy \
181 getent \
182 getfacl \
183 getmajor \
184 getopt \
185 gettext \
186 gettxt \
187 grep \
188 grep_xpg4 \
189 groups \
190 grpck \
191 gss \
192 hal \
193 halt \

new/usr/src/cmd/Makefile 4

194 head \
195 hostid \
196 hostname \
197 hotplug \
198 hotplugd \
199 hwdata \
200 ibd_upgrade \
201 id \
202 idmap \
203 infocmp \
204 init \
205 initpkg \
206 install.d \
207 intrd \
208 intrstat \
209 ipcrm \
210 ipcs \
211 ipdadm \
212 ipf \
213 isainfo \
214 isalist \
215 itutools \
216 iscsiadm \
217 iscsid \
218 iscsitsvc \
219 isns \
220 itadm \
221 java \
222 kbd \
223 keyserv \
224 killall \
225 krb5 \
226 ksh \
227 kvmstat \
228 last \
229 lastcomm \
230 latencytop \
231 ldap \
232 ldapcachemgr \
233 lgrpinfo \
234 line \
235 link \
236 dlmgmtd \
237 listen \
238 loadkeys \
239 locale \
240 localedef \
241 lockstat \
242 locator \
243 lofiadm \
244 logadm \
245 logger \
246 login \
247 logins \
248 look \
249 ls \
250 luxadm \
251 lvm \
252 mach \
253 machid \
254 mail \
255 mailx \
256 makekey \
257 mdb \
258 mesg \
259 mkdir \

new/usr/src/cmd/Makefile 5

260 mkfifo \
261 mkfile \
262 mkmsgs \
263 mknod \
264 mkpwdict \
265 mktemp \
266 modload \
267 more \
268 mpathadm \
269 msgfmt \
270 msgid \
271 mt \
272 mv \
273 mvdir \
274 ndmpadm \
275 ndmpd \
276 ndmpstat \
277 netadm \
278 netfiles \
279 newform \
280 newgrp \
281 news \
282 newtask \
283 nice \
284 nl \
285 nlsadmin \
286 nohup \
287 nsadmin \
288 nscd \
289 oamuser \
290 oawk \
291 od \
292 pack \
293 pagesize \
294 passmgmt \
295 passwd \
296 pathchk \
297 pbind \
298 pcidr \
299 pcitool \
300 pfexec \
301 pfexecd \
302 pginfo \
303 pgstat \
304 pgrep \
305 picl \
306 plimit \
307 policykit \
308 pools \
309 power \
310 powertop \
311 ppgsz \
312 pg \
313 plockstat \
314 pr \
315 prctl \
316 print \
317 printf \
318 priocntl \
319 profiles \
320 projadd \
321 projects \
322 prstat \
323 prtconf \
324 prtdiag \
325 prtvtoc \

new/usr/src/cmd/Makefile 6

326 ps \
327 psradm \
328 psrinfo \
329 psrset \
330 ptools \
331 pwck \
332 pwconv \
333 pwd \
334 pyzfs \
335 raidctl \
336 ramdiskadm \
337 rcap \
338 rcm_daemon \
339 rctladm \
340 refer \
341 regcmp \
342 renice \
343 rexd \
344 rm \
345 rmdir \
346 rmformat \
347 rmmount \
348 rmt \
349 rmvolmgr \
350 roles \
351 rpcbind \
352 rpcgen \
353 rpcinfo \
354 rpcsvc \
355 runat \
356 sa \
357 saf \
358 sasinfo \
359 savecore \
360 sbdadm \
361 script \
362 scsi \
363 sdiff \
364 sdpadm \
365 sed \
366 sendmail \
367 setfacl \
368 setmnt \
369 setpgrp \
370 setuname \
371 sgs \
372 sh \
373 shcomp \
374 smbios \
375 smbsrv \
376 smserverd \
377 soelim \
378 sort \
379 spell \
380 split \
381 sqlite \
382 srchtxt \
383 srptadm \
384 srptsvc \
385 ssh \
386 stat \
387 stmfadm \
388 stmfproxy \
389 stmfsvc \
390 stmsboot \
391 streams \

new/usr/src/cmd/Makefile 7

392 strings \
393 su \
394 sulogin \
395 sunpc \
396 svc \
397 svr4pkg \
398 swap \
399 sync \
400 sysdef \
401 syseventadm \
402 syslogd \
403 tabs \
404 tail \
405 tar \
406 tbl \
407 tcopy \
408 tcpd \
409 terminfo \
410 th_tools \
411 tic \
412 time \
413 tip \
414 tnf \
415 touch \
416 tput \
417 tr \
418 trapstat \
419 troff \
420 true \
421 truss \
422 tsol \
423 tty \
424 ttymon \
425 tzreload \
426 uadmin \
427 ul \
428 uname \
429 units \
430 unlink \
431 unpack \
432 userattr \
433 users \
434 utmp_update \
435 utmpd \
436 valtools \
437 vgrind \
438 vi \
439 volcheck \
440 volrmmount \
441 vrrpadm \
442 vscan \
443 vt \
444 w \
445 wall \
446 which \
447 who \
448 whodo \
449 wracct \
450 write \
451 wusbadm \
452 xargs \
453 xstr \
454 yes \
455 ypcmd \
456 yppasswd \
457 zdb \

new/usr/src/cmd/Makefile 8

458 zdump \
459 zfs \
460 zhack \
461 zic \
462 zinject \
463 zlogin \
464 zoneadm \
465 zoneadmd \
466 zonecfg \
467 zonename \
468 zpool \
469 zlook \
470 zonestat \
471 zstreamdump \
472 ztest

474 i386_SUBDIRS= \
475 acpihpd \
476 addbadsec \
477 biosdev \
478 diskscan \
479 lms \
480 ntfsprogs \
481 parted \
482 rtc \
483 ucodeadm \
484 xvm

486 sparc_SUBDIRS= \
487 cvcd \
488 dcs \
489 device_remap \
490 drd \
491 fruadm \
492 ldmad \
493 oplhpd \
494 prtdscp \
495 prtfru \
496 scadm \
497 sckmd \
498 sf880drd \
499 virtinfo \
500 vntsd

502 #
503 # Commands that are messaged. Note that ’lp’ and ’man’ come first
504 # (see previous comment about ’lp’ and ’man’).
505 #
506 MSGSUBDIRS= \
507 lp \
508 man \
509 abi \
510 acctadm \
511 allocate \
512 asa \
513 audio \
514 audit \
515 auditconfig \
516 auditd \
517 auditrecord \
518 auditset \
519 auths \
520 autopush \
521 avs \
522 awk \
523 awk_xpg4 \

new/usr/src/cmd/Makefile 9

524 backup \
525 banner \
526 bart \
527 basename \
528 beadm \
529 bnu \
530 busstat \
531 cal \
532 cat \
533 cdrw \
534 cfgadm \
535 checkeq \
536 checknr \
537 chgrp \
538 chmod \
539 chown \
540 cmd-crypto \
541 cmd-inet \
542 col \
543 compress \
544 consadm \
545 coreadm \
546 cpio \
547 cpc \
548 cron \
549 csh \
550 csplit \
551 ctrun \
552 ctstat \
553 ctwatch \
554 datadm \
555 date \
556 dc \
557 dcs \
558 dd \
559 deroff \
560 devfsadm \
561 dfs.cmds \
562 diff \
563 diffmk \
564 dladm \
565 dlstat \
566 du \
567 dumpcs \
568 ed \
569 eject \
570 env \
571 eqn \
572 expand \
573 expr \
574 fcinfo \
575 fgrep \
576 file \
577 filesync \
578 find \
579 flowadm \
580 flowstat \
581 fm \
582 fold \
583 fs.d \
584 fwflash \
585 geniconvtbl \
586 genmsg \
587 getconf \
588 getent \
589 gettext \

new/usr/src/cmd/Makefile 10

590 gettxt \
591 grep \
592 grep_xpg4 \
593 grpck \
594 gss \
595 halt \
596 head \
597 hostname \
598 hotplug \
599 id \
600 idmap \
601 isaexec \
602 iscsiadm \
603 iscsid \
604 isns \
605 itadm \
606 kbd \
607 krb5 \
608 ksh \
609 last \
610 ldap \
611 ldapcachemgr \
612 lgrpinfo \
613 locale \
614 lofiadm \
615 logadm \
616 logger \
617 logins \
618 ls \
619 luxadm \
620 lvm \
621 mailx \
622 mesg \
623 mkdir \
624 mkpwdict \
625 mktemp \
626 more \
627 mpathadm \
628 msgfmt \
629 mv \
630 ndmpadm \
631 ndmpstat \
632 newgrp \
633 newtask \
634 nice \
635 nohup \
636 oawk \
637 pack \
638 passwd \
639 passmgmt \
640 pathchk \
641 pfexec \
642 pg \
643 pgrep \
644 picl \
645 pools \
646 power \
647 pr \
648 praudit \
649 print \
650 profiles \
651 projadd \
652 projects \
653 prstat \
654 prtdiag \
655 ps \

new/usr/src/cmd/Makefile 11

656 psrinfo \
657 ptools \
658 pwconv \
659 pwd \
660 pyzfs \
661 raidctl \
662 ramdiskadm \
663 rcap \
664 rcm_daemon \
665 refer \
666 regcmp \
667 renice \
668 roles \
669 rm \
670 rmdir \
671 rmformat \
672 rmmount \
673 rmvolmgr \
674 sasinfo \
675 sbdadm \
676 scadm \
677 script \
678 scsi \
679 sdiff \
680 sdpadm \
681 sgs \
682 sh \
683 shcomp \
684 smbsrv \
685 sort \
686 split \
687 srptadm \
688 ssh \
689 stat \
690 stmfadm \
691 stmsboot \
692 strings \
693 su \
694 svc \
695 svr4pkg \
696 swap \
697 syseventadm \
698 syseventd \
699 tabs \
700 tar \
701 tbl \
702 time \
703 tnf \
704 touch \
705 tput \
706 troff \
707 tsol \
708 tty \
709 ttymon \
710 tzreload \
711 ul \
712 uname \
713 units \
714 unlink \
715 unpack \
716 userattr \
717 valtools \
718 vgrind \
719 vi \
720 volcheck \
721 volrmmount \

new/usr/src/cmd/Makefile 12

722 vrrpadm \
723 vscan \
724 w \
725 who \
726 whodo \
727 wracct \
728 write \
729 wusbadm \
730 xargs \
731 yppasswd \
732 zdump \
733 zfs \
734 zic \
735 zlogin \
736 zoneadm \
737 zoneadmd \
738 zonecfg \
739 zonename \
740 zpool \
741 zonestat

743 sparc_MSGSUBDIRS= \
744 fruadm \
745 prtdscp \
746 prtfru \
747 virtinfo \
748 vntsd

750 i386_MSGSUBDIRS= \
751 ucodeadm

753 #
754 # commands that use dcgettext for localized time, LC_TIME
755 #
756 DCSUBDIRS= \
757 cal \
758 cfgadm \
759 diff \
760 ls \
761 pr \
762 ps \
763 tar \
764 w \
765 who \
766 whodo \
767 write

769 #
770 # commands that belong only to audit.
771 #
772 AUDITSUBDIRS= \
773 amt \
774 audit \
775 audit_warn \
776 auditconfig \
777 auditd \
778 auditrecord \
779 auditreduce \
780 auditset \
781 auditstat \
782 praudit

784 #
785 # commands not owned by the systems group
786 #
787 BWOSDIRS=

new/usr/src/cmd/Makefile 13

790 all := TARGET = all
791 install := TARGET = install
792 clean := TARGET = clean
793 clobber := TARGET = clobber
794 lint := TARGET = lint
795 _msg := TARGET = _msg
796 _dc := TARGET = _dc

798 .KEEP_STATE:

800 SUBDIRS = $(COMMON_SUBDIRS) $($(MACH)_SUBDIRS)

802 .PARALLEL: $(BWOSDIRS) $(SUBDIRS) $(MSGSUBDIRS) $(AUDITSUBDIRS)

804 all install clean clobber lint: $(FIRST_SUBDIRS) .WAIT $(SUBDIRS) \
805 $(AUDITSUBDIRS)

807 #
808 # Manifests cannot be checked in parallel, because we are using
809 # the global repository that is in $(SRC)/cmd/svc/seed/global.db.
810 # For this reason, to avoid .PARALLEL and .NO_PARALLEL conflicts,
811 # we spawn off a sub-make to perform the non-parallel ’make check’
812 #
813 check:
814 $(MAKE) -f Makefile.check check

816 #
817 # The .WAIT directive works around an apparent bug in parallel make.
818 # Evidently make was getting the target _msg vs. _dc confused under
819 # some level of parallelization, causing some of the _dc objects
820 # not to be built.
821 #
822 _msg: $(MSGSUBDIRS) $($(MACH)_MSGSUBDIRS) .WAIT _dc

824 _dc: $(DCSUBDIRS)

826 #
827 # Dependencies
828 #
829 fs.d: fstyp
830 ksh: shcomp isaexec
831 mdb: terminfo
832 print: lp

834 $(FIRST_SUBDIRS) $(BWOSDIRS) $(SUBDIRS) $(AUDITSUBDIRS): FRC
835 @if [-f $@/Makefile]; then \
836 cd $@; pwd; $(MAKE) $(TARGET); \
837 else \
838 true; \
839 fi

841 FRC:

new/usr/src/cmd/acpitools/Makefile 1

**
 786 Thu Dec 26 13:48:09 2013
new/usr/src/cmd/acpitools/Makefile
PANKOVs restructure
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.
10 #

12 #
13 # Copyright 2013 Nexenta Systems, Inc. All rights reserved.
14 #

16 include $(SRC)/cmd/Makefile.cmd

18 SUBDIRS= acpiexec acpixtract iasl

20 all := TARGET = all
21 clean := TARGET = clean
22 clobber := TARGET = clobber
23 install := TARGET = install

25 .KEEP_STATE:

27 all clean clobber install: $(SUBDIRS)

29 $(SUBDIRS): FRC
30 @cd $@; pwd; $(MAKE) $(TARGET)

32 include $(SRC)/cmd/Makefile.targ

34 FRC:

new/usr/src/cmd/acpitools/acpiexec/Makefile 1

**
 4460 Thu Dec 26 13:48:09 2013
new/usr/src/cmd/acpitools/acpiexec/Makefile
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.
10 #

12 #
13 # Copyright 2013 Nexenta Systems, Inc. All rights reserved.
14 #

16 PROG= acpiexec
17 OBJS= oslstubs.o
18 # common
19 OBJS += getopt.o acgetline.o
20
21 # components/debugger
22 OBJS += dbcmds.o dbdisply.o dbexec.o dbfileio.o dbhistry.o \
23 dbinput.o dbmethod.o dbnames.o dbstats.o dbutils.o \
24 dbxface.o dbconvert.o
25 # components/disassembler
26 OBJS += dmbuffer.o dmnames.o dmobject.o dmopcode.o dmresrc.o \
27 dmresrcl.o dmresrcs.o dmutils.o dmwalk.o dmdeferred.o \
28 dmresrcl2.o
29 # components/dispatcher
30 OBJS += dsargs.o dscontrol.o dsfield.o dsinit.o dsmethod.o \
31 dsmthdat.o dsobject.o dsopcode.o dsutils.o dswexec.o \
32 dswload.o dswload2.o dswscope.o dswstate.o
33 # components/events
34 OBJS += evevent.o evglock.o evgpe.o evgpeblk.o evgpeinit.o \
35 evgpeutil.o evmisc.o evregion.o evrgnini.o evsci.o \
36 evxface.o evxfevnt.o evxfgpe.o evxfregn.o evhandler.o
37 # components/executer
38 OBJS += exconfig.o exconvrt.o excreate.o exdebug.o exdump.o \
39 exfield.o exfldio.o exmisc.o exmutex.o exnames.o \
40 exoparg1.o exoparg2.o exoparg3.o exoparg6.o exprep.o \
41 exregion.o exresnte.o exresolv.o exresop.o exstore.o \
42 exstoren.o exstorob.o exsystem.o exutils.o
43 # components/hardware
44 OBJS += hwacpi.o hwgpe.o hwpci.o hwregs.o hwsleep.o hwvalid.o \
45 hwxface.o hwesleep.o hwxfsleep.o
46 # components/namespace
47 OBJS += nsaccess.o nsalloc.o nsdump.o nsdumpdv.o nseval.o \
48 nsinit.o nsload.o nsnames.o nsobject.o nsparse.o \
49 nspredef.o nsrepair.o nsrepair2.o nssearch.o nsutils.o \
50 nswalk.o nsxfeval.o nsxfname.o nsxfobj.o nsarguments.o \
51 nsconvert.o nsprepkg.o

53 # components/parser
54 OBJS += psargs.o psloop.o psopcode.o psparse.o psscope.o \
55 pstree.o psutils.o pswalk.o psxface.o psobject.o psopinfo.o
56 # components/resources
57 OBJS += rsaddr.o rscalc.o rscreate.o rsdump.o rsinfo.o rsio.o \
58 rsirq.o rslist.o rsmemory.o rsmisc.o rsutils.o \
59 rsxface.o rsdumpinfo.o rsserial.o

new/usr/src/cmd/acpitools/acpiexec/Makefile 2

60 # components/tables
61 OBJS += tbfadt.o tbfind.o tbinstal.o tbutils.o tbxface.o \
62 tbxfroot.o tbprint.o tbxfload.o
63 # components/utilities
64 OBJS += utalloc.o utcache.o utcopy.o utdebug.o utdecode.o \
65 utdelete.o uteval.o utglobal.o utids.o utinit.o \
66 utlock.o utmath.o utmisc.o utmutex.o utobject.o \
67 utresrc.o utstate.o uttrack.o utosi.o utxferror.o \
68 utxface.o utaddress.o utbuffer.o uterror.o utexcep.o \
69 utownerid.o utpredef.o utstring.o utxfinit.o utxfmutex.o
70 # os_specific/service_layers
71 OBJS += osunixxf.o
72 # tools/acpiexec
73 OBJS += aeexec.o aehandlers.o aemain.o aetables.o

75 ACPICA= $(SRC)/common/acpica

77 include $(SRC)/cmd/Makefile.cmd

79 C99MODE= $(C99_ENABLE)
80 CPPFLAGS += -DACPI_EXEC_APP -I$(ACPICA)/include -I$(ACPICA)/compiler

82 .KEEP_STATE:

84 all: $(PROG)

86 clean:
87 $(RM) $(OBJS)

89 install: all $(ROOTPROG)

91 $(PROG): $(OBJS)
92 $(LINK.c) $(OBJS) -o $@ $(LDLIBS)
93 $(POST_PROCESS)

95 %.o: $(ACPICA)/common/%.c
96 $(COMPILE.c) -o $@ $<
97 $(POST_PROCESS_O)

99 %.o: $(ACPICA)/compiler/%.c
100 $(COMPILE.c) -o $@ $<
101 $(POST_PROCESS_O)

103 %.o: $(ACPICA)/components/debugger/%.c
104 $(COMPILE.c) -o $@ $<
105 $(POST_PROCESS_O)

107 %.o: $(ACPICA)/components/disassembler/%.c
108 $(COMPILE.c) -o $@ $<
109 $(POST_PROCESS_O)

111 %.o: $(ACPICA)/components/dispatcher/%.c
112 $(COMPILE.c) -o $@ $<
113 $(POST_PROCESS_O)

115 %.o: $(ACPICA)/components/events/%.c
116 $(COMPILE.c) -o $@ $<
117 $(POST_PROCESS_O)

119 %.o: $(ACPICA)/components/executer/%.c
120 $(COMPILE.c) -o $@ $<
121 $(POST_PROCESS_O)

123 %.o: $(ACPICA)/components/hardware/%.c
124 $(COMPILE.c) -o $@ $<
125 $(POST_PROCESS_O)

new/usr/src/cmd/acpitools/acpiexec/Makefile 3

127 %.o: $(ACPICA)/components/namespace/%.c
128 $(COMPILE.c) -o $@ $<
129 $(POST_PROCESS_O)

131 %.o: $(ACPICA)/components/parser/%.c
132 $(COMPILE.c) -o $@ $<
133 $(POST_PROCESS_O)

135 %.o: $(ACPICA)/components/resources/%.c
136 $(COMPILE.c) -o $@ $<
137 $(POST_PROCESS_O)

139 %.o: $(ACPICA)/components/tables/%.c
140 $(COMPILE.c) -o $@ $<
141 $(POST_PROCESS_O)

143 %.o: $(ACPICA)/components/utilities/%.c
144 $(COMPILE.c) -o $@ $<
145 $(POST_PROCESS_O)

147 %.o: $(ACPICA)/os_specific/service_layers/%.c
148 $(COMPILE.c) -o $@ $<
149 $(POST_PROCESS_O)

151 %.o: $(ACPICA)/tools/acpiexec/%.c
152 $(COMPILE.c) -o $@ $<
153 $(POST_PROCESS_O)

155 include $(SRC)/cmd/Makefile.targ

new/usr/src/cmd/acpitools/acpiexec/oslstubs.c 1

**
 681 Thu Dec 26 13:48:09 2013
new/usr/src/cmd/acpitools/acpiexec/oslstubs.c
PANKOVs restructure
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
14 */

16 /*
17 * OSL stubs
18 */

20 #include <acpi.h>

22 UINT32
23 __acpi_acquire_global_lock(void *Facs)
24 {
25 return (0);
26 }

28 UINT32
29 __acpi_release_global_lock(void *Facs)
30 {
31 return (0);
32 }

34 void
35 __acpi_wbinvd(void)
36 {
37 }

new/usr/src/cmd/acpitools/acpinames/Makefile 1

**
 2989 Thu Dec 26 13:48:10 2013
new/usr/src/cmd/acpitools/acpinames/Makefile
acpica-unix2-20130823
PANKOVs restructure
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.
10 #

12 #
13 # Copyright 2013 Nexenta Systems, Inc. All rights reserved.
14 #

16 PROG= acpinames
17 # common
18 OBJS += getopt.o
19 #
20 OBJS += anmain.o anstubs.o antables.o
21 OBJS += dbfileio.o
22 OBJS += dsfield.o dsmthdat.o dsobject.o dsutils.o dswload.o \
23 dswload2.o dswscope.o dswstate.o
24 OBJS += excreate.o exnames.o exresnte.o exresolv.o exutils.o
25 OBJS += nsaccess.o nsalloc.o nsdump.o nsinit.o nsload.o \
26 nsnames.o nsobject.o nsparse.o nssearch.o nsutils.o \
27 nswalk.o nsxfeval.o nsxfname.o nsxfobj.o
28 OBJS += osunixxf.o
29 OBJS += psargs.o psloop.o psopcode.o psparse.o psscope.o \
30 pstree.o psutils.o pswalk.o psxface.o psobject.o psopinfo.o
31 OBJS += tbfadt.o tbfind.o tbinstal.o tbutils.o tbxface.o \
32 tbxfroot.o tbprint.o tbxfload.o
33 OBJS += utalloc.o utcache.o utdebug.o utdecode.o utdelete.o \
34 utglobal.o utlock.o utmath.o utmisc.o utmutex.o \
35 utobject.o utstate.o utosi.o utxferror.o utxface.o \
36 utaddress.o uterror.o utexcep.o utownerid.o utstring.o \
37 utxfinit.o

39 ACPICA= $(SRC)/common/acpica

41 include $(SRC)/cmd/Makefile.cmd

43 C99MODE= $(C99_ENABLE)
44 CPPFLAGS += -DACPI_NAMES_APP \
45 -I$(ACPICA)/include -I$(ACPICA)/tools/acpinames
46

48 .KEEP_STATE:

50 all: $(PROG)

52 clean:
53 $(RM) $(OBJS)

55 install: all $(ROOTPROG)

57 $(PROG): $(OBJS)
58 $(LINK.c) $(OBJS) -o $@ $(LDLIBS)
59 $(POST_PROCESS)

new/usr/src/cmd/acpitools/acpinames/Makefile 2

61 %.o: $(ACPICA)/common/%.c
62 $(COMPILE.c) -o $@ $<
63 $(POST_PROCESS_O)

65 %.o: $(ACPICA)/compiler/%.c
66 $(COMPILE.c) -o $@ $<
67 $(POST_PROCESS_O)

69 %.o: $(ACPICA)/components/debugger/%.c
70 $(COMPILE.c) -o $@ $<
71 $(POST_PROCESS_O)

73 %.o: $(ACPICA)/components/disassembler/%.c
74 $(COMPILE.c) -o $@ $<
75 $(POST_PROCESS_O)

77 %.o: $(ACPICA)/components/dispatcher/%.c
78 $(COMPILE.c) -o $@ $<
79 $(POST_PROCESS_O)

81 %.o: $(ACPICA)/components/events/%.c
82 $(COMPILE.c) -o $@ $<
83 $(POST_PROCESS_O)

85 %.o: $(ACPICA)/components/executer/%.c
86 $(COMPILE.c) -o $@ $<
87 $(POST_PROCESS_O)

89 %.o: $(ACPICA)/components/hardware/%.c
90 $(COMPILE.c) -o $@ $<
91 $(POST_PROCESS_O)

93 %.o: $(ACPICA)/components/namespace/%.c
94 $(COMPILE.c) -o $@ $<
95 $(POST_PROCESS_O)

97 %.o: $(ACPICA)/components/parser/%.c
98 $(COMPILE.c) -o $@ $<
99 $(POST_PROCESS_O)

101 %.o: $(ACPICA)/components/resources/%.c
102 $(COMPILE.c) -o $@ $<
103 $(POST_PROCESS_O)

105 %.o: $(ACPICA)/components/tables/%.c
106 $(COMPILE.c) -o $@ $<
107 $(POST_PROCESS_O)

109 %.o: $(ACPICA)/components/utilities/%.c
110 $(COMPILE.c) -o $@ $<
111 $(POST_PROCESS_O)

113 %.o: $(ACPICA)/os_specific/service_layers/%.c
114 $(COMPILE.c) -o $@ $<
115 $(POST_PROCESS_O)

117 %.o: $(ACPICA)/tools/acpinames/%.c
118 $(COMPILE.c) -o $@ $<
119 $(POST_PROCESS_O)

121 include $(SRC)/cmd/Makefile.targ

new/usr/src/cmd/acpitools/acpixtract/Makefile 1

**
 1004 Thu Dec 26 13:48:10 2013
new/usr/src/cmd/acpitools/acpixtract/Makefile
acpica-unix2-20130823
PANKOVs restructure
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.
10 #

12 #
13 # Copyright 2013 Nexenta Systems, Inc. All rights reserved.
14 #

16 PROG= acpixtract
17 OBJS= acpixtract.o axmain.o getopt.o

19 ACPICA= $(SRC)/common/acpica

21 include $(SRC)/cmd/Makefile.cmd

23 C99MODE= $(C99_ENABLE)
24 CPPFLAGS += -DACPI_XTRACT_APP -I$(ACPICA)/include

26 .KEEP_STATE:

28 $(PROG): $(OBJS)
29 $(LINK.c) $(OBJS) -o $@ $(LDLIBS)
30 $(POST_PROCESS)

32 %.o: $(ACPICA)/common/%.c
33 $(COMPILE.c) -o $@ $<
34 $(POST_PROCESS_O)

36 %.o: $(ACPICA)/tools/acpixtract/%.c
37 $(COMPILE.c) -o $@ $<
38 $(POST_PROCESS_O)

40 all: $(PROG)

42 clean:
43 $(RM) $(OBJS)

45 install: all $(ROOTPROG)

47 include $(SRC)/cmd/Makefile.targ

new/usr/src/cmd/acpitools/iasl/Makefile 1

**
 5193 Thu Dec 26 13:48:10 2013
new/usr/src/cmd/acpitools/iasl/Makefile
fix typo in CLEANFILES for acpitools/iasl
acpica-unix2-20130823
PANKOVs restructure
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.
10 #

12 #
13 # Copyright 2013 Nexenta Systems, Inc. All rights reserved.
14 #

16 PROG= iasl
17 # common
18 OBJS += adfile.o adisasm.o adwalk.o dmextern.o \
19 dmrestag.o dmtable.o dmtbdump.o dmtbinfo.o getopt.o \
20 ahpredef.o
21 # compiler (generated)
22 OBJS += aslcompilerparse.o aslcompilerlex.o dtparserparse.o \
23 dtparserlex.o prexpress.o prmacros.o prscan.o prutils.o \
24 prparserparse.o prparserlex.o
25 # compiler
26 OBJS += aslanalyze.o aslbtypes.o aslcodegen.o aslcompile.o \
27 aslerror.o aslfiles.o aslfold.o asllength.o \
28 asllisting.o aslload.o asllookup.o aslmain.o aslmap.o \
29 aslopcodes.o asloperands.o aslopt.o aslpredef.o \
30 aslresource.o aslrestype1.o aslrestype1i.o \
31 aslrestype2.o aslrestype2d.o aslrestype2e.o \
32 aslrestype2q.o aslrestype2w.o aslstartup.o aslstubs.o \
33 asltransform.o asltree.o aslutils.o asluuid.o \
34 aslwalks.o dtcompile.o dtexpress.o dtfield.o dtio.o \
35 dtsubtable.o dttable.o dttemplate.o dtutils.o aslfileio.o
36 aslhex.o asllistsup.o aslmethod.o aslnamesp.o asloffset.o
37 asloptions.o aslprepkg.o aslrestype2s.o aslxref.o
38 # components/debugger
39 OBJS += dbfileio.o
40 # components/disassembler
41 OBJS += dmbuffer.o dmnames.o dmopcode.o dmresrc.o dmresrcl.o \
42 dmresrcs.o dmutils.o dmwalk.o dmdeferred.o dmobject.o
43 dmresrcl2.o

45 # components/dispatcher
46 OBJS += dsargs.o dscontrol.o dsfield.o dsobject.o dsopcode.o \
47 dsutils.o dswexec.o dswload.o dswload2.o dswscope.o \
48 dswstate.o
49 # components/executer
50 OBJS += exconvrt.o excreate.o exdump.o exmisc.o exmutex.o \
51 exnames.o exoparg1.o exoparg2.o exoparg3.o exoparg6.o \
52 exprep.o exresnte.o exresolv.o exresop.o exstore.o \
53 exstoren.o exstorob.o exsystem.o exutils.o exregion.o
54 # components/namespace
55 OBJS += nsaccess.o nsalloc.o nsdump.o nsnames.o nsobject.o \
56 nsparse.o nssearch.o nsutils.o nswalk.o nsxfobj.o
57 # components/parser
58 OBJS += psargs.o psloop.o psopcode.o psparse.o psscope.o \
59 pstree.o psutils.o pswalk.o psobject.o psopinfo.o

new/usr/src/cmd/acpitools/iasl/Makefile 2

60 # components/tables
61 OBJS += tbfadt.o tbinstal.o tbutils.o tbxface.o tbprint.o
62 # components/utilities
63 OBJS += utalloc.o utcache.o utcopy.o utdebug.o utdecode.o \
64 utdelete.o utglobal.o utinit.o utlock.o utmath.o \
65 utmisc.o utmutex.o utobject.o utresrc.o utstate.o \
66 utxface.o utxferror.o utaddress.o utbuffer.o uterror.o \
67 utexcep.o utownerid.o utpredef.o utstring.o
68
69 # os_specific/service_layers
70 OBJS += osunixxf.o

72 CLEANFILES= aslcompiler.y.h aslcompilerlex.c aslcompilerparse.c \
73 dtparser.y.h dtparserlex.c dtparserparse.c prparser.y.h \
74 prparserlex.c prparserparse.c

76 ACPICA= $(SRC)/common/acpica

78 include $(SRC)/cmd/Makefile.cmd

80 C99MODE= $(C99_ENABLE)
81 CPPFLAGS += -DACPI_ASL_COMPILER -DACPI_USE_STANDARD_HEADERS \
82 -I$(ACPICA)/include -I$(ACPICA)/compiler -I.

84 # Flags for flex and bison
85 LFLAGS= -i -s
86 YFLAGS= -d

88 .KEEP_STATE:

90 all: $(PROG)

92 clean:
93 $(RM) $(CLEANFILES) $(OBJS)

95 install: all $(ROOTPROG)

97 $(PROG): $(OBJS)
98 $(LINK.c) $(OBJS) -o $@ $(LDLIBS)
99 $(POST_PROCESS)

101 aslcompilerlex.c: $(ACPICA)/compiler/aslcompiler.l
102 $(FLEX) $(LFLAGS) -PAslCompiler -o$@ $(ACPICA)/compiler/aslcompi

104 aslcompilerparse.c: $(ACPICA)/compiler/aslcompiler.y
105 $(BISON) $(YFLAGS) -pAslCompiler -o$@ $(ACPICA)/compiler/aslcomp
106 $(RM) aslcompiler.y.h; $(MV) aslcompilerparse.h aslcompiler.y.h

108 dtparserlex.c: $(ACPICA)/compiler/dtparser.l
109 $(FLEX) $(LFLAGS) -PDtParser -o$@ $(ACPICA)/compiler/dtparser.l

111 dtparserparse.c: $(ACPICA)/compiler/dtparser.y
112 $(BISON) $(YFLAGS) -pDtParser -o$@ $(ACPICA)/compiler/dtparser.y
113 $(RM) dtparser.y.h; $(MV) dtparserparse.h dtparser.y.h

115 prparserlex.c: $(ACPICA)/compiler/prparser.l
116 $(FLEX) $(LFLAGS) -PPrParser -o$@ $(ACPICA)/compiler/prparser.l

118 prparserparse.c: $(ACPICA)/compiler/prparser.y
119 $(BISON) $(YFLAGS) -pPrParser -o$@ $(ACPICA)/compiler/prparser.y
120 $(RM) prparser.y.h; $(MV) prparserparse.h prparser.y.h

123 %.o: $(ACPICA)/common/%.c
124 $(COMPILE.c) -o $@ $<
125 $(POST_PROCESS_O)

new/usr/src/cmd/acpitools/iasl/Makefile 3

127 %.o: $(ACPICA)/compiler/%.c
128 $(COMPILE.c) -o $@ $<
129 $(POST_PROCESS_O)

131 %.o: $(ACPICA)/components/debugger/%.c
132 $(COMPILE.c) -o $@ $<
133 $(POST_PROCESS_O)

135 %.o: $(ACPICA)/components/disassembler/%.c
136 $(COMPILE.c) -o $@ $<
137 $(POST_PROCESS_O)

139 %.o: $(ACPICA)/components/dispatcher/%.c
140 $(COMPILE.c) -o $@ $<
141 $(POST_PROCESS_O)

143 %.o: $(ACPICA)/components/executer/%.c
144 $(COMPILE.c) -o $@ $<
145 $(POST_PROCESS_O)

147 %.o: $(ACPICA)/components/namespace/%.c
148 $(COMPILE.c) -o $@ $<
149 $(POST_PROCESS_O)

151 %.o: $(ACPICA)/components/parser/%.c
152 $(COMPILE.c) -o $@ $<
153 $(POST_PROCESS_O)

155 %.o: $(ACPICA)/components/tables/%.c
156 $(COMPILE.c) -o $@ $<
157 $(POST_PROCESS_O)

159 %.o: $(ACPICA)/components/utilities/%.c
160 $(COMPILE.c) -o $@ $<
161 $(POST_PROCESS_O)

163 %.o: $(ACPICA)/os_specific/service_layers/%.c
164 $(COMPILE.c) -o $@ $<
165 $(POST_PROCESS_O)

167 include $(SRC)/cmd/Makefile.targ

new/usr/src/cmd/mdb/i86pc/modules/apix/amd64/Makefile 1

**
 1345 Thu Dec 26 13:48:10 2013
new/usr/src/cmd/mdb/i86pc/modules/apix/amd64/Makefile
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 #

25 MODULE = apix.so
26 MDBTGT = kvm

28 MODSRCS = apix.c apic_common.c intr_common.c

30 include ../../../../../Makefile.cmd
31 include ../../../../../Makefile.cmd.64
32 include ../../../../intel/Makefile.amd64
33 include ../../../Makefile.i86pc
34 include ../../../../Makefile.module

36 MODSRCS_DIR = ../../common

38 CPPFLAGS += -DMP -D_MACHDEP
39 CPPFLAGS += -I../../../../common
40 CPPFLAGS += -I../../common
41 CPPFLAGS += -I$(SRC)/uts/intel
42 CPPFLAGS += -I$(SRC)/uts/i86pc
43 CPPFLAGS += -I$(SRC)/common

new/usr/src/cmd/mdb/i86pc/modules/apix/ia32/Makefile 1

**
 1305 Thu Dec 26 13:48:10 2013
new/usr/src/cmd/mdb/i86pc/modules/apix/ia32/Makefile
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 #

25 MODULE = apix.so
26 MDBTGT = kvm

28 MODSRCS = apix.c apic_common.c intr_common.c

30 include ../../../../../Makefile.cmd
31 include ../../../../intel/Makefile.ia32
32 include ../../../Makefile.i86pc
33 include ../../../../Makefile.module

35 MODSRCS_DIR = ../../common

37 CPPFLAGS += -DMP -D_MACHDEP
38 CPPFLAGS += -I../../../../common
39 CPPFLAGS += -I../../common
40 CPPFLAGS += -I$(SRC)/uts/intel
41 CPPFLAGS += -I$(SRC)/uts/i86pc
42 CPPFLAGS += -I$(SRC)/common

new/usr/src/cmd/mdb/i86pc/modules/pcplusmp/amd64/Makefile 1

**
 1359 Thu Dec 26 13:48:11 2013
new/usr/src/cmd/mdb/i86pc/modules/pcplusmp/amd64/Makefile
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 #

25 MODULE = pcplusmp.so
26 MDBTGT = kvm

28 MODSRCS = pcplusmp.c apic_common.c intr_common.c

30 include ../../../../../Makefile.cmd
31 include ../../../../../Makefile.cmd.64
32 include ../../../../intel/Makefile.amd64
33 include ../../../Makefile.i86pc
34 include ../../../../Makefile.module

36 MODSRCS_DIR = ../../common

38 CPPFLAGS += -DMP -D_MACHDEP
39 CPPFLAGS += -I../../../../common
40 CPPFLAGS += -I../../common
41 CPPFLAGS += -I$(SRC)/uts/intel
42 CPPFLAGS += -I$(SRC)/uts/i86pc
43 CPPFLAGS += -I$(SRC)/common

new/usr/src/cmd/mdb/i86pc/modules/pcplusmp/ia32/Makefile 1

**
 1319 Thu Dec 26 13:48:11 2013
new/usr/src/cmd/mdb/i86pc/modules/pcplusmp/ia32/Makefile
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 #

25 MODULE = pcplusmp.so
26 MDBTGT = kvm

28 MODSRCS = pcplusmp.c apic_common.c intr_common.c

30 include ../../../../../Makefile.cmd
31 include ../../../../intel/Makefile.ia32
32 include ../../../Makefile.i86pc
33 include ../../../../Makefile.module

35 MODSRCS_DIR = ../../common

37 CPPFLAGS += -DMP -D_MACHDEP
38 CPPFLAGS += -I../../../../common
39 CPPFLAGS += -I../../common
40 CPPFLAGS += -I$(SRC)/uts/intel
41 CPPFLAGS += -I$(SRC)/uts/i86pc
42 CPPFLAGS += -I$(SRC)/common

new/usr/src/cmd/mdb/i86pc/modules/unix/amd64/Makefile 1

**
 1443 Thu Dec 26 13:48:12 2013
new/usr/src/cmd/mdb/i86pc/modules/unix/amd64/Makefile
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #

26 MODULE = unix.so
27 MDBTGT = kvm

29 MODSRCS = unix.c i86mmu.c

31 include ../../../../../Makefile.cmd
32 include ../../../../../Makefile.cmd.64
33 include ../../../../intel/Makefile.amd64
34 include ../../../Makefile.i86pc
35 include ../../../../Makefile.module

37 CPPFLAGS += -DMP -D_MACHDEP
38 CPPFLAGS += -I../../../../common
39 CPPFLAGS += -I$(SRC)/uts/i86pc
40 CPPFLAGS += -I$(SRC)/uts/intel
41 CPPFLAGS += -I$(SRC)/common

43 CERRWARN += -_gcc=-Wno-char-subscripts
44 CERRWARN += -_gcc=-Wno-parentheses
45 CERRWARN += -_gcc=-Wno-unused-label
46 CERRWARN += -_gcc=-Wno-uninitialized

new/usr/src/cmd/mdb/i86pc/modules/unix/ia32/Makefile 1

**
 1403 Thu Dec 26 13:48:12 2013
new/usr/src/cmd/mdb/i86pc/modules/unix/ia32/Makefile
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #

26 MODULE = unix.so
27 MDBTGT = kvm

29 MODSRCS = unix.c i86mmu.c

31 include ../../../../../Makefile.cmd
32 include ../../../../intel/Makefile.ia32
33 include ../../../Makefile.i86pc
34 include ../../../../Makefile.module

36 CPPFLAGS += -DMP -D_MACHDEP
37 CPPFLAGS += -I../../../../common
38 CPPFLAGS += -I$(SRC)/uts/i86pc
39 CPPFLAGS += -I$(SRC)/uts/intel
40 CPPFLAGS += -I$(SRC)/common

42 CERRWARN += -_gcc=-Wno-char-subscripts
43 CERRWARN += -_gcc=-Wno-parentheses
44 CERRWARN += -_gcc=-Wno-unused-label
45 CERRWARN += -_gcc=-Wno-uninitialized

new/usr/src/cmd/mdb/i86pc/modules/uppc/amd64/Makefile 1

**
 1355 Thu Dec 26 13:48:12 2013
new/usr/src/cmd/mdb/i86pc/modules/uppc/amd64/Makefile
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 #ident "%Z%%M% %I% %E% SMI"

26 MODULE = uppc.so
27 MDBTGT = kvm

29 MODSRCS = uppc.c intr_common.c

31 include ../../../../../Makefile.cmd
32 include ../../../../../Makefile.cmd.64
33 include ../../../../intel/Makefile.amd64
34 include ../../../Makefile.i86pc
35 include ../../../../Makefile.module

37 MODSRCS_DIR = ../../common

39 CPPFLAGS += -DMP -D_MACHDEP
40 CPPFLAGS += -I../../common
41 CPPFLAGS += -I../../../../common
42 CPPFLAGS += -I$(SRC)/uts/intel
43 CPPFLAGS += -I$(SRC)/uts/i86pc
44 CPPFLAGS += -I$(SRC)/common

new/usr/src/cmd/mdb/i86pc/modules/uppc/ia32/Makefile 1

**
 1315 Thu Dec 26 13:48:13 2013
new/usr/src/cmd/mdb/i86pc/modules/uppc/ia32/Makefile
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 #ident "%Z%%M% %I% %E% SMI"

26 MODULE = uppc.so
27 MDBTGT = kvm

29 MODSRCS = uppc.c intr_common.c

31 include ../../../../../Makefile.cmd
32 include ../../../../intel/Makefile.ia32
33 include ../../../Makefile.i86pc
34 include ../../../../Makefile.module

36 MODSRCS_DIR = ../../common

38 CPPFLAGS += -DMP -D_MACHDEP
39 CPPFLAGS += -I../../common
40 CPPFLAGS += -I../../../../common
41 CPPFLAGS += -I$(SRC)/uts/intel
42 CPPFLAGS += -I$(SRC)/uts/i86pc
43 CPPFLAGS += -I$(SRC)/common

new/usr/src/cmd/mdb/i86xpv/modules/unix/amd64/Makefile 1

**
 1563 Thu Dec 26 13:48:13 2013
new/usr/src/cmd/mdb/i86xpv/modules/unix/amd64/Makefile
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #

26 MODULE = unix.so
27 MDBTGT = kvm

29 MODSRCS = unix.c i86mmu.c

31 include ../../../../../Makefile.cmd
32 include ../../../../../Makefile.cmd.64
33 include ../../../../intel/Makefile.amd64
34 include ../../../Makefile.i86xpv
35 include ../../../../Makefile.module

37 MODSRCS_DIR = ../../../../i86pc/modules/unix/

39 CPPFLAGS += -DMP -D_MACHDEP -D__xpv
40 CPPFLAGS += -I../../../../common
41 CPPFLAGS += -I$(SRC)/uts/common
42 CPPFLAGS += -I$(SRC)/uts/i86xpv
43 CPPFLAGS += -I$(SRC)/uts/i86pc
44 CPPFLAGS += -I$(SRC)/uts/intel
45 CPPFLAGS += -I$(SRC)/common

47 CERRWARN += -_gcc=-Wno-char-subscripts
48 CERRWARN += -_gcc=-Wno-parentheses
49 CERRWARN += -_gcc=-Wno-unused-label
50 CERRWARN += -_gcc=-Wno-uninitialized

new/usr/src/cmd/mdb/i86xpv/modules/unix/ia32/Makefile 1

**
 1522 Thu Dec 26 13:48:13 2013
new/usr/src/cmd/mdb/i86xpv/modules/unix/ia32/Makefile
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #

26 MODULE = unix.so
27 MDBTGT = kvm

29 MODSRCS = unix.c i86mmu.c

31 include ../../../../../Makefile.cmd
32 include ../../../../intel/Makefile.ia32
33 include ../../../Makefile.i86xpv
34 include ../../../../Makefile.module

36 MODSRCS_DIR = ../../../../i86pc/modules/unix

38 CPPFLAGS += -DMP -D_MACHDEP -D__xpv
39 CPPFLAGS += -I../../../../common
40 CPPFLAGS += -I$(SRC)/uts/common
41 CPPFLAGS += -I$(SRC)/uts/i86xpv
42 CPPFLAGS += -I$(SRC)/uts/i86pc
43 CPPFLAGS += -I$(SRC)/uts/intel
44 CPPFLAGS += -I$(SRC)/common

46 CERRWARN += -_gcc=-Wno-char-subscripts
47 CERRWARN += -_gcc=-Wno-parentheses
48 CERRWARN += -_gcc=-Wno-unused-label
49 CERRWARN += -_gcc=-Wno-uninitialized

new/usr/src/cmd/mdb/i86xpv/modules/xpv_psm/amd64/Makefile 1

**
 1474 Thu Dec 26 13:48:14 2013
new/usr/src/cmd/mdb/i86xpv/modules/xpv_psm/amd64/Makefile
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 #ident "%Z%%M% %I% %E% SMI"

26 MODULE = xpv_psm.so
27 MDBTGT = kvm

29 MODSRCS = xpv_psm.c intr_common.c

31 include ../../../../../Makefile.cmd
32 include ../../../../../Makefile.cmd.64
33 include ../../../../intel/Makefile.amd64
34 include ../../../Makefile.i86xpv
35 include ../../../../Makefile.module

37 MODSRCS_DIR = ../../../../i86pc/modules/common

39 CPPFLAGS += -DMP -D_MACHDEP -D__xen
40 CPPFLAGS += -I../../../../common
41 CPPFLAGS += -I../../../../i86pc/modules/common
42 CPPFLAGS += -I$(SRC)/uts/common
43 CPPFLAGS += -I$(SRC)/uts/i86xpv
44 CPPFLAGS += -I$(SRC)/uts/i86pc
45 CPPFLAGS += -I$(SRC)/uts/intel
46 CPPFLAGS += -I$(SRC)/common

new/usr/src/cmd/mdb/i86xpv/modules/xpv_psm/ia32/Makefile 1

**
 1434 Thu Dec 26 13:48:14 2013
new/usr/src/cmd/mdb/i86xpv/modules/xpv_psm/ia32/Makefile
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 #ident "%Z%%M% %I% %E% SMI"

26 MODULE = xpv_psm.so
27 MDBTGT = kvm

29 MODSRCS = xpv_psm.c intr_common.c

31 include ../../../../../Makefile.cmd
32 include ../../../../intel/Makefile.ia32
33 include ../../../Makefile.i86xpv
34 include ../../../../Makefile.module

36 MODSRCS_DIR = ../../../../i86pc/modules/common

38 CPPFLAGS += -DMP -D_MACHDEP -D__xpv
39 CPPFLAGS += -I../../../../common
40 CPPFLAGS += -I../../../../i86pc/modules/common
41 CPPFLAGS += -I$(SRC)/uts/common
42 CPPFLAGS += -I$(SRC)/uts/i86xpv
43 CPPFLAGS += -I$(SRC)/uts/i86pc
44 CPPFLAGS += -I$(SRC)/uts/intel
45 CPPFLAGS += -I$(SRC)/common

new/usr/src/cmd/mdb/i86xpv/modules/xpv_uppc/amd64/Makefile 1

**
 1476 Thu Dec 26 13:48:14 2013
new/usr/src/cmd/mdb/i86xpv/modules/xpv_uppc/amd64/Makefile
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 #ident "%Z%%M% %I% %E% SMI"

26 MODULE = xpv_uppc.so
27 MDBTGT = kvm

29 MODSRCS = xpv_uppc.c intr_common.c

31 include ../../../../../Makefile.cmd
32 include ../../../../../Makefile.cmd.64
33 include ../../../../intel/Makefile.amd64
34 include ../../../Makefile.i86xpv
35 include ../../../../Makefile.module

37 MODSRCS_DIR = ../../../../i86pc/modules/common

39 CPPFLAGS += -DMP -D_MACHDEP -D__xen
40 CPPFLAGS += -I../../../../common
41 CPPFLAGS += -I../../../../i86pc/modules/common
42 CPPFLAGS += -I$(SRC)/uts/common
43 CPPFLAGS += -I$(SRC)/uts/i86xpv
44 CPPFLAGS += -I$(SRC)/uts/i86pc
45 CPPFLAGS += -I$(SRC)/uts/intel
46 CPPFLAGS += -I$(SRC)/common

new/usr/src/cmd/mdb/i86xpv/modules/xpv_uppc/ia32/Makefile 1

**
 1436 Thu Dec 26 13:48:15 2013
new/usr/src/cmd/mdb/i86xpv/modules/xpv_uppc/ia32/Makefile
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 #ident "%Z%%M% %I% %E% SMI"

26 MODULE = xpv_uppc.so
27 MDBTGT = kvm

29 MODSRCS = xpv_uppc.c intr_common.c

31 include ../../../../../Makefile.cmd
32 include ../../../../intel/Makefile.ia32
33 include ../../../Makefile.i86xpv
34 include ../../../../Makefile.module

36 MODSRCS_DIR = ../../../../i86pc/modules/common

38 CPPFLAGS += -DMP -D_MACHDEP -D__xpv
39 CPPFLAGS += -I../../../../common
40 CPPFLAGS += -I../../../../i86pc/modules/common
41 CPPFLAGS += -I$(SRC)/uts/common
42 CPPFLAGS += -I$(SRC)/uts/i86xpv
43 CPPFLAGS += -I$(SRC)/uts/i86pc
44 CPPFLAGS += -I$(SRC)/uts/intel
45 CPPFLAGS += -I$(SRC)/common

new/usr/src/common/acpica/README.txt 1

**
 168 Thu Dec 26 13:48:15 2013
new/usr/src/common/acpica/README.txt
PANKOVs restructure
**

1 The acpica module includes Intel ACPI CA source code drops. No changes are made
2 to Intel-provided source code.

4 Latest version is at https://www.acpica.org/downloads/.

new/usr/src/common/acpica/THIRDPARTYLICENSE 1

**
 1872 Thu Dec 26 13:48:15 2013
new/usr/src/common/acpica/THIRDPARTYLICENSE
acpica-unix2-20130823
**

1 * Copyright (C) 2000 - 2013, Intel Corp.
1 * Copyright (C) 2000 - 2011, Intel Corp.
2 * All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions, and the following disclaimer,
9 * without modification.

10 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
11 * substantially similar to the "NO WARRANTY" disclaimer below
12 * ("Disclaimer") and any redistribution must be conditioned upon
13 * including a substantially similar Disclaimer requirement for further
14 * binary redistribution.
15 * 3. Neither the names of the above-listed copyright holders nor the names
16 * of any contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * NO WARRANTY
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
27 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
28 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
32 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
33 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGES.

new/usr/src/common/acpica/changes.txt 1

**
 562098 Thu Dec 26 13:48:16 2013
new/usr/src/common/acpica/changes.txt
update to acpica-unix2-20131218
update to acpica-unix2-20131115
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 --
2 18 December 2013. Summary of changes for version 20131218:
2 27 May 2011. Summary of changes for version 20110527:

4 Global note: The ACPI 5.0A specification was released this month. There
5 are no changes needed for ACPICA since this release of ACPI is an
6 errata/clarification release. The specification is available at
7 acpi.info.
4 This release is available at www.acpica.org/downloads

10 1) ACPICA kernel-resident subsystem:

12 Added validation of the XSDT root table if it is present. Some older
13 platforms contain an XSDT that is ill-formed or otherwise invalid (such
14 as containing some or all entries that are NULL pointers). This change
15 adds a new function to validate the XSDT before actually using it. If the
16 XSDT is found to be invalid, ACPICA will now automatically fall back to
17 using the RSDT instead. Original implementation by Zhao Yakui. Ported to
18 ACPICA and enhanced by Lv Zheng and Bob Moore.

20 Added a runtime option to ignore the XSDT and force the use of the RSDT.
21 This change adds a runtime option that will force ACPICA to use the RSDT
22 instead of the XSDT (AcpiGbl_DoNotUseXsdt). Although the ACPI spec
23 requires that an XSDT be used instead of the RSDT, the XSDT has been
24 found to be corrupt or ill-formed on some machines. Lv Zheng.

26 Added a runtime option to favor 32-bit FADT register addresses over the
27 64-bit addresses. This change adds an option to favor 32-bit FADT
28 addresses when there is a conflict between the 32-bit and 64-bit versions
29 of the same register. The default behavior is to use the 64-bit version
30 in accordance with the ACPI specification. This can now be overridden via
31 the AcpiGbl_Use32BitFadtAddresses flag. ACPICA BZ 885. Lv Zheng.

33 During the change above, the internal "Convert FADT" and "Verify FADT"
34 functions have been merged to simplify the code, making it easier to
35 understand and maintain. ACPICA BZ 933.

37 Improve exception reporting and handling for GPE block installation.
38 Return an actual status from AcpiEvGetGpeXruptBlock and don’t clobber the
39 status when exiting AcpiEvInstallGpeBlock. ACPICA BZ 1019.

41 Added helper macros to extract bus/segment numbers from the HEST table.
42 This change adds two macros to extract the encoded bus and segment
43 numbers from the HEST Bus field - ACPI_HEST_BUS and ACPI_HEST_SEGMENT.
44 Betty Dall <betty.dall@hp.com>

46 Removed the unused ACPI_FREE_BUFFER macro. This macro is no longer used
47 by ACPICA. It is not a public macro, so it should have no effect on
48 existing OSV code. Lv Zheng.

50 Example Code and Data Size: These are the sizes for the OS-independent
51 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
52 debug version of the code includes the debug output trace mechanism and
53 has a much larger code and data size.

55 Current Release:

new/usr/src/common/acpica/changes.txt 2

56 Non-Debug Version: 96.1K Code, 27.0K Data, 123.1K Total
57 Debug Version: 185.6K Code, 77.3K Data, 262.9K Total
58 Previous Release:
59 Non-Debug Version: 95.9K Code, 27.0K Data, 122.9K Total
60 Debug Version: 185.1K Code, 77.2K Data, 262.3K Total

63 2) iASL Compiler/Disassembler and Tools:

65 Disassembler: Improved pathname support for emitted External()
66 statements. This change adds full pathname support for external names
67 that have been resolved internally by the inclusion of additional ACPI
68 tables (via the iASL -e option). Without this change, the disassembler
69 can emit multiple externals for the same object, or it become confused
70 when the Scope() operator is used on an external object. Overall, greatly
71 improves the ability to actually recompile the emitted ASL code when
72 objects a referenced across multiple ACPI tables. Reported by Michael
73 Tsirkin (mst@redhat.com).

75 Tests/ASLTS: Updated functional control suite to execute with no errors.
76 David Box. Fixed several errors related to the testing of the interpreter
77 slack mode. Lv Zheng.

79 iASL: Added support to detect names that are declared within a control
80 method, but are unused (these are temporary names that are only valid
81 during the time the method is executing). A remark is issued for these
82 cases. ACPICA BZ 1022.

84 iASL: Added full support for the DBG2 table. Adds full disassembler,
85 table compiler, and template generator support for the DBG2 table (Debug
86 Port 2 table).

88 iASL: Added full support for the PCCT table, update the table definition.
89 Updates the PCCT table definition in the actbl3.h header and adds table
90 compiler and template generator support.

92 iASL: Added an option to emit only error messages (no warnings/remarks).
93 The -ve option will enable only error messages, warnings and remarks are
94 suppressed. This can simplify debugging when only the errors are
95 important, such as when an ACPI table is disassembled and there are many
96 warnings and remarks -- but only the actual errors are of real interest.

98 Example ACPICA code (source/tools/examples): Updated the example code so
99 that it builds to an actual working program, not just example code. Added
100 ACPI tables and execution of an example control method in the DSDT. Added
101 makefile support for Unix generation.

103 --
104 15 November 2013. Summary of changes for version 20131115:

106 This release is available at https://acpica.org/downloads

109 1) ACPICA kernel-resident subsystem:

111 Resource Manager: Fixed loop termination for the "get AML length"
112 function. The loop previously had an error termination on a NULL resource
113 pointer, which can never happen since the loop simply increments a valid
114 resource pointer. This fix changes the loop to terminate with an error on
115 an invalid end-of-buffer condition. The problem can be seen as an
116 infinite loop by callers to AcpiSetCurrentResources with an invalid or
117 corrupted resource descriptor, or a resource descriptor that is missing
118 an END_TAG descriptor. Reported by Dan Carpenter
119 <dan.carpenter@oracle.com>. Lv Zheng, Bob Moore.

121 Table unload and ACPICA termination: Delete all attached data objects

new/usr/src/common/acpica/changes.txt 3

122 during namespace node deletion. This fix updates namespace node deletion
123 to delete the entire list of attached objects (attached via
124 AcpiAttachObject) instead of just one of the attached items. ACPICA BZ
125 1024. Tomasz Nowicki (tomasz.nowicki@linaro.org).

127 ACPICA termination: Added support to delete all objects attached to the
128 root namespace node. This fix deletes any and all objects that have been
129 attached to the root node via AcpiAttachData. Previously, none of these
130 objects were deleted. Reported by Tomasz Nowicki. ACPICA BZ 1026.

132 Debug output: Do not emit the function nesting level for the in-kernel
133 build. The nesting level is really only useful during a single-thread
134 execution. Therefore, only enable this output for the AcpiExec utility.
135 Also, only emit the thread ID when executing under AcpiExec (Context
136 switches are still always detected and a message is emitted). ACPICA BZ
137 972.

139 Example Code and Data Size: These are the sizes for the OS-independent
140 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
141 debug version of the code includes the debug output trace mechanism and
142 has a much larger code and data size.

144 Current Release:
145 Non-Debug Version: 95.9K Code, 27.0K Data, 122.9K Total
146 Debug Version: 185.1K Code, 77.2K Data, 262.3K Total
147 Previous Release:
148 Non-Debug Version: 95.8K Code, 27.0K Data, 122.8K Total
149 Debug Version: 185.2K Code, 77.2K Data, 262.4K Total

152 2) iASL Compiler/Disassembler and Tools:

154 AcpiExec/Unix-OSL: Use <termios.h> instead of <termio.h>. This is the
155 correct portable POSIX header for terminal control functions.

157 Disassembler: Fixed control method invocation issues related to the use
158 of the CondRefOf() operator. The problem is seen in the disassembly where
159 control method invocations may not be disassembled properly if the
160 control method name has been used previously as an argument to CondRefOf.
161 The solution is to not attempt to emit an external declaration for the
162 CondRefOf target (it is not necessary in the first place). This prevents
163 disassembler object type confusion. ACPICA BZ 988.

165 Unix Makefiles: Added an option to disable compiler optimizations and the
166 _FORTIFY_SOURCE flag. Some older compilers have problems compiling ACPICA
167 with optimizations (reportedly, gcc 4.4 for example). This change adds a
168 command line option for make (NOOPT) that disables all compiler
169 optimizations and the _FORTIFY_SOURCE compiler flag. The default
170 optimization is -O2 with the _FORTIFY_SOURCE flag specified. ACPICA BZ
171 1034. Lv Zheng, Bob Moore.

173 Tests/ASLTS: Added options to specify individual test cases and modes.
174 This allows testers running aslts.sh to optionally specify individual
175 test modes and test cases. Also added an option to disable the forced
176 generation of the ACPICA tools from source if desired. Lv Zheng.

178 --
179 27 September 2013. Summary of changes for version 20130927:

181 This release is available at https://acpica.org/downloads

184 1) ACPICA kernel-resident subsystem:

186 Fixed a problem with store operations to reference objects. This change
187 fixes a problem where a Store operation to an ArgX object that contained

new/usr/src/common/acpica/changes.txt 4

188 a
189 reference to a field object did not complete the automatic dereference
190 and
191 then write to the actual field object. Instead, the object type of the
192 field object was inadvertently changed to match the type of the source
193 operand. The new behavior will actually write to the field object (buffer
194 field or field unit), thus matching the correct ACPI-defined behavior.

196 Implemented support to allow the host to redefine individual OSL
197 prototypes. This change enables the host to redefine OSL prototypes found
198 in the acpiosxf.h file. This allows the host to implement OSL interfaces
199 with a macro or inlined function. Further, it allows the host to add any
200 additional required modifiers such as __iomem, __init, __exit, etc., as
201 necessary on a per-interface basis. Enables maximum flexibility for the
202 OSL interfaces. Lv Zheng.

204 Hardcoded the access width for the FADT-defined reset register. The ACPI
205 specification requires the reset register width to be 8 bits. ACPICA now
206 hardcodes the width to 8 and ignores the FADT width value. This provides
207 compatibility with other ACPI implementations that have allowed BIOS code
208 with bad register width values to go unnoticed. Matthew Garett, Bob
209 Moore,
210 Lv Zheng.

212 Changed the position/use of the ACPI_PRINTF_LIKE macro. This macro is
213 used
214 in the OSL header (acpiosxf). The change modifies the position of this
215 macro in each instance where it is used (AcpiDebugPrint, etc.) to avoid
216 build issues if the OSL defines the implementation of the interface to be
217 an inline stub function. Lv Zheng.

219 Deployed a new macro ACPI_EXPORT_SYMBOL_INIT for the main ACPICA
220 initialization interfaces. This change adds a new macro for the main init
221 and terminate external interfaces in order to support hosts that require
222 additional or different processing for these functions. Changed from
223 ACPI_EXPORT_SYMBOL to ACPI_EXPORT_SYMBOL_INIT for these functions. Lv
224 Zheng, Bob Moore.

226 Cleaned up the memory allocation macros for configurability. In the
227 common
228 case, the ACPI_ALLOCATE and related macros now resolve directly to their
229 respective AcpiOs* OSL interfaces. Two options:
230 1) The ACPI_ALLOCATE_ZEROED macro uses a simple local implementation by
231 default, unless overridden by the USE_NATIVE_ALLOCATE_ZEROED define.
232 2) For AcpiExec (and for debugging), the macros can optionally be
233 resolved
234 to the local ACPICA interfaces that track each allocation (local tracking
235 is used to immediately detect memory leaks).
236 Lv Zheng.

238 Simplified the configuration for ACPI_REDUCED_HARDWARE. Allows the kernel
239 to predefine this macro to either TRUE or FALSE during the system build.

241 Replaced __FUNCTION_ with __func__ in the gcc-specific header.

243 Example Code and Data Size: These are the sizes for the OS-independent
244 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
245 debug version of the code includes the debug output trace mechanism and
246 has a much larger code and data size.

248 Current Release:
249 Non-Debug Version: 95.8K Code, 27.0K Data, 122.8K Total
250 Debug Version: 185.2K Code, 77.2K Data, 262.4K Total
251 Previous Release:
252 Non-Debug Version: 96.7K Code, 27.1K Data, 123.9K Total
253 Debug Version: 184.4K Code, 76.8K Data, 261.2K Total

new/usr/src/common/acpica/changes.txt 5

256 2) iASL Compiler/Disassembler and Tools:

258 iASL: Implemented wildcard support for the -e option. This simplifies use
259 when there are many SSDTs that must be included to resolve external
260 method
261 declarations. ACPICA BZ 1041. Example:
262 iasl -e ssdt*.dat -d dsdt.dat

264 AcpiExec: Add history/line-editing for Unix/Linux systems. This change
265 adds a portable module that implements full history and limited line
266 editing for Unix and Linux systems. It does not use readline() due to
267 portability issues. Instead it uses the POSIX termio interface to put the
268 terminal in raw input mode so that the various special keys can be
269 trapped
270 (such as up/down-arrow for history support and left/right-arrow for line
271 editing). Uses the existing debugger history mechanism. ACPICA BZ 1036.

273 AcpiXtract: Add support to handle (ignore) "empty" lines containing only
274 one or more spaces. This provides compatible with early or different
275 versions of the AcpiDump utility. ACPICA BZ 1044.

277 AcpiDump: Do not ignore tables that contain only an ACPI table header.
278 Apparently, some BIOSs create SSDTs that contain an ACPI table header but
279 no other data. This change adds support to dump these tables. Any tables
280 shorter than the length of an ACPI table header remain in error (an error
281 message is emitted). Reported by Yi Li.

283 Debugger: Echo actual command along with the "unknown command" message.

285 --
286 23 August 2013. Summary of changes for version 20130823:

288 1) ACPICA kernel-resident subsystem:

290 Implemented support for host-installed System Control Interrupt (SCI)
291 handlers. Certain ACPI functionality requires the host to handle raw
292 SCIs. For example, the "SCI Doorbell" that is defined for memory power
293 state support requires the host device driver to handle SCIs to examine
294 if the doorbell has been activated. Multiple SCI handlers can be
295 installed to allow for future expansion. New external interfaces are
296 AcpiInstallSciHandler, AcpiRemoveSciHandler; see the ACPICA reference for
297 details. Lv Zheng, Bob Moore. ACPICA BZ 1032.

299 Operation region support: Never locally free the handler "context"
300 pointer. This change removes some dangerous code that attempts to free
301 the handler context pointer in some (rare) circumstances. The owner of
302 the handler owns this pointer and the ACPICA code should never touch it.
303 Although not seen to be an issue in any kernel, it did show up as a
304 problem (fault) under AcpiExec. Also, set the internal storage field for
305 the context pointer to zero when the region is deactivated, simply for
306 sanity. David Box. ACPICA BZ 1039.

308 AcpiRead: On error, do not modify the return value target location. If an
309 error happens in the middle of a split 32/32 64-bit I/O operation, do not
310 modify the target of the return value pointer. Makes the code consistent
311 with the rest of ACPICA. Bjorn Helgaas.

313 Example Code and Data Size: These are the sizes for the OS-independent
314 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
315 debug version of the code includes the debug output trace mechanism and
316 has a much larger code and data size.

318 Current Release:
319 Non-Debug Version: 96.7K Code, 27.1K Data, 123.9K Total

new/usr/src/common/acpica/changes.txt 6

320 Debug Version: 184.4K Code, 76.8K Data, 261.2K Total
321 Previous Release:
322 Non-Debug Version: 96.2K Code, 27.1K Data, 123.3K Total
323 Debug Version: 185.4K Code, 77.1K Data, 262.5K Total

326 2) iASL Compiler/Disassembler and Tools:

328 AcpiDump: Implemented several new features and fixed some problems:
329 1) Added support to dump the RSDP, RSDT, and XSDT tables.
330 2) Added support for multiple table instances (SSDT, UEFI).
331 3) Added option to dump "customized" (overridden) tables (-c).
332 4) Fixed a problem where some table filenames were improperly
333 constructed.
334 5) Improved some error messages, removed some unnecessary messages.

336 iASL: Implemented additional support for disassembly of ACPI tables that
337 contain invocations of external control methods. The -fe<file> option
338 allows the import of a file that specifies the external methods along
339 with the required number of arguments for each -- allowing for the
340 correct disassembly of the table. This is a workaround for a limitation
341 of AML code where the disassembler often cannot determine the number of
342 arguments required for an external control method and generates incorrect
343 ASL code. See the iASL reference for details. ACPICA BZ 1030.

345 Debugger: Implemented a new command (paths) that displays the full
346 pathnames (namepaths) and object types of all objects in the namespace.
347 This is an alternative to the namespace command.

349 Debugger: Implemented a new command (sci) that invokes the SCI dispatch
350 mechanism and any installed handlers.

352 iASL: Fixed a possible segfault for "too many parent prefixes" condition.
353 This can occur if there are too many parent prefixes in a namepath (for
354 example, ^^^^^^PCI0.ECRD). ACPICA BZ 1035.

356 Application OSLs: Set the return value for the PCI read functions. These
357 functions simply return AE_OK, but should set the return value to zero
358 also. This change implements this. ACPICA BZ 1038.

360 Debugger: Prevent possible command line buffer overflow. Increase the
361 size of a couple of the debugger line buffers, and ensure that overflow
362 cannot happen. ACPICA BZ 1037.

364 iASL: Changed to abort immediately on serious errors during the parsing
365 phase. Due to the nature of ASL, there is no point in attempting to
366 compile these types of errors, and they typically end up causing a
367 cascade of hundreds of errors which obscure the original problem.

369 --
370 25 July 2013. Summary of changes for version 20130725:

372 1) ACPICA kernel-resident subsystem:

374 Fixed a problem with the DerefOf operator where references to FieldUnits
375 and BufferFields incorrectly returned the parent object, not the actual
376 value of the object. After this change, a dereference of a FieldUnit
377 reference results in a read operation on the field to get the value, and
378 likewise, the appropriate BufferField value is extracted from the target
379 buffer.

381 Fixed a problem where the _WAK method could cause a fault under these
382 circumstances: 1) Interpreter slack mode was not enabled, and 2) the _WAK
383 method returned no value. The problem is rarely seen because most kernels
384 run ACPICA in slack mode.

new/usr/src/common/acpica/changes.txt 7

386 For the DerefOf operator, a fatal error now results if an attempt is made
387 to dereference a reference (created by the Index operator) to a NULL
388 package element. Provides compatibility with other ACPI implementations,
389 and this behavior will be added to a future version of the ACPI
390 specification.

392 The ACPI Power Management Timer (defined in the FADT) is now optional.
393 This provides compatibility with other ACPI implementations and will
394 appear in the next version of the ACPI specification. If there is no PM
395 Timer on the platform, AcpiGetTimer returns AE_SUPPORT. An address of
396 zero in the FADT indicates no PM timer.

398 Implemented a new interface for _OSI support, AcpiUpdateInterfaces. This
399 allows the host to globally enable/disable all vendor strings, all
400 feature strings, or both. Intended to be primarily used for debugging
401 purposes only. Lv Zheng.

403 Expose the collected _OSI data to the host via a global variable. This
404 data tracks the highest level vendor ID that has been invoked by the BIOS
405 so that the host (and potentially ACPICA itself) can change behaviors
406 based upon the age of the BIOS.

408 Example Code and Data Size: These are the sizes for the OS-independent
409 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
410 debug version of the code includes the debug output trace mechanism and
411 has a much larger code and data size.

413 Current Release:
414 Non-Debug Version: 96.2K Code, 27.1K Data, 123.3K Total
415 Debug Version: 184.4K Code, 76.8K Data, 261.2K Total
416 Previous Release:
417 Non-Debug Version: 95.9K Code, 26.9K Data, 122.8K Total
418 Debug Version: 184.1K Code, 76.7K Data, 260.8K Total

421 2) iASL Compiler/Disassembler and Tools:

423 iASL: Created the following enhancements for the -so option (create
424 offset table):
425 1)Add offsets for the last nameseg in each namepath for every supported
426 object type
427 2)Add support for Processor, Device, Thermal Zone, and Scope objects
428 3)Add the actual AML opcode for the parent object of every supported
429 object type
430 4)Add support for the ZERO/ONE/ONES AML opcodes for integer objects

432 Disassembler: Emit all unresolved external symbols in a single block.
433 These are external references to control methods that could not be
434 resolved, and thus, the disassembler had to make a guess at the number of
435 arguments to parse.

437 iASL: The argument to the -T option (create table template) is now
438 optional. If not specified, the default table is a DSDT, typically the
439 most common case.

441 --
442 26 June 2013. Summary of changes for version 20130626:

444 1) ACPICA kernel-resident subsystem:

446 Fixed an issue with runtime repair of the _CST object. Null or invalid
447 elements were not always removed properly. Lv Zheng.

449 Removed an arbitrary restriction of 256 GPEs per GPE block (such as the
450 FADT-defined GPE0 and GPE1). For GPE0, GPE1, and each GPE Block Device,
451 the maximum number of GPEs is 1016. Use of multiple GPE block devices

new/usr/src/common/acpica/changes.txt 8

452 makes the system-wide number of GPEs essentially unlimited.

454 Example Code and Data Size: These are the sizes for the OS-independent
455 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
456 debug version of the code includes the debug output trace mechanism and
457 has a much larger code and data size.

459 Current Release:
460 Non-Debug Version: 95.9K Code, 26.9K Data, 122.8K Total
461 Debug Version: 184.1K Code, 76.7K Data, 260.8K Total
462 Previous Release:
463 Non-Debug Version: 96.0K Code, 27.0K Data, 123.0K Total
464 Debug Version: 184.1K Code, 76.8K Data, 260.9K Total

467 2) iASL Compiler/Disassembler and Tools:

469 Portable AcpiDump: Implemented full support for the Linux and FreeBSD
470 hosts. Now supports Linux, FreeBSD, and Windows.

472 Disassembler: Added some missing types for the HEST and EINJ tables: "Set
473 Error Type With Address", "CMCI", "MCE", and "Flush Cacheline".

475 iASL/Preprocessor: Implemented full support for nested
476 #if/#else/#elif/#endif blocks. Allows arbitrary depth of nested blocks.

478 Disassembler: Expanded maximum output string length to 64K. Was 256 bytes
479 max. The original purpose of this constraint was to limit the amount of
480 debug output. However, the string function in question (UtPrintString) is
481 now used for the disassembler also, where 256 bytes is insufficient.
482 Reported by RehabMan@GitHub.

484 iASL/DataTables: Fixed some problems and issues with compilation of DMAR
485 tables. ACPICA BZ 999. Lv Zheng.

487 iASL: Fixed a couple of error exit issues that could result in a "Could
488 not delete <file>" message during ASL compilation.

490 AcpiDump: Allow "FADT" and "MADT" as valid table signatures, even though
491 the actual signatures for these tables are "FACP" and "APIC",
492 respectively.

494 AcpiDump: Added support for multiple UEFI tables. Only SSDT and UEFI
495 tables are allowed to have multiple instances.

497 --
498 17 May 2013. Summary of changes for version 20130517:

500 1) ACPICA kernel-resident subsystem:

502 Fixed a regression introduced in version 20130328 for _INI methods. This
503 change fixes a problem introduced in 20130328 where _INI methods are no
504 longer executed properly because of a memory block that was not
505 initialized correctly. ACPICA BZ 1016. Tomasz Nowicki
506 <tomasz.nowicki@linaro.org>.

508 Fixed a possible problem with the new extended sleep registers in the
509 ACPI
510 5.0 FADT. Do not use these registers (even if populated) unless the HW-
511 reduced bit is set in the FADT (as per the ACPI specification). ACPICA BZ
512 1020. Lv Zheng.

514 Implemented return value repair code for _CST predefined objects: Sort
515 the
516 list and detect/remove invalid entries. ACPICA BZ 890. Lv Zheng.

new/usr/src/common/acpica/changes.txt 9

518 Implemented a debug-only option to disable loading of SSDTs from the
519 RSDT/XSDT during ACPICA initialization. This can be useful for debugging
520 ACPI problems on some machines. Set AcpiGbl_DisableSsdtTableLoad in
521 acglobal.h - ACPICA BZ 1005. Lv Zheng.

523 Fixed some issues in the ACPICA initialization and termination code:
524 Tomasz Nowicki <tomasz.nowicki@linaro.org>
525 1) Clear events initialized flag upon event component termination. ACPICA
526 BZ 1013.
527 2) Fixed a possible memory leak in GPE init error path. ACPICA BZ 1018.
528 3) Delete global lock pending lock during termination. ACPICA BZ 1012.
529 4) Clear debug buffer global on termination to prevent possible multiple
530 delete. ACPICA BZ 1010.

532 Standardized all switch() blocks across the entire source base. After
533 many
534 years, different formatting for switch() had crept in. This change makes
535 the formatting of every switch block identical. ACPICA BZ 997. Chao Guan.

537 Split some files to enhance ACPICA modularity and configurability:
538 1) Split buffer dump routines into utilities/utbuffer.c
539 2) Split internal error message routines into utilities/uterror.c
540 3) Split table print utilities into tables/tbprint.c
541 4) Split iASL command-line option processing into asloptions.c

543 Makefile enhancements:
544 1) Support for all new files above.
545 2) Abort make on errors from any subcomponent. Chao Guan.
546 3) Add build support for Apple Mac OS X. Liang Qi.

548 Example Code and Data Size: These are the sizes for the OS-independent
549 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
550 debug version of the code includes the debug output trace mechanism and
551 has a much larger code and data size.

553 Current Release:
554 Non-Debug Version: 96.0K Code, 27.0K Data, 123.0K Total
555 Debug Version: 184.1K Code, 76.8K Data, 260.9K Total
556 Previous Release:
557 Non-Debug Version: 95.6K Code, 26.8K Data, 122.4K Total
558 Debug Version: 183.5K Code, 76.6K Data, 260.1K Total

561 2) iASL Compiler/Disassembler and Tools:

563 New utility: Implemented an easily portable version of the acpidump
564 utility to extract ACPI tables from the system (or a file) in an ASCII
565 hex
566 dump format. The top-level code implements the various command line
567 options, file I/O, and table dump routines. To port to a new host, only
568 three functions need to be implemented to get tables -- since this
569 functionality is OS-dependent. See the tools/acpidump/apmain.c module and
570 the ACPICA reference for porting instructions. ACPICA BZ 859. Notes:
571 1) The Windows version obtains the ACPI tables from the Registry.
572 2) The Linux version is under development.
573 3) Other hosts - If an OS-dependent module is submitted, it will be
574 distributed with ACPICA.

576 iASL: Fixed a regression for -D preprocessor option (define symbol). A
577 restructuring/change to the initialization sequence caused this option to
578 no longer work properly.

580 iASL: Implemented a mechanism to disable specific warnings and remarks.
581 Adds a new command line option, "-vw <messageid> as well as "#pragma
582 disable <messageid>". ACPICA BZ 989. Chao Guan, Bob Moore.

new/usr/src/common/acpica/changes.txt 10

584 iASL: Fix for too-strict package object validation. The package object
585 validation for return values from the predefined names is a bit too
586 strict, it does not allow names references within the package (which will
587 be resolved at runtime.) These types of references cannot be validated at
588 compile time. This change ignores named references within package objects
589 for names that return or define static packages.

591 Debugger: Fixed the 80-character command line limitation for the History
592 command. Now allows lines of arbitrary length. ACPICA BZ 1000. Chao Guan.

594 iASL: Added control method and package support for the -so option
595 (generates AML offset table for BIOS support.)

597 iASL: issue a remark if a non-serialized method creates named objects. If
598 a thread blocks within the method for any reason, and another thread
599 enters the method, the method will fail because an attempt will be made
600 to
601 create the same (named) object twice. In this case, issue a remark that
602 the method should be marked serialized. NOTE: may become a warning later.
603 ACPICA BZ 909.

605 --
606 18 April 2013. Summary of changes for version 20130418:

608 1) ACPICA kernel-resident subsystem:

610 Fixed a possible buffer overrun during some rare but specific field unit
611 read operations. This overrun can only happen if the DSDT version is 1 --
612 meaning that all AML integers are 32 bits -- and the field length is
613 between 33 and 55 bits long. During the read, an internal buffer object
614 is
615 created for the field unit because the field is larger than an integer
616 (32
617 bits). However, in this case, the buffer will be incorrectly written
618 beyond the end because the buffer length is less than the internal
619 minimum
620 of 64 bits (8 bytes) long. The buffer will be either 5, 6, or 7 bytes
621 long, but a full 8 bytes will be written.

623 Updated the Embedded Controller "orphan" _REG method support. This refers
624 to _REG methods under the EC device that have no corresponding operation
625 region. This is allowed by the ACPI specification. This update removes a
626 dependency on the existence an ECDT table. It will execute an orphan _REG
627 method as long as the operation region handler for the EC is installed at
628 the EC device node and not the namespace root. Rui Zhang (original
629 update), Bob Moore (update/integrate).

631 Implemented run-time argument typechecking for all predefined ACPI names
632 (_STA, _BIF, etc.) This change performs object typechecking on all
633 incoming arguments for all predefined names executed via
634 AcpiEvaluateObject. This ensures that ACPI-related device drivers are
635 passing correct object types as well as the correct number of arguments
636 (therefore identifying any issues immediately). Also, the ASL/namespace
637 definition of the predefined name is checked against the ACPI
638 specification for the proper argument count. Adds one new file,
639 nsarguments.c

641 Changed an exception code for the ASL UnLoad() operator. Changed the
642 exception code for the case where the input DdbHandle is invalid, from
643 AE_BAD_PARAMETER to the more appropriate AE_AML_OPERAND_TYPE.

645 Unix/Linux makefiles: Removed the use of the -O2 optimization flag in the
646 global makefile. The use of this flag causes compiler errors on earlier
647 versions of GCC, so it has been removed for compatibility.

649 Miscellaneous cleanup:

new/usr/src/common/acpica/changes.txt 11

650 1) Removed some unused/obsolete macros
651 2) Fixed a possible memory leak in the _OSI support
652 3) Removed an unused variable in the predefined name support
653 4) Windows OSL: remove obsolete reference to a memory list field

655 Example Code and Data Size: These are the sizes for the OS-independent
656 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
657 debug version of the code includes the debug output trace mechanism and
658 has a much larger code and data size.

660 Current Release:
661 Non-Debug Version: 95.2K Code, 26.4K Data, 121.6K Total
662 Debug Version: 183.0K Code, 76.0K Data, 259.0K Total
663 Previous Release:
664 Non-Debug Version: 95.6K Code, 26.8K Data, 122.4K Total
665 Debug Version: 183.5K Code, 76.6K Data, 260.1K Total

668 2) iASL Compiler/Disassembler and Tools:

670 AcpiExec: Added installation of a handler for the SystemCMOS address
671 space. This prevents control method abort if a method accesses this
672 space.

674 AcpiExec: Added support for multiple EC devices, and now install EC
675 operation region handler(s) at the actual EC device instead of the
676 namespace root. This reflects the typical behavior of host operating
677 systems.

679 AcpiExec: Updated to ensure that all operation region handlers are
680 installed before the _REG methods are executed. This prevents a _REG
681 method from aborting if it accesses an address space has no handler.
682 AcpiExec installs a handler for every possible address space.

684 Debugger: Enhanced the "handlers" command to display non-root handlers.
685 This change enhances the handlers command to display handlers associated
686 with individual devices throughout the namespace, in addition to the
687 currently supported display of handlers associated with the root
688 namespace
689 node.

691 ASL Test Suite: Several test suite errors have been identified and
692 resolved, reducing the total error count during execution. Chao Guan.

694 --
695 28 March 2013. Summary of changes for version 20130328:

697 1) ACPICA kernel-resident subsystem:

699 Fixed several possible race conditions with the internal object reference
700 counting mechanism. Some of the external ACPICA interfaces update object
701 reference counts without holding the interpreter or namespace lock. This
702 change adds a spinlock to protect reference count updates on the internal
703 ACPICA objects. Reported by and with assistance from Andriy Gapon
704 (avg@FreeBSD.org).

706 FADT support: Removed an extraneous warning for very large GPE register
707 sets. This change removes a size mismatch warning if the legacy length
708 field for a GPE register set is larger than the 64-bit GAS structure can
709 accommodate. GPE register sets can be larger than the 255-bit width
710 limitation of the GAS structure. Linn Crosetto (linn@hp.com).

712 _OSI Support: handle any errors from AcpiOsAcquireMutex. Check for error
713 return from this interface. Handles a possible timeout case if
714 ACPI_WAIT_FOREVER is modified by the host to be a value less than
715 "forever". Jung-uk Kim.

new/usr/src/common/acpica/changes.txt 12

717 Predefined name support: Add allowed/required argument type information
718 to
719 the master predefined info table. This change adds the infrastructure to
720 enable typechecking on incoming arguments for all predefined
721 methods/objects. It does not actually contain the code that will fully
722 utilize this information, this is still under development. Also condenses
723 some duplicate code for the predefined names into a new module,
724 utilities/utpredef.c

726 Example Code and Data Size: These are the sizes for the OS-independent
727 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
728 debug version of the code includes the debug output trace mechanism and
729 has a much larger code and data size.

731 Previous Release:
732 Non-Debug Version: 95.0K Code, 25.9K Data, 120.9K Total
733 Debug Version: 182.9K Code, 75.6K Data, 258.5K Total
734 Current Release:
735 Non-Debug Version: 95.2K Code, 26.4K Data, 121.6K Total
736 Debug Version: 183.0K Code, 76.0K Data, 259.0K Total

739 2) iASL Compiler/Disassembler and Tools:

741 iASL: Implemented a new option to simplify the development of ACPI-
742 related
743 BIOS code. Adds support for a new "offset table" output file. The -so
744 option will create a C table containing the AML table offsets of various
745 named objects in the namespace so that BIOS code can modify them easily
746 at
747 boot time. This can simplify BIOS runtime code by eliminating expensive
748 searches for "magic values", enhancing boot times and adding greater
749 reliability. With assistance from Lee Hamel.

751 iASL: Allow additional predefined names to return zero-length packages.
752 Now, all predefined names that are defined by the ACPI specification to
753 return a "variable-length package of packages" are allowed to return a
754 zero length top-level package. This allows the BIOS to tell the host that
755 the requested feature is not supported, and supports existing BIOS/ASL
756 code and practices.

758 iASL: Changed the "result not used" warning to an error. This is the case
759 where an ASL operator is effectively a NOOP because the result of the
760 operation is not stored anywhere. For example:
761 Add (4, Local0)
762 There is no target (missing 3rd argument), nor is the function return
763 value used. This is potentially a very serious problem -- since the code
764 was probably intended to do something, but for whatever reason, the value
765 was not stored. Therefore, this issue has been upgraded from a warning to
766 an error.

768 AcpiHelp: Added allowable/required argument types to the predefined names
769 info display. This feature utilizes the recent update to the predefined
770 names table (above).

772 --
773 14 February 2013. Summary of changes for version 20130214:

775 1) ACPICA Kernel-resident Subsystem:

777 Fixed a possible regression on some hosts: Reinstated the safe return
778 macros (return_ACPI_STATUS, etc.) that ensure that the argument is
779 evaluated only once. Although these macros are not needed for the ACPICA
780 code itself, they are often used by ACPI-related host device drivers
781 where

new/usr/src/common/acpica/changes.txt 13

782 the safe feature may be necessary.

784 Fixed several issues related to the ACPI 5.0 reduced hardware support
785 (SOC): Now ensure that if the platform declares itself as hardware-
786 reduced
787 via the FADT, the following functions become NOOPs (and always return
788 AE_OK) because ACPI is always enabled by definition on these machines:
789 AcpiEnable
790 AcpiDisable
791 AcpiHwGetMode
792 AcpiHwSetMode

794 Dynamic Object Repair: Implemented additional runtime repairs for
795 predefined name return values. Both of these repairs can simplify code in
796 the related device drivers that invoke these methods:
797 1) For the _STR and _MLS names, automatically repair/convert an ASCII
798 string to a Unicode buffer.
799 2) For the _CRS, _PRS, and _DMA names, return a resource descriptor with
800 a
801 lone end tag descriptor in the following cases: A Return(0) was executed,
802 a null buffer was returned, or no object at all was returned (non-slack
803 mode only). Adds a new file, nsconvert.c
804 ACPICA BZ 998. Bob Moore, Lv Zheng.

806 Resource Manager: Added additional code to prevent possible infinite
807 loops
808 while traversing corrupted or ill-formed resource template buffers. Check
809 for zero-length resource descriptors in all code that loops through
810 resource templates (the length field is used to index through the
811 template). This change also hardens the external AcpiWalkResources and
812 AcpiWalkResourceBuffer interfaces.

814 Local Cache Manager: Enhanced the main data structure to eliminate an
815 unnecessary mechanism to access the next object in the list. Actually
816 provides a small performance enhancement for hosts that use the local
817 ACPICA cache manager. Jung-uk Kim.

819 Example Code and Data Size: These are the sizes for the OS-independent
820 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
821 debug version of the code includes the debug output trace mechanism and
822 has a much larger code and data size.

824 Previous Release:
825 Non-Debug Version: 94.5K Code, 25.4K Data, 119.9K Total
826 Debug Version: 182.3K Code, 75.0K Data, 257.3K Total
827 Current Release:
828 Non-Debug Version: 95.0K Code, 25.9K Data, 120.9K Total
829 Debug Version: 182.9K Code, 75.6K Data, 258.5K Total

832 2) iASL Compiler/Disassembler and Tools:

834 iASL/Disassembler: Fixed several issues with the definition of the ACPI
835 5.0 RASF table (RAS Feature Table). This change incorporates late changes
836 that were made to the ACPI 5.0 specification.

838 iASL/Disassembler: Added full support for the following new ACPI tables:
839 1) The MTMR table (MID Timer Table)
840 2) The VRTC table (Virtual Real Time Clock Table).
841 Includes header file, disassembler, table compiler, and template support
842 for both tables.

844 iASL: Implemented compile-time validation of package objects returned by
845 predefined names. This new feature validates static package objects
846 returned by the various predefined names defined to return packages. Both
847 object types and package lengths are validated, for both parent packages

new/usr/src/common/acpica/changes.txt 14

848 and sub-packages, if any. The code is similar in structure and behavior
849 to
850 the runtime repair mechanism within the AML interpreter and uses the
851 existing predefined name information table. Adds a new file, aslprepkg.c.
852 ACPICA BZ 938.

854 iASL: Implemented auto-detection of binary ACPI tables for disassembly.
855 This feature detects a binary file with a valid ACPI table header and
856 invokes the disassembler automatically. Eliminates the need to
857 specifically invoke the disassembler with the -d option. ACPICA BZ 862.

859 iASL/Disassembler: Added several warnings for the case where there are
860 unresolved control methods during the disassembly. This can potentially
861 cause errors when the output file is compiled, because the disassembler
862 assumes zero method arguments in these cases (it cannot determine the
863 actual number of arguments without resolution/definition of the method).

865 Debugger: Added support to display all resources with a single command.
866 Invocation of the resources command with no arguments will now display
867 all
868 resources within the current namespace.

870 AcpiHelp: Added descriptive text for each ACPICA exception code displayed
871 via the -e option.

873 --
874 17 January 2013. Summary of changes for version 20130117:

876 1) ACPICA Kernel-resident Subsystem:

878 Updated the AcpiGetSleepTypeData interface: Allow the _Sx methods to
879 return either 1 or 2 integers. Although the ACPI spec defines the _Sx
880 objects to return a package containing one integer, most BIOS code
881 returns
882 two integers and the previous code reflects that. However, we also need
883 to
884 support BIOS code that actually implements to the ACPI spec, and this
885 change reflects this.

887 Fixed two issues with the ACPI_DEBUG_PRINT macros:
888 1) Added the ACPI_DO_WHILE macro to the main DEBUG_PRINT helper macro for
889 C compilers that require this support.
890 2) Renamed the internal ACPI_DEBUG macro to ACPI_DO_DEBUG_PRINT since
891 ACPI_DEBUG is already used by many of the various hosts.

893 Updated all ACPICA copyrights and signons to 2013. Added the 2013
894 copyright to all module headers and signons, including the standard Linux
895 header. This affects virtually every file in the ACPICA core subsystem,
896 iASL compiler, all ACPICA utilities, and the test suites.

898 Example Code and Data Size: These are the sizes for the OS-independent
899 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
900 debug version of the code includes the debug output trace mechanism and
901 has a much larger code and data size.

903 Previous Release:
904 Non-Debug Version: 94.5K Code, 25.5K Data, 120.0K Total
905 Debug Version: 182.2K Code, 74.9K Data, 257.1K Total
906 Current Release:
907 Non-Debug Version: 94.5K Code, 25.4K Data, 119.9K Total
908 Debug Version: 182.3K Code, 75.0K Data, 257.3K Total

911 2) iASL Compiler/Disassembler and Tools:

913 Generic Unix OSL: Use a buffer to eliminate multiple vfprintf()s and

new/usr/src/common/acpica/changes.txt 15

914 prevent a possible fault on some hosts. Some C libraries modify the arg
915 pointer parameter to vfprintf making it difficult to call it twice in the
916 AcpiOsVprintf function. Use a local buffer to workaround this issue. This
917 does not affect the Windows OSL since the Win C library does not modify
918 the arg pointer. Chao Guan, Bob Moore.

920 iASL: Fixed a possible infinite loop when the maximum error count is
921 reached. If an output file other than the .AML file is specified (such as
922 a listing file), and the maximum number of errors is reached, do not
923 attempt to flush data to the output file(s) as the compiler is aborting.
924 This can cause an infinite loop as the max error count code essentially
925 keeps calling itself.

927 iASL/Disassembler: Added an option (-in) to ignore NOOP
928 opcodes/operators.
929 Implemented for both the compiler and the disassembler. Often, the NOOP
930 opcode is used as padding for packages that are changed dynamically by
931 the
932 BIOS. When disassembled and recompiled, these NOOPs will cause syntax
933 errors. This option causes the disassembler to ignore all NOOP opcodes
934 (0xA3), and it also causes the compiler to ignore all ASL source code
935 NOOP
936 statements as well.

938 Debugger: Enhanced the Sleep command to execute all sleep states. This
939 change allows Sleep to be invoked with no arguments and causes the
940 debugger to execute all of the sleep states, 0-5, automatically.

942 --
943 20 December 2012. Summary of changes for version 20121220:

945 1) ACPICA Kernel-resident Subsystem:

947 Implemented a new interface, AcpiWalkResourceBuffer. This interface is an
948 alternate entry point for AcpiWalkResources and improves the usability of
949 the resource manager by accepting as input a buffer containing the output
950 of either a _CRS, _PRS, or _AEI method. The key functionality is that the
951 input buffer is not deleted by this interface so that it can be used by
952 the host later. See the ACPICA reference for details.

954 Interpreter: Add a warning if a 64-bit constant appears in a 32-bit table
955 (DSDT version < 2). The constant will be truncated and this warning
956 reflects that behavior.

958 Resource Manager: Add support for the new ACPI 5.0 wake bit in the IRQ,
959 ExtendedInterrupt, and GpioInt descriptors. This change adds support to
960 both get and set the new wake bit in these descriptors, separately from
961 the existing share bit. Reported by Aaron Lu.

963 Interpreter: Fix Store() when an implicit conversion is not possible. For
964 example, in the cases such as a store of a string to an existing package
965 object, implement the store as a CopyObject(). This is a small departure
966 from the ACPI specification which states that the control method should
967 be
968 aborted in this case. However, the ASLTS suite depends on this behavior.

970 Performance improvement for the various FUNCTION_TRACE and DEBUG_PRINT
971 macros: check if debug output is currently enabled as soon as possible to
972 minimize performance impact if debug is in fact not enabled.

974 Source code restructuring: Cleanup to improve modularity. The following
975 new files have been added: dbconvert.c, evhandler.c, nsprepkg.c,
976 psopinfo.c, psobject.c, rsdumpinfo.c, utstring.c, and utownerid.c.
977 Associated makefiles and project files have been updated.

979 Changed an exception code for LoadTable operator. For the case where one

new/usr/src/common/acpica/changes.txt 16

980 of the input strings is too long, change the returned exception code from
981 AE_BAD_PARAMETER to AE_AML_STRING_LIMIT.

983 Fixed a possible memory leak in dispatcher error path. On error, delete
984 the mutex object created during method mutex creation. Reported by
985 tim.gardner@canonical.com.

987 Example Code and Data Size: These are the sizes for the OS-independent
988 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
989 debug version of the code includes the debug output trace mechanism and
990 has a much larger code and data size.

992 Previous Release:
993 Non-Debug Version: 94.3K Code, 25.3K Data, 119.6K Total
994 Debug Version: 175.5K Code, 74.5K Data, 250.0K Total
995 Current Release:
996 Non-Debug Version: 94.5K Code, 25.5K Data, 120.0K Total
997 Debug Version: 182.2K Code, 74.9K Data, 257.1K Total

1000 2) iASL Compiler/Disassembler and Tools:

1002 iASL: Disallow a method call as argument to the ObjectType ASL operator.
1003 This change tracks an errata to the ACPI 5.0 document. The AML grammar
1004 will not allow the interpreter to differentiate between a method and a
1005 method invocation when these are used as an argument to the ObjectType
1006 operator. The ACPI specification change is to disallow a method
1007 invocation
1008 (UserTerm) for the ObjectType operator.

1010 Finish support for the TPM2 and CSRT tables in the headers, table
1011 compiler, and disassembler.

1013 Unix user-space OSL: Fix a problem with WaitSemaphore where the timeout
1014 always expires immediately if the semaphore is not available. The
1015 original
1016 code was using a relative-time timeout, but sem_timedwait requires the
1017 use
1018 of an absolute time.

1020 iASL: Added a remark if the Timer() operator is used within a 32-bit
1021 table. This operator returns a 64-bit time value that will be truncated
1022 within a 32-bit table.

1024 iASL Source code restructuring: Cleanup to improve modularity. The
1025 following new files have been added: aslhex.c, aslxref.c, aslnamesp.c,
1026 aslmethod.c, and aslfileio.c. Associated makefiles and project files have
1027 been updated.

1030 --
1031 14 November 2012. Summary of changes for version 20121114:

1033 1) ACPICA Kernel-resident Subsystem:

1035 Implemented a performance enhancement for ACPI/AML Package objects. This
1036 change greatly increases the performance of Package objects within the
1037 interpreter. It changes the processing of reference counts for packages
1038 by
1039 optimizing for the most common case where the package sub-objects are
1040 either Integers, Strings, or Buffers. Increases the overall performance
1041 of
1042 the ASLTS test suite by 1.5X (Increases the Slack Mode performance by
1043 2X.)
1044 Chao Guan. ACPICA BZ 943.

new/usr/src/common/acpica/changes.txt 17

1046 Implemented and deployed common macros to extract flag bits from resource
1047 descriptors. Improves readability and maintainability of the code. Fixes
1048 a
1049 problem with the UART serial bus descriptor for the number of data bits
1050 flags (was incorrectly 2 bits, should be 3).

1052 Enhanced the ACPI_GETx and ACPI_SETx macros. Improved the implementation
1053 of the macros and changed the SETx macros to the style of (destination,
1054 source). Also added ACPI_CASTx companion macros. Lv Zheng.

1056 Example Code and Data Size: These are the sizes for the OS-independent
1057 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
1058 debug version of the code includes the debug output trace mechanism and
1059 has a much larger code and data size.

1061 Previous Release:
1062 Non-Debug Version: 93.9K Code, 25.2K Data, 119.1K Total
1063 Debug Version: 175.5K Code, 74.5K Data, 250.0K Total
1064 Current Release:
1065 Non-Debug Version: 94.3K Code, 25.3K Data, 119.6K Total
1066 Debug Version: 175.5K Code, 74.5K Data, 250.0K Total

1069 2) iASL Compiler/Disassembler and Tools:

1071 Disassembler: Added the new ACPI 5.0 interrupt sharing flags. This change
1072 adds the ShareAndWake and ExclusiveAndWake flags which were added to the
1073 Irq, Interrupt, and Gpio resource descriptors in ACPI 5.0. ACPICA BZ 986.

1075 Disassembler: Fixed a problem with external declaration generation. Fixes
1076 a problem where an incorrect pathname could be generated for an external
1077 declaration if the original reference to the object includes leading
1078 carats (^). ACPICA BZ 984.

1080 Debugger: Completed a major update for the Disassemble<method> command.
1081 This command was out-of-date and did not properly disassemble control
1082 methods that had any reasonable complexity. This fix brings the command
1083 up
1084 to the same level as the rest of the disassembler. Adds one new file,
1085 dmdeferred.c, which is existing code that is now common with the main
1086 disassembler and the debugger disassemble command. ACPICA MZ 978.

1088 iASL: Moved the parser entry prototype to avoid a duplicate declaration.
1089 Newer versions of Bison emit this prototype, so moved the prototype out
1090 of
1091 the iASL header to where it is actually used in order to avoid a
1092 duplicate
1093 declaration.

1095 iASL/Tools: Standardized use of the stream I/O functions:
1096 1) Ensure check for I/O error after every fopen/fread/fwrite
1097 2) Ensure proper order of size/count arguments for fread/fwrite
1098 3) Use test of (Actual != Requested) after all fwrite, and most fread
1099 4) Standardize I/O error messages
1100 Improves reliability and maintainability of the code. Bob Moore, Lv
1101 Zheng.
1102 ACPICA BZ 981.

1104 Disassembler: Prevent duplicate External() statements. During generation
1105 of external statements, detect similar pathnames that are actually
1106 duplicates such as these:
1107 External (\ABCD)
1108 External (ABCD)
1109 Remove all leading ’\’ characters from pathnames during the external
1110 statement generation so that duplicates will be detected and tossed.
1111 ACPICA BZ 985.

new/usr/src/common/acpica/changes.txt 18

1113 Tools: Replace low-level I/O with stream I/O functions. Replace
1114 open/read/write/close with the stream I/O equivalents
1115 fopen/fread/fwrite/fclose for portability and performance. Lv Zheng, Bob
1116 Moore.

1118 AcpiBin: Fix for the dump-to-hex function. Now correctly output the table
1119 name header so that AcpiXtract recognizes the output file/table.

1121 iASL: Remove obsolete -2 option flag. Originally intended to force the
1122 compiler/disassembler into an ACPI 2.0 mode, this was never implemented
1123 and the entire concept is now obsolete.

1125 --
1126 18 October 2012. Summary of changes for version 20121018:

1129 1) ACPICA Kernel-resident Subsystem:

1131 Updated support for the ACPI 5.0 MPST table. Fixes some problems
1132 introduced by late changes to the table as it was added to the ACPI 5.0
1133 specification. Includes header, disassembler, and data table compiler
1134 support as well as a new version of the MPST template.

1136 AcpiGetObjectInfo: Enhanced the device object support to include the ACPI
1137 5.0 _SUB method. Now calls _SUB in addition to the other PNP-related ID
1138 methods: _HID, _CID, and _UID.

1140 Changed ACPI_DEVICE_ID to ACPI_PNP_DEVICE_ID. Also changed
1141 ACPI_DEVICE_ID_LIST to ACPI_PNP_DEVICE_ID_LIST. These changes prevent
1142 name collisions on hosts that reserve the *_DEVICE_ID (or *DeviceId)
1143 names for their various drivers. Affects the AcpiGetObjectInfo external
1144 interface, and other internal interfaces as well.

1146 Added and deployed a new macro for ACPI_NAME management: ACPI_MOVE_NAME.
1147 This macro resolves to a simple 32-bit move of the 4-character ACPI_NAME
1148 on machines that support non-aligned transfers. Optimizes for this case
1149 rather than using a strncpy. With assistance from Zheng Lv.

1151 Resource Manager: Small fix for buffer size calculation. Fixed a one byte
1152 error in the output buffer calculation. Feng Tang. ACPICA BZ 849.

1154 Added a new debug print message for AML mutex objects that are force-
1155 released. At control method termination, any currently acquired mutex
1156 objects are force-released. Adds a new debug-only message for each one
1157 that is released.

1159 Audited/updated all ACPICA return macros and the function debug depth
1160 counter: 1) Ensure that all functions that use the various TRACE macros
1161 also use the appropriate ACPICA return macros. 2) Ensure that all normal
1162 return statements surround the return expression (value) with parens to
1163 ensure consistency across the ACPICA code base. Guan Chao, Tang Feng,
1164 Zheng Lv, Bob Moore. ACPICA Bugzilla 972.

1166 Global source code changes/maintenance: All extra lines at the start and
1167 end of each source file have been removed for consistency. Also, within
1168 comments, all new sentences start with a single space instead of a double
1169 space, again for consistency across the code base.

1171 Example Code and Data Size: These are the sizes for the OS-independent
1172 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
1173 debug version of the code includes the debug output trace mechanism and
1174 has a much larger code and data size.

1176 Previous Release:
1177 Non-Debug Version: 93.7K Code, 25.3K Data, 119.0K Total

new/usr/src/common/acpica/changes.txt 19

1178 Debug Version: 175.0K Code, 74.4K Data, 249.4K Total
1179 Current Release:
1180 Non-Debug Version: 93.9K Code, 25.2K Data, 119.1K Total
1181 Debug Version: 175.5K Code, 74.5K Data, 250.0K Total

1184 2) iASL Compiler/Disassembler and Tools:

1186 AcpiExec: Improved the algorithm used for memory leak/corruption
1187 detection. Added some intelligence to the code that maintains the global
1188 list of allocated memory. The list is now ordered by allocated memory
1189 address, significantly improving performance. When running AcpiExec on
1190 the ASLTS test suite, speed improvements of 3X to 5X are seen, depending
1191 on the platform and/or the environment. Note, this performance
1192 enhancement affects the AcpiExec utility only, not the kernel-resident
1193 ACPICA code.

1195 Enhanced error reporting for invalid AML opcodes and bad ACPI_NAMEs. For
1196 the disassembler, dump the 48 bytes surrounding the invalid opcode. Fix
1197 incorrect table offset reported for invalid opcodes. Report the original
1198 32-bit value for bad ACPI_NAMEs (as well as the repaired name.)

1200 Disassembler: Enhanced the -vt option to emit the binary table data in
1201 hex format to assist with debugging.

1203 Fixed a potential filename buffer overflow in osunixdir.c. Increased the
1204 size of file structure. Colin Ian King.

1206 --
1207 13 September 2012. Summary of changes for version 20120913:

1210 1) ACPICA Kernel-resident Subsystem:

1212 ACPI 5.0: Added two new notify types for the Hardware Error Notification
1213 Structure within the Hardware Error Source Table (HEST) table -- CMCI(5)
1214 and
1215 MCE(6).
1216
1217 Table Manager: Merged/removed duplicate code in the root table resize
1218 functions. One function is external, the other is internal. Lv Zheng,
1219 ACPICA
1220 BZ 846.

1222 Makefiles: Completely removed the obsolete "Linux" makefiles under
1223 acpica/generate/linux. These makefiles are obsolete and have been
1224 replaced
1225 by
1226 the generic unix makefiles under acpica/generate/unix.

1228 Makefiles: Ensure that binary files always copied properly. Minor rule
1229 change
1230 to ensure that the final binary output files are always copied up to the
1231 appropriate binary directory (bin32 or bin64.)

1233 Example Code and Data Size: These are the sizes for the OS-independent
1234 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
1235 debug
1236 version of the code includes the debug output trace mechanism and has a
1237 much
1238 larger code and data size.

1240 Previous Release:
1241 Non-Debug Version: 93.8K Code, 25.3K Data, 119.1K Total
1242 Debug Version: 175.7K Code, 74.8K Data, 250.5K Total
1243 Current Release:

new/usr/src/common/acpica/changes.txt 20

1244 Non-Debug Version: 93.7K Code, 25.3K Data, 119.0K Total
1245 Debug Version: 175.0K Code, 74.4K Data, 249.4K Total

1248 2) iASL Compiler/Disassembler and Tools:

1250 Disassembler: Fixed a possible fault during the disassembly of resource
1251 descriptors when a second parse is required because of the invocation of
1252 external control methods within the table. With assistance from
1253 adq@lidskialf.net. ACPICA BZ 976.

1255 iASL: Fixed a namepath optimization problem. An error can occur if the
1256 parse
1257 node that contains the namepath to be optimized does not have a parent
1258 node
1259 that is a named object. This change fixes the problem.

1261 iASL: Fixed a regression where the AML file is not deleted on errors. The
1262 AML
1263 output file should be deleted if there are any errors during the
1264 compiler.
1265 The
1266 only exception is if the -f (force output) option is used. ACPICA BZ 974.

1268 iASL: Added a feature to automatically increase internal line buffer
1269 sizes.
1270 Via realloc(), automatically increase the internal line buffer sizes as
1271 necessary to support very long source code lines. The current version of
1272 the
1273 preprocessor requires a buffer long enough to contain full source code
1274 lines.
1275 This change increases the line buffer(s) if the input lines go beyond the
1276 current buffer size. This eliminates errors that occurred when a source
1277 code
1278 line was longer than the buffer.

1280 iASL: Fixed a problem with constant folding in method declarations. The
1281 SyncLevel term is a ByteConstExpr, and incorrect code would be generated
1282 if a
1283 Type3 opcode was used.

1285 Debugger: Improved command help support. For incorrect argument count,
1286 display
1287 full help for the command. For help command itself, allow an argument to
1288 specify a command.

1290 Test Suites: Several bug fixes for the ASLTS suite reduces the number of
1291 errors during execution of the suite. Guan Chao.

1293 --
1294 16 August 2012. Summary of changes for version 20120816:

1297 1) ACPICA Kernel-resident Subsystem:

1299 Removed all use of the deprecated _GTS and _BFS predefined methods. The
1300 _GTS
1301 (Going To Sleep) and _BFS (Back From Sleep) methods are essentially
1302 deprecated and will probably be removed from the ACPI specification.
1303 Windows
1304 does not invoke them, and reportedly never will. The final nail in the
1305 coffin
1306 is that the ACPI specification states that these methods must be run with
1307 interrupts off, which is not going to happen in a kernel interpreter.
1308 Note:
1309 Linux has removed all use of the methods also. It was discovered that

new/usr/src/common/acpica/changes.txt 21

1310 invoking these functions caused failures on some machines, probably
1311 because
1312 they were never tested since Windows does not call them. Affects two
1313 external
1314 interfaces, AcpiEnterSleepState and AcpiLeaveSleepStatePrep. Tang Feng.
1315 ACPICA BZ 969.

1317 Implemented support for complex bit-packed buffers returned from the _PLD
1318 (Physical Location of Device) predefined method. Adds a new external
1319 interface, AcpiDecodePldBuffer that parses the buffer into a more usable
1320 C
1321 structure. Note: C Bitfields cannot be used for this type of predefined
1322 structure since the memory layout of individual bitfields is not defined
1323 by
1324 the C language. In addition, there are endian concerns where a compiler
1325 will
1326 change the bitfield ordering based on the machine type. The new ACPICA
1327 interface eliminates these issues, and should be called after _PLD is
1328 executed. ACPICA BZ 954.

1330 Implemented a change to allow a scope change to root (via "Scope (\)")
1331 during
1332 execution of module-level ASL code (code that is executed at table load
1333 time.) Lin Ming.

1335 Added the Windows8/Server2012 string for the _OSI method. This change
1336 adds
1337 a
1338 new _OSI string, "Windows 2012" for both Windows 8 and Windows Server
1339 2012.

1341 Added header support for the new ACPI tables DBG2 (Debug Port Table Type
1342 2)
1343 and CSRT (Core System Resource Table).

1345 Added struct header support for the _FDE, _GRT, _GTM, and _SRT predefined
1346 names. This simplifies access to the buffers returned by these predefined
1347 names. Adds a new file, include/acbuffer.h. ACPICA BZ 956.

1349 GPE support: Removed an extraneous parameter from the various low-level
1350 internal GPE functions. Tang Feng.

1352 Removed the linux makefiles from the unix packages. The generate/linux
1353 makefiles are obsolete and have been removed from the unix tarball
1354 release
1355 packages. The replacement makefiles are under generate/unix, and there is
1356 a
1357 top-level makefile under the main acpica directory. ACPICA BZ 967, 912.

1359 Updates for Unix makefiles:
1360 1) Add -D_FORTIFY_SOURCE=2 for gcc generation. Arjan van de Ven.
1361 2) Update linker flags (move to end of command line) for AcpiExec
1362 utility.
1363 Guan Chao.

1365 Split ACPICA initialization functions to new file, utxfinit.c. Split from
1366 utxface.c to improve modularity and reduce file size.

1368 Example Code and Data Size: These are the sizes for the OS-independent
1369 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
1370 debug version of the code includes the debug output trace mechanism and
1371 has a
1372 much larger code and data size.

1374 Previous Release:
1375 Non-Debug Version: 93.5K Code, 25.3K Data, 118.8K Total

new/usr/src/common/acpica/changes.txt 22

1376 Debug Version: 173.7K Code, 74.0K Data, 247.7K Total
1377 Current Release:
1378 Non-Debug Version: 93.8K Code, 25.3K Data, 119.1K Total
1379 Debug Version: 175.7K Code, 74.8K Data, 250.5K Total

1382 2) iASL Compiler/Disassembler and Tools:

1384 iASL: Fixed a problem with constant folding for fixed-length constant
1385 expressions. The constant-folding code was not being invoked for constant
1386 expressions that allow the use of type 3/4/5 opcodes to generate
1387 constants
1388 for expressions such as ByteConstExpr, WordConstExpr, etc. This could
1389 result
1390 in the generation of invalid AML bytecode. ACPICA BZ 970.

1392 iASL: Fixed a generation issue on newer versions of Bison. Newer versions
1393 apparently automatically emit some of the necessary externals. This
1394 change
1395 handles these versions in order to eliminate generation warnings.

1397 Disassembler: Added support to decode the DBG2 and CSRT ACPI tables.

1399 Disassembler: Add support to decode _PLD buffers. The decoded buffer
1400 appears
1401 within comments in the output file.

1403 Debugger: Fixed a regression with the "Threads" command where
1404 AE_BAD_PARAMETER was always returned.

1406 --
1407 11 July 2012. Summary of changes for version 20120711:

1409 1) ACPICA Kernel-resident Subsystem:

1411 Fixed a possible fault in the return package object repair code. Fixes a
1412 problem that can occur when a lone package object is wrapped with an
1413 outer
1414 package object in order to force conformance to the ACPI specification.
1415 Can
1416 affect these predefined names: _ALR, _MLS, _PSS, _TRT, _TSS, _PRT, _HPX,
1417 _DLM,
1418 _CSD, _PSD, _TSD.

1420 Removed code to disable/enable bus master arbitration (ARB_DIS bit in the
1421 PM2_CNT register) in the ACPICA sleep/wake interfaces. Management of the
1422 ARB_DIS bit must be implemented in the host-dependent C3 processor power
1423 state
1424 support. Note, ARB_DIS is obsolete and only applies to older chipsets,
1425 both
1426 Intel and other vendors. (for Intel: ICH4-M and earlier)

1428 This change removes the code to disable/enable bus master arbitration
1429 during
1430 suspend/resume. Use of the ARB_DIS bit in the optional PM2_CNT register
1431 causes
1432 resume problems on some machines. The change has been in use for over
1433 seven
1434 years within Linux.

1436 Implemented two new external interfaces to support host-directed dynamic
1437 ACPI
1438 table load and unload. They are intended to simplify the host
1439 implementation
1440 of hot-plug support:
1441 AcpiLoadTable: Load an SSDT from a buffer into the namespace.

new/usr/src/common/acpica/changes.txt 23

1442 AcpiUnloadParentTable: Unload an SSDT via a named object owned by the
1443 table.
1444 See the ACPICA reference for additional details. Adds one new file,
1445 components/tables/tbxfload.c

1447 Implemented and deployed two new interfaces for errors and warnings that
1448 are
1449 known to be caused by BIOS/firmware issues:
1450 AcpiBiosError: Prints "ACPI Firmware Error" message.
1451 AcpiBiosWarning: Prints "ACPI Firmware Warning" message.
1452 Deployed these new interfaces in the ACPICA Table Manager code for ACPI
1453 table
1454 and FADT errors. Additional deployment to be completed as appropriate in
1455 the
1456 future. The associated conditional macros are ACPI_BIOS_ERROR and
1457 ACPI_BIOS_WARNING. See the ACPICA reference for additional details.
1458 ACPICA
1459 BZ
1460 843.

1462 Implicit notify support: ensure that no memory allocation occurs within a
1463 critical region. This fix moves a memory allocation outside of the time
1464 that a
1465 spinlock is held. Fixes issues on systems that do not allow this
1466 behavior.
1467 Jung-uk Kim.

1469 Split exception code utilities and tables into a new file,
1470 utilities/utexcep.c

1472 Example Code and Data Size: These are the sizes for the OS-independent
1473 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
1474 debug
1475 version of the code includes the debug output trace mechanism and has a
1476 much
1477 larger code and data size.

1479 Previous Release:
1480 Non-Debug Version: 93.1K Code, 25.1K Data, 118.2K Total
1481 Debug Version: 172.9K Code, 73.6K Data, 246.5K Total
1482 Current Release:
1483 Non-Debug Version: 93.5K Code, 25.3K Data, 118.8K Total
1484 Debug Version: 173.7K Code, 74.0K Data, 247.7K Total

1487 2) iASL Compiler/Disassembler and Tools:

1489 iASL: Fixed a parser problem for hosts where EOF is defined as -1 instead
1490 of
1491 0. Jung-uk Kim.

1493 Debugger: Enhanced the "tables" command to emit additional information
1494 about
1495 the current set of ACPI tables, including the owner ID and flags decode.

1497 Debugger: Reimplemented the "unload" command to use the new
1498 AcpiUnloadParentTable external interface. This command was disable
1499 previously
1500 due to need for an unload interface.

1502 AcpiHelp: Added a new option to decode ACPICA exception codes. The -e
1503 option
1504 will decode 16-bit hex status codes (ACPI_STATUS) to name strings.

1506 --
1507 20 June 2012. Summary of changes for version 20120620:

new/usr/src/common/acpica/changes.txt 24

1510 1) ACPICA Kernel-resident Subsystem:

1512 Implemented support to expand the "implicit notify" feature to allow
1513 multiple
1514 devices to be notified by a single GPE. This feature automatically
1515 generates a
1516 runtime device notification in the absence of a BIOS-provided GPE control
1517 method (_Lxx/_Exx) or a host-installed handler for the GPE. Implicit
1518 notify is
1519 provided by ACPICA for Windows compatibility, and is a workaround for
1520 BIOS
1521 AML
1522 code errors. See the description of the AcpiSetupGpeForWake interface in
1523 the
1524 APCICA reference. Bob Moore, Rafael Wysocki. ACPICA BZ 918.

1526 Changed some comments and internal function names to simplify and ensure
1527 correctness of the Linux code translation. No functional changes.

1529 Example Code and Data Size: These are the sizes for the OS-independent
1530 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
1531 debug
1532 version of the code includes the debug output trace mechanism and has a
1533 much
1534 larger code and data size.

1536 Previous Release:
1537 Non-Debug Version: 93.0K Code, 25.1K Data, 118.1K Total
1538 Debug Version: 172.7K Code, 73.6K Data, 246.3K Total
1539 Current Release:
1540 Non-Debug Version: 93.1K Code, 25.1K Data, 118.2K Total
1541 Debug Version: 172.9K Code, 73.6K Data, 246.5K Total

1544 2) iASL Compiler/Disassembler and Tools:

1546 Disassembler: Added support to emit short, commented descriptions for the
1547 ACPI
1548 predefined names in order to improve the readability of the disassembled
1549 output. ACPICA BZ 959. Changes include:
1550 1) Emit descriptions for all standard predefined names (_INI, _STA,
1551 _PRW,
1552 etc.)
1553 2) Emit generic descriptions for the special names (_Exx, _Qxx, etc.)
1554 3) Emit descriptions for the resource descriptor names (_MIN, _LEN,
1555 etc.)

1557 AcpiSrc: Fixed several long-standing Linux code translation issues.
1558 Argument
1559 descriptions in function headers are now translated properly to lower
1560 case
1561 and
1562 underscores. ACPICA BZ 961. Also fixes translation problems such as
1563 these:
1564 (old -> new)
1565 i_aSL -> iASL
1566 00-7_f -> 00-7F
1567 16_k -> 16K
1568 local_fADT -> local_FADT
1569 execute_oSI -> execute_OSI

1571 iASL: Fixed a problem where null bytes were inadvertently emitted into
1572 some
1573 listing files.

new/usr/src/common/acpica/changes.txt 25

1575 iASL: Added the existing debug options to the standard help screen. There
1576 are
1577 no longer two different help screens. ACPICA BZ 957.

1579 AcpiHelp: Fixed some typos in the various predefined name descriptions.
1580 Also
1581 expand some of the descriptions where appropriate.

1583 iASL: Fixed the -ot option (display compile times/statistics). Was not
1584 working
1585 properly for standard output; only worked for the debug file case.

1587 --
1588 18 May 2012. Summary of changes for version 20120518:

1591 1) ACPICA Core Subsystem:

1593 Added a new OSL interface, AcpiOsWaitEventsComplete. This interface is
1594 defined
1595 to block until asynchronous events such as notifies and GPEs have
1596 completed.
1597 Within ACPICA, it is only called before a notify or GPE handler is
1598 removed/uninstalled. It also may be useful for the host OS within related
1599 drivers such as the Embedded Controller driver. See the ACPICA reference
1600 for
1601 additional information. ACPICA BZ 868.

1603 ACPI Tables: Added a new error message for a possible overflow failure
1604 during
1605 the conversion of FADT 32-bit legacy register addresses to internal
1606 common
1607 64-
1608 bit GAS structure representation. The GAS has a one-byte "bit length"
1609 field,
1610 thus limiting the register length to 255 bits. ACPICA BZ 953.

1612 Example Code and Data Size: These are the sizes for the OS-independent
1613 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
1614 debug
1615 version of the code includes the debug output trace mechanism and has a
1616 much
1617 larger code and data size.

1619 Previous Release:
1620 Non-Debug Version: 92.9K Code, 25.0K Data, 117.9K Total
1621 Debug Version: 172.6K Code, 73.4K Data, 246.0K Total
1622 Current Release:
1623 Non-Debug Version: 93.0K Code, 25.1K Data, 118.1K Total
1624 Debug Version: 172.7K Code, 73.6K Data, 246.3K Total

1627 2) iASL Compiler/Disassembler and Tools:

1629 iASL: Added the ACPI 5.0 "PCC" keyword for use in the Register() ASL
1630 macro.
1631 This keyword was added late in the ACPI 5.0 release cycle and was not
1632 implemented until now.

1634 Disassembler: Added support for Operation Region externals. Adds missing
1635 support for operation regions that are defined in another table, and
1636 referenced locally via a Field or BankField ASL operator. Now generates
1637 the
1638 correct External statement.

new/usr/src/common/acpica/changes.txt 26

1640 Disassembler: Several additional fixes for the External() statement
1641 generation
1642 related to some ASL operators. Also, order the External() statements
1643 alphabetically in the disassembler output. Fixes the External()
1644 generation
1645 for
1646 the Create* field, Alias, and Scope operators:
1647 1) Create* buffer field operators - fix type mismatch warning on
1648 disassembly
1649 2) Alias - implement missing External support
1650 3) Scope - fix to make sure all necessary externals are emitted.

1652 iASL: Improved pathname support. For include files, merge the prefix
1653 pathname
1654 with the file pathname and eliminate unnecessary components. Convert
1655 backslashes in all pathnames to forward slashes, for readability. Include
1656 file
1657 pathname changes affect both #include and Include() type operators.

1659 iASL/DTC/Preprocessor: Gracefully handle early EOF. Handle an EOF at the
1660 end
1661 of a valid line by inserting a newline and then returning the EOF during
1662 the
1663 next call to GetNextLine. Prevents the line from being ignored due to EOF
1664 condition.

1666 iASL: Implemented some changes to enhance the IDE support (-vi option.)
1667 Error
1668 and Warning messages are now correctly recognized for both the source
1669 code
1670 browser and the global error and warning counts.

1672 --
1673 20 April 2012. Summary of changes for version 20120420:

1676 1) ACPICA Core Subsystem:

1678 Implemented support for multiple notify handlers. This change adds
1679 support
1680 to
1681 allow multiple system and device notify handlers on Device, Thermal Zone,
1682 and
1683 Processor objects. This can simplify the host OS notification
1684 implementation.
1685 Also re-worked and restructured the entire notify support code to
1686 simplify
1687 handler installation, handler removal, notify event queuing, and notify
1688 dispatch to handler(s). Note: there can still only be two global notify
1689 handlers - one for system notifies and one for device notifies. There are
1690 no
1691 changes to the existing handler install/remove interfaces. Lin Ming, Bob
1692 Moore, Rafael Wysocki.

1694 Fixed a regression in the package repair code where the object reference
1695 count was calculated incorrectly. Regression was introduced in the commit
1696 "Support to add Package wrappers".

1698 Fixed a couple possible memory leaks in the AML parser, in the error
1699 recovery
1700 path. Jesper Juhl, Lin Ming.

1702 Example Code and Data Size: These are the sizes for the OS-independent
1703 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
1704 debug version of the code includes the debug output trace mechanism and
1705 has a

new/usr/src/common/acpica/changes.txt 27

1706 much larger code and data size.

1708 Previous Release:
1709 Non-Debug Version: 92.9K Code, 25.0K Data, 117.9K Total
1710 Debug Version: 172.5K Code, 73.2K Data, 245.7K Total
1711 Current Release:
1712 Non-Debug Version: 92.9K Code, 25.0K Data, 117.9K Total
1713 Debug Version: 172.6K Code, 73.4K Data, 246.0K Total

1716 2) iASL Compiler/Disassembler and Tools:

1718 iASL: Fixed a problem with the resource descriptor support where the
1719 length
1720 of the StartDependentFn and StartDependentFnNoPrio descriptors were not
1721 included in cumulative descriptor offset, resulting in incorrect values
1722 for
1723 resource tags within resource descriptors appearing after a
1724 StartDependent*
1725 descriptor. Reported by Petr Vandrovec. ACPICA BZ 949.

1727 iASL and Preprocessor: Implemented full support for the #line directive
1728 to
1729 correctly track original source file line numbers through the .i
1730 preprocessor
1731 output file - for error and warning messages.

1733 iASL: Expand the allowable byte constants for address space IDs.
1734 Previously,
1735 the allowable range was 0x80-0xFF (user-defined spaces), now the range is
1736 0x0A-0xFF to allow for custom and new IDs without changing the compiler.

1738 iASL: Add option to treat all warnings as errors (-we). ACPICA BZ 948.

1740 iASL: Add option to completely disable the preprocessor (-Pn).

1742 iASL: Now emit all error/warning messages to standard error (stderr) by
1743 default (instead of the previous stdout).

1745 ASL Test Suite (ASLTS): Reduce iASL warnings due to use of Switch().
1746 Update
1747 for resource descriptor offset fix above. Update/cleanup error output
1748 routines. Enable and send iASL errors/warnings to an error logfile
1749 (error.txt). Send all other iASL output to a logfile (compiler.txt).
1750 Fixed
1751 several extraneous "unrecognized operator" messages.

1753 --
1754 20 March 2012. Summary of changes for version 20120320:

1757 1) ACPICA Core Subsystem:

1759 Enhanced the sleep/wake interfaces to optionally execute the _GTS method
1760 (Going To Sleep) and the _BFS method (Back From Sleep). Windows
1761 apparently
1762 does not execute these methods, and therefore these methods are often
1763 untested. It has been seen on some systems where the execution of these
1764 methods causes errors and also prevents the machine from entering S5. It
1765 is
1766 therefore suggested that host operating systems do not execute these
1767 methods
1768 by default. In the future, perhaps these methods can be optionally
1769 executed
1770 based on the age of the system and/or what is the newest version of
1771 Windows

new/usr/src/common/acpica/changes.txt 28

1772 that the BIOS asks for via _OSI. Changed interfaces: AcpiEnterSleepState
1773 and
1774 AcpileaveSleepStatePrep. See the ACPICA reference and Linux BZ 13041. Lin
1775 Ming.

1777 Fixed a problem where the length of the local/common FADT was set too
1778 early.
1779 The local FADT table length cannot be set to the common length until the
1780 original length has been examined. There is code that checks the table
1781 length
1782 and sets various fields appropriately. This can affect older machines
1783 with
1784 early FADT versions. For example, this can cause inadvertent writes to
1785 the
1786 CST_CNT register. Julian Anastasov.

1788 Fixed a mapping issue related to a physical table override. Use the
1789 deferred
1790 mapping mechanism for tables loaded via the physical override OSL
1791 interface.
1792 This allows for early mapping before the virtual memory manager is
1793 available.
1794 Thomas Renninger, Bob Moore.

1796 Enhanced the automatic return-object repair code: Repair a common problem
1797 with
1798 predefined methods that are defined to return a variable-length Package
1799 of
1800 sub-objects. If there is only one sub-object, some BIOS ASL code
1801 mistakenly
1802 simply returns the single object instead of a Package with one sub-
1803 object.
1804 This new support will repair this error by wrapping a Package object
1805 around
1806 the original object, creating the correct and expected Package with one
1807 sub-
1808 object. Names that can be repaired in this manner include: _ALR, _CSD,
1809 _HPX,
1810 _MLS, _PLD, _PRT, _PSS, _TRT, _TSS, _BCL, _DOD, _FIX, and _Sx. ACPICA BZ
1811 939.

1813 Changed the exception code returned for invalid ACPI paths passed as
1814 parameters to external interfaces such as AcpiEvaluateObject. Was
1815 AE_BAD_PARAMETER, now is the more sensible AE_BAD_PATHNAME.

1817 Example Code and Data Size: These are the sizes for the OS-independent
1818 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
1819 debug
1820 version of the code includes the debug output trace mechanism and has a
1821 much
1822 larger code and data size.

1824 Previous Release:
1825 Non-Debug Version: 93.0K Code, 25.0K Data, 118.0K Total
1826 Debug Version: 172.5K Code, 73.2K Data, 245.7K Total
1827 Current Release:
1828 Non-Debug Version: 92.9K Code, 25.0K Data, 117.9K Total
1829 Debug Version: 172.5K Code, 73.2K Data, 245.7K Total

1832 2) iASL Compiler/Disassembler and Tools:

1834 iASL: Added the infrastructure and initial implementation of a integrated
1835 C-
1836 like preprocessor. This will simplify BIOS development process by
1837 eliminating

new/usr/src/common/acpica/changes.txt 29

1838 the need for a separate preprocessing step during builds. On Windows, it
1839 also
1840 eliminates the need to install a separate C compiler. ACPICA BZ 761. Some
1841 features including full #define() macro support are still under
1842 development.
1843 These preprocessor directives are supported:
1844 #define
1845 #elif
1846 #else
1847 #endif
1848 #error
1849 #if
1850 #ifdef
1851 #ifndef
1852 #include
1853 #pragma message
1854 #undef
1855 #warning
1856 In addition, these new command line options are supported:
1857 -D <symbol> Define symbol for preprocessor use
1858 -li Create preprocessed output file (*.i)
1859 -P Preprocess only and create preprocessor output file (*.i)

1861 Table Compiler: Fixed a problem where the equals operator within an
1862 expression
1863 did not work properly.

1865 Updated iASL to use the current versions of Bison/Flex. Updated the
1866 Windows
1867 project file to invoke these tools from the standard location. ACPICA BZ
1868 904.
1869 Versions supported:
1870 Flex for Windows: V2.5.4
1871 Bison for Windows: V2.4.1

1873 --
1874 15 February 2012. Summary of changes for version 20120215:

1877 1) ACPICA Core Subsystem:

1879 There have been some major changes to the sleep/wake support code, as
1880 described below (a - e).

1882 a) The AcpiLeaveSleepState has been split into two interfaces, similar to
1883 AcpiEnterSleepStatePrep and AcpiEnterSleepState. The new interface is
1884 AcpiLeaveSleepStatePrep. This allows the host to perform actions between
1885 the
1886 time the _BFS method is called and the _WAK method is called. NOTE: all
1887 hosts
1888 must update their wake/resume code or else sleep/wake will not work
1889 properly.
1890 Rafael Wysocki.

1892 b) In AcpiLeaveSleepState, now enable all runtime GPEs before calling the
1893 _WAK
1894 method. Some machines require that the GPEs are enabled before the _WAK
1895 method
1896 is executed. Thomas Renninger.

1898 c) In AcpiLeaveSleepState, now always clear the WAK_STS (wake status)
1899 bit.
1900 Some BIOS code assumes that WAK_STS will be cleared on resume and use it
1901 to
1902 determine whether the system is rebooting or resuming. Matthew Garrett.

new/usr/src/common/acpica/changes.txt 30

1904 d) Move the invocations of _GTS (Going To Sleep) and _BFS (Back From
1905 Sleep) to
1906 match the ACPI specification requirement. Rafael Wysocki.

1908 e) Implemented full support for the ACPI 5.0 SleepStatus and SleepControl
1909 registers within the V5 FADT. This support adds two new files:
1910 hardware/hwesleep.c implements the support for the new registers. Moved
1911 all
1912 sleep/wake external interfaces to hardware/hwxfsleep.c.

1915 Added a new OSL interface for ACPI table overrides,
1916 AcpiOsPhysicalTableOverride. This interface allows the host to override a
1917 table via a physical address, instead of the logical address required by
1918 AcpiOsTableOverride. This simplifies the host implementation. Initial
1919 implementation by Thomas Renninger. The ACPICA implementation creates a
1920 single
1921 shared function for table overrides that attempts both a logical and a
1922 physical override.

1924 Expanded the OSL memory read/write interfaces to 64-bit data
1925 (AcpiOsReadMemory, AcpiOsWriteMemory.) This enables full 64-bit memory
1926 transfer support for GAS register structures passed to AcpiRead and
1927 AcpiWrite.

1929 Implemented the ACPI_REDUCED_HARDWARE option to allow the creation of a
1930 custom
1931 build of ACPICA that supports only the ACPI 5.0 reduced hardware (SoC)
1932 model.
1933 See the ACPICA reference for details. ACPICA BZ 942. This option removes
1934 about
1935 10% of the code and 5% of the static data, and the following hardware
1936 ACPI
1937 features become unavailable:
1938 PM Event and Control registers
1939 SCI interrupt (and handler)
1940 Fixed Events
1941 General Purpose Events (GPEs)
1942 Global Lock
1943 ACPI PM timer
1944 FACS table (Waking vectors and Global Lock)

1946 Updated the unix tarball directory structure to match the ACPICA git
1947 source
1948 tree. This ensures that the generic unix makefiles work properly (in
1949 generate/unix). Also updated the Linux makefiles to match. ACPICA BZ
1950 867.

1952 Updated the return value of the _REV predefined method to integer value 5
1953 to
1954 reflect ACPI 5.0 support.

1956 Moved the external ACPI PM timer interface prototypes to the public
1957 acpixf.h
1958 file where they belong.

1960 Example Code and Data Size: These are the sizes for the OS-independent
1961 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
1962 debug
1963 version of the code includes the debug output trace mechanism and has a
1964 much
1965 larger code and data size.

1967 Previous Release:
1968 Non-Debug Version: 92.8K Code, 24.9K Data, 117.7K Total
1969 Debug Version: 171.7K Code, 72.9K Data, 244.5K Total

new/usr/src/common/acpica/changes.txt 31

1970 Current Release:
1971 Non-Debug Version: 93.0K Code, 25.0K Data, 118.0K Total
1972 Debug Version: 172.5K Code, 73.2K Data, 245.7K Total

1975 2) iASL Compiler/Disassembler and Tools:

1977 Disassembler: Fixed a problem with the new ACPI 5.0 serial resource
1978 descriptors (I2C, SPI, UART) where the resource produce/consumer bit was
1979 incorrectly displayed.

1981 AcpiHelp: Add display of ACPI/PNP device IDs that are defined in the ACPI
1982 specification.

1984 --
1985 11 January 2012. Summary of changes for version 20120111:

1988 1) ACPICA Core Subsystem:

1990 Implemented a new mechanism to allow host device drivers to check for
1991 address
1992 range conflicts with ACPI Operation Regions. Both SystemMemory and
1993 SystemIO
1994 address spaces are supported. A new external interface,
1995 AcpiCheckAddressRange,
1996 allows drivers to check an address range against the ACPI namespace. See
1997 the
1998 ACPICA reference for additional details. Adds one new file,
1999 utilities/utaddress.c. Lin Ming, Bob Moore.

2001 Fixed several issues with the ACPI 5.0 FADT support: Add the sleep
2002 Control
2003 and
2004 Status registers, update the ACPI 5.0 flags, and update internal data
2005 structures to handle an FADT larger than 256 bytes. The size of the ACPI
2006 5.0
2007 FADT is 268 bytes.

2009 Updated all ACPICA copyrights and signons to 2012. Added the 2012
2010 copyright to
2011 all module headers and signons, including the standard Linux header. This
2012 affects virtually every file in the ACPICA core subsystem, iASL compiler,
2013 and
2014 all ACPICA utilities.

2016 Example Code and Data Size: These are the sizes for the OS-independent
2017 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
2018 debug
2019 version of the code includes the debug output trace mechanism and has a
2020 much
2021 larger code and data size.

2023 Previous Release:
2024 Non-Debug Version: 92.3K Code, 24.9K Data, 117.2K Total
2025 Debug Version: 170.8K Code, 72.6K Data, 243.4K Total
2026 Current Release:
2027 Non-Debug Version: 92.8K Code, 24.9K Data, 117.7K Total
2028 Debug Version: 171.7K Code, 72.9K Data, 244.5K Total

2031 2) iASL Compiler/Disassembler and Tools:

2033 Disassembler: fixed a problem with the automatic resource tag generation
2034 support. Fixes a problem where the resource tags are inadvertently not
2035 constructed if the table being disassembled contains external references

new/usr/src/common/acpica/changes.txt 32

2036 to
2037 control methods. Moved the actual construction of the tags to after the
2038 final
2039 namespace is constructed (after 2nd parse is invoked due to external
2040 control
2041 method references.) ACPICA BZ 941.

2043 Table Compiler: Make all "generic" operators caseless. These are the
2044 operators
2045 like UINT8, String, etc. Making these caseless improves ease-of-use.
2046 ACPICA BZ
2047 934.

2049 --
2050 23 November 2011. Summary of changes for version 20111123:

2052 0) ACPI 5.0 Support:

2054 This release contains full support for the ACPI 5.0 specification, as
2055 summarized below.

2057 Reduced Hardware Support:
2058 -------------------------

2060 This support allows for ACPI systems without the usual ACPI hardware.
2061 This
2062 support is enabled by a flag in the revision 5 FADT. If it is set, ACPICA
2063 will
2064 not attempt to initialize or use any of the usual ACPI hardware. Note,
2065 when
2066 this flag is set, all of the following ACPI hardware is assumed to be not
2067 present and is not initialized or accessed:

2069 General Purpose Events (GPEs)
2070 Fixed Events (PM1a/PM1b and PM Control)
2071 Power Management Timer and Console Buttons (power/sleep)
2072 Real-time Clock Alarm
2073 Global Lock
2074 System Control Interrupt (SCI)
2075 The FACS is assumed to be non-existent

2077 ACPI Tables:
2078 ------------

2080 All new tables and updates to existing tables are fully supported in the
2081 ACPICA headers (for use by device drivers), the disassembler, and the
2082 iASL
2083 Data Table Compiler. ACPI 5.0 defines these new tables:

2085 BGRT /* Boot Graphics Resource Table */
2086 DRTM /* Dynamic Root of Trust for Measurement table */
2087 FPDT /* Firmware Performance Data Table */
2088 GTDT /* Generic Timer Description Table */
2089 MPST /* Memory Power State Table */
2090 PCCT /* Platform Communications Channel Table */
2091 PMTT /* Platform Memory Topology Table */
2092 RASF /* RAS Feature table */

2094 Operation Regions/SpaceIDs:
2095 ---------------------------

2097 All new operation regions are fully supported by the iASL compiler, the
2098 disassembler, and the ACPICA runtime code (for dispatch to region
2099 handlers.)
2100 The new operation region Space IDs are:

new/usr/src/common/acpica/changes.txt 33

2102 GeneralPurposeIo
2103 GenericSerialBus

2105 Resource Descriptors:
2106 ---------------------

2108 All new ASL resource descriptors are fully supported by the iASL
2109 compiler,
2110 the
2111 ASL/AML disassembler, and the ACPICA runtime Resource Manager code
2112 (including
2113 all new predefined resource tags). New descriptors are:

2115 FixedDma
2116 GpioIo
2117 GpioInt
2118 I2cSerialBus
2119 SpiSerialBus
2120 UartSerialBus

2122 ASL/AML Operators, New and Modified:
2123 ------------------------------------

2125 One new operator is added, the Connection operator, which is used to
2126 associate
2127 a GeneralPurposeIo or GenericSerialBus resource descriptor with
2128 individual
2129 field objects within an operation region. Several new protocols are
2130 associated
2131 with the AccessAs operator. All are fully supported by the iASL compiler,
2132 disassembler, and runtime ACPICA AML interpreter:

2134 Connection // Declare Field Connection
2135 attributes
2136 AccessAs: AttribBytes (n) // Read/Write N-Bytes Protocol
2137 AccessAs: AttribRawBytes (n) // Raw Read/Write N-Bytes
2138 Protocol
2139 AccessAs: AttribRawProcessBytes (n) // Raw Process Call Protocol
2140 RawDataBuffer // Data type for Vendor Data
2141 fields

2143 Predefined ASL/AML Objects:
2144 ---------------------------

2146 All new predefined objects/control-methods are supported by the iASL
2147 compiler
2148 and the ACPICA runtime validation/repair (arguments and return values.)
2149 New
2150 predefined names include the following:

2152 Standard Predefined Names (Objects or Control Methods):
2153 _AEI, _CLS, _CPC, _CWS, _DEP,
2154 _DLM, _EVT, _GCP, _CRT, _GWS,
2155 _HRV, _PRE, _PSE, _SRT, _SUB.

2157 Resource Tags (Names used to access individual fields within resource
2158 descriptors):
2159 _DBT, _DPL, _DRS, _END, _FLC,
2160 _IOR, _LIN, _MOD, _PAR, _PHA,
2161 _PIN, _PPI, _POL, _RXL, _SLV,
2162 _SPE, _STB, _TXL, _VEN.

2164 ACPICA External Interfaces:
2165 ---------------------------

2167 Several new interfaces have been defined for use by ACPI-related device

new/usr/src/common/acpica/changes.txt 34

2168 drivers and other host OS services:

2170 AcpiAcquireMutex and AcpiReleaseMutex: These interfaces allow the host OS
2171 to
2172 acquire and release AML mutexes that are defined in the DSDT/SSDT tables
2173 provided by the BIOS. They are intended to be used in conjunction with
2174 the
2175 ACPI 5.0 _DLM (Device Lock Method) in order to provide transaction-level
2176 mutual exclusion with the AML code/interpreter.

2178 AcpiGetEventResources: Returns the (formatted) resource descriptors as
2179 defined
2180 by the ACPI 5.0 _AEI object (ACPI Event Information). This object
2181 provides
2182 resource descriptors associated with hardware-reduced platform events,
2183 similar
2184 to the AcpiGetCurrentResources interface.

2186 Operation Region Handlers: For General Purpose IO and Generic Serial Bus
2187 operation regions, information about the Connection() object and any
2188 optional
2189 length information is passed to the region handler within the Context
2190 parameter.

2192 AcpiBufferToResource: This interface converts a raw AML buffer containing
2193 a
2194 resource template or resource descriptor to the ACPI_RESOURCE internal
2195 format
2196 suitable for use by device drivers. Can be used by an operation region
2197 handler
2198 to convert the Connection() buffer object into a ACPI_RESOURCE.

2200 Miscellaneous/Tools/TestSuites:
2201 -------------------------------

2203 Support for extended _HID names (Four alpha characters instead of three).
2204 Support for ACPI 5.0 features in the AcpiExec and AcpiHelp utilities.
2205 Support for ACPI 5.0 features in the ASLTS test suite.
2206 Fully updated documentation (ACPICA and iASL reference documents.)

2208 ACPI Table Definition Language:
2209 -------------------------------

2211 Support for this language was implemented and released as a subsystem of
2212 the
2213 iASL compiler in 2010. (See the iASL compiler User Guide.)

2216 Non-ACPI 5.0 changes for this release:
2217 --------------------------------------

2219 1) ACPICA Core Subsystem:

2221 Fix a problem with operation region declarations where a failure can
2222 occur
2223 if
2224 the region name and an argument that evaluates to an object (such as the
2225 region address) are in different namespace scopes. Lin Ming, ACPICA BZ
2226 937.

2228 Do not abort an ACPI table load if an invalid space ID is found within.
2229 This
2230 will be caught later if the offending method is executed. ACPICA BZ 925.

2232 Fixed an issue with the FFixedHW space ID where the ID was not always
2233 recognized properly (Both ACPICA and iASL). ACPICA BZ 926.

new/usr/src/common/acpica/changes.txt 35

2235 Fixed a problem with the 32-bit generation of the unix-specific OSL
2236 (osunixxf.c). Lin Ming, ACPICA BZ 936.

2238 Several changes made to enable generation with the GCC 4.6 compiler.
2239 ACPICA BZ
2240 935.

2242 New error messages: Unsupported I/O requests (not 8/16/32 bit), and
2243 Index/Bank
2244 field registers out-of-range.

2246 2) iASL Compiler/Disassembler and Tools:

2248 iASL: Implemented the __PATH__ operator, which returns the full pathname
2249 of
2250 the current source file.

2252 AcpiHelp: Automatically display expanded keyword information for all ASL
2253 operators.

2255 Debugger: Add "Template" command to disassemble/dump resource template
2256 buffers.

2258 Added a new master script to generate and execute the ASLTS test suite.
2259 Automatically handles 32- and 64-bit generation. See tests/aslts.sh

2261 iASL: Fix problem with listing generation during processing of the
2262 Switch()
2263 operator where AML listing was disabled until the entire Switch block was
2264 completed.

2266 iASL: Improve support for semicolon statement terminators. Fix "invalid
2267 character" message for some cases when the semicolon is used. Semicolons
2268 are
2269 now allowed after every <Term> grammar element. ACPICA BZ 927.

2271 iASL: Fixed some possible aliasing warnings during generation. ACPICA BZ
2272 923.

2274 Disassembler: Fix problem with disassembly of the DataTableRegion
2275 operator
2276 where an inadvertent "Unhandled deferred opcode" message could be
2277 generated.

2279 3) Example Code and Data Size

2281 These are the sizes for the OS-independent acpica.lib produced by the
2282 Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code
2283 includes the debug output trace mechanism and has a much larger code and
2284 data
2285 size.

2287 Previous Release:
2288 Non-Debug Version: 90.2K Code, 23.9K Data, 114.1K Total
2289 Debug Version: 165.6K Code, 68.4K Data, 234.0K Total
2290 Current Release:
2291 Non-Debug Version: 92.3K Code, 24.9K Data, 117.2K Total
2292 Debug Version: 170.8K Code, 72.6K Data, 243.4K Total

2294 --
2295 22 September 2011. Summary of changes for version 20110922:

2297 0) ACPI 5.0 News:

2299 Support for ACPI 5.0 in ACPICA has been underway for several months and

new/usr/src/common/acpica/changes.txt 36

2300 will
2301 be released at the same time that ACPI 5.0 is officially released.

2303 The ACPI 5.0 specification is on track for release in the next few
2304 months.
2305
2306 1) ACPICA Core Subsystem:

2308 Fixed a problem where the maximum sleep time for the Sleep() operator was
2309 intended to be limited to two seconds, but was inadvertently limited to
2310 20
2311 seconds instead.

2313 Linux and Unix makefiles: Added header file dependencies to ensure
2314 correct
2315 generation of ACPICA core code and utilities. Also simplified the
2316 makefiles
2317 considerably through the use of the vpath variable to specify search
2318 paths.
2319 ACPICA BZ 924.

2321 2) iASL Compiler/Disassembler and Tools:

2323 iASL: Implemented support to check the access length for all fields
2324 created to
2325 access named Resource Descriptor fields. For example, if a resource field
2326 is
2327 defined to be two bits, a warning is issued if a CreateXxxxField() is
2328 used
2329 with an incorrect bit length. This is implemented for all current
2330 resource
2331 descriptor names. ACPICA BZ 930.
2332
2333 Disassembler: Fixed a byte ordering problem with the output of 24-bit and
2334 56-
2335 bit integers.

2337 iASL: Fixed a couple of issues associated with variable-length package
2338 objects. 1) properly handle constants like One, Ones, Zero -- do not make
2339 a
2340 VAR_PACKAGE when these are used as a package length. 2) Allow the
2341 VAR_PACKAGE
2342 opcode (in addition to PACKAGE) when validating object types for
2343 predefined
2344 names.

2346 iASL: Emit statistics for all output files (instead of just the ASL input
2347 and
2348 AML output). Includes listings, hex files, etc.

2350 iASL: Added -G option to the table compiler to allow the compilation of
2351 custom
2352 ACPI tables. The only part of a table that is required is the standard
2353 36-
2354 byte
2355 ACPI header.

2357 AcpiXtract: Ported to the standard ACPICA environment (with ACPICA
2358 headers),
2359 which also adds correct 64-bit support. Also, now all output filenames
2360 are
2361 completely lower case.

2363 AcpiExec: Ignore any non-AML tables (tables other than DSDT or SSDT) when
2364 loading table files. A warning is issued for any such tables. The only
2365 exception is an FADT. This also fixes a possible fault when attempting to

new/usr/src/common/acpica/changes.txt 37

2366 load
2367 non-AML tables. ACPICA BZ 932.

2369 AcpiHelp: Added the AccessAs and Offset operators. Fixed a problem where
2370 a
2371 missing table terminator could cause a fault when using the -p option.

2373 AcpiSrc: Fixed a possible divide-by-zero fault when generating file
2374 statistics.

2376 3) Example Code and Data Size

2378 These are the sizes for the OS-independent acpica.lib produced by the
2379 Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code
2380 includes the debug output trace mechanism and has a much larger code and
2381 data
2382 size.

2384 Previous Release (VC 9.0):
2385 Non-Debug Version: 90.2K Code, 23.9K Data, 114.1K Total
2386 Debug Version: 165.6K Code, 68.4K Data, 234.0K Total
2387 Current Release (VC 9.0):
2388 Non-Debug Version: 90.2K Code, 23.9K Data, 114.1K Total
2389 Debug Version: 165.6K Code, 68.4K Data, 234.0K Total

2392 --
2393 23 June 2011. Summary of changes for version 20110623:

2395 1) ACPI CA Core Subsystem:

2397 Updated the predefined name repair mechanism to not attempt repair of a
2398 _TSS
2399 return object if a _PSS object is present. We can only sort the _TSS
2400 return
2401 package if there is no _PSS within the same scope. This is because if
2402 _PSS
2403 is
2404 present, the ACPI specification dictates that the _TSS Power Dissipation
2405 field
2406 is to be ignored, and therefore some BIOSs leave garbage values in the
2407 _TSS
2408 Power field(s). In this case, it is best to just return the _TSS package
2409 as-
2410 is. Reported by, and fixed with assistance from Fenghua Yu.

2412 Added an option to globally disable the control method return value
2413 validation
2414 and repair. This runtime option can be used to disable return value
2415 repair
2416 if
2417 this is causing a problem on a particular machine. Also added an option
2418 to
2419 AcpiExec (-dr) to set this disable flag.

2421 All makefiles and project files: Major changes to improve generation of
2422 ACPICA
2423 tools. ACPICA BZ 912:
2424 Reduce default optimization levels to improve compatibility
2425 For Linux, add strict-aliasing=0 for gcc 4
2426 Cleanup and simplify use of command line defines
2427 Cleanup multithread library support
2428 Improve usage messages

2430 Linux-specific header: update handling of THREAD_ID and pthread. For the
2431 32-

new/usr/src/common/acpica/changes.txt 38

2432 bit case, improve casting to eliminate possible warnings, especially with
2433 the
2434 acpica tools.

2436 Example Code and Data Size: These are the sizes for the OS-independent
2437 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
2438 debug
2439 version of the code includes the debug output trace mechanism and has a
2440 much
2441 larger code and data size.

2443 Previous Release (VC 9.0):
2444 Non-Debug Version: 90.1K Code, 23.9K Data, 114.0K Total
2445 Debug Version: 165.6K Code, 68.4K Data, 234.0K Total
2446 Current Release (VC 9.0):
2447 Non-Debug Version: 90.2K Code, 23.9K Data, 114.1K Total
2448 Debug Version: 165.6K Code, 68.4K Data, 234.0K Total

2450 2) iASL Compiler/Disassembler and Tools:

2452 With this release, a new utility named "acpihelp" has been added to the
2453 ACPICA
2454 package. This utility summarizes the ACPI specification chapters for the
2455 ASL
2456 and AML languages. It generates under Linux/Unix as well as Windows, and
2457 provides the following functionality:
2458 Find/display ASL operator(s) -- with description and syntax.
2459 Find/display ASL keyword(s) -- with exact spelling and descriptions.
2460 Find/display ACPI predefined name(s) -- with description, number
2461 of arguments, and the return value data type.
2462 Find/display AML opcode name(s) -- with opcode, arguments, and
2463 grammar.
2464 Decode/display AML opcode -- with opcode name, arguments, and
2465 grammar.

2467 Service Layers: Make multi-thread support configurable. Conditionally
2468 compile
2469 the multi-thread support so that threading libraries will not be linked
2470 if
2471 not
2472 necessary. The only tool that requires multi-thread support is AcpiExec.

2474 iASL: Update yyerrror/AslCompilerError for "const" errors. Newer versions
2475 of
2476 Bison appear to want the interface to yyerror to be a const char * (or at
2477 least this is a problem when generating iASL on some systems.) ACPICA BZ
2478 923
2479 Pierre Lejeune.

2481 Tools: Fix for systems where O_BINARY is not defined. Only used for
2482 Windows
2483 versions of the tools.

2485 --
2486 27 May 2011. Summary of changes for version 20110527:

2488 1) ACPI CA Core Subsystem:

2490 ASL Load() operator: Reinstate most restrictions on the incoming ACPI
2491 table

8 ASL Load() operator: Reinstate most restrictions on the incoming ACPI table
2492 signature. Now, only allow SSDT, OEMx, and a null signature. History:
2493 1) Originally, we checked the table signature for "SSDT" or "PSDT".
2494 (PSDT is now obsolete.)
2495 2) We added support for OEMx tables, signature "OEM" plus a fourth
2496 "don’t care" character.

new/usr/src/common/acpica/changes.txt 39

2497 3) Valid tables were encountered with a null signature, so we just
2498 gave up on validating the signature, (05/2008).
2499 4) We encountered non-AML tables such as the MADT, which caused
2500 interpreter errors and kernel faults. So now, we once again allow
2501 only SSDT, OEMx, and now, also a null signature. (05/2011).

2503 Added the missing _TDL predefined name to the global name list in order
2504 to
2505 enable validation. Affects both the core ACPICA code and the iASL
2506 compiler.
20 Added the missing _TDL predefined name to the global name list in order to
21 enable validation. Affects both the core ACPICA code and the iASL compiler.

2508 Example Code and Data Size: These are the sizes for the OS-independent
2509 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
2510 debug
2511 version of the code includes the debug output trace mechanism and has a
2512 much
24 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug
25 version of the code includes the debug output trace mechanism and has a much

2513 larger code and data size.

2515 Previous Release (VC 9.0):
2516 Non-Debug Version: 90.0K Code, 23.8K Data, 113.8K Total
2517 Debug Version: 164.5K Code, 68.0K Data, 232.5K Total
2518 Current Release (VC 9.0):
2519 Non-Debug Version: 90.1K Code, 23.9K Data, 114.0K Total
2520 Debug Version: 165.6K Code, 68.4K Data, 234.0K Total

2522 2) iASL Compiler/Disassembler and Tools:

2524 Debugger/AcpiExec: Implemented support for "complex" method arguments on
2525 the
2526 debugger command line. This adds support beyond simple integers --
2527 including
37 Debugger/AcpiExec: Implemented support for "complex" method arguments on the
38 debugger command line. This adds support beyond simple integers -- including

2528 Strings, Buffers, and Packages. Includes support for nested packages.
2529 Increased the default command line buffer size to accommodate these
2530 arguments.
40 Increased the default command line buffer size to accommodate these arguments.

2531 See the ACPICA reference for details and syntax. ACPICA BZ 917.
2532
2533 Debugger/AcpiExec: Implemented support for "default" method arguments for
2534 the
2535 Execute/Debug command. Now, the debugger will always invoke a control
2536 method
2537 with the required number of arguments -- even if the command line
2538 specifies
2539 none or insufficient arguments. It uses default integer values for any
2540 missing
43 Debugger/AcpiExec: Implemented support for "default" method arguments for the
44 Execute/Debug command. Now, the debugger will always invoke a control method
45 with the required number of arguments -- even if the command line specifies
46 none or insufficient arguments. It uses default integer values for any missing

2541 arguments. Also fixes a bug where only six method arguments maximum were
2542 supported instead of the required seven.

2544 Debugger/AcpiExec: Add a maximum buffer length parameter to AcpiOsGetLine
2545 and
50 Debugger/AcpiExec: Add a maximum buffer length parameter to AcpiOsGetLine and

2546 also return status in order to prevent buffer overruns. See the ACPICA
2547 reference for details and syntax. ACPICA BZ 921

2549 iASL: Cleaned up support for Berkeley yacc. A general cleanup of code and
2550 makefiles to simplify support for the two different but similar parser

new/usr/src/common/acpica/changes.txt 40

2551 generators, bison and yacc.

2553 Updated the generic unix makefile for gcc 4. The default gcc version is
2554 now
58 Updated the generic unix makefile for gcc 4. The default gcc version is now

2555 expected to be 4 or greater, since options specific to gcc 4 are used.

2557 --
2558 13 April 2011. Summary of changes for version 20110413:

2560 1) ACPI CA Core Subsystem:

2562 Implemented support to execute a so-called "orphan" _REG method under the
66 Implemented support to execute a so-called "orphan" _REG method under the EC
67 device. This change will force the execution of a _REG method underneath the

2563 EC
2564 device. This change will force the execution of a _REG method underneath
2565 the
2566 EC
2567 device even if there is no corresponding operation region of type
2568 EmbeddedControl. Fixes a problem seen on some machines and apparently is
2569 compatible with Windows behavior. ACPICA BZ 875.

2571 Added more predefined methods that are eligible for automatic NULL
2572 package
2573 element removal. This change adds another group of predefined names to
2574 the
73 Added more predefined methods that are eligible for automatic NULL package
74 element removal. This change adds another group of predefined names to the

2575 list
2576 of names that can be repaired by having NULL package elements dynamically
2577 removed. This group are those methods that return a single variable-
2578 length
2579 package containing simple data types such as integers, buffers, strings.
2580 This
2581 includes: _ALx, _BCL, _CID,_ DOD, _EDL, _FIX, _PCL, _PLD, _PMD, _PRx,
2582 _PSL,
77 removed. This group are those methods that return a single variable-length
78 package containing simple data types such as integers, buffers, strings. This
79 includes: _ALx, _BCL, _CID,_ DOD, _EDL, _FIX, _PCL, _PLD, _PMD, _PRx, _PSL,

2583 _Sx,
2584 and _TZD. ACPICA BZ 914.

2586 Split and segregated all internal global lock functions to a new file,
2587 evglock.c.

2589 Updated internal address SpaceID for DataTable regions. Moved this
2590 internal
86 Updated internal address SpaceID for DataTable regions. Moved this internal

2591 space
2592 id in preparation for ACPI 5.0 changes that will include some new space
2593 IDs.
88 id in preparation for ACPI 5.0 changes that will include some new space IDs.

2594 This
2595 change should not affect user/host code.

2597 Example Code and Data Size: These are the sizes for the OS-independent
2598 acpica.lib
2599 produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug
2600 version of
2601 the code includes the debug output trace mechanism and has a much larger
2602 code
94 produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of
95 the code includes the debug output trace mechanism and has a much larger code

2603 and
2604 data size.

new/usr/src/common/acpica/changes.txt 41

2606 Previous Release (VC 9.0):
2607 Non-Debug Version: 89.8K Code, 23.8K Data, 113.6K Total
2608 Debug Version: 164.2K Code, 67.9K Data, 232.1K Total
2609 Current Release (VC 9.0):
2610 Non-Debug Version: 90.0K Code, 23.8K Data, 113.8K Total
2611 Debug Version: 164.5K Code, 68.0K Data, 232.5K Total

2613 2) iASL Compiler/Disassembler and Tools:

2615 iASL/DTC: Major update for new grammar features. Allow generic data types
2616 in
2617 custom ACPI tables. Field names are now optional. Any line can be split
2618 to
2619 multiple lines using the continuation char (\). Large buffers now use
2620 line-
108 iASL/DTC: Major update for new grammar features. Allow generic data types in
109 custom ACPI tables. Field names are now optional. Any line can be split to
110 multiple lines using the continuation char (\). Large buffers now use line-
2621 continuation character(s) and no colon on the continuation lines. See the
2622 grammar
2623 update in the iASL compiler reference. ACPI BZ 910,911. Lin Ming, Bob
2624 Moore.
113 update in the iASL compiler reference. ACPI BZ 910,911. Lin Ming, Bob Moore.

2626 iASL: Mark ASL "Return()" and the simple "Return" as "Null" return
2627 statements.
2628 Since the parser stuffs a "zero" as the return value for these statements
2629 (due
115 iASL: Mark ASL "Return()" and the simple "Return" as "Null" return statements.
116 Since the parser stuffs a "zero" as the return value for these statements (due
2630 to
2631 the underlying AML grammar), they were seen as "return with value" by the
2632 iASL
2633 semantic checking. They are now seen correctly as "null" return
2634 statements.
118 the underlying AML grammar), they were seen as "return with value" by the iASL
119 semantic checking. They are now seen correctly as "null" return statements.

2636 iASL: Check if a_REG declaration has a corresponding Operation Region.
2637 Adds a
2638 check for each _REG to ensure that there is in fact a corresponding
2639 operation
121 iASL: Check if a_REG declaration has a corresponding Operation Region. Adds a
122 check for each _REG to ensure that there is in fact a corresponding operation
2640 region declaration in the same scope. If not, the _REG method is not very
2641 useful
2642 since it probably won’t be executed. ACPICA BZ 915.

2644 iASL/DTC: Finish support for expression evaluation. Added a new
2645 expression
127 iASL/DTC: Finish support for expression evaluation. Added a new expression
2646 parser
2647 that implements c-style operator precedence and parenthesization. ACPICA
2648 bugzilla
2649 908.

2651 Disassembler/DTC: Remove support for () and <> style comments in data
2652 tables.
133 Disassembler/DTC: Remove support for () and <> style comments in data tables.
2653 Now
2654 that DTC has full expression support, we don’t want to have comment
2655 strings
135 that DTC has full expression support, we don’t want to have comment strings
2656 that
2657 start with a parentheses or a less-than symbol. Now, only the standard /*

new/usr/src/common/acpica/changes.txt 42

2658 and
137 start with a parentheses or a less-than symbol. Now, only the standard /* and
2659 //
2660 comments are supported, as well as the bracket [] comments.

2662 AcpiXtract: Fix for RSDP and dynamic SSDT extraction. These tables have
2663 "unusual"
2664 headers in the acpidump file. Update the header validation to support
2665 these
2666 tables. Problem introduced in previous AcpiXtract version in the change
2667 to
143 headers in the acpidump file. Update the header validation to support these
144 tables. Problem introduced in previous AcpiXtract version in the change to
2668 support "wrong checksum" error messages emitted by acpidump utility.

2670 iASL: Add a * option to generate all template files (as a synonym for
2671 ALL)
2672 as
147 iASL: Add a * option to generate all template files (as a synonym for ALL) as
2673 in
2674 "iasl -T *" or "iasl -T ALL".

2676 iASL/DTC: Do not abort compiler on fatal errors. We do not want to
2677 completely
2678 abort the compiler on "fatal" errors, simply should abort the current
2679 compile.
151 iASL/DTC: Do not abort compiler on fatal errors. We do not want to completely
152 abort the compiler on "fatal" errors, simply should abort the current compile.
2680 This allows multiple compiles with a single (possibly wildcard) compiler
2681 invocation.

2683 --
2684 16 March 2011. Summary of changes for version 20110316:

2686 1) ACPI CA Core Subsystem:

2688 Fixed a problem caused by a _PRW method appearing at the namespace root
2689 scope
2690 during the setup of wake GPEs. A fault could occur if a _PRW directly
2691 under
161 Fixed a problem caused by a _PRW method appearing at the namespace root scope
162 during the setup of wake GPEs. A fault could occur if a _PRW directly under
2692 the
2693 root object was passed to the AcpiSetupGpeForWake interface. Lin Ming.

2695 Implemented support for "spurious" Global Lock interrupts. On some
2696 systems, a
2697 global lock interrupt can occur without the pending flag being set. Upon
2698 a
2699 GL
2700 interrupt, we now ensure that a thread is actually waiting for the lock
2701 before
166 Implemented support for "spurious" Global Lock interrupts. On some systems, a
167 global lock interrupt can occur without the pending flag being set. Upon a GL
168 interrupt, we now ensure that a thread is actually waiting for the lock before
2702 signaling GL availability. Rafael Wysocki, Bob Moore.

2704 Example Code and Data Size: These are the sizes for the OS-independent
2705 acpica.lib
2706 produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug
2707 version of
2708 the code includes the debug output trace mechanism and has a much larger
2709 code
173 produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of
174 the code includes the debug output trace mechanism and has a much larger code
2710 and

new/usr/src/common/acpica/changes.txt 43

2711 data size.

2713 Previous Release (VC 9.0):
2714 Non-Debug Version: 89.7K Code, 23.7K Data, 113.4K Total
2715 Debug Version: 163.9K Code, 67.5K Data, 231.4K Total
2716 Current Release (VC 9.0):
2717 Non-Debug Version: 89.8K Code, 23.8K Data, 113.6K Total
2718 Debug Version: 164.2K Code, 67.9K Data, 232.1K Total

2720 2) iASL Compiler/Disassembler and Tools:

2722 Implemented full support for the "SLIC" ACPI table. Includes support in
2723 the
2724 header files, disassembler, table compiler, and template generator. Bob
2725 Moore,
187 Implemented full support for the "SLIC" ACPI table. Includes support in the
188 header files, disassembler, table compiler, and template generator. Bob Moore,
2726 Lin Ming.

2728 AcpiXtract: Correctly handle embedded comments and messages from
2729 AcpiDump.
2730 Apparently some or all versions of acpidump will occasionally emit a
2731 comment
191 AcpiXtract: Correctly handle embedded comments and messages from AcpiDump.
192 Apparently some or all versions of acpidump will occasionally emit a comment
2732 like
2733 "Wrong checksum", etc., into the dump file. This was causing problems for
2734 AcpiXtract. ACPICA BZ 905.

2736 iASL: Fix the Linux makefile by removing an inadvertent double file
2737 inclusion.
197 iASL: Fix the Linux makefile by removing an inadvertent double file inclusion.
2738 ACPICA BZ 913.

2740 AcpiExec: Update installation of operation region handlers. Install one
2741 handler
2742 for a user-defined address space. This is used by the ASL test suite
2743 (ASLTS).
202 for a user-defined address space. This is used by the ASL test suite (ASLTS).

2745 --
2746 11 February 2011. Summary of changes for version 20110211:

2748 1) ACPI CA Core Subsystem:

2750 Added a mechanism to defer _REG methods for some early-installed
2751 handlers.
2752 Most user handlers should be installed before call to
2753 AcpiEnableSubsystem.
209 Added a mechanism to defer _REG methods for some early-installed handlers.
210 Most user handlers should be installed before call to AcpiEnableSubsystem.
2754 However, Event handlers and region handlers should be installed after
2755 AcpiInitializeObjects. Override handlers for the "default" regions should
2756 be
212 AcpiInitializeObjects. Override handlers for the "default" regions should be
2757 installed early, however. This change executes all _REG methods for the
2758 default regions (Memory/IO/PCI/DataTable) simultaneously to prevent any
2759 chicken/egg issues between them. ACPICA BZ 848.

2761 Implemented an optimization for GPE detection. This optimization will
2762 simply
217 Implemented an optimization for GPE detection. This optimization will simply
2763 ignore GPE registers that contain no enabled GPEs -- there is no need to
2764 read the register since this information is available internally. This
2765 becomes more important on machines with a large GPE space. ACPICA
2766 bugzilla

new/usr/src/common/acpica/changes.txt 44

220 becomes more important on machines with a large GPE space. ACPICA bugzilla
2767 884. Lin Ming. Suggestion from Joe Liu.

2769 Removed all use of the highly unreliable FADT revision field. The
2770 revision
2771 number in the FADT has been found to be completely unreliable and cannot
2772 be
2773 trusted. Only the actual table length can be used to infer the version.
2774 This
2775 change updates the ACPICA core and the disassembler so that both no
2776 longer
223 Removed all use of the highly unreliable FADT revision field. The revision
224 number in the FADT has been found to be completely unreliable and cannot be
225 trusted. Only the actual table length can be used to infer the version. This
226 change updates the ACPICA core and the disassembler so that both no longer
2777 even look at the FADT version and instead depend solely upon the FADT
2778 length.

2780 Fix an unresolved name issue for the no-debug and no-error-message source
2781 generation cases. The _AcpiModuleName was left undefined in these cases,
2782 but
231 generation cases. The _AcpiModuleName was left undefined in these cases, but
2783 it is actually needed as a parameter to some interfaces. Define
2784 _AcpiModuleName as a null string in these cases. ACPICA Bugzilla 888.

2786 Split several large files (makefiles and project files updated)
2787 utglobal.c -> utdecode.c
2788 dbcomds.c -> dbmethod.c dbnames.c
2789 dsopcode.c -> dsargs.c dscontrol.c
2790 dsload.c -> dsload2.c
2791 aslanalyze.c -> aslbtypes.c aslwalks.c

2793 Example Code and Data Size: These are the sizes for the OS-independent
2794 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
2795 debug version of the code includes the debug output trace mechanism and
2796 has
244 debug version of the code includes the debug output trace mechanism and has
2797 a much larger code and data size.

2799 Previous Release (VC 9.0):
2800 Non-Debug Version: 89.7K Code, 23.7K Data, 113.4K Total
2801 Debug Version: 163.9K Code, 67.5K Data, 231.4K Total
2802 Current Release (VC 9.0):
2803 Non-Debug Version: 89.7K Code, 23.7K Data, 113.4K Total
2804 Debug Version: 163.9K Code, 67.5K Data, 231.4K Total

2806 2) iASL Compiler/Disassembler and Tools:

2808 iASL: Implemented the predefined macros __LINE__, __FILE__, and __DATE__.
2809 These are useful C-style macros with the standard definitions. ACPICA
2810 bugzilla 898.

2812 iASL/DTC: Added support for integer expressions and labels. Support for
2813 full
2814 expressions for all integer fields in all ACPI tables. Support for labels
2815 in
260 iASL/DTC: Added support for integer expressions and labels. Support for full
261 expressions for all integer fields in all ACPI tables. Support for labels in
2816 "generic" portions of tables such as UEFI. See the iASL reference manual.

2818 Debugger: Added a command to display the status of global handlers. The
2819 "handlers" command will display op region, fixed event, and miscellaneous
2820 global handlers. installation status -- and for op regions, whether
2821 default
266 global handlers. installation status -- and for op regions, whether default
2822 or user-installed handler will be used.

new/usr/src/common/acpica/changes.txt 45

2824 iASL: Warn if reserved method incorrectly returns a value. Many
2825 predefined
2826 names are defined such that they do not return a value. If implemented as
2827 a
269 iASL: Warn if reserved method incorrectly returns a value. Many predefined
270 names are defined such that they do not return a value. If implemented as a
2828 method, issue a warning if such a name explicitly returns a value. ACPICA
2829 Bugzilla 855.

2831 iASL: Added detection of GPE method name conflicts. Detects a conflict
2832 where
2833 there are two GPE methods of the form _Lxy and _Exy in the same scope.
2834 (For
274 iASL: Added detection of GPE method name conflicts. Detects a conflict where
275 there are two GPE methods of the form _Lxy and _Exy in the same scope. (For
2835 example, _L1D and _E1D in the same scope.) ACPICA bugzilla 848.

2837 iASL/DTC: Fixed a couple input scanner issues with comments and line
2838 numbers. Comment remover could get confused and miss a comment ending.
2839 Fixed
279 numbers. Comment remover could get confused and miss a comment ending. Fixed
2840 a problem with line counter maintenance.

2842 iASL/DTC: Reduced the severity of some errors from fatal to error. There
2843 is
282 iASL/DTC: Reduced the severity of some errors from fatal to error. There is
2844 no need to abort on simple errors within a field definition.

2846 Debugger: Simplified the output of the help command. All help output now
2847 in
285 Debugger: Simplified the output of the help command. All help output now in
2848 a single screen, instead of help subcommands. ACPICA Bugzilla 897.

2850 --
2851 12 January 2011. Summary of changes for version 20110112:

2853 1) ACPI CA Core Subsystem:

2855 Fixed a race condition between method execution and namespace walks that
2856 can
293 Fixed a race condition between method execution and namespace walks that can
2857 possibly cause a fault. The problem was apparently introduced in version
2858 20100528 as a result of a performance optimization that reduces the
2859 number
2860 of
295 20100528 as a result of a performance optimization that reduces the number of
2861 namespace walks upon method exit by using the delete_namespace_subtree
2862 function instead of the delete_namespace_by_owner function used
2863 previously.
297 function instead of the delete_namespace_by_owner function used previously.
2864 Bug is a missing namespace lock in the delete_namespace_subtree function.
2865 dana.myers@oracle.com

2867 Fixed several issues and a possible fault with the automatic "serialized"
2868 method support. History: This support changes a method to "serialized" on
2869 the
302 method support. History: This support changes a method to "serialized" on the
2870 fly if the method generates an AE_ALREADY_EXISTS error, indicating the
2871 possibility that it cannot handle reentrancy. This fix repairs a couple
2872 of
304 possibility that it cannot handle reentrancy. This fix repairs a couple of
2873 issues seen in the field, especially on machines with many cores:

2875 1) Delete method children only upon the exit of the last thread,
2876 so as to not delete objects out from under other running threads

new/usr/src/common/acpica/changes.txt 46

2877 (and possibly causing a fault.)
2878 2) Set the "serialized" bit for the method only upon the exit of the
2879 Last thread, so as to not cause deadlock when running threads
2880 attempt to exit.
2881 3) Cleanup the use of the AML "MethodFlags" and internal method flags
2882 so that there is no longer any confusion between the two.

2884 Lin Ming, Bob Moore. Reported by dana.myers@oracle.com.

2886 Debugger: Now lock the namespace for duration of a namespace dump.
2887 Prevents
318 Debugger: Now lock the namespace for duration of a namespace dump. Prevents
2888 issues if the namespace is changing dynamically underneath the debugger.
2889 Especially affects temporary namespace nodes, since the debugger displays
2890 these also.

2892 Updated the ordering of include files. The ACPICA headers should appear
2893 before any compiler-specific headers (stdio.h, etc.) so that acenv.h can
2894 set
2895 any necessary compiler-specific defines, etc. Affects the ACPI-related
2896 tools
324 before any compiler-specific headers (stdio.h, etc.) so that acenv.h can set
325 any necessary compiler-specific defines, etc. Affects the ACPI-related tools
2897 and utilities.

2899 Updated all ACPICA copyrights and signons to 2011. Added the 2011
2900 copyright
2901 to all module headers and signons, including the Linux header. This
2902 affects
328 Updated all ACPICA copyrights and signons to 2011. Added the 2011 copyright
329 to all module headers and signons, including the Linux header. This affects
2903 virtually every file in the ACPICA core subsystem, iASL compiler, and all
2904 utilities.

2906 Added project files for MS Visual Studio 2008 (VC++ 9.0). The original
2907 project files for VC++ 6.0 are now obsolete. New project files can be
2908 found
334 project files for VC++ 6.0 are now obsolete. New project files can be found
2909 under acpica/generate/msvc9. See acpica/generate/msvc9/readme.txt for
2910 details.

2912 Example Code and Data Size: These are the sizes for the OS-independent
2913 acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The
2914 debug version of the code includes the debug output trace mechanism and
2915 has a
340 debug version of the code includes the debug output trace mechanism and has a
2916 much larger code and data size.

2918 Previous Release (VC 6.0):
2919 Non-Debug Version: 89.8K Code, 18.9K Data, 108.7K Total
2920 Debug Version: 166.6K Code, 52.1K Data, 218.7K Total
2921 Current Release (VC 9.0):
2922 Non-Debug Version: 89.7K Code, 23.7K Data, 113.4K Total
2923 Debug Version: 163.9K Code, 67.5K Data, 231.4K Total

2925 2) iASL Compiler/Disassembler and Tools:

2927 iASL: Added generic data types to the Data Table compiler. Add "generic"
2928 data
2929 types such as UINT32, String, Unicode, etc., to simplify the generation
2930 of
352 iASL: Added generic data types to the Data Table compiler. Add "generic" data
353 types such as UINT32, String, Unicode, etc., to simplify the generation of
2931 platform-defined tables such as UEFI. Lin Ming.

2933 iASL: Added listing support for the Data Table Compiler. Adds listing

new/usr/src/common/acpica/changes.txt 47

2934 support
356 iASL: Added listing support for the Data Table Compiler. Adds listing support
2935 (-l) to display actual binary output for each line of input code.

2937 --
2938 09 December 2010. Summary of changes for version 20101209:

2940 1) ACPI CA Core Subsystem:

2942 Completed the major overhaul of the GPE support code that was begun in
2943 July
364 Completed the major overhaul of the GPE support code that was begun in July
2944 2010. Major features include: removal of _PRW execution in ACPICA (host
2945 executes _PRWs anyway), cleanup of "wake" GPE interfaces and processing,
2946 changes to existing interfaces, simplification of GPE handler operation,
2947 and
367 changes to existing interfaces, simplification of GPE handler operation, and
2948 a handful of new interfaces:

2950 AcpiUpdateAllGpes
2951 AcpiFinishGpe
2952 AcpiSetupGpeForWake
2953 AcpiSetGpeWakeMask
2954 One new file, evxfgpe.c to consolidate all external GPE interfaces.

2956 See the ACPICA Programmer Reference for full details and programming
2957 information. See the new section 4.4 "General Purpose Event (GPE)
2958 Support"
2959 for a full overview, and section 8.7 "ACPI General Purpose Event
2960 Management"
2961 for programming details. ACPICA BZ 858,870,877. Matthew Garrett, Lin
2962 Ming,
377 information. See the new section 4.4 "General Purpose Event (GPE) Support"
378 for a full overview, and section 8.7 "ACPI General Purpose Event Management"
379 for programming details. ACPICA BZ 858,870,877. Matthew Garrett, Lin Ming,
2963 Bob Moore, Rafael Wysocki.

2965 Implemented a new GPE feature for Windows compatibility, the "Implicit
2966 Wake
2967 GPE Notify". This feature will automatically issue a Notify(2) on a
2968 device
382 Implemented a new GPE feature for Windows compatibility, the "Implicit Wake
383 GPE Notify". This feature will automatically issue a Notify(2) on a device
2969 when a Wake GPE is received if there is no corresponding GPE method or
2970 handler. ACPICA BZ 870.

2972 Fixed a problem with the Scope() operator during table parse and load
2973 phase.
2974 During load phase (table load or method execution), the scope operator
2975 should
2976 not enter the target into the namespace. Instead, it should open a new
2977 scope
387 Fixed a problem with the Scope() operator during table parse and load phase.
388 During load phase (table load or method execution), the scope operator should
389 not enter the target into the namespace. Instead, it should open a new scope
2978 at the target location. Linux BZ 19462, ACPICA BZ 882.

2980 Example Code and Data Size: These are the sizes for the OS-independent
2981 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
2982 debug version of the code includes the debug output trace mechanism and
2983 has a
394 debug version of the code includes the debug output trace mechanism and has a
2984 much larger code and data size.

2986 Previous Release:
2987 Non-Debug Version: 89.8K Code, 18.9K Data, 108.7K Total

new/usr/src/common/acpica/changes.txt 48

2988 Debug Version: 166.6K Code, 52.1K Data, 218.7K Total
2989 Current Release:
2990 Non-Debug Version: 89.9K Code, 19.0K Data, 108.9K Total
2991 Debug Version: 166.3K Code, 52.1K Data, 218.4K Total

2993 2) iASL Compiler/Disassembler and Tools:

2995 iASL: Relax the alphanumeric restriction on _CID strings. These strings
2996 are
2997 "bus-specific" per the ACPI specification, and therefore any characters
2998 are
2999 acceptable. The only checks that can be performed are for a null string
3000 and
406 iASL: Relax the alphanumeric restriction on _CID strings. These strings are
407 "bus-specific" per the ACPI specification, and therefore any characters are
408 acceptable. The only checks that can be performed are for a null string and
3001 perhaps for a leading asterisk. ACPICA BZ 886.

3003 iASL: Fixed a problem where a syntax error that caused a premature EOF
3004 condition on the source file emitted a very confusing error message. The
3005 premature EOF is now detected correctly. ACPICA BZ 891.

3007 Disassembler: Decode the AccessSize within a Generic Address Structure
3008 (byte
415 Disassembler: Decode the AccessSize within a Generic Address Structure (byte
3009 access, word access, etc.) Note, this field does not allow arbitrary bit
3010 access, the size is encoded as 1=byte, 2=word, 3=dword, and 4=qword.

3012 New: AcpiNames utility - Example namespace dump utility. Shows an example
3013 of
419 New: AcpiNames utility - Example namespace dump utility. Shows an example of
3014 ACPICA configuration for a minimal namespace dump utility. Uses table and
3015 namespace managers, but no AML interpreter. Does not add any
3016 functionality
421 namespace managers, but no AML interpreter. Does not add any functionality
3017 over AcpiExec, it is a subset of AcpiExec. The purpose is to show how to
3018 partition and configure ACPICA. ACPICA BZ 883.

3020 AML Debugger: Increased the debugger buffer size for method return
3021 objects.
3022 Was 4K, increased to 16K. Also enhanced error messages for debugger
3023 method
425 AML Debugger: Increased the debugger buffer size for method return objects.
426 Was 4K, increased to 16K. Also enhanced error messages for debugger method
3024 execution, including the buffer overflow case.

3026 --
3027 13 October 2010. Summary of changes for version 20101013:

3029 1) ACPI CA Core Subsystem:

3031 Added support to clear the PCIEXP_WAKE event. When clearing ACPI events,
3032 now
434 Added support to clear the PCIEXP_WAKE event. When clearing ACPI events, now
3033 clear the PCIEXP_WAKE_STS bit in the ACPI PM1 Status Register, via
3034 HwClearAcpiStatus. Original change from Colin King. ACPICA BZ 880.

3036 Changed the type of the predefined namespace object _TZ from ThermalZone
3037 to
3038 Device. This was found to be confusing to the host software that
3039 processes
3040 the various thermal zones, since _TZ is not really a ThermalZone.
3041 However,
3042 a
438 Changed the type of the predefined namespace object _TZ from ThermalZone to
439 Device. This was found to be confusing to the host software that processes

new/usr/src/common/acpica/changes.txt 49

440 the various thermal zones, since _TZ is not really a ThermalZone. However, a
3043 Notify() can still be performed on it. ACPICA BZ 876. Suggestion from Rui
3044 Zhang.

3046 Added Windows Vista SP2 to the list of supported _OSI strings. The actual
3047 string is "Windows 2006 SP2".

3049 Eliminated duplicate code in AcpiUtExecute* functions. Now that the
3050 nsrepair
447 Eliminated duplicate code in AcpiUtExecute* functions. Now that the nsrepair
3051 code automatically repairs _HID-related strings, this type of code is no
3052 longer needed in Execute_HID, Execute_CID, and Execute_UID. ACPICA BZ
3053 878.
449 longer needed in Execute_HID, Execute_CID, and Execute_UID. ACPICA BZ 878.

3055 Example Code and Data Size: These are the sizes for the OS-independent
3056 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
3057 debug version of the code includes the debug output trace mechanism and
3058 has a
453 debug version of the code includes the debug output trace mechanism and has a
3059 much larger code and data size.

3061 Previous Release:
3062 Non-Debug Version: 89.9K Code, 19.0K Data, 108.9K Total
3063 Debug Version: 166.3K Code, 52.1K Data, 218.4K Total
3064 Current Release:
3065 Non-Debug Version: 89.9K Code, 19.0K Data, 108.9K Total
3066 Debug Version: 166.3K Code, 52.1K Data, 218.4K Total

3068 2) iASL Compiler/Disassembler and Tools:

3070 iASL: Implemented additional compile-time validation for _HID strings.
3071 The
3072 non-hex prefix (such as "PNP" or "ACPI") must be uppercase, and the
3073 length
3074 of
3075 the string must be exactly seven or eight characters. For both _HID and
3076 _CID
465 iASL: Implemented additional compile-time validation for _HID strings. The
466 non-hex prefix (such as "PNP" or "ACPI") must be uppercase, and the length of
467 the string must be exactly seven or eight characters. For both _HID and _CID
3077 strings, all characters must be alphanumeric. ACPICA BZ 874.

3079 iASL: Allow certain "null" resource descriptors. Some BIOS code creates
3080 descriptors that are mostly or all zeros, with the expectation that they
3081 will
3082 be filled in at runtime. iASL now allows this as long as there is a
3083 "resource
471 descriptors that are mostly or all zeros, with the expectation that they will
472 be filled in at runtime. iASL now allows this as long as there is a "resource
3084 tag" (name) associated with the descriptor, which gives the ASL a handle
3085 needed to modify the descriptor. ACPICA BZ 873.

3087 Added single-thread support to the generic Unix application OSL.
3088 Primarily
3089 for iASL support, this change removes the use of semaphores in the
3090 single-
476 Added single-thread support to the generic Unix application OSL. Primarily
477 for iASL support, this change removes the use of semaphores in the single-
3091 threaded ACPICA tools/applications - increasing performance. The
3092 _MULTI_THREADED option was replaced by the (reverse) ACPI_SINGLE_THREADED
3093 option. ACPICA BZ 879.

3095 AcpiExec: several fixes for the 64-bit version. Adds XSDT support and
3096 support
482 AcpiExec: several fixes for the 64-bit version. Adds XSDT support and support

new/usr/src/common/acpica/changes.txt 50

3097 for 64-bit DSDT/FACS addresses in the FADT. Lin Ming.

3099 iASL: Moved all compiler messages to a new file, aslmessages.h.

3101 --
3102 15 September 2010. Summary of changes for version 20100915:

3104 1) ACPI CA Core Subsystem:

3106 Removed the AcpiOsDerivePciId OSL interface. The various host
3107 implementations
492 Removed the AcpiOsDerivePciId OSL interface. The various host implementations
3108 of this function were not OS-dependent and are now obsolete and can be
3109 removed from all host OSLs. This function has been replaced by
3110 AcpiHwDerivePciId, which is now part of the ACPICA core code.
3111 AcpiHwDerivePciId has been implemented without recursion. Adds one new
3112 module, hwpci.c. ACPICA BZ 857.

3114 Implemented a dynamic repair for _HID and _CID strings. The following
3115 problems are now repaired at runtime: 1) Remove a leading asterisk in the
3116 string, and 2) the entire string is uppercased. Both repairs are in
3117 accordance with the ACPI specification and will simplify host driver
3118 code.
502 accordance with the ACPI specification and will simplify host driver code.
3119 ACPICA BZ 871.

3121 The ACPI_THREAD_ID type is no longer configurable, internally it is now
3122 always UINT64. This simplifies the ACPICA code, especially any printf
3123 output.
506 always UINT64. This simplifies the ACPICA code, especially any printf output.
3124 UINT64 is the only common data type for all thread_id types across all
3125 operating systems. It is now up to the host OSL to cast the native
3126 thread_id
3127 type to UINT64 before returning the value to ACPICA (via
3128 AcpiOsGetThreadId).
508 operating systems. It is now up to the host OSL to cast the native thread_id
509 type to UINT64 before returning the value to ACPICA (via AcpiOsGetThreadId).
3129 Lin Ming, Bob Moore.

3131 Added the ACPI_INLINE type to enhance the ACPICA configuration. The
3132 "inline"
3133 keyword is not standard across compilers, and this type allows inline to
3134 be
512 Added the ACPI_INLINE type to enhance the ACPICA configuration. The "inline"
513 keyword is not standard across compilers, and this type allows inline to be
3135 configured on a per-compiler basis. Lin Ming.

3137 Made the system global AcpiGbl_SystemAwakeAndRunning publically
3138 available.
3139 Added an extern for this boolean in acpixf.h. Some hosts utilize this
3140 value
516 Made the system global AcpiGbl_SystemAwakeAndRunning publically available.
517 Added an extern for this boolean in acpixf.h. Some hosts utilize this value
3141 during suspend/restore operations. ACPICA BZ 869.

3143 All code that implements error/warning messages with the "ACPI:" prefix
3144 has
520 All code that implements error/warning messages with the "ACPI:" prefix has
3145 been moved to a new module, utxferror.c.

3147 The UINT64_OVERLAY was moved to utmath.c, which is the only module where
3148 it
523 The UINT64_OVERLAY was moved to utmath.c, which is the only module where it
3149 is used. ACPICA BZ 829. Lin Ming, Bob Moore.

3151 Example Code and Data Size: These are the sizes for the OS-independent

new/usr/src/common/acpica/changes.txt 51

3152 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
3153 debug version of the code includes the debug output trace mechanism and
3154 has a
528 debug version of the code includes the debug output trace mechanism and has a
3155 much larger code and data size.

3157 Previous Release:
3158 Non-Debug Version: 89.1K Code, 19.0K Data, 108.1K Total
3159 Debug Version: 165.1K Code, 51.9K Data, 217.0K Total
3160 Current Release:
3161 Non-Debug Version: 89.9K Code, 19.0K Data, 108.9K Total
3162 Debug Version: 166.3K Code, 52.1K Data, 218.4K Total

3164 2) iASL Compiler/Disassembler and Tools:

3166 iASL/Disassembler: Write ACPI errors to stderr instead of the output
3167 file.
3168 This keeps the output files free of random error messages that may
3169 originate
3170 from within the namespace/interpreter code. Used this opportunity to
3171 merge
540 iASL/Disassembler: Write ACPI errors to stderr instead of the output file.
541 This keeps the output files free of random error messages that may originate
542 from within the namespace/interpreter code. Used this opportunity to merge
3172 all ACPI:-style messages into a single new module, utxferror.c. ACPICA BZ
3173 866. Lin Ming, Bob Moore.

3175 Tools: update some printfs for ansi warnings on size_t. Handle width
3176 change
546 Tools: update some printfs for ansi warnings on size_t. Handle width change
3177 of size_t on 32-bit versus 64-bit generations. Lin Ming.

3179 --
3180 06 August 2010. Summary of changes for version 20100806:

3182 1) ACPI CA Core Subsystem:

3184 Designed and implemented a new host interface to the _OSI support code.
3185 This
3186 will allow the host to dynamically add or remove multiple _OSI strings,
3187 as
3188 well as install an optional handler that is called for each _OSI
3189 invocation.
3190 Also added a new AML debugger command, ’osi’ to display and modify the
3191 global
3192 _OSI string table, and test support in the AcpiExec utility. See the
3193 ACPICA
554 Designed and implemented a new host interface to the _OSI support code. This
555 will allow the host to dynamically add or remove multiple _OSI strings, as
556 well as install an optional handler that is called for each _OSI invocation.
557 Also added a new AML debugger command, ’osi’ to display and modify the global
558 _OSI string table, and test support in the AcpiExec utility. See the ACPICA
3194 reference manual for full details. Lin Ming, Bob Moore. ACPICA BZ 836.
3195 New Functions:
3196 AcpiInstallInterface - Add an _OSI string.
3197 AcpiRemoveInterface - Delete an _OSI string.
3198 AcpiInstallInterfaceHandler - Install optional _OSI handler.
3199 Obsolete Functions:
3200 AcpiOsValidateInterface - no longer used.
3201 New Files:
3202 source/components/utilities/utosi.c

3204 Re-introduced the support to enable multi-byte transfers for Embedded
3205 Controller (EC) operation regions. A reported problem was found to be a
3206 bug
3207 in the host OS, not in the multi-byte support. Previously, the maximum

new/usr/src/common/acpica/changes.txt 52

3208 data
3209 size passed to the EC operation region handler was a single byte. There
3210 are
3211 often EC Fields larger than one byte that need to be transferred, and it
3212 is
3213 useful for the EC driver to lock these as a single transaction. This
3214 change
570 Controller (EC) operation regions. A reported problem was found to be a bug
571 in the host OS, not in the multi-byte support. Previously, the maximum data
572 size passed to the EC operation region handler was a single byte. There are
573 often EC Fields larger than one byte that need to be transferred, and it is
574 useful for the EC driver to lock these as a single transaction. This change
3215 enables single transfers larger than 8 bits. This effectively changes the
3216 access to the EC space from ByteAcc to AnyAcc, and will probably require
3217 changes to the host OS Embedded Controller driver to enable 16/32/64/256-
3218 bit
577 changes to the host OS Embedded Controller driver to enable 16/32/64/256-bit
3219 transfers in addition to 8-bit transfers. Alexey Starikovskiy, Lin Ming.

3221 Fixed a problem with the prototype for AcpiOsReadPciConfiguration. The
3222 prototype in acpiosxf.h had the output value pointer as a (void *).
3223 It should be a (UINT64 *). This may affect some host OSL code.

3225 Fixed a couple problems with the recently modified Linux makefiles for
3226 iASL
584 Fixed a couple problems with the recently modified Linux makefiles for iASL
3227 and AcpiExec. These new makefiles place the generated object files in the
3228 local directory so that there can be no collisions between the files that
3229 are
586 local directory so that there can be no collisions between the files that are
3230 shared between them that are compiled with different options.

3232 Example Code and Data Size: These are the sizes for the OS-independent
3233 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
3234 debug version of the code includes the debug output trace mechanism and
3235 has a
591 debug version of the code includes the debug output trace mechanism and has a
3236 much larger code and data size.

3238 Previous Release:
3239 Non-Debug Version: 88.3K Code, 18.8K Data, 107.1K Total
3240 Debug Version: 164.0K Code, 51.5K Data, 215.5K Total
3241 Current Release:
3242 Non-Debug Version: 89.1K Code, 19.0K Data, 108.1K Total
3243 Debug Version: 165.1K Code, 51.9K Data, 217.0K Total

3245 2) iASL Compiler/Disassembler and Tools:

3247 iASL/Disassembler: Added a new option (-da, "disassemble all") to load
3248 the
603 iASL/Disassembler: Added a new option (-da, "disassemble all") to load the
3249 namespace from and disassemble an entire group of AML files. Useful for
3250 loading all of the AML tables for a given machine (DSDT, SSDT1...SSDTn)
3251 and
605 loading all of the AML tables for a given machine (DSDT, SSDT1...SSDTn) and
3252 disassembling with one simple command. ACPICA BZ 865. Lin Ming.

3254 iASL: Allow multiple invocations of -e option. This change allows
3255 multiple
3256 uses of -e on the command line: "-e ssdt1.dat -e ssdt2.dat". ACPICA BZ
3257 834.
608 iASL: Allow multiple invocations of -e option. This change allows multiple
609 uses of -e on the command line: "-e ssdt1.dat -e ssdt2.dat". ACPICA BZ 834.
3258 Lin Ming.

3260 --

new/usr/src/common/acpica/changes.txt 53

3261 02 July 2010. Summary of changes for version 20100702:

3263 1) ACPI CA Core Subsystem:

3265 Implemented several updates to the recently added GPE reference count
3266 support. The model for "wake" GPEs is changing to give the host OS
3267 complete
3268 control of these GPEs. Eventually, the ACPICA core will not execute any
3269 _PRW
3270 methods, since the host already must execute them. Also, additional
3271 changes
618 support. The model for "wake" GPEs is changing to give the host OS complete
619 control of these GPEs. Eventually, the ACPICA core will not execute any _PRW
620 methods, since the host already must execute them. Also, additional changes
3272 were made to help ensure that the reference counts are kept in proper
3273 synchronization with reality. Rafael J. Wysocki.

3275 1) Ensure that GPEs are not enabled twice during initialization.
3276 2) Ensure that GPE enable masks stay in sync with the reference count.
3277 3) Do not inadvertently enable GPEs when writing GPE registers.
3278 4) Remove the internal wake reference counter and add new AcpiGpeWakeup
3279 interface. This interface will set or clear individual GPEs for wakeup.
3280 5) Remove GpeType argument from AcpiEnable and AcpiDisable. These
3281 interfaces
629 5) Remove GpeType argument from AcpiEnable and AcpiDisable. These interfaces
3282 are now used for "runtime" GPEs only.

3284 Changed the behavior of the GPE install/remove handler interfaces. The
3285 GPE
3286 is
3287 no longer disabled during this process, as it was found to cause problems
3288 on
632 Changed the behavior of the GPE install/remove handler interfaces. The GPE is
633 no longer disabled during this process, as it was found to cause problems on
3289 some machines. Rafael J. Wysocki.

3291 Reverted a change introduced in version 20100528 to enable Embedded
3292 Controller multi-byte transfers. This change was found to cause problems
3293 with
637 Controller multi-byte transfers. This change was found to cause problems with
3294 Index Fields and possibly Bank Fields. It will be reintroduced when these
3295 problems have been resolved.

3297 Fixed a problem with references to Alias objects within Package Objects.
3298 A
641 Fixed a problem with references to Alias objects within Package Objects. A
3299 reference to an Alias within the definition of a Package was not always
3300 resolved properly. Aliases to objects like Processors, Thermal zones,
3301 etc.
3302 were resolved to the actual object instead of a reference to the object
3303 as
3304 it
643 resolved properly. Aliases to objects like Processors, Thermal zones, etc.
644 were resolved to the actual object instead of a reference to the object as it
3305 should be. Package objects are only allowed to contain integer, string,
3306 buffer, package, and reference objects. Redhat bugzilla 608648.

3308 Example Code and Data Size: These are the sizes for the OS-independent
3309 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
3310 debug version of the code includes the debug output trace mechanism and
3311 has a
650 debug version of the code includes the debug output trace mechanism and has a
3312 much larger code and data size.

3314 Previous Release:
3315 Non-Debug Version: 88.3K Code, 18.8K Data, 107.1K Total

new/usr/src/common/acpica/changes.txt 54

3316 Debug Version: 164.1K Code, 51.5K Data, 215.6K Total
3317 Current Release:
3318 Non-Debug Version: 88.3K Code, 18.8K Data, 107.1K Total
3319 Debug Version: 164.0K Code, 51.5K Data, 215.5K Total

3321 2) iASL Compiler/Disassembler and Tools:

3323 iASL: Implemented a new compiler subsystem to allow definition and
3324 compilation of the non-AML ACPI tables such as FADT, MADT, SRAT, etc.
3325 These
663 compilation of the non-AML ACPI tables such as FADT, MADT, SRAT, etc. These
3326 are called "ACPI Data Tables", and the new compiler is the "Data Table
3327 Compiler". This compiler is intended to simplify the existing error-prone
3328 process of creating these tables for the BIOS, as well as allowing the
3329 disassembly, modification, recompilation, and override of existing ACPI
3330 data
667 disassembly, modification, recompilation, and override of existing ACPI data
3331 tables. See the iASL User Guide for detailed information.

3333 iASL: Implemented a new Template Generator option in support of the new
3334 Data
670 iASL: Implemented a new Template Generator option in support of the new Data
3335 Table Compiler. This option will create examples of all known ACPI tables
3336 that can be used as the basis for table development. See the iASL
3337 documentation and the -T option.

3339 Disassembler and headers: Added support for the WDDT ACPI table (Watchdog
3340 Descriptor Table).

3342 Updated the Linux makefiles for iASL and AcpiExec to place the generated
3343 object files in the local directory so that there can be no collisions
3344 between the shared files between them that are generated with different
3345 options.

3347 Added support for Mac OS X in the Unix OSL used for iASL and AcpiExec.
3348 Use
683 Added support for Mac OS X in the Unix OSL used for iASL and AcpiExec. Use
3349 the #define __APPLE__ to enable this support.

3351 --
3352 28 May 2010. Summary of changes for version 20100528:

3354 Note: The ACPI 4.0a specification was released on April 5, 2010 and is
3355 available at www.acpi.info. This is primarily an errata release.

3357 1) ACPI CA Core Subsystem:

3359 Undefined ACPI tables: We are looking for the definitions for the
3360 following
694 Undefined ACPI tables: We are looking for the definitions for the following
3361 ACPI tables that have been seen in the field: ATKG, IEIT, GSCI.

3363 Implemented support to enable multi-byte transfers for Embedded
3364 Controller
3365 (EC) operation regions. Previously, the maximum data size passed to the
3366 EC
3367 operation region handler was a single byte. There are often EC Fields
3368 larger
3369 than one byte that need to be transferred, and it is useful for the EC
3370 driver
3371 to lock these as a single transaction. This change enables single
3372 transfers
3373 larger than 8 bits. This effectively changes the access to the EC space
3374 from
3375 ByteAcc to AnyAcc, and will probably require changes to the host OS
3376 Embedded

new/usr/src/common/acpica/changes.txt 55

3377 Controller driver to enable 16/32/64/256-bit transfers in addition to 8-
3378 bit
697 Implemented support to enable multi-byte transfers for Embedded Controller
698 (EC) operation regions. Previously, the maximum data size passed to the EC
699 operation region handler was a single byte. There are often EC Fields larger
700 than one byte that need to be transferred, and it is useful for the EC driver
701 to lock these as a single transaction. This change enables single transfers
702 larger than 8 bits. This effectively changes the access to the EC space from
703 ByteAcc to AnyAcc, and will probably require changes to the host OS Embedded
704 Controller driver to enable 16/32/64/256-bit transfers in addition to 8-bit
3379 transfers. Alexey Starikovskiy, Lin Ming

3381 Implemented a performance enhancement for namespace search and access.
3382 This
3383 change enhances the performance of namespace searches and walks by adding
3384 a
3385 backpointer to the parent in each namespace node. On large namespaces,
3386 this
3387 change can improve overall ACPI performance by up to 9X. Adding a pointer
3388 to
3389 each namespace node increases the overall size of the internal namespace
3390 by
707 Implemented a performance enhancement for namespace search and access. This
708 change enhances the performance of namespace searches and walks by adding a
709 backpointer to the parent in each namespace node. On large namespaces, this
710 change can improve overall ACPI performance by up to 9X. Adding a pointer to
711 each namespace node increases the overall size of the internal namespace by
3391 about 5%, since each namespace entry usually consists of both a namespace
3392 node and an ACPI operand object. However, this is the first growth of the
3393 namespace in ten years. ACPICA bugzilla 817. Alexey Starikovskiy.

3395 Implemented a performance optimization that reduces the number of
3396 namespace
3397 walks. On control method exit, only walk the namespace if the method is
3398 known
3399 to have created namespace objects outside of its local scope. Previously,
3400 the
3401 entire namespace was traversed on each control method exit. This change
3402 can
3403 improve overall ACPI performance by up to 3X. Alexey Starikovskiy, Bob
3404 Moore.
716 Implemented a performance optimization that reduces the number of namespace
717 walks. On control method exit, only walk the namespace if the method is known
718 to have created namespace objects outside of its local scope. Previously, the
719 entire namespace was traversed on each control method exit. This change can
720 improve overall ACPI performance by up to 3X. Alexey Starikovskiy, Bob Moore.

3406 Added support to truncate I/O addresses to 16 bits for Windows
3407 compatibility.
722 Added support to truncate I/O addresses to 16 bits for Windows compatibility.
3408 Some ASL code has been seen in the field that inadvertently has bits set
3409 above bit 15. This feature is optional and is enabled if the BIOS
3410 requests
724 above bit 15. This feature is optional and is enabled if the BIOS requests
3411 any Windows OSI strings. It can also be enabled by the host OS. Matthew
3412 Garrett, Bob Moore.

3414 Added support to limit the maximum time for the ASL Sleep() operator. To
3415 prevent accidental deep sleeps, limit the maximum time that Sleep() will
3416 actually sleep. Configurable, the default maximum is two seconds. ACPICA
3417 bugzilla 854.

3419 Added run-time validation support for the _WDG and_WED Microsoft
3420 predefined
3421 methods. These objects are defined by "Windows Instrumentation", and are
3422 not

new/usr/src/common/acpica/changes.txt 56

733 Added run-time validation support for the _WDG and_WED Microsoft predefined
734 methods. These objects are defined by "Windows Instrumentation", and are not
3423 part of the ACPI spec. ACPICA BZ 860.

3425 Expanded all statistic counters used during namespace and device
3426 initialization from 16 to 32 bits in order to support very large
3427 namespaces.
738 initialization from 16 to 32 bits in order to support very large namespaces.

3429 Replaced all instances of %d in printf format specifiers with %u since
3430 nearly
740 Replaced all instances of %d in printf format specifiers with %u since nearly
3431 all integers in ACPICA are unsigned.

3433 Fixed the exception namestring for AE_WAKE_ONLY_GPE. Was incorrectly
3434 returned
743 Fixed the exception namestring for AE_WAKE_ONLY_GPE. Was incorrectly returned
3435 as AE_NO_HANDLER.

3437 Example Code and Data Size: These are the sizes for the OS-independent
3438 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
3439 debug version of the code includes the debug output trace mechanism and
3440 has a
748 debug version of the code includes the debug output trace mechanism and has a
3441 much larger code and data size.

3443 Previous Release:
3444 Non-Debug Version: 88.4K Code, 18.8K Data, 107.2K Total
3445 Debug Version: 164.2K Code, 51.5K Data, 215.7K Total
3446 Current Release:
3447 Non-Debug Version: 88.3K Code, 18.8K Data, 107.1K Total
3448 Debug Version: 164.1K Code, 51.5K Data, 215.6K Total

3450 2) iASL Compiler/Disassembler and Tools:

3452 iASL: Added compiler support for the _WDG and_WED Microsoft predefined
3453 methods. These objects are defined by "Windows Instrumentation", and are
3454 not
761 methods. These objects are defined by "Windows Instrumentation", and are not
3455 part of the ACPI spec. ACPICA BZ 860.

3457 AcpiExec: added option to disable the memory tracking mechanism. The -dt
3458 option will disable the tracking mechanism, which improves performance
3459 considerably.

3461 AcpiExec: Restructured the command line options into -d (disable) and -e
3462 (enable) options.

3464 --
3465 28 April 2010. Summary of changes for version 20100428:

3467 1) ACPI CA Core Subsystem:

3469 Implemented GPE support for dynamically loaded ACPI tables. For all GPEs,
3470 including FADT-based and GPE Block Devices, execute any _PRW methods in
3471 the
777 including FADT-based and GPE Block Devices, execute any _PRW methods in the
3472 new table, and process any _Lxx/_Exx GPE methods in the new table. Any
3473 runtime GPE that is referenced by an _Lxx/_Exx method in the new table is
3474 immediately enabled. Handles the FADT-defined GPEs as well as GPE Block
3475 Devices. Provides compatibility with other ACPI implementations. Two new
3476 files added, evgpeinit.c and evgpeutil.c. ACPICA BZ 833. Lin Ming, Bob
3477 Moore.
782 files added, evgpeinit.c and evgpeutil.c. ACPICA BZ 833. Lin Ming, Bob Moore.

3479 Fixed a regression introduced in version 20100331 within the table

new/usr/src/common/acpica/changes.txt 57

3480 manager
3481 where initial table loading could fail. This was introduced in the fix
3482 for
3483 AcpiReallocateRootTable. Also, renamed some of fields in the table
3484 manager
784 Fixed a regression introduced in version 20100331 within the table manager
785 where initial table loading could fail. This was introduced in the fix for
786 AcpiReallocateRootTable. Also, renamed some of fields in the table manager
3485 data structures to clarify their meaning and use.

3487 Fixed a possible allocation overrun during internal object copy in
3488 AcpiUtCopySimpleObject. The original code did not correctly handle the
3489 case
3490 where the object to be copied was a namespace node. Lin Ming. ACPICA BZ
3491 847.
790 AcpiUtCopySimpleObject. The original code did not correctly handle the case
791 where the object to be copied was a namespace node. Lin Ming. ACPICA BZ 847.

3493 Updated the allocation dump routine, AcpiUtDumpAllocation and fixed a
3494 possible access beyond end-of-allocation. Also, now fully validate
3495 descriptor
794 possible access beyond end-of-allocation. Also, now fully validate descriptor
3496 (size and type) before output. Lin Ming, Bob Moore. ACPICA BZ 847

3498 Example Code and Data Size: These are the sizes for the OS-independent
3499 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
3500 debug version of the code includes the debug output trace mechanism and
3501 has a
799 debug version of the code includes the debug output trace mechanism and has a
3502 much larger code and data size.

3504 Previous Release:
3505 Non-Debug Version: 87.9K Code, 18.6K Data, 106.5K Total
3506 Debug Version: 163.5K Code, 51.3K Data, 214.8K Total
3507 Current Release:
3508 Non-Debug Version: 88.4K Code, 18.8K Data, 107.2K Total
3509 Debug Version: 164.2K Code, 51.5K Data, 215.7K Total

3511 2) iASL Compiler/Disassembler and Tools:

3513 iASL: Implemented Min/Max/Len/Gran validation for address resource
3514 descriptors. This change implements validation for the address fields
3515 that
812 descriptors. This change implements validation for the address fields that
3516 are common to all address-type resource descriptors. These checks are
3517 implemented: Checks for valid Min/Max, length within the Min/Max window,
3518 valid granularity, Min/Max a multiple of granularity, and _MIF/_MAF as
3519 per
3520 table 6-40 in the ACPI 4.0a specification. Also split the large
3521 aslrestype1.c
815 valid granularity, Min/Max a multiple of granularity, and _MIF/_MAF as per
816 table 6-40 in the ACPI 4.0a specification. Also split the large aslrestype1.c
3522 and aslrestype2.c files into five new files. ACPICA BZ 840.

3524 iASL: Added support for the _Wxx predefined names. This support was
3525 missing
819 iASL: Added support for the _Wxx predefined names. This support was missing
3526 and these names were not recognized by the compiler as valid predefined
3527 names. ACPICA BZ 851.

3529 iASL: Added an error for all predefined names that are defined to return
3530 no
3531 value and thus must be implemented as Control Methods. These include all
3532 of
823 iASL: Added an error for all predefined names that are defined to return no
824 value and thus must be implemented as Control Methods. These include all of

new/usr/src/common/acpica/changes.txt 58

3533 the _Lxx, _Exx, _Wxx, and _Qxx names, as well as some other miscellaneous
3534 names such as _DIS, _INI, _IRC, _OFF, _ON, and _PSx. ACPICA BZ 850, 856.

3536 iASL: Implemented the -ts option to emit hex AML data in ASL format, as
3537 an
3538 ASL Buffer. Allows ACPI tables to be easily included within ASL files, to
3539 be
3540 dynamically loaded via the Load() operator. Also cleaned up output for
3541 the
3542 -
828 iASL: Implemented the -ts option to emit hex AML data in ASL format, as an
829 ASL Buffer. Allows ACPI tables to be easily included within ASL files, to be
830 dynamically loaded via the Load() operator. Also cleaned up output for the -
3543 ta and -tc options. ACPICA BZ 853.

3545 Tests: Added a new file with examples of extended iASL error checking.
3546 Demonstrates the advanced error checking ability of the iASL compiler.
3547 Available at tests/misc/badcode.asl.

3549 --
3550 31 March 2010. Summary of changes for version 20100331:

3552 1) ACPI CA Core Subsystem:

3554 Completed a major update for the GPE support in order to improve support
3555 for
3556 shared GPEs and to simplify both host OS and ACPICA code. Added a
3557 reference
3558 count mechanism to support shared GPEs that require multiple device
3559 drivers.
842 Completed a major update for the GPE support in order to improve support for
843 shared GPEs and to simplify both host OS and ACPICA code. Added a reference
844 count mechanism to support shared GPEs that require multiple device drivers.
3560 Several external interfaces have changed. One external interface has been
3561 removed. One new external interface was added. Most of the GPE external
3562 interfaces now use the GPE spinlock instead of the events mutex (and the
3563 Flags parameter for many GPE interfaces has been removed.) See the
3564 updated
3565 ACPICA Programmer Reference for details. Matthew Garrett, Bob Moore,
3566 Rafael
848 Flags parameter for many GPE interfaces has been removed.) See the updated
849 ACPICA Programmer Reference for details. Matthew Garrett, Bob Moore, Rafael
3567 Wysocki. ACPICA BZ 831.

3569 Changed:
3570 AcpiEnableGpe, AcpiDisableGpe, AcpiClearGpe, AcpiGetGpeStatus
3571 Removed:
3572 AcpiSetGpeType
3573 New:
3574 AcpiSetGpe

3576 Implemented write support for DataTable operation regions. These regions
3577 are
3578 defined via the DataTableRegion() operator. Previously, only read support
3579 was
3580 implemented. The ACPI specification allows DataTableRegions to be
3581 read/write,
859 Implemented write support for DataTable operation regions. These regions are
860 defined via the DataTableRegion() operator. Previously, only read support was
861 implemented. The ACPI specification allows DataTableRegions to be read/write,
3582 however.

3584 Implemented a new subsystem option to force a copy of the DSDT to local
3585 memory. Optionally copy the entire DSDT to local memory (instead of
3586 simply
3587 mapping it.) There are some (albeit very rare) BIOSs that corrupt or

new/usr/src/common/acpica/changes.txt 59

3588 replace
3589 the original DSDT, creating the need for this option. Default is FALSE,
3590 do
865 memory. Optionally copy the entire DSDT to local memory (instead of simply
866 mapping it.) There are some (albeit very rare) BIOSs that corrupt or replace
867 the original DSDT, creating the need for this option. Default is FALSE, do
3591 not copy the DSDT.

3593 Implemented detection of a corrupted or replaced DSDT. This change adds
3594 support to detect a DSDT that has been corrupted and/or replaced from
3595 outside
3596 the OS (by firmware). This is typically catastrophic for the system, but
3597 has
871 support to detect a DSDT that has been corrupted and/or replaced from outside
872 the OS (by firmware). This is typically catastrophic for the system, but has
3598 been seen on some machines. Once this problem has been detected, the DSDT
3599 copy option can be enabled via system configuration. Lin Ming, Bob Moore.

3601 Fixed two problems with AcpiReallocateRootTable during the root table
3602 copy.
876 Fixed two problems with AcpiReallocateRootTable during the root table copy.
3603 When copying the root table to the new allocation, the length used was
3604 incorrect. The new size was used instead of the current table size,
3605 meaning
3606 too much data was copied. Also, the count of available slots for ACPI
3607 tables
878 incorrect. The new size was used instead of the current table size, meaning
879 too much data was copied. Also, the count of available slots for ACPI tables
3608 was not set correctly. Alexey Starikovskiy, Bob Moore.

3610 Example Code and Data Size: These are the sizes for the OS-independent
3611 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
3612 debug version of the code includes the debug output trace mechanism and
3613 has a
884 debug version of the code includes the debug output trace mechanism and has a
3614 much larger code and data size.

3616 Previous Release:
3617 Non-Debug Version: 87.5K Code, 18.4K Data, 105.9K Total
3618 Debug Version: 163.4K Code, 51.1K Data, 214.5K Total
3619 Current Release:
3620 Non-Debug Version: 87.9K Code, 18.6K Data, 106.5K Total
3621 Debug Version: 163.5K Code, 51.3K Data, 214.8K Total

3623 2) iASL Compiler/Disassembler and Tools:

3625 iASL: Implement limited typechecking for values returned from predefined
3626 control methods. The type of any returned static (unnamed) object is now
3627 validated. For example, Return(1). ACPICA BZ 786.

3629 iASL: Fixed a predefined name object verification regression. Fixes a
3630 problem
900 iASL: Fixed a predefined name object verification regression. Fixes a problem
3631 introduced in version 20100304. An error is incorrectly generated if a
3632 predefined name is declared as a static named object with a value defined
3633 using the keywords "Zero", "One", or "Ones". Lin Ming.

3635 iASL: Added Windows 7 support for the -g option (get local ACPI tables)
3636 by
905 iASL: Added Windows 7 support for the -g option (get local ACPI tables) by
3637 reducing the requested registry access rights. ACPICA BZ 842.

3639 Disassembler: fixed a possible fault when generating External()
3640 statements.
3641 Introduced in commit ae7d6fd: Properly handle externals with parent-
3642 prefix

new/usr/src/common/acpica/changes.txt 60

908 Disassembler: fixed a possible fault when generating External() statements.
909 Introduced in commit ae7d6fd: Properly handle externals with parent-prefix
3643 (carat). Fixes a string length allocation calculation. Lin Ming.

3645 --
3646 04 March 2010. Summary of changes for version 20100304:

3648 1) ACPI CA Core Subsystem:

3650 Fixed a possible problem with the AML Mutex handling function
3651 AcpiExReleaseMutex where the function could fault under the very rare
3652 condition when the interpreter has blocked, the interpreter lock is
3653 released,
919 condition when the interpreter has blocked, the interpreter lock is released,
3654 the interpreter is then reentered via the same thread, and attempts to
3655 acquire an AML mutex that was previously acquired. FreeBSD report 140979.
3656 Lin
921 acquire an AML mutex that was previously acquired. FreeBSD report 140979. Lin
3657 Ming.

3659 Implemented additional configuration support for the AML "Debug Object".
3660 Output from the debug object can now be enabled via a global variable,
3661 AcpiGbl_EnableAmlDebugObject. This will assist with remote machine
3662 debugging.
3663 This debug output is now available in the release version of ACPICA
3664 instead
3665 of just the debug version. Also, the entire debug output module can now
3666 be
926 AcpiGbl_EnableAmlDebugObject. This will assist with remote machine debugging.
927 This debug output is now available in the release version of ACPICA instead
928 of just the debug version. Also, the entire debug output module can now be
3667 configured out of the ACPICA build if desired. One new file added,
3668 executer/exdebug.c. Lin Ming, Bob Moore.

3670 Added header support for the ACPI MCHI table (Management Controller Host
3671 Interface Table). This table was added in ACPI 4.0, but the defining
3672 document
933 Interface Table). This table was added in ACPI 4.0, but the defining document
3673 has only recently become available.

3675 Standardized output of integer values for ACPICA warnings/errors. Always
3676 use
3677 0x prefix for hex output, always use %u for unsigned integer decimal
3678 output.
3679 Affects ACPI_INFO, ACPI_ERROR, ACPI_EXCEPTION, and ACPI_WARNING (about
3680 400
936 Standardized output of integer values for ACPICA warnings/errors. Always use
937 0x prefix for hex output, always use %u for unsigned integer decimal output.
938 Affects ACPI_INFO, ACPI_ERROR, ACPI_EXCEPTION, and ACPI_WARNING (about 400
3681 invocations.) These invocations were converted from the original
3682 ACPI_DEBUG_PRINT invocations and were not consistent. ACPICA BZ 835.

3684 Example Code and Data Size: These are the sizes for the OS-independent
3685 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
3686 debug version of the code includes the debug output trace mechanism and
3687 has a
944 debug version of the code includes the debug output trace mechanism and has a
3688 much larger code and data size.

3690 Previous Release:
3691 Non-Debug Version: 87.1K Code, 18.0K Data, 105.1K Total
3692 Debug Version: 163.5K Code, 50.9K Data, 214.4K Total
3693 Current Release:
3694 Non-Debug Version: 87.5K Code, 18.4K Data, 105.9K Total
3695 Debug Version: 163.4K Code, 51.1K Data, 214.5K Total

new/usr/src/common/acpica/changes.txt 61

3697 2) iASL Compiler/Disassembler and Tools:

3699 iASL: Implemented typechecking support for static (non-control method)
3700 predefined named objects that are declared with the Name() operator. For
3701 example, the type of this object is now validated to be of type Integer:
3702 Name(_BBN, 1). This change migrates the compiler to using the core
3703 predefined
959 Name(_BBN, 1). This change migrates the compiler to using the core predefined
3704 name table instead of maintaining a local version. Added a new file,
3705 aslpredef.c. ACPICA BZ 832.

3707 Disassembler: Added support for the ACPI 4.0 MCHI table.

3709 --
3710 21 January 2010. Summary of changes for version 20100121:

3712 1) ACPI CA Core Subsystem:

3714 Added the 2010 copyright to all module headers and signons. This affects
3715 virtually every file in the ACPICA core subsystem, the iASL compiler, the
3716 tools/utilities, and the test suites.

3718 Implemented a change to the AcpiGetDevices interface to eliminate
3719 unnecessary
974 Implemented a change to the AcpiGetDevices interface to eliminate unnecessary
3720 invocations of the _STA method. In the case where a specific _HID is
3721 requested, do not run _STA until a _HID match is found. This eliminates
3722 potentially dozens of _STA calls during a search for a particular
3723 device/HID,
977 potentially dozens of _STA calls during a search for a particular device/HID,
3724 which in turn can improve boot times. ACPICA BZ 828. Lin Ming.

3726 Implemented an additional repair for predefined method return values.
3727 Attempt
3728 to repair unexpected NULL elements within returned Package objects.
3729 Create
3730 an
3731 Integer of value zero, a NULL String, or a zero-length Buffer as
3732 appropriate.
980 Implemented an additional repair for predefined method return values. Attempt
981 to repair unexpected NULL elements within returned Package objects. Create an
982 Integer of value zero, a NULL String, or a zero-length Buffer as appropriate.
3733 ACPICA BZ 818. Lin Ming, Bob Moore.

3735 Removed the obsolete ACPI_INTEGER data type. This type was introduced as
3736 the
3737 code was migrated from ACPI 1.0 (with 32-bit AML integers) to ACPI 2.0
3738 (with
3739 64-bit AML integers). It is now obsolete and this change removes it from
3740 the
3741 ACPICA code base, replaced by UINT64. The original typedef has been
3742 retained
3743 for now for compatibility with existing device driver code. ACPICA BZ
3744 824.
985 Removed the obsolete ACPI_INTEGER data type. This type was introduced as the
986 code was migrated from ACPI 1.0 (with 32-bit AML integers) to ACPI 2.0 (with
987 64-bit AML integers). It is now obsolete and this change removes it from the
988 ACPICA code base, replaced by UINT64. The original typedef has been retained
989 for now for compatibility with existing device driver code. ACPICA BZ 824.

3746 Removed the unused UINT32_STRUCT type, and the obsolete Integer64 field
3747 in
991 Removed the unused UINT32_STRUCT type, and the obsolete Integer64 field in
3748 the parse tree object.

3750 Added additional warning options for the gcc-4 generation. Updated the

new/usr/src/common/acpica/changes.txt 62

3751 source
3752 accordingly. This includes some code restructuring to eliminate
3753 unreachable
3754 code, elimination of some gotos, elimination of unused return values,
3755 some
994 Added additional warning options for the gcc-4 generation. Updated the source
995 accordingly. This includes some code restructuring to eliminate unreachable
996 code, elimination of some gotos, elimination of unused return values, some
3756 additional casting, and removal of redundant declarations.

3758 Example Code and Data Size: These are the sizes for the OS-independent
3759 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
3760 debug version of the code includes the debug output trace mechanism and
3761 has a
1001 debug version of the code includes the debug output trace mechanism and has a
3762 much larger code and data size.

3764 Previous Release:
3765 Non-Debug Version: 87.0K Code, 18.0K Data, 105.0K Total
3766 Debug Version: 163.4K Code, 50.8K Data, 214.2K Total
3767 Current Release:
3768 Non-Debug Version: 87.1K Code, 18.0K Data, 105.1K Total
3769 Debug Version: 163.5K Code, 50.9K Data, 214.4K Total

3771 2) iASL Compiler/Disassembler and Tools:

3773 No functional changes for this release.

3775 --
3776 14 December 2009. Summary of changes for version 20091214:

3778 1) ACPI CA Core Subsystem:

3780 Enhanced automatic data type conversions for predefined name repairs.
3781 This
3782 change expands the automatic repairs/conversions for predefined name
3783 return
3784 values to make Integers, Strings, and Buffers fully interchangeable.
3785 Also,
3786 a
3787 Buffer can be converted to a Package of Integers if necessary. The
3788 nsrepair.c
1020 Enhanced automatic data type conversions for predefined name repairs. This
1021 change expands the automatic repairs/conversions for predefined name return
1022 values to make Integers, Strings, and Buffers fully interchangeable. Also, a
1023 Buffer can be converted to a Package of Integers if necessary. The nsrepair.c
3789 module was completely restructured. Lin Ming, Bob Moore.

3791 Implemented automatic removal of null package elements during predefined
3792 name
1026 Implemented automatic removal of null package elements during predefined name
3793 repairs. This change will automatically remove embedded and trailing NULL
3794 package elements from returned package objects that are defined to
3795 contain
3796 a
3797 variable number of sub-packages. The driver is then presented with a
3798 package
1028 package elements from returned package objects that are defined to contain a
1029 variable number of sub-packages. The driver is then presented with a package
3799 with no null elements to deal with. ACPICA BZ 819.

3801 Implemented a repair for the predefined _FDE and _GTM names. The expected
3802 return value for both names is a Buffer of 5 DWORDs. This repair fixes
3803 two
3804 possible problems (both seen in the field), where a package of integers
3805 is

new/usr/src/common/acpica/changes.txt 63

3806 returned, or a buffer of BYTEs is returned. With assistance from Jung-uk
3807 Kim.
1033 return value for both names is a Buffer of 5 DWORDs. This repair fixes two
1034 possible problems (both seen in the field), where a package of integers is
1035 returned, or a buffer of BYTEs is returned. With assistance from Jung-uk Kim.

3809 Implemented additional module-level code support. This change will
3810 properly
3811 execute module-level code that is not at the root of the namespace (under
3812 a
3813 Device object, etc.). Now executes the code within the current scope
3814 instead
1037 Implemented additional module-level code support. This change will properly
1038 execute module-level code that is not at the root of the namespace (under a
1039 Device object, etc.). Now executes the code within the current scope instead
3815 of the root. ACPICA BZ 762. Lin Ming.

3817 Fixed possible mutex acquisition errors when running _REG methods. Fixes
3818 a
3819 problem where mutex errors can occur when running a _REG method that is
3820 in
3821 the same scope as a method-defined operation region or an operation
3822 region
3823 under a module-level IF block. This type of code is rare, so the problem
3824 has
1042 Fixed possible mutex acquisition errors when running _REG methods. Fixes a
1043 problem where mutex errors can occur when running a _REG method that is in
1044 the same scope as a method-defined operation region or an operation region
1045 under a module-level IF block. This type of code is rare, so the problem has
3825 not been seen before. ACPICA BZ 826. Lin Ming, Bob Moore.

3827 Fixed a possible memory leak during module-level code execution. An
3828 object
1048 Fixed a possible memory leak during module-level code execution. An object
3829 could be leaked for each block of executed module-level code if the
3830 interpreter slack mode is enabled This change deletes any implicitly
3831 returned
1050 interpreter slack mode is enabled This change deletes any implicitly returned
3832 object from the module-level code block. Lin Ming.

3834 Removed messages for successful predefined repair(s). The repair
3835 mechanism
3836 was considered too wordy. Now, messages are only unconditionally emitted
3837 if
1053 Removed messages for successful predefined repair(s). The repair mechanism
1054 was considered too wordy. Now, messages are only unconditionally emitted if
3838 the return object cannot be repaired. Existing messages for successful
3839 repairs were converted to ACPI_DEBUG_PRINT messages for now. ACPICA BZ
3840 827.
1056 repairs were converted to ACPI_DEBUG_PRINT messages for now. ACPICA BZ 827.

3842 Example Code and Data Size: These are the sizes for the OS-independent
3843 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
3844 debug version of the code includes the debug output trace mechanism and
3845 has a
1060 debug version of the code includes the debug output trace mechanism and has a
3846 much larger code and data size.

3848 Previous Release:
3849 Non-Debug Version: 86.6K Code, 18.2K Data, 104.8K Total
3850 Debug Version: 162.7K Code, 50.8K Data, 213.5K Total
3851 Current Release:
3852 Non-Debug Version: 87.0K Code, 18.0K Data, 105.0K Total
3853 Debug Version: 163.4K Code, 50.8K Data, 214.2K Total

3855 2) iASL Compiler/Disassembler and Tools:

new/usr/src/common/acpica/changes.txt 64

3857 iASL: Fixed a regression introduced in 20091112 where intermediate .SRC
3858 files
1072 iASL: Fixed a regression introduced in 20091112 where intermediate .SRC files
3859 were no longer automatically removed at the termination of the compile.

3861 acpiexec: Implemented the -f option to specify default region fill value.
3862 This option specifies the value used to initialize buffers that simulate
3863 operation regions. Default value is zero. Useful for debugging problems
3864 that
1077 operation regions. Default value is zero. Useful for debugging problems that
3865 depend on a specific initial value for a region or field.

3867 --
3868 12 November 2009. Summary of changes for version 20091112:

3870 1) ACPI CA Core Subsystem:

3872 Implemented a post-order callback to AcpiWalkNamespace. The existing
3873 interface only has a pre-order callback. This change adds an additional
3874 parameter for a post-order callback which will be more useful for bus
3875 scans.
1087 parameter for a post-order callback which will be more useful for bus scans.
3876 ACPICA BZ 779. Lin Ming. Updated the ACPICA Programmer Reference.

3878 Modified the behavior of the operation region memory mapping cache for
3879 SystemMemory. Ensure that the memory mappings created for operation
3880 regions
1091 SystemMemory. Ensure that the memory mappings created for operation regions
3881 do not cross 4K page boundaries. Crossing a page boundary while mapping
3882 regions can cause kernel warnings on some hosts if the pages have
3883 different
3884 attributes. Such regions are probably BIOS bugs, and this is the
3885 workaround.
1093 regions can cause kernel warnings on some hosts if the pages have different
1094 attributes. Such regions are probably BIOS bugs, and this is the workaround.
3886 Linux BZ 14445. Lin Ming.

3888 Implemented an automatic repair for predefined methods that must return
3889 sorted lists. This change will repair (by sorting) packages returned by
3890 _ALR,
3891 _PSS, and _TSS. Drivers can now assume that the packages are correctly
3892 sorted
1098 sorted lists. This change will repair (by sorting) packages returned by _ALR,
1099 _PSS, and _TSS. Drivers can now assume that the packages are correctly sorted
3893 and do not contain NULL package elements. Adds one new file,
3894 namespace/nsrepair2.c. ACPICA BZ 784. Lin Ming, Bob Moore.

3896 Fixed a possible fault during predefined name validation if a return
3897 Package
1103 Fixed a possible fault during predefined name validation if a return Package
3898 object contains NULL elements. Also adds a warning if a NULL element is
3899 followed by any non-null elements. ACPICA BZ 813, 814. Future enhancement
3900 may
1105 followed by any non-null elements. ACPICA BZ 813, 814. Future enhancement may
3901 include repair or removal of all such NULL elements where possible.

3903 Implemented additional module-level executable AML code support. This
3904 change
1108 Implemented additional module-level executable AML code support. This change
3905 will execute module-level code that is not at the root of the namespace
3906 (under a Device object, etc.) at table load time. Module-level executable
3907 AML
1110 (under a Device object, etc.) at table load time. Module-level executable AML
3908 code has been illegal since ACPI 2.0. ACPICA BZ 762. Lin Ming.

new/usr/src/common/acpica/changes.txt 65

3910 Implemented a new internal function to create Integer objects. This
3911 function
1113 Implemented a new internal function to create Integer objects. This function
3912 simplifies miscellaneous object creation code. ACPICA BZ 823.

3914 Reduced the severity of predefined repair messages, Warning to Info.
3915 Since
3916 the object was successfully repaired, a warning is too severe. Reduced to
3917 an
3918 info message for now. These messages may eventually be changed to debug-
3919 only.
1116 Reduced the severity of predefined repair messages, Warning to Info. Since
1117 the object was successfully repaired, a warning is too severe. Reduced to an
1118 info message for now. These messages may eventually be changed to debug-only.
3920 ACPICA BZ 812.

3922 Example Code and Data Size: These are the sizes for the OS-independent
3923 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
3924 debug version of the code includes the debug output trace mechanism and
3925 has a
1123 debug version of the code includes the debug output trace mechanism and has a
3926 much larger code and data size.

3928 Previous Release:
3929 Non-Debug Version: 85.8K Code, 18.0K Data, 103.8K Total
3930 Debug Version: 161.8K Code, 50.6K Data, 212.4K Total
3931 Current Release:
3932 Non-Debug Version: 86.6K Code, 18.2K Data, 104.8K Total
3933 Debug Version: 162.7K Code, 50.8K Data, 213.5K Total

3935 2) iASL Compiler/Disassembler and Tools:

3937 iASL: Implemented Switch() with While(1) so that Break works correctly.
3938 This
3939 change correctly implements the Switch operator with a surrounding
3940 While(1)
1135 iASL: Implemented Switch() with While(1) so that Break works correctly. This
1136 change correctly implements the Switch operator with a surrounding While(1)
3941 so that the Break operator works as expected. ACPICA BZ 461. Lin Ming.

3943 iASL: Added a message if a package initializer list is shorter than
3944 package
3945 length. Adds a new remark for a Package() declaration if an initializer
3946 list
1139 iASL: Added a message if a package initializer list is shorter than package
1140 length. Adds a new remark for a Package() declaration if an initializer list
3947 exists, but is shorter than the declared length of the package. Although
3948 technically legal, this is probably a coding error and it is seen in the
3949 field. ACPICA BZ 815. Lin Ming, Bob Moore.

3951 iASL: Fixed a problem where the compiler could fault after the maximum
3952 number
1145 iASL: Fixed a problem where the compiler could fault after the maximum number
3953 of errors was reached (200).

3955 acpixtract: Fixed a possible warning for pointer cast if the compiler
3956 warning
1148 acpixtract: Fixed a possible warning for pointer cast if the compiler warning
3957 level set very high.

3959 --
3960 13 October 2009. Summary of changes for version 20091013:

3962 1) ACPI CA Core Subsystem:

3964 Fixed a problem where an Operation Region _REG method could be executed

new/usr/src/common/acpica/changes.txt 66

3965 more
3966 than once. If a custom address space handler is installed by the host
3967 before
3968 the "initialize operation regions" phase of the ACPICA initialization,
3969 any
1156 Fixed a problem where an Operation Region _REG method could be executed more
1157 than once. If a custom address space handler is installed by the host before
1158 the "initialize operation regions" phase of the ACPICA initialization, any
3970 _REG methods for that address space could be executed twice. This change
3971 fixes the problem. ACPICA BZ 427. Lin Ming.

3973 Fixed a possible memory leak for the Scope() ASL operator. When the exact
3974 invocation of "Scope(\)" is executed (change scope to root), one internal
3975 operand object was leaked. Lin Ming.

3977 Implemented a run-time repair for the _MAT predefined method. If the _MAT
3978 return value is defined as a Field object in the AML, and the field
3979 size is less than or equal to the default width of an integer (32 or
3980 64),_MAT
1168 size is less than or equal to the default width of an integer (32 or 64),_MAT
3981 can incorrectly return an Integer instead of a Buffer. ACPICA now
3982 automatically repairs this problem. ACPICA BZ 810.

3984 Implemented a run-time repair for the _BIF and _BIX predefined methods.
3985 The
1172 Implemented a run-time repair for the _BIF and _BIX predefined methods. The
3986 "OEM Information" field is often incorrectly returned as an Integer with
3987 value zero if the field is not supported by the platform. This is due to
3988 an
1174 value zero if the field is not supported by the platform. This is due to an
3989 ambiguity in the ACPI specification. The field should always be a string.
3990 ACPICA now automatically repairs this problem by returning a NULL string
3991 within the returned Package. ACPICA BZ 807.

3993 Example Code and Data Size: These are the sizes for the OS-independent
3994 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
3995 debug version of the code includes the debug output trace mechanism and
3996 has a
1181 debug version of the code includes the debug output trace mechanism and has a
3997 much larger code and data size.

3999 Previous Release:
4000 Non-Debug Version: 85.6K Code, 18.0K Data, 103.6K Total
4001 Debug Version: 161.7K Code, 50.9K Data, 212.6K Total
4002 Current Release:
4003 Non-Debug Version: 85.8K Code, 18.0K Data, 103.8K Total
4004 Debug Version: 161.8K Code, 50.6K Data, 212.4K Total

4006 2) iASL Compiler/Disassembler and Tools:

4008 Disassembler: Fixed a problem where references to external symbols that
4009 contained one or more parent-prefixes (carats) were not handled
4010 correctly,
1194 contained one or more parent-prefixes (carats) were not handled correctly,
4011 possibly causing a fault. ACPICA BZ 806. Lin Ming.

4013 Disassembler: Restructured the code so that all functions that handle
4014 external symbols are in a single module. One new file is added,
4015 common/dmextern.c.

4017 AML Debugger: Added a max count argument for the Batch command (which
4018 executes multiple predefined methods within the namespace.)

4020 iASL: Updated the compiler documentation (User Reference.) Available at
4021 http://www.acpica.org/documentation/. ACPICA BZ 750.

new/usr/src/common/acpica/changes.txt 67

4023 AcpiXtract: Updated for Lint and other formatting changes. Close all open
4024 files.

4026 --
4027 03 September 2009. Summary of changes for version 20090903:

4029 1) ACPI CA Core Subsystem:

4031 For Windows Vista compatibility, added the automatic execution of an _INI
4032 method located at the namespace root (_INI). This method is executed at
4033 table load time. This support is in addition to the automatic execution
4034 of
1217 table load time. This support is in addition to the automatic execution of
4035 _SB._INI. Lin Ming.

4037 Fixed a possible memory leak in the interpreter for AML package objects
4038 if
4039 the package initializer list is longer than the defined size of the
4040 package.
4041 This apparently can only happen if the BIOS changes the package size on
4042 the
1220 Fixed a possible memory leak in the interpreter for AML package objects if
1221 the package initializer list is longer than the defined size of the package.
1222 This apparently can only happen if the BIOS changes the package size on the
4043 fly (seen in a _PSS object), as ASL compilers do not allow this. The
4044 interpreter will truncate the package to the defined size (and issue an
4045 error
4046 message), but previously could leave the extra objects undeleted if they
4047 were
4048 pre-created during the argument processing (such is the case if the
4049 package
1224 interpreter will truncate the package to the defined size (and issue an error
1225 message), but previously could leave the extra objects undeleted if they were
1226 pre-created during the argument processing (such is the case if the package
4050 consists of a number of sub-packages as in the _PSS.) ACPICA BZ 805.

4052 Fixed a problem seen when a Buffer or String is stored to itself via ASL.
4053 This has been reported in the field. Previously, ACPICA would zero out
4054 the
1230 This has been reported in the field. Previously, ACPICA would zero out the
4055 buffer/string. Now, the operation is treated as a noop. Provides Windows
4056 compatibility. ACPICA BZ 803. Lin Ming.

4058 Removed an extraneous error message for ASL constructs of the form
4059 Store(LocalX,LocalX) when LocalX is uninitialized. These curious
4060 statements
4061 are seen in many BIOSs and are once again treated as NOOPs and no error
4062 is
1235 Store(LocalX,LocalX) when LocalX is uninitialized. These curious statements
1236 are seen in many BIOSs and are once again treated as NOOPs and no error is
4063 emitted when they are encountered. ACPICA BZ 785.

4065 Fixed an extraneous warning message if a _DSM reserved method returns a
4066 Package object. _DSM can return any type of object, so validation on the
4067 return type cannot be performed. ACPICA BZ 802.

4069 Example Code and Data Size: These are the sizes for the OS-independent
4070 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
4071 debug version of the code includes the debug output trace mechanism and
4072 has a
1245 debug version of the code includes the debug output trace mechanism and has a
4073 much larger code and data size.

4075 Previous Release:
4076 Non-Debug Version: 85.5K Code, 18.0K Data, 103.5K Total
4077 Debug Version: 161.6K Code, 50.9K Data, 212.5K Total

new/usr/src/common/acpica/changes.txt 68

4078 Current Release:
4079 Non-Debug Version: 85.6K Code, 18.0K Data, 103.6K Total
4080 Debug Version: 161.7K Code, 50.9K Data, 212.6K Total

4082 2) iASL Compiler/Disassembler and Tools:

4084 iASL: Fixed a problem with the use of the Alias operator and Resource
4085 Templates. The correct alias is now constructed and no error is emitted.
4086 ACPICA BZ 738.

4088 iASL: Implemented the -I option to specify additional search directories
4089 for
1261 iASL: Implemented the -I option to specify additional search directories for
4090 include files. Allows multiple additional search paths for include files.
4091 Directories are searched in the order specified on the command line
4092 (after
1263 Directories are searched in the order specified on the command line (after
4093 the local directory is searched.) ACPICA BZ 800.

4095 iASL: Fixed a problem where the full pathname for include files was not
4096 emitted for warnings/errors. This caused the IDE support to not work
4097 properly. ACPICA BZ 765.

4099 iASL: Implemented the -@ option to specify a Windows-style response file
4100 containing additional command line options. ACPICA BZ 801.

4102 AcpiExec: Added support to load multiple AML files simultaneously (such
4103 as
4104 a
1273 AcpiExec: Added support to load multiple AML files simultaneously (such as a
4105 DSDT and multiple SSDTs). Also added support for wildcards within the AML
4106 pathname. These features allow all machine tables to be easily loaded and
4107 debugged together. ACPICA BZ 804.

4109 Disassembler: Added missing support for disassembly of HEST table Error
4110 Bank
1278 Disassembler: Added missing support for disassembly of HEST table Error Bank
4111 subtables.

4113 --
4114 30 July 2009. Summary of changes for version 20090730:

4116 The ACPI 4.0 implementation for ACPICA is complete with this release.

4118 1) ACPI CA Core Subsystem:

4120 ACPI 4.0: Added header file support for all new and changed ACPI tables.
4121 Completely new tables are: IBFT, IVRS, MSCT, and WAET. Tables that are
4122 new
4123 for ACPI 4.0, but have previously been supported in ACPICA are: CPEP,
4124 BERT,
4125 EINJ, ERST, and HEST. Other newly supported tables are: UEFI and WDAT.
4126 There
1289 Completely new tables are: IBFT, IVRS, MSCT, and WAET. Tables that are new
1290 for ACPI 4.0, but have previously been supported in ACPICA are: CPEP, BERT,
1291 EINJ, ERST, and HEST. Other newly supported tables are: UEFI and WDAT. There
4127 have been some ACPI 4.0 changes to other existing tables. Split the large
4128 actbl1.h header into the existing actbl2.h header. ACPICA BZ 774.

4130 ACPI 4.0: Implemented predefined name validation for all new names. There
4131 are
4132 31 new names in ACPI 4.0. The predefined validation module was split into
4133 two
1295 ACPI 4.0: Implemented predefined name validation for all new names. There are
1296 31 new names in ACPI 4.0. The predefined validation module was split into two
4134 files. The new file is namespace/nsrepair.c. ACPICA BZ 770.

new/usr/src/common/acpica/changes.txt 69

4136 Implemented support for so-called "module-level executable code". This is
4137 executable AML code that exists outside of any control method and is
4138 intended
4139 to be executed at table load time. Although illegal since ACPI 2.0, this
4140 type
4141 of code still exists and is apparently still being created. Blocks of
4142 this
4143 code are now detected and executed as intended. Currently, the code
4144 blocks
1300 executable AML code that exists outside of any control method and is intended
1301 to be executed at table load time. Although illegal since ACPI 2.0, this type
1302 of code still exists and is apparently still being created. Blocks of this
1303 code are now detected and executed as intended. Currently, the code blocks
4145 must exist under either an If, Else, or While construct; these are the
4146 typical cases seen in the field. ACPICA BZ 762. Lin Ming.

4148 Implemented an automatic dynamic repair for predefined names that return
4149 nested Package objects. This applies to predefined names that are defined
4150 to
1308 nested Package objects. This applies to predefined names that are defined to
4151 return a variable-length Package of sub-packages. If the number of sub-
4152 packages is one, BIOS code is occasionally seen that creates a simple
4153 single
1310 packages is one, BIOS code is occasionally seen that creates a simple single
4154 package with no sub-packages. This code attempts to fix the problem by
4155 wrapping a new package object around the existing package. These methods
4156 can
4157 be repaired: _ALR, _CSD, _HPX, _MLS, _PRT, _PSS, _TRT, and _TSS. ACPICA
4158 BZ
1312 wrapping a new package object around the existing package. These methods can
1313 be repaired: _ALR, _CSD, _HPX, _MLS, _PRT, _PSS, _TRT, and _TSS. ACPICA BZ
4159 790.

4161 Fixed a regression introduced in 20090625 for the AcpiGetDevices
4162 interface.
4163 The _HID/_CID matching was broken and no longer matched IDs correctly.
4164 ACPICA
1316 Fixed a regression introduced in 20090625 for the AcpiGetDevices interface.
1317 The _HID/_CID matching was broken and no longer matched IDs correctly. ACPICA
4165 BZ 793.

4167 Fixed a problem with AcpiReset where the reset would silently fail if the
4168 register was one of the protected I/O ports. AcpiReset now bypasses the
4169 port
4170 validation mechanism. This may eventually be driven into the
4171 AcpiRead/Write
1321 register was one of the protected I/O ports. AcpiReset now bypasses the port
1322 validation mechanism. This may eventually be driven into the AcpiRead/Write
4172 interfaces.

4174 Fixed a regression related to the recent update of the AcpiRead/Write
4175 interfaces. A sleep/suspend could fail if the optional PM2 Control
4176 register
1326 interfaces. A sleep/suspend could fail if the optional PM2 Control register
4177 does not exist during an attempt to write the Bus Master Arbitration bit.
4178 (However, some hosts already delete the code that writes this bit, and
4179 the
1328 (However, some hosts already delete the code that writes this bit, and the
4180 code may in fact be obsolete at this date.) ACPICA BZ 799.

4182 Fixed a problem where AcpiTerminate could fault if inadvertently called
4183 twice
1331 Fixed a problem where AcpiTerminate could fault if inadvertently called twice
4184 in succession. ACPICA BZ 795.

new/usr/src/common/acpica/changes.txt 70

4186 Example Code and Data Size: These are the sizes for the OS-independent
4187 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
4188 debug version of the code includes the debug output trace mechanism and
4189 has a
1336 debug version of the code includes the debug output trace mechanism and has a
4190 much larger code and data size.

4192 Previous Release:
4193 Non-Debug Version: 84.7K Code, 17.8K Data, 102.5K Total
4194 Debug Version: 160.5K Code, 50.6K Data, 211.1K Total
4195 Current Release:
4196 Non-Debug Version: 85.5K Code, 18.0K Data, 103.5K Total
4197 Debug Version: 161.6K Code, 50.9K Data, 212.5K Total

4199 2) iASL Compiler/Disassembler and Tools:

4201 ACPI 4.0: Implemented disassembler support for all new ACPI tables and
4202 changes to existing tables. ACPICA BZ 775.

4204 --
4205 25 June 2009. Summary of changes for version 20090625:

4207 The ACPI 4.0 Specification was released on June 16 and is available at
4208 www.acpi.info. ACPICA implementation of ACPI 4.0 is underway and will
4209 continue for the next few releases.

4211 1) ACPI CA Core Subsystem:

4213 ACPI 4.0: Implemented interpreter support for the IPMI operation region
4214 address space. Includes support for bi-directional data buffers and an
4215 IPMI
4216 address space handler (to be installed by an IPMI device driver.) ACPICA
4217 BZ
1361 address space. Includes support for bi-directional data buffers and an IPMI
1362 address space handler (to be installed by an IPMI device driver.) ACPICA BZ
4218 773. Lin Ming.

4220 ACPI 4.0: Added changes for existing ACPI tables - FACS and SRAT.
4221 Includes
1365 ACPI 4.0: Added changes for existing ACPI tables - FACS and SRAT. Includes
4222 support in both the header files and the disassembler.

4224 Completed a major update for the AcpiGetObjectInfo external interface.
4225 Changes include:
4226 - Support for variable, unlimited length HID, UID, and CID strings.
4227 - Support Processor objects the same as Devices (HID,UID,CID,ADR,STA,
4228 etc.)
1371 - Support Processor objects the same as Devices (HID,UID,CID,ADR,STA, etc.)
4229 - Call the _SxW power methods on behalf of a device object.
4230 - Determine if a device is a PCI root bridge.
4231 - Change the ACPI_BUFFER parameter to ACPI_DEVICE_INFO.
4232 These changes will require an update to all callers of this interface.
4233 See
4234 the updated ACPICA Programmer Reference for details. One new source file
4235 has
1375 These changes will require an update to all callers of this interface. See
1376 the updated ACPICA Programmer Reference for details. One new source file has
4236 been added - utilities/utids.c. ACPICA BZ 368, 780.

4238 Updated the AcpiRead and AcpiWrite external interfaces to support 64-bit
4239 transfers. The Value parameter has been extended from 32 bits to 64 bits
4240 in
4241 order to support new ACPI 4.0 tables. These changes will require an
4242 update
4243 to
1380 transfers. The Value parameter has been extended from 32 bits to 64 bits in

new/usr/src/common/acpica/changes.txt 71

1381 order to support new ACPI 4.0 tables. These changes will require an update to
4244 all callers of these interfaces. See the ACPICA Programmer Reference for
4245 details. ACPICA BZ 768.

4247 Fixed several problems with AcpiAttachData. The handler was not invoked
4248 when
4249 the host node was deleted. The data sub-object was not automatically
4250 deleted
4251 when the host node was deleted. The interface to the handler had an
4252 unused
1385 Fixed several problems with AcpiAttachData. The handler was not invoked when
1386 the host node was deleted. The data sub-object was not automatically deleted
1387 when the host node was deleted. The interface to the handler had an unused
4253 parameter, this was removed. ACPICA BZ 778.

4255 Enhanced the function that dumps ACPI table headers. All non-printable
4256 characters in the string fields are now replaced with ’?’ (Signature,
4257 OemId,
1391 characters in the string fields are now replaced with ’?’ (Signature, OemId,
4258 OemTableId, and CompilerId.) ACPI tables with non-printable characters in
4259 these fields are occasionally seen in the field. ACPICA BZ 788.

4261 Fixed a problem with predefined method repair code where the code that
4262 attempts to repair/convert an object of incorrect type is only executed
4263 on
4264 the first time the predefined method is called. The mechanism that
4265 disables
1396 attempts to repair/convert an object of incorrect type is only executed on
1397 the first time the predefined method is called. The mechanism that disables
4266 warnings on subsequent calls was interfering with the repair mechanism.
4267 ACPICA BZ 781.

4269 Fixed a possible memory leak in the predefined validation/repair code
4270 when
4271 a
1401 Fixed a possible memory leak in the predefined validation/repair code when a
4272 buffer is automatically converted to an expected string object.

4274 Removed obsolete 16-bit files from the distribution and from the current
4275 git
1404 Removed obsolete 16-bit files from the distribution and from the current git
4276 tree head. ACPICA BZ 776.

4278 Example Code and Data Size: These are the sizes for the OS-independent
4279 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
4280 debug version of the code includes the debug output trace mechanism and
4281 has a
1409 debug version of the code includes the debug output trace mechanism and has a
4282 much larger code and data size.

4284 Previous Release:
4285 Non-Debug Version: 83.4K Code, 17.5K Data, 100.9K Total
4286 Debug Version: 158.9K Code, 50.0K Data, 208.9K Total
4287 Current Release:
4288 Non-Debug Version: 84.7K Code, 17.8K Data, 102.5K Total
4289 Debug Version: 160.5K Code, 50.6K Data, 211.1K Total

4291 2) iASL Compiler/Disassembler and Tools:

4293 ACPI 4.0: iASL and Disassembler - implemented support for the new IPMI
4294 operation region keyword. ACPICA BZ 771, 772. Lin Ming.

4296 ACPI 4.0: iASL - implemented compile-time validation support for all new
4297 predefined names and control methods (31 total). ACPICA BZ 769.

4299 --

new/usr/src/common/acpica/changes.txt 72

4300 21 May 2009. Summary of changes for version 20090521:

4302 1) ACPI CA Core Subsystem:

4304 Disabled the preservation of the SCI enable bit in the PM1 control
4305 register.
4306 The SCI enable bit (bit 0, SCI_EN) is defined by the ACPI specification
4307 to
4308 be
1432 Disabled the preservation of the SCI enable bit in the PM1 control register.
1433 The SCI enable bit (bit 0, SCI_EN) is defined by the ACPI specification to be
4309 a "preserved" bit - "OSPM always preserves this bit position", section
4310 4.7.3.2.1. However, some machines fail if this bit is in fact preserved
4311 because the bit needs to be explicitly set by the OS as a workaround. No
4312 machines fail if the bit is not preserved. Therefore, ACPICA no longer
4313 attempts to preserve this bit.

4315 Fixed a problem in AcpiRsGetPciRoutingTableLength where an invalid or
4316 incorrectly formed _PRT package could cause a fault. Added validation to
4317 ensure that each package element is actually a sub-package.

4319 Implemented a new interface to install or override a single control
4320 method,
4321 AcpiInstallMethod. This interface is useful when debugging in order to
4322 repair
4323 an existing method or to install a missing method without having to
4324 override
1444 Implemented a new interface to install or override a single control method,
1445 AcpiInstallMethod. This interface is useful when debugging in order to repair
1446 an existing method or to install a missing method without having to override
4325 the entire ACPI table. See the ACPICA Programmer Reference for use and
4326 examples. Lin Ming, Bob Moore.

4328 Fixed several reference count issues with the DdbHandle object that is
4329 created from a Load or LoadTable operator. Prevent premature deletion of
4330 the
4331 object. Also, mark the object as invalid once the table has been
4332 unloaded.
4333 This is needed because the handle itself may not be deleted after the
4334 table
1451 created from a Load or LoadTable operator. Prevent premature deletion of the
1452 object. Also, mark the object as invalid once the table has been unloaded.
1453 This is needed because the handle itself may not be deleted after the table
4335 unload, depending on whether it has been stored in a named object by the
4336 caller. Lin Ming.

4338 Fixed a problem with Mutex Sync Levels. Fixed a problem where if multiple
4339 mutexes of the same sync level are acquired but then not released in
4340 strict
4341 opposite order, the internally maintained Current Sync Level becomes
4342 confused
1458 mutexes of the same sync level are acquired but then not released in strict
1459 opposite order, the internally maintained Current Sync Level becomes confused
4343 and can cause subsequent execution errors. ACPICA BZ 471.

4345 Changed the allowable release order for ASL mutex objects. The ACPI 4.0
4346 specification has been changed to make the SyncLevel for mutex objects
4347 more
4348 useful. When releasing a mutex, the SyncLevel of the mutex must now be
4349 the
4350 same as the current sync level. This makes more sense than the previous
4351 rule
1463 specification has been changed to make the SyncLevel for mutex objects more
1464 useful. When releasing a mutex, the SyncLevel of the mutex must now be the
1465 same as the current sync level. This makes more sense than the previous rule
4352 (SyncLevel less than or equal). This change updates the code to match the

new/usr/src/common/acpica/changes.txt 73

4353 specification.

4355 Fixed a problem with the local version of the AcpiOsPurgeCache function.
4356 The
1469 Fixed a problem with the local version of the AcpiOsPurgeCache function. The
4357 (local) cache must be locked during all cache object deletions. Andrew
4358 Baumann.

4360 Updated the Load operator to use operation region interfaces. This
4361 replaces
4362 direct memory mapping with region access calls. Now, all region accesses
4363 go
1473 Updated the Load operator to use operation region interfaces. This replaces
1474 direct memory mapping with region access calls. Now, all region accesses go
4364 through the installed region handler as they should.

4366 Simplified and optimized the NsGetNextNode function. Reduced parameter
4367 count
1477 Simplified and optimized the NsGetNextNode function. Reduced parameter count
4368 and reduced code for this frequently used function.

4370 Example Code and Data Size: These are the sizes for the OS-independent
4371 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
4372 debug version of the code includes the debug output trace mechanism and
4373 has a
1482 debug version of the code includes the debug output trace mechanism and has a
4374 much larger code and data size.

4376 Previous Release:
4377 Non-Debug Version: 82.8K Code, 17.5K Data, 100.3K Total
4378 Debug Version: 158.0K Code, 49.9K Data, 207.9K Total
4379 Current Release:
4380 Non-Debug Version: 83.4K Code, 17.5K Data, 100.9K Total
4381 Debug Version: 158.9K Code, 50.0K Data, 208.9K Total

4383 2) iASL Compiler/Disassembler and Tools:

4385 Disassembler: Fixed some issues with DMAR, HEST, MADT tables. Some
4386 problems
4387 with sub-table disassembly and handling invalid sub-tables. Attempt
4388 recovery
1494 Disassembler: Fixed some issues with DMAR, HEST, MADT tables. Some problems
1495 with sub-table disassembly and handling invalid sub-tables. Attempt recovery
4389 after an invalid sub-table ID.

4391 --
4392 22 April 2009. Summary of changes for version 20090422:

4394 1) ACPI CA Core Subsystem:

4396 Fixed a compatibility issue with the recently released I/O port
4397 protection
1503 Fixed a compatibility issue with the recently released I/O port protection
4398 mechanism. For windows compatibility, 1) On a port protection violation,
4399 simply ignore the request and do not return an exception (allow the
4400 control
1505 simply ignore the request and do not return an exception (allow the control
4401 method to continue execution.) 2) If only part of the request overlaps a
4402 protected port, read/write the individual ports that are not protected.
4403 Linux
1507 protected port, read/write the individual ports that are not protected. Linux
4404 BZ 13036. Lin Ming

4406 Enhanced the execution of the ASL/AML BreakPoint operator so that it
4407 actually
1510 Enhanced the execution of the ASL/AML BreakPoint operator so that it actually

new/usr/src/common/acpica/changes.txt 74

4408 breaks into the AML debugger if the debugger is present. This matches the
4409 ACPI-defined behavior.

4411 Fixed several possible warnings related to the use of the configurable
4412 ACPI_THREAD_ID. This type can now be configured as either an integer or a
4413 pointer with no warnings. Also fixes several warnings in printf-like
4414 statements for the 64-bit build when the type is configured as a pointer.
4415 ACPICA BZ 766, 767.

4417 Fixed a number of possible warnings when compiling with gcc 4+ (depending
4418 on
4419 warning options.) Examples include printf formats, aliasing, unused
4420 globals,
1520 Fixed a number of possible warnings when compiling with gcc 4+ (depending on
1521 warning options.) Examples include printf formats, aliasing, unused globals,
4421 missing prototypes, missing switch default statements, use of non-ANSI
4422 library functions, use of non-ANSI constructs. See generate/unix/Makefile
4423 for
1523 library functions, use of non-ANSI constructs. See generate/unix/Makefile for
4424 a list of warning options used with gcc 3 and 4. ACPICA BZ 735.

4426 Example Code and Data Size: These are the sizes for the OS-independent
4427 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
4428 debug version of the code includes the debug output trace mechanism and
4429 has a
1528 debug version of the code includes the debug output trace mechanism and has a
4430 much larger code and data size.

4432 Previous Release:
4433 Non-Debug Version: 82.6K Code, 17.6K Data, 100.2K Total
4434 Debug Version: 157.7K Code, 49.9K Data, 207.6K Total
4435 Current Release:
4436 Non-Debug Version: 82.8K Code, 17.5K Data, 100.3K Total
4437 Debug Version: 158.0K Code, 49.9K Data, 207.9K Total

4439 2) iASL Compiler/Disassembler and Tools:

4441 iASL: Fixed a generation warning from Bison 2.3 and fixed several
4442 warnings
4443 on
1540 iASL: Fixed a generation warning from Bison 2.3 and fixed several warnings on
4444 the 64-bit build.

4446 iASL: Fixed a problem where the Unix/Linux versions of the compiler could
4447 not
1543 iASL: Fixed a problem where the Unix/Linux versions of the compiler could not
4448 correctly digest Windows/DOS formatted files (with CR/LF).

4450 iASL: Added a new option for "quiet mode" (-va) that produces only the
4451 compilation summary, not individual errors and warnings. Useful for large
4452 batch compilations.

4454 AcpiExec: Implemented a new option (-z) to enable a forced
4455 semaphore/mutex
4456 timeout that can be used to detect hang conditions during execution of
4457 AML
4458 code (includes both internal semaphores and AML-defined mutexes and
4459 events.)
1550 AcpiExec: Implemented a new option (-z) to enable a forced semaphore/mutex
1551 timeout that can be used to detect hang conditions during execution of AML
1552 code (includes both internal semaphores and AML-defined mutexes and events.)

4461 Added new makefiles for the generation of acpica in a generic unix-like
4462 environment. These makefiles are intended to generate the acpica tools
4463 and
1555 environment. These makefiles are intended to generate the acpica tools and

new/usr/src/common/acpica/changes.txt 75

4464 utilities from the original acpica git source tree structure.

4466 Test Suites: Updated and cleaned up the documentation files. Updated the
4467 copyrights to 2009, affecting all source files. Use the new version of
4468 iASL
4469 with quiet mode. Increased the number of available semaphores in the
4470 Windows
4471 OSL, allowing the aslts to execute fully on Windows. For the Unix OSL,
4472 added
1559 copyrights to 2009, affecting all source files. Use the new version of iASL
1560 with quiet mode. Increased the number of available semaphores in the Windows
1561 OSL, allowing the aslts to execute fully on Windows. For the Unix OSL, added
4473 an alternate implementation of the semaphore timeout to allow aslts to
4474 execute fully on Cygwin.

4476 --
4477 20 March 2009. Summary of changes for version 20090320:

4479 1) ACPI CA Core Subsystem:

4481 Fixed a possible race condition between AcpiWalkNamespace and dynamic
4482 table
4483 unloads. Added a reader/writer locking mechanism to allow multiple
4484 concurrent
4485 namespace walks (readers), but block a dynamic table unload until it can
4486 gain
4487 exclusive write access to the namespace. This fixes a problem where a
4488 table
4489 unload could (possibly catastrophically) delete the portion of the
4490 namespace
4491 that is currently being examined by a walk. Adds a new file, utlock.c,
4492 that
1570 Fixed a possible race condition between AcpiWalkNamespace and dynamic table
1571 unloads. Added a reader/writer locking mechanism to allow multiple concurrent
1572 namespace walks (readers), but block a dynamic table unload until it can gain
1573 exclusive write access to the namespace. This fixes a problem where a table
1574 unload could (possibly catastrophically) delete the portion of the namespace
1575 that is currently being examined by a walk. Adds a new file, utlock.c, that
4493 implements the reader/writer lock mechanism. ACPICA BZ 749.

4495 Fixed a regression introduced in version 20090220 where a change to the
4496 FADT
4497 handling could cause the ACPICA subsystem to access non-existent I/O
4498 ports.
1578 Fixed a regression introduced in version 20090220 where a change to the FADT
1579 handling could cause the ACPICA subsystem to access non-existent I/O ports.

4500 Modified the handling of FADT register and table (FACS/DSDT) addresses.
4501 The
1581 Modified the handling of FADT register and table (FACS/DSDT) addresses. The
4502 FADT can contain both 32-bit and 64-bit versions of these addresses.
4503 Previously, the 64-bit versions were favored, meaning that if both 32 and
4504 64
1583 Previously, the 64-bit versions were favored, meaning that if both 32 and 64
4505 versions were valid, but not equal, the 64-bit version was used. This was
4506 found to cause some machines to fail. Now, in this case, the 32-bit
4507 version
1585 found to cause some machines to fail. Now, in this case, the 32-bit version
4508 is used instead. This now matches the Windows behavior.

4510 Implemented a new mechanism to protect certain I/O ports. Provides
4511 Microsoft
1588 Implemented a new mechanism to protect certain I/O ports. Provides Microsoft
4512 compatibility and protects the standard PC I/O ports from access via AML
4513 code. Adds a new file, hwvalid.c

new/usr/src/common/acpica/changes.txt 76

4515 Fixed a possible extraneous warning message from the FADT support. The
4516 message warns of a 32/64 length mismatch between the legacy and GAS
4517 definitions for a register.

4519 Removed the obsolete AcpiOsValidateAddress OSL interface. This interface
4520 is
4521 made obsolete by the port protection mechanism above. It was previously
4522 used
4523 to validate the entire address range of an operation region, which could
4524 be
1596 Removed the obsolete AcpiOsValidateAddress OSL interface. This interface is
1597 made obsolete by the port protection mechanism above. It was previously used
1598 to validate the entire address range of an operation region, which could be
4525 incorrect if the range included illegal ports, but fields within the
4526 operation region did not actually access those ports. Validation is now
4527 performed on a per-field basis instead of the entire region.

4529 Modified the handling of the PM1 Status Register ignored bit (bit 11.)
4530 Ignored bits must be "preserved" according to the ACPI spec. Usually,
4531 this
4532 means a read/modify/write when writing to the register. However, for
4533 status
4534 registers, writing a one means clear the event. Writing a zero means
4535 preserve
4536 the event (do not clear.) This behavior is clarified in the ACPI 4.0
4537 spec,
1604 Ignored bits must be "preserved" according to the ACPI spec. Usually, this
1605 means a read/modify/write when writing to the register. However, for status
1606 registers, writing a one means clear the event. Writing a zero means preserve
1607 the event (do not clear.) This behavior is clarified in the ACPI 4.0 spec,
4538 and the ACPICA code now simply always writes a zero to the ignored bit.

4540 Modified the handling of ignored bits for the PM1 A/B Control Registers.
4541 As
1610 Modified the handling of ignored bits for the PM1 A/B Control Registers. As
4542 per the ACPI specification, for the control registers, preserve
4543 (read/modify/write) all bits that are defined as either reserved or
4544 ignored.
1612 (read/modify/write) all bits that are defined as either reserved or ignored.

4546 Updated the handling of write-only bits in the PM1 A/B Control Registers.
4547 When reading the register, zero the write-only bits as per the ACPI spec.
4548 ACPICA BZ 443. Lin Ming.

4550 Removed "Linux" from the list of supported _OSI strings. Linux no longer
4551 wants to reply true to this request. The Windows strings are the only
4552 paths
1619 wants to reply true to this request. The Windows strings are the only paths
4553 through the AML that are tested and known to work properly.

4555 Previous Release:
4556 Non-Debug Version: 82.0K Code, 17.5K Data, 99.5K Total
4557 Debug Version: 156.9K Code, 49.8K Data, 206.7K Total
4558 Current Release:
4559 Non-Debug Version: 82.6K Code, 17.6K Data, 100.2K Total
4560 Debug Version: 157.7K Code, 49.9K Data, 207.6K Total

4562 2) iASL Compiler/Disassembler and Tools:

4564 Acpiexec: Split the large aeexec.c file into two new files, aehandlers.c
4565 and
1631 Acpiexec: Split the large aeexec.c file into two new files, aehandlers.c and
4566 aetables.c

4568 --
4569 20 February 2009. Summary of changes for version 20090220:

new/usr/src/common/acpica/changes.txt 77

4571 1) ACPI CA Core Subsystem:

4573 Optimized the ACPI register locking. Removed locking for reads from the
4574 ACPI
4575 bit registers in PM1 Status, Enable, Control, and PM2 Control. The lock
4576 is
1639 Optimized the ACPI register locking. Removed locking for reads from the ACPI
1640 bit registers in PM1 Status, Enable, Control, and PM2 Control. The lock is
4577 not required when reading the single-bit registers. The
4578 AcpiGetRegisterUnlocked function is no longer needed and has been
4579 removed.
4580 This will improve performance for reads on these registers. ACPICA BZ
4581 760.
1642 AcpiGetRegisterUnlocked function is no longer needed and has been removed.
1643 This will improve performance for reads on these registers. ACPICA BZ 760.

4583 Fixed the parameter validation for AcpiRead/Write. Now return
4584 AE_BAD_PARAMETER if the input register pointer is null, and
4585 AE_BAD_ADDRESS
4586 if
4587 the register has an address of zero. Previously, these cases simply
4588 returned
4589 AE_OK. For optional registers such as PM1B status/enable/control, the
4590 caller
1646 AE_BAD_PARAMETER if the input register pointer is null, and AE_BAD_ADDRESS if
1647 the register has an address of zero. Previously, these cases simply returned
1648 AE_OK. For optional registers such as PM1B status/enable/control, the caller
4591 should check for a valid register address before calling. ACPICA BZ 748.

4593 Renamed the external ACPI bit register access functions. Renamed
4594 AcpiGetRegister and AcpiSetRegister to clarify the purpose of these
4595 functions. The new names are AcpiReadBitRegister and
4596 AcpiWriteBitRegister.
4597 Also, restructured the code for these functions by simplifying the code
4598 path
1653 functions. The new names are AcpiReadBitRegister and AcpiWriteBitRegister.
1654 Also, restructured the code for these functions by simplifying the code path
4599 and condensing duplicate code to reduce code size.

4601 Added new functions to transparently handle the possibly split PM1 A/B
4602 registers. AcpiHwReadMultiple and AcpiHwWriteMultiple. These two
4603 functions
4604 now handle the split registers for PM1 Status, Enable, and Control.
4605 ACPICA
4606 BZ
1658 registers. AcpiHwReadMultiple and AcpiHwWriteMultiple. These two functions
1659 now handle the split registers for PM1 Status, Enable, and Control. ACPICA BZ
4607 746.

4609 Added a function to handle the PM1 control registers,
4610 AcpiHwWritePm1Control.
4611 This function writes both of the PM1 control registers (A/B). These
4612 registers
4613 are different than the PM1 A/B status and enable registers in that
4614 different
4615 values can be written to the A/B registers. Most notably, the SLP_TYP
4616 bits
4617 can be different, as per the values returned from the _Sx predefined
4618 methods.
1662 Added a function to handle the PM1 control registers, AcpiHwWritePm1Control.
1663 This function writes both of the PM1 control registers (A/B). These registers
1664 are different than the PM1 A/B status and enable registers in that different
1665 values can be written to the A/B registers. Most notably, the SLP_TYP bits
1666 can be different, as per the values returned from the _Sx predefined methods.

new/usr/src/common/acpica/changes.txt 78

4620 Removed an extra register write within AcpiHwClearAcpiStatus. This
4621 function
4622 was writing an optional PM1B status register twice. The existing call to
4623 the
4624 low-level AcpiHwRegisterWrite automatically handles a possibly split PM1
4625 A/B
1668 Removed an extra register write within AcpiHwClearAcpiStatus. This function
1669 was writing an optional PM1B status register twice. The existing call to the
1670 low-level AcpiHwRegisterWrite automatically handles a possibly split PM1 A/B
4626 register. ACPICA BZ 751.

4628 Split out the PM1 Status registers from the FADT. Added new globals for
4629 these
1673 Split out the PM1 Status registers from the FADT. Added new globals for these
4630 registers (A/B), similar to the way the PM1 Enable registers are handled.
4631 Instead of overloading the FADT Event Register blocks. This makes the
4632 code
1675 Instead of overloading the FADT Event Register blocks. This makes the code
4633 clearer and less prone to error.

4635 Fixed the warning message for when the platform contains too many ACPI
4636 tables
4637 for the default size of the global root table data structure. The
4638 calculation
1678 Fixed the warning message for when the platform contains too many ACPI tables
1679 for the default size of the global root table data structure. The calculation
4639 for the truncation value was incorrect.

4641 Removed the ACPI_GET_OBJECT_TYPE macro. Removed all instances of this
4642 obsolete macro, since it is now a simple reference to ->common.type.
4643 There
1683 obsolete macro, since it is now a simple reference to ->common.type. There
4644 were about 150 invocations of the macro across 41 files. ACPICA BZ 755.

4646 Removed the redundant ACPI_BITREG_SLEEP_TYPE_B. This type is the same as
4647 TYPE_A. Removed this and all related instances. Renamed SLEEP_TYPE_A to
4648 simply SLEEP_TYPE. ACPICA BZ 754.

4650 Conditionally compile the AcpiSetFirmwareWakingVector64 function. This
4651 function is only needed on 64-bit host operating systems and is thus not
4652 included for 32-bit hosts.

4654 Debug output: print the input and result for invocations of the _OSI
4655 reserved
4656 control method via the ACPI_LV_INFO debug level. Also, reduced some of
4657 the
1694 Debug output: print the input and result for invocations of the _OSI reserved
1695 control method via the ACPI_LV_INFO debug level. Also, reduced some of the
4658 verbosity of this debug level. Len Brown.

4660 Example Code and Data Size: These are the sizes for the OS-independent
4661 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
4662 debug version of the code includes the debug output trace mechanism and
4663 has a
1700 debug version of the code includes the debug output trace mechanism and has a
4664 much larger code and data size.

4666 Previous Release:
4667 Non-Debug Version: 82.3K Code, 17.5K Data, 99.8K Total
4668 Debug Version: 157.3K Code, 49.8K Data, 207.1K Total
4669 Current Release:
4670 Non-Debug Version: 82.0K Code, 17.5K Data, 99.5K Total
4671 Debug Version: 156.9K Code, 49.8K Data, 206.7K Total

4673 2) iASL Compiler/Disassembler and Tools:

new/usr/src/common/acpica/changes.txt 79

4675 Disassembler: Decode the FADT PM_Profile field. Emit ascii names for the
4676 various legal performance profiles.

4678 --
4679 23 January 2009. Summary of changes for version 20090123:

4681 1) ACPI CA Core Subsystem:

4683 Added the 2009 copyright to all module headers and signons. This affects
4684 virtually every file in the ACPICA core subsystem, the iASL compiler, and
4685 the tools/utilities.

4687 Implemented a change to allow the host to override any ACPI table,
4688 including
4689 dynamically loaded tables. Previously, only the DSDT could be replaced by
4690 the
4691 host. With this change, the AcpiOsTableOverride interface is called for
4692 each
4693 table found in the RSDT/XSDT during ACPICA initialization, and also
4694 whenever
1724 Implemented a change to allow the host to override any ACPI table, including
1725 dynamically loaded tables. Previously, only the DSDT could be replaced by the
1726 host. With this change, the AcpiOsTableOverride interface is called for each
1727 table found in the RSDT/XSDT during ACPICA initialization, and also whenever
4695 a table is dynamically loaded via the AML Load operator.

4697 Updated FADT flag definitions, especially the Boot Architecture flags.

4699 Debugger: For the Find command, automatically pad the input ACPI name
4700 with
4701 underscores if the name is shorter than 4 characters. This enables a
4702 match
1732 Debugger: For the Find command, automatically pad the input ACPI name with
1733 underscores if the name is shorter than 4 characters. This enables a match
4703 with the actual namespace entry which is itself padded with underscores.

4705 Example Code and Data Size: These are the sizes for the OS-independent
4706 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
4707 debug version of the code includes the debug output trace mechanism and
4708 has a
1738 debug version of the code includes the debug output trace mechanism and has a
4709 much larger code and data size.

4711 Previous Release:
4712 Non-Debug Version: 82.3K Code, 17.4K Data, 99.7K Total
4713 Debug Version: 157.1K Code, 49.7K Data, 206.8K Total
4714 Current Release:
4715 Non-Debug Version: 82.3K Code, 17.5K Data, 99.8K Total
4716 Debug Version: 157.3K Code, 49.8K Data, 207.1K Total

4718 2) iASL Compiler/Disassembler and Tools:

4720 Fix build error under Bison-2.4.

4722 Dissasembler: Enhanced FADT support. Added decoding of the Boot
4723 Architecture
1752 Dissasembler: Enhanced FADT support. Added decoding of the Boot Architecture
4724 flags. Now decode all flags, regardless of the FADT version. Flag output
4725 includes the FADT version which first defined each flag.

4727 The iASL -g option now dumps the RSDT to a file (in addition to the FADT
4728 and
1756 The iASL -g option now dumps the RSDT to a file (in addition to the FADT and
4729 DSDT). Windows only.

4731 --

new/usr/src/common/acpica/changes.txt 80

4732 04 December 2008. Summary of changes for version 20081204:

4734 1) ACPI CA Core Subsystem:

4736 The ACPICA Programmer Reference has been completely updated and revamped
4737 for
1764 The ACPICA Programmer Reference has been completely updated and revamped for
4738 this release. This includes updates to the external interfaces, OSL
4739 interfaces, the overview sections, and the debugger reference.

4741 Several new ACPICA interfaces have been implemented and documented in the
4742 programmer reference:
4743 AcpiReset - Writes the reset value to the FADT-defined reset register.
4744 AcpiDisableAllGpes - Disable all available GPEs.
4745 AcpiEnableAllRuntimeGpes - Enable all available runtime GPEs.
4746 AcpiGetGpeDevice - Get the GPE block device associated with a GPE.
4747 AcpiGbl_CurrentGpeCount - Tracks the current number of available GPEs.
4748 AcpiRead - Low-level read ACPI register (was HwLowLevelRead.)
4749 AcpiWrite - Low-level write ACPI register (was HwLowLevelWrite.)

4751 Most of the public ACPI hardware-related interfaces have been moved to a
4752 new
1778 Most of the public ACPI hardware-related interfaces have been moved to a new
4753 file, components/hardware/hwxface.c

4755 Enhanced the FADT parsing and low-level ACPI register access: The ACPI
4756 register lengths within the FADT are now used, and the low level ACPI
4757 register access no longer hardcodes the ACPI register lengths. Given that
4758 there may be some risk in actually trusting the FADT register lengths, a
4759 run-
4760 time option was added to fall back to the default hardcoded lengths if
4761 the
1784 there may be some risk in actually trusting the FADT register lengths, a run-
1785 time option was added to fall back to the default hardcoded lengths if the
4762 FADT proves to contain incorrect values - UseDefaultRegisterWidths. This
4763 option is set to true for now, and a warning is issued if a suspicious
4764 FADT
1787 option is set to true for now, and a warning is issued if a suspicious FADT
4765 register length is overridden with the default value.

4767 Fixed a reference count issue in NsRepairObject. This problem was
4768 introduced
1790 Fixed a reference count issue in NsRepairObject. This problem was introduced
4769 in version 20081031 as part of a fix to repair Buffer objects within
4770 Packages. Lin Ming.

4772 Added semaphore support to the Linux/Unix application OS-services layer
4773 (OSL). ACPICA BZ 448. Lin Ming.

4775 Added the ACPI_MUTEX_TYPE configuration option to select whether mutexes
4776 will
1797 Added the ACPI_MUTEX_TYPE configuration option to select whether mutexes will
4777 be implemented in the OSL, or will binary semaphores be used instead.

4779 Example Code and Data Size: These are the sizes for the OS-independent
4780 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
4781 debug version of the code includes the debug output trace mechanism and
4782 has a
1802 debug version of the code includes the debug output trace mechanism and has a
4783 much larger code and data size.

4785 Previous Release:
4786 Non-Debug Version: 81.7K Code, 17.3K Data, 99.0K Total
4787 Debug Version: 156.4K Code, 49.4K Data, 205.8K Total
4788 Current Release:
4789 Non-Debug Version: 82.3K Code, 17.4K Data, 99.7K Total

new/usr/src/common/acpica/changes.txt 81

4790 Debug Version: 157.1K Code, 49.7K Data, 206.8K Total

4792 2) iASL Compiler/Disassembler and Tools:

4794 iASL: Completed the ’-e’ option to include additional ACPI tables in
4795 order
4796 to
4797 aid with disassembly and External statement generation. ACPICA BZ 742.
4798 Lin
1814 iASL: Completed the ’-e’ option to include additional ACPI tables in order to
1815 aid with disassembly and External statement generation. ACPICA BZ 742. Lin
4799 Ming.

4801 iASL: Removed the "named object in while loop" error. The compiler cannot
4802 determine how many times a loop will execute. ACPICA BZ 730.

4804 Disassembler: Implemented support for FADT revision 2 (MS extension).
4805 ACPICA
1821 Disassembler: Implemented support for FADT revision 2 (MS extension). ACPICA
4806 BZ 743.

4808 Disassembler: Updates for several ACPI data tables (HEST, EINJ, and
4809 MCFG).
1824 Disassembler: Updates for several ACPI data tables (HEST, EINJ, and MCFG).

4811 --
4812 31 October 2008. Summary of changes for version 20081031:

4814 1) ACPI CA Core Subsystem:

4816 Restructured the ACPICA header files into public/private. acpi.h now
4817 includes
4818 only the "public" acpica headers. All other acpica headers are "private"
4819 and
4820 should not be included by acpica users. One new file, accommon.h is used
4821 to
4822 include the commonly used private headers for acpica code generation.
4823 Future
1831 Restructured the ACPICA header files into public/private. acpi.h now includes
1832 only the "public" acpica headers. All other acpica headers are "private" and
1833 should not be included by acpica users. One new file, accommon.h is used to
1834 include the commonly used private headers for acpica code generation. Future
4824 plans include moving all private headers to a new subdirectory.

4826 Implemented an automatic Buffer->String return value conversion for
4827 predefined ACPI methods. For these methods (such as _BIF), added
4828 automatic
4829 conversion for return objects that are required to be a String, but a
4830 Buffer
4831 was found instead. This can happen when reading string battery data from
4832 an
4833 operation region, because it used to be difficult to convert the data
4834 from
4835 buffer to string from within the ASL. Ensures that the host OS is
4836 provided
1838 predefined ACPI methods. For these methods (such as _BIF), added automatic
1839 conversion for return objects that are required to be a String, but a Buffer
1840 was found instead. This can happen when reading string battery data from an
1841 operation region, because it used to be difficult to convert the data from
1842 buffer to string from within the ASL. Ensures that the host OS is provided
4837 with a valid null-terminated string. Linux BZ 11822.

4839 Updated the FACS waking vector interfaces. Split
4840 AcpiSetFirmwareWakingVector
4841 into two: one for the 32-bit vector, another for the 64-bit vector. This
4842 is

new/usr/src/common/acpica/changes.txt 82

4843 required because the host OS must setup the wake much differently for
4844 each
4845 vector (real vs. protected mode, etc.) and the interface itself should
4846 not
4847 be
4848 deciding which vector to use. Also, eliminated the
4849 GetFirmwareWakingVector
4850 interface, as it served no purpose (only the firmware reads the vector,
4851 OS
1845 Updated the FACS waking vector interfaces. Split AcpiSetFirmwareWakingVector
1846 into two: one for the 32-bit vector, another for the 64-bit vector. This is
1847 required because the host OS must setup the wake much differently for each
1848 vector (real vs. protected mode, etc.) and the interface itself should not be
1849 deciding which vector to use. Also, eliminated the GetFirmwareWakingVector
1850 interface, as it served no purpose (only the firmware reads the vector, OS
4852 only writes the vector.) ACPICA BZ 731.

4854 Implemented a mechanism to escape infinite AML While() loops. Added a
4855 loop
4856 counter to force exit from AML While loops if the count becomes too
4857 large.
1853 Implemented a mechanism to escape infinite AML While() loops. Added a loop
1854 counter to force exit from AML While loops if the count becomes too large.
4858 This can occur in poorly written AML when the hardware does not respond
4859 within a while loop and the loop does not implement a timeout. The
4860 maximum
4861 loop count is configurable. A new exception code is returned when a loop
4862 is
1856 within a while loop and the loop does not implement a timeout. The maximum
1857 loop count is configurable. A new exception code is returned when a loop is
4863 broken, AE_AML_INFINITE_LOOP. Alexey Starikovskiy, Bob Moore.

4865 Optimized the execution of AML While loops. Previously, a control state
4866 object was allocated and freed for each execution of the loop. The
4867 optimization is to simply reuse the control state for each iteration.
4868 This
1862 optimization is to simply reuse the control state for each iteration. This
4869 speeds up the raw loop execution time by about 5%.

4871 Enhanced the implicit return mechanism. For Windows compatibility, return
4872 an
4873 implicit integer of value zero for methods that contain no executable
4874 code.
1865 Enhanced the implicit return mechanism. For Windows compatibility, return an
1866 implicit integer of value zero for methods that contain no executable code.
4875 Such methods are seen in the field as stubs (presumably), and can cause
4876 drivers to fail if they expect a return value. Lin Ming.

4878 Allow multiple backslashes as root prefixes in namepaths. In a fully
4879 qualified namepath, allow multiple backslash prefixes. This can happen
4880 (and
1871 qualified namepath, allow multiple backslash prefixes. This can happen (and
4881 is seen in the field) because of the use of a double-backslash in strings
4882 (since backslash is the escape character) causing confusion. ACPICA BZ
4883 739
1873 (since backslash is the escape character) causing confusion. ACPICA BZ 739
4884 Lin Ming.

4886 Emit a warning if two different FACS or DSDT tables are discovered in the
4887 FADT. Checks if there are two valid but different addresses for the FACS
4888 and
1877 FADT. Checks if there are two valid but different addresses for the FACS and
4889 DSDT within the FADT (mismatch between the 32-bit and 64-bit fields.)

4891 Consolidated the method argument count validation code. Merged the code
4892 that

new/usr/src/common/acpica/changes.txt 83

1880 Consolidated the method argument count validation code. Merged the code that
4893 validates control method argument counts into the predefined validation
4894 module. Eliminates possible multiple warnings for incorrect argument
4895 counts.
1882 module. Eliminates possible multiple warnings for incorrect argument counts.

4897 Implemented ACPICA example code. Includes code for ACPICA initialization,
4898 handler installation, and calling a control method. Available at
4899 source/tools/examples.

4901 Added a global pointer for FACS table to simplify internal FACS access.
4902 Use
4903 the global pointer instead of using AcpiGetTableByIndex for each FACS
4904 access.
1888 Added a global pointer for FACS table to simplify internal FACS access. Use
1889 the global pointer instead of using AcpiGetTableByIndex for each FACS access.
4905 This simplifies the code for the Global Lock and the Firmware Waking
4906 Vector(s).

4908 Example Code and Data Size: These are the sizes for the OS-independent
4909 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
4910 debug version of the code includes the debug output trace mechanism and
4911 has a
1895 debug version of the code includes the debug output trace mechanism and has a
4912 much larger code and data size.

4914 Previous Release:
4915 Non-Debug Version: 81.2K Code, 17.0K Data, 98.2K Total
4916 Debug Version: 155.8K Code, 49.1K Data, 204.9K Total
4917 Current Release:
4918 Non-Debug Version: 81.7K Code, 17.3K Data, 99.0K Total
4919 Debug Version: 156.4K Code, 49.4K Data, 205.8K Total

4921 2) iASL Compiler/Disassembler and Tools:

4923 iASL: Improved disassembly of external method calls. Added the -e option
4924 to
4925 allow the inclusion of additional ACPI tables to help with the
4926 disassembly
4927 of
1907 iASL: Improved disassembly of external method calls. Added the -e option to
1908 allow the inclusion of additional ACPI tables to help with the disassembly of
4928 method invocations and the generation of external declarations during the
4929 disassembly. Certain external method invocations cannot be disassembled
4930 properly without the actual declaration of the method. Use the -e option
4931 to
4932 include the table where the external method(s) are actually declared.
4933 Most
1911 properly without the actual declaration of the method. Use the -e option to
1912 include the table where the external method(s) are actually declared. Most
4934 useful for disassembling SSDTs that make method calls back to the master
4935 DSDT. Lin Ming. Example: To disassemble an SSDT with calls to DSDT: iasl
4936 -d
1914 DSDT. Lin Ming. Example: To disassemble an SSDT with calls to DSDT: iasl -d
4937 -e dsdt.aml ssdt1.aml

4939 iASL: Fix to allow references to aliases within ASL namepaths. Fixes a
4940 problem where the use of an alias within a namepath would result in a not
4941 found error or cause the compiler to fault. Also now allows forward
4942 references from the Alias operator itself. ACPICA BZ 738.

4944 --
4945 26 September 2008. Summary of changes for version 20080926:

4947 1) ACPI CA Core Subsystem:

new/usr/src/common/acpica/changes.txt 84

4949 Designed and implemented a mechanism to validate predefined ACPI methods
4950 and
4951 objects. This code validates the predefined ACPI objects (objects whose
4952 names
1927 Designed and implemented a mechanism to validate predefined ACPI methods and
1928 objects. This code validates the predefined ACPI objects (objects whose names
4953 start with underscore) that appear in the namespace, at the time they are
4954 evaluated. The argument count and the type of the returned object are
4955 validated against the ACPI specification. The purpose of this validation
4956 is
4957 to detect problems with the BIOS-implemented predefined ACPI objects
4958 before
4959 the results are returned to the ACPI-related drivers. Future enhancements
4960 may
1931 validated against the ACPI specification. The purpose of this validation is
1932 to detect problems with the BIOS-implemented predefined ACPI objects before
1933 the results are returned to the ACPI-related drivers. Future enhancements may
4961 include actual repair of incorrect return objects where possible. Two new
4962 files are nspredef.c and acpredef.h.

4964 Fixed a fault in the AML parser if a memory allocation fails during the
4965 Op
1937 Fixed a fault in the AML parser if a memory allocation fails during the Op
4966 completion routine AcpiPsCompleteThisOp. Lin Ming. ACPICA BZ 492.

4968 Fixed an issue with implicit return compatibility. This change improves
4969 the
4970 implicit return mechanism to be more compatible with the MS interpreter.
4971 Lin
1940 Fixed an issue with implicit return compatibility. This change improves the
1941 implicit return mechanism to be more compatible with the MS interpreter. Lin
4972 Ming, ACPICA BZ 349.

4974 Implemented support for zero-length buffer-to-string conversions. Allow
4975 zero
4976 length strings during interpreter buffer-to-string conversions. For
4977 example,
1944 Implemented support for zero-length buffer-to-string conversions. Allow zero
1945 length strings during interpreter buffer-to-string conversions. For example,
4978 during the ToDecimalString and ToHexString operators, as well as implicit
4979 conversions. Fiodor Suietov, ACPICA BZ 585.

4981 Fixed two possible memory leaks in the error exit paths of
4982 AcpiUtUpdateObjectReference and AcpiUtWalkPackageTree. These functions
4983 are
1950 AcpiUtUpdateObjectReference and AcpiUtWalkPackageTree. These functions are
4984 similar in that they use a stack of state objects in order to eliminate
4985 recursion. The stack must be fully unwound and deallocated if an error
4986 occurs. Lin Ming. ACPICA BZ 383.

4988 Removed the unused ACPI_BITREG_WAKE_ENABLE definition and entry in the
4989 global
1955 Removed the unused ACPI_BITREG_WAKE_ENABLE definition and entry in the global
4990 ACPI register table. This bit does not exist and is unused. Lin Ming, Bob
4991 Moore ACPICA BZ 442.

4993 Removed the obsolete version number in module headers. Removed the
4994 "$Revision" number that appeared in each module header. This version
4995 number
4996 was useful under SourceSafe and CVS, but has no meaning under git. It is
4997 not
1960 "$Revision" number that appeared in each module header. This version number
1961 was useful under SourceSafe and CVS, but has no meaning under git. It is not
4998 only incorrect, it could also be misleading.

5000 Example Code and Data Size: These are the sizes for the OS-independent

new/usr/src/common/acpica/changes.txt 85

5001 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
5002 debug version of the code includes the debug output trace mechanism and
5003 has a
1966 debug version of the code includes the debug output trace mechanism and has a
5004 much larger code and data size.

5006 Previous Release:
5007 Non-Debug Version: 79.7K Code, 16.4K Data, 96.1K Total
5008 Debug Version: 153.7K Code, 48.2K Data, 201.9K Total
5009 Current Release:
5010 Non-Debug Version: 81.2K Code, 17.0K Data, 98.2K Total
5011 Debug Version: 155.8K Code, 49.1K Data, 204.9K Total

5013 --
5014 29 August 2008. Summary of changes for version 20080829:

5016 1) ACPI CA Core Subsystem:

5018 Completed a major cleanup of the internal ACPI_OPERAND_OBJECT of type
5019 Reference. Changes include the elimination of cheating on the Object
5020 field
1982 Reference. Changes include the elimination of cheating on the Object field
5021 for the DdbHandle subtype, addition of a reference class field to
5022 differentiate the various reference types (instead of an AML opcode), and
5023 the
1984 differentiate the various reference types (instead of an AML opcode), and the
5024 cleanup of debug output for this object. Lin Ming, Bob Moore. BZ 723

5026 Reduce an error to a warning for an incorrect method argument count.
5027 Previously aborted with an error if too few arguments were passed to a
5028 control method via the external ACPICA interface. Now issue a warning
5029 instead
5030 and continue. Handles the case where the method inadvertently declares
5031 too
5032 many arguments, but does not actually use the extra ones. Applies mainly
5033 to
1989 control method via the external ACPICA interface. Now issue a warning instead
1990 and continue. Handles the case where the method inadvertently declares too
1991 many arguments, but does not actually use the extra ones. Applies mainly to
5034 the predefined methods. Lin Ming. Linux BZ 11032.

5036 Disallow the evaluation of named object types with no intrinsic value.
5037 Return
5038 AE_TYPE for objects that have no value and therefore evaluation is
5039 undefined:
5040 Device, Event, Mutex, Region, Thermal, and Scope. Previously, evaluation
5041 of
5042 these types were allowed, but an exception would be generated at some
5043 point
1994 Disallow the evaluation of named object types with no intrinsic value. Return
1995 AE_TYPE for objects that have no value and therefore evaluation is undefined:
1996 Device, Event, Mutex, Region, Thermal, and Scope. Previously, evaluation of
1997 these types were allowed, but an exception would be generated at some point
5044 during the evaluation. Now, the error is generated up front.

5046 Fixed a possible memory leak in the AcpiNsGetExternalPathname function
5047 (nsnames.c). Fixes a leak in the error exit path.

5049 Removed the obsolete debug levels ACPI_DB_WARN and ACPI_DB_ERROR. These
5050 debug
5051 levels were made obsolete by the ACPI_WARNING, ACPI_ERROR, and
5052 ACPI_EXCEPTION
2003 Removed the obsolete debug levels ACPI_DB_WARN and ACPI_DB_ERROR. These debug
2004 levels were made obsolete by the ACPI_WARNING, ACPI_ERROR, and ACPI_EXCEPTION
5053 interfaces. Also added ACPI_DB_EVENTS to correspond with the existing
5054 ACPI_LV_EVENTS.

new/usr/src/common/acpica/changes.txt 86

5056 Removed obsolete and/or unused exception codes from the acexcep.h header.
5057 There is the possibility that certain device drivers may be affected if
5058 they
2009 There is the possibility that certain device drivers may be affected if they
5059 use any of these exceptions.

5061 The ACPICA documentation has been added to the public git source tree,
5062 under
2012 The ACPICA documentation has been added to the public git source tree, under
5063 acpica/documents. Included are the ACPICA programmer reference, the iASL
5064 compiler reference, and the changes.txt release logfile.

5066 Example Code and Data Size: These are the sizes for the OS-independent
5067 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
5068 debug version of the code includes the debug output trace mechanism and
5069 has a
2018 debug version of the code includes the debug output trace mechanism and has a
5070 much larger code and data size.

5072 Previous Release:
5073 Non-Debug Version: 79.7K Code, 16.4K Data, 96.1K Total
5074 Debug Version: 153.9K Code, 48.4K Data, 202.3K Total
5075 Current Release:
5076 Non-Debug Version: 79.7K Code, 16.4K Data, 96.1K Total
5077 Debug Version: 153.7K Code, 48.2K Data, 201.9K Total

5079 2) iASL Compiler/Disassembler and Tools:

5081 Allow multiple argument counts for the predefined _SCP method. ACPI 3.0
5082 defines _SCP with 3 arguments. Previous versions defined it with only 1
5083 argument. iASL now allows both definitions.

5085 iASL/disassembler: avoid infinite loop on bad ACPI tables. Check for
5086 zero-
2034 iASL/disassembler: avoid infinite loop on bad ACPI tables. Check for zero-
5087 length subtables when disassembling ACPI tables. Also fixed a couple of
5088 errors where a full 16-bit table type field was not extracted from the
5089 input
2036 errors where a full 16-bit table type field was not extracted from the input
5090 properly.

5092 acpisrc: Improve comment counting mechanism for generating source code
5093 statistics. Count first and last lines of multi-line comments as
5094 whitespace,
5095 not comment lines. Handle Linux legal header in addition to standard
5096 acpica
2040 statistics. Count first and last lines of multi-line comments as whitespace,
2041 not comment lines. Handle Linux legal header in addition to standard acpica
5097 header.

5099 --

5101 29 July 2008. Summary of changes for version 20080729:

5103 1) ACPI CA Core Subsystem:

5105 Fix a possible deadlock in the GPE dispatch. Remove call to
5106 AcpiHwDisableAllGpes during wake in AcpiEvGpeDispatch. This call will
5107 attempt
5108 to acquire the GPE lock but can deadlock since the GPE lock is already
5109 held
5110 at dispatch time. This code was introduced in version 20060831 as a
5111 response
2051 AcpiHwDisableAllGpes during wake in AcpiEvGpeDispatch. This call will attempt
2052 to acquire the GPE lock but can deadlock since the GPE lock is already held

new/usr/src/common/acpica/changes.txt 87

2053 at dispatch time. This code was introduced in version 20060831 as a response
5112 to Linux BZ 6881 and has since been removed from Linux.

5114 Add a function to dereference returned reference objects. Examines the
5115 return
5116 object from a call to AcpiEvaluateObject. Any Index or RefOf references
5117 are
5118 automatically dereferenced in an attempt to return something useful
5119 (these
5120 reference types cannot be converted into an external ACPI_OBJECT.)
5121 Provides
2056 Add a function to dereference returned reference objects. Examines the return
2057 object from a call to AcpiEvaluateObject. Any Index or RefOf references are
2058 automatically dereferenced in an attempt to return something useful (these
2059 reference types cannot be converted into an external ACPI_OBJECT.) Provides
5122 MS compatibility. Lin Ming, Bob Moore. Linux BZ 11105

5124 x2APIC support: changes for MADT and SRAT ACPI tables. There are 2 new
5125 subtables for the MADT and one new subtable for the SRAT. Includes
5126 disassembler and AcpiSrc support. Data from the Intel 64 Architecture
5127 x2APIC
2064 disassembler and AcpiSrc support. Data from the Intel 64 Architecture x2APIC
5128 Specification, June 2008.

5130 Additional error checking for pathname utilities. Add error check after
5131 all
2067 Additional error checking for pathname utilities. Add error check after all
5132 calls to AcpiNsGetPathnameLength. Add status return from
5133 AcpiNsBuildExternalPath and check after all calls. Add parameter
5134 validation
2069 AcpiNsBuildExternalPath and check after all calls. Add parameter validation
5135 to AcpiUtInitializeBuffer. Reported by and initial patch by Ingo Molnar.

5137 Return status from the global init function AcpiUtGlobalInitialize. This
5138 is
5139 used by both the kernel subsystem and the utilities such as iASL
5140 compiler.
5141 The function could possibly fail when the caches are initialized. Yang
5142 Yi.
2072 Return status from the global init function AcpiUtGlobalInitialize. This is
2073 used by both the kernel subsystem and the utilities such as iASL compiler.
2074 The function could possibly fail when the caches are initialized. Yang Yi.

5144 Add a function to decode reference object types to strings. Created for
5145 improved error messages.

5147 Improve object conversion error messages. Better error messages during
5148 object
5149 conversion from internal to the external ACPI_OBJECT. Used for external
5150 calls
2079 Improve object conversion error messages. Better error messages during object
2080 conversion from internal to the external ACPI_OBJECT. Used for external calls
5151 to AcpiEvaluateObject.

5153 Example Code and Data Size: These are the sizes for the OS-independent
5154 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
5155 debug version of the code includes the debug output trace mechanism and
5156 has a
2085 debug version of the code includes the debug output trace mechanism and has a
5157 much larger code and data size.

5159 Previous Release:
5160 Non-Debug Version: 79.6K Code, 16.2K Data, 95.8K Total
5161 Debug Version: 153.5K Code, 48.2K Data, 201.7K Total
5162 Current Release:
5163 Non-Debug Version: 79.7K Code, 16.4K Data, 96.1K Total

new/usr/src/common/acpica/changes.txt 88

5164 Debug Version: 153.9K Code, 48.4K Data, 202.3K Total

5166 2) iASL Compiler/Disassembler and Tools:

5168 Debugger: fix a possible hang when evaluating non-methods. Fixes a
5169 problem
5170 introduced in version 20080701. If the object being evaluated (via
5171 execute
5172 command) is not a method, the debugger can hang while trying to obtain
5173 non-
2097 Debugger: fix a possible hang when evaluating non-methods. Fixes a problem
2098 introduced in version 20080701. If the object being evaluated (via execute
2099 command) is not a method, the debugger can hang while trying to obtain non-
5174 existent parameters.

5176 iASL: relax error for using reserved "_T_x" identifiers. These names can
5177 appear in a disassembled ASL file if they were emitted by the original
5178 compiler. Instead of issuing an error or warning and forcing the user to
5179 manually change these names, issue a remark instead.

5181 iASL: error if named object created in while loop. Emit an error if any
5182 named
5183 object is created within a While loop. If allowed, this code will
5184 generate
5185 a
5186 run-time error on the second iteration of the loop when an attempt is
5187 made
5188 to
2107 iASL: error if named object created in while loop. Emit an error if any named
2108 object is created within a While loop. If allowed, this code will generate a
2109 run-time error on the second iteration of the loop when an attempt is made to
5189 create the same named object twice. ACPICA bugzilla 730.

5191 iASL: Support absolute pathnames for include files. Add support for
5192 absolute
5193 pathnames within the Include operator. previously, only relative
5194 pathnames
2112 iASL: Support absolute pathnames for include files. Add support for absolute
2113 pathnames within the Include operator. previously, only relative pathnames
5195 were supported.

5197 iASL: Enforce minimum 1 interrupt in interrupt macro and Resource
5198 Descriptor.
2116 iASL: Enforce minimum 1 interrupt in interrupt macro and Resource Descriptor.
5199 The ACPI spec requires one interrupt minimum. BZ 423

5201 iASL: Handle a missing ResourceSource arg, with a present SourceIndex.
5202 Handles the case for the Interrupt Resource Descriptor where
5203 the ResourceSource argument is omitted but ResourceSourceIndex
5204 is present. Now leave room for the Index. BZ 426

5206 iASL: Prevent error message if CondRefOf target does not exist. Fixes
5207 cases
2124 iASL: Prevent error message if CondRefOf target does not exist. Fixes cases
5208 where an error message is emitted if the target does not exist. BZ 516

5210 iASL: Fix broken -g option (get Windows ACPI tables). Fixes the -g option
5211 (get ACPI tables on Windows). This was apparently broken in version
5212 20070919.
2128 (get ACPI tables on Windows). This was apparently broken in version 20070919.

5214 AcpiXtract: Handle EOF while extracting data. Correctly handle the case
5215 where
2130 AcpiXtract: Handle EOF while extracting data. Correctly handle the case where
5216 the EOF happens immediately after the last table in the input file. Print
5217 completion message. Previously, no message was displayed in this case.

new/usr/src/common/acpica/changes.txt 89

5219 --
5220 01 July 2008. Summary of changes for version 20080701:

5222 0) Git source tree / acpica.org

5224 Fixed a problem where a git-clone from http would not transfer the entire
5225 source tree.

5227 1) ACPI CA Core Subsystem:

5229 Implemented a "careful" GPE disable in AcpiEvDisableGpe, only modify one
5230 enable bit. Now performs a read-change-write of the enable register
5231 instead
5232 of simply writing out the cached enable mask. This will prevent
5233 inadvertent
5234 enabling of GPEs if a rogue GPE is received during initialization (before
5235 GPE
2145 enable bit. Now performs a read-change-write of the enable register instead
2146 of simply writing out the cached enable mask. This will prevent inadvertent
2147 enabling of GPEs if a rogue GPE is received during initialization (before GPE
5236 handlers are installed.)

5238 Implemented a copy for dynamically loaded tables. Previously, dynamically
5239 loaded tables were simply mapped - but on some machines this memory is
5240 corrupted after suspend. Now copy the table to a local buffer. For the
5241 OpRegion case, added checksum verify. Use the table length from the table
5242 header, not the region length. For the Buffer case, use the table length
5243 also. Dennis Noordsij, Bob Moore. BZ 10734

5245 Fixed a problem where the same ACPI table could not be dynamically loaded
5246 and
5247 unloaded more than once. Without this change, a table cannot be loaded
5248 again
2157 Fixed a problem where the same ACPI table could not be dynamically loaded and
2158 unloaded more than once. Without this change, a table cannot be loaded again
5249 once it has been loaded/unloaded one time. The current mechanism does not
5250 unregister a table upon an unload. During a load, if the same table is
5251 found,
2160 unregister a table upon an unload. During a load, if the same table is found,
5252 this no longer returns an exception. BZ 722

5254 Fixed a problem where the wrong descriptor length was calculated for the
5255 EndTag descriptor in 64-bit mode. The "minimal" descriptors such as
5256 EndTag
2164 EndTag descriptor in 64-bit mode. The "minimal" descriptors such as EndTag
5257 are calculated as 12 bytes long, but the actual length in the internal
5258 descriptor is 16 because of the round-up to 8 on the 64-bit build.
5259 Reported
2166 descriptor is 16 because of the round-up to 8 on the 64-bit build. Reported
5260 by Linn Crosetto. BZ 728

5262 Fixed a possible memory leak in the Unload operator. The DdbHandle
5263 returned
5264 by Load() did not have its reference count decremented during unload,
5265 leading
2169 Fixed a possible memory leak in the Unload operator. The DdbHandle returned
2170 by Load() did not have its reference count decremented during unload, leading
5266 to a memory leak. Lin Ming. BZ 727

5268 Fixed a possible memory leak when deleting thermal/processor objects. Any
5269 associated notify handlers (and objects) were not being deleted. Fiodor
5270 Suietov. BZ 506

5272 Fixed the ordering of the ASCII names in the global mutex table to match
5273 the

new/usr/src/common/acpica/changes.txt 90

5274 actual mutex IDs. Used by AcpiUtGetMutexName, a function used for debug
5275 only.
2177 Fixed the ordering of the ASCII names in the global mutex table to match the
2178 actual mutex IDs. Used by AcpiUtGetMutexName, a function used for debug only.
5276 Vegard Nossum. BZ 726

5278 Enhanced the AcpiGetObjectInfo interface to return the number of required
5279 arguments if the object is a control method. Added this call to the
5280 debugger
2182 arguments if the object is a control method. Added this call to the debugger
5281 so the proper number of default arguments are passed to a method. This
5282 prevents a warning when executing methods from AcpiExec.

5284 Added a check for an invalid handle in AcpiGetObjectInfo. Return
5285 AE_BAD_PARAMETER if input handle is invalid. BZ 474

5287 Fixed an extraneous warning from exconfig.c on the 64-bit build.

5289 Example Code and Data Size: These are the sizes for the OS-independent
5290 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
5291 debug version of the code includes the debug output trace mechanism and
5292 has a
2193 debug version of the code includes the debug output trace mechanism and has a
5293 much larger code and data size.

5295 Previous Release:
5296 Non-Debug Version: 79.3K Code, 16.2K Data, 95.5K Total
5297 Debug Version: 153.0K Code, 48.2K Data, 201.2K Total
5298 Current Release:
5299 Non-Debug Version: 79.6K Code, 16.2K Data, 95.8K Total
5300 Debug Version: 153.5K Code, 48.2K Data, 201.7K Total

5302 2) iASL Compiler/Disassembler and Tools:

5304 iASL: Added two missing ACPI reserved names. Added _MTP and _ASZ, both
5305 resource descriptor names.

5307 iASL: Detect invalid ASCII characters in input (windows version). Removed
5308 the
2208 iASL: Detect invalid ASCII characters in input (windows version). Removed the
5309 "-CF" flag from the flex compile, enables correct detection of non-ASCII
5310 characters in the input. BZ 441

5312 iASL: Eliminate warning when result of LoadTable is not used. Eliminate
5313 the
2212 iASL: Eliminate warning when result of LoadTable is not used. Eliminate the
5314 "result of operation not used" warning when the DDB handle returned from
5315 LoadTable is not used. The warning is not needed. BZ 590

5317 AcpiExec: Add support for dynamic table load/unload. Now calls _CFG
5318 method
5319 to
5320 pass address of table to the AML. Added option to disable OpRegion
5321 simulation
5322 to allow creation of an OpRegion with a real address that was passed to
5323 _CFG.
5324 All of this allows testing of the Load and Unload operators from
5325 AcpiExec.
2216 AcpiExec: Add support for dynamic table load/unload. Now calls _CFG method to
2217 pass address of table to the AML. Added option to disable OpRegion simulation
2218 to allow creation of an OpRegion with a real address that was passed to _CFG.
2219 All of this allows testing of the Load and Unload operators from AcpiExec.

5327 Debugger: update tables command for unloaded tables. Handle unloaded
5328 tables
2221 Debugger: update tables command for unloaded tables. Handle unloaded tables

new/usr/src/common/acpica/changes.txt 91

5329 and use the standard table header output routine.

5331 --
5332 09 June 2008. Summary of changes for version 20080609:

5334 1) ACPI CA Core Subsystem:

5336 Implemented a workaround for reversed _PRT entries. A significant number
5337 of
2229 Implemented a workaround for reversed _PRT entries. A significant number of
5338 BIOSs erroneously reverse the _PRT SourceName and the SourceIndex. This
5339 change dynamically detects and repairs this problem. Provides
5340 compatibility
2231 change dynamically detects and repairs this problem. Provides compatibility
5341 with MS ACPI. BZ 6859

5343 Simplified the internal ACPI hardware interfaces to eliminate the locking
5344 flag parameter from Register Read/Write. Added a new external interface,
5345 AcpiGetRegisterUnlocked.

5347 Fixed a problem where the invocation of a GPE control method could hang.
5348 This
2238 Fixed a problem where the invocation of a GPE control method could hang. This
5349 was a regression introduced in 20080514. The new method argument count
5350 validation mechanism can enter an infinite loop when a GPE method is
5351 dispatched. Problem fixed by removing the obsolete code that passed GPE
5352 block
5353 information to the notify handler via the control method parameter
5354 pointer.
2241 dispatched. Problem fixed by removing the obsolete code that passed GPE block
2242 information to the notify handler via the control method parameter pointer.

5356 Fixed a problem where the _SST execution status was incorrectly returned
5357 to
5358 the caller of AcpiEnterSleepStatePrep. This was a regression introduced
5359 in
2244 Fixed a problem where the _SST execution status was incorrectly returned to
2245 the caller of AcpiEnterSleepStatePrep. This was a regression introduced in
5360 20080514. _SST is optional and a NOT_FOUND exception should never be
5361 returned. BZ 716

5363 Fixed a problem where a deleted object could be accessed from within the
5364 AML
5365 parser. This was a regression introduced in version 20080123 as a fix for
5366 the
2249 Fixed a problem where a deleted object could be accessed from within the AML
2250 parser. This was a regression introduced in version 20080123 as a fix for the
5367 Unload operator. Lin Ming. BZ 10669

5369 Cleaned up the debug operand dump mechanism. Eliminated unnecessary
5370 operands
2253 Cleaned up the debug operand dump mechanism. Eliminated unnecessary operands
5371 and eliminated the use of a negative index in a loop. Operands are now
5372 displayed in the correct order, not backwards. This also fixes a
5373 regression
2255 displayed in the correct order, not backwards. This also fixes a regression
5374 introduced in 20080514 on 64-bit systems where the elimination of
5375 ACPI_NATIVE_UINT caused the negative index to go large and positive. BZ
5376 715
2257 ACPI_NATIVE_UINT caused the negative index to go large and positive. BZ 715

5378 Fixed a possible memory leak in EvPciConfigRegionSetup where the error
5379 exit
2259 Fixed a possible memory leak in EvPciConfigRegionSetup where the error exit
5380 path did not delete a locally allocated structure.

new/usr/src/common/acpica/changes.txt 92

5382 Updated definitions for the DMAR and SRAT tables to synchronize with the
5383 current specifications. Includes disassembler support.

5385 Fixed a problem in the mutex debug code (in utmutex.c) where an incorrect
5386 loop termination value was used. Loop terminated on iteration early,
5387 missing
2266 loop termination value was used. Loop terminated on iteration early, missing
5388 one mutex. Linn Crosetto

5390 Example Code and Data Size: These are the sizes for the OS-independent
5391 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
5392 debug version of the code includes the debug output trace mechanism and
5393 has a
2271 debug version of the code includes the debug output trace mechanism and has a
5394 much larger code and data size.

5396 Previous Release:
5397 Non-Debug Version: 79.5K Code, 16.2K Data, 95.7K Total
5398 Debug Version: 153.3K Code, 48.3K Data, 201.6K Total
5399 Current Release:
5400 Non-Debug Version: 79.3K Code, 16.2K Data, 95.5K Total
5401 Debug Version: 153.0K Code, 48.2K Data, 201.2K Total

5403 2) iASL Compiler/Disassembler and Tools:

5405 Disassembler: Implemented support for EisaId() within _CID objects. Now
5406 disassemble integer _CID objects back to EisaId invocations, including
5407 multiple integers within _CID packages. Includes single-step support for
5408 debugger also.

5410 Disassembler: Added support for DMAR and SRAT table definition changes.

5412 --
5413 14 May 2008. Summary of changes for version 20080514:

5415 1) ACPI CA Core Subsystem:

5417 Fixed a problem where GPEs were enabled too early during the ACPICA
5418 initialization. This could lead to "handler not installed" errors on some
5419 machines. Moved GPE enable until after _REG/_STA/_INI methods are run.
5420 This
5421 ensures that all operation regions and devices throughout the namespace
5422 have
2297 machines. Moved GPE enable until after _REG/_STA/_INI methods are run. This
2298 ensures that all operation regions and devices throughout the namespace have
5423 been initialized before GPEs are enabled. Alexey Starikovskiy, BZ 9916.

5425 Implemented a change to the enter sleep code. Moved execution of the _GTS
5426 method to just before setting sleep enable bit. The execution was moved
5427 from
2302 method to just before setting sleep enable bit. The execution was moved from
5428 AcpiEnterSleepStatePrep to AcpiEnterSleepState. _GTS is now executed
5429 immediately before the SLP_EN bit is set, as per the ACPI specification.
5430 Luming Yu, BZ 1653.

5432 Implemented a fix to disable unknown GPEs (2nd version). Now always
5433 disable
2307 Implemented a fix to disable unknown GPEs (2nd version). Now always disable
5434 the GPE, even if ACPICA thinks that that it is already disabled. It is
5435 possible that the AML or some other code has enabled the GPE unbeknownst
5436 to
2309 possible that the AML or some other code has enabled the GPE unbeknownst to
5437 the ACPICA code.

5439 Fixed a problem with the Field operator where zero-length fields would
5440 return

new/usr/src/common/acpica/changes.txt 93

5441 an AE_AML_NO_OPERAND exception during table load. Fix enables zero-length
5442 ASL
2312 Fixed a problem with the Field operator where zero-length fields would return
2313 an AE_AML_NO_OPERAND exception during table load. Fix enables zero-length ASL
5443 field declarations in Field(), BankField(), and IndexField(). BZ 10606.

5445 Implemented a fix for the Load operator, now load the table at the
5446 namespace
5447 root. This reverts a change introduced in version 20071019. The table is
5448 now
2316 Implemented a fix for the Load operator, now load the table at the namespace
2317 root. This reverts a change introduced in version 20071019. The table is now
5449 loaded at the namespace root even though this goes against the ACPI
5450 specification. This provides compatibility with other ACPI
5451 implementations.
5452 The ACPI specification will be updated to reflect this in ACPI 4.0. Lin
5453 Ming.
2319 specification. This provides compatibility with other ACPI implementations.
2320 The ACPI specification will be updated to reflect this in ACPI 4.0. Lin Ming.

5455 Fixed a problem where ACPICA would not Load() tables with unusual
5456 signatures.
2322 Fixed a problem where ACPICA would not Load() tables with unusual signatures.
5457 Now ignore ACPI table signature for Load() operator. Only "SSDT" is
5458 acceptable to the ACPI spec, but tables are seen with OEMx and null sigs.
5459 Therefore, signature validation is worthless. Apparently MS ACPI accepts
5460 such
2325 Therefore, signature validation is worthless. Apparently MS ACPI accepts such
5461 signatures, ACPICA must be compatible. BZ 10454.

5463 Fixed a possible negative array index in AcpiUtValidateException. Added
5464 NULL
5465 fields to the exception string arrays to eliminate a -1 subtraction on
5466 the
2328 Fixed a possible negative array index in AcpiUtValidateException. Added NULL
2329 fields to the exception string arrays to eliminate a -1 subtraction on the
5467 SubStatus field.

5469 Updated the debug tracking macros to reduce overall code and data size.
5470 Changed ACPI_MODULE_NAME and ACPI_FUNCTION_NAME to use arrays of strings
5471 instead of pointers to static strings. Jan Beulich and Bob Moore.

5473 Implemented argument count checking in control method invocation via
5474 AcpiEvaluateObject. Now emit an error if too few arguments, warning if
5475 too
5476 many. This applies only to extern programmatic control method execution,
5477 not
2337 AcpiEvaluateObject. Now emit an error if too few arguments, warning if too
2338 many. This applies only to extern programmatic control method execution, not
5478 method-to-method calls within the AML. Lin Ming.

5480 Eliminated the ACPI_NATIVE_UINT type across all ACPICA code. This type is
5481 no
5482 longer needed, especially with the removal of 16-bit support. It was
5483 replaced
5484 mostly with UINT32, but also ACPI_SIZE where a type that changes 32/64
5485 bit
5486 on
2341 Eliminated the ACPI_NATIVE_UINT type across all ACPICA code. This type is no
2342 longer needed, especially with the removal of 16-bit support. It was replaced
2343 mostly with UINT32, but also ACPI_SIZE where a type that changes 32/64 bit on
5487 32/64-bit platforms is required.

5489 Added the C const qualifier for appropriate string constants -- mostly
5490 MODULE_NAME and printf format strings. Jan Beulich.

new/usr/src/common/acpica/changes.txt 94

5492 Example Code and Data Size: These are the sizes for the OS-independent
5493 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
5494 debug version of the code includes the debug output trace mechanism and
5495 has a
2351 debug version of the code includes the debug output trace mechanism and has a
5496 much larger code and data size.

5498 Previous Release:
5499 Non-Debug Version: 80.0K Code, 17.4K Data, 97.4K Total
5500 Debug Version: 159.4K Code, 64.4K Data, 223.8K Total
5501 Current Release:
5502 Non-Debug Version: 79.5K Code, 16.2K Data, 95.7K Total
5503 Debug Version: 153.3K Code, 48.3K Data, 201.6K Total

5505 2) iASL Compiler/Disassembler and Tools:

5507 Implemented ACPI table revision ID validation in the disassembler. Zero
5508 is
5509 always invalid. For DSDTs, the ID controls the interpreter integer width.
5510 1
2363 Implemented ACPI table revision ID validation in the disassembler. Zero is
2364 always invalid. For DSDTs, the ID controls the interpreter integer width. 1
5511 means 32-bit and this is unusual. 2 or greater is 64-bit.

5513 --
5514 21 March 2008. Summary of changes for version 20080321:

5516 1) ACPI CA Core Subsystem:

5518 Implemented an additional change to the GPE support in order to suppress
5519 spurious or stray GPEs. The AcpiEvDisableGpe function will now
5520 permanently
5521 disable incoming GPEs that are neither enabled nor disabled -- meaning
5522 that
5523 the GPE is unknown to the system. This should prevent future interrupt
5524 floods
2373 spurious or stray GPEs. The AcpiEvDisableGpe function will now permanently
2374 disable incoming GPEs that are neither enabled nor disabled -- meaning that
2375 the GPE is unknown to the system. This should prevent future interrupt floods
5525 from that GPE. BZ 6217 (Zhang Rui)

5527 Fixed a problem where NULL package elements were not returned to the
5528 AcpiEvaluateObject interface correctly. The element was simply ignored
5529 instead of returning a NULL ACPI_OBJECT package element, potentially
5530 causing
5531 a buffer overflow and/or confusing the caller who expected a fixed number
5532 of
2380 instead of returning a NULL ACPI_OBJECT package element, potentially causing
2381 a buffer overflow and/or confusing the caller who expected a fixed number of
5533 elements. BZ 10132 (Lin Ming, Bob Moore)

5535 Fixed a problem with the CreateField, CreateXXXField (Bit, Byte, Word,
5536 Dword,
5537 Qword), Field, BankField, and IndexField operators when invoked from
5538 inside
5539 an executing control method. In this case, these operators created
5540 namespace
2384 Fixed a problem with the CreateField, CreateXXXField (Bit, Byte, Word, Dword,
2385 Qword), Field, BankField, and IndexField operators when invoked from inside
2386 an executing control method. In this case, these operators created namespace
5541 nodes that were incorrectly left marked as permanent nodes instead of
5542 temporary nodes. This could cause a problem if there is race condition
5543 between an exiting control method and a running namespace walk. (Reported
5544 by
2389 between an exiting control method and a running namespace walk. (Reported by
5545 Linn Crosetto)

new/usr/src/common/acpica/changes.txt 95

5547 Fixed a problem where the CreateField and CreateXXXField operators would
5548 incorrectly allow duplicate names (the name of the field) with no
5549 exception
2393 incorrectly allow duplicate names (the name of the field) with no exception
5550 generated.

5552 Implemented several changes for Notify handling. Added support for new
5553 Notify
2396 Implemented several changes for Notify handling. Added support for new Notify
5554 values (ACPI 2.0+) and improved the Notify debug output. Notify on
5555 PowerResource objects is no longer allowed, as per the ACPI
5556 specification.
2398 PowerResource objects is no longer allowed, as per the ACPI specification.
5557 (Bob Moore, Zhang Rui)

5559 All Reference Objects returned via the AcpiEvaluateObject interface are
5560 now
5561 marked as type "REFERENCE" instead of "ANY". The type ANY is now reserved
5562 for
5563 NULL objects - either NULL package elements or unresolved named
5564 references.
2401 All Reference Objects returned via the AcpiEvaluateObject interface are now
2402 marked as type "REFERENCE" instead of "ANY". The type ANY is now reserved for
2403 NULL objects - either NULL package elements or unresolved named references.

5566 Fixed a problem where an extraneous debug message was produced for
5567 package
2405 Fixed a problem where an extraneous debug message was produced for package
5568 objects (when debugging enabled). The message "Package List length larger
5569 than NumElements count" is now produced in the correct case, and is now
5570 an
2407 than NumElements count" is now produced in the correct case, and is now an
5571 error message rather than a debug message. Added a debug message for the
5572 opposite case, where NumElements is larger than the Package List (the
5573 package
2409 opposite case, where NumElements is larger than the Package List (the package
5574 will be padded out with NULL elements as per the ACPI spec.)

5576 Implemented several improvements for the output of the ASL "Debug" object
5577 to
2412 Implemented several improvements for the output of the ASL "Debug" object to
5578 clarify and keep all data for a given object on one output line.

5580 Fixed two size calculation issues with the variable-length Start
5581 Dependent
2415 Fixed two size calculation issues with the variable-length Start Dependent
5582 resource descriptor.

5584 Example Code and Data Size: These are the sizes for the OS-independent
5585 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
5586 debug version of the code includes the debug output trace mechanism and
5587 has
2420 debug version of the code includes the debug output trace mechanism and has
5588 a much larger code and data size.

5590 Previous Release:
5591 Non-Debug Version: 79.7K Code, 17.3K Data, 97.0K Total
5592 Debug Version: 158.9K Code, 64.0K Data, 222.9K Total
5593 Current Release:
5594 Non-Debug Version: 80.0K Code, 17.4K Data, 97.4K Total
5595 Debug Version: 159.4K Code, 64.4K Data, 223.8K Total

5597 2) iASL Compiler/Disassembler and Tools:

5599 Fixed a problem with the use of the Switch operator where execution of

new/usr/src/common/acpica/changes.txt 96

5600 the
2432 Fixed a problem with the use of the Switch operator where execution of the
5601 containing method by multiple concurrent threads could cause an
5602 AE_ALREADY_EXISTS exception. This is caused by the fact that there is no
5603 actual Switch opcode, it must be simulated with local named temporary
5604 variables and if/else pairs. The solution chosen was to mark any method
5605 that
5606 uses Switch as Serialized, thus preventing multiple thread entries. BZ
5607 469.
2436 variables and if/else pairs. The solution chosen was to mark any method that
2437 uses Switch as Serialized, thus preventing multiple thread entries. BZ 469.

5609 --
5610 13 February 2008. Summary of changes for version 20080213:

5612 1) ACPI CA Core Subsystem:

5614 Implemented another MS compatibility design change for GPE/Notify
5615 handling.
5616 GPEs are now cleared/enabled asynchronously to allow all pending notifies
5617 to
2444 Implemented another MS compatibility design change for GPE/Notify handling.
2445 GPEs are now cleared/enabled asynchronously to allow all pending notifies to
5618 complete first. It is expected that the OSL will queue the enable request
5619 behind all pending notify requests (may require changes to the local host
5620 OSL
2447 behind all pending notify requests (may require changes to the local host OSL
5621 in AcpiOsExecute). Alexey Starikovskiy.

5623 Fixed a problem where buffer and package objects passed as arguments to a
5624 control method via the external AcpiEvaluateObject interface could cause
5625 an
2451 control method via the external AcpiEvaluateObject interface could cause an
5626 AE_AML_INTERNAL exception depending on the order and type of operators
5627 executed by the target control method.

5629 Fixed a problem where resource descriptor size optimization could cause a
5630 problem when a _CRS resource template is passed to a _SRS method. The
5631 _SRS
2456 problem when a _CRS resource template is passed to a _SRS method. The _SRS
5632 resource template must use the same descriptors (with the same size) as
5633 returned from _CRS. This change affects the following resource
5634 descriptors:
5635 IRQ / IRQNoFlags and StartDependendentFn / StartDependentFnNoPri. (BZ
5636 9487)
2458 returned from _CRS. This change affects the following resource descriptors:
2459 IRQ / IRQNoFlags and StartDependendentFn / StartDependentFnNoPri. (BZ 9487)

5638 Fixed a problem where a CopyObject to RegionField, BankField, and
5639 IndexField
5640 objects did not perform an implicit conversion as it should. These types
5641 must
5642 retain their initial type permanently as per the ACPI specification.
5643 However,
2461 Fixed a problem where a CopyObject to RegionField, BankField, and IndexField
2462 objects did not perform an implicit conversion as it should. These types must
2463 retain their initial type permanently as per the ACPI specification. However,
5644 a CopyObject to all other object types should not perform an implicit
5645 conversion, as per the ACPI specification. (Lin Ming, Bob Moore) BZ 388

5647 Fixed a problem with the AcpiGetDevices interface where the mechanism to
5648 match device CIDs did not examine the entire list of available CIDs, but
5649 instead aborted on the first non-matching CID. Andrew Patterson.

5651 Fixed a regression introduced in version 20071114. The ACPI_HIDWORD macro
5652 was

new/usr/src/common/acpica/changes.txt 97

2471 Fixed a regression introduced in version 20071114. The ACPI_HIDWORD macro was
5653 inadvertently changed to return a 16-bit value instead of a 32-bit value,
5654 truncating the upper dword of a 64-bit value. This macro is only used to
5655 display debug output, so no incorrect calculations were made. Also,
5656 reimplemented the macro so that a 64-bit shift is not performed by
5657 inefficient compilers.

5659 Added missing va_end statements that should correspond with each va_start
5660 statement.

5662 Example Code and Data Size: These are the sizes for the OS-independent
5663 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
5664 debug version of the code includes the debug output trace mechanism and
5665 has
2483 debug version of the code includes the debug output trace mechanism and has
5666 a much larger code and data size.

5668 Previous Release:
5669 Non-Debug Version: 79.5K Code, 17.2K Data, 96.7K Total
5670 Debug Version: 159.0K Code, 63.8K Data, 222.8K Total
5671 Current Release:
5672 Non-Debug Version: 79.7K Code, 17.3K Data, 97.0K Total
5673 Debug Version: 158.9K Code, 64.0K Data, 222.9K Total

5675 2) iASL Compiler/Disassembler and Tools:

5677 Implemented full disassembler support for the following new ACPI tables:
5678 BERT, EINJ, and ERST. Implemented partial disassembler support for the
5679 complicated HEST table. These tables support the Windows Hardware Error
5680 Architecture (WHEA).

5682 --
5683 23 January 2008. Summary of changes for version 20080123:

5685 1) ACPI CA Core Subsystem:

5687 Added the 2008 copyright to all module headers and signons. This affects
5688 virtually every file in the ACPICA core subsystem, the iASL compiler, and
5689 the tools/utilities.

5691 Fixed a problem with the SizeOf operator when used with Package and
5692 Buffer
5693 objects. These objects have deferred execution for some arguments, and
5694 the
5695 execution is now completed before the SizeOf is executed. This problem
5696 caused
5697 unexpected AE_PACKAGE_LIMIT errors on some systems (Lin Ming, Bob Moore)
5698 BZ
2509 Fixed a problem with the SizeOf operator when used with Package and Buffer
2510 objects. These objects have deferred execution for some arguments, and the
2511 execution is now completed before the SizeOf is executed. This problem caused
2512 unexpected AE_PACKAGE_LIMIT errors on some systems (Lin Ming, Bob Moore) BZ
5699 9558

5701 Implemented an enhancement to the interpreter "slack mode". In the
5702 absence
5703 of
5704 an explicit return or an implicitly returned object from the last
5705 executed
5706 opcode, a control method will now implicitly return an integer of value 0
5707 for
2515 Implemented an enhancement to the interpreter "slack mode". In the absence of
2516 an explicit return or an implicitly returned object from the last executed
2517 opcode, a control method will now implicitly return an integer of value 0 for
5708 Microsoft compatibility. (Lin Ming) BZ 392

new/usr/src/common/acpica/changes.txt 98

5710 Fixed a problem with the Load operator where an exception was not
5711 returned
5712 in
2520 Fixed a problem with the Load operator where an exception was not returned in
5713 the case where the table is already loaded. (Lin Ming) BZ 463

5715 Implemented support for the use of DDBHandles as an Indexed Reference, as
5716 per
2523 Implemented support for the use of DDBHandles as an Indexed Reference, as per
5717 the ACPI spec. (Lin Ming) BZ 486

5719 Implemented support for UserTerm (Method invocation) for the Unload
5720 operator
2526 Implemented support for UserTerm (Method invocation) for the Unload operator
5721 as per the ACPI spec. (Lin Ming) BZ 580

5723 Fixed a problem with the LoadTable operator where the OemId and
5724 OemTableId
5725 input strings could cause unexpected failures if they were shorter than
5726 the
2529 Fixed a problem with the LoadTable operator where the OemId and OemTableId
2530 input strings could cause unexpected failures if they were shorter than the
5727 maximum lengths allowed. (Lin Ming, Bob Moore) BZ 576

5729 Implemented support for UserTerm (Method invocation) for the Unload
5730 operator
2533 Implemented support for UserTerm (Method invocation) for the Unload operator
5731 as per the ACPI spec. (Lin Ming) BZ 580

5733 Implemented header file support for new ACPI tables - BERT, ERST, EINJ,
5734 HEST,
2536 Implemented header file support for new ACPI tables - BERT, ERST, EINJ, HEST,
5735 IBFT, UEFI, WDAT. Disassembler support is forthcoming.

5737 Example Code and Data Size: These are the sizes for the OS-independent
5738 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
5739 debug version of the code includes the debug output trace mechanism and
5740 has
2541 debug version of the code includes the debug output trace mechanism and has
5741 a much larger code and data size.

5743 Previous Release:
5744 Non-Debug Version: 79.3K Code, 17.2K Data, 96.5K Total
5745 Debug Version: 158.6K Code, 63.8K Data, 222.4K Total
5746 Current Release:
5747 Non-Debug Version: 79.5K Code, 17.2K Data, 96.7K Total
5748 Debug Version: 159.0K Code, 63.8K Data, 222.8K Total

5750 2) iASL Compiler/Disassembler and Tools:

5752 Implemented support in the disassembler for checksum validation on
5753 incoming
5754 binary DSDTs and SSDTs. If incorrect, a message is displayed within the
5755 table
2553 Implemented support in the disassembler for checksum validation on incoming
2554 binary DSDTs and SSDTs. If incorrect, a message is displayed within the table
5756 header dump at the start of the disassembly.

5758 Implemented additional debugging information in the namespace listing
5759 file
5760 created during compilation. In addition to the namespace hierarchy, the
5761 full
2557 Implemented additional debugging information in the namespace listing file
2558 created during compilation. In addition to the namespace hierarchy, the full
5762 pathname to each namespace object is displayed.

new/usr/src/common/acpica/changes.txt 99

5764 Fixed a problem with the disassembler where invalid ACPI tables could
5765 cause
2561 Fixed a problem with the disassembler where invalid ACPI tables could cause
5766 faults or infinite loops.

5768 Fixed an unexpected parse error when using the optional "parameter types"
5769 list in a control method declaration. (Lin Ming) BZ 397

5771 Fixed a problem where two External declarations with the same name did
5772 not
2567 Fixed a problem where two External declarations with the same name did not
5773 cause an error (Lin Ming) BZ 509

5775 Implemented support for full TermArgs (adding Argx, Localx and method
5776 invocation) for the ParameterData parameter to the LoadTable operator.
5777 (Lin
2571 invocation) for the ParameterData parameter to the LoadTable operator. (Lin
5778 Ming) BZ 583,587

5780 --
5781 19 December 2007. Summary of changes for version 20071219:

5783 1) ACPI CA Core Subsystem:

5785 Implemented full support for deferred execution for the TermArg string
5786 arguments for DataTableRegion. This enables forward references and full
5787 operand resolution for the three string arguments. Similar to
5788 OperationRegion
2581 operand resolution for the three string arguments. Similar to OperationRegion
5789 deferred argument execution.) Lin Ming. BZ 430

5791 Implemented full argument resolution support for the BankValue argument
5792 to
5793 BankField. Previously, only constants were supported, now any TermArg may
5794 be
2584 Implemented full argument resolution support for the BankValue argument to
2585 BankField. Previously, only constants were supported, now any TermArg may be
5795 used. Lin Ming BZ 387, 393

5797 Fixed a problem with AcpiGetDevices where the search of a branch of the
5798 device tree could be terminated prematurely. In accordance with the ACPI
5799 specification, the search down the current branch is terminated if a
5800 device
5801 is both not present and not functional (instead of just not present.)
5802 Yakui
2590 specification, the search down the current branch is terminated if a device
2591 is both not present and not functional (instead of just not present.) Yakui
5803 Zhao.

5805 Fixed a problem where "unknown" GPEs could be allowed to fire repeatedly
5806 if
5807 the underlying AML code changed the GPE enable registers. Now, any
5808 unknown
5809 incoming GPE (no _Lxx/_Exx method and not the EC GPE) is immediately
5810 disabled
2594 Fixed a problem where "unknown" GPEs could be allowed to fire repeatedly if
2595 the underlying AML code changed the GPE enable registers. Now, any unknown
2596 incoming GPE (no _Lxx/_Exx method and not the EC GPE) is immediately disabled
5811 instead of simply ignored. Rui Zhang.

5813 Fixed a problem with Index Fields where the Index register was
5814 incorrectly
2599 Fixed a problem with Index Fields where the Index register was incorrectly
5815 limited to a maximum of 32 bits. Now any size may be used.

5817 Fixed a couple memory leaks associated with "implicit return" objects

new/usr/src/common/acpica/changes.txt 100

5818 when
2602 Fixed a couple memory leaks associated with "implicit return" objects when
5819 the AML Interpreter slack mode is enabled. Lin Ming BZ 349

5821 Example Code and Data Size: These are the sizes for the OS-independent
5822 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
5823 debug version of the code includes the debug output trace mechanism and
5824 has
2607 debug version of the code includes the debug output trace mechanism and has
5825 a much larger code and data size.

5827 Previous Release:
5828 Non-Debug Version: 79.0K Code, 17.2K Data, 96.2K Total
5829 Debug Version: 157.9K Code, 63.6K Data, 221.5K Total
5830 Current Release:
5831 Non-Debug Version: 79.3K Code, 17.2K Data, 96.5K Total
5832 Debug Version: 158.6K Code, 63.8K Data, 222.4K Total

5834 --
5835 14 November 2007. Summary of changes for version 20071114:

5837 1) ACPI CA Core Subsystem:

5839 Implemented event counters for each of the Fixed Events, the ACPI SCI
5840 (interrupt) itself, and control methods executed. Named
5841 AcpiFixedEventCount[], AcpiSciCount, and AcpiMethodCount respectively.
5842 These
2624 AcpiFixedEventCount[], AcpiSciCount, and AcpiMethodCount respectively. These
5843 should be useful for debugging and statistics.

5845 Implemented a new external interface, AcpiGetStatistics, to retrieve the
5846 contents of the various event counters. Returns the current values for
5847 AcpiSciCount, AcpiGpeCount, the AcpiFixedEventCount array, and
5848 AcpiMethodCount. The interface can be expanded in the future if new
5849 counters
5850 are added. Device drivers should use this interface rather than access
5851 the
2630 AcpiMethodCount. The interface can be expanded in the future if new counters
2631 are added. Device drivers should use this interface rather than access the
5852 counters directly.

5854 Fixed a problem with the FromBCD and ToBCD operators. With some
5855 compilers,
5856 the ShortDivide function worked incorrectly, causing problems with the
5857 BCD
2634 Fixed a problem with the FromBCD and ToBCD operators. With some compilers,
2635 the ShortDivide function worked incorrectly, causing problems with the BCD
5858 functions with large input values. A truncation from 64-bit to 32-bit
5859 inadvertently occurred. Internal BZ 435. Lin Ming

5861 Fixed a problem with Index references passed as method arguments.
5862 References
5863 passed as arguments to control methods were dereferenced immediately
5864 (before
5865 control was passed to the called method). The references are now
5866 correctly
2639 Fixed a problem with Index references passed as method arguments. References
2640 passed as arguments to control methods were dereferenced immediately (before
2641 control was passed to the called method). The references are now correctly
5867 passed directly to the called method. BZ 5389. Lin Ming

5869 Fixed a problem with CopyObject used in conjunction with the Index
5870 operator.
5871 The reference was incorrectly dereferenced before the copy. The reference
5872 is
2644 Fixed a problem with CopyObject used in conjunction with the Index operator.

new/usr/src/common/acpica/changes.txt 101

2645 The reference was incorrectly dereferenced before the copy. The reference is
5873 now correctly copied. BZ 5391. Lin Ming

5875 Fixed a problem with Control Method references within Package objects.
5876 These
2648 Fixed a problem with Control Method references within Package objects. These
5877 references are now correctly generated. This completes the package
5878 construction overhaul that began in version 20071019.

5880 Example Code and Data Size: These are the sizes for the OS-independent
5881 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
5882 debug version of the code includes the debug output trace mechanism and
5883 has
2654 debug version of the code includes the debug output trace mechanism and has
5884 a much larger code and data size.

5886 Previous Release:
5887 Non-Debug Version: 78.8K Code, 17.2K Data, 96.0K Total
5888 Debug Version: 157.2K Code, 63.4K Data, 220.6K Total
5889 Current Release:
5890 Non-Debug Version: 79.0K Code, 17.2K Data, 96.2K Total
5891 Debug Version: 157.9K Code, 63.6K Data, 221.5K Total

5894 2) iASL Compiler/Disassembler and Tools:

5896 The AcpiExec utility now installs handlers for all of the predefined
5897 Operation Region types. New types supported are: PCI_Config, CMOS, and
5898 PCIBARTarget.

5900 Fixed a problem with the 64-bit version of AcpiExec where the extended
5901 (64-
2671 Fixed a problem with the 64-bit version of AcpiExec where the extended (64-
5902 bit) address fields for the DSDT and FACS within the FADT were not being
5903 used, causing truncation of the upper 32-bits of these addresses. Lin
5904 Ming
2673 used, causing truncation of the upper 32-bits of these addresses. Lin Ming
5905 and Bob Moore

5907 --
5908 19 October 2007. Summary of changes for version 20071019:

5910 1) ACPI CA Core Subsystem:

5912 Fixed a problem with the Alias operator when the target of the alias is a
5913 named ASL operator that opens a new scope -- Scope, Device,
5914 PowerResource,
2682 named ASL operator that opens a new scope -- Scope, Device, PowerResource,
5915 Processor, and ThermalZone. In these cases, any children of the original
5916 operator could not be accessed via the alias, potentially causing
5917 unexpected
2684 operator could not be accessed via the alias, potentially causing unexpected
5918 AE_NOT_FOUND exceptions. (BZ 9067)

5920 Fixed a problem with the Package operator where all named references were
5921 created as object references and left otherwise unresolved. According to
5922 the
5923 ACPI specification, a Package can only contain Data Objects or references
5924 to
2688 created as object references and left otherwise unresolved. According to the
2689 ACPI specification, a Package can only contain Data Objects or references to
5925 control methods. The implication is that named references to Data Objects
5926 (Integer, Buffer, String, Package, BufferField, Field) should be resolved
5927 immediately upon package creation. This is the approach taken with this
5928 change. References to all other named objects (Methods, Devices, Scopes,
5929 etc.) are all now properly created as reference objects. (BZ 5328)

new/usr/src/common/acpica/changes.txt 102

5931 Reverted a change to Notify handling that was introduced in version
5932 20070508. This version changed the Notify handling from asynchronous to
5933 fully synchronous (Device driver Notify handling with respect to the
5934 Notify
2698 fully synchronous (Device driver Notify handling with respect to the Notify
5935 ASL operator). It was found that this change caused more problems than it
5936 solved and was removed by most users.

5938 Fixed a problem with the Increment and Decrement operators where the type
5939 of
2702 Fixed a problem with the Increment and Decrement operators where the type of
5940 the target object could be unexpectedly and incorrectly changed. (BZ 353)
5941 Lin Ming.

5943 Fixed a problem with the Load and LoadTable operators where the table
5944 location within the namespace was ignored. Instead, the table was always
5945 loaded into the root or current scope. Lin Ming.

5947 Fixed a problem with the Load operator when loading a table from a buffer
5948 object. The input buffer was prematurely zeroed and/or deleted. (BZ 577)

5950 Fixed a problem with the Debug object where a store of a DdbHandle
5951 reference
2713 Fixed a problem with the Debug object where a store of a DdbHandle reference
5952 object to the Debug object could cause a fault.

5954 Added a table checksum verification for the Load operator, in the case
5955 where
2716 Added a table checksum verification for the Load operator, in the case where
5956 the load is from a buffer. (BZ 578).

5958 Implemented additional parameter validation for the LoadTable operator.
5959 The
5960 length of the input strings SignatureString, OemIdString, and OemTableId
5961 are
2719 Implemented additional parameter validation for the LoadTable operator. The
2720 length of the input strings SignatureString, OemIdString, and OemTableId are
5962 now checked for maximum lengths. (BZ 582) Lin Ming.

5964 Example Code and Data Size: These are the sizes for the OS-independent
5965 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
5966 debug version of the code includes the debug output trace mechanism and
5967 has
2725 debug version of the code includes the debug output trace mechanism and has
5968 a much larger code and data size.

5970 Previous Release:
5971 Non-Debug Version: 78.5K Code, 17.1K Data, 95.6K Total
5972 Debug Version: 156.7K Code, 63.2K Data, 219.9K Total
5973 Current Release:
5974 Non-Debug Version: 78.8K Code, 17.2K Data, 96.0K Total
5975 Debug Version: 157.2K Code, 63.4K Data, 220.6K Total

5978 2) iASL Compiler/Disassembler:

5980 Fixed a problem where if a single file was specified and the file did not
5981 exist, no error message was emitted. (Introduced with wildcard support in
5982 version 20070917.)

5984 --
5985 19 September 2007. Summary of changes for version 20070919:

5987 1) ACPI CA Core Subsystem:

new/usr/src/common/acpica/changes.txt 103

5989 Designed and implemented new external interfaces to install and remove
5990 handlers for ACPI table-related events. Current events that are defined
5991 are
2748 handlers for ACPI table-related events. Current events that are defined are
5992 LOAD and UNLOAD. These interfaces allow the host to track ACPI tables as
5993 they are dynamically loaded and unloaded. See AcpiInstallTableHandler and
5994 AcpiRemoveTableHandler. (Lin Ming and Bob Moore)

5996 Fixed a problem where the use of the AcpiGbl_AllMethodsSerialized flag
5997 (acpi_serialized option on Linux) could cause some systems to hang during
5998 initialization. (Bob Moore) BZ 8171

6000 Fixed a problem where objects of certain types (Device, ThermalZone,
6001 Processor, PowerResource) can be not found if they are declared and
6002 referenced from within the same control method (Lin Ming) BZ 341

6004 Example Code and Data Size: These are the sizes for the OS-independent
6005 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
6006 debug version of the code includes the debug output trace mechanism and
6007 has
2763 debug version of the code includes the debug output trace mechanism and has
6008 a much larger code and data size.

6010 Previous Release:
6011 Non-Debug Version: 78.3K Code, 17.0K Data, 95.3K Total
6012 Debug Version: 156.3K Code, 63.1K Data, 219.4K Total
6013 Current Release:
6014 Non-Debug Version: 78.5K Code, 17.1K Data, 95.6K Total
6015 Debug Version: 156.7K Code, 63.2K Data, 219.9K Total

6018 2) iASL Compiler/Disassembler:

6020 Implemented support to allow multiple files to be compiled/disassembled
6021 in
6022 a
6023 single invocation. This includes command line wildcard support for both
6024 the
2776 Implemented support to allow multiple files to be compiled/disassembled in a
2777 single invocation. This includes command line wildcard support for both the
6025 Windows and Unix versions of the compiler. This feature simplifies the
6026 disassembly and compilation of multiple ACPI tables in a single
6027 directory.
2779 disassembly and compilation of multiple ACPI tables in a single directory.

6029 --
6030 08 May 2007. Summary of changes for version 20070508:

6032 1) ACPI CA Core Subsystem:

6034 Implemented a Microsoft compatibility design change for the handling of
6035 the
2786 Implemented a Microsoft compatibility design change for the handling of the
6036 Notify AML operator. Previously, notify handlers were dispatched and
6037 executed completely asynchronously in a deferred thread. The new design
6038 still executes the notify handlers in a different thread, but the
6039 original
6040 thread that executed the Notify() now waits at a synchronization point
6041 for
6042 the notify handler to complete. Some machines depend on a synchronous
6043 Notify
2789 still executes the notify handlers in a different thread, but the original
2790 thread that executed the Notify() now waits at a synchronization point for
2791 the notify handler to complete. Some machines depend on a synchronous Notify
6044 operator in order to operate correctly.

new/usr/src/common/acpica/changes.txt 104

6046 Implemented support to allow Package objects to be passed as method
6047 arguments to the external AcpiEvaluateObject interface. Previously, this
6048 would return the AE_NOT_IMPLEMENTED exception. This feature had not been
6049 implemented since there were no reserved control methods that required it
6050 until recently.

6052 Fixed a problem with the internal FADT conversion where ACPI 1.0 FADTs
6053 that
2800 Fixed a problem with the internal FADT conversion where ACPI 1.0 FADTs that
6054 contained invalid non-zero values in reserved fields could cause later
6055 failures because these fields have meaning in later revisions of the
6056 FADT.
6057 For incoming ACPI 1.0 FADTs, these fields are now always zeroed. (The
6058 fields
2802 failures because these fields have meaning in later revisions of the FADT.
2803 For incoming ACPI 1.0 FADTs, these fields are now always zeroed. (The fields
6059 are: Preferred_PM_Profile, PSTATE_CNT, CST_CNT, and IAPC_BOOT_FLAGS.)

6061 Fixed a problem where the Global Lock handle was not properly updated if
6062 a
6063 thread that acquired the Global Lock via executing AML code then
6064 attempted
6065 to acquire the lock via the AcpiAcquireGlobalLock interface. Reported by
6066 Joe
2806 Fixed a problem where the Global Lock handle was not properly updated if a
2807 thread that acquired the Global Lock via executing AML code then attempted
2808 to acquire the lock via the AcpiAcquireGlobalLock interface. Reported by Joe
6067 Liu.

6069 Fixed a problem in AcpiEvDeleteGpeXrupt where the global interrupt list
6070 could be corrupted if the interrupt being removed was at the head of the
6071 list. Reported by Linn Crosetto.

6073 Example Code and Data Size: These are the sizes for the OS-independent
6074 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
6075 debug version of the code includes the debug output trace mechanism and
6076 has
2817 debug version of the code includes the debug output trace mechanism and has
6077 a much larger code and data size.

6079 Previous Release:
6080 Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total
6081 Debug Version: 155.9K Code, 63.1K Data, 219.0K Total
6082 Current Release:
6083 Non-Debug Version: 78.3K Code, 17.0K Data, 95.3K Total
6084 Debug Version: 156.3K Code, 63.1K Data, 219.4K Total

6086 --
6087 20 March 2007. Summary of changes for version 20070320:

6089 1) ACPI CA Core Subsystem:

6091 Implemented a change to the order of interpretation and evaluation of AML
6092 operand objects within the AML interpreter. The interpreter now evaluates
6093 operands in the order that they appear in the AML stream (and the
6094 corresponding ASL code), instead of in the reverse order (after the
6095 entire
6096 operand list has been parsed). The previous behavior caused several
6097 subtle
2835 corresponding ASL code), instead of in the reverse order (after the entire
2836 operand list has been parsed). The previous behavior caused several subtle
6098 incompatibilities with the Microsoft AML interpreter as well as being
6099 somewhat non-intuitive. BZ 7871, local BZ 263. Valery Podrezov.

6101 Implemented a change to the ACPI Global Lock support. All interfaces to
6102 the

new/usr/src/common/acpica/changes.txt 105

2840 Implemented a change to the ACPI Global Lock support. All interfaces to the
6103 global lock now allow the same thread to acquire the lock multiple times.
6104 This affects the AcpiAcquireGlobalLock external interface to the global
6105 lock
2842 This affects the AcpiAcquireGlobalLock external interface to the global lock
6106 as well as the internal use of the global lock to support AML fields -- a
6107 control method that is holding the global lock can now simultaneously
6108 access
6109 AML fields that require global lock protection. Previously, in both
6110 cases,
6111 this would have resulted in an AE_ALREADY_ACQUIRED exception. The change
6112 to
2844 control method that is holding the global lock can now simultaneously access
2845 AML fields that require global lock protection. Previously, in both cases,
2846 this would have resulted in an AE_ALREADY_ACQUIRED exception. The change to
6113 AcpiAcquireGlobalLock is of special interest to drivers for the Embedded
6114 Controller. There is no change to the behavior of the AML Acquire
6115 operator,
2848 Controller. There is no change to the behavior of the AML Acquire operator,
6116 as this can already be used to acquire a mutex multiple times by the same
6117 thread. BZ 8066. With assistance from Alexey Starikovskiy.

6119 Fixed a problem where invalid objects could be referenced in the AML
6120 Interpreter after error conditions. During operand evaluation, ensure
6121 that
2853 Interpreter after error conditions. During operand evaluation, ensure that
6122 the internal "Return Object" field is cleared on error and only valid
6123 pointers are stored there. Caused occasional access to deleted objects
6124 that
2855 pointers are stored there. Caused occasional access to deleted objects that
6125 resulted in "large reference count" warning messages. Valery Podrezov.

6127 Fixed a problem where an AE_STACK_OVERFLOW internal exception could occur
6128 on
2858 Fixed a problem where an AE_STACK_OVERFLOW internal exception could occur on
6129 deeply nested control method invocations. BZ 7873, local BZ 487. Valery
6130 Podrezov.

6132 Fixed an internal problem with the handling of result objects on the
6133 interpreter result stack. BZ 7872. Valery Podrezov.

6135 Removed obsolete code that handled the case where AML_NAME_OP is the
6136 target
2865 Removed obsolete code that handled the case where AML_NAME_OP is the target
6137 of a reference (Reference.Opcode). This code was no longer necessary. BZ
6138 7874. Valery Podrezov.

6140 Removed obsolete ACPI_NO_INTEGER64_SUPPORT from two header files. This
6141 was
6142 a
2869 Removed obsolete ACPI_NO_INTEGER64_SUPPORT from two header files. This was a
6143 remnant from the previously discontinued 16-bit support.

6145 Example Code and Data Size: These are the sizes for the OS-independent
6146 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
6147 debug version of the code includes the debug output trace mechanism and
6148 has
2874 debug version of the code includes the debug output trace mechanism and has
6149 a much larger code and data size.

6151 Previous Release:
6152 Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total
6153 Debug Version: 155.8K Code, 63.3K Data, 219.1K Total
6154 Current Release:
6155 Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total
6156 Debug Version: 155.9K Code, 63.1K Data, 219.0K Total

new/usr/src/common/acpica/changes.txt 106

6158 --
6159 26 January 2007. Summary of changes for version 20070126:

6161 1) ACPI CA Core Subsystem:

6163 Added the 2007 copyright to all module headers and signons. This affects
6164 virtually every file in the ACPICA core subsystem, the iASL compiler, and
6165 the utilities.

6167 Implemented a fix for an incorrect parameter passed to AcpiTbDeleteTable
6168 during a table load. A bad pointer was passed in the case where the DSDT
6169 is
2894 during a table load. A bad pointer was passed in the case where the DSDT is
6170 overridden, causing a fault in this case.

6172 Example Code and Data Size: These are the sizes for the OS-independent
6173 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
6174 debug version of the code includes the debug output trace mechanism and
6175 has
2899 debug version of the code includes the debug output trace mechanism and has
6176 a much larger code and data size.

6178 Previous Release:
6179 Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total
6180 Debug Version: 155.8K Code, 63.3K Data, 219.1K Total
6181 Current Release:
6182 Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total
6183 Debug Version: 155.8K Code, 63.3K Data, 219.1K Total

6185 --
6186 15 December 2006. Summary of changes for version 20061215:

6188 1) ACPI CA Core Subsystem:

6190 Support for 16-bit ACPICA has been completely removed since it is no
6191 longer
2914 Support for 16-bit ACPICA has been completely removed since it is no longer
6192 necessary and it clutters the code. All 16-bit macros, types, and
6193 conditional compiles have been removed, cleaning up and simplifying the
6194 code
2916 conditional compiles have been removed, cleaning up and simplifying the code
6195 across the entire subsystem. DOS support is no longer needed since the
6196 bootable Linux firmware kit is now available.

6198 The handler for the Global Lock is now removed during AcpiTerminate to
6199 enable a clean subsystem restart, via the implementation of the
6200 AcpiEvRemoveGlobalLockHandler function. (With assistance from Joel Bretz,
6201 HP)

6203 Implemented enhancements to the multithreading support within the
6204 debugger
6205 to enable improved multithreading debugging and evaluation of the
6206 subsystem.
2925 Implemented enhancements to the multithreading support within the debugger
2926 to enable improved multithreading debugging and evaluation of the subsystem.
6207 (Valery Podrezov)

6209 Debugger: Enhanced the Statistics/Memory command to emit the total
6210 (maximum)
6211 memory used during the execution, as well as the maximum memory consumed
6212 by
2929 Debugger: Enhanced the Statistics/Memory command to emit the total (maximum)
2930 memory used during the execution, as well as the maximum memory consumed by
6213 each of the various object types. (Valery Podrezov)

new/usr/src/common/acpica/changes.txt 107

6215 Example Code and Data Size: These are the sizes for the OS-independent
6216 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
6217 debug version of the code includes the debug output trace mechanism and
6218 has
2935 debug version of the code includes the debug output trace mechanism and has
6219 a much larger code and data size.

6221 Previous Release:
6222 Non-Debug Version: 77.9K Code, 17.0K Data, 94.9K Total
6223 Debug Version: 155.2K Code, 63.1K Data, 218.3K Total
6224 Current Release:
6225 Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total
6226 Debug Version: 155.8K Code, 63.3K Data, 219.1K Total

6229 2) iASL Compiler/Disassembler and Tools:

6231 AcpiExec: Implemented a new option (-m) to display full memory use
6232 statistics upon subsystem/program termination. (Valery Podrezov)

6234 --
6235 09 November 2006. Summary of changes for version 20061109:

6237 1) ACPI CA Core Subsystem:

6239 Optimized the Load ASL operator in the case where the source operand is
6240 an
2956 Optimized the Load ASL operator in the case where the source operand is an
6241 operation region. Simply map the operation region memory, instead of
6242 performing a bytewise read. (Region must be of type SystemMemory, see
6243 below.)

6245 Fixed the Load ASL operator for the case where the source operand is a
6246 region field. A buffer object is also allowed as the source operand. BZ
6247 480
2962 region field. A buffer object is also allowed as the source operand. BZ 480

6249 Fixed a problem where the Load ASL operator allowed the source operand to
6250 be
2964 Fixed a problem where the Load ASL operator allowed the source operand to be
6251 an operation region of any type. It is now restricted to regions of type
6252 SystemMemory, as per the ACPI specification. BZ 481

6254 Additional cleanup and optimizations for the new Table Manager code.

6256 AcpiEnable will now fail if all of the required ACPI tables are not
6257 loaded
2970 AcpiEnable will now fail if all of the required ACPI tables are not loaded
6258 (FADT, FACS, DSDT). BZ 477

6260 Added #pragma pack(8/4) to acobject.h to ensure that the structures in
6261 this
2973 Added #pragma pack(8/4) to acobject.h to ensure that the structures in this
6262 header are always compiled as aligned. The ACPI_OPERAND_OBJECT has been
6263 manually optimized to be aligned and will not work if it is byte-packed.

6265 Example Code and Data Size: These are the sizes for the OS-independent
6266 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
6267 debug version of the code includes the debug output trace mechanism and
6268 has
2979 debug version of the code includes the debug output trace mechanism and has
6269 a much larger code and data size.

6271 Previous Release:
6272 Non-Debug Version: 78.1K Code, 17.1K Data, 95.2K Total
6273 Debug Version: 155.4K Code, 63.1K Data, 218.5K Total

new/usr/src/common/acpica/changes.txt 108

6274 Current Release:
6275 Non-Debug Version: 77.9K Code, 17.0K Data, 94.9K Total
6276 Debug Version: 155.2K Code, 63.1K Data, 218.3K Total

6279 2) iASL Compiler/Disassembler and Tools:

6281 Fixed a problem where the presence of the _OSI predefined control method
6282 within complex expressions could cause an internal compiler error.

6284 AcpiExec: Implemented full region support for multiple address spaces.
6285 SpaceId is now part of the REGION object. BZ 429

6287 --
6288 11 October 2006. Summary of changes for version 20061011:

6290 1) ACPI CA Core Subsystem:

6292 Completed an AML interpreter performance enhancement for control method
6293 execution. Previously a 2-pass parse/execution, control methods are now
6294 completely parsed and executed in a single pass. This improves overall
6295 interpreter performance by ~25%, reduces code size, and reduces CPU stack
6296 use. (Valery Podrezov + interpreter changes in version 20051202 that
6297 eliminated namespace loading during the pass one parse.)

6299 Implemented _CID support for PCI Root Bridge detection. If the _HID does
6300 not
6301 match the predefined PCI Root Bridge IDs, the _CID list (if present) is
6302 now
3010 Implemented _CID support for PCI Root Bridge detection. If the _HID does not
3011 match the predefined PCI Root Bridge IDs, the _CID list (if present) is now
6303 obtained and also checked for an ID match.

6305 Implemented additional support for the PCI _ADR execution: upsearch until
6306 a
3014 Implemented additional support for the PCI _ADR execution: upsearch until a
6307 device scope is found before executing _ADR. This allows PCI_Config
6308 operation regions to be declared locally within control methods
6309 underneath
3016 operation regions to be declared locally within control methods underneath
6310 PCI device objects.

6312 Fixed a problem with a possible race condition between threads executing
6313 AcpiWalkNamespace and the AML interpreter. This condition was removed by
6314 modifying AcpiWalkNamespace to (by default) ignore all temporary
6315 namespace
3021 modifying AcpiWalkNamespace to (by default) ignore all temporary namespace
6316 entries created during any concurrent control method execution. An
6317 additional namespace race condition is known to exist between
6318 AcpiWalkNamespace and the Load/Unload ASL operators and is still under
6319 investigation.

6321 Restructured the AML ParseLoop function, breaking it into several
6322 subfunctions in order to reduce CPU stack use and improve
6323 maintainability.
3028 subfunctions in order to reduce CPU stack use and improve maintainability.
6324 (Mikhail Kouzmich)

6326 AcpiGetHandle: Fix for parameter validation to detect invalid
6327 combinations
3031 AcpiGetHandle: Fix for parameter validation to detect invalid combinations
6328 of prefix handle and pathname. BZ 478

6330 Example Code and Data Size: These are the sizes for the OS-independent
6331 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
6332 debug version of the code includes the debug output trace mechanism and

new/usr/src/common/acpica/changes.txt 109

6333 has
3036 debug version of the code includes the debug output trace mechanism and has
6334 a much larger code and data size.

6336 Previous Release:
6337 Non-Debug Version: 77.9K Code, 17.1K Data, 95.0K Total
6338 Debug Version: 154.6K Code, 63.0K Data, 217.6K Total
6339 Current Release:
6340 Non-Debug Version: 78.1K Code, 17.1K Data, 95.2K Total
6341 Debug Version: 155.4K Code, 63.1K Data, 218.5K Total

6343 2) iASL Compiler/Disassembler and Tools:

6345 Ported the -g option (get local ACPI tables) to the new ACPICA Table
6346 Manager
3048 Ported the -g option (get local ACPI tables) to the new ACPICA Table Manager
6347 to restore original behavior.

6349 --
6350 27 September 2006. Summary of changes for version 20060927:

6352 1) ACPI CA Core Subsystem:

6354 Removed the "Flags" parameter from AcpiGetRegister and AcpiSetRegister.
6355 These functions now use a spinlock for mutual exclusion and the interrupt
6356 level indication flag is not needed.

6358 Fixed a problem with the Global Lock where the lock could appear to be
6359 obtained before it is actually obtained. The global lock semaphore was
6360 inadvertently created with one unit instead of zero units. (BZ 464)
6361 Fiodor
3062 inadvertently created with one unit instead of zero units. (BZ 464) Fiodor
6362 Suietov.

6364 Fixed a possible memory leak and fault in AcpiExResolveObjectToValue
6365 during
3065 Fixed a possible memory leak and fault in AcpiExResolveObjectToValue during
6366 a read from a buffer or region field. (BZ 458) Fiodor Suietov.

6368 Example Code and Data Size: These are the sizes for the OS-independent
6369 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
6370 debug version of the code includes the debug output trace mechanism and
6371 has
3070 debug version of the code includes the debug output trace mechanism and has
6372 a much larger code and data size.

6374 Previous Release:
6375 Non-Debug Version: 77.9K Code, 17.1K Data, 95.0K Total
6376 Debug Version: 154.7K Code, 63.0K Data, 217.7K Total
6377 Current Release:
6378 Non-Debug Version: 77.9K Code, 17.1K Data, 95.0K Total
6379 Debug Version: 154.6K Code, 63.0K Data, 217.6K Total

6382 2) iASL Compiler/Disassembler and Tools:

6384 Fixed a compilation problem with the pre-defined Resource Descriptor
6385 field
6386 names where an "object does not exist" error could be incorrectly
6387 generated
3083 Fixed a compilation problem with the pre-defined Resource Descriptor field
3084 names where an "object does not exist" error could be incorrectly generated
6388 if the parent ResourceTemplate pathname places the template within a
6389 different namespace scope than the current scope. (BZ 7212)

6391 Fixed a problem where the compiler could hang after syntax errors

new/usr/src/common/acpica/changes.txt 110

6392 detected
3088 Fixed a problem where the compiler could hang after syntax errors detected
6393 in an ElseIf construct. (BZ 453)

6395 Fixed a problem with the AmlFilename parameter to the DefinitionBlock()
6396 operator. An incorrect output filename was produced when this parameter
6397 was
3092 operator. An incorrect output filename was produced when this parameter was
6398 a null string (""). Now, the original input filename is used as the AML
6399 output filename, with an ".aml" extension.

6401 Implemented a generic batch command mode for the AcpiExec utility
6402 (execute
3096 Implemented a generic batch command mode for the AcpiExec utility (execute
6403 any AML debugger command) (Valery Podrezov).

6405 --
6406 12 September 2006. Summary of changes for version 20060912:

6408 1) ACPI CA Core Subsystem:

6410 Enhanced the implementation of the "serialized mode" of the interpreter
6411 (enabled via the AcpiGbl_AllMethodsSerialized flag.) When this mode is
6412 specified, instead of creating a serialization semaphore per control
6413 method,
3106 specified, instead of creating a serialization semaphore per control method,
6414 the interpreter lock is simply no longer released before a blocking
6415 operation during control method execution. This effectively makes the AML
6416 Interpreter single-threaded. The overhead of a semaphore per-method is
6417 eliminated.

6419 Fixed a regression where an error was no longer emitted if a control
6420 method
3112 Fixed a regression where an error was no longer emitted if a control method
6421 attempts to create 2 objects of the same name. This once again returns
6422 AE_ALREADY_EXISTS. When this exception occurs, it invokes the mechanism
6423 that
3114 AE_ALREADY_EXISTS. When this exception occurs, it invokes the mechanism that
6424 will dynamically serialize the control method to possible prevent future
6425 errors. (BZ 440)

6427 Integrated a fix for a problem with PCI Express HID detection in the PCI
6428 Config Space setup procedure. (BZ 7145)

6430 Moved all FADT-related functions to a new file, tbfadt.c. Eliminated the
6431 AcpiHwInitialize function - the FADT registers are now validated when the
6432 table is loaded.

6434 Added two new warnings during FADT verification - 1) if the FADT is
6435 larger
6436 than the largest known FADT version, and 2) if there is a mismatch
6437 between
6438 a
6439 32-bit block address and the 64-bit X counterpart (when both are non-
6440 zero.)
3125 Added two new warnings during FADT verification - 1) if the FADT is larger
3126 than the largest known FADT version, and 2) if there is a mismatch between a
3127 32-bit block address and the 64-bit X counterpart (when both are non-zero.)

6442 Example Code and Data Size: These are the sizes for the OS-independent
6443 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
6444 debug version of the code includes the debug output trace mechanism and
6445 has
3131 debug version of the code includes the debug output trace mechanism and has
6446 a much larger code and data size.

new/usr/src/common/acpica/changes.txt 111

6448 Previous Release:
6449 Non-Debug Version: 77.9K Code, 16.7K Data, 94.6K Total
6450 Debug Version: 154.9K Code, 62.6K Data, 217.5K Total
6451 Current Release:
6452 Non-Debug Version: 77.9K Code, 17.1K Data, 95.0K Total
6453 Debug Version: 154.7K Code, 63.0K Data, 217.7K Total

6456 2) iASL Compiler/Disassembler and Tools:

6458 Fixed a problem with the implementation of the Switch() operator where
6459 the
6460 temporary variable was declared too close to the actual Switch, instead
6461 of
3144 Fixed a problem with the implementation of the Switch() operator where the
3145 temporary variable was declared too close to the actual Switch, instead of
6462 at method level. This could cause a problem if the Switch() operator is
6463 within a while loop, causing an error on the second iteration. (BZ 460)

6465 Disassembler - fix for error emitted for unknown type for target of scope
6466 operator. Now, ignore it and continue.

6468 Disassembly of an FADT now verifies the input FADT and reports any errors
6469 found. Fix for proper disassembly of full-sized (ACPI 2.0) FADTs.

6471 Disassembly of raw data buffers with byte initialization data now
6472 prefixes
3155 Disassembly of raw data buffers with byte initialization data now prefixes
6473 each output line with the current buffer offset.

6475 Disassembly of ASF! table now includes all variable-length data fields at
6476 the end of some of the subtables.

6478 The disassembler now emits a comment if a buffer appears to be a
6479 ResourceTemplate, but cannot be disassembled as such because the EndTag
6480 does
3162 ResourceTemplate, but cannot be disassembled as such because the EndTag does
6481 not appear at the very end of the buffer.

6483 AcpiExec - Added the "-t" command line option to enable the serialized
6484 mode
3165 AcpiExec - Added the "-t" command line option to enable the serialized mode
6485 of the AML interpreter.

6487 --
6488 31 August 2006. Summary of changes for version 20060831:

6490 1) ACPI CA Core Subsystem:

6492 Miscellaneous fixes for the Table Manager:
6493 - Correctly initialize internal common FADT for all 64-bit "X" fields
6494 - Fixed a couple table mapping issues during table load
6495 - Fixed a couple alignment issues for IA64
6496 - Initialize input array to zero in AcpiInitializeTables
6497 - Additional parameter validation for AcpiGetTable, AcpiGetTableHeader,
6498 AcpiGetTableByIndex

6500 Change for GPE support: when a "wake" GPE is received, all wake GPEs are
6501 now
3181 Change for GPE support: when a "wake" GPE is received, all wake GPEs are now
6502 immediately disabled to prevent the waking GPE from firing again and to
6503 prevent other wake GPEs from interrupting the wake process.

6505 Added the AcpiGpeCount global that tracks the number of processed GPEs,
6506 to
3185 Added the AcpiGpeCount global that tracks the number of processed GPEs, to

new/usr/src/common/acpica/changes.txt 112

6507 be used for debugging systems with a large number of ACPI interrupts.

6509 Implemented support for the "DMAR" ACPI table (DMA Redirection Table) in
6510 both the ACPICA headers and the disassembler.

6512 Example Code and Data Size: These are the sizes for the OS-independent
6513 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
6514 debug version of the code includes the debug output trace mechanism and
6515 has
3193 debug version of the code includes the debug output trace mechanism and has
6516 a much larger code and data size.

6518 Previous Release:
6519 Non-Debug Version: 77.8K Code, 16.5K Data, 94.3K Total
6520 Debug Version: 154.6K Code, 62.3K Data, 216.9K Total
6521 Current Release:
6522 Non-Debug Version: 77.9K Code, 16.7K Data, 94.6K Total
6523 Debug Version: 154.9K Code, 62.6K Data, 217.5K Total

6526 2) iASL Compiler/Disassembler and Tools:

6528 Disassembler support for the DMAR ACPI table.

6530 --
6531 23 August 2006. Summary of changes for version 20060823:

6533 1) ACPI CA Core Subsystem:

6535 The Table Manager component has been completely redesigned and
6536 reimplemented. The new design is much simpler, and reduces the overall
6537 code
6538 and data size of the kernel-resident ACPICA by approximately 5%. Also, it
6539 is
3214 reimplemented. The new design is much simpler, and reduces the overall code
3215 and data size of the kernel-resident ACPICA by approximately 5%. Also, it is
6540 now possible to obtain the ACPI tables very early during kernel
6541 initialization, even before dynamic memory management is initialized.
6542 (Alexey Starikovskiy, Fiodor Suietov, Bob Moore)

6544 Obsolete ACPICA interfaces:

6546 - AcpiGetFirmwareTable: Use AcpiGetTable instead (works at early kernel
6547 init
3222 - AcpiGetFirmwareTable: Use AcpiGetTable instead (works at early kernel init
6548 time).
6549 - AcpiLoadTable: Not needed.
6550 - AcpiUnloadTable: Not needed.

6552 New ACPICA interfaces:

6554 - AcpiInitializeTables: Must be called before the table manager can be
6555 used.
3229 - AcpiInitializeTables: Must be called before the table manager can be used.
6556 - AcpiReallocateRootTable: Used to transfer the root table to dynamically
6557 allocated memory after it becomes available.
6558 - AcpiGetTableByIndex: Allows the host to easily enumerate all ACPI
6559 tables
3232 - AcpiGetTableByIndex: Allows the host to easily enumerate all ACPI tables
6560 in the RSDT/XSDT.

6562 Other ACPICA changes:

6564 - AcpiGetTableHeader returns the actual mapped table header, not a copy.
6565 Use
3237 - AcpiGetTableHeader returns the actual mapped table header, not a copy. Use

new/usr/src/common/acpica/changes.txt 113

6566 AcpiOsUnmapMemory to free this mapping.
6567 - AcpiGetTable returns the actual mapped table. The mapping is managed
6568 internally and must not be deleted by the caller. Use of this interface
6569 causes no additional dynamic memory allocation.
6570 - AcpiFindRootPointer: Support for physical addressing has been
6571 eliminated,
3242 - AcpiFindRootPointer: Support for physical addressing has been eliminated,
6572 it appeared to be unused.
6573 - The interface to AcpiOsMapMemory has changed to be consistent with the
6574 other allocation interfaces.
6575 - The interface to AcpiOsGetRootPointer has changed to eliminate
6576 unnecessary
3246 - The interface to AcpiOsGetRootPointer has changed to eliminate unnecessary
6577 parameters.
6578 - ACPI_PHYSICAL_ADDRESS is now 32 bits on 32-bit platforms, 64 bits on
6579 64-
3248 - ACPI_PHYSICAL_ADDRESS is now 32 bits on 32-bit platforms, 64 bits on 64-
6580 bit platforms. Was previously 64 bits on all platforms.
6581 - The interface to the ACPI Global Lock acquire/release macros have
6582 changed
3250 - The interface to the ACPI Global Lock acquire/release macros have changed
6583 slightly since ACPICA no longer keeps a local copy of the FACS with a
6584 constructed pointer to the actual global lock.

6586 Porting to the new table manager:

6588 - AcpiInitializeTables: Must be called once, and can be called anytime
6589 during the OS initialization process. It allows the host to specify an
6590 area
3257 during the OS initialization process. It allows the host to specify an area
6591 of memory to be used to store the internal version of the RSDT/XSDT (root
6592 table). This allows the host to access ACPI tables before memory
6593 management
3259 table). This allows the host to access ACPI tables before memory management
6594 is initialized and running.
6595 - AcpiReallocateRootTable: Can be called after memory management is
6596 running
3261 - AcpiReallocateRootTable: Can be called after memory management is running
6597 to copy the root table to a dynamically allocated array, freeing up the
6598 scratch memory specified in the call to AcpiInitializeTables.
6599 - AcpiSubsystemInitialize: This existing interface is independent of the
6600 Table Manager, and does not have to be called before the Table Manager
6601 can
3265 Table Manager, and does not have to be called before the Table Manager can
6602 be used, it only must be called before the rest of ACPICA can be used.
6603 - ACPI Tables: Some changes have been made to the names and structure of
6604 the
6605 actbl.h and actbl1.h header files and may require changes to existing
6606 code.
6607 For example, bitfields have been completely removed because of their lack
6608 of
3267 - ACPI Tables: Some changes have been made to the names and structure of the
3268 actbl.h and actbl1.h header files and may require changes to existing code.
3269 For example, bitfields have been completely removed because of their lack of
6609 portability across C compilers.
6610 - Update interfaces to the Global Lock acquire/release macros if local
6611 versions are used. (see acwin.h)

6613 Obsolete files: tbconvrt.c, tbget.c, tbgetall.c, tbrsdt.c

6615 New files: tbfind.c

6617 Example Code and Data Size: These are the sizes for the OS-independent
6618 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
6619 debug version of the code includes the debug output trace mechanism and
6620 has

new/usr/src/common/acpica/changes.txt 114

3280 debug version of the code includes the debug output trace mechanism and has
6621 a much larger code and data size.

6623 Previous Release:
6624 Non-Debug Version: 80.7K Code, 17.9K Data, 98.6K Total
6625 Debug Version: 161.0K Code, 65.1K Data, 226.1K Total
6626 Current Release:
6627 Non-Debug Version: 77.8K Code, 16.5K Data, 94.3K Total
6628 Debug Version: 154.6K Code, 62.3K Data, 216.9K Total

6631 2) iASL Compiler/Disassembler and Tools:

6633 No changes for this release.

6635 --
6636 21 July 2006. Summary of changes for version 20060721:

6638 1) ACPI CA Core Subsystem:

6640 The full source code for the ASL test suite used to validate the iASL
6641 compiler and the ACPICA core subsystem is being released with the ACPICA
6642 source for the first time. The source is contained in a separate package
6643 and
6644 consists of over 1100 files that exercise all ASL/AML operators. The
6645 package
6646 should appear on the Intel/ACPI web site shortly. (Valery Podrezov,
6647 Fiodor
3302 source for the first time. The source is contained in a separate package and
3303 consists of over 1100 files that exercise all ASL/AML operators. The package
3304 should appear on the Intel/ACPI web site shortly. (Valery Podrezov, Fiodor
6648 Suietov)

6650 Completed a new design and implementation for support of the ACPI Global
6651 Lock. On the OS side, the global lock is now treated as a standard AML
6652 mutex. Previously, multiple OS threads could "acquire" the global lock
6653 simultaneously. However, this could cause the BIOS to be starved out of
6654 the
3310 simultaneously. However, this could cause the BIOS to be starved out of the
6655 lock - especially in cases such as the Embedded Controller driver where
6656 there is a tight coupling between the OS and the BIOS.

6658 Implemented an optimization for the ACPI Global Lock interrupt mechanism.
6659 The Global Lock interrupt handler no longer queues the execution of a
6660 separate thread to signal the global lock semaphore. Instead, the
6661 semaphore
3316 separate thread to signal the global lock semaphore. Instead, the semaphore
6662 is signaled directly from the interrupt handler.

6664 Implemented support within the AML interpreter for package objects that
6665 contain a larger AML length (package list length) than the package
6666 element
3320 contain a larger AML length (package list length) than the package element
6667 count. In this case, the length of the package is truncated to match the
6668 package element count. Some BIOS code apparently modifies the package
6669 length
6670 on the fly, and this change supports this behavior. Provides
6671 compatibility
3322 package element count. Some BIOS code apparently modifies the package length
3323 on the fly, and this change supports this behavior. Provides compatibility
6672 with the MS AML interpreter. (With assistance from Fiodor Suietov)

6674 Implemented a temporary fix for the BankValue parameter of a Bank Field
6675 to
3326 Implemented a temporary fix for the BankValue parameter of a Bank Field to
6676 support all constant values, now including the Zero and One opcodes.

new/usr/src/common/acpica/changes.txt 115

6677 Evaluation of this parameter must eventually be converted to a full
6678 TermArg
6679 evaluation. A not-implemented error is now returned (temporarily) for
6680 non-
3328 Evaluation of this parameter must eventually be converted to a full TermArg
3329 evaluation. A not-implemented error is now returned (temporarily) for non-
6681 constant values for this parameter.

6683 Fixed problem reports (Fiodor Suietov) integrated:
6684 - Fix for premature object deletion after CopyObject on Operation Region
6685 (BZ
3333 - Fix for premature object deletion after CopyObject on Operation Region (BZ
6686 350)

6688 Example Code and Data Size: These are the sizes for the OS-independent
6689 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
6690 debug version of the code includes the debug output trace mechanism and
6691 has
3338 debug version of the code includes the debug output trace mechanism and has
6692 a much larger code and data size.

6694 Previous Release:
6695 Non-Debug Version: 80.7K Code, 18.0K Data, 98.7K Total
6696 Debug Version: 160.9K Code, 65.1K Data, 226.0K Total
6697 Current Release:
6698 Non-Debug Version: 80.7K Code, 17.9K Data, 98.6K Total
6699 Debug Version: 161.0K Code, 65.1K Data, 226.1K Total

6702 2) iASL Compiler/Disassembler and Tools:

6704 No changes for this release.

6706 --
6707 07 July 2006. Summary of changes for version 20060707:

6709 1) ACPI CA Core Subsystem:

6711 Added the ACPI_PACKED_POINTERS_NOT_SUPPORTED macro to support C compilers
6712 that do not allow the initialization of address pointers within packed
6713 structures - even though the hardware itself may support misaligned
6714 transfers. Some of the debug data structures are packed by default to
6715 minimize size.

6717 Added an error message for the case where AcpiOsGetThreadId() returns
6718 zero.
3364 Added an error message for the case where AcpiOsGetThreadId() returns zero.
6719 A non-zero value is required by the core ACPICA code to ensure the proper
6720 operation of AML mutexes and recursive control methods.

6722 The DSDT is now the only ACPI table that determines whether the AML
6723 interpreter is in 32-bit or 64-bit mode. Not really a functional change,
6724 but
6725 the hooks for per-table 32/64 switching have been removed from the code.
6726 A
3369 interpreter is in 32-bit or 64-bit mode. Not really a functional change, but
3370 the hooks for per-table 32/64 switching have been removed from the code. A
6727 clarification to the ACPI specification is forthcoming in ACPI 3.0B.

6729 Fixed a possible leak of an OwnerID in the error path of
6730 AcpiTbInitTableDescriptor (tbinstal.c), and migrated all table OwnerID
6731 deletion to a single place in AcpiTbUninstallTable to correct possible
6732 leaks
3375 deletion to a single place in AcpiTbUninstallTable to correct possible leaks
6733 when using the AcpiTbDeleteTablesByType interface (with assistance from
6734 Lance Ortiz.)

new/usr/src/common/acpica/changes.txt 116

6736 Fixed a problem with Serialized control methods where the semaphore
6737 associated with the method could be over-signaled after multiple method
6738 invocations.

6740 Fixed two issues with the locking of the internal namespace data
6741 structure.
3383 Fixed two issues with the locking of the internal namespace data structure.
6742 Both the Unload() operator and AcpiUnloadTable interface now lock the
6743 namespace during the namespace deletion associated with the table unload
6744 (with assistance from Linn Crosetto.)

6746 Fixed problem reports (Valery Podrezov) integrated:
6747 - Eliminate unnecessary memory allocation for CreateXxxxField (BZ 5426)

6749 Fixed problem reports (Fiodor Suietov) integrated:
6750 - Incomplete cleanup branches in AcpiTbGetTableRsdt (BZ 369)
6751 - On Address Space handler deletion, needless deactivation call (BZ 374)
6752 - AcpiRemoveAddressSpaceHandler: validate Device handle parameter (BZ
6753 375)
6754 - Possible memory leak, Notify sub-objects of Processor, Power,
6755 ThermalZone
3394 - AcpiRemoveAddressSpaceHandler: validate Device handle parameter (BZ 375)
3395 - Possible memory leak, Notify sub-objects of Processor, Power, ThermalZone
6756 (BZ 376)
6757 - AcpiRemoveAddressSpaceHandler: validate Handler parameter (BZ 378)
6758 - Minimum Length of RSDT should be validated (BZ 379)
6759 - AcpiRemoveNotifyHandler: return AE_NOT_EXIST if Processor Obj has no
6760 Handler (BZ (380)
6761 - AcpiUnloadTable: return AE_NOT_EXIST if no table of specified type
6762 loaded
3401 - AcpiUnloadTable: return AE_NOT_EXIST if no table of specified type loaded
6763 (BZ 381)

6765 Example Code and Data Size: These are the sizes for the OS-independent
6766 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
6767 debug version of the code includes the debug output trace mechanism and
6768 has
3406 debug version of the code includes the debug output trace mechanism and has
6769 a much larger code and data size.

6771 Previous Release:
6772 Non-Debug Version: 80.5K Code, 17.8K Data, 98.3K Total
6773 Debug Version: 160.8K Code, 64.8K Data, 225.6K Total
6774 Current Release:
6775 Non-Debug Version: 80.7K Code, 17.9K Data, 98.6K Total
6776 Debug Version: 161.0K Code, 65.1K Data, 226.1K Total

6779 2) iASL Compiler/Disassembler and Tools:

6781 Fixed problem reports:
6782 Compiler segfault when ASL contains a long (>1024) String declaration (BZ
6783 436)

6785 --
6786 23 June 2006. Summary of changes for version 20060623:

6788 1) ACPI CA Core Subsystem:

6790 Implemented a new ACPI_SPINLOCK type for the OSL lock interfaces. This
6791 allows the type to be customized to the host OS for improved efficiency
6792 (since a spinlock is usually a very small object.)

6794 Implemented support for "ignored" bits in the ACPI registers. According
6795 to

new/usr/src/common/acpica/changes.txt 117

3432 Implemented support for "ignored" bits in the ACPI registers. According to
6796 the ACPI specification, these bits should be preserved when writing the
6797 registers via a read/modify/write cycle. There are 3 bits preserved in
6798 this
3434 registers via a read/modify/write cycle. There are 3 bits preserved in this
6799 manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11].

6801 Implemented the initial deployment of new OSL mutex interfaces. Since
6802 some
3437 Implemented the initial deployment of new OSL mutex interfaces. Since some
6803 host operating systems have separate mutex and semaphore objects, this
6804 feature was requested. The base code now uses mutexes (and the new mutex
6805 interfaces) wherever a binary semaphore was used previously. However, for
6806 the current release, the mutex interfaces are defined as macros to map
6807 them
6808 to the existing semaphore interfaces. Therefore, no OSL changes are
6809 required
3441 the current release, the mutex interfaces are defined as macros to map them
3442 to the existing semaphore interfaces. Therefore, no OSL changes are required
6810 at this time. (See acpiosxf.h)

6812 Fixed several problems with the support for the control method SyncLevel
6813 parameter. The SyncLevel now works according to the ACPI specification
6814 and
6815 in concert with the Mutex SyncLevel parameter, since the current
6816 SyncLevel
6817 is a property of the executing thread. Mutual exclusion for control
6818 methods
3446 parameter. The SyncLevel now works according to the ACPI specification and
3447 in concert with the Mutex SyncLevel parameter, since the current SyncLevel
3448 is a property of the executing thread. Mutual exclusion for control methods
6819 is now implemented with a mutex instead of a semaphore.

6821 Fixed three instances of the use of the C shift operator in the bitfield
6822 support code (exfldio.c) to avoid the use of a shift value larger than
6823 the
6824 target data width. The behavior of C compilers is undefined in this case
6825 and
6826 can cause unpredictable results, and therefore the case must be detected
6827 and
3452 support code (exfldio.c) to avoid the use of a shift value larger than the
3453 target data width. The behavior of C compilers is undefined in this case and
3454 can cause unpredictable results, and therefore the case must be detected and
6828 avoided. (Fiodor Suietov)

6830 Added an info message whenever an SSDT or OEM table is loaded dynamically
6831 via the Load() or LoadTable() ASL operators. This should improve
6832 debugging
6833 capability since it will show exactly what tables have been loaded
6834 (beyond
3458 via the Load() or LoadTable() ASL operators. This should improve debugging
3459 capability since it will show exactly what tables have been loaded (beyond
6835 the tables present in the RSDT/XSDT.)

6837 Example Code and Data Size: These are the sizes for the OS-independent
6838 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
6839 debug version of the code includes the debug output trace mechanism and
6840 has
3464 debug version of the code includes the debug output trace mechanism and has
6841 a much larger code and data size.

6843 Previous Release:
6844 Non-Debug Version: 80.0K Code, 17.6K Data, 97.6K Total
6845 Debug Version: 160.2K Code, 64.7K Data, 224.9K Total
6846 Current Release:
6847 Non-Debug Version: 80.5K Code, 17.8K Data, 98.3K Total

new/usr/src/common/acpica/changes.txt 118

6848 Debug Version: 160.8K Code, 64.8K Data, 225.6K Total

6851 2) iASL Compiler/Disassembler and Tools:

6853 No changes for this release.

6855 --
6856 08 June 2006. Summary of changes for version 20060608:

6858 1) ACPI CA Core Subsystem:

6860 Converted the locking mutex used for the ACPI hardware to a spinlock.
6861 This
3484 Converted the locking mutex used for the ACPI hardware to a spinlock. This
6862 change should eliminate all problems caused by attempting to acquire a
6863 semaphore at interrupt level, and it means that all ACPICA external
6864 interfaces that directly access the ACPI hardware can be safely called
6865 from
6866 interrupt level. OSL code that implements the semaphore interfaces should
6867 be
3487 interfaces that directly access the ACPI hardware can be safely called from
3488 interrupt level. OSL code that implements the semaphore interfaces should be
6868 able to eliminate any workarounds for being called at interrupt level.

6870 Fixed a regression introduced in 20060526 where the ACPI device
6871 initialization could be prematurely aborted with an AE_NOT_FOUND if a
6872 device
3492 initialization could be prematurely aborted with an AE_NOT_FOUND if a device
6873 did not have an optional _INI method.

6875 Fixed an IndexField issue where a write to the Data Register should be
6876 limited in size to the AccessSize (width) of the IndexField itself. (BZ
6877 433,
3496 limited in size to the AccessSize (width) of the IndexField itself. (BZ 433,
6878 Fiodor Suietov)

6880 Fixed problem reports (Valery Podrezov) integrated:
6881 - Allow store of ThermalZone objects to Debug object (BZ 5369/5370)

6883 Fixed problem reports (Fiodor Suietov) integrated:
6884 - AcpiGetTableHeader doesn’t handle multiple instances correctly (BZ 364)

6886 Removed four global mutexes that were obsolete and were no longer being
6887 used.

6889 Example Code and Data Size: These are the sizes for the OS-independent
6890 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
6891 debug version of the code includes the debug output trace mechanism and
6892 has
3510 debug version of the code includes the debug output trace mechanism and has
6893 a much larger code and data size.

6895 Previous Release:
6896 Non-Debug Version: 80.0K Code, 17.7K Data, 97.7K Total
6897 Debug Version: 160.3K Code, 64.9K Data, 225.2K Total
6898 Current Release:
6899 Non-Debug Version: 80.0K Code, 17.6K Data, 97.6K Total
6900 Debug Version: 160.2K Code, 64.7K Data, 224.9K Total

6903 2) iASL Compiler/Disassembler and Tools:

6905 Fixed a fault when using -g option (get tables from registry) on Windows
6906 machines.

new/usr/src/common/acpica/changes.txt 119

6908 Fixed problem reports integrated:
6909 - Generate error if CreateField NumBits parameter is zero. (BZ 405)
6910 - Fault if Offset/Length in Field unit is very large (BZ 432, Fiodor
6911 Suietov)
6912 - Global table revision override (-r) is ignored (BZ 413)

6914 --
6915 26 May 2006. Summary of changes for version 20060526:

6917 1) ACPI CA Core Subsystem:

6919 Restructured, flattened, and simplified the internal interfaces for
6920 namespace object evaluation - resulting in smaller code, less CPU stack
6921 use,
3538 namespace object evaluation - resulting in smaller code, less CPU stack use,
6922 and fewer interfaces. (With assistance from Mikhail Kouzmich)

6924 Fixed a problem with the CopyObject operator where the first parameter
6925 was
6926 not typed correctly for the parser, interpreter, compiler, and
6927 disassembler.
3541 Fixed a problem with the CopyObject operator where the first parameter was
3542 not typed correctly for the parser, interpreter, compiler, and disassembler.
6928 Caused various errors and unexpected behavior.

6930 Fixed a problem where a ShiftLeft or ShiftRight of more than 64 bits
6931 produced incorrect results with some C compilers. Since the behavior of C
6932 compilers when the shift value is larger than the datatype width is
6933 apparently not well defined, the interpreter now detects this condition
6934 and
3548 apparently not well defined, the interpreter now detects this condition and
6935 simply returns zero as expected in all such cases. (BZ 395)

6937 Fixed problem reports (Valery Podrezov) integrated:
6938 - Update String-to-Integer conversion to match ACPI 3.0A spec (BZ 5329)
6939 - Allow interpreter to handle nested method declarations (BZ 5361)

6941 Fixed problem reports (Fiodor Suietov) integrated:
6942 - AcpiTerminate doesn’t free debug memory allocation list objects (BZ
6943 355)
6944 - After Core Subsystem shutdown, AcpiSubsystemStatus returns AE_OK (BZ
6945 356)
3556 - AcpiTerminate doesn’t free debug memory allocation list objects (BZ 355)
3557 - After Core Subsystem shutdown, AcpiSubsystemStatus returns AE_OK (BZ 356)
6946 - AcpiOsUnmapMemory for RSDP can be invoked inconsistently (BZ 357)
6947 - Resource Manager should return AE_TYPE for non-device objects (BZ 358)
6948 - Incomplete cleanup branch in AcpiNsEvaluateRelative (BZ 359)
6949 - Use AcpiOsFree instead of ACPI_FREE in AcpiRsSetSrsMethodData (BZ 360)
6950 - Incomplete cleanup branch in AcpiPsParseAml (BZ 361)
6951 - Incomplete cleanup branch in AcpiDsDeleteWalkState (BZ 362)
6952 - AcpiGetTableHeader returns AE_NO_ACPI_TABLES until DSDT is loaded (BZ
6953 365)
3564 - AcpiGetTableHeader returns AE_NO_ACPI_TABLES until DSDT is loaded (BZ 365)
6954 - Status of the Global Initialization Handler call not used (BZ 366)
6955 - Incorrect object parameter to Global Initialization Handler (BZ 367)

6957 Example Code and Data Size: These are the sizes for the OS-independent
6958 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
6959 debug version of the code includes the debug output trace mechanism and
6960 has
3570 debug version of the code includes the debug output trace mechanism and has
6961 a much larger code and data size.

6963 Previous Release:
6964 Non-Debug Version: 79.8K Code, 17.7K Data, 97.5K Total
6965 Debug Version: 160.5K Code, 65.1K Data, 225.6K Total

new/usr/src/common/acpica/changes.txt 120

6966 Current Release:
6967 Non-Debug Version: 80.0K Code, 17.7K Data, 97.7K Total
6968 Debug Version: 160.3K Code, 64.9K Data, 225.2K Total

6971 2) iASL Compiler/Disassembler and Tools:

6973 Modified the parser to allow the names IO, DMA, and IRQ to be used as
6974 namespace identifiers with no collision with existing resource descriptor
6975 macro names. This provides compatibility with other ASL compilers and is
6976 most useful for disassembly/recompilation of existing tables without
6977 parse
3586 most useful for disassembly/recompilation of existing tables without parse
6978 errors. (With assistance from Thomas Renninger)

6980 Disassembler: fixed an incorrect disassembly problem with the
6981 DataTableRegion and CopyObject operators. Fixed a possible fault during
6982 disassembly of some Alias operators.

6984 --
6985 12 May 2006. Summary of changes for version 20060512:

6987 1) ACPI CA Core Subsystem:

6989 Replaced the AcpiOsQueueForExecution interface with a new interface named
6990 AcpiOsExecute. The major difference is that the new interface does not
6991 have
6992 a Priority parameter, this appeared to be useless and has been replaced
6993 by
6994 a
3599 AcpiOsExecute. The major difference is that the new interface does not have
3600 a Priority parameter, this appeared to be useless and has been replaced by a
6995 Type parameter. The Type tells the host what type of execution is being
6996 requested, such as global lock handler, notify handler, GPE handler, etc.
6997 This allows the host to queue and execute the request as appropriate for
6998 the
6999 request type, possibly using different work queues and different
7000 priorities
3603 This allows the host to queue and execute the request as appropriate for the
3604 request type, possibly using different work queues and different priorities
7001 for the various request types. This enables fixes for multithreading
7002 deadlock problems such as BZ #5534, and will require changes to all
7003 existing
3606 deadlock problems such as BZ #5534, and will require changes to all existing
7004 OS interface layers. (Alexey Starikovskiy and Bob Moore)

7006 Fixed a possible memory leak associated with the support for the so-
7007 called
3609 Fixed a possible memory leak associated with the support for the so-called
7008 "implicit return" ACPI extension. Reported by FreeBSD, BZ #6514. (Fiodor
7009 Suietov)

7011 Fixed a problem with the Load() operator where a table load from an
7012 operation region could overwrite an internal table buffer by up to 7
7013 bytes
7014 and cause alignment faults on IPF systems. (With assistance from Luming
7015 Yu)
3614 operation region could overwrite an internal table buffer by up to 7 bytes
3615 and cause alignment faults on IPF systems. (With assistance from Luming Yu)

7017 Example Code and Data Size: These are the sizes for the OS-independent
7018 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
7019 debug version of the code includes the debug output trace mechanism and
7020 has
3619 debug version of the code includes the debug output trace mechanism and has
7021 a much larger code and data size.

new/usr/src/common/acpica/changes.txt 121

7023 Previous Release:
7024 Non-Debug Version: 79.7K Code, 17.7K Data, 97.4K Total
7025 Debug Version: 160.1K Code, 65.2K Data, 225.3K Total
7026 Current Release:
7027 Non-Debug Version: 79.8K Code, 17.7K Data, 97.5K Total
7028 Debug Version: 160.5K Code, 65.1K Data, 225.6K Total

7032 2) iASL Compiler/Disassembler and Tools:

7034 Disassembler: Implemented support to cross reference the internal
7035 namespace
7036 and automatically generate ASL External() statements for symbols not
7037 defined
3633 Disassembler: Implemented support to cross reference the internal namespace
3634 and automatically generate ASL External() statements for symbols not defined
7038 within the current table being disassembled. This will simplify the
7039 disassembly and recompilation of interdependent tables such as SSDTs
7040 since
3636 disassembly and recompilation of interdependent tables such as SSDTs since
7041 these statements will no longer have to be added manually.

7043 Disassembler: Implemented experimental support to automatically detect
7044 invocations of external control methods and generate appropriate
7045 External()
7046 statements. This is problematic because the AML cannot be correctly
7047 parsed
7048 until the number of arguments for each control method is known.
7049 Currently,
3640 invocations of external control methods and generate appropriate External()
3641 statements. This is problematic because the AML cannot be correctly parsed
3642 until the number of arguments for each control method is known. Currently,
7050 standalone method invocations and invocations as the source operand of a
7051 Store() statement are supported.

7053 Disassembler: Implemented support for the ASL pseudo-operators LNotEqual,
7054 LLessEqual, and LGreaterEqual. Previously disassembled as LNot(LEqual()),
7055 LNot(LGreater()), and LNot(LLess()), this makes the disassembled ASL code
7056 more readable and likely closer to the original ASL source.

7058 --
7059 21 April 2006. Summary of changes for version 20060421:

7061 1) ACPI CA Core Subsystem:

7063 Removed a device initialization optimization introduced in 20051216 where
7064 the _STA method was not run unless an _INI was also present for the same
7065 device. This optimization could cause problems because it could allow
7066 _INI
3658 device. This optimization could cause problems because it could allow _INI
7067 methods to be run within a not-present device subtree. (If a not-present
7068 device had no _INI, _STA would not be run, the not-present status would
7069 not
3660 device had no _INI, _STA would not be run, the not-present status would not
7070 be discovered, and the children of the device would be incorrectly
7071 traversed.)

7073 Implemented a new _STA optimization where namespace subtrees that do not
7074 contain _INI are identified and ignored during device initialization.
7075 Selectively running _STA can significantly improve boot time on large
7076 machines (with assistance from Len Brown.)

7078 Implemented support for the device initialization case where the returned
7079 _STA flags indicate a device not-present but functioning. In this case,

new/usr/src/common/acpica/changes.txt 122

7080 _INI
3670 _STA flags indicate a device not-present but functioning. In this case, _INI
7081 is not run, but the device children are examined for presence, as per the
7082 ACPI specification.

7084 Implemented an additional change to the IndexField support in order to
7085 conform to MS behavior. The value written to the Index Register is not
7086 simply a byte offset, it is a byte offset in units of the access width of
7087 the parent Index Field. (Fiodor Suietov)

7089 Defined and deployed a new OSL interface, AcpiOsValidateAddress. This
7090 interface is called during the creation of all AML operation regions, and
7091 allows the host OS to exert control over what addresses it will allow the
7092 AML code to access. Operation Regions whose addresses are disallowed will
7093 cause a runtime exception when they are actually accessed (will not
7094 affect
3683 cause a runtime exception when they are actually accessed (will not affect
7095 or abort table loading.) See oswinxf or osunixxf for an example
7096 implementation.

7098 Defined and deployed a new OSL interface, AcpiOsValidateInterface. This
7099 interface allows the host OS to match the various "optional"
7100 interface/behavior strings for the _OSI predefined control method as
7101 appropriate (with assistance from Bjorn Helgaas.) See oswinxf or osunixxf
7102 for an example implementation.

7104 Restructured and corrected various problems in the exception handling
7105 code
3693 Restructured and corrected various problems in the exception handling code
7106 paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod
7107 (with assistance from Takayoshi Kochi.)

7109 Modified the Linux source converter to ignore quoted string literals
7110 while
7111 converting identifiers from mixed to lower case. This will correct
7112 problems
3697 Modified the Linux source converter to ignore quoted string literals while
3698 converting identifiers from mixed to lower case. This will correct problems
7113 with the disassembler and other areas where such strings must not be
7114 modified.

7116 The ACPI_FUNCTION_* macros no longer require quotes around the function
7117 name. This allows the Linux source converter to convert the names, now
7118 that
3703 name. This allows the Linux source converter to convert the names, now that
7119 the converter ignores quoted strings.

7121 Example Code and Data Size: These are the sizes for the OS-independent
7122 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
7123 debug version of the code includes the debug output trace mechanism and
7124 has
3708 debug version of the code includes the debug output trace mechanism and has
7125 a much larger code and data size.

7127 Previous Release:

7129 Non-Debug Version: 81.1K Code, 17.7K Data, 98.8K Total
7130 Debug Version: 158.9K Code, 64.9K Data, 223.8K Total
7131 Current Release:
7132 Non-Debug Version: 79.7K Code, 17.7K Data, 97.4K Total
7133 Debug Version: 160.1K Code, 65.2K Data, 225.3K Total

7136 2) iASL Compiler/Disassembler and Tools:

7138 Implemented 3 new warnings for iASL, and implemented multiple warning

new/usr/src/common/acpica/changes.txt 123

7139 levels
3722 Implemented 3 new warnings for iASL, and implemented multiple warning levels
7140 (w2 flag).

7142 1) Ignored timeouts: If the TimeoutValue parameter to Wait or Acquire is
7143 not
3725 1) Ignored timeouts: If the TimeoutValue parameter to Wait or Acquire is not
7144 WAIT_FOREVER (0xFFFF) and the code does not examine the return value to
7145 check for the possible timeout, a warning is issued.

7147 2) Useless operators: If an ASL operator does not specify an optional
7148 target
3729 2) Useless operators: If an ASL operator does not specify an optional target
7149 operand and it also does not use the function return value from the
7150 operator, a warning is issued since the operator effectively does
7151 nothing.
3731 operator, a warning is issued since the operator effectively does nothing.

7153 3) Unreferenced objects: If a namespace object is created, but never
7154 referenced, a warning is issued. This is a warning level 2 since there
7155 are
7156 cases where this is ok, such as when a secondary table is loaded that
7157 uses
7158 the unreferenced objects. Even so, care is taken to only flag objects
7159 that
3734 referenced, a warning is issued. This is a warning level 2 since there are
3735 cases where this is ok, such as when a secondary table is loaded that uses
3736 the unreferenced objects. Even so, care is taken to only flag objects that
7160 don’t look like they will ever be used. For example, the reserved methods
7161 (starting with an underscore) are usually not referenced because it is
7162 expected that the OS will invoke them.

7164 --
7165 31 March 2006. Summary of changes for version 20060331:

7167 1) ACPI CA Core Subsystem:

7169 Implemented header file support for the following additional ACPI tables:
7170 ASF!, BOOT, CPEP, DBGP, MCFG, SPCR, SPMI, TCPA, and WDRT. With this
7171 support,
7172 all current and known ACPI tables are now defined in the ACPICA headers
7173 and
3747 ASF!, BOOT, CPEP, DBGP, MCFG, SPCR, SPMI, TCPA, and WDRT. With this support,
3748 all current and known ACPI tables are now defined in the ACPICA headers and
7174 are available for use by device drivers and other software.

7176 Implemented support to allow tables that contain ACPI names with invalid
7177 characters to be loaded. Previously, this would cause the table load to
7178 fail, but since there are several known cases of such tables on existing
7179 machines, this change was made to enable ACPI support for them. Also,
7180 this
3754 machines, this change was made to enable ACPI support for them. Also, this
7181 matches the behavior of the Microsoft ACPI implementation.

7183 Fixed a couple regressions introduced during the memory optimization in
7184 the
3757 Fixed a couple regressions introduced during the memory optimization in the
7185 20060317 release. The namespace node definition required additional
7186 reorganization and an internal datatype that had been changed to 8-bit
7187 was
3759 reorganization and an internal datatype that had been changed to 8-bit was
7188 restored to 32-bit. (Valery Podrezov)

7190 Fixed a problem where a null pointer passed to AcpiUtDeleteGenericState
7191 could be passed through to AcpiOsReleaseObject which is unexpected. Such
7192 null pointers are now trapped and ignored, matching the behavior of the

new/usr/src/common/acpica/changes.txt 124

7193 previous implementation before the deployment of AcpiOsReleaseObject.
7194 (Valery Podrezov, Fiodor Suietov)

7196 Fixed a memory mapping leak during the deletion of a SystemMemory
7197 operation
3768 Fixed a memory mapping leak during the deletion of a SystemMemory operation
7198 region where a cached memory mapping was not deleted. This became a
7199 noticeable problem for operation regions that are defined within
7200 frequently
3770 noticeable problem for operation regions that are defined within frequently
7201 used control methods. (Dana Meyers)

7203 Reorganized the ACPI table header files into two main files: one for the
7204 ACPI tables consumed by the ACPICA core, and another for the
7205 miscellaneous
7206 ACPI tables that are consumed by the drivers and other software. The
7207 various
3774 ACPI tables consumed by the ACPICA core, and another for the miscellaneous
3775 ACPI tables that are consumed by the drivers and other software. The various
7208 FADT definitions were merged into one common section and three different
7209 tables (ACPI 1.0, 1.0+, and 2.0)

7211 Example Code and Data Size: These are the sizes for the OS-independent
7212 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The
7213 debug version of the code includes the debug output trace mechanism and
7214 has
3781 debug version of the code includes the debug output trace mechanism and has
7215 a much larger code and data size.

7217 Previous Release:
7218 Non-Debug Version: 80.9K Code, 17.7K Data, 98.6K Total
7219 Debug Version: 158.7K Code, 64.8K Data, 223.5K Total
7220 Current Release:
7221 Non-Debug Version: 81.1K Code, 17.7K Data, 98.8K Total
7222 Debug Version: 158.9K Code, 64.9K Data, 223.8K Total

7225 2) iASL Compiler/Disassembler and Tools:

7227 Disassembler: Implemented support to decode and format all non-AML ACPI
7228 tables (tables other than DSDTs and SSDTs.) This includes the new tables
7229 added to the ACPICA headers, therefore all current and known ACPI tables
7230 are
3796 added to the ACPICA headers, therefore all current and known ACPI tables are
7231 supported.

7233 Disassembler: The change to allow ACPI names with invalid characters also
7234 enables the disassembly of such tables. Invalid characters within names
7235 are
3800 enables the disassembly of such tables. Invalid characters within names are
7236 changed to ’*’ to make the name printable; the iASL compiler will still
7237 generate an error for such names, however, since this is an invalid ACPI
7238 character.

7240 Implemented an option for AcpiXtract (-a) to extract all tables found in
7241 the
3805 Implemented an option for AcpiXtract (-a) to extract all tables found in the
7242 input file. The default invocation extracts only the DSDTs and SSDTs.

7244 Fixed a couple of gcc generation issues for iASL and AcpiExec and added a
7245 makefile for the AcpiXtract utility.

7247 --
7248 17 March 2006. Summary of changes for version 20060317:

7250 1) ACPI CA Core Subsystem:

new/usr/src/common/acpica/changes.txt 125

7252 Implemented the use of a cache object for all internal namespace nodes.
7253 Since there are about 1000 static nodes in a typical system, this will
7254 decrease memory use for cache implementations that minimize per-
7255 allocation
3818 decrease memory use for cache implementations that minimize per-allocation
7256 overhead (such as a slab allocator.)

7258 Removed the reference count mechanism for internal namespace nodes, since
7259 it
3821 Removed the reference count mechanism for internal namespace nodes, since it
7260 was deemed unnecessary. This reduces the size of each namespace node by
7261 about 5%-10% on all platforms. Nodes are now 20 bytes for the 32-bit
7262 case,
3823 about 5%-10% on all platforms. Nodes are now 20 bytes for the 32-bit case,
7263 and 32 bytes for the 64-bit case.

7265 Optimized several internal data structures to reduce object size on 64-
7266 bit
3826 Optimized several internal data structures to reduce object size on 64-bit
7267 platforms by packing data within the 64-bit alignment. This includes the
7268 frequently used ACPI_OPERAND_OBJECT, of which there can be ~1000 static
7269 instances corresponding to the namespace objects.

7271 Added two new strings for the predefined _OSI method: "Windows 2001.1
7272 SP1"
3831 Added two new strings for the predefined _OSI method: "Windows 2001.1 SP1"
7273 and "Windows 2006".

7275 Split the allocation tracking mechanism out to a separate file, from
7276 utalloc.c to uttrack.c. This mechanism appears to be only useful for
7277 application-level code. Kernels may wish to not include uttrack.c in
7278 distributions.

7280 Removed all remnants of the obsolete ACPI_REPORT_* macros and the
7281 associated
3839 Removed all remnants of the obsolete ACPI_REPORT_* macros and the associated
7282 code. (These macros have been replaced by the ACPI_ERROR and ACPI_WARNING
7283 macros.)

7285 Code and Data Size: These are the sizes for the acpica.lib produced by
7286 the
7287 Microsoft Visual C++ 6.0 32-bit compiler. The values do not include any
7288 ACPI
7289 driver or OSPM code. The debug version of the code includes the debug
7290 output
3843 Code and Data Size: These are the sizes for the acpica.lib produced by the
3844 Microsoft Visual C++ 6.0 32-bit compiler. The values do not include any ACPI
3845 driver or OSPM code. The debug version of the code includes the debug output
7291 trace mechanism and has a much larger code and data size. Note that these
7292 values will vary depending on the efficiency of the compiler and the
7293 compiler options used during generation.

7295 Previous Release:
7296 Non-Debug Version: 81.1K Code, 17.8K Data, 98.9K Total
7297 Debug Version: 161.6K Code, 65.7K Data, 227.3K Total
7298 Current Release:
7299 Non-Debug Version: 80.9K Code, 17.7K Data, 98.6K Total
7300 Debug Version: 158.7K Code, 64.8K Data, 223.5K Total

7303 2) iASL Compiler/Disassembler and Tools:

7305 Implemented an ANSI C version of the acpixtract utility. This version
7306 will
3860 Implemented an ANSI C version of the acpixtract utility. This version will

new/usr/src/common/acpica/changes.txt 126

7307 automatically extract the DSDT and all SSDTs from the input acpidump text
7308 file and dump the binary output to separate files. It can also display a
7309 summary of the input file including the headers for each table found and
7310 will extract any single ACPI table, with any signature. (See
7311 source/tools/acpixtract)

7313 --
7314 10 March 2006. Summary of changes for version 20060310:

7316 1) ACPI CA Core Subsystem:

7318 Tagged all external interfaces to the subsystem with the new
7319 ACPI_EXPORT_SYMBOL macro. This macro can be defined as necessary to
7320 assist
3873 ACPI_EXPORT_SYMBOL macro. This macro can be defined as necessary to assist
7321 kernel integration. For Linux, the macro resolves to the EXPORT_SYMBOL
7322 macro. The default definition is NULL.

7324 Added the ACPI_THREAD_ID type for the return value from
7325 AcpiOsGetThreadId.
3877 Added the ACPI_THREAD_ID type for the return value from AcpiOsGetThreadId.
7326 This allows the host to define this as necessary to simplify kernel
7327 integration. The default definition is ACPI_NATIVE_UINT.

7329 Fixed two interpreter problems related to error processing, the deletion
7330 of
3881 Fixed two interpreter problems related to error processing, the deletion of
7331 objects, and placing invalid pointers onto the internal operator result
7332 stack. BZ 6028, 6151 (Valery Podrezov)

7334 Increased the reference count threshold where a warning is emitted for
7335 large
7336 reference counts in order to eliminate unnecessary warnings on systems
7337 with
3885 Increased the reference count threshold where a warning is emitted for large
3886 reference counts in order to eliminate unnecessary warnings on systems with
7338 large namespaces (especially 64-bit.) Increased the value from 0x400 to
7339 0x800.

7341 Due to universal disagreement as to the meaning of the ’c’ in the
7342 calloc()
3890 Due to universal disagreement as to the meaning of the ’c’ in the calloc()
7343 function, the ACPI_MEM_CALLOCATE macro has been renamed to
7344 ACPI_ALLOCATE_ZEROED so that the purpose of the interface is ’clear’.
7345 ACPI_MEM_ALLOCATE and ACPI_MEM_FREE are renamed to ACPI_ALLOCATE and
7346 ACPI_FREE.

7348 Code and Data Size: These are the sizes for the acpica.lib produced by
7349 the
7350 Microsoft Visual C++ 6.0 32-bit compiler. The values do not include any
7351 ACPI
7352 driver or OSPM code. The debug version of the code includes the debug
7353 output
3896 Code and Data Size: These are the sizes for the acpica.lib produced by the
3897 Microsoft Visual C++ 6.0 32-bit compiler. The values do not include any ACPI
3898 driver or OSPM code. The debug version of the code includes the debug output
7354 trace mechanism and has a much larger code and data size. Note that these
7355 values will vary depending on the efficiency of the compiler and the
7356 compiler options used during generation.

7358 Previous Release:
7359 Non-Debug Version: 81.0K Code, 17.8K Data, 98.8K Total
7360 Debug Version: 161.4K Code, 65.7K Data, 227.1K Total
7361 Current Release:
7362 Non-Debug Version: 81.1K Code, 17.8K Data, 98.9K Total
7363 Debug Version: 161.6K Code, 65.7K Data, 227.3K Total

new/usr/src/common/acpica/changes.txt 127

7366 2) iASL Compiler/Disassembler:

7368 Disassembler: implemented support for symbolic resource descriptor
7369 references. If a CreateXxxxField operator references a fixed offset
7370 within
7371 a
7372 resource descriptor, a name is assigned to the descriptor and the offset
7373 is
3914 references. If a CreateXxxxField operator references a fixed offset within a
3915 resource descriptor, a name is assigned to the descriptor and the offset is
7374 translated to the appropriate resource tag and pathname. The addition of
7375 this support brings the disassembled code very close to the original ASL
7376 source code and helps eliminate run-time errors when the disassembled
7377 code
3918 source code and helps eliminate run-time errors when the disassembled code
7378 is modified (and recompiled) in such a way as to invalidate the original
7379 fixed offsets.

7381 Implemented support for a Descriptor Name as the last parameter to the
7382 ASL
3922 Implemented support for a Descriptor Name as the last parameter to the ASL
7383 Register() macro. This parameter was inadvertently left out of the ACPI
7384 specification, and will be added for ACPI 3.0b.

7386 Fixed a problem where the use of the "_OSI" string (versus the full path
7387 "_OSI") caused an internal compiler error. ("No back ptr to op")

7389 Fixed a problem with the error message that occurs when an invalid string
7390 is
7391 used for a _HID object (such as one with an embedded asterisk:
7392 "*PNP010A".)
3929 Fixed a problem with the error message that occurs when an invalid string is
3930 used for a _HID object (such as one with an embedded asterisk: "*PNP010A".)
7393 The correct message is now displayed.

7395 --
7396 17 February 2006. Summary of changes for version 20060217:

7398 1) ACPI CA Core Subsystem:

7400 Implemented a change to the IndexField support to match the behavior of
7401 the
7402 Microsoft AML interpreter. The value written to the Index register is now
7403 a
7404 byte offset, no longer an index based upon the width of the Data
7405 register.
3938 Implemented a change to the IndexField support to match the behavior of the
3939 Microsoft AML interpreter. The value written to the Index register is now a
3940 byte offset, no longer an index based upon the width of the Data register.
7406 This should fix IndexField problems seen on some machines where the Data
7407 register is not exactly one byte wide. The ACPI specification will be
7408 clarified on this point.

7410 Fixed a problem where several resource descriptor types could overrun the
7411 internal descriptor buffer due to size miscalculation: VendorShort,
7412 VendorLong, and Interrupt. This was noticed on IA64 machines, but could
7413 affect all platforms.

7415 Fixed a problem where individual resource descriptors were misaligned
7416 within
3950 Fixed a problem where individual resource descriptors were misaligned within
7417 the internal buffer, causing alignment faults on IA64 platforms.

7419 Code and Data Size: These are the sizes for the acpica.lib produced by

new/usr/src/common/acpica/changes.txt 128

7420 the
7421 Microsoft Visual C++ 6.0 32-bit compiler. The values do not include any
7422 ACPI
7423 driver or OSPM code. The debug version of the code includes the debug
7424 output
3953 Code and Data Size: These are the sizes for the acpica.lib produced by the
3954 Microsoft Visual C++ 6.0 32-bit compiler. The values do not include any ACPI
3955 driver or OSPM code. The debug version of the code includes the debug output
7425 trace mechanism and has a much larger code and data size. Note that these
7426 values will vary depending on the efficiency of the compiler and the
7427 compiler options used during generation.

7429 Previous Release:
7430 Non-Debug Version: 81.1K Code, 17.8K Data, 98.9K Total
7431 Debug Version: 161.3K Code, 65.6K Data, 226.9K Total
7432 Current Release:
7433 Non-Debug Version: 81.0K Code, 17.8K Data, 98.8K Total
7434 Debug Version: 161.4K Code, 65.7K Data, 227.1K Total

7437 2) iASL Compiler/Disassembler:

7439 Implemented support for new reserved names: _WDG and _WED are Microsoft
7440 extensions for Windows Instrumentation Management, _TDL is a new ACPI-
7441 defined method (Throttling Depth Limit.)

7443 Fixed a problem where a zero-length VendorShort or VendorLong resource
7444 descriptor was incorrectly emitted as a descriptor of length one.

7446 --
7447 10 February 2006. Summary of changes for version 20060210:

7449 1) ACPI CA Core Subsystem:

7451 Removed a couple of extraneous ACPI_ERROR messages that appeared during
7452 normal execution. These became apparent after the conversion from
7453 ACPI_DEBUG_PRINT.

7455 Fixed a problem where the CreateField operator could hang if the BitIndex
7456 or
3986 Fixed a problem where the CreateField operator could hang if the BitIndex or
7457 NumBits parameter referred to a named object. (Valery Podrezov, BZ 5359)

7459 Fixed a problem where a DeRefOf operation on a buffer object incorrectly
7460 failed with an exception. This also fixes a couple of related RefOf and
7461 DeRefOf issues. (Valery Podrezov, BZ 5360/5392/5387)

7463 Fixed a problem where the AE_BUFFER_LIMIT exception was returned instead
7464 of
7465 AE_STRING_LIMIT on an out-of-bounds Index() operation. (Valery Podrezov,
7466 BZ
3993 Fixed a problem where the AE_BUFFER_LIMIT exception was returned instead of
3994 AE_STRING_LIMIT on an out-of-bounds Index() operation. (Valery Podrezov, BZ
7467 5480)

7469 Implemented a memory cleanup at the end of the execution of each
7470 iteration
7471 of an AML While() loop, preventing the accumulation of outstanding
7472 objects.
3997 Implemented a memory cleanup at the end of the execution of each iteration
3998 of an AML While() loop, preventing the accumulation of outstanding objects.
7473 (Valery Podrezov, BZ 5427)

7475 Eliminated a chunk of duplicate code in the object resolution code.
7476 (Valery
4001 Eliminated a chunk of duplicate code in the object resolution code. (Valery

new/usr/src/common/acpica/changes.txt 129

7477 Podrezov, BZ 5336)

7479 Fixed several warnings during the 64-bit code generation.

7481 The AcpiSrc source code conversion tool now inserts one line of
7482 whitespace
7483 after an if() statement that is followed immediately by a comment,
7484 improving
4006 The AcpiSrc source code conversion tool now inserts one line of whitespace
4007 after an if() statement that is followed immediately by a comment, improving
7485 readability of the Linux code.

7487 Code and Data Size: The current and previous library sizes for the core
7488 subsystem are shown below. These are the code and data sizes for the
7489 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler.
7490 These
7491 values do not include any ACPI driver or OSPM code. The debug version of
7492 the
4012 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These
4013 values do not include any ACPI driver or OSPM code. The debug version of the
7493 code includes the debug output trace mechanism and has a much larger code
7494 and data size. Note that these values will vary depending on the
7495 efficiency
4015 and data size. Note that these values will vary depending on the efficiency
7496 of the compiler and the compiler options used during generation.

7498 Previous Release:
7499 Non-Debug Version: 81.0K Code, 17.9K Data, 98.9K Total
7500 Debug Version: 161.3K Code, 65.7K Data, 227.0K Total
7501 Current Release:
7502 Non-Debug Version: 81.1K Code, 17.8K Data, 98.9K Total
7503 Debug Version: 161.3K Code, 65.6K Data, 226.9K Total

7506 2) iASL Compiler/Disassembler:

7508 Fixed a problem with the disassembly of a BankField operator with a
7509 complex
4028 Fixed a problem with the disassembly of a BankField operator with a complex
7510 expression for the BankValue parameter.

7512 --
7513 27 January 2006. Summary of changes for version 20060127:

7515 1) ACPI CA Core Subsystem:

7517 Implemented support in the Resource Manager to allow unresolved
7518 namestring
7519 references within resource package objects for the _PRT method. This
7520 support
4036 Implemented support in the Resource Manager to allow unresolved namestring
4037 references within resource package objects for the _PRT method. This support
7521 is in addition to the previously implemented unresolved reference support
7522 within the AML parser. If the interpreter slack mode is enabled, these
7523 unresolved references will be passed through to the caller as a NULL
7524 package
4040 unresolved references will be passed through to the caller as a NULL package
7525 entry.

7527 Implemented and deployed new macros and functions for error and warning
7528 messages across the subsystem. These macros are simpler and generate less
7529 code than their predecessors. The new macros ACPI_ERROR, ACPI_EXCEPTION,
7530 ACPI_WARNING, and ACPI_INFO replace the ACPI_REPORT_* macros. The older
7531 macros remain defined to allow ACPI drivers time to migrate to the new
7532 macros.

new/usr/src/common/acpica/changes.txt 130

7534 Implemented the ACPI_CPU_FLAGS type to simplify host OS integration of
7535 the
4050 Implemented the ACPI_CPU_FLAGS type to simplify host OS integration of the
7536 Acquire/Release Lock OSL interfaces.

7538 Fixed a problem where Alias ASL operators are sometimes not correctly
7539 resolved, in both the interpreter and the iASL compiler.

7541 Fixed several problems with the implementation of the
7542 ConcatenateResTemplate
4056 Fixed several problems with the implementation of the ConcatenateResTemplate
7543 ASL operator. As per the ACPI specification, zero length buffers are now
7544 treated as a single EndTag. One-length buffers always cause a fatal
7545 exception. Non-zero length buffers that do not end with a full 2-byte
7546 EndTag
4059 exception. Non-zero length buffers that do not end with a full 2-byte EndTag
7547 cause a fatal exception.

7549 Fixed a possible structure overwrite in the AcpiGetObjectInfo external
7550 interface. (With assistance from Thomas Renninger)

7552 Code and Data Size: The current and previous library sizes for the core
7553 subsystem are shown below. These are the code and data sizes for the
7554 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler.
7555 These
7556 values do not include any ACPI driver or OSPM code. The debug version of
7557 the
4067 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These
4068 values do not include any ACPI driver or OSPM code. The debug version of the
7558 code includes the debug output trace mechanism and has a much larger code
7559 and data size. Note that these values will vary depending on the
7560 efficiency
4070 and data size. Note that these values will vary depending on the efficiency
7561 of the compiler and the compiler options used during generation.

7563 Previous Release:
7564 Non-Debug Version: 83.1K Code, 18.4K Data, 101.5K Total
7565 Debug Version: 163.2K Code, 66.2K Data, 229.4K Total
7566 Current Release:
7567 Non-Debug Version: 81.0K Code, 17.9K Data, 98.9K Total
7568 Debug Version: 161.3K Code, 65.7K Data, 227.0K Total

7571 2) iASL Compiler/Disassembler:

7573 Fixed an internal error that was generated for any forward references to
7574 ASL
4083 Fixed an internal error that was generated for any forward references to ASL
7575 Alias objects.

7577 --
7578 13 January 2006. Summary of changes for version 20060113:

7580 1) ACPI CA Core Subsystem:

7582 Added 2006 copyright to all module headers and signons. This affects
7583 virtually every file in the ACPICA core subsystem, iASL compiler, and the
7584 utilities.
7585
7586 Enhanced the ACPICA error reporting in order to simplify user migration
7587 to
4095 Enhanced the ACPICA error reporting in order to simplify user migration to
7588 the non-debug version of ACPICA. Replaced all instances of the
7589 ACPI_DEBUG_PRINT macro invoked at the ACPI_DB_ERROR and ACPI_DB_WARN
7590 debug
4097 ACPI_DEBUG_PRINT macro invoked at the ACPI_DB_ERROR and ACPI_DB_WARN debug

new/usr/src/common/acpica/changes.txt 131

7591 levels with the ACPI_REPORT_ERROR and ACPI_REPORT_WARNING macros,
7592 respectively. This preserves all error and warning messages in the non-
7593 debug
4099 respectively. This preserves all error and warning messages in the non-debug
7594 version of the ACPICA code (this has been referred to as the "debug lite"
7595 option.) Over 200 cases were converted to create a total of over 380
7596 error/warning messages across the ACPICA code. This increases the code
7597 and
7598 data size of the default non-debug version of the code somewhat (about
7599 13K),
4102 error/warning messages across the ACPICA code. This increases the code and
4103 data size of the default non-debug version of the code somewhat (about 13K),
7600 but all error/warning reporting may be disabled if desired (and code
7601 eliminated) by specifying the ACPI_NO_ERROR_MESSAGES compile-time
7602 configuration option. The size of the debug version of ACPICA remains
7603 about
4106 configuration option. The size of the debug version of ACPICA remains about
7604 the same.

7606 Fixed a memory leak within the AML Debugger "Set" command. One object was
7607 not properly deleted for every successful invocation of the command.

7609 Code and Data Size: The current and previous library sizes for the core
7610 subsystem are shown below. These are the code and data sizes for the
7611 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler.
7612 These
7613 values do not include any ACPI driver or OSPM code. The debug version of
7614 the
4114 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These
4115 values do not include any ACPI driver or OSPM code. The debug version of the
7615 code includes the debug output trace mechanism and has a much larger code
7616 and data size. Note that these values will vary depending on the
7617 efficiency
4117 and data size. Note that these values will vary depending on the efficiency
7618 of the compiler and the compiler options used during generation.

7620 Previous Release:
7621 Non-Debug Version: 76.6K Code, 12.3K Data, 88.9K Total
7622 Debug Version: 163.7K Code, 67.5K Data, 231.2K Total
7623 Current Release:
7624 Non-Debug Version: 83.1K Code, 18.4K Data, 101.5K Total
7625 Debug Version: 163.2K Code, 66.2K Data, 229.4K Total

7628 2) iASL Compiler/Disassembler:

7630 The compiler now officially supports the ACPI 3.0a specification that was
7631 released on December 30, 2005. (Specification is available at
7632 www.acpi.info)
4131 released on December 30, 2005. (Specification is available at www.acpi.info)

7634 --
7635 16 December 2005. Summary of changes for version 20051216:

7637 1) ACPI CA Core Subsystem:

7639 Implemented optional support to allow unresolved names within ASL Package
7640 objects. A null object is inserted in the package when a named reference
7641 cannot be located in the current namespace. Enabled via the interpreter
7642 slack flag, this should eliminate AE_NOT_FOUND exceptions seen on
7643 machines
4141 slack flag, this should eliminate AE_NOT_FOUND exceptions seen on machines
7644 that contain such code.

7646 Implemented an optimization to the initialization sequence that can
7647 improve

new/usr/src/common/acpica/changes.txt 132

7648 boot time. During ACPI device initialization, the _STA method is now run
7649 if
7650 and only if the _INI method exists. The _STA method is used to determine
7651 if
7652 the device is present; An _INI can only be run if _STA returns present,
7653 but
4144 Implemented an optimization to the initialization sequence that can improve
4145 boot time. During ACPI device initialization, the _STA method is now run if
4146 and only if the _INI method exists. The _STA method is used to determine if
4147 the device is present; An _INI can only be run if _STA returns present, but
7654 it is a waste of time to run the _STA method if the _INI does not exist.
7655 (Prototype and assistance from Dong Wei)

7657 Implemented use of the C99 uintptr_t for the pointer casting macros if it
7658 is
7659 available in the current compiler. Otherwise, the default (void *) cast
7660 is
4151 Implemented use of the C99 uintptr_t for the pointer casting macros if it is
4152 available in the current compiler. Otherwise, the default (void *) cast is
7661 used as before.

7663 Fixed some possible memory leaks found within the execution path of the
7664 Break, Continue, If, and CreateField operators. (Valery Podrezov)

7666 Fixed a problem introduced in the 20051202 release where an exception is
7667 generated during method execution if a control method attempts to declare
7668 another method.

7670 Moved resource descriptor string constants that are used by both the AML
7671 disassembler and AML debugger to the common utilities directory so that
7672 these components are independent.

7674 Implemented support in the AcpiExec utility (-e switch) to globally
7675 ignore
4166 Implemented support in the AcpiExec utility (-e switch) to globally ignore
7676 exceptions during control method execution (method is not aborted.)

7678 Added the rsinfo.c source file to the AcpiExec makefile for Linux/Unix
7679 generation.

7681 Code and Data Size: The current and previous library sizes for the core
7682 subsystem are shown below. These are the code and data sizes for the
7683 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler.
7684 These
7685 values do not include any ACPI driver or OSPM code. The debug version of
7686 the
4174 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These
4175 values do not include any ACPI driver or OSPM code. The debug version of the
7687 code includes the debug output trace mechanism and has a much larger code
7688 and data size. Note that these values will vary depending on the
7689 efficiency
4177 and data size. Note that these values will vary depending on the efficiency
7690 of the compiler and the compiler options used during generation.

7692 Previous Release:
7693 Non-Debug Version: 76.3K Code, 12.3K Data, 88.6K Total
7694 Debug Version: 163.2K Code, 67.4K Data, 230.6K Total
7695 Current Release:
7696 Non-Debug Version: 76.6K Code, 12.3K Data, 88.9K Total
7697 Debug Version: 163.7K Code, 67.5K Data, 231.2K Total

7700 2) iASL Compiler/Disassembler:

7702 Fixed a problem where a CPU stack overflow fault could occur if a
7703 recursive

new/usr/src/common/acpica/changes.txt 133

4190 Fixed a problem where a CPU stack overflow fault could occur if a recursive
7704 method call was made from within a Return statement.

7706 --
7707 02 December 2005. Summary of changes for version 20051202:

7709 1) ACPI CA Core Subsystem:

7711 Modified the parsing of control methods to no longer create namespace
7712 objects during the first pass of the parse. Objects are now created only
7713 during the execute phase, at the moment the namespace creation operator
7714 is
7715 encountered in the AML (Name, OperationRegion, CreateByteField, etc.)
7716 This
4200 during the execute phase, at the moment the namespace creation operator is
4201 encountered in the AML (Name, OperationRegion, CreateByteField, etc.) This
7717 should eliminate ALREADY_EXISTS exceptions seen on some machines where
7718 reentrant control methods are protected by an AML mutex. The mutex will
7719 now
7720 correctly block multiple threads from attempting to create the same
7721 object
4203 reentrant control methods are protected by an AML mutex. The mutex will now
4204 correctly block multiple threads from attempting to create the same object
7722 more than once.

7724 Increased the number of available Owner Ids for namespace object tracking
7725 from 32 to 255. This should eliminate the OWNER_ID_LIMIT exceptions seen
7726 on
7727 some machines with a large number of ACPI tables (either static or
7728 dynamic).
4208 from 32 to 255. This should eliminate the OWNER_ID_LIMIT exceptions seen on
4209 some machines with a large number of ACPI tables (either static or dynamic).

7730 Fixed a problem with the AcpiExec utility where a fault could occur when
7731 the
4211 Fixed a problem with the AcpiExec utility where a fault could occur when the
7732 -b switch (batch mode) is used.

7734 Enhanced the namespace dump routine to output the owner ID for each
7735 namespace object.

7737 Code and Data Size: The current and previous library sizes for the core
7738 subsystem are shown below. These are the code and data sizes for the
7739 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler.
7740 These
7741 values do not include any ACPI driver or OSPM code. The debug version of
7742 the
4219 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These
4220 values do not include any ACPI driver or OSPM code. The debug version of the
7743 code includes the debug output trace mechanism and has a much larger code
7744 and data size. Note that these values will vary depending on the
7745 efficiency
4222 and data size. Note that these values will vary depending on the efficiency
7746 of the compiler and the compiler options used during generation.

7748 Previous Release:
7749 Non-Debug Version: 76.3K Code, 12.3K Data, 88.6K Total
7750 Debug Version: 163.0K Code, 67.4K Data, 230.4K Total
7751 Current Release:
7752 Non-Debug Version: 76.3K Code, 12.3K Data, 88.6K Total
7753 Debug Version: 163.2K Code, 67.4K Data, 230.6K Total

7756 2) iASL Compiler/Disassembler:

7758 Fixed a parse error during compilation of certain Switch/Case constructs.

new/usr/src/common/acpica/changes.txt 134

7759 To
7760 simplify the parse, the grammar now allows for multiple Default
7761 statements
4235 Fixed a parse error during compilation of certain Switch/Case constructs. To
4236 simplify the parse, the grammar now allows for multiple Default statements
7762 and this error is now detected and flagged during the analysis phase.

7764 Disassembler: The disassembly now includes the contents of the original
7765 table header within a comment at the start of the file. This includes the
7766 name and version of the original ASL compiler.

7768 --
7769 17 November 2005. Summary of changes for version 20051117:

7771 1) ACPI CA Core Subsystem:

7773 Fixed a problem in the AML parser where the method thread count could be
7774 decremented below zero if any errors occurred during the method parse
7775 phase.
7776 This should eliminate AE_AML_METHOD_LIMIT exceptions seen on some
7777 machines.
4249 decremented below zero if any errors occurred during the method parse phase.
4250 This should eliminate AE_AML_METHOD_LIMIT exceptions seen on some machines.
7778 This also fixed a related regression with the mechanism that detects and
7779 corrects methods that cannot properly handle reentrancy (related to the
7780 deployment of the new OwnerId mechanism.)

7782 Eliminated the pre-parsing of control methods (to detect errors) during
7783 table load. Related to the problem above, this was causing unwind issues
7784 if
7785 any errors occurred during the parse, and it seemed to be overkill. A
7786 table
4256 table load. Related to the problem above, this was causing unwind issues if
4257 any errors occurred during the parse, and it seemed to be overkill. A table
7787 load should not be aborted if there are problems with any single control
7788 method, thus rendering this feature rather pointless.

7790 Fixed a problem with the new table-driven resource manager where an
7791 internal
4261 Fixed a problem with the new table-driven resource manager where an internal
7792 buffer overflow could occur for small resource templates.

7794 Implemented a new external interface, AcpiGetVendorResource. This
7795 interface
7796 will find and return a vendor-defined resource descriptor within a _CRS
7797 or
7798 _PRS method via an ACPI 3.0 UUID match. With assistance from Bjorn
7799 Helgaas.
4264 Implemented a new external interface, AcpiGetVendorResource. This interface
4265 will find and return a vendor-defined resource descriptor within a _CRS or
4266 _PRS method via an ACPI 3.0 UUID match. With assistance from Bjorn Helgaas.

7801 Removed the length limit (200) on string objects as per the upcoming ACPI
7802 3.0A specification. This affects the following areas of the interpreter:
7803 1)
7804 any implicit conversion of a Buffer to a String, 2) a String object
7805 result
4269 3.0A specification. This affects the following areas of the interpreter: 1)
4270 any implicit conversion of a Buffer to a String, 2) a String object result
7806 of the ASL Concatentate operator, 3) the String object result of the ASL
7807 ToString operator.

7809 Fixed a problem in the Windows OS interface layer (OSL) where a
7810 WAIT_FOREVER
4274 Fixed a problem in the Windows OS interface layer (OSL) where a WAIT_FOREVER
7811 on a semaphore object would incorrectly timeout. This allows the

new/usr/src/common/acpica/changes.txt 135

7812 multithreading features of the AcpiExec utility to work properly under
7813 Windows.

7815 Updated the Linux makefiles for the iASL compiler and AcpiExec to include
7816 the recently added file named "utresrc.c".

7818 Code and Data Size: The current and previous library sizes for the core
7819 subsystem are shown below. These are the code and data sizes for the
7820 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler.
7821 These
7822 values do not include any ACPI driver or OSPM code. The debug version of
7823 the
4284 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These
4285 values do not include any ACPI driver or OSPM code. The debug version of the
7824 code includes the debug output trace mechanism and has a much larger code
7825 and data size. Note that these values will vary depending on the
7826 efficiency
4287 and data size. Note that these values will vary depending on the efficiency
7827 of the compiler and the compiler options used during generation.

7829 Previous Release:
7830 Non-Debug Version: 76.2K Code, 12.3K Data, 88.5K Total
7831 Debug Version: 163.0K Code, 67.4K Data, 230.4K Total
7832 Current Release:
7833 Non-Debug Version: 76.3K Code, 12.3K Data, 88.6K Total
7834 Debug Version: 163.0K Code, 67.4K Data, 230.4K Total

7837 2) iASL Compiler/Disassembler:

7839 Removed the limit (200) on string objects as per the upcoming ACPI 3.0A
7840 specification. For the iASL compiler, this means that string literals
7841 within
4301 specification. For the iASL compiler, this means that string literals within
7842 the source ASL can be of any length.

7844 Enhanced the listing output to dump the AML code for resource descriptors
7845 immediately after the ASL code for each descriptor, instead of in a block
7846 at
4305 immediately after the ASL code for each descriptor, instead of in a block at
7847 the end of the entire resource template.

7849 Enhanced the compiler debug output to dump the entire original parse tree
7850 constructed during the parse phase, before any transforms are applied to
7851 the
4309 constructed during the parse phase, before any transforms are applied to the
7852 tree. The transformed tree is dumped also.

7854 --
7855 02 November 2005. Summary of changes for version 20051102:

7857 1) ACPI CA Core Subsystem:

7859 Modified the subsystem initialization sequence to improve GPE support.
7860 The
7861 GPE initialization has been split into two parts in order to defer
7862 execution
7863 of the _PRW methods (Power Resources for Wake) until after the hardware
7864 is
4317 Modified the subsystem initialization sequence to improve GPE support. The
4318 GPE initialization has been split into two parts in order to defer execution
4319 of the _PRW methods (Power Resources for Wake) until after the hardware is
7865 fully initialized and the SCI handler is installed. This allows the _PRW
7866 methods to access fields protected by the Global Lock. This will fix
7867 systems
4321 methods to access fields protected by the Global Lock. This will fix systems

new/usr/src/common/acpica/changes.txt 136

7868 where a NO_GLOBAL_LOCK exception has been seen during initialization.

7870 Converted the ACPI internal object disassemble and display code within
7871 the
4324 Converted the ACPI internal object disassemble and display code within the
7872 AML debugger to fully table-driven operation, reducing code size and
7873 increasing maintainability.

7875 Fixed a regression with the ConcatenateResTemplate() ASL operator
7876 introduced
4328 Fixed a regression with the ConcatenateResTemplate() ASL operator introduced
7877 in the 20051021 release.

7879 Implemented support for "local" internal ACPI object types within the
7880 debugger "Object" command and the AcpiWalkNamespace external interfaces.
7881 These local types include RegionFields, BankFields, IndexFields, Alias,
7882 and
4333 These local types include RegionFields, BankFields, IndexFields, Alias, and
7883 reference objects.

7885 Moved common AML resource handling code into a new file, "utresrc.c".
7886 This
4336 Moved common AML resource handling code into a new file, "utresrc.c". This
7887 code is shared by both the Resource Manager and the AML Debugger.

7889 Code and Data Size: The current and previous library sizes for the core
7890 subsystem are shown below. These are the code and data sizes for the
7891 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler.
7892 These
7893 values do not include any ACPI driver or OSPM code. The debug version of
7894 the
4341 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These
4342 values do not include any ACPI driver or OSPM code. The debug version of the
7895 code includes the debug output trace mechanism and has a much larger code
7896 and data size. Note that these values will vary depending on the
7897 efficiency
4344 and data size. Note that these values will vary depending on the efficiency
7898 of the compiler and the compiler options used during generation.

7900 Previous Release:
7901 Non-Debug Version: 76.1K Code, 12.2K Data, 88.3K Total
7902 Debug Version: 163.5K Code, 67.0K Data, 230.5K Total
7903 Current Release:
7904 Non-Debug Version: 76.2K Code, 12.3K Data, 88.5K Total
7905 Debug Version: 163.0K Code, 67.4K Data, 230.4K Total

7908 2) iASL Compiler/Disassembler:

7910 Fixed a problem with very large initializer lists (more than 4000
7911 elements)
4357 Fixed a problem with very large initializer lists (more than 4000 elements)
7912 for both Buffer and Package objects where the parse stack could overflow.

7914 Enhanced the pre-compile source code scan for non-ASCII characters to
7915 ignore
7916 characters within comment fields. The scan is now always performed and is
7917 no
4360 Enhanced the pre-compile source code scan for non-ASCII characters to ignore
4361 characters within comment fields. The scan is now always performed and is no
7918 longer optional, detecting invalid characters within a source file
7919 immediately rather than during the parse phase or later.

7921 Enhanced the ASL grammar definition to force early reductions on all
7922 list-
4365 Enhanced the ASL grammar definition to force early reductions on all list-

new/usr/src/common/acpica/changes.txt 137

7923 style grammar elements so that the overall parse stack usage is greatly
7924 reduced. This should improve performance and reduce the possibility of
7925 parse
4367 reduced. This should improve performance and reduce the possibility of parse
7926 stack overflow.

7928 Eliminated all reduce/reduce conflicts in the iASL parser generation.
7929 Also,
4370 Eliminated all reduce/reduce conflicts in the iASL parser generation. Also,
7930 with the addition of a %expected statement, the compiler generates from
7931 source with no warnings.

7933 Fixed a possible segment fault in the disassembler if the input filename
7934 does not contain a "dot" extension (Thomas Renninger).

7936 --
7937 21 October 2005. Summary of changes for version 20051021:

7939 1) ACPI CA Core Subsystem:

7941 Implemented support for the EM64T and other x86-64 processors. This
7942 essentially entails recognizing that these processors support non-aligned
7943 memory transfers. Previously, all 64-bit processors were assumed to lack
7944 hardware support for non-aligned transfers.

7946 Completed conversion of the Resource Manager to nearly full table-driven
7947 operation. Specifically, the resource conversion code (convert AML to
7948 internal format and the reverse) and the debug code to dump internal
7949 resource descriptors are fully table-driven, reducing code and data size
7950 and
4390 resource descriptors are fully table-driven, reducing code and data size and
7951 improving maintainability.

7953 The OSL interfaces for Acquire and Release Lock now use a 64-bit flag
7954 word
7955 on 64-bit processors instead of a fixed 32-bit word. (With assistance
7956 from
4393 The OSL interfaces for Acquire and Release Lock now use a 64-bit flag word
4394 on 64-bit processors instead of a fixed 32-bit word. (With assistance from
7957 Alexey Starikovskiy)

7959 Implemented support within the resource conversion code for the Type-
7960 Specific byte within the various ACPI 3.0 *WordSpace macros.

7962 Fixed some issues within the resource conversion code for the type-
7963 specific
4400 Fixed some issues within the resource conversion code for the type-specific
7964 flags for both Memory and I/O address resource descriptors. For Memory,
7965 implemented support for the MTP and TTP flags. For I/O, split the TRS and
7966 TTP flags into two separate fields.

7968 Code and Data Size: The current and previous library sizes for the core
7969 subsystem are shown below. These are the code and data sizes for the
7970 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler.
7971 These
7972 values do not include any ACPI driver or OSPM code. The debug version of
7973 the
4407 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These
4408 values do not include any ACPI driver or OSPM code. The debug version of the
7974 code includes the debug output trace mechanism and has a much larger code
7975 and data size. Note that these values will vary depending on the
7976 efficiency
4410 and data size. Note that these values will vary depending on the efficiency
7977 of the compiler and the compiler options used during generation.

7979 Previous Release:

new/usr/src/common/acpica/changes.txt 138

7980 Non-Debug Version: 77.1K Code, 12.1K Data, 89.2K Total
7981 Debug Version: 168.0K Code, 68.3K Data, 236.3K Total
7982 Current Release:
7983 Non-Debug Version: 76.1K Code, 12.2K Data, 88.3K Total
7984 Debug Version: 163.5K Code, 67.0K Data, 230.5K Total

7988 2) iASL Compiler/Disassembler:

7990 Relaxed a compiler restriction that disallowed a ResourceIndex byte if
7991 the
4424 Relaxed a compiler restriction that disallowed a ResourceIndex byte if the
7992 corresponding ResourceSource string was not also present in a resource
7993 descriptor declaration. This restriction caused problems with existing
7994 AML/ASL code that includes the Index byte without the string. When such
7995 AML
4427 AML/ASL code that includes the Index byte without the string. When such AML
7996 was disassembled, it could not be compiled without modification. Further,
7997 the modified code created a resource template with a different size than
7998 the
7999 original, breaking code that used fixed offsets into the resource
8000 template
4429 the modified code created a resource template with a different size than the
4430 original, breaking code that used fixed offsets into the resource template
8001 buffer.

8003 Removed a recent feature of the disassembler to ignore a lone
8004 ResourceIndex
4433 Removed a recent feature of the disassembler to ignore a lone ResourceIndex
8005 byte. This byte is now emitted if present so that the exact AML can be
8006 reproduced when the disassembled code is recompiled.

8008 Improved comments and text alignment for the resource descriptor code
8009 emitted by the disassembler.

8011 Implemented disassembler support for the ACPI 3.0 AccessSize field within
8012 a
4440 Implemented disassembler support for the ACPI 3.0 AccessSize field within a
8013 Register() resource descriptor.

8015 --
8016 30 September 2005. Summary of changes for version 20050930:

8018 1) ACPI CA Core Subsystem:

8020 Completed a major overhaul of the Resource Manager code - specifically,
8021 optimizations in the area of the AML/internal resource conversion code.
8022 The
8023 code has been optimized to simplify and eliminate duplicated code, CPU
8024 stack
4449 optimizations in the area of the AML/internal resource conversion code. The
4450 code has been optimized to simplify and eliminate duplicated code, CPU stack
8025 use has been decreased by optimizing function parameters and local
8026 variables, and naming conventions across the manager have been
8027 standardized
4452 variables, and naming conventions across the manager have been standardized
8028 for clarity and ease of maintenance (this includes function, parameter,
8029 variable, and struct/typedef names.) The update may force changes in some
8030 driver code, depending on how resources are handled by the host OS.

8032 All Resource Manager dispatch and information tables have been moved to a
8033 single location for clarity and ease of maintenance. One new file was
8034 created, named "rsinfo.c".

8036 The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to

new/usr/src/common/acpica/changes.txt 139

8037 guarantee that the argument is not evaluated twice, making them less
8038 prone
4462 guarantee that the argument is not evaluated twice, making them less prone
8039 to macro side-effects. However, since there exists the possibility of
8040 additional stack use if a particular compiler cannot optimize them (such
8041 as
8042 in the debug generation case), the original macros are optionally
8043 available.
4464 additional stack use if a particular compiler cannot optimize them (such as
4465 in the debug generation case), the original macros are optionally available.
8044 Note that some invocations of the return_VALUE macro may now cause size
8045 mismatch warnings; the return_UINT8 and return_UINT32 macros are provided
8046 to
4467 mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to
8047 eliminate these. (From Randy Dunlap)

8049 Implemented a new mechanism to enable debug tracing for individual
8050 control
4470 Implemented a new mechanism to enable debug tracing for individual control
8051 methods. A new external interface, AcpiDebugTrace, is provided to enable
8052 this mechanism. The intent is to allow the host OS to easily enable and
8053 disable tracing for problematic control methods. This interface can be
8054 easily exposed to a user or debugger interface if desired. See the file
8055 psxface.c for details.

8057 AcpiUtCallocate will now return a valid pointer if a length of zero is
8058 specified - a length of one is used and a warning is issued. This matches
8059 the behavior of AcpiUtAllocate.

8061 Code and Data Size: The current and previous library sizes for the core
8062 subsystem are shown below. These are the code and data sizes for the
8063 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler.
8064 These
8065 values do not include any ACPI driver or OSPM code. The debug version of
8066 the
4483 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These
4484 values do not include any ACPI driver or OSPM code. The debug version of the
8067 code includes the debug output trace mechanism and has a much larger code
8068 and data size. Note that these values will vary depending on the
8069 efficiency
4486 and data size. Note that these values will vary depending on the efficiency
8070 of the compiler and the compiler options used during generation.

8072 Previous Release:
8073 Non-Debug Version: 77.5K Code, 12.0K Data, 89.5K Total
8074 Debug Version: 168.1K Code, 68.4K Data, 236.5K Total
8075 Current Release:
8076 Non-Debug Version: 77.1K Code, 12.1K Data, 89.2K Total
8077 Debug Version: 168.0K Code, 68.3K Data, 236.3K Total

8080 2) iASL Compiler/Disassembler:

8082 A remark is issued if the effective compile-time length of a package or
8083 buffer is zero. Previously, this was a warning.

8085 --
8086 16 September 2005. Summary of changes for version 20050916:

8088 1) ACPI CA Core Subsystem:

8090 Fixed a problem within the Resource Manager where support for the Generic
8091 Register descriptor was not fully implemented. This descriptor is now
8092 fully
4508 Register descriptor was not fully implemented. This descriptor is now fully
8093 recognized, parsed, disassembled, and displayed.

new/usr/src/common/acpica/changes.txt 140

8095 Completely restructured the Resource Manager code to utilize table-driven
8096 dispatch and lookup, eliminating many of the large switch() statements.
8097 This
4512 dispatch and lookup, eliminating many of the large switch() statements. This
8098 reduces overall subsystem code size and code complexity. Affects the
8099 resource parsing and construction, disassembly, and debug dump output.

8101 Cleaned up and restructured the debug dump output for all resource
8102 descriptors. Improved readability of the output and reduced code size.

8104 Fixed a problem where changes to internal data structures caused the
8105 optional ACPI_MUTEX_DEBUG code to fail compilation if specified.

8107 Code and Data Size: The current and previous library sizes for the core
8108 subsystem are shown below. These are the code and data sizes for the
8109 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler.
8110 These
8111 values do not include any ACPI driver or OSPM code. The debug version of
8112 the
4524 acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These
4525 values do not include any ACPI driver or OSPM code. The debug version of the
8113 code includes the debug output trace mechanism and has a much larger code
8114 and data size. Note that these values will vary depending on the
8115 efficiency
4527 and data size. Note that these values will vary depending on the efficiency
8116 of the compiler and the compiler options used during generation.

8118 Previous Release:
8119 Non-Debug Version: 78.4K Code, 11.8K Data, 90.2K Total
8120 Debug Version: 169.6K Code, 69.9K Data, 239.5K Total
8121 Current Release:
8122 Non-Debug Version: 77.5K Code, 12.0K Data, 89.5K Total
8123 Debug Version: 168.1K Code, 68.4K Data, 236.5K Total

8126 2) iASL Compiler/Disassembler:

8128 Updated the disassembler to automatically insert an EndDependentFn()
8129 macro
4540 Updated the disassembler to automatically insert an EndDependentFn() macro
8130 into the ASL stream if this macro is missing in the original AML code,
8131 simplifying compilation of the resulting ASL module.

8133 Fixed a problem in the disassembler where a disassembled ResourceSource
8134 string (within a large resource descriptor) was not surrounded by quotes
8135 and
4545 string (within a large resource descriptor) was not surrounded by quotes and
8136 not followed by a comma, causing errors when the resulting ASL module was
8137 compiled. Also, escape sequences within a ResourceSource string are now
8138 handled correctly (especially "\\")

8140 --
8141 02 September 2005. Summary of changes for version 20050902:

8143 1) ACPI CA Core Subsystem:

8145 Fixed a problem with the internal Owner ID allocation and deallocation
8146 mechanisms for control method execution and recursive method invocation.
8147 This should eliminate the OWNER_ID_LIMIT exceptions and "Invalid OwnerId"
8148 messages seen on some systems. Recursive method invocation depth is
8149 currently limited to 255. (Alexey Starikovskiy)

8151 Completely eliminated all vestiges of support for the "module-level
8152 executable code" until this support is fully implemented and debugged.
8153 This

new/usr/src/common/acpica/changes.txt 141

4562 executable code" until this support is fully implemented and debugged. This
8154 should eliminate the NO_RETURN_VALUE exceptions seen during table load on
8155 some systems that invoke this support.

8157 Fixed a problem within the resource manager code where the transaction
8158 flags
4566 Fixed a problem within the resource manager code where the transaction flags
8159 for a 64-bit address descriptor were handled incorrectly in the type-
8160 specific flag byte.

8162 Consolidated duplicate code within the address descriptor resource
8163 manager
4570 Consolidated duplicate code within the address descriptor resource manager
8164 code, reducing overall subsystem code size.

8166 Fixed a fault when using the AML debugger "disassemble" command to
8167 disassemble individual control methods.

8169 Removed references to the "release_current" directory within the Unix
8170 release package.

8172 Code and Data Size: The current and previous core subsystem library sizes
8173 are shown below. These are the code and data sizes for the acpica.lib
8174 produced by the Microsoft Visual C++ 6.0 compiler. These values do not
8175 include any ACPI driver or OSPM code. The debug version of the code
8176 includes
8177 the debug output trace mechanism and has a much larger code and data
8178 size.
8179 Note that these values will vary depending on the efficiency of the
8180 compiler
4582 include any ACPI driver or OSPM code. The debug version of the code includes
4583 the debug output trace mechanism and has a much larger code and data size.
4584 Note that these values will vary depending on the efficiency of the compiler
8181 and the compiler options used during generation.

8183 Previous Release:
8184 Non-Debug Version: 78.6K Code, 11.7K Data, 90.3K Total
8185 Debug Version: 170.0K Code, 69.9K Data, 239.9K Total
8186 Current Release:
8187 Non-Debug Version: 78.4K Code, 11.8K Data, 90.2K Total
8188 Debug Version: 169.6K Code, 69.9K Data, 239.5K Total

8191 2) iASL Compiler/Disassembler:

8193 Implemented an error check for illegal duplicate values in the interrupt
8194 and
4597 Implemented an error check for illegal duplicate values in the interrupt and
8195 dma lists for the following ASL macros: Dma(), Irq(), IrqNoFlags(), and
8196 Interrupt().

8198 Implemented error checking for the Irq() and IrqNoFlags() macros to
8199 detect
4601 Implemented error checking for the Irq() and IrqNoFlags() macros to detect
8200 too many values in the interrupt list (16 max) and invalid values in the
8201 list (range 0 - 15)

8203 The maximum length string literal within an ASL file is now restricted to
8204 200 characters as per the ACPI specification.

8206 Fixed a fault when using the -ln option (generate namespace listing).

8208 Implemented an error check to determine if a DescriptorName within a
8209 resource descriptor has already been used within the current scope.

8211 --

new/usr/src/common/acpica/changes.txt 142

8212 15 August 2005. Summary of changes for version 20050815:
8213
8214 1) ACPI CA Core Subsystem:
8215
8216 Implemented a full bytewise compare to determine if a table load request
8217 is
8218 attempting to load a duplicate table. The compare is performed if the
8219 table
4618 Implemented a full bytewise compare to determine if a table load request is
4619 attempting to load a duplicate table. The compare is performed if the table
8220 signatures and table lengths match. This will allow different tables with
8221 the same OEM Table ID and revision to be loaded - probably against the
8222 ACPI
4621 the same OEM Table ID and revision to be loaded - probably against the ACPI
8223 specification, but discovered in the field nonetheless.
8224
8225 Added the changes.txt logfile to each of the zipped release packages.
8226
8227 Code and Data Size: Current and previous core subsystem library sizes are
8228 shown below. These are the code and data sizes for the acpica.lib
8229 produced
4627 shown below. These are the code and data sizes for the acpica.lib produced
8230 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
8231 any ACPI driver or OSPM code. The debug version of the code includes the
8232 debug output trace mechanism and has a much larger code and data size.
8233 Note
8234 that these values will vary depending on the efficiency of the compiler
8235 and
4630 debug output trace mechanism and has a much larger code and data size. Note
4631 that these values will vary depending on the efficiency of the compiler and
8236 the compiler options used during generation.
8237
8238 Previous Release:
8239 Non-Debug Version: 78.6K Code, 11.7K Data, 90.3K Total
8240 Debug Version: 167.0K Code, 69.9K Data, 236.9K Total
8241 Current Release:
8242 Non-Debug Version: 78.6K Code, 11.7K Data, 90.3K Total
8243 Debug Version: 170.0K Code, 69.9K Data, 239.9K Total
8244
8245
8246 2) iASL Compiler/Disassembler:
8247
8248 Fixed a problem where incorrect AML code could be generated for Package
8249 objects if optimization is disabled (via the -oa switch).
8250
8251 Fixed a problem with where incorrect AML code is generated for variable-
8252 length packages when the package length is not specified and the number
8253 of
4648 length packages when the package length is not specified and the number of
8254 initializer values is greater than 255.
8255

8257 --
8258 29 July 2005. Summary of changes for version 20050729:

8260 1) ACPI CA Core Subsystem:

8262 Implemented support to ignore an attempt to install/load a particular
8263 ACPI
4657 Implemented support to ignore an attempt to install/load a particular ACPI
8264 table more than once. Apparently there exists BIOS code that repeatedly
8265 attempts to load the same SSDT upon certain events. With assistance from
8266 Venkatesh Pallipadi.

8268 Restructured the main interface to the AML parser in order to correctly
8269 handle all exceptional conditions. This will prevent leakage of the

new/usr/src/common/acpica/changes.txt 143

8270 OwnerId
8271 resource and should eliminate the AE_OWNER_ID_LIMIT exceptions seen on
8272 some
4663 handle all exceptional conditions. This will prevent leakage of the OwnerId
4664 resource and should eliminate the AE_OWNER_ID_LIMIT exceptions seen on some
8273 machines. With assistance from Alexey Starikovskiy.

8275 Support for "module level code" has been disabled in this version due to
8276 a
8277 number of issues that have appeared on various machines. The support can
8278 be
4667 Support for "module level code" has been disabled in this version due to a
4668 number of issues that have appeared on various machines. The support can be
8279 enabled by defining ACPI_ENABLE_MODULE_LEVEL_CODE during subsystem
8280 compilation. When the issues are fully resolved, the code will be enabled
8281 by
4670 compilation. When the issues are fully resolved, the code will be enabled by
8282 default again.

8284 Modified the internal functions for debug print support to define the
8285 FunctionName parameter as a (const char *) for compatibility with
8286 compiler
4674 FunctionName parameter as a (const char *) for compatibility with compiler
8287 built-in macros such as __FUNCTION__, etc.

8289 Linted the entire ACPICA source tree for both 32-bit and 64-bit.

8291 Implemented support to display an object count summary for the AML
8292 Debugger
4679 Implemented support to display an object count summary for the AML Debugger
8293 commands Object and Methods.

8295 Code and Data Size: Current and previous core subsystem library sizes are
8296 shown below. These are the code and data sizes for the acpica.lib
8297 produced
4683 shown below. These are the code and data sizes for the acpica.lib produced
8298 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
8299 any ACPI driver or OSPM code. The debug version of the code includes the
8300 debug output trace mechanism and has a much larger code and data size.
8301 Note
8302 that these values will vary depending on the efficiency of the compiler
8303 and
4686 debug output trace mechanism and has a much larger code and data size. Note
4687 that these values will vary depending on the efficiency of the compiler and
8304 the compiler options used during generation.

8306 Previous Release:
8307 Non-Debug Version: 78.6K Code, 11.6K Data, 90.2K Total
8308 Debug Version: 170.0K Code, 69.7K Data, 239.7K Total
8309 Current Release:
8310 Non-Debug Version: 78.6K Code, 11.7K Data, 90.3K Total
8311 Debug Version: 167.0K Code, 69.9K Data, 236.9K Total

8314 2) iASL Compiler/Disassembler:

8316 Fixed a regression that appeared in the 20050708 version of the compiler
8317 where an error message was inadvertently emitted for invocations of the
8318 _OSI
4701 where an error message was inadvertently emitted for invocations of the _OSI
8319 reserved control method.

8321 --
8322 08 July 2005. Summary of changes for version 20050708:

8324 1) ACPI CA Core Subsystem:

new/usr/src/common/acpica/changes.txt 144

8326 The use of the CPU stack in the debug version of the subsystem has been
8327 considerably reduced. Previously, a debug structure was declared in every
8328 function that used the debug macros. This structure has been removed in
8329 favor of declaring the individual elements as parameters to the debug
8330 functions. This reduces the cumulative stack use during nested execution
8331 of
8332 ACPI function calls at the cost of a small increase in the code size of
8333 the
8334 debug version of the subsystem. With assistance from Alexey Starikovskiy
8335 and
4713 functions. This reduces the cumulative stack use during nested execution of
4714 ACPI function calls at the cost of a small increase in the code size of the
4715 debug version of the subsystem. With assistance from Alexey Starikovskiy and
8336 Len Brown.

8338 Added the ACPI_GET_FUNCTION_NAME macro to enable the compiler-dependent
8339 headers to define a macro that will return the current function name at
8340 runtime (such as __FUNCTION__ or _func_, etc.) The function name is used
8341 by
4720 runtime (such as __FUNCTION__ or _func_, etc.) The function name is used by
8342 the debug trace output. If ACPI_GET_FUNCTION_NAME is not defined in the
8343 compiler-dependent header, the function name is saved on the CPU stack
8344 (one
4722 compiler-dependent header, the function name is saved on the CPU stack (one
8345 pointer per function.) This mechanism is used because apparently there
8346 exists no standard ANSI-C defined macro that that returns the function
8347 name.
4724 exists no standard ANSI-C defined macro that that returns the function name.

8349 Redesigned and reimplemented the "Owner ID" mechanism used to track
8350 namespace objects created/deleted by ACPI tables and control method
8351 execution. A bitmap is now used to allocate and free the IDs, thus
8352 solving
8353 the wraparound problem present in the previous implementation. The size
8354 of
4728 execution. A bitmap is now used to allocate and free the IDs, thus solving
4729 the wraparound problem present in the previous implementation. The size of
8355 the namespace node descriptor was reduced by 2 bytes as a result (Alexey
8356 Starikovskiy).

8358 Removed the UINT32_BIT and UINT16_BIT types that were used for the
8359 bitfield
4733 Removed the UINT32_BIT and UINT16_BIT types that were used for the bitfield
8360 flag definitions within the headers for the predefined ACPI tables. These
8361 have been replaced by UINT8_BIT in order to increase the code portability
8362 of
4735 have been replaced by UINT8_BIT in order to increase the code portability of
8363 the subsystem. If the use of UINT8 remains a problem, we may be forced to
8364 eliminate bitfields entirely because of a lack of portability.

8366 Enhanced the performance of the AcpiUtUpdateObjectReference procedure.
8367 This
8368 is a frequently used function and this improvement increases the
8369 performance
4739 Enhanced the performance of the AcpiUtUpdateObjectReference procedure. This
4740 is a frequently used function and this improvement increases the performance
8370 of the entire subsystem (Alexey Starikovskiy).

8372 Fixed several possible memory leaks and the inverse - premature object
8373 deletion (Alexey Starikovskiy).

8375 Code and Data Size: Current and previous core subsystem library sizes are
8376 shown below. These are the code and data sizes for the acpica.lib
8377 produced
4747 shown below. These are the code and data sizes for the acpica.lib produced

new/usr/src/common/acpica/changes.txt 145

8378 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
8379 any ACPI driver or OSPM code. The debug version of the code includes the
8380 debug output trace mechanism and has a much larger code and data size.
8381 Note
8382 that these values will vary depending on the efficiency of the compiler
8383 and
4750 debug output trace mechanism and has a much larger code and data size. Note
4751 that these values will vary depending on the efficiency of the compiler and
8384 the compiler options used during generation.

8386 Previous Release:
8387 Non-Debug Version: 78.6K Code, 11.5K Data, 90.1K Total
8388 Debug Version: 165.2K Code, 69.6K Data, 234.8K Total
8389 Current Release:
8390 Non-Debug Version: 78.6K Code, 11.6K Data, 90.2K Total
8391 Debug Version: 170.0K Code, 69.7K Data, 239.7K Total

8393 --
8394 24 June 2005. Summary of changes for version 20050624:

8396 1) ACPI CA Core Subsystem:

8398 Modified the new OSL cache interfaces to use ACPI_CACHE_T as the type for
8399 the host-defined cache object. This allows the OSL implementation to
8400 define
4767 the host-defined cache object. This allows the OSL implementation to define
8401 and type this object in any manner desired, simplifying the OSL
8402 implementation. For example, ACPI_CACHE_T is defined as kmem_cache_t for
8403 Linux, and should be defined in the OS-specific header file for other
8404 operating systems as required.

8406 Changed the interface to AcpiOsAcquireObject to directly return the
8407 requested object as the function return (instead of ACPI_STATUS.) This
8408 change was made for performance reasons, since this is the purpose of the
8409 interface in the first place. AcpiOsAcquireObject is now similar to the
8410 AcpiOsAllocate interface.

8412 Implemented a new AML debugger command named Businfo. This command
8413 displays
8414 information about all devices that have an associate _PRT object. The
8415 _ADR,
4779 Implemented a new AML debugger command named Businfo. This command displays
4780 information about all devices that have an associate _PRT object. The _ADR,
8416 _HID, _UID, and _CID are displayed for these devices.

8418 Modified the initialization sequence in AcpiInitializeSubsystem to call
8419 the
8420 OSL interface AcpiOslInitialize first, before any local initialization.
8421 This
4783 Modified the initialization sequence in AcpiInitializeSubsystem to call the
4784 OSL interface AcpiOslInitialize first, before any local initialization. This
8422 change was required because the global initialization now calls OSL
8423 interfaces.

8425 Enhanced the Dump command to display the entire contents of Package
8426 objects
4788 Enhanced the Dump command to display the entire contents of Package objects
8427 (including all sub-objects and their values.)

8429 Restructured the code base to split some files because of size and/or
8430 because the code logically belonged in a separate file. New files are
8431 listed
8432 below. All makefiles and project files included in the ACPI CA release
8433 have
4792 because the code logically belonged in a separate file. New files are listed
4793 below. All makefiles and project files included in the ACPI CA release have

new/usr/src/common/acpica/changes.txt 146

8434 been updated.
8435 utilities/utcache.c /* Local cache interfaces */
8436 utilities/utmutex.c /* Local mutex support */
8437 utilities/utstate.c /* State object support */
8438 interpreter/parser/psloop.c /* Main AML parse loop */

8440 Code and Data Size: Current and previous core subsystem library sizes are
8441 shown below. These are the code and data sizes for the acpica.lib
8442 produced
4801 shown below. These are the code and data sizes for the acpica.lib produced
8443 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
8444 any ACPI driver or OSPM code. The debug version of the code includes the
8445 debug output trace mechanism and has a much larger code and data size.
8446 Note
8447 that these values will vary depending on the efficiency of the compiler
8448 and
4804 debug output trace mechanism and has a much larger code and data size. Note
4805 that these values will vary depending on the efficiency of the compiler and
8449 the compiler options used during generation.

8451 Previous Release:
8452 Non-Debug Version: 78.3K Code, 11.6K Data, 89.9K Total
8453 Debug Version: 164.0K Code, 69.1K Data, 233.1K Total
8454 Current Release:
8455 Non-Debug Version: 78.6K Code, 11.5K Data, 90.1K Total
8456 Debug Version: 165.2K Code, 69.6K Data, 234.8K Total

8459 2) iASL Compiler/Disassembler:

8461 Fixed a regression introduced in version 20050513 where the use of a
8462 Package
4818 Fixed a regression introduced in version 20050513 where the use of a Package
8463 object within a Case() statement caused a compile time exception. The
8464 original behavior has been restored (a Match() operator is emitted.)

8466 --
8467 17 June 2005. Summary of changes for version 20050617:

8469 1) ACPI CA Core Subsystem:

8471 Moved the object cache operations into the OS interface layer (OSL) to
8472 allow
4827 Moved the object cache operations into the OS interface layer (OSL) to allow
8473 the host OS to handle these operations if desired (for example, the Linux
8474 OSL will invoke the slab allocator). This support is optional; the
8475 compile
8476 time define ACPI_USE_LOCAL_CACHE may be used to utilize the original
8477 cache
4829 OSL will invoke the slab allocator). This support is optional; the compile
4830 time define ACPI_USE_LOCAL_CACHE may be used to utilize the original cache
8478 code in the ACPI CA core. The new OSL interfaces are shown below. See
8479 utalloc.c for an example implementation, and acpiosxf.h for the exact
8480 interface definitions. With assistance from Alexey Starikovskiy.
8481 AcpiOsCreateCache
8482 AcpiOsDeleteCache
8483 AcpiOsPurgeCache
8484 AcpiOsAcquireObject
8485 AcpiOsReleaseObject

8487 Modified the interfaces to AcpiOsAcquireLock and AcpiOsReleaseLock to
8488 return
4840 Modified the interfaces to AcpiOsAcquireLock and AcpiOsReleaseLock to return
8489 and restore a flags parameter. This fits better with many OS lock models.
8490 Note: the current execution state (interrupt handler or not) is no longer
8491 passed to these interfaces. If necessary, the OSL must determine this

new/usr/src/common/acpica/changes.txt 147

8492 state
4843 passed to these interfaces. If necessary, the OSL must determine this state
8493 by itself, a simple and fast operation. With assistance from Alexey
8494 Starikovskiy.

8496 Fixed a problem in the ACPI table handling where a valid XSDT was assumed
8497 present if the revision of the RSDP was 2 or greater. According to the
8498 ACPI
4848 present if the revision of the RSDP was 2 or greater. According to the ACPI
8499 specification, the XSDT is optional in all cases, and the table manager
8500 therefore now checks for both an RSDP >=2 and a valid XSDT pointer.
8501 Otherwise, the RSDT pointer is used. Some ACPI 2.0 compliant BIOSs
8502 contain
4851 Otherwise, the RSDT pointer is used. Some ACPI 2.0 compliant BIOSs contain
8503 only the RSDT.

8505 Fixed an interpreter problem with the Mid() operator in the case of an
8506 input
8507 string where the resulting output string is of zero length. It now
8508 correctly
4854 Fixed an interpreter problem with the Mid() operator in the case of an input
4855 string where the resulting output string is of zero length. It now correctly
8509 returns a valid, null terminated string object instead of a string object
8510 with a null pointer.

8512 Fixed a problem with the control method argument handling to allow a
8513 store
8514 to an Arg object that already contains an object of type Device. The
8515 Device
4859 Fixed a problem with the control method argument handling to allow a store
4860 to an Arg object that already contains an object of type Device. The Device
8516 object is now correctly overwritten. Previously, an error was returned.

8519 Enhanced the debugger Find command to emit object values in addition to
8520 the
8521 found object pathnames. The output format is the same as the dump
8522 namespace
4864 Enhanced the debugger Find command to emit object values in addition to the
4865 found object pathnames. The output format is the same as the dump namespace
8523 command.

8525 Enhanced the debugger Set command. It now has the ability to set the
8526 value
8527 of any Named integer object in the namespace (Previously, only method
8528 locals
4868 Enhanced the debugger Set command. It now has the ability to set the value
4869 of any Named integer object in the namespace (Previously, only method locals
8529 and args could be set.)

8531 Code and Data Size: Current and previous core subsystem library sizes are
8532 shown below. These are the code and data sizes for the acpica.lib
8533 produced
4873 shown below. These are the code and data sizes for the acpica.lib produced
8534 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
8535 any ACPI driver or OSPM code. The debug version of the code includes the
8536 debug output trace mechanism and has a much larger code and data size.
8537 Note
8538 that these values will vary depending on the efficiency of the compiler
8539 and
4876 debug output trace mechanism and has a much larger code and data size. Note
4877 that these values will vary depending on the efficiency of the compiler and
8540 the compiler options used during generation.

8542 Previous Release:
8543 Non-Debug Version: 78.1K Code, 11.6K Data, 89.7K Total

new/usr/src/common/acpica/changes.txt 148

8544 Debug Version: 164.0K Code, 69.3K Data, 233.3K Total
8545 Current Release:
8546 Non-Debug Version: 78.3K Code, 11.6K Data, 89.9K Total
8547 Debug Version: 164.0K Code, 69.1K Data, 233.1K Total

8550 2) iASL Compiler/Disassembler:

8552 Fixed a regression in the disassembler where if/else/while constructs
8553 were
4890 Fixed a regression in the disassembler where if/else/while constructs were
8554 output incorrectly. This problem was introduced in the previous release
8555 (20050526). This problem also affected the single-step disassembly in the
8556 debugger.

8558 Fixed a problem where compiling the reserved _OSI method would randomly
8559 (but
4895 Fixed a problem where compiling the reserved _OSI method would randomly (but
8560 rarely) produce compile errors.

8562 Enhanced the disassembler to emit compilable code in the face of
8563 incorrect
4898 Enhanced the disassembler to emit compilable code in the face of incorrect
8564 AML resource descriptors. If the optional ResourceSourceIndex is present,
8565 but the ResourceSource is not, do not emit the ResourceSourceIndex in the
8566 disassembly. Otherwise, the resulting code cannot be compiled without
8567 errors.

8569 --
8570 26 May 2005. Summary of changes for version 20050526:

8572 1) ACPI CA Core Subsystem:

8574 Implemented support to execute Type 1 and Type 2 AML opcodes appearing at
8575 the module level (not within a control method.) These opcodes are
8576 executed
8577 exactly once at the time the table is loaded. This type of code was legal
8578 up
8579 until the release of ACPI 2.0B (2002) and is now supported within ACPI CA
8580 in
8581 order to provide backwards compatibility with earlier BIOS
8582 implementations.
4910 the module level (not within a control method.) These opcodes are executed
4911 exactly once at the time the table is loaded. This type of code was legal up
4912 until the release of ACPI 2.0B (2002) and is now supported within ACPI CA in
4913 order to provide backwards compatibility with earlier BIOS implementations.
8583 This eliminates the "Encountered executable code at module level" warning
8584 that was previously generated upon detection of such code.

8586 Fixed a problem in the interpreter where an AE_NOT_FOUND exception could
8587 inadvertently be generated during the lookup of namespace objects in the
8588 second pass parse of ACPI tables and control methods. It appears that
8589 this
8590 problem could occur during the resolution of forward references to
8591 namespace
4919 second pass parse of ACPI tables and control methods. It appears that this
4920 problem could occur during the resolution of forward references to namespace
8592 objects.

8594 Added the ACPI_MUTEX_DEBUG #ifdef to the AcpiUtReleaseMutex function,
8595 corresponding to the same #ifdef in the AcpiUtAcquireMutex function. This
8596 allows the deadlock detection debug code to be compiled out in the normal
8597 case, improving mutex performance (and overall subsystem performance)
8598 considerably.

8600 Implemented a handful of miscellaneous fixes for possible memory leaks on

new/usr/src/common/acpica/changes.txt 149

8601 error conditions and error handling control paths. These fixes were
8602 suggested by FreeBSD and the Coverity Prevent source code analysis tool.

8604 Added a check for a null RSDT pointer in AcpiGetFirmwareTable
8605 (tbxfroot.c)
4933 Added a check for a null RSDT pointer in AcpiGetFirmwareTable (tbxfroot.c)
8606 to prevent a fault in this error case.

8608 Code and Data Size: Current and previous core subsystem library sizes are
8609 shown below. These are the code and data sizes for the acpica.lib
8610 produced
4937 shown below. These are the code and data sizes for the acpica.lib produced
8611 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
8612 any ACPI driver or OSPM code. The debug version of the code includes the
8613 debug output trace mechanism and has a much larger code and data size.
8614 Note
8615 that these values will vary depending on the efficiency of the compiler
8616 and
4940 debug output trace mechanism and has a much larger code and data size. Note
4941 that these values will vary depending on the efficiency of the compiler and
8617 the compiler options used during generation.

8619 Previous Release:
8620 Non-Debug Version: 78.2K Code, 11.6K Data, 89.8K Total
8621 Debug Version: 163.7K Code, 69.3K Data, 233.0K Total
8622 Current Release:
8623 Non-Debug Version: 78.1K Code, 11.6K Data, 89.7K Total
8624 Debug Version: 164.0K Code, 69.3K Data, 233.3K Total

8627 2) iASL Compiler/Disassembler:

8629 Implemented support to allow Type 1 and Type 2 ASL operators to appear at
8630 the module level (not within a control method.) These operators will be
8631 executed once at the time the table is loaded. This type of code was
8632 legal
4956 executed once at the time the table is loaded. This type of code was legal
8633 up until the release of ACPI 2.0B (2002) and is now supported by the iASL
8634 compiler in order to provide backwards compatibility with earlier BIOS
8635 ASL
4958 compiler in order to provide backwards compatibility with earlier BIOS ASL
8636 code.

8638 The ACPI integer width (specified via the table revision ID or the -r
8639 override, 32 or 64 bits) is now used internally during compile-time
8640 constant
4962 override, 32 or 64 bits) is now used internally during compile-time constant
8641 folding to ensure that constants are truncated to 32 bits if necessary.
8642 Previously, the revision ID value was only emitted in the AML table
8643 header.
4964 Previously, the revision ID value was only emitted in the AML table header.

8645 An error message is now generated for the Mutex and Method operators if
8646 the
4966 An error message is now generated for the Mutex and Method operators if the
8647 SyncLevel parameter is outside the legal range of 0 through 15.

8649 Fixed a problem with the Method operator ParameterTypes list handling
8650 (ACPI
8651 3.0). Previously, more than 2 types or 2 arguments generated a syntax
8652 error.
4969 Fixed a problem with the Method operator ParameterTypes list handling (ACPI
4970 3.0). Previously, more than 2 types or 2 arguments generated a syntax error.
8653 The actual underlying implementation of method argument typechecking is
8654 still under development, however.

new/usr/src/common/acpica/changes.txt 150

8656 --
8657 13 May 2005. Summary of changes for version 20050513:

8659 1) ACPI CA Core Subsystem:

8661 Implemented support for PCI Express root bridges -- added support for
8662 device
4979 Implemented support for PCI Express root bridges -- added support for device
8663 PNP0A08 in the root bridge search within AcpiEvPciConfigRegionSetup.

8665 The interpreter now automatically truncates incoming 64-bit constants to
8666 32
8667 bits if currently executing out of a 32-bit ACPI table (Revision < 2).
8668 This
4982 The interpreter now automatically truncates incoming 64-bit constants to 32
4983 bits if currently executing out of a 32-bit ACPI table (Revision < 2). This
8669 also affects the iASL compiler constant folding. (Note: as per below, the
8670 iASL compiler no longer allows 64-bit constants within 32-bit tables.)

8672 Fixed a problem where string and buffer objects with "static" pointers
8673 (pointers to initialization data within an ACPI table) were not handled
8674 consistently. The internal object copy operation now always copies the
8675 data
4989 consistently. The internal object copy operation now always copies the data
8676 to a newly allocated buffer, regardless of whether the source object is
8677 static or not.

8679 Fixed a problem with the FromBCD operator where an implicit result
8680 conversion was improperly performed while storing the result to the
8681 target
4994 conversion was improperly performed while storing the result to the target
8682 operand. Since this is an "explicit conversion" operator, the implicit
8683 conversion should never be performed on the output.

8685 Fixed a problem with the CopyObject operator where a copy to an existing
8686 named object did not always completely overwrite the existing object
8687 stored
8688 at name. Specifically, a buffer-to-buffer copy did not delete the
8689 existing
4999 named object did not always completely overwrite the existing object stored
5000 at name. Specifically, a buffer-to-buffer copy did not delete the existing
8690 buffer.

8692 Replaced "InterruptLevel" with "InterruptNumber" in all GPE interfaces
8693 and
5003 Replaced "InterruptLevel" with "InterruptNumber" in all GPE interfaces and
8694 structs for consistency.

8696 Code and Data Size: Current and previous core subsystem library sizes are
8697 shown below. These are the code and data sizes for the acpica.lib
8698 produced
5007 shown below. These are the code and data sizes for the acpica.lib produced
8699 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
8700 any ACPI driver or OSPM code. The debug version of the code includes the
8701 debug output trace mechanism and has a much larger code and data size.
8702 Note
8703 that these values will vary depending on the efficiency of the compiler
8704 and
5010 debug output trace mechanism and has a much larger code and data size. Note
5011 that these values will vary depending on the efficiency of the compiler and
8705 the compiler options used during generation.

8707 Previous Release:
8708 Non-Debug Version: 78.2K Code, 11.6K Data, 89.8K Total
8709 Debug Version: 163.7K Code, 69.3K Data, 233.0K Total
8710 Current Release: (Same sizes)

new/usr/src/common/acpica/changes.txt 151

8711 Non-Debug Version: 78.2K Code, 11.6K Data, 89.8K Total
8712 Debug Version: 163.7K Code, 69.3K Data, 233.0K Total

8715 2) iASL Compiler/Disassembler:

8717 The compiler now emits a warning if an attempt is made to generate a 64-
8718 bit
8719 integer constant from within a 32-bit ACPI table (Revision < 2). The
8720 integer
5024 The compiler now emits a warning if an attempt is made to generate a 64-bit
5025 integer constant from within a 32-bit ACPI table (Revision < 2). The integer
8721 is truncated to 32 bits.

8723 Fixed a problem with large package objects: if the static length of the
8724 package is greater than 255, the "variable length package" opcode is
8725 emitted. Previously, this caused an error. This requires an update to the
8726 ACPI spec, since it currently (incorrectly) states that packages larger
8727 than
5031 ACPI spec, since it currently (incorrectly) states that packages larger than
8728 255 elements are not allowed.

8730 The disassembler now correctly handles variable length packages and
8731 packages
5034 The disassembler now correctly handles variable length packages and packages
8732 larger than 255 elements.

8734 --
8735 08 April 2005. Summary of changes for version 20050408:

8737 1) ACPI CA Core Subsystem:

8739 Fixed three cases in the interpreter where an "index" argument to an ASL
8740 function was still (internally) 32 bits instead of the required 64 bits.
8741 This was the Index argument to the Index, Mid, and Match operators.

8743 The "strupr" function is now permanently local (AcpiUtStrupr), since this
8744 is
5046 The "strupr" function is now permanently local (AcpiUtStrupr), since this is
8745 not a POSIX-defined function and not present in most kernel-level C
8746 libraries. All references to the C library strupr function have been
8747 removed
5048 libraries. All references to the C library strupr function have been removed
8748 from the headers.

8750 Completed the deployment of static functions/prototypes. All prototypes
8751 with
8752 the static attribute have been moved from the headers to the owning C
8753 file.
5051 Completed the deployment of static functions/prototypes. All prototypes with
5052 the static attribute have been moved from the headers to the owning C file.

8755 Implemented an extract option (-e) for the AcpiBin utility (AML binary
8756 utility). This option allows the utility to extract individual ACPI
8757 tables
5055 utility). This option allows the utility to extract individual ACPI tables
8758 from the output of AcpiDmp. It provides the same functionality of the
8759 acpixtract.pl perl script without the worry of setting the correct perl
8760 options. AcpiBin runs on Windows and has not yet been generated/validated
8761 in
5058 options. AcpiBin runs on Windows and has not yet been generated/validated in
8762 the Linux/Unix environment (but should be soon).
8763
8764 Updated and fixed the table dump option for AcpiBin (-d). This option
8765 converts a single ACPI table to a hex/ascii file, similar to the output
8766 of

new/usr/src/common/acpica/changes.txt 152

5062 converts a single ACPI table to a hex/ascii file, similar to the output of
8767 AcpiDmp.

8769 Code and Data Size: Current and previous core subsystem library sizes are
8770 shown below. These are the code and data sizes for the acpica.lib
8771 produced
5066 shown below. These are the code and data sizes for the acpica.lib produced
8772 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
8773 any ACPI driver or OSPM code. The debug version of the code includes the
8774 debug output trace mechanism and has a much larger code and data size.
8775 Note
8776 that these values will vary depending on the efficiency of the compiler
8777 and
5069 debug output trace mechanism and has a much larger code and data size. Note
5070 that these values will vary depending on the efficiency of the compiler and
8778 the compiler options used during generation.

8780 Previous Release:
8781 Non-Debug Version: 78.0K Code, 11.6K Data, 89.6K Total
8782 Debug Version: 163.5K Code, 69.3K Data, 232.8K Total
8783 Current Release:
8784 Non-Debug Version: 78.2K Code, 11.6K Data, 89.8K Total
8785 Debug Version: 163.7K Code, 69.3K Data, 233.0K Total

8788 2) iASL Compiler/Disassembler:

8790 Disassembler fix: Added a check to ensure that the table length found in
8791 the
8792 ACPI table header within the input file is not longer than the actual
8793 input
5083 Disassembler fix: Added a check to ensure that the table length found in the
5084 ACPI table header within the input file is not longer than the actual input
8794 file size. This indicates some kind of file or table corruption.

8796 --
8797 29 March 2005. Summary of changes for version 20050329:

8799 1) ACPI CA Core Subsystem:

8801 An error is now generated if an attempt is made to create a Buffer Field
8802 of
5092 An error is now generated if an attempt is made to create a Buffer Field of
8803 length zero (A CreateField with a length operand of zero.)

8805 The interpreter now issues a warning whenever executable code at the
8806 module
5095 The interpreter now issues a warning whenever executable code at the module
8807 level is detected during ACPI table load. This will give some idea of the
8808 prevalence of this type of code.

8810 Implemented support for references to named objects (other than control
8811 methods) within package objects.

8813 Enhanced package object output for the debug object. Package objects are
8814 now
5102 Enhanced package object output for the debug object. Package objects are now
8815 completely dumped, showing all elements.

8817 Enhanced miscellaneous object output for the debug object. Any object can
8818 now be written to the debug object (for example, a device object can be
8819 written, and the type of the object will be displayed.)

8821 The "static" qualifier has been added to all local functions across both
8822 the
5109 The "static" qualifier has been added to all local functions across both the

new/usr/src/common/acpica/changes.txt 153

8823 core subsystem and the iASL compiler.

8825 The number of "long" lines (> 80 chars) within the source has been
8826 significantly reduced, by about 1/3.

8828 Cleaned up all header files to ensure that all CA/iASL functions are
8829 prototyped (even static functions) and the formatting is consistent.

8831 Two new header files have been added, acopcode.h and acnames.h.

8833 Removed several obsolete functions that were no longer used.

8835 Code and Data Size: Current and previous core subsystem library sizes are
8836 shown below. These are the code and data sizes for the acpica.lib
8837 produced
5123 shown below. These are the code and data sizes for the acpica.lib produced
8838 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
8839 any ACPI driver or OSPM code. The debug version of the code includes the
8840 debug output trace mechanism and has a much larger code and data size.
8841 Note
8842 that these values will vary depending on the efficiency of the compiler
8843 and
5126 debug output trace mechanism and has a much larger code and data size. Note
5127 that these values will vary depending on the efficiency of the compiler and
8844 the compiler options used during generation.

8846 Previous Release:
8847 Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total
8848 Debug Version: 165.4K Code, 69.7K Data, 236.1K Total
8849 Current Release:
8850 Non-Debug Version: 78.0K Code, 11.6K Data, 89.6K Total
8851 Debug Version: 163.5K Code, 69.3K Data, 232.8K Total

8855 2) iASL Compiler/Disassembler:

8857 Fixed a problem with the resource descriptor generation/support. For the
8858 ResourceSourceIndex and the ResourceSource fields, both must be present,
8859 or
5142 ResourceSourceIndex and the ResourceSource fields, both must be present, or
8860 both must be not present - can’t have one without the other.

8862 The compiler now returns non-zero from the main procedure if any errors
8863 have
5145 The compiler now returns non-zero from the main procedure if any errors have
8864 occurred during the compilation.

8867 --
8868 09 March 2005. Summary of changes for version 20050309:

8870 1) ACPI CA Core Subsystem:

8872 The string-to-buffer implicit conversion code has been modified again
8873 after
8874 a change to the ACPI specification. In order to match the behavior of
8875 the
8876 other major ACPI implementation, the target buffer is no longer truncated
8877 if
5154 The string-to-buffer implicit conversion code has been modified again after
5155 a change to the ACPI specification. In order to match the behavior of the
5156 other major ACPI implementation, the target buffer is no longer truncated if
8878 the source string is smaller than an existing target buffer. This change
8879 requires an update to the ACPI spec, and should eliminate the recent
8880 AE_AML_BUFFER_LIMIT issues.

new/usr/src/common/acpica/changes.txt 154

8882 The "implicit return" support was rewritten to a new algorithm that
8883 solves
8884 the general case. Rather than attempt to determine when a method is about
8885 to
8886 exit, the result of every ASL operator is saved momentarily until the
8887 very
5161 The "implicit return" support was rewritten to a new algorithm that solves
5162 the general case. Rather than attempt to determine when a method is about to
5163 exit, the result of every ASL operator is saved momentarily until the very
8888 next ASL operator is executed. Therefore, no matter how the method exits,
8889 there will always be a saved implicit return value. This feature is only
8890 enabled with the AcpiGbl_EnableInterpreterSlack flag, and should
8891 eliminate
5166 enabled with the AcpiGbl_EnableInterpreterSlack flag, and should eliminate
8892 AE_AML_NO_RETURN_VALUE errors when enabled.

8894 Implemented implicit conversion support for the predicate (operand) of
8895 the
8896 If, Else, and While operators. String and Buffer arguments are
8897 automatically
5169 Implemented implicit conversion support for the predicate (operand) of the
5170 If, Else, and While operators. String and Buffer arguments are automatically
8898 converted to Integers.

8900 Changed the string-to-integer conversion behavior to match the new ACPI
8901 errata: "If no integer object exists, a new integer is created. The ASCII
8902 string is interpreted as a hexadecimal constant. Each string character is
8903 interpreted as a hexadecimal value (’0’-’9’, ’A’-’F’, ’a’, ’f’), starting
8904 with the first character as the most significant digit, and ending with
8905 the
8906 first non-hexadecimal character or end-of-string." This means that the
8907 first
5177 with the first character as the most significant digit, and ending with the
5178 first non-hexadecimal character or end-of-string." This means that the first
8908 non-hex character terminates the conversion and this is the code that was
8909 changed.

8911 Fixed a problem where the ObjectType operator would fail (fault) when
8912 used
5182 Fixed a problem where the ObjectType operator would fail (fault) when used
8913 on an Index of a Package which pointed to a null package element. The
8914 operator now properly returns zero (Uninitialized) in this case.

8916 Fixed a problem where the While operator used excessive memory by not
8917 properly popping the result stack during execution. There was no memory
8918 leak
5187 properly popping the result stack during execution. There was no memory leak
8919 after execution, however. (Code provided by Valery Podrezov.)

8921 Fixed a problem where references to control methods within Package
8922 objects
5190 Fixed a problem where references to control methods within Package objects
8923 caused the method to be invoked, instead of producing a reference object
8924 pointing to the method.

8926 Restructured and simplified the pswalk.c module (AcpiPsDeleteParseTree)
8927 to
5194 Restructured and simplified the pswalk.c module (AcpiPsDeleteParseTree) to
8928 improve performance and reduce code size. (Code provided by Alexey
8929 Starikovskiy.)

8931 Code and Data Size: Current and previous core subsystem library sizes are
8932 shown below. These are the code and data sizes for the acpica.lib
8933 produced
5199 shown below. These are the code and data sizes for the acpica.lib produced

new/usr/src/common/acpica/changes.txt 155

8934 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
8935 any ACPI driver or OSPM code. The debug version of the code includes the
8936 debug output trace mechanism and has a much larger code and data size.
8937 Note
8938 that these values will vary depending on the efficiency of the compiler
8939 and
5202 debug output trace mechanism and has a much larger code and data size. Note
5203 that these values will vary depending on the efficiency of the compiler and
8940 the compiler options used during generation.

8942 Previous Release:
8943 Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total
8944 Debug Version: 165.4K Code, 69.6K Data, 236.0K Total
8945 Current Release:
8946 Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total
8947 Debug Version: 165.4K Code, 69.7K Data, 236.1K Total

8950 2) iASL Compiler/Disassembler:

8952 Fixed a problem with the Return operator with no arguments. Since the AML
8953 grammar for the byte encoding requires an operand for the Return opcode,
8954 the
5217 grammar for the byte encoding requires an operand for the Return opcode, the
8955 compiler now emits a Return(Zero) for this case. An ACPI specification
8956 update has been written for this case.

8958 For tables other than the DSDT, namepath optimization is automatically
8959 disabled. This is because SSDTs can be loaded anywhere in the namespace,
8960 the
5222 disabled. This is because SSDTs can be loaded anywhere in the namespace, the
8961 compiler has no knowledge of where, and thus cannot optimize namepaths.

8963 Added "ProcessorObj" to the ObjectTypeKeyword list. This object type was
8964 inadvertently omitted from the ACPI specification, and will require an
8965 update to the spec.

8967 The source file scan for ASCII characters is now optional (-a). This
8968 change
5229 The source file scan for ASCII characters is now optional (-a). This change
8969 was made because some vendors place non-ascii characters within comments.
8970 However, the scan is simply a brute-force byte compare to ensure all
8971 characters in the file are in the range 0x00 to 0x7F.

8973 Fixed a problem with the CondRefOf operator where the compiler was
8974 inappropriately checking for the existence of the target. Since the point
8975 of
5235 inappropriately checking for the existence of the target. Since the point of
8976 the operator is to check for the existence of the target at run-time, the
8977 compiler no longer checks for the target existence.

8979 Fixed a problem where errors generated from the internal AML interpreter
8980 during constant folding were not handled properly, causing a fault.

8982 Fixed a problem with overly aggressive range checking for the Stall
8983 operator. The valid range (max 255) is now only checked if the operand is
8984 of
5243 operator. The valid range (max 255) is now only checked if the operand is of
8985 type Integer. All other operand types cannot be statically checked.

8987 Fixed a problem where control method references within the RefOf,
8988 DeRefOf,
8989 and ObjectType operators were not treated properly. They are now treated
8990 as
5246 Fixed a problem where control method references within the RefOf, DeRefOf,
5247 and ObjectType operators were not treated properly. They are now treated as

new/usr/src/common/acpica/changes.txt 156

8991 actual references, not method invocations.

8993 Fixed and enhanced the "list namespace" option (-ln). This option was
8994 broken
5250 Fixed and enhanced the "list namespace" option (-ln). This option was broken
8995 a number of releases ago.

8997 Improved error handling for the Field, IndexField, and BankField
8998 operators.
5253 Improved error handling for the Field, IndexField, and BankField operators.
8999 The compiler now cleanly reports and recovers from errors in the field
9000 component (FieldUnit) list.

9002 Fixed a disassembler problem where the optional ResourceDescriptor fields
9003 TRS and TTP were not always handled correctly.

9005 Disassembler - Comments in output now use "//" instead of "/*"

9007 --
9008 28 February 2005. Summary of changes for version 20050228:

9010 1) ACPI CA Core Subsystem:

9012 Fixed a problem where the result of an Index() operator (an object
9013 reference) must increment the reference count on the target object for
9014 the
5268 reference) must increment the reference count on the target object for the
9015 life of the object reference.

9017 Implemented AML Interpreter and Debugger support for the new ACPI 3.0
9018 Extended Address (IO, Memory, Space), QwordSpace, DwordSpace, and
9019 WordSpace
5272 Extended Address (IO, Memory, Space), QwordSpace, DwordSpace, and WordSpace
9020 resource descriptors.

9022 Implemented support in the _OSI method for the ACPI 3.0 "Extended Address
9023 Space Descriptor" string, indicating interpreter support for the
9024 descriptors
5276 Space Descriptor" string, indicating interpreter support for the descriptors
9025 above.

9027 Implemented header support for the new ACPI 3.0 FADT flag bits.

9029 Implemented header support for the new ACPI 3.0 PCI Express bits for the
9030 PM1
5281 Implemented header support for the new ACPI 3.0 PCI Express bits for the PM1
9031 status/enable registers.

9033 Updated header support for the MADT processor local Apic struct and MADT
9034 platform interrupt source struct for new ACPI 3.0 fields.

9036 Implemented header support for the SRAT and SLIT ACPI tables.

9038 Implemented the -s switch in AcpiExec to enable the "InterpreterSlack"
9039 flag
5289 Implemented the -s switch in AcpiExec to enable the "InterpreterSlack" flag
9040 at runtime.

9042 Code and Data Size: Current and previous core subsystem library sizes are
9043 shown below. These are the code and data sizes for the acpica.lib
9044 produced
5293 shown below. These are the code and data sizes for the acpica.lib produced
9045 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
9046 any ACPI driver or OSPM code. The debug version of the code includes the
9047 debug output trace mechanism and has a much larger code and data size.
9048 Note

new/usr/src/common/acpica/changes.txt 157

9049 that these values will vary depending on the efficiency of the compiler
9050 and
5296 debug output trace mechanism and has a much larger code and data size. Note
5297 that these values will vary depending on the efficiency of the compiler and
9051 the compiler options used during generation.

9053 Previous Release:
9054 Non-Debug Version: 78.2K Code, 11.5K Data, 89.7K Total
9055 Debug Version: 164.9K Code, 69.2K Data, 234.1K Total
9056 Current Release:
9057 Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total
9058 Debug Version: 165.4K Code, 69.6K Data, 236.0K Total

9061 2) iASL Compiler/Disassembler:

9063 Fixed a problem with the internal 64-bit String-to-integer conversion
9064 with
5310 Fixed a problem with the internal 64-bit String-to-integer conversion with
9065 strings less than two characters long.

9067 Fixed a problem with constant folding where the result of the Index()
9068 operator can not be considered a constant. This means that Index() cannot
9069 be
5314 operator can not be considered a constant. This means that Index() cannot be
9070 a type3 opcode and this will require an update to the ACPI specification.

9072 Disassembler: Implemented support for the TTP, MTP, and TRS resource
9073 descriptor fields. These fields were inadvertently ignored and not output
9074 in
5318 descriptor fields. These fields were inadvertently ignored and not output in
9075 the disassembly of the resource descriptor.

9078 --
9079 11 February 2005. Summary of changes for version 20050211:

9081 1) ACPI CA Core Subsystem:

9083 Implemented ACPI 3.0 support for implicit conversion within the Match()
9084 operator. MatchObjects can now be of type integer, buffer, or string
9085 instead
9086 of just type integer. Package elements are implicitly converted to the
9087 type
5328 operator. MatchObjects can now be of type integer, buffer, or string instead
5329 of just type integer. Package elements are implicitly converted to the type
9088 of the MatchObject. This change aligns the behavior of Match() with the
9089 behavior of the other logical operators (LLess(), etc.) It also requires
9090 an
5331 behavior of the other logical operators (LLess(), etc.) It also requires an
9091 errata change to the ACPI specification as this support was intended for
9092 ACPI 3.0, but was inadvertently omitted.

9094 Fixed a problem with the internal implicit "to buffer" conversion.
9095 Strings
9096 that are converted to buffers will cause buffer truncation if the string
9097 is
9098 smaller than the target buffer. Integers that are converted to buffers
9099 will
5335 Fixed a problem with the internal implicit "to buffer" conversion. Strings
5336 that are converted to buffers will cause buffer truncation if the string is
5337 smaller than the target buffer. Integers that are converted to buffers will
9100 not cause buffer truncation, only zero extension (both as per the ACPI
9101 spec.) The problem was introduced when code was added to truncate the
9102 buffer, but this should not be performed in all cases, only the string
9103 case.

new/usr/src/common/acpica/changes.txt 158

5340 buffer, but this should not be performed in all cases, only the string case.

9105 Fixed a problem with the Buffer and Package operators where the
9106 interpreter
5342 Fixed a problem with the Buffer and Package operators where the interpreter
9107 would get confused if two such operators were used as operands to an ASL
9108 operator (such as LLess(Buffer(1){0},Buffer(1){1}). The internal result
9109 stack was not being popped after the execution of these operators,
9110 resulting
5345 stack was not being popped after the execution of these operators, resulting
9111 in an AE_NO_RETURN_VALUE exception.

9113 Fixed a problem with constructs of the form Store(Index(...),...). The
9114 reference object returned from Index was inadvertently resolved to an
9115 actual
9116 value. This problem was introduced in version 20050114 when the behavior
9117 of
5349 reference object returned from Index was inadvertently resolved to an actual
5350 value. This problem was introduced in version 20050114 when the behavior of
9118 Store() was modified to restrict the object types that can be used as the
9119 source operand (to match the ACPI specification.)

9121 Reduced excessive stack use within the AcpiGetObjectInfo procedure.

9123 Added a fix to aclinux.h to allow generation of AcpiExec on Linux.

9125 Updated the AcpiSrc utility to add the FADT_DESCRIPTOR_REV2_MINUS struct.

9127 Code and Data Size: Current and previous core subsystem library sizes are
9128 shown below. These are the code and data sizes for the acpica.lib
9129 produced
5361 shown below. These are the code and data sizes for the acpica.lib produced
9130 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
9131 any ACPI driver or OSPM code. The debug version of the code includes the
9132 debug output trace mechanism and has a much larger code and data size.
9133 Note
9134 that these values will vary depending on the efficiency of the compiler
9135 and
5364 debug output trace mechanism and has a much larger code and data size. Note
5365 that these values will vary depending on the efficiency of the compiler and
9136 the compiler options used during generation.

9138 Previous Release:
9139 Non-Debug Version: 78.1K Code, 11.5K Data, 89.6K Total
9140 Debug Version: 164.8K Code, 69.2K Data, 234.0K Total
9141 Current Release:
9142 Non-Debug Version: 78.2K Code, 11.5K Data, 89.7K Total
9143 Debug Version: 164.9K Code, 69.2K Data, 234.1K Total

9146 2) iASL Compiler/Disassembler:

9148 Fixed a code generation problem in the constant folding optimization code
9149 where incorrect code was generated if a constant was reduced to a buffer
9150 object (i.e., a reduced type 5 opcode.)

9152 Fixed a typechecking problem for the ToBuffer operator. Caused by an
9153 incorrect return type in the internal opcode information table.

9155 --
9156 25 January 2005. Summary of changes for version 20050125:

9158 1) ACPI CA Core Subsystem:

9160 Fixed a recently introduced problem with the Global Lock where the
9161 underlying semaphore was not created. This problem was introduced in

new/usr/src/common/acpica/changes.txt 159

9162 version 20050114, and caused an AE_AML_NO_OPERAND exception during an
9163 Acquire() operation on _GL.

9165 The local object cache is now optional, and is disabled by default. Both
9166 AcpiExec and the iASL compiler enable the cache because they run in user
9167 mode and this enhances their performance. #define
9168 ACPI_ENABLE_OBJECT_CACHE
5397 mode and this enhances their performance. #define ACPI_ENABLE_OBJECT_CACHE
9169 to enable the local cache.

9171 Fixed an issue in the internal function AcpiUtEvaluateObject concerning
9172 the
9173 optional "implicit return" support where an error was returned if no
9174 return
9175 object was expected, but one was implicitly returned. AE_OK is now
9176 returned
5400 Fixed an issue in the internal function AcpiUtEvaluateObject concerning the
5401 optional "implicit return" support where an error was returned if no return
5402 object was expected, but one was implicitly returned. AE_OK is now returned
9177 in this case and the implicitly returned object is deleted.
9178 AcpiUtEvaluateObject is only occasionally used, and only to execute
9179 reserved
5404 AcpiUtEvaluateObject is only occasionally used, and only to execute reserved
9180 methods such as _STA and _INI where the return type is known up front.

9182 Fixed a few issues with the internal convert-to-integer code. It now
9183 returns
5407 Fixed a few issues with the internal convert-to-integer code. It now returns
9184 an error if an attempt is made to convert a null string, a string of only
9185 blanks/tabs, or a zero-length buffer. This affects both implicit
9186 conversion
5409 blanks/tabs, or a zero-length buffer. This affects both implicit conversion
9187 and explicit conversion via the ToInteger() operator.

9189 The internal debug code in AcpiUtAcquireMutex has been commented out. It
9190 is
9191 not needed for normal operation and should increase the performance of
9192 the
9193 entire subsystem. The code remains in case it is needed for debug
9194 purposes
5412 The internal debug code in AcpiUtAcquireMutex has been commented out. It is
5413 not needed for normal operation and should increase the performance of the
5414 entire subsystem. The code remains in case it is needed for debug purposes
9195 again.

9197 The AcpiExec source and makefile are included in the Unix/Linux package
9198 for
5417 The AcpiExec source and makefile are included in the Unix/Linux package for
9199 the first time.

9201 Code and Data Size: Current and previous core subsystem library sizes are
9202 shown below. These are the code and data sizes for the acpica.lib
9203 produced
5421 shown below. These are the code and data sizes for the acpica.lib produced
9204 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
9205 any ACPI driver or OSPM code. The debug version of the code includes the
9206 debug output trace mechanism and has a much larger code and data size.
9207 Note
9208 that these values will vary depending on the efficiency of the compiler
9209 and
5424 debug output trace mechanism and has a much larger code and data size. Note
5425 that these values will vary depending on the efficiency of the compiler and
9210 the compiler options used during generation.

9212 Previous Release:
9213 Non-Debug Version: 78.4K Code, 11.5K Data, 89.9K Total

new/usr/src/common/acpica/changes.txt 160

9214 Debug Version: 165.4K Code, 69.4K Data, 234.8K Total
9215 Current Release:
9216 Non-Debug Version: 78.1K Code, 11.5K Data, 89.6K Total
9217 Debug Version: 164.8K Code, 69.2K Data, 234.0K Total

9219 2) iASL Compiler/Disassembler:

9221 Switch/Case support: A warning is now issued if the type of the Switch
9222 value
5437 Switch/Case support: A warning is now issued if the type of the Switch value
9223 cannot be determined at compile time. For example, Switch(Arg0) will
9224 generate the warning, and the type is assumed to be an integer. As per
9225 the
9226 ACPI spec, use a construct such as Switch(ToInteger(Arg0)) to eliminate
9227 the
5439 generate the warning, and the type is assumed to be an integer. As per the
5440 ACPI spec, use a construct such as Switch(ToInteger(Arg0)) to eliminate the
9228 warning.

9230 Switch/Case support: Implemented support for buffer and string objects as
9231 the switch value. This is an ACPI 3.0 feature, now that LEqual supports
9232 buffers and strings.

9234 Switch/Case support: The emitted code for the LEqual() comparisons now
9235 uses
9236 the switch value as the first operand, not the second. The case value is
9237 now
5447 Switch/Case support: The emitted code for the LEqual() comparisons now uses
5448 the switch value as the first operand, not the second. The case value is now
9238 the second operand, and this allows the case value to be implicitly
9239 converted to the type of the switch value, not the other way around.

9241 Switch/Case support: Temporary variables are now emitted immediately
9242 within
9243 the control method, not at the global level. This means that there are
9244 now
9245 36 temps available per-method, not 36 temps per-module as was the case
9246 with
5452 Switch/Case support: Temporary variables are now emitted immediately within
5453 the control method, not at the global level. This means that there are now
5454 36 temps available per-method, not 36 temps per-module as was the case with
9247 the earlier implementation (_T_0 through _T_9 and _T_A through _T_Z.)

9249 --
9250 14 January 2005. Summary of changes for version 20050114:

9252 Added 2005 copyright to all module headers. This affects every module in
9253 the core subsystem, iASL compiler, and the utilities.

9255 1) ACPI CA Core Subsystem:

9257 Fixed an issue with the String-to-Buffer conversion code where the string
9258 null terminator was not included in the buffer after conversion, but
9259 there
9260 is existing ASL that assumes the string null terminator is included. This
9261 is
5466 null terminator was not included in the buffer after conversion, but there
5467 is existing ASL that assumes the string null terminator is included. This is
9262 the root of the ACPI_AML_BUFFER_LIMIT regression. This problem was
9263 introduced in the previous version when the code was updated to correctly
9264 set the converted buffer size as per the ACPI specification. The ACPI
9265 spec
9266 is ambiguous and will be updated to specify that the null terminator must
9267 be
5470 set the converted buffer size as per the ACPI specification. The ACPI spec
5471 is ambiguous and will be updated to specify that the null terminator must be

new/usr/src/common/acpica/changes.txt 161

9268 included in the converted buffer. This also affects the ToBuffer() ASL
9269 operator.

9271 Fixed a problem with the Mid() ASL/AML operator where it did not work
9272 correctly on Buffer objects. Newly created sub-buffers were not being
9273 marked
5476 correctly on Buffer objects. Newly created sub-buffers were not being marked
9274 as initialized.

9277 Fixed a problem in AcpiTbFindTable where incorrect string compares were
9278 performed on the OemId and OemTableId table header fields. These fields
9279 are
5481 performed on the OemId and OemTableId table header fields. These fields are
9280 not null terminated, so strncmp is now used instead of strcmp.

9282 Implemented a restriction on the Store() ASL/AML operator to align the
9283 behavior with the ACPI specification. Previously, any object could be
9284 used
9285 as the source operand. Now, the only objects that may be used are
9286 Integers,
5485 behavior with the ACPI specification. Previously, any object could be used
5486 as the source operand. Now, the only objects that may be used are Integers,
9287 Buffers, Strings, Packages, Object References, and DDB Handles. If
9288 necessary, the original behavior can be restored by enabling the
9289 EnableInterpreterSlack flag.

9291 Enhanced the optional "implicit return" support to allow an implicit
9292 return
5491 Enhanced the optional "implicit return" support to allow an implicit return
9293 value from methods that are invoked externally via the AcpiEvaluateObject
9294 interface. This enables implicit returns from the _STA and _INI methods,
9295 for example.

9297 Changed the Revision() ASL/AML operator to return the current version of
9298 the
9299 AML interpreter, in the YYYYMMDD format. Previously, it incorrectly
9300 returned
5496 Changed the Revision() ASL/AML operator to return the current version of the
5497 AML interpreter, in the YYYYMMDD format. Previously, it incorrectly returned
9301 the supported ACPI version (This is the function of the _REV method).

9303 Updated the _REV predefined method to return the currently supported
9304 version
5500 Updated the _REV predefined method to return the currently supported version
9305 of ACPI, now 3.

9307 Implemented batch mode option for the AcpiExec utility (-b).

9309 Code and Data Size: Current and previous core subsystem library sizes are
9310 shown below. These are the code and data sizes for the acpica.lib
9311 produced
5506 shown below. These are the code and data sizes for the acpica.lib produced
9312 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
9313 any ACPI driver or OSPM code. The debug version of the code includes the
9314 debug output trace mechanism and has a much larger code and data size.
9315 Note
9316 that these values will vary depending on the efficiency of the compiler
9317 and
5509 debug output trace mechanism and has a much larger code and data size. Note
5510 that these values will vary depending on the efficiency of the compiler and
9318 the compiler options used during generation.

9320 Previous Release:
9321 Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total
9322 Debug Version: 165.3K Code, 69.4K Data, 234.7K Total

new/usr/src/common/acpica/changes.txt 162

9323 Current Release:
9324 Non-Debug Version: 78.4K Code, 11.5K Data, 89.9K Total
9325 Debug Version: 165.4K Code, 69.4K Data, 234.8K Total

9327 --
9328 10 December 2004. Summary of changes for version 20041210:

9330 ACPI 3.0 support is nearing completion in both the iASL compiler and the
9331 ACPI CA core subsystem.

9333 1) ACPI CA Core Subsystem:

9335 Fixed a problem in the ToDecimalString operator where the resulting
9336 string
5528 Fixed a problem in the ToDecimalString operator where the resulting string
9337 length was incorrectly calculated. The length is now calculated exactly,
9338 eliminating incorrect AE_STRING_LIMIT exceptions.

9340 Fixed a problem in the ToHexString operator to allow a maximum 200
9341 character
5532 Fixed a problem in the ToHexString operator to allow a maximum 200 character
9342 string to be produced.

9344 Fixed a problem in the internal string-to-buffer and buffer-to-buffer
9345 copy
5535 Fixed a problem in the internal string-to-buffer and buffer-to-buffer copy
9346 routine where the length of the resulting buffer was not truncated to the
9347 new size (if the target buffer already existed).

9349 Code and Data Size: Current and previous core subsystem library sizes are
9350 shown below. These are the code and data sizes for the acpica.lib
9351 produced
5540 shown below. These are the code and data sizes for the acpica.lib produced
9352 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
9353 any ACPI driver or OSPM code. The debug version of the code includes the
9354 debug output trace mechanism and has a much larger code and data size.
9355 Note
9356 that these values will vary depending on the efficiency of the compiler
9357 and
5543 debug output trace mechanism and has a much larger code and data size. Note
5544 that these values will vary depending on the efficiency of the compiler and
9358 the compiler options used during generation.

9360 Previous Release:
9361 Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total
9362 Debug Version: 164.7K Code, 68.5K Data, 233.2K Total
9363 Current Release:
9364 Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total
9365 Debug Version: 165.3K Code, 69.4K Data, 234.7K Total

9368 2) iASL Compiler/Disassembler:

9370 Implemented the new ACPI 3.0 resource template macros - DWordSpace,
9371 ExtendedIO, ExtendedMemory, ExtendedSpace, QWordSpace, and WordSpace.
9372 Includes support in the disassembler.

9374 Implemented support for the new (ACPI 3.0) parameter to the Register
9375 macro,
5561 Implemented support for the new (ACPI 3.0) parameter to the Register macro,
9376 AccessSize.

9378 Fixed a problem where the _HE resource name for the Interrupt macro was
9379 referencing bit 0 instead of bit 1.

9381 Implemented check for maximum 255 interrupts in the Interrupt macro.

new/usr/src/common/acpica/changes.txt 163

9383 Fixed a problem with the predefined resource descriptor names where
9384 incorrect AML code was generated if the offset within the resource buffer
9385 was 0 or 1. The optimizer shortened the AML code to a single byte opcode
9386 but did not update the surrounding package lengths.

9388 Changes to the Dma macro: All channels within the channel list must be
9389 in
5574 Changes to the Dma macro: All channels within the channel list must be in
9390 the range 0-7. Maximum 8 channels can be specified. BusMaster operand is
9391 optional (default is BusMaster).

9393 Implemented check for maximum 7 data bytes for the VendorShort macro.

9395 The ReadWrite parameter is now optional for the Memory32 and similar
9396 macros.
5580 The ReadWrite parameter is now optional for the Memory32 and similar macros.

9398 --
9399 03 December 2004. Summary of changes for version 20041203:

9401 1) ACPI CA Core Subsystem:

9403 The low-level field insertion/extraction code (exfldio) has been
9404 completely
5587 The low-level field insertion/extraction code (exfldio) has been completely
9405 rewritten to eliminate unnecessary complexity, bugs, and boundary
9406 conditions.

9408 Fixed a problem in the ToInteger, ToBuffer, ToHexString, and
9409 ToDecimalString
5591 Fixed a problem in the ToInteger, ToBuffer, ToHexString, and ToDecimalString
9410 operators where the input operand could be inadvertently deleted if no
9411 conversion was necessary (e.g., if the input to ToInteger was an Integer
9412 object.)

9414 Fixed a problem with the ToDecimalString and ToHexString where an
9415 incorrect
5596 Fixed a problem with the ToDecimalString and ToHexString where an incorrect
9416 exception code was returned if the resulting string would be > 200 chars.
9417 AE_STRING_LIMIT is now returned.

9419 Fixed a problem with the Concatenate operator where AE_OK was always
9420 returned, even if the operation failed.

9422 Fixed a problem in oswinxf (used by AcpiExec and iASL) to allow > 128
9423 semaphores to be allocated.

9425 Code and Data Size: Current and previous core subsystem library sizes are
9426 shown below. These are the code and data sizes for the acpica.lib
9427 produced
5607 shown below. These are the code and data sizes for the acpica.lib produced
9428 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
9429 any ACPI driver or OSPM code. The debug version of the code includes the
9430 debug output trace mechanism and has a much larger code and data size.
9431 Note
9432 that these values will vary depending on the efficiency of the compiler
9433 and
5610 debug output trace mechanism and has a much larger code and data size. Note
5611 that these values will vary depending on the efficiency of the compiler and
9434 the compiler options used during generation.

9436 Previous Release:
9437 Non-Debug Version: 78.5K Code, 11.5K Data, 90.0K Total
9438 Debug Version: 165.2K Code, 68.6K Data, 233.8K Total
9439 Current Release:

new/usr/src/common/acpica/changes.txt 164

9440 Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total
9441 Debug Version: 164.7K Code, 68.5K Data, 233.2K Total

9444 2) iASL Compiler/Disassembler:

9446 Fixed typechecking for the ObjectType and SizeOf operators. Problem was
9447 recently introduced in 20041119.

9449 Fixed a problem with the ToUUID macro where the upper nybble of each
9450 buffer
5627 Fixed a problem with the ToUUID macro where the upper nybble of each buffer
9451 byte was inadvertently set to zero.

9453 --
9454 19 November 2004. Summary of changes for version 20041119:

9456 1) ACPI CA Core Subsystem:

9458 Fixed a problem in the internal ConvertToInteger routine where new
9459 integers
9460 were not truncated to 32 bits for 32-bit ACPI tables. This routine
9461 converts
5635 Fixed a problem in the internal ConvertToInteger routine where new integers
5636 were not truncated to 32 bits for 32-bit ACPI tables. This routine converts
9462 buffers and strings to integers.

9464 Implemented support to store a value to an Index() on a String object.
9465 This
5639 Implemented support to store a value to an Index() on a String object. This
9466 is an ACPI 2.0 feature that had not yet been implemented.

9468 Implemented new behavior for storing objects to individual package
9469 elements
9470 (via the Index() operator). The previous behavior was to invoke the
9471 implicit
5642 Implemented new behavior for storing objects to individual package elements
5643 (via the Index() operator). The previous behavior was to invoke the implicit
9472 conversion rules if an object was already present at the index. The new
9473 behavior is to simply delete any existing object and directly store the
9474 new
9475 object. Although the ACPI specification seems unclear on this subject,
9476 other
5645 behavior is to simply delete any existing object and directly store the new
5646 object. Although the ACPI specification seems unclear on this subject, other
9477 ACPI implementations behave in this manner. (This is the root of the
9478 AE_BAD_HEX_CONSTANT issue.)

9480 Modified the RSDP memory scan mechanism to support the extended checksum
9481 for
5650 Modified the RSDP memory scan mechanism to support the extended checksum for
9482 ACPI 2.0 (and above) RSDPs. Note that the search continues until a valid
9483 RSDP signature is found with a valid checksum.

9485 Code and Data Size: Current and previous core subsystem library sizes are
9486 shown below. These are the code and data sizes for the acpica.lib
9487 produced
5655 shown below. These are the code and data sizes for the acpica.lib produced
9488 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
9489 any ACPI driver or OSPM code. The debug version of the code includes the
9490 debug output trace mechanism and has a much larger code and data size.
9491 Note
9492 that these values will vary depending on the efficiency of the compiler
9493 and
5658 debug output trace mechanism and has a much larger code and data size. Note
5659 that these values will vary depending on the efficiency of the compiler and

new/usr/src/common/acpica/changes.txt 165

9494 the compiler options used during generation.

9496 Previous Release:
9497 Non-Debug Version: 78.5K Code, 11.5K Data, 90.0K Total
9498 Debug Version: 165.2K Code, 68.6K Data, 233.8K Total
9499 Current Release:
9500 Non-Debug Version: 78.5K Code, 11.5K Data, 90.0K Total
9501 Debug Version: 165.2K Code, 68.6K Data, 233.8K Total

9504 2) iASL Compiler/Disassembler:

9506 Fixed a missing semicolon in the aslcompiler.y file.

9508 --
9509 05 November 2004. Summary of changes for version 20041105:

9511 1) ACPI CA Core Subsystem:

9513 Implemented support for FADT revision 2. This was an interim table
9514 (between
5679 Implemented support for FADT revision 2. This was an interim table (between
9515 ACPI 1.0 and ACPI 2.0) that adds support for the FADT reset register.

9517 Implemented optional support to allow uninitialized LocalX and ArgX
9518 variables in a control method. The variables are initialized to an
9519 Integer
5683 variables in a control method. The variables are initialized to an Integer
9520 object with a value of zero. This support is enabled by setting the
9521 AcpiGbl_EnableInterpreterSlack flag to TRUE.

9523 Implemented support for Integer objects for the SizeOf operator. Either
9524 4
9525 or 8 is returned, depending on the current integer size (32-bit or 64-
9526 bit,
5687 Implemented support for Integer objects for the SizeOf operator. Either 4
5688 or 8 is returned, depending on the current integer size (32-bit or 64-bit,
9527 depending on the parent table revision).

9529 Fixed a problem in the implementation of the SizeOf and ObjectType
9530 operators
5691 Fixed a problem in the implementation of the SizeOf and ObjectType operators
9531 where the operand was resolved to a value too early, causing incorrect
9532 return values for some objects.

9534 Fixed some possible memory leaks during exceptional conditions.

9536 Code and Data Size: Current and previous core subsystem library sizes are
9537 shown below. These are the code and data sizes for the acpica.lib
9538 produced
5698 shown below. These are the code and data sizes for the acpica.lib produced
9539 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
9540 any ACPI driver or OSPM code. The debug version of the code includes the
9541 debug output trace mechanism and has a much larger code and data size.
9542 Note
9543 that these values will vary depending on the efficiency of the compiler
9544 and
5701 debug output trace mechanism and has a much larger code and data size. Note
5702 that these values will vary depending on the efficiency of the compiler and
9545 the compiler options used during generation.

9547 Previous Release:
9548 Non-Debug Version: 78.0K Code, 11.5K Data, 89.5K Total
9549 Debug Version: 164.8K Code, 68.6K Data, 233.4K Total
9550 Current Release:
9551 Non-Debug Version: 78.5K Code, 11.5K Data, 90.0K Total

new/usr/src/common/acpica/changes.txt 166

9552 Debug Version: 165.2K Code, 68.6K Data, 233.8K Total

9555 2) iASL Compiler/Disassembler:

9557 Implemented support for all ACPI 3.0 reserved names and methods.

9559 Implemented all ACPI 3.0 grammar elements in the front-end, including
9560 support for semicolons.

9562 Implemented the ACPI 3.0 Function() and ToUUID() macros

9564 Fixed a problem in the disassembler where a Scope() operator would not be
9565 emitted properly if the target of the scope was in another table.

9567 --
9568 15 October 2004. Summary of changes for version 20041015:

9570 Note: ACPI CA is currently undergoing an in-depth and complete formal
9571 evaluation to test/verify the following areas. Other suggestions are
9572 welcome. This will result in an increase in the frequency of releases and
9573 the number of bug fixes in the next few months.
9574 - Functional tests for all ASL/AML operators
9575 - All implicit/explicit type conversions
9576 - Bit fields and operation regions
9577 - 64-bit math support and 32-bit-only "truncated" math support
9578 - Exceptional conditions, both compiler and interpreter
9579 - Dynamic object deletion and memory leaks
9580 - ACPI 3.0 support when implemented
9581 - External interfaces to the ACPI subsystem

9584 1) ACPI CA Core Subsystem:

9586 Fixed two alignment issues on 64-bit platforms - within debug statements
9587 in
9588 AcpiEvGpeDetect and AcpiEvCreateGpeBlock. Removed references to the
9589 Address
5744 Fixed two alignment issues on 64-bit platforms - within debug statements in
5745 AcpiEvGpeDetect and AcpiEvCreateGpeBlock. Removed references to the Address
9590 field within the non-aligned ACPI generic address structure.

9592 Fixed a problem in the Increment and Decrement operators where incorrect
9593 operand resolution could result in the inadvertent modification of the
9594 original integer when the integer is passed into another method as an
9595 argument and the arg is then incremented/decremented.

9597 Fixed a problem in the FromBCD operator where the upper 32-bits of a 64-
9598 bit
5753 Fixed a problem in the FromBCD operator where the upper 32-bits of a 64-bit
9599 BCD number were truncated during conversion.

9601 Fixed a problem in the ToDecimal operator where the length of the
9602 resulting
9603 string could be set incorrectly too long if the input operand was a
9604 Buffer
5756 Fixed a problem in the ToDecimal operator where the length of the resulting
5757 string could be set incorrectly too long if the input operand was a Buffer
9605 object.

9607 Fixed a problem in the Logical operators (LLess, etc.) where a NULL byte
9608 (0)
5760 Fixed a problem in the Logical operators (LLess, etc.) where a NULL byte (0)
9609 within a buffer would prematurely terminate a compare between buffer
9610 objects.

new/usr/src/common/acpica/changes.txt 167

9612 Added a check for string overflow (>200 characters as per the ACPI
9613 specification) during the Concatenate operator with two string operands.

9615 Code and Data Size: Current and previous core subsystem library sizes are
9616 shown below. These are the code and data sizes for the acpica.lib
9617 produced
5768 shown below. These are the code and data sizes for the acpica.lib produced
9618 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
9619 any ACPI driver or OSPM code. The debug version of the code includes the
9620 debug output trace mechanism and has a much larger code and data size.
9621 Note
9622 that these values will vary depending on the efficiency of the compiler
9623 and
5771 debug output trace mechanism and has a much larger code and data size. Note
5772 that these values will vary depending on the efficiency of the compiler and
9624 the compiler options used during generation.

9626 Previous Release:
9627 Non-Debug Version: 77.8K Code, 11.5K Data, 89.3K Total
9628 Debug Version: 164.6K Code, 68.5K Data, 233.1K Total
9629 Current Release:
9630 Non-Debug Version: 78.0K Code, 11.5K Data, 89.5K Total
9631 Debug Version: 164.8K Code, 68.6K Data, 233.4K Total

9635 2) iASL Compiler/Disassembler:

9637 Allow the use of the ObjectType operator on uninitialized Locals and Args
9638 (returns 0 as per the ACPI specification).

9640 Fixed a problem where the compiler would fault if there was a syntax
9641 error
5789 Fixed a problem where the compiler would fault if there was a syntax error
9642 in the FieldName of all of the various CreateXXXField operators.

9644 Disallow the use of lower case letters within the EISAID macro, as per
9645 the
9646 ACPI specification. All EISAID strings must be of the form "UUUNNNN"
9647 Where
5792 Disallow the use of lower case letters within the EISAID macro, as per the
5793 ACPI specification. All EISAID strings must be of the form "UUUNNNN" Where
9648 U is an uppercase letter and N is a hex digit.

9651 --
9652 06 October 2004. Summary of changes for version 20041006:

9654 1) ACPI CA Core Subsystem:

9656 Implemented support for the ACPI 3.0 Timer operator. This ASL function
9657 implements a 64-bit timer with 100 nanosecond granularity.

9659 Defined a new OSL interface, AcpiOsGetTimer. This interface is used to
9660 implement the ACPI 3.0 Timer operator. This allows the host OS to
9661 implement
9662 the timer with the best clock available. Also, it keeps the core
9663 subsystem
5806 implement the ACPI 3.0 Timer operator. This allows the host OS to implement
5807 the timer with the best clock available. Also, it keeps the core subsystem
9664 out of the clock handling business, since the host OS (usually) performs
9665 this function.

9667 Fixed an alignment issue on 64-bit platforms. The HwLowLevelRead(Write)
9668 functions use a 64-bit address which is part of the packed ACPI Generic
9669 Address Structure. Since the structure is non-aligned, the alignment

new/usr/src/common/acpica/changes.txt 168

9670 macros
5813 Address Structure. Since the structure is non-aligned, the alignment macros
9671 are now used to extract the address to a local variable before use.

9673 Fixed a problem where the ToInteger operator assumed all input strings
9674 were
9675 hexadecimal. The operator now handles both decimal strings and hex
9676 strings
5816 Fixed a problem where the ToInteger operator assumed all input strings were
5817 hexadecimal. The operator now handles both decimal strings and hex strings
9677 (prefixed with "0x").

9679 Fixed a problem where the string length in the string object created as a
9680 result of the internal ConvertToString procedure could be incorrect. This
9681 potentially affected all implicit conversions and also the
9682 ToDecimalString
5822 potentially affected all implicit conversions and also the ToDecimalString
9683 and ToHexString operators.

9685 Fixed two problems in the ToString operator. If the length parameter was
9686 zero, an incorrect string object was created and the value of the input
9687 length parameter was inadvertently changed from zero to Ones.

9689 Fixed a problem where the optional ResourceSource string in the
9690 ExtendedIRQ
5829 Fixed a problem where the optional ResourceSource string in the ExtendedIRQ
9691 resource macro was ignored.

9693 Simplified the interfaces to the internal division functions, reducing
9694 code
5832 Simplified the interfaces to the internal division functions, reducing code
9695 size and complexity.

9697 Code and Data Size: Current and previous core subsystem library sizes are
9698 shown below. These are the code and data sizes for the acpica.lib
9699 produced
5836 shown below. These are the code and data sizes for the acpica.lib produced
9700 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
9701 any ACPI driver or OSPM code. The debug version of the code includes the
9702 debug output trace mechanism and has a much larger code and data size.
9703 Note
9704 that these values will vary depending on the efficiency of the compiler
9705 and
5839 debug output trace mechanism and has a much larger code and data size. Note
5840 that these values will vary depending on the efficiency of the compiler and
9706 the compiler options used during generation.

9708 Previous Release:
9709 Non-Debug Version: 77.9K Code, 11.4K Data, 89.3K Total
9710 Debug Version: 164.5K Code, 68.3K Data, 232.8K Total
9711 Current Release:
9712 Non-Debug Version: 77.8K Code, 11.5K Data, 89.3K Total
9713 Debug Version: 164.6K Code, 68.5K Data, 233.1K Total

9716 2) iASL Compiler/Disassembler:

9718 Implemented support for the ACPI 3.0 Timer operator.

9720 Fixed a problem where the Default() operator was inadvertently ignored in
9721 a
5855 Fixed a problem where the Default() operator was inadvertently ignored in a
9722 Switch/Case block. This was a problem in the translation of the Switch
9723 statement to If...Else pairs.

9725 Added support to allow a standalone Return operator, with no parentheses

new/usr/src/common/acpica/changes.txt 169

9726 (or
5859 Added support to allow a standalone Return operator, with no parentheses (or
9727 operands).

9729 Fixed a problem with code generation for the ElseIf operator where the
9730 translated Else...If parse tree was improperly constructed leading to the
9731 loss of some code.

9733 --
9734 22 September 2004. Summary of changes for version 20040922:

9736 1) ACPI CA Core Subsystem:

9738 Fixed a problem with the implementation of the LNot() operator where
9739 "Ones"
9740 was not returned for the TRUE case. Changed the code to return Ones
9741 instead
9742 of (!Arg) which was usually 1. This change affects iASL constant folding
9743 for
5871 Fixed a problem with the implementation of the LNot() operator where "Ones"
5872 was not returned for the TRUE case. Changed the code to return Ones instead
5873 of (!Arg) which was usually 1. This change affects iASL constant folding for
9744 this operator also.

9746 Fixed a problem in AcpiUtInitializeBuffer where an existing buffer was
9747 not
5876 Fixed a problem in AcpiUtInitializeBuffer where an existing buffer was not
9748 initialized properly -- Now zero the entire buffer in this case where the
9749 buffer already exists.

9751 Changed the interface to AcpiOsSleep from (UINT32 Seconds, UINT32
9752 Milliseconds) to simply (ACPI_INTEGER Milliseconds). This simplifies all
9753 related code considerably. This will require changes/updates to all OS
9754 interface layers (OSLs.)

9756 Implemented a new external interface, AcpiInstallExceptionHandler, to
9757 allow
9758 a system exception handler to be installed. This handler is invoked upon
9759 any
5885 Implemented a new external interface, AcpiInstallExceptionHandler, to allow
5886 a system exception handler to be installed. This handler is invoked upon any
9760 run-time exception that occurs during control method execution.

9762 Added support for the DSDT in AcpiTbFindTable. This allows the
9763 DataTableRegion() operator to access the local copy of the DSDT.

9765 Code and Data Size: Current and previous core subsystem library sizes are
9766 shown below. These are the code and data sizes for the acpica.lib
9767 produced
5893 shown below. These are the code and data sizes for the acpica.lib produced
9768 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
9769 any ACPI driver or OSPM code. The debug version of the code includes the
9770 debug output trace mechanism and has a much larger code and data size.
9771 Note
9772 that these values will vary depending on the efficiency of the compiler
9773 and
5896 debug output trace mechanism and has a much larger code and data size. Note
5897 that these values will vary depending on the efficiency of the compiler and
9774 the compiler options used during generation.

9776 Previous Release:
9777 Non-Debug Version: 77.8K Code, 11.4K Data, 89.2K Total
9778 Debug Version: 164.2K Code, 68.2K Data, 232.4K Total
9779 Current Release:
9780 Non-Debug Version: 77.9K Code, 11.4K Data, 89.3K Total
9781 Debug Version: 164.5K Code, 68.3K Data, 232.8K Total

new/usr/src/common/acpica/changes.txt 170

9784 2) iASL Compiler/Disassembler:

9786 Fixed a problem with constant folding and the LNot operator. LNot was
9787 returning 1 in the TRUE case, not Ones as per the ACPI specification.
9788 This
5911 returning 1 in the TRUE case, not Ones as per the ACPI specification. This
9789 could result in the generation of an incorrect folded/reduced constant.

9791 End-Of-File is now allowed within a "//"-style comment. A parse error no
9792 longer occurs if such a comment is at the very end of the input ASL
9793 source
5915 longer occurs if such a comment is at the very end of the input ASL source
9794 file.

9796 Implemented the "-r" option to override the Revision in the table header.
9797 The initial use of this option will be to simplify the evaluation of the
9798 AML
9799 interpreter by allowing a single ASL source module to be compiled for
9800 either
5919 The initial use of this option will be to simplify the evaluation of the AML
5920 interpreter by allowing a single ASL source module to be compiled for either
9801 32-bit or 64-bit integers.

9804 --
9805 27 August 2004. Summary of changes for version 20040827:

9807 1) ACPI CA Core Subsystem:

9809 - Implemented support for implicit object conversion in the non-numeric
9810 logical operators (LEqual, LGreater, LGreaterEqual, LLess, LLessEqual,
9811 and
5930 logical operators (LEqual, LGreater, LGreaterEqual, LLess, LLessEqual, and
9812 LNotEqual.) Any combination of Integers/Strings/Buffers may now be used;
9813 the second operand is implicitly converted on the fly to match the type
9814 of
5932 the second operand is implicitly converted on the fly to match the type of
9815 the first operand. For example:

9817 LEqual (Source1, Source2)

9819 Source1 and Source2 must each evaluate to an integer, a string, or a
9820 buffer.
9821 The data type of Source1 dictates the required type of Source2. Source2
9822 is
5937 Source1 and Source2 must each evaluate to an integer, a string, or a buffer.
5938 The data type of Source1 dictates the required type of Source2. Source2 is
9823 implicitly converted if necessary to match the type of Source1.

9825 - Updated and corrected the behavior of the string conversion support.
9826 The
5941 - Updated and corrected the behavior of the string conversion support. The
9827 rules concerning conversion of buffers to strings (according to the ACPI
9828 specification) are as follows:

9830 ToDecimalString - explicit byte-wise conversion of buffer to string of
9831 decimal values (0-255) separated by commas. ToHexString - explicit byte-
9832 wise
5946 decimal values (0-255) separated by commas. ToHexString - explicit byte-wise
9833 conversion of buffer to string of hex values (0-FF) separated by commas.
9834 ToString - explicit byte-wise conversion of buffer to string. Byte-by-
9835 byte
9836 copy with no transform except NULL terminated. Any other implicit buffer-
9837 to-

new/usr/src/common/acpica/changes.txt 171

9838 string conversion - byte-wise conversion of buffer to string of hex
9839 values
5948 ToString - explicit byte-wise conversion of buffer to string. Byte-by-byte
5949 copy with no transform except NULL terminated. Any other implicit buffer-to-
5950 string conversion - byte-wise conversion of buffer to string of hex values
9840 (0-FF) separated by spaces.

9842 - Fixed typo in definition of AcpiGbl_EnableInterpreterSlack.

9844 - Fixed a problem in AcpiNsGetPathnameLength where the returned length
9845 was
5955 - Fixed a problem in AcpiNsGetPathnameLength where the returned length was
9846 one byte too short in the case of a node in the root scope. This could
9847 cause a fault during debug output.

9849 - Code and Data Size: Current and previous core subsystem library sizes
9850 are
9851 shown below. These are the code and data sizes for the acpica.lib
9852 produced
5959 - Code and Data Size: Current and previous core subsystem library sizes are
5960 shown below. These are the code and data sizes for the acpica.lib produced
9853 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
9854 any ACPI driver or OSPM code. The debug version of the code includes the
9855 debug output trace mechanism and has a much larger code and data size.
9856 Note
9857 that these values will vary depending on the efficiency of the compiler
9858 and
5963 debug output trace mechanism and has a much larger code and data size. Note
5964 that these values will vary depending on the efficiency of the compiler and
9859 the compiler options used during generation.

9861 Previous Release:
9862 Non-Debug Version: 77.9K Code, 11.5K Data, 89.4K Total
9863 Debug Version: 164.1K Code, 68.3K Data, 232.4K Total
9864 Current Release:
9865 Non-Debug Version: 77.8K Code, 11.4K Data, 89.2K Total
9866 Debug Version: 164.2K Code, 68.2K Data, 232.4K Total

9869 2) iASL Compiler/Disassembler:

9871 - Fixed a Linux generation error.

9874 --
9875 16 August 2004. Summary of changes for version 20040816:

9877 1) ACPI CA Core Subsystem:

9879 Designed and implemented support within the AML interpreter for the so-
9880 called "implicit return". This support returns the result of the last
9881 ASL
5986 called "implicit return". This support returns the result of the last ASL
9882 operation within a control method, in the absence of an explicit Return()
9883 operator. A few machines depend on this behavior, even though it is not
9884 explicitly supported by the ASL language. It is optional support that
9885 can
5989 explicitly supported by the ASL language. It is optional support that can
9886 be enabled at runtime via the AcpiGbl_EnableInterpreterSlack flag.

9888 Removed support for the PCI_Config address space from the internal low
9889 level
5992 Removed support for the PCI_Config address space from the internal low level
9890 hardware interfaces (AcpiHwLowLevelRead and AcpiHwLowLevelWrite). This
9891 support was not used internally, and would not work correctly anyway
9892 because

new/usr/src/common/acpica/changes.txt 172

5994 support was not used internally, and would not work correctly anyway because
9893 the PCI bus number and segment number were not supported. There are
9894 separate interfaces for PCI configuration space access because of the
9895 unique
5996 separate interfaces for PCI configuration space access because of the unique
9896 interface.

9898 Code and Data Size: Current and previous core subsystem library sizes are
9899 shown below. These are the code and data sizes for the acpica.lib
9900 produced
6000 shown below. These are the code and data sizes for the acpica.lib produced
9901 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
9902 any ACPI driver or OSPM code. The debug version of the code includes the
9903 debug output trace mechanism and has a much larger code and data size.
9904 Note
9905 that these values will vary depending on the efficiency of the compiler
9906 and
6003 debug output trace mechanism and has a much larger code and data size. Note
6004 that these values will vary depending on the efficiency of the compiler and
9907 the compiler options used during generation.

9909 Previous Release:
9910 Non-Debug Version: 78.0K Code, 11.5K Data, 89.5K Total
9911 Debug Version: 164.1K Code, 68.2K Data, 232.3K Total
9912 Current Release:
9913 Non-Debug Version: 77.9K Code, 11.5K Data, 89.4K Total
9914 Debug Version: 164.1K Code, 68.3K Data, 232.4K Total

9917 2) iASL Compiler/Disassembler:

9919 Fixed a problem where constants in ASL expressions at the root level (not
9920 within a control method) could be inadvertently truncated during code
9921 generation. This problem was introduced in the 20040715 release.

9924 --
9925 15 July 2004. Summary of changes for version 20040715:

9927 1) ACPI CA Core Subsystem:

9929 Restructured the internal HW GPE interfaces to pass/track the current
9930 state
6027 Restructured the internal HW GPE interfaces to pass/track the current state
9931 of interrupts (enabled/disabled) in order to avoid possible deadlock and
9932 increase flexibility of the interfaces.

9934 Implemented a "lexicographical compare" for String and Buffer objects
9935 within
9936 the logical operators -- LGreater, LLess, LGreaterEqual, and LLessEqual -
9937 -
9938 as per further clarification to the ACPI specification. Behavior is
9939 similar
6031 Implemented a "lexicographical compare" for String and Buffer objects within
6032 the logical operators -- LGreater, LLess, LGreaterEqual, and LLessEqual --
6033 as per further clarification to the ACPI specification. Behavior is similar
9940 to C library "strcmp".

9942 Completed a major reduction in CPU stack use for the AcpiGetFirmwareTable
9943 external function. In the 32-bit non-debug case, the stack use has been
9944 reduced from 168 bytes to 32 bytes.

9946 Deployed a new run-time configuration flag,
9947 AcpiGbl_EnableInterpreterSlack,
6040 Deployed a new run-time configuration flag, AcpiGbl_EnableInterpreterSlack,
9948 whose purpose is to allow the AML interpreter to forgive certain bad AML

new/usr/src/common/acpica/changes.txt 173

9949 constructs. Default setting is FALSE.

9951 Implemented the first use of AcpiGbl_EnableInterpreterSlack in the Field
9952 IO
9953 support code. If enabled, it allows field access to go beyond the end of
9954 a
9955 region definition if the field is within the region length rounded up to
9956 the
6044 Implemented the first use of AcpiGbl_EnableInterpreterSlack in the Field IO
6045 support code. If enabled, it allows field access to go beyond the end of a
6046 region definition if the field is within the region length rounded up to the
9957 next access width boundary (a common coding error.)

9959 Renamed OSD_HANDLER to ACPI_OSD_HANDLER, and OSD_EXECUTION_CALLBACK to
9960 ACPI_OSD_EXEC_CALLBACK for consistency with other ACPI symbols. Also,
9961 these
6050 ACPI_OSD_EXEC_CALLBACK for consistency with other ACPI symbols. Also, these
9962 symbols are lowercased by the latest version of the AcpiSrc tool.

9964 The prototypes for the PCI interfaces in acpiosxf.h have been updated to
9965 rename "Register" to simply "Reg" to prevent certain compilers from
9966 complaining.

9968 Code and Data Size: Current and previous core subsystem library sizes are
9969 shown below. These are the code and data sizes for the acpica.lib
9970 produced
6058 shown below. These are the code and data sizes for the acpica.lib produced
9971 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
9972 any ACPI driver or OSPM code. The debug version of the code includes the
9973 debug output trace mechanism and has a much larger code and data size.
9974 Note
9975 that these values will vary depending on the efficiency of the compiler
9976 and
6061 debug output trace mechanism and has a much larger code and data size. Note
6062 that these values will vary depending on the efficiency of the compiler and
9977 the compiler options used during generation.

9979 Previous Release:
9980 Non-Debug Version: 77.8K Code, 11.5K Data, 89.3K Total
9981 Debug Version: 163.8K Code, 68.2K Data, 232.0K Total
9982 Current Release:
9983 Non-Debug Version: 78.0K Code, 11.5K Data, 89.5K Total
9984 Debug Version: 164.1K Code, 68.2K Data, 232.3K Total

9987 2) iASL Compiler/Disassembler:

9989 Implemented full support for Package objects within the Case() operator.
9990 Note: The Break() operator is currently not supported within Case blocks
9991 (TermLists) as there is some question about backward compatibility with
9992 ACPI
6077 (TermLists) as there is some question about backward compatibility with ACPI
9993 1.0 interpreters.

9996 Fixed a problem where complex terms were not supported properly within
9997 the
6081 Fixed a problem where complex terms were not supported properly within the
9998 Switch() operator.

10000 Eliminated extraneous warning for compiler-emitted reserved names of the
10001 form "_T_x". (Used in Switch/Case operators.)

10003 Eliminated optimization messages for "_T_x" objects and small constants
10004 within the DefinitionBlock operator.

new/usr/src/common/acpica/changes.txt 174

10007 --
10008 15 June 2004. Summary of changes for version 20040615:

10010 1) ACPI CA Core Subsystem:

10012 Implemented support for Buffer and String objects (as per ACPI 2.0) for
10013 the
6096 Implemented support for Buffer and String objects (as per ACPI 2.0) for the
10014 following ASL operators: LEqual, LGreater, LLess, LGreaterEqual, and
10015 LLessEqual.

10017 All directory names in the entire source package are lower case, as they
10018 were in earlier releases.

10020 Implemented "Disassemble" command in the AML debugger that will
10021 disassemble
6103 Implemented "Disassemble" command in the AML debugger that will disassemble
10022 a single control method.

10024 Code and Data Size: Current and previous core subsystem library sizes are
10025 shown below. These are the code and data sizes for the acpica.lib
10026 produced
6107 shown below. These are the code and data sizes for the acpica.lib produced
10027 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
10028 any ACPI driver or OSPM code. The debug version of the code includes the
10029 debug output trace mechanism and has a much larger code and data size.
10030 Note
10031 that these values will vary depending on the efficiency of the compiler
10032 and
6110 debug output trace mechanism and has a much larger code and data size. Note
6111 that these values will vary depending on the efficiency of the compiler and
10033 the compiler options used during generation.

10035 Previous Release:
10036 Non-Debug Version: 77.7K Code, 11.5K Data, 89.2K Total
10037 Debug Version: 163.3K Code, 67.2K Data, 230.5K Total

10039 Current Release:
10040 Non-Debug Version: 77.8K Code, 11.5K Data, 89.3K Total
10041 Debug Version: 163.8K Code, 68.2K Data, 232.0K Total

10044 2) iASL Compiler/Disassembler:

10046 Implemented support for Buffer and String objects (as per ACPI 2.0) for
10047 the
6125 Implemented support for Buffer and String objects (as per ACPI 2.0) for the
10048 following ASL operators: LEqual, LGreater, LLess, LGreaterEqual, and
10049 LLessEqual.

10051 All directory names in the entire source package are lower case, as they
10052 were in earlier releases.

10054 Fixed a fault when using the -g or -d<nofilename> options if the FADT was
10055 not found.

10057 Fixed an issue with the Windows version of the compiler where later
10058 versions
6135 Fixed an issue with the Windows version of the compiler where later versions
10059 of Windows place the FADT in the registry under the name "FADT" and not
10060 "FACP" as earlier versions did. This applies when using the -g or -
10061 d<nofilename> options. The compiler now looks for both strings as
10062 necessary.

10064 Fixed a problem with compiler namepath optimization where a namepath

new/usr/src/common/acpica/changes.txt 175

10065 within
10066 the Scope() operator could not be optimized if the namepath was a subpath
10067 of
6141 Fixed a problem with compiler namepath optimization where a namepath within
6142 the Scope() operator could not be optimized if the namepath was a subpath of
10068 the current scope path.

10070 --
10071 27 May 2004. Summary of changes for version 20040527:

10073 1) ACPI CA Core Subsystem:

10075 Completed a new design and implementation for EBDA (Extended BIOS Data
10076 Area)
10077 support in the RSDP scan code. The original code improperly scanned for
10078 the
10079 EBDA by simply scanning from memory location 0 to 0x400. The correct
10080 method
6150 Completed a new design and implementation for EBDA (Extended BIOS Data Area)
6151 support in the RSDP scan code. The original code improperly scanned for the
6152 EBDA by simply scanning from memory location 0 to 0x400. The correct method
10081 is to first obtain the EBDA pointer from within the BIOS data area, then
10082 scan 1K of memory starting at the EBDA pointer. There appear to be few
10083 if
6154 scan 1K of memory starting at the EBDA pointer. There appear to be few if
10084 any machines that place the RSDP in the EBDA, however.

10086 Integrated a fix for a possible fault during evaluation of BufferField
10087 arguments. Obsolete code that was causing the problem was removed.

10089 Found and fixed a problem in the Field Support Code where data could be
10090 corrupted on a bit field read that starts on an aligned boundary but does
10091 not end on an aligned boundary. Merged the read/write "datum length"
10092 calculation code into a common procedure.

10094 Rolled in a couple of changes to the FreeBSD-specific header.

10097 Code and Data Size: Current and previous core subsystem library sizes are
10098 shown below. These are the code and data sizes for the acpica.lib
10099 produced
6169 shown below. These are the code and data sizes for the acpica.lib produced
10100 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
10101 any ACPI driver or OSPM code. The debug version of the code includes the
10102 debug output trace mechanism and has a much larger code and data size.
10103 Note
10104 that these values will vary depending on the efficiency of the compiler
10105 and
6172 debug output trace mechanism and has a much larger code and data size. Note
6173 that these values will vary depending on the efficiency of the compiler and
10106 the compiler options used during generation.

10108 Previous Release:
10109 Non-Debug Version: 77.6K Code, 11.5K Data, 89.1K Total
10110 Debug Version: 163.2K Code, 67.2K Data, 230.4K Total
10111 Current Release:
10112 Non-Debug Version: 77.7K Code, 11.5K Data, 89.2K Total
10113 Debug Version: 163.3K Code, 67.2K Data, 230.5K Total

10116 2) iASL Compiler/Disassembler:

10118 Fixed a generation warning produced by some overly-verbose compilers for
10119 a
6186 Fixed a generation warning produced by some overly-verbose compilers for a
10120 64-bit constant.

new/usr/src/common/acpica/changes.txt 176

10122 --
10123 14 May 2004. Summary of changes for version 20040514:

10125 1) ACPI CA Core Subsystem:

10127 Fixed a problem where hardware GPE enable bits sometimes not set properly
10128 during and after GPE method execution. Result of 04/27 changes.

10130 Removed extra "clear all GPEs" when sleeping/waking.

10132 Removed AcpiHwEnableGpe and AcpiHwDisableGpe, replaced by the single
10133 AcpiHwWriteGpeEnableReg. Changed a couple of calls to the functions above
10134 to
6200 AcpiHwWriteGpeEnableReg. Changed a couple of calls to the functions above to
10135 the new AcpiEv* calls as appropriate.

10137 ACPI_OS_NAME was removed from the OS-specific headers. The default name
10138 is
10139 now "Microsoft Windows NT" for maximum compatibility. However this can
10140 be
6203 ACPI_OS_NAME was removed from the OS-specific headers. The default name is
6204 now "Microsoft Windows NT" for maximum compatibility. However this can be
10141 changed by modifying the acconfig.h file.

10143 Allow a single invocation of AcpiInstallNotifyHandler for a handler that
10144 traps both types of notifies (System, Device). Use ACPI_ALL_NOTIFY flag.

10146 Run _INI methods on ThermalZone objects. This is against the ACPI
10147 specification, but there is apparently ASL code in the field that has
10148 these
6211 specification, but there is apparently ASL code in the field that has these
10149 _INI methods, and apparently "other" AML interpreters execute them.

10151 Performed a full 16/32/64 bit lint that resulted in some small changes.

10153 Added a sleep simulation command to the AML debugger to test sleep code.

10155 Code and Data Size: Current and previous core subsystem library sizes are
10156 shown below. These are the code and data sizes for the acpica.lib
10157 produced
6219 shown below. These are the code and data sizes for the acpica.lib produced
10158 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
10159 any ACPI driver or OSPM code. The debug version of the code includes the
10160 debug output trace mechanism and has a much larger code and data size.
10161 Note
10162 that these values will vary depending on the efficiency of the compiler
10163 and
6222 debug output trace mechanism and has a much larger code and data size. Note
6223 that these values will vary depending on the efficiency of the compiler and
10164 the compiler options used during generation.

10166 Previous Release:
10167 Non-Debug Version: 77.6K Code, 11.5K Data, 89.1K Total
10168 Debug Version: 162.9K Code, 67.0K Data, 229.9K Total
10169 Current Release:
10170 Non-Debug Version: 77.6K Code, 11.5K Data, 89.1K Total
10171 Debug Version: 163.2K Code, 67.2K Data, 230.4K Total

10173 --
10174 27 April 2004. Summary of changes for version 20040427:

10176 1) ACPI CA Core Subsystem:

10178 Completed a major overhaul of the GPE handling within ACPI CA. There are
10179 now three types of GPEs: wake-only, runtime-only, and combination

new/usr/src/common/acpica/changes.txt 177

10180 wake/run.
6239 now three types of GPEs: wake-only, runtime-only, and combination wake/run.
10181 The only GPEs allowed to be combination wake/run are for button-style
10182 devices such as a control-method power button, control-method sleep
10183 button,
10184 or a notebook lid switch. GPEs that have an _Lxx or _Exx method and are
10185 not
6241 devices such as a control-method power button, control-method sleep button,
6242 or a notebook lid switch. GPEs that have an _Lxx or _Exx method and are not
10186 referenced by any _PRW methods are marked for "runtime" and hardware
10187 enabled. Any GPE that is referenced by a _PRW method is marked for
10188 "wake"
6244 enabled. Any GPE that is referenced by a _PRW method is marked for "wake"
10189 (and disabled at runtime). However, at sleep time, only those GPEs that
10190 have been specifically enabled for wake via the AcpiEnableGpe interface
10191 will
6246 have been specifically enabled for wake via the AcpiEnableGpe interface will
10192 actually be hardware enabled.

10194 A new external interface has been added, AcpiSetGpeType(), that is meant
10195 to
10196 be used by device drivers to force a GPE to a particular type. It will
10197 be
6249 A new external interface has been added, AcpiSetGpeType(), that is meant to
6250 be used by device drivers to force a GPE to a particular type. It will be
10198 especially useful for the drivers for the button devices mentioned above.

10200 Completed restructuring of the ACPI CA initialization sequence so that
10201 default operation region handlers are installed before GPEs are
10202 initialized
10203 and the _PRW methods are executed. This will prevent errors when the
10204 _PRW
6254 default operation region handlers are installed before GPEs are initialized
6255 and the _PRW methods are executed. This will prevent errors when the _PRW
10205 methods attempt to access system memory or I/O space.

10207 GPE enable/disable no longer reads the GPE enable register. We now keep
10208 the
6258 GPE enable/disable no longer reads the GPE enable register. We now keep the
10209 enable info for runtime and wake separate and in the GPE_EVENT_INFO. We
10210 thus no longer depend on the hardware to maintain these bits.

10212 Always clear the wake status and fixed/GPE status bits before sleep, even
10213 for state S5.

10215 Improved the AML debugger output for displaying the GPE blocks and their
10216 current status.

10218 Added new strings for the _OSI method, of the form "Windows 2001 SPx"
10219 where
6268 Added new strings for the _OSI method, of the form "Windows 2001 SPx" where
10220 x = 0,1,2,3,4.

10222 Fixed a problem where the physical address was incorrectly calculated
10223 when
10224 the Load() operator was used to directly load from an Operation Region
10225 (vs.
10226 loading from a Field object.) Also added check for minimum table length
10227 for
6271 Fixed a problem where the physical address was incorrectly calculated when
6272 the Load() operator was used to directly load from an Operation Region (vs.
6273 loading from a Field object.) Also added check for minimum table length for
10228 this case.

10230 Fix for multiple mutex acquisition. Restore original thread SyncLevel on
10231 mutex release.

new/usr/src/common/acpica/changes.txt 178

10233 Added ACPI_VALID_SXDS flag to the AcpiGetObjectInfo interface for
10234 consistency with the other fields returned.

10236 Shrunk the ACPI_GPE_EVENT_INFO structure by 40%. There is one such
10237 structure for each GPE in the system, so the size of this structure is
10238 important.

10240 CPU stack requirement reduction: Cleaned up the method execution and
10241 object
6286 CPU stack requirement reduction: Cleaned up the method execution and object
10242 evaluation paths so that now a parameter structure is passed, instead of
10243 copying the various method parameters over and over again.

10245 In evregion.c: Correctly exit and reenter the interpreter region if and
10246 only if dispatching an operation region request to a user-installed
10247 handler.
6291 only if dispatching an operation region request to a user-installed handler.
10248 Do not exit/reenter when dispatching to a default handler (e.g., default
10249 system memory or I/O handlers)

10252 Notes for updating drivers for the new GPE support. The following
10253 changes
10254 must be made to ACPI-related device drivers that are attached to one or
10255 more
10256 GPEs: (This information will be added to the ACPI CA Programmer
10257 Reference.)
6296 Notes for updating drivers for the new GPE support. The following changes
6297 must be made to ACPI-related device drivers that are attached to one or more
6298 GPEs: (This information will be added to the ACPI CA Programmer Reference.)

10259 1) AcpiInstallGpeHandler no longer automatically enables the GPE, you
10260 must
6300 1) AcpiInstallGpeHandler no longer automatically enables the GPE, you must
10261 explicitly call AcpiEnableGpe.
10262 2) There is a new interface called AcpiSetGpeType. This should be called
10263 before enabling the GPE. Also, this interface will automatically disable
10264 the GPE if it is currently enabled.
10265 3) AcpiEnableGpe no longer supports a GPE type flag.

10267 Specific drivers that must be changed:
10268 1) EC driver:
10269 AcpiInstallGpeHandler (NULL, GpeNum, ACPI_GPE_EDGE_TRIGGERED,
10270 AeGpeHandler, NULL);
10271 AcpiSetGpeType (NULL, GpeNum, ACPI_GPE_TYPE_RUNTIME);
10272 AcpiEnableGpe (NULL, GpeNum, ACPI_NOT_ISR);

10274 2) Button Drivers (Power, Lid, Sleep):
10275 Run _PRW method under parent device
10276 If _PRW exists: /* This is a control-method button */
10277 Extract GPE number and possibly GpeDevice
10278 AcpiSetGpeType (GpeDevice, GpeNum, ACPI_GPE_TYPE_WAKE_RUN);
10279 AcpiEnableGpe (GpeDevice, GpeNum, ACPI_NOT_ISR);

10281 For all other devices that have _PRWs, we automatically set the GPE type
10282 to
10283 ACPI_GPE_TYPE_WAKE, but the GPE is NOT automatically (wake) enabled.
10284 This
10285 must be done on a selective basis, usually requiring some kind of user
10286 app
6321 For all other devices that have _PRWs, we automatically set the GPE type to
6322 ACPI_GPE_TYPE_WAKE, but the GPE is NOT automatically (wake) enabled. This
6323 must be done on a selective basis, usually requiring some kind of user app
10287 to allow the user to pick the wake devices.

new/usr/src/common/acpica/changes.txt 179

10290 Code and Data Size: Current and previous core subsystem library sizes are
10291 shown below. These are the code and data sizes for the acpica.lib
10292 produced
6328 shown below. These are the code and data sizes for the acpica.lib produced
10293 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
10294 any ACPI driver or OSPM code. The debug version of the code includes the
10295 debug output trace mechanism and has a much larger code and data size.
10296 Note
10297 that these values will vary depending on the efficiency of the compiler
10298 and
6331 debug output trace mechanism and has a much larger code and data size. Note
6332 that these values will vary depending on the efficiency of the compiler and
10299 the compiler options used during generation.

10301 Previous Release:
10302 Non-Debug Version: 77.0K Code, 11.4K Data, 88.4K Total
10303 Debug Version: 161.0K Code, 66.3K Data, 227.3K Total
10304 Current Release:

10306 Non-Debug Version: 77.6K Code, 11.5K Data, 89.1K Total
10307 Debug Version: 162.9K Code, 67.0K Data, 229.9K Total

10311 --
10312 02 April 2004. Summary of changes for version 20040402:

10314 1) ACPI CA Core Subsystem:

10316 Fixed an interpreter problem where an indirect store through an ArgX
10317 parameter was incorrectly applying the "implicit conversion rules" during
10318 the store. From the ACPI specification: "If the target is a method local
10319 or
6352 the store. From the ACPI specification: "If the target is a method local or
10320 argument (LocalX or ArgX), no conversion is performed and the result is
10321 stored directly to the target". The new behavior is to disable implicit
10322 conversion during ALL stores to an ArgX.

10324 Changed the behavior of the _PRW method scan to ignore any and all errors
10325 returned by a given _PRW. This prevents the scan from aborting from the
10326 failure of any single _PRW.

10328 Moved the runtime configuration parameters from the global init procedure
10329 to
6361 Moved the runtime configuration parameters from the global init procedure to
10330 static variables in acglobal.h. This will allow the host to override the
10331 default values easily.

10333 Code and Data Size: Current and previous core subsystem library sizes are
10334 shown below. These are the code and data sizes for the acpica.lib
10335 produced
6366 shown below. These are the code and data sizes for the acpica.lib produced
10336 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
10337 any ACPI driver or OSPM code. The debug version of the code includes the
10338 debug output trace mechanism and has a much larger code and data size.
10339 Note
10340 that these values will vary depending on the efficiency of the compiler
10341 and
6369 debug output trace mechanism and has a much larger code and data size. Note
6370 that these values will vary depending on the efficiency of the compiler and
10342 the compiler options used during generation.

10344 Previous Release:
10345 Non-Debug Version: 76.9K Code, 11.4K Data, 88.3K Total
10346 Debug Version: 160.8K Code, 66.1K Data, 226.9K Total

new/usr/src/common/acpica/changes.txt 180

10347 Current Release:
10348 Non-Debug Version: 77.0K Code, 11.4K Data, 88.4K Total
10349 Debug Version: 161.0K Code, 66.3K Data, 227.3K Total

10352 2) iASL Compiler/Disassembler:

10354 iASL now fully disassembles SSDTs. However, External() statements are
10355 not
6383 iASL now fully disassembles SSDTs. However, External() statements are not
10356 generated automatically for unresolved symbols at this time. This is a
10357 planned feature for future implementation.

10359 Fixed a scoping problem in the disassembler that occurs when the type of
10360 the
6387 Fixed a scoping problem in the disassembler that occurs when the type of the
10361 target of a Scope() operator is overridden. This problem caused an
10362 incorrectly nested internal namespace to be constructed.

10364 Any warnings or errors that are emitted during disassembly are now
10365 commented
10366 out automatically so that the resulting file can be recompiled without
10367 any
6391 Any warnings or errors that are emitted during disassembly are now commented
6392 out automatically so that the resulting file can be recompiled without any
10368 hand editing.

10370 --
10371 26 March 2004. Summary of changes for version 20040326:

10373 1) ACPI CA Core Subsystem:

10375 Implemented support for "wake" GPEs via interaction between GPEs and the
10376 _PRW methods. Every GPE that is pointed to by one or more _PRWs is
10377 identified as a WAKE GPE and by default will no longer be enabled at
10378 runtime. Previously, we were blindly enabling all GPEs with a
10379 corresponding
10380 _Lxx or _Exx method - but most of these turn out to be WAKE GPEs anyway.
10381 We
6403 runtime. Previously, we were blindly enabling all GPEs with a corresponding
6404 _Lxx or _Exx method - but most of these turn out to be WAKE GPEs anyway. We
10382 believe this has been the cause of thousands of "spurious" GPEs on some
10383 systems.

10385 This new GPE behavior is can be reverted to the original behavior (enable
10386 ALL GPEs at runtime) via a runtime flag.

10388 Fixed a problem where aliased control methods could not access objects
10389 properly. The proper scope within the namespace was not initialized
10390 (transferred to the target of the aliased method) before executing the
10391 target method.

10393 Fixed a potential race condition on internal object deletion on the
10394 return
6416 Fixed a potential race condition on internal object deletion on the return
10395 object in AcpiEvaluateObject.

10397 Integrated a fix for resource descriptors where both _MEM and _MTP were
10398 being extracted instead of just _MEM. (i.e. bitmask was incorrectly too
10399 wide, 0x0F instead of 0x03.)

10401 Added a special case for ACPI_ROOT_OBJECT in AcpiUtGetNodeName,
10402 preventing
10403 a
6423 Added a special case for ACPI_ROOT_OBJECT in AcpiUtGetNodeName, preventing a
10404 fault in some cases.

new/usr/src/common/acpica/changes.txt 181

10406 Updated Notify() values for debug statements in evmisc.c

10408 Return proper status from AcpiUtMutexInitialize, not just simply AE_OK.

10410 Code and Data Size: Current and previous core subsystem library sizes are
10411 shown below. These are the code and data sizes for the acpica.lib
10412 produced
6431 shown below. These are the code and data sizes for the acpica.lib produced
10413 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
10414 any ACPI driver or OSPM code. The debug version of the code includes the
10415 debug output trace mechanism and has a much larger code and data size.
10416 Note
10417 that these values will vary depending on the efficiency of the compiler
10418 and
6434 debug output trace mechanism and has a much larger code and data size. Note
6435 that these values will vary depending on the efficiency of the compiler and
10419 the compiler options used during generation.

10421 Previous Release:

10423 Non-Debug Version: 76.5K Code, 11.3K Data, 87.8K Total
10424 Debug Version: 160.3K Code, 66.0K Data, 226.3K Total
10425 Current Release:
10426 Non-Debug Version: 76.9K Code, 11.4K Data, 88.3K Total
10427 Debug Version: 160.8K Code, 66.1K Data, 226.9K Total

10429 --
10430 11 March 2004. Summary of changes for version 20040311:

10432 1) ACPI CA Core Subsystem:

10434 Fixed a problem where errors occurring during the parse phase of control
10435 method execution did not abort cleanly. For example, objects created and
10436 installed in the namespace were not deleted. This caused all subsequent
10437 invocations of the method to return the AE_ALREADY_EXISTS exception.

10439 Implemented a mechanism to force a control method to "Serialized"
10440 execution
6456 Implemented a mechanism to force a control method to "Serialized" execution
10441 if the method attempts to create namespace objects. (The root of the
10442 AE_ALREADY_EXISTS problem.)

10444 Implemented support for the predefined _OSI "internal" control method.
10445 Initial supported strings are "Linux", "Windows 2000", "Windows 2001",
10446 and
10447 "Windows 2001.1", and can be easily upgraded for new strings as
10448 necessary.
6461 Initial supported strings are "Linux", "Windows 2000", "Windows 2001", and
6462 "Windows 2001.1", and can be easily upgraded for new strings as necessary.
10449 This feature will allow "other" operating systems to execute the fully
10450 tested, "Windows" code path through the ASL code

10452 Global Lock Support: Now allows multiple acquires and releases with any
10453 internal thread. Removed concept of "owning thread" for this special
10454 mutex.
6467 internal thread. Removed concept of "owning thread" for this special mutex.

10456 Fixed two functions that were inappropriately declaring large objects on
10457 the
10458 CPU stack: PsParseLoop, NsEvaluateRelative. Reduces the stack usage
10459 during
6469 Fixed two functions that were inappropriately declaring large objects on the
6470 CPU stack: PsParseLoop, NsEvaluateRelative. Reduces the stack usage during
10460 method execution considerably.

new/usr/src/common/acpica/changes.txt 182

10462 Fixed a problem in the ACPI 2.0 FACS descriptor (actbl2.h) where the
10463 S4Bios_f field was incorrectly defined as UINT32 instead of UINT32_BIT.

10465 Fixed a problem where AcpiEvGpeDetect would fault if there were no GPEs
10466 defined on the machine.

10468 Implemented two runtime options: One to force all control method
10469 execution
10470 to "Serialized" to mimic Windows behavior, another to disable _OSI
10471 support
6479 Implemented two runtime options: One to force all control method execution
6480 to "Serialized" to mimic Windows behavior, another to disable _OSI support
10472 if it causes problems on a given machine.

10474 Code and Data Size: Current and previous core subsystem library sizes are
10475 shown below. These are the code and data sizes for the acpica.lib
10476 produced
6484 shown below. These are the code and data sizes for the acpica.lib produced
10477 by the Microsoft Visual C++ 6.0 compiler, and these values do not include
10478 any ACPI driver or OSPM code. The debug version of the code includes the
10479 debug output trace mechanism and has a much larger code and data size.
10480 Note
10481 that these values will vary depending on the efficiency of the compiler
10482 and
6487 debug output trace mechanism and has a much larger code and data size. Note
6488 that these values will vary depending on the efficiency of the compiler and
10483 the compiler options used during generation.

10485 Previous Release:
10486 Non-Debug Version: 74.8K Code, 10.1K Data, 84.9K Total
10487 Debug Version: 158.7K Code, 65.1K Data, 223.8K Total
10488 Current Release:
10489 Non-Debug Version: 76.5K Code, 11.3K Data, 87.8K Total
10490 Debug Version: 160.3K Code, 66.0K Data, 226.3K Total

10492 2) iASL Compiler/Disassembler:

10494 Fixed an array size problem for FreeBSD that would cause the compiler to
10495 fault.

10497 --
10498 20 February 2004. Summary of changes for version 20040220:

10501 1) ACPI CA Core Subsystem:

10503 Implemented execution of _SxD methods for Device objects in the
10504 GetObjectInfo interface.

10506 Fixed calls to _SST method to pass the correct arguments.

10508 Added a call to _SST on wake to restore to "working" state.

10510 Check for End-Of-Buffer failure case in the WalkResources interface.

10512 Integrated fix for 64-bit alignment issue in acglobal.h by moving two
10513 structures to the beginning of the file.

10515 After wake, clear GPE status register(s) before enabling GPEs.

10517 After wake, clear/enable power button. (Perhaps we should clear/enable
10518 all
6523 After wake, clear/enable power button. (Perhaps we should clear/enable all
10519 fixed events upon wake.)

10521 Fixed a couple of possible memory leaks in the Namespace manager.

new/usr/src/common/acpica/changes.txt 183

10523 Integrated latest acnetbsd.h file.

10525 --
10526 11 February 2004. Summary of changes for version 20040211:

10529 1) ACPI CA Core Subsystem:

10531 Completed investigation and implementation of the call-by-reference
10532 mechanism for control method arguments.

10534 Fixed a problem where a store of an object into an indexed package could
10535 fail if the store occurs within a different method than the method that
10536 created the package.

10538 Fixed a problem where the ToDecimal operator could return incorrect
10539 results.
6543 Fixed a problem where the ToDecimal operator could return incorrect results.

10541 Fixed a problem where the CopyObject operator could fail on some of the
10542 more
6545 Fixed a problem where the CopyObject operator could fail on some of the more
10543 obscure objects (e.g., Reference objects.)

10545 Improved the output of the Debug object to display buffer, package, and
10546 index objects.

10548 Fixed a problem where constructs of the form "RefOf (ArgX)" did not
10549 return
6551 Fixed a problem where constructs of the form "RefOf (ArgX)" did not return
10550 the expected result.

10552 Added permanent ACPI_REPORT_ERROR macros for all instances of the
10553 ACPI_AML_INTERNAL exception.

10555 Integrated latest version of acfreebsd.h

10557 --
10558 16 January 2004. Summary of changes for version 20040116:

10560 The purpose of this release is primarily to update the copyright years in
10561 each module, thus causing a huge number of diffs. There are a few small
10562 functional changes, however.

10564 1) ACPI CA Core Subsystem:

10566 Improved error messages when there is a problem finding one or more of
10567 the
6568 Improved error messages when there is a problem finding one or more of the
10568 required base ACPI tables

10570 Reintroduced the definition of APIC_HEADER in actbl.h

10572 Changed definition of MADT_ADDRESS_OVERRIDE to 64 bits (actbl.h)

10574 Removed extraneous reference to NewObj in dsmthdat.c

10576 2) iASL compiler

10578 Fixed a problem introduced in December that disabled the correct
10579 disassembly
6579 Fixed a problem introduced in December that disabled the correct disassembly
10580 of Resource Templates

new/usr/src/common/acpica/changes.txt 184

10583 --
10584 03 December 2003. Summary of changes for version 20031203:

10586 1) ACPI CA Core Subsystem:

10588 Changed the initialization of Operation Regions during subsystem
10589 init to perform two entire walks of the ACPI namespace; The first
10590 to initialize the regions themselves, the second to execute the
10591 _REG methods. This fixed some interdependencies across _REG
10592 methods found on some machines.

10594 Fixed a problem where a Store(Local0, Local1) could simply update
10595 the object reference count, and not create a new copy of the
10596 object if the Local1 is uninitialized.

10598 Implemented support for the _SST reserved method during sleep
10599 transitions.

10601 Implemented support to clear the SLP_TYP and SLP_EN bits when
10602 waking up, this is apparently required by some machines.

10604 When sleeping, clear the wake status only if SleepState is not S5.

10606 Fixed a problem in AcpiRsExtendedIrqResource() where an incorrect
10607 pointer arithmetic advanced a string pointer too far.

10609 Fixed a problem in AcpiTbGetTablePtr() where a garbage pointer
10610 could be returned if the requested table has not been loaded.

10612 Within the support for IRQ resources, restructured the handling of
10613 the active and edge/level bits.

10615 Fixed a few problems in AcpiPsxExecute() where memory could be
10616 leaked under certain error conditions.

10618 Improved error messages for the cases where the ACPI mode could
10619 not be entered.

10621 Code and Data Size: Current and previous core subsystem library
10622 sizes are shown below. These are the code and data sizes for the
10623 acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and
10624 these values do not include any ACPI driver or OSPM code. The
10625 debug version of the code includes the debug output trace
10626 mechanism and has a much larger code and data size. Note that
10627 these values will vary depending on the efficiency of the compiler
10628 and the compiler options used during generation.

10630 Previous Release (20031029):
10631 Non-Debug Version: 74.4K Code, 10.1K Data, 84.5K Total
10632 Debug Version: 158.3K Code, 65.0K Data, 223.3K Total
10633 Current Release:
10634 Non-Debug Version: 74.8K Code, 10.1K Data, 84.9K Total
10635 Debug Version: 158.7K Code, 65.1K Data, 223.8K Total

10637 2) iASL Compiler/Disassembler:

10639 Implemented a fix for the iASL disassembler where a bad index was
10640 generated. This was most noticeable on 64-bit platforms

10643 --
10644 29 October 2003. Summary of changes for version 20031029:

10646 1) ACPI CA Core Subsystem:

new/usr/src/common/acpica/changes.txt 185

10649 Fixed a problem where a level-triggered GPE with an associated
10650 _Lxx control method was incorrectly cleared twice.

10652 Fixed a problem with the Field support code where an access can
10653 occur beyond the end-of-region if the field is non-aligned but
10654 extends to the very end of the parent region (resulted in an
10655 AE_AML_REGION_LIMIT exception.)

10657 Fixed a problem with ACPI Fixed Events where an RT Clock handler
10658 would not get invoked on an RTC event. The RTC event bitmasks for
10659 the PM1 registers were not being initialized properly.

10661 Implemented support for executing _STA and _INI methods for
10662 Processor objects. Although this is currently not part of the
10663 ACPI specification, there is existing ASL code that depends on the
10664 init-time execution of these methods.

10666 Implemented and deployed a GetDescriptorName function to decode
10667 the various types of internal descriptors. Guards against null
10668 descriptors during debug output also.

10670 Implemented and deployed a GetNodeName function to extract the 4-
10671 character namespace node name. This function simplifies the debug
10672 and error output, as well as guarding against null pointers during
10673 output.

10675 Implemented and deployed the ACPI_FORMAT_UINT64 helper macro to
10676 simplify the debug and error output of 64-bit integers. This
10677 macro replaces the HIDWORD and LODWORD macros for dumping these
10678 integers.

10680 Updated the implementation of the Stall() operator to only call
10681 AcpiOsStall(), and also return an error if the operand is larger
10682 than 255. This preserves the required behavior of not
10683 relinquishing the processor, as would happen if AcpiOsSleep() was
10684 called for "long stalls".

10686 Constructs of the form "Store(LocalX,LocalX)" where LocalX is not
10687 initialized are now treated as NOOPs.

10689 Cleaned up a handful of warnings during 64-bit generation.

10691 Fixed a reported error where and incorrect GPE number was passed
10692 to the GPE dispatch handler. This value is only used for error
10693 output, however. Used this opportunity to clean up and streamline
10694 the GPE dispatch code.

10696 Code and Data Size: Current and previous core subsystem library
10697 sizes are shown below. These are the code and data sizes for the
10698 acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and
10699 these values do not include any ACPI driver or OSPM code. The

10701 debug version of the code includes the debug output trace
10702 mechanism and has a much larger code and data size. Note that
10703 these values will vary depending on the efficiency of the compiler
10704 and the compiler options used during generation.

10706 Previous Release (20031002):
10707 Non-Debug Version: 74.1K Code, 9.7K Data, 83.8K Total
10708 Debug Version: 157.9K Code, 64.8K Data, 222.7K Total
10709 Current Release:
10710 Non-Debug Version: 74.4K Code, 10.1K Data, 84.5K Total
10711 Debug Version: 158.3K Code, 65.0K Data, 223.3K Total

10714 2) iASL Compiler/Disassembler:

new/usr/src/common/acpica/changes.txt 186

10716 Updated the iASL compiler to return an error if the operand to the
10717 Stall() operator is larger than 255.

10720 --
10721 02 October 2003. Summary of changes for version 20031002:

10724 1) ACPI CA Core Subsystem:

10726 Fixed a problem with Index Fields where the index was not
10727 incremented for fields that require multiple writes to the
10728 index/data registers (Fields that are wider than the data
10729 register.)

10731 Fixed a problem with all Field objects where a write could go
10732 beyond the end-of-field if the field was larger than the access
10733 granularity and therefore required multiple writes to complete the
10734 request. An extra write beyond the end of the field could happen
10735 inadvertently.

10737 Fixed a problem with Index Fields where a BUFFER_OVERFLOW error
10738 would incorrectly be returned if the width of the Data Register
10739 was larger than the specified field access width.

10741 Completed fixes for LoadTable() and Unload() and verified their
10742 operation. Implemented full support for the "DdbHandle" object
10743 throughout the ACPI CA subsystem.

10745 Implemented full support for the MADT and ECDT tables in the ACPI
10746 CA header files. Even though these tables are not directly
10747 consumed by ACPI CA, the header definitions are useful for ACPI
10748 device drivers.

10750 Integrated resource descriptor fixes posted to the Linux ACPI
10751 list. This included checks for minimum descriptor length, and
10752 support for trailing NULL strings within descriptors that have
10753 optional string elements.

10755 Code and Data Size: Current and previous core subsystem library
10756 sizes are shown below. These are the code and data sizes for the
10757 acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and
10758 these values do not include any ACPI driver or OSPM code. The
10759 debug version of the code includes the debug output trace
10760 mechanism and has a much larger code and data size. Note that
10761 these values will vary depending on the efficiency of the compiler
10762 and the compiler options used during generation.

10764 Previous Release (20030918):
10765 Non-Debug Version: 73.9K Code, 9.7K Data, 83.6K Total
10766 Debug Version: 157.3K Code, 64.5K Data, 221.8K Total
10767 Current Release:
10768 Non-Debug Version: 74.1K Code, 9.7K Data, 83.8K Total
10769 Debug Version: 157.9K Code, 64.8K Data, 222.7K Total

10772 2) iASL Compiler:

10774 Implemented detection of non-ASCII characters within the input
10775 source ASL file. This catches attempts to compile binary (AML)
10776 files early in the compile, with an informative error message.

10778 Fixed a problem where the disassembler would fault if the output
10779 filename could not be generated or if the output file could not be
10780 opened.

new/usr/src/common/acpica/changes.txt 187

10782 --
10783 18 September 2003. Summary of changes for version 20030918:

10786 1) ACPI CA Core Subsystem:

10788 Found and fixed a longstanding problem with the late execution of
10789 the various deferred AML opcodes (such as Operation Regions,
10790 Buffer Fields, Buffers, and Packages). If the name string
10791 specified for the name of the new object placed the object in a
10792 scope other than the current scope, the initialization/execution
10793 of the opcode failed. The solution to this problem was to
10794 implement a mechanism where the late execution of such opcodes
10795 does not attempt to lookup/create the name a second time in an
10796 incorrect scope. This fixes the "region size computed
10797 incorrectly" problem.

10799 Fixed a call to AcpiHwRegisterWrite in hwregs.c that was causing a
10800 Global Lock AE_BAD_PARAMETER error.

10802 Fixed several 64-bit issues with prototypes, casting and data
10803 types.

10805 Removed duplicate prototype from acdisasm.h

10807 Fixed an issue involving EC Operation Region Detach (Shaohua Li)

10809 Code and Data Size: Current and previous core subsystem library
10810 sizes are shown below. These are the code and data sizes for the
10811 acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and
10812 these values do not include any ACPI driver or OSPM code. The
10813 debug version of the code includes the debug output trace
10814 mechanism and has a much larger code and data size. Note that
10815 these values will vary depending on the efficiency of the compiler
10816 and the compiler options used during generation.

10818 Previous Release:

10820 Non-Debug Version: 73.7K Code, 9.7K Data, 83.4K Total
10821 Debug Version: 156.9K Code, 64.2K Data, 221.1K Total
10822 Current Release:
10823 Non-Debug Version: 73.9K Code, 9.7K Data, 83.6K Total
10824 Debug Version: 157.3K Code, 64.5K Data, 221.8K Total

10827 2) Linux:

10829 Fixed the AcpiOsSleep implementation in osunixxf.c to pass the
10830 correct sleep time in seconds.

10832 --
10833 14 July 2003. Summary of changes for version 20030619:

10835 1) ACPI CA Core Subsystem:

10837 Parse SSDTs in order discovered, as opposed to reverse order
10838 (Hrvoje Habjanic)

10840 Fixes from FreeBSD and NetBSD. (Frank van der Linden, Thomas
10841 Klausner,
10842 Nate Lawson)

10845 2) Linux:

new/usr/src/common/acpica/changes.txt 188

10847 Dynamically allocate SDT list (suggested by Andi Kleen)

10849 proc function return value cleanups (Andi Kleen)

10851 Correctly handle NMI watchdog during long stalls (Andrew Morton)

10853 Make it so acpismp=force works (reported by Andrew Morton)

10856 --
10857 19 June 2003. Summary of changes for version 20030619:

10859 1) ACPI CA Core Subsystem:

10861 Fix To/FromBCD, eliminating the need for an arch-specific #define.

10863 Do not acquire a semaphore in the S5 shutdown path.

10865 Fix ex_digits_needed for 0. (Takayoshi Kochi)

10867 Fix sleep/stall code reversal. (Andi Kleen)

10869 Revert a change having to do with control method calling
10870 semantics.

10872 2) Linux:

10874 acpiphp update (Takayoshi Kochi)

10876 Export acpi_disabled for sonypi (Stelian Pop)

10878 Mention acpismp=force in config help

10880 Re-add acpitable.c and acpismp=force. This improves backwards

10882 compatibility and also cleans up the code to a significant degree.

10884 Add ASUS Value-add driver (Karol Kozimor and Julien Lerouge)

10886 --
10887 22 May 2003. Summary of changes for version 20030522:

10889 1) ACPI CA Core Subsystem:

10891 Found and fixed a reported problem where an AE_NOT_FOUND error
10892 occurred occasionally during _BST evaluation. This turned out to
10893 be an Owner ID allocation issue where a called method did not get
10894 a new ID assigned to it. Eventually, (after 64k calls), the Owner
10895 ID UINT16 would wraparound so that the ID would be the same as the
10896 caller’s and the called method would delete the caller’s
10897 namespace.

10899 Implemented extended error reporting for control methods that are
10900 aborted due to a run-time exception. Output includes the exact
10901 AML instruction that caused the method abort, a dump of the method
10902 locals and arguments at the time of the abort, and a trace of all
10903 nested control method calls.

10905 Modified the interpreter to allow the creation of buffers of zero
10906 length from the AML code. Implemented new code to ensure that no
10907 attempt is made to actually allocate a memory buffer (of length
10908 zero) - instead, a simple buffer object with a NULL buffer pointer
10909 and length zero is created. A warning is no longer issued when
10910 the AML attempts to create a zero-length buffer.

10912 Implemented a workaround for the "leading asterisk issue" in

new/usr/src/common/acpica/changes.txt 189

10913 _HIDs, _UIDs, and _CIDs in the AML interpreter. One leading
10914 asterisk is automatically removed if present in any HID, UID, or
10915 CID strings. The iASL compiler will still flag this asterisk as
10916 an error, however.

10918 Implemented full support for _CID methods that return a package of
10919 multiple CIDs (Compatible IDs). The AcpiGetObjectInfo() interface
10920 now additionally returns a device _CID list if present. This
10921 required a change to the external interface in order to pass an
10922 ACPI_BUFFER object as a parameter since the _CID list is of
10923 variable length.

10925 Fixed a problem with the new AE_SAME_HANDLER exception where
10926 handler initialization code did not know about this exception.

10928 Code and Data Size: Current and previous core subsystem library
10929 sizes are shown below. These are the code and data sizes for the
10930 acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and
10931 these values do not include any ACPI driver or OSPM code. The
10932 debug version of the code includes the debug output trace
10933 mechanism and has a much larger code and data size. Note that
10934 these values will vary depending on the efficiency of the compiler
10935 and the compiler options used during generation.

10937 Previous Release (20030509):
10938 Non-Debug Version: 73.4K Code, 9.7K Data, 83.1K Total
10939 Debug Version: 156.1K Code, 63.9K Data, 220.0K Total
10940 Current Release:
10941 Non-Debug Version: 73.7K Code, 9.7K Data, 83.4K Total
10942 Debug Version: 156.9K Code, 64.2K Data, 221.1K Total

10945 2) Linux:

10947 Fixed a bug in which we would reinitialize the ACPI interrupt
10948 after it was already working, thus disabling all ACPI and the IRQs
10949 for any other device sharing the interrupt. (Thanks to Stian
10950 Jordet)

10952 Toshiba driver update (John Belmonte)

10954 Return only 0 or 1 for our interrupt handler status (Andrew
10955 Morton)

10958 3) iASL Compiler:

10960 Fixed a reported problem where multiple (nested) ElseIf()
10961 statements were not handled correctly by the compiler, resulting
10962 in incorrect warnings and incorrect AML code. This was a problem
10963 in both the ASL parser and the code generator.

10966 4) Documentation:

10968 Added changes to existing interfaces, new exception codes, and new
10969 text concerning reference count object management versus garbage
10970 collection.

10972 --
10973 09 May 2003. Summary of changes for version 20030509.

10976 1) ACPI CA Core Subsystem:

10978 Changed the subsystem initialization sequence to hold off

new/usr/src/common/acpica/changes.txt 190

10979 installation of address space handlers until the hardware has been
10980 initialized and the system has entered ACPI mode. This is because
10981 the installation of space handlers can cause _REG methods to be
10982 run. Previously, the _REG methods could potentially be run before
10983 ACPI mode was enabled.

10985 Fixed some memory leak issues related to address space handler and
10986 notify handler installation. There were some problems with the
10987 reference count mechanism caused by the fact that the handler
10988 objects are shared across several namespace objects.

10990 Fixed a reported problem where reference counts within the
10991 namespace were not properly updated when named objects created by
10992 method execution were deleted.

10994 Fixed a reported problem where multiple SSDTs caused a deletion
10995 issue during subsystem termination. Restructured the table data
10996 structures to simplify the linked lists and the related code.

10998 Fixed a problem where the table ID associated with secondary
10999 tables (SSDTs) was not being propagated into the namespace objects
11000 created by those tables. This would only present a problem for
11001 tables that are unloaded at run-time, however.

11003 Updated AcpiOsReadable and AcpiOsWritable to use the ACPI_SIZE
11004 type as the length parameter (instead of UINT32).

11006 Solved a long-standing problem where an ALREADY_EXISTS error
11007 appears on various systems. This problem could happen when there
11008 are multiple PCI_Config operation regions under a single PCI root
11009 bus. This doesn’t happen very frequently, but there are some
11010 systems that do this in the ASL.

11012 Fixed a reported problem where the internal DeleteNode function
11013 was incorrectly handling the case where a namespace node was the
11014 first in the parent’s child list, and had additional peers (not
11015 the only child, but first in the list of children.)

11017 Code and Data Size: Current core subsystem library sizes are shown
11018 below. These are the code and data sizes for the acpica.lib
11019 produced by the Microsoft Visual C++ 6.0 compiler, and these
11020 values do not include any ACPI driver or OSPM code. The debug
11021 version of the code includes the debug output trace mechanism and
11022 has a much larger code and data size. Note that these values will
11023 vary depending on the efficiency of the compiler and the compiler
11024 options used during generation.

11026 Previous Release
11027 Non-Debug Version: 73.7K Code, 9.5K Data, 83.2K Total
11028 Debug Version: 156.1K Code, 63.6K Data, 219.7K Total
11029 Current Release:
11030 Non-Debug Version: 73.4K Code, 9.7K Data, 83.1K Total
11031 Debug Version: 156.1K Code, 63.9K Data, 220.0K Total

11034 2) Linux:

11036 Allow ":" in OS override string (Ducrot Bruno)

11038 Kobject fix (Greg KH)

11041 3 iASL Compiler/Disassembler:

11043 Fixed a problem in the generation of the C source code files (AML
11044 is emitted in C source statements for BIOS inclusion) where the

new/usr/src/common/acpica/changes.txt 191

11045 Ascii dump that appears within a C comment at the end of each line
11046 could cause a compile time error if the AML sequence happens to
11047 have an open comment or close comment sequence embedded.

11050 --
11051 24 April 2003. Summary of changes for version 20030424.

11054 1) ACPI CA Core Subsystem:

11056 Support for big-endian systems has been implemented. Most of the
11057 support has been invisibly added behind big-endian versions of the
11058 ACPI_MOVE_* macros.

11060 Fixed a problem in AcpiHwDisableGpeBlock() and
11061 AcpiHwClearGpeBlock() where an incorrect offset was passed to the
11062 low level hardware write routine. The offset parameter was
11063 actually eliminated from the low level read/write routines because
11064 they had become obsolete.

11066 Fixed a problem where a handler object was deleted twice during
11067 the removal of a fixed event handler.

11070 2) Linux:

11072 A fix for SMP systems with link devices was contributed by

11074 Compaq’s Dan Zink.

11076 (2.5) Return whether we handled the interrupt in our IRQ handler.
11077 (Linux ISRs no longer return void, so we can propagate the handler
11078 return value from the ACPI CA core back to the OS.)

11082 3) Documentation:

11084 The ACPI CA Programmer Reference has been updated to reflect new
11085 interfaces and changes to existing interfaces.

11087 --
11088 28 March 2003. Summary of changes for version 20030328.

11090 1) ACPI CA Core Subsystem:

11092 The GPE Block Device support has been completed. New interfaces
11093 are AcpiInstallGpeBlock and AcpiRemoveGpeBlock. The Event
11094 interfaces (enable, disable, clear, getstatus) have been split
11095 into separate interfaces for Fixed Events and General Purpose
11096 Events (GPEs) in order to support GPE Block Devices properly.

11098 Fixed a problem where the error message "Failed to acquire
11099 semaphore" would appear during operations on the embedded
11100 controller (EC).

11102 Code and Data Size: Current core subsystem library sizes are shown
11103 below. These are the code and data sizes for the acpica.lib
11104 produced by the Microsoft Visual C++ 6.0 compiler, and these
11105 values do not include any ACPI driver or OSPM code. The debug
11106 version of the code includes the debug output trace mechanism and
11107 has a much larger code and data size. Note that these values will
11108 vary depending on the efficiency of the compiler and the compiler
11109 options used during generation.

new/usr/src/common/acpica/changes.txt 192

11111 Previous Release
11112 Non-Debug Version: 72.3K Code, 9.5K Data, 81.8K Total
11113 Debug Version: 154.0K Code, 63.4K Data, 217.4K Total
11114 Current Release:
11115 Non-Debug Version: 73.7K Code, 9.5K Data, 83.2K Total
11116 Debug Version: 156.1K Code, 63.6K Data, 219.7K Total

11119 --
11120 28 February 2003. Summary of changes for version 20030228.

11123 1) ACPI CA Core Subsystem:

11125 The GPE handling and dispatch code has been completely overhauled
11126 in preparation for support of GPE Block Devices (ID ACPI0006).
11127 This affects internal data structures and code only; there should
11128 be no differences visible externally. One new file has been
11129 added, evgpeblk.c

11131 The FADT fields GPE0_BLK_LEN and GPE1_BLK_LEN are now the only
11132 fields that are used to determine the GPE block lengths. The
11133 REGISTER_BIT_WIDTH field of the X_GPEx_BLK extended address
11134 structures are ignored. This is per the ACPI specification but it
11135 isn’t very clear. The full 256 Block 0/1 GPEs are now supported
11136 (the use of REGISTER_BIT_WIDTH limited the number of GPEs to 128).

11138 In the SCI interrupt handler, removed the read of the PM1_CONTROL
11139 register to look at the SCI_EN bit. On some machines, this read
11140 causes an SMI event and greatly slows down SCI events. (This may
11141 in fact be the cause of slow battery status response on some
11142 systems.)

11144 Fixed a problem where a store of a NULL string to a package object
11145 could cause the premature deletion of the object. This was seen
11146 during execution of the battery _BIF method on some systems,
11147 resulting in no battery data being returned.

11149 Added AcpiWalkResources interface to simplify parsing of resource
11150 lists.

11152 Code and Data Size: Current core subsystem library sizes are shown
11153 below. These are the code and data sizes for the acpica.lib
11154 produced by the Microsoft Visual C++ 6.0 compiler, and these
11155 values do not include any ACPI driver or OSPM code. The debug
11156 version of the code includes the debug output trace mechanism and
11157 has a much larger code and data size. Note that these values will
11158 vary depending on the efficiency of the compiler and the compiler
11159 options used during generation.

11161 Previous Release
11162 Non-Debug Version: 72.0K Code, 9.5K Data, 81.5K Total
11163 Debug Version: 153.0K Code, 62.9K Data, 215.9K Total
11164 Current Release:
11165 Non-Debug Version: 72.3K Code, 9.5K Data, 81.8K Total
11166 Debug Version: 154.0K Code, 63.4K Data, 217.4K Total

11169 2) Linux

11171 S3 fixes (Ole Rohne)

11173 Update ACPI PHP driver with to use new acpi_walk_resource API
11174 (Bjorn Helgaas)

11176 Add S4BIOS support (Pavel Machek)

new/usr/src/common/acpica/changes.txt 193

11178 Map in entire table before performing checksum (John Stultz)

11180 Expand the mem= cmdline to allow the specification of reserved and
11181 ACPI DATA blocks (Pavel Machek)

11183 Never use ACPI on VISWS

11185 Fix derive_pci_id (Ducrot Bruno, Alvaro Lopez)

11187 Revert a change that allowed P_BLK lengths to be 4 or 5. This is
11188 causing us to think that some systems support C2 when they really
11189 don’t.

11191 Do not count processor objects for non-present CPUs (Thanks to
11192 Dominik Brodowski)

11195 3) iASL Compiler:

11197 Fixed a problem where ASL include files could not be found and
11198 opened.

11200 Added support for the _PDC reserved name.

11203 --
11204 22 January 2003. Summary of changes for version 20030122.

11207 1) ACPI CA Core Subsystem:

11209 Added a check for constructs of the form: Store (Local0, Local0)
11210 where Local0 is not initialized. Apparently, some BIOS
11211 programmers believe that this is a NOOP. Since this store doesn’t
11212 do anything anyway, the new prototype behavior will ignore this
11213 error. This is a case where we can relax the strict checking in
11214 the interpreter in the name of compatibility.

11217 2) Linux

11219 The AcpiSrc Source Conversion Utility has been released with the
11220 Linux package for the first time. This is the utility that is
11221 used to convert the ACPI CA base source code to the Linux version.

11223 (Both) Handle P_BLK lengths shorter than 6 more gracefully

11225 (Both) Move more headers to include/acpi, and delete an unused
11226 header.

11228 (Both) Move drivers/acpi/include directory to include/acpi

11230 (Both) Boot functions don’t use cmdline, so don’t pass it around

11232 (Both) Remove include of unused header (Adrian Bunk)

11234 (Both) acpiphp.h includes both linux/acpi.h and acpi_bus.h. Since
11235 the
11236 former now also includes the latter, acpiphp.h only needs the one,
11237 now.

11239 (2.5) Make it possible to select method of bios restoring after S3
11240 resume. [=> no more ugly ifdefs] (Pavel Machek)

11242 (2.5) Make proc write interfaces work (Pavel Machek)

new/usr/src/common/acpica/changes.txt 194

11244 (2.5) Properly init/clean up in cpufreq/acpi (Dominik Brodowski)

11246 (2.5) Break out ACPI Perf code into its own module, under cpufreq
11247 (Dominik Brodowski)

11249 (2.4) S4BIOS support (Ducrot Bruno)

11251 (2.4) Fix acpiphp_glue.c for latest ACPI struct changes (Sergio
11252 Visinoni)

11255 3) iASL Compiler:

11257 Added support to disassemble SSDT and PSDTs.

11259 Implemented support to obtain SSDTs from the Windows registry if
11260 available.

11263 --
11264 09 January 2003. Summary of changes for version 20030109.

11266 1) ACPI CA Core Subsystem:

11268 Changed the behavior of the internal Buffer-to-String conversion
11269 function. The current ACPI specification states that the contents
11270 of the buffer are "converted to a string of two-character
11271 hexadecimal numbers, each separated by a space". Unfortunately,
11272 this definition is not backwards compatible with existing ACPI 1.0
11273 implementations (although the behavior was not defined in the ACPI
11274 1.0 specification). The new behavior simply copies data from the
11275 buffer to the string until a null character is found or the end of
11276 the buffer is reached. The new String object is always null
11277 terminated. This problem was seen during the generation of _BIF
11278 battery data where incorrect strings were returned for battery
11279 type, etc. This will also require an errata to the ACPI
11280 specification.

11282 Renamed all instances of NATIVE_UINT and NATIVE_INT to
11283 ACPI_NATIVE_UINT and ACPI_NATIVE_INT, respectively.

11285 Copyright in all module headers (both Linux and non-Linux) has be
11286 updated to 2003.

11288 Code and Data Size: Current core subsystem library sizes are shown
11289 below. These are the code and data sizes for the acpica.lib
11290 produced by the Microsoft Visual C++ 6.0 compiler, and these
11291 values do not include any ACPI driver or OSPM code. The debug
11292 version of the code includes the debug output trace mechanism and
11293 has a much larger code and data size. Note that these values will
11294 vary depending on the efficiency of the compiler and the compiler
11295 options used during generation.

11297 Previous Release
11298 Non-Debug Version: 72.0K Code, 9.5K Data, 81.5K Total
11299 Debug Version: 153.0K Code, 62.9K Data, 215.9K Total
11300 Current Release:
11301 Non-Debug Version: 72.0K Code, 9.5K Data, 81.5K Total
11302 Debug Version: 153.0K Code, 62.9K Data, 215.9K Total

11305 2) Linux

11307 Fixed an oops on module insertion/removal (Matthew Tippett)

new/usr/src/common/acpica/changes.txt 195

11309 (2.4) Fix to handle dynamic size of mp_irqs (Joerg Prante)

11311 (2.5) Replace pr_debug (Randy Dunlap)

11313 (2.5) Remove usage of CPUFREQ_ALL_CPUS (Dominik Brodowski)

11315 (Both) Eliminate spawning of thread from timer callback, in favor
11316 of schedule_work()

11318 (Both) Show Lid status in /proc (Zdenek OGAR Skalak)

11320 (Both) Added define for Fixed Function HW region (Matthew Wilcox)

11322 (Both) Add missing statics to button.c (Pavel Machek)

11324 Several changes have been made to the source code translation
11325 utility that generates the Linux Code in order to make the code
11326 more "Linux-like":

11328 All typedefs on structs and unions have been removed in keeping
11329 with the Linux coding style.

11331 Removed the non-Linux SourceSafe module revision number from each
11332 module header.

11334 Completed major overhaul of symbols to be lowercased for linux.
11335 Doubled the number of symbols that are lowercased.

11337 Fixed a problem where identifiers within procedure headers and
11338 within quotes were not fully lower cased (they were left with a
11339 starting capital.)

11341 Some C macros whose only purpose is to allow the generation of 16-
11342 bit code are now completely removed in the Linux code, increasing
11343 readability and maintainability.

11345 --

11347 12 December 2002. Summary of changes for version 20021212.

11350 1) ACPI CA Core Subsystem:

11352 Fixed a problem where the creation of a zero-length AML Buffer
11353 would cause a fault.

11355 Fixed a problem where a Buffer object that pointed to a static AML
11356 buffer (in an ACPI table) could inadvertently be deleted, causing
11357 memory corruption.

11359 Fixed a problem where a user buffer (passed in to the external
11360 ACPI CA interfaces) could be overwritten if the buffer was too
11361 small to complete the operation, causing memory corruption.

11363 Fixed a problem in the Buffer-to-String conversion code where a
11364 string of length one was always returned, regardless of the size
11365 of the input Buffer object.

11367 Removed the NATIVE_CHAR data type across the entire source due to
11368 lack of need and lack of consistent use.

11370 Code and Data Size: Current core subsystem library sizes are shown
11371 below. These are the code and data sizes for the acpica.lib
11372 produced by the Microsoft Visual C++ 6.0 compiler, and these
11373 values do not include any ACPI driver or OSPM code. The debug
11374 version of the code includes the debug output trace mechanism and

new/usr/src/common/acpica/changes.txt 196

11375 has a much larger code and data size. Note that these values will
11376 vary depending on the efficiency of the compiler and the compiler
11377 options used during generation.

11379 Previous Release
11380 Non-Debug Version: 72.1K Code, 9.5K Data, 81.6K Total
11381 Debug Version: 152.7K Code, 62.7K Data, 215.4K Total
11382 Current Release:
11383 Non-Debug Version: 72.0K Code, 9.5K Data, 81.5K Total
11384 Debug Version: 153.0K Code, 62.9K Data, 215.9K Total

11387 --
11388 05 December 2002. Summary of changes for version 20021205.

11390 1) ACPI CA Core Subsystem:

11392 Fixed a problem where a store to a String or Buffer object could
11393 cause corruption of the DSDT if the object type being stored was
11394 the same as the target object type and the length of the object
11395 being stored was equal to or smaller than the original (existing)
11396 target object. This was seen to cause corruption of battery _BIF
11397 buffers if the _BIF method modified the buffer on the fly.

11399 Fixed a problem where an internal error was generated if a control
11400 method invocation was used in an OperationRegion, Buffer, or
11401 Package declaration. This was caused by the deferred parsing of
11402 the control method and thus the deferred creation of the internal
11403 method object. The solution to this problem was to create the
11404 internal method object at the moment the method is encountered in
11405 the first pass - so that subsequent references to the method will
11406 able to obtain the required parameter count and thus properly
11407 parse the method invocation. This problem presented itself as an
11408 AE_AML_INTERNAL during the pass 1 parse phase during table load.

11410 Fixed a problem where the internal String object copy routine did
11411 not always allocate sufficient memory for the target String object
11412 and caused memory corruption. This problem was seen to cause
11413 "Allocation already present in list!" errors as memory allocation
11414 became corrupted.

11416 Implemented a new function for the evaluation of namespace objects
11417 that allows the specification of the allowable return object
11418 types. This simplifies a lot of code that checks for a return
11419 object of one or more specific objects returned from the
11420 evaluation (such as _STA, etc.) This may become and external
11421 function if it would be useful to ACPI-related drivers.

11423 Completed another round of prefixing #defines with "ACPI_" for
11424 clarity.

11426 Completed additional code restructuring to allow more modular
11427 linking for iASL compiler and AcpiExec. Several files were split
11428 creating new files. New files: nsparse.c dsinit.c evgpe.c

11430 Implemented an abort mechanism to terminate an executing control
11431 method via the AML debugger. This feature is useful for debugging
11432 control methods that depend (wait) for specific hardware
11433 responses.

11435 Code and Data Size: Current core subsystem library sizes are shown
11436 below. These are the code and data sizes for the acpica.lib
11437 produced by the Microsoft Visual C++ 6.0 compiler, and these
11438 values do not include any ACPI driver or OSPM code. The debug
11439 version of the code includes the debug output trace mechanism and
11440 has a much larger code and data size. Note that these values will

new/usr/src/common/acpica/changes.txt 197

11441 vary depending on the efficiency of the compiler and the compiler
11442 options used during generation.

11444 Previous Release
11445 Non-Debug Version: 71.4K Code, 9.0K Data, 80.4K Total
11446 Debug Version: 152.9K Code, 63.3K Data, 216.2K Total
11447 Current Release:
11448 Non-Debug Version: 72.1K Code, 9.5K Data, 81.6K Total
11449 Debug Version: 152.7K Code, 62.7K Data, 215.4K Total

11452 2) iASL Compiler/Disassembler

11454 Fixed a compiler code generation problem for "Interrupt" Resource
11455 Descriptors. If specified in the ASL, the optional "Resource
11456 Source Index" and "Resource Source" fields were not inserted into
11457 the correct location within the AML resource descriptor, creating
11458 an invalid descriptor.

11460 Fixed a disassembler problem for "Interrupt" resource descriptors.
11461 The optional "Resource Source Index" and "Resource Source" fields
11462 were ignored.

11465 --
11466 22 November 2002. Summary of changes for version 20021122.

11469 1) ACPI CA Core Subsystem:

11471 Fixed a reported problem where an object stored to a Method Local
11472 or Arg was not copied to a new object during the store - the
11473 object pointer was simply copied to the Local/Arg. This caused
11474 all subsequent operations on the Local/Arg to also affect the
11475 original source of the store operation.

11477 Fixed a problem where a store operation to a Method Local or Arg
11478 was not completed properly if the Local/Arg contained a reference
11479 (from RefOf) to a named field. The general-purpose store-to-
11480 namespace-node code is now used so that this case is handled
11481 automatically.

11483 Fixed a problem where the internal object copy routine would cause
11484 a protection fault if the object being copied was a Package and
11485 contained either 1) a NULL package element or 2) a nested sub-
11486 package.

11488 Fixed a problem with the GPE initialization that resulted from an
11489 ambiguity in the ACPI specification. One section of the
11490 specification states that both the address and length of the GPE
11491 block must be zero if the block is not supported. Another section
11492 implies that only the address need be zero if the block is not
11493 supported. The code has been changed so that both the address and
11494 the length must be non-zero to indicate a valid GPE block (i.e.,
11495 if either the address or the length is zero, the GPE block is
11496 invalid.)

11498 Code and Data Size: Current core subsystem library sizes are shown
11499 below. These are the code and data sizes for the acpica.lib
11500 produced by the Microsoft Visual C++ 6.0 compiler, and these
11501 values do not include any ACPI driver or OSPM code. The debug
11502 version of the code includes the debug output trace mechanism and
11503 has a much larger code and data size. Note that these values will
11504 vary depending on the efficiency of the compiler and the compiler
11505 options used during generation.

new/usr/src/common/acpica/changes.txt 198

11507 Previous Release
11508 Non-Debug Version: 71.3K Code, 9.0K Data, 80.3K Total
11509 Debug Version: 152.7K Code, 63.2K Data, 215.5K Total
11510 Current Release:
11511 Non-Debug Version: 71.4K Code, 9.0K Data, 80.4K Total
11512 Debug Version: 152.9K Code, 63.3K Data, 216.2K Total

11515 2) Linux

11517 Cleaned up EC driver. Exported an external EC read/write
11518 interface. By going through this, other drivers (most notably
11519 sonypi) will be able to serialize access to the EC.

11522 3) iASL Compiler/Disassembler

11524 Implemented support to optionally generate include files for both
11525 ASM and C (the -i switch). This simplifies BIOS development by
11526 automatically creating include files that contain external
11527 declarations for the symbols that are created within the

11529 (optionally generated) ASM and C AML source files.

11532 --
11533 15 November 2002. Summary of changes for version 20021115.

11535 1) ACPI CA Core Subsystem:

11537 Fixed a memory leak problem where an error during resolution of

11539 method arguments during a method invocation from another method
11540 failed to cleanup properly by deleting all successfully resolved
11541 argument objects.

11543 Fixed a problem where the target of the Index() operator was not
11544 correctly constructed if the source object was a package. This
11545 problem has not been detected because the use of a target operand
11546 with Index() is very rare.

11548 Fixed a problem with the Index() operator where an attempt was
11549 made to delete the operand objects twice.

11551 Fixed a problem where an attempt was made to delete an operand
11552 twice during execution of the CondRefOf() operator if the target
11553 did not exist.

11555 Implemented the first of perhaps several internal create object
11556 functions that create and initialize a specific object type. This
11557 consolidates duplicated code wherever the object is created, thus
11558 shrinking the size of the subsystem.

11560 Implemented improved debug/error messages for errors that occur
11561 during nested method invocations. All executing method pathnames
11562 are displayed (with the error) as the call stack is unwound - thus
11563 simplifying debug.

11565 Fixed a problem introduced in the 10/02 release that caused
11566 premature deletion of a buffer object if a buffer was used as an
11567 ASL operand where an integer operand is required (Thus causing an
11568 implicit object conversion from Buffer to Integer.) The change in
11569 the 10/02 release was attempting to fix a memory leak (albeit
11570 incorrectly.)

11572 Code and Data Size: Current core subsystem library sizes are shown

new/usr/src/common/acpica/changes.txt 199

11573 below. These are the code and data sizes for the acpica.lib
11574 produced by the Microsoft Visual C++ 6.0 compiler, and these
11575 values do not include any ACPI driver or OSPM code. The debug
11576 version of the code includes the debug output trace mechanism and
11577 has a much larger code and data size. Note that these values will
11578 vary depending on the efficiency of the compiler and the compiler
11579 options used during generation.

11581 Previous Release
11582 Non-Debug Version: 71.9K Code, 9.1K Data, 81.0K Total
11583 Debug Version: 153.1K Code, 63.3K Data, 216.4K Total
11584 Current Release:
11585 Non-Debug Version: 71.3K Code, 9.0K Data, 80.3K Total
11586 Debug Version: 152.7K Code, 63.2K Data, 215.5K Total

11589 2) Linux

11591 Changed the implementation of the ACPI semaphores to use down()
11592 instead of down_interruptable(). It is important that the
11593 execution of ACPI control methods not be interrupted by signals.
11594 Methods must run to completion, or the system may be left in an
11595 unknown/unstable state.

11597 Fixed a compilation error when CONFIG_SOFTWARE_SUSPEND is not set.
11598 (Shawn Starr)

11601 3) iASL Compiler/Disassembler

11604 Changed the default location of output files. All output files
11605 are now placed in the current directory by default instead of in
11606 the directory of the source file. This change may affect some
11607 existing makefiles, but it brings the behavior of the compiler in
11608 line with other similar tools. The location of the output files
11609 can be overridden with the -p command line switch.

11612 --
11613 11 November 2002. Summary of changes for version 20021111.

11616 0) ACPI Specification 2.0B is released and is now available at:
11617 http://www.acpi.info/index.html

11620 1) ACPI CA Core Subsystem:

11622 Implemented support for the ACPI 2.0 SMBus Operation Regions.
11623 This includes the early detection and handoff of the request to
11624 the SMBus region handler (avoiding all of the complex field
11625 support code), and support for the bidirectional return packet
11626 from an SMBus write operation. This paves the way for the
11627 development of SMBus drivers in each host operating system.

11629 Fixed a problem where the semaphore WAIT_FOREVER constant was
11630 defined as 32 bits, but must be 16 bits according to the ACPI
11631 specification. This had the side effect of causing ASL
11632 Mutex/Event timeouts even though the ASL code requested a wait
11633 forever. Changed all internal references to the ACPI timeout
11634 parameter to 16 bits to prevent future problems. Changed the name
11635 of WAIT_FOREVER to ACPI_WAIT_FOREVER.

11637 Code and Data Size: Current core subsystem library sizes are shown
11638 below. These are the code and data sizes for the acpica.lib

new/usr/src/common/acpica/changes.txt 200

11639 produced by the Microsoft Visual C++ 6.0 compiler, and these
11640 values do not include any ACPI driver or OSPM code. The debug
11641 version of the code includes the debug output trace mechanism and
11642 has a much larger code and data size. Note that these values will
11643 vary depending on the efficiency of the compiler and the compiler
11644 options used during generation.

11646 Previous Release
11647 Non-Debug Version: 71.4K Code, 9.0K Data, 80.4K Total
11648 Debug Version: 152.3K Code, 63.0K Data, 215.3K Total
11649 Current Release:
11650 Non-Debug Version: 71.9K Code, 9.1K Data, 81.0K Total
11651 Debug Version: 153.1K Code, 63.3K Data, 216.4K Total

11654 2) Linux

11656 Module loading/unloading fixes (John Cagle)

11659 3) iASL Compiler/Disassembler

11661 Added support for the SMBBlockProcessCall keyword (ACPI 2.0)

11663 Implemented support for the disassembly of all SMBus protocol
11664 keywords (SMBQuick, SMBWord, etc.)

11666 --
11667 01 November 2002. Summary of changes for version 20021101.

11670 1) ACPI CA Core Subsystem:

11672 Fixed a problem where platforms that have a GPE1 block but no GPE0
11673 block were not handled correctly. This resulted in a "GPE
11674 overlap" error message. GPE0 is no longer required.

11676 Removed code added in the previous release that inserted nodes
11677 into the namespace in alphabetical order. This caused some side-
11678 effects on various machines. The root cause of the problem is
11679 still under investigation since in theory, the internal ordering
11680 of the namespace nodes should not matter.

11683 Enhanced error reporting for the case where a named object is not
11684 found during control method execution. The full ACPI namepath
11685 (name reference) of the object that was not found is displayed in
11686 this case.

11688 Note: as a result of the overhaul of the namespace object types in
11689 the previous release, the namespace nodes for the predefined
11690 scopes (_TZ, _PR, etc.) are now of the type ACPI_TYPE_LOCAL_SCOPE
11691 instead of ACPI_TYPE_ANY. This simplifies the namespace
11692 management code but may affect code that walks the namespace tree
11693 looking for specific object types.

11695 Code and Data Size: Current core subsystem library sizes are shown
11696 below. These are the code and data sizes for the acpica.lib
11697 produced by the Microsoft Visual C++ 6.0 compiler, and these
11698 values do not include any ACPI driver or OSPM code. The debug
11699 version of the code includes the debug output trace mechanism and
11700 has a much larger code and data size. Note that these values will
11701 vary depending on the efficiency of the compiler and the compiler
11702 options used during generation.

11704 Previous Release

new/usr/src/common/acpica/changes.txt 201

11705 Non-Debug Version: 70.7K Code, 8.6K Data, 79.3K Total
11706 Debug Version: 151.7K Code, 62.4K Data, 214.1K Total
11707 Current Release:
11708 Non-Debug Version: 71.4K Code, 9.0K Data, 80.4K Total
11709 Debug Version: 152.3K Code, 63.0K Data, 215.3K Total

11712 2) Linux

11714 Fixed a problem introduced in the previous release where the
11715 Processor and Thermal objects were not recognized and installed in
11716 /proc. This was related to the scope type change described above.

11719 3) iASL Compiler/Disassembler

11721 Implemented the -g option to get all of the required ACPI tables
11722 from the registry and save them to files (Windows version of the
11723 compiler only.) The required tables are the FADT, FACS, and DSDT.

11725 Added ACPI table checksum validation during table disassembly in
11726 order to catch corrupted tables.

11729 --
11730 22 October 2002. Summary of changes for version 20021022.

11732 1) ACPI CA Core Subsystem:

11734 Implemented a restriction on the Scope operator that the target
11735 must already exist in the namespace at the time the operator is
11736 encountered (during table load or method execution). In other
11737 words, forward references are not allowed and Scope() cannot
11738 create a new object. This changes the previous behavior where the
11739 interpreter would create the name if not found. This new behavior
11740 correctly enables the search-to-root algorithm during namespace
11741 lookup of the target name. Because of this upsearch, this fixes
11742 the known Compaq _SB_.OKEC problem and makes both the AML
11743 interpreter and iASL compiler compatible with other ACPI
11744 implementations.

11746 Completed a major overhaul of the internal ACPI object types for
11747 the ACPI Namespace and the associated operand objects. Many of
11748 these types had become obsolete with the introduction of the two-
11749 pass namespace load. This cleanup simplifies the code and makes
11750 the entire namespace load mechanism much clearer and easier to
11751 understand.

11753 Improved debug output for tracking scope opening/closing to help
11754 diagnose scoping issues. The old scope name as well as the new
11755 scope name are displayed. Also improved error messages for
11756 problems with ASL Mutex objects and error messages for GPE
11757 problems.

11759 Cleaned up the namespace dump code, removed obsolete code.

11761 All string output (for all namespace/object dumps) now uses the
11762 common ACPI string output procedure which handles escapes properly
11763 and does not emit non-printable characters.

11765 Fixed some issues with constants in the 64-bit version of the
11766 local C library (utclib.c)

11769 2) Linux

new/usr/src/common/acpica/changes.txt 202

11771 EC Driver: No longer attempts to acquire the Global Lock at
11772 interrupt level.

11775 3) iASL Compiler/Disassembler

11777 Implemented ACPI 2.0B grammar change that disallows all Type 1 and
11778 2 opcodes outside of a control method. This means that the
11779 "executable" operators (versus the "namespace" operators) cannot
11780 be used at the table level; they can only be used within a control
11781 method.

11783 Implemented the restriction on the Scope() operator where the
11784 target must already exist in the namespace at the time the
11785 operator is encountered (during ASL compilation). In other words,
11786 forward references are not allowed and Scope() cannot create a new
11787 object. This makes the iASL compiler compatible with other ACPI
11788 implementations and makes the Scope() implementation adhere to the
11789 ACPI specification.

11791 Fixed a problem where namepath optimization for the Alias operator
11792 was optimizing the wrong path (of the two namepaths.) This caused
11793 a "Missing alias link" error message.

11795 Fixed a problem where an "unknown reserved name" warning could be
11796 incorrectly generated for names like "_SB" when the trailing
11797 underscore is not used in the original ASL.

11799 Fixed a problem where the reserved name check did not handle
11800 NamePaths with multiple NameSegs correctly. The first nameseg of
11801 the NamePath was examined instead of the last NameSeg.

11804 --

11806 02 October 2002. Summary of changes for this release.

11809 1) ACPI CA Core Subsystem version 20021002:

11811 Fixed a problem where a store/copy of a string to an existing
11812 string did not always set the string length properly in the String
11813 object.

11815 Fixed a reported problem with the ToString operator where the
11816 behavior was identical to the ToHexString operator instead of just
11817 simply converting a raw buffer to a string data type.

11819 Fixed a problem where CopyObject and the other "explicit"
11820 conversion operators were not updating the internal namespace node
11821 type as part of the store operation.

11823 Fixed a memory leak during implicit source operand conversion
11824 where the original object was not deleted if it was converted to a
11825 new object of a different type.

11827 Enhanced error messages for all problems associated with namespace
11828 lookups. Common procedure generates and prints the lookup name as
11829 well as the formatted status.

11831 Completed implementation of a new design for the Alias support
11832 within the namespace. The existing design did not handle the case
11833 where a new object was assigned to one of the two names due to the
11834 use of an explicit conversion operator, resulting in the two names
11835 pointing to two different objects. The new design simply points
11836 the Alias name to the original name node - not to the object.

new/usr/src/common/acpica/changes.txt 203

11837 This results in a level of indirection that must be handled in the
11838 name resolution mechanism.

11840 Code and Data Size: Current core subsystem library sizes are shown
11841 below. These are the code and data sizes for the acpica.lib
11842 produced by the Microsoft Visual C++ 6.0 compiler, and these
11843 values do not include any ACPI driver or OSPM code. The debug
11844 version of the code includes the debug output trace mechanism and
11845 has a larger code and data size. Note that these values will vary
11846 depending on the efficiency of the compiler and the compiler
11847 options used during generation.

11849 Previous Release
11850 Non-Debug Version: 69.6K Code, 8.3K Data, 77.9K Total
11851 Debug Version: 150.0K Code, 61.7K Data, 211.7K Total
11852 Current Release:
11853 Non-Debug Version: 70.7K Code, 8.6K Data, 79.3K Total
11854 Debug Version: 151.7K Code, 62.4K Data, 214.1K Total

11857 2) Linux

11859 Initialize thermal driver’s timer before it is used. (Knut
11860 Neumann)

11862 Allow handling negative celsius values. (Kochi Takayoshi)

11864 Fix thermal management and make trip points. R/W (Pavel Machek)

11866 Fix /proc/acpi/sleep. (P. Christeas)

11868 IA64 fixes. (David Mosberger)

11870 Fix reversed logic in blacklist code. (Sergio Monteiro Basto)

11872 Replace ACPI_DEBUG define with ACPI_DEBUG_OUTPUT. (Dominik
11873 Brodowski)

11876 3) iASL Compiler/Disassembler

11878 Clarified some warning/error messages.

11881 --
11882 18 September 2002. Summary of changes for this release.

11885 1) ACPI CA Core Subsystem version 20020918:

11887 Fixed a reported problem with reference chaining (via the Index()
11888 and RefOf() operators) in the ObjectType() and SizeOf() operators.
11889 The definition of these operators includes the dereferencing of
11890 all chained references to return information on the base object.

11892 Fixed a problem with stores to indexed package elements - the
11893 existing code would not complete the store if an "implicit
11894 conversion" was not performed. In other words, if the existing
11895 object (package element) was to be replaced completely, the code
11896 didn’t handle this case.

11898 Relaxed typechecking on the ASL "Scope" operator to allow the
11899 target name to refer to an object of type Integer, String, or
11900 Buffer, in addition to the scoping object types (Device,
11901 predefined Scopes, Processor, PowerResource, and ThermalZone.)
11902 This allows existing AML code that has workarounds for a bug in

new/usr/src/common/acpica/changes.txt 204

11903 Windows to function properly. A warning is issued, however. This
11904 affects both the AML interpreter and the iASL compiler. Below is
11905 an example of this type of ASL code:

11907 Name(DEB,0x00)
11908 Scope(DEB)
11909 {

11911 Fixed some reported problems with 64-bit integer support in the
11912 local implementation of C library functions (clib.c)

11915 2) Linux

11917 Use ACPI fix map region instead of IOAPIC region, since it is
11918 undefined in non-SMP.

11920 Ensure that the SCI has the proper polarity and trigger, even on
11921 systems that do not have an interrupt override entry in the MADT.

11923 2.5 big driver reorganization (Pat Mochel)

11925 Use early table mapping code from acpitable.c (Andi Kleen)

11927 New blacklist entries (Andi Kleen)

11929 Blacklist improvements. Split blacklist code out into a separate
11930 file. Move checking the blacklist to very early. Previously, we
11931 would use ACPI tables, and then halfway through init, check the
11932 blacklist -- too late. Now, it’s early enough to completely fall-
11933 back to non-ACPI.

11936 3) iASL Compiler/Disassembler version 20020918:

11938 Fixed a problem where the typechecking code didn’t know that an
11939 alias could point to a method. In other words, aliases were not
11940 being dereferenced during typechecking.

11943 --
11944 29 August 2002. Summary of changes for this release.

11946 1) ACPI CA Core Subsystem Version 20020829:

11948 If the target of a Scope() operator already exists, it must be an
11949 object type that actually opens a scope -- such as a Device,
11950 Method, Scope, etc. This is a fatal runtime error. Similar error
11951 check has been added to the iASL compiler also.

11953 Tightened up the namespace load to disallow multiple names in the
11954 same scope. This previously was allowed if both objects were of
11955 the same type. (i.e., a lookup was the same as entering a new
11956 name).

11959 2) Linux

11961 Ensure that the ACPI interrupt has the proper trigger and
11962 polarity.

11964 local_irq_disable is extraneous. (Matthew Wilcox)

11966 Make "acpi=off" actually do what it says, and not use the ACPI
11967 interpreter *or* the tables.

new/usr/src/common/acpica/changes.txt 205

11969 Added arch-neutral support for parsing SLIT and SRAT tables (Kochi
11970 Takayoshi)

11973 3) iASL Compiler/Disassembler Version 20020829:

11975 Implemented namepath optimization for name declarations. For
11976 example, a declaration like "Method (_SB_.ABCD)" would get
11977 optimized to "Method (ABCD)" if the declaration is within the
11978 _SB_ scope. This optimization is in addition to the named
11979 reference path optimization first released in the previous
11980 version. This would seem to complete all possible optimizations
11981 for namepaths within the ASL/AML.

11983 If the target of a Scope() operator already exists, it must be an
11984 object type that actually opens a scope -- such as a Device,
11985 Method, Scope, etc.

11987 Implemented a check and warning for unreachable code in the same
11988 block below a Return() statement.

11990 Fixed a problem where the listing file was not generated if the
11991 compiler aborted if the maximum error count was exceeded (200).

11993 Fixed a problem where the typechecking of method return values was
11994 broken. This includes the check for a return value when the
11995 method is invoked as a TermArg (a return value is expected.)

11997 Fixed a reported problem where EOF conditions during a quoted
11998 string or comment caused a fault.

12001 --
12002 15 August 2002. Summary of changes for this release.

12004 1) ACPI CA Core Subsystem Version 20020815:

12006 Fixed a reported problem where a Store to a method argument that
12007 contains a reference did not perform the indirect store correctly.
12008 This problem was created during the conversion to the new
12009 reference object model - the indirect store to a method argument
12010 code was not updated to reflect the new model.

12012 Reworked the ACPI mode change code to better conform to ACPI 2.0,
12013 handle corner cases, and improve code legibility (Kochi Takayoshi)

12015 Fixed a problem with the pathname parsing for the carat (^)
12016 prefix. The heavy use of the carat operator by the new namepath
12017 optimization in the iASL compiler uncovered a problem with the AML
12018 interpreter handling of this prefix. In the case where one or
12019 more carats precede a single nameseg, the nameseg was treated as
12020 standalone and the search rule (to root) was inadvertently
12021 applied. This could cause both the iASL compiler and the
12022 interpreter to find the wrong object or to miss the error that
12023 should occur if the object does not exist at that exact pathname.

12025 Found and fixed the problem where the HP Pavilion DSDT would not
12026 load. This was a relatively minor tweak to the table loading code
12027 (a problem caused by the unexpected encounter with a method
12028 invocation not within a control method), but it does not solve the
12029 overall issue of the execution of AML code at the table level.
12030 This investigation is still ongoing.

12032 Code and Data Size: Current core subsystem library sizes are shown
12033 below. These are the code and data sizes for the acpica.lib
12034 produced by the Microsoft Visual C++ 6.0 compiler, and these

new/usr/src/common/acpica/changes.txt 206

12035 values do not include any ACPI driver or OSPM code. The debug
12036 version of the code includes the debug output trace mechanism and
12037 has a larger code and data size. Note that these values will vary
12038 depending on the efficiency of the compiler and the compiler
12039 options used during generation.

12041 Previous Release
12042 Non-Debug Version: 69.1K Code, 8.2K Data, 77.3K Total
12043 Debug Version: 149.4K Code, 61.6K Data, 211.0K Total
12044 Current Release:
12045 Non-Debug Version: 69.6K Code, 8.3K Data, 77.9K Total
12046 Debug Version: 150.0K Code, 61.7K Data, 211.7K Total

12049 2) Linux

12051 Remove redundant slab.h include (Brad Hards)

12053 Fix several bugs in thermal.c (Herbert Nachtnebel)

12055 Make CONFIG_ACPI_BOOT work properly (Pavel Machek)

12057 Change acpi_system_suspend to use updated irq functions (Pavel
12058 Machek)

12060 Export acpi_get_firmware_table (Matthew Wilcox)

12062 Use proper root proc entry for ACPI (Kochi Takayoshi)

12064 Fix early-boot table parsing (Bjorn Helgaas)

12067 3) iASL Compiler/Disassembler

12069 Reworked the compiler options to make them more consistent and to
12070 use two-letter options where appropriate. We were running out of
12071 sensible letters. This may break some makefiles, so check the
12072 current options list by invoking the compiler with no parameters.

12074 Completed the design and implementation of the ASL namepath
12075 optimization option for the compiler. This option optimizes all
12076 references to named objects to the shortest possible path. The
12077 first attempt tries to utilize a single nameseg (4 characters) and
12078 the "search-to-root" algorithm used by the interpreter. If that
12079 cannot be used (because either the name is not in the search path
12080 or there is a conflict with another object with the same name),
12081 the pathname is optimized using the carat prefix (usually a
12082 shorter string than specifying the entire path from the root.)

12084 Implemented support to obtain the DSDT from the Windows registry
12085 (when the disassembly option is specified with no input file).
12086 Added this code as the implementation for AcpiOsTableOverride in
12087 the Windows OSL. Migrated the 16-bit code (used in the AcpiDump
12088 utility) to scan memory for the DSDT to the AcpiOsTableOverride
12089 function in the DOS OSL to make the disassembler truly OS
12090 independent.

12092 Implemented a new option to disassemble and compile in one step.
12093 When used without an input filename, this option will grab the
12094 DSDT from the local machine, disassemble it, and compile it in one
12095 step.

12097 Added a warning message for invalid escapes (a backslash followed
12098 by any character other than the allowable escapes). This catches
12099 the quoted string error "_SB_" (which should be "_SB_").

new/usr/src/common/acpica/changes.txt 207

12101 Also, there are numerous instances in the ACPI specification where
12102 this error occurs.

12104 Added a compiler option to disable all optimizations. This is
12105 basically the "compatibility mode" because by using this option,
12106 the AML code will come out exactly the same as other ASL
12107 compilers.

12109 Added error messages for incorrectly ordered dependent resource
12110 functions. This includes: missing EndDependentFn macro at end of
12111 dependent resource list, nested dependent function macros (both
12112 start and end), and missing StartDependentFn macro. These are
12113 common errors that should be caught at compile time.

12115 Implemented _OSI support for the disassembler and compiler. _OSI
12116 must be included in the namespace for proper disassembly (because
12117 the disassembler must know the number of arguments.)

12119 Added an "optimization" message type that is optional (off by
12120 default). This message is used for all optimizations - including
12121 constant folding, integer optimization, and namepath optimization.

12123 --
12124 25 July 2002. Summary of changes for this release.

12127 1) ACPI CA Core Subsystem Version 20020725:

12129 The AML Disassembler has been enhanced to produce compilable ASL
12130 code and has been integrated into the iASL compiler (see below) as
12131 well as the single-step disassembly for the AML debugger and the
12132 disassembler for the AcpiDump utility. All ACPI 2.0A opcodes,
12133 resource templates and macros are fully supported. The
12134 disassembler has been tested on over 30 different AML files,
12135 producing identical AML when the resulting disassembled ASL file
12136 is recompiled with the same ASL compiler.

12138 Modified the Resource Manager to allow zero interrupts and zero
12139 dma channels during the GetCurrentResources call. This was
12140 causing problems on some platforms.

12142 Added the AcpiOsRedirectOutput interface to the OSL to simplify
12143 output redirection for the AcpiOsPrintf and AcpiOsVprintf
12144 interfaces.

12146 Code and Data Size: Current core subsystem library sizes are shown
12147 below. These are the code and data sizes for the acpica.lib
12148 produced by the Microsoft Visual C++ 6.0 compiler, and these
12149 values do not include any ACPI driver or OSPM code. The debug
12150 version of the code includes the debug output trace mechanism and
12151 has a larger code and data size. Note that these values will vary
12152 depending on the efficiency of the compiler and the compiler
12153 options used during generation.

12155 Previous Release
12156 Non-Debug Version: 68.7K Code, 7.4K Data, 76.1K Total
12157 Debug Version: 142.9K Code, 58.7K Data, 201.6K Total
12158 Current Release:
12159 Non-Debug Version: 69.1K Code, 8.2K Data, 77.3K Total
12160 Debug Version: 149.4K Code, 61.6K Data, 211.0K Total

12163 2) Linux

12165 Fixed a panic in the EC driver (Dominik Brodowski)

new/usr/src/common/acpica/changes.txt 208

12167 Implemented checksum of the R/XSDT itself during Linux table scan
12168 (Richard Schaal)

12171 3) iASL compiler

12173 The AML disassembler is integrated into the compiler. The "-d"
12174 option invokes the disassembler to completely disassemble an
12175 input AML file, producing as output a text ASL file with the
12176 extension ".dsl" (to avoid name collisions with existing .asl
12177 source files.) A future enhancement will allow the disassembler
12178 to obtain the BIOS DSDT from the registry under Windows.

12180 Fixed a problem with the VendorShort and VendorLong resource
12181 descriptors where an invalid AML sequence was created.

12183 Implemented a fix for BufferData term in the ASL parser. It was
12184 inadvertently defined twice, allowing invalid syntax to pass and
12185 causing reduction conflicts.

12187 Fixed a problem where the Ones opcode could get converted to a
12188 value of zero if "Ones" was used where a byte, word or dword value
12189 was expected. The 64-bit value is now truncated to the correct
12190 size with the correct value.

12194 --
12195 02 July 2002. Summary of changes for this release.

12198 1) ACPI CA Core Subsystem Version 20020702:

12200 The Table Manager code has been restructured to add several new
12201 features. Tables that are not required by the core subsystem
12202 (other than the FADT, DSDT, FACS, PSDTs, etc.) are no longer
12203 validated in any way and are returned from AcpiGetFirmwareTable if
12204 requested. The AcpiOsTableOverride interface is now called for
12205 each table that is loaded by the subsystem in order to allow the
12206 host to override any table it chooses. Previously, only the DSDT
12207 could be overridden. Added one new files, tbrsdt.c and
12208 tbgetall.c.

12210 Fixed a problem with the conversion of internal package objects to
12211 external objects (when a package is returned from a control
12212 method.) The return buffer length was set to zero instead of the
12213 proper length of the package object.

12215 Fixed a reported problem with the use of the RefOf and DeRefOf
12216 operators when passing reference arguments to control methods. A
12217 new type of Reference object is used internally for references
12218 produced by the RefOf operator.

12220 Added additional error messages in the Resource Manager to explain
12221 AE_BAD_DATA errors when they occur during resource parsing.

12223 Split the AcpiEnableSubsystem into two primitives to enable a
12224 finer granularity initialization sequence. These two calls should
12225 be called in this order: AcpiEnableSubsystem (flags),
12226 AcpiInitializeObjects (flags). The flags parameter remains the
12227 same.

12230 2) Linux

12232 Updated the ACPI utilities module to understand the new style of

new/usr/src/common/acpica/changes.txt 209

12233 fully resolved package objects that are now returned from the core
12234 subsystem. This eliminates errors of the form:

12236 ACPI: PCI Interrupt Routing Table [_SB_.PCI0.PPB_._PRT]
12237 acpi_utils-0430 [145] acpi_evaluate_reference:
12238 Invalid element in package (not a device reference)

12240 The method evaluation utility uses the new buffer allocation
12241 scheme instead of calling AcpiEvaluate Object twice.

12243 Added support for ECDT. This allows the use of the Embedded

12245 Controller before the namespace has been fully initialized, which
12246 is necessary for ACPI 2.0 support, and for some laptops to
12247 initialize properly. (Laptops using ECDT are still rare, so only
12248 limited testing was performed of the added functionality.)

12250 Fixed memory leaks in the EC driver.

12252 Eliminated a brittle code structure in acpi_bus_init().

12254 Eliminated the acpi_evaluate() helper function in utils.c. It is
12255 no longer needed since acpi_evaluate_object can optionally
12256 allocate memory for the return object.

12258 Implemented fix for keyboard hang when getting battery readings on
12259 some systems (Stephen White)

12261 PCI IRQ routing update (Dominik Brodowski)

12263 Fix an ifdef to allow compilation on UP with LAPIC but no IOAPIC
12264 support

12266 --
12267 11 June 2002. Summary of changes for this release.

12270 1) ACPI CA Core Subsystem Version 20020611:

12272 Fixed a reported problem where constants such as Zero and One
12273 appearing within _PRT packages were not handled correctly within
12274 the resource manager code. Originally reported against the ASL
12275 compiler because the code generator now optimizes integers to
12276 their minimal AML representation (i.e. AML constants if possible.)
12277 The _PRT code now handles all AML constant opcodes correctly
12278 (Zero, One, Ones, Revision).

12280 Fixed a problem with the Concatenate operator in the AML
12281 interpreter where a buffer result object was incorrectly marked as
12282 not fully evaluated, causing a run-time error of AE_AML_INTERNAL.

12284 All package sub-objects are now fully resolved before they are
12285 returned from the external ACPI interfaces. This means that name
12286 strings are resolved to object handles, and constant operators
12287 (Zero, One, Ones, Revision) are resolved to Integers.

12289 Implemented immediate resolution of the AML Constant opcodes
12290 (Zero, One, Ones, Revision) to Integer objects upon detection
12291 within the AML stream. This has simplified and reduced the
12292 generated code size of the subsystem by eliminating about 10
12293 switch statements for these constants (which previously were
12294 contained in Reference objects.) The complicating issues are that
12295 the Zero opcode is used as a "placeholder" for unspecified
12296 optional target operands and stores to constants are defined to be
12297 no-ops.

new/usr/src/common/acpica/changes.txt 210

12299 Code and Data Size: Current core subsystem library sizes are shown
12300 below. These are the code and data sizes for the acpica.lib
12301 produced by the Microsoft Visual C++ 6.0 compiler, and these
12302 values do not include any ACPI driver or OSPM code. The debug
12303 version of the code includes the debug output trace mechanism and
12304 has a larger code and data size. Note that these values will vary
12305 depending on the efficiency of the compiler and the compiler
12306 options used during generation.

12308 Previous Release
12309 Non-Debug Version: 69.3K Code, 7.4K Data, 76.7K Total
12310 Debug Version: 143.8K Code, 58.8K Data, 202.6K Total
12311 Current Release:
12312 Non-Debug Version: 68.7K Code, 7.4K Data, 76.1K Total
12313 Debug Version: 142.9K Code, 58.7K Data, 201.6K Total

12316 2) Linux

12319 Added preliminary support for obtaining _TRA data for PCI root
12320 bridges (Bjorn Helgaas).

12323 3) iASL Compiler Version X2046:

12325 Fixed a problem where the "_DDN" reserved name was defined to be a
12326 control method with one argument. There are no arguments, and
12327 _DDN does not have to be a control method.

12329 Fixed a problem with the Linux version of the compiler where the
12330 source lines printed with error messages were the wrong lines.
12331 This turned out to be the "LF versus CR/LF" difference between
12332 Windows and Unix. This appears to be the longstanding issue
12333 concerning listing output and error messages.

12335 Fixed a problem with the Linux version of compiler where opcode
12336 names within error messages were wrong. This was caused by a
12337 slight difference in the output of the Flex tool on Linux versus
12338 Windows.

12340 Fixed a problem with the Linux compiler where the hex output files
12341 contained some garbage data caused by an internal buffer overrun.

12344 --
12345 17 May 2002. Summary of changes for this release.

12348 1) ACPI CA Core Subsystem Version 20020517:

12350 Implemented a workaround to an BIOS bug discovered on the HP
12351 OmniBook where the FADT revision number and the table size are
12352 inconsistent (ACPI 2.0 revision vs. ACPI 1.0 table size). The new
12353 behavior is to fallback to using only the ACPI 1.0 fields of the
12354 FADT if the table is too small to be a ACPI 2.0 table as claimed
12355 by the revision number. Although this is a BIOS bug, this is a
12356 case where the workaround is simple enough and with no side
12357 effects, so it seemed prudent to add it. A warning message is
12358 issued, however.

12360 Implemented minimum size checks for the fixed-length ACPI tables -
12361 - the FADT and FACS, as well as consistency checks between the
12362 revision number and the table size.

12364 Fixed a reported problem in the table override support where the

new/usr/src/common/acpica/changes.txt 211

12365 new table pointer was incorrectly treated as a physical address
12366 instead of a logical address.

12368 Eliminated the use of the AE_AML_ERROR exception and replaced it
12369 with more descriptive codes.

12371 Fixed a problem where an exception would occur if an ASL Field was
12372 defined with no named Field Units underneath it (used by some
12373 index fields).

12375 Code and Data Size: Current core subsystem library sizes are shown
12376 below. These are the code and data sizes for the acpica.lib
12377 produced by the Microsoft Visual C++ 6.0 compiler, and these
12378 values do not include any ACPI driver or OSPM code. The debug
12379 version of the code includes the debug output trace mechanism and
12380 has a larger code and data size. Note that these values will vary
12381 depending on the efficiency of the compiler and the compiler
12382 options used during generation.

12384 Previous Release
12385 Non-Debug Version: 68.8K Code, 7.1K Data, 75.9K Total
12386 Debug Version: 142.9K Code, 58.4K Data, 201.3K Total
12387 Current Release:
12388 Non-Debug Version: 69.3K Code, 7.4K Data, 76.7K Total
12389 Debug Version: 143.8K Code, 58.8K Data, 202.6K Total

12393 2) Linux

12395 Much work done on ACPI init (MADT and PCI IRQ routing support).
12396 (Paul D. and Dominik Brodowski)

12398 Fix PCI IRQ-related panic on boot (Sam Revitch)

12400 Set BM_ARB_DIS when entering a sleep state (Ducrot Bruno)

12402 Fix "MHz" typo (Dominik Brodowski)

12404 Fix RTC year 2000 issue (Dominik Brodowski)

12406 Preclude multiple button proc entries (Eric Brunet)

12408 Moved arch-specific code out of include/platform/aclinux.h

12410 3) iASL Compiler Version X2044:

12412 Implemented error checking for the string used in the EISAID macro
12413 (Usually used in the definition of the _HID object.) The code now
12414 strictly enforces the PnP format - exactly 7 characters, 3
12415 uppercase letters and 4 hex digits.

12417 If a raw string is used in the definition of the _HID object
12418 (instead of the EISAID macro), the string must contain all
12419 alphanumeric characters (e.g., "*PNP0011" is not allowed because
12420 of the asterisk.)

12422 Implemented checking for invalid use of ACPI reserved names for
12423 most of the name creation operators (Name, Device, Event, Mutex,
12424 OperationRegion, PowerResource, Processor, and ThermalZone.)
12425 Previously, this check was only performed for control methods.

12427 Implemented an additional check on the Name operator to emit an
12428 error if a reserved name that must be implemented in ASL as a
12429 control method is used. We know that a reserved name must be a
12430 method if it is defined with input arguments.

new/usr/src/common/acpica/changes.txt 212

12432 The warning emitted when a namespace object reference is not found
12433 during the cross reference phase has been changed into an error.
12434 The "External" directive should be used for names defined in other
12435 modules.

12438 4) Tools and Utilities

12440 The 16-bit tools (adump16 and aexec16) have been regenerated and
12441 tested.

12443 Fixed a problem with the output of both acpidump and adump16 where
12444 the indentation of closing parentheses and brackets was not

12446 aligned properly with the parent block.

12449 --
12450 03 May 2002. Summary of changes for this release.

12453 1) ACPI CA Core Subsystem Version 20020503:

12455 Added support a new OSL interface that allows the host operating

12457 system software to override the DSDT found in the firmware -
12458 AcpiOsTableOverride. With this interface, the OSL can examine the
12459 version of the firmware DSDT and replace it with a different one
12460 if desired.

12462 Added new external interfaces for accessing ACPI registers from
12463 device drivers and other system software - AcpiGetRegister and
12464 AcpiSetRegister. This was simply an externalization of the
12465 existing AcpiHwBitRegister interfaces.

12467 Fixed a regression introduced in the previous build where the
12468 ASL/AML CreateField operator always returned an error,
12469 "destination must be a NS Node".

12471 Extended the maximum time (before failure) to successfully enable
12472 ACPI mode to 3 seconds.

12474 Code and Data Size: Current core subsystem library sizes are shown
12475 below. These are the code and data sizes for the acpica.lib
12476 produced by the Microsoft Visual C++ 6.0 compiler, and these
12477 values do not include any ACPI driver or OSPM code. The debug
12478 version of the code includes the debug output trace mechanism and
12479 has a larger code and data size. Note that these values will vary
12480 depending on the efficiency of the compiler and the compiler
12481 options used during generation.

12483 Previous Release
12484 Non-Debug Version: 68.5K Code, 7.0K Data, 75.5K Total
12485 Debug Version: 142.4K Code, 58.3K Data, 200.7K Total
12486 Current Release:
12487 Non-Debug Version: 68.8K Code, 7.1K Data, 75.9K Total
12488 Debug Version: 142.9K Code, 58.4K Data, 201.3K Total

12491 2) Linux

12493 Enhanced ACPI init code for SMP. We are now fully MPS and $PIR-
12494 free. While 3 out of 4 of our in-house systems work fine, the last
12495 one still hangs when testing the LAPIC timer.

new/usr/src/common/acpica/changes.txt 213

12497 Renamed many files in 2.5 kernel release to omit "acpi_" from the
12498 name.

12500 Added warning on boot for Presario 711FR.

12502 Sleep improvements (Pavel Machek)

12504 ACPI can now be built without CONFIG_PCI enabled.

12506 IA64: Fixed memory map functions (JI Lee)

12509 3) iASL Compiler Version X2043:

12511 Added support to allow the compiler to be integrated into the MS
12512 VC++ development environment for one-button compilation of single
12513 files or entire projects -- with error-to-source-line mapping.

12515 Implemented support for compile-time constant folding for the
12516 Type3, Type4, and Type5 opcodes first defined in the ACPI 2.0
12517 specification. This allows the ASL writer to use expressions
12518 instead of Integer/Buffer/String constants in terms that must
12519 evaluate to constants at compile time and will also simplify the
12520 emitted AML in any such sub-expressions that can be folded
12521 (evaluated at compile-time.) This increases the size of the
12522 compiler significantly because a portion of the ACPI CA AML
12523 interpreter is included within the compiler in order to pre-
12524 evaluate constant expressions.

12527 Fixed a problem with the "Unicode" ASL macro that caused the
12528 compiler to fault. (This macro is used in conjunction with the
12529 _STR reserved name.)

12531 Implemented an AML opcode optimization to use the Zero, One, and
12532 Ones opcodes where possible to further reduce the size of integer
12533 constants and thus reduce the overall size of the generated AML
12534 code.

12536 Implemented error checking for new reserved terms for ACPI version
12537 2.0A.

12539 Implemented the -qr option to display the current list of ACPI
12540 reserved names known to the compiler.

12542 Implemented the -qc option to display the current list of ASL
12543 operators that are allowed within constant expressions and can
12544 therefore be folded at compile time if the operands are constants.

12547 4) Documentation

12549 Updated the Programmer’s Reference for new interfaces, data types,
12550 and memory allocation model options.

12552 Updated the iASL Compiler User Reference to apply new format and
12553 add information about new features and options.

12555 --
12556 19 April 2002. Summary of changes for this release.

12558 1) ACPI CA Core Subsystem Version 20020419:

12560 The source code base for the Core Subsystem has been completely
12561 cleaned with PC-lint (FlexLint) for both 32-bit and 64-bit
12562 versions. The Lint option files used are included in the

new/usr/src/common/acpica/changes.txt 214

12563 /acpi/generate/lint directory.

12565 Implemented enhanced status/error checking across the entire
12566 Hardware manager subsystem. Any hardware errors (reported from
12567 the OSL) are now bubbled up and will abort a running control
12568 method.

12571 Fixed a problem where the per-ACPI-table integer width (32 or 64)
12572 was stored only with control method nodes, causing a fault when
12573 non-control method code was executed during table loading. The
12574 solution implemented uses a global variable to indicate table
12575 width across the entire ACPI subsystem. Therefore, ACPI CA does
12576 not support mixed integer widths across different ACPI tables
12577 (DSDT, SSDT).

12579 Fixed a problem where NULL extended fields (X fields) in an ACPI
12580 2.0 ACPI FADT caused the table load to fail. Although the
12581 existing ACPI specification is a bit fuzzy on this topic, the new
12582 behavior is to fall back on a ACPI 1.0 field if the corresponding
12583 ACPI 2.0 X field is zero (even though the table revision indicates
12584 a full ACPI 2.0 table.) The ACPI specification will be updated to
12585 clarify this issue.

12587 Fixed a problem with the SystemMemory operation region handler
12588 where memory was always accessed byte-wise even if the AML-
12589 specified access width was larger than a byte. This caused
12590 problems on systems with memory-mapped I/O. Memory is now
12591 accessed with the width specified. On systems that do not support
12592 non-aligned transfers, a check is made to guarantee proper address
12593 alignment before proceeding in order to avoid an AML-caused
12594 alignment fault within the kernel.

12597 Fixed a problem with the ExtendedIrq resource where only one byte
12598 of the 4-byte Irq field was extracted.

12600 Fixed the AcpiExDigitsNeeded() procedure to support _UID. This
12601 function was out of date and required a rewrite.

12603 Code and Data Size: Current core subsystem library sizes are shown
12604 below. These are the code and data sizes for the acpica.lib
12605 produced by the Microsoft Visual C++ 6.0 compiler, and these
12606 values do not include any ACPI driver or OSPM code. The debug
12607 version of the code includes the debug output trace mechanism and
12608 has a larger code and data size. Note that these values will vary
12609 depending on the efficiency of the compiler and the compiler
12610 options used during generation.

12612 Previous Release
12613 Non-Debug Version: 66.6K Code, 6.5K Data, 73.1K Total
12614 Debug Version: 139.8K Code, 57.4K Data, 197.2K Total
12615 Current Release:
12616 Non-Debug Version: 68.5K Code, 7.0K Data, 75.5K Total
12617 Debug Version: 142.4K Code, 58.3K Data, 200.7K Total

12620 2) Linux

12622 PCI IRQ routing fixes (Dominik Brodowski)

12625 3) iASL Compiler Version X2042:

12627 Implemented an additional compile-time error check for a field
12628 unit whose size + minimum access width would cause a run-time

new/usr/src/common/acpica/changes.txt 215

12629 access beyond the end-of-region. Previously, only the field size
12630 itself was checked.

12632 The Core subsystem and iASL compiler now share a common parse
12633 object in preparation for compile-time evaluation of the type
12634 3/4/5 ASL operators.

12637 --
12638 Summary of changes for this release: 03_29_02

12640 1) ACPI CA Core Subsystem Version 20020329:

12642 Implemented support for late evaluation of TermArg operands to
12643 Buffer and Package objects. This allows complex expressions to be
12644 used in the declarations of these object types.

12646 Fixed an ACPI 1.0 compatibility issue when reading Fields. In ACPI
12647 1.0, if the field was larger than 32 bits, it was returned as a
12648 buffer - otherwise it was returned as an integer. In ACPI 2.0,
12649 the field is returned as a buffer only if the field is larger than
12650 64 bits. The TableRevision is now considered when making this
12651 conversion to avoid incompatibility with existing ASL code.

12653 Implemented logical addressing for AcpiOsGetRootPointer. This
12654 allows an RSDP with either a logical or physical address. With
12655 this support, the host OS can now override all ACPI tables with
12656 one logical RSDP. Includes implementation of "typed" pointer
12657 support to allow a common data type for both physical and logical
12658 pointers internally. This required a change to the
12659 AcpiOsGetRootPointer interface.

12661 Implemented the use of ACPI 2.0 Generic Address Structures for all
12662 GPE, Fixed Event, and PM Timer I/O. This allows the use of memory
12663 mapped I/O for these ACPI features.

12665 Initialization now ignores not only non-required tables (All
12666 tables other than the FADT, FACS, DSDT, and SSDTs), but also does
12667 not validate the table headers of unrecognized tables.

12669 Fixed a problem where a notify handler could only be
12670 installed/removed on an object of type Device. All "notify"

12672 objects are now supported -- Devices, Processor, Power, and
12673 Thermal.

12675 Removed most verbosity from the ACPI_DB_INFO debug level. Only
12676 critical information is returned when this debug level is enabled.

12678 Code and Data Size: Current core subsystem library sizes are shown
12679 below. These are the code and data sizes for the acpica.lib
12680 produced by the Microsoft Visual C++ 6.0 compiler, and these
12681 values do not include any ACPI driver or OSPM code. The debug
12682 version of the code includes the debug output trace mechanism and
12683 has a larger code and data size. Note that these values will vary
12684 depending on the efficiency of the compiler and the compiler
12685 options used during generation.

12687 Previous Release
12688 Non-Debug Version: 65.4K Code, 6.2K Data, 71.6K Total
12689 Debug Version: 138.0K Code, 56.6K Data, 194.6K Total
12690 Current Release:
12691 Non-Debug Version: 66.6K Code, 6.5K Data, 73.1K Total
12692 Debug Version: 139.8K Code, 57.4K Data, 197.2K Total

new/usr/src/common/acpica/changes.txt 216

12695 2) Linux:

12697 The processor driver (acpi_processor.c) now fully supports ACPI
12698 2.0-based processor performance control (e.g. Intel(R)
12699 SpeedStep(TM) technology) Note that older laptops that only have
12700 the Intel "applet" interface are not supported through this. The
12701 ’limit’ and ’performance’ interface (/proc) are fully functional.
12702 [Note that basic policy for controlling performance state
12703 transitions will be included in the next version of ospmd.] The
12704 idle handler was modified to more aggressively use C2, and PIIX4
12705 errata handling underwent a complete overhaul (big thanks to
12706 Dominik Brodowski).

12708 Added support for ACPI-PCI device binding (acpi_pci_root.c). _ADR-
12709 based devices in the ACPI namespace are now dynamically bound
12710 (associated) with their PCI counterparts (e.g. PCI1->01:00.0).
12711 This allows, among other things, ACPI to resolve bus numbers for
12712 subordinate PCI bridges.

12714 Enhanced PCI IRQ routing to get the proper bus number for _PRT
12715 entries defined underneath PCI bridges.

12717 Added IBM 600E to bad bios list due to invalid _ADR value for
12718 PIIX4 PCI-ISA bridge, resulting in improper PCI IRQ routing.

12720 In the process of adding full MADT support (e.g. IOAPIC) for IA32
12721 (acpi.c, mpparse.c) -- stay tuned.

12723 Added back visual differentiation between fixed-feature and
12724 control-method buttons in dmesg. Buttons are also subtyped (e.g.
12725 button/power/PWRF) to simplify button identification.

12727 We no longer use -Wno-unused when compiling debug. Please ignore
12728 any "_THIS_MODULE defined but not used" messages.

12730 Can now shut down the system using "magic sysrq" key.

12733 3) iASL Compiler version 2041:

12735 Fixed a problem where conversion errors for hex/octal/decimal
12736 constants were not reported.

12738 Implemented a fix for the General Register template Address field.
12739 This field was 8 bits when it should be 64.

12741 Fixed a problem where errors/warnings were no longer being emitted
12742 within the listing output file.

12744 Implemented the ACPI 2.0A restriction on ACPI Table Signatures to
12745 exactly 4 characters, alphanumeric only.

12750 --
12751 Summary of changes for this release: 03_08_02

12754 1) ACPI CA Core Subsystem Version 20020308:

12756 Fixed a problem with AML Fields where the use of the "AccessAny"
12757 keyword could cause an interpreter error due to attempting to read
12758 or write beyond the end of the parent Operation Region.

12760 Fixed a problem in the SystemMemory Operation Region handler where

new/usr/src/common/acpica/changes.txt 217

12761 an attempt was made to map memory beyond the end of the region.
12762 This was the root cause of the "AE_ERROR" and "AE_NO_MEMORY"
12763 errors on some Linux systems.

12765 Fixed a problem where the interpreter/namespace "search to root"
12766 algorithm was not functioning for some object types. Relaxed the
12767 internal restriction on the search to allow upsearches for all
12768 external object types as well as most internal types.

12771 2) Linux:

12773 We now use safe_halt() macro versus individual calls to sti | hlt.

12775 Writing to the processor limit interface should now work. "echo 1"
12776 will increase the limit, 2 will decrease, and 0 will reset to the

12778 default.

12781 3) ASL compiler:

12783 Fixed segfault on Linux version.

12786 --
12787 Summary of changes for this release: 02_25_02

12789 1) ACPI CA Core Subsystem:

12792 Fixed a problem where the GPE bit masks were not initialized
12793 properly, causing erratic GPE behavior.

12795 Implemented limited support for multiple calling conventions. The
12796 code can be generated with either the VPL (variable parameter
12797 list, or "C") convention, or the FPL (fixed parameter list, or
12798 "Pascal") convention. The core subsystem is about 3.4% smaller
12799 when generated with FPL.

12802 2) Linux

12804 Re-add some /proc/acpi/event functionality that was lost during
12805 the rewrite

12807 Resolved issue with /proc events for fixed-feature buttons showing
12808 up as the system device.

12810 Fixed checks on C2/C3 latencies to be inclusive of maximum values.

12812 Replaced AE_ERRORs in acpi_osl.c with more specific error codes.

12814 Changed ACPI PRT option from "pci=noacpi-routing" to "pci=noacpi"

12816 Fixed limit interface & usage to fix bugs with passive cooling
12817 hysterisis.

12819 Restructured PRT support.

12822 --
12823 Summary of changes for this label: 02_14_02

12826 1) ACPI CA Core Subsystem:

new/usr/src/common/acpica/changes.txt 218

12828 Implemented support in AcpiLoadTable to allow loading of FACS and
12829 FADT tables.

12831 Suport for the now-obsolete interim 0.71 64-bit ACPI tables has
12832 been removed. All 64-bit platforms should be migrated to the ACPI
12833 2.0 tables. The actbl71.h header has been removed from the source
12834 tree.

12836 All C macros defined within the subsystem have been prefixed with
12837 "ACPI_" to avoid collision with other system include files.

12839 Removed the return value for the two AcpiOsPrint interfaces, since
12840 it is never used and causes lint warnings for ignoring the return
12841 value.

12843 Added error checking to all internal mutex acquire and release
12844 calls. Although a failure from one of these interfaces is
12845 probably a fatal system error, these checks will cause the
12846 immediate abort of the currently executing method or interface.

12848 Fixed a problem where the AcpiSetCurrentResources interface could
12849 fault. This was a side effect of the deployment of the new memory
12850 allocation model.

12852 Fixed a couple of problems with the Global Lock support introduced
12853 in the last major build. The "common" (1.0/2.0) internal FACS was
12854 being overwritten with the FACS signature and clobbering the
12855 Global Lock pointer. Also, the actual firmware FACS was being
12856 unmapped after construction of the "common" FACS, preventing
12857 access to the actual Global Lock field within it. The "common"
12858 internal FACS is no longer installed as an actual ACPI table; it
12859 is used simply as a global.

12861 Code and Data Size: Current core subsystem library sizes are shown
12862 below. These are the code and data sizes for the acpica.lib
12863 produced by the Microsoft Visual C++ 6.0 compiler, and these
12864 values do not include any ACPI driver or OSPM code. The debug
12865 version of the code includes the debug output trace mechanism and
12866 has a larger code and data size. Note that these values will vary
12867 depending on the efficiency of the compiler and the compiler
12868 options used during generation.

12870 Previous Release (02_07_01)
12871 Non-Debug Version: 65.2K Code, 6.2K Data, 71.4K Total
12872 Debug Version: 136.9K Code, 56.4K Data, 193.3K Total
12873 Current Release:
12874 Non-Debug Version: 65.4K Code, 6.2K Data, 71.6K Total
12875 Debug Version: 138.0K Code, 56.6K Data, 194.6K Total

12878 2) Linux

12880 Updated Linux-specific code for core macro and OSL interface
12881 changes described above.

12883 Improved /proc/acpi/event. It now can be opened only once and has
12884 proper poll functionality.

12886 Fixed and restructured power management (acpi_bus).

12888 Only create /proc "view by type" when devices of that class exist.

12890 Fixed "charging/discharging" bug (and others) in acpi_battery.

12892 Improved thermal zone code.

new/usr/src/common/acpica/changes.txt 219

12895 3) ASL Compiler, version X2039:

12898 Implemented the new compiler restriction on ASL String hex/octal
12899 escapes to non-null, ASCII values. An error results if an invalid
12900 value is used. (This will require an ACPI 2.0 specification
12901 change.)

12903 AML object labels that are output to the optional C and ASM source
12904 are now prefixed with both the ACPI table signature and table ID
12905 to help guarantee uniqueness within a large BIOS project.

12908 --
12909 Summary of changes for this label: 02_01_02

12911 1) ACPI CA Core Subsystem:

12913 ACPI 2.0 support is complete in the entire Core Subsystem and the
12914 ASL compiler. All new ACPI 2.0 operators are implemented and all
12915 other changes for ACPI 2.0 support are complete. With
12916 simultaneous code and data optimizations throughout the subsystem,
12917 ACPI 2.0 support has been implemented with almost no additional
12918 cost in terms of code and data size.

12920 Implemented a new mechanism for allocation of return buffers. If
12921 the buffer length is set to ACPI_ALLOCATE_BUFFER, the buffer will
12922 be allocated on behalf of the caller. Consolidated all return
12923 buffer validation and allocation to a common procedure. Return
12924 buffers will be allocated via the primary OSL allocation interface
12925 since it appears that a separate pool is not needed by most users.
12926 If a separate pool is required for these buffers, the caller can
12927 still use the original mechanism and pre-allocate the buffer(s).

12929 Implemented support for string operands within the DerefOf
12930 operator.

12932 Restructured the Hardware and Event managers to be table driven,
12933 simplifying the source code and reducing the amount of generated
12934 code.

12936 Split the common read/write low-level ACPI register bitfield
12937 procedure into a separate read and write, simplifying the code
12938 considerably.

12940 Obsoleted the AcpiOsCallocate OSL interface. This interface was
12941 used only a handful of times and didn’t have enough critical mass
12942 for a separate interface. Replaced with a common calloc procedure
12943 in the core.

12945 Fixed a reported problem with the GPE number mapping mechanism
12946 that allows GPE1 numbers to be non-contiguous with GPE0.
12947 Reorganized the GPE information and shrunk a large array that was
12948 originally large enough to hold info for all possible GPEs (256)
12949 to simply large enough to hold all GPEs up to the largest GPE
12950 number on the machine.

12952 Fixed a reported problem with resource structure alignment on 64-
12953 bit platforms.

12955 Changed the AcpiEnableEvent and AcpiDisableEvent external
12956 interfaces to not require any flags for the common case of
12957 enabling/disabling a GPE.

new/usr/src/common/acpica/changes.txt 220

12959 Implemented support to allow a "Notify" on a Processor object.

12961 Most TBDs in comments within the source code have been resolved
12962 and eliminated.

12965 Fixed a problem in the interpreter where a standalone parent
12966 prefix (^) was not handled correctly in the interpreter and
12967 debugger.

12969 Removed obsolete and unnecessary GPE save/restore code.

12971 Implemented Field support in the ASL Load operator. This allows a
12972 table to be loaded from a named field, in addition to loading a
12973 table directly from an Operation Region.

12975 Implemented timeout and handle support in the external Global Lock
12976 interfaces.

12978 Fixed a problem in the AcpiDump utility where pathnames were no
12979 longer being generated correctly during the dump of named objects.

12981 Modified the AML debugger to give a full display of if/while
12982 predicates instead of just one AML opcode at a time. (The
12983 predicate can have several nested ASL statements.) The old method
12984 was confusing during single stepping.

12986 Code and Data Size: Current core subsystem library sizes are shown
12987 below. These are the code and data sizes for the acpica.lib
12988 produced by the Microsoft Visual C++ 6.0 compiler, and these
12989 values do not include any ACPI driver or OSPM code. The debug
12990 version of the code includes the debug output trace mechanism and
12991 has a larger code and data size. Note that these values will vary
12992 depending on the efficiency of the compiler and the compiler
12993 options used during generation.

12995 Previous Release (12_18_01)
12996 Non-Debug Version: 66.1K Code, 5.5K Data, 71.6K Total
12997 Debug Version: 138.3K Code, 55.9K Data, 194.2K Total
12998 Current Release:
12999 Non-Debug Version: 65.2K Code, 6.2K Data, 71.4K Total
13000 Debug Version: 136.9K Code, 56.4K Data, 193.3K Total

13002 2) Linux

13004 Implemented fix for PIIX reverse throttling errata (Processor
13005 driver)

13007 Added new Limit interface (Processor and Thermal drivers)

13009 New thermal policy (Thermal driver)

13011 Many updates to /proc

13013 Battery "low" event support (Battery driver)

13015 Supports ACPI PCI IRQ routing (PCI Link and PCI root drivers)

13017 IA32 - IA64 initialization unification, no longer experimental

13019 Menuconfig options redesigned

13021 3) ASL Compiler, version X2037:

13023 Implemented several new output features to simplify integration of
13024 AML code into firmware: 1) Output the AML in C source code with

new/usr/src/common/acpica/changes.txt 221

13025 labels for each named ASL object. The original ASL source code
13026 is interleaved as C comments. 2) Output the AML in ASM source code
13027 with labels and interleaved ASL source. 3) Output the AML in
13028 raw hex table form, in either C or ASM.

13030 Implemented support for optional string parameters to the
13031 LoadTable operator.

13033 Completed support for embedded escape sequences within string
13034 literals. The compiler now supports all single character escapes
13035 as well as the Octal and Hex escapes. Note: the insertion of a
13036 null byte into a string literal (via the hex/octal escape) causes
13037 the string to be immediately terminated. A warning is issued.

13039 Fixed a problem where incorrect AML was generated for the case
13040 where an ASL namepath consists of a single parent prefix (

13042) with no trailing name segments.

13044 The compiler has been successfully generated with a 64-bit C
13045 compiler.

13050 --
13051 Summary of changes for this label: 12_18_01

13053 1) Linux

13055 Enhanced blacklist with reason and severity fields. Any table’s
13056 signature may now be used to identify a blacklisted system.

13058 Call _PIC control method to inform the firmware which interrupt
13059 model the OS is using. Turn on any disabled link devices.

13061 Cleaned up busmgr /proc error handling (Andreas Dilger)

13063 2) ACPI CA Core Subsystem:

13065 Implemented ACPI 2.0 semantics for the "Break" operator (Exit from
13066 while loop)

13068 Completed implementation of the ACPI 2.0 "Continue",
13069 "ConcatenateResTemplate", "DataTableRegion", and "LoadTable"
13070 operators. All new ACPI 2.0 operators are now implemented in both
13071 the ASL compiler and the AML interpreter. The only remaining ACPI
13072 2.0 task is support for the String data type in the DerefOf
13073 operator. Fixed a problem with AcquireMutex where the status code
13074 was lost if the caller had to actually wait for the mutex.

13076 Increased the maximum ASL Field size from 64K bits to 4G bits.

13078 Completed implementation of the external Global Lock interfaces --
13079 AcpiAcquireGlobalLock and AcpiReleaseGlobalLock. The Timeout and
13080 Handler parameters were added.

13082 Completed another pass at removing warnings and issues when
13083 compiling with 64-bit compilers. The code now compiles cleanly
13084 with the Intel 64-bit C/C++ compiler. Most notably, the pointer
13085 add and subtract (diff) macros have changed considerably.

13088 Created and deployed a new ACPI_SIZE type that is 64-bits wide on
13089 64-bit platforms, 32-bits on all others. This type is used
13090 wherever memory allocation and/or the C sizeof() operator is used,

new/usr/src/common/acpica/changes.txt 222

13091 and affects the OSL memory allocation interfaces AcpiOsAllocate
13092 and AcpiOsCallocate.

13094 Implemented sticky user breakpoints in the AML debugger.

13096 Code and Data Size: Current core subsystem library sizes are shown
13097 below. These are the code and data sizes for the acpica.lib
13098 produced by the Microsoft Visual C++ 6.0 compiler, and these
13099 values do not include any ACPI driver or OSPM code. The debug
13100 version of the code includes the debug output trace mechanism and
13101 has a larger code and data size. Note that these values will vary
13102 depending on the efficiency of the compiler and the compiler
13103 options used during generation.

13105 Previous Release (12_05_01)
13106 Non-Debug Version: 64.7K Code, 5.3K Data, 70.0K Total
13107 Debug Version: 136.2K Code, 55.6K Data, 191.8K Total
13108 Current Release:
13109 Non-Debug Version: 66.1K Code, 5.5K Data, 71.6K Total
13110 Debug Version: 138.3K Code, 55.9K Data, 194.2K Total

13112 3) ASL Compiler, version X2034:

13114 Now checks for (and generates an error if detected) the use of a
13115 Break or Continue statement without an enclosing While statement.

13118 Successfully generated the compiler with the Intel 64-bit C
13119 compiler.

13121 --
13122 Summary of changes for this label: 12_05_01

13124 1) ACPI CA Core Subsystem:

13126 The ACPI 2.0 CopyObject operator is fully implemented. This
13127 operator creates a new copy of an object (and is also used to
13128 bypass the "implicit conversion" mechanism of the Store operator.)

13130 The ACPI 2.0 semantics for the SizeOf operator are fully
13131 implemented. The change is that performing a SizeOf on a
13132 reference object causes an automatic dereference of the object to
13133 tha actual value before the size is evaluated. This behavior was
13134 undefined in ACPI 1.0.

13136 The ACPI 2.0 semantics for the Extended IRQ resource descriptor
13137 have been implemented. The interrupt polarity and mode are now
13138 independently set.

13140 Fixed a problem where ASL Constants (Zero, One, Ones, Revision)
13141 appearing in Package objects were not properly converted to
13142 integers when the internal Package was converted to an external
13143 object (via the AcpiEvaluateObject interface.)

13145 Fixed a problem with the namespace object deletion mechanism for
13146 objects created by control methods. There were two parts to this
13147 problem: 1) Objects created during the initialization phase method
13148 parse were not being deleted, and 2) The object owner ID mechanism
13149 to track objects was broken.

13151 Fixed a problem where the use of the ASL Scope operator within a
13152 control method would result in an invalid opcode exception.

13154 Fixed a problem introduced in the previous label where the buffer
13155 length required for the _PRT structure was not being returned
13156 correctly.

new/usr/src/common/acpica/changes.txt 223

13158 Code and Data Size: Current core subsystem library sizes are shown
13159 below. These are the code and data sizes for the acpica.lib
13160 produced by the Microsoft Visual C++ 6.0 compiler, and these
13161 values do not include any ACPI driver or OSPM code. The debug
13162 version of the code includes the debug output trace mechanism and
13163 has a larger code and data size. Note that these values will vary
13164 depending on the efficiency of the compiler and the compiler
13165 options used during generation.

13167 Previous Release (11_20_01)
13168 Non-Debug Version: 64.1K Code, 5.3K Data, 69.4K Total
13169 Debug Version: 135.1K Code, 55.4K Data, 190.5K Total

13171 Current Release:
13172 Non-Debug Version: 64.7K Code, 5.3K Data, 70.0K Total
13173 Debug Version: 136.2K Code, 55.6K Data, 191.8K Total

13175 2) Linux:

13177 Updated all files to apply cleanly against 2.4.16.

13179 Added basic PCI Interrupt Routing Table (PRT) support for IA32
13180 (acpi_pci.c), and unified the PRT code for IA32 and IA64. This
13181 version supports both static and dyanmic PRT entries, but dynamic
13182 entries are treated as if they were static (not yet
13183 reconfigurable). Architecture- specific code to use this data is
13184 absent on IA32 but should be available shortly.

13186 Changed the initialization sequence to start the ACPI interpreter
13187 (acpi_init) prior to initialization of the PCI driver (pci_init)
13188 in init/main.c. This ordering is required to support PRT and
13189 facilitate other (future) enhancement. A side effect is that the
13190 ACPI bus driver and certain device drivers can no longer be loaded
13191 as modules.

13193 Modified the ’make menuconfig’ options to allow PCI Interrupt
13194 Routing support to be included without the ACPI Bus and other
13195 device drivers.

13197 3) ASL Compiler, version X2033:

13199 Fixed some issues with the use of the new CopyObject and
13200 DataTableRegion operators. Both are fully functional.

13202 --
13203 Summary of changes for this label: 11_20_01

13205 20 November 2001. Summary of changes for this release.

13207 1) ACPI CA Core Subsystem:

13209 Updated Index support to match ACPI 2.0 semantics. Storing a
13210 Integer, String, or Buffer to an Index of a Buffer will store only
13211 the least-significant byte of the source to the Indexed buffer
13212 byte. Multiple writes are not performed.

13214 Fixed a problem where the access type used in an AccessAs ASL
13215 operator was not recorded correctly into the field object.

13217 Fixed a problem where ASL Event objects were created in a
13218 signalled state. Events are now created in an unsignalled state.

13220 The internal object cache is now purged after table loading and
13221 initialization to reduce the use of dynamic kernel memory -- on
13222 the assumption that object use is greatest during the parse phase

new/usr/src/common/acpica/changes.txt 224

13223 of the entire table (versus the run-time use of individual control
13224 methods.)

13226 ACPI 2.0 variable-length packages are now fully operational.

13228 Code and Data Size: Code and Data optimizations have permitted new
13229 feature development with an actual reduction in the library size.
13230 Current core subsystem library sizes are shown below. These are
13231 the code and data sizes for the acpica.lib produced by the
13232 Microsoft Visual C++ 6.0 compiler, and these values do not include
13233 any ACPI driver or OSPM code. The debug version of the code
13234 includes the debug output trace mechanism and has a larger code
13235 and data size. Note that these values will vary depending on the
13236 efficiency of the compiler and the compiler options used during
13237 generation.

13239 Previous Release (11_09_01):
13240 Non-Debug Version: 63.7K Code, 5.2K Data, 68.9K Total
13241 Debug Version: 134.5K Code, 55.4K Data, 189.9K Total

13243 Current Release:
13244 Non-Debug Version: 64.1K Code, 5.3K Data, 69.4K Total
13245 Debug Version: 135.1K Code, 55.4K Data, 190.5K Total

13247 2) Linux:

13249 Enhanced the ACPI boot-time initialization code to allow the use
13250 of Local APIC tables for processor enumeration on IA-32, and to
13251 pave the way for a fully MPS-free boot (on SMP systems) in the
13252 near future. This functionality replaces
13253 arch/i386/kernel/acpitables.c, which was introduced in an earlier
13254 2.4.15-preX release. To enable this feature you must add
13255 "acpi_boot=on" to the kernel command line -- see the help entry
13256 for CONFIG_ACPI_BOOT for more information. An IA-64 release is in
13257 the works...

13259 Restructured the configuration options to allow boot-time table
13260 parsing support without inclusion of the ACPI Interpreter (and
13261 other) code.

13263 NOTE: This release does not include fixes for the reported events,
13264 power-down, and thermal passive cooling issues (coming soon).

13266 3) ASL Compiler:

13268 Added additional typechecking for Fields within restricted access
13269 Operation Regions. All fields within EC and CMOS regions must be
13270 declared with ByteAcc. All fields withing SMBus regions must be
13271 declared with the BufferAcc access type.

13273 Fixed a problem where the listing file output of control methods
13274 no longer interleaved the actual AML code with the ASL source
13275 code.

13280 --
13281 Summary of changes for this label: 11_09_01

13283 1) ACPI CA Core Subsystem:

13285 Implemented ACPI 2.0-defined support for writes to fields with a
13286 Buffer, String, or Integer source operand that is smaller than the
13287 target field. In these cases, the source operand is zero-extended
13288 to fill the target field.

new/usr/src/common/acpica/changes.txt 225

13290 Fixed a problem where a Field starting bit offset (within the
13291 parent operation region) was calculated incorrectly if the

13293 alignment of the field differed from the access width. This
13294 affected CreateWordField, CreateDwordField, CreateQwordField, and
13295 possibly other fields that use the "AccessAny" keyword.

13297 Fixed a problem introduced in the 11_02_01 release where indirect
13298 stores through method arguments did not operate correctly.

13300 2) Linux:

13302 Implemented boot-time ACPI table parsing support
13303 (CONFIG_ACPI_BOOT) for IA32 and IA64 UP/SMP systems. This code
13304 facilitates the use of ACPI tables (e.g. MADT, SRAT) rather than
13305 legacy BIOS interfaces (e.g. MPS) for the configuration of system
13306 processors, memory, and interrupts during setup_arch(). Note that
13307 this patch does not include the required architecture-specific
13308 changes required to apply this information -- subsequent patches
13309 will be posted for both IA32 and IA64 to achieve this.

13311 Added low-level sleep support for IA32 platforms, courtesy of Pat
13312 Mochel. This allows IA32 systems to transition to/from various
13313 sleeping states (e.g. S1, S3), although the lack of a centralized
13314 driver model and power-manageable drivers will prevent its
13315 (successful) use on most systems.

13317 Revamped the ACPI ’menuconfig’ layout: created new "ACPI Support"
13318 submenu, unified IA32 and IA64 options, added new "Boot using ACPI
13319 tables" option, etc.

13321 Increased the default timeout for the EC driver from 1ms to 10ms
13322 (1000 cycles of 10us) to try to address AE_TIME errors during EC
13323 transactions.

13325 --
13326 Summary of changes for this label: 11_02_01

13328 1) ACPI CA Core Subsystem:

13330 ACPI 2.0 Support: Implemented ACPI 2.0 64-bit Field access
13331 (QWordAcc keyword). All ACPI 2.0 64-bit support is now
13332 implemented.

13334 OSL Interfaces: Several of the OSL (AcpiOs*) interfaces required
13335 changes to support ACPI 2.0 Qword field access. Read/Write
13336 PciConfiguration(), Read/Write Memory(), and Read/Write Port() now
13337 accept an ACPI_INTEGER (64 bits) as the value parameter. Also,
13338 the value parameter for the address space handler interface is now
13339 an ACPI_INTEGER. OSL implementations of these interfaces must now
13340 handle the case where the Width parameter is 64.

13342 Index Fields: Fixed a problem where unaligned bit assembly and
13343 disassembly for IndexFields was not supported correctly.

13345 Index and Bank Fields: Nested Index and Bank Fields are now
13346 supported. During field access, a check is performed to ensure
13347 that the value written to an Index or Bank register is not out of
13348 the range of the register. The Index (or Bank) register is
13349 written before each access to the field data. Future support will
13350 include allowing individual IndexFields to be wider than the
13351 DataRegister width.

13353 Fields: Fixed a problem where the AML interpreter was incorrectly
13354 attempting to write beyond the end of a Field/OpRegion. This was

new/usr/src/common/acpica/changes.txt 226

13355 a boundary case that occurred when a DWORD field was written to a
13356 BYTE access OpRegion, forcing multiple writes and causing the
13357 interpreter to write one datum too many.

13359 Fields: Fixed a problem with Field/OpRegion access where the
13360 starting bit address of a field was incorrectly calculated if the
13361 current access type was wider than a byte (WordAcc, DwordAcc, or
13362 QwordAcc).

13364 Fields: Fixed a problem where forward references to individual
13365 FieldUnits (individual Field names within a Field definition) were
13366 not resolved during the AML table load.

13368 Fields: Fixed a problem where forward references from a Field
13369 definition to the parent Operation Region definition were not
13370 resolved during the AML table load.

13372 Fields: Duplicate FieldUnit names within a scope are now detected
13373 during AML table load.

13375 Acpi Interfaces: Fixed a problem where the AcpiGetName() interface
13376 returned an incorrect name for the root node.

13378 Code and Data Size: Code and Data optimizations have permitted new
13379 feature development with an actual reduction in the library size.
13380 Current core subsystem library sizes are shown below. These are
13381 the code and data sizes for the acpica.lib produced by the
13382 Microsoft Visual C++ 6.0 compiler, and these values do not include
13383 any ACPI driver or OSPM code. The debug version of the code
13384 includes the debug output trace mechanism and has a larger code
13385 and data size. Note that these values will vary depending on the
13386 efficiency of the compiler and the compiler options used during
13387 generation.

13389 Previous Release (10_18_01):
13390 Non-Debug Version: 63.9K Code, 5.1K Data, 69.0K Total
13391 Debug Version: 136.7K Code, 57.4K Data, 194.2K Total

13393 Current Release:
13394 Non-Debug Version: 63.7K Code, 5.2K Data, 68.9K Total
13395 Debug Version: 134.5K Code, 55.4K Data, 189.9K Total

13397 2) Linux:

13399 Improved /proc processor output (Pavel Machek) Re-added
13400 MODULE_LICENSE("GPL") to all modules.

13402 3) ASL Compiler version X2030:

13404 Duplicate FieldUnit names within a scope are now detected and
13405 flagged as errors.

13407 4) Documentation:

13409 Programmer Reference updated to reflect OSL and address space
13410 handler interface changes described above.

13412 --
13413 Summary of changes for this label: 10_18_01

13415 ACPI CA Core Subsystem:

13417 Fixed a problem with the internal object reference count mechanism
13418 that occasionally caused premature object deletion. This resolves
13419 all of the outstanding problem reports where an object is deleted
13420 in the middle of an interpreter evaluation. Although this problem

new/usr/src/common/acpica/changes.txt 227

13421 only showed up in rather obscure cases, the solution to the
13422 problem involved an adjustment of all reference counts involving
13423 objects attached to namespace nodes.

13425 Fixed a problem with Field support in the interpreter where
13426 writing to an aligned field whose length is an exact multiple (2
13427 or greater) of the field access granularity would cause an attempt
13428 to write beyond the end of the field.

13430 The top level AML opcode execution functions within the
13431 interpreter have been renamed with a more meaningful and
13432 consistent naming convention. The modules exmonad.c and
13433 exdyadic.c were eliminated. New modules are exoparg1.c,
13434 exoparg2.c, exoparg3.c, and exoparg6.c.

13436 Support for the ACPI 2.0 "Mid" ASL operator has been implemented.

13438 Fixed a problem where the AML debugger was causing some internal
13439 objects to not be deleted during subsystem termination.

13441 Fixed a problem with the external AcpiEvaluateObject interface
13442 where the subsystem would fault if the named object to be
13443 evaluated refered to a constant such as Zero, Ones, etc.

13445 Fixed a problem with IndexFields and BankFields where the
13446 subsystem would fault if the index, data, or bank registers were
13447 not defined in the same scope as the field itself.

13449 Added printf format string checking for compilers that support
13450 this feature. Corrected more than 50 instances of issues with
13451 format specifiers within invocations of ACPI_DEBUG_PRINT
13452 throughout the core subsystem code.

13454 The ASL "Revision" operator now returns the ACPI support level
13455 implemented in the core - the value "2" since the ACPI 2.0 support
13456 is more than 50% implemented.

13458 Enhanced the output of the AML debugger "dump namespace" command
13459 to output in a more human-readable form.

13461 Current core subsystem library code sizes are shown below. These

13463 are the code and data sizes for the acpica.lib produced by the
13464 Microsoft Visual C++ 6.0 compiler, and these values do not include
13465 any ACPI driver or OSPM code. The debug version of the code
13466 includes the full debug trace mechanism -- leading to a much

13468 larger code and data size. Note that these values will vary
13469 depending on the efficiency of the compiler and the compiler
13470 options used during generation.

13472 Previous Label (09_20_01):
13473 Non-Debug Version: 65K Code, 5K Data, 70K Total
13474 Debug Version: 138K Code, 58K Data, 196K Total

13476 This Label:

13478 Non-Debug Version: 63.9K Code, 5.1K Data, 69.0K Total
13479 Debug Version: 136.7K Code, 57.4K Data, 194.2K Total

13481 Linux:

13483 Implemented a "Bad BIOS Blacklist" to track machines that have
13484 known ASL/AML problems.

13486 Enhanced the /proc interface for the thermal zone driver and added

new/usr/src/common/acpica/changes.txt 228

13487 support for _HOT (the critical suspend trip point). The ’info’
13488 file now includes threshold/policy information, and allows setting
13489 of _SCP (cooling preference) and _TZP (polling frequency) values
13490 to the ’info’ file. Examples: "echo tzp=5 > info" sets the polling
13491 frequency to 5 seconds, and "echo scp=1 > info" sets the cooling
13492 preference to the passive/quiet mode (if supported by the ASL).

13494 Implemented a workaround for a gcc bug that resuted in an OOPs
13495 when loading the control method battery driver.

13497 --
13498 Summary of changes for this label: 09_20_01

13500 ACPI CA Core Subsystem:

13502 The AcpiEnableEvent and AcpiDisableEvent interfaces have been
13503 modified to allow individual GPE levels to be flagged as wake-
13504 enabled (i.e., these GPEs are to remain enabled when the platform
13505 sleeps.)

13507 The AcpiEnterSleepState and AcpiLeaveSleepState interfaces now
13508 support wake-enabled GPEs. This means that upon entering the
13509 sleep state, all GPEs that are not wake-enabled are disabled.
13510 When leaving the sleep state, these GPEs are reenabled.

13512 A local double-precision divide/modulo module has been added to
13513 enhance portability to OS kernels where a 64-bit math library is
13514 not available. The new module is "utmath.c".

13516 Several optimizations have been made to reduce the use of CPU
13517 stack. Originally over 2K, the maximum stack usage is now below
13518 2K at 1860 bytes (1.82k)

13520 Fixed a problem with the AcpiGetFirmwareTable interface where the
13521 root table pointer was not mapped into a logical address properly.

13523 Fixed a problem where a NULL pointer was being dereferenced in the
13524 interpreter code for the ASL Notify operator.

13526 Fixed a problem where the use of the ASL Revision operator
13527 returned an error. This operator now returns the current version
13528 of the ACPI CA core subsystem.

13530 Fixed a problem where objects passed as control method parameters
13531 to AcpiEvaluateObject were always deleted at method termination.
13532 However, these objects may end up being stored into the namespace
13533 by the called method. The object reference count mechanism was
13534 applied to these objects instead of a force delete.

13536 Fixed a problem where static strings or buffers (contained in the
13537 AML code) that are declared as package elements within the ASL
13538 code could cause a fault because the interpreter would attempt to
13539 delete them. These objects are now marked with the "static
13540 object" flag to prevent any attempt to delete them.

13542 Implemented an interpreter optimization to use operands directly
13543 from the state object instead of extracting the operands to local
13544 variables. This reduces stack use and code size, and improves
13545 performance.

13547 The module exxface.c was eliminated as it was an unnecessary extra
13548 layer of code.

13550 Current core subsystem library code sizes are shown below. These
13551 are the code and data sizes for the acpica.lib produced by the
13552 Microsoft Visual C++ 6.0 compiler, and these values do not include

new/usr/src/common/acpica/changes.txt 229

13553 any ACPI driver or OSPM code. The debug version of the code
13554 includes the full debug trace mechanism -- leading to a much
13555 larger code and data size. Note that these values will vary
13556 depending on the efficiency of the compiler and the compiler
13557 options used during generation.

13559 Non-Debug Version: 65K Code, 5K Data, 70K Total
13560 (Previously 69K) Debug Version: 138K Code, 58K Data, 196K
13561 Total (Previously 195K)

13563 Linux:

13565 Support for ACPI 2.0 64-bit integers has been added. All ACPI
13566 Integer objects are now 64 bits wide

13568 All Acpi data types and structures are now in lower case. Only
13569 Acpi macros are upper case for differentiation.

13571 Documentation:

13573 Changes to the external interfaces as described above.

13575 --
13576 Summary of changes for this label: 08_31_01

13578 ACPI CA Core Subsystem:

13580 A bug with interpreter implementation of the ASL Divide operator
13581 was found and fixed. The implicit function return value (not the
13582 explicit store operands) was returning the remainder instead of
13583 the quotient. This was a longstanding bug and it fixes several
13584 known outstanding issues on various platforms.

13586 The ACPI_DEBUG_PRINT and function trace entry/exit macros have
13587 been further optimized for size. There are 700 invocations of the
13588 DEBUG_PRINT macro alone, so each optimization reduces the size of
13589 the debug version of the subsystem significantly.

13591 A stack trace mechanism has been implemented. The maximum stack
13592 usage is about 2K on 32-bit platforms. The debugger command "stat
13593 stack" will display the current maximum stack usage.

13595 All public symbols and global variables within the subsystem are
13596 now prefixed with the string "Acpi". This keeps all of the
13597 symbols grouped together in a kernel map, and avoids conflicts
13598 with other kernel subsystems.

13600 Most of the internal fixed lookup tables have been moved into the
13601 code segment via the const operator.

13603 Several enhancements have been made to the interpreter to both
13604 reduce the code size and improve performance.

13606 Current core subsystem library code sizes are shown below. These
13607 are the code and data sizes for the acpica.lib produced by the
13608 Microsoft Visual C++ 6.0 compiler, and these values do not include
13609 any ACPI driver or OSPM code. The debug version of the code
13610 includes the full debug trace mechanism which contains over 700
13611 invocations of the DEBUG_PRINT macro, 500 function entry macro
13612 invocations, and over 900 function exit macro invocations --
13613 leading to a much larger code and data size. Note that these
13614 values will vary depending on the efficiency of the compiler and
13615 the compiler options used during generation.

13617 Non-Debug Version: 64K Code, 5K Data, 69K Total
13618 Debug Version: 137K Code, 58K Data, 195K Total

new/usr/src/common/acpica/changes.txt 230

13620 Linux:

13622 Implemented wbinvd() macro, pending a kernel-wide definition.

13624 Fixed /proc/acpi/event to handle poll() and short reads.

13626 ASL Compiler, version X2026:

13628 Fixed a problem introduced in the previous label where the AML

13630 code emitted for package objects produced packages with zero
13631 length.

13633 --
13634 Summary of changes for this label: 08_16_01

13636 ACPI CA Core Subsystem:

13638 The following ACPI 2.0 ASL operators have been implemented in the
13639 AML interpreter (These are already supported by the Intel ASL
13640 compiler): ToDecimalString, ToHexString, ToString, ToInteger, and
13641 ToBuffer. Support for 64-bit AML constants is implemented in the
13642 AML parser, debugger, and disassembler.

13644 The internal memory tracking mechanism (leak detection code) has
13645 been upgraded to reduce the memory overhead (a separate tracking
13646 block is no longer allocated for each memory allocation), and now
13647 supports all of the internal object caches.

13649 The data structures and code for the internal object caches have
13650 been coelesced and optimized so that there is a single cache and
13651 memory list data structure and a single group of functions that
13652 implement generic cache management. This has reduced the code
13653 size in both the debug and release versions of the subsystem.

13655 The DEBUG_PRINT macro(s) have been optimized for size and replaced
13656 by ACPI_DEBUG_PRINT. The syntax for this macro is slightly
13657 different, because it generates a single call to an internal
13658 function. This results in a savings of about 90 bytes per
13659 invocation, resulting in an overall code and data savings of about
13660 16% in the debug version of the subsystem.

13662 Linux:

13664 Fixed C3 disk corruption problems and re-enabled C3 on supporting
13665 machines.

13667 Integrated low-level sleep code by Patrick Mochel.

13669 Further tweaked source code Linuxization.

13671 Other minor fixes.

13673 ASL Compiler:

13675 Support for ACPI 2.0 variable length packages is fixed/completed.

13677 Fixed a problem where the optional length parameter for the ACPI
13678 2.0 ToString operator.

13680 Fixed multiple extraneous error messages when a syntax error is
13681 detected within the declaration line of a control method.

13683 --
13684 Summary of changes for this label: 07_17_01

new/usr/src/common/acpica/changes.txt 231

13686 ACPI CA Core Subsystem:

13688 Added a new interface named AcpiGetFirmwareTable to obtain any
13689 ACPI table via the ACPI signature. The interface can be called at
13690 any time during kernel initialization, even before the kernel
13691 virtual memory manager is initialized and paging is enabled. This
13692 allows kernel subsystems to obtain ACPI tables very early, even
13693 before the ACPI CA subsystem is initialized.

13695 Fixed a problem where Fields defined with the AnyAcc attribute
13696 could be resolved to the incorrect address under the following
13697 conditions: 1) the field width is larger than 8 bits and 2) the
13698 parent operation region is not defined on a DWORD boundary.

13700 Fixed a problem where the interpreter is not being locked during
13701 namespace initialization (during execution of the _INI control
13702 methods), causing an error when an attempt is made to release it
13703 later.

13705 ACPI 2.0 support in the AML Interpreter has begun and will be
13706 ongoing throughout the rest of this year. In this label, The Mod
13707 operator is implemented.

13709 Added a new data type to contain full PCI addresses named
13710 ACPI_PCI_ID. This structure contains the PCI Segment, Bus, Device,
13711 and Function values.

13713 Linux:

13715 Enhanced the Linux version of the source code to change most
13716 capitalized ACPI type names to lowercase. For example, all
13717 instances of ACPI_STATUS are changed to acpi_status. This will
13718 result in a large diff, but the change is strictly cosmetic and
13719 aligns the CA code closer to the Linux coding standard.

13721 OSL Interfaces:

13723 The interfaces to the PCI configuration space have been changed to
13724 add the PCI Segment number and to split the single 32-bit combined
13725 DeviceFunction field into two 16-bit fields. This was
13726 accomplished by moving the four values that define an address in
13727 PCI configuration space (segment, bus, device, and function) to
13728 the new ACPI_PCI_ID structure.

13730 The changes to the PCI configuration space interfaces led to a
13731 reexamination of the complete set of address space access
13732 interfaces for PCI, I/O, and Memory. The previously existing 18
13733 interfaces have proven difficult to maintain (any small change
13734 must be propagated across at least 6 interfaces) and do not easily
13735 allow for future expansion to 64 bits if necessary. Also, on some
13736 systems, it would not be appropriate to demultiplex the access
13737 width (8, 16, 32,or 64) before calling the OSL if the
13738 corresponding native OS interfaces contain a similar access width
13739 parameter. For these reasons, the 18 address space interfaces
13740 have been replaced by these 6 new ones:

13742 AcpiOsReadPciConfiguration
13743 AcpiOsWritePciConfiguration
13744 AcpiOsReadMemory
13745 AcpiOsWriteMemory
13746 AcpiOsReadPort
13747 AcpiOsWritePort

13749 Added a new interface named AcpiOsGetRootPointer to allow the OSL
13750 to perform the platform and/or OS-specific actions necessary to

new/usr/src/common/acpica/changes.txt 232

13751 obtain the ACPI RSDP table pointer. On IA-32 platforms, this
13752 interface will simply call down to the CA core to perform the low-
13753 memory search for the table. On IA-64, the RSDP is obtained from
13754 EFI. Migrating this interface to the OSL allows the CA core to

13756 remain OS and platform independent.

13758 Added a new interface named AcpiOsSignal to provide a generic
13759 "function code and pointer" interface for various miscellaneous
13760 signals and notifications that must be made to the host OS. The
13761 first such signals are intended to support the ASL Fatal and
13762 Breakpoint operators. In the latter case, the AcpiOsBreakpoint
13763 interface has been obsoleted.

13765 The definition of the AcpiFormatException interface has been
13766 changed to simplify its use. The caller no longer must supply a
13767 buffer to the call; A pointer to a const string is now returned
13768 directly. This allows the call to be easily used in printf
13769 statements, etc. since the caller does not have to manage a local
13770 buffer.

13773 ASL Compiler, Version X2025:

13775 The ACPI 2.0 Switch/Case/Default operators have been implemented
13776 and are fully functional. They will work with all ACPI 1.0
13777 interpreters, since the operators are simply translated to If/Else
13778 pairs.

13780 The ACPI 2.0 ElseIf operator is implemented and will also work
13781 with 1.0 interpreters, for the same reason.

13783 Implemented support for ACPI 2.0 variable-length packages. These
13784 packages have a separate opcode, and their size is determined by
13785 the interpreter at run-time.

13787 Documentation The ACPI CA Programmer Reference has been updated to
13788 reflect the new interfaces and changes to existing interfaces.

13790 --
13791 Summary of changes for this label: 06_15_01

13793 ACPI CA Core Subsystem:

13795 Fixed a problem where a DWORD-accessed field within a Buffer
13796 object would get its byte address inadvertently rounded down to
13797 the nearest DWORD. Buffers are always Byte-accessible.

13799 ASL Compiler, version X2024:

13801 Fixed a problem where the Switch() operator would either fault or
13802 hang the compiler. Note however, that the AML code for this ACPI
13803 2.0 operator is not yet implemented.

13805 Compiler uses the new AcpiOsGetTimer interface to obtain compile
13806 timings.

13808 Implementation of the CreateField operator automatically converts
13809 a reference to a named field within a resource descriptor from a
13810 byte offset to a bit offset if required.

13812 Added some missing named fields from the resource descriptor
13813 support. These are the names that are automatically created by the
13814 compiler to reference fields within a descriptor. They are only
13815 valid at compile time and are not passed through to the AML
13816 interpreter.

new/usr/src/common/acpica/changes.txt 233

13818 Resource descriptor named fields are now typed as Integers and
13819 subject to compile-time typechecking when used in expressions.

13821 --
13822 Summary of changes for this label: 05_18_01

13824 ACPI CA Core Subsystem:

13826 Fixed a couple of problems in the Field support code where bits
13827 from adjacent fields could be returned along with the proper field
13828 bits. Restructured the field support code to improve performance,
13829 readability and maintainability.

13831 New DEBUG_PRINTP macro automatically inserts the procedure name
13832 into the output, saving hundreds of copies of procedure name
13833 strings within the source, shrinking the memory footprint of the
13834 debug version of the core subsystem.

13836 Source Code Structure:

13838 The source code directory tree was restructured to reflect the
13839 current organization of the component architecture. Some files
13840 and directories have been moved and/or renamed.

13842 Linux:

13844 Fixed leaking kacpidpc processes.

13846 Fixed queueing event data even when /proc/acpi/event is not
13847 opened.

13849 ASL Compiler, version X2020:

13851 Memory allocation performance enhancement - over 24X compile time
13852 improvement on large ASL files. Parse nodes and namestring
13853 buffers are now allocated from a large internal compiler buffer.

13855 The temporary .SRC file is deleted unless the "-s" option is
13856 specified

13858 The "-d" debug output option now sends all output to the .DBG file
13859 instead of the console.

13861 "External" second parameter is now optional

13863 "ElseIf" syntax now properly allows the predicate

13865 Last operand to "Load" now recognized as a Target operand

13867 Debug object can now be used anywhere as a normal object.

13869 ResourceTemplate now returns an object of type BUFFER

13871 EISAID now returns an object of type INTEGER

13873 "Index" now works with a STRING operand

13875 "LoadTable" now accepts optional parameters

13877 "ToString" length parameter is now optional

13879 "Interrupt (ResourceType," parse error fixed.

13881 "Register" with a user-defined region space parse error fixed

new/usr/src/common/acpica/changes.txt 234

13883 Escaped backslash at the end of a string ("\\") scan/parse error
13884 fixed

13886 "Revision" is now an object of type INTEGER.

13890 --
13891 Summary of changes for this label: 05_02_01

13893 Linux:

13895 /proc/acpi/event now blocks properly.

13897 Removed /proc/sys/acpi. You can still dump your DSDT from
13898 /proc/acpi/dsdt.

13900 ACPI CA Core Subsystem:

13902 Fixed a problem introduced in the previous label where some of the
13903 "small" resource descriptor types were not recognized.

13905 Improved error messages for the case where an ASL Field is outside
13906 the range of the parent operation region.

13908 ASL Compiler, version X2018:

13911 Added error detection for ASL Fields that extend beyond the length
13912 of the parent operation region (only if the length of the region
13913 is known at compile time.) This includes fields that have a
13914 minimum access width that is smaller than the parent region, and
13915 individual field units that are partially or entirely beyond the
13916 extent of the parent.

13920 --
13921 Summary of changes for this label: 04_27_01

13923 ACPI CA Core Subsystem:

13925 Fixed a problem where the namespace mutex could be released at the
13926 wrong time during execution of AcpiRemoveAddressSpaceHandler.

13928 Added optional thread ID output for debug traces, to simplify
13929 debugging of multiple threads. Added context switch notification
13930 when the debug code realizes that a different thread is now
13931 executing ACPI code.

13933 Some additional external data types have been prefixed with the
13934 string "ACPI_" for consistency. This may effect existing code.
13935 The data types affected are the external callback typedefs - e.g.,

13937 WALK_CALLBACK becomes ACPI_WALK_CALLBACK.

13939 Linux:

13941 Fixed an issue with the OSL semaphore implementation where a
13942 thread was waking up with an error from receiving a SIGCHLD
13943 signal.

13945 Linux version of ACPI CA now uses the system C library for string
13946 manipulation routines instead of a local implementation.

13948 Cleaned up comments and removed TBDs.

new/usr/src/common/acpica/changes.txt 235

13950 ASL Compiler, version X2017:

13952 Enhanced error detection and reporting for all file I/O
13953 operations.

13955 Documentation:

13957 Programmer Reference updated to version 1.06.

13961 --
13962 Summary of changes for this label: 04_13_01

13964 ACPI CA Core Subsystem:

13966 Restructured support for BufferFields and RegionFields.
13967 BankFields support is now fully operational. All known 32-bit
13968 limitations on field sizes have been removed. Both BufferFields
13969 and (Operation) RegionFields are now supported by the same field
13970 management code.

13972 Resource support now supports QWORD address and IO resources. The
13973 16/32/64 bit address structures and the Extended IRQ structure
13974 have been changed to properly handle Source Resource strings.

13976 A ThreadId of -1 is now used to indicate a "mutex not acquired"
13977 condition internally and must never be returned by AcpiOsThreadId.
13978 This reserved value was changed from 0 since Unix systems allow a
13979 thread ID of 0.

13981 Linux:

13983 Driver code reorganized to enhance portability

13985 Added a kernel configuration option to control ACPI_DEBUG

13987 Fixed the EC driver to honor _GLK.

13989 ASL Compiler, version X2016:

13991 Fixed support for the "FixedHw" keyword. Previously, the FixedHw
13992 address space was set to 0, not 0x7f as it should be.

13994 --
13995 Summary of changes for this label: 03_13_01

13997 ACPI CA Core Subsystem:

13999 During ACPI initialization, the _SB_._INI method is now run if
14000 present.

14002 Notify handler fix - notifies are deferred until the parent method
14003 completes execution. This fixes the "mutex already acquired"
14004 issue seen occasionally.

14006 Part of the "implicit conversion" rules in ACPI 2.0 have been
14007 found to cause compatibility problems with existing ASL/AML. The
14008 convert "result-to-target-type" implementation has been removed
14009 for stores to method Args and Locals. Source operand conversion
14010 is still fully implemented. Possible changes to ACPI 2.0
14011 specification pending.

14013 Fix to AcpiRsCalculatePciRoutingTableLength to return correct
14014 length.

new/usr/src/common/acpica/changes.txt 236

14016 Fix for compiler warnings for 64-bit compiles.

14018 Linux:

14020 /proc output aligned for easier parsing.

14022 Release-version compile problem fixed.

14024 New kernel configuration options documented in Configure.help.

14026 IBM 600E - Fixed Sleep button may generate "Invalid <NULL>
14027 context" message.

14029 OSPM:

14031 Power resource driver integrated with bus manager.

14033 Fixed kernel fault during active cooling for thermal zones.

14035 Source Code:

14037 The source code tree has been restructured.

14041 --
14042 Summary of changes for this label: 03_02_01

14044 Linux OS Services Layer (OSL):

14046 Major revision of all Linux-specific code.

14048 Modularized all ACPI-specific drivers.

14050 Added new thermal zone and power resource drivers.

14052 Revamped /proc interface (new functionality is under /proc/acpi).

14054 New kernel configuration options.

14056 Linux known issues:

14058 New kernel configuration options not documented in Configure.help
14059 yet.

14062 Module dependencies not currently implemented. If used, they
14063 should be loaded in this order: busmgr, power, ec, system,
14064 processor, battery, ac_adapter, button, thermal.

14066 Modules will not load if CONFIG_MODVERSION is set.

14068 IBM 600E - entering S5 may reboot instead of shutting down.

14070 IBM 600E - Sleep button may generate "Invalid <NULL> context"
14071 message.

14073 Some systems may fail with "execution mutex already acquired"
14074 message.

14076 ACPI CA Core Subsystem:

14078 Added a new OSL Interface, AcpiOsGetThreadId. This was required
14079 for the deadlock detection code. Defined to return a non-zero, 32-
14080 bit thread ID for the currently executing thread. May be a non-

new/usr/src/common/acpica/changes.txt 237

14081 zero constant integer on single-thread systems.

14083 Implemented deadlock detection for internal subsystem mutexes. We
14084 may add conditional compilation for this code (debug only) later.

14086 ASL/AML Mutex object semantics are now fully supported. This
14087 includes multiple acquires/releases by owner and support for the

14089 Mutex SyncLevel parameter.

14091 A new "Force Release" mechanism automatically frees all ASL
14092 Mutexes that have been acquired but not released when a thread
14093 exits the interpreter. This forces conformance to the ACPI spec
14094 ("All mutexes must be released when an invocation exits") and
14095 prevents deadlocked ASL threads. This mechanism can be expanded
14096 (later) to monitor other resource acquisitions if OEM ASL code
14097 continues to misbehave (which it will).

14099 Several new ACPI exception codes have been added for the Mutex
14100 support.

14102 Recursive method calls are now allowed and supported (the ACPI
14103 spec does in fact allow recursive method calls.) The number of
14104 recursive calls is subject to the restrictions imposed by the
14105 SERIALIZED method keyword and SyncLevel (ACPI 2.0) method
14106 parameter.

14108 Implemented support for the SyncLevel parameter for control
14109 methods (ACPI 2.0 feature)

14111 Fixed a deadlock problem when multiple threads attempted to use
14112 the interpreter.

14114 Fixed a problem where the string length of a String package
14115 element was not always set in a package returned from
14116 AcpiEvaluateObject.

14118 Fixed a problem where the length of a String package element was
14119 not always included in the length of the overall package returned
14120 from AcpiEvaluateObject.

14122 Added external interfaces (Acpi*) to the ACPI debug memory
14123 manager. This manager keeps a list of all outstanding
14124 allocations, and can therefore detect memory leaks and attempts to
14125 free memory blocks more than once. Useful for code such as the
14126 power manager, etc. May not be appropriate for device drivers.
14127 Performance with the debug code enabled is slow.

14129 The ACPI Global Lock is now an optional hardware element.

14131 ASL Compiler Version X2015:

14133 Integrated changes to allow the compiler to be generated on
14134 multiple platforms.

14136 Linux makefile added to generate the compiler on Linux

14138 Source Code:

14140 All platform-specific headers have been moved to their own
14141 subdirectory, Include/Platform.

14143 New source file added, Interpreter/ammutex.c

14145 New header file, Include/acstruct.h

new/usr/src/common/acpica/changes.txt 238

14147 Documentation:

14149 The programmer reference has been updated for the following new
14150 interfaces: AcpiOsGetThreadId AcpiAllocate AcpiCallocate AcpiFree

14152 --
14153 Summary of changes for this label: 02_08_01

14155 Core ACPI CA Subsystem: Fixed a problem where an error was
14156 incorrectly returned if the return resource buffer was larger than
14157 the actual data (in the resource interfaces).

14159 References to named objects within packages are resolved to the

14161 full pathname string before packages are returned directly (via
14162 the AcpiEvaluateObject interface) or indirectly via the resource
14163 interfaces.

14165 Linux OS Services Layer (OSL):

14167 Improved /proc battery interface.

14170 Added C-state debugging output and other miscellaneous fixes.

14172 ASL Compiler Version X2014:

14174 All defined method arguments can now be used as local variables,
14175 including the ones that are not actually passed in as parameters.
14176 The compiler tracks initialization of the arguments and issues an
14177 exception if they are used without prior assignment (just like
14178 locals).

14180 The -o option now specifies a filename prefix that is used for all
14181 output files, including the AML output file. Otherwise, the
14182 default behavior is as follows: 1) the AML goes to the file
14183 specified in the DSDT. 2) all other output files use the input
14184 source filename as the base.

14186 --
14187 Summary of changes for this label: 01_25_01

14189 Core ACPI CA Subsystem: Restructured the implementation of object
14190 store support within the interpreter. This includes support for
14191 the Store operator as well as any ASL operators that include a
14192 target operand.

14194 Partially implemented support for Implicit Result-to-Target
14195 conversion. This is when a result object is converted on the fly
14196 to the type of an existing target object. Completion of this
14197 support is pending further analysis of the ACPI specification
14198 concerning this matter.

14200 CPU-specific code has been removed from the subsystem (hardware
14201 directory).

14203 New Power Management Timer functions added

14205 Linux OS Services Layer (OSL): Moved system state transition code
14206 to the core, fixed it, and modified Linux OSL accordingly.

14208 Fixed C2 and C3 latency calculations.

14211 We no longer use the compilation date for the version message on
14212 initialization, but retrieve the version from AcpiGetSystemInfo().

new/usr/src/common/acpica/changes.txt 239

14214 Incorporated for fix Sony VAIO machines.

14216 Documentation: The Programmer Reference has been updated and
14217 reformatted.

14220 ASL Compiler: Version X2013: Fixed a problem where the line
14221 numbering and error reporting could get out of sync in the
14222 presence of multiple include files.

14224 --
14225 Summary of changes for this label: 01_15_01

14227 Core ACPI CA Subsystem:

14229 Implemented support for type conversions in the execution of the
14230 ASL Concatenate operator (The second operand is converted to
14231 match the type of the first operand before concatenation.)

14233 Support for implicit source operand conversion is partially
14234 implemented. The ASL source operand types Integer, Buffer, and
14235 String are freely interchangeable for most ASL operators and are
14236 converted by the interpreter on the fly as required. Implicit
14237 Target operand conversion (where the result is converted to the
14238 target type before storing) is not yet implemented.

14240 Support for 32-bit and 64-bit BCD integers is implemented.

14242 Problem fixed where a field read on an aligned field could cause a
14243 read past the end of the field.

14245 New exception, AE_AML_NO_RETURN_VALUE, is returned when a method
14246 does not return a value, but the caller expects one. (The ASL
14247 compiler flags this as a warning.)

14249 ASL Compiler:

14251 Version X2011:
14252 1. Static typechecking of all operands is implemented. This
14253 prevents the use of invalid objects (such as using a Package where
14254 an Integer is required) at compile time instead of at interpreter
14255 run-time.
14256 2. The ASL source line is printed with ALL errors and warnings.
14257 3. Bug fix for source EOF without final linefeed.
14258 4. Debug option is split into a parse trace and a namespace trace.
14259 5. Namespace output option (-n) includes initial values for
14260 integers and strings.
14261 6. Parse-only option added for quick syntax checking.
14262 7. Compiler checks for duplicate ACPI name declarations

14264 Version X2012:
14265 1. Relaxed typechecking to allow interchangeability between
14266 strings, integers, and buffers. These types are now converted by
14267 the interpreter at runtime.
14268 2. Compiler reports time taken by each internal subsystem in the
14269 debug output file.

14272 --
14273 Summary of changes for this label: 12_14_00

14275 ASL Compiler:

14277 This is the first official release of the compiler. Since the
14278 compiler requires elements of the Core Subsystem, this label

new/usr/src/common/acpica/changes.txt 240

14279 synchronizes everything.

14281 --
14282 Summary of changes for this label: 12_08_00

14285 Fixed a problem where named references within the ASL definition
14286 of both OperationRegions and CreateXXXFields did not work
14287 properly. The symptom was an AE_AML_OPERAND_TYPE during
14288 initialization of the region/field. This is similar (but not
14289 related internally) to the problem that was fixed in the last
14290 label.

14292 Implemented both 32-bit and 64-bit support for the BCD ASL
14293 functions ToBCD and FromBCD.

14295 Updated all legal headers to include "2000" in the copyright
14296 years.

14298 --
14299 Summary of changes for this label: 12_01_00

14301 Fixed a problem where method invocations within the ASL definition
14302 of both OperationRegions and CreateXXXFields did not work
14303 properly. The symptom was an AE_AML_OPERAND_TYPE during
14304 initialization of the region/field:

14306 nsinit-0209: AE_AML_OPERAND_TYPE while getting region arguments
14307 [DEBG] ammonad-0284: Exec_monadic2_r/Not: bad operand(s)
14308 (0x3005)

14310 Fixed a problem where operators with more than one nested
14311 subexpression would fail. The symptoms were varied, by mostly
14312 AE_AML_OPERAND_TYPE errors. This was actually a rather serious
14313 problem that has gone unnoticed until now.

14315 Subtract (Add (1,2), Multiply (3,4))

14317 Fixed a problem where AcpiGetHandle didn’t quite get fixed in the
14318 previous build (The prefix part of a relative path was handled
14319 incorrectly).

14321 Fixed a problem where Operation Region initialization failed if
14322 the operation region name was a "namepath" instead of a simple
14323 "nameseg". Symptom was an AE_NO_OPERAND error.

14325 Fixed a problem where an assignment to a local variable via the
14326 indirect RefOf mechanism only worked for the first such
14327 assignment. Subsequent assignments were ignored.

14329 --
14330 Summary of changes for this label: 11_15_00

14332 ACPI 2.0 table support with backwards support for ACPI 1.0 and the
14333 0.71 extensions. Note: although we can read ACPI 2.0 BIOS tables,
14334 the AML interpreter does NOT have support for the new 2.0 ASL
14335 grammar terms at this time.

14337 All ACPI hardware access is via the GAS structures in the ACPI 2.0
14338 FADT.

14340 All physical memory addresses across all platforms are now 64 bits
14341 wide. Logical address width remains dependent on the platform
14342 (i.e., "void *").

14344 AcpiOsMapMemory interface changed to a 64-bit physical address.

new/usr/src/common/acpica/changes.txt 241

14346 The AML interpreter integer size is now 64 bits, as per the ACPI
14347 2.0 specification.

14349 For backwards compatibility with ACPI 1.0, ACPI tables with a
14350 revision number less than 2 use 32-bit integers only.

14352 Fixed a problem where the evaluation of OpRegion operands did not
14353 always resolve them to numbers properly.

14355 --
14356 Summary of changes for this label: 10_20_00

14358 Fix for CBN_._STA issue. This fix will allow correct access to
14359 CBN_ OpRegions when the _STA returns 0x8.

14361 Support to convert ACPI constants (Ones, Zeros, One) to actual
14362 values before a package object is returned

14364 Fix for method call as predicate to if/while construct causing
14365 incorrect if/while behavior

14367 Fix for Else block package lengths sometimes calculated wrong (if
14368 block > 63 bytes)

14370 Fix for Processor object length field, was always zero

14372 Table load abort if FACP sanity check fails

14374 Fix for problem with Scope(name) if name already exists

14376 Warning emitted if a named object referenced cannot be found
14377 (resolved) during method execution.

14383 --
14384 Summary of changes for this label: 9_29_00

14386 New table initialization interfaces: AcpiInitializeSubsystem no
14387 longer has any parameters AcpiFindRootPointer - Find the RSDP (if
14388 necessary) AcpiLoadTables (RSDP) - load all tables found at RSDP-
14389 >RSDT Obsolete Interfaces AcpiLoadFirmwareTables - replaced by
14390 AcpiLoadTables

14392 Note: These interface changes require changes to all existing OSDs

14394 The PCI_Config default address space handler is always installed
14395 at the root namespace object.

14397 ---
14398 Summary of changes for this label: 09_15_00

14400 The new initialization architecture is implemented. New
14401 interfaces are: AcpiInitializeSubsystem (replaces AcpiInitialize)
14402 AcpiEnableSubsystem Obsolete Interfaces: AcpiLoadNamespace

14404 (Namespace is automatically loaded when a table is loaded)

14406 The ACPI_OPERAND_OBJECT has been optimized to shrink its size from
14407 52 bytes to 32 bytes. There is usually one of these for every
14408 namespace object, so the memory savings is significant.

14410 Implemented just-in-time evaluation of the CreateField operators.

new/usr/src/common/acpica/changes.txt 242

14412 Bug fixes for IA-64 support have been integrated.

14414 Additional code review comments have been implemented

14416 The so-called "third pass parse" has been replaced by a final walk
14417 through the namespace to initialize all operation regions (address
14418 spaces) and fields that have not yet been initialized during the
14419 execution of the various _INI and REG methods.

14421 New file - namespace/nsinit.c

14423 ---
14424 Summary of changes for this label: 09_01_00

14426 Namespace manager data structures have been reworked to change the
14427 primary object from a table to a single object. This has
14428 resulted in dynamic memory savings of 3X within the namespace and
14429 2X overall in the ACPI CA subsystem.

14431 Fixed problem where the call to AcpiEvFindPciRootBuses was
14432 inadvertently left commented out.

14434 Reduced the warning count when generating the source with the GCC
14435 compiler.

14437 Revision numbers added to each module header showing the
14438 SourceSafe version of the file. Please refer to this version
14439 number when giving us feedback or comments on individual modules.

14441 The main object types within the subsystem have been renamed to
14442 clarify their purpose:

14444 ACPI_INTERNAL_OBJECT -> ACPI_OPERAND_OBJECT
14445 ACPI_GENERIC_OP -> ACPI_PARSE_OBJECT
14446 ACPI_NAME_TABLE_ENTRY -> ACPI_NAMESPACE_NODE

14448 NOTE: no changes to the initialization sequence are included in
14449 this label.

14451 ---
14452 Summary of changes for this label: 08_23_00

14454 Fixed problem where TerminateControlMethod was being called
14455 multiple times per method

14457 Fixed debugger problem where single stepping caused a semaphore to
14458 be oversignalled

14460 Improved performance through additional parse object caching -
14461 added ACPI_EXTENDED_OP type

14463 ---
14464 Summary of changes for this label: 08_10_00

14466 Parser/Interpreter integration: Eliminated the creation of
14467 complete parse trees for ACPI tables and control methods.
14468 Instead, parse subtrees are created and then deleted as soon as
14469 they are processed (Either entered into the namespace or executed
14470 by the interpreter). This reduces the use of dynamic kernel
14471 memory significantly. (about 10X)

14473 Exception codes broken into classes and renumbered. Be sure to
14474 recompile all code that includes acexcep.h. Hopefully we won’t
14475 have to renumber the codes again now that they are split into
14476 classes (environment, programmer, AML code, ACPI table, and

new/usr/src/common/acpica/changes.txt 243

14477 internal).

14479 Fixed some additional alignment issues in the Resource Manager
14480 subcomponent

14482 Implemented semaphore tracking in the AcpiExec utility, and fixed
14483 several places where mutexes/semaphores were being unlocked
14484 without a corresponding lock operation. There are no known
14485 semaphore or mutex "leaks" at this time.

14487 Fixed the case where an ASL Return operator is used to return an
14488 unnamed package.

14490 ---
14491 Summary of changes for this label: 07_28_00

14493 Fixed a problem with the way addresses were calculated in
14494 AcpiAmlReadFieldData() and AcpiAmlWriteFieldData(). This problem
14495 manifested itself when a Field was created with WordAccess or
14496 DwordAccess, but the field unit defined within the Field was less

14498 than a Word or Dword.

14500 Fixed a problem in AmlDumpOperands() module’s loop to pull
14501 operands off of the operand stack to display information. The
14502 problem manifested itself as a TLB error on 64-bit systems when
14503 accessing an operand stack with two or more operands.

14505 Fixed a problem with the PCI configuration space handlers where
14506 context was getting confused between accesses. This required a
14507 change to the generic address space handler and address space
14508 setup definitions. Handlers now get both a global handler context
14509 (this is the one passed in by the user when executing
14510 AcpiInstallAddressSpaceHandler() and a specific region context
14511 that is unique to each region (For example, the _ADR, _SEG and
14512 _BBN values associated with a specific region). The generic
14513 function definitions have changed to the following:

14515 typedef ACPI_STATUS (*ADDRESS_SPACE_HANDLER) (UINT32 Function,
14516 UINT32 Address, UINT32 BitWidth, UINT32 *Value, void
14517 *HandlerContext, // This used to be void *Context void
14518 *RegionContext); // This is an additional parameter

14520 typedef ACPI_STATUS (*ADDRESS_SPACE_SETUP) (ACPI_HANDLE
14521 RegionHandle, UINT32 Function, void *HandlerContext, void
14522 **RegionContext); // This used to be **ReturnContext

14524 ---
14525 Summary of changes for this label: 07_21_00

14527 Major file consolidation and rename. All files within the
14528 interpreter have been renamed as well as most header files. This
14529 was done to prevent collisions with existing files in the host
14530 OSs -- filenames such as "config.h" and "global.h" seem to be
14531 quite common. The VC project files have been updated. All
14532 makefiles will require modification.

14534 The parser/interpreter integration continues in Phase 5 with the
14535 implementation of a complete 2-pass parse (the AML is parsed
14536 twice) for each table; This avoids the construction of a huge
14537 parse tree and therefore reduces the amount of dynamic memory
14538 required by the subsystem. Greater use of the parse object cache
14539 means that performance is unaffected.

14541 Many comments from the two code reviews have been rolled in.

new/usr/src/common/acpica/changes.txt 244

14543 The 64-bit alignment support is complete.

14545 ---
14546 Summary of changes for this label: 06_30_00

14548 With a nod and a tip of the hat to the technology of yesteryear,
14549 we’ve added support in the source code for 80 column output
14550 devices. The code is now mostly constrained to 80 columns or
14551 less to support environments and editors that 1) cannot display
14552 or print more than 80 characters on a single line, and 2) cannot
14553 disable line wrapping.

14555 A major restructuring of the namespace data structure has been
14556 completed. The result is 1) cleaner and more
14557 understandable/maintainable code, and 2) a significant reduction
14558 in the dynamic memory requirement for each named ACPI object
14559 (almost half).

14561 ---
14562 Summary of changes for this label: 06_23_00

14564 Linux support has been added. In order to obtain approval to get
14565 the ACPI CA subsystem into the Linux kernel, we’ve had to make
14566 quite a few changes to the base subsystem that will affect all
14567 users (all the changes are generic and OS- independent). The
14568 effects of these global changes have been somewhat far reaching.
14569 Files have been merged and/or renamed and interfaces have been
14570 renamed. The major changes are described below.

14572 Osd* interfaces renamed to AcpiOs* to eliminate namespace
14573 pollution/confusion within our target kernels. All OSD
14574 interfaces must be modified to match the new naming convention.

14576 Files merged across the subsystem. A number of the smaller source
14577 and header files have been merged to reduce the file count and
14578 increase the density of the existing files. There are too many
14579 to list here. In general, makefiles that call out individual
14580 files will require rebuilding.

14582 Interpreter files renamed. All interpreter files now have the
14583 prefix am* instead of ie* and is*.

14585 Header files renamed: The acapi.h file is now acpixf.h. The
14586 acpiosd.h file is now acpiosxf.h. We are removing references to
14587 the acronym "API" since it is somewhat windowsy. The new name is
14588 "external interface" or xface or xf in the filenames.j

14591 All manifest constants have been forced to upper case (some were
14592 mixed case.) Also, the string "ACPI_" has been prepended to many
14593 (not all) of the constants, typedefs, and structs.

14595 The globals "DebugLevel" and "DebugLayer" have been renamed
14596 "AcpiDbgLevel" and "AcpiDbgLayer" respectively.

14598 All other globals within the subsystem are now prefixed with
14599 "AcpiGbl_" Internal procedures within the subsystem are now
14600 prefixed with "Acpi" (with only a few exceptions). The original
14601 two-letter abbreviation for the subcomponent remains after "Acpi"
14602 - for example, CmCallocate became AcpiCmCallocate.

14604 Added a source code translation/conversion utility. Used to
14605 generate the Linux source code, it can be modified to generate
14606 other types of source as well. Can also be used to cleanup
14607 existing source by removing extraneous spaces and blank lines.
14608 Found in tools/acpisrc/*

new/usr/src/common/acpica/changes.txt 245

14610 OsdUnMapMemory was renamed to OsdUnmapMemory and then
14611 AcpiOsUnmapMemory. (UnMap became Unmap).

14613 A "MaxUnits" parameter has been added to AcpiOsCreateSemaphore.
14614 When set to one, this indicates that the caller wants to use the

14616 semaphore as a mutex, not a counting semaphore. ACPI CA uses
14617 both types. However, implementers of this call may want to use
14618 different OS primitives depending on the type of semaphore
14619 requested. For example, some operating systems provide separate

14621 "mutex" and "semaphore" interfaces - where the mutex interface is
14622 much faster because it doesn’t have all the overhead of a full
14623 semaphore implementation.

14625 Fixed a deadlock problem where a method that accesses the PCI
14626 address space can block forever if it is the first access to the
14627 space.

14629 ---
14630 Summary of changes for this label: 06_02_00

14632 Support for environments that cannot handle unaligned data
14633 accesses (e.g. firmware and OS environments devoid of alignment
14634 handler technology namely SAL/EFI and the IA-64 Linux kernel) has
14635 been added (via configurable macros) in these three areas: -
14636 Transfer of data from the raw AML byte stream is done via byte
14637 moves instead of word/dword/qword moves. - External objects are
14638 aligned within the user buffer, including package elements (sub-
14639 objects). - Conversion of name strings to UINT32 Acpi Names is now
14640 done byte-wise.

14642 The Store operator was modified to mimic Microsoft’s
14643 implementation when storing to a Buffer Field.

14645 Added a check of the BM_STS bit before entering C3.

14647 The methods subdirectory has been obsoleted and removed. A new
14648 file, cmeval.c subsumes the functionality.

14650 A 16-bit (DOS) version of AcpiExec has been developed. The
14651 makefile is under the acpiexec directory.

new/usr/src/common/acpica/common/acgetline.c 1

**
 13858 Thu Dec 26 13:48:22 2013
new/usr/src/common/acpica/common/acgetline.c
update to acpica-unix2-20130927
**

1 /**
2 *
3 * Module Name: acgetline - local line editing
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "amlcode.h"
47 #include "acparser.h"
48 #include "acdebug.h"

50 #include <stdio.h>

52 /*
53 * This is an os-independent implementation of line-editing services needed
54 * by the AcpiExec utility. It uses getchar() and putchar() and the existing
55 * history support provided by the AML debugger. It assumes that the terminal
56 * is in the correct line-editing mode such as raw and noecho. The OSL
57 * interface AcpiOsInitialize should do this. AcpiOsTerminate should put the
58 * terminal back into the original mode.
59 */
60 #define _COMPONENT ACPI_OS_SERVICES
61 ACPI_MODULE_NAME ("acgetline")

new/usr/src/common/acpica/common/acgetline.c 2

64 /* Local prototypes */

66 static void
67 AcpiAcClearLine (
68 UINT32 EndOfLine,
69 UINT32 CursorPosition);

71 /* Various ASCII constants */

73 #define _ASCII_NUL 0
74 #define _ASCII_BACKSPACE 0x08
75 #define _ASCII_TAB 0x09
76 #define _ASCII_ESCAPE 0x1B
77 #define _ASCII_SPACE 0x20
78 #define _ASCII_LEFT_BRACKET 0x5B
79 #define _ASCII_DEL 0x7F
80 #define _ASCII_UP_ARROW ’A’
81 #define _ASCII_DOWN_ARROW ’B’
82 #define _ASCII_RIGHT_ARROW ’C’
83 #define _ASCII_LEFT_ARROW ’D’
84 #define _ASCII_NEWLINE ’\n’

86 extern UINT32 AcpiGbl_NextCmdNum;

88 /* Erase a single character on the input command line */

90 #define ACPI_CLEAR_CHAR() \
91 putchar (_ASCII_BACKSPACE); \
92 putchar (_ASCII_SPACE); \
93 putchar (_ASCII_BACKSPACE);

95 /* Backup cursor by Count positions */

97 #define ACPI_BACKUP_CURSOR(i, Count) \
98 for (i = 0; i < (Count); i++) \
99 {putchar (_ASCII_BACKSPACE);}

102 /**
103 *
104 * FUNCTION: AcpiAcClearLine
105 *
106 * PARAMETERS: EndOfLine - Current end-of-line index
107 * CursorPosition - Current cursor position within line
108 *
109 * RETURN: None
110 *
111 * DESCRIPTION: Clear the entire command line the hard way, but probably the
112 * most portable.
113 *
114 ***/

116 static void
117 AcpiAcClearLine (
118 UINT32 EndOfLine,
119 UINT32 CursorPosition)
120 {
121 UINT32 i;

124 if (CursorPosition < EndOfLine)
125 {
126 /* Clear line from current position to end of line */

new/usr/src/common/acpica/common/acgetline.c 3

128 for (i = 0; i < (EndOfLine - CursorPosition); i++)
129 {
130 putchar (’ ’);
131 }
132 }

134 /* Clear the entire line */

136 for (; EndOfLine > 0; EndOfLine--)
137 {
138 ACPI_CLEAR_CHAR ();
139 }
140 }

143 /**
144 *
145 * FUNCTION: AcpiOsGetLine
146 *
147 * PARAMETERS: Buffer - Where to return the command line
148 * BufferLength - Maximum length of Buffer
149 * BytesRead - Where the actual byte count is returned
150 *
151 * RETURN: Status and actual bytes read
152 *
153 * DESCRIPTION: Get the next input line from the terminal. NOTE: terminal
154 * is expected to be in a mode that supports line-editing (raw,
155 * noecho). This function is intended to be very portable. Also,
156 * it uses the history support implemented in the AML debugger.
157 *
158 ***/

160 ACPI_STATUS
161 AcpiOsGetLine (
162 char *Buffer,
163 UINT32 BufferLength,
164 UINT32 *BytesRead)
165 {
166 char *NextCommand;
167 UINT32 MaxCommandIndex = AcpiGbl_NextCmdNum - 1;
168 UINT32 CurrentCommandIndex = MaxCommandIndex;
169 UINT32 PreviousCommandIndex = MaxCommandIndex;
170 int InputChar;
171 UINT32 CursorPosition = 0;
172 UINT32 EndOfLine = 0;
173 UINT32 i;

176 /* Always clear the line buffer before we read a new line */

178 memset (Buffer, 0, BufferLength);

180 /*
181 * This loop gets one character at a time (except for esc sequences)
182 * until a newline or error is detected.
183 *
184 * Note: Don’t attempt to write terminal control ESC sequences, even
185 * though it makes certain things more difficult.
186 */
187 while (1)
188 {
189 if (EndOfLine >= (BufferLength - 1))
190 {
191 return (AE_BUFFER_OVERFLOW);
192 }

new/usr/src/common/acpica/common/acgetline.c 4

194 InputChar = getchar ();
195 switch (InputChar)
196 {
197 default: /* This is the normal character case */

199 /* Echo the character (at EOL) and copy it to the line buffer */

201 if (EndOfLine == CursorPosition)
202 {
203 putchar (InputChar);
204 Buffer[EndOfLine] = (char) InputChar;

206 EndOfLine++;
207 CursorPosition++;
208 Buffer[EndOfLine] = 0;
209 continue;
210 }

212 /* Insert character into the middle of the buffer */

214 memmove (&Buffer[CursorPosition + 1], &Buffer[CursorPosition],
215 (EndOfLine - CursorPosition + 1));

217 Buffer [CursorPosition] = (char) InputChar;
218 Buffer [EndOfLine + 1] = 0;

220 /* Display the new part of line starting at the new character */

222 fprintf (stdout, "%s", &Buffer[CursorPosition]);

224 /* Restore cursor */

226 ACPI_BACKUP_CURSOR (i, EndOfLine - CursorPosition);
227 CursorPosition++;
228 EndOfLine++;
229 continue;

231 case _ASCII_DEL: /* Backspace key */

233 if (!EndOfLine) /* Any characters on the command line? */
234 {
235 continue;
236 }

238 if (EndOfLine == CursorPosition) /* Erase the final character */
239 {
240 ACPI_CLEAR_CHAR ();
241 EndOfLine--;
242 CursorPosition--;
243 continue;
244 }

246 if (!CursorPosition) /* Do not backup beyond start of line */
247 {
248 continue;
249 }

251 /* Remove the character from the line */

253 memmove (&Buffer[CursorPosition - 1], &Buffer[CursorPosition],
254 (EndOfLine - CursorPosition + 1));

256 /* Display the new part of line starting at the new character */

258 putchar (_ASCII_BACKSPACE);
259 fprintf (stdout, "%s ", &Buffer[CursorPosition - 1]);

new/usr/src/common/acpica/common/acgetline.c 5

261 /* Restore cursor */

263 ACPI_BACKUP_CURSOR (i, EndOfLine - CursorPosition + 1);
264 EndOfLine--;
265 if (CursorPosition > 0)
266 {
267 CursorPosition--;
268 }
269 continue;

271 case _ASCII_NEWLINE: /* Normal exit case at end of command line */
272 case _ASCII_NUL:

274 /* Return the number of bytes in the command line string */

276 if (BytesRead)
277 {
278 *BytesRead = EndOfLine;
279 }

281 /* Echo, terminate string buffer, and exit */

283 putchar (InputChar);
284 Buffer[EndOfLine] = 0;
285 return (AE_OK);

287 case _ASCII_TAB:

289 /* Ignore */

291 continue;

293 case EOF:

295 return (AE_ERROR);

297 case _ASCII_ESCAPE:

299 /* Check for escape sequences of the form "ESC[x" */

301 InputChar = getchar ();
302 if (InputChar != _ASCII_LEFT_BRACKET)
303 {
304 continue; /* Ignore this ESC, does not have the ’[’ */
305 }

307 /* Get the code following the ESC [*/

309 InputChar = getchar (); /* Backup one character */
310 switch (InputChar)
311 {
312 case _ASCII_LEFT_ARROW:

314 if (CursorPosition > 0)
315 {
316 putchar (_ASCII_BACKSPACE);
317 CursorPosition--;
318 }
319 continue;

321 case _ASCII_RIGHT_ARROW:
322 /*
323 * Move one character forward. Do this without sending
324 * ESC sequence to the terminal for max portability.
325 */

new/usr/src/common/acpica/common/acgetline.c 6

326 if (CursorPosition < EndOfLine)
327 {
328 /* Backup to start of line and print the entire line */

330 ACPI_BACKUP_CURSOR (i, CursorPosition);
331 fprintf (stdout, "%s", Buffer);

333 /* Backup to where the cursor should be */

335 CursorPosition++;
336 ACPI_BACKUP_CURSOR (i, EndOfLine - CursorPosition);
337 }
338 continue;

340 case _ASCII_UP_ARROW:

342 /* If no commands available or at start of history list, ignore

344 if (!CurrentCommandIndex)
345 {
346 continue;
347 }

349 /* Manage our up/down progress */

351 if (CurrentCommandIndex > PreviousCommandIndex)
352 {
353 CurrentCommandIndex = PreviousCommandIndex;
354 }

356 /* Get the historical command from the debugger */

358 NextCommand = AcpiDbGetHistoryByIndex (CurrentCommandIndex);
359 if (!NextCommand)
360 {
361 return (AE_ERROR);
362 }

364 /* Make this the active command and echo it */

366 AcpiAcClearLine (EndOfLine, CursorPosition);
367 strcpy (Buffer, NextCommand);
368 fprintf (stdout, "%s", Buffer);
369 EndOfLine = CursorPosition = strlen (Buffer);

371 PreviousCommandIndex = CurrentCommandIndex;
372 CurrentCommandIndex--;
373 continue;

375 case _ASCII_DOWN_ARROW:

377 if (!MaxCommandIndex) /* Any commands available? */
378 {
379 continue;
380 }

382 /* Manage our up/down progress */

384 if (CurrentCommandIndex < PreviousCommandIndex)
385 {
386 CurrentCommandIndex = PreviousCommandIndex;
387 }

389 /* If we are the end of the history list, output a clear new lin

391 if ((CurrentCommandIndex + 1) > MaxCommandIndex)

new/usr/src/common/acpica/common/acgetline.c 7

392 {
393 AcpiAcClearLine (EndOfLine, CursorPosition);
394 EndOfLine = CursorPosition = 0;
395 PreviousCommandIndex = CurrentCommandIndex;
396 continue;
397 }

399 PreviousCommandIndex = CurrentCommandIndex;
400 CurrentCommandIndex++;

402 /* Get the historical command from the debugger */

404 NextCommand = AcpiDbGetHistoryByIndex (CurrentCommandIndex);
405 if (!NextCommand)
406 {
407 return (AE_ERROR);
408 }

410 /* Make this the active command and echo it */

412 AcpiAcClearLine (EndOfLine, CursorPosition);
413 strcpy (Buffer, NextCommand);
414 fprintf (stdout, "%s", Buffer);
415 EndOfLine = CursorPosition = strlen (Buffer);
416 continue;

418 case 0x31:
419 case 0x32:
420 case 0x33:
421 case 0x34:
422 case 0x35:
423 case 0x36:
424 /*
425 * Ignore the various keys like insert/delete/home/end, etc.
426 * But we must eat the final character of the ESC sequence.
427 */
428 InputChar = getchar ();
429 continue;

431 default:

433 /* Ignore random escape sequences that we don’t care about */

435 continue;
436 }
437 continue;
438 }
439 }
440 }

new/usr/src/common/acpica/common/adfile.c 1

**
 9651 Thu Dec 26 13:48:22 2013
new/usr/src/common/acpica/common/adfile.c
update to acpica-unix2-20131218
update to acpica-unix2-20131115
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: adfile - Application-level disassembler file support routines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acapps.h"

49 #include <stdio.h>

52 #define _COMPONENT ACPI_TOOLS
53 ACPI_MODULE_NAME ("adfile")

55 /* Local prototypes */

57 static INT32

new/usr/src/common/acpica/common/adfile.c 2

58 AdWriteBuffer (
59 char *Filename,
60 char *Buffer,
61 UINT32 Length);

63 static char FilenameBuf[20];

66 /**
67 *
68 * FUNCTION: AfGenerateFilename
69 *
70 * PARAMETERS: Prefix - prefix string
71 * TableId - The table ID
72 *
73 * RETURN: Pointer to the completed string
74 *
75 * DESCRIPTION: Build an output filename from an ACPI table ID string
76 *
77 **/

79 char *
80 AdGenerateFilename (
81 char *Prefix,
82 char *TableId)
83 {
84 UINT32 i;
85 UINT32 j;

88 for (i = 0; Prefix[i]; i++)
89 {
90 FilenameBuf[i] = Prefix[i];
91 }

93 FilenameBuf[i] = ’_’;
94 i++;

96 for (j = 0; j < 8 && (TableId[j] != ’ ’) && (TableId[j] != 0); i++, j++)
97 {
98 FilenameBuf[i] = TableId[j];
99 }

101 FilenameBuf[i] = 0;
102 strcat (FilenameBuf, ACPI_TABLE_FILE_SUFFIX);
103 return (FilenameBuf);
104 }

107 /**
108 *
109 * FUNCTION: AfWriteBuffer
110 *
111 * PARAMETERS: Filename - name of file
112 * Buffer - data to write
113 * Length - length of data
114 *
115 * RETURN: Actual number of bytes written
116 *
117 * DESCRIPTION: Open a file and write out a single buffer
118 *
119 **/

121 static INT32
122 AdWriteBuffer (
123 char *Filename,

new/usr/src/common/acpica/common/adfile.c 3

124 char *Buffer,
125 UINT32 Length)
126 {
127 FILE *File;
128 ACPI_SIZE Actual;

131 File = fopen (Filename, "wb");
132 if (!File)
133 {
134 printf ("Could not open file %s\n", Filename);
135 return (-1);
136 }

138 Actual = fwrite (Buffer, 1, (size_t) Length, File);
139 if (Actual != Length)
140 {
141 printf ("Could not write to file %s\n", Filename);
142 }

144 fclose (File);
145 return ((INT32) Actual);
146 }

149 /**
150 *
151 * FUNCTION: AfWriteTable
152 *
153 * PARAMETERS: Table - pointer to the ACPI table
154 * Length - length of the table
155 * TableName - the table signature
156 * OemTableID - from the table header
157 *
158 * RETURN: None
159 *
160 * DESCRIPTION: Dump the loaded tables to a file (or files)
161 *
162 **/

164 void
165 AdWriteTable (
166 ACPI_TABLE_HEADER *Table,
167 UINT32 Length,
168 char *TableName,
169 char *OemTableId)
170 {
171 char *Filename;

174 Filename = AdGenerateFilename (TableName, OemTableId);
175 AdWriteBuffer (Filename, (char *) Table, Length);

177 AcpiOsPrintf ("Table [%s] written to \"%s\"\n", TableName, Filename);
178 }

181 /***
182 *
183 * FUNCTION: FlGenerateFilename
184 *
185 * PARAMETERS: InputFilename - Original ASL source filename
186 * Suffix - New extension.
187 *
188 * RETURN: New filename containing the original base + the new suffix
189 *

new/usr/src/common/acpica/common/adfile.c 4

190 * DESCRIPTION: Generate a new filename from the ASL source filename and a new
191 * extension. Used to create the *.LST, *.TXT, etc. files.
192 *
193 **/

195 char *
196 FlGenerateFilename (
197 char *InputFilename,
198 char *Suffix)
199 {
200 char *Position;
201 char *NewFilename;
202 char *DirectoryPosition;

205 /*
206 * Copy the original filename to a new buffer. Leave room for the worst case
207 * where we append the suffix, an added dot and the null terminator.
208 */
209 NewFilename = ACPI_ALLOCATE_ZEROED ((ACPI_SIZE)
210 strlen (InputFilename) + strlen (Suffix) + 2);
211 strcpy (NewFilename, InputFilename);

213 /* Try to find the last dot in the filename */

215 DirectoryPosition = strrchr (NewFilename, ’/’);
216 Position = strrchr (NewFilename, ’.’);

218 if (Position && (Position > DirectoryPosition))
219 {
220 /* Tack on the new suffix */

222 Position++;
223 *Position = 0;
224 strcat (Position, Suffix);
225 }
226 else
227 {
228 /* No dot, add one and then the suffix */

230 strcat (NewFilename, ".");
231 strcat (NewFilename, Suffix);
232 }

234 return (NewFilename);
235 }

238 /***
239 *
240 * FUNCTION: FlStrdup
241 *
242 * DESCRIPTION: Local strdup function
243 *
244 **/

246 static char *
247 FlStrdup (
248 char *String)
249 {
250 char *NewString;

253 NewString = ACPI_ALLOCATE ((ACPI_SIZE) strlen (String) + 1);
254 if (!NewString)
255 {

new/usr/src/common/acpica/common/adfile.c 5

256 return (NULL);
257 }

259 strcpy (NewString, String);
260 return (NewString);
261 }

264 /***
265 *
266 * FUNCTION: FlSplitInputPathname
267 *
268 * PARAMETERS: InputFilename - The user-specified ASL source file to be
269 * compiled
270 * OutDirectoryPath - Where the directory path prefix is
271 * returned
272 * OutFilename - Where the filename part is returned
273 *
274 * RETURN: Status
275 *
276 * DESCRIPTION: Split the input path into a directory and filename part
277 * 1) Directory part used to open include files
278 * 2) Filename part used to generate output filenames
279 *
280 **/

282 ACPI_STATUS
283 FlSplitInputPathname (
284 char *InputPath,
285 char **OutDirectoryPath,
286 char **OutFilename)
287 {
288 char *Substring;
289 char *DirectoryPath;
290 char *Filename;

293 *OutDirectoryPath = NULL;

295 if (!InputPath)
296 {
297 return (AE_OK);
298 }

300 /* Get the path to the input filename’s directory */

302 DirectoryPath = FlStrdup (InputPath);
303 if (!DirectoryPath)
304 {
305 return (AE_NO_MEMORY);
306 }

308 /* Convert backslashes to slashes in the entire path */

310 UtConvertBackslashes (DirectoryPath);

312 /* Backup to last slash or colon */

314 Substring = strrchr (DirectoryPath, ’/’);
315 if (!Substring)
316 {
317 Substring = strrchr (DirectoryPath, ’:’);
318 }

320 /* Extract the simple filename */

new/usr/src/common/acpica/common/adfile.c 6

322 if (!Substring)
323 {
324 Filename = FlStrdup (DirectoryPath);
325 DirectoryPath[0] = 0;
326 }
327 else
328 {
329 Filename = FlStrdup (Substring + 1);
330 *(Substring+1) = 0;
331 }

333 if (!Filename)
334 {
335 ACPI_FREE (DirectoryPath);
336 return (AE_NO_MEMORY);
337 }

339 *OutDirectoryPath = DirectoryPath;

341 if (OutFilename)
342 {
343 *OutFilename = Filename;
344 return (AE_OK);
345 }

347 ACPI_FREE (Filename);
348 return (AE_OK);
349 }

new/usr/src/common/acpica/common/adisasm.c 1

**
 27624 Thu Dec 26 13:48:23 2013
new/usr/src/common/acpica/common/adisasm.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: adisasm - Application-level disassembler routines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acparser.h"
48 #include "amlcode.h"
49 #include "acdebug.h"
50 #include "acdisasm.h"
51 #include "acdispat.h"
52 #include "acnamesp.h"
53 #include "actables.h"
54 #include "acapps.h"

56 #include <stdio.h>
57 #include <time.h>

60 #define _COMPONENT ACPI_TOOLS

new/usr/src/common/acpica/common/adisasm.c 2

61 ACPI_MODULE_NAME ("adisasm")

63 /*
64 * Older versions of Bison won’t emit this external in the generated header.
65 * Newer versions do emit the external, so we don’t need to do it.
66 */
67 #ifndef ASLCOMPILER_ASLCOMPILERPARSE_H
68 extern int AslCompilerdebug;
69 #endif

71 ACPI_STATUS
72 NsDisplayNamespace (
73 void);

75 void
76 NsSetupNamespaceListing (
77 void *Handle);

80 /* Local prototypes */

82 static UINT32
83 AdGetFileSize (
84 FILE *File);

86 static void
87 AdCreateTableHeader (
88 char *Filename,
89 ACPI_TABLE_HEADER *Table);

91 /* Stubs for ASL compiler */

93 #ifndef ACPI_ASL_COMPILER
94 BOOLEAN
95 AcpiDsIsResultUsed (
96 ACPI_PARSE_OBJECT *Op,
97 ACPI_WALK_STATE *WalkState)
98 {
99 return TRUE;
100 }

102 ACPI_STATUS
103 AcpiDsMethodError (
104 ACPI_STATUS Status,
105 ACPI_WALK_STATE *WalkState)
106 {
107 return (Status);
108 }
109 #endif

111 ACPI_STATUS
112 AcpiNsLoadTable (
113 UINT32 TableIndex,
114 ACPI_NAMESPACE_NODE *Node)
115 {
116 return (AE_NOT_IMPLEMENTED);
117 }

119 ACPI_STATUS
120 AcpiDsRestartControlMethod (
121 ACPI_WALK_STATE *WalkState,
122 ACPI_OPERAND_OBJECT *ReturnDesc)
123 {
124 return (AE_OK);
125 }

new/usr/src/common/acpica/common/adisasm.c 3

127 void
128 AcpiDsTerminateControlMethod (
129 ACPI_OPERAND_OBJECT *MethodDesc,
130 ACPI_WALK_STATE *WalkState)
131 {
132 return;
133 }

135 ACPI_STATUS
136 AcpiDsCallControlMethod (
137 ACPI_THREAD_STATE *Thread,
138 ACPI_WALK_STATE *WalkState,
139 ACPI_PARSE_OBJECT *Op)
140 {
141 return (AE_OK);
142 }

144 ACPI_STATUS
145 AcpiDsMethodDataInitArgs (
146 ACPI_OPERAND_OBJECT **Params,
147 UINT32 MaxParamCount,
148 ACPI_WALK_STATE *WalkState)
149 {
150 return (AE_OK);
151 }

154 static ACPI_TABLE_DESC LocalTables[1];
155 static ACPI_PARSE_OBJECT *AcpiGbl_ParseOpRoot;

158 /***
159 *
160 * FUNCTION: AdGetFileSize
161 *
162 * PARAMETERS: File - Open file handle
163 *
164 * RETURN: File Size
165 *
166 * DESCRIPTION: Get current file size. Uses seek-to-EOF. File must be open.
167 *
168 **/

170 static UINT32
171 AdGetFileSize (
172 FILE *File)
173 {
174 UINT32 FileSize;
175 long Offset;

178 Offset = ftell (File);

180 fseek (File, 0, SEEK_END);
181 FileSize = (UINT32) ftell (File);

183 /* Restore file pointer */

185 fseek (File, Offset, SEEK_SET);
186 return (FileSize);
187 }

190 /***
191 *
192 * FUNCTION: AdInitialize

new/usr/src/common/acpica/common/adisasm.c 4

193 *
194 * PARAMETERS: None
195 *
196 * RETURN: Status
197 *
198 * DESCRIPTION: ACPICA and local initialization
199 *
200 **/

202 ACPI_STATUS
203 AdInitialize (
204 void)
205 {
206 ACPI_STATUS Status;

209 /* ACPI CA subsystem initialization */

211 Status = AcpiOsInitialize ();
212 if (ACPI_FAILURE (Status))
213 {
214 return (Status);
215 }

217 Status = AcpiUtInitGlobals ();
218 if (ACPI_FAILURE (Status))
219 {
220 return (Status);
221 }

223 Status = AcpiUtMutexInitialize ();
224 if (ACPI_FAILURE (Status))
225 {
226 return (Status);
227 }

229 Status = AcpiNsRootInitialize ();
230 if (ACPI_FAILURE (Status))
231 {
232 return (Status);
233 }

235 /* Setup the Table Manager (cheat - there is no RSDT) */

237 AcpiGbl_RootTableList.MaxTableCount = 1;
238 AcpiGbl_RootTableList.CurrentTableCount = 0;
239 AcpiGbl_RootTableList.Tables = LocalTables;

241 return (Status);
242 }

245 /**
246 *
247 * FUNCTION: AdAmlDisassemble
248 *
249 * PARAMETERS: Filename - AML input filename
250 * OutToFile - TRUE if output should go to a file
251 * Prefix - Path prefix for output
252 * OutFilename - where the filename is returned
253 * GetAllTables - TRUE if all tables are desired
254 *
255 * RETURN: Status
256 *
257 * DESCRIPTION: Disassemble an entire ACPI table
258 *

new/usr/src/common/acpica/common/adisasm.c 5

259 ***/

261 ACPI_STATUS
262 AdAmlDisassemble (
263 BOOLEAN OutToFile,
264 char *Filename,
265 char *Prefix,
266 char **OutFilename,
267 BOOLEAN GetAllTables)
268 {
269 ACPI_STATUS Status;
270 char *DisasmFilename = NULL;
271 char *ExternalFilename;
272 ACPI_EXTERNAL_FILE *ExternalFileList = AcpiGbl_ExternalFileList;
273 FILE *File = NULL;
274 ACPI_TABLE_HEADER *Table = NULL;
275 ACPI_TABLE_HEADER *ExternalTable;
276 ACPI_OWNER_ID OwnerId;

279 /*
280 * Input: AML code from either a file or via GetTables (memory or
281 * registry)
282 */
283 if (Filename)
284 {
285 Status = AcpiDbGetTableFromFile (Filename, &Table);
286 if (ACPI_FAILURE (Status))
287 {
288 return (Status);
289 }

291 /*
292 * External filenames separated by commas
293 * Example: iasl -e file1,file2,file3 -d xxx.aml
294 */
295 while (ExternalFileList)
296 {
297 ExternalFilename = ExternalFileList->Path;
298 if (!ACPI_STRCMP (ExternalFilename, Filename))
299 {
300 /* Next external file */

302 ExternalFileList = ExternalFileList->Next;
303 continue;
304 }

306 Status = AcpiDbGetTableFromFile (ExternalFilename, &ExternalTable);
307 if (ACPI_FAILURE (Status))
308 {
309 return (Status);
310 }

312 /* Load external table for symbol resolution */

314 if (ExternalTable)
315 {
316 Status = AdParseTable (ExternalTable, &OwnerId, TRUE, TRUE);
317 if (ACPI_FAILURE (Status))
318 {
319 AcpiOsPrintf ("Could not parse external ACPI tables, %s\n",
320 AcpiFormatException (Status));
321 return (Status);
322 }

324 /*

new/usr/src/common/acpica/common/adisasm.c 6

325 * Load namespace from names created within control methods
326 * Set owner id of nodes in external table
327 */
328 AcpiDmFinishNamespaceLoad (AcpiGbl_ParseOpRoot,
329 AcpiGbl_RootNode, OwnerId);
330 AcpiPsDeleteParseTree (AcpiGbl_ParseOpRoot);
331 }

333 /* Next external file */

335 ExternalFileList = ExternalFileList->Next;
336 }

338 /* Clear external list generated by Scope in external tables */

340 if (AcpiGbl_ExternalFileList)
341 {
342 AcpiDmClearExternalList ();
343 }

345 /* Load any externals defined in the optional external ref file */

347 AcpiDmGetExternalsFromFile ();
348 }
349 else
350 {
351 Status = AdGetLocalTables (Filename, GetAllTables);
352 if (ACPI_FAILURE (Status))
353 {
354 AcpiOsPrintf ("Could not get ACPI tables, %s\n",
355 AcpiFormatException (Status));
356 return (Status);
357 }

359 if (!AcpiGbl_DbOpt_disasm)
360 {
361 return (AE_OK);
362 }

364 /* Obtained the local tables, just disassemble the DSDT */

366 Status = AcpiGetTable (ACPI_SIG_DSDT, 0, &Table);
367 if (ACPI_FAILURE (Status))
368 {
369 AcpiOsPrintf ("Could not get DSDT, %s\n",
370 AcpiFormatException (Status));
371 return (Status);
372 }

374 AcpiOsPrintf ("\nDisassembly of DSDT\n");
375 Prefix = AdGenerateFilename ("dsdt", Table->OemTableId);
376 }

378 /*
379 * Output: ASL code. Redirect to a file if requested
380 */
381 if (OutToFile)
382 {
383 /* Create/Open a disassembly output file */

385 DisasmFilename = FlGenerateFilename (Prefix, FILE_SUFFIX_DISASSEMBLY);
386 if (!OutFilename)
387 {
388 fprintf (stderr, "Could not generate output filename\n");
389 Status = AE_ERROR;
390 goto Cleanup;

new/usr/src/common/acpica/common/adisasm.c 7

391 }

393 File = fopen (DisasmFilename, "w+");
394 if (!File)
395 {
396 fprintf (stderr, "Could not open output file %s\n", DisasmFilename);
397 Status = AE_ERROR;
398 goto Cleanup;
399 }

401 AcpiOsRedirectOutput (File);
402 }

404 *OutFilename = DisasmFilename;

406 if (!AcpiUtIsAmlTable (Table))
407 {
408 AdDisassemblerHeader (Filename);
409 AcpiOsPrintf (" * ACPI Data Table [%4.4s]\n *\n",
410 Table->Signature);
411 AcpiOsPrintf (" * Format: [HexOffset DecimalOffset ByteLength] "
412 "FieldName : FieldValue\n */\n\n");

414 AcpiDmDumpDataTable (Table);
415 fprintf (stderr, "Acpi Data Table [%4.4s] decoded\n",
416 Table->Signature);
417 fprintf (stderr, "Formatted output: %s - %u bytes\n",
418 DisasmFilename, AdGetFileSize (File));
419 }
420 else
421 {
422 /* Always parse the tables, only option is what to display */

424 Status = AdParseTable (Table, &OwnerId, TRUE, FALSE);
425 if (ACPI_FAILURE (Status))
426 {
427 AcpiOsPrintf ("Could not parse ACPI tables, %s\n",
428 AcpiFormatException (Status));
429 goto Cleanup;
430 }

432 if (AslCompilerdebug)
433 {
434 AcpiOsPrintf ("/**** Before second load\n");

436 NsSetupNamespaceListing (File);
437 NsDisplayNamespace ();
438 AcpiOsPrintf ("*****/\n");
439 }

441 /* Load namespace from names created within control methods */

443 AcpiDmFinishNamespaceLoad (AcpiGbl_ParseOpRoot,
444 AcpiGbl_RootNode, OwnerId);

446 /*
447 * Cross reference the namespace here, in order to
448 * generate External() statements
449 */
450 AcpiDmCrossReferenceNamespace (AcpiGbl_ParseOpRoot,
451 AcpiGbl_RootNode, OwnerId);

453 if (AslCompilerdebug)
454 {
455 AcpiDmDumpTree (AcpiGbl_ParseOpRoot);
456 }

new/usr/src/common/acpica/common/adisasm.c 8

458 /* Find possible calls to external control methods */

460 AcpiDmFindOrphanMethods (AcpiGbl_ParseOpRoot);

462 /*
463 * If we found any external control methods, we must reparse
464 * the entire tree with the new information (namely, the
465 * number of arguments per method)
466 */
467 if (AcpiDmGetExternalMethodCount ())
468 {
469 fprintf (stderr,
470 "\nFound %u external control methods, "
471 "reparsing with new information\n",
472 AcpiDmGetExternalMethodCount ());

474 /* Reparse, rebuild namespace. no need to xref namespace */

476 AcpiPsDeleteParseTree (AcpiGbl_ParseOpRoot);
477 AcpiNsDeleteNamespaceSubtree (AcpiGbl_RootNode);

479 AcpiGbl_RootNode = NULL;
480 AcpiGbl_RootNodeStruct.Name.Integer = ACPI_ROOT_NAME;
481 AcpiGbl_RootNodeStruct.DescriptorType = ACPI_DESC_TYPE_NAMED;
482 AcpiGbl_RootNodeStruct.Type = ACPI_TYPE_DEVICE;
483 AcpiGbl_RootNodeStruct.Parent = NULL;
484 AcpiGbl_RootNodeStruct.Child = NULL;
485 AcpiGbl_RootNodeStruct.Peer = NULL;
486 AcpiGbl_RootNodeStruct.Object = NULL;
487 AcpiGbl_RootNodeStruct.Flags = 0;

489 Status = AcpiNsRootInitialize ();
490 AcpiDmAddExternalsToNamespace ();

492 /* Parse the table again. No need to reload it, however */

494 Status = AdParseTable (Table, NULL, FALSE, FALSE);
495 if (ACPI_FAILURE (Status))
496 {
497 AcpiOsPrintf ("Could not parse ACPI tables, %s\n",
498 AcpiFormatException (Status));
499 goto Cleanup;
500 }

502 if (AslCompilerdebug)
503 {
504 AcpiOsPrintf ("/**** After second load and resource conversion\n
505 NsSetupNamespaceListing (File);
506 NsDisplayNamespace ();
507 AcpiOsPrintf ("*****/\n");

509 AcpiDmDumpTree (AcpiGbl_ParseOpRoot);
510 }
511 }

513 /*
514 * Now that the namespace is finalized, we can perform namespace
515 * transforms.
516 *
517 * 1) Convert fixed-offset references to resource descriptors
518 * to symbolic references (Note: modifies namespace)
519 */
520 AcpiDmConvertResourceIndexes (AcpiGbl_ParseOpRoot, AcpiGbl_RootNode);

522 /* Optional displays */

new/usr/src/common/acpica/common/adisasm.c 9

524 if (AcpiGbl_DbOpt_disasm)
525 {
526 /* This is the real disassembly */

528 AdDisplayTables (Filename, Table);

530 /* Dump hex table if requested (-vt) */

532 AcpiDmDumpDataTable (Table);

534 fprintf (stderr, "Disassembly completed\n");
535 fprintf (stderr, "ASL Output: %s - %u bytes\n",
536 DisasmFilename, AdGetFileSize (File));
537 }
538 }

540 Cleanup:

542 if (Table && !AcpiUtIsAmlTable (Table))
543 {
544 ACPI_FREE (Table);
545 }

547 if (OutToFile && File)
548 {
549 if (AslCompilerdebug) /* Display final namespace, with transforms */
550 {
551 NsSetupNamespaceListing (File);
552 NsDisplayNamespace ();
553 }

555 fclose (File);
556 AcpiOsRedirectOutput (stdout);
557 }

559 AcpiPsDeleteParseTree (AcpiGbl_ParseOpRoot);
560 AcpiGbl_ParseOpRoot = NULL;
561 return (Status);
562 }

565 /**
566 *
567 * FUNCTION: AdDisassemblerHeader
568 *
569 * PARAMETERS: Filename - Input file for the table
570 *
571 * RETURN: None
572 *
573 * DESCRIPTION: Create the disassembler header, including ACPI CA signon with
574 * current time and date.
575 *
576 ***/

578 void
579 AdDisassemblerHeader (
580 char *Filename)
581 {
582 time_t Timer;

584 time (&Timer);

586 /* Header and input table info */

588 AcpiOsPrintf ("/*\n");

new/usr/src/common/acpica/common/adisasm.c 10

589 AcpiOsPrintf (ACPI_COMMON_HEADER ("AML Disassembler", " * "));

591 AcpiOsPrintf (" * Disassembly of %s, %s", Filename, ctime (&Timer));
592 AcpiOsPrintf (" *\n");
593 }

596 /**
597 *
598 * FUNCTION: AdCreateTableHeader
599 *
600 * PARAMETERS: Filename - Input file for the table
601 * Table - Pointer to the raw table
602 *
603 * RETURN: None
604 *
605 * DESCRIPTION: Create the ASL table header, including ACPI CA signon with
606 * current time and date.
607 *
608 ***/

610 static void
611 AdCreateTableHeader (
612 char *Filename,
613 ACPI_TABLE_HEADER *Table)
614 {
615 char *NewFilename;
616 UINT8 Checksum;

619 /*
620 * Print file header and dump original table header
621 */
622 AdDisassemblerHeader (Filename);

624 AcpiOsPrintf (" * Original Table Header:\n");
625 AcpiOsPrintf (" * Signature \"%4.4s\"\n", Table->Signature);
626 AcpiOsPrintf (" * Length 0x%8.8X (%u)\n", Table->Length, Table

628 /* Print and validate the revision */

630 AcpiOsPrintf (" * Revision 0x%2.2X", Table->Revision);

632 switch (Table->Revision)
633 {
634 case 0:

636 AcpiOsPrintf (" **** Invalid Revision");
637 break;

639 case 1:

641 /* Revision of DSDT controls the ACPI integer width */

643 if (ACPI_COMPARE_NAME (Table->Signature, ACPI_SIG_DSDT))
644 {
645 AcpiOsPrintf (" **** 32-bit table (V1), no 64-bit math support");
646 }
647 break;

649 default:

651 break;
652 }
653 AcpiOsPrintf ("\n");

new/usr/src/common/acpica/common/adisasm.c 11

655 /* Print and validate the table checksum */

657 AcpiOsPrintf (" * Checksum 0x%2.2X", Table->Checksum);

659 Checksum = AcpiTbChecksum (ACPI_CAST_PTR (UINT8, Table), Table->Length);
660 if (Checksum)
661 {
662 AcpiOsPrintf (" **** Incorrect checksum, should be 0x%2.2X",
663 (UINT8) (Table->Checksum - Checksum));
664 }
665 AcpiOsPrintf ("\n");

667 AcpiOsPrintf (" * OEM ID \"%.6s\"\n", Table->OemId);
668 AcpiOsPrintf (" * OEM Table ID \"%.8s\"\n", Table->OemTableId);
669 AcpiOsPrintf (" * OEM Revision 0x%8.8X (%u)\n", Table->OemRevision,
670 AcpiOsPrintf (" * Compiler ID \"%.4s\"\n", Table->AslCompilerId
671 AcpiOsPrintf (" * Compiler Version 0x%8.8X (%u)\n", Table->AslCompilerRe
672 AcpiOsPrintf (" */\n");

674 /* Create AML output filename based on input filename */

676 if (Filename)
677 {
678 NewFilename = FlGenerateFilename (Filename, "aml");
679 }
680 else
681 {
682 NewFilename = ACPI_ALLOCATE_ZEROED (9);
683 strncat (NewFilename, Table->Signature, 4);
684 strcat (NewFilename, ".aml");
685 }

687 /* Open the ASL definition block */

689 AcpiOsPrintf (
690 "DefinitionBlock (\"%s\", \"%4.4s\", %hu, \"%.6s\", \"%.8s\", 0x%8.8X)\n
691 NewFilename, Table->Signature, Table->Revision,
692 Table->OemId, Table->OemTableId, Table->OemRevision);

694 ACPI_FREE (NewFilename);
695 }

698 /**
699 *
700 * FUNCTION: AdDisplayTables
701 *
702 * PARAMETERS: Filename - Input file for the table
703 * Table - Pointer to the raw table
704 *
705 * RETURN: Status
706 *
707 * DESCRIPTION: Display (disassemble) loaded tables and dump raw tables
708 *
709 ***/

711 ACPI_STATUS
712 AdDisplayTables (
713 char *Filename,
714 ACPI_TABLE_HEADER *Table)
715 {

718 if (!AcpiGbl_ParseOpRoot)
719 {
720 return (AE_NOT_EXIST);

new/usr/src/common/acpica/common/adisasm.c 12

721 }

723 if (!AcpiGbl_DbOpt_verbose)
724 {
725 AdCreateTableHeader (Filename, Table);
726 }

728 AcpiDmDisassemble (NULL, AcpiGbl_ParseOpRoot, ACPI_UINT32_MAX);

730 if (AcpiGbl_DbOpt_verbose)
731 {
732 AcpiOsPrintf ("\n\nTable Header:\n");
733 AcpiUtDebugDumpBuffer ((UINT8 *) Table, sizeof (ACPI_TABLE_HEADER),
734 DB_BYTE_DISPLAY, ACPI_UINT32_MAX);

736 AcpiOsPrintf ("Table Body (Length 0x%X)\n", Table->Length);
737 AcpiUtDebugDumpBuffer (((UINT8 *) Table + sizeof (ACPI_TABLE_HEADER)),
738 Table->Length, DB_BYTE_DISPLAY, ACPI_UINT32_MAX);
739 }

741 return (AE_OK);
742 }

745 /**
746 *
747 * FUNCTION: AdGetLocalTables
748 *
749 * PARAMETERS: Filename - Not used
750 * GetAllTables - TRUE if all tables are desired
751 *
752 * RETURN: Status
753 *
754 * DESCRIPTION: Get the ACPI tables from either memory or a file
755 *
756 ***/

758 ACPI_STATUS
759 AdGetLocalTables (
760 char *Filename,
761 BOOLEAN GetAllTables)
762 {
763 ACPI_STATUS Status;
764 ACPI_TABLE_HEADER TableHeader;
765 ACPI_TABLE_HEADER *NewTable;
766 UINT32 NumTables;
767 UINT32 PointerSize;
768 UINT32 TableIndex;

771 if (GetAllTables)
772 {
773 ACPI_MOVE_32_TO_32 (TableHeader.Signature, ACPI_SIG_RSDT);
774 AcpiOsTableOverride (&TableHeader, &NewTable);
775 if (!NewTable)
776 {
777 fprintf (stderr, "Could not obtain RSDT\n");
778 return (AE_NO_ACPI_TABLES);
779 }
780 else
781 {
782 AdWriteTable (NewTable, NewTable->Length,
783 ACPI_SIG_RSDT, NewTable->OemTableId);
784 }

786 if (ACPI_COMPARE_NAME (NewTable->Signature, ACPI_SIG_RSDT))

new/usr/src/common/acpica/common/adisasm.c 13

787 {
788 PointerSize = sizeof (UINT32);
789 }
790 else
791 {
792 PointerSize = sizeof (UINT64);
793 }

795 /*
796 * Determine the number of tables pointed to by the RSDT/XSDT.
797 * This is defined by the ACPI Specification to be the number of
798 * pointers contained within the RSDT/XSDT. The size of the pointers
799 * is architecture-dependent.
800 */
801 NumTables = (NewTable->Length - sizeof (ACPI_TABLE_HEADER)) / PointerSiz
802 AcpiOsPrintf ("There are %u tables defined in the %4.4s\n\n",
803 NumTables, NewTable->Signature);

805 /* Get the FADT */

807 ACPI_MOVE_32_TO_32 (TableHeader.Signature, ACPI_SIG_FADT);
808 AcpiOsTableOverride (&TableHeader, &NewTable);
809 if (NewTable)
810 {
811 AdWriteTable (NewTable, NewTable->Length,
812 ACPI_SIG_FADT, NewTable->OemTableId);
813 }
814 AcpiOsPrintf ("\n");

816 /* Don’t bother with FACS, it is usually all zeros */
817 }

819 /* Always get the DSDT */

821 ACPI_MOVE_32_TO_32 (TableHeader.Signature, ACPI_SIG_DSDT);
822 AcpiOsTableOverride (&TableHeader, &NewTable);
823 if (NewTable)
824 {
825 AdWriteTable (NewTable, NewTable->Length,
826 ACPI_SIG_DSDT, NewTable->OemTableId);

828 /* Store DSDT in the Table Manager */

830 Status = AcpiTbStoreTable (0, NewTable, NewTable->Length,
831 0, &TableIndex);
832 if (ACPI_FAILURE (Status))
833 {
834 fprintf (stderr, "Could not store DSDT\n");
835 return (AE_NO_ACPI_TABLES);
836 }
837 }
838 else
839 {
840 fprintf (stderr, "Could not obtain DSDT\n");
841 return (AE_NO_ACPI_TABLES);
842 }

844 #if 0
845 /* TBD: Future implementation */

847 AcpiOsPrintf ("\n");

849 /* Get all SSDTs */

851 ACPI_MOVE_32_TO_32 (TableHeader.Signature, ACPI_SIG_SSDT);
852 do

new/usr/src/common/acpica/common/adisasm.c 14

853 {
854 NewTable = NULL;
855 Status = AcpiOsTableOverride (&TableHeader, &NewTable);

857 } while (NewTable);
858 #endif

860 return (AE_OK);
861 }

864 /**
865 *
866 * FUNCTION: AdParseTable
867 *
868 * PARAMETERS: Table - Pointer to the raw table
869 * OwnerId - Returned OwnerId of the table
870 * LoadTable - If add table to the global table list
871 * External - If this is an external table
872 *
873 * RETURN: Status
874 *
875 * DESCRIPTION: Parse the DSDT.
876 *
877 ***/

879 ACPI_STATUS
880 AdParseTable (
881 ACPI_TABLE_HEADER *Table,
882 ACPI_OWNER_ID *OwnerId,
883 BOOLEAN LoadTable,
884 BOOLEAN External)
885 {
886 ACPI_STATUS Status = AE_OK;
887 ACPI_WALK_STATE *WalkState;
888 UINT8 *AmlStart;
889 UINT32 AmlLength;
890 UINT32 TableIndex;

893 if (!Table)
894 {
895 return (AE_NOT_EXIST);
896 }

898 /* Pass 1: Parse everything except control method bodies */

900 fprintf (stderr, "Pass 1 parse of [%4.4s]\n", (char *) Table->Signature);

902 AmlLength = Table->Length - sizeof (ACPI_TABLE_HEADER);
903 AmlStart = ((UINT8 *) Table + sizeof (ACPI_TABLE_HEADER));

905 /* Create the root object */

907 AcpiGbl_ParseOpRoot = AcpiPsCreateScopeOp ();
908 if (!AcpiGbl_ParseOpRoot)
909 {
910 return (AE_NO_MEMORY);
911 }

913 /* Create and initialize a new walk state */

915 WalkState = AcpiDsCreateWalkState (0,
916 AcpiGbl_ParseOpRoot, NULL, NULL);
917 if (!WalkState)
918 {

new/usr/src/common/acpica/common/adisasm.c 15

919 return (AE_NO_MEMORY);
920 }

922 Status = AcpiDsInitAmlWalk (WalkState, AcpiGbl_ParseOpRoot,
923 NULL, AmlStart, AmlLength, NULL, ACPI_IMODE_LOAD_PASS1);
924 if (ACPI_FAILURE (Status))
925 {
926 return (Status);
927 }

929 WalkState->ParseFlags &= ~ACPI_PARSE_DELETE_TREE;
930 WalkState->ParseFlags |= ACPI_PARSE_DISASSEMBLE;

932 Status = AcpiPsParseAml (WalkState);
933 if (ACPI_FAILURE (Status))
934 {
935 return (Status);
936 }

938 /* If LoadTable is FALSE, we are parsing the last loaded table */

940 TableIndex = AcpiGbl_RootTableList.CurrentTableCount - 1;

942 /* Pass 2 */

944 if (LoadTable)
945 {
946 Status = AcpiTbStoreTable ((ACPI_PHYSICAL_ADDRESS) Table, Table,
947 Table->Length, ACPI_TABLE_ORIGIN_ALLOCATED, &TableIndex);
948 if (ACPI_FAILURE (Status))
949 {
950 return (Status);
951 }
952 Status = AcpiTbAllocateOwnerId (TableIndex);
953 if (ACPI_FAILURE (Status))
954 {
955 return (Status);
956 }
957 if (OwnerId)
958 {
959 Status = AcpiTbGetOwnerId (TableIndex, OwnerId);
960 if (ACPI_FAILURE (Status))
961 {
962 return (Status);
963 }
964 }
965 }

967 fprintf (stderr, "Pass 2 parse of [%4.4s]\n", (char *) Table->Signature);

969 Status = AcpiNsOneCompleteParse (ACPI_IMODE_LOAD_PASS2, TableIndex, NULL);
970 if (ACPI_FAILURE (Status))
971 {
972 return (Status);
973 }

975 /* No need to parse control methods of external table */

977 if (External)
978 {
979 return (AE_OK);
980 }

982 /* Pass 3: Parse control methods and link their parse trees into the main pa

984 fprintf (stderr, "Parsing Deferred Opcodes (Methods/Buffers/Packages/Regions

new/usr/src/common/acpica/common/adisasm.c 16

985 Status = AcpiDmParseDeferredOps (AcpiGbl_ParseOpRoot);
986 fprintf (stderr, "\n");

988 /* Process Resource Templates */

990 AcpiDmFindResources (AcpiGbl_ParseOpRoot);

992 fprintf (stderr, "Parsing completed\n");
993 return (AE_OK);
994 }

new/usr/src/common/acpica/common/adwalk.c 1

**
 29204 Thu Dec 26 13:48:23 2013
new/usr/src/common/acpica/common/adwalk.c
update to acpica-unix2-20131218
update to acpica-unix2-20131115
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: adwalk - Application-level disassembler parse tree walk routines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acparser.h"
48 #include "amlcode.h"
49 #include "acdisasm.h"
50 #include "acdispat.h"
51 #include "acnamesp.h"
52 #include "acapps.h"

55 #define _COMPONENT ACPI_TOOLS
56 ACPI_MODULE_NAME ("adwalk")

58 /*

new/usr/src/common/acpica/common/adwalk.c 2

59 * aslmap - opcode mappings and reserved method names
60 */
61 ACPI_OBJECT_TYPE
62 AslMapNamedOpcodeToDataType (
63 UINT16 Opcode);

65 /* Local prototypes */

67 static ACPI_STATUS
68 AcpiDmFindOrphanDescending (
69 ACPI_PARSE_OBJECT *Op,
70 UINT32 Level,
71 void *Context);

73 static ACPI_STATUS
74 AcpiDmDumpDescending (
75 ACPI_PARSE_OBJECT *Op,
76 UINT32 Level,
77 void *Context);

79 static ACPI_STATUS
80 AcpiDmXrefDescendingOp (
81 ACPI_PARSE_OBJECT *Op,
82 UINT32 Level,
83 void *Context);

85 static ACPI_STATUS
86 AcpiDmCommonAscendingOp (
87 ACPI_PARSE_OBJECT *Op,
88 UINT32 Level,
89 void *Context);

91 static ACPI_STATUS
92 AcpiDmLoadDescendingOp (
93 ACPI_PARSE_OBJECT *Op,
94 UINT32 Level,
95 void *Context);

97 static UINT32
98 AcpiDmInspectPossibleArgs (
99 UINT32 CurrentOpArgCount,
100 UINT32 TargetCount,
101 ACPI_PARSE_OBJECT *Op);

103 static ACPI_STATUS
104 AcpiDmResourceDescendingOp (
105 ACPI_PARSE_OBJECT *Op,
106 UINT32 Level,
107 void *Context);

110 /***
111 *
112 * FUNCTION: AcpiDmDumpTree
113 *
114 * PARAMETERS: Origin - Starting object
115 *
116 * RETURN: None
117 *
118 * DESCRIPTION: Parse tree walk to format and output the nodes
119 *
120 **/

122 void
123 AcpiDmDumpTree (
124 ACPI_PARSE_OBJECT *Origin)

new/usr/src/common/acpica/common/adwalk.c 3

125 {
126 ACPI_OP_WALK_INFO Info;

129 if (!Origin)
130 {
131 return;
132 }

134 AcpiOsPrintf ("/*\nAML Parse Tree\n\n");
135 Info.Flags = 0;
136 Info.Count = 0;
137 Info.Level = 0;
138 Info.WalkState = NULL;
139 AcpiDmWalkParseTree (Origin, AcpiDmDumpDescending, NULL, &Info);
140 AcpiOsPrintf ("*/\n\n");
141 }

144 /***
145 *
146 * FUNCTION: AcpiDmFindOrphanMethods
147 *
148 * PARAMETERS: Origin - Starting object
149 *
150 * RETURN: None
151 *
152 * DESCRIPTION: Parse tree walk to find "orphaned" method invocations -- methods
153 * that are not resolved in the namespace
154 *
155 **/

157 void
158 AcpiDmFindOrphanMethods (
159 ACPI_PARSE_OBJECT *Origin)
160 {
161 ACPI_OP_WALK_INFO Info;

164 if (!Origin)
165 {
166 return;
167 }

169 Info.Flags = 0;
170 Info.Level = 0;
171 Info.WalkState = NULL;
172 AcpiDmWalkParseTree (Origin, AcpiDmFindOrphanDescending, NULL, &Info);
173 }

176 /***
177 *
178 * FUNCTION: AcpiDmFinishNamespaceLoad
179 *
180 * PARAMETERS: ParseTreeRoot - Root of the parse tree
181 * NamespaceRoot - Root of the internal namespace
182 * OwnerId - OwnerId of the table to be disassembled
183 *
184 * RETURN: None
185 *
186 * DESCRIPTION: Load all namespace items that are created within control
187 * methods. Used before namespace cross reference
188 *
189 **/

new/usr/src/common/acpica/common/adwalk.c 4

191 void
192 AcpiDmFinishNamespaceLoad (
193 ACPI_PARSE_OBJECT *ParseTreeRoot,
194 ACPI_NAMESPACE_NODE *NamespaceRoot,
195 ACPI_OWNER_ID OwnerId)
196 {
197 ACPI_STATUS Status;
198 ACPI_OP_WALK_INFO Info;
199 ACPI_WALK_STATE *WalkState;

202 if (!ParseTreeRoot)
203 {
204 return;
205 }

207 /* Create and initialize a new walk state */

209 WalkState = AcpiDsCreateWalkState (OwnerId, ParseTreeRoot, NULL, NULL);
210 if (!WalkState)
211 {
212 return;
213 }

215 Status = AcpiDsScopeStackPush (NamespaceRoot, NamespaceRoot->Type, WalkState
216 if (ACPI_FAILURE (Status))
217 {
218 return;
219 }

221 Info.Flags = 0;
222 Info.Level = 0;
223 Info.WalkState = WalkState;
224 AcpiDmWalkParseTree (ParseTreeRoot, AcpiDmLoadDescendingOp,
225 AcpiDmCommonAscendingOp, &Info);
226 ACPI_FREE (WalkState);
227 }

230 /***
231 *
232 * FUNCTION: AcpiDmCrossReferenceNamespace
233 *
234 * PARAMETERS: ParseTreeRoot - Root of the parse tree
235 * NamespaceRoot - Root of the internal namespace
236 * OwnerId - OwnerId of the table to be disassembled
237 *
238 * RETURN: None
239 *
240 * DESCRIPTION: Cross reference the namespace to create externals
241 *
242 **/

244 void
245 AcpiDmCrossReferenceNamespace (
246 ACPI_PARSE_OBJECT *ParseTreeRoot,
247 ACPI_NAMESPACE_NODE *NamespaceRoot,
248 ACPI_OWNER_ID OwnerId)
249 {
250 ACPI_STATUS Status;
251 ACPI_OP_WALK_INFO Info;
252 ACPI_WALK_STATE *WalkState;

255 if (!ParseTreeRoot)
256 {

new/usr/src/common/acpica/common/adwalk.c 5

257 return;
258 }

260 /* Create and initialize a new walk state */

262 WalkState = AcpiDsCreateWalkState (OwnerId, ParseTreeRoot, NULL, NULL);
263 if (!WalkState)
264 {
265 return;
266 }

268 Status = AcpiDsScopeStackPush (NamespaceRoot, NamespaceRoot->Type, WalkState
269 if (ACPI_FAILURE (Status))
270 {
271 return;
272 }

274 Info.Flags = 0;
275 Info.Level = 0;
276 Info.WalkState = WalkState;
277 AcpiDmWalkParseTree (ParseTreeRoot, AcpiDmXrefDescendingOp,
278 AcpiDmCommonAscendingOp, &Info);
279 ACPI_FREE (WalkState);
280 }

283 /***
284 *
285 * FUNCTION: AcpiDmConvertResourceIndexes
286 *
287 * PARAMETERS: ParseTreeRoot - Root of the parse tree
288 * NamespaceRoot - Root of the internal namespace
289 *
290 * RETURN: None
291 *
292 * DESCRIPTION: Convert fixed-offset references to resource descriptors to
293 * symbolic references. Should only be called after namespace has
294 * been cross referenced.
295 *
296 **/

298 void
299 AcpiDmConvertResourceIndexes (
300 ACPI_PARSE_OBJECT *ParseTreeRoot,
301 ACPI_NAMESPACE_NODE *NamespaceRoot)
302 {
303 ACPI_STATUS Status;
304 ACPI_OP_WALK_INFO Info;
305 ACPI_WALK_STATE *WalkState;

308 if (!ParseTreeRoot)
309 {
310 return;
311 }

313 /* Create and initialize a new walk state */

315 WalkState = AcpiDsCreateWalkState (0, ParseTreeRoot, NULL, NULL);
316 if (!WalkState)
317 {
318 return;
319 }

321 Status = AcpiDsScopeStackPush (NamespaceRoot, NamespaceRoot->Type, WalkState
322 if (ACPI_FAILURE (Status))

new/usr/src/common/acpica/common/adwalk.c 6

323 {
324 return;
325 }

327 Info.Flags = 0;
328 Info.Level = 0;
329 Info.WalkState = WalkState;
330 AcpiDmWalkParseTree (ParseTreeRoot, AcpiDmResourceDescendingOp,
331 AcpiDmCommonAscendingOp, &Info);
332 ACPI_FREE (WalkState);
333 return;
334 }

337 /***
338 *
339 * FUNCTION: AcpiDmDumpDescending
340 *
341 * PARAMETERS: ASL_WALK_CALLBACK
342 *
343 * RETURN: Status
344 *
345 * DESCRIPTION: Format and print contents of one parse Op.
346 *
347 **/

349 static ACPI_STATUS
350 AcpiDmDumpDescending (
351 ACPI_PARSE_OBJECT *Op,
352 UINT32 Level,
353 void *Context)
354 {
355 ACPI_OP_WALK_INFO *Info = Context;
356 char *Path;

359 if (!Op)
360 {
361 return (AE_OK);
362 }

364 /* Most of the information (count, level, name) here */

366 Info->Count++;
367 AcpiOsPrintf ("% 5d [%2.2d] ", Info->Count, Level);
368 AcpiDmIndent (Level);
369 AcpiOsPrintf ("%-28s", AcpiPsGetOpcodeName (Op->Common.AmlOpcode));

371 /* Extra info is helpful */

373 switch (Op->Common.AmlOpcode)
374 {
375 case AML_BYTE_OP:

377 AcpiOsPrintf ("%2.2X", (UINT32) Op->Common.Value.Integer);
378 break;

380 case AML_WORD_OP:

382 AcpiOsPrintf ("%4.4X", (UINT32) Op->Common.Value.Integer);
383 break;

385 case AML_DWORD_OP:

387 AcpiOsPrintf ("%8.8X", (UINT32) Op->Common.Value.Integer);
388 break;

new/usr/src/common/acpica/common/adwalk.c 7

390 case AML_QWORD_OP:

392 AcpiOsPrintf ("%8.8X%8.8X", ACPI_FORMAT_UINT64 (Op->Common.Value.Integer
393 break;

395 case AML_INT_NAMEPATH_OP:

397 if (Op->Common.Value.String)
398 {
399 AcpiNsExternalizeName (ACPI_UINT32_MAX, Op->Common.Value.String,
400 NULL, &Path);
401 AcpiOsPrintf ("%s %p", Path, Op->Common.Node);
402 ACPI_FREE (Path);
403 }
404 else
405 {
406 AcpiOsPrintf ("[NULL]");
407 }
408 break;

410 case AML_NAME_OP:
411 case AML_METHOD_OP:
412 case AML_DEVICE_OP:
413 case AML_INT_NAMEDFIELD_OP:

415 AcpiOsPrintf ("%4.4s", ACPI_CAST_PTR (char, &Op->Named.Name));
416 break;

418 default:

420 break;
421 }

423 AcpiOsPrintf ("\n");
424 return (AE_OK);
425 }

428 /***
429 *
430 * FUNCTION: AcpiDmFindOrphanDescending
431 *
432 * PARAMETERS: ASL_WALK_CALLBACK
433 *
434 * RETURN: Status
435 *
436 * DESCRIPTION: Check namepath Ops for orphaned method invocations
437 *
438 * Note: Experimental.
439 *
440 **/

442 static ACPI_STATUS
443 AcpiDmFindOrphanDescending (
444 ACPI_PARSE_OBJECT *Op,
445 UINT32 Level,
446 void *Context)
447 {
448 const ACPI_OPCODE_INFO *OpInfo;
449 ACPI_PARSE_OBJECT *ChildOp;
450 ACPI_PARSE_OBJECT *NextOp;
451 ACPI_PARSE_OBJECT *ParentOp;
452 UINT32 ArgCount;

new/usr/src/common/acpica/common/adwalk.c 8

455 if (!Op)
456 {
457 return (AE_OK);
458 }

460 OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);

462 switch (Op->Common.AmlOpcode)
463 {
464 #ifdef ACPI_UNDER_DEVELOPMENT
465 case AML_ADD_OP:

467 ChildOp = Op->Common.Value.Arg;
468 if ((ChildOp->Common.AmlOpcode == AML_INT_NAMEPATH_OP) &&
469 !ChildOp->Common.Node)
470 {
471 AcpiNsExternalizeName (ACPI_UINT32_MAX, ChildOp->Common.Value.String
472 NULL, &Path);
473 AcpiOsPrintf ("/* %-16s A-NAMEPATH: %s */\n",
474 Op->Common.AmlOpName, Path);
475 ACPI_FREE (Path);

477 NextOp = Op->Common.Next;
478 if (!NextOp)
479 {
480 /* This NamePath has no args, assume it is an integer */

482 AcpiDmAddOpToExternalList (ChildOp,
483 ChildOp->Common.Value.String, ACPI_TYPE_INTEGER, 0, 0);
484 return (AE_OK);
485 }

487 ArgCount = AcpiDmInspectPossibleArgs (3, 1, NextOp);
488 AcpiOsPrintf ("/* A-CHILDREN: %u Actual %u */\n",
489 ArgCount, AcpiDmCountChildren (Op));

491 if (ArgCount < 1)
492 {
493 /* One Arg means this is just a Store(Name,Target) */

495 AcpiDmAddOpToExternalList (ChildOp,
496 ChildOp->Common.Value.String, ACPI_TYPE_INTEGER, 0, 0);
497 return (AE_OK);
498 }

500 AcpiDmAddOpToExternalList (ChildOp,
501 ChildOp->Common.Value.String, ACPI_TYPE_METHOD, ArgCount, 0);
502 }
503 break;
504 #endif

506 case AML_STORE_OP:

508 ChildOp = Op->Common.Value.Arg;
509 if ((ChildOp->Common.AmlOpcode == AML_INT_NAMEPATH_OP) &&
510 !ChildOp->Common.Node)
511 {
512 NextOp = Op->Common.Next;
513 if (!NextOp)
514 {
515 /* This NamePath has no args, assume it is an integer */

517 AcpiDmAddOpToExternalList (ChildOp,
518 ChildOp->Common.Value.String, ACPI_TYPE_INTEGER, 0, 0);
519 return (AE_OK);
520 }

new/usr/src/common/acpica/common/adwalk.c 9

522 ArgCount = AcpiDmInspectPossibleArgs (2, 1, NextOp);
523 if (ArgCount <= 1)
524 {
525 /* One Arg means this is just a Store(Name,Target) */

527 AcpiDmAddOpToExternalList (ChildOp,
528 ChildOp->Common.Value.String, ACPI_TYPE_INTEGER, 0, 0);
529 return (AE_OK);
530 }

532 AcpiDmAddOpToExternalList (ChildOp,
533 ChildOp->Common.Value.String, ACPI_TYPE_METHOD, ArgCount, 0);
534 }
535 break;

537 case AML_INT_NAMEPATH_OP:

539 /* Must examine parent to see if this namepath is an argument */

541 ParentOp = Op->Common.Parent;
542 OpInfo = AcpiPsGetOpcodeInfo (ParentOp->Common.AmlOpcode);

544 if ((OpInfo->Class != AML_CLASS_EXECUTE) &&
545 (OpInfo->Class != AML_CLASS_CREATE) &&
546 (OpInfo->ObjectType != ACPI_TYPE_LOCAL_ALIAS) &&
547 (ParentOp->Common.AmlOpcode != AML_INT_METHODCALL_OP) &&
548 !Op->Common.Node)
549 {
550 ArgCount = AcpiDmInspectPossibleArgs (0, 0, Op->Common.Next);

552 /*
553 * Check if namepath is a predicate for if/while or lone parameter t
554 * a return.
555 */
556 if (ArgCount == 0)
557 {
558 if (((ParentOp->Common.AmlOpcode == AML_IF_OP) ||
559 (ParentOp->Common.AmlOpcode == AML_WHILE_OP) ||
560 (ParentOp->Common.AmlOpcode == AML_RETURN_OP)) &&

562 /* And namepath is the first argument */
563 (ParentOp->Common.Value.Arg == Op))
564 {
565 AcpiDmAddOpToExternalList (Op,
566 Op->Common.Value.String, ACPI_TYPE_INTEGER, 0, 0);
567 break;
568 }
569 }

571 /*
572 * This is a standalone namestring (not a parameter to another
573 * operator) - it *must* be a method invocation, nothing else is
574 * grammatically possible.
575 */
576 AcpiDmAddOpToExternalList (Op,
577 Op->Common.Value.String, ACPI_TYPE_METHOD, ArgCount, 0);
578 }
579 break;

581 default:

583 break;
584 }

586 return (AE_OK);

new/usr/src/common/acpica/common/adwalk.c 10

587 }

590 /***
591 *
592 * FUNCTION: AcpiDmLoadDescendingOp
593 *
594 * PARAMETERS: ASL_WALK_CALLBACK
595 *
596 * RETURN: Status
597 *
598 * DESCRIPTION: Descending handler for namespace control method object load
599 *
600 **/

602 static ACPI_STATUS
603 AcpiDmLoadDescendingOp (
604 ACPI_PARSE_OBJECT *Op,
605 UINT32 Level,
606 void *Context)
607 {
608 ACPI_OP_WALK_INFO *Info = Context;
609 const ACPI_OPCODE_INFO *OpInfo;
610 ACPI_WALK_STATE *WalkState;
611 ACPI_OBJECT_TYPE ObjectType;
612 ACPI_STATUS Status;
613 char *Path = NULL;
614 ACPI_PARSE_OBJECT *NextOp;
615 ACPI_NAMESPACE_NODE *Node;
616 char FieldPath[5];
617 BOOLEAN PreDefined = FALSE;
618 UINT8 PreDefineIndex = 0;

621 WalkState = Info->WalkState;
622 OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);
623 ObjectType = OpInfo->ObjectType;
624 ObjectType = AslMapNamedOpcodeToDataType (Op->Asl.AmlOpcode);

626 /* Only interested in operators that create new names */

628 if (!(OpInfo->Flags & AML_NAMED) &&
629 !(OpInfo->Flags & AML_CREATE))
630 {
631 goto Exit;
632 }

634 /* Get the NamePath from the appropriate place */

636 if (OpInfo->Flags & AML_NAMED)
637 {
638 /* For all named operators, get the new name */

640 Path = (char *) Op->Named.Path;

642 if (!Path && Op->Common.AmlOpcode == AML_INT_NAMEDFIELD_OP)
643 {
644 *ACPI_CAST_PTR (UINT32, &FieldPath[0]) = Op->Named.Name;
645 FieldPath[4] = 0;
646 Path = FieldPath;
647 }
648 }
649 else if (OpInfo->Flags & AML_CREATE)
650 {
651 /* New name is the last child */

new/usr/src/common/acpica/common/adwalk.c 11

653 NextOp = Op->Common.Value.Arg;

655 while (NextOp->Common.Next)
656 {
657 NextOp = NextOp->Common.Next;
658 }
659 Path = NextOp->Common.Value.String;
660 }

662 if (!Path)
663 {
664 goto Exit;
665 }

667 /* Insert the name into the namespace */

669 Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ObjectType,
670 ACPI_IMODE_LOAD_PASS2, ACPI_NS_DONT_OPEN_SCOPE,
671 WalkState, &Node);

673 Op->Common.Node = Node;

675 if (ACPI_SUCCESS (Status))
676 {
677 /* Check if it’s a predefined node */

679 while (AcpiGbl_PreDefinedNames[PreDefineIndex].Name)
680 {
681 if (ACPI_COMPARE_NAME (Node->Name.Ascii,
682 AcpiGbl_PreDefinedNames[PreDefineIndex].Name))
683 {
684 PreDefined = TRUE;
685 break;
686 }

688 PreDefineIndex++;
689 }

691 /*
692 * Set node owner id if it satisfies all the following conditions:
693 * 1) Not a predefined node, _SB_ etc
694 * 2) Not the root node
695 * 3) Not a node created by Scope
696 */

698 if (!PreDefined && Node != AcpiGbl_RootNode &&
699 Op->Common.AmlOpcode != AML_SCOPE_OP)
700 {
701 Node->OwnerId = WalkState->OwnerId;
702 }
703 }

706 Exit:

708 if (AcpiNsOpensScope (ObjectType))
709 {
710 if (Op->Common.Node)
711 {
712 Status = AcpiDsScopeStackPush (Op->Common.Node, ObjectType, WalkStat
713 if (ACPI_FAILURE (Status))
714 {
715 return (Status);
716 }
717 }
718 }

new/usr/src/common/acpica/common/adwalk.c 12

720 return (AE_OK);
721 }

724 /***
725 *
726 * FUNCTION: AcpiDmXrefDescendingOp
727 *
728 * PARAMETERS: ASL_WALK_CALLBACK
729 *
730 * RETURN: Status
731 *
732 * DESCRIPTION: Descending handler for namespace cross reference
733 *
734 **/

736 static ACPI_STATUS
737 AcpiDmXrefDescendingOp (
738 ACPI_PARSE_OBJECT *Op,
739 UINT32 Level,
740 void *Context)
741 {
742 ACPI_OP_WALK_INFO *Info = Context;
743 const ACPI_OPCODE_INFO *OpInfo;
744 ACPI_WALK_STATE *WalkState;
745 ACPI_OBJECT_TYPE ObjectType;
746 ACPI_OBJECT_TYPE ObjectType2;
747 ACPI_STATUS Status;
748 char *Path = NULL;
749 ACPI_PARSE_OBJECT *NextOp;
750 ACPI_NAMESPACE_NODE *Node;
751 ACPI_OPERAND_OBJECT *Object;
752 UINT32 ParamCount = 0;
753 char *Pathname;

756 WalkState = Info->WalkState;
757 OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);
758 ObjectType = OpInfo->ObjectType;
759 ObjectType = AslMapNamedOpcodeToDataType (Op->Asl.AmlOpcode);

761 if ((!(OpInfo->Flags & AML_NAMED)) &&
762 (!(OpInfo->Flags & AML_CREATE)) &&
763 (Op->Common.AmlOpcode != AML_INT_NAMEPATH_OP))
764 {
765 goto Exit;
766 }

768 /* Get the NamePath from the appropriate place */

770 if (OpInfo->Flags & AML_NAMED)
771 {
772 /*
773 * Only these two operators (Alias, Scope) refer to an existing
774 * name, it is the first argument
775 */
776 if (Op->Common.AmlOpcode == AML_ALIAS_OP)
777 {
778 ObjectType = ACPI_TYPE_ANY;

780 NextOp = Op->Common.Value.Arg;
781 NextOp = NextOp->Common.Value.Arg;
782 if (NextOp->Common.AmlOpcode == AML_INT_NAMEPATH_OP)
783 {
784 Path = NextOp->Common.Value.String;

new/usr/src/common/acpica/common/adwalk.c 13

785 }
786 }
787 else if (Op->Common.AmlOpcode == AML_SCOPE_OP)
788 {
789 Path = (char *) Op->Named.Path;
790 }
791 }
792 else if (OpInfo->Flags & AML_CREATE)
793 {
794 /* Referenced Buffer Name is the first child */

796 ObjectType = ACPI_TYPE_BUFFER; /* Change from TYPE_BUFFER_FIELD */

798 NextOp = Op->Common.Value.Arg;
799 if (NextOp->Common.AmlOpcode == AML_INT_NAMEPATH_OP)
800 {
801 Path = NextOp->Common.Value.String;
802 }
803 }
804 else
805 {
806 Path = Op->Common.Value.String;
807 }

809 if (!Path)
810 {
811 goto Exit;
812 }

814 /*
815 * Lookup the name in the namespace. Name must exist at this point, or it
816 * is an invalid reference.
817 *
818 * The namespace is also used as a lookup table for references to resource
819 * descriptors and the fields within them.
820 */
821 Node = NULL;
822 Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ACPI_TYPE_ANY,
823 ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT | ACPI_NS_DONT_OPEN_SC
824 WalkState, &Node);
825 if (ACPI_SUCCESS (Status) && (Node->Flags & ANOBJ_IS_EXTERNAL))
826 {
827 /* Node was created by an External() statement */

829 Status = AE_NOT_FOUND;
830 }

832 if (ACPI_FAILURE (Status))
833 {
834 if (Status == AE_NOT_FOUND)
835 {
836 /*
837 * Add this symbol as an external declaration, except if the
838 * parent is a CondRefOf operator. For this operator, we do not
839 * need an external, nor do we want one, since this can cause
840 * disassembly problems if the symbol is actually a control
841 * method.
842 */
843 if (!(Op->Asl.Parent &&
844 (Op->Asl.Parent->Asl.AmlOpcode == AML_COND_REF_OF_OP)))
845 {
846 if (Node)
847 {
848 AcpiDmAddNodeToExternalList (Node,
849 (UINT8) ObjectType, 0, 0);
850 }

new/usr/src/common/acpica/common/adwalk.c 14

851 else
852 {
853 AcpiDmAddOpToExternalList (Op, Path,
854 (UINT8) ObjectType, 0, 0);
855 }
856 }
857 }
858 }

860 /*
861 * Found the node, but check if it came from an external table.
862 * Add it to external list. Note: Node->OwnerId == 0 indicates
863 * one of the built-in ACPI Names (_OS_ etc.) which can safely
864 * be ignored.
865 */
866 else if (Node->OwnerId &&
867 (WalkState->OwnerId != Node->OwnerId))
868 {
869 ObjectType2 = ObjectType;

871 Object = AcpiNsGetAttachedObject (Node);
872 if (Object)
873 {
874 ObjectType2 = Object->Common.Type;
875 if (ObjectType2 == ACPI_TYPE_METHOD)
876 {
877 ParamCount = Object->Method.ParamCount;
878 }
879 }

881 Pathname = AcpiNsGetExternalPathname (Node);
882 if (!Pathname)
883 {
884 return (AE_NO_MEMORY);
885 }

887 AcpiDmAddNodeToExternalList (Node, (UINT8) ObjectType2,
888 ParamCount, ACPI_EXT_RESOLVED_REFERENCE);

890 ACPI_FREE (Pathname);
891 Op->Common.Node = Node;
892 }
893 else
894 {
895 Op->Common.Node = Node;
896 }

899 Exit:
900 /* Open new scope if necessary */

902 if (AcpiNsOpensScope (ObjectType))
903 {
904 if (Op->Common.Node)
905 {
906 Status = AcpiDsScopeStackPush (Op->Common.Node, ObjectType, WalkStat
907 if (ACPI_FAILURE (Status))
908 {
909 return (Status);
910 }
911 }
912 }

914 return (AE_OK);
915 }

new/usr/src/common/acpica/common/adwalk.c 15

918 /***
919 *
920 * FUNCTION: AcpiDmResourceDescendingOp
921 *
922 * PARAMETERS: ASL_WALK_CALLBACK
923 *
924 * RETURN: None
925 *
926 * DESCRIPTION: Process one parse op during symbolic resource index conversion.
927 *
928 **/

930 static ACPI_STATUS
931 AcpiDmResourceDescendingOp (
932 ACPI_PARSE_OBJECT *Op,
933 UINT32 Level,
934 void *Context)
935 {
936 ACPI_OP_WALK_INFO *Info = Context;
937 const ACPI_OPCODE_INFO *OpInfo;
938 ACPI_WALK_STATE *WalkState;
939 ACPI_OBJECT_TYPE ObjectType;
940 ACPI_STATUS Status;

943 WalkState = Info->WalkState;
944 OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);

946 /* Open new scope if necessary */

948 ObjectType = OpInfo->ObjectType;
949 if (AcpiNsOpensScope (ObjectType))
950 {
951 if (Op->Common.Node)
952 {

954 Status = AcpiDsScopeStackPush (Op->Common.Node, ObjectType, WalkStat
955 if (ACPI_FAILURE (Status))
956 {
957 return (Status);
958 }
959 }
960 }

962 /*
963 * Check if this operator contains a reference to a resource descriptor.
964 * If so, convert the reference into a symbolic reference.
965 */
966 AcpiDmCheckResourceReference (Op, WalkState);
967 return (AE_OK);
968 }

971 /***
972 *
973 * FUNCTION: AcpiDmCommonAscendingOp
974 *
975 * PARAMETERS: ASL_WALK_CALLBACK
976 *
977 * RETURN: None
978 *
979 * DESCRIPTION: Ascending handler for combined parse/namespace walks. Closes
980 * scope if necessary.
981 *
982 **/

new/usr/src/common/acpica/common/adwalk.c 16

984 static ACPI_STATUS
985 AcpiDmCommonAscendingOp (
986 ACPI_PARSE_OBJECT *Op,
987 UINT32 Level,
988 void *Context)
989 {
990 ACPI_OP_WALK_INFO *Info = Context;
991 const ACPI_OPCODE_INFO *OpInfo;
992 ACPI_OBJECT_TYPE ObjectType;

995 /* Close scope if necessary */

997 OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);
998 ObjectType = OpInfo->ObjectType;
999 ObjectType = AslMapNamedOpcodeToDataType (Op->Asl.AmlOpcode);

1001 if (AcpiNsOpensScope (ObjectType))
1002 {
1003 (void) AcpiDsScopeStackPop (Info->WalkState);
1004 }

1006 return (AE_OK);
1007 }

1010 /***
1011 *
1012 * FUNCTION: AcpiDmInspectPossibleArgs
1013 *
1014 * PARAMETERS: CurrentOpArgCount - Which arg of the current op was the
1015 * possible method invocation found
1016 * TargetCount - Number of targets (0,1,2) for this op
1017 * Op - Parse op
1018 *
1019 * RETURN: Status
1020 *
1021 * DESCRIPTION: Examine following args and next ops for possible arguments
1022 * for an unrecognized method invocation.
1023 *
1024 **/

1026 static UINT32
1027 AcpiDmInspectPossibleArgs (
1028 UINT32 CurrentOpArgCount,
1029 UINT32 TargetCount,
1030 ACPI_PARSE_OBJECT *Op)
1031 {
1032 const ACPI_OPCODE_INFO *OpInfo;
1033 UINT32 i;
1034 UINT32 Last = 0;
1035 UINT32 Lookahead;

1038 Lookahead = (ACPI_METHOD_NUM_ARGS + TargetCount) - CurrentOpArgCount;

1040 /* Lookahead for the maximum number of possible arguments */

1042 for (i = 0; i < Lookahead; i++)
1043 {
1044 if (!Op)
1045 {
1046 break;
1047 }

new/usr/src/common/acpica/common/adwalk.c 17

1049 OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);

1051 /*
1052 * Any one of these operators is "very probably" not a method arg
1053 */
1054 if ((Op->Common.AmlOpcode == AML_STORE_OP) ||
1055 (Op->Common.AmlOpcode == AML_NOTIFY_OP))
1056 {
1057 break;
1058 }

1060 if ((OpInfo->Class != AML_CLASS_EXECUTE) &&
1061 (OpInfo->Class != AML_CLASS_CONTROL))
1062 {
1063 Last = i+1;
1064 }

1066 Op = Op->Common.Next;
1067 }

1069 return (Last);
1070 }

new/usr/src/common/acpica/common/ahpredef.c 1

**
 28510 Thu Dec 26 13:48:23 2013
new/usr/src/common/acpica/common/ahpredef.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: ahpredef - Table of all known ACPI predefined names
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"

47 /*
48 * iASL only needs a partial table (short descriptions only).
49 * AcpiHelp needs the full table.
50 */
51 #ifdef ACPI_ASL_COMPILER
52 #define AH_PREDEF(Name, ShortDesc, LongDesc) {Name, ShortDesc}
53 #else
54 #define AH_PREDEF(Name, ShortDesc, LongDesc) {Name, ShortDesc, LongDesc}
55 #endif

57 /*
58 * Predefined ACPI names, with short description and return value.
59 * This table was extracted directly from the ACPI specification.
60 */
61 const AH_PREDEFINED_NAME AslPredefinedInfo[] =

new/usr/src/common/acpica/common/ahpredef.c 2

62 {
63 AH_PREDEF ("_ACx", "Active Cooling", "Returns the active cooling policy t
64 AH_PREDEF ("_ADR", "Address", "Returns address of a device on parent bus,
65 AH_PREDEF ("_AEI", "ACPI Event Interrupts", "Returns a list of GPIO event
66 AH_PREDEF ("_ALC", "Ambient Light Chromaticity", "Returns the ambient lig
67 AH_PREDEF ("_ALI", "Ambient Light Illuminance", "Returns the ambient ligh
68 AH_PREDEF ("_ALN", "Alignment", "Base alignment, Resource Descriptor fiel
69 AH_PREDEF ("_ALP", "Ambient Light Polling", "Returns the ambient light se
70 AH_PREDEF ("_ALR", "Ambient Light Response", "Returns the ambient light b
71 AH_PREDEF ("_ALT", "Ambient Light Temperature", "Returns the ambient ligh
72 AH_PREDEF ("_ALx", "Active List", "Returns a list of active cooling devic
73 AH_PREDEF ("_ART", "Active Cooling Relationship Table", "Returns thermal
74 AH_PREDEF ("_ASI", "Address Space Id", "Resource Descriptor field"),
75 AH_PREDEF ("_ASZ", "Access Size", "Resource Descriptor field"),
76 AH_PREDEF ("_ATT", "Type-Specific Attribute", "Resource Descriptor field"
77 AH_PREDEF ("_BAS", "Base Address", "Range base address, Resource Descript
78 AH_PREDEF ("_BBN", "BIOS Bus Number", "Returns the PCI bus number returne
79 AH_PREDEF ("_BCL", "Brightness Control Levels", "Returns a list of suppor
80 AH_PREDEF ("_BCM", "Brightness Control Method", "Sets the brightness leve
81 AH_PREDEF ("_BCT", "Battery Charge Time", "Returns time remaining to comp
82 AH_PREDEF ("_BDN", "BIOS Dock Name", "Returns the Dock ID returned by the
83 AH_PREDEF ("_BFS", "Back From Sleep", "Inform AML of a wake event"),
84 AH_PREDEF ("_BIF", "Battery Information", "Returns a Control Method Batte
85 AH_PREDEF ("_BIX", "Battery Information Extended", "Returns a Control Met
86 AH_PREDEF ("_BLT", "Battery Level Threshold", "Set battery level threshol
87 AH_PREDEF ("_BM_", "Bus Master", "Resource Descriptor field"),
88 AH_PREDEF ("_BMA", "Battery Measurement Averaging Interval", "Sets batter
89 AH_PREDEF ("_BMC", "Battery Maintenance Control", "Sets battery maintenan
90 AH_PREDEF ("_BMD", "Battery Maintenance Data", "Returns battery maintenan
91 AH_PREDEF ("_BMS", "Battery Measurement Sampling Time", "Sets the battery
92 AH_PREDEF ("_BQC", "Brightness Query Current", "Returns the current displ
93 AH_PREDEF ("_BST", "Battery Status", "Returns a Control Method Battery st
94 AH_PREDEF ("_BTM", "Battery Time", "Returns the battery runtime"),
95 AH_PREDEF ("_BTP", "Battery Trip Point", "Sets a Control Method Battery t
96 AH_PREDEF ("_CBA", "Configuration Base Address", "Sets the base address f
97 AH_PREDEF ("_CDM", "Clock Domain", "Returns a logical processor’s clock d
98 AH_PREDEF ("_CID", "Compatible ID", "Returns a device’s Plug and Play Com
99 AH_PREDEF ("_CLS", "Class Code", "Returns PCI class code and subclass"),
100 AH_PREDEF ("_CPC", "Continuous Performance Control", "Returns a list of p
101 AH_PREDEF ("_CRS", "Current Resource Settings", "Returns the current reso
102 AH_PREDEF ("_CRT", "Critical Temperature", "Returns the shutdown critical
103 AH_PREDEF ("_CSD", "C-State Dependencies", "Returns a list of C-state dep
104 AH_PREDEF ("_CST", "C-States", "Returns a list of supported C-states"),
105 AH_PREDEF ("_CWS", "Clear Wake Alarm Status", "Clear the status of wake a
106 AH_PREDEF ("_DBT", "Debounce Timeout", "Timeout value, Resource Descripto
107 AH_PREDEF ("_DCK", "Dock Present", "Sets docking isolation. Presence indi
108 AH_PREDEF ("_DCS", "Display Current Status", "Returns status of the displ
109 AH_PREDEF ("_DDC", "Display Data Current", "Returns the EDID for the disp
110 AH_PREDEF ("_DDN", "DOS Device Name", "Returns a device logical name"),
111 AH_PREDEF ("_DEC", "Decode", "Device decoding type, Resource Descriptor f
112 AH_PREDEF ("_DEP", "Dependencies", "Returns a list of operation region de
113 AH_PREDEF ("_DGS", "Display Graphics State", "Return the current state of
114 AH_PREDEF ("_DIS", "Disable Device", "Disables a device"),
115 AH_PREDEF ("_DLM", "Device Lock Mutex", "Defines mutex for OS/AML sharing
116 AH_PREDEF ("_DMA", "Direct Memory Access", "Returns device current resour
117 AH_PREDEF ("_DOD", "Display Output Devices", "Enumerate all devices attac
118 AH_PREDEF ("_DOS", "Disable Output Switching", "Sets the display output s
119 AH_PREDEF ("_DPL", "Device Selection Polarity", "Polarity of Device Selec
120 AH_PREDEF ("_DRS", "Drive Strength", "Drive Strength setting for GPIO con
121 AH_PREDEF ("_DSM", "Device-Specific Method", "Executes device-specific fu
122 AH_PREDEF ("_DSS", "Device Set State", "Sets the display device state"),
123 AH_PREDEF ("_DSW", "Device Sleep Wake", "Sets the sleep and wake transiti
124 AH_PREDEF ("_DTI", "Device Temperature Indication", "Conveys native devic
125 AH_PREDEF ("_Exx", "Edge-Triggered GPE", "Method executed as a result of
126 AH_PREDEF ("_EC_", "Embedded Controller", "returns EC offset and query in
127 AH_PREDEF ("_EDL", "Eject Device List", "Returns a list of devices that a

new/usr/src/common/acpica/common/ahpredef.c 3

128 AH_PREDEF ("_EJD", "Ejection Dependent Device", "Returns the name of depe
129 AH_PREDEF ("_EJx", "Eject Device", "Begin or cancel a device ejection req
130 AH_PREDEF ("_END", "Endianness", "Endian orientation, Resource Descriptor
131 AH_PREDEF ("_EVT", "Event", "Event method for GPIO events"),
132 AH_PREDEF ("_FDE", "Floppy Disk Enumerate", "Returns floppy disk configur
133 AH_PREDEF ("_FDI", "Floppy Drive Information", "Returns a floppy drive in
134 AH_PREDEF ("_FDM", "Floppy Drive Mode", "Sets a floppy drive speed"),
135 AH_PREDEF ("_FIF", "Fan Information", "Returns fan device information"),
136 AH_PREDEF ("_FIX", "Fixed Register Resource Provider", "Returns a list of
137 AH_PREDEF ("_FLC", "Flow Control", "Flow control, Resource Descriptor fie
138 AH_PREDEF ("_FPS", "Fan Performance States", "Returns a list of supported
139 AH_PREDEF ("_FSL", "Fan Set Level", "Control method that sets the fan dev
140 AH_PREDEF ("_FST", "Fan Status", "Returns current status information for
141 AH_PREDEF ("_GAI", "Get Averaging Interval", "Returns the power meter ave
142 AH_PREDEF ("_GCP", "Get Capabilities", "Get device time capabilities"),
143 AH_PREDEF ("_GHL", "Get Hardware Limit", "Returns the hardware limit enfo
144 AH_PREDEF ("_GL_", "Global Lock", "OS-defined Global Lock mutex object"),
145 AH_PREDEF ("_GLK", "Get Global Lock Requirement", "Returns a device’s Glo
146 AH_PREDEF ("_GPD", "Get Post Data", "Returns the value of the VGA device
147 AH_PREDEF ("_GPE", "General Purpose Events", "Predefined scope (_GPE) o
148 AH_PREDEF ("_GRA", "Granularity", "Address space granularity, Resource De
149 AH_PREDEF ("_GRT", "Get Real Time", "Returns current time-of-day from a t
150 AH_PREDEF ("_GSB", "Global System Interrupt Base", "Returns the GSB for a
151 AH_PREDEF ("_GTF", "Get Task File", "Returns a list of ATA commands to re
152 AH_PREDEF ("_GTM", "Get Timing Mode", "Returns a list of IDE controller t
153 AH_PREDEF ("_GTS", "Going To Sleep", "Inform AML of pending sleep"),
154 AH_PREDEF ("_GWS", "Get Wake Status", "Return status of wake alarms"),
155 AH_PREDEF ("_HE_", "High-Edge", "Interrupt triggering, Resource Descripto
156 AH_PREDEF ("_HID", "Hardware ID", "Returns a device’s Plug and Play Hardw
157 AH_PREDEF ("_HOT", "Hot Temperature", "Returns the critical temperature f
158 AH_PREDEF ("_HPP", "Hot Plug Parameters", "Returns a list of hot-plug inf
159 AH_PREDEF ("_HPX", "Hot Plug Parameter Extensions", "Returns a list of ho
160 AH_PREDEF ("_HRV", "Hardware Revision", "Returns a hardware revision valu
161 AH_PREDEF ("_IFT", "IPMI Interface Type", "See the Intelligent Platform M
162 AH_PREDEF ("_INI", "Initialize", "Performs device specific initialization
163 AH_PREDEF ("_INT", "Interrupts", "Interrupt mask bits, Resource Descripto
164 AH_PREDEF ("_IOR", "I/O Restriction", "Restriction type, Resource Descrip
165 AH_PREDEF ("_IRC", "Inrush Current", "Presence indicates that a device ha
166 AH_PREDEF ("_Lxx", "Level-Triggered GPE", "Control method executed as a r
167 AH_PREDEF ("_LCK", "Lock Device", "Locks or unlocks a device (docking)"),
168 AH_PREDEF ("_LEN", "Length", "Range length, Resource Descriptor field"),
169 AH_PREDEF ("_LID", "Lid Status", "Returns the open/closed status of the l
170 AH_PREDEF ("_LIN", "Lines In Use", "Handshake lines, Resource Descriptor
171 AH_PREDEF ("_LL_", "Low Level", "Interrupt polarity, Resource Descriptor
172 AH_PREDEF ("_MAF", "Maximum Address Fixed", "Resource Descriptor field"),
173 AH_PREDEF ("_MAT", "Multiple APIC Table Entry", "Returns a list of MADT A
174 AH_PREDEF ("_MAX", "Maximum Base Address", "Resource Descriptor field"),
175 AH_PREDEF ("_MBM", "Memory Bandwidth Monitoring Data", "Returns bandwidth
176 AH_PREDEF ("_MEM", "Memory Attributes", "Resource Descriptor field"),
177 AH_PREDEF ("_MIF", "Minimum Address Fixed", "Resource Descriptor field"),
178 AH_PREDEF ("_MIN", "Minimum Base Address", "Resource Descriptor field"),
179 AH_PREDEF ("_MLS", "Multiple Language String", "Returns a device descript
180 AH_PREDEF ("_MOD", "Mode", "Interrupt mode, Resource Descriptor field"),
181 AH_PREDEF ("_MSG", "Message", "Sets the system message waiting status ind
182 AH_PREDEF ("_MSM", "Memory Set Monitoring", "Sets bandwidth monitoring pa
183 AH_PREDEF ("_MTP", "Memory Type", "Resource Descriptor field"),
184 AH_PREDEF ("_NTT", "Notification Temperature Threshold", "Returns a thres
185 AH_PREDEF ("_OFF", "Power Off", "Sets a power resource to the off state")
186 AH_PREDEF ("_ON_", "Power On", "Sets a power resource to the on state"),
187 AH_PREDEF ("_OS_", "Operating System", "Returns a string that identifies
188 AH_PREDEF ("_OSC", "Operating System Capabilities", "Inform AML of host f
189 AH_PREDEF ("_OSI", "Operating System Interfaces", "Returns supported inte
190 AH_PREDEF ("_OST", "OSPM Status Indication", "Inform AML of event process
191 AH_PREDEF ("_PAI", "Power Averaging Interval", "Sets the averaging interv
192 AH_PREDEF ("_PAR", "Parity", "Parity bits, Resource Descriptor field"),
193 AH_PREDEF ("_PCL", "Power Consumer List", "Returns a list of devices powe

new/usr/src/common/acpica/common/ahpredef.c 4

194 AH_PREDEF ("_PCT", "Performance Control", "Returns processor performance
195 AH_PREDEF ("_PDC", "Processor Driver Capabilities", "Inform AML of proces
196 AH_PREDEF ("_PDL", "P-state Depth Limit", "Returns the lowest available p
197 AH_PREDEF ("_PHA", "Clock Phase", "Clock phase, Resource Descriptor field
198 AH_PREDEF ("_PIC", "Interrupt Model", "Inform AML of the interrupt model
199 AH_PREDEF ("_PIF", "Power Source Information", "Returns a Power Source in
200 AH_PREDEF ("_PIN", "Pin List", "Pin list, Resource Descriptor field"),
201 AH_PREDEF ("_PLD", "Physical Location of Device", "Returns a device’s phy
202 AH_PREDEF ("_PMC", "Power Meter Capabilities", "Returns a list of Power M
203 AH_PREDEF ("_PMD", "Power Metered Devices", "Returns a list of devices th
204 AH_PREDEF ("_PMM", "Power Meter Measurement", "Returns the current value
205 AH_PREDEF ("_POL", "Polarity", "Interrupt polarity, Resource Descriptor f
206 AH_PREDEF ("_PPC", "Performance Present Capabilites", "Returns a list of
207 AH_PREDEF ("_PPE", "Polling for Platform Error", "Returns the polling int
208 AH_PREDEF ("_PPI", "Pin Configuration", "Resource Descriptor field"),
209 AH_PREDEF ("_PR", "Processor", "Predefined scope for processor objects")
210 AH_PREDEF ("_PR0", "Power Resources for D0", "Returns a list of dependent
211 AH_PREDEF ("_PR1", "Power Resources for D1", "Returns a list of dependent
212 AH_PREDEF ("_PR2", "Power Resources for D2", "Returns a list of dependent
213 AH_PREDEF ("_PR3", "Power Resources for D3hot", "Returns a list of depend
214 AH_PREDEF ("_PRE", "Power Resources for Enumeration", "Returns a list of
215 AH_PREDEF ("_PRL", "Power Source Redundancy List", "Returns a list of pow
216 AH_PREDEF ("_PRS", "Possible Resource Settings", "Returns a list of a dev
217 AH_PREDEF ("_PRT", "PCI Routing Table", "Returns a list of PCI interrupt
218 AH_PREDEF ("_PRW", "Power Resources for Wake", "Returns a list of depende
219 AH_PREDEF ("_PS0", "Power State 0", "Sets a device’s power state to D0 (d
220 AH_PREDEF ("_PS1", "Power State 1", "Sets a device’s power state to D1"),
221 AH_PREDEF ("_PS2", "Power State 2", "Sets a device’s power state to D2"),
222 AH_PREDEF ("_PS3", "Power State 3", "Sets a device’s power state to D3 (d
223 AH_PREDEF ("_PSC", "Power State Current", "Returns a device’s current pow
224 AH_PREDEF ("_PSD", "Power State Dependencies", "Returns processor P-State
225 AH_PREDEF ("_PSE", "Power State for Enumeration", "Put a bus into enumera
226 AH_PREDEF ("_PSL", "Passive List", "Returns a list of passive cooling dev
227 AH_PREDEF ("_PSR", "Power Source", "Returns the power source device curre
228 AH_PREDEF ("_PSS", "Performance Supported States", "Returns a list of sup
229 AH_PREDEF ("_PSV", "Passive Temperature", "Returns the passive trip point
230 AH_PREDEF ("_PSW", "Power State Wake", "Sets a device’s wake function"),
231 AH_PREDEF ("_PTC", "Processor Throttling Control", "Returns throttling co
232 AH_PREDEF ("_PTP", "Power Trip Points", "Sets trip points for the Power M
233 AH_PREDEF ("_PTS", "Prepare To Sleep", "Inform the platform of an impendi
234 AH_PREDEF ("_PUR", "Processor Utilization Request", "Returns the number o
235 AH_PREDEF ("_PXM", "Device Proximity", "Returns a device’s proximity doma
236 AH_PREDEF ("_Qxx", "EC Query", "Embedded Controller query and SMBus Alarm
237 AH_PREDEF ("_RBO", "Register Bit Offset", "Resource Descriptor field"),
238 AH_PREDEF ("_RBW", "Register Bit Width", "Resource Descriptor field"),
239 AH_PREDEF ("_REG", "Region Availability", "Inform AML code of an operatio
240 AH_PREDEF ("_REV", "Supported ACPI Revision", "Returns the revision of th
241 AH_PREDEF ("_RMV", "Removal Status", "Returns a device’s removal ability
242 AH_PREDEF ("_RNG", "Range", "Memory range type, Resource Descriptor field
243 AH_PREDEF ("_ROM", "Read-Only Memory", "Returns a copy of the ROM data fo
244 AH_PREDEF ("_RT_", "Resource Type", "Resource Descriptor field"),
245 AH_PREDEF ("_RTV", "Relative Temperature Values", "Returns temperature va
246 AH_PREDEF ("_RW_", "Read-Write Status", "Resource Descriptor field"),
247 AH_PREDEF ("_RXL", "Receive Buffer Size", "Serial channel buffer, Resourc
248 AH_PREDEF ("_S0_", "S0 System State", "Returns values to enter the system
249 AH_PREDEF ("_S1_", "S1 System State", "Returns values to enter the system
250 AH_PREDEF ("_S2_", "S2 System State", "Returns values to enter the system
251 AH_PREDEF ("_S3_", "S3 System State", "Returns values to enter the system
252 AH_PREDEF ("_S4_", "S4 System State", "Returns values to enter the system
253 AH_PREDEF ("_S5_", "S5 System State", "Returns values to enter the system
254 AH_PREDEF ("_S1D", "S1 Device State", "Returns the highest D-state suppor
255 AH_PREDEF ("_S2D", "S2 Device State", "Returns the highest D-state suppor
256 AH_PREDEF ("_S3D", "S3 Device State", "Returns the highest D-state suppor
257 AH_PREDEF ("_S4D", "S4 Device State", "Returns the highest D-state suppor
258 AH_PREDEF ("_S0W", "S0 Device Wake State", "Returns the lowest D-state th
259 AH_PREDEF ("_S1W", "S1 Device Wake State", "Returns the lowest D-state fo

new/usr/src/common/acpica/common/ahpredef.c 5

260 AH_PREDEF ("_S2W", "S2 Device Wake State", "Returns the lowest D-state fo
261 AH_PREDEF ("_S3W", "S3 Device Wake State", "Returns the lowest D-state fo
262 AH_PREDEF ("_S4W", "S4 Device Wake State", "Returns the lowest D-state fo
263 AH_PREDEF ("_SB_", "System Bus", "Predefined scope for device and bus obj
264 AH_PREDEF ("_SBS", "Smart Battery Subsystem", "Returns the subsystem conf
265 AH_PREDEF ("_SCP", "Set Cooling Policy", "Sets the cooling policy (active
266 AH_PREDEF ("_SDD", "Set Device Data", "Sets data for a SATA device"),
267 AH_PREDEF ("_SEG", "PCI Segment", "Returns a device’s PCI Segment Group n
268 AH_PREDEF ("_SHL", "Set Hardware Limit", "Sets the hardware limit enforce
269 AH_PREDEF ("_SHR", "Sharable", "Interrupt share status, Resource Descript
270 AH_PREDEF ("_SI_", "System Indicators", "Predefined scope"),
271 AH_PREDEF ("_SIZ", "Size", "DMA transfer size, Resource Descriptor field"
272 AH_PREDEF ("_SLI", "System Locality Information", "Returns a list of NUMA
273 AH_PREDEF ("_SLV", "Slave Mode", "Mode setting, Resource Descriptor field
274 AH_PREDEF ("_SPD", "Set Post Device", "Sets which video device will be po
275 AH_PREDEF ("_SPE", "Speed", "Connection speed, Resource Descriptor field"
276 AH_PREDEF ("_SRS", "Set Resource Settings", "Sets a device’s resource all
277 AH_PREDEF ("_SRT", "Set Real Time", "Sets the current time for a time/ala
278 AH_PREDEF ("_SRV", "IPMI Spec Revision", "See the Intelligent Platform Ma
279 AH_PREDEF ("_SST", "System Status", "Sets the system status indicator"),
280 AH_PREDEF ("_STA", "Status", "Returns the current status of a Device or P
281 AH_PREDEF ("_STB", "Stop Bits", "Serial channel stop bits, Resource Descr
282 AH_PREDEF ("_STM", "Set Timing Mode", "Sets an IDE controller transfer ti
283 AH_PREDEF ("_STP", "Set Expired Timer Wake Policy", "Sets expired timer p
284 AH_PREDEF ("_STR", "Description String", "Returns a device’s description
285 AH_PREDEF ("_STV", "Set Timer Value", "Set timer values of the wake alarm
286 AH_PREDEF ("_SUB", "Subsystem ID", "Returns the subsystem ID for a device
287 AH_PREDEF ("_SUN", "Slot User Number", "Returns the slot unique ID number
288 AH_PREDEF ("_SWS", "System Wake Source", "Returns the source event that c
289 AH_PREDEF ("_T_x", "Emitted by ASL Compiler", "Reserved for use by ASL co
290 AH_PREDEF ("_TC1", "Thermal Constant 1", "Returns TC1 for the passive coo
291 AH_PREDEF ("_TC2", "Thermal Constant 2", "Returns TC2 for the passive coo
292 AH_PREDEF ("_TDL", "T-State Depth Limit", "Returns the _TSS entry number
293 AH_PREDEF ("_TIP", "Expired Timer Wake Policy", "Returns timer policies o
294 AH_PREDEF ("_TIV", "Timer Values", "Returns remaining time of the wake al
295 AH_PREDEF ("_TMP", "Temperature", "Returns a thermal zone’s current tempe
296 AH_PREDEF ("_TPC", "Throttling Present Capabilities", "Returns the curren
297 AH_PREDEF ("_TPT", "Trip Point Temperature", "Inform AML that a device’s
298 AH_PREDEF ("_TRA", "Translation", "Address translation offset, Resource D
299 AH_PREDEF ("_TRS", "Translation Sparse", "Sparse/dense flag, Resource Des
300 AH_PREDEF ("_TRT", "Thermal Relationship Table", "Returns thermal relatio
301 AH_PREDEF ("_TSD", "Throttling State Dependencies", "Returns a list of T-
302 AH_PREDEF ("_TSF", "Type-Specific Flags", "Resource Descriptor field"),
303 AH_PREDEF ("_TSP", "Thermal Sampling Period", "Returns the thermal sampli
304 AH_PREDEF ("_TSS", "Throttling Supported States", "Returns supported thro
305 AH_PREDEF ("_TST", "Temperature Sensor Threshold", "Returns the minimum s
306 AH_PREDEF ("_TTP", "Translation Type", "Translation/static flag, Resource
307 AH_PREDEF ("_TTS", "Transition To State", "Inform AML of an S-state trans
308 AH_PREDEF ("_TXL", "Transmit Buffer Size", "Serial Channel buffer, Resour
309 AH_PREDEF ("_TYP", "Type", "DMA channel type (speed), Resource Descriptor
310 AH_PREDEF ("_TZ_", "Thermal Zone", "Predefined scope: ACPI 1.0"),
311 AH_PREDEF ("_TZD", "Thermal Zone Devices", "Returns a list of device name
312 AH_PREDEF ("_TZM", "Thermal Zone Member", "Returns a reference to the the
313 AH_PREDEF ("_TZP", "Thermal Zone Polling", "Returns a Thermal zone’s poll
314 AH_PREDEF ("_UID", "Unique ID", "Return a device’s unique persistent ID")
315 AH_PREDEF ("_UPC", "USB Port Capabilities", "Returns a list of USB port c
316 AH_PREDEF ("_UPD", "User Presence Detect", "Returns user detection inform
317 AH_PREDEF ("_UPP", "User Presence Polling", "Returns the recommended user
318 AH_PREDEF ("_VEN", "Vendor Data", "Resource Descriptor field"),
319 AH_PREDEF ("_VPO", "Video Post Options", "Returns the implemented video p
320 AH_PREDEF ("_WAK", "Wake", "Inform AML that the system has just awakened"
321 AH_PREDEF ("_Wxx", "Wake Event", "Method executed as a result of a wake e
322 AH_PREDEF (NULL, NULL, NULL)
323 };

new/usr/src/common/acpica/common/dmextern.c 1

**
 38442 Thu Dec 26 13:48:23 2013
new/usr/src/common/acpica/common/dmextern.c
update to acpica-unix2-20131218
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dmextern - Support for External() ASL statements
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "amlcode.h"
47 #include "acnamesp.h"
48 #include "acdisasm.h"
49 #include "aslcompiler.h"
50 #include <stdio.h>
51 #include <errno.h>

54 /*
55 * This module is used for application-level code (iASL disassembler) only.
56 *
57 * It contains the code to create and emit any necessary External() ASL
58 * statements for the module being disassembled.

new/usr/src/common/acpica/common/dmextern.c 2

59 */
60 #define _COMPONENT ACPI_CA_DISASSEMBLER
61 ACPI_MODULE_NAME ("dmextern")

64 /*
65 * This table maps ACPI_OBJECT_TYPEs to the corresponding ASL
66 * ObjectTypeKeyword. Used to generate typed external declarations
67 */
68 static const char *AcpiGbl_DmTypeNames[] =
69 {
70 /* 00 */ "", /* Type ANY */
71 /* 01 */ ", IntObj",
72 /* 02 */ ", StrObj",
73 /* 03 */ ", BuffObj",
74 /* 04 */ ", PkgObj",
75 /* 05 */ ", FieldUnitObj",
76 /* 06 */ ", DeviceObj",
77 /* 07 */ ", EventObj",
78 /* 08 */ ", MethodObj",
79 /* 09 */ ", MutexObj",
80 /* 10 */ ", OpRegionObj",
81 /* 11 */ ", PowerResObj",
82 /* 12 */ ", ProcessorObj",
83 /* 13 */ ", ThermalZoneObj",
84 /* 14 */ ", BuffFieldObj",
85 /* 15 */ ", DDBHandleObj",
86 /* 16 */ "", /* Debug object */
87 /* 17 */ ", FieldUnitObj",
88 /* 18 */ ", FieldUnitObj",
89 /* 19 */ ", FieldUnitObj"
90 };

92 #define METHOD_SEPARATORS " \t,()\n"

95 /* Local prototypes */

97 static const char *
98 AcpiDmGetObjectTypeName (
99 ACPI_OBJECT_TYPE Type);

101 static char *
102 AcpiDmNormalizeParentPrefix (
103 ACPI_PARSE_OBJECT *Op,
104 char *Path);

106 static void
107 AcpiDmAddPathToExternalList (
108 char *Path,
109 UINT8 Type,
110 UINT32 Value,
111 UINT16 Flags);

113 static ACPI_STATUS
114 AcpiDmCreateNewExternal (
115 char *ExternalPath,
116 char *InternalPath,
117 UINT8 Type,
118 UINT32 Value,
119 UINT16 Flags);

122 /***
123 *
124 * FUNCTION: AcpiDmGetObjectTypeName

new/usr/src/common/acpica/common/dmextern.c 3

125 *
126 * PARAMETERS: Type - An ACPI_OBJECT_TYPE
127 *
128 * RETURN: Pointer to a string
129 *
130 * DESCRIPTION: Map an object type to the ASL object type string.
131 *
132 **/

134 static const char *
135 AcpiDmGetObjectTypeName (
136 ACPI_OBJECT_TYPE Type)
137 {

139 if (Type == ACPI_TYPE_LOCAL_SCOPE)
140 {
141 Type = ACPI_TYPE_DEVICE;
142 }

144 else if (Type > ACPI_TYPE_LOCAL_INDEX_FIELD)
145 {
146 return ("");
147 }

149 return (AcpiGbl_DmTypeNames[Type]);
150 }

153 /***
154 *
155 * FUNCTION: AcpiDmNormalizeParentPrefix
156 *
157 * PARAMETERS: Op - Parse op
158 * Path - Path with parent prefix
159 *
160 * RETURN: The full pathname to the object (from the namespace root)
161 *
162 * DESCRIPTION: Returns the full pathname of a path with parent prefix
163 * The caller must free the fullpath returned.
164 *
165 **/

167 static char *
168 AcpiDmNormalizeParentPrefix (
169 ACPI_PARSE_OBJECT *Op,
170 char *Path)
171 {
172 ACPI_NAMESPACE_NODE *Node;
173 char *Fullpath;
174 char *ParentPath;
175 ACPI_SIZE Length;
176 UINT32 Index = 0;

179 if (!Op)
180 {
181 return (NULL);
182 }

184 /* Search upwards in the parse tree until we reach the next namespace node *

186 Op = Op->Common.Parent;
187 while (Op)
188 {
189 if (Op->Common.Node)
190 {

new/usr/src/common/acpica/common/dmextern.c 4

191 break;
192 }

194 Op = Op->Common.Parent;
195 }

197 if (!Op)
198 {
199 return (NULL);
200 }

202 /*
203 * Find the actual parent node for the reference:
204 * Remove all carat prefixes from the input path.
205 * There may be multiple parent prefixes (For example, ^^^M000)
206 */
207 Node = Op->Common.Node;
208 while (Node && (*Path == (UINT8) AML_PARENT_PREFIX))
209 {
210 Node = Node->Parent;
211 Path++;
212 }

214 if (!Node)
215 {
216 return (NULL);
217 }

219 /* Get the full pathname for the parent node */

221 ParentPath = AcpiNsGetExternalPathname (Node);
222 if (!ParentPath)
223 {
224 return (NULL);
225 }

227 Length = (ACPI_STRLEN (ParentPath) + ACPI_STRLEN (Path) + 1);
228 if (ParentPath[1])
229 {
230 /*
231 * If ParentPath is not just a simple ’\’, increment the length
232 * for the required dot separator (ParentPath.Path)
233 */
234 Length++;

236 /* For External() statements, we do not want a leading ’\’ */

238 if (*ParentPath == AML_ROOT_PREFIX)
239 {
240 Index = 1;
241 }
242 }

244 Fullpath = ACPI_ALLOCATE_ZEROED (Length);
245 if (!Fullpath)
246 {
247 goto Cleanup;
248 }

250 /*
251 * Concatenate parent fullpath and path. For example,
252 * parent fullpath "_SB_", Path "^INIT", Fullpath "_SB_.INIT"
253 *
254 * Copy the parent path
255 */
256 ACPI_STRCPY (Fullpath, &ParentPath[Index]);

new/usr/src/common/acpica/common/dmextern.c 5

258 /*
259 * Add dot separator
260 * (don’t need dot if parent fullpath is a single backslash)
261 */
262 if (ParentPath[1])
263 {
264 ACPI_STRCAT (Fullpath, ".");
265 }

267 /* Copy child path (carat parent prefix(es) were skipped above) */

269 ACPI_STRCAT (Fullpath, Path);

271 Cleanup:
272 ACPI_FREE (ParentPath);
273 return (Fullpath);
274 }

277 /***
278 *
279 * FUNCTION: AcpiDmAddToExternalFileList
280 *
281 * PARAMETERS: PathList - Single path or list separated by comma
282 *
283 * RETURN: None
284 *
285 * DESCRIPTION: Add external files to global list
286 *
287 **/

289 ACPI_STATUS
290 AcpiDmAddToExternalFileList (
291 char *Pathname)
292 {
293 ACPI_EXTERNAL_FILE *ExternalFile;
294 char *LocalPathname;

297 if (!Pathname)
298 {
299 return (AE_OK);
300 }

302 LocalPathname = ACPI_ALLOCATE (strlen (Pathname) + 1);
303 if (!LocalPathname)
304 {
305 return (AE_NO_MEMORY);
306 }

308 ExternalFile = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_EXTERNAL_FILE));
309 if (!ExternalFile)
310 {
311 ACPI_FREE (LocalPathname);
312 return (AE_NO_MEMORY);
313 }

315 /* Take a copy of the file pathname */

317 strcpy (LocalPathname, Pathname);
318 ExternalFile->Path = LocalPathname;

320 if (AcpiGbl_ExternalFileList)
321 {
322 ExternalFile->Next = AcpiGbl_ExternalFileList;

new/usr/src/common/acpica/common/dmextern.c 6

323 }

325 AcpiGbl_ExternalFileList = ExternalFile;
326 return (AE_OK);
327 }

330 /***
331 *
332 * FUNCTION: AcpiDmClearExternalFileList
333 *
334 * PARAMETERS: None
335 *
336 * RETURN: None
337 *
338 * DESCRIPTION: Clear the external file list
339 *
340 **/

342 void
343 AcpiDmClearExternalFileList (
344 void)
345 {
346 ACPI_EXTERNAL_FILE *NextExternal;

349 while (AcpiGbl_ExternalFileList)
350 {
351 NextExternal = AcpiGbl_ExternalFileList->Next;
352 ACPI_FREE (AcpiGbl_ExternalFileList->Path);
353 ACPI_FREE (AcpiGbl_ExternalFileList);
354 AcpiGbl_ExternalFileList = NextExternal;
355 }
356 }

359 /***
360 *
361 * FUNCTION: AcpiDmGetExternalsFromFile
362 *
363 * PARAMETERS: None
364 *
365 * RETURN: None
366 *
367 * DESCRIPTION: Process the optional external reference file.
368 *
369 * Each line in the file should be of the form:
370 * External (<Method namepath>, MethodObj, <ArgCount>)
371 *
372 * Example:
373 * External (_SB_.PCI0.XHC_.PS0X, MethodObj, 4)
374 *
375 **/

377 void
378 AcpiDmGetExternalsFromFile (
379 void)
380 {
381 FILE *ExternalRefFile;
382 char *Token;
383 char *MethodName;
384 UINT32 ArgCount;
385 UINT32 ImportCount = 0;

388 if (!Gbl_ExternalRefFilename)

new/usr/src/common/acpica/common/dmextern.c 7

389 {
390 return;
391 }

393 /* Open the file */

395 ExternalRefFile = fopen (Gbl_ExternalRefFilename, "r");
396 if (!ExternalRefFile)
397 {
398 fprintf (stderr, "Could not open external reference file \"%s\"\n",
399 Gbl_ExternalRefFilename);
400 return;
401 }

403 /* Each line defines a method */

405 while (fgets (StringBuffer, ASL_MSG_BUFFER_SIZE, ExternalRefFile))
406 {
407 Token = strtok (StringBuffer, METHOD_SEPARATORS); /* "External" */
408 if (!Token) continue;
409 if (strcmp (Token, "External")) continue;

411 MethodName = strtok (NULL, METHOD_SEPARATORS); /* Method namepath *
412 if (!MethodName) continue;

414 Token = strtok (NULL, METHOD_SEPARATORS); /* "MethodObj" */
415 if (!Token) continue;
416 if (strcmp (Token, "MethodObj")) continue;

418 Token = strtok (NULL, METHOD_SEPARATORS); /* Arg count */
419 if (!Token) continue;

421 /* Convert arg count string to an integer */

423 errno = 0;
424 ArgCount = strtoul (Token, NULL, 0);
425 if (errno)
426 {
427 fprintf (stderr, "Invalid argument count (%s)\n", Token);
428 continue;
429 }
430 if (ArgCount > 7)
431 {
432 fprintf (stderr, "Invalid argument count (%u)\n", ArgCount);
433 continue;
434 }

436 /* Add this external to the global list */

438 AcpiOsPrintf ("%s: Importing method external (%u arguments) %s\n",
439 Gbl_ExternalRefFilename, ArgCount, MethodName);

441 AcpiDmAddPathToExternalList (MethodName, ACPI_TYPE_METHOD,
442 ArgCount, (ACPI_EXT_RESOLVED_REFERENCE | ACPI_EXT_ORIGIN_FROM_FILE))
443 ImportCount++;
444 }

446 if (!ImportCount)
447 {
448 fprintf (stderr, "Did not find any external methods in reference file \"
449 Gbl_ExternalRefFilename);
450 }
451 else
452 {
453 /* Add the external(s) to the namespace */

new/usr/src/common/acpica/common/dmextern.c 8

455 AcpiDmAddExternalsToNamespace ();

457 AcpiOsPrintf ("%s: Imported %u external method definitions\n",
458 Gbl_ExternalRefFilename, ImportCount);
459 }

461 fclose (ExternalRefFile);
462 }

465 /***
466 *
467 * FUNCTION: AcpiDmAddOpToExternalList
468 *
469 * PARAMETERS: Op - Current parser Op
470 * Path - Internal (AML) path to the object
471 * Type - ACPI object type to be added
472 * Value - Arg count if adding a Method object
473 * Flags - To be passed to the external object
474 *
475 * RETURN: None
476 *
477 * DESCRIPTION: Insert a new name into the global list of Externals which
478 * will in turn be later emitted as an External() declaration
479 * in the disassembled output.
480 *
481 * This function handles the most common case where the referenced
482 * name is simply not found in the constructed namespace.
483 *
484 **/

486 void
487 AcpiDmAddOpToExternalList (
488 ACPI_PARSE_OBJECT *Op,
489 char *Path,
490 UINT8 Type,
491 UINT32 Value,
492 UINT16 Flags)
493 {
494 char *ExternalPath;
495 char *InternalPath = Path;
496 char *Temp;
497 ACPI_STATUS Status;

500 ACPI_FUNCTION_TRACE (DmAddOpToExternalList);

503 if (!Path)
504 {
505 return_VOID;
506 }

508 /* Remove a root backslash if present */

510 if ((*Path == AML_ROOT_PREFIX) && (Path[1]))
511 {
512 Path++;
513 }

515 /* Externalize the pathname */

517 Status = AcpiNsExternalizeName (ACPI_UINT32_MAX, Path,
518 NULL, &ExternalPath);
519 if (ACPI_FAILURE (Status))
520 {

new/usr/src/common/acpica/common/dmextern.c 9

521 return_VOID;
522 }

524 /*
525 * Get the full pathname from the root if "Path" has one or more
526 * parent prefixes (^). Note: path will not contain a leading ’\’.
527 */
528 if (*Path == (UINT8) AML_PARENT_PREFIX)
529 {
530 Temp = AcpiDmNormalizeParentPrefix (Op, ExternalPath);

532 /* Set new external path */

534 ACPI_FREE (ExternalPath);
535 ExternalPath = Temp;
536 if (!Temp)
537 {
538 return_VOID;
539 }

541 /* Create the new internal pathname */

543 Flags |= ACPI_EXT_INTERNAL_PATH_ALLOCATED;
544 Status = AcpiNsInternalizeName (ExternalPath, &InternalPath);
545 if (ACPI_FAILURE (Status))
546 {
547 ACPI_FREE (ExternalPath);
548 return_VOID;
549 }
550 }

552 /* Create the new External() declaration node */

554 Status = AcpiDmCreateNewExternal (ExternalPath, InternalPath,
555 Type, Value, Flags);
556 if (ACPI_FAILURE (Status))
557 {
558 ACPI_FREE (ExternalPath);
559 if (Flags & ACPI_EXT_INTERNAL_PATH_ALLOCATED)
560 {
561 ACPI_FREE (InternalPath);
562 }
563 }

565 return_VOID;
566 }

569 /***
570 *
571 * FUNCTION: AcpiDmAddNodeToExternalList
572 *
573 * PARAMETERS: Node - Namespace node for object to be added
574 * Type - ACPI object type to be added
575 * Value - Arg count if adding a Method object
576 * Flags - To be passed to the external object
577 *
578 * RETURN: None
579 *
580 * DESCRIPTION: Insert a new name into the global list of Externals which
581 * will in turn be later emitted as an External() declaration
582 * in the disassembled output.
583 *
584 * This function handles the case where the referenced name has
585 * been found in the namespace, but the name originated in a
586 * table other than the one that is being disassembled (such

new/usr/src/common/acpica/common/dmextern.c 10

587 * as a table that is added via the iASL -e option).
588 *
589 **/

591 void
592 AcpiDmAddNodeToExternalList (
593 ACPI_NAMESPACE_NODE *Node,
594 UINT8 Type,
595 UINT32 Value,
596 UINT16 Flags)
597 {
598 char *ExternalPath;
599 char *InternalPath;
600 char *Temp;
601 ACPI_STATUS Status;

604 ACPI_FUNCTION_TRACE (DmAddNodeToExternalList);

607 if (!Node)
608 {
609 return_VOID;
610 }

612 /* Get the full external and internal pathnames to the node */

614 ExternalPath = AcpiNsGetExternalPathname (Node);
615 if (!ExternalPath)
616 {
617 return_VOID;
618 }

620 Status = AcpiNsInternalizeName (ExternalPath, &InternalPath);
621 if (ACPI_FAILURE (Status))
622 {
623 ACPI_FREE (ExternalPath);
624 return_VOID;
625 }

627 /* Remove the root backslash */

629 if ((*ExternalPath == AML_ROOT_PREFIX) && (ExternalPath[1]))
630 {
631 Temp = ACPI_ALLOCATE_ZEROED (ACPI_STRLEN (ExternalPath) + 1);
632 if (!Temp)
633 {
634 return_VOID;
635 }

637 ACPI_STRCPY (Temp, &ExternalPath[1]);
638 ACPI_FREE (ExternalPath);
639 ExternalPath = Temp;
640 }

642 /* Create the new External() declaration node */

644 Status = AcpiDmCreateNewExternal (ExternalPath, InternalPath, Type,
645 Value, (Flags | ACPI_EXT_INTERNAL_PATH_ALLOCATED));
646 if (ACPI_FAILURE (Status))
647 {
648 ACPI_FREE (ExternalPath);
649 ACPI_FREE (InternalPath);
650 }

652 return_VOID;

new/usr/src/common/acpica/common/dmextern.c 11

653 }

656 /***
657 *
658 * FUNCTION: AcpiDmAddPathToExternalList
659 *
660 * PARAMETERS: Path - External name of the object to be added
661 * Type - ACPI object type to be added
662 * Value - Arg count if adding a Method object
663 * Flags - To be passed to the external object
664 *
665 * RETURN: None
666 *
667 * DESCRIPTION: Insert a new name into the global list of Externals which
668 * will in turn be later emitted as an External() declaration
669 * in the disassembled output.
670 *
671 * This function currently is used to add externals via a
672 * reference file (via the -fe iASL option).
673 *
674 **/

676 static void
677 AcpiDmAddPathToExternalList (
678 char *Path,
679 UINT8 Type,
680 UINT32 Value,
681 UINT16 Flags)
682 {
683 char *InternalPath;
684 char *ExternalPath;
685 ACPI_STATUS Status;

688 ACPI_FUNCTION_TRACE (DmAddPathToExternalList);

691 if (!Path)
692 {
693 return_VOID;
694 }

696 /* Remove a root backslash if present */

698 if ((*Path == AML_ROOT_PREFIX) && (Path[1]))
699 {
700 Path++;
701 }

703 /* Create the internal and external pathnames */

705 Status = AcpiNsInternalizeName (Path, &InternalPath);
706 if (ACPI_FAILURE (Status))
707 {
708 return_VOID;
709 }

711 Status = AcpiNsExternalizeName (ACPI_UINT32_MAX, InternalPath,
712 NULL, &ExternalPath);
713 if (ACPI_FAILURE (Status))
714 {
715 ACPI_FREE (InternalPath);
716 return_VOID;
717 }

new/usr/src/common/acpica/common/dmextern.c 12

719 /* Create the new External() declaration node */

721 Status = AcpiDmCreateNewExternal (ExternalPath, InternalPath,
722 Type, Value, (Flags | ACPI_EXT_INTERNAL_PATH_ALLOCATED));
723 if (ACPI_FAILURE (Status))
724 {
725 ACPI_FREE (ExternalPath);
726 ACPI_FREE (InternalPath);
727 }

729 return_VOID;
730 }

733 /***
734 *
735 * FUNCTION: AcpiDmCreateNewExternal
736 *
737 * PARAMETERS: ExternalPath - External path to the object
738 * InternalPath - Internal (AML) path to the object
739 * Type - ACPI object type to be added
740 * Value - Arg count if adding a Method object
741 * Flags - To be passed to the external object
742 *
743 * RETURN: Status
744 *
745 * DESCRIPTION: Common low-level function to insert a new name into the global
746 * list of Externals which will in turn be later emitted as
747 * External() declarations in the disassembled output.
748 *
749 * Note: The external name should not include a root prefix
750 * (backslash). We do not want External() statements to contain
751 * a leading ’\’, as this prevents duplicate external statements
752 * of the form:
753 *
754 * External (\ABCD)
755 * External (ABCD)
756 *
757 * This would cause a compile time error when the disassembled
758 * output file is recompiled.
759 *
760 * There are two cases that are handled here. For both, we emit
761 * an External() statement:
762 * 1) The name was simply not found in the namespace.
763 * 2) The name was found, but it originated in a table other than
764 * the table that is being disassembled.
765 *
766 **/

768 static ACPI_STATUS
769 AcpiDmCreateNewExternal (
770 char *ExternalPath,
771 char *InternalPath,
772 UINT8 Type,
773 UINT32 Value,
774 UINT16 Flags)
775 {
776 ACPI_EXTERNAL_LIST *NewExternal;
777 ACPI_EXTERNAL_LIST *NextExternal;
778 ACPI_EXTERNAL_LIST *PrevExternal = NULL;

781 ACPI_FUNCTION_TRACE (DmCreateNewExternal);

784 /* Check all existing externals to ensure no duplicates */

new/usr/src/common/acpica/common/dmextern.c 13

786 NextExternal = AcpiGbl_ExternalList;
787 while (NextExternal)
788 {
789 if (!ACPI_STRCMP (ExternalPath, NextExternal->Path))
790 {
791 /* Duplicate method, check that the Value (ArgCount) is the same */

793 if ((NextExternal->Type == ACPI_TYPE_METHOD) &&
794 (NextExternal->Value != Value))
795 {
796 ACPI_ERROR ((AE_INFO,
797 "External method arg count mismatch %s: Current %u, attempte
798 NextExternal->Path, NextExternal->Value, Value));
799 }

801 /* Allow upgrade of type from ANY */

803 else if (NextExternal->Type == ACPI_TYPE_ANY)
804 {
805 NextExternal->Type = Type;
806 NextExternal->Value = Value;
807 }

809 return_ACPI_STATUS (AE_ALREADY_EXISTS);
810 }

812 NextExternal = NextExternal->Next;
813 }

815 /* Allocate and init a new External() descriptor */

817 NewExternal = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_EXTERNAL_LIST));
818 if (!NewExternal)
819 {
820 return_ACPI_STATUS (AE_NO_MEMORY);
821 }

823 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,
824 "Adding external reference node (%s) type [%s]\n",
825 ExternalPath, AcpiUtGetTypeName (Type)));

827 NewExternal->Flags = Flags;
828 NewExternal->Value = Value;
829 NewExternal->Path = ExternalPath;
830 NewExternal->Type = Type;
831 NewExternal->Length = (UINT16) ACPI_STRLEN (ExternalPath);
832 NewExternal->InternalPath = InternalPath;

834 /* Link the new descriptor into the global list, alphabetically ordered */

836 NextExternal = AcpiGbl_ExternalList;
837 while (NextExternal)
838 {
839 if (AcpiUtStricmp (NewExternal->Path, NextExternal->Path) < 0)
840 {
841 if (PrevExternal)
842 {
843 PrevExternal->Next = NewExternal;
844 }
845 else
846 {
847 AcpiGbl_ExternalList = NewExternal;
848 }

850 NewExternal->Next = NextExternal;

new/usr/src/common/acpica/common/dmextern.c 14

851 return_ACPI_STATUS (AE_OK);
852 }

854 PrevExternal = NextExternal;
855 NextExternal = NextExternal->Next;
856 }

858 if (PrevExternal)
859 {
860 PrevExternal->Next = NewExternal;
861 }
862 else
863 {
864 AcpiGbl_ExternalList = NewExternal;
865 }

867 return_ACPI_STATUS (AE_OK);
868 }

871 /***
872 *
873 * FUNCTION: AcpiDmAddExternalsToNamespace
874 *
875 * PARAMETERS: None
876 *
877 * RETURN: None
878 *
879 * DESCRIPTION: Add all externals to the namespace. Allows externals to be
880 * "resolved".
881 *
882 **/

884 void
885 AcpiDmAddExternalsToNamespace (
886 void)
887 {
888 ACPI_STATUS Status;
889 ACPI_NAMESPACE_NODE *Node;
890 ACPI_OPERAND_OBJECT *ObjDesc;
891 ACPI_EXTERNAL_LIST *External = AcpiGbl_ExternalList;

894 while (External)
895 {
896 /* Add the external name (object) into the namespace */

898 Status = AcpiNsLookup (NULL, External->InternalPath, External->Type,
899 ACPI_IMODE_LOAD_PASS1,
900 ACPI_NS_ERROR_IF_FOUND | ACPI_NS_EXTERNAL | ACPI_NS_DONT_OPEN
901 NULL, &Node);

903 if (ACPI_FAILURE (Status))
904 {
905 ACPI_EXCEPTION ((AE_INFO, Status,
906 "while adding external to namespace [%s]",
907 External->Path));
908 }

910 else switch (External->Type)
911 {
912 case ACPI_TYPE_METHOD:

914 /* For methods, we need to save the argument count */

916 ObjDesc = AcpiUtCreateInternalObject (ACPI_TYPE_METHOD);

new/usr/src/common/acpica/common/dmextern.c 15

917 ObjDesc->Method.ParamCount = (UINT8) External->Value;
918 Node->Object = ObjDesc;
919 break;

921 case ACPI_TYPE_REGION:

923 /* Regions require a region sub-object */

925 ObjDesc = AcpiUtCreateInternalObject (ACPI_TYPE_REGION);
926 ObjDesc->Region.Node = Node;
927 Node->Object = ObjDesc;
928 break;

930 default:

932 break;
933 }

935 External = External->Next;
936 }
937 }

940 /***
941 *
942 * FUNCTION: AcpiDmGetExternalMethodCount
943 *
944 * PARAMETERS: None
945 *
946 * RETURN: The number of control method externals in the external list
947 *
948 * DESCRIPTION: Return the number of method externals that have been generated.
949 * If any control method externals have been found, we must
950 * re-parse the entire definition block with the new information
951 * (number of arguments for the methods.) This is limitation of
952 * AML, we don’t know the number of arguments from the control
953 * method invocation itself.
954 *
955 **/

957 UINT32
958 AcpiDmGetExternalMethodCount (
959 void)
960 {
961 ACPI_EXTERNAL_LIST *External = AcpiGbl_ExternalList;
962 UINT32 Count = 0;

965 while (External)
966 {
967 if (External->Type == ACPI_TYPE_METHOD)
968 {
969 Count++;
970 }

972 External = External->Next;
973 }

975 return (Count);
976 }

979 /***
980 *
981 * FUNCTION: AcpiDmClearExternalList
982 *

new/usr/src/common/acpica/common/dmextern.c 16

983 * PARAMETERS: None
984 *
985 * RETURN: None
986 *
987 * DESCRIPTION: Free the entire External info list
988 *
989 **/

991 void
992 AcpiDmClearExternalList (
993 void)
994 {
995 ACPI_EXTERNAL_LIST *NextExternal;

998 while (AcpiGbl_ExternalList)
999 {

1000 NextExternal = AcpiGbl_ExternalList->Next;
1001 ACPI_FREE (AcpiGbl_ExternalList->Path);
1002 ACPI_FREE (AcpiGbl_ExternalList);
1003 AcpiGbl_ExternalList = NextExternal;
1004 }
1005 }

1008 /***
1009 *
1010 * FUNCTION: AcpiDmEmitExternals
1011 *
1012 * PARAMETERS: None
1013 *
1014 * RETURN: None
1015 *
1016 * DESCRIPTION: Emit an External() ASL statement for each of the externals in
1017 * the global external info list.
1018 *
1019 **/

1021 void
1022 AcpiDmEmitExternals (
1023 void)
1024 {
1025 ACPI_EXTERNAL_LIST *NextExternal;

1028 if (!AcpiGbl_ExternalList)
1029 {
1030 return;
1031 }

1033 /*
1034 * Determine the number of control methods in the external list, and
1035 * also how many of those externals were resolved via the namespace.
1036 */
1037 NextExternal = AcpiGbl_ExternalList;
1038 while (NextExternal)
1039 {
1040 if (NextExternal->Type == ACPI_TYPE_METHOD)
1041 {
1042 AcpiGbl_NumExternalMethods++;
1043 if (NextExternal->Flags & ACPI_EXT_RESOLVED_REFERENCE)
1044 {
1045 AcpiGbl_ResolvedExternalMethods++;
1046 }
1047 }

new/usr/src/common/acpica/common/dmextern.c 17

1049 NextExternal = NextExternal->Next;
1050 }

1052 /* Check if any control methods were unresolved */

1054 AcpiDmUnresolvedWarning (1);

1056 /* Emit any unresolved method externals in a single text block */

1058 NextExternal = AcpiGbl_ExternalList;
1059 while (NextExternal)
1060 {
1061 if ((NextExternal->Type == ACPI_TYPE_METHOD) &&
1062 (!(NextExternal->Flags & ACPI_EXT_RESOLVED_REFERENCE)))
1063 {
1064 AcpiOsPrintf (" External (%s%s",
1065 NextExternal->Path,
1066 AcpiDmGetObjectTypeName (NextExternal->Type));

1068 AcpiOsPrintf (
1069 ") // Warning: Unresolved Method, "
1070 "guessing %u arguments (may be incorrect, see warning above)\n",
1071 NextExternal->Value);

1073 NextExternal->Flags |= ACPI_EXT_EXTERNAL_EMITTED;
1074 }

1076 NextExternal = NextExternal->Next;
1077 }

1079 AcpiOsPrintf ("\n");

1082 /* Emit externals that were imported from a file */

1084 if (Gbl_ExternalRefFilename)
1085 {
1086 AcpiOsPrintf (
1087 " /*\n * External declarations that were imported from\n"
1088 " * the reference file [%s]\n */\n",
1089 Gbl_ExternalRefFilename);

1091 NextExternal = AcpiGbl_ExternalList;
1092 while (NextExternal)
1093 {
1094 if (!(NextExternal->Flags & ACPI_EXT_EXTERNAL_EMITTED) &&
1095 (NextExternal->Flags & ACPI_EXT_ORIGIN_FROM_FILE))
1096 {
1097 AcpiOsPrintf (" External (%s%s",
1098 NextExternal->Path,
1099 AcpiDmGetObjectTypeName (NextExternal->Type));

1101 if (NextExternal->Type == ACPI_TYPE_METHOD)
1102 {
1103 AcpiOsPrintf (") // %u Arguments\n",
1104 NextExternal->Value);
1105 }
1106 else
1107 {
1108 AcpiOsPrintf (")\n");
1109 }
1110 NextExternal->Flags |= ACPI_EXT_EXTERNAL_EMITTED;
1111 }

1113 NextExternal = NextExternal->Next;
1114 }

new/usr/src/common/acpica/common/dmextern.c 18

1116 AcpiOsPrintf ("\n");
1117 }

1119 /*
1120 * Walk the list of externals found during the AML parsing
1121 */
1122 while (AcpiGbl_ExternalList)
1123 {
1124 if (!(AcpiGbl_ExternalList->Flags & ACPI_EXT_EXTERNAL_EMITTED))
1125 {
1126 AcpiOsPrintf (" External (%s%s",
1127 AcpiGbl_ExternalList->Path,
1128 AcpiDmGetObjectTypeName (AcpiGbl_ExternalList->Type));

1130 /* For methods, add a comment with the number of arguments */

1132 if (AcpiGbl_ExternalList->Type == ACPI_TYPE_METHOD)
1133 {
1134 AcpiOsPrintf (") // %u Arguments\n",
1135 AcpiGbl_ExternalList->Value);
1136 }
1137 else
1138 {
1139 AcpiOsPrintf (")\n");
1140 }
1141 }

1143 /* Free this external info block and move on to next external */

1145 NextExternal = AcpiGbl_ExternalList->Next;
1146 if (AcpiGbl_ExternalList->Flags & ACPI_EXT_INTERNAL_PATH_ALLOCATED)
1147 {
1148 ACPI_FREE (AcpiGbl_ExternalList->InternalPath);
1149 }

1151 ACPI_FREE (AcpiGbl_ExternalList->Path);
1152 ACPI_FREE (AcpiGbl_ExternalList);
1153 AcpiGbl_ExternalList = NextExternal;
1154 }

1156 AcpiOsPrintf ("\n");
1157 }

1160 /***
1161 *
1162 * FUNCTION: AcpiDmUnresolvedWarning
1163 *
1164 * PARAMETERS: Type - Where to output the warning.
1165 * 0 means write to stderr
1166 * 1 means write to AcpiOsPrintf
1167 *
1168 * RETURN: None
1169 *
1170 * DESCRIPTION: Issue warning message if there are unresolved external control
1171 * methods within the disassembly.
1172 *
1173 **/

1175 #if 0
1176 Summary of the external control method problem:

1178 When the -e option is used with disassembly, the various SSDTs are simply
1179 loaded into a global namespace for the disassembler to use in order to
1180 resolve control method references (invocations).

new/usr/src/common/acpica/common/dmextern.c 19

1182 The disassembler tracks any such references, and will emit an External()
1183 statement for these types of methods, with the proper number of arguments .

1185 Without the SSDTs, the AML does not contain enough information to properly
1186 disassemble the control method invocation -- because the disassembler does
1187 not know how many arguments to parse.

1189 An example: Assume we have two control methods. ABCD has one argument, and
1190 EFGH has zero arguments. Further, we have two additional control methods
1191 that invoke ABCD and EFGH, named T1 and T2:

1193 Method (ABCD, 1)
1194 {
1195 }
1196 Method (EFGH, 0)
1197 {
1198 }
1199 Method (T1)
1200 {
1201 ABCD (Add (2, 7, Local0))
1202 }
1203 Method (T2)
1204 {
1205 EFGH ()
1206 Add (2, 7, Local0)
1207 }

1209 Here is the AML code that is generated for T1 and T2:

1211 185: Method (T1)

1213 0000034C: 14 10 54 31 5F 5F 00 ... "..T1__."

1215 186: {
1216 187: ABCD (Add (2, 7, Local0))

1218 00000353: 41 42 43 44 "ABCD"
1219 00000357: 72 0A 02 0A 07 60 "r....‘"

1221 188: }

1223 190: Method (T2)

1225 0000035D: 14 10 54 32 5F 5F 00 ... "..T2__."

1227 191: {
1228 192: EFGH ()

1230 00000364: 45 46 47 48 "EFGH"

1232 193: Add (2, 7, Local0)

1234 00000368: 72 0A 02 0A 07 60 "r....‘"
1235 194: }

1237 Note that the AML code for T1 and T2 is essentially identical. When
1238 disassembling this code, the methods ABCD and EFGH must be known to the
1239 disassembler, otherwise it does not know how to handle the method invocations.

1241 In other words, if ABCD and EFGH are actually external control methods
1242 appearing in an SSDT, the disassembler does not know what to do unless
1243 the owning SSDT has been loaded via the -e option.
1244 #endif

1246 void

new/usr/src/common/acpica/common/dmextern.c 20

1247 AcpiDmUnresolvedWarning (
1248 UINT8 Type)
1249 {

1251 if (!AcpiGbl_NumExternalMethods)
1252 {
1253 return;
1254 }

1256 if (Type)
1257 {
1258 if (!AcpiGbl_ExternalFileList)
1259 {
1260 /* The -e option was not specified */

1262 AcpiOsPrintf (" /*\n"
1263 " * iASL Warning: There were %u external control methods fou
1264 " * disassembly, but additional ACPI tables to resolve these
1265 " * were not specified. This resulting disassembler output f
1266 " * compile because the disassembler did not know how many a
1267 " * to assign to these methods. To specify the tables needed
1268 " * external control method references, use the one of the f
1269 " * example iASL invocations:\n"
1270 " * iasl -e <ssdt1.aml,ssdt2.aml...> -d <dsdt.aml>\n"
1271 " * iasl -e <dsdt.aml,ssdt2.aml...> -d <ssdt1.aml>\n"
1272 " */\n",
1273 AcpiGbl_NumExternalMethods);
1274 }
1275 else if (AcpiGbl_NumExternalMethods != AcpiGbl_ResolvedExternalMethods)
1276 {
1277 /* The -e option was specified, but there are still some unresolved

1279 AcpiOsPrintf (" /*\n"
1280 " * iASL Warning: There were %u external control methods fou
1281 " * disassembly, but only %u %s resolved (%u unresolved). Ad
1282 " * ACPI tables are required to properly disassemble the cod
1283 " * resulting disassembler output file may not compile becau
1284 " * disassembler did not know how many arguments to assign t
1285 " * unresolved methods.\n"
1286 " */\n",
1287 AcpiGbl_NumExternalMethods, AcpiGbl_ResolvedExternalMethods,
1288 (AcpiGbl_ResolvedExternalMethods > 1 ? "were" : "was"),
1289 (AcpiGbl_NumExternalMethods - AcpiGbl_ResolvedExternalMethods));
1290 }
1291 }
1292 else
1293 {
1294 if (!AcpiGbl_ExternalFileList)
1295 {
1296 /* The -e option was not specified */

1298 fprintf (stderr, "\n"
1299 "iASL Warning: There were %u external control methods found duri
1300 "disassembly, but additional ACPI tables to resolve these extern
1301 "were not specified. The resulting disassembler output file may
1302 "compile because the disassembler did not know how many argument
1303 "to assign to these methods. To specify the tables needed to res
1304 "external control method references, use the one of the followin
1305 "example iASL invocations:\n"
1306 " iasl -e <ssdt1.aml,ssdt2.aml...> -d <dsdt.aml>\n"
1307 " iasl -e <dsdt.aml,ssdt2.aml...> -d <ssdt1.aml>\n",
1308 AcpiGbl_NumExternalMethods);
1309 }
1310 else if (AcpiGbl_NumExternalMethods != AcpiGbl_ResolvedExternalMethods)
1311 {
1312 /* The -e option was specified, but there are still some unresolved

new/usr/src/common/acpica/common/dmextern.c 21

1314 fprintf (stderr, "\n"
1315 "iASL Warning: There were %u external control methods found duri
1316 "disassembly, but only %u %s resolved (%u unresolved). Additiona
1317 "ACPI tables are required to properly disassemble the code. The\
1318 "resulting disassembler output file may not compile because the\
1319 "disassembler did not know how many arguments to assign to the\n
1320 "unresolved methods.\n",
1321 AcpiGbl_NumExternalMethods, AcpiGbl_ResolvedExternalMethods,
1322 (AcpiGbl_ResolvedExternalMethods > 1 ? "were" : "was"),
1323 (AcpiGbl_NumExternalMethods - AcpiGbl_ResolvedExternalMethods));
1324 }
1325 }
1326 }

new/usr/src/common/acpica/common/dmrestag.c 1

**
 33385 Thu Dec 26 13:48:24 2013
new/usr/src/common/acpica/common/dmrestag.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dmrestag - Add tags to resource descriptors (Application-level)
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acparser.h"
48 #include "acdisasm.h"
49 #include "acnamesp.h"
50 #include "amlcode.h"

52 /* This module used for application-level code only */

54 #define _COMPONENT ACPI_CA_DISASSEMBLER
55 ACPI_MODULE_NAME ("dmrestag")

57 /* Local prototypes */

59 static void
60 AcpiDmUpdateResourceName (

new/usr/src/common/acpica/common/dmrestag.c 2

61 ACPI_NAMESPACE_NODE *ResourceNode);

63 static char *
64 AcpiDmSearchTagList (
65 UINT32 BitIndex,
66 const ACPI_RESOURCE_TAG *TagList);

68 static char *
69 AcpiDmGetResourceTag (
70 UINT32 BitIndex,
71 AML_RESOURCE *Resource,
72 UINT8 ResourceIndex);

74 static char *
75 AcpiGetTagPathname (
76 ACPI_PARSE_OBJECT *Op,
77 ACPI_NAMESPACE_NODE *BufferNode,
78 ACPI_NAMESPACE_NODE *ResourceNode,
79 UINT32 BitIndex);

81 static ACPI_NAMESPACE_NODE *
82 AcpiDmGetResourceNode (
83 ACPI_NAMESPACE_NODE *BufferNode,
84 UINT32 BitIndex);

86 static ACPI_STATUS
87 AcpiDmAddResourceToNamespace (
88 UINT8 *Aml,
89 UINT32 Length,
90 UINT32 Offset,
91 UINT8 ResourceIndex,
92 void **Context);

94 static void
95 AcpiDmAddResourcesToNamespace (
96 ACPI_NAMESPACE_NODE *BufferNode,
97 ACPI_PARSE_OBJECT *Op);

100 /**
101 *
102 * Resource Tag tables
103 *
104 * These are the predefined tags that refer to elements of a resource
105 * descriptor. Each name and offset is defined in the ACPI specification.
106 *
107 * Each table entry contains the bit offset of the field and the associated
108 * name.
109 *
110 **/

112 static const ACPI_RESOURCE_TAG AcpiDmIrqTags[] =
113 {
114 {(1 * 8), ACPI_RESTAG_INTERRUPT},
115 {(3 * 8) + 0, ACPI_RESTAG_INTERRUPTTYPE},
116 {(3 * 8) + 3, ACPI_RESTAG_INTERRUPTLEVEL},
117 {(3 * 8) + 4, ACPI_RESTAG_INTERRUPTSHARE},
118 {0, NULL}
119 };

121 static const ACPI_RESOURCE_TAG AcpiDmDmaTags[] =
122 {
123 {(1 * 8), ACPI_RESTAG_DMA},
124 {(2 * 8) + 0, ACPI_RESTAG_XFERTYPE},
125 {(2 * 8) + 2, ACPI_RESTAG_BUSMASTER},
126 {(2 * 8) + 5, ACPI_RESTAG_DMATYPE},

new/usr/src/common/acpica/common/dmrestag.c 3

127 {0, NULL}
128 };

130 static const ACPI_RESOURCE_TAG AcpiDmIoTags[] =
131 {
132 {(1 * 8) + 0, ACPI_RESTAG_DECODE},
133 {(2 * 8), ACPI_RESTAG_MINADDR},
134 {(4 * 8), ACPI_RESTAG_MAXADDR},
135 {(6 * 8), ACPI_RESTAG_ALIGNMENT},
136 {(7 * 8), ACPI_RESTAG_LENGTH},
137 {0, NULL}
138 };

140 static const ACPI_RESOURCE_TAG AcpiDmFixedIoTags[] =
141 {
142 {(1 * 8), ACPI_RESTAG_BASEADDRESS},
143 {(3 * 8), ACPI_RESTAG_LENGTH},
144 {0, NULL}
145 };

147 static const ACPI_RESOURCE_TAG AcpiDmFixedDmaTags[] =
148 {
149 {(1 * 8), ACPI_RESTAG_DMA},
150 {(3 * 8), ACPI_RESTAG_DMATYPE},
151 {(5 * 8), ACPI_RESTAG_XFERTYPE},
152 {0, NULL}
153 };

155 static const ACPI_RESOURCE_TAG AcpiDmMemory24Tags[] =
156 {
157 {(3 * 8) + 0, ACPI_RESTAG_READWRITETYPE},
158 {(4 * 8), ACPI_RESTAG_MINADDR},
159 {(6 * 8), ACPI_RESTAG_MAXADDR},
160 {(8 * 8), ACPI_RESTAG_ALIGNMENT},
161 {(10 * 8), ACPI_RESTAG_LENGTH},
162 {0, NULL}
163 };

165 static const ACPI_RESOURCE_TAG AcpiDmRegisterTags[] =
166 {
167 {(3 * 8), ACPI_RESTAG_ADDRESSSPACE},
168 {(4 * 8), ACPI_RESTAG_REGISTERBITWIDTH},
169 {(5 * 8), ACPI_RESTAG_REGISTERBITOFFSET},
170 {(6 * 8), ACPI_RESTAG_ACCESSSIZE},
171 {(7 * 8), ACPI_RESTAG_ADDRESS},
172 {0, NULL}
173 };

175 static const ACPI_RESOURCE_TAG AcpiDmMemory32Tags[] =
176 {
177 {(3 * 8) + 0, ACPI_RESTAG_READWRITETYPE},
178 {(4 * 8), ACPI_RESTAG_MINADDR},
179 {(8 * 8), ACPI_RESTAG_MAXADDR},
180 {(12 * 8), ACPI_RESTAG_ALIGNMENT},
181 {(16 * 8), ACPI_RESTAG_LENGTH},
182 {0, NULL}
183 };

185 static const ACPI_RESOURCE_TAG AcpiDmFixedMemory32Tags[] =
186 {
187 {(3 * 8) + 0, ACPI_RESTAG_READWRITETYPE},
188 {(4 * 8), ACPI_RESTAG_BASEADDRESS},
189 {(8 * 8), ACPI_RESTAG_LENGTH},
190 {0, NULL}
191 };

new/usr/src/common/acpica/common/dmrestag.c 4

193 static const ACPI_RESOURCE_TAG AcpiDmInterruptTags[] =
194 {
195 {(3 * 8) + 1, ACPI_RESTAG_INTERRUPTTYPE},
196 {(3 * 8) + 2, ACPI_RESTAG_INTERRUPTLEVEL},
197 {(3 * 8) + 3, ACPI_RESTAG_INTERRUPTSHARE},
198 {(5 * 8), ACPI_RESTAG_INTERRUPT},
199 {0, NULL}
200 };

202 static const ACPI_RESOURCE_TAG AcpiDmAddress16Tags[] =
203 {
204 {(4 * 8) + 1, ACPI_RESTAG_DECODE},
205 {(4 * 8) + 2, ACPI_RESTAG_MINTYPE},
206 {(4 * 8) + 3, ACPI_RESTAG_MAXTYPE},
207 {(6 * 8), ACPI_RESTAG_GRANULARITY},
208 {(8 * 8), ACPI_RESTAG_MINADDR},
209 {(10 * 8), ACPI_RESTAG_MAXADDR},
210 {(12 * 8), ACPI_RESTAG_TRANSLATION},
211 {(14 * 8), ACPI_RESTAG_LENGTH},
212 {0, NULL}
213 };

215 static const ACPI_RESOURCE_TAG AcpiDmAddress32Tags[] =
216 {
217 {(4 * 8) + 1, ACPI_RESTAG_DECODE},
218 {(4 * 8) + 2, ACPI_RESTAG_MINTYPE},
219 {(4 * 8) + 3, ACPI_RESTAG_MAXTYPE},
220 {(6 * 8), ACPI_RESTAG_GRANULARITY},
221 {(10 * 8), ACPI_RESTAG_MINADDR},
222 {(14 * 8), ACPI_RESTAG_MAXADDR},
223 {(18 * 8), ACPI_RESTAG_TRANSLATION},
224 {(22 * 8), ACPI_RESTAG_LENGTH},
225 {0, NULL}
226 };

228 static const ACPI_RESOURCE_TAG AcpiDmAddress64Tags[] =
229 {
230 {(4 * 8) + 1, ACPI_RESTAG_DECODE},
231 {(4 * 8) + 2, ACPI_RESTAG_MINTYPE},
232 {(4 * 8) + 3, ACPI_RESTAG_MAXTYPE},
233 {(6 * 8), ACPI_RESTAG_GRANULARITY},
234 {(14 * 8), ACPI_RESTAG_MINADDR},
235 {(22 * 8), ACPI_RESTAG_MAXADDR},
236 {(30 * 8), ACPI_RESTAG_TRANSLATION},
237 {(38 * 8), ACPI_RESTAG_LENGTH},
238 {0, NULL}
239 };

241 static const ACPI_RESOURCE_TAG AcpiDmExtendedAddressTags[] =
242 {
243 {(4 * 8) + 1, ACPI_RESTAG_DECODE},
244 {(4 * 8) + 2, ACPI_RESTAG_MINTYPE},
245 {(4 * 8) + 3, ACPI_RESTAG_MAXTYPE},
246 {(8 * 8), ACPI_RESTAG_GRANULARITY},
247 {(16 * 8), ACPI_RESTAG_MINADDR},
248 {(24 * 8), ACPI_RESTAG_MAXADDR},
249 {(32 * 8), ACPI_RESTAG_TRANSLATION},
250 {(40 * 8), ACPI_RESTAG_LENGTH},
251 {(48 * 8), ACPI_RESTAG_TYPESPECIFICATTRIBUTES},
252 {0, NULL}
253 };

255 /* Subtype tables for GPIO descriptors */

257 static const ACPI_RESOURCE_TAG AcpiDmGpioIntTags[] =
258 {

new/usr/src/common/acpica/common/dmrestag.c 5

259 {(7 * 8) + 0, ACPI_RESTAG_MODE},
260 {(7 * 8) + 1, ACPI_RESTAG_POLARITY},
261 {(7 * 8) + 3, ACPI_RESTAG_INTERRUPTSHARE},
262 {(9 * 8), ACPI_RESTAG_PINCONFIG},
263 {(10 * 8), ACPI_RESTAG_DRIVESTRENGTH},
264 {(12 * 8), ACPI_RESTAG_DEBOUNCETIME},
265 {0, NULL}
266 };

268 static const ACPI_RESOURCE_TAG AcpiDmGpioIoTags[] =
269 {
270 {(7 * 8) + 0, ACPI_RESTAG_IORESTRICTION},
271 {(7 * 8) + 3, ACPI_RESTAG_INTERRUPTSHARE},
272 {(9 * 8), ACPI_RESTAG_PINCONFIG},
273 {(10 * 8), ACPI_RESTAG_DRIVESTRENGTH},
274 {(12 * 8), ACPI_RESTAG_DEBOUNCETIME},
275 {0, NULL}
276 };

278 /* Subtype tables for SerialBus descriptors */

280 static const ACPI_RESOURCE_TAG AcpiDmI2cSerialBusTags[] =
281 {
282 {(6 * 8) + 0, ACPI_RESTAG_SLAVEMODE},
283 {(7 * 8) + 0, ACPI_RESTAG_MODE},
284 {(12 * 8), ACPI_RESTAG_SPEED},
285 {(16 * 8), ACPI_RESTAG_ADDRESS},
286 {0, NULL}
287 };

289 static const ACPI_RESOURCE_TAG AcpiDmSpiSerialBusTags[] =
290 {
291 {(6 * 8) + 0, ACPI_RESTAG_SLAVEMODE},
292 {(7 * 8) + 0, ACPI_RESTAG_MODE},
293 {(7 * 8) + 1, ACPI_RESTAG_DEVICEPOLARITY},
294 {(12 * 8), ACPI_RESTAG_SPEED},
295 {(16 * 8), ACPI_RESTAG_LENGTH},
296 {(17 * 8), ACPI_RESTAG_PHASE},
297 {(18 * 8), ACPI_RESTAG_POLARITY},
298 {(19 * 8), ACPI_RESTAG_ADDRESS},
299 {0, NULL}
300 };

302 static const ACPI_RESOURCE_TAG AcpiDmUartSerialBusTags[] =
303 {
304 {(6 * 8) + 0, ACPI_RESTAG_SLAVEMODE}, /* Note: not part of original macro
305 {(7 * 8) + 0, ACPI_RESTAG_FLOWCONTROL},
306 {(7 * 8) + 2, ACPI_RESTAG_STOPBITS},
307 {(7 * 8) + 4, ACPI_RESTAG_LENGTH},
308 {(7 * 8) + 7, ACPI_RESTAG_ENDIANNESS},
309 {(12 * 8), ACPI_RESTAG_SPEED},
310 {(16 * 8), ACPI_RESTAG_LENGTH_RX},
311 {(18 * 8), ACPI_RESTAG_LENGTH_TX},
312 {(20 * 8), ACPI_RESTAG_PARITY},
313 {(21 * 8), ACPI_RESTAG_LINE},
314 {0, NULL}
315 };

317 /* Subtype tables for Address descriptor type-specific flags */

319 static const ACPI_RESOURCE_TAG AcpiDmMemoryFlagTags[] =
320 {
321 {(5 * 8) + 0, ACPI_RESTAG_READWRITETYPE},
322 {(5 * 8) + 1, ACPI_RESTAG_MEMTYPE},
323 {(5 * 8) + 3, ACPI_RESTAG_MEMATTRIBUTES},
324 {(5 * 8) + 5, ACPI_RESTAG_TYPE},

new/usr/src/common/acpica/common/dmrestag.c 6

325 {0, NULL}
326 };

328 static const ACPI_RESOURCE_TAG AcpiDmIoFlagTags[] =
329 {
330 {(5 * 8) + 0, ACPI_RESTAG_RANGETYPE},
331 {(5 * 8) + 4, ACPI_RESTAG_TYPE},
332 {(5 * 8) + 5, ACPI_RESTAG_TRANSTYPE},
333 {0, NULL}
334 };

337 /*
338 * Dispatch table used to obtain the correct tag table for a descriptor.
339 *
340 * A NULL in this table means one of three things:
341 * 1) The descriptor ID is reserved and invalid
342 * 2) The descriptor has no tags associated with it
343 * 3) The descriptor has subtypes and a separate table will be used.
344 */
345 static const ACPI_RESOURCE_TAG *AcpiGbl_ResourceTags[] =
346 {
347 /* Small descriptors */

349 NULL, /* 0x00, Reserved */
350 NULL, /* 0x01, Reserved */
351 NULL, /* 0x02, Reserved */
352 NULL, /* 0x03, Reserved */
353 AcpiDmIrqTags, /* 0x04, ACPI_RESOURCE_NAME_IRQ_FORMAT */
354 AcpiDmDmaTags, /* 0x05, ACPI_RESOURCE_NAME_DMA_FORMAT */
355 NULL, /* 0x06, ACPI_RESOURCE_NAME_START_DEPENDENT
356 NULL, /* 0x07, ACPI_RESOURCE_NAME_END_DEPENDENT */
357 AcpiDmIoTags, /* 0x08, ACPI_RESOURCE_NAME_IO_PORT */
358 AcpiDmFixedIoTags, /* 0x09, ACPI_RESOURCE_NAME_FIXED_IO_PORT */
359 AcpiDmFixedDmaTags, /* 0x0A, ACPI_RESOURCE_NAME_FIXED_DMA */
360 NULL, /* 0x0B, Reserved */
361 NULL, /* 0x0C, Reserved */
362 NULL, /* 0x0D, Reserved */
363 NULL, /* 0x0E, ACPI_RESOURCE_NAME_SMALL_VENDOR */
364 NULL, /* 0x0F, ACPI_RESOURCE_NAME_END_TAG (not use

366 /* Large descriptors */

368 NULL, /* 0x00, Reserved */
369 AcpiDmMemory24Tags, /* 0x01, ACPI_RESOURCE_NAME_MEMORY_24 */
370 AcpiDmRegisterTags, /* 0x02, ACPI_RESOURCE_NAME_GENERIC_REGISTER
371 NULL, /* 0x03, Reserved */
372 NULL, /* 0x04, ACPI_RESOURCE_NAME_LARGE_VENDOR */
373 AcpiDmMemory32Tags, /* 0x05, ACPI_RESOURCE_NAME_MEMORY_32 */
374 AcpiDmFixedMemory32Tags, /* 0x06, ACPI_RESOURCE_NAME_FIXED_MEMORY_32
375 AcpiDmAddress32Tags, /* 0x07, ACPI_RESOURCE_NAME_DWORD_ADDRESS_SP
376 AcpiDmAddress16Tags, /* 0x08, ACPI_RESOURCE_NAME_WORD_ADDRESS_SPA
377 AcpiDmInterruptTags, /* 0x09, ACPI_RESOURCE_NAME_EXTENDED_XRUPT *
378 AcpiDmAddress64Tags, /* 0x0A, ACPI_RESOURCE_NAME_QWORD_ADDRESS_SP
379 AcpiDmExtendedAddressTags, /* 0x0B, ACPI_RESOURCE_NAME_EXTENDED_ADDRESS
380 NULL, /* 0x0C, ACPI_RESOURCE_NAME_GPIO - Use Subty
381 NULL, /* 0x0D, Reserved */
382 NULL /* 0x0E, ACPI_RESOURCE_NAME_SERIAL_BUS - Use
383 };

385 /* GPIO Subtypes */

387 static const ACPI_RESOURCE_TAG *AcpiGbl_GpioResourceTags[] =
388 {
389 AcpiDmGpioIntTags, /* 0x00 Interrupt Connection */
390 AcpiDmGpioIoTags /* 0x01 I/O Connection */

new/usr/src/common/acpica/common/dmrestag.c 7

391 };

393 /* Serial Bus Subtypes */

395 static const ACPI_RESOURCE_TAG *AcpiGbl_SerialResourceTags[] =
396 {
397 NULL, /* 0x00 Reserved */
398 AcpiDmI2cSerialBusTags, /* 0x01 I2C SerialBus */
399 AcpiDmSpiSerialBusTags, /* 0x02 SPI SerialBus */
400 AcpiDmUartSerialBusTags /* 0x03 UART SerialBus */
401 };

403 /*
404 * Globals used to generate unique resource descriptor names. We use names that
405 * start with underscore and a prefix letter that is not used by other ACPI
406 * reserved names. To this, we append hex 0x00 through 0xFF. These 5 prefixes
407 * allow for 5*256 = 1280 unique names, probably sufficient for any single ASL
408 * file. If this becomes too small, we can use alpha+numerals for a total
409 * of 5*36*36 = 6480.
410 */
411 #define ACPI_NUM_RES_PREFIX 5

413 static UINT32 AcpiGbl_NextResourceId = 0;
414 static UINT8 AcpiGbl_NextPrefix = 0;
415 static char AcpiGbl_Prefix[ACPI_NUM_RES_PREFIX] =
416 {’Y’,’Z’,’J’,’K’,’X’};

419 /***
420 *
421 * FUNCTION: AcpiDmCheckResourceReference
422 *
423 * PARAMETERS: Op - Parse Op for the AML opcode
424 * WalkState - Current walk state (with valid scope)
425 *
426 * RETURN: None
427 *
428 * DESCRIPTION: Convert a reference to a resource descriptor to a symbolic
429 * reference if possible
430 *
431 * NOTE: Bit index is used to transparently handle both resource bit
432 * fields and byte fields.
433 *
434 **/

436 void
437 AcpiDmCheckResourceReference (
438 ACPI_PARSE_OBJECT *Op,
439 ACPI_WALK_STATE *WalkState)
440 {
441 ACPI_STATUS Status;
442 ACPI_PARSE_OBJECT *BufferNameOp;
443 ACPI_PARSE_OBJECT *IndexOp;
444 ACPI_NAMESPACE_NODE *BufferNode;
445 ACPI_NAMESPACE_NODE *ResourceNode;
446 const ACPI_OPCODE_INFO *OpInfo;
447 UINT32 BitIndex;

450 /* We are only interested in the CreateXxxxField opcodes */

452 OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);
453 if (OpInfo->Type != AML_TYPE_CREATE_FIELD)
454 {
455 return;
456 }

new/usr/src/common/acpica/common/dmrestag.c 8

458 /* Get the buffer term operand */

460 BufferNameOp = AcpiPsGetDepthNext (NULL, Op);

462 /* Must be a named buffer, not an arg or local or method call */

464 if (BufferNameOp->Common.AmlOpcode != AML_INT_NAMEPATH_OP)
465 {
466 return;
467 }

469 /* Get the Index term, must be an integer constant to convert */

471 IndexOp = BufferNameOp->Common.Next;

473 /* Major cheat: The Node field is also used for the Tag ptr. Clear it now */

475 IndexOp->Common.Node = NULL;

477 OpInfo = AcpiPsGetOpcodeInfo (IndexOp->Common.AmlOpcode);
478 if (OpInfo->ObjectType != ACPI_TYPE_INTEGER)
479 {
480 return;
481 }

483 /* Get the bit offset of the descriptor within the buffer */

485 if ((Op->Common.AmlOpcode == AML_CREATE_BIT_FIELD_OP) ||
486 (Op->Common.AmlOpcode == AML_CREATE_FIELD_OP))
487 {
488 /* Index operand is a bit offset */

490 BitIndex = (UINT32) IndexOp->Common.Value.Integer;
491 }
492 else
493 {
494 /* Index operand is a byte offset, convert to bits */

496 BitIndex = (UINT32) ACPI_MUL_8 (IndexOp->Common.Value.Integer);
497 }

499 /* Lookup the buffer in the namespace */

501 Status = AcpiNsLookup (WalkState->ScopeInfo,
502 BufferNameOp->Common.Value.String, ACPI_TYPE_BUFFER,
503 ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT, WalkState,
504 &BufferNode);
505 if (ACPI_FAILURE (Status))
506 {
507 return;
508 }

510 /* Validate object type, we must have a buffer */

512 if (BufferNode->Type != ACPI_TYPE_BUFFER)
513 {
514 return;
515 }

517 /* Find the resource descriptor node corresponding to the index */

519 ResourceNode = AcpiDmGetResourceNode (BufferNode, BitIndex);
520 if (!ResourceNode)
521 {
522 return;

new/usr/src/common/acpica/common/dmrestag.c 9

523 }

525 /* Translate the Index to a resource tag pathname */

527 AcpiGetTagPathname (IndexOp, BufferNode, ResourceNode, BitIndex);
528 }

531 /***
532 *
533 * FUNCTION: AcpiDmGetResourceNode
534 *
535 * PARAMETERS: BufferNode - Node for the parent buffer
536 * BitIndex - Index into the resource descriptor
537 *
538 * RETURN: Namespace node for the resource descriptor. NULL if not found
539 *
540 * DESCRIPTION: Find a resource descriptor that corresponds to the bit index
541 *
542 **/

544 static ACPI_NAMESPACE_NODE *
545 AcpiDmGetResourceNode (
546 ACPI_NAMESPACE_NODE *BufferNode,
547 UINT32 BitIndex)
548 {
549 ACPI_NAMESPACE_NODE *Node;
550 UINT32 ByteIndex = ACPI_DIV_8 (BitIndex);

553 /*
554 * Child list contains an entry for each resource descriptor. Find
555 * the descriptor that corresponds to the Index.
556 *
557 * If there are no children, this is not a resource template
558 */
559 Node = BufferNode->Child;
560 while (Node)
561 {
562 /*
563 * Check if the Index falls within this resource.
564 *
565 * Value contains the resource offset, Object contains the resource
566 * length (both in bytes)
567 */
568 if ((ByteIndex >= Node->Value) &&
569 (ByteIndex < (Node->Value + Node->Length)))
570 {
571 return (Node);
572 }

574 Node = Node->Peer;
575 }

577 return (NULL);
578 }

581 /***
582 *
583 * FUNCTION: AcpiGetTagPathname
584 *
585 * PARAMETERS: BufferNode - Node for the parent buffer
586 * ResourceNode - Node for a resource descriptor
587 * BitIndex - Index into the resource descriptor
588 *

new/usr/src/common/acpica/common/dmrestag.c 10

589 * RETURN: Full pathname for a resource tag. NULL if no match.
590 * Path is returned in AML (packed) format.
591 *
592 * DESCRIPTION: Convert a BitIndex into a symbolic resource tag (full pathname)
593 *
594 **/

596 static char *
597 AcpiGetTagPathname (
598 ACPI_PARSE_OBJECT *IndexOp,
599 ACPI_NAMESPACE_NODE *BufferNode,
600 ACPI_NAMESPACE_NODE *ResourceNode,
601 UINT32 BitIndex)
602 {
603 ACPI_STATUS Status;
604 UINT32 ResourceBitIndex;
605 UINT8 ResourceTableIndex;
606 ACPI_SIZE RequiredSize;
607 char *Pathname;
608 AML_RESOURCE *Aml;
609 ACPI_PARSE_OBJECT *Op;
610 char *InternalPath;
611 char *Tag;

614 /* Get the Op that contains the actual buffer data */

616 Op = BufferNode->Op->Common.Value.Arg;
617 Op = Op->Common.Next;
618 if (!Op)
619 {
620 return (NULL);
621 }

623 /* Get the individual resource descriptor and validate it */

625 Aml = ACPI_CAST_PTR (AML_RESOURCE,
626 &Op->Named.Data[ResourceNode->Value]);

628 Status = AcpiUtValidateResource (NULL, Aml, &ResourceTableIndex);
629 if (ACPI_FAILURE (Status))
630 {
631 return (NULL);
632 }

634 /* Get offset into this descriptor (from offset into entire buffer) */

636 ResourceBitIndex = BitIndex - ACPI_MUL_8 (ResourceNode->Value);

638 /* Get the tag associated with this resource descriptor and offset */

640 Tag = AcpiDmGetResourceTag (ResourceBitIndex, Aml, ResourceTableIndex);
641 if (!Tag)
642 {
643 return (NULL);
644 }

646 /*
647 * Now that we know that we have a reference that can be converted to a
648 * symbol, change the name of the resource to a unique name.
649 */
650 AcpiDmUpdateResourceName (ResourceNode);

652 /* Get the full pathname to the parent buffer */

654 RequiredSize = AcpiNsGetPathnameLength (BufferNode);

new/usr/src/common/acpica/common/dmrestag.c 11

655 if (!RequiredSize)
656 {
657 return (NULL);
658 }

660 Pathname = ACPI_ALLOCATE_ZEROED (RequiredSize + ACPI_PATH_SEGMENT_LENGTH);
661 if (!Pathname)
662 {
663 return (NULL);
664 }

666 Status = AcpiNsBuildExternalPath (BufferNode, RequiredSize, Pathname);
667 if (ACPI_FAILURE (Status))
668 {
669 ACPI_FREE (Pathname);
670 return (NULL);
671 }

673 /*
674 * Create the full path to the resource and tag by: remove the buffer name,
675 * append the resource descriptor name, append a dot, append the tag name.
676 *
677 * TBD: Always using the full path is a bit brute force, the path can be
678 * often be optimized with carats (if the original buffer namepath is a
679 * single nameseg). This doesn’t really matter, because these paths do not
680 * end up in the final compiled AML, it’s just an appearance issue for the
681 * disassembled code.
682 */
683 Pathname[ACPI_STRLEN (Pathname) - ACPI_NAME_SIZE] = 0;
684 ACPI_STRNCAT (Pathname, ResourceNode->Name.Ascii, ACPI_NAME_SIZE);
685 ACPI_STRCAT (Pathname, ".");
686 ACPI_STRNCAT (Pathname, Tag, ACPI_NAME_SIZE);

688 /* Internalize the namepath to AML format */

690 AcpiNsInternalizeName (Pathname, &InternalPath);
691 ACPI_FREE (Pathname);

693 /* Update the Op with the symbol */

695 AcpiPsInitOp (IndexOp, AML_INT_NAMEPATH_OP);
696 IndexOp->Common.Value.String = InternalPath;

698 /* We will need the tag later. Cheat by putting it in the Node field */

700 IndexOp->Common.Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Tag);
701 return (InternalPath);
702 }

705 /***
706 *
707 * FUNCTION: AcpiDmUpdateResourceName
708 *
709 * PARAMETERS: ResourceNode - Node for a resource descriptor
710 *
711 * RETURN: Stores new name in the ResourceNode
712 *
713 * DESCRIPTION: Create a new, unique name for a resource descriptor. Used by
714 * both the disassembly of the descriptor itself and any symbolic
715 * references to the descriptor. Ignored if a unique name has
716 * already been assigned to the resource.
717 *
718 * NOTE: Single threaded, suitable for applications only!
719 *
720 **/

new/usr/src/common/acpica/common/dmrestag.c 12

722 static void
723 AcpiDmUpdateResourceName (
724 ACPI_NAMESPACE_NODE *ResourceNode)
725 {
726 char Name[ACPI_NAME_SIZE];

729 /* Ignore if a unique name has already been assigned */

731 if (ResourceNode->Name.Integer != ACPI_DEFAULT_RESNAME)
732 {
733 return;
734 }

736 /* Generate a new ACPI name for the descriptor */

738 Name[0] = ’_’;
739 Name[1] = AcpiGbl_Prefix[AcpiGbl_NextPrefix];
740 Name[2] = AcpiUtHexToAsciiChar ((UINT64) AcpiGbl_NextResourceId, 4);
741 Name[3] = AcpiUtHexToAsciiChar ((UINT64) AcpiGbl_NextResourceId, 0);

743 /* Update globals for next name */

745 AcpiGbl_NextResourceId++;
746 if (AcpiGbl_NextResourceId >= 256)
747 {
748 AcpiGbl_NextResourceId = 0;
749 AcpiGbl_NextPrefix++;
750 if (AcpiGbl_NextPrefix > ACPI_NUM_RES_PREFIX)
751 {
752 AcpiGbl_NextPrefix = 0;
753 }
754 }

756 /* Change the resource descriptor name */

758 ResourceNode->Name.Integer = *ACPI_CAST_PTR (UINT32, &Name[0]);
759 }

762 /***
763 *
764 * FUNCTION: AcpiDmGetResourceTag
765 *
766 * PARAMETERS: BitIndex - Index into the resource descriptor
767 * Resource - Pointer to the raw resource data
768 * ResourceIndex - Index correspoinding to the resource type
769 *
770 * RETURN: Pointer to the resource tag (ACPI_NAME). NULL if no match.
771 *
772 * DESCRIPTION: Convert a BitIndex into a symbolic resource tag.
773 *
774 * Note: ResourceIndex should be previously validated and guaranteed to ve
775 * valid.
776 *
777 **/

779 static char *
780 AcpiDmGetResourceTag (
781 UINT32 BitIndex,
782 AML_RESOURCE *Resource,
783 UINT8 ResourceIndex)
784 {
785 const ACPI_RESOURCE_TAG *TagList;
786 char *Tag = NULL;

new/usr/src/common/acpica/common/dmrestag.c 13

789 /* Get the tag list for this resource descriptor type */

791 TagList = AcpiGbl_ResourceTags[ResourceIndex];

793 /*
794 * Handle descriptors that have multiple subtypes
795 */
796 switch (Resource->DescriptorType)
797 {
798 case ACPI_RESOURCE_NAME_ADDRESS16:
799 case ACPI_RESOURCE_NAME_ADDRESS32:
800 case ACPI_RESOURCE_NAME_ADDRESS64:
801 case ACPI_RESOURCE_NAME_EXTENDED_ADDRESS64:
802 /*
803 * Subtype differentiation is the flags.
804 * Kindof brute force, but just blindly search for an index match
805 */
806 if (Resource->Address.ResourceType == ACPI_ADDRESS_TYPE_MEMORY_RANGE)
807 {
808 Tag = AcpiDmSearchTagList (BitIndex, AcpiDmMemoryFlagTags);
809 }
810 else if (Resource->Address.ResourceType == ACPI_ADDRESS_TYPE_IO_RANGE)
811 {
812 Tag = AcpiDmSearchTagList (BitIndex, AcpiDmIoFlagTags);
813 }

815 /* If we found a match, all done. Else, drop to normal search below */

817 if (Tag)
818 {
819 return (Tag);
820 }
821 break;

823 case ACPI_RESOURCE_NAME_GPIO:

825 /* GPIO connection has 2 subtypes: Interrupt and I/O */

827 if (Resource->Gpio.ConnectionType > AML_RESOURCE_MAX_GPIOTYPE)
828 {
829 return (NULL);
830 }

832 TagList = AcpiGbl_GpioResourceTags[Resource->Gpio.ConnectionType];
833 break;

835 case ACPI_RESOURCE_NAME_SERIAL_BUS:

837 /* SerialBus has 3 subtypes: I2C, SPI, and UART */

839 if ((Resource->CommonSerialBus.Type == 0) ||
840 (Resource->CommonSerialBus.Type > AML_RESOURCE_MAX_SERIALBUSTYPE))
841 {
842 return (NULL);
843 }

845 TagList = AcpiGbl_SerialResourceTags[Resource->CommonSerialBus.Type];
846 break;

848 default:

850 break;
851 }

new/usr/src/common/acpica/common/dmrestag.c 14

853 /* Search for a match against the BitIndex */

855 if (TagList)
856 {
857 Tag = AcpiDmSearchTagList (BitIndex, TagList);
858 }

860 return (Tag);
861 }

864 /***
865 *
866 * FUNCTION: AcpiDmSearchTagList
867 *
868 * PARAMETERS: BitIndex - Index into the resource descriptor
869 * TagList - List to search
870 *
871 * RETURN: Pointer to a tag (ACPI_NAME). NULL if no match found.
872 *
873 * DESCRIPTION: Search a tag list for a match to the input BitIndex. Matches
874 * a fixed offset to a symbolic resource tag name.
875 *
876 **/

878 static char *
879 AcpiDmSearchTagList (
880 UINT32 BitIndex,
881 const ACPI_RESOURCE_TAG *TagList)
882 {

884 /*
885 * Walk the null-terminated tag list to find a matching bit offset.
886 * We are looking for an exact match.
887 */
888 for (; TagList->Tag; TagList++)
889 {
890 if (BitIndex == TagList->BitIndex)
891 {
892 return (TagList->Tag);
893 }
894 }

896 /* A matching offset was not found */

898 return (NULL);
899 }

902 /***
903 *
904 * FUNCTION: AcpiDmFindResources
905 *
906 * PARAMETERS: Root - Root of the parse tree
907 *
908 * RETURN: None
909 *
910 * DESCRIPTION: Add all ResourceTemplate declarations to the namespace. Each
911 * resource descriptor in each template is given a node -- used
912 * for later conversion of resource references to symbolic refs.
913 *
914 **/

916 void
917 AcpiDmFindResources (
918 ACPI_PARSE_OBJECT *Root)

new/usr/src/common/acpica/common/dmrestag.c 15

919 {
920 ACPI_PARSE_OBJECT *Op = Root;
921 ACPI_PARSE_OBJECT *Parent;

924 /* Walk the entire parse tree */

926 while (Op)
927 {
928 /* We are interested in Buffer() declarations */

930 if (Op->Common.AmlOpcode == AML_BUFFER_OP)
931 {
932 /* And only declarations of the form Name (XXXX, Buffer()...) */

934 Parent = Op->Common.Parent;
935 if (Parent->Common.AmlOpcode == AML_NAME_OP)
936 {
937 /*
938 * If the buffer is a resource template, add the individual
939 * resource descriptors to the namespace, as children of the
940 * buffer node.
941 */
942 if (ACPI_SUCCESS (AcpiDmIsResourceTemplate (NULL, Op)))
943 {
944 Op->Common.DisasmOpcode = ACPI_DASM_RESOURCE;
945 AcpiDmAddResourcesToNamespace (Parent->Common.Node, Op);
946 }
947 }
948 }

950 Op = AcpiPsGetDepthNext (Root, Op);
951 }
952 }

955 /***
956 *
957 * FUNCTION: AcpiDmAddResourcesToNamespace
958 *
959 * PARAMETERS: BufferNode - Node for the parent buffer
960 * Op - Parse op for the buffer
961 *
962 * RETURN: None
963 *
964 * DESCRIPTION: Add an entire resource template to the namespace. Each
965 * resource descriptor is added as a namespace node.
966 *
967 **/

969 static void
970 AcpiDmAddResourcesToNamespace (
971 ACPI_NAMESPACE_NODE *BufferNode,
972 ACPI_PARSE_OBJECT *Op)
973 {
974 ACPI_PARSE_OBJECT *NextOp;

977 /* Get to the ByteData list */

979 NextOp = Op->Common.Value.Arg;
980 NextOp = NextOp->Common.Next;
981 if (!NextOp)
982 {
983 return;
984 }

new/usr/src/common/acpica/common/dmrestag.c 16

986 /* Set Node and Op to point to each other */

988 BufferNode->Op = Op;
989 Op->Common.Node = BufferNode;

991 /*
992 * Insert each resource into the namespace
993 * NextOp contains the Aml pointer and the Aml length
994 */
995 AcpiUtWalkAmlResources (NULL, (UINT8 *) NextOp->Named.Data,
996 (ACPI_SIZE) NextOp->Common.Value.Integer,
997 AcpiDmAddResourceToNamespace, (void **) BufferNode);
998 }

1001 /***
1002 *
1003 * FUNCTION: AcpiDmAddResourceToNamespace
1004 *
1005 * PARAMETERS: ACPI_WALK_AML_CALLBACK
1006 * BufferNode - Node for the parent buffer
1007 *
1008 * RETURN: Status
1009 *
1010 * DESCRIPTION: Add one resource descriptor to the namespace as a child of the
1011 * parent buffer. The same name is used for each descriptor. This
1012 * is changed later to a unique name if the resource is actually
1013 * referenced by an AML operator.
1014 *
1015 **/

1017 static ACPI_STATUS
1018 AcpiDmAddResourceToNamespace (
1019 UINT8 *Aml,
1020 UINT32 Length,
1021 UINT32 Offset,
1022 UINT8 ResourceIndex,
1023 void **Context)
1024 {
1025 ACPI_STATUS Status;
1026 ACPI_GENERIC_STATE ScopeInfo;
1027 ACPI_NAMESPACE_NODE *Node;

1030 /* TBD: Don’t need to add descriptors that have no tags defined? */

1032 /* Add the resource to the namespace, as child of the buffer */

1034 ScopeInfo.Scope.Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Context);
1035 Status = AcpiNsLookup (&ScopeInfo, "_TMP", ACPI_TYPE_LOCAL_RESOURCE,
1036 ACPI_IMODE_LOAD_PASS2,
1037 ACPI_NS_NO_UPSEARCH | ACPI_NS_DONT_OPEN_SCOPE | ACPI_NS_PREFIX_I
1038 NULL, &Node);
1039 if (ACPI_FAILURE (Status))
1040 {
1041 return (AE_OK);
1042 }

1044 /* Set the name to the default, changed later if resource is referenced */

1046 Node->Name.Integer = ACPI_DEFAULT_RESNAME;

1048 /* Save the offset of the descriptor (within the original buffer) */

1050 Node->Value = Offset;

new/usr/src/common/acpica/common/dmrestag.c 17

1051 Node->Length = Length;
1052 return (AE_OK);
1053 }

new/usr/src/common/acpica/common/dmtable.c 1

**
 39952 Thu Dec 26 13:48:24 2013
new/usr/src/common/acpica/common/dmtable.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dmtable - Support for ACPI tables that contain no AML code
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "acdisasm.h"
47 #include "actables.h"
48 #include "aslcompiler.h"
49 #include "dtcompiler.h"

51 /* This module used for application-level code only */

53 #define _COMPONENT ACPI_CA_DISASSEMBLER
54 ACPI_MODULE_NAME ("dmtable")

56 /* Local Prototypes */

58 static void
59 AcpiDmCheckAscii (

new/usr/src/common/acpica/common/dmtable.c 2

60 UINT8 *Target,
61 char *RepairedName,
62 UINT32 Count);

65 /* Common format strings for commented values */

67 #define UINT8_FORMAT "%2.2X [%s]\n"
68 #define UINT16_FORMAT "%4.4X [%s]\n"
69 #define UINT32_FORMAT "%8.8X [%s]\n"
70 #define STRING_FORMAT "[%s]\n"

72 /* These tables map a subtable type to a description string */

74 static const char *AcpiDmAsfSubnames[] =
75 {
76 "ASF Information",
77 "ASF Alerts",
78 "ASF Remote Control",
79 "ASF RMCP Boot Options",
80 "ASF Address",
81 "Unknown SubTable Type" /* Reserved */
82 };

84 static const char *AcpiDmDmarSubnames[] =
85 {
86 "Hardware Unit Definition",
87 "Reserved Memory Region",
88 "Root Port ATS Capability",
89 "Remapping Hardware Static Affinity",
90 "Unknown SubTable Type" /* Reserved */
91 };

93 static const char *AcpiDmEinjActions[] =
94 {
95 "Begin Operation",
96 "Get Trigger Table",
97 "Set Error Type",
98 "Get Error Type",
99 "End Operation",
100 "Execute Operation",
101 "Check Busy Status",
102 "Get Command Status",
103 "Set Error Type With Address",
104 "Unknown Action"
105 };

107 static const char *AcpiDmEinjInstructions[] =
108 {
109 "Read Register",
110 "Read Register Value",
111 "Write Register",
112 "Write Register Value",
113 "Noop",
114 "Flush Cacheline",
115 "Unknown Instruction"
116 };

118 static const char *AcpiDmErstActions[] =
119 {
120 "Begin Write Operation",
121 "Begin Read Operation",
122 "Begin Clear Operation",
123 "End Operation",
124 "Set Record Offset",
125 "Execute Operation",

new/usr/src/common/acpica/common/dmtable.c 3

126 "Check Busy Status",
127 "Get Command Status",
128 "Get Record Identifier",
129 "Set Record Identifier",
130 "Get Record Count",
131 "Begin Dummy Write",
132 "Unused/Unknown Action",
133 "Get Error Address Range",
134 "Get Error Address Length",
135 "Get Error Attributes",
136 "Unknown Action"
137 };

139 static const char *AcpiDmErstInstructions[] =
140 {
141 "Read Register",
142 "Read Register Value",
143 "Write Register",
144 "Write Register Value",
145 "Noop",
146 "Load Var1",
147 "Load Var2",
148 "Store Var1",
149 "Add",
150 "Subtract",
151 "Add Value",
152 "Subtract Value",
153 "Stall",
154 "Stall While True",
155 "Skip Next If True",
156 "GoTo",
157 "Set Source Address",
158 "Set Destination Address",
159 "Move Data",
160 "Unknown Instruction"
161 };

163 static const char *AcpiDmHestSubnames[] =
164 {
165 "IA-32 Machine Check Exception",
166 "IA-32 Corrected Machine Check",
167 "IA-32 Non-Maskable Interrupt",
168 "Unknown SubTable Type", /* 3 - Reserved */
169 "Unknown SubTable Type", /* 4 - Reserved */
170 "Unknown SubTable Type", /* 5 - Reserved */
171 "PCI Express Root Port AER",
172 "PCI Express AER (AER Endpoint)",
173 "PCI Express/PCI-X Bridge AER",
174 "Generic Hardware Error Source",
175 "Unknown SubTable Type" /* Reserved */
176 };

178 static const char *AcpiDmHestNotifySubnames[] =
179 {
180 "Polled",
181 "External Interrupt",
182 "Local Interrupt",
183 "SCI",
184 "NMI",
185 "CMCI", /* ACPI 5.0 */
186 "MCE", /* ACPI 5.0 */
187 "Unknown Notify Type" /* Reserved */
188 };

190 static const char *AcpiDmMadtSubnames[] =
191 {

new/usr/src/common/acpica/common/dmtable.c 4

192 "Processor Local APIC", /* ACPI_MADT_TYPE_LOCAL_APIC */
193 "I/O APIC", /* ACPI_MADT_TYPE_IO_APIC */
194 "Interrupt Source Override", /* ACPI_MADT_TYPE_INTERRUPT_OVERRIDE */
195 "NMI Source", /* ACPI_MADT_TYPE_NMI_SOURCE */
196 "Local APIC NMI", /* ACPI_MADT_TYPE_LOCAL_APIC_NMI */
197 "Local APIC Address Override", /* ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE */
198 "I/O SAPIC", /* ACPI_MADT_TYPE_IO_SAPIC */
199 "Local SAPIC", /* ACPI_MADT_TYPE_LOCAL_SAPIC */
200 "Platform Interrupt Sources", /* ACPI_MADT_TYPE_INTERRUPT_SOURCE */
201 "Processor Local x2APIC", /* ACPI_MADT_TYPE_LOCAL_X2APIC */
202 "Local x2APIC NMI", /* ACPI_MADT_TYPE_LOCAL_X2APIC_NMI */
203 "Generic Interrupt Controller", /* ACPI_MADT_GENERIC_INTERRUPT */
204 "Generic Interrupt Distributor",/* ACPI_MADT_GENERIC_DISTRIBUTOR */
205 "Unknown SubTable Type" /* Reserved */
206 };

208 static const char *AcpiDmPcctSubnames[] =
209 {
210 "Generic Communications Subspace", /* ACPI_PCCT_TYPE_GENERIC_SUBSPACE */
211 "Unknown SubTable Type" /* Reserved */
212 };

214 static const char *AcpiDmPmttSubnames[] =
215 {
216 "Socket", /* ACPI_PMTT_TYPE_SOCKET */
217 "Memory Controller", /* ACPI_PMTT_TYPE_CONTROLLER */
218 "Physical Component (DIMM)", /* ACPI_PMTT_TYPE_DIMM */
219 "Unknown SubTable Type" /* Reserved */
220 };

222 static const char *AcpiDmSlicSubnames[] =
223 {
224 "Public Key Structure",
225 "Windows Marker Structure",
226 "Unknown SubTable Type" /* Reserved */
227 };

229 static const char *AcpiDmSratSubnames[] =
230 {
231 "Processor Local APIC/SAPIC Affinity",
232 "Memory Affinity",
233 "Processor Local x2APIC Affinity",
234 "Unknown SubTable Type" /* Reserved */
235 };

237 static const char *AcpiDmIvrsSubnames[] =
238 {
239 "Hardware Definition Block",
240 "Memory Definition Block",
241 "Unknown SubTable Type" /* Reserved */
242 };

245 #define ACPI_FADT_PM_RESERVED 9

247 static const char *AcpiDmFadtProfiles[] =
248 {
249 "Unspecified",
250 "Desktop",
251 "Mobile",
252 "Workstation",
253 "Enterprise Server",
254 "SOHO Server",
255 "Appliance PC",
256 "Performance Server",
257 "Tablet",

new/usr/src/common/acpica/common/dmtable.c 5

258 "Unknown Profile Type"
259 };

261 #define ACPI_GAS_WIDTH_RESERVED 5

263 static const char *AcpiDmGasAccessWidth[] =
264 {
265 "Undefined/Legacy",
266 "Byte Access:8",
267 "Word Access:16",
268 "DWord Access:32",
269 "QWord Access:64",
270 "Unknown Width Encoding"
271 };

274 /***
275 *
276 * ACPI Table Data, indexed by signature.
277 *
278 * Each entry contains: Signature, Table Info, Handler, DtHandler,
279 * Template, Description
280 *
281 * Simple tables have only a TableInfo structure, complex tables have a
282 * handler. This table must be NULL terminated. RSDP and FACS are
283 * special-cased elsewhere.
284 *
285 **/

287 ACPI_DMTABLE_DATA AcpiDmTableData[] =
288 {
289 {ACPI_SIG_ASF, NULL, AcpiDmDumpAsf, DtCompileAsf, Temp
290 {ACPI_SIG_BERT, AcpiDmTableInfoBert, NULL, NULL, Temp
291 {ACPI_SIG_BGRT, AcpiDmTableInfoBgrt, NULL, NULL, Temp
292 {ACPI_SIG_BOOT, AcpiDmTableInfoBoot, NULL, NULL, Temp
293 {ACPI_SIG_CPEP, NULL, AcpiDmDumpCpep, DtCompileCpep, Temp
294 {ACPI_SIG_CSRT, NULL, AcpiDmDumpCsrt, DtCompileCsrt, Temp
295 {ACPI_SIG_DBG2, AcpiDmTableInfoDbg2, AcpiDmDumpDbg2, DtCompileDbg2, Temp
296 {ACPI_SIG_DBGP, AcpiDmTableInfoDbgp, NULL, NULL, Temp
297 {ACPI_SIG_DMAR, NULL, AcpiDmDumpDmar, DtCompileDmar, Temp
298 {ACPI_SIG_ECDT, AcpiDmTableInfoEcdt, NULL, NULL, Temp
299 {ACPI_SIG_EINJ, NULL, AcpiDmDumpEinj, DtCompileEinj, Temp
300 {ACPI_SIG_ERST, NULL, AcpiDmDumpErst, DtCompileErst, Temp
301 {ACPI_SIG_FADT, NULL, AcpiDmDumpFadt, DtCompileFadt, Temp
302 {ACPI_SIG_FPDT, NULL, AcpiDmDumpFpdt, DtCompileFpdt, Temp
303 {ACPI_SIG_GTDT, AcpiDmTableInfoGtdt, NULL, NULL, Temp
304 {ACPI_SIG_HEST, NULL, AcpiDmDumpHest, DtCompileHest, Temp
305 {ACPI_SIG_HPET, AcpiDmTableInfoHpet, NULL, NULL, Temp
306 {ACPI_SIG_IVRS, NULL, AcpiDmDumpIvrs, DtCompileIvrs, Temp
307 {ACPI_SIG_MADT, NULL, AcpiDmDumpMadt, DtCompileMadt, Temp
308 {ACPI_SIG_MCFG, NULL, AcpiDmDumpMcfg, DtCompileMcfg, Temp
309 {ACPI_SIG_MCHI, AcpiDmTableInfoMchi, NULL, NULL, Temp
310 {ACPI_SIG_MPST, AcpiDmTableInfoMpst, AcpiDmDumpMpst, DtCompileMpst, Temp
311 {ACPI_SIG_MSCT, NULL, AcpiDmDumpMsct, DtCompileMsct, Temp
312 {ACPI_SIG_MTMR, NULL, AcpiDmDumpMtmr, DtCompileMtmr, Temp
313 {ACPI_SIG_PCCT, AcpiDmTableInfoPcct, AcpiDmDumpPcct, DtCompilePcct, Temp
314 {ACPI_SIG_PMTT, NULL, AcpiDmDumpPmtt, DtCompilePmtt, Temp
315 {ACPI_SIG_RSDT, NULL, AcpiDmDumpRsdt, DtCompileRsdt, Temp
316 {ACPI_SIG_S3PT, NULL, NULL, NULL, Temp
317 {ACPI_SIG_SBST, AcpiDmTableInfoSbst, NULL, NULL, Temp
318 {ACPI_SIG_SLIC, NULL, AcpiDmDumpSlic, DtCompileSlic, Temp
319 {ACPI_SIG_SLIT, NULL, AcpiDmDumpSlit, DtCompileSlit, Temp
320 {ACPI_SIG_SPCR, AcpiDmTableInfoSpcr, NULL, NULL, Temp
321 {ACPI_SIG_SPMI, AcpiDmTableInfoSpmi, NULL, NULL, Temp
322 {ACPI_SIG_SRAT, NULL, AcpiDmDumpSrat, DtCompileSrat, Temp
323 {ACPI_SIG_TCPA, AcpiDmTableInfoTcpa, NULL, NULL, Temp

new/usr/src/common/acpica/common/dmtable.c 6

324 {ACPI_SIG_TPM2, AcpiDmTableInfoTpm2, NULL, NULL, Temp
325 {ACPI_SIG_UEFI, AcpiDmTableInfoUefi, NULL, DtCompileUefi, Temp
326 {ACPI_SIG_VRTC, AcpiDmTableInfoVrtc, AcpiDmDumpVrtc, DtCompileVrtc, Temp
327 {ACPI_SIG_WAET, AcpiDmTableInfoWaet, NULL, NULL, Temp
328 {ACPI_SIG_WDAT, NULL, AcpiDmDumpWdat, DtCompileWdat, Temp
329 {ACPI_SIG_WDDT, AcpiDmTableInfoWddt, NULL, NULL, Temp
330 {ACPI_SIG_WDRT, AcpiDmTableInfoWdrt, NULL, NULL, Temp
331 {ACPI_SIG_XSDT, NULL, AcpiDmDumpXsdt, DtCompileXsdt, Temp
332 {NULL, NULL, NULL, NULL, NULL
333 };

336 /***
337 *
338 * FUNCTION: AcpiDmGenerateChecksum
339 *
340 * PARAMETERS: Table - Pointer to table to be checksummed
341 * Length - Length of the table
342 * OriginalChecksum - Value of the checksum field
343 *
344 * RETURN: 8 bit checksum of buffer
345 *
346 * DESCRIPTION: Computes an 8 bit checksum of the table.
347 *
348 **/

350 UINT8
351 AcpiDmGenerateChecksum (
352 void *Table,
353 UINT32 Length,
354 UINT8 OriginalChecksum)
355 {
356 UINT8 Checksum;

359 /* Sum the entire table as-is */

361 Checksum = AcpiTbChecksum ((UINT8 *) Table, Length);

363 /* Subtract off the existing checksum value in the table */

365 Checksum = (UINT8) (Checksum - OriginalChecksum);

367 /* Compute the final checksum */

369 Checksum = (UINT8) (0 - Checksum);
370 return (Checksum);
371 }

374 /***
375 *
376 * FUNCTION: AcpiDmGetTableData
377 *
378 * PARAMETERS: Signature - ACPI signature (4 chars) to match
379 *
380 * RETURN: Pointer to a valid ACPI_DMTABLE_DATA. Null if no match found.
381 *
382 * DESCRIPTION: Find a match in the global table of supported ACPI tables
383 *
384 **/

386 ACPI_DMTABLE_DATA *
387 AcpiDmGetTableData (
388 char *Signature)
389 {

new/usr/src/common/acpica/common/dmtable.c 7

390 ACPI_DMTABLE_DATA *TableData;

393 for (TableData = AcpiDmTableData; TableData->Signature; TableData++)
394 {
395 if (ACPI_COMPARE_NAME (Signature, TableData->Signature))
396 {
397 return (TableData);
398 }
399 }

401 return (NULL);
402 }

405 /***
406 *
407 * FUNCTION: AcpiDmDumpDataTable
408 *
409 * PARAMETERS: Table - An ACPI table
410 *
411 * RETURN: None.
412 *
413 * DESCRIPTION: Format the contents of an ACPI data table (any table other
414 * than an SSDT or DSDT that does not contain executable AML code)
415 *
416 **/

418 void
419 AcpiDmDumpDataTable (
420 ACPI_TABLE_HEADER *Table)
421 {
422 ACPI_STATUS Status;
423 ACPI_DMTABLE_DATA *TableData;
424 UINT32 Length;

427 /* Ignore tables that contain AML */

429 if (AcpiUtIsAmlTable (Table))
430 {
431 if (Gbl_VerboseTemplates)
432 {
433 /* Dump the raw table data */

435 Length = Table->Length;

437 AcpiOsPrintf ("\n/*\n%s: Length %d (0x%X)\n\n",
438 ACPI_RAW_TABLE_DATA_HEADER, Length, Length);
439 AcpiUtDumpBuffer (ACPI_CAST_PTR (UINT8, Table),
440 Length, DB_BYTE_DISPLAY, 0);
441 AcpiOsPrintf (" */\n");
442 }
443 return;
444 }

446 /*
447 * Handle tables that don’t use the common ACPI table header structure.
448 * Currently, these are the FACS, RSDP, and S3PT.
449 */
450 if (ACPI_COMPARE_NAME (Table->Signature, ACPI_SIG_FACS))
451 {
452 Length = Table->Length;
453 AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoFacs);
454 }
455 else if (ACPI_VALIDATE_RSDP_SIG (Table->Signature))

new/usr/src/common/acpica/common/dmtable.c 8

456 {
457 Length = AcpiDmDumpRsdp (Table);
458 }
459 else if (ACPI_COMPARE_NAME (Table->Signature, ACPI_SIG_S3PT))
460 {
461 Length = AcpiDmDumpS3pt (Table);
462 }
463 else
464 {
465 /*
466 * All other tables must use the common ACPI table header, dump it now
467 */
468 Length = Table->Length;
469 Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoHeader);
470 if (ACPI_FAILURE (Status))
471 {
472 return;
473 }
474 AcpiOsPrintf ("\n");

476 /* Match signature and dispatch appropriately */

478 TableData = AcpiDmGetTableData (Table->Signature);
479 if (!TableData)
480 {
481 if (!ACPI_STRNCMP (Table->Signature, "OEM", 3))
482 {
483 AcpiOsPrintf ("\n**** OEM-defined ACPI table [%4.4s], unknown co
484 Table->Signature);
485 }
486 else
487 {
488 AcpiOsPrintf ("\n**** Unknown ACPI table type [%4.4s]\n\n",
489 Table->Signature);
490 fprintf (stderr, "Unknown ACPI table signature [%4.4s], decoding
491 Table->Signature);
492 }
493 }
494 else if (TableData->TableHandler)
495 {
496 /* Complex table, has a handler */

498 TableData->TableHandler (Table);
499 }
500 else if (TableData->TableInfo)
501 {
502 /* Simple table, just walk the info table */

504 AcpiDmDumpTable (Length, 0, Table, 0, TableData->TableInfo);
505 }
506 }

508 if (!Gbl_DoTemplates || Gbl_VerboseTemplates)
509 {
510 /* Dump the raw table data */

512 AcpiOsPrintf ("\n%s: Length %d (0x%X)\n\n",
513 ACPI_RAW_TABLE_DATA_HEADER, Length, Length);
514 AcpiUtDumpBuffer (ACPI_CAST_PTR (UINT8, Table),
515 Length, DB_BYTE_DISPLAY, 0);
516 }
517 }

520 /***
521 *

new/usr/src/common/acpica/common/dmtable.c 9

522 * FUNCTION: AcpiDmLineHeader
523 *
524 * PARAMETERS: Offset - Current byte offset, from table start
525 * ByteLength - Length of the field in bytes, 0 for flags
526 * Name - Name of this field
527 * Value - Optional value, displayed on left of ’:’
528 *
529 * RETURN: None
530 *
531 * DESCRIPTION: Utility routines for formatting output lines. Displays the
532 * current table offset in hex and decimal, the field length,
533 * and the field name.
534 *
535 **/

537 void
538 AcpiDmLineHeader (
539 UINT32 Offset,
540 UINT32 ByteLength,
541 char *Name)
542 {

544 /* Allow a null name for fields that span multiple lines (large buffers) */

546 if (!Name)
547 {
548 Name = "";
549 }

551 if (Gbl_DoTemplates && !Gbl_VerboseTemplates) /* Terse template */
552 {
553 if (ByteLength)
554 {
555 AcpiOsPrintf ("[%.4d] %34s : ", ByteLength, Name);
556 }
557 else
558 {
559 if (*Name)
560 {
561 AcpiOsPrintf ("%41s : ", Name);
562 }
563 else
564 {
565 AcpiOsPrintf ("%41s ", Name);
566 }
567 }
568 }
569 else /* Normal disassembler or verbose template */
570 {
571 if (ByteLength)
572 {
573 AcpiOsPrintf ("[%3.3Xh %4.4d% 4d] %28s : ",
574 Offset, Offset, ByteLength, Name);
575 }
576 else
577 {
578 if (*Name)
579 {
580 AcpiOsPrintf ("%44s : ", Name);
581 }
582 else
583 {
584 AcpiOsPrintf ("%44s ", Name);
585 }
586 }
587 }

new/usr/src/common/acpica/common/dmtable.c 10

588 }

590 void
591 AcpiDmLineHeader2 (
592 UINT32 Offset,
593 UINT32 ByteLength,
594 char *Name,
595 UINT32 Value)
596 {

598 if (Gbl_DoTemplates && !Gbl_VerboseTemplates) /* Terse template */
599 {
600 if (ByteLength)
601 {
602 AcpiOsPrintf ("[%.4d] %30s %3d : ",
603 ByteLength, Name, Value);
604 }
605 else
606 {
607 AcpiOsPrintf ("%36s % 3d : ",
608 Name, Value);
609 }
610 }
611 else /* Normal disassembler or verbose template */
612 {
613 if (ByteLength)
614 {
615 AcpiOsPrintf ("[%3.3Xh %4.4d %3d] %24s %3d : ",
616 Offset, Offset, ByteLength, Name, Value);
617 }
618 else
619 {
620 AcpiOsPrintf ("[%3.3Xh %4.4d] %24s %3d : ",
621 Offset, Offset, Name, Value);
622 }
623 }
624 }

627 /***
628 *
629 * FUNCTION: AcpiDmDumpTable
630 *
631 * PARAMETERS: TableLength - Length of the entire ACPI table
632 * TableOffset - Starting offset within the table for this
633 * sub-descriptor (0 if main table)
634 * Table - The ACPI table
635 * SubtableLength - Length of this sub-descriptor
636 * Info - Info table for this ACPI table
637 *
638 * RETURN: None
639 *
640 * DESCRIPTION: Display ACPI table contents by walking the Info table.
641 *
642 * Note: This function must remain in sync with DtGetFieldLength.
643 *
644 **/

646 ACPI_STATUS
647 AcpiDmDumpTable (
648 UINT32 TableLength,
649 UINT32 TableOffset,
650 void *Table,
651 UINT32 SubtableLength,
652 ACPI_DMTABLE_INFO *Info)
653 {

new/usr/src/common/acpica/common/dmtable.c 11

654 UINT8 *Target;
655 UINT32 CurrentOffset;
656 UINT32 ByteLength;
657 UINT8 Temp8;
658 UINT16 Temp16;
659 UINT64 Value;
660 ACPI_DMTABLE_DATA *TableData;
661 const char *Name;
662 BOOLEAN LastOutputBlankLine = FALSE;
663 char RepairedName[8];

666 if (!Info)
667 {
668 AcpiOsPrintf ("Display not implemented\n");
669 return (AE_NOT_IMPLEMENTED);
670 }

672 /* Walk entire Info table; Null name terminates */

674 for (; Info->Name; Info++)
675 {
676 /*
677 * Target points to the field within the ACPI Table. CurrentOffset is
678 * the offset of the field from the start of the main table.
679 */
680 Target = ACPI_ADD_PTR (UINT8, Table, Info->Offset);
681 CurrentOffset = TableOffset + Info->Offset;

683 /* Check for beyond EOT or beyond subtable end */

685 if ((CurrentOffset >= TableLength) ||
686 (SubtableLength && (Info->Offset >= SubtableLength)))
687 {
688 AcpiOsPrintf ("**** ACPI table terminates in the middle of a data st
689 return (AE_BAD_DATA);
690 }

692 /* Generate the byte length for this field */

694 switch (Info->Opcode)
695 {
696 case ACPI_DMT_UINT8:
697 case ACPI_DMT_CHKSUM:
698 case ACPI_DMT_SPACEID:
699 case ACPI_DMT_ACCWIDTH:
700 case ACPI_DMT_IVRS:
701 case ACPI_DMT_MADT:
702 case ACPI_DMT_PCCT:
703 case ACPI_DMT_PMTT:
704 case ACPI_DMT_SRAT:
705 case ACPI_DMT_ASF:
706 case ACPI_DMT_HESTNTYP:
707 case ACPI_DMT_FADTPM:
708 case ACPI_DMT_EINJACT:
709 case ACPI_DMT_EINJINST:
710 case ACPI_DMT_ERSTACT:
711 case ACPI_DMT_ERSTINST:

713 ByteLength = 1;
714 break;

716 case ACPI_DMT_UINT16:
717 case ACPI_DMT_DMAR:
718 case ACPI_DMT_HEST:

new/usr/src/common/acpica/common/dmtable.c 12

720 ByteLength = 2;
721 break;

723 case ACPI_DMT_UINT24:

725 ByteLength = 3;
726 break;

728 case ACPI_DMT_UINT32:
729 case ACPI_DMT_NAME4:
730 case ACPI_DMT_SIG:
731 case ACPI_DMT_SLIC:

733 ByteLength = 4;
734 break;

736 case ACPI_DMT_UINT40:

738 ByteLength = 5;
739 break;

741 case ACPI_DMT_UINT48:
742 case ACPI_DMT_NAME6:

744 ByteLength = 6;
745 break;

747 case ACPI_DMT_UINT56:
748 case ACPI_DMT_BUF7:

750 ByteLength = 7;
751 break;

753 case ACPI_DMT_UINT64:
754 case ACPI_DMT_NAME8:

756 ByteLength = 8;
757 break;

759 case ACPI_DMT_BUF10:

761 ByteLength = 10;
762 break;

764 case ACPI_DMT_BUF16:
765 case ACPI_DMT_UUID:

767 ByteLength = 16;
768 break;

770 case ACPI_DMT_BUF128:

772 ByteLength = 128;
773 break;

775 case ACPI_DMT_STRING:

777 ByteLength = ACPI_STRLEN (ACPI_CAST_PTR (char, Target)) + 1;
778 break;

780 case ACPI_DMT_GAS:

782 if (!LastOutputBlankLine)
783 {
784 AcpiOsPrintf ("\n");
785 LastOutputBlankLine = TRUE;

new/usr/src/common/acpica/common/dmtable.c 13

786 }
787 ByteLength = sizeof (ACPI_GENERIC_ADDRESS);
788 break;

790 case ACPI_DMT_HESTNTFY:

792 if (!LastOutputBlankLine)
793 {
794 AcpiOsPrintf ("\n");
795 LastOutputBlankLine = TRUE;
796 }
797 ByteLength = sizeof (ACPI_HEST_NOTIFY);
798 break;

800 default:

802 ByteLength = 0;
803 break;
804 }

806 if (CurrentOffset + ByteLength > TableLength)
807 {
808 AcpiOsPrintf ("**** ACPI table terminates in the middle of a data st
809 return (AE_BAD_DATA);
810 }

812 if (Info->Opcode == ACPI_DMT_EXTRA_TEXT)
813 {
814 AcpiOsPrintf ("%s", Info->Name);
815 continue;
816 }

818 /* Start a new line and decode the opcode */

820 AcpiDmLineHeader (CurrentOffset, ByteLength, Info->Name);

822 switch (Info->Opcode)
823 {
824 /* Single-bit Flag fields. Note: Opcode is the bit position */

826 case ACPI_DMT_FLAG0:
827 case ACPI_DMT_FLAG1:
828 case ACPI_DMT_FLAG2:
829 case ACPI_DMT_FLAG3:
830 case ACPI_DMT_FLAG4:
831 case ACPI_DMT_FLAG5:
832 case ACPI_DMT_FLAG6:
833 case ACPI_DMT_FLAG7:

835 AcpiOsPrintf ("%1.1X\n", (*Target >> Info->Opcode) & 0x01);
836 break;

838 /* 2-bit Flag fields */

840 case ACPI_DMT_FLAGS0:

842 AcpiOsPrintf ("%1.1X\n", *Target & 0x03);
843 break;

845 case ACPI_DMT_FLAGS1:

847 AcpiOsPrintf ("%1.1X\n", (*Target >> 1) & 0x03);
848 break;

850 case ACPI_DMT_FLAGS2:

new/usr/src/common/acpica/common/dmtable.c 14

852 AcpiOsPrintf ("%1.1X\n", (*Target >> 2) & 0x03);
853 break;

855 case ACPI_DMT_FLAGS4:

857 AcpiOsPrintf ("%1.1X\n", (*Target >> 4) & 0x03);
858 break;

860 /* Integer Data Types */

862 case ACPI_DMT_UINT8:
863 case ACPI_DMT_UINT16:
864 case ACPI_DMT_UINT24:
865 case ACPI_DMT_UINT32:
866 case ACPI_DMT_UINT40:
867 case ACPI_DMT_UINT48:
868 case ACPI_DMT_UINT56:
869 case ACPI_DMT_UINT64:
870 /*
871 * Dump bytes - high byte first, low byte last.
872 * Note: All ACPI tables are little-endian.
873 */
874 Value = 0;
875 for (Temp8 = (UINT8) ByteLength; Temp8 > 0; Temp8--)
876 {
877 AcpiOsPrintf ("%2.2X", Target[Temp8 - 1]);
878 Value |= Target[Temp8 - 1];
879 Value <<= 8;
880 }

882 if (!Value && (Info->Flags & DT_DESCRIBES_OPTIONAL))
883 {
884 AcpiOsPrintf (" [Optional field not present]");
885 }

887 AcpiOsPrintf ("\n");
888 break;

890 case ACPI_DMT_BUF7:
891 case ACPI_DMT_BUF10:
892 case ACPI_DMT_BUF16:
893 case ACPI_DMT_BUF128:
894 /*
895 * Buffer: Size depends on the opcode and was set above.
896 * Each hex byte is separated with a space.
897 * Multiple lines are separated by line continuation char.
898 */
899 for (Temp16 = 0; Temp16 < ByteLength; Temp16++)
900 {
901 AcpiOsPrintf ("%2.2X", Target[Temp16]);
902 if ((UINT32) (Temp16 + 1) < ByteLength)
903 {
904 if ((Temp16 > 0) && (!((Temp16+1) % 16)))
905 {
906 AcpiOsPrintf (" \\\n"); /* Line continuation */
907 AcpiDmLineHeader (0, 0, NULL);
908 }
909 else
910 {
911 AcpiOsPrintf (" ");
912 }
913 }
914 }
915 AcpiOsPrintf ("\n");
916 break;

new/usr/src/common/acpica/common/dmtable.c 15

918 case ACPI_DMT_UUID:

920 /* Convert 16-byte UUID buffer to 36-byte formatted UUID string */

922 (void) AuConvertUuidToString ((char *) Target, MsgBuffer);

924 AcpiOsPrintf ("%s\n", MsgBuffer);
925 break;

927 case ACPI_DMT_STRING:

929 AcpiOsPrintf ("\"%s\"\n", ACPI_CAST_PTR (char, Target));
930 break;

932 /* Fixed length ASCII name fields */

934 case ACPI_DMT_SIG:

936 AcpiDmCheckAscii (Target, RepairedName, 4);
937 AcpiOsPrintf ("\"%.4s\" ", RepairedName);
938 TableData = AcpiDmGetTableData (ACPI_CAST_PTR (char, Target));
939 if (TableData)
940 {
941 AcpiOsPrintf (STRING_FORMAT, TableData->Name);
942 }
943 else
944 {
945 AcpiOsPrintf ("\n");
946 }
947 break;

949 case ACPI_DMT_NAME4:

951 AcpiDmCheckAscii (Target, RepairedName, 4);
952 AcpiOsPrintf ("\"%.4s\"\n", RepairedName);
953 break;

955 case ACPI_DMT_NAME6:

957 AcpiDmCheckAscii (Target, RepairedName, 6);
958 AcpiOsPrintf ("\"%.6s\"\n", RepairedName);
959 break;

961 case ACPI_DMT_NAME8:

963 AcpiDmCheckAscii (Target, RepairedName, 8);
964 AcpiOsPrintf ("\"%.8s\"\n", RepairedName);
965 break;

967 /* Special Data Types */

969 case ACPI_DMT_CHKSUM:

971 /* Checksum, display and validate */

973 AcpiOsPrintf ("%2.2X", *Target);
974 Temp8 = AcpiDmGenerateChecksum (Table,
975 ACPI_CAST_PTR (ACPI_TABLE_HEADER, Table)->Length,
976 ACPI_CAST_PTR (ACPI_TABLE_HEADER, Table)->Checksum);
977 if (Temp8 != ACPI_CAST_PTR (ACPI_TABLE_HEADER, Table)->Checksum)
978 {
979 AcpiOsPrintf (
980 " /* Incorrect checksum, should be %2.2X */", Temp8);
981 }
982 AcpiOsPrintf ("\n");
983 break;

new/usr/src/common/acpica/common/dmtable.c 16

985 case ACPI_DMT_SPACEID:

987 /* Address Space ID */

989 AcpiOsPrintf (UINT8_FORMAT, *Target, AcpiUtGetRegionName (*Target));
990 break;

992 case ACPI_DMT_ACCWIDTH:

994 /* Encoded Access Width */

996 Temp8 = *Target;
997 if (Temp8 > ACPI_GAS_WIDTH_RESERVED)
998 {
999 Temp8 = ACPI_GAS_WIDTH_RESERVED;

1000 }

1002 AcpiOsPrintf (UINT8_FORMAT, Temp8, AcpiDmGasAccessWidth[Temp8]);
1003 break;

1005 case ACPI_DMT_GAS:

1007 /* Generic Address Structure */

1009 AcpiOsPrintf (STRING_FORMAT, "Generic Address Structure");
1010 AcpiDmDumpTable (TableLength, CurrentOffset, Target,
1011 sizeof (ACPI_GENERIC_ADDRESS), AcpiDmTableInfoGas);
1012 AcpiOsPrintf ("\n");
1013 LastOutputBlankLine = TRUE;
1014 break;

1016 case ACPI_DMT_ASF:

1018 /* ASF subtable types */

1020 Temp16 = (UINT16) ((*Target) & 0x7F); /* Top bit can be zero or one
1021 if (Temp16 > ACPI_ASF_TYPE_RESERVED)
1022 {
1023 Temp16 = ACPI_ASF_TYPE_RESERVED;
1024 }

1026 AcpiOsPrintf (UINT8_FORMAT, *Target, AcpiDmAsfSubnames[Temp16]);
1027 break;

1029 case ACPI_DMT_DMAR:

1031 /* DMAR subtable types */

1033 Temp16 = ACPI_GET16 (Target);
1034 if (Temp16 > ACPI_DMAR_TYPE_RESERVED)
1035 {
1036 Temp16 = ACPI_DMAR_TYPE_RESERVED;
1037 }

1039 AcpiOsPrintf (UINT16_FORMAT, ACPI_GET16 (Target), AcpiDmDmarSubnames
1040 break;

1042 case ACPI_DMT_EINJACT:

1044 /* EINJ Action types */

1046 Temp8 = *Target;
1047 if (Temp8 > ACPI_EINJ_ACTION_RESERVED)
1048 {
1049 Temp8 = ACPI_EINJ_ACTION_RESERVED;

new/usr/src/common/acpica/common/dmtable.c 17

1050 }

1052 AcpiOsPrintf (UINT8_FORMAT, *Target, AcpiDmEinjActions[Temp8]);
1053 break;

1055 case ACPI_DMT_EINJINST:

1057 /* EINJ Instruction types */

1059 Temp8 = *Target;
1060 if (Temp8 > ACPI_EINJ_INSTRUCTION_RESERVED)
1061 {
1062 Temp8 = ACPI_EINJ_INSTRUCTION_RESERVED;
1063 }

1065 AcpiOsPrintf (UINT8_FORMAT, *Target, AcpiDmEinjInstructions[Temp8]);
1066 break;

1068 case ACPI_DMT_ERSTACT:

1070 /* ERST Action types */

1072 Temp8 = *Target;
1073 if (Temp8 > ACPI_ERST_ACTION_RESERVED)
1074 {
1075 Temp8 = ACPI_ERST_ACTION_RESERVED;
1076 }

1078 AcpiOsPrintf (UINT8_FORMAT, *Target, AcpiDmErstActions[Temp8]);
1079 break;

1081 case ACPI_DMT_ERSTINST:

1083 /* ERST Instruction types */

1085 Temp8 = *Target;
1086 if (Temp8 > ACPI_ERST_INSTRUCTION_RESERVED)
1087 {
1088 Temp8 = ACPI_ERST_INSTRUCTION_RESERVED;
1089 }

1091 AcpiOsPrintf (UINT8_FORMAT, *Target, AcpiDmErstInstructions[Temp8]);
1092 break;

1094 case ACPI_DMT_HEST:

1096 /* HEST subtable types */

1098 Temp16 = ACPI_GET16 (Target);
1099 if (Temp16 > ACPI_HEST_TYPE_RESERVED)
1100 {
1101 Temp16 = ACPI_HEST_TYPE_RESERVED;
1102 }

1104 AcpiOsPrintf (UINT16_FORMAT, ACPI_GET16 (Target), AcpiDmHestSubnames
1105 break;

1107 case ACPI_DMT_HESTNTFY:

1109 AcpiOsPrintf (STRING_FORMAT, "Hardware Error Notification Structure"
1110 AcpiDmDumpTable (TableLength, CurrentOffset, Target,
1111 sizeof (ACPI_HEST_NOTIFY), AcpiDmTableInfoHestNotify);
1112 AcpiOsPrintf ("\n");
1113 LastOutputBlankLine = TRUE;
1114 break;

new/usr/src/common/acpica/common/dmtable.c 18

1116 case ACPI_DMT_HESTNTYP:

1118 /* HEST Notify types */

1120 Temp8 = *Target;
1121 if (Temp8 > ACPI_HEST_NOTIFY_RESERVED)
1122 {
1123 Temp8 = ACPI_HEST_NOTIFY_RESERVED;
1124 }

1126 AcpiOsPrintf (UINT8_FORMAT, *Target, AcpiDmHestNotifySubnames[Temp8]
1127 break;

1129 case ACPI_DMT_MADT:

1131 /* MADT subtable types */

1133 Temp8 = *Target;
1134 if (Temp8 > ACPI_MADT_TYPE_RESERVED)
1135 {
1136 Temp8 = ACPI_MADT_TYPE_RESERVED;
1137 }

1139 AcpiOsPrintf (UINT8_FORMAT, *Target, AcpiDmMadtSubnames[Temp8]);
1140 break;

1142 case ACPI_DMT_PCCT:

1144 /* PCCT subtable types */

1146 Temp8 = *Target;
1147 if (Temp8 > ACPI_PCCT_TYPE_RESERVED)
1148 {
1149 Temp8 = ACPI_PCCT_TYPE_RESERVED;
1150 }

1152 AcpiOsPrintf (UINT8_FORMAT, *Target, AcpiDmPcctSubnames[Temp8]);
1153 break;

1155 case ACPI_DMT_PMTT:

1157 /* PMTT subtable types */

1159 Temp8 = *Target;
1160 if (Temp8 > ACPI_PMTT_TYPE_RESERVED)
1161 {
1162 Temp8 = ACPI_PMTT_TYPE_RESERVED;
1163 }

1165 AcpiOsPrintf (UINT8_FORMAT, *Target, AcpiDmPmttSubnames[Temp8]);
1166 break;

1168 case ACPI_DMT_SLIC:

1170 /* SLIC subtable types */

1172 Temp8 = *Target;
1173 if (Temp8 > ACPI_SLIC_TYPE_RESERVED)
1174 {
1175 Temp8 = ACPI_SLIC_TYPE_RESERVED;
1176 }

1178 AcpiOsPrintf (UINT32_FORMAT, *Target, AcpiDmSlicSubnames[Temp8]);
1179 break;

1181 case ACPI_DMT_SRAT:

new/usr/src/common/acpica/common/dmtable.c 19

1183 /* SRAT subtable types */

1185 Temp8 = *Target;
1186 if (Temp8 > ACPI_SRAT_TYPE_RESERVED)
1187 {
1188 Temp8 = ACPI_SRAT_TYPE_RESERVED;
1189 }

1191 AcpiOsPrintf (UINT8_FORMAT, *Target, AcpiDmSratSubnames[Temp8]);
1192 break;

1194 case ACPI_DMT_FADTPM:

1196 /* FADT Preferred PM Profile names */

1198 Temp8 = *Target;
1199 if (Temp8 > ACPI_FADT_PM_RESERVED)
1200 {
1201 Temp8 = ACPI_FADT_PM_RESERVED;
1202 }

1204 AcpiOsPrintf (UINT8_FORMAT, *Target, AcpiDmFadtProfiles[Temp8]);
1205 break;

1207 case ACPI_DMT_IVRS:

1209 /* IVRS subtable types */

1211 Temp8 = *Target;
1212 switch (Temp8)
1213 {
1214 case ACPI_IVRS_TYPE_HARDWARE:

1216 Name = AcpiDmIvrsSubnames[0];
1217 break;

1219 case ACPI_IVRS_TYPE_MEMORY1:
1220 case ACPI_IVRS_TYPE_MEMORY2:
1221 case ACPI_IVRS_TYPE_MEMORY3:

1223 Name = AcpiDmIvrsSubnames[1];
1224 break;

1226 default:

1228 Name = AcpiDmIvrsSubnames[2];
1229 break;
1230 }

1232 AcpiOsPrintf (UINT8_FORMAT, *Target, Name);
1233 break;

1235 case ACPI_DMT_EXIT:

1237 return (AE_OK);

1239 default:

1241 ACPI_ERROR ((AE_INFO,
1242 "**** Invalid table opcode [0x%X] ****\n", Info->Opcode));
1243 return (AE_SUPPORT);
1244 }
1245 }

1247 if (TableOffset && !SubtableLength)

new/usr/src/common/acpica/common/dmtable.c 20

1248 {
1249 /* If this table is not the main table, subtable must have valid length

1251 AcpiOsPrintf ("Invalid zero length subtable\n");
1252 return (AE_BAD_DATA);
1253 }

1255 return (AE_OK);
1256 }

1259 /***
1260 *
1261 * FUNCTION: AcpiDmCheckAscii
1262 *
1263 * PARAMETERS: Name - Ascii string
1264 * Count - Number of characters to check
1265 *
1266 * RETURN: None
1267 *
1268 * DESCRIPTION: Ensure that the requested number of characters are printable
1269 * Ascii characters. Sets non-printable and null chars to <space>.
1270 *
1271 **/

1273 static void
1274 AcpiDmCheckAscii (
1275 UINT8 *Name,
1276 char *RepairedName,
1277 UINT32 Count)
1278 {
1279 UINT32 i;

1282 for (i = 0; i < Count; i++)
1283 {
1284 RepairedName[i] = (char) Name[i];

1286 if (!Name[i])
1287 {
1288 return;
1289 }
1290 if (!isprint (Name[i]))
1291 {
1292 RepairedName[i] = ’ ’;
1293 }
1294 }
1295 }

new/usr/src/common/acpica/common/dmtbdump.c 1

**
 73554 Thu Dec 26 13:48:24 2013
new/usr/src/common/acpica/common/dmtbdump.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dmtbdump - Dump ACPI data tables that contain no AML code
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "acdisasm.h"
47 #include "actables.h"

49 /* This module used for application-level code only */

51 #define _COMPONENT ACPI_CA_DISASSEMBLER
52 ACPI_MODULE_NAME ("dmtbdump")

55 /* Local prototypes */

57 static void
58 AcpiDmValidateFadtLength (
59 UINT32 Revision,

new/usr/src/common/acpica/common/dmtbdump.c 2

60 UINT32 Length);

62 static void
63 AcpiDmDumpBuffer (
64 void *Table,
65 UINT32 BufferOffset,
66 UINT32 Length,
67 UINT32 AbsoluteOffset,
68 char *Header);

71 /***
72 *
73 * FUNCTION: AcpiDmDumpBuffer
74 *
75 * PARAMETERS: Table - ACPI Table or subtable
76 * BufferOffset - Offset of buffer from Table above
77 * Length - Length of the buffer
78 * AbsoluteOffset - Offset of buffer in the main ACPI table
79 * Header - Name of the buffer field (printed on the
80 * first line only.)
81 *
82 * RETURN: None
83 *
84 * DESCRIPTION: Format the contents of an arbitrary length data buffer (in the
85 * disassembler output format.)
86 *
87 **/

89 static void
90 AcpiDmDumpBuffer (
91 void *Table,
92 UINT32 BufferOffset,
93 UINT32 Length,
94 UINT32 AbsoluteOffset,
95 char *Header)
96 {
97 UINT8 *Buffer;
98 UINT32 i;

101 if (!Length)
102 {
103 return;
104 }

106 Buffer = ACPI_CAST_PTR (UINT8, Table) + BufferOffset;
107 i = 0;

109 while (i < Length)
110 {
111 if (!(i % 16))
112 {
113 AcpiOsPrintf ("\n");
114 AcpiDmLineHeader (AbsoluteOffset,
115 ((Length - i) > 16) ? 16 : (Length - i), Header);
116 Header = NULL;
117 }

119 AcpiOsPrintf ("%.02X ", *Buffer);
120 i++;
121 Buffer++;
122 AbsoluteOffset++;
123 }

125 AcpiOsPrintf ("\n");

new/usr/src/common/acpica/common/dmtbdump.c 3

126 }

129 /***
130 *
131 * FUNCTION: AcpiDmDumpRsdp
132 *
133 * PARAMETERS: Table - A RSDP
134 *
135 * RETURN: Length of the table (there is not always a length field,
136 * use revision or length if available (ACPI 2.0+))
137 *
138 * DESCRIPTION: Format the contents of a RSDP
139 *
140 **/

142 UINT32
143 AcpiDmDumpRsdp (
144 ACPI_TABLE_HEADER *Table)
145 {
146 ACPI_TABLE_RSDP *Rsdp = ACPI_CAST_PTR (ACPI_TABLE_RSDP, Table);
147 UINT32 Length = sizeof (ACPI_RSDP_COMMON);
148 UINT8 Checksum;

151 /* Dump the common ACPI 1.0 portion */

153 AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoRsdp1);

155 /* Validate the first checksum */

157 Checksum = AcpiDmGenerateChecksum (Rsdp, sizeof (ACPI_RSDP_COMMON),
158 Rsdp->Checksum);
159 if (Checksum != Rsdp->Checksum)
160 {
161 AcpiOsPrintf ("/* Incorrect Checksum above, should be 0x%2.2X */\n",
162 Checksum);
163 }

165 /* The RSDP for ACPI 2.0+ contains more data and has a Length field */

167 if (Rsdp->Revision > 0)
168 {
169 Length = Rsdp->Length;
170 AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoRsdp2);

172 /* Validate the extended checksum over entire RSDP */

174 Checksum = AcpiDmGenerateChecksum (Rsdp, sizeof (ACPI_TABLE_RSDP),
175 Rsdp->ExtendedChecksum);
176 if (Checksum != Rsdp->ExtendedChecksum)
177 {
178 AcpiOsPrintf (
179 "/* Incorrect Extended Checksum above, should be 0x%2.2X */\n",
180 Checksum);
181 }
182 }

184 return (Length);
185 }

188 /***
189 *
190 * FUNCTION: AcpiDmDumpRsdt
191 *

new/usr/src/common/acpica/common/dmtbdump.c 4

192 * PARAMETERS: Table - A RSDT
193 *
194 * RETURN: None
195 *
196 * DESCRIPTION: Format the contents of a RSDT
197 *
198 **/

200 void
201 AcpiDmDumpRsdt (
202 ACPI_TABLE_HEADER *Table)
203 {
204 UINT32 *Array;
205 UINT32 Entries;
206 UINT32 Offset;
207 UINT32 i;

210 /* Point to start of table pointer array */

212 Array = ACPI_CAST_PTR (ACPI_TABLE_RSDT, Table)->TableOffsetEntry;
213 Offset = sizeof (ACPI_TABLE_HEADER);

215 /* RSDT uses 32-bit pointers */

217 Entries = (Table->Length - sizeof (ACPI_TABLE_HEADER)) / sizeof (UINT32);

219 for (i = 0; i < Entries; i++)
220 {
221 AcpiDmLineHeader2 (Offset, sizeof (UINT32), "ACPI Table Address", i);
222 AcpiOsPrintf ("%8.8X\n", Array[i]);
223 Offset += sizeof (UINT32);
224 }
225 }

228 /***
229 *
230 * FUNCTION: AcpiDmDumpXsdt
231 *
232 * PARAMETERS: Table - A XSDT
233 *
234 * RETURN: None
235 *
236 * DESCRIPTION: Format the contents of a XSDT
237 *
238 **/

240 void
241 AcpiDmDumpXsdt (
242 ACPI_TABLE_HEADER *Table)
243 {
244 UINT64 *Array;
245 UINT32 Entries;
246 UINT32 Offset;
247 UINT32 i;

250 /* Point to start of table pointer array */

252 Array = ACPI_CAST_PTR (ACPI_TABLE_XSDT, Table)->TableOffsetEntry;
253 Offset = sizeof (ACPI_TABLE_HEADER);

255 /* XSDT uses 64-bit pointers */

257 Entries = (Table->Length - sizeof (ACPI_TABLE_HEADER)) / sizeof (UINT64);

new/usr/src/common/acpica/common/dmtbdump.c 5

259 for (i = 0; i < Entries; i++)
260 {
261 AcpiDmLineHeader2 (Offset, sizeof (UINT64), "ACPI Table Address", i);
262 AcpiOsPrintf ("%8.8X%8.8X\n", ACPI_FORMAT_UINT64 (Array[i]));
263 Offset += sizeof (UINT64);
264 }
265 }

268 /***
269 *
270 * FUNCTION: AcpiDmDumpFadt
271 *
272 * PARAMETERS: Table - A FADT
273 *
274 * RETURN: None
275 *
276 * DESCRIPTION: Format the contents of a FADT
277 *
278 * NOTE: We cannot depend on the FADT version to indicate the actual
279 * contents of the FADT because of BIOS bugs. The table length
280 * is the only reliable indicator.
281 *
282 **/

284 void
285 AcpiDmDumpFadt (
286 ACPI_TABLE_HEADER *Table)
287 {

289 /* Always dump the minimum FADT revision 1 fields (ACPI 1.0) */

291 AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoFadt1);

293 /* Check for FADT revision 2 fields (ACPI 1.0B MS extensions) */

295 if ((Table->Length > ACPI_FADT_V1_SIZE) &&
296 (Table->Length <= ACPI_FADT_V2_SIZE))
297 {
298 AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoFadt2);
299 }

301 /* Check for FADT revision 3/4 fields and up (ACPI 2.0+ extended data) */

303 else if (Table->Length > ACPI_FADT_V2_SIZE)
304 {
305 AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoFadt3);

307 /* Check for FADT revision 5 fields and up (ACPI 5.0+) */

309 if (Table->Length > ACPI_FADT_V3_SIZE)
310 {
311 AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoFadt5);
312 }
313 }

315 /* Validate various fields in the FADT, including length */

317 AcpiTbCreateLocalFadt (Table, Table->Length);

319 /* Validate FADT length against the revision */

321 AcpiDmValidateFadtLength (Table->Revision, Table->Length);
322 }

new/usr/src/common/acpica/common/dmtbdump.c 6

325 /***
326 *
327 * FUNCTION: AcpiDmValidateFadtLength
328 *
329 * PARAMETERS: Revision - FADT revision (Header->Revision)
330 * Length - FADT length (Header->Length
331 *
332 * RETURN: None
333 *
334 * DESCRIPTION: Check the FADT revision against the expected table length for
335 * that revision. Issue a warning if the length is not what was
336 * expected. This seems to be such a common BIOS bug that the
337 * FADT revision has been rendered virtually meaningless.
338 *
339 **/

341 static void
342 AcpiDmValidateFadtLength (
343 UINT32 Revision,
344 UINT32 Length)
345 {
346 UINT32 ExpectedLength;

349 switch (Revision)
350 {
351 case 0:

353 AcpiOsPrintf ("// ACPI Warning: Invalid FADT revision: 0\n");
354 return;

356 case 1:

358 ExpectedLength = ACPI_FADT_V1_SIZE;
359 break;

361 case 2:

363 ExpectedLength = ACPI_FADT_V2_SIZE;
364 break;

366 case 3:
367 case 4:

369 ExpectedLength = ACPI_FADT_V3_SIZE;
370 break;

372 case 5:

374 ExpectedLength = ACPI_FADT_V5_SIZE;
375 break;

377 default:

379 return;
380 }

382 if (Length == ExpectedLength)
383 {
384 return;
385 }

387 AcpiOsPrintf (
388 "\n// ACPI Warning: FADT revision %X does not match length: found %X exp
389 Revision, Length, ExpectedLength);

new/usr/src/common/acpica/common/dmtbdump.c 7

390 }

393 /***
394 *
395 * FUNCTION: AcpiDmDumpAsf
396 *
397 * PARAMETERS: Table - A ASF table
398 *
399 * RETURN: None
400 *
401 * DESCRIPTION: Format the contents of a ASF table
402 *
403 **/

405 void
406 AcpiDmDumpAsf (
407 ACPI_TABLE_HEADER *Table)
408 {
409 ACPI_STATUS Status;
410 UINT32 Offset = sizeof (ACPI_TABLE_HEADER);
411 ACPI_ASF_INFO *SubTable;
412 ACPI_DMTABLE_INFO *InfoTable;
413 ACPI_DMTABLE_INFO *DataInfoTable = NULL;
414 UINT8 *DataTable = NULL;
415 UINT32 DataCount = 0;
416 UINT32 DataLength = 0;
417 UINT32 DataOffset = 0;
418 UINT32 i;
419 UINT8 Type;

422 /* No main table, only sub-tables */

424 SubTable = ACPI_ADD_PTR (ACPI_ASF_INFO, Table, Offset);
425 while (Offset < Table->Length)
426 {
427 /* Common sub-table header */

429 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable,
430 SubTable->Header.Length, AcpiDmTableInfoAsfHdr);
431 if (ACPI_FAILURE (Status))
432 {
433 return;
434 }

436 /* The actual type is the lower 7 bits of Type */

438 Type = (UINT8) (SubTable->Header.Type & 0x7F);

440 switch (Type)
441 {
442 case ACPI_ASF_TYPE_INFO:

444 InfoTable = AcpiDmTableInfoAsf0;
445 break;

447 case ACPI_ASF_TYPE_ALERT:

449 InfoTable = AcpiDmTableInfoAsf1;
450 DataInfoTable = AcpiDmTableInfoAsf1a;
451 DataTable = ACPI_ADD_PTR (UINT8, SubTable, sizeof (ACPI_ASF_ALERT));
452 DataCount = ACPI_CAST_PTR (ACPI_ASF_ALERT, SubTable)->Alerts;
453 DataLength = ACPI_CAST_PTR (ACPI_ASF_ALERT, SubTable)->DataLength;
454 DataOffset = Offset + sizeof (ACPI_ASF_ALERT);
455 break;

new/usr/src/common/acpica/common/dmtbdump.c 8

457 case ACPI_ASF_TYPE_CONTROL:

459 InfoTable = AcpiDmTableInfoAsf2;
460 DataInfoTable = AcpiDmTableInfoAsf2a;
461 DataTable = ACPI_ADD_PTR (UINT8, SubTable, sizeof (ACPI_ASF_REMOTE))
462 DataCount = ACPI_CAST_PTR (ACPI_ASF_REMOTE, SubTable)->Controls;
463 DataLength = ACPI_CAST_PTR (ACPI_ASF_REMOTE, SubTable)->DataLength;
464 DataOffset = Offset + sizeof (ACPI_ASF_REMOTE);
465 break;

467 case ACPI_ASF_TYPE_BOOT:

469 InfoTable = AcpiDmTableInfoAsf3;
470 break;

472 case ACPI_ASF_TYPE_ADDRESS:

474 InfoTable = AcpiDmTableInfoAsf4;
475 DataTable = ACPI_ADD_PTR (UINT8, SubTable, sizeof (ACPI_ASF_ADDRESS)
476 DataLength = ACPI_CAST_PTR (ACPI_ASF_ADDRESS, SubTable)->Devices;
477 DataOffset = Offset + sizeof (ACPI_ASF_ADDRESS);
478 break;

480 default:

482 AcpiOsPrintf ("\n**** Unknown ASF sub-table type 0x%X\n", SubTable->
483 return;
484 }

486 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable,
487 SubTable->Header.Length, InfoTable);
488 if (ACPI_FAILURE (Status))
489 {
490 return;
491 }

493 /* Dump variable-length extra data */

495 switch (Type)
496 {
497 case ACPI_ASF_TYPE_ALERT:
498 case ACPI_ASF_TYPE_CONTROL:

500 for (i = 0; i < DataCount; i++)
501 {
502 AcpiOsPrintf ("\n");
503 Status = AcpiDmDumpTable (Table->Length, DataOffset,
504 DataTable, DataLength, DataInfoTable);
505 if (ACPI_FAILURE (Status))
506 {
507 return;
508 }

510 DataTable = ACPI_ADD_PTR (UINT8, DataTable, DataLength);
511 DataOffset += DataLength;
512 }
513 break;

515 case ACPI_ASF_TYPE_ADDRESS:

517 for (i = 0; i < DataLength; i++)
518 {
519 if (!(i % 16))
520 {
521 AcpiDmLineHeader (DataOffset, 1, "Addresses");

new/usr/src/common/acpica/common/dmtbdump.c 9

522 }

524 AcpiOsPrintf ("%2.2X ", *DataTable);
525 DataTable++;
526 DataOffset++;
527 if (DataOffset > Table->Length)
528 {
529 AcpiOsPrintf ("**** ACPI table terminates in the middle of a
530 return;
531 }
532 }

534 AcpiOsPrintf ("\n");
535 break;

537 default:

539 break;
540 }

542 AcpiOsPrintf ("\n");

544 /* Point to next sub-table */

546 if (!SubTable->Header.Length)
547 {
548 AcpiOsPrintf ("Invalid zero subtable header length\n");
549 return;
550 }

552 Offset += SubTable->Header.Length;
553 SubTable = ACPI_ADD_PTR (ACPI_ASF_INFO, SubTable, SubTable->Header.Lengt
554 }
555 }

558 /***
559 *
560 * FUNCTION: AcpiDmDumpCpep
561 *
562 * PARAMETERS: Table - A CPEP table
563 *
564 * RETURN: None
565 *
566 * DESCRIPTION: Format the contents of a CPEP. This table type consists
567 * of an open-ended number of subtables.
568 *
569 **/

571 void
572 AcpiDmDumpCpep (
573 ACPI_TABLE_HEADER *Table)
574 {
575 ACPI_STATUS Status;
576 ACPI_CPEP_POLLING *SubTable;
577 UINT32 Length = Table->Length;
578 UINT32 Offset = sizeof (ACPI_TABLE_CPEP);

581 /* Main table */

583 Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoCpep);
584 if (ACPI_FAILURE (Status))
585 {
586 return;
587 }

new/usr/src/common/acpica/common/dmtbdump.c 10

589 /* Sub-tables */

591 SubTable = ACPI_ADD_PTR (ACPI_CPEP_POLLING, Table, Offset);
592 while (Offset < Table->Length)
593 {
594 AcpiOsPrintf ("\n");
595 Status = AcpiDmDumpTable (Length, Offset, SubTable,
596 SubTable->Header.Length, AcpiDmTableInfoCpep0);
597 if (ACPI_FAILURE (Status))
598 {
599 return;
600 }

602 /* Point to next sub-table */

604 Offset += SubTable->Header.Length;
605 SubTable = ACPI_ADD_PTR (ACPI_CPEP_POLLING, SubTable,
606 SubTable->Header.Length);
607 }
608 }

611 /***
612 *
613 * FUNCTION: AcpiDmDumpCsrt
614 *
615 * PARAMETERS: Table - A CSRT table
616 *
617 * RETURN: None
618 *
619 * DESCRIPTION: Format the contents of a CSRT. This table type consists
620 * of an open-ended number of subtables.
621 *
622 **/

624 void
625 AcpiDmDumpCsrt (
626 ACPI_TABLE_HEADER *Table)
627 {
628 ACPI_STATUS Status;
629 ACPI_CSRT_GROUP *SubTable;
630 ACPI_CSRT_SHARED_INFO *SharedInfoTable;
631 ACPI_CSRT_DESCRIPTOR *SubSubTable;
632 UINT32 Length = Table->Length;
633 UINT32 Offset = sizeof (ACPI_TABLE_CSRT);
634 UINT32 SubOffset;
635 UINT32 SubSubOffset;
636 UINT32 InfoLength;

639 /* The main table only contains the ACPI header, thus already handled */

641 /* Sub-tables (Resource Groups) */

643 SubTable = ACPI_ADD_PTR (ACPI_CSRT_GROUP, Table, Offset);
644 while (Offset < Table->Length)
645 {
646 /* Resource group subtable */

648 AcpiOsPrintf ("\n");
649 Status = AcpiDmDumpTable (Length, Offset, SubTable,
650 SubTable->Length, AcpiDmTableInfoCsrt0);
651 if (ACPI_FAILURE (Status))
652 {
653 return;

new/usr/src/common/acpica/common/dmtbdump.c 11

654 }

656 /* Shared info subtable (One per resource group) */

658 SubOffset = sizeof (ACPI_CSRT_GROUP);
659 SharedInfoTable = ACPI_ADD_PTR (ACPI_CSRT_SHARED_INFO, Table,
660 Offset + SubOffset);

662 AcpiOsPrintf ("\n");
663 Status = AcpiDmDumpTable (Length, Offset + SubOffset, SharedInfoTable,
664 sizeof (ACPI_CSRT_SHARED_INFO), AcpiDmTableInfoCsrt1);
665 if (ACPI_FAILURE (Status))
666 {
667 return;
668 }

670 SubOffset += SubTable->SharedInfoLength;

672 /* Sub-Subtables (Resource Descriptors) */

674 SubSubTable = ACPI_ADD_PTR (ACPI_CSRT_DESCRIPTOR, Table,
675 Offset + SubOffset);

677 while ((SubOffset < SubTable->Length) &&
678 ((Offset + SubOffset) < Table->Length))
679 {
680 AcpiOsPrintf ("\n");
681 Status = AcpiDmDumpTable (Length, Offset + SubOffset, SubSubTable,
682 SubSubTable->Length, AcpiDmTableInfoCsrt2);
683 if (ACPI_FAILURE (Status))
684 {
685 return;
686 }

688 SubSubOffset = sizeof (ACPI_CSRT_DESCRIPTOR);

690 /* Resource-specific info buffer */

692 InfoLength = SubSubTable->Length - SubSubOffset;

694 AcpiDmDumpBuffer (SubSubTable, SubSubOffset, InfoLength,
695 Offset + SubOffset + SubSubOffset, "ResourceInfo");
696 SubSubOffset += InfoLength;

698 /* Point to next sub-subtable */

700 SubOffset += SubSubTable->Length;
701 SubSubTable = ACPI_ADD_PTR (ACPI_CSRT_DESCRIPTOR, SubSubTable,
702 SubSubTable->Length);
703 }

705 /* Point to next sub-table */

707 Offset += SubTable->Length;
708 SubTable = ACPI_ADD_PTR (ACPI_CSRT_GROUP, SubTable,
709 SubTable->Length);
710 }
711 }

714 /***
715 *
716 * FUNCTION: AcpiDmDumpDbg2
717 *
718 * PARAMETERS: Table - A DBG2 table
719 *

new/usr/src/common/acpica/common/dmtbdump.c 12

720 * RETURN: None
721 *
722 * DESCRIPTION: Format the contents of a DBG2. This table type consists
723 * of an open-ended number of subtables.
724 *
725 **/

727 void
728 AcpiDmDumpDbg2 (
729 ACPI_TABLE_HEADER *Table)
730 {
731 ACPI_STATUS Status;
732 ACPI_DBG2_DEVICE *SubTable;
733 UINT32 Length = Table->Length;
734 UINT32 Offset = sizeof (ACPI_TABLE_DBG2);
735 UINT32 i;
736 UINT32 ArrayOffset;
737 UINT32 AbsoluteOffset;
738 UINT8 *Array;

741 /* Main table */

743 Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoDbg2);
744 if (ACPI_FAILURE (Status))
745 {
746 return;
747 }

749 /* Sub-tables */

751 SubTable = ACPI_ADD_PTR (ACPI_DBG2_DEVICE, Table, Offset);
752 while (Offset < Table->Length)
753 {
754 AcpiOsPrintf ("\n");
755 Status = AcpiDmDumpTable (Length, Offset, SubTable,
756 SubTable->Length, AcpiDmTableInfoDbg2Device);
757 if (ACPI_FAILURE (Status))
758 {
759 return;
760 }

762 /* Dump the BaseAddress array */

764 for (i = 0; i < SubTable->RegisterCount; i++)
765 {
766 ArrayOffset = SubTable->BaseAddressOffset +
767 (sizeof (ACPI_GENERIC_ADDRESS) * i);
768 AbsoluteOffset = Offset + ArrayOffset;
769 Array = (UINT8 *) SubTable + ArrayOffset;

771 Status = AcpiDmDumpTable (Length, AbsoluteOffset, Array,
772 SubTable->Length, AcpiDmTableInfoDbg2Addr);
773 if (ACPI_FAILURE (Status))
774 {
775 return;
776 }
777 }

779 /* Dump the AddressSize array */

781 for (i = 0; i < SubTable->RegisterCount; i++)
782 {
783 ArrayOffset = SubTable->AddressSizeOffset +
784 (sizeof (UINT32) * i);
785 AbsoluteOffset = Offset + ArrayOffset;

new/usr/src/common/acpica/common/dmtbdump.c 13

786 Array = (UINT8 *) SubTable + ArrayOffset;

788 Status = AcpiDmDumpTable (Length, AbsoluteOffset, Array,
789 SubTable->Length, AcpiDmTableInfoDbg2Size);
790 if (ACPI_FAILURE (Status))
791 {
792 return;
793 }
794 }

796 /* Dump the Namestring (required) */

798 AcpiOsPrintf ("\n");
799 ArrayOffset = SubTable->NamepathOffset;
800 AbsoluteOffset = Offset + ArrayOffset;
801 Array = (UINT8 *) SubTable + ArrayOffset;

803 Status = AcpiDmDumpTable (Length, AbsoluteOffset, Array,
804 SubTable->Length, AcpiDmTableInfoDbg2Name);
805 if (ACPI_FAILURE (Status))
806 {
807 return;
808 }

810 /* Dump the OemData (optional) */

812 if (SubTable->OemDataOffset)
813 {
814 AcpiDmDumpBuffer (SubTable, SubTable->OemDataOffset, SubTable->OemDa
815 Offset + SubTable->OemDataOffset, "OEM Data");
816 }

818 /* Point to next sub-table */

820 Offset += SubTable->Length;
821 SubTable = ACPI_ADD_PTR (ACPI_DBG2_DEVICE, SubTable,
822 SubTable->Length);
823 }
824 }

827 /***
828 *
829 * FUNCTION: AcpiDmDumpDmar
830 *
831 * PARAMETERS: Table - A DMAR table
832 *
833 * RETURN: None
834 *
835 * DESCRIPTION: Format the contents of a DMAR. This table type consists
836 * of an open-ended number of subtables.
837 *
838 **/

841 void
842 AcpiDmDumpDmar (
843 ACPI_TABLE_HEADER *Table)
844 {
845 ACPI_STATUS Status;
846 ACPI_DMAR_HEADER *SubTable;
847 UINT32 Length = Table->Length;
848 UINT32 Offset = sizeof (ACPI_TABLE_DMAR);
849 ACPI_DMTABLE_INFO *InfoTable;
850 ACPI_DMAR_DEVICE_SCOPE *ScopeTable;
851 UINT32 ScopeOffset;

new/usr/src/common/acpica/common/dmtbdump.c 14

852 UINT8 *PciPath;
853 UINT32 PathOffset;

856 /* Main table */

858 Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoDmar);
859 if (ACPI_FAILURE (Status))
860 {
861 return;
862 }

864 /* Sub-tables */

866 SubTable = ACPI_ADD_PTR (ACPI_DMAR_HEADER, Table, Offset);
867 while (Offset < Table->Length)
868 {
869 /* Common sub-table header */

871 AcpiOsPrintf ("\n");
872 Status = AcpiDmDumpTable (Length, Offset, SubTable,
873 SubTable->Length, AcpiDmTableInfoDmarHdr);
874 if (ACPI_FAILURE (Status))
875 {
876 return;
877 }
878 AcpiOsPrintf ("\n");

880 switch (SubTable->Type)
881 {
882 case ACPI_DMAR_TYPE_HARDWARE_UNIT:

884 InfoTable = AcpiDmTableInfoDmar0;
885 ScopeOffset = sizeof (ACPI_DMAR_HARDWARE_UNIT);
886 break;

888 case ACPI_DMAR_TYPE_RESERVED_MEMORY:

890 InfoTable = AcpiDmTableInfoDmar1;
891 ScopeOffset = sizeof (ACPI_DMAR_RESERVED_MEMORY);
892 break;

894 case ACPI_DMAR_TYPE_ATSR:

896 InfoTable = AcpiDmTableInfoDmar2;
897 ScopeOffset = sizeof (ACPI_DMAR_ATSR);
898 break;

900 case ACPI_DMAR_HARDWARE_AFFINITY:

902 InfoTable = AcpiDmTableInfoDmar3;
903 ScopeOffset = sizeof (ACPI_DMAR_RHSA);
904 break;

906 default:

908 AcpiOsPrintf ("\n**** Unknown DMAR sub-table type 0x%X\n\n", SubTabl
909 return;
910 }

912 Status = AcpiDmDumpTable (Length, Offset, SubTable,
913 SubTable->Length, InfoTable);
914 if (ACPI_FAILURE (Status))
915 {
916 return;
917 }

new/usr/src/common/acpica/common/dmtbdump.c 15

919 /* Dump the device scope entries (if any) */

921 ScopeTable = ACPI_ADD_PTR (ACPI_DMAR_DEVICE_SCOPE, SubTable, ScopeOffset
922 while (ScopeOffset < SubTable->Length)
923 {
924 AcpiOsPrintf ("\n");
925 Status = AcpiDmDumpTable (Length, Offset + ScopeOffset, ScopeTable,
926 ScopeTable->Length, AcpiDmTableInfoDmarScope);
927 if (ACPI_FAILURE (Status))
928 {
929 return;
930 }
931 AcpiOsPrintf ("\n");

933 /* Dump the PCI Path entries for this device scope */

935 PathOffset = sizeof (ACPI_DMAR_DEVICE_SCOPE); /* Path entries start

937 PciPath = ACPI_ADD_PTR (UINT8, ScopeTable,
938 sizeof (ACPI_DMAR_DEVICE_SCOPE));

940 while (PathOffset < ScopeTable->Length)
941 {
942 AcpiDmLineHeader ((PathOffset + ScopeOffset + Offset), 2, "PCI P
943 AcpiOsPrintf ("%2.2X,%2.2X\n", PciPath[0], PciPath[1]);

945 /* Point to next PCI Path entry */

947 PathOffset += 2;
948 PciPath += 2;
949 AcpiOsPrintf ("\n");
950 }

952 /* Point to next device scope entry */

954 ScopeOffset += ScopeTable->Length;
955 ScopeTable = ACPI_ADD_PTR (ACPI_DMAR_DEVICE_SCOPE,
956 ScopeTable, ScopeTable->Length);
957 }

959 /* Point to next sub-table */

961 Offset += SubTable->Length;
962 SubTable = ACPI_ADD_PTR (ACPI_DMAR_HEADER, SubTable, SubTable->Length);
963 }
964 }

967 /***
968 *
969 * FUNCTION: AcpiDmDumpEinj
970 *
971 * PARAMETERS: Table - A EINJ table
972 *
973 * RETURN: None
974 *
975 * DESCRIPTION: Format the contents of a EINJ. This table type consists
976 * of an open-ended number of subtables.
977 *
978 **/

980 void
981 AcpiDmDumpEinj (
982 ACPI_TABLE_HEADER *Table)
983 {

new/usr/src/common/acpica/common/dmtbdump.c 16

984 ACPI_STATUS Status;
985 ACPI_WHEA_HEADER *SubTable;
986 UINT32 Length = Table->Length;
987 UINT32 Offset = sizeof (ACPI_TABLE_EINJ);

990 /* Main table */

992 Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoEinj);
993 if (ACPI_FAILURE (Status))
994 {
995 return;
996 }

998 /* Sub-tables */

1000 SubTable = ACPI_ADD_PTR (ACPI_WHEA_HEADER, Table, Offset);
1001 while (Offset < Table->Length)
1002 {
1003 AcpiOsPrintf ("\n");
1004 Status = AcpiDmDumpTable (Length, Offset, SubTable,
1005 sizeof (ACPI_WHEA_HEADER), AcpiDmTableInfoEinj0);
1006 if (ACPI_FAILURE (Status))
1007 {
1008 return;
1009 }

1011 /* Point to next sub-table (each subtable is of fixed length) */

1013 Offset += sizeof (ACPI_WHEA_HEADER);
1014 SubTable = ACPI_ADD_PTR (ACPI_WHEA_HEADER, SubTable,
1015 sizeof (ACPI_WHEA_HEADER));
1016 }
1017 }

1020 /***
1021 *
1022 * FUNCTION: AcpiDmDumpErst
1023 *
1024 * PARAMETERS: Table - A ERST table
1025 *
1026 * RETURN: None
1027 *
1028 * DESCRIPTION: Format the contents of a ERST. This table type consists
1029 * of an open-ended number of subtables.
1030 *
1031 **/

1033 void
1034 AcpiDmDumpErst (
1035 ACPI_TABLE_HEADER *Table)
1036 {
1037 ACPI_STATUS Status;
1038 ACPI_WHEA_HEADER *SubTable;
1039 UINT32 Length = Table->Length;
1040 UINT32 Offset = sizeof (ACPI_TABLE_ERST);

1043 /* Main table */

1045 Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoErst);
1046 if (ACPI_FAILURE (Status))
1047 {
1048 return;
1049 }

new/usr/src/common/acpica/common/dmtbdump.c 17

1051 /* Sub-tables */

1053 SubTable = ACPI_ADD_PTR (ACPI_WHEA_HEADER, Table, Offset);
1054 while (Offset < Table->Length)
1055 {
1056 AcpiOsPrintf ("\n");
1057 Status = AcpiDmDumpTable (Length, Offset, SubTable,
1058 sizeof (ACPI_WHEA_HEADER), AcpiDmTableInfoErst0);
1059 if (ACPI_FAILURE (Status))
1060 {
1061 return;
1062 }

1064 /* Point to next sub-table (each subtable is of fixed length) */

1066 Offset += sizeof (ACPI_WHEA_HEADER);
1067 SubTable = ACPI_ADD_PTR (ACPI_WHEA_HEADER, SubTable,
1068 sizeof (ACPI_WHEA_HEADER));
1069 }
1070 }

1073 /***
1074 *
1075 * FUNCTION: AcpiDmDumpFpdt
1076 *
1077 * PARAMETERS: Table - A FPDT table
1078 *
1079 * RETURN: None
1080 *
1081 * DESCRIPTION: Format the contents of a FPDT. This table type consists
1082 * of an open-ended number of subtables.
1083 *
1084 **/

1086 void
1087 AcpiDmDumpFpdt (
1088 ACPI_TABLE_HEADER *Table)
1089 {
1090 ACPI_STATUS Status;
1091 ACPI_FPDT_HEADER *SubTable;
1092 UINT32 Length = Table->Length;
1093 UINT32 Offset = sizeof (ACPI_TABLE_FPDT);
1094 ACPI_DMTABLE_INFO *InfoTable;

1097 /* There is no main table (other than the standard ACPI header) */

1099 /* Sub-tables */

1101 SubTable = ACPI_ADD_PTR (ACPI_FPDT_HEADER, Table, Offset);
1102 while (Offset < Table->Length)
1103 {
1104 /* Common sub-table header */

1106 AcpiOsPrintf ("\n");
1107 Status = AcpiDmDumpTable (Length, Offset, SubTable,
1108 SubTable->Length, AcpiDmTableInfoFpdtHdr);
1109 if (ACPI_FAILURE (Status))
1110 {
1111 return;
1112 }

1114 switch (SubTable->Type)
1115 {

new/usr/src/common/acpica/common/dmtbdump.c 18

1116 case ACPI_FPDT_TYPE_BOOT:

1118 InfoTable = AcpiDmTableInfoFpdt0;
1119 break;

1121 case ACPI_FPDT_TYPE_S3PERF:

1123 InfoTable = AcpiDmTableInfoFpdt1;
1124 break;

1126 default:

1128 AcpiOsPrintf ("\n**** Unknown FPDT sub-table type 0x%X\n\n", SubTabl

1130 /* Attempt to continue */

1132 if (!SubTable->Length)
1133 {
1134 AcpiOsPrintf ("Invalid zero length subtable\n");
1135 return;
1136 }
1137 goto NextSubTable;
1138 }

1140 Status = AcpiDmDumpTable (Length, Offset, SubTable,
1141 SubTable->Length, InfoTable);
1142 if (ACPI_FAILURE (Status))
1143 {
1144 return;
1145 }

1147 NextSubTable:
1148 /* Point to next sub-table */

1150 Offset += SubTable->Length;
1151 SubTable = ACPI_ADD_PTR (ACPI_FPDT_HEADER, SubTable, SubTable->Length);
1152 }
1153 }

1156 /***
1157 *
1158 * FUNCTION: AcpiDmDumpHest
1159 *
1160 * PARAMETERS: Table - A HEST table
1161 *
1162 * RETURN: None
1163 *
1164 * DESCRIPTION: Format the contents of a HEST. This table type consists
1165 * of an open-ended number of subtables.
1166 *
1167 **/

1169 void
1170 AcpiDmDumpHest (
1171 ACPI_TABLE_HEADER *Table)
1172 {
1173 ACPI_STATUS Status;
1174 ACPI_HEST_HEADER *SubTable;
1175 UINT32 Length = Table->Length;
1176 UINT32 Offset = sizeof (ACPI_TABLE_HEST);
1177 ACPI_DMTABLE_INFO *InfoTable;
1178 UINT32 SubTableLength;
1179 UINT32 BankCount;
1180 ACPI_HEST_IA_ERROR_BANK *BankTable;

new/usr/src/common/acpica/common/dmtbdump.c 19

1183 /* Main table */

1185 Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoHest);
1186 if (ACPI_FAILURE (Status))
1187 {
1188 return;
1189 }

1191 /* Sub-tables */

1193 SubTable = ACPI_ADD_PTR (ACPI_HEST_HEADER, Table, Offset);
1194 while (Offset < Table->Length)
1195 {
1196 BankCount = 0;
1197 switch (SubTable->Type)
1198 {
1199 case ACPI_HEST_TYPE_IA32_CHECK:

1201 InfoTable = AcpiDmTableInfoHest0;
1202 SubTableLength = sizeof (ACPI_HEST_IA_MACHINE_CHECK);
1203 BankCount = (ACPI_CAST_PTR (ACPI_HEST_IA_MACHINE_CHECK,
1204 SubTable))->NumHardwareBanks;
1205 break;

1207 case ACPI_HEST_TYPE_IA32_CORRECTED_CHECK:

1209 InfoTable = AcpiDmTableInfoHest1;
1210 SubTableLength = sizeof (ACPI_HEST_IA_CORRECTED);
1211 BankCount = (ACPI_CAST_PTR (ACPI_HEST_IA_CORRECTED,
1212 SubTable))->NumHardwareBanks;
1213 break;

1215 case ACPI_HEST_TYPE_IA32_NMI:

1217 InfoTable = AcpiDmTableInfoHest2;
1218 SubTableLength = sizeof (ACPI_HEST_IA_NMI);
1219 break;

1221 case ACPI_HEST_TYPE_AER_ROOT_PORT:

1223 InfoTable = AcpiDmTableInfoHest6;
1224 SubTableLength = sizeof (ACPI_HEST_AER_ROOT);
1225 break;

1227 case ACPI_HEST_TYPE_AER_ENDPOINT:

1229 InfoTable = AcpiDmTableInfoHest7;
1230 SubTableLength = sizeof (ACPI_HEST_AER);
1231 break;

1233 case ACPI_HEST_TYPE_AER_BRIDGE:

1235 InfoTable = AcpiDmTableInfoHest8;
1236 SubTableLength = sizeof (ACPI_HEST_AER_BRIDGE);
1237 break;

1239 case ACPI_HEST_TYPE_GENERIC_ERROR:

1241 InfoTable = AcpiDmTableInfoHest9;
1242 SubTableLength = sizeof (ACPI_HEST_GENERIC);
1243 break;

1245 default:

1247 /* Cannot continue on unknown type - no length */

new/usr/src/common/acpica/common/dmtbdump.c 20

1249 AcpiOsPrintf ("\n**** Unknown HEST sub-table type 0x%X\n", SubTable-
1250 return;
1251 }

1253 AcpiOsPrintf ("\n");
1254 Status = AcpiDmDumpTable (Length, Offset, SubTable,
1255 SubTableLength, InfoTable);
1256 if (ACPI_FAILURE (Status))
1257 {
1258 return;
1259 }

1261 /* Point to end of current subtable (each subtable above is of fixed len

1263 Offset += SubTableLength;

1265 /* If there are any (fixed-length) Error Banks from above, dump them now

1267 if (BankCount)
1268 {
1269 BankTable = ACPI_ADD_PTR (ACPI_HEST_IA_ERROR_BANK, SubTable, SubTabl
1270 SubTableLength += BankCount * sizeof (ACPI_HEST_IA_ERROR_BANK);

1272 while (BankCount)
1273 {
1274 AcpiOsPrintf ("\n");
1275 Status = AcpiDmDumpTable (Length, Offset, BankTable,
1276 sizeof (ACPI_HEST_IA_ERROR_BANK), AcpiDmTableInfoHes
1277 if (ACPI_FAILURE (Status))
1278 {
1279 return;
1280 }
1281 Offset += sizeof (ACPI_HEST_IA_ERROR_BANK);
1282 BankTable++;
1283 BankCount--;
1284 }
1285 }

1287 /* Point to next sub-table */

1289 SubTable = ACPI_ADD_PTR (ACPI_HEST_HEADER, SubTable, SubTableLength);
1290 }
1291 }

1294 /***
1295 *
1296 * FUNCTION: AcpiDmDumpIvrs
1297 *
1298 * PARAMETERS: Table - A IVRS table
1299 *
1300 * RETURN: None
1301 *
1302 * DESCRIPTION: Format the contents of a IVRS
1303 *
1304 **/

1306 static UINT8 EntrySizes[] = {4,8,16,32};

1308 void
1309 AcpiDmDumpIvrs (
1310 ACPI_TABLE_HEADER *Table)
1311 {
1312 ACPI_STATUS Status;
1313 UINT32 Offset = sizeof (ACPI_TABLE_IVRS);

new/usr/src/common/acpica/common/dmtbdump.c 21

1314 UINT32 EntryOffset;
1315 UINT32 EntryLength;
1316 UINT32 EntryType;
1317 ACPI_IVRS_DE_HEADER *DeviceEntry;
1318 ACPI_IVRS_HEADER *SubTable;
1319 ACPI_DMTABLE_INFO *InfoTable;

1322 /* Main table */

1324 Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoIvrs);
1325 if (ACPI_FAILURE (Status))
1326 {
1327 return;
1328 }

1330 /* Sub-tables */

1332 SubTable = ACPI_ADD_PTR (ACPI_IVRS_HEADER, Table, Offset);
1333 while (Offset < Table->Length)
1334 {
1335 /* Common sub-table header */

1337 AcpiOsPrintf ("\n");
1338 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable,
1339 SubTable->Length, AcpiDmTableInfoIvrsHdr);
1340 if (ACPI_FAILURE (Status))
1341 {
1342 return;
1343 }

1345 switch (SubTable->Type)
1346 {
1347 case ACPI_IVRS_TYPE_HARDWARE:

1349 InfoTable = AcpiDmTableInfoIvrs0;
1350 break;

1352 case ACPI_IVRS_TYPE_MEMORY1:
1353 case ACPI_IVRS_TYPE_MEMORY2:
1354 case ACPI_IVRS_TYPE_MEMORY3:

1356 InfoTable = AcpiDmTableInfoIvrs1;
1357 break;

1359 default:

1361 AcpiOsPrintf ("\n**** Unknown IVRS sub-table type 0x%X\n",
1362 SubTable->Type);

1364 /* Attempt to continue */

1366 if (!SubTable->Length)
1367 {
1368 AcpiOsPrintf ("Invalid zero length subtable\n");
1369 return;
1370 }
1371 goto NextSubTable;
1372 }

1374 /* Dump the subtable */

1376 AcpiOsPrintf ("\n");
1377 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable,
1378 SubTable->Length, InfoTable);
1379 if (ACPI_FAILURE (Status))

new/usr/src/common/acpica/common/dmtbdump.c 22

1380 {
1381 return;
1382 }

1384 /* The hardware subtable can contain multiple device entries */

1386 if (SubTable->Type == ACPI_IVRS_TYPE_HARDWARE)
1387 {
1388 EntryOffset = Offset + sizeof (ACPI_IVRS_HARDWARE);
1389 DeviceEntry = ACPI_ADD_PTR (ACPI_IVRS_DE_HEADER, SubTable,
1390 sizeof (ACPI_IVRS_HARDWARE));

1392 while (EntryOffset < (Offset + SubTable->Length))
1393 {
1394 AcpiOsPrintf ("\n");
1395 /*
1396 * Upper 2 bits of Type encode the length of the device entry
1397 *
1398 * 00 = 4 byte
1399 * 01 = 8 byte
1400 * 10 = 16 byte - currently no entries defined
1401 * 11 = 32 byte - currently no entries defined
1402 */
1403 EntryType = DeviceEntry->Type;
1404 EntryLength = EntrySizes [EntryType >> 6];

1406 switch (EntryType)
1407 {
1408 /* 4-byte device entries */

1410 case ACPI_IVRS_TYPE_PAD4:
1411 case ACPI_IVRS_TYPE_ALL:
1412 case ACPI_IVRS_TYPE_SELECT:
1413 case ACPI_IVRS_TYPE_START:
1414 case ACPI_IVRS_TYPE_END:

1416 InfoTable = AcpiDmTableInfoIvrs4;
1417 break;

1419 /* 8-byte entries, type A */

1421 case ACPI_IVRS_TYPE_ALIAS_SELECT:
1422 case ACPI_IVRS_TYPE_ALIAS_START:

1424 InfoTable = AcpiDmTableInfoIvrs8a;
1425 break;

1427 /* 8-byte entries, type B */

1429 case ACPI_IVRS_TYPE_PAD8:
1430 case ACPI_IVRS_TYPE_EXT_SELECT:
1431 case ACPI_IVRS_TYPE_EXT_START:

1433 InfoTable = AcpiDmTableInfoIvrs8b;
1434 break;

1436 /* 8-byte entries, type C */

1438 case ACPI_IVRS_TYPE_SPECIAL:

1440 InfoTable = AcpiDmTableInfoIvrs8c;
1441 break;

1443 default:
1444 InfoTable = AcpiDmTableInfoIvrs4;
1445 AcpiOsPrintf (

new/usr/src/common/acpica/common/dmtbdump.c 23

1446 "\n**** Unknown IVRS device entry type/length: "
1447 "0x%.2X/0x%X at offset 0x%.4X: (header below)\n",
1448 EntryType, EntryLength, EntryOffset);
1449 break;
1450 }

1452 /* Dump the Device Entry */

1454 Status = AcpiDmDumpTable (Table->Length, EntryOffset,
1455 DeviceEntry, EntryLength, InfoTable);

1457 EntryOffset += EntryLength;
1458 DeviceEntry = ACPI_ADD_PTR (ACPI_IVRS_DE_HEADER, DeviceEntry,
1459 EntryLength);
1460 }
1461 }

1463 NextSubTable:
1464 /* Point to next sub-table */

1466 Offset += SubTable->Length;
1467 SubTable = ACPI_ADD_PTR (ACPI_IVRS_HEADER, SubTable, SubTable->Length);
1468 }
1469 }

1472 /***
1473 *
1474 * FUNCTION: AcpiDmDumpMadt
1475 *
1476 * PARAMETERS: Table - A MADT table
1477 *
1478 * RETURN: None
1479 *
1480 * DESCRIPTION: Format the contents of a MADT. This table type consists
1481 * of an open-ended number of subtables.
1482 *
1483 **/

1485 void
1486 AcpiDmDumpMadt (
1487 ACPI_TABLE_HEADER *Table)
1488 {
1489 ACPI_STATUS Status;
1490 ACPI_SUBTABLE_HEADER *SubTable;
1491 UINT32 Length = Table->Length;
1492 UINT32 Offset = sizeof (ACPI_TABLE_MADT);
1493 ACPI_DMTABLE_INFO *InfoTable;

1496 /* Main table */

1498 Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoMadt);
1499 if (ACPI_FAILURE (Status))
1500 {
1501 return;
1502 }

1504 /* Sub-tables */

1506 SubTable = ACPI_ADD_PTR (ACPI_SUBTABLE_HEADER, Table, Offset);
1507 while (Offset < Table->Length)
1508 {
1509 /* Common sub-table header */

1511 AcpiOsPrintf ("\n");

new/usr/src/common/acpica/common/dmtbdump.c 24

1512 Status = AcpiDmDumpTable (Length, Offset, SubTable,
1513 SubTable->Length, AcpiDmTableInfoMadtHdr);
1514 if (ACPI_FAILURE (Status))
1515 {
1516 return;
1517 }

1519 switch (SubTable->Type)
1520 {
1521 case ACPI_MADT_TYPE_LOCAL_APIC:

1523 InfoTable = AcpiDmTableInfoMadt0;
1524 break;

1526 case ACPI_MADT_TYPE_IO_APIC:

1528 InfoTable = AcpiDmTableInfoMadt1;
1529 break;

1531 case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE:

1533 InfoTable = AcpiDmTableInfoMadt2;
1534 break;

1536 case ACPI_MADT_TYPE_NMI_SOURCE:

1538 InfoTable = AcpiDmTableInfoMadt3;
1539 break;

1541 case ACPI_MADT_TYPE_LOCAL_APIC_NMI:

1543 InfoTable = AcpiDmTableInfoMadt4;
1544 break;

1546 case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE:

1548 InfoTable = AcpiDmTableInfoMadt5;
1549 break;

1551 case ACPI_MADT_TYPE_IO_SAPIC:

1553 InfoTable = AcpiDmTableInfoMadt6;
1554 break;

1556 case ACPI_MADT_TYPE_LOCAL_SAPIC:

1558 InfoTable = AcpiDmTableInfoMadt7;
1559 break;

1561 case ACPI_MADT_TYPE_INTERRUPT_SOURCE:

1563 InfoTable = AcpiDmTableInfoMadt8;
1564 break;

1566 case ACPI_MADT_TYPE_LOCAL_X2APIC:

1568 InfoTable = AcpiDmTableInfoMadt9;
1569 break;

1571 case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI:

1573 InfoTable = AcpiDmTableInfoMadt10;
1574 break;

1576 case ACPI_MADT_TYPE_GENERIC_INTERRUPT:

new/usr/src/common/acpica/common/dmtbdump.c 25

1578 InfoTable = AcpiDmTableInfoMadt11;
1579 break;

1581 case ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR:

1583 InfoTable = AcpiDmTableInfoMadt12;
1584 break;

1586 default:

1588 AcpiOsPrintf ("\n**** Unknown MADT sub-table type 0x%X\n\n", SubTabl

1590 /* Attempt to continue */

1592 if (!SubTable->Length)
1593 {
1594 AcpiOsPrintf ("Invalid zero length subtable\n");
1595 return;
1596 }
1597 goto NextSubTable;
1598 }

1600 Status = AcpiDmDumpTable (Length, Offset, SubTable,
1601 SubTable->Length, InfoTable);
1602 if (ACPI_FAILURE (Status))
1603 {
1604 return;
1605 }

1607 NextSubTable:
1608 /* Point to next sub-table */

1610 Offset += SubTable->Length;
1611 SubTable = ACPI_ADD_PTR (ACPI_SUBTABLE_HEADER, SubTable, SubTable->Lengt
1612 }
1613 }

1616 /***
1617 *
1618 * FUNCTION: AcpiDmDumpMcfg
1619 *
1620 * PARAMETERS: Table - A MCFG Table
1621 *
1622 * RETURN: None
1623 *
1624 * DESCRIPTION: Format the contents of a MCFG table
1625 *
1626 **/

1628 void
1629 AcpiDmDumpMcfg (
1630 ACPI_TABLE_HEADER *Table)
1631 {
1632 ACPI_STATUS Status;
1633 UINT32 Offset = sizeof (ACPI_TABLE_MCFG);
1634 ACPI_MCFG_ALLOCATION *SubTable;

1637 /* Main table */

1639 Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoMcfg);
1640 if (ACPI_FAILURE (Status))
1641 {
1642 return;
1643 }

new/usr/src/common/acpica/common/dmtbdump.c 26

1645 /* Sub-tables */

1647 SubTable = ACPI_ADD_PTR (ACPI_MCFG_ALLOCATION, Table, Offset);
1648 while (Offset < Table->Length)
1649 {
1650 if (Offset + sizeof (ACPI_MCFG_ALLOCATION) > Table->Length)
1651 {
1652 AcpiOsPrintf ("Warning: there are %u invalid trailing bytes\n",
1653 sizeof (ACPI_MCFG_ALLOCATION) - (Offset - Table->Length));
1654 return;
1655 }

1657 AcpiOsPrintf ("\n");
1658 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable,
1659 sizeof (ACPI_MCFG_ALLOCATION), AcpiDmTableInfoMcfg0);
1660 if (ACPI_FAILURE (Status))
1661 {
1662 return;
1663 }

1665 /* Point to next sub-table (each subtable is of fixed length) */

1667 Offset += sizeof (ACPI_MCFG_ALLOCATION);
1668 SubTable = ACPI_ADD_PTR (ACPI_MCFG_ALLOCATION, SubTable,
1669 sizeof (ACPI_MCFG_ALLOCATION));
1670 }
1671 }

1674 /***
1675 *
1676 * FUNCTION: AcpiDmDumpMpst
1677 *
1678 * PARAMETERS: Table - A MPST Table
1679 *
1680 * RETURN: None
1681 *
1682 * DESCRIPTION: Format the contents of a MPST table
1683 *
1684 **/

1686 void
1687 AcpiDmDumpMpst (
1688 ACPI_TABLE_HEADER *Table)
1689 {
1690 ACPI_STATUS Status;
1691 UINT32 Offset = sizeof (ACPI_TABLE_MPST);
1692 ACPI_MPST_POWER_NODE *SubTable0;
1693 ACPI_MPST_POWER_STATE *SubTable0A;
1694 ACPI_MPST_COMPONENT *SubTable0B;
1695 ACPI_MPST_DATA_HDR *SubTable1;
1696 ACPI_MPST_POWER_DATA *SubTable2;
1697 UINT16 SubtableCount;
1698 UINT32 PowerStateCount;
1699 UINT32 ComponentCount;

1702 /* Main table */

1704 Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoMpst);
1705 if (ACPI_FAILURE (Status))
1706 {
1707 return;
1708 }

new/usr/src/common/acpica/common/dmtbdump.c 27

1710 /* Subtable: Memory Power Node(s) */

1712 SubtableCount = (ACPI_CAST_PTR (ACPI_TABLE_MPST, Table))->PowerNodeCount;
1713 SubTable0 = ACPI_ADD_PTR (ACPI_MPST_POWER_NODE, Table, Offset);

1715 while ((Offset < Table->Length) && SubtableCount)
1716 {
1717 AcpiOsPrintf ("\n");
1718 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable0,
1719 sizeof (ACPI_MPST_POWER_NODE), AcpiDmTableInfoMpst0);
1720 if (ACPI_FAILURE (Status))
1721 {
1722 return;
1723 }

1725 /* Extract the sub-subtable counts */

1727 PowerStateCount = SubTable0->NumPowerStates;
1728 ComponentCount = SubTable0->NumPhysicalComponents;
1729 Offset += sizeof (ACPI_MPST_POWER_NODE);

1731 /* Sub-subtables - Memory Power State Structure(s) */

1733 SubTable0A = ACPI_ADD_PTR (ACPI_MPST_POWER_STATE, SubTable0,
1734 sizeof (ACPI_MPST_POWER_NODE));

1736 while (PowerStateCount)
1737 {
1738 AcpiOsPrintf ("\n");
1739 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable0A,
1740 sizeof (ACPI_MPST_POWER_STATE), AcpiDmTableInfoMpst0A);
1741 if (ACPI_FAILURE (Status))
1742 {
1743 return;
1744 }

1746 SubTable0A++;
1747 PowerStateCount--;
1748 Offset += sizeof (ACPI_MPST_POWER_STATE);
1749 }

1751 /* Sub-subtables - Physical Component ID Structure(s) */

1753 SubTable0B = ACPI_CAST_PTR (ACPI_MPST_COMPONENT, SubTable0A);

1755 if (ComponentCount)
1756 {
1757 AcpiOsPrintf ("\n");
1758 }

1760 while (ComponentCount)
1761 {
1762 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable0B,
1763 sizeof (ACPI_MPST_COMPONENT), AcpiDmTableInfoMpst0B);
1764 if (ACPI_FAILURE (Status))
1765 {
1766 return;
1767 }

1769 SubTable0B++;
1770 ComponentCount--;
1771 Offset += sizeof (ACPI_MPST_COMPONENT);
1772 }

1774 /* Point to next Memory Power Node subtable */

new/usr/src/common/acpica/common/dmtbdump.c 28

1776 SubtableCount--;
1777 SubTable0 = ACPI_ADD_PTR (ACPI_MPST_POWER_NODE, SubTable0,
1778 sizeof (ACPI_MPST_POWER_NODE) +
1779 (sizeof (ACPI_MPST_POWER_STATE) * SubTable0->NumPowerStates) +
1780 (sizeof (ACPI_MPST_COMPONENT) * SubTable0->NumPhysicalComponents));
1781 }

1783 /* Subtable: Count of Memory Power State Characteristic structures */

1785 AcpiOsPrintf ("\n");
1786 SubTable1 = ACPI_CAST_PTR (ACPI_MPST_DATA_HDR, SubTable0);
1787 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable1,
1788 sizeof (ACPI_MPST_DATA_HDR), AcpiDmTableInfoMpst1);
1789 if (ACPI_FAILURE (Status))
1790 {
1791 return;
1792 }

1794 SubtableCount = SubTable1->CharacteristicsCount;
1795 Offset += sizeof (ACPI_MPST_DATA_HDR);

1797 /* Subtable: Memory Power State Characteristics structure(s) */

1799 SubTable2 = ACPI_ADD_PTR (ACPI_MPST_POWER_DATA, SubTable1, sizeof (ACPI_MPST

1801 while ((Offset < Table->Length) && SubtableCount)
1802 {
1803 AcpiOsPrintf ("\n");
1804 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable2,
1805 sizeof (ACPI_MPST_POWER_DATA), AcpiDmTableInfoMpst2);
1806 if (ACPI_FAILURE (Status))
1807 {
1808 return;
1809 }

1811 SubTable2++;
1812 SubtableCount--;
1813 Offset += sizeof (ACPI_MPST_POWER_DATA);
1814 }
1815 }

1818 /***
1819 *
1820 * FUNCTION: AcpiDmDumpMsct
1821 *
1822 * PARAMETERS: Table - A MSCT table
1823 *
1824 * RETURN: None
1825 *
1826 * DESCRIPTION: Format the contents of a MSCT
1827 *
1828 **/

1830 void
1831 AcpiDmDumpMsct (
1832 ACPI_TABLE_HEADER *Table)
1833 {
1834 ACPI_STATUS Status;
1835 UINT32 Offset = sizeof (ACPI_TABLE_MSCT);
1836 ACPI_MSCT_PROXIMITY *SubTable;

1839 /* Main table */

1841 Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoMsct);

new/usr/src/common/acpica/common/dmtbdump.c 29

1842 if (ACPI_FAILURE (Status))
1843 {
1844 return;
1845 }

1847 /* Sub-tables */

1849 SubTable = ACPI_ADD_PTR (ACPI_MSCT_PROXIMITY, Table, Offset);
1850 while (Offset < Table->Length)
1851 {
1852 /* Common sub-table header */

1854 AcpiOsPrintf ("\n");
1855 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable,
1856 sizeof (ACPI_MSCT_PROXIMITY), AcpiDmTableInfoMsct0);
1857 if (ACPI_FAILURE (Status))
1858 {
1859 return;
1860 }

1862 /* Point to next sub-table */

1864 Offset += sizeof (ACPI_MSCT_PROXIMITY);
1865 SubTable = ACPI_ADD_PTR (ACPI_MSCT_PROXIMITY, SubTable, sizeof (ACPI_MSC
1866 }
1867 }

1870 /***
1871 *
1872 * FUNCTION: AcpiDmDumpMtmr
1873 *
1874 * PARAMETERS: Table - A MTMR table
1875 *
1876 * RETURN: None
1877 *
1878 * DESCRIPTION: Format the contents of a MTMR
1879 *
1880 **/

1882 void
1883 AcpiDmDumpMtmr (
1884 ACPI_TABLE_HEADER *Table)
1885 {
1886 ACPI_STATUS Status;
1887 UINT32 Offset = sizeof (ACPI_TABLE_MTMR);
1888 ACPI_MTMR_ENTRY *SubTable;

1891 /* Main table */

1893 Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoMtmr);
1894 if (ACPI_FAILURE (Status))
1895 {
1896 return;
1897 }

1899 /* Sub-tables */

1901 SubTable = ACPI_ADD_PTR (ACPI_MTMR_ENTRY, Table, Offset);
1902 while (Offset < Table->Length)
1903 {
1904 /* Common sub-table header */

1906 AcpiOsPrintf ("\n");
1907 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable,

new/usr/src/common/acpica/common/dmtbdump.c 30

1908 sizeof (ACPI_MTMR_ENTRY), AcpiDmTableInfoMtmr0);
1909 if (ACPI_FAILURE (Status))
1910 {
1911 return;
1912 }

1914 /* Point to next sub-table */

1916 Offset += sizeof (ACPI_MTMR_ENTRY);
1917 SubTable = ACPI_ADD_PTR (ACPI_MTMR_ENTRY, SubTable, sizeof (ACPI_MTMR_EN
1918 }
1919 }

1922 /***
1923 *
1924 * FUNCTION: AcpiDmDumpPcct
1925 *
1926 * PARAMETERS: Table - A PCCT table
1927 *
1928 * RETURN: None
1929 *
1930 * DESCRIPTION: Format the contents of a PCCT. This table type consists
1931 * of an open-ended number of subtables.
1932 *
1933 **/

1935 void
1936 AcpiDmDumpPcct (
1937 ACPI_TABLE_HEADER *Table)
1938 {
1939 ACPI_STATUS Status;
1940 ACPI_PCCT_SUBSPACE *SubTable;
1941 UINT32 Length = Table->Length;
1942 UINT32 Offset = sizeof (ACPI_TABLE_PCCT);

1945 /* Main table */

1947 Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoPcct);
1948 if (ACPI_FAILURE (Status))
1949 {
1950 return;
1951 }

1953 /* Subtables */

1955 SubTable = ACPI_ADD_PTR (ACPI_PCCT_SUBSPACE, Table, Offset);
1956 while (Offset < Table->Length)
1957 {
1958 /* Common subtable header */

1960 AcpiOsPrintf ("\n");
1961 Status = AcpiDmDumpTable (Length, Offset, SubTable,
1962 SubTable->Header.Length, AcpiDmTableInfoPcctHdr);
1963 if (ACPI_FAILURE (Status))
1964 {
1965 return;
1966 }

1968 /* ACPI 5.0: Only one type of PCCT subtable is supported */

1970 if (SubTable->Header.Type != ACPI_PCCT_TYPE_GENERIC_SUBSPACE)
1971 {
1972 AcpiOsPrintf (
1973 "\n**** Unexpected or unknown PCCT subtable type 0x%X\n\n",

new/usr/src/common/acpica/common/dmtbdump.c 31

1974 SubTable->Header.Type);
1975 return;
1976 }

1978 AcpiOsPrintf ("\n");
1979 Status = AcpiDmDumpTable (Length, Offset, SubTable,
1980 SubTable->Header.Length, AcpiDmTableInfoPcct0);
1981 if (ACPI_FAILURE (Status))
1982 {
1983 return;
1984 }

1986 /* Point to next subtable */

1988 Offset += SubTable->Header.Length;
1989 SubTable = ACPI_ADD_PTR (ACPI_PCCT_SUBSPACE, SubTable,
1990 SubTable->Header.Length);
1991 }
1992 }

1995 /***
1996 *
1997 * FUNCTION: AcpiDmDumpPmtt
1998 *
1999 * PARAMETERS: Table - A PMTT table
2000 *
2001 * RETURN: None
2002 *
2003 * DESCRIPTION: Format the contents of a PMTT. This table type consists
2004 * of an open-ended number of subtables.
2005 *
2006 **/

2008 void
2009 AcpiDmDumpPmtt (
2010 ACPI_TABLE_HEADER *Table)
2011 {
2012 ACPI_STATUS Status;
2013 ACPI_PMTT_HEADER *SubTable;
2014 ACPI_PMTT_HEADER *MemSubTable;
2015 ACPI_PMTT_HEADER *DimmSubTable;
2016 ACPI_PMTT_DOMAIN *DomainArray;
2017 UINT32 Length = Table->Length;
2018 UINT32 Offset = sizeof (ACPI_TABLE_PMTT);
2019 UINT32 MemOffset;
2020 UINT32 DimmOffset;
2021 UINT32 DomainOffset;
2022 UINT32 DomainCount;

2025 /* Main table */

2027 Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoPmtt);
2028 if (ACPI_FAILURE (Status))
2029 {
2030 return;
2031 }

2033 /* Subtables */

2035 SubTable = ACPI_ADD_PTR (ACPI_PMTT_HEADER, Table, Offset);
2036 while (Offset < Table->Length)
2037 {
2038 /* Common subtable header */

new/usr/src/common/acpica/common/dmtbdump.c 32

2040 AcpiOsPrintf ("\n");
2041 Status = AcpiDmDumpTable (Length, Offset, SubTable,
2042 SubTable->Length, AcpiDmTableInfoPmttHdr);
2043 if (ACPI_FAILURE (Status))
2044 {
2045 return;
2046 }

2048 /* Only Socket subtables are expected at this level */

2050 if (SubTable->Type != ACPI_PMTT_TYPE_SOCKET)
2051 {
2052 AcpiOsPrintf (
2053 "\n**** Unexpected or unknown PMTT subtable type 0x%X\n\n",
2054 SubTable->Type);
2055 return;
2056 }

2058 /* Dump the fixed-length portion of the subtable */

2060 Status = AcpiDmDumpTable (Length, Offset, SubTable,
2061 SubTable->Length, AcpiDmTableInfoPmtt0);
2062 if (ACPI_FAILURE (Status))
2063 {
2064 return;
2065 }

2067 /* Walk the memory controller subtables */

2069 MemOffset = sizeof (ACPI_PMTT_SOCKET);
2070 MemSubTable = ACPI_ADD_PTR (ACPI_PMTT_HEADER, SubTable,
2071 sizeof (ACPI_PMTT_SOCKET));

2073 while (((Offset + MemOffset) < Table->Length) &&
2074 (MemOffset < SubTable->Length))
2075 {
2076 /* Common subtable header */

2078 AcpiOsPrintf ("\n");
2079 Status = AcpiDmDumpTable (Length,
2080 Offset + MemOffset, MemSubTable,
2081 MemSubTable->Length, AcpiDmTableInfoPmttHdr);
2082 if (ACPI_FAILURE (Status))
2083 {
2084 return;
2085 }

2087 /* Only memory controller subtables are expected at this level */

2089 if (MemSubTable->Type != ACPI_PMTT_TYPE_CONTROLLER)
2090 {
2091 AcpiOsPrintf (
2092 "\n**** Unexpected or unknown PMTT subtable type 0x%X\n\n",
2093 MemSubTable->Type);
2094 return;
2095 }

2097 /* Dump the fixed-length portion of the controller subtable */

2099 Status = AcpiDmDumpTable (Length,
2100 Offset + MemOffset, MemSubTable,
2101 MemSubTable->Length, AcpiDmTableInfoPmtt1);
2102 if (ACPI_FAILURE (Status))
2103 {
2104 return;
2105 }

new/usr/src/common/acpica/common/dmtbdump.c 33

2107 /* Walk the variable count of proximity domains */

2109 DomainCount = ((ACPI_PMTT_CONTROLLER *) MemSubTable)->DomainCount;
2110 DomainOffset = sizeof (ACPI_PMTT_CONTROLLER);
2111 DomainArray = ACPI_ADD_PTR (ACPI_PMTT_DOMAIN, MemSubTable,
2112 sizeof (ACPI_PMTT_CONTROLLER));

2114 while (((Offset + MemOffset + DomainOffset) < Table->Length) &&
2115 ((MemOffset + DomainOffset) < SubTable->Length) &&
2116 DomainCount)
2117 {
2118 Status = AcpiDmDumpTable (Length,
2119 Offset + MemOffset + DomainOffset, DomainArray,
2120 sizeof (ACPI_PMTT_DOMAIN), AcpiDmTableInfoPmtt1a);
2121 if (ACPI_FAILURE (Status))
2122 {
2123 return;
2124 }

2126 DomainOffset += sizeof (ACPI_PMTT_DOMAIN);
2127 DomainArray++;
2128 DomainCount--;
2129 }

2131 if (DomainCount)
2132 {
2133 AcpiOsPrintf (
2134 "\n**** DomainCount exceeds subtable length\n\n",
2135 MemSubTable->Type);
2136 }

2138 /* Walk the physical component (DIMM) subtables */

2140 DimmOffset = DomainOffset;
2141 DimmSubTable = ACPI_ADD_PTR (ACPI_PMTT_HEADER, MemSubTable,
2142 DomainOffset);

2144 while (((Offset + MemOffset + DimmOffset) < Table->Length) &&
2145 (DimmOffset < MemSubTable->Length))
2146 {
2147 /* Common subtable header */

2149 AcpiOsPrintf ("\n");
2150 Status = AcpiDmDumpTable (Length,
2151 Offset + MemOffset + DimmOffset, DimmSubTable,
2152 DimmSubTable->Length, AcpiDmTableInfoPmttHdr);
2153 if (ACPI_FAILURE (Status))
2154 {
2155 return;
2156 }

2158 /* Only DIMM subtables are expected at this level */

2160 if (DimmSubTable->Type != ACPI_PMTT_TYPE_DIMM)
2161 {
2162 AcpiOsPrintf (
2163 "\n**** Unexpected or unknown PMTT subtable type 0x%X\n\
2164 DimmSubTable->Type);
2165 return;
2166 }

2168 /* Dump the fixed-length DIMM subtable */

2170 Status = AcpiDmDumpTable (Length,
2171 Offset + MemOffset + DimmOffset, DimmSubTable,

new/usr/src/common/acpica/common/dmtbdump.c 34

2172 DimmSubTable->Length, AcpiDmTableInfoPmtt2);
2173 if (ACPI_FAILURE (Status))
2174 {
2175 return;
2176 }

2178 /* Point to next DIMM subtable */

2180 DimmOffset += DimmSubTable->Length;
2181 DimmSubTable = ACPI_ADD_PTR (ACPI_PMTT_HEADER,
2182 DimmSubTable, DimmSubTable->Length);
2183 }

2185 /* Point to next Controller subtable */

2187 MemOffset += MemSubTable->Length;
2188 MemSubTable = ACPI_ADD_PTR (ACPI_PMTT_HEADER,
2189 MemSubTable, MemSubTable->Length);
2190 }

2192 /* Point to next Socket subtable */

2194 Offset += SubTable->Length;
2195 SubTable = ACPI_ADD_PTR (ACPI_PMTT_HEADER,
2196 SubTable, SubTable->Length);
2197 }
2198 }

2201 /***
2202 *
2203 * FUNCTION: AcpiDmDumpS3pt
2204 *
2205 * PARAMETERS: Table - A S3PT table
2206 *
2207 * RETURN: Length of the table
2208 *
2209 * DESCRIPTION: Format the contents of a S3PT
2210 *
2211 **/

2213 UINT32
2214 AcpiDmDumpS3pt (
2215 ACPI_TABLE_HEADER *Tables)
2216 {
2217 ACPI_STATUS Status;
2218 UINT32 Offset = sizeof (ACPI_TABLE_S3PT);
2219 ACPI_S3PT_HEADER *SubTable;
2220 ACPI_DMTABLE_INFO *InfoTable;
2221 ACPI_TABLE_S3PT *S3ptTable = ACPI_CAST_PTR (ACPI_TABLE_S3PT, Tables)

2224 /* Main table */

2226 Status = AcpiDmDumpTable (Offset, 0, S3ptTable, 0, AcpiDmTableInfoS3pt);
2227 if (ACPI_FAILURE (Status))
2228 {
2229 return 0;
2230 }

2232 SubTable = ACPI_ADD_PTR (ACPI_S3PT_HEADER, S3ptTable, Offset);
2233 while (Offset < S3ptTable->Length)
2234 {
2235 /* Common sub-table header */

2237 AcpiOsPrintf ("\n");

new/usr/src/common/acpica/common/dmtbdump.c 35

2238 Status = AcpiDmDumpTable (S3ptTable->Length, Offset, SubTable,
2239 SubTable->Length, AcpiDmTableInfoS3ptHdr);
2240 if (ACPI_FAILURE (Status))
2241 {
2242 return 0;
2243 }

2245 switch (SubTable->Type)
2246 {
2247 case ACPI_S3PT_TYPE_RESUME:

2249 InfoTable = AcpiDmTableInfoS3pt0;
2250 break;

2252 case ACPI_S3PT_TYPE_SUSPEND:

2254 InfoTable = AcpiDmTableInfoS3pt1;
2255 break;

2257 default:

2259 AcpiOsPrintf ("\n**** Unknown S3PT sub-table type 0x%X\n", SubTable-

2261 /* Attempt to continue */

2263 if (!SubTable->Length)
2264 {
2265 AcpiOsPrintf ("Invalid zero length subtable\n");
2266 return 0;
2267 }
2268 goto NextSubTable;
2269 }

2271 AcpiOsPrintf ("\n");
2272 Status = AcpiDmDumpTable (S3ptTable->Length, Offset, SubTable,
2273 SubTable->Length, InfoTable);
2274 if (ACPI_FAILURE (Status))
2275 {
2276 return 0;
2277 }

2279 NextSubTable:
2280 /* Point to next sub-table */

2282 Offset += SubTable->Length;
2283 SubTable = ACPI_ADD_PTR (ACPI_S3PT_HEADER, SubTable, SubTable->Length);
2284 }

2286 return (S3ptTable->Length);
2287 }

2290 /***
2291 *
2292 * FUNCTION: AcpiDmDumpSlic
2293 *
2294 * PARAMETERS: Table - A SLIC table
2295 *
2296 * RETURN: None
2297 *
2298 * DESCRIPTION: Format the contents of a SLIC
2299 *
2300 **/

2302 void
2303 AcpiDmDumpSlic (

new/usr/src/common/acpica/common/dmtbdump.c 36

2304 ACPI_TABLE_HEADER *Table)
2305 {
2306 ACPI_STATUS Status;
2307 UINT32 Offset = sizeof (ACPI_TABLE_SLIC);
2308 ACPI_SLIC_HEADER *SubTable;
2309 ACPI_DMTABLE_INFO *InfoTable;

2312 /* There is no main SLIC table, only subtables */

2314 SubTable = ACPI_ADD_PTR (ACPI_SLIC_HEADER, Table, Offset);
2315 while (Offset < Table->Length)
2316 {
2317 /* Common sub-table header */

2319 AcpiOsPrintf ("\n");
2320 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable,
2321 SubTable->Length, AcpiDmTableInfoSlicHdr);
2322 if (ACPI_FAILURE (Status))
2323 {
2324 return;
2325 }

2327 switch (SubTable->Type)
2328 {
2329 case ACPI_SLIC_TYPE_PUBLIC_KEY:

2331 InfoTable = AcpiDmTableInfoSlic0;
2332 break;

2334 case ACPI_SLIC_TYPE_WINDOWS_MARKER:

2336 InfoTable = AcpiDmTableInfoSlic1;
2337 break;

2339 default:

2341 AcpiOsPrintf ("\n**** Unknown SLIC sub-table type 0x%X\n", SubTable-

2343 /* Attempt to continue */

2345 if (!SubTable->Length)
2346 {
2347 AcpiOsPrintf ("Invalid zero length subtable\n");
2348 return;
2349 }
2350 goto NextSubTable;
2351 }

2353 AcpiOsPrintf ("\n");
2354 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable,
2355 SubTable->Length, InfoTable);
2356 if (ACPI_FAILURE (Status))
2357 {
2358 return;
2359 }

2361 NextSubTable:
2362 /* Point to next sub-table */

2364 Offset += SubTable->Length;
2365 SubTable = ACPI_ADD_PTR (ACPI_SLIC_HEADER, SubTable, SubTable->Length);
2366 }
2367 }

new/usr/src/common/acpica/common/dmtbdump.c 37

2370 /***
2371 *
2372 * FUNCTION: AcpiDmDumpSlit
2373 *
2374 * PARAMETERS: Table - An SLIT
2375 *
2376 * RETURN: None
2377 *
2378 * DESCRIPTION: Format the contents of a SLIT
2379 *
2380 **/

2382 void
2383 AcpiDmDumpSlit (
2384 ACPI_TABLE_HEADER *Table)
2385 {
2386 ACPI_STATUS Status;
2387 UINT32 Offset;
2388 UINT8 *Row;
2389 UINT32 Localities;
2390 UINT32 i;
2391 UINT32 j;

2394 /* Main table */

2396 Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoSlit);
2397 if (ACPI_FAILURE (Status))
2398 {
2399 return;
2400 }

2402 /* Display the Locality NxN Matrix */

2404 Localities = (UINT32) ACPI_CAST_PTR (ACPI_TABLE_SLIT, Table)->LocalityCount;
2405 Offset = ACPI_OFFSET (ACPI_TABLE_SLIT, Entry[0]);
2406 Row = (UINT8 *) ACPI_CAST_PTR (ACPI_TABLE_SLIT, Table)->Entry;

2408 for (i = 0; i < Localities; i++)
2409 {
2410 /* Display one row of the matrix */

2412 AcpiDmLineHeader2 (Offset, Localities, "Locality", i);
2413 for (j = 0; j < Localities; j++)
2414 {
2415 /* Check for beyond EOT */

2417 if (Offset >= Table->Length)
2418 {
2419 AcpiOsPrintf ("\n**** Not enough room in table for all localitie
2420 return;
2421 }

2423 AcpiOsPrintf ("%2.2X", Row[j]);
2424 Offset++;

2426 /* Display up to 16 bytes per output row */

2428 if ((j+1) < Localities)
2429 {
2430 AcpiOsPrintf (" ");

2432 if (j && (((j+1) % 16) == 0))
2433 {
2434 AcpiOsPrintf ("\\\n"); /* With line continuation char */
2435 AcpiDmLineHeader (Offset, 0, NULL);

new/usr/src/common/acpica/common/dmtbdump.c 38

2436 }
2437 }
2438 }

2440 /* Point to next row */

2442 AcpiOsPrintf ("\n");
2443 Row += Localities;
2444 }
2445 }

2448 /***
2449 *
2450 * FUNCTION: AcpiDmDumpSrat
2451 *
2452 * PARAMETERS: Table - A SRAT table
2453 *
2454 * RETURN: None
2455 *
2456 * DESCRIPTION: Format the contents of a SRAT
2457 *
2458 **/

2460 void
2461 AcpiDmDumpSrat (
2462 ACPI_TABLE_HEADER *Table)
2463 {
2464 ACPI_STATUS Status;
2465 UINT32 Offset = sizeof (ACPI_TABLE_SRAT);
2466 ACPI_SUBTABLE_HEADER *SubTable;
2467 ACPI_DMTABLE_INFO *InfoTable;

2470 /* Main table */

2472 Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoSrat);
2473 if (ACPI_FAILURE (Status))
2474 {
2475 return;
2476 }

2478 /* Sub-tables */

2480 SubTable = ACPI_ADD_PTR (ACPI_SUBTABLE_HEADER, Table, Offset);
2481 while (Offset < Table->Length)
2482 {
2483 /* Common sub-table header */

2485 AcpiOsPrintf ("\n");
2486 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable,
2487 SubTable->Length, AcpiDmTableInfoSratHdr);
2488 if (ACPI_FAILURE (Status))
2489 {
2490 return;
2491 }

2493 switch (SubTable->Type)
2494 {
2495 case ACPI_SRAT_TYPE_CPU_AFFINITY:

2497 InfoTable = AcpiDmTableInfoSrat0;
2498 break;

2500 case ACPI_SRAT_TYPE_MEMORY_AFFINITY:

new/usr/src/common/acpica/common/dmtbdump.c 39

2502 InfoTable = AcpiDmTableInfoSrat1;
2503 break;

2505 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY:

2507 InfoTable = AcpiDmTableInfoSrat2;
2508 break;

2510 default:
2511 AcpiOsPrintf ("\n**** Unknown SRAT sub-table type 0x%X\n", SubTable-

2513 /* Attempt to continue */

2515 if (!SubTable->Length)
2516 {
2517 AcpiOsPrintf ("Invalid zero length subtable\n");
2518 return;
2519 }
2520 goto NextSubTable;
2521 }

2523 AcpiOsPrintf ("\n");
2524 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable,
2525 SubTable->Length, InfoTable);
2526 if (ACPI_FAILURE (Status))
2527 {
2528 return;
2529 }

2531 NextSubTable:
2532 /* Point to next sub-table */

2534 Offset += SubTable->Length;
2535 SubTable = ACPI_ADD_PTR (ACPI_SUBTABLE_HEADER, SubTable, SubTable->Lengt
2536 }
2537 }

2540 /***
2541 *
2542 * FUNCTION: AcpiDmDumpVrtc
2543 *
2544 * PARAMETERS: Table - A VRTC table
2545 *
2546 * RETURN: None
2547 *
2548 * DESCRIPTION: Format the contents of a VRTC
2549 *
2550 **/

2552 void
2553 AcpiDmDumpVrtc (
2554 ACPI_TABLE_HEADER *Table)
2555 {
2556 ACPI_STATUS Status;
2557 UINT32 Offset = sizeof (ACPI_TABLE_VRTC);
2558 ACPI_VRTC_ENTRY *SubTable;

2561 /* Main table */

2563 Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoVrtc);
2564 if (ACPI_FAILURE (Status))
2565 {
2566 return;
2567 }

new/usr/src/common/acpica/common/dmtbdump.c 40

2569 /* Sub-tables */

2571 SubTable = ACPI_ADD_PTR (ACPI_VRTC_ENTRY, Table, Offset);
2572 while (Offset < Table->Length)
2573 {
2574 /* Common sub-table header */

2576 AcpiOsPrintf ("\n");
2577 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable,
2578 sizeof (ACPI_VRTC_ENTRY), AcpiDmTableInfoVrtc0);
2579 if (ACPI_FAILURE (Status))
2580 {
2581 return;
2582 }

2584 /* Point to next sub-table */

2586 Offset += sizeof (ACPI_VRTC_ENTRY);
2587 SubTable = ACPI_ADD_PTR (ACPI_VRTC_ENTRY, SubTable, sizeof (ACPI_VRTC_EN
2588 }
2589 }

2592 /***
2593 *
2594 * FUNCTION: AcpiDmDumpWdat
2595 *
2596 * PARAMETERS: Table - A WDAT table
2597 *
2598 * RETURN: None
2599 *
2600 * DESCRIPTION: Format the contents of a WDAT
2601 *
2602 **/

2604 void
2605 AcpiDmDumpWdat (
2606 ACPI_TABLE_HEADER *Table)
2607 {
2608 ACPI_STATUS Status;
2609 UINT32 Offset = sizeof (ACPI_TABLE_WDAT);
2610 ACPI_WDAT_ENTRY *SubTable;

2613 /* Main table */

2615 Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoWdat);
2616 if (ACPI_FAILURE (Status))
2617 {
2618 return;
2619 }

2621 /* Sub-tables */

2623 SubTable = ACPI_ADD_PTR (ACPI_WDAT_ENTRY, Table, Offset);
2624 while (Offset < Table->Length)
2625 {
2626 /* Common sub-table header */

2628 AcpiOsPrintf ("\n");
2629 Status = AcpiDmDumpTable (Table->Length, Offset, SubTable,
2630 sizeof (ACPI_WDAT_ENTRY), AcpiDmTableInfoWdat0);
2631 if (ACPI_FAILURE (Status))
2632 {
2633 return;

new/usr/src/common/acpica/common/dmtbdump.c 41

2634 }

2636 /* Point to next sub-table */

2638 Offset += sizeof (ACPI_WDAT_ENTRY);
2639 SubTable = ACPI_ADD_PTR (ACPI_WDAT_ENTRY, SubTable, sizeof (ACPI_WDAT_EN
2640 }
2641 }

new/usr/src/common/acpica/common/dmtbinfo.c 1

**
 109757 Thu Dec 26 13:48:25 2013
new/usr/src/common/acpica/common/dmtbinfo.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dmtbinfo - Table info for non-AML tables
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "acdisasm.h"

48 /* This module used for application-level code only */

50 #define _COMPONENT ACPI_CA_DISASSEMBLER
51 ACPI_MODULE_NAME ("dmtbinfo")

53 /*
54 * How to add a new table:
55 *
56 * - Add the C table definition to the actbl1.h or actbl2.h header.
57 * - Add ACPI_xxxx_OFFSET macro(s) for the table (and subtables) to list below.
58 * - Define the table in this file (for the disassembler). If any
59 * new data types are required (ACPI_DMT_*), see below.

new/usr/src/common/acpica/common/dmtbinfo.c 2

60 * - Add an external declaration for the new table definition (AcpiDmTableInfo*)
61 * in acdisam.h
62 * - Add new table definition to the dispatch table in dmtable.c (AcpiDmTableDat
63 * If a simple table (with no subtables), no disassembly code is needed.
64 * Otherwise, create the AcpiDmDump* function for to disassemble the table
65 * and add it to the dmtbdump.c file.
66 * - Add an external declaration for the new AcpiDmDump* function in acdisasm.h
67 * - Add the new AcpiDmDump* function to the dispatch table in dmtable.c
68 * - Create a template for the new table
69 * - Add data table compiler support
70 *
71 * How to add a new data type (ACPI_DMT_*):
72 *
73 * - Add new type at the end of the ACPI_DMT list in acdisasm.h
74 * - Add length and implementation cases in dmtable.c (disassembler)
75 * - Add type and length cases in dtutils.c (DT compiler)
76 */

78 /*
79 * Macros used to generate offsets to specific table fields
80 */
81 #define ACPI_FACS_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_FACS,f)
82 #define ACPI_GAS_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_GENERIC_ADDRE
83 #define ACPI_HDR_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_HEADER,
84 #define ACPI_RSDP_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_RSDP,f)
85 #define ACPI_BERT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_BERT,f)
86 #define ACPI_BGRT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_BGRT,f)
87 #define ACPI_BOOT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_BOOT,f)
88 #define ACPI_CPEP_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_CPEP,f)
89 #define ACPI_DBG2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_DBG2,f)
90 #define ACPI_DBGP_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_DBGP,f)
91 #define ACPI_DMAR_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_DMAR,f)
92 #define ACPI_DRTM_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_DRTM,f)
93 #define ACPI_ECDT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_ECDT,f)
94 #define ACPI_EINJ_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_EINJ,f)
95 #define ACPI_ERST_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_ERST,f)
96 #define ACPI_GTDT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_GTDT,f)
97 #define ACPI_HEST_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_HEST,f)
98 #define ACPI_HPET_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_HPET,f)
99 #define ACPI_IVRS_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_IVRS,f)
100 #define ACPI_MADT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_MADT,f)
101 #define ACPI_MCFG_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_MCFG,f)
102 #define ACPI_MCHI_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_MCHI,f)
103 #define ACPI_MPST_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_MPST,f)
104 #define ACPI_MSCT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_MSCT,f)
105 #define ACPI_PCCT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_PCCT,f)
106 #define ACPI_PMTT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_PMTT,f)
107 #define ACPI_S3PT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_S3PT,f)
108 #define ACPI_SBST_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_SBST,f)
109 #define ACPI_SLIT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_SLIT,f)
110 #define ACPI_SPCR_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_SPCR,f)
111 #define ACPI_SPMI_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_SPMI,f)
112 #define ACPI_SRAT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_SRAT,f)
113 #define ACPI_TCPA_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_TCPA,f)
114 #define ACPI_TPM2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_TPM2,f)
115 #define ACPI_UEFI_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_UEFI,f)
116 #define ACPI_WAET_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_WAET,f)
117 #define ACPI_WDAT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_WDAT,f)
118 #define ACPI_WDDT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_WDDT,f)
119 #define ACPI_WDRT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_WDRT,f)

121 /* Subtables */

123 #define ACPI_ASF0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_ASF_INFO,f)
124 #define ACPI_ASF1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_ASF_ALERT,f)
125 #define ACPI_ASF1a_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_ASF_ALERT_DAT

new/usr/src/common/acpica/common/dmtbinfo.c 3

126 #define ACPI_ASF2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_ASF_REMOTE,f)
127 #define ACPI_ASF2a_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_ASF_CONTROL_D
128 #define ACPI_ASF3_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_ASF_RMCP,f)
129 #define ACPI_ASF4_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_ASF_ADDRESS,f
130 #define ACPI_CPEP0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_CPEP_POLLING,
131 #define ACPI_CSRT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_CSRT_GROUP,f)
132 #define ACPI_CSRT1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_CSRT_SHARED_I
133 #define ACPI_CSRT2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_CSRT_DESCRIPT
134 #define ACPI_DBG20_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_DBG2_DEVICE,f
135 #define ACPI_DMARS_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_DMAR_DEVICE_S
136 #define ACPI_DMAR0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_DMAR_HARDWARE
137 #define ACPI_DMAR1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_DMAR_RESERVED
138 #define ACPI_DMAR2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_DMAR_ATSR,f)
139 #define ACPI_DMAR3_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_DMAR_RHSA,f)
140 #define ACPI_EINJ0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_WHEA_HEADER,f
141 #define ACPI_ERST0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_WHEA_HEADER,f
142 #define ACPI_FPDTH_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_FPDT_HEADER,f
143 #define ACPI_FPDT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_FPDT_BOOT,f)
144 #define ACPI_FPDT1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_FPDT_S3PT_PTR
145 #define ACPI_HEST0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_IA_MACHI
146 #define ACPI_HEST1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_IA_CORRE
147 #define ACPI_HEST2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_IA_NMI,f
148 #define ACPI_HEST6_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_AER_ROOT
149 #define ACPI_HEST7_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_AER,f)
150 #define ACPI_HEST8_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_AER_BRID
151 #define ACPI_HEST9_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_GENERIC,
152 #define ACPI_HESTN_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_NOTIFY,f
153 #define ACPI_HESTB_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_IA_ERROR
154 #define ACPI_IVRSH_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IVRS_HEADER,f
155 #define ACPI_IVRS0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IVRS_HARDWARE
156 #define ACPI_IVRS1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IVRS_MEMORY,f
157 #define ACPI_IVRSD_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IVRS_DE_HEADE
158 #define ACPI_IVRS8A_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IVRS_DEVICE8A
159 #define ACPI_IVRS8B_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IVRS_DEVICE8B
160 #define ACPI_IVRS8C_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IVRS_DEVICE8C
161 #define ACPI_MADT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_LOCAL_AP
162 #define ACPI_MADT1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_IO_APIC,
163 #define ACPI_MADT2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_INTERRUP
164 #define ACPI_MADT3_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_NMI_SOUR
165 #define ACPI_MADT4_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_LOCAL_AP
166 #define ACPI_MADT5_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_LOCAL_AP
167 #define ACPI_MADT6_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_IO_SAPIC
168 #define ACPI_MADT7_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_LOCAL_SA
169 #define ACPI_MADT8_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_INTERRUP
170 #define ACPI_MADT9_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_LOCAL_X2
171 #define ACPI_MADT10_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_LOCAL_X2
172 #define ACPI_MADT11_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_GENERIC_
173 #define ACPI_MADT12_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_GENERIC_
174 #define ACPI_MADTH_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_SUBTABLE_HEAD
175 #define ACPI_MCFG0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MCFG_ALLOCATI
176 #define ACPI_MPST0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MPST_POWER_NO
177 #define ACPI_MPST0A_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MPST_POWER_ST
178 #define ACPI_MPST0B_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MPST_COMPONEN
179 #define ACPI_MPST1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MPST_DATA_HDR
180 #define ACPI_MPST2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MPST_POWER_DA
181 #define ACPI_MSCT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MSCT_PROXIMIT
182 #define ACPI_MTMR0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MTMR_ENTRY,f)
183 #define ACPI_PCCT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_PCCT_SUBSPACE
184 #define ACPI_PMTT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_PMTT_SOCKET,f
185 #define ACPI_PMTT1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_PMTT_CONTROLL
186 #define ACPI_PMTT1A_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_PMTT_DOMAIN,f
187 #define ACPI_PMTT2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_PMTT_PHYSICAL
188 #define ACPI_PMTTH_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_PMTT_HEADER,f
189 #define ACPI_S3PTH_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_S3PT_HEADER,f
190 #define ACPI_S3PT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_S3PT_RESUME,f
191 #define ACPI_S3PT1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_S3PT_SUSPEND,

new/usr/src/common/acpica/common/dmtbinfo.c 4

192 #define ACPI_SLICH_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_SLIC_HEADER,f
193 #define ACPI_SLIC0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_SLIC_KEY,f)
194 #define ACPI_SLIC1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_SLIC_MARKER,f
195 #define ACPI_SRATH_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_SUBTABLE_HEAD
196 #define ACPI_SRAT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_SRAT_CPU_AFFI
197 #define ACPI_SRAT1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_SRAT_MEM_AFFI
198 #define ACPI_SRAT2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_SRAT_X2APIC_C
199 #define ACPI_VRTC0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_VRTC_ENTRY,f)
200 #define ACPI_WDAT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_WDAT_ENTRY,f)

202 /*
203 * Simplify access to flag fields by breaking them up into bytes
204 */
205 #define ACPI_FLAG_OFFSET(d,f,o) (UINT16) (ACPI_OFFSET (d,f) + o)

207 /* Flags */

209 #define ACPI_FADT_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_TABLE_FADT,f,o)
210 #define ACPI_FACS_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_TABLE_FACS,f,o)
211 #define ACPI_HPET_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_TABLE_HPET,f,o)
212 #define ACPI_SRAT0_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_SRAT_CPU_AFFINITY
213 #define ACPI_SRAT1_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_SRAT_MEM_AFFINITY
214 #define ACPI_SRAT2_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_SRAT_X2APIC_CPU_A
215 #define ACPI_GTDT_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_TABLE_GTDT,f,o)
216 #define ACPI_MADT_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_TABLE_MADT,f,o)
217 #define ACPI_MADT0_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_LOCAL_APIC,f
218 #define ACPI_MADT2_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_INTERRUPT_OV
219 #define ACPI_MADT3_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_NMI_SOURCE,f
220 #define ACPI_MADT4_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_LOCAL_APIC_N
221 #define ACPI_MADT7_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_LOCAL_SAPIC,
222 #define ACPI_MADT8_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_INTERRUPT_SO
223 #define ACPI_MADT9_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_LOCAL_X2APIC
224 #define ACPI_MADT10_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_LOCAL_X2APIC
225 #define ACPI_MADT11_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_GENERIC_INTE
226 #define ACPI_MPST0_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MPST_POWER_NODE,f
227 #define ACPI_MPST2_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MPST_POWER_DATA,f
228 #define ACPI_PCCT_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_TABLE_PCCT,f,o)
229 #define ACPI_PMTTH_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_PMTT_HEADER,f,o)
230 #define ACPI_WDDT_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_TABLE_WDDT,f,o)
231 #define ACPI_EINJ0_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_WHEA_HEADER,f,o)
232 #define ACPI_ERST0_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_WHEA_HEADER,f,o)
233 #define ACPI_HEST0_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_HEST_IA_MACHINE_C
234 #define ACPI_HEST1_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_HEST_IA_CORRECTED
235 #define ACPI_HEST6_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_HEST_AER_ROOT,f,o

237 /*
238 * Required terminator for all tables below
239 */
240 #define ACPI_DMT_TERMINATOR {ACPI_DMT_EXIT, 0, NULL, 0}
241 #define ACPI_DMT_NEW_LINE {ACPI_DMT_EXTRA_TEXT, 0, "\n", 0}

244 /*
245 * ACPI Table Information, used to dump formatted ACPI tables
246 *
247 * Each entry is of the form: <Field Type, Field Offset, Field Name>
248 */

250 /***
251 *
252 * Common ACPI table header
253 *
254 **/

256 ACPI_DMTABLE_INFO AcpiDmTableInfoHeader[] =
257 {

new/usr/src/common/acpica/common/dmtbinfo.c 5

258 {ACPI_DMT_SIG, ACPI_HDR_OFFSET (Signature[0]), "Signature",
259 {ACPI_DMT_UINT32, ACPI_HDR_OFFSET (Length), "Table Lengt
260 {ACPI_DMT_UINT8, ACPI_HDR_OFFSET (Revision), "Revision",
261 {ACPI_DMT_CHKSUM, ACPI_HDR_OFFSET (Checksum), "Checksum",
262 {ACPI_DMT_NAME6, ACPI_HDR_OFFSET (OemId[0]), "Oem ID", 0}
263 {ACPI_DMT_NAME8, ACPI_HDR_OFFSET (OemTableId[0]), "Oem Table I
264 {ACPI_DMT_UINT32, ACPI_HDR_OFFSET (OemRevision), "Oem Revisio
265 {ACPI_DMT_NAME4, ACPI_HDR_OFFSET (AslCompilerId[0]), "Asl Compile
266 {ACPI_DMT_UINT32, ACPI_HDR_OFFSET (AslCompilerRevision), "Asl Compile
267 ACPI_DMT_TERMINATOR
268 };

271 /***
272 *
273 * GAS - Generic Address Structure
274 *
275 **/

277 ACPI_DMTABLE_INFO AcpiDmTableInfoGas[] =
278 {
279 {ACPI_DMT_SPACEID, ACPI_GAS_OFFSET (SpaceId), "Space ID",
280 {ACPI_DMT_UINT8, ACPI_GAS_OFFSET (BitWidth), "Bit Width",
281 {ACPI_DMT_UINT8, ACPI_GAS_OFFSET (BitOffset), "Bit Offset"
282 {ACPI_DMT_ACCWIDTH, ACPI_GAS_OFFSET (AccessWidth), "Encoded Acc
283 {ACPI_DMT_UINT64, ACPI_GAS_OFFSET (Address), "Address", 0
284 ACPI_DMT_TERMINATOR
285 };

288 /***
289 *
290 * RSDP - Root System Description Pointer (Signature is "RSD PTR ")
291 *
292 **/

294 ACPI_DMTABLE_INFO AcpiDmTableInfoRsdp1[] =
295 {
296 {ACPI_DMT_NAME8, ACPI_RSDP_OFFSET (Signature[0]), "Signature",
297 {ACPI_DMT_UINT8, ACPI_RSDP_OFFSET (Checksum), "Checksum",
298 {ACPI_DMT_NAME6, ACPI_RSDP_OFFSET (OemId[0]), "Oem ID", 0}
299 {ACPI_DMT_UINT8, ACPI_RSDP_OFFSET (Revision), "Revision",
300 {ACPI_DMT_UINT32, ACPI_RSDP_OFFSET (RsdtPhysicalAddress), "RSDT Addres
301 ACPI_DMT_TERMINATOR
302 };

304 /* ACPI 2.0+ Extensions */

306 ACPI_DMTABLE_INFO AcpiDmTableInfoRsdp2[] =
307 {
308 {ACPI_DMT_UINT32, ACPI_RSDP_OFFSET (Length), "Length", DT
309 {ACPI_DMT_UINT64, ACPI_RSDP_OFFSET (XsdtPhysicalAddress), "XSDT Addres
310 {ACPI_DMT_UINT8, ACPI_RSDP_OFFSET (ExtendedChecksum), "Extended Ch
311 {ACPI_DMT_UINT24, ACPI_RSDP_OFFSET (Reserved[0]), "Reserved",
312 ACPI_DMT_TERMINATOR
313 };

316 /***
317 *
318 * FACS - Firmware ACPI Control Structure
319 *
320 **/

322 ACPI_DMTABLE_INFO AcpiDmTableInfoFacs[] =
323 {

new/usr/src/common/acpica/common/dmtbinfo.c 6

324 {ACPI_DMT_NAME4, ACPI_FACS_OFFSET (Signature[0]), "Signature",
325 {ACPI_DMT_UINT32, ACPI_FACS_OFFSET (Length), "Length", DT
326 {ACPI_DMT_UINT32, ACPI_FACS_OFFSET (HardwareSignature), "Hardware Si
327 {ACPI_DMT_UINT32, ACPI_FACS_OFFSET (FirmwareWakingVector), "32 Firmware
328 {ACPI_DMT_UINT32, ACPI_FACS_OFFSET (GlobalLock), "Global Lock
329 {ACPI_DMT_UINT32, ACPI_FACS_OFFSET (Flags), "Flags (deco
330 {ACPI_DMT_FLAG0, ACPI_FACS_FLAG_OFFSET (Flags,0), "S4BIOS Supp
331 {ACPI_DMT_FLAG1, ACPI_FACS_FLAG_OFFSET (Flags,0), "64-bit Wake
332 {ACPI_DMT_UINT64, ACPI_FACS_OFFSET (XFirmwareWakingVector), "64 Firmware
333 {ACPI_DMT_UINT8, ACPI_FACS_OFFSET (Version), "Version", 0
334 {ACPI_DMT_UINT24, ACPI_FACS_OFFSET (Reserved[0]), "Reserved",
335 {ACPI_DMT_UINT32, ACPI_FACS_OFFSET (OspmFlags), "OspmFlags (
336 {ACPI_DMT_FLAG0, ACPI_FACS_FLAG_OFFSET (OspmFlags,0), "64-bit Wake
337 ACPI_DMT_TERMINATOR
338 };

341 /***
342 *
343 * FADT - Fixed ACPI Description Table (Signature is FACP)
344 *
345 **/

347 /* ACPI 1.0 FADT (Version 1) */

349 ACPI_DMTABLE_INFO AcpiDmTableInfoFadt1[] =
350 {
351 {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Facs), "FACS Addres
352 {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Dsdt), "DSDT Addres
353 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Model), "Model", 0},
354 {ACPI_DMT_FADTPM, ACPI_FADT_OFFSET (PreferredProfile), "PM Profile"
355 {ACPI_DMT_UINT16, ACPI_FADT_OFFSET (SciInterrupt), "SCI Interru
356 {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (SmiCommand), "SMI Command
357 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (AcpiEnable), "ACPI Enable
358 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (AcpiDisable), "ACPI Disabl
359 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (S4BiosRequest), "S4BIOS Comm
360 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (PstateControl), "P-State Con
361 {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Pm1aEventBlock), "PM1A Event
362 {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Pm1bEventBlock), "PM1B Event
363 {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Pm1aControlBlock), "PM1A Contro
364 {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Pm1bControlBlock), "PM1B Contro
365 {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Pm2ControlBlock), "PM2 Control
366 {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (PmTimerBlock), "PM Timer Bl
367 {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Gpe0Block), "GPE0 Block
368 {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Gpe1Block), "GPE1 Block
369 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Pm1EventLength), "PM1 Event B
370 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Pm1ControlLength), "PM1 Control
371 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Pm2ControlLength), "PM2 Control
372 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (PmTimerLength), "PM Timer Bl
373 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Gpe0BlockLength), "GPE0 Block
374 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Gpe1BlockLength), "GPE1 Block
375 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Gpe1Base), "GPE1 Base O
376 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (CstControl), "_CST Suppor
377 {ACPI_DMT_UINT16, ACPI_FADT_OFFSET (C2Latency), "C2 Latency"
378 {ACPI_DMT_UINT16, ACPI_FADT_OFFSET (C3Latency), "C3 Latency"
379 {ACPI_DMT_UINT16, ACPI_FADT_OFFSET (FlushSize), "CPU Cache S
380 {ACPI_DMT_UINT16, ACPI_FADT_OFFSET (FlushStride), "Cache Flush
381 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (DutyOffset), "Duty Cycle
382 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (DutyWidth), "Duty Cycle
383 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (DayAlarm), "RTC Day Ala
384 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (MonthAlarm), "RTC Month A
385 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Century), "RTC Century
386 {ACPI_DMT_UINT16, ACPI_FADT_OFFSET (BootFlags), "Boot Flags

388 /* Boot Architecture Flags byte 0 */

new/usr/src/common/acpica/common/dmtbinfo.c 7

390 {ACPI_DMT_FLAG0, ACPI_FADT_FLAG_OFFSET (BootFlags,0), "Legacy Devi
391 {ACPI_DMT_FLAG1, ACPI_FADT_FLAG_OFFSET (BootFlags,0), "8042 Presen
392 {ACPI_DMT_FLAG2, ACPI_FADT_FLAG_OFFSET (BootFlags,0), "VGA Not Pre
393 {ACPI_DMT_FLAG3, ACPI_FADT_FLAG_OFFSET (BootFlags,0), "MSI Not Sup
394 {ACPI_DMT_FLAG4, ACPI_FADT_FLAG_OFFSET (BootFlags,0), "PCIe ASPM N
395 {ACPI_DMT_FLAG5, ACPI_FADT_FLAG_OFFSET (BootFlags,0), "CMOS RTC No

397 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Reserved), "Reserved",
398 {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Flags), "Flags (deco

400 /* Flags byte 0 */

402 {ACPI_DMT_FLAG0, ACPI_FADT_FLAG_OFFSET (Flags,0), "WBINVD inst
403 {ACPI_DMT_FLAG1, ACPI_FADT_FLAG_OFFSET (Flags,0), "WBINVD flus
404 {ACPI_DMT_FLAG2, ACPI_FADT_FLAG_OFFSET (Flags,0), "All CPUs su
405 {ACPI_DMT_FLAG3, ACPI_FADT_FLAG_OFFSET (Flags,0), "C2 works on
406 {ACPI_DMT_FLAG4, ACPI_FADT_FLAG_OFFSET (Flags,0), "Control Met
407 {ACPI_DMT_FLAG5, ACPI_FADT_FLAG_OFFSET (Flags,0), "Control Met
408 {ACPI_DMT_FLAG6, ACPI_FADT_FLAG_OFFSET (Flags,0), "RTC wake no
409 {ACPI_DMT_FLAG7, ACPI_FADT_FLAG_OFFSET (Flags,0), "RTC can wak

411 /* Flags byte 1 */

413 {ACPI_DMT_FLAG0, ACPI_FADT_FLAG_OFFSET (Flags,1), "32-bit PM T
414 {ACPI_DMT_FLAG1, ACPI_FADT_FLAG_OFFSET (Flags,1), "Docking Sup
415 {ACPI_DMT_FLAG2, ACPI_FADT_FLAG_OFFSET (Flags,1), "Reset Regis
416 {ACPI_DMT_FLAG3, ACPI_FADT_FLAG_OFFSET (Flags,1), "Sealed Case
417 {ACPI_DMT_FLAG4, ACPI_FADT_FLAG_OFFSET (Flags,1), "Headless -
418 {ACPI_DMT_FLAG5, ACPI_FADT_FLAG_OFFSET (Flags,1), "Use native
419 {ACPI_DMT_FLAG6, ACPI_FADT_FLAG_OFFSET (Flags,1), "PCIEXP_WAK
420 {ACPI_DMT_FLAG7, ACPI_FADT_FLAG_OFFSET (Flags,1), "Use Platfor

422 /* Flags byte 2 */

424 {ACPI_DMT_FLAG0, ACPI_FADT_FLAG_OFFSET (Flags,2), "RTC_STS val
425 {ACPI_DMT_FLAG1, ACPI_FADT_FLAG_OFFSET (Flags,2), "Remote Powe
426 {ACPI_DMT_FLAG2, ACPI_FADT_FLAG_OFFSET (Flags,2), "Use APIC Cl
427 {ACPI_DMT_FLAG3, ACPI_FADT_FLAG_OFFSET (Flags,2), "Use APIC Ph
428 {ACPI_DMT_FLAG4, ACPI_FADT_FLAG_OFFSET (Flags,2), "Hardware Re
429 {ACPI_DMT_FLAG5, ACPI_FADT_FLAG_OFFSET (Flags,2), "Low Power S
430 ACPI_DMT_TERMINATOR
431 };

433 /* ACPI 1.0 MS Extensions (FADT version 2) */

435 ACPI_DMTABLE_INFO AcpiDmTableInfoFadt2[] =
436 {
437 {ACPI_DMT_GAS, ACPI_FADT_OFFSET (ResetRegister), "Reset Regis
438 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (ResetValue), "Value to ca
439 {ACPI_DMT_UINT24, ACPI_FADT_OFFSET (Reserved4[0]), "Reserved",
440 ACPI_DMT_TERMINATOR
441 };

443 /* ACPI 2.0+ Extensions (FADT version 3 and 4) */

445 ACPI_DMTABLE_INFO AcpiDmTableInfoFadt3[] =
446 {
447 {ACPI_DMT_GAS, ACPI_FADT_OFFSET (ResetRegister), "Reset Regis
448 {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (ResetValue), "Value to ca
449 {ACPI_DMT_UINT24, ACPI_FADT_OFFSET (Reserved4[0]), "Reserved",
450 {ACPI_DMT_UINT64, ACPI_FADT_OFFSET (XFacs), "FACS Addres
451 {ACPI_DMT_UINT64, ACPI_FADT_OFFSET (XDsdt), "DSDT Addres
452 {ACPI_DMT_GAS, ACPI_FADT_OFFSET (XPm1aEventBlock), "PM1A Event
453 {ACPI_DMT_GAS, ACPI_FADT_OFFSET (XPm1bEventBlock), "PM1B Event
454 {ACPI_DMT_GAS, ACPI_FADT_OFFSET (XPm1aControlBlock), "PM1A Contro
455 {ACPI_DMT_GAS, ACPI_FADT_OFFSET (XPm1bControlBlock), "PM1B Contro

new/usr/src/common/acpica/common/dmtbinfo.c 8

456 {ACPI_DMT_GAS, ACPI_FADT_OFFSET (XPm2ControlBlock), "PM2 Control
457 {ACPI_DMT_GAS, ACPI_FADT_OFFSET (XPmTimerBlock), "PM Timer Bl
458 {ACPI_DMT_GAS, ACPI_FADT_OFFSET (XGpe0Block), "GPE0 Block"
459 {ACPI_DMT_GAS, ACPI_FADT_OFFSET (XGpe1Block), "GPE1 Block"
460 ACPI_DMT_TERMINATOR
461 };

463 /* ACPI 5.0 Extensions (FADT version 5) */

465 ACPI_DMTABLE_INFO AcpiDmTableInfoFadt5[] =
466 {
467 {ACPI_DMT_GAS, ACPI_FADT_OFFSET (SleepControl), "Sleep Contr
468 {ACPI_DMT_GAS, ACPI_FADT_OFFSET (SleepStatus), "Sleep Statu
469 ACPI_DMT_TERMINATOR
470 };

473 /*
474 * Remaining tables are not consumed directly by the ACPICA subsystem
475 */

477 /***
478 *
479 * ASF - Alert Standard Format table (Signature "ASF!")
480 *
481 **/

483 /* Common Subtable header (one per Subtable) */

485 ACPI_DMTABLE_INFO AcpiDmTableInfoAsfHdr[] =
486 {
487 {ACPI_DMT_ASF, ACPI_ASF0_OFFSET (Header.Type), "Subtable Ty
488 {ACPI_DMT_UINT8, ACPI_ASF0_OFFSET (Header.Reserved), "Reserved",
489 {ACPI_DMT_UINT16, ACPI_ASF0_OFFSET (Header.Length), "Length", DT
490 ACPI_DMT_TERMINATOR
491 };

493 /* 0: ASF Information */

495 ACPI_DMTABLE_INFO AcpiDmTableInfoAsf0[] =
496 {
497 {ACPI_DMT_UINT8, ACPI_ASF0_OFFSET (MinResetValue), "Minimum Res
498 {ACPI_DMT_UINT8, ACPI_ASF0_OFFSET (MinPollInterval), "Minimum Pol
499 {ACPI_DMT_UINT16, ACPI_ASF0_OFFSET (SystemId), "System ID",
500 {ACPI_DMT_UINT32, ACPI_ASF0_OFFSET (MfgId), "Manufacture
501 {ACPI_DMT_UINT8, ACPI_ASF0_OFFSET (Flags), "Flags", 0},
502 {ACPI_DMT_UINT24, ACPI_ASF0_OFFSET (Reserved2[0]), "Reserved",
503 ACPI_DMT_TERMINATOR
504 };

506 /* 1: ASF Alerts */

508 ACPI_DMTABLE_INFO AcpiDmTableInfoAsf1[] =
509 {
510 {ACPI_DMT_UINT8, ACPI_ASF1_OFFSET (AssertMask), "AssertMask"
511 {ACPI_DMT_UINT8, ACPI_ASF1_OFFSET (DeassertMask), "DeassertMas
512 {ACPI_DMT_UINT8, ACPI_ASF1_OFFSET (Alerts), "Alert Count
513 {ACPI_DMT_UINT8, ACPI_ASF1_OFFSET (DataLength), "Alert Data
514 ACPI_DMT_TERMINATOR
515 };

517 /* 1a: ASF Alert data */

519 ACPI_DMTABLE_INFO AcpiDmTableInfoAsf1a[] =
520 {
521 {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Address), "Address", 0

new/usr/src/common/acpica/common/dmtbinfo.c 9

522 {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Command), "Command", 0
523 {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Mask), "Mask", 0},
524 {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Value), "Value", 0},
525 {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (SensorType), "SensorType"
526 {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Type), "Type", 0},
527 {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Offset), "Offset", 0}
528 {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (SourceType), "SourceType"
529 {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Severity), "Severity",
530 {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (SensorNumber), "SensorNumbe
531 {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Entity), "Entity", 0}
532 {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Instance), "Instance",
533 ACPI_DMT_TERMINATOR
534 };

536 /* 2: ASF Remote Control */

538 ACPI_DMTABLE_INFO AcpiDmTableInfoAsf2[] =
539 {
540 {ACPI_DMT_UINT8, ACPI_ASF2_OFFSET (Controls), "Control Cou
541 {ACPI_DMT_UINT8, ACPI_ASF2_OFFSET (DataLength), "Control Dat
542 {ACPI_DMT_UINT16, ACPI_ASF2_OFFSET (Reserved2), "Reserved",
543 ACPI_DMT_TERMINATOR
544 };

546 /* 2a: ASF Control data */

548 ACPI_DMTABLE_INFO AcpiDmTableInfoAsf2a[] =
549 {
550 {ACPI_DMT_UINT8, ACPI_ASF2a_OFFSET (Function), "Function",
551 {ACPI_DMT_UINT8, ACPI_ASF2a_OFFSET (Address), "Address", 0
552 {ACPI_DMT_UINT8, ACPI_ASF2a_OFFSET (Command), "Command", 0
553 {ACPI_DMT_UINT8, ACPI_ASF2a_OFFSET (Value), "Value", 0},
554 ACPI_DMT_TERMINATOR
555 };

557 /* 3: ASF RMCP Boot Options */

559 ACPI_DMTABLE_INFO AcpiDmTableInfoAsf3[] =
560 {
561 {ACPI_DMT_BUF7, ACPI_ASF3_OFFSET (Capabilities[0]), "Capabilitie
562 {ACPI_DMT_UINT8, ACPI_ASF3_OFFSET (CompletionCode), "Completion
563 {ACPI_DMT_UINT32, ACPI_ASF3_OFFSET (EnterpriseId), "Enterprise
564 {ACPI_DMT_UINT8, ACPI_ASF3_OFFSET (Command), "Command", 0
565 {ACPI_DMT_UINT16, ACPI_ASF3_OFFSET (Parameter), "Parameter",
566 {ACPI_DMT_UINT16, ACPI_ASF3_OFFSET (BootOptions), "Boot Option
567 {ACPI_DMT_UINT16, ACPI_ASF3_OFFSET (OemParameters), "Oem Paramet
568 ACPI_DMT_TERMINATOR
569 };

571 /* 4: ASF Address */

573 ACPI_DMTABLE_INFO AcpiDmTableInfoAsf4[] =
574 {
575 {ACPI_DMT_UINT8, ACPI_ASF4_OFFSET (EpromAddress), "Eprom Addre
576 {ACPI_DMT_UINT8, ACPI_ASF4_OFFSET (Devices), "Device Coun
577 ACPI_DMT_TERMINATOR
578 };

581 /***
582 *
583 * BERT - Boot Error Record table
584 *
585 **/

587 ACPI_DMTABLE_INFO AcpiDmTableInfoBert[] =

new/usr/src/common/acpica/common/dmtbinfo.c 10

588 {
589 {ACPI_DMT_UINT32, ACPI_BERT_OFFSET (RegionLength), "Boot Error
590 {ACPI_DMT_UINT64, ACPI_BERT_OFFSET (Address), "Boot Error
591 ACPI_DMT_TERMINATOR
592 };

595 /***
596 *
597 * BGRT - Boot Graphics Resource Table (ACPI 5.0)
598 *
599 **/

601 ACPI_DMTABLE_INFO AcpiDmTableInfoBgrt[] =
602 {
603 {ACPI_DMT_UINT16, ACPI_BGRT_OFFSET (Version), "Version", 0
604 {ACPI_DMT_UINT8, ACPI_BGRT_OFFSET (Status), "Status", 0}
605 {ACPI_DMT_UINT8, ACPI_BGRT_OFFSET (ImageType), "Image Type"
606 {ACPI_DMT_UINT64, ACPI_BGRT_OFFSET (ImageAddress), "Image Addre
607 {ACPI_DMT_UINT32, ACPI_BGRT_OFFSET (ImageOffsetX), "Image Offse
608 {ACPI_DMT_UINT32, ACPI_BGRT_OFFSET (ImageOffsetY), "Image Offse
609 ACPI_DMT_TERMINATOR
610 };

613 /***
614 *
615 * BOOT - Simple Boot Flag Table
616 *
617 **/

619 ACPI_DMTABLE_INFO AcpiDmTableInfoBoot[] =
620 {
621 {ACPI_DMT_UINT8, ACPI_BOOT_OFFSET (CmosIndex), "Boot Regist
622 {ACPI_DMT_UINT24, ACPI_BOOT_OFFSET (Reserved[0]), "Reserved",
623 ACPI_DMT_TERMINATOR
624 };

627 /***
628 *
629 * CPEP - Corrected Platform Error Polling table
630 *
631 **/

633 ACPI_DMTABLE_INFO AcpiDmTableInfoCpep[] =
634 {
635 {ACPI_DMT_UINT64, ACPI_CPEP_OFFSET (Reserved), "Reserved",
636 ACPI_DMT_TERMINATOR
637 };

639 ACPI_DMTABLE_INFO AcpiDmTableInfoCpep0[] =
640 {
641 {ACPI_DMT_UINT8, ACPI_CPEP0_OFFSET (Header.Type), "Subtable Ty
642 {ACPI_DMT_UINT8, ACPI_CPEP0_OFFSET (Header.Length), "Length", DT
643 {ACPI_DMT_UINT8, ACPI_CPEP0_OFFSET (Id), "Processor I
644 {ACPI_DMT_UINT8, ACPI_CPEP0_OFFSET (Eid), "Processor E
645 {ACPI_DMT_UINT32, ACPI_CPEP0_OFFSET (Interval), "Polling Int
646 ACPI_DMT_TERMINATOR
647 };

650 /***
651 *
652 * CSRT - Core System Resource Table
653 *

new/usr/src/common/acpica/common/dmtbinfo.c 11

654 **/

656 /* Main table consists only of the standard ACPI table header */

658 /* Resource Group subtable */

660 ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt0[] =
661 {
662 {ACPI_DMT_UINT32, ACPI_CSRT0_OFFSET (Length), "Length", 0}
663 {ACPI_DMT_UINT32, ACPI_CSRT0_OFFSET (VendorId), "Vendor ID",
664 {ACPI_DMT_UINT32, ACPI_CSRT0_OFFSET (SubvendorId), "Subvendor I
665 {ACPI_DMT_UINT16, ACPI_CSRT0_OFFSET (DeviceId), "Device ID",
666 {ACPI_DMT_UINT16, ACPI_CSRT0_OFFSET (SubdeviceId), "Subdevice I
667 {ACPI_DMT_UINT16, ACPI_CSRT0_OFFSET (Revision), "Revision",
668 {ACPI_DMT_UINT16, ACPI_CSRT0_OFFSET (Reserved), "Reserved",
669 {ACPI_DMT_UINT32, ACPI_CSRT0_OFFSET (SharedInfoLength), "Shared Info
670 ACPI_DMT_TERMINATOR
671 };

673 /* Shared Info subtable */

675 ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt1[] =
676 {
677 {ACPI_DMT_UINT16, ACPI_CSRT1_OFFSET (MajorVersion), "Major Versi
678 {ACPI_DMT_UINT16, ACPI_CSRT1_OFFSET (MinorVersion), "Minor Versi
679 {ACPI_DMT_UINT32, ACPI_CSRT1_OFFSET (MmioBaseLow), "MMIO Base A
680 {ACPI_DMT_UINT32, ACPI_CSRT1_OFFSET (MmioBaseHigh), "MMIO Base A
681 {ACPI_DMT_UINT32, ACPI_CSRT1_OFFSET (GsiInterrupt), "GSI Interru
682 {ACPI_DMT_UINT8, ACPI_CSRT1_OFFSET (InterruptPolarity), "Interrupt P
683 {ACPI_DMT_UINT8, ACPI_CSRT1_OFFSET (InterruptMode), "Interrupt M
684 {ACPI_DMT_UINT8, ACPI_CSRT1_OFFSET (NumChannels), "Num Channel
685 {ACPI_DMT_UINT8, ACPI_CSRT1_OFFSET (DmaAddressWidth), "DMA Address
686 {ACPI_DMT_UINT16, ACPI_CSRT1_OFFSET (BaseRequestLine), "Base Reques
687 {ACPI_DMT_UINT16, ACPI_CSRT1_OFFSET (NumHandshakeSignals), "Num Handsha
688 {ACPI_DMT_UINT32, ACPI_CSRT1_OFFSET (MaxBlockSize), "Max Block S
689 ACPI_DMT_TERMINATOR
690 };

693 /* Resource Descriptor subtable */

695 ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt2[] =
696 {
697 {ACPI_DMT_UINT32, ACPI_CSRT2_OFFSET (Length), "Length", 0}
698 {ACPI_DMT_UINT16, ACPI_CSRT2_OFFSET (Type), "Type", 0},
699 {ACPI_DMT_UINT16, ACPI_CSRT2_OFFSET (Subtype), "Subtype", 0
700 {ACPI_DMT_UINT32, ACPI_CSRT2_OFFSET (Uid), "UID", 0},
701 ACPI_DMT_TERMINATOR
702 };

705 /***
706 *
707 * DBG2 - Debug Port Table 2
708 *
709 **/

711 ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2[] =
712 {
713 {ACPI_DMT_UINT32, ACPI_DBG2_OFFSET (InfoOffset), "Info Offset
714 {ACPI_DMT_UINT32, ACPI_DBG2_OFFSET (InfoCount), "Info Count"
715 ACPI_DMT_TERMINATOR
716 };

718 /* Debug Device Information Subtable */

new/usr/src/common/acpica/common/dmtbinfo.c 12

720 ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Device[] =
721 {
722 {ACPI_DMT_UINT8, ACPI_DBG20_OFFSET (Revision), "Revision",
723 {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (Length), "Length", DT
724 {ACPI_DMT_UINT8, ACPI_DBG20_OFFSET (RegisterCount), "Register Co
725 {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (NamepathLength), "Namepath Le
726 {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (NamepathOffset), "Namepath Of
727 {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (OemDataLength), "OEM Data Le
728 {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (OemDataOffset), "OEM Data Of
729 {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (PortType), "Port Type",
730 {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (PortSubtype), "Port Subtyp
731 {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (Reserved), "Reserved",
732 {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (BaseAddressOffset), "Base Addres
733 {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (AddressSizeOffset), "Address Siz
734 ACPI_DMT_TERMINATOR
735 };

737 /* Variable-length data for the subtable */

739 ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Addr[] =
740 {
741 {ACPI_DMT_GAS, 0, "Base Addres
742 ACPI_DMT_TERMINATOR
743 };

745 ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Size[] =
746 {
747 {ACPI_DMT_UINT32, 0, "Address Siz
748 ACPI_DMT_TERMINATOR
749 };

751 ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Name[] =
752 {
753 {ACPI_DMT_STRING, 0, "Namepath",
754 ACPI_DMT_TERMINATOR
755 };

757 ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2OemData[] =
758 {
759 {ACPI_DMT_BUFFER, 0, "OEM Data",
760 ACPI_DMT_TERMINATOR
761 };

764 /***
765 *
766 * DBGP - Debug Port
767 *
768 **/

770 ACPI_DMTABLE_INFO AcpiDmTableInfoDbgp[] =
771 {
772 {ACPI_DMT_UINT8, ACPI_DBGP_OFFSET (Type), "Interface T
773 {ACPI_DMT_UINT24, ACPI_DBGP_OFFSET (Reserved[0]), "Reserved",
774 {ACPI_DMT_GAS, ACPI_DBGP_OFFSET (DebugPort), "Debug Port
775 ACPI_DMT_TERMINATOR
776 };

779 /***
780 *
781 * DMAR - DMA Remapping table
782 *
783 **/

785 ACPI_DMTABLE_INFO AcpiDmTableInfoDmar[] =

new/usr/src/common/acpica/common/dmtbinfo.c 13

786 {
787 {ACPI_DMT_UINT8, ACPI_DMAR_OFFSET (Width), "Host Addres
788 {ACPI_DMT_UINT8, ACPI_DMAR_OFFSET (Flags), "Flags", 0},
789 {ACPI_DMT_BUF10, ACPI_DMAR_OFFSET (Reserved[0]), "Reserved",
790 ACPI_DMT_TERMINATOR
791 };

793 /* Common Subtable header (one per Subtable) */

795 ACPI_DMTABLE_INFO AcpiDmTableInfoDmarHdr[] =
796 {
797 {ACPI_DMT_DMAR, ACPI_DMAR0_OFFSET (Header.Type), "Subtable Ty
798 {ACPI_DMT_UINT16, ACPI_DMAR0_OFFSET (Header.Length), "Length", DT
799 ACPI_DMT_TERMINATOR
800 };

802 /* Common device scope entry */

804 ACPI_DMTABLE_INFO AcpiDmTableInfoDmarScope[] =
805 {
806 {ACPI_DMT_UINT8, ACPI_DMARS_OFFSET (EntryType), "Device Scop
807 {ACPI_DMT_UINT8, ACPI_DMARS_OFFSET (Length), "Entry Lengt
808 {ACPI_DMT_UINT16, ACPI_DMARS_OFFSET (Reserved), "Reserved",
809 {ACPI_DMT_UINT8, ACPI_DMARS_OFFSET (EnumerationId), "Enumeration
810 {ACPI_DMT_UINT8, ACPI_DMARS_OFFSET (Bus), "PCI Bus Num
811 ACPI_DMT_TERMINATOR
812 };

814 /* DMAR Subtables */

816 /* 0: Hardware Unit Definition */

818 ACPI_DMTABLE_INFO AcpiDmTableInfoDmar0[] =
819 {
820 {ACPI_DMT_UINT8, ACPI_DMAR0_OFFSET (Flags), "Flags", 0},
821 {ACPI_DMT_UINT8, ACPI_DMAR0_OFFSET (Reserved), "Reserved",
822 {ACPI_DMT_UINT16, ACPI_DMAR0_OFFSET (Segment), "PCI Segment
823 {ACPI_DMT_UINT64, ACPI_DMAR0_OFFSET (Address), "Register Ba
824 ACPI_DMT_TERMINATOR
825 };

827 /* 1: Reserved Memory Definition */

829 ACPI_DMTABLE_INFO AcpiDmTableInfoDmar1[] =
830 {
831 {ACPI_DMT_UINT16, ACPI_DMAR1_OFFSET (Reserved), "Reserved",
832 {ACPI_DMT_UINT16, ACPI_DMAR1_OFFSET (Segment), "PCI Segment
833 {ACPI_DMT_UINT64, ACPI_DMAR1_OFFSET (BaseAddress), "Base Addres
834 {ACPI_DMT_UINT64, ACPI_DMAR1_OFFSET (EndAddress), "End Address
835 ACPI_DMT_TERMINATOR
836 };

838 /* 2: Root Port ATS Capability Definition */

840 ACPI_DMTABLE_INFO AcpiDmTableInfoDmar2[] =
841 {
842 {ACPI_DMT_UINT8, ACPI_DMAR2_OFFSET (Flags), "Flags", 0},
843 {ACPI_DMT_UINT8, ACPI_DMAR2_OFFSET (Reserved), "Reserved",
844 {ACPI_DMT_UINT16, ACPI_DMAR2_OFFSET (Segment), "PCI Segment
845 ACPI_DMT_TERMINATOR
846 };

848 /* 3: Remapping Hardware Static Affinity Structure */

850 ACPI_DMTABLE_INFO AcpiDmTableInfoDmar3[] =
851 {

new/usr/src/common/acpica/common/dmtbinfo.c 14

852 {ACPI_DMT_UINT32, ACPI_DMAR3_OFFSET (Reserved), "Reserved",
853 {ACPI_DMT_UINT64, ACPI_DMAR3_OFFSET (BaseAddress), "Base Addres
854 {ACPI_DMT_UINT32, ACPI_DMAR3_OFFSET (ProximityDomain), "Proximity D
855 ACPI_DMT_TERMINATOR
856 };

859 /***
860 *
861 * DRTM - Dynamic Root of Trust for Measurement table
862 *
863 **/

865 ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm[] =
866 {

868 ACPI_DMT_TERMINATOR
869 };

872 /***
873 *
874 * ECDT - Embedded Controller Boot Resources Table
875 *
876 **/

878 ACPI_DMTABLE_INFO AcpiDmTableInfoEcdt[] =
879 {
880 {ACPI_DMT_GAS, ACPI_ECDT_OFFSET (Control), "Command/Sta
881 {ACPI_DMT_GAS, ACPI_ECDT_OFFSET (Data), "Data Regist
882 {ACPI_DMT_UINT32, ACPI_ECDT_OFFSET (Uid), "UID", 0},
883 {ACPI_DMT_UINT8, ACPI_ECDT_OFFSET (Gpe), "GPE Number"
884 {ACPI_DMT_STRING, ACPI_ECDT_OFFSET (Id[0]), "Namepath",
885 ACPI_DMT_TERMINATOR
886 };

889 /***
890 *
891 * EINJ - Error Injection table
892 *
893 **/

895 ACPI_DMTABLE_INFO AcpiDmTableInfoEinj[] =
896 {
897 {ACPI_DMT_UINT32, ACPI_EINJ_OFFSET (HeaderLength), "Injection H
898 {ACPI_DMT_UINT8, ACPI_EINJ_OFFSET (Flags), "Flags", 0},
899 {ACPI_DMT_UINT24, ACPI_EINJ_OFFSET (Reserved[0]), "Reserved",
900 {ACPI_DMT_UINT32, ACPI_EINJ_OFFSET (Entries), "Injection E
901 ACPI_DMT_TERMINATOR
902 };

904 ACPI_DMTABLE_INFO AcpiDmTableInfoEinj0[] =
905 {
906 {ACPI_DMT_EINJACT, ACPI_EINJ0_OFFSET (Action), "Action", 0}
907 {ACPI_DMT_EINJINST, ACPI_EINJ0_OFFSET (Instruction), "Instruction
908 {ACPI_DMT_UINT8, ACPI_EINJ0_OFFSET (Flags), "Flags (deco
909 {ACPI_DMT_FLAG0, ACPI_EINJ0_FLAG_OFFSET (Flags,0), "Preserve Re

911 {ACPI_DMT_UINT8, ACPI_EINJ0_OFFSET (Reserved), "Reserved",
912 {ACPI_DMT_GAS, ACPI_EINJ0_OFFSET (RegisterRegion), "Register Re
913 {ACPI_DMT_UINT64, ACPI_EINJ0_OFFSET (Value), "Value", 0},
914 {ACPI_DMT_UINT64, ACPI_EINJ0_OFFSET (Mask), "Mask", 0},
915 ACPI_DMT_TERMINATOR
916 };

new/usr/src/common/acpica/common/dmtbinfo.c 15

919 /***
920 *
921 * ERST - Error Record Serialization table
922 *
923 **/

925 ACPI_DMTABLE_INFO AcpiDmTableInfoErst[] =
926 {
927 {ACPI_DMT_UINT32, ACPI_ERST_OFFSET (HeaderLength), "Serializati
928 {ACPI_DMT_UINT32, ACPI_ERST_OFFSET (Reserved), "Reserved",
929 {ACPI_DMT_UINT32, ACPI_ERST_OFFSET (Entries), "Instruction
930 ACPI_DMT_TERMINATOR
931 };

933 ACPI_DMTABLE_INFO AcpiDmTableInfoErst0[] =
934 {
935 {ACPI_DMT_ERSTACT, ACPI_ERST0_OFFSET (Action), "Action", 0}
936 {ACPI_DMT_ERSTINST, ACPI_ERST0_OFFSET (Instruction), "Instruction
937 {ACPI_DMT_UINT8, ACPI_ERST0_OFFSET (Flags), "Flags (deco
938 {ACPI_DMT_FLAG0, ACPI_ERST0_FLAG_OFFSET (Flags,0), "Preserve Re

940 {ACPI_DMT_UINT8, ACPI_ERST0_OFFSET (Reserved), "Reserved",
941 {ACPI_DMT_GAS, ACPI_ERST0_OFFSET (RegisterRegion), "Register Re
942 {ACPI_DMT_UINT64, ACPI_ERST0_OFFSET (Value), "Value", 0},
943 {ACPI_DMT_UINT64, ACPI_ERST0_OFFSET (Mask), "Mask", 0},
944 ACPI_DMT_TERMINATOR
945 };

948 /***
949 *
950 * FPDT - Firmware Performance Data Table (ACPI 5.0)
951 *
952 **/

954 /* Main table consists of only the standard ACPI header - subtables follow */

956 /* FPDT subtable header */

958 ACPI_DMTABLE_INFO AcpiDmTableInfoFpdtHdr[] =
959 {
960 {ACPI_DMT_UINT16, ACPI_FPDTH_OFFSET (Type), "Subtable Ty
961 {ACPI_DMT_UINT8, ACPI_FPDTH_OFFSET (Length), "Length", DT
962 {ACPI_DMT_UINT8, ACPI_FPDTH_OFFSET (Revision), "Revision",
963 ACPI_DMT_TERMINATOR
964 };

966 /* 0: Firmware Basic Boot Performance Record */

968 ACPI_DMTABLE_INFO AcpiDmTableInfoFpdt0[] =
969 {
970 {ACPI_DMT_UINT32, ACPI_FPDT0_OFFSET (Reserved), "Reserved",
971 {ACPI_DMT_UINT64, ACPI_FPDT0_OFFSET (ResetEnd), "Reset End",
972 {ACPI_DMT_UINT64, ACPI_FPDT0_OFFSET (LoadStart), "Load Image
973 {ACPI_DMT_UINT64, ACPI_FPDT0_OFFSET (StartupStart), "Start Image
974 {ACPI_DMT_UINT64, ACPI_FPDT0_OFFSET (ExitServicesEntry), "Exit Servic
975 {ACPI_DMT_UINT64, ACPI_FPDT0_OFFSET (ExitServicesExit), "Exit Servic
976 ACPI_DMT_TERMINATOR
977 };

979 /* 1: S3 Performance Table Pointer Record */

981 ACPI_DMTABLE_INFO AcpiDmTableInfoFpdt1[] =
982 {
983 {ACPI_DMT_UINT32, ACPI_FPDT1_OFFSET (Reserved), "Reserved",

new/usr/src/common/acpica/common/dmtbinfo.c 16

984 {ACPI_DMT_UINT64, ACPI_FPDT1_OFFSET (Address), "S3PT Addres
985 ACPI_DMT_TERMINATOR
986 };

989 /***
990 *
991 * GTDT - Generic Timer Description Table
992 *
993 **/

995 ACPI_DMTABLE_INFO AcpiDmTableInfoGtdt[] =
996 {
997 {ACPI_DMT_UINT64, ACPI_GTDT_OFFSET (Address), "Timer Addre
998 {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (Flags), "Flags (deco
999 {ACPI_DMT_FLAG0, ACPI_GTDT_FLAG_OFFSET (Flags,0), "Memory Pres

1000 ACPI_DMT_NEW_LINE,
1001 {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (SecurePl1Interrupt), "Secure PL1
1002 {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (SecurePl1Flags), "SPL1 Flags
1003 {ACPI_DMT_FLAG0, ACPI_GTDT_FLAG_OFFSET (SecurePl1Flags,0), "Trigger Mod
1004 {ACPI_DMT_FLAG1, ACPI_GTDT_FLAG_OFFSET (SecurePl1Flags,0), "Polarity",
1005 ACPI_DMT_NEW_LINE,
1006 {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (NonSecurePl1Interrupt), "Non-Secure
1007 {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (NonSecurePl1Flags), "NSPL1 Flags
1008 {ACPI_DMT_FLAG0, ACPI_GTDT_FLAG_OFFSET (NonSecurePl1Flags,0),"Trigger Mod
1009 {ACPI_DMT_FLAG1, ACPI_GTDT_FLAG_OFFSET (NonSecurePl1Flags,0),"Polarity",
1010 ACPI_DMT_NEW_LINE,
1011 {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (VirtualTimerInterrupt), "Virtual Tim
1012 {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (VirtualTimerFlags), "VT Flags (d
1013 {ACPI_DMT_FLAG0, ACPI_GTDT_FLAG_OFFSET (VirtualTimerFlags,0),"Trigger Mod
1014 {ACPI_DMT_FLAG1, ACPI_GTDT_FLAG_OFFSET (VirtualTimerFlags,0),"Polarity",
1015 ACPI_DMT_NEW_LINE,
1016 {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (NonSecurePl2Interrupt), "Non-Secure
1017 {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (NonSecurePl2Flags), "NSPL2 Flags
1018 {ACPI_DMT_FLAG0, ACPI_GTDT_FLAG_OFFSET (NonSecurePl2Flags,0),"Trigger Mod
1019 {ACPI_DMT_FLAG1, ACPI_GTDT_FLAG_OFFSET (NonSecurePl2Flags,0),"Polarity",
1020 ACPI_DMT_TERMINATOR
1021 };

1024 /***
1025 *
1026 * HEST - Hardware Error Source table
1027 *
1028 **/

1030 ACPI_DMTABLE_INFO AcpiDmTableInfoHest[] =
1031 {
1032 {ACPI_DMT_UINT32, ACPI_HEST_OFFSET (ErrorSourceCount), "Error Sourc
1033 ACPI_DMT_TERMINATOR
1034 };

1036 /* Common HEST structures for subtables */

1038 #define ACPI_DM_HEST_HEADER \
1039 {ACPI_DMT_HEST, ACPI_HEST0_OFFSET (Header.Type), "Subtable Ty
1040 {ACPI_DMT_UINT16, ACPI_HEST0_OFFSET (Header.SourceId), "Source Id",

1042 #define ACPI_DM_HEST_AER \
1043 {ACPI_DMT_UINT16, ACPI_HEST6_OFFSET (Aer.Reserved1), "Reserve
1044 {ACPI_DMT_UINT8, ACPI_HEST6_OFFSET (Aer.Flags), "Flags (
1045 {ACPI_DMT_FLAG0, ACPI_HEST6_FLAG_OFFSET (Aer.Flags,0), "Firmwar
1046 {ACPI_DMT_UINT8, ACPI_HEST6_OFFSET (Aer.Enabled), "Enabled
1047 {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.RecordsToPreallocate), "Records
1048 {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.MaxSectionsPerRecord), "Max Sec
1049 {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.Bus), "Bus", 0

new/usr/src/common/acpica/common/dmtbinfo.c 17

1050 {ACPI_DMT_UINT16, ACPI_HEST6_OFFSET (Aer.Device), "Device"
1051 {ACPI_DMT_UINT16, ACPI_HEST6_OFFSET (Aer.Function), "Functio
1052 {ACPI_DMT_UINT16, ACPI_HEST6_OFFSET (Aer.DeviceControl), "DeviceC
1053 {ACPI_DMT_UINT16, ACPI_HEST6_OFFSET (Aer.Reserved2), "Reserve
1054 {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.UncorrectableMask), "Uncorre
1055 {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.UncorrectableSeverity), "Uncorre
1056 {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.CorrectableMask), "Correct
1057 {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.AdvancedCapabilities), "Advance

1060 /* HEST Subtables */

1062 /* 0: IA32 Machine Check Exception */

1064 ACPI_DMTABLE_INFO AcpiDmTableInfoHest0[] =
1065 {
1066 ACPI_DM_HEST_HEADER,
1067 {ACPI_DMT_UINT16, ACPI_HEST0_OFFSET (Reserved1), "Reserved1",
1068 {ACPI_DMT_UINT8, ACPI_HEST0_OFFSET (Flags), "Flags (deco
1069 {ACPI_DMT_FLAG0, ACPI_HEST0_FLAG_OFFSET (Flags,0), "Firmware Fi

1071 {ACPI_DMT_UINT8, ACPI_HEST0_OFFSET (Enabled), "Enabled", 0
1072 {ACPI_DMT_UINT32, ACPI_HEST0_OFFSET (RecordsToPreallocate), "Records To
1073 {ACPI_DMT_UINT32, ACPI_HEST0_OFFSET (MaxSectionsPerRecord), "Max Section
1074 {ACPI_DMT_UINT64, ACPI_HEST0_OFFSET (GlobalCapabilityData), "Global Capa
1075 {ACPI_DMT_UINT64, ACPI_HEST0_OFFSET (GlobalControlData), "Global Cont
1076 {ACPI_DMT_UINT8, ACPI_HEST0_OFFSET (NumHardwareBanks), "Num Hardwar
1077 {ACPI_DMT_UINT56, ACPI_HEST0_OFFSET (Reserved3[0]), "Reserved2",
1078 ACPI_DMT_TERMINATOR
1079 };

1081 /* 1: IA32 Corrected Machine Check */

1083 ACPI_DMTABLE_INFO AcpiDmTableInfoHest1[] =
1084 {
1085 ACPI_DM_HEST_HEADER,
1086 {ACPI_DMT_UINT16, ACPI_HEST1_OFFSET (Reserved1), "Reserved1",
1087 {ACPI_DMT_UINT8, ACPI_HEST1_OFFSET (Flags), "Flags (deco
1088 {ACPI_DMT_FLAG0, ACPI_HEST1_FLAG_OFFSET (Flags,0), "Firmware Fi

1090 {ACPI_DMT_UINT8, ACPI_HEST1_OFFSET (Enabled), "Enabled", 0
1091 {ACPI_DMT_UINT32, ACPI_HEST1_OFFSET (RecordsToPreallocate), "Records To
1092 {ACPI_DMT_UINT32, ACPI_HEST1_OFFSET (MaxSectionsPerRecord), "Max Section
1093 {ACPI_DMT_HESTNTFY, ACPI_HEST1_OFFSET (Notify), "Notify", 0}
1094 {ACPI_DMT_UINT8, ACPI_HEST1_OFFSET (NumHardwareBanks), "Num Hardwar
1095 {ACPI_DMT_UINT24, ACPI_HEST1_OFFSET (Reserved2[0]), "Reserved2",
1096 ACPI_DMT_TERMINATOR
1097 };

1099 /* 2: IA32 Non-Maskable Interrupt */

1101 ACPI_DMTABLE_INFO AcpiDmTableInfoHest2[] =
1102 {
1103 ACPI_DM_HEST_HEADER,
1104 {ACPI_DMT_UINT32, ACPI_HEST2_OFFSET (Reserved), "Reserved",
1105 {ACPI_DMT_UINT32, ACPI_HEST2_OFFSET (RecordsToPreallocate), "Records To
1106 {ACPI_DMT_UINT32, ACPI_HEST2_OFFSET (MaxSectionsPerRecord), "Max Section
1107 {ACPI_DMT_UINT32, ACPI_HEST2_OFFSET (MaxRawDataLength), "Max Raw Dat
1108 ACPI_DMT_TERMINATOR
1109 };

1111 /* 6: PCI Express Root Port AER */

1113 ACPI_DMTABLE_INFO AcpiDmTableInfoHest6[] =
1114 {
1115 ACPI_DM_HEST_HEADER,

new/usr/src/common/acpica/common/dmtbinfo.c 18

1116 ACPI_DM_HEST_AER,
1117 {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (RootErrorCommand), "Root Error
1118 ACPI_DMT_TERMINATOR
1119 };

1121 /* 7: PCI Express AER (AER Endpoint) */

1123 ACPI_DMTABLE_INFO AcpiDmTableInfoHest7[] =
1124 {
1125 ACPI_DM_HEST_HEADER,
1126 ACPI_DM_HEST_AER,
1127 ACPI_DMT_TERMINATOR
1128 };

1130 /* 8: PCI Express/PCI-X Bridge AER */

1132 ACPI_DMTABLE_INFO AcpiDmTableInfoHest8[] =
1133 {
1134 ACPI_DM_HEST_HEADER,
1135 ACPI_DM_HEST_AER,
1136 {ACPI_DMT_UINT32, ACPI_HEST8_OFFSET (UncorrectableMask2), "2nd Uncorre
1137 {ACPI_DMT_UINT32, ACPI_HEST8_OFFSET (UncorrectableSeverity2), "2nd Uncorre
1138 {ACPI_DMT_UINT32, ACPI_HEST8_OFFSET (AdvancedCapabilities2), "2nd Advance
1139 ACPI_DMT_TERMINATOR
1140 };

1142 /* 9: Generic Hardware Error Source */

1144 ACPI_DMTABLE_INFO AcpiDmTableInfoHest9[] =
1145 {
1146 ACPI_DM_HEST_HEADER,
1147 {ACPI_DMT_UINT16, ACPI_HEST9_OFFSET (RelatedSourceId), "Related Sou
1148 {ACPI_DMT_UINT8, ACPI_HEST9_OFFSET (Reserved), "Reserved",
1149 {ACPI_DMT_UINT8, ACPI_HEST9_OFFSET (Enabled), "Enabled", 0
1150 {ACPI_DMT_UINT32, ACPI_HEST9_OFFSET (RecordsToPreallocate), "Records To
1151 {ACPI_DMT_UINT32, ACPI_HEST9_OFFSET (MaxSectionsPerRecord), "Max Section
1152 {ACPI_DMT_UINT32, ACPI_HEST9_OFFSET (MaxRawDataLength), "Max Raw Dat
1153 {ACPI_DMT_GAS, ACPI_HEST9_OFFSET (ErrorStatusAddress), "Error Statu
1154 {ACPI_DMT_HESTNTFY, ACPI_HEST9_OFFSET (Notify), "Notify", 0}
1155 {ACPI_DMT_UINT32, ACPI_HEST9_OFFSET (ErrorBlockLength), "Error Statu
1156 ACPI_DMT_TERMINATOR
1157 };

1159 ACPI_DMTABLE_INFO AcpiDmTableInfoHestNotify[] =
1160 {
1161 {ACPI_DMT_HESTNTYP, ACPI_HESTN_OFFSET (Type), "Notify Type
1162 {ACPI_DMT_UINT8, ACPI_HESTN_OFFSET (Length), "Notify Leng
1163 {ACPI_DMT_UINT16, ACPI_HESTN_OFFSET (ConfigWriteEnable), "Configurati
1164 {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (PollInterval), "PollInterva
1165 {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (Vector), "Vector", 0}
1166 {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (PollingThresholdValue), "Polling Thr
1167 {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (PollingThresholdWindow), "Polling Thr
1168 {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (ErrorThresholdValue), "Error Thres
1169 {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (ErrorThresholdWindow), "Error Thres
1170 ACPI_DMT_TERMINATOR
1171 };

1174 /*
1175 * IA32 Error Bank(s) - Follows the ACPI_HEST_IA_MACHINE_CHECK and
1176 * ACPI_HEST_IA_CORRECTED structures.
1177 */
1178 ACPI_DMTABLE_INFO AcpiDmTableInfoHestBank[] =
1179 {
1180 {ACPI_DMT_UINT8, ACPI_HESTB_OFFSET (BankNumber), "Bank Number
1181 {ACPI_DMT_UINT8, ACPI_HESTB_OFFSET (ClearStatusOnInit), "Clear Statu

new/usr/src/common/acpica/common/dmtbinfo.c 19

1182 {ACPI_DMT_UINT8, ACPI_HESTB_OFFSET (StatusFormat), "Status Form
1183 {ACPI_DMT_UINT8, ACPI_HESTB_OFFSET (Reserved), "Reserved",
1184 {ACPI_DMT_UINT32, ACPI_HESTB_OFFSET (ControlRegister), "Control Reg
1185 {ACPI_DMT_UINT64, ACPI_HESTB_OFFSET (ControlData), "Control Dat
1186 {ACPI_DMT_UINT32, ACPI_HESTB_OFFSET (StatusRegister), "Status Regi
1187 {ACPI_DMT_UINT32, ACPI_HESTB_OFFSET (AddressRegister), "Address Reg
1188 {ACPI_DMT_UINT32, ACPI_HESTB_OFFSET (MiscRegister), "Misc Regist
1189 ACPI_DMT_TERMINATOR
1190 };

1193 /***
1194 *
1195 * HPET - High Precision Event Timer table
1196 *
1197 **/

1199 ACPI_DMTABLE_INFO AcpiDmTableInfoHpet[] =
1200 {
1201 {ACPI_DMT_UINT32, ACPI_HPET_OFFSET (Id), "Hardware Bl
1202 {ACPI_DMT_GAS, ACPI_HPET_OFFSET (Address), "Timer Block
1203 {ACPI_DMT_UINT8, ACPI_HPET_OFFSET (Sequence), "Sequence Nu
1204 {ACPI_DMT_UINT16, ACPI_HPET_OFFSET (MinimumTick), "Minimum Clo
1205 {ACPI_DMT_UINT8, ACPI_HPET_OFFSET (Flags), "Flags (deco
1206 {ACPI_DMT_FLAG0, ACPI_HPET_FLAG_OFFSET (Flags,0), "4K Page Pro
1207 {ACPI_DMT_FLAG1, ACPI_HPET_FLAG_OFFSET (Flags,0), "64K Page Pr
1208 ACPI_DMT_TERMINATOR
1209 };

1212 /***
1213 *
1214 * IVRS - I/O Virtualization Reporting Structure
1215 *
1216 **/

1218 ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs[] =
1219 {
1220 {ACPI_DMT_UINT32, ACPI_IVRS_OFFSET (Info), "Virtualizat
1221 {ACPI_DMT_UINT64, ACPI_IVRS_OFFSET (Reserved), "Reserved",
1222 ACPI_DMT_TERMINATOR
1223 };

1225 /* Common Subtable header (one per Subtable) */

1227 ACPI_DMTABLE_INFO AcpiDmTableInfoIvrsHdr[] =
1228 {
1229 {ACPI_DMT_IVRS, ACPI_IVRSH_OFFSET (Type), "Subtable Ty
1230 {ACPI_DMT_UINT8, ACPI_IVRSH_OFFSET (Flags), "Flags", 0},
1231 {ACPI_DMT_UINT16, ACPI_IVRSH_OFFSET (Length), "Length", DT
1232 {ACPI_DMT_UINT16, ACPI_IVRSH_OFFSET (DeviceId), "DeviceId",
1233 ACPI_DMT_TERMINATOR
1234 };

1236 /* IVRS subtables */

1238 /* 0x10: I/O Virtualization Hardware Definition (IVHD) Block */

1240 ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs0[] =
1241 {
1242 {ACPI_DMT_UINT16, ACPI_IVRS0_OFFSET (CapabilityOffset), "Capability
1243 {ACPI_DMT_UINT64, ACPI_IVRS0_OFFSET (BaseAddress), "Base Addres
1244 {ACPI_DMT_UINT16, ACPI_IVRS0_OFFSET (PciSegmentGroup), "PCI Segment
1245 {ACPI_DMT_UINT16, ACPI_IVRS0_OFFSET (Info), "Virtualizat
1246 {ACPI_DMT_UINT32, ACPI_IVRS0_OFFSET (Reserved), "Reserved",
1247 ACPI_DMT_TERMINATOR

new/usr/src/common/acpica/common/dmtbinfo.c 20

1248 };

1250 /* 0x20, 0x21, 0x22: I/O Virtualization Memory Definition (IVMD) Block */

1252 ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs1[] =
1253 {
1254 {ACPI_DMT_UINT16, ACPI_IVRS1_OFFSET (AuxData), "Auxiliary D
1255 {ACPI_DMT_UINT64, ACPI_IVRS1_OFFSET (Reserved), "Reserved",
1256 {ACPI_DMT_UINT64, ACPI_IVRS1_OFFSET (StartAddress), "Start Addre
1257 {ACPI_DMT_UINT64, ACPI_IVRS1_OFFSET (MemoryLength), "Memory Leng
1258 ACPI_DMT_TERMINATOR
1259 };

1261 /* Device entry header for IVHD block */

1263 #define ACPI_DMT_IVRS_DE_HEADER \
1264 {ACPI_DMT_UINT8, ACPI_IVRSD_OFFSET (Type), "Entry Type"
1265 {ACPI_DMT_UINT16, ACPI_IVRSD_OFFSET (Id), "Device ID",
1266 {ACPI_DMT_UINT8, ACPI_IVRSD_OFFSET (DataSetting), "Data Settin

1268 /* 4-byte device entry */

1270 ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs4[] =
1271 {
1272 ACPI_DMT_IVRS_DE_HEADER,
1273 {ACPI_DMT_EXIT, 0, NULL, 0},
1274 };

1276 /* 8-byte device entry */

1278 ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs8a[] =
1279 {
1280 ACPI_DMT_IVRS_DE_HEADER,
1281 {ACPI_DMT_UINT8, ACPI_IVRS8A_OFFSET (Reserved1), "Reserved",
1282 {ACPI_DMT_UINT16, ACPI_IVRS8A_OFFSET (UsedId), "Source Used
1283 {ACPI_DMT_UINT8, ACPI_IVRS8A_OFFSET (Reserved2), "Reserved",
1284 ACPI_DMT_TERMINATOR
1285 };

1287 /* 8-byte device entry */

1289 ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs8b[] =
1290 {
1291 ACPI_DMT_IVRS_DE_HEADER,
1292 {ACPI_DMT_UINT32, ACPI_IVRS8B_OFFSET (ExtendedData), "Extended Da
1293 ACPI_DMT_TERMINATOR
1294 };

1296 /* 8-byte device entry */

1298 ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs8c[] =
1299 {
1300 ACPI_DMT_IVRS_DE_HEADER,
1301 {ACPI_DMT_UINT8, ACPI_IVRS8C_OFFSET (Handle), "Handle", 0}
1302 {ACPI_DMT_UINT16, ACPI_IVRS8C_OFFSET (UsedId), "Source Used
1303 {ACPI_DMT_UINT8, ACPI_IVRS8C_OFFSET (Variety), "Variety", 0
1304 ACPI_DMT_TERMINATOR
1305 };

1308 /***
1309 *
1310 * MADT - Multiple APIC Description Table and subtables
1311 *
1312 **/

new/usr/src/common/acpica/common/dmtbinfo.c 21

1314 ACPI_DMTABLE_INFO AcpiDmTableInfoMadt[] =
1315 {
1316 {ACPI_DMT_UINT32, ACPI_MADT_OFFSET (Address), "Local Apic
1317 {ACPI_DMT_UINT32, ACPI_MADT_OFFSET (Flags), "Flags (deco
1318 {ACPI_DMT_FLAG0, ACPI_MADT_FLAG_OFFSET (Flags,0), "PC-AT Compa
1319 ACPI_DMT_TERMINATOR
1320 };

1322 /* Common Subtable header (one per Subtable) */

1324 ACPI_DMTABLE_INFO AcpiDmTableInfoMadtHdr[] =
1325 {
1326 {ACPI_DMT_MADT, ACPI_MADTH_OFFSET (Type), "Subtable Ty
1327 {ACPI_DMT_UINT8, ACPI_MADTH_OFFSET (Length), "Length", DT
1328 ACPI_DMT_TERMINATOR
1329 };

1331 /* MADT Subtables */

1333 /* 0: processor APIC */

1335 ACPI_DMTABLE_INFO AcpiDmTableInfoMadt0[] =
1336 {
1337 {ACPI_DMT_UINT8, ACPI_MADT0_OFFSET (ProcessorId), "Processor I
1338 {ACPI_DMT_UINT8, ACPI_MADT0_OFFSET (Id), "Local Apic
1339 {ACPI_DMT_UINT32, ACPI_MADT0_OFFSET (LapicFlags), "Flags (deco
1340 {ACPI_DMT_FLAG0, ACPI_MADT0_FLAG_OFFSET (LapicFlags,0), "Processor E
1341 ACPI_DMT_TERMINATOR
1342 };

1344 /* 1: IO APIC */

1346 ACPI_DMTABLE_INFO AcpiDmTableInfoMadt1[] =
1347 {
1348 {ACPI_DMT_UINT8, ACPI_MADT1_OFFSET (Id), "I/O Apic ID
1349 {ACPI_DMT_UINT8, ACPI_MADT1_OFFSET (Reserved), "Reserved",
1350 {ACPI_DMT_UINT32, ACPI_MADT1_OFFSET (Address), "Address", 0
1351 {ACPI_DMT_UINT32, ACPI_MADT1_OFFSET (GlobalIrqBase), "Interrupt",
1352 ACPI_DMT_TERMINATOR
1353 };

1355 /* 2: Interrupt Override */

1357 ACPI_DMTABLE_INFO AcpiDmTableInfoMadt2[] =
1358 {
1359 {ACPI_DMT_UINT8, ACPI_MADT2_OFFSET (Bus), "Bus", 0},
1360 {ACPI_DMT_UINT8, ACPI_MADT2_OFFSET (SourceIrq), "Source", 0}
1361 {ACPI_DMT_UINT32, ACPI_MADT2_OFFSET (GlobalIrq), "Interrupt",
1362 {ACPI_DMT_UINT16, ACPI_MADT2_OFFSET (IntiFlags), "Flags (deco
1363 {ACPI_DMT_FLAGS0, ACPI_MADT2_FLAG_OFFSET (IntiFlags,0), "Polarity",
1364 {ACPI_DMT_FLAGS2, ACPI_MADT2_FLAG_OFFSET (IntiFlags,0), "Trigger Mod
1365 ACPI_DMT_TERMINATOR
1366 };

1368 /* 3: NMI Sources */

1370 ACPI_DMTABLE_INFO AcpiDmTableInfoMadt3[] =
1371 {
1372 {ACPI_DMT_UINT16, ACPI_MADT3_OFFSET (IntiFlags), "Flags (deco
1373 {ACPI_DMT_FLAGS0, ACPI_MADT3_FLAG_OFFSET (IntiFlags,0), "Polarity",
1374 {ACPI_DMT_FLAGS2, ACPI_MADT3_FLAG_OFFSET (IntiFlags,0), "Trigger Mod
1375 {ACPI_DMT_UINT32, ACPI_MADT3_OFFSET (GlobalIrq), "Interrupt",
1376 ACPI_DMT_TERMINATOR
1377 };

1379 /* 4: Local APIC NMI */

new/usr/src/common/acpica/common/dmtbinfo.c 22

1381 ACPI_DMTABLE_INFO AcpiDmTableInfoMadt4[] =
1382 {
1383 {ACPI_DMT_UINT8, ACPI_MADT4_OFFSET (ProcessorId), "Processor I
1384 {ACPI_DMT_UINT16, ACPI_MADT4_OFFSET (IntiFlags), "Flags (deco
1385 {ACPI_DMT_FLAGS0, ACPI_MADT4_FLAG_OFFSET (IntiFlags,0), "Polarity",
1386 {ACPI_DMT_FLAGS2, ACPI_MADT4_FLAG_OFFSET (IntiFlags,0), "Trigger Mod
1387 {ACPI_DMT_UINT8, ACPI_MADT4_OFFSET (Lint), "Interrupt I
1388 ACPI_DMT_TERMINATOR
1389 };

1391 /* 5: Address Override */

1393 ACPI_DMTABLE_INFO AcpiDmTableInfoMadt5[] =
1394 {
1395 {ACPI_DMT_UINT16, ACPI_MADT5_OFFSET (Reserved), "Reserved",
1396 {ACPI_DMT_UINT64, ACPI_MADT5_OFFSET (Address), "APIC Addres
1397 ACPI_DMT_TERMINATOR
1398 };

1400 /* 6: I/O Sapic */

1402 ACPI_DMTABLE_INFO AcpiDmTableInfoMadt6[] =
1403 {
1404 {ACPI_DMT_UINT8, ACPI_MADT6_OFFSET (Id), "I/O Sapic I
1405 {ACPI_DMT_UINT8, ACPI_MADT6_OFFSET (Reserved), "Reserved",
1406 {ACPI_DMT_UINT32, ACPI_MADT6_OFFSET (GlobalIrqBase), "Interrupt B
1407 {ACPI_DMT_UINT64, ACPI_MADT6_OFFSET (Address), "Address", 0
1408 ACPI_DMT_TERMINATOR
1409 };

1411 /* 7: Local Sapic */

1413 ACPI_DMTABLE_INFO AcpiDmTableInfoMadt7[] =
1414 {
1415 {ACPI_DMT_UINT8, ACPI_MADT7_OFFSET (ProcessorId), "Processor I
1416 {ACPI_DMT_UINT8, ACPI_MADT7_OFFSET (Id), "Local Sapic
1417 {ACPI_DMT_UINT8, ACPI_MADT7_OFFSET (Eid), "Local Sapic
1418 {ACPI_DMT_UINT24, ACPI_MADT7_OFFSET (Reserved[0]), "Reserved",
1419 {ACPI_DMT_UINT32, ACPI_MADT7_OFFSET (LapicFlags), "Flags (deco
1420 {ACPI_DMT_FLAG0, ACPI_MADT7_FLAG_OFFSET (LapicFlags,0), "Processor E
1421 {ACPI_DMT_UINT32, ACPI_MADT7_OFFSET (Uid), "Processor U
1422 {ACPI_DMT_STRING, ACPI_MADT7_OFFSET (UidString[0]), "Processor U
1423 ACPI_DMT_TERMINATOR
1424 };

1426 /* 8: Platform Interrupt Source */

1428 ACPI_DMTABLE_INFO AcpiDmTableInfoMadt8[] =
1429 {
1430 {ACPI_DMT_UINT16, ACPI_MADT8_OFFSET (IntiFlags), "Flags (deco
1431 {ACPI_DMT_FLAGS0, ACPI_MADT8_FLAG_OFFSET (IntiFlags,0), "Polarity",
1432 {ACPI_DMT_FLAGS2, ACPI_MADT8_FLAG_OFFSET (IntiFlags,0), "Trigger Mod
1433 {ACPI_DMT_UINT8, ACPI_MADT8_OFFSET (Type), "InterruptTy
1434 {ACPI_DMT_UINT8, ACPI_MADT8_OFFSET (Id), "Processor I
1435 {ACPI_DMT_UINT8, ACPI_MADT8_OFFSET (Eid), "Processor E
1436 {ACPI_DMT_UINT8, ACPI_MADT8_OFFSET (IoSapicVector), "I/O Sapic V
1437 {ACPI_DMT_UINT32, ACPI_MADT8_OFFSET (GlobalIrq), "Interrupt",
1438 {ACPI_DMT_UINT32, ACPI_MADT8_OFFSET (Flags), "Flags (deco
1439 {ACPI_DMT_FLAG0, ACPI_MADT8_OFFSET (Flags), "CPEI Overri
1440 ACPI_DMT_TERMINATOR
1441 };

1443 /* 9: Processor Local X2_APIC (ACPI 4.0) */

1445 ACPI_DMTABLE_INFO AcpiDmTableInfoMadt9[] =

new/usr/src/common/acpica/common/dmtbinfo.c 23

1446 {
1447 {ACPI_DMT_UINT16, ACPI_MADT9_OFFSET (Reserved), "Reserved",
1448 {ACPI_DMT_UINT32, ACPI_MADT9_OFFSET (LocalApicId), "Processor x
1449 {ACPI_DMT_UINT32, ACPI_MADT9_OFFSET (LapicFlags), "Flags (deco
1450 {ACPI_DMT_FLAG0, ACPI_MADT9_FLAG_OFFSET (LapicFlags,0), "Processor E
1451 {ACPI_DMT_UINT32, ACPI_MADT9_OFFSET (Uid), "Processor U
1452 ACPI_DMT_TERMINATOR
1453 };

1455 /* 10: Local X2_APIC NMI (ACPI 4.0) */

1457 ACPI_DMTABLE_INFO AcpiDmTableInfoMadt10[] =
1458 {
1459 {ACPI_DMT_UINT16, ACPI_MADT10_OFFSET (IntiFlags), "Flags (deco
1460 {ACPI_DMT_FLAGS0, ACPI_MADT10_FLAG_OFFSET (IntiFlags,0), "Polarity",
1461 {ACPI_DMT_FLAGS2, ACPI_MADT10_FLAG_OFFSET (IntiFlags,0), "Trigger Mod
1462 {ACPI_DMT_UINT32, ACPI_MADT10_OFFSET (Uid), "Processor U
1463 {ACPI_DMT_UINT8, ACPI_MADT10_OFFSET (Lint), "Interrupt I
1464 {ACPI_DMT_UINT24, ACPI_MADT10_OFFSET (Reserved[0]), "Reserved",
1465 ACPI_DMT_TERMINATOR
1466 };

1468 /* 11: Generic Interrupt Controller (ACPI 5.0) */

1470 ACPI_DMTABLE_INFO AcpiDmTableInfoMadt11[] =
1471 {
1472 {ACPI_DMT_UINT16, ACPI_MADT11_OFFSET (Reserved), "Reserved",
1473 {ACPI_DMT_UINT32, ACPI_MADT11_OFFSET (GicId), "Local GIC H
1474 {ACPI_DMT_UINT32, ACPI_MADT11_OFFSET (Uid), "Processor U
1475 {ACPI_DMT_UINT32, ACPI_MADT11_OFFSET (Flags), "Flags (deco
1476 {ACPI_DMT_FLAG0, ACPI_MADT11_FLAG_OFFSET (Flags,0), "Processor E
1477 {ACPI_DMT_UINT32, ACPI_MADT11_OFFSET (ParkingVersion), "Parking Pro
1478 {ACPI_DMT_UINT32, ACPI_MADT11_OFFSET (PerformanceInterrupt), "Performance
1479 {ACPI_DMT_UINT64, ACPI_MADT11_OFFSET (ParkedAddress), "Parked Addr
1480 {ACPI_DMT_UINT64, ACPI_MADT11_OFFSET (BaseAddress), "Base Addres
1481 ACPI_DMT_TERMINATOR
1482 };

1484 /* 12: Generic Interrupt Distributor (ACPI 5.0) */

1486 ACPI_DMTABLE_INFO AcpiDmTableInfoMadt12[] =
1487 {
1488 {ACPI_DMT_UINT16, ACPI_MADT12_OFFSET (Reserved), "Reserved",
1489 {ACPI_DMT_UINT32, ACPI_MADT12_OFFSET (GicId), "Local GIC H
1490 {ACPI_DMT_UINT64, ACPI_MADT12_OFFSET (BaseAddress), "Base Addres
1491 {ACPI_DMT_UINT32, ACPI_MADT12_OFFSET (GlobalIrqBase), "Interrupt B
1492 {ACPI_DMT_UINT32, ACPI_MADT12_OFFSET (Reserved2), "Reserved",
1493 ACPI_DMT_TERMINATOR
1494 };

1497 /***
1498 *
1499 * MCFG - PCI Memory Mapped Configuration table and Subtable
1500 *
1501 **/

1503 ACPI_DMTABLE_INFO AcpiDmTableInfoMcfg[] =
1504 {
1505 {ACPI_DMT_UINT64, ACPI_MCFG_OFFSET (Reserved[0]), "Reserved",
1506 ACPI_DMT_TERMINATOR
1507 };

1509 ACPI_DMTABLE_INFO AcpiDmTableInfoMcfg0[] =
1510 {
1511 {ACPI_DMT_UINT64, ACPI_MCFG0_OFFSET (Address), "Base Addres

new/usr/src/common/acpica/common/dmtbinfo.c 24

1512 {ACPI_DMT_UINT16, ACPI_MCFG0_OFFSET (PciSegment), "Segment Gro
1513 {ACPI_DMT_UINT8, ACPI_MCFG0_OFFSET (StartBusNumber), "Start Bus N
1514 {ACPI_DMT_UINT8, ACPI_MCFG0_OFFSET (EndBusNumber), "End Bus Num
1515 {ACPI_DMT_UINT32, ACPI_MCFG0_OFFSET (Reserved), "Reserved",
1516 ACPI_DMT_TERMINATOR
1517 };

1520 /***
1521 *
1522 * MCHI - Management Controller Host Interface table
1523 *
1524 **/

1526 ACPI_DMTABLE_INFO AcpiDmTableInfoMchi[] =
1527 {
1528 {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (InterfaceType), "Interface T
1529 {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (Protocol), "Protocol",
1530 {ACPI_DMT_UINT64, ACPI_MCHI_OFFSET (ProtocolData), "Protocol Da
1531 {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (InterruptType), "Interrupt T
1532 {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (Gpe), "Gpe", 0},
1533 {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (PciDeviceFlag), "Pci Device
1534 {ACPI_DMT_UINT32, ACPI_MCHI_OFFSET (GlobalInterrupt), "Global Inte
1535 {ACPI_DMT_GAS, ACPI_MCHI_OFFSET (ControlRegister), "Control Reg
1536 {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (PciSegment), "Pci Segment
1537 {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (PciBus), "Pci Bus", 0
1538 {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (PciDevice), "Pci Device"
1539 {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (PciFunction), "Pci Functio
1540 ACPI_DMT_TERMINATOR
1541 };

1544 /***
1545 *
1546 * MPST - Memory Power State Table
1547 *
1548 **/

1550 ACPI_DMTABLE_INFO AcpiDmTableInfoMpst[] =
1551 {
1552 {ACPI_DMT_UINT8, ACPI_MPST_OFFSET (ChannelId), "Channel ID"
1553 {ACPI_DMT_UINT24, ACPI_MPST_OFFSET (Reserved1[0]), "Reserved",
1554 {ACPI_DMT_UINT16, ACPI_MPST_OFFSET (PowerNodeCount), "Power Node
1555 {ACPI_DMT_UINT16, ACPI_MPST_OFFSET (Reserved2), "Reserved",
1556 ACPI_DMT_TERMINATOR
1557 };

1559 /* MPST subtables */

1561 /* 0: Memory Power Node Structure */

1563 ACPI_DMTABLE_INFO AcpiDmTableInfoMpst0[] =
1564 {
1565 {ACPI_DMT_UINT8, ACPI_MPST0_OFFSET (Flags), "Flags (deco
1566 {ACPI_DMT_FLAG0, ACPI_MPST0_FLAG_OFFSET (Flags,0), "Node Enable
1567 {ACPI_DMT_FLAG1, ACPI_MPST0_FLAG_OFFSET (Flags,0), "Power Manag
1568 {ACPI_DMT_FLAG2, ACPI_MPST0_FLAG_OFFSET (Flags,0), "Hot Plug Ca

1570 {ACPI_DMT_UINT8, ACPI_MPST0_OFFSET (Reserved1), "Reserved",
1571 {ACPI_DMT_UINT16, ACPI_MPST0_OFFSET (NodeId), "Node ID", 0
1572 {ACPI_DMT_UINT32, ACPI_MPST0_OFFSET (Length), "Length", 0}
1573 {ACPI_DMT_UINT64, ACPI_MPST0_OFFSET (RangeAddress), "Range Addre
1574 {ACPI_DMT_UINT64, ACPI_MPST0_OFFSET (RangeLength), "Range Lengt
1575 {ACPI_DMT_UINT32, ACPI_MPST0_OFFSET (NumPowerStates), "Num Power S
1576 {ACPI_DMT_UINT32, ACPI_MPST0_OFFSET (NumPhysicalComponents), "Num Physica
1577 ACPI_DMT_TERMINATOR

new/usr/src/common/acpica/common/dmtbinfo.c 25

1578 };

1580 /* 0A: Sub-subtable - Memory Power State Structure (follows Memory Power Node ab

1582 ACPI_DMTABLE_INFO AcpiDmTableInfoMpst0A[] =
1583 {
1584 {ACPI_DMT_UINT8, ACPI_MPST0A_OFFSET (PowerState), "Power State
1585 {ACPI_DMT_UINT8, ACPI_MPST0A_OFFSET (InfoIndex), "InfoIndex",
1586 ACPI_DMT_TERMINATOR
1587 };

1589 /* 0B: Sub-subtable - Physical Component ID Structure (follows Memory Power Stat

1591 ACPI_DMTABLE_INFO AcpiDmTableInfoMpst0B[] =
1592 {
1593 {ACPI_DMT_UINT16, ACPI_MPST0B_OFFSET (ComponentId), "Component I
1594 ACPI_DMT_TERMINATOR
1595 };

1597 /* 01: Power Characteristics Count (follows all Power Node(s) above) */

1599 ACPI_DMTABLE_INFO AcpiDmTableInfoMpst1[] =
1600 {
1601 {ACPI_DMT_UINT16, ACPI_MPST1_OFFSET (CharacteristicsCount), "Characteris
1602 {ACPI_DMT_UINT16, ACPI_MPST1_OFFSET (Reserved), "Reserved",
1603 ACPI_DMT_TERMINATOR
1604 };

1606 /* 02: Memory Power State Characteristics Structure */

1608 ACPI_DMTABLE_INFO AcpiDmTableInfoMpst2[] =
1609 {
1610 {ACPI_DMT_UINT8, ACPI_MPST2_OFFSET (StructureId), "Structure I
1611 {ACPI_DMT_UINT8, ACPI_MPST2_OFFSET (Flags), "Flags (deco
1612 {ACPI_DMT_FLAG0, ACPI_MPST2_FLAG_OFFSET (Flags,0), "Memory Pres
1613 {ACPI_DMT_FLAG1, ACPI_MPST2_FLAG_OFFSET (Flags,0), "Auto Entry"
1614 {ACPI_DMT_FLAG2, ACPI_MPST2_FLAG_OFFSET (Flags,0), "Auto Exit",

1616 {ACPI_DMT_UINT16, ACPI_MPST2_OFFSET (Reserved1), "Reserved",
1617 {ACPI_DMT_UINT32, ACPI_MPST2_OFFSET (AveragePower), "Average Pow
1618 {ACPI_DMT_UINT32, ACPI_MPST2_OFFSET (PowerSaving), "Power Savin
1619 {ACPI_DMT_UINT64, ACPI_MPST2_OFFSET (ExitLatency), "Exit Latenc
1620 {ACPI_DMT_UINT64, ACPI_MPST2_OFFSET (Reserved2), "Reserved",
1621 ACPI_DMT_TERMINATOR
1622 };

1625 /***
1626 *
1627 * MSCT - Maximum System Characteristics Table (ACPI 4.0)
1628 *
1629 **/

1631 ACPI_DMTABLE_INFO AcpiDmTableInfoMsct[] =
1632 {
1633 {ACPI_DMT_UINT32, ACPI_MSCT_OFFSET (ProximityOffset), "Proximity O
1634 {ACPI_DMT_UINT32, ACPI_MSCT_OFFSET (MaxProximityDomains), "Max Proximi
1635 {ACPI_DMT_UINT32, ACPI_MSCT_OFFSET (MaxClockDomains), "Max Clock D
1636 {ACPI_DMT_UINT64, ACPI_MSCT_OFFSET (MaxAddress), "Max Physica
1637 ACPI_DMT_TERMINATOR
1638 };

1640 /* Subtable - Maximum Proximity Domain Information. Version 1 */

1642 ACPI_DMTABLE_INFO AcpiDmTableInfoMsct0[] =
1643 {

new/usr/src/common/acpica/common/dmtbinfo.c 26

1644 {ACPI_DMT_UINT8, ACPI_MSCT0_OFFSET (Revision), "Revision",
1645 {ACPI_DMT_UINT8, ACPI_MSCT0_OFFSET (Length), "Length", DT
1646 {ACPI_DMT_UINT32, ACPI_MSCT0_OFFSET (RangeStart), "Domain Rang
1647 {ACPI_DMT_UINT32, ACPI_MSCT0_OFFSET (RangeEnd), "Domain Rang
1648 {ACPI_DMT_UINT32, ACPI_MSCT0_OFFSET (ProcessorCapacity), "Processor C
1649 {ACPI_DMT_UINT64, ACPI_MSCT0_OFFSET (MemoryCapacity), "Memory Capa
1650 ACPI_DMT_TERMINATOR
1651 };

1654 /***
1655 *
1656 * MTMR - MID Timer Table
1657 *
1658 **/

1660 ACPI_DMTABLE_INFO AcpiDmTableInfoMtmr[] =
1661 {
1662 ACPI_DMT_TERMINATOR
1663 };

1665 /* MTMR Subtables - MTMR Entry */

1667 ACPI_DMTABLE_INFO AcpiDmTableInfoMtmr0[] =
1668 {
1669 {ACPI_DMT_GAS, ACPI_MTMR0_OFFSET (PhysicalAddress), "PhysicalAdd
1670 {ACPI_DMT_UINT32, ACPI_MTMR0_OFFSET (Frequency), "Frequency",
1671 {ACPI_DMT_UINT32, ACPI_MTMR0_OFFSET (Irq), "IRQ", 0},
1672 ACPI_DMT_TERMINATOR
1673 };

1676 /***
1677 *
1678 * PCCT - Platform Communications Channel Table (ACPI 5.0)
1679 *
1680 **/

1682 ACPI_DMTABLE_INFO AcpiDmTableInfoPcct[] =
1683 {
1684 {ACPI_DMT_UINT32, ACPI_PCCT_OFFSET (Flags), "Flags (deco
1685 {ACPI_DMT_FLAG0, ACPI_PCCT_FLAG_OFFSET (Flags,0), "Doorbell",
1686 {ACPI_DMT_UINT64, ACPI_PCCT_OFFSET (Reserved), "Reserved",
1687 ACPI_DMT_TERMINATOR
1688 };

1690 /* PCCT subtables */

1692 ACPI_DMTABLE_INFO AcpiDmTableInfoPcctHdr[] =
1693 {
1694 {ACPI_DMT_PCCT, ACPI_PCCT0_OFFSET (Header.Type), "Subtable Ty
1695 {ACPI_DMT_UINT8, ACPI_PCCT0_OFFSET (Header.Length), "Length", DT
1696 ACPI_DMT_TERMINATOR
1697 };

1699 /* 0: Generic Communications Subspace */

1701 ACPI_DMTABLE_INFO AcpiDmTableInfoPcct0[] =
1702 {
1703 {ACPI_DMT_UINT48, ACPI_PCCT0_OFFSET (Reserved[0]), "Reserved",
1704 {ACPI_DMT_UINT64, ACPI_PCCT0_OFFSET (BaseAddress), "Base Addres
1705 {ACPI_DMT_UINT64, ACPI_PCCT0_OFFSET (Length), "Address Len
1706 {ACPI_DMT_GAS, ACPI_PCCT0_OFFSET (DoorbellRegister), "Doorbell Re
1707 {ACPI_DMT_UINT64, ACPI_PCCT0_OFFSET (PreserveMask), "Preserve Ma
1708 {ACPI_DMT_UINT64, ACPI_PCCT0_OFFSET (WriteMask), "Write Mask"
1709 {ACPI_DMT_UINT32, ACPI_PCCT0_OFFSET (Latency), "Command Lat

new/usr/src/common/acpica/common/dmtbinfo.c 27

1710 {ACPI_DMT_UINT32, ACPI_PCCT0_OFFSET (MaxAccessRate), "Maximum Acc
1711 {ACPI_DMT_UINT16, ACPI_PCCT0_OFFSET (MinTurnaroundTime), "Minimum Tur
1712 ACPI_DMT_TERMINATOR
1713 };

1716 /***
1717 *
1718 * PMTT - Platform Memory Topology Table
1719 *
1720 **/

1722 ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt[] =
1723 {
1724 {ACPI_DMT_UINT32, ACPI_PMTT_OFFSET (Reserved), "Reserved",
1725 ACPI_DMT_TERMINATOR
1726 };

1728 /* Common Subtable header (one per Subtable) */

1730 ACPI_DMTABLE_INFO AcpiDmTableInfoPmttHdr[] =
1731 {
1732 {ACPI_DMT_PMTT, ACPI_PMTTH_OFFSET (Type), "Subtable Ty
1733 {ACPI_DMT_UINT8, ACPI_PMTTH_OFFSET (Reserved1), "Reserved",
1734 {ACPI_DMT_UINT16, ACPI_PMTTH_OFFSET (Length), "Length", DT
1735 {ACPI_DMT_UINT16, ACPI_PMTTH_OFFSET (Flags), "Flags (deco
1736 {ACPI_DMT_FLAG0, ACPI_PMTTH_FLAG_OFFSET (Flags,0), "Top-level D
1737 {ACPI_DMT_FLAG1, ACPI_PMTTH_FLAG_OFFSET (Flags,0), "Physical El
1738 {ACPI_DMT_FLAGS2, ACPI_PMTTH_FLAG_OFFSET (Flags,0), "Memory Type
1739 {ACPI_DMT_UINT16, ACPI_PMTTH_OFFSET (Reserved2), "Reserved",
1740 ACPI_DMT_TERMINATOR
1741 };

1743 /* PMTT Subtables */

1745 /* 0: Socket */

1747 ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt0[] =
1748 {
1749 {ACPI_DMT_UINT16, ACPI_PMTT0_OFFSET (SocketId), "Socket ID",
1750 {ACPI_DMT_UINT16, ACPI_PMTT0_OFFSET (Reserved), "Reserved",
1751 ACPI_DMT_TERMINATOR
1752 };

1754 /* 1: Memory Controller */

1756 ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt1[] =
1757 {
1758 {ACPI_DMT_UINT32, ACPI_PMTT1_OFFSET (ReadLatency), "Read Latenc
1759 {ACPI_DMT_UINT32, ACPI_PMTT1_OFFSET (WriteLatency), "Write Laten
1760 {ACPI_DMT_UINT32, ACPI_PMTT1_OFFSET (ReadBandwidth), "Read Bandwi
1761 {ACPI_DMT_UINT32, ACPI_PMTT1_OFFSET (WriteBandwidth), "Write Bandw
1762 {ACPI_DMT_UINT16, ACPI_PMTT1_OFFSET (AccessWidth), "Access Widt
1763 {ACPI_DMT_UINT16, ACPI_PMTT1_OFFSET (Alignment), "Alignment",
1764 {ACPI_DMT_UINT16, ACPI_PMTT1_OFFSET (Reserved), "Reserved",
1765 {ACPI_DMT_UINT16, ACPI_PMTT1_OFFSET (DomainCount), "Domain Coun
1766 ACPI_DMT_TERMINATOR
1767 };

1769 /* 1a: Proximity Domain */

1771 ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt1a[] =
1772 {
1773 {ACPI_DMT_UINT32, ACPI_PMTT1A_OFFSET (ProximityDomain), "Proximity D
1774 ACPI_DMT_TERMINATOR
1775 };

new/usr/src/common/acpica/common/dmtbinfo.c 28

1777 /* 2: Physical Component */

1779 ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt2[] =
1780 {
1781 {ACPI_DMT_UINT16, ACPI_PMTT2_OFFSET (ComponentId), "Component I
1782 {ACPI_DMT_UINT16, ACPI_PMTT2_OFFSET (Reserved), "Reserved",
1783 {ACPI_DMT_UINT32, ACPI_PMTT2_OFFSET (MemorySize), "Memory Size
1784 {ACPI_DMT_UINT32, ACPI_PMTT2_OFFSET (BiosHandle), "Bios Handle
1785 ACPI_DMT_TERMINATOR
1786 };

1789 /***
1790 *
1791 * S3PT - S3 Performance Table
1792 *
1793 **/

1795 ACPI_DMTABLE_INFO AcpiDmTableInfoS3pt[] =
1796 {
1797 {ACPI_DMT_SIG, ACPI_S3PT_OFFSET (Signature[0]), "Signature",
1798 {ACPI_DMT_UINT32, ACPI_S3PT_OFFSET (Length), "Length", DT
1799 ACPI_DMT_TERMINATOR
1800 };

1802 /* S3PT subtable header */

1804 ACPI_DMTABLE_INFO AcpiDmTableInfoS3ptHdr[] =
1805 {
1806 {ACPI_DMT_UINT16, ACPI_S3PTH_OFFSET (Type), "Type", 0},
1807 {ACPI_DMT_UINT8, ACPI_S3PTH_OFFSET (Length), "Length", DT
1808 {ACPI_DMT_UINT8, ACPI_S3PTH_OFFSET (Revision), "Revision",
1809 ACPI_DMT_TERMINATOR
1810 };

1812 /* 0: Basic S3 Resume Performance Record */

1814 ACPI_DMTABLE_INFO AcpiDmTableInfoS3pt0[] =
1815 {
1816 {ACPI_DMT_UINT32, ACPI_S3PT0_OFFSET (ResumeCount), "Resume Coun
1817 {ACPI_DMT_UINT64, ACPI_S3PT0_OFFSET (FullResume), "Full Resume
1818 {ACPI_DMT_UINT64, ACPI_S3PT0_OFFSET (AverageResume), "Average Res
1819 ACPI_DMT_TERMINATOR
1820 };

1822 /* 1: Basic S3 Suspend Performance Record */

1824 ACPI_DMTABLE_INFO AcpiDmTableInfoS3pt1[] =
1825 {
1826 {ACPI_DMT_UINT64, ACPI_S3PT1_OFFSET (SuspendStart), "Suspend Sta
1827 {ACPI_DMT_UINT64, ACPI_S3PT1_OFFSET (SuspendEnd), "Suspend End
1828 ACPI_DMT_TERMINATOR
1829 };

1832 /***
1833 *
1834 * SBST - Smart Battery Specification Table
1835 *
1836 **/

1838 ACPI_DMTABLE_INFO AcpiDmTableInfoSbst[] =
1839 {
1840 {ACPI_DMT_UINT32, ACPI_SBST_OFFSET (WarningLevel), "Warning Lev
1841 {ACPI_DMT_UINT32, ACPI_SBST_OFFSET (LowLevel), "Low Level",

new/usr/src/common/acpica/common/dmtbinfo.c 29

1842 {ACPI_DMT_UINT32, ACPI_SBST_OFFSET (CriticalLevel), "Critical Le
1843 ACPI_DMT_TERMINATOR
1844 };

1847 /***
1848 *
1849 * SLIC - Software Licensing Description Table. There is no common table, just
1850 * the standard ACPI header and then subtables.
1851 *
1852 **/

1854 /* Common Subtable header (one per Subtable) */

1856 ACPI_DMTABLE_INFO AcpiDmTableInfoSlicHdr[] =
1857 {
1858 {ACPI_DMT_SLIC, ACPI_SLICH_OFFSET (Type), "Subtable Ty
1859 {ACPI_DMT_UINT32, ACPI_SLICH_OFFSET (Length), "Length", DT
1860 ACPI_DMT_TERMINATOR
1861 };

1863 ACPI_DMTABLE_INFO AcpiDmTableInfoSlic0[] =
1864 {
1865 {ACPI_DMT_UINT8, ACPI_SLIC0_OFFSET (KeyType), "Key Type",
1866 {ACPI_DMT_UINT8, ACPI_SLIC0_OFFSET (Version), "Version", 0
1867 {ACPI_DMT_UINT16, ACPI_SLIC0_OFFSET (Reserved), "Reserved",
1868 {ACPI_DMT_UINT32, ACPI_SLIC0_OFFSET (Algorithm), "Algorithm",
1869 {ACPI_DMT_NAME4, ACPI_SLIC0_OFFSET (Magic), "Magic", 0},
1870 {ACPI_DMT_UINT32, ACPI_SLIC0_OFFSET (BitLength), "BitLength",
1871 {ACPI_DMT_UINT32, ACPI_SLIC0_OFFSET (Exponent), "Exponent",
1872 {ACPI_DMT_BUF128, ACPI_SLIC0_OFFSET (Modulus[0]), "Modulus", 0
1873 ACPI_DMT_TERMINATOR
1874 };

1876 ACPI_DMTABLE_INFO AcpiDmTableInfoSlic1[] =
1877 {
1878 {ACPI_DMT_UINT32, ACPI_SLIC1_OFFSET (Version), "Version", 0
1879 {ACPI_DMT_NAME6, ACPI_SLIC1_OFFSET (OemId[0]), "Oem ID", 0}
1880 {ACPI_DMT_NAME8, ACPI_SLIC1_OFFSET (OemTableId[0]), "Oem Table I
1881 {ACPI_DMT_NAME8, ACPI_SLIC1_OFFSET (WindowsFlag[0]), "Windows Fla
1882 {ACPI_DMT_UINT32, ACPI_SLIC1_OFFSET (SlicVersion), "SLIC Versio
1883 {ACPI_DMT_BUF16, ACPI_SLIC1_OFFSET (Reserved[0]), "Reserved",
1884 {ACPI_DMT_BUF128, ACPI_SLIC1_OFFSET (Signature[0]), "Signature",
1885 ACPI_DMT_TERMINATOR
1886 };

1889 /***
1890 *
1891 * SLIT - System Locality Information Table
1892 *
1893 **/

1895 ACPI_DMTABLE_INFO AcpiDmTableInfoSlit[] =
1896 {
1897 {ACPI_DMT_UINT64, ACPI_SLIT_OFFSET (LocalityCount), "Localities",
1898 ACPI_DMT_TERMINATOR
1899 };

1902 /***
1903 *
1904 * SPCR - Serial Port Console Redirection table
1905 *
1906 **/

new/usr/src/common/acpica/common/dmtbinfo.c 30

1908 ACPI_DMTABLE_INFO AcpiDmTableInfoSpcr[] =
1909 {
1910 {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (InterfaceType), "Interface T
1911 {ACPI_DMT_UINT24, ACPI_SPCR_OFFSET (Reserved[0]), "Reserved",
1912 {ACPI_DMT_GAS, ACPI_SPCR_OFFSET (SerialPort), "Serial Port
1913 {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (InterruptType), "Interrupt T
1914 {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (PcInterrupt), "PCAT-compat
1915 {ACPI_DMT_UINT32, ACPI_SPCR_OFFSET (Interrupt), "Interrupt",
1916 {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (BaudRate), "Baud Rate",
1917 {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (Parity), "Parity", 0}
1918 {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (StopBits), "Stop Bits",
1919 {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (FlowControl), "Flow Contro
1920 {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (TerminalType), "Terminal Ty
1921 {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (Reserved2), "Reserved",
1922 {ACPI_DMT_UINT16, ACPI_SPCR_OFFSET (PciDeviceId), "PCI Device
1923 {ACPI_DMT_UINT16, ACPI_SPCR_OFFSET (PciVendorId), "PCI Vendor
1924 {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (PciBus), "PCI Bus", 0
1925 {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (PciDevice), "PCI Device"
1926 {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (PciFunction), "PCI Functio
1927 {ACPI_DMT_UINT32, ACPI_SPCR_OFFSET (PciFlags), "PCI Flags",
1928 {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (PciSegment), "PCI Segment
1929 {ACPI_DMT_UINT32, ACPI_SPCR_OFFSET (Reserved2), "Reserved",
1930 ACPI_DMT_TERMINATOR
1931 };

1934 /***
1935 *
1936 * SPMI - Server Platform Management Interface table
1937 *
1938 **/

1940 ACPI_DMTABLE_INFO AcpiDmTableInfoSpmi[] =
1941 {
1942 {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (InterfaceType), "Interface T
1943 {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (Reserved), "Reserved",
1944 {ACPI_DMT_UINT16, ACPI_SPMI_OFFSET (SpecRevision), "IPMI Spec V
1945 {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (InterruptType), "Interrupt T
1946 {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (GpeNumber), "GPE Number"
1947 {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (Reserved1), "Reserved",
1948 {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (PciDeviceFlag), "PCI Device
1949 {ACPI_DMT_UINT32, ACPI_SPMI_OFFSET (Interrupt), "Interrupt",
1950 {ACPI_DMT_GAS, ACPI_SPMI_OFFSET (IpmiRegister), "IPMI Regist
1951 {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (PciSegment), "PCI Segment
1952 {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (PciBus), "PCI Bus", 0
1953 {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (PciDevice), "PCI Device"
1954 {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (PciFunction), "PCI Functio
1955 {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (Reserved2), "Reserved",
1956 ACPI_DMT_TERMINATOR
1957 };

1960 /***
1961 *
1962 * SRAT - System Resource Affinity Table and Subtables
1963 *
1964 **/

1966 ACPI_DMTABLE_INFO AcpiDmTableInfoSrat[] =
1967 {
1968 {ACPI_DMT_UINT32, ACPI_SRAT_OFFSET (TableRevision), "Table Revis
1969 {ACPI_DMT_UINT64, ACPI_SRAT_OFFSET (Reserved), "Reserved",
1970 ACPI_DMT_TERMINATOR
1971 };

1973 /* Common Subtable header (one per Subtable) */

new/usr/src/common/acpica/common/dmtbinfo.c 31

1975 ACPI_DMTABLE_INFO AcpiDmTableInfoSratHdr[] =
1976 {
1977 {ACPI_DMT_SRAT, ACPI_SRATH_OFFSET (Type), "Subtable Ty
1978 {ACPI_DMT_UINT8, ACPI_SRATH_OFFSET (Length), "Length", DT
1979 ACPI_DMT_TERMINATOR
1980 };

1982 /* SRAT Subtables */

1984 /* 0: Processor Local APIC/SAPIC Affinity */

1986 ACPI_DMTABLE_INFO AcpiDmTableInfoSrat0[] =
1987 {
1988 {ACPI_DMT_UINT8, ACPI_SRAT0_OFFSET (ProximityDomainLo), "Proximity D
1989 {ACPI_DMT_UINT8, ACPI_SRAT0_OFFSET (ApicId), "Apic ID", 0
1990 {ACPI_DMT_UINT32, ACPI_SRAT0_OFFSET (Flags), "Flags (deco
1991 {ACPI_DMT_FLAG0, ACPI_SRAT0_FLAG_OFFSET (Flags,0), "Enabled", 0
1992 {ACPI_DMT_UINT8, ACPI_SRAT0_OFFSET (LocalSapicEid), "Local Sapic
1993 {ACPI_DMT_UINT24, ACPI_SRAT0_OFFSET (ProximityDomainHi[0]), "Proximity D
1994 {ACPI_DMT_UINT32, ACPI_SRAT0_OFFSET (Reserved), "Reserved",
1995 ACPI_DMT_TERMINATOR
1996 };

1998 /* 1: Memory Affinity */

2000 ACPI_DMTABLE_INFO AcpiDmTableInfoSrat1[] =
2001 {
2002 {ACPI_DMT_UINT32, ACPI_SRAT1_OFFSET (ProximityDomain), "Proximity D
2003 {ACPI_DMT_UINT16, ACPI_SRAT1_OFFSET (Reserved), "Reserved1",
2004 {ACPI_DMT_UINT64, ACPI_SRAT1_OFFSET (BaseAddress), "Base Addres
2005 {ACPI_DMT_UINT64, ACPI_SRAT1_OFFSET (Length), "Address Len
2006 {ACPI_DMT_UINT32, ACPI_SRAT1_OFFSET (Reserved1), "Reserved2",
2007 {ACPI_DMT_UINT32, ACPI_SRAT1_OFFSET (Flags), "Flags (deco
2008 {ACPI_DMT_FLAG0, ACPI_SRAT1_FLAG_OFFSET (Flags,0), "Enabled", 0
2009 {ACPI_DMT_FLAG1, ACPI_SRAT1_FLAG_OFFSET (Flags,0), "Hot Pluggab
2010 {ACPI_DMT_FLAG2, ACPI_SRAT1_FLAG_OFFSET (Flags,0), "Non-Volatil
2011 {ACPI_DMT_UINT64, ACPI_SRAT1_OFFSET (Reserved2), "Reserved3",
2012 ACPI_DMT_TERMINATOR
2013 };

2015 /* 2: Processor Local X2_APIC Affinity (ACPI 4.0) */

2017 ACPI_DMTABLE_INFO AcpiDmTableInfoSrat2[] =
2018 {
2019 {ACPI_DMT_UINT16, ACPI_SRAT2_OFFSET (Reserved), "Reserved1",
2020 {ACPI_DMT_UINT32, ACPI_SRAT2_OFFSET (ProximityDomain), "Proximity D
2021 {ACPI_DMT_UINT32, ACPI_SRAT2_OFFSET (ApicId), "Apic ID", 0
2022 {ACPI_DMT_UINT32, ACPI_SRAT2_OFFSET (Flags), "Flags (deco
2023 {ACPI_DMT_FLAG0, ACPI_SRAT2_FLAG_OFFSET (Flags,0), "Enabled", 0
2024 {ACPI_DMT_UINT32, ACPI_SRAT2_OFFSET (ClockDomain), "Clock Domai
2025 {ACPI_DMT_UINT32, ACPI_SRAT2_OFFSET (Reserved2), "Reserved2",
2026 ACPI_DMT_TERMINATOR
2027 };

2030 /***
2031 *
2032 * TCPA - Trusted Computing Platform Alliance table
2033 *
2034 **/

2036 ACPI_DMTABLE_INFO AcpiDmTableInfoTcpa[] =
2037 {
2038 {ACPI_DMT_UINT16, ACPI_TCPA_OFFSET (Reserved), "Reserved",
2039 {ACPI_DMT_UINT32, ACPI_TCPA_OFFSET (MaxLogLength), "Max Event L

new/usr/src/common/acpica/common/dmtbinfo.c 32

2040 {ACPI_DMT_UINT64, ACPI_TCPA_OFFSET (LogAddress), "Event Log A
2041 ACPI_DMT_TERMINATOR
2042 };

2045 /***
2046 *
2047 * TPM2 - Trusted Platform Module (TPM) 2.0 Hardware Interface Table
2048 *
2049 **/

2051 ACPI_DMTABLE_INFO AcpiDmTableInfoTpm2[] =
2052 {
2053 {ACPI_DMT_UINT32, ACPI_TPM2_OFFSET (Flags), "Flags", 0},
2054 {ACPI_DMT_UINT64, ACPI_TPM2_OFFSET (ControlAddress), "Control Add
2055 {ACPI_DMT_UINT32, ACPI_TPM2_OFFSET (StartMethod), "Start Metho
2056 ACPI_DMT_TERMINATOR
2057 };

2060 /***
2061 *
2062 * UEFI - UEFI Boot optimization Table
2063 *
2064 **/

2066 ACPI_DMTABLE_INFO AcpiDmTableInfoUefi[] =
2067 {
2068 {ACPI_DMT_UUID, ACPI_UEFI_OFFSET (Identifier[0]), "UUID Identi
2069 {ACPI_DMT_UINT16, ACPI_UEFI_OFFSET (DataOffset), "Data Offset
2070 ACPI_DMT_TERMINATOR
2071 };

2074 /***
2075 *
2076 * VRTC - Virtual Real Time Clock Table
2077 *
2078 **/

2080 ACPI_DMTABLE_INFO AcpiDmTableInfoVrtc[] =
2081 {
2082 ACPI_DMT_TERMINATOR
2083 };

2085 /* VRTC Subtables - VRTC Entry */

2087 ACPI_DMTABLE_INFO AcpiDmTableInfoVrtc0[] =
2088 {
2089 {ACPI_DMT_GAS, ACPI_VRTC0_OFFSET (PhysicalAddress), "PhysicalAdd
2090 {ACPI_DMT_UINT32, ACPI_VRTC0_OFFSET (Irq), "IRQ", 0},
2091 ACPI_DMT_TERMINATOR
2092 };

2095 /***
2096 *
2097 * WAET - Windows ACPI Emulated devices Table
2098 *
2099 **/

2101 ACPI_DMTABLE_INFO AcpiDmTableInfoWaet[] =
2102 {
2103 {ACPI_DMT_UINT32, ACPI_WAET_OFFSET (Flags), "Flags (deco
2104 {ACPI_DMT_FLAG0, ACPI_WAET_OFFSET (Flags), "RTC needs n
2105 {ACPI_DMT_FLAG1, ACPI_WAET_OFFSET (Flags), "PM timer, o

new/usr/src/common/acpica/common/dmtbinfo.c 33

2106 ACPI_DMT_TERMINATOR
2107 };

2110 /***
2111 *
2112 * WDAT - Watchdog Action Table
2113 *
2114 **/

2116 ACPI_DMTABLE_INFO AcpiDmTableInfoWdat[] =
2117 {
2118 {ACPI_DMT_UINT32, ACPI_WDAT_OFFSET (HeaderLength), "Header Leng
2119 {ACPI_DMT_UINT16, ACPI_WDAT_OFFSET (PciSegment), "PCI Segment
2120 {ACPI_DMT_UINT8, ACPI_WDAT_OFFSET (PciBus), "PCI Bus", 0
2121 {ACPI_DMT_UINT8, ACPI_WDAT_OFFSET (PciDevice), "PCI Device"
2122 {ACPI_DMT_UINT8, ACPI_WDAT_OFFSET (PciFunction), "PCI Functio
2123 {ACPI_DMT_UINT24, ACPI_WDAT_OFFSET (Reserved[0]), "Reserved",
2124 {ACPI_DMT_UINT32, ACPI_WDAT_OFFSET (TimerPeriod), "Timer Perio
2125 {ACPI_DMT_UINT32, ACPI_WDAT_OFFSET (MaxCount), "Max Count",
2126 {ACPI_DMT_UINT32, ACPI_WDAT_OFFSET (MinCount), "Min Count",
2127 {ACPI_DMT_UINT8, ACPI_WDAT_OFFSET (Flags), "Flags (deco
2128 {ACPI_DMT_FLAG0, ACPI_WDAT_OFFSET (Flags), "Enabled", 0
2129 {ACPI_DMT_FLAG7, ACPI_WDAT_OFFSET (Flags), "Stopped Whe
2130 {ACPI_DMT_UINT24, ACPI_WDAT_OFFSET (Reserved2[0]), "Reserved",
2131 {ACPI_DMT_UINT32, ACPI_WDAT_OFFSET (Entries), "Watchdog En
2132 ACPI_DMT_TERMINATOR
2133 };

2135 /* WDAT Subtables - Watchdog Instruction Entries */

2137 ACPI_DMTABLE_INFO AcpiDmTableInfoWdat0[] =
2138 {
2139 {ACPI_DMT_UINT8, ACPI_WDAT0_OFFSET (Action), "Watchdog Ac
2140 {ACPI_DMT_UINT8, ACPI_WDAT0_OFFSET (Instruction), "Instruction
2141 {ACPI_DMT_UINT16, ACPI_WDAT0_OFFSET (Reserved), "Reserved",
2142 {ACPI_DMT_GAS, ACPI_WDAT0_OFFSET (RegisterRegion), "Register Re
2143 {ACPI_DMT_UINT32, ACPI_WDAT0_OFFSET (Value), "Value", 0},
2144 {ACPI_DMT_UINT32, ACPI_WDAT0_OFFSET (Mask), "Register Ma
2145 ACPI_DMT_TERMINATOR
2146 };

2149 /***
2150 *
2151 * WDDT - Watchdog Description Table
2152 *
2153 **/

2155 ACPI_DMTABLE_INFO AcpiDmTableInfoWddt[] =
2156 {
2157 {ACPI_DMT_UINT16, ACPI_WDDT_OFFSET (SpecVersion), "Specificati
2158 {ACPI_DMT_UINT16, ACPI_WDDT_OFFSET (TableVersion), "Table Versi
2159 {ACPI_DMT_UINT16, ACPI_WDDT_OFFSET (PciVendorId), "PCI Vendor
2160 {ACPI_DMT_GAS, ACPI_WDDT_OFFSET (Address), "Timer Regis
2161 {ACPI_DMT_UINT16, ACPI_WDDT_OFFSET (MaxCount), "Max Count",
2162 {ACPI_DMT_UINT16, ACPI_WDDT_OFFSET (MinCount), "Min Count",
2163 {ACPI_DMT_UINT16, ACPI_WDDT_OFFSET (Period), "Period", 0}
2164 {ACPI_DMT_UINT16, ACPI_WDDT_OFFSET (Status), "Status (dec

2166 /* Status Flags byte 0 */

2168 {ACPI_DMT_FLAG0, ACPI_WDDT_FLAG_OFFSET (Status,0), "Available",
2169 {ACPI_DMT_FLAG1, ACPI_WDDT_FLAG_OFFSET (Status,0), "Active", 0}
2170 {ACPI_DMT_FLAG2, ACPI_WDDT_FLAG_OFFSET (Status,0), "OS Owns", 0

new/usr/src/common/acpica/common/dmtbinfo.c 34

2172 /* Status Flags byte 1 */

2174 {ACPI_DMT_FLAG3, ACPI_WDDT_FLAG_OFFSET (Status,1), "User Reset"
2175 {ACPI_DMT_FLAG4, ACPI_WDDT_FLAG_OFFSET (Status,1), "Timeout Res
2176 {ACPI_DMT_FLAG5, ACPI_WDDT_FLAG_OFFSET (Status,1), "Power Fail
2177 {ACPI_DMT_FLAG6, ACPI_WDDT_FLAG_OFFSET (Status,1), "Unknown Res

2179 {ACPI_DMT_UINT16, ACPI_WDDT_OFFSET (Capability), "Capability

2181 /* Capability Flags byte 0 */

2183 {ACPI_DMT_FLAG0, ACPI_WDDT_FLAG_OFFSET (Capability,0), "Auto Reset"
2184 {ACPI_DMT_FLAG1, ACPI_WDDT_FLAG_OFFSET (Capability,0), "Timeout Ale
2185 ACPI_DMT_TERMINATOR
2186 };

2189 /***
2190 *
2191 * WDRT - Watchdog Resource Table
2192 *
2193 **/

2195 ACPI_DMTABLE_INFO AcpiDmTableInfoWdrt[] =
2196 {
2197 {ACPI_DMT_GAS, ACPI_WDRT_OFFSET (ControlRegister), "Control Reg
2198 {ACPI_DMT_GAS, ACPI_WDRT_OFFSET (CountRegister), "Count Regis
2199 {ACPI_DMT_UINT16, ACPI_WDRT_OFFSET (PciDeviceId), "PCI Device
2200 {ACPI_DMT_UINT16, ACPI_WDRT_OFFSET (PciVendorId), "PCI Vendor
2201 {ACPI_DMT_UINT8, ACPI_WDRT_OFFSET (PciBus), "PCI Bus", 0
2202 {ACPI_DMT_UINT8, ACPI_WDRT_OFFSET (PciDevice), "PCI Device"
2203 {ACPI_DMT_UINT8, ACPI_WDRT_OFFSET (PciFunction), "PCI Functio
2204 {ACPI_DMT_UINT8, ACPI_WDRT_OFFSET (PciSegment), "PCI Segment
2205 {ACPI_DMT_UINT16, ACPI_WDRT_OFFSET (MaxCount), "Max Count",
2206 {ACPI_DMT_UINT8, ACPI_WDRT_OFFSET (Units), "Counter Uni
2207 ACPI_DMT_TERMINATOR
2208 };

2210 /*! [Begin] no source code translation */

2212 /*
2213 * Generic types (used in UEFI and custom tables)
2214 *
2215 * Examples:
2216 *
2217 * Buffer : cc 04 ff bb
2218 * UINT8 : 11
2219 * UINT16 : 1122
2220 * UINT24 : 112233
2221 * UINT32 : 11223344
2222 * UINT56 : 11223344556677
2223 * UINT64 : 1122334455667788
2224 *
2225 * String : "This is string"
2226 * Unicode : "This string encoded to Unicode"
2227 *
2228 * GUID : 11223344-5566-7788-99aa-bbccddeeff00
2229 * DevicePath : "\PciRoot(0)\Pci(0x1f,1)\Usb(0,0)"
2230 */

2232 #define ACPI_DM_GENERIC_ENTRY(FieldType, FieldName) \
2233 {{FieldType, 0, FieldName, 0}, ACPI_DMT_TERMINATOR}

2235 ACPI_DMTABLE_INFO AcpiDmTableInfoGeneric[][2] =
2236 {
2237 ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UINT8, "UINT8"),

new/usr/src/common/acpica/common/dmtbinfo.c 35

2238 ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UINT16, "UINT16"),
2239 ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UINT24, "UINT24"),
2240 ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UINT32, "UINT32"),
2241 ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UINT40, "UINT40"),
2242 ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UINT48, "UINT48"),
2243 ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UINT56, "UINT56"),
2244 ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UINT64, "UINT64"),
2245 ACPI_DM_GENERIC_ENTRY (ACPI_DMT_STRING, "String"),
2246 ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UNICODE, "Unicode"),
2247 ACPI_DM_GENERIC_ENTRY (ACPI_DMT_BUFFER, "Buffer"),
2248 ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UUID, "GUID"),
2249 ACPI_DM_GENERIC_ENTRY (ACPI_DMT_STRING, "DevicePath"),
2250 ACPI_DM_GENERIC_ENTRY (ACPI_DMT_LABEL, "Label"),
2251 {ACPI_DMT_TERMINATOR}
2252 };
2253 /*! [End] no source code translation !*/

new/usr/src/common/acpica/common/getopt.c 1

**
 7805 Thu Dec 26 13:48:25 2013
new/usr/src/common/acpica/common/getopt.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: getopt
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 /*
45 * ACPICA getopt() implementation
46 *
47 * Option strings:
48 * "f" - Option has no arguments
49 * "f:" - Option requires an argument
50 * "f^" - Option has optional single-char sub-options
51 * "f|" - Option has required single-char sub-options
52 */

54 #include <stdio.h>
55 #include <string.h>
56 #include "acpi.h"
57 #include "accommon.h"
58 #include "acapps.h"

60 #define ACPI_OPTION_ERROR(msg, badchar) \

new/usr/src/common/acpica/common/getopt.c 2

61 if (AcpiGbl_Opterr) {fprintf (stderr, "%s%c\n", msg, badchar);}

64 int AcpiGbl_Opterr = 1;
65 int AcpiGbl_Optind = 1;
66 int AcpiGbl_SubOptChar = 0;
67 char *AcpiGbl_Optarg;

69 static int CurrentCharPtr = 1;

72 /***
73 *
74 * FUNCTION: AcpiGetoptArgument
75 *
76 * PARAMETERS: argc, argv - from main
77 *
78 * RETURN: 0 if an argument was found, -1 otherwise. Sets AcpiGbl_Optarg
79 * to point to the next argument.
80 *
81 * DESCRIPTION: Get the next argument. Used to obtain arguments for the
82 * two-character options after the original call to AcpiGetopt.
83 * Note: Either the argument starts at the next character after
84 * the option, or it is pointed to by the next argv entry.
85 * (After call to AcpiGetopt, we need to backup to the previous
86 * argv entry).
87 *
88 **/

90 int
91 AcpiGetoptArgument (
92 int argc,
93 char **argv)
94 {
95 AcpiGbl_Optind--;
96 CurrentCharPtr++;

98 if (argv[AcpiGbl_Optind][(int) (CurrentCharPtr+1)] != ’\0’)
99 {
100 AcpiGbl_Optarg = &argv[AcpiGbl_Optind++][(int) (CurrentCharPtr+1)];
101 }
102 else if (++AcpiGbl_Optind >= argc)
103 {
104 ACPI_OPTION_ERROR ("Option requires an argument: -", ’v’);

106 CurrentCharPtr = 1;
107 return (-1);
108 }
109 else
110 {
111 AcpiGbl_Optarg = argv[AcpiGbl_Optind++];
112 }

114 CurrentCharPtr = 1;
115 return (0);
116 }

119 /***
120 *
121 * FUNCTION: AcpiGetopt
122 *
123 * PARAMETERS: argc, argv - from main
124 * opts - options info list
125 *
126 * RETURN: Option character or EOF

new/usr/src/common/acpica/common/getopt.c 3

127 *
128 * DESCRIPTION: Get the next option
129 *
130 **/

132 int
133 AcpiGetopt(
134 int argc,
135 char **argv,
136 char *opts)
137 {
138 int CurrentChar;
139 char *OptsPtr;

142 if (CurrentCharPtr == 1)
143 {
144 if (AcpiGbl_Optind >= argc ||
145 argv[AcpiGbl_Optind][0] != ’-’ ||
146 argv[AcpiGbl_Optind][1] == ’\0’)
147 {
148 return (EOF);
149 }
150 else if (strcmp (argv[AcpiGbl_Optind], "--") == 0)
151 {
152 AcpiGbl_Optind++;
153 return (EOF);
154 }
155 }

157 /* Get the option */

159 CurrentChar = argv[AcpiGbl_Optind][CurrentCharPtr];

161 /* Make sure that the option is legal */

163 if (CurrentChar == ’:’ ||
164 (OptsPtr = strchr (opts, CurrentChar)) == NULL)
165 {
166 ACPI_OPTION_ERROR ("Illegal option: -", CurrentChar);

168 if (argv[AcpiGbl_Optind][++CurrentCharPtr] == ’\0’)
169 {
170 AcpiGbl_Optind++;
171 CurrentCharPtr = 1;
172 }

174 return (’?’);
175 }

177 /* Option requires an argument? */

179 if (*++OptsPtr == ’:’)
180 {
181 if (argv[AcpiGbl_Optind][(int) (CurrentCharPtr+1)] != ’\0’)
182 {
183 AcpiGbl_Optarg = &argv[AcpiGbl_Optind++][(int) (CurrentCharPtr+1)];
184 }
185 else if (++AcpiGbl_Optind >= argc)
186 {
187 ACPI_OPTION_ERROR ("Option requires an argument: -", CurrentChar);

189 CurrentCharPtr = 1;
190 return (’?’);
191 }
192 else

new/usr/src/common/acpica/common/getopt.c 4

193 {
194 AcpiGbl_Optarg = argv[AcpiGbl_Optind++];
195 }

197 CurrentCharPtr = 1;
198 }

200 /* Option has an optional argument? */

202 else if (*OptsPtr == ’+’)
203 {
204 if (argv[AcpiGbl_Optind][(int) (CurrentCharPtr+1)] != ’\0’)
205 {
206 AcpiGbl_Optarg = &argv[AcpiGbl_Optind++][(int) (CurrentCharPtr+1)];
207 }
208 else if (++AcpiGbl_Optind >= argc)
209 {
210 AcpiGbl_Optarg = NULL;
211 }
212 else
213 {
214 AcpiGbl_Optarg = argv[AcpiGbl_Optind++];
215 }

217 CurrentCharPtr = 1;
218 }

220 /* Option has optional single-char arguments? */

222 else if (*OptsPtr == ’^’)
223 {
224 if (argv[AcpiGbl_Optind][(int) (CurrentCharPtr+1)] != ’\0’)
225 {
226 AcpiGbl_Optarg = &argv[AcpiGbl_Optind][(int) (CurrentCharPtr+1)];
227 }
228 else
229 {
230 AcpiGbl_Optarg = "^";
231 }

233 AcpiGbl_SubOptChar = AcpiGbl_Optarg[0];
234 AcpiGbl_Optind++;
235 CurrentCharPtr = 1;
236 }

238 /* Option has a required single-char argument? */

240 else if (*OptsPtr == ’|’)
241 {
242 if (argv[AcpiGbl_Optind][(int) (CurrentCharPtr+1)] != ’\0’)
243 {
244 AcpiGbl_Optarg = &argv[AcpiGbl_Optind][(int) (CurrentCharPtr+1)];
245 }
246 else
247 {
248 ACPI_OPTION_ERROR ("Option requires a single-character suboption: -"

250 CurrentCharPtr = 1;
251 return (’?’);
252 }

254 AcpiGbl_SubOptChar = AcpiGbl_Optarg[0];
255 AcpiGbl_Optind++;
256 CurrentCharPtr = 1;
257 }

new/usr/src/common/acpica/common/getopt.c 5

259 /* Option with no arguments */

261 else
262 {
263 if (argv[AcpiGbl_Optind][++CurrentCharPtr] == ’\0’)
264 {
265 CurrentCharPtr = 1;
266 AcpiGbl_Optind++;
267 }

269 AcpiGbl_Optarg = NULL;
270 }

272 return (CurrentChar);
273 }

new/usr/src/common/acpica/compiler/aslanalyze.c 1

**
 15585 Thu Dec 26 13:48:25 2013
new/usr/src/common/acpica/compiler/aslanalyze.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslanalyze.c - Support functions for parse tree walks
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"
47 #include <string.h>

50 #define _COMPONENT ACPI_COMPILER
51 ACPI_MODULE_NAME ("aslanalyze")

54 /***
55 *
56 * FUNCTION: AnIsInternalMethod
57 *
58 * PARAMETERS: Op - Current op
59 *
60 * RETURN: Boolean

new/usr/src/common/acpica/compiler/aslanalyze.c 2

61 *
62 * DESCRIPTION: Check for an internal control method.
63 *
64 **/

66 BOOLEAN
67 AnIsInternalMethod (
68 ACPI_PARSE_OBJECT *Op)
69 {

71 if ((!ACPI_STRCMP (Op->Asl.ExternalName, "_OSI")) ||
72 (!ACPI_STRCMP (Op->Asl.ExternalName, "_OSI")))
73 {
74 return (TRUE);
75 }

77 return (FALSE);
78 }

81 /***
82 *
83 * FUNCTION: AnGetInternalMethodReturnType
84 *
85 * PARAMETERS: Op - Current op
86 *
87 * RETURN: Btype
88 *
89 * DESCRIPTION: Get the return type of an internal method
90 *
91 **/

93 UINT32
94 AnGetInternalMethodReturnType (
95 ACPI_PARSE_OBJECT *Op)
96 {

98 if ((!ACPI_STRCMP (Op->Asl.ExternalName, "_OSI")) ||
99 (!ACPI_STRCMP (Op->Asl.ExternalName, "_OSI")))
100 {
101 return (ACPI_BTYPE_STRING);
102 }

104 return (0);
105 }

108 /***
109 *
110 * FUNCTION: AnCheckId
111 *
112 * PARAMETERS: Op - Current parse op
113 * Type - HID or CID
114 *
115 * RETURN: None
116 *
117 * DESCRIPTION: Perform various checks on _HID and _CID strings. Only limited
118 * checks can be performed on _CID strings.
119 *
120 **/

122 void
123 AnCheckId (
124 ACPI_PARSE_OBJECT *Op,
125 ACPI_NAME Type)
126 {

new/usr/src/common/acpica/compiler/aslanalyze.c 3

127 UINT32 i;
128 ACPI_SIZE Length;

131 /* Only care about string versions of _HID/_CID (integers are legal) */

133 if (Op->Asl.ParseOpcode != PARSEOP_STRING_LITERAL)
134 {
135 return;
136 }

138 /* For both _HID and _CID, the string must be non-null */

140 Length = strlen (Op->Asl.Value.String);
141 if (!Length)
142 {
143 AslError (ASL_ERROR, ASL_MSG_NULL_STRING,
144 Op, NULL);
145 return;
146 }

148 /*
149 * One of the things we want to catch here is the use of a leading
150 * asterisk in the string -- an odd construct that certain platform
151 * manufacturers are fond of. Technically, a leading asterisk is OK
152 * for _CID, but a valid use of this has not been seen.
153 */
154 if (*Op->Asl.Value.String == ’*’)
155 {
156 AslError (ASL_ERROR, ASL_MSG_LEADING_ASTERISK,
157 Op, Op->Asl.Value.String);
158 return;
159 }

161 /* _CID strings are bus-specific, no more checks can be performed */

163 if (Type == ASL_TYPE_CID)
164 {
165 return;
166 }

168 /* For _HID, all characters must be alphanumeric */

170 for (i = 0; Op->Asl.Value.String[i]; i++)
171 {
172 if (!isalnum ((int) Op->Asl.Value.String[i]))
173 {
174 AslError (ASL_ERROR, ASL_MSG_ALPHANUMERIC_STRING,
175 Op, Op->Asl.Value.String);
176 return;
177 }
178 }

180 /*
181 * _HID String must be one of these forms:
182 *
183 * "AAA####" A is an uppercase letter and # is a hex digit
184 * "ACPI####" # is a hex digit
185 * "NNNN####" N is an uppercase letter or decimal digit (0-9)
186 * # is a hex digit (ACPI 5.0)
187 */
188 if ((Length < 7) || (Length > 8))
189 {
190 AslError (ASL_ERROR, ASL_MSG_HID_LENGTH,
191 Op, Op->Asl.Value.String);
192 return;

new/usr/src/common/acpica/compiler/aslanalyze.c 4

193 }

195 /* _HID Length is valid (7 or 8), now check the prefix (first 3 or 4 chars)

197 if (Length == 7)
198 {
199 /* AAA####: Ensure the alphabetic prefix is all uppercase */

201 for (i = 0; i < 3; i++)
202 {
203 if (!isupper ((int) Op->Asl.Value.String[i]))
204 {
205 AslError (ASL_ERROR, ASL_MSG_UPPER_CASE,
206 Op, &Op->Asl.Value.String[i]);
207 return;
208 }
209 }
210 }
211 else /* Length == 8 */
212 {
213 /*
214 * ACPI#### or NNNN####:
215 * Ensure the prefix contains only uppercase alpha or decimal digits
216 */
217 for (i = 0; i < 4; i++)
218 {
219 if (!isupper ((int) Op->Asl.Value.String[i]) &&
220 !isdigit ((int) Op->Asl.Value.String[i]))
221 {
222 AslError (ASL_ERROR, ASL_MSG_HID_PREFIX,
223 Op, &Op->Asl.Value.String[i]);
224 return;
225 }
226 }
227 }

229 /* Remaining characters (suffix) must be hex digits */

231 for (; i < Length; i++)
232 {
233 if (!isxdigit ((int) Op->Asl.Value.String[i]))
234 {
235 AslError (ASL_ERROR, ASL_MSG_HID_SUFFIX,
236 Op, &Op->Asl.Value.String[i]);
237 break;
238 }
239 }
240 }

243 /***
244 *
245 * FUNCTION: AnLastStatementIsReturn
246 *
247 * PARAMETERS: Op - A method parse node
248 *
249 * RETURN: TRUE if last statement is an ASL RETURN. False otherwise
250 *
251 * DESCRIPTION: Walk down the list of top level statements within a method
252 * to find the last one. Check if that last statement is in
253 * fact a RETURN statement.
254 *
255 **/

257 BOOLEAN
258 AnLastStatementIsReturn (

new/usr/src/common/acpica/compiler/aslanalyze.c 5

259 ACPI_PARSE_OBJECT *Op)
260 {
261 ACPI_PARSE_OBJECT *Next;

264 /* Check if last statement is a return */

266 Next = ASL_GET_CHILD_NODE (Op);
267 while (Next)
268 {
269 if ((!Next->Asl.Next) &&
270 (Next->Asl.ParseOpcode == PARSEOP_RETURN))
271 {
272 return (TRUE);
273 }

275 Next = ASL_GET_PEER_NODE (Next);
276 }

278 return (FALSE);
279 }

282 /***
283 *
284 * FUNCTION: AnCheckMethodReturnValue
285 *
286 * PARAMETERS: Op - Parent
287 * OpInfo - Parent info
288 * ArgOp - Method invocation op
289 * RequiredBtypes - What caller requires
290 * ThisNodeBtype - What this node returns (if anything)
291 *
292 * RETURN: None
293 *
294 * DESCRIPTION: Check a method invocation for 1) A return value and if it does
295 * in fact return a value, 2) check the type of the return value.
296 *
297 **/

299 void
300 AnCheckMethodReturnValue (
301 ACPI_PARSE_OBJECT *Op,
302 const ACPI_OPCODE_INFO *OpInfo,
303 ACPI_PARSE_OBJECT *ArgOp,
304 UINT32 RequiredBtypes,
305 UINT32 ThisNodeBtype)
306 {
307 ACPI_PARSE_OBJECT *OwningOp;
308 ACPI_NAMESPACE_NODE *Node;

311 Node = ArgOp->Asl.Node;

314 /* Examine the parent op of this method */

316 OwningOp = Node->Op;
317 if (OwningOp->Asl.CompileFlags & NODE_METHOD_NO_RETVAL)
318 {
319 /* Method NEVER returns a value */

321 AslError (ASL_ERROR, ASL_MSG_NO_RETVAL, Op, Op->Asl.ExternalName);
322 }
323 else if (OwningOp->Asl.CompileFlags & NODE_METHOD_SOME_NO_RETVAL)
324 {

new/usr/src/common/acpica/compiler/aslanalyze.c 6

325 /* Method SOMETIMES returns a value, SOMETIMES not */

327 AslError (ASL_WARNING, ASL_MSG_SOME_NO_RETVAL, Op, Op->Asl.ExternalName)
328 }
329 else if (!(ThisNodeBtype & RequiredBtypes))
330 {
331 /* Method returns a value, but the type is wrong */

333 AnFormatBtype (StringBuffer, ThisNodeBtype);
334 AnFormatBtype (StringBuffer2, RequiredBtypes);

336 /*
337 * The case where the method does not return any value at all
338 * was already handled in the namespace cross reference
339 * -- Only issue an error if the method in fact returns a value,
340 * but it is of the wrong type
341 */
342 if (ThisNodeBtype != 0)
343 {
344 sprintf (MsgBuffer,
345 "Method returns [%s], %s operator requires [%s]",
346 StringBuffer, OpInfo->Name, StringBuffer2);

348 AslError (ASL_ERROR, ASL_MSG_INVALID_TYPE, ArgOp, MsgBuffer);
349 }
350 }
351 }

354 /***
355 *
356 * FUNCTION: AnIsResultUsed
357 *
358 * PARAMETERS: Op - Parent op for the operator
359 *
360 * RETURN: TRUE if result from this operation is actually consumed
361 *
362 * DESCRIPTION: Determine if the function result value from an operator is
363 * used.
364 *
365 **/

367 BOOLEAN
368 AnIsResultUsed (
369 ACPI_PARSE_OBJECT *Op)
370 {
371 ACPI_PARSE_OBJECT *Parent;

374 switch (Op->Asl.ParseOpcode)
375 {
376 case PARSEOP_INCREMENT:
377 case PARSEOP_DECREMENT:

379 /* These are standalone operators, no return value */

381 return (TRUE);

383 default:

385 break;
386 }

388 /* Examine parent to determine if the return value is used */

390 Parent = Op->Asl.Parent;

new/usr/src/common/acpica/compiler/aslanalyze.c 7

391 switch (Parent->Asl.ParseOpcode)
392 {
393 /* If/While - check if the operator is the predicate */

395 case PARSEOP_IF:
396 case PARSEOP_WHILE:

398 /* First child is the predicate */

400 if (Parent->Asl.Child == Op)
401 {
402 return (TRUE);
403 }
404 return (FALSE);

406 /* Not used if one of these is the parent */

408 case PARSEOP_METHOD:
409 case PARSEOP_DEFINITIONBLOCK:
410 case PARSEOP_ELSE:

412 return (FALSE);

414 default:

416 /* Any other type of parent means that the result is used */

418 return (TRUE);
419 }
420 }

423 /***
424 *
425 * FUNCTION: ApCheckForGpeNameConflict
426 *
427 * PARAMETERS: Op - Current parse op
428 *
429 * RETURN: None
430 *
431 * DESCRIPTION: Check for a conflict between GPE names within this scope.
432 * Conflict means two GPE names with the same GPE number, but
433 * different types -- such as _L1C and _E1C.
434 *
435 **/

437 void
438 ApCheckForGpeNameConflict (
439 ACPI_PARSE_OBJECT *Op)
440 {
441 ACPI_PARSE_OBJECT *NextOp;
442 UINT32 GpeNumber;
443 char Name[ACPI_NAME_SIZE + 1];
444 char Target[ACPI_NAME_SIZE];

447 /* Need a null-terminated string version of NameSeg */

449 ACPI_MOVE_32_TO_32 (Name, &Op->Asl.NameSeg);
450 Name[ACPI_NAME_SIZE] = 0;

452 /*
453 * For a GPE method:
454 * 1st char must be underscore
455 * 2nd char must be L or E
456 * 3rd/4th chars must be a hex number

new/usr/src/common/acpica/compiler/aslanalyze.c 8

457 */
458 if ((Name[0] != ’_’) ||
459 ((Name[1] != ’L’) && (Name[1] != ’E’)))
460 {
461 return;
462 }

464 /* Verify 3rd/4th chars are a valid hex value */

466 GpeNumber = ACPI_STRTOUL (&Name[2], NULL, 16);
467 if (GpeNumber == ACPI_UINT32_MAX)
468 {
469 return;
470 }

472 /*
473 * We are now sure we have an _Lxx or _Exx.
474 * Create the target name that would cause collision (Flip E/L)
475 */
476 ACPI_MOVE_32_TO_32 (Target, Name);

478 /* Inject opposite letter ("L" versus "E") */

480 if (Name[1] == ’L’)
481 {
482 Target[1] = ’E’;
483 }
484 else /* Name[1] == ’E’ */
485 {
486 Target[1] = ’L’;
487 }

489 /* Search all peers (objects within this scope) for target match */

491 NextOp = Op->Asl.Next;
492 while (NextOp)
493 {
494 /*
495 * We mostly care about methods, but check Name() constructs also,
496 * even though they will get another error for not being a method.
497 * All GPE names must be defined as control methods.
498 */
499 if ((NextOp->Asl.ParseOpcode == PARSEOP_METHOD) ||
500 (NextOp->Asl.ParseOpcode == PARSEOP_NAME))
501 {
502 if (ACPI_COMPARE_NAME (Target, NextOp->Asl.NameSeg))
503 {
504 /* Found both _Exy and _Lxy in the same scope, error */

506 AslError (ASL_ERROR, ASL_MSG_GPE_NAME_CONFLICT, NextOp,
507 Name);
508 return;
509 }
510 }

512 NextOp = NextOp->Asl.Next;
513 }

515 /* OK, no conflict found */

517 return;
518 }

521 /***
522 *

new/usr/src/common/acpica/compiler/aslanalyze.c 9

523 * FUNCTION: ApCheckRegMethod
524 *
525 * PARAMETERS: Op - Current parse op
526 *
527 * RETURN: None
528 *
529 * DESCRIPTION: Ensure that a _REG method has a corresponding Operation
530 * Region declaration within the same scope. Note: _REG is defined
531 * to have two arguments and must therefore be defined as a
532 * control method.
533 *
534 **/

536 void
537 ApCheckRegMethod (
538 ACPI_PARSE_OBJECT *Op)
539 {
540 ACPI_PARSE_OBJECT *Next;
541 ACPI_PARSE_OBJECT *Parent;

544 /* We are only interested in _REG methods */

546 if (!ACPI_COMPARE_NAME (METHOD_NAME__REG, &Op->Asl.NameSeg))
547 {
548 return;
549 }

551 /* Get the start of the current scope */

553 Parent = Op->Asl.Parent;
554 Next = Parent->Asl.Child;

556 /* Search entire scope for an operation region declaration */

558 while (Next)
559 {
560 if (Next->Asl.ParseOpcode == PARSEOP_OPERATIONREGION)
561 {
562 return; /* Found region, OK */
563 }

565 Next = Next->Asl.Next;
566 }

568 /* No region found, issue warning */

570 AslError (ASL_WARNING, ASL_MSG_NO_REGION, Op, NULL);
571 }

new/usr/src/common/acpica/compiler/aslbtypes.c 1

**
 14222 Thu Dec 26 13:48:25 2013
new/usr/src/common/acpica/compiler/aslbtypes.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslbtypes - Support for bitfield types
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"
47 #include "amlcode.h"

50 #define _COMPONENT ACPI_COMPILER
51 ACPI_MODULE_NAME ("aslbtypes")

53 /* Local prototypes */

55 static UINT32
56 AnMapEtypeToBtype (
57 UINT32 Etype);

new/usr/src/common/acpica/compiler/aslbtypes.c 2

60 /***
61 *
62 * FUNCTION: AnMapArgTypeToBtype
63 *
64 * PARAMETERS: ArgType - The ARGI required type(s) for this
65 * argument, from the opcode info table
66 *
67 * RETURN: The corresponding Bit-encoded types
68 *
69 * DESCRIPTION: Convert an encoded ARGI required argument type code into a
70 * bitfield type code. Implements the implicit source conversion
71 * rules.
72 *
73 **/

75 UINT32
76 AnMapArgTypeToBtype (
77 UINT32 ArgType)
78 {

80 switch (ArgType)
81 {

83 /* Simple types */

85 case ARGI_ANYTYPE:

87 return (ACPI_BTYPE_OBJECTS_AND_REFS);

89 case ARGI_PACKAGE:

91 return (ACPI_BTYPE_PACKAGE);

93 case ARGI_EVENT:

95 return (ACPI_BTYPE_EVENT);

97 case ARGI_MUTEX:

99 return (ACPI_BTYPE_MUTEX);

101 case ARGI_DDBHANDLE:
102 /*
103 * DDBHandleObject := SuperName
104 * ACPI_BTYPE_REFERENCE: Index reference as parameter of Load/Unload
105 */
106 return (ACPI_BTYPE_DDB_HANDLE | ACPI_BTYPE_REFERENCE);

108 /* Interchangeable types */
109 /*
110 * Source conversion rules:
111 * Integer, String, and Buffer are all interchangeable
112 */
113 case ARGI_INTEGER:
114 case ARGI_STRING:
115 case ARGI_BUFFER:
116 case ARGI_BUFFER_OR_STRING:
117 case ARGI_COMPUTEDATA:

119 return (ACPI_BTYPE_COMPUTE_DATA);

121 /* References */

123 case ARGI_INTEGER_REF:

125 return (ACPI_BTYPE_INTEGER);

new/usr/src/common/acpica/compiler/aslbtypes.c 3

127 case ARGI_OBJECT_REF:

129 return (ACPI_BTYPE_ALL_OBJECTS);

131 case ARGI_DEVICE_REF:

133 return (ACPI_BTYPE_DEVICE_OBJECTS);

135 case ARGI_REFERENCE:

137 return (ACPI_BTYPE_REFERENCE);

139 case ARGI_TARGETREF:
140 case ARGI_FIXED_TARGET:
141 case ARGI_SIMPLE_TARGET:

143 return (ACPI_BTYPE_OBJECTS_AND_REFS);

145 /* Complex types */

147 case ARGI_DATAOBJECT:
148 /*
149 * Buffer, string, package or reference to a Op -
150 * Used only by SizeOf operator
151 */
152 return (ACPI_BTYPE_STRING | ACPI_BTYPE_BUFFER |
153 ACPI_BTYPE_PACKAGE | ACPI_BTYPE_REFERENCE);

155 case ARGI_COMPLEXOBJ:

157 /* Buffer, String, or package */

159 return (ACPI_BTYPE_STRING | ACPI_BTYPE_BUFFER | ACPI_BTYPE_PACKAGE);

161 case ARGI_REF_OR_STRING:

163 return (ACPI_BTYPE_STRING | ACPI_BTYPE_REFERENCE);

165 case ARGI_REGION_OR_BUFFER:

167 /* Used by Load() only. Allow buffers in addition to regions/fields */

169 return (ACPI_BTYPE_REGION | ACPI_BTYPE_BUFFER | ACPI_BTYPE_FIELD_UNIT);

171 case ARGI_DATAREFOBJ:

173 return (ACPI_BTYPE_INTEGER |ACPI_BTYPE_STRING | ACPI_BTYPE_BUFFER |
174 ACPI_BTYPE_PACKAGE | ACPI_BTYPE_REFERENCE | ACPI_BTYPE_DDB_HANDLE);

176 default:

178 break;
179 }

181 return (ACPI_BTYPE_OBJECTS_AND_REFS);
182 }

185 /***
186 *
187 * FUNCTION: AnMapEtypeToBtype
188 *
189 * PARAMETERS: Etype - Encoded ACPI Type
190 *
191 * RETURN: Btype corresponding to the Etype

new/usr/src/common/acpica/compiler/aslbtypes.c 4

192 *
193 * DESCRIPTION: Convert an encoded ACPI type to a bitfield type applying the
194 * operand conversion rules. In other words, returns the type(s)
195 * this Etype is implicitly converted to during interpretation.
196 *
197 **/

199 static UINT32
200 AnMapEtypeToBtype (
201 UINT32 Etype)
202 {

205 if (Etype == ACPI_TYPE_ANY)
206 {
207 return (ACPI_BTYPE_OBJECTS_AND_REFS);
208 }

210 /* Try the standard ACPI data types */

212 if (Etype <= ACPI_TYPE_EXTERNAL_MAX)
213 {
214 /*
215 * This switch statement implements the allowed operand conversion
216 * rules as per the "ASL Data Types" section of the ACPI
217 * specification.
218 */
219 switch (Etype)
220 {
221 case ACPI_TYPE_INTEGER:

223 return (ACPI_BTYPE_COMPUTE_DATA | ACPI_BTYPE_DDB_HANDLE);

225 case ACPI_TYPE_STRING:
226 case ACPI_TYPE_BUFFER:

228 return (ACPI_BTYPE_COMPUTE_DATA);

230 case ACPI_TYPE_PACKAGE:

232 return (ACPI_BTYPE_PACKAGE);

234 case ACPI_TYPE_FIELD_UNIT:

236 return (ACPI_BTYPE_COMPUTE_DATA | ACPI_BTYPE_FIELD_UNIT);

238 case ACPI_TYPE_BUFFER_FIELD:

240 return (ACPI_BTYPE_COMPUTE_DATA | ACPI_BTYPE_BUFFER_FIELD);

242 case ACPI_TYPE_DDB_HANDLE:

244 return (ACPI_BTYPE_INTEGER | ACPI_BTYPE_DDB_HANDLE);

246 case ACPI_TYPE_DEBUG_OBJECT:

248 /* Cannot be used as a source operand */

250 return (0);

252 default:

254 return (1 << (Etype - 1));
255 }
256 }

new/usr/src/common/acpica/compiler/aslbtypes.c 5

258 /* Try the internal data types */

260 switch (Etype)
261 {
262 case ACPI_TYPE_LOCAL_REGION_FIELD:
263 case ACPI_TYPE_LOCAL_BANK_FIELD:
264 case ACPI_TYPE_LOCAL_INDEX_FIELD:

266 /* Named fields can be either Integer/Buffer/String */

268 return (ACPI_BTYPE_COMPUTE_DATA | ACPI_BTYPE_FIELD_UNIT);

270 case ACPI_TYPE_LOCAL_ALIAS:

272 return (ACPI_BTYPE_INTEGER);

275 case ACPI_TYPE_LOCAL_RESOURCE:
276 case ACPI_TYPE_LOCAL_RESOURCE_FIELD:

278 return (ACPI_BTYPE_REFERENCE);

280 default:

282 printf ("Unhandled encoded type: %X\n", Etype);
283 return (0);
284 }
285 }

288 /***
289 *
290 * FUNCTION: AnFormatBtype
291 *
292 * PARAMETERS: Btype - Bitfield of ACPI types
293 * Buffer - Where to put the ascii string
294 *
295 * RETURN: None.
296 *
297 * DESCRIPTION: Convert a Btype to a string of ACPI types
298 *
299 **/

301 void
302 AnFormatBtype (
303 char *Buffer,
304 UINT32 Btype)
305 {
306 UINT32 Type;
307 BOOLEAN First = TRUE;

310 *Buffer = 0;

312 if (Btype == 0)
313 {
314 strcat (Buffer, "NoReturnValue");
315 return;
316 }

318 for (Type = 1; Type <= ACPI_TYPE_EXTERNAL_MAX; Type++)
319 {
320 if (Btype & 0x00000001)
321 {
322 if (!First)
323 {

new/usr/src/common/acpica/compiler/aslbtypes.c 6

324 strcat (Buffer, "|");
325 }
326 First = FALSE;
327 strcat (Buffer, AcpiUtGetTypeName (Type));
328 }
329 Btype >>= 1;
330 }

332 if (Btype & 0x00000001)
333 {
334 if (!First)
335 {
336 strcat (Buffer, "|");
337 }
338 First = FALSE;
339 strcat (Buffer, "Reference");
340 }

342 Btype >>= 1;
343 if (Btype & 0x00000001)
344 {
345 if (!First)
346 {
347 strcat (Buffer, "|");
348 }
349 First = FALSE;
350 strcat (Buffer, "Resource");
351 }
352 }

355 /***
356 *
357 * FUNCTION: AnGetBtype
358 *
359 * PARAMETERS: Op - Parse node whose type will be returned.
360 *
361 * RETURN: The Btype associated with the Op.
362 *
363 * DESCRIPTION: Get the (bitfield) ACPI type associated with the parse node.
364 * Handles the case where the node is a name or method call and
365 * the actual type must be obtained from the namespace node.
366 *
367 **/

369 UINT32
370 AnGetBtype (
371 ACPI_PARSE_OBJECT *Op)
372 {
373 ACPI_NAMESPACE_NODE *Node;
374 ACPI_PARSE_OBJECT *ReferencedNode;
375 UINT32 ThisNodeBtype = 0;

378 if ((Op->Asl.ParseOpcode == PARSEOP_NAMESEG) ||
379 (Op->Asl.ParseOpcode == PARSEOP_NAMESTRING) ||
380 (Op->Asl.ParseOpcode == PARSEOP_METHODCALL))
381 {
382 Node = Op->Asl.Node;
383 if (!Node)
384 {
385 DbgPrint (ASL_DEBUG_OUTPUT,
386 "No attached Nsnode: [%s] at line %u name [%s], ignoring typeche
387 Op->Asl.ParseOpName, Op->Asl.LineNumber,
388 Op->Asl.ExternalName);
389 return (ACPI_UINT32_MAX);

new/usr/src/common/acpica/compiler/aslbtypes.c 7

390 }

392 ThisNodeBtype = AnMapEtypeToBtype (Node->Type);
393 if (!ThisNodeBtype)
394 {
395 AslError (ASL_ERROR, ASL_MSG_COMPILER_INTERNAL, Op,
396 "could not map type");
397 }

399 /*
400 * Since it was a named reference, enable the
401 * reference bit also
402 */
403 ThisNodeBtype |= ACPI_BTYPE_REFERENCE;

405 if (Op->Asl.ParseOpcode == PARSEOP_METHODCALL)
406 {
407 ReferencedNode = Node->Op;
408 if (!ReferencedNode)
409 {
410 /* Check for an internal method */

412 if (AnIsInternalMethod (Op))
413 {
414 return (AnGetInternalMethodReturnType (Op));
415 }

417 AslError (ASL_ERROR, ASL_MSG_COMPILER_INTERNAL, Op,
418 "null Op pointer");
419 return (ACPI_UINT32_MAX);
420 }

422 if (ReferencedNode->Asl.CompileFlags & NODE_METHOD_TYPED)
423 {
424 ThisNodeBtype = ReferencedNode->Asl.AcpiBtype;
425 }
426 else
427 {
428 return (ACPI_UINT32_MAX -1);
429 }
430 }
431 }
432 else
433 {
434 ThisNodeBtype = Op->Asl.AcpiBtype;
435 }

437 return (ThisNodeBtype);
438 }

441 /***
442 *
443 * FUNCTION: AnMapObjTypeToBtype
444 *
445 * PARAMETERS: Op - A parse node
446 *
447 * RETURN: A Btype
448 *
449 * DESCRIPTION: Map object to the associated "Btype"
450 *
451 **/

453 UINT32
454 AnMapObjTypeToBtype (
455 ACPI_PARSE_OBJECT *Op)

new/usr/src/common/acpica/compiler/aslbtypes.c 8

456 {

458 switch (Op->Asl.ParseOpcode)
459 {
460 case PARSEOP_OBJECTTYPE_BFF: /* "BuffFieldObj" */

462 return (ACPI_BTYPE_BUFFER_FIELD);

464 case PARSEOP_OBJECTTYPE_BUF: /* "BuffObj" */

466 return (ACPI_BTYPE_BUFFER);

468 case PARSEOP_OBJECTTYPE_DDB: /* "DDBHandleObj" */

470 return (ACPI_BTYPE_DDB_HANDLE);

472 case PARSEOP_OBJECTTYPE_DEV: /* "DeviceObj" */

474 return (ACPI_BTYPE_DEVICE);

476 case PARSEOP_OBJECTTYPE_EVT: /* "EventObj" */

478 return (ACPI_BTYPE_EVENT);

480 case PARSEOP_OBJECTTYPE_FLD: /* "FieldUnitObj" */

482 return (ACPI_BTYPE_FIELD_UNIT);

484 case PARSEOP_OBJECTTYPE_INT: /* "IntObj" */

486 return (ACPI_BTYPE_INTEGER);

488 case PARSEOP_OBJECTTYPE_MTH: /* "MethodObj" */

490 return (ACPI_BTYPE_METHOD);

492 case PARSEOP_OBJECTTYPE_MTX: /* "MutexObj" */

494 return (ACPI_BTYPE_MUTEX);

496 case PARSEOP_OBJECTTYPE_OPR: /* "OpRegionObj" */

498 return (ACPI_BTYPE_REGION);

500 case PARSEOP_OBJECTTYPE_PKG: /* "PkgObj" */

502 return (ACPI_BTYPE_PACKAGE);

504 case PARSEOP_OBJECTTYPE_POW: /* "PowerResObj" */

506 return (ACPI_BTYPE_POWER);

508 case PARSEOP_OBJECTTYPE_STR: /* "StrObj" */

510 return (ACPI_BTYPE_STRING);

512 case PARSEOP_OBJECTTYPE_THZ: /* "ThermalZoneObj" */

514 return (ACPI_BTYPE_THERMAL);

516 case PARSEOP_OBJECTTYPE_UNK: /* "UnknownObj" */

518 return (ACPI_BTYPE_OBJECTS_AND_REFS);

520 default:

new/usr/src/common/acpica/compiler/aslbtypes.c 9

522 return (0);
523 }
524 }

527 #ifdef ACPI_OBSOLETE_FUNCTIONS
528 /***
529 *
530 * FUNCTION: AnMapBtypeToEtype
531 *
532 * PARAMETERS: Btype - Bitfield of ACPI types
533 *
534 * RETURN: The Etype corresponding the the Btype
535 *
536 * DESCRIPTION: Convert a bitfield type to an encoded type
537 *
538 **/

540 UINT32
541 AnMapBtypeToEtype (
542 UINT32 Btype)
543 {
544 UINT32 i;
545 UINT32 Etype;

548 if (Btype == 0)
549 {
550 return (0);
551 }

553 Etype = 1;
554 for (i = 1; i < Btype; i *= 2)
555 {
556 Etype++;
557 }

559 return (Etype);
560 }
561 #endif

new/usr/src/common/acpica/compiler/aslcodegen.c 1

**
 15247 Thu Dec 26 13:48:26 2013
new/usr/src/common/acpica/compiler/aslcodegen.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslcodegen - AML code generation
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"
47 #include "amlcode.h"

49 #define _COMPONENT ACPI_COMPILER
50 ACPI_MODULE_NAME ("aslcodegen")

52 /* Local prototypes */

54 static ACPI_STATUS
55 CgAmlWriteWalk (
56 ACPI_PARSE_OBJECT *Op,
57 UINT32 Level,
58 void *Context);

60 static void

new/usr/src/common/acpica/compiler/aslcodegen.c 2

61 CgLocalWriteAmlData (
62 ACPI_PARSE_OBJECT *Op,
63 void *Buffer,
64 UINT32 Length);

66 static void
67 CgWriteAmlOpcode (
68 ACPI_PARSE_OBJECT *Op);

70 static void
71 CgWriteTableHeader (
72 ACPI_PARSE_OBJECT *Op);

74 static void
75 CgCloseTable (
76 void);

78 static void
79 CgWriteNode (
80 ACPI_PARSE_OBJECT *Op);

83 /***
84 *
85 * FUNCTION: CgGenerateAmlOutput
86 *
87 * PARAMETERS: None.
88 *
89 * RETURN: None
90 *
91 * DESCRIPTION: Generate AML code. Currently generates the listing file
92 * simultaneously.
93 *
94 **/

96 void
97 CgGenerateAmlOutput (
98 void)
99 {

101 DbgPrint (ASL_DEBUG_OUTPUT, "\nWriting AML\n\n");

103 /* Generate the AML output file */

105 FlSeekFile (ASL_FILE_SOURCE_OUTPUT, 0);
106 Gbl_SourceLine = 0;
107 Gbl_NextError = Gbl_ErrorLog;

109 TrWalkParseTree (RootNode, ASL_WALK_VISIT_DOWNWARD,
110 CgAmlWriteWalk, NULL, NULL);
111 CgCloseTable ();
112 }

115 /***
116 *
117 * FUNCTION: CgAmlWriteWalk
118 *
119 * PARAMETERS: ASL_WALK_CALLBACK
120 *
121 * RETURN: Status
122 *
123 * DESCRIPTION: Parse tree walk to generate the AML code.
124 *
125 **/

new/usr/src/common/acpica/compiler/aslcodegen.c 3

127 static ACPI_STATUS
128 CgAmlWriteWalk (
129 ACPI_PARSE_OBJECT *Op,
130 UINT32 Level,
131 void *Context)
132 {

134 /*
135 * Print header at level 0. Alignment assumes 32-bit pointers
136 */
137 if (!Level)
138 {
139 DbgPrint (ASL_TREE_OUTPUT,
140 "Final parse tree used for AML output:\n");
141 DbgPrint (ASL_TREE_OUTPUT,
142 "%*s Value P_Op A_Op OpLen PByts Len SubLen PSubLen OpPtr Chi
143 76, " ");
144 }

146 /* Debug output */

148 DbgPrint (ASL_TREE_OUTPUT,
149 "%5.5d [%2d]", Op->Asl.LogicalLineNumber, Level);
150 UtPrintFormattedName (Op->Asl.ParseOpcode, Level);

152 if (Op->Asl.ParseOpcode == PARSEOP_NAMESEG ||
153 Op->Asl.ParseOpcode == PARSEOP_NAMESTRING ||
154 Op->Asl.ParseOpcode == PARSEOP_METHODCALL)
155 {
156 DbgPrint (ASL_TREE_OUTPUT,
157 "%10.32s ", Op->Asl.ExternalName);
158 }
159 else
160 {
161 DbgPrint (ASL_TREE_OUTPUT, " ");
162 }

164 DbgPrint (ASL_TREE_OUTPUT,
165 "%08X %04X %04X %01X %04X %04X %04X %04X %08X %08X %08X %08X %08X
166 /* 1 */ (UINT32) Op->Asl.Value.Integer,
167 /* 2 */ Op->Asl.ParseOpcode,
168 /* 3 */ Op->Asl.AmlOpcode,
169 /* 4 */ Op->Asl.AmlOpcodeLength,
170 /* 5 */ Op->Asl.AmlPkgLenBytes,
171 /* 6 */ Op->Asl.AmlLength,
172 /* 7 */ Op->Asl.AmlSubtreeLength,
173 /* 8 */ Op->Asl.Parent ? Op->Asl.Parent->Asl.AmlSubtreeLength : 0,
174 /* 9 */ Op,
175 /* 10 */ Op->Asl.Child,
176 /* 11 */ Op->Asl.Parent,
177 /* 12 */ Op->Asl.CompileFlags,
178 /* 13 */ Op->Asl.AcpiBtype,
179 /* 14 */ Op->Asl.FinalAmlLength,
180 /* 15 */ Op->Asl.Column,
181 /* 16 */ Op->Asl.LineNumber);

183 /* Generate the AML for this node */

185 CgWriteNode (Op);
186 return (AE_OK);
187 }

190 /***
191 *
192 * FUNCTION: CgLocalWriteAmlData

new/usr/src/common/acpica/compiler/aslcodegen.c 4

193 *
194 * PARAMETERS: Op - Current parse op
195 * Buffer - Buffer to write
196 * Length - Size of data in buffer
197 *
198 * RETURN: None
199 *
200 * DESCRIPTION: Write a buffer of AML data to the AML output file.
201 *
202 **/

204 static void
205 CgLocalWriteAmlData (
206 ACPI_PARSE_OBJECT *Op,
207 void *Buffer,
208 UINT32 Length)
209 {

211 /* Write the raw data to the AML file */

213 FlWriteFile (ASL_FILE_AML_OUTPUT, Buffer, Length);

215 /* Update the final AML length for this node (used for listings) */

217 if (Op)
218 {
219 Op->Asl.FinalAmlLength += Length;
220 }
221 }

224 /***
225 *
226 * FUNCTION: CgWriteAmlOpcode
227 *
228 * PARAMETERS: Op - Parse node with an AML opcode
229 *
230 * RETURN: None.
231 *
232 * DESCRIPTION: Write the AML opcode corresponding to a parse node.
233 *
234 **/

236 static void
237 CgWriteAmlOpcode (
238 ACPI_PARSE_OBJECT *Op)
239 {
240 UINT8 PkgLenFirstByte;
241 UINT32 i;
242 union {
243 UINT16 Opcode;
244 UINT8 OpcodeBytes[2];
245 } Aml;
246 union {
247 UINT32 Len;
248 UINT8 LenBytes[4];
249 } PkgLen;

252 /* We expect some DEFAULT_ARGs, just ignore them */

254 if (Op->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG)
255 {
256 return;
257 }

new/usr/src/common/acpica/compiler/aslcodegen.c 5

259 switch (Op->Asl.AmlOpcode)
260 {
261 case AML_UNASSIGNED_OPCODE:

263 /* These opcodes should not get here */

265 printf ("Found a node with an unassigned AML opcode\n");
266 FlPrintFile (ASL_FILE_STDERR, "Found a node with an unassigned AML opcod
267 return;

269 case AML_INT_RESERVEDFIELD_OP:

271 /* Special opcodes for within a field definition */

273 Aml.Opcode = AML_FIELD_OFFSET_OP;
274 break;

276 case AML_INT_ACCESSFIELD_OP:

278 Aml.Opcode = AML_FIELD_ACCESS_OP;
279 break;

281 case AML_INT_CONNECTION_OP:

283 Aml.Opcode = AML_FIELD_CONNECTION_OP;
284 break;

286 default:

288 Aml.Opcode = Op->Asl.AmlOpcode;
289 break;
290 }

293 switch (Aml.Opcode)
294 {
295 case AML_PACKAGE_LENGTH:

297 /* Value is the length to be encoded (Used in field definitions) */

299 PkgLen.Len = (UINT32) Op->Asl.Value.Integer;
300 break;

302 default:

304 /* Check for two-byte opcode */

306 if (Aml.Opcode > 0x00FF)
307 {
308 /* Write the high byte first */

310 CgLocalWriteAmlData (Op, &Aml.OpcodeBytes[1], 1);
311 }

313 CgLocalWriteAmlData (Op, &Aml.OpcodeBytes[0], 1);

315 /* Subtreelength doesn’t include length of package length bytes */

317 PkgLen.Len = Op->Asl.AmlSubtreeLength + Op->Asl.AmlPkgLenBytes;
318 break;
319 }

321 /* Does this opcode have an associated "PackageLength" field? */

323 if (Op->Asl.CompileFlags & NODE_AML_PACKAGE)
324 {

new/usr/src/common/acpica/compiler/aslcodegen.c 6

325 if (Op->Asl.AmlPkgLenBytes == 1)
326 {
327 /* Simplest case -- no bytes to follow, just write the count */

329 CgLocalWriteAmlData (Op, &PkgLen.LenBytes[0], 1);
330 }
331 else if (Op->Asl.AmlPkgLenBytes != 0)
332 {
333 /*
334 * Encode the "bytes to follow" in the first byte, top two bits.
335 * The low-order nybble of the length is in the bottom 4 bits
336 */
337 PkgLenFirstByte = (UINT8)
338 (((UINT32) (Op->Asl.AmlPkgLenBytes - 1) << 6) |
339 (PkgLen.LenBytes[0] & 0x0F));

341 CgLocalWriteAmlData (Op, &PkgLenFirstByte, 1);

343 /*
344 * Shift the length over by the 4 bits we just stuffed
345 * in the first byte
346 */
347 PkgLen.Len >>= 4;

349 /* Now we can write the remaining bytes - either 1, 2, or 3 bytes */

351 for (i = 0; i < (UINT32) (Op->Asl.AmlPkgLenBytes - 1); i++)
352 {
353 CgLocalWriteAmlData (Op, &PkgLen.LenBytes[i], 1);
354 }
355 }
356 }

358 switch (Aml.Opcode)
359 {
360 case AML_BYTE_OP:

362 CgLocalWriteAmlData (Op, &Op->Asl.Value.Integer, 1);
363 break;

365 case AML_WORD_OP:

367 CgLocalWriteAmlData (Op, &Op->Asl.Value.Integer, 2);
368 break;

370 case AML_DWORD_OP:

372 CgLocalWriteAmlData (Op, &Op->Asl.Value.Integer, 4);
373 break;

375 case AML_QWORD_OP:

377 CgLocalWriteAmlData (Op, &Op->Asl.Value.Integer, 8);
378 break;

380 case AML_STRING_OP:

382 CgLocalWriteAmlData (Op, Op->Asl.Value.String, Op->Asl.AmlLength);
383 break;

385 default:

387 /* All data opcodes must appear above */

389 break;
390 }

new/usr/src/common/acpica/compiler/aslcodegen.c 7

391 }

394 /***
395 *
396 * FUNCTION: CgWriteTableHeader
397 *
398 * PARAMETERS: Op - The DEFINITIONBLOCK node
399 *
400 * RETURN: None
401 *
402 * DESCRIPTION: Write a table header corresponding to the DEFINITIONBLOCK
403 *
404 **/

406 static void
407 CgWriteTableHeader (
408 ACPI_PARSE_OBJECT *Op)
409 {
410 ACPI_PARSE_OBJECT *Child;

413 /* AML filename */

415 Child = Op->Asl.Child;

417 /* Signature */

419 Child = Child->Asl.Next;
420 strncpy (TableHeader.Signature, Child->Asl.Value.String, 4);

422 /* Revision */

424 Child = Child->Asl.Next;
425 TableHeader.Revision = (UINT8) Child->Asl.Value.Integer;

427 /* Command-line Revision override */

429 if (Gbl_RevisionOverride)
430 {
431 TableHeader.Revision = Gbl_RevisionOverride;
432 }

434 /* OEMID */

436 Child = Child->Asl.Next;
437 strncpy (TableHeader.OemId, Child->Asl.Value.String, 6);

439 /* OEM TableID */

441 Child = Child->Asl.Next;
442 strncpy (TableHeader.OemTableId, Child->Asl.Value.String, 8);

444 /* OEM Revision */

446 Child = Child->Asl.Next;
447 TableHeader.OemRevision = (UINT32) Child->Asl.Value.Integer;

449 /* Compiler ID */

451 ACPI_MOVE_NAME (TableHeader.AslCompilerId, ASL_CREATOR_ID);

453 /* Compiler version */

455 TableHeader.AslCompilerRevision = ASL_REVISION;

new/usr/src/common/acpica/compiler/aslcodegen.c 8

457 /* Table length. Checksum zero for now, will rewrite later */

459 TableHeader.Length = Gbl_TableLength;
460 TableHeader.Checksum = 0;

462 CgLocalWriteAmlData (Op, &TableHeader, sizeof (ACPI_TABLE_HEADER));
463 }

466 /***
467 *
468 * FUNCTION: CgCloseTable
469 *
470 * PARAMETERS: None.
471 *
472 * RETURN: None.
473 *
474 * DESCRIPTION: Complete the ACPI table by calculating the checksum and
475 * re-writing the header.
476 *
477 **/

479 static void
480 CgCloseTable (
481 void)
482 {
483 signed char Sum;
484 UINT8 FileByte;

487 FlSeekFile (ASL_FILE_AML_OUTPUT, 0);
488 Sum = 0;

490 /* Calculate the checksum over the entire file */

492 while (FlReadFile (ASL_FILE_AML_OUTPUT, &FileByte, 1) == AE_OK)
493 {
494 Sum = (signed char) (Sum + FileByte);
495 }

497 /* Re-write the table header with the checksum */

499 TableHeader.Checksum = (UINT8) (0 - Sum);

501 FlSeekFile (ASL_FILE_AML_OUTPUT, 0);
502 CgLocalWriteAmlData (NULL, &TableHeader, sizeof (ACPI_TABLE_HEADER));
503 }

506 /***
507 *
508 * FUNCTION: CgWriteNode
509 *
510 * PARAMETERS: Op - Parse node to write.
511 *
512 * RETURN: None.
513 *
514 * DESCRIPTION: Write the AML that corresponds to a parse node.
515 *
516 **/

518 static void
519 CgWriteNode (
520 ACPI_PARSE_OBJECT *Op)
521 {
522 ASL_RESOURCE_NODE *Rnode;

new/usr/src/common/acpica/compiler/aslcodegen.c 9

525 /* Always check for DEFAULT_ARG and other "Noop" nodes */
526 /* TBD: this may not be the best place for this check */

528 if ((Op->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG) ||
529 (Op->Asl.ParseOpcode == PARSEOP_EXTERNAL) ||
530 (Op->Asl.ParseOpcode == PARSEOP_INCLUDE) ||
531 (Op->Asl.ParseOpcode == PARSEOP_INCLUDE_END))
532 {
533 return;
534 }

536 Op->Asl.FinalAmlLength = 0;

538 switch (Op->Asl.AmlOpcode)
539 {
540 case AML_RAW_DATA_BYTE:
541 case AML_RAW_DATA_WORD:
542 case AML_RAW_DATA_DWORD:
543 case AML_RAW_DATA_QWORD:

545 CgLocalWriteAmlData (Op, &Op->Asl.Value.Integer, Op->Asl.AmlLength);
546 return;

549 case AML_RAW_DATA_BUFFER:

551 CgLocalWriteAmlData (Op, Op->Asl.Value.Buffer, Op->Asl.AmlLength);
552 return;

555 case AML_RAW_DATA_CHAIN:

557 Rnode = ACPI_CAST_PTR (ASL_RESOURCE_NODE, Op->Asl.Value.Buffer);
558 while (Rnode)
559 {
560 CgLocalWriteAmlData (Op, Rnode->Buffer, Rnode->BufferLength);
561 Rnode = Rnode->Next;
562 }
563 return;

565 default:

567 /* Internal data opcodes must all appear above */

569 break;
570 }

572 switch (Op->Asl.ParseOpcode)
573 {
574 case PARSEOP_DEFAULT_ARG:

576 break;

578 case PARSEOP_DEFINITIONBLOCK:

580 CgWriteTableHeader (Op);
581 break;

583 case PARSEOP_NAMESEG:
584 case PARSEOP_NAMESTRING:
585 case PARSEOP_METHODCALL:

587 CgLocalWriteAmlData (Op, Op->Asl.Value.String, Op->Asl.AmlLength);
588 break;

new/usr/src/common/acpica/compiler/aslcodegen.c 10

590 default:

592 CgWriteAmlOpcode (Op);
593 break;
594 }
595 }

new/usr/src/common/acpica/compiler/aslcompile.c 1

**
 26878 Thu Dec 26 13:48:26 2013
new/usr/src/common/acpica/compiler/aslcompile.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslcompile - top level compile module
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aslcompiler.h"
45 #include "dtcompiler.h"

47 #include <stdio.h>
48 #include <time.h>
49 #include <acapps.h>

51 #define _COMPONENT ACPI_COMPILER
52 ACPI_MODULE_NAME ("aslcompile")

54 /*
55 * Main parser entry
56 * External is here in case the parser emits the same external in the
57 * generated header. (Newer versions of Bison)
58 */
59 int
60 AslCompilerparse(

new/usr/src/common/acpica/compiler/aslcompile.c 2

61 void);

63 /* Local prototypes */

65 static void
66 CmFlushSourceCode (
67 void);

69 static void
70 FlConsumeAnsiComment (
71 FILE *Handle,
72 ASL_FILE_STATUS *Status);

74 static void
75 FlConsumeNewComment (
76 FILE *Handle,
77 ASL_FILE_STATUS *Status);

79 static void
80 CmDumpAllEvents (
81 void);

84 /***
85 *
86 * FUNCTION: AslCompilerSignon
87 *
88 * PARAMETERS: FileId - ID of the output file
89 *
90 * RETURN: None
91 *
92 * DESCRIPTION: Display compiler signon
93 *
94 **/

96 void
97 AslCompilerSignon (
98 UINT32 FileId)
99 {
100 char *Prefix = "";
101 char *UtilityName;

104 /* Set line prefix depending on the destination file type */

106 switch (FileId)
107 {
108 case ASL_FILE_ASM_SOURCE_OUTPUT:
109 case ASL_FILE_ASM_INCLUDE_OUTPUT:

111 Prefix = "; ";
112 break;

114 case ASL_FILE_HEX_OUTPUT:

116 if (Gbl_HexOutputFlag == HEX_OUTPUT_ASM)
117 {
118 Prefix = "; ";
119 }
120 else if ((Gbl_HexOutputFlag == HEX_OUTPUT_C) ||
121 (Gbl_HexOutputFlag == HEX_OUTPUT_ASL))
122 {
123 FlPrintFile (ASL_FILE_HEX_OUTPUT, "/*\n");
124 Prefix = " * ";
125 }
126 break;

new/usr/src/common/acpica/compiler/aslcompile.c 3

128 case ASL_FILE_C_SOURCE_OUTPUT:
129 case ASL_FILE_C_OFFSET_OUTPUT:
130 case ASL_FILE_C_INCLUDE_OUTPUT:

132 Prefix = " * ";
133 break;

135 default:

137 /* No other output types supported */

139 break;
140 }

142 /* Running compiler or disassembler? */

144 if (Gbl_DisasmFlag)
145 {
146 UtilityName = AML_DISASSEMBLER_NAME;
147 }
148 else
149 {
150 UtilityName = ASL_COMPILER_NAME;
151 }

153 /* Compiler signon with copyright */

155 FlPrintFile (FileId, "%s\n", Prefix);
156 FlPrintFile (FileId, ACPI_COMMON_HEADER (UtilityName, Prefix));
157 }

160 /***
161 *
162 * FUNCTION: AslCompilerFileHeader
163 *
164 * PARAMETERS: FileId - ID of the output file
165 *
166 * RETURN: None
167 *
168 * DESCRIPTION: Header used at the beginning of output files
169 *
170 **/

172 void
173 AslCompilerFileHeader (
174 UINT32 FileId)
175 {
176 struct tm *NewTime;
177 time_t Aclock;
178 char *Prefix = "";

181 /* Set line prefix depending on the destination file type */

183 switch (FileId)
184 {
185 case ASL_FILE_ASM_SOURCE_OUTPUT:
186 case ASL_FILE_ASM_INCLUDE_OUTPUT:

188 Prefix = "; ";
189 break;

191 case ASL_FILE_HEX_OUTPUT:

new/usr/src/common/acpica/compiler/aslcompile.c 4

193 if (Gbl_HexOutputFlag == HEX_OUTPUT_ASM)
194 {
195 Prefix = "; ";
196 }
197 else if ((Gbl_HexOutputFlag == HEX_OUTPUT_C) ||
198 (Gbl_HexOutputFlag == HEX_OUTPUT_ASL))
199 {
200 Prefix = " * ";
201 }
202 break;

204 case ASL_FILE_C_SOURCE_OUTPUT:
205 case ASL_FILE_C_OFFSET_OUTPUT:
206 case ASL_FILE_C_INCLUDE_OUTPUT:

208 Prefix = " * ";
209 break;

211 default:

213 /* No other output types supported */

215 break;
216 }

218 /* Compilation header with timestamp */

220 (void) time (&Aclock);
221 NewTime = localtime (&Aclock);

223 FlPrintFile (FileId,
224 "%sCompilation of \"%s\" - %s%s\n",
225 Prefix, Gbl_Files[ASL_FILE_INPUT].Filename, asctime (NewTime),
226 Prefix);

228 switch (FileId)
229 {
230 case ASL_FILE_C_SOURCE_OUTPUT:
231 case ASL_FILE_C_OFFSET_OUTPUT:
232 case ASL_FILE_C_INCLUDE_OUTPUT:

234 FlPrintFile (FileId, " */\n");
235 break;

237 default:

239 /* Nothing to do for other output types */

241 break;
242 }
243 }

246 /***
247 *
248 * FUNCTION: CmFlushSourceCode
249 *
250 * PARAMETERS: None
251 *
252 * RETURN: None
253 *
254 * DESCRIPTION: Read in any remaining source code after the parse tree
255 * has been constructed.
256 *
257 **/

new/usr/src/common/acpica/compiler/aslcompile.c 5

259 static void
260 CmFlushSourceCode (
261 void)
262 {
263 char Buffer;

266 while (FlReadFile (ASL_FILE_INPUT, &Buffer, 1) != AE_ERROR)
267 {
268 AslInsertLineBuffer ((int) Buffer);
269 }

271 AslResetCurrentLineBuffer ();
272 }

275 /***
276 *
277 * FUNCTION: FlConsume*
278 *
279 * PARAMETERS: Handle - Open input file
280 * Status - File current status struct
281 *
282 * RETURN: Number of lines consumed
283 *
284 * DESCRIPTION: Step over both types of comment during check for ascii chars
285 *
286 **/

288 static void
289 FlConsumeAnsiComment (
290 FILE *Handle,
291 ASL_FILE_STATUS *Status)
292 {
293 UINT8 Byte;
294 BOOLEAN ClosingComment = FALSE;

297 while (fread (&Byte, 1, 1, Handle) == 1)
298 {
299 /* Scan until comment close is found */

301 if (ClosingComment)
302 {
303 if (Byte == ’/’)
304 {
305 return;
306 }

308 if (Byte != ’*’)
309 {
310 /* Reset */

312 ClosingComment = FALSE;
313 }
314 }
315 else if (Byte == ’*’)
316 {
317 ClosingComment = TRUE;
318 }

320 /* Maintain line count */

322 if (Byte == 0x0A)
323 {
324 Status->Line++;

new/usr/src/common/acpica/compiler/aslcompile.c 6

325 }

327 Status->Offset++;
328 }
329 }

332 static void
333 FlConsumeNewComment (
334 FILE *Handle,
335 ASL_FILE_STATUS *Status)
336 {
337 UINT8 Byte;

340 while (fread (&Byte, 1, 1, Handle) == 1)
341 {
342 Status->Offset++;

344 /* Comment ends at newline */

346 if (Byte == 0x0A)
347 {
348 Status->Line++;
349 return;
350 }
351 }
352 }

355 /***
356 *
357 * FUNCTION: FlCheckForAcpiTable
358 *
359 * PARAMETERS: Handle - Open input file
360 *
361 * RETURN: Status
362 *
363 * DESCRIPTION: Determine if a file seems to be a binary ACPI table, via the
364 * following checks on what would be the table header:
365 * 0) File must be at least as long as an ACPI_TABLE_HEADER
366 * 1) The header length field must match the file size
367 * 2) Signature, OemId, OemTableId, AslCompilerId must be ASCII
368 *
369 **/

371 ACPI_STATUS
372 FlCheckForAcpiTable (
373 FILE *Handle)
374 {
375 ACPI_TABLE_HEADER Table;
376 UINT32 FileSize;
377 size_t Actual;
378 UINT32 i;

381 /* Read a potential table header */

383 Actual = fread (&Table, 1, sizeof (ACPI_TABLE_HEADER), Handle);
384 fseek (Handle, 0, SEEK_SET);

386 if (Actual < sizeof (ACPI_TABLE_HEADER))
387 {
388 return (AE_ERROR);
389 }

new/usr/src/common/acpica/compiler/aslcompile.c 7

391 /* Header length field must match the file size */

393 FileSize = DtGetFileSize (Handle);
394 if (Table.Length != FileSize)
395 {
396 return (AE_ERROR);
397 }

399 /*
400 * These fields must be ASCII:
401 * Signature, OemId, OemTableId, AslCompilerId.
402 * We allow a NULL terminator in OemId and OemTableId.
403 */
404 for (i = 0; i < ACPI_NAME_SIZE; i++)
405 {
406 if (!ACPI_IS_ASCII ((UINT8) Table.Signature[i]))
407 {
408 return (AE_ERROR);
409 }

411 if (!ACPI_IS_ASCII ((UINT8) Table.AslCompilerId[i]))
412 {
413 return (AE_ERROR);
414 }
415 }

417 for (i = 0; (i < ACPI_OEM_ID_SIZE) && (Table.OemId[i]); i++)
418 {
419 if (!ACPI_IS_ASCII ((UINT8) Table.OemId[i]))
420 {
421 return (AE_ERROR);
422 }
423 }

425 for (i = 0; (i < ACPI_OEM_TABLE_ID_SIZE) && (Table.OemTableId[i]); i++)
426 {
427 if (!ACPI_IS_ASCII ((UINT8) Table.OemTableId[i]))
428 {
429 return (AE_ERROR);
430 }
431 }

433 printf ("Binary file appears to be a valid ACPI table, disassembling\n");
434 return (AE_OK);
435 }

438 /***
439 *
440 * FUNCTION: FlCheckForAscii
441 *
442 * PARAMETERS: Handle - Open input file
443 * Filename - Input filename
444 * DisplayErrors - TRUE if error messages desired
445 *
446 * RETURN: Status
447 *
448 * DESCRIPTION: Verify that the input file is entirely ASCII. Ignores characters
449 * within comments. Note: does not handle nested comments and does
450 * not handle comment delimiters within string literals. However,
451 * on the rare chance this happens and an invalid character is
452 * missed, the parser will catch the error by failing in some
453 * spectactular manner.
454 *
455 **/

new/usr/src/common/acpica/compiler/aslcompile.c 8

457 ACPI_STATUS
458 FlCheckForAscii (
459 FILE *Handle,
460 char *Filename,
461 BOOLEAN DisplayErrors)
462 {
463 UINT8 Byte;
464 ACPI_SIZE BadBytes = 0;
465 BOOLEAN OpeningComment = FALSE;
466 ASL_FILE_STATUS Status;

469 Status.Line = 1;
470 Status.Offset = 0;

472 /* Read the entire file */

474 while (fread (&Byte, 1, 1, Handle) == 1)
475 {
476 /* Ignore comment fields (allow non-ascii within) */

478 if (OpeningComment)
479 {
480 /* Check for second comment open delimiter */

482 if (Byte == ’*’)
483 {
484 FlConsumeAnsiComment (Handle, &Status);
485 }

487 if (Byte == ’/’)
488 {
489 FlConsumeNewComment (Handle, &Status);
490 }

492 /* Reset */

494 OpeningComment = FALSE;
495 }
496 else if (Byte == ’/’)
497 {
498 OpeningComment = TRUE;
499 }

501 /* Check for an ASCII character */

503 if (!ACPI_IS_ASCII (Byte))
504 {
505 if ((BadBytes < 10) && (DisplayErrors))
506 {
507 AcpiOsPrintf (
508 "Non-ASCII character [0x%2.2X] found in line %u, file offset
509 Byte, Status.Line, Status.Offset);
510 }

512 BadBytes++;
513 }

515 /* Update line counter */

517 else if (Byte == 0x0A)
518 {
519 Status.Line++;
520 }

522 Status.Offset++;

new/usr/src/common/acpica/compiler/aslcompile.c 9

523 }

525 /* Seek back to the beginning of the source file */

527 fseek (Handle, 0, SEEK_SET);

529 /* Were there any non-ASCII characters in the file? */

531 if (BadBytes)
532 {
533 if (DisplayErrors)
534 {
535 AcpiOsPrintf (
536 "%u non-ASCII characters found in input source text, could be a
537 BadBytes);
538 AslError (ASL_ERROR, ASL_MSG_NON_ASCII, NULL, Filename);
539 }

541 return (AE_BAD_CHARACTER);
542 }

544 /* File is OK (100% ASCII) */

546 return (AE_OK);
547 }

550 /***
551 *
552 * FUNCTION: CmDoCompile
553 *
554 * PARAMETERS: None
555 *
556 * RETURN: Status (0 = OK)
557 *
558 * DESCRIPTION: This procedure performs the entire compile
559 *
560 **/

562 int
563 CmDoCompile (
564 void)
565 {
566 ACPI_STATUS Status;
567 UINT8 FullCompile;
568 UINT8 Event;

571 FullCompile = UtBeginEvent ("*** Total Compile time ***");
572 Event = UtBeginEvent ("Open input and output files");
573 UtEndEvent (Event);

575 Event = UtBeginEvent ("Preprocess input file");
576 if (Gbl_PreprocessFlag)
577 {
578 /* Preprocessor */

580 PrDoPreprocess ();
581 if (Gbl_PreprocessOnly)
582 {
583 UtEndEvent (Event);
584 CmCleanupAndExit ();
585 return (0);
586 }
587 }
588 UtEndEvent (Event);

new/usr/src/common/acpica/compiler/aslcompile.c 10

590 /* Build the parse tree */

592 Event = UtBeginEvent ("Parse source code and build parse tree");
593 AslCompilerparse();
594 UtEndEvent (Event);

596 /* Check for parse errors */

598 Status = AslCheckForErrorExit ();
599 if (ACPI_FAILURE (Status))
600 {
601 fprintf (stderr, "Compiler aborting due to parser-detected syntax error(
602 LsDumpParseTree ();
603 goto ErrorExit;
604 }

606 /* Did the parse tree get successfully constructed? */

608 if (!RootNode)
609 {
610 /*
611 * If there are no errors, then we have some sort of
612 * internal problem.
613 */
614 AslError (ASL_ERROR, ASL_MSG_COMPILER_INTERNAL,
615 NULL, "- Could not resolve parse tree root node");

617 goto ErrorExit;
618 }

621 /* Flush out any remaining source after parse tree is complete */

623 Event = UtBeginEvent ("Flush source input");
624 CmFlushSourceCode ();

626 /* Optional parse tree dump, compiler debug output only */

628 LsDumpParseTree ();

630 OpcGetIntegerWidth (RootNode);
631 UtEndEvent (Event);

633 /* Pre-process parse tree for any operator transforms */

635 Event = UtBeginEvent ("Parse tree transforms");
636 DbgPrint (ASL_DEBUG_OUTPUT, "\nParse tree transforms\n\n");
637 TrWalkParseTree (RootNode, ASL_WALK_VISIT_DOWNWARD,
638 TrAmlTransformWalk, NULL, NULL);
639 UtEndEvent (Event);

641 /* Generate AML opcodes corresponding to the parse tokens */

643 Event = UtBeginEvent ("Generate AML opcodes");
644 DbgPrint (ASL_DEBUG_OUTPUT, "\nGenerating AML opcodes\n\n");
645 TrWalkParseTree (RootNode, ASL_WALK_VISIT_UPWARD, NULL,
646 OpcAmlOpcodeWalk, NULL);
647 UtEndEvent (Event);

649 /*
650 * Now that the input is parsed, we can open the AML output file.
651 * Note: by default, the name of this file comes from the table descriptor
652 * within the input file.
653 */
654 Event = UtBeginEvent ("Open AML output file");

new/usr/src/common/acpica/compiler/aslcompile.c 11

655 Status = FlOpenAmlOutputFile (Gbl_OutputFilenamePrefix);
656 UtEndEvent (Event);
657 if (ACPI_FAILURE (Status))
658 {
659 AePrintErrorLog (ASL_FILE_STDERR);
660 return (-1);
661 }

663 /* Interpret and generate all compile-time constants */

665 Event = UtBeginEvent ("Constant folding via AML interpreter");
666 DbgPrint (ASL_DEBUG_OUTPUT,
667 "\nInterpreting compile-time constant expressions\n\n");
668 TrWalkParseTree (RootNode, ASL_WALK_VISIT_DOWNWARD,
669 OpcAmlConstantWalk, NULL, NULL);
670 UtEndEvent (Event);

672 /* Update AML opcodes if necessary, after constant folding */

674 Event = UtBeginEvent ("Updating AML opcodes after constant folding");
675 DbgPrint (ASL_DEBUG_OUTPUT,
676 "\nUpdating AML opcodes after constant folding\n\n");
677 TrWalkParseTree (RootNode, ASL_WALK_VISIT_UPWARD,
678 NULL, OpcAmlOpcodeUpdateWalk, NULL);
679 UtEndEvent (Event);

681 /* Calculate all AML package lengths */

683 Event = UtBeginEvent ("Generate AML package lengths");
684 DbgPrint (ASL_DEBUG_OUTPUT, "\nGenerating Package lengths\n\n");
685 TrWalkParseTree (RootNode, ASL_WALK_VISIT_UPWARD, NULL,
686 LnPackageLengthWalk, NULL);
687 UtEndEvent (Event);

689 if (Gbl_ParseOnlyFlag)
690 {
691 AePrintErrorLog (ASL_FILE_STDERR);
692 UtDisplaySummary (ASL_FILE_STDERR);
693 if (Gbl_DebugFlag)
694 {
695 /* Print error summary to the stdout also */

697 AePrintErrorLog (ASL_FILE_STDOUT);
698 UtDisplaySummary (ASL_FILE_STDOUT);
699 }
700 UtEndEvent (FullCompile);
701 return (0);
702 }

704 /*
705 * Create an internal namespace and use it as a symbol table
706 */

708 /* Namespace loading */

710 Event = UtBeginEvent ("Create ACPI Namespace");
711 Status = LdLoadNamespace (RootNode);
712 UtEndEvent (Event);
713 if (ACPI_FAILURE (Status))
714 {
715 goto ErrorExit;
716 }

718 /* Namespace cross-reference */

720 AslGbl_NamespaceEvent = UtBeginEvent ("Cross reference parse tree and Namesp

new/usr/src/common/acpica/compiler/aslcompile.c 12

721 Status = XfCrossReferenceNamespace ();
722 if (ACPI_FAILURE (Status))
723 {
724 goto ErrorExit;
725 }

727 /* Namespace - Check for non-referenced objects */

729 LkFindUnreferencedObjects ();
730 UtEndEvent (AslGbl_NamespaceEvent);

732 /*
733 * Semantic analysis. This can happen only after the
734 * namespace has been loaded and cross-referenced.
735 *
736 * part one - check control methods
737 */
738 Event = UtBeginEvent ("Analyze control method return types");
739 AnalysisWalkInfo.MethodStack = NULL;

741 DbgPrint (ASL_DEBUG_OUTPUT, "\nSemantic analysis - Method analysis\n\n");
742 TrWalkParseTree (RootNode, ASL_WALK_VISIT_TWICE,
743 MtMethodAnalysisWalkBegin,
744 MtMethodAnalysisWalkEnd, &AnalysisWalkInfo);
745 UtEndEvent (Event);

747 /* Semantic error checking part two - typing of method returns */

749 Event = UtBeginEvent ("Determine object types returned by methods");
750 DbgPrint (ASL_DEBUG_OUTPUT, "\nSemantic analysis - Method typing\n\n");
751 TrWalkParseTree (RootNode, ASL_WALK_VISIT_UPWARD,
752 NULL, AnMethodTypingWalkEnd, NULL);
753 UtEndEvent (Event);

755 /* Semantic error checking part three - operand type checking */

757 Event = UtBeginEvent ("Analyze AML operand types");
758 DbgPrint (ASL_DEBUG_OUTPUT, "\nSemantic analysis - Operand type checking\n\n
759 TrWalkParseTree (RootNode, ASL_WALK_VISIT_UPWARD,
760 NULL, AnOperandTypecheckWalkEnd, &AnalysisWalkInfo);
761 UtEndEvent (Event);

763 /* Semantic error checking part four - other miscellaneous checks */

765 Event = UtBeginEvent ("Miscellaneous analysis");
766 DbgPrint (ASL_DEBUG_OUTPUT, "\nSemantic analysis - miscellaneous\n\n");
767 TrWalkParseTree (RootNode, ASL_WALK_VISIT_DOWNWARD,
768 AnOtherSemanticAnalysisWalkBegin,
769 NULL, &AnalysisWalkInfo);
770 UtEndEvent (Event);

772 /* Calculate all AML package lengths */

774 Event = UtBeginEvent ("Finish AML package length generation");
775 DbgPrint (ASL_DEBUG_OUTPUT, "\nGenerating Package lengths\n\n");
776 TrWalkParseTree (RootNode, ASL_WALK_VISIT_UPWARD, NULL,
777 LnInitLengthsWalk, NULL);
778 TrWalkParseTree (RootNode, ASL_WALK_VISIT_UPWARD, NULL,
779 LnPackageLengthWalk, NULL);
780 UtEndEvent (Event);

782 /* Code generation - emit the AML */

784 Event = UtBeginEvent ("Generate AML code and write output files");
785 CgGenerateAmlOutput ();
786 UtEndEvent (Event);

new/usr/src/common/acpica/compiler/aslcompile.c 13

788 Event = UtBeginEvent ("Write optional output files");
789 CmDoOutputFiles ();
790 UtEndEvent (Event);

792 UtEndEvent (FullCompile);
793 CmCleanupAndExit ();
794 return (0);

796 ErrorExit:
797 UtEndEvent (FullCompile);
798 CmCleanupAndExit ();
799 return (-1);
800 }

803 /***
804 *
805 * FUNCTION: CmDoOutputFiles
806 *
807 * PARAMETERS: None
808 *
809 * RETURN: None.
810 *
811 * DESCRIPTION: Create all "listing" type files
812 *
813 **/

815 void
816 CmDoOutputFiles (
817 void)
818 {

820 /* Create listings and hex files */

822 LsDoListings ();
823 HxDoHexOutput ();

825 /* Dump the namespace to the .nsp file if requested */

827 (void) NsDisplayNamespace ();
828 }

831 /***
832 *
833 * FUNCTION: CmDumpAllEvents
834 *
835 * PARAMETERS: None
836 *
837 * RETURN: None.
838 *
839 * DESCRIPTION: Dump all compiler events
840 *
841 **/

843 static void
844 CmDumpAllEvents (
845 void)
846 {
847 ASL_EVENT_INFO *Event;
848 UINT32 Delta;
849 UINT32 USec;
850 UINT32 MSec;
851 UINT32 i;

new/usr/src/common/acpica/compiler/aslcompile.c 14

854 Event = AslGbl_Events;

856 DbgPrint (ASL_DEBUG_OUTPUT, "\n\nElapsed time for major events\n\n");
857 if (Gbl_CompileTimesFlag)
858 {
859 printf ("\nElapsed time for major events\n\n");
860 }

862 for (i = 0; i < AslGbl_NextEvent; i++)
863 {
864 if (Event->Valid)
865 {
866 /* Delta will be in 100-nanosecond units */

868 Delta = (UINT32) (Event->EndTime - Event->StartTime);

870 USec = Delta / ACPI_100NSEC_PER_USEC;
871 MSec = Delta / ACPI_100NSEC_PER_MSEC;

873 /* Round milliseconds up */

875 if ((USec - (MSec * ACPI_USEC_PER_MSEC)) >= 500)
876 {
877 MSec++;
878 }

880 DbgPrint (ASL_DEBUG_OUTPUT, "%8u usec %8u msec - %s\n",
881 USec, MSec, Event->EventName);

883 if (Gbl_CompileTimesFlag)
884 {
885 printf ("%8u usec %8u msec - %s\n",
886 USec, MSec, Event->EventName);
887 }
888 }

890 Event++;
891 }
892 }

895 /***
896 *
897 * FUNCTION: CmCleanupAndExit
898 *
899 * PARAMETERS: None
900 *
901 * RETURN: None.
902 *
903 * DESCRIPTION: Close all open files and exit the compiler
904 *
905 **/

907 void
908 CmCleanupAndExit (
909 void)
910 {
911 UINT32 i;
912 BOOLEAN DeleteAmlFile = FALSE;

915 AePrintErrorLog (ASL_FILE_STDERR);
916 if (Gbl_DebugFlag)
917 {
918 /* Print error summary to stdout also */

new/usr/src/common/acpica/compiler/aslcompile.c 15

920 AePrintErrorLog (ASL_FILE_STDOUT);
921 }

923 /* Emit compile times if enabled */

925 CmDumpAllEvents ();

927 if (Gbl_CompileTimesFlag)
928 {
929 printf ("\nMiscellaneous compile statistics\n\n");
930 printf ("%11u : %s\n", TotalParseNodes, "Parse nodes");
931 printf ("%11u : %s\n", Gbl_NsLookupCount, "Namespace searches");
932 printf ("%11u : %s\n", TotalNamedObjects, "Named objects");
933 printf ("%11u : %s\n", TotalMethods, "Control methods");
934 printf ("%11u : %s\n", TotalAllocations, "Memory Allocations");
935 printf ("%11u : %s\n", TotalAllocated, "Total allocated memory");
936 printf ("%11u : %s\n", TotalFolds, "Constant subtrees folded");
937 printf ("\n");
938 }

940 if (Gbl_NsLookupCount)
941 {
942 DbgPrint (ASL_DEBUG_OUTPUT,
943 "\n\nMiscellaneous compile statistics\n\n");

945 DbgPrint (ASL_DEBUG_OUTPUT,
946 "%32s : %u\n", "Total Namespace searches",
947 Gbl_NsLookupCount);

949 DbgPrint (ASL_DEBUG_OUTPUT,
950 "%32s : %u usec\n", "Time per search", ((UINT32)
951 (AslGbl_Events[AslGbl_NamespaceEvent].EndTime -
952 AslGbl_Events[AslGbl_NamespaceEvent].StartTime) / 10) /
953 Gbl_NsLookupCount);
954 }

956 if (Gbl_ExceptionCount[ASL_ERROR] > ASL_MAX_ERROR_COUNT)
957 {
958 printf ("\nMaximum error count (%u) exceeded\n",
959 ASL_MAX_ERROR_COUNT);
960 }

962 UtDisplaySummary (ASL_FILE_STDOUT);

964 /*
965 * We will delete the AML file if there are errors and the
966 * force AML output option has not been used.
967 */
968 if ((Gbl_ExceptionCount[ASL_ERROR] > 0) && (!Gbl_IgnoreErrors) &&
969 Gbl_Files[ASL_FILE_AML_OUTPUT].Handle)
970 {
971 DeleteAmlFile = TRUE;
972 }

974 /* Close all open files */

976 /*
977 * Take care with the preprocessor file (.i), it might be the same
978 * as the "input" file, depending on where the compiler has terminated
979 * or aborted. Prevent attempt to close the same file twice in
980 * loop below.
981 */
982 if (Gbl_Files[ASL_FILE_PREPROCESSOR].Handle ==
983 Gbl_Files[ASL_FILE_INPUT].Handle)
984 {

new/usr/src/common/acpica/compiler/aslcompile.c 16

985 Gbl_Files[ASL_FILE_PREPROCESSOR].Handle = NULL;
986 }

988 /* Close the standard I/O files */

990 for (i = ASL_FILE_INPUT; i < ASL_MAX_FILE_TYPE; i++)
991 {
992 FlCloseFile (i);
993 }

995 /* Delete AML file if there are errors */

997 if (DeleteAmlFile)
998 {
999 FlDeleteFile (ASL_FILE_AML_OUTPUT);

1000 }

1002 /* Delete the preprocessor output file (.i) unless -li flag is set */

1004 if (!Gbl_PreprocessorOutputFlag &&
1005 Gbl_PreprocessFlag)
1006 {
1007 FlDeleteFile (ASL_FILE_PREPROCESSOR);
1008 }

1010 /*
1011 * Delete intermediate ("combined") source file (if -ls flag not set)
1012 * This file is created during normal ASL/AML compiles. It is not
1013 * created by the data table compiler.
1014 *
1015 * If the -ls flag is set, then the .SRC file should not be deleted.
1016 * In this case, Gbl_SourceOutputFlag is set to TRUE.
1017 *
1018 * Note: Handles are cleared by FlCloseFile above, so we look at the
1019 * filename instead, to determine if the .SRC file was actually
1020 * created.
1021 *
1022 * TBD: SourceOutput should be .TMP, then rename if we want to keep it?
1023 */
1024 if (!Gbl_SourceOutputFlag)
1025 {
1026 FlDeleteFile (ASL_FILE_SOURCE_OUTPUT);
1027 }
1028 }

new/usr/src/common/acpica/compiler/aslcompiler.h 1

**
 25960 Thu Dec 26 13:48:26 2013
new/usr/src/common/acpica/compiler/aslcompiler.h
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslcompiler.h - common include file for iASL
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #ifndef __ASLCOMPILER_H
46 #define __ASLCOMPILER_H

48 #include "acpi.h"
49 #include "accommon.h"
50 #include "amlresrc.h"
51 #include "acdebug.h"

53 /* Microsoft-specific */

55 #if (defined WIN32 || defined WIN64)

57 /* warn : used #pragma pack */
58 #pragma warning(disable:4103)

new/usr/src/common/acpica/compiler/aslcompiler.h 2

60 /* warn : named type definition in parentheses */
61 #pragma warning(disable:4115)
62 #endif

64 #include <stdio.h>
65 #include <stdlib.h>
66 #include <stdarg.h>
67 #include <string.h>
68 #include <errno.h>
69 #include <ctype.h>

71 /* Compiler headers */

73 #include "asldefine.h"
74 #include "asltypes.h"
75 #include "aslmessages.h"
76 #include "aslglobal.h"
77 #include "preprocess.h"

80 /***
81 *
82 * Compiler prototypes
83 *
84 **/

86 /*
87 * Main ASL parser - generated from flex/bison, lex/yacc, etc.
88 */
89 ACPI_PARSE_OBJECT *
90 AslDoError (
91 void);

93 int
94 AslCompilerlex(
95 void);

97 void
98 AslResetCurrentLineBuffer (
99 void);

101 void
102 AslInsertLineBuffer (
103 int SourceChar);

105 int
106 AslPopInputFileStack (
107 void);

109 void
110 AslPushInputFileStack (
111 FILE *InputFile,
112 char *Filename);

114 /*
115 * aslstartup - entered from main()
116 */
117 void
118 AslInitializeGlobals (
119 void);

121 typedef
122 ACPI_STATUS (*ASL_PATHNAME_CALLBACK) (
123 char *);

125 ACPI_STATUS

new/usr/src/common/acpica/compiler/aslcompiler.h 3

126 AslDoOneFile (
127 char *Filename);

129 ACPI_STATUS
130 AslCheckForErrorExit (
131 void);

134 /*
135 * aslcompile - compile mainline
136 */
137 void
138 AslCompilerSignon (
139 UINT32 FileId);

141 void
142 AslCompilerFileHeader (
143 UINT32 FileId);

145 int
146 CmDoCompile (
147 void);

149 void
150 CmDoOutputFiles (
151 void);

153 void
154 CmCleanupAndExit (
155 void);

157 ACPI_STATUS
158 FlCheckForAcpiTable (
159 FILE *Handle);

161 ACPI_STATUS
162 FlCheckForAscii (
163 FILE *Handle,
164 char *Filename,
165 BOOLEAN DisplayErrors);

168 /*
169 * aslwalks - semantic analysis and parse tree walks
170 */
171 ACPI_STATUS
172 AnOtherSemanticAnalysisWalkBegin (
173 ACPI_PARSE_OBJECT *Op,
174 UINT32 Level,
175 void *Context);

177 ACPI_STATUS
178 AnOtherSemanticAnalysisWalkEnd (
179 ACPI_PARSE_OBJECT *Op,
180 UINT32 Level,
181 void *Context);

183 ACPI_STATUS
184 AnOperandTypecheckWalkEnd (
185 ACPI_PARSE_OBJECT *Op,
186 UINT32 Level,
187 void *Context);

189 ACPI_STATUS
190 AnMethodTypingWalkEnd (
191 ACPI_PARSE_OBJECT *Op,

new/usr/src/common/acpica/compiler/aslcompiler.h 4

192 UINT32 Level,
193 void *Context);

196 /*
197 * aslmethod - Control method analysis walk
198 */
199 ACPI_STATUS
200 MtMethodAnalysisWalkBegin (
201 ACPI_PARSE_OBJECT *Op,
202 UINT32 Level,
203 void *Context);

205 ACPI_STATUS
206 MtMethodAnalysisWalkEnd (
207 ACPI_PARSE_OBJECT *Op,
208 UINT32 Level,
209 void *Context);

212 /*
213 * aslbtypes - bitfield data types
214 */
215 UINT32
216 AnMapObjTypeToBtype (
217 ACPI_PARSE_OBJECT *Op);

219 UINT32
220 AnMapArgTypeToBtype (
221 UINT32 ArgType);

223 UINT32
224 AnGetBtype (
225 ACPI_PARSE_OBJECT *Op);

227 void
228 AnFormatBtype (
229 char *Buffer,
230 UINT32 Btype);

233 /*
234 * aslanalyze - Support functions for parse tree walks
235 */
236 void
237 AnCheckId (
238 ACPI_PARSE_OBJECT *Op,
239 ACPI_NAME Type);

241 /* Values for Type argument above */

243 #define ASL_TYPE_HID 0
244 #define ASL_TYPE_CID 1

246 BOOLEAN
247 AnIsInternalMethod (
248 ACPI_PARSE_OBJECT *Op);

250 UINT32
251 AnGetInternalMethodReturnType (
252 ACPI_PARSE_OBJECT *Op);

254 BOOLEAN
255 AnLastStatementIsReturn (
256 ACPI_PARSE_OBJECT *Op);

new/usr/src/common/acpica/compiler/aslcompiler.h 5

258 void
259 AnCheckMethodReturnValue (
260 ACPI_PARSE_OBJECT *Op,
261 const ACPI_OPCODE_INFO *OpInfo,
262 ACPI_PARSE_OBJECT *ArgOp,
263 UINT32 RequiredBtypes,
264 UINT32 ThisNodeBtype);

266 BOOLEAN
267 AnIsResultUsed (
268 ACPI_PARSE_OBJECT *Op);

270 void
271 ApCheckForGpeNameConflict (
272 ACPI_PARSE_OBJECT *Op);

274 void
275 ApCheckRegMethod (
276 ACPI_PARSE_OBJECT *Op);

279 /*
280 * aslerror - error handling/reporting
281 */
282 void
283 AslError (
284 UINT8 Level,
285 UINT8 MessageId,
286 ACPI_PARSE_OBJECT *Op,
287 char *ExtraMessage);

289 ACPI_STATUS
290 AslDisableException (
291 char *MessageIdString);

293 BOOLEAN
294 AslIsExceptionDisabled (
295 UINT8 Level,
296 UINT8 MessageId);

298 void
299 AslCoreSubsystemError (
300 ACPI_PARSE_OBJECT *Op,
301 ACPI_STATUS Status,
302 char *ExtraMessage,
303 BOOLEAN Abort);

305 int
306 AslCompilererror(
307 const char *s);

309 void
310 AslCommonError (
311 UINT8 Level,
312 UINT8 MessageId,
313 UINT32 CurrentLineNumber,
314 UINT32 LogicalLineNumber,
315 UINT32 LogicalByteOffset,
316 UINT32 Column,
317 char *Filename,
318 char *ExtraMessage);

320 void
321 AslCommonError2 (
322 UINT8 Level,
323 UINT8 MessageId,

new/usr/src/common/acpica/compiler/aslcompiler.h 6

324 UINT32 LineNumber,
325 UINT32 Column,
326 char *SourceLine,
327 char *Filename,
328 char *ExtraMessage);

330 void
331 AePrintException (
332 UINT32 FileId,
333 ASL_ERROR_MSG *Enode,
334 char *Header);

336 void
337 AePrintErrorLog (
338 UINT32 FileId);

340 void
341 AeClearErrorLog (
342 void);

344 ACPI_PHYSICAL_ADDRESS
345 AeLocalGetRootPointer (
346 void);

349 /*
350 * asllisting - generate all "listing" type files
351 */
352 void
353 LsDoListings (
354 void);

356 void
357 LsWriteNodeToAsmListing (
358 ACPI_PARSE_OBJECT *Op);

360 void
361 LsWriteNode (
362 ACPI_PARSE_OBJECT *Op,
363 UINT32 FileId);

365 void
366 LsDumpParseTree (
367 void);

370 /*
371 * asllistsup - Listing file support utilities
372 */
373 void
374 LsDumpAscii (
375 UINT32 FileId,
376 UINT32 Count,
377 UINT8 *Buffer);

379 void
380 LsDumpAsciiInComment (
381 UINT32 FileId,
382 UINT32 Count,
383 UINT8 *Buffer);

385 void
386 LsCheckException (
387 UINT32 LineNumber,
388 UINT32 FileId);

new/usr/src/common/acpica/compiler/aslcompiler.h 7

390 void
391 LsFlushListingBuffer (
392 UINT32 FileId);

394 void
395 LsWriteListingHexBytes (
396 UINT8 *Buffer,
397 UINT32 Length,
398 UINT32 FileId);

400 void
401 LsWriteSourceLines (
402 UINT32 ToLineNumber,
403 UINT32 ToLogicalLineNumber,
404 UINT32 FileId);

406 UINT32
407 LsWriteOneSourceLine (
408 UINT32 FileId);

410 void
411 LsPushNode (
412 char *Filename);

414 ASL_LISTING_NODE *
415 LsPopNode (
416 void);

419 /*
420 * aslhex - generate all "hex" output files (C, ASM, ASL)
421 */
422 void
423 HxDoHexOutput (
424 void);

427 /*
428 * aslfold - constant folding
429 */
430 ACPI_STATUS
431 OpcAmlConstantWalk (
432 ACPI_PARSE_OBJECT *Op,
433 UINT32 Level,
434 void *Context);

437 /*
438 * asloffset - generate C offset file for BIOS support
439 */
440 ACPI_STATUS
441 LsAmlOffsetWalk (
442 ACPI_PARSE_OBJECT *Op,
443 UINT32 Level,
444 void *Context);

446 void
447 LsDoOffsetTableHeader (
448 UINT32 FileId);

450 void
451 LsDoOffsetTableFooter (
452 UINT32 FileId);

455 /*

new/usr/src/common/acpica/compiler/aslcompiler.h 8

456 * aslopcodes - generate AML opcodes
457 */
458 ACPI_STATUS
459 OpcAmlOpcodeWalk (
460 ACPI_PARSE_OBJECT *Op,
461 UINT32 Level,
462 void *Context);

464 ACPI_STATUS
465 OpcAmlOpcodeUpdateWalk (
466 ACPI_PARSE_OBJECT *Op,
467 UINT32 Level,
468 void *Context);

470 void
471 OpcGenerateAmlOpcode (
472 ACPI_PARSE_OBJECT *Op);

474 UINT32
475 OpcSetOptimalIntegerSize (
476 ACPI_PARSE_OBJECT *Op);

478 void
479 OpcGetIntegerWidth (
480 ACPI_PARSE_OBJECT *Op);

483 /*
484 * asloperands - generate AML operands for the AML opcodes
485 */
486 ACPI_PARSE_OBJECT *
487 UtGetArg (
488 ACPI_PARSE_OBJECT *Op,
489 UINT32 Argn);

491 void
492 OpnGenerateAmlOperands (
493 ACPI_PARSE_OBJECT *Op);

495 void
496 OpnDoPackage (
497 ACPI_PARSE_OBJECT *Op);

500 /*
501 * aslopt - optmization
502 */
503 void
504 OptOptimizeNamePath (
505 ACPI_PARSE_OBJECT *Op,
506 UINT32 Flags,
507 ACPI_WALK_STATE *WalkState,
508 char *AmlNameString,
509 ACPI_NAMESPACE_NODE *TargetNode);

512 /*
513 * aslcodegen - code generation
514 */
515 void
516 CgGenerateAmlOutput (
517 void);

520 /*
521 * aslfile

new/usr/src/common/acpica/compiler/aslcompiler.h 9

522 */
523 void
524 FlOpenFile (
525 UINT32 FileId,
526 char *Filename,
527 char *Mode);

530 /*
531 * asllength - calculate/adjust AML package lengths
532 */
533 ACPI_STATUS
534 LnPackageLengthWalk (
535 ACPI_PARSE_OBJECT *Op,
536 UINT32 Level,
537 void *Context);

539 ACPI_STATUS
540 LnInitLengthsWalk (
541 ACPI_PARSE_OBJECT *Op,
542 UINT32 Level,
543 void *Context);

545 void
546 CgGenerateAmlLengths (
547 ACPI_PARSE_OBJECT *Op);

550 /*
551 * aslmap - opcode mappings and reserved method names
552 */
553 ACPI_OBJECT_TYPE
554 AslMapNamedOpcodeToDataType (
555 UINT16 Opcode);

558 /*
559 * aslpredef - ACPI predefined names support
560 */
561 BOOLEAN
562 ApCheckForPredefinedMethod (
563 ACPI_PARSE_OBJECT *Op,
564 ASL_METHOD_INFO *MethodInfo);

566 void
567 ApCheckPredefinedReturnValue (
568 ACPI_PARSE_OBJECT *Op,
569 ASL_METHOD_INFO *MethodInfo);

571 UINT32
572 ApCheckForPredefinedName (
573 ACPI_PARSE_OBJECT *Op,
574 char *Name);

576 void
577 ApCheckForPredefinedObject (
578 ACPI_PARSE_OBJECT *Op,
579 char *Name);

581 ACPI_STATUS
582 ApCheckObjectType (
583 const char *PredefinedName,
584 ACPI_PARSE_OBJECT *Op,
585 UINT32 ExpectedBtypes,
586 UINT32 PackageIndex);

new/usr/src/common/acpica/compiler/aslcompiler.h 10

588 void
589 ApDisplayReservedNames (
590 void);

593 /*
594 * aslprepkg - ACPI predefined names support for packages
595 */
596 void
597 ApCheckPackage (
598 ACPI_PARSE_OBJECT *ParentOp,
599 const ACPI_PREDEFINED_INFO *Predefined);

602 /*
603 * asltransform - parse tree transformations
604 */
605 ACPI_STATUS
606 TrAmlTransformWalk (
607 ACPI_PARSE_OBJECT *Op,
608 UINT32 Level,
609 void *Context);

612 /*
613 * asltree - parse tree support
614 */
615 ACPI_STATUS
616 TrWalkParseTree (
617 ACPI_PARSE_OBJECT *Op,
618 UINT32 Visitation,
619 ASL_WALK_CALLBACK DescendingCallback,
620 ASL_WALK_CALLBACK AscendingCallback,
621 void *Context);

623 /* Values for "Visitation" parameter above */

625 #define ASL_WALK_VISIT_DOWNWARD 0x01
626 #define ASL_WALK_VISIT_UPWARD 0x02
627 #define ASL_WALK_VISIT_TWICE (ASL_WALK_VISIT_DOWNWARD | ASL_WALK_VISIT_UP

630 ACPI_PARSE_OBJECT *
631 TrAllocateNode (
632 UINT32 ParseOpcode);

634 void
635 TrReleaseNode (
636 ACPI_PARSE_OBJECT *Op);

638 ACPI_PARSE_OBJECT *
639 TrUpdateNode (
640 UINT32 ParseOpcode,
641 ACPI_PARSE_OBJECT *Op);

643 ACPI_PARSE_OBJECT *
644 TrCreateNode (
645 UINT32 ParseOpcode,
646 UINT32 NumChildren,
647 ...);

649 ACPI_PARSE_OBJECT *
650 TrCreateLeafNode (
651 UINT32 ParseOpcode);

653 ACPI_PARSE_OBJECT *

new/usr/src/common/acpica/compiler/aslcompiler.h 11

654 TrCreateValuedLeafNode (
655 UINT32 ParseOpcode,
656 UINT64 Value);

658 ACPI_PARSE_OBJECT *
659 TrCreateConstantLeafNode (
660 UINT32 ParseOpcode);

662 ACPI_PARSE_OBJECT *
663 TrLinkChildren (
664 ACPI_PARSE_OBJECT *Op,
665 UINT32 NumChildren,
666 ...);

668 void
669 TrSetEndLineNumber (
670 ACPI_PARSE_OBJECT *Op);

672 void
673 TrWalkTree (
674 void);

676 ACPI_PARSE_OBJECT *
677 TrLinkPeerNode (
678 ACPI_PARSE_OBJECT *Op1,
679 ACPI_PARSE_OBJECT *Op2);

681 ACPI_PARSE_OBJECT *
682 TrLinkChildNode (
683 ACPI_PARSE_OBJECT *Op1,
684 ACPI_PARSE_OBJECT *Op2);

686 ACPI_PARSE_OBJECT *
687 TrSetNodeFlags (
688 ACPI_PARSE_OBJECT *Op,
689 UINT32 Flags);

691 ACPI_PARSE_OBJECT *
692 TrSetNodeAmlLength (
693 ACPI_PARSE_OBJECT *Op,
694 UINT32 Length);

696 ACPI_PARSE_OBJECT *
697 TrLinkPeerNodes (
698 UINT32 NumPeers,
699 ...);

702 /*
703 * aslfiles - File I/O support
704 */
705 void
706 AslAbort (
707 void);

709 void
710 FlAddIncludeDirectory (
711 char *Dir);

713 char *
714 FlMergePathnames (
715 char *PrefixDir,
716 char *FilePathname);

718 void
719 FlOpenIncludeFile (

new/usr/src/common/acpica/compiler/aslcompiler.h 12

720 ACPI_PARSE_OBJECT *Op);

722 void
723 FlFileError (
724 UINT32 FileId,
725 UINT8 ErrorId);

727 UINT32
728 FlGetFileSize (
729 UINT32 FileId);

731 ACPI_STATUS
732 FlReadFile (
733 UINT32 FileId,
734 void *Buffer,
735 UINT32 Length);

737 void
738 FlWriteFile (
739 UINT32 FileId,
740 void *Buffer,
741 UINT32 Length);

743 void
744 FlSeekFile (
745 UINT32 FileId,
746 long Offset);

748 void
749 FlCloseFile (
750 UINT32 FileId);

752 void
753 FlPrintFile (
754 UINT32 FileId,
755 char *Format,
756 ...);

758 void
759 FlDeleteFile (
760 UINT32 FileId);

762 void
763 FlSetLineNumber (
764 UINT32 LineNumber);

766 void
767 FlSetFilename (
768 char *Filename);

770 ACPI_STATUS
771 FlOpenInputFile (
772 char *InputFilename);

774 ACPI_STATUS
775 FlOpenAmlOutputFile (
776 char *InputFilename);

778 ACPI_STATUS
779 FlOpenMiscOutputFiles (
780 char *InputFilename);

783 /*
784 * asload - load namespace in prep for cross reference
785 */

new/usr/src/common/acpica/compiler/aslcompiler.h 13

786 ACPI_STATUS
787 LdLoadNamespace (
788 ACPI_PARSE_OBJECT *RootOp);

791 /*
792 * asllookup - namespace lookup functions
793 */
794 void
795 LkFindUnreferencedObjects (
796 void);

798 /*
799 * aslmain - startup
800 */
801 void
802 Usage (
803 void);

805 void
806 AslFilenameHelp (
807 void);

810 /*
811 * aslnamesp - namespace output file generation
812 */
813 ACPI_STATUS
814 NsDisplayNamespace (
815 void);

817 void
818 NsSetupNamespaceListing (
819 void *Handle);

821 /*
822 * asloptions - command line processing
823 */
824 int
825 AslCommandLine (
826 int argc,
827 char **argv);

829 /*
830 * aslxref - namespace cross reference
831 */
832 ACPI_STATUS
833 XfCrossReferenceNamespace (
834 void);

837 /*
838 * aslutils - common compiler utilites
839 */
840 void
841 DbgPrint (
842 UINT32 Type,
843 char *Format,
844 ...);

846 /* Type values for above */

848 #define ASL_DEBUG_OUTPUT 0
849 #define ASL_PARSE_OUTPUT 1
850 #define ASL_TREE_OUTPUT 2

new/usr/src/common/acpica/compiler/aslcompiler.h 14

852 void
853 UtDisplaySupportedTables (
854 void);

856 void
857 UtDisplayConstantOpcodes (
858 void);

860 UINT8
861 UtBeginEvent (
862 char *Name);

864 void
865 UtEndEvent (
866 UINT8 Event);

868 void *
869 UtLocalCalloc (
870 UINT32 Size);

872 void
873 UtPrintFormattedName (
874 UINT16 ParseOpcode,
875 UINT32 Level);

877 void
878 UtDisplaySummary (
879 UINT32 FileId);

881 UINT8
882 UtHexCharToValue (
883 int HexChar);

885 void
886 UtConvertByteToHex (
887 UINT8 RawByte,
888 UINT8 *Buffer);

890 void
891 UtConvertByteToAsmHex (
892 UINT8 RawByte,
893 UINT8 *Buffer);

895 char *
896 UtGetOpName (
897 UINT32 ParseOpcode);

899 void
900 UtSetParseOpName (
901 ACPI_PARSE_OBJECT *Op);

903 char *
904 UtGetStringBuffer (
905 UINT32 Length);

907 void
908 UtExpandLineBuffers (
909 void);

911 ACPI_STATUS
912 UtInternalizeName (
913 char *ExternalName,
914 char **ConvertedName);

916 void
917 UtAttachNamepathToOwner (

new/usr/src/common/acpica/compiler/aslcompiler.h 15

918 ACPI_PARSE_OBJECT *Op,
919 ACPI_PARSE_OBJECT *NameNode);

921 ACPI_PARSE_OBJECT *
922 UtCheckIntegerRange (
923 ACPI_PARSE_OBJECT *Op,
924 UINT32 LowValue,
925 UINT32 HighValue);

927 UINT64
928 UtDoConstant (
929 char *String);

931 ACPI_STATUS
932 UtStrtoul64 (
933 char *String,
934 UINT32 Base,
935 UINT64 *RetInteger);

938 /*
939 * asluuid - UUID support
940 */
941 ACPI_STATUS
942 AuValidateUuid (
943 char *InString);

945 ACPI_STATUS
946 AuConvertStringToUuid (
947 char *InString,
948 char *UuIdBuffer);

950 ACPI_STATUS
951 AuConvertUuidToString (
952 char *UuIdBuffer,
953 char *OutString);

955 /*
956 * aslresource - Resource template generation utilities
957 */
958 void
959 RsSmallAddressCheck (
960 UINT8 Type,
961 UINT32 Minimum,
962 UINT32 Maximum,
963 UINT32 Length,
964 UINT32 Alignment,
965 ACPI_PARSE_OBJECT *MinOp,
966 ACPI_PARSE_OBJECT *MaxOp,
967 ACPI_PARSE_OBJECT *LengthOp,
968 ACPI_PARSE_OBJECT *AlignOp,
969 ACPI_PARSE_OBJECT *Op);

971 void
972 RsLargeAddressCheck (
973 UINT64 Minimum,
974 UINT64 Maximum,
975 UINT64 Length,
976 UINT64 Granularity,
977 UINT8 Flags,
978 ACPI_PARSE_OBJECT *MinOp,
979 ACPI_PARSE_OBJECT *MaxOp,
980 ACPI_PARSE_OBJECT *LengthOp,
981 ACPI_PARSE_OBJECT *GranOp,
982 ACPI_PARSE_OBJECT *Op);

new/usr/src/common/acpica/compiler/aslcompiler.h 16

984 UINT16
985 RsGetStringDataLength (
986 ACPI_PARSE_OBJECT *InitializerOp);

988 ASL_RESOURCE_NODE *
989 RsAllocateResourceNode (
990 UINT32 Size);

992 void
993 RsCreateResourceField (
994 ACPI_PARSE_OBJECT *Op,
995 char *Name,
996 UINT32 ByteOffset,
997 UINT32 BitOffset,
998 UINT32 BitLength);

1000 void
1001 RsSetFlagBits (
1002 UINT8 *Flags,
1003 ACPI_PARSE_OBJECT *Op,
1004 UINT8 Position,
1005 UINT8 DefaultBit);

1007 void
1008 RsSetFlagBits16 (
1009 UINT16 *Flags,
1010 ACPI_PARSE_OBJECT *Op,
1011 UINT8 Position,
1012 UINT8 DefaultBit);

1014 ACPI_PARSE_OBJECT *
1015 RsCompleteNodeAndGetNext (
1016 ACPI_PARSE_OBJECT *Op);

1018 void
1019 RsCheckListForDuplicates (
1020 ACPI_PARSE_OBJECT *Op);

1022 ASL_RESOURCE_NODE *
1023 RsDoOneResourceDescriptor (
1024 ACPI_PARSE_OBJECT *DescriptorTypeOp,
1025 UINT32 CurrentByteOffset,
1026 UINT8 *State);

1028 /* Values for State above */

1030 #define ACPI_RSTATE_NORMAL 0
1031 #define ACPI_RSTATE_START_DEPENDENT 1
1032 #define ACPI_RSTATE_DEPENDENT_LIST 2

1034 UINT32
1035 RsLinkDescriptorChain (
1036 ASL_RESOURCE_NODE **PreviousRnode,
1037 ASL_RESOURCE_NODE *Rnode);

1039 void
1040 RsDoResourceTemplate (
1041 ACPI_PARSE_OBJECT *Op);

1044 /*
1045 * aslrestype1 - Miscellaneous Small descriptors
1046 */
1047 ASL_RESOURCE_NODE *
1048 RsDoEndTagDescriptor (
1049 ACPI_PARSE_OBJECT *Op,

new/usr/src/common/acpica/compiler/aslcompiler.h 17

1050 UINT32 CurrentByteOffset);

1052 ASL_RESOURCE_NODE *
1053 RsDoEndDependentDescriptor (
1054 ACPI_PARSE_OBJECT *Op,
1055 UINT32 CurrentByteOffset);

1057 ASL_RESOURCE_NODE *
1058 RsDoMemory24Descriptor (
1059 ACPI_PARSE_OBJECT *Op,
1060 UINT32 CurrentByteOffset);

1062 ASL_RESOURCE_NODE *
1063 RsDoMemory32Descriptor (
1064 ACPI_PARSE_OBJECT *Op,
1065 UINT32 CurrentByteOffset);

1067 ASL_RESOURCE_NODE *
1068 RsDoMemory32FixedDescriptor (
1069 ACPI_PARSE_OBJECT *Op,
1070 UINT32 CurrentByteOffset);

1072 ASL_RESOURCE_NODE *
1073 RsDoStartDependentDescriptor (
1074 ACPI_PARSE_OBJECT *Op,
1075 UINT32 CurrentByteOffset);

1077 ASL_RESOURCE_NODE *
1078 RsDoStartDependentNoPriDescriptor (
1079 ACPI_PARSE_OBJECT *Op,
1080 UINT32 CurrentByteOffset);

1082 ASL_RESOURCE_NODE *
1083 RsDoVendorSmallDescriptor (
1084 ACPI_PARSE_OBJECT *Op,
1085 UINT32 CurrentByteOffset);

1088 /*
1089 * aslrestype1i - I/O-related Small descriptors
1090 */
1091 ASL_RESOURCE_NODE *
1092 RsDoDmaDescriptor (
1093 ACPI_PARSE_OBJECT *Op,
1094 UINT32 CurrentByteOffset);

1096 ASL_RESOURCE_NODE *
1097 RsDoFixedDmaDescriptor (
1098 ACPI_PARSE_OBJECT *Op,
1099 UINT32 CurrentByteOffset);

1101 ASL_RESOURCE_NODE *
1102 RsDoFixedIoDescriptor (
1103 ACPI_PARSE_OBJECT *Op,
1104 UINT32 CurrentByteOffset);

1106 ASL_RESOURCE_NODE *
1107 RsDoIoDescriptor (
1108 ACPI_PARSE_OBJECT *Op,
1109 UINT32 CurrentByteOffset);

1111 ASL_RESOURCE_NODE *
1112 RsDoIrqDescriptor (
1113 ACPI_PARSE_OBJECT *Op,
1114 UINT32 CurrentByteOffset);

new/usr/src/common/acpica/compiler/aslcompiler.h 18

1116 ASL_RESOURCE_NODE *
1117 RsDoIrqNoFlagsDescriptor (
1118 ACPI_PARSE_OBJECT *Op,
1119 UINT32 CurrentByteOffset);

1122 /*
1123 * aslrestype2 - Large resource descriptors
1124 */
1125 ASL_RESOURCE_NODE *
1126 RsDoInterruptDescriptor (
1127 ACPI_PARSE_OBJECT *Op,
1128 UINT32 CurrentByteOffset);

1130 ASL_RESOURCE_NODE *
1131 RsDoVendorLargeDescriptor (
1132 ACPI_PARSE_OBJECT *Op,
1133 UINT32 CurrentByteOffset);

1135 ASL_RESOURCE_NODE *
1136 RsDoGeneralRegisterDescriptor (
1137 ACPI_PARSE_OBJECT *Op,
1138 UINT32 CurrentByteOffset);

1140 ASL_RESOURCE_NODE *
1141 RsDoGpioIntDescriptor (
1142 ACPI_PARSE_OBJECT *Op,
1143 UINT32 CurrentByteOffset);

1145 ASL_RESOURCE_NODE *
1146 RsDoGpioIoDescriptor (
1147 ACPI_PARSE_OBJECT *Op,
1148 UINT32 CurrentByteOffset);

1150 ASL_RESOURCE_NODE *
1151 RsDoI2cSerialBusDescriptor (
1152 ACPI_PARSE_OBJECT *Op,
1153 UINT32 CurrentByteOffset);

1155 ASL_RESOURCE_NODE *
1156 RsDoSpiSerialBusDescriptor (
1157 ACPI_PARSE_OBJECT *Op,
1158 UINT32 CurrentByteOffset);

1160 ASL_RESOURCE_NODE *
1161 RsDoUartSerialBusDescriptor (
1162 ACPI_PARSE_OBJECT *Op,
1163 UINT32 CurrentByteOffset);

1165 /*
1166 * aslrestype2d - DWord address descriptors
1167 */
1168 ASL_RESOURCE_NODE *
1169 RsDoDwordIoDescriptor (
1170 ACPI_PARSE_OBJECT *Op,
1171 UINT32 CurrentByteOffset);

1173 ASL_RESOURCE_NODE *
1174 RsDoDwordMemoryDescriptor (
1175 ACPI_PARSE_OBJECT *Op,
1176 UINT32 CurrentByteOffset);

1178 ASL_RESOURCE_NODE *
1179 RsDoDwordSpaceDescriptor (
1180 ACPI_PARSE_OBJECT *Op,
1181 UINT32 CurrentByteOffset);

new/usr/src/common/acpica/compiler/aslcompiler.h 19

1184 /*
1185 * aslrestype2e - Extended address descriptors
1186 */
1187 ASL_RESOURCE_NODE *
1188 RsDoExtendedIoDescriptor (
1189 ACPI_PARSE_OBJECT *Op,
1190 UINT32 CurrentByteOffset);

1192 ASL_RESOURCE_NODE *
1193 RsDoExtendedMemoryDescriptor (
1194 ACPI_PARSE_OBJECT *Op,
1195 UINT32 CurrentByteOffset);

1197 ASL_RESOURCE_NODE *
1198 RsDoExtendedSpaceDescriptor (
1199 ACPI_PARSE_OBJECT *Op,
1200 UINT32 CurrentByteOffset);

1203 /*
1204 * aslrestype2q - QWord address descriptors
1205 */
1206 ASL_RESOURCE_NODE *
1207 RsDoQwordIoDescriptor (
1208 ACPI_PARSE_OBJECT *Op,
1209 UINT32 CurrentByteOffset);

1211 ASL_RESOURCE_NODE *
1212 RsDoQwordMemoryDescriptor (
1213 ACPI_PARSE_OBJECT *Op,
1214 UINT32 CurrentByteOffset);

1216 ASL_RESOURCE_NODE *
1217 RsDoQwordSpaceDescriptor (
1218 ACPI_PARSE_OBJECT *Op,
1219 UINT32 CurrentByteOffset);

1222 /*
1223 * aslrestype2w - Word address descriptors
1224 */
1225 ASL_RESOURCE_NODE *
1226 RsDoWordIoDescriptor (
1227 ACPI_PARSE_OBJECT *Op,
1228 UINT32 CurrentByteOffset);

1230 ASL_RESOURCE_NODE *
1231 RsDoWordSpaceDescriptor (
1232 ACPI_PARSE_OBJECT *Op,
1233 UINT32 CurrentByteOffset);

1235 ASL_RESOURCE_NODE *
1236 RsDoWordBusNumberDescriptor (
1237 ACPI_PARSE_OBJECT *Op,
1238 UINT32 CurrentByteOffset);

1240 /*
1241 * Entry to data table compiler subsystem
1242 */
1243 ACPI_STATUS
1244 DtDoCompile(
1245 void);

1247 ACPI_STATUS

new/usr/src/common/acpica/compiler/aslcompiler.h 20

1248 DtCreateTemplates (
1249 char *Signature);

1251 #endif /* __ASLCOMPILER_H */

new/usr/src/common/acpica/compiler/aslcompiler.l 1

**
 33668 Thu Dec 26 13:48:26 2013
new/usr/src/common/acpica/compiler/aslcompiler.l
acpica-unix2-20130823
PANKOVs restructure
**

1 %{
2 /**
3 *
4 * Module Name: aslcompiler.l - Flex/lex input file
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"

48 #include <stdlib.h>
49 #include <string.h>
50 YYSTYPE AslCompilerlval;

52 /*
53 * Generation: Use the following command line:
54 *
55 * flex.exe -PAslCompiler -i -o$(InputPath).c $(InputPath)
56 *
57 * -i: Scanner must be case-insensitive
58 */

60 #define _COMPONENT ACPI_COMPILER

new/usr/src/common/acpica/compiler/aslcompiler.l 2

61 ACPI_MODULE_NAME ("aslscanner")

64 /* Local prototypes */

66 static void
67 AslDoLineDirective (void);

69 static char
70 AslDoComment (void);

72 static char
73 AslDoCommentType2 (void);

75 static char
76 AslDoStringLiteral (void);

78 static void
79 count (int type);

82 /*! [Begin] no source code translation */

84 %}
85 /* Definitions */

87 LeadNameChar [A-Za-z_]
88 DigitChar [0-9]
89 HexDigitChar [A-Fa-f0-9]
90 RootChar [\\]
91 Nothing []

93 NameChar [A-Za-z_0-9]
94 NameSeg1 {LeadNameChar}{NameChar}
95 NameSeg2 {LeadNameChar}{NameChar}{NameChar}
96 NameSeg3 {LeadNameChar}{NameChar}{NameChar}{NameChar}
97 NameSeg {LeadNameChar}|{NameSeg1}|{NameSeg2}|{NameSeg3}

99 NameString {RootChar}|{RootChar}{NamePath}|[\^]+{NamePath}|{Non
100 NamePath {NonEmptyNamePath}?
101 NonEmptyNamePath {NameSeg}{NamePathTail}*
102 NamePathTail [.]{NameSeg}

104 %%
105 /* Rules */

107 [] { count (0); }
108 [\n] { count (0); } /* Handle files with both LF and CR/L
109 [\r] { count (0); } /* termination on both Unix and Windo
110 [\t] { count (0); }

113 "/*" { if (!AslDoComment ()) yyterminate (); }
114 "//" { if (!AslDoCommentType2 ()) yyterminate (); }

116 "\"" { if (AslDoStringLiteral ()) return (PARSEOP_STRING_
117 ";" { count (0); return(’;’); }

120 0[xX]{HexDigitChar}+ |
121 {DigitChar}+ { AslCompilerlval.i = UtDoConstant ((char *) AslComp
122 count (1); return (PARSEOP_INTEGER); }

124 "Include" { count (1); return (PARSEOP_INCLUDE); }
125 "External" { count (1); return (PARSEOP_EXTERNAL); }

new/usr/src/common/acpica/compiler/aslcompiler.l 3

127 /*
128 * The #line directive is emitted by the preprocessor and handled
129 * here in the main iASL lexer - simply set the line number and
130 * optionally the current filename.
131 */
132 "#line" { AslDoLineDirective ();}

135 /**
136 *
137 * Main ASL operators
138 *
139 **/

141 "AccessAs" { count (1); return (PARSEOP_ACCESSAS); }
142 "Acquire" { count (3); return (PARSEOP_ACQUIRE); }
143 "Add" { count (3); return (PARSEOP_ADD); }
144 "Alias" { count (2); return (PARSEOP_ALIAS); }
145 "And" { count (3); return (PARSEOP_AND); }
146 "BankField" { count (2); return (PARSEOP_BANKFIELD); }
147 "Break" { count (3); return (PARSEOP_BREAK); }
148 "BreakPoint" { count (3); return (PARSEOP_BREAKPOINT); }
149 "Buffer" { count (1); return (PARSEOP_BUFFER); }
150 "Case" { count (3); return (PARSEOP_CASE); }
151 "Concatenate" { count (3); return (PARSEOP_CONCATENATE); }
152 "ConcatenateResTemplate" { count (3); return (PARSEOP_CONCATENATERESTEMPLATE)
153 "CondRefOf" { count (3); return (PARSEOP_CONDREFOF); }
154 "Connection" { count (2); return (PARSEOP_CONNECTION); }
155 "Continue" { count (3); return (PARSEOP_CONTINUE); }
156 "CopyObject" { count (3); return (PARSEOP_COPYOBJECT); }
157 "CreateBitField" { count (2); return (PARSEOP_CREATEBITFIELD); }
158 "CreateByteField" { count (2); return (PARSEOP_CREATEBYTEFIELD); }
159 "CreateDWordField" { count (2); return (PARSEOP_CREATEDWORDFIELD); }
160 "CreateField" { count (2); return (PARSEOP_CREATEFIELD); }
161 "CreateQWordField" { count (2); return (PARSEOP_CREATEQWORDFIELD); }
162 "CreateWordField" { count (2); return (PARSEOP_CREATEWORDFIELD); }
163 "DataTableRegion" { count (2); return (PARSEOP_DATATABLEREGION); }
164 "Debug" { count (1); return (PARSEOP_DEBUG); }
165 "Decrement" { count (3); return (PARSEOP_DECREMENT); }
166 "Default" { count (3); return (PARSEOP_DEFAULT); }
167 "DefinitionBlock" { count (1); return (PARSEOP_DEFINITIONBLOCK); }
168 "DeRefOf" { count (3); return (PARSEOP_DEREFOF); }
169 "Device" { count (2); return (PARSEOP_DEVICE); }
170 "Divide" { count (3); return (PARSEOP_DIVIDE); }
171 "Eisaid" { count (1); return (PARSEOP_EISAID); }
172 "Else" { count (3); return (PARSEOP_ELSE); }
173 "ElseIf" { count (3); return (PARSEOP_ELSEIF); }
174 "Event" { count (2); return (PARSEOP_EVENT); }
175 "Fatal" { count (3); return (PARSEOP_FATAL); }
176 "Field" { count (2); return (PARSEOP_FIELD); }
177 "FindSetLeftBit" { count (3); return (PARSEOP_FINDSETLEFTBIT); }
178 "FindSetRightBit" { count (3); return (PARSEOP_FINDSETRIGHTBIT); }
179 "FromBcd" { count (3); return (PARSEOP_FROMBCD); }
180 "Function" { count (2); return (PARSEOP_FUNCTION); }
181 "If" { count (3); return (PARSEOP_IF); }
182 "Increment" { count (3); return (PARSEOP_INCREMENT); }
183 "Index" { count (3); return (PARSEOP_INDEX); }
184 "IndexField" { count (2); return (PARSEOP_INDEXFIELD); }
185 "LAnd" { count (3); return (PARSEOP_LAND); }
186 "LEqual" { count (3); return (PARSEOP_LEQUAL); }
187 "LGreater" { count (3); return (PARSEOP_LGREATER); }
188 "LGreaterEqual" { count (3); return (PARSEOP_LGREATEREQUAL); }
189 "LLess" { count (3); return (PARSEOP_LLESS); }
190 "LLessEqual" { count (3); return (PARSEOP_LLESSEQUAL); }
191 "LNot" { count (3); return (PARSEOP_LNOT); }
192 "LNotEqual" { count (3); return (PARSEOP_LNOTEQUAL); }

new/usr/src/common/acpica/compiler/aslcompiler.l 4

193 "Load" { count (3); return (PARSEOP_LOAD); }
194 "LoadTable" { count (3); return (PARSEOP_LOADTABLE); }
195 "LOr" { count (3); return (PARSEOP_LOR); }
196 "Match" { count (3); return (PARSEOP_MATCH); }
197 "Method" { count (2); return (PARSEOP_METHOD); }
198 "Mid" { count (3); return (PARSEOP_MID); }
199 "Mod" { count (3); return (PARSEOP_MOD); }
200 "Multiply" { count (3); return (PARSEOP_MULTIPLY); }
201 "Mutex" { count (2); return (PARSEOP_MUTEX); }
202 "Name" { count (2); return (PARSEOP_NAME); }
203 "NAnd" { count (3); return (PARSEOP_NAND); }
204 "Noop" { if (!AcpiGbl_IgnoreNoopOperator) {count (3); retur
205 "NOr" { count (3); return (PARSEOP_NOR); }
206 "Not" { count (3); return (PARSEOP_NOT); }
207 "Notify" { count (3); return (PARSEOP_NOTIFY); }
208 "ObjectType" { count (3); return (PARSEOP_OBJECTTYPE); }
209 "Offset" { count (1); return (PARSEOP_OFFSET); }
210 "One" { count (1); return (PARSEOP_ONE); }
211 "Ones" { count (1); return (PARSEOP_ONES); }
212 "OperationRegion" { count (2); return (PARSEOP_OPERATIONREGION); }
213 "Or" { count (3); return (PARSEOP_OR); }
214 "Package" { count (1); return (PARSEOP_PACKAGE); }
215 "PowerResource" { count (2); return (PARSEOP_POWERRESOURCE); }
216 "Processor" { count (2); return (PARSEOP_PROCESSOR); }
217 "RefOf" { count (3); return (PARSEOP_REFOF); }
218 "Release" { count (3); return (PARSEOP_RELEASE); }
219 "Reset" { count (3); return (PARSEOP_RESET); }
220 "Return" { count (3); return (PARSEOP_RETURN); }
221 "Revision" { count (1); return (PARSEOP_REVISION); }
222 "Scope" { count (2); return (PARSEOP_SCOPE); }
223 "ShiftLeft" { count (3); return (PARSEOP_SHIFTLEFT); }
224 "ShiftRight" { count (3); return (PARSEOP_SHIFTRIGHT); }
225 "Signal" { count (3); return (PARSEOP_SIGNAL); }
226 "SizeOf" { count (3); return (PARSEOP_SIZEOF); }
227 "Sleep" { count (3); return (PARSEOP_SLEEP); }
228 "Stall" { count (3); return (PARSEOP_STALL); }
229 "Store" { count (3); return (PARSEOP_STORE); }
230 "Subtract" { count (3); return (PARSEOP_SUBTRACT); }
231 "Switch" { count (3); return (PARSEOP_SWITCH); }
232 "ThermalZone" { count (2); return (PARSEOP_THERMALZONE); }
233 "Timer" { count (3); return (PARSEOP_TIMER); }
234 "ToBcd" { count (3); return (PARSEOP_TOBCD); }
235 "ToBuffer" { count (3); return (PARSEOP_TOBUFFER); }
236 "ToDecimalString" { count (3); return (PARSEOP_TODECIMALSTRING); }
237 "ToHexString" { count (3); return (PARSEOP_TOHEXSTRING); }
238 "ToInteger" { count (3); return (PARSEOP_TOINTEGER); }
239 "ToString" { count (3); return (PARSEOP_TOSTRING); }
240 "ToUuid" { count (1); return (PARSEOP_TOUUID); }
241 "Unicode" { count (1); return (PARSEOP_UNICODE); }
242 "Unload" { count (3); return (PARSEOP_UNLOAD); }
243 "Wait" { count (3); return (PARSEOP_WAIT); }
244 "While" { count (3); return (PARSEOP_WHILE); }
245 "XOr" { count (3); return (PARSEOP_XOR); }
246 "Zero" { count (1); return (PARSEOP_ZERO); }

248 /* Control method arguments and locals */

250 "Arg0" { count (1); return (PARSEOP_ARG0); }
251 "Arg1" { count (1); return (PARSEOP_ARG1); }
252 "Arg2" { count (1); return (PARSEOP_ARG2); }
253 "Arg3" { count (1); return (PARSEOP_ARG3); }
254 "Arg4" { count (1); return (PARSEOP_ARG4); }
255 "Arg5" { count (1); return (PARSEOP_ARG5); }
256 "Arg6" { count (1); return (PARSEOP_ARG6); }
257 "Local0" { count (1); return (PARSEOP_LOCAL0); }
258 "Local1" { count (1); return (PARSEOP_LOCAL1); }

new/usr/src/common/acpica/compiler/aslcompiler.l 5

259 "Local2" { count (1); return (PARSEOP_LOCAL2); }
260 "Local3" { count (1); return (PARSEOP_LOCAL3); }
261 "Local4" { count (1); return (PARSEOP_LOCAL4); }
262 "Local5" { count (1); return (PARSEOP_LOCAL5); }
263 "Local6" { count (1); return (PARSEOP_LOCAL6); }
264 "Local7" { count (1); return (PARSEOP_LOCAL7); }

267 /**
268 *
269 * Resource Descriptor macros
270 *
271 **/

273 "ResourceTemplate" { count (1); return (PARSEOP_RESOURCETEMPLATE); }
274 "RawDataBuffer" { count (1); return (PARSEOP_DATABUFFER); }

276 "DMA" { count (1); return (PARSEOP_DMA); }
277 "DWordIO" { count (1); return (PARSEOP_DWORDIO); }
278 "DWordMemory" { count (1); return (PARSEOP_DWORDMEMORY); }
279 "DWordSpace" { count (1); return (PARSEOP_DWORDSPACE); }
280 "EndDependentFn" { count (1); return (PARSEOP_ENDDEPENDENTFN); }
281 "ExtendedIO" { count (1); return (PARSEOP_EXTENDEDIO); }
282 "ExtendedMemory" { count (1); return (PARSEOP_EXTENDEDMEMORY); }
283 "ExtendedSpace" { count (1); return (PARSEOP_EXTENDEDSPACE); }
284 "FixedDma" { count (1); return (PARSEOP_FIXEDDMA); }
285 "FixedIO" { count (1); return (PARSEOP_FIXEDIO); }
286 "GpioInt" { count (1); return (PARSEOP_GPIO_INT); }
287 "GpioIo" { count (1); return (PARSEOP_GPIO_IO); }
288 "I2cSerialBus" { count (1); return (PARSEOP_I2C_SERIALBUS); }
289 "Interrupt" { count (1); return (PARSEOP_INTERRUPT); }
290 "IO" { count (1); return (PARSEOP_IO); }
291 "IRQ" { count (1); return (PARSEOP_IRQ); }
292 "IRQNoFlags" { count (1); return (PARSEOP_IRQNOFLAGS); }
293 "Memory24" { count (1); return (PARSEOP_MEMORY24); }
294 "Memory32" { count (1); return (PARSEOP_MEMORY32); }
295 "Memory32Fixed" { count (1); return (PARSEOP_MEMORY32FIXED); }
296 "QWordIO" { count (1); return (PARSEOP_QWORDIO); }
297 "QWordMemory" { count (1); return (PARSEOP_QWORDMEMORY); }
298 "QWordSpace" { count (1); return (PARSEOP_QWORDSPACE); }
299 "Register" { count (1); return (PARSEOP_REGISTER); }
300 "SpiSerialBus" { count (1); return (PARSEOP_SPI_SERIALBUS); }
301 "StartDependentFn" { count (1); return (PARSEOP_STARTDEPENDENTFN); }
302 "StartDependentFnNoPri" { count (1); return (PARSEOP_STARTDEPENDENTFN_NOPRI)
303 "UartSerialBus" { count (1); return (PARSEOP_UART_SERIALBUS); }
304 "VendorLong" { count (1); return (PARSEOP_VENDORLONG); }
305 "VendorShort" { count (1); return (PARSEOP_VENDORSHORT); }
306 "WordBusNumber" { count (1); return (PARSEOP_WORDBUSNUMBER); }
307 "WordIO" { count (1); return (PARSEOP_WORDIO); }
308 "WordSpace" { count (1); return (PARSEOP_WORDSPACE); }

311 /**
312 *
313 * Keywords used as arguments to ASL operators and macros
314 *
315 **/

317 /* AccessAttribKeyword: Serial Bus Attributes (ACPI 5.0) */

319 "AttribQuick" { count (0); return (PARSEOP_ACCESSATTRIB_QUICK); }
320 "AttribSendReceive" { count (0); return (PARSEOP_ACCESSATTRIB_SND_RCV);
321 "AttribByte" { count (0); return (PARSEOP_ACCESSATTRIB_BYTE); }
322 "AttribWord" { count (0); return (PARSEOP_ACCESSATTRIB_WORD); }
323 "AttribBlock" { count (0); return (PARSEOP_ACCESSATTRIB_BLOCK); }
324 "AttribProcessCall" { count (0); return (PARSEOP_ACCESSATTRIB_WORD_CALL)

new/usr/src/common/acpica/compiler/aslcompiler.l 6

325 "AttribBlockProcessCall" { count (0); return (PARSEOP_ACCESSATTRIB_BLOCK_CALL

327 /* AccessAttribKeyword: Legacy synonyms for above (pre-ACPI 5.0) */

329 "SMBQuick" { count (0); return (PARSEOP_ACCESSATTRIB_QUICK); }
330 "SMBSendReceive" { count (0); return (PARSEOP_ACCESSATTRIB_SND_RCV);
331 "SMBByte" { count (0); return (PARSEOP_ACCESSATTRIB_BYTE); }
332 "SMBWord" { count (0); return (PARSEOP_ACCESSATTRIB_WORD); }
333 "SMBBlock" { count (0); return (PARSEOP_ACCESSATTRIB_BLOCK); }
334 "SMBProcessCall" { count (0); return (PARSEOP_ACCESSATTRIB_WORD_CALL)
335 "SMBBlockProcessCall" { count (0); return (PARSEOP_ACCESSATTRIB_BLOCK_CALL

337 /* AccessTypeKeyword: Field Access Types */

339 "AnyAcc" { count (0); return (PARSEOP_ACCESSTYPE_ANY); }
340 "ByteAcc" { count (0); return (PARSEOP_ACCESSTYPE_BYTE); }
341 "WordAcc" { count (0); return (PARSEOP_ACCESSTYPE_WORD); }
342 "DWordAcc" { count (0); return (PARSEOP_ACCESSTYPE_DWORD); }
343 "QWordAcc" { count (0); return (PARSEOP_ACCESSTYPE_QWORD); }
344 "BufferAcc" { count (0); return (PARSEOP_ACCESSTYPE_BUF); }

346 /* AddressingModeKeyword: Mode - Resource Descriptors (ACPI 5.0) */

348 "AddressingMode7Bit" { count (0); return (PARSEOP_ADDRESSINGMODE_7BIT); }
349 "AddressingMode10Bit" { count (0); return (PARSEOP_ADDRESSINGMODE_10BIT);

351 /* AddressKeyword: ACPI memory range types */

353 "AddressRangeMemory" { count (0); return (PARSEOP_ADDRESSTYPE_MEMORY); }
354 "AddressRangeReserved" { count (0); return (PARSEOP_ADDRESSTYPE_RESERVED);
355 "AddressRangeNVS" { count (0); return (PARSEOP_ADDRESSTYPE_NVS); }
356 "AddressRangeACPI" { count (0); return (PARSEOP_ADDRESSTYPE_ACPI); }

358 /* BusMasterKeyword: DMA Bus Mastering */

360 "BusMaster" { count (0); return (PARSEOP_BUSMASTERTYPE_MASTER);
361 "NotBusMaster" { count (0); return (PARSEOP_BUSMASTERTYPE_NOTMASTER

363 /* ByteLengthKeyword: Bits per Byte - Resource Descriptors (ACPI 5.0) */

365 "DataBitsFive" { count (0); return (PARSEOP_BITSPERBYTE_FIVE); }
366 "DataBitsSix" { count (0); return (PARSEOP_BITSPERBYTE_SIX); }
367 "DataBitsSeven" { count (0); return (PARSEOP_BITSPERBYTE_SEVEN); }
368 "DataBitsEight" { count (0); return (PARSEOP_BITSPERBYTE_EIGHT); }
369 "DataBitsNine" { count (0); return (PARSEOP_BITSPERBYTE_NINE); }

371 /* ClockPhaseKeyword: Resource Descriptors (ACPI 5.0) */

373 "ClockPhaseFirst" { count (0); return (PARSEOP_CLOCKPHASE_FIRST); }
374 "ClockPhaseSecond" { count (0); return (PARSEOP_CLOCKPHASE_SECOND); }

376 /* ClockPolarityKeyword: Resource Descriptors (ACPI 5.0) */

378 "ClockPolarityLow" { count (0); return (PARSEOP_CLOCKPOLARITY_LOW); }
379 "ClockPolarityHigh" { count (0); return (PARSEOP_CLOCKPOLARITY_HIGH); }

381 /* DecodeKeyword: Type of Memory Decoding - Resource Descriptors */

383 "PosDecode" { count (0); return (PARSEOP_DECODETYPE_POS); }
384 "SubDecode" { count (0); return (PARSEOP_DECODETYPE_SUB); }

386 /* DmaTypeKeyword: DMA Types - DMA Resource Descriptor */

388 "Compatibility" { count (0); return (PARSEOP_DMATYPE_COMPATIBILITY);
389 "TypeA" { count (0); return (PARSEOP_DMATYPE_A); }
390 "TypeB" { count (0); return (PARSEOP_DMATYPE_B); }

new/usr/src/common/acpica/compiler/aslcompiler.l 7

391 "TypeF" { count (0); return (PARSEOP_DMATYPE_F); }

393 /* EndianKeyword: Endian type - Resource Descriptor (ACPI 5.0) */

395 "LittleEndian" { count (0); return (PARSEOP_ENDIAN_LITTLE); }
396 "BigEndian" { count (0); return (PARSEOP_ENDIAN_BIG); }

398 /* ExtendedAttribKeyword: Bus attributes, AccessAs operator (ACPI 5.0) */

400 "AttribBytes" { count (0); return (PARSEOP_ACCESSATTRIB_MULTIBYTE)
401 "AttribRawBytes" { count (0); return (PARSEOP_ACCESSATTRIB_RAW_BYTES)
402 "AttribRawProcessBytes" { count (0); return (PARSEOP_ACCESSATTRIB_RAW_PROCES

404 /* FlowControlKeyword: Resource Descriptors (ACPI 5.0) */

406 "FlowControlHardware" { count (0); return (PARSEOP_FLOWCONTROL_HW); }
407 "FlowControlNone" { count (0); return (PARSEOP_FLOWCONTROL_NONE); }
408 "FlowControlXon" { count (0); return (PARSEOP_FLOWCONTROL_SW); }

410 /* InterruptLevelKeyword: Interrupt Active Types */

412 "ActiveBoth" { count (0); return (PARSEOP_INTLEVEL_ACTIVEBOTH); }
413 "ActiveHigh" { count (0); return (PARSEOP_INTLEVEL_ACTIVEHIGH); }
414 "ActiveLow" { count (0); return (PARSEOP_INTLEVEL_ACTIVELOW); }

416 /* InterruptTypeKeyword: Interrupt Types */

418 "Edge" { count (0); return (PARSEOP_INTTYPE_EDGE); }
419 "Level" { count (0); return (PARSEOP_INTTYPE_LEVEL); }

421 /* IoDecodeKeyword: Type of Memory Decoding - Resource Descriptors */

423 "Decode10" { count (0); return (PARSEOP_IODECODETYPE_10); }
424 "Decode16" { count (0); return (PARSEOP_IODECODETYPE_16); }

426 /* IoRestrictionKeyword: I/O Restriction - GPIO Resource Descriptors (ACPI 5

428 "IoRestrictionNone" { count (0); return (PARSEOP_IORESTRICT_NONE); }
429 "IoRestrictionInputOnly" { count (0); return (PARSEOP_IORESTRICT_IN); }
430 "IoRestrictionOutputOnly" { count (0); return (PARSEOP_IORESTRICT_OUT); }
431 "IoRestrictionNoneAndPreserve" { count (0); return (PARSEOP_IORESTRICT_PRESERV

433 /* LockRuleKeyword: Global Lock use for Field Operator */

435 "Lock" { count (0); return (PARSEOP_LOCKRULE_LOCK); }
436 "NoLock" { count (0); return (PARSEOP_LOCKRULE_NOLOCK); }

438 /* MatchOpKeyword: Types for Match Operator */

440 "MTR" { count (0); return (PARSEOP_MATCHTYPE_MTR); }
441 "MEQ" { count (0); return (PARSEOP_MATCHTYPE_MEQ); }
442 "MLE" { count (0); return (PARSEOP_MATCHTYPE_MLE); }
443 "MLT" { count (0); return (PARSEOP_MATCHTYPE_MLT); }
444 "MGE" { count (0); return (PARSEOP_MATCHTYPE_MGE); }
445 "MGT" { count (0); return (PARSEOP_MATCHTYPE_MGT); }

447 /* MaxKeyword: Max Range Type - Resource Descriptors */

449 "MaxFixed" { count (0); return (PARSEOP_MAXTYPE_FIXED); }
450 "MaxNotFixed" { count (0); return (PARSEOP_MAXTYPE_NOTFIXED); }

452 /* MemTypeKeyword: Memory Types - Resource Descriptors */

454 "Cacheable" { count (0); return (PARSEOP_MEMTYPE_CACHEABLE); }
455 "WriteCombining" { count (0); return (PARSEOP_MEMTYPE_WRITECOMBINING)
456 "Prefetchable" { count (0); return (PARSEOP_MEMTYPE_PREFETCHABLE);

new/usr/src/common/acpica/compiler/aslcompiler.l 8

457 "NonCacheable" { count (0); return (PARSEOP_MEMTYPE_NONCACHEABLE);

459 /* MinKeyword: Min Range Type - Resource Descriptors */

461 "MinFixed" { count (0); return (PARSEOP_MINTYPE_FIXED); }
462 "MinNotFixed" { count (0); return (PARSEOP_MINTYPE_NOTFIXED); }

464 /* ObjectTypeKeyword: ACPI Object Types */

466 "UnknownObj" { count (0); return (PARSEOP_OBJECTTYPE_UNK); }
467 "IntObj" { count (0); return (PARSEOP_OBJECTTYPE_INT); }
468 "StrObj" { count (0); return (PARSEOP_OBJECTTYPE_STR); }
469 "BuffObj" { count (0); return (PARSEOP_OBJECTTYPE_BUF); }
470 "PkgObj" { count (0); return (PARSEOP_OBJECTTYPE_PKG); }
471 "FieldUnitObj" { count (0); return (PARSEOP_OBJECTTYPE_FLD); }
472 "DeviceObj" { count (0); return (PARSEOP_OBJECTTYPE_DEV); }
473 "EventObj" { count (0); return (PARSEOP_OBJECTTYPE_EVT); }
474 "MethodObj" { count (0); return (PARSEOP_OBJECTTYPE_MTH); }
475 "MutexObj" { count (0); return (PARSEOP_OBJECTTYPE_MTX); }
476 "OpRegionObj" { count (0); return (PARSEOP_OBJECTTYPE_OPR); }
477 "PowerResObj" { count (0); return (PARSEOP_OBJECTTYPE_POW); }
478 "ProcessorObj" { count (0); return (PARSEOP_OBJECTTYPE_PRO); }
479 "ThermalZoneObj" { count (0); return (PARSEOP_OBJECTTYPE_THZ); }
480 "BuffFieldObj" { count (0); return (PARSEOP_OBJECTTYPE_BFF); }
481 "DDBHandleObj" { count (0); return (PARSEOP_OBJECTTYPE_DDB); }

483 /* ParityKeyword: Resource Descriptors (ACPI 5.0) */

485 "ParityTypeSpace" { count (0); return (PARSEOP_PARITYTYPE_SPACE); }
486 "ParityTypeMark" { count (0); return (PARSEOP_PARITYTYPE_MARK); }
487 "ParityTypeOdd" { count (0); return (PARSEOP_PARITYTYPE_ODD); }
488 "ParityTypeEven" { count (0); return (PARSEOP_PARITYTYPE_EVEN); }
489 "ParityTypeNone" { count (0); return (PARSEOP_PARITYTYPE_NONE); }

491 /* PinConfigKeyword: Pin Configuration - GPIO Resource Descriptors (ACPI 5.0

493 "PullDefault" { count (0); return (PARSEOP_PIN_PULLDEFAULT); }
494 "PullUp" { count (0); return (PARSEOP_PIN_PULLUP); }
495 "PullDown" { count (0); return (PARSEOP_PIN_PULLDOWN); }
496 "PullNone" { count (0); return (PARSEOP_PIN_NOPULL); }

498 /* PolarityKeyword: Resource Descriptors (ACPI 5.0) */

500 "PolarityLow" { count (0); return (PARSEOP_DEVICEPOLARITY_LOW); }
501 "PolarityHigh" { count (0); return (PARSEOP_DEVICEPOLARITY_HIGH); }

503 /* RangeTypeKeyword: I/O Range Types - Resource Descriptors */

505 "ISAOnlyRanges" { count (0); return (PARSEOP_RANGETYPE_ISAONLY); }
506 "NonISAOnlyRanges" { count (0); return (PARSEOP_RANGETYPE_NONISAONLY);
507 "EntireRange" { count (0); return (PARSEOP_RANGETYPE_ENTIRE); }

509 /* ReadWriteKeyword: Memory Access Types - Resource Descriptors */

511 "ReadWrite" { count (0); return (PARSEOP_READWRITETYPE_BOTH); }
512 "ReadOnly" { count (0); return (PARSEOP_READWRITETYPE_READONLY)

514 /* RegionSpaceKeyword: Operation Region Address Space Types */

516 "SystemIO" { count (0); return (PARSEOP_REGIONSPACE_IO); }
517 "SystemMemory" { count (0); return (PARSEOP_REGIONSPACE_MEM); }
518 "PCI_Config" { count (0); return (PARSEOP_REGIONSPACE_PCI); }
519 "EmbeddedControl" { count (0); return (PARSEOP_REGIONSPACE_EC); }
520 "SMBus" { count (0); return (PARSEOP_REGIONSPACE_SMBUS); }
521 "SystemCMOS" { count (0); return (PARSEOP_REGIONSPACE_CMOS); }
522 "PciBarTarget" { count (0); return (PARSEOP_REGIONSPACE_PCIBAR); }

new/usr/src/common/acpica/compiler/aslcompiler.l 9

523 "IPMI" { count (0); return (PARSEOP_REGIONSPACE_IPMI); }
524 "GeneralPurposeIo" { count (0); return (PARSEOP_REGIONSPACE_GPIO); }
525 "GenericSerialBus" { count (0); return (PARSEOP_REGIONSPACE_GSBUS); }
526 "PCC" { count (0); return (PARSEOP_REGIONSPACE_PCC); }
527 "FFixedHW" { count (0); return (PARSEOP_REGIONSPACE_FFIXEDHW);

529 /* ResourceTypeKeyword: Resource Usage - Resource Descriptors */

531 "ResourceConsumer" { count (0); return (PARSEOP_RESOURCETYPE_CONSUMER);
532 "ResourceProducer" { count (0); return (PARSEOP_RESOURCETYPE_PRODUCER);

534 /* SerializeRuleKeyword: Control Method Serialization */

536 "Serialized" { count (0); return (PARSEOP_SERIALIZERULE_SERIAL);
537 "NotSerialized" { count (0); return (PARSEOP_SERIALIZERULE_NOTSERIAL

539 /* ShareTypeKeyword: Interrupt Sharing - Resource Descriptors */

541 "Shared" { count (0); return (PARSEOP_SHARETYPE_SHARED); }
542 "Exclusive" { count (0); return (PARSEOP_SHARETYPE_EXCLUSIVE); }
543 "SharedAndWake" { count (0); return (PARSEOP_SHARETYPE_SHAREDWAKE);
544 "ExclusiveAndWake" { count (0); return (PARSEOP_SHARETYPE_EXCLUSIVEWAKE

546 /* SlaveModeKeyword: Resource Descriptors (ACPI 5.0) */

548 "ControllerInitiated" { count (0); return (PARSEOP_SLAVEMODE_CONTROLLERINI
549 "DeviceInitiated" { count (0); return (PARSEOP_SLAVEMODE_DEVICEINIT);

551 /* StopBitsKeyword: Resource Descriptors (ACPI 5.0) */

553 "StopBitsOne" { count (0); return (PARSEOP_STOPBITS_ONE); }
554 "StopBitsOnePlusHalf" { count (0); return (PARSEOP_STOPBITS_ONEPLUSHALF);
555 "StopBitsTwo" { count (0); return (PARSEOP_STOPBITS_TWO); }
556 "StopBitsZero" { count (0); return (PARSEOP_STOPBITS_ZERO); }

558 /* TransferWidthKeyword: DMA Widths - Fixed DMA Resource Descriptor (ACPI 5.

560 "Width8bit" { count (0); return (PARSEOP_XFERSIZE_8); }
561 "Width16bit" { count (0); return (PARSEOP_XFERSIZE_16); }
562 "Width32bit" { count (0); return (PARSEOP_XFERSIZE_32); }
563 "Width64bit" { count (0); return (PARSEOP_XFERSIZE_64); }
564 "Width128bit" { count (0); return (PARSEOP_XFERSIZE_128); }
565 "Width256bit" { count (0); return (PARSEOP_XFERSIZE_256); }

567 /* TranslationKeyword: Translation Density Types - Resource Descriptors */

569 "SparseTranslation" { count (0); return (PARSEOP_TRANSLATIONTYPE_SPARSE)
570 "DenseTranslation" { count (0); return (PARSEOP_TRANSLATIONTYPE_DENSE);

572 /* TypeKeyword: Translation Types - Resource Descriptors */

574 "TypeTranslation" { count (0); return (PARSEOP_TYPE_TRANSLATION); }
575 "TypeStatic" { count (0); return (PARSEOP_TYPE_STATIC); }

577 /* UpdateRuleKeyword: Field Update Rules */

579 "Preserve" { count (0); return (PARSEOP_UPDATERULE_PRESERVE); }
580 "WriteAsOnes" { count (0); return (PARSEOP_UPDATERULE_ONES); }
581 "WriteAsZeros" { count (0); return (PARSEOP_UPDATERULE_ZEROS); }

583 /* WireModeKeyword: SPI Wire Mode - Resource Descriptors (ACPI 5.0) */

585 "FourWireMode" { count (0); return (PARSEOP_WIREMODE_FOUR); }
586 "ThreeWireMode" { count (0); return (PARSEOP_WIREMODE_THREE); }

588 /* XferTypeKeyword: DMA Transfer Types */

new/usr/src/common/acpica/compiler/aslcompiler.l 10

590 "Transfer8" { count (0); return (PARSEOP_XFERTYPE_8); }
591 "Transfer8_16" { count (0); return (PARSEOP_XFERTYPE_8_16); }
592 "Transfer16" { count (0); return (PARSEOP_XFERTYPE_16); }

594 /* Predefined compiler names */

596 "__DATE__" { count (0); return (PARSEOP___DATE__); }
597 "__FILE__" { count (0); return (PARSEOP___FILE__); }
598 "__LINE__" { count (0); return (PARSEOP___LINE__); }
599 "__PATH__" { count (0); return (PARSEOP___PATH__); }

602 "{" { count (0); return(’{’); }
603 "}" { count (0); return(’}’); }
604 "," { count (0); return(’,’); }
605 "(" { count (0); return(’(’); }
606 ")" { count (0); return(’)’); }

608 {NameSeg} { char *s;
609 count (0);
610 s=malloc (ACPI_NAME_SIZE + 1);
611 if (strcmp (AslCompilertext, "\\"))
612 {
613 strcpy (s, "____");
614 AcpiUtStrupr (AslCompilertext);
615 }
616 memcpy (s, AslCompilertext, strlen (AslCompilert
617 AslCompilerlval.s = s;
618 DbgPrint (ASL_PARSE_OUTPUT, "NameSeg: %s\n", s);
619 return (PARSEOP_NAMESEG); }

621 {NameString} { char *s;
622 count (0);
623 s=malloc (strlen (AslCompilertext)+1);
624 AcpiUtStrupr (AslCompilertext);
625 strcpy (s, AslCompilertext);
626 s[strlen (AslCompilertext)] = 0;
627 AslCompilerlval.s = s;
628 DbgPrint (ASL_PARSE_OUTPUT, "NameString: %s\n",
629 return (PARSEOP_NAMESTRING); }

631 "*" |
632 "/" { count (1);
633 AslCompilererror ("Parse error, expecting ASL ke

635 . { count (1);
636 sprintf (MsgBuffer,
637 "Invalid character (0x%2.2X), expecting ASL
638 *AslCompilertext);
639 AslCompilererror (MsgBuffer);}

641 <<EOF>> { if (AslPopInputFileStack ())
642 yyterminate();
643 else
644 return (PARSEOP_INCLUDE_END);};

646 %%

648 /*! [End] no source code translation !*/

650 /*
651 * Bring in the scanner support routines
652 */
653 #include "aslsupport.l"

new/usr/src/common/acpica/compiler/aslcompiler.y 1

**
 126239 Thu Dec 26 13:48:26 2013
new/usr/src/common/acpica/compiler/aslcompiler.y
acpica-unix2-20130823
PANKOVs restructure
**

1 %{
2 /**
3 *
4 * Module Name: aslcompiler.y - Bison/Yacc input file (ASL grammar and actions)
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #include "aslcompiler.h"
46 #include <stdio.h>
47 #include <stdlib.h>
48 #include <string.h>
49 #include "acpi.h"
50 #include "accommon.h"

52 #define _COMPONENT ACPI_COMPILER
53 ACPI_MODULE_NAME ("aslparse")

55 /*
56 * Global Notes:
57 *
58 * October 2005: The following list terms have been optimized (from the
59 * original ASL grammar in the ACPI specification) to force the immediate
60 * reduction of each list item so that the parse stack use doesn’t increase on

new/usr/src/common/acpica/compiler/aslcompiler.y 2

61 * each list element and possibly overflow on very large lists (>4000 items).
62 * This dramatically reduces use of the parse stack overall.
63 *
64 * ArgList, TermList, Objectlist, ByteList, DWordList, PackageList,
65 * ResourceMacroList, and FieldUnitList
66 */

68 void * AslLocalAllocate (unsigned int Size);

70 /* Bison/yacc configuration */

72 #define static
73 #undef alloca
74 #define alloca AslLocalAllocate
75 #define yytname AslCompilername

77 #define YYINITDEPTH 600 /* State stack depth */
78 #define YYDEBUG 1 /* Enable debug output */
79 #define YYERROR_VERBOSE 1 /* Verbose error messages */

81 /* Define YYMALLOC/YYFREE to prevent redefinition errors */

83 #define YYMALLOC malloc
84 #define YYFREE free

86 /*
87 * The windows version of bison defines this incorrectly as "32768" (Not negativ
88 * We use a custom (edited binary) version of bison that defines YYFLAG as YYFBA
89 * instead (#define YYFBAD 32768), so we can define it correctly here.
90 *
91 * The problem is that if YYFLAG is positive, the extended syntax error messages
92 * are disabled.
93 */
94 #define YYFLAG -32768

96 %}

98 /*
99 * Declare the type of values in the grammar
100 */
101 %union {
102 UINT64 i;
103 char *s;
104 ACPI_PARSE_OBJECT *n;
105 }

107 /*! [Begin] no source code translation */

109 /*
110 * These shift/reduce conflicts are expected. There should be zero
111 * reduce/reduce conflicts.
112 */
113 %expect 86

115 /**
116 *
117 * Token types: These are returned by the lexer
118 *
119 * NOTE: This list MUST match the AslKeywordMapping table found
120 * in aslmap.c EXACTLY! Double check any changes!
121 *
122 ***/

124 %token <i> PARSEOP_ACCESSAS
125 %token <i> PARSEOP_ACCESSATTRIB_BLOCK
126 %token <i> PARSEOP_ACCESSATTRIB_BLOCK_CALL

new/usr/src/common/acpica/compiler/aslcompiler.y 3

127 %token <i> PARSEOP_ACCESSATTRIB_BYTE
128 %token <i> PARSEOP_ACCESSATTRIB_MULTIBYTE
129 %token <i> PARSEOP_ACCESSATTRIB_QUICK
130 %token <i> PARSEOP_ACCESSATTRIB_RAW_BYTES
131 %token <i> PARSEOP_ACCESSATTRIB_RAW_PROCESS
132 %token <i> PARSEOP_ACCESSATTRIB_SND_RCV
133 %token <i> PARSEOP_ACCESSATTRIB_WORD
134 %token <i> PARSEOP_ACCESSATTRIB_WORD_CALL
135 %token <i> PARSEOP_ACCESSTYPE_ANY
136 %token <i> PARSEOP_ACCESSTYPE_BUF
137 %token <i> PARSEOP_ACCESSTYPE_BYTE
138 %token <i> PARSEOP_ACCESSTYPE_DWORD
139 %token <i> PARSEOP_ACCESSTYPE_QWORD
140 %token <i> PARSEOP_ACCESSTYPE_WORD
141 %token <i> PARSEOP_ACQUIRE
142 %token <i> PARSEOP_ADD
143 %token <i> PARSEOP_ADDRESSINGMODE_7BIT
144 %token <i> PARSEOP_ADDRESSINGMODE_10BIT
145 %token <i> PARSEOP_ADDRESSTYPE_ACPI
146 %token <i> PARSEOP_ADDRESSTYPE_MEMORY
147 %token <i> PARSEOP_ADDRESSTYPE_NVS
148 %token <i> PARSEOP_ADDRESSTYPE_RESERVED
149 %token <i> PARSEOP_ALIAS
150 %token <i> PARSEOP_AND
151 %token <i> PARSEOP_ARG0
152 %token <i> PARSEOP_ARG1
153 %token <i> PARSEOP_ARG2
154 %token <i> PARSEOP_ARG3
155 %token <i> PARSEOP_ARG4
156 %token <i> PARSEOP_ARG5
157 %token <i> PARSEOP_ARG6
158 %token <i> PARSEOP_BANKFIELD
159 %token <i> PARSEOP_BITSPERBYTE_EIGHT
160 %token <i> PARSEOP_BITSPERBYTE_FIVE
161 %token <i> PARSEOP_BITSPERBYTE_NINE
162 %token <i> PARSEOP_BITSPERBYTE_SEVEN
163 %token <i> PARSEOP_BITSPERBYTE_SIX
164 %token <i> PARSEOP_BREAK
165 %token <i> PARSEOP_BREAKPOINT
166 %token <i> PARSEOP_BUFFER
167 %token <i> PARSEOP_BUSMASTERTYPE_MASTER
168 %token <i> PARSEOP_BUSMASTERTYPE_NOTMASTER
169 %token <i> PARSEOP_BYTECONST
170 %token <i> PARSEOP_CASE
171 %token <i> PARSEOP_CLOCKPHASE_FIRST
172 %token <i> PARSEOP_CLOCKPHASE_SECOND
173 %token <i> PARSEOP_CLOCKPOLARITY_HIGH
174 %token <i> PARSEOP_CLOCKPOLARITY_LOW
175 %token <i> PARSEOP_CONCATENATE
176 %token <i> PARSEOP_CONCATENATERESTEMPLATE
177 %token <i> PARSEOP_CONDREFOF
178 %token <i> PARSEOP_CONNECTION
179 %token <i> PARSEOP_CONTINUE
180 %token <i> PARSEOP_COPYOBJECT
181 %token <i> PARSEOP_CREATEBITFIELD
182 %token <i> PARSEOP_CREATEBYTEFIELD
183 %token <i> PARSEOP_CREATEDWORDFIELD
184 %token <i> PARSEOP_CREATEFIELD
185 %token <i> PARSEOP_CREATEQWORDFIELD
186 %token <i> PARSEOP_CREATEWORDFIELD
187 %token <i> PARSEOP_DATABUFFER
188 %token <i> PARSEOP_DATATABLEREGION
189 %token <i> PARSEOP_DEBUG
190 %token <i> PARSEOP_DECODETYPE_POS
191 %token <i> PARSEOP_DECODETYPE_SUB
192 %token <i> PARSEOP_DECREMENT

new/usr/src/common/acpica/compiler/aslcompiler.y 4

193 %token <i> PARSEOP_DEFAULT
194 %token <i> PARSEOP_DEFAULT_ARG
195 %token <i> PARSEOP_DEFINITIONBLOCK
196 %token <i> PARSEOP_DEREFOF
197 %token <i> PARSEOP_DEVICE
198 %token <i> PARSEOP_DEVICEPOLARITY_HIGH
199 %token <i> PARSEOP_DEVICEPOLARITY_LOW
200 %token <i> PARSEOP_DIVIDE
201 %token <i> PARSEOP_DMA
202 %token <i> PARSEOP_DMATYPE_A
203 %token <i> PARSEOP_DMATYPE_COMPATIBILITY
204 %token <i> PARSEOP_DMATYPE_B
205 %token <i> PARSEOP_DMATYPE_F
206 %token <i> PARSEOP_DWORDCONST
207 %token <i> PARSEOP_DWORDIO
208 %token <i> PARSEOP_DWORDMEMORY
209 %token <i> PARSEOP_DWORDSPACE
210 %token <i> PARSEOP_EISAID
211 %token <i> PARSEOP_ELSE
212 %token <i> PARSEOP_ELSEIF
213 %token <i> PARSEOP_ENDDEPENDENTFN
214 %token <i> PARSEOP_ENDIAN_BIG
215 %token <i> PARSEOP_ENDIAN_LITTLE
216 %token <i> PARSEOP_ENDTAG
217 %token <i> PARSEOP_ERRORNODE
218 %token <i> PARSEOP_EVENT
219 %token <i> PARSEOP_EXTENDEDIO
220 %token <i> PARSEOP_EXTENDEDMEMORY
221 %token <i> PARSEOP_EXTENDEDSPACE
222 %token <i> PARSEOP_EXTERNAL
223 %token <i> PARSEOP_FATAL
224 %token <i> PARSEOP_FIELD
225 %token <i> PARSEOP_FINDSETLEFTBIT
226 %token <i> PARSEOP_FINDSETRIGHTBIT
227 %token <i> PARSEOP_FIXEDDMA
228 %token <i> PARSEOP_FIXEDIO
229 %token <i> PARSEOP_FLOWCONTROL_HW
230 %token <i> PARSEOP_FLOWCONTROL_NONE
231 %token <i> PARSEOP_FLOWCONTROL_SW
232 %token <i> PARSEOP_FROMBCD
233 %token <i> PARSEOP_FUNCTION
234 %token <i> PARSEOP_GPIO_INT
235 %token <i> PARSEOP_GPIO_IO
236 %token <i> PARSEOP_I2C_SERIALBUS
237 %token <i> PARSEOP_IF
238 %token <i> PARSEOP_INCLUDE
239 %token <i> PARSEOP_INCLUDE_END
240 %token <i> PARSEOP_INCREMENT
241 %token <i> PARSEOP_INDEX
242 %token <i> PARSEOP_INDEXFIELD
243 %token <i> PARSEOP_INTEGER
244 %token <i> PARSEOP_INTERRUPT
245 %token <i> PARSEOP_INTLEVEL_ACTIVEBOTH
246 %token <i> PARSEOP_INTLEVEL_ACTIVEHIGH
247 %token <i> PARSEOP_INTLEVEL_ACTIVELOW
248 %token <i> PARSEOP_INTTYPE_EDGE
249 %token <i> PARSEOP_INTTYPE_LEVEL
250 %token <i> PARSEOP_IO
251 %token <i> PARSEOP_IODECODETYPE_10
252 %token <i> PARSEOP_IODECODETYPE_16
253 %token <i> PARSEOP_IORESTRICT_IN
254 %token <i> PARSEOP_IORESTRICT_NONE
255 %token <i> PARSEOP_IORESTRICT_OUT
256 %token <i> PARSEOP_IORESTRICT_PRESERVE
257 %token <i> PARSEOP_IRQ
258 %token <i> PARSEOP_IRQNOFLAGS

new/usr/src/common/acpica/compiler/aslcompiler.y 5

259 %token <i> PARSEOP_LAND
260 %token <i> PARSEOP_LEQUAL
261 %token <i> PARSEOP_LGREATER
262 %token <i> PARSEOP_LGREATEREQUAL
263 %token <i> PARSEOP_LLESS
264 %token <i> PARSEOP_LLESSEQUAL
265 %token <i> PARSEOP_LNOT
266 %token <i> PARSEOP_LNOTEQUAL
267 %token <i> PARSEOP_LOAD
268 %token <i> PARSEOP_LOADTABLE
269 %token <i> PARSEOP_LOCAL0
270 %token <i> PARSEOP_LOCAL1
271 %token <i> PARSEOP_LOCAL2
272 %token <i> PARSEOP_LOCAL3
273 %token <i> PARSEOP_LOCAL4
274 %token <i> PARSEOP_LOCAL5
275 %token <i> PARSEOP_LOCAL6
276 %token <i> PARSEOP_LOCAL7
277 %token <i> PARSEOP_LOCKRULE_LOCK
278 %token <i> PARSEOP_LOCKRULE_NOLOCK
279 %token <i> PARSEOP_LOR
280 %token <i> PARSEOP_MATCH
281 %token <i> PARSEOP_MATCHTYPE_MEQ
282 %token <i> PARSEOP_MATCHTYPE_MGE
283 %token <i> PARSEOP_MATCHTYPE_MGT
284 %token <i> PARSEOP_MATCHTYPE_MLE
285 %token <i> PARSEOP_MATCHTYPE_MLT
286 %token <i> PARSEOP_MATCHTYPE_MTR
287 %token <i> PARSEOP_MAXTYPE_FIXED
288 %token <i> PARSEOP_MAXTYPE_NOTFIXED
289 %token <i> PARSEOP_MEMORY24
290 %token <i> PARSEOP_MEMORY32
291 %token <i> PARSEOP_MEMORY32FIXED
292 %token <i> PARSEOP_MEMTYPE_CACHEABLE
293 %token <i> PARSEOP_MEMTYPE_NONCACHEABLE
294 %token <i> PARSEOP_MEMTYPE_PREFETCHABLE
295 %token <i> PARSEOP_MEMTYPE_WRITECOMBINING
296 %token <i> PARSEOP_METHOD
297 %token <i> PARSEOP_METHODCALL
298 %token <i> PARSEOP_MID
299 %token <i> PARSEOP_MINTYPE_FIXED
300 %token <i> PARSEOP_MINTYPE_NOTFIXED
301 %token <i> PARSEOP_MOD
302 %token <i> PARSEOP_MULTIPLY
303 %token <i> PARSEOP_MUTEX
304 %token <i> PARSEOP_NAME
305 %token <s> PARSEOP_NAMESEG
306 %token <s> PARSEOP_NAMESTRING
307 %token <i> PARSEOP_NAND
308 %token <i> PARSEOP_NOOP
309 %token <i> PARSEOP_NOR
310 %token <i> PARSEOP_NOT
311 %token <i> PARSEOP_NOTIFY
312 %token <i> PARSEOP_OBJECTTYPE
313 %token <i> PARSEOP_OBJECTTYPE_BFF
314 %token <i> PARSEOP_OBJECTTYPE_BUF
315 %token <i> PARSEOP_OBJECTTYPE_DDB
316 %token <i> PARSEOP_OBJECTTYPE_DEV
317 %token <i> PARSEOP_OBJECTTYPE_EVT
318 %token <i> PARSEOP_OBJECTTYPE_FLD
319 %token <i> PARSEOP_OBJECTTYPE_INT
320 %token <i> PARSEOP_OBJECTTYPE_MTH
321 %token <i> PARSEOP_OBJECTTYPE_MTX
322 %token <i> PARSEOP_OBJECTTYPE_OPR
323 %token <i> PARSEOP_OBJECTTYPE_PKG
324 %token <i> PARSEOP_OBJECTTYPE_POW

new/usr/src/common/acpica/compiler/aslcompiler.y 6

325 %token <i> PARSEOP_OBJECTTYPE_PRO
326 %token <i> PARSEOP_OBJECTTYPE_STR
327 %token <i> PARSEOP_OBJECTTYPE_THZ
328 %token <i> PARSEOP_OBJECTTYPE_UNK
329 %token <i> PARSEOP_OFFSET
330 %token <i> PARSEOP_ONE
331 %token <i> PARSEOP_ONES
332 %token <i> PARSEOP_OPERATIONREGION
333 %token <i> PARSEOP_OR
334 %token <i> PARSEOP_PACKAGE
335 %token <i> PARSEOP_PACKAGE_LENGTH
336 %token <i> PARSEOP_PARITYTYPE_EVEN
337 %token <i> PARSEOP_PARITYTYPE_MARK
338 %token <i> PARSEOP_PARITYTYPE_NONE
339 %token <i> PARSEOP_PARITYTYPE_ODD
340 %token <i> PARSEOP_PARITYTYPE_SPACE
341 %token <i> PARSEOP_PIN_NOPULL
342 %token <i> PARSEOP_PIN_PULLDEFAULT
343 %token <i> PARSEOP_PIN_PULLDOWN
344 %token <i> PARSEOP_PIN_PULLUP
345 %token <i> PARSEOP_POWERRESOURCE
346 %token <i> PARSEOP_PROCESSOR
347 %token <i> PARSEOP_QWORDCONST
348 %token <i> PARSEOP_QWORDIO
349 %token <i> PARSEOP_QWORDMEMORY
350 %token <i> PARSEOP_QWORDSPACE
351 %token <i> PARSEOP_RANGETYPE_ENTIRE
352 %token <i> PARSEOP_RANGETYPE_ISAONLY
353 %token <i> PARSEOP_RANGETYPE_NONISAONLY
354 %token <i> PARSEOP_RAW_DATA
355 %token <i> PARSEOP_READWRITETYPE_BOTH
356 %token <i> PARSEOP_READWRITETYPE_READONLY
357 %token <i> PARSEOP_REFOF
358 %token <i> PARSEOP_REGIONSPACE_CMOS
359 %token <i> PARSEOP_REGIONSPACE_EC
360 %token <i> PARSEOP_REGIONSPACE_FFIXEDHW
361 %token <i> PARSEOP_REGIONSPACE_GPIO
362 %token <i> PARSEOP_REGIONSPACE_GSBUS
363 %token <i> PARSEOP_REGIONSPACE_IO
364 %token <i> PARSEOP_REGIONSPACE_IPMI
365 %token <i> PARSEOP_REGIONSPACE_MEM
366 %token <i> PARSEOP_REGIONSPACE_PCC
367 %token <i> PARSEOP_REGIONSPACE_PCI
368 %token <i> PARSEOP_REGIONSPACE_PCIBAR
369 %token <i> PARSEOP_REGIONSPACE_SMBUS
370 %token <i> PARSEOP_REGISTER
371 %token <i> PARSEOP_RELEASE
372 %token <i> PARSEOP_RESERVED_BYTES
373 %token <i> PARSEOP_RESET
374 %token <i> PARSEOP_RESOURCETEMPLATE
375 %token <i> PARSEOP_RESOURCETYPE_CONSUMER
376 %token <i> PARSEOP_RESOURCETYPE_PRODUCER
377 %token <i> PARSEOP_RETURN
378 %token <i> PARSEOP_REVISION
379 %token <i> PARSEOP_SCOPE
380 %token <i> PARSEOP_SERIALIZERULE_NOTSERIAL
381 %token <i> PARSEOP_SERIALIZERULE_SERIAL
382 %token <i> PARSEOP_SHARETYPE_EXCLUSIVE
383 %token <i> PARSEOP_SHARETYPE_EXCLUSIVEWAKE
384 %token <i> PARSEOP_SHARETYPE_SHARED
385 %token <i> PARSEOP_SHARETYPE_SHAREDWAKE
386 %token <i> PARSEOP_SHIFTLEFT
387 %token <i> PARSEOP_SHIFTRIGHT
388 %token <i> PARSEOP_SIGNAL
389 %token <i> PARSEOP_SIZEOF
390 %token <i> PARSEOP_SLAVEMODE_CONTROLLERINIT

new/usr/src/common/acpica/compiler/aslcompiler.y 7

391 %token <i> PARSEOP_SLAVEMODE_DEVICEINIT
392 %token <i> PARSEOP_SLEEP
393 %token <i> PARSEOP_SPI_SERIALBUS
394 %token <i> PARSEOP_STALL
395 %token <i> PARSEOP_STARTDEPENDENTFN
396 %token <i> PARSEOP_STARTDEPENDENTFN_NOPRI
397 %token <i> PARSEOP_STOPBITS_ONE
398 %token <i> PARSEOP_STOPBITS_ONEPLUSHALF
399 %token <i> PARSEOP_STOPBITS_TWO
400 %token <i> PARSEOP_STOPBITS_ZERO
401 %token <i> PARSEOP_STORE
402 %token <s> PARSEOP_STRING_LITERAL
403 %token <i> PARSEOP_SUBTRACT
404 %token <i> PARSEOP_SWITCH
405 %token <i> PARSEOP_THERMALZONE
406 %token <i> PARSEOP_TIMER
407 %token <i> PARSEOP_TOBCD
408 %token <i> PARSEOP_TOBUFFER
409 %token <i> PARSEOP_TODECIMALSTRING
410 %token <i> PARSEOP_TOHEXSTRING
411 %token <i> PARSEOP_TOINTEGER
412 %token <i> PARSEOP_TOSTRING
413 %token <i> PARSEOP_TOUUID
414 %token <i> PARSEOP_TRANSLATIONTYPE_DENSE
415 %token <i> PARSEOP_TRANSLATIONTYPE_SPARSE
416 %token <i> PARSEOP_TYPE_STATIC
417 %token <i> PARSEOP_TYPE_TRANSLATION
418 %token <i> PARSEOP_UART_SERIALBUS
419 %token <i> PARSEOP_UNICODE
420 %token <i> PARSEOP_UNLOAD
421 %token <i> PARSEOP_UPDATERULE_ONES
422 %token <i> PARSEOP_UPDATERULE_PRESERVE
423 %token <i> PARSEOP_UPDATERULE_ZEROS
424 %token <i> PARSEOP_VAR_PACKAGE
425 %token <i> PARSEOP_VENDORLONG
426 %token <i> PARSEOP_VENDORSHORT
427 %token <i> PARSEOP_WAIT
428 %token <i> PARSEOP_WHILE
429 %token <i> PARSEOP_WIREMODE_FOUR
430 %token <i> PARSEOP_WIREMODE_THREE
431 %token <i> PARSEOP_WORDBUSNUMBER
432 %token <i> PARSEOP_WORDCONST
433 %token <i> PARSEOP_WORDIO
434 %token <i> PARSEOP_WORDSPACE
435 %token <i> PARSEOP_XFERSIZE_8
436 %token <i> PARSEOP_XFERSIZE_16
437 %token <i> PARSEOP_XFERSIZE_32
438 %token <i> PARSEOP_XFERSIZE_64
439 %token <i> PARSEOP_XFERSIZE_128
440 %token <i> PARSEOP_XFERSIZE_256
441 %token <i> PARSEOP_XFERTYPE_8
442 %token <i> PARSEOP_XFERTYPE_8_16
443 %token <i> PARSEOP_XFERTYPE_16
444 %token <i> PARSEOP_XOR
445 %token <i> PARSEOP_ZERO

447 /*
448 * Special functions. These should probably stay at the end of this
449 * table.
450 */
451 %token <i> PARSEOP___DATE__
452 %token <i> PARSEOP___FILE__
453 %token <i> PARSEOP___LINE__
454 %token <i> PARSEOP___PATH__

new/usr/src/common/acpica/compiler/aslcompiler.y 8

457 /**
458 *
459 * Production names
460 *
461 ***/

463 %type <n> ArgList
464 %type <n> ASLCode
465 %type <n> BufferData
466 %type <n> BufferTermData
467 %type <n> CompilerDirective
468 %type <n> DataObject
469 %type <n> DefinitionBlockTerm
470 %type <n> IntegerData
471 %type <n> NamedObject
472 %type <n> NameSpaceModifier
473 %type <n> Object
474 %type <n> ObjectList
475 %type <n> PackageData
476 %type <n> ParameterTypePackage
477 %type <n> ParameterTypePackageList
478 %type <n> ParameterTypesPackage
479 %type <n> ParameterTypesPackageList
480 %type <n> RequiredTarget
481 %type <n> SimpleTarget
482 %type <n> StringData
483 %type <n> Target
484 %type <n> Term
485 %type <n> TermArg
486 %type <n> TermList
487 %type <n> UserTerm

489 /* Type4Opcode is obsolete */

491 %type <n> Type1Opcode
492 %type <n> Type2BufferOpcode
493 %type <n> Type2BufferOrStringOpcode
494 %type <n> Type2IntegerOpcode
495 %type <n> Type2Opcode
496 %type <n> Type2StringOpcode
497 %type <n> Type3Opcode
498 %type <n> Type5Opcode
499 %type <n> Type6Opcode

501 %type <n> AccessAsTerm
502 %type <n> ExternalTerm
503 %type <n> FieldUnit
504 %type <n> FieldUnitEntry
505 %type <n> FieldUnitList
506 %type <n> IncludeTerm
507 %type <n> OffsetTerm
508 %type <n> OptionalAccessAttribTerm

510 /* Named Objects */

512 %type <n> BankFieldTerm
513 %type <n> CreateBitFieldTerm
514 %type <n> CreateByteFieldTerm
515 %type <n> CreateDWordFieldTerm
516 %type <n> CreateFieldTerm
517 %type <n> CreateQWordFieldTerm
518 %type <n> CreateWordFieldTerm
519 %type <n> DataRegionTerm
520 %type <n> DeviceTerm
521 %type <n> EventTerm
522 %type <n> FieldTerm

new/usr/src/common/acpica/compiler/aslcompiler.y 9

523 %type <n> FunctionTerm
524 %type <n> IndexFieldTerm
525 %type <n> MethodTerm
526 %type <n> MutexTerm
527 %type <n> OpRegionTerm
528 %type <n> OpRegionSpaceIdTerm
529 %type <n> PowerResTerm
530 %type <n> ProcessorTerm
531 %type <n> ThermalZoneTerm

533 /* Namespace modifiers */

535 %type <n> AliasTerm
536 %type <n> NameTerm
537 %type <n> ScopeTerm

539 /* Type 1 opcodes */

541 %type <n> BreakPointTerm
542 %type <n> BreakTerm
543 %type <n> CaseDefaultTermList
544 %type <n> CaseTerm
545 %type <n> ContinueTerm
546 %type <n> DefaultTerm
547 %type <n> ElseTerm
548 %type <n> FatalTerm
549 %type <n> IfElseTerm
550 %type <n> IfTerm
551 %type <n> LoadTerm
552 %type <n> NoOpTerm
553 %type <n> NotifyTerm
554 %type <n> ReleaseTerm
555 %type <n> ResetTerm
556 %type <n> ReturnTerm
557 %type <n> SignalTerm
558 %type <n> SleepTerm
559 %type <n> StallTerm
560 %type <n> SwitchTerm
561 %type <n> UnloadTerm
562 %type <n> WhileTerm
563 /* %type <n> CaseTermList */

565 /* Type 2 opcodes */

567 %type <n> AcquireTerm
568 %type <n> AddTerm
569 %type <n> AndTerm
570 %type <n> ConcatResTerm
571 %type <n> ConcatTerm
572 %type <n> CondRefOfTerm
573 %type <n> CopyObjectTerm
574 %type <n> DecTerm
575 %type <n> DerefOfTerm
576 %type <n> DivideTerm
577 %type <n> FindSetLeftBitTerm
578 %type <n> FindSetRightBitTerm
579 %type <n> FromBCDTerm
580 %type <n> IncTerm
581 %type <n> IndexTerm
582 %type <n> LAndTerm
583 %type <n> LEqualTerm
584 %type <n> LGreaterEqualTerm
585 %type <n> LGreaterTerm
586 %type <n> LLessEqualTerm
587 %type <n> LLessTerm
588 %type <n> LNotEqualTerm

new/usr/src/common/acpica/compiler/aslcompiler.y 10

589 %type <n> LNotTerm
590 %type <n> LoadTableTerm
591 %type <n> LOrTerm
592 %type <n> MatchTerm
593 %type <n> MidTerm
594 %type <n> ModTerm
595 %type <n> MultiplyTerm
596 %type <n> NAndTerm
597 %type <n> NOrTerm
598 %type <n> NotTerm
599 %type <n> ObjectTypeTerm
600 %type <n> OrTerm
601 %type <n> RefOfTerm
602 %type <n> ShiftLeftTerm
603 %type <n> ShiftRightTerm
604 %type <n> SizeOfTerm
605 %type <n> StoreTerm
606 %type <n> SubtractTerm
607 %type <n> TimerTerm
608 %type <n> ToBCDTerm
609 %type <n> ToBufferTerm
610 %type <n> ToDecimalStringTerm
611 %type <n> ToHexStringTerm
612 %type <n> ToIntegerTerm
613 %type <n> ToStringTerm
614 %type <n> WaitTerm
615 %type <n> XOrTerm

617 /* Keywords */

619 %type <n> AccessAttribKeyword
620 %type <n> AccessTypeKeyword
621 %type <n> AddressingModeKeyword
622 %type <n> AddressKeyword
623 %type <n> AddressSpaceKeyword
624 %type <n> BitsPerByteKeyword
625 %type <n> ClockPhaseKeyword
626 %type <n> ClockPolarityKeyword
627 %type <n> DecodeKeyword
628 %type <n> DevicePolarityKeyword
629 %type <n> DMATypeKeyword
630 %type <n> EndianKeyword
631 %type <n> FlowControlKeyword
632 %type <n> InterruptLevel
633 %type <n> InterruptTypeKeyword
634 %type <n> IODecodeKeyword
635 %type <n> IoRestrictionKeyword
636 %type <n> LockRuleKeyword
637 %type <n> MatchOpKeyword
638 %type <n> MaxKeyword
639 %type <n> MemTypeKeyword
640 %type <n> MinKeyword
641 %type <n> ObjectTypeKeyword
642 %type <n> OptionalBusMasterKeyword
643 %type <n> OptionalReadWriteKeyword
644 %type <n> ParityTypeKeyword
645 %type <n> PinConfigByte
646 %type <n> PinConfigKeyword
647 %type <n> RangeTypeKeyword
648 %type <n> RegionSpaceKeyword
649 %type <n> ResourceTypeKeyword
650 %type <n> SerializeRuleKeyword
651 %type <n> ShareTypeKeyword
652 %type <n> SlaveModeKeyword
653 %type <n> StopBitsKeyword
654 %type <n> TranslationKeyword

new/usr/src/common/acpica/compiler/aslcompiler.y 11

655 %type <n> TypeKeyword
656 %type <n> UpdateRuleKeyword
657 %type <n> WireModeKeyword
658 %type <n> XferSizeKeyword
659 %type <n> XferTypeKeyword

661 /* Types */

663 %type <n> SuperName
664 %type <n> ObjectTypeName
665 %type <n> ArgTerm
666 %type <n> LocalTerm
667 %type <n> DebugTerm

669 %type <n> Integer
670 %type <n> ByteConst
671 %type <n> WordConst
672 %type <n> DWordConst
673 %type <n> QWordConst
674 %type <n> String

676 %type <n> ConstTerm
677 %type <n> ConstExprTerm
678 %type <n> ByteConstExpr
679 %type <n> WordConstExpr
680 %type <n> DWordConstExpr
681 %type <n> QWordConstExpr

683 %type <n> DWordList
684 %type <n> BufferTerm
685 %type <n> ByteList

687 %type <n> PackageElement
688 %type <n> PackageList
689 %type <n> PackageTerm
690 %type <n> VarPackageLengthTerm

692 /* Macros */

694 %type <n> EISAIDTerm
695 %type <n> ResourceMacroList
696 %type <n> ResourceMacroTerm
697 %type <n> ResourceTemplateTerm
698 %type <n> ToUUIDTerm
699 %type <n> UnicodeTerm

701 /* Resource Descriptors */

703 %type <n> ConnectionTerm
704 %type <n> DataBufferTerm
705 %type <n> DMATerm
706 %type <n> DWordIOTerm
707 %type <n> DWordMemoryTerm
708 %type <n> DWordSpaceTerm
709 %type <n> EndDependentFnTerm
710 %type <n> ExtendedIOTerm
711 %type <n> ExtendedMemoryTerm
712 %type <n> ExtendedSpaceTerm
713 %type <n> FixedDmaTerm
714 %type <n> FixedIOTerm
715 %type <n> GpioIntTerm
716 %type <n> GpioIoTerm
717 %type <n> I2cSerialBusTerm
718 %type <n> InterruptTerm
719 %type <n> IOTerm
720 %type <n> IRQNoFlagsTerm

new/usr/src/common/acpica/compiler/aslcompiler.y 12

721 %type <n> IRQTerm
722 %type <n> Memory24Term
723 %type <n> Memory32FixedTerm
724 %type <n> Memory32Term
725 %type <n> NameSeg
726 %type <n> NameString
727 %type <n> QWordIOTerm
728 %type <n> QWordMemoryTerm
729 %type <n> QWordSpaceTerm
730 %type <n> RegisterTerm
731 %type <n> SpiSerialBusTerm
732 %type <n> StartDependentFnNoPriTerm
733 %type <n> StartDependentFnTerm
734 %type <n> UartSerialBusTerm
735 %type <n> VendorLongTerm
736 %type <n> VendorShortTerm
737 %type <n> WordBusNumberTerm
738 %type <n> WordIOTerm
739 %type <n> WordSpaceTerm

741 /* Local types that help construct the AML, not in ACPI spec */

743 %type <n> AmlPackageLengthTerm
744 %type <n> IncludeEndTerm
745 %type <n> NameStringItem
746 %type <n> TermArgItem

748 %type <n> OptionalAccessSize
749 %type <n> OptionalAddressingMode
750 %type <n> OptionalAddressRange
751 %type <n> OptionalBitsPerByte
752 %type <n> OptionalBuffer_Last
753 %type <n> OptionalByteConstExpr
754 %type <n> OptionalCount
755 %type <n> OptionalDecodeType
756 %type <n> OptionalDevicePolarity
757 %type <n> OptionalDWordConstExpr
758 %type <n> OptionalEndian
759 %type <n> OptionalFlowControl
760 %type <n> OptionalIoRestriction
761 %type <n> OptionalListString
762 %type <n> OptionalMaxType
763 %type <n> OptionalMemType
764 %type <n> OptionalMinType
765 %type <n> OptionalNameString
766 %type <n> OptionalNameString_First
767 %type <n> OptionalNameString_Last
768 %type <n> OptionalObjectTypeKeyword
769 %type <n> OptionalParameterTypePackage
770 %type <n> OptionalParameterTypesPackage
771 %type <n> OptionalParityType
772 %type <n> OptionalQWordConstExpr
773 %type <n> OptionalRangeType
774 %type <n> OptionalReference
775 %type <n> OptionalResourceType
776 %type <n> OptionalResourceType_First
777 %type <n> OptionalReturnArg
778 %type <n> OptionalSerializeRuleKeyword
779 %type <n> OptionalShareType
780 %type <n> OptionalShareType_First
781 %type <n> OptionalSlaveMode
782 %type <n> OptionalStopBits
783 %type <n> OptionalStringData
784 %type <n> OptionalTermArg
785 %type <n> OptionalTranslationType_Last
786 %type <n> OptionalType

new/usr/src/common/acpica/compiler/aslcompiler.y 13

787 %type <n> OptionalType_Last
788 %type <n> OptionalWireMode
789 %type <n> OptionalWordConst
790 %type <n> OptionalWordConstExpr
791 %type <n> OptionalXferSize

793 %%
794 /***
795 *
796 * Production rules start here
797 *
798 **/

800 /*
801 * ASL Names
802 */

805 /*
806 * Root rule. Allow multiple #line directives before the definition block
807 * to handle output from preprocessors
808 */
809 ASLCode
810 : DefinitionBlockTerm
811 | error {YYABORT; $$ = NULL;}
812 ;

814 /*
815 * Blocks, Data, and Opcodes
816 */

818 /*
819 * Note concerning support for "module-level code".
820 *
821 * ACPI 1.0 allowed Type1 and Type2 executable opcodes outside of control
822 * methods (the so-called module-level code.) This support was explicitly
823 * removed in ACPI 2.0, but this type of code continues to be created by
824 * BIOS vendors. In order to support the disassembly and recompilation of
825 * such code (and the porting of ASL code to iASL), iASL supports this
826 * code in violation of the current ACPI specification.
827 *
828 * The grammar change to support module-level code is to revert the
829 * {ObjectList} portion of the DefinitionBlockTerm in ACPI 2.0 to the
830 * original use of {TermList} instead (see below.) This allows the use
831 * of Type1 and Type2 opcodes at module level.
832 */
833 DefinitionBlockTerm
834 : PARSEOP_DEFINITIONBLOCK ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_DEFINITIO
835 String ’,’
836 String ’,’
837 ByteConst ’,’
838 String ’,’
839 String ’,’
840 DWordConst
841 ’)’ {TrSetEndLineNumber ($<n>3);}
842 ’{’ TermList ’}’ {$$ = TrLinkChildren ($<n>3,7,$4,$6,$8,$10,$
843 ;

845 /* ACPI 3.0 -- allow semicolons between terms */

847 TermList
848 : {$$ = NULL;}
849 | TermList Term {$$ = TrLinkPeerNode (TrSetNodeFlags ($1, NO
850 | TermList Term ’;’ {$$ = TrLinkPeerNode (TrSetNodeFlags ($1, NO
851 | TermList ’;’ Term {$$ = TrLinkPeerNode (TrSetNodeFlags ($1, NO
852 | TermList ’;’ Term ’;’ {$$ = TrLinkPeerNode (TrSetNodeFlags ($1, NO

new/usr/src/common/acpica/compiler/aslcompiler.y 14

853 ;

855 Term
856 : Object {}
857 | Type1Opcode {}
858 | Type2Opcode {}
859 | Type2IntegerOpcode {}
860 | Type2StringOpcode {}
861 | Type2BufferOpcode {}
862 | Type2BufferOrStringOpcode {}
863 | error {$$ = AslDoError(); yyclearin;}
864 ;

866 CompilerDirective
867 : IncludeTerm {}
868 | ExternalTerm {}
869 ;

871 ObjectList
872 : {$$ = NULL;}
873 | ObjectList Object {$$ = TrLinkPeerNode ($1,$2);}
874 | error {$$ = AslDoError(); yyclearin;}
875 ;

877 Object
878 : CompilerDirective {}
879 | NamedObject {}
880 | NameSpaceModifier {}
881 ;

883 DataObject
884 : BufferData {}
885 | PackageData {}
886 | IntegerData {}
887 | StringData {}
888 ;

890 BufferData
891 : Type5Opcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_
892 | Type2BufferOrStringOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_
893 | Type2BufferOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_
894 | BufferTerm {}
895 ;

897 PackageData
898 : PackageTerm {}
899 ;

901 IntegerData
902 : Type2IntegerOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_
903 | Type3Opcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_
904 | Integer {}
905 | ConstTerm {}
906 ;

908 StringData
909 : Type2StringOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_
910 | String {}
911 ;

913 NamedObject
914 : BankFieldTerm {}
915 | CreateBitFieldTerm {}
916 | CreateByteFieldTerm {}
917 | CreateDWordFieldTerm {}
918 | CreateFieldTerm {}

new/usr/src/common/acpica/compiler/aslcompiler.y 15

919 | CreateQWordFieldTerm {}
920 | CreateWordFieldTerm {}
921 | DataRegionTerm {}
922 | DeviceTerm {}
923 | EventTerm {}
924 | FieldTerm {}
925 | FunctionTerm {}
926 | IndexFieldTerm {}
927 | MethodTerm {}
928 | MutexTerm {}
929 | OpRegionTerm {}
930 | PowerResTerm {}
931 | ProcessorTerm {}
932 | ThermalZoneTerm {}
933 ;

935 NameSpaceModifier
936 : AliasTerm {}
937 | NameTerm {}
938 | ScopeTerm {}
939 ;

941 UserTerm
942 : NameString ’(’ {TrUpdateNode (PARSEOP_METHODCALL, $1);}
943 ArgList ’)’ {$$ = TrLinkChildNode ($1,$4);}
944 ;

946 ArgList
947 : {$$ = NULL;}
948 | TermArg
949 | ArgList ’,’ /* Allows a trailing comma at list end */
950 | ArgList ’,’
951 TermArg {$$ = TrLinkPeerNode ($1,$3);}
952 ;

954 /*
955 Removed from TermArg due to reduce/reduce conflicts
956 | Type2IntegerOpcode {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);
957 | Type2StringOpcode {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);
958 | Type2BufferOpcode {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);
959 | Type2BufferOrStringOpcode {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);

961 */

963 TermArg
964 : Type2Opcode {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);
965 | DataObject {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);
966 | NameString {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);
967 | ArgTerm {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);
968 | LocalTerm {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);
969 ;

971 Target
972 : {$$ = TrSetNodeFlags (TrCreateLeafNode (PARS
973 | ’,’ {$$ = TrSetNodeFlags (TrCreateLeafNode (PARS
974 | ’,’ SuperName {$$ = TrSetNodeFlags ($2, NODE_IS_TARGET);}
975 ;

977 RequiredTarget
978 : ’,’ SuperName {$$ = TrSetNodeFlags ($2, NODE_IS_TARGET);}
979 ;

981 SimpleTarget
982 : NameString {}
983 | LocalTerm {}
984 | ArgTerm {}

new/usr/src/common/acpica/compiler/aslcompiler.y 16

985 ;

987 /* Rules for specifying the type of one method argument or return value */

989 ParameterTypePackage
990 : {$$ = NULL;}
991 | ObjectTypeKeyword {$$ = $1;}
992 | ParameterTypePackage ’,’
993 ObjectTypeKeyword {$$ = TrLinkPeerNodes (2,$1,$3);}
994 ;

996 ParameterTypePackageList
997 : {$$ = NULL;}
998 | ObjectTypeKeyword {$$ = $1;}
999 | ’{’ ParameterTypePackage ’}’ {$$ = $2;}

1000 ;

1002 OptionalParameterTypePackage
1003 : {$$ = TrCreateLeafNode (PARSEOP_DEFAULT_ARG)
1004 | ’,’ ParameterTypePackageList {$$ = TrLinkChildren (TrCreateLeafNode (PARS
1005 ;

1007 /* Rules for specifying the types for method arguments */

1009 ParameterTypesPackage
1010 : ParameterTypePackageList {$$ = $1;}
1011 | ParameterTypesPackage ’,’
1012 ParameterTypePackageList {$$ = TrLinkPeerNodes (2,$1,$3);}
1013 ;

1015 ParameterTypesPackageList
1016 : {$$ = NULL;}
1017 | ObjectTypeKeyword {$$ = $1;}
1018 | ’{’ ParameterTypesPackage ’}’ {$$ = $2;}
1019 ;

1021 OptionalParameterTypesPackage
1022 : {$$ = TrCreateLeafNode (PARSEOP_DEFAULT_ARG)
1023 | ’,’ ParameterTypesPackageList {$$ = TrLinkChildren (TrCreateLeafNode (PARS
1024 ;

1027 /* Opcode types */

1029 Type1Opcode
1030 : BreakTerm {}
1031 | BreakPointTerm {}
1032 | ContinueTerm {}
1033 | FatalTerm {}
1034 | IfElseTerm {}
1035 | LoadTerm {}
1036 | NoOpTerm {}
1037 | NotifyTerm {}
1038 | ReleaseTerm {}
1039 | ResetTerm {}
1040 | ReturnTerm {}
1041 | SignalTerm {}
1042 | SleepTerm {}
1043 | StallTerm {}
1044 | SwitchTerm {}
1045 | UnloadTerm {}
1046 | WhileTerm {}
1047 ;

1049 Type2Opcode
1050 : AcquireTerm {}

new/usr/src/common/acpica/compiler/aslcompiler.y 17

1051 | CondRefOfTerm {}
1052 | CopyObjectTerm {}
1053 | DerefOfTerm {}
1054 | ObjectTypeTerm {}
1055 | RefOfTerm {}
1056 | SizeOfTerm {}
1057 | StoreTerm {}
1058 | TimerTerm {}
1059 | WaitTerm {}
1060 | UserTerm {}
1061 ;

1063 /*
1064 * Type 3/4/5 opcodes
1065 */

1067 Type2IntegerOpcode /* "Type3" opcodes */
1068 : AddTerm {}
1069 | AndTerm {}
1070 | DecTerm {}
1071 | DivideTerm {}
1072 | FindSetLeftBitTerm {}
1073 | FindSetRightBitTerm {}
1074 | FromBCDTerm {}
1075 | IncTerm {}
1076 | IndexTerm {}
1077 | LAndTerm {}
1078 | LEqualTerm {}
1079 | LGreaterTerm {}
1080 | LGreaterEqualTerm {}
1081 | LLessTerm {}
1082 | LLessEqualTerm {}
1083 | LNotTerm {}
1084 | LNotEqualTerm {}
1085 | LoadTableTerm {}
1086 | LOrTerm {}
1087 | MatchTerm {}
1088 | ModTerm {}
1089 | MultiplyTerm {}
1090 | NAndTerm {}
1091 | NOrTerm {}
1092 | NotTerm {}
1093 | OrTerm {}
1094 | ShiftLeftTerm {}
1095 | ShiftRightTerm {}
1096 | SubtractTerm {}
1097 | ToBCDTerm {}
1098 | ToIntegerTerm {}
1099 | XOrTerm {}
1100 ;

1102 Type2StringOpcode /* "Type4" Opcodes */
1103 : ToDecimalStringTerm {}
1104 | ToHexStringTerm {}
1105 | ToStringTerm {}
1106 ;

1108 Type2BufferOpcode /* "Type5" Opcodes */
1109 : ToBufferTerm {}
1110 | ConcatResTerm {}
1111 ;

1113 Type2BufferOrStringOpcode
1114 : ConcatTerm {}
1115 | MidTerm {}
1116 ;

new/usr/src/common/acpica/compiler/aslcompiler.y 18

1118 /*
1119 * A type 3 opcode evaluates to an Integer and cannot have a destination operand
1120 */

1122 Type3Opcode
1123 : EISAIDTerm {}
1124 ;

1126 /* Obsolete
1127 Type4Opcode
1128 : ConcatTerm {}
1129 | ToDecimalStringTerm {}
1130 | ToHexStringTerm {}
1131 | MidTerm {}
1132 | ToStringTerm {}
1133 ;
1134 */

1137 Type5Opcode
1138 : ResourceTemplateTerm {}
1139 | UnicodeTerm {}
1140 | ToUUIDTerm {}
1141 ;

1143 Type6Opcode
1144 : RefOfTerm {}
1145 | DerefOfTerm {}
1146 | IndexTerm {}
1147 | UserTerm {}
1148 ;

1150 IncludeTerm
1151 : PARSEOP_INCLUDE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_INCLUDE);
1152 String ’)’ {TrLinkChildren ($<n>3,1,$4);FlOpenIncludeFi
1153 TermList
1154 IncludeEndTerm {$$ = TrLinkPeerNodes (3,$<n>3,$7,$8);}
1155 ;

1157 IncludeEndTerm
1158 : PARSEOP_INCLUDE_END {$$ = TrCreateLeafNode (PARSEOP_INCLUDE_END)
1159 ;

1161 ExternalTerm
1162 : PARSEOP_EXTERNAL ’(’
1163 NameString
1164 OptionalObjectTypeKeyword
1165 OptionalParameterTypePackage
1166 OptionalParameterTypesPackage
1167 ’)’ {$$ = TrCreateNode (PARSEOP_EXTERNAL,4,$3,$4
1168 | PARSEOP_EXTERNAL ’(’
1169 error ’)’ {$$ = AslDoError(); yyclearin;}
1170 ;

1173 /******* Named Objects ***/

1176 BankFieldTerm
1177 : PARSEOP_BANKFIELD ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_BANKFIELD
1178 NameString
1179 NameStringItem
1180 TermArgItem
1181 ’,’ AccessTypeKeyword
1182 ’,’ LockRuleKeyword

new/usr/src/common/acpica/compiler/aslcompiler.y 19

1183 ’,’ UpdateRuleKeyword
1184 ’)’ ’{’
1185 FieldUnitList ’}’ {$$ = TrLinkChildren ($<n>3,7,$4,$5,$6,$8,$1
1186 | PARSEOP_BANKFIELD ’(’
1187 error ’)’ ’{’ error ’}’ {$$ = AslDoError(); yyclearin;}
1188 ;

1190 FieldUnitList
1191 : {$$ = NULL;}
1192 | FieldUnit
1193 | FieldUnitList ’,’ /* Allows a trailing comma at list end */
1194 | FieldUnitList ’,’
1195 FieldUnit {$$ = TrLinkPeerNode ($1,$3);}
1196 ;

1198 FieldUnit
1199 : FieldUnitEntry {}
1200 | OffsetTerm {}
1201 | AccessAsTerm {}
1202 | ConnectionTerm {}
1203 ;

1205 FieldUnitEntry
1206 : ’,’ AmlPackageLengthTerm {$$ = TrCreateNode (PARSEOP_RESERVED_BYTES,1
1207 | NameSeg ’,’
1208 AmlPackageLengthTerm {$$ = TrLinkChildNode ($1,$3);}
1209 ;

1211 OffsetTerm
1212 : PARSEOP_OFFSET ’(’
1213 AmlPackageLengthTerm
1214 ’)’ {$$ = TrCreateNode (PARSEOP_OFFSET,1,$3);}
1215 | PARSEOP_OFFSET ’(’
1216 error ’)’ {$$ = AslDoError(); yyclearin;}
1217 ;

1219 AccessAsTerm
1220 : PARSEOP_ACCESSAS ’(’
1221 AccessTypeKeyword
1222 OptionalAccessAttribTerm
1223 ’)’ {$$ = TrCreateNode (PARSEOP_ACCESSAS,2,$3,$4
1224 | PARSEOP_ACCESSAS ’(’
1225 error ’)’ {$$ = AslDoError(); yyclearin;}
1226 ;

1228 ConnectionTerm
1229 : PARSEOP_CONNECTION ’(’
1230 NameString
1231 ’)’ {$$ = TrCreateNode (PARSEOP_CONNECTION,1,$3)
1232 | PARSEOP_CONNECTION ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_CONNECTIO
1233 ResourceMacroTerm
1234 ’)’ {$$ = TrLinkChildren ($<n>3, 1,
1235 TrLinkChildren (TrCreateLeafNode (PA
1236 TrCreateLeafNode (PARSEOP_DEFAUL
1237 TrCreateLeafNode (PARSEOP_DEFAUL
1238 $4));}
1239 | PARSEOP_CONNECTION ’(’
1240 error ’)’ {$$ = AslDoError(); yyclearin;}
1241 ;

1243 CreateBitFieldTerm
1244 : PARSEOP_CREATEBITFIELD ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_CREATEBIT
1245 TermArg
1246 TermArgItem
1247 NameStringItem
1248 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,TrSetNod

new/usr/src/common/acpica/compiler/aslcompiler.y 20

1249 | PARSEOP_CREATEBITFIELD ’(’
1250 error ’)’ {$$ = AslDoError(); yyclearin;}
1251 ;

1253 CreateByteFieldTerm
1254 : PARSEOP_CREATEBYTEFIELD ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_CREATEBYT
1255 TermArg
1256 TermArgItem
1257 NameStringItem
1258 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,TrSetNod
1259 | PARSEOP_CREATEBYTEFIELD ’(’
1260 error ’)’ {$$ = AslDoError(); yyclearin;}
1261 ;

1263 CreateDWordFieldTerm
1264 : PARSEOP_CREATEDWORDFIELD ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_CREATEDWO
1265 TermArg
1266 TermArgItem
1267 NameStringItem
1268 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,TrSetNod
1269 | PARSEOP_CREATEDWORDFIELD ’(’
1270 error ’)’ {$$ = AslDoError(); yyclearin;}
1271 ;

1273 CreateFieldTerm
1274 : PARSEOP_CREATEFIELD ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_CREATEFIE
1275 TermArg
1276 TermArgItem
1277 TermArgItem
1278 NameStringItem
1279 ’)’ {$$ = TrLinkChildren ($<n>3,4,$4,$5,$6,TrSet
1280 | PARSEOP_CREATEFIELD ’(’
1281 error ’)’ {$$ = AslDoError(); yyclearin;}
1282 ;

1284 CreateQWordFieldTerm
1285 : PARSEOP_CREATEQWORDFIELD ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_CREATEQWO
1286 TermArg
1287 TermArgItem
1288 NameStringItem
1289 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,TrSetNod
1290 | PARSEOP_CREATEQWORDFIELD ’(’
1291 error ’)’ {$$ = AslDoError(); yyclearin;}
1292 ;

1294 CreateWordFieldTerm
1295 : PARSEOP_CREATEWORDFIELD ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_CREATEWOR
1296 TermArg
1297 TermArgItem
1298 NameStringItem
1299 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,TrSetNod
1300 | PARSEOP_CREATEWORDFIELD ’(’
1301 error ’)’ {$$ = AslDoError(); yyclearin;}
1302 ;

1304 DataRegionTerm
1305 : PARSEOP_DATATABLEREGION ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_DATATABLE
1306 NameString
1307 TermArgItem
1308 TermArgItem
1309 TermArgItem
1310 ’)’ {$$ = TrLinkChildren ($<n>3,4,TrSetNodeFlags
1311 | PARSEOP_DATATABLEREGION ’(’
1312 error ’)’ {$$ = AslDoError(); yyclearin;}
1313 ;

new/usr/src/common/acpica/compiler/aslcompiler.y 21

1315 DeviceTerm
1316 : PARSEOP_DEVICE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_DEVICE);}
1317 NameString
1318 ’)’ ’{’
1319 ObjectList ’}’ {$$ = TrLinkChildren ($<n>3,2,TrSetNodeFlags
1320 | PARSEOP_DEVICE ’(’
1321 error ’)’ {$$ = AslDoError(); yyclearin;}
1322 ;

1324 EventTerm
1325 : PARSEOP_EVENT ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_EVENT);}
1326 NameString
1327 ’)’ {$$ = TrLinkChildren ($<n>3,1,TrSetNodeFlags
1328 | PARSEOP_EVENT ’(’
1329 error ’)’ {$$ = AslDoError(); yyclearin;}
1330 ;

1332 FieldTerm
1333 : PARSEOP_FIELD ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_FIELD);}
1334 NameString
1335 ’,’ AccessTypeKeyword
1336 ’,’ LockRuleKeyword
1337 ’,’ UpdateRuleKeyword
1338 ’)’ ’{’
1339 FieldUnitList ’}’ {$$ = TrLinkChildren ($<n>3,5,$4,$6,$8,$10,$
1340 | PARSEOP_FIELD ’(’
1341 error ’)’ ’{’ error ’}’ {$$ = AslDoError(); yyclearin;}
1342 ;

1344 FunctionTerm
1345 : PARSEOP_FUNCTION ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_METHOD);}
1346 NameString
1347 OptionalParameterTypePackage
1348 OptionalParameterTypesPackage
1349 ’)’ ’{’
1350 TermList ’}’ {$$ = TrLinkChildren ($<n>3,7,TrSetNodeFlags
1351 TrCreateValuedLeafNode (PARSEOP_BYTECONS
1352 TrCreateLeafNode (PARSEOP_SERIALIZERULE_
1353 TrCreateValuedLeafNode (PARSEOP_BYTECONS
1354 | PARSEOP_FUNCTION ’(’
1355 error ’)’ {$$ = AslDoError(); yyclearin;}
1356 ;

1358 IndexFieldTerm
1359 : PARSEOP_INDEXFIELD ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_INDEXFIEL
1360 NameString
1361 NameStringItem
1362 ’,’ AccessTypeKeyword
1363 ’,’ LockRuleKeyword
1364 ’,’ UpdateRuleKeyword
1365 ’)’ ’{’
1366 FieldUnitList ’}’ {$$ = TrLinkChildren ($<n>3,6,$4,$5,$7,$9,$1
1367 | PARSEOP_INDEXFIELD ’(’
1368 error ’)’ ’{’ error ’}’ {$$ = AslDoError(); yyclearin;}
1369 ;

1371 MethodTerm
1372 : PARSEOP_METHOD ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_METHOD);}
1373 NameString
1374 OptionalByteConstExpr {UtCheckIntegerRange ($5, 0, 7);}
1375 OptionalSerializeRuleKeyword
1376 OptionalByteConstExpr
1377 OptionalParameterTypePackage
1378 OptionalParameterTypesPackage
1379 ’)’ ’{’
1380 TermList ’}’ {$$ = TrLinkChildren ($<n>3,7,TrSetNodeFlags

new/usr/src/common/acpica/compiler/aslcompiler.y 22

1381 | PARSEOP_METHOD ’(’
1382 error ’)’ {$$ = AslDoError(); yyclearin;}
1383 ;

1385 MutexTerm
1386 : PARSEOP_MUTEX ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_MUTEX);}
1387 NameString
1388 ’,’ ByteConstExpr
1389 ’)’ {$$ = TrLinkChildren ($<n>3,2,TrSetNodeFlags
1390 | PARSEOP_MUTEX ’(’
1391 error ’)’ {$$ = AslDoError(); yyclearin;}
1392 ;

1394 OpRegionTerm
1395 : PARSEOP_OPERATIONREGION ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_OPERATION
1396 NameString
1397 ’,’ OpRegionSpaceIdTerm
1398 TermArgItem
1399 TermArgItem
1400 ’)’ {$$ = TrLinkChildren ($<n>3,4,TrSetNodeFlags
1401 | PARSEOP_OPERATIONREGION ’(’
1402 error ’)’ {$$ = AslDoError(); yyclearin;}
1403 ;

1405 OpRegionSpaceIdTerm
1406 : RegionSpaceKeyword {}
1407 | ByteConst {$$ = UtCheckIntegerRange ($1, 0x80, 0xFF);}
1408 ;

1410 PowerResTerm
1411 : PARSEOP_POWERRESOURCE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_POWERRESO
1412 NameString
1413 ’,’ ByteConstExpr
1414 ’,’ WordConstExpr
1415 ’)’ ’{’
1416 ObjectList ’}’ {$$ = TrLinkChildren ($<n>3,4,TrSetNodeFlags
1417 | PARSEOP_POWERRESOURCE ’(’
1418 error ’)’ {$$ = AslDoError(); yyclearin;}
1419 ;

1421 ProcessorTerm
1422 : PARSEOP_PROCESSOR ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_PROCESSOR
1423 NameString
1424 ’,’ ByteConstExpr
1425 OptionalDWordConstExpr
1426 OptionalByteConstExpr
1427 ’)’ ’{’
1428 ObjectList ’}’ {$$ = TrLinkChildren ($<n>3,5,TrSetNodeFlags
1429 | PARSEOP_PROCESSOR ’(’
1430 error ’)’ {$$ = AslDoError(); yyclearin;}
1431 ;

1433 ThermalZoneTerm
1434 : PARSEOP_THERMALZONE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_THERMALZO
1435 NameString
1436 ’)’ ’{’
1437 ObjectList ’}’ {$$ = TrLinkChildren ($<n>3,2,TrSetNodeFlags
1438 | PARSEOP_THERMALZONE ’(’
1439 error ’)’ {$$ = AslDoError(); yyclearin;}
1440 ;

1443 /******* Namespace modifiers ***/

1446 AliasTerm

new/usr/src/common/acpica/compiler/aslcompiler.y 23

1447 : PARSEOP_ALIAS ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_ALIAS);}
1448 NameString
1449 NameStringItem
1450 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,TrSetNodeFl
1451 | PARSEOP_ALIAS ’(’
1452 error ’)’ {$$ = AslDoError(); yyclearin;}
1453 ;

1455 NameTerm
1456 : PARSEOP_NAME ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_NAME);}
1457 NameString
1458 ’,’ DataObject
1459 ’)’ {$$ = TrLinkChildren ($<n>3,2,TrSetNodeFlags
1460 | PARSEOP_NAME ’(’
1461 error ’)’ {$$ = AslDoError(); yyclearin;}
1462 ;

1464 ScopeTerm
1465 : PARSEOP_SCOPE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_SCOPE);}
1466 NameString
1467 ’)’ ’{’
1468 ObjectList ’}’ {$$ = TrLinkChildren ($<n>3,2,TrSetNodeFlags
1469 | PARSEOP_SCOPE ’(’
1470 error ’)’ {$$ = AslDoError(); yyclearin;}
1471 ;

1474 /******* Type 1 opcodes ***/

1477 BreakTerm
1478 : PARSEOP_BREAK {$$ = TrCreateNode (PARSEOP_BREAK, 0);}
1479 ;

1481 BreakPointTerm
1482 : PARSEOP_BREAKPOINT {$$ = TrCreateNode (PARSEOP_BREAKPOINT, 0);}
1483 ;

1485 ContinueTerm
1486 : PARSEOP_CONTINUE {$$ = TrCreateNode (PARSEOP_CONTINUE, 0);}
1487 ;

1489 FatalTerm
1490 : PARSEOP_FATAL ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_FATAL);}
1491 ByteConstExpr
1492 ’,’ DWordConstExpr
1493 TermArgItem
1494 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$6,$7);}
1495 | PARSEOP_FATAL ’(’
1496 error ’)’ {$$ = AslDoError(); yyclearin;}
1497 ;

1499 IfElseTerm
1500 : IfTerm ElseTerm {$$ = TrLinkPeerNode ($1,$2);}
1501 ;

1503 IfTerm
1504 : PARSEOP_IF ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_IF);}
1505 TermArg
1506 ’)’ ’{’
1507 TermList ’}’ {$$ = TrLinkChildren ($<n>3,2,$4,$7);}

1509 | PARSEOP_IF ’(’
1510 error ’)’ {$$ = AslDoError(); yyclearin;}
1511 ;

new/usr/src/common/acpica/compiler/aslcompiler.y 24

1513 ElseTerm
1514 : {$$ = NULL;}
1515 | PARSEOP_ELSE ’{’ {$<n>$ = TrCreateLeafNode (PARSEOP_ELSE);}
1516 TermList ’}’ {$$ = TrLinkChildren ($<n>3,1,$4);}

1518 | PARSEOP_ELSE ’{’
1519 error ’}’ {$$ = AslDoError(); yyclearin;}

1521 | PARSEOP_ELSE
1522 error {$$ = AslDoError(); yyclearin;}

1524 | PARSEOP_ELSEIF ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_ELSE);}
1525 TermArg {$<n>$ = TrCreateLeafNode (PARSEOP_IF);}
1526 ’)’ ’{’
1527 TermList ’}’ {TrLinkChildren ($<n>5,2,$4,$8);}
1528 ElseTerm {TrLinkPeerNode ($<n>5,$11);}
1529 {$$ = TrLinkChildren ($<n>3,1,$<n>5);}

1531 | PARSEOP_ELSEIF ’(’
1532 error ’)’ {$$ = AslDoError(); yyclearin;}

1534 | PARSEOP_ELSEIF
1535 error {$$ = AslDoError(); yyclearin;}
1536 ;

1538 LoadTerm
1539 : PARSEOP_LOAD ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_LOAD);}
1540 NameString
1541 RequiredTarget
1542 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
1543 | PARSEOP_LOAD ’(’
1544 error ’)’ {$$ = AslDoError(); yyclearin;}
1545 ;

1547 NoOpTerm
1548 : PARSEOP_NOOP {$$ = TrCreateNode (PARSEOP_NOOP, 0);}
1549 ;

1551 NotifyTerm
1552 : PARSEOP_NOTIFY ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_NOTIFY);}
1553 SuperName
1554 TermArgItem
1555 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
1556 | PARSEOP_NOTIFY ’(’
1557 error ’)’ {$$ = AslDoError(); yyclearin;}
1558 ;

1560 ReleaseTerm
1561 : PARSEOP_RELEASE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_RELEASE);
1562 SuperName
1563 ’)’ {$$ = TrLinkChildren ($<n>3,1,$4);}
1564 | PARSEOP_RELEASE ’(’
1565 error ’)’ {$$ = AslDoError(); yyclearin;}
1566 ;

1568 ResetTerm
1569 : PARSEOP_RESET ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_RESET);}
1570 SuperName
1571 ’)’ {$$ = TrLinkChildren ($<n>3,1,$4);}
1572 | PARSEOP_RESET ’(’
1573 error ’)’ {$$ = AslDoError(); yyclearin;}
1574 ;

1576 ReturnTerm
1577 : PARSEOP_RETURN ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_RETURN);}
1578 OptionalReturnArg

new/usr/src/common/acpica/compiler/aslcompiler.y 25

1579 ’)’ {$$ = TrLinkChildren ($<n>3,1,$4);}
1580 | PARSEOP_RETURN {$$ = TrLinkChildren (TrCreateLeafNode (PARS
1581 | PARSEOP_RETURN ’(’
1582 error ’)’ {$$ = AslDoError(); yyclearin;}
1583 ;

1585 SignalTerm
1586 : PARSEOP_SIGNAL ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_SIGNAL);}
1587 SuperName
1588 ’)’ {$$ = TrLinkChildren ($<n>3,1,$4);}
1589 | PARSEOP_SIGNAL ’(’
1590 error ’)’ {$$ = AslDoError(); yyclearin;}
1591 ;

1593 SleepTerm
1594 : PARSEOP_SLEEP ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_SLEEP);}
1595 TermArg
1596 ’)’ {$$ = TrLinkChildren ($<n>3,1,$4);}
1597 | PARSEOP_SLEEP ’(’
1598 error ’)’ {$$ = AslDoError(); yyclearin;}
1599 ;

1601 StallTerm
1602 : PARSEOP_STALL ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_STALL);}
1603 TermArg
1604 ’)’ {$$ = TrLinkChildren ($<n>3,1,$4);}
1605 | PARSEOP_STALL ’(’
1606 error ’)’ {$$ = AslDoError(); yyclearin;}
1607 ;

1609 SwitchTerm
1610 : PARSEOP_SWITCH ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_SWITCH);}
1611 TermArg
1612 ’)’ ’{’
1613 CaseDefaultTermList ’}’
1614 {$$ = TrLinkChildren ($<n>3,2,$4,$7);}
1615 | PARSEOP_SWITCH ’(’
1616 error ’)’ {$$ = AslDoError(); yyclearin;}
1617 ;

1619 /*
1620 * Case-Default list; allow only one Default term and unlimited Case terms
1621 */

1623 CaseDefaultTermList
1624 : {$$ = NULL;}
1625 | CaseTerm {}
1626 | DefaultTerm {}
1627 | CaseDefaultTermList
1628 CaseTerm {$$ = TrLinkPeerNode ($1,$2);}
1629 | CaseDefaultTermList
1630 DefaultTerm {$$ = TrLinkPeerNode ($1,$2);}

1632 /* Original - attempts to force zero or one default term within the switch */

1634 /*
1635 CaseDefaultTermList
1636 : {$$ = NULL;}
1637 | CaseTermList
1638 DefaultTerm
1639 CaseTermList {$$ = TrLinkPeerNode ($1,TrLinkPeerNode ($2,
1640 | CaseTermList
1641 CaseTerm {$$ = TrLinkPeerNode ($1,$2);}
1642 ;

1644 CaseTermList

new/usr/src/common/acpica/compiler/aslcompiler.y 26

1645 : {$$ = NULL;}
1646 | CaseTerm {}
1647 | CaseTermList
1648 CaseTerm {$$ = TrLinkPeerNode ($1,$2);}
1649 ;
1650 */

1652 CaseTerm
1653 : PARSEOP_CASE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_CASE);}
1654 DataObject
1655 ’)’ ’{’
1656 TermList ’}’ {$$ = TrLinkChildren ($<n>3,2,$4,$7);}
1657 | PARSEOP_CASE ’(’
1658 error ’)’ {$$ = AslDoError(); yyclearin;}
1659 ;

1661 DefaultTerm
1662 : PARSEOP_DEFAULT ’{’ {$<n>$ = TrCreateLeafNode (PARSEOP_DEFAULT);
1663 TermList ’}’ {$$ = TrLinkChildren ($<n>3,1,$4);}
1664 | PARSEOP_DEFAULT ’{’
1665 error ’}’ {$$ = AslDoError(); yyclearin;}
1666 ;

1668 UnloadTerm
1669 : PARSEOP_UNLOAD ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_UNLOAD);}
1670 SuperName
1671 ’)’ {$$ = TrLinkChildren ($<n>3,1,$4);}
1672 | PARSEOP_UNLOAD ’(’
1673 error ’)’ {$$ = AslDoError(); yyclearin;}
1674 ;

1676 WhileTerm
1677 : PARSEOP_WHILE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_WHILE);}
1678 TermArg
1679 ’)’ ’{’ TermList ’}’
1680 {$$ = TrLinkChildren ($<n>3,2,$4,$7);}
1681 | PARSEOP_WHILE ’(’
1682 error ’)’ {$$ = AslDoError(); yyclearin;}
1683 ;

1686 /******* Type 2 opcodes ***/

1688 AcquireTerm
1689 : PARSEOP_ACQUIRE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_ACQUIRE);
1690 SuperName
1691 ’,’ WordConstExpr
1692 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$6);}
1693 | PARSEOP_ACQUIRE ’(’
1694 error ’)’ {$$ = AslDoError(); yyclearin;}
1695 ;

1697 AddTerm
1698 : PARSEOP_ADD ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_ADD);}
1699 TermArg
1700 TermArgItem
1701 Target
1702 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,$6);}
1703 | PARSEOP_ADD ’(’
1704 error ’)’ {$$ = AslDoError(); yyclearin;}
1705 ;

1707 AndTerm
1708 : PARSEOP_AND ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_AND);}
1709 TermArg
1710 TermArgItem

new/usr/src/common/acpica/compiler/aslcompiler.y 27

1711 Target
1712 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,$6);}
1713 | PARSEOP_AND ’(’
1714 error ’)’ {$$ = AslDoError(); yyclearin;}
1715 ;

1717 ConcatTerm
1718 : PARSEOP_CONCATENATE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_CONCATENA
1719 TermArg
1720 TermArgItem
1721 Target
1722 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,$6);}
1723 | PARSEOP_CONCATENATE ’(’
1724 error ’)’ {$$ = AslDoError(); yyclearin;}
1725 ;

1727 ConcatResTerm
1728 : PARSEOP_CONCATENATERESTEMPLATE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_C
1729 TermArg
1730 TermArgItem
1731 Target
1732 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,$6);}
1733 | PARSEOP_CONCATENATERESTEMPLATE ’(’
1734 error ’)’ {$$ = AslDoError(); yyclearin;}
1735 ;

1737 CondRefOfTerm
1738 : PARSEOP_CONDREFOF ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_CONDREFOF
1739 SuperName
1740 Target
1741 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
1742 | PARSEOP_CONDREFOF ’(’
1743 error ’)’ {$$ = AslDoError(); yyclearin;}
1744 ;

1746 CopyObjectTerm
1747 : PARSEOP_COPYOBJECT ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_COPYOBJEC
1748 TermArg
1749 ’,’ SimpleTarget
1750 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,TrSetNodeFl
1751 | PARSEOP_COPYOBJECT ’(’
1752 error ’)’ {$$ = AslDoError(); yyclearin;}
1753 ;

1755 DecTerm
1756 : PARSEOP_DECREMENT ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_DECREMENT
1757 SuperName
1758 ’)’ {$$ = TrLinkChildren ($<n>3,1,$4);}
1759 | PARSEOP_DECREMENT ’(’
1760 error ’)’ {$$ = AslDoError(); yyclearin;}
1761 ;

1763 DerefOfTerm
1764 : PARSEOP_DEREFOF ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_DEREFOF);
1765 TermArg
1766 ’)’ {$$ = TrLinkChildren ($<n>3,1,$4);}
1767 | PARSEOP_DEREFOF ’(’
1768 error ’)’ {$$ = AslDoError(); yyclearin;}
1769 ;

1771 DivideTerm
1772 : PARSEOP_DIVIDE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_DIVIDE);}
1773 TermArg
1774 TermArgItem
1775 Target
1776 Target

new/usr/src/common/acpica/compiler/aslcompiler.y 28

1777 ’)’ {$$ = TrLinkChildren ($<n>3,4,$4,$5,$6,$7);}
1778 | PARSEOP_DIVIDE ’(’
1779 error ’)’ {$$ = AslDoError(); yyclearin;}
1780 ;

1782 FindSetLeftBitTerm
1783 : PARSEOP_FINDSETLEFTBIT ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_FINDSETLE
1784 TermArg
1785 Target
1786 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
1787 | PARSEOP_FINDSETLEFTBIT ’(’
1788 error ’)’ {$$ = AslDoError(); yyclearin;}
1789 ;

1791 FindSetRightBitTerm
1792 : PARSEOP_FINDSETRIGHTBIT ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_FINDSETRI
1793 TermArg
1794 Target
1795 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
1796 | PARSEOP_FINDSETRIGHTBIT ’(’
1797 error ’)’ {$$ = AslDoError(); yyclearin;}
1798 ;

1800 FromBCDTerm
1801 : PARSEOP_FROMBCD ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_FROMBCD);
1802 TermArg
1803 Target
1804 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
1805 | PARSEOP_FROMBCD ’(’
1806 error ’)’ {$$ = AslDoError(); yyclearin;}
1807 ;

1809 IncTerm
1810 : PARSEOP_INCREMENT ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_INCREMENT
1811 SuperName
1812 ’)’ {$$ = TrLinkChildren ($<n>3,1,$4);}
1813 | PARSEOP_INCREMENT ’(’
1814 error ’)’ {$$ = AslDoError(); yyclearin;}
1815 ;

1817 IndexTerm
1818 : PARSEOP_INDEX ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_INDEX);}
1819 TermArg
1820 TermArgItem
1821 Target
1822 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,$6);}
1823 | PARSEOP_INDEX ’(’
1824 error ’)’ {$$ = AslDoError(); yyclearin;}
1825 ;

1827 LAndTerm
1828 : PARSEOP_LAND ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_LAND);}
1829 TermArg
1830 TermArgItem
1831 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
1832 | PARSEOP_LAND ’(’
1833 error ’)’ {$$ = AslDoError(); yyclearin;}
1834 ;

1836 LEqualTerm
1837 : PARSEOP_LEQUAL ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_LEQUAL);}
1838 TermArg
1839 TermArgItem
1840 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
1841 | PARSEOP_LEQUAL ’(’
1842 error ’)’ {$$ = AslDoError(); yyclearin;}

new/usr/src/common/acpica/compiler/aslcompiler.y 29

1843 ;

1845 LGreaterTerm
1846 : PARSEOP_LGREATER ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_LGREATER)
1847 TermArg
1848 TermArgItem
1849 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
1850 | PARSEOP_LGREATER ’(’
1851 error ’)’ {$$ = AslDoError(); yyclearin;}
1852 ;

1854 LGreaterEqualTerm
1855 : PARSEOP_LGREATEREQUAL ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_LLESS);}
1856 TermArg
1857 TermArgItem
1858 ’)’ {$$ = TrCreateNode (PARSEOP_LNOT, 1, TrLinkC
1859 | PARSEOP_LGREATEREQUAL ’(’
1860 error ’)’ {$$ = AslDoError(); yyclearin;}
1861 ;

1863 LLessTerm
1864 : PARSEOP_LLESS ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_LLESS);}
1865 TermArg
1866 TermArgItem
1867 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
1868 | PARSEOP_LLESS ’(’
1869 error ’)’ {$$ = AslDoError(); yyclearin;}
1870 ;

1872 LLessEqualTerm
1873 : PARSEOP_LLESSEQUAL ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_LGREATER)
1874 TermArg
1875 TermArgItem
1876 ’)’ {$$ = TrCreateNode (PARSEOP_LNOT, 1, TrLinkC
1877 | PARSEOP_LLESSEQUAL ’(’
1878 error ’)’ {$$ = AslDoError(); yyclearin;}
1879 ;

1881 LNotTerm
1882 : PARSEOP_LNOT ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_LNOT);}
1883 TermArg
1884 ’)’ {$$ = TrLinkChildren ($<n>3,1,$4);}
1885 | PARSEOP_LNOT ’(’
1886 error ’)’ {$$ = AslDoError(); yyclearin;}
1887 ;

1889 LNotEqualTerm
1890 : PARSEOP_LNOTEQUAL ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_LEQUAL);}
1891 TermArg
1892 TermArgItem
1893 ’)’ {$$ = TrCreateNode (PARSEOP_LNOT, 1, TrLinkC
1894 | PARSEOP_LNOTEQUAL ’(’
1895 error ’)’ {$$ = AslDoError(); yyclearin;}
1896 ;

1898 LoadTableTerm
1899 : PARSEOP_LOADTABLE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_LOADTABLE
1900 TermArg
1901 TermArgItem
1902 TermArgItem
1903 OptionalListString
1904 OptionalListString
1905 OptionalReference
1906 ’)’ {$$ = TrLinkChildren ($<n>3,6,$4,$5,$6,$7,$8
1907 | PARSEOP_LOADTABLE ’(’
1908 error ’)’ {$$ = AslDoError(); yyclearin;}

new/usr/src/common/acpica/compiler/aslcompiler.y 30

1909 ;

1911 LOrTerm
1912 : PARSEOP_LOR ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_LOR);}
1913 TermArg
1914 TermArgItem
1915 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
1916 | PARSEOP_LOR ’(’
1917 error ’)’ {$$ = AslDoError(); yyclearin;}
1918 ;

1920 MatchTerm
1921 : PARSEOP_MATCH ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_MATCH);}
1922 TermArg
1923 ’,’ MatchOpKeyword
1924 TermArgItem
1925 ’,’ MatchOpKeyword
1926 TermArgItem
1927 TermArgItem
1928 ’)’ {$$ = TrLinkChildren ($<n>3,6,$4,$6,$7,$9,$1
1929 | PARSEOP_MATCH ’(’
1930 error ’)’ {$$ = AslDoError(); yyclearin;}
1931 ;

1933 MidTerm
1934 : PARSEOP_MID ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_MID);}
1935 TermArg
1936 TermArgItem
1937 TermArgItem
1938 Target
1939 ’)’ {$$ = TrLinkChildren ($<n>3,4,$4,$5,$6,$7);}
1940 | PARSEOP_MID ’(’
1941 error ’)’ {$$ = AslDoError(); yyclearin;}
1942 ;

1944 ModTerm
1945 : PARSEOP_MOD ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_MOD);}
1946 TermArg
1947 TermArgItem
1948 Target
1949 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,$6);}
1950 | PARSEOP_MOD ’(’
1951 error ’)’ {$$ = AslDoError(); yyclearin;}
1952 ;

1954 MultiplyTerm
1955 : PARSEOP_MULTIPLY ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_MULTIPLY)
1956 TermArg
1957 TermArgItem
1958 Target
1959 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,$6);}
1960 | PARSEOP_MULTIPLY ’(’
1961 error ’)’ {$$ = AslDoError(); yyclearin;}
1962 ;

1964 NAndTerm
1965 : PARSEOP_NAND ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_NAND);}
1966 TermArg
1967 TermArgItem
1968 Target
1969 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,$6);}
1970 | PARSEOP_NAND ’(’
1971 error ’)’ {$$ = AslDoError(); yyclearin;}
1972 ;

1974 NOrTerm

new/usr/src/common/acpica/compiler/aslcompiler.y 31

1975 : PARSEOP_NOR ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_NOR);}
1976 TermArg
1977 TermArgItem
1978 Target
1979 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,$6);}
1980 | PARSEOP_NOR ’(’
1981 error ’)’ {$$ = AslDoError(); yyclearin;}
1982 ;

1984 NotTerm
1985 : PARSEOP_NOT ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_NOT);}
1986 TermArg
1987 Target
1988 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
1989 | PARSEOP_NOT ’(’
1990 error ’)’ {$$ = AslDoError(); yyclearin;}
1991 ;

1993 ObjectTypeTerm
1994 : PARSEOP_OBJECTTYPE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_OBJECTTYP
1995 ObjectTypeName
1996 ’)’ {$$ = TrLinkChildren ($<n>3,1,$4);}
1997 | PARSEOP_OBJECTTYPE ’(’
1998 error ’)’ {$$ = AslDoError(); yyclearin;}
1999 ;

2001 OrTerm
2002 : PARSEOP_OR ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_OR);}
2003 TermArg
2004 TermArgItem
2005 Target
2006 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,$6);}
2007 | PARSEOP_OR ’(’
2008 error ’)’ {$$ = AslDoError(); yyclearin;}
2009 ;

2011 /*
2012 * In RefOf, the node isn’t really a target, but we can’t keep track of it after
2013 * we’ve taken a pointer to it. (hard to tell if a local becomes initialized thi
2014 */
2015 RefOfTerm
2016 : PARSEOP_REFOF ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_REFOF);}
2017 SuperName
2018 ’)’ {$$ = TrLinkChildren ($<n>3,1,TrSetNodeFlags
2019 | PARSEOP_REFOF ’(’
2020 error ’)’ {$$ = AslDoError(); yyclearin;}
2021 ;

2023 ShiftLeftTerm
2024 : PARSEOP_SHIFTLEFT ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_SHIFTLEFT
2025 TermArg
2026 TermArgItem
2027 Target
2028 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,$6);}
2029 | PARSEOP_SHIFTLEFT ’(’
2030 error ’)’ {$$ = AslDoError(); yyclearin;}
2031 ;

2033 ShiftRightTerm
2034 : PARSEOP_SHIFTRIGHT ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_SHIFTRIGH
2035 TermArg
2036 TermArgItem
2037 Target
2038 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,$6);}
2039 | PARSEOP_SHIFTRIGHT ’(’
2040 error ’)’ {$$ = AslDoError(); yyclearin;}

new/usr/src/common/acpica/compiler/aslcompiler.y 32

2041 ;

2043 SizeOfTerm
2044 : PARSEOP_SIZEOF ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_SIZEOF);}
2045 SuperName
2046 ’)’ {$$ = TrLinkChildren ($<n>3,1,$4);}
2047 | PARSEOP_SIZEOF ’(’
2048 error ’)’ {$$ = AslDoError(); yyclearin;}
2049 ;

2051 StoreTerm
2052 : PARSEOP_STORE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_STORE);}
2053 TermArg
2054 ’,’ SuperName
2055 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,TrSetNodeFl
2056 | PARSEOP_STORE ’(’
2057 error ’)’ {$$ = AslDoError(); yyclearin;}
2058 ;

2060 SubtractTerm
2061 : PARSEOP_SUBTRACT ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_SUBTRACT)
2062 TermArg
2063 TermArgItem
2064 Target
2065 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,$6);}
2066 | PARSEOP_SUBTRACT ’(’
2067 error ’)’ {$$ = AslDoError(); yyclearin;}
2068 ;

2070 TimerTerm
2071 : PARSEOP_TIMER ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_TIMER);}
2072 ’)’ {$$ = TrLinkChildren ($<n>3,0);}
2073 | PARSEOP_TIMER {$$ = TrLinkChildren (TrCreateLeafNode (PARS
2074 | PARSEOP_TIMER ’(’
2075 error ’)’ {$$ = AslDoError(); yyclearin;}
2076 ;

2078 ToBCDTerm
2079 : PARSEOP_TOBCD ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_TOBCD);}
2080 TermArg
2081 Target
2082 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
2083 | PARSEOP_TOBCD ’(’
2084 error ’)’ {$$ = AslDoError(); yyclearin;}
2085 ;

2087 ToBufferTerm
2088 : PARSEOP_TOBUFFER ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_TOBUFFER)
2089 TermArg
2090 Target
2091 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
2092 | PARSEOP_TOBUFFER ’(’
2093 error ’)’ {$$ = AslDoError(); yyclearin;}
2094 ;

2096 ToDecimalStringTerm
2097 : PARSEOP_TODECIMALSTRING ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_TODECIMAL
2098 TermArg
2099 Target
2100 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
2101 | PARSEOP_TODECIMALSTRING ’(’
2102 error ’)’ {$$ = AslDoError(); yyclearin;}
2103 ;

2105 ToHexStringTerm
2106 : PARSEOP_TOHEXSTRING ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_TOHEXSTRI

new/usr/src/common/acpica/compiler/aslcompiler.y 33

2107 TermArg
2108 Target
2109 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
2110 | PARSEOP_TOHEXSTRING ’(’
2111 error ’)’ {$$ = AslDoError(); yyclearin;}
2112 ;

2114 ToIntegerTerm
2115 : PARSEOP_TOINTEGER ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_TOINTEGER
2116 TermArg
2117 Target
2118 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
2119 | PARSEOP_TOINTEGER ’(’
2120 error ’)’ {$$ = AslDoError(); yyclearin;}
2121 ;

2123 ToStringTerm
2124 : PARSEOP_TOSTRING ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_TOSTRING)
2125 TermArg
2126 OptionalCount
2127 Target
2128 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,$6);}
2129 | PARSEOP_TOSTRING ’(’
2130 error ’)’ {$$ = AslDoError(); yyclearin;}
2131 ;

2133 ToUUIDTerm
2134 : PARSEOP_TOUUID ’(’
2135 StringData ’)’ {$$ = TrUpdateNode (PARSEOP_TOUUID, $3);}
2136 | PARSEOP_TOUUID ’(’
2137 error ’)’ {$$ = AslDoError(); yyclearin;}
2138 ;

2140 WaitTerm
2141 : PARSEOP_WAIT ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_WAIT);}
2142 SuperName
2143 TermArgItem
2144 ’)’ {$$ = TrLinkChildren ($<n>3,2,$4,$5);}
2145 | PARSEOP_WAIT ’(’
2146 error ’)’ {$$ = AslDoError(); yyclearin;}
2147 ;

2149 XOrTerm
2150 : PARSEOP_XOR ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_XOR);}
2151 TermArg
2152 TermArgItem
2153 Target
2154 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$5,$6);}
2155 | PARSEOP_XOR ’(’
2156 error ’)’ {$$ = AslDoError(); yyclearin;}
2157 ;

2160 /******* Keywords ***/

2163 AccessAttribKeyword
2164 : PARSEOP_ACCESSATTRIB_BLOCK {$$ = TrCreateLeafNode (PARSEOP_ACCE
2165 | PARSEOP_ACCESSATTRIB_BLOCK_CALL {$$ = TrCreateLeafNode (PARSEOP_ACCE
2166 | PARSEOP_ACCESSATTRIB_BYTE {$$ = TrCreateLeafNode (PARSEOP_ACCE
2167 | PARSEOP_ACCESSATTRIB_QUICK {$$ = TrCreateLeafNode (PARSEOP_ACCE
2168 | PARSEOP_ACCESSATTRIB_SND_RCV {$$ = TrCreateLeafNode (PARSEOP_ACCE
2169 | PARSEOP_ACCESSATTRIB_WORD {$$ = TrCreateLeafNode (PARSEOP_ACCE
2170 | PARSEOP_ACCESSATTRIB_WORD_CALL {$$ = TrCreateLeafNode (PARSEOP_ACCE
2171 | PARSEOP_ACCESSATTRIB_MULTIBYTE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_A
2172 ByteConst

new/usr/src/common/acpica/compiler/aslcompiler.y 34

2173 ’)’ {$$ = TrLinkChildren ($<n>3,1,$4);}
2174 | PARSEOP_ACCESSATTRIB_RAW_BYTES ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_A
2175 ByteConst
2176 ’)’ {$$ = TrLinkChildren ($<n>3,1,$4);}
2177 | PARSEOP_ACCESSATTRIB_RAW_PROCESS ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_A
2178 ByteConst
2179 ’)’ {$$ = TrLinkChildren ($<n>3,1,$4);}
2180 ;

2182 AccessTypeKeyword
2183 : PARSEOP_ACCESSTYPE_ANY {$$ = TrCreateLeafNode (PARSEOP_ACCE
2184 | PARSEOP_ACCESSTYPE_BYTE {$$ = TrCreateLeafNode (PARSEOP_ACCE
2185 | PARSEOP_ACCESSTYPE_WORD {$$ = TrCreateLeafNode (PARSEOP_ACCE
2186 | PARSEOP_ACCESSTYPE_DWORD {$$ = TrCreateLeafNode (PARSEOP_ACCE
2187 | PARSEOP_ACCESSTYPE_QWORD {$$ = TrCreateLeafNode (PARSEOP_ACCE
2188 | PARSEOP_ACCESSTYPE_BUF {$$ = TrCreateLeafNode (PARSEOP_ACCE
2189 ;

2191 AddressingModeKeyword
2192 : PARSEOP_ADDRESSINGMODE_7BIT {$$ = TrCreateLeafNode (PARSEOP_ADDR
2193 | PARSEOP_ADDRESSINGMODE_10BIT {$$ = TrCreateLeafNode (PARSEOP_ADDR
2194 ;

2196 AddressKeyword
2197 : PARSEOP_ADDRESSTYPE_MEMORY {$$ = TrCreateLeafNode (PARSEOP_ADDR
2198 | PARSEOP_ADDRESSTYPE_RESERVED {$$ = TrCreateLeafNode (PARSEOP_ADDR
2199 | PARSEOP_ADDRESSTYPE_NVS {$$ = TrCreateLeafNode (PARSEOP_ADDR
2200 | PARSEOP_ADDRESSTYPE_ACPI {$$ = TrCreateLeafNode (PARSEOP_ADDR
2201 ;

2203 AddressSpaceKeyword
2204 : ByteConst {$$ = UtCheckIntegerRange ($1, 0x0A,
2205 | RegionSpaceKeyword {}
2206 ;

2208 BitsPerByteKeyword
2209 : PARSEOP_BITSPERBYTE_FIVE {$$ = TrCreateLeafNode (PARSEOP_BITS
2210 | PARSEOP_BITSPERBYTE_SIX {$$ = TrCreateLeafNode (PARSEOP_BITS
2211 | PARSEOP_BITSPERBYTE_SEVEN {$$ = TrCreateLeafNode (PARSEOP_BITS
2212 | PARSEOP_BITSPERBYTE_EIGHT {$$ = TrCreateLeafNode (PARSEOP_BITS
2213 | PARSEOP_BITSPERBYTE_NINE {$$ = TrCreateLeafNode (PARSEOP_BITS
2214 ;

2216 ClockPhaseKeyword
2217 : PARSEOP_CLOCKPHASE_FIRST {$$ = TrCreateLeafNode (PARSEOP_CLOC
2218 | PARSEOP_CLOCKPHASE_SECOND {$$ = TrCreateLeafNode (PARSEOP_CLOC
2219 ;

2221 ClockPolarityKeyword
2222 : PARSEOP_CLOCKPOLARITY_LOW {$$ = TrCreateLeafNode (PARSEOP_CLOC
2223 | PARSEOP_CLOCKPOLARITY_HIGH {$$ = TrCreateLeafNode (PARSEOP_CLOC
2224 ;

2226 DecodeKeyword
2227 : PARSEOP_DECODETYPE_POS {$$ = TrCreateLeafNode (PARSEOP_DECO
2228 | PARSEOP_DECODETYPE_SUB {$$ = TrCreateLeafNode (PARSEOP_DECO
2229 ;

2231 DevicePolarityKeyword
2232 : PARSEOP_DEVICEPOLARITY_LOW {$$ = TrCreateLeafNode (PARSEOP_DEVI
2233 | PARSEOP_DEVICEPOLARITY_HIGH {$$ = TrCreateLeafNode (PARSEOP_DEVI
2234 ;

2236 DMATypeKeyword
2237 : PARSEOP_DMATYPE_A {$$ = TrCreateLeafNode (PARSEOP_DMAT
2238 | PARSEOP_DMATYPE_COMPATIBILITY {$$ = TrCreateLeafNode (PARSEOP_DMAT

new/usr/src/common/acpica/compiler/aslcompiler.y 35

2239 | PARSEOP_DMATYPE_B {$$ = TrCreateLeafNode (PARSEOP_DMAT
2240 | PARSEOP_DMATYPE_F {$$ = TrCreateLeafNode (PARSEOP_DMAT
2241 ;

2243 EndianKeyword
2244 : PARSEOP_ENDIAN_LITTLE {$$ = TrCreateLeafNode (PARSEOP_ENDI
2245 | PARSEOP_ENDIAN_BIG {$$ = TrCreateLeafNode (PARSEOP_ENDI
2246 ;

2248 FlowControlKeyword
2249 : PARSEOP_FLOWCONTROL_HW {$$ = TrCreateLeafNode (PARSEOP_FLOW
2250 | PARSEOP_FLOWCONTROL_NONE {$$ = TrCreateLeafNode (PARSEOP_FLOW
2251 | PARSEOP_FLOWCONTROL_SW {$$ = TrCreateLeafNode (PARSEOP_FLOW
2252 ;

2254 InterruptLevel
2255 : PARSEOP_INTLEVEL_ACTIVEBOTH {$$ = TrCreateLeafNode (PARSEOP_INTL
2256 | PARSEOP_INTLEVEL_ACTIVEHIGH {$$ = TrCreateLeafNode (PARSEOP_INTL
2257 | PARSEOP_INTLEVEL_ACTIVELOW {$$ = TrCreateLeafNode (PARSEOP_INTL
2258 ;

2260 InterruptTypeKeyword
2261 : PARSEOP_INTTYPE_EDGE {$$ = TrCreateLeafNode (PARSEOP_INTT
2262 | PARSEOP_INTTYPE_LEVEL {$$ = TrCreateLeafNode (PARSEOP_INTT
2263 ;

2265 IODecodeKeyword
2266 : PARSEOP_IODECODETYPE_16 {$$ = TrCreateLeafNode (PARSEOP_IODE
2267 | PARSEOP_IODECODETYPE_10 {$$ = TrCreateLeafNode (PARSEOP_IODE
2268 ;

2270 IoRestrictionKeyword
2271 : PARSEOP_IORESTRICT_IN {$$ = TrCreateLeafNode (PARSEOP_IORE
2272 | PARSEOP_IORESTRICT_OUT {$$ = TrCreateLeafNode (PARSEOP_IORE
2273 | PARSEOP_IORESTRICT_NONE {$$ = TrCreateLeafNode (PARSEOP_IORE
2274 | PARSEOP_IORESTRICT_PRESERVE {$$ = TrCreateLeafNode (PARSEOP_IORE
2275 ;

2277 LockRuleKeyword
2278 : PARSEOP_LOCKRULE_LOCK {$$ = TrCreateLeafNode (PARSEOP_LOCK
2279 | PARSEOP_LOCKRULE_NOLOCK {$$ = TrCreateLeafNode (PARSEOP_LOCK
2280 ;

2282 MatchOpKeyword
2283 : PARSEOP_MATCHTYPE_MTR {$$ = TrCreateLeafNode (PARSEOP_MATC
2284 | PARSEOP_MATCHTYPE_MEQ {$$ = TrCreateLeafNode (PARSEOP_MATC
2285 | PARSEOP_MATCHTYPE_MLE {$$ = TrCreateLeafNode (PARSEOP_MATC
2286 | PARSEOP_MATCHTYPE_MLT {$$ = TrCreateLeafNode (PARSEOP_MATC
2287 | PARSEOP_MATCHTYPE_MGE {$$ = TrCreateLeafNode (PARSEOP_MATC
2288 | PARSEOP_MATCHTYPE_MGT {$$ = TrCreateLeafNode (PARSEOP_MATC
2289 ;

2291 MaxKeyword
2292 : PARSEOP_MAXTYPE_FIXED {$$ = TrCreateLeafNode (PARSEOP_MAXT
2293 | PARSEOP_MAXTYPE_NOTFIXED {$$ = TrCreateLeafNode (PARSEOP_MAXT
2294 ;

2296 MemTypeKeyword
2297 : PARSEOP_MEMTYPE_CACHEABLE {$$ = TrCreateLeafNode (PARSEOP_MEMT
2298 | PARSEOP_MEMTYPE_WRITECOMBINING {$$ = TrCreateLeafNode (PARSEOP_MEMT
2299 | PARSEOP_MEMTYPE_PREFETCHABLE {$$ = TrCreateLeafNode (PARSEOP_MEMT
2300 | PARSEOP_MEMTYPE_NONCACHEABLE {$$ = TrCreateLeafNode (PARSEOP_MEMT
2301 ;

2303 MinKeyword
2304 : PARSEOP_MINTYPE_FIXED {$$ = TrCreateLeafNode (PARSEOP_MINT

new/usr/src/common/acpica/compiler/aslcompiler.y 36

2305 | PARSEOP_MINTYPE_NOTFIXED {$$ = TrCreateLeafNode (PARSEOP_MINT
2306 ;

2308 ObjectTypeKeyword
2309 : PARSEOP_OBJECTTYPE_UNK {$$ = TrCreateLeafNode (PARSEOP_OBJE
2310 | PARSEOP_OBJECTTYPE_INT {$$ = TrCreateLeafNode (PARSEOP_OBJE
2311 | PARSEOP_OBJECTTYPE_STR {$$ = TrCreateLeafNode (PARSEOP_OBJE
2312 | PARSEOP_OBJECTTYPE_BUF {$$ = TrCreateLeafNode (PARSEOP_OBJE
2313 | PARSEOP_OBJECTTYPE_PKG {$$ = TrCreateLeafNode (PARSEOP_OBJE
2314 | PARSEOP_OBJECTTYPE_FLD {$$ = TrCreateLeafNode (PARSEOP_OBJE
2315 | PARSEOP_OBJECTTYPE_DEV {$$ = TrCreateLeafNode (PARSEOP_OBJE
2316 | PARSEOP_OBJECTTYPE_EVT {$$ = TrCreateLeafNode (PARSEOP_OBJE
2317 | PARSEOP_OBJECTTYPE_MTH {$$ = TrCreateLeafNode (PARSEOP_OBJE
2318 | PARSEOP_OBJECTTYPE_MTX {$$ = TrCreateLeafNode (PARSEOP_OBJE
2319 | PARSEOP_OBJECTTYPE_OPR {$$ = TrCreateLeafNode (PARSEOP_OBJE
2320 | PARSEOP_OBJECTTYPE_POW {$$ = TrCreateLeafNode (PARSEOP_OBJE
2321 | PARSEOP_OBJECTTYPE_PRO {$$ = TrCreateLeafNode (PARSEOP_OBJE
2322 | PARSEOP_OBJECTTYPE_THZ {$$ = TrCreateLeafNode (PARSEOP_OBJE
2323 | PARSEOP_OBJECTTYPE_BFF {$$ = TrCreateLeafNode (PARSEOP_OBJE
2324 | PARSEOP_OBJECTTYPE_DDB {$$ = TrCreateLeafNode (PARSEOP_OBJE
2325 ;

2327 ParityTypeKeyword
2328 : PARSEOP_PARITYTYPE_SPACE {$$ = TrCreateLeafNode (PARSEOP_PARI
2329 | PARSEOP_PARITYTYPE_MARK {$$ = TrCreateLeafNode (PARSEOP_PARI
2330 | PARSEOP_PARITYTYPE_ODD {$$ = TrCreateLeafNode (PARSEOP_PARI
2331 | PARSEOP_PARITYTYPE_EVEN {$$ = TrCreateLeafNode (PARSEOP_PARI
2332 | PARSEOP_PARITYTYPE_NONE {$$ = TrCreateLeafNode (PARSEOP_PARI
2333 ;

2335 PinConfigByte
2336 : PinConfigKeyword {$$ = $1;}
2337 | ByteConstExpr {$$ = UtCheckIntegerRange ($1, 0x80,
2338 ;

2340 PinConfigKeyword
2341 : PARSEOP_PIN_NOPULL {$$ = TrCreateLeafNode (PARSEOP_PIN_
2342 | PARSEOP_PIN_PULLDOWN {$$ = TrCreateLeafNode (PARSEOP_PIN_
2343 | PARSEOP_PIN_PULLUP {$$ = TrCreateLeafNode (PARSEOP_PIN_
2344 | PARSEOP_PIN_PULLDEFAULT {$$ = TrCreateLeafNode (PARSEOP_PIN_
2345 ;

2347 RangeTypeKeyword
2348 : PARSEOP_RANGETYPE_ISAONLY {$$ = TrCreateLeafNode (PARSEOP_RANG
2349 | PARSEOP_RANGETYPE_NONISAONLY {$$ = TrCreateLeafNode (PARSEOP_RANG
2350 | PARSEOP_RANGETYPE_ENTIRE {$$ = TrCreateLeafNode (PARSEOP_RANG
2351 ;

2353 RegionSpaceKeyword
2354 : PARSEOP_REGIONSPACE_IO {$$ = TrCreateLeafNode (PARSEOP_REGI
2355 | PARSEOP_REGIONSPACE_MEM {$$ = TrCreateLeafNode (PARSEOP_REGI
2356 | PARSEOP_REGIONSPACE_PCI {$$ = TrCreateLeafNode (PARSEOP_REGI
2357 | PARSEOP_REGIONSPACE_EC {$$ = TrCreateLeafNode (PARSEOP_REGI
2358 | PARSEOP_REGIONSPACE_SMBUS {$$ = TrCreateLeafNode (PARSEOP_REGI
2359 | PARSEOP_REGIONSPACE_CMOS {$$ = TrCreateLeafNode (PARSEOP_REGI
2360 | PARSEOP_REGIONSPACE_PCIBAR {$$ = TrCreateLeafNode (PARSEOP_REGI
2361 | PARSEOP_REGIONSPACE_IPMI {$$ = TrCreateLeafNode (PARSEOP_REGI
2362 | PARSEOP_REGIONSPACE_GPIO {$$ = TrCreateLeafNode (PARSEOP_REGI
2363 | PARSEOP_REGIONSPACE_GSBUS {$$ = TrCreateLeafNode (PARSEOP_REGI
2364 | PARSEOP_REGIONSPACE_PCC {$$ = TrCreateLeafNode (PARSEOP_REGI
2365 | PARSEOP_REGIONSPACE_FFIXEDHW {$$ = TrCreateLeafNode (PARSEOP_REGI
2366 ;

2368 ResourceTypeKeyword
2369 : PARSEOP_RESOURCETYPE_CONSUMER {$$ = TrCreateLeafNode (PARSEOP_RESO
2370 | PARSEOP_RESOURCETYPE_PRODUCER {$$ = TrCreateLeafNode (PARSEOP_RESO

new/usr/src/common/acpica/compiler/aslcompiler.y 37

2371 ;

2373 SerializeRuleKeyword
2374 : PARSEOP_SERIALIZERULE_SERIAL {$$ = TrCreateLeafNode (PARSEOP_SERI
2375 | PARSEOP_SERIALIZERULE_NOTSERIAL {$$ = TrCreateLeafNode (PARSEOP_SERI
2376 ;

2378 ShareTypeKeyword
2379 : PARSEOP_SHARETYPE_SHARED {$$ = TrCreateLeafNode (PARSEOP_SHAR
2380 | PARSEOP_SHARETYPE_EXCLUSIVE {$$ = TrCreateLeafNode (PARSEOP_SHAR
2381 | PARSEOP_SHARETYPE_SHAREDWAKE {$$ = TrCreateLeafNode (PARSEOP_SHAR
2382 | PARSEOP_SHARETYPE_EXCLUSIVEWAKE {$$ = TrCreateLeafNode (PARSEOP_SHAR
2383 ;

2385 SlaveModeKeyword
2386 : PARSEOP_SLAVEMODE_CONTROLLERINIT {$$ = TrCreateLeafNode (PARSEOP_SLAV
2387 | PARSEOP_SLAVEMODE_DEVICEINIT {$$ = TrCreateLeafNode (PARSEOP_SLAV
2388 ;

2390 StopBitsKeyword
2391 : PARSEOP_STOPBITS_TWO {$$ = TrCreateLeafNode (PARSEOP_STOP
2392 | PARSEOP_STOPBITS_ONEPLUSHALF {$$ = TrCreateLeafNode (PARSEOP_STOP
2393 | PARSEOP_STOPBITS_ONE {$$ = TrCreateLeafNode (PARSEOP_STOP
2394 | PARSEOP_STOPBITS_ZERO {$$ = TrCreateLeafNode (PARSEOP_STOP
2395 ;

2397 TranslationKeyword
2398 : PARSEOP_TRANSLATIONTYPE_SPARSE {$$ = TrCreateLeafNode (PARSEOP_TRAN
2399 | PARSEOP_TRANSLATIONTYPE_DENSE {$$ = TrCreateLeafNode (PARSEOP_TRAN
2400 ;

2402 TypeKeyword
2403 : PARSEOP_TYPE_TRANSLATION {$$ = TrCreateLeafNode (PARSEOP_TYPE
2404 | PARSEOP_TYPE_STATIC {$$ = TrCreateLeafNode (PARSEOP_TYPE
2405 ;

2407 UpdateRuleKeyword
2408 : PARSEOP_UPDATERULE_PRESERVE {$$ = TrCreateLeafNode (PARSEOP_UPDA
2409 | PARSEOP_UPDATERULE_ONES {$$ = TrCreateLeafNode (PARSEOP_UPDA
2410 | PARSEOP_UPDATERULE_ZEROS {$$ = TrCreateLeafNode (PARSEOP_UPDA
2411 ;

2413 WireModeKeyword
2414 : PARSEOP_WIREMODE_FOUR {$$ = TrCreateLeafNode (PARSEOP_WIRE
2415 | PARSEOP_WIREMODE_THREE {$$ = TrCreateLeafNode (PARSEOP_WIRE
2416 ;

2418 XferSizeKeyword
2419 : PARSEOP_XFERSIZE_8 {$$ = TrCreateValuedLeafNode (PARSEO
2420 | PARSEOP_XFERSIZE_16 {$$ = TrCreateValuedLeafNode (PARSEO
2421 | PARSEOP_XFERSIZE_32 {$$ = TrCreateValuedLeafNode (PARSEO
2422 | PARSEOP_XFERSIZE_64 {$$ = TrCreateValuedLeafNode (PARSEO
2423 | PARSEOP_XFERSIZE_128 {$$ = TrCreateValuedLeafNode (PARSEO
2424 | PARSEOP_XFERSIZE_256 {$$ = TrCreateValuedLeafNode (PARSEO
2425 ;

2427 XferTypeKeyword
2428 : PARSEOP_XFERTYPE_8 {$$ = TrCreateLeafNode (PARSEOP_XFER
2429 | PARSEOP_XFERTYPE_8_16 {$$ = TrCreateLeafNode (PARSEOP_XFER
2430 | PARSEOP_XFERTYPE_16 {$$ = TrCreateLeafNode (PARSEOP_XFER
2431 ;

2434 /******* Miscellaneous Types **/

new/usr/src/common/acpica/compiler/aslcompiler.y 38

2437 SuperName
2438 : NameString {}
2439 | ArgTerm {}
2440 | LocalTerm {}
2441 | DebugTerm {}
2442 | Type6Opcode {}

2444 /* For ObjectType: SuperName except for UserTerm (method invocation) */

2446 ObjectTypeName
2447 : NameString {}
2448 | ArgTerm {}
2449 | LocalTerm {}
2450 | DebugTerm {}
2451 | RefOfTerm {}
2452 | DerefOfTerm {}
2453 | IndexTerm {}

2455 /* | UserTerm {} */ /* Caused reduce/reduce with Type6O
2456 ;

2458 ArgTerm
2459 : PARSEOP_ARG0 {$$ = TrCreateLeafNode (PARSEOP_ARG0);}
2460 | PARSEOP_ARG1 {$$ = TrCreateLeafNode (PARSEOP_ARG1);}
2461 | PARSEOP_ARG2 {$$ = TrCreateLeafNode (PARSEOP_ARG2);}
2462 | PARSEOP_ARG3 {$$ = TrCreateLeafNode (PARSEOP_ARG3);}
2463 | PARSEOP_ARG4 {$$ = TrCreateLeafNode (PARSEOP_ARG4);}
2464 | PARSEOP_ARG5 {$$ = TrCreateLeafNode (PARSEOP_ARG5);}
2465 | PARSEOP_ARG6 {$$ = TrCreateLeafNode (PARSEOP_ARG6);}
2466 ;

2468 LocalTerm
2469 : PARSEOP_LOCAL0 {$$ = TrCreateLeafNode (PARSEOP_LOCAL0);}
2470 | PARSEOP_LOCAL1 {$$ = TrCreateLeafNode (PARSEOP_LOCAL1);}
2471 | PARSEOP_LOCAL2 {$$ = TrCreateLeafNode (PARSEOP_LOCAL2);}
2472 | PARSEOP_LOCAL3 {$$ = TrCreateLeafNode (PARSEOP_LOCAL3);}
2473 | PARSEOP_LOCAL4 {$$ = TrCreateLeafNode (PARSEOP_LOCAL4);}
2474 | PARSEOP_LOCAL5 {$$ = TrCreateLeafNode (PARSEOP_LOCAL5);}
2475 | PARSEOP_LOCAL6 {$$ = TrCreateLeafNode (PARSEOP_LOCAL6);}
2476 | PARSEOP_LOCAL7 {$$ = TrCreateLeafNode (PARSEOP_LOCAL7);}
2477 ;

2479 DebugTerm
2480 : PARSEOP_DEBUG {$$ = TrCreateLeafNode (PARSEOP_DEBUG);}
2481 ;

2484 ByteConst
2485 : Integer {$$ = TrUpdateNode (PARSEOP_BYTECONST, $1);}
2486 ;

2488 WordConst
2489 : Integer {$$ = TrUpdateNode (PARSEOP_WORDCONST, $1);}
2490 ;

2492 DWordConst
2493 : Integer {$$ = TrUpdateNode (PARSEOP_DWORDCONST, $1);
2494 ;

2496 QWordConst
2497 : Integer {$$ = TrUpdateNode (PARSEOP_QWORDCONST, $1);
2498 ;

2500 Integer
2501 : PARSEOP_INTEGER {$$ = TrCreateValuedLeafNode (PARSEOP_INTEGE
2502 ;

new/usr/src/common/acpica/compiler/aslcompiler.y 39

2504 String
2505 : PARSEOP_STRING_LITERAL {$$ = TrCreateValuedLeafNode (PARSEOP_STRING
2506 ;

2508 ConstTerm
2509 : ConstExprTerm {}
2510 | PARSEOP_REVISION {$$ = TrCreateLeafNode (PARSEOP_REVISION);}
2511 ;

2513 ConstExprTerm
2514 : PARSEOP_ZERO {$$ = TrCreateValuedLeafNode (PARSEOP_ZERO,
2515 | PARSEOP_ONE {$$ = TrCreateValuedLeafNode (PARSEOP_ONE, 1
2516 | PARSEOP_ONES {$$ = TrCreateValuedLeafNode (PARSEOP_ONES,
2517 | PARSEOP___DATE__ {$$ = TrCreateConstantLeafNode (PARSEOP___DA
2518 | PARSEOP___FILE__ {$$ = TrCreateConstantLeafNode (PARSEOP___FI
2519 | PARSEOP___LINE__ {$$ = TrCreateConstantLeafNode (PARSEOP___LI
2520 | PARSEOP___PATH__ {$$ = TrCreateConstantLeafNode (PARSEOP___PA
2521 ;

2523 /*
2524 * The NODE_COMPILE_TIME_CONST flag in the following constant expressions
2525 * enables compile-time constant folding to reduce the Type3Opcodes/Type2Integer
2526 * to simple integers. It is an error if these types of expressions cannot be
2527 * reduced, since the AML grammar for ****ConstExpr requires a simple constant.
2528 * Note: The required byte length of the constant is passed through to the
2529 * constant folding code in the node AmlLength field.
2530 */
2531 ByteConstExpr
2532 : Type3Opcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_
2533 | Type2IntegerOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_
2534 | ConstExprTerm {$$ = TrUpdateNode (PARSEOP_BYTECONST, $1);}
2535 | ByteConst {}
2536 ;

2538 WordConstExpr
2539 : Type3Opcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_
2540 | Type2IntegerOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_
2541 | ConstExprTerm {$$ = TrUpdateNode (PARSEOP_WORDCONST, $1);}
2542 | WordConst {}
2543 ;

2545 DWordConstExpr
2546 : Type3Opcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_
2547 | Type2IntegerOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_
2548 | ConstExprTerm {$$ = TrUpdateNode (PARSEOP_DWORDCONST, $1);
2549 | DWordConst {}
2550 ;

2552 QWordConstExpr
2553 : Type3Opcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_
2554 | Type2IntegerOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_
2555 | ConstExprTerm {$$ = TrUpdateNode (PARSEOP_QWORDCONST, $1);
2556 | QWordConst {}
2557 ;

2559 /* OptionalCount must appear before ByteList or an incorrect reduction will resu

2561 OptionalCount
2562 : {$$ = TrCreateLeafNode (PARSEOP_ONES);}
2563 | ’,’ {$$ = TrCreateLeafNode (PARSEOP_ONES);}
2564 | ’,’ TermArg {$$ = $2;}
2565 ;

2567 BufferTerm
2568 : PARSEOP_BUFFER ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_BUFFER);}

new/usr/src/common/acpica/compiler/aslcompiler.y 40

2569 OptionalTermArg
2570 ’)’ ’{’
2571 BufferTermData ’}’ {$$ = TrLinkChildren ($<n>3,2,$4,$7);}
2572 | PARSEOP_BUFFER ’(’
2573 error ’)’ {$$ = AslDoError(); yyclearin;}
2574 ;

2576 BufferTermData
2577 : ByteList {}
2578 | StringData {}
2579 ;

2581 ByteList
2582 : {$$ = NULL;}
2583 | ByteConstExpr
2584 | ByteList ’,’ /* Allows a trailing comma at list end */
2585 | ByteList ’,’
2586 ByteConstExpr {$$ = TrLinkPeerNode ($1,$3);}
2587 ;

2589 DataBufferTerm
2590 : PARSEOP_DATABUFFER ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_DATABUFFE
2591 OptionalWordConst
2592 ’)’ ’{’
2593 ByteList ’}’ {$$ = TrLinkChildren ($<n>3,2,$4,$7);}
2594 | PARSEOP_DATABUFFER ’(’
2595 error ’)’ {$$ = AslDoError(); yyclearin;}
2596 ;

2598 DWordList
2599 : {$$ = NULL;}
2600 | DWordConstExpr
2601 | DWordList ’,’ /* Allows a trailing comma at list end */
2602 | DWordList ’,’
2603 DWordConstExpr {$$ = TrLinkPeerNode ($1,$3);}
2604 ;

2606 PackageTerm
2607 : PARSEOP_PACKAGE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_VAR_PACKA
2608 VarPackageLengthTerm
2609 ’)’ ’{’
2610 PackageList ’}’ {$$ = TrLinkChildren ($<n>3,2,$4,$7);}
2611 | PARSEOP_PACKAGE ’(’
2612 error ’)’ {$$ = AslDoError(); yyclearin;}
2613 ;

2615 PackageList
2616 : {$$ = NULL;}
2617 | PackageElement
2618 | PackageList ’,’ /* Allows a trailing comma at list end */
2619 | PackageList ’,’
2620 PackageElement {$$ = TrLinkPeerNode ($1,$3);}
2621 ;

2623 PackageElement
2624 : DataObject {}
2625 | NameString {}
2626 ;

2628 VarPackageLengthTerm
2629 : {$$ = TrCreateLeafNode (PARSEOP_DEFAULT_ARG)
2630 | TermArg {$$ = $1;}
2631 ;

2634 /******* Macros ***/

new/usr/src/common/acpica/compiler/aslcompiler.y 41

2637 EISAIDTerm
2638 : PARSEOP_EISAID ’(’
2639 StringData ’)’ {$$ = TrUpdateNode (PARSEOP_EISAID, $3);}
2640 | PARSEOP_EISAID ’(’
2641 error ’)’ {$$ = AslDoError(); yyclearin;}
2642 ;

2644 UnicodeTerm
2645 : PARSEOP_UNICODE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_UNICODE);
2646 StringData
2647 ’)’ {$$ = TrLinkChildren ($<n>3,2,0,$4);}
2648 | PARSEOP_UNICODE ’(’
2649 error ’)’ {$$ = AslDoError(); yyclearin;}
2650 ;

2653 /******* Resources and Memory ***/

2656 /*
2657 * Note: Create two default nodes to allow conversion to a Buffer AML opcode
2658 * Also, insert the EndTag at the end of the template.
2659 */
2660 ResourceTemplateTerm
2661 : PARSEOP_RESOURCETEMPLATE ’(’ ’)’
2662 ’{’
2663 ResourceMacroList ’}’ {$$ = TrCreateNode (PARSEOP_RESOURCETEMPLATE
2664 TrCreateLeafNode (PARSEOP_DEFAULT_ARG)
2665 TrCreateLeafNode (PARSEOP_DEFAULT_ARG)
2666 $5,
2667 TrCreateLeafNode (PARSEOP_ENDTAG));}
2668 ;

2670 ResourceMacroList
2671 : {$$ = NULL;}
2672 | ResourceMacroList
2673 ResourceMacroTerm {$$ = TrLinkPeerNode ($1,$2);}
2674 ;

2676 ResourceMacroTerm
2677 : DMATerm {}
2678 | DWordIOTerm {}
2679 | DWordMemoryTerm {}
2680 | DWordSpaceTerm {}
2681 | EndDependentFnTerm {}
2682 | ExtendedIOTerm {}
2683 | ExtendedMemoryTerm {}
2684 | ExtendedSpaceTerm {}
2685 | FixedDmaTerm {}
2686 | FixedIOTerm {}
2687 | GpioIntTerm {}
2688 | GpioIoTerm {}
2689 | I2cSerialBusTerm {}
2690 | InterruptTerm {}
2691 | IOTerm {}
2692 | IRQNoFlagsTerm {}
2693 | IRQTerm {}
2694 | Memory24Term {}
2695 | Memory32FixedTerm {}
2696 | Memory32Term {}
2697 | QWordIOTerm {}
2698 | QWordMemoryTerm {}
2699 | QWordSpaceTerm {}
2700 | RegisterTerm {}

new/usr/src/common/acpica/compiler/aslcompiler.y 42

2701 | SpiSerialBusTerm {}
2702 | StartDependentFnNoPriTerm {}
2703 | StartDependentFnTerm {}
2704 | UartSerialBusTerm {}
2705 | VendorLongTerm {}
2706 | VendorShortTerm {}
2707 | WordBusNumberTerm {}
2708 | WordIOTerm {}
2709 | WordSpaceTerm {}
2710 ;

2712 DMATerm
2713 : PARSEOP_DMA ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_DMA);}
2714 DMATypeKeyword
2715 OptionalBusMasterKeyword
2716 ’,’ XferTypeKeyword
2717 OptionalNameString_Last
2718 ’)’ ’{’
2719 ByteList ’}’ {$$ = TrLinkChildren ($<n>3,5,$4,$5,$7,$8,$1
2720 | PARSEOP_DMA ’(’
2721 error ’)’ {$$ = AslDoError(); yyclearin;}
2722 ;

2724 DWordIOTerm
2725 : PARSEOP_DWORDIO ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_DWORDIO);
2726 OptionalResourceType_First
2727 OptionalMinType
2728 OptionalMaxType
2729 OptionalDecodeType
2730 OptionalRangeType
2731 ’,’ DWordConstExpr
2732 ’,’ DWordConstExpr
2733 ’,’ DWordConstExpr
2734 ’,’ DWordConstExpr
2735 ’,’ DWordConstExpr
2736 OptionalByteConstExpr
2737 OptionalStringData
2738 OptionalNameString
2739 OptionalType
2740 OptionalTranslationType_Last
2741 ’)’ {$$ = TrLinkChildren ($<n>3,15,$4,$5,$6,$7,$
2742 | PARSEOP_DWORDIO ’(’
2743 error ’)’ {$$ = AslDoError(); yyclearin;}
2744 ;

2746 DWordMemoryTerm
2747 : PARSEOP_DWORDMEMORY ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_DWORDMEMO
2748 OptionalResourceType_First
2749 OptionalDecodeType
2750 OptionalMinType
2751 OptionalMaxType
2752 OptionalMemType
2753 ’,’ OptionalReadWriteKeyword
2754 ’,’ DWordConstExpr
2755 ’,’ DWordConstExpr
2756 ’,’ DWordConstExpr
2757 ’,’ DWordConstExpr
2758 ’,’ DWordConstExpr
2759 OptionalByteConstExpr
2760 OptionalStringData
2761 OptionalNameString
2762 OptionalAddressRange
2763 OptionalType_Last
2764 ’)’ {$$ = TrLinkChildren ($<n>3,16,$4,$5,$6,$7,$
2765 | PARSEOP_DWORDMEMORY ’(’
2766 error ’)’ {$$ = AslDoError(); yyclearin;}

new/usr/src/common/acpica/compiler/aslcompiler.y 43

2767 ;

2769 DWordSpaceTerm
2770 : PARSEOP_DWORDSPACE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_DWORDSPAC
2771 ByteConstExpr {UtCheckIntegerRange ($4, 0xC0, 0xFF);}
2772 OptionalResourceType
2773 OptionalDecodeType
2774 OptionalMinType
2775 OptionalMaxType
2776 ’,’ ByteConstExpr
2777 ’,’ DWordConstExpr
2778 ’,’ DWordConstExpr
2779 ’,’ DWordConstExpr
2780 ’,’ DWordConstExpr
2781 ’,’ DWordConstExpr
2782 OptionalByteConstExpr
2783 OptionalStringData
2784 OptionalNameString_Last
2785 ’)’ {$$ = TrLinkChildren ($<n>3,14,$4,$6,$7,$8,$
2786 | PARSEOP_DWORDSPACE ’(’
2787 error ’)’ {$$ = AslDoError(); yyclearin;}
2788 ;

2791 EndDependentFnTerm
2792 : PARSEOP_ENDDEPENDENTFN ’(’
2793 ’)’ {$$ = TrCreateLeafNode (PARSEOP_ENDDEPENDENT
2794 | PARSEOP_ENDDEPENDENTFN ’(’
2795 error ’)’ {$$ = AslDoError(); yyclearin;}
2796 ;

2798 ExtendedIOTerm
2799 : PARSEOP_EXTENDEDIO ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_EXTENDEDI
2800 OptionalResourceType_First
2801 OptionalMinType
2802 OptionalMaxType
2803 OptionalDecodeType
2804 OptionalRangeType
2805 ’,’ QWordConstExpr
2806 ’,’ QWordConstExpr
2807 ’,’ QWordConstExpr
2808 ’,’ QWordConstExpr
2809 ’,’ QWordConstExpr
2810 OptionalQWordConstExpr
2811 OptionalNameString
2812 OptionalType
2813 OptionalTranslationType_Last
2814 ’)’ {$$ = TrLinkChildren ($<n>3,14,$4,$5,$6,$7,$
2815 | PARSEOP_EXTENDEDIO ’(’
2816 error ’)’ {$$ = AslDoError(); yyclearin;}
2817 ;

2819 ExtendedMemoryTerm
2820 : PARSEOP_EXTENDEDMEMORY ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_EXTENDEDM
2821 OptionalResourceType_First
2822 OptionalDecodeType
2823 OptionalMinType
2824 OptionalMaxType
2825 OptionalMemType
2826 ’,’ OptionalReadWriteKeyword
2827 ’,’ QWordConstExpr
2828 ’,’ QWordConstExpr
2829 ’,’ QWordConstExpr
2830 ’,’ QWordConstExpr
2831 ’,’ QWordConstExpr
2832 OptionalQWordConstExpr

new/usr/src/common/acpica/compiler/aslcompiler.y 44

2833 OptionalNameString
2834 OptionalAddressRange
2835 OptionalType_Last
2836 ’)’ {$$ = TrLinkChildren ($<n>3,15,$4,$5,$6,$7,$
2837 | PARSEOP_EXTENDEDMEMORY ’(’
2838 error ’)’ {$$ = AslDoError(); yyclearin;}
2839 ;

2841 ExtendedSpaceTerm
2842 : PARSEOP_EXTENDEDSPACE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_EXTENDEDS
2843 ByteConstExpr {UtCheckIntegerRange ($4, 0xC0, 0xFF);}
2844 OptionalResourceType
2845 OptionalDecodeType
2846 OptionalMinType
2847 OptionalMaxType
2848 ’,’ ByteConstExpr
2849 ’,’ QWordConstExpr
2850 ’,’ QWordConstExpr
2851 ’,’ QWordConstExpr
2852 ’,’ QWordConstExpr
2853 ’,’ QWordConstExpr
2854 OptionalQWordConstExpr
2855 OptionalNameString_Last
2856 ’)’ {$$ = TrLinkChildren ($<n>3,13,$4,$6,$7,$8,$
2857 | PARSEOP_EXTENDEDSPACE ’(’
2858 error ’)’ {$$ = AslDoError(); yyclearin;}
2859 ;

2861 FixedDmaTerm
2862 : PARSEOP_FIXEDDMA ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_FIXEDDMA)
2863 WordConstExpr /* 04: DMA RequestLines */
2864 ’,’ WordConstExpr /* 06: DMA Channels */
2865 OptionalXferSize /* 07: DMA TransferSize */
2866 OptionalNameString /* 08: DescriptorName */
2867 ’)’ {$$ = TrLinkChildren ($<n>3,4,$4,$6,$7,$8);}
2868 | PARSEOP_FIXEDDMA ’(’
2869 error ’)’ {$$ = AslDoError(); yyclearin;}
2870 ;

2872 FixedIOTerm
2873 : PARSEOP_FIXEDIO ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_FIXEDIO);
2874 WordConstExpr
2875 ’,’ ByteConstExpr
2876 OptionalNameString_Last
2877 ’)’ {$$ = TrLinkChildren ($<n>3,3,$4,$6,$7);}
2878 | PARSEOP_FIXEDIO ’(’
2879 error ’)’ {$$ = AslDoError(); yyclearin;}
2880 ;

2882 GpioIntTerm
2883 : PARSEOP_GPIO_INT ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_GPIO_INT)
2884 InterruptTypeKeyword /* 04: InterruptType */
2885 ’,’ InterruptLevel /* 06: InterruptLevel */
2886 OptionalShareType /* 07: SharedType */
2887 ’,’ PinConfigByte /* 09: PinConfig */
2888 OptionalWordConstExpr /* 10: DebounceTimeout */
2889 ’,’ StringData /* 12: ResourceSource */
2890 OptionalByteConstExpr /* 13: ResourceSourceIndex */
2891 OptionalResourceType /* 14: ResourceType */
2892 OptionalNameString /* 15: DescriptorName */
2893 OptionalBuffer_Last /* 16: VendorData */
2894 ’)’ ’{’
2895 DWordConstExpr ’}’ {$$ = TrLinkChildren ($<n>3,11,$4,$6,$7,$9,$
2896 | PARSEOP_GPIO_INT ’(’
2897 error ’)’ {$$ = AslDoError(); yyclearin;}
2898 ;

new/usr/src/common/acpica/compiler/aslcompiler.y 45

2900 GpioIoTerm
2901 : PARSEOP_GPIO_IO ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_GPIO_IO);
2902 OptionalShareType_First /* 04: SharedType */
2903 ’,’ PinConfigByte /* 06: PinConfig */
2904 OptionalWordConstExpr /* 07: DebounceTimeout */
2905 OptionalWordConstExpr /* 08: DriveStrength */
2906 OptionalIoRestriction /* 09: IoRestriction */
2907 ’,’ StringData /* 11: ResourceSource */
2908 OptionalByteConstExpr /* 12: ResourceSourceIndex */
2909 OptionalResourceType /* 13: ResourceType */
2910 OptionalNameString /* 14: DescriptorName */
2911 OptionalBuffer_Last /* 15: VendorData */
2912 ’)’ ’{’
2913 DWordList ’}’ {$$ = TrLinkChildren ($<n>3,11,$4,$6,$7,$8,$
2914 | PARSEOP_GPIO_IO ’(’
2915 error ’)’ {$$ = AslDoError(); yyclearin;}
2916 ;

2918 I2cSerialBusTerm
2919 : PARSEOP_I2C_SERIALBUS ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_I2C_SERIA
2920 WordConstExpr /* 04: SlaveAddress */
2921 OptionalSlaveMode /* 05: SlaveMode */
2922 ’,’ DWordConstExpr /* 07: ConnectionSpeed */
2923 OptionalAddressingMode /* 08: AddressingMode */
2924 ’,’ StringData /* 10: ResourceSource */
2925 OptionalByteConstExpr /* 11: ResourceSourceIndex */
2926 OptionalResourceType /* 12: ResourceType */
2927 OptionalNameString /* 13: DescriptorName */
2928 OptionalBuffer_Last /* 14: VendorData */
2929 ’)’ {$$ = TrLinkChildren ($<n>3,9,$4,$5,$7,$8,$1
2930 | PARSEOP_I2C_SERIALBUS ’(’
2931 error ’)’ {$$ = AslDoError(); yyclearin;}
2932 ;

2934 InterruptTerm
2935 : PARSEOP_INTERRUPT ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_INTERRUPT
2936 OptionalResourceType_First
2937 ’,’ InterruptTypeKeyword
2938 ’,’ InterruptLevel
2939 OptionalShareType
2940 OptionalByteConstExpr
2941 OptionalStringData
2942 OptionalNameString_Last
2943 ’)’ ’{’
2944 DWordList ’}’ {$$ = TrLinkChildren ($<n>3,8,$4,$6,$8,$9,$1
2945 | PARSEOP_INTERRUPT ’(’
2946 error ’)’ {$$ = AslDoError(); yyclearin;}
2947 ;

2949 IOTerm
2950 : PARSEOP_IO ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_IO);}
2951 IODecodeKeyword
2952 ’,’ WordConstExpr
2953 ’,’ WordConstExpr
2954 ’,’ ByteConstExpr
2955 ’,’ ByteConstExpr
2956 OptionalNameString_Last
2957 ’)’ {$$ = TrLinkChildren ($<n>3,6,$4,$6,$8,$10,$
2958 | PARSEOP_IO ’(’
2959 error ’)’ {$$ = AslDoError(); yyclearin;}
2960 ;

2962 IRQNoFlagsTerm
2963 : PARSEOP_IRQNOFLAGS ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_IRQNOFLAG
2964 OptionalNameString_First

new/usr/src/common/acpica/compiler/aslcompiler.y 46

2965 ’)’ ’{’
2966 ByteList ’}’ {$$ = TrLinkChildren ($<n>3,2,$4,$7);}
2967 | PARSEOP_IRQNOFLAGS ’(’
2968 error ’)’ {$$ = AslDoError(); yyclearin;}
2969 ;

2971 IRQTerm
2972 : PARSEOP_IRQ ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_IRQ);}
2973 InterruptTypeKeyword
2974 ’,’ InterruptLevel
2975 OptionalShareType
2976 OptionalNameString_Last
2977 ’)’ ’{’
2978 ByteList ’}’ {$$ = TrLinkChildren ($<n>3,5,$4,$6,$7,$8,$1
2979 | PARSEOP_IRQ ’(’
2980 error ’)’ {$$ = AslDoError(); yyclearin;}
2981 ;

2983 Memory24Term
2984 : PARSEOP_MEMORY24 ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_MEMORY24)
2985 OptionalReadWriteKeyword
2986 ’,’ WordConstExpr
2987 ’,’ WordConstExpr
2988 ’,’ WordConstExpr
2989 ’,’ WordConstExpr
2990 OptionalNameString_Last
2991 ’)’ {$$ = TrLinkChildren ($<n>3,6,$4,$6,$8,$10,$
2992 | PARSEOP_MEMORY24 ’(’
2993 error ’)’ {$$ = AslDoError(); yyclearin;}
2994 ;

2996 Memory32FixedTerm
2997 : PARSEOP_MEMORY32FIXED ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_MEMORY32F
2998 OptionalReadWriteKeyword
2999 ’,’ DWordConstExpr
3000 ’,’ DWordConstExpr
3001 OptionalNameString_Last
3002 ’)’ {$$ = TrLinkChildren ($<n>3,4,$4,$6,$8,$9);}
3003 | PARSEOP_MEMORY32FIXED ’(’
3004 error ’)’ {$$ = AslDoError(); yyclearin;}
3005 ;

3007 Memory32Term
3008 : PARSEOP_MEMORY32 ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_MEMORY32)
3009 OptionalReadWriteKeyword
3010 ’,’ DWordConstExpr
3011 ’,’ DWordConstExpr
3012 ’,’ DWordConstExpr
3013 ’,’ DWordConstExpr
3014 OptionalNameString_Last
3015 ’)’ {$$ = TrLinkChildren ($<n>3,6,$4,$6,$8,$10,$
3016 | PARSEOP_MEMORY32 ’(’
3017 error ’)’ {$$ = AslDoError(); yyclearin;}
3018 ;

3020 QWordIOTerm
3021 : PARSEOP_QWORDIO ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_QWORDIO);
3022 OptionalResourceType_First
3023 OptionalMinType
3024 OptionalMaxType
3025 OptionalDecodeType
3026 OptionalRangeType
3027 ’,’ QWordConstExpr
3028 ’,’ QWordConstExpr
3029 ’,’ QWordConstExpr
3030 ’,’ QWordConstExpr

new/usr/src/common/acpica/compiler/aslcompiler.y 47

3031 ’,’ QWordConstExpr
3032 OptionalByteConstExpr
3033 OptionalStringData
3034 OptionalNameString
3035 OptionalType
3036 OptionalTranslationType_Last
3037 ’)’ {$$ = TrLinkChildren ($<n>3,15,$4,$5,$6,$7,$
3038 | PARSEOP_QWORDIO ’(’
3039 error ’)’ {$$ = AslDoError(); yyclearin;}
3040 ;

3042 QWordMemoryTerm
3043 : PARSEOP_QWORDMEMORY ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_QWORDMEMO
3044 OptionalResourceType_First
3045 OptionalDecodeType
3046 OptionalMinType
3047 OptionalMaxType
3048 OptionalMemType
3049 ’,’ OptionalReadWriteKeyword
3050 ’,’ QWordConstExpr
3051 ’,’ QWordConstExpr
3052 ’,’ QWordConstExpr
3053 ’,’ QWordConstExpr
3054 ’,’ QWordConstExpr
3055 OptionalByteConstExpr
3056 OptionalStringData
3057 OptionalNameString
3058 OptionalAddressRange
3059 OptionalType_Last
3060 ’)’ {$$ = TrLinkChildren ($<n>3,16,$4,$5,$6,$7,$
3061 | PARSEOP_QWORDMEMORY ’(’
3062 error ’)’ {$$ = AslDoError(); yyclearin;}
3063 ;

3065 QWordSpaceTerm
3066 : PARSEOP_QWORDSPACE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_QWORDSPAC
3067 ByteConstExpr {UtCheckIntegerRange ($4, 0xC0, 0xFF);}
3068 OptionalResourceType
3069 OptionalDecodeType
3070 OptionalMinType
3071 OptionalMaxType
3072 ’,’ ByteConstExpr
3073 ’,’ QWordConstExpr
3074 ’,’ QWordConstExpr
3075 ’,’ QWordConstExpr
3076 ’,’ QWordConstExpr
3077 ’,’ QWordConstExpr
3078 OptionalByteConstExpr
3079 OptionalStringData
3080 OptionalNameString_Last
3081 ’)’ {$$ = TrLinkChildren ($<n>3,14,$4,$6,$7,$8,$
3082 | PARSEOP_QWORDSPACE ’(’
3083 error ’)’ {$$ = AslDoError(); yyclearin;}
3084 ;

3086 RegisterTerm
3087 : PARSEOP_REGISTER ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_REGISTER)
3088 AddressSpaceKeyword
3089 ’,’ ByteConstExpr
3090 ’,’ ByteConstExpr
3091 ’,’ QWordConstExpr
3092 OptionalAccessSize
3093 OptionalNameString_Last
3094 ’)’ {$$ = TrLinkChildren ($<n>3,6,$4,$6,$8,$10,$
3095 | PARSEOP_REGISTER ’(’
3096 error ’)’ {$$ = AslDoError(); yyclearin;}

new/usr/src/common/acpica/compiler/aslcompiler.y 48

3097 ;

3099 SpiSerialBusTerm
3100 : PARSEOP_SPI_SERIALBUS ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_SPI_SERIA
3101 WordConstExpr /* 04: DeviceSelection */
3102 OptionalDevicePolarity /* 05: DevicePolarity */
3103 OptionalWireMode /* 06: WireMode */
3104 ’,’ ByteConstExpr /* 08: DataBitLength */
3105 OptionalSlaveMode /* 09: SlaveMode */
3106 ’,’ DWordConstExpr /* 11: ConnectionSpeed */
3107 ’,’ ClockPolarityKeyword /* 13: ClockPolarity */
3108 ’,’ ClockPhaseKeyword /* 15: ClockPhase */
3109 ’,’ StringData /* 17: ResourceSource */
3110 OptionalByteConstExpr /* 18: ResourceSourceIndex */
3111 OptionalResourceType /* 19: ResourceType */
3112 OptionalNameString /* 20: DescriptorName */
3113 OptionalBuffer_Last /* 21: VendorData */
3114 ’)’ {$$ = TrLinkChildren ($<n>3,13,$4,$5,$6,$8,$
3115 | PARSEOP_SPI_SERIALBUS ’(’
3116 error ’)’ {$$ = AslDoError(); yyclearin;}
3117 ;

3119 StartDependentFnNoPriTerm
3120 : PARSEOP_STARTDEPENDENTFN_NOPRI ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_S
3121 ’)’ ’{’
3122 ResourceMacroList ’}’ {$$ = TrLinkChildren ($<n>3,1,$6);}
3123 | PARSEOP_STARTDEPENDENTFN_NOPRI ’(’
3124 error ’)’ {$$ = AslDoError(); yyclearin;}
3125 ;

3127 StartDependentFnTerm
3128 : PARSEOP_STARTDEPENDENTFN ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_STARTDEPE
3129 ByteConstExpr
3130 ’,’ ByteConstExpr
3131 ’)’ ’{’
3132 ResourceMacroList ’}’ {$$ = TrLinkChildren ($<n>3,3,$4,$6,$9);}
3133 | PARSEOP_STARTDEPENDENTFN ’(’
3134 error ’)’ {$$ = AslDoError(); yyclearin;}
3135 ;

3137 UartSerialBusTerm
3138 : PARSEOP_UART_SERIALBUS ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_UART_SERI
3139 DWordConstExpr /* 04: ConnectionSpeed */
3140 OptionalBitsPerByte /* 05: BitsPerByte */
3141 OptionalStopBits /* 06: StopBits */
3142 ’,’ ByteConstExpr /* 08: LinesInUse */
3143 OptionalEndian /* 09: Endianess */
3144 OptionalParityType /* 10: Parity */
3145 OptionalFlowControl /* 11: FlowControl */
3146 ’,’ WordConstExpr /* 13: Rx BufferSize */
3147 ’,’ WordConstExpr /* 15: Tx BufferSize */
3148 ’,’ StringData /* 17: ResourceSource */
3149 OptionalByteConstExpr /* 18: ResourceSourceIndex */
3150 OptionalResourceType /* 19: ResourceType */
3151 OptionalNameString /* 20: DescriptorName */
3152 OptionalBuffer_Last /* 21: VendorData */
3153 ’)’ {$$ = TrLinkChildren ($<n>3,14,$4,$5,$6,$8,$
3154 | PARSEOP_UART_SERIALBUS ’(’
3155 error ’)’ {$$ = AslDoError(); yyclearin;}
3156 ;

3158 VendorLongTerm
3159 : PARSEOP_VENDORLONG ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_VENDORLON
3160 OptionalNameString_First
3161 ’)’ ’{’
3162 ByteList ’}’ {$$ = TrLinkChildren ($<n>3,2,$4,$7);}

new/usr/src/common/acpica/compiler/aslcompiler.y 49

3163 | PARSEOP_VENDORLONG ’(’
3164 error ’)’ {$$ = AslDoError(); yyclearin;}
3165 ;

3167 VendorShortTerm
3168 : PARSEOP_VENDORSHORT ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_VENDORSHO
3169 OptionalNameString_First
3170 ’)’ ’{’
3171 ByteList ’}’ {$$ = TrLinkChildren ($<n>3,2,$4,$7);}
3172 | PARSEOP_VENDORSHORT ’(’
3173 error ’)’ {$$ = AslDoError(); yyclearin;}
3174 ;

3176 WordBusNumberTerm
3177 : PARSEOP_WORDBUSNUMBER ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_WORDBUSNU
3178 OptionalResourceType_First
3179 OptionalMinType
3180 OptionalMaxType
3181 OptionalDecodeType
3182 ’,’ WordConstExpr
3183 ’,’ WordConstExpr
3184 ’,’ WordConstExpr
3185 ’,’ WordConstExpr
3186 ’,’ WordConstExpr
3187 OptionalByteConstExpr
3188 OptionalStringData
3189 OptionalNameString_Last
3190 ’)’ {$$ = TrLinkChildren ($<n>3,12,$4,$5,$6,$7,$
3191 | PARSEOP_WORDBUSNUMBER ’(’
3192 error ’)’ {$$ = AslDoError(); yyclearin;}
3193 ;

3195 WordIOTerm
3196 : PARSEOP_WORDIO ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_WORDIO);}
3197 OptionalResourceType_First
3198 OptionalMinType
3199 OptionalMaxType
3200 OptionalDecodeType
3201 OptionalRangeType
3202 ’,’ WordConstExpr
3203 ’,’ WordConstExpr
3204 ’,’ WordConstExpr
3205 ’,’ WordConstExpr
3206 ’,’ WordConstExpr
3207 OptionalByteConstExpr
3208 OptionalStringData
3209 OptionalNameString
3210 OptionalType
3211 OptionalTranslationType_Last
3212 ’)’ {$$ = TrLinkChildren ($<n>3,15,$4,$5,$6,$7,$
3213 | PARSEOP_WORDIO ’(’
3214 error ’)’ {$$ = AslDoError(); yyclearin;}
3215 ;

3217 WordSpaceTerm
3218 : PARSEOP_WORDSPACE ’(’ {$<n>$ = TrCreateLeafNode (PARSEOP_WORDSPACE
3219 ByteConstExpr {UtCheckIntegerRange ($4, 0xC0, 0xFF);}
3220 OptionalResourceType
3221 OptionalDecodeType
3222 OptionalMinType
3223 OptionalMaxType
3224 ’,’ ByteConstExpr
3225 ’,’ WordConstExpr
3226 ’,’ WordConstExpr
3227 ’,’ WordConstExpr
3228 ’,’ WordConstExpr

new/usr/src/common/acpica/compiler/aslcompiler.y 50

3229 ’,’ WordConstExpr
3230 OptionalByteConstExpr
3231 OptionalStringData
3232 OptionalNameString_Last
3233 ’)’ {$$ = TrLinkChildren ($<n>3,14,$4,$6,$7,$8,$
3234 | PARSEOP_WORDSPACE ’(’
3235 error ’)’ {$$ = AslDoError(); yyclearin;}
3236 ;

3239 /******* Object References ***/

3241 /* Allow IO, DMA, IRQ Resource macro names to also be used as identifiers */

3243 NameString
3244 : NameSeg {}
3245 | PARSEOP_NAMESTRING {$$ = TrCreateValuedLeafNode (PARSEOP_NAMEST
3246 | PARSEOP_IO {$$ = TrCreateValuedLeafNode (PARSEOP_NAMEST
3247 | PARSEOP_DMA {$$ = TrCreateValuedLeafNode (PARSEOP_NAMEST
3248 | PARSEOP_IRQ {$$ = TrCreateValuedLeafNode (PARSEOP_NAMEST
3249 ;

3251 NameSeg
3252 : PARSEOP_NAMESEG {$$ = TrCreateValuedLeafNode (PARSEOP_NAMESE
3253 ;

3256 /******* Helper rules **/

3259 AmlPackageLengthTerm
3260 : Integer {$$ = TrUpdateNode (PARSEOP_PACKAGE_LENGTH,(
3261 ;

3263 NameStringItem
3264 : ’,’ NameString {$$ = $2;}
3265 | ’,’ error {$$ = AslDoError (); yyclearin;}
3266 ;

3268 TermArgItem
3269 : ’,’ TermArg {$$ = $2;}
3270 | ’,’ error {$$ = AslDoError (); yyclearin;}
3271 ;

3273 OptionalBusMasterKeyword
3274 : ’,’ {$$ = TrCreateLeafNode (PARSEOP_
3275 | ’,’ PARSEOP_BUSMASTERTYPE_MASTER {$$ = TrCreateLeafNode (PARSEOP_
3276 | ’,’ PARSEOP_BUSMASTERTYPE_NOTMASTER {$$ = TrCreateLeafNode (PARSEOP_
3277 ;

3279 OptionalAccessAttribTerm
3280 : {$$ = NULL;}
3281 | ’,’ {$$ = NULL;}
3282 | ’,’ ByteConstExpr {$$ = $2;}
3283 | ’,’ AccessAttribKeyword {$$ = $2;}
3284 ;

3286 OptionalAccessSize
3287 : {$$ = TrCreateValuedLeafNode (PARSEOP_BYTECO
3288 | ’,’ {$$ = TrCreateValuedLeafNode (PARSEOP_BYTECO
3289 | ’,’ ByteConstExpr {$$ = $2;}
3290 ;

3292 OptionalAddressingMode
3293 : ’,’ {$$ = NULL;}
3294 | ’,’ AddressingModeKeyword {$$ = $2;}

new/usr/src/common/acpica/compiler/aslcompiler.y 51

3295 ;

3297 OptionalAddressRange
3298 : {$$ = NULL;}
3299 | ’,’ {$$ = NULL;}
3300 | ’,’ AddressKeyword {$$ = $2;}
3301 ;

3303 OptionalBitsPerByte
3304 : ’,’ {$$ = NULL;}
3305 | ’,’ BitsPerByteKeyword {$$ = $2;}
3306 ;

3308 OptionalBuffer_Last
3309 : {$$ = NULL;}
3310 | ’,’ {$$ = NULL;}
3311 | ’,’ DataBufferTerm {$$ = $2;}
3312 ;

3314 OptionalByteConstExpr
3315 : {$$ = NULL;}
3316 | ’,’ {$$ = NULL;}
3317 | ’,’ ByteConstExpr {$$ = $2;}
3318 ;

3320 OptionalDecodeType
3321 : ’,’ {$$ = NULL;}
3322 | ’,’ DecodeKeyword {$$ = $2;}
3323 ;

3325 OptionalDevicePolarity
3326 : ’,’ {$$ = NULL;}
3327 | ’,’ DevicePolarityKeyword {$$ = $2;}
3328 ;

3330 OptionalDWordConstExpr
3331 : {$$ = NULL;}
3332 | ’,’ {$$ = NULL;}
3333 | ’,’ DWordConstExpr {$$ = $2;}
3334 ;

3336 OptionalEndian
3337 : ’,’ {$$ = NULL;}
3338 | ’,’ EndianKeyword {$$ = $2;}
3339 ;

3341 OptionalFlowControl
3342 : ’,’ {$$ = NULL;}
3343 | ’,’ FlowControlKeyword {$$ = $2;}
3344 ;

3346 OptionalIoRestriction
3347 : ’,’ {$$ = NULL;}
3348 | ’,’ IoRestrictionKeyword {$$ = $2;}
3349 ;

3351 OptionalListString
3352 : {$$ = TrCreateValuedLeafNode (PARSEOP_STRING
3353 | ’,’ {$$ = TrCreateValuedLeafNode (PARSEOP_STRING
3354 | ’,’ TermArg {$$ = $2;}
3355 ;

3357 OptionalMaxType
3358 : ’,’ {$$ = NULL;}
3359 | ’,’ MaxKeyword {$$ = $2;}
3360 ;

new/usr/src/common/acpica/compiler/aslcompiler.y 52

3362 OptionalMemType
3363 : ’,’ {$$ = NULL;}
3364 | ’,’ MemTypeKeyword {$$ = $2;}
3365 ;

3367 OptionalMinType
3368 : ’,’ {$$ = NULL;}
3369 | ’,’ MinKeyword {$$ = $2;}
3370 ;

3372 OptionalNameString
3373 : {$$ = NULL;}
3374 | ’,’ {$$ = NULL;}
3375 | ’,’ NameString {$$ = $2;}
3376 ;

3378 OptionalNameString_Last
3379 : {$$ = NULL;}
3380 | ’,’ {$$ = NULL;}
3381 | ’,’ NameString {$$ = $2;}
3382 ;

3384 OptionalNameString_First
3385 : {$$ = TrCreateLeafNode (PARSEOP_ZERO);}
3386 | NameString {$$ = $1;}
3387 ;

3389 OptionalObjectTypeKeyword
3390 : {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE_U
3391 | ’,’ ObjectTypeKeyword {$$ = $2;}
3392 ;

3394 OptionalParityType
3395 : ’,’ {$$ = NULL;}
3396 | ’,’ ParityTypeKeyword {$$ = $2;}
3397 ;

3399 OptionalQWordConstExpr
3400 : {$$ = NULL;}
3401 | ’,’ {$$ = NULL;}
3402 | ’,’ QWordConstExpr {$$ = $2;}
3403 ;

3405 OptionalRangeType
3406 : ’,’ {$$ = NULL;}
3407 | ’,’ RangeTypeKeyword {$$ = $2;}
3408 ;

3410 OptionalReadWriteKeyword
3411 : {$$ = TrCreateLeafNode (PARSEOP_READWRIT
3412 | PARSEOP_READWRITETYPE_BOTH {$$ = TrCreateLeafNode (PARSEOP_READWRIT
3413 | PARSEOP_READWRITETYPE_READONLY {$$ = TrCreateLeafNode (PARSEOP_READWRIT
3414 ;

3416 OptionalReference
3417 : {$$ = TrCreateLeafNode (PARSEOP_ZERO);}
3418 | ’,’ {$$ = TrCreateLeafNode (PARSEOP_ZERO);}
3419 | ’,’ TermArg {$$ = $2;}
3420 ;

3422 OptionalResourceType_First
3423 : {$$ = TrCreateLeafNode (PARSEOP_RESOURCETYPE
3424 | ResourceTypeKeyword {$$ = $1;}
3425 ;

new/usr/src/common/acpica/compiler/aslcompiler.y 53

3427 OptionalResourceType
3428 : {$$ = TrCreateLeafNode (PARSEOP_RESOURCETYPE
3429 | ’,’ {$$ = TrCreateLeafNode (PARSEOP_RESOURCETYPE
3430 | ’,’ ResourceTypeKeyword {$$ = $2;}
3431 ;

3433 OptionalReturnArg
3434 : {$$ = TrSetNodeFlags (TrCreateLeafNode (PARS
3435 | TermArg {$$ = $1;}
3436 ;

3438 OptionalSerializeRuleKeyword
3439 : {$$ = NULL;}
3440 | ’,’ {$$ = NULL;}
3441 | ’,’ SerializeRuleKeyword {$$ = $2;}
3442 ;

3444 OptionalSlaveMode
3445 : ’,’ {$$ = NULL;}
3446 | ’,’ SlaveModeKeyword {$$ = $2;}
3447 ;

3449 OptionalShareType
3450 : {$$ = NULL;}
3451 | ’,’ {$$ = NULL;}
3452 | ’,’ ShareTypeKeyword {$$ = $2;}
3453 ;

3455 OptionalShareType_First
3456 : {$$ = NULL;}
3457 | ShareTypeKeyword {$$ = $1;}
3458 ;

3460 OptionalStopBits
3461 : ’,’ {$$ = NULL;}
3462 | ’,’ StopBitsKeyword {$$ = $2;}
3463 ;

3465 OptionalStringData
3466 : {$$ = NULL;}
3467 | ’,’ {$$ = NULL;}
3468 | ’,’ StringData {$$ = $2;}
3469 ;

3471 OptionalTermArg
3472 : {$$ = NULL;}
3473 | TermArg {$$ = $1;}
3474 ;

3476 OptionalType
3477 : {$$ = NULL;}
3478 | ’,’ {$$ = NULL;}
3479 | ’,’ TypeKeyword {$$ = $2;}
3480 ;

3482 OptionalType_Last
3483 : {$$ = NULL;}
3484 | ’,’ {$$ = NULL;}
3485 | ’,’ TypeKeyword {$$ = $2;}
3486 ;

3488 OptionalTranslationType_Last
3489 : {$$ = NULL;}
3490 | ’,’ {$$ = NULL;}
3491 | ’,’ TranslationKeyword {$$ = $2;}
3492 ;

new/usr/src/common/acpica/compiler/aslcompiler.y 54

3494 OptionalWireMode
3495 : ’,’ {$$ = NULL;}
3496 | ’,’ WireModeKeyword {$$ = $2;}
3497 ;

3499 OptionalWordConst
3500 : {$$ = NULL;}
3501 | WordConst {$$ = $1;}
3502 ;

3504 OptionalWordConstExpr
3505 : ’,’ {$$ = NULL;}
3506 | ’,’ WordConstExpr {$$ = $2;}
3507 ;

3509 OptionalXferSize
3510 : {$$ = TrCreateValuedLeafNode (PARSEOP_XFERSI
3511 | ’,’ {$$ = TrCreateValuedLeafNode (PARSEOP_XFERSI
3512 | ’,’ XferSizeKeyword {$$ = $2;}
3513 ;

3515 %%
3516 /**
3517 *
3518 * Local support functions
3519 *
3520 ***/

3522 int
3523 AslCompilerwrap(void)
3524 {
3525 return (1);
3526 }

3528 /*! [End] no source code translation !*/

3530 void *
3531 AslLocalAllocate (unsigned int Size)
3532 {
3533 void *Mem;

3536 DbgPrint (ASL_PARSE_OUTPUT, "\nAslLocalAllocate: Expanding Stack to %u\n\n",

3538 Mem = ACPI_ALLOCATE_ZEROED (Size);
3539 if (!Mem)
3540 {
3541 AslCommonError (ASL_ERROR, ASL_MSG_MEMORY_ALLOCATION,
3542 Gbl_CurrentLineNumber, Gbl_LogicalLineNumber,
3543 Gbl_InputByteCount, Gbl_CurrentColumn,
3544 Gbl_Files[ASL_FILE_INPUT].Filename, NULL);
3545 exit (1);
3546 }

3548 return (Mem);
3549 }

3551 ACPI_PARSE_OBJECT *
3552 AslDoError (void)
3553 {

3556 return (TrCreateLeafNode (PARSEOP_ERRORNODE));

3558 }

new/usr/src/common/acpica/compiler/aslcompiler.y 55

3561 /***
3562 *
3563 * FUNCTION: UtGetOpName
3564 *
3565 * PARAMETERS: ParseOpcode - Parser keyword ID
3566 *
3567 * RETURN: Pointer to the opcode name
3568 *
3569 * DESCRIPTION: Get the ascii name of the parse opcode
3570 *
3571 **/

3573 char *
3574 UtGetOpName (
3575 UINT32 ParseOpcode)
3576 {
3577 #ifdef ASL_YYTNAME_START
3578 /*
3579 * First entries (ASL_YYTNAME_START) in yytname are special reserved names.
3580 * Ignore first 8 characters of the name
3581 */
3582 return ((char *) yytname
3583 [(ParseOpcode - ASL_FIRST_PARSE_OPCODE) + ASL_YYTNAME_START] + 8);
3584 #else
3585 return ("[Unknown parser generator]");
3586 #endif
3587 }

new/usr/src/common/acpica/compiler/asldefine.h 1

**
 6470 Thu Dec 26 13:48:27 2013
new/usr/src/common/acpica/compiler/asldefine.h
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: asldefine.h - Common defines for the iASL compiler
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #ifndef __ASLDEFINE_H
46 #define __ASLDEFINE_H

49 /*
50 * Compiler versions and names
51 */
52 #define ASL_REVISION ACPI_CA_VERSION
53 #define ASL_COMPILER_NAME "ASL Optimizing Compiler"
54 #define AML_DISASSEMBLER_NAME "AML Disassembler"
55 #define ASL_INVOCATION_NAME "iasl"
56 #define ASL_CREATOR_ID "INTL"

58 #define ASL_COMPLIANCE "Supports ACPI Specification Revision 5.0A"

new/usr/src/common/acpica/compiler/asldefine.h 2

61 /* Configuration constants */

63 #define ASL_MAX_ERROR_COUNT 200
64 #define ASL_NODE_CACHE_SIZE 1024
65 #define ASL_STRING_CACHE_SIZE 32768

67 #define ASL_FIRST_PARSE_OPCODE PARSEOP_ACCESSAS
68 #define ASL_PARSE_OPCODE_BASE PARSEOP_ACCESSAS /* First Lex type */

71 /*
72 * Per-parser-generator configuration. These values are used to cheat and
73 * directly access the bison/yacc token name table (yyname or yytname).
74 * Note: These values are the index in yyname for the first lex token
75 * (PARSEOP_ACCCESSAS).
76 */
77 #if defined (YYBISON)
78 #define ASL_YYTNAME_START 3 /* Bison */
79 #elif defined (YYBYACC)
80 #define ASL_YYTNAME_START 257 /* Berkeley yacc */
81 #endif

84 /*
85 * Macros
86 */
87 #define ASL_RESDESC_OFFSET(m) ACPI_OFFSET (AML_RESOURCE, m)
88 #define ASL_PTR_DIFF(a,b) ((UINT8 *)(b) - (UINT8 *)(a))
89 #define ASL_PTR_ADD(a,b) ((UINT8 *)(a) = ((UINT8 *)(a) + (b)))
90 #define ASL_GET_CHILD_NODE(a) (a)->Asl.Child
91 #define ASL_GET_PEER_NODE(a) (a)->Asl.Next
92 #define OP_TABLE_ENTRY(a,b,c,d) {b,d,a,c}

95 /* Internal AML opcodes */

97 #define AML_RAW_DATA_BYTE (UINT16) 0xAA01 /* write one raw byte */
98 #define AML_RAW_DATA_WORD (UINT16) 0xAA02 /* write 2 raw bytes */
99 #define AML_RAW_DATA_DWORD (UINT16) 0xAA04 /* write 4 raw bytes */
100 #define AML_RAW_DATA_QWORD (UINT16) 0xAA08 /* write 8 raw bytes */
101 #define AML_RAW_DATA_BUFFER (UINT16) 0xAA0B /* raw buffer with length */
102 #define AML_RAW_DATA_CHAIN (UINT16) 0xAA0C /* chain of raw buffers */
103 #define AML_PACKAGE_LENGTH (UINT16) 0xAA10
104 #define AML_UNASSIGNED_OPCODE (UINT16) 0xEEEE
105 #define AML_DEFAULT_ARG_OP (UINT16) 0xDDDD

108 /* filename suffixes for output files */

110 #define FILE_SUFFIX_PREPROCESSOR "i"
111 #define FILE_SUFFIX_AML_CODE "aml"
112 #define FILE_SUFFIX_LISTING "lst"
113 #define FILE_SUFFIX_HEX_DUMP "hex"
114 #define FILE_SUFFIX_DEBUG "txt"
115 #define FILE_SUFFIX_SOURCE "src"
116 #define FILE_SUFFIX_NAMESPACE "nsp"
117 #define FILE_SUFFIX_ASM_SOURCE "asm"
118 #define FILE_SUFFIX_C_SOURCE "c"
119 #define FILE_SUFFIX_DISASSEMBLY "dsl"
120 #define FILE_SUFFIX_ASM_INCLUDE "inc"
121 #define FILE_SUFFIX_C_INCLUDE "h"
122 #define FILE_SUFFIX_ASL_CODE "asl"
123 #define FILE_SUFFIX_C_OFFSET "offset.h"

new/usr/src/common/acpica/compiler/asldefine.h 3

126 /* Types for input files */

128 #define ASL_INPUT_TYPE_BINARY 0
129 #define ASL_INPUT_TYPE_ACPI_TABLE 1
130 #define ASL_INPUT_TYPE_ASCII_ASL 2
131 #define ASL_INPUT_TYPE_ASCII_DATA 3

134 /* Misc */

136 #define ASL_EXTERNAL_METHOD 255
137 #define ASL_ABORT TRUE
138 #define ASL_NO_ABORT FALSE
139 #define ASL_EOF ACPI_UINT32_MAX

142 /* Listings */

144 #define ASL_LISTING_LINE_PREFIX ": "

147 /* Support for reserved method names */

149 #define ACPI_VALID_RESERVED_NAME_MAX 0x80000000
150 #define ACPI_NOT_RESERVED_NAME ACPI_UINT32_MAX
151 #define ACPI_PREDEFINED_NAME (ACPI_UINT32_MAX - 1)
152 #define ACPI_EVENT_RESERVED_NAME (ACPI_UINT32_MAX - 2)
153 #define ACPI_COMPILER_RESERVED_NAME (ACPI_UINT32_MAX - 3)

156 /* String to Integer conversion */

158 #define NEGATIVE 1
159 #define POSITIVE 0

162 /* Helper macros for resource tag creation */

164 #define RsCreateMultiBitField \
165 RsCreateResourceField

167 #define RsCreateBitField(Op, Name, ByteOffset, BitOffset) \
168 RsCreateResourceField (Op, Name, ByteOffset, BitOffset, 1)

170 #define RsCreateByteField(Op, Name, ByteOffset) \
171 RsCreateResourceField (Op, Name, ByteOffset, 0, 8);

173 #define RsCreateWordField(Op, Name, ByteOffset) \
174 RsCreateResourceField (Op, Name, ByteOffset, 0, 16);

176 #define RsCreateDwordField(Op, Name, ByteOffset) \
177 RsCreateResourceField (Op, Name, ByteOffset, 0, 32);

179 #define RsCreateQwordField(Op, Name, ByteOffset) \
180 RsCreateResourceField (Op, Name, ByteOffset, 0, 64);

182 #endif /* ASLDEFINE.H */

new/usr/src/common/acpica/compiler/aslerror.c 1

**
 26638 Thu Dec 26 13:48:27 2013
new/usr/src/common/acpica/compiler/aslerror.c
update to acpica-unix2-20131218
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslerror - Error handling and statistics
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define ASL_EXCEPTIONS
45 #include "aslcompiler.h"

47 #define _COMPONENT ACPI_COMPILER
48 ACPI_MODULE_NAME ("aslerror")

50 /* Local prototypes */

52 static void
53 AeAddToErrorLog (
54 ASL_ERROR_MSG *Enode);

57 /***
58 *

new/usr/src/common/acpica/compiler/aslerror.c 2

59 * FUNCTION: AeClearErrorLog
60 *
61 * PARAMETERS: None
62 *
63 * RETURN: None
64 *
65 * DESCRIPTION: Empty the error list
66 *
67 **/

69 void
70 AeClearErrorLog (
71 void)
72 {
73 ASL_ERROR_MSG *Enode = Gbl_ErrorLog;
74 ASL_ERROR_MSG *Next;

76 /* Walk the error node list */

78 while (Enode)
79 {
80 Next = Enode->Next;
81 ACPI_FREE (Enode);
82 Enode = Next;
83 }

85 Gbl_ErrorLog = NULL;
86 }

89 /***
90 *
91 * FUNCTION: AeAddToErrorLog
92 *
93 * PARAMETERS: Enode - An error node to add to the log
94 *
95 * RETURN: None
96 *
97 * DESCRIPTION: Add a new error node to the error log. The error log is
98 * ordered by the "logical" line number (cumulative line number
99 * including all include files.)
100 *
101 **/

103 static void
104 AeAddToErrorLog (
105 ASL_ERROR_MSG *Enode)
106 {
107 ASL_ERROR_MSG *Next;
108 ASL_ERROR_MSG *Prev;

111 /* If Gbl_ErrorLog is null, this is the first error node */

113 if (!Gbl_ErrorLog)
114 {
115 Gbl_ErrorLog = Enode;
116 return;
117 }

119 /*
120 * Walk error list until we find a line number greater than ours.
121 * List is sorted according to line number.
122 */
123 Prev = NULL;
124 Next = Gbl_ErrorLog;

new/usr/src/common/acpica/compiler/aslerror.c 3

126 while ((Next) &&
127 (Next->LogicalLineNumber <= Enode->LogicalLineNumber))
128 {
129 Prev = Next;
130 Next = Next->Next;
131 }

133 /* Found our place in the list */

135 Enode->Next = Next;

137 if (Prev)
138 {
139 Prev->Next = Enode;
140 }
141 else
142 {
143 Gbl_ErrorLog = Enode;
144 }
145 }

148 /***
149 *
150 * FUNCTION: AePrintException
151 *
152 * PARAMETERS: FileId - ID of output file
153 * Enode - Error node to print
154 * Header - Additional text before each message
155 *
156 * RETURN: None
157 *
158 * DESCRIPTION: Print the contents of an error node.
159 *
160 * NOTE: We don’t use the FlxxxFile I/O functions here because on error
161 * they abort the compiler and call this function! Since we
162 * are reporting errors here, we ignore most output errors and
163 * just try to get out as much as we can.
164 *
165 **/

167 void
168 AePrintException (
169 UINT32 FileId,
170 ASL_ERROR_MSG *Enode,
171 char *Header)
172 {
173 UINT8 SourceByte;
174 int Actual;
175 size_t RActual;
176 UINT32 MsgLength;
177 char *MainMessage;
178 char *ExtraMessage;
179 UINT32 SourceColumn;
180 UINT32 ErrorColumn;
181 FILE *OutputFile;
182 FILE *SourceFile = NULL;
183 long FileSize;
184 BOOLEAN PrematureEOF = FALSE;
185 UINT32 Total = 0;

188 if (Gbl_NoErrors)
189 {
190 return;

new/usr/src/common/acpica/compiler/aslerror.c 4

191 }

193 /*
194 * Only listing files have a header, and remarks/optimizations
195 * are always output
196 */
197 if (!Header)
198 {
199 /* Ignore remarks if requested */

201 switch (Enode->Level)
202 {
203 case ASL_WARNING:
204 case ASL_WARNING2:
205 case ASL_WARNING3:

207 if (!Gbl_DisplayWarnings)
208 {
209 return;
210 }
211 break;

213 case ASL_REMARK:

215 if (!Gbl_DisplayRemarks)
216 {
217 return;
218 }
219 break;

221 case ASL_OPTIMIZATION:

223 if (!Gbl_DisplayOptimizations)
224 {
225 return;
226 }
227 break;

229 default:

231 break;
232 }
233 }

235 /* Get the various required file handles */

237 OutputFile = Gbl_Files[FileId].Handle;

239 if (!Enode->SourceLine)
240 {
241 /* Use the merged header/source file if present, otherwise use input fil

243 SourceFile = Gbl_Files[ASL_FILE_SOURCE_OUTPUT].Handle;
244 if (!SourceFile)
245 {
246 SourceFile = Gbl_Files[ASL_FILE_INPUT].Handle;
247 }

249 if (SourceFile)
250 {
251 /* Determine if the error occurred at source file EOF */

253 fseek (SourceFile, 0, SEEK_END);
254 FileSize = ftell (SourceFile);

256 if ((long) Enode->LogicalByteOffset >= FileSize)

new/usr/src/common/acpica/compiler/aslerror.c 5

257 {
258 PrematureEOF = TRUE;
259 }
260 }
261 }

263 if (Header)
264 {
265 fprintf (OutputFile, "%s", Header);
266 }

268 /* Print filename and line number if present and valid */

270 if (Enode->Filename)
271 {
272 if (Gbl_VerboseErrors)
273 {
274 fprintf (OutputFile, "%-8s", Enode->Filename);

276 if (Enode->LineNumber)
277 {
278 if (Enode->SourceLine)
279 {
280 fprintf (OutputFile, " %6u: %s",
281 Enode->LineNumber, Enode->SourceLine);
282 }
283 else
284 {
285 fprintf (OutputFile, " %6u: ", Enode->LineNumber);

287 /*
288 * If not at EOF, get the corresponding source code line and
289 * display it. Don’t attempt this if we have a premature EOF
290 * condition.
291 */
292 if (!PrematureEOF)
293 {
294 /*
295 * Seek to the offset in the combined source file, read
296 * the source line, and write it to the output.
297 */
298 Actual = fseek (SourceFile, (long) Enode->LogicalByteOff
299 (int) SEEK_SET);
300 if (Actual)
301 {
302 fprintf (OutputFile,
303 "[*** iASL: Seek error on source code temp file
304 Gbl_Files[ASL_FILE_SOURCE_OUTPUT].Filename);
305 }
306 else
307 {
308 RActual = fread (&SourceByte, 1, 1, SourceFile);
309 if (RActual != 1)
310 {
311 fprintf (OutputFile,
312 "[*** iASL: Read error on source code temp f
313 Gbl_Files[ASL_FILE_SOURCE_OUTPUT].Filename);
314 }
315 else
316 {
317 /* Read/write the source line, up to the maximum

319 while (RActual && SourceByte && (SourceByte != ’
320 {
321 if (Total < 256)
322 {

new/usr/src/common/acpica/compiler/aslerror.c 6

323 /* After the max line length, we will ju

325 if (fwrite (&SourceByte, 1, 1, OutputFil
326 {
327 printf ("[*** iASL: Write error on o
328 return;
329 }
330 }
331 else if (Total == 256)
332 {
333 fprintf (OutputFile,
334 "\n[*** iASL: Very long input line,
335 Enode->Column);
336 }

338 RActual = fread (&SourceByte, 1, 1, SourceFi
339 if (RActual != 1)
340 {
341 fprintf (OutputFile,
342 "[*** iASL: Read error on source cod
343 Gbl_Files[ASL_FILE_SOURCE_OUTPUT].Fi
344 return;
345 }
346 Total++;
347 }
348 }
349 }
350 }

352 fprintf (OutputFile, "\n");
353 }
354 }
355 }
356 else
357 {
358 /*
359 * Less verbose version of the error message, enabled via the
360 * -vi switch. The format is compatible with MS Visual Studio.
361 */
362 fprintf (OutputFile, "%s", Enode->Filename);

364 if (Enode->LineNumber)
365 {
366 fprintf (OutputFile, "(%u) : ",
367 Enode->LineNumber);
368 }
369 }
370 }

372 /* NULL message ID, just print the raw message */

374 if (Enode->MessageId == 0)
375 {
376 fprintf (OutputFile, "%s\n", Enode->Message);
377 }
378 else
379 {
380 /* Decode the message ID */

382 if (Gbl_VerboseErrors)
383 {
384 fprintf (OutputFile, "%s %4.4d -",
385 AslErrorLevel[Enode->Level],
386 Enode->MessageId + ((Enode->Level+1) * 1000));
387 }
388 else /* IDE case */

new/usr/src/common/acpica/compiler/aslerror.c 7

389 {
390 fprintf (OutputFile, "%s %4.4d:",
391 AslErrorLevelIde[Enode->Level],
392 Enode->MessageId + ((Enode->Level+1) * 1000));
393 }

395 MainMessage = AslMessages[Enode->MessageId];
396 ExtraMessage = Enode->Message;

398 if (Enode->LineNumber)
399 {
400 /* Main message: try to use string from AslMessages first */

402 if (!MainMessage)
403 {
404 MainMessage = "";
405 }

407 MsgLength = strlen (MainMessage);
408 if (MsgLength == 0)
409 {
410 /* Use the secondary/extra message as main message */

412 MainMessage = Enode->Message;
413 if (!MainMessage)
414 {
415 MainMessage = "";
416 }

418 MsgLength = strlen (MainMessage);
419 ExtraMessage = NULL;
420 }

422 if (Gbl_VerboseErrors && !PrematureEOF)
423 {
424 if (Total >= 256)
425 {
426 fprintf (OutputFile, " %s",
427 MainMessage);
428 }
429 else
430 {
431 SourceColumn = Enode->Column + Enode->FilenameLength + 6 + 2
432 ErrorColumn = ASL_ERROR_LEVEL_LENGTH + 5 + 2 + 1;

434 if ((MsgLength + ErrorColumn) < (SourceColumn - 1))
435 {
436 fprintf (OutputFile, "%*s%s",
437 (int) ((SourceColumn - 1) - ErrorColumn),
438 MainMessage, " ^ ");
439 }
440 else
441 {
442 fprintf (OutputFile, "%*s %s",
443 (int) ((SourceColumn - ErrorColumn) + 1), "^",
444 MainMessage);
445 }
446 }
447 }
448 else
449 {
450 fprintf (OutputFile, " %s", MainMessage);
451 }

453 /* Print the extra info message if present */

new/usr/src/common/acpica/compiler/aslerror.c 8

455 if (ExtraMessage)
456 {
457 fprintf (OutputFile, " (%s)", ExtraMessage);
458 }

460 if (PrematureEOF)
461 {
462 fprintf (OutputFile, " and premature End-Of-File");
463 }

465 fprintf (OutputFile, "\n");
466 if (Gbl_VerboseErrors)
467 {
468 fprintf (OutputFile, "\n");
469 }
470 }
471 else
472 {
473 fprintf (OutputFile, " %s %s\n\n", MainMessage, ExtraMessage);
474 }
475 }
476 }

479 /***
480 *
481 * FUNCTION: AePrintErrorLog
482 *
483 * PARAMETERS: FileId - Where to output the error log
484 *
485 * RETURN: None
486 *
487 * DESCRIPTION: Print the entire contents of the error log
488 *
489 **/

491 void
492 AePrintErrorLog (
493 UINT32 FileId)
494 {
495 ASL_ERROR_MSG *Enode = Gbl_ErrorLog;

498 /* Walk the error node list */

500 while (Enode)
501 {
502 AePrintException (FileId, Enode, NULL);
503 Enode = Enode->Next;
504 }
505 }

508 /***
509 *
510 * FUNCTION: AslCommonError2
511 *
512 * PARAMETERS: Level - Seriousness (Warning/error, etc.)
513 * MessageId - Index into global message buffer
514 * LineNumber - Actual file line number
515 * Column - Column in current line
516 * SourceLine - Actual source code line
517 * Filename - source filename
518 * ExtraMessage - additional error message
519 *
520 * RETURN: None

new/usr/src/common/acpica/compiler/aslerror.c 9

521 *
522 * DESCRIPTION: Create a new error node and add it to the error log
523 *
524 **/

526 void
527 AslCommonError2 (
528 UINT8 Level,
529 UINT8 MessageId,
530 UINT32 LineNumber,
531 UINT32 Column,
532 char *SourceLine,
533 char *Filename,
534 char *ExtraMessage)
535 {
536 char *MessageBuffer = NULL;
537 char *LineBuffer;
538 ASL_ERROR_MSG *Enode;

541 Enode = UtLocalCalloc (sizeof (ASL_ERROR_MSG));

543 if (ExtraMessage)
544 {
545 /* Allocate a buffer for the message and a new error node */

547 MessageBuffer = UtLocalCalloc (strlen (ExtraMessage) + 1);

549 /* Keep a copy of the extra message */

551 ACPI_STRCPY (MessageBuffer, ExtraMessage);
552 }

554 LineBuffer = UtLocalCalloc (strlen (SourceLine) + 1);
555 ACPI_STRCPY (LineBuffer, SourceLine);

557 /* Initialize the error node */

559 if (Filename)
560 {
561 Enode->Filename = Filename;
562 Enode->FilenameLength = strlen (Filename);
563 if (Enode->FilenameLength < 6)
564 {
565 Enode->FilenameLength = 6;
566 }
567 }

569 Enode->MessageId = MessageId;
570 Enode->Level = Level;
571 Enode->LineNumber = LineNumber;
572 Enode->LogicalLineNumber = LineNumber;
573 Enode->LogicalByteOffset = 0;
574 Enode->Column = Column;
575 Enode->Message = MessageBuffer;
576 Enode->SourceLine = LineBuffer;

578 /* Add the new node to the error node list */

580 AeAddToErrorLog (Enode);

582 if (Gbl_DebugFlag)
583 {
584 /* stderr is a file, send error to it immediately */

586 AePrintException (ASL_FILE_STDERR, Enode, NULL);

new/usr/src/common/acpica/compiler/aslerror.c 10

587 }

589 Gbl_ExceptionCount[Level]++;
590 }

593 /***
594 *
595 * FUNCTION: AslCommonError
596 *
597 * PARAMETERS: Level - Seriousness (Warning/error, etc.)
598 * MessageId - Index into global message buffer
599 * CurrentLineNumber - Actual file line number
600 * LogicalLineNumber - Cumulative line number
601 * LogicalByteOffset - Byte offset in source file
602 * Column - Column in current line
603 * Filename - source filename
604 * ExtraMessage - additional error message
605 *
606 * RETURN: None
607 *
608 * DESCRIPTION: Create a new error node and add it to the error log
609 *
610 **/

612 void
613 AslCommonError (
614 UINT8 Level,
615 UINT8 MessageId,
616 UINT32 CurrentLineNumber,
617 UINT32 LogicalLineNumber,
618 UINT32 LogicalByteOffset,
619 UINT32 Column,
620 char *Filename,
621 char *ExtraMessage)
622 {
623 char *MessageBuffer = NULL;
624 ASL_ERROR_MSG *Enode;

627 Enode = UtLocalCalloc (sizeof (ASL_ERROR_MSG));

629 if (ExtraMessage)
630 {
631 /* Allocate a buffer for the message and a new error node */

633 MessageBuffer = UtLocalCalloc (strlen (ExtraMessage) + 1);

635 /* Keep a copy of the extra message */

637 ACPI_STRCPY (MessageBuffer, ExtraMessage);
638 }

640 /* Initialize the error node */

642 if (Filename)
643 {
644 Enode->Filename = Filename;
645 Enode->FilenameLength = strlen (Filename);
646 if (Enode->FilenameLength < 6)
647 {
648 Enode->FilenameLength = 6;
649 }
650 }

652 Enode->MessageId = MessageId;

new/usr/src/common/acpica/compiler/aslerror.c 11

653 Enode->Level = Level;
654 Enode->LineNumber = CurrentLineNumber;
655 Enode->LogicalLineNumber = LogicalLineNumber;
656 Enode->LogicalByteOffset = LogicalByteOffset;
657 Enode->Column = Column;
658 Enode->Message = MessageBuffer;
659 Enode->SourceLine = NULL;

661 /* Add the new node to the error node list */

663 AeAddToErrorLog (Enode);

665 if (Gbl_DebugFlag)
666 {
667 /* stderr is a file, send error to it immediately */

669 AePrintException (ASL_FILE_STDERR, Enode, NULL);
670 }

672 Gbl_ExceptionCount[Level]++;
673 if (Gbl_ExceptionCount[ASL_ERROR] > ASL_MAX_ERROR_COUNT)
674 {
675 printf ("\nMaximum error count (%u) exceeded\n", ASL_MAX_ERROR_COUNT);

677 Gbl_SourceLine = 0;
678 Gbl_NextError = Gbl_ErrorLog;
679 CmCleanupAndExit ();
680 exit(1);
681 }

683 return;
684 }

687 /***
688 *
689 * FUNCTION: AslDisableException
690 *
691 * PARAMETERS: MessageIdString - ID to be disabled
692 *
693 * RETURN: Status
694 *
695 * DESCRIPTION: Enter a message ID into the global disabled messages table
696 *
697 **/

699 ACPI_STATUS
700 AslDisableException (
701 char *MessageIdString)
702 {
703 UINT32 MessageId;

706 /* Convert argument to an integer and validate it */

708 MessageId = (UINT32) strtoul (MessageIdString, NULL, 0);

710 if ((MessageId < 2000) || (MessageId > 5999))
711 {
712 printf ("\"%s\" is not a valid warning/remark ID\n",
713 MessageIdString);
714 return (AE_BAD_PARAMETER);
715 }

717 /* Insert value into the global disabled message array */

new/usr/src/common/acpica/compiler/aslerror.c 12

719 if (Gbl_DisabledMessagesIndex >= ASL_MAX_DISABLED_MESSAGES)
720 {
721 printf ("Too many messages have been disabled (max %u)\n",
722 ASL_MAX_DISABLED_MESSAGES);
723 return (AE_LIMIT);
724 }

726 Gbl_DisabledMessages[Gbl_DisabledMessagesIndex] = MessageId;
727 Gbl_DisabledMessagesIndex++;
728 return (AE_OK);
729 }

732 /***
733 *
734 * FUNCTION: AslIsExceptionDisabled
735 *
736 * PARAMETERS: Level - Seriousness (Warning/error, etc.)
737 * MessageId - Index into global message buffer
738 *
739 * RETURN: TRUE if exception/message should be ignored
740 *
741 * DESCRIPTION: Check if the user has specified options such that this
742 * exception should be ignored
743 *
744 **/

746 BOOLEAN
747 AslIsExceptionDisabled (
748 UINT8 Level,
749 UINT8 MessageId)
750 {
751 UINT32 EncodedMessageId;
752 UINT32 i;

755 switch (Level)
756 {
757 case ASL_WARNING2:
758 case ASL_WARNING3:

760 /* Check for global disable via -w1/-w2/-w3 options */

762 if (Level > Gbl_WarningLevel)
763 {
764 return (TRUE);
765 }
766 /* Fall through */

768 case ASL_WARNING:
769 case ASL_REMARK:
770 /*
771 * Ignore this warning/remark if it has been disabled by
772 * the user (-vw option)
773 */
774 EncodedMessageId = MessageId + ((Level + 1) * 1000);
775 for (i = 0; i < Gbl_DisabledMessagesIndex; i++)
776 {
777 /* Simple implementation via fixed array */

779 if (EncodedMessageId == Gbl_DisabledMessages[i])
780 {
781 return (TRUE);
782 }
783 }
784 break;

new/usr/src/common/acpica/compiler/aslerror.c 13

786 default:
787 break;
788 }

790 return (FALSE);
791 }

794 /***
795 *
796 * FUNCTION: AslError
797 *
798 * PARAMETERS: Level - Seriousness (Warning/error, etc.)
799 * MessageId - Index into global message buffer
800 * Op - Parse node where error happened
801 * ExtraMessage - additional error message
802 *
803 * RETURN: None
804 *
805 * DESCRIPTION: Main error reporting routine for the ASL compiler (all code
806 * except the parser.)
807 *
808 **/

810 void
811 AslError (
812 UINT8 Level,
813 UINT8 MessageId,
814 ACPI_PARSE_OBJECT *Op,
815 char *ExtraMessage)
816 {

818 /* Check if user wants to ignore this exception */

820 if (AslIsExceptionDisabled (Level, MessageId))
821 {
822 return;
823 }

825 if (Op)
826 {
827 AslCommonError (Level, MessageId, Op->Asl.LineNumber,
828 Op->Asl.LogicalLineNumber,
829 Op->Asl.LogicalByteOffset,
830 Op->Asl.Column,
831 Op->Asl.Filename, ExtraMessage);
832 }
833 else
834 {
835 AslCommonError (Level, MessageId, 0,
836 0, 0, 0, NULL, ExtraMessage);
837 }
838 }

841 /***
842 *
843 * FUNCTION: AslCoreSubsystemError
844 *
845 * PARAMETERS: Op - Parse node where error happened
846 * Status - The ACPI CA Exception
847 * ExtraMessage - additional error message
848 * Abort - TRUE -> Abort compilation
849 *
850 * RETURN: None

new/usr/src/common/acpica/compiler/aslerror.c 14

851 *
852 * DESCRIPTION: Error reporting routine for exceptions returned by the ACPI
853 * CA core subsystem.
854 *
855 **/

857 void
858 AslCoreSubsystemError (
859 ACPI_PARSE_OBJECT *Op,
860 ACPI_STATUS Status,
861 char *ExtraMessage,
862 BOOLEAN Abort)
863 {

865 sprintf (MsgBuffer, "%s %s", AcpiFormatException (Status), ExtraMessage);

867 if (Op)
868 {
869 AslCommonError (ASL_ERROR, ASL_MSG_CORE_EXCEPTION, Op->Asl.LineNumber,
870 Op->Asl.LogicalLineNumber,
871 Op->Asl.LogicalByteOffset,
872 Op->Asl.Column,
873 Op->Asl.Filename, MsgBuffer);
874 }
875 else
876 {
877 AslCommonError (ASL_ERROR, ASL_MSG_CORE_EXCEPTION, 0,
878 0, 0, 0, NULL, MsgBuffer);
879 }

881 if (Abort)
882 {
883 AslAbort ();
884 }
885 }

888 /***
889 *
890 * FUNCTION: AslCompilererror
891 *
892 * PARAMETERS: CompilerMessage - Error message from the parser
893 *
894 * RETURN: Status (0 for now)
895 *
896 * DESCRIPTION: Report an error situation discovered in a production
897 * NOTE: don’t change the name of this function, it is called
898 * from the auto-generated parser.
899 *
900 **/

902 int
903 AslCompilererror (
904 const char *CompilerMessage)
905 {

907 AslCommonError (ASL_ERROR, ASL_MSG_SYNTAX, Gbl_CurrentLineNumber,
908 Gbl_LogicalLineNumber, Gbl_CurrentLineOffset,
909 Gbl_CurrentColumn, Gbl_Files[ASL_FILE_INPUT].Filename,
910 ACPI_CAST_PTR (char, CompilerMessage));

912 return (0);
913 }

new/usr/src/common/acpica/compiler/aslfileio.c 1

**
 10151 Thu Dec 26 13:48:27 2013
new/usr/src/common/acpica/compiler/aslfileio.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: aslfileio - File I/O support
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aslcompiler.h"

46 #define _COMPONENT ACPI_COMPILER
47 ACPI_MODULE_NAME ("aslfileio")

50 /***
51 *
52 * FUNCTION: AslAbort
53 *
54 * PARAMETERS: None
55 *
56 * RETURN: None
57 *
58 * DESCRIPTION: Dump the error log and abort the compiler. Used for serious
59 * I/O errors.
60 *
61 **/

new/usr/src/common/acpica/compiler/aslfileio.c 2

63 void
64 AslAbort (
65 void)
66 {

68 AePrintErrorLog (ASL_FILE_STDERR);
69 if (Gbl_DebugFlag)
70 {
71 /* Print error summary to stdout also */

73 AePrintErrorLog (ASL_FILE_STDOUT);
74 }

76 exit (1);
77 }

80 /***
81 *
82 * FUNCTION: FlFileError
83 *
84 * PARAMETERS: FileId - Index into file info array
85 * ErrorId - Index into error message array
86 *
87 * RETURN: None
88 *
89 * DESCRIPTION: Decode errno to an error message and add the entire error
90 * to the error log.
91 *
92 **/

94 void
95 FlFileError (
96 UINT32 FileId,
97 UINT8 ErrorId)
98 {

100 sprintf (MsgBuffer, "\"%s\" (%s)", Gbl_Files[FileId].Filename,
101 strerror (errno));
102 AslCommonError (ASL_ERROR, ErrorId, 0, 0, 0, 0, NULL, MsgBuffer);
103 }

106 /***
107 *
108 * FUNCTION: FlOpenFile
109 *
110 * PARAMETERS: FileId - Index into file info array
111 * Filename - file pathname to open
112 * Mode - Open mode for fopen
113 *
114 * RETURN: None
115 *
116 * DESCRIPTION: Open a file.
117 * NOTE: Aborts compiler on any error.
118 *
119 **/

121 void
122 FlOpenFile (
123 UINT32 FileId,
124 char *Filename,
125 char *Mode)
126 {
127 FILE *File;

new/usr/src/common/acpica/compiler/aslfileio.c 3

130 File = fopen (Filename, Mode);
131 if (!File)
132 {
133 FlFileError (FileId, ASL_MSG_OPEN);
134 AslAbort ();
135 }

137 Gbl_Files[FileId].Filename = Filename;
138 Gbl_Files[FileId].Handle = File;
139 }

142 /***
143 *
144 * FUNCTION: FlGetFileSize
145 *
146 * PARAMETERS: FileId - Index into file info array
147 *
148 * RETURN: File Size
149 *
150 * DESCRIPTION: Get current file size. Uses seek-to-EOF. File must be open.
151 *
152 **/

154 UINT32
155 FlGetFileSize (
156 UINT32 FileId)
157 {
158 FILE *fp;
159 UINT32 FileSize;
160 long Offset;

163 fp = Gbl_Files[FileId].Handle;
164 Offset = ftell (fp);

166 fseek (fp, 0, SEEK_END);
167 FileSize = (UINT32) ftell (fp);

169 /* Restore file pointer */

171 fseek (fp, Offset, SEEK_SET);
172 return (FileSize);
173 }

176 /***
177 *
178 * FUNCTION: FlReadFile
179 *
180 * PARAMETERS: FileId - Index into file info array
181 * Buffer - Where to place the data
182 * Length - Amount to read
183 *
184 * RETURN: Status. AE_ERROR indicates EOF.
185 *
186 * DESCRIPTION: Read data from an open file.
187 * NOTE: Aborts compiler on any error.
188 *
189 **/

191 ACPI_STATUS
192 FlReadFile (
193 UINT32 FileId,

new/usr/src/common/acpica/compiler/aslfileio.c 4

194 void *Buffer,
195 UINT32 Length)
196 {
197 UINT32 Actual;

200 /* Read and check for error */

202 Actual = fread (Buffer, 1, Length, Gbl_Files[FileId].Handle);
203 if (Actual < Length)
204 {
205 if (feof (Gbl_Files[FileId].Handle))
206 {
207 /* End-of-file, just return error */

209 return (AE_ERROR);
210 }

212 FlFileError (FileId, ASL_MSG_READ);
213 AslAbort ();
214 }

216 return (AE_OK);
217 }

220 /***
221 *
222 * FUNCTION: FlWriteFile
223 *
224 * PARAMETERS: FileId - Index into file info array
225 * Buffer - Data to write
226 * Length - Amount of data to write
227 *
228 * RETURN: None
229 *
230 * DESCRIPTION: Write data to an open file.
231 * NOTE: Aborts compiler on any error.
232 *
233 **/

235 void
236 FlWriteFile (
237 UINT32 FileId,
238 void *Buffer,
239 UINT32 Length)
240 {
241 UINT32 Actual;

244 /* Write and check for error */

246 Actual = fwrite ((char *) Buffer, 1, Length, Gbl_Files[FileId].Handle);
247 if (Actual != Length)
248 {
249 FlFileError (FileId, ASL_MSG_WRITE);
250 AslAbort ();
251 }
252 }

255 /***
256 *
257 * FUNCTION: FlPrintFile
258 *
259 * PARAMETERS: FileId - Index into file info array

new/usr/src/common/acpica/compiler/aslfileio.c 5

260 * Format - Printf format string
261 * ... - Printf arguments
262 *
263 * RETURN: None
264 *
265 * DESCRIPTION: Formatted write to an open file.
266 * NOTE: Aborts compiler on any error.
267 *
268 **/

270 void
271 FlPrintFile (
272 UINT32 FileId,
273 char *Format,
274 ...)
275 {
276 INT32 Actual;
277 va_list Args;

280 va_start (Args, Format);

282 Actual = vfprintf (Gbl_Files[FileId].Handle, Format, Args);
283 va_end (Args);

285 if (Actual == -1)
286 {
287 FlFileError (FileId, ASL_MSG_WRITE);
288 AslAbort ();
289 }
290 }

293 /***
294 *
295 * FUNCTION: FlSeekFile
296 *
297 * PARAMETERS: FileId - Index into file info array
298 * Offset - Absolute byte offset in file
299 *
300 * RETURN: None
301 *
302 * DESCRIPTION: Seek to absolute offset.
303 * NOTE: Aborts compiler on any error.
304 *
305 **/

307 void
308 FlSeekFile (
309 UINT32 FileId,
310 long Offset)
311 {
312 int Error;

315 Error = fseek (Gbl_Files[FileId].Handle, Offset, SEEK_SET);
316 if (Error)
317 {
318 FlFileError (FileId, ASL_MSG_SEEK);
319 AslAbort ();
320 }
321 }

324 /***
325 *

new/usr/src/common/acpica/compiler/aslfileio.c 6

326 * FUNCTION: FlCloseFile
327 *
328 * PARAMETERS: FileId - Index into file info array
329 *
330 * RETURN: None
331 *
332 * DESCRIPTION: Close an open file. Aborts compiler on error
333 *
334 **/

336 void
337 FlCloseFile (
338 UINT32 FileId)
339 {
340 int Error;

343 if (!Gbl_Files[FileId].Handle)
344 {
345 return;
346 }

348 Error = fclose (Gbl_Files[FileId].Handle);
349 if (Error)
350 {
351 FlFileError (FileId, ASL_MSG_CLOSE);
352 AslAbort ();
353 }

355 Gbl_Files[FileId].Handle = NULL;
356 return;
357 }

360 /***
361 *
362 * FUNCTION: FlDeleteFile
363 *
364 * PARAMETERS: FileId - Index into file info array
365 *
366 * RETURN: None
367 *
368 * DESCRIPTION: Delete a file.
369 *
370 **/

372 void
373 FlDeleteFile (
374 UINT32 FileId)
375 {
376 ASL_FILE_INFO *Info = &Gbl_Files[FileId];

379 if (!Info->Filename)
380 {
381 return;
382 }

384 if (remove (Info->Filename))
385 {
386 printf ("%s (%s file) ",
387 Info->Filename, Info->Description);
388 perror ("Could not delete");
389 }

391 Info->Filename = NULL;

new/usr/src/common/acpica/compiler/aslfileio.c 7

392 return;
393 }

new/usr/src/common/acpica/compiler/aslfiles.c 1

**
 23426 Thu Dec 26 13:48:28 2013
new/usr/src/common/acpica/compiler/aslfiles.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslfiles - File support functions
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aslcompiler.h"
45 #include "acapps.h"

47 #define _COMPONENT ACPI_COMPILER
48 ACPI_MODULE_NAME ("aslfiles")

50 /* Local prototypes */

52 FILE *
53 FlOpenIncludeWithPrefix (
54 char *PrefixDir,
55 char *Filename);

58 #ifdef ACPI_OBSOLETE_FUNCTIONS
59 ACPI_STATUS

new/usr/src/common/acpica/compiler/aslfiles.c 2

60 FlParseInputPathname (
61 char *InputFilename);
62 #endif

65 /***
66 *
67 * FUNCTION: FlSetLineNumber
68 *
69 * PARAMETERS: Op - Parse node for the LINE asl statement
70 *
71 * RETURN: None.
72 *
73 * DESCRIPTION: Set the current line number
74 *
75 **/

77 void
78 FlSetLineNumber (
79 UINT32 LineNumber)
80 {

82 DbgPrint (ASL_PARSE_OUTPUT, "\n#line: New line number %u (old %u)\n",
83 LineNumber, Gbl_LogicalLineNumber);

85 Gbl_CurrentLineNumber = LineNumber;
86 Gbl_LogicalLineNumber = LineNumber;
87 }

90 /***
91 *
92 * FUNCTION: FlSetFilename
93 *
94 * PARAMETERS: Op - Parse node for the LINE asl statement
95 *
96 * RETURN: None.
97 *
98 * DESCRIPTION: Set the current filename
99 *
100 **/

102 void
103 FlSetFilename (
104 char *Filename)
105 {

107 DbgPrint (ASL_PARSE_OUTPUT, "\n#line: New filename %s (old %s)\n",
108 Filename, Gbl_Files[ASL_FILE_INPUT].Filename);

110 Gbl_Files[ASL_FILE_INPUT].Filename = Filename;
111 }

114 /***
115 *
116 * FUNCTION: FlAddIncludeDirectory
117 *
118 * PARAMETERS: Dir - Directory pathname string
119 *
120 * RETURN: None
121 *
122 * DESCRIPTION: Add a directory the list of include prefix directories.
123 *
124 **/

new/usr/src/common/acpica/compiler/aslfiles.c 3

126 void
127 FlAddIncludeDirectory (
128 char *Dir)
129 {
130 ASL_INCLUDE_DIR *NewDir;
131 ASL_INCLUDE_DIR *NextDir;
132 ASL_INCLUDE_DIR *PrevDir = NULL;
133 UINT32 NeedsSeparator = 0;
134 size_t DirLength;

137 DirLength = strlen (Dir);
138 if (!DirLength)
139 {
140 return;
141 }

143 /* Make sure that the pathname ends with a path separator */

145 if ((Dir[DirLength-1] != ’/’) &&
146 (Dir[DirLength-1] != ’\\’))
147 {
148 NeedsSeparator = 1;
149 }

151 NewDir = ACPI_ALLOCATE_ZEROED (sizeof (ASL_INCLUDE_DIR));
152 NewDir->Dir = ACPI_ALLOCATE (DirLength + 1 + NeedsSeparator);
153 strcpy (NewDir->Dir, Dir);
154 if (NeedsSeparator)
155 {
156 strcat (NewDir->Dir, "/");
157 }

159 /*
160 * Preserve command line ordering of -I options by adding new elements
161 * at the end of the list
162 */
163 NextDir = Gbl_IncludeDirList;
164 while (NextDir)
165 {
166 PrevDir = NextDir;
167 NextDir = NextDir->Next;
168 }

170 if (PrevDir)
171 {
172 PrevDir->Next = NewDir;
173 }
174 else
175 {
176 Gbl_IncludeDirList = NewDir;
177 }
178 }

181 /***
182 *
183 * FUNCTION: FlMergePathnames
184 *
185 * PARAMETERS: PrefixDir - Prefix directory pathname. Can be NULL or
186 * a zero length string.
187 * FilePathname - The include filename from the source ASL.
188 *
189 * RETURN: Merged pathname string
190 *
191 * DESCRIPTION: Merge two pathnames that (probably) have common elements, to

new/usr/src/common/acpica/compiler/aslfiles.c 4

192 * arrive at a minimal length string. Merge can occur if the
193 * FilePathname is relative to the PrefixDir.
194 *
195 **/

197 char *
198 FlMergePathnames (
199 char *PrefixDir,
200 char *FilePathname)
201 {
202 char *CommonPath;
203 char *Pathname;
204 char *LastElement;

207 DbgPrint (ASL_PARSE_OUTPUT, "Include: Prefix path - \"%s\"\n"
208 "Include: FilePathname - \"%s\"\n",
209 PrefixDir, FilePathname);

211 /*
212 * If there is no prefix directory or if the file pathname is absolute,
213 * just return the original file pathname
214 */
215 if (!PrefixDir || (!*PrefixDir) ||
216 (*FilePathname == ’/’) ||
217 (FilePathname[1] == ’:’))
218 {
219 Pathname = ACPI_ALLOCATE (strlen (FilePathname) + 1);
220 strcpy (Pathname, FilePathname);
221 goto ConvertBackslashes;
222 }

224 /* Need a local copy of the prefix directory path */

226 CommonPath = ACPI_ALLOCATE (strlen (PrefixDir) + 1);
227 strcpy (CommonPath, PrefixDir);

229 /*
230 * Walk forward through the file path, and simultaneously backward
231 * through the prefix directory path until there are no more
232 * relative references at the start of the file path.
233 */
234 while (*FilePathname && (!strncmp (FilePathname, "../", 3)))
235 {
236 /* Remove last element of the prefix directory path */

238 LastElement = strrchr (CommonPath, ’/’);
239 if (!LastElement)
240 {
241 goto ConcatenatePaths;
242 }

244 *LastElement = 0; /* Terminate CommonPath string */
245 FilePathname += 3; /* Point to next path element */
246 }

248 /*
249 * Remove the last element of the prefix directory path (it is the same as
250 * the first element of the file pathname), and build the final merged
251 * pathname.
252 */
253 LastElement = strrchr (CommonPath, ’/’);
254 if (LastElement)
255 {
256 *LastElement = 0;
257 }

new/usr/src/common/acpica/compiler/aslfiles.c 5

259 /* Build the final merged pathname */

261 ConcatenatePaths:
262 Pathname = ACPI_ALLOCATE_ZEROED (strlen (CommonPath) + strlen (FilePathname)
263 if (LastElement && *CommonPath)
264 {
265 strcpy (Pathname, CommonPath);
266 strcat (Pathname, "/");
267 }
268 strcat (Pathname, FilePathname);
269 ACPI_FREE (CommonPath);

271 /* Convert all backslashes to normal slashes */

273 ConvertBackslashes:
274 UtConvertBackslashes (Pathname);

276 DbgPrint (ASL_PARSE_OUTPUT, "Include: Merged Pathname - \"%s\"\n",
277 Pathname);
278 return (Pathname);
279 }

282 /***
283 *
284 * FUNCTION: FlOpenIncludeWithPrefix
285 *
286 * PARAMETERS: PrefixDir - Prefix directory pathname. Can be a zero
287 * length string.
288 * Filename - The include filename from the source ASL.
289 *
290 * RETURN: Valid file descriptor if successful. Null otherwise.
291 *
292 * DESCRIPTION: Open an include file and push it on the input file stack.
293 *
294 **/

296 FILE *
297 FlOpenIncludeWithPrefix (
298 char *PrefixDir,
299 char *Filename)
300 {
301 FILE *IncludeFile;
302 char *Pathname;

305 /* Build the full pathname to the file */

307 Pathname = FlMergePathnames (PrefixDir, Filename);

309 DbgPrint (ASL_PARSE_OUTPUT, "Include: Opening file - \"%s\"\n\n",
310 Pathname);

312 /* Attempt to open the file, push if successful */

314 IncludeFile = fopen (Pathname, "r");
315 if (!IncludeFile)
316 {
317 fprintf (stderr, "Could not open include file %s\n", Pathname);
318 ACPI_FREE (Pathname);
319 return (NULL);
320 }

322 /* Push the include file on the open input file stack */

new/usr/src/common/acpica/compiler/aslfiles.c 6

324 AslPushInputFileStack (IncludeFile, Pathname);
325 return (IncludeFile);
326 }

329 /***
330 *
331 * FUNCTION: FlOpenIncludeFile
332 *
333 * PARAMETERS: Op - Parse node for the INCLUDE ASL statement
334 *
335 * RETURN: None.
336 *
337 * DESCRIPTION: Open an include file and push it on the input file stack.
338 *
339 **/

341 void
342 FlOpenIncludeFile (
343 ACPI_PARSE_OBJECT *Op)
344 {
345 FILE *IncludeFile;
346 ASL_INCLUDE_DIR *NextDir;

349 /* Op must be valid */

351 if (!Op)
352 {
353 AslCommonError (ASL_ERROR, ASL_MSG_INCLUDE_FILE_OPEN,
354 Gbl_CurrentLineNumber, Gbl_LogicalLineNumber,
355 Gbl_InputByteCount, Gbl_CurrentColumn,
356 Gbl_Files[ASL_FILE_INPUT].Filename, " - Null parse node");

358 return;
359 }

361 /*
362 * Flush out the "include ()" statement on this line, start
363 * the actual include file on the next line
364 */
365 AslResetCurrentLineBuffer ();
366 FlPrintFile (ASL_FILE_SOURCE_OUTPUT, "\n");
367 Gbl_CurrentLineOffset++;

370 /* Attempt to open the include file */

372 /* If the file specifies an absolute path, just open it */

374 if ((Op->Asl.Value.String[0] == ’/’) ||
375 (Op->Asl.Value.String[0] == ’\\’) ||
376 (Op->Asl.Value.String[1] == ’:’))
377 {
378 IncludeFile = FlOpenIncludeWithPrefix ("", Op->Asl.Value.String);
379 if (!IncludeFile)
380 {
381 goto ErrorExit;
382 }
383 return;
384 }

386 /*
387 * The include filename is not an absolute path.
388 *
389 * First, search for the file within the "local" directory -- meaning

new/usr/src/common/acpica/compiler/aslfiles.c 7

390 * the same directory that contains the source file.
391 *
392 * Construct the file pathname from the global directory name.
393 */
394 IncludeFile = FlOpenIncludeWithPrefix (Gbl_DirectoryPath, Op->Asl.Value.Stri
395 if (IncludeFile)
396 {
397 return;
398 }

400 /*
401 * Second, search for the file within the (possibly multiple) directories
402 * specified by the -I option on the command line.
403 */
404 NextDir = Gbl_IncludeDirList;
405 while (NextDir)
406 {
407 IncludeFile = FlOpenIncludeWithPrefix (NextDir->Dir, Op->Asl.Value.Strin
408 if (IncludeFile)
409 {
410 return;
411 }

413 NextDir = NextDir->Next;
414 }

416 /* We could not open the include file after trying very hard */

418 ErrorExit:
419 sprintf (MsgBuffer, "%s, %s", Op->Asl.Value.String, strerror (errno));
420 AslError (ASL_ERROR, ASL_MSG_INCLUDE_FILE_OPEN, Op, MsgBuffer);
421 }

424 /***
425 *
426 * FUNCTION: FlOpenInputFile
427 *
428 * PARAMETERS: InputFilename - The user-specified ASL source file to be
429 * compiled
430 *
431 * RETURN: Status
432 *
433 * DESCRIPTION: Open the specified input file, and save the directory path to
434 * the file so that include files can be opened in
435 * the same directory.
436 *
437 **/

439 ACPI_STATUS
440 FlOpenInputFile (
441 char *InputFilename)
442 {

444 /* Open the input ASL file, text mode */

446 FlOpenFile (ASL_FILE_INPUT, InputFilename, "rt");
447 AslCompilerin = Gbl_Files[ASL_FILE_INPUT].Handle;

449 return (AE_OK);
450 }

453 /***
454 *
455 * FUNCTION: FlOpenAmlOutputFile

new/usr/src/common/acpica/compiler/aslfiles.c 8

456 *
457 * PARAMETERS: FilenamePrefix - The user-specified ASL source file
458 *
459 * RETURN: Status
460 *
461 * DESCRIPTION: Create the output filename (*.AML) and open the file. The file
462 * is created in the same directory as the parent input file.
463 *
464 **/

466 ACPI_STATUS
467 FlOpenAmlOutputFile (
468 char *FilenamePrefix)
469 {
470 char *Filename;

473 /* Output filename usually comes from the ASL itself */

475 Filename = Gbl_Files[ASL_FILE_AML_OUTPUT].Filename;
476 if (!Filename)
477 {
478 /* Create the output AML filename */

480 Filename = FlGenerateFilename (FilenamePrefix, FILE_SUFFIX_AML_CODE);
481 if (!Filename)
482 {
483 AslCommonError (ASL_ERROR, ASL_MSG_OUTPUT_FILENAME,
484 0, 0, 0, 0, NULL, NULL);
485 return (AE_ERROR);
486 }
487 }

489 /* Open the output AML file in binary mode */

491 FlOpenFile (ASL_FILE_AML_OUTPUT, Filename, "w+b");
492 return (AE_OK);
493 }

496 /***
497 *
498 * FUNCTION: FlOpenMiscOutputFiles
499 *
500 * PARAMETERS: FilenamePrefix - The user-specified ASL source file
501 *
502 * RETURN: Status
503 *
504 * DESCRIPTION: Create and open the various output files needed, depending on
505 * the command line options
506 *
507 **/

509 ACPI_STATUS
510 FlOpenMiscOutputFiles (
511 char *FilenamePrefix)
512 {
513 char *Filename;

516 /* All done for disassembler */

518 if (Gbl_FileType == ASL_INPUT_TYPE_ACPI_TABLE)
519 {
520 return (AE_OK);
521 }

new/usr/src/common/acpica/compiler/aslfiles.c 9

523 /* Create/Open a hex output file if asked */

525 if (Gbl_HexOutputFlag)
526 {
527 Filename = FlGenerateFilename (FilenamePrefix, FILE_SUFFIX_HEX_DUMP);
528 if (!Filename)
529 {
530 AslCommonError (ASL_ERROR, ASL_MSG_LISTING_FILENAME,
531 0, 0, 0, 0, NULL, NULL);
532 return (AE_ERROR);
533 }

535 /* Open the hex file, text mode */

537 FlOpenFile (ASL_FILE_HEX_OUTPUT, Filename, "w+t");

539 AslCompilerSignon (ASL_FILE_HEX_OUTPUT);
540 AslCompilerFileHeader (ASL_FILE_HEX_OUTPUT);
541 }

543 /* Create/Open a debug output file if asked */

545 if (Gbl_DebugFlag)
546 {
547 Filename = FlGenerateFilename (FilenamePrefix, FILE_SUFFIX_DEBUG);
548 if (!Filename)
549 {
550 AslCommonError (ASL_ERROR, ASL_MSG_DEBUG_FILENAME,
551 0, 0, 0, 0, NULL, NULL);
552 return (AE_ERROR);
553 }

555 /* Open the debug file as STDERR, text mode */

557 /* TBD: hide this behind a FlReopenFile function */

559 Gbl_Files[ASL_FILE_DEBUG_OUTPUT].Filename = Filename;
560 Gbl_Files[ASL_FILE_DEBUG_OUTPUT].Handle =
561 freopen (Filename, "w+t", stderr);

563 if (!Gbl_Files[ASL_FILE_DEBUG_OUTPUT].Handle)
564 {
565 AslCommonError (ASL_ERROR, ASL_MSG_DEBUG_FILENAME,
566 0, 0, 0, 0, NULL, NULL);
567 return (AE_ERROR);
568 }

570 AslCompilerSignon (ASL_FILE_DEBUG_OUTPUT);
571 AslCompilerFileHeader (ASL_FILE_DEBUG_OUTPUT);
572 }

574 /* Create/Open a listing output file if asked */

576 if (Gbl_ListingFlag)
577 {
578 Filename = FlGenerateFilename (FilenamePrefix, FILE_SUFFIX_LISTING);
579 if (!Filename)
580 {
581 AslCommonError (ASL_ERROR, ASL_MSG_LISTING_FILENAME,
582 0, 0, 0, 0, NULL, NULL);
583 return (AE_ERROR);
584 }

586 /* Open the listing file, text mode */

new/usr/src/common/acpica/compiler/aslfiles.c 10

588 FlOpenFile (ASL_FILE_LISTING_OUTPUT, Filename, "w+t");

590 AslCompilerSignon (ASL_FILE_LISTING_OUTPUT);
591 AslCompilerFileHeader (ASL_FILE_LISTING_OUTPUT);
592 }

594 /* Create the preprocessor output file if preprocessor enabled */

596 if (Gbl_PreprocessFlag)
597 {
598 Filename = FlGenerateFilename (FilenamePrefix, FILE_SUFFIX_PREPROCESSOR)
599 if (!Filename)
600 {
601 AslCommonError (ASL_ERROR, ASL_MSG_PREPROCESSOR_FILENAME,
602 0, 0, 0, 0, NULL, NULL);
603 return (AE_ERROR);
604 }

606 FlOpenFile (ASL_FILE_PREPROCESSOR, Filename, "w+t");
607 }

609 /* All done for data table compiler */

611 if (Gbl_FileType == ASL_INPUT_TYPE_ASCII_DATA)
612 {
613 return (AE_OK);
614 }

616 /* Create/Open a combined source output file */

618 Filename = FlGenerateFilename (FilenamePrefix, FILE_SUFFIX_SOURCE);
619 if (!Filename)
620 {
621 AslCommonError (ASL_ERROR, ASL_MSG_LISTING_FILENAME,
622 0, 0, 0, 0, NULL, NULL);
623 return (AE_ERROR);
624 }

626 /*
627 * Open the source output file, binary mode (so that LF does not get
628 * expanded to CR/LF on some systems, messing up our seek
629 * calculations.)
630 */
631 FlOpenFile (ASL_FILE_SOURCE_OUTPUT, Filename, "w+b");

633 /*
634 // TBD: TEMP
635 // AslCompilerin = Gbl_Files[ASL_FILE_SOURCE_OUTPUT].Handle;
636 */
637 /* Create/Open a assembly code source output file if asked */

639 if (Gbl_AsmOutputFlag)
640 {
641 Filename = FlGenerateFilename (FilenamePrefix, FILE_SUFFIX_ASM_SOURCE);
642 if (!Filename)
643 {
644 AslCommonError (ASL_ERROR, ASL_MSG_LISTING_FILENAME,
645 0, 0, 0, 0, NULL, NULL);
646 return (AE_ERROR);
647 }

649 /* Open the assembly code source file, text mode */

651 FlOpenFile (ASL_FILE_ASM_SOURCE_OUTPUT, Filename, "w+t");

653 AslCompilerSignon (ASL_FILE_ASM_SOURCE_OUTPUT);

new/usr/src/common/acpica/compiler/aslfiles.c 11

654 AslCompilerFileHeader (ASL_FILE_ASM_SOURCE_OUTPUT);
655 }

657 /* Create/Open a C code source output file if asked */

659 if (Gbl_C_OutputFlag)
660 {
661 Filename = FlGenerateFilename (FilenamePrefix, FILE_SUFFIX_C_SOURCE);
662 if (!Filename)
663 {
664 AslCommonError (ASL_ERROR, ASL_MSG_LISTING_FILENAME,
665 0, 0, 0, 0, NULL, NULL);
666 return (AE_ERROR);
667 }

669 /* Open the C code source file, text mode */

671 FlOpenFile (ASL_FILE_C_SOURCE_OUTPUT, Filename, "w+t");

673 FlPrintFile (ASL_FILE_C_SOURCE_OUTPUT, "/*\n");
674 AslCompilerSignon (ASL_FILE_C_SOURCE_OUTPUT);
675 AslCompilerFileHeader (ASL_FILE_C_SOURCE_OUTPUT);
676 }

678 /* Create/Open a C code source output file for the offset table if asked */

680 if (Gbl_C_OffsetTableFlag)
681 {
682 Filename = FlGenerateFilename (FilenamePrefix, FILE_SUFFIX_C_OFFSET);
683 if (!Filename)
684 {
685 AslCommonError (ASL_ERROR, ASL_MSG_LISTING_FILENAME,
686 0, 0, 0, 0, NULL, NULL);
687 return (AE_ERROR);
688 }

690 /* Open the C code source file, text mode */

692 FlOpenFile (ASL_FILE_C_OFFSET_OUTPUT, Filename, "w+t");

694 FlPrintFile (ASL_FILE_C_OFFSET_OUTPUT, "/*\n");
695 AslCompilerSignon (ASL_FILE_C_OFFSET_OUTPUT);
696 AslCompilerFileHeader (ASL_FILE_C_OFFSET_OUTPUT);
697 }

699 /* Create/Open a assembly include output file if asked */

701 if (Gbl_AsmIncludeOutputFlag)
702 {
703 Filename = FlGenerateFilename (FilenamePrefix, FILE_SUFFIX_ASM_INCLUDE);
704 if (!Filename)
705 {
706 AslCommonError (ASL_ERROR, ASL_MSG_LISTING_FILENAME,
707 0, 0, 0, 0, NULL, NULL);
708 return (AE_ERROR);
709 }

711 /* Open the assembly include file, text mode */

713 FlOpenFile (ASL_FILE_ASM_INCLUDE_OUTPUT, Filename, "w+t");

715 AslCompilerSignon (ASL_FILE_ASM_INCLUDE_OUTPUT);
716 AslCompilerFileHeader (ASL_FILE_ASM_INCLUDE_OUTPUT);
717 }

719 /* Create/Open a C include output file if asked */

new/usr/src/common/acpica/compiler/aslfiles.c 12

721 if (Gbl_C_IncludeOutputFlag)
722 {
723 Filename = FlGenerateFilename (FilenamePrefix, FILE_SUFFIX_C_INCLUDE);
724 if (!Filename)
725 {
726 AslCommonError (ASL_ERROR, ASL_MSG_LISTING_FILENAME,
727 0, 0, 0, 0, NULL, NULL);
728 return (AE_ERROR);
729 }

731 /* Open the C include file, text mode */

733 FlOpenFile (ASL_FILE_C_INCLUDE_OUTPUT, Filename, "w+t");

735 FlPrintFile (ASL_FILE_C_INCLUDE_OUTPUT, "/*\n");
736 AslCompilerSignon (ASL_FILE_C_INCLUDE_OUTPUT);
737 AslCompilerFileHeader (ASL_FILE_C_INCLUDE_OUTPUT);
738 }

740 /* Create a namespace output file if asked */

742 if (Gbl_NsOutputFlag)
743 {
744 Filename = FlGenerateFilename (FilenamePrefix, FILE_SUFFIX_NAMESPACE);
745 if (!Filename)
746 {
747 AslCommonError (ASL_ERROR, ASL_MSG_LISTING_FILENAME,
748 0, 0, 0, 0, NULL, NULL);
749 return (AE_ERROR);
750 }

752 /* Open the namespace file, text mode */

754 FlOpenFile (ASL_FILE_NAMESPACE_OUTPUT, Filename, "w+t");

756 AslCompilerSignon (ASL_FILE_NAMESPACE_OUTPUT);
757 AslCompilerFileHeader (ASL_FILE_NAMESPACE_OUTPUT);
758 }

760 return (AE_OK);
761 }

764 #ifdef ACPI_OBSOLETE_FUNCTIONS
765 /***
766 *
767 * FUNCTION: FlParseInputPathname
768 *
769 * PARAMETERS: InputFilename - The user-specified ASL source file to be
770 * compiled
771 *
772 * RETURN: Status
773 *
774 * DESCRIPTION: Split the input path into a directory and filename part
775 * 1) Directory part used to open include files
776 * 2) Filename part used to generate output filenames
777 *
778 **/

780 ACPI_STATUS
781 FlParseInputPathname (
782 char *InputFilename)
783 {
784 char *Substring;

new/usr/src/common/acpica/compiler/aslfiles.c 13

787 if (!InputFilename)
788 {
789 return (AE_OK);
790 }

792 /* Get the path to the input filename’s directory */

794 Gbl_DirectoryPath = strdup (InputFilename);
795 if (!Gbl_DirectoryPath)
796 {
797 return (AE_NO_MEMORY);
798 }

800 Substring = strrchr (Gbl_DirectoryPath, ’\\’);
801 if (!Substring)
802 {
803 Substring = strrchr (Gbl_DirectoryPath, ’/’);
804 if (!Substring)
805 {
806 Substring = strrchr (Gbl_DirectoryPath, ’:’);
807 }
808 }

810 if (!Substring)
811 {
812 Gbl_DirectoryPath[0] = 0;
813 if (Gbl_UseDefaultAmlFilename)
814 {
815 Gbl_OutputFilenamePrefix = strdup (InputFilename);
816 }
817 }
818 else
819 {
820 if (Gbl_UseDefaultAmlFilename)
821 {
822 Gbl_OutputFilenamePrefix = strdup (Substring + 1);
823 }
824 *(Substring+1) = 0;
825 }

827 UtConvertBackslashes (Gbl_OutputFilenamePrefix);
828 return (AE_OK);
829 }
830 #endif

new/usr/src/common/acpica/compiler/aslfold.c 1

**
 15815 Thu Dec 26 13:48:28 2013
new/usr/src/common/acpica/compiler/aslfold.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslfold - Constant folding
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"
47 #include "amlcode.h"

49 #include "acdispat.h"
50 #include "acparser.h"

52 #define _COMPONENT ACPI_COMPILER
53 ACPI_MODULE_NAME ("aslfold")

55 /* Local prototypes */

57 static ACPI_STATUS
58 OpcAmlEvaluationWalk1 (
59 ACPI_PARSE_OBJECT *Op,
60 UINT32 Level,

new/usr/src/common/acpica/compiler/aslfold.c 2

61 void *Context);

63 static ACPI_STATUS
64 OpcAmlEvaluationWalk2 (
65 ACPI_PARSE_OBJECT *Op,
66 UINT32 Level,
67 void *Context);

69 static ACPI_STATUS
70 OpcAmlCheckForConstant (
71 ACPI_PARSE_OBJECT *Op,
72 UINT32 Level,
73 void *Context);

75 static void
76 OpcUpdateIntegerNode (
77 ACPI_PARSE_OBJECT *Op,
78 UINT64 Value);

81 /***
82 *
83 * FUNCTION: OpcAmlEvaluationWalk1
84 *
85 * PARAMETERS: ASL_WALK_CALLBACK
86 *
87 * RETURN: Status
88 *
89 * DESCRIPTION: Descending callback for AML execution of constant subtrees
90 *
91 **/

93 static ACPI_STATUS
94 OpcAmlEvaluationWalk1 (
95 ACPI_PARSE_OBJECT *Op,
96 UINT32 Level,
97 void *Context)
98 {
99 ACPI_WALK_STATE *WalkState = Context;
100 ACPI_STATUS Status;
101 ACPI_PARSE_OBJECT *OutOp;

104 WalkState->Op = Op;
105 WalkState->Opcode = Op->Common.AmlOpcode;
106 WalkState->OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);

108 /* Copy child pointer to Arg for compatibility with Interpreter */

110 if (Op->Asl.Child)
111 {
112 Op->Common.Value.Arg = Op->Asl.Child;
113 }

115 /* Call AML dispatcher */

117 Status = AcpiDsExecBeginOp (WalkState, &OutOp);
118 if (ACPI_FAILURE (Status))
119 {
120 AcpiOsPrintf ("Constant interpretation failed - %s\n",
121 AcpiFormatException (Status));
122 }

124 return (Status);
125 }

new/usr/src/common/acpica/compiler/aslfold.c 3

128 /***
129 *
130 * FUNCTION: OpcAmlEvaluationWalk2
131 *
132 * PARAMETERS: ASL_WALK_CALLBACK
133 *
134 * RETURN: Status
135 *
136 * DESCRIPTION: Ascending callback for AML execution of constant subtrees
137 *
138 **/

140 static ACPI_STATUS
141 OpcAmlEvaluationWalk2 (
142 ACPI_PARSE_OBJECT *Op,
143 UINT32 Level,
144 void *Context)
145 {
146 ACPI_WALK_STATE *WalkState = Context;
147 ACPI_STATUS Status;

150 WalkState->Op = Op;
151 WalkState->Opcode = Op->Common.AmlOpcode;
152 WalkState->OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);

154 /* Copy child pointer to Arg for compatibility with Interpreter */

156 if (Op->Asl.Child)
157 {
158 Op->Common.Value.Arg = Op->Asl.Child;
159 }

161 /* Call AML dispatcher */

163 Status = AcpiDsExecEndOp (WalkState);
164 if (ACPI_FAILURE (Status))
165 {
166 AcpiOsPrintf ("Constant interpretation failed - %s\n",
167 AcpiFormatException (Status));
168 }

170 return (Status);
171 }

174 /***
175 *
176 * FUNCTION: OpcAmlCheckForConstant
177 *
178 * PARAMETERS: ASL_WALK_CALLBACK
179 *
180 * RETURN: Status
181 *
182 * DESCRIPTION: Check one Op for a type 3/4/5 AML opcode
183 *
184 **/

186 static ACPI_STATUS
187 OpcAmlCheckForConstant (
188 ACPI_PARSE_OBJECT *Op,
189 UINT32 Level,
190 void *Context)
191 {
192 ACPI_WALK_STATE *WalkState = Context;

new/usr/src/common/acpica/compiler/aslfold.c 4

195 WalkState->Op = Op;
196 WalkState->Opcode = Op->Common.AmlOpcode;
197 WalkState->OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);

199 DbgPrint (ASL_PARSE_OUTPUT, "[%.4d] Opcode: %12.12s ",
200 Op->Asl.LogicalLineNumber, Op->Asl.ParseOpName);

202 /*
203 * These opcodes do not appear in the OpcodeInfo table, but
204 * they represent constants, so abort the constant walk now.
205 */
206 if ((WalkState->Opcode == AML_RAW_DATA_BYTE) ||
207 (WalkState->Opcode == AML_RAW_DATA_WORD) ||
208 (WalkState->Opcode == AML_RAW_DATA_DWORD) ||
209 (WalkState->Opcode == AML_RAW_DATA_QWORD))
210 {
211 WalkState->WalkType = ACPI_WALK_CONST_OPTIONAL;
212 return (AE_TYPE);
213 }

215 if (!(WalkState->OpInfo->Flags & AML_CONSTANT))
216 {
217 /* The opcode is not a Type 3/4/5 opcode */

219 if (Op->Asl.CompileFlags & NODE_IS_TARGET)
220 {
221 DbgPrint (ASL_PARSE_OUTPUT,
222 "**** Valid Target, cannot reduce ****\n");
223 }
224 else
225 {
226 DbgPrint (ASL_PARSE_OUTPUT,
227 "**** Not a Type 3/4/5 opcode ****\n");
228 }

230 if (WalkState->WalkType == ACPI_WALK_CONST_OPTIONAL)
231 {
232 /*
233 * We are looking at at normal expression to see if it can be
234 * reduced. It can’t. No error
235 */
236 return (AE_TYPE);
237 }

239 /*
240 * This is an expression that MUST reduce to a constant, and it
241 * can’t be reduced. This is an error
242 */
243 if (Op->Asl.CompileFlags & NODE_IS_TARGET)
244 {
245 AslError (ASL_ERROR, ASL_MSG_INVALID_TARGET, Op,
246 Op->Asl.ParseOpName);
247 }
248 else
249 {
250 AslError (ASL_ERROR, ASL_MSG_INVALID_CONSTANT_OP, Op,
251 Op->Asl.ParseOpName);
252 }

254 return (AE_TYPE);
255 }

257 /* Debug output */

new/usr/src/common/acpica/compiler/aslfold.c 5

259 DbgPrint (ASL_PARSE_OUTPUT, "TYPE_345");

261 if (Op->Asl.CompileFlags & NODE_IS_TARGET)
262 {
263 DbgPrint (ASL_PARSE_OUTPUT, " TARGET");
264 }
265 if (Op->Asl.CompileFlags & NODE_IS_TERM_ARG)
266 {
267 DbgPrint (ASL_PARSE_OUTPUT, " TERMARG");
268 }

270 DbgPrint (ASL_PARSE_OUTPUT, "\n");
271 return (AE_OK);
272 }

275 /***
276 *
277 * FUNCTION: OpcAmlConstantWalk
278 *
279 * PARAMETERS: ASL_WALK_CALLBACK
280 *
281 * RETURN: Status
282 *
283 * DESCRIPTION: Reduce an Op and its subtree to a constant if possible
284 *
285 **/

287 ACPI_STATUS
288 OpcAmlConstantWalk (
289 ACPI_PARSE_OBJECT *Op,
290 UINT32 Level,
291 void *Context)
292 {
293 ACPI_WALK_STATE *WalkState;
294 ACPI_STATUS Status = AE_OK;
295 ACPI_OPERAND_OBJECT *ObjDesc;
296 ACPI_PARSE_OBJECT *RootOp;
297 ACPI_PARSE_OBJECT *OriginalParentOp;
298 UINT8 WalkType;

301 /*
302 * Only interested in subtrees that could possibly contain
303 * expressions that can be evaluated at this time
304 */
305 if ((!(Op->Asl.CompileFlags & NODE_COMPILE_TIME_CONST)) ||
306 (Op->Asl.CompileFlags & NODE_IS_TARGET))
307 {
308 return (AE_OK);
309 }

311 /* Set the walk type based on the reduction used for this op */

313 if (Op->Asl.CompileFlags & NODE_IS_TERM_ARG)
314 {
315 /* Op is a TermArg, constant folding is merely optional */

317 if (!Gbl_FoldConstants)
318 {
319 return (AE_CTRL_DEPTH);
320 }

322 WalkType = ACPI_WALK_CONST_OPTIONAL;
323 }
324 else

new/usr/src/common/acpica/compiler/aslfold.c 6

325 {
326 /* Op is a DataObject, the expression MUST reduced to a constant */

328 WalkType = ACPI_WALK_CONST_REQUIRED;
329 }

331 /* Create a new walk state */

333 WalkState = AcpiDsCreateWalkState (0, NULL, NULL, NULL);
334 if (!WalkState)
335 {
336 return (AE_NO_MEMORY);
337 }

339 WalkState->NextOp = NULL;
340 WalkState->Params = NULL;
341 WalkState->WalkType = WalkType;
342 WalkState->CallerReturnDesc = &ObjDesc;

344 /*
345 * Examine the entire subtree -- all nodes must be constants
346 * or type 3/4/5 opcodes
347 */
348 Status = TrWalkParseTree (Op, ASL_WALK_VISIT_DOWNWARD,
349 OpcAmlCheckForConstant, NULL, WalkState);

351 /*
352 * Did we find an entire subtree that contains all constants and type 3/4/5
353 * opcodes? (Only AE_OK or AE_TYPE returned from above)
354 */
355 if (Status == AE_TYPE)
356 {
357 /* Subtree cannot be reduced to a constant */

359 if (WalkState->WalkType == ACPI_WALK_CONST_OPTIONAL)
360 {
361 AcpiDsDeleteWalkState (WalkState);
362 return (AE_OK);
363 }

365 /* Don’t descend any further, and use a default "constant" value */

367 Status = AE_CTRL_DEPTH;
368 }
369 else
370 {
371 /* Subtree can be reduced */

373 /* Allocate a new temporary root for this subtree */

375 RootOp = TrAllocateNode (PARSEOP_INTEGER);
376 if (!RootOp)
377 {
378 return (AE_NO_MEMORY);
379 }

381 RootOp->Common.AmlOpcode = AML_INT_EVAL_SUBTREE_OP;

383 OriginalParentOp = Op->Common.Parent;
384 Op->Common.Parent = RootOp;

386 /* Hand off the subtree to the AML interpreter */

388 Status = TrWalkParseTree (Op, ASL_WALK_VISIT_TWICE,
389 OpcAmlEvaluationWalk1, OpcAmlEvaluationWalk2, WalkState);
390 Op->Common.Parent = OriginalParentOp;

new/usr/src/common/acpica/compiler/aslfold.c 7

392 /* TBD: we really *should* release the RootOp node */

394 if (ACPI_SUCCESS (Status))
395 {
396 TotalFolds++;

398 /* Get the final result */

400 Status = AcpiDsResultPop (&ObjDesc, WalkState);
401 }

403 /* Check for error from the ACPICA core */

405 if (ACPI_FAILURE (Status))
406 {
407 AslCoreSubsystemError (Op, Status,
408 "Failure during constant evaluation", FALSE);
409 }
410 }

412 if (ACPI_FAILURE (Status))
413 {
414 /* We could not resolve the subtree for some reason */

416 AslError (ASL_ERROR, ASL_MSG_CONSTANT_EVALUATION, Op,
417 Op->Asl.ParseOpName);

419 /* Set the subtree value to ZERO anyway. Eliminates further errors */

421 OpcUpdateIntegerNode (Op, 0);
422 }
423 else
424 {
425 AslError (ASL_OPTIMIZATION, ASL_MSG_CONSTANT_FOLDED, Op,
426 Op->Asl.ParseOpName);

428 /*
429 * Because we know we executed type 3/4/5 opcodes above, we know that
430 * the result must be either an Integer, String, or Buffer.
431 */
432 switch (ObjDesc->Common.Type)
433 {
434 case ACPI_TYPE_INTEGER:

436 OpcUpdateIntegerNode (Op, ObjDesc->Integer.Value);

438 DbgPrint (ASL_PARSE_OUTPUT,
439 "Constant expression reduced to (%s) %8.8X%8.8X\n",
440 Op->Asl.ParseOpName,
441 ACPI_FORMAT_UINT64 (Op->Common.Value.Integer));
442 break;

444 case ACPI_TYPE_STRING:

446 Op->Asl.ParseOpcode = PARSEOP_STRING_LITERAL;
447 Op->Common.AmlOpcode = AML_STRING_OP;
448 Op->Asl.AmlLength = ACPI_STRLEN (ObjDesc->String.Pointer) + 1;
449 Op->Common.Value.String = ObjDesc->String.Pointer;

451 DbgPrint (ASL_PARSE_OUTPUT,
452 "Constant expression reduced to (STRING) %s\n",
453 Op->Common.Value.String);

455 break;

new/usr/src/common/acpica/compiler/aslfold.c 8

457 case ACPI_TYPE_BUFFER:

459 Op->Asl.ParseOpcode = PARSEOP_BUFFER;
460 Op->Common.AmlOpcode = AML_BUFFER_OP;
461 Op->Asl.CompileFlags = NODE_AML_PACKAGE;
462 UtSetParseOpName (Op);

464 /* Child node is the buffer length */

466 RootOp = TrAllocateNode (PARSEOP_INTEGER);

468 RootOp->Asl.AmlOpcode = AML_DWORD_OP;
469 RootOp->Asl.Value.Integer = ObjDesc->Buffer.Length;
470 RootOp->Asl.Parent = Op;

472 (void) OpcSetOptimalIntegerSize (RootOp);

474 Op->Asl.Child = RootOp;
475 Op = RootOp;
476 UtSetParseOpName (Op);

478 /* Peer to the child is the raw buffer data */

480 RootOp = TrAllocateNode (PARSEOP_RAW_DATA);
481 RootOp->Asl.AmlOpcode = AML_RAW_DATA_BUFFER;
482 RootOp->Asl.AmlLength = ObjDesc->Buffer.Length;
483 RootOp->Asl.Value.String = (char *) ObjDesc->Buffer.Pointer;
484 RootOp->Asl.Parent = Op->Asl.Parent;

486 Op->Asl.Next = RootOp;
487 Op = RootOp;

489 DbgPrint (ASL_PARSE_OUTPUT,
490 "Constant expression reduced to (BUFFER) length %X\n",
491 ObjDesc->Buffer.Length);
492 break;

494 default:

496 printf ("Unsupported return type: %s\n",
497 AcpiUtGetObjectTypeName (ObjDesc));
498 break;
499 }
500 }

502 UtSetParseOpName (Op);
503 Op->Asl.Child = NULL;

505 AcpiDsDeleteWalkState (WalkState);
506 return (AE_CTRL_DEPTH);
507 }

510 /***
511 *
512 * FUNCTION: OpcUpdateIntegerNode
513 *
514 * PARAMETERS: Op - Current parse object
515 *
516 * RETURN: None
517 *
518 * DESCRIPTION: Update node to the correct integer type.
519 *
520 **/

522 static void

new/usr/src/common/acpica/compiler/aslfold.c 9

523 OpcUpdateIntegerNode (
524 ACPI_PARSE_OBJECT *Op,
525 UINT64 Value)
526 {

528 Op->Common.Value.Integer = Value;

530 /*
531 * The AmlLength is used by the parser to indicate a constant,
532 * (if non-zero). Length is either (1/2/4/8)
533 */
534 switch (Op->Asl.AmlLength)
535 {
536 case 1:

538 TrUpdateNode (PARSEOP_BYTECONST, Op);
539 Op->Asl.AmlOpcode = AML_RAW_DATA_BYTE;
540 break;

542 case 2:

544 TrUpdateNode (PARSEOP_WORDCONST, Op);
545 Op->Asl.AmlOpcode = AML_RAW_DATA_WORD;
546 break;

548 case 4:

550 TrUpdateNode (PARSEOP_DWORDCONST, Op);
551 Op->Asl.AmlOpcode = AML_RAW_DATA_DWORD;
552 break;

554 case 8:

556 TrUpdateNode (PARSEOP_QWORDCONST, Op);
557 Op->Asl.AmlOpcode = AML_RAW_DATA_QWORD;
558 break;

560 case 0:
561 default:

563 OpcSetOptimalIntegerSize (Op);
564 TrUpdateNode (PARSEOP_INTEGER, Op);
565 break;
566 }

568 Op->Asl.AmlLength = 0;
569 }

new/usr/src/common/acpica/compiler/aslglobal.h 1

**
 12572 Thu Dec 26 13:48:28 2013
new/usr/src/common/acpica/compiler/aslglobal.h
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslglobal.h - Global variable definitions
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #ifndef __ASLGLOBAL_H
46 #define __ASLGLOBAL_H

49 /*
50 * Global variables. Defined in aslmain.c only, externed in all other files
51 */

53 #undef ASL_EXTERN

55 #ifdef _DECLARE_GLOBALS
56 #define ASL_EXTERN
57 #define ASL_INIT_GLOBAL(a,b) (a)=(b)
58 #else
59 #define ASL_EXTERN extern

new/usr/src/common/acpica/compiler/aslglobal.h 2

60 #define ASL_INIT_GLOBAL(a,b) (a)
61 #endif

64 #ifdef _DECLARE_GLOBALS
65 UINT32 Gbl_ExceptionCount[ASL_NUM_REPORT_LEVELS] =
66 char AslHexLookup[] =
67 {
68 ’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’A’,’B’,’C’,’D’,’E’,’F’
69 };

72 /* Table below must match ASL_FILE_TYPES in asltypes.h */

74 ASL_FILE_INFO Gbl_Files [ASL_NUM_FILES] =
75 {
76 {NULL, NULL, "stdout: ", "Standard Output"},
77 {NULL, NULL, "stderr: ", "Standard Error"},
78 {NULL, NULL, "Table Input: ", "Source Input"},
79 {NULL, NULL, "Binary Output:", "AML Output"},
80 {NULL, NULL, "Source Output:", "Source Output"},
81 {NULL, NULL, "Preprocessor: ", "Preprocessor Output"},
82 {NULL, NULL, "Listing File: ", "Listing Output"},
83 {NULL, NULL, "Hex Dump: ", "Hex Table Output"},
84 {NULL, NULL, "Namespace: ", "Namespace Output"},
85 {NULL, NULL, "Debug File: ", "Debug Output"},
86 {NULL, NULL, "ASM Source: ", "Assembly Code Output"},
87 {NULL, NULL, "C Source: ", "C Code Output"},
88 {NULL, NULL, "ASM Include: ", "Assembly Header Output"},
89 {NULL, NULL, "C Include: ", "C Header Output"},
90 {NULL, NULL, "Offset Table: ", "C Offset Table Output"}
91 };

93 #else
94 extern UINT32 Gbl_ExceptionCount[ASL_NUM_REPORT_LEVELS];
95 extern char AslHexLookup[];
96 extern ASL_FILE_INFO Gbl_Files [ASL_NUM_FILES];
97 #endif

100 /*
101 * Parser and other externals
102 */
103 extern int yydebug;
104 extern FILE *AslCompilerin;
105 extern int AslCompilerdebug;
106 extern int DtParserdebug;
107 extern int PrParserdebug;
108 extern const ASL_MAPPING_ENTRY AslKeywordMapping[];
109 extern char *AslCompilertext;

111 #define ASL_DEFAULT_LINE_BUFFER_SIZE (1024 * 32) /* 32K */
112 #define ASL_MSG_BUFFER_SIZE 4096
113 #define ASL_MAX_DISABLED_MESSAGES 32
114 #define HEX_TABLE_LINE_SIZE 8
115 #define HEX_LISTING_LINE_SIZE 8

118 /* Source code buffers and pointers for error reporting */

120 ASL_EXTERN char ASL_INIT_GLOBAL (*Gbl_CurrentLineBuffer, NUL
121 ASL_EXTERN char ASL_INIT_GLOBAL (*Gbl_LineBufPtr, NULL);
122 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (Gbl_LineBufferSize, ASL_DEF
123 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (Gbl_CurrentColumn, 0);
124 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (Gbl_PreviousLineNumber, 0);
125 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (Gbl_CurrentLineNumber, 1);

new/usr/src/common/acpica/compiler/aslglobal.h 3

126 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (Gbl_LogicalLineNumber, 1);
127 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (Gbl_CurrentLineOffset, 0);

129 /* Exception reporting */

131 ASL_EXTERN ASL_ERROR_MSG ASL_INIT_GLOBAL (*Gbl_ErrorLog,NULL);
132 ASL_EXTERN ASL_ERROR_MSG ASL_INIT_GLOBAL (*Gbl_NextError,NULL);

134 /* Option flags */

136 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_DoCompile, TRUE);
137 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_DoSignon, TRUE);
138 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_PreprocessOnly, FALSE);
139 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_PreprocessFlag, TRUE);
140 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_DisassembleAll, FALSE);

142 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_UseDefaultAmlFilename,
143 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_NsOutputFlag, FALSE);
144 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_PreprocessorOutputFlag,
145 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_DebugFlag, FALSE);
146 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_AsmOutputFlag, FALSE);
147 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_C_OutputFlag, FALSE);
148 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_C_OffsetTableFlag, FALS
149 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_AsmIncludeOutputFlag, F
150 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_C_IncludeOutputFlag, FA
151 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_ListingFlag, FALSE);
152 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_IgnoreErrors, FALSE);
153 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_SourceOutputFlag, FALSE
154 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_ParseOnlyFlag, FALSE);
155 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_CompileTimesFlag, FALSE
156 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_FoldConstants, TRUE);
157 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_VerboseErrors, TRUE);
158 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_NoErrors, FALSE);
159 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_WarningsAsErrors, FALSE
160 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_NoResourceChecking, FAL
161 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_DisasmFlag, FALSE);
162 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_GetAllTables, FALSE);
163 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_IntegerOptimizationFlag
164 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_ReferenceOptimizationFl
165 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_DisplayRemarks, TRUE);
166 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_DisplayWarnings, TRUE);
167 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_DisplayOptimizations, F
168 ASL_EXTERN UINT8 ASL_INIT_GLOBAL (Gbl_WarningLevel, ASL_WARNI
169 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_UseOriginalCompilerId,
170 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_VerboseTemplates, FALSE
171 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_DoTemplates, FALSE);
172 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_CompileGeneric, FALSE);

175 #define HEX_OUTPUT_NONE 0
176 #define HEX_OUTPUT_C 1
177 #define HEX_OUTPUT_ASM 2
178 #define HEX_OUTPUT_ASL 3

180 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_HexOutputFlag, HEX_OUTP

183 /* Files */

185 ASL_EXTERN char *Gbl_DirectoryPath;
186 ASL_EXTERN char ASL_INIT_GLOBAL (*Gbl_IncludeFilename, NULL)
187 ASL_EXTERN char ASL_INIT_GLOBAL (*Gbl_OutputFilenamePrefix,
188 ASL_EXTERN ASL_INCLUDE_DIR ASL_INIT_GLOBAL (*Gbl_IncludeDirList, NULL);
189 ASL_EXTERN char *Gbl_CurrentInputFilename;
190 ASL_EXTERN char ASL_INIT_GLOBAL (*Gbl_ExternalRefFilename, N

new/usr/src/common/acpica/compiler/aslglobal.h 4

192 ASL_EXTERN BOOLEAN ASL_INIT_GLOBAL (Gbl_HasIncludeFiles, FALSE)

195 /* Statistics */

197 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (Gbl_InputByteCount, 0);
198 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (Gbl_InputFieldCount, 0);
199 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (Gbl_NsLookupCount, 0);
200 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (TotalKeywords, 0);
201 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (TotalNamedObjects, 0);
202 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (TotalExecutableOpcodes, 0);
203 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (TotalParseNodes, 0);
204 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (TotalMethods, 0);
205 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (TotalAllocations, 0);
206 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (TotalAllocated, 0);
207 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (TotalFolds, 0);

210 /* Misc */

212 ASL_EXTERN UINT8 ASL_INIT_GLOBAL (Gbl_RevisionOverride, 0);
213 ASL_EXTERN UINT8 ASL_INIT_GLOBAL (Gbl_TempCount, 0);
214 ASL_EXTERN ACPI_PARSE_OBJECT ASL_INIT_GLOBAL (*RootNode, NULL);
215 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (Gbl_TableLength, 0);
216 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (Gbl_SourceLine, 0);
217 ASL_EXTERN ASL_LISTING_NODE ASL_INIT_GLOBAL (*Gbl_ListingNode, NULL);
218 ASL_EXTERN ACPI_PARSE_OBJECT ASL_INIT_GLOBAL (*Gbl_NodeCacheNext, NULL);
219 ASL_EXTERN ACPI_PARSE_OBJECT ASL_INIT_GLOBAL (*Gbl_NodeCacheLast, NULL);
220 ASL_EXTERN char ASL_INIT_GLOBAL (*Gbl_StringCacheNext, NULL)
221 ASL_EXTERN char ASL_INIT_GLOBAL (*Gbl_StringCacheLast, NULL)
222 ASL_EXTERN ACPI_PARSE_OBJECT *Gbl_FirstLevelInsertionNode;
223 ASL_EXTERN UINT8 ASL_INIT_GLOBAL (Gbl_FileType, 0);
224 ASL_EXTERN char ASL_INIT_GLOBAL (*Gbl_Signature, NULL);
225 ASL_EXTERN char *Gbl_TemplateSignature;

227 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (Gbl_CurrentHexColumn, 0);
228 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (Gbl_CurrentAmlOffset, 0);
229 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (Gbl_CurrentLine, 0);
230 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (Gbl_DisabledMessagesIndex,
231 ASL_EXTERN UINT8 ASL_INIT_GLOBAL (Gbl_HexBytesWereWritten, FA
232 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (Gbl_NumNamespaceObjects, 0)
233 ASL_EXTERN UINT32 ASL_INIT_GLOBAL (Gbl_ReservedMethods, 0);
234 ASL_EXTERN char ASL_INIT_GLOBAL (*Gbl_TableSignature, "NO_SI
235 ASL_EXTERN char ASL_INIT_GLOBAL (*Gbl_TableId, "NO_ID");

238 /* Static structures */

240 ASL_EXTERN ASL_ANALYSIS_WALK_INFO AnalysisWalkInfo;
241 ASL_EXTERN ACPI_TABLE_HEADER TableHeader;

243 /* Event timing */

245 #define ASL_NUM_EVENTS 20
246 ASL_EXTERN ASL_EVENT_INFO AslGbl_Events[ASL_NUM_EVENTS];
247 ASL_EXTERN UINT8 AslGbl_NextEvent;
248 ASL_EXTERN UINT8 AslGbl_NamespaceEvent;

250 /* Scratch buffers */

252 ASL_EXTERN UINT8 Gbl_AmlBuffer[HEX_LISTING_LINE_SIZE];
253 ASL_EXTERN char MsgBuffer[ASL_MSG_BUFFER_SIZE];
254 ASL_EXTERN char StringBuffer[ASL_MSG_BUFFER_SIZE];
255 ASL_EXTERN char StringBuffer2[ASL_MSG_BUFFER_SIZE];
256 ASL_EXTERN UINT32 Gbl_DisabledMessages[ASL_MAX_DISABLED_MESSAG

new/usr/src/common/acpica/compiler/aslglobal.h 5

259 #endif /* __ASLGLOBAL_H */

new/usr/src/common/acpica/compiler/aslhex.c 1

**
 11549 Thu Dec 26 13:48:28 2013
new/usr/src/common/acpica/compiler/aslhex.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: aslhex - ASCII hex output file generation (C, ASM, and ASL)
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"

47 #define _COMPONENT ACPI_COMPILER
48 ACPI_MODULE_NAME ("ashex")

50 /*
51 * This module emits ASCII hex output files in either C, ASM, or ASL format
52 */

55 /* Local prototypes */

57 static void
58 HxDoHexOutputC (
59 void);

61 static void

new/usr/src/common/acpica/compiler/aslhex.c 2

62 HxDoHexOutputAsl (
63 void);

65 static void
66 HxDoHexOutputAsm (
67 void);

69 static UINT32
70 HxReadAmlOutputFile (
71 UINT8 *Buffer);

74 /***
75 *
76 * FUNCTION: HxDoHexOutput
77 *
78 * PARAMETERS: None
79 *
80 * RETURN: None
81 *
82 * DESCRIPTION: Create the hex output file. Note: data is obtained by reading
83 * the entire AML output file that was previously generated.
84 *
85 **/

87 void
88 HxDoHexOutput (
89 void)
90 {

92 switch (Gbl_HexOutputFlag)
93 {
94 case HEX_OUTPUT_C:

96 HxDoHexOutputC ();
97 break;

99 case HEX_OUTPUT_ASM:

101 HxDoHexOutputAsm ();
102 break;

104 case HEX_OUTPUT_ASL:

106 HxDoHexOutputAsl ();
107 break;

109 default:

111 /* No other output types supported */

113 break;
114 }
115 }

118 /***
119 *
120 * FUNCTION: HxReadAmlOutputFile
121 *
122 * PARAMETERS: Buffer - Where to return data
123 *
124 * RETURN: None
125 *
126 * DESCRIPTION: Read a line of the AML output prior to formatting the data
127 *

new/usr/src/common/acpica/compiler/aslhex.c 3

128 **/

130 static UINT32
131 HxReadAmlOutputFile (
132 UINT8 *Buffer)
133 {
134 UINT32 Actual;

137 Actual = fread (Buffer, 1, HEX_TABLE_LINE_SIZE,
138 Gbl_Files[ASL_FILE_AML_OUTPUT].Handle);

140 if (ferror (Gbl_Files[ASL_FILE_AML_OUTPUT].Handle))
141 {
142 FlFileError (ASL_FILE_AML_OUTPUT, ASL_MSG_READ);
143 AslAbort ();
144 }

146 return (Actual);
147 }

150 /***
151 *
152 * FUNCTION: HxDoHexOutputC
153 *
154 * PARAMETERS: None
155 *
156 * RETURN: None
157 *
158 * DESCRIPTION: Create the hex output file. This is the same data as the AML
159 * output file, but formatted into hex/ascii bytes suitable for
160 * inclusion into a C source file.
161 *
162 **/

164 static void
165 HxDoHexOutputC (
166 void)
167 {
168 UINT8 FileData[HEX_TABLE_LINE_SIZE];
169 UINT32 LineLength;
170 UINT32 Offset = 0;
171 UINT32 AmlFileSize;
172 UINT32 i;

175 /* Get AML size, seek back to start */

177 AmlFileSize = FlGetFileSize (ASL_FILE_AML_OUTPUT);
178 FlSeekFile (ASL_FILE_AML_OUTPUT, 0);

180 FlPrintFile (ASL_FILE_HEX_OUTPUT, " * C source code output\n");
181 FlPrintFile (ASL_FILE_HEX_OUTPUT, " * AML code block contains 0x%X bytes\n *
182 AmlFileSize);
183 FlPrintFile (ASL_FILE_HEX_OUTPUT, "unsigned char AmlCode[] =\n{\n");

185 while (Offset < AmlFileSize)
186 {
187 /* Read enough bytes needed for one output line */

189 LineLength = HxReadAmlOutputFile (FileData);
190 if (!LineLength)
191 {
192 break;
193 }

new/usr/src/common/acpica/compiler/aslhex.c 4

195 FlPrintFile (ASL_FILE_HEX_OUTPUT, " ");

197 for (i = 0; i < LineLength; i++)
198 {
199 /*
200 * Print each hex byte.
201 * Add a comma until the very last byte of the AML file
202 * (Some C compilers complain about a trailing comma)
203 */
204 FlPrintFile (ASL_FILE_HEX_OUTPUT, "0x%2.2X", FileData[i]);
205 if ((Offset + i + 1) < AmlFileSize)
206 {
207 FlPrintFile (ASL_FILE_HEX_OUTPUT, ",");
208 }
209 else
210 {
211 FlPrintFile (ASL_FILE_HEX_OUTPUT, " ");
212 }
213 }

215 /* Add fill spaces if needed for last line */

217 if (LineLength < HEX_TABLE_LINE_SIZE)
218 {
219 FlPrintFile (ASL_FILE_HEX_OUTPUT, "%*s",
220 5 * (HEX_TABLE_LINE_SIZE - LineLength), " ");
221 }

223 /* Emit the offset and ascii dump for the entire line */

225 FlPrintFile (ASL_FILE_HEX_OUTPUT, " /* %8.8X", Offset);
226 LsDumpAsciiInComment (ASL_FILE_HEX_OUTPUT, LineLength, FileData);
227 FlPrintFile (ASL_FILE_HEX_OUTPUT, "%*s*/\n",
228 HEX_TABLE_LINE_SIZE - LineLength + 1, " ");

230 Offset += LineLength;
231 }

233 FlPrintFile (ASL_FILE_HEX_OUTPUT, "};\n");
234 }

237 /***
238 *
239 * FUNCTION: HxDoHexOutputAsl
240 *
241 * PARAMETERS: None
242 *
243 * RETURN: None
244 *
245 * DESCRIPTION: Create the hex output file. This is the same data as the AML
246 * output file, but formatted into hex/ascii bytes suitable for
247 * inclusion into a C source file.
248 *
249 **/

251 static void
252 HxDoHexOutputAsl (
253 void)
254 {
255 UINT8 FileData[HEX_TABLE_LINE_SIZE];
256 UINT32 LineLength;
257 UINT32 Offset = 0;
258 UINT32 AmlFileSize;
259 UINT32 i;

new/usr/src/common/acpica/compiler/aslhex.c 5

262 /* Get AML size, seek back to start */

264 AmlFileSize = FlGetFileSize (ASL_FILE_AML_OUTPUT);
265 FlSeekFile (ASL_FILE_AML_OUTPUT, 0);

267 FlPrintFile (ASL_FILE_HEX_OUTPUT, " * ASL source code output\n");
268 FlPrintFile (ASL_FILE_HEX_OUTPUT, " * AML code block contains 0x%X bytes\n *
269 AmlFileSize);
270 FlPrintFile (ASL_FILE_HEX_OUTPUT, " Name (BUF1, Buffer()\n {\n");

272 while (Offset < AmlFileSize)
273 {
274 /* Read enough bytes needed for one output line */

276 LineLength = HxReadAmlOutputFile (FileData);
277 if (!LineLength)
278 {
279 break;
280 }

282 FlPrintFile (ASL_FILE_HEX_OUTPUT, " ");

284 for (i = 0; i < LineLength; i++)
285 {
286 /*
287 * Print each hex byte.
288 * Add a comma until the very last byte of the AML file
289 * (Some C compilers complain about a trailing comma)
290 */
291 FlPrintFile (ASL_FILE_HEX_OUTPUT, "0x%2.2X", FileData[i]);
292 if ((Offset + i + 1) < AmlFileSize)
293 {
294 FlPrintFile (ASL_FILE_HEX_OUTPUT, ",");
295 }
296 else
297 {
298 FlPrintFile (ASL_FILE_HEX_OUTPUT, " ");
299 }
300 }

302 /* Add fill spaces if needed for last line */

304 if (LineLength < HEX_TABLE_LINE_SIZE)
305 {
306 FlPrintFile (ASL_FILE_HEX_OUTPUT, "%*s",
307 5 * (HEX_TABLE_LINE_SIZE - LineLength), " ");
308 }

310 /* Emit the offset and ascii dump for the entire line */

312 FlPrintFile (ASL_FILE_HEX_OUTPUT, " /* %8.8X", Offset);
313 LsDumpAsciiInComment (ASL_FILE_HEX_OUTPUT, LineLength, FileData);
314 FlPrintFile (ASL_FILE_HEX_OUTPUT, "%*s*/\n",
315 HEX_TABLE_LINE_SIZE - LineLength + 1, " ");

317 Offset += LineLength;
318 }

320 FlPrintFile (ASL_FILE_HEX_OUTPUT, " })\n");
321 }

324 /***
325 *

new/usr/src/common/acpica/compiler/aslhex.c 6

326 * FUNCTION: HxDoHexOutputAsm
327 *
328 * PARAMETERS: None
329 *
330 * RETURN: None
331 *
332 * DESCRIPTION: Create the hex output file. This is the same data as the AML
333 * output file, but formatted into hex/ascii bytes suitable for
334 * inclusion into a ASM source file.
335 *
336 **/

338 static void
339 HxDoHexOutputAsm (
340 void)
341 {
342 UINT8 FileData[HEX_TABLE_LINE_SIZE];
343 UINT32 LineLength;
344 UINT32 Offset = 0;
345 UINT32 AmlFileSize;
346 UINT32 i;

349 /* Get AML size, seek back to start */

351 AmlFileSize = FlGetFileSize (ASL_FILE_AML_OUTPUT);
352 FlSeekFile (ASL_FILE_AML_OUTPUT, 0);

354 FlPrintFile (ASL_FILE_HEX_OUTPUT, "; Assembly code source output\n");
355 FlPrintFile (ASL_FILE_HEX_OUTPUT, "; AML code block contains 0x%X bytes\n;\n
356 AmlFileSize);

358 while (Offset < AmlFileSize)
359 {
360 /* Read enough bytes needed for one output line */

362 LineLength = HxReadAmlOutputFile (FileData);
363 if (!LineLength)
364 {
365 break;
366 }

368 FlPrintFile (ASL_FILE_HEX_OUTPUT, " db ");

370 for (i = 0; i < LineLength; i++)
371 {
372 /*
373 * Print each hex byte.
374 * Add a comma until the last byte of the line
375 */
376 FlPrintFile (ASL_FILE_HEX_OUTPUT, "0%2.2Xh", FileData[i]);
377 if ((i + 1) < LineLength)
378 {
379 FlPrintFile (ASL_FILE_HEX_OUTPUT, ",");
380 }
381 }

383 FlPrintFile (ASL_FILE_HEX_OUTPUT, " ");

385 /* Add fill spaces if needed for last line */

387 if (LineLength < HEX_TABLE_LINE_SIZE)
388 {
389 FlPrintFile (ASL_FILE_HEX_OUTPUT, "%*s",
390 5 * (HEX_TABLE_LINE_SIZE - LineLength), " ");
391 }

new/usr/src/common/acpica/compiler/aslhex.c 7

393 /* Emit the offset and ascii dump for the entire line */

395 FlPrintFile (ASL_FILE_HEX_OUTPUT, " ; %8.8X", Offset);
396 LsDumpAsciiInComment (ASL_FILE_HEX_OUTPUT, LineLength, FileData);
397 FlPrintFile (ASL_FILE_HEX_OUTPUT, "\n");

399 Offset += LineLength;
400 }

402 FlPrintFile (ASL_FILE_HEX_OUTPUT, "\n");
403 }

new/usr/src/common/acpica/compiler/asllength.c 1

**
 12065 Thu Dec 26 13:48:28 2013
new/usr/src/common/acpica/compiler/asllength.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: asllength - Tree walk to determine package and opcode lengths
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"
47 #include "amlcode.h"

50 #define _COMPONENT ACPI_COMPILER
51 ACPI_MODULE_NAME ("asllength")

53 /* Local prototypes */

55 static UINT8
56 CgGetPackageLenByteCount (
57 ACPI_PARSE_OBJECT *Op,
58 UINT32 PackageLength);

60 static void

new/usr/src/common/acpica/compiler/asllength.c 2

61 CgGenerateAmlOpcodeLength (
62 ACPI_PARSE_OBJECT *Op);

65 #ifdef ACPI_OBSOLETE_FUNCTIONS
66 void
67 LnAdjustLengthToRoot (
68 ACPI_PARSE_OBJECT *Op,
69 UINT32 LengthDelta);
70 #endif

73 /***
74 *
75 * FUNCTION: LnInitLengthsWalk
76 *
77 * PARAMETERS: ASL_WALK_CALLBACK
78 *
79 * RETURN: Status
80 *
81 * DESCRIPTION: Walk callback to initialize (and re-initialize) the node
82 * subtree length(s) to zero. The Subtree lengths are bubbled
83 * up to the root node in order to get a total AML length.
84 *
85 **/

87 ACPI_STATUS
88 LnInitLengthsWalk (
89 ACPI_PARSE_OBJECT *Op,
90 UINT32 Level,
91 void *Context)
92 {

94 Op->Asl.AmlSubtreeLength = 0;
95 return (AE_OK);
96 }

99 /***
100 *
101 * FUNCTION: LnPackageLengthWalk
102 *
103 * PARAMETERS: ASL_WALK_CALLBACK
104 *
105 * RETURN: Status
106 *
107 * DESCRIPTION: Walk callback to calculate the total AML length.
108 * 1) Calculate the AML lengths (opcode, package length, etc.) for
109 * THIS node.
110 * 2) Bubbble up all of these lengths to the parent node by summing
111 * them all into the parent subtree length.
112 *
113 * Note: The SubtreeLength represents the total AML length of all child nodes
114 * in all subtrees under a given node. Therefore, once this walk is
115 * complete, the Root Node subtree length is the AML length of the entire
116 * tree (and thus, the entire ACPI table)
117 *
118 **/

120 ACPI_STATUS
121 LnPackageLengthWalk (
122 ACPI_PARSE_OBJECT *Op,
123 UINT32 Level,
124 void *Context)
125 {

new/usr/src/common/acpica/compiler/asllength.c 3

127 /* Generate the AML lengths for this node */

129 CgGenerateAmlLengths (Op);

131 /* Bubble up all lengths (this node and all below it) to the parent */

133 if ((Op->Asl.Parent) &&
134 (Op->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG))
135 {
136 Op->Asl.Parent->Asl.AmlSubtreeLength += (Op->Asl.AmlLength +
137 Op->Asl.AmlOpcodeLength +
138 Op->Asl.AmlPkgLenBytes +
139 Op->Asl.AmlSubtreeLength);
140 }
141 return (AE_OK);
142 }

145 /***
146 *
147 * FUNCTION: CgGetPackageLenByteCount
148 *
149 * PARAMETERS: Op - Parse node
150 * PackageLength - Length to be encoded
151 *
152 * RETURN: Required length of the package length encoding
153 *
154 * DESCRIPTION: Calculate the number of bytes required to encode the given
155 * package length.
156 *
157 **/

159 static UINT8
160 CgGetPackageLenByteCount (
161 ACPI_PARSE_OBJECT *Op,
162 UINT32 PackageLength)
163 {

165 /*
166 * Determine the number of bytes required to encode the package length
167 * Note: the package length includes the number of bytes used to encode
168 * the package length, so we must account for this also.
169 */
170 if (PackageLength <= (0x0000003F - 1))
171 {
172 return (1);
173 }
174 else if (PackageLength <= (0x00000FFF - 2))
175 {
176 return (2);
177 }
178 else if (PackageLength <= (0x000FFFFF - 3))
179 {
180 return (3);
181 }
182 else if (PackageLength <= (0x0FFFFFFF - 4))
183 {
184 return (4);
185 }
186 else
187 {
188 /* Fatal error - the package length is too large to encode */

190 AslError (ASL_ERROR, ASL_MSG_ENCODING_LENGTH, Op, NULL);
191 }

new/usr/src/common/acpica/compiler/asllength.c 4

193 return (0);
194 }

197 /***
198 *
199 * FUNCTION: CgGenerateAmlOpcodeLength
200 *
201 * PARAMETERS: Op - Parse node whose AML opcode lengths will be
202 * calculated
203 *
204 * RETURN: None.
205 *
206 * DESCRIPTION: Calculate the AmlOpcodeLength, AmlPkgLenBytes, and AmlLength
207 * fields for this node.
208 *
209 **/

211 static void
212 CgGenerateAmlOpcodeLength (
213 ACPI_PARSE_OBJECT *Op)
214 {

216 /* Check for two-byte opcode */

218 if (Op->Asl.AmlOpcode > 0x00FF)
219 {
220 Op->Asl.AmlOpcodeLength = 2;
221 }
222 else
223 {
224 Op->Asl.AmlOpcodeLength = 1;
225 }

227 /* Does this opcode have an associated "PackageLength" field? */

229 Op->Asl.AmlPkgLenBytes = 0;
230 if (Op->Asl.CompileFlags & NODE_AML_PACKAGE)
231 {
232 Op->Asl.AmlPkgLenBytes = CgGetPackageLenByteCount (
233 Op, Op->Asl.AmlSubtreeLength);
234 }

236 /* Data opcode lengths are easy */

238 switch (Op->Asl.AmlOpcode)
239 {
240 case AML_BYTE_OP:

242 Op->Asl.AmlLength = 1;
243 break;

245 case AML_WORD_OP:

247 Op->Asl.AmlLength = 2;
248 break;

250 case AML_DWORD_OP:

252 Op->Asl.AmlLength = 4;
253 break;

255 case AML_QWORD_OP:

257 Op->Asl.AmlLength = 8;
258 break;

new/usr/src/common/acpica/compiler/asllength.c 5

260 default:

262 /* All data opcodes must be above */
263 break;
264 }
265 }

268 /***
269 *
270 * FUNCTION: CgGenerateAmlLengths
271 *
272 * PARAMETERS: Op - Parse node
273 *
274 * RETURN: None.
275 *
276 * DESCRIPTION: Generate internal length fields based on the AML opcode or
277 * parse opcode.
278 *
279 **/

281 void
282 CgGenerateAmlLengths (
283 ACPI_PARSE_OBJECT *Op)
284 {
285 char *Buffer;
286 ACPI_STATUS Status;

289 switch (Op->Asl.AmlOpcode)
290 {
291 case AML_RAW_DATA_BYTE:

293 Op->Asl.AmlOpcodeLength = 0;
294 Op->Asl.AmlLength = 1;
295 return;

297 case AML_RAW_DATA_WORD:

299 Op->Asl.AmlOpcodeLength = 0;
300 Op->Asl.AmlLength = 2;
301 return;

303 case AML_RAW_DATA_DWORD:

305 Op->Asl.AmlOpcodeLength = 0;
306 Op->Asl.AmlLength = 4;
307 return;

309 case AML_RAW_DATA_QWORD:

311 Op->Asl.AmlOpcodeLength = 0;
312 Op->Asl.AmlLength = 8;
313 return;

315 case AML_RAW_DATA_BUFFER:

317 /* Aml length is/was set by creator */

319 Op->Asl.AmlOpcodeLength = 0;
320 return;

322 case AML_RAW_DATA_CHAIN:

324 /* Aml length is/was set by creator */

new/usr/src/common/acpica/compiler/asllength.c 6

326 Op->Asl.AmlOpcodeLength = 0;
327 return;

329 default:

331 break;
332 }

334 switch (Op->Asl.ParseOpcode)
335 {
336 case PARSEOP_DEFINITIONBLOCK:

338 Gbl_TableLength = sizeof (ACPI_TABLE_HEADER) +
339 Op->Asl.AmlSubtreeLength;
340 break;

342 case PARSEOP_NAMESEG:

344 Op->Asl.AmlOpcodeLength = 0;
345 Op->Asl.AmlLength = 4;
346 Op->Asl.ExternalName = Op->Asl.Value.String;
347 break;

349 case PARSEOP_NAMESTRING:
350 case PARSEOP_METHODCALL:

352 if (Op->Asl.CompileFlags & NODE_NAME_INTERNALIZED)
353 {
354 break;
355 }

357 Op->Asl.AmlOpcodeLength = 0;
358 Status = UtInternalizeName (Op->Asl.Value.String, &Buffer);
359 if (ACPI_FAILURE (Status))
360 {
361 DbgPrint (ASL_DEBUG_OUTPUT,
362 "Failure from internalize name %X\n", Status);
363 break;
364 }

366 Op->Asl.ExternalName = Op->Asl.Value.String;
367 Op->Asl.Value.String = Buffer;
368 Op->Asl.CompileFlags |= NODE_NAME_INTERNALIZED;

370 Op->Asl.AmlLength = strlen (Buffer);

372 /*
373 * Check for single backslash reference to root,
374 * make it a null terminated string in the AML
375 */
376 if (Op->Asl.AmlLength == 1)
377 {
378 Op->Asl.AmlLength = 2;
379 }
380 break;

382 case PARSEOP_STRING_LITERAL:

384 Op->Asl.AmlOpcodeLength = 1;

386 /* Get null terminator */

388 Op->Asl.AmlLength = strlen (Op->Asl.Value.String) + 1;
389 break;

new/usr/src/common/acpica/compiler/asllength.c 7

391 case PARSEOP_PACKAGE_LENGTH:

393 Op->Asl.AmlOpcodeLength = 0;
394 Op->Asl.AmlPkgLenBytes = CgGetPackageLenByteCount (Op,
395 (UINT32) Op->Asl.Value.Integer);
396 break;

398 case PARSEOP_RAW_DATA:

400 Op->Asl.AmlOpcodeLength = 0;
401 break;

403 case PARSEOP_DEFAULT_ARG:
404 case PARSEOP_EXTERNAL:
405 case PARSEOP_INCLUDE:
406 case PARSEOP_INCLUDE_END:

408 /* Ignore the "default arg" nodes, they are extraneous at this point */

410 break;

412 default:

414 CgGenerateAmlOpcodeLength (Op);
415 break;
416 }
417 }

420 #ifdef ACPI_OBSOLETE_FUNCTIONS
421 /***
422 *
423 * FUNCTION: LnAdjustLengthToRoot
424 *
425 * PARAMETERS: Op - Node whose Length was changed
426 *
427 * RETURN: None.
428 *
429 * DESCRIPTION: Change the Subtree length of the given node, and bubble the
430 * change all the way up to the root node. This allows for
431 * last second changes to a package length (for example, if the
432 * package length encoding gets shorter or longer.)
433 *
434 **/

436 void
437 LnAdjustLengthToRoot (
438 ACPI_PARSE_OBJECT *SubtreeOp,
439 UINT32 LengthDelta)
440 {
441 ACPI_PARSE_OBJECT *Op;

444 /* Adjust all subtree lengths up to the root */

446 Op = SubtreeOp->Asl.Parent;
447 while (Op)
448 {
449 Op->Asl.AmlSubtreeLength -= LengthDelta;
450 Op = Op->Asl.Parent;
451 }

453 /* Adjust the global table length */

455 Gbl_TableLength -= LengthDelta;
456 }

new/usr/src/common/acpica/compiler/asllength.c 8

457 #endif

new/usr/src/common/acpica/compiler/asllisting.c 1

**
 17879 Thu Dec 26 13:48:29 2013
new/usr/src/common/acpica/compiler/asllisting.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: asllisting - Listing file generation
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aslcompiler.h"
45 #include "aslcompiler.y.h"
46 #include "amlcode.h"
47 #include "acparser.h"
48 #include "acnamesp.h"

51 #define _COMPONENT ACPI_COMPILER
52 ACPI_MODULE_NAME ("asllisting")

55 /* Local prototypes */

57 static void
58 LsGenerateListing (
59 UINT32 FileId);

new/usr/src/common/acpica/compiler/asllisting.c 2

61 static ACPI_STATUS
62 LsAmlListingWalk (
63 ACPI_PARSE_OBJECT *Op,
64 UINT32 Level,
65 void *Context);

67 static ACPI_STATUS
68 LsTreeWriteWalk (
69 ACPI_PARSE_OBJECT *Op,
70 UINT32 Level,
71 void *Context);

73 static void
74 LsWriteNodeToListing (
75 ACPI_PARSE_OBJECT *Op,
76 UINT32 FileId);

78 static void
79 LsFinishSourceListing (
80 UINT32 FileId);

83 /***
84 *
85 * FUNCTION: LsDoListings
86 *
87 * PARAMETERS: None. Examines the various output file global flags.
88 *
89 * RETURN: None
90 *
91 * DESCRIPTION: Generate all requested listing files.
92 *
93 **/

95 void
96 LsDoListings (
97 void)
98 {

100 if (Gbl_C_OutputFlag)
101 {
102 LsGenerateListing (ASL_FILE_C_SOURCE_OUTPUT);
103 }

105 if (Gbl_ListingFlag)
106 {
107 LsGenerateListing (ASL_FILE_LISTING_OUTPUT);
108 }

110 if (Gbl_AsmOutputFlag)
111 {
112 LsGenerateListing (ASL_FILE_ASM_SOURCE_OUTPUT);
113 }

115 if (Gbl_C_IncludeOutputFlag)
116 {
117 LsGenerateListing (ASL_FILE_C_INCLUDE_OUTPUT);
118 }

120 if (Gbl_AsmIncludeOutputFlag)
121 {
122 LsGenerateListing (ASL_FILE_ASM_INCLUDE_OUTPUT);
123 }

125 if (Gbl_C_OffsetTableFlag)
126 {

new/usr/src/common/acpica/compiler/asllisting.c 3

127 LsGenerateListing (ASL_FILE_C_OFFSET_OUTPUT);
128 }
129 }

132 /***
133 *
134 * FUNCTION: LsGenerateListing
135 *
136 * PARAMETERS: FileId - ID of listing file
137 *
138 * RETURN: None
139 *
140 * DESCRIPTION: Generate a listing file. This can be one of the several types
141 * of "listings" supported.
142 *
143 **/

145 static void
146 LsGenerateListing (
147 UINT32 FileId)
148 {

150 /* Start at the beginning of both the source and AML files */

152 FlSeekFile (ASL_FILE_SOURCE_OUTPUT, 0);
153 FlSeekFile (ASL_FILE_AML_OUTPUT, 0);
154 Gbl_SourceLine = 0;
155 Gbl_CurrentHexColumn = 0;
156 LsPushNode (Gbl_Files[ASL_FILE_INPUT].Filename);

158 if (FileId == ASL_FILE_C_OFFSET_OUTPUT)
159 {
160 Gbl_CurrentAmlOffset = 0;

162 /* Offset table file has a special header and footer */

164 LsDoOffsetTableHeader (FileId);

166 TrWalkParseTree (RootNode, ASL_WALK_VISIT_DOWNWARD, LsAmlOffsetWalk,
167 NULL, (void *) ACPI_TO_POINTER (FileId));
168 LsDoOffsetTableFooter (FileId);
169 return;
170 }

172 /* Process all parse nodes */

174 TrWalkParseTree (RootNode, ASL_WALK_VISIT_DOWNWARD, LsAmlListingWalk,
175 NULL, (void *) ACPI_TO_POINTER (FileId));

177 /* Final processing */

179 LsFinishSourceListing (FileId);
180 }

183 /***
184 *
185 * FUNCTION: LsAmlListingWalk
186 *
187 * PARAMETERS: ASL_WALK_CALLBACK
188 *
189 * RETURN: Status
190 *
191 * DESCRIPTION: Process one node during a listing file generation.
192 *

new/usr/src/common/acpica/compiler/asllisting.c 4

193 **/

195 static ACPI_STATUS
196 LsAmlListingWalk (
197 ACPI_PARSE_OBJECT *Op,
198 UINT32 Level,
199 void *Context)
200 {
201 UINT8 FileByte;
202 UINT32 i;
203 UINT32 FileId = (UINT32) ACPI_TO_INTEGER (Context);

206 LsWriteNodeToListing (Op, FileId);

208 if (Op->Asl.CompileFlags & NODE_IS_RESOURCE_DATA)
209 {
210 /* Buffer is a resource template, don’t dump the data all at once */

212 return (AE_OK);
213 }

215 /* Write the hex bytes to the listing file(s) (if requested) */

217 for (i = 0; i < Op->Asl.FinalAmlLength; i++)
218 {
219 if (ACPI_FAILURE (FlReadFile (ASL_FILE_AML_OUTPUT, &FileByte, 1)))
220 {
221 FlFileError (ASL_FILE_AML_OUTPUT, ASL_MSG_READ);
222 AslAbort ();
223 }
224 LsWriteListingHexBytes (&FileByte, 1, FileId);
225 }

227 return (AE_OK);
228 }

231 /***
232 *
233 * FUNCTION: LsDumpParseTree, LsTreeWriteWalk
234 *
235 * PARAMETERS: None
236 *
237 * RETURN: None
238 *
239 * DESCRIPTION: Dump entire parse tree, for compiler debug only
240 *
241 **/

243 void
244 LsDumpParseTree (
245 void)
246 {

248 if (!Gbl_DebugFlag)
249 {
250 return;
251 }

253 DbgPrint (ASL_TREE_OUTPUT, "\nOriginal parse tree from parser:\n\n");
254 TrWalkParseTree (RootNode, ASL_WALK_VISIT_DOWNWARD,
255 LsTreeWriteWalk, NULL, NULL);
256 }

new/usr/src/common/acpica/compiler/asllisting.c 5

259 static ACPI_STATUS
260 LsTreeWriteWalk (
261 ACPI_PARSE_OBJECT *Op,
262 UINT32 Level,
263 void *Context)
264 {

266 /* Debug output */

268 DbgPrint (ASL_TREE_OUTPUT,
269 "%5.5d [%2d]", Op->Asl.LogicalLineNumber, Level);

271 UtPrintFormattedName (Op->Asl.ParseOpcode, Level);

273 DbgPrint (ASL_TREE_OUTPUT, " (%.4X)\n", Op->Asl.ParseOpcode);
274 return (AE_OK);
275 }

278 /***
279 *
280 * FUNCTION: LsWriteNodeToListing
281 *
282 * PARAMETERS: Op - Parse node to write to the listing file.
283 * FileId - ID of current listing file
284 *
285 * RETURN: None.
286 *
287 * DESCRIPTION: Write "a node" to the listing file. This means to
288 * 1) Write out all of the source text associated with the node
289 * 2) Write out all of the AML bytes associated with the node
290 * 3) Write any compiler exceptions associated with the node
291 *
292 **/

294 static void
295 LsWriteNodeToListing (
296 ACPI_PARSE_OBJECT *Op,
297 UINT32 FileId)
298 {
299 const ACPI_OPCODE_INFO *OpInfo;
300 UINT32 OpClass;
301 char *Pathname;
302 UINT32 Length;
303 UINT32 i;

306 OpInfo = AcpiPsGetOpcodeInfo (Op->Asl.AmlOpcode);
307 OpClass = OpInfo->Class;

309 /* TBD: clean this up with a single flag that says:
310 * I start a named output block
311 */
312 if (FileId == ASL_FILE_C_SOURCE_OUTPUT)
313 {
314 switch (Op->Asl.ParseOpcode)
315 {
316 case PARSEOP_DEFINITIONBLOCK:
317 case PARSEOP_METHODCALL:
318 case PARSEOP_INCLUDE:
319 case PARSEOP_INCLUDE_END:
320 case PARSEOP_DEFAULT_ARG:

322 break;

324 default:

new/usr/src/common/acpica/compiler/asllisting.c 6

326 switch (OpClass)
327 {
328 case AML_CLASS_NAMED_OBJECT:

330 switch (Op->Asl.AmlOpcode)
331 {
332 case AML_SCOPE_OP:
333 case AML_ALIAS_OP:

335 break;

337 default:

339 if (Op->Asl.ExternalName)
340 {
341 LsFlushListingBuffer (FileId);
342 FlPrintFile (FileId, " };\n");
343 }
344 break;
345 }
346 break;

348 default:

350 /* Don’t care about other objects */

352 break;
353 }
354 break;
355 }
356 }

358 /* These cases do not have a corresponding AML opcode */

360 switch (Op->Asl.ParseOpcode)
361 {
362 case PARSEOP_DEFINITIONBLOCK:

364 LsWriteSourceLines (Op->Asl.EndLine, Op->Asl.EndLogicalLine, FileId);

366 /* Use the table Signature and TableId to build a unique name */

368 if (FileId == ASL_FILE_ASM_SOURCE_OUTPUT)
369 {
370 FlPrintFile (FileId,
371 "%s_%s_Header \\\n",
372 Gbl_TableSignature, Gbl_TableId);
373 }
374 if (FileId == ASL_FILE_C_SOURCE_OUTPUT)
375 {
376 FlPrintFile (FileId,
377 " unsigned char %s_%s_Header [] =\n {\n",
378 Gbl_TableSignature, Gbl_TableId);
379 }
380 if (FileId == ASL_FILE_ASM_INCLUDE_OUTPUT)
381 {
382 FlPrintFile (FileId,
383 "extrn %s_%s_Header : byte\n",
384 Gbl_TableSignature, Gbl_TableId);
385 }
386 if (FileId == ASL_FILE_C_INCLUDE_OUTPUT)
387 {
388 FlPrintFile (FileId,
389 "extern unsigned char %s_%s_Header [];\n",
390 Gbl_TableSignature, Gbl_TableId);

new/usr/src/common/acpica/compiler/asllisting.c 7

391 }
392 return;

395 case PARSEOP_METHODCALL:

397 LsWriteSourceLines (Op->Asl.LineNumber, Op->Asl.LogicalLineNumber,
398 FileId);
399 return;

402 case PARSEOP_INCLUDE:

404 /* Flush everything up to and including the include source line */

406 LsWriteSourceLines (Op->Asl.LineNumber, Op->Asl.LogicalLineNumber,
407 FileId);

409 /* Create a new listing node and push it */

411 LsPushNode (Op->Asl.Child->Asl.Value.String);
412 return;

415 case PARSEOP_INCLUDE_END:

417 /* Flush out the rest of the include file */

419 LsWriteSourceLines (Op->Asl.LineNumber, Op->Asl.LogicalLineNumber,
420 FileId);

422 /* Pop off this listing node and go back to the parent file */

424 (void) LsPopNode ();
425 return;

428 case PARSEOP_DEFAULT_ARG:

430 if (Op->Asl.CompileFlags & NODE_IS_RESOURCE_DESC)
431 {
432 LsWriteSourceLines (Op->Asl.LineNumber, Op->Asl.EndLogicalLine,
433 FileId);
434 }
435 return;

438 default:

440 /* All other opcodes have an AML opcode */

442 break;
443 }

445 /*
446 * Otherwise, we look at the AML opcode because we can
447 * switch on the opcode type, getting an entire class
448 * at once
449 */
450 switch (OpClass)
451 {
452 case AML_CLASS_ARGUMENT: /* argument type only */
453 case AML_CLASS_INTERNAL:

455 break;

new/usr/src/common/acpica/compiler/asllisting.c 8

457 case AML_CLASS_NAMED_OBJECT:

459 switch (Op->Asl.AmlOpcode)
460 {
461 case AML_FIELD_OP:
462 case AML_INDEX_FIELD_OP:
463 case AML_BANK_FIELD_OP:
464 /*
465 * For fields, we want to dump all the AML after the
466 * entire definition
467 */
468 LsWriteSourceLines (Op->Asl.EndLine, Op->Asl.EndLogicalLine,
469 FileId);
470 break;

472 case AML_NAME_OP:

474 if (Op->Asl.CompileFlags & NODE_IS_RESOURCE_DESC)
475 {
476 LsWriteSourceLines (Op->Asl.LineNumber, Op->Asl.LogicalLineNumbe
477 FileId);
478 }
479 else
480 {
481 /*
482 * For fields, we want to dump all the AML after the
483 * entire definition
484 */
485 LsWriteSourceLines (Op->Asl.EndLine, Op->Asl.EndLogicalLine,
486 FileId);
487 }
488 break;

490 default:

492 LsWriteSourceLines (Op->Asl.LineNumber, Op->Asl.LogicalLineNumber,
493 FileId);
494 break;
495 }

497 switch (Op->Asl.AmlOpcode)
498 {
499 case AML_SCOPE_OP:
500 case AML_ALIAS_OP:

502 /* These opcodes do not declare a new object, ignore them */

504 break;

506 default:

508 /* All other named object opcodes come here */

510 switch (FileId)
511 {
512 case ASL_FILE_ASM_SOURCE_OUTPUT:
513 case ASL_FILE_C_SOURCE_OUTPUT:
514 case ASL_FILE_ASM_INCLUDE_OUTPUT:
515 case ASL_FILE_C_INCLUDE_OUTPUT:
516 /*
517 * For named objects, we will create a valid symbol so that the
518 * AML code can be referenced from C or ASM
519 */
520 if (Op->Asl.ExternalName)
521 {
522 /* Get the full pathname associated with this node */

new/usr/src/common/acpica/compiler/asllisting.c 9

524 Pathname = AcpiNsGetExternalPathname (Op->Asl.Node);
525 Length = strlen (Pathname);
526 if (Length >= 4)
527 {
528 /* Convert all dots in the path to underscores */

530 for (i = 0; i < Length; i++)
531 {
532 if (Pathname[i] == ’.’)
533 {
534 Pathname[i] = ’_’;
535 }
536 }

538 /* Create the appropriate symbol in the output file */

540 if (FileId == ASL_FILE_ASM_SOURCE_OUTPUT)
541 {
542 FlPrintFile (FileId,
543 "%s_%s_%s \\\n",
544 Gbl_TableSignature, Gbl_TableId, &Pathname[1]);
545 }
546 if (FileId == ASL_FILE_C_SOURCE_OUTPUT)
547 {
548 FlPrintFile (FileId,
549 " unsigned char %s_%s_%s [] =\n {\n",
550 Gbl_TableSignature, Gbl_TableId, &Pathname[1]);
551 }
552 if (FileId == ASL_FILE_ASM_INCLUDE_OUTPUT)
553 {
554 FlPrintFile (FileId,
555 "extrn %s_%s_%s : byte\n",
556 Gbl_TableSignature, Gbl_TableId, &Pathname[1]);
557 }
558 if (FileId == ASL_FILE_C_INCLUDE_OUTPUT)
559 {
560 FlPrintFile (FileId,
561 "extern unsigned char %s_%s_%s [];\n",
562 Gbl_TableSignature, Gbl_TableId, &Pathname[1]);
563 }
564 }
565 ACPI_FREE (Pathname);
566 }
567 break;

569 default:

571 /* Nothing to do for listing file */

573 break;
574 }
575 }
576 break;

578 case AML_CLASS_EXECUTE:
579 case AML_CLASS_CREATE:
580 default:

582 if ((Op->Asl.ParseOpcode == PARSEOP_BUFFER) &&
583 (Op->Asl.CompileFlags & NODE_IS_RESOURCE_DESC))
584 {
585 return;
586 }

588 LsWriteSourceLines (Op->Asl.LineNumber, Op->Asl.LogicalLineNumber,

new/usr/src/common/acpica/compiler/asllisting.c 10

589 FileId);
590 break;

592 case AML_CLASS_UNKNOWN:

594 break;
595 }
596 }

599 /***
600 *
601 * FUNCTION: LsFinishSourceListing
602 *
603 * PARAMETERS: FileId - ID of current listing file.
604 *
605 * RETURN: None
606 *
607 * DESCRIPTION: Cleanup routine for the listing file. Flush the hex AML
608 * listing buffer, and flush out any remaining lines in the
609 * source input file.
610 *
611 **/

613 static void
614 LsFinishSourceListing (
615 UINT32 FileId)
616 {

618 if ((FileId == ASL_FILE_ASM_INCLUDE_OUTPUT) ||
619 (FileId == ASL_FILE_C_INCLUDE_OUTPUT))
620 {
621 return;
622 }

624 LsFlushListingBuffer (FileId);
625 Gbl_CurrentAmlOffset = 0;

627 /* Flush any remaining text in the source file */

629 if (FileId == ASL_FILE_C_SOURCE_OUTPUT)
630 {
631 FlPrintFile (FileId, " /*\n");
632 }

634 while (LsWriteOneSourceLine (FileId))
635 { ; }

637 if (FileId == ASL_FILE_C_SOURCE_OUTPUT)
638 {
639 FlPrintFile (FileId, "\n */\n };\n");
640 }

642 FlPrintFile (FileId, "\n");

644 if (FileId == ASL_FILE_LISTING_OUTPUT)
645 {
646 /* Print a summary of the compile exceptions */

648 FlPrintFile (FileId, "\n\nSummary of errors and warnings\n\n");
649 AePrintErrorLog (FileId);
650 FlPrintFile (FileId, "\n");
651 UtDisplaySummary (FileId);
652 FlPrintFile (FileId, "\n");
653 }
654 }

new/usr/src/common/acpica/compiler/asllisting.c 11

new/usr/src/common/acpica/compiler/asllistsup.c 1

**
 19439 Thu Dec 26 13:48:29 2013
new/usr/src/common/acpica/compiler/asllistsup.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: asllistsup - Listing file support utilities
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aslcompiler.h"
45 #include "aslcompiler.y.h"

48 #define _COMPONENT ACPI_COMPILER
49 ACPI_MODULE_NAME ("aslistsup")

52 /***
53 *
54 * FUNCTION: LsDumpAscii
55 *
56 * PARAMETERS: FileId - ID of current listing file
57 * Count - Number of bytes to convert
58 * Buffer - Buffer of bytes to convert
59 *
60 * RETURN: None
61 *

new/usr/src/common/acpica/compiler/asllistsup.c 2

62 * DESCRIPTION: Convert hex bytes to ascii
63 *
64 **/

66 void
67 LsDumpAscii (
68 UINT32 FileId,
69 UINT32 Count,
70 UINT8 *Buffer)
71 {
72 UINT8 BufChar;
73 UINT32 i;

76 FlPrintFile (FileId, " \"");
77 for (i = 0; i < Count; i++)
78 {
79 BufChar = Buffer[i];
80 if (isprint (BufChar))
81 {
82 FlPrintFile (FileId, "%c", BufChar);
83 }
84 else
85 {
86 /* Not a printable character, just put out a dot */

88 FlPrintFile (FileId, ".");
89 }
90 }
91 FlPrintFile (FileId, "\"");
92 }

95 /***
96 *
97 * FUNCTION: LsDumpAsciiInComment
98 *
99 * PARAMETERS: FileId - ID of current listing file
100 * Count - Number of bytes to convert
101 * Buffer - Buffer of bytes to convert
102 *
103 * RETURN: None
104 *
105 * DESCRIPTION: Convert hex bytes to ascii
106 *
107 **/

109 void
110 LsDumpAsciiInComment (
111 UINT32 FileId,
112 UINT32 Count,
113 UINT8 *Buffer)
114 {
115 UINT8 BufChar = 0;
116 UINT8 LastChar;
117 UINT32 i;

120 FlPrintFile (FileId, " \"");
121 for (i = 0; i < Count; i++)
122 {
123 LastChar = BufChar;
124 BufChar = Buffer[i];

126 if (isprint (BufChar))
127 {

new/usr/src/common/acpica/compiler/asllistsup.c 3

128 /* Handle embedded C comment sequences */

130 if (((LastChar == ’*’) && (BufChar == ’/’)) ||
131 ((LastChar == ’/’) && (BufChar == ’*’)))
132 {
133 /* Insert a space to break the sequence */

135 FlPrintFile (FileId, ".", BufChar);
136 }

138 FlPrintFile (FileId, "%c", BufChar);
139 }
140 else
141 {
142 /* Not a printable character, just put out a dot */

144 FlPrintFile (FileId, ".");
145 }
146 }

148 FlPrintFile (FileId, "\"");
149 }

152 /***
153 *
154 * FUNCTION: LsCheckException
155 *
156 * PARAMETERS: LineNumber - Current logical (cumulative) line #
157 * FileId - ID of output listing file
158 *
159 * RETURN: None
160 *
161 * DESCRIPTION: Check if there is an exception for this line, and if there is,
162 * put it in the listing immediately. Handles multiple errors
163 * per line. Gbl_NextError points to the next error in the
164 * sorted (by line #) list of compile errors/warnings.
165 *
166 **/

168 void
169 LsCheckException (
170 UINT32 LineNumber,
171 UINT32 FileId)
172 {

174 if ((!Gbl_NextError) ||
175 (LineNumber < Gbl_NextError->LogicalLineNumber))
176 {
177 return;
178 }

180 /* Handle multiple errors per line */

182 if (FileId == ASL_FILE_LISTING_OUTPUT)
183 {
184 while (Gbl_NextError &&
185 (LineNumber >= Gbl_NextError->LogicalLineNumber))
186 {
187 AePrintException (FileId, Gbl_NextError, "\n[****iasl****]\n");

189 Gbl_NextError = Gbl_NextError->Next;
190 }

192 FlPrintFile (FileId, "\n");
193 }

new/usr/src/common/acpica/compiler/asllistsup.c 4

194 }

197 /***
198 *
199 * FUNCTION: LsWriteListingHexBytes
200 *
201 * PARAMETERS: Buffer - AML code buffer
202 * Length - Number of AML bytes to write
203 * FileId - ID of current listing file.
204 *
205 * RETURN: None
206 *
207 * DESCRIPTION: Write the contents of the AML buffer to the listing file via
208 * the listing buffer. The listing buffer is flushed every 16
209 * AML bytes.
210 *
211 **/

213 void
214 LsWriteListingHexBytes (
215 UINT8 *Buffer,
216 UINT32 Length,
217 UINT32 FileId)
218 {
219 UINT32 i;

222 /* Transfer all requested bytes */

224 for (i = 0; i < Length; i++)
225 {
226 /* Print line header when buffer is empty */

228 if (Gbl_CurrentHexColumn == 0)
229 {
230 if (Gbl_HasIncludeFiles)
231 {
232 FlPrintFile (FileId, "%*s", 10, " ");
233 }

235 switch (FileId)
236 {
237 case ASL_FILE_LISTING_OUTPUT:

239 FlPrintFile (FileId, "%8.8X%s", Gbl_CurrentAmlOffset,
240 ASL_LISTING_LINE_PREFIX);
241 break;

243 case ASL_FILE_ASM_SOURCE_OUTPUT:

245 FlPrintFile (FileId, " db ");
246 break;

248 case ASL_FILE_C_SOURCE_OUTPUT:

250 FlPrintFile (FileId, " ");
251 break;

253 default:

255 /* No other types supported */

257 return;
258 }
259 }

new/usr/src/common/acpica/compiler/asllistsup.c 5

261 /* Transfer AML byte and update counts */

263 Gbl_AmlBuffer[Gbl_CurrentHexColumn] = Buffer[i];

265 Gbl_CurrentHexColumn++;
266 Gbl_CurrentAmlOffset++;

268 /* Flush buffer when it is full */

270 if (Gbl_CurrentHexColumn >= HEX_LISTING_LINE_SIZE)
271 {
272 LsFlushListingBuffer (FileId);
273 }
274 }
275 }

278 /***
279 *
280 * FUNCTION: LsWriteSourceLines
281 *
282 * PARAMETERS: ToLineNumber -
283 * ToLogicalLineNumber - Write up to this source line number
284 * FileId - ID of current listing file
285 *
286 * RETURN: None
287 *
288 * DESCRIPTION: Read then write source lines to the listing file until we have
289 * reached the specified logical (cumulative) line number. This
290 * automatically echos out comment blocks and other non-AML
291 * generating text until we get to the actual AML-generating line
292 * of ASL code specified by the logical line number.
293 *
294 **/

296 void
297 LsWriteSourceLines (
298 UINT32 ToLineNumber,
299 UINT32 ToLogicalLineNumber,
300 UINT32 FileId)
301 {

303 /* Nothing to do for these file types */

305 if ((FileId == ASL_FILE_ASM_INCLUDE_OUTPUT) ||
306 (FileId == ASL_FILE_C_INCLUDE_OUTPUT))
307 {
308 return;
309 }

311 Gbl_CurrentLine = ToLogicalLineNumber;

313 /* Flush any hex bytes remaining from the last opcode */

315 LsFlushListingBuffer (FileId);

317 /* Read lines and write them as long as we are not caught up */

319 if (Gbl_SourceLine < Gbl_CurrentLine)
320 {
321 /*
322 * If we just completed writing some AML hex bytes, output a linefeed
323 * to add some whitespace for readability.
324 */
325 if (Gbl_HexBytesWereWritten)

new/usr/src/common/acpica/compiler/asllistsup.c 6

326 {
327 FlPrintFile (FileId, "\n");
328 Gbl_HexBytesWereWritten = FALSE;
329 }

331 if (FileId == ASL_FILE_C_SOURCE_OUTPUT)
332 {
333 FlPrintFile (FileId, " /*\n");
334 }

336 /* Write one line at a time until we have reached the target line # */

338 while ((Gbl_SourceLine < Gbl_CurrentLine) &&
339 LsWriteOneSourceLine (FileId))
340 { ; }

342 if (FileId == ASL_FILE_C_SOURCE_OUTPUT)
343 {
344 FlPrintFile (FileId, " */");
345 }

347 FlPrintFile (FileId, "\n");
348 }
349 }

352 /***
353 *
354 * FUNCTION: LsWriteOneSourceLine
355 *
356 * PARAMETERS: FileId - ID of current listing file
357 *
358 * RETURN: FALSE on EOF (input source file), TRUE otherwise
359 *
360 * DESCRIPTION: Read one line from the input source file and echo it to the
361 * listing file, prefixed with the line number, and if the source
362 * file contains include files, prefixed with the current filename
363 *
364 **/

366 UINT32
367 LsWriteOneSourceLine (
368 UINT32 FileId)
369 {
370 UINT8 FileByte;
371 UINT32 Column = 0;
372 UINT32 Index = 16;
373 BOOLEAN StartOfLine = FALSE;
374 BOOLEAN ProcessLongLine = FALSE;

377 Gbl_SourceLine++;
378 Gbl_ListingNode->LineNumber++;

380 /* Ignore lines that are completely blank (but count the line above) */

382 if (FlReadFile (ASL_FILE_SOURCE_OUTPUT, &FileByte, 1) != AE_OK)
383 {
384 return (0);
385 }
386 if (FileByte == ’\n’)
387 {
388 return (1);
389 }

391 /*

new/usr/src/common/acpica/compiler/asllistsup.c 7

392 * This is a non-empty line, we will print the entire line with
393 * the line number and possibly other prefixes and transforms.
394 */

396 /* Line prefixes for special files, C and ASM output */

398 if (FileId == ASL_FILE_C_SOURCE_OUTPUT)
399 {
400 FlPrintFile (FileId, " *");
401 }
402 if (FileId == ASL_FILE_ASM_SOURCE_OUTPUT)
403 {
404 FlPrintFile (FileId, "; ");
405 }

407 if (Gbl_HasIncludeFiles)
408 {
409 /*
410 * This file contains "include" statements, print the current
411 * filename and line number within the current file
412 */
413 FlPrintFile (FileId, "%12s %5d%s",
414 Gbl_ListingNode->Filename, Gbl_ListingNode->LineNumber,
415 ASL_LISTING_LINE_PREFIX);
416 }
417 else
418 {
419 /* No include files, just print the line number */

421 FlPrintFile (FileId, "%8u%s", Gbl_SourceLine,
422 ASL_LISTING_LINE_PREFIX);
423 }

425 /* Read the rest of this line (up to a newline or EOF) */

427 do
428 {
429 if (FileId == ASL_FILE_C_SOURCE_OUTPUT)
430 {
431 if (FileByte == ’/’)
432 {
433 FileByte = ’*’;
434 }
435 }

437 /* Split long input lines for readability in the listing */

439 Column++;
440 if (Column >= 128)
441 {
442 if (!ProcessLongLine)
443 {
444 if ((FileByte != ’}’) &&
445 (FileByte != ’{’))
446 {
447 goto WriteByte;
448 }

450 ProcessLongLine = TRUE;
451 }

453 if (FileByte == ’{’)
454 {
455 FlPrintFile (FileId, "\n%*s{\n", Index, " ");
456 StartOfLine = TRUE;
457 Index += 4;

new/usr/src/common/acpica/compiler/asllistsup.c 8

458 continue;
459 }

461 else if (FileByte == ’}’)
462 {
463 if (!StartOfLine)
464 {
465 FlPrintFile (FileId, "\n");
466 }

468 StartOfLine = TRUE;
469 Index -= 4;
470 FlPrintFile (FileId, "%*s}\n", Index, " ");
471 continue;
472 }

474 /* Ignore spaces/tabs at the start of line */

476 else if ((FileByte == ’ ’) && StartOfLine)
477 {
478 continue;
479 }

481 else if (StartOfLine)
482 {
483 StartOfLine = FALSE;
484 FlPrintFile (FileId, "%*s", Index, " ");
485 }

487 WriteByte:
488 FlWriteFile (FileId, &FileByte, 1);
489 if (FileByte == ’\n’)
490 {
491 /*
492 * This line has been completed.
493 * Check if an error occurred on this source line during the com
494 * If so, we print the error message after the source line.
495 */
496 LsCheckException (Gbl_SourceLine, FileId);
497 return (1);
498 }
499 }
500 else
501 {
502 FlWriteFile (FileId, &FileByte, 1);
503 if (FileByte == ’\n’)
504 {
505 /*
506 * This line has been completed.
507 * Check if an error occurred on this source line during the com
508 * If so, we print the error message after the source line.
509 */
510 LsCheckException (Gbl_SourceLine, FileId);
511 return (1);
512 }
513 }

515 } while (FlReadFile (ASL_FILE_SOURCE_OUTPUT, &FileByte, 1) == AE_OK);

517 /* EOF on the input file was reached */

519 return (0);
520 }

523 /***

new/usr/src/common/acpica/compiler/asllistsup.c 9

524 *
525 * FUNCTION: LsFlushListingBuffer
526 *
527 * PARAMETERS: FileId - ID of the listing file
528 *
529 * RETURN: None
530 *
531 * DESCRIPTION: Flush out the current contents of the 16-byte hex AML code
532 * buffer. Usually called at the termination of a single line
533 * of source code or when the buffer is full.
534 *
535 **/

537 void
538 LsFlushListingBuffer (
539 UINT32 FileId)
540 {
541 UINT32 i;

544 if (Gbl_CurrentHexColumn == 0)
545 {
546 return;
547 }

549 /* Write the hex bytes */

551 switch (FileId)
552 {
553 case ASL_FILE_LISTING_OUTPUT:

555 for (i = 0; i < Gbl_CurrentHexColumn; i++)
556 {
557 FlPrintFile (FileId, "%2.2X ", Gbl_AmlBuffer[i]);
558 }

560 for (i = 0; i < ((HEX_LISTING_LINE_SIZE - Gbl_CurrentHexColumn) * 3); i+
561 {
562 FlWriteFile (FileId, ".", 1);
563 }

565 /* Write the ASCII character associated with each of the bytes */

567 LsDumpAscii (FileId, Gbl_CurrentHexColumn, Gbl_AmlBuffer);
568 break;

571 case ASL_FILE_ASM_SOURCE_OUTPUT:

573 for (i = 0; i < Gbl_CurrentHexColumn; i++)
574 {
575 if (i > 0)
576 {
577 FlPrintFile (FileId, ",");
578 }
579 FlPrintFile (FileId, "0%2.2Xh", Gbl_AmlBuffer[i]);
580 }

582 for (i = 0; i < ((HEX_LISTING_LINE_SIZE - Gbl_CurrentHexColumn) * 5); i+
583 {
584 FlWriteFile (FileId, " ", 1);
585 }

587 FlPrintFile (FileId, " ;%8.8X",
588 Gbl_CurrentAmlOffset - HEX_LISTING_LINE_SIZE);

new/usr/src/common/acpica/compiler/asllistsup.c 10

590 /* Write the ASCII character associated with each of the bytes */

592 LsDumpAscii (FileId, Gbl_CurrentHexColumn, Gbl_AmlBuffer);
593 break;

596 case ASL_FILE_C_SOURCE_OUTPUT:

598 for (i = 0; i < Gbl_CurrentHexColumn; i++)
599 {
600 FlPrintFile (FileId, "0x%2.2X,", Gbl_AmlBuffer[i]);
601 }

603 /* Pad hex output with spaces if line is shorter than max line size */

605 for (i = 0; i < ((HEX_LISTING_LINE_SIZE - Gbl_CurrentHexColumn) * 5); i+
606 {
607 FlWriteFile (FileId, " ", 1);
608 }

610 /* AML offset for the start of the line */

612 FlPrintFile (FileId, " /* %8.8X",
613 Gbl_CurrentAmlOffset - Gbl_CurrentHexColumn);

615 /* Write the ASCII character associated with each of the bytes */

617 LsDumpAsciiInComment (FileId, Gbl_CurrentHexColumn, Gbl_AmlBuffer);
618 FlPrintFile (FileId, " */");
619 break;

621 default:

623 /* No other types supported */

625 return;
626 }

628 FlPrintFile (FileId, "\n");

630 Gbl_CurrentHexColumn = 0;
631 Gbl_HexBytesWereWritten = TRUE;
632 }

635 /***
636 *
637 * FUNCTION: LsPushNode
638 *
639 * PARAMETERS: Filename - Pointer to the include filename
640 *
641 * RETURN: None
642 *
643 * DESCRIPTION: Push a listing node on the listing/include file stack. This
644 * stack enables tracking of include files (infinitely nested)
645 * and resumption of the listing of the parent file when the
646 * include file is finished.
647 *
648 **/

650 void
651 LsPushNode (
652 char *Filename)
653 {
654 ASL_LISTING_NODE *Lnode;

new/usr/src/common/acpica/compiler/asllistsup.c 11

657 /* Create a new node */

659 Lnode = UtLocalCalloc (sizeof (ASL_LISTING_NODE));

661 /* Initialize */

663 Lnode->Filename = Filename;
664 Lnode->LineNumber = 0;

666 /* Link (push) */

668 Lnode->Next = Gbl_ListingNode;
669 Gbl_ListingNode = Lnode;
670 }

673 /***
674 *
675 * FUNCTION: LsPopNode
676 *
677 * PARAMETERS: None
678 *
679 * RETURN: List head after current head is popped off
680 *
681 * DESCRIPTION: Pop the current head of the list, free it, and return the
682 * next node on the stack (the new current node).
683 *
684 **/

686 ASL_LISTING_NODE *
687 LsPopNode (
688 void)
689 {
690 ASL_LISTING_NODE *Lnode;

693 /* Just grab the node at the head of the list */

695 Lnode = Gbl_ListingNode;
696 if ((!Lnode) ||
697 (!Lnode->Next))
698 {
699 AslError (ASL_ERROR, ASL_MSG_COMPILER_INTERNAL, NULL,
700 "Could not pop empty listing stack");
701 return (Gbl_ListingNode);
702 }

704 Gbl_ListingNode = Lnode->Next;
705 ACPI_FREE (Lnode);

707 /* New "Current" node is the new head */

709 return (Gbl_ListingNode);
710 }

new/usr/src/common/acpica/compiler/aslload.c 1

**
 26830 Thu Dec 26 13:48:29 2013
new/usr/src/common/acpica/compiler/aslload.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dswload - Dispatcher namespace load callbacks
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __ASLLOAD_C__

46 #include "aslcompiler.h"
47 #include "amlcode.h"
48 #include "acdispat.h"
49 #include "acnamesp.h"

51 #include "aslcompiler.y.h"

53 #define _COMPONENT ACPI_COMPILER
54 ACPI_MODULE_NAME ("aslload")

56 /* Local prototypes */

58 static ACPI_STATUS
59 LdLoadFieldElements (
60 ACPI_PARSE_OBJECT *Op,

new/usr/src/common/acpica/compiler/aslload.c 2

61 ACPI_WALK_STATE *WalkState);

63 static ACPI_STATUS
64 LdLoadResourceElements (
65 ACPI_PARSE_OBJECT *Op,
66 ACPI_WALK_STATE *WalkState);

68 static ACPI_STATUS
69 LdNamespace1Begin (
70 ACPI_PARSE_OBJECT *Op,
71 UINT32 Level,
72 void *Context);

74 static ACPI_STATUS
75 LdNamespace2Begin (
76 ACPI_PARSE_OBJECT *Op,
77 UINT32 Level,
78 void *Context);

80 static ACPI_STATUS
81 LdCommonNamespaceEnd (
82 ACPI_PARSE_OBJECT *Op,
83 UINT32 Level,
84 void *Context);

87 /***
88 *
89 * FUNCTION: LdLoadNamespace
90 *
91 * PARAMETERS: RootOp - Root of the parse tree
92 *
93 * RETURN: Status
94 *
95 * DESCRIPTION: Perform a walk of the parse tree that in turn loads all of the
96 * named ASL/AML objects into the namespace. The namespace is
97 * constructed in order to resolve named references and references
98 * to named fields within resource templates/descriptors.
99 *
100 **/

102 ACPI_STATUS
103 LdLoadNamespace (
104 ACPI_PARSE_OBJECT *RootOp)
105 {
106 ACPI_WALK_STATE *WalkState;

109 DbgPrint (ASL_DEBUG_OUTPUT, "\nCreating namespace\n\n");

111 /* Create a new walk state */

113 WalkState = AcpiDsCreateWalkState (0, NULL, NULL, NULL);
114 if (!WalkState)
115 {
116 return (AE_NO_MEMORY);
117 }

119 /* Walk the entire parse tree, first pass */

121 TrWalkParseTree (RootOp, ASL_WALK_VISIT_TWICE, LdNamespace1Begin,
122 LdCommonNamespaceEnd, WalkState);

124 /* Second pass to handle forward references */

126 TrWalkParseTree (RootOp, ASL_WALK_VISIT_TWICE, LdNamespace2Begin,

new/usr/src/common/acpica/compiler/aslload.c 3

127 LdCommonNamespaceEnd, WalkState);

129 /* Dump the namespace if debug is enabled */

131 AcpiNsDumpTables (ACPI_NS_ALL, ACPI_UINT32_MAX);
132 return (AE_OK);
133 }

136 /***
137 *
138 * FUNCTION: LdLoadFieldElements
139 *
140 * PARAMETERS: Op - Parent node (Field)
141 * WalkState - Current walk state
142 *
143 * RETURN: Status
144 *
145 * DESCRIPTION: Enter the named elements of the field (children of the parent)
146 * into the namespace.
147 *
148 **/

150 static ACPI_STATUS
151 LdLoadFieldElements (
152 ACPI_PARSE_OBJECT *Op,
153 ACPI_WALK_STATE *WalkState)
154 {
155 ACPI_PARSE_OBJECT *Child = NULL;
156 ACPI_NAMESPACE_NODE *Node;
157 ACPI_STATUS Status;

160 /* Get the first named field element */

162 switch (Op->Asl.AmlOpcode)
163 {
164 case AML_BANK_FIELD_OP:

166 Child = UtGetArg (Op, 6);
167 break;

169 case AML_INDEX_FIELD_OP:

171 Child = UtGetArg (Op, 5);
172 break;

174 case AML_FIELD_OP:

176 Child = UtGetArg (Op, 4);
177 break;

179 default:

181 /* No other opcodes should arrive here */

183 return (AE_BAD_PARAMETER);
184 }

186 /* Enter all elements into the namespace */

188 while (Child)
189 {
190 switch (Child->Asl.AmlOpcode)
191 {
192 case AML_INT_RESERVEDFIELD_OP:

new/usr/src/common/acpica/compiler/aslload.c 4

193 case AML_INT_ACCESSFIELD_OP:
194 case AML_INT_CONNECTION_OP:
195 break;

197 default:

199 Status = AcpiNsLookup (WalkState->ScopeInfo,
200 Child->Asl.Value.String,
201 ACPI_TYPE_LOCAL_REGION_FIELD,
202 ACPI_IMODE_LOAD_PASS1,
203 ACPI_NS_NO_UPSEARCH | ACPI_NS_DONT_OPEN_SCOPE |
204 ACPI_NS_ERROR_IF_FOUND,
205 NULL, &Node);
206 if (ACPI_FAILURE (Status))
207 {
208 if (Status != AE_ALREADY_EXISTS)
209 {
210 AslError (ASL_ERROR, ASL_MSG_CORE_EXCEPTION, Child,
211 Child->Asl.Value.String);
212 return (Status);
213 }

215 /*
216 * The name already exists in this scope
217 * But continue processing the elements
218 */
219 AslError (ASL_ERROR, ASL_MSG_NAME_EXISTS, Child,
220 Child->Asl.Value.String);
221 }
222 else
223 {
224 Child->Asl.Node = Node;
225 Node->Op = Child;
226 }
227 break;
228 }

230 Child = Child->Asl.Next;
231 }

233 return (AE_OK);
234 }

237 /***
238 *
239 * FUNCTION: LdLoadResourceElements
240 *
241 * PARAMETERS: Op - Parent node (Resource Descriptor)
242 * WalkState - Current walk state
243 *
244 * RETURN: Status
245 *
246 * DESCRIPTION: Enter the named elements of the resource descriptor (children
247 * of the parent) into the namespace.
248 *
249 * NOTE: In the real AML namespace, these named elements never exist. But
250 * we simply use the namespace here as a symbol table so we can look
251 * them up as they are referenced.
252 *
253 **/

255 static ACPI_STATUS
256 LdLoadResourceElements (
257 ACPI_PARSE_OBJECT *Op,
258 ACPI_WALK_STATE *WalkState)

new/usr/src/common/acpica/compiler/aslload.c 5

259 {
260 ACPI_PARSE_OBJECT *InitializerOp = NULL;
261 ACPI_NAMESPACE_NODE *Node;
262 ACPI_STATUS Status;

265 /*
266 * Enter the resource name into the namespace. Name must not already exist.
267 * This opens a scope, so later field names are guaranteed to be new/unique.
268 */
269 Status = AcpiNsLookup (WalkState->ScopeInfo, Op->Asl.Namepath,
270 ACPI_TYPE_LOCAL_RESOURCE, ACPI_IMODE_LOAD_PASS1,
271 ACPI_NS_NO_UPSEARCH | ACPI_NS_ERROR_IF_FOUND,
272 WalkState, &Node);
273 if (ACPI_FAILURE (Status))
274 {
275 if (Status == AE_ALREADY_EXISTS)
276 {
277 /* Actual node causing the error was saved in ParentMethod */

279 AslError (ASL_ERROR, ASL_MSG_NAME_EXISTS,
280 (ACPI_PARSE_OBJECT *) Op->Asl.ParentMethod, Op->Asl.Namepath);
281 return (AE_OK);
282 }
283 return (Status);
284 }

286 Node->Value = (UINT32) Op->Asl.Value.Integer;
287 Node->Op = Op;
288 Op->Asl.Node = Node;

290 /*
291 * Now enter the predefined fields, for easy lookup when referenced
292 * by the source ASL
293 */
294 InitializerOp = ASL_GET_CHILD_NODE (Op);
295 while (InitializerOp)
296 {
297 if (InitializerOp->Asl.ExternalName)
298 {
299 Status = AcpiNsLookup (WalkState->ScopeInfo,
300 InitializerOp->Asl.ExternalName,
301 ACPI_TYPE_LOCAL_RESOURCE_FIELD,
302 ACPI_IMODE_LOAD_PASS1,
303 ACPI_NS_NO_UPSEARCH | ACPI_NS_DONT_OPEN_SCOPE,
304 NULL, &Node);
305 if (ACPI_FAILURE (Status))
306 {
307 return (Status);
308 }

310 /*
311 * Store the field offset and length in the namespace node
312 * so it can be used when the field is referenced
313 */
314 Node->Value = InitializerOp->Asl.Value.Tag.BitOffset;
315 Node->Length = InitializerOp->Asl.Value.Tag.BitLength;
316 InitializerOp->Asl.Node = Node;
317 Node->Op = InitializerOp;
318 }

320 InitializerOp = ASL_GET_PEER_NODE (InitializerOp);
321 }

323 return (AE_OK);
324 }

new/usr/src/common/acpica/compiler/aslload.c 6

327 /***
328 *
329 * FUNCTION: LdNamespace1Begin
330 *
331 * PARAMETERS: ASL_WALK_CALLBACK
332 *
333 * RETURN: Status
334 *
335 * DESCRIPTION: Descending callback used during the parse tree walk. If this
336 * is a named AML opcode, enter into the namespace
337 *
338 **/

340 static ACPI_STATUS
341 LdNamespace1Begin (
342 ACPI_PARSE_OBJECT *Op,
343 UINT32 Level,
344 void *Context)
345 {
346 ACPI_WALK_STATE *WalkState = (ACPI_WALK_STATE *) Context;
347 ACPI_NAMESPACE_NODE *Node;
348 ACPI_STATUS Status;
349 ACPI_OBJECT_TYPE ObjectType;
350 ACPI_OBJECT_TYPE ActualObjectType = ACPI_TYPE_ANY;
351 char *Path;
352 UINT32 Flags = ACPI_NS_NO_UPSEARCH;
353 ACPI_PARSE_OBJECT *Arg;
354 UINT32 i;
355 BOOLEAN ForceNewScope = FALSE;

358 ACPI_FUNCTION_NAME (LdNamespace1Begin);
359 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Op %p [%s]\n",
360 Op, Op->Asl.ParseOpName));

363 /*
364 * We are only interested in opcodes that have an associated name
365 * (or multiple names)
366 */
367 switch (Op->Asl.AmlOpcode)
368 {
369 case AML_BANK_FIELD_OP:
370 case AML_INDEX_FIELD_OP:
371 case AML_FIELD_OP:

373 Status = LdLoadFieldElements (Op, WalkState);
374 return (Status);

376 default:

378 /* All other opcodes go below */

380 break;
381 }

383 /* Check if this object has already been installed in the namespace */

385 if (Op->Asl.Node)
386 {
387 return (AE_OK);
388 }

390 Path = Op->Asl.Namepath;

new/usr/src/common/acpica/compiler/aslload.c 7

391 if (!Path)
392 {
393 return (AE_OK);
394 }

396 /* Map the raw opcode into an internal object type */

398 switch (Op->Asl.ParseOpcode)
399 {
400 case PARSEOP_NAME:

402 Arg = Op->Asl.Child; /* Get the NameSeg/NameString node */
403 Arg = Arg->Asl.Next; /* First peer is the object to be associated with

405 /*
406 * If this name refers to a ResourceTemplate, we will need to open
407 * a new scope so that the resource subfield names can be entered into
408 * the namespace underneath this name
409 */
410 if (Op->Asl.CompileFlags & NODE_IS_RESOURCE_DESC)
411 {
412 ForceNewScope = TRUE;
413 }

415 /* Get the data type associated with the named object, not the name itse

417 /* Log2 loop to convert from Btype (binary) to Etype (encoded) */

419 ObjectType = 1;
420 for (i = 1; i < Arg->Asl.AcpiBtype; i *= 2)
421 {
422 ObjectType++;
423 }
424 break;

427 case PARSEOP_EXTERNAL:
428 /*
429 * "External" simply enters a name and type into the namespace.
430 * We must be careful to not open a new scope, however, no matter
431 * what type the external name refers to (e.g., a method)
432 *
433 * first child is name, next child is ObjectType
434 */
435 ActualObjectType = (UINT8) Op->Asl.Child->Asl.Next->Asl.Value.Integer;
436 ObjectType = ACPI_TYPE_ANY;

438 /*
439 * We will mark every new node along the path as "External". This
440 * allows some or all of the nodes to be created later in the ASL
441 * code. Handles cases like this:
442 *
443 * External (_SB_.PCI0.ABCD, IntObj)
444 * Scope (_SB_)
445 * {
446 * Device (PCI0)
447 * {
448 * }
449 * }
450 * Method (X)
451 * {
452 * Store (_SB_.PCI0.ABCD, Local0)
453 * }
454 */
455 Flags |= ACPI_NS_EXTERNAL;
456 break;

new/usr/src/common/acpica/compiler/aslload.c 8

458 case PARSEOP_DEFAULT_ARG:

460 if (Op->Asl.CompileFlags == NODE_IS_RESOURCE_DESC)
461 {
462 Status = LdLoadResourceElements (Op, WalkState);
463 return_ACPI_STATUS (Status);
464 }

466 ObjectType = AslMapNamedOpcodeToDataType (Op->Asl.AmlOpcode);
467 break;

470 case PARSEOP_SCOPE:
471 /*
472 * The name referenced by Scope(Name) must already exist at this point.
473 * In other words, forward references for Scope() are not supported.
474 * The only real reason for this is that the MS interpreter cannot
475 * handle this case. Perhaps someday this case can go away.
476 */
477 Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ACPI_TYPE_ANY,
478 ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT,
479 WalkState, &(Node));
480 if (ACPI_FAILURE (Status))
481 {
482 if (Status == AE_NOT_FOUND)
483 {
484 /* The name was not found, go ahead and create it */

486 Status = AcpiNsLookup (WalkState->ScopeInfo, Path,
487 ACPI_TYPE_LOCAL_SCOPE,
488 ACPI_IMODE_LOAD_PASS1, Flags,
489 WalkState, &(Node));
490 if (ACPI_FAILURE (Status))
491 {
492 return_ACPI_STATUS (Status);
493 }

495 /*
496 * However, this is an error -- primarily because the MS
497 * interpreter can’t handle a forward reference from the
498 * Scope() operator.
499 */
500 AslError (ASL_ERROR, ASL_MSG_NOT_FOUND, Op,
501 Op->Asl.ExternalName);
502 AslError (ASL_ERROR, ASL_MSG_SCOPE_FWD_REF, Op,
503 Op->Asl.ExternalName);
504 goto FinishNode;
505 }

507 AslCoreSubsystemError (Op, Status,
508 "Failure from namespace lookup", FALSE);

510 return_ACPI_STATUS (Status);
511 }

513 /* We found a node with this name, now check the type */

515 switch (Node->Type)
516 {
517 case ACPI_TYPE_LOCAL_SCOPE:
518 case ACPI_TYPE_DEVICE:
519 case ACPI_TYPE_POWER:
520 case ACPI_TYPE_PROCESSOR:
521 case ACPI_TYPE_THERMAL:

new/usr/src/common/acpica/compiler/aslload.c 9

523 /* These are acceptable types - they all open a new scope */
524 break;

526 case ACPI_TYPE_INTEGER:
527 case ACPI_TYPE_STRING:
528 case ACPI_TYPE_BUFFER:
529 /*
530 * These types we will allow, but we will change the type.
531 * This enables some existing code of the form:
532 *
533 * Name (DEB, 0)
534 * Scope (DEB) { ... }
535 *
536 * Which is used to workaround the fact that the MS interpreter
537 * does not allow Scope() forward references.
538 */
539 sprintf (MsgBuffer, "%s [%s], changing type to [Scope]",
540 Op->Asl.ExternalName, AcpiUtGetTypeName (Node->Type));
541 AslError (ASL_REMARK, ASL_MSG_SCOPE_TYPE, Op, MsgBuffer);

543 /* Switch the type to scope, open the new scope */

545 Node->Type = ACPI_TYPE_LOCAL_SCOPE;
546 Status = AcpiDsScopeStackPush (Node, ACPI_TYPE_LOCAL_SCOPE,
547 WalkState);
548 if (ACPI_FAILURE (Status))
549 {
550 return_ACPI_STATUS (Status);
551 }
552 break;

554 default:

556 /* All other types are an error */

558 sprintf (MsgBuffer, "%s [%s]", Op->Asl.ExternalName,
559 AcpiUtGetTypeName (Node->Type));
560 AslError (ASL_ERROR, ASL_MSG_SCOPE_TYPE, Op, MsgBuffer);

562 /*
563 * However, switch the type to be an actual scope so
564 * that compilation can continue without generating a whole
565 * cascade of additional errors. Open the new scope.
566 */
567 Node->Type = ACPI_TYPE_LOCAL_SCOPE;
568 Status = AcpiDsScopeStackPush (Node, ACPI_TYPE_LOCAL_SCOPE,
569 WalkState);
570 if (ACPI_FAILURE (Status))
571 {
572 return_ACPI_STATUS (Status);
573 }
574 break;
575 }

577 Status = AE_OK;
578 goto FinishNode;

581 default:

583 ObjectType = AslMapNamedOpcodeToDataType (Op->Asl.AmlOpcode);
584 break;
585 }

588 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Loading name: %s, (%s)\n",

new/usr/src/common/acpica/compiler/aslload.c 10

589 Op->Asl.ExternalName, AcpiUtGetTypeName (ObjectType)));

591 /* The name must not already exist */

593 Flags |= ACPI_NS_ERROR_IF_FOUND;

595 /*
596 * Enter the named type into the internal namespace. We enter the name
597 * as we go downward in the parse tree. Any necessary subobjects that
598 * involve arguments to the opcode must be created as we go back up the
599 * parse tree later.
600 */
601 Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ObjectType,
602 ACPI_IMODE_LOAD_PASS1, Flags, WalkState, &Node);
603 if (ACPI_FAILURE (Status))
604 {
605 if (Status == AE_ALREADY_EXISTS)
606 {
607 /* The name already exists in this scope */

609 if (Node->Type == ACPI_TYPE_LOCAL_SCOPE)
610 {
611 /* Allow multiple references to the same scope */

613 Node->Type = (UINT8) ObjectType;
614 Status = AE_OK;
615 }
616 else if ((Node->Flags & ANOBJ_IS_EXTERNAL) &&
617 (Op->Asl.ParseOpcode != PARSEOP_EXTERNAL))
618 {
619 /*
620 * Allow one create on an object or segment that was
621 * previously declared External
622 */
623 Node->Flags &= ~ANOBJ_IS_EXTERNAL;
624 Node->Type = (UINT8) ObjectType;

626 /* Just retyped a node, probably will need to open a scope */

628 if (AcpiNsOpensScope (ObjectType))
629 {
630 Status = AcpiDsScopeStackPush (Node, ObjectType, WalkState);
631 if (ACPI_FAILURE (Status))
632 {
633 return_ACPI_STATUS (Status);
634 }
635 }
636 Status = AE_OK;
637 }
638 else
639 {
640 /* Valid error, object already exists */

642 AslError (ASL_ERROR, ASL_MSG_NAME_EXISTS, Op,
643 Op->Asl.ExternalName);
644 return_ACPI_STATUS (AE_OK);
645 }
646 }
647 else
648 {
649 AslCoreSubsystemError (Op, Status,
650 "Failure from namespace lookup", FALSE);
651 return_ACPI_STATUS (Status);
652 }
653 }

new/usr/src/common/acpica/compiler/aslload.c 11

655 if (ForceNewScope)
656 {
657 Status = AcpiDsScopeStackPush (Node, ObjectType, WalkState);
658 if (ACPI_FAILURE (Status))
659 {
660 return_ACPI_STATUS (Status);
661 }
662 }

664 FinishNode:
665 /*
666 * Point the parse node to the new namespace node, and point
667 * the Node back to the original Parse node
668 */
669 Op->Asl.Node = Node;
670 Node->Op = Op;

672 /* Set the actual data type if appropriate (EXTERNAL term only) */

674 if (ActualObjectType != ACPI_TYPE_ANY)
675 {
676 Node->Type = (UINT8) ActualObjectType;
677 Node->Value = ASL_EXTERNAL_METHOD;
678 }

680 if (Op->Asl.ParseOpcode == PARSEOP_METHOD)
681 {
682 /*
683 * Get the method argument count from "Extra" and save
684 * it in the namespace node
685 */
686 Node->Value = (UINT32) Op->Asl.Extra;
687 }

689 return_ACPI_STATUS (Status);
690 }

693 /***
694 *
695 * FUNCTION: LdNamespace2Begin
696 *
697 * PARAMETERS: ASL_WALK_CALLBACK
698 *
699 * RETURN: Status
700 *
701 * DESCRIPTION: Descending callback used during the pass 2 parse tree walk.
702 * Second pass resolves some forward references.
703 *
704 * Notes:
705 * Currently only needs to handle the Alias operator.
706 * Could be used to allow forward references from the Scope() operator, but
707 * the MS interpreter does not allow this, so this compiler does not either.
708 *
709 **/

711 static ACPI_STATUS
712 LdNamespace2Begin (
713 ACPI_PARSE_OBJECT *Op,
714 UINT32 Level,
715 void *Context)
716 {
717 ACPI_WALK_STATE *WalkState = (ACPI_WALK_STATE *) Context;
718 ACPI_STATUS Status;
719 ACPI_NAMESPACE_NODE *Node;
720 ACPI_OBJECT_TYPE ObjectType;

new/usr/src/common/acpica/compiler/aslload.c 12

721 BOOLEAN ForceNewScope = FALSE;
722 ACPI_PARSE_OBJECT *Arg;
723 char *Path;
724 ACPI_NAMESPACE_NODE *TargetNode;

727 ACPI_FUNCTION_NAME (LdNamespace2Begin);
728 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Op %p [%s]\n",
729 Op, Op->Asl.ParseOpName));

732 /* Ignore Ops with no namespace node */

734 Node = Op->Asl.Node;
735 if (!Node)
736 {
737 return (AE_OK);
738 }

740 /* Get the type to determine if we should push the scope */

742 if ((Op->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG) &&
743 (Op->Asl.CompileFlags == NODE_IS_RESOURCE_DESC))
744 {
745 ObjectType = ACPI_TYPE_LOCAL_RESOURCE;
746 }
747 else
748 {
749 ObjectType = AslMapNamedOpcodeToDataType (Op->Asl.AmlOpcode);
750 }

752 /* Push scope for Resource Templates */

754 if (Op->Asl.ParseOpcode == PARSEOP_NAME)
755 {
756 if (Op->Asl.CompileFlags & NODE_IS_RESOURCE_DESC)
757 {
758 ForceNewScope = TRUE;
759 }
760 }

762 /* Push the scope stack */

764 if (ForceNewScope || AcpiNsOpensScope (ObjectType))
765 {
766 Status = AcpiDsScopeStackPush (Node, ObjectType, WalkState);
767 if (ACPI_FAILURE (Status))
768 {
769 return_ACPI_STATUS (Status);
770 }
771 }

773 if (Op->Asl.ParseOpcode == PARSEOP_ALIAS)
774 {
775 /* Complete the alias node by getting and saving the target node */

777 /* First child is the alias target */

779 Arg = Op->Asl.Child;

781 /* Get the target pathname */

783 Path = Arg->Asl.Namepath;
784 if (!Path)
785 {
786 Status = UtInternalizeName (Arg->Asl.ExternalName, &Path);

new/usr/src/common/acpica/compiler/aslload.c 13

787 if (ACPI_FAILURE (Status))
788 {
789 return (Status);
790 }
791 }

793 /* Get the NS node associated with the target. It must exist. */

795 Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ACPI_TYPE_ANY,
796 ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT | ACPI_NS_DONT_OPE
797 WalkState, &TargetNode);
798 if (ACPI_FAILURE (Status))
799 {
800 if (Status == AE_NOT_FOUND)
801 {
802 AslError (ASL_ERROR, ASL_MSG_NOT_FOUND, Op,
803 Op->Asl.ExternalName);

805 /*
806 * The name was not found, go ahead and create it.
807 * This prevents more errors later.
808 */
809 Status = AcpiNsLookup (WalkState->ScopeInfo, Path,
810 ACPI_TYPE_ANY,
811 ACPI_IMODE_LOAD_PASS1, ACPI_NS_NO_UPSEARCH,
812 WalkState, &(Node));
813 return (AE_OK);
814 }

816 AslCoreSubsystemError (Op, Status,
817 "Failure from namespace lookup", FALSE);
818 return (AE_OK);
819 }

821 /* Save the target node within the alias node */

823 Node->Object = ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, TargetNode);
824 }

826 return (AE_OK);
827 }

830 /***
831 *
832 * FUNCTION: LdCommonNamespaceEnd
833 *
834 * PARAMETERS: ASL_WALK_CALLBACK
835 *
836 * RETURN: Status
837 *
838 * DESCRIPTION: Ascending callback used during the loading of the namespace,
839 * We only need to worry about managing the scope stack here.
840 *
841 **/

843 static ACPI_STATUS
844 LdCommonNamespaceEnd (
845 ACPI_PARSE_OBJECT *Op,
846 UINT32 Level,
847 void *Context)
848 {
849 ACPI_WALK_STATE *WalkState = (ACPI_WALK_STATE *) Context;
850 ACPI_OBJECT_TYPE ObjectType;
851 BOOLEAN ForceNewScope = FALSE;

new/usr/src/common/acpica/compiler/aslload.c 14

854 ACPI_FUNCTION_NAME (LdCommonNamespaceEnd);

857 /* We are only interested in opcodes that have an associated name */

859 if (!Op->Asl.Namepath)
860 {
861 return (AE_OK);
862 }

864 /* Get the type to determine if we should pop the scope */

866 if ((Op->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG) &&
867 (Op->Asl.CompileFlags == NODE_IS_RESOURCE_DESC))
868 {
869 /* TBD: Merge into AcpiDsMapNamedOpcodeToDataType */

871 ObjectType = ACPI_TYPE_LOCAL_RESOURCE;
872 }
873 else
874 {
875 ObjectType = AslMapNamedOpcodeToDataType (Op->Asl.AmlOpcode);
876 }

878 /* Pop scope that was pushed for Resource Templates */

880 if (Op->Asl.ParseOpcode == PARSEOP_NAME)
881 {
882 if (Op->Asl.CompileFlags & NODE_IS_RESOURCE_DESC)
883 {
884 ForceNewScope = TRUE;
885 }
886 }

888 /* Pop the scope stack */

890 if (ForceNewScope || AcpiNsOpensScope (ObjectType))
891 {
892 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
893 "(%s): Popping scope for Op [%s] %p\n",
894 AcpiUtGetTypeName (ObjectType), Op->Asl.ParseOpName, Op));

896 (void) AcpiDsScopeStackPop (WalkState);
897 }

899 return (AE_OK);
900 }

new/usr/src/common/acpica/compiler/asllookup.c 1

**
 7479 Thu Dec 26 13:48:29 2013
new/usr/src/common/acpica/compiler/asllookup.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: asllookup- Namespace lookup functions
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"
47 #include "acparser.h"
48 #include "amlcode.h"
49 #include "acnamesp.h"
50 #include "acdispat.h"

53 #define _COMPONENT ACPI_COMPILER
54 ACPI_MODULE_NAME ("asllookup")

56 /* Local prototypes */

58 static ACPI_STATUS
59 LkIsObjectUsed (

new/usr/src/common/acpica/compiler/asllookup.c 2

60 ACPI_HANDLE ObjHandle,
61 UINT32 Level,
62 void *Context,
63 void **ReturnValue);

65 static ACPI_PARSE_OBJECT *
66 LkGetNameOp (
67 ACPI_PARSE_OBJECT *Op);

70 /***
71 *
72 * FUNCTION: LkFindUnreferencedObjects
73 *
74 * PARAMETERS: None
75 *
76 * RETURN: None
77 *
78 * DESCRIPTION: Namespace walk to find objects that are not referenced in any
79 * way. Must be called after the namespace has been cross
80 * referenced.
81 *
82 **/

84 void
85 LkFindUnreferencedObjects (
86 void)
87 {

89 /* Walk entire namespace from the supplied root */

91 (void) AcpiNsWalkNamespace (ACPI_TYPE_ANY, ACPI_ROOT_OBJECT,
92 ACPI_UINT32_MAX, FALSE, LkIsObjectUsed, NULL,
93 NULL, NULL);
94 }

97 /***
98 *
99 * FUNCTION: LkIsObjectUsed
100 *
101 * PARAMETERS: ACPI_WALK_CALLBACK
102 *
103 * RETURN: Status
104 *
105 * DESCRIPTION: Check for an unreferenced namespace object and emit a warning.
106 * We have to be careful, because some types and names are
107 * typically or always unreferenced, we don’t want to issue
108 * excessive warnings. Note: Names that are declared within a
109 * control method are temporary, so we always issue a remark
110 * if they are not referenced.
111 *
112 **/

114 static ACPI_STATUS
115 LkIsObjectUsed (
116 ACPI_HANDLE ObjHandle,
117 UINT32 Level,
118 void *Context,
119 void **ReturnValue)
120 {
121 ACPI_NAMESPACE_NODE *Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, ObjHandl
122 ACPI_NAMESPACE_NODE *Next;

125 /* Referenced flag is set during the namespace xref */

new/usr/src/common/acpica/compiler/asllookup.c 3

127 if (Node->Flags & ANOBJ_IS_REFERENCED)
128 {
129 return (AE_OK);
130 }

132 if (!Node->Op)
133 {
134 return (AE_OK);
135 }

137 /* These types are typically never directly referenced, ignore them */

139 switch (Node->Type)
140 {
141 case ACPI_TYPE_DEVICE:
142 case ACPI_TYPE_PROCESSOR:
143 case ACPI_TYPE_POWER:
144 case ACPI_TYPE_THERMAL:
145 case ACPI_TYPE_LOCAL_RESOURCE:

147 return (AE_OK);

149 default:

151 break;
152 }

154 /* Determine if the name is within a control method */

156 Next = Node->Parent;
157 while (Next)
158 {
159 if (Next->Type == ACPI_TYPE_METHOD)
160 {
161 /*
162 * Name is within a method, therefore it is temporary.
163 * Issue a remark even if it is a reserved name (starts
164 * with an underscore).
165 */
166 sprintf (MsgBuffer, "Name is within method [%4.4s]",
167 Next->Name.Ascii);
168 AslError (ASL_REMARK, ASL_MSG_NOT_REFERENCED,
169 LkGetNameOp (Node->Op), MsgBuffer);
170 return (AE_OK);
171 }

173 Next = Next->Parent;
174 }

176 /* The name is not within a control method */

178 /*
179 * Ignore names that start with an underscore. These are the reserved
180 * ACPI names and are typically not referenced since they are meant
181 * to be called by the host OS.
182 */
183 if (Node->Name.Ascii[0] == ’_’)
184 {
185 return (AE_OK);
186 }

188 /*
189 * What remains is an unresolved user name that is not within a method.
190 * However, the object could be referenced via another table, so issue
191 * the warning at level 2.

new/usr/src/common/acpica/compiler/asllookup.c 4

192 */
193 AslError (ASL_WARNING2, ASL_MSG_NOT_REFERENCED,
194 LkGetNameOp (Node->Op), NULL);
195 return (AE_OK);
196 }

199 /***
200 *
201 * FUNCTION: LkGetNameOp
202 *
203 * PARAMETERS: Op - Current Op
204 *
205 * RETURN: NameOp associated with the input op
206 *
207 * DESCRIPTION: Find the name declaration op associated with the operator
208 *
209 **/

211 static ACPI_PARSE_OBJECT *
212 LkGetNameOp (
213 ACPI_PARSE_OBJECT *Op)
214 {
215 const ACPI_OPCODE_INFO *OpInfo;
216 ACPI_PARSE_OBJECT *NameOp = Op;

219 OpInfo = AcpiPsGetOpcodeInfo (Op->Asl.AmlOpcode);

222 /* Get the NamePath from the appropriate place */

224 if (OpInfo->Flags & AML_NAMED)
225 {
226 /* For nearly all NAMED operators, the name reference is the first child

228 NameOp = Op->Asl.Child;
229 if (Op->Asl.AmlOpcode == AML_ALIAS_OP)
230 {
231 /*
232 * ALIAS is the only oddball opcode, the name declaration
233 * (alias name) is the second operand
234 */
235 NameOp = Op->Asl.Child->Asl.Next;
236 }
237 }
238 else if (OpInfo->Flags & AML_CREATE)
239 {
240 /* Name must appear as the last parameter */

242 NameOp = Op->Asl.Child;
243 while (!(NameOp->Asl.CompileFlags & NODE_IS_NAME_DECLARATION))
244 {
245 NameOp = NameOp->Asl.Next;
246 }
247 }

249 return (NameOp);
250 }

new/usr/src/common/acpica/compiler/aslmain.c 1

**
 13086 Thu Dec 26 13:48:30 2013
new/usr/src/common/acpica/compiler/aslmain.c
update to acpica-unix2-20131218
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslmain - compiler main and utilities
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define _DECLARE_GLOBALS

46 #include "aslcompiler.h"
47 #include "acapps.h"
48 #include "acdisasm.h"
49 #include <signal.h>

51 #define _COMPONENT ACPI_COMPILER
52 ACPI_MODULE_NAME ("aslmain")

54 /*
55 * Main routine for the iASL compiler.
56 *
57 * Portability note: The compiler depends upon the host for command-line
58 * wildcard support - it is not implemented locally. For example:

new/usr/src/common/acpica/compiler/aslmain.c 2

59 *
60 * Linux/Unix systems: Shell expands wildcards automatically.
61 *
62 * Windows: The setargv.obj module must be linked in to automatically
63 * expand wildcards.
64 */

66 /* Local prototypes */

68 static void ACPI_SYSTEM_XFACE
69 AslSignalHandler (
70 int Sig);

72 static void
73 AslInitialize (
74 void);

77 /***
78 *
79 * FUNCTION: Usage
80 *
81 * PARAMETERS: None
82 *
83 * RETURN: None
84 *
85 * DESCRIPTION: Display option help message.
86 * Optional items in square brackets.
87 *
88 **/

90 void
91 Usage (
92 void)
93 {
94 printf ("%s\n\n", ASL_COMPLIANCE);
95 ACPI_USAGE_HEADER ("iasl [Options] [Files]");

97 printf ("\nGeneral:\n");
98 ACPI_OPTION ("-@ <file>", "Specify command file");
99 ACPI_OPTION ("-I <dir>", "Specify additional include directory");
100 ACPI_OPTION ("-T <sig>|ALL|*", "Create table template file for ACPI <Sig>")
101 ACPI_OPTION ("-p <prefix>", "Specify path/filename prefix for all output
102 ACPI_OPTION ("-v", "Display compiler version");
103 ACPI_OPTION ("-vo", "Enable optimization comments");
104 ACPI_OPTION ("-vs", "Disable signon");

106 printf ("\nHelp:\n");
107 ACPI_OPTION ("-h", "This message");
108 ACPI_OPTION ("-hc", "Display operators allowed in constant expre
109 ACPI_OPTION ("-hf", "Display help for output filename generation
110 ACPI_OPTION ("-hr", "Display ACPI reserved method names");
111 ACPI_OPTION ("-ht", "Display currently supported ACPI table name

113 printf ("\nPreprocessor:\n");
114 ACPI_OPTION ("-D <symbol>", "Define symbol for preprocessor use");
115 ACPI_OPTION ("-li", "Create preprocessed output file (*.i)");
116 ACPI_OPTION ("-P", "Preprocess only and create preprocessor out
117 ACPI_OPTION ("-Pn", "Disable preprocessor");

119 printf ("\nErrors, Warnings, and Remarks:\n");
120 ACPI_OPTION ("-va", "Disable all errors/warnings/remarks");
121 ACPI_OPTION ("-ve", "Report only errors (ignore warnings and rem
122 ACPI_OPTION ("-vi", "Less verbose errors and warnings for use wi
123 ACPI_OPTION ("-vr", "Disable remarks");
124 ACPI_OPTION ("-vw <messageid>", "Disable specific warning or remark");

new/usr/src/common/acpica/compiler/aslmain.c 3

125 ACPI_OPTION ("-w1 -w2 -w3", "Set warning reporting level");
126 ACPI_OPTION ("-we", "Report warnings as errors");

128 printf ("\nAML Code Generation (*.aml):\n");
129 ACPI_OPTION ("-oa", "Disable all optimizations (compatibility mo
130 ACPI_OPTION ("-of", "Disable constant folding");
131 ACPI_OPTION ("-oi", "Disable integer optimization to Zero/One/On
132 ACPI_OPTION ("-on", "Disable named reference string optimization
133 ACPI_OPTION ("-cr", "Disable Resource Descriptor error checking"
134 ACPI_OPTION ("-in", "Ignore NoOp operators");
135 ACPI_OPTION ("-r <revision>", "Override table header Revision (1-255)");

137 printf ("\nOptional Source Code Output Files:\n");
138 ACPI_OPTION ("-sc -sa", "Create source file in C or assembler (*.c o
139 ACPI_OPTION ("-ic -ia", "Create include file in C or assembler (*.h
140 ACPI_OPTION ("-tc -ta -ts", "Create hex AML table in C, assembler, or AS
141 ACPI_OPTION ("-so", "Create offset table in C (*.offset.h)");

143 printf ("\nOptional Listing Files:\n");
144 ACPI_OPTION ("-l", "Create mixed listing file (ASL source and A
145 ACPI_OPTION ("-ln", "Create namespace file (*.nsp)");
146 ACPI_OPTION ("-ls", "Create combined source file (expanded inclu

148 printf ("\nData Table Compiler:\n");
149 ACPI_OPTION ("-G", "Compile custom table that contains generic
150 ACPI_OPTION ("-vt", "Create verbose template files (full disasse

152 printf ("\nAML Disassembler:\n");
153 ACPI_OPTION ("-d <f1 f2 ...>", "Disassemble or decode binary ACPI tables to
154 ACPI_OPTION ("", " (Optional, file type is automatically det
155 ACPI_OPTION ("-da <f1 f2 ...>", "Disassemble multiple tables from single nam
156 ACPI_OPTION ("-db", "Do not translate Buffers to Resource Templa
157 ACPI_OPTION ("-dc <f1 f2 ...>", "Disassemble AML and immediately compile it"
158 ACPI_OPTION ("", " (Obtain DSDT from current system if no in
159 ACPI_OPTION ("-e <f1 f2 ...>", "Include ACPI table(s) for external symbol r
160 ACPI_OPTION ("-fe <file>", "Specify external symbol declaration file");
161 ACPI_OPTION ("-g", "Get ACPI tables and write to files (*.dat)"
162 ACPI_OPTION ("-in", "Ignore NoOp opcodes");
163 ACPI_OPTION ("-vt", "Dump binary table data in hex format within

165 printf ("\nDebug Options:\n");
166 ACPI_OPTION ("-bf -bt", "Create debug file (full or parse tree only)
167 ACPI_OPTION ("-f", "Ignore errors, force creation of AML output
168 ACPI_OPTION ("-m <size>", "Set internal line buffer size (in Kbytes)")
169 ACPI_OPTION ("-n", "Parse only, no output generation");
170 ACPI_OPTION ("-ot", "Display compile times and statistics");
171 ACPI_OPTION ("-x <level>", "Set debug level for trace output");
172 ACPI_OPTION ("-z", "Do not insert new compiler ID for DataTable
173 }

176 /***
177 *
178 * FUNCTION: FilenameHelp
179 *
180 * PARAMETERS: None
181 *
182 * RETURN: None
183 *
184 * DESCRIPTION: Display help message for output filename generation
185 *
186 **/

188 void
189 AslFilenameHelp (
190 void)

new/usr/src/common/acpica/compiler/aslmain.c 4

191 {

193 printf ("\nAML output filename generation:\n");
194 printf (" Output filenames are generated by appending an extension to a com
195 printf (" filename prefix. The filename prefix is obtained via one of the\n
196 printf (" following methods (in priority order):\n");
197 printf (" 1) The -p option specifies the prefix\n");
198 printf (" 2) The prefix of the AMLFileName in the ASL Definition Block\n"
199 printf (" 3) The prefix of the input filename\n");
200 printf ("\n");
201 }

204 /**
205 *
206 * FUNCTION: AslSignalHandler
207 *
208 * PARAMETERS: Sig - Signal that invoked this handler
209 *
210 * RETURN: None
211 *
212 * DESCRIPTION: Control-C handler. Delete any intermediate files and any
213 * output files that may be left in an indeterminate state.
214 *
215 ***/

217 static void ACPI_SYSTEM_XFACE
218 AslSignalHandler (
219 int Sig)
220 {
221 UINT32 i;

224 signal (Sig, SIG_IGN);
225 printf ("Aborting\n\n");

227 /* Close all open files */

229 Gbl_Files[ASL_FILE_PREPROCESSOR].Handle = NULL; /* the .i file is same as so

231 for (i = ASL_FILE_INPUT; i < ASL_MAX_FILE_TYPE; i++)
232 {
233 FlCloseFile (i);
234 }

236 /* Delete any output files */

238 for (i = ASL_FILE_AML_OUTPUT; i < ASL_MAX_FILE_TYPE; i++)
239 {
240 FlDeleteFile (i);
241 }

243 exit (0);
244 }

247 /***
248 *
249 * FUNCTION: AslInitialize
250 *
251 * PARAMETERS: None
252 *
253 * RETURN: None
254 *
255 * DESCRIPTION: Initialize compiler globals
256 *

new/usr/src/common/acpica/compiler/aslmain.c 5

257 **/

259 static void
260 AslInitialize (
261 void)
262 {
263 UINT32 i;

266 for (i = 0; i < ASL_NUM_FILES; i++)
267 {
268 Gbl_Files[i].Handle = NULL;
269 Gbl_Files[i].Filename = NULL;
270 }

272 Gbl_Files[ASL_FILE_STDOUT].Handle = stdout;
273 Gbl_Files[ASL_FILE_STDOUT].Filename = "STDOUT";

275 Gbl_Files[ASL_FILE_STDERR].Handle = stderr;
276 Gbl_Files[ASL_FILE_STDERR].Filename = "STDERR";
277 }

280 /***
281 *
282 * FUNCTION: main
283 *
284 * PARAMETERS: Standard argc/argv
285 *
286 * RETURN: Program termination code
287 *
288 * DESCRIPTION: C main routine for the Asl Compiler. Handle command line
289 * options and begin the compile for each file on the command line
290 *
291 **/

293 int ACPI_SYSTEM_XFACE
294 main (
295 int argc,
296 char **argv)
297 {
298 ACPI_STATUS Status;
299 int Index1;
300 int Index2;

303 ACPI_DEBUG_INITIALIZE (); /* For debug version only */

305 /* Initialize preprocessor and compiler before command line processing */

307 signal (SIGINT, AslSignalHandler);
308 AcpiGbl_ExternalFileList = NULL;
309 AcpiDbgLevel = 0;
310 PrInitializePreprocessor ();
311 AslInitialize ();

313 Index1 = Index2 = AslCommandLine (argc, argv);

315 /* Allocate the line buffer(s), must be after command line */

317 Gbl_LineBufferSize /= 2;
318 UtExpandLineBuffers ();

320 /* Perform global actions first/only */

322 if (Gbl_GetAllTables)

new/usr/src/common/acpica/compiler/aslmain.c 6

323 {
324 Status = AslDoOneFile (NULL);
325 if (ACPI_FAILURE (Status))
326 {
327 return (-1);
328 }
329 return (0);
330 }

332 if (Gbl_DisassembleAll)
333 {
334 while (argv[Index1])
335 {
336 Status = AcpiDmAddToExternalFileList (argv[Index1]);
337 if (ACPI_FAILURE (Status))
338 {
339 return (-1);
340 }

342 Index1++;
343 }
344 }

346 /* Process each pathname/filename in the list, with possible wildcards */

348 while (argv[Index2])
349 {
350 /*
351 * If -p not specified, we will use the input filename as the
352 * output filename prefix
353 */
354 if (Gbl_UseDefaultAmlFilename)
355 {
356 Gbl_OutputFilenamePrefix = argv[Index2];
357 UtConvertBackslashes (Gbl_OutputFilenamePrefix);
358 }

360 Status = AslDoOneFile (argv[Index2]);
361 if (ACPI_FAILURE (Status))
362 {
363 return (-1);
364 }

366 Index2++;
367 }

369 if (AcpiGbl_ExternalFileList)
370 {
371 AcpiDmClearExternalFileList();
372 }

374 return (0);
375 }

new/usr/src/common/acpica/compiler/aslmap.c 1

**
 48474 Thu Dec 26 13:48:30 2013
new/usr/src/common/acpica/compiler/aslmap.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslmap - parser to AML opcode mapping table
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aslcompiler.h"
45 #include "amlcode.h"
46 #include "acparser.h"

49 #define _COMPONENT ACPI_COMPILER
50 ACPI_MODULE_NAME ("aslmap")

53 /***
54 *
55 * FUNCTION: AslMapNamedOpcodeToDataType
56 *
57 * PARAMETERS: Opcode - The Named AML opcode to map
58 *
59 * RETURN: The ACPI type associated with the named opcode
60 *

new/usr/src/common/acpica/compiler/aslmap.c 2

61 * DESCRIPTION: Convert a raw Named AML opcode to the associated data type.
62 * Named opcodes are a subset of the AML opcodes.
63 *
64 **/

66 ACPI_OBJECT_TYPE
67 AslMapNamedOpcodeToDataType (
68 UINT16 Opcode)
69 {
70 const ACPI_OPCODE_INFO *OpInfo;

73 /*
74 * There are some differences from the opcode table types, we
75 * catch them here.
76 */
77 OpInfo = AcpiPsGetOpcodeInfo (Opcode);

79 if (Opcode == AML_INT_NAMEPATH_OP)
80 {
81 return (ACPI_TYPE_ANY);
82 }

84 if (Opcode == AML_INT_METHODCALL_OP)
85 {
86 return (ACPI_TYPE_ANY);
87 }

89 if (OpInfo->Flags & AML_NSOBJECT)
90 {
91 return (OpInfo->ObjectType);
92 }

94 return (ACPI_TYPE_ANY);
95 }

98 /***
99 *
100 * DATA STRUCTURE: AslKeywordMapping
101 *
102 * DESCRIPTION: Maps the ParseOpcode to the actual AML opcode. The parse
103 * opcodes are generated from Bison, and this table must
104 * track any additions to them.
105 *
106 * Each entry in the table contains the following items:
107 *
108 * AML opcode - Opcode that is written to the AML file
109 * Value - Value of the object to be written (if applicable)
110 * Flags - 1) Whether this opcode opens an AML "package".
111 *
112 **/
113 /*
114 * TBD:
115 * AccessAttrib
116 * AccessType
117 * AMlop for DMA?
118 * ObjectType keywords
119 * Register
120 */

122 const ASL_MAPPING_ENTRY AslKeywordMapping [] =
123 {
124 /*! [Begin] no source code translation (keep the table structure) */

new/usr/src/common/acpica/compiler/aslmap.c 3

127 /* ACCESSAS */ OP_TABLE_ENTRY (AML_INT_ACCESSFIELD_OP, 0,
128 /* ACCESSATTRIB_BLOCK */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
129 /* ACCESSATTRIB_BLOCK_CALL */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
130 /* ACCESSATTRIB_BYTE */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
131 /* ACCESSATTRIB_MULTIBYTE */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
132 /* ACCESSATTRIB_QUICK */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
133 /* ACCESSATTRIB_RAW_BYTES */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
134 /* ACCESSATTRIB_RAW_PROCESS */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
135 /* ACCESSATTRIB_SND_RCV */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
136 /* ACCESSATTRIB_WORD */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
137 /* ACCESSATTRIB_WORD_CALL */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
138 /* ACCESSTYPE_ANY */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
139 /* ACCESSTYPE_BUF */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
140 /* ACCESSTYPE_BYTE */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
141 /* ACCESSTYPE_DWORD */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
142 /* ACCESSTYPE_QWORD */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
143 /* ACCESSTYPE_WORD */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
144 /* ACQUIRE */ OP_TABLE_ENTRY (AML_ACQUIRE_OP, 0,
145 /* ADD */ OP_TABLE_ENTRY (AML_ADD_OP, 0,
146 /* ADDRESSINGMODE_7BIT */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
147 /* ADDRESSINGMODE_10BIT */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
148 /* ADDRESSTYPE_ACPI */ OP_TABLE_ENTRY (AML_BYTE_OP, 2,
149 /* ADDRESSTYPE_MEMORY */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
150 /* ADDRESSTYPE_NVS */ OP_TABLE_ENTRY (AML_BYTE_OP, 3,
151 /* ADDRESSTYPE_RESERVED */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
152 /* ALIAS */ OP_TABLE_ENTRY (AML_ALIAS_OP, 0,
153 /* AND */ OP_TABLE_ENTRY (AML_BIT_AND_OP, 0,
154 /* ARG0 */ OP_TABLE_ENTRY (AML_ARG0, 0,
155 /* ARG1 */ OP_TABLE_ENTRY (AML_ARG1, 0,
156 /* ARG2 */ OP_TABLE_ENTRY (AML_ARG2, 0,
157 /* ARG3 */ OP_TABLE_ENTRY (AML_ARG3, 0,
158 /* ARG4 */ OP_TABLE_ENTRY (AML_ARG4, 0,
159 /* ARG5 */ OP_TABLE_ENTRY (AML_ARG5, 0,
160 /* ARG6 */ OP_TABLE_ENTRY (AML_ARG6, 0,
161 /* BANKFIELD */ OP_TABLE_ENTRY (AML_BANK_FIELD_OP, 0,
162 /* BITSPERBYTE_EIGHT */ OP_TABLE_ENTRY (AML_BYTE_OP, 3,
163 /* BITSPERBYTE_FIVE */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
164 /* BITSPERBYTE_NINE */ OP_TABLE_ENTRY (AML_BYTE_OP, 4,
165 /* BITSPERBYTE_SEVEN */ OP_TABLE_ENTRY (AML_BYTE_OP, 2,
166 /* BITSPERBYTE_SIX */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
167 /* BREAK */ OP_TABLE_ENTRY (AML_BREAK_OP, 0,
168 /* BREAKPOINT */ OP_TABLE_ENTRY (AML_BREAK_POINT_OP, 0,
169 /* BUFFER */ OP_TABLE_ENTRY (AML_BUFFER_OP, 0,
170 /* BUSMASTERTYPE_MASTER */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
171 /* BUSMASTERTYPE_NOTMASTER */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
172 /* BYTECONST */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, 0,
173 /* CASE */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
174 /* CLOCKPHASE_FIRST */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
175 /* CLOCKPHASE_SECOND */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
176 /* CLOCKPOLARITY_HIGH */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
177 /* CLOCKPOLARITY_LOW */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
178 /* CONCATENATE */ OP_TABLE_ENTRY (AML_CONCAT_OP, 0,
179 /* CONCATENATERESTEMPLATE */ OP_TABLE_ENTRY (AML_CONCAT_RES_OP, 0,
180 /* CONDREFOF */ OP_TABLE_ENTRY (AML_COND_REF_OF_OP, 0,
181 /* CONNECTION */ OP_TABLE_ENTRY (AML_INT_CONNECTION_OP, 0,
182 /* CONTINUE */ OP_TABLE_ENTRY (AML_CONTINUE_OP, 0,
183 /* COPY */ OP_TABLE_ENTRY (AML_COPY_OP, 0,
184 /* CREATEBITFIELD */ OP_TABLE_ENTRY (AML_CREATE_BIT_FIELD_OP, 0,
185 /* CREATEBYTEFIELD */ OP_TABLE_ENTRY (AML_CREATE_BYTE_FIELD_OP, 0,
186 /* CREATEDWORDFIELD */ OP_TABLE_ENTRY (AML_CREATE_DWORD_FIELD_OP, 0,
187 /* CREATEFIELD */ OP_TABLE_ENTRY (AML_CREATE_FIELD_OP, 0,
188 /* CREATEQWORDFIELD */ OP_TABLE_ENTRY (AML_CREATE_QWORD_FIELD_OP, 0,
189 /* CREATEWORDFIELD */ OP_TABLE_ENTRY (AML_CREATE_WORD_FIELD_OP, 0,
190 /* DATABUFFER */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
191 /* DATATABLEREGION */ OP_TABLE_ENTRY (AML_DATA_REGION_OP, 0,
192 /* DEBUG */ OP_TABLE_ENTRY (AML_DEBUG_OP, 0,

new/usr/src/common/acpica/compiler/aslmap.c 4

193 /* DECODETYPE_POS */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
194 /* DECODETYPE_SUB */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
195 /* DECREMENT */ OP_TABLE_ENTRY (AML_DECREMENT_OP, 0,
196 /* DEFAULT */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
197 /* DEFAULT_ARG */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
198 /* DEFINITIONBLOCK */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
199 /* DEREFOF */ OP_TABLE_ENTRY (AML_DEREF_OF_OP, 0,
200 /* DEVICE */ OP_TABLE_ENTRY (AML_DEVICE_OP, 0,
201 /* DEVICEPOLARITY_HIGH */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
202 /* DEVICEPOLARITY_LOW */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
203 /* DIVIDE */ OP_TABLE_ENTRY (AML_DIVIDE_OP, 0,
204 /* DMA */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
205 /* DMATYPE_A */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
206 /* DMATYPE_COMPATIBILITY */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
207 /* DMATYPE_B */ OP_TABLE_ENTRY (AML_BYTE_OP, 2,
208 /* DMATYPE_F */ OP_TABLE_ENTRY (AML_BYTE_OP, 3,
209 /* DWORDCONST */ OP_TABLE_ENTRY (AML_RAW_DATA_DWORD, 0,
210 /* DWORDIO */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
211 /* DWORDMEMORY */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
212 /* DWORDSPACE */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
213 /* EISAID */ OP_TABLE_ENTRY (AML_DWORD_OP, 0,
214 /* ELSE */ OP_TABLE_ENTRY (AML_ELSE_OP, 0,
215 /* ELSEIF */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
216 /* ENDDEPENDENTFN */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
217 /* ENDIAN_BIG */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
218 /* ENDIAN_LITTLE */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
219 /* ENDTAG */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
220 /* ERRORNODE */ OP_TABLE_ENTRY (AML_NOOP_OP, 0,
221 /* EVENT */ OP_TABLE_ENTRY (AML_EVENT_OP, 0,
222 /* EXTENDEDIO */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
223 /* EXTENDEDMEMORY */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
224 /* EXTENDEDSPACE */ OP_TABLE_ENTRY (AML_RAW_DATA_QWORD, 0,
225 /* EXTERNAL */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
226 /* FATAL */ OP_TABLE_ENTRY (AML_FATAL_OP, 0,
227 /* FIELD */ OP_TABLE_ENTRY (AML_FIELD_OP, 0,
228 /* FINDSETLEFTBIT */ OP_TABLE_ENTRY (AML_FIND_SET_LEFT_BIT_OP, 0,
229 /* FINDSETRIGHTBIT */ OP_TABLE_ENTRY (AML_FIND_SET_RIGHT_BIT_OP, 0,
230 /* FIXEDDMA */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
231 /* FIXEDIO */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
232 /* FLOWCONTROL_HW */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
233 /* FLOWCONTROL_NONE */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
234 /* FLOWCONTROL_SW */ OP_TABLE_ENTRY (AML_BYTE_OP, 2,
235 /* FROMBCD */ OP_TABLE_ENTRY (AML_FROM_BCD_OP, 0,
236 /* FUNCTION */ OP_TABLE_ENTRY (AML_METHOD_OP, 0,
237 /* GPIOINT */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
238 /* GPIOIO */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
239 /* I2CSERIALBUS */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
240 /* IF */ OP_TABLE_ENTRY (AML_IF_OP, 0,
241 /* INCLUDE */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
242 /* INCLUDE_END */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
243 /* INCREMENT */ OP_TABLE_ENTRY (AML_INCREMENT_OP, 0,
244 /* INDEX */ OP_TABLE_ENTRY (AML_INDEX_OP, 0,
245 /* INDEXFIELD */ OP_TABLE_ENTRY (AML_INDEX_FIELD_OP, 0,
246 /* INTEGER */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
247 /* INTERRUPT */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
248 /* INTLEVEL_ACTIVEBOTH */ OP_TABLE_ENTRY (AML_BYTE_OP, 2,
249 /* INTLEVEL_ACTIVEHIGH */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
250 /* INTLEVEL_ACTIVELOW */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
251 /* INTTYPE_EDGE */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
252 /* INTTYPE_LEVEL */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
253 /* IO */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
254 /* IODECODETYPE_10 */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
255 /* IODECODETYPE_16 */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
256 /* IORESTRICT_IN */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
257 /* IORESTRICT_NONE */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
258 /* IORESTRICT_OUT */ OP_TABLE_ENTRY (AML_BYTE_OP, 2,

new/usr/src/common/acpica/compiler/aslmap.c 5

259 /* IORESTRICT_PRESERVE */ OP_TABLE_ENTRY (AML_BYTE_OP, 3,
260 /* IRQ */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
261 /* IRQNOFLAGS */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
262 /* LAND */ OP_TABLE_ENTRY (AML_LAND_OP, 0,
263 /* LEQUAL */ OP_TABLE_ENTRY (AML_LEQUAL_OP, 0,
264 /* LGREATER */ OP_TABLE_ENTRY (AML_LGREATER_OP, 0,
265 /* LGREATEREQUAL */ OP_TABLE_ENTRY (AML_LGREATEREQUAL_OP, 0,
266 /* LLESS */ OP_TABLE_ENTRY (AML_LLESS_OP, 0,
267 /* LLESSEQUAL */ OP_TABLE_ENTRY (AML_LLESSEQUAL_OP, 0,
268 /* LNOT */ OP_TABLE_ENTRY (AML_LNOT_OP, 0,
269 /* LNOTEQUAL */ OP_TABLE_ENTRY (AML_LNOTEQUAL_OP, 0,
270 /* LOAD */ OP_TABLE_ENTRY (AML_LOAD_OP, 0,
271 /* LOADTABLE */ OP_TABLE_ENTRY (AML_LOAD_TABLE_OP, 0,
272 /* LOCAL0 */ OP_TABLE_ENTRY (AML_LOCAL0, 0,
273 /* LOCAL1 */ OP_TABLE_ENTRY (AML_LOCAL1, 0,
274 /* LOCAL2 */ OP_TABLE_ENTRY (AML_LOCAL2, 0,
275 /* LOCAL3 */ OP_TABLE_ENTRY (AML_LOCAL3, 0,
276 /* LOCAL4 */ OP_TABLE_ENTRY (AML_LOCAL4, 0,
277 /* LOCAL5 */ OP_TABLE_ENTRY (AML_LOCAL5, 0,
278 /* LOCAL6 */ OP_TABLE_ENTRY (AML_LOCAL6, 0,
279 /* LOCAL7 */ OP_TABLE_ENTRY (AML_LOCAL7, 0,
280 /* LOCKRULE_LOCK */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
281 /* LOCKRULE_NOLOCK */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
282 /* LOR */ OP_TABLE_ENTRY (AML_LOR_OP, 0,
283 /* MATCH */ OP_TABLE_ENTRY (AML_MATCH_OP, 0,
284 /* MATCHTYPE_MEQ */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, MATC
285 /* MATCHTYPE_MGE */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, MATC
286 /* MATCHTYPE_MGT */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, MATC
287 /* MATCHTYPE_MLE */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, MATC
288 /* MATCHTYPE_MLT */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, MATC
289 /* MATCHTYPE_MTR */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, MATC
290 /* MAXTYPE_FIXED */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
291 /* MAXTYPE_NOTFIXED */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
292 /* MEMORY24 */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
293 /* MEMORY32 */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
294 /* MEMORY32FIXED */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
295 /* MEMTYPE_CACHEABLE */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
296 /* MEMTYPE_NONCACHEABLE */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
297 /* MEMTYPE_PREFETCHABLE */ OP_TABLE_ENTRY (AML_BYTE_OP, 3,
298 /* MEMTYPE_WRITECOMBINING */ OP_TABLE_ENTRY (AML_BYTE_OP, 2,
299 /* METHOD */ OP_TABLE_ENTRY (AML_METHOD_OP, 0,
300 /* METHODCALL */ OP_TABLE_ENTRY (AML_INT_METHODCALL_OP, 0,
301 /* MID */ OP_TABLE_ENTRY (AML_MID_OP, 0,
302 /* MINTYPE_FIXED */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
303 /* MINTYPE_NOTFIXED */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
304 /* MOD */ OP_TABLE_ENTRY (AML_MOD_OP, 0,
305 /* MULTIPLY */ OP_TABLE_ENTRY (AML_MULTIPLY_OP, 0,
306 /* MUTEX */ OP_TABLE_ENTRY (AML_MUTEX_OP, 0,
307 /* NAME */ OP_TABLE_ENTRY (AML_NAME_OP, 0,
308 /* NAMESEG */ OP_TABLE_ENTRY (AML_INT_NAMEPATH_OP, 0,
309 /* NAMESTRING */ OP_TABLE_ENTRY (AML_INT_NAMEPATH_OP, 0,
310 /* NAND */ OP_TABLE_ENTRY (AML_BIT_NAND_OP, 0,
311 /* NOOP */ OP_TABLE_ENTRY (AML_NOOP_OP, 0,
312 /* NOR */ OP_TABLE_ENTRY (AML_BIT_NOR_OP, 0,
313 /* NOT */ OP_TABLE_ENTRY (AML_BIT_NOT_OP, 0,
314 /* NOTIFY */ OP_TABLE_ENTRY (AML_NOTIFY_OP, 0,
315 /* OBJECTTYPE */ OP_TABLE_ENTRY (AML_TYPE_OP, 0,
316 /* OBJECTTYPE_BFF */ OP_TABLE_ENTRY (AML_BYTE_OP, ACPI
317 /* OBJECTTYPE_BUF */ OP_TABLE_ENTRY (AML_BYTE_OP, ACPI
318 /* OBJECTTYPE_DDB */ OP_TABLE_ENTRY (AML_BYTE_OP, ACPI
319 /* OBJECTTYPE_DEV */ OP_TABLE_ENTRY (AML_BYTE_OP, ACPI
320 /* OBJECTTYPE_EVT */ OP_TABLE_ENTRY (AML_BYTE_OP, ACPI
321 /* OBJECTTYPE_FLD */ OP_TABLE_ENTRY (AML_BYTE_OP, ACPI
322 /* OBJECTTYPE_INT */ OP_TABLE_ENTRY (AML_BYTE_OP, ACPI
323 /* OBJECTTYPE_MTH */ OP_TABLE_ENTRY (AML_BYTE_OP, ACPI
324 /* OBJECTTYPE_MTX */ OP_TABLE_ENTRY (AML_BYTE_OP, ACPI

new/usr/src/common/acpica/compiler/aslmap.c 6

325 /* OBJECTTYPE_OPR */ OP_TABLE_ENTRY (AML_BYTE_OP, ACPI
326 /* OBJECTTYPE_PKG */ OP_TABLE_ENTRY (AML_BYTE_OP, ACPI
327 /* OBJECTTYPE_POW */ OP_TABLE_ENTRY (AML_BYTE_OP, ACPI
328 /* OBJECTTYPE_PRO */ OP_TABLE_ENTRY (AML_BYTE_OP, ACPI
329 /* OBJECTTYPE_STR */ OP_TABLE_ENTRY (AML_BYTE_OP, ACPI
330 /* OBJECTTYPE_THZ */ OP_TABLE_ENTRY (AML_BYTE_OP, ACPI
331 /* OBJECTTYPE_UNK */ OP_TABLE_ENTRY (AML_BYTE_OP, ACPI
332 /* OFFSET */ OP_TABLE_ENTRY (AML_INT_RESERVEDFIELD_OP, 0,
333 /* ONE */ OP_TABLE_ENTRY (AML_ONE_OP, 0,
334 /* ONES */ OP_TABLE_ENTRY (AML_ONES_OP, 0,
335 /* OPERATIONREGION */ OP_TABLE_ENTRY (AML_REGION_OP, 0,
336 /* OR */ OP_TABLE_ENTRY (AML_BIT_OR_OP, 0,
337 /* PACKAGE */ OP_TABLE_ENTRY (AML_PACKAGE_OP, 0,
338 /* PACKAGEP_LENGTH */ OP_TABLE_ENTRY (AML_PACKAGE_LENGTH, 0,
339 /* PARITYTYPE_EVEN */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
340 /* PARITYTYPE_MARK */ OP_TABLE_ENTRY (AML_BYTE_OP, 3,
341 /* PARITYTYPE_NONE */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
342 /* PARITYTYPE_ODD */ OP_TABLE_ENTRY (AML_BYTE_OP, 2,
343 /* PARITYTYPE_SPACE */ OP_TABLE_ENTRY (AML_BYTE_OP, 4,
344 /* PIN_NOPULL */ OP_TABLE_ENTRY (AML_BYTE_OP, 3,
345 /* PIN_PULLDEFAULT */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
346 /* PIN_PULLDOWN */ OP_TABLE_ENTRY (AML_BYTE_OP, 2,
347 /* PIN_PULLUP */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
348 /* POWERRESOURCE */ OP_TABLE_ENTRY (AML_POWER_RES_OP, 0,
349 /* PROCESSOR */ OP_TABLE_ENTRY (AML_PROCESSOR_OP, 0,
350 /* QWORDCONST */ OP_TABLE_ENTRY (AML_RAW_DATA_QWORD, 0,
351 /* QWORDIO */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
352 /* QWORDMEMORY */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
353 /* QWORDSPACE */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
354 /* RANGE_TYPE_ENTIRE */ OP_TABLE_ENTRY (AML_BYTE_OP, 3,
355 /* RANGE_TYPE_ISAONLY */ OP_TABLE_ENTRY (AML_BYTE_OP, 2,
356 /* RANGE_TYPE_NONISAONLY */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
357 /* RAW_DATA */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
358 /* READWRITETYPE_BOTH */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
359 /* READWRITETYPE_READONLY */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
360 /* REFOF */ OP_TABLE_ENTRY (AML_REF_OF_OP, 0,
361 /* REGIONSPACE_CMOS */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, ACPI
362 /* REGIONSPACE_EC */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, ACPI
363 /* REGIONSPACE_FFIXEDHW */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, ACPI
364 /* REGIONSPACE_GPIO */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, ACPI
365 /* REGIONSPACE_GSBUS */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, ACPI
366 /* REGIONSPACE_IO */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, ACPI
367 /* REGIONSPACE_IPMI */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, ACPI
368 /* REGIONSPACE_MEM */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, ACPI
369 /* REGIONSPACE_PCC */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, ACPI
370 /* REGIONSPACE_PCI */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, ACPI
371 /* REGIONSPACE_PCIBAR */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, ACPI
372 /* REGIONSPACE_SMBUS */ OP_TABLE_ENTRY (AML_RAW_DATA_BYTE, ACPI
373 /* REGISTER */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
374 /* RELEASE */ OP_TABLE_ENTRY (AML_RELEASE_OP, 0,
375 /* RESERVED_BYTES */ OP_TABLE_ENTRY (AML_INT_RESERVEDFIELD_OP, 0,
376 /* RESET */ OP_TABLE_ENTRY (AML_RESET_OP, 0,
377 /* RESOURCETEMPLATE */ OP_TABLE_ENTRY (AML_BUFFER_OP, 0,
378 /* RESOURCETYPE_CONSUMER */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
379 /* RESOURCETYPE_PRODUCER */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
380 /* RETURN */ OP_TABLE_ENTRY (AML_RETURN_OP, 0,
381 /* REVISION */ OP_TABLE_ENTRY (AML_REVISION_OP, 0,
382 /* SCOPE */ OP_TABLE_ENTRY (AML_SCOPE_OP, 0,
383 /* SERIALIZERULE_NOTSERIAL */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
384 /* SERIALIZERULE_SERIAL */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
385 /* SHARETYPE_EXCLUSIVE */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
386 /* SHARETYPE_EXCLUSIVEWAKE */ OP_TABLE_ENTRY (AML_BYTE_OP, 2,
387 /* SHARETYPE_SHARED */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
388 /* SHARETYPE_SHAREDWAKE */ OP_TABLE_ENTRY (AML_BYTE_OP, 3,
389 /* SHIFTLEFT */ OP_TABLE_ENTRY (AML_SHIFT_LEFT_OP, 0,
390 /* SHIFTRIGHT */ OP_TABLE_ENTRY (AML_SHIFT_RIGHT_OP, 0,

new/usr/src/common/acpica/compiler/aslmap.c 7

391 /* SIGNAL */ OP_TABLE_ENTRY (AML_SIGNAL_OP, 0,
392 /* SIZEOF */ OP_TABLE_ENTRY (AML_SIZE_OF_OP, 0,
393 /* SLAVEMODE_CONTROLLERINIT */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
394 /* SLAVEMODE_DEVICEINIT */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
395 /* SLEEP */ OP_TABLE_ENTRY (AML_SLEEP_OP, 0,
396 /* SPISERIALBUS */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
397 /* STALL */ OP_TABLE_ENTRY (AML_STALL_OP, 0,
398 /* STARTDEPENDENTFN */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
399 /* STARTDEPENDENTFN_NOPRI */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
400 /* STOPBITS_ONE */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
401 /* STOPBITS_ONEPLUSHALF */ OP_TABLE_ENTRY (AML_BYTE_OP, 2,
402 /* STOPBITS_TWO */ OP_TABLE_ENTRY (AML_BYTE_OP, 3,
403 /* STOPBITS_ZERO */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
404 /* STORE */ OP_TABLE_ENTRY (AML_STORE_OP, 0,
405 /* STRING_LITERAL */ OP_TABLE_ENTRY (AML_STRING_OP, 0,
406 /* SUBTRACT */ OP_TABLE_ENTRY (AML_SUBTRACT_OP, 0,
407 /* SWITCH */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
408 /* THERMALZONE */ OP_TABLE_ENTRY (AML_THERMAL_ZONE_OP, 0,
409 /* TIMER */ OP_TABLE_ENTRY (AML_TIMER_OP, 0,
410 /* TOBCD */ OP_TABLE_ENTRY (AML_TO_BCD_OP, 0,
411 /* TOBUFFER */ OP_TABLE_ENTRY (AML_TO_BUFFER_OP, 0,
412 /* TODECIMALSTRING */ OP_TABLE_ENTRY (AML_TO_DECSTRING_OP, 0,
413 /* TOHEXSTRING */ OP_TABLE_ENTRY (AML_TO_HEXSTRING_OP, 0,
414 /* TOINTEGER */ OP_TABLE_ENTRY (AML_TO_INTEGER_OP, 0,
415 /* TOSTRING */ OP_TABLE_ENTRY (AML_TO_STRING_OP, 0,
416 /* TOUUID */ OP_TABLE_ENTRY (AML_DWORD_OP, 0,
417 /* TRANSLATIONTYPE_DENSE */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
418 /* TRANSLATIONTYPE_SPARSE */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
419 /* TYPE_STATIC */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
420 /* TYPE_TRANSLATION */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
421 /* UART_SERIALBUS */ OP_TABLE_ENTRY (AML_DEFAULT_ARG_OP, 0,
422 /* UNICODE */ OP_TABLE_ENTRY (AML_BUFFER_OP, 0,
423 /* UNLOAD */ OP_TABLE_ENTRY (AML_UNLOAD_OP, 0,
424 /* UPDATERULE_ONES */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
425 /* UPDATERULE_PRESERVE */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
426 /* UPDATERULE_ZEROS */ OP_TABLE_ENTRY (AML_BYTE_OP, AML_
427 /* VAR_PACKAGE */ OP_TABLE_ENTRY (AML_VAR_PACKAGE_OP, 0,
428 /* VENDORLONG */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
429 /* VENDORSHORT */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
430 /* WAIT */ OP_TABLE_ENTRY (AML_WAIT_OP, 0,
431 /* WHILE */ OP_TABLE_ENTRY (AML_WHILE_OP, 0,
432 /* WIREMODE_FOUR */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
433 /* WIREMODE_THREE */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
434 /* WORDBUSNUMBER */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
435 /* WORDCONST */ OP_TABLE_ENTRY (AML_RAW_DATA_WORD, 0,
436 /* WORDIO */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
437 /* WORDSPACE */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
438 /* XFERSIZE_8 */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
439 /* XFERSIZE_16 */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
440 /* XFERSIZE_32 */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
441 /* XFERSIZE_64 */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
442 /* XFERSIZE_128 */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
443 /* XFERSIZE_256 */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
444 /* XFERTYPE_8 */ OP_TABLE_ENTRY (AML_BYTE_OP, 0,
445 /* XFERTYPE_8_16 */ OP_TABLE_ENTRY (AML_BYTE_OP, 1,
446 /* XFERTYPE_16 */ OP_TABLE_ENTRY (AML_BYTE_OP, 2,
447 /* XOR */ OP_TABLE_ENTRY (AML_BIT_XOR_OP, 0,
448 /* ZERO */ OP_TABLE_ENTRY (AML_ZERO_OP, 0,

450 /*! [End] no source code translation !*/

452 };

new/usr/src/common/acpica/compiler/aslmessages.h 1

**
 21841 Thu Dec 26 13:48:30 2013
new/usr/src/common/acpica/compiler/aslmessages.h
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslmessages.h - Compiler error/warning messages
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #ifndef __ASLMESSAGES_H
46 #define __ASLMESSAGES_H

49 typedef enum
50 {
51 ASL_OPTIMIZATION = 0,
52 ASL_REMARK,
53 ASL_WARNING,
54 ASL_WARNING2,
55 ASL_WARNING3,
56 ASL_ERROR,
57 ASL_NUM_REPORT_LEVELS

59 } ASL_MESSAGE_TYPES;

new/usr/src/common/acpica/compiler/aslmessages.h 2

61 #ifdef ASL_EXCEPTIONS

63 /* Strings for message reporting levels, must match values above */

65 const char *AslErrorLevel [ASL_NUM_REPORT_LEVELS] = {
66 "Optimize",
67 "Remark ",
68 "Warning ",
69 "Warning ",
70 "Warning ",
71 "Error "
72 };

74 /* All lowercase versions for IDEs */

76 const char *AslErrorLevelIde [ASL_NUM_REPORT_LEVELS] = {
77 "optimize",
78 "remark ",
79 "warning ",
80 "warning ",
81 "warning ",
82 "error "
83 };

85 #define ASL_ERROR_LEVEL_LENGTH 8 /* Length of strings above */
86 #endif

88 /*
89 * Values for all compiler messages.
90 *
91 * NOTE: With the introduction of the -vw option to disable specific messages,
92 * new messages should only be added to the end of this list, so that values
93 * for existing messages are not disturbed.
94 */
95 typedef enum
96 {
97 ASL_MSG_RESERVED = 0,

99 ASL_MSG_ALIGNMENT,
100 ASL_MSG_ALPHANUMERIC_STRING,
101 ASL_MSG_AML_NOT_IMPLEMENTED,
102 ASL_MSG_ARG_COUNT_HI,
103 ASL_MSG_ARG_COUNT_LO,
104 ASL_MSG_ARG_INIT,
105 ASL_MSG_BACKWARDS_OFFSET,
106 ASL_MSG_BUFFER_LENGTH,
107 ASL_MSG_CLOSE,
108 ASL_MSG_COMPILER_INTERNAL,
109 ASL_MSG_COMPILER_RESERVED,
110 ASL_MSG_CONNECTION_MISSING,
111 ASL_MSG_CONNECTION_INVALID,
112 ASL_MSG_CONSTANT_EVALUATION,
113 ASL_MSG_CONSTANT_FOLDED,
114 ASL_MSG_CORE_EXCEPTION,
115 ASL_MSG_DEBUG_FILE_OPEN,
116 ASL_MSG_DEBUG_FILENAME,
117 ASL_MSG_DEPENDENT_NESTING,
118 ASL_MSG_DMA_CHANNEL,
119 ASL_MSG_DMA_LIST,
120 ASL_MSG_DUPLICATE_CASE,
121 ASL_MSG_DUPLICATE_ITEM,
122 ASL_MSG_EARLY_EOF,
123 ASL_MSG_ENCODING_LENGTH,
124 ASL_MSG_EX_INTERRUPT_LIST,
125 ASL_MSG_EX_INTERRUPT_LIST_MIN,

new/usr/src/common/acpica/compiler/aslmessages.h 3

126 ASL_MSG_EX_INTERRUPT_NUMBER,
127 ASL_MSG_FIELD_ACCESS_WIDTH,
128 ASL_MSG_FIELD_UNIT_ACCESS_WIDTH,
129 ASL_MSG_FIELD_UNIT_OFFSET,
130 ASL_MSG_GPE_NAME_CONFLICT,
131 ASL_MSG_HID_LENGTH,
132 ASL_MSG_HID_PREFIX,
133 ASL_MSG_HID_SUFFIX,
134 ASL_MSG_INCLUDE_FILE_OPEN,
135 ASL_MSG_INPUT_FILE_OPEN,
136 ASL_MSG_INTEGER_LENGTH,
137 ASL_MSG_INTEGER_OPTIMIZATION,
138 ASL_MSG_INTERRUPT_LIST,
139 ASL_MSG_INTERRUPT_NUMBER,
140 ASL_MSG_INVALID_ACCESS_SIZE,
141 ASL_MSG_INVALID_ADDR_FLAGS,
142 ASL_MSG_INVALID_CONSTANT_OP,
143 ASL_MSG_INVALID_EISAID,
144 ASL_MSG_INVALID_ESCAPE,
145 ASL_MSG_INVALID_GRAN_FIXED,
146 ASL_MSG_INVALID_GRANULARITY,
147 ASL_MSG_INVALID_LENGTH,
148 ASL_MSG_INVALID_LENGTH_FIXED,
149 ASL_MSG_INVALID_MIN_MAX,
150 ASL_MSG_INVALID_OPERAND,
151 ASL_MSG_INVALID_PERFORMANCE,
152 ASL_MSG_INVALID_PRIORITY,
153 ASL_MSG_INVALID_STRING,
154 ASL_MSG_INVALID_TARGET,
155 ASL_MSG_INVALID_TIME,
156 ASL_MSG_INVALID_TYPE,
157 ASL_MSG_INVALID_UUID,
158 ASL_MSG_ISA_ADDRESS,
159 ASL_MSG_LEADING_ASTERISK,
160 ASL_MSG_LIST_LENGTH_LONG,
161 ASL_MSG_LIST_LENGTH_SHORT,
162 ASL_MSG_LISTING_FILE_OPEN,
163 ASL_MSG_LISTING_FILENAME,
164 ASL_MSG_LOCAL_INIT,
165 ASL_MSG_LOCAL_OUTSIDE_METHOD,
166 ASL_MSG_LONG_LINE,
167 ASL_MSG_MEMORY_ALLOCATION,
168 ASL_MSG_MISSING_ENDDEPENDENT,
169 ASL_MSG_MISSING_STARTDEPENDENT,
170 ASL_MSG_MULTIPLE_DEFAULT,
171 ASL_MSG_MULTIPLE_TYPES,
172 ASL_MSG_NAME_EXISTS,
173 ASL_MSG_NAME_OPTIMIZATION,
174 ASL_MSG_NAMED_OBJECT_IN_WHILE,
175 ASL_MSG_NESTED_COMMENT,
176 ASL_MSG_NO_CASES,
177 ASL_MSG_NO_REGION,
178 ASL_MSG_NO_RETVAL,
179 ASL_MSG_NO_WHILE,
180 ASL_MSG_NON_ASCII,
181 ASL_MSG_NON_ZERO,
182 ASL_MSG_NOT_EXIST,
183 ASL_MSG_NOT_FOUND,
184 ASL_MSG_NOT_METHOD,
185 ASL_MSG_NOT_PARAMETER,
186 ASL_MSG_NOT_REACHABLE,
187 ASL_MSG_NOT_REFERENCED,
188 ASL_MSG_NULL_DESCRIPTOR,
189 ASL_MSG_NULL_STRING,
190 ASL_MSG_OPEN,
191 ASL_MSG_OUTPUT_FILE_OPEN,

new/usr/src/common/acpica/compiler/aslmessages.h 4

192 ASL_MSG_OUTPUT_FILENAME,
193 ASL_MSG_PACKAGE_LENGTH,
194 ASL_MSG_PREPROCESSOR_FILENAME,
195 ASL_MSG_READ,
196 ASL_MSG_RECURSION,
197 ASL_MSG_REGION_BUFFER_ACCESS,
198 ASL_MSG_REGION_BYTE_ACCESS,
199 ASL_MSG_RESERVED_ARG_COUNT_HI,
200 ASL_MSG_RESERVED_ARG_COUNT_LO,
201 ASL_MSG_RESERVED_METHOD,
202 ASL_MSG_RESERVED_NO_RETURN_VAL,
203 ASL_MSG_RESERVED_OPERAND_TYPE,
204 ASL_MSG_RESERVED_PACKAGE_LENGTH,
205 ASL_MSG_RESERVED_RETURN_VALUE,
206 ASL_MSG_RESERVED_USE,
207 ASL_MSG_RESERVED_WORD,
208 ASL_MSG_RESOURCE_FIELD,
209 ASL_MSG_RESOURCE_INDEX,
210 ASL_MSG_RESOURCE_LIST,
211 ASL_MSG_RESOURCE_SOURCE,
212 ASL_MSG_RESULT_NOT_USED,
213 ASL_MSG_RETURN_TYPES,
214 ASL_MSG_SCOPE_FWD_REF,
215 ASL_MSG_SCOPE_TYPE,
216 ASL_MSG_SEEK,
217 ASL_MSG_SERIALIZED,
218 ASL_MSG_SERIALIZED_REQUIRED,
219 ASL_MSG_SINGLE_NAME_OPTIMIZATION,
220 ASL_MSG_SOME_NO_RETVAL,
221 ASL_MSG_STRING_LENGTH,
222 ASL_MSG_SWITCH_TYPE,
223 ASL_MSG_SYNC_LEVEL,
224 ASL_MSG_SYNTAX,
225 ASL_MSG_TABLE_SIGNATURE,
226 ASL_MSG_TAG_LARGER,
227 ASL_MSG_TAG_SMALLER,
228 ASL_MSG_TIMEOUT,
229 ASL_MSG_TOO_MANY_TEMPS,
230 ASL_MSG_TRUNCATION,
231 ASL_MSG_UNKNOWN_RESERVED_NAME,
232 ASL_MSG_UNREACHABLE_CODE,
233 ASL_MSG_UNSUPPORTED,
234 ASL_MSG_UPPER_CASE,
235 ASL_MSG_VENDOR_LIST,
236 ASL_MSG_WRITE,
237 ASL_MSG_RANGE,
238 ASL_MSG_BUFFER_ALLOCATION,

240 /* These messages are used by the Preprocessor only */

242 ASL_MSG_DIRECTIVE_SYNTAX,
243 ASL_MSG_ENDIF_MISMATCH,
244 ASL_MSG_ERROR_DIRECTIVE,
245 ASL_MSG_EXISTING_NAME,
246 ASL_MSG_INVALID_INVOCATION,
247 ASL_MSG_MACRO_SYNTAX,
248 ASL_MSG_TOO_MANY_ARGUMENTS,
249 ASL_MSG_UNKNOWN_DIRECTIVE,
250 ASL_MSG_UNKNOWN_PRAGMA,
251 ASL_MSG_WARNING_DIRECTIVE,

253 /* These messages are used by the data table compiler only */

255 ASL_MSG_BUFFER_ELEMENT,
256 ASL_MSG_DIVIDE_BY_ZERO,
257 ASL_MSG_FLAG_VALUE,

new/usr/src/common/acpica/compiler/aslmessages.h 5

258 ASL_MSG_INTEGER_SIZE,
259 ASL_MSG_INVALID_EXPRESSION,
260 ASL_MSG_INVALID_FIELD_NAME,
261 ASL_MSG_INVALID_HEX_INTEGER,
262 ASL_MSG_OEM_TABLE,
263 ASL_MSG_RESERVED_VALUE,
264 ASL_MSG_UNKNOWN_LABEL,
265 ASL_MSG_UNKNOWN_SUBTABLE,
266 ASL_MSG_UNKNOWN_TABLE,
267 ASL_MSG_ZERO_VALUE

269 } ASL_MESSAGE_IDS;

272 #ifdef ASL_EXCEPTIONS

274 /*
275 * Actual message strings for each compiler message.
276 *
277 * NOTE: With the introduction of the -vw option to disable specific messages,
278 * new messages should only be added to the end of this list, so that values
279 * for existing messages are not disturbed.
280 */
281 char *AslMessages [] =
282 {
283 /* The zeroth message is reserved */ "",
284 /* ASL_MSG_ALIGNMENT */ "Must be a multiple of alignment/gra
285 /* ASL_MSG_ALPHANUMERIC_STRING */ "String must be entirely alphanumeri
286 /* ASL_MSG_AML_NOT_IMPLEMENTED */ "Opcode is not implemented in compil
287 /* ASL_MSG_ARG_COUNT_HI */ "Too many arguments",
288 /* ASL_MSG_ARG_COUNT_LO */ "Too few arguments",
289 /* ASL_MSG_ARG_INIT */ "Method argument is not initialized"
290 /* ASL_MSG_BACKWARDS_OFFSET */ "Invalid backwards offset",
291 /* ASL_MSG_BUFFER_LENGTH */ "Effective AML buffer length is zero
292 /* ASL_MSG_CLOSE */ "Could not close file",
293 /* ASL_MSG_COMPILER_INTERNAL */ "Internal compiler error",
294 /* ASL_MSG_COMPILER_RESERVED */ "Use of compiler reserved name",
295 /* ASL_MSG_CONNECTION_MISSING */ "A Connection operator is required f
296 /* ASL_MSG_CONNECTION_INVALID */ "Invalid OpRegion SpaceId for use of
297 /* ASL_MSG_CONSTANT_EVALUATION */ "Could not evaluate constant express
298 /* ASL_MSG_CONSTANT_FOLDED */ "Constant expression evaluated and r
299 /* ASL_MSG_CORE_EXCEPTION */ "From ACPI CA Subsystem",
300 /* ASL_MSG_DEBUG_FILE_OPEN */ "Could not open debug file",
301 /* ASL_MSG_DEBUG_FILENAME */ "Could not create debug filename",
302 /* ASL_MSG_DEPENDENT_NESTING */ "Dependent function macros cannot be
303 /* ASL_MSG_DMA_CHANNEL */ "Invalid DMA channel (must be 0-7)",
304 /* ASL_MSG_DMA_LIST */ "Too many DMA channels (8 max)",
305 /* ASL_MSG_DUPLICATE_CASE */ "Case value already specified",
306 /* ASL_MSG_DUPLICATE_ITEM */ "Duplicate value in list",
307 /* ASL_MSG_EARLY_EOF */ "Premature end-of-file reached",
308 /* ASL_MSG_ENCODING_LENGTH */ "Package length too long to encode",
309 /* ASL_MSG_EX_INTERRUPT_LIST */ "Too many interrupts (255 max)",
310 /* ASL_MSG_EX_INTERRUPT_LIST_MIN */ "Too few interrupts (1 minimum requi
311 /* ASL_MSG_EX_INTERRUPT_NUMBER */ "Invalid interrupt number (must be 3
312 /* ASL_MSG_FIELD_ACCESS_WIDTH */ "Access width is greater than region
313 /* ASL_MSG_FIELD_UNIT_ACCESS_WIDTH */ "Access width of Field Unit extends
314 /* ASL_MSG_FIELD_UNIT_OFFSET */ "Field Unit extends beyond region li
315 /* ASL_MSG_GPE_NAME_CONFLICT */ "Name conflicts with a previous GPE
316 /* ASL_MSG_HID_LENGTH */ "_HID string must be exactly 7 or 8
317 /* ASL_MSG_HID_PREFIX */ "_HID prefix must be all uppercase o
318 /* ASL_MSG_HID_SUFFIX */ "_HID suffix must be all hex digits"
319 /* ASL_MSG_INCLUDE_FILE_OPEN */ "Could not open include file",
320 /* ASL_MSG_INPUT_FILE_OPEN */ "Could not open input file",
321 /* ASL_MSG_INTEGER_LENGTH */ "64-bit integer in 32-bit table, tru
322 /* ASL_MSG_INTEGER_OPTIMIZATION */ "Integer optimized to single-byte AM
323 /* ASL_MSG_INTERRUPT_LIST */ "Too many interrupts (16 max)",

new/usr/src/common/acpica/compiler/aslmessages.h 6

324 /* ASL_MSG_INTERRUPT_NUMBER */ "Invalid interrupt number (must be 0
325 /* ASL_MSG_INVALID_ACCESS_SIZE */ "Invalid AccessSize (Maximum is 4 -
326 /* ASL_MSG_INVALID_ADDR_FLAGS */ "Invalid combination of Length and M
327 /* ASL_MSG_INVALID_CONSTANT_OP */ "Invalid operator in constant expres
328 /* ASL_MSG_INVALID_EISAID */ "EISAID string must be of the form \
329 /* ASL_MSG_INVALID_ESCAPE */ "Invalid or unknown escape sequence"
330 /* ASL_MSG_INVALID_GRAN_FIXED */ "Granularity must be zero for fixed
331 /* ASL_MSG_INVALID_GRANULARITY */ "Granularity must be zero or a power
332 /* ASL_MSG_INVALID_LENGTH */ "Length is larger than Min/Max windo
333 /* ASL_MSG_INVALID_LENGTH_FIXED */ "Length is not equal to fixed Min/Ma
334 /* ASL_MSG_INVALID_MIN_MAX */ "Address Min is greater than Address
335 /* ASL_MSG_INVALID_OPERAND */ "Invalid operand",
336 /* ASL_MSG_INVALID_PERFORMANCE */ "Invalid performance/robustness valu
337 /* ASL_MSG_INVALID_PRIORITY */ "Invalid priority value",
338 /* ASL_MSG_INVALID_STRING */ "Invalid Hex/Octal Escape - Non-ASCI
339 /* ASL_MSG_INVALID_TARGET */ "Target operand not allowed in const
340 /* ASL_MSG_INVALID_TIME */ "Time parameter too long (255 max)",
341 /* ASL_MSG_INVALID_TYPE */ "Invalid type",
342 /* ASL_MSG_INVALID_UUID */ "UUID string must be of the form \"a
343 /* ASL_MSG_ISA_ADDRESS */ "Maximum 10-bit ISA address (0x3FF)"
344 /* ASL_MSG_LEADING_ASTERISK */ "Invalid leading asterisk",
345 /* ASL_MSG_LIST_LENGTH_LONG */ "Initializer list longer than declar
346 /* ASL_MSG_LIST_LENGTH_SHORT */ "Initializer list shorter than decla
347 /* ASL_MSG_LISTING_FILE_OPEN */ "Could not open listing file",
348 /* ASL_MSG_LISTING_FILENAME */ "Could not create listing filename",
349 /* ASL_MSG_LOCAL_INIT */ "Method local variable is not initia
350 /* ASL_MSG_LOCAL_OUTSIDE_METHOD */ "Local or Arg used outside a control
351 /* ASL_MSG_LONG_LINE */ "Splitting long input line",
352 /* ASL_MSG_MEMORY_ALLOCATION */ "Memory allocation failure",
353 /* ASL_MSG_MISSING_ENDDEPENDENT */ "Missing EndDependentFn() macro in d
354 /* ASL_MSG_MISSING_STARTDEPENDENT */ "Missing StartDependentFn() macro in
355 /* ASL_MSG_MULTIPLE_DEFAULT */ "More than one Default statement wit
356 /* ASL_MSG_MULTIPLE_TYPES */ "Multiple types",
357 /* ASL_MSG_NAME_EXISTS */ "Name already exists in scope",
358 /* ASL_MSG_NAME_OPTIMIZATION */ "NamePath optimized",
359 /* ASL_MSG_NAMED_OBJECT_IN_WHILE */ "Creating a named object in a While
360 /* ASL_MSG_NESTED_COMMENT */ "Nested comment found",
361 /* ASL_MSG_NO_CASES */ "No Case statements under Switch",
362 /* ASL_MSG_NO_REGION */ "_REG has no corresponding Operation
363 /* ASL_MSG_NO_RETVAL */ "Called method returns no value",
364 /* ASL_MSG_NO_WHILE */ "No enclosing While statement",
365 /* ASL_MSG_NON_ASCII */ "Invalid characters found in file",
366 /* ASL_MSG_NON_ZERO */ "Operand evaluates to zero",
367 /* ASL_MSG_NOT_EXIST */ "Object does not exist",
368 /* ASL_MSG_NOT_FOUND */ "Object not found or not accessible
369 /* ASL_MSG_NOT_METHOD */ "Not a control method, cannot invoke
370 /* ASL_MSG_NOT_PARAMETER */ "Not a parameter, used as local only
371 /* ASL_MSG_NOT_REACHABLE */ "Object is not accessible from this
372 /* ASL_MSG_NOT_REFERENCED */ "Object is not referenced",
373 /* ASL_MSG_NULL_DESCRIPTOR */ "Min/Max/Length/Gran are all zero, b
374 /* ASL_MSG_NULL_STRING */ "Invalid zero-length (null) string",
375 /* ASL_MSG_OPEN */ "Could not open file",
376 /* ASL_MSG_OUTPUT_FILE_OPEN */ "Could not open output AML file",
377 /* ASL_MSG_OUTPUT_FILENAME */ "Could not create output filename",
378 /* ASL_MSG_PACKAGE_LENGTH */ "Effective AML package length is zer
379 /* ASL_MSG_PREPROCESSOR_FILENAME */ "Could not create preprocessor filen
380 /* ASL_MSG_READ */ "Could not read file",
381 /* ASL_MSG_RECURSION */ "Recursive method call",
382 /* ASL_MSG_REGION_BUFFER_ACCESS */ "Host Operation Region requires Buff
383 /* ASL_MSG_REGION_BYTE_ACCESS */ "Host Operation Region requires Byte
384 /* ASL_MSG_RESERVED_ARG_COUNT_HI */ "Reserved method has too many argume
385 /* ASL_MSG_RESERVED_ARG_COUNT_LO */ "Reserved method has too few argumen
386 /* ASL_MSG_RESERVED_METHOD */ "Reserved name must be a control met
387 /* ASL_MSG_RESERVED_NO_RETURN_VAL */ "Reserved method should not return a
388 /* ASL_MSG_RESERVED_OPERAND_TYPE */ "Invalid object type for reserved na
389 /* ASL_MSG_RESERVED_PACKAGE_LENGTH */ "Invalid package length for reserved

new/usr/src/common/acpica/compiler/aslmessages.h 7

390 /* ASL_MSG_RESERVED_RETURN_VALUE */ "Reserved method must return a value
391 /* ASL_MSG_RESERVED_USE */ "Invalid use of reserved name",
392 /* ASL_MSG_RESERVED_WORD */ "Use of reserved name",
393 /* ASL_MSG_RESOURCE_FIELD */ "Resource field name cannot be used
394 /* ASL_MSG_RESOURCE_INDEX */ "Missing ResourceSourceIndex (requir
395 /* ASL_MSG_RESOURCE_LIST */ "Too many resource items (internal e
396 /* ASL_MSG_RESOURCE_SOURCE */ "Missing ResourceSource string (requ
397 /* ASL_MSG_RESULT_NOT_USED */ "Result is not used, operator has no
398 /* ASL_MSG_RETURN_TYPES */ "Not all control paths return a valu
399 /* ASL_MSG_SCOPE_FWD_REF */ "Forward references from Scope opera
400 /* ASL_MSG_SCOPE_TYPE */ "Existing object has invalid type fo
401 /* ASL_MSG_SEEK */ "Could not seek file",
402 /* ASL_MSG_SERIALIZED */ "Control Method marked Serialized",
403 /* ASL_MSG_SERIALIZED_REQUIRED */ "Control Method should be made Seria
404 /* ASL_MSG_SINGLE_NAME_OPTIMIZATION */ "NamePath optimized to NameSeg (uses
405 /* ASL_MSG_SOME_NO_RETVAL */ "Called method may not always return
406 /* ASL_MSG_STRING_LENGTH */ "String literal too long",
407 /* ASL_MSG_SWITCH_TYPE */ "Switch expression is not a static I
408 /* ASL_MSG_SYNC_LEVEL */ "SyncLevel must be in the range 0-15
409 /* ASL_MSG_SYNTAX */ "",
410 /* ASL_MSG_TABLE_SIGNATURE */ "Invalid Table Signature",
411 /* ASL_MSG_TAG_LARGER */ "ResourceTag larger than Field",
412 /* ASL_MSG_TAG_SMALLER */ "ResourceTag smaller than Field",
413 /* ASL_MSG_TIMEOUT */ "Result is not used, possible operat
414 /* ASL_MSG_TOO_MANY_TEMPS */ "Method requires too many temporary
415 /* ASL_MSG_TRUNCATION */ "64-bit return value will be truncat
416 /* ASL_MSG_UNKNOWN_RESERVED_NAME */ "Unknown reserved name",
417 /* ASL_MSG_UNREACHABLE_CODE */ "Statement is unreachable",
418 /* ASL_MSG_UNSUPPORTED */ "Unsupported feature",
419 /* ASL_MSG_UPPER_CASE */ "Non-hex letters must be upper case"
420 /* ASL_MSG_VENDOR_LIST */ "Too many vendor data bytes (7 max)"
421 /* ASL_MSG_WRITE */ "Could not write file",
422 /* ASL_MSG_RANGE */ "Constant out of range",
423 /* ASL_MSG_BUFFER_ALLOCATION */ "Could not allocate line buffer",

425 /* Preprocessor */

427 /* ASL_MSG_DIRECTIVE_SYNTAX */ "Invalid directive syntax",
428 /* ASL_MSG_ENDIF_MISMATCH */ "Mismatched #endif",
429 /* ASL_MSG_ERROR_DIRECTIVE */ "#error",
430 /* ASL_MSG_EXISTING_NAME */ "Name is already defined",
431 /* ASL_MSG_INVALID_INVOCATION */ "Invalid macro invocation",
432 /* ASL_MSG_MACRO_SYNTAX */ "Invalid macro syntax",
433 /* ASL_MSG_TOO_MANY_ARGUMENTS */ "Too many macro arguments",
434 /* ASL_MSG_UNKNOWN_DIRECTIVE */ "Unknown directive",
435 /* ASL_MSG_UNKNOWN_PRAGMA */ "Unknown pragma",
436 /* ASL_MSG_WARNING_DIRECTIVE */ "#warning",

438 /* Table compiler */

440 /* ASL_MSG_BUFFER_ELEMENT */ "Invalid element in buffer initializ
441 /* ASL_MSG_DIVIDE_BY_ZERO */ "Expression contains divide-by-zero"
442 /* ASL_MSG_FLAG_VALUE */ "Flag value is too large",
443 /* ASL_MSG_INTEGER_SIZE */ "Integer too large for target",
444 /* ASL_MSG_INVALID_EXPRESSION */ "Invalid expression",
445 /* ASL_MSG_INVALID_FIELD_NAME */ "Invalid Field Name",
446 /* ASL_MSG_INVALID_HEX_INTEGER */ "Invalid hex integer constant",
447 /* ASL_MSG_OEM_TABLE */ "OEM table - unknown contents",
448 /* ASL_MSG_RESERVED_VALUE */ "Reserved field must be zero",
449 /* ASL_MSG_UNKNOWN_LABEL */ "Label is undefined",
450 /* ASL_MSG_UNKNOWN_SUBTABLE */ "Unknown subtable type",
451 /* ASL_MSG_UNKNOWN_TABLE */ "Unknown ACPI table signature",
452 /* ASL_MSG_ZERO_VALUE */ "Value must be non-zero"
453 };

455 #endif /* ASL_EXCEPTIONS */

new/usr/src/common/acpica/compiler/aslmessages.h 8

457 #endif /* __ASLMESSAGES_H */

new/usr/src/common/acpica/compiler/aslmethod.c 1

**
 20665 Thu Dec 26 13:48:30 2013
new/usr/src/common/acpica/compiler/aslmethod.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: aslmethod.c - Control method analysis walk
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"
47 #include "acparser.h"
48 #include "amlcode.h"

51 #define _COMPONENT ACPI_COMPILER
52 ACPI_MODULE_NAME ("aslmethod")

55 /* Local prototypes */

57 void
58 MtCheckNamedObjectInMethod (
59 ACPI_PARSE_OBJECT *Op,
60 ASL_METHOD_INFO *MethodInfo);

new/usr/src/common/acpica/compiler/aslmethod.c 2

63 /***
64 *
65 * FUNCTION: MtMethodAnalysisWalkBegin
66 *
67 * PARAMETERS: ASL_WALK_CALLBACK
68 *
69 * RETURN: Status
70 *
71 * DESCRIPTION: Descending callback for the analysis walk. Check methods for:
72 * 1) Initialized local variables
73 * 2) Valid arguments
74 * 3) Return types
75 *
76 **/

78 ACPI_STATUS
79 MtMethodAnalysisWalkBegin (
80 ACPI_PARSE_OBJECT *Op,
81 UINT32 Level,
82 void *Context)
83 {
84 ASL_ANALYSIS_WALK_INFO *WalkInfo = (ASL_ANALYSIS_WALK_INFO *) Context;
85 ASL_METHOD_INFO *MethodInfo = WalkInfo->MethodStack;
86 ACPI_PARSE_OBJECT *Next;
87 UINT32 RegisterNumber;
88 UINT32 i;
89 char LocalName[] = "Local0";
90 char ArgName[] = "Arg0";
91 ACPI_PARSE_OBJECT *ArgNode;
92 ACPI_PARSE_OBJECT *NextType;
93 ACPI_PARSE_OBJECT *NextParamType;
94 UINT8 ActualArgs = 0;

97 switch (Op->Asl.ParseOpcode)
98 {
99 case PARSEOP_METHOD:

101 TotalMethods++;

103 /* Create and init method info */

105 MethodInfo = UtLocalCalloc (sizeof (ASL_METHOD_INFO));
106 MethodInfo->Next = WalkInfo->MethodStack;
107 MethodInfo->Op = Op;

109 WalkInfo->MethodStack = MethodInfo;

111 /* Get the name node, ignored here */

113 Next = Op->Asl.Child;

115 /* Get the NumArguments node */

117 Next = Next->Asl.Next;
118 MethodInfo->NumArguments = (UINT8)
119 (((UINT8) Next->Asl.Value.Integer) & 0x07);

121 /* Get the SerializeRule and SyncLevel nodes, ignored here */

123 Next = Next->Asl.Next;
124 MethodInfo->ShouldBeSerialized = (UINT8) Next->Asl.Value.Integer;

126 Next = Next->Asl.Next;
127 ArgNode = Next;

new/usr/src/common/acpica/compiler/aslmethod.c 3

129 /* Get the ReturnType node */

131 Next = Next->Asl.Next;

133 NextType = Next->Asl.Child;
134 while (NextType)
135 {
136 /* Get and map each of the ReturnTypes */

138 MethodInfo->ValidReturnTypes |= AnMapObjTypeToBtype (NextType);
139 NextType->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
140 NextType = NextType->Asl.Next;
141 }

143 /* Get the ParameterType node */

145 Next = Next->Asl.Next;

147 NextType = Next->Asl.Child;
148 while (NextType)
149 {
150 if (NextType->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG)
151 {
152 NextParamType = NextType->Asl.Child;
153 while (NextParamType)
154 {
155 MethodInfo->ValidArgTypes[ActualArgs] |= AnMapObjTypeToBtype
156 NextParamType->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
157 NextParamType = NextParamType->Asl.Next;
158 }
159 }
160 else
161 {
162 MethodInfo->ValidArgTypes[ActualArgs] =
163 AnMapObjTypeToBtype (NextType);
164 NextType->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
165 ActualArgs++;
166 }

168 NextType = NextType->Asl.Next;
169 }

171 if ((MethodInfo->NumArguments) &&
172 (MethodInfo->NumArguments != ActualArgs))
173 {
174 /* error: Param list did not match number of args */
175 }

177 /* Allow numarguments == 0 for Function() */

179 if ((!MethodInfo->NumArguments) && (ActualArgs))
180 {
181 MethodInfo->NumArguments = ActualArgs;
182 ArgNode->Asl.Value.Integer |= ActualArgs;
183 }

185 /*
186 * Actual arguments are initialized at method entry.
187 * All other ArgX "registers" can be used as locals, so we
188 * track their initialization.
189 */
190 for (i = 0; i < MethodInfo->NumArguments; i++)
191 {
192 MethodInfo->ArgInitialized[i] = TRUE;
193 }

new/usr/src/common/acpica/compiler/aslmethod.c 4

194 break;

196 case PARSEOP_METHODCALL:

198 if (MethodInfo &&
199 (Op->Asl.Node == MethodInfo->Op->Asl.Node))
200 {
201 AslError (ASL_REMARK, ASL_MSG_RECURSION, Op, Op->Asl.ExternalName);
202 }
203 break;

205 case PARSEOP_LOCAL0:
206 case PARSEOP_LOCAL1:
207 case PARSEOP_LOCAL2:
208 case PARSEOP_LOCAL3:
209 case PARSEOP_LOCAL4:
210 case PARSEOP_LOCAL5:
211 case PARSEOP_LOCAL6:
212 case PARSEOP_LOCAL7:

214 if (!MethodInfo)
215 {
216 /*
217 * Local was used outside a control method, or there was an error
218 * in the method declaration.
219 */
220 AslError (ASL_REMARK, ASL_MSG_LOCAL_OUTSIDE_METHOD, Op, Op->Asl.Exte
221 return (AE_ERROR);
222 }

224 RegisterNumber = (Op->Asl.AmlOpcode & 0x000F);

226 /*
227 * If the local is being used as a target, mark the local
228 * initialized
229 */
230 if (Op->Asl.CompileFlags & NODE_IS_TARGET)
231 {
232 MethodInfo->LocalInitialized[RegisterNumber] = TRUE;
233 }

235 /*
236 * Otherwise, this is a reference, check if the local
237 * has been previously initialized.
238 *
239 * The only operator that accepts an uninitialized value is ObjectType()
240 */
241 else if ((!MethodInfo->LocalInitialized[RegisterNumber]) &&
242 (Op->Asl.Parent->Asl.ParseOpcode != PARSEOP_OBJECTTYPE))
243 {
244 LocalName[strlen (LocalName) -1] = (char) (RegisterNumber + 0x30);
245 AslError (ASL_ERROR, ASL_MSG_LOCAL_INIT, Op, LocalName);
246 }
247 break;

249 case PARSEOP_ARG0:
250 case PARSEOP_ARG1:
251 case PARSEOP_ARG2:
252 case PARSEOP_ARG3:
253 case PARSEOP_ARG4:
254 case PARSEOP_ARG5:
255 case PARSEOP_ARG6:

257 if (!MethodInfo)
258 {
259 /*

new/usr/src/common/acpica/compiler/aslmethod.c 5

260 * Arg was used outside a control method, or there was an error
261 * in the method declaration.
262 */
263 AslError (ASL_REMARK, ASL_MSG_LOCAL_OUTSIDE_METHOD, Op, Op->Asl.Exte
264 return (AE_ERROR);
265 }

267 RegisterNumber = (Op->Asl.AmlOpcode & 0x000F) - 8;
268 ArgName[strlen (ArgName) -1] = (char) (RegisterNumber + 0x30);

270 /*
271 * If the Arg is being used as a target, mark the local
272 * initialized
273 */
274 if (Op->Asl.CompileFlags & NODE_IS_TARGET)
275 {
276 MethodInfo->ArgInitialized[RegisterNumber] = TRUE;
277 }

279 /*
280 * Otherwise, this is a reference, check if the Arg
281 * has been previously initialized.
282 *
283 * The only operator that accepts an uninitialized value is ObjectType()
284 */
285 else if ((!MethodInfo->ArgInitialized[RegisterNumber]) &&
286 (Op->Asl.Parent->Asl.ParseOpcode != PARSEOP_OBJECTTYPE))
287 {
288 AslError (ASL_ERROR, ASL_MSG_ARG_INIT, Op, ArgName);
289 }

291 /* Flag this arg if it is not a "real" argument to the method */

293 if (RegisterNumber >= MethodInfo->NumArguments)
294 {
295 AslError (ASL_REMARK, ASL_MSG_NOT_PARAMETER, Op, ArgName);
296 }
297 break;

299 case PARSEOP_RETURN:

301 if (!MethodInfo)
302 {
303 /*
304 * Probably was an error in the method declaration,
305 * no additional error here
306 */
307 ACPI_WARNING ((AE_INFO, "%p, No parent method", Op));
308 return (AE_ERROR);
309 }

311 /*
312 * A child indicates a possible return value. A simple Return or
313 * Return() is marked with NODE_IS_NULL_RETURN by the parser so
314 * that it is not counted as a "real" return-with-value, although
315 * the AML code that is actually emitted is Return(0). The AML
316 * definition of Return has a required parameter, so we are
317 * forced to convert a null return to Return(0).
318 */
319 if ((Op->Asl.Child) &&
320 (Op->Asl.Child->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG) &&
321 (!(Op->Asl.Child->Asl.CompileFlags & NODE_IS_NULL_RETURN)))
322 {
323 MethodInfo->NumReturnWithValue++;
324 }
325 else

new/usr/src/common/acpica/compiler/aslmethod.c 6

326 {
327 MethodInfo->NumReturnNoValue++;
328 }
329 break;

331 case PARSEOP_BREAK:
332 case PARSEOP_CONTINUE:

334 Next = Op->Asl.Parent;
335 while (Next)
336 {
337 if (Next->Asl.ParseOpcode == PARSEOP_WHILE)
338 {
339 break;
340 }
341 Next = Next->Asl.Parent;
342 }

344 if (!Next)
345 {
346 AslError (ASL_ERROR, ASL_MSG_NO_WHILE, Op, NULL);
347 }
348 break;

350 case PARSEOP_STALL:

352 /* We can range check if the argument is an integer */

354 if ((Op->Asl.Child->Asl.ParseOpcode == PARSEOP_INTEGER) &&
355 (Op->Asl.Child->Asl.Value.Integer > ACPI_UINT8_MAX))
356 {
357 AslError (ASL_ERROR, ASL_MSG_INVALID_TIME, Op, NULL);
358 }
359 break;

361 case PARSEOP_DEVICE:
362 case PARSEOP_EVENT:
363 case PARSEOP_MUTEX:
364 case PARSEOP_OPERATIONREGION:
365 case PARSEOP_POWERRESOURCE:
366 case PARSEOP_PROCESSOR:
367 case PARSEOP_THERMALZONE:

369 /*
370 * The first operand is a name to be created in the namespace.
371 * Check against the reserved list.
372 */
373 i = ApCheckForPredefinedName (Op, Op->Asl.NameSeg);
374 if (i < ACPI_VALID_RESERVED_NAME_MAX)
375 {
376 AslError (ASL_ERROR, ASL_MSG_RESERVED_USE, Op, Op->Asl.ExternalName)
377 }
378 break;

380 case PARSEOP_NAME:

382 /* Typecheck any predefined names statically defined with Name() */

384 ApCheckForPredefinedObject (Op, Op->Asl.NameSeg);

386 /* Special typechecking for _HID */

388 if (!ACPI_STRCMP (METHOD_NAME__HID, Op->Asl.NameSeg))
389 {
390 Next = Op->Asl.Child->Asl.Next;
391 AnCheckId (Next, ASL_TYPE_HID);

new/usr/src/common/acpica/compiler/aslmethod.c 7

392 }

394 /* Special typechecking for _CID */

396 else if (!ACPI_STRCMP (METHOD_NAME__CID, Op->Asl.NameSeg))
397 {
398 Next = Op->Asl.Child->Asl.Next;

400 if ((Next->Asl.ParseOpcode == PARSEOP_PACKAGE) ||
401 (Next->Asl.ParseOpcode == PARSEOP_VAR_PACKAGE))
402 {
403 Next = Next->Asl.Child;
404 while (Next)
405 {
406 AnCheckId (Next, ASL_TYPE_CID);
407 Next = Next->Asl.Next;
408 }
409 }
410 else
411 {
412 AnCheckId (Next, ASL_TYPE_CID);
413 }
414 }
415 break;

417 default:

419 break;
420 }

422 /* Check for named object creation within a non-serialized method */

424 MtCheckNamedObjectInMethod (Op, MethodInfo);
425 return (AE_OK);
426 }

429 /***
430 *
431 * FUNCTION: MtCheckNamedObjectInMethod
432 *
433 * PARAMETERS: Op - Current parser op
434 * MethodInfo - Info for method being parsed
435 *
436 * RETURN: None
437 *
438 * DESCRIPTION: Detect if a non-serialized method is creating a named object,
439 * which could possibly cause problems if two threads execute
440 * the method concurrently. Emit a remark in this case.
441 *
442 **/

444 void
445 MtCheckNamedObjectInMethod (
446 ACPI_PARSE_OBJECT *Op,
447 ASL_METHOD_INFO *MethodInfo)
448 {
449 const ACPI_OPCODE_INFO *OpInfo;

452 /* We don’t care about actual method declarations */

454 if (Op->Asl.AmlOpcode == AML_METHOD_OP)
455 {
456 return;
457 }

new/usr/src/common/acpica/compiler/aslmethod.c 8

459 /* Determine if we are creating a named object */

461 OpInfo = AcpiPsGetOpcodeInfo (Op->Asl.AmlOpcode);
462 if (OpInfo->Class == AML_CLASS_NAMED_OBJECT)
463 {
464 /*
465 * If we have a named object created within a non-serialized method,
466 * emit a remark that the method should be serialized.
467 *
468 * Reason: If a thread blocks within the method for any reason, and
469 * another thread enters the method, the method will fail because an
470 * attempt will be made to create the same object twice.
471 */
472 if (MethodInfo && !MethodInfo->ShouldBeSerialized)
473 {
474 AslError (ASL_REMARK, ASL_MSG_SERIALIZED_REQUIRED, MethodInfo->Op,
475 "due to creation of named objects within");

477 /* Emit message only ONCE per method */

479 MethodInfo->ShouldBeSerialized = TRUE;
480 }
481 }
482 }

485 /***
486 *
487 * FUNCTION: MtMethodAnalysisWalkEnd
488 *
489 * PARAMETERS: ASL_WALK_CALLBACK
490 *
491 * RETURN: Status
492 *
493 * DESCRIPTION: Ascending callback for analysis walk. Complete method
494 * return analysis.
495 *
496 **/

498 ACPI_STATUS
499 MtMethodAnalysisWalkEnd (
500 ACPI_PARSE_OBJECT *Op,
501 UINT32 Level,
502 void *Context)
503 {
504 ASL_ANALYSIS_WALK_INFO *WalkInfo = (ASL_ANALYSIS_WALK_INFO *) Context;
505 ASL_METHOD_INFO *MethodInfo = WalkInfo->MethodStack;

508 switch (Op->Asl.ParseOpcode)
509 {
510 case PARSEOP_METHOD:
511 case PARSEOP_RETURN:

513 if (!MethodInfo)
514 {
515 printf ("No method info for method! [%s]\n", Op->Asl.Namepath);
516 AslError (ASL_ERROR, ASL_MSG_COMPILER_INTERNAL, Op,
517 "No method info for this method");

519 CmCleanupAndExit ();
520 return (AE_AML_INTERNAL);
521 }
522 break;

new/usr/src/common/acpica/compiler/aslmethod.c 9

524 default:

526 break;
527 }

529 switch (Op->Asl.ParseOpcode)
530 {
531 case PARSEOP_METHOD:

533 WalkInfo->MethodStack = MethodInfo->Next;

535 /*
536 * Check if there is no return statement at the end of the
537 * method AND we can actually get there -- i.e., the execution
538 * of the method can possibly terminate without a return statement.
539 */
540 if ((!AnLastStatementIsReturn (Op)) &&
541 (!(Op->Asl.CompileFlags & NODE_HAS_NO_EXIT)))
542 {
543 /*
544 * No return statement, and execution can possibly exit
545 * via this path. This is equivalent to Return ()
546 */
547 MethodInfo->NumReturnNoValue++;
548 }

550 /*
551 * Check for case where some return statements have a return value
552 * and some do not. Exit without a return statement is a return with
553 * no value
554 */
555 if (MethodInfo->NumReturnNoValue &&
556 MethodInfo->NumReturnWithValue)
557 {
558 AslError (ASL_WARNING, ASL_MSG_RETURN_TYPES, Op,
559 Op->Asl.ExternalName);
560 }

562 /*
563 * If there are any RETURN() statements with no value, or there is a
564 * control path that allows the method to exit without a return value,
565 * we mark the method as a method that does not return a value. This
566 * knowledge can be used to check method invocations that expect a
567 * returned value.
568 */
569 if (MethodInfo->NumReturnNoValue)
570 {
571 if (MethodInfo->NumReturnWithValue)
572 {
573 Op->Asl.CompileFlags |= NODE_METHOD_SOME_NO_RETVAL;
574 }
575 else
576 {
577 Op->Asl.CompileFlags |= NODE_METHOD_NO_RETVAL;
578 }
579 }

581 /*
582 * Check predefined method names for correct return behavior
583 * and correct number of arguments. Also, some special checks
584 * For GPE and _REG methods.
585 */
586 if (ApCheckForPredefinedMethod (Op, MethodInfo))
587 {
588 /* Special check for two names like _L01 and _E01 in same scope */

new/usr/src/common/acpica/compiler/aslmethod.c 10

590 ApCheckForGpeNameConflict (Op);

592 /*
593 * Special check for _REG: Must have an operation region definition
594 * within the same scope!
595 */
596 ApCheckRegMethod (Op);
597 }

599 ACPI_FREE (MethodInfo);
600 break;

602 case PARSEOP_NAME:

604 /* Special check for two names like _L01 and _E01 in same scope */

606 ApCheckForGpeNameConflict (Op);
607 break;

609 case PARSEOP_RETURN:

611 /*
612 * If the parent is a predefined method name, attempt to typecheck
613 * the return value. Only static types can be validated.
614 */
615 ApCheckPredefinedReturnValue (Op, MethodInfo);

617 /*
618 * The parent block does not "exit" and continue execution -- the
619 * method is terminated here with the Return() statement.
620 */
621 Op->Asl.Parent->Asl.CompileFlags |= NODE_HAS_NO_EXIT;

623 /* Used in the "typing" pass later */

625 Op->Asl.ParentMethod = MethodInfo->Op;

627 /*
628 * If there is a peer node after the return statement, then this
629 * node is unreachable code -- i.e., it won’t be executed because of
630 * the preceding Return() statement.
631 */
632 if (Op->Asl.Next)
633 {
634 AslError (ASL_WARNING, ASL_MSG_UNREACHABLE_CODE, Op->Asl.Next, NULL)
635 }
636 break;

638 case PARSEOP_IF:

640 if ((Op->Asl.CompileFlags & NODE_HAS_NO_EXIT) &&
641 (Op->Asl.Next) &&
642 (Op->Asl.Next->Asl.ParseOpcode == PARSEOP_ELSE))
643 {
644 /*
645 * This IF has a corresponding ELSE. The IF block has no exit,
646 * (it contains an unconditional Return)
647 * mark the ELSE block to remember this fact.
648 */
649 Op->Asl.Next->Asl.CompileFlags |= NODE_IF_HAS_NO_EXIT;
650 }
651 break;

653 case PARSEOP_ELSE:

655 if ((Op->Asl.CompileFlags & NODE_HAS_NO_EXIT) &&

new/usr/src/common/acpica/compiler/aslmethod.c 11

656 (Op->Asl.CompileFlags & NODE_IF_HAS_NO_EXIT))
657 {
658 /*
659 * This ELSE block has no exit and the corresponding IF block
660 * has no exit either. Therefore, the parent node has no exit.
661 */
662 Op->Asl.Parent->Asl.CompileFlags |= NODE_HAS_NO_EXIT;
663 }
664 break;

667 default:

669 if ((Op->Asl.CompileFlags & NODE_HAS_NO_EXIT) &&
670 (Op->Asl.Parent))
671 {
672 /* If this node has no exit, then the parent has no exit either */

674 Op->Asl.Parent->Asl.CompileFlags |= NODE_HAS_NO_EXIT;
675 }
676 break;
677 }

679 return (AE_OK);
680 }

new/usr/src/common/acpica/compiler/aslnamesp.c 1

**
 12397 Thu Dec 26 13:48:30 2013
new/usr/src/common/acpica/compiler/aslnamesp.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: aslnamesp - Namespace output file generation
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"
47 #include "acnamesp.h"

50 #define _COMPONENT ACPI_COMPILER
51 ACPI_MODULE_NAME ("aslnamesp")

53 /* Local prototypes */

55 static ACPI_STATUS
56 NsDoOneNamespaceObject (
57 ACPI_HANDLE ObjHandle,
58 UINT32 Level,
59 void *Context,
60 void **ReturnValue);

new/usr/src/common/acpica/compiler/aslnamesp.c 2

62 static ACPI_STATUS
63 NsDoOnePathname (
64 ACPI_HANDLE ObjHandle,
65 UINT32 Level,
66 void *Context,
67 void **ReturnValue);

70 /***
71 *
72 * FUNCTION: NsSetupNamespaceListing
73 *
74 * PARAMETERS: Handle - local file handle
75 *
76 * RETURN: None
77 *
78 * DESCRIPTION: Set the namespace output file to the input handle
79 *
80 **/

82 void
83 NsSetupNamespaceListing (
84 void *Handle)
85 {

87 Gbl_NsOutputFlag = TRUE;
88 Gbl_Files[ASL_FILE_NAMESPACE_OUTPUT].Handle = Handle;
89 }

92 /***
93 *
94 * FUNCTION: NsDisplayNamespace
95 *
96 * PARAMETERS: None
97 *
98 * RETURN: Status
99 *
100 * DESCRIPTION: Walk the namespace an display information about each node
101 * in the tree. Information is written to the optional
102 * namespace output file.
103 *
104 **/

106 ACPI_STATUS
107 NsDisplayNamespace (
108 void)
109 {
110 ACPI_STATUS Status;

113 if (!Gbl_NsOutputFlag)
114 {
115 return (AE_OK);
116 }

118 Gbl_NumNamespaceObjects = 0;

120 /* File header */

122 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT, "Contents of ACPI Namespace\n\n");
123 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT, "Count Depth Name - Type\n\n");

125 /* Walk entire namespace from the root */

127 Status = AcpiNsWalkNamespace (ACPI_TYPE_ANY, ACPI_ROOT_OBJECT,

new/usr/src/common/acpica/compiler/aslnamesp.c 3

128 ACPI_UINT32_MAX, FALSE, NsDoOneNamespaceObject, NULL,
129 NULL, NULL);

131 /* Print the full pathname for each namespace node */

133 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT, "\nNamespace pathnames\n\n");

135 Status = AcpiNsWalkNamespace (ACPI_TYPE_ANY, ACPI_ROOT_OBJECT,
136 ACPI_UINT32_MAX, FALSE, NsDoOnePathname, NULL,
137 NULL, NULL);

139 return (Status);
140 }

143 /***
144 *
145 * FUNCTION: NsDoOneNamespaceObject
146 *
147 * PARAMETERS: ACPI_WALK_CALLBACK
148 *
149 * RETURN: Status
150 *
151 * DESCRIPTION: Dump a namespace object to the namespace output file.
152 * Called during the walk of the namespace to dump all objects.
153 *
154 **/

156 static ACPI_STATUS
157 NsDoOneNamespaceObject (
158 ACPI_HANDLE ObjHandle,
159 UINT32 Level,
160 void *Context,
161 void **ReturnValue)
162 {
163 ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) ObjHandle;
164 ACPI_OPERAND_OBJECT *ObjDesc;
165 ACPI_PARSE_OBJECT *Op;

168 Gbl_NumNamespaceObjects++;

170 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT, "%5u [%u] %*s %4.4s - %s",
171 Gbl_NumNamespaceObjects, Level, (Level * 3), " ",
172 &Node->Name,
173 AcpiUtGetTypeName (Node->Type));

175 Op = Node->Op;
176 ObjDesc = ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, Node->Object);

178 if (!Op)
179 {
180 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT, "\n");
181 return (AE_OK);
182 }

185 if ((ObjDesc) &&
186 (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc) == ACPI_DESC_TYPE_OPERAND))
187 {
188 switch (Node->Type)
189 {
190 case ACPI_TYPE_INTEGER:

192 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT,
193 " [Initial Value 0x%8.8X%8.8X]",

new/usr/src/common/acpica/compiler/aslnamesp.c 4

194 ACPI_FORMAT_UINT64 (ObjDesc->Integer.Value));
195 break;

197 case ACPI_TYPE_STRING:

199 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT,
200 " [Initial Value \"%s\"]",
201 ObjDesc->String.Pointer);
202 break;

204 default:

206 /* Nothing to do for other types */

208 break;
209 }

211 }
212 else
213 {
214 switch (Node->Type)
215 {
216 case ACPI_TYPE_INTEGER:

218 if (Op->Asl.ParseOpcode == PARSEOP_NAME)
219 {
220 Op = Op->Asl.Child;
221 }
222 if ((Op->Asl.ParseOpcode == PARSEOP_NAMESEG) ||
223 (Op->Asl.ParseOpcode == PARSEOP_NAMESTRING))
224 {
225 Op = Op->Asl.Next;
226 }
227 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT,
228 " [Initial Value 0x%8.8X%8.8X]",
229 ACPI_FORMAT_UINT64 (Op->Asl.Value.Integer));
230 break;

232 case ACPI_TYPE_STRING:

234 if (Op->Asl.ParseOpcode == PARSEOP_NAME)
235 {
236 Op = Op->Asl.Child;
237 }
238 if ((Op->Asl.ParseOpcode == PARSEOP_NAMESEG) ||
239 (Op->Asl.ParseOpcode == PARSEOP_NAMESTRING))
240 {
241 Op = Op->Asl.Next;
242 }
243 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT,
244 " [Initial Value \"%s\"]",
245 Op->Asl.Value.String);
246 break;

248 case ACPI_TYPE_LOCAL_REGION_FIELD:

250 if ((Op->Asl.ParseOpcode == PARSEOP_NAMESEG) ||
251 (Op->Asl.ParseOpcode == PARSEOP_NAMESTRING))
252 {
253 Op = Op->Asl.Child;
254 }
255 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT,
256 " [Offset 0x%04X Length 0x%04X bits]",
257 Op->Asl.Parent->Asl.ExtraValue, (UINT32) Op->Asl.Value.Integer);
258 break;

new/usr/src/common/acpica/compiler/aslnamesp.c 5

260 case ACPI_TYPE_BUFFER_FIELD:

262 switch (Op->Asl.ParseOpcode)
263 {
264 case PARSEOP_CREATEBYTEFIELD:

266 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT, " [BYTE (8 bit)]");
267 break;

269 case PARSEOP_CREATEDWORDFIELD:

271 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT, " [DWORD (32 bit)]");
272 break;

274 case PARSEOP_CREATEQWORDFIELD:

276 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT, " [QWORD (64 bit)]");
277 break;

279 case PARSEOP_CREATEWORDFIELD:

281 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT, " [WORD (16 bit)]");
282 break;

284 case PARSEOP_CREATEBITFIELD:

286 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT, " [BIT (1 bit)]");
287 break;

289 case PARSEOP_CREATEFIELD:

291 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT, " [Arbitrary Bit Field
292 break;

294 default:

296 break;

298 }
299 break;

301 case ACPI_TYPE_PACKAGE:

303 if (Op->Asl.ParseOpcode == PARSEOP_NAME)
304 {
305 Op = Op->Asl.Child;
306 }
307 if ((Op->Asl.ParseOpcode == PARSEOP_NAMESEG) ||
308 (Op->Asl.ParseOpcode == PARSEOP_NAMESTRING))
309 {
310 Op = Op->Asl.Next;
311 }
312 Op = Op->Asl.Child;

314 if ((Op->Asl.ParseOpcode == PARSEOP_BYTECONST) ||
315 (Op->Asl.ParseOpcode == PARSEOP_RAW_DATA))
316 {
317 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT,
318 " [Initial Length 0x%.2X elements]",
319 Op->Asl.Value.Integer);
320 }
321 break;

323 case ACPI_TYPE_BUFFER:

325 if (Op->Asl.ParseOpcode == PARSEOP_NAME)

new/usr/src/common/acpica/compiler/aslnamesp.c 6

326 {
327 Op = Op->Asl.Child;
328 }
329 if ((Op->Asl.ParseOpcode == PARSEOP_NAMESEG) ||
330 (Op->Asl.ParseOpcode == PARSEOP_NAMESTRING))
331 {
332 Op = Op->Asl.Next;
333 }
334 Op = Op->Asl.Child;

336 if (Op && (Op->Asl.ParseOpcode == PARSEOP_INTEGER))
337 {
338 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT,
339 " [Initial Length 0x%.2X bytes]",
340 Op->Asl.Value.Integer);
341 }
342 break;

344 case ACPI_TYPE_METHOD:

346 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT,
347 " [Code Length 0x%.4X bytes]",
348 Op->Asl.AmlSubtreeLength);
349 break;

351 case ACPI_TYPE_LOCAL_RESOURCE:

353 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT,
354 " [Desc Offset 0x%.4X Bytes]", Node->Value);
355 break;

357 case ACPI_TYPE_LOCAL_RESOURCE_FIELD:

359 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT,
360 " [Field Offset 0x%.4X Bits 0x%.4X Bytes] ",
361 Node->Value, Node->Value / 8);

363 if (Node->Flags & ANOBJ_IS_REFERENCED)
364 {
365 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT,
366 "Referenced");
367 }
368 else
369 {
370 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT,
371 "Name not referenced");
372 }
373 break;

375 default:

377 /* Nothing to do for other types */

379 break;
380 }
381 }

383 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT, "\n");
384 return (AE_OK);
385 }

388 /***
389 *
390 * FUNCTION: NsDoOnePathname
391 *

new/usr/src/common/acpica/compiler/aslnamesp.c 7

392 * PARAMETERS: ACPI_WALK_CALLBACK
393 *
394 * RETURN: Status
395 *
396 * DESCRIPTION: Print the full pathname for a namespace node.
397 *
398 **/

400 static ACPI_STATUS
401 NsDoOnePathname (
402 ACPI_HANDLE ObjHandle,
403 UINT32 Level,
404 void *Context,
405 void **ReturnValue)
406 {
407 ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) ObjHandle;
408 ACPI_STATUS Status;
409 ACPI_BUFFER TargetPath;

412 TargetPath.Length = ACPI_ALLOCATE_LOCAL_BUFFER;
413 Status = AcpiNsHandleToPathname (Node, &TargetPath);
414 if (ACPI_FAILURE (Status))
415 {
416 return (Status);
417 }

419 FlPrintFile (ASL_FILE_NAMESPACE_OUTPUT, "%s\n", TargetPath.Pointer);
420 ACPI_FREE (TargetPath.Pointer);

422 return (AE_OK);
423 }

new/usr/src/common/acpica/compiler/asloffset.c 1

**
 15308 Thu Dec 26 13:48:31 2013
new/usr/src/common/acpica/compiler/asloffset.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: asloffset - Generate a C "offset table" for BIOS use.
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aslcompiler.h"
45 #include "aslcompiler.y.h"
46 #include "amlcode.h"
47 #include "acnamesp.h"

50 #define _COMPONENT ACPI_COMPILER
51 ACPI_MODULE_NAME ("asloffset")

54 /* Local prototypes */

56 static void
57 LsEmitOffsetTableEntry (
58 UINT32 FileId,
59 ACPI_NAMESPACE_NODE *Node,
60 UINT32 NamepathOffset,
61 UINT32 Offset,

new/usr/src/common/acpica/compiler/asloffset.c 2

62 char *OpName,
63 UINT64 Value,
64 UINT8 AmlOpcode,
65 UINT16 ParentOpcode);

68 /***
69 *
70 * FUNCTION: LsAmlOffsetWalk
71 *
72 * PARAMETERS: ASL_WALK_CALLBACK
73 *
74 * RETURN: Status
75 *
76 * DESCRIPTION: Process one node during a offset table file generation.
77 *
78 * Three types of objects are currently emitted to the offset table:
79 * 1) Tagged (named) resource descriptors
80 * 2) Named integer objects with constant integer values
81 * 3) Named package objects
82 * 4) Operation Regions that have constant Offset (address) parameters
83 * 5) Control methods
84 *
85 * The offset table allows the BIOS to dynamically update the values of these
86 * objects at boot time.
87 *
88 **/

90 ACPI_STATUS
91 LsAmlOffsetWalk (
92 ACPI_PARSE_OBJECT *Op,
93 UINT32 Level,
94 void *Context)
95 {
96 UINT32 FileId = (UINT32) ACPI_TO_INTEGER (Context);
97 ACPI_NAMESPACE_NODE *Node;
98 UINT32 Length;
99 UINT32 NamepathOffset;
100 UINT32 DataOffset;
101 ACPI_PARSE_OBJECT *NextOp;

104 /* Ignore actual data blocks for resource descriptors */

106 if (Op->Asl.CompileFlags & NODE_IS_RESOURCE_DATA)
107 {
108 return (AE_OK); /* Do NOT update the global AML offset */
109 }

111 /* We are only interested in named objects (have a namespace node) */

113 Node = Op->Asl.Node;
114 if (!Node)
115 {
116 Gbl_CurrentAmlOffset += Op->Asl.FinalAmlLength;
117 return (AE_OK);
118 }

120 /* Named resource descriptor (has a descriptor tag) */

122 if ((Node->Type == ACPI_TYPE_LOCAL_RESOURCE) &&
123 (Op->Asl.CompileFlags & NODE_IS_RESOURCE_DESC))
124 {
125 LsEmitOffsetTableEntry (FileId, Node, 0, Gbl_CurrentAmlOffset,
126 Op->Asl.ParseOpName, 0, Op->Asl.Extra, AML_BUFFER_OP);

new/usr/src/common/acpica/compiler/asloffset.c 3

128 Gbl_CurrentAmlOffset += Op->Asl.FinalAmlLength;
129 return (AE_OK);
130 }

132 switch (Op->Asl.AmlOpcode)
133 {
134 case AML_NAME_OP:

136 /* Named object -- Name (NameString, DataRefObject) */

138 if (!Op->Asl.Child)
139 {
140 FlPrintFile (FileId, "%s NO CHILD!\n", MsgBuffer);
141 return (AE_OK);
142 }

144 Length = Op->Asl.FinalAmlLength;
145 NamepathOffset = Gbl_CurrentAmlOffset + Length;

147 /* Get to the NameSeg/NamePath Op (and length of the name) */

149 Op = Op->Asl.Child;

151 /* Get offset of last nameseg and the actual data */

153 NamepathOffset = Gbl_CurrentAmlOffset + Length +
154 (Op->Asl.FinalAmlLength - ACPI_NAME_SIZE);

156 DataOffset = Gbl_CurrentAmlOffset + Length +
157 Op->Asl.FinalAmlLength;

159 /* Get actual value associated with the name */

161 Op = Op->Asl.Next;
162 switch (Op->Asl.AmlOpcode)
163 {
164 case AML_BYTE_OP:
165 case AML_WORD_OP:
166 case AML_DWORD_OP:
167 case AML_QWORD_OP:

169 /* The +1 is to handle the integer size prefix (opcode) */

171 LsEmitOffsetTableEntry (FileId, Node, NamepathOffset, (DataOffset +
172 Op->Asl.ParseOpName, Op->Asl.Value.Integer,
173 (UINT8) Op->Asl.AmlOpcode, AML_NAME_OP);
174 break;

176 case AML_ONE_OP:
177 case AML_ONES_OP:
178 case AML_ZERO_OP:

180 /* For these, offset will point to the opcode */

182 LsEmitOffsetTableEntry (FileId, Node, NamepathOffset, DataOffset,
183 Op->Asl.ParseOpName, Op->Asl.Value.Integer,
184 (UINT8) Op->Asl.AmlOpcode, AML_NAME_OP);
185 break;

187 case AML_PACKAGE_OP:
188 case AML_VAR_PACKAGE_OP:

190 /* Get the package element count */

192 NextOp = Op->Asl.Child;

new/usr/src/common/acpica/compiler/asloffset.c 4

194 LsEmitOffsetTableEntry (FileId, Node, NamepathOffset, DataOffset,
195 Op->Asl.ParseOpName, NextOp->Asl.Value.Integer,
196 (UINT8) Op->Asl.AmlOpcode, AML_NAME_OP);
197 break;

199 default:
200 break;
201 }

203 Gbl_CurrentAmlOffset += Length;
204 return (AE_OK);

206 case AML_REGION_OP:

208 /* OperationRegion (NameString, RegionSpace, RegionOffset, RegionLength)

210 Length = Op->Asl.FinalAmlLength;

212 /* Get the name/namepath node */

214 NextOp = Op->Asl.Child;

216 /* Get offset of last nameseg and the actual data */

218 NamepathOffset = Gbl_CurrentAmlOffset + Length +
219 (NextOp->Asl.FinalAmlLength - ACPI_NAME_SIZE);

221 DataOffset = Gbl_CurrentAmlOffset + Length +
222 (NextOp->Asl.FinalAmlLength + 1);

224 /* Get the SpaceId node, then the Offset (address) node */

226 NextOp = NextOp->Asl.Next;
227 NextOp = NextOp->Asl.Next;

229 switch (NextOp->Asl.AmlOpcode)
230 {
231 /*
232 * We are only interested in integer constants that can be changed
233 * at boot time. Note, the One/Ones/Zero opcodes are considered
234 * non-changeable, so we ignore them here.
235 */
236 case AML_BYTE_OP:
237 case AML_WORD_OP:
238 case AML_DWORD_OP:
239 case AML_QWORD_OP:

241 LsEmitOffsetTableEntry (FileId, Node, NamepathOffset, (DataOffset +
242 Op->Asl.ParseOpName, NextOp->Asl.Value.Integer,
243 (UINT8) NextOp->Asl.AmlOpcode, AML_REGION_OP);

245 Gbl_CurrentAmlOffset += Length;
246 return (AE_OK);

248 default:
249 break;
250 }
251 break;

253 case AML_METHOD_OP:

255 /* Method (Namepath, ...) */

257 Length = Op->Asl.FinalAmlLength;

259 /* Get the NameSeg/NamePath Op */

new/usr/src/common/acpica/compiler/asloffset.c 5

261 NextOp = Op->Asl.Child;

263 /* Get offset of last nameseg and the actual data (flags byte) */

265 NamepathOffset = Gbl_CurrentAmlOffset + Length +
266 (NextOp->Asl.FinalAmlLength - ACPI_NAME_SIZE);

268 DataOffset = Gbl_CurrentAmlOffset + Length +
269 NextOp->Asl.FinalAmlLength;

271 /* Get the flags byte Op */

273 NextOp = NextOp->Asl.Next;

275 LsEmitOffsetTableEntry (FileId, Node, NamepathOffset, DataOffset,
276 Op->Asl.ParseOpName, NextOp->Asl.Value.Integer,
277 (UINT8) Op->Asl.AmlOpcode, AML_METHOD_OP);
278 break;

280 case AML_PROCESSOR_OP:

282 /* Processor (Namepath, ProcessorId, Address, Length) */

284 Length = Op->Asl.FinalAmlLength;
285 NextOp = Op->Asl.Child; /* Get Namepath */

287 /* Get offset of last nameseg and the actual data (PBlock address) */

289 NamepathOffset = Gbl_CurrentAmlOffset + Length +
290 (NextOp->Asl.FinalAmlLength - ACPI_NAME_SIZE);

292 DataOffset = Gbl_CurrentAmlOffset + Length +
293 (NextOp->Asl.FinalAmlLength + 1);

295 NextOp = NextOp->Asl.Next; /* Get ProcessorID (BYTE) */
296 NextOp = NextOp->Asl.Next; /* Get Address (DWORD) */

298 LsEmitOffsetTableEntry (FileId, Node, NamepathOffset, DataOffset,
299 Op->Asl.ParseOpName, NextOp->Asl.Value.Integer,
300 (UINT8) AML_DWORD_OP, AML_PROCESSOR_OP);
301 break;

303 case AML_DEVICE_OP:
304 case AML_SCOPE_OP:
305 case AML_THERMAL_ZONE_OP:

307 /* Device/Scope/ThermalZone (Namepath) */

309 Length = Op->Asl.FinalAmlLength;
310 NextOp = Op->Asl.Child; /* Get Namepath */

312 /* Get offset of last nameseg */

314 NamepathOffset = Gbl_CurrentAmlOffset + Length +
315 (NextOp->Asl.FinalAmlLength - ACPI_NAME_SIZE);

317 LsEmitOffsetTableEntry (FileId, Node, NamepathOffset, 0,
318 Op->Asl.ParseOpName, 0, (UINT8) 0, Op->Asl.AmlOpcode);
319 break;

321 default:
322 break;
323 }

325 Gbl_CurrentAmlOffset += Op->Asl.FinalAmlLength;

new/usr/src/common/acpica/compiler/asloffset.c 6

326 return (AE_OK);
327 }

330 /***
331 *
332 * FUNCTION: LsEmitOffsetTableEntry
333 *
334 * PARAMETERS: FileId - ID of current listing file
335 * Node - Namespace node associated with the name
336 * Offset - Offset of the value within the AML table
337 * OpName - Name of the AML opcode
338 * Value - Current value of the AML field
339 * AmlOpcode - Opcode associated with the field
340 * ObjectType - ACPI object type
341 *
342 * RETURN: None
343 *
344 * DESCRIPTION: Emit a line of the offset table (-so option)
345 *
346 **/

348 static void
349 LsEmitOffsetTableEntry (
350 UINT32 FileId,
351 ACPI_NAMESPACE_NODE *Node,
352 UINT32 NamepathOffset,
353 UINT32 Offset,
354 char *OpName,
355 UINT64 Value,
356 UINT8 AmlOpcode,
357 UINT16 ParentOpcode)
358 {
359 ACPI_BUFFER TargetPath;
360 ACPI_STATUS Status;

363 /* Get the full pathname to the namespace node */

365 TargetPath.Length = ACPI_ALLOCATE_LOCAL_BUFFER;
366 Status = AcpiNsHandleToPathname (Node, &TargetPath);
367 if (ACPI_FAILURE (Status))
368 {
369 return;
370 }

372 /* [1] - Skip the opening backslash for the path */

374 strcpy (MsgBuffer, "\"");
375 strcat (MsgBuffer, &((char *) TargetPath.Pointer)[1]);
376 strcat (MsgBuffer, "\",");
377 ACPI_FREE (TargetPath.Pointer);

379 /*
380 * Max offset is 4G, constrained by 32-bit ACPI table length.
381 * Max Length for Integers is 8 bytes.
382 */
383 FlPrintFile (FileId,
384 " {%-29s 0x%4.4X, 0x%8.8X, 0x%2.2X, 0x%8.8X, 0x%8.8X%8.8X}, /* %s */\
385 MsgBuffer, ParentOpcode, NamepathOffset, AmlOpcode,
386 Offset, ACPI_FORMAT_UINT64 (Value), OpName);
387 }

390 /***
391 *

new/usr/src/common/acpica/compiler/asloffset.c 7

392 * FUNCTION: LsDoOffsetTableHeader, LsDoOffsetTableFooter
393 *
394 * PARAMETERS: FileId - ID of current listing file
395 *
396 * RETURN: None
397 *
398 * DESCRIPTION: Header and footer for the offset table file.
399 *
400 **/

402 void
403 LsDoOffsetTableHeader (
404 UINT32 FileId)
405 {

407 FlPrintFile (FileId,
408 "#ifndef __AML_OFFSET_TABLE_H\n"
409 "#define __AML_OFFSET_TABLE_H\n\n");

411 FlPrintFile (FileId, "typedef struct {\n"
412 " char *Pathname; /* Full pathname (from root)
413 " unsigned short ParentOpcode; /* AML opcode for the parent
414 " unsigned long NamesegOffset; /* Offset of last nameseg in
415 " unsigned char Opcode; /* AML opcode for the data *
416 " unsigned long Offset; /* Offset for the data */\n"
417 " unsigned long long Value; /* Original value of the dat
418 "} AML_OFFSET_TABLE_ENTRY;\n\n");

420 FlPrintFile (FileId,
421 "#endif /* __AML_OFFSET_TABLE_H */\n\n");

423 FlPrintFile (FileId,
424 "/*\n"
425 " * Information specific to the supported object types:\n"
426 " *\n"
427 " * Integers:\n"
428 " * Opcode is the integer prefix, indicates length of the data\n"
429 " * (One of: BYTE, WORD, DWORD, QWORD, ZERO, ONE, ONES)\n"
430 " * Offset points to the actual integer data\n"
431 " * Value is the existing value in the AML\n"
432 " *\n"
433 " * Packages:\n"
434 " * Opcode is the package or var_package opcode\n"
435 " * Offset points to the package opcode\n"
436 " * Value is the package element count\n"
437 " *\n"
438 " * Operation Regions:\n"
439 " * Opcode is the address integer prefix, indicates length of the dat
440 " * Offset points to the region address\n"
441 " * Value is the existing address value in the AML\n"
442 " *\n"
443 " * Control Methods:\n"
444 " * Offset points to the method flags byte\n"
445 " * Value is the existing flags value in the AML\n"
446 " *\n"
447 " * Processors:\n"
448 " * Offset points to the first byte of the PBlock Address\n"
449 " *\n"
450 " * Resource Descriptors:\n"
451 " * Opcode is the descriptor type\n"
452 " * Offset points to the start of the descriptor\n"
453 " *\n"
454 " * Scopes/Devices/ThermalZones:\n"
455 " * Nameseg offset only\n"
456 " */\n");

new/usr/src/common/acpica/compiler/asloffset.c 8

458 FlPrintFile (FileId,
459 "AML_OFFSET_TABLE_ENTRY %s_%s_OffsetTable[] =\n{\n",
460 Gbl_TableSignature, Gbl_TableId);
461 }

464 void
465 LsDoOffsetTableFooter (
466 UINT32 FileId)
467 {

469 FlPrintFile (FileId,
470 " {NULL,0,0,0,0,0} /* Table terminator */\n};\n\n");
471 Gbl_CurrentAmlOffset = 0;
472 }

new/usr/src/common/acpica/compiler/aslopcodes.c 1

**
 22710 Thu Dec 26 13:48:31 2013
new/usr/src/common/acpica/compiler/aslopcodes.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslopcode - AML opcode generation
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"
47 #include "amlcode.h"

49 #define _COMPONENT ACPI_COMPILER
50 ACPI_MODULE_NAME ("aslopcodes")

53 /* Local prototypes */

55 static void
56 OpcDoAccessAs (
57 ACPI_PARSE_OBJECT *Op);

59 static void
60 OpcDoConnection (

new/usr/src/common/acpica/compiler/aslopcodes.c 2

61 ACPI_PARSE_OBJECT *Op);

63 static void
64 OpcDoUnicode (
65 ACPI_PARSE_OBJECT *Op);

67 static void
68 OpcDoEisaId (
69 ACPI_PARSE_OBJECT *Op);

71 static void
72 OpcDoUuId (
73 ACPI_PARSE_OBJECT *Op);

76 /***
77 *
78 * FUNCTION: OpcAmlOpcodeUpdateWalk
79 *
80 * PARAMETERS: ASL_WALK_CALLBACK
81 *
82 * RETURN: Status
83 *
84 * DESCRIPTION: Opcode update walk, ascending callback
85 *
86 **/

88 ACPI_STATUS
89 OpcAmlOpcodeUpdateWalk (
90 ACPI_PARSE_OBJECT *Op,
91 UINT32 Level,
92 void *Context)
93 {

95 /*
96 * Handle the Package() case where the actual opcode cannot be determined
97 * until the PackageLength operand has been folded and minimized.
98 * (PackageOp versus VarPackageOp)
99 *
100 * This is (as of ACPI 3.0) the only case where the AML opcode can change
101 * based upon the value of a parameter.
102 *
103 * The parser always inserts a VarPackage opcode, which can possibly be
104 * optimized to a Package opcode.
105 */
106 if (Op->Asl.ParseOpcode == PARSEOP_VAR_PACKAGE)
107 {
108 OpnDoPackage (Op);
109 }

111 return (AE_OK);
112 }

115 /***
116 *
117 * FUNCTION: OpcAmlOpcodeWalk
118 *
119 * PARAMETERS: ASL_WALK_CALLBACK
120 *
121 * RETURN: Status
122 *
123 * DESCRIPTION: Parse tree walk to generate both the AML opcodes and the AML
124 * operands.
125 *
126 **/

new/usr/src/common/acpica/compiler/aslopcodes.c 3

128 ACPI_STATUS
129 OpcAmlOpcodeWalk (
130 ACPI_PARSE_OBJECT *Op,
131 UINT32 Level,
132 void *Context)
133 {

135 TotalParseNodes++;

137 OpcGenerateAmlOpcode (Op);
138 OpnGenerateAmlOperands (Op);
139 return (AE_OK);
140 }

143 /***
144 *
145 * FUNCTION: OpcGetIntegerWidth
146 *
147 * PARAMETERS: Op - DEFINITION BLOCK op
148 *
149 * RETURN: none
150 *
151 * DESCRIPTION: Extract integer width from the table revision
152 *
153 **/

155 void
156 OpcGetIntegerWidth (
157 ACPI_PARSE_OBJECT *Op)
158 {
159 ACPI_PARSE_OBJECT *Child;

162 if (!Op)
163 {
164 return;
165 }

167 if (Gbl_RevisionOverride)
168 {
169 AcpiUtSetIntegerWidth (Gbl_RevisionOverride);
170 }
171 else
172 {
173 Child = Op->Asl.Child;
174 Child = Child->Asl.Next;
175 Child = Child->Asl.Next;

177 /* Use the revision to set the integer width */

179 AcpiUtSetIntegerWidth ((UINT8) Child->Asl.Value.Integer);
180 }
181 }

184 /***
185 *
186 * FUNCTION: OpcSetOptimalIntegerSize
187 *
188 * PARAMETERS: Op - A parse tree node
189 *
190 * RETURN: Integer width, in bytes. Also sets the node AML opcode to the
191 * optimal integer AML prefix opcode.
192 *

new/usr/src/common/acpica/compiler/aslopcodes.c 4

193 * DESCRIPTION: Determine the optimal AML encoding of an integer. All leading
194 * zeros can be truncated to squeeze the integer into the
195 * minimal number of AML bytes.
196 *
197 **/

199 UINT32
200 OpcSetOptimalIntegerSize (
201 ACPI_PARSE_OBJECT *Op)
202 {

204 #if 0
205 /*
206 * TBD: - we don’t want to optimize integers in the block header, but the
207 * code below does not work correctly.
208 */
209 if (Op->Asl.Parent &&
210 Op->Asl.Parent->Asl.Parent &&
211 (Op->Asl.Parent->Asl.Parent->Asl.ParseOpcode == PARSEOP_DEFINITIONBLOCK))
212 {
213 return (0);
214 }
215 #endif

217 /*
218 * Check for the special AML integers first - Zero, One, Ones.
219 * These are single-byte opcodes that are the smallest possible
220 * representation of an integer.
221 *
222 * This optimization is optional.
223 */
224 if (Gbl_IntegerOptimizationFlag)
225 {
226 switch (Op->Asl.Value.Integer)
227 {
228 case 0:

230 Op->Asl.AmlOpcode = AML_ZERO_OP;
231 AslError (ASL_OPTIMIZATION, ASL_MSG_INTEGER_OPTIMIZATION,
232 Op, "Zero");
233 return (1);

235 case 1:

237 Op->Asl.AmlOpcode = AML_ONE_OP;
238 AslError (ASL_OPTIMIZATION, ASL_MSG_INTEGER_OPTIMIZATION,
239 Op, "One");
240 return (1);

242 case ACPI_UINT32_MAX:

244 /* Check for table integer width (32 or 64) */

246 if (AcpiGbl_IntegerByteWidth == 4)
247 {
248 Op->Asl.AmlOpcode = AML_ONES_OP;
249 AslError (ASL_OPTIMIZATION, ASL_MSG_INTEGER_OPTIMIZATION,
250 Op, "Ones");
251 return (1);
252 }
253 break;

255 case ACPI_UINT64_MAX:

257 /* Check for table integer width (32 or 64) */

new/usr/src/common/acpica/compiler/aslopcodes.c 5

259 if (AcpiGbl_IntegerByteWidth == 8)
260 {
261 Op->Asl.AmlOpcode = AML_ONES_OP;
262 AslError (ASL_OPTIMIZATION, ASL_MSG_INTEGER_OPTIMIZATION,
263 Op, "Ones");
264 return (1);
265 }
266 break;

268 default:

270 break;
271 }
272 }

274 /* Find the best fit using the various AML integer prefixes */

276 if (Op->Asl.Value.Integer <= ACPI_UINT8_MAX)
277 {
278 Op->Asl.AmlOpcode = AML_BYTE_OP;
279 return (1);
280 }
281 if (Op->Asl.Value.Integer <= ACPI_UINT16_MAX)
282 {
283 Op->Asl.AmlOpcode = AML_WORD_OP;
284 return (2);
285 }
286 if (Op->Asl.Value.Integer <= ACPI_UINT32_MAX)
287 {
288 Op->Asl.AmlOpcode = AML_DWORD_OP;
289 return (4);
290 }
291 else
292 {
293 if (AcpiGbl_IntegerByteWidth == 4)
294 {
295 AslError (ASL_WARNING, ASL_MSG_INTEGER_LENGTH,
296 Op, NULL);

298 if (!Gbl_IgnoreErrors)
299 {
300 /* Truncate the integer to 32-bit */
301 Op->Asl.AmlOpcode = AML_DWORD_OP;
302 return (4);
303 }
304 }

306 Op->Asl.AmlOpcode = AML_QWORD_OP;
307 return (8);
308 }
309 }

312 /***
313 *
314 * FUNCTION: OpcDoAccessAs
315 *
316 * PARAMETERS: Op - Parse node
317 *
318 * RETURN: None
319 *
320 * DESCRIPTION: Implement the ACCESS_AS ASL keyword.
321 *
322 **/

324 static void

new/usr/src/common/acpica/compiler/aslopcodes.c 6

325 OpcDoAccessAs (
326 ACPI_PARSE_OBJECT *Op)
327 {
328 ACPI_PARSE_OBJECT *TypeOp;
329 ACPI_PARSE_OBJECT *AttribOp;
330 ACPI_PARSE_OBJECT *LengthOp;
331 UINT8 Attribute;

334 Op->Asl.AmlOpcodeLength = 1;
335 TypeOp = Op->Asl.Child;

337 /* First child is the access type */

339 TypeOp->Asl.AmlOpcode = AML_RAW_DATA_BYTE;
340 TypeOp->Asl.ParseOpcode = PARSEOP_RAW_DATA;

342 /* Second child is the optional access attribute */

344 AttribOp = TypeOp->Asl.Next;
345 if (AttribOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG)
346 {
347 AttribOp->Asl.Value.Integer = 0;
348 }
349 AttribOp->Asl.AmlOpcode = AML_RAW_DATA_BYTE;
350 AttribOp->Asl.ParseOpcode = PARSEOP_RAW_DATA;

352 /* Only a few AccessAttributes support AccessLength */

354 Attribute = (UINT8) AttribOp->Asl.Value.Integer;
355 if ((Attribute != AML_FIELD_ATTRIB_MULTIBYTE) &&
356 (Attribute != AML_FIELD_ATTRIB_RAW_BYTES) &&
357 (Attribute != AML_FIELD_ATTRIB_RAW_PROCESS))
358 {
359 return;
360 }

362 Op->Asl.AmlOpcode = AML_FIELD_EXT_ACCESS_OP;

364 /*
365 * Child of Attributes is the AccessLength (required for Multibyte,
366 * RawBytes, RawProcess.)
367 */
368 LengthOp = AttribOp->Asl.Child;
369 if (!LengthOp)
370 {
371 return;
372 }

374 /* TBD: probably can remove */

376 if (LengthOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG)
377 {
378 LengthOp->Asl.Value.Integer = 16;
379 }

381 LengthOp->Asl.AmlOpcode = AML_RAW_DATA_BYTE;
382 LengthOp->Asl.ParseOpcode = PARSEOP_RAW_DATA;
383 }

386 /***
387 *
388 * FUNCTION: OpcDoConnection
389 *
390 * PARAMETERS: Op - Parse node

new/usr/src/common/acpica/compiler/aslopcodes.c 7

391 *
392 * RETURN: None
393 *
394 * DESCRIPTION: Implement the Connection ASL keyword.
395 *
396 **/

398 static void
399 OpcDoConnection (
400 ACPI_PARSE_OBJECT *Op)
401 {
402 ASL_RESOURCE_NODE *Rnode;
403 ACPI_PARSE_OBJECT *BufferOp;
404 ACPI_PARSE_OBJECT *BufferLengthOp;
405 ACPI_PARSE_OBJECT *BufferDataOp;
406 UINT8 State;

409 Op->Asl.AmlOpcodeLength = 1;

411 if (Op->Asl.Child->Asl.AmlOpcode == AML_INT_NAMEPATH_OP)
412 {
413 return;
414 }

416 BufferOp = Op->Asl.Child;
417 BufferLengthOp = BufferOp->Asl.Child;
418 BufferDataOp = BufferLengthOp->Asl.Next;

420 State = ACPI_RSTATE_NORMAL;
421 Rnode = RsDoOneResourceDescriptor (BufferDataOp->Asl.Next, 0, &State);
422 if (!Rnode)
423 {
424 return; /* error */
425 }

427 /*
428 * Transform the nodes into the following
429 *
430 * Op -> AML_BUFFER_OP
431 * First Child -> BufferLength
432 * Second Child -> Descriptor Buffer (raw byte data)
433 */
434 BufferOp->Asl.ParseOpcode = PARSEOP_BUFFER;
435 BufferOp->Asl.AmlOpcode = AML_BUFFER_OP;
436 BufferOp->Asl.CompileFlags = NODE_AML_PACKAGE | NODE_IS_RESOURCE_DESC
437 UtSetParseOpName (BufferOp);

439 BufferLengthOp->Asl.ParseOpcode = PARSEOP_INTEGER;
440 BufferLengthOp->Asl.Value.Integer = Rnode->BufferLength;
441 (void) OpcSetOptimalIntegerSize (BufferLengthOp);
442 UtSetParseOpName (BufferLengthOp);

444 BufferDataOp->Asl.ParseOpcode = PARSEOP_RAW_DATA;
445 BufferDataOp->Asl.AmlOpcode = AML_RAW_DATA_CHAIN;
446 BufferDataOp->Asl.AmlOpcodeLength = 0;
447 BufferDataOp->Asl.AmlLength = Rnode->BufferLength;
448 BufferDataOp->Asl.Value.Buffer = (UINT8 *) Rnode;
449 UtSetParseOpName (BufferDataOp);
450 }

453 /***
454 *
455 * FUNCTION: OpcDoUnicode
456 *

new/usr/src/common/acpica/compiler/aslopcodes.c 8

457 * PARAMETERS: Op - Parse node
458 *
459 * RETURN: None
460 *
461 * DESCRIPTION: Implement the UNICODE ASL "macro". Convert the input string
462 * to a unicode buffer. There is no Unicode AML opcode.
463 *
464 * Note: The Unicode string is 16 bits per character, no leading signature,
465 * with a 16-bit terminating NULL.
466 *
467 **/

469 static void
470 OpcDoUnicode (
471 ACPI_PARSE_OBJECT *Op)
472 {
473 ACPI_PARSE_OBJECT *InitializerOp;
474 UINT32 Length;
475 UINT32 Count;
476 UINT32 i;
477 UINT8 *AsciiString;
478 UINT16 *UnicodeString;
479 ACPI_PARSE_OBJECT *BufferLengthOp;

482 /* Change op into a buffer object */

484 Op->Asl.CompileFlags &= ~NODE_COMPILE_TIME_CONST;
485 Op->Asl.ParseOpcode = PARSEOP_BUFFER;
486 UtSetParseOpName (Op);

488 /* Buffer Length is first, followed by the string */

490 BufferLengthOp = Op->Asl.Child;
491 InitializerOp = BufferLengthOp->Asl.Next;

493 AsciiString = (UINT8 *) InitializerOp->Asl.Value.String;

495 /* Create a new buffer for the Unicode string */

497 Count = strlen (InitializerOp->Asl.Value.String) + 1;
498 Length = Count * sizeof (UINT16);
499 UnicodeString = UtLocalCalloc (Length);

501 /* Convert to Unicode string (including null terminator) */

503 for (i = 0; i < Count; i++)
504 {
505 UnicodeString[i] = (UINT16) AsciiString[i];
506 }

508 /*
509 * Just set the buffer size node to be the buffer length, regardless
510 * of whether it was previously an integer or a default_arg placeholder
511 */
512 BufferLengthOp->Asl.ParseOpcode = PARSEOP_INTEGER;
513 BufferLengthOp->Asl.AmlOpcode = AML_DWORD_OP;
514 BufferLengthOp->Asl.Value.Integer = Length;
515 UtSetParseOpName (BufferLengthOp);

517 (void) OpcSetOptimalIntegerSize (BufferLengthOp);

519 /* The Unicode string is a raw data buffer */

521 InitializerOp->Asl.Value.Buffer = (UINT8 *) UnicodeString;
522 InitializerOp->Asl.AmlOpcode = AML_RAW_DATA_BUFFER;

new/usr/src/common/acpica/compiler/aslopcodes.c 9

523 InitializerOp->Asl.AmlLength = Length;
524 InitializerOp->Asl.ParseOpcode = PARSEOP_RAW_DATA;
525 InitializerOp->Asl.Child = NULL;
526 UtSetParseOpName (InitializerOp);
527 }

530 /***
531 *
532 * FUNCTION: OpcDoEisaId
533 *
534 * PARAMETERS: Op - Parse node
535 *
536 * RETURN: None
537 *
538 * DESCRIPTION: Convert a string EISA ID to numeric representation. See the
539 * Pnp BIOS Specification for details. Here is an excerpt:
540 *
541 * A seven character ASCII representation of the product
542 * identifier compressed into a 32-bit identifier. The seven
543 * character ID consists of a three character manufacturer code,
544 * a three character hexadecimal product identifier, and a one
545 * character hexadecimal revision number. The manufacturer code
546 * is a 3 uppercase character code that is compressed into 3 5-bit
547 * values as follows:
548 * 1) Find hex ASCII value for each letter
549 * 2) Subtract 40h from each ASCII value
550 * 3) Retain 5 least significant bits for each letter by
551 * discarding upper 3 bits because they are always 0.
552 * 4) Compressed code = concatenate 0 and the 3 5-bit values
553 *
554 * The format of the compressed product identifier is as follows:
555 * Byte 0: Bit 7 - Reserved (0)
556 * Bits 6-2: - 1st character of compressed mfg code
557 * Bits 1-0 - Upper 2 bits of 2nd character of mfg code
558 * Byte 1: Bits 7-5 - Lower 3 bits of 2nd character of mfg code
559 * Bits 4-0 - 3rd character of mfg code
560 * Byte 2: Bits 7-4 - 1st hex digit of product number
561 * Bits 3-0 - 2nd hex digit of product number
562 * Byte 3: Bits 7-4 - 3st hex digit of product number
563 * Bits 3-0 - Hex digit of the revision number
564 *
565 **/

567 static void
568 OpcDoEisaId (
569 ACPI_PARSE_OBJECT *Op)
570 {
571 UINT32 EisaId = 0;
572 UINT32 BigEndianId;
573 char *InString;
574 ACPI_STATUS Status = AE_OK;
575 UINT32 i;

578 InString = (char *) Op->Asl.Value.String;

580 /*
581 * The EISAID string must be exactly 7 characters and of the form
582 * "UUUXXXX" -- 3 uppercase letters and 4 hex digits (e.g., "PNP0001")
583 */
584 if (ACPI_STRLEN (InString) != 7)
585 {
586 Status = AE_BAD_PARAMETER;
587 }
588 else

new/usr/src/common/acpica/compiler/aslopcodes.c 10

589 {
590 /* Check all 7 characters for correct format */

592 for (i = 0; i < 7; i++)
593 {
594 /* First 3 characters must be uppercase letters */

596 if (i < 3)
597 {
598 if (!isupper ((int) InString[i]))
599 {
600 Status = AE_BAD_PARAMETER;
601 }
602 }

604 /* Last 4 characters must be hex digits */

606 else if (!isxdigit ((int) InString[i]))
607 {
608 Status = AE_BAD_PARAMETER;
609 }
610 }
611 }

613 if (ACPI_FAILURE (Status))
614 {
615 AslError (ASL_ERROR, ASL_MSG_INVALID_EISAID, Op, Op->Asl.Value.String);
616 }
617 else
618 {
619 /* Create ID big-endian first (bits are contiguous) */

621 BigEndianId =
622 (UINT32) ((UINT8) (InString[0] - 0x40)) << 26 |
623 (UINT32) ((UINT8) (InString[1] - 0x40)) << 21 |
624 (UINT32) ((UINT8) (InString[2] - 0x40)) << 16 |

626 (UtHexCharToValue (InString[3])) << 12 |
627 (UtHexCharToValue (InString[4])) << 8 |
628 (UtHexCharToValue (InString[5])) << 4 |
629 UtHexCharToValue (InString[6]);

631 /* Swap to little-endian to get final ID (see function header) */

633 EisaId = AcpiUtDwordByteSwap (BigEndianId);
634 }

636 /*
637 * Morph the Op into an integer, regardless of whether there
638 * was an error in the EISAID string
639 */
640 Op->Asl.Value.Integer = EisaId;

642 Op->Asl.CompileFlags &= ~NODE_COMPILE_TIME_CONST;
643 Op->Asl.ParseOpcode = PARSEOP_INTEGER;
644 (void) OpcSetOptimalIntegerSize (Op);

646 /* Op is now an integer */

648 UtSetParseOpName (Op);
649 }

652 /***
653 *
654 * FUNCTION: OpcDoUuId

new/usr/src/common/acpica/compiler/aslopcodes.c 11

655 *
656 * PARAMETERS: Op - Parse node
657 *
658 * RETURN: None
659 *
660 * DESCRIPTION: Convert UUID string to 16-byte buffer
661 *
662 **/

664 static void
665 OpcDoUuId (
666 ACPI_PARSE_OBJECT *Op)
667 {
668 char *InString;
669 char *Buffer;
670 ACPI_STATUS Status = AE_OK;
671 ACPI_PARSE_OBJECT *NewOp;

674 InString = (char *) Op->Asl.Value.String;
675 Buffer = UtLocalCalloc (16);

677 Status = AuValidateUuid (InString);
678 if (ACPI_FAILURE (Status))
679 {
680 AslError (ASL_ERROR, ASL_MSG_INVALID_UUID, Op, Op->Asl.Value.String);
681 }
682 else
683 {
684 (void) AuConvertStringToUuid (InString, Buffer);
685 }

687 /* Change Op to a Buffer */

689 Op->Asl.ParseOpcode = PARSEOP_BUFFER;
690 Op->Common.AmlOpcode = AML_BUFFER_OP;

692 /* Disable further optimization */

694 Op->Asl.CompileFlags &= ~NODE_COMPILE_TIME_CONST;
695 UtSetParseOpName (Op);

697 /* Child node is the buffer length */

699 NewOp = TrAllocateNode (PARSEOP_INTEGER);

701 NewOp->Asl.AmlOpcode = AML_BYTE_OP;
702 NewOp->Asl.Value.Integer = 16;
703 NewOp->Asl.Parent = Op;

705 Op->Asl.Child = NewOp;
706 Op = NewOp;

708 /* Peer to the child is the raw buffer data */

710 NewOp = TrAllocateNode (PARSEOP_RAW_DATA);
711 NewOp->Asl.AmlOpcode = AML_RAW_DATA_BUFFER;
712 NewOp->Asl.AmlLength = 16;
713 NewOp->Asl.Value.String = (char *) Buffer;
714 NewOp->Asl.Parent = Op->Asl.Parent;

716 Op->Asl.Next = NewOp;
717 }

720 /***

new/usr/src/common/acpica/compiler/aslopcodes.c 12

721 *
722 * FUNCTION: OpcGenerateAmlOpcode
723 *
724 * PARAMETERS: Op - Parse node
725 *
726 * RETURN: None
727 *
728 * DESCRIPTION: Generate the AML opcode associated with the node and its
729 * parse (lex/flex) keyword opcode. Essentially implements
730 * a mapping between the parse opcodes and the actual AML opcodes.
731 *
732 **/

734 void
735 OpcGenerateAmlOpcode (
736 ACPI_PARSE_OBJECT *Op)
737 {

739 UINT16 Index;

742 Index = (UINT16) (Op->Asl.ParseOpcode - ASL_PARSE_OPCODE_BASE);

744 Op->Asl.AmlOpcode = AslKeywordMapping[Index].AmlOpcode;
745 Op->Asl.AcpiBtype = AslKeywordMapping[Index].AcpiBtype;
746 Op->Asl.CompileFlags |= AslKeywordMapping[Index].Flags;

748 if (!Op->Asl.Value.Integer)
749 {
750 Op->Asl.Value.Integer = AslKeywordMapping[Index].Value;
751 }

753 /* Special handling for some opcodes */

755 switch (Op->Asl.ParseOpcode)
756 {
757 case PARSEOP_INTEGER:
758 /*
759 * Set the opcode based on the size of the integer
760 */
761 (void) OpcSetOptimalIntegerSize (Op);
762 break;

764 case PARSEOP_OFFSET:

766 Op->Asl.AmlOpcodeLength = 1;
767 break;

769 case PARSEOP_ACCESSAS:

771 OpcDoAccessAs (Op);
772 break;

774 case PARSEOP_CONNECTION:

776 OpcDoConnection (Op);
777 break;

779 case PARSEOP_EISAID:

781 OpcDoEisaId (Op);
782 break;

784 case PARSEOP_TOUUID:

786 OpcDoUuId (Op);

new/usr/src/common/acpica/compiler/aslopcodes.c 13

787 break;

789 case PARSEOP_UNICODE:

791 OpcDoUnicode (Op);
792 break;

794 case PARSEOP_INCLUDE:

796 Op->Asl.Child->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
797 Gbl_HasIncludeFiles = TRUE;
798 break;

800 case PARSEOP_EXTERNAL:

802 Op->Asl.Child->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
803 Op->Asl.Child->Asl.Next->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
804 break;

806 case PARSEOP_TIMER:

808 if (AcpiGbl_IntegerBitWidth == 32)
809 {
810 AslError (ASL_REMARK, ASL_MSG_TRUNCATION, Op, NULL);
811 }
812 break;

814 default:

816 /* Nothing to do for other opcodes */

818 break;
819 }

821 return;
822 }

new/usr/src/common/acpica/compiler/asloperands.c 1

**
 31757 Thu Dec 26 13:48:31 2013
new/usr/src/common/acpica/compiler/asloperands.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: asloperands - AML operand processing
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"
47 #include "amlcode.h"

49 #define _COMPONENT ACPI_COMPILER
50 ACPI_MODULE_NAME ("asloperands")

52 /* Local prototypes */

54 static void
55 OpnDoField (
56 ACPI_PARSE_OBJECT *Op);

58 static void
59 OpnDoBankField (

new/usr/src/common/acpica/compiler/asloperands.c 2

60 ACPI_PARSE_OBJECT *Op);

62 static void
63 OpnDoBuffer (
64 ACPI_PARSE_OBJECT *Op);

66 static void
67 OpnDoDefinitionBlock (
68 ACPI_PARSE_OBJECT *Op);

70 static void
71 OpnDoFieldCommon (
72 ACPI_PARSE_OBJECT *FieldOp,
73 ACPI_PARSE_OBJECT *Op);

75 static void
76 OpnDoIndexField (
77 ACPI_PARSE_OBJECT *Op);

79 static void
80 OpnDoLoadTable (
81 ACPI_PARSE_OBJECT *Op);

83 static void
84 OpnDoMethod (
85 ACPI_PARSE_OBJECT *Op);

87 static void
88 OpnDoMutex (
89 ACPI_PARSE_OBJECT *Op);

91 static void
92 OpnDoRegion (
93 ACPI_PARSE_OBJECT *Op);

95 static void
96 OpnAttachNameToNode (
97 ACPI_PARSE_OBJECT *Op);

100 /***
101 *
102 * FUNCTION: OpnDoMutex
103 *
104 * PARAMETERS: Op - The parent parse node
105 *
106 * RETURN: None
107 *
108 * DESCRIPTION: Construct the operands for the MUTEX ASL keyword.
109 *
110 **/

112 static void
113 OpnDoMutex (
114 ACPI_PARSE_OBJECT *Op)
115 {
116 ACPI_PARSE_OBJECT *Next;

119 Next = Op->Asl.Child;
120 Next = Next->Asl.Next;

122 if (Next->Asl.Value.Integer > 15)
123 {
124 AslError (ASL_ERROR, ASL_MSG_SYNC_LEVEL, Next, NULL);
125 }

new/usr/src/common/acpica/compiler/asloperands.c 3

126 return;
127 }

130 /***
131 *
132 * FUNCTION: OpnDoMethod
133 *
134 * PARAMETERS: Op - The parent parse node
135 *
136 * RETURN: None
137 *
138 * DESCRIPTION: Construct the operands for the METHOD ASL keyword.
139 *
140 **/

142 static void
143 OpnDoMethod (
144 ACPI_PARSE_OBJECT *Op)
145 {
146 ACPI_PARSE_OBJECT *Next;

148 /* Optional arguments for this opcode with defaults */

150 UINT8 NumArgs = 0;
151 UINT8 Serialized = 0;
152 UINT8 Concurrency = 0;
153 UINT8 MethodFlags;

156 /* Opcode and package length first */
157 /* Method name */

159 Next = Op->Asl.Child;

161 /* Num args */

163 Next = Next->Asl.Next;
164 if (Next->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
165 {
166 NumArgs = (UINT8) Next->Asl.Value.Integer;
167 Next->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
168 }

170 /* Serialized Flag */

172 Next = Next->Asl.Next;
173 if (Next->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
174 {
175 Serialized = (UINT8) Next->Asl.Value.Integer;
176 Next->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
177 }

179 /* Concurrency value (valid values are 0-15) */

181 Next = Next->Asl.Next;
182 if (Next->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
183 {
184 /* This is a ByteConstExpr, so eval the constant now */

186 OpcAmlConstantWalk (Next, 0, NULL);

188 if (Next->Asl.Value.Integer > 15)
189 {
190 AslError (ASL_ERROR, ASL_MSG_SYNC_LEVEL, Next, NULL);
191 }

new/usr/src/common/acpica/compiler/asloperands.c 4

192 Concurrency = (UINT8) Next->Asl.Value.Integer;
193 }

195 /* Put the bits in their proper places */

197 MethodFlags = (UINT8) ((NumArgs & 0x7) |
198 ((Serialized & 0x1) << 3) |
199 ((Concurrency & 0xF) << 4));

201 /* Use the last node for the combined flags byte */

203 Next->Asl.Value.Integer = MethodFlags;
204 Next->Asl.AmlOpcode = AML_RAW_DATA_BYTE;
205 Next->Asl.AmlLength = 1;
206 Next->Asl.ParseOpcode = PARSEOP_RAW_DATA;

208 /* Save the arg count in the first node */

210 Op->Asl.Extra = NumArgs;
211 }

214 /***
215 *
216 * FUNCTION: OpnDoFieldCommon
217 *
218 * PARAMETERS: FieldOp - Node for an ASL field
219 * Op - The parent parse node
220 *
221 * RETURN: None
222 *
223 * DESCRIPTION: Construct the AML operands for the various field keywords,
224 * FIELD, BANKFIELD, INDEXFIELD
225 *
226 **/

228 static void
229 OpnDoFieldCommon (
230 ACPI_PARSE_OBJECT *FieldOp,
231 ACPI_PARSE_OBJECT *Op)
232 {
233 ACPI_PARSE_OBJECT *Next;
234 ACPI_PARSE_OBJECT *PkgLengthNode;
235 UINT32 CurrentBitOffset;
236 UINT32 NewBitOffset;
237 UINT8 AccessType;
238 UINT8 LockRule;
239 UINT8 UpdateRule;
240 UINT8 FieldFlags;
241 UINT32 MinimumLength;

244 /* AccessType -- not optional, so no need to check for DEFAULT_ARG */

246 AccessType = (UINT8) Op->Asl.Value.Integer;
247 Op->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;

249 /* Set the access type in the parent (field) node for use later */

251 FieldOp->Asl.Value.Integer = AccessType;

253 /* LockRule -- not optional, so no need to check for DEFAULT_ARG */

255 Next = Op->Asl.Next;
256 LockRule = (UINT8) Next->Asl.Value.Integer;
257 Next->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;

new/usr/src/common/acpica/compiler/asloperands.c 5

259 /* UpdateRule -- not optional, so no need to check for DEFAULT_ARG */

261 Next = Next->Asl.Next;
262 UpdateRule = (UINT8) Next->Asl.Value.Integer;

264 /*
265 * Generate the flags byte. The various fields are already
266 * in the right bit position via translation from the
267 * keywords by the parser.
268 */
269 FieldFlags = (UINT8) (AccessType | LockRule | UpdateRule);

271 /* Use the previous node to be the FieldFlags node */

273 /* Set the node to RAW_DATA */

275 Next->Asl.Value.Integer = FieldFlags;
276 Next->Asl.AmlOpcode = AML_RAW_DATA_BYTE;
277 Next->Asl.AmlLength = 1;
278 Next->Asl.ParseOpcode = PARSEOP_RAW_DATA;

280 /* Process the FieldUnitList */

282 Next = Next->Asl.Next;
283 CurrentBitOffset = 0;

285 while (Next)
286 {
287 /* Save the offset of this field unit */

289 Next->Asl.ExtraValue = CurrentBitOffset;

291 switch (Next->Asl.ParseOpcode)
292 {
293 case PARSEOP_ACCESSAS:

295 PkgLengthNode = Next->Asl.Child;
296 AccessType = (UINT8) PkgLengthNode->Asl.Value.Integer;

298 /* Nothing additional to do */
299 break;

301 case PARSEOP_OFFSET:

303 /* New offset into the field */

305 PkgLengthNode = Next->Asl.Child;
306 NewBitOffset = ((UINT32) PkgLengthNode->Asl.Value.Integer) * 8;

308 /*
309 * Examine the specified offset in relation to the
310 * current offset counter.
311 */
312 if (NewBitOffset < CurrentBitOffset)
313 {
314 /*
315 * Not allowed to specify a backwards offset!
316 * Issue error and ignore this node.
317 */
318 AslError (ASL_ERROR, ASL_MSG_BACKWARDS_OFFSET, PkgLengthNode,
319 NULL);
320 Next->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
321 PkgLengthNode->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
322 }
323 else if (NewBitOffset == CurrentBitOffset)

new/usr/src/common/acpica/compiler/asloperands.c 6

324 {
325 /*
326 * Offset is redundant; we don’t need to output an
327 * offset opcode. Just set these nodes to default
328 */
329 Next->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
330 PkgLengthNode->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
331 }
332 else
333 {
334 /*
335 * Valid new offset - set the value to be inserted into the AML
336 * and update the offset counter.
337 */
338 PkgLengthNode->Asl.Value.Integer =
339 NewBitOffset - CurrentBitOffset;
340 CurrentBitOffset = NewBitOffset;
341 }
342 break;

344 case PARSEOP_NAMESEG:
345 case PARSEOP_RESERVED_BYTES:

347 /* Named or reserved field entry */

349 PkgLengthNode = Next->Asl.Child;
350 NewBitOffset = (UINT32) PkgLengthNode->Asl.Value.Integer;
351 CurrentBitOffset += NewBitOffset;

353 /* Save the current AccessAs value for error checking later */

355 switch (AccessType)
356 {
357 case AML_FIELD_ACCESS_ANY:
358 case AML_FIELD_ACCESS_BYTE:
359 case AML_FIELD_ACCESS_BUFFER:
360 default:

362 MinimumLength = 8;
363 break;

365 case AML_FIELD_ACCESS_WORD:
366 MinimumLength = 16;
367 break;

369 case AML_FIELD_ACCESS_DWORD:
370 MinimumLength = 32;
371 break;

373 case AML_FIELD_ACCESS_QWORD:
374 MinimumLength = 64;
375 break;
376 }

378 PkgLengthNode->Asl.ExtraValue = MinimumLength;
379 break;

381 default:

383 /* All supported field opcodes must appear above */

385 break;
386 }

388 /* Move on to next entry in the field list */

new/usr/src/common/acpica/compiler/asloperands.c 7

390 Next = Next->Asl.Next;
391 }
392 }

395 /***
396 *
397 * FUNCTION: OpnDoField
398 *
399 * PARAMETERS: Op - The parent parse node
400 *
401 * RETURN: None
402 *
403 * DESCRIPTION: Construct the AML operands for the FIELD ASL keyword
404 *
405 **/

407 static void
408 OpnDoField (
409 ACPI_PARSE_OBJECT *Op)
410 {
411 ACPI_PARSE_OBJECT *Next;

414 /* Opcode is parent node */
415 /* First child is field name */

417 Next = Op->Asl.Child;

419 /* Second child is the AccessType */

421 OpnDoFieldCommon (Op, Next->Asl.Next);
422 }

425 /***
426 *
427 * FUNCTION: OpnDoIndexField
428 *
429 * PARAMETERS: Op - The parent parse node
430 *
431 * RETURN: None
432 *
433 * DESCRIPTION: Construct the AML operands for the INDEXFIELD ASL keyword
434 *
435 **/

437 static void
438 OpnDoIndexField (
439 ACPI_PARSE_OBJECT *Op)
440 {
441 ACPI_PARSE_OBJECT *Next;

444 /* Opcode is parent node */
445 /* First child is the index name */

447 Next = Op->Asl.Child;

449 /* Second child is the data name */

451 Next = Next->Asl.Next;

453 /* Third child is the AccessType */

455 OpnDoFieldCommon (Op, Next->Asl.Next);

new/usr/src/common/acpica/compiler/asloperands.c 8

456 }

459 /***
460 *
461 * FUNCTION: OpnDoBankField
462 *
463 * PARAMETERS: Op - The parent parse node
464 *
465 * RETURN: None
466 *
467 * DESCRIPTION: Construct the AML operands for the BANKFIELD ASL keyword
468 *
469 **/

471 static void
472 OpnDoBankField (
473 ACPI_PARSE_OBJECT *Op)
474 {
475 ACPI_PARSE_OBJECT *Next;

478 /* Opcode is parent node */
479 /* First child is the region name */

481 Next = Op->Asl.Child;

483 /* Second child is the bank name */

485 Next = Next->Asl.Next;

487 /* Third child is the bank value */

489 Next = Next->Asl.Next;

491 /* Fourth child is the AccessType */

493 OpnDoFieldCommon (Op, Next->Asl.Next);
494 }

497 /***
498 *
499 * FUNCTION: OpnDoRegion
500 *
501 * PARAMETERS: Op - The parent parse node
502 *
503 * RETURN: None
504 *
505 * DESCRIPTION: Tries to get the length of the region. Can only do this at
506 * compile time if the length is a constant.
507 *
508 **/

510 static void
511 OpnDoRegion (
512 ACPI_PARSE_OBJECT *Op)
513 {
514 ACPI_PARSE_OBJECT *Next;

517 /* Opcode is parent node */
518 /* First child is the region name */

520 Next = Op->Asl.Child;

new/usr/src/common/acpica/compiler/asloperands.c 9

522 /* Second child is the space ID*/

524 Next = Next->Asl.Next;

526 /* Third child is the region offset */

528 Next = Next->Asl.Next;

530 /* Fourth child is the region length */

532 Next = Next->Asl.Next;
533 if (Next->Asl.ParseOpcode == PARSEOP_INTEGER)
534 {
535 Op->Asl.Value.Integer = Next->Asl.Value.Integer;
536 }
537 else
538 {
539 Op->Asl.Value.Integer = ACPI_UINT64_MAX;
540 }
541 }

544 /***
545 *
546 * FUNCTION: OpnDoBuffer
547 *
548 * PARAMETERS: Op - The parent parse node
549 *
550 * RETURN: None
551 *
552 * DESCRIPTION: Construct the AML operands for the BUFFER ASL keyword. We
553 * build a single raw byte buffer from the initialization nodes,
554 * each parse node contains a buffer byte.
555 *
556 **/

558 static void
559 OpnDoBuffer (
560 ACPI_PARSE_OBJECT *Op)
561 {
562 ACPI_PARSE_OBJECT *InitializerOp;
563 ACPI_PARSE_OBJECT *BufferLengthOp;

565 /* Optional arguments for this opcode with defaults */

567 UINT32 BufferLength = 0;

570 /* Opcode and package length first */
571 /* Buffer Length is next, followed by the initializer list */

573 BufferLengthOp = Op->Asl.Child;
574 InitializerOp = BufferLengthOp->Asl.Next;

576 /*
577 * If the BufferLength is not an INTEGER or was not specified in the ASL
578 * (DEFAULT_ARG), it is a TermArg that is
579 * evaluated at run-time, and we are therefore finished.
580 */
581 if ((BufferLengthOp->Asl.ParseOpcode != PARSEOP_INTEGER) &&
582 (BufferLengthOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG))
583 {
584 return;
585 }

587 /*

new/usr/src/common/acpica/compiler/asloperands.c 10

588 * We want to count the number of items in the initializer list, because if
589 * it is larger than the buffer length, we will define the buffer size
590 * to be the size of the initializer list (as per the ACPI Specification)
591 */
592 switch (InitializerOp->Asl.ParseOpcode)
593 {
594 case PARSEOP_INTEGER:
595 case PARSEOP_BYTECONST:
596 case PARSEOP_WORDCONST:
597 case PARSEOP_DWORDCONST:

599 /* The peer list contains the byte list (if any...) */

601 while (InitializerOp)
602 {
603 /* For buffers, this is a list of raw bytes */

605 InitializerOp->Asl.AmlOpcode = AML_RAW_DATA_BYTE;
606 InitializerOp->Asl.AmlLength = 1;
607 InitializerOp->Asl.ParseOpcode = PARSEOP_RAW_DATA;

609 BufferLength++;
610 InitializerOp = ASL_GET_PEER_NODE (InitializerOp);
611 }
612 break;

614 case PARSEOP_STRING_LITERAL:

616 /*
617 * Only one initializer, the string. Buffer must be big enough to hold
618 * the string plus the null termination byte
619 */
620 BufferLength = strlen (InitializerOp->Asl.Value.String) + 1;

622 InitializerOp->Asl.AmlOpcode = AML_RAW_DATA_BUFFER;
623 InitializerOp->Asl.AmlLength = BufferLength;
624 InitializerOp->Asl.ParseOpcode = PARSEOP_RAW_DATA;
625 break;

627 case PARSEOP_RAW_DATA:

629 /* Buffer nodes are already initialized (e.g. Unicode operator) */
630 return;

632 case PARSEOP_DEFAULT_ARG:
633 break;

635 default:

637 AslError (ASL_ERROR, ASL_MSG_INVALID_OPERAND, InitializerOp,
638 "Unknown buffer initializer opcode");
639 printf ("Unknown buffer initializer opcode [%s]\n",
640 UtGetOpName (InitializerOp->Asl.ParseOpcode));
641 return;
642 }

644 /* Check if initializer list is longer than the buffer length */

646 if (BufferLengthOp->Asl.Value.Integer > BufferLength)
647 {
648 BufferLength = (UINT32) BufferLengthOp->Asl.Value.Integer;
649 }

651 if (!BufferLength)
652 {
653 /* No length AND no items -- issue notice */

new/usr/src/common/acpica/compiler/asloperands.c 11

655 AslError (ASL_REMARK, ASL_MSG_BUFFER_LENGTH, BufferLengthOp, NULL);

657 /* But go ahead and put the buffer length of zero into the AML */
658 }

660 /*
661 * Just set the buffer size node to be the buffer length, regardless
662 * of whether it was previously an integer or a default_arg placeholder
663 */
664 BufferLengthOp->Asl.ParseOpcode = PARSEOP_INTEGER;
665 BufferLengthOp->Asl.AmlOpcode = AML_DWORD_OP;
666 BufferLengthOp->Asl.Value.Integer = BufferLength;

668 (void) OpcSetOptimalIntegerSize (BufferLengthOp);

670 /* Remaining nodes are handled via the tree walk */
671 }

674 /***
675 *
676 * FUNCTION: OpnDoPackage
677 *
678 * PARAMETERS: Op - The parent parse node
679 *
680 * RETURN: None
681 *
682 * DESCRIPTION: Construct the AML operands for the PACKAGE ASL keyword. NOTE:
683 * can only be called after constants have been folded, to ensure
684 * that the PackageLength operand has been fully reduced.
685 *
686 **/

688 void
689 OpnDoPackage (
690 ACPI_PARSE_OBJECT *Op)
691 {
692 ACPI_PARSE_OBJECT *InitializerOp;
693 ACPI_PARSE_OBJECT *PackageLengthOp;
694 UINT32 PackageLength = 0;

697 /* Opcode and package length first, followed by the initializer list */

699 PackageLengthOp = Op->Asl.Child;
700 InitializerOp = PackageLengthOp->Asl.Next;

702 /* Count the number of items in the initializer list */

704 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
705 {
706 /* The peer list contains the byte list (if any...) */

708 while (InitializerOp)
709 {
710 PackageLength++;
711 InitializerOp = InitializerOp->Asl.Next;
712 }
713 }

715 /* If package length is a constant, compare to the initializer list */

717 if ((PackageLengthOp->Asl.ParseOpcode == PARSEOP_INTEGER) ||
718 (PackageLengthOp->Asl.ParseOpcode == PARSEOP_QWORDCONST))
719 {

new/usr/src/common/acpica/compiler/asloperands.c 12

720 if (PackageLengthOp->Asl.Value.Integer > PackageLength)
721 {
722 /*
723 * Allow package length to be longer than the initializer
724 * list -- but if the length of initializer list is nonzero,
725 * issue a message since this is probably a coding error,
726 * even though technically legal.
727 */
728 if (PackageLength > 0)
729 {
730 AslError (ASL_REMARK, ASL_MSG_LIST_LENGTH_SHORT,
731 PackageLengthOp, NULL);
732 }

734 PackageLength = (UINT32) PackageLengthOp->Asl.Value.Integer;
735 }
736 else if (PackageLengthOp->Asl.Value.Integer < PackageLength)
737 {
738 /*
739 * The package length is smaller than the length of the
740 * initializer list. This is an error as per the ACPI spec.
741 */
742 AslError (ASL_ERROR, ASL_MSG_LIST_LENGTH_LONG,
743 PackageLengthOp, NULL);
744 }
745 }

747 if (PackageLengthOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG)
748 {
749 /*
750 * This is the case if the PackageLength was left empty - Package()
751 * The package length becomes the length of the initializer list
752 */
753 Op->Asl.Child->Asl.ParseOpcode = PARSEOP_INTEGER;
754 Op->Asl.Child->Asl.Value.Integer = PackageLength;

756 /* Set the AML opcode */

758 (void) OpcSetOptimalIntegerSize (Op->Asl.Child);
759 }

761 /* If not a variable-length package, check for a zero package length */

763 if ((PackageLengthOp->Asl.ParseOpcode == PARSEOP_INTEGER) ||
764 (PackageLengthOp->Asl.ParseOpcode == PARSEOP_QWORDCONST) ||
765 (PackageLengthOp->Asl.ParseOpcode == PARSEOP_ZERO) ||
766 (PackageLengthOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG))
767 {
768 if (!PackageLength)
769 {
770 /* No length AND no initializer list -- issue a remark */

772 AslError (ASL_REMARK, ASL_MSG_PACKAGE_LENGTH,
773 PackageLengthOp, NULL);

775 /* But go ahead and put the buffer length of zero into the AML */
776 }
777 }

779 /*
780 * If the PackageLength is a constant <= 255, we can change the
781 * AML opcode from VarPackage to a simple (ACPI 1.0) Package opcode.
782 */
783 if (((Op->Asl.Child->Asl.ParseOpcode == PARSEOP_INTEGER) &&
784 (Op->Asl.Child->Asl.Value.Integer <= 255)) ||
785 (Op->Asl.Child->Asl.ParseOpcode == PARSEOP_ONE) ||

new/usr/src/common/acpica/compiler/asloperands.c 13

786 (Op->Asl.Child->Asl.ParseOpcode == PARSEOP_ONES)||
787 (Op->Asl.Child->Asl.ParseOpcode == PARSEOP_ZERO))
788 {
789 Op->Asl.AmlOpcode = AML_PACKAGE_OP;
790 Op->Asl.ParseOpcode = PARSEOP_PACKAGE;

792 /*
793 * Just set the package size node to be the package length, regardless
794 * of whether it was previously an integer or a default_arg placeholder
795 */
796 PackageLengthOp->Asl.AmlOpcode = AML_RAW_DATA_BYTE;
797 PackageLengthOp->Asl.AmlLength = 1;
798 PackageLengthOp->Asl.ParseOpcode = PARSEOP_RAW_DATA;
799 PackageLengthOp->Asl.Value.Integer = PackageLength;
800 }

802 /* Remaining nodes are handled via the tree walk */
803 }

806 /***
807 *
808 * FUNCTION: OpnDoLoadTable
809 *
810 * PARAMETERS: Op - The parent parse node
811 *
812 * RETURN: None
813 *
814 * DESCRIPTION: Construct the AML operands for the LOADTABLE ASL keyword.
815 *
816 **/

818 static void
819 OpnDoLoadTable (
820 ACPI_PARSE_OBJECT *Op)
821 {
822 ACPI_PARSE_OBJECT *Next;

825 /* Opcode is parent node */
826 /* First child is the table signature */

828 Next = Op->Asl.Child;

830 /* Second child is the OEM ID*/

832 Next = Next->Asl.Next;

834 /* Third child is the OEM table ID */

836 Next = Next->Asl.Next;

838 /* Fourth child is the RootPath string */

840 Next = Next->Asl.Next;
841 if (Next->Asl.ParseOpcode == PARSEOP_ZERO)
842 {
843 Next->Asl.ParseOpcode = PARSEOP_STRING_LITERAL;
844 Next->Asl.Value.String = "\\";
845 Next->Asl.AmlLength = 2;
846 OpcGenerateAmlOpcode (Next);
847 }

849 #ifdef ASL_FUTURE_IMPLEMENTATION

851 /* TBD: NOT IMPLEMENTED */

new/usr/src/common/acpica/compiler/asloperands.c 14

852 /* Fifth child is the [optional] ParameterPathString */
853 /* Sixth child is the [optional] ParameterData */

855 Next = Next->Asl.Next;
856 if (Next->Asl.ParseOpcode == DEFAULT_ARG)
857 {
858 Next->Asl.AmlLength = 1;
859 Next->Asl.ParseOpcode = ZERO;
860 OpcGenerateAmlOpcode (Next);
861 }

864 Next = Next->Asl.Next;
865 if (Next->Asl.ParseOpcode == DEFAULT_ARG)
866 {
867 Next->Asl.AmlLength = 1;
868 Next->Asl.ParseOpcode = ZERO;
869 OpcGenerateAmlOpcode (Next);
870 }
871 #endif
872 }

875 /***
876 *
877 * FUNCTION: OpnDoDefinitionBlock
878 *
879 * PARAMETERS: Op - The parent parse node
880 *
881 * RETURN: None
882 *
883 * DESCRIPTION: Construct the AML operands for the DEFINITIONBLOCK ASL keyword
884 *
885 **/

887 static void
888 OpnDoDefinitionBlock (
889 ACPI_PARSE_OBJECT *Op)
890 {
891 ACPI_PARSE_OBJECT *Child;
892 ACPI_SIZE Length;
893 UINT32 i;
894 char *Filename;

897 /*
898 * These nodes get stuffed into the table header. They are special
899 * cased when the table is written to the output file.
900 *
901 * Mark all of these nodes as non-usable so they won’t get output
902 * as AML opcodes!
903 */

905 /* Get AML filename. Use it if non-null */

907 Child = Op->Asl.Child;
908 if (Child->Asl.Value.Buffer &&
909 *Child->Asl.Value.Buffer &&
910 (Gbl_UseDefaultAmlFilename))
911 {
912 /*
913 * We will use the AML filename that is embedded in the source file
914 * for the output filename.
915 */
916 Filename = ACPI_ALLOCATE (strlen (Gbl_DirectoryPath) +
917 strlen ((char *) Child->Asl.Value.Buffer) + 1);

new/usr/src/common/acpica/compiler/asloperands.c 15

919 /* Prepend the current directory path */

921 strcpy (Filename, Gbl_DirectoryPath);
922 strcat (Filename, (char *) Child->Asl.Value.Buffer);

924 Gbl_OutputFilenamePrefix = Filename;
925 UtConvertBackslashes (Gbl_OutputFilenamePrefix);
926 }
927 Child->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;

929 /* Signature */

931 Child = Child->Asl.Next;
932 Child->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
933 if (Child->Asl.Value.String)
934 {
935 Gbl_TableSignature = Child->Asl.Value.String;
936 if (ACPI_STRLEN (Gbl_TableSignature) != 4)
937 {
938 AslError (ASL_ERROR, ASL_MSG_TABLE_SIGNATURE, Child,
939 "Length not exactly 4");
940 }

942 for (i = 0; i < 4; i++)
943 {
944 if (!isalnum ((int) Gbl_TableSignature[i]))
945 {
946 AslError (ASL_ERROR, ASL_MSG_TABLE_SIGNATURE, Child,
947 "Contains non-alphanumeric characters");
948 }
949 }
950 }

952 /* Revision */

954 Child = Child->Asl.Next;
955 Child->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
956 /*
957 * We used the revision to set the integer width earlier
958 */

960 /* OEMID */

962 Child = Child->Asl.Next;
963 Child->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;

965 /* OEM TableID */

967 Child = Child->Asl.Next;
968 Child->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
969 if (Child->Asl.Value.String)
970 {
971 Length = ACPI_STRLEN (Child->Asl.Value.String);
972 Gbl_TableId = AcpiOsAllocate (Length + 1);
973 ACPI_STRCPY (Gbl_TableId, Child->Asl.Value.String);

975 /*
976 * Convert anything non-alphanumeric to an underscore. This
977 * allows us to use the TableID to generate unique C symbols.
978 */
979 for (i = 0; i < Length; i++)
980 {
981 if (!isalnum ((int) Gbl_TableId[i]))
982 {
983 Gbl_TableId[i] = ’_’;

new/usr/src/common/acpica/compiler/asloperands.c 16

984 }
985 }
986 }

988 /* OEM Revision */

990 Child = Child->Asl.Next;
991 Child->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
992 }

995 /***
996 *
997 * FUNCTION: UtGetArg
998 *
999 * PARAMETERS: Op - Get an argument for this op

1000 * Argn - Nth argument to get
1001 *
1002 * RETURN: The argument (as an Op object). NULL if argument does not exist
1003 *
1004 * DESCRIPTION: Get the specified op’s argument (peer)
1005 *
1006 **/

1008 ACPI_PARSE_OBJECT *
1009 UtGetArg (
1010 ACPI_PARSE_OBJECT *Op,
1011 UINT32 Argn)
1012 {
1013 ACPI_PARSE_OBJECT *Arg = NULL;

1016 /* Get the requested argument object */

1018 Arg = Op->Asl.Child;
1019 while (Arg && Argn)
1020 {
1021 Argn--;
1022 Arg = Arg->Asl.Next;
1023 }

1025 return (Arg);
1026 }

1029 /***
1030 *
1031 * FUNCTION: OpnAttachNameToNode
1032 *
1033 * PARAMETERS: Op - The parent parse node
1034 *
1035 * RETURN: None
1036 *
1037 * DESCRIPTION: For the named ASL/AML operators, get the actual name from the
1038 * argument list and attach it to the parent node so that we
1039 * can get to it quickly later.
1040 *
1041 **/

1043 static void
1044 OpnAttachNameToNode (
1045 ACPI_PARSE_OBJECT *Op)
1046 {
1047 ACPI_PARSE_OBJECT *Child = NULL;

new/usr/src/common/acpica/compiler/asloperands.c 17

1050 if (Op->Asl.ParseOpcode == PARSEOP_EXTERNAL)
1051 {
1052 Child = UtGetArg (Op, 0);
1053 }
1054 else switch (Op->Asl.AmlOpcode)
1055 {
1056 case AML_DATA_REGION_OP:
1057 case AML_DEVICE_OP:
1058 case AML_EVENT_OP:
1059 case AML_METHOD_OP:
1060 case AML_MUTEX_OP:
1061 case AML_REGION_OP:
1062 case AML_POWER_RES_OP:
1063 case AML_PROCESSOR_OP:
1064 case AML_THERMAL_ZONE_OP:
1065 case AML_NAME_OP:
1066 case AML_SCOPE_OP:

1068 Child = UtGetArg (Op, 0);
1069 break;

1071 case AML_ALIAS_OP:

1073 Child = UtGetArg (Op, 1);
1074 break;

1076 case AML_CREATE_BIT_FIELD_OP:
1077 case AML_CREATE_BYTE_FIELD_OP:
1078 case AML_CREATE_WORD_FIELD_OP:
1079 case AML_CREATE_DWORD_FIELD_OP:
1080 case AML_CREATE_QWORD_FIELD_OP:

1082 Child = UtGetArg (Op, 2);
1083 break;

1085 case AML_CREATE_FIELD_OP:

1087 Child = UtGetArg (Op, 3);
1088 break;

1090 case AML_BANK_FIELD_OP:
1091 case AML_INDEX_FIELD_OP:
1092 case AML_FIELD_OP:

1094 return;

1096 default:

1098 return;
1099 }

1101 if (Child)
1102 {
1103 UtAttachNamepathToOwner (Op, Child);
1104 }
1105 }

1108 /***
1109 *
1110 * FUNCTION: OpnGenerateAmlOperands
1111 *
1112 * PARAMETERS: Op - The parent parse node
1113 *
1114 * RETURN: None
1115 *

new/usr/src/common/acpica/compiler/asloperands.c 18

1116 * DESCRIPTION: Prepare nodes to be output as AML data and operands. The more
1117 * complex AML opcodes require processing of the child nodes
1118 * (arguments/operands).
1119 *
1120 **/

1122 void
1123 OpnGenerateAmlOperands (
1124 ACPI_PARSE_OBJECT *Op)
1125 {

1128 if (Op->Asl.AmlOpcode == AML_RAW_DATA_BYTE)
1129 {
1130 return;
1131 }

1133 switch (Op->Asl.ParseOpcode)
1134 {
1135 case PARSEOP_DEFINITIONBLOCK:

1137 OpnDoDefinitionBlock (Op);
1138 break;

1140 case PARSEOP_METHOD:

1142 OpnDoMethod (Op);
1143 break;

1145 case PARSEOP_MUTEX:

1147 OpnDoMutex (Op);
1148 break;

1150 case PARSEOP_FIELD:

1152 OpnDoField (Op);
1153 break;

1155 case PARSEOP_INDEXFIELD:

1157 OpnDoIndexField (Op);
1158 break;

1160 case PARSEOP_BANKFIELD:

1162 OpnDoBankField (Op);
1163 break;

1165 case PARSEOP_BUFFER:

1167 OpnDoBuffer (Op);
1168 break;

1170 case PARSEOP_LOADTABLE:

1172 OpnDoLoadTable (Op);
1173 break;

1175 case PARSEOP_OPERATIONREGION:

1177 OpnDoRegion (Op);
1178 break;

1180 case PARSEOP_RESOURCETEMPLATE:

new/usr/src/common/acpica/compiler/asloperands.c 19

1182 RsDoResourceTemplate (Op);
1183 break;

1185 case PARSEOP_NAMESEG:
1186 case PARSEOP_NAMESTRING:
1187 case PARSEOP_METHODCALL:
1188 case PARSEOP_STRING_LITERAL:

1190 break;

1192 default:

1194 break;
1195 }

1197 /* TBD: move */

1199 OpnAttachNameToNode (Op);
1200 }

new/usr/src/common/acpica/compiler/aslopt.c 1

**
 26783 Thu Dec 26 13:48:31 2013
new/usr/src/common/acpica/compiler/aslopt.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslopt- Compiler optimizations
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"

48 #include "acparser.h"
49 #include "amlcode.h"
50 #include "acnamesp.h"

53 #define _COMPONENT ACPI_COMPILER
54 ACPI_MODULE_NAME ("aslopt")

57 static UINT32 OptTotal = 0;

59 /* Local prototypes */

new/usr/src/common/acpica/compiler/aslopt.c 2

61 static ACPI_STATUS
62 OptSearchToRoot (
63 ACPI_PARSE_OBJECT *Op,
64 ACPI_WALK_STATE *WalkState,
65 ACPI_NAMESPACE_NODE *CurrentNode,
66 ACPI_NAMESPACE_NODE *TargetNode,
67 ACPI_BUFFER *TargetPath,
68 char **NewPath);

70 static ACPI_STATUS
71 OptBuildShortestPath (
72 ACPI_PARSE_OBJECT *Op,
73 ACPI_WALK_STATE *WalkState,
74 ACPI_NAMESPACE_NODE *CurrentNode,
75 ACPI_NAMESPACE_NODE *TargetNode,
76 ACPI_BUFFER *CurrentPath,
77 ACPI_BUFFER *TargetPath,
78 ACPI_SIZE AmlNameStringLength,
79 UINT8 IsDeclaration,
80 char **ReturnNewPath);

82 static ACPI_STATUS
83 OptOptimizeNameDeclaration (
84 ACPI_PARSE_OBJECT *Op,
85 ACPI_WALK_STATE *WalkState,
86 ACPI_NAMESPACE_NODE *CurrentNode,
87 ACPI_NAMESPACE_NODE *TargetNode,
88 char *AmlNameString,
89 char **NewPath);

92 /***
93 *
94 * FUNCTION: OptSearchToRoot
95 *
96 * PARAMETERS: Op - Current parser op
97 * WalkState - Current state
98 * CurrentNode - Where we are in the namespace
99 * TargetNode - Node to which we are referring
100 * TargetPath - External full path to the target node
101 * NewPath - Where the optimized path is returned
102 *
103 * RETURN: Status
104 *
105 * DESCRIPTION: Attempt to optimize a reference to a single 4-character ACPI
106 * name utilizing the search-to-root name resolution algorithm
107 * that is used by AML interpreters.
108 *
109 **/

111 static ACPI_STATUS
112 OptSearchToRoot (
113 ACPI_PARSE_OBJECT *Op,
114 ACPI_WALK_STATE *WalkState,
115 ACPI_NAMESPACE_NODE *CurrentNode,
116 ACPI_NAMESPACE_NODE *TargetNode,
117 ACPI_BUFFER *TargetPath,
118 char **NewPath)
119 {
120 ACPI_NAMESPACE_NODE *Node;
121 ACPI_GENERIC_STATE ScopeInfo;
122 ACPI_STATUS Status;
123 char *Path;

new/usr/src/common/acpica/compiler/aslopt.c 3

126 ACPI_FUNCTION_NAME (OptSearchToRoot);

129 /*
130 * Check if search-to-root can be utilized. Use the last NameSeg of
131 * the NamePath and 1) See if can be found and 2) If found, make
132 * sure that it is the same node that we want. If there is another
133 * name in the search path before the one we want, the nodes will
134 * not match, and we cannot use this optimization.
135 */
136 Path = &(((char *) TargetPath->Pointer)[TargetPath->Length -
137 ACPI_NAME_SIZE]),
138 ScopeInfo.Scope.Node = CurrentNode;

140 /* Lookup the NameSeg using SEARCH_PARENT (search-to-root) */

142 Status = AcpiNsLookup (&ScopeInfo, Path, ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE,
143 ACPI_NS_SEARCH_PARENT | ACPI_NS_DONT_OPEN_SCOPE,
144 WalkState, &(Node));
145 if (ACPI_FAILURE (Status))
146 {
147 return (Status);
148 }

150 /*
151 * We found the name, but we must check to make sure that the node
152 * matches. Otherwise, there is another identical name in the search
153 * path that precludes the use of this optimization.
154 */
155 if (Node != TargetNode)
156 {
157 /*
158 * This means that another object with the same name was found first,
159 * and we cannot use this optimization.
160 */
161 return (AE_NOT_FOUND);
162 }

164 /* Found the node, we can use this optimization */

166 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS,
167 "NAMESEG: %-24s", Path));

169 /* We must allocate a new string for the name (TargetPath gets deleted) */

171 *NewPath = ACPI_ALLOCATE_ZEROED (ACPI_NAME_SIZE + 1);
172 ACPI_STRCPY (*NewPath, Path);

174 if (ACPI_STRNCMP (*NewPath, "_T_", 3))
175 {
176 AslError (ASL_OPTIMIZATION, ASL_MSG_SINGLE_NAME_OPTIMIZATION, Op,
177 *NewPath);
178 }

180 return (AE_OK);
181 }

184 /***
185 *
186 * FUNCTION: OptBuildShortestPath
187 *
188 * PARAMETERS: Op - Current parser op
189 * WalkState - Current state
190 * CurrentNode - Where we are in the namespace
191 * TargetNode - Node to which we are referring

new/usr/src/common/acpica/compiler/aslopt.c 4

192 * CurrentPath - External full path to the current node
193 * TargetPath - External full path to the target node
194 * AmlNameStringLength - Length of the original namepath
195 * IsDeclaration - TRUE for declaration, FALSE for reference
196 * ReturnNewPath - Where the optimized path is returned
197 *
198 * RETURN: Status
199 *
200 * DESCRIPTION: Build an optimal NamePath using carats
201 *
202 **/

204 static ACPI_STATUS
205 OptBuildShortestPath (
206 ACPI_PARSE_OBJECT *Op,
207 ACPI_WALK_STATE *WalkState,
208 ACPI_NAMESPACE_NODE *CurrentNode,
209 ACPI_NAMESPACE_NODE *TargetNode,
210 ACPI_BUFFER *CurrentPath,
211 ACPI_BUFFER *TargetPath,
212 ACPI_SIZE AmlNameStringLength,
213 UINT8 IsDeclaration,
214 char **ReturnNewPath)
215 {
216 UINT32 NumCommonSegments;
217 UINT32 MaxCommonSegments;
218 UINT32 Index;
219 UINT32 NumCarats;
220 UINT32 i;
221 char *NewPath;
222 char *NewPathExternal;
223 ACPI_NAMESPACE_NODE *Node;
224 ACPI_GENERIC_STATE ScopeInfo;
225 ACPI_STATUS Status;
226 BOOLEAN SubPath = FALSE;

229 ACPI_FUNCTION_NAME (OptBuildShortestPath);

232 ScopeInfo.Scope.Node = CurrentNode;

234 /*
235 * Determine the maximum number of NameSegs that the Target and Current path
236 * can possibly have in common. (To optimize, we have to have at least 1)
237 *
238 * Note: The external NamePath string lengths are always a multiple of 5
239 * (ACPI_NAME_SIZE + separator)
240 */
241 MaxCommonSegments = TargetPath->Length / ACPI_PATH_SEGMENT_LENGTH;
242 if (CurrentPath->Length < TargetPath->Length)
243 {
244 MaxCommonSegments = CurrentPath->Length / ACPI_PATH_SEGMENT_LENGTH;
245 }

247 /*
248 * Determine how many NameSegs the two paths have in common.
249 * (Starting from the root)
250 */
251 for (NumCommonSegments = 0;
252 NumCommonSegments < MaxCommonSegments;
253 NumCommonSegments++)
254 {
255 /* Compare two single NameSegs */

257 if (!ACPI_COMPARE_NAME (

new/usr/src/common/acpica/compiler/aslopt.c 5

258 &((char *) TargetPath->Pointer)[
259 (NumCommonSegments * ACPI_PATH_SEGMENT_LENGTH) + 1],
260 &((char *) CurrentPath->Pointer)[
261 (NumCommonSegments * ACPI_PATH_SEGMENT_LENGTH) + 1]))
262 {
263 /* Mismatch */

265 break;
266 }
267 }

269 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " COMMON: %u",
270 NumCommonSegments));

272 /* There must be at least 1 common NameSeg in order to optimize */

274 if (NumCommonSegments == 0)
275 {
276 return (AE_NOT_FOUND);
277 }

279 if (NumCommonSegments == MaxCommonSegments)
280 {
281 if (CurrentPath->Length == TargetPath->Length)
282 {
283 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " SAME PATH"));
284 return (AE_NOT_FOUND);
285 }
286 else
287 {
288 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " SUBPATH"));
289 SubPath = TRUE;
290 }
291 }

293 /* Determine how many prefix Carats are required */

295 NumCarats = (CurrentPath->Length / ACPI_PATH_SEGMENT_LENGTH) -
296 NumCommonSegments;

298 /*
299 * Construct a new target string
300 */
301 NewPathExternal = ACPI_ALLOCATE_ZEROED (
302 TargetPath->Length + NumCarats + 1);

304 /* Insert the Carats into the Target string */

306 for (i = 0; i < NumCarats; i++)
307 {
308 NewPathExternal[i] = AML_PARENT_PREFIX;
309 }

311 /*
312 * Copy only the necessary (optimal) segments from the original
313 * target string
314 */
315 Index = (NumCommonSegments * ACPI_PATH_SEGMENT_LENGTH) + 1;

317 /* Special handling for exact subpath in a name declaration */

319 if (IsDeclaration && SubPath && (CurrentPath->Length > TargetPath->Length))
320 {
321 /*
322 * The current path is longer than the target, and the target is a
323 * subpath of the current path. We must include one more NameSeg of

new/usr/src/common/acpica/compiler/aslopt.c 6

324 * the target path
325 */
326 Index -= ACPI_PATH_SEGMENT_LENGTH;

328 /* Special handling for Scope() operator */

330 if (Op->Asl.AmlOpcode == AML_SCOPE_OP)
331 {
332 NewPathExternal[i] = AML_PARENT_PREFIX;
333 i++;
334 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "(EXTRA ^)"));
335 }
336 }

338 /* Make sure we haven’t gone off the end of the target path */

340 if (Index > TargetPath->Length)
341 {
342 Index = TargetPath->Length;
343 }

345 ACPI_STRCPY (&NewPathExternal[i], &((char *) TargetPath->Pointer)[Index]);
346 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " %-24s", NewPathExternal));

348 /*
349 * Internalize the new target string and check it against the original
350 * string to make sure that this is in fact an optimization. If the
351 * original string is already optimal, there is no point in continuing.
352 */
353 Status = AcpiNsInternalizeName (NewPathExternal, &NewPath);
354 if (ACPI_FAILURE (Status))
355 {
356 AslCoreSubsystemError (Op, Status, "Internalizing new NamePath",
357 ASL_NO_ABORT);
358 ACPI_FREE (NewPathExternal);
359 return (Status);
360 }

362 if (ACPI_STRLEN (NewPath) >= AmlNameStringLength)
363 {
364 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS,
365 " NOT SHORTER (New %u old %u)",
366 (UINT32) ACPI_STRLEN (NewPath), (UINT32) AmlNameStringLength));
367 ACPI_FREE (NewPathExternal);
368 return (AE_NOT_FOUND);
369 }

371 /*
372 * Check to make sure that the optimization finds the node we are
373 * looking for. This is simply a sanity check on the new
374 * path that has been created.
375 */
376 Status = AcpiNsLookup (&ScopeInfo, NewPath,
377 ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE,
378 ACPI_NS_DONT_OPEN_SCOPE, WalkState, &(Node));
379 if (ACPI_SUCCESS (Status))
380 {
381 /* Found the namepath, but make sure the node is correct */

383 if (Node == TargetNode)
384 {
385 /* The lookup matched the node, accept this optimization */

387 AslError (ASL_OPTIMIZATION, ASL_MSG_NAME_OPTIMIZATION,
388 Op, NewPathExternal);
389 *ReturnNewPath = NewPath;

new/usr/src/common/acpica/compiler/aslopt.c 7

390 }
391 else
392 {
393 /* Node is not correct, do not use this optimization */

395 Status = AE_NOT_FOUND;
396 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " ***** WRONG NODE"));
397 AslError (ASL_WARNING, ASL_MSG_COMPILER_INTERNAL, Op,
398 "Not using optimized name - found wrong node");
399 }
400 }
401 else
402 {
403 /* The lookup failed, we obviously cannot use this optimization */

405 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " ***** NOT FOUND"));
406 AslError (ASL_WARNING, ASL_MSG_COMPILER_INTERNAL, Op,
407 "Not using optimized name - did not find node");
408 }

410 ACPI_FREE (NewPathExternal);
411 return (Status);
412 }

415 /***
416 *
417 * FUNCTION: OptOptimizeNameDeclaration
418 *
419 * PARAMETERS: Op - Current parser op
420 * WalkState - Current state
421 * CurrentNode - Where we are in the namespace
422 * AmlNameString - Unoptimized namepath
423 * NewPath - Where the optimized path is returned
424 *
425 * RETURN: Status. AE_OK If path is optimized
426 *
427 * DESCRIPTION: Perform a simple optimization of removing an extraneous
428 * backslash prefix if we are already at the root scope.
429 *
430 **/

432 static ACPI_STATUS
433 OptOptimizeNameDeclaration (
434 ACPI_PARSE_OBJECT *Op,
435 ACPI_WALK_STATE *WalkState,
436 ACPI_NAMESPACE_NODE *CurrentNode,
437 ACPI_NAMESPACE_NODE *TargetNode,
438 char *AmlNameString,
439 char **NewPath)
440 {
441 ACPI_STATUS Status;
442 char *NewPathExternal;
443 ACPI_NAMESPACE_NODE *Node;

446 ACPI_FUNCTION_TRACE (OptOptimizeNameDeclaration);

449 if (((CurrentNode == AcpiGbl_RootNode) ||
450 (Op->Common.Parent->Asl.ParseOpcode == PARSEOP_DEFINITIONBLOCK)) &&
451 (ACPI_IS_ROOT_PREFIX (AmlNameString[0])))
452 {
453 /*
454 * The current scope is the root, and the namepath has a root prefix
455 * that is therefore extraneous. Remove it.

new/usr/src/common/acpica/compiler/aslopt.c 8

456 */
457 *NewPath = &AmlNameString[1];

459 /* Debug output */

461 Status = AcpiNsExternalizeName (ACPI_UINT32_MAX, *NewPath,
462 NULL, &NewPathExternal);
463 if (ACPI_FAILURE (Status))
464 {
465 AslCoreSubsystemError (Op, Status, "Externalizing NamePath",
466 ASL_NO_ABORT);
467 return (Status);
468 }

470 /*
471 * Check to make sure that the optimization finds the node we are
472 * looking for. This is simply a sanity check on the new
473 * path that has been created.
474 *
475 * We know that we are at the root, so NULL is used for the scope.
476 */
477 Status = AcpiNsLookup (NULL, *NewPath,
478 ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE,
479 ACPI_NS_DONT_OPEN_SCOPE, WalkState, &(Node));
480 if (ACPI_SUCCESS (Status))
481 {
482 /* Found the namepath, but make sure the node is correct */

484 if (Node == TargetNode)
485 {
486 /* The lookup matched the node, accept this optimization */

488 AslError (ASL_OPTIMIZATION, ASL_MSG_NAME_OPTIMIZATION,
489 Op, NewPathExternal);

491 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS,
492 "AT ROOT: %-24s", NewPathExternal));
493 }
494 else
495 {
496 /* Node is not correct, do not use this optimization */

498 Status = AE_NOT_FOUND;
499 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS,
500 " ***** WRONG NODE"));
501 AslError (ASL_WARNING, ASL_MSG_COMPILER_INTERNAL, Op,
502 "Not using optimized name - found wrong node");
503 }
504 }
505 else
506 {
507 /* The lookup failed, we obviously cannot use this optimization */

509 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS,
510 " ***** NOT FOUND"));
511 AslError (ASL_WARNING, ASL_MSG_COMPILER_INTERNAL, Op,
512 "Not using optimized name - did not find node");
513 }

515 ACPI_FREE (NewPathExternal);
516 return (Status);
517 }

519 /* Could not optimize */

521 return (AE_NOT_FOUND);

new/usr/src/common/acpica/compiler/aslopt.c 9

522 }

525 /***
526 *
527 * FUNCTION: OptOptimizeNamePath
528 *
529 * PARAMETERS: Op - Current parser op
530 * Flags - Opcode info flags
531 * WalkState - Current state
532 * AmlNameString - Unoptimized namepath
533 * TargetNode - Node to which AmlNameString refers
534 *
535 * RETURN: None. If path is optimized, the Op is updated with new path
536 *
537 * DESCRIPTION: Optimize a Named Declaration or Reference to the minimal length.
538 * Must take into account both the current location in the
539 * namespace and the actual reference path.
540 *
541 **/

543 void
544 OptOptimizeNamePath (
545 ACPI_PARSE_OBJECT *Op,
546 UINT32 Flags,
547 ACPI_WALK_STATE *WalkState,
548 char *AmlNameString,
549 ACPI_NAMESPACE_NODE *TargetNode)
550 {
551 ACPI_STATUS Status;
552 ACPI_BUFFER TargetPath;
553 ACPI_BUFFER CurrentPath;
554 ACPI_SIZE AmlNameStringLength;
555 ACPI_NAMESPACE_NODE *CurrentNode;
556 char *ExternalNameString;
557 char *NewPath = NULL;
558 ACPI_SIZE HowMuchShorter;
559 ACPI_PARSE_OBJECT *NextOp;

562 ACPI_FUNCTION_TRACE (OptOptimizeNamePath);

565 /* This is an optional optimization */

567 if (!Gbl_ReferenceOptimizationFlag)
568 {
569 return_VOID;
570 }

572 /* Various required items */

574 if (!TargetNode || !WalkState || !AmlNameString || !Op->Common.Parent)
575 {
576 return_VOID;
577 }

579 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS,
580 "PATH OPTIMIZE: Line %5d ParentOp [%12.12s] ThisOp [%12.12s] ",
581 Op->Asl.LogicalLineNumber,
582 AcpiPsGetOpcodeName (Op->Common.Parent->Common.AmlOpcode),
583 AcpiPsGetOpcodeName (Op->Common.AmlOpcode)));

585 if (!(Flags & (AML_NAMED | AML_CREATE)))
586 {
587 if (Op->Asl.CompileFlags & NODE_IS_NAME_DECLARATION)

new/usr/src/common/acpica/compiler/aslopt.c 10

588 {
589 /* We don’t want to fuss with actual name declaration nodes here */

591 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS,
592 "******* NAME DECLARATION\n"));
593 return_VOID;
594 }
595 }

597 /*
598 * The original path must be longer than one NameSeg (4 chars) for there
599 * to be any possibility that it can be optimized to a shorter string
600 */
601 AmlNameStringLength = ACPI_STRLEN (AmlNameString);
602 if (AmlNameStringLength <= ACPI_NAME_SIZE)
603 {
604 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS,
605 "NAMESEG %4.4s\n", AmlNameString));
606 return_VOID;
607 }

609 /*
610 * We need to obtain the node that represents the current scope -- where
611 * we are right now in the namespace. We will compare this path
612 * against the Namepath, looking for commonality.
613 */
614 CurrentNode = AcpiGbl_RootNode;
615 if (WalkState->ScopeInfo)
616 {
617 CurrentNode = WalkState->ScopeInfo->Scope.Node;
618 }

620 if (Flags & (AML_NAMED | AML_CREATE))
621 {
622 /* This is the declaration of a new name */

624 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "NAME\n"));

626 /*
627 * The node of interest is the parent of this node (the containing
628 * scope). The actual namespace node may be up more than one level
629 * of parse op or it may not exist at all (if we traverse back
630 * up to the root.)
631 */
632 NextOp = Op->Asl.Parent;
633 while (NextOp && (!NextOp->Asl.Node))
634 {
635 NextOp = NextOp->Asl.Parent;
636 }
637 if (NextOp && NextOp->Asl.Node)
638 {
639 CurrentNode = NextOp->Asl.Node;
640 }
641 else
642 {
643 CurrentNode = AcpiGbl_RootNode;
644 }
645 }
646 else
647 {
648 /* This is a reference to an existing named object */

650 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "REFERENCE\n"));
651 }

653 /*

new/usr/src/common/acpica/compiler/aslopt.c 11

654 * Obtain the full paths to the two nodes that we are interested in
655 * (Target and current namespace location) in external
656 * format -- something we can easily manipulate
657 */
658 TargetPath.Length = ACPI_ALLOCATE_LOCAL_BUFFER;
659 Status = AcpiNsHandleToPathname (TargetNode, &TargetPath);
660 if (ACPI_FAILURE (Status))
661 {
662 AslCoreSubsystemError (Op, Status, "Getting Target NamePath",
663 ASL_NO_ABORT);
664 return_VOID;
665 }
666 TargetPath.Length--; /* Subtract one for null terminator */

668 /* CurrentPath is the path to this scope (where we are in the namespace) */

670 CurrentPath.Length = ACPI_ALLOCATE_LOCAL_BUFFER;
671 Status = AcpiNsHandleToPathname (CurrentNode, &CurrentPath);
672 if (ACPI_FAILURE (Status))
673 {
674 AslCoreSubsystemError (Op, Status, "Getting Current NamePath",
675 ASL_NO_ABORT);
676 return_VOID;
677 }
678 CurrentPath.Length--; /* Subtract one for null terminator */

680 /* Debug output only */

682 Status = AcpiNsExternalizeName (ACPI_UINT32_MAX, AmlNameString,
683 NULL, &ExternalNameString);
684 if (ACPI_FAILURE (Status))
685 {
686 AslCoreSubsystemError (Op, Status, "Externalizing NamePath",
687 ASL_NO_ABORT);
688 return_VOID;
689 }

691 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS,
692 "CURRENT SCOPE: (%2u) %-37s FULL PATH TO NAME: (%2u) %-32s ACTUAL AML:%-
693 (UINT32) CurrentPath.Length, (char *) CurrentPath.Pointer,
694 (UINT32) TargetPath.Length, (char *) TargetPath.Pointer,
695 ExternalNameString));

697 ACPI_FREE (ExternalNameString);

699 /*
700 * Attempt an optmization depending on the type of namepath
701 */
702 if (Flags & (AML_NAMED | AML_CREATE))
703 {
704 /*
705 * This is a named opcode and the namepath is a name declaration, not
706 * a reference.
707 */
708 Status = OptOptimizeNameDeclaration (Op, WalkState, CurrentNode,
709 TargetNode, AmlNameString, &NewPath);
710 if (ACPI_FAILURE (Status))
711 {
712 /*
713 * 2) now attempt to
714 * optimize the namestring with carats (up-arrow)
715 */
716 Status = OptBuildShortestPath (Op, WalkState, CurrentNode,
717 TargetNode, &CurrentPath, &TargetPath,
718 AmlNameStringLength, 1, &NewPath);
719 }

new/usr/src/common/acpica/compiler/aslopt.c 12

720 }
721 else
722 {
723 /*
724 * This is a reference to an existing named object
725 *
726 * 1) Check if search-to-root can be utilized using the last
727 * NameSeg of the NamePath
728 */
729 Status = OptSearchToRoot (Op, WalkState, CurrentNode,
730 TargetNode, &TargetPath, &NewPath);
731 if (ACPI_FAILURE (Status))
732 {
733 /*
734 * 2) Search-to-root could not be used, now attempt to
735 * optimize the namestring with carats (up-arrow)
736 */
737 Status = OptBuildShortestPath (Op, WalkState, CurrentNode,
738 TargetNode, &CurrentPath, &TargetPath,
739 AmlNameStringLength, 0, &NewPath);
740 }
741 }

743 /*
744 * Success from above indicates that the NamePath was successfully
745 * optimized. We need to update the parse op with the new name
746 */
747 if (ACPI_SUCCESS (Status))
748 {
749 HowMuchShorter = (AmlNameStringLength - ACPI_STRLEN (NewPath));
750 OptTotal += HowMuchShorter;

752 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS,
753 " REDUCED BY %2u (TOTAL SAVED %2u)",
754 (UINT32) HowMuchShorter, OptTotal));

756 if (Flags & AML_NAMED)
757 {
758 if (Op->Asl.AmlOpcode == AML_ALIAS_OP)
759 {
760 /*
761 * ALIAS is the only oddball opcode, the name declaration
762 * (alias name) is the second operand
763 */
764 Op->Asl.Child->Asl.Next->Asl.Value.String = NewPath;
765 Op->Asl.Child->Asl.Next->Asl.AmlLength = ACPI_STRLEN (NewPath);
766 }
767 else
768 {
769 Op->Asl.Child->Asl.Value.String = NewPath;
770 Op->Asl.Child->Asl.AmlLength = ACPI_STRLEN (NewPath);
771 }
772 }
773 else if (Flags & AML_CREATE)
774 {
775 /* Name must appear as the last parameter */

777 NextOp = Op->Asl.Child;
778 while (!(NextOp->Asl.CompileFlags & NODE_IS_NAME_DECLARATION))
779 {
780 NextOp = NextOp->Asl.Next;
781 }
782 /* Update the parse node with the new NamePath */

784 NextOp->Asl.Value.String = NewPath;
785 NextOp->Asl.AmlLength = ACPI_STRLEN (NewPath);

new/usr/src/common/acpica/compiler/aslopt.c 13

786 }
787 else
788 {
789 /* Update the parse node with the new NamePath */

791 Op->Asl.Value.String = NewPath;
792 Op->Asl.AmlLength = ACPI_STRLEN (NewPath);
793 }
794 }
795 else
796 {
797 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " ALREADY OPTIMAL"));
798 }

800 /* Cleanup path buffers */

802 ACPI_FREE (TargetPath.Pointer);
803 ACPI_FREE (CurrentPath.Pointer);

805 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "\n"));
806 return_VOID;
807 }

new/usr/src/common/acpica/compiler/asloptions.c 1

**
 19027 Thu Dec 26 13:48:32 2013
new/usr/src/common/acpica/compiler/asloptions.c
update to acpica-unix2-20131218
update to acpica-unix2-20130927
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: asloptions - compiler command line processing
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aslcompiler.h"
45 #include "acapps.h"
46 #include "acdisasm.h"

48 #define _COMPONENT ACPI_COMPILER
49 ACPI_MODULE_NAME ("asloption")

52 /* Local prototypes */

54 static int
55 AslDoOptions (
56 int argc,
57 char **argv,
58 BOOLEAN IsResponseFile);

new/usr/src/common/acpica/compiler/asloptions.c 2

60 static void
61 AslMergeOptionTokens (
62 char *InBuffer,
63 char *OutBuffer);

65 static int
66 AslDoResponseFile (
67 char *Filename);

70 #define ASL_TOKEN_SEPARATORS " \t\n"
71 #define ASL_SUPPORTED_OPTIONS "@:b|c|d^D:e:f^gh^i|I:l^m:no|p:P^r:s|t|T+G^v^w|x

74 /***
75 *
76 * FUNCTION: AslCommandLine
77 *
78 * PARAMETERS: argc/argv
79 *
80 * RETURN: Last argv index
81 *
82 * DESCRIPTION: Command line processing
83 *
84 **/

86 int
87 AslCommandLine (
88 int argc,
89 char **argv)
90 {
91 int BadCommandLine = 0;
92 ACPI_STATUS Status;

95 /* Minimum command line contains at least the command and an input file */

97 if (argc < 2)
98 {
99 printf (ACPI_COMMON_SIGNON (ASL_COMPILER_NAME));
100 Usage ();
101 exit (1);
102 }

104 /* Process all command line options */

106 BadCommandLine = AslDoOptions (argc, argv, FALSE);

108 if (Gbl_DoTemplates)
109 {
110 Status = DtCreateTemplates (Gbl_TemplateSignature);
111 if (ACPI_FAILURE (Status))
112 {
113 exit (-1);
114 }
115 exit (1);
116 }

118 /* Next parameter must be the input filename */

120 if (!argv[AcpiGbl_Optind] &&
121 !Gbl_DisasmFlag &&
122 !Gbl_GetAllTables)
123 {
124 printf ("Missing input filename\n");
125 BadCommandLine = TRUE;

new/usr/src/common/acpica/compiler/asloptions.c 3

126 }

128 if (Gbl_DoSignon)
129 {
130 printf (ACPI_COMMON_SIGNON (ASL_COMPILER_NAME));
131 if (Gbl_IgnoreErrors)
132 {
133 printf ("Ignoring all errors, forcing AML file generation\n\n");
134 }
135 }

137 if (BadCommandLine)
138 {
139 printf ("Use -h option for help information\n");
140 exit (1);
141 }

143 return (AcpiGbl_Optind);
144 }

147 /***
148 *
149 * FUNCTION: AslDoOptions
150 *
151 * PARAMETERS: argc/argv - Standard argc/argv
152 * IsResponseFile - TRUE if executing a response file.
153 *
154 * RETURN: Status
155 *
156 * DESCRIPTION: Command line option processing
157 *
158 **/

160 static int
161 AslDoOptions (
162 int argc,
163 char **argv,
164 BOOLEAN IsResponseFile)
165 {
166 ACPI_STATUS Status;
167 UINT32 j;

170 /* Get the command line options */

172 while ((j = AcpiGetopt (argc, argv, ASL_SUPPORTED_OPTIONS)) != EOF) switch (
173 {
174 case ’@’: /* Begin a response file */

176 if (IsResponseFile)
177 {
178 printf ("Nested command files are not supported\n");
179 return (-1);
180 }

182 if (AslDoResponseFile (AcpiGbl_Optarg))
183 {
184 return (-1);
185 }
186 break;

188 case ’b’: /* Debug output options */

190 switch (AcpiGbl_Optarg[0])
191 {

new/usr/src/common/acpica/compiler/asloptions.c 4

192 case ’f’:

194 AslCompilerdebug = 1; /* same as yydebug */
195 DtParserdebug = 1;
196 PrParserdebug = 1;
197 break;

199 case ’t’:

201 break;

203 default:

205 printf ("Unknown option: -b%s\n", AcpiGbl_Optarg);
206 return (-1);
207 }

209 /* Produce debug output file */

211 Gbl_DebugFlag = TRUE;
212 break;

214 case ’c’:

216 switch (AcpiGbl_Optarg[0])
217 {
218 case ’r’:

220 Gbl_NoResourceChecking = TRUE;
221 break;

223 default:

225 printf ("Unknown option: -c%s\n", AcpiGbl_Optarg);
226 return (-1);
227 }
228 break;

230 case ’d’: /* Disassembler */

232 switch (AcpiGbl_Optarg[0])
233 {
234 case ’^’:

236 Gbl_DoCompile = FALSE;
237 break;

239 case ’a’:

241 Gbl_DoCompile = FALSE;
242 Gbl_DisassembleAll = TRUE;
243 break;

245 case ’b’: /* Do not convert buffers to resource descriptors */

247 AcpiGbl_NoResourceDisassembly = TRUE;
248 break;

250 case ’c’:

252 break;

254 default:

256 printf ("Unknown option: -d%s\n", AcpiGbl_Optarg);
257 return (-1);

new/usr/src/common/acpica/compiler/asloptions.c 5

258 }

260 Gbl_DisasmFlag = TRUE;
261 break;

263 case ’D’: /* Define a symbol */

265 PrAddDefine (AcpiGbl_Optarg, NULL, TRUE);
266 break;

268 case ’e’: /* External files for disassembler */

270 /* Get entire list of external files */

272 AcpiGbl_Optind--;

274 while (argv[AcpiGbl_Optind] &&
275 (argv[AcpiGbl_Optind][0] != ’-’))
276 {
277 Status = AcpiDmAddToExternalFileList (argv[AcpiGbl_Optind]);
278 if (ACPI_FAILURE (Status))
279 {
280 printf ("Could not add %s to external list\n", argv[AcpiGbl_Opti
281 return (-1);
282 }

284 AcpiGbl_Optind++;
285 }
286 break;

288 case ’f’:

290 switch (AcpiGbl_Optarg[0])
291 {
292 case ’^’: /* Ignore errors and force creation of aml file */

294 Gbl_IgnoreErrors = TRUE;
295 break;

297 case ’e’: /* Disassembler: Get external declaration file */

299 if (AcpiGetoptArgument (argc, argv))
300 {
301 return (-1);
302 }

304 Gbl_ExternalRefFilename = AcpiGbl_Optarg;
305 break;

307 default:

309 printf ("Unknown option: -f%s\n", AcpiGbl_Optarg);
310 return (-1);
311 }
312 break;

314 case ’G’:

316 Gbl_CompileGeneric = TRUE;
317 break;

319 case ’g’: /* Get all ACPI tables */

321 Gbl_GetAllTables = TRUE;
322 Gbl_DoCompile = FALSE;
323 break;

new/usr/src/common/acpica/compiler/asloptions.c 6

325 case ’h’:

327 switch (AcpiGbl_Optarg[0])
328 {
329 case ’^’:

331 Usage ();
332 exit (0);

334 case ’c’:

336 UtDisplayConstantOpcodes ();
337 exit (0);

339 case ’f’:

341 AslFilenameHelp ();
342 exit (0);

344 case ’r’:

346 /* reserved names */

348 ApDisplayReservedNames ();
349 exit (0);

351 case ’t’:

353 UtDisplaySupportedTables ();
354 exit (0);

356 default:

358 printf ("Unknown option: -h%s\n", AcpiGbl_Optarg);
359 return (-1);
360 }

362 case ’I’: /* Add an include file search directory */

364 FlAddIncludeDirectory (AcpiGbl_Optarg);
365 break;

367 case ’i’: /* Output AML as an include file */

369 switch (AcpiGbl_Optarg[0])
370 {
371 case ’a’:

373 /* Produce assembly code include file */

375 Gbl_AsmIncludeOutputFlag = TRUE;
376 break;

378 case ’c’:

380 /* Produce C include file */

382 Gbl_C_IncludeOutputFlag = TRUE;
383 break;

385 case ’n’:

387 /* Compiler/Disassembler: Ignore the NOOP operator */

389 AcpiGbl_IgnoreNoopOperator = TRUE;

new/usr/src/common/acpica/compiler/asloptions.c 7

390 break;

392 default:

394 printf ("Unknown option: -i%s\n", AcpiGbl_Optarg);
395 return (-1);
396 }
397 break;

399 case ’l’: /* Listing files */

401 switch (AcpiGbl_Optarg[0])
402 {
403 case ’^’:

405 /* Produce listing file (Mixed source/aml) */

407 Gbl_ListingFlag = TRUE;
408 break;

410 case ’i’:

412 /* Produce preprocessor output file */

414 Gbl_PreprocessorOutputFlag = TRUE;
415 break;

417 case ’n’:

419 /* Produce namespace file */

421 Gbl_NsOutputFlag = TRUE;
422 break;

424 case ’s’:

426 /* Produce combined source file */

428 Gbl_SourceOutputFlag = TRUE;
429 break;

431 default:

433 printf ("Unknown option: -l%s\n", AcpiGbl_Optarg);
434 return (-1);
435 }
436 break;

438 case ’m’: /* Set line buffer size */

440 Gbl_LineBufferSize = (UINT32) strtoul (AcpiGbl_Optarg, NULL, 0) * 1024;
441 if (Gbl_LineBufferSize < ASL_DEFAULT_LINE_BUFFER_SIZE)
442 {
443 Gbl_LineBufferSize = ASL_DEFAULT_LINE_BUFFER_SIZE;
444 }
445 printf ("Line Buffer Size: %u\n", Gbl_LineBufferSize);
446 break;

448 case ’n’: /* Parse only */

450 Gbl_ParseOnlyFlag = TRUE;
451 break;

453 case ’o’: /* Control compiler AML optimizations */

455 switch (AcpiGbl_Optarg[0])

new/usr/src/common/acpica/compiler/asloptions.c 8

456 {
457 case ’a’:

459 /* Disable all optimizations */

461 Gbl_FoldConstants = FALSE;
462 Gbl_IntegerOptimizationFlag = FALSE;
463 Gbl_ReferenceOptimizationFlag = FALSE;
464 break;

466 case ’f’:

468 /* Disable folding on "normal" expressions */

470 Gbl_FoldConstants = FALSE;
471 break;

473 case ’i’:

475 /* Disable integer optimization to constants */

477 Gbl_IntegerOptimizationFlag = FALSE;
478 break;

480 case ’n’:

482 /* Disable named reference optimization */

484 Gbl_ReferenceOptimizationFlag = FALSE;
485 break;

487 case ’t’:

489 /* Display compile time(s) */

491 Gbl_CompileTimesFlag = TRUE;
492 break;

494 default:

496 printf ("Unknown option: -c%s\n", AcpiGbl_Optarg);
497 return (-1);
498 }
499 break;

501 case ’P’: /* Preprocessor options */

503 switch (AcpiGbl_Optarg[0])
504 {
505 case ’^’: /* Proprocess only, emit (.i) file */

507 Gbl_PreprocessOnly = TRUE;
508 Gbl_PreprocessorOutputFlag = TRUE;
509 break;

511 case ’n’: /* Disable preprocessor */

513 Gbl_PreprocessFlag = FALSE;
514 break;

516 default:

518 printf ("Unknown option: -P%s\n", AcpiGbl_Optarg);
519 return (-1);
520 }
521 break;

new/usr/src/common/acpica/compiler/asloptions.c 9

523 case ’p’: /* Override default AML output filename */

525 Gbl_OutputFilenamePrefix = AcpiGbl_Optarg;
526 UtConvertBackslashes (Gbl_OutputFilenamePrefix);

528 Gbl_UseDefaultAmlFilename = FALSE;
529 break;

531 case ’r’: /* Override revision found in table header */

533 Gbl_RevisionOverride = (UINT8) strtoul (AcpiGbl_Optarg, NULL, 0);
534 break;

536 case ’s’: /* Create AML in a source code file */

538 switch (AcpiGbl_Optarg[0])
539 {
540 case ’a’:

542 /* Produce assembly code output file */

544 Gbl_AsmOutputFlag = TRUE;
545 break;

547 case ’c’:

549 /* Produce C hex output file */

551 Gbl_C_OutputFlag = TRUE;
552 break;

554 case ’o’:

556 /* Produce AML offset table in C */

558 Gbl_C_OffsetTableFlag = TRUE;
559 break;

561 default:

563 printf ("Unknown option: -s%s\n", AcpiGbl_Optarg);
564 return (-1);
565 }
566 break;

568 case ’t’: /* Produce hex table output file */

570 switch (AcpiGbl_Optarg[0])
571 {
572 case ’a’:

574 Gbl_HexOutputFlag = HEX_OUTPUT_ASM;
575 break;

577 case ’c’:

579 Gbl_HexOutputFlag = HEX_OUTPUT_C;
580 break;

582 case ’s’:

584 Gbl_HexOutputFlag = HEX_OUTPUT_ASL;
585 break;

587 default:

new/usr/src/common/acpica/compiler/asloptions.c 10

589 printf ("Unknown option: -t%s\n", AcpiGbl_Optarg);
590 return (-1);
591 }
592 break;

594 case ’T’: /* Create a ACPI table template file */

596 Gbl_DoTemplates = TRUE;
597 Gbl_TemplateSignature = AcpiGbl_Optarg;
598 break;

600 case ’v’: /* Version and verbosity settings */

602 switch (AcpiGbl_Optarg[0])
603 {
604 case ’^’:

606 printf (ACPI_COMMON_SIGNON (ASL_COMPILER_NAME));
607 exit (0);

609 case ’a’:

611 /* Disable all error/warning/remark messages */

613 Gbl_NoErrors = TRUE;
614 break;

616 case ’e’:

618 /* Disable all warning/remark messages (errors only) */

620 Gbl_DisplayRemarks = FALSE;
621 Gbl_DisplayWarnings = FALSE;
622 break;

624 case ’i’:
625 /*
626 * Support for integrated development environment(s).
627 *
628 * 1) No compiler signon
629 * 2) Send stderr messages to stdout
630 * 3) Less verbose error messages (single line only for each)
631 * 4) Error/warning messages are formatted appropriately to
632 * be recognized by MS Visual Studio
633 */
634 Gbl_VerboseErrors = FALSE;
635 Gbl_DoSignon = FALSE;
636 Gbl_Files[ASL_FILE_STDERR].Handle = stdout;
637 break;

639 case ’o’:

641 Gbl_DisplayOptimizations = TRUE;
642 break;

644 case ’r’:

646 Gbl_DisplayRemarks = FALSE;
647 break;

649 case ’s’:

651 Gbl_DoSignon = FALSE;
652 break;

new/usr/src/common/acpica/compiler/asloptions.c 11

654 case ’t’:

656 Gbl_VerboseTemplates = TRUE;
657 break;

659 case ’w’:

661 /* Get the required argument */

663 if (AcpiGetoptArgument (argc, argv))
664 {
665 return (-1);
666 }

668 Status = AslDisableException (AcpiGbl_Optarg);
669 if (ACPI_FAILURE (Status))
670 {
671 return (-1);
672 }
673 break;

675 default:

677 printf ("Unknown option: -v%s\n", AcpiGbl_Optarg);
678 return (-1);
679 }
680 break;

682 case ’w’: /* Set warning levels */

684 switch (AcpiGbl_Optarg[0])
685 {
686 case ’1’:

688 Gbl_WarningLevel = ASL_WARNING;
689 break;

691 case ’2’:

693 Gbl_WarningLevel = ASL_WARNING2;
694 break;

696 case ’3’:

698 Gbl_WarningLevel = ASL_WARNING3;
699 break;

701 case ’e’:

703 Gbl_WarningsAsErrors = TRUE;
704 break;

706 default:

708 printf ("Unknown option: -w%s\n", AcpiGbl_Optarg);
709 return (-1);
710 }
711 break;

713 case ’x’: /* Set debug print output level */

715 AcpiDbgLevel = strtoul (AcpiGbl_Optarg, NULL, 16);
716 break;

718 case ’z’:

new/usr/src/common/acpica/compiler/asloptions.c 12

720 Gbl_UseOriginalCompilerId = TRUE;
721 break;

723 default:

725 return (-1);
726 }

728 return (0);
729 }

732 /***
733 *
734 * FUNCTION: AslMergeOptionTokens
735 *
736 * PARAMETERS: InBuffer - Input containing an option string
737 * OutBuffer - Merged output buffer
738 *
739 * RETURN: None
740 *
741 * DESCRIPTION: Remove all whitespace from an option string.
742 *
743 **/

745 static void
746 AslMergeOptionTokens (
747 char *InBuffer,
748 char *OutBuffer)
749 {
750 char *Token;

753 *OutBuffer = 0;

755 Token = strtok (InBuffer, ASL_TOKEN_SEPARATORS);
756 while (Token)
757 {
758 strcat (OutBuffer, Token);
759 Token = strtok (NULL, ASL_TOKEN_SEPARATORS);
760 }
761 }

764 /***
765 *
766 * FUNCTION: AslDoResponseFile
767 *
768 * PARAMETERS: Filename - Name of the response file
769 *
770 * RETURN: Status
771 *
772 * DESCRIPTION: Open a response file and process all options within.
773 *
774 **/

776 static int
777 AslDoResponseFile (
778 char *Filename)
779 {
780 char *argv = StringBuffer2;
781 FILE *ResponseFile;
782 int OptStatus = 0;
783 int Opterr;
784 int Optind;

new/usr/src/common/acpica/compiler/asloptions.c 13

787 ResponseFile = fopen (Filename, "r");
788 if (!ResponseFile)
789 {
790 printf ("Could not open command file %s, %s\n",
791 Filename, strerror (errno));
792 return (-1);
793 }

795 /* Must save the current GetOpt globals */

797 Opterr = AcpiGbl_Opterr;
798 Optind = AcpiGbl_Optind;

800 /*
801 * Process all lines in the response file. There must be one complete
802 * option per line
803 */
804 while (fgets (StringBuffer, ASL_MSG_BUFFER_SIZE, ResponseFile))
805 {
806 /* Compress all tokens, allowing us to use a single argv entry */

808 AslMergeOptionTokens (StringBuffer, StringBuffer2);

810 /* Process the option */

812 AcpiGbl_Opterr = 0;
813 AcpiGbl_Optind = 0;

815 OptStatus = AslDoOptions (1, &argv, TRUE);
816 if (OptStatus)
817 {
818 printf ("Invalid option in command file %s: %s\n",
819 Filename, StringBuffer);
820 break;
821 }
822 }

824 /* Restore the GetOpt globals */

826 AcpiGbl_Opterr = Opterr;
827 AcpiGbl_Optind = Optind;

829 fclose (ResponseFile);
830 return (OptStatus);
831 }

new/usr/src/common/acpica/compiler/aslpredef.c 1

**
 23978 Thu Dec 26 13:48:32 2013
new/usr/src/common/acpica/compiler/aslpredef.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslpredef - support for ACPI predefined names
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define ACPI_CREATE_PREDEFINED_TABLE
45 #define ACPI_CREATE_RESOURCE_TABLE

47 #include "aslcompiler.h"
48 #include "aslcompiler.y.h"
49 #include "acpredef.h"
50 #include "acnamesp.h"

53 #define _COMPONENT ACPI_COMPILER
54 ACPI_MODULE_NAME ("aslpredef")

57 /* Local prototypes */

59 static void
60 ApCheckForUnexpectedReturnValue (

new/usr/src/common/acpica/compiler/aslpredef.c 2

61 ACPI_PARSE_OBJECT *Op,
62 ASL_METHOD_INFO *MethodInfo);

64 static UINT32
65 ApCheckForSpecialName (
66 ACPI_PARSE_OBJECT *Op,
67 char *Name);

70 /***
71 *
72 * FUNCTION: ApCheckForPredefinedMethod
73 *
74 * PARAMETERS: Op - A parse node of type "METHOD".
75 * MethodInfo - Saved info about this method
76 *
77 * RETURN: None
78 *
79 * DESCRIPTION: If method is a predefined name, check that the number of
80 * arguments and the return type (returns a value or not)
81 * is correct.
82 *
83 **/

85 BOOLEAN
86 ApCheckForPredefinedMethod (
87 ACPI_PARSE_OBJECT *Op,
88 ASL_METHOD_INFO *MethodInfo)
89 {
90 UINT32 Index;
91 UINT32 RequiredArgCount;
92 const ACPI_PREDEFINED_INFO *ThisName;

95 /* Check for a match against the predefined name list */

97 Index = ApCheckForPredefinedName (Op, Op->Asl.NameSeg);

99 switch (Index)
100 {
101 case ACPI_NOT_RESERVED_NAME: /* No underscore or _Txx or _xxx name no
102 case ACPI_PREDEFINED_NAME: /* Resource Name or reserved scope name
103 case ACPI_COMPILER_RESERVED_NAME: /* A _Txx that was not emitted by compil

105 /* Just return, nothing to do */
106 return (FALSE);

109 case ACPI_EVENT_RESERVED_NAME: /* _Lxx/_Exx/_Wxx/_Qxx methods */

111 Gbl_ReservedMethods++;

113 /* NumArguments must be zero for all _Lxx/_Exx/_Wxx/_Qxx methods */

115 if (MethodInfo->NumArguments != 0)
116 {
117 sprintf (MsgBuffer, "%s requires %u", Op->Asl.ExternalName, 0);

119 AslError (ASL_WARNING, ASL_MSG_RESERVED_ARG_COUNT_HI, Op,
120 MsgBuffer);
121 }
122 break;

125 default:
126 /*

new/usr/src/common/acpica/compiler/aslpredef.c 3

127 * Matched a predefined method name - validate the ASL-defined
128 * argument count against the ACPI specification.
129 *
130 * Some methods are allowed to have a "minimum" number of args
131 * (_SCP) because their definition in ACPI has changed over time.
132 */
133 Gbl_ReservedMethods++;
134 ThisName = &AcpiGbl_PredefinedMethods[Index];
135 RequiredArgCount = METHOD_GET_ARG_COUNT (ThisName->Info.ArgumentList);

137 if (MethodInfo->NumArguments != RequiredArgCount)
138 {
139 sprintf (MsgBuffer, "%4.4s requires %u",
140 ThisName->Info.Name, RequiredArgCount);

142 if (MethodInfo->NumArguments < RequiredArgCount)
143 {
144 AslError (ASL_WARNING, ASL_MSG_RESERVED_ARG_COUNT_LO, Op,
145 MsgBuffer);
146 }
147 else if ((MethodInfo->NumArguments > RequiredArgCount) &&
148 !(ThisName->Info.ArgumentList & ARG_COUNT_IS_MINIMUM))
149 {
150 AslError (ASL_WARNING, ASL_MSG_RESERVED_ARG_COUNT_HI, Op,
151 MsgBuffer);
152 }
153 }

155 /*
156 * Check if method returns no value, but the predefined name is
157 * required to return a value
158 */
159 if (MethodInfo->NumReturnNoValue &&
160 ThisName->Info.ExpectedBtypes)
161 {
162 AcpiUtGetExpectedReturnTypes (StringBuffer,
163 ThisName->Info.ExpectedBtypes);

165 sprintf (MsgBuffer, "%s required for %4.4s",
166 StringBuffer, ThisName->Info.Name);

168 AslError (ASL_WARNING, ASL_MSG_RESERVED_RETURN_VALUE, Op,
169 MsgBuffer);
170 }
171 break;
172 }

174 return (TRUE);
175 }

178 /***
179 *
180 * FUNCTION: ApCheckForUnexpectedReturnValue
181 *
182 * PARAMETERS: Op - A parse node of type "RETURN".
183 * MethodInfo - Saved info about this method
184 *
185 * RETURN: None
186 *
187 * DESCRIPTION: Check for an unexpected return value from a predefined method.
188 * Invoked for predefined methods that are defined to not return
189 * any value. If there is a return value, issue a remark, since
190 * the ASL writer may be confused as to the method definition
191 * and/or functionality.
192 *

new/usr/src/common/acpica/compiler/aslpredef.c 4

193 * Note: We ignore all return values of "Zero", since this is what a standalone
194 * Return() statement will always generate -- so we ignore it here --
195 * i.e., there is no difference between Return() and Return(Zero).
196 * Also, a null Return() will be disassembled to return(Zero) -- so, we
197 * don’t want to generate extraneous remarks/warnings for a disassembled
198 * ASL file.
199 *
200 **/

202 static void
203 ApCheckForUnexpectedReturnValue (
204 ACPI_PARSE_OBJECT *Op,
205 ASL_METHOD_INFO *MethodInfo)
206 {
207 ACPI_PARSE_OBJECT *ReturnValueOp;

210 /* Ignore Return() and Return(Zero) (they are the same) */

212 ReturnValueOp = Op->Asl.Child;
213 if (ReturnValueOp->Asl.ParseOpcode == PARSEOP_ZERO)
214 {
215 return;
216 }

218 /* We have a valid return value, but the reserved name did not expect it */

220 AslError (ASL_WARNING, ASL_MSG_RESERVED_NO_RETURN_VAL,
221 Op, MethodInfo->Op->Asl.ExternalName);
222 }

225 /***
226 *
227 * FUNCTION: ApCheckPredefinedReturnValue
228 *
229 * PARAMETERS: Op - A parse node of type "RETURN".
230 * MethodInfo - Saved info about this method
231 *
232 * RETURN: None
233 *
234 * DESCRIPTION: If method is a predefined name, attempt to validate the return
235 * value. Only "static" types can be validated - a simple return
236 * of an integer/string/buffer/package or a named reference to
237 * a static object. Values such as a Localx or Argx or a control
238 * method invocation are not checked. Issue a warning if there is
239 * a valid return value, but the reserved method defines no
240 * return value.
241 *
242 **/

244 void
245 ApCheckPredefinedReturnValue (
246 ACPI_PARSE_OBJECT *Op,
247 ASL_METHOD_INFO *MethodInfo)
248 {
249 UINT32 Index;
250 ACPI_PARSE_OBJECT *ReturnValueOp;
251 const ACPI_PREDEFINED_INFO *ThisName;

254 /* Check parent method for a match against the predefined name list */

256 Index = ApCheckForPredefinedName (MethodInfo->Op,
257 MethodInfo->Op->Asl.NameSeg);

new/usr/src/common/acpica/compiler/aslpredef.c 5

259 switch (Index)
260 {
261 case ACPI_EVENT_RESERVED_NAME: /* _Lxx/_Exx/_Wxx/_Qxx methods */

263 /* No return value expected, warn if there is one */

265 ApCheckForUnexpectedReturnValue (Op, MethodInfo);
266 return;

268 case ACPI_NOT_RESERVED_NAME: /* No underscore or _Txx or _xxx name no
269 case ACPI_PREDEFINED_NAME: /* Resource Name or reserved scope name
270 case ACPI_COMPILER_RESERVED_NAME: /* A _Txx that was not emitted by compil

272 /* Just return, nothing to do */
273 return;

275 default: /* A standard predefined ACPI name */

277 ThisName = &AcpiGbl_PredefinedMethods[Index];
278 if (!ThisName->Info.ExpectedBtypes)
279 {
280 /* No return value expected, warn if there is one */

282 ApCheckForUnexpectedReturnValue (Op, MethodInfo);
283 return;
284 }

286 /* Get the object returned, it is the next argument */

288 ReturnValueOp = Op->Asl.Child;
289 switch (ReturnValueOp->Asl.ParseOpcode)
290 {
291 case PARSEOP_ZERO:
292 case PARSEOP_ONE:
293 case PARSEOP_ONES:
294 case PARSEOP_INTEGER:
295 case PARSEOP_STRING_LITERAL:
296 case PARSEOP_BUFFER:
297 case PARSEOP_PACKAGE:

299 /* Static data return object - check against expected type */

301 ApCheckObjectType (ThisName->Info.Name, ReturnValueOp,
302 ThisName->Info.ExpectedBtypes, ACPI_NOT_PACKAGE_ELEMENT);

304 /* For packages, check the individual package elements */

306 if (ReturnValueOp->Asl.ParseOpcode == PARSEOP_PACKAGE)
307 {
308 ApCheckPackage (ReturnValueOp, ThisName);
309 }
310 break;

312 default:
313 /*
314 * All other ops are very difficult or impossible to typecheck at
315 * compile time. These include all Localx, Argx, and method
316 * invocations. Also, NAMESEG and NAMESTRING because the type of
317 * any named object can be changed at runtime (for example,
318 * CopyObject will change the type of the target object.)
319 */
320 break;
321 }
322 }
323 }

new/usr/src/common/acpica/compiler/aslpredef.c 6

326 /***
327 *
328 * FUNCTION: ApCheckForPredefinedObject
329 *
330 * PARAMETERS: Op - A parse node
331 * Name - The ACPI name to be checked
332 *
333 * RETURN: None
334 *
335 * DESCRIPTION: Check for a predefined name for a static object (created via
336 * the ASL Name operator). If it is a predefined ACPI name, ensure
337 * that the name does not require any arguments (which would
338 * require a control method implemenation of the name), and that
339 * the type of the object is one of the expected types for the
340 * predefined name.
341 *
342 **/

344 void
345 ApCheckForPredefinedObject (
346 ACPI_PARSE_OBJECT *Op,
347 char *Name)
348 {
349 UINT32 Index;
350 ACPI_PARSE_OBJECT *ObjectOp;
351 const ACPI_PREDEFINED_INFO *ThisName;

354 /*
355 * Check for a real predefined name -- not a resource descriptor name
356 * or a predefined scope name
357 */
358 Index = ApCheckForPredefinedName (Op, Name);

360 switch (Index)
361 {
362 case ACPI_NOT_RESERVED_NAME: /* No underscore or _Txx or _xxx name no
363 case ACPI_PREDEFINED_NAME: /* Resource Name or reserved scope name
364 case ACPI_COMPILER_RESERVED_NAME: /* A _Txx that was not emitted by compil

366 /* Nothing to do */
367 return;

369 case ACPI_EVENT_RESERVED_NAME: /* _Lxx/_Exx/_Wxx/_Qxx methods */

371 /*
372 * These names must be control methods, by definition in ACPI spec.
373 * Also because they are defined to return no value. None of them
374 * require any arguments.
375 */
376 AslError (ASL_ERROR, ASL_MSG_RESERVED_METHOD, Op,
377 "with zero arguments");
378 return;

380 default:

382 break;
383 }

385 /* A standard predefined ACPI name */

387 /*
388 * If this predefined name requires input arguments, then
389 * it must be implemented as a control method
390 */

new/usr/src/common/acpica/compiler/aslpredef.c 7

391 ThisName = &AcpiGbl_PredefinedMethods[Index];
392 if (METHOD_GET_ARG_COUNT (ThisName->Info.ArgumentList) > 0)
393 {
394 AslError (ASL_ERROR, ASL_MSG_RESERVED_METHOD, Op,
395 "with arguments");
396 return;
397 }

399 /*
400 * If no return value is expected from this predefined name, then
401 * it follows that it must be implemented as a control method
402 * (with zero args, because the args > 0 case was handled above)
403 * Examples are: _DIS, _INI, _IRC, _OFF, _ON, _PSx
404 */
405 if (!ThisName->Info.ExpectedBtypes)
406 {
407 AslError (ASL_ERROR, ASL_MSG_RESERVED_METHOD, Op,
408 "with zero arguments");
409 return;
410 }

412 /* Typecheck the actual object, it is the next argument */

414 ObjectOp = Op->Asl.Child->Asl.Next;
415 ApCheckObjectType (ThisName->Info.Name, Op->Asl.Child->Asl.Next,
416 ThisName->Info.ExpectedBtypes, ACPI_NOT_PACKAGE_ELEMENT);

418 /* For packages, check the individual package elements */

420 if (ObjectOp->Asl.ParseOpcode == PARSEOP_PACKAGE)
421 {
422 ApCheckPackage (ObjectOp, ThisName);
423 }
424 }

427 /***
428 *
429 * FUNCTION: ApCheckForPredefinedName
430 *
431 * PARAMETERS: Op - A parse node
432 * Name - NameSeg to check
433 *
434 * RETURN: None
435 *
436 * DESCRIPTION: Check a NameSeg against the reserved list.
437 *
438 **/

440 UINT32
441 ApCheckForPredefinedName (
442 ACPI_PARSE_OBJECT *Op,
443 char *Name)
444 {
445 UINT32 i;
446 const ACPI_PREDEFINED_INFO *ThisName;

449 if (Name[0] == 0)
450 {
451 AcpiOsPrintf ("Found a null name, external = %s\n",
452 Op->Asl.ExternalName);
453 }

455 /* All reserved names are prefixed with a single underscore */

new/usr/src/common/acpica/compiler/aslpredef.c 8

457 if (Name[0] != ’_’)
458 {
459 return (ACPI_NOT_RESERVED_NAME);
460 }

462 /* Check for a standard predefined method name */

464 ThisName = AcpiGbl_PredefinedMethods;
465 for (i = 0; ThisName->Info.Name[0]; i++)
466 {
467 if (ACPI_COMPARE_NAME (Name, ThisName->Info.Name))
468 {
469 /* Return index into predefined array */
470 return (i);
471 }

473 ThisName++; /* Does not account for extra package data, but is OK */
474 }

476 /* Check for resource names and predefined scope names */

478 ThisName = AcpiGbl_ResourceNames;
479 while (ThisName->Info.Name[0])
480 {
481 if (ACPI_COMPARE_NAME (Name, ThisName->Info.Name))
482 {
483 return (ACPI_PREDEFINED_NAME);
484 }

486 ThisName++;
487 }

489 ThisName = AcpiGbl_ScopeNames;
490 while (ThisName->Info.Name[0])
491 {
492 if (ACPI_COMPARE_NAME (Name, ThisName->Info.Name))
493 {
494 return (ACPI_PREDEFINED_NAME);
495 }

497 ThisName++;
498 }

500 /* Check for _Lxx/_Exx/_Wxx/_Qxx/_T_x. Warning if unknown predefined name */

502 return (ApCheckForSpecialName (Op, Name));
503 }

506 /***
507 *
508 * FUNCTION: ApCheckForSpecialName
509 *
510 * PARAMETERS: Op - A parse node
511 * Name - NameSeg to check
512 *
513 * RETURN: None
514 *
515 * DESCRIPTION: Check for the "special" predefined names -
516 * _Lxx, _Exx, _Qxx, _Wxx, and _T_x
517 *
518 **/

520 static UINT32
521 ApCheckForSpecialName (
522 ACPI_PARSE_OBJECT *Op,

new/usr/src/common/acpica/compiler/aslpredef.c 9

523 char *Name)
524 {

526 /*
527 * Check for the "special" predefined names. We already know that the
528 * first character is an underscore.
529 * GPE: _Lxx
530 * GPE: _Exx
531 * GPE: _Wxx
532 * EC: _Qxx
533 */
534 if ((Name[1] == ’L’) ||
535 (Name[1] == ’E’) ||
536 (Name[1] == ’W’) ||
537 (Name[1] == ’Q’))
538 {
539 /* The next two characters must be hex digits */

541 if ((isxdigit ((int) Name[2])) &&
542 (isxdigit ((int) Name[3])))
543 {
544 return (ACPI_EVENT_RESERVED_NAME);
545 }
546 }

548 /* Check for the names reserved for the compiler itself: _T_x */

550 else if ((Op->Asl.ExternalName[1] == ’T’) &&
551 (Op->Asl.ExternalName[2] == ’_’))
552 {
553 /* Ignore if actually emitted by the compiler */

555 if (Op->Asl.CompileFlags & NODE_COMPILER_EMITTED)
556 {
557 return (ACPI_NOT_RESERVED_NAME);
558 }

560 /*
561 * Was not actually emitted by the compiler. This is a special case,
562 * however. If the ASL code being compiled was the result of a
563 * dissasembly, it may possibly contain valid compiler-emitted names
564 * of the form "_T_x". We don’t want to issue an error or even a
565 * warning and force the user to manually change the names. So, we
566 * will issue a remark instead.
567 */
568 AslError (ASL_REMARK, ASL_MSG_COMPILER_RESERVED, Op, Op->Asl.ExternalNam
569 return (ACPI_COMPILER_RESERVED_NAME);
570 }

572 /*
573 * The name didn’t match any of the known predefined names. Flag it as a
574 * warning, since the entire namespace starting with an underscore is
575 * reserved by the ACPI spec.
576 */
577 AslError (ASL_WARNING, ASL_MSG_UNKNOWN_RESERVED_NAME, Op,
578 Op->Asl.ExternalName);

580 return (ACPI_NOT_RESERVED_NAME);
581 }

584 /***
585 *
586 * FUNCTION: ApCheckObjectType
587 *
588 * PARAMETERS: PredefinedName - Name of the predefined object we are checking

new/usr/src/common/acpica/compiler/aslpredef.c 10

589 * Op - Current parse node
590 * ExpectedBtypes - Bitmap of expected return type(s)
591 * PackageIndex - Index of object within parent package (if
592 * applicable - ACPI_NOT_PACKAGE_ELEMENT
593 * otherwise)
594 *
595 * RETURN: None
596 *
597 * DESCRIPTION: Check if the object type is one of the types that is expected
598 * by the predefined name. Only a limited number of object types
599 * can be returned by the predefined names.
600 *
601 **/

603 ACPI_STATUS
604 ApCheckObjectType (
605 const char *PredefinedName,
606 ACPI_PARSE_OBJECT *Op,
607 UINT32 ExpectedBtypes,
608 UINT32 PackageIndex)
609 {
610 UINT32 ReturnBtype;
611 char *TypeName;

614 if (!Op)
615 {
616 return (AE_TYPE);
617 }

619 /* Map the parse opcode to a bitmapped return type (RTYPE) */

621 switch (Op->Asl.ParseOpcode)
622 {
623 case PARSEOP_ZERO:
624 case PARSEOP_ONE:
625 case PARSEOP_ONES:
626 case PARSEOP_INTEGER:

628 ReturnBtype = ACPI_RTYPE_INTEGER;
629 TypeName = "Integer";
630 break;

632 case PARSEOP_STRING_LITERAL:

634 ReturnBtype = ACPI_RTYPE_STRING;
635 TypeName = "String";
636 break;

638 case PARSEOP_BUFFER:

640 ReturnBtype = ACPI_RTYPE_BUFFER;
641 TypeName = "Buffer";
642 break;

644 case PARSEOP_PACKAGE:
645 case PARSEOP_VAR_PACKAGE:

647 ReturnBtype = ACPI_RTYPE_PACKAGE;
648 TypeName = "Package";
649 break;

651 case PARSEOP_NAMESEG:
652 case PARSEOP_NAMESTRING:
653 /*
654 * Ignore any named references within a package object.

new/usr/src/common/acpica/compiler/aslpredef.c 11

655 *
656 * For Package objects, references are allowed instead of any of the
657 * standard data types (Integer/String/Buffer/Package). These
658 * references are resolved at runtime. NAMESEG and NAMESTRING are
659 * impossible to typecheck at compile time because the type of
660 * any named object can be changed at runtime (for example,
661 * CopyObject will change the type of the target object).
662 */
663 if (PackageIndex != ACPI_NOT_PACKAGE_ELEMENT)
664 {
665 return (AE_OK);
666 }

668 ReturnBtype = ACPI_RTYPE_REFERENCE;
669 TypeName = "Reference";
670 break;

672 default:

674 /* Not one of the supported object types */

676 TypeName = UtGetOpName (Op->Asl.ParseOpcode);
677 goto TypeErrorExit;
678 }

680 /* Exit if the object is one of the expected types */

682 if (ReturnBtype & ExpectedBtypes)
683 {
684 return (AE_OK);
685 }

688 TypeErrorExit:

690 /* Format the expected types and emit an error message */

692 AcpiUtGetExpectedReturnTypes (StringBuffer, ExpectedBtypes);

694 if (PackageIndex == ACPI_NOT_PACKAGE_ELEMENT)
695 {
696 sprintf (MsgBuffer, "%4.4s: found %s, %s required",
697 PredefinedName, TypeName, StringBuffer);
698 }
699 else
700 {
701 sprintf (MsgBuffer, "%4.4s: found %s at index %u, %s required",
702 PredefinedName, TypeName, PackageIndex, StringBuffer);
703 }

705 AslError (ASL_ERROR, ASL_MSG_RESERVED_OPERAND_TYPE, Op, MsgBuffer);
706 return (AE_TYPE);
707 }

710 /***
711 *
712 * FUNCTION: ApDisplayReservedNames
713 *
714 * PARAMETERS: None
715 *
716 * RETURN: None
717 *
718 * DESCRIPTION: Dump information about the ACPI predefined names and predefined
719 * resource descriptor names.
720 *

new/usr/src/common/acpica/compiler/aslpredef.c 12

721 **/

723 void
724 ApDisplayReservedNames (
725 void)
726 {
727 const ACPI_PREDEFINED_INFO *ThisName;
728 UINT32 Count;
729 UINT32 NumTypes;

732 /*
733 * Predefined names/methods
734 */
735 printf ("\nPredefined Name Information\n\n");

737 Count = 0;
738 ThisName = AcpiGbl_PredefinedMethods;
739 while (ThisName->Info.Name[0])
740 {
741 AcpiUtDisplayPredefinedMethod (MsgBuffer, ThisName, FALSE);
742 Count++;
743 ThisName = AcpiUtGetNextPredefinedMethod (ThisName);
744 }

746 printf ("%u Predefined Names are recognized\n", Count);

748 /*
749 * Resource Descriptor names
750 */
751 printf ("\nPredefined Names for Resource Descriptor Fields\n\n");

753 Count = 0;
754 ThisName = AcpiGbl_ResourceNames;
755 while (ThisName->Info.Name[0])
756 {
757 NumTypes = AcpiUtGetResourceBitWidth (MsgBuffer,
758 ThisName->Info.ArgumentList);

760 printf ("%4.4s Field is %s bits wide%s\n",
761 ThisName->Info.Name, MsgBuffer,
762 (NumTypes > 1) ? " (depending on descriptor type)" : "");

764 Count++;
765 ThisName++;
766 }

768 printf ("%u Resource Descriptor Field Names are recognized\n", Count);

770 /*
771 * Predefined scope names
772 */
773 printf ("\nPredefined Scope/Device Names (automatically created at root)\n\n

775 ThisName = AcpiGbl_ScopeNames;
776 while (ThisName->Info.Name[0])
777 {
778 printf ("%4.4s Scope/Device\n", ThisName->Info.Name);
779 ThisName++;
780 }
781 }

new/usr/src/common/acpica/compiler/aslprepkg.c 1

**
 21555 Thu Dec 26 13:48:32 2013
new/usr/src/common/acpica/compiler/aslprepkg.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: aslprepkg - support for ACPI predefined name package objects
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aslcompiler.h"
45 #include "aslcompiler.y.h"
46 #include "acpredef.h"

49 #define _COMPONENT ACPI_COMPILER
50 ACPI_MODULE_NAME ("aslprepkg")

53 /* Local prototypes */

55 static void
56 ApCheckPackageElements (
57 const char *PredefinedName,
58 ACPI_PARSE_OBJECT *Op,
59 UINT8 Type1,
60 UINT32 Count1,
61 UINT8 Type2,

new/usr/src/common/acpica/compiler/aslprepkg.c 2

62 UINT32 Count2);

64 static void
65 ApCheckPackageList (
66 const char *PredefinedName,
67 ACPI_PARSE_OBJECT *ParentOp,
68 const ACPI_PREDEFINED_INFO *Package,
69 UINT32 StartIndex,
70 UINT32 Count);

72 static void
73 ApPackageTooSmall (
74 const char *PredefinedName,
75 ACPI_PARSE_OBJECT *Op,
76 UINT32 Count,
77 UINT32 ExpectedCount);

79 static void
80 ApZeroLengthPackage (
81 const char *PredefinedName,
82 ACPI_PARSE_OBJECT *Op);

84 static void
85 ApPackageTooLarge (
86 const char *PredefinedName,
87 ACPI_PARSE_OBJECT *Op,
88 UINT32 Count,
89 UINT32 ExpectedCount);

92 /***
93 *
94 * FUNCTION: ApCheckPackage
95 *
96 * PARAMETERS: ParentOp - Parser op for the package
97 * Predefined - Pointer to package-specific info for
98 * the method
99 *
100 * RETURN: None
101 *
102 * DESCRIPTION: Top-level validation for predefined name return package
103 * objects.
104 *
105 **/

107 void
108 ApCheckPackage (
109 ACPI_PARSE_OBJECT *ParentOp,
110 const ACPI_PREDEFINED_INFO *Predefined)
111 {
112 ACPI_PARSE_OBJECT *Op;
113 const ACPI_PREDEFINED_INFO *Package;
114 ACPI_STATUS Status;
115 UINT32 ExpectedCount;
116 UINT32 Count;
117 UINT32 i;

120 /* The package info for this name is in the next table entry */

122 Package = Predefined + 1;

124 /* First child is the package length */

126 Op = ParentOp->Asl.Child;
127 Count = (UINT32) Op->Asl.Value.Integer;

new/usr/src/common/acpica/compiler/aslprepkg.c 3

129 /*
130 * Many of the variable-length top-level packages are allowed to simply
131 * have zero elements. This allows the BIOS to tell the host that even
132 * though the predefined name/method exists, the feature is not supported.
133 * Other package types require one or more elements. In any case, there
134 * is no need to continue validation.
135 */
136 if (!Count)
137 {
138 switch (Package->RetInfo.Type)
139 {
140 case ACPI_PTYPE1_FIXED:
141 case ACPI_PTYPE1_OPTION:
142 case ACPI_PTYPE2_PKG_COUNT:
143 case ACPI_PTYPE2_REV_FIXED:

145 ApZeroLengthPackage (Predefined->Info.Name, ParentOp);
146 break;

148 case ACPI_PTYPE1_VAR:
149 case ACPI_PTYPE2:
150 case ACPI_PTYPE2_COUNT:
151 case ACPI_PTYPE2_FIXED:
152 case ACPI_PTYPE2_MIN:
153 case ACPI_PTYPE2_FIX_VAR:
154 default:

156 break;
157 }

159 return;
160 }

162 /* Get the first element of the package */

164 Op = Op->Asl.Next;

166 /* Decode the package type */

168 switch (Package->RetInfo.Type)
169 {
170 case ACPI_PTYPE1_FIXED:
171 /*
172 * The package count is fixed and there are no sub-packages
173 *
174 * If package is too small, exit.
175 * If package is larger than expected, issue warning but continue
176 */
177 ExpectedCount = Package->RetInfo.Count1 + Package->RetInfo.Count2;
178 if (Count < ExpectedCount)
179 {
180 goto PackageTooSmall;
181 }
182 else if (Count > ExpectedCount)
183 {
184 ApPackageTooLarge (Predefined->Info.Name, ParentOp,
185 Count, ExpectedCount);
186 }

188 /* Validate all elements of the package */

190 ApCheckPackageElements (Predefined->Info.Name, Op,
191 Package->RetInfo.ObjectType1, Package->RetInfo.Count1,
192 Package->RetInfo.ObjectType2, Package->RetInfo.Count2);
193 break;

new/usr/src/common/acpica/compiler/aslprepkg.c 4

195 case ACPI_PTYPE1_VAR:
196 /*
197 * The package count is variable, there are no sub-packages,
198 * and all elements must be of the same type
199 */
200 for (i = 0; i < Count; i++)
201 {
202 ApCheckObjectType (Predefined->Info.Name, Op,
203 Package->RetInfo.ObjectType1, i);
204 Op = Op->Asl.Next;
205 }
206 break;

208 case ACPI_PTYPE1_OPTION:
209 /*
210 * The package count is variable, there are no sub-packages.
211 * There are a fixed number of required elements, and a variable
212 * number of optional elements.
213 *
214 * Check if package is at least as large as the minimum required
215 */
216 ExpectedCount = Package->RetInfo3.Count;
217 if (Count < ExpectedCount)
218 {
219 goto PackageTooSmall;
220 }

222 /* Variable number of sub-objects */

224 for (i = 0; i < Count; i++)
225 {
226 if (i < Package->RetInfo3.Count)
227 {
228 /* These are the required package elements (0, 1, or 2) */

230 ApCheckObjectType (Predefined->Info.Name, Op,
231 Package->RetInfo3.ObjectType[i], i);
232 }
233 else
234 {
235 /* These are the optional package elements */

237 ApCheckObjectType (Predefined->Info.Name, Op,
238 Package->RetInfo3.TailObjectType, i);
239 }
240 Op = Op->Asl.Next;
241 }
242 break;

244 case ACPI_PTYPE2_REV_FIXED:

246 /* First element is the (Integer) revision */

248 ApCheckObjectType (Predefined->Info.Name, Op,
249 ACPI_RTYPE_INTEGER, 0);

251 Op = Op->Asl.Next;
252 Count--;

254 /* Examine the sub-packages */

256 ApCheckPackageList (Predefined->Info.Name, Op,
257 Package, 1, Count);
258 break;

new/usr/src/common/acpica/compiler/aslprepkg.c 5

260 case ACPI_PTYPE2_PKG_COUNT:

262 /* First element is the (Integer) count of sub-packages to follow */

264 Status = ApCheckObjectType (Predefined->Info.Name, Op,
265 ACPI_RTYPE_INTEGER, 0);

267 /* We must have an integer count from above (otherwise, use Count) */

269 if (ACPI_SUCCESS (Status))
270 {
271 /*
272 * Count cannot be larger than the parent package length, but
273 * allow it to be smaller. The >= accounts for the Integer above.
274 */
275 ExpectedCount = (UINT32) Op->Asl.Value.Integer;
276 if (ExpectedCount >= Count)
277 {
278 goto PackageTooSmall;
279 }

281 Count = ExpectedCount;
282 }

284 Op = Op->Asl.Next;

286 /* Examine the sub-packages */

288 ApCheckPackageList (Predefined->Info.Name, Op,
289 Package, 1, Count);
290 break;

292 case ACPI_PTYPE2:
293 case ACPI_PTYPE2_FIXED:
294 case ACPI_PTYPE2_MIN:
295 case ACPI_PTYPE2_COUNT:
296 case ACPI_PTYPE2_FIX_VAR:
297 /*
298 * These types all return a single Package that consists of a
299 * variable number of sub-Packages.
300 */

302 /* Examine the sub-packages */

304 ApCheckPackageList (Predefined->Info.Name, Op,
305 Package, 0, Count);
306 break;

308 default:
309 return;
310 }

312 return;

314 PackageTooSmall:
315 ApPackageTooSmall (Predefined->Info.Name, ParentOp,
316 Count, ExpectedCount);
317 }

320 /***
321 *
322 * FUNCTION: ApCheckPackageElements
323 *
324 * PARAMETERS: PredefinedName - Name of the predefined object
325 * Op - Parser op for the package

new/usr/src/common/acpica/compiler/aslprepkg.c 6

326 * Type1 - Object type for first group
327 * Count1 - Count for first group
328 * Type2 - Object type for second group
329 * Count2 - Count for second group
330 *
331 * RETURN: None
332 *
333 * DESCRIPTION: Validate all elements of a package. Works with packages that
334 * are defined to contain up to two groups of different object
335 * types.
336 *
337 **/

339 static void
340 ApCheckPackageElements (
341 const char *PredefinedName,
342 ACPI_PARSE_OBJECT *Op,
343 UINT8 Type1,
344 UINT32 Count1,
345 UINT8 Type2,
346 UINT32 Count2)
347 {
348 UINT32 i;

351 /*
352 * Up to two groups of package elements are supported by the data
353 * structure. All elements in each group must be of the same type.
354 * The second group can have a count of zero.
355 *
356 * Aborts check upon a NULL package element, as this means (at compile
357 * time) that the remainder of the package elements are also NULL
358 * (This is the only way to create NULL package elements.)
359 */
360 for (i = 0; (i < Count1) && Op; i++)
361 {
362 ApCheckObjectType (PredefinedName, Op, Type1, i);
363 Op = Op->Asl.Next;
364 }

366 for (i = 0; (i < Count2) && Op; i++)
367 {
368 ApCheckObjectType (PredefinedName, Op, Type2, (i + Count1));
369 Op = Op->Asl.Next;
370 }
371 }

374 /***
375 *
376 * FUNCTION: ApCheckPackageList
377 *
378 * PARAMETERS: PredefinedName - Name of the predefined object
379 * ParentOp - Parser op of the parent package
380 * Package - Package info for this predefined name
381 * StartIndex - Index in parent package where list begins
382 * ParentCount - Element count of parent package
383 *
384 * RETURN: None
385 *
386 * DESCRIPTION: Validate the individual package elements for a predefined name.
387 * Handles the cases where the predefined name is defined as a
388 * Package of Packages (subpackages). These are the types:
389 *
390 * ACPI_PTYPE2
391 * ACPI_PTYPE2_FIXED

new/usr/src/common/acpica/compiler/aslprepkg.c 7

392 * ACPI_PTYPE2_MIN
393 * ACPI_PTYPE2_COUNT
394 * ACPI_PTYPE2_FIX_VAR
395 *
396 **/

398 static void
399 ApCheckPackageList (
400 const char *PredefinedName,
401 ACPI_PARSE_OBJECT *ParentOp,
402 const ACPI_PREDEFINED_INFO *Package,
403 UINT32 StartIndex,
404 UINT32 ParentCount)
405 {
406 ACPI_PARSE_OBJECT *SubPackageOp = ParentOp;
407 ACPI_PARSE_OBJECT *Op;
408 ACPI_STATUS Status;
409 UINT32 Count;
410 UINT32 ExpectedCount;
411 UINT32 i;
412 UINT32 j;

415 /*
416 * Validate each subpackage in the parent Package
417 *
418 * Note: We ignore NULL package elements on the assumption that
419 * they will be initialized by the BIOS or other ASL code.
420 */
421 for (i = 0; (i < ParentCount) && SubPackageOp; i++)
422 {
423 /* Each object in the list must be of type Package */

425 Status = ApCheckObjectType (PredefinedName, SubPackageOp,
426 ACPI_RTYPE_PACKAGE, i + StartIndex);
427 if (ACPI_FAILURE (Status))
428 {
429 goto NextSubpackage;
430 }

432 /* Examine the different types of expected subpackages */

434 Op = SubPackageOp->Asl.Child;

436 /* First child is the package length */

438 Count = (UINT32) Op->Asl.Value.Integer;
439 Op = Op->Asl.Next;

441 /* The subpackage must have at least one element */

443 if (!Count)
444 {
445 ApZeroLengthPackage (PredefinedName, SubPackageOp);
446 goto NextSubpackage;
447 }

449 /*
450 * Decode the package type.
451 * PTYPE2 indicates that a "package of packages" is expected for
452 * this name. The various flavors of PTYPE2 indicate the number
453 * and format of the subpackages.
454 */
455 switch (Package->RetInfo.Type)
456 {
457 case ACPI_PTYPE2:

new/usr/src/common/acpica/compiler/aslprepkg.c 8

458 case ACPI_PTYPE2_PKG_COUNT:
459 case ACPI_PTYPE2_REV_FIXED:

461 /* Each subpackage has a fixed number of elements */

463 ExpectedCount = Package->RetInfo.Count1 + Package->RetInfo.Count2;
464 if (Count < ExpectedCount)
465 {
466 ApPackageTooSmall (PredefinedName, SubPackageOp,
467 Count, ExpectedCount);
468 break;
469 }

471 ApCheckPackageElements (PredefinedName, Op,
472 Package->RetInfo.ObjectType1, Package->RetInfo.Count1,
473 Package->RetInfo.ObjectType2, Package->RetInfo.Count2);
474 break;

476 case ACPI_PTYPE2_FIX_VAR:
477 /*
478 * Each subpackage has a fixed number of elements and an
479 * optional element
480 */
481 ExpectedCount = Package->RetInfo.Count1 + Package->RetInfo.Count2;
482 if (Count < ExpectedCount)
483 {
484 ApPackageTooSmall (PredefinedName, SubPackageOp,
485 Count, ExpectedCount);
486 break;
487 }

489 ApCheckPackageElements (PredefinedName, Op,
490 Package->RetInfo.ObjectType1, Package->RetInfo.Count1,
491 Package->RetInfo.ObjectType2,
492 Count - Package->RetInfo.Count1);
493 break;

495 case ACPI_PTYPE2_FIXED:

497 /* Each sub-package has a fixed length */

499 ExpectedCount = Package->RetInfo2.Count;
500 if (Count < ExpectedCount)
501 {
502 ApPackageTooSmall (PredefinedName, SubPackageOp,
503 Count, ExpectedCount);
504 break;
505 }

507 /* Check each object/type combination */

509 for (j = 0; j < ExpectedCount; j++)
510 {
511 ApCheckObjectType (PredefinedName, Op,
512 Package->RetInfo2.ObjectType[j], j);

514 Op = Op->Asl.Next;
515 }
516 break;

518 case ACPI_PTYPE2_MIN:

520 /* Each sub-package has a variable but minimum length */

522 ExpectedCount = Package->RetInfo.Count1;
523 if (Count < ExpectedCount)

new/usr/src/common/acpica/compiler/aslprepkg.c 9

524 {
525 ApPackageTooSmall (PredefinedName, SubPackageOp,
526 Count, ExpectedCount);
527 break;
528 }

530 /* Check the type of each sub-package element */

532 ApCheckPackageElements (PredefinedName, Op,
533 Package->RetInfo.ObjectType1, Count, 0, 0);
534 break;

536 case ACPI_PTYPE2_COUNT:
537 /*
538 * First element is the (Integer) count of elements, including
539 * the count field (the ACPI name is NumElements)
540 */
541 Status = ApCheckObjectType (PredefinedName, Op,
542 ACPI_RTYPE_INTEGER, 0);

544 /* We must have an integer count from above (otherwise, use Count) *

546 if (ACPI_SUCCESS (Status))
547 {
548 /*
549 * Make sure package is large enough for the Count and is
550 * is as large as the minimum size
551 */
552 ExpectedCount = (UINT32) Op->Asl.Value.Integer;

554 if (Count < ExpectedCount)
555 {
556 ApPackageTooSmall (PredefinedName, SubPackageOp,
557 Count, ExpectedCount);
558 break;
559 }
560 else if (Count > ExpectedCount)
561 {
562 ApPackageTooLarge (PredefinedName, SubPackageOp,
563 Count, ExpectedCount);
564 }

566 /* Some names of this type have a minimum length */

568 if (Count < Package->RetInfo.Count1)
569 {
570 ExpectedCount = Package->RetInfo.Count1;
571 ApPackageTooSmall (PredefinedName, SubPackageOp,
572 Count, ExpectedCount);
573 break;
574 }

576 Count = ExpectedCount;
577 }

579 /* Check the type of each sub-package element */

581 Op = Op->Asl.Next;
582 ApCheckPackageElements (PredefinedName, Op,
583 Package->RetInfo.ObjectType1, (Count - 1), 0, 0);
584 break;

586 default:
587 break;
588 }

new/usr/src/common/acpica/compiler/aslprepkg.c 10

590 NextSubpackage:
591 SubPackageOp = SubPackageOp->Asl.Next;
592 }
593 }

596 /***
597 *
598 * FUNCTION: ApPackageTooSmall
599 *
600 * PARAMETERS: PredefinedName - Name of the predefined object
601 * Op - Current parser op
602 * Count - Actual package element count
603 * ExpectedCount - Expected package element count
604 *
605 * RETURN: None
606 *
607 * DESCRIPTION: Issue error message for a package that is smaller than
608 * required.
609 *
610 **/

612 static void
613 ApPackageTooSmall (
614 const char *PredefinedName,
615 ACPI_PARSE_OBJECT *Op,
616 UINT32 Count,
617 UINT32 ExpectedCount)
618 {

620 sprintf (MsgBuffer, "%s: length %u, required minimum is %u",
621 PredefinedName, Count, ExpectedCount);

623 AslError (ASL_ERROR, ASL_MSG_RESERVED_PACKAGE_LENGTH, Op, MsgBuffer);
624 }

627 /***
628 *
629 * FUNCTION: ApZeroLengthPackage
630 *
631 * PARAMETERS: PredefinedName - Name of the predefined object
632 * Op - Current parser op
633 *
634 * RETURN: None
635 *
636 * DESCRIPTION: Issue error message for a zero-length package (a package that
637 * is required to have a non-zero length). Variable length
638 * packages seem to be allowed to have zero length, however.
639 * Even if not allowed, BIOS code does it.
640 *
641 **/

643 static void
644 ApZeroLengthPackage (
645 const char *PredefinedName,
646 ACPI_PARSE_OBJECT *Op)
647 {

649 sprintf (MsgBuffer, "%s: length is zero", PredefinedName);

651 AslError (ASL_ERROR, ASL_MSG_RESERVED_PACKAGE_LENGTH, Op, MsgBuffer);
652 }

655 /***

new/usr/src/common/acpica/compiler/aslprepkg.c 11

656 *
657 * FUNCTION: ApPackageTooLarge
658 *
659 * PARAMETERS: PredefinedName - Name of the predefined object
660 * Op - Current parser op
661 * Count - Actual package element count
662 * ExpectedCount - Expected package element count
663 *
664 * RETURN: None
665 *
666 * DESCRIPTION: Issue a remark for a package that is larger than expected.
667 *
668 **/

670 static void
671 ApPackageTooLarge (
672 const char *PredefinedName,
673 ACPI_PARSE_OBJECT *Op,
674 UINT32 Count,
675 UINT32 ExpectedCount)
676 {

678 sprintf (MsgBuffer, "%s: length is %u, only %u required",
679 PredefinedName, Count, ExpectedCount);

681 AslError (ASL_REMARK, ASL_MSG_RESERVED_PACKAGE_LENGTH, Op, MsgBuffer);
682 }

new/usr/src/common/acpica/compiler/aslresource.c 1

**
 32978 Thu Dec 26 13:48:32 2013
new/usr/src/common/acpica/compiler/aslresource.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslresource - Resource template/descriptor utilities
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"
47 #include "amlcode.h"

50 #define _COMPONENT ACPI_COMPILER
51 ACPI_MODULE_NAME ("aslresource")

54 /***
55 *
56 * FUNCTION: RsSmallAddressCheck
57 *
58 * PARAMETERS: Minimum - Address Min value
59 * Maximum - Address Max value
60 * Length - Address range value

new/usr/src/common/acpica/compiler/aslresource.c 2

61 * Alignment - Address alignment value
62 * MinOp - Original Op for Address Min
63 * MaxOp - Original Op for Address Max
64 * LengthOp - Original Op for address range
65 * AlignOp - Original Op for address alignment. If
66 * NULL, means "zero value for alignment is
67 * OK, and means 64K alignment" (for
68 * Memory24 descriptor)
69 * Op - Parent Op for entire construct
70 *
71 * RETURN: None. Adds error messages to error log if necessary
72 *
73 * DESCRIPTION: Perform common value checks for "small" address descriptors.
74 * Currently:
75 * Io, Memory24, Memory32
76 *
77 **/

79 void
80 RsSmallAddressCheck (
81 UINT8 Type,
82 UINT32 Minimum,
83 UINT32 Maximum,
84 UINT32 Length,
85 UINT32 Alignment,
86 ACPI_PARSE_OBJECT *MinOp,
87 ACPI_PARSE_OBJECT *MaxOp,
88 ACPI_PARSE_OBJECT *LengthOp,
89 ACPI_PARSE_OBJECT *AlignOp,
90 ACPI_PARSE_OBJECT *Op)
91 {

93 if (Gbl_NoResourceChecking)
94 {
95 return;
96 }

98 /*
99 * Check for a so-called "null descriptor". These are descriptors that are
100 * created with most fields set to zero. The intent is that the descriptor
101 * will be updated/completed at runtime via a BufferField.
102 *
103 * If the descriptor does NOT have a resource tag, it cannot be referenced
104 * by a BufferField and we will flag this as an error. Conversely, if
105 * the descriptor has a resource tag, we will assume that a BufferField
106 * will be used to dynamically update it, so no error.
107 *
108 * A possible enhancement to this check would be to verify that in fact
109 * a BufferField is created using the resource tag, and perhaps even
110 * verify that a Store is performed to the BufferField.
111 *
112 * Note: for these descriptors, Alignment is allowed to be zero
113 */
114 if (!Minimum && !Maximum && !Length)
115 {
116 if (!Op->Asl.ExternalName)
117 {
118 /* No resource tag. Descriptor is fixed and is also illegal */

120 AslError (ASL_ERROR, ASL_MSG_NULL_DESCRIPTOR, Op, NULL);
121 }

123 return;
124 }

126 /* Special case for Memory24, values are compressed */

new/usr/src/common/acpica/compiler/aslresource.c 3

128 if (Type == ACPI_RESOURCE_NAME_MEMORY24)
129 {
130 if (!Alignment) /* Alignment==0 means 64K - no invalid alignment */
131 {
132 Alignment = ACPI_UINT16_MAX + 1;
133 }

135 Minimum <<= 8;
136 Maximum <<= 8;
137 Length *= 256;
138 }

140 /* IO descriptor has different definition of min/max, don’t check */

142 if (Type != ACPI_RESOURCE_NAME_IO)
143 {
144 /* Basic checks on Min/Max/Length */

146 if (Minimum > Maximum)
147 {
148 AslError (ASL_ERROR, ASL_MSG_INVALID_MIN_MAX, MinOp, NULL);
149 }
150 else if (Length > (Maximum - Minimum + 1))
151 {
152 AslError (ASL_ERROR, ASL_MSG_INVALID_LENGTH, LengthOp, NULL);
153 }
154 }

156 /* Alignment of zero is not in ACPI spec, but is used to mean byte acc */

158 if (!Alignment)
159 {
160 Alignment = 1;
161 }

163 /* Addresses must be an exact multiple of the alignment value */

165 if (Minimum % Alignment)
166 {
167 AslError (ASL_ERROR, ASL_MSG_ALIGNMENT, MinOp, NULL);
168 }
169 if (Maximum % Alignment)
170 {
171 AslError (ASL_ERROR, ASL_MSG_ALIGNMENT, MaxOp, NULL);
172 }
173 }

176 /***
177 *
178 * FUNCTION: RsLargeAddressCheck
179 *
180 * PARAMETERS: Minimum - Address Min value
181 * Maximum - Address Max value
182 * Length - Address range value
183 * Granularity - Address granularity value
184 * Flags - General flags for address descriptors:
185 * _MIF, _MAF, _DEC
186 * MinOp - Original Op for Address Min
187 * MaxOp - Original Op for Address Max
188 * LengthOp - Original Op for address range
189 * GranOp - Original Op for address granularity
190 * Op - Parent Op for entire construct
191 *
192 * RETURN: None. Adds error messages to error log if necessary

new/usr/src/common/acpica/compiler/aslresource.c 4

193 *
194 * DESCRIPTION: Perform common value checks for "large" address descriptors.
195 * Currently:
196 * WordIo, WordBusNumber, WordSpace
197 * DWordIo, DWordMemory, DWordSpace
198 * QWordIo, QWordMemory, QWordSpace
199 * ExtendedIo, ExtendedMemory, ExtendedSpace
200 *
201 * _MIF flag set means that the minimum address is fixed and is not relocatable
202 * _MAF flag set means that the maximum address is fixed and is not relocatable
203 * Length of zero means that the record size is variable
204 *
205 * This function implements the LEN/MIF/MAF/MIN/MAX/GRA rules within Table 6-40
206 * of the ACPI 4.0a specification. Added 04/2010.
207 *
208 **/

210 void
211 RsLargeAddressCheck (
212 UINT64 Minimum,
213 UINT64 Maximum,
214 UINT64 Length,
215 UINT64 Granularity,
216 UINT8 Flags,
217 ACPI_PARSE_OBJECT *MinOp,
218 ACPI_PARSE_OBJECT *MaxOp,
219 ACPI_PARSE_OBJECT *LengthOp,
220 ACPI_PARSE_OBJECT *GranOp,
221 ACPI_PARSE_OBJECT *Op)
222 {

224 if (Gbl_NoResourceChecking)
225 {
226 return;
227 }

229 /*
230 * Check for a so-called "null descriptor". These are descriptors that are
231 * created with most fields set to zero. The intent is that the descriptor
232 * will be updated/completed at runtime via a BufferField.
233 *
234 * If the descriptor does NOT have a resource tag, it cannot be referenced
235 * by a BufferField and we will flag this as an error. Conversely, if
236 * the descriptor has a resource tag, we will assume that a BufferField
237 * will be used to dynamically update it, so no error.
238 *
239 * A possible enhancement to this check would be to verify that in fact
240 * a BufferField is created using the resource tag, and perhaps even
241 * verify that a Store is performed to the BufferField.
242 */
243 if (!Minimum && !Maximum && !Length && !Granularity)
244 {
245 if (!Op->Asl.ExternalName)
246 {
247 /* No resource tag. Descriptor is fixed and is also illegal */

249 AslError (ASL_ERROR, ASL_MSG_NULL_DESCRIPTOR, Op, NULL);
250 }

252 return;
253 }

255 /* Basic checks on Min/Max/Length */

257 if (Minimum > Maximum)
258 {

new/usr/src/common/acpica/compiler/aslresource.c 5

259 AslError (ASL_ERROR, ASL_MSG_INVALID_MIN_MAX, MinOp, NULL);
260 return;
261 }
262 else if (Length > (Maximum - Minimum + 1))
263 {
264 AslError (ASL_ERROR, ASL_MSG_INVALID_LENGTH, LengthOp, NULL);
265 return;
266 }

268 /* If specified (non-zero), ensure granularity is a power-of-two minus one *

270 if (Granularity)
271 {
272 if ((Granularity + 1) &
273 Granularity)
274 {
275 AslError (ASL_ERROR, ASL_MSG_INVALID_GRANULARITY, GranOp, NULL);
276 return;
277 }
278 }

280 /*
281 * Check the various combinations of Length, MinFixed, and MaxFixed
282 */
283 if (Length)
284 {
285 /* Fixed non-zero length */

287 switch (Flags & (ACPI_RESOURCE_FLAG_MIF | ACPI_RESOURCE_FLAG_MAF))
288 {
289 case 0:
290 /*
291 * Fixed length, variable locations (both _MIN and _MAX).
292 * Length must be a multiple of granularity
293 */
294 if (Granularity & Length)
295 {
296 AslError (ASL_ERROR, ASL_MSG_ALIGNMENT, LengthOp, NULL);
297 }
298 break;

300 case (ACPI_RESOURCE_FLAG_MIF | ACPI_RESOURCE_FLAG_MAF):

302 /* Fixed length, fixed location. Granularity must be zero */

304 if (Granularity != 0)
305 {
306 AslError (ASL_ERROR, ASL_MSG_INVALID_GRAN_FIXED, GranOp, NULL);
307 }

309 /* Length must be exactly the size of the min/max window */

311 if (Length != (Maximum - Minimum + 1))
312 {
313 AslError (ASL_ERROR, ASL_MSG_INVALID_LENGTH_FIXED, LengthOp, NUL
314 }
315 break;

317 /* All other combinations are invalid */

319 case ACPI_RESOURCE_FLAG_MIF:
320 case ACPI_RESOURCE_FLAG_MAF:
321 default:

323 AslError (ASL_ERROR, ASL_MSG_INVALID_ADDR_FLAGS, LengthOp, NULL);
324 }

new/usr/src/common/acpica/compiler/aslresource.c 6

325 }
326 else
327 {
328 /* Variable length (length==0) */

330 switch (Flags & (ACPI_RESOURCE_FLAG_MIF | ACPI_RESOURCE_FLAG_MAF))
331 {
332 case 0:
333 /*
334 * Both _MIN and _MAX are variable.
335 * No additional requirements, just exit
336 */
337 break;

339 case ACPI_RESOURCE_FLAG_MIF:

341 /* _MIN is fixed. _MIN must be multiple of _GRA */

343 /*
344 * The granularity is defined by the ACPI specification to be a
345 * power-of-two minus one, therefore the granularity is a
346 * bitmask which can be used to easily validate the addresses.
347 */
348 if (Granularity & Minimum)
349 {
350 AslError (ASL_ERROR, ASL_MSG_ALIGNMENT, MinOp, NULL);
351 }
352 break;

354 case ACPI_RESOURCE_FLAG_MAF:

356 /* _MAX is fixed. (_MAX + 1) must be multiple of _GRA */

358 if (Granularity & (Maximum + 1))
359 {
360 AslError (ASL_ERROR, ASL_MSG_ALIGNMENT, MaxOp, "-1");
361 }
362 break;

364 /* Both MIF/MAF set is invalid if length is zero */

366 case (ACPI_RESOURCE_FLAG_MIF | ACPI_RESOURCE_FLAG_MAF):
367 default:

369 AslError (ASL_ERROR, ASL_MSG_INVALID_ADDR_FLAGS, LengthOp, NULL);
370 }
371 }
372 }

375 /***
376 *
377 * FUNCTION: RsGetStringDataLength
378 *
379 * PARAMETERS: InitializerOp - Start of a subtree of init nodes
380 *
381 * RETURN: Valid string length if a string node is found (otherwise 0)
382 *
383 * DESCRIPTION: In a list of peer nodes, find the first one that contains a
384 * string and return the length of the string.
385 *
386 **/

388 UINT16
389 RsGetStringDataLength (
390 ACPI_PARSE_OBJECT *InitializerOp)

new/usr/src/common/acpica/compiler/aslresource.c 7

391 {

393 while (InitializerOp)
394 {
395 if (InitializerOp->Asl.ParseOpcode == PARSEOP_STRING_LITERAL)
396 {
397 return ((UINT16) (strlen (InitializerOp->Asl.Value.String) + 1));
398 }
399 InitializerOp = ASL_GET_PEER_NODE (InitializerOp);
400 }

402 return (0);
403 }

406 /***
407 *
408 * FUNCTION: RsAllocateResourceNode
409 *
410 * PARAMETERS: Size - Size of node in bytes
411 *
412 * RETURN: The allocated node - aborts on allocation failure
413 *
414 * DESCRIPTION: Allocate a resource description node and the resource
415 * descriptor itself (the nodes are used to link descriptors).
416 *
417 **/

419 ASL_RESOURCE_NODE *
420 RsAllocateResourceNode (
421 UINT32 Size)
422 {
423 ASL_RESOURCE_NODE *Rnode;

426 /* Allocate the node */

428 Rnode = UtLocalCalloc (sizeof (ASL_RESOURCE_NODE));

430 /* Allocate the resource descriptor itself */

432 Rnode->Buffer = UtLocalCalloc (Size);
433 Rnode->BufferLength = Size;

435 return (Rnode);
436 }

439 /***
440 *
441 * FUNCTION: RsCreateResourceField
442 *
443 * PARAMETERS: Op - Resource field node
444 * Name - Name of the field (Used only to reference
445 * the field in the ASL, not in the AML)
446 * ByteOffset - Offset from the field start
447 * BitOffset - Additional bit offset
448 * BitLength - Number of bits in the field
449 *
450 * RETURN: None, sets fields within the input node
451 *
452 * DESCRIPTION: Utility function to generate a named bit field within a
453 * resource descriptor. Mark a node as 1) a field in a resource
454 * descriptor, and 2) set the value to be a BIT offset
455 *
456 **/

new/usr/src/common/acpica/compiler/aslresource.c 8

458 void
459 RsCreateResourceField (
460 ACPI_PARSE_OBJECT *Op,
461 char *Name,
462 UINT32 ByteOffset,
463 UINT32 BitOffset,
464 UINT32 BitLength)
465 {

467 Op->Asl.ExternalName = Name;
468 Op->Asl.CompileFlags |= NODE_IS_RESOURCE_FIELD;

471 Op->Asl.Value.Tag.BitOffset = (ByteOffset * 8) + BitOffset;
472 Op->Asl.Value.Tag.BitLength = BitLength;
473 }

476 /***
477 *
478 * FUNCTION: RsSetFlagBits
479 *
480 * PARAMETERS: *Flags - Pointer to the flag byte
481 * Op - Flag initialization node
482 * Position - Bit position within the flag byte
483 * Default - Used if the node is DEFAULT.
484 *
485 * RETURN: Sets bits within the *Flags output byte.
486 *
487 * DESCRIPTION: Set a bit in a cumulative flags word from an initialization
488 * node. Will use a default value if the node is DEFAULT, meaning
489 * that no value was specified in the ASL. Used to merge multiple
490 * keywords into a single flags byte.
491 *
492 **/

494 void
495 RsSetFlagBits (
496 UINT8 *Flags,
497 ACPI_PARSE_OBJECT *Op,
498 UINT8 Position,
499 UINT8 DefaultBit)
500 {

502 if (Op->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG)
503 {
504 /* Use the default bit */

506 *Flags |= (DefaultBit << Position);
507 }
508 else
509 {
510 /* Use the bit specified in the initialization node */

512 *Flags |= (((UINT8) Op->Asl.Value.Integer) << Position);
513 }
514 }

517 void
518 RsSetFlagBits16 (
519 UINT16 *Flags,
520 ACPI_PARSE_OBJECT *Op,
521 UINT8 Position,
522 UINT8 DefaultBit)

new/usr/src/common/acpica/compiler/aslresource.c 9

523 {

525 if (Op->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG)
526 {
527 /* Use the default bit */

529 *Flags |= (DefaultBit << Position);
530 }
531 else
532 {
533 /* Use the bit specified in the initialization node */

535 *Flags |= (((UINT16) Op->Asl.Value.Integer) << Position);
536 }
537 }

540 /***
541 *
542 * FUNCTION: RsCompleteNodeAndGetNext
543 *
544 * PARAMETERS: Op - Resource node to be completed
545 *
546 * RETURN: The next peer to the input node.
547 *
548 * DESCRIPTION: Mark the current node completed and return the next peer.
549 * The node ParseOpcode is set to DEFAULT_ARG, meaning that
550 * this node is to be ignored from now on.
551 *
552 **/

554 ACPI_PARSE_OBJECT *
555 RsCompleteNodeAndGetNext (
556 ACPI_PARSE_OBJECT *Op)
557 {

559 /* Mark this node unused */

561 Op->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;

563 /* Move on to the next peer node in the initializer list */

565 return (ASL_GET_PEER_NODE (Op));
566 }

569 /***
570 *
571 * FUNCTION: RsCheckListForDuplicates
572 *
573 * PARAMETERS: Op - First op in the initializer list
574 *
575 * RETURN: None
576 *
577 * DESCRIPTION: Check an initializer list for duplicate values. Emits an error
578 * if any duplicates are found.
579 *
580 **/

582 void
583 RsCheckListForDuplicates (
584 ACPI_PARSE_OBJECT *Op)
585 {
586 ACPI_PARSE_OBJECT *NextValueOp = Op;
587 ACPI_PARSE_OBJECT *NextOp;
588 UINT32 Value;

new/usr/src/common/acpica/compiler/aslresource.c 10

591 if (!Op)
592 {
593 return;
594 }

596 /* Search list once for each value in the list */

598 while (NextValueOp)
599 {
600 Value = (UINT32) NextValueOp->Asl.Value.Integer;

602 /* Compare this value to all remaining values in the list */

604 NextOp = ASL_GET_PEER_NODE (NextValueOp);
605 while (NextOp)
606 {
607 if (NextOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
608 {
609 /* Compare values */

611 if (Value == (UINT32) NextOp->Asl.Value.Integer)
612 {
613 /* Emit error only once per duplicate node */

615 if (!(NextOp->Asl.CompileFlags & NODE_IS_DUPLICATE))
616 {
617 NextOp->Asl.CompileFlags |= NODE_IS_DUPLICATE;
618 AslError (ASL_ERROR, ASL_MSG_DUPLICATE_ITEM,
619 NextOp, NULL);
620 }
621 }
622 }

624 NextOp = ASL_GET_PEER_NODE (NextOp);
625 }

627 NextValueOp = ASL_GET_PEER_NODE (NextValueOp);
628 }
629 }

632 /***
633 *
634 * FUNCTION: RsDoOneResourceDescriptor
635 *
636 * PARAMETERS: DescriptorTypeOp - Parent parse node of the descriptor
637 * CurrentByteOffset - Offset in the resource descriptor
638 * buffer.
639 *
640 * RETURN: A valid resource node for the descriptor
641 *
642 * DESCRIPTION: Dispatches the processing of one resource descriptor
643 *
644 **/

646 ASL_RESOURCE_NODE *
647 RsDoOneResourceDescriptor (
648 ACPI_PARSE_OBJECT *DescriptorTypeOp,
649 UINT32 CurrentByteOffset,
650 UINT8 *State)
651 {
652 ASL_RESOURCE_NODE *Rnode = NULL;

new/usr/src/common/acpica/compiler/aslresource.c 11

655 /* Construct the resource */

657 switch (DescriptorTypeOp->Asl.ParseOpcode)
658 {
659 case PARSEOP_DMA:

661 Rnode = RsDoDmaDescriptor (DescriptorTypeOp,
662 CurrentByteOffset);
663 break;

665 case PARSEOP_FIXEDDMA:

667 Rnode = RsDoFixedDmaDescriptor (DescriptorTypeOp,
668 CurrentByteOffset);
669 break;

671 case PARSEOP_DWORDIO:

673 Rnode = RsDoDwordIoDescriptor (DescriptorTypeOp,
674 CurrentByteOffset);
675 break;

677 case PARSEOP_DWORDMEMORY:

679 Rnode = RsDoDwordMemoryDescriptor (DescriptorTypeOp,
680 CurrentByteOffset);
681 break;

683 case PARSEOP_DWORDSPACE:

685 Rnode = RsDoDwordSpaceDescriptor (DescriptorTypeOp,
686 CurrentByteOffset);
687 break;

689 case PARSEOP_ENDDEPENDENTFN:

691 switch (*State)
692 {
693 case ACPI_RSTATE_NORMAL:

695 AslError (ASL_ERROR, ASL_MSG_MISSING_STARTDEPENDENT,
696 DescriptorTypeOp, NULL);
697 break;

699 case ACPI_RSTATE_START_DEPENDENT:

701 AslError (ASL_ERROR, ASL_MSG_DEPENDENT_NESTING,
702 DescriptorTypeOp, NULL);
703 break;

705 case ACPI_RSTATE_DEPENDENT_LIST:
706 default:

708 break;
709 }

711 *State = ACPI_RSTATE_NORMAL;
712 Rnode = RsDoEndDependentDescriptor (DescriptorTypeOp,
713 CurrentByteOffset);
714 break;

716 case PARSEOP_ENDTAG:

718 Rnode = RsDoEndTagDescriptor (DescriptorTypeOp,
719 CurrentByteOffset);
720 break;

new/usr/src/common/acpica/compiler/aslresource.c 12

722 case PARSEOP_EXTENDEDIO:

724 Rnode = RsDoExtendedIoDescriptor (DescriptorTypeOp,
725 CurrentByteOffset);
726 break;

728 case PARSEOP_EXTENDEDMEMORY:

730 Rnode = RsDoExtendedMemoryDescriptor (DescriptorTypeOp,
731 CurrentByteOffset);
732 break;

734 case PARSEOP_EXTENDEDSPACE:

736 Rnode = RsDoExtendedSpaceDescriptor (DescriptorTypeOp,
737 CurrentByteOffset);
738 break;

740 case PARSEOP_FIXEDIO:

742 Rnode = RsDoFixedIoDescriptor (DescriptorTypeOp,
743 CurrentByteOffset);
744 break;

746 case PARSEOP_INTERRUPT:

748 Rnode = RsDoInterruptDescriptor (DescriptorTypeOp,
749 CurrentByteOffset);
750 break;

752 case PARSEOP_IO:

754 Rnode = RsDoIoDescriptor (DescriptorTypeOp,
755 CurrentByteOffset);
756 break;

758 case PARSEOP_IRQ:

760 Rnode = RsDoIrqDescriptor (DescriptorTypeOp,
761 CurrentByteOffset);
762 break;

764 case PARSEOP_IRQNOFLAGS:

766 Rnode = RsDoIrqNoFlagsDescriptor (DescriptorTypeOp,
767 CurrentByteOffset);
768 break;

770 case PARSEOP_MEMORY24:

772 Rnode = RsDoMemory24Descriptor (DescriptorTypeOp,
773 CurrentByteOffset);
774 break;

776 case PARSEOP_MEMORY32:

778 Rnode = RsDoMemory32Descriptor (DescriptorTypeOp,
779 CurrentByteOffset);
780 break;

782 case PARSEOP_MEMORY32FIXED:

784 Rnode = RsDoMemory32FixedDescriptor (DescriptorTypeOp,
785 CurrentByteOffset);
786 break;

new/usr/src/common/acpica/compiler/aslresource.c 13

788 case PARSEOP_QWORDIO:

790 Rnode = RsDoQwordIoDescriptor (DescriptorTypeOp,
791 CurrentByteOffset);
792 break;

794 case PARSEOP_QWORDMEMORY:

796 Rnode = RsDoQwordMemoryDescriptor (DescriptorTypeOp,
797 CurrentByteOffset);
798 break;

800 case PARSEOP_QWORDSPACE:

802 Rnode = RsDoQwordSpaceDescriptor (DescriptorTypeOp,
803 CurrentByteOffset);
804 break;

806 case PARSEOP_REGISTER:

808 Rnode = RsDoGeneralRegisterDescriptor (DescriptorTypeOp,
809 CurrentByteOffset);
810 break;

812 case PARSEOP_STARTDEPENDENTFN:

814 switch (*State)
815 {
816 case ACPI_RSTATE_START_DEPENDENT:

818 AslError (ASL_ERROR, ASL_MSG_DEPENDENT_NESTING,
819 DescriptorTypeOp, NULL);
820 break;

822 case ACPI_RSTATE_NORMAL:
823 case ACPI_RSTATE_DEPENDENT_LIST:
824 default:

826 break;
827 }

829 *State = ACPI_RSTATE_START_DEPENDENT;
830 Rnode = RsDoStartDependentDescriptor (DescriptorTypeOp,
831 CurrentByteOffset);
832 *State = ACPI_RSTATE_DEPENDENT_LIST;
833 break;

835 case PARSEOP_STARTDEPENDENTFN_NOPRI:

837 switch (*State)
838 {
839 case ACPI_RSTATE_START_DEPENDENT:

841 AslError (ASL_ERROR, ASL_MSG_DEPENDENT_NESTING,
842 DescriptorTypeOp, NULL);
843 break;

845 case ACPI_RSTATE_NORMAL:
846 case ACPI_RSTATE_DEPENDENT_LIST:
847 default:

849 break;
850 }

852 *State = ACPI_RSTATE_START_DEPENDENT;

new/usr/src/common/acpica/compiler/aslresource.c 14

853 Rnode = RsDoStartDependentNoPriDescriptor (DescriptorTypeOp,
854 CurrentByteOffset);
855 *State = ACPI_RSTATE_DEPENDENT_LIST;
856 break;

858 case PARSEOP_VENDORLONG:

860 Rnode = RsDoVendorLargeDescriptor (DescriptorTypeOp,
861 CurrentByteOffset);
862 break;

864 case PARSEOP_VENDORSHORT:

866 Rnode = RsDoVendorSmallDescriptor (DescriptorTypeOp,
867 CurrentByteOffset);
868 break;

870 case PARSEOP_WORDBUSNUMBER:

872 Rnode = RsDoWordBusNumberDescriptor (DescriptorTypeOp,
873 CurrentByteOffset);
874 break;

876 case PARSEOP_WORDIO:

878 Rnode = RsDoWordIoDescriptor (DescriptorTypeOp,
879 CurrentByteOffset);
880 break;

882 case PARSEOP_WORDSPACE:

884 Rnode = RsDoWordSpaceDescriptor (DescriptorTypeOp,
885 CurrentByteOffset);
886 break;

888 case PARSEOP_GPIO_INT:

890 Rnode = RsDoGpioIntDescriptor (DescriptorTypeOp,
891 CurrentByteOffset);
892 break;

894 case PARSEOP_GPIO_IO:

896 Rnode = RsDoGpioIoDescriptor (DescriptorTypeOp,
897 CurrentByteOffset);
898 break;

900 case PARSEOP_I2C_SERIALBUS:

902 Rnode = RsDoI2cSerialBusDescriptor (DescriptorTypeOp,
903 CurrentByteOffset);
904 break;

906 case PARSEOP_SPI_SERIALBUS:

908 Rnode = RsDoSpiSerialBusDescriptor (DescriptorTypeOp,
909 CurrentByteOffset);
910 break;

912 case PARSEOP_UART_SERIALBUS:

914 Rnode = RsDoUartSerialBusDescriptor (DescriptorTypeOp,
915 CurrentByteOffset);
916 break;

918 case PARSEOP_DEFAULT_ARG:

new/usr/src/common/acpica/compiler/aslresource.c 15

920 /* Just ignore any of these, they are used as fillers/placeholders */
921 break;

923 default:

925 printf ("Unknown resource descriptor type [%s]\n",
926 DescriptorTypeOp->Asl.ParseOpName);
927 break;
928 }

930 /*
931 * Mark original node as unused, but head of a resource descriptor.
932 * This allows the resource to be installed in the namespace so that
933 * references to the descriptor can be resolved.
934 */
935 DescriptorTypeOp->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
936 DescriptorTypeOp->Asl.CompileFlags = NODE_IS_RESOURCE_DESC;
937 DescriptorTypeOp->Asl.Value.Integer = CurrentByteOffset;

939 if (Rnode)
940 {
941 DescriptorTypeOp->Asl.FinalAmlLength = Rnode->BufferLength;
942 DescriptorTypeOp->Asl.Extra = ((AML_RESOURCE *) Rnode->Buffer)->Descript
943 }

945 return (Rnode);
946 }

949 /***
950 *
951 * FUNCTION: RsLinkDescriptorChain
952 *
953 * PARAMETERS: PreviousRnode - Pointer to the node that will be previous
954 * to the linked node, At exit, set to the
955 * last node in the new chain.
956 * Rnode - Resource node to link into the list
957 *
958 * RETURN: Cumulative buffer byte offset of the new segment of chain
959 *
960 * DESCRIPTION: Link a descriptor chain at the end of an existing chain.
961 *
962 **/

964 UINT32
965 RsLinkDescriptorChain (
966 ASL_RESOURCE_NODE **PreviousRnode,
967 ASL_RESOURCE_NODE *Rnode)
968 {
969 ASL_RESOURCE_NODE *LastRnode;
970 UINT32 CurrentByteOffset;

973 /* Anything to do? */

975 if (!Rnode)
976 {
977 return (0);
978 }

980 /* Point the previous node to the new node */

982 (*PreviousRnode)->Next = Rnode;
983 CurrentByteOffset = Rnode->BufferLength;

new/usr/src/common/acpica/compiler/aslresource.c 16

985 /* Walk to the end of the chain headed by Rnode */

987 LastRnode = Rnode;
988 while (LastRnode->Next)
989 {
990 LastRnode = LastRnode->Next;
991 CurrentByteOffset += LastRnode->BufferLength;
992 }

994 /* Previous node becomes the last node in the chain */

996 *PreviousRnode = LastRnode;
997 return (CurrentByteOffset);
998 }

1001 /***
1002 *
1003 * FUNCTION: RsDoResourceTemplate
1004 *
1005 * PARAMETERS: Op - Parent of a resource template list
1006 *
1007 * RETURN: None. Sets input node to point to a list of AML code
1008 *
1009 * DESCRIPTION: Merge a list of resource descriptors into a single AML buffer,
1010 * in preparation for output to the AML output file.
1011 *
1012 **/

1014 void
1015 RsDoResourceTemplate (
1016 ACPI_PARSE_OBJECT *Op)
1017 {
1018 ACPI_PARSE_OBJECT *BufferLengthOp;
1019 ACPI_PARSE_OBJECT *BufferOp;
1020 ACPI_PARSE_OBJECT *DescriptorTypeOp;
1021 ACPI_PARSE_OBJECT *LastOp = NULL;
1022 UINT32 CurrentByteOffset = 0;
1023 ASL_RESOURCE_NODE HeadRnode;
1024 ASL_RESOURCE_NODE *PreviousRnode;
1025 ASL_RESOURCE_NODE *Rnode;
1026 UINT8 State;

1029 /* Mark parent as containing a resource template */

1031 if (Op->Asl.Parent)
1032 {
1033 Op->Asl.Parent->Asl.CompileFlags |= NODE_IS_RESOURCE_DESC;
1034 }

1036 /* ResourceTemplate Opcode is first (Op) */
1037 /* Buffer Length node is first child */

1039 BufferLengthOp = ASL_GET_CHILD_NODE (Op);

1041 /* Buffer Op is first peer */

1043 BufferOp = ASL_GET_PEER_NODE (BufferLengthOp);

1045 /* First Descriptor type is next */

1047 DescriptorTypeOp = ASL_GET_PEER_NODE (BufferOp);

1049 /*
1050 * Process all resource descriptors in the list

new/usr/src/common/acpica/compiler/aslresource.c 17

1051 * Note: It is assumed that the EndTag node has been automatically
1052 * inserted at the end of the template by the parser.
1053 */
1054 State = ACPI_RSTATE_NORMAL;
1055 PreviousRnode = &HeadRnode;
1056 while (DescriptorTypeOp)
1057 {
1058 DescriptorTypeOp->Asl.CompileFlags |= NODE_IS_RESOURCE_DESC;
1059 Rnode = RsDoOneResourceDescriptor (DescriptorTypeOp, CurrentByteOffset,
1060 &State);

1062 /*
1063 * Update current byte offset to indicate the number of bytes from the
1064 * start of the buffer. Buffer can include multiple descriptors, we
1065 * must keep track of the offset of not only each descriptor, but each
1066 * element (field) within each descriptor as well.
1067 */
1068 CurrentByteOffset += RsLinkDescriptorChain (&PreviousRnode, Rnode);

1070 /* Get the next descriptor in the list */

1072 LastOp = DescriptorTypeOp;
1073 DescriptorTypeOp = ASL_GET_PEER_NODE (DescriptorTypeOp);
1074 }

1076 if (State == ACPI_RSTATE_DEPENDENT_LIST)
1077 {
1078 if (LastOp)
1079 {
1080 LastOp = LastOp->Asl.Parent;
1081 }
1082 AslError (ASL_ERROR, ASL_MSG_MISSING_ENDDEPENDENT, LastOp, NULL);
1083 }

1085 /*
1086 * Transform the nodes into the following
1087 *
1088 * Op -> AML_BUFFER_OP
1089 * First Child -> BufferLength
1090 * Second Child -> Descriptor Buffer (raw byte data)
1091 */
1092 Op->Asl.ParseOpcode = PARSEOP_BUFFER;
1093 Op->Asl.AmlOpcode = AML_BUFFER_OP;
1094 Op->Asl.CompileFlags = NODE_AML_PACKAGE | NODE_IS_RESOURCE_DESC
1095 UtSetParseOpName (Op);

1097 BufferLengthOp->Asl.ParseOpcode = PARSEOP_INTEGER;
1098 BufferLengthOp->Asl.Value.Integer = CurrentByteOffset;
1099 (void) OpcSetOptimalIntegerSize (BufferLengthOp);
1100 UtSetParseOpName (BufferLengthOp);

1102 BufferOp->Asl.ParseOpcode = PARSEOP_RAW_DATA;
1103 BufferOp->Asl.AmlOpcode = AML_RAW_DATA_CHAIN;
1104 BufferOp->Asl.AmlOpcodeLength = 0;
1105 BufferOp->Asl.AmlLength = CurrentByteOffset;
1106 BufferOp->Asl.Value.Buffer = (UINT8 *) HeadRnode.Next;
1107 BufferOp->Asl.CompileFlags |= NODE_IS_RESOURCE_DATA;
1108 UtSetParseOpName (BufferOp);

1110 return;
1111 }

new/usr/src/common/acpica/compiler/aslrestype1.c 1

**
 21552 Thu Dec 26 13:48:32 2013
new/usr/src/common/acpica/compiler/aslrestype1.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslrestype1 - Miscellaneous small resource descriptors
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"

48 #define _COMPONENT ACPI_COMPILER
49 ACPI_MODULE_NAME ("aslrestype1")

51 /*
52 * This module contains miscellaneous small resource descriptors:
53 *
54 * EndTag
55 * EndDependentFn
56 * Memory24
57 * Memory32
58 * Memory32Fixed
59 * StartDependentFn
60 * StartDependentFnNoPri

new/usr/src/common/acpica/compiler/aslrestype1.c 2

61 * VendorShort
62 */

64 /***
65 *
66 * FUNCTION: RsDoEndTagDescriptor
67 *
68 * PARAMETERS: Op - Parent resource descriptor parse node
69 * CurrentByteOffset - Offset into the resource template AML
70 * buffer (to track references to the desc)
71 *
72 * RETURN: Completed resource node
73 *
74 * DESCRIPTION: Construct a short "EndDependentFn" descriptor
75 *
76 **/

78 ASL_RESOURCE_NODE *
79 RsDoEndTagDescriptor (
80 ACPI_PARSE_OBJECT *Op,
81 UINT32 CurrentByteOffset)
82 {
83 AML_RESOURCE *Descriptor;
84 ASL_RESOURCE_NODE *Rnode;

87 Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_END_TAG));

89 Descriptor = Rnode->Buffer;
90 Descriptor->EndTag.DescriptorType = ACPI_RESOURCE_NAME_END_TAG |
91 ASL_RDESC_END_TAG_SIZE;
92 Descriptor->EndTag.Checksum = 0;

94 return (Rnode);
95 }

98 /***
99 *
100 * FUNCTION: RsDoEndDependentDescriptor
101 *
102 * PARAMETERS: Op - Parent resource descriptor parse node
103 * CurrentByteOffset - Offset into the resource template AML
104 * buffer (to track references to the desc)
105 *
106 * RETURN: Completed resource node
107 *
108 * DESCRIPTION: Construct a short "EndDependentFn" descriptor
109 *
110 **/

112 ASL_RESOURCE_NODE *
113 RsDoEndDependentDescriptor (
114 ACPI_PARSE_OBJECT *Op,
115 UINT32 CurrentByteOffset)
116 {
117 AML_RESOURCE *Descriptor;
118 ASL_RESOURCE_NODE *Rnode;

121 Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_END_DEPENDENT));

123 Descriptor = Rnode->Buffer;
124 Descriptor->EndDpf.DescriptorType = ACPI_RESOURCE_NAME_END_DEPENDENT |
125 ASL_RDESC_END_DEPEND_SIZE;
126 return (Rnode);

new/usr/src/common/acpica/compiler/aslrestype1.c 3

127 }

130 /***
131 *
132 * FUNCTION: RsDoMemory24Descriptor
133 *
134 * PARAMETERS: Op - Parent resource descriptor parse node
135 * CurrentByteOffset - Offset into the resource template AML
136 * buffer (to track references to the desc)
137 *
138 * RETURN: Completed resource node
139 *
140 * DESCRIPTION: Construct a short "Memory24" descriptor
141 *
142 **/

144 ASL_RESOURCE_NODE *
145 RsDoMemory24Descriptor (
146 ACPI_PARSE_OBJECT *Op,
147 UINT32 CurrentByteOffset)
148 {
149 AML_RESOURCE *Descriptor;
150 ACPI_PARSE_OBJECT *InitializerOp;
151 ACPI_PARSE_OBJECT *MinOp = NULL;
152 ACPI_PARSE_OBJECT *MaxOp = NULL;
153 ACPI_PARSE_OBJECT *LengthOp = NULL;
154 ASL_RESOURCE_NODE *Rnode;
155 UINT32 i;

158 InitializerOp = Op->Asl.Child;
159 Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_MEMORY24));

161 Descriptor = Rnode->Buffer;
162 Descriptor->Memory24.DescriptorType = ACPI_RESOURCE_NAME_MEMORY24;
163 Descriptor->Memory24.ResourceLength = 9;

165 /* Process all child initialization nodes */

167 for (i = 0; InitializerOp; i++)
168 {
169 switch (i)
170 {
171 case 0: /* Read/Write type */

173 RsSetFlagBits (&Descriptor->Memory24.Flags, InitializerOp, 0, 1);
174 RsCreateBitField (InitializerOp, ACPI_RESTAG_READWRITETYPE,
175 CurrentByteOffset + ASL_RESDESC_OFFSET (Memory24.Flags), 0);
176 break;

178 case 1: /* Min Address */

180 Descriptor->Memory24.Minimum = (UINT16) InitializerOp->Asl.Value.Int
181 RsCreateWordField (InitializerOp, ACPI_RESTAG_MINADDR,
182 CurrentByteOffset + ASL_RESDESC_OFFSET (Memory24.Minimum));
183 MinOp = InitializerOp;
184 break;

186 case 2: /* Max Address */

188 Descriptor->Memory24.Maximum = (UINT16) InitializerOp->Asl.Value.Int
189 RsCreateWordField (InitializerOp, ACPI_RESTAG_MAXADDR,
190 CurrentByteOffset + ASL_RESDESC_OFFSET (Memory24.Maximum));
191 MaxOp = InitializerOp;
192 break;

new/usr/src/common/acpica/compiler/aslrestype1.c 4

194 case 3: /* Alignment */

196 Descriptor->Memory24.Alignment = (UINT16) InitializerOp->Asl.Value.I
197 RsCreateWordField (InitializerOp, ACPI_RESTAG_ALIGNMENT,
198 CurrentByteOffset + ASL_RESDESC_OFFSET (Memory24.Alignment));
199 break;

201 case 4: /* Length */

203 Descriptor->Memory24.AddressLength = (UINT16) InitializerOp->Asl.Val
204 RsCreateWordField (InitializerOp, ACPI_RESTAG_LENGTH,
205 CurrentByteOffset + ASL_RESDESC_OFFSET (Memory24.AddressLength))
206 LengthOp = InitializerOp;
207 break;

209 case 5: /* Name */

211 UtAttachNamepathToOwner (Op, InitializerOp);
212 break;

214 default:

216 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL);
217 break;
218 }

220 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
221 }

223 /* Validate the Min/Max/Len/Align values (Alignment==0 means 64K) */

225 RsSmallAddressCheck (ACPI_RESOURCE_NAME_MEMORY24,
226 Descriptor->Memory24.Minimum,
227 Descriptor->Memory24.Maximum,
228 Descriptor->Memory24.AddressLength,
229 Descriptor->Memory24.Alignment,
230 MinOp, MaxOp, LengthOp, NULL, Op);

232 return (Rnode);
233 }

236 /***
237 *
238 * FUNCTION: RsDoMemory32Descriptor
239 *
240 * PARAMETERS: Op - Parent resource descriptor parse node
241 * CurrentByteOffset - Offset into the resource template AML
242 * buffer (to track references to the desc)
243 *
244 * RETURN: Completed resource node
245 *
246 * DESCRIPTION: Construct a short "Memory32" descriptor
247 *
248 **/

250 ASL_RESOURCE_NODE *
251 RsDoMemory32Descriptor (
252 ACPI_PARSE_OBJECT *Op,
253 UINT32 CurrentByteOffset)
254 {
255 AML_RESOURCE *Descriptor;
256 ACPI_PARSE_OBJECT *InitializerOp;
257 ACPI_PARSE_OBJECT *MinOp = NULL;
258 ACPI_PARSE_OBJECT *MaxOp = NULL;

new/usr/src/common/acpica/compiler/aslrestype1.c 5

259 ACPI_PARSE_OBJECT *LengthOp = NULL;
260 ACPI_PARSE_OBJECT *AlignOp = NULL;
261 ASL_RESOURCE_NODE *Rnode;
262 UINT32 i;

265 InitializerOp = Op->Asl.Child;
266 Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_MEMORY32));

268 Descriptor = Rnode->Buffer;
269 Descriptor->Memory32.DescriptorType = ACPI_RESOURCE_NAME_MEMORY32;
270 Descriptor->Memory32.ResourceLength = 17;

272 /* Process all child initialization nodes */

274 for (i = 0; InitializerOp; i++)
275 {
276 switch (i)
277 {
278 case 0: /* Read/Write type */

280 RsSetFlagBits (&Descriptor->Memory32.Flags, InitializerOp, 0, 1);
281 RsCreateBitField (InitializerOp, ACPI_RESTAG_READWRITETYPE,
282 CurrentByteOffset + ASL_RESDESC_OFFSET (Memory32.Flags), 0);
283 break;

285 case 1: /* Min Address */

287 Descriptor->Memory32.Minimum = (UINT32) InitializerOp->Asl.Value.Int
288 RsCreateDwordField (InitializerOp, ACPI_RESTAG_MINADDR,
289 CurrentByteOffset + ASL_RESDESC_OFFSET (Memory32.Minimum));
290 MinOp = InitializerOp;
291 break;

293 case 2: /* Max Address */

295 Descriptor->Memory32.Maximum = (UINT32) InitializerOp->Asl.Value.Int
296 RsCreateDwordField (InitializerOp, ACPI_RESTAG_MAXADDR,
297 CurrentByteOffset + ASL_RESDESC_OFFSET (Memory32.Maximum));
298 MaxOp = InitializerOp;
299 break;

301 case 3: /* Alignment */

303 Descriptor->Memory32.Alignment = (UINT32) InitializerOp->Asl.Value.I
304 RsCreateDwordField (InitializerOp, ACPI_RESTAG_ALIGNMENT,
305 CurrentByteOffset + ASL_RESDESC_OFFSET (Memory32.Alignment));
306 AlignOp = InitializerOp;
307 break;

309 case 4: /* Length */

311 Descriptor->Memory32.AddressLength = (UINT32) InitializerOp->Asl.Val
312 RsCreateDwordField (InitializerOp, ACPI_RESTAG_LENGTH,
313 CurrentByteOffset + ASL_RESDESC_OFFSET (Memory32.AddressLength))
314 LengthOp = InitializerOp;
315 break;

317 case 5: /* Name */

319 UtAttachNamepathToOwner (Op, InitializerOp);
320 break;

322 default:

324 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL);

new/usr/src/common/acpica/compiler/aslrestype1.c 6

325 break;
326 }

328 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
329 }

331 /* Validate the Min/Max/Len/Align values */

333 RsSmallAddressCheck (ACPI_RESOURCE_NAME_MEMORY32,
334 Descriptor->Memory32.Minimum,
335 Descriptor->Memory32.Maximum,
336 Descriptor->Memory32.AddressLength,
337 Descriptor->Memory32.Alignment,
338 MinOp, MaxOp, LengthOp, AlignOp, Op);

340 return (Rnode);
341 }

344 /***
345 *
346 * FUNCTION: RsDoMemory32FixedDescriptor
347 *
348 * PARAMETERS: Op - Parent resource descriptor parse node
349 * CurrentByteOffset - Offset into the resource template AML
350 * buffer (to track references to the desc)
351 *
352 * RETURN: Completed resource node
353 *
354 * DESCRIPTION: Construct a short "Memory32Fixed" descriptor
355 *
356 **/

358 ASL_RESOURCE_NODE *
359 RsDoMemory32FixedDescriptor (
360 ACPI_PARSE_OBJECT *Op,
361 UINT32 CurrentByteOffset)
362 {
363 AML_RESOURCE *Descriptor;
364 ACPI_PARSE_OBJECT *InitializerOp;
365 ASL_RESOURCE_NODE *Rnode;
366 UINT32 i;

369 InitializerOp = Op->Asl.Child;
370 Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_FIXED_MEMORY32));

372 Descriptor = Rnode->Buffer;
373 Descriptor->FixedMemory32.DescriptorType = ACPI_RESOURCE_NAME_FIXED_MEMORY3
374 Descriptor->FixedMemory32.ResourceLength = 9;

376 /* Process all child initialization nodes */

378 for (i = 0; InitializerOp; i++)
379 {
380 switch (i)
381 {
382 case 0: /* Read/Write type */

384 RsSetFlagBits (&Descriptor->FixedMemory32.Flags, InitializerOp, 0, 1
385 RsCreateBitField (InitializerOp, ACPI_RESTAG_READWRITETYPE,
386 CurrentByteOffset + ASL_RESDESC_OFFSET (FixedMemory32.Flags), 0)
387 break;

389 case 1: /* Address */

new/usr/src/common/acpica/compiler/aslrestype1.c 7

391 Descriptor->FixedMemory32.Address = (UINT32) InitializerOp->Asl.Valu
392 RsCreateDwordField (InitializerOp, ACPI_RESTAG_BASEADDRESS,
393 CurrentByteOffset + ASL_RESDESC_OFFSET (FixedMemory32.Address));
394 break;

396 case 2: /* Length */

398 Descriptor->FixedMemory32.AddressLength = (UINT32) InitializerOp->As
399 RsCreateDwordField (InitializerOp, ACPI_RESTAG_LENGTH,
400 CurrentByteOffset + ASL_RESDESC_OFFSET (FixedMemory32.AddressLen
401 break;

403 case 3: /* Name */

405 UtAttachNamepathToOwner (Op, InitializerOp);
406 break;

408 default:

410 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL);
411 break;
412 }

414 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
415 }

417 return (Rnode);
418 }

421 /***
422 *
423 * FUNCTION: RsDoStartDependentDescriptor
424 *
425 * PARAMETERS: Op - Parent resource descriptor parse node
426 * CurrentByteOffset - Offset into the resource template AML
427 * buffer (to track references to the desc)
428 *
429 * RETURN: Completed resource node
430 *
431 * DESCRIPTION: Construct a short "StartDependentFn" descriptor
432 *
433 **/

435 ASL_RESOURCE_NODE *
436 RsDoStartDependentDescriptor (
437 ACPI_PARSE_OBJECT *Op,
438 UINT32 CurrentByteOffset)
439 {
440 AML_RESOURCE *Descriptor;
441 ACPI_PARSE_OBJECT *InitializerOp;
442 ASL_RESOURCE_NODE *Rnode;
443 ASL_RESOURCE_NODE *PreviousRnode;
444 ASL_RESOURCE_NODE *NextRnode;
445 UINT32 i;
446 UINT8 State;

449 InitializerOp = Op->Asl.Child;
450 Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_START_DEPENDENT));

452 PreviousRnode = Rnode;
453 Descriptor = Rnode->Buffer;

455 /* Increment offset past StartDependent descriptor */

new/usr/src/common/acpica/compiler/aslrestype1.c 8

457 CurrentByteOffset += sizeof (AML_RESOURCE_START_DEPENDENT);

459 /* Descriptor has priority byte */

461 Descriptor->StartDpf.DescriptorType = ACPI_RESOURCE_NAME_START_DEPENDENT |
462 (ASL_RDESC_ST_DEPEND_SIZE + 0x01);

464 /* Process all child initialization nodes */

466 State = ACPI_RSTATE_START_DEPENDENT;
467 for (i = 0; InitializerOp; i++)
468 {
469 switch (i)
470 {
471 case 0: /* Compatibility Priority */

473 if ((UINT8) InitializerOp->Asl.Value.Integer > 2)
474 {
475 AslError (ASL_ERROR, ASL_MSG_INVALID_PRIORITY,
476 InitializerOp, NULL);
477 }

479 RsSetFlagBits (&Descriptor->StartDpf.Flags, InitializerOp, 0, 0);
480 break;

482 case 1: /* Performance/Robustness Priority */

484 if ((UINT8) InitializerOp->Asl.Value.Integer > 2)
485 {
486 AslError (ASL_ERROR, ASL_MSG_INVALID_PERFORMANCE,
487 InitializerOp, NULL);
488 }

490 RsSetFlagBits (&Descriptor->StartDpf.Flags, InitializerOp, 2, 0);
491 break;

493 default:

495 NextRnode = RsDoOneResourceDescriptor (InitializerOp,
496 CurrentByteOffset, &State);

498 /*
499 * Update current byte offset to indicate the number of bytes from t
500 * start of the buffer. Buffer can include multiple descriptors, we
501 * must keep track of the offset of not only each descriptor, but ea
502 * element (field) within each descriptor as well.
503 */
504 CurrentByteOffset += RsLinkDescriptorChain (&PreviousRnode,
505 NextRnode);
506 break;
507 }

509 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
510 }

512 return (Rnode);
513 }

516 /***
517 *
518 * FUNCTION: RsDoStartDependentNoPriDescriptor
519 *
520 * PARAMETERS: Op - Parent resource descriptor parse node
521 * CurrentByteOffset - Offset into the resource template AML
522 * buffer (to track references to the desc)

new/usr/src/common/acpica/compiler/aslrestype1.c 9

523 *
524 * RETURN: Completed resource node
525 *
526 * DESCRIPTION: Construct a short "StartDependentNoPri" descriptor
527 *
528 **/

530 ASL_RESOURCE_NODE *
531 RsDoStartDependentNoPriDescriptor (
532 ACPI_PARSE_OBJECT *Op,
533 UINT32 CurrentByteOffset)
534 {
535 AML_RESOURCE *Descriptor;
536 ACPI_PARSE_OBJECT *InitializerOp;
537 ASL_RESOURCE_NODE *Rnode;
538 ASL_RESOURCE_NODE *PreviousRnode;
539 ASL_RESOURCE_NODE *NextRnode;
540 UINT8 State;

543 InitializerOp = Op->Asl.Child;
544 Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_START_DEPENDENT_NOPRIO)

546 Descriptor = Rnode->Buffer;
547 Descriptor->StartDpf.DescriptorType = ACPI_RESOURCE_NAME_START_DEPENDENT |
548 ASL_RDESC_ST_DEPEND_SIZE;
549 PreviousRnode = Rnode;

551 /* Increment offset past StartDependentNoPri descriptor */

553 CurrentByteOffset += sizeof (AML_RESOURCE_START_DEPENDENT_NOPRIO);

555 /* Process all child initialization nodes */

557 State = ACPI_RSTATE_START_DEPENDENT;
558 while (InitializerOp)
559 {
560 NextRnode = RsDoOneResourceDescriptor (InitializerOp,
561 CurrentByteOffset, &State);

563 /*
564 * Update current byte offset to indicate the number of bytes from the
565 * start of the buffer. Buffer can include multiple descriptors, we
566 * must keep track of the offset of not only each descriptor, but each
567 * element (field) within each descriptor as well.
568 */
569 CurrentByteOffset += RsLinkDescriptorChain (&PreviousRnode, NextRnode);

571 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
572 }

574 return (Rnode);
575 }

578 /***
579 *
580 * FUNCTION: RsDoVendorSmallDescriptor
581 *
582 * PARAMETERS: Op - Parent resource descriptor parse node
583 * CurrentByteOffset - Offset into the resource template AML
584 * buffer (to track references to the desc)
585 *
586 * RETURN: Completed resource node
587 *
588 * DESCRIPTION: Construct a short "VendorShort" descriptor

new/usr/src/common/acpica/compiler/aslrestype1.c 10

589 *
590 **/

592 ASL_RESOURCE_NODE *
593 RsDoVendorSmallDescriptor (
594 ACPI_PARSE_OBJECT *Op,
595 UINT32 CurrentByteOffset)
596 {
597 AML_RESOURCE *Descriptor;
598 ACPI_PARSE_OBJECT *InitializerOp;
599 ASL_RESOURCE_NODE *Rnode;
600 UINT8 *VendorData;
601 UINT32 i;

604 InitializerOp = Op->Asl.Child;

606 /* Allocate worst case - 7 vendor bytes */

608 Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_VENDOR_SMALL) + 7);

610 Descriptor = Rnode->Buffer;
611 Descriptor->VendorSmall.DescriptorType = ACPI_RESOURCE_NAME_VENDOR_SMALL;
612 VendorData = ((UINT8 *) Descriptor) + sizeof (AML_RESOURCE_SMALL_HEADER);

614 /* Process all child initialization nodes */

616 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
617 for (i = 0; InitializerOp; i++)
618 {
619 if (InitializerOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG)
620 {
621 break;
622 }

624 /* Maximum 7 vendor data bytes allowed (0-6) */

626 if (i >= 7)
627 {
628 AslError (ASL_ERROR, ASL_MSG_VENDOR_LIST, InitializerOp, NULL);

630 /* Eat the excess initializers */

632 while (InitializerOp)
633 {
634 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
635 }
636 break;
637 }

639 VendorData[i] = (UINT8) InitializerOp->Asl.Value.Integer;
640 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
641 }

643 /* Adjust the Rnode buffer size, so correct number of bytes are emitted */

645 Rnode->BufferLength -= (7 - i);

647 /* Set the length in the Type Tag */

649 Descriptor->VendorSmall.DescriptorType |= (UINT8) i;
650 return (Rnode);
651 }

new/usr/src/common/acpica/compiler/aslrestype1i.c 1

**
 21406 Thu Dec 26 13:48:33 2013
new/usr/src/common/acpica/compiler/aslrestype1i.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslrestype1i - Small I/O-related resource descriptors
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"

48 #define _COMPONENT ACPI_COMPILER
49 ACPI_MODULE_NAME ("aslrestype1i")

51 /*
52 * This module contains the I/O-related small resource descriptors:
53 *
54 * DMA
55 * FixedDMA
56 * FixedIO
57 * IO
58 * IRQ
59 * IRQNoFlags
60 */

new/usr/src/common/acpica/compiler/aslrestype1i.c 2

62 /***
63 *
64 * FUNCTION: RsDoDmaDescriptor
65 *
66 * PARAMETERS: Op - Parent resource descriptor parse node
67 * CurrentByteOffset - Offset into the resource template AML
68 * buffer (to track references to the desc)
69 *
70 * RETURN: Completed resource node
71 *
72 * DESCRIPTION: Construct a short "DMA" descriptor
73 *
74 **/

76 ASL_RESOURCE_NODE *
77 RsDoDmaDescriptor (
78 ACPI_PARSE_OBJECT *Op,
79 UINT32 CurrentByteOffset)
80 {
81 AML_RESOURCE *Descriptor;
82 ACPI_PARSE_OBJECT *InitializerOp;
83 ASL_RESOURCE_NODE *Rnode;
84 UINT32 i;
85 UINT8 DmaChannelMask = 0;
86 UINT8 DmaChannels = 0;

89 InitializerOp = Op->Asl.Child;
90 Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_DMA));

92 Descriptor = Rnode->Buffer;
93 Descriptor->Dma.DescriptorType = ACPI_RESOURCE_NAME_DMA |
94 ASL_RDESC_DMA_SIZE;

96 /* Process all child initialization nodes */

98 for (i = 0; InitializerOp; i++)
99 {
100 switch (i)
101 {
102 case 0: /* DMA type */

104 RsSetFlagBits (&Descriptor->Dma.Flags, InitializerOp, 5, 0);
105 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_DMATYPE,
106 CurrentByteOffset + ASL_RESDESC_OFFSET (Dma.Flags), 5, 2);
107 break;

109 case 1: /* Bus Master */

111 RsSetFlagBits (&Descriptor->Dma.Flags, InitializerOp, 2, 0);
112 RsCreateBitField (InitializerOp, ACPI_RESTAG_BUSMASTER,
113 CurrentByteOffset + ASL_RESDESC_OFFSET (Dma.Flags), 2);
114 break;

116 case 2: /* Xfer Type (transfer width) */

118 RsSetFlagBits (&Descriptor->Dma.Flags, InitializerOp, 0, 0);
119 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_XFERTYPE,
120 CurrentByteOffset + ASL_RESDESC_OFFSET (Dma.Flags), 0, 2);
121 break;

123 case 3: /* Name */

125 UtAttachNamepathToOwner (Op, InitializerOp);
126 break;

new/usr/src/common/acpica/compiler/aslrestype1i.c 3

128 default:

130 /* All DMA channel bytes are handled here, after flags and name */

132 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
133 {
134 /* Up to 8 channels can be specified in the list */

136 DmaChannels++;
137 if (DmaChannels > 8)
138 {
139 AslError (ASL_ERROR, ASL_MSG_DMA_LIST,
140 InitializerOp, NULL);
141 return (Rnode);
142 }

144 /* Only DMA channels 0-7 are allowed (mask is 8 bits) */

146 if (InitializerOp->Asl.Value.Integer > 7)
147 {
148 AslError (ASL_ERROR, ASL_MSG_DMA_CHANNEL,
149 InitializerOp, NULL);
150 }

152 /* Build the mask */

154 DmaChannelMask |=
155 (1 << ((UINT8) InitializerOp->Asl.Value.Integer));
156 }

158 if (i == 4) /* case 4: First DMA byte */
159 {
160 /* Check now for duplicates in list */

162 RsCheckListForDuplicates (InitializerOp);

164 /* Create a named field at the start of the list */

166 RsCreateByteField (InitializerOp, ACPI_RESTAG_DMA,
167 CurrentByteOffset +
168 ASL_RESDESC_OFFSET (Dma.DmaChannelMask));
169 }
170 break;
171 }

173 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
174 }

176 /* Now we can set the channel mask */

178 Descriptor->Dma.DmaChannelMask = DmaChannelMask;
179 return (Rnode);
180 }

183 /***
184 *
185 * FUNCTION: RsDoFixedDmaDescriptor
186 *
187 * PARAMETERS: Op - Parent resource descriptor parse node
188 * CurrentByteOffset - Offset into the resource template AML
189 * buffer (to track references to the desc)
190 *
191 * RETURN: Completed resource node
192 *

new/usr/src/common/acpica/compiler/aslrestype1i.c 4

193 * DESCRIPTION: Construct a short "FixedDMA" descriptor
194 *
195 **/

197 ASL_RESOURCE_NODE *
198 RsDoFixedDmaDescriptor (
199 ACPI_PARSE_OBJECT *Op,
200 UINT32 CurrentByteOffset)
201 {
202 AML_RESOURCE *Descriptor;
203 ACPI_PARSE_OBJECT *InitializerOp;
204 ASL_RESOURCE_NODE *Rnode;
205 UINT32 i;

208 InitializerOp = Op->Asl.Child;
209 Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_FIXED_DMA));

211 Descriptor = Rnode->Buffer;
212 Descriptor->FixedDma.DescriptorType =
213 ACPI_RESOURCE_NAME_FIXED_DMA | ASL_RDESC_FIXED_DMA_SIZE;

215 /* Process all child initialization nodes */

217 for (i = 0; InitializerOp; i++)
218 {
219 switch (i)
220 {
221 case 0: /* DMA Request Lines [WORD] (_DMA) */

223 Descriptor->FixedDma.RequestLines = (UINT16) InitializerOp->Asl.Valu
224 RsCreateWordField (InitializerOp, ACPI_RESTAG_DMA,
225 CurrentByteOffset + ASL_RESDESC_OFFSET (FixedDma.RequestLines));
226 break;

228 case 1: /* DMA Channel [WORD] (_TYP) */

230 Descriptor->FixedDma.Channels = (UINT16) InitializerOp->Asl.Value.In
231 RsCreateWordField (InitializerOp, ACPI_RESTAG_DMATYPE,
232 CurrentByteOffset + ASL_RESDESC_OFFSET (FixedDma.Channels));
233 break;

235 case 2: /* Transfer Width [BYTE] (_SIZ) */

237 Descriptor->FixedDma.Width = (UINT8) InitializerOp->Asl.Value.Intege
238 RsCreateByteField (InitializerOp, ACPI_RESTAG_XFERTYPE,
239 CurrentByteOffset + ASL_RESDESC_OFFSET (FixedDma.Width));
240 break;

242 case 3: /* Descriptor Name (optional) */

244 UtAttachNamepathToOwner (Op, InitializerOp);
245 break;

247 default: /* Ignore any extra nodes */

249 break;
250 }

252 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
253 }

255 return (Rnode);
256 }

new/usr/src/common/acpica/compiler/aslrestype1i.c 5

259 /***
260 *
261 * FUNCTION: RsDoFixedIoDescriptor
262 *
263 * PARAMETERS: Op - Parent resource descriptor parse node
264 * CurrentByteOffset - Offset into the resource template AML
265 * buffer (to track references to the desc)
266 *
267 * RETURN: Completed resource node
268 *
269 * DESCRIPTION: Construct a short "FixedIO" descriptor
270 *
271 **/

273 ASL_RESOURCE_NODE *
274 RsDoFixedIoDescriptor (
275 ACPI_PARSE_OBJECT *Op,
276 UINT32 CurrentByteOffset)
277 {
278 AML_RESOURCE *Descriptor;
279 ACPI_PARSE_OBJECT *InitializerOp;
280 ACPI_PARSE_OBJECT *AddressOp = NULL;
281 ASL_RESOURCE_NODE *Rnode;
282 UINT32 i;

285 InitializerOp = Op->Asl.Child;
286 Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_FIXED_IO));

288 Descriptor = Rnode->Buffer;
289 Descriptor->Io.DescriptorType = ACPI_RESOURCE_NAME_FIXED_IO |
290 ASL_RDESC_FIXED_IO_SIZE;

292 /* Process all child initialization nodes */

294 for (i = 0; InitializerOp; i++)
295 {
296 switch (i)
297 {
298 case 0: /* Base Address */

300 Descriptor->FixedIo.Address =
301 (UINT16) InitializerOp->Asl.Value.Integer;
302 RsCreateWordField (InitializerOp, ACPI_RESTAG_BASEADDRESS,
303 CurrentByteOffset + ASL_RESDESC_OFFSET (FixedIo.Address));
304 AddressOp = InitializerOp;
305 break;

307 case 1: /* Length */

309 Descriptor->FixedIo.AddressLength =
310 (UINT8) InitializerOp->Asl.Value.Integer;
311 RsCreateByteField (InitializerOp, ACPI_RESTAG_LENGTH,
312 CurrentByteOffset + ASL_RESDESC_OFFSET (FixedIo.AddressLength));
313 break;

315 case 2: /* Name */

317 UtAttachNamepathToOwner (Op, InitializerOp);
318 break;

320 default:

322 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL);
323 break;
324 }

new/usr/src/common/acpica/compiler/aslrestype1i.c 6

326 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
327 }

329 /* Error checks */

331 if (Descriptor->FixedIo.Address > 0x03FF)
332 {
333 AslError (ASL_WARNING, ASL_MSG_ISA_ADDRESS, AddressOp, NULL);
334 }

336 return (Rnode);
337 }

340 /***
341 *
342 * FUNCTION: RsDoIoDescriptor
343 *
344 * PARAMETERS: Op - Parent resource descriptor parse node
345 * CurrentByteOffset - Offset into the resource template AML
346 * buffer (to track references to the desc)
347 *
348 * RETURN: Completed resource node
349 *
350 * DESCRIPTION: Construct a short "IO" descriptor
351 *
352 **/

354 ASL_RESOURCE_NODE *
355 RsDoIoDescriptor (
356 ACPI_PARSE_OBJECT *Op,
357 UINT32 CurrentByteOffset)
358 {
359 AML_RESOURCE *Descriptor;
360 ACPI_PARSE_OBJECT *InitializerOp;
361 ACPI_PARSE_OBJECT *MinOp = NULL;
362 ACPI_PARSE_OBJECT *MaxOp = NULL;
363 ACPI_PARSE_OBJECT *LengthOp = NULL;
364 ACPI_PARSE_OBJECT *AlignOp = NULL;
365 ASL_RESOURCE_NODE *Rnode;
366 UINT32 i;

369 InitializerOp = Op->Asl.Child;
370 Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_IO));

372 Descriptor = Rnode->Buffer;
373 Descriptor->Io.DescriptorType = ACPI_RESOURCE_NAME_IO |
374 ASL_RDESC_IO_SIZE;

376 /* Process all child initialization nodes */

378 for (i = 0; InitializerOp; i++)
379 {
380 switch (i)
381 {
382 case 0: /* Decode size */

384 RsSetFlagBits (&Descriptor->Io.Flags, InitializerOp, 0, 1);
385 RsCreateBitField (InitializerOp, ACPI_RESTAG_DECODE,
386 CurrentByteOffset + ASL_RESDESC_OFFSET (Io.Flags), 0);
387 break;

389 case 1: /* Min Address */

new/usr/src/common/acpica/compiler/aslrestype1i.c 7

391 Descriptor->Io.Minimum =
392 (UINT16) InitializerOp->Asl.Value.Integer;
393 RsCreateWordField (InitializerOp, ACPI_RESTAG_MINADDR,
394 CurrentByteOffset + ASL_RESDESC_OFFSET (Io.Minimum));
395 MinOp = InitializerOp;
396 break;

398 case 2: /* Max Address */

400 Descriptor->Io.Maximum =
401 (UINT16) InitializerOp->Asl.Value.Integer;
402 RsCreateWordField (InitializerOp, ACPI_RESTAG_MAXADDR,
403 CurrentByteOffset + ASL_RESDESC_OFFSET (Io.Maximum));
404 MaxOp = InitializerOp;
405 break;

407 case 3: /* Alignment */

409 Descriptor->Io.Alignment =
410 (UINT8) InitializerOp->Asl.Value.Integer;
411 RsCreateByteField (InitializerOp, ACPI_RESTAG_ALIGNMENT,
412 CurrentByteOffset + ASL_RESDESC_OFFSET (Io.Alignment));
413 AlignOp = InitializerOp;
414 break;

416 case 4: /* Length */

418 Descriptor->Io.AddressLength =
419 (UINT8) InitializerOp->Asl.Value.Integer;
420 RsCreateByteField (InitializerOp, ACPI_RESTAG_LENGTH,
421 CurrentByteOffset + ASL_RESDESC_OFFSET (Io.AddressLength));
422 LengthOp = InitializerOp;
423 break;

425 case 5: /* Name */

427 UtAttachNamepathToOwner (Op, InitializerOp);
428 break;

430 default:

432 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL);
433 break;
434 }

436 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
437 }

439 /* Validate the Min/Max/Len/Align values */

441 RsSmallAddressCheck (ACPI_RESOURCE_NAME_IO,
442 Descriptor->Io.Minimum,
443 Descriptor->Io.Maximum,
444 Descriptor->Io.AddressLength,
445 Descriptor->Io.Alignment,
446 MinOp, MaxOp, LengthOp, AlignOp, Op);

448 return (Rnode);
449 }

452 /***
453 *
454 * FUNCTION: RsDoIrqDescriptor
455 *
456 * PARAMETERS: Op - Parent resource descriptor parse node

new/usr/src/common/acpica/compiler/aslrestype1i.c 8

457 * CurrentByteOffset - Offset into the resource template AML
458 * buffer (to track references to the desc)
459 *
460 * RETURN: Completed resource node
461 *
462 * DESCRIPTION: Construct a short "IRQ" descriptor
463 *
464 **/

466 ASL_RESOURCE_NODE *
467 RsDoIrqDescriptor (
468 ACPI_PARSE_OBJECT *Op,
469 UINT32 CurrentByteOffset)
470 {
471 AML_RESOURCE *Descriptor;
472 ACPI_PARSE_OBJECT *InitializerOp;
473 ASL_RESOURCE_NODE *Rnode;
474 UINT32 Interrupts = 0;
475 UINT16 IrqMask = 0;
476 UINT32 i;

479 InitializerOp = Op->Asl.Child;
480 Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_IRQ));

482 /* Length = 3 (with flag byte) */

484 Descriptor = Rnode->Buffer;
485 Descriptor->Irq.DescriptorType = ACPI_RESOURCE_NAME_IRQ |
486 (ASL_RDESC_IRQ_SIZE + 0x01);

488 /* Process all child initialization nodes */

490 for (i = 0; InitializerOp; i++)
491 {
492 switch (i)
493 {
494 case 0: /* Interrupt Type (or Mode - edge/level) */

496 RsSetFlagBits (&Descriptor->Irq.Flags, InitializerOp, 0, 1);
497 RsCreateBitField (InitializerOp, ACPI_RESTAG_INTERRUPTTYPE,
498 CurrentByteOffset + ASL_RESDESC_OFFSET (Irq.Flags), 0);
499 break;

501 case 1: /* Interrupt Level (or Polarity - Active high/low) */

503 RsSetFlagBits (&Descriptor->Irq.Flags, InitializerOp, 3, 0);
504 RsCreateBitField (InitializerOp, ACPI_RESTAG_INTERRUPTLEVEL,
505 CurrentByteOffset + ASL_RESDESC_OFFSET (Irq.Flags), 3);
506 break;

508 case 2: /* Share Type - Default: exclusive (0) */

510 RsSetFlagBits (&Descriptor->Irq.Flags, InitializerOp, 4, 0);
511 RsCreateBitField (InitializerOp, ACPI_RESTAG_INTERRUPTSHARE,
512 CurrentByteOffset + ASL_RESDESC_OFFSET (Irq.Flags), 4);
513 break;

515 case 3: /* Name */

517 UtAttachNamepathToOwner (Op, InitializerOp);
518 break;

520 default:

522 /* All IRQ bytes are handled here, after the flags and name */

new/usr/src/common/acpica/compiler/aslrestype1i.c 9

524 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
525 {
526 /* Up to 16 interrupts can be specified in the list */

528 Interrupts++;
529 if (Interrupts > 16)
530 {
531 AslError (ASL_ERROR, ASL_MSG_INTERRUPT_LIST,
532 InitializerOp, NULL);
533 return (Rnode);
534 }

536 /* Only interrupts 0-15 are allowed (mask is 16 bits) */

538 if (InitializerOp->Asl.Value.Integer > 15)
539 {
540 AslError (ASL_ERROR, ASL_MSG_INTERRUPT_NUMBER,
541 InitializerOp, NULL);
542 }
543 else
544 {
545 IrqMask |= (1 << (UINT8) InitializerOp->Asl.Value.Integer);
546 }
547 }

549 /* Case 4: First IRQ value in list */

551 if (i == 4)
552 {
553 /* Check now for duplicates in list */

555 RsCheckListForDuplicates (InitializerOp);

557 /* Create a named field at the start of the list */

559 RsCreateWordField (InitializerOp, ACPI_RESTAG_INTERRUPT,
560 CurrentByteOffset + ASL_RESDESC_OFFSET (Irq.IrqMask));
561 }
562 break;
563 }

565 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
566 }

568 /* Now we can set the channel mask */

570 Descriptor->Irq.IrqMask = IrqMask;
571 return (Rnode);
572 }

575 /***
576 *
577 * FUNCTION: RsDoIrqNoFlagsDescriptor
578 *
579 * PARAMETERS: Op - Parent resource descriptor parse node
580 * CurrentByteOffset - Offset into the resource template AML
581 * buffer (to track references to the desc)
582 *
583 * RETURN: Completed resource node
584 *
585 * DESCRIPTION: Construct a short "IRQNoFlags" descriptor
586 *
587 **/

new/usr/src/common/acpica/compiler/aslrestype1i.c 10

589 ASL_RESOURCE_NODE *
590 RsDoIrqNoFlagsDescriptor (
591 ACPI_PARSE_OBJECT *Op,
592 UINT32 CurrentByteOffset)
593 {
594 AML_RESOURCE *Descriptor;
595 ACPI_PARSE_OBJECT *InitializerOp;
596 ASL_RESOURCE_NODE *Rnode;
597 UINT16 IrqMask = 0;
598 UINT32 Interrupts = 0;
599 UINT32 i;

602 InitializerOp = Op->Asl.Child;
603 Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_IRQ_NOFLAGS));

605 Descriptor = Rnode->Buffer;
606 Descriptor->Irq.DescriptorType = ACPI_RESOURCE_NAME_IRQ |
607 ASL_RDESC_IRQ_SIZE;

609 /* Process all child initialization nodes */

611 for (i = 0; InitializerOp; i++)
612 {
613 switch (i)
614 {
615 case 0: /* Name */

617 UtAttachNamepathToOwner (Op, InitializerOp);
618 break;

620 default:

622 /* IRQ bytes are handled here, after the flags and name */

624 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
625 {
626 /* Up to 16 interrupts can be specified in the list */

628 Interrupts++;
629 if (Interrupts > 16)
630 {
631 AslError (ASL_ERROR, ASL_MSG_INTERRUPT_LIST,
632 InitializerOp, NULL);
633 return (Rnode);
634 }

636 /* Only interrupts 0-15 are allowed (mask is 16 bits) */

638 if (InitializerOp->Asl.Value.Integer > 15)
639 {
640 AslError (ASL_ERROR, ASL_MSG_INTERRUPT_NUMBER,
641 InitializerOp, NULL);
642 }
643 else
644 {
645 IrqMask |= (1 << ((UINT8) InitializerOp->Asl.Value.Integer))
646 }
647 }

649 /* Case 1: First IRQ value in list */

651 if (i == 1)
652 {
653 /* Check now for duplicates in list */

new/usr/src/common/acpica/compiler/aslrestype1i.c 11

655 RsCheckListForDuplicates (InitializerOp);

657 /* Create a named field at the start of the list */

659 RsCreateWordField (InitializerOp, ACPI_RESTAG_INTERRUPT,
660 CurrentByteOffset + ASL_RESDESC_OFFSET (Irq.IrqMask));
661 }
662 break;
663 }

665 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
666 }

668 /* Now we can set the interrupt mask */

670 Descriptor->Irq.IrqMask = IrqMask;
671 return (Rnode);
672 }

new/usr/src/common/acpica/compiler/aslrestype2.c 1

**
 15490 Thu Dec 26 13:48:33 2013
new/usr/src/common/acpica/compiler/aslrestype2.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslrestype2 - Miscellaneous Large resource descriptors
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"
47 #include "amlcode.h"

49 #define _COMPONENT ACPI_COMPILER
50 ACPI_MODULE_NAME ("aslrestype2")

52 /*
53 * This module contains miscellaneous large resource descriptors:
54 *
55 * Register
56 * Interrupt
57 * VendorLong
58 */

60 /***

new/usr/src/common/acpica/compiler/aslrestype2.c 2

61 *
62 * FUNCTION: RsDoGeneralRegisterDescriptor
63 *
64 * PARAMETERS: Op - Parent resource descriptor parse node
65 * CurrentByteOffset - Offset into the resource template AML
66 * buffer (to track references to the desc)
67 *
68 * RETURN: Completed resource node
69 *
70 * DESCRIPTION: Construct a long "Register" descriptor
71 *
72 **/

74 ASL_RESOURCE_NODE *
75 RsDoGeneralRegisterDescriptor (
76 ACPI_PARSE_OBJECT *Op,
77 UINT32 CurrentByteOffset)
78 {
79 AML_RESOURCE *Descriptor;
80 ACPI_PARSE_OBJECT *InitializerOp;
81 ASL_RESOURCE_NODE *Rnode;
82 UINT32 i;

85 InitializerOp = Op->Asl.Child;
86 Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_GENERIC_REGISTER));

88 Descriptor = Rnode->Buffer;
89 Descriptor->GenericReg.DescriptorType = ACPI_RESOURCE_NAME_GENERIC_REGISTER;
90 Descriptor->GenericReg.ResourceLength = 12;

92 /* Process all child initialization nodes */

94 for (i = 0; InitializerOp; i++)
95 {
96 switch (i)
97 {
98 case 0: /* Address space */

100 Descriptor->GenericReg.AddressSpaceId = (UINT8) InitializerOp->Asl.V
101 RsCreateByteField (InitializerOp, ACPI_RESTAG_ADDRESSSPACE,
102 CurrentByteOffset + ASL_RESDESC_OFFSET (GenericReg.AddressSpaceI
103 break;

105 case 1: /* Register Bit Width */

107 Descriptor->GenericReg.BitWidth = (UINT8) InitializerOp->Asl.Value.I
108 RsCreateByteField (InitializerOp, ACPI_RESTAG_REGISTERBITWIDTH,
109 CurrentByteOffset + ASL_RESDESC_OFFSET (GenericReg.BitWidth));
110 break;

112 case 2: /* Register Bit Offset */

114 Descriptor->GenericReg.BitOffset = (UINT8) InitializerOp->Asl.Value.
115 RsCreateByteField (InitializerOp, ACPI_RESTAG_REGISTERBITOFFSET,
116 CurrentByteOffset + ASL_RESDESC_OFFSET (GenericReg.BitOffset));
117 break;

119 case 3: /* Register Address */

121 Descriptor->GenericReg.Address = InitializerOp->Asl.Value.Integer;
122 RsCreateQwordField (InitializerOp, ACPI_RESTAG_ADDRESS,
123 CurrentByteOffset + ASL_RESDESC_OFFSET (GenericReg.Address));
124 break;

126 case 4: /* Access Size (ACPI 3.0) */

new/usr/src/common/acpica/compiler/aslrestype2.c 3

128 Descriptor->GenericReg.AccessSize = (UINT8) InitializerOp->Asl.Value
129 RsCreateByteField (InitializerOp, ACPI_RESTAG_ACCESSSIZE,
130 CurrentByteOffset + ASL_RESDESC_OFFSET (GenericReg.AccessSize));

132 if (Descriptor->GenericReg.AccessSize > AML_FIELD_ACCESS_QWORD)
133 {
134 AslError (ASL_ERROR, ASL_MSG_INVALID_ACCESS_SIZE,
135 InitializerOp, NULL);
136 }
137 break;

139 case 5: /* ResourceTag (ACPI 3.0b) */

141 UtAttachNamepathToOwner (Op, InitializerOp);
142 break;

144 default:

146 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL);
147 break;
148 }

150 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
151 }
152 return (Rnode);
153 }

156 /***
157 *
158 * FUNCTION: RsDoInterruptDescriptor
159 *
160 * PARAMETERS: Op - Parent resource descriptor parse node
161 * CurrentByteOffset - Offset into the resource template AML
162 * buffer (to track references to the desc)
163 *
164 * RETURN: Completed resource node
165 *
166 * DESCRIPTION: Construct a long "Interrupt" descriptor
167 *
168 **/

170 ASL_RESOURCE_NODE *
171 RsDoInterruptDescriptor (
172 ACPI_PARSE_OBJECT *Op,
173 UINT32 CurrentByteOffset)
174 {
175 AML_RESOURCE *Descriptor;
176 AML_RESOURCE *Rover = NULL;
177 ACPI_PARSE_OBJECT *InitializerOp;
178 ASL_RESOURCE_NODE *Rnode;
179 UINT16 StringLength = 0;
180 UINT32 OptionIndex = 0;
181 UINT32 i;
182 BOOLEAN HasResSourceIndex = FALSE;
183 UINT8 ResSourceIndex = 0;
184 UINT8 *ResSourceString = NULL;

187 InitializerOp = Op->Asl.Child;
188 StringLength = RsGetStringDataLength (InitializerOp);

190 /* Count the interrupt numbers */

192 for (i = 0; InitializerOp; i++)

new/usr/src/common/acpica/compiler/aslrestype2.c 4

193 {
194 InitializerOp = ASL_GET_PEER_NODE (InitializerOp);

196 if (i <= 6)
197 {
198 if (i == 3 &&
199 InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
200 {
201 /*
202 * ResourceSourceIndex was specified, always make room for
203 * it, even if the ResourceSource was omitted.
204 */
205 OptionIndex++;
206 }

208 continue;
209 }

211 OptionIndex += 4;
212 }

214 InitializerOp = Op->Asl.Child;
215 Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_EXTENDED_IRQ) +
216 1 + OptionIndex + StringLength);

218 Descriptor = Rnode->Buffer;
219 Descriptor->ExtendedIrq.DescriptorType = ACPI_RESOURCE_NAME_EXTENDED_IRQ;

221 /*
222 * Initial descriptor length -- may be enlarged if there are
223 * optional fields present
224 */
225 Descriptor->ExtendedIrq.ResourceLength = 2; /* Flags and table length byte
226 Descriptor->ExtendedIrq.InterruptCount = 0;

228 Rover = ACPI_CAST_PTR (AML_RESOURCE,
229 (&(Descriptor->ExtendedIrq.Interrupts[0])));

231 /* Process all child initialization nodes */

233 for (i = 0; InitializerOp; i++)
234 {
235 switch (i)
236 {
237 case 0: /* Resource Usage (Default: consumer (1) */

239 RsSetFlagBits (&Descriptor->ExtendedIrq.Flags, InitializerOp, 0, 1);
240 break;

242 case 1: /* Interrupt Type (or Mode - edge/level) */

244 RsSetFlagBits (&Descriptor->ExtendedIrq.Flags, InitializerOp, 1, 0);
245 RsCreateBitField (InitializerOp, ACPI_RESTAG_INTERRUPTTYPE,
246 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtendedIrq.Flags), 1);
247 break;

249 case 2: /* Interrupt Level (or Polarity - Active high/low) */

251 RsSetFlagBits (&Descriptor->ExtendedIrq.Flags, InitializerOp, 2, 0);
252 RsCreateBitField (InitializerOp, ACPI_RESTAG_INTERRUPTLEVEL,
253 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtendedIrq.Flags), 2);
254 break;

256 case 3: /* Share Type - Default: exclusive (0) */

258 RsSetFlagBits (&Descriptor->ExtendedIrq.Flags, InitializerOp, 3, 0);

new/usr/src/common/acpica/compiler/aslrestype2.c 5

259 RsCreateBitField (InitializerOp, ACPI_RESTAG_INTERRUPTSHARE,
260 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtendedIrq.Flags), 3);
261 break;

263 case 4: /* ResSourceIndex [Optional Field - BYTE] */

265 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
266 {
267 HasResSourceIndex = TRUE;
268 ResSourceIndex = (UINT8) InitializerOp->Asl.Value.Integer;
269 }
270 break;

272 case 5: /* ResSource [Optional Field - STRING] */

274 if ((InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG) &&
275 (InitializerOp->Asl.Value.String))
276 {
277 if (StringLength)
278 {
279 ResSourceString = (UINT8 *) InitializerOp->Asl.Value.String;
280 }

282 /* ResourceSourceIndex must also be valid */

284 if (!HasResSourceIndex)
285 {
286 AslError (ASL_ERROR, ASL_MSG_RESOURCE_INDEX,
287 InitializerOp, NULL);
288 }
289 }

291 #if 0
292 /*
293 * Not a valid ResourceSource, ResourceSourceIndex must also
294 * be invalid
295 */
296 else if (HasResSourceIndex)
297 {
298 AslError (ASL_ERROR, ASL_MSG_RESOURCE_SOURCE,
299 InitializerOp, NULL);
300 }
301 #endif
302 break;

304 case 6: /* ResourceTag */

306 UtAttachNamepathToOwner (Op, InitializerOp);
307 break;

309 default:
310 /*
311 * Interrupt Numbers come through here, repeatedly
312 */

314 /* Maximum 255 interrupts allowed for this descriptor */

316 if (Descriptor->ExtendedIrq.InterruptCount == 255)
317 {
318 AslError (ASL_ERROR, ASL_MSG_EX_INTERRUPT_LIST,
319 InitializerOp, NULL);
320 return (Rnode);
321 }

323 /* Each interrupt number must be a 32-bit value */

new/usr/src/common/acpica/compiler/aslrestype2.c 6

325 if (InitializerOp->Asl.Value.Integer > ACPI_UINT32_MAX)
326 {
327 AslError (ASL_ERROR, ASL_MSG_EX_INTERRUPT_NUMBER,
328 InitializerOp, NULL);
329 }

331 /* Save the integer and move pointer to the next one */

333 Rover->DwordItem = (UINT32) InitializerOp->Asl.Value.Integer;
334 Rover = ACPI_ADD_PTR (AML_RESOURCE, &(Rover->DwordItem), 4);
335 Descriptor->ExtendedIrq.InterruptCount++;
336 Descriptor->ExtendedIrq.ResourceLength += 4;

338 /* Case 7: First interrupt number in list */

340 if (i == 7)
341 {
342 if (InitializerOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG)
343 {
344 /* Must be at least one interrupt */

346 AslError (ASL_ERROR, ASL_MSG_EX_INTERRUPT_LIST_MIN,
347 InitializerOp, NULL);
348 }

350 /* Check now for duplicates in list */

352 RsCheckListForDuplicates (InitializerOp);

354 /* Create a named field at the start of the list */

356 RsCreateDwordField (InitializerOp, ACPI_RESTAG_INTERRUPT,
357 CurrentByteOffset +
358 ASL_RESDESC_OFFSET (ExtendedIrq.Interrupts[0]));
359 }
360 }

362 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
363 }

366 /* Add optional ResSourceIndex if present */

368 if (HasResSourceIndex)
369 {
370 Rover->ByteItem = ResSourceIndex;
371 Rover = ACPI_ADD_PTR (AML_RESOURCE, &(Rover->ByteItem), 1);
372 Descriptor->ExtendedIrq.ResourceLength += 1;
373 }

375 /* Add optional ResSource string if present */

377 if (StringLength && ResSourceString)
378 {

380 strcpy ((char *) Rover, (char *) ResSourceString);
381 Rover = ACPI_ADD_PTR (
382 AML_RESOURCE, &(Rover->ByteItem), StringLength);

384 Descriptor->ExtendedIrq.ResourceLength = (UINT16)
385 (Descriptor->ExtendedIrq.ResourceLength + StringLength);
386 }

388 Rnode->BufferLength = (ASL_RESDESC_OFFSET (ExtendedIrq.Interrupts[0]) -
389 ASL_RESDESC_OFFSET (ExtendedIrq.DescriptorType))
390 + OptionIndex + StringLength;

new/usr/src/common/acpica/compiler/aslrestype2.c 7

391 return (Rnode);
392 }

395 /***
396 *
397 * FUNCTION: RsDoVendorLargeDescriptor
398 *
399 * PARAMETERS: Op - Parent resource descriptor parse node
400 * CurrentByteOffset - Offset into the resource template AML
401 * buffer (to track references to the desc)
402 *
403 * RETURN: Completed resource node
404 *
405 * DESCRIPTION: Construct a long "VendorLong" descriptor
406 *
407 **/

409 ASL_RESOURCE_NODE *
410 RsDoVendorLargeDescriptor (
411 ACPI_PARSE_OBJECT *Op,
412 UINT32 CurrentByteOffset)
413 {
414 AML_RESOURCE *Descriptor;
415 ACPI_PARSE_OBJECT *InitializerOp;
416 ASL_RESOURCE_NODE *Rnode;
417 UINT8 *VendorData;
418 UINT32 i;

421 /* Count the number of data bytes */

423 InitializerOp = Op->Asl.Child;
424 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);

426 for (i = 0; InitializerOp; i++)
427 {
428 if (InitializerOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG)
429 {
430 break;
431 }
432 InitializerOp = InitializerOp->Asl.Next;
433 }

435 InitializerOp = Op->Asl.Child;
436 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
437 Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_VENDOR_LARGE) + i);

439 Descriptor = Rnode->Buffer;
440 Descriptor->VendorLarge.DescriptorType = ACPI_RESOURCE_NAME_VENDOR_LARGE;
441 Descriptor->VendorLarge.ResourceLength = (UINT16) i;

443 /* Point to end-of-descriptor for vendor data */

445 VendorData = ((UINT8 *) Descriptor) + sizeof (AML_RESOURCE_LARGE_HEADER);

447 /* Process all child initialization nodes */

449 for (i = 0; InitializerOp; i++)
450 {
451 if (InitializerOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG)
452 {
453 break;
454 }

456 VendorData[i] = (UINT8) InitializerOp->Asl.Value.Integer;

new/usr/src/common/acpica/compiler/aslrestype2.c 8

457 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
458 }

460 return (Rnode);
461 }

new/usr/src/common/acpica/compiler/aslrestype2d.c 1

**
 26143 Thu Dec 26 13:48:33 2013
new/usr/src/common/acpica/compiler/aslrestype2d.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslrestype2d - Large DWord address resource descriptors
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"

48 #define _COMPONENT ACPI_COMPILER
49 ACPI_MODULE_NAME ("aslrestype2d")

51 /*
52 * This module contains the Dword (32-bit) address space descriptors:
53 *
54 * DwordIO
55 * DwordMemory
56 * DwordSpace
57 */

59 /***
60 *

new/usr/src/common/acpica/compiler/aslrestype2d.c 2

61 * FUNCTION: RsDoDwordIoDescriptor
62 *
63 * PARAMETERS: Op - Parent resource descriptor parse node
64 * CurrentByteOffset - Offset into the resource template AML
65 * buffer (to track references to the desc)
66 *
67 * RETURN: Completed resource node
68 *
69 * DESCRIPTION: Construct a long "DwordIO" descriptor
70 *
71 **/

73 ASL_RESOURCE_NODE *
74 RsDoDwordIoDescriptor (
75 ACPI_PARSE_OBJECT *Op,
76 UINT32 CurrentByteOffset)
77 {
78 AML_RESOURCE *Descriptor;
79 ACPI_PARSE_OBJECT *InitializerOp;
80 ACPI_PARSE_OBJECT *MinOp = NULL;
81 ACPI_PARSE_OBJECT *MaxOp = NULL;
82 ACPI_PARSE_OBJECT *LengthOp = NULL;
83 ACPI_PARSE_OBJECT *GranOp = NULL;
84 ASL_RESOURCE_NODE *Rnode;
85 UINT16 StringLength = 0;
86 UINT32 OptionIndex = 0;
87 UINT8 *OptionalFields;
88 UINT32 i;
89 BOOLEAN ResSourceIndex = FALSE;

92 InitializerOp = Op->Asl.Child;
93 StringLength = RsGetStringDataLength (InitializerOp);

95 Rnode = RsAllocateResourceNode (
96 sizeof (AML_RESOURCE_ADDRESS32) + 1 + StringLength);

98 Descriptor = Rnode->Buffer;
99 Descriptor->Address32.DescriptorType = ACPI_RESOURCE_NAME_ADDRESS32;
100 Descriptor->Address32.ResourceType = ACPI_ADDRESS_TYPE_IO_RANGE;

102 /*
103 * Initial descriptor length -- may be enlarged if there are
104 * optional fields present
105 */
106 OptionalFields = ((UINT8 *) Descriptor) + sizeof (AML_RESOURCE_ADDRESS32);
107 Descriptor->Address32.ResourceLength = (UINT16)
108 (sizeof (AML_RESOURCE_ADDRESS32) -
109 sizeof (AML_RESOURCE_LARGE_HEADER));

111 /* Process all child initialization nodes */

113 for (i = 0; InitializerOp; i++)
114 {
115 switch (i)
116 {
117 case 0: /* Resource Usage */

119 RsSetFlagBits (&Descriptor->Address32.Flags, InitializerOp, 0, 1);
120 break;

122 case 1: /* MinType */

124 RsSetFlagBits (&Descriptor->Address32.Flags, InitializerOp, 2, 0);
125 RsCreateBitField (InitializerOp, ACPI_RESTAG_MINTYPE,
126 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Flags), 2);

new/usr/src/common/acpica/compiler/aslrestype2d.c 3

127 break;

129 case 2: /* MaxType */

131 RsSetFlagBits (&Descriptor->Address32.Flags, InitializerOp, 3, 0);
132 RsCreateBitField (InitializerOp, ACPI_RESTAG_MAXTYPE,
133 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Flags), 3);
134 break;

136 case 3: /* DecodeType */

138 RsSetFlagBits (&Descriptor->Address32.Flags, InitializerOp, 1, 0);
139 RsCreateBitField (InitializerOp, ACPI_RESTAG_DECODE,
140 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Flags), 1);
141 break;

143 case 4: /* Range Type */

145 RsSetFlagBits (&Descriptor->Address32.SpecificFlags, InitializerOp,
146 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_RANGETYPE,
147 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.SpecificFlags)
148 break;

150 case 5: /* Address Granularity */

152 Descriptor->Address32.Granularity =
153 (UINT32) InitializerOp->Asl.Value.Integer;
154 RsCreateDwordField (InitializerOp, ACPI_RESTAG_GRANULARITY,
155 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Granularity));
156 GranOp = InitializerOp;
157 break;

159 case 6: /* Address Min */

161 Descriptor->Address32.Minimum =
162 (UINT32) InitializerOp->Asl.Value.Integer;
163 RsCreateDwordField (InitializerOp, ACPI_RESTAG_MINADDR,
164 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Minimum));
165 MinOp = InitializerOp;
166 break;

168 case 7: /* Address Max */

170 Descriptor->Address32.Maximum =
171 (UINT32) InitializerOp->Asl.Value.Integer;
172 RsCreateDwordField (InitializerOp, ACPI_RESTAG_MAXADDR,
173 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Maximum));
174 MaxOp = InitializerOp;
175 break;

177 case 8: /* Translation Offset */

179 Descriptor->Address32.TranslationOffset =
180 (UINT32) InitializerOp->Asl.Value.Integer;
181 RsCreateDwordField (InitializerOp, ACPI_RESTAG_TRANSLATION,
182 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.TranslationOff
183 break;

185 case 9: /* Address Length */

187 Descriptor->Address32.AddressLength =
188 (UINT32) InitializerOp->Asl.Value.Integer;
189 RsCreateDwordField (InitializerOp, ACPI_RESTAG_LENGTH,
190 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.AddressLength)
191 LengthOp = InitializerOp;
192 break;

new/usr/src/common/acpica/compiler/aslrestype2d.c 4

194 case 10: /* ResSourceIndex [Optional Field - BYTE] */

196 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
197 {
198 /* Found a valid ResourceSourceIndex */

200 OptionalFields[0] = (UINT8) InitializerOp->Asl.Value.Integer;
201 OptionIndex++;
202 Descriptor->Address32.ResourceLength++;
203 ResSourceIndex = TRUE;
204 }
205 break;

207 case 11: /* ResSource [Optional Field - STRING] */

209 if ((InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG) &&
210 (InitializerOp->Asl.Value.String))
211 {
212 if (StringLength)
213 {
214 /* Found a valid ResourceSource */

216 Descriptor->Address32.ResourceLength = (UINT16)
217 (Descriptor->Address32.ResourceLength + StringLength);

219 strcpy ((char *)
220 &OptionalFields[OptionIndex],
221 InitializerOp->Asl.Value.String);

223 /* ResourceSourceIndex must also be valid */

225 if (!ResSourceIndex)
226 {
227 AslError (ASL_ERROR, ASL_MSG_RESOURCE_INDEX,
228 InitializerOp, NULL);
229 }
230 }
231 }

233 #if 0
234 /*
235 * Not a valid ResourceSource, ResourceSourceIndex must also
236 * be invalid
237 */
238 else if (ResSourceIndex)
239 {
240 AslError (ASL_ERROR, ASL_MSG_RESOURCE_SOURCE,
241 InitializerOp, NULL);
242 }
243 #endif
244 break;

246 case 12: /* ResourceTag */

248 UtAttachNamepathToOwner (Op, InitializerOp);
249 break;

251 case 13: /* Type */

253 RsSetFlagBits (&Descriptor->Address32.SpecificFlags, InitializerOp,
254 RsCreateBitField (InitializerOp, ACPI_RESTAG_TYPE,
255 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.SpecificFlags)
256 break;

258 case 14: /* Translation Type */

new/usr/src/common/acpica/compiler/aslrestype2d.c 5

260 RsSetFlagBits (&Descriptor->Address32.SpecificFlags, InitializerOp,
261 RsCreateBitField (InitializerOp, ACPI_RESTAG_TRANSTYPE,
262 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.SpecificFlags)
263 break;

265 default:

267 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL);
268 break;
269 }

271 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
272 }

274 /* Validate the Min/Max/Len/Gran values */

276 RsLargeAddressCheck (
277 (UINT64) Descriptor->Address32.Minimum,
278 (UINT64) Descriptor->Address32.Maximum,
279 (UINT64) Descriptor->Address32.AddressLength,
280 (UINT64) Descriptor->Address32.Granularity,
281 Descriptor->Address32.Flags,
282 MinOp, MaxOp, LengthOp, GranOp, Op);

284 Rnode->BufferLength = sizeof (AML_RESOURCE_ADDRESS32) +
285 OptionIndex + StringLength;
286 return (Rnode);
287 }

290 /***
291 *
292 * FUNCTION: RsDoDwordMemoryDescriptor
293 *
294 * PARAMETERS: Op - Parent resource descriptor parse node
295 * CurrentByteOffset - Offset into the resource template AML
296 * buffer (to track references to the desc)
297 *
298 * RETURN: Completed resource node
299 *
300 * DESCRIPTION: Construct a long "DwordMemory" descriptor
301 *
302 **/

304 ASL_RESOURCE_NODE *
305 RsDoDwordMemoryDescriptor (
306 ACPI_PARSE_OBJECT *Op,
307 UINT32 CurrentByteOffset)
308 {
309 AML_RESOURCE *Descriptor;
310 ACPI_PARSE_OBJECT *InitializerOp;
311 ACPI_PARSE_OBJECT *MinOp = NULL;
312 ACPI_PARSE_OBJECT *MaxOp = NULL;
313 ACPI_PARSE_OBJECT *LengthOp = NULL;
314 ACPI_PARSE_OBJECT *GranOp = NULL;
315 ASL_RESOURCE_NODE *Rnode;
316 UINT8 *OptionalFields;
317 UINT16 StringLength = 0;
318 UINT32 OptionIndex = 0;
319 UINT32 i;
320 BOOLEAN ResSourceIndex = FALSE;

323 InitializerOp = Op->Asl.Child;
324 StringLength = RsGetStringDataLength (InitializerOp);

new/usr/src/common/acpica/compiler/aslrestype2d.c 6

326 Rnode = RsAllocateResourceNode (
327 sizeof (AML_RESOURCE_ADDRESS32) + 1 + StringLength);

329 Descriptor = Rnode->Buffer;
330 Descriptor->Address32.DescriptorType = ACPI_RESOURCE_NAME_ADDRESS32;
331 Descriptor->Address32.ResourceType = ACPI_ADDRESS_TYPE_MEMORY_RANGE;

333 /*
334 * Initial descriptor length -- may be enlarged if there are
335 * optional fields present
336 */
337 OptionalFields = ((UINT8 *) Descriptor) + sizeof (AML_RESOURCE_ADDRESS32);
338 Descriptor->Address32.ResourceLength = (UINT16)
339 (sizeof (AML_RESOURCE_ADDRESS32) -
340 sizeof (AML_RESOURCE_LARGE_HEADER));

343 /* Process all child initialization nodes */

345 for (i = 0; InitializerOp; i++)
346 {
347 switch (i)
348 {
349 case 0: /* Resource Usage */

351 RsSetFlagBits (&Descriptor->Address32.Flags, InitializerOp, 0, 1);
352 break;

354 case 1: /* DecodeType */

356 RsSetFlagBits (&Descriptor->Address32.Flags, InitializerOp, 1, 0);
357 RsCreateBitField (InitializerOp, ACPI_RESTAG_DECODE,
358 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Flags), 1);
359 break;

361 case 2: /* MinType */

363 RsSetFlagBits (&Descriptor->Address32.Flags, InitializerOp, 2, 0);
364 RsCreateBitField (InitializerOp, ACPI_RESTAG_MINTYPE,
365 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Flags), 2);
366 break;

368 case 3: /* MaxType */

370 RsSetFlagBits (&Descriptor->Address32.Flags, InitializerOp, 3, 0);
371 RsCreateBitField (InitializerOp, ACPI_RESTAG_MAXTYPE,
372 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Flags), 3);
373 break;

375 case 4: /* Memory Type */

377 RsSetFlagBits (&Descriptor->Address32.SpecificFlags, InitializerOp,
378 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_MEMTYPE,
379 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.SpecificFlags)
380 break;

382 case 5: /* Read/Write Type */

384 RsSetFlagBits (&Descriptor->Address32.SpecificFlags, InitializerOp,
385 RsCreateBitField (InitializerOp, ACPI_RESTAG_READWRITETYPE,
386 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.SpecificFlags)
387 break;

389 case 6: /* Address Granularity */

new/usr/src/common/acpica/compiler/aslrestype2d.c 7

391 Descriptor->Address32.Granularity =
392 (UINT32) InitializerOp->Asl.Value.Integer;
393 RsCreateDwordField (InitializerOp, ACPI_RESTAG_GRANULARITY,
394 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Granularity));
395 GranOp = InitializerOp;
396 break;

398 case 7: /* Min Address */

400 Descriptor->Address32.Minimum =
401 (UINT32) InitializerOp->Asl.Value.Integer;
402 RsCreateDwordField (InitializerOp, ACPI_RESTAG_MINADDR,
403 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Minimum));
404 MinOp = InitializerOp;
405 break;

407 case 8: /* Max Address */

409 Descriptor->Address32.Maximum =
410 (UINT32) InitializerOp->Asl.Value.Integer;
411 RsCreateDwordField (InitializerOp, ACPI_RESTAG_MAXADDR,
412 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Maximum));
413 MaxOp = InitializerOp;
414 break;

416 case 9: /* Translation Offset */

418 Descriptor->Address32.TranslationOffset =
419 (UINT32) InitializerOp->Asl.Value.Integer;
420 RsCreateDwordField (InitializerOp, ACPI_RESTAG_TRANSLATION,
421 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.TranslationOff
422 break;

424 case 10: /* Address Length */

426 Descriptor->Address32.AddressLength =
427 (UINT32) InitializerOp->Asl.Value.Integer;
428 RsCreateDwordField (InitializerOp, ACPI_RESTAG_LENGTH,
429 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.AddressLength)
430 LengthOp = InitializerOp;
431 break;

433 case 11: /* ResSourceIndex [Optional Field - BYTE] */

435 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
436 {
437 OptionalFields[0] = (UINT8) InitializerOp->Asl.Value.Integer;
438 OptionIndex++;
439 Descriptor->Address32.ResourceLength++;
440 ResSourceIndex = TRUE;
441 }
442 break;

444 case 12: /* ResSource [Optional Field - STRING] */

446 if ((InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG) &&
447 (InitializerOp->Asl.Value.String))
448 {
449 if (StringLength)
450 {
451 Descriptor->Address32.ResourceLength = (UINT16)
452 (Descriptor->Address32.ResourceLength + StringLength);

454 strcpy ((char *)
455 &OptionalFields[OptionIndex],
456 InitializerOp->Asl.Value.String);

new/usr/src/common/acpica/compiler/aslrestype2d.c 8

458 /* ResourceSourceIndex must also be valid */

460 if (!ResSourceIndex)
461 {
462 AslError (ASL_ERROR, ASL_MSG_RESOURCE_INDEX,
463 InitializerOp, NULL);
464 }
465 }
466 }

468 #if 0
469 /*
470 * Not a valid ResourceSource, ResourceSourceIndex must also
471 * be invalid
472 */
473 else if (ResSourceIndex)
474 {
475 AslError (ASL_ERROR, ASL_MSG_RESOURCE_SOURCE,
476 InitializerOp, NULL);
477 }
478 #endif
479 break;

481 case 13: /* ResourceTag */

483 UtAttachNamepathToOwner (Op, InitializerOp);
484 break;

487 case 14: /* Address Range */

489 RsSetFlagBits (&Descriptor->Address32.SpecificFlags, InitializerOp,
490 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_MEMATTRIBUTES,
491 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.SpecificFlags)
492 break;

494 case 15: /* Type */

496 RsSetFlagBits (&Descriptor->Address32.SpecificFlags, InitializerOp,
497 RsCreateBitField (InitializerOp, ACPI_RESTAG_TYPE,
498 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.SpecificFlags)
499 break;

501 default:

503 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL);
504 break;
505 }

507 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
508 }

510 /* Validate the Min/Max/Len/Gran values */

512 RsLargeAddressCheck (
513 (UINT64) Descriptor->Address32.Minimum,
514 (UINT64) Descriptor->Address32.Maximum,
515 (UINT64) Descriptor->Address32.AddressLength,
516 (UINT64) Descriptor->Address32.Granularity,
517 Descriptor->Address32.Flags,
518 MinOp, MaxOp, LengthOp, GranOp, Op);

520 Rnode->BufferLength = sizeof (AML_RESOURCE_ADDRESS32) +
521 OptionIndex + StringLength;
522 return (Rnode);

new/usr/src/common/acpica/compiler/aslrestype2d.c 9

523 }

526 /***
527 *
528 * FUNCTION: RsDoDwordSpaceDescriptor
529 *
530 * PARAMETERS: Op - Parent resource descriptor parse node
531 * CurrentByteOffset - Offset into the resource template AML
532 * buffer (to track references to the desc)
533 *
534 * RETURN: Completed resource node
535 *
536 * DESCRIPTION: Construct a long "DwordSpace" descriptor
537 *
538 **/

540 ASL_RESOURCE_NODE *
541 RsDoDwordSpaceDescriptor (
542 ACPI_PARSE_OBJECT *Op,
543 UINT32 CurrentByteOffset)
544 {
545 AML_RESOURCE *Descriptor;
546 ACPI_PARSE_OBJECT *InitializerOp;
547 ACPI_PARSE_OBJECT *MinOp = NULL;
548 ACPI_PARSE_OBJECT *MaxOp = NULL;
549 ACPI_PARSE_OBJECT *LengthOp = NULL;
550 ACPI_PARSE_OBJECT *GranOp = NULL;
551 ASL_RESOURCE_NODE *Rnode;
552 UINT8 *OptionalFields;
553 UINT16 StringLength = 0;
554 UINT32 OptionIndex = 0;
555 UINT32 i;
556 BOOLEAN ResSourceIndex = FALSE;

559 InitializerOp = Op->Asl.Child;
560 StringLength = RsGetStringDataLength (InitializerOp);

562 Rnode = RsAllocateResourceNode (
563 sizeof (AML_RESOURCE_ADDRESS32) + 1 + StringLength);

565 Descriptor = Rnode->Buffer;
566 Descriptor->Address32.DescriptorType = ACPI_RESOURCE_NAME_ADDRESS32;

568 /*
569 * Initial descriptor length -- may be enlarged if there are
570 * optional fields present
571 */
572 OptionalFields = ((UINT8 *) Descriptor) + sizeof (AML_RESOURCE_ADDRESS32);
573 Descriptor->Address32.ResourceLength = (UINT16)
574 (sizeof (AML_RESOURCE_ADDRESS32) -
575 sizeof (AML_RESOURCE_LARGE_HEADER));

577 /* Process all child initialization nodes */

579 for (i = 0; InitializerOp; i++)
580 {
581 switch (i)
582 {
583 case 0: /* Resource Type */

585 Descriptor->Address32.ResourceType =
586 (UINT8) InitializerOp->Asl.Value.Integer;
587 break;

new/usr/src/common/acpica/compiler/aslrestype2d.c 10

589 case 1: /* Resource Usage */

591 RsSetFlagBits (&Descriptor->Address32.Flags, InitializerOp, 0, 1);
592 break;

594 case 2: /* DecodeType */

596 RsSetFlagBits (&Descriptor->Address32.Flags, InitializerOp, 1, 0);
597 RsCreateBitField (InitializerOp, ACPI_RESTAG_DECODE,
598 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Flags), 1);
599 break;

601 case 3: /* MinType */

603 RsSetFlagBits (&Descriptor->Address32.Flags, InitializerOp, 2, 0);
604 RsCreateBitField (InitializerOp, ACPI_RESTAG_MINTYPE,
605 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Flags), 2);
606 break;

608 case 4: /* MaxType */

610 RsSetFlagBits (&Descriptor->Address32.Flags, InitializerOp, 3, 0);
611 RsCreateBitField (InitializerOp, ACPI_RESTAG_MAXTYPE,
612 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Flags), 3);
613 break;

615 case 5: /* Type-Specific flags */

617 Descriptor->Address32.SpecificFlags =
618 (UINT8) InitializerOp->Asl.Value.Integer;
619 break;

621 case 6: /* Address Granularity */

623 Descriptor->Address32.Granularity =
624 (UINT32) InitializerOp->Asl.Value.Integer;
625 RsCreateDwordField (InitializerOp, ACPI_RESTAG_GRANULARITY,
626 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Granularity));
627 GranOp = InitializerOp;
628 break;

630 case 7: /* Min Address */

632 Descriptor->Address32.Minimum =
633 (UINT32) InitializerOp->Asl.Value.Integer;
634 RsCreateDwordField (InitializerOp, ACPI_RESTAG_MINADDR,
635 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Minimum));
636 MinOp = InitializerOp;
637 break;

639 case 8: /* Max Address */

641 Descriptor->Address32.Maximum =
642 (UINT32) InitializerOp->Asl.Value.Integer;
643 RsCreateDwordField (InitializerOp, ACPI_RESTAG_MAXADDR,
644 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.Maximum));
645 MaxOp = InitializerOp;
646 break;

648 case 9: /* Translation Offset */

650 Descriptor->Address32.TranslationOffset =
651 (UINT32) InitializerOp->Asl.Value.Integer;
652 RsCreateDwordField (InitializerOp, ACPI_RESTAG_TRANSLATION,
653 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.TranslationOff
654 break;

new/usr/src/common/acpica/compiler/aslrestype2d.c 11

656 case 10: /* Address Length */

658 Descriptor->Address32.AddressLength =
659 (UINT32) InitializerOp->Asl.Value.Integer;
660 RsCreateDwordField (InitializerOp, ACPI_RESTAG_LENGTH,
661 CurrentByteOffset + ASL_RESDESC_OFFSET (Address32.AddressLength)
662 LengthOp = InitializerOp;
663 break;

665 case 11: /* ResSourceIndex [Optional Field - BYTE] */

667 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
668 {
669 OptionalFields[0] = (UINT8) InitializerOp->Asl.Value.Integer;
670 OptionIndex++;
671 Descriptor->Address32.ResourceLength++;
672 ResSourceIndex = TRUE;
673 }
674 break;

676 case 12: /* ResSource [Optional Field - STRING] */

678 if ((InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG) &&
679 (InitializerOp->Asl.Value.String))
680 {
681 if (StringLength)
682 {
683 Descriptor->Address32.ResourceLength = (UINT16)
684 (Descriptor->Address32.ResourceLength + StringLength);

686 strcpy ((char *)
687 &OptionalFields[OptionIndex],
688 InitializerOp->Asl.Value.String);

690 /* ResourceSourceIndex must also be valid */

692 if (!ResSourceIndex)
693 {
694 AslError (ASL_ERROR, ASL_MSG_RESOURCE_INDEX,
695 InitializerOp, NULL);
696 }
697 }
698 }

700 #if 0
701 /*
702 * Not a valid ResourceSource, ResourceSourceIndex must also
703 * be invalid
704 */
705 else if (ResSourceIndex)
706 {
707 AslError (ASL_ERROR, ASL_MSG_RESOURCE_SOURCE,
708 InitializerOp, NULL);
709 }
710 #endif
711 break;

713 case 13: /* ResourceTag */

715 UtAttachNamepathToOwner (Op, InitializerOp);
716 break;

718 default:

720 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST,

new/usr/src/common/acpica/compiler/aslrestype2d.c 12

721 InitializerOp, NULL);
722 break;
723 }

725 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
726 }

728 /* Validate the Min/Max/Len/Gran values */

730 RsLargeAddressCheck (
731 (UINT64) Descriptor->Address32.Minimum,
732 (UINT64) Descriptor->Address32.Maximum,
733 (UINT64) Descriptor->Address32.AddressLength,
734 (UINT64) Descriptor->Address32.Granularity,
735 Descriptor->Address32.Flags,
736 MinOp, MaxOp, LengthOp, GranOp, Op);

738 Rnode->BufferLength = sizeof (AML_RESOURCE_ADDRESS32) +
739 OptionIndex + StringLength;
740 return (Rnode);
741 }

new/usr/src/common/acpica/compiler/aslrestype2e.c 1

**
 21325 Thu Dec 26 13:48:33 2013
new/usr/src/common/acpica/compiler/aslrestype2e.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslrestype2e - Large Extended address resource descriptors
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"

47 #define _COMPONENT ACPI_COMPILER
48 ACPI_MODULE_NAME ("aslrestype2e")

50 /*
51 * This module contains the Extended (64-bit) address space descriptors:
52 *
53 * ExtendedIO
54 * ExtendedMemory
55 * ExtendedSpace
56 */

58 /***
59 *
60 * FUNCTION: RsDoExtendedIoDescriptor

new/usr/src/common/acpica/compiler/aslrestype2e.c 2

61 *
62 * PARAMETERS: Op - Parent resource descriptor parse node
63 * CurrentByteOffset - Offset into the resource template AML
64 * buffer (to track references to the desc)
65 *
66 * RETURN: Completed resource node
67 *
68 * DESCRIPTION: Construct a long "ExtendedIO" descriptor
69 *
70 **/

72 ASL_RESOURCE_NODE *
73 RsDoExtendedIoDescriptor (
74 ACPI_PARSE_OBJECT *Op,
75 UINT32 CurrentByteOffset)
76 {
77 AML_RESOURCE *Descriptor;
78 ACPI_PARSE_OBJECT *InitializerOp;
79 ACPI_PARSE_OBJECT *MinOp = NULL;
80 ACPI_PARSE_OBJECT *MaxOp = NULL;
81 ACPI_PARSE_OBJECT *LengthOp = NULL;
82 ACPI_PARSE_OBJECT *GranOp = NULL;
83 ASL_RESOURCE_NODE *Rnode;
84 UINT16 StringLength = 0;
85 UINT32 i;

88 InitializerOp = Op->Asl.Child;
89 StringLength = RsGetStringDataLength (InitializerOp);

91 Rnode = RsAllocateResourceNode (
92 sizeof (AML_RESOURCE_EXTENDED_ADDRESS64) + 1 + StringLength);

94 Descriptor = Rnode->Buffer;
95 Descriptor->ExtAddress64.DescriptorType = ACPI_RESOURCE_NAME_EXTENDED_ADDRE
96 Descriptor->ExtAddress64.ResourceType = ACPI_ADDRESS_TYPE_IO_RANGE;
97 Descriptor->ExtAddress64.RevisionID = AML_RESOURCE_EXTENDED_ADDRESS_REV

99 Descriptor->ExtAddress64.ResourceLength = (UINT16)
100 (sizeof (AML_RESOURCE_EXTENDED_ADDRESS64) -
101 sizeof (AML_RESOURCE_LARGE_HEADER));

103 /* Process all child initialization nodes */

105 for (i = 0; InitializerOp; i++)
106 {
107 switch (i)
108 {
109 case 0: /* Resource Usage */

111 RsSetFlagBits (&Descriptor->ExtAddress64.Flags, InitializerOp, 0, 1)
112 break;

114 case 1: /* MinType */

116 RsSetFlagBits (&Descriptor->ExtAddress64.Flags, InitializerOp, 2, 0)
117 RsCreateBitField (InitializerOp, ACPI_RESTAG_MINTYPE,
118 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Flags), 2);
119 break;

121 case 2: /* MaxType */

123 RsSetFlagBits (&Descriptor->ExtAddress64.Flags, InitializerOp, 3, 0)
124 RsCreateBitField (InitializerOp, ACPI_RESTAG_MAXTYPE,
125 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Flags), 3);
126 break;

new/usr/src/common/acpica/compiler/aslrestype2e.c 3

128 case 3: /* DecodeType */

130 RsSetFlagBits (&Descriptor->ExtAddress64.Flags, InitializerOp, 1, 0)
131 RsCreateBitField (InitializerOp, ACPI_RESTAG_DECODE,
132 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Flags), 1);
133 break;

135 case 4: /* Range Type */

137 RsSetFlagBits (&Descriptor->ExtAddress64.SpecificFlags, InitializerO
138 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_RANGETYPE,
139 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.SpecificFla
140 break;

142 case 5: /* Address Granularity */

144 Descriptor->ExtAddress64.Granularity = InitializerOp->Asl.Value.Inte
145 RsCreateQwordField (InitializerOp, ACPI_RESTAG_GRANULARITY,
146 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Granularity
147 GranOp = InitializerOp;
148 break;

150 case 6: /* Address Min */

152 Descriptor->ExtAddress64.Minimum = InitializerOp->Asl.Value.Integer;
153 RsCreateQwordField (InitializerOp, ACPI_RESTAG_MINADDR,
154 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Minimum));
155 MinOp = InitializerOp;
156 break;

158 case 7: /* Address Max */

160 Descriptor->ExtAddress64.Maximum = InitializerOp->Asl.Value.Integer;
161 RsCreateQwordField (InitializerOp, ACPI_RESTAG_MAXADDR,
162 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Maximum));
163 MaxOp = InitializerOp;
164 break;

166 case 8: /* Translation Offset */

168 Descriptor->ExtAddress64.TranslationOffset = InitializerOp->Asl.Valu
169 RsCreateQwordField (InitializerOp, ACPI_RESTAG_TRANSLATION,
170 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Translation
171 break;

173 case 9: /* Address Length */

175 Descriptor->ExtAddress64.AddressLength = InitializerOp->Asl.Value.In
176 RsCreateQwordField (InitializerOp, ACPI_RESTAG_LENGTH,
177 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.AddressLeng
178 LengthOp = InitializerOp;
179 break;

181 case 10: /* Type-Specific Attributes */

183 Descriptor->ExtAddress64.TypeSpecific = InitializerOp->Asl.Value.Int
184 RsCreateQwordField (InitializerOp, ACPI_RESTAG_TYPESPECIFICATTRIBUTE
185 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.TypeSpecifi
186 break;

188 case 11: /* ResourceTag */

190 UtAttachNamepathToOwner (Op, InitializerOp);
191 break;

new/usr/src/common/acpica/compiler/aslrestype2e.c 4

193 case 12: /* Type */

195 RsSetFlagBits (&Descriptor->ExtAddress64.SpecificFlags, InitializerO
196 RsCreateBitField (InitializerOp, ACPI_RESTAG_TYPE,
197 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.SpecificFla
198 break;

200 case 13: /* Translation Type */

202 RsSetFlagBits (&Descriptor->ExtAddress64.SpecificFlags, InitializerO
203 RsCreateBitField (InitializerOp, ACPI_RESTAG_TRANSTYPE,
204 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.SpecificFla
205 break;

207 default:

209 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL);
210 break;
211 }

213 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
214 }

216 /* Validate the Min/Max/Len/Gran values */

218 RsLargeAddressCheck (
219 Descriptor->ExtAddress64.Minimum,
220 Descriptor->ExtAddress64.Maximum,
221 Descriptor->ExtAddress64.AddressLength,
222 Descriptor->ExtAddress64.Granularity,
223 Descriptor->ExtAddress64.Flags,
224 MinOp, MaxOp, LengthOp, GranOp, Op);

226 Rnode->BufferLength = sizeof (AML_RESOURCE_EXTENDED_ADDRESS64) + StringLengt
227 return (Rnode);
228 }

231 /***
232 *
233 * FUNCTION: RsDoExtendedMemoryDescriptor
234 *
235 * PARAMETERS: Op - Parent resource descriptor parse node
236 * CurrentByteOffset - Offset into the resource template AML
237 * buffer (to track references to the desc)
238 *
239 * RETURN: Completed resource node
240 *
241 * DESCRIPTION: Construct a long "ExtendedMemory" descriptor
242 *
243 **/

245 ASL_RESOURCE_NODE *
246 RsDoExtendedMemoryDescriptor (
247 ACPI_PARSE_OBJECT *Op,
248 UINT32 CurrentByteOffset)
249 {
250 AML_RESOURCE *Descriptor;
251 ACPI_PARSE_OBJECT *InitializerOp;
252 ACPI_PARSE_OBJECT *MinOp = NULL;
253 ACPI_PARSE_OBJECT *MaxOp = NULL;
254 ACPI_PARSE_OBJECT *LengthOp = NULL;
255 ACPI_PARSE_OBJECT *GranOp = NULL;
256 ASL_RESOURCE_NODE *Rnode;
257 UINT16 StringLength = 0;
258 UINT32 i;

new/usr/src/common/acpica/compiler/aslrestype2e.c 5

261 InitializerOp = Op->Asl.Child;
262 StringLength = RsGetStringDataLength (InitializerOp);

264 Rnode = RsAllocateResourceNode (
265 sizeof (AML_RESOURCE_EXTENDED_ADDRESS64) + 1 + StringLength);

267 Descriptor = Rnode->Buffer;
268 Descriptor->ExtAddress64.DescriptorType = ACPI_RESOURCE_NAME_EXTENDED_ADDRE
269 Descriptor->ExtAddress64.ResourceType = ACPI_ADDRESS_TYPE_MEMORY_RANGE;
270 Descriptor->ExtAddress64.RevisionID = AML_RESOURCE_EXTENDED_ADDRESS_REV

272 Descriptor->ExtAddress64.ResourceLength = (UINT16)
273 (sizeof (AML_RESOURCE_EXTENDED_ADDRESS64) -
274 sizeof (AML_RESOURCE_LARGE_HEADER));

276 /* Process all child initialization nodes */

278 for (i = 0; InitializerOp; i++)
279 {
280 switch (i)
281 {
282 case 0: /* Resource Usage */

284 RsSetFlagBits (&Descriptor->ExtAddress64.Flags, InitializerOp, 0, 1)
285 break;

287 case 1: /* DecodeType */

289 RsSetFlagBits (&Descriptor->ExtAddress64.Flags, InitializerOp, 1, 0)
290 RsCreateBitField (InitializerOp, ACPI_RESTAG_DECODE,
291 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Flags), 1);
292 break;

294 case 2: /* MinType */

296 RsSetFlagBits (&Descriptor->ExtAddress64.Flags, InitializerOp, 2, 0)
297 RsCreateBitField (InitializerOp, ACPI_RESTAG_MINTYPE,
298 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Flags), 2);
299 break;

301 case 3: /* MaxType */

303 RsSetFlagBits (&Descriptor->ExtAddress64.Flags, InitializerOp, 3, 0)
304 RsCreateBitField (InitializerOp, ACPI_RESTAG_MAXTYPE,
305 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Flags), 3);
306 break;

308 case 4: /* Memory Type */

310 RsSetFlagBits (&Descriptor->ExtAddress64.SpecificFlags, InitializerO
311 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_MEMTYPE,
312 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.SpecificFla
313 break;

315 case 5: /* Read/Write Type */

317 RsSetFlagBits (&Descriptor->ExtAddress64.SpecificFlags, InitializerO
318 RsCreateBitField (InitializerOp, ACPI_RESTAG_READWRITETYPE,
319 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.SpecificFla
320 break;

322 case 6: /* Address Granularity */

324 Descriptor->ExtAddress64.Granularity = InitializerOp->Asl.Value.Inte

new/usr/src/common/acpica/compiler/aslrestype2e.c 6

325 RsCreateQwordField (InitializerOp, ACPI_RESTAG_GRANULARITY,
326 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Granularity
327 GranOp = InitializerOp;
328 break;

330 case 7: /* Min Address */

332 Descriptor->ExtAddress64.Minimum = InitializerOp->Asl.Value.Integer;
333 RsCreateQwordField (InitializerOp, ACPI_RESTAG_MINADDR,
334 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Minimum));
335 MinOp = InitializerOp;
336 break;

338 case 8: /* Max Address */

340 Descriptor->ExtAddress64.Maximum = InitializerOp->Asl.Value.Integer;
341 RsCreateQwordField (InitializerOp, ACPI_RESTAG_MAXADDR,
342 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Maximum));
343 MaxOp = InitializerOp;
344 break;

346 case 9: /* Translation Offset */

348 Descriptor->ExtAddress64.TranslationOffset = InitializerOp->Asl.Valu
349 RsCreateQwordField (InitializerOp, ACPI_RESTAG_TRANSLATION,
350 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Translation
351 break;

353 case 10: /* Address Length */

355 Descriptor->ExtAddress64.AddressLength = InitializerOp->Asl.Value.In
356 RsCreateQwordField (InitializerOp, ACPI_RESTAG_LENGTH,
357 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.AddressLeng
358 LengthOp = InitializerOp;
359 break;

361 case 11: /* Type-Specific Attributes */

363 Descriptor->ExtAddress64.TypeSpecific = InitializerOp->Asl.Value.Int
364 RsCreateQwordField (InitializerOp, ACPI_RESTAG_TYPESPECIFICATTRIBUTE
365 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.TypeSpecifi
366 break;

368 case 12: /* ResourceTag */

370 UtAttachNamepathToOwner (Op, InitializerOp);
371 break;

374 case 13: /* Address Range */

376 RsSetFlagBits (&Descriptor->ExtAddress64.SpecificFlags, InitializerO
377 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_MEMATTRIBUTES,
378 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.SpecificFla
379 break;

381 case 14: /* Type */

383 RsSetFlagBits (&Descriptor->ExtAddress64.SpecificFlags, InitializerO
384 RsCreateBitField (InitializerOp, ACPI_RESTAG_TYPE,
385 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.SpecificFla
386 break;

388 default:

390 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL);

new/usr/src/common/acpica/compiler/aslrestype2e.c 7

391 break;
392 }

394 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
395 }

397 /* Validate the Min/Max/Len/Gran values */

399 RsLargeAddressCheck (
400 Descriptor->ExtAddress64.Minimum,
401 Descriptor->ExtAddress64.Maximum,
402 Descriptor->ExtAddress64.AddressLength,
403 Descriptor->ExtAddress64.Granularity,
404 Descriptor->ExtAddress64.Flags,
405 MinOp, MaxOp, LengthOp, GranOp, Op);

407 Rnode->BufferLength = sizeof (AML_RESOURCE_EXTENDED_ADDRESS64) + StringLengt
408 return (Rnode);
409 }

412 /***
413 *
414 * FUNCTION: RsDoExtendedSpaceDescriptor
415 *
416 * PARAMETERS: Op - Parent resource descriptor parse node
417 * CurrentByteOffset - Offset into the resource template AML
418 * buffer (to track references to the desc)
419 *
420 * RETURN: Completed resource node
421 *
422 * DESCRIPTION: Construct a long "ExtendedSpace" descriptor
423 *
424 **/

426 ASL_RESOURCE_NODE *
427 RsDoExtendedSpaceDescriptor (
428 ACPI_PARSE_OBJECT *Op,
429 UINT32 CurrentByteOffset)
430 {
431 AML_RESOURCE *Descriptor;
432 ACPI_PARSE_OBJECT *InitializerOp;
433 ACPI_PARSE_OBJECT *MinOp = NULL;
434 ACPI_PARSE_OBJECT *MaxOp = NULL;
435 ACPI_PARSE_OBJECT *LengthOp = NULL;
436 ACPI_PARSE_OBJECT *GranOp = NULL;
437 ASL_RESOURCE_NODE *Rnode;
438 UINT16 StringLength = 0;
439 UINT32 i;

442 InitializerOp = Op->Asl.Child;
443 StringLength = RsGetStringDataLength (InitializerOp);

445 Rnode = RsAllocateResourceNode (
446 sizeof (AML_RESOURCE_EXTENDED_ADDRESS64) + 1 + StringLength);

448 Descriptor = Rnode->Buffer;
449 Descriptor->ExtAddress64.DescriptorType = ACPI_RESOURCE_NAME_EXTENDED_ADDRE
450 Descriptor->ExtAddress64.RevisionID = AML_RESOURCE_EXTENDED_ADDRESS_REV

452 Descriptor->ExtAddress64.ResourceLength = (UINT16)
453 (sizeof (AML_RESOURCE_EXTENDED_ADDRESS64) -
454 sizeof (AML_RESOURCE_LARGE_HEADER));

456 /* Process all child initialization nodes */

new/usr/src/common/acpica/compiler/aslrestype2e.c 8

458 for (i = 0; InitializerOp; i++)
459 {
460 switch (i)
461 {
462 case 0: /* Resource Type */

464 Descriptor->ExtAddress64.ResourceType =
465 (UINT8) InitializerOp->Asl.Value.Integer;
466 break;

468 case 1: /* Resource Usage */

470 RsSetFlagBits (&Descriptor->ExtAddress64.Flags, InitializerOp, 0, 1)
471 break;

473 case 2: /* DecodeType */

475 RsSetFlagBits (&Descriptor->ExtAddress64.Flags, InitializerOp, 1, 0)
476 RsCreateBitField (InitializerOp, ACPI_RESTAG_DECODE,
477 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Flags), 1);
478 break;

480 case 3: /* MinType */

482 RsSetFlagBits (&Descriptor->ExtAddress64.Flags, InitializerOp, 2, 0)
483 RsCreateBitField (InitializerOp, ACPI_RESTAG_MINTYPE,
484 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Flags), 2);
485 break;

487 case 4: /* MaxType */

489 RsSetFlagBits (&Descriptor->ExtAddress64.Flags, InitializerOp, 3, 0)
490 RsCreateBitField (InitializerOp, ACPI_RESTAG_MAXTYPE,
491 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Flags), 3);
492 break;

494 case 5: /* Type-Specific flags */

496 Descriptor->ExtAddress64.SpecificFlags =
497 (UINT8) InitializerOp->Asl.Value.Integer;
498 break;

500 case 6: /* Address Granularity */

502 Descriptor->ExtAddress64.Granularity = InitializerOp->Asl.Value.Inte
503 RsCreateQwordField (InitializerOp, ACPI_RESTAG_GRANULARITY,
504 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Granularity
505 GranOp = InitializerOp;
506 break;

508 case 7: /* Min Address */

510 Descriptor->ExtAddress64.Minimum = InitializerOp->Asl.Value.Integer;
511 RsCreateQwordField (InitializerOp, ACPI_RESTAG_MINADDR,
512 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Minimum));
513 MinOp = InitializerOp;
514 break;

516 case 8: /* Max Address */

518 Descriptor->ExtAddress64.Maximum = InitializerOp->Asl.Value.Integer;
519 RsCreateQwordField (InitializerOp, ACPI_RESTAG_MAXADDR,
520 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Maximum));
521 MaxOp = InitializerOp;
522 break;

new/usr/src/common/acpica/compiler/aslrestype2e.c 9

524 case 9: /* Translation Offset */

526 Descriptor->ExtAddress64.TranslationOffset = InitializerOp->Asl.Valu
527 RsCreateQwordField (InitializerOp, ACPI_RESTAG_TRANSLATION,
528 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.Translation
529 break;

531 case 10: /* Address Length */

533 Descriptor->ExtAddress64.AddressLength = InitializerOp->Asl.Value.In
534 RsCreateQwordField (InitializerOp, ACPI_RESTAG_LENGTH,
535 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.AddressLeng
536 LengthOp = InitializerOp;
537 break;

539 case 11: /* Type-Specific Attributes */

541 Descriptor->ExtAddress64.TypeSpecific = InitializerOp->Asl.Value.Int
542 RsCreateQwordField (InitializerOp, ACPI_RESTAG_TYPESPECIFICATTRIBUTE
543 CurrentByteOffset + ASL_RESDESC_OFFSET (ExtAddress64.TypeSpecifi
544 break;

546 case 12: /* ResourceTag */

548 UtAttachNamepathToOwner (Op, InitializerOp);
549 break;

551 default:

553 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL);
554 break;
555 }

557 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
558 }

560 /* Validate the Min/Max/Len/Gran values */

562 RsLargeAddressCheck (
563 Descriptor->ExtAddress64.Minimum,
564 Descriptor->ExtAddress64.Maximum,
565 Descriptor->ExtAddress64.AddressLength,
566 Descriptor->ExtAddress64.Granularity,
567 Descriptor->ExtAddress64.Flags,
568 MinOp, MaxOp, LengthOp, GranOp, Op);

570 Rnode->BufferLength = sizeof (AML_RESOURCE_EXTENDED_ADDRESS64) + StringLengt
571 return (Rnode);
572 }

new/usr/src/common/acpica/compiler/aslrestype2q.c 1

**
 25533 Thu Dec 26 13:48:33 2013
new/usr/src/common/acpica/compiler/aslrestype2q.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslrestype2q - Large QWord address resource descriptors
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"

48 #define _COMPONENT ACPI_COMPILER
49 ACPI_MODULE_NAME ("aslrestype2q")

51 /*
52 * This module contains the QWord (64-bit) address space descriptors:
53 *
54 * QWordIO
55 * QWordMemory
56 * QWordSpace
57 */

59 /***
60 *

new/usr/src/common/acpica/compiler/aslrestype2q.c 2

61 * FUNCTION: RsDoQwordIoDescriptor
62 *
63 * PARAMETERS: Op - Parent resource descriptor parse node
64 * CurrentByteOffset - Offset into the resource template AML
65 * buffer (to track references to the desc)
66 *
67 * RETURN: Completed resource node
68 *
69 * DESCRIPTION: Construct a long "QwordIO" descriptor
70 *
71 **/

73 ASL_RESOURCE_NODE *
74 RsDoQwordIoDescriptor (
75 ACPI_PARSE_OBJECT *Op,
76 UINT32 CurrentByteOffset)
77 {
78 AML_RESOURCE *Descriptor;
79 ACPI_PARSE_OBJECT *InitializerOp;
80 ACPI_PARSE_OBJECT *MinOp = NULL;
81 ACPI_PARSE_OBJECT *MaxOp = NULL;
82 ACPI_PARSE_OBJECT *LengthOp = NULL;
83 ACPI_PARSE_OBJECT *GranOp = NULL;
84 ASL_RESOURCE_NODE *Rnode;
85 UINT8 *OptionalFields;
86 UINT16 StringLength = 0;
87 UINT32 OptionIndex = 0;
88 UINT32 i;
89 BOOLEAN ResSourceIndex = FALSE;

92 InitializerOp = Op->Asl.Child;
93 StringLength = RsGetStringDataLength (InitializerOp);

95 Rnode = RsAllocateResourceNode (
96 sizeof (AML_RESOURCE_ADDRESS64) + 1 + StringLength);

98 Descriptor = Rnode->Buffer;
99 Descriptor->Address64.DescriptorType = ACPI_RESOURCE_NAME_ADDRESS64;
100 Descriptor->Address64.ResourceType = ACPI_ADDRESS_TYPE_IO_RANGE;

102 /*
103 * Initial descriptor length -- may be enlarged if there are
104 * optional fields present
105 */
106 OptionalFields = ((UINT8 *) Descriptor) + sizeof (AML_RESOURCE_ADDRESS64);
107 Descriptor->Address64.ResourceLength = (UINT16)
108 (sizeof (AML_RESOURCE_ADDRESS64) -
109 sizeof (AML_RESOURCE_LARGE_HEADER));

111 /* Process all child initialization nodes */

113 for (i = 0; InitializerOp; i++)
114 {
115 switch (i)
116 {
117 case 0: /* Resource Usage */

119 RsSetFlagBits (&Descriptor->Address64.Flags, InitializerOp, 0, 1);
120 break;

122 case 1: /* MinType */

124 RsSetFlagBits (&Descriptor->Address64.Flags, InitializerOp, 2, 0);
125 RsCreateBitField (InitializerOp, ACPI_RESTAG_MINTYPE,
126 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Flags), 2);

new/usr/src/common/acpica/compiler/aslrestype2q.c 3

127 break;

129 case 2: /* MaxType */

131 RsSetFlagBits (&Descriptor->Address64.Flags, InitializerOp, 3, 0);
132 RsCreateBitField (InitializerOp, ACPI_RESTAG_MAXTYPE,
133 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Flags), 3);
134 break;

136 case 3: /* DecodeType */

138 RsSetFlagBits (&Descriptor->Address64.Flags, InitializerOp, 1, 0);
139 RsCreateBitField (InitializerOp, ACPI_RESTAG_DECODE,
140 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Flags), 1);
141 break;

143 case 4: /* Range Type */

145 RsSetFlagBits (&Descriptor->Address64.SpecificFlags, InitializerOp,
146 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_RANGETYPE,
147 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.SpecificFlags)
148 break;

150 case 5: /* Address Granularity */

152 Descriptor->Address64.Granularity = InitializerOp->Asl.Value.Integer
153 RsCreateQwordField (InitializerOp, ACPI_RESTAG_GRANULARITY,
154 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Granularity));
155 GranOp = InitializerOp;
156 break;

158 case 6: /* Address Min */

160 Descriptor->Address64.Minimum = InitializerOp->Asl.Value.Integer;
161 RsCreateQwordField (InitializerOp, ACPI_RESTAG_MINADDR,
162 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Minimum));
163 MinOp = InitializerOp;
164 break;

166 case 7: /* Address Max */

168 Descriptor->Address64.Maximum = InitializerOp->Asl.Value.Integer;
169 RsCreateQwordField (InitializerOp, ACPI_RESTAG_MAXADDR,
170 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Maximum));
171 MaxOp = InitializerOp;
172 break;

174 case 8: /* Translation Offset */

176 Descriptor->Address64.TranslationOffset = InitializerOp->Asl.Value.I
177 RsCreateByteField (InitializerOp, ACPI_RESTAG_TRANSLATION,
178 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.TranslationOff
179 break;

181 case 9: /* Address Length */

183 Descriptor->Address64.AddressLength = InitializerOp->Asl.Value.Integ
184 RsCreateQwordField (InitializerOp, ACPI_RESTAG_LENGTH,
185 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.AddressLength)
186 LengthOp = InitializerOp;
187 break;

189 case 10: /* ResSourceIndex [Optional Field - BYTE] */

191 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
192 {

new/usr/src/common/acpica/compiler/aslrestype2q.c 4

193 OptionalFields[0] = (UINT8) InitializerOp->Asl.Value.Integer;
194 OptionIndex++;
195 Descriptor->Address64.ResourceLength++;
196 ResSourceIndex = TRUE;
197 }
198 break;

200 case 11: /* ResSource [Optional Field - STRING] */

202 if ((InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG) &&
203 (InitializerOp->Asl.Value.String))
204 {
205 if (StringLength)
206 {
207 Descriptor->Address64.ResourceLength = (UINT16)
208 (Descriptor->Address64.ResourceLength + StringLength);

210 strcpy ((char *)
211 &OptionalFields[OptionIndex],
212 InitializerOp->Asl.Value.String);

214 /* ResourceSourceIndex must also be valid */

216 if (!ResSourceIndex)
217 {
218 AslError (ASL_ERROR, ASL_MSG_RESOURCE_INDEX,
219 InitializerOp, NULL);
220 }
221 }
222 }

224 #if 0
225 /*
226 * Not a valid ResourceSource, ResourceSourceIndex must also
227 * be invalid
228 */
229 else if (ResSourceIndex)
230 {
231 AslError (ASL_ERROR, ASL_MSG_RESOURCE_SOURCE,
232 InitializerOp, NULL);
233 }
234 #endif
235 break;

237 case 12: /* ResourceTag */

239 UtAttachNamepathToOwner (Op, InitializerOp);
240 break;

242 case 13: /* Type */

244 RsSetFlagBits (&Descriptor->Address64.SpecificFlags, InitializerOp,
245 RsCreateBitField (InitializerOp, ACPI_RESTAG_TYPE,
246 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.SpecificFlags)
247 break;

249 case 14: /* Translation Type */

251 RsSetFlagBits (&Descriptor->Address64.SpecificFlags, InitializerOp,
252 RsCreateBitField (InitializerOp, ACPI_RESTAG_TRANSTYPE,
253 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.SpecificFlags)
254 break;

256 default:

258 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL);

new/usr/src/common/acpica/compiler/aslrestype2q.c 5

259 break;
260 }

262 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
263 }

265 /* Validate the Min/Max/Len/Gran values */

267 RsLargeAddressCheck (
268 Descriptor->Address64.Minimum,
269 Descriptor->Address64.Maximum,
270 Descriptor->Address64.AddressLength,
271 Descriptor->Address64.Granularity,
272 Descriptor->Address64.Flags,
273 MinOp, MaxOp, LengthOp, GranOp, Op);

275 Rnode->BufferLength = sizeof (AML_RESOURCE_ADDRESS64) +
276 OptionIndex + StringLength;
277 return (Rnode);
278 }

281 /***
282 *
283 * FUNCTION: RsDoQwordMemoryDescriptor
284 *
285 * PARAMETERS: Op - Parent resource descriptor parse node
286 * CurrentByteOffset - Offset into the resource template AML
287 * buffer (to track references to the desc)
288 *
289 * RETURN: Completed resource node
290 *
291 * DESCRIPTION: Construct a long "QwordMemory" descriptor
292 *
293 **/

295 ASL_RESOURCE_NODE *
296 RsDoQwordMemoryDescriptor (
297 ACPI_PARSE_OBJECT *Op,
298 UINT32 CurrentByteOffset)
299 {
300 AML_RESOURCE *Descriptor;
301 ACPI_PARSE_OBJECT *InitializerOp;
302 ACPI_PARSE_OBJECT *MinOp = NULL;
303 ACPI_PARSE_OBJECT *MaxOp = NULL;
304 ACPI_PARSE_OBJECT *LengthOp = NULL;
305 ACPI_PARSE_OBJECT *GranOp = NULL;
306 ASL_RESOURCE_NODE *Rnode;
307 UINT8 *OptionalFields;
308 UINT16 StringLength = 0;
309 UINT32 OptionIndex = 0;
310 UINT32 i;
311 BOOLEAN ResSourceIndex = FALSE;

314 InitializerOp = Op->Asl.Child;
315 StringLength = RsGetStringDataLength (InitializerOp);

317 Rnode = RsAllocateResourceNode (
318 sizeof (AML_RESOURCE_ADDRESS64) + 1 + StringLength);

320 Descriptor = Rnode->Buffer;
321 Descriptor->Address64.DescriptorType = ACPI_RESOURCE_NAME_ADDRESS64;
322 Descriptor->Address64.ResourceType = ACPI_ADDRESS_TYPE_MEMORY_RANGE;

324 /*

new/usr/src/common/acpica/compiler/aslrestype2q.c 6

325 * Initial descriptor length -- may be enlarged if there are
326 * optional fields present
327 */
328 OptionalFields = ((UINT8 *) Descriptor) + sizeof (AML_RESOURCE_ADDRESS64);
329 Descriptor->Address64.ResourceLength = (UINT16)
330 (sizeof (AML_RESOURCE_ADDRESS64) -
331 sizeof (AML_RESOURCE_LARGE_HEADER));

333 /* Process all child initialization nodes */

335 for (i = 0; InitializerOp; i++)
336 {
337 switch (i)
338 {
339 case 0: /* Resource Usage */

341 RsSetFlagBits (&Descriptor->Address64.Flags, InitializerOp, 0, 1);
342 break;

344 case 1: /* DecodeType */

346 RsSetFlagBits (&Descriptor->Address64.Flags, InitializerOp, 1, 0);
347 RsCreateBitField (InitializerOp, ACPI_RESTAG_DECODE,
348 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Flags), 1);
349 break;

351 case 2: /* MinType */

353 RsSetFlagBits (&Descriptor->Address64.Flags, InitializerOp, 2, 0);
354 RsCreateBitField (InitializerOp, ACPI_RESTAG_MINTYPE,
355 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Flags), 2);
356 break;

358 case 3: /* MaxType */

360 RsSetFlagBits (&Descriptor->Address64.Flags, InitializerOp, 3, 0);
361 RsCreateBitField (InitializerOp, ACPI_RESTAG_MAXTYPE,
362 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Flags), 3);
363 break;

365 case 4: /* Memory Type */

367 RsSetFlagBits (&Descriptor->Address64.SpecificFlags, InitializerOp,
368 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_MEMTYPE,
369 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.SpecificFlags)
370 break;

372 case 5: /* Read/Write Type */

374 RsSetFlagBits (&Descriptor->Address64.SpecificFlags, InitializerOp,
375 RsCreateBitField (InitializerOp, ACPI_RESTAG_READWRITETYPE,
376 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.SpecificFlags)
377 break;

379 case 6: /* Address Granularity */

381 Descriptor->Address64.Granularity = InitializerOp->Asl.Value.Integer
382 RsCreateQwordField (InitializerOp, ACPI_RESTAG_GRANULARITY,
383 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Granularity));
384 GranOp = InitializerOp;
385 break;

387 case 7: /* Min Address */

389 Descriptor->Address64.Minimum = InitializerOp->Asl.Value.Integer;
390 RsCreateQwordField (InitializerOp, ACPI_RESTAG_MINADDR,

new/usr/src/common/acpica/compiler/aslrestype2q.c 7

391 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Minimum));
392 MinOp = InitializerOp;
393 break;

395 case 8: /* Max Address */

397 Descriptor->Address64.Maximum = InitializerOp->Asl.Value.Integer;
398 RsCreateQwordField (InitializerOp, ACPI_RESTAG_MAXADDR,
399 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Maximum));
400 MaxOp = InitializerOp;
401 break;

403 case 9: /* Translation Offset */

405 Descriptor->Address64.TranslationOffset = InitializerOp->Asl.Value.I
406 RsCreateQwordField (InitializerOp, ACPI_RESTAG_TRANSLATION,
407 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.TranslationOff
408 break;

410 case 10: /* Address Length */

412 Descriptor->Address64.AddressLength = InitializerOp->Asl.Value.Integ
413 RsCreateQwordField (InitializerOp, ACPI_RESTAG_LENGTH,
414 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.AddressLength)
415 LengthOp = InitializerOp;
416 break;

418 case 11: /* ResSourceIndex [Optional Field - BYTE] */

420 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
421 {
422 OptionalFields[0] = (UINT8) InitializerOp->Asl.Value.Integer;
423 OptionIndex++;
424 Descriptor->Address64.ResourceLength++;
425 ResSourceIndex = TRUE;
426 }
427 break;

429 case 12: /* ResSource [Optional Field - STRING] */

431 if ((InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG) &&
432 (InitializerOp->Asl.Value.String))
433 {
434 if (StringLength)
435 {
436 Descriptor->Address64.ResourceLength = (UINT16)
437 (Descriptor->Address64.ResourceLength + StringLength);

439 strcpy ((char *)
440 &OptionalFields[OptionIndex],
441 InitializerOp->Asl.Value.String);

443 /* ResourceSourceIndex must also be valid */

445 if (!ResSourceIndex)
446 {
447 AslError (ASL_ERROR, ASL_MSG_RESOURCE_INDEX,
448 InitializerOp, NULL);
449 }
450 }
451 }

453 #if 0
454 /*
455 * Not a valid ResourceSource, ResourceSourceIndex must also
456 * be invalid

new/usr/src/common/acpica/compiler/aslrestype2q.c 8

457 */
458 else if (ResSourceIndex)
459 {
460 AslError (ASL_ERROR, ASL_MSG_RESOURCE_SOURCE,
461 InitializerOp, NULL);
462 }
463 #endif
464 break;

466 case 13: /* ResourceTag */

468 UtAttachNamepathToOwner (Op, InitializerOp);
469 break;

472 case 14: /* Address Range */

474 RsSetFlagBits (&Descriptor->Address64.SpecificFlags, InitializerOp,
475 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_MEMATTRIBUTES,
476 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.SpecificFlags)
477 break;

479 case 15: /* Type */

481 RsSetFlagBits (&Descriptor->Address64.SpecificFlags, InitializerOp,
482 RsCreateBitField (InitializerOp, ACPI_RESTAG_TYPE,
483 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.SpecificFlags)
484 break;

486 default:

488 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL);
489 break;
490 }

492 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
493 }

495 /* Validate the Min/Max/Len/Gran values */

497 RsLargeAddressCheck (
498 Descriptor->Address64.Minimum,
499 Descriptor->Address64.Maximum,
500 Descriptor->Address64.AddressLength,
501 Descriptor->Address64.Granularity,
502 Descriptor->Address64.Flags,
503 MinOp, MaxOp, LengthOp, GranOp, Op);

505 Rnode->BufferLength = sizeof (AML_RESOURCE_ADDRESS64) +
506 OptionIndex + StringLength;
507 return (Rnode);
508 }

511 /***
512 *
513 * FUNCTION: RsDoQwordSpaceDescriptor
514 *
515 * PARAMETERS: Op - Parent resource descriptor parse node
516 * CurrentByteOffset - Offset into the resource template AML
517 * buffer (to track references to the desc)
518 *
519 * RETURN: Completed resource node
520 *
521 * DESCRIPTION: Construct a long "QwordSpace" descriptor
522 *

new/usr/src/common/acpica/compiler/aslrestype2q.c 9

523 **/

525 ASL_RESOURCE_NODE *
526 RsDoQwordSpaceDescriptor (
527 ACPI_PARSE_OBJECT *Op,
528 UINT32 CurrentByteOffset)
529 {
530 AML_RESOURCE *Descriptor;
531 ACPI_PARSE_OBJECT *InitializerOp;
532 ACPI_PARSE_OBJECT *MinOp = NULL;
533 ACPI_PARSE_OBJECT *MaxOp = NULL;
534 ACPI_PARSE_OBJECT *LengthOp = NULL;
535 ACPI_PARSE_OBJECT *GranOp = NULL;
536 ASL_RESOURCE_NODE *Rnode;
537 UINT8 *OptionalFields;
538 UINT16 StringLength = 0;
539 UINT32 OptionIndex = 0;
540 UINT32 i;
541 BOOLEAN ResSourceIndex = FALSE;

544 InitializerOp = Op->Asl.Child;
545 StringLength = RsGetStringDataLength (InitializerOp);

547 Rnode = RsAllocateResourceNode (
548 sizeof (AML_RESOURCE_ADDRESS64) + 1 + StringLength);

550 Descriptor = Rnode->Buffer;
551 Descriptor->Address64.DescriptorType = ACPI_RESOURCE_NAME_ADDRESS64;

553 /*
554 * Initial descriptor length -- may be enlarged if there are
555 * optional fields present
556 */
557 OptionalFields = ((UINT8 *) Descriptor) + sizeof (AML_RESOURCE_ADDRESS64);
558 Descriptor->Address64.ResourceLength = (UINT16)
559 (sizeof (AML_RESOURCE_ADDRESS64) -
560 sizeof (AML_RESOURCE_LARGE_HEADER));

562 /* Process all child initialization nodes */

564 for (i = 0; InitializerOp; i++)
565 {
566 switch (i)
567 {
568 case 0: /* Resource Type */

570 Descriptor->Address64.ResourceType =
571 (UINT8) InitializerOp->Asl.Value.Integer;
572 break;

574 case 1: /* Resource Usage */

576 RsSetFlagBits (&Descriptor->Address64.Flags, InitializerOp, 0, 1);
577 break;

579 case 2: /* DecodeType */

581 RsSetFlagBits (&Descriptor->Address64.Flags, InitializerOp, 1, 0);
582 RsCreateBitField (InitializerOp, ACPI_RESTAG_DECODE,
583 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Flags), 1);
584 break;

586 case 3: /* MinType */

588 RsSetFlagBits (&Descriptor->Address64.Flags, InitializerOp, 2, 0);

new/usr/src/common/acpica/compiler/aslrestype2q.c 10

589 RsCreateBitField (InitializerOp, ACPI_RESTAG_MINTYPE,
590 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Flags), 2);
591 break;

593 case 4: /* MaxType */

595 RsSetFlagBits (&Descriptor->Address64.Flags, InitializerOp, 3, 0);
596 RsCreateBitField (InitializerOp, ACPI_RESTAG_MAXTYPE,
597 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Flags), 3);
598 break;

600 case 5: /* Type-Specific flags */

602 Descriptor->Address64.SpecificFlags =
603 (UINT8) InitializerOp->Asl.Value.Integer;
604 break;

606 case 6: /* Address Granularity */

608 Descriptor->Address64.Granularity = InitializerOp->Asl.Value.Integer
609 RsCreateQwordField (InitializerOp, ACPI_RESTAG_GRANULARITY,
610 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Granularity));
611 GranOp = InitializerOp;
612 break;

614 case 7: /* Min Address */

616 Descriptor->Address64.Minimum = InitializerOp->Asl.Value.Integer;
617 RsCreateQwordField (InitializerOp, ACPI_RESTAG_MINADDR,
618 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Minimum));
619 MinOp = InitializerOp;
620 break;

622 case 8: /* Max Address */

624 Descriptor->Address64.Maximum = InitializerOp->Asl.Value.Integer;
625 RsCreateQwordField (InitializerOp, ACPI_RESTAG_MAXADDR,
626 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.Maximum));
627 MaxOp = InitializerOp;
628 break;

630 case 9: /* Translation Offset */

632 Descriptor->Address64.TranslationOffset = InitializerOp->Asl.Value.I
633 RsCreateQwordField (InitializerOp, ACPI_RESTAG_TRANSLATION,
634 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.TranslationOff
635 break;

637 case 10: /* Address Length */

639 Descriptor->Address64.AddressLength = InitializerOp->Asl.Value.Integ
640 RsCreateQwordField (InitializerOp, ACPI_RESTAG_LENGTH,
641 CurrentByteOffset + ASL_RESDESC_OFFSET (Address64.AddressLength)
642 LengthOp = InitializerOp;
643 break;

645 case 11: /* ResSourceIndex [Optional Field - BYTE] */

647 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
648 {
649 OptionalFields[0] = (UINT8) InitializerOp->Asl.Value.Integer;
650 OptionIndex++;
651 Descriptor->Address64.ResourceLength++;
652 ResSourceIndex = TRUE;
653 }
654 break;

new/usr/src/common/acpica/compiler/aslrestype2q.c 11

656 case 12: /* ResSource [Optional Field - STRING] */

658 if ((InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG) &&
659 (InitializerOp->Asl.Value.String))
660 {
661 if (StringLength)
662 {
663 Descriptor->Address64.ResourceLength = (UINT16)
664 (Descriptor->Address64.ResourceLength + StringLength);

666 strcpy ((char *)
667 &OptionalFields[OptionIndex],
668 InitializerOp->Asl.Value.String);

670 /* ResourceSourceIndex must also be valid */

672 if (!ResSourceIndex)
673 {
674 AslError (ASL_ERROR, ASL_MSG_RESOURCE_INDEX,
675 InitializerOp, NULL);
676 }
677 }
678 }

680 #if 0
681 /*
682 * Not a valid ResourceSource, ResourceSourceIndex must also
683 * be invalid
684 */
685 else if (ResSourceIndex)
686 {
687 AslError (ASL_ERROR, ASL_MSG_RESOURCE_SOURCE,
688 InitializerOp, NULL);
689 }
690 #endif
691 break;

693 case 13: /* ResourceTag */

695 UtAttachNamepathToOwner (Op, InitializerOp);
696 break;

698 default:

700 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL);
701 break;
702 }

704 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
705 }

707 /* Validate the Min/Max/Len/Gran values */

709 RsLargeAddressCheck (
710 Descriptor->Address64.Minimum,
711 Descriptor->Address64.Maximum,
712 Descriptor->Address64.AddressLength,
713 Descriptor->Address64.Granularity,
714 Descriptor->Address64.Flags,
715 MinOp, MaxOp, LengthOp, GranOp, Op);

717 Rnode->BufferLength = sizeof (AML_RESOURCE_ADDRESS64) +
718 OptionIndex + StringLength;
719 return (Rnode);
720 }

new/usr/src/common/acpica/compiler/aslrestype2q.c 12

new/usr/src/common/acpica/compiler/aslrestype2s.c 1

**
 42048 Thu Dec 26 13:48:34 2013
new/usr/src/common/acpica/compiler/aslrestype2s.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: aslrestype2s - Serial Large resource descriptors
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"
47 #include "amlcode.h"

49 #define _COMPONENT ACPI_COMPILER
50 ACPI_MODULE_NAME ("aslrestype2s")

53 static UINT16
54 RsGetBufferDataLength (
55 ACPI_PARSE_OBJECT *InitializerOp);

57 static UINT16
58 RsGetInterruptDataLength (
59 ACPI_PARSE_OBJECT *InitializerOp);

61 static BOOLEAN

new/usr/src/common/acpica/compiler/aslrestype2s.c 2

62 RsGetVendorData (
63 ACPI_PARSE_OBJECT *InitializerOp,
64 UINT8 *VendorData,
65 ACPI_SIZE DescriptorOffset);

67 /*
68 * This module contains descriptors for serial buses and GPIO:
69 *
70 * GpioInt
71 * GpioIo
72 * I2cSerialBus
73 * SpiSerialBus
74 * UartSerialBus
75 */

78 /***
79 *
80 * FUNCTION: RsGetBufferDataLength
81 *
82 * PARAMETERS: InitializerOp - Current parse op, start of the resource
83 * descriptor
84 *
85 * RETURN: Length of the data buffer
86 *
87 * DESCRIPTION: Get the length of a RawDataBuffer, used for vendor data.
88 *
89 **/

91 static UINT16
92 RsGetBufferDataLength (
93 ACPI_PARSE_OBJECT *InitializerOp)
94 {
95 UINT16 ExtraDataSize = 0;
96 ACPI_PARSE_OBJECT *DataList;

99 /* Find the byte-initializer list */

101 while (InitializerOp)
102 {
103 if (InitializerOp->Asl.ParseOpcode == PARSEOP_DATABUFFER)
104 {
105 /* First child is the optional length (ignore it here) */

107 DataList = InitializerOp->Asl.Child;
108 DataList = ASL_GET_PEER_NODE (DataList);

110 /* Count the data items (each one is a byte of data) */

112 while (DataList)
113 {
114 ExtraDataSize++;
115 DataList = ASL_GET_PEER_NODE (DataList);
116 }

118 return (ExtraDataSize);
119 }

121 InitializerOp = ASL_GET_PEER_NODE (InitializerOp);
122 }

124 return (ExtraDataSize);
125 }

new/usr/src/common/acpica/compiler/aslrestype2s.c 3

128 /***
129 *
130 * FUNCTION: RsGetInterruptDataLength
131 *
132 * PARAMETERS: InitializerOp - Current parse op, start of the resource
133 * descriptor
134 *
135 * RETURN: Length of the interrupt data list
136 *
137 * DESCRIPTION: Get the length of a list of interrupt DWORDs for the GPIO
138 * descriptors.
139 *
140 **/

142 static UINT16
143 RsGetInterruptDataLength (
144 ACPI_PARSE_OBJECT *InitializerOp)
145 {
146 UINT16 InterruptLength;
147 UINT32 i;

150 /* Count the interrupt numbers */

152 InterruptLength = 0;
153 for (i = 0; InitializerOp; i++)
154 {
155 InitializerOp = ASL_GET_PEER_NODE (InitializerOp);

157 /* Interrupt list starts at offset 10 (Gpio descriptors) */

159 if (i >= 10)
160 {
161 InterruptLength += 2;
162 }
163 }

165 return (InterruptLength);
166 }

169 /***
170 *
171 * FUNCTION: RsGetVendorData
172 *
173 * PARAMETERS: InitializerOp - Current parse op, start of the resource
174 * descriptor.
175 * VendorData - Where the vendor data is returned
176 * DescriptorOffset - Where vendor data begins in descriptor
177 *
178 * RETURN: TRUE if valid vendor data was returned, FALSE otherwise.
179 *
180 * DESCRIPTION: Extract the vendor data and construct a vendor data buffer.
181 *
182 **/

184 static BOOLEAN
185 RsGetVendorData (
186 ACPI_PARSE_OBJECT *InitializerOp,
187 UINT8 *VendorData,
188 ACPI_SIZE DescriptorOffset)
189 {
190 ACPI_PARSE_OBJECT *BufferOp;
191 UINT32 SpecifiedLength = ACPI_UINT32_MAX;
192 UINT16 ActualLength = 0;

new/usr/src/common/acpica/compiler/aslrestype2s.c 4

195 /* Vendor Data field is always optional */

197 if (InitializerOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG)
198 {
199 return (FALSE);
200 }

202 BufferOp = InitializerOp->Asl.Child;
203 if (!BufferOp)
204 {
205 AslError (ASL_ERROR, ASL_MSG_SYNTAX, InitializerOp, "");
206 return (FALSE);
207 }

209 /* First child is the optional buffer length (WORD) */

211 if (BufferOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
212 {
213 SpecifiedLength = (UINT16) BufferOp->Asl.Value.Integer;
214 }

216 /* Insert field tag _VEN */

218 RsCreateByteField (InitializerOp, ACPI_RESTAG_VENDORDATA,
219 (UINT16) DescriptorOffset);

221 /* Walk the list of buffer initializers (each is one byte) */

223 BufferOp = RsCompleteNodeAndGetNext (BufferOp);
224 if (BufferOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
225 {
226 while (BufferOp)
227 {
228 *VendorData = (UINT8) BufferOp->Asl.Value.Integer;
229 VendorData++;
230 ActualLength++;
231 BufferOp = RsCompleteNodeAndGetNext (BufferOp);
232 }
233 }

235 /* Length validation. Buffer cannot be of zero length */

237 if ((SpecifiedLength == 0) ||
238 ((SpecifiedLength == ACPI_UINT32_MAX) && (ActualLength == 0)))
239 {
240 AslError (ASL_ERROR, ASL_MSG_BUFFER_LENGTH, InitializerOp, NULL);
241 return (FALSE);
242 }

244 if (SpecifiedLength != ACPI_UINT32_MAX)
245 {
246 /* ActualLength > SpecifiedLength -> error */

248 if (ActualLength > SpecifiedLength)
249 {
250 AslError (ASL_ERROR, ASL_MSG_LIST_LENGTH_LONG, InitializerOp, NULL);
251 return (FALSE);
252 }

254 /* ActualLength < SpecifiedLength -> remark */

256 else if (ActualLength < SpecifiedLength)
257 {
258 AslError (ASL_REMARK, ASL_MSG_LIST_LENGTH_SHORT, InitializerOp, NULL
259 return (FALSE);

new/usr/src/common/acpica/compiler/aslrestype2s.c 5

260 }
261 }

263 return (TRUE);
264 }

267 /***
268 *
269 * FUNCTION: RsDoGpioIntDescriptor
270 *
271 * PARAMETERS: Op - Parent resource descriptor parse node
272 * CurrentByteOffset - Offset into the resource template AML
273 * buffer (to track references to the desc)
274 *
275 * RETURN: Completed resource node
276 *
277 * DESCRIPTION: Construct a long "GpioInt" descriptor
278 *
279 **/

281 ASL_RESOURCE_NODE *
282 RsDoGpioIntDescriptor (
283 ACPI_PARSE_OBJECT *Op,
284 UINT32 CurrentByteOffset)
285 {
286 AML_RESOURCE *Descriptor;
287 ACPI_PARSE_OBJECT *InitializerOp;
288 ASL_RESOURCE_NODE *Rnode;
289 char *ResourceSource = NULL;
290 UINT8 *VendorData = NULL;
291 UINT16 *InterruptList = NULL;
292 UINT16 ResSourceLength;
293 UINT16 VendorLength;
294 UINT16 InterruptLength;
295 UINT16 DescriptorSize;
296 UINT32 i;

299 InitializerOp = Op->Asl.Child;

301 /*
302 * Calculate lengths for fields that have variable length:
303 * 1) Resource Source string
304 * 2) Vendor Data buffer
305 * 3) PIN (interrupt) list
306 */
307 ResSourceLength = RsGetStringDataLength (InitializerOp);
308 VendorLength = RsGetBufferDataLength (InitializerOp);
309 InterruptLength = RsGetInterruptDataLength (InitializerOp);

311 DescriptorSize = ACPI_AML_SIZE_LARGE (AML_RESOURCE_GPIO) +
312 ResSourceLength + VendorLength + InterruptLength;

314 /* Allocate the local resource node and initialize */

316 Rnode = RsAllocateResourceNode (DescriptorSize + sizeof (AML_RESOURCE_LARGE_

318 Descriptor = Rnode->Buffer;
319 Descriptor->Gpio.ResourceLength = DescriptorSize;
320 Descriptor->Gpio.DescriptorType = ACPI_RESOURCE_NAME_GPIO;
321 Descriptor->Gpio.RevisionId = AML_RESOURCE_GPIO_REVISION;
322 Descriptor->Gpio.ConnectionType = AML_RESOURCE_GPIO_TYPE_INT;

324 /* Build pointers to optional areas */

new/usr/src/common/acpica/compiler/aslrestype2s.c 6

326 InterruptList = ACPI_ADD_PTR (UINT16, Descriptor, sizeof (AML_RESOURCE_GPIO)
327 ResourceSource = ACPI_ADD_PTR (char, InterruptList, InterruptLength);
328 VendorData = ACPI_ADD_PTR (UINT8, ResourceSource, ResSourceLength);

330 /* Setup offsets within the descriptor */

332 Descriptor->Gpio.PinTableOffset = (UINT16)
333 ACPI_PTR_DIFF (InterruptList, Descriptor);

335 Descriptor->Gpio.ResSourceOffset = (UINT16)
336 ACPI_PTR_DIFF (ResourceSource, Descriptor);

338 DbgPrint (ASL_DEBUG_OUTPUT,
339 "%16s - Actual: %.2X, Base: %.2X, ResLen: %.2X, VendLen: %.2X, IntLen: %
340 "GpioInt", Descriptor->Gpio.ResourceLength, (UINT16) sizeof (AML_RESOURC
341 ResSourceLength, VendorLength, InterruptLength);

343 /* Process all child initialization nodes */

345 for (i = 0; InitializerOp; i++)
346 {
347 switch (i)
348 {
349 case 0: /* Interrupt Mode - edge/level [Flag] (_MOD) */

351 RsSetFlagBits16 (&Descriptor->Gpio.IntFlags, InitializerOp, 0, 0);
352 RsCreateBitField (InitializerOp, ACPI_RESTAG_MODE,
353 CurrentByteOffset + ASL_RESDESC_OFFSET (Gpio.IntFlags), 0);
354 break;

356 case 1: /* Interrupt Polarity - Active high/low [Flags] (_POL) */

358 RsSetFlagBits16 (&Descriptor->Gpio.IntFlags, InitializerOp, 1, 0);
359 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_POLARITY,
360 CurrentByteOffset + ASL_RESDESC_OFFSET (Gpio.IntFlags), 1, 2);
361 break;

363 case 2: /* Share Type - Default: exclusive (0) [Flags] (_SHR) */

365 RsSetFlagBits16 (&Descriptor->Gpio.IntFlags, InitializerOp, 3, 0);
366 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_INTERRUPTSHARE,
367 CurrentByteOffset + ASL_RESDESC_OFFSET (Gpio.IntFlags), 3, 2);
368 break;

370 case 3: /* Pin Config [BYTE] (_PPI) */

372 Descriptor->Gpio.PinConfig = (UINT8) InitializerOp->Asl.Value.Intege
373 RsCreateByteField (InitializerOp, ACPI_RESTAG_PINCONFIG,
374 CurrentByteOffset + ASL_RESDESC_OFFSET (Gpio.PinConfig));
375 break;

377 case 4: /* Debounce Timeout [WORD] (_DBT) */

379 Descriptor->Gpio.DebounceTimeout = (UINT16) InitializerOp->Asl.Value
380 RsCreateWordField (InitializerOp, ACPI_RESTAG_DEBOUNCETIME,
381 CurrentByteOffset + ASL_RESDESC_OFFSET (Gpio.DebounceTimeout));
382 break;

384 case 5: /* ResSource [Optional Field - STRING] */

386 if (ResSourceLength)
387 {
388 /* Copy string to the descriptor */

390 strcpy (ResourceSource,
391 InitializerOp->Asl.Value.String);

new/usr/src/common/acpica/compiler/aslrestype2s.c 7

392 }
393 break;

395 case 6: /* Resource Index */

397 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
398 {
399 Descriptor->Gpio.ResSourceIndex = (UINT8) InitializerOp->Asl.Val
400 }
401 break;

403 case 7: /* Resource Usage (consumer/producer) */

405 RsSetFlagBits16 (&Descriptor->Gpio.Flags, InitializerOp, 0, 1);
406 break;

408 case 8: /* Resource Tag (Descriptor Name) */

410 UtAttachNamepathToOwner (Op, InitializerOp);
411 break;

413 case 9: /* Vendor Data (Optional - Buffer of BYTEs) (_VEN) */

415 /*
416 * Always set the VendorOffset even if there is no Vendor Data.
417 * This field is required in order to calculate the length
418 * of the ResourceSource at runtime.
419 */
420 Descriptor->Gpio.VendorOffset = (UINT16)
421 ACPI_PTR_DIFF (VendorData, Descriptor);

423 if (RsGetVendorData (InitializerOp, VendorData,
424 (CurrentByteOffset + Descriptor->Gpio.VendorOffset)))
425 {
426 Descriptor->Gpio.VendorLength = VendorLength;
427 }
428 break;

430 default:
431 /*
432 * PINs come through here, repeatedly. Each PIN must be a DWORD.
433 * NOTE: there is no "length" field for this, so from ACPI spec:
434 * The number of pins in the table can be calculated from:
435 * PinCount = (Resource Source Name Offset - Pin Table Offset) / 2
436 * (implies resource source must immediately follow the pin list.)
437 * Name: _PIN
438 */
439 *InterruptList = (UINT16) InitializerOp->Asl.Value.Integer;
440 InterruptList++;

442 /* Case 10: First interrupt number in list */

444 if (i == 10)
445 {
446 if (InitializerOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG)
447 {
448 /* Must be at least one interrupt */

450 AslError (ASL_ERROR, ASL_MSG_EX_INTERRUPT_LIST_MIN,
451 InitializerOp, NULL);
452 }

454 /* Check now for duplicates in list */

456 RsCheckListForDuplicates (InitializerOp);

new/usr/src/common/acpica/compiler/aslrestype2s.c 8

458 /* Create a named field at the start of the list */

460 RsCreateDwordField (InitializerOp, ACPI_RESTAG_PIN,
461 CurrentByteOffset + Descriptor->Gpio.PinTableOffset);
462 }
463 break;
464 }

466 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
467 }

469 return (Rnode);
470 }

473 /***
474 *
475 * FUNCTION: RsDoGpioIoDescriptor
476 *
477 * PARAMETERS: Op - Parent resource descriptor parse node
478 * CurrentByteOffset - Offset into the resource template AML
479 * buffer (to track references to the desc)
480 *
481 * RETURN: Completed resource node
482 *
483 * DESCRIPTION: Construct a long "GpioIo" descriptor
484 *
485 **/

487 ASL_RESOURCE_NODE *
488 RsDoGpioIoDescriptor (
489 ACPI_PARSE_OBJECT *Op,
490 UINT32 CurrentByteOffset)
491 {
492 AML_RESOURCE *Descriptor;
493 ACPI_PARSE_OBJECT *InitializerOp;
494 ASL_RESOURCE_NODE *Rnode;
495 char *ResourceSource = NULL;
496 UINT8 *VendorData = NULL;
497 UINT16 *InterruptList = NULL;
498 UINT16 ResSourceLength;
499 UINT16 VendorLength;
500 UINT16 InterruptLength;
501 UINT16 DescriptorSize;
502 UINT32 i;

505 InitializerOp = Op->Asl.Child;

507 /*
508 * Calculate lengths for fields that have variable length:
509 * 1) Resource Source string
510 * 2) Vendor Data buffer
511 * 3) PIN (interrupt) list
512 */
513 ResSourceLength = RsGetStringDataLength (InitializerOp);
514 VendorLength = RsGetBufferDataLength (InitializerOp);
515 InterruptLength = RsGetInterruptDataLength (InitializerOp);

517 DescriptorSize = ACPI_AML_SIZE_LARGE (AML_RESOURCE_GPIO) +
518 ResSourceLength + VendorLength + InterruptLength;

520 /* Allocate the local resource node and initialize */

522 Rnode = RsAllocateResourceNode (DescriptorSize + sizeof (AML_RESOURCE_LARGE_

new/usr/src/common/acpica/compiler/aslrestype2s.c 9

524 Descriptor = Rnode->Buffer;
525 Descriptor->Gpio.ResourceLength = DescriptorSize;
526 Descriptor->Gpio.DescriptorType = ACPI_RESOURCE_NAME_GPIO;
527 Descriptor->Gpio.RevisionId = AML_RESOURCE_GPIO_REVISION;
528 Descriptor->Gpio.ConnectionType = AML_RESOURCE_GPIO_TYPE_IO;

530 /* Build pointers to optional areas */

532 InterruptList = ACPI_ADD_PTR (UINT16, Descriptor, sizeof (AML_RESOURCE_GPIO)
533 ResourceSource = ACPI_ADD_PTR (char, InterruptList, InterruptLength);
534 VendorData = ACPI_ADD_PTR (UINT8, ResourceSource, ResSourceLength);

536 /* Setup offsets within the descriptor */

538 Descriptor->Gpio.PinTableOffset = (UINT16)
539 ACPI_PTR_DIFF (InterruptList, Descriptor);

541 Descriptor->Gpio.ResSourceOffset = (UINT16)
542 ACPI_PTR_DIFF (ResourceSource, Descriptor);

544 DbgPrint (ASL_DEBUG_OUTPUT,
545 "%16s - Actual: %.2X, Base: %.2X, ResLen: %.2X, VendLen: %.2X, IntLen: %
546 "GpioIo", Descriptor->Gpio.ResourceLength, (UINT16) sizeof (AML_RESOURCE
547 ResSourceLength, VendorLength, InterruptLength);

549 /* Process all child initialization nodes */

551 for (i = 0; InitializerOp; i++)
552 {
553 switch (i)
554 {
555 case 0: /* Share Type [Flags] (_SHR) */

557 RsSetFlagBits16 (&Descriptor->Gpio.IntFlags, InitializerOp, 3, 0);
558 RsCreateBitField (InitializerOp, ACPI_RESTAG_INTERRUPTSHARE,
559 CurrentByteOffset + ASL_RESDESC_OFFSET (Gpio.IntFlags), 3);
560 break;

562 case 1: /* Pin Config [BYTE] (_PPI) */

564 Descriptor->Gpio.PinConfig = (UINT8) InitializerOp->Asl.Value.Intege
565 RsCreateByteField (InitializerOp, ACPI_RESTAG_PINCONFIG,
566 CurrentByteOffset + ASL_RESDESC_OFFSET (Gpio.PinConfig));
567 break;

569 case 2: /* Debounce Timeout [WORD] (_DBT) */

571 Descriptor->Gpio.DebounceTimeout = (UINT16) InitializerOp->Asl.Value
572 RsCreateWordField (InitializerOp, ACPI_RESTAG_DEBOUNCETIME,
573 CurrentByteOffset + ASL_RESDESC_OFFSET (Gpio.DebounceTimeout));
574 break;

576 case 3: /* Drive Strength [WORD] (_DRS) */

578 Descriptor->Gpio.DriveStrength = (UINT16) InitializerOp->Asl.Value.I
579 RsCreateWordField (InitializerOp, ACPI_RESTAG_DRIVESTRENGTH,
580 CurrentByteOffset + ASL_RESDESC_OFFSET (Gpio.DriveStrength));
581 break;

583 case 4: /* I/O Restriction [Flag] (_IOR) */

585 RsSetFlagBits16 (&Descriptor->Gpio.IntFlags, InitializerOp, 0, 0);
586 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_IORESTRICTION,
587 CurrentByteOffset + ASL_RESDESC_OFFSET (Gpio.IntFlags), 0, 2);
588 break;

new/usr/src/common/acpica/compiler/aslrestype2s.c 10

590 case 5: /* ResSource [Optional Field - STRING] */

592 if (ResSourceLength)
593 {
594 /* Copy string to the descriptor */

596 strcpy (ResourceSource,
597 InitializerOp->Asl.Value.String);
598 }
599 break;

601 case 6: /* Resource Index */

603 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
604 {
605 Descriptor->Gpio.ResSourceIndex = (UINT8) InitializerOp->Asl.Val
606 }
607 break;

609 case 7: /* Resource Usage (consumer/producer) */

611 RsSetFlagBits16 (&Descriptor->Gpio.Flags, InitializerOp, 0, 1);
612 break;

614 case 8: /* Resource Tag (Descriptor Name) */

616 UtAttachNamepathToOwner (Op, InitializerOp);
617 break;

619 case 9: /* Vendor Data (Optional - Buffer of BYTEs) (_VEN) */
620 /*
621 * Always set the VendorOffset even if there is no Vendor Data.
622 * This field is required in order to calculate the length
623 * of the ResourceSource at runtime.
624 */
625 Descriptor->Gpio.VendorOffset = (UINT16)
626 ACPI_PTR_DIFF (VendorData, Descriptor);

628 if (RsGetVendorData (InitializerOp, VendorData,
629 (CurrentByteOffset + Descriptor->Gpio.VendorOffset)))
630 {
631 Descriptor->Gpio.VendorLength = VendorLength;
632 }
633 break;

635 default:
636 /*
637 * PINs come through here, repeatedly. Each PIN must be a DWORD.
638 * NOTE: there is no "length" field for this, so from ACPI spec:
639 * The number of pins in the table can be calculated from:
640 * PinCount = (Resource Source Name Offset - Pin Table Offset) / 2
641 * (implies resource source must immediately follow the pin list.)
642 * Name: _PIN
643 */
644 *InterruptList = (UINT16) InitializerOp->Asl.Value.Integer;
645 InterruptList++;

647 /* Case 10: First interrupt number in list */

649 if (i == 10)
650 {
651 if (InitializerOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG)
652 {
653 /* Must be at least one interrupt */

655 AslError (ASL_ERROR, ASL_MSG_EX_INTERRUPT_LIST_MIN,

new/usr/src/common/acpica/compiler/aslrestype2s.c 11

656 InitializerOp, NULL);
657 }

659 /* Check now for duplicates in list */

661 RsCheckListForDuplicates (InitializerOp);

663 /* Create a named field at the start of the list */

665 RsCreateDwordField (InitializerOp, ACPI_RESTAG_PIN,
666 CurrentByteOffset + Descriptor->Gpio.PinTableOffset);
667 }
668 break;
669 }

671 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
672 }

674 return (Rnode);
675 }

678 /***
679 *
680 * FUNCTION: RsDoI2cSerialBusDescriptor
681 *
682 * PARAMETERS: Op - Parent resource descriptor parse node
683 * CurrentByteOffset - Offset into the resource template AML
684 * buffer (to track references to the desc)
685 *
686 * RETURN: Completed resource node
687 *
688 * DESCRIPTION: Construct a long "I2cSerialBus" descriptor
689 *
690 **/

692 ASL_RESOURCE_NODE *
693 RsDoI2cSerialBusDescriptor (
694 ACPI_PARSE_OBJECT *Op,
695 UINT32 CurrentByteOffset)
696 {
697 AML_RESOURCE *Descriptor;
698 ACPI_PARSE_OBJECT *InitializerOp;
699 ASL_RESOURCE_NODE *Rnode;
700 char *ResourceSource = NULL;
701 UINT8 *VendorData = NULL;
702 UINT16 ResSourceLength;
703 UINT16 VendorLength;
704 UINT16 DescriptorSize;
705 UINT32 i;

708 InitializerOp = Op->Asl.Child;

710 /*
711 * Calculate lengths for fields that have variable length:
712 * 1) Resource Source string
713 * 2) Vendor Data buffer
714 */
715 ResSourceLength = RsGetStringDataLength (InitializerOp);
716 VendorLength = RsGetBufferDataLength (InitializerOp);

718 DescriptorSize = ACPI_AML_SIZE_LARGE (AML_RESOURCE_I2C_SERIALBUS) +
719 ResSourceLength + VendorLength;

721 /* Allocate the local resource node and initialize */

new/usr/src/common/acpica/compiler/aslrestype2s.c 12

723 Rnode = RsAllocateResourceNode (DescriptorSize + sizeof (AML_RESOURCE_LARGE_

725 Descriptor = Rnode->Buffer;
726 Descriptor->I2cSerialBus.ResourceLength = DescriptorSize;
727 Descriptor->I2cSerialBus.DescriptorType = ACPI_RESOURCE_NAME_SERIAL_BUS;
728 Descriptor->I2cSerialBus.RevisionId = AML_RESOURCE_I2C_REVISION;
729 Descriptor->I2cSerialBus.TypeRevisionId = AML_RESOURCE_I2C_TYPE_REVISION;
730 Descriptor->I2cSerialBus.Type = AML_RESOURCE_I2C_SERIALBUSTYPE;
731 Descriptor->I2cSerialBus.TypeDataLength = AML_RESOURCE_I2C_MIN_DATA_LEN + Ve

733 /* Build pointers to optional areas */

735 VendorData = ACPI_ADD_PTR (UINT8, Descriptor, sizeof (AML_RESOURCE_I2C_SERIA
736 ResourceSource = ACPI_ADD_PTR (char, VendorData, VendorLength);

738 DbgPrint (ASL_DEBUG_OUTPUT,
739 "%16s - Actual: %.2X, Base: %.2X, ResLen: %.2X, VendLen: %.2X, TypLen: %
740 "I2cSerialBus", Descriptor->I2cSerialBus.ResourceLength,
741 (UINT16) sizeof (AML_RESOURCE_I2C_SERIALBUS), ResSourceLength,
742 VendorLength, Descriptor->I2cSerialBus.TypeDataLength);

744 /* Process all child initialization nodes */

746 for (i = 0; InitializerOp; i++)
747 {
748 switch (i)
749 {
750 case 0: /* Slave Address [WORD] (_ADR) */

752 Descriptor->I2cSerialBus.SlaveAddress = (UINT16) InitializerOp->Asl.
753 RsCreateWordField (InitializerOp, ACPI_RESTAG_ADDRESS,
754 CurrentByteOffset + ASL_RESDESC_OFFSET (I2cSerialBus.SlaveAddres
755 break;

757 case 1: /* Slave Mode [Flag] (_SLV) */

759 RsSetFlagBits (&Descriptor->I2cSerialBus.Flags, InitializerOp, 0, 0)
760 RsCreateBitField (InitializerOp, ACPI_RESTAG_SLAVEMODE,
761 CurrentByteOffset + ASL_RESDESC_OFFSET (I2cSerialBus.Flags), 0);
762 break;

764 case 2: /* Connection Speed [DWORD] (_SPE) */

766 Descriptor->I2cSerialBus.ConnectionSpeed = (UINT32) InitializerOp->A
767 RsCreateDwordField (InitializerOp, ACPI_RESTAG_SPEED,
768 CurrentByteOffset + ASL_RESDESC_OFFSET (I2cSerialBus.ConnectionS
769 break;

771 case 3: /* Addressing Mode [Flag] (_MOD) */

773 RsSetFlagBits16 (&Descriptor->I2cSerialBus.TypeSpecificFlags, Initia
774 RsCreateBitField (InitializerOp, ACPI_RESTAG_MODE,
775 CurrentByteOffset + ASL_RESDESC_OFFSET (I2cSerialBus.TypeSpecifi
776 break;

778 case 4: /* ResSource [Optional Field - STRING] */

780 if (ResSourceLength)
781 {
782 /* Copy string to the descriptor */

784 strcpy (ResourceSource,
785 InitializerOp->Asl.Value.String);
786 }
787 break;

new/usr/src/common/acpica/compiler/aslrestype2s.c 13

789 case 5: /* Resource Index */

791 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
792 {
793 Descriptor->I2cSerialBus.ResSourceIndex = (UINT8) InitializerOp-
794 }
795 break;

797 case 6: /* Resource Usage (consumer/producer) */

799 RsSetFlagBits (&Descriptor->I2cSerialBus.Flags, InitializerOp, 1, 1)
800 break;

802 case 7: /* Resource Tag (Descriptor Name) */

804 UtAttachNamepathToOwner (Op, InitializerOp);
805 break;

807 case 8: /* Vendor Data (Optional - Buffer of BYTEs) (_VEN) */

809 RsGetVendorData (InitializerOp, VendorData,
810 CurrentByteOffset + sizeof (AML_RESOURCE_I2C_SERIALBUS));
811 break;

813 default: /* Ignore any extra nodes */

815 break;
816 }

818 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
819 }

821 return (Rnode);
822 }

825 /***
826 *
827 * FUNCTION: RsDoSpiSerialBusDescriptor
828 *
829 * PARAMETERS: Op - Parent resource descriptor parse node
830 * CurrentByteOffset - Offset into the resource template AML
831 * buffer (to track references to the desc)
832 *
833 * RETURN: Completed resource node
834 *
835 * DESCRIPTION: Construct a long "SPI Serial Bus" descriptor
836 *
837 **/

839 ASL_RESOURCE_NODE *
840 RsDoSpiSerialBusDescriptor (
841 ACPI_PARSE_OBJECT *Op,
842 UINT32 CurrentByteOffset)
843 {
844 AML_RESOURCE *Descriptor;
845 ACPI_PARSE_OBJECT *InitializerOp;
846 ASL_RESOURCE_NODE *Rnode;
847 char *ResourceSource = NULL;
848 UINT8 *VendorData = NULL;
849 UINT16 ResSourceLength;
850 UINT16 VendorLength;
851 UINT16 DescriptorSize;
852 UINT32 i;

new/usr/src/common/acpica/compiler/aslrestype2s.c 14

855 InitializerOp = Op->Asl.Child;

857 /*
858 * Calculate lengths for fields that have variable length:
859 * 1) Resource Source string
860 * 2) Vendor Data buffer
861 */
862 ResSourceLength = RsGetStringDataLength (InitializerOp);
863 VendorLength = RsGetBufferDataLength (InitializerOp);

865 DescriptorSize = ACPI_AML_SIZE_LARGE (AML_RESOURCE_SPI_SERIALBUS) +
866 ResSourceLength + VendorLength;

868 /* Allocate the local resource node and initialize */

870 Rnode = RsAllocateResourceNode (DescriptorSize + sizeof (AML_RESOURCE_LARGE_

872 Descriptor = Rnode->Buffer;
873 Descriptor->SpiSerialBus.ResourceLength = DescriptorSize;
874 Descriptor->SpiSerialBus.DescriptorType = ACPI_RESOURCE_NAME_SERIAL_BUS;
875 Descriptor->SpiSerialBus.RevisionId = AML_RESOURCE_SPI_REVISION;
876 Descriptor->SpiSerialBus.TypeRevisionId = AML_RESOURCE_SPI_TYPE_REVISION;
877 Descriptor->SpiSerialBus.Type = AML_RESOURCE_SPI_SERIALBUSTYPE;
878 Descriptor->SpiSerialBus.TypeDataLength = AML_RESOURCE_SPI_MIN_DATA_LEN + Ve

880 /* Build pointers to optional areas */

882 VendorData = ACPI_ADD_PTR (UINT8, Descriptor, sizeof (AML_RESOURCE_SPI_SERIA
883 ResourceSource = ACPI_ADD_PTR (char, VendorData, VendorLength);

885 DbgPrint (ASL_DEBUG_OUTPUT,
886 "%16s - Actual: %.2X, Base: %.2X, ResLen: %.2X, VendLen: %.2X, TypLen: %
887 "SpiSerialBus", Descriptor->SpiSerialBus.ResourceLength,
888 (UINT16) sizeof (AML_RESOURCE_SPI_SERIALBUS), ResSourceLength,
889 VendorLength, Descriptor->SpiSerialBus.TypeDataLength);

891 /* Process all child initialization nodes */

893 for (i = 0; InitializerOp; i++)
894 {
895 switch (i)
896 {
897 case 0: /* Device Selection [WORD] (_ADR) */

899 Descriptor->SpiSerialBus.DeviceSelection = (UINT16) InitializerOp->A
900 RsCreateWordField (InitializerOp, ACPI_RESTAG_ADDRESS,
901 CurrentByteOffset + ASL_RESDESC_OFFSET (SpiSerialBus.DeviceSelec
902 break;

904 case 1: /* Device Polarity [Flag] (_DPL) */

906 RsSetFlagBits16 (&Descriptor->SpiSerialBus.TypeSpecificFlags, Initia
907 RsCreateBitField (InitializerOp, ACPI_RESTAG_DEVICEPOLARITY,
908 CurrentByteOffset + ASL_RESDESC_OFFSET (SpiSerialBus.TypeSpecifi
909 break;

911 case 2: /* Wire Mode [Flag] (_MOD) */

913 RsSetFlagBits16 (&Descriptor->SpiSerialBus.TypeSpecificFlags, Initia
914 RsCreateBitField (InitializerOp, ACPI_RESTAG_MODE,
915 CurrentByteOffset + ASL_RESDESC_OFFSET (SpiSerialBus.TypeSpecifi
916 break;

918 case 3: /* Device Bit Length [BYTE] (_LEN) */

new/usr/src/common/acpica/compiler/aslrestype2s.c 15

920 Descriptor->SpiSerialBus.DataBitLength = (UINT8) InitializerOp->Asl.
921 RsCreateByteField (InitializerOp, ACPI_RESTAG_LENGTH,
922 CurrentByteOffset + ASL_RESDESC_OFFSET (SpiSerialBus.DataBitLeng
923 break;

925 case 4: /* Slave Mode [Flag] (_SLV) */

927 RsSetFlagBits (&Descriptor->SpiSerialBus.Flags, InitializerOp, 0, 0)
928 RsCreateBitField (InitializerOp, ACPI_RESTAG_SLAVEMODE,
929 CurrentByteOffset + ASL_RESDESC_OFFSET (SpiSerialBus.Flags), 0);
930 break;

932 case 5: /* Connection Speed [DWORD] (_SPE) */

934 Descriptor->SpiSerialBus.ConnectionSpeed = (UINT32) InitializerOp->A
935 RsCreateDwordField (InitializerOp, ACPI_RESTAG_SPEED,
936 CurrentByteOffset + ASL_RESDESC_OFFSET (SpiSerialBus.ConnectionS
937 break;

939 case 6: /* Clock Polarity [BYTE] (_POL) */

941 Descriptor->SpiSerialBus.ClockPolarity = (UINT8) InitializerOp->Asl.
942 RsCreateByteField (InitializerOp, ACPI_RESTAG_POLARITY,
943 CurrentByteOffset + ASL_RESDESC_OFFSET (SpiSerialBus.ClockPolari
944 break;

946 case 7: /* Clock Phase [BYTE] (_PHA) */

948 Descriptor->SpiSerialBus.ClockPhase = (UINT8) InitializerOp->Asl.Val
949 RsCreateByteField (InitializerOp, ACPI_RESTAG_PHASE,
950 CurrentByteOffset + ASL_RESDESC_OFFSET (SpiSerialBus.ClockPhase)
951 break;

953 case 8: /* ResSource [Optional Field - STRING] */

955 if (ResSourceLength)
956 {
957 /* Copy string to the descriptor */

959 strcpy (ResourceSource,
960 InitializerOp->Asl.Value.String);
961 }
962 break;

964 case 9: /* Resource Index */

966 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
967 {
968 Descriptor->SpiSerialBus.ResSourceIndex = (UINT8) InitializerOp-
969 }
970 break;

972 case 10: /* Resource Usage (consumer/producer) */

974 RsSetFlagBits (&Descriptor->SpiSerialBus.Flags, InitializerOp, 1, 1)
975 break;

977 case 11: /* Resource Tag (Descriptor Name) */

979 UtAttachNamepathToOwner (Op, InitializerOp);
980 break;

982 case 12: /* Vendor Data (Optional - Buffer of BYTEs) (_VEN) */

984 RsGetVendorData (InitializerOp, VendorData,
985 CurrentByteOffset + sizeof (AML_RESOURCE_SPI_SERIALBUS));

new/usr/src/common/acpica/compiler/aslrestype2s.c 16

986 break;

988 default: /* Ignore any extra nodes */

990 break;
991 }

993 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
994 }

996 return (Rnode);
997 }

1000 /***
1001 *
1002 * FUNCTION: RsDoUartSerialBusDescriptor
1003 *
1004 * PARAMETERS: Op - Parent resource descriptor parse node
1005 * CurrentByteOffset - Offset into the resource template AML
1006 * buffer (to track references to the desc)
1007 *
1008 * RETURN: Completed resource node
1009 *
1010 * DESCRIPTION: Construct a long "UART Serial Bus" descriptor
1011 *
1012 **/

1014 ASL_RESOURCE_NODE *
1015 RsDoUartSerialBusDescriptor (
1016 ACPI_PARSE_OBJECT *Op,
1017 UINT32 CurrentByteOffset)
1018 {
1019 AML_RESOURCE *Descriptor;
1020 ACPI_PARSE_OBJECT *InitializerOp;
1021 ASL_RESOURCE_NODE *Rnode;
1022 char *ResourceSource = NULL;
1023 UINT8 *VendorData = NULL;
1024 UINT16 ResSourceLength;
1025 UINT16 VendorLength;
1026 UINT16 DescriptorSize;
1027 UINT32 i;

1030 InitializerOp = Op->Asl.Child;

1032 /*
1033 * Calculate lengths for fields that have variable length:
1034 * 1) Resource Source string
1035 * 2) Vendor Data buffer
1036 */
1037 ResSourceLength = RsGetStringDataLength (InitializerOp);
1038 VendorLength = RsGetBufferDataLength (InitializerOp);

1040 DescriptorSize = ACPI_AML_SIZE_LARGE (AML_RESOURCE_UART_SERIALBUS) +
1041 ResSourceLength + VendorLength;

1043 /* Allocate the local resource node and initialize */

1045 Rnode = RsAllocateResourceNode (DescriptorSize + sizeof (AML_RESOURCE_LARGE_

1047 Descriptor = Rnode->Buffer;
1048 Descriptor->UartSerialBus.ResourceLength = DescriptorSize;
1049 Descriptor->UartSerialBus.DescriptorType = ACPI_RESOURCE_NAME_SERIAL_BUS;
1050 Descriptor->UartSerialBus.RevisionId = AML_RESOURCE_UART_REVISION;
1051 Descriptor->UartSerialBus.TypeRevisionId = AML_RESOURCE_UART_TYPE_REVISION;

new/usr/src/common/acpica/compiler/aslrestype2s.c 17

1052 Descriptor->UartSerialBus.Type = AML_RESOURCE_UART_SERIALBUSTYPE;
1053 Descriptor->UartSerialBus.TypeDataLength = AML_RESOURCE_UART_MIN_DATA_LEN +

1055 /* Build pointers to optional areas */

1057 VendorData = ACPI_ADD_PTR (UINT8, Descriptor, sizeof (AML_RESOURCE_UART_SERI
1058 ResourceSource = ACPI_ADD_PTR (char, VendorData, VendorLength);

1060 DbgPrint (ASL_DEBUG_OUTPUT,
1061 "%16s - Actual: %.2X, Base: %.2X, ResLen: %.2X, VendLen: %.2X, TypLen: %
1062 "UartSerialBus", Descriptor->UartSerialBus.ResourceLength,
1063 (UINT16) sizeof (AML_RESOURCE_UART_SERIALBUS), ResSourceLength,
1064 VendorLength, Descriptor->UartSerialBus.TypeDataLength);

1066 /* Process all child initialization nodes */

1068 for (i = 0; InitializerOp; i++)
1069 {
1070 switch (i)
1071 {
1072 case 0: /* Connection Speed (Baud Rate) [DWORD] (_SPE) */

1074 Descriptor->UartSerialBus.DefaultBaudRate = (UINT32) InitializerOp->
1075 RsCreateDwordField (InitializerOp, ACPI_RESTAG_SPEED,
1076 CurrentByteOffset + ASL_RESDESC_OFFSET (UartSerialBus.DefaultBau
1077 break;

1079 case 1: /* Bits Per Byte [Flags] (_LEN) */

1081 RsSetFlagBits16 (&Descriptor->UartSerialBus.TypeSpecificFlags, Initi
1082 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_LENGTH,
1083 CurrentByteOffset + ASL_RESDESC_OFFSET (UartSerialBus.TypeSpecif
1084 break;

1086 case 2: /* Stop Bits [Flags] (_STB) */

1088 RsSetFlagBits16 (&Descriptor->UartSerialBus.TypeSpecificFlags, Initi
1089 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_STOPBITS,
1090 CurrentByteOffset + ASL_RESDESC_OFFSET (UartSerialBus.TypeSpecif
1091 break;

1093 case 3: /* Lines In Use [BYTE] (_LIN) */

1095 Descriptor->UartSerialBus.LinesEnabled = (UINT8) InitializerOp->Asl.
1096 RsCreateByteField (InitializerOp, ACPI_RESTAG_LINE,
1097 CurrentByteOffset + ASL_RESDESC_OFFSET (UartSerialBus.LinesEnabl
1098 break;

1100 case 4: /* Endianness [Flag] (_END) */

1102 RsSetFlagBits16 (&Descriptor->UartSerialBus.TypeSpecificFlags, Initi
1103 RsCreateBitField (InitializerOp, ACPI_RESTAG_ENDIANNESS,
1104 CurrentByteOffset + ASL_RESDESC_OFFSET (UartSerialBus.TypeSpecif
1105 break;

1107 case 5: /* Parity [BYTE] (_PAR) */

1109 Descriptor->UartSerialBus.Parity = (UINT8) InitializerOp->Asl.Value.
1110 RsCreateByteField (InitializerOp, ACPI_RESTAG_PARITY,
1111 CurrentByteOffset + ASL_RESDESC_OFFSET (UartSerialBus.Parity));
1112 break;

1114 case 6: /* Flow Control [Flags] (_FLC) */

1116 RsSetFlagBits16 (&Descriptor->UartSerialBus.TypeSpecificFlags, Initi
1117 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_FLOWCONTROL,

new/usr/src/common/acpica/compiler/aslrestype2s.c 18

1118 CurrentByteOffset + ASL_RESDESC_OFFSET (UartSerialBus.TypeSpecif
1119 break;

1121 case 7: /* Rx Buffer Size [WORD] (_RXL) */

1123 Descriptor->UartSerialBus.RxFifoSize = (UINT16) InitializerOp->Asl.V
1124 RsCreateWordField (InitializerOp, ACPI_RESTAG_LENGTH_RX,
1125 CurrentByteOffset + ASL_RESDESC_OFFSET (UartSerialBus.RxFifoSize
1126 break;

1128 case 8: /* Tx Buffer Size [WORD] (_TXL) */

1130 Descriptor->UartSerialBus.TxFifoSize = (UINT16) InitializerOp->Asl.V
1131 RsCreateWordField (InitializerOp, ACPI_RESTAG_LENGTH_TX,
1132 CurrentByteOffset + ASL_RESDESC_OFFSET (UartSerialBus.TxFifoSize
1133 break;

1135 case 9: /* ResSource [Optional Field - STRING] */

1137 if (ResSourceLength)
1138 {
1139 /* Copy string to the descriptor */

1141 strcpy (ResourceSource,
1142 InitializerOp->Asl.Value.String);
1143 }
1144 break;

1146 case 10: /* Resource Index */

1148 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
1149 {
1150 Descriptor->UartSerialBus.ResSourceIndex = (UINT8) InitializerOp
1151 }
1152 break;

1154 case 11: /* Resource Usage (consumer/producer) */

1156 RsSetFlagBits (&Descriptor->UartSerialBus.Flags, InitializerOp, 1, 1

1158 /*
1159 * Slave Mode [Flag] (_SLV)
1160 *
1161 * Note: There is no SlaveMode argument to the UartSerialBus macro,
1162 * we add this name anyway to allow the flag to be set by ASL in the
1163 * rare case where there is a slave mode associated with the UART.
1164 */
1165 RsCreateBitField (InitializerOp, ACPI_RESTAG_SLAVEMODE,
1166 CurrentByteOffset + ASL_RESDESC_OFFSET (UartSerialBus.Flags), 0)
1167 break;

1169 case 12: /* Resource Tag (Descriptor Name) */

1171 UtAttachNamepathToOwner (Op, InitializerOp);
1172 break;

1174 case 13: /* Vendor Data (Optional - Buffer of BYTEs) (_VEN) */

1176 RsGetVendorData (InitializerOp, VendorData,
1177 CurrentByteOffset + sizeof (AML_RESOURCE_UART_SERIALBUS));
1178 break;

1180 default: /* Ignore any extra nodes */

1182 break;
1183 }

new/usr/src/common/acpica/compiler/aslrestype2s.c 19

1185 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
1186 }

1188 return (Rnode);
1189 }

new/usr/src/common/acpica/compiler/aslrestype2w.c 1

**
 24719 Thu Dec 26 13:48:34 2013
new/usr/src/common/acpica/compiler/aslrestype2w.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslrestype2w - Large Word address resource descriptors
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"

48 #define _COMPONENT ACPI_COMPILER
49 ACPI_MODULE_NAME ("aslrestype2w")

51 /*
52 * This module contains the Word (16-bit) address space descriptors:
53 *
54 * WordIO
55 * WordMemory
56 * WordSpace
57 */

59 /***
60 *

new/usr/src/common/acpica/compiler/aslrestype2w.c 2

61 * FUNCTION: RsDoWordIoDescriptor
62 *
63 * PARAMETERS: Op - Parent resource descriptor parse node
64 * CurrentByteOffset - Offset into the resource template AML
65 * buffer (to track references to the desc)
66 *
67 * RETURN: Completed resource node
68 *
69 * DESCRIPTION: Construct a long "WordIO" descriptor
70 *
71 **/

73 ASL_RESOURCE_NODE *
74 RsDoWordIoDescriptor (
75 ACPI_PARSE_OBJECT *Op,
76 UINT32 CurrentByteOffset)
77 {
78 AML_RESOURCE *Descriptor;
79 ACPI_PARSE_OBJECT *InitializerOp;
80 ACPI_PARSE_OBJECT *MinOp = NULL;
81 ACPI_PARSE_OBJECT *MaxOp = NULL;
82 ACPI_PARSE_OBJECT *LengthOp = NULL;
83 ACPI_PARSE_OBJECT *GranOp = NULL;
84 ASL_RESOURCE_NODE *Rnode;
85 UINT8 *OptionalFields;
86 UINT16 StringLength = 0;
87 UINT32 OptionIndex = 0;
88 UINT32 i;
89 BOOLEAN ResSourceIndex = FALSE;

92 InitializerOp = Op->Asl.Child;
93 StringLength = RsGetStringDataLength (InitializerOp);

95 Rnode = RsAllocateResourceNode (
96 sizeof (AML_RESOURCE_ADDRESS16) + 1 + StringLength);

98 Descriptor = Rnode->Buffer;
99 Descriptor->Address16.DescriptorType = ACPI_RESOURCE_NAME_ADDRESS16;
100 Descriptor->Address16.ResourceType = ACPI_ADDRESS_TYPE_IO_RANGE;

102 /*
103 * Initial descriptor length -- may be enlarged if there are
104 * optional fields present
105 */
106 OptionalFields = ((UINT8 *) Descriptor) + sizeof (AML_RESOURCE_ADDRESS16);
107 Descriptor->Address16.ResourceLength = (UINT16)
108 (sizeof (AML_RESOURCE_ADDRESS16) -
109 sizeof (AML_RESOURCE_LARGE_HEADER));

111 /* Process all child initialization nodes */

113 for (i = 0; InitializerOp; i++)
114 {
115 switch (i)
116 {
117 case 0: /* Resource Usage */

119 RsSetFlagBits (&Descriptor->Address16.Flags, InitializerOp, 0, 1);
120 break;

122 case 1: /* MinType */

124 RsSetFlagBits (&Descriptor->Address16.Flags, InitializerOp, 2, 0);
125 RsCreateBitField (InitializerOp, ACPI_RESTAG_MINTYPE,
126 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Flags), 2);

new/usr/src/common/acpica/compiler/aslrestype2w.c 3

127 break;

129 case 2: /* MaxType */

131 RsSetFlagBits (&Descriptor->Address16.Flags, InitializerOp, 3, 0);
132 RsCreateBitField (InitializerOp, ACPI_RESTAG_MAXTYPE,
133 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Flags), 3);
134 break;

136 case 3: /* DecodeType */

138 RsSetFlagBits (&Descriptor->Address16.Flags, InitializerOp, 1, 0);
139 RsCreateBitField (InitializerOp, ACPI_RESTAG_DECODE,
140 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Flags), 1);
141 break;

143 case 4: /* Range Type */

145 RsSetFlagBits (&Descriptor->Address16.SpecificFlags, InitializerOp,
146 RsCreateMultiBitField (InitializerOp, ACPI_RESTAG_RANGETYPE,
147 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.SpecificFlags)
148 break;

150 case 5: /* Address Granularity */

152 Descriptor->Address16.Granularity = (UINT16) InitializerOp->Asl.Valu
153 RsCreateWordField (InitializerOp, ACPI_RESTAG_GRANULARITY,
154 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Granularity));
155 GranOp = InitializerOp;
156 break;

158 case 6: /* Address Min */

160 Descriptor->Address16.Minimum = (UINT16) InitializerOp->Asl.Value.In
161 RsCreateWordField (InitializerOp, ACPI_RESTAG_MINADDR,
162 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Minimum));
163 MinOp = InitializerOp;
164 break;

166 case 7: /* Address Max */

168 Descriptor->Address16.Maximum = (UINT16) InitializerOp->Asl.Value.In
169 RsCreateWordField (InitializerOp, ACPI_RESTAG_MAXADDR,
170 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Maximum));
171 MaxOp = InitializerOp;
172 break;

174 case 8: /* Translation Offset */

176 Descriptor->Address16.TranslationOffset = (UINT16) InitializerOp->As
177 RsCreateWordField (InitializerOp, ACPI_RESTAG_TRANSLATION,
178 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.TranslationOff
179 break;

181 case 9: /* Address Length */

183 Descriptor->Address16.AddressLength = (UINT16) InitializerOp->Asl.Va
184 RsCreateWordField (InitializerOp, ACPI_RESTAG_LENGTH,
185 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.AddressLength
186 LengthOp = InitializerOp;
187 break;

189 case 10: /* ResSourceIndex [Optional Field - BYTE] */

191 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
192 {

new/usr/src/common/acpica/compiler/aslrestype2w.c 4

193 OptionalFields[0] = (UINT8) InitializerOp->Asl.Value.Integer;
194 OptionIndex++;
195 Descriptor->Address16.ResourceLength++;
196 ResSourceIndex = TRUE;
197 }
198 break;

200 case 11: /* ResSource [Optional Field - STRING] */

202 if ((InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG) &&
203 (InitializerOp->Asl.Value.String))
204 {
205 if (StringLength)
206 {
207 Descriptor->Address16.ResourceLength = (UINT16)
208 (Descriptor->Address16.ResourceLength + StringLength);

210 strcpy ((char *)
211 &OptionalFields[OptionIndex],
212 InitializerOp->Asl.Value.String);

214 /* ResourceSourceIndex must also be valid */

216 if (!ResSourceIndex)
217 {
218 AslError (ASL_ERROR, ASL_MSG_RESOURCE_INDEX,
219 InitializerOp, NULL);
220 }
221 }
222 }

224 #if 0
225 /*
226 * Not a valid ResourceSource, ResourceSourceIndex must also
227 * be invalid
228 */
229 else if (ResSourceIndex)
230 {
231 AslError (ASL_ERROR, ASL_MSG_RESOURCE_SOURCE,
232 InitializerOp, NULL);
233 }
234 #endif
235 break;

237 case 12: /* ResourceTag */

239 UtAttachNamepathToOwner (Op, InitializerOp);
240 break;

242 case 13: /* Type */

244 RsSetFlagBits (&Descriptor->Address16.SpecificFlags, InitializerOp,
245 RsCreateBitField (InitializerOp, ACPI_RESTAG_TYPE,
246 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.SpecificFlags)
247 break;

249 case 14: /* Translation Type */

251 RsSetFlagBits (&Descriptor->Address16.SpecificFlags, InitializerOp,
252 RsCreateBitField (InitializerOp, ACPI_RESTAG_TRANSTYPE,
253 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.SpecificFlags)
254 break;

256 default:

258 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL);

new/usr/src/common/acpica/compiler/aslrestype2w.c 5

259 break;
260 }

262 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
263 }

265 /* Validate the Min/Max/Len/Gran values */

267 RsLargeAddressCheck (
268 (UINT64) Descriptor->Address16.Minimum,
269 (UINT64) Descriptor->Address16.Maximum,
270 (UINT64) Descriptor->Address16.AddressLength,
271 (UINT64) Descriptor->Address16.Granularity,
272 Descriptor->Address16.Flags,
273 MinOp, MaxOp, LengthOp, GranOp, Op);

275 Rnode->BufferLength = sizeof (AML_RESOURCE_ADDRESS16) +
276 OptionIndex + StringLength;
277 return (Rnode);
278 }

281 /***
282 *
283 * FUNCTION: RsDoWordBusNumberDescriptor
284 *
285 * PARAMETERS: Op - Parent resource descriptor parse node
286 * CurrentByteOffset - Offset into the resource template AML
287 * buffer (to track references to the desc)
288 *
289 * RETURN: Completed resource node
290 *
291 * DESCRIPTION: Construct a long "WordBusNumber" descriptor
292 *
293 **/

295 ASL_RESOURCE_NODE *
296 RsDoWordBusNumberDescriptor (
297 ACPI_PARSE_OBJECT *Op,
298 UINT32 CurrentByteOffset)
299 {
300 AML_RESOURCE *Descriptor;
301 ACPI_PARSE_OBJECT *InitializerOp;
302 ACPI_PARSE_OBJECT *MinOp = NULL;
303 ACPI_PARSE_OBJECT *MaxOp = NULL;
304 ACPI_PARSE_OBJECT *LengthOp = NULL;
305 ACPI_PARSE_OBJECT *GranOp = NULL;
306 ASL_RESOURCE_NODE *Rnode;
307 UINT8 *OptionalFields;
308 UINT16 StringLength = 0;
309 UINT32 OptionIndex = 0;
310 UINT32 i;
311 BOOLEAN ResSourceIndex = FALSE;

314 InitializerOp = Op->Asl.Child;
315 StringLength = RsGetStringDataLength (InitializerOp);

317 Rnode = RsAllocateResourceNode (
318 sizeof (AML_RESOURCE_ADDRESS16) + 1 + StringLength);

320 Descriptor = Rnode->Buffer;
321 Descriptor->Address16.DescriptorType = ACPI_RESOURCE_NAME_ADDRESS16;
322 Descriptor->Address16.ResourceType = ACPI_ADDRESS_TYPE_BUS_NUMBER_RANGE;

324 /*

new/usr/src/common/acpica/compiler/aslrestype2w.c 6

325 * Initial descriptor length -- may be enlarged if there are
326 * optional fields present
327 */
328 OptionalFields = ((UINT8 *) Descriptor) + sizeof (AML_RESOURCE_ADDRESS16);
329 Descriptor->Address16.ResourceLength = (UINT16)
330 (sizeof (AML_RESOURCE_ADDRESS16) -
331 sizeof (AML_RESOURCE_LARGE_HEADER));

333 /* Process all child initialization nodes */

335 for (i = 0; InitializerOp; i++)
336 {
337 switch (i)
338 {
339 case 0: /* Resource Usage */

341 RsSetFlagBits (&Descriptor->Address16.Flags, InitializerOp, 0, 1);
342 break;

344 case 1: /* MinType */

346 RsSetFlagBits (&Descriptor->Address16.Flags, InitializerOp, 2, 0);
347 RsCreateBitField (InitializerOp, ACPI_RESTAG_MINTYPE,
348 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Flags), 2);
349 break;

351 case 2: /* MaxType */

353 RsSetFlagBits (&Descriptor->Address16.Flags, InitializerOp, 3, 0);
354 RsCreateBitField (InitializerOp, ACPI_RESTAG_MAXTYPE,
355 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Flags), 3);
356 break;

358 case 3: /* DecodeType */

360 RsSetFlagBits (&Descriptor->Address16.Flags, InitializerOp, 1, 0);
361 RsCreateBitField (InitializerOp, ACPI_RESTAG_DECODE,
362 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Flags), 1);
363 break;

365 case 4: /* Address Granularity */

367 Descriptor->Address16.Granularity =
368 (UINT16) InitializerOp->Asl.Value.Integer;
369 RsCreateWordField (InitializerOp, ACPI_RESTAG_GRANULARITY,
370 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Granularity));
371 GranOp = InitializerOp;
372 break;

374 case 5: /* Min Address */

376 Descriptor->Address16.Minimum =
377 (UINT16) InitializerOp->Asl.Value.Integer;
378 RsCreateWordField (InitializerOp, ACPI_RESTAG_MINADDR,
379 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Minimum));
380 MinOp = InitializerOp;
381 break;

383 case 6: /* Max Address */

385 Descriptor->Address16.Maximum =
386 (UINT16) InitializerOp->Asl.Value.Integer;
387 RsCreateWordField (InitializerOp, ACPI_RESTAG_MAXADDR,
388 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Maximum));
389 MaxOp = InitializerOp;
390 break;

new/usr/src/common/acpica/compiler/aslrestype2w.c 7

392 case 7: /* Translation Offset */

394 Descriptor->Address16.TranslationOffset =
395 (UINT16) InitializerOp->Asl.Value.Integer;
396 RsCreateWordField (InitializerOp, ACPI_RESTAG_TRANSLATION,
397 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.TranslationOff
398 break;

400 case 8: /* Address Length */

402 Descriptor->Address16.AddressLength =
403 (UINT16) InitializerOp->Asl.Value.Integer;
404 RsCreateWordField (InitializerOp, ACPI_RESTAG_LENGTH,
405 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.AddressLength
406 LengthOp = InitializerOp;
407 break;

409 case 9: /* ResSourceIndex [Optional Field - BYTE] */

411 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
412 {
413 OptionalFields[0] = (UINT8) InitializerOp->Asl.Value.Integer;
414 OptionIndex++;
415 Descriptor->Address16.ResourceLength++;
416 ResSourceIndex = TRUE;
417 }
418 break;

420 case 10: /* ResSource [Optional Field - STRING] */

422 if ((InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG) &&
423 (InitializerOp->Asl.Value.String))
424 {
425 if (StringLength)
426 {
427 Descriptor->Address16.ResourceLength = (UINT16)
428 (Descriptor->Address16.ResourceLength + StringLength);

430 strcpy ((char *)
431 &OptionalFields[OptionIndex],
432 InitializerOp->Asl.Value.String);

434 /* ResourceSourceIndex must also be valid */

436 if (!ResSourceIndex)
437 {
438 AslError (ASL_ERROR, ASL_MSG_RESOURCE_INDEX,
439 InitializerOp, NULL);
440 }
441 }
442 }

444 #if 0
445 /*
446 * Not a valid ResourceSource, ResourceSourceIndex must also
447 * be invalid
448 */
449 else if (ResSourceIndex)
450 {
451 AslError (ASL_ERROR, ASL_MSG_RESOURCE_SOURCE,
452 InitializerOp, NULL);
453 }
454 #endif
455 break;

new/usr/src/common/acpica/compiler/aslrestype2w.c 8

457 case 11: /* ResourceTag */

459 UtAttachNamepathToOwner (Op, InitializerOp);
460 break;

462 default:

464 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL);
465 break;
466 }

468 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
469 }

471 /* Validate the Min/Max/Len/Gran values */

473 RsLargeAddressCheck (
474 (UINT64) Descriptor->Address16.Minimum,
475 (UINT64) Descriptor->Address16.Maximum,
476 (UINT64) Descriptor->Address16.AddressLength,
477 (UINT64) Descriptor->Address16.Granularity,
478 Descriptor->Address16.Flags,
479 MinOp, MaxOp, LengthOp, GranOp, Op);

481 Rnode->BufferLength = sizeof (AML_RESOURCE_ADDRESS16) +
482 OptionIndex + StringLength;
483 return (Rnode);
484 }

487 /***
488 *
489 * FUNCTION: RsDoWordSpaceDescriptor
490 *
491 * PARAMETERS: Op - Parent resource descriptor parse node
492 * CurrentByteOffset - Offset into the resource template AML
493 * buffer (to track references to the desc)
494 *
495 * RETURN: Completed resource node
496 *
497 * DESCRIPTION: Construct a long "WordSpace" descriptor
498 *
499 **/

501 ASL_RESOURCE_NODE *
502 RsDoWordSpaceDescriptor (
503 ACPI_PARSE_OBJECT *Op,
504 UINT32 CurrentByteOffset)
505 {
506 AML_RESOURCE *Descriptor;
507 ACPI_PARSE_OBJECT *InitializerOp;
508 ACPI_PARSE_OBJECT *MinOp = NULL;
509 ACPI_PARSE_OBJECT *MaxOp = NULL;
510 ACPI_PARSE_OBJECT *LengthOp = NULL;
511 ACPI_PARSE_OBJECT *GranOp = NULL;
512 ASL_RESOURCE_NODE *Rnode;
513 UINT8 *OptionalFields;
514 UINT16 StringLength = 0;
515 UINT32 OptionIndex = 0;
516 UINT32 i;
517 BOOLEAN ResSourceIndex = FALSE;

520 InitializerOp = Op->Asl.Child;
521 StringLength = RsGetStringDataLength (InitializerOp);

new/usr/src/common/acpica/compiler/aslrestype2w.c 9

523 Rnode = RsAllocateResourceNode (
524 sizeof (AML_RESOURCE_ADDRESS16) + 1 + StringLength);

526 Descriptor = Rnode->Buffer;
527 Descriptor->Address16.DescriptorType = ACPI_RESOURCE_NAME_ADDRESS16;

529 /*
530 * Initial descriptor length -- may be enlarged if there are
531 * optional fields present
532 */
533 OptionalFields = ((UINT8 *) Descriptor) + sizeof (AML_RESOURCE_ADDRESS16);
534 Descriptor->Address16.ResourceLength = (UINT16)
535 (sizeof (AML_RESOURCE_ADDRESS16) -
536 sizeof (AML_RESOURCE_LARGE_HEADER));

538 /* Process all child initialization nodes */

540 for (i = 0; InitializerOp; i++)
541 {
542 switch (i)
543 {
544 case 0: /* Resource Type */

546 Descriptor->Address16.ResourceType =
547 (UINT8) InitializerOp->Asl.Value.Integer;
548 break;

550 case 1: /* Resource Usage */

552 RsSetFlagBits (&Descriptor->Address16.Flags, InitializerOp, 0, 1);
553 break;

555 case 2: /* DecodeType */

557 RsSetFlagBits (&Descriptor->Address16.Flags, InitializerOp, 1, 0);
558 RsCreateBitField (InitializerOp, ACPI_RESTAG_DECODE,
559 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Flags), 1);
560 break;

562 case 3: /* MinType */

564 RsSetFlagBits (&Descriptor->Address16.Flags, InitializerOp, 2, 0);
565 RsCreateBitField (InitializerOp, ACPI_RESTAG_MINTYPE,
566 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Flags), 2);
567 break;

569 case 4: /* MaxType */

571 RsSetFlagBits (&Descriptor->Address16.Flags, InitializerOp, 3, 0);
572 RsCreateBitField (InitializerOp, ACPI_RESTAG_MAXTYPE,
573 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Flags), 3);
574 break;

576 case 5: /* Type-Specific flags */

578 Descriptor->Address16.SpecificFlags =
579 (UINT8) InitializerOp->Asl.Value.Integer;
580 break;

582 case 6: /* Address Granularity */

584 Descriptor->Address16.Granularity =
585 (UINT16) InitializerOp->Asl.Value.Integer;
586 RsCreateWordField (InitializerOp, ACPI_RESTAG_GRANULARITY,
587 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Granularity));
588 GranOp = InitializerOp;

new/usr/src/common/acpica/compiler/aslrestype2w.c 10

589 break;

591 case 7: /* Min Address */

593 Descriptor->Address16.Minimum =
594 (UINT16) InitializerOp->Asl.Value.Integer;
595 RsCreateWordField (InitializerOp, ACPI_RESTAG_MINADDR,
596 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Minimum));
597 MinOp = InitializerOp;
598 break;

600 case 8: /* Max Address */

602 Descriptor->Address16.Maximum =
603 (UINT16) InitializerOp->Asl.Value.Integer;
604 RsCreateWordField (InitializerOp, ACPI_RESTAG_MAXADDR,
605 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.Maximum));
606 MaxOp = InitializerOp;
607 break;

609 case 9: /* Translation Offset */

611 Descriptor->Address16.TranslationOffset =
612 (UINT16) InitializerOp->Asl.Value.Integer;
613 RsCreateWordField (InitializerOp, ACPI_RESTAG_TRANSLATION,
614 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.TranslationOff
615 break;

617 case 10: /* Address Length */

619 Descriptor->Address16.AddressLength =
620 (UINT16) InitializerOp->Asl.Value.Integer;
621 RsCreateWordField (InitializerOp, ACPI_RESTAG_LENGTH,
622 CurrentByteOffset + ASL_RESDESC_OFFSET (Address16.AddressLength)
623 LengthOp = InitializerOp;
624 break;

626 case 11: /* ResSourceIndex [Optional Field - BYTE] */

628 if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)
629 {
630 OptionalFields[0] = (UINT8) InitializerOp->Asl.Value.Integer;
631 OptionIndex++;
632 Descriptor->Address16.ResourceLength++;
633 ResSourceIndex = TRUE;
634 }
635 break;

637 case 12: /* ResSource [Optional Field - STRING] */

639 if ((InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG) &&
640 (InitializerOp->Asl.Value.String))
641 {
642 if (StringLength)
643 {
644 Descriptor->Address16.ResourceLength = (UINT16)
645 (Descriptor->Address16.ResourceLength + StringLength);

647 strcpy ((char *)
648 &OptionalFields[OptionIndex],
649 InitializerOp->Asl.Value.String);

651 /* ResourceSourceIndex must also be valid */

653 if (!ResSourceIndex)
654 {

new/usr/src/common/acpica/compiler/aslrestype2w.c 11

655 AslError (ASL_ERROR, ASL_MSG_RESOURCE_INDEX,
656 InitializerOp, NULL);
657 }
658 }
659 }

661 #if 0
662 /*
663 * Not a valid ResourceSource, ResourceSourceIndex must also
664 * be invalid
665 */
666 else if (ResSourceIndex)
667 {
668 AslError (ASL_ERROR, ASL_MSG_RESOURCE_SOURCE,
669 InitializerOp, NULL);
670 }
671 #endif
672 break;

674 case 13: /* ResourceTag */

676 UtAttachNamepathToOwner (Op, InitializerOp);
677 break;

679 default:

681 AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL);
682 break;
683 }

685 InitializerOp = RsCompleteNodeAndGetNext (InitializerOp);
686 }

688 /* Validate the Min/Max/Len/Gran values */

690 RsLargeAddressCheck (
691 (UINT64) Descriptor->Address16.Minimum,
692 (UINT64) Descriptor->Address16.Maximum,
693 (UINT64) Descriptor->Address16.AddressLength,
694 (UINT64) Descriptor->Address16.Granularity,
695 Descriptor->Address16.Flags,
696 MinOp, MaxOp, LengthOp, GranOp, Op);

698 Rnode->BufferLength = sizeof (AML_RESOURCE_ADDRESS16) +
699 OptionIndex + StringLength;
700 return (Rnode);
701 }

new/usr/src/common/acpica/compiler/aslstartup.c 1

**
 13219 Thu Dec 26 13:48:34 2013
new/usr/src/common/acpica/compiler/aslstartup.c
update to acpica-unix2-20131218
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslstartup - Compiler startup routines, called from main
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "actables.h"
47 #include "acdisasm.h"
48 #include "acapps.h"

50 #define _COMPONENT ACPI_COMPILER
51 ACPI_MODULE_NAME ("aslstartup")

54 /* Local prototypes */

56 static UINT8
57 AslDetectSourceFileType (
58 ASL_FILE_INFO *Info);

new/usr/src/common/acpica/compiler/aslstartup.c 2

60 static ACPI_STATUS
61 AslDoDisassembly (
62 void);

65 /* Globals */

67 static BOOLEAN AslToFile = TRUE;

70 /***
71 *
72 * FUNCTION: AslInitializeGlobals
73 *
74 * PARAMETERS: None
75 *
76 * RETURN: None
77 *
78 * DESCRIPTION: Re-initialize globals needed to restart the compiler. This
79 * allows multiple files to be disassembled and/or compiled.
80 *
81 **/

83 void
84 AslInitializeGlobals (
85 void)
86 {
87 UINT32 i;

90 /* Init compiler globals */

92 Gbl_CurrentColumn = 0;
93 Gbl_CurrentLineNumber = 1;
94 Gbl_LogicalLineNumber = 1;
95 Gbl_CurrentLineOffset = 0;
96 Gbl_InputFieldCount = 0;
97 Gbl_InputByteCount = 0;
98 Gbl_NsLookupCount = 0;
99 Gbl_LineBufPtr = Gbl_CurrentLineBuffer;

101 Gbl_ErrorLog = NULL;
102 Gbl_NextError = NULL;
103 Gbl_Signature = NULL;
104 Gbl_FileType = 0;

106 TotalExecutableOpcodes = 0;
107 TotalNamedObjects = 0;
108 TotalKeywords = 0;
109 TotalParseNodes = 0;
110 TotalMethods = 0;
111 TotalAllocations = 0;
112 TotalAllocated = 0;
113 TotalFolds = 0;

115 AslGbl_NextEvent = 0;
116 for (i = 0; i < ASL_NUM_REPORT_LEVELS; i++)
117 {
118 Gbl_ExceptionCount[i] = 0;
119 }

121 for (i = ASL_FILE_INPUT; i <= ASL_MAX_FILE_TYPE; i++)
122 {
123 Gbl_Files[i].Handle = NULL;
124 Gbl_Files[i].Filename = NULL;

new/usr/src/common/acpica/compiler/aslstartup.c 3

125 }
126 }

129 /***
130 *
131 * FUNCTION: AslDetectSourceFileType
132 *
133 * PARAMETERS: Info - Name/Handle for the file (must be open)
134 *
135 * RETURN: File Type
136 *
137 * DESCRIPTION: Determine the type of the input file. Either binary (contains
138 * non-ASCII characters), ASL file, or an ACPI Data Table file.
139 *
140 **/

142 static UINT8
143 AslDetectSourceFileType (
144 ASL_FILE_INFO *Info)
145 {
146 char *FileChar;
147 UINT8 Type;
148 ACPI_STATUS Status;

151 /* Check for a valid binary ACPI table */

153 Status = FlCheckForAcpiTable (Info->Handle);
154 if (ACPI_SUCCESS (Status))
155 {
156 Type = ASL_INPUT_TYPE_ACPI_TABLE;
157 goto Cleanup;
158 }

160 /* Check for 100% ASCII source file (comments are ignored) */

162 Status = FlCheckForAscii (Info->Handle, Info->Filename, TRUE);
163 if (ACPI_FAILURE (Status))
164 {
165 printf ("Non-ascii input file - %s\n", Info->Filename);

167 if (!Gbl_IgnoreErrors)
168 {
169 Type = ASL_INPUT_TYPE_BINARY;
170 goto Cleanup;
171 }
172 }

174 /*
175 * File is ASCII. Determine if this is an ASL file or an ACPI data
176 * table file.
177 */
178 while (fgets (Gbl_CurrentLineBuffer, Gbl_LineBufferSize, Info->Handle))
179 {
180 /* Uppercase the buffer for caseless compare */

182 FileChar = Gbl_CurrentLineBuffer;
183 while (*FileChar)
184 {
185 *FileChar = (char) toupper ((int) *FileChar);
186 FileChar++;
187 }

189 /* Presence of "DefinitionBlock" indicates actual ASL code */

new/usr/src/common/acpica/compiler/aslstartup.c 4

191 if (strstr (Gbl_CurrentLineBuffer, "DEFINITIONBLOCK"))
192 {
193 /* Appears to be an ASL file */

195 Type = ASL_INPUT_TYPE_ASCII_ASL;
196 goto Cleanup;
197 }
198 }

200 /* Not an ASL source file, default to a data table source file */

202 Type = ASL_INPUT_TYPE_ASCII_DATA;

204 Cleanup:

206 /* Must seek back to the start of the file */

208 fseek (Info->Handle, 0, SEEK_SET);
209 return (Type);
210 }

213 /***
214 *
215 * FUNCTION: AslDoDisassembly
216 *
217 * PARAMETERS: None
218 *
219 * RETURN: Status
220 *
221 * DESCRIPTION: Initiate AML file disassembly. Uses ACPICA subsystem to build
222 * namespace.
223 *
224 **/

226 static ACPI_STATUS
227 AslDoDisassembly (
228 void)
229 {
230 ACPI_STATUS Status;

233 /* ACPICA subsystem initialization */

235 Status = AdInitialize ();
236 if (ACPI_FAILURE (Status))
237 {
238 return (Status);
239 }

241 Status = AcpiAllocateRootTable (4);
242 if (ACPI_FAILURE (Status))
243 {
244 AcpiOsPrintf ("Could not initialize ACPI Table Manager, %s\n",
245 AcpiFormatException (Status));
246 return (Status);
247 }

249 /* This is where the disassembly happens */

251 AcpiGbl_DbOpt_disasm = TRUE;
252 Status = AdAmlDisassemble (AslToFile,
253 Gbl_Files[ASL_FILE_INPUT].Filename, Gbl_OutputFilenamePrefix,
254 &Gbl_Files[ASL_FILE_INPUT].Filename, Gbl_GetAllTables);
255 if (ACPI_FAILURE (Status))
256 {

new/usr/src/common/acpica/compiler/aslstartup.c 5

257 return (Status);
258 }

260 /* Check if any control methods were unresolved */

262 AcpiDmUnresolvedWarning (0);

264 #if 0
265 /* TBD: Handle additional output files for disassembler */

267 Status = FlOpenMiscOutputFiles (Gbl_OutputFilenamePrefix);
268 NsDisplayNamespace ();
269 #endif

271 /* Shutdown compiler and ACPICA subsystem */

273 AeClearErrorLog ();
274 (void) AcpiTerminate ();

276 /*
277 * Gbl_Files[ASL_FILE_INPUT].Filename was replaced with the
278 * .DSL disassembly file, which can now be compiled if requested
279 */
280 if (Gbl_DoCompile)
281 {
282 AcpiOsPrintf ("\nCompiling \"%s\"\n",
283 Gbl_Files[ASL_FILE_INPUT].Filename);
284 return (AE_CTRL_CONTINUE);
285 }

287 ACPI_FREE (Gbl_Files[ASL_FILE_INPUT].Filename);
288 Gbl_Files[ASL_FILE_INPUT].Filename = NULL;
289 return (AE_OK);
290 }

293 /***
294 *
295 * FUNCTION: AslDoOneFile
296 *
297 * PARAMETERS: Filename - Name of the file
298 *
299 * RETURN: Status
300 *
301 * DESCRIPTION: Process a single file - either disassemble, compile, or both
302 *
303 **/

305 ACPI_STATUS
306 AslDoOneFile (
307 char *Filename)
308 {
309 ACPI_STATUS Status;

312 /* Re-initialize "some" compiler/preprocessor globals */

314 AslInitializeGlobals ();
315 PrInitializeGlobals ();

317 /*
318 * Extract the directory path. This path is used for possible include
319 * files and the optional AML filename embedded in the input file
320 * DefinitionBlock declaration.
321 */
322 Status = FlSplitInputPathname (Filename, &Gbl_DirectoryPath, NULL);

new/usr/src/common/acpica/compiler/aslstartup.c 6

323 if (ACPI_FAILURE (Status))
324 {
325 return (Status);
326 }

328 Gbl_Files[ASL_FILE_INPUT].Filename = Filename;
329 UtConvertBackslashes (Filename);

331 /*
332 * AML Disassembly (Optional)
333 */
334 if (Gbl_DisasmFlag || Gbl_GetAllTables)
335 {
336 Status = AslDoDisassembly ();
337 if (Status != AE_CTRL_CONTINUE)
338 {
339 return (Status);
340 }
341 }

343 /*
344 * Open the input file. Here, this should be an ASCII source file,
345 * either an ASL file or a Data Table file
346 */
347 Status = FlOpenInputFile (Gbl_Files[ASL_FILE_INPUT].Filename);
348 if (ACPI_FAILURE (Status))
349 {
350 AePrintErrorLog (ASL_FILE_STDERR);
351 return (AE_ERROR);
352 }

354 /* Determine input file type */

356 Gbl_FileType = AslDetectSourceFileType (&Gbl_Files[ASL_FILE_INPUT]);
357 if (Gbl_FileType == ASL_INPUT_TYPE_BINARY)
358 {
359 return (AE_ERROR);
360 }

362 /*
363 * If -p not specified, we will use the input filename as the
364 * output filename prefix
365 */
366 if (Gbl_UseDefaultAmlFilename)
367 {
368 Gbl_OutputFilenamePrefix = Gbl_Files[ASL_FILE_INPUT].Filename;
369 }

371 /* Open the optional output files (listings, etc.) */

373 Status = FlOpenMiscOutputFiles (Gbl_OutputFilenamePrefix);
374 if (ACPI_FAILURE (Status))
375 {
376 AePrintErrorLog (ASL_FILE_STDERR);
377 return (AE_ERROR);
378 }

380 /*
381 * Compilation of ASL source versus DataTable source uses different
382 * compiler subsystems
383 */
384 switch (Gbl_FileType)
385 {
386 /*
387 * Data Table Compilation
388 */

new/usr/src/common/acpica/compiler/aslstartup.c 7

389 case ASL_INPUT_TYPE_ASCII_DATA:

391 Status = DtDoCompile ();
392 if (ACPI_FAILURE (Status))
393 {
394 return (Status);
395 }

397 if (Gbl_Signature)
398 {
399 ACPI_FREE (Gbl_Signature);
400 Gbl_Signature = NULL;
401 }

403 /* Check if any errors occurred during compile */

405 Status = AslCheckForErrorExit ();
406 if (ACPI_FAILURE (Status))
407 {
408 return (Status);
409 }

411 /* Cleanup (for next source file) and exit */

413 AeClearErrorLog ();
414 PrTerminatePreprocessor ();
415 return (Status);

417 /*
418 * ASL Compilation
419 */
420 case ASL_INPUT_TYPE_ASCII_ASL:

422 /* ACPICA subsystem initialization */

424 Status = AdInitialize ();
425 if (ACPI_FAILURE (Status))
426 {
427 return (Status);
428 }

430 (void) CmDoCompile ();
431 (void) AcpiTerminate ();

433 /* Check if any errors occurred during compile */

435 Status = AslCheckForErrorExit ();
436 if (ACPI_FAILURE (Status))
437 {
438 return (Status);
439 }

441 /* Cleanup (for next source file) and exit */

443 AeClearErrorLog ();
444 PrTerminatePreprocessor ();
445 return (AE_OK);

447 /*
448 * Binary ACPI table was auto-detected, disassemble it
449 */
450 case ASL_INPUT_TYPE_ACPI_TABLE:

452 /* We have what appears to be an ACPI table, disassemble it */

454 FlCloseFile (ASL_FILE_INPUT);

new/usr/src/common/acpica/compiler/aslstartup.c 8

455 Gbl_DoCompile = FALSE;
456 Gbl_DisasmFlag = TRUE;
457 Status = AslDoDisassembly ();
458 return (Status);

460 /* Unknown binary table */

462 case ASL_INPUT_TYPE_BINARY:

464 AePrintErrorLog (ASL_FILE_STDERR);
465 return (AE_ERROR);

467 default:

469 printf ("Unknown file type %X\n", Gbl_FileType);
470 return (AE_ERROR);
471 }
472 }

475 /***
476 *
477 * FUNCTION: AslCheckForErrorExit
478 *
479 * PARAMETERS: None. Examines global exception count array
480 *
481 * RETURN: Status
482 *
483 * DESCRIPTION: Determine if compiler should abort with error status
484 *
485 **/

487 ACPI_STATUS
488 AslCheckForErrorExit (
489 void)
490 {

492 /*
493 * Return non-zero exit code if there have been errors, unless the
494 * global ignore error flag has been set
495 */
496 if (!Gbl_IgnoreErrors)
497 {
498 if (Gbl_ExceptionCount[ASL_ERROR] > 0)
499 {
500 return (AE_ERROR);
501 }

503 /* Optionally treat warnings as errors */

505 if (Gbl_WarningsAsErrors)
506 {
507 if ((Gbl_ExceptionCount[ASL_WARNING] > 0) ||
508 (Gbl_ExceptionCount[ASL_WARNING2] > 0) ||
509 (Gbl_ExceptionCount[ASL_WARNING3] > 0))
510 {
511 return (AE_ERROR);
512 }
513 }
514 }

516 return (AE_OK);
517 }

new/usr/src/common/acpica/compiler/aslstubs.c 1

**
 5855 Thu Dec 26 13:48:34 2013
new/usr/src/common/acpica/compiler/aslstubs.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslstubs - Stubs used to link to Aml interpreter
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aslcompiler.h"
45 #include "acdispat.h"
46 #include "actables.h"
47 #include "acevents.h"
48 #include "acinterp.h"
49 #include "acnamesp.h"

51 #define _COMPONENT ACPI_COMPILER
52 ACPI_MODULE_NAME ("aslstubs")

55 /*
56 * Stubs to simplify linkage to the ACPI CA core subsystem.
57 * Things like Events, Global Lock, etc. are not used
58 * by the compiler, so they are stubbed out here.
59 */

new/usr/src/common/acpica/compiler/aslstubs.c 2

60 ACPI_PHYSICAL_ADDRESS
61 AeLocalGetRootPointer (
62 void)
63 {
64 return (0);
65 }

67 void
68 AcpiNsExecModuleCodeList (
69 void)
70 {
71 }

73 ACPI_STATUS
74 AcpiHwReadPort (
75 ACPI_IO_ADDRESS Address,
76 UINT32 *Value,
77 UINT32 Width)
78 {
79 return (AE_OK);
80 }

82 ACPI_STATUS
83 AcpiHwWritePort (
84 ACPI_IO_ADDRESS Address,
85 UINT32 Value,
86 UINT32 Width)
87 {
88 return (AE_OK);
89 }

91 ACPI_STATUS
92 AcpiDsMethodError (
93 ACPI_STATUS Status,
94 ACPI_WALK_STATE *WalkState)
95 {
96 return (Status);
97 }

99 ACPI_STATUS
100 AcpiDsMethodDataGetValue (
101 UINT8 Type,
102 UINT32 Index,
103 ACPI_WALK_STATE *WalkState,
104 ACPI_OPERAND_OBJECT **DestDesc)
105 {
106 return (AE_OK);
107 }

109 ACPI_STATUS
110 AcpiDsMethodDataGetNode (
111 UINT8 Type,
112 UINT32 Index,
113 ACPI_WALK_STATE *WalkState,
114 ACPI_NAMESPACE_NODE **Node)
115 {
116 return (AE_OK);
117 }

119 ACPI_STATUS
120 AcpiDsStoreObjectToLocal (
121 UINT8 Type,
122 UINT32 Index,
123 ACPI_OPERAND_OBJECT *SrcDesc,
124 ACPI_WALK_STATE *WalkState)
125 {

new/usr/src/common/acpica/compiler/aslstubs.c 3

126 return (AE_OK);
127 }

129 ACPI_STATUS
130 AcpiEvQueueNotifyRequest (
131 ACPI_NAMESPACE_NODE *Node,
132 UINT32 NotifyValue)
133 {
134 return (AE_OK);
135 }

137 BOOLEAN
138 AcpiEvIsNotifyObject (
139 ACPI_NAMESPACE_NODE *Node)
140 {
141 return (FALSE);
142 }

144 #if (!ACPI_REDUCED_HARDWARE)
145 ACPI_STATUS
146 AcpiEvDeleteGpeBlock (
147 ACPI_GPE_BLOCK_INFO *GpeBlock)
148 {
149 return (AE_OK);
150 }

152 ACPI_STATUS
153 AcpiEvAcquireGlobalLock (
154 UINT16 Timeout)
155 {
156 return (AE_OK);
157 }

159 ACPI_STATUS
160 AcpiEvReleaseGlobalLock (
161 void)
162 {
163 return (AE_OK);
164 }
165 #endif /* !ACPI_REDUCED_HARDWARE */

167 ACPI_STATUS
168 AcpiEvInitializeRegion (
169 ACPI_OPERAND_OBJECT *RegionObj,
170 BOOLEAN AcpiNsLocked)
171 {
172 return (AE_OK);
173 }

175 void
176 AcpiExDoDebugObject (
177 ACPI_OPERAND_OBJECT *SourceDesc,
178 UINT32 Level,
179 UINT32 Index)
180 {
181 return;
182 }

184 ACPI_STATUS
185 AcpiExReadDataFromField (
186 ACPI_WALK_STATE *WalkState,
187 ACPI_OPERAND_OBJECT *ObjDesc,
188 ACPI_OPERAND_OBJECT **RetBufferDesc)
189 {
190 return (AE_SUPPORT);
191 }

new/usr/src/common/acpica/compiler/aslstubs.c 4

193 ACPI_STATUS
194 AcpiExWriteDataToField (
195 ACPI_OPERAND_OBJECT *SourceDesc,
196 ACPI_OPERAND_OBJECT *ObjDesc,
197 ACPI_OPERAND_OBJECT **ResultDesc)
198 {
199 return (AE_SUPPORT);
200 }

202 ACPI_STATUS
203 AcpiExLoadTableOp (
204 ACPI_WALK_STATE *WalkState,
205 ACPI_OPERAND_OBJECT **ReturnDesc)
206 {
207 return (AE_SUPPORT);
208 }

210 ACPI_STATUS
211 AcpiExUnloadTable (
212 ACPI_OPERAND_OBJECT *DdbHandle)
213 {
214 return (AE_SUPPORT);
215 }

217 ACPI_STATUS
218 AcpiExLoadOp (
219 ACPI_OPERAND_OBJECT *ObjDesc,
220 ACPI_OPERAND_OBJECT *Target,
221 ACPI_WALK_STATE *WalkState)
222 {
223 return (AE_SUPPORT);
224 }

226 ACPI_STATUS
227 AcpiTbFindTable (
228 char *Signature,
229 char *OemId,
230 char *OemTableId,
231 UINT32 *TableIndex)
232 {
233 return (AE_SUPPORT);
234 }

236 /* OSL interfaces */

238 ACPI_THREAD_ID
239 AcpiOsGetThreadId (
240 void)
241 {
242 return (1);
243 }

245 ACPI_STATUS
246 AcpiOsExecute (
247 ACPI_EXECUTE_TYPE Type,
248 ACPI_OSD_EXEC_CALLBACK Function,
249 void *Context)
250 {
251 return (AE_SUPPORT);
252 }

new/usr/src/common/acpica/compiler/aslsupport.l 1

**
 21957 Thu Dec 26 13:48:35 2013
new/usr/src/common/acpica/compiler/aslsupport.l
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: aslsupport.l - Flex/lex scanner C support routines.
4 * NOTE: Included into aslcompile.l, not compiled by itself.
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

46 /* Configuration */

48 #define ASL_SPACES_PER_TAB 4

50 #define ASL_NORMAL_CHAR 0
51 #define ASL_ESCAPE_SEQUENCE 1
52 #define ASL_OCTAL_CONSTANT 2
53 #define ASL_HEX_CONSTANT 3

56 /* File node - used for "Include" operator file stack */

58 typedef struct asl_file_node
59 {
60 FILE *File;
61 UINT32 CurrentLineNumber;

new/usr/src/common/acpica/compiler/aslsupport.l 2

62 YY_BUFFER_STATE State;
63 char *Filename;
64 struct asl_file_node *Next;

66 } ASL_FILE_NODE;

68 /* File stack for the "Include" operator (NOT #include operator) */

70 ASL_FILE_NODE *Gbl_IncludeFileStack = NULL;

73 /***
74 *
75 * FUNCTION: AslDoLineDirective
76 *
77 * PARAMETERS: None. Uses input() to access current source code line
78 *
79 * RETURN: Updates global line number and filename
80 *
81 * DESCRIPTION: Handle #line directives emitted by the preprocessor.
82 *
83 * The #line directive is emitted by the preprocesser, and is used to
84 * pass through line numbers from the original source code file to the
85 * preprocessor output file (.i). This allows any compiler-generated
86 * error messages to be displayed with the correct line number.
87 *
88 **/

90 static void
91 AslDoLineDirective (
92 void)
93 {
94 int c;
95 char *Token;
96 UINT32 LineNumber;
97 char *Filename;
98 UINT32 i;

101 /* Eat the entire line that contains the #line directive */

103 Gbl_LineBufPtr = Gbl_CurrentLineBuffer;

105 while ((c = input()) != ’\n’ && c != EOF)
106 {
107 *Gbl_LineBufPtr = c;
108 Gbl_LineBufPtr++;
109 }
110 *Gbl_LineBufPtr = 0;

112 /* First argument is the actual line number */

114 Token = strtok (Gbl_CurrentLineBuffer, " ");
115 if (!Token)
116 {
117 goto ResetAndExit;
118 }

120 /* First argument is the line number */

122 LineNumber = (UINT32) UtDoConstant (Token);

124 /* Emit the appropriate number of newlines */

126 Gbl_CurrentColumn = 0;
127 if (LineNumber > Gbl_CurrentLineNumber)

new/usr/src/common/acpica/compiler/aslsupport.l 3

128 {
129 for (i = 0; i < (LineNumber - Gbl_CurrentLineNumber); i++)
130 {
131 FlWriteFile (ASL_FILE_SOURCE_OUTPUT, "\n", 1);
132 Gbl_CurrentColumn++;
133 }
134 }

136 FlSetLineNumber (LineNumber);

138 /* Second argument is the optional filename (in double quotes) */

140 Token = strtok (NULL, " \"");
141 if (Token)
142 {
143 Filename = ACPI_ALLOCATE_ZEROED (strlen (Token) + 1);
144 strcpy (Filename, Token);
145 FlSetFilename (Filename);
146 }

148 /* Third argument is not supported at this time */

150 ResetAndExit:

152 /* Reset globals for a new line */

154 Gbl_CurrentLineOffset += Gbl_CurrentColumn;
155 Gbl_CurrentColumn = 0;
156 Gbl_LineBufPtr = Gbl_CurrentLineBuffer;
157 }

160 /***
161 *
162 * FUNCTION: AslPopInputFileStack
163 *
164 * PARAMETERS: None
165 *
166 * RETURN: 0 if a node was popped, -1 otherwise
167 *
168 * DESCRIPTION: Pop the top of the input file stack and point the parser to
169 * the saved parse buffer contained in the fnode. Also, set the
170 * global line counters to the saved values. This function is
171 * called when an include file reaches EOF.
172 *
173 **/

175 int
176 AslPopInputFileStack (
177 void)
178 {
179 ASL_FILE_NODE *Fnode;

182 Fnode = Gbl_IncludeFileStack;
183 DbgPrint (ASL_PARSE_OUTPUT, "\nPop InputFile Stack, Fnode %p\n\n", Fnode);

185 if (!Fnode)
186 {
187 return (-1);
188 }

190 /* Close the current include file */

192 fclose (yyin);

new/usr/src/common/acpica/compiler/aslsupport.l 4

194 /* Update the top-of-stack */

196 Gbl_IncludeFileStack = Fnode->Next;

198 /* Reset global line counter and filename */

200 Gbl_Files[ASL_FILE_INPUT].Filename = Fnode->Filename;
201 Gbl_CurrentLineNumber = Fnode->CurrentLineNumber;

203 /* Point the parser to the popped file */

205 yy_delete_buffer (YY_CURRENT_BUFFER);
206 yy_switch_to_buffer (Fnode->State);

208 /* All done with this node */

210 ACPI_FREE (Fnode);
211 return (0);
212 }

215 /***
216 *
217 * FUNCTION: AslPushInputFileStack
218 *
219 * PARAMETERS: InputFile - Open file pointer
220 * Filename - Name of the file
221 *
222 * RETURN: None
223 *
224 * DESCRIPTION: Push the InputFile onto the file stack, and point the parser
225 * to this file. Called when an include file is successfully
226 * opened.
227 *
228 **/

230 void
231 AslPushInputFileStack (
232 FILE *InputFile,
233 char *Filename)
234 {
235 ASL_FILE_NODE *Fnode;
236 YY_BUFFER_STATE State;

239 /* Save the current state in an Fnode */

241 Fnode = UtLocalCalloc (sizeof (ASL_FILE_NODE));

243 Fnode->File = yyin;
244 Fnode->Next = Gbl_IncludeFileStack;
245 Fnode->State = YY_CURRENT_BUFFER;
246 Fnode->CurrentLineNumber = Gbl_CurrentLineNumber;
247 Fnode->Filename = Gbl_Files[ASL_FILE_INPUT].Filename;

249 /* Push it on the stack */

251 Gbl_IncludeFileStack = Fnode;

253 /* Point the parser to this file */

255 State = yy_create_buffer (InputFile, YY_BUF_SIZE);
256 yy_switch_to_buffer (State);

258 DbgPrint (ASL_PARSE_OUTPUT, "\nPush InputFile Stack, returning %p\n\n", Inpu

new/usr/src/common/acpica/compiler/aslsupport.l 5

260 /* Reset the global line count and filename */

262 Gbl_Files[ASL_FILE_INPUT].Filename = Filename;
263 Gbl_CurrentLineNumber = 1;
264 yyin = InputFile;
265 }

268 /***
269 *
270 * FUNCTION: AslResetCurrentLineBuffer
271 *
272 * PARAMETERS: None
273 *
274 * RETURN: None
275 *
276 * DESCRIPTION: Reset the Line Buffer to zero, increment global line numbers.
277 *
278 **/

280 void
281 AslResetCurrentLineBuffer (
282 void)
283 {

285 if (Gbl_Files[ASL_FILE_SOURCE_OUTPUT].Handle)
286 {
287 FlWriteFile (ASL_FILE_SOURCE_OUTPUT, Gbl_CurrentLineBuffer,
288 Gbl_LineBufPtr - Gbl_CurrentLineBuffer);
289 }

291 Gbl_CurrentLineOffset += Gbl_CurrentColumn;
292 Gbl_CurrentColumn = 0;

294 Gbl_CurrentLineNumber++;
295 Gbl_LogicalLineNumber++;
296 Gbl_LineBufPtr = Gbl_CurrentLineBuffer;
297 }

300 /***
301 *
302 * FUNCTION: AslInsertLineBuffer
303 *
304 * PARAMETERS: SourceChar - One char from the input ASL source file
305 *
306 * RETURN: None
307 *
308 * DESCRIPTION: Put one character of the source file into the temp line buffer
309 *
310 **/

312 void
313 AslInsertLineBuffer (
314 int SourceChar)
315 {
316 UINT32 i;
317 UINT32 Count = 1;

320 if (SourceChar == EOF)
321 {
322 return;
323 }

325 Gbl_InputByteCount++;

new/usr/src/common/acpica/compiler/aslsupport.l 6

327 /* Handle tabs. Convert to spaces */

329 if (SourceChar == ’\t’)
330 {
331 SourceChar = ’ ’;
332 Count = ASL_SPACES_PER_TAB -
333 (Gbl_CurrentColumn & (ASL_SPACES_PER_TAB-1));
334 }

336 for (i = 0; i < Count; i++)
337 {
338 Gbl_CurrentColumn++;

340 /* Insert the character into the line buffer */

342 *Gbl_LineBufPtr = (UINT8) SourceChar;
343 Gbl_LineBufPtr++;

345 if (Gbl_LineBufPtr > (Gbl_CurrentLineBuffer + (Gbl_LineBufferSize - 1)))
346 {
347 #if 0
348 /*
349 * Warning if we have split a long source line.
350 * <Probably overkill>
351 */
352 sprintf (MsgBuffer, "Max %u", Gbl_LineBufferSize);
353 AslCommonError (ASL_WARNING, ASL_MSG_LONG_LINE,
354 Gbl_CurrentLineNumber, Gbl_LogicalLineNumber,
355 Gbl_CurrentLineOffset, Gbl_CurrentColumn,
356 Gbl_Files[ASL_FILE_INPUT].Filename, MsgBuffer);
357 #endif

359 AslResetCurrentLineBuffer ();
360 }
361 else if (SourceChar == ’\n’)
362 {
363 /* End of line */

365 AslResetCurrentLineBuffer ();
366 }
367 }
368 }

371 /***
372 *
373 * FUNCTION: count
374 *
375 * PARAMETERS: yytext - Contains the matched keyword.
376 * Type - Keyword/Character type:
377 * 0 = anything except a keyword
378 * 1 = pseudo-keywords
379 * 2 = non-executable ASL keywords
380 * 3 = executable ASL keywords
381 *
382 * RETURN: None
383 *
384 * DESCRIPTION: Count keywords and put them into the line buffer
385 *
386 **/

388 static void
389 count (
390 int Type)
391 {

new/usr/src/common/acpica/compiler/aslsupport.l 7

392 int i;

395 switch (Type)
396 {
397 case 2:

399 TotalKeywords++;
400 TotalNamedObjects++;
401 break;

403 case 3:

405 TotalKeywords++;
406 TotalExecutableOpcodes++;
407 break;

409 default:

411 break;
412 }

414 for (i = 0; (yytext[i] != 0) && (yytext[i] != EOF); i++)
415 {
416 AslInsertLineBuffer (yytext[i]);
417 *Gbl_LineBufPtr = 0;
418 }
419 }

422 /***
423 *
424 * FUNCTION: AslDoComment
425 *
426 * PARAMETERS: none
427 *
428 * RETURN: none
429 *
430 * DESCRIPTION: Process a standard comment.
431 *
432 **/

434 static char
435 AslDoComment (
436 void)
437 {
438 int c;
439 int c1 = 0;

442 AslInsertLineBuffer (’/’);
443 AslInsertLineBuffer (’*’);

445 loop:

447 /* Eat chars until end-of-comment */

449 while ((c = input()) != ’*’ && c != EOF)
450 {
451 AslInsertLineBuffer (c);
452 c1 = c;
453 }

455 if (c == EOF)
456 {
457 goto EarlyEOF;

new/usr/src/common/acpica/compiler/aslsupport.l 8

458 }

460 /*
461 * Check for nested comment -- can help catch cases where a previous
462 * comment was accidently left unterminated
463 */
464 if ((c1 == ’/’) && (c == ’*’))
465 {
466 AslCommonError (ASL_WARNING, ASL_MSG_NESTED_COMMENT,
467 Gbl_CurrentLineNumber, Gbl_LogicalLineNumber,
468 Gbl_InputByteCount, Gbl_CurrentColumn,
469 Gbl_Files[ASL_FILE_INPUT].Filename, NULL);
470 }

472 /* Comment is closed only if the NEXT character is a slash */

474 AslInsertLineBuffer (c);

476 if ((c1 = input()) != ’/’ && c1 != EOF)
477 {
478 unput(c1);
479 goto loop;
480 }

482 if (c1 == EOF)
483 {
484 goto EarlyEOF;
485 }

487 AslInsertLineBuffer (c1);
488 return (TRUE);

491 EarlyEOF:
492 /*
493 * Premature End-Of-File
494 */
495 AslCommonError (ASL_ERROR, ASL_MSG_EARLY_EOF,
496 Gbl_CurrentLineNumber, Gbl_LogicalLineNumber,
497 Gbl_CurrentLineOffset, Gbl_CurrentColumn,
498 Gbl_Files[ASL_FILE_INPUT].Filename, NULL);
499 return (FALSE);
500 }

503 /***
504 *
505 * FUNCTION: AslDoCommentType2
506 *
507 * PARAMETERS: none
508 *
509 * RETURN: none
510 *
511 * DESCRIPTION: Process a new "//" comment.
512 *
513 **/

515 static char
516 AslDoCommentType2 (
517 void)
518 {
519 int c;

522 AslInsertLineBuffer (’/’);
523 AslInsertLineBuffer (’/’);

new/usr/src/common/acpica/compiler/aslsupport.l 9

525 while ((c = input()) != ’\n’ && c != EOF)
526 {
527 AslInsertLineBuffer (c);
528 }

530 if (c == EOF)
531 {
532 /* End of file is OK, change to newline. Let parser detect EOF later */

534 c = ’\n’;
535 }

537 AslInsertLineBuffer (c);
538 return (TRUE);
539 }

542 /***
543 *
544 * FUNCTION: AslDoStringLiteral
545 *
546 * PARAMETERS: none
547 *
548 * RETURN: none
549 *
550 * DESCRIPTION: Process a string literal (surrounded by quotes)
551 *
552 **/

554 static char
555 AslDoStringLiteral (
556 void)
557 {
558 char *StringBuffer = MsgBuffer;
559 char *EndBuffer = MsgBuffer + ASL_MSG_BUFFER_SIZE;
560 char *CleanString;
561 int StringChar;
562 UINT32 State = ASL_NORMAL_CHAR;
563 UINT32 i = 0;
564 UINT8 Digit;
565 char ConvertBuffer[4];

568 /*
569 * Eat chars until end-of-literal.
570 * NOTE: Put back the original surrounding quotes into the
571 * source line buffer.
572 */
573 AslInsertLineBuffer (’\"’);
574 while ((StringChar = input()) != EOF)
575 {
576 AslInsertLineBuffer (StringChar);

578 DoCharacter:
579 switch (State)
580 {
581 case ASL_NORMAL_CHAR:

583 switch (StringChar)
584 {
585 case ’\\’:
586 /*
587 * Special handling for backslash-escape sequence. We will
588 * toss the backslash and translate the escape char(s).
589 */

new/usr/src/common/acpica/compiler/aslsupport.l 10

590 State = ASL_ESCAPE_SEQUENCE;
591 continue;

593 case ’\"’:

595 /* String terminator */

597 goto CompletedString;

599 default:

601 break;
602 }
603 break;

606 case ASL_ESCAPE_SEQUENCE:

608 State = ASL_NORMAL_CHAR;
609 switch (StringChar)
610 {
611 case ’a’:

613 StringChar = 0x07; /* BELL */
614 break;

616 case ’b’:

618 StringChar = 0x08; /* BACKSPACE */
619 break;

621 case ’f’:

623 StringChar = 0x0C; /* FORMFEED */
624 break;

626 case ’n’:

628 StringChar = 0x0A; /* LINEFEED */
629 break;

631 case ’r’:

633 StringChar = 0x0D; /* CARRIAGE RETURN*/
634 break;

636 case ’t’:

638 StringChar = 0x09; /* HORIZONTAL TAB */
639 break;

641 case ’v’:

643 StringChar = 0x0B; /* VERTICAL TAB */
644 break;

646 case ’x’:

648 State = ASL_HEX_CONSTANT;
649 i = 0;
650 continue;

652 case ’\’’: /* Single Quote */
653 case ’\"’: /* Double Quote */
654 case ’\\’: /* Backslash */

new/usr/src/common/acpica/compiler/aslsupport.l 11

656 break;

658 default:

660 /* Check for an octal digit (0-7) */

662 if (ACPI_IS_OCTAL_DIGIT (StringChar))
663 {
664 State = ASL_OCTAL_CONSTANT;
665 ConvertBuffer[0] = StringChar;
666 i = 1;
667 continue;
668 }

670 /* Unknown escape sequence issue warning, but use the character

672 AslCommonError (ASL_WARNING, ASL_MSG_INVALID_ESCAPE,
673 Gbl_CurrentLineNumber, Gbl_LogicalLineNumber,
674 Gbl_CurrentLineOffset, Gbl_CurrentColumn,
675 Gbl_Files[ASL_FILE_INPUT].Filename, NULL);
676 break;
677 }
678 break;

681 case ASL_OCTAL_CONSTANT:

683 /* Up to three octal digits allowed */

685 if (!ACPI_IS_OCTAL_DIGIT (StringChar) ||
686 (i > 2))
687 {
688 /*
689 * Reached end of the constant. Convert the assembled ASCII
690 * string and resume processing of the next character
691 */
692 ConvertBuffer[i] = 0;
693 Digit = (UINT8) ACPI_STRTOUL (ConvertBuffer, NULL, 8);

695 /* Check for NULL or non-ascii character (ignore if so) */

697 if ((Digit == 0) || (Digit > ACPI_ASCII_MAX))
698 {
699 AslCommonError (ASL_WARNING, ASL_MSG_INVALID_STRING,
700 Gbl_CurrentLineNumber, Gbl_LogicalLineNumber
701 Gbl_CurrentLineOffset, Gbl_CurrentColumn,
702 Gbl_Files[ASL_FILE_INPUT].Filename, NULL);
703 }
704 else
705 {
706 *StringBuffer = (char) Digit;
707 StringBuffer++;
708 if (StringBuffer >= EndBuffer)
709 {
710 goto BufferOverflow;
711 }
712 }

714 State = ASL_NORMAL_CHAR;
715 goto DoCharacter;
716 break;
717 }

719 /* Append another digit of the constant */

721 ConvertBuffer[i] = StringChar;

new/usr/src/common/acpica/compiler/aslsupport.l 12

722 i++;
723 continue;

725 case ASL_HEX_CONSTANT:

727 /* Up to two hex digits allowed */

729 if (!ACPI_IS_XDIGIT (StringChar) ||
730 (i > 1))
731 {
732 /*
733 * Reached end of the constant. Convert the assembled ASCII
734 * string and resume processing of the next character
735 */
736 ConvertBuffer[i] = 0;
737 Digit = (UINT8) ACPI_STRTOUL (ConvertBuffer, NULL, 16);

739 /* Check for NULL or non-ascii character (ignore if so) */

741 if ((Digit == 0) || (Digit > ACPI_ASCII_MAX))
742 {
743 AslCommonError (ASL_WARNING, ASL_MSG_INVALID_STRING,
744 Gbl_CurrentLineNumber, Gbl_LogicalLineNumber
745 Gbl_CurrentLineOffset, Gbl_CurrentColumn,
746 Gbl_Files[ASL_FILE_INPUT].Filename, NULL);
747 }
748 else
749 {
750 *StringBuffer = (char) Digit;
751 StringBuffer++;
752 if (StringBuffer >= EndBuffer)
753 {
754 goto BufferOverflow;
755 }
756 }

758 State = ASL_NORMAL_CHAR;
759 goto DoCharacter;
760 break;
761 }

763 /* Append another digit of the constant */

765 ConvertBuffer[i] = StringChar;
766 i++;
767 continue;

769 default:

771 break;
772 }

774 /* Save the finished character */

776 *StringBuffer = StringChar;
777 StringBuffer++;
778 if (StringBuffer >= EndBuffer)
779 {
780 goto BufferOverflow;
781 }
782 }

784 /*
785 * Premature End-Of-File
786 */
787 AslCommonError (ASL_ERROR, ASL_MSG_EARLY_EOF,

new/usr/src/common/acpica/compiler/aslsupport.l 13

788 Gbl_CurrentLineNumber, Gbl_LogicalLineNumber,
789 Gbl_CurrentLineOffset, Gbl_CurrentColumn,
790 Gbl_Files[ASL_FILE_INPUT].Filename, NULL);
791 return (FALSE);

794 CompletedString:
795 /*
796 * Null terminate the input string and copy string to a new buffer
797 */
798 *StringBuffer = 0;

800 CleanString = UtGetStringBuffer (strlen (MsgBuffer) + 1);
801 if (!CleanString)
802 {
803 AslCommonError (ASL_ERROR, ASL_MSG_MEMORY_ALLOCATION,
804 Gbl_CurrentLineNumber, Gbl_LogicalLineNumber,
805 Gbl_CurrentLineOffset, Gbl_CurrentColumn,
806 Gbl_Files[ASL_FILE_INPUT].Filename, NULL);
807 return (FALSE);
808 }

810 ACPI_STRCPY (CleanString, MsgBuffer);
811 AslCompilerlval.s = CleanString;
812 return (TRUE);

815 BufferOverflow:

817 /* Literal was too long */

819 AslCommonError (ASL_ERROR, ASL_MSG_STRING_LENGTH,
820 Gbl_CurrentLineNumber, Gbl_LogicalLineNumber,
821 Gbl_CurrentLineOffset, Gbl_CurrentColumn,
822 Gbl_Files[ASL_FILE_INPUT].Filename, "Max length 4096");
823 return (FALSE);
824 }

new/usr/src/common/acpica/compiler/asltransform.c 1

**
 23962 Thu Dec 26 13:48:35 2013
new/usr/src/common/acpica/compiler/asltransform.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: asltransform - Parse tree transforms
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"

48 #define _COMPONENT ACPI_COMPILER
49 ACPI_MODULE_NAME ("asltransform")

51 /* Local prototypes */

53 static void
54 TrTransformSubtree (
55 ACPI_PARSE_OBJECT *Op);

57 static char *
58 TrAmlGetNextTempName (
59 ACPI_PARSE_OBJECT *Op,
60 UINT8 *TempCount);

new/usr/src/common/acpica/compiler/asltransform.c 2

62 static void
63 TrAmlInitLineNumbers (
64 ACPI_PARSE_OBJECT *Op,
65 ACPI_PARSE_OBJECT *Neighbor);

67 static void
68 TrAmlInitNode (
69 ACPI_PARSE_OBJECT *Op,
70 UINT16 ParseOpcode);

72 static void
73 TrAmlSetSubtreeParent (
74 ACPI_PARSE_OBJECT *Op,
75 ACPI_PARSE_OBJECT *Parent);

77 static void
78 TrAmlInsertPeer (
79 ACPI_PARSE_OBJECT *Op,
80 ACPI_PARSE_OBJECT *NewPeer);

82 static void
83 TrDoDefinitionBlock (
84 ACPI_PARSE_OBJECT *Op);

86 static void
87 TrDoSwitch (
88 ACPI_PARSE_OBJECT *StartNode);

91 /***
92 *
93 * FUNCTION: TrAmlGetNextTempName
94 *
95 * PARAMETERS: Op - Current parse op
96 * TempCount - Current temporary counter. Was originally
97 * per-module; Currently per method, could be
98 * expanded to per-scope.
99 *
100 * RETURN: A pointer to name (allocated here).
101 *
102 * DESCRIPTION: Generate an ACPI name of the form _T_x. These names are
103 * reserved for use by the ASL compiler. (_T_0 through _T_Z)
104 *
105 **/

107 static char *
108 TrAmlGetNextTempName (
109 ACPI_PARSE_OBJECT *Op,
110 UINT8 *TempCount)
111 {
112 char *TempName;

115 if (*TempCount >= (10+26)) /* 0-35 valid: 0-9 and A-Z for TempName[3] */
116 {
117 /* Too many temps */

119 AslError (ASL_ERROR, ASL_MSG_TOO_MANY_TEMPS, Op, NULL);
120 return (NULL);
121 }

123 TempName = UtLocalCalloc (5);

125 if (*TempCount < 10) /* 0-9 */
126 {

new/usr/src/common/acpica/compiler/asltransform.c 3

127 TempName[3] = (char) (*TempCount + ’0’);
128 }
129 else /* 10-35: A-Z */
130 {
131 TempName[3] = (char) (*TempCount + (’A’ - 10));
132 }
133 (*TempCount)++;

135 /* First three characters are always "_T_" */

137 TempName[0] = ’_’;
138 TempName[1] = ’T’;
139 TempName[2] = ’_’;

141 return (TempName);
142 }

145 /***
146 *
147 * FUNCTION: TrAmlInitLineNumbers
148 *
149 * PARAMETERS: Op - Op to be initialized
150 * Neighbor - Op used for initialization values
151 *
152 * RETURN: None
153 *
154 * DESCRIPTION: Initialized the various line numbers for a parse node.
155 *
156 **/

158 static void
159 TrAmlInitLineNumbers (
160 ACPI_PARSE_OBJECT *Op,
161 ACPI_PARSE_OBJECT *Neighbor)
162 {

164 Op->Asl.EndLine = Neighbor->Asl.EndLine;
165 Op->Asl.EndLogicalLine = Neighbor->Asl.EndLogicalLine;
166 Op->Asl.LineNumber = Neighbor->Asl.LineNumber;
167 Op->Asl.LogicalByteOffset = Neighbor->Asl.LogicalByteOffset;
168 Op->Asl.LogicalLineNumber = Neighbor->Asl.LogicalLineNumber;
169 }

172 /***
173 *
174 * FUNCTION: TrAmlInitNode
175 *
176 * PARAMETERS: Op - Op to be initialized
177 * ParseOpcode - Opcode for this node
178 *
179 * RETURN: None
180 *
181 * DESCRIPTION: Initialize a node with the parse opcode and opcode name.
182 *
183 **/

185 static void
186 TrAmlInitNode (
187 ACPI_PARSE_OBJECT *Op,
188 UINT16 ParseOpcode)
189 {

191 Op->Asl.ParseOpcode = ParseOpcode;
192 UtSetParseOpName (Op);

new/usr/src/common/acpica/compiler/asltransform.c 4

193 }

196 /***
197 *
198 * FUNCTION: TrAmlSetSubtreeParent
199 *
200 * PARAMETERS: Op - First node in a list of peer nodes
201 * Parent - Parent of the subtree
202 *
203 * RETURN: None
204 *
205 * DESCRIPTION: Set the parent for all peer nodes in a subtree
206 *
207 **/

209 static void
210 TrAmlSetSubtreeParent (
211 ACPI_PARSE_OBJECT *Op,
212 ACPI_PARSE_OBJECT *Parent)
213 {
214 ACPI_PARSE_OBJECT *Next;

217 Next = Op;
218 while (Next)
219 {
220 Next->Asl.Parent = Parent;
221 Next = Next->Asl.Next;
222 }
223 }

226 /***
227 *
228 * FUNCTION: TrAmlInsertPeer
229 *
230 * PARAMETERS: Op - First node in a list of peer nodes
231 * NewPeer - Peer node to insert
232 *
233 * RETURN: None
234 *
235 * DESCRIPTION: Insert a new peer node into a list of peers.
236 *
237 **/

239 static void
240 TrAmlInsertPeer (
241 ACPI_PARSE_OBJECT *Op,
242 ACPI_PARSE_OBJECT *NewPeer)
243 {

245 NewPeer->Asl.Next = Op->Asl.Next;
246 Op->Asl.Next = NewPeer;
247 }

250 /***
251 *
252 * FUNCTION: TrAmlTransformWalk
253 *
254 * PARAMETERS: ASL_WALK_CALLBACK
255 *
256 * RETURN: None
257 *
258 * DESCRIPTION: Parse tree walk to generate both the AML opcodes and the AML

new/usr/src/common/acpica/compiler/asltransform.c 5

259 * operands.
260 *
261 **/

263 ACPI_STATUS
264 TrAmlTransformWalk (
265 ACPI_PARSE_OBJECT *Op,
266 UINT32 Level,
267 void *Context)
268 {

270 TrTransformSubtree (Op);
271 return (AE_OK);
272 }

275 /***
276 *
277 * FUNCTION: TrTransformSubtree
278 *
279 * PARAMETERS: Op - The parent parse node
280 *
281 * RETURN: None
282 *
283 * DESCRIPTION: Prepare nodes to be output as AML data and operands. The more
284 * complex AML opcodes require processing of the child nodes
285 * (arguments/operands).
286 *
287 **/

289 static void
290 TrTransformSubtree (
291 ACPI_PARSE_OBJECT *Op)
292 {

294 if (Op->Asl.AmlOpcode == AML_RAW_DATA_BYTE)
295 {
296 return;
297 }

299 switch (Op->Asl.ParseOpcode)
300 {
301 case PARSEOP_DEFINITIONBLOCK:

303 TrDoDefinitionBlock (Op);
304 break;

306 case PARSEOP_SWITCH:

308 TrDoSwitch (Op);
309 break;

311 case PARSEOP_METHOD:
312 /*
313 * TBD: Zero the tempname (_T_x) count. Probably shouldn’t be a global,
314 * however
315 */
316 Gbl_TempCount = 0;
317 break;

319 default:

321 /* Nothing to do here for other opcodes */

323 break;
324 }

new/usr/src/common/acpica/compiler/asltransform.c 6

325 }

328 /***
329 *
330 * FUNCTION: TrDoDefinitionBlock
331 *
332 * PARAMETERS: Op - Parse node
333 *
334 * RETURN: None
335 *
336 * DESCRIPTION: Find the end of the definition block and set a global to this
337 * node. It is used by the compiler to insert compiler-generated
338 * names at the root level of the namespace.
339 *
340 **/

342 static void
343 TrDoDefinitionBlock (
344 ACPI_PARSE_OBJECT *Op)
345 {
346 ACPI_PARSE_OBJECT *Next;
347 UINT32 i;

350 Next = Op->Asl.Child;
351 for (i = 0; i < 5; i++)
352 {
353 Next = Next->Asl.Next;
354 if (i == 0)
355 {
356 /*
357 * This is the table signature. Only the DSDT can be assumed
358 * to be at the root of the namespace; Therefore, namepath
359 * optimization can only be performed on the DSDT.
360 */
361 if (!ACPI_COMPARE_NAME (Next->Asl.Value.String, ACPI_SIG_DSDT))
362 {
363 Gbl_ReferenceOptimizationFlag = FALSE;
364 }
365 }
366 }

368 Gbl_FirstLevelInsertionNode = Next;
369 }

372 /***
373 *
374 * FUNCTION: TrDoSwitch
375 *
376 * PARAMETERS: StartNode - Parse node for SWITCH
377 *
378 * RETURN: None
379 *
380 *
381 * DESCRIPTION: Translate ASL SWITCH statement to if/else pairs. There is
382 * no actual AML opcode for SWITCH -- it must be simulated.
383 *
384 **/

386 static void
387 TrDoSwitch (
388 ACPI_PARSE_OBJECT *StartNode)
389 {
390 ACPI_PARSE_OBJECT *Next;

new/usr/src/common/acpica/compiler/asltransform.c 7

391 ACPI_PARSE_OBJECT *CaseOp = NULL;
392 ACPI_PARSE_OBJECT *CaseBlock = NULL;
393 ACPI_PARSE_OBJECT *DefaultOp = NULL;
394 ACPI_PARSE_OBJECT *CurrentParentNode;
395 ACPI_PARSE_OBJECT *Conditional = NULL;
396 ACPI_PARSE_OBJECT *Predicate;
397 ACPI_PARSE_OBJECT *Peer;
398 ACPI_PARSE_OBJECT *NewOp;
399 ACPI_PARSE_OBJECT *NewOp2;
400 ACPI_PARSE_OBJECT *MethodOp;
401 ACPI_PARSE_OBJECT *StoreOp;
402 ACPI_PARSE_OBJECT *BreakOp;
403 ACPI_PARSE_OBJECT *BufferOp;
404 char *PredicateValueName;
405 UINT16 Index;
406 UINT32 Btype;

409 /* Start node is the Switch() node */

411 CurrentParentNode = StartNode;

413 /* Create a new temp name of the form _T_x */

415 PredicateValueName = TrAmlGetNextTempName (StartNode, &Gbl_TempCount);
416 if (!PredicateValueName)
417 {
418 return;
419 }

421 /* First child is the Switch() predicate */

423 Next = StartNode->Asl.Child;

425 /*
426 * Examine the return type of the Switch Value -
427 * must be Integer/Buffer/String
428 */
429 Index = (UINT16) (Next->Asl.ParseOpcode - ASL_PARSE_OPCODE_BASE);
430 Btype = AslKeywordMapping[Index].AcpiBtype;
431 if ((Btype != ACPI_BTYPE_INTEGER) &&
432 (Btype != ACPI_BTYPE_STRING) &&
433 (Btype != ACPI_BTYPE_BUFFER))
434 {
435 AslError (ASL_WARNING, ASL_MSG_SWITCH_TYPE, Next, NULL);
436 Btype = ACPI_BTYPE_INTEGER;
437 }

439 /* CASE statements start at next child */

441 Peer = Next->Asl.Next;
442 while (Peer)
443 {
444 Next = Peer;
445 Peer = Next->Asl.Next;

447 if (Next->Asl.ParseOpcode == PARSEOP_CASE)
448 {
449 if (CaseOp)
450 {
451 /* Add an ELSE to complete the previous CASE */

453 if (!Conditional)
454 {
455 return;
456 }

new/usr/src/common/acpica/compiler/asltransform.c 8

457 NewOp = TrCreateLeafNode (PARSEOP_ELSE);
458 NewOp->Asl.Parent = Conditional->Asl.Parent;
459 TrAmlInitLineNumbers (NewOp, NewOp->Asl.Parent);

461 /* Link ELSE node as a peer to the previous IF */

463 TrAmlInsertPeer (Conditional, NewOp);
464 CurrentParentNode = NewOp;
465 }

467 CaseOp = Next;
468 Conditional = CaseOp;
469 CaseBlock = CaseOp->Asl.Child->Asl.Next;
470 Conditional->Asl.Child->Asl.Next = NULL;
471 Predicate = CaseOp->Asl.Child;

473 if ((Predicate->Asl.ParseOpcode == PARSEOP_PACKAGE) ||
474 (Predicate->Asl.ParseOpcode == PARSEOP_VAR_PACKAGE))
475 {
476 /*
477 * Convert the package declaration to this form:
478 *
479 * If (LNotEqual (Match (Package(<size>){<data>},
480 * MEQ, _T_x, MTR, Zero, Zero), Ones))
481 */
482 NewOp2 = TrCreateLeafNode (PARSEOP_MATCHTYPE_MEQ);
483 Predicate->Asl.Next = NewOp2;
484 TrAmlInitLineNumbers (NewOp2, Conditional);

486 NewOp = NewOp2;
487 NewOp2 = TrCreateValuedLeafNode (PARSEOP_NAMESTRING
488 (UINT64) ACPI_TO_INTEGER (PredicateValue
489 NewOp->Asl.Next = NewOp2;
490 TrAmlInitLineNumbers (NewOp2, Predicate);

492 NewOp = NewOp2;
493 NewOp2 = TrCreateLeafNode (PARSEOP_MATCHTYPE_MTR);
494 NewOp->Asl.Next = NewOp2;
495 TrAmlInitLineNumbers (NewOp2, Predicate);

497 NewOp = NewOp2;
498 NewOp2 = TrCreateLeafNode (PARSEOP_ZERO);
499 NewOp->Asl.Next = NewOp2;
500 TrAmlInitLineNumbers (NewOp2, Predicate);

502 NewOp = NewOp2;
503 NewOp2 = TrCreateLeafNode (PARSEOP_ZERO);
504 NewOp->Asl.Next = NewOp2;
505 TrAmlInitLineNumbers (NewOp2, Predicate);

507 NewOp2 = TrCreateLeafNode (PARSEOP_MATCH);
508 NewOp2->Asl.Child = Predicate; /* PARSEOP_PACKAGE */
509 TrAmlInitLineNumbers (NewOp2, Conditional);
510 TrAmlSetSubtreeParent (Predicate, NewOp2);

512 NewOp = NewOp2;
513 NewOp2 = TrCreateLeafNode (PARSEOP_ONES);
514 NewOp->Asl.Next = NewOp2;
515 TrAmlInitLineNumbers (NewOp2, Conditional);

517 NewOp2 = TrCreateLeafNode (PARSEOP_LEQUAL);
518 NewOp2->Asl.Child = NewOp;
519 NewOp->Asl.Parent = NewOp2;
520 TrAmlInitLineNumbers (NewOp2, Conditional);
521 TrAmlSetSubtreeParent (NewOp, NewOp2);

new/usr/src/common/acpica/compiler/asltransform.c 9

523 NewOp = NewOp2;
524 NewOp2 = TrCreateLeafNode (PARSEOP_LNOT);
525 NewOp2->Asl.Child = NewOp;
526 NewOp2->Asl.Parent = Conditional;
527 NewOp->Asl.Parent = NewOp2;
528 TrAmlInitLineNumbers (NewOp2, Conditional);

530 Conditional->Asl.Child = NewOp2;
531 NewOp2->Asl.Next = CaseBlock;
532 }
533 else
534 {
535 /*
536 * Integer and Buffer case.
537 *
538 * Change CaseOp() to: If (LEqual (SwitchValue, CaseValue)) {..
539 * Note: SwitchValue is first to allow the CaseValue to be impli
540 * converted to the type of SwitchValue if necessary.
541 *
542 * CaseOp->Child is the case value
543 * CaseOp->Child->Peer is the beginning of the case block
544 */
545 NewOp = TrCreateValuedLeafNode (PARSEOP_NAMESTRING,
546 (UINT64) ACPI_TO_INTEGER (PredicateValueName));
547 NewOp->Asl.Next = Predicate;
548 TrAmlInitLineNumbers (NewOp, Predicate);

550 NewOp2 = TrCreateLeafNode (PARSEOP_LEQUAL);
551 NewOp2->Asl.Parent = Conditional;
552 NewOp2->Asl.Child = NewOp;
553 TrAmlInitLineNumbers (NewOp2, Conditional);

555 TrAmlSetSubtreeParent (NewOp, NewOp2);

557 Predicate = NewOp2;
558 Predicate->Asl.Next = CaseBlock;

560 TrAmlSetSubtreeParent (Predicate, Conditional);
561 Conditional->Asl.Child = Predicate;
562 }

564 /* Reinitialize the CASE node to an IF node */

566 TrAmlInitNode (Conditional, PARSEOP_IF);

568 /*
569 * The first CASE(IF) is not nested under an ELSE.
570 * All other CASEs are children of a parent ELSE.
571 */
572 if (CurrentParentNode == StartNode)
573 {
574 Conditional->Asl.Next = NULL;
575 }
576 else
577 {
578 /*
579 * The IF is a child of previous IF/ELSE. It
580 * is therefore without peer.
581 */
582 CurrentParentNode->Asl.Child = Conditional;
583 Conditional->Asl.Parent = CurrentParentNode;
584 Conditional->Asl.Next = NULL;
585 }
586 }
587 else if (Next->Asl.ParseOpcode == PARSEOP_DEFAULT)
588 {

new/usr/src/common/acpica/compiler/asltransform.c 10

589 if (DefaultOp)
590 {
591 /*
592 * More than one Default
593 * (Parser does not catch this, must check here)
594 */
595 AslError (ASL_ERROR, ASL_MSG_MULTIPLE_DEFAULT, Next, NULL);
596 }
597 else
598 {
599 /* Save the DEFAULT node for later, after CASEs */

601 DefaultOp = Next;
602 }
603 }
604 else
605 {
606 /* Unknown peer opcode */

608 AcpiOsPrintf ("Unknown parse opcode for switch statement: %s (%u)\n"
609 Next->Asl.ParseOpName, Next->Asl.ParseOpcode);
610 }
611 }

613 /* Add the default case at the end of the if/else construct */

615 if (DefaultOp)
616 {
617 /* If no CASE statements, this is an error - see below */

619 if (CaseOp)
620 {
621 /* Convert the DEFAULT node to an ELSE */

623 if (!Conditional)
624 {
625 return;
626 }

628 TrAmlInitNode (DefaultOp, PARSEOP_ELSE);
629 DefaultOp->Asl.Parent = Conditional->Asl.Parent;

631 /* Link ELSE node as a peer to the previous IF */

633 TrAmlInsertPeer (Conditional, DefaultOp);
634 }
635 }

637 if (!CaseOp)
638 {
639 AslError (ASL_ERROR, ASL_MSG_NO_CASES, StartNode, NULL);
640 }

643 /*
644 * Create a Name(_T_x, ...) statement. This statement must appear at the
645 * method level, in case a loop surrounds the switch statement and could
646 * cause the name to be created twice (error).
647 */

649 /* Create the Name node */

651 Predicate = StartNode->Asl.Child;
652 NewOp = TrCreateLeafNode (PARSEOP_NAME);
653 TrAmlInitLineNumbers (NewOp, StartNode);

new/usr/src/common/acpica/compiler/asltransform.c 11

655 /* Find the parent method */

657 Next = StartNode;
658 while ((Next->Asl.ParseOpcode != PARSEOP_METHOD) &&
659 (Next->Asl.ParseOpcode != PARSEOP_DEFINITIONBLOCK))
660 {
661 Next = Next->Asl.Parent;
662 }
663 MethodOp = Next;

665 NewOp->Asl.CompileFlags |= NODE_COMPILER_EMITTED;
666 NewOp->Asl.Parent = Next;

668 /* Insert name after the method name and arguments */

670 Next = Next->Asl.Child; /* Name */
671 Next = Next->Asl.Next; /* NumArgs */
672 Next = Next->Asl.Next; /* SerializeRule */

674 /*
675 * If method is not Serialized, we must make is so, because of the way
676 * that Switch() must be implemented -- we cannot allow multiple threads
677 * to execute this method concurrently since we need to create local
678 * temporary name(s).
679 */
680 if (Next->Asl.ParseOpcode != PARSEOP_SERIALIZERULE_SERIAL)
681 {
682 AslError (ASL_REMARK, ASL_MSG_SERIALIZED, MethodOp, "Due to use of Switc
683 Next->Asl.ParseOpcode = PARSEOP_SERIALIZERULE_SERIAL;
684 }

686 Next = Next->Asl.Next; /* SyncLevel */
687 Next = Next->Asl.Next; /* ReturnType */
688 Next = Next->Asl.Next; /* ParameterTypes */

690 TrAmlInsertPeer (Next, NewOp);
691 TrAmlInitLineNumbers (NewOp, Next);

693 /* Create the NameSeg child for the Name node */

695 NewOp2 = TrCreateValuedLeafNode (PARSEOP_NAMESEG,
696 (UINT64) ACPI_TO_INTEGER (PredicateValueName));
697 TrAmlInitLineNumbers (NewOp2, NewOp);
698 NewOp2->Asl.CompileFlags |= NODE_IS_NAME_DECLARATION;
699 NewOp->Asl.Child = NewOp2;

701 /* Create the initial value for the Name. Btype was already validated above

703 switch (Btype)
704 {
705 case ACPI_BTYPE_INTEGER:

707 NewOp2->Asl.Next = TrCreateValuedLeafNode (PARSEOP_ZERO,
708 (UINT64) 0);
709 TrAmlInitLineNumbers (NewOp2->Asl.Next, NewOp);
710 break;

712 case ACPI_BTYPE_STRING:

714 NewOp2->Asl.Next = TrCreateValuedLeafNode (PARSEOP_STRING_LITERAL,
715 (UINT64) ACPI_TO_INTEGER (""));
716 TrAmlInitLineNumbers (NewOp2->Asl.Next, NewOp);
717 break;

719 case ACPI_BTYPE_BUFFER:

new/usr/src/common/acpica/compiler/asltransform.c 12

721 (void) TrLinkPeerNode (NewOp2, TrCreateValuedLeafNode (PARSEOP_BUFFER,
722 (UINT64) 0));
723 Next = NewOp2->Asl.Next;
724 TrAmlInitLineNumbers (Next, NewOp2);
725 (void) TrLinkChildren (Next, 1, TrCreateValuedLeafNode (PARSEOP_ZERO,
726 (UINT64) 1));
727 TrAmlInitLineNumbers (Next->Asl.Child, Next);

729 BufferOp = TrCreateValuedLeafNode (PARSEOP_DEFAULT_ARG, (UINT64) 0);
730 TrAmlInitLineNumbers (BufferOp, Next->Asl.Child);
731 (void) TrLinkPeerNode (Next->Asl.Child, BufferOp);

733 TrAmlSetSubtreeParent (Next->Asl.Child, Next);
734 break;

736 default:

738 break;
739 }

741 TrAmlSetSubtreeParent (NewOp2, NewOp);

743 /*
744 * Transform the Switch() into a While(One)-Break node.
745 * And create a Store() node which will be used to save the
746 * Switch() value. The store is of the form: Store (Value, _T_x)
747 * where _T_x is the temp variable.
748 */
749 TrAmlInitNode (StartNode, PARSEOP_WHILE);
750 NewOp = TrCreateLeafNode (PARSEOP_ONE);
751 TrAmlInitLineNumbers (NewOp, StartNode);
752 NewOp->Asl.Next = Predicate->Asl.Next;
753 NewOp->Asl.Parent = StartNode;
754 StartNode->Asl.Child = NewOp;

756 /* Create a Store() node */

758 StoreOp = TrCreateLeafNode (PARSEOP_STORE);
759 TrAmlInitLineNumbers (StoreOp, NewOp);
760 StoreOp->Asl.Parent = StartNode;
761 TrAmlInsertPeer (NewOp, StoreOp);

763 /* Complete the Store subtree */

765 StoreOp->Asl.Child = Predicate;
766 Predicate->Asl.Parent = StoreOp;

768 NewOp = TrCreateValuedLeafNode (PARSEOP_NAMESEG,
769 (UINT64) ACPI_TO_INTEGER (PredicateValueName));
770 TrAmlInitLineNumbers (NewOp, StoreOp);
771 NewOp->Asl.Parent = StoreOp;
772 Predicate->Asl.Next = NewOp;

774 /* Create a Break() node and insert it into the end of While() */

776 Conditional = StartNode->Asl.Child;
777 while (Conditional->Asl.Next)
778 {
779 Conditional = Conditional->Asl.Next;
780 }

782 BreakOp = TrCreateLeafNode (PARSEOP_BREAK);
783 TrAmlInitLineNumbers (BreakOp, NewOp);
784 BreakOp->Asl.Parent = StartNode;
785 TrAmlInsertPeer (Conditional, BreakOp);
786 }

new/usr/src/common/acpica/compiler/asltransform.c 13

new/usr/src/common/acpica/compiler/asltree.c 1

**
 32561 Thu Dec 26 13:48:35 2013
new/usr/src/common/acpica/compiler/asltree.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: asltree - parse tree management
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"
47 #include "acapps.h"
48 #include <time.h>

50 #define _COMPONENT ACPI_COMPILER
51 ACPI_MODULE_NAME ("asltree")

53 /* Local prototypes */

55 static ACPI_PARSE_OBJECT *
56 TrGetNextNode (
57 void);

59 static char *
60 TrGetNodeFlagName (

new/usr/src/common/acpica/compiler/asltree.c 2

61 UINT32 Flags);

64 /***
65 *
66 * FUNCTION: TrGetNextNode
67 *
68 * PARAMETERS: None
69 *
70 * RETURN: New parse node. Aborts on allocation failure
71 *
72 * DESCRIPTION: Allocate a new parse node for the parse tree. Bypass the local
73 * dynamic memory manager for performance reasons (This has a
74 * major impact on the speed of the compiler.)
75 *
76 **/

78 static ACPI_PARSE_OBJECT *
79 TrGetNextNode (
80 void)
81 {

83 if (Gbl_NodeCacheNext >= Gbl_NodeCacheLast)
84 {
85 Gbl_NodeCacheNext = UtLocalCalloc (sizeof (ACPI_PARSE_OBJECT) *
86 ASL_NODE_CACHE_SIZE);
87 Gbl_NodeCacheLast = Gbl_NodeCacheNext + ASL_NODE_CACHE_SIZE;
88 }

90 return (Gbl_NodeCacheNext++);
91 }

94 /***
95 *
96 * FUNCTION: TrAllocateNode
97 *
98 * PARAMETERS: ParseOpcode - Opcode to be assigned to the node
99 *
100 * RETURN: New parse node. Aborts on allocation failure
101 *
102 * DESCRIPTION: Allocate and initialize a new parse node for the parse tree
103 *
104 **/

106 ACPI_PARSE_OBJECT *
107 TrAllocateNode (
108 UINT32 ParseOpcode)
109 {
110 ACPI_PARSE_OBJECT *Op;

113 Op = TrGetNextNode ();

115 Op->Asl.ParseOpcode = (UINT16) ParseOpcode;
116 Op->Asl.Filename = Gbl_Files[ASL_FILE_INPUT].Filename;
117 Op->Asl.LineNumber = Gbl_CurrentLineNumber;
118 Op->Asl.LogicalLineNumber = Gbl_LogicalLineNumber;
119 Op->Asl.LogicalByteOffset = Gbl_CurrentLineOffset;
120 Op->Asl.Column = Gbl_CurrentColumn;

122 UtSetParseOpName (Op);
123 return (Op);
124 }

new/usr/src/common/acpica/compiler/asltree.c 3

127 /***
128 *
129 * FUNCTION: TrReleaseNode
130 *
131 * PARAMETERS: Op - Op to be released
132 *
133 * RETURN: None
134 *
135 * DESCRIPTION: "release" a node. In truth, nothing is done since the node
136 * is part of a larger buffer
137 *
138 **/

140 void
141 TrReleaseNode (
142 ACPI_PARSE_OBJECT *Op)
143 {

145 return;
146 }

149 /***
150 *
151 * FUNCTION: TrUpdateNode
152 *
153 * PARAMETERS: ParseOpcode - New opcode to be assigned to the node
154 * Op - An existing parse node
155 *
156 * RETURN: The updated node
157 *
158 * DESCRIPTION: Change the parse opcode assigned to a node. Usually used to
159 * change an opcode to DEFAULT_ARG so that the node is ignored
160 * during the code generation. Also used to set generic integers
161 * to a specific size (8, 16, 32, or 64 bits)
162 *
163 **/

165 ACPI_PARSE_OBJECT *
166 TrUpdateNode (
167 UINT32 ParseOpcode,
168 ACPI_PARSE_OBJECT *Op)
169 {

171 if (!Op)
172 {
173 return (NULL);
174 }

176 DbgPrint (ASL_PARSE_OUTPUT,
177 "\nUpdateNode: Old - %s, New - %s\n\n",
178 UtGetOpName (Op->Asl.ParseOpcode),
179 UtGetOpName (ParseOpcode));

181 /* Assign new opcode and name */

183 if (Op->Asl.ParseOpcode == PARSEOP_ONES)
184 {
185 switch (ParseOpcode)
186 {
187 case PARSEOP_BYTECONST:

189 Op->Asl.Value.Integer = ACPI_UINT8_MAX;
190 break;

192 case PARSEOP_WORDCONST:

new/usr/src/common/acpica/compiler/asltree.c 4

194 Op->Asl.Value.Integer = ACPI_UINT16_MAX;
195 break;

197 case PARSEOP_DWORDCONST:

199 Op->Asl.Value.Integer = ACPI_UINT32_MAX;
200 break;

202 /* Don’t need to do the QWORD case */

204 default:

206 /* Don’t care about others */
207 break;
208 }
209 }

211 Op->Asl.ParseOpcode = (UINT16) ParseOpcode;
212 UtSetParseOpName (Op);

214 /*
215 * For the BYTE, WORD, and DWORD constants, make sure that the integer
216 * that was passed in will actually fit into the data type
217 */
218 switch (ParseOpcode)
219 {
220 case PARSEOP_BYTECONST:

222 UtCheckIntegerRange (Op, 0x00, ACPI_UINT8_MAX);
223 Op->Asl.Value.Integer &= ACPI_UINT8_MAX;
224 break;

226 case PARSEOP_WORDCONST:

228 UtCheckIntegerRange (Op, 0x00, ACPI_UINT16_MAX);
229 Op->Asl.Value.Integer &= ACPI_UINT16_MAX;
230 break;

232 case PARSEOP_DWORDCONST:

234 UtCheckIntegerRange (Op, 0x00, ACPI_UINT32_MAX);
235 Op->Asl.Value.Integer &= ACPI_UINT32_MAX;
236 break;

238 default:

240 /* Don’t care about others, don’t need to check QWORD */

242 break;
243 }

245 return (Op);
246 }

249 /***
250 *
251 * FUNCTION: TrGetNodeFlagName
252 *
253 * PARAMETERS: Flags - Flags word to be decoded
254 *
255 * RETURN: Name string. Always returns a valid string pointer.
256 *
257 * DESCRIPTION: Decode a flags word
258 *

new/usr/src/common/acpica/compiler/asltree.c 5

259 **/

261 static char *
262 TrGetNodeFlagName (
263 UINT32 Flags)
264 {

266 switch (Flags)
267 {
268 case NODE_VISITED:

270 return ("NODE_VISITED");

272 case NODE_AML_PACKAGE:

274 return ("NODE_AML_PACKAGE");

276 case NODE_IS_TARGET:

278 return ("NODE_IS_TARGET");

280 case NODE_IS_RESOURCE_DESC:

282 return ("NODE_IS_RESOURCE_DESC");

284 case NODE_IS_RESOURCE_FIELD:

286 return ("NODE_IS_RESOURCE_FIELD");

288 case NODE_HAS_NO_EXIT:

290 return ("NODE_HAS_NO_EXIT");

292 case NODE_IF_HAS_NO_EXIT:

294 return ("NODE_IF_HAS_NO_EXIT");

296 case NODE_NAME_INTERNALIZED:

298 return ("NODE_NAME_INTERNALIZED");

300 case NODE_METHOD_NO_RETVAL:

302 return ("NODE_METHOD_NO_RETVAL");

304 case NODE_METHOD_SOME_NO_RETVAL:

306 return ("NODE_METHOD_SOME_NO_RETVAL");

308 case NODE_RESULT_NOT_USED:

310 return ("NODE_RESULT_NOT_USED");

312 case NODE_METHOD_TYPED:

314 return ("NODE_METHOD_TYPED");

316 case NODE_COMPILE_TIME_CONST:

318 return ("NODE_COMPILE_TIME_CONST");

320 case NODE_IS_TERM_ARG:

322 return ("NODE_IS_TERM_ARG");

324 case NODE_WAS_ONES_OP:

new/usr/src/common/acpica/compiler/asltree.c 6

326 return ("NODE_WAS_ONES_OP");

328 case NODE_IS_NAME_DECLARATION:

330 return ("NODE_IS_NAME_DECLARATION");

332 default:

334 return ("Multiple Flags (or unknown flag) set");
335 }
336 }

339 /***
340 *
341 * FUNCTION: TrSetNodeFlags
342 *
343 * PARAMETERS: Op - An existing parse node
344 * Flags - New flags word
345 *
346 * RETURN: The updated parser op
347 *
348 * DESCRIPTION: Set bits in the node flags word. Will not clear bits, only set
349 *
350 **/

352 ACPI_PARSE_OBJECT *
353 TrSetNodeFlags (
354 ACPI_PARSE_OBJECT *Op,
355 UINT32 Flags)
356 {

358 DbgPrint (ASL_PARSE_OUTPUT,
359 "\nSetNodeFlags: Op %p, %8.8X %s\n\n", Op, Flags,
360 TrGetNodeFlagName (Flags));

362 if (!Op)
363 {
364 return (NULL);
365 }

367 Op->Asl.CompileFlags |= Flags;
368 return (Op);
369 }

372 /***
373 *
374 * FUNCTION: TrSetNodeAmlLength
375 *
376 * PARAMETERS: Op - An existing parse node
377 * Length - AML Length
378 *
379 * RETURN: The updated parser op
380 *
381 * DESCRIPTION: Set the AML Length in a node. Used by the parser to indicate
382 * the presence of a node that must be reduced to a fixed length
383 * constant.
384 *
385 **/

387 ACPI_PARSE_OBJECT *
388 TrSetNodeAmlLength (
389 ACPI_PARSE_OBJECT *Op,
390 UINT32 Length)

new/usr/src/common/acpica/compiler/asltree.c 7

391 {

393 DbgPrint (ASL_PARSE_OUTPUT,
394 "\nSetNodeAmlLength: Op %p, %8.8X\n", Op, Length);

396 if (!Op)
397 {
398 return (NULL);
399 }

401 Op->Asl.AmlLength = Length;
402 return (Op);
403 }

406 /***
407 *
408 * FUNCTION: TrSetEndLineNumber
409 *
410 * PARAMETERS: Op - An existing parse node
411 *
412 * RETURN: None.
413 *
414 * DESCRIPTION: Set the ending line numbers (file line and logical line) of a
415 * parse node to the current line numbers.
416 *
417 **/

419 void
420 TrSetEndLineNumber (
421 ACPI_PARSE_OBJECT *Op)
422 {

424 /* If the end line # is already set, just return */

426 if (Op->Asl.EndLine)
427 {
428 return;
429 }

431 Op->Asl.EndLine = Gbl_CurrentLineNumber;
432 Op->Asl.EndLogicalLine = Gbl_LogicalLineNumber;
433 }

436 /***
437 *
438 * FUNCTION: TrCreateLeafNode
439 *
440 * PARAMETERS: ParseOpcode - New opcode to be assigned to the node
441 *
442 * RETURN: Pointer to the new node. Aborts on allocation failure
443 *
444 * DESCRIPTION: Create a simple leaf node (no children or peers, and no value
445 * assigned to the node)
446 *
447 **/

449 ACPI_PARSE_OBJECT *
450 TrCreateLeafNode (
451 UINT32 ParseOpcode)
452 {
453 ACPI_PARSE_OBJECT *Op;

456 Op = TrAllocateNode (ParseOpcode);

new/usr/src/common/acpica/compiler/asltree.c 8

458 DbgPrint (ASL_PARSE_OUTPUT,
459 "\nCreateLeafNode Ln/Col %u/%u NewNode %p Op %s\n\n",
460 Op->Asl.LineNumber, Op->Asl.Column, Op, UtGetOpName(ParseOpcode));

462 return (Op);
463 }

466 /***
467 *
468 * FUNCTION: TrCreateConstantLeafNode
469 *
470 * PARAMETERS: ParseOpcode - The constant opcode
471 *
472 * RETURN: Pointer to the new node. Aborts on allocation failure
473 *
474 * DESCRIPTION: Create a leaf node (no children or peers) for one of the
475 * special constants - __LINE__, __FILE__, and __DATE__.
476 *
477 * Note: An implemenation of __FUNC__ cannot happen here because we don’t
478 * have a full parse tree at this time and cannot find the parent control
479 * method. If it is ever needed, __FUNC__ must be implemented later, after
480 * the parse tree has been fully constructed.
481 *
482 **/

484 ACPI_PARSE_OBJECT *
485 TrCreateConstantLeafNode (
486 UINT32 ParseOpcode)
487 {
488 ACPI_PARSE_OBJECT *Op = NULL;
489 time_t CurrentTime;
490 char *StaticTimeString;
491 char *TimeString;
492 char *Path;
493 char *Filename;

496 switch (ParseOpcode)
497 {
498 case PARSEOP___LINE__:

500 Op = TrAllocateNode (PARSEOP_INTEGER);
501 Op->Asl.Value.Integer = Op->Asl.LineNumber;
502 break;

504 case PARSEOP___PATH__:

506 Op = TrAllocateNode (PARSEOP_STRING_LITERAL);

508 /* Op.Asl.Filename contains the full pathname to the file */

510 Op->Asl.Value.String = Op->Asl.Filename;
511 break;

513 case PARSEOP___FILE__:

515 Op = TrAllocateNode (PARSEOP_STRING_LITERAL);

517 /* Get the simple filename from the full path */

519 FlSplitInputPathname (Op->Asl.Filename, &Path, &Filename);
520 ACPI_FREE (Path);
521 Op->Asl.Value.String = Filename;
522 break;

new/usr/src/common/acpica/compiler/asltree.c 9

524 case PARSEOP___DATE__:

526 Op = TrAllocateNode (PARSEOP_STRING_LITERAL);

528 /* Get a copy of the current time */

530 CurrentTime = time (NULL);
531 StaticTimeString = ctime (&CurrentTime);
532 TimeString = UtLocalCalloc (strlen (StaticTimeString) + 1);
533 strcpy (TimeString, StaticTimeString);

535 TimeString[strlen(TimeString) -1] = 0; /* Remove trailing newline */
536 Op->Asl.Value.String = TimeString;
537 break;

539 default: /* This would be an internal error */

541 return (NULL);
542 }

544 DbgPrint (ASL_PARSE_OUTPUT,
545 "\nCreateConstantLeafNode Ln/Col %u/%u NewNode %p Op %s Value %8.8X%8
546 Op->Asl.LineNumber, Op->Asl.Column, Op, UtGetOpName (ParseOpcode),
547 ACPI_FORMAT_UINT64 (Op->Asl.Value.Integer));
548 return (Op);
549 }

552 /***
553 *
554 * FUNCTION: TrCreateValuedLeafNode
555 *
556 * PARAMETERS: ParseOpcode - New opcode to be assigned to the node
557 * Value - Value to be assigned to the node
558 *
559 * RETURN: Pointer to the new node. Aborts on allocation failure
560 *
561 * DESCRIPTION: Create a leaf node (no children or peers) with a value
562 * assigned to it
563 *
564 **/

566 ACPI_PARSE_OBJECT *
567 TrCreateValuedLeafNode (
568 UINT32 ParseOpcode,
569 UINT64 Value)
570 {
571 ACPI_PARSE_OBJECT *Op;

574 Op = TrAllocateNode (ParseOpcode);

576 DbgPrint (ASL_PARSE_OUTPUT,
577 "\nCreateValuedLeafNode Ln/Col %u/%u NewNode %p Op %s Value %8.8X%8.8
578 Op->Asl.LineNumber, Op->Asl.Column, Op, UtGetOpName(ParseOpcode),
579 ACPI_FORMAT_UINT64 (Value));
580 Op->Asl.Value.Integer = Value;

582 switch (ParseOpcode)
583 {
584 case PARSEOP_STRING_LITERAL:

586 DbgPrint (ASL_PARSE_OUTPUT, "STRING->%s", Value);
587 break;

new/usr/src/common/acpica/compiler/asltree.c 10

589 case PARSEOP_NAMESEG:

591 DbgPrint (ASL_PARSE_OUTPUT, "NAMESEG->%s", Value);
592 break;

594 case PARSEOP_NAMESTRING:

596 DbgPrint (ASL_PARSE_OUTPUT, "NAMESTRING->%s", Value);
597 break;

599 case PARSEOP_EISAID:

601 DbgPrint (ASL_PARSE_OUTPUT, "EISAID->%s", Value);
602 break;

604 case PARSEOP_METHOD:

606 DbgPrint (ASL_PARSE_OUTPUT, "METHOD");
607 break;

609 case PARSEOP_INTEGER:

611 DbgPrint (ASL_PARSE_OUTPUT, "INTEGER");
612 break;

614 default:

616 break;
617 }

619 DbgPrint (ASL_PARSE_OUTPUT, "\n\n");
620 return (Op);
621 }

624 /***
625 *
626 * FUNCTION: TrCreateNode
627 *
628 * PARAMETERS: ParseOpcode - Opcode to be assigned to the node
629 * NumChildren - Number of children to follow
630 * ... - A list of child nodes to link to the new
631 * node. NumChildren long.
632 *
633 * RETURN: Pointer to the new node. Aborts on allocation failure
634 *
635 * DESCRIPTION: Create a new parse node and link together a list of child
636 * nodes underneath the new node.
637 *
638 **/

640 ACPI_PARSE_OBJECT *
641 TrCreateNode (
642 UINT32 ParseOpcode,
643 UINT32 NumChildren,
644 ...)
645 {
646 ACPI_PARSE_OBJECT *Op;
647 ACPI_PARSE_OBJECT *Child;
648 ACPI_PARSE_OBJECT *PrevChild;
649 va_list ap;
650 UINT32 i;
651 BOOLEAN FirstChild;

654 va_start (ap, NumChildren);

new/usr/src/common/acpica/compiler/asltree.c 11

656 /* Allocate one new node */

658 Op = TrAllocateNode (ParseOpcode);

660 DbgPrint (ASL_PARSE_OUTPUT,
661 "\nCreateNode Ln/Col %u/%u NewParent %p Child %u Op %s ",
662 Op->Asl.LineNumber, Op->Asl.Column, Op, NumChildren, UtGetOpName(ParseOp

664 /* Some extra debug output based on the parse opcode */

666 switch (ParseOpcode)
667 {
668 case PARSEOP_DEFINITIONBLOCK:

670 RootNode = Op;
671 DbgPrint (ASL_PARSE_OUTPUT, "DEFINITION_BLOCK (Tree Completed)->");
672 break;

674 case PARSEOP_OPERATIONREGION:

676 DbgPrint (ASL_PARSE_OUTPUT, "OPREGION->");
677 break;

679 case PARSEOP_OR:

681 DbgPrint (ASL_PARSE_OUTPUT, "OR->");
682 break;

684 default:

686 /* Nothing to do for other opcodes */

688 break;
689 }

691 /* Link the new node to its children */

693 PrevChild = NULL;
694 FirstChild = TRUE;
695 for (i = 0; i < NumChildren; i++)
696 {
697 /* Get the next child */

699 Child = va_arg (ap, ACPI_PARSE_OBJECT *);
700 DbgPrint (ASL_PARSE_OUTPUT, "%p, ", Child);

702 /*
703 * If child is NULL, this means that an optional argument
704 * was omitted. We must create a placeholder with a special
705 * opcode (DEFAULT_ARG) so that the code generator will know
706 * that it must emit the correct default for this argument
707 */
708 if (!Child)
709 {
710 Child = TrAllocateNode (PARSEOP_DEFAULT_ARG);
711 }

713 /* Link first child to parent */

715 if (FirstChild)
716 {
717 FirstChild = FALSE;
718 Op->Asl.Child = Child;
719 }

new/usr/src/common/acpica/compiler/asltree.c 12

721 /* Point all children to parent */

723 Child->Asl.Parent = Op;

725 /* Link children in a peer list */

727 if (PrevChild)
728 {
729 PrevChild->Asl.Next = Child;
730 };

732 /*
733 * This child might be a list, point all nodes in the list
734 * to the same parent
735 */
736 while (Child->Asl.Next)
737 {
738 Child = Child->Asl.Next;
739 Child->Asl.Parent = Op;
740 }

742 PrevChild = Child;
743 }
744 va_end(ap);

746 DbgPrint (ASL_PARSE_OUTPUT, "\n\n");
747 return (Op);
748 }

751 /***
752 *
753 * FUNCTION: TrLinkChildren
754 *
755 * PARAMETERS: Op - An existing parse node
756 * NumChildren - Number of children to follow
757 * ... - A list of child nodes to link to the new
758 * node. NumChildren long.
759 *
760 * RETURN: The updated (linked) node
761 *
762 * DESCRIPTION: Link a group of nodes to an existing parse node
763 *
764 **/

766 ACPI_PARSE_OBJECT *
767 TrLinkChildren (
768 ACPI_PARSE_OBJECT *Op,
769 UINT32 NumChildren,
770 ...)
771 {
772 ACPI_PARSE_OBJECT *Child;
773 ACPI_PARSE_OBJECT *PrevChild;
774 va_list ap;
775 UINT32 i;
776 BOOLEAN FirstChild;

779 va_start (ap, NumChildren);

782 TrSetEndLineNumber (Op);

784 DbgPrint (ASL_PARSE_OUTPUT,
785 "\nLinkChildren Line [%u to %u] NewParent %p Child %u Op %s ",
786 Op->Asl.LineNumber, Op->Asl.EndLine,

new/usr/src/common/acpica/compiler/asltree.c 13

787 Op, NumChildren, UtGetOpName(Op->Asl.ParseOpcode));

789 switch (Op->Asl.ParseOpcode)
790 {
791 case PARSEOP_DEFINITIONBLOCK:

793 RootNode = Op;
794 DbgPrint (ASL_PARSE_OUTPUT, "DEFINITION_BLOCK (Tree Completed)->");
795 break;

797 case PARSEOP_OPERATIONREGION:

799 DbgPrint (ASL_PARSE_OUTPUT, "OPREGION->");
800 break;

802 case PARSEOP_OR:

804 DbgPrint (ASL_PARSE_OUTPUT, "OR->");
805 break;

807 default:

809 /* Nothing to do for other opcodes */

811 break;
812 }

814 /* Link the new node to it’s children */

816 PrevChild = NULL;
817 FirstChild = TRUE;
818 for (i = 0; i < NumChildren; i++)
819 {
820 Child = va_arg (ap, ACPI_PARSE_OBJECT *);

822 if ((Child == PrevChild) && (Child != NULL))
823 {
824 AslError (ASL_WARNING, ASL_MSG_COMPILER_INTERNAL, Child,
825 "Child node list invalid");
826 va_end(ap);
827 return (Op);
828 }

830 DbgPrint (ASL_PARSE_OUTPUT, "%p, ", Child);

832 /*
833 * If child is NULL, this means that an optional argument
834 * was omitted. We must create a placeholder with a special
835 * opcode (DEFAULT_ARG) so that the code generator will know
836 * that it must emit the correct default for this argument
837 */
838 if (!Child)
839 {
840 Child = TrAllocateNode (PARSEOP_DEFAULT_ARG);
841 }

843 /* Link first child to parent */

845 if (FirstChild)
846 {
847 FirstChild = FALSE;
848 Op->Asl.Child = Child;
849 }

851 /* Point all children to parent */

new/usr/src/common/acpica/compiler/asltree.c 14

853 Child->Asl.Parent = Op;

855 /* Link children in a peer list */

857 if (PrevChild)
858 {
859 PrevChild->Asl.Next = Child;
860 };

862 /*
863 * This child might be a list, point all nodes in the list
864 * to the same parent
865 */
866 while (Child->Asl.Next)
867 {
868 Child = Child->Asl.Next;
869 Child->Asl.Parent = Op;
870 }
871 PrevChild = Child;
872 }

874 va_end(ap);
875 DbgPrint (ASL_PARSE_OUTPUT, "\n\n");
876 return (Op);
877 }

880 /***
881 *
882 * FUNCTION: TrLinkPeerNode
883 *
884 * PARAMETERS: Op1 - First peer
885 * Op2 - Second peer
886 *
887 * RETURN: Op1 or the non-null node.
888 *
889 * DESCRIPTION: Link two nodes as peers. Handles cases where one peer is null.
890 *
891 **/

893 ACPI_PARSE_OBJECT *
894 TrLinkPeerNode (
895 ACPI_PARSE_OBJECT *Op1,
896 ACPI_PARSE_OBJECT *Op2)
897 {
898 ACPI_PARSE_OBJECT *Next;

901 DbgPrint (ASL_PARSE_OUTPUT,
902 "\nLinkPeerNode: 1=%p (%s), 2=%p (%s)\n\n",
903 Op1, Op1 ? UtGetOpName(Op1->Asl.ParseOpcode) : NULL,
904 Op2, Op2 ? UtGetOpName(Op2->Asl.ParseOpcode) : NULL);

907 if ((!Op1) && (!Op2))
908 {
909 DbgPrint (ASL_PARSE_OUTPUT, "\nTwo Null nodes!\n");
910 return (Op1);
911 }

913 /* If one of the nodes is null, just return the non-null node */

915 if (!Op2)
916 {
917 return (Op1);
918 }

new/usr/src/common/acpica/compiler/asltree.c 15

920 if (!Op1)
921 {
922 return (Op2);
923 }

925 if (Op1 == Op2)
926 {
927 DbgPrint (ASL_DEBUG_OUTPUT,
928 "\n\n************* Internal error, linking node to itself %p\n\n\n",
929 Op1);
930 AslError (ASL_WARNING, ASL_MSG_COMPILER_INTERNAL, Op1,
931 "Linking node to itself");
932 return (Op1);
933 }

935 Op1->Asl.Parent = Op2->Asl.Parent;

937 /*
938 * Op 1 may already have a peer list (such as an IF/ELSE pair),
939 * so we must walk to the end of the list and attach the new
940 * peer at the end
941 */
942 Next = Op1;
943 while (Next->Asl.Next)
944 {
945 Next = Next->Asl.Next;
946 }

948 Next->Asl.Next = Op2;
949 return (Op1);
950 }

953 /***
954 *
955 * FUNCTION: TrLinkPeerNodes
956 *
957 * PARAMETERS: NumPeers - The number of nodes in the list to follow
958 * ... - A list of nodes to link together as peers
959 *
960 * RETURN: The first node in the list (head of the peer list)
961 *
962 * DESCRIPTION: Link together an arbitrary number of peer nodes.
963 *
964 **/

966 ACPI_PARSE_OBJECT *
967 TrLinkPeerNodes (
968 UINT32 NumPeers,
969 ...)
970 {
971 ACPI_PARSE_OBJECT *This;
972 ACPI_PARSE_OBJECT *Next;
973 va_list ap;
974 UINT32 i;
975 ACPI_PARSE_OBJECT *Start;

978 DbgPrint (ASL_PARSE_OUTPUT,
979 "\nLinkPeerNodes: (%u) ", NumPeers);

981 va_start (ap, NumPeers);
982 This = va_arg (ap, ACPI_PARSE_OBJECT *);
983 Start = This;

new/usr/src/common/acpica/compiler/asltree.c 16

985 /*
986 * Link all peers
987 */
988 for (i = 0; i < (NumPeers -1); i++)
989 {
990 DbgPrint (ASL_PARSE_OUTPUT, "%u=%p ", (i+1), This);

992 while (This->Asl.Next)
993 {
994 This = This->Asl.Next;
995 }

997 /* Get another peer node */

999 Next = va_arg (ap, ACPI_PARSE_OBJECT *);
1000 if (!Next)
1001 {
1002 Next = TrAllocateNode (PARSEOP_DEFAULT_ARG);
1003 }

1005 /* link new node to the current node */

1007 This->Asl.Next = Next;
1008 This = Next;
1009 }
1010 va_end (ap);

1012 DbgPrint (ASL_PARSE_OUTPUT,"\n\n");
1013 return (Start);
1014 }

1017 /***
1018 *
1019 * FUNCTION: TrLinkChildNode
1020 *
1021 * PARAMETERS: Op1 - Parent node
1022 * Op2 - Op to become a child
1023 *
1024 * RETURN: The parent node
1025 *
1026 * DESCRIPTION: Link two nodes together as a parent and child
1027 *
1028 **/

1030 ACPI_PARSE_OBJECT *
1031 TrLinkChildNode (
1032 ACPI_PARSE_OBJECT *Op1,
1033 ACPI_PARSE_OBJECT *Op2)
1034 {
1035 ACPI_PARSE_OBJECT *Next;

1038 DbgPrint (ASL_PARSE_OUTPUT,
1039 "\nLinkChildNode: Parent=%p (%s), Child=%p (%s)\n\n",
1040 Op1, Op1 ? UtGetOpName(Op1->Asl.ParseOpcode): NULL,
1041 Op2, Op2 ? UtGetOpName(Op2->Asl.ParseOpcode): NULL);

1043 if (!Op1 || !Op2)
1044 {
1045 return (Op1);
1046 }

1048 Op1->Asl.Child = Op2;

1050 /* Set the child and all peers of the child to point to the parent */

new/usr/src/common/acpica/compiler/asltree.c 17

1052 Next = Op2;
1053 while (Next)
1054 {
1055 Next->Asl.Parent = Op1;
1056 Next = Next->Asl.Next;
1057 }

1059 return (Op1);
1060 }

1063 /***
1064 *
1065 * FUNCTION: TrWalkParseTree
1066 *
1067 * PARAMETERS: Visitation - Type of walk
1068 * DescendingCallback - Called during tree descent
1069 * AscendingCallback - Called during tree ascent
1070 * Context - To be passed to the callbacks
1071 *
1072 * RETURN: Status from callback(s)
1073 *
1074 * DESCRIPTION: Walk the entire parse tree.
1075 *
1076 **/

1078 ACPI_STATUS
1079 TrWalkParseTree (
1080 ACPI_PARSE_OBJECT *Op,
1081 UINT32 Visitation,
1082 ASL_WALK_CALLBACK DescendingCallback,
1083 ASL_WALK_CALLBACK AscendingCallback,
1084 void *Context)
1085 {
1086 UINT32 Level;
1087 BOOLEAN NodePreviouslyVisited;
1088 ACPI_PARSE_OBJECT *StartOp = Op;
1089 ACPI_STATUS Status;

1092 if (!RootNode)
1093 {
1094 return (AE_OK);
1095 }

1097 Level = 0;
1098 NodePreviouslyVisited = FALSE;

1100 switch (Visitation)
1101 {
1102 case ASL_WALK_VISIT_DOWNWARD:

1104 while (Op)
1105 {
1106 if (!NodePreviouslyVisited)
1107 {
1108 /* Let the callback process the node. */

1110 Status = DescendingCallback (Op, Level, Context);
1111 if (ACPI_SUCCESS (Status))
1112 {
1113 /* Visit children first, once */

1115 if (Op->Asl.Child)
1116 {

new/usr/src/common/acpica/compiler/asltree.c 18

1117 Level++;
1118 Op = Op->Asl.Child;
1119 continue;
1120 }
1121 }
1122 else if (Status != AE_CTRL_DEPTH)
1123 {
1124 /* Exit immediately on any error */

1126 return (Status);
1127 }
1128 }

1130 /* Terminate walk at start op */

1132 if (Op == StartOp)
1133 {
1134 break;
1135 }

1137 /* No more children, visit peers */

1139 if (Op->Asl.Next)
1140 {
1141 Op = Op->Asl.Next;
1142 NodePreviouslyVisited = FALSE;
1143 }
1144 else
1145 {
1146 /* No children or peers, re-visit parent */

1148 if (Level != 0)
1149 {
1150 Level--;
1151 }
1152 Op = Op->Asl.Parent;
1153 NodePreviouslyVisited = TRUE;
1154 }
1155 }
1156 break;

1158 case ASL_WALK_VISIT_UPWARD:

1160 while (Op)
1161 {
1162 /* Visit leaf node (no children) or parent node on return trip */

1164 if ((!Op->Asl.Child) ||
1165 (NodePreviouslyVisited))
1166 {
1167 /* Let the callback process the node. */

1169 Status = AscendingCallback (Op, Level, Context);
1170 if (ACPI_FAILURE (Status))
1171 {
1172 return (Status);
1173 }
1174 }
1175 else
1176 {
1177 /* Visit children first, once */

1179 Level++;
1180 Op = Op->Asl.Child;
1181 continue;
1182 }

new/usr/src/common/acpica/compiler/asltree.c 19

1184 /* Terminate walk at start op */

1186 if (Op == StartOp)
1187 {
1188 break;
1189 }

1191 /* No more children, visit peers */

1193 if (Op->Asl.Next)
1194 {
1195 Op = Op->Asl.Next;
1196 NodePreviouslyVisited = FALSE;
1197 }
1198 else
1199 {
1200 /* No children or peers, re-visit parent */

1202 if (Level != 0)
1203 {
1204 Level--;
1205 }
1206 Op = Op->Asl.Parent;
1207 NodePreviouslyVisited = TRUE;
1208 }
1209 }
1210 break;

1212 case ASL_WALK_VISIT_TWICE:

1214 while (Op)
1215 {
1216 if (NodePreviouslyVisited)
1217 {
1218 Status = AscendingCallback (Op, Level, Context);
1219 if (ACPI_FAILURE (Status))
1220 {
1221 return (Status);
1222 }
1223 }
1224 else
1225 {
1226 /* Let the callback process the node. */

1228 Status = DescendingCallback (Op, Level, Context);
1229 if (ACPI_SUCCESS (Status))
1230 {
1231 /* Visit children first, once */

1233 if (Op->Asl.Child)
1234 {
1235 Level++;
1236 Op = Op->Asl.Child;
1237 continue;
1238 }
1239 }
1240 else if (Status != AE_CTRL_DEPTH)
1241 {
1242 /* Exit immediately on any error */

1244 return (Status);
1245 }
1246 }

1248 /* Terminate walk at start op */

new/usr/src/common/acpica/compiler/asltree.c 20

1250 if (Op == StartOp)
1251 {
1252 break;
1253 }

1255 /* No more children, visit peers */

1257 if (Op->Asl.Next)
1258 {
1259 Op = Op->Asl.Next;
1260 NodePreviouslyVisited = FALSE;
1261 }
1262 else
1263 {
1264 /* No children or peers, re-visit parent */

1266 if (Level != 0)
1267 {
1268 Level--;
1269 }
1270 Op = Op->Asl.Parent;
1271 NodePreviouslyVisited = TRUE;
1272 }
1273 }
1274 break;

1276 default:
1277 /* No other types supported */
1278 break;
1279 }

1281 /* If we get here, the walk completed with no errors */

1283 return (AE_OK);
1284 }

new/usr/src/common/acpica/compiler/asltypes.h 1

**
 7356 Thu Dec 26 13:48:35 2013
new/usr/src/common/acpica/compiler/asltypes.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: asltypes.h - compiler data types and struct definitions
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #ifndef __ASLTYPES_H
46 #define __ASLTYPES_H

49 /***
50 *
51 * Structure definitions
52 *
53 **/

56 /* Op flags for the ACPI_PARSE_OBJECT */

58 #define NODE_VISITED 0x00000001
59 #define NODE_AML_PACKAGE 0x00000002
60 #define NODE_IS_TARGET 0x00000004

new/usr/src/common/acpica/compiler/asltypes.h 2

61 #define NODE_IS_RESOURCE_DESC 0x00000008
62 #define NODE_IS_RESOURCE_FIELD 0x00000010
63 #define NODE_HAS_NO_EXIT 0x00000020
64 #define NODE_IF_HAS_NO_EXIT 0x00000040
65 #define NODE_NAME_INTERNALIZED 0x00000080
66 #define NODE_METHOD_NO_RETVAL 0x00000100
67 #define NODE_METHOD_SOME_NO_RETVAL 0x00000200
68 #define NODE_RESULT_NOT_USED 0x00000400
69 #define NODE_METHOD_TYPED 0x00000800
70 #define NODE_UNUSED_FLAG 0x00001000
71 #define NODE_COMPILE_TIME_CONST 0x00002000
72 #define NODE_IS_TERM_ARG 0x00004000
73 #define NODE_WAS_ONES_OP 0x00008000
74 #define NODE_IS_NAME_DECLARATION 0x00010000
75 #define NODE_COMPILER_EMITTED 0x00020000
76 #define NODE_IS_DUPLICATE 0x00040000
77 #define NODE_IS_RESOURCE_DATA 0x00080000
78 #define NODE_IS_NULL_RETURN 0x00100000

80 /* Keeps information about individual control methods */

82 typedef struct asl_method_info
83 {
84 ACPI_PARSE_OBJECT *Op;
85 struct asl_method_info *Next;
86 UINT32 ValidArgTypes[ACPI_METHOD_NUM_ARGS];
87 UINT32 ValidReturnTypes;
88 UINT32 NumReturnNoValue;
89 UINT32 NumReturnWithValue;
90 UINT8 NumArguments;
91 UINT8 LocalInitialized[ACPI_METHOD_NUM_LOCALS];
92 UINT8 ArgInitialized[ACPI_METHOD_NUM_ARGS];
93 UINT8 HasBeenTyped;
94 UINT8 ShouldBeSerialized;

96 } ASL_METHOD_INFO;

99 /* Parse tree walk info for control method analysis */

101 typedef struct asl_analysis_walk_info
102 {
103 ASL_METHOD_INFO *MethodStack;

105 } ASL_ANALYSIS_WALK_INFO;

108 /* An entry in the ParseOpcode to AmlOpcode mapping table */

110 typedef struct asl_mapping_entry
111 {
112 UINT32 Value;
113 UINT32 AcpiBtype; /* Object type or return type */
114 UINT16 AmlOpcode;
115 UINT8 Flags;

117 } ASL_MAPPING_ENTRY;

120 /* Parse tree walk info structure */

122 typedef struct asl_walk_info
123 {
124 ACPI_PARSE_OBJECT **NodePtr;
125 UINT32 *LevelPtr;

new/usr/src/common/acpica/compiler/asltypes.h 3

127 } ASL_WALK_INFO;

130 /* File info */

132 typedef struct asl_file_info
133 {
134 FILE *Handle;
135 char *Filename;
136 const char *ShortDescription;
137 const char *Description;

139 } ASL_FILE_INFO;

141 typedef struct asl_file_status
142 {
143 UINT32 Line;
144 UINT32 Offset;

146 } ASL_FILE_STATUS;

149 /*
150 * File types. Note: Any changes to this table must also be reflected
151 * in the Gbl_Files array.
152 */
153 typedef enum
154 {
155 ASL_FILE_STDOUT = 0,
156 ASL_FILE_STDERR,
157 ASL_FILE_INPUT,
158 ASL_FILE_AML_OUTPUT, /* Don’t move these first 4 file types */
159 ASL_FILE_SOURCE_OUTPUT,
160 ASL_FILE_PREPROCESSOR,
161 ASL_FILE_LISTING_OUTPUT,
162 ASL_FILE_HEX_OUTPUT,
163 ASL_FILE_NAMESPACE_OUTPUT,
164 ASL_FILE_DEBUG_OUTPUT,
165 ASL_FILE_ASM_SOURCE_OUTPUT,
166 ASL_FILE_C_SOURCE_OUTPUT,
167 ASL_FILE_ASM_INCLUDE_OUTPUT,
168 ASL_FILE_C_INCLUDE_OUTPUT,
169 ASL_FILE_C_OFFSET_OUTPUT

171 } ASL_FILE_TYPES;

174 #define ASL_MAX_FILE_TYPE 14
175 #define ASL_NUM_FILES (ASL_MAX_FILE_TYPE + 1)

178 typedef struct asl_include_dir
179 {
180 char *Dir;
181 struct asl_include_dir *Next;

183 } ASL_INCLUDE_DIR;

186 /* An entry in the exception list, one for each error/warning */

188 typedef struct asl_error_msg
189 {
190 UINT32 LineNumber;
191 UINT32 LogicalLineNumber;
192 UINT32 LogicalByteOffset;

new/usr/src/common/acpica/compiler/asltypes.h 4

193 UINT32 Column;
194 char *Message;
195 struct asl_error_msg *Next;
196 char *Filename;
197 char *SourceLine;
198 UINT32 FilenameLength;
199 UINT8 MessageId;
200 UINT8 Level;

202 } ASL_ERROR_MSG;

205 /* An entry in the listing file stack (for include files) */

207 typedef struct asl_listing_node
208 {
209 char *Filename;
210 UINT32 LineNumber;
211 struct asl_listing_node *Next;

213 } ASL_LISTING_NODE;

216 /* Callback interface for a parse tree walk */

218 /*
219 * TBD - another copy of this is in adisasm.h, fix
220 */
221 #ifndef ASL_WALK_CALLBACK_DEFINED
222 typedef
223 ACPI_STATUS (*ASL_WALK_CALLBACK) (
224 ACPI_PARSE_OBJECT *Op,
225 UINT32 Level,
226 void *Context);
227 #define ASL_WALK_CALLBACK_DEFINED
228 #endif

231 typedef struct asl_event_info
232 {
233 UINT64 StartTime;
234 UINT64 EndTime;
235 char *EventName;
236 BOOLEAN Valid;

238 } ASL_EVENT_INFO;

241 #endif /* __ASLTYPES_H */

new/usr/src/common/acpica/compiler/aslutils.c 1

**
 28300 Thu Dec 26 13:48:35 2013
new/usr/src/common/acpica/compiler/aslutils.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslutils -- compiler utilities
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"
47 #include "acdisasm.h"
48 #include "acnamesp.h"
49 #include "amlcode.h"
50 #include <acapps.h>

52 #define _COMPONENT ACPI_COMPILER
53 ACPI_MODULE_NAME ("aslutils")

56 /* Local prototypes */

58 static void
59 UtPadNameWithUnderscores (
60 char *NameSeg,

new/usr/src/common/acpica/compiler/aslutils.c 2

61 char *PaddedNameSeg);

63 static void
64 UtAttachNameseg (
65 ACPI_PARSE_OBJECT *Op,
66 char *Name);

69 /***
70 *
71 * FUNCTION: UtDisplaySupportedTables
72 *
73 * PARAMETERS: None
74 *
75 * RETURN: None
76 *
77 * DESCRIPTION: Print all supported ACPI table names.
78 *
79 **/

81 #define ACPI_TABLE_HELP_FORMAT "%8u) %s %s\n"

83 void
84 UtDisplaySupportedTables (
85 void)
86 {
87 ACPI_DMTABLE_DATA *TableData;
88 UINT32 i;

91 printf ("\nACPI tables supported by iASL version %8.8X:\n"
92 " (Compiler, Disassembler, Template Generator)\n\n",
93 ACPI_CA_VERSION);

95 /* Special tables */

97 printf (" Special tables and AML tables:\n");
98 printf (ACPI_TABLE_HELP_FORMAT, 1, ACPI_RSDP_NAME, "Root System Description
99 printf (ACPI_TABLE_HELP_FORMAT, 2, ACPI_SIG_FACS, "Firmware ACPI Control Str
100 printf (ACPI_TABLE_HELP_FORMAT, 3, ACPI_SIG_DSDT, "Differentiated System Des
101 printf (ACPI_TABLE_HELP_FORMAT, 4, ACPI_SIG_SSDT, "Secondary System Descript

103 /* All data tables with common table header */

105 printf ("\n Standard ACPI data tables:\n");
106 for (TableData = AcpiDmTableData, i = 5; TableData->Signature; TableData++,
107 {
108 printf (ACPI_TABLE_HELP_FORMAT, i, TableData->Signature, TableData->Name
109 }
110 }

113 /***
114 *
115 * FUNCTION: UtDisplayConstantOpcodes
116 *
117 * PARAMETERS: None
118 *
119 * RETURN: None
120 *
121 * DESCRIPTION: Print AML opcodes that can be used in constant expressions.
122 *
123 **/

125 void
126 UtDisplayConstantOpcodes (

new/usr/src/common/acpica/compiler/aslutils.c 3

127 void)
128 {
129 UINT32 i;

132 printf ("Constant expression opcode information\n\n");

134 for (i = 0; i < sizeof (AcpiGbl_AmlOpInfo) / sizeof (ACPI_OPCODE_INFO); i++)
135 {
136 if (AcpiGbl_AmlOpInfo[i].Flags & AML_CONSTANT)
137 {
138 printf ("%s\n", AcpiGbl_AmlOpInfo[i].Name);
139 }
140 }
141 }

144 /***
145 *
146 * FUNCTION: UtLocalCalloc
147 *
148 * PARAMETERS: Size - Bytes to be allocated
149 *
150 * RETURN: Pointer to the allocated memory. Guaranteed to be valid.
151 *
152 * DESCRIPTION: Allocate zero-initialized memory. Aborts the compile on an
153 * allocation failure, on the assumption that nothing more can be
154 * accomplished.
155 *
156 **/

158 void *
159 UtLocalCalloc (
160 UINT32 Size)
161 {
162 void *Allocated;

165 Allocated = ACPI_ALLOCATE_ZEROED (Size);
166 if (!Allocated)
167 {
168 AslCommonError (ASL_ERROR, ASL_MSG_MEMORY_ALLOCATION,
169 Gbl_CurrentLineNumber, Gbl_LogicalLineNumber,
170 Gbl_InputByteCount, Gbl_CurrentColumn,
171 Gbl_Files[ASL_FILE_INPUT].Filename, NULL);

173 CmCleanupAndExit ();
174 exit (1);
175 }

177 TotalAllocations++;
178 TotalAllocated += Size;
179 return (Allocated);
180 }

183 /***
184 *
185 * FUNCTION: UtBeginEvent
186 *
187 * PARAMETERS: Name - Ascii name of this event
188 *
189 * RETURN: Event number (integer index)
190 *
191 * DESCRIPTION: Saves the current time with this event
192 *

new/usr/src/common/acpica/compiler/aslutils.c 4

193 **/

195 UINT8
196 UtBeginEvent (
197 char *Name)
198 {

200 if (AslGbl_NextEvent >= ASL_NUM_EVENTS)
201 {
202 AcpiOsPrintf ("Ran out of compiler event structs!\n");
203 return (AslGbl_NextEvent);
204 }

206 /* Init event with current (start) time */

208 AslGbl_Events[AslGbl_NextEvent].StartTime = AcpiOsGetTimer ();
209 AslGbl_Events[AslGbl_NextEvent].EventName = Name;
210 AslGbl_Events[AslGbl_NextEvent].Valid = TRUE;

212 return (AslGbl_NextEvent++);
213 }

216 /***
217 *
218 * FUNCTION: UtEndEvent
219 *
220 * PARAMETERS: Event - Event number (integer index)
221 *
222 * RETURN: None
223 *
224 * DESCRIPTION: Saves the current time (end time) with this event
225 *
226 **/

228 void
229 UtEndEvent (
230 UINT8 Event)
231 {

233 if (Event >= ASL_NUM_EVENTS)
234 {
235 return;
236 }

238 /* Insert end time for event */

240 AslGbl_Events[Event].EndTime = AcpiOsGetTimer ();
241 }

244 /***
245 *
246 * FUNCTION: UtHexCharToValue
247 *
248 * PARAMETERS: HexChar - Hex character in Ascii
249 *
250 * RETURN: The binary value of the hex character
251 *
252 * DESCRIPTION: Perform ascii-to-hex translation
253 *
254 **/

256 UINT8
257 UtHexCharToValue (
258 int HexChar)

new/usr/src/common/acpica/compiler/aslutils.c 5

259 {

261 if (HexChar <= 0x39)
262 {
263 return ((UINT8) (HexChar - 0x30));
264 }

266 if (HexChar <= 0x46)
267 {
268 return ((UINT8) (HexChar - 0x37));
269 }

271 return ((UINT8) (HexChar - 0x57));
272 }

275 /***
276 *
277 * FUNCTION: UtConvertByteToHex
278 *
279 * PARAMETERS: RawByte - Binary data
280 * Buffer - Pointer to where the hex bytes will be
281 * stored
282 *
283 * RETURN: Ascii hex byte is stored in Buffer.
284 *
285 * DESCRIPTION: Perform hex-to-ascii translation. The return data is prefixed
286 * with "0x"
287 *
288 **/

290 void
291 UtConvertByteToHex (
292 UINT8 RawByte,
293 UINT8 *Buffer)
294 {

296 Buffer[0] = ’0’;
297 Buffer[1] = ’x’;

299 Buffer[2] = (UINT8) AslHexLookup[(RawByte >> 4) & 0xF];
300 Buffer[3] = (UINT8) AslHexLookup[RawByte & 0xF];
301 }

304 /***
305 *
306 * FUNCTION: UtConvertByteToAsmHex
307 *
308 * PARAMETERS: RawByte - Binary data
309 * Buffer - Pointer to where the hex bytes will be
310 * stored
311 *
312 * RETURN: Ascii hex byte is stored in Buffer.
313 *
314 * DESCRIPTION: Perform hex-to-ascii translation. The return data is prefixed
315 * with "0x"
316 *
317 **/

319 void
320 UtConvertByteToAsmHex (
321 UINT8 RawByte,
322 UINT8 *Buffer)
323 {

new/usr/src/common/acpica/compiler/aslutils.c 6

325 Buffer[0] = ’0’;
326 Buffer[1] = (UINT8) AslHexLookup[(RawByte >> 4) & 0xF];
327 Buffer[2] = (UINT8) AslHexLookup[RawByte & 0xF];
328 Buffer[3] = ’h’;
329 }

332 /***
333 *
334 * FUNCTION: DbgPrint
335 *
336 * PARAMETERS: Type - Type of output
337 * Fmt - Printf format string
338 * ... - variable printf list
339 *
340 * RETURN: None
341 *
342 * DESCRIPTION: Conditional print statement. Prints to stderr only if the
343 * debug flag is set.
344 *
345 **/

347 void
348 DbgPrint (
349 UINT32 Type,
350 char *Fmt,
351 ...)
352 {
353 va_list Args;

356 if (!Gbl_DebugFlag)
357 {
358 return;
359 }

361 if ((Type == ASL_PARSE_OUTPUT) &&
362 (!(AslCompilerdebug)))
363 {
364 return;
365 }

367 va_start (Args, Fmt);
368 (void) vfprintf (stderr, Fmt, Args);
369 va_end (Args);
370 return;
371 }

374 /***
375 *
376 * FUNCTION: UtPrintFormattedName
377 *
378 * PARAMETERS: ParseOpcode - Parser keyword ID
379 * Level - Indentation level
380 *
381 * RETURN: None
382 *
383 * DESCRIPTION: Print the ascii name of the parse opcode.
384 *
385 **/

387 #define TEXT_OFFSET 10

389 void
390 UtPrintFormattedName (

new/usr/src/common/acpica/compiler/aslutils.c 7

391 UINT16 ParseOpcode,
392 UINT32 Level)
393 {

395 if (Level)
396 {
397 DbgPrint (ASL_TREE_OUTPUT,
398 "%*s", (3 * Level), " ");
399 }
400 DbgPrint (ASL_TREE_OUTPUT,
401 " %-20.20s", UtGetOpName (ParseOpcode));

403 if (Level < TEXT_OFFSET)
404 {
405 DbgPrint (ASL_TREE_OUTPUT,
406 "%*s", (TEXT_OFFSET - Level) * 3, " ");
407 }
408 }

411 /***
412 *
413 * FUNCTION: UtSetParseOpName
414 *
415 * PARAMETERS: Op - Parse op to be named.
416 *
417 * RETURN: None
418 *
419 * DESCRIPTION: Insert the ascii name of the parse opcode
420 *
421 **/

423 void
424 UtSetParseOpName (
425 ACPI_PARSE_OBJECT *Op)
426 {

428 strncpy (Op->Asl.ParseOpName, UtGetOpName (Op->Asl.ParseOpcode),
429 ACPI_MAX_PARSEOP_NAME);
430 }

433 /***
434 *
435 * FUNCTION: UtDisplaySummary
436 *
437 * PARAMETERS: FileID - ID of outpout file
438 *
439 * RETURN: None
440 *
441 * DESCRIPTION: Display compilation statistics
442 *
443 **/

445 void
446 UtDisplaySummary (
447 UINT32 FileId)
448 {
449 UINT32 i;

452 if (FileId != ASL_FILE_STDOUT)
453 {
454 /* Compiler name and version number */

456 FlPrintFile (FileId, "%s version %X%s [%s]\n\n",

new/usr/src/common/acpica/compiler/aslutils.c 8

457 ASL_COMPILER_NAME, (UINT32) ACPI_CA_VERSION, ACPI_WIDTH, __DATE__);
458 }

460 /* Summary of main input and output files */

462 if (Gbl_FileType == ASL_INPUT_TYPE_ASCII_DATA)
463 {
464 FlPrintFile (FileId,
465 "%-14s %s - %u lines, %u bytes, %u fields\n",
466 "Table Input:",
467 Gbl_Files[ASL_FILE_INPUT].Filename, Gbl_CurrentLineNumber,
468 Gbl_InputByteCount, Gbl_InputFieldCount);

470 if ((Gbl_ExceptionCount[ASL_ERROR] == 0) || (Gbl_IgnoreErrors))
471 {
472 FlPrintFile (FileId,
473 "%-14s %s - %u bytes\n",
474 "Binary Output:",
475 Gbl_Files[ASL_FILE_AML_OUTPUT].Filename, Gbl_TableLength);
476 }
477 }
478 else
479 {
480 FlPrintFile (FileId,
481 "%-14s %s - %u lines, %u bytes, %u keywords\n",
482 "ASL Input:",
483 Gbl_Files[ASL_FILE_INPUT].Filename, Gbl_CurrentLineNumber,
484 Gbl_InputByteCount, TotalKeywords);

486 /* AML summary */

488 if ((Gbl_ExceptionCount[ASL_ERROR] == 0) || (Gbl_IgnoreErrors))
489 {
490 FlPrintFile (FileId,
491 "%-14s %s - %u bytes, %u named objects, %u executable opcodes\n"
492 "AML Output:",
493 Gbl_Files[ASL_FILE_AML_OUTPUT].Filename, Gbl_TableLength,
494 TotalNamedObjects, TotalExecutableOpcodes);
495 }
496 }

498 /* Display summary of any optional files */

500 for (i = ASL_FILE_SOURCE_OUTPUT; i <= ASL_MAX_FILE_TYPE; i++)
501 {
502 if (!Gbl_Files[i].Filename || !Gbl_Files[i].Handle)
503 {
504 continue;
505 }

507 /* .SRC is a temp file unless specifically requested */

509 if ((i == ASL_FILE_SOURCE_OUTPUT) && (!Gbl_SourceOutputFlag))
510 {
511 continue;
512 }

514 /* .I is a temp file unless specifically requested */

516 if ((i == ASL_FILE_PREPROCESSOR) && (!Gbl_PreprocessorOutputFlag))
517 {
518 continue;
519 }

521 FlPrintFile (FileId, "%14s %s - %u bytes\n",
522 Gbl_Files[i].ShortDescription,

new/usr/src/common/acpica/compiler/aslutils.c 9

523 Gbl_Files[i].Filename, FlGetFileSize (i));
524 }

526 /* Error summary */

528 FlPrintFile (FileId,
529 "\nCompilation complete. %u Errors, %u Warnings, %u Remarks",
530 Gbl_ExceptionCount[ASL_ERROR],
531 Gbl_ExceptionCount[ASL_WARNING] +
532 Gbl_ExceptionCount[ASL_WARNING2] +
533 Gbl_ExceptionCount[ASL_WARNING3],
534 Gbl_ExceptionCount[ASL_REMARK]);

536 if (Gbl_FileType != ASL_INPUT_TYPE_ASCII_DATA)
537 {
538 FlPrintFile (FileId,
539 ", %u Optimizations", Gbl_ExceptionCount[ASL_OPTIMIZATION]);
540 }

542 FlPrintFile (FileId, "\n");
543 }

546 /***
547 *
548 * FUNCTION: UtCheckIntegerRange
549 *
550 * PARAMETERS: Op - Integer parse node
551 * LowValue - Smallest allowed value
552 * HighValue - Largest allowed value
553 *
554 * RETURN: Op if OK, otherwise NULL
555 *
556 * DESCRIPTION: Check integer for an allowable range
557 *
558 **/

560 ACPI_PARSE_OBJECT *
561 UtCheckIntegerRange (
562 ACPI_PARSE_OBJECT *Op,
563 UINT32 LowValue,
564 UINT32 HighValue)
565 {

567 if (!Op)
568 {
569 return (NULL);
570 }

572 if ((Op->Asl.Value.Integer < LowValue) ||
573 (Op->Asl.Value.Integer > HighValue))
574 {
575 sprintf (MsgBuffer, "0x%X, allowable: 0x%X-0x%X",
576 (UINT32) Op->Asl.Value.Integer, LowValue, HighValue);

578 AslError (ASL_ERROR, ASL_MSG_RANGE, Op, MsgBuffer);
579 return (NULL);
580 }

582 return (Op);
583 }

586 /***
587 *
588 * FUNCTION: UtGetStringBuffer

new/usr/src/common/acpica/compiler/aslutils.c 10

589 *
590 * PARAMETERS: Length - Size of buffer requested
591 *
592 * RETURN: Pointer to the buffer. Aborts on allocation failure
593 *
594 * DESCRIPTION: Allocate a string buffer. Bypass the local
595 * dynamic memory manager for performance reasons (This has a
596 * major impact on the speed of the compiler.)
597 *
598 **/

600 char *
601 UtGetStringBuffer (
602 UINT32 Length)
603 {
604 char *Buffer;

607 if ((Gbl_StringCacheNext + Length) >= Gbl_StringCacheLast)
608 {
609 Gbl_StringCacheNext = UtLocalCalloc (ASL_STRING_CACHE_SIZE + Length);
610 Gbl_StringCacheLast = Gbl_StringCacheNext + ASL_STRING_CACHE_SIZE +
611 Length;
612 }

614 Buffer = Gbl_StringCacheNext;
615 Gbl_StringCacheNext += Length;

617 return (Buffer);
618 }

621 /**
622 *
623 * FUNCTION: UtExpandLineBuffers
624 *
625 * PARAMETERS: None. Updates global line buffer pointers.
626 *
627 * RETURN: None. Reallocates the global line buffers
628 *
629 * DESCRIPTION: Called if the current line buffer becomes filled. Reallocates
630 * all global line buffers and updates Gbl_LineBufferSize. NOTE:
631 * Also used for the initial allocation of the buffers, when
632 * all of the buffer pointers are NULL. Initial allocations are
633 * of size ASL_DEFAULT_LINE_BUFFER_SIZE
634 *
635 ***/

637 void
638 UtExpandLineBuffers (
639 void)
640 {
641 UINT32 NewSize;

644 /* Attempt to double the size of all line buffers */

646 NewSize = Gbl_LineBufferSize * 2;
647 if (Gbl_CurrentLineBuffer)
648 {
649 DbgPrint (ASL_DEBUG_OUTPUT,"Increasing line buffer size from %u to %u\n"
650 Gbl_LineBufferSize, NewSize);
651 }

653 Gbl_CurrentLineBuffer = realloc (Gbl_CurrentLineBuffer, NewSize);
654 Gbl_LineBufPtr = Gbl_CurrentLineBuffer;

new/usr/src/common/acpica/compiler/aslutils.c 11

655 if (!Gbl_CurrentLineBuffer)
656 {
657 goto ErrorExit;
658 }

660 Gbl_MainTokenBuffer = realloc (Gbl_MainTokenBuffer, NewSize);
661 if (!Gbl_MainTokenBuffer)
662 {
663 goto ErrorExit;
664 }

666 Gbl_MacroTokenBuffer = realloc (Gbl_MacroTokenBuffer, NewSize);
667 if (!Gbl_MacroTokenBuffer)
668 {
669 goto ErrorExit;
670 }

672 Gbl_ExpressionTokenBuffer = realloc (Gbl_ExpressionTokenBuffer, NewSize);
673 if (!Gbl_ExpressionTokenBuffer)
674 {
675 goto ErrorExit;
676 }

678 Gbl_LineBufferSize = NewSize;
679 return;

682 /* On error above, simply issue error messages and abort, cannot continue */

684 ErrorExit:
685 printf ("Could not increase line buffer size from %u to %u\n",
686 Gbl_LineBufferSize, Gbl_LineBufferSize * 2);

688 AslError (ASL_ERROR, ASL_MSG_BUFFER_ALLOCATION,
689 NULL, NULL);
690 AslAbort ();
691 }

694 /***
695 *
696 * FUNCTION: UtInternalizeName
697 *
698 * PARAMETERS: ExternalName - Name to convert
699 * ConvertedName - Where the converted name is returned
700 *
701 * RETURN: Status
702 *
703 * DESCRIPTION: Convert an external (ASL) name to an internal (AML) name
704 *
705 **/

707 ACPI_STATUS
708 UtInternalizeName (
709 char *ExternalName,
710 char **ConvertedName)
711 {
712 ACPI_NAMESTRING_INFO Info;
713 ACPI_STATUS Status;

716 if (!ExternalName)
717 {
718 return (AE_OK);
719 }

new/usr/src/common/acpica/compiler/aslutils.c 12

721 /* Get the length of the new internal name */

723 Info.ExternalName = ExternalName;
724 AcpiNsGetInternalNameLength (&Info);

726 /* We need a segment to store the internal name */

728 Info.InternalName = UtGetStringBuffer (Info.Length);
729 if (!Info.InternalName)
730 {
731 return (AE_NO_MEMORY);
732 }

734 /* Build the name */

736 Status = AcpiNsBuildInternalName (&Info);
737 if (ACPI_FAILURE (Status))
738 {
739 return (Status);
740 }

742 *ConvertedName = Info.InternalName;
743 return (AE_OK);
744 }

747 /***
748 *
749 * FUNCTION: UtPadNameWithUnderscores
750 *
751 * PARAMETERS: NameSeg - Input nameseg
752 * PaddedNameSeg - Output padded nameseg
753 *
754 * RETURN: Padded nameseg.
755 *
756 * DESCRIPTION: Pads a NameSeg with underscores if necessary to form a full
757 * ACPI_NAME.
758 *
759 **/

761 static void
762 UtPadNameWithUnderscores (
763 char *NameSeg,
764 char *PaddedNameSeg)
765 {
766 UINT32 i;

769 for (i = 0; (i < ACPI_NAME_SIZE); i++)
770 {
771 if (*NameSeg)
772 {
773 *PaddedNameSeg = *NameSeg;
774 NameSeg++;
775 }
776 else
777 {
778 *PaddedNameSeg = ’_’;
779 }
780 PaddedNameSeg++;
781 }
782 }

785 /***
786 *

new/usr/src/common/acpica/compiler/aslutils.c 13

787 * FUNCTION: UtAttachNameseg
788 *
789 * PARAMETERS: Op - Parent parse node
790 * Name - Full ExternalName
791 *
792 * RETURN: None; Sets the NameSeg field in parent node
793 *
794 * DESCRIPTION: Extract the last nameseg of the ExternalName and store it
795 * in the NameSeg field of the Op.
796 *
797 **/

799 static void
800 UtAttachNameseg (
801 ACPI_PARSE_OBJECT *Op,
802 char *Name)
803 {
804 char *NameSeg;
805 char PaddedNameSeg[4];

808 if (!Name)
809 {
810 return;
811 }

813 /* Look for the last dot in the namepath */

815 NameSeg = strrchr (Name, ’.’);
816 if (NameSeg)
817 {
818 /* Found last dot, we have also found the final nameseg */

820 NameSeg++;
821 UtPadNameWithUnderscores (NameSeg, PaddedNameSeg);
822 }
823 else
824 {
825 /* No dots in the namepath, there is only a single nameseg. */
826 /* Handle prefixes */

828 while (ACPI_IS_ROOT_PREFIX (*Name) ||
829 ACPI_IS_PARENT_PREFIX (*Name))
830 {
831 Name++;
832 }

834 /* Remaining string should be one single nameseg */

836 UtPadNameWithUnderscores (Name, PaddedNameSeg);
837 }

839 ACPI_MOVE_NAME (Op->Asl.NameSeg, PaddedNameSeg);
840 }

843 /***
844 *
845 * FUNCTION: UtAttachNamepathToOwner
846 *
847 * PARAMETERS: Op - Parent parse node
848 * NameOp - Node that contains the name
849 *
850 * RETURN: Sets the ExternalName and Namepath in the parent node
851 *
852 * DESCRIPTION: Store the name in two forms in the parent node: The original

new/usr/src/common/acpica/compiler/aslutils.c 14

853 * (external) name, and the internalized name that is used within
854 * the ACPI namespace manager.
855 *
856 **/

858 void
859 UtAttachNamepathToOwner (
860 ACPI_PARSE_OBJECT *Op,
861 ACPI_PARSE_OBJECT *NameOp)
862 {
863 ACPI_STATUS Status;

866 /* Full external path */

868 Op->Asl.ExternalName = NameOp->Asl.Value.String;

870 /* Save the NameOp for possible error reporting later */

872 Op->Asl.ParentMethod = (void *) NameOp;

874 /* Last nameseg of the path */

876 UtAttachNameseg (Op, Op->Asl.ExternalName);

878 /* Create internalized path */

880 Status = UtInternalizeName (NameOp->Asl.Value.String, &Op->Asl.Namepath);
881 if (ACPI_FAILURE (Status))
882 {
883 /* TBD: abort on no memory */
884 }
885 }

888 /***
889 *
890 * FUNCTION: UtDoConstant
891 *
892 * PARAMETERS: String - Hex, Octal, or Decimal string
893 *
894 * RETURN: Converted Integer
895 *
896 * DESCRIPTION: Convert a string to an integer, with error checking.
897 *
898 **/

900 UINT64
901 UtDoConstant (
902 char *String)
903 {
904 ACPI_STATUS Status;
905 UINT64 Converted;
906 char ErrBuf[64];

909 Status = UtStrtoul64 (String, 0, &Converted);
910 if (ACPI_FAILURE (Status))
911 {
912 sprintf (ErrBuf, "%s %s\n", "Conversion error:",
913 AcpiFormatException (Status));
914 AslCompilererror (ErrBuf);
915 }

917 return (Converted);
918 }

new/usr/src/common/acpica/compiler/aslutils.c 15

921 /* TBD: use version in ACPI CA main code base? */

923 /***
924 *
925 * FUNCTION: UtStrtoul64
926 *
927 * PARAMETERS: String - Null terminated string
928 * Terminater - Where a pointer to the terminating byte
929 * is returned
930 * Base - Radix of the string
931 *
932 * RETURN: Converted value
933 *
934 * DESCRIPTION: Convert a string into an unsigned value.
935 *
936 **/

938 ACPI_STATUS
939 UtStrtoul64 (
940 char *String,
941 UINT32 Base,
942 UINT64 *RetInteger)
943 {
944 UINT32 Index;
945 UINT32 Sign;
946 UINT64 ReturnValue = 0;
947 ACPI_STATUS Status = AE_OK;

950 *RetInteger = 0;

952 switch (Base)
953 {
954 case 0:
955 case 8:
956 case 10:
957 case 16:

959 break;

961 default:
962 /*
963 * The specified Base parameter is not in the domain of
964 * this function:
965 */
966 return (AE_BAD_PARAMETER);
967 }

969 /* Skip over any white space in the buffer: */

971 while (isspace ((int) *String) || *String == ’\t’)
972 {
973 ++String;
974 }

976 /*
977 * The buffer may contain an optional plus or minus sign.
978 * If it does, then skip over it but remember what is was:
979 */
980 if (*String == ’-’)
981 {
982 Sign = NEGATIVE;
983 ++String;
984 }

new/usr/src/common/acpica/compiler/aslutils.c 16

985 else if (*String == ’+’)
986 {
987 ++String;
988 Sign = POSITIVE;
989 }
990 else
991 {
992 Sign = POSITIVE;
993 }

995 /*
996 * If the input parameter Base is zero, then we need to
997 * determine if it is octal, decimal, or hexadecimal:
998 */
999 if (Base == 0)

1000 {
1001 if (*String == ’0’)
1002 {
1003 if (tolower ((int) *(++String)) == ’x’)
1004 {
1005 Base = 16;
1006 ++String;
1007 }
1008 else
1009 {
1010 Base = 8;
1011 }
1012 }
1013 else
1014 {
1015 Base = 10;
1016 }
1017 }

1019 /*
1020 * For octal and hexadecimal bases, skip over the leading
1021 * 0 or 0x, if they are present.
1022 */
1023 if (Base == 8 && *String == ’0’)
1024 {
1025 String++;
1026 }

1028 if (Base == 16 &&
1029 *String == ’0’ &&
1030 tolower ((int) *(++String)) == ’x’)
1031 {
1032 String++;
1033 }

1035 /* Main loop: convert the string to an unsigned long */

1037 while (*String)
1038 {
1039 if (isdigit ((int) *String))
1040 {
1041 Index = ((UINT8) *String) - ’0’;
1042 }
1043 else
1044 {
1045 Index = (UINT8) toupper ((int) *String);
1046 if (isupper ((int) Index))
1047 {
1048 Index = Index - ’A’ + 10;
1049 }
1050 else

new/usr/src/common/acpica/compiler/aslutils.c 17

1051 {
1052 goto ErrorExit;
1053 }
1054 }

1056 if (Index >= Base)
1057 {
1058 goto ErrorExit;
1059 }

1061 /* Check to see if value is out of range: */

1063 if (ReturnValue > ((ACPI_UINT64_MAX - (UINT64) Index) /
1064 (UINT64) Base))
1065 {
1066 goto ErrorExit;
1067 }
1068 else
1069 {
1070 ReturnValue *= Base;
1071 ReturnValue += Index;
1072 }

1074 ++String;
1075 }

1078 /* If a minus sign was present, then "the conversion is negated": */

1080 if (Sign == NEGATIVE)
1081 {
1082 ReturnValue = (ACPI_UINT32_MAX - ReturnValue) + 1;
1083 }

1085 *RetInteger = ReturnValue;
1086 return (Status);

1089 ErrorExit:
1090 switch (Base)
1091 {
1092 case 8:

1094 Status = AE_BAD_OCTAL_CONSTANT;
1095 break;

1097 case 10:

1099 Status = AE_BAD_DECIMAL_CONSTANT;
1100 break;

1102 case 16:

1104 Status = AE_BAD_HEX_CONSTANT;
1105 break;

1107 default:

1109 /* Base validated above */

1111 break;
1112 }

1114 return (Status);
1115 }

new/usr/src/common/acpica/compiler/asluuid.c 1

**
 6676 Thu Dec 26 13:48:36 2013
new/usr/src/common/acpica/compiler/asluuid.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: asluuid-- compiler UUID support
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"

47 #define _COMPONENT ACPI_COMPILER
48 ACPI_MODULE_NAME ("asluuid")

51 /*
52 * UUID support functions.
53 *
54 * This table is used to convert an input UUID ascii string to a 16 byte
55 * buffer and the reverse. The table maps a UUID buffer index 0-15 to
56 * the index within the 36-byte UUID string where the associated 2-byte
57 * hex value can be found.
58 *
59 * 36-byte UUID strings are of the form:
60 * aabbccdd-eeff-gghh-iijj-kkllmmnnoopp

new/usr/src/common/acpica/compiler/asluuid.c 2

61 * Where aa-pp are one byte hex numbers, made up of two hex digits
62 *
63 * Note: This table is basically the inverse of the string-to-offset table
64 * found in the ACPI spec in the description of the ToUUID macro.
65 */
66 static UINT8 Gbl_MapToUuidOffset[16] =
67 {
68 6,4,2,0,11,9,16,14,19,21,24,26,28,30,32,34
69 };

71 #define UUID_BUFFER_LENGTH 16
72 #define UUID_STRING_LENGTH 36

74 /* Positions for required hyphens (dashes) in UUID strings */

76 #define UUID_HYPHEN1_OFFSET 8
77 #define UUID_HYPHEN2_OFFSET 13
78 #define UUID_HYPHEN3_OFFSET 18
79 #define UUID_HYPHEN4_OFFSET 23

82 /***
83 *
84 * FUNCTION: AuValiduateUuid
85 *
86 * PARAMETERS: InString - 36-byte formatted UUID string
87 *
88 * RETURN: Status
89 *
90 * DESCRIPTION: Check all 36 characters for correct format
91 *
92 **/

94 ACPI_STATUS
95 AuValidateUuid (
96 char *InString)
97 {
98 UINT32 i;

101 if (!InString || (ACPI_STRLEN (InString) != UUID_STRING_LENGTH))
102 {
103 return (AE_BAD_PARAMETER);
104 }

106 /* Check all 36 characters for correct format */

108 for (i = 0; i < UUID_STRING_LENGTH; i++)
109 {
110 /* Must have 4 hyphens (dashes) in these positions: */

112 if ((i == UUID_HYPHEN1_OFFSET) ||
113 (i == UUID_HYPHEN2_OFFSET) ||
114 (i == UUID_HYPHEN3_OFFSET) ||
115 (i == UUID_HYPHEN4_OFFSET))
116 {
117 if (InString[i] != ’-’)
118 {
119 return (AE_BAD_PARAMETER);
120 }
121 }

123 /* All other positions must contain hex digits */

125 else
126 {

new/usr/src/common/acpica/compiler/asluuid.c 3

127 if (!isxdigit ((int) InString[i]))
128 {
129 return (AE_BAD_PARAMETER);
130 }
131 }
132 }

134 return (AE_OK);
135 }

138 /***
139 *
140 * FUNCTION: AuConvertStringToUuid
141 *
142 * PARAMETERS: InString - 36-byte formatted UUID string
143 * UuidBuffer - 16-byte UUID buffer
144 *
145 * RETURN: Status
146 *
147 * DESCRIPTION: Convert 36-byte formatted UUID string to 16-byte UUID buffer
148 *
149 **/

151 ACPI_STATUS
152 AuConvertStringToUuid (
153 char *InString,
154 char *UuidBuffer)
155 {
156 UINT32 i;

159 if (!InString || !UuidBuffer)
160 {
161 return (AE_BAD_PARAMETER);
162 }

164 for (i = 0; i < UUID_BUFFER_LENGTH; i++)
165 {
166 UuidBuffer[i] = (char) (UtHexCharToValue (InString[Gbl_MapToUuidOffset[
167 UuidBuffer[i] |= (char) UtHexCharToValue (InString[Gbl_MapToUuidOffset[
168 }

170 return (AE_OK);
171 }

174 /***
175 *
176 * FUNCTION: AuConvertUuidToString
177 *
178 * PARAMETERS: UuidBuffer - 16-byte UUID buffer
179 * OutString - 36-byte formatted UUID string
180 *
181 * RETURN: Status
182 *
183 * DESCRIPTION: Convert 16-byte UUID buffer to 36-byte formatted UUID string
184 * OutString must be 37 bytes to include null terminator.
185 *
186 **/

188 ACPI_STATUS
189 AuConvertUuidToString (
190 char *UuidBuffer,
191 char *OutString)
192 {

new/usr/src/common/acpica/compiler/asluuid.c 4

193 UINT32 i;

196 if (!UuidBuffer || !OutString)
197 {
198 return (AE_BAD_PARAMETER);
199 }

201 for (i = 0; i < UUID_BUFFER_LENGTH; i++)
202 {
203 OutString[Gbl_MapToUuidOffset[i]] = (UINT8) AslHexLookup[(UuidBuffer
204 OutString[Gbl_MapToUuidOffset[i] + 1] = (UINT8) AslHexLookup[UuidBuffer[
205 }

207 /* Insert required hyphens (dashes) */

209 OutString[UUID_HYPHEN1_OFFSET] =
210 OutString[UUID_HYPHEN2_OFFSET] =
211 OutString[UUID_HYPHEN3_OFFSET] =
212 OutString[UUID_HYPHEN4_OFFSET] = ’-’;

214 OutString[UUID_STRING_LENGTH] = 0; /* Null terminate */
215 return (AE_OK);
216 }

new/usr/src/common/acpica/compiler/aslwalks.c 1

**
 20946 Thu Dec 26 13:48:36 2013
new/usr/src/common/acpica/compiler/aslwalks.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aslwalks.c - Miscellaneous analytical parse tree walks
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"
47 #include "acparser.h"
48 #include "amlcode.h"

51 #define _COMPONENT ACPI_COMPILER
52 ACPI_MODULE_NAME ("aslwalks")

55 /***
56 *
57 * FUNCTION: AnMethodTypingWalkEnd
58 *
59 * PARAMETERS: ASL_WALK_CALLBACK
60 *

new/usr/src/common/acpica/compiler/aslwalks.c 2

61 * RETURN: Status
62 *
63 * DESCRIPTION: Ascending callback for typing walk. Complete the method
64 * return analysis. Check methods for:
65 * 1) Initialized local variables
66 * 2) Valid arguments
67 * 3) Return types
68 *
69 **/

71 ACPI_STATUS
72 AnMethodTypingWalkEnd (
73 ACPI_PARSE_OBJECT *Op,
74 UINT32 Level,
75 void *Context)
76 {
77 UINT32 ThisNodeBtype;

80 switch (Op->Asl.ParseOpcode)
81 {
82 case PARSEOP_METHOD:

84 Op->Asl.CompileFlags |= NODE_METHOD_TYPED;
85 break;

87 case PARSEOP_RETURN:

89 if ((Op->Asl.Child) &&
90 (Op->Asl.Child->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG))
91 {
92 ThisNodeBtype = AnGetBtype (Op->Asl.Child);

94 if ((Op->Asl.Child->Asl.ParseOpcode == PARSEOP_METHODCALL) &&
95 (ThisNodeBtype == (ACPI_UINT32_MAX -1)))
96 {
97 /*
98 * The called method is untyped at this time (typically a
99 * forward reference).
100 *
101 * Check for a recursive method call first.
102 */
103 if (Op->Asl.ParentMethod != Op->Asl.Child->Asl.Node->Op)
104 {
105 /* We must type the method here */

107 TrWalkParseTree (Op->Asl.Child->Asl.Node->Op,
108 ASL_WALK_VISIT_UPWARD, NULL,
109 AnMethodTypingWalkEnd, NULL);

111 ThisNodeBtype = AnGetBtype (Op->Asl.Child);
112 }
113 }

115 /* Returns a value, save the value type */

117 if (Op->Asl.ParentMethod)
118 {
119 Op->Asl.ParentMethod->Asl.AcpiBtype |= ThisNodeBtype;
120 }
121 }
122 break;

124 default:

126 break;

new/usr/src/common/acpica/compiler/aslwalks.c 3

127 }

129 return (AE_OK);
130 }

133 /***
134 *
135 * FUNCTION: AnOperandTypecheckWalkEnd
136 *
137 * PARAMETERS: ASL_WALK_CALLBACK
138 *
139 * RETURN: Status
140 *
141 * DESCRIPTION: Ascending callback for analysis walk. Complete method
142 * return analysis.
143 *
144 **/

146 ACPI_STATUS
147 AnOperandTypecheckWalkEnd (
148 ACPI_PARSE_OBJECT *Op,
149 UINT32 Level,
150 void *Context)
151 {
152 const ACPI_OPCODE_INFO *OpInfo;
153 UINT32 RuntimeArgTypes;
154 UINT32 RuntimeArgTypes2;
155 UINT32 RequiredBtypes;
156 UINT32 ThisNodeBtype;
157 UINT32 CommonBtypes;
158 UINT32 OpcodeClass;
159 ACPI_PARSE_OBJECT *ArgOp;
160 UINT32 ArgType;

163 switch (Op->Asl.AmlOpcode)
164 {
165 case AML_RAW_DATA_BYTE:
166 case AML_RAW_DATA_WORD:
167 case AML_RAW_DATA_DWORD:
168 case AML_RAW_DATA_QWORD:
169 case AML_RAW_DATA_BUFFER:
170 case AML_RAW_DATA_CHAIN:
171 case AML_PACKAGE_LENGTH:
172 case AML_UNASSIGNED_OPCODE:
173 case AML_DEFAULT_ARG_OP:

175 /* Ignore the internal (compiler-only) AML opcodes */

177 return (AE_OK);

179 default:

181 break;
182 }

184 OpInfo = AcpiPsGetOpcodeInfo (Op->Asl.AmlOpcode);
185 if (!OpInfo)
186 {
187 return (AE_OK);
188 }

190 ArgOp = Op->Asl.Child;
191 RuntimeArgTypes = OpInfo->RuntimeArgs;
192 OpcodeClass = OpInfo->Class;

new/usr/src/common/acpica/compiler/aslwalks.c 4

194 #ifdef ASL_ERROR_NAMED_OBJECT_IN_WHILE
195 /*
196 * Update 11/2008: In practice, we can’t perform this check. A simple
197 * analysis is not sufficient. Also, it can cause errors when compiling
198 * disassembled code because of the way Switch operators are implemented
199 * (a While(One) loop with a named temp variable created within.)
200 */

202 /*
203 * If we are creating a named object, check if we are within a while loop
204 * by checking if the parent is a WHILE op. This is a simple analysis, but
205 * probably sufficient for many cases.
206 *
207 * Allow Scope(), Buffer(), and Package().
208 */
209 if (((OpcodeClass == AML_CLASS_NAMED_OBJECT) && (Op->Asl.AmlOpcode != AML_SC
210 ((OpcodeClass == AML_CLASS_CREATE) && (OpInfo->Flags & AML_NSNODE)))
211 {
212 if (Op->Asl.Parent->Asl.AmlOpcode == AML_WHILE_OP)
213 {
214 AslError (ASL_ERROR, ASL_MSG_NAMED_OBJECT_IN_WHILE, Op, NULL);
215 }
216 }
217 #endif

219 /*
220 * Special case for control opcodes IF/RETURN/WHILE since they
221 * have no runtime arg list (at this time)
222 */
223 switch (Op->Asl.AmlOpcode)
224 {
225 case AML_IF_OP:
226 case AML_WHILE_OP:
227 case AML_RETURN_OP:

229 if (ArgOp->Asl.ParseOpcode == PARSEOP_METHODCALL)
230 {
231 /* Check for an internal method */

233 if (AnIsInternalMethod (ArgOp))
234 {
235 return (AE_OK);
236 }

238 /* The lone arg is a method call, check it */

240 RequiredBtypes = AnMapArgTypeToBtype (ARGI_INTEGER);
241 if (Op->Asl.AmlOpcode == AML_RETURN_OP)
242 {
243 RequiredBtypes = 0xFFFFFFFF;
244 }

246 ThisNodeBtype = AnGetBtype (ArgOp);
247 if (ThisNodeBtype == ACPI_UINT32_MAX)
248 {
249 return (AE_OK);
250 }
251 AnCheckMethodReturnValue (Op, OpInfo, ArgOp,
252 RequiredBtypes, ThisNodeBtype);
253 }
254 return (AE_OK);

256 default:

258 break;

new/usr/src/common/acpica/compiler/aslwalks.c 5

259 }

261 /* Ignore the non-executable opcodes */

263 if (RuntimeArgTypes == ARGI_INVALID_OPCODE)
264 {
265 return (AE_OK);
266 }

268 switch (OpcodeClass)
269 {
270 case AML_CLASS_EXECUTE:
271 case AML_CLASS_CREATE:
272 case AML_CLASS_CONTROL:
273 case AML_CLASS_RETURN_VALUE:

275 /* TBD: Change class or fix typechecking for these */

277 if ((Op->Asl.AmlOpcode == AML_BUFFER_OP) ||
278 (Op->Asl.AmlOpcode == AML_PACKAGE_OP) ||
279 (Op->Asl.AmlOpcode == AML_VAR_PACKAGE_OP))
280 {
281 break;
282 }

284 /* Reverse the runtime argument list */

286 RuntimeArgTypes2 = 0;
287 while ((ArgType = GET_CURRENT_ARG_TYPE (RuntimeArgTypes)))
288 {
289 RuntimeArgTypes2 <<= ARG_TYPE_WIDTH;
290 RuntimeArgTypes2 |= ArgType;
291 INCREMENT_ARG_LIST (RuntimeArgTypes);
292 }

294 while ((ArgType = GET_CURRENT_ARG_TYPE (RuntimeArgTypes2)))
295 {
296 RequiredBtypes = AnMapArgTypeToBtype (ArgType);

298 ThisNodeBtype = AnGetBtype (ArgOp);
299 if (ThisNodeBtype == ACPI_UINT32_MAX)
300 {
301 goto NextArgument;
302 }

304 /* Examine the arg based on the required type of the arg */

306 switch (ArgType)
307 {
308 case ARGI_TARGETREF:

310 if (ArgOp->Asl.ParseOpcode == PARSEOP_ZERO)
311 {
312 /* ZERO is the placeholder for "don’t store result" */

314 ThisNodeBtype = RequiredBtypes;
315 break;
316 }

318 if (ArgOp->Asl.ParseOpcode == PARSEOP_INTEGER)
319 {
320 /*
321 * This is the case where an original reference to a resourc
322 * descriptor field has been replaced by an (Integer) offset
323 * These named fields are supported at compile-time only;
324 * the names are not passed to the interpreter (via the AML)

new/usr/src/common/acpica/compiler/aslwalks.c 6

325 */
326 if ((ArgOp->Asl.Node->Type == ACPI_TYPE_LOCAL_RESOURCE_FIELD
327 (ArgOp->Asl.Node->Type == ACPI_TYPE_LOCAL_RESOURCE))
328 {
329 AslError (ASL_ERROR, ASL_MSG_RESOURCE_FIELD, ArgOp, NULL
330 }
331 else
332 {
333 AslError (ASL_ERROR, ASL_MSG_INVALID_TYPE, ArgOp, NULL);
334 }
335 break;
336 }

338 if ((ArgOp->Asl.ParseOpcode == PARSEOP_METHODCALL) ||
339 (ArgOp->Asl.ParseOpcode == PARSEOP_DEREFOF))
340 {
341 break;
342 }

344 ThisNodeBtype = RequiredBtypes;
345 break;

348 case ARGI_REFERENCE: /* References */
349 case ARGI_INTEGER_REF:
350 case ARGI_OBJECT_REF:
351 case ARGI_DEVICE_REF:

353 switch (ArgOp->Asl.ParseOpcode)
354 {
355 case PARSEOP_LOCAL0:
356 case PARSEOP_LOCAL1:
357 case PARSEOP_LOCAL2:
358 case PARSEOP_LOCAL3:
359 case PARSEOP_LOCAL4:
360 case PARSEOP_LOCAL5:
361 case PARSEOP_LOCAL6:
362 case PARSEOP_LOCAL7:

364 /* TBD: implement analysis of current value (type) of the lo
365 /* For now, just treat any local as a typematch */

367 /*ThisNodeBtype = RequiredBtypes;*/
368 break;

370 case PARSEOP_ARG0:
371 case PARSEOP_ARG1:
372 case PARSEOP_ARG2:
373 case PARSEOP_ARG3:
374 case PARSEOP_ARG4:
375 case PARSEOP_ARG5:
376 case PARSEOP_ARG6:

378 /* Hard to analyze argument types, sow we won’t */
379 /* For now, just treat any arg as a typematch */

381 /* ThisNodeBtype = RequiredBtypes; */
382 break;

384 case PARSEOP_DEBUG:

386 break;

388 case PARSEOP_REFOF:
389 case PARSEOP_INDEX:
390 default:

new/usr/src/common/acpica/compiler/aslwalks.c 7

392 break;

394 }
395 break;

397 case ARGI_INTEGER:
398 default:

400 break;
401 }

404 CommonBtypes = ThisNodeBtype & RequiredBtypes;

406 if (ArgOp->Asl.ParseOpcode == PARSEOP_METHODCALL)
407 {
408 if (AnIsInternalMethod (ArgOp))
409 {
410 return (AE_OK);
411 }

413 /* Check a method call for a valid return value */

415 AnCheckMethodReturnValue (Op, OpInfo, ArgOp,
416 RequiredBtypes, ThisNodeBtype);
417 }

419 /*
420 * Now check if the actual type(s) match at least one
421 * bit to the required type
422 */
423 else if (!CommonBtypes)
424 {
425 /* No match -- this is a type mismatch error */

427 AnFormatBtype (StringBuffer, ThisNodeBtype);
428 AnFormatBtype (StringBuffer2, RequiredBtypes);

430 sprintf (MsgBuffer, "[%s] found, %s operator requires [%s]",
431 StringBuffer, OpInfo->Name, StringBuffer2);

433 AslError (ASL_ERROR, ASL_MSG_INVALID_TYPE, ArgOp, MsgBuffer);
434 }

436 NextArgument:
437 ArgOp = ArgOp->Asl.Next;
438 INCREMENT_ARG_LIST (RuntimeArgTypes2);
439 }
440 break;

442 default:

444 break;
445 }

447 return (AE_OK);
448 }

451 /***
452 *
453 * FUNCTION: AnOtherSemanticAnalysisWalkBegin
454 *
455 * PARAMETERS: ASL_WALK_CALLBACK
456 *

new/usr/src/common/acpica/compiler/aslwalks.c 8

457 * RETURN: Status
458 *
459 * DESCRIPTION: Descending callback for the analysis walk. Checks for
460 * miscellaneous issues in the code.
461 *
462 **/

464 ACPI_STATUS
465 AnOtherSemanticAnalysisWalkBegin (
466 ACPI_PARSE_OBJECT *Op,
467 UINT32 Level,
468 void *Context)
469 {
470 ACPI_PARSE_OBJECT *ArgNode;
471 ACPI_PARSE_OBJECT *PrevArgNode = NULL;
472 const ACPI_OPCODE_INFO *OpInfo;
473 ACPI_NAMESPACE_NODE *Node;

476 OpInfo = AcpiPsGetOpcodeInfo (Op->Asl.AmlOpcode);

478 /*
479 * Determine if an execution class operator actually does something by
480 * checking if it has a target and/or the function return value is used.
481 * (Target is optional, so a standalone statement can actually do nothing.)
482 */
483 if ((OpInfo->Class == AML_CLASS_EXECUTE) &&
484 (OpInfo->Flags & AML_HAS_RETVAL) &&
485 (!AnIsResultUsed (Op)))
486 {
487 if (OpInfo->Flags & AML_HAS_TARGET)
488 {
489 /*
490 * Find the target node, it is always the last child. If the traget
491 * is not specified in the ASL, a default node of type Zero was
492 * created by the parser.
493 */
494 ArgNode = Op->Asl.Child;
495 while (ArgNode->Asl.Next)
496 {
497 PrevArgNode = ArgNode;
498 ArgNode = ArgNode->Asl.Next;
499 }

501 /* Divide() is the only weird case, it has two targets */

503 if (Op->Asl.AmlOpcode == AML_DIVIDE_OP)
504 {
505 if ((ArgNode->Asl.ParseOpcode == PARSEOP_ZERO) &&
506 (PrevArgNode) &&
507 (PrevArgNode->Asl.ParseOpcode == PARSEOP_ZERO))
508 {
509 AslError (ASL_ERROR, ASL_MSG_RESULT_NOT_USED,
510 Op, Op->Asl.ExternalName);
511 }
512 }
513 else if (ArgNode->Asl.ParseOpcode == PARSEOP_ZERO)
514 {
515 AslError (ASL_ERROR, ASL_MSG_RESULT_NOT_USED,
516 Op, Op->Asl.ExternalName);
517 }
518 }
519 else
520 {
521 /*
522 * Has no target and the result is not used. Only a couple opcodes

new/usr/src/common/acpica/compiler/aslwalks.c 9

523 * can have this combination.
524 */
525 switch (Op->Asl.ParseOpcode)
526 {
527 case PARSEOP_ACQUIRE:
528 case PARSEOP_WAIT:
529 case PARSEOP_LOADTABLE:

531 break;

533 default:

535 AslError (ASL_ERROR, ASL_MSG_RESULT_NOT_USED,
536 Op, Op->Asl.ExternalName);
537 break;
538 }
539 }
540 }

543 /*
544 * Semantic checks for individual ASL operators
545 */
546 switch (Op->Asl.ParseOpcode)
547 {
548 case PARSEOP_ACQUIRE:
549 case PARSEOP_WAIT:
550 /*
551 * Emit a warning if the timeout parameter for these operators is not
552 * ACPI_WAIT_FOREVER, and the result value from the operator is not
553 * checked, meaning that a timeout could happen, but the code
554 * would not know about it.
555 */

557 /* First child is the namepath, 2nd child is timeout */

559 ArgNode = Op->Asl.Child;
560 ArgNode = ArgNode->Asl.Next;

562 /*
563 * Check for the WAIT_FOREVER case - defined by the ACPI spec to be
564 * 0xFFFF or greater
565 */
566 if (((ArgNode->Asl.ParseOpcode == PARSEOP_WORDCONST) ||
567 (ArgNode->Asl.ParseOpcode == PARSEOP_INTEGER)) &&
568 (ArgNode->Asl.Value.Integer >= (UINT64) ACPI_WAIT_FOREVER))
569 {
570 break;
571 }

573 /*
574 * The operation could timeout. If the return value is not used
575 * (indicates timeout occurred), issue a warning
576 */
577 if (!AnIsResultUsed (Op))
578 {
579 AslError (ASL_WARNING, ASL_MSG_TIMEOUT, ArgNode,
580 Op->Asl.ExternalName);
581 }
582 break;

584 case PARSEOP_CREATEFIELD:
585 /*
586 * Check for a zero Length (NumBits) operand. NumBits is the 3rd operand
587 */
588 ArgNode = Op->Asl.Child;

new/usr/src/common/acpica/compiler/aslwalks.c 10

589 ArgNode = ArgNode->Asl.Next;
590 ArgNode = ArgNode->Asl.Next;

592 if ((ArgNode->Asl.ParseOpcode == PARSEOP_ZERO) ||
593 ((ArgNode->Asl.ParseOpcode == PARSEOP_INTEGER) &&
594 (ArgNode->Asl.Value.Integer == 0)))
595 {
596 AslError (ASL_ERROR, ASL_MSG_NON_ZERO, ArgNode, NULL);
597 }
598 break;

600 case PARSEOP_CONNECTION:
601 /*
602 * Ensure that the referenced operation region has the correct SPACE_ID.
603 * From the grammar/parser, we know the parent is a FIELD definition.
604 */
605 ArgNode = Op->Asl.Parent; /* Field definition */
606 ArgNode = ArgNode->Asl.Child; /* First child is the OpRegion Name */
607 Node = ArgNode->Asl.Node; /* OpRegion namespace node */

609 ArgNode = Node->Op; /* OpRegion definition */
610 ArgNode = ArgNode->Asl.Child; /* First child is the OpRegion Name */
611 ArgNode = ArgNode->Asl.Next; /* Next peer is the SPACE_ID (what we wa

613 /*
614 * The Connection() operator is only valid for the following operation
615 * region SpaceIds: GeneralPurposeIo and GenericSerialBus.
616 */
617 if ((ArgNode->Asl.Value.Integer != ACPI_ADR_SPACE_GPIO) &&
618 (ArgNode->Asl.Value.Integer != ACPI_ADR_SPACE_GSBUS))
619 {
620 AslError (ASL_ERROR, ASL_MSG_CONNECTION_INVALID, Op, NULL);
621 }
622 break;

624 case PARSEOP_FIELD:
625 /*
626 * Ensure that fields for GeneralPurposeIo and GenericSerialBus
627 * contain at least one Connection() operator
628 */
629 ArgNode = Op->Asl.Child; /* 1st child is the OpRegion Name */
630 Node = ArgNode->Asl.Node; /* OpRegion namespace node */
631 if (!Node)
632 {
633 break;
634 }

636 ArgNode = Node->Op; /* OpRegion definition */
637 ArgNode = ArgNode->Asl.Child; /* First child is the OpRegion Name */
638 ArgNode = ArgNode->Asl.Next; /* Next peer is the SPACE_ID (what we wa

640 /* We are only interested in GeneralPurposeIo and GenericSerialBus */

642 if ((ArgNode->Asl.Value.Integer != ACPI_ADR_SPACE_GPIO) &&
643 (ArgNode->Asl.Value.Integer != ACPI_ADR_SPACE_GSBUS))
644 {
645 break;
646 }

648 ArgNode = Op->Asl.Child; /* 1st child is the OpRegion Name */
649 ArgNode = ArgNode->Asl.Next; /* AccessType */
650 ArgNode = ArgNode->Asl.Next; /* LockRule */
651 ArgNode = ArgNode->Asl.Next; /* UpdateRule */
652 ArgNode = ArgNode->Asl.Next; /* Start of FieldUnitList */

654 /* Walk the FieldUnitList */

new/usr/src/common/acpica/compiler/aslwalks.c 11

656 while (ArgNode)
657 {
658 if (ArgNode->Asl.ParseOpcode == PARSEOP_CONNECTION)
659 {
660 break;
661 }
662 else if (ArgNode->Asl.ParseOpcode == PARSEOP_NAMESEG)
663 {
664 AslError (ASL_ERROR, ASL_MSG_CONNECTION_MISSING, ArgNode, NULL);
665 break;
666 }

668 ArgNode = ArgNode->Asl.Next;
669 }
670 break;

672 default:

674 break;
675 }

677 return (AE_OK);
678 }

new/usr/src/common/acpica/compiler/aslxref.c 1

**
 27654 Thu Dec 26 13:48:36 2013
new/usr/src/common/acpica/compiler/aslxref.c
update to acpica-unix2-20131218
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: aslxref - Namespace cross-reference
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "aslcompiler.h"
46 #include "aslcompiler.y.h"
47 #include "acparser.h"
48 #include "amlcode.h"
49 #include "acnamesp.h"
50 #include "acdispat.h"

53 #define _COMPONENT ACPI_COMPILER
54 ACPI_MODULE_NAME ("aslxref")

56 /* Local prototypes */

58 static ACPI_STATUS
59 XfNamespaceLocateBegin (
60 ACPI_PARSE_OBJECT *Op,

new/usr/src/common/acpica/compiler/aslxref.c 2

61 UINT32 Level,
62 void *Context);

64 static ACPI_STATUS
65 XfNamespaceLocateEnd (
66 ACPI_PARSE_OBJECT *Op,
67 UINT32 Level,
68 void *Context);

70 static BOOLEAN
71 XfObjectExists (
72 char *Name);

74 static ACPI_STATUS
75 XfCompareOneNamespaceObject (
76 ACPI_HANDLE ObjHandle,
77 UINT32 Level,
78 void *Context,
79 void **ReturnValue);

81 static void
82 XfCheckFieldRange (
83 ACPI_PARSE_OBJECT *Op,
84 UINT32 RegionBitLength,
85 UINT32 FieldBitOffset,
86 UINT32 FieldBitLength,
87 UINT32 AccessBitWidth);

90 /***
91 *
92 * FUNCTION: XfCrossReferenceNamespace
93 *
94 * PARAMETERS: None
95 *
96 * RETURN: Status
97 *
98 * DESCRIPTION: Perform a cross reference check of the parse tree against the
99 * namespace. Every named referenced within the parse tree
100 * should be get resolved with a namespace lookup. If not, the
101 * original reference in the ASL code is invalid -- i.e., refers
102 * to a non-existent object.
103 *
104 * NOTE: The ASL "External" operator causes the name to be inserted into the
105 * namespace so that references to the external name will be resolved
106 * correctly here.
107 *
108 **/

110 ACPI_STATUS
111 XfCrossReferenceNamespace (
112 void)
113 {
114 ACPI_WALK_STATE *WalkState;

117 DbgPrint (ASL_DEBUG_OUTPUT, "\nCross referencing namespace\n\n");

119 /*
120 * Create a new walk state for use when looking up names
121 * within the namespace (Passed as context to the callbacks)
122 */
123 WalkState = AcpiDsCreateWalkState (0, NULL, NULL, NULL);
124 if (!WalkState)
125 {
126 return (AE_NO_MEMORY);

new/usr/src/common/acpica/compiler/aslxref.c 3

127 }

129 /* Walk the entire parse tree */

131 TrWalkParseTree (RootNode, ASL_WALK_VISIT_TWICE, XfNamespaceLocateBegin,
132 XfNamespaceLocateEnd, WalkState);
133 return (AE_OK);
134 }

137 /***
138 *
139 * FUNCTION: XfObjectExists
140 *
141 * PARAMETERS: Name - 4 char ACPI name
142 *
143 * RETURN: TRUE if name exists in namespace
144 *
145 * DESCRIPTION: Walk the namespace to find an object
146 *
147 **/

149 static BOOLEAN
150 XfObjectExists (
151 char *Name)
152 {
153 ACPI_STATUS Status;

156 /* Walk entire namespace from the supplied root */

158 Status = AcpiNsWalkNamespace (ACPI_TYPE_ANY, ACPI_ROOT_OBJECT,
159 ACPI_UINT32_MAX, FALSE, XfCompareOneNamespaceObject, NULL,
160 Name, NULL);
161 if (Status == AE_CTRL_TRUE)
162 {
163 /* At least one instance of the name was found */

165 return (TRUE);
166 }

168 return (FALSE);
169 }

172 /***
173 *
174 * FUNCTION: XfCompareOneNamespaceObject
175 *
176 * PARAMETERS: ACPI_WALK_CALLBACK
177 *
178 * RETURN: Status
179 *
180 * DESCRIPTION: Compare name of one object.
181 *
182 **/

184 static ACPI_STATUS
185 XfCompareOneNamespaceObject (
186 ACPI_HANDLE ObjHandle,
187 UINT32 Level,
188 void *Context,
189 void **ReturnValue)
190 {
191 ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) ObjHandle;

new/usr/src/common/acpica/compiler/aslxref.c 4

194 /* Simply check the name */

196 if (*((UINT32 *) (Context)) == Node->Name.Integer)
197 {
198 /* Abort walk if we found one instance */

200 return (AE_CTRL_TRUE);
201 }

203 return (AE_OK);
204 }

207 /***
208 *
209 * FUNCTION: XfCheckFieldRange
210 *
211 * PARAMETERS: RegionBitLength - Length of entire parent region
212 * FieldBitOffset - Start of the field unit (within region)
213 * FieldBitLength - Entire length of field unit
214 * AccessBitWidth - Access width of the field unit
215 *
216 * RETURN: None
217 *
218 * DESCRIPTION: Check one field unit to make sure it fits in the parent
219 * op region.
220 *
221 * Note: AccessBitWidth must be either 8,16,32, or 64
222 *
223 **/

225 static void
226 XfCheckFieldRange (
227 ACPI_PARSE_OBJECT *Op,
228 UINT32 RegionBitLength,
229 UINT32 FieldBitOffset,
230 UINT32 FieldBitLength,
231 UINT32 AccessBitWidth)
232 {
233 UINT32 FieldEndBitOffset;

236 /*
237 * Check each field unit against the region size. The entire
238 * field unit (start offset plus length) must fit within the
239 * region.
240 */
241 FieldEndBitOffset = FieldBitOffset + FieldBitLength;

243 if (FieldEndBitOffset > RegionBitLength)
244 {
245 /* Field definition itself is beyond the end-of-region */

247 AslError (ASL_ERROR, ASL_MSG_FIELD_UNIT_OFFSET, Op, NULL);
248 return;
249 }

251 /*
252 * Now check that the field plus AccessWidth doesn’t go beyond
253 * the end-of-region. Assumes AccessBitWidth is a power of 2
254 */
255 FieldEndBitOffset = ACPI_ROUND_UP (FieldEndBitOffset, AccessBitWidth);

257 if (FieldEndBitOffset > RegionBitLength)
258 {

new/usr/src/common/acpica/compiler/aslxref.c 5

259 /* Field definition combined with the access is beyond EOR */

261 AslError (ASL_ERROR, ASL_MSG_FIELD_UNIT_ACCESS_WIDTH, Op, NULL);
262 }
263 }

265 /***
266 *
267 * FUNCTION: XfNamespaceLocateBegin
268 *
269 * PARAMETERS: ASL_WALK_CALLBACK
270 *
271 * RETURN: Status
272 *
273 * DESCRIPTION: Descending callback used during cross-reference. For named
274 * object references, attempt to locate the name in the
275 * namespace.
276 *
277 * NOTE: ASL references to named fields within resource descriptors are
278 * resolved to integer values here. Therefore, this step is an
279 * important part of the code generation. We don’t know that the
280 * name refers to a resource descriptor until now.
281 *
282 **/

284 static ACPI_STATUS
285 XfNamespaceLocateBegin (
286 ACPI_PARSE_OBJECT *Op,
287 UINT32 Level,
288 void *Context)
289 {
290 ACPI_WALK_STATE *WalkState = (ACPI_WALK_STATE *) Context;
291 ACPI_NAMESPACE_NODE *Node;
292 ACPI_STATUS Status;
293 ACPI_OBJECT_TYPE ObjectType;
294 char *Path;
295 UINT8 PassedArgs;
296 ACPI_PARSE_OBJECT *NextOp;
297 ACPI_PARSE_OBJECT *OwningOp;
298 ACPI_PARSE_OBJECT *SpaceIdOp;
299 UINT32 MinimumLength;
300 UINT32 Offset;
301 UINT32 FieldBitLength;
302 UINT32 TagBitLength;
303 UINT8 Message = 0;
304 const ACPI_OPCODE_INFO *OpInfo;
305 UINT32 Flags;

308 ACPI_FUNCTION_TRACE_PTR (XfNamespaceLocateBegin, Op);

310 /*
311 * If this node is the actual declaration of a name
312 * [such as the XXXX name in "Method (XXXX)"],
313 * we are not interested in it here. We only care about names that are
314 * references to other objects within the namespace and the parent objects
315 * of name declarations
316 */
317 if (Op->Asl.CompileFlags & NODE_IS_NAME_DECLARATION)
318 {
319 return_ACPI_STATUS (AE_OK);
320 }

322 /* We are only interested in opcodes that have an associated name */

324 OpInfo = AcpiPsGetOpcodeInfo (Op->Asl.AmlOpcode);

new/usr/src/common/acpica/compiler/aslxref.c 6

326 if ((!(OpInfo->Flags & AML_NAMED)) &&
327 (!(OpInfo->Flags & AML_CREATE)) &&
328 (Op->Asl.ParseOpcode != PARSEOP_NAMESTRING) &&
329 (Op->Asl.ParseOpcode != PARSEOP_NAMESEG) &&
330 (Op->Asl.ParseOpcode != PARSEOP_METHODCALL))
331 {
332 return_ACPI_STATUS (AE_OK);
333 }

335 /*
336 * One special case: CondRefOf operator - we don’t care if the name exists
337 * or not at this point, just ignore it, the point of the operator is to
338 * determine if the name exists at runtime.
339 */
340 if ((Op->Asl.Parent) &&
341 (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_CONDREFOF))
342 {
343 return_ACPI_STATUS (AE_OK);
344 }

346 /*
347 * We must enable the "search-to-root" for single NameSegs, but
348 * we have to be very careful about opening up scopes
349 */
350 Flags = ACPI_NS_SEARCH_PARENT;
351 if ((Op->Asl.ParseOpcode == PARSEOP_NAMESTRING) ||
352 (Op->Asl.ParseOpcode == PARSEOP_NAMESEG) ||
353 (Op->Asl.ParseOpcode == PARSEOP_METHODCALL))
354 {
355 /*
356 * These are name references, do not push the scope stack
357 * for them.
358 */
359 Flags |= ACPI_NS_DONT_OPEN_SCOPE;
360 }

362 /* Get the NamePath from the appropriate place */

364 if (OpInfo->Flags & AML_NAMED)
365 {
366 /* For nearly all NAMED operators, the name reference is the first child

368 Path = Op->Asl.Child->Asl.Value.String;
369 if (Op->Asl.AmlOpcode == AML_ALIAS_OP)
370 {
371 /*
372 * ALIAS is the only oddball opcode, the name declaration
373 * (alias name) is the second operand
374 */
375 Path = Op->Asl.Child->Asl.Next->Asl.Value.String;
376 }
377 }
378 else if (OpInfo->Flags & AML_CREATE)
379 {
380 /* Name must appear as the last parameter */

382 NextOp = Op->Asl.Child;
383 while (!(NextOp->Asl.CompileFlags & NODE_IS_NAME_DECLARATION))
384 {
385 NextOp = NextOp->Asl.Next;
386 }
387 Path = NextOp->Asl.Value.String;
388 }
389 else
390 {

new/usr/src/common/acpica/compiler/aslxref.c 7

391 Path = Op->Asl.Value.String;
392 }

394 ObjectType = AslMapNamedOpcodeToDataType (Op->Asl.AmlOpcode);
395 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
396 "Type=%s\n", AcpiUtGetTypeName (ObjectType)));

398 /*
399 * Lookup the name in the namespace. Name must exist at this point, or it
400 * is an invalid reference.
401 *
402 * The namespace is also used as a lookup table for references to resource
403 * descriptors and the fields within them.
404 */
405 Gbl_NsLookupCount++;

407 Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ObjectType,
408 ACPI_IMODE_EXECUTE, Flags, WalkState, &(Node));
409 if (ACPI_FAILURE (Status))
410 {
411 if (Status == AE_NOT_FOUND)
412 {
413 /*
414 * We didn’t find the name reference by path -- we can qualify this
415 * a little better before we print an error message
416 */
417 if (strlen (Path) == ACPI_NAME_SIZE)
418 {
419 /* A simple, one-segment ACPI name */

421 if (XfObjectExists (Path))
422 {
423 /*
424 * There exists such a name, but we couldn’t get to it
425 * from this scope
426 */
427 AslError (ASL_ERROR, ASL_MSG_NOT_REACHABLE, Op,
428 Op->Asl.ExternalName);
429 }
430 else
431 {
432 /* The name doesn’t exist, period */

434 AslError (ASL_ERROR, ASL_MSG_NOT_EXIST,
435 Op, Op->Asl.ExternalName);
436 }
437 }
438 else
439 {
440 /* Check for a fully qualified path */

442 if (Path[0] == AML_ROOT_PREFIX)
443 {
444 /* Gave full path, the object does not exist */

446 AslError (ASL_ERROR, ASL_MSG_NOT_EXIST, Op,
447 Op->Asl.ExternalName);
448 }
449 else
450 {
451 /*
452 * We can’t tell whether it doesn’t exist or just
453 * can’t be reached.
454 */
455 AslError (ASL_ERROR, ASL_MSG_NOT_FOUND, Op,
456 Op->Asl.ExternalName);

new/usr/src/common/acpica/compiler/aslxref.c 8

457 }
458 }

460 Status = AE_OK;
461 }

463 return_ACPI_STATUS (Status);
464 }

466 /* Check for a reference vs. name declaration */

468 if (!(OpInfo->Flags & AML_NAMED) &&
469 !(OpInfo->Flags & AML_CREATE))
470 {
471 /* This node has been referenced, mark it for reference check */

473 Node->Flags |= ANOBJ_IS_REFERENCED;
474 }

476 /* Attempt to optimize the NamePath */

478 OptOptimizeNamePath (Op, OpInfo->Flags, WalkState, Path, Node);

480 /*
481 * 1) Dereference an alias (A name reference that is an alias)
482 * Aliases are not nested, the alias always points to the final object
483 */
484 if ((Op->Asl.ParseOpcode != PARSEOP_ALIAS) &&
485 (Node->Type == ACPI_TYPE_LOCAL_ALIAS))
486 {
487 /* This node points back to the original PARSEOP_ALIAS */

489 NextOp = Node->Op;

491 /* The first child is the alias target op */

493 NextOp = NextOp->Asl.Child;

495 /* That in turn points back to original target alias node */

497 if (NextOp->Asl.Node)
498 {
499 Node = NextOp->Asl.Node;
500 }

502 /* Else - forward reference to alias, will be resolved later */
503 }

505 /* 2) Check for a reference to a resource descriptor */

507 if ((Node->Type == ACPI_TYPE_LOCAL_RESOURCE_FIELD) ||
508 (Node->Type == ACPI_TYPE_LOCAL_RESOURCE))
509 {
510 /*
511 * This was a reference to a field within a resource descriptor.
512 * Extract the associated field offset (either a bit or byte
513 * offset depending on the field type) and change the named
514 * reference into an integer for AML code generation
515 */
516 Offset = Node->Value;
517 TagBitLength = Node->Length;

519 /*
520 * If a field is being created, generate the length (in bits) of
521 * the field. Note: Opcodes other than CreateXxxField and Index
522 * can come through here. For other opcodes, we just need to

new/usr/src/common/acpica/compiler/aslxref.c 9

523 * convert the resource tag reference to an integer offset.
524 */
525 switch (Op->Asl.Parent->Asl.AmlOpcode)
526 {
527 case AML_CREATE_FIELD_OP: /* Variable "Length" field, in bits */
528 /*
529 * We know the length operand is an integer constant because
530 * we know that it contains a reference to a resource
531 * descriptor tag.
532 */
533 FieldBitLength = (UINT32) Op->Asl.Next->Asl.Value.Integer;
534 break;

536 case AML_CREATE_BIT_FIELD_OP:

538 FieldBitLength = 1;
539 break;

541 case AML_CREATE_BYTE_FIELD_OP:
542 case AML_INDEX_OP:

544 FieldBitLength = 8;
545 break;

547 case AML_CREATE_WORD_FIELD_OP:

549 FieldBitLength = 16;
550 break;

552 case AML_CREATE_DWORD_FIELD_OP:

554 FieldBitLength = 32;
555 break;

557 case AML_CREATE_QWORD_FIELD_OP:

559 FieldBitLength = 64;
560 break;

562 default:

564 FieldBitLength = 0;
565 break;
566 }

568 /* Check the field length against the length of the resource tag */

570 if (FieldBitLength)
571 {
572 if (TagBitLength < FieldBitLength)
573 {
574 Message = ASL_MSG_TAG_SMALLER;
575 }
576 else if (TagBitLength > FieldBitLength)
577 {
578 Message = ASL_MSG_TAG_LARGER;
579 }

581 if (Message)
582 {
583 sprintf (MsgBuffer, "Size mismatch, Tag: %u bit%s, Field: %u bit
584 TagBitLength, (TagBitLength > 1) ? "s" : "",
585 FieldBitLength, (FieldBitLength > 1) ? "s" : "");

587 AslError (ASL_WARNING, Message, Op, MsgBuffer);
588 }

new/usr/src/common/acpica/compiler/aslxref.c 10

589 }

591 /* Convert the BitOffset to a ByteOffset for certain opcodes */

593 switch (Op->Asl.Parent->Asl.AmlOpcode)
594 {
595 case AML_CREATE_BYTE_FIELD_OP:
596 case AML_CREATE_WORD_FIELD_OP:
597 case AML_CREATE_DWORD_FIELD_OP:
598 case AML_CREATE_QWORD_FIELD_OP:
599 case AML_INDEX_OP:

601 Offset = ACPI_DIV_8 (Offset);
602 break;

604 default:

606 break;
607 }

609 /* Now convert this node to an integer whose value is the field offset *

611 Op->Asl.AmlLength = 0;
612 Op->Asl.ParseOpcode = PARSEOP_INTEGER;
613 Op->Asl.Value.Integer = (UINT64) Offset;
614 Op->Asl.CompileFlags |= NODE_IS_RESOURCE_FIELD;

616 OpcGenerateAmlOpcode (Op);
617 }

619 /* 3) Check for a method invocation */

621 else if ((((Op->Asl.ParseOpcode == PARSEOP_NAMESTRING) || (Op->Asl.ParseOpco
622 (Node->Type == ACPI_TYPE_METHOD) &&
623 (Op->Asl.Parent) &&
624 (Op->Asl.Parent->Asl.ParseOpcode != PARSEOP_METHOD)) ||

626 (Op->Asl.ParseOpcode == PARSEOP_METHODCALL))
627 {
628 /*
629 * A reference to a method within one of these opcodes is not an
630 * invocation of the method, it is simply a reference to the method.
631 */
632 if ((Op->Asl.Parent) &&
633 ((Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_REFOF) ||
634 (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_DEREFOF) ||
635 (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_OBJECTTYPE)))
636 {
637 return_ACPI_STATUS (AE_OK);
638 }
639 /*
640 * There are two types of method invocation:
641 * 1) Invocation with arguments -- the parser recognizes this
642 * as a METHODCALL.
643 * 2) Invocation with no arguments --the parser cannot determine that
644 * this is a method invocation, therefore we have to figure it out
645 * here.
646 */
647 if (Node->Type != ACPI_TYPE_METHOD)
648 {
649 sprintf (MsgBuffer, "%s is a %s",
650 Op->Asl.ExternalName, AcpiUtGetTypeName (Node->Type));

652 AslError (ASL_ERROR, ASL_MSG_NOT_METHOD, Op, MsgBuffer);
653 return_ACPI_STATUS (AE_OK);
654 }

new/usr/src/common/acpica/compiler/aslxref.c 11

656 /* Save the method node in the caller’s op */

658 Op->Asl.Node = Node;
659 if (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_CONDREFOF)
660 {
661 return_ACPI_STATUS (AE_OK);
662 }

664 /*
665 * This is a method invocation, with or without arguments.
666 * Count the number of arguments, each appears as a child
667 * under the parent node
668 */
669 Op->Asl.ParseOpcode = PARSEOP_METHODCALL;
670 UtSetParseOpName (Op);

672 PassedArgs = 0;
673 NextOp = Op->Asl.Child;

675 while (NextOp)
676 {
677 PassedArgs++;
678 NextOp = NextOp->Asl.Next;
679 }

681 if (Node->Value != ASL_EXTERNAL_METHOD)
682 {
683 /*
684 * Check the parsed arguments with the number expected by the
685 * method declaration itself
686 */
687 if (PassedArgs != Node->Value)
688 {
689 sprintf (MsgBuffer, "%s requires %u", Op->Asl.ExternalName,
690 Node->Value);

692 if (PassedArgs < Node->Value)
693 {
694 AslError (ASL_ERROR, ASL_MSG_ARG_COUNT_LO, Op, MsgBuffer);
695 }
696 else
697 {
698 AslError (ASL_ERROR, ASL_MSG_ARG_COUNT_HI, Op, MsgBuffer);
699 }
700 }
701 }
702 }

704 /* 4) Check for an ASL Field definition */

706 else if ((Op->Asl.Parent) &&
707 ((Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_FIELD) ||
708 (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_BANKFIELD)))
709 {
710 /*
711 * Offset checking for fields. If the parent operation region has a
712 * constant length (known at compile time), we can check fields
713 * defined in that region against the region length. This will catch
714 * fields and field units that cannot possibly fit within the region.
715 *
716 * Note: Index fields do not directly reference an operation region,
717 * thus they are not included in this check.
718 */
719 if (Op == Op->Asl.Parent->Asl.Child)
720 {

new/usr/src/common/acpica/compiler/aslxref.c 12

721 /*
722 * This is the first child of the field node, which is
723 * the name of the region. Get the parse node for the
724 * region -- which contains the length of the region.
725 */
726 OwningOp = Node->Op;
727 Op->Asl.Parent->Asl.ExtraValue =
728 ACPI_MUL_8 ((UINT32) OwningOp->Asl.Value.Integer);

730 /* Examine the field access width */

732 switch ((UINT8) Op->Asl.Parent->Asl.Value.Integer)
733 {
734 case AML_FIELD_ACCESS_ANY:
735 case AML_FIELD_ACCESS_BYTE:
736 case AML_FIELD_ACCESS_BUFFER:
737 default:

739 MinimumLength = 1;
740 break;

742 case AML_FIELD_ACCESS_WORD:

744 MinimumLength = 2;
745 break;

747 case AML_FIELD_ACCESS_DWORD:

749 MinimumLength = 4;
750 break;

752 case AML_FIELD_ACCESS_QWORD:

754 MinimumLength = 8;
755 break;
756 }

758 /*
759 * Is the region at least as big as the access width?
760 * Note: DataTableRegions have 0 length
761 */
762 if (((UINT32) OwningOp->Asl.Value.Integer) &&
763 ((UINT32) OwningOp->Asl.Value.Integer < MinimumLength))
764 {
765 AslError (ASL_ERROR, ASL_MSG_FIELD_ACCESS_WIDTH, Op, NULL);
766 }

768 /*
769 * Check EC/CMOS/SMBUS fields to make sure that the correct
770 * access type is used (BYTE for EC/CMOS, BUFFER for SMBUS)
771 */
772 SpaceIdOp = OwningOp->Asl.Child->Asl.Next;
773 switch ((UINT32) SpaceIdOp->Asl.Value.Integer)
774 {
775 case ACPI_ADR_SPACE_EC:
776 case ACPI_ADR_SPACE_CMOS:
777 case ACPI_ADR_SPACE_GPIO:

779 if ((UINT8) Op->Asl.Parent->Asl.Value.Integer != AML_FIELD_ACCES
780 {
781 AslError (ASL_ERROR, ASL_MSG_REGION_BYTE_ACCESS, Op, NULL);
782 }
783 break;

785 case ACPI_ADR_SPACE_SMBUS:
786 case ACPI_ADR_SPACE_IPMI:

new/usr/src/common/acpica/compiler/aslxref.c 13

787 case ACPI_ADR_SPACE_GSBUS:

789 if ((UINT8) Op->Asl.Parent->Asl.Value.Integer != AML_FIELD_ACCES
790 {
791 AslError (ASL_ERROR, ASL_MSG_REGION_BUFFER_ACCESS, Op, NULL)
792 }
793 break;

795 default:

797 /* Nothing to do for other address spaces */

799 break;
800 }
801 }
802 else
803 {
804 /*
805 * This is one element of the field list. Check to make sure
806 * that it does not go beyond the end of the parent operation region
807 *
808 * In the code below:
809 * Op->Asl.Parent->Asl.ExtraValue - Region Length (bits)
810 * Op->Asl.ExtraValue - Field start offset (bits
811 * Op->Asl.Child->Asl.Value.Integer32 - Field length (bits)
812 * Op->Asl.Child->Asl.ExtraValue - Field access width (bits
813 */
814 if (Op->Asl.Parent->Asl.ExtraValue && Op->Asl.Child)
815 {
816 XfCheckFieldRange (Op,
817 Op->Asl.Parent->Asl.ExtraValue,
818 Op->Asl.ExtraValue,
819 (UINT32) Op->Asl.Child->Asl.Value.Integer,
820 Op->Asl.Child->Asl.ExtraValue);
821 }
822 }
823 }

825 Op->Asl.Node = Node;
826 return_ACPI_STATUS (Status);
827 }

830 /***
831 *
832 * FUNCTION: XfNamespaceLocateEnd
833 *
834 * PARAMETERS: ASL_WALK_CALLBACK
835 *
836 * RETURN: Status
837 *
838 * DESCRIPTION: Ascending callback used during cross reference. We only
839 * need to worry about scope management here.
840 *
841 **/

843 static ACPI_STATUS
844 XfNamespaceLocateEnd (
845 ACPI_PARSE_OBJECT *Op,
846 UINT32 Level,
847 void *Context)
848 {
849 ACPI_WALK_STATE *WalkState = (ACPI_WALK_STATE *) Context;
850 const ACPI_OPCODE_INFO *OpInfo;

new/usr/src/common/acpica/compiler/aslxref.c 14

853 ACPI_FUNCTION_TRACE (XfNamespaceLocateEnd);

856 /* We are only interested in opcodes that have an associated name */

858 OpInfo = AcpiPsGetOpcodeInfo (Op->Asl.AmlOpcode);
859 if (!(OpInfo->Flags & AML_NAMED))
860 {
861 return_ACPI_STATUS (AE_OK);
862 }

864 /* Not interested in name references, we did not open a scope for them */

866 if ((Op->Asl.ParseOpcode == PARSEOP_NAMESTRING) ||
867 (Op->Asl.ParseOpcode == PARSEOP_NAMESEG) ||
868 (Op->Asl.ParseOpcode == PARSEOP_METHODCALL))
869 {
870 return_ACPI_STATUS (AE_OK);
871 }

873 /* Pop the scope stack if necessary */

875 if (AcpiNsOpensScope (AslMapNamedOpcodeToDataType (Op->Asl.AmlOpcode)))
876 {

878 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
879 "%s: Popping scope for Op %p\n",
880 AcpiUtGetTypeName (OpInfo->ObjectType), Op));

882 (void) AcpiDsScopeStackPop (WalkState);
883 }

885 return_ACPI_STATUS (AE_OK);
886 }

new/usr/src/common/acpica/compiler/dtcompile.c 1

**
 16440 Thu Dec 26 13:48:36 2013
new/usr/src/common/acpica/compiler/dtcompile.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dtcompile.c - Front-end for data table compiler
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DTCOMPILE_C__
45 #define _DECLARE_DT_GLOBALS

47 #include "aslcompiler.h"
48 #include "dtcompiler.h"

50 #define _COMPONENT DT_COMPILER
51 ACPI_MODULE_NAME ("dtcompile")

53 static char VersionString[9];

56 /* Local prototypes */

58 static ACPI_STATUS
59 DtInitialize (

new/usr/src/common/acpica/compiler/dtcompile.c 2

60 void);

62 static ACPI_STATUS
63 DtCompileDataTable (
64 DT_FIELD **Field);

66 static void
67 DtInsertCompilerIds (
68 DT_FIELD *FieldList);

71 /**
72 *
73 * FUNCTION: DtDoCompile
74 *
75 * PARAMETERS: None
76 *
77 * RETURN: Status
78 *
79 * DESCRIPTION: Main entry point for the data table compiler.
80 *
81 * Note: Assumes Gbl_Files[ASL_FILE_INPUT] is initialized and the file is
82 * open at seek offset zero.
83 *
84 ***/

86 ACPI_STATUS
87 DtDoCompile (
88 void)
89 {
90 ACPI_STATUS Status;
91 UINT8 Event;
92 DT_FIELD *FieldList;

95 /* Initialize globals */

97 Status = DtInitialize ();
98 if (ACPI_FAILURE (Status))
99 {
100 printf ("Error during compiler initialization, 0x%X\n", Status);
101 return (Status);
102 }

104 /* Preprocessor */

106 Event = UtBeginEvent ("Preprocess input file");
107 PrDoPreprocess ();
108 UtEndEvent (Event);

110 if (Gbl_PreprocessOnly)
111 {
112 return (AE_OK);
113 }

115 /*
116 * Scan the input file (file is already open) and
117 * build the parse tree
118 */
119 Event = UtBeginEvent ("Scan and parse input file");
120 FieldList = DtScanFile (Gbl_Files[ASL_FILE_INPUT].Handle);
121 UtEndEvent (Event);

123 /* Did the parse tree get successfully constructed? */

125 if (!FieldList)

new/usr/src/common/acpica/compiler/dtcompile.c 3

126 {
127 /* TBD: temporary error message. Msgs should come from function above */

129 DtError (ASL_ERROR, ASL_MSG_SYNTAX, NULL,
130 "Input file does not appear to be an ASL or data table source file")

132 Status = AE_ERROR;
133 goto CleanupAndExit;
134 }

136 Event = UtBeginEvent ("Compile parse tree");

138 /*
139 * Compile the parse tree
140 */
141 Status = DtCompileDataTable (&FieldList);
142 UtEndEvent (Event);

144 DtFreeFieldList ();

146 if (ACPI_FAILURE (Status))
147 {
148 /* TBD: temporary error message. Msgs should come from function above */

150 DtError (ASL_ERROR, ASL_MSG_SYNTAX, NULL,
151 "Could not compile input file");

153 goto CleanupAndExit;
154 }

156 /* Create/open the binary output file */

158 Gbl_Files[ASL_FILE_AML_OUTPUT].Filename = NULL;
159 Status = FlOpenAmlOutputFile (Gbl_OutputFilenamePrefix);
160 if (ACPI_FAILURE (Status))
161 {
162 goto CleanupAndExit;
163 }

165 /* Write the binary, then the optional hex file */

167 DtOutputBinary (Gbl_RootTable);
168 HxDoHexOutput ();
169 DtWriteTableToListing ();

171 CleanupAndExit:

173 CmCleanupAndExit ();
174 return (Status);
175 }

178 /**
179 *
180 * FUNCTION: DtInitialize
181 *
182 * PARAMETERS: None
183 *
184 * RETURN: Status
185 *
186 * DESCRIPTION: Initialize data table compiler globals. Enables multiple
187 * compiles per invocation.
188 *
189 ***/

191 static ACPI_STATUS

new/usr/src/common/acpica/compiler/dtcompile.c 4

192 DtInitialize (
193 void)
194 {
195 ACPI_STATUS Status;

198 Status = AcpiOsInitialize ();
199 if (ACPI_FAILURE (Status))
200 {
201 return (Status);
202 }

204 Status = AcpiUtInitGlobals ();
205 if (ACPI_FAILURE (Status))
206 {
207 return (Status);
208 }

210 Gbl_FieldList = NULL;
211 Gbl_RootTable = NULL;
212 Gbl_SubtableStack = NULL;

214 sprintf (VersionString, "%X", (UINT32) ACPI_CA_VERSION);
215 return (AE_OK);
216 }

219 /**
220 *
221 * FUNCTION: DtInsertCompilerIds
222 *
223 * PARAMETERS: FieldList - Current field list pointer
224 *
225 * RETURN: None
226 *
227 * DESCRIPTION: Insert the IDs (Name, Version) of the current compiler into
228 * the original ACPI table header.
229 *
230 ***/

232 static void
233 DtInsertCompilerIds (
234 DT_FIELD *FieldList)
235 {
236 DT_FIELD *Next;
237 UINT32 i;

240 /*
241 * Don’t insert current compiler ID if requested. Used for compiler
242 * debug/validation only.
243 */
244 if (Gbl_UseOriginalCompilerId)
245 {
246 return;
247 }

249 /* Walk to the Compiler fields at the end of the header */

251 Next = FieldList;
252 for (i = 0; i < 7; i++)
253 {
254 Next = Next->Next;
255 }

257 Next->Value = ASL_CREATOR_ID;

new/usr/src/common/acpica/compiler/dtcompile.c 5

258 Next->Flags = DT_FIELD_NOT_ALLOCATED;

260 Next = Next->Next;
261 Next->Value = VersionString;
262 Next->Flags = DT_FIELD_NOT_ALLOCATED;
263 }

266 /**
267 *
268 * FUNCTION: DtCompileDataTable
269 *
270 * PARAMETERS: FieldList - Current field list pointer
271 *
272 * RETURN: Status
273 *
274 * DESCRIPTION: Entry point to compile one data table
275 *
276 ***/

278 static ACPI_STATUS
279 DtCompileDataTable (
280 DT_FIELD **FieldList)
281 {
282 ACPI_DMTABLE_DATA *TableData;
283 DT_SUBTABLE *Subtable;
284 char *Signature;
285 ACPI_TABLE_HEADER *AcpiTableHeader;
286 ACPI_STATUS Status;
287 DT_FIELD *RootField = *FieldList;

290 /* Verify that we at least have a table signature and save it */

292 Signature = DtGetFieldValue (*FieldList);
293 if (!Signature)
294 {
295 sprintf (MsgBuffer, "Expected \"%s\"", "Signature");
296 DtNameError (ASL_ERROR, ASL_MSG_INVALID_FIELD_NAME,
297 *FieldList, MsgBuffer);
298 return (AE_ERROR);
299 }

301 Gbl_Signature = UtLocalCalloc (ACPI_STRLEN (Signature) + 1);
302 strcpy (Gbl_Signature, Signature);

304 /*
305 * Handle tables that don’t use the common ACPI table header structure.
306 * Currently, these are the FACS and RSDP. Also check for an OEMx table,
307 * these tables have user-defined contents.
308 */
309 if (ACPI_COMPARE_NAME (Signature, ACPI_SIG_FACS))
310 {
311 Status = DtCompileFacs (FieldList);
312 if (ACPI_FAILURE (Status))
313 {
314 return (Status);
315 }

317 DtSetTableLength ();
318 return (Status);
319 }
320 else if (ACPI_VALIDATE_RSDP_SIG (Signature))
321 {
322 Status = DtCompileRsdp (FieldList);
323 return (Status);

new/usr/src/common/acpica/compiler/dtcompile.c 6

324 }
325 else if (ACPI_COMPARE_NAME (Signature, ACPI_SIG_S3PT))
326 {
327 Status = DtCompileS3pt (FieldList);
328 if (ACPI_FAILURE (Status))
329 {
330 return (Status);
331 }

333 DtSetTableLength ();
334 return (Status);
335 }

337 /*
338 * All other tables must use the common ACPI table header. Insert the
339 * current iASL IDs (name, version), and compile the header now.
340 */
341 DtInsertCompilerIds (*FieldList);

343 Status = DtCompileTable (FieldList, AcpiDmTableInfoHeader,
344 &Gbl_RootTable, TRUE);
345 if (ACPI_FAILURE (Status))
346 {
347 return (Status);
348 }

350 DtPushSubtable (Gbl_RootTable);

352 /* Validate the signature via the ACPI table list */

354 TableData = AcpiDmGetTableData (Signature);
355 if (!TableData || Gbl_CompileGeneric)
356 {
357 DtCompileGeneric ((void **) FieldList);
358 goto FinishHeader;
359 }

361 /* Dispatch to per-table compile */

363 if (TableData->CmTableHandler)
364 {
365 /* Complex table, has a handler */

367 Status = TableData->CmTableHandler ((void **) FieldList);
368 if (ACPI_FAILURE (Status))
369 {
370 return (Status);
371 }
372 }
373 else if (TableData->TableInfo)
374 {
375 /* Simple table, just walk the info table */

377 Subtable = NULL;
378 Status = DtCompileTable (FieldList, TableData->TableInfo,
379 &Subtable, TRUE);
380 if (ACPI_FAILURE (Status))
381 {
382 return (Status);
383 }

385 DtInsertSubtable (Gbl_RootTable, Subtable);
386 DtPopSubtable ();
387 }
388 else
389 {

new/usr/src/common/acpica/compiler/dtcompile.c 7

390 DtFatal (ASL_MSG_COMPILER_INTERNAL, *FieldList,
391 "Missing table dispatch info");
392 return (AE_ERROR);
393 }

395 FinishHeader:

397 /* Set the final table length and then the checksum */

399 DtSetTableLength ();
400 AcpiTableHeader = ACPI_CAST_PTR (
401 ACPI_TABLE_HEADER, Gbl_RootTable->Buffer);
402 DtSetTableChecksum (&AcpiTableHeader->Checksum);

404 DtDumpFieldList (RootField);
405 DtDumpSubtableList ();
406 return (AE_OK);
407 }

410 /**
411 *
412 * FUNCTION: DtCompileTable
413 *
414 * PARAMETERS: Field - Current field list pointer
415 * Info - Info table for this ACPI table
416 * RetSubtable - Compile result of table
417 * Required - If this subtable must exist
418 *
419 * RETURN: Status
420 *
421 * DESCRIPTION: Compile a subtable
422 *
423 ***/

425 ACPI_STATUS
426 DtCompileTable (
427 DT_FIELD **Field,
428 ACPI_DMTABLE_INFO *Info,
429 DT_SUBTABLE **RetSubtable,
430 BOOLEAN Required)
431 {
432 DT_FIELD *LocalField;
433 UINT32 Length;
434 DT_SUBTABLE *Subtable;
435 DT_SUBTABLE *InlineSubtable;
436 UINT32 FieldLength = 0;
437 UINT8 FieldType;
438 UINT8 *Buffer;
439 UINT8 *FlagBuffer = NULL;
440 UINT32 CurrentFlagByteOffset = 0;
441 ACPI_STATUS Status;

444 if (!Field || !*Field)
445 {
446 return (AE_BAD_PARAMETER);
447 }

449 /* Ignore optional subtable if name does not match */

451 if ((Info->Flags & DT_OPTIONAL) &&
452 ACPI_STRCMP ((*Field)->Name, Info->Name))
453 {
454 *RetSubtable = NULL;
455 return (AE_OK);

new/usr/src/common/acpica/compiler/dtcompile.c 8

456 }

458 Length = DtGetSubtableLength (*Field, Info);
459 if (Length == ASL_EOF)
460 {
461 return (AE_ERROR);
462 }

464 Subtable = UtLocalCalloc (sizeof (DT_SUBTABLE));

466 if (Length > 0)
467 {
468 Subtable->Buffer = UtLocalCalloc (Length);
469 }
470 Subtable->Length = Length;
471 Subtable->TotalLength = Length;
472 Buffer = Subtable->Buffer;

474 LocalField = *Field;

476 /*
477 * Main loop walks the info table for this ACPI table or subtable
478 */
479 for (; Info->Name; Info++)
480 {
481 if (Info->Opcode == ACPI_DMT_EXTRA_TEXT)
482 {
483 continue;
484 }

486 if (!LocalField)
487 {
488 sprintf (MsgBuffer, "Found NULL field - Field name \"%s\" needed",
489 Info->Name);
490 DtFatal (ASL_MSG_COMPILER_INTERNAL, NULL, MsgBuffer);
491 Status = AE_BAD_DATA;
492 goto Error;
493 }

495 /* Maintain table offsets */

497 LocalField->TableOffset = Gbl_CurrentTableOffset;
498 FieldLength = DtGetFieldLength (LocalField, Info);
499 Gbl_CurrentTableOffset += FieldLength;

501 FieldType = DtGetFieldType (Info);
502 Gbl_InputFieldCount++;

504 switch (FieldType)
505 {
506 case DT_FIELD_TYPE_FLAGS_INTEGER:
507 /*
508 * Start of the definition of a flags field.
509 * This master flags integer starts at value zero, in preparation
510 * to compile and insert the flag fields from the individual bits
511 */
512 LocalField = LocalField->Next;
513 *Field = LocalField;

515 FlagBuffer = Buffer;
516 CurrentFlagByteOffset = Info->Offset;
517 break;

519 case DT_FIELD_TYPE_FLAG:

521 /* Individual Flag field, can be multiple bits */

new/usr/src/common/acpica/compiler/dtcompile.c 9

523 if (FlagBuffer)
524 {
525 /*
526 * We must increment the FlagBuffer when we have crossed
527 * into the next flags byte within the flags field
528 * of type DT_FIELD_TYPE_FLAGS_INTEGER.
529 */
530 FlagBuffer += (Info->Offset - CurrentFlagByteOffset);
531 CurrentFlagByteOffset = Info->Offset;

533 DtCompileFlag (FlagBuffer, LocalField, Info);
534 }
535 else
536 {
537 /* TBD - this is an internal error */
538 }

540 LocalField = LocalField->Next;
541 *Field = LocalField;
542 break;

544 case DT_FIELD_TYPE_INLINE_SUBTABLE:
545 /*
546 * Recursion (one level max): compile GAS (Generic Address)
547 * or Notify in-line subtable
548 */
549 *Field = LocalField;

551 if (Info->Opcode == ACPI_DMT_GAS)
552 {
553 Status = DtCompileTable (Field, AcpiDmTableInfoGas,
554 &InlineSubtable, TRUE);
555 }
556 else
557 {
558 Status = DtCompileTable (Field, AcpiDmTableInfoHestNotify,
559 &InlineSubtable, TRUE);
560 }

562 if (ACPI_FAILURE (Status))
563 {
564 goto Error;
565 }

567 DtSetSubtableLength (InlineSubtable);

569 ACPI_MEMCPY (Buffer, InlineSubtable->Buffer, FieldLength);
570 ACPI_FREE (InlineSubtable->Buffer);
571 ACPI_FREE (InlineSubtable);
572 LocalField = *Field;
573 break;

575 case DT_FIELD_TYPE_LABEL:

577 DtWriteFieldToListing (Buffer, LocalField, 0);
578 LocalField = LocalField->Next;
579 break;

581 default:

583 /* Normal case for most field types (Integer, String, etc.) */

585 DtCompileOneField (Buffer, LocalField,
586 FieldLength, FieldType, Info->Flags);

new/usr/src/common/acpica/compiler/dtcompile.c 10

588 DtWriteFieldToListing (Buffer, LocalField, FieldLength);
589 LocalField = LocalField->Next;

591 if (Info->Flags & DT_LENGTH)
592 {
593 /* Field is an Integer that will contain a subtable length */

595 Subtable->LengthField = Buffer;
596 Subtable->SizeOfLengthField = FieldLength;
597 }

599 break;
600 }

602 Buffer += FieldLength;
603 }

605 *Field = LocalField;
606 *RetSubtable = Subtable;
607 return (AE_OK);

609 Error:
610 ACPI_FREE (Subtable->Buffer);
611 ACPI_FREE (Subtable);
612 return (Status);
613 }

new/usr/src/common/acpica/compiler/dtcompiler.h 1

**
 13639 Thu Dec 26 13:48:36 2013
new/usr/src/common/acpica/compiler/dtcompiler.h
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dtcompiler.h - header for data table compiler
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DTCOMPILER_H__

46 #ifndef _DTCOMPILER
47 #define _DTCOMPILER

49 #include <stdio.h>
50 #include "acdisasm.h"

53 #undef DT_EXTERN

55 #ifdef _DECLARE_DT_GLOBALS
56 #define DT_EXTERN
57 #define DT_INIT_GLOBAL(a,b) (a)=(b)
58 #else
59 #define DT_EXTERN extern

new/usr/src/common/acpica/compiler/dtcompiler.h 2

60 #define DT_INIT_GLOBAL(a,b) (a)
61 #endif

64 /* Types for individual fields (one per input line) */

66 #define DT_FIELD_TYPE_STRING 0
67 #define DT_FIELD_TYPE_INTEGER 1
68 #define DT_FIELD_TYPE_BUFFER 2
69 #define DT_FIELD_TYPE_PCI_PATH 3
70 #define DT_FIELD_TYPE_FLAG 4
71 #define DT_FIELD_TYPE_FLAGS_INTEGER 5
72 #define DT_FIELD_TYPE_INLINE_SUBTABLE 6
73 #define DT_FIELD_TYPE_UUID 7
74 #define DT_FIELD_TYPE_UNICODE 8
75 #define DT_FIELD_TYPE_DEVICE_PATH 9
76 #define DT_FIELD_TYPE_LABEL 10

79 /*
80 * Structure used for each individual field within an ACPI table
81 */
82 typedef struct dt_field
83 {
84 char *Name; /* Field name (from name : value) */
85 char *Value; /* Field value (from name : value) */
86 struct dt_field *Next; /* Next field */
87 struct dt_field *NextLabel; /* If field is a label, next label */
88 UINT32 Line; /* Line number for this field */
89 UINT32 ByteOffset; /* Offset in source file for field */
90 UINT32 NameColumn; /* Start column for field name */
91 UINT32 Column; /* Start column for field value */
92 UINT32 TableOffset;/* Binary offset within ACPI table */
93 UINT8 Flags;

95 } DT_FIELD;

97 /* Flags for above */

99 #define DT_FIELD_NOT_ALLOCATED 1

102 /*
103 * Structure used for individual subtables within an ACPI table
104 */
105 typedef struct dt_subtable
106 {
107 struct dt_subtable *Parent;
108 struct dt_subtable *Child;
109 struct dt_subtable *Peer;
110 struct dt_subtable *StackTop;
111 UINT8 *Buffer;
112 UINT8 *LengthField;
113 UINT32 Length;
114 UINT32 TotalLength;
115 UINT32 SizeOfLengthField;
116 UINT16 Depth;
117 UINT8 Flags;

119 } DT_SUBTABLE;

122 /*
123 * Globals
124 */

new/usr/src/common/acpica/compiler/dtcompiler.h 3

126 /* List of all field names and values from the input source */

128 DT_EXTERN DT_FIELD DT_INIT_GLOBAL (*Gbl_FieldList, NULL);

130 /* List of all compiled tables and subtables */

132 DT_EXTERN DT_SUBTABLE DT_INIT_GLOBAL (*Gbl_RootTable, NULL);

134 /* Stack for subtables */

136 DT_EXTERN DT_SUBTABLE DT_INIT_GLOBAL (*Gbl_SubtableStack, NULL);

138 /* List for defined labels */

140 DT_EXTERN DT_FIELD DT_INIT_GLOBAL (*Gbl_LabelList, NULL);

142 /* Current offset within the binary output table */

144 DT_EXTERN UINT32 DT_INIT_GLOBAL (Gbl_CurrentTableOffset, 0);

147 /* dtcompiler - main module */

149 ACPI_STATUS
150 DtCompileTable (
151 DT_FIELD **Field,
152 ACPI_DMTABLE_INFO *Info,
153 DT_SUBTABLE **RetSubtable,
154 BOOLEAN Required);

157 /* dtio - binary and text input/output */

159 UINT32
160 DtGetNextLine (
161 FILE *Handle);

163 DT_FIELD *
164 DtScanFile (
165 FILE *Handle);

167 void
168 DtOutputBinary (
169 DT_SUBTABLE *RootTable);

171 void
172 DtDumpSubtableList (
173 void);

175 void
176 DtDumpFieldList (
177 DT_FIELD *Field);

179 void
180 DtWriteFieldToListing (
181 UINT8 *Buffer,
182 DT_FIELD *Field,
183 UINT32 Length);

185 void
186 DtWriteTableToListing (
187 void);

190 /* dtsubtable - compile subtables */

new/usr/src/common/acpica/compiler/dtcompiler.h 4

192 void
193 DtCreateSubtable (
194 UINT8 *Buffer,
195 UINT32 Length,
196 DT_SUBTABLE **RetSubtable);

198 UINT32
199 DtGetSubtableLength (
200 DT_FIELD *Field,
201 ACPI_DMTABLE_INFO *Info);

203 void
204 DtSetSubtableLength (
205 DT_SUBTABLE *Subtable);

207 void
208 DtPushSubtable (
209 DT_SUBTABLE *Subtable);

211 void
212 DtPopSubtable (
213 void);

215 DT_SUBTABLE *
216 DtPeekSubtable (
217 void);

219 void
220 DtInsertSubtable (
221 DT_SUBTABLE *ParentTable,
222 DT_SUBTABLE *Subtable);

224 DT_SUBTABLE *
225 DtGetNextSubtable (
226 DT_SUBTABLE *ParentTable,
227 DT_SUBTABLE *ChildTable);

229 DT_SUBTABLE *
230 DtGetParentSubtable (
231 DT_SUBTABLE *Subtable);

234 /* dtexpress - Integer expressions and labels */

236 ACPI_STATUS
237 DtResolveIntegerExpression (
238 DT_FIELD *Field,
239 UINT64 *ReturnValue);

241 UINT64
242 DtDoOperator (
243 UINT64 LeftValue,
244 UINT32 Operator,
245 UINT64 RightValue);

247 UINT64
248 DtResolveLabel (
249 char *LabelString);

251 void
252 DtDetectAllLabels (
253 DT_FIELD *FieldList);

256 /* dtfield - Compile individual fields within a table */

new/usr/src/common/acpica/compiler/dtcompiler.h 5

258 void
259 DtCompileOneField (
260 UINT8 *Buffer,
261 DT_FIELD *Field,
262 UINT32 ByteLength,
263 UINT8 Type,
264 UINT8 Flags);

266 void
267 DtCompileInteger (
268 UINT8 *Buffer,
269 DT_FIELD *Field,
270 UINT32 ByteLength,
271 UINT8 Flags);

273 UINT32
274 DtCompileBuffer (
275 UINT8 *Buffer,
276 char *Value,
277 DT_FIELD *Field,
278 UINT32 ByteLength);

280 void
281 DtCompileFlag (
282 UINT8 *Buffer,
283 DT_FIELD *Field,
284 ACPI_DMTABLE_INFO *Info);

287 /* dtparser - lex/yacc files */

289 UINT64
290 DtEvaluateExpression (
291 char *ExprString);

293 int
294 DtInitLexer (
295 char *String);

297 void
298 DtTerminateLexer (
299 void);

301 char *
302 DtGetOpName (
303 UINT32 ParseOpcode);

306 /* dtutils - Miscellaneous utilities */

308 typedef
309 void (*DT_WALK_CALLBACK) (
310 DT_SUBTABLE *Subtable,
311 void *Context,
312 void *ReturnValue);

314 void
315 DtWalkTableTree (
316 DT_SUBTABLE *StartTable,
317 DT_WALK_CALLBACK UserFunction,
318 void *Context,
319 void *ReturnValue);

321 void
322 DtError (
323 UINT8 Level,

new/usr/src/common/acpica/compiler/dtcompiler.h 6

324 UINT8 MessageId,
325 DT_FIELD *FieldObject,
326 char *ExtraMessage);

328 void
329 DtNameError (
330 UINT8 Level,
331 UINT8 MessageId,
332 DT_FIELD *FieldObject,
333 char *ExtraMessage);

335 void
336 DtFatal (
337 UINT8 MessageId,
338 DT_FIELD *FieldObject,
339 char *ExtraMessage);

341 ACPI_STATUS
342 DtStrtoul64 (
343 char *String,
344 UINT64 *ReturnInteger);

346 UINT32
347 DtGetFileSize (
348 FILE *Handle);

350 char*
351 DtGetFieldValue (
352 DT_FIELD *Field);

354 UINT8
355 DtGetFieldType (
356 ACPI_DMTABLE_INFO *Info);

358 UINT32
359 DtGetBufferLength (
360 char *Buffer);

362 UINT32
363 DtGetFieldLength (
364 DT_FIELD *Field,
365 ACPI_DMTABLE_INFO *Info);

367 void
368 DtSetTableChecksum (
369 UINT8 *ChecksumPointer);

371 void
372 DtSetTableLength(
373 void);

375 void
376 DtFreeFieldList (
377 void);

380 /* dttable - individual table compilation */

382 ACPI_STATUS
383 DtCompileFacs (
384 DT_FIELD **PFieldList);

386 ACPI_STATUS
387 DtCompileRsdp (
388 DT_FIELD **PFieldList);

new/usr/src/common/acpica/compiler/dtcompiler.h 7

390 ACPI_STATUS
391 DtCompileAsf (
392 void **PFieldList);

394 ACPI_STATUS
395 DtCompileCpep (
396 void **PFieldList);

398 ACPI_STATUS
399 DtCompileCsrt (
400 void **PFieldList);

402 ACPI_STATUS
403 DtCompileDbg2 (
404 void **PFieldList);

406 ACPI_STATUS
407 DtCompileDmar (
408 void **PFieldList);

410 ACPI_STATUS
411 DtCompileEinj (
412 void **PFieldList);

414 ACPI_STATUS
415 DtCompileErst (
416 void **PFieldList);

418 ACPI_STATUS
419 DtCompileFadt (
420 void **PFieldList);

422 ACPI_STATUS
423 DtCompileFpdt (
424 void **PFieldList);

426 ACPI_STATUS
427 DtCompileHest (
428 void **PFieldList);

430 ACPI_STATUS
431 DtCompileIvrs (
432 void **PFieldList);

434 ACPI_STATUS
435 DtCompileMadt (
436 void **PFieldList);

438 ACPI_STATUS
439 DtCompileMcfg (
440 void **PFieldList);

442 ACPI_STATUS
443 DtCompileMpst (
444 void **PFieldList);

446 ACPI_STATUS
447 DtCompileMsct (
448 void **PFieldList);

450 ACPI_STATUS
451 DtCompileMtmr (
452 void **PFieldList);

454 ACPI_STATUS
455 DtCompilePmtt (

new/usr/src/common/acpica/compiler/dtcompiler.h 8

456 void **PFieldList);

458 ACPI_STATUS
459 DtCompilePcct (
460 void **PFieldList);

462 ACPI_STATUS
463 DtCompileRsdt (
464 void **PFieldList);

466 ACPI_STATUS
467 DtCompileS3pt (
468 DT_FIELD **PFieldList);

470 ACPI_STATUS
471 DtCompileSlic (
472 void **PFieldList);

474 ACPI_STATUS
475 DtCompileSlit (
476 void **PFieldList);

478 ACPI_STATUS
479 DtCompileSrat (
480 void **PFieldList);

482 ACPI_STATUS
483 DtCompileUefi (
484 void **PFieldList);

486 ACPI_STATUS
487 DtCompileVrtc (
488 void **PFieldList);

490 ACPI_STATUS
491 DtCompileWdat (
492 void **PFieldList);

494 ACPI_STATUS
495 DtCompileXsdt (
496 void **PFieldList);

498 ACPI_STATUS
499 DtCompileGeneric (
500 void **PFieldList);

502 ACPI_DMTABLE_INFO *
503 DtGetGenericTableInfo (
504 char *Name);

506 /* ACPI Table templates */

508 extern const unsigned char TemplateAsf[];
509 extern const unsigned char TemplateBoot[];
510 extern const unsigned char TemplateBert[];
511 extern const unsigned char TemplateBgrt[];
512 extern const unsigned char TemplateCpep[];
513 extern const unsigned char TemplateCsrt[];
514 extern const unsigned char TemplateDbg2[];
515 extern const unsigned char TemplateDbgp[];
516 extern const unsigned char TemplateDmar[];
517 extern const unsigned char TemplateEcdt[];
518 extern const unsigned char TemplateEinj[];
519 extern const unsigned char TemplateErst[];
520 extern const unsigned char TemplateFadt[];
521 extern const unsigned char TemplateFpdt[];

new/usr/src/common/acpica/compiler/dtcompiler.h 9

522 extern const unsigned char TemplateGtdt[];
523 extern const unsigned char TemplateHest[];
524 extern const unsigned char TemplateHpet[];
525 extern const unsigned char TemplateIvrs[];
526 extern const unsigned char TemplateMadt[];
527 extern const unsigned char TemplateMcfg[];
528 extern const unsigned char TemplateMchi[];
529 extern const unsigned char TemplateMpst[];
530 extern const unsigned char TemplateMsct[];
531 extern const unsigned char TemplateMtmr[];
532 extern const unsigned char TemplatePcct[];
533 extern const unsigned char TemplatePmtt[];
534 extern const unsigned char TemplateRsdt[];
535 extern const unsigned char TemplateS3pt[];
536 extern const unsigned char TemplateSbst[];
537 extern const unsigned char TemplateSlic[];
538 extern const unsigned char TemplateSlit[];
539 extern const unsigned char TemplateSpcr[];
540 extern const unsigned char TemplateSpmi[];
541 extern const unsigned char TemplateSrat[];
542 extern const unsigned char TemplateTcpa[];
543 extern const unsigned char TemplateTpm2[];
544 extern const unsigned char TemplateUefi[];
545 extern const unsigned char TemplateVrtc[];
546 extern const unsigned char TemplateWaet[];
547 extern const unsigned char TemplateWdat[];
548 extern const unsigned char TemplateWddt[];
549 extern const unsigned char TemplateWdrt[];
550 extern const unsigned char TemplateXsdt[];

552 #endif

new/usr/src/common/acpica/compiler/dtexpress.c 1

**
 10905 Thu Dec 26 13:48:37 2013
new/usr/src/common/acpica/compiler/dtexpress.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dtexpress.c - Support for integer expressions and labels
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DTEXPRESS_C__

46 #include "aslcompiler.h"
47 #include "dtcompiler.h"
48 #include "dtparser.y.h"

50 #define _COMPONENT DT_COMPILER
51 ACPI_MODULE_NAME ("dtexpress")

54 /* Local prototypes */

56 static void
57 DtInsertLabelField (
58 DT_FIELD *Field);

60 static DT_FIELD *

new/usr/src/common/acpica/compiler/dtexpress.c 2

61 DtLookupLabel (
62 char *Name);

64 /* Global used for errors during parse and related functions */

66 DT_FIELD *Gbl_CurrentField;

69 /**
70 *
71 * FUNCTION: DtResolveIntegerExpression
72 *
73 * PARAMETERS: Field - Field object with Integer expression
74 * ReturnValue - Where the integer is returned
75 *
76 * RETURN: Status, and the resolved 64-bit integer value
77 *
78 * DESCRIPTION: Resolve an integer expression to a single value. Supports
79 * both integer constants and labels.
80 *
81 ***/

83 ACPI_STATUS
84 DtResolveIntegerExpression (
85 DT_FIELD *Field,
86 UINT64 *ReturnValue)
87 {
88 UINT64 Result;

91 DbgPrint (ASL_DEBUG_OUTPUT, "Full Integer expression: %s\n",
92 Field->Value);

94 Gbl_CurrentField = Field;

96 Result = DtEvaluateExpression (Field->Value);
97 *ReturnValue = Result;
98 return (AE_OK);
99 }

102 /**
103 *
104 * FUNCTION: DtDoOperator
105 *
106 * PARAMETERS: LeftValue - First 64-bit operand
107 * Operator - Parse token for the operator (EXPOP_*)
108 * RightValue - Second 64-bit operand
109 *
110 * RETURN: 64-bit result of the requested operation
111 *
112 * DESCRIPTION: Perform the various 64-bit integer math functions
113 *
114 ***/

116 UINT64
117 DtDoOperator (
118 UINT64 LeftValue,
119 UINT32 Operator,
120 UINT64 RightValue)
121 {
122 UINT64 Result;

125 /* Perform the requested operation */

new/usr/src/common/acpica/compiler/dtexpress.c 3

127 switch (Operator)
128 {
129 case EXPOP_ONES_COMPLIMENT:

131 Result = ~RightValue;
132 break;

134 case EXPOP_LOGICAL_NOT:

136 Result = !RightValue;
137 break;

139 case EXPOP_MULTIPLY:

141 Result = LeftValue * RightValue;
142 break;

144 case EXPOP_DIVIDE:

146 if (!RightValue)
147 {
148 DtError (ASL_ERROR, ASL_MSG_DIVIDE_BY_ZERO,
149 Gbl_CurrentField, NULL);
150 return (0);
151 }
152 Result = LeftValue / RightValue;
153 break;

155 case EXPOP_MODULO:

157 if (!RightValue)
158 {
159 DtError (ASL_ERROR, ASL_MSG_DIVIDE_BY_ZERO,
160 Gbl_CurrentField, NULL);
161 return (0);
162 }
163 Result = LeftValue % RightValue;
164 break;

166 case EXPOP_ADD:
167 Result = LeftValue + RightValue;
168 break;

170 case EXPOP_SUBTRACT:

172 Result = LeftValue - RightValue;
173 break;

175 case EXPOP_SHIFT_RIGHT:

177 Result = LeftValue >> RightValue;
178 break;

180 case EXPOP_SHIFT_LEFT:

182 Result = LeftValue << RightValue;
183 break;

185 case EXPOP_LESS:

187 Result = LeftValue < RightValue;
188 break;

190 case EXPOP_GREATER:

192 Result = LeftValue > RightValue;

new/usr/src/common/acpica/compiler/dtexpress.c 4

193 break;

195 case EXPOP_LESS_EQUAL:

197 Result = LeftValue <= RightValue;
198 break;

200 case EXPOP_GREATER_EQUAL:

202 Result = LeftValue >= RightValue;
203 break;

205 case EXPOP_EQUAL:

207 Result = LeftValue == RightValue;
208 break;

210 case EXPOP_NOT_EQUAL:

212 Result = LeftValue != RightValue;
213 break;

215 case EXPOP_AND:

217 Result = LeftValue & RightValue;
218 break;

220 case EXPOP_XOR:

222 Result = LeftValue ^ RightValue;
223 break;

225 case EXPOP_OR:

227 Result = LeftValue | RightValue;
228 break;

230 case EXPOP_LOGICAL_AND:

232 Result = LeftValue && RightValue;
233 break;

235 case EXPOP_LOGICAL_OR:

237 Result = LeftValue || RightValue;
238 break;

240 default:

242 /* Unknown operator */

244 DtFatal (ASL_MSG_INVALID_EXPRESSION,
245 Gbl_CurrentField, NULL);
246 return (0);
247 }

249 DbgPrint (ASL_DEBUG_OUTPUT,
250 "IntegerEval: (%8.8X%8.8X %s %8.8X%8.8X) = %8.8X%8.8X\n",
251 ACPI_FORMAT_UINT64 (LeftValue),
252 DtGetOpName (Operator),
253 ACPI_FORMAT_UINT64 (RightValue),
254 ACPI_FORMAT_UINT64 (Result));

256 return (Result);
257 }

new/usr/src/common/acpica/compiler/dtexpress.c 5

260 /**
261 *
262 * FUNCTION: DtResolveLabel
263 *
264 * PARAMETERS: LabelString - Contains the label
265 *
266 * RETURN: Table offset associated with the label
267 *
268 * DESCRIPTION: Lookup a lable and return its value.
269 *
270 ***/

272 UINT64
273 DtResolveLabel (
274 char *LabelString)
275 {
276 DT_FIELD *LabelField;

279 DbgPrint (ASL_DEBUG_OUTPUT, "Resolve Label: %s\n", LabelString);

281 /* Resolve a label reference to an integer (table offset) */

283 if (*LabelString != ’$’)
284 {
285 return (0);
286 }

288 LabelField = DtLookupLabel (LabelString);
289 if (!LabelField)
290 {
291 DtError (ASL_ERROR, ASL_MSG_UNKNOWN_LABEL,
292 Gbl_CurrentField, LabelString);
293 return (0);
294 }

296 /* All we need from the label is the offset in the table */

298 DbgPrint (ASL_DEBUG_OUTPUT, "Resolved Label: 0x%8.8X\n",
299 LabelField->TableOffset);

301 return (LabelField->TableOffset);
302 }

305 /**
306 *
307 * FUNCTION: DtDetectAllLabels
308 *
309 * PARAMETERS: FieldList - Field object at start of generic list
310 *
311 * RETURN: None
312 *
313 * DESCRIPTION: Detect all labels in a list of "generic" opcodes (such as
314 * a UEFI table.) and insert them into the global label list.
315 *
316 ***/

318 void
319 DtDetectAllLabels (
320 DT_FIELD *FieldList)
321 {
322 ACPI_DMTABLE_INFO *Info;
323 DT_FIELD *GenericField;
324 UINT32 TableOffset;

new/usr/src/common/acpica/compiler/dtexpress.c 6

327 TableOffset = Gbl_CurrentTableOffset;
328 GenericField = FieldList;

330 /*
331 * Process all "Label:" fields within the parse tree. We need
332 * to know the offsets for all labels before we can compile
333 * the parse tree in order to handle forward references. Traverse
334 * tree and get/set all field lengths of all operators in order to
335 * determine the label offsets.
336 */
337 while (GenericField)
338 {
339 Info = DtGetGenericTableInfo (GenericField->Name);
340 if (Info)
341 {
342 /* Maintain table offsets */

344 GenericField->TableOffset = TableOffset;
345 TableOffset += DtGetFieldLength (GenericField, Info);

347 /* Insert all labels in the global label list */

349 if (Info->Opcode == ACPI_DMT_LABEL)
350 {
351 DtInsertLabelField (GenericField);
352 }
353 }

355 GenericField = GenericField->Next;
356 }
357 }

360 /**
361 *
362 * FUNCTION: DtInsertLabelField
363 *
364 * PARAMETERS: Field - Field object with Label to be inserted
365 *
366 * RETURN: None
367 *
368 * DESCRIPTION: Insert a label field into the global label list
369 *
370 ***/

372 static void
373 DtInsertLabelField (
374 DT_FIELD *Field)
375 {

377 DbgPrint (ASL_DEBUG_OUTPUT,
378 "DtInsertLabelField: Found Label : %s at output table offset %X\n",
379 Field->Value, Field->TableOffset);

381 Field->NextLabel = Gbl_LabelList;
382 Gbl_LabelList = Field;
383 }

386 /**
387 *
388 * FUNCTION: DtLookupLabel
389 *
390 * PARAMETERS: Name - Label to be resolved

new/usr/src/common/acpica/compiler/dtexpress.c 7

391 *
392 * RETURN: Field object associated with the label
393 *
394 * DESCRIPTION: Lookup a label in the global label list. Used during the
395 * resolution of integer expressions.
396 *
397 ***/

399 static DT_FIELD *
400 DtLookupLabel (
401 char *Name)
402 {
403 DT_FIELD *LabelField;

406 /* Skip a leading $ */

408 if (*Name == ’$’)
409 {
410 Name++;
411 }

413 /* Search global list */

415 LabelField = Gbl_LabelList;
416 while (LabelField)
417 {
418 if (!ACPI_STRCMP (Name, LabelField->Value))
419 {
420 return (LabelField);
421 }
422 LabelField = LabelField->NextLabel;
423 }

425 return (NULL);
426 }

new/usr/src/common/acpica/compiler/dtfield.c 1

**
 15206 Thu Dec 26 13:48:37 2013
new/usr/src/common/acpica/compiler/dtfield.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dtfield.c - Code generation for individual source fields
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DTFIELD_C__

46 #include "aslcompiler.h"
47 #include "dtcompiler.h"

49 #define _COMPONENT DT_COMPILER
50 ACPI_MODULE_NAME ("dtfield")

53 /* Local prototypes */

55 static void
56 DtCompileString (
57 UINT8 *Buffer,
58 DT_FIELD *Field,
59 UINT32 ByteLength);

new/usr/src/common/acpica/compiler/dtfield.c 2

61 static void
62 DtCompileUnicode (
63 UINT8 *Buffer,
64 DT_FIELD *Field,
65 UINT32 ByteLength);

67 static ACPI_STATUS
68 DtCompileUuid (
69 UINT8 *Buffer,
70 DT_FIELD *Field,
71 UINT32 ByteLength);

73 static char *
74 DtNormalizeBuffer (
75 char *Buffer,
76 UINT32 *Count);

79 /**
80 *
81 * FUNCTION: DtCompileOneField
82 *
83 * PARAMETERS: Buffer - Output buffer
84 * Field - Field to be compiled
85 * ByteLength - Byte length of the field
86 * Type - Field type
87 *
88 * RETURN: None
89 *
90 * DESCRIPTION: Compile a field value to binary
91 *
92 ***/

94 void
95 DtCompileOneField (
96 UINT8 *Buffer,
97 DT_FIELD *Field,
98 UINT32 ByteLength,
99 UINT8 Type,
100 UINT8 Flags)
101 {
102 ACPI_STATUS Status;

104 switch (Type)
105 {
106 case DT_FIELD_TYPE_INTEGER:

108 DtCompileInteger (Buffer, Field, ByteLength, Flags);
109 break;

111 case DT_FIELD_TYPE_STRING:

113 DtCompileString (Buffer, Field, ByteLength);
114 break;

116 case DT_FIELD_TYPE_UUID:

118 Status = DtCompileUuid (Buffer, Field, ByteLength);
119 if (ACPI_SUCCESS (Status))
120 {
121 break;
122 }

124 /* Fall through. */

new/usr/src/common/acpica/compiler/dtfield.c 3

126 case DT_FIELD_TYPE_BUFFER:

128 DtCompileBuffer (Buffer, Field->Value, Field, ByteLength);
129 break;

131 case DT_FIELD_TYPE_UNICODE:

133 DtCompileUnicode (Buffer, Field, ByteLength);
134 break;

136 case DT_FIELD_TYPE_DEVICE_PATH:

138 break;

140 default:

142 DtFatal (ASL_MSG_COMPILER_INTERNAL, Field, "Invalid field type");
143 break;
144 }
145 }

148 /**
149 *
150 * FUNCTION: DtCompileString
151 *
152 * PARAMETERS: Buffer - Output buffer
153 * Field - String to be copied to buffer
154 * ByteLength - Maximum length of string
155 *
156 * RETURN: None
157 *
158 * DESCRIPTION: Copy string to the buffer
159 *
160 ***/

162 static void
163 DtCompileString (
164 UINT8 *Buffer,
165 DT_FIELD *Field,
166 UINT32 ByteLength)
167 {
168 UINT32 Length;

171 Length = ACPI_STRLEN (Field->Value);

173 /* Check if the string is too long for the field */

175 if (Length > ByteLength)
176 {
177 sprintf (MsgBuffer, "Maximum %u characters", ByteLength);
178 DtError (ASL_ERROR, ASL_MSG_STRING_LENGTH, Field, MsgBuffer);
179 Length = ByteLength;
180 }

182 ACPI_MEMCPY (Buffer, Field->Value, Length);
183 }

186 /**
187 *
188 * FUNCTION: DtCompileUnicode
189 *
190 * PARAMETERS: Buffer - Output buffer
191 * Field - String to be copied to buffer

new/usr/src/common/acpica/compiler/dtfield.c 4

192 * ByteLength - Maximum length of string
193 *
194 * RETURN: None
195 *
196 * DESCRIPTION: Convert ASCII string to Unicode string
197 *
198 * Note: The Unicode string is 16 bits per character, no leading signature,
199 * with a 16-bit terminating NULL.
200 *
201 ***/

203 static void
204 DtCompileUnicode (
205 UINT8 *Buffer,
206 DT_FIELD *Field,
207 UINT32 ByteLength)
208 {
209 UINT32 Count;
210 UINT32 i;
211 char *AsciiString;
212 UINT16 *UnicodeString;

215 AsciiString = Field->Value;
216 UnicodeString = (UINT16 *) Buffer;
217 Count = ACPI_STRLEN (AsciiString) + 1;

219 /* Convert to Unicode string (including null terminator) */

221 for (i = 0; i < Count; i++)
222 {
223 UnicodeString[i] = (UINT16) AsciiString[i];
224 }
225 }

228 /***
229 *
230 * FUNCTION: DtCompileUuid
231 *
232 * PARAMETERS: Buffer - Output buffer
233 * Field - String to be copied to buffer
234 * ByteLength - Maximum length of string
235 *
236 * RETURN: None
237 *
238 * DESCRIPTION: Convert UUID string to 16-byte buffer
239 *
240 **/

242 static ACPI_STATUS
243 DtCompileUuid (
244 UINT8 *Buffer,
245 DT_FIELD *Field,
246 UINT32 ByteLength)
247 {
248 char *InString;
249 ACPI_STATUS Status;

252 InString = Field->Value;

254 Status = AuValidateUuid (InString);
255 if (ACPI_FAILURE (Status))
256 {
257 sprintf (MsgBuffer, "%s", Field->Value);

new/usr/src/common/acpica/compiler/dtfield.c 5

258 DtNameError (ASL_ERROR, ASL_MSG_INVALID_UUID, Field, MsgBuffer);
259 }
260 else
261 {
262 Status = AuConvertStringToUuid (InString, (char *) Buffer);
263 }

265 return (Status);
266 }

269 /**
270 *
271 * FUNCTION: DtCompileInteger
272 *
273 * PARAMETERS: Buffer - Output buffer
274 * Field - Field obj with Integer to be compiled
275 * ByteLength - Byte length of the integer
276 * Flags - Additional compile info
277 *
278 * RETURN: None
279 *
280 * DESCRIPTION: Compile an integer. Supports integer expressions with C-style
281 * operators.
282 *
283 ***/

285 void
286 DtCompileInteger (
287 UINT8 *Buffer,
288 DT_FIELD *Field,
289 UINT32 ByteLength,
290 UINT8 Flags)
291 {
292 UINT64 Value;
293 UINT64 MaxValue;
294 ACPI_STATUS Status;

297 /* Output buffer byte length must be in range 1-8 */

299 if ((ByteLength > 8) || (ByteLength == 0))
300 {
301 DtFatal (ASL_MSG_COMPILER_INTERNAL, Field,
302 "Invalid internal Byte length");
303 return;
304 }

306 /* Resolve integer expression to a single integer value */

308 Status = DtResolveIntegerExpression (Field, &Value);
309 if (ACPI_FAILURE (Status))
310 {
311 return;
312 }

314 /* Ensure that reserved fields are set to zero */
315 /* TBD: should we set to zero, or just make this an ERROR? */
316 /* TBD: Probably better to use a flag */

318 if (!ACPI_STRCMP (Field->Name, "Reserved") &&
319 (Value != 0))
320 {
321 DtError (ASL_WARNING, ASL_MSG_RESERVED_VALUE, Field,
322 "Setting to zero");
323 Value = 0;

new/usr/src/common/acpica/compiler/dtfield.c 6

324 }

326 /* Check if the value must be non-zero */

328 if ((Value == 0) && (Flags & DT_NON_ZERO))
329 {
330 DtError (ASL_ERROR, ASL_MSG_ZERO_VALUE, Field, NULL);
331 }

333 /*
334 * Generate the maximum value for the data type (ByteLength)
335 * Note: construct chosen for maximum portability
336 */
337 MaxValue = ((UINT64) (-1)) >> (64 - (ByteLength * 8));

339 /* Validate that the input value is within range of the target */

341 if (Value > MaxValue)
342 {
343 sprintf (MsgBuffer, "%8.8X%8.8X - max %u bytes",
344 ACPI_FORMAT_UINT64 (Value), ByteLength);
345 DtError (ASL_ERROR, ASL_MSG_INTEGER_SIZE, Field, MsgBuffer);
346 }

348 ACPI_MEMCPY (Buffer, &Value, ByteLength);
349 return;
350 }

353 /**
354 *
355 * FUNCTION: DtNormalizeBuffer
356 *
357 * PARAMETERS: Buffer - Input buffer
358 * Count - Output the count of hex number in
359 * the Buffer
360 *
361 * RETURN: The normalized buffer, freed by caller
362 *
363 * DESCRIPTION: [1A,2B,3C,4D] or 1A, 2B, 3C, 4D will be normalized
364 * to 1A 2B 3C 4D
365 *
366 ***/

368 static char *
369 DtNormalizeBuffer (
370 char *Buffer,
371 UINT32 *Count)
372 {
373 char *NewBuffer;
374 char *TmpBuffer;
375 UINT32 BufferCount = 0;
376 BOOLEAN Separator = TRUE;
377 char c;

380 NewBuffer = UtLocalCalloc (ACPI_STRLEN (Buffer) + 1);
381 TmpBuffer = NewBuffer;

383 while ((c = *Buffer++))
384 {
385 switch (c)
386 {
387 /* Valid separators */

389 case ’[’:

new/usr/src/common/acpica/compiler/dtfield.c 7

390 case ’]’:
391 case ’ ’:
392 case ’,’:

394 Separator = TRUE;
395 break;

397 default:

399 if (Separator)
400 {
401 /* Insert blank as the standard separator */

403 if (NewBuffer[0])
404 {
405 *TmpBuffer++ = ’ ’;
406 BufferCount++;
407 }

409 Separator = FALSE;
410 }

412 *TmpBuffer++ = c;
413 break;
414 }
415 }

417 *Count = BufferCount + 1;
418 return (NewBuffer);
419 }

422 /**
423 *
424 * FUNCTION: DtCompileBuffer
425 *
426 * PARAMETERS: Buffer - Output buffer
427 * StringValue - Integer list to be compiled
428 * Field - Current field object
429 * ByteLength - Byte length of the integer list
430 *
431 * RETURN: Count of remaining data in the input list
432 *
433 * DESCRIPTION: Compile and pack an integer list, for example
434 * "AA 1F 20 3B" ==> Buffer[] = {0xAA,0x1F,0x20,0x3B}
435 *
436 ***/

438 UINT32
439 DtCompileBuffer (
440 UINT8 *Buffer,
441 char *StringValue,
442 DT_FIELD *Field,
443 UINT32 ByteLength)
444 {
445 ACPI_STATUS Status;
446 char Hex[3];
447 UINT64 Value;
448 UINT32 i;
449 UINT32 Count;

452 /* Allow several different types of value separators */

454 StringValue = DtNormalizeBuffer (StringValue, &Count);

new/usr/src/common/acpica/compiler/dtfield.c 8

456 Hex[2] = 0;
457 for (i = 0; i < Count; i++)
458 {
459 /* Each element of StringValue is three chars */

461 Hex[0] = StringValue[(3 * i)];
462 Hex[1] = StringValue[(3 * i) + 1];

464 /* Convert one hex byte */

466 Value = 0;
467 Status = DtStrtoul64 (Hex, &Value);
468 if (ACPI_FAILURE (Status))
469 {
470 DtError (ASL_ERROR, ASL_MSG_BUFFER_ELEMENT, Field, MsgBuffer);
471 goto Exit;
472 }

474 Buffer[i] = (UINT8) Value;
475 }

477 Exit:
478 ACPI_FREE (StringValue);
479 return (ByteLength - Count);
480 }

483 /**
484 *
485 * FUNCTION: DtCompileFlag
486 *
487 * PARAMETERS: Buffer - Output buffer
488 * Field - Field to be compiled
489 * Info - Flag info
490 *
491 * RETURN:
492 *
493 * DESCRIPTION: Compile a flag
494 *
495 ***/

497 void
498 DtCompileFlag (
499 UINT8 *Buffer,
500 DT_FIELD *Field,
501 ACPI_DMTABLE_INFO *Info)
502 {
503 UINT64 Value = 0;
504 UINT32 BitLength = 1;
505 UINT8 BitPosition = 0;
506 ACPI_STATUS Status;

509 Status = DtStrtoul64 (Field->Value, &Value);
510 if (ACPI_FAILURE (Status))
511 {
512 DtError (ASL_ERROR, ASL_MSG_INVALID_HEX_INTEGER, Field, NULL);
513 }

515 switch (Info->Opcode)
516 {
517 case ACPI_DMT_FLAG0:
518 case ACPI_DMT_FLAG1:
519 case ACPI_DMT_FLAG2:
520 case ACPI_DMT_FLAG3:
521 case ACPI_DMT_FLAG4:

new/usr/src/common/acpica/compiler/dtfield.c 9

522 case ACPI_DMT_FLAG5:
523 case ACPI_DMT_FLAG6:
524 case ACPI_DMT_FLAG7:

526 BitPosition = Info->Opcode;
527 BitLength = 1;
528 break;

530 case ACPI_DMT_FLAGS0:

532 BitPosition = 0;
533 BitLength = 2;
534 break;

537 case ACPI_DMT_FLAGS1:

539 BitPosition = 1;
540 BitLength = 2;
541 break;

544 case ACPI_DMT_FLAGS2:

546 BitPosition = 2;
547 BitLength = 2;
548 break;

550 case ACPI_DMT_FLAGS4:

552 BitPosition = 4;
553 BitLength = 2;
554 break;

556 default:

558 DtFatal (ASL_MSG_COMPILER_INTERNAL, Field, "Invalid flag opcode");
559 break;
560 }

562 /* Check range of the input flag value */

564 if (Value >= ((UINT64) 1 << BitLength))
565 {
566 sprintf (MsgBuffer, "Maximum %u bit", BitLength);
567 DtError (ASL_ERROR, ASL_MSG_FLAG_VALUE, Field, MsgBuffer);
568 Value = 0;
569 }

571 *Buffer |= (UINT8) (Value << BitPosition);
572 }

new/usr/src/common/acpica/compiler/dtio.c 1

**
 28481 Thu Dec 26 13:48:37 2013
new/usr/src/common/acpica/compiler/dtio.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dtio.c - File I/O support for data table compiler
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DTIO_C__

46 #include "aslcompiler.h"
47 #include "dtcompiler.h"

49 #define _COMPONENT DT_COMPILER
50 ACPI_MODULE_NAME ("dtio")

53 /* Local prototypes */

55 static char *
56 DtTrim (
57 char *String);

59 static void
60 DtLinkField (

new/usr/src/common/acpica/compiler/dtio.c 2

61 DT_FIELD *Field);

63 static ACPI_STATUS
64 DtParseLine (
65 char *LineBuffer,
66 UINT32 Line,
67 UINT32 Offset);

69 static void
70 DtWriteBinary (
71 DT_SUBTABLE *Subtable,
72 void *Context,
73 void *ReturnValue);

75 static void
76 DtDumpBuffer (
77 UINT32 FileId,
78 UINT8 *Buffer,
79 UINT32 Offset,
80 UINT32 Length);

82 static void
83 DtDumpSubtableInfo (
84 DT_SUBTABLE *Subtable,
85 void *Context,
86 void *ReturnValue);

88 static void
89 DtDumpSubtableTree (
90 DT_SUBTABLE *Subtable,
91 void *Context,
92 void *ReturnValue);

95 /* States for DtGetNextLine */

97 #define DT_NORMAL_TEXT 0
98 #define DT_START_QUOTED_STRING 1
99 #define DT_START_COMMENT 2
100 #define DT_SLASH_ASTERISK_COMMENT 3
101 #define DT_SLASH_SLASH_COMMENT 4
102 #define DT_END_COMMENT 5
103 #define DT_MERGE_LINES 6
104 #define DT_ESCAPE_SEQUENCE 7

106 static UINT32 Gbl_NextLineOffset;

109 /**
110 *
111 * FUNCTION: DtTrim
112 *
113 * PARAMETERS: String - Current source code line to trim
114 *
115 * RETURN: Trimmed line. Must be freed by caller.
116 *
117 * DESCRIPTION: Trim left and right spaces
118 *
119 ***/

121 static char *
122 DtTrim (
123 char *String)
124 {
125 char *Start;
126 char *End;

new/usr/src/common/acpica/compiler/dtio.c 3

127 char *ReturnString;
128 ACPI_SIZE Length;

131 /* Skip lines that start with a space */

133 if (!ACPI_STRCMP (String, " "))
134 {
135 ReturnString = UtLocalCalloc (1);
136 return (ReturnString);
137 }

139 /* Setup pointers to start and end of input string */

141 Start = String;
142 End = String + ACPI_STRLEN (String) - 1;

144 /* Find first non-whitespace character */

146 while ((Start <= End) && ((*Start == ’ ’) || (*Start == ’\t’)))
147 {
148 Start++;
149 }

151 /* Find last non-space character */

153 while (End >= Start)
154 {
155 if (*End == ’\r’ || *End == ’\n’)
156 {
157 End--;
158 continue;
159 }

161 if (*End != ’ ’)
162 {
163 break;
164 }

166 End--;
167 }

169 /* Remove any quotes around the string */

171 if (*Start == ’\"’)
172 {
173 Start++;
174 }
175 if (*End == ’\"’)
176 {
177 End--;
178 }

180 /* Create the trimmed return string */

182 Length = ACPI_PTR_DIFF (End, Start) + 1;
183 ReturnString = UtLocalCalloc (Length + 1);
184 if (ACPI_STRLEN (Start))
185 {
186 ACPI_STRNCPY (ReturnString, Start, Length);
187 }

189 ReturnString[Length] = 0;
190 return (ReturnString);
191 }

new/usr/src/common/acpica/compiler/dtio.c 4

194 /**
195 *
196 * FUNCTION: DtLinkField
197 *
198 * PARAMETERS: Field - New field object to link
199 *
200 * RETURN: None
201 *
202 * DESCRIPTION: Link one field name and value to the list
203 *
204 ***/

206 static void
207 DtLinkField (
208 DT_FIELD *Field)
209 {
210 DT_FIELD *Prev;
211 DT_FIELD *Next;

214 Prev = Next = Gbl_FieldList;

216 while (Next)
217 {
218 Prev = Next;
219 Next = Next->Next;
220 }

222 if (Prev)
223 {
224 Prev->Next = Field;
225 }
226 else
227 {
228 Gbl_FieldList = Field;
229 }
230 }

233 /**
234 *
235 * FUNCTION: DtParseLine
236 *
237 * PARAMETERS: LineBuffer - Current source code line
238 * Line - Current line number in the source
239 * Offset - Current byte offset of the line
240 *
241 * RETURN: Status
242 *
243 * DESCRIPTION: Parse one source line
244 *
245 ***/

247 static ACPI_STATUS
248 DtParseLine (
249 char *LineBuffer,
250 UINT32 Line,
251 UINT32 Offset)
252 {
253 char *Start;
254 char *End;
255 char *TmpName;
256 char *TmpValue;
257 char *Name;
258 char *Value;

new/usr/src/common/acpica/compiler/dtio.c 5

259 char *Colon;
260 UINT32 Length;
261 DT_FIELD *Field;
262 UINT32 Column;
263 UINT32 NameColumn;
264 BOOLEAN IsNullString = FALSE;

267 if (!LineBuffer)
268 {
269 return (AE_OK);
270 }

272 /* All lines after "Raw Table Data" are ingored */

274 if (strstr (LineBuffer, ACPI_RAW_TABLE_DATA_HEADER))
275 {
276 return (AE_NOT_FOUND);
277 }

279 Colon = strchr (LineBuffer, ’:’);
280 if (!Colon)
281 {
282 return (AE_OK);
283 }

285 Start = LineBuffer;
286 End = Colon;

288 while (Start < Colon)
289 {
290 if (*Start == ’[’)
291 {
292 /* Found left bracket, go to the right bracket */

294 while (Start < Colon && *Start != ’]’)
295 {
296 Start++;
297 }
298 }
299 else if (*Start != ’ ’)
300 {
301 break;
302 }

304 Start++;
305 }

307 /*
308 * There are two column values. One for the field name,
309 * and one for the field value.
310 */
311 Column = ACPI_PTR_DIFF (Colon, LineBuffer) + 3;
312 NameColumn = ACPI_PTR_DIFF (Start, LineBuffer) + 1;

314 Length = ACPI_PTR_DIFF (End, Start);

316 TmpName = UtLocalCalloc (Length + 1);
317 ACPI_STRNCPY (TmpName, Start, Length);
318 Name = DtTrim (TmpName);
319 ACPI_FREE (TmpName);

321 Start = End = (Colon + 1);
322 while (*End)
323 {
324 /* Found left quotation, go to the right quotation and break */

new/usr/src/common/acpica/compiler/dtio.c 6

326 if (*End == ’"’)
327 {
328 End++;

330 /* Check for an explicit null string */

332 if (*End == ’"’)
333 {
334 IsNullString = TRUE;
335 }
336 while (*End && (*End != ’"’))
337 {
338 End++;
339 }

341 End++;
342 break;
343 }

345 /*
346 * Special "comment" fields at line end, ignore them.
347 * Note: normal slash-slash and slash-asterisk comments are
348 * stripped already by the DtGetNextLine parser.
349 *
350 * TBD: Perhaps DtGetNextLine should parse the following type
351 * of comments also.
352 */
353 if (*End == ’[’)
354 {
355 End--;
356 break;
357 }
358 End++;
359 }

361 Length = ACPI_PTR_DIFF (End, Start);
362 TmpValue = UtLocalCalloc (Length + 1);

364 ACPI_STRNCPY (TmpValue, Start, Length);
365 Value = DtTrim (TmpValue);
366 ACPI_FREE (TmpValue);

368 /* Create a new field object only if we have a valid value field */

370 if ((Value && *Value) || IsNullString)
371 {
372 Field = UtLocalCalloc (sizeof (DT_FIELD));
373 Field->Name = Name;
374 Field->Value = Value;
375 Field->Line = Line;
376 Field->ByteOffset = Offset;
377 Field->NameColumn = NameColumn;
378 Field->Column = Column;

380 DtLinkField (Field);
381 }
382 else /* Ignore this field, it has no valid data */
383 {
384 ACPI_FREE (Name);
385 ACPI_FREE (Value);
386 }

388 return (AE_OK);
389 }

new/usr/src/common/acpica/compiler/dtio.c 7

392 /**
393 *
394 * FUNCTION: DtGetNextLine
395 *
396 * PARAMETERS: Handle - Open file handle for the source file
397 *
398 * RETURN: Filled line buffer and offset of start-of-line (ASL_EOF on EOF)
399 *
400 * DESCRIPTION: Get the next valid source line. Removes all comments.
401 * Ignores empty lines.
402 *
403 * Handles both slash-asterisk and slash-slash comments.
404 * Also, quoted strings, but no escapes within.
405 *
406 * Line is returned in Gbl_CurrentLineBuffer.
407 * Line number in original file is returned in Gbl_CurrentLineNumber.
408 *
409 ***/

411 UINT32
412 DtGetNextLine (
413 FILE *Handle)
414 {
415 BOOLEAN LineNotAllBlanks = FALSE;
416 UINT32 State = DT_NORMAL_TEXT;
417 UINT32 CurrentLineOffset;
418 UINT32 i;
419 int c;

422 for (i = 0; ;)
423 {
424 /*
425 * If line is too long, expand the line buffers. Also increases
426 * Gbl_LineBufferSize.
427 */
428 if (i >= Gbl_LineBufferSize)
429 {
430 UtExpandLineBuffers ();
431 }

433 c = getc (Handle);
434 if (c == EOF)
435 {
436 switch (State)
437 {
438 case DT_START_QUOTED_STRING:
439 case DT_SLASH_ASTERISK_COMMENT:

441 AcpiOsPrintf ("**** EOF within comment/string %u\n", State);
442 break;

444 default:

446 break;
447 }

449 /* Standalone EOF is OK */

451 if (i == 0)
452 {
453 return (ASL_EOF);
454 }

456 /*

new/usr/src/common/acpica/compiler/dtio.c 8

457 * Received an EOF in the middle of a line. Terminate the
458 * line with a newline. The next call to this function will
459 * return a standalone EOF. Thus, the upper parsing software
460 * never has to deal with an EOF within a valid line (or
461 * the last line does not get tossed on the floor.)
462 */
463 c = ’\n’;
464 State = DT_NORMAL_TEXT;
465 }

467 switch (State)
468 {
469 case DT_NORMAL_TEXT:

471 /* Normal text, insert char into line buffer */

473 Gbl_CurrentLineBuffer[i] = (char) c;
474 switch (c)
475 {
476 case ’/’:

478 State = DT_START_COMMENT;
479 break;

481 case ’"’:

483 State = DT_START_QUOTED_STRING;
484 LineNotAllBlanks = TRUE;
485 i++;
486 break;

488 case ’\\’:
489 /*
490 * The continuation char MUST be last char on this line.
491 * Otherwise, it will be assumed to be a valid ASL char.
492 */
493 State = DT_MERGE_LINES;
494 break;

496 case ’\n’:

498 CurrentLineOffset = Gbl_NextLineOffset;
499 Gbl_NextLineOffset = (UINT32) ftell (Handle);
500 Gbl_CurrentLineNumber++;

502 /*
503 * Exit if line is complete. Ignore empty lines (only \n)
504 * or lines that contain nothing but blanks.
505 */
506 if ((i != 0) && LineNotAllBlanks)
507 {
508 if ((i + 1) >= Gbl_LineBufferSize)
509 {
510 UtExpandLineBuffers ();
511 }

513 Gbl_CurrentLineBuffer[i+1] = 0; /* Terminate string */
514 return (CurrentLineOffset);
515 }

517 /* Toss this line and start a new one */

519 i = 0;
520 LineNotAllBlanks = FALSE;
521 break;

new/usr/src/common/acpica/compiler/dtio.c 9

523 default:

525 if (c != ’ ’)
526 {
527 LineNotAllBlanks = TRUE;
528 }

530 i++;
531 break;
532 }
533 break;

535 case DT_START_QUOTED_STRING:

537 /* Insert raw chars until end of quoted string */

539 Gbl_CurrentLineBuffer[i] = (char) c;
540 i++;

542 switch (c)
543 {
544 case ’"’:

546 State = DT_NORMAL_TEXT;
547 break;

549 case ’\\’:

551 State = DT_ESCAPE_SEQUENCE;
552 break;

554 case ’\n’:

556 AcpiOsPrintf ("ERROR at line %u: Unterminated quoted string\n",
557 Gbl_CurrentLineNumber++);
558 State = DT_NORMAL_TEXT;
559 break;

561 default: /* Get next character */

563 break;
564 }
565 break;

567 case DT_ESCAPE_SEQUENCE:

569 /* Just copy the escaped character. TBD: sufficient for table compil

571 Gbl_CurrentLineBuffer[i] = (char) c;
572 i++;
573 State = DT_START_QUOTED_STRING;
574 break;

576 case DT_START_COMMENT:

578 /* Open comment if this character is an asterisk or slash */

580 switch (c)
581 {
582 case ’*’:

584 State = DT_SLASH_ASTERISK_COMMENT;
585 break;

587 case ’/’:

new/usr/src/common/acpica/compiler/dtio.c 10

589 State = DT_SLASH_SLASH_COMMENT;
590 break;

592 default: /* Not a comment */

594 i++; /* Save the preceding slash */
595 if (i >= Gbl_LineBufferSize)
596 {
597 UtExpandLineBuffers ();
598 }

600 Gbl_CurrentLineBuffer[i] = (char) c;
601 i++;
602 State = DT_NORMAL_TEXT;
603 break;
604 }
605 break;

607 case DT_SLASH_ASTERISK_COMMENT:

609 /* Ignore chars until an asterisk-slash is found */

611 switch (c)
612 {
613 case ’\n’:

615 Gbl_NextLineOffset = (UINT32) ftell (Handle);
616 Gbl_CurrentLineNumber++;
617 break;

619 case ’*’:

621 State = DT_END_COMMENT;
622 break;

624 default:

626 break;
627 }
628 break;

630 case DT_SLASH_SLASH_COMMENT:

632 /* Ignore chars until end-of-line */

634 if (c == ’\n’)
635 {
636 /* We will exit via the NORMAL_TEXT path */

638 ungetc (c, Handle);
639 State = DT_NORMAL_TEXT;
640 }
641 break;

643 case DT_END_COMMENT:

645 /* End comment if this char is a slash */

647 switch (c)
648 {
649 case ’/’:

651 State = DT_NORMAL_TEXT;
652 break;

654 case ’\n’:

new/usr/src/common/acpica/compiler/dtio.c 11

656 CurrentLineOffset = Gbl_NextLineOffset;
657 Gbl_NextLineOffset = (UINT32) ftell (Handle);
658 Gbl_CurrentLineNumber++;
659 break;

661 case ’*’:

663 /* Consume all adjacent asterisks */
664 break;

666 default:

668 State = DT_SLASH_ASTERISK_COMMENT;
669 break;
670 }
671 break;

673 case DT_MERGE_LINES:

675 if (c != ’\n’)
676 {
677 /*
678 * This is not a continuation backslash, it is a normal
679 * normal ASL backslash - for example: Scope(_SB_)
680 */
681 i++; /* Keep the backslash that is already in the buffer */

683 ungetc (c, Handle);
684 State = DT_NORMAL_TEXT;
685 }
686 else
687 {
688 /*
689 * This is a continuation line -- a backlash followed
690 * immediately by a newline. Insert a space between the
691 * lines (overwrite the backslash)
692 */
693 Gbl_CurrentLineBuffer[i] = ’ ’;
694 i++;

696 /* Ignore newline, this will merge the lines */

698 CurrentLineOffset = Gbl_NextLineOffset;
699 Gbl_NextLineOffset = (UINT32) ftell (Handle);
700 Gbl_CurrentLineNumber++;
701 State = DT_NORMAL_TEXT;
702 }
703 break;

705 default:

707 DtFatal (ASL_MSG_COMPILER_INTERNAL, NULL, "Unknown input state");
708 return (ASL_EOF);
709 }
710 }
711 }

714 /**
715 *
716 * FUNCTION: DtScanFile
717 *
718 * PARAMETERS: Handle - Open file handle for the source file
719 *
720 * RETURN: Pointer to start of the constructed parse tree.

new/usr/src/common/acpica/compiler/dtio.c 12

721 *
722 * DESCRIPTION: Scan source file, link all field names and values
723 * to the global parse tree: Gbl_FieldList
724 *
725 ***/

727 DT_FIELD *
728 DtScanFile (
729 FILE *Handle)
730 {
731 ACPI_STATUS Status;
732 UINT32 Offset;

735 ACPI_FUNCTION_NAME (DtScanFile);

738 /* Get the file size */

740 Gbl_InputByteCount = DtGetFileSize (Handle);

742 Gbl_CurrentLineNumber = 0;
743 Gbl_CurrentLineOffset = 0;
744 Gbl_NextLineOffset = 0;

746 /* Scan line-by-line */

748 while ((Offset = DtGetNextLine (Handle)) != ASL_EOF)
749 {
750 ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "Line %2.2u/%4.4X - %s",
751 Gbl_CurrentLineNumber, Offset, Gbl_CurrentLineBuffer));

753 Status = DtParseLine (Gbl_CurrentLineBuffer, Gbl_CurrentLineNumber, Offs
754 if (Status == AE_NOT_FOUND)
755 {
756 break;
757 }
758 }

760 /* Dump the parse tree if debug enabled */

762 DtDumpFieldList (Gbl_FieldList);
763 return (Gbl_FieldList);
764 }

767 /*
768 * Output functions
769 */

771 /**
772 *
773 * FUNCTION: DtWriteBinary
774 *
775 * PARAMETERS: DT_WALK_CALLBACK
776 *
777 * RETURN: Status
778 *
779 * DESCRIPTION: Write one subtable of a binary ACPI table
780 *
781 ***/

783 static void
784 DtWriteBinary (
785 DT_SUBTABLE *Subtable,
786 void *Context,

new/usr/src/common/acpica/compiler/dtio.c 13

787 void *ReturnValue)
788 {

790 FlWriteFile (ASL_FILE_AML_OUTPUT, Subtable->Buffer, Subtable->Length);
791 }

794 /**
795 *
796 * FUNCTION: DtOutputBinary
797 *
798 * PARAMETERS:
799 *
800 * RETURN: Status
801 *
802 * DESCRIPTION: Write entire binary ACPI table (result of compilation)
803 *
804 ***/

806 void
807 DtOutputBinary (
808 DT_SUBTABLE *RootTable)
809 {

811 if (!RootTable)
812 {
813 return;
814 }

816 /* Walk the entire parse tree, emitting the binary data */

818 DtWalkTableTree (RootTable, DtWriteBinary, NULL, NULL);
819 Gbl_TableLength = DtGetFileSize (Gbl_Files[ASL_FILE_AML_OUTPUT].Handle);
820 }

823 /*
824 * Listing support
825 */

827 /**
828 *
829 * FUNCTION: DtDumpBuffer
830 *
831 * PARAMETERS: FileID - Where to write buffer data
832 * Buffer - Buffer to dump
833 * Offset - Offset in current table
834 * Length - Buffer Length
835 *
836 * RETURN: None
837 *
838 * DESCRIPTION: Another copy of DumpBuffer routine (unfortunately).
839 *
840 * TBD: merge dump buffer routines
841 *
842 ***/

844 static void
845 DtDumpBuffer (
846 UINT32 FileId,
847 UINT8 *Buffer,
848 UINT32 Offset,
849 UINT32 Length)
850 {
851 UINT32 i;
852 UINT32 j;

new/usr/src/common/acpica/compiler/dtio.c 14

853 UINT8 BufChar;

856 FlPrintFile (FileId, "Output: [%3.3Xh %4.4d %3d] ",
857 Offset, Offset, Length);

859 i = 0;
860 while (i < Length)
861 {
862 if (i >= 16)
863 {
864 FlPrintFile (FileId, "%24s", "");
865 }

867 /* Print 16 hex chars */

869 for (j = 0; j < 16;)
870 {
871 if (i + j >= Length)
872 {
873 /* Dump fill spaces */

875 FlPrintFile (FileId, " ");
876 j++;
877 continue;
878 }

880 FlPrintFile (FileId, "%02X ", Buffer[i+j]);
881 j++;
882 }

884 FlPrintFile (FileId, " ");
885 for (j = 0; j < 16; j++)
886 {
887 if (i + j >= Length)
888 {
889 FlPrintFile (FileId, "\n\n");
890 return;
891 }

893 BufChar = Buffer[(ACPI_SIZE) i + j];
894 if (ACPI_IS_PRINT (BufChar))
895 {
896 FlPrintFile (FileId, "%c", BufChar);
897 }
898 else
899 {
900 FlPrintFile (FileId, ".");
901 }
902 }

904 /* Done with that line. */

906 FlPrintFile (FileId, "\n");
907 i += 16;
908 }

910 FlPrintFile (FileId, "\n\n");
911 }

914 /**
915 *
916 * FUNCTION: DtDumpFieldList
917 *
918 * PARAMETERS: Field - Root field

new/usr/src/common/acpica/compiler/dtio.c 15

919 *
920 * RETURN: None
921 *
922 * DESCRIPTION: Dump the entire field list
923 *
924 ***/

926 void
927 DtDumpFieldList (
928 DT_FIELD *Field)
929 {

931 if (!Gbl_DebugFlag || !Field)
932 {
933 return;
934 }

936 DbgPrint (ASL_DEBUG_OUTPUT, "\nField List:\n"
937 "LineNo ByteOff NameCol Column TableOff "
938 "Flags %32s : %s\n\n", "Name", "Value");
939 while (Field)
940 {
941 DbgPrint (ASL_DEBUG_OUTPUT,
942 "%.08X %.08X %.08X %.08X %.08X %.08X %32s : %s\n",
943 Field->Line, Field->ByteOffset, Field->NameColumn,
944 Field->Column, Field->TableOffset, Field->Flags,
945 Field->Name, Field->Value);

947 Field = Field->Next;
948 }

950 DbgPrint (ASL_DEBUG_OUTPUT, "\n\n");
951 }

954 /**
955 *
956 * FUNCTION: DtDumpSubtableInfo, DtDumpSubtableTree
957 *
958 * PARAMETERS: DT_WALK_CALLBACK
959 *
960 * RETURN: None
961 *
962 * DESCRIPTION: Info - dump a subtable tree entry with extra information.
963 * Tree - dump a subtable tree formatted by depth indentation.
964 *
965 ***/

967 static void
968 DtDumpSubtableInfo (
969 DT_SUBTABLE *Subtable,
970 void *Context,
971 void *ReturnValue)
972 {

974 DbgPrint (ASL_DEBUG_OUTPUT,
975 "[%.04X] %.08X %.08X %.08X %.08X %.08X %p %p %p\n",
976 Subtable->Depth, Subtable->Length, Subtable->TotalLength,
977 Subtable->SizeOfLengthField, Subtable->Flags, Subtable,
978 Subtable->Parent, Subtable->Child, Subtable->Peer);
979 }

981 static void
982 DtDumpSubtableTree (
983 DT_SUBTABLE *Subtable,
984 void *Context,

new/usr/src/common/acpica/compiler/dtio.c 16

985 void *ReturnValue)
986 {

988 DbgPrint (ASL_DEBUG_OUTPUT,
989 "[%.04X] %*s%08X (%.02X) - (%.02X)\n",
990 Subtable->Depth, (4 * Subtable->Depth), " ",
991 Subtable, Subtable->Length, Subtable->TotalLength);
992 }

995 /**
996 *
997 * FUNCTION: DtDumpSubtableList
998 *
999 * PARAMETERS: None

1000 *
1001 * RETURN: None
1002 *
1003 * DESCRIPTION: Dump the raw list of subtables with information, and also
1004 * dump the subtable list in formatted tree format. Assists with
1005 * the development of new table code.
1006 *
1007 ***/

1009 void
1010 DtDumpSubtableList (
1011 void)
1012 {

1014 if (!Gbl_DebugFlag || !Gbl_RootTable)
1015 {
1016 return;
1017 }

1019 DbgPrint (ASL_DEBUG_OUTPUT,
1020 "Subtable Info:\n"
1021 "Depth Length TotalLen LenSize Flags "
1022 "This Parent Child Peer\n\n");
1023 DtWalkTableTree (Gbl_RootTable, DtDumpSubtableInfo, NULL, NULL);

1025 DbgPrint (ASL_DEBUG_OUTPUT,
1026 "\nSubtable Tree: (Depth, Subtable, Length, TotalLength)\n\n");
1027 DtWalkTableTree (Gbl_RootTable, DtDumpSubtableTree, NULL, NULL);
1028 }

1031 /**
1032 *
1033 * FUNCTION: DtWriteFieldToListing
1034 *
1035 * PARAMETERS: Buffer - Contains the compiled data
1036 * Field - Field node for the input line
1037 * Length - Length of the output data
1038 *
1039 * RETURN: None
1040 *
1041 * DESCRIPTION: Write one field to the listing file (if listing is enabled).
1042 *
1043 ***/

1045 void
1046 DtWriteFieldToListing (
1047 UINT8 *Buffer,
1048 DT_FIELD *Field,
1049 UINT32 Length)
1050 {

new/usr/src/common/acpica/compiler/dtio.c 17

1051 UINT8 FileByte;

1054 if (!Gbl_ListingFlag || !Field)
1055 {
1056 return;
1057 }

1059 /* Dump the original source line */

1061 FlPrintFile (ASL_FILE_LISTING_OUTPUT, "Input: ");
1062 FlSeekFile (ASL_FILE_INPUT, Field->ByteOffset);

1064 while (FlReadFile (ASL_FILE_INPUT, &FileByte, 1) == AE_OK)
1065 {
1066 FlWriteFile (ASL_FILE_LISTING_OUTPUT, &FileByte, 1);
1067 if (FileByte == ’\n’)
1068 {
1069 break;
1070 }
1071 }

1073 /* Dump the line as parsed and represented internally */

1075 FlPrintFile (ASL_FILE_LISTING_OUTPUT, "Parsed: %*s : %.64s",
1076 Field->Column-4, Field->Name, Field->Value);

1078 if (strlen (Field->Value) > 64)
1079 {
1080 FlPrintFile (ASL_FILE_LISTING_OUTPUT, "...Additional data, length 0x%X\n
1081 strlen (Field->Value));
1082 }
1083 FlPrintFile (ASL_FILE_LISTING_OUTPUT, "\n");

1085 /* Dump the hex data that will be output for this field */

1087 DtDumpBuffer (ASL_FILE_LISTING_OUTPUT, Buffer, Field->TableOffset, Length);
1088 }

1091 /**
1092 *
1093 * FUNCTION: DtWriteTableToListing
1094 *
1095 * PARAMETERS: None
1096 *
1097 * RETURN: None
1098 *
1099 * DESCRIPTION: Write the entire compiled table to the listing file
1100 * in hex format
1101 *
1102 ***/

1104 void
1105 DtWriteTableToListing (
1106 void)
1107 {
1108 UINT8 *Buffer;

1111 if (!Gbl_ListingFlag)
1112 {
1113 return;
1114 }

1116 /* Read the entire table from the output file */

new/usr/src/common/acpica/compiler/dtio.c 18

1118 Buffer = UtLocalCalloc (Gbl_TableLength);
1119 FlSeekFile (ASL_FILE_AML_OUTPUT, 0);
1120 FlReadFile (ASL_FILE_AML_OUTPUT, Buffer, Gbl_TableLength);

1122 /* Dump the raw table data */

1124 AcpiOsRedirectOutput (Gbl_Files[ASL_FILE_LISTING_OUTPUT].Handle);

1126 AcpiOsPrintf ("\n%s: Length %d (0x%X)\n\n",
1127 ACPI_RAW_TABLE_DATA_HEADER, Gbl_TableLength, Gbl_TableLength);
1128 AcpiUtDumpBuffer (Buffer, Gbl_TableLength, DB_BYTE_DISPLAY, 0);

1130 AcpiOsRedirectOutput (stdout);
1131 ACPI_FREE (Buffer);
1132 }

new/usr/src/common/acpica/compiler/dtparser.l 1

**
 4461 Thu Dec 26 13:48:37 2013
new/usr/src/common/acpica/compiler/dtparser.l
acpica-unix2-20130823
**

1 %{
2 /**
3 *
4 * Module Name: dtparser.l - Flex input file for table compiler lexer
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #include "aslcompiler.h"
46 #include "dtparser.y.h"

48 #define YY_NO_INPUT /* No file input, we use strings only */

50 #define _COMPONENT ACPI_COMPILER
51 ACPI_MODULE_NAME ("dtscanner")
52 %}

54 %option noyywrap
55 %option nounput

57 Number [0-9a-fA-F]+
58 HexNumber 0[xX][0-9a-fA-F]+
59 DecimalNumber 0[dD][0-9]+
60 LabelRef $[a-zA-Z][0-9a-zA-Z]*
61 WhiteSpace [\t\v\r]+

new/usr/src/common/acpica/compiler/dtparser.l 2

62 NewLine [\n]

64 %%

66 \(return (EXPOP_PAREN_OPEN);
67 \) return (EXPOP_PAREN_CLOSE);
68 \~ return (EXPOP_ONES_COMPLIMENT);
69 \! return (EXPOP_LOGICAL_NOT);
70 * return (EXPOP_MULTIPLY);
71 \/ return (EXPOP_DIVIDE);
72 \% return (EXPOP_MODULO);
73 \+ return (EXPOP_ADD);
74 \- return (EXPOP_SUBTRACT);
75 ">>" return (EXPOP_SHIFT_RIGHT);
76 "<<" return (EXPOP_SHIFT_LEFT);
77 \< return (EXPOP_LESS);
78 \> return (EXPOP_GREATER);
79 "<=" return (EXPOP_LESS_EQUAL);
80 ">=" return (EXPOP_GREATER_EQUAL);
81 "==" return (EXPOP_EQUAL);
82 "!=" return (EXPOP_NOT_EQUAL);
83 \& return (EXPOP_AND);
84 \^ return (EXPOP_XOR);
85 \| return (EXPOP_OR);
86 "&&" return (EXPOP_LOGICAL_AND);
87 "||" return (EXPOP_LOGICAL_OR);
88 <<EOF>> return (EXPOP_EOF); /* null end-of-string */

90 {LabelRef} return (EXPOP_LABEL);
91 {Number} return (EXPOP_NUMBER);
92 {HexNumber} return (EXPOP_HEX_NUMBER);
93 {NewLine} return (EXPOP_NEW_LINE);
94 {WhiteSpace} /* Ignore */

96 . return (EXPOP_EOF);

98 %%

100 /*
101 * Local support functions
102 */
103 YY_BUFFER_STATE LexBuffer;

105 /**
106 *
107 * FUNCTION: DtInitLexer, DtTerminateLexer
108 *
109 * PARAMETERS: String - Input string to be parsed
110 *
111 * RETURN: None
112 *
113 * DESCRIPTION: Initialization and termination routines for lexer. Lexer needs
114 * a buffer to handle strings instead of a file.
115 *
116 ***/

118 int
119 DtInitLexer (
120 char *String)
121 {

123 LexBuffer = yy_scan_string (String);
124 return (LexBuffer == NULL);
125 }

127 void

new/usr/src/common/acpica/compiler/dtparser.l 3

128 DtTerminateLexer (
129 void)
130 {

132 yy_delete_buffer (LexBuffer);
133 }

new/usr/src/common/acpica/compiler/dtparser.y 1

**
 10045 Thu Dec 26 13:48:37 2013
new/usr/src/common/acpica/compiler/dtparser.y
acpica-unix2-20130823
PANKOVs restructure
**

1 %{
2 /**
3 *
4 * Module Name: dtparser.y - Bison input file for table compiler parser
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #include "aslcompiler.h"
46 #include "dtcompiler.h"

48 #define _COMPONENT DT_COMPILER
49 ACPI_MODULE_NAME ("dtparser")

51 int DtParserlex (void);
52 int DtParserparse (void);
53 void DtParsererror (char const *msg);
54 extern char *DtParsertext;
55 extern DT_FIELD *Gbl_CurrentField;

57 UINT64 DtParserResult; /* Expression return value */

59 /* Bison/yacc configuration */

new/usr/src/common/acpica/compiler/dtparser.y 2

61 #define yytname DtParsername
62 #define YYDEBUG 1 /* Enable debug output */
63 #define YYERROR_VERBOSE 1 /* Verbose error messages */
64 #define YYFLAG -32768

66 /* Define YYMALLOC/YYFREE to prevent redefinition errors */

68 #define YYMALLOC malloc
69 #define YYFREE free
70 %}

72 %union
73 {
74 UINT64 value;
75 UINT32 op;
76 }

78 /*! [Begin] no source code translation */

80 %type <value> Expression

82 %token <op> EXPOP_EOF
83 %token <op> EXPOP_NEW_LINE
84 %token <op> EXPOP_NUMBER
85 %token <op> EXPOP_HEX_NUMBER
86 %token <op> EXPOP_DECIMAL_NUMBER
87 %token <op> EXPOP_LABEL
88 %token <op> EXPOP_PAREN_OPEN
89 %token <op> EXPOP_PAREN_CLOSE

91 %left <op> EXPOP_LOGICAL_OR
92 %left <op> EXPOP_LOGICAL_AND
93 %left <op> EXPOP_OR
94 %left <op> EXPOP_XOR
95 %left <op> EXPOP_AND
96 %left <op> EXPOP_EQUAL EXPOP_NOT_EQUAL
97 %left <op> EXPOP_GREATER EXPOP_LESS EXPOP_GREATER_EQUAL EXPOP_LESS_EQUAL
98 %left <op> EXPOP_SHIFT_RIGHT EXPOP_SHIFT_LEFT
99 %left <op> EXPOP_ADD EXPOP_SUBTRACT
100 %left <op> EXPOP_MULTIPLY EXPOP_DIVIDE EXPOP_MODULO
101 %right <op> EXPOP_ONES_COMPLIMENT EXPOP_LOGICAL_NOT

103 %%

105 /*
106 * Operator precedence rules (from K&R)
107 *
108 * 1) ()
109 * 2) ! ~ (unary operators that are supported here)
110 * 3) * / %
111 * 4) + -
112 * 5) >> <<
113 * 6) < > <= >=
114 * 7) == !=
115 * 8) &
116 * 9) ^
117 * 10) |
118 * 11) &&
119 * 12) ||
120 */
121 Value
122 : Expression EXPOP_NEW_LINE { DtParserResult=$1; return
123 | Expression EXPOP_EOF { DtParserResult=$1; return
124 ;

126 Expression

new/usr/src/common/acpica/compiler/dtparser.y 3

128 /* Unary operators */

130 : EXPOP_LOGICAL_NOT Expression { $$ = DtDoOperator ($2, EXP
131 | EXPOP_ONES_COMPLIMENT Expression { $$ = DtDoOperator ($2, EXP

133 /* Binary operators */

135 | Expression EXPOP_MULTIPLY Expression { $$ = DtDoOperator ($1, EXP
136 | Expression EXPOP_DIVIDE Expression { $$ = DtDoOperator ($1, EXP
137 | Expression EXPOP_MODULO Expression { $$ = DtDoOperator ($1, EXP
138 | Expression EXPOP_ADD Expression { $$ = DtDoOperator ($1, EXP
139 | Expression EXPOP_SUBTRACT Expression { $$ = DtDoOperator ($1, EXP
140 | Expression EXPOP_SHIFT_RIGHT Expression { $$ = DtDoOperator ($1, EXP
141 | Expression EXPOP_SHIFT_LEFT Expression { $$ = DtDoOperator ($1, EXP
142 | Expression EXPOP_GREATER Expression { $$ = DtDoOperator ($1, EXP
143 | Expression EXPOP_LESS Expression { $$ = DtDoOperator ($1, EXP
144 | Expression EXPOP_GREATER_EQUAL Expression { $$ = DtDoOperator ($1, EXP
145 | Expression EXPOP_LESS_EQUAL Expression { $$ = DtDoOperator ($1, EXP
146 | Expression EXPOP_EQUAL Expression { $$ = DtDoOperator ($1, EXP
147 | Expression EXPOP_NOT_EQUAL Expression { $$ = DtDoOperator ($1, EXP
148 | Expression EXPOP_AND Expression { $$ = DtDoOperator ($1, EXP
149 | Expression EXPOP_XOR Expression { $$ = DtDoOperator ($1, EXP
150 | Expression EXPOP_OR Expression { $$ = DtDoOperator ($1, EXP
151 | Expression EXPOP_LOGICAL_AND Expression { $$ = DtDoOperator ($1, EXP
152 | Expression EXPOP_LOGICAL_OR Expression { $$ = DtDoOperator ($1, EXP

154 /* Parentheses: ’(’ Expression ’)’ */

156 | EXPOP_PAREN_OPEN Expression
157 EXPOP_PAREN_CLOSE { $$ = $2;}

159 /* Label references (prefixed with $) */

161 | EXPOP_LABEL { $$ = DtResolveLabel (DtPar

163 /* Default base for a non-prefixed integer is 16 */

165 | EXPOP_NUMBER { UtStrtoul64 (DtParsertext,

167 /* Standard hex number (0x1234) */

169 | EXPOP_HEX_NUMBER { UtStrtoul64 (DtParsertext,

171 /* TBD: Decimal number with prefix (0d1234) - Not supported by UtStrtoul64

173 | EXPOP_DECIMAL_NUMBER { UtStrtoul64 (DtParsertext,
174 ;
175 %%

177 /*! [End] no source code translation !*/

179 /*
180 * Local support functions, including parser entry point
181 */
182 #define PR_FIRST_PARSE_OPCODE EXPOP_EOF
183 #define PR_YYTNAME_START 3

186 /**
187 *
188 * FUNCTION: DtParsererror
189 *
190 * PARAMETERS: Message - Parser-generated error message
191 *
192 * RETURN: None

new/usr/src/common/acpica/compiler/dtparser.y 4

193 *
194 * DESCRIPTION: Handler for parser errors
195 *
196 ***/

198 void
199 DtParsererror (
200 char const *Message)
201 {
202 DtError (ASL_ERROR, ASL_MSG_SYNTAX,
203 Gbl_CurrentField, (char *) Message);
204 }

207 /**
208 *
209 * FUNCTION: DtGetOpName
210 *
211 * PARAMETERS: ParseOpcode - Parser token (EXPOP_*)
212 *
213 * RETURN: Pointer to the opcode name
214 *
215 * DESCRIPTION: Get the ascii name of the parse opcode for debug output
216 *
217 ***/

219 char *
220 DtGetOpName (
221 UINT32 ParseOpcode)
222 {
223 #ifdef ASL_YYTNAME_START
224 /*
225 * First entries (PR_YYTNAME_START) in yytname are special reserved names.
226 * Ignore first 6 characters of name (EXPOP_)
227 */
228 return ((char *) yytname
229 [(ParseOpcode - PR_FIRST_PARSE_OPCODE) + PR_YYTNAME_START] + 6);
230 #else
231 return ("[Unknown parser generator]");
232 #endif
233 }

236 /**
237 *
238 * FUNCTION: DtEvaluateExpression
239 *
240 * PARAMETERS: ExprString - Expression to be evaluated. Must be
241 * terminated by either a newline or a NUL
242 * string terminator
243 *
244 * RETURN: 64-bit value for the expression
245 *
246 * DESCRIPTION: Main entry point for the DT expression parser
247 *
248 ***/

250 UINT64
251 DtEvaluateExpression (
252 char *ExprString)
253 {

255 DbgPrint (ASL_DEBUG_OUTPUT,
256 "**** Input expression: %s (Base 16)\n", ExprString);

258 /* Point lexer to the input string */

new/usr/src/common/acpica/compiler/dtparser.y 5

260 if (DtInitLexer (ExprString))
261 {
262 DtError (ASL_ERROR, ASL_MSG_COMPILER_INTERNAL,
263 Gbl_CurrentField, "Could not initialize lexer");
264 return (0);
265 }

267 /* Parse/Evaluate the input string (value returned in DtParserResult) */

269 DtParserparse ();
270 DtTerminateLexer ();

272 DbgPrint (ASL_DEBUG_OUTPUT,
273 "**** Parser returned value: %u (%8.8X%8.8X)\n",
274 (UINT32) DtParserResult, ACPI_FORMAT_UINT64 (DtParserResult));

276 return (DtParserResult);
277 }

new/usr/src/common/acpica/compiler/dtsubtable.c 1

**
 9644 Thu Dec 26 13:48:38 2013
new/usr/src/common/acpica/compiler/dtsubtable.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dtsubtable.c - handling of subtables within ACPI tables
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DTSUBTABLE_C__

46 #include "aslcompiler.h"
47 #include "dtcompiler.h"

49 #define _COMPONENT DT_COMPILER
50 ACPI_MODULE_NAME ("dtsubtable")

53 /**
54 *
55 * FUNCTION: DtCreateSubtable
56 *
57 * PARAMETERS: Buffer - Input buffer
58 * Length - Buffer length
59 * RetSubtable - Returned newly created subtable
60 *

new/usr/src/common/acpica/compiler/dtsubtable.c 2

61 * RETURN: None
62 *
63 * DESCRIPTION: Create a subtable that is not listed with ACPI_DMTABLE_INFO
64 * For example, FACS has 24 bytes reserved at the end
65 * and it’s not listed at AcpiDmTableInfoFacs
66 *
67 ***/

69 void
70 DtCreateSubtable (
71 UINT8 *Buffer,
72 UINT32 Length,
73 DT_SUBTABLE **RetSubtable)
74 {
75 DT_SUBTABLE *Subtable;

78 Subtable = UtLocalCalloc (sizeof (DT_SUBTABLE));

80 /* Create a new buffer for the subtable data */

82 Subtable->Buffer = UtLocalCalloc (Length);
83 ACPI_MEMCPY (Subtable->Buffer, Buffer, Length);

85 Subtable->Length = Length;
86 Subtable->TotalLength = Length;

88 *RetSubtable = Subtable;
89 }

92 /**
93 *
94 * FUNCTION: DtInsertSubtable
95 *
96 * PARAMETERS: ParentTable - The Parent of the new subtable
97 * Subtable - The new subtable to insert
98 *
99 * RETURN: None
100 *
101 * DESCRIPTION: Insert the new subtable to the parent table
102 *
103 ***/

105 void
106 DtInsertSubtable (
107 DT_SUBTABLE *ParentTable,
108 DT_SUBTABLE *Subtable)
109 {
110 DT_SUBTABLE *ChildTable;

113 Subtable->Peer = NULL;
114 Subtable->Parent = ParentTable;
115 Subtable->Depth = ParentTable->Depth + 1;

117 /* Link the new entry into the child list */

119 if (!ParentTable->Child)
120 {
121 ParentTable->Child = Subtable;
122 }
123 else
124 {
125 /* Walk to the end of the child list */

new/usr/src/common/acpica/compiler/dtsubtable.c 3

127 ChildTable = ParentTable->Child;
128 while (ChildTable->Peer)
129 {
130 ChildTable = ChildTable->Peer;
131 }

133 /* Add new subtable at the end of the child list */

135 ChildTable->Peer = Subtable;
136 }
137 }

140 /**
141 *
142 * FUNCTION: DtPushSubtable
143 *
144 * PARAMETERS: Subtable - Subtable to push
145 *
146 * RETURN: None
147 *
148 * DESCRIPTION: Push a subtable onto a subtable stack
149 *
150 ***/

152 void
153 DtPushSubtable (
154 DT_SUBTABLE *Subtable)
155 {

157 Subtable->StackTop = Gbl_SubtableStack;
158 Gbl_SubtableStack = Subtable;
159 }

162 /**
163 *
164 * FUNCTION: DtPopSubtable
165 *
166 * PARAMETERS: None
167 *
168 * RETURN: None
169 *
170 * DESCRIPTION: Pop a subtable from a subtable stack. Uses global SubtableStack
171 *
172 ***/

174 void
175 DtPopSubtable (
176 void)
177 {
178 DT_SUBTABLE *Subtable;

181 Subtable = Gbl_SubtableStack;

183 if (Subtable)
184 {
185 Gbl_SubtableStack = Subtable->StackTop;
186 }
187 }

190 /**
191 *
192 * FUNCTION: DtPeekSubtable

new/usr/src/common/acpica/compiler/dtsubtable.c 4

193 *
194 * PARAMETERS: None
195 *
196 * RETURN: The subtable on top of stack
197 *
198 * DESCRIPTION: Get the subtable on top of stack
199 *
200 ***/

202 DT_SUBTABLE *
203 DtPeekSubtable (
204 void)
205 {

207 return (Gbl_SubtableStack);
208 }

211 /**
212 *
213 * FUNCTION: DtGetNextSubtable
214 *
215 * PARAMETERS: ParentTable - Parent table whose children we are
216 * getting
217 * ChildTable - Previous child that was found.
218 * The NEXT child will be returned
219 *
220 * RETURN: Pointer to the NEXT child or NULL if none is found.
221 *
222 * DESCRIPTION: Return the next peer subtable within the tree.
223 *
224 ***/

226 DT_SUBTABLE *
227 DtGetNextSubtable (
228 DT_SUBTABLE *ParentTable,
229 DT_SUBTABLE *ChildTable)
230 {
231 ACPI_FUNCTION_ENTRY ();

234 if (!ChildTable)
235 {
236 /* It’s really the parent’s _scope_ that we want */

238 return (ParentTable->Child);
239 }

241 /* Otherwise just return the next peer (NULL if at end-of-list) */

243 return (ChildTable->Peer);
244 }

247 /**
248 *
249 * FUNCTION: DtGetParentSubtable
250 *
251 * PARAMETERS: Subtable - Current subtable
252 *
253 * RETURN: Parent of the given subtable
254 *
255 * DESCRIPTION: Get the parent of the given subtable in the tree
256 *
257 ***/

new/usr/src/common/acpica/compiler/dtsubtable.c 5

259 DT_SUBTABLE *
260 DtGetParentSubtable (
261 DT_SUBTABLE *Subtable)
262 {

264 if (!Subtable)
265 {
266 return (NULL);
267 }

269 return (Subtable->Parent);
270 }

273 /**
274 *
275 * FUNCTION: DtGetSubtableLength
276 *
277 * PARAMETERS: Field - Current field list pointer
278 * Info - Data table info
279 *
280 * RETURN: Subtable length
281 *
282 * DESCRIPTION: Get length of bytes needed to compile the subtable
283 *
284 ***/

286 UINT32
287 DtGetSubtableLength (
288 DT_FIELD *Field,
289 ACPI_DMTABLE_INFO *Info)
290 {
291 UINT32 ByteLength = 0;
292 UINT8 Step;
293 UINT8 i;

296 /* Walk entire Info table; Null name terminates */

298 for (; Info->Name; Info++)
299 {
300 if (Info->Opcode == ACPI_DMT_EXTRA_TEXT)
301 {
302 continue;
303 }

305 if (!Field)
306 {
307 goto Error;
308 }

310 ByteLength += DtGetFieldLength (Field, Info);

312 switch (Info->Opcode)
313 {
314 case ACPI_DMT_GAS:

316 Step = 5;
317 break;

319 case ACPI_DMT_HESTNTFY:

321 Step = 9;
322 break;

324 default:

new/usr/src/common/acpica/compiler/dtsubtable.c 6

326 Step = 1;
327 break;
328 }

330 for (i = 0; i < Step; i++)
331 {
332 if (!Field)
333 {
334 goto Error;
335 }

337 Field = Field->Next;
338 }
339 }

341 return (ByteLength);

343 Error:
344 if (!Field)
345 {
346 sprintf (MsgBuffer, "Found NULL field - Field name \"%s\" needed",
347 Info->Name);
348 DtFatal (ASL_MSG_COMPILER_INTERNAL, NULL, MsgBuffer);
349 }

351 return (ASL_EOF);
352 }

355 /**
356 *
357 * FUNCTION: DtSetSubtableLength
358 *
359 * PARAMETERS: Subtable - Subtable
360 *
361 * RETURN: None
362 *
363 * DESCRIPTION: Set length of the subtable into its length field
364 *
365 ***/

367 void
368 DtSetSubtableLength (
369 DT_SUBTABLE *Subtable)
370 {

372 if (!Subtable->LengthField)
373 {
374 return;
375 }

377 ACPI_MEMCPY (Subtable->LengthField, &Subtable->TotalLength,
378 Subtable->SizeOfLengthField);
379 }

new/usr/src/common/acpica/compiler/dttable.c 1

**
 64596 Thu Dec 26 13:48:38 2013
new/usr/src/common/acpica/compiler/dttable.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dttable.c - handling for specific ACPI tables
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DTTABLE_C__

46 /* Compile all complex data tables */

48 #include "aslcompiler.h"
49 #include "dtcompiler.h"

51 #define _COMPONENT DT_COMPILER
52 ACPI_MODULE_NAME ("dttable")

55 /* TBD: merge these into dmtbinfo.c? */

57 static ACPI_DMTABLE_INFO TableInfoAsfAddress[] =
58 {
59 {ACPI_DMT_BUFFER, 0, "Addresses", 0},

new/usr/src/common/acpica/compiler/dttable.c 2

60 {ACPI_DMT_EXIT, 0, NULL, 0}
61 };

63 static ACPI_DMTABLE_INFO TableInfoDmarPciPath[] =
64 {
65 {ACPI_DMT_PCI_PATH, 0, "PCI Path", 0},
66 {ACPI_DMT_EXIT, 0, NULL, 0}
67 };

70 /* TBD: move to acmacros.h */

72 #define ACPI_SUB_PTR(t, a, b) \
73 ACPI_CAST_PTR (t, (ACPI_CAST_PTR (UINT8, (a)) - (ACPI_SIZE)(b)))

76 /* Local prototypes */

78 static ACPI_STATUS
79 DtCompileTwoSubtables (
80 void **List,
81 ACPI_DMTABLE_INFO *TableInfo1,
82 ACPI_DMTABLE_INFO *TableInfo2);

85 /**
86 *
87 * FUNCTION: DtCompileTwoSubtables
88 *
89 * PARAMETERS: List - Current field list pointer
90 * TableInfo1 - Info table 1
91 * TableInfo1 - Info table 2
92 *
93 * RETURN: Status
94 *
95 * DESCRIPTION: Compile tables with a header and one or more same subtables.
96 * Include CPEP, EINJ, ERST, MCFG, MSCT, WDAT
97 *
98 ***/

100 static ACPI_STATUS
101 DtCompileTwoSubtables (
102 void **List,
103 ACPI_DMTABLE_INFO *TableInfo1,
104 ACPI_DMTABLE_INFO *TableInfo2)
105 {
106 ACPI_STATUS Status;
107 DT_SUBTABLE *Subtable;
108 DT_SUBTABLE *ParentTable;
109 DT_FIELD **PFieldList = (DT_FIELD **) List;

112 Status = DtCompileTable (PFieldList, TableInfo1, &Subtable, TRUE);
113 if (ACPI_FAILURE (Status))
114 {
115 return (Status);
116 }

118 ParentTable = DtPeekSubtable ();
119 DtInsertSubtable (ParentTable, Subtable);

121 while (*PFieldList)
122 {
123 Status = DtCompileTable (PFieldList, TableInfo2, &Subtable, FALSE);
124 if (ACPI_FAILURE (Status))
125 {

new/usr/src/common/acpica/compiler/dttable.c 3

126 return (Status);
127 }

129 DtInsertSubtable (ParentTable, Subtable);
130 }

132 return (AE_OK);
133 }

136 /**
137 *
138 * FUNCTION: DtCompileFacs
139 *
140 * PARAMETERS: PFieldList - Current field list pointer
141 *
142 * RETURN: Status
143 *
144 * DESCRIPTION: Compile FACS.
145 *
146 ***/

148 ACPI_STATUS
149 DtCompileFacs (
150 DT_FIELD **PFieldList)
151 {
152 DT_SUBTABLE *Subtable;
153 UINT8 *ReservedBuffer;
154 ACPI_STATUS Status;
155 UINT32 ReservedSize;

158 Status = DtCompileTable (PFieldList, AcpiDmTableInfoFacs,
159 &Gbl_RootTable, TRUE);
160 if (ACPI_FAILURE (Status))
161 {
162 return (Status);
163 }

165 /* Large FACS reserved area at the end of the table */

167 ReservedSize = (UINT32) sizeof (((ACPI_TABLE_FACS *) NULL)->Reserved1);
168 ReservedBuffer = UtLocalCalloc (ReservedSize);

170 DtCreateSubtable (ReservedBuffer, ReservedSize, &Subtable);

172 ACPI_FREE (ReservedBuffer);
173 DtInsertSubtable (Gbl_RootTable, Subtable);
174 return (AE_OK);
175 }

178 /**
179 *
180 * FUNCTION: DtCompileRsdp
181 *
182 * PARAMETERS: PFieldList - Current field list pointer
183 *
184 * RETURN: Status
185 *
186 * DESCRIPTION: Compile RSDP.
187 *
188 ***/

190 ACPI_STATUS
191 DtCompileRsdp (

new/usr/src/common/acpica/compiler/dttable.c 4

192 DT_FIELD **PFieldList)
193 {
194 DT_SUBTABLE *Subtable;
195 ACPI_TABLE_RSDP *Rsdp;
196 ACPI_RSDP_EXTENSION *RsdpExtension;
197 ACPI_STATUS Status;

200 /* Compile the "common" RSDP (ACPI 1.0) */

202 Status = DtCompileTable (PFieldList, AcpiDmTableInfoRsdp1,
203 &Gbl_RootTable, TRUE);
204 if (ACPI_FAILURE (Status))
205 {
206 return (Status);
207 }

209 Rsdp = ACPI_CAST_PTR (ACPI_TABLE_RSDP, Gbl_RootTable->Buffer);
210 DtSetTableChecksum (&Rsdp->Checksum);

212 if (Rsdp->Revision > 0)
213 {
214 /* Compile the "extended" part of the RSDP as a subtable */

216 Status = DtCompileTable (PFieldList, AcpiDmTableInfoRsdp2,
217 &Subtable, TRUE);
218 if (ACPI_FAILURE (Status))
219 {
220 return (Status);
221 }

223 DtInsertSubtable (Gbl_RootTable, Subtable);

225 /* Set length and extended checksum for entire RSDP */

227 RsdpExtension = ACPI_CAST_PTR (ACPI_RSDP_EXTENSION, Subtable->Buffer);
228 RsdpExtension->Length = Gbl_RootTable->Length + Subtable->Length;
229 DtSetTableChecksum (&RsdpExtension->ExtendedChecksum);
230 }

232 return (AE_OK);
233 }

236 /**
237 *
238 * FUNCTION: DtCompileAsf
239 *
240 * PARAMETERS: List - Current field list pointer
241 *
242 * RETURN: Status
243 *
244 * DESCRIPTION: Compile ASF!.
245 *
246 ***/

248 ACPI_STATUS
249 DtCompileAsf (
250 void **List)
251 {
252 ACPI_ASF_INFO *AsfTable;
253 DT_SUBTABLE *Subtable;
254 DT_SUBTABLE *ParentTable;
255 ACPI_DMTABLE_INFO *InfoTable;
256 ACPI_DMTABLE_INFO *DataInfoTable = NULL;
257 UINT32 DataCount = 0;

new/usr/src/common/acpica/compiler/dttable.c 5

258 ACPI_STATUS Status;
259 UINT32 i;
260 DT_FIELD **PFieldList = (DT_FIELD **) List;
261 DT_FIELD *SubtableStart;

264 while (*PFieldList)
265 {
266 SubtableStart = *PFieldList;
267 Status = DtCompileTable (PFieldList, AcpiDmTableInfoAsfHdr,
268 &Subtable, TRUE);
269 if (ACPI_FAILURE (Status))
270 {
271 return (Status);
272 }

274 ParentTable = DtPeekSubtable ();
275 DtInsertSubtable (ParentTable, Subtable);
276 DtPushSubtable (Subtable);

278 AsfTable = ACPI_CAST_PTR (ACPI_ASF_INFO, Subtable->Buffer);

280 switch (AsfTable->Header.Type & 0x7F) /* Mask off top bit */
281 {
282 case ACPI_ASF_TYPE_INFO:

284 InfoTable = AcpiDmTableInfoAsf0;
285 break;

287 case ACPI_ASF_TYPE_ALERT:

289 InfoTable = AcpiDmTableInfoAsf1;
290 break;

292 case ACPI_ASF_TYPE_CONTROL:

294 InfoTable = AcpiDmTableInfoAsf2;
295 break;

297 case ACPI_ASF_TYPE_BOOT:

299 InfoTable = AcpiDmTableInfoAsf3;
300 break;

302 case ACPI_ASF_TYPE_ADDRESS:

304 InfoTable = AcpiDmTableInfoAsf4;
305 break;

307 default:

309 DtFatal (ASL_MSG_UNKNOWN_SUBTABLE, SubtableStart, "ASF!");
310 return (AE_ERROR);
311 }

313 Status = DtCompileTable (PFieldList, InfoTable, &Subtable, TRUE);
314 if (ACPI_FAILURE (Status))
315 {
316 return (Status);
317 }

319 ParentTable = DtPeekSubtable ();
320 DtInsertSubtable (ParentTable, Subtable);

322 switch (AsfTable->Header.Type & 0x7F) /* Mask off top bit */
323 {

new/usr/src/common/acpica/compiler/dttable.c 6

324 case ACPI_ASF_TYPE_INFO:

326 DataInfoTable = NULL;
327 break;

329 case ACPI_ASF_TYPE_ALERT:

331 DataInfoTable = AcpiDmTableInfoAsf1a;
332 DataCount = ACPI_CAST_PTR (ACPI_ASF_ALERT,
333 ACPI_SUB_PTR (UINT8, Subtable->Buffer,
334 sizeof (ACPI_ASF_HEADER)))->Alerts;
335 break;

337 case ACPI_ASF_TYPE_CONTROL:

339 DataInfoTable = AcpiDmTableInfoAsf2a;
340 DataCount = ACPI_CAST_PTR (ACPI_ASF_REMOTE,
341 ACPI_SUB_PTR (UINT8, Subtable->Buffer,
342 sizeof (ACPI_ASF_HEADER)))->Controls;
343 break;

345 case ACPI_ASF_TYPE_BOOT:

347 DataInfoTable = NULL;
348 break;

350 case ACPI_ASF_TYPE_ADDRESS:

352 DataInfoTable = TableInfoAsfAddress;
353 DataCount = ACPI_CAST_PTR (ACPI_ASF_ADDRESS,
354 ACPI_SUB_PTR (UINT8, Subtable->Buffer,
355 sizeof (ACPI_ASF_HEADER)))->Devices;
356 break;

358 default:

360 DtFatal (ASL_MSG_UNKNOWN_SUBTABLE, SubtableStart, "ASF!");
361 return (AE_ERROR);
362 }

364 if (DataInfoTable)
365 {
366 switch (AsfTable->Header.Type & 0x7F)
367 {
368 case ACPI_ASF_TYPE_ADDRESS:

370 while (DataCount > 0)
371 {
372 Status = DtCompileTable (PFieldList, DataInfoTable,
373 &Subtable, TRUE);
374 if (ACPI_FAILURE (Status))
375 {
376 return (Status);
377 }

379 DtInsertSubtable (ParentTable, Subtable);
380 DataCount = DataCount - Subtable->Length;
381 }
382 break;

384 default:

386 for (i = 0; i < DataCount; i++)
387 {
388 Status = DtCompileTable (PFieldList, DataInfoTable,
389 &Subtable, TRUE);

new/usr/src/common/acpica/compiler/dttable.c 7

390 if (ACPI_FAILURE (Status))
391 {
392 return (Status);
393 }

395 DtInsertSubtable (ParentTable, Subtable);
396 }
397 break;
398 }
399 }

401 DtPopSubtable ();
402 }

404 return (AE_OK);
405 }

408 /**
409 *
410 * FUNCTION: DtCompileCpep
411 *
412 * PARAMETERS: List - Current field list pointer
413 *
414 * RETURN: Status
415 *
416 * DESCRIPTION: Compile CPEP.
417 *
418 ***/

420 ACPI_STATUS
421 DtCompileCpep (
422 void **List)
423 {
424 ACPI_STATUS Status;

427 Status = DtCompileTwoSubtables (List,
428 AcpiDmTableInfoCpep, AcpiDmTableInfoCpep0);
429 return (Status);
430 }

433 /**
434 *
435 * FUNCTION: DtCompileCsrt
436 *
437 * PARAMETERS: List - Current field list pointer
438 *
439 * RETURN: Status
440 *
441 * DESCRIPTION: Compile CSRT.
442 *
443 ***/

445 ACPI_STATUS
446 DtCompileCsrt (
447 void **List)
448 {
449 ACPI_STATUS Status = AE_OK;
450 DT_SUBTABLE *Subtable;
451 DT_SUBTABLE *ParentTable;
452 DT_FIELD **PFieldList = (DT_FIELD **) List;
453 UINT32 DescriptorCount;
454 UINT32 GroupLength;

new/usr/src/common/acpica/compiler/dttable.c 8

457 /* Sub-tables (Resource Groups) */

459 while (*PFieldList)
460 {
461 /* Resource group subtable */

463 Status = DtCompileTable (PFieldList, AcpiDmTableInfoCsrt0,
464 &Subtable, TRUE);
465 if (ACPI_FAILURE (Status))
466 {
467 return (Status);
468 }

470 /* Compute the number of resource descriptors */

472 GroupLength =
473 (ACPI_CAST_PTR (ACPI_CSRT_GROUP,
474 Subtable->Buffer))->Length -
475 (ACPI_CAST_PTR (ACPI_CSRT_GROUP,
476 Subtable->Buffer))->SharedInfoLength -
477 sizeof (ACPI_CSRT_GROUP);

479 DescriptorCount = (GroupLength /
480 sizeof (ACPI_CSRT_DESCRIPTOR));

482 ParentTable = DtPeekSubtable ();
483 DtInsertSubtable (ParentTable, Subtable);
484 DtPushSubtable (Subtable);

486 /* Shared info subtable (One per resource group) */

488 Status = DtCompileTable (PFieldList, AcpiDmTableInfoCsrt1,
489 &Subtable, TRUE);
490 if (ACPI_FAILURE (Status))
491 {
492 return (Status);
493 }

495 ParentTable = DtPeekSubtable ();
496 DtInsertSubtable (ParentTable, Subtable);

498 /* Sub-Subtables (Resource Descriptors) */

500 while (*PFieldList && DescriptorCount)
501 {
502 Status = DtCompileTable (PFieldList, AcpiDmTableInfoCsrt2,
503 &Subtable, TRUE);
504 if (ACPI_FAILURE (Status))
505 {
506 return (Status);
507 }

509 ParentTable = DtPeekSubtable ();
510 DtInsertSubtable (ParentTable, Subtable);
511 DescriptorCount--;
512 }

514 DtPopSubtable ();
515 }

517 return (Status);
518 }

521 /**

new/usr/src/common/acpica/compiler/dttable.c 9

522 *
523 * FUNCTION: DtCompileDbg2
524 *
525 * PARAMETERS: List - Current field list pointer
526 *
527 * RETURN: Status
528 *
529 * DESCRIPTION: Compile DBG2.
530 *
531 ***/

533 ACPI_STATUS
534 DtCompileDbg2 (
535 void **List)
536 {
537 ACPI_STATUS Status;
538 DT_SUBTABLE *Subtable;
539 DT_SUBTABLE *ParentTable;
540 DT_FIELD **PFieldList = (DT_FIELD **) List;
541 UINT32 SubtableCount;
542 ACPI_DBG2_HEADER *Dbg2Header;
543 ACPI_DBG2_DEVICE *DeviceInfo;
544 UINT16 CurrentOffset;
545 UINT32 i;

548 /* Main table */

550 Status = DtCompileTable (PFieldList, AcpiDmTableInfoDbg2, &Subtable, TRUE);
551 if (ACPI_FAILURE (Status))
552 {
553 return (Status);
554 }

556 ParentTable = DtPeekSubtable ();
557 DtInsertSubtable (ParentTable, Subtable);

559 /* Main table fields */

561 Dbg2Header = ACPI_CAST_PTR (ACPI_DBG2_HEADER, Subtable->Buffer);
562 Dbg2Header->InfoOffset = sizeof (ACPI_TABLE_HEADER) + ACPI_PTR_DIFF (
563 ACPI_ADD_PTR (UINT8, Dbg2Header, sizeof (ACPI_DBG2_HEADER)), Dbg2Header)

565 SubtableCount = Dbg2Header->InfoCount;
566 DtPushSubtable (Subtable);

568 /* Process all Device Information subtables (Count = InfoCount) */

570 while (*PFieldList && SubtableCount)
571 {
572 /* Subtable: Debug Device Information */

574 Status = DtCompileTable (PFieldList, AcpiDmTableInfoDbg2Device,
575 &Subtable, TRUE);
576 if (ACPI_FAILURE (Status))
577 {
578 return (Status);
579 }

581 DeviceInfo = ACPI_CAST_PTR (ACPI_DBG2_DEVICE, Subtable->Buffer);
582 CurrentOffset = (UINT16) sizeof (ACPI_DBG2_DEVICE);

584 ParentTable = DtPeekSubtable ();
585 DtInsertSubtable (ParentTable, Subtable);
586 DtPushSubtable (Subtable);

new/usr/src/common/acpica/compiler/dttable.c 10

588 ParentTable = DtPeekSubtable ();

590 /* BaseAddressRegister GAS array (Required, size is RegisterCount) */

592 DeviceInfo->BaseAddressOffset = CurrentOffset;
593 for (i = 0; *PFieldList && (i < DeviceInfo->RegisterCount); i++)
594 {
595 Status = DtCompileTable (PFieldList, AcpiDmTableInfoDbg2Addr,
596 &Subtable, TRUE);
597 if (ACPI_FAILURE (Status))
598 {
599 return (Status);
600 }

602 CurrentOffset += (UINT16) sizeof (ACPI_GENERIC_ADDRESS);
603 DtInsertSubtable (ParentTable, Subtable);
604 }

606 /* AddressSize array (Required, size = RegisterCount) */

608 DeviceInfo->AddressSizeOffset = CurrentOffset;
609 for (i = 0; *PFieldList && (i < DeviceInfo->RegisterCount); i++)
610 {
611 Status = DtCompileTable (PFieldList, AcpiDmTableInfoDbg2Size,
612 &Subtable, TRUE);
613 if (ACPI_FAILURE (Status))
614 {
615 return (Status);
616 }

618 CurrentOffset += (UINT16) sizeof (UINT32);
619 DtInsertSubtable (ParentTable, Subtable);
620 }

622 /* NamespaceString device identifier (Required, size = NamePathLength) *

624 DeviceInfo->NamepathOffset = CurrentOffset;
625 Status = DtCompileTable (PFieldList, AcpiDmTableInfoDbg2Name,
626 &Subtable, TRUE);
627 if (ACPI_FAILURE (Status))
628 {
629 return (Status);
630 }

632 /* Update the device info header */

634 DeviceInfo->NamepathLength = (UINT16) Subtable->Length;
635 CurrentOffset += (UINT16) DeviceInfo->NamepathLength;
636 DtInsertSubtable (ParentTable, Subtable);

638 /* OemData - Variable-length data (Optional, size = OemDataLength) */

640 Status = DtCompileTable (PFieldList, AcpiDmTableInfoDbg2OemData,
641 &Subtable, TRUE);
642 if (ACPI_FAILURE (Status))
643 {
644 return (Status);
645 }

647 /* Update the device info header (zeros if no OEM data present) */

649 DeviceInfo->OemDataOffset = 0;
650 DeviceInfo->OemDataLength = 0;

652 /* Optional subtable (OemData) */

new/usr/src/common/acpica/compiler/dttable.c 11

654 if (Subtable && Subtable->Length)
655 {
656 DeviceInfo->OemDataOffset = CurrentOffset;
657 DeviceInfo->OemDataLength = (UINT16) Subtable->Length;

659 DtInsertSubtable (ParentTable, Subtable);
660 }

662 SubtableCount--;
663 DtPopSubtable (); /* Get next Device Information subtable */
664 }

666 DtPopSubtable ();
667 return (AE_OK);
668 }

671 /**
672 *
673 * FUNCTION: DtCompileDmar
674 *
675 * PARAMETERS: List - Current field list pointer
676 *
677 * RETURN: Status
678 *
679 * DESCRIPTION: Compile DMAR.
680 *
681 ***/

683 ACPI_STATUS
684 DtCompileDmar (
685 void **List)
686 {
687 ACPI_STATUS Status;
688 DT_SUBTABLE *Subtable;
689 DT_SUBTABLE *ParentTable;
690 DT_FIELD **PFieldList = (DT_FIELD **) List;
691 DT_FIELD *SubtableStart;
692 ACPI_DMTABLE_INFO *InfoTable;
693 ACPI_DMAR_HEADER *DmarHeader;
694 ACPI_DMAR_DEVICE_SCOPE *DmarDeviceScope;
695 UINT32 DeviceScopeLength;
696 UINT32 PciPathLength;

699 Status = DtCompileTable (PFieldList, AcpiDmTableInfoDmar, &Subtable, TRUE);
700 if (ACPI_FAILURE (Status))
701 {
702 return (Status);
703 }

705 ParentTable = DtPeekSubtable ();
706 DtInsertSubtable (ParentTable, Subtable);
707 DtPushSubtable (Subtable);

709 while (*PFieldList)
710 {
711 /* DMAR Header */

713 SubtableStart = *PFieldList;
714 Status = DtCompileTable (PFieldList, AcpiDmTableInfoDmarHdr,
715 &Subtable, TRUE);
716 if (ACPI_FAILURE (Status))
717 {
718 return (Status);
719 }

new/usr/src/common/acpica/compiler/dttable.c 12

721 ParentTable = DtPeekSubtable ();
722 DtInsertSubtable (ParentTable, Subtable);
723 DtPushSubtable (Subtable);

725 DmarHeader = ACPI_CAST_PTR (ACPI_DMAR_HEADER, Subtable->Buffer);

727 switch (DmarHeader->Type)
728 {
729 case ACPI_DMAR_TYPE_HARDWARE_UNIT:

731 InfoTable = AcpiDmTableInfoDmar0;
732 break;

734 case ACPI_DMAR_TYPE_RESERVED_MEMORY:

736 InfoTable = AcpiDmTableInfoDmar1;
737 break;

739 case ACPI_DMAR_TYPE_ATSR:

741 InfoTable = AcpiDmTableInfoDmar2;
742 break;

744 case ACPI_DMAR_HARDWARE_AFFINITY:

746 InfoTable = AcpiDmTableInfoDmar3;
747 break;

749 default:

751 DtFatal (ASL_MSG_UNKNOWN_SUBTABLE, SubtableStart, "DMAR");
752 return (AE_ERROR);
753 }

755 /* DMAR Subtable */

757 Status = DtCompileTable (PFieldList, InfoTable, &Subtable, TRUE);
758 if (ACPI_FAILURE (Status))
759 {
760 return (Status);
761 }

763 ParentTable = DtPeekSubtable ();
764 DtInsertSubtable (ParentTable, Subtable);
765 DtPushSubtable (Subtable);

767 /* Optional Device Scope subtables */

769 DeviceScopeLength = DmarHeader->Length - Subtable->Length -
770 ParentTable->Length;
771 while (DeviceScopeLength)
772 {
773 Status = DtCompileTable (PFieldList, AcpiDmTableInfoDmarScope,
774 &Subtable, FALSE);
775 if (Status == AE_NOT_FOUND)
776 {
777 break;
778 }

780 ParentTable = DtPeekSubtable ();
781 DtInsertSubtable (ParentTable, Subtable);
782 DtPushSubtable (Subtable);

784 DmarDeviceScope = ACPI_CAST_PTR (ACPI_DMAR_DEVICE_SCOPE, Subtable->B

new/usr/src/common/acpica/compiler/dttable.c 13

786 /* Optional PCI Paths */

788 PciPathLength = DmarDeviceScope->Length - Subtable->Length;
789 while (PciPathLength)
790 {
791 Status = DtCompileTable (PFieldList, TableInfoDmarPciPath,
792 &Subtable, FALSE);
793 if (Status == AE_NOT_FOUND)
794 {
795 DtPopSubtable ();
796 break;
797 }

799 ParentTable = DtPeekSubtable ();
800 DtInsertSubtable (ParentTable, Subtable);
801 PciPathLength -= Subtable->Length;
802 }

804 DtPopSubtable ();
805 DeviceScopeLength -= DmarDeviceScope->Length;
806 }

808 DtPopSubtable ();
809 DtPopSubtable ();
810 }

812 return (AE_OK);
813 }

816 /**
817 *
818 * FUNCTION: DtCompileEinj
819 *
820 * PARAMETERS: List - Current field list pointer
821 *
822 * RETURN: Status
823 *
824 * DESCRIPTION: Compile EINJ.
825 *
826 ***/

828 ACPI_STATUS
829 DtCompileEinj (
830 void **List)
831 {
832 ACPI_STATUS Status;

835 Status = DtCompileTwoSubtables (List,
836 AcpiDmTableInfoEinj, AcpiDmTableInfoEinj0);
837 return (Status);
838 }

841 /**
842 *
843 * FUNCTION: DtCompileErst
844 *
845 * PARAMETERS: List - Current field list pointer
846 *
847 * RETURN: Status
848 *
849 * DESCRIPTION: Compile ERST.
850 *
851 ***/

new/usr/src/common/acpica/compiler/dttable.c 14

853 ACPI_STATUS
854 DtCompileErst (
855 void **List)
856 {
857 ACPI_STATUS Status;

860 Status = DtCompileTwoSubtables (List,
861 AcpiDmTableInfoErst, AcpiDmTableInfoEinj0);
862 return (Status);
863 }

866 /**
867 *
868 * FUNCTION: DtCompileFadt
869 *
870 * PARAMETERS: List - Current field list pointer
871 *
872 * RETURN: Status
873 *
874 * DESCRIPTION: Compile FADT.
875 *
876 ***/

878 ACPI_STATUS
879 DtCompileFadt (
880 void **List)
881 {
882 ACPI_STATUS Status;
883 DT_SUBTABLE *Subtable;
884 DT_SUBTABLE *ParentTable;
885 DT_FIELD **PFieldList = (DT_FIELD **) List;
886 ACPI_TABLE_HEADER *Table;
887 UINT8 Revision;

890 Status = DtCompileTable (PFieldList, AcpiDmTableInfoFadt1,
891 &Subtable, TRUE);
892 if (ACPI_FAILURE (Status))
893 {
894 return (Status);
895 }

897 ParentTable = DtPeekSubtable ();
898 DtInsertSubtable (ParentTable, Subtable);

900 Table = ACPI_CAST_PTR (ACPI_TABLE_HEADER, ParentTable->Buffer);
901 Revision = Table->Revision;

903 if (Revision == 2)
904 {
905 Status = DtCompileTable (PFieldList, AcpiDmTableInfoFadt2,
906 &Subtable, TRUE);
907 if (ACPI_FAILURE (Status))
908 {
909 return (Status);
910 }

912 DtInsertSubtable (ParentTable, Subtable);
913 }
914 else if (Revision >= 2)
915 {
916 Status = DtCompileTable (PFieldList, AcpiDmTableInfoFadt3,
917 &Subtable, TRUE);

new/usr/src/common/acpica/compiler/dttable.c 15

918 if (ACPI_FAILURE (Status))
919 {
920 return (Status);
921 }

923 DtInsertSubtable (ParentTable, Subtable);

925 if (Revision >= 5)
926 {
927 Status = DtCompileTable (PFieldList, AcpiDmTableInfoFadt5,
928 &Subtable, TRUE);
929 if (ACPI_FAILURE (Status))
930 {
931 return (Status);
932 }

934 DtInsertSubtable (ParentTable, Subtable);
935 }
936 }

938 return (AE_OK);
939 }

942 /**
943 *
944 * FUNCTION: DtCompileFpdt
945 *
946 * PARAMETERS: List - Current field list pointer
947 *
948 * RETURN: Status
949 *
950 * DESCRIPTION: Compile FPDT.
951 *
952 ***/

954 ACPI_STATUS
955 DtCompileFpdt (
956 void **List)
957 {
958 ACPI_STATUS Status;
959 ACPI_FPDT_HEADER *FpdtHeader;
960 DT_SUBTABLE *Subtable;
961 DT_SUBTABLE *ParentTable;
962 ACPI_DMTABLE_INFO *InfoTable;
963 DT_FIELD **PFieldList = (DT_FIELD **) List;
964 DT_FIELD *SubtableStart;

967 while (*PFieldList)
968 {
969 SubtableStart = *PFieldList;
970 Status = DtCompileTable (PFieldList, AcpiDmTableInfoFpdtHdr,
971 &Subtable, TRUE);
972 if (ACPI_FAILURE (Status))
973 {
974 return (Status);
975 }

977 ParentTable = DtPeekSubtable ();
978 DtInsertSubtable (ParentTable, Subtable);
979 DtPushSubtable (Subtable);

981 FpdtHeader = ACPI_CAST_PTR (ACPI_FPDT_HEADER, Subtable->Buffer);

983 switch (FpdtHeader->Type)

new/usr/src/common/acpica/compiler/dttable.c 16

984 {
985 case ACPI_FPDT_TYPE_BOOT:

987 InfoTable = AcpiDmTableInfoFpdt0;
988 break;

990 case ACPI_FPDT_TYPE_S3PERF:

992 InfoTable = AcpiDmTableInfoFpdt1;
993 break;

995 default:

997 DtFatal (ASL_MSG_UNKNOWN_SUBTABLE, SubtableStart, "FPDT");
998 return (AE_ERROR);
999 break;

1000 }

1002 Status = DtCompileTable (PFieldList, InfoTable, &Subtable, TRUE);
1003 if (ACPI_FAILURE (Status))
1004 {
1005 return (Status);
1006 }

1008 ParentTable = DtPeekSubtable ();
1009 DtInsertSubtable (ParentTable, Subtable);
1010 DtPopSubtable ();
1011 }

1013 return (AE_OK);
1014 }

1017 /**
1018 *
1019 * FUNCTION: DtCompileHest
1020 *
1021 * PARAMETERS: List - Current field list pointer
1022 *
1023 * RETURN: Status
1024 *
1025 * DESCRIPTION: Compile HEST.
1026 *
1027 ***/

1029 ACPI_STATUS
1030 DtCompileHest (
1031 void **List)
1032 {
1033 ACPI_STATUS Status;
1034 DT_SUBTABLE *Subtable;
1035 DT_SUBTABLE *ParentTable;
1036 DT_FIELD **PFieldList = (DT_FIELD **) List;
1037 DT_FIELD *SubtableStart;
1038 ACPI_DMTABLE_INFO *InfoTable;
1039 UINT16 Type;
1040 UINT32 BankCount;

1043 Status = DtCompileTable (PFieldList, AcpiDmTableInfoHest,
1044 &Subtable, TRUE);
1045 if (ACPI_FAILURE (Status))
1046 {
1047 return (Status);
1048 }

new/usr/src/common/acpica/compiler/dttable.c 17

1050 ParentTable = DtPeekSubtable ();
1051 DtInsertSubtable (ParentTable, Subtable);

1053 while (*PFieldList)
1054 {
1055 /* Get subtable type */

1057 SubtableStart = *PFieldList;
1058 DtCompileInteger ((UINT8 *) &Type, *PFieldList, 2, 0);

1060 switch (Type)
1061 {
1062 case ACPI_HEST_TYPE_IA32_CHECK:

1064 InfoTable = AcpiDmTableInfoHest0;
1065 break;

1067 case ACPI_HEST_TYPE_IA32_CORRECTED_CHECK:

1069 InfoTable = AcpiDmTableInfoHest1;
1070 break;

1072 case ACPI_HEST_TYPE_IA32_NMI:

1074 InfoTable = AcpiDmTableInfoHest2;
1075 break;

1077 case ACPI_HEST_TYPE_AER_ROOT_PORT:

1079 InfoTable = AcpiDmTableInfoHest6;
1080 break;

1082 case ACPI_HEST_TYPE_AER_ENDPOINT:

1084 InfoTable = AcpiDmTableInfoHest7;
1085 break;

1087 case ACPI_HEST_TYPE_AER_BRIDGE:

1089 InfoTable = AcpiDmTableInfoHest8;
1090 break;

1092 case ACPI_HEST_TYPE_GENERIC_ERROR:

1094 InfoTable = AcpiDmTableInfoHest9;
1095 break;

1097 default:

1099 /* Cannot continue on unknown type */

1101 DtFatal (ASL_MSG_UNKNOWN_SUBTABLE, SubtableStart, "HEST");
1102 return (AE_ERROR);
1103 }

1105 Status = DtCompileTable (PFieldList, InfoTable, &Subtable, TRUE);
1106 if (ACPI_FAILURE (Status))
1107 {
1108 return (Status);
1109 }

1111 DtInsertSubtable (ParentTable, Subtable);

1113 /*
1114 * Additional subtable data - IA32 Error Bank(s)
1115 */

new/usr/src/common/acpica/compiler/dttable.c 18

1116 BankCount = 0;
1117 switch (Type)
1118 {
1119 case ACPI_HEST_TYPE_IA32_CHECK:

1121 BankCount = (ACPI_CAST_PTR (ACPI_HEST_IA_MACHINE_CHECK,
1122 Subtable->Buffer))->NumHardwareBanks;
1123 break;

1125 case ACPI_HEST_TYPE_IA32_CORRECTED_CHECK:

1127 BankCount = (ACPI_CAST_PTR (ACPI_HEST_IA_CORRECTED,
1128 Subtable->Buffer))->NumHardwareBanks;
1129 break;

1131 default:

1133 break;
1134 }

1136 while (BankCount)
1137 {
1138 Status = DtCompileTable (PFieldList, AcpiDmTableInfoHestBank,
1139 &Subtable, TRUE);
1140 if (ACPI_FAILURE (Status))
1141 {
1142 return (Status);
1143 }

1145 DtInsertSubtable (ParentTable, Subtable);
1146 BankCount--;
1147 }
1148 }

1150 return (AE_OK);
1151 }

1154 /**
1155 *
1156 * FUNCTION: DtCompileIvrs
1157 *
1158 * PARAMETERS: List - Current field list pointer
1159 *
1160 * RETURN: Status
1161 *
1162 * DESCRIPTION: Compile IVRS.
1163 *
1164 ***/

1166 ACPI_STATUS
1167 DtCompileIvrs (
1168 void **List)
1169 {
1170 ACPI_STATUS Status;
1171 DT_SUBTABLE *Subtable;
1172 DT_SUBTABLE *ParentTable;
1173 DT_FIELD **PFieldList = (DT_FIELD **) List;
1174 DT_FIELD *SubtableStart;
1175 ACPI_DMTABLE_INFO *InfoTable;
1176 ACPI_IVRS_HEADER *IvrsHeader;
1177 UINT8 EntryType;

1180 Status = DtCompileTable (PFieldList, AcpiDmTableInfoIvrs,
1181 &Subtable, TRUE);

new/usr/src/common/acpica/compiler/dttable.c 19

1182 if (ACPI_FAILURE (Status))
1183 {
1184 return (Status);
1185 }

1187 ParentTable = DtPeekSubtable ();
1188 DtInsertSubtable (ParentTable, Subtable);

1190 while (*PFieldList)
1191 {
1192 SubtableStart = *PFieldList;
1193 Status = DtCompileTable (PFieldList, AcpiDmTableInfoIvrsHdr,
1194 &Subtable, TRUE);
1195 if (ACPI_FAILURE (Status))
1196 {
1197 return (Status);
1198 }

1200 ParentTable = DtPeekSubtable ();
1201 DtInsertSubtable (ParentTable, Subtable);
1202 DtPushSubtable (Subtable);

1204 IvrsHeader = ACPI_CAST_PTR (ACPI_IVRS_HEADER, Subtable->Buffer);

1206 switch (IvrsHeader->Type)
1207 {
1208 case ACPI_IVRS_TYPE_HARDWARE:

1210 InfoTable = AcpiDmTableInfoIvrs0;
1211 break;

1213 case ACPI_IVRS_TYPE_MEMORY1:
1214 case ACPI_IVRS_TYPE_MEMORY2:
1215 case ACPI_IVRS_TYPE_MEMORY3:

1217 InfoTable = AcpiDmTableInfoIvrs1;
1218 break;

1220 default:

1222 DtFatal (ASL_MSG_UNKNOWN_SUBTABLE, SubtableStart, "IVRS");
1223 return (AE_ERROR);
1224 }

1226 Status = DtCompileTable (PFieldList, InfoTable, &Subtable, TRUE);
1227 if (ACPI_FAILURE (Status))
1228 {
1229 return (Status);
1230 }

1232 ParentTable = DtPeekSubtable ();
1233 DtInsertSubtable (ParentTable, Subtable);

1235 if (IvrsHeader->Type == ACPI_IVRS_TYPE_HARDWARE)
1236 {
1237 while (*PFieldList &&
1238 !ACPI_STRCMP ((*PFieldList)->Name, "Entry Type"))
1239 {
1240 SubtableStart = *PFieldList;
1241 DtCompileInteger (&EntryType, *PFieldList, 1, 0);

1243 switch (EntryType)
1244 {
1245 /* 4-byte device entries */

1247 case ACPI_IVRS_TYPE_PAD4:

new/usr/src/common/acpica/compiler/dttable.c 20

1248 case ACPI_IVRS_TYPE_ALL:
1249 case ACPI_IVRS_TYPE_SELECT:
1250 case ACPI_IVRS_TYPE_START:
1251 case ACPI_IVRS_TYPE_END:

1253 InfoTable = AcpiDmTableInfoIvrs4;
1254 break;

1256 /* 8-byte entries, type A */

1258 case ACPI_IVRS_TYPE_ALIAS_SELECT:
1259 case ACPI_IVRS_TYPE_ALIAS_START:

1261 InfoTable = AcpiDmTableInfoIvrs8a;
1262 break;

1264 /* 8-byte entries, type B */

1266 case ACPI_IVRS_TYPE_PAD8:
1267 case ACPI_IVRS_TYPE_EXT_SELECT:
1268 case ACPI_IVRS_TYPE_EXT_START:

1270 InfoTable = AcpiDmTableInfoIvrs8b;
1271 break;

1273 /* 8-byte entries, type C */

1275 case ACPI_IVRS_TYPE_SPECIAL:

1277 InfoTable = AcpiDmTableInfoIvrs8c;
1278 break;

1280 default:

1282 DtFatal (ASL_MSG_UNKNOWN_SUBTABLE, SubtableStart,
1283 "IVRS Device Entry");
1284 return (AE_ERROR);
1285 }

1287 Status = DtCompileTable (PFieldList, InfoTable,
1288 &Subtable, TRUE);
1289 if (ACPI_FAILURE (Status))
1290 {
1291 return (Status);
1292 }

1294 DtInsertSubtable (ParentTable, Subtable);
1295 }
1296 }

1298 DtPopSubtable ();
1299 }

1301 return (AE_OK);
1302 }

1305 /**
1306 *
1307 * FUNCTION: DtCompileMadt
1308 *
1309 * PARAMETERS: List - Current field list pointer
1310 *
1311 * RETURN: Status
1312 *
1313 * DESCRIPTION: Compile MADT.

new/usr/src/common/acpica/compiler/dttable.c 21

1314 *
1315 ***/

1317 ACPI_STATUS
1318 DtCompileMadt (
1319 void **List)
1320 {
1321 ACPI_STATUS Status;
1322 DT_SUBTABLE *Subtable;
1323 DT_SUBTABLE *ParentTable;
1324 DT_FIELD **PFieldList = (DT_FIELD **) List;
1325 DT_FIELD *SubtableStart;
1326 ACPI_SUBTABLE_HEADER *MadtHeader;
1327 ACPI_DMTABLE_INFO *InfoTable;

1330 Status = DtCompileTable (PFieldList, AcpiDmTableInfoMadt,
1331 &Subtable, TRUE);
1332 if (ACPI_FAILURE (Status))
1333 {
1334 return (Status);
1335 }

1337 ParentTable = DtPeekSubtable ();
1338 DtInsertSubtable (ParentTable, Subtable);

1340 while (*PFieldList)
1341 {
1342 SubtableStart = *PFieldList;
1343 Status = DtCompileTable (PFieldList, AcpiDmTableInfoMadtHdr,
1344 &Subtable, TRUE);
1345 if (ACPI_FAILURE (Status))
1346 {
1347 return (Status);
1348 }

1350 ParentTable = DtPeekSubtable ();
1351 DtInsertSubtable (ParentTable, Subtable);
1352 DtPushSubtable (Subtable);

1354 MadtHeader = ACPI_CAST_PTR (ACPI_SUBTABLE_HEADER, Subtable->Buffer);

1356 switch (MadtHeader->Type)
1357 {
1358 case ACPI_MADT_TYPE_LOCAL_APIC:

1360 InfoTable = AcpiDmTableInfoMadt0;
1361 break;

1363 case ACPI_MADT_TYPE_IO_APIC:

1365 InfoTable = AcpiDmTableInfoMadt1;
1366 break;

1368 case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE:

1370 InfoTable = AcpiDmTableInfoMadt2;
1371 break;

1373 case ACPI_MADT_TYPE_NMI_SOURCE:

1375 InfoTable = AcpiDmTableInfoMadt3;
1376 break;

1378 case ACPI_MADT_TYPE_LOCAL_APIC_NMI:

new/usr/src/common/acpica/compiler/dttable.c 22

1380 InfoTable = AcpiDmTableInfoMadt4;
1381 break;

1383 case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE:

1385 InfoTable = AcpiDmTableInfoMadt5;
1386 break;

1388 case ACPI_MADT_TYPE_IO_SAPIC:

1390 InfoTable = AcpiDmTableInfoMadt6;
1391 break;

1393 case ACPI_MADT_TYPE_LOCAL_SAPIC:

1395 InfoTable = AcpiDmTableInfoMadt7;
1396 break;

1398 case ACPI_MADT_TYPE_INTERRUPT_SOURCE:

1400 InfoTable = AcpiDmTableInfoMadt8;
1401 break;

1403 case ACPI_MADT_TYPE_LOCAL_X2APIC:

1405 InfoTable = AcpiDmTableInfoMadt9;
1406 break;

1408 case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI:

1410 InfoTable = AcpiDmTableInfoMadt10;
1411 break;

1413 case ACPI_MADT_TYPE_GENERIC_INTERRUPT:

1415 InfoTable = AcpiDmTableInfoMadt11;
1416 break;

1418 case ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR:

1420 InfoTable = AcpiDmTableInfoMadt12;
1421 break;

1423 default:

1425 DtFatal (ASL_MSG_UNKNOWN_SUBTABLE, SubtableStart, "MADT");
1426 return (AE_ERROR);
1427 }

1429 Status = DtCompileTable (PFieldList, InfoTable, &Subtable, TRUE);
1430 if (ACPI_FAILURE (Status))
1431 {
1432 return (Status);
1433 }

1435 ParentTable = DtPeekSubtable ();
1436 DtInsertSubtable (ParentTable, Subtable);
1437 DtPopSubtable ();
1438 }

1440 return (AE_OK);
1441 }

1444 /**
1445 *

new/usr/src/common/acpica/compiler/dttable.c 23

1446 * FUNCTION: DtCompileMcfg
1447 *
1448 * PARAMETERS: List - Current field list pointer
1449 *
1450 * RETURN: Status
1451 *
1452 * DESCRIPTION: Compile MCFG.
1453 *
1454 ***/

1456 ACPI_STATUS
1457 DtCompileMcfg (
1458 void **List)
1459 {
1460 ACPI_STATUS Status;

1463 Status = DtCompileTwoSubtables (List,
1464 AcpiDmTableInfoMcfg, AcpiDmTableInfoMcfg0);
1465 return (Status);
1466 }

1469 /**
1470 *
1471 * FUNCTION: DtCompileMpst
1472 *
1473 * PARAMETERS: List - Current field list pointer
1474 *
1475 * RETURN: Status
1476 *
1477 * DESCRIPTION: Compile MPST.
1478 *
1479 ***/

1481 ACPI_STATUS
1482 DtCompileMpst (
1483 void **List)
1484 {
1485 ACPI_STATUS Status;
1486 DT_SUBTABLE *Subtable;
1487 DT_SUBTABLE *ParentTable;
1488 DT_FIELD **PFieldList = (DT_FIELD **) List;
1489 ACPI_MPST_CHANNEL *MpstChannelInfo;
1490 ACPI_MPST_POWER_NODE *MpstPowerNode;
1491 ACPI_MPST_DATA_HDR *MpstDataHeader;
1492 UINT16 SubtableCount;
1493 UINT32 PowerStateCount;
1494 UINT32 ComponentCount;

1497 /* Main table */

1499 Status = DtCompileTable (PFieldList, AcpiDmTableInfoMpst, &Subtable, TRUE);
1500 if (ACPI_FAILURE (Status))
1501 {
1502 return (Status);
1503 }

1505 ParentTable = DtPeekSubtable ();
1506 DtInsertSubtable (ParentTable, Subtable);
1507 DtPushSubtable (Subtable);

1509 MpstChannelInfo = ACPI_CAST_PTR (ACPI_MPST_CHANNEL, Subtable->Buffer);
1510 SubtableCount = MpstChannelInfo->PowerNodeCount;

new/usr/src/common/acpica/compiler/dttable.c 24

1512 while (*PFieldList && SubtableCount)
1513 {
1514 /* Subtable: Memory Power Node(s) */

1516 Status = DtCompileTable (PFieldList, AcpiDmTableInfoMpst0,
1517 &Subtable, TRUE);
1518 if (ACPI_FAILURE (Status))
1519 {
1520 return (Status);
1521 }

1523 ParentTable = DtPeekSubtable ();
1524 DtInsertSubtable (ParentTable, Subtable);
1525 DtPushSubtable (Subtable);

1527 MpstPowerNode = ACPI_CAST_PTR (ACPI_MPST_POWER_NODE, Subtable->Buffer);
1528 PowerStateCount = MpstPowerNode->NumPowerStates;
1529 ComponentCount = MpstPowerNode->NumPhysicalComponents;

1531 ParentTable = DtPeekSubtable ();

1533 /* Sub-subtables - Memory Power State Structure(s) */

1535 while (*PFieldList && PowerStateCount)
1536 {
1537 Status = DtCompileTable (PFieldList, AcpiDmTableInfoMpst0A,
1538 &Subtable, TRUE);
1539 if (ACPI_FAILURE (Status))
1540 {
1541 return (Status);
1542 }

1544 DtInsertSubtable (ParentTable, Subtable);
1545 PowerStateCount--;
1546 }

1548 /* Sub-subtables - Physical Component ID Structure(s) */

1550 while (*PFieldList && ComponentCount)
1551 {
1552 Status = DtCompileTable (PFieldList, AcpiDmTableInfoMpst0B,
1553 &Subtable, TRUE);
1554 if (ACPI_FAILURE (Status))
1555 {
1556 return (Status);
1557 }

1559 DtInsertSubtable (ParentTable, Subtable);
1560 ComponentCount--;
1561 }

1563 SubtableCount--;
1564 DtPopSubtable ();
1565 }

1567 /* Subtable: Count of Memory Power State Characteristic structures */

1569 DtPopSubtable ();

1571 Status = DtCompileTable (PFieldList, AcpiDmTableInfoMpst1, &Subtable, TRUE);
1572 if (ACPI_FAILURE (Status))
1573 {
1574 return (Status);
1575 }

1577 ParentTable = DtPeekSubtable ();

new/usr/src/common/acpica/compiler/dttable.c 25

1578 DtInsertSubtable (ParentTable, Subtable);
1579 DtPushSubtable (Subtable);

1581 MpstDataHeader = ACPI_CAST_PTR (ACPI_MPST_DATA_HDR, Subtable->Buffer);
1582 SubtableCount = MpstDataHeader->CharacteristicsCount;

1584 ParentTable = DtPeekSubtable ();

1586 /* Subtable: Memory Power State Characteristics structure(s) */

1588 while (*PFieldList && SubtableCount)
1589 {
1590 Status = DtCompileTable (PFieldList, AcpiDmTableInfoMpst2,
1591 &Subtable, TRUE);
1592 if (ACPI_FAILURE (Status))
1593 {
1594 return (Status);
1595 }

1597 DtInsertSubtable (ParentTable, Subtable);
1598 SubtableCount--;
1599 }

1601 DtPopSubtable ();
1602 return (AE_OK);
1603 }

1606 /**
1607 *
1608 * FUNCTION: DtCompileMsct
1609 *
1610 * PARAMETERS: List - Current field list pointer
1611 *
1612 * RETURN: Status
1613 *
1614 * DESCRIPTION: Compile MSCT.
1615 *
1616 ***/

1618 ACPI_STATUS
1619 DtCompileMsct (
1620 void **List)
1621 {
1622 ACPI_STATUS Status;

1625 Status = DtCompileTwoSubtables (List,
1626 AcpiDmTableInfoMsct, AcpiDmTableInfoMsct0);
1627 return (Status);
1628 }

1631 /**
1632 *
1633 * FUNCTION: DtCompileMtmr
1634 *
1635 * PARAMETERS: List - Current field list pointer
1636 *
1637 * RETURN: Status
1638 *
1639 * DESCRIPTION: Compile MTMR.
1640 *
1641 ***/

1643 ACPI_STATUS

new/usr/src/common/acpica/compiler/dttable.c 26

1644 DtCompileMtmr (
1645 void **List)
1646 {
1647 ACPI_STATUS Status;

1650 Status = DtCompileTwoSubtables (List,
1651 AcpiDmTableInfoMtmr, AcpiDmTableInfoMtmr0);
1652 return (Status);
1653 }

1656 /**
1657 *
1658 * FUNCTION: DtCompilePcct
1659 *
1660 * PARAMETERS: List - Current field list pointer
1661 *
1662 * RETURN: Status
1663 *
1664 * DESCRIPTION: Compile PCCT.
1665 *
1666 ***/

1668 ACPI_STATUS
1669 DtCompilePcct (
1670 void **List)
1671 {
1672 ACPI_STATUS Status;
1673 DT_SUBTABLE *Subtable;
1674 DT_SUBTABLE *ParentTable;
1675 DT_FIELD **PFieldList = (DT_FIELD **) List;
1676 DT_FIELD *SubtableStart;
1677 ACPI_SUBTABLE_HEADER *PcctHeader;
1678 ACPI_DMTABLE_INFO *InfoTable;

1681 Status = DtCompileTable (PFieldList, AcpiDmTableInfoPcct,
1682 &Subtable, TRUE);
1683 if (ACPI_FAILURE (Status))
1684 {
1685 return (Status);
1686 }

1688 ParentTable = DtPeekSubtable ();
1689 DtInsertSubtable (ParentTable, Subtable);

1691 while (*PFieldList)
1692 {
1693 SubtableStart = *PFieldList;
1694 Status = DtCompileTable (PFieldList, AcpiDmTableInfoPcctHdr,
1695 &Subtable, TRUE);
1696 if (ACPI_FAILURE (Status))
1697 {
1698 return (Status);
1699 }

1701 ParentTable = DtPeekSubtable ();
1702 DtInsertSubtable (ParentTable, Subtable);
1703 DtPushSubtable (Subtable);

1705 PcctHeader = ACPI_CAST_PTR (ACPI_SUBTABLE_HEADER, Subtable->Buffer);

1707 switch (PcctHeader->Type)
1708 {
1709 case ACPI_PCCT_TYPE_GENERIC_SUBSPACE:

new/usr/src/common/acpica/compiler/dttable.c 27

1711 InfoTable = AcpiDmTableInfoPcct0;
1712 break;

1714 default:

1716 DtFatal (ASL_MSG_UNKNOWN_SUBTABLE, SubtableStart, "PCCT");
1717 return (AE_ERROR);
1718 }

1720 Status = DtCompileTable (PFieldList, InfoTable, &Subtable, TRUE);
1721 if (ACPI_FAILURE (Status))
1722 {
1723 return (Status);
1724 }

1726 ParentTable = DtPeekSubtable ();
1727 DtInsertSubtable (ParentTable, Subtable);
1728 DtPopSubtable ();
1729 }

1731 return (AE_OK);
1732 }

1735 /**
1736 *
1737 * FUNCTION: DtCompilePmtt
1738 *
1739 * PARAMETERS: List - Current field list pointer
1740 *
1741 * RETURN: Status
1742 *
1743 * DESCRIPTION: Compile PMTT.
1744 *
1745 ***/

1747 ACPI_STATUS
1748 DtCompilePmtt (
1749 void **List)
1750 {
1751 ACPI_STATUS Status;
1752 DT_SUBTABLE *Subtable;
1753 DT_SUBTABLE *ParentTable;
1754 DT_FIELD **PFieldList = (DT_FIELD **) List;
1755 DT_FIELD *SubtableStart;
1756 ACPI_PMTT_HEADER *PmttHeader;
1757 ACPI_PMTT_CONTROLLER *PmttController;
1758 UINT16 DomainCount;
1759 UINT8 PrevType = ACPI_PMTT_TYPE_SOCKET;

1762 /* Main table */

1764 Status = DtCompileTable (PFieldList, AcpiDmTableInfoPmtt, &Subtable, TRUE);
1765 if (ACPI_FAILURE (Status))
1766 {
1767 return (Status);
1768 }

1770 ParentTable = DtPeekSubtable ();
1771 DtInsertSubtable (ParentTable, Subtable);
1772 DtPushSubtable (Subtable);

1774 while (*PFieldList)
1775 {

new/usr/src/common/acpica/compiler/dttable.c 28

1776 SubtableStart = *PFieldList;
1777 Status = DtCompileTable (PFieldList, AcpiDmTableInfoPmttHdr,
1778 &Subtable, TRUE);
1779 if (ACPI_FAILURE (Status))
1780 {
1781 return (Status);
1782 }

1784 PmttHeader = ACPI_CAST_PTR (ACPI_PMTT_HEADER, Subtable->Buffer);
1785 while (PrevType >= PmttHeader->Type)
1786 {
1787 DtPopSubtable ();

1789 if (PrevType == ACPI_PMTT_TYPE_SOCKET)
1790 {
1791 break;
1792 }
1793 PrevType--;
1794 }
1795 PrevType = PmttHeader->Type;

1797 ParentTable = DtPeekSubtable ();
1798 DtInsertSubtable (ParentTable, Subtable);
1799 DtPushSubtable (Subtable);

1801 switch (PmttHeader->Type)
1802 {
1803 case ACPI_PMTT_TYPE_SOCKET:

1805 /* Subtable: Socket Structure */

1807 Status = DtCompileTable (PFieldList, AcpiDmTableInfoPmtt0,
1808 &Subtable, TRUE);
1809 if (ACPI_FAILURE (Status))
1810 {
1811 return (Status);
1812 }

1814 ParentTable = DtPeekSubtable ();
1815 DtInsertSubtable (ParentTable, Subtable);
1816 break;

1818 case ACPI_PMTT_TYPE_CONTROLLER:

1820 /* Subtable: Memory Controller Structure */

1822 Status = DtCompileTable (PFieldList, AcpiDmTableInfoPmtt1,
1823 &Subtable, TRUE);
1824 if (ACPI_FAILURE (Status))
1825 {
1826 return (Status);
1827 }

1829 ParentTable = DtPeekSubtable ();
1830 DtInsertSubtable (ParentTable, Subtable);

1832 PmttController = ACPI_CAST_PTR (ACPI_PMTT_CONTROLLER,
1833 (Subtable->Buffer - sizeof (ACPI_PMTT_HEADER)));
1834 DomainCount = PmttController->DomainCount;

1836 while (DomainCount)
1837 {
1838 Status = DtCompileTable (PFieldList, AcpiDmTableInfoPmtt1a,
1839 &Subtable, TRUE);
1840 if (ACPI_FAILURE (Status))
1841 {

new/usr/src/common/acpica/compiler/dttable.c 29

1842 return (Status);
1843 }

1845 DtInsertSubtable (ParentTable, Subtable);
1846 DomainCount--;
1847 }
1848 break;

1850 case ACPI_PMTT_TYPE_DIMM:

1852 /* Subtable: Physical Component Structure */

1854 Status = DtCompileTable (PFieldList, AcpiDmTableInfoPmtt2,
1855 &Subtable, TRUE);
1856 if (ACPI_FAILURE (Status))
1857 {
1858 return (Status);
1859 }

1861 ParentTable = DtPeekSubtable ();
1862 DtInsertSubtable (ParentTable, Subtable);
1863 break;

1865 default:

1867 DtFatal (ASL_MSG_UNKNOWN_SUBTABLE, SubtableStart, "PMTT");
1868 return (AE_ERROR);
1869 }
1870 }

1872 return (Status);
1873 }

1876 /**
1877 *
1878 * FUNCTION: DtCompileRsdt
1879 *
1880 * PARAMETERS: List - Current field list pointer
1881 *
1882 * RETURN: Status
1883 *
1884 * DESCRIPTION: Compile RSDT.
1885 *
1886 ***/

1888 ACPI_STATUS
1889 DtCompileRsdt (
1890 void **List)
1891 {
1892 DT_SUBTABLE *Subtable;
1893 DT_SUBTABLE *ParentTable;
1894 DT_FIELD *FieldList = *(DT_FIELD **) List;
1895 UINT32 Address;

1898 ParentTable = DtPeekSubtable ();

1900 while (FieldList)
1901 {
1902 DtCompileInteger ((UINT8 *) &Address, FieldList, 4, DT_NON_ZERO);

1904 DtCreateSubtable ((UINT8 *) &Address, 4, &Subtable);
1905 DtInsertSubtable (ParentTable, Subtable);
1906 FieldList = FieldList->Next;
1907 }

new/usr/src/common/acpica/compiler/dttable.c 30

1909 return (AE_OK);
1910 }

1913 /**
1914 *
1915 * FUNCTION: DtCompileS3pt
1916 *
1917 * PARAMETERS: PFieldList - Current field list pointer
1918 *
1919 * RETURN: Status
1920 *
1921 * DESCRIPTION: Compile S3PT (Pointed to by FPDT)
1922 *
1923 ***/

1925 ACPI_STATUS
1926 DtCompileS3pt (
1927 DT_FIELD **PFieldList)
1928 {
1929 ACPI_STATUS Status;
1930 ACPI_S3PT_HEADER *S3ptHeader;
1931 DT_SUBTABLE *Subtable;
1932 DT_SUBTABLE *ParentTable;
1933 ACPI_DMTABLE_INFO *InfoTable;
1934 DT_FIELD *SubtableStart;

1937 Status = DtCompileTable (PFieldList, AcpiDmTableInfoS3pt,
1938 &Gbl_RootTable, TRUE);
1939 if (ACPI_FAILURE (Status))
1940 {
1941 return (Status);
1942 }

1944 DtPushSubtable (Gbl_RootTable);

1946 while (*PFieldList)
1947 {
1948 SubtableStart = *PFieldList;
1949 Status = DtCompileTable (PFieldList, AcpiDmTableInfoS3ptHdr,
1950 &Subtable, TRUE);
1951 if (ACPI_FAILURE (Status))
1952 {
1953 return (Status);
1954 }

1956 ParentTable = DtPeekSubtable ();
1957 DtInsertSubtable (ParentTable, Subtable);
1958 DtPushSubtable (Subtable);

1960 S3ptHeader = ACPI_CAST_PTR (ACPI_S3PT_HEADER, Subtable->Buffer);

1962 switch (S3ptHeader->Type)
1963 {
1964 case ACPI_S3PT_TYPE_RESUME:

1966 InfoTable = AcpiDmTableInfoS3pt0;
1967 break;

1969 case ACPI_S3PT_TYPE_SUSPEND:

1971 InfoTable = AcpiDmTableInfoS3pt1;
1972 break;

new/usr/src/common/acpica/compiler/dttable.c 31

1974 default:

1976 DtFatal (ASL_MSG_UNKNOWN_SUBTABLE, SubtableStart, "S3PT");
1977 return (AE_ERROR);
1978 }

1980 Status = DtCompileTable (PFieldList, InfoTable, &Subtable, TRUE);
1981 if (ACPI_FAILURE (Status))
1982 {
1983 return (Status);
1984 }

1986 ParentTable = DtPeekSubtable ();
1987 DtInsertSubtable (ParentTable, Subtable);
1988 DtPopSubtable ();
1989 }

1991 return (AE_OK);
1992 }

1995 /**
1996 *
1997 * FUNCTION: DtCompileSlic
1998 *
1999 * PARAMETERS: List - Current field list pointer
2000 *
2001 * RETURN: Status
2002 *
2003 * DESCRIPTION: Compile SLIC.
2004 *
2005 ***/

2007 ACPI_STATUS
2008 DtCompileSlic (
2009 void **List)
2010 {
2011 ACPI_STATUS Status;
2012 DT_SUBTABLE *Subtable;
2013 DT_SUBTABLE *ParentTable;
2014 DT_FIELD **PFieldList = (DT_FIELD **) List;
2015 DT_FIELD *SubtableStart;
2016 ACPI_SLIC_HEADER *SlicHeader;
2017 ACPI_DMTABLE_INFO *InfoTable;

2020 while (*PFieldList)
2021 {
2022 SubtableStart = *PFieldList;
2023 Status = DtCompileTable (PFieldList, AcpiDmTableInfoSlicHdr,
2024 &Subtable, TRUE);
2025 if (ACPI_FAILURE (Status))
2026 {
2027 return (Status);
2028 }

2030 ParentTable = DtPeekSubtable ();
2031 DtInsertSubtable (ParentTable, Subtable);
2032 DtPushSubtable (Subtable);

2034 SlicHeader = ACPI_CAST_PTR (ACPI_SLIC_HEADER, Subtable->Buffer);

2036 switch (SlicHeader->Type)
2037 {
2038 case ACPI_SLIC_TYPE_PUBLIC_KEY:

new/usr/src/common/acpica/compiler/dttable.c 32

2040 InfoTable = AcpiDmTableInfoSlic0;
2041 break;

2043 case ACPI_SLIC_TYPE_WINDOWS_MARKER:

2045 InfoTable = AcpiDmTableInfoSlic1;
2046 break;

2048 default:

2050 DtFatal (ASL_MSG_UNKNOWN_SUBTABLE, SubtableStart, "SLIC");
2051 return (AE_ERROR);
2052 }

2054 Status = DtCompileTable (PFieldList, InfoTable, &Subtable, TRUE);
2055 if (ACPI_FAILURE (Status))
2056 {
2057 return (Status);
2058 }

2060 ParentTable = DtPeekSubtable ();
2061 DtInsertSubtable (ParentTable, Subtable);
2062 DtPopSubtable ();
2063 }

2065 return (AE_OK);
2066 }

2069 /**
2070 *
2071 * FUNCTION: DtCompileSlit
2072 *
2073 * PARAMETERS: List - Current field list pointer
2074 *
2075 * RETURN: Status
2076 *
2077 * DESCRIPTION: Compile SLIT.
2078 *
2079 ***/

2081 ACPI_STATUS
2082 DtCompileSlit (
2083 void **List)
2084 {
2085 ACPI_STATUS Status;
2086 DT_SUBTABLE *Subtable;
2087 DT_SUBTABLE *ParentTable;
2088 DT_FIELD **PFieldList = (DT_FIELD **) List;
2089 DT_FIELD *FieldList;
2090 UINT32 Localities;
2091 UINT8 *LocalityBuffer;

2094 Status = DtCompileTable (PFieldList, AcpiDmTableInfoSlit,
2095 &Subtable, TRUE);
2096 if (ACPI_FAILURE (Status))
2097 {
2098 return (Status);
2099 }

2101 ParentTable = DtPeekSubtable ();
2102 DtInsertSubtable (ParentTable, Subtable);

2104 Localities = *ACPI_CAST_PTR (UINT32, Subtable->Buffer);
2105 LocalityBuffer = UtLocalCalloc (Localities);

new/usr/src/common/acpica/compiler/dttable.c 33

2107 /* Compile each locality buffer */

2109 FieldList = *PFieldList;
2110 while (FieldList)
2111 {
2112 DtCompileBuffer (LocalityBuffer,
2113 FieldList->Value, FieldList, Localities);

2115 DtCreateSubtable (LocalityBuffer, Localities, &Subtable);
2116 DtInsertSubtable (ParentTable, Subtable);
2117 FieldList = FieldList->Next;
2118 }

2120 ACPI_FREE (LocalityBuffer);
2121 return (AE_OK);
2122 }

2125 /**
2126 *
2127 * FUNCTION: DtCompileSrat
2128 *
2129 * PARAMETERS: List - Current field list pointer
2130 *
2131 * RETURN: Status
2132 *
2133 * DESCRIPTION: Compile SRAT.
2134 *
2135 ***/

2137 ACPI_STATUS
2138 DtCompileSrat (
2139 void **List)
2140 {
2141 ACPI_STATUS Status;
2142 DT_SUBTABLE *Subtable;
2143 DT_SUBTABLE *ParentTable;
2144 DT_FIELD **PFieldList = (DT_FIELD **) List;
2145 DT_FIELD *SubtableStart;
2146 ACPI_SUBTABLE_HEADER *SratHeader;
2147 ACPI_DMTABLE_INFO *InfoTable;

2150 Status = DtCompileTable (PFieldList, AcpiDmTableInfoSrat,
2151 &Subtable, TRUE);
2152 if (ACPI_FAILURE (Status))
2153 {
2154 return (Status);
2155 }

2157 ParentTable = DtPeekSubtable ();
2158 DtInsertSubtable (ParentTable, Subtable);

2160 while (*PFieldList)
2161 {
2162 SubtableStart = *PFieldList;
2163 Status = DtCompileTable (PFieldList, AcpiDmTableInfoSratHdr,
2164 &Subtable, TRUE);
2165 if (ACPI_FAILURE (Status))
2166 {
2167 return (Status);
2168 }

2170 ParentTable = DtPeekSubtable ();
2171 DtInsertSubtable (ParentTable, Subtable);

new/usr/src/common/acpica/compiler/dttable.c 34

2172 DtPushSubtable (Subtable);

2174 SratHeader = ACPI_CAST_PTR (ACPI_SUBTABLE_HEADER, Subtable->Buffer);

2176 switch (SratHeader->Type)
2177 {
2178 case ACPI_SRAT_TYPE_CPU_AFFINITY:

2180 InfoTable = AcpiDmTableInfoSrat0;
2181 break;

2183 case ACPI_SRAT_TYPE_MEMORY_AFFINITY:

2185 InfoTable = AcpiDmTableInfoSrat1;
2186 break;

2188 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY:

2190 InfoTable = AcpiDmTableInfoSrat2;
2191 break;

2193 default:

2195 DtFatal (ASL_MSG_UNKNOWN_SUBTABLE, SubtableStart, "SRAT");
2196 return (AE_ERROR);
2197 }

2199 Status = DtCompileTable (PFieldList, InfoTable, &Subtable, TRUE);
2200 if (ACPI_FAILURE (Status))
2201 {
2202 return (Status);
2203 }

2205 ParentTable = DtPeekSubtable ();
2206 DtInsertSubtable (ParentTable, Subtable);
2207 DtPopSubtable ();
2208 }

2210 return (AE_OK);
2211 }

2214 /**
2215 *
2216 * FUNCTION: DtGetGenericTableInfo
2217 *
2218 * PARAMETERS: Name - Generic type name
2219 *
2220 * RETURN: Info entry
2221 *
2222 * DESCRIPTION: Obtain table info for a generic name entry
2223 *
2224 ***/

2226 ACPI_DMTABLE_INFO *
2227 DtGetGenericTableInfo (
2228 char *Name)
2229 {
2230 ACPI_DMTABLE_INFO *Info;
2231 UINT32 i;

2234 if (!Name)
2235 {
2236 return (NULL);
2237 }

new/usr/src/common/acpica/compiler/dttable.c 35

2239 /* Search info table for name match */

2241 for (i = 0; ; i++)
2242 {
2243 Info = AcpiDmTableInfoGeneric[i];
2244 if (Info->Opcode == ACPI_DMT_EXIT)
2245 {
2246 Info = NULL;
2247 break;
2248 }

2250 /* Use caseless compare for generic keywords */

2252 if (!AcpiUtStricmp (Name, Info->Name))
2253 {
2254 break;
2255 }
2256 }

2258 return (Info);
2259 }

2262 /**
2263 *
2264 * FUNCTION: DtCompileUefi
2265 *
2266 * PARAMETERS: List - Current field list pointer
2267 *
2268 * RETURN: Status
2269 *
2270 * DESCRIPTION: Compile UEFI.
2271 *
2272 ***/

2274 ACPI_STATUS
2275 DtCompileUefi (
2276 void **List)
2277 {
2278 ACPI_STATUS Status;
2279 DT_SUBTABLE *Subtable;
2280 DT_SUBTABLE *ParentTable;
2281 DT_FIELD **PFieldList = (DT_FIELD **) List;
2282 UINT16 *DataOffset;

2285 /* Compile the predefined portion of the UEFI table */

2287 Status = DtCompileTable (PFieldList, AcpiDmTableInfoUefi,
2288 &Subtable, TRUE);
2289 if (ACPI_FAILURE (Status))
2290 {
2291 return (Status);
2292 }

2294 DataOffset = (UINT16 *) (Subtable->Buffer + 16);
2295 *DataOffset = sizeof (ACPI_TABLE_UEFI);

2297 ParentTable = DtPeekSubtable ();
2298 DtInsertSubtable (ParentTable, Subtable);

2300 /*
2301 * Compile the "generic" portion of the UEFI table. This
2302 * part of the table is not predefined and any of the generic
2303 * operators may be used.

new/usr/src/common/acpica/compiler/dttable.c 36

2304 */

2306 DtCompileGeneric ((void **) PFieldList);

2308 return (AE_OK);
2309 }

2312 /**
2313 *
2314 * FUNCTION: DtCompileVrtc
2315 *
2316 * PARAMETERS: List - Current field list pointer
2317 *
2318 * RETURN: Status
2319 *
2320 * DESCRIPTION: Compile VRTC.
2321 *
2322 ***/

2324 ACPI_STATUS
2325 DtCompileVrtc (
2326 void **List)
2327 {
2328 ACPI_STATUS Status;

2331 Status = DtCompileTwoSubtables (List,
2332 AcpiDmTableInfoVrtc, AcpiDmTableInfoVrtc0);
2333 return (Status);
2334 }

2337 /**
2338 *
2339 * FUNCTION: DtCompileWdat
2340 *
2341 * PARAMETERS: List - Current field list pointer
2342 *
2343 * RETURN: Status
2344 *
2345 * DESCRIPTION: Compile WDAT.
2346 *
2347 ***/

2349 ACPI_STATUS
2350 DtCompileWdat (
2351 void **List)
2352 {
2353 ACPI_STATUS Status;

2356 Status = DtCompileTwoSubtables (List,
2357 AcpiDmTableInfoWdat, AcpiDmTableInfoWdat0);
2358 return (Status);
2359 }

2362 /**
2363 *
2364 * FUNCTION: DtCompileXsdt
2365 *
2366 * PARAMETERS: List - Current field list pointer
2367 *
2368 * RETURN: Status
2369 *

new/usr/src/common/acpica/compiler/dttable.c 37

2370 * DESCRIPTION: Compile XSDT.
2371 *
2372 ***/

2374 ACPI_STATUS
2375 DtCompileXsdt (
2376 void **List)
2377 {
2378 DT_SUBTABLE *Subtable;
2379 DT_SUBTABLE *ParentTable;
2380 DT_FIELD *FieldList = *(DT_FIELD **) List;
2381 UINT64 Address;

2383 ParentTable = DtPeekSubtable ();

2385 while (FieldList)
2386 {
2387 DtCompileInteger ((UINT8 *) &Address, FieldList, 8, DT_NON_ZERO);

2389 DtCreateSubtable ((UINT8 *) &Address, 8, &Subtable);
2390 DtInsertSubtable (ParentTable, Subtable);
2391 FieldList = FieldList->Next;
2392 }

2394 return (AE_OK);
2395 }

2398 /**
2399 *
2400 * FUNCTION: DtCompileGeneric
2401 *
2402 * PARAMETERS: List - Current field list pointer
2403 *
2404 * RETURN: Status
2405 *
2406 * DESCRIPTION: Compile generic unknown table.
2407 *
2408 ***/

2410 ACPI_STATUS
2411 DtCompileGeneric (
2412 void **List)
2413 {
2414 ACPI_STATUS Status;
2415 DT_SUBTABLE *Subtable;
2416 DT_SUBTABLE *ParentTable;
2417 DT_FIELD **PFieldList = (DT_FIELD **) List;
2418 ACPI_DMTABLE_INFO *Info;

2421 ParentTable = DtPeekSubtable ();

2423 /*
2424 * Compile the "generic" portion of the table. This
2425 * part of the table is not predefined and any of the generic
2426 * operators may be used.
2427 */

2429 /* Find any and all labels in the entire generic portion */

2431 DtDetectAllLabels (*PFieldList);

2433 /* Now we can actually compile the parse tree */

2435 while (*PFieldList)

new/usr/src/common/acpica/compiler/dttable.c 38

2436 {
2437 Info = DtGetGenericTableInfo ((*PFieldList)->Name);
2438 if (!Info)
2439 {
2440 sprintf (MsgBuffer, "Generic data type \"%s\" not found",
2441 (*PFieldList)->Name);
2442 DtNameError (ASL_ERROR, ASL_MSG_INVALID_FIELD_NAME,
2443 (*PFieldList), MsgBuffer);

2445 *PFieldList = (*PFieldList)->Next;
2446 continue;
2447 }

2449 Status = DtCompileTable (PFieldList, Info,
2450 &Subtable, TRUE);
2451 if (ACPI_SUCCESS (Status))
2452 {
2453 DtInsertSubtable (ParentTable, Subtable);
2454 }
2455 else
2456 {
2457 *PFieldList = (*PFieldList)->Next;

2459 if (Status == AE_NOT_FOUND)
2460 {
2461 sprintf (MsgBuffer, "Generic data type \"%s\" not found",
2462 (*PFieldList)->Name);
2463 DtNameError (ASL_ERROR, ASL_MSG_INVALID_FIELD_NAME,
2464 (*PFieldList), MsgBuffer);
2465 }
2466 }
2467 }

2469 return (AE_OK);
2470 }

new/usr/src/common/acpica/compiler/dttemplate.c 1

**
 11365 Thu Dec 26 13:48:38 2013
new/usr/src/common/acpica/compiler/dttemplate.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dttemplate - ACPI table template generation
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aslcompiler.h"
45 #include "acapps.h"
46 #include "dtcompiler.h"
47 #include "dttemplate.h" /* Contains the hex ACPI table templates */

49 #define _COMPONENT DT_COMPILER
50 ACPI_MODULE_NAME ("dttemplate")

53 /* Local prototypes */

55 static BOOLEAN
56 AcpiUtIsSpecialTable (
57 char *Signature);

59 static ACPI_STATUS
60 DtCreateOneTemplate (

new/usr/src/common/acpica/compiler/dttemplate.c 2

61 char *Signature,
62 ACPI_DMTABLE_DATA *TableData);

64 static ACPI_STATUS
65 DtCreateAllTemplates (
66 void);

69 /***
70 *
71 * FUNCTION: AcpiUtIsSpecialTable
72 *
73 * PARAMETERS: Signature - ACPI table signature
74 *
75 * RETURN: TRUE if signature is a special ACPI table
76 *
77 * DESCRIPTION: Check for valid ACPI tables that are not in the main ACPI
78 * table data structure (AcpiDmTableData).
79 *
80 **/

82 static BOOLEAN
83 AcpiUtIsSpecialTable (
84 char *Signature)
85 {

87 if (ACPI_COMPARE_NAME (Signature, ACPI_SIG_DSDT) ||
88 ACPI_COMPARE_NAME (Signature, ACPI_SIG_SSDT) ||
89 ACPI_COMPARE_NAME (Signature, ACPI_SIG_FACS) ||
90 ACPI_COMPARE_NAME (Signature, ACPI_RSDP_NAME))
91 {
92 return (TRUE);
93 }

95 return (FALSE);
96 }

99 /***
100 *
101 * FUNCTION: DtCreateTemplates
102 *
103 * PARAMETERS: Signature - ACPI table signature
104 *
105 * RETURN: Status
106 *
107 * DESCRIPTION: Create one or more template files.
108 *
109 **/

111 ACPI_STATUS
112 DtCreateTemplates (
113 char *Signature)
114 {
115 ACPI_DMTABLE_DATA *TableData;
116 ACPI_STATUS Status;

119 AslInitializeGlobals ();

121 /* Default (no signature) is DSDT */

123 if (!Signature)
124 {
125 Signature = "DSDT";
126 goto GetTemplate;

new/usr/src/common/acpica/compiler/dttemplate.c 3

127 }

129 AcpiUtStrupr (Signature);
130 if (!ACPI_STRCMP (Signature, "ALL") ||
131 !ACPI_STRCMP (Signature, "*"))
132 {
133 /* Create all available/known templates */

135 Status = DtCreateAllTemplates ();
136 return (Status);
137 }

139 /*
140 * Validate signature and get the template data:
141 * 1) Signature must be 4 characters
142 * 2) Signature must be a recognized ACPI table
143 * 3) There must be a template associated with the signature
144 */
145 if (strlen (Signature) != ACPI_NAME_SIZE)
146 {
147 fprintf (stderr,
148 "%s: Invalid ACPI table signature (length must be 4 characters)\n",
149 Signature);
150 return (AE_ERROR);
151 }

153 /*
154 * Some slack for the two strange tables whose name is different than
155 * their signatures: MADT->APIC and FADT->FACP.
156 */
157 if (!strcmp (Signature, "MADT"))
158 {
159 Signature = "APIC";
160 }
161 else if (!strcmp (Signature, "FADT"))
162 {
163 Signature = "FACP";
164 }

166 GetTemplate:
167 TableData = AcpiDmGetTableData (Signature);
168 if (TableData)
169 {
170 if (!TableData->Template)
171 {
172 fprintf (stderr, "%4.4s: No template available\n", Signature);
173 return (AE_ERROR);
174 }
175 }
176 else if (!AcpiUtIsSpecialTable (Signature))
177 {
178 fprintf (stderr,
179 "%4.4s: Unrecognized ACPI table signature\n", Signature);
180 return (AE_ERROR);
181 }

183 Status = AdInitialize ();
184 if (ACPI_FAILURE (Status))
185 {
186 return (Status);
187 }

189 Status = DtCreateOneTemplate (Signature, TableData);
190 return (Status);
191 }

new/usr/src/common/acpica/compiler/dttemplate.c 4

194 /***
195 *
196 * FUNCTION: DtCreateAllTemplates
197 *
198 * PARAMETERS: None
199 *
200 * RETURN: Status
201 *
202 * DESCRIPTION: Create all currently defined template files
203 *
204 **/

206 static ACPI_STATUS
207 DtCreateAllTemplates (
208 void)
209 {
210 ACPI_DMTABLE_DATA *TableData;
211 ACPI_STATUS Status;

214 Status = AdInitialize ();
215 if (ACPI_FAILURE (Status))
216 {
217 return (Status);
218 }

220 fprintf (stderr, "Creating all supported Template files\n");

222 /* Walk entire ACPI table data structure */

224 for (TableData = AcpiDmTableData; TableData->Signature; TableData++)
225 {
226 /* If table has a template, create the template file */

228 if (TableData->Template)
229 {
230 Status = DtCreateOneTemplate (TableData->Signature,
231 TableData);
232 if (ACPI_FAILURE (Status))
233 {
234 return (Status);
235 }
236 }
237 }

239 /*
240 * Create the special ACPI tables:
241 * 1) DSDT/SSDT are AML tables, not data tables
242 * 2) FACS and RSDP have non-standard headers
243 */
244 Status = DtCreateOneTemplate (ACPI_SIG_DSDT, NULL);
245 if (ACPI_FAILURE (Status))
246 {
247 return (Status);
248 }

250 Status = DtCreateOneTemplate (ACPI_SIG_SSDT, NULL);
251 if (ACPI_FAILURE (Status))
252 {
253 return (Status);
254 }

256 Status = DtCreateOneTemplate (ACPI_SIG_FACS, NULL);
257 if (ACPI_FAILURE (Status))
258 {

new/usr/src/common/acpica/compiler/dttemplate.c 5

259 return (Status);
260 }

262 Status = DtCreateOneTemplate (ACPI_RSDP_NAME, NULL);
263 if (ACPI_FAILURE (Status))
264 {
265 return (Status);
266 }

268 return (AE_OK);
269 }

272 /***
273 *
274 * FUNCTION: DtCreateOneTemplate
275 *
276 * PARAMETERS: Signature - ACPI signature, NULL terminated.
277 * TableData - Entry in ACPI table data structure.
278 * NULL if a special ACPI table.
279 *
280 * RETURN: Status
281 *
282 * DESCRIPTION: Create one template source file for the requested ACPI table.
283 *
284 **/

286 static ACPI_STATUS
287 DtCreateOneTemplate (
288 char *Signature,
289 ACPI_DMTABLE_DATA *TableData)
290 {
291 char *DisasmFilename;
292 FILE *File;
293 ACPI_STATUS Status = AE_OK;
294 ACPI_SIZE Actual;

297 /* New file will have a .asl suffix */

299 DisasmFilename = FlGenerateFilename (
300 Signature, FILE_SUFFIX_ASL_CODE);
301 if (!DisasmFilename)
302 {
303 fprintf (stderr, "Could not generate output filename\n");
304 return (AE_ERROR);
305 }

307 /* Probably should prompt to overwrite the file */

309 AcpiUtStrlwr (DisasmFilename);
310 File = fopen (DisasmFilename, "w+");
311 if (!File)
312 {
313 fprintf (stderr, "Could not open output file %s\n", DisasmFilename);
314 return (AE_ERROR);
315 }

317 /* Emit the common file header */

319 AcpiOsRedirectOutput (File);

321 AcpiOsPrintf ("/*\n");
322 AcpiOsPrintf (ACPI_COMMON_HEADER ("iASL Compiler/Disassembler", " * "));

324 AcpiOsPrintf (" * Template for [%4.4s] ACPI Table\n",

new/usr/src/common/acpica/compiler/dttemplate.c 6

325 Signature);

327 /* Dump the actual ACPI table */

329 if (TableData)
330 {
331 /* Normal case, tables that appear in AcpiDmTableData */

333 if (Gbl_VerboseTemplates)
334 {
335 AcpiOsPrintf (" * Format: [HexOffset DecimalOffset ByteLength]"
336 " FieldName : HexFieldValue\n */\n\n");
337 }
338 else
339 {
340 AcpiOsPrintf (" * Format: [ByteLength]"
341 " FieldName : HexFieldValue\n */\n\n");
342 }

344 AcpiDmDumpDataTable (ACPI_CAST_PTR (ACPI_TABLE_HEADER,
345 TableData->Template));
346 }
347 else
348 {
349 /* Special ACPI tables - DSDT, SSDT, FADT, RSDP */

351 AcpiOsPrintf (" */\n\n");
352 if (ACPI_COMPARE_NAME (Signature, ACPI_SIG_DSDT))
353 {
354 Actual = fwrite (TemplateDsdt, 1, sizeof (TemplateDsdt) -1, File);
355 if (Actual != sizeof (TemplateDsdt) -1)
356 {
357 fprintf (stderr,
358 "Could not write to output file %s\n", DisasmFilename);
359 Status = AE_ERROR;
360 goto Cleanup;
361 }
362 }
363 else if (ACPI_COMPARE_NAME (Signature, ACPI_SIG_SSDT))
364 {
365 Actual = fwrite (TemplateSsdt, 1, sizeof (TemplateSsdt) -1, File);
366 if (Actual != sizeof (TemplateSsdt) -1)
367 {
368 fprintf (stderr,
369 "Could not write to output file %s\n", DisasmFilename);
370 Status = AE_ERROR;
371 goto Cleanup;
372 }
373 }
374 else if (ACPI_COMPARE_NAME (Signature, ACPI_SIG_FACS)) /* FADT */
375 {
376 AcpiDmDumpDataTable (ACPI_CAST_PTR (ACPI_TABLE_HEADER,
377 TemplateFacs));
378 }
379 else if (ACPI_COMPARE_NAME (Signature, ACPI_RSDP_NAME))
380 {
381 AcpiDmDumpDataTable (ACPI_CAST_PTR (ACPI_TABLE_HEADER,
382 TemplateRsdp));
383 }
384 else
385 {
386 fprintf (stderr,
387 "%4.4s, Unrecognized ACPI table signature\n", Signature);
388 Status = AE_ERROR;
389 goto Cleanup;
390 }

new/usr/src/common/acpica/compiler/dttemplate.c 7

391 }

393 fprintf (stderr,
394 "Created ACPI table template for [%4.4s], written to \"%s\"\n",
395 Signature, DisasmFilename);

397 Cleanup:
398 fclose (File);
399 AcpiOsRedirectOutput (stdout);
400 ACPI_FREE (DisasmFilename);
401 return (Status);
402 }

new/usr/src/common/acpica/compiler/dttemplate.h 1

**
 63848 Thu Dec 26 13:48:38 2013
new/usr/src/common/acpica/compiler/dttemplate.h
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dttemplate.h - ACPI table template definitions
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __DTTEMPLATE_H
45 #define __DTTEMPLATE_H

48 /* Special templates for DSDT and SSDT (AML byte-code tables) */

50 const char TemplateDsdt[] =
51 "DefinitionBlock (\"dsdt.aml\", \"DSDT\", 2, \"Intel\", \"Template\", 0x0000
52 "{\n"
53 " Method (MAIN, 0, NotSerialized)\n"
54 " {\n"
55 " Return (Zero)\n"
56 " }\n"
57 "}\n\n";

59 const char TemplateSsdt[] =

new/usr/src/common/acpica/compiler/dttemplate.h 2

60 "DefinitionBlock (\"ssdt.aml\", \"SSDT\", 2, \"Intel\", \"Template\", 0x0000
61 "{\n"
62 " Method (MAIN, 0, NotSerialized)\n"
63 " {\n"
64 " Return (Zero)\n"
65 " }\n"
66 "}\n\n";

69 /* Templates for ACPI data tables */

71 const unsigned char TemplateAsf[] =
72 {
73 0x41,0x53,0x46,0x21,0x72,0x00,0x00,0x00, /* 00000000 "ASF!r..." */
74 0x10,0x0B,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
75 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
76 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
77 0x28,0x05,0x10,0x20,0x00,0x00,0x10,0x00, /* 00000020 "(.." */
78 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
79 0x00,0x00,0x00,0x00,0x01,0x00,0x14,0x00, /* 00000030 "........" */
80 0x00,0x00,0x01,0x0C,0x00,0x00,0x00,0x00, /* 00000038 "........" */
81 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000040 "........" */
82 0x02,0x00,0x0C,0x00,0x01,0x04,0x00,0x00, /* 00000048 "........" */
83 0x00,0x00,0x00,0x00,0x03,0x00,0x17,0x00, /* 00000050 "........" */
84 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000058 "........" */
85 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000060 "........" */
86 0x00,0x00,0x00,0x84,0x00,0x07,0x00,0x00, /* 00000068 "........" */
87 0x01,0x00 /* 00000070 ".." */
88 };

90 const unsigned char TemplateBgrt[] =
91 {
92 0x42,0x47,0x52,0x54,0x38,0x00,0x00,0x00, /* 00000000 "BGRT8..." */
93 0x01,0x0D,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
94 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
95 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
96 0x23,0x06,0x11,0x20,0x01,0x00,0x00,0x00, /* 00000020 "#.." */
97 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
98 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /* 00000030 "........" */
99 };

101 const unsigned char TemplateBert[] =
102 {
103 0x42,0x45,0x52,0x54,0x30,0x00,0x00,0x00, /* 00000000 "BERT0..." */
104 0x01,0x15,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
105 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
106 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
107 0x28,0x05,0x10,0x20,0x00,0x00,0x00,0x00, /* 00000020 "(.." */
108 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /* 00000028 "........" */
109 };

111 const unsigned char TemplateBoot[] =
112 {
113 0x42,0x4F,0x4F,0x54,0x28,0x00,0x00,0x00, /* 00000000 "BOOT(..." */
114 0x01,0x0D,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
115 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
116 0x00,0x00,0x04,0x06,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
117 0x28,0x05,0x10,0x20,0x00,0x00,0x00,0x00 /* 00000020 "(.." */
118 };

120 const unsigned char TemplateCpep[] =
121 {
122 0x43,0x50,0x45,0x50,0x34,0x00,0x00,0x00, /* 00000000 "CPEP4..." */
123 0x01,0x0F,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
124 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
125 0x00,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */

new/usr/src/common/acpica/compiler/dttemplate.h 3

126 0x28,0x05,0x10,0x20,0x00,0x00,0x00,0x00, /* 00000020 "(.." */
127 0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x00, /* 00000028 "........" */
128 0x00,0x00,0x00,0x00 /* 00000030 "...." */
129 };

131 const unsigned char TemplateCsrt[] =
132 {
133 0x43,0x53,0x52,0x54,0x4C,0x01,0x00,0x00, /* 00000000 "CSRTL..." */
134 0x01,0x0D,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
135 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
136 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
137 0x14,0x11,0x12,0x20,0x88,0x00,0x00,0x00, /* 00000020 "..." */
138 0x49,0x4E,0x54,0x4C,0x00,0x00,0x00,0x00, /* 00000028 "INTL...." */
139 0x60,0x9C,0x00,0x00,0x02,0x00,0x00,0x00, /* 00000030 "‘......." */
140 0x1C,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 00000038 "........" */
141 0x00,0x00,0xA0,0xB3,0x00,0x00,0x00,0x00, /* 00000040 "........" */
142 0x2A,0x00,0x00,0x00,0x02,0x00,0x06,0x20, /* 00000048 "*...... " */
143 0x00,0x00,0x10,0x00,0xFF,0x0F,0x00,0x00, /* 00000050 "........" */
144 0x0C,0x00,0x00,0x00,0x03,0x00,0x01,0x00, /* 00000058 "........" */
145 0x53,0x50,0x49,0x20,0x0C,0x00,0x00,0x00, /* 00000060 "SPI" */
146 0x03,0x00,0x00,0x00,0x43,0x48,0x41,0x30, /* 00000068 "....CHA0" */
147 0x0C,0x00,0x00,0x00,0x03,0x00,0x00,0x00, /* 00000070 "........" */
148 0x43,0x48,0x41,0x31,0x0C,0x00,0x00,0x00, /* 00000078 "CHA1...." */
149 0x03,0x00,0x00,0x00,0x43,0x48,0x41,0x32, /* 00000080 "....CHA2" */
150 0x0C,0x00,0x00,0x00,0x03,0x00,0x00,0x00, /* 00000088 "........" */
151 0x43,0x48,0x41,0x33,0x0C,0x00,0x00,0x00, /* 00000090 "CHA3...." */
152 0x03,0x00,0x00,0x00,0x43,0x48,0x41,0x34, /* 00000098 "....CHA4" */
153 0x0C,0x00,0x00,0x00,0x03,0x00,0x00,0x00, /* 000000A0 "........" */
154 0x43,0x48,0x41,0x35,0xA0,0x00,0x00,0x00, /* 000000A8 "CHA5...." */
155 0x49,0x4E,0x54,0x4C,0x00,0x00,0x00,0x00, /* 000000B0 "INTL...." */
156 0x60,0x9C,0x00,0x00,0x03,0x00,0x00,0x00, /* 000000B8 "‘......." */
157 0x1C,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 000000C0 "........" */
158 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000C8 "........" */
159 0x2B,0x00,0x00,0x00,0x02,0x00,0x08,0x20, /* 000000D0 "+...... " */
160 0x10,0x00,0x10,0x00,0xFF,0x0F,0x00,0x00, /* 000000D8 "........" */
161 0x0C,0x00,0x00,0x00,0x03,0x00,0x01,0x00, /* 000000E0 "........" */
162 0x49,0x32,0x43,0x20,0x0C,0x00,0x00,0x00, /* 000000E8 "I2C" */
163 0x03,0x00,0x00,0x00,0x43,0x48,0x41,0x30, /* 000000F0 "....CHA0" */
164 0x0C,0x00,0x00,0x00,0x03,0x00,0x00,0x00, /* 000000F8 "........" */
165 0x43,0x48,0x41,0x31,0x0C,0x00,0x00,0x00, /* 00000100 "CHA1...." */
166 0x03,0x00,0x00,0x00,0x43,0x48,0x41,0x32, /* 00000108 "....CHA2" */
167 0x0C,0x00,0x00,0x00,0x03,0x00,0x00,0x00, /* 00000110 "........" */
168 0x43,0x48,0x41,0x33,0x0C,0x00,0x00,0x00, /* 00000118 "CHA3...." */
169 0x03,0x00,0x00,0x00,0x43,0x48,0x41,0x34, /* 00000120 "....CHA4" */
170 0x0C,0x00,0x00,0x00,0x03,0x00,0x00,0x00, /* 00000128 "........" */
171 0x43,0x48,0x41,0x35,0x0C,0x00,0x00,0x00, /* 00000130 "CHA5...." */
172 0x03,0x00,0x00,0x00,0x43,0x48,0x41,0x36, /* 00000138 "....CHA6" */
173 0x0C,0x00,0x00,0x00,0x03,0x00,0x00,0x00, /* 00000140 "........" */
174 0x43,0x48,0x41,0x37 /* 00000148 "CHA7" */
175 };

177 const unsigned char TemplateDbg2[] =
178 {
179 0x44,0x42,0x47,0x32,0xB2,0x00,0x00,0x00, /* 00000000 "DBG2...." */
180 0x01,0xBA,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
181 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
182 0x00,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
183 0x15,0x11,0x13,0x20,0x2C,0x00,0x00,0x00, /* 00000020 "... ,..." */
184 0x02,0x00,0x00,0x00,0xEE,0x3F,0x00,0x02, /* 00000028 ".....?.." */
185 0x09,0x00,0x36,0x00,0x00,0x00,0x00,0x00, /* 00000030 "..6....." */
186 0x00,0x80,0x00,0x00,0x00,0x00,0x16,0x00, /* 00000038 "........" */
187 0x2E,0x00,0x01,0x32,0x00,0x03,0x88,0x77, /* 00000040 "...2...w" */
188 0x66,0x55,0x44,0x33,0x22,0x11,0x01,0x64, /* 00000048 "fUD3"..d" */
189 0x00,0x04,0x11,0x00,0xFF,0xEE,0xDD,0xCC, /* 00000050 "........" */
190 0xBB,0xAA,0x10,0x32,0x54,0x76,0x98,0xBA, /* 00000058 "...2Tv.." */
191 0xDC,0xFE,0x4D,0x79,0x44,0x65,0x76,0x69, /* 00000060 "..MyDevi" */

new/usr/src/common/acpica/compiler/dttemplate.h 4

192 0x63,0x65,0x00,0xEE,0x47,0x00,0x01,0x11, /* 00000068 "ce..G..." */
193 0x00,0x26,0x00,0x10,0x00,0x37,0x00,0x00, /* 00000070 ".&...7.." */
194 0x80,0x00,0x00,0x00,0x00,0x16,0x00,0x22, /* 00000078 "......."" */
195 0x00,0x01,0x64,0x00,0x04,0x11,0x00,0xFF, /* 00000080 "..d....." */
196 0xEE,0xDD,0xCC,0xBB,0xAA,0x98,0xBA,0xDC, /* 00000088 "........" */
197 0xFE,0x5C,0x5C,0x5F,0x53,0x42,0x5F,0x2E, /* 00000090 "._SB_." */
198 0x50,0x43,0x49,0x30,0x2E,0x44,0x42,0x47, /* 00000098 "PCI0.DBG" */
199 0x50,0x00,0x41,0x42,0x43,0x44,0x45,0x46, /* 000000A0 "P.ABCDEF" */
200 0x47,0x48,0x49,0x50,0x51,0x52,0x53,0x54, /* 000000A8 "GHIPQRST" */
201 0x55,0x56 /* 000000B0 "UV" */
202 };

204 const unsigned char TemplateDbgp[] =
205 {
206 0x44,0x42,0x47,0x50,0x34,0x00,0x00,0x00, /* 00000000 "DBGP4..." */
207 0x01,0x1A,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
208 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
209 0x00,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
210 0x28,0x05,0x10,0x20,0x00,0x00,0x00,0x00, /* 00000020 "(.." */
211 0x00,0x08,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
212 0x00,0x00,0x00,0x00 /* 00000030 "...." */
213 };

215 const unsigned char TemplateDmar[] =
216 {
217 0x44,0x4D,0x41,0x52,0x8C,0x00,0x00,0x00, /* 00000000 "DMAR...." */
218 0x01,0x03,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
219 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
220 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
221 0x17,0x05,0x13,0x20,0x2F,0x01,0x00,0x00, /* 00000020 "... /..." */
222 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
223 0x00,0x00,0x18,0x00,0x01,0x00,0x00,0x00, /* 00000030 "........" */
224 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
225 0x03,0x08,0x00,0x00,0x08,0x00,0x00,0x01, /* 00000040 "........" */
226 0x01,0x00,0x20,0x00,0x00,0x00,0x00,0x00, /* 00000048 ".." */
227 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000050 "........" */
228 0xFF,0x0F,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000058 "........" */
229 0x01,0x08,0x00,0x00,0x00,0x00,0x00,0x02, /* 00000060 "........" */
230 0x02,0x00,0x10,0x00,0x00,0x00,0x00,0x00, /* 00000068 "........" */
231 0x02,0x08,0x00,0x00,0x00,0x00,0x00,0x03, /* 00000070 "........" */
232 0x03,0x00,0x14,0x00,0x00,0x00,0x00,0x00, /* 00000078 "........" */
233 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000080 "........" */
234 0x00,0x00,0x00,0x00 /* 00000088 "...." */
235 };

237 const unsigned char TemplateEcdt[] =
238 {
239 0x45,0x43,0x44,0x54,0x42,0x00,0x00,0x00, /* 00000000 "ECDTB..." */
240 0x01,0x2D,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 ".-INTEL " */
241 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
242 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
243 0x28,0x05,0x10,0x20,0x01,0x08,0x00,0x00, /* 00000020 "(.." */
244 0x66,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "f......." */
245 0x01,0x08,0x00,0x00,0x62,0x00,0x00,0x00, /* 00000030 "....b..." */
246 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
247 0x09,0x00 /* 00000040 ".." */
248 };

250 const unsigned char TemplateEinj[] =
251 {
252 0x45,0x49,0x4E,0x4A,0x30,0x01,0x00,0x00, /* 00000000 "EINJ0..." */
253 0x01,0x09,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
254 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
255 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
256 0x28,0x05,0x10,0x20,0x30,0x00,0x00,0x00, /* 00000020 "(.. 0..." */
257 0x00,0x00,0x00,0x00,0x0A,0x00,0x00,0x00, /* 00000028 "........" */

new/usr/src/common/acpica/compiler/dttemplate.h 5

258 0x00,0x00,0x00,0x00,0x00,0x40,0x00,0x04, /* 00000030 ".....@.." */
259 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
260 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000040 "........" */
261 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 00000048 "........" */
262 0x01,0x00,0x00,0x00,0x00,0x40,0x00,0x04, /* 00000050 ".....@.." */
263 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000058 "........" */
264 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000060 "........" */
265 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 00000068 "........" */
266 0x02,0x02,0x01,0x00,0x00,0x40,0x00,0x04, /* 00000070 ".....@.." */
267 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000078 "........" */
268 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000080 "........" */
269 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 00000088 "........" */
270 0x03,0x00,0x00,0x00,0x00,0x40,0x00,0x04, /* 00000090 ".....@.." */
271 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000098 "........" */
272 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000A0 "........" */
273 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 000000A8 "........" */
274 0x04,0x03,0x01,0x00,0x00,0x40,0x00,0x04, /* 000000B0 ".....@.." */
275 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000B8 "........" */
276 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000C0 "........" */
277 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 000000C8 "........" */
278 0x05,0x03,0x01,0x00,0x01,0x10,0x00,0x02, /* 000000D0 "........" */
279 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000D8 "........" */
280 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000E0 "........" */
281 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 000000E8 "........" */
282 0x06,0x01,0x00,0x00,0x00,0x40,0x00,0x04, /* 000000F0 ".....@.." */
283 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000F8 "........" */
284 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000100 "........" */
285 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 00000108 "........" */
286 0x07,0x00,0x01,0x00,0x00,0x40,0x00,0x04, /* 00000110 ".....@.." */
287 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000118 "........" */
288 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000120 "........" */
289 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF /* 00000128 "........" */
290 };

292 const unsigned char TemplateErst[] =
293 {
294 0x45,0x52,0x53,0x54,0x30,0x02,0x00,0x00, /* 00000000 "ERST0..." */
295 0x01,0xAB,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
296 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
297 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
298 0x28,0x05,0x10,0x20,0x30,0x00,0x00,0x00, /* 00000020 "(.. 0..." */
299 0x00,0x00,0x00,0x00,0x10,0x00,0x00,0x00, /* 00000028 "........" */
300 0x00,0x03,0x00,0x00,0x00,0x40,0x00,0x04, /* 00000030 ".....@.." */
301 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
302 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000040 "........" */
303 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 00000048 "........" */
304 0x01,0x03,0x00,0x00,0x00,0x40,0x00,0x04, /* 00000050 ".....@.." */
305 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000058 "........" */
306 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000060 "........" */
307 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 00000068 "........" */
308 0x02,0x03,0x00,0x00,0x00,0x40,0x00,0x04, /* 00000070 ".....@.." */
309 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000078 "........" */
310 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000080 "........" */
311 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 00000088 "........" */
312 0x03,0x04,0x01,0x00,0x00,0x40,0x00,0x04, /* 00000090 ".....@.." */
313 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000098 "........" */
314 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000A0 "........" */
315 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 000000A8 "........" */
316 0x04,0x02,0x00,0x00,0x00,0x40,0x00,0x04, /* 000000B0 ".....@.." */
317 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000B8 "........" */
318 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000C0 "........" */
319 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 000000C8 "........" */
320 0x05,0x03,0x00,0x00,0x01,0x08,0x00,0x01, /* 000000D0 "........" */
321 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000D8 "........" */
322 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000E0 "........" */
323 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 000000E8 "........" */

new/usr/src/common/acpica/compiler/dttemplate.h 6

324 0x06,0x01,0x00,0x00,0x00,0x40,0x00,0x04, /* 000000F0 ".....@.." */
325 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000F8 "........" */
326 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000100 "........" */
327 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 00000108 "........" */
328 0x07,0x00,0x00,0x00,0x00,0x40,0x00,0x04, /* 00000110 ".....@.." */
329 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000118 "........" */
330 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000120 "........" */
331 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 00000128 "........" */
332 0x08,0x00,0x00,0x00,0x00,0x40,0x00,0x04, /* 00000130 ".....@.." */
333 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000138 "........" */
334 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000140 "........" */
335 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 00000148 "........" */
336 0x09,0x02,0x00,0x00,0x00,0x40,0x00,0x04, /* 00000150 ".....@.." */
337 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000158 "........" */
338 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000160 "........" */
339 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 00000168 "........" */
340 0x0A,0x00,0x00,0x00,0x00,0x40,0x00,0x04, /* 00000170 ".....@.." */
341 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000178 "........" */
342 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000180 "........" */
343 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 00000188 "........" */
344 0x0B,0x03,0x00,0x00,0x00,0x40,0x00,0x04, /* 00000190 ".....@.." */
345 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000198 "........" */
346 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000001A0 "........" */
347 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 000001A8 "........" */
348 0x0C,0x00,0x00,0x00,0x00,0x40,0x00,0x04, /* 000001B0 ".....@.." */
349 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000001B8 "........" */
350 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000001C0 "........" */
351 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 000001C8 "........" */
352 0x0D,0x00,0x00,0x00,0x00,0x40,0x00,0x04, /* 000001D0 ".....@.." */
353 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000001D8 "........" */
354 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000001E0 "........" */
355 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 000001E8 "........" */
356 0x0E,0x00,0x00,0x00,0x00,0x40,0x00,0x04, /* 000001F0 ".....@.." */
357 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000001F8 "........" */
358 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000200 "........" */
359 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* 00000208 "........" */
360 0x0F,0x00,0x00,0x00,0x00,0x40,0x00,0x04, /* 00000210 ".....@.." */
361 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000218 "........" */
362 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000220 "........" */
363 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF /* 00000228 "........" */
364 };

366 const unsigned char TemplateFacs[] =
367 {
368 0x46,0x41,0x43,0x53,0x40,0x00,0x00,0x00, /* 00000000 "FACS@..." */
369 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000008 "........" */
370 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000010 "........" */
371 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000018 "........" */
372 0x02,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000020 "........" */
373 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
374 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000030 "........" */
375 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /* 00000038 "........" */
376 };

378 /* Version 5 FADT */

380 const unsigned char TemplateFadt[] =
381 {
382 0x46,0x41,0x43,0x50,0x0C,0x01,0x00,0x00, /* 00000000 "FACP...." */
383 0x05,0x64,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 ".dINTEL " */
384 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
385 0x00,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
386 0x15,0x11,0x13,0x20,0x01,0x00,0x00,0x00, /* 00000020 "..." */
387 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
388 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000030 "........" */
389 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */

new/usr/src/common/acpica/compiler/dttemplate.h 7

390 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000040 "........" */
391 0x01,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 00000048 "........" */
392 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000050 "........" */
393 0x04,0x02,0x01,0x04,0x08,0x00,0x00,0x00, /* 00000058 "........" */
394 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000060 "........" */
395 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000068 "........" */
396 0x00,0x00,0x00,0x00,0x01,0x08,0x00,0x01, /* 00000070 "........" */
397 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000078 "........" */
398 0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 00000080 "........" */
399 0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 00000088 "........" */
400 0x00,0x00,0x00,0x00,0x01,0x20,0x00,0x02, /* 00000090 "..... .." */
401 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000098 "........" */
402 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000A0 "........" */
403 0x00,0x00,0x00,0x00,0x01,0x10,0x00,0x02, /* 000000A8 "........" */
404 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000B0 "........" */
405 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000B8 "........" */
406 0x00,0x00,0x00,0x00,0x01,0x08,0x00,0x00, /* 000000C0 "........" */
407 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000C8 "........" */
408 0x01,0x20,0x00,0x03,0x01,0x00,0x00,0x00, /* 000000D0 "." */
409 0x00,0x00,0x00,0x00,0x01,0x40,0x00,0x01, /* 000000D8 ".....@.." */
410 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000E0 "........" */
411 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000E8 "........" */
412 0x00,0x00,0x00,0x00,0x01,0x08,0x00,0x01, /* 000000F0 "........" */
413 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000F8 "........" */
414 0x01,0x08,0x00,0x01,0x00,0x00,0x00,0x00, /* 00000100 "........" */
415 0x00,0x00,0x00,0x00 /* 00000108 "...." */
416 };

418 const unsigned char TemplateFpdt[] =
419 {
420 0x46,0x50,0x44,0x54,0x64,0x00,0x00,0x00, /* 00000000 "FPDTd..." */
421 0x01,0xBD,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
422 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
423 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
424 0x04,0x08,0x11,0x20,0x00,0x00,0x30,0x01, /* 00000020 "... ..0." */
425 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
426 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000030 "........" */
427 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
428 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000040 "........" */
429 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000048 "........" */
430 0x00,0x00,0x00,0x00,0x01,0x00,0x10,0x01, /* 00000050 "........" */
431 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000058 "........" */
432 0x00,0x00,0x00,0x00 /* 00000060 "...." */
433 };

435 const unsigned char TemplateGtdt[] =
436 {
437 0x47,0x54,0x44,0x54,0x50,0x00,0x00,0x00, /* 00000000 "GTDTP..." */
438 0x01,0xF1,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
439 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
440 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
441 0x23,0x06,0x11,0x20,0x00,0x00,0x00,0x00, /* 00000020 "#.." */
442 0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 00000028 "........" */
443 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000030 "........" */
444 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
445 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000040 "........" */
446 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /* 00000048 "........" */
447 };

449 const unsigned char TemplateHest[] =
450 {
451 0x48,0x45,0x53,0x54,0xD4,0x01,0x00,0x00, /* 00000000 "HEST...." */
452 0x01,0x20,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 ". INTEL " */
453 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
454 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
455 0x28,0x05,0x10,0x20,0x04,0x00,0x00,0x00, /* 00000020 "(.." */

new/usr/src/common/acpica/compiler/dttemplate.h 8

456 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01, /* 00000028 "........" */
457 0x01,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 00000030 "........" */
458 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
459 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000040 "........" */
460 0x02,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000048 "........" */
461 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000050 "........" */
462 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000058 "........" */
463 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000060 "........" */
464 0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 00000068 "........" */
465 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000070 "........" */
466 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000078 "........" */
467 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000080 "........" */
468 0x01,0x00,0x01,0x00,0x00,0x00,0x00,0x01, /* 00000088 "........" */
469 0x01,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 00000090 "........" */
470 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000098 "........" */
471 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000A0 "........" */
472 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000A8 "........" */
473 0x00,0x00,0x00,0x00,0x02,0x00,0x00,0x00, /* 000000B0 "........" */
474 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000B8 "........" */
475 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000C0 "........" */
476 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000C8 "........" */
477 0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 000000D0 "........" */
478 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000D8 "........" */
479 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000E0 "........" */
480 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000E8 "........" */
481 0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x01, /* 000000F0 "........" */
482 0x01,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 000000F8 "........" */
483 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000100 "........" */
484 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000108 "........" */
485 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000110 "........" */
486 0x00,0x00,0x00,0x00,0x08,0x00,0x00,0x00, /* 00000118 "........" */
487 0x00,0x00,0x00,0x01,0x01,0x00,0x00,0x00, /* 00000120 "........" */
488 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000128 "........" */
489 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000130 "........" */
490 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000138 "........" */
491 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000140 "........" */
492 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000148 "........" */
493 0x00,0x00,0x00,0x00,0x09,0x00,0x02,0x00, /* 00000150 "........" */
494 0xFF,0xFF,0x00,0x01,0x01,0x00,0x00,0x00, /* 00000158 "........" */
495 0x01,0x00,0x00,0x00,0x00,0x10,0x00,0x00, /* 00000160 "........" */
496 0x00,0x40,0x00,0x04,0x00,0x00,0x00,0x00, /* 00000168 ".@......" */
497 0x00,0x00,0x00,0x00,0x03,0x1C,0x00,0x00, /* 00000170 "........" */
498 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000178 "........" */
499 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000180 "........" */
500 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000188 "........" */
501 0x00,0x10,0x00,0x00,0x09,0x00,0x03,0x00, /* 00000190 "........" */
502 0x00,0x00,0x00,0x01,0x01,0x00,0x00,0x00, /* 00000198 "........" */
503 0x01,0x00,0x00,0x00,0x00,0x10,0x00,0x00, /* 000001A0 "........" */
504 0x00,0x40,0x00,0x04,0x00,0x00,0x00,0x00, /* 000001A8 ".@......" */
505 0x00,0x00,0x00,0x00,0x04,0x1C,0x00,0x00, /* 000001B0 "........" */
506 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000001B8 "........" */
507 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000001C0 "........" */
508 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000001C8 "........" */
509 0x00,0x10,0x00,0x00 /* 000001D0 "...." */
510 };

512 const unsigned char TemplateHpet[] =
513 {
514 0x48,0x50,0x45,0x54,0x38,0x00,0x00,0x00, /* 00000000 "HPET8..." */
515 0x01,0x09,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
516 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
517 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
518 0x28,0x05,0x10,0x20,0x00,0x00,0x00,0x00, /* 00000020 "(.." */
519 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
520 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /* 00000030 "........" */
521 };

new/usr/src/common/acpica/compiler/dttemplate.h 9

523 const unsigned char TemplateIvrs[] =
524 {
525 0x49,0x56,0x52,0x53,0xBC,0x00,0x00,0x00, /* 00000000 "IVRS...." */
526 0x01,0x87,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
527 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
528 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
529 0x28,0x05,0x10,0x20,0x00,0x00,0x00,0x00, /* 00000020 "(.." */
530 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
531 0x10,0x14,0x34,0x00,0x00,0x00,0x00,0x00, /* 00000030 "..4....." */
532 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
533 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000040 "........" */
534 0x00,0x00,0x00,0x00,0x40,0x00,0x00,0x00, /* 00000048 "....@..." */
535 0x00,0x00,0x00,0x00,0x42,0x00,0x00,0x00, /* 00000050 "....B..." */
536 0x00,0x00,0x00,0x00,0x48,0x00,0x00,0x00, /* 00000058 "....H..." */
537 0x00,0x00,0x00,0x00,0x20,0x08,0x20,0x00, /* 00000060 ".... . ." */
538 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000068 "........" */
539 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000070 "........" */
540 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000078 "........" */
541 0x00,0x00,0x00,0x00,0x21,0x04,0x20,0x00, /* 00000080 "....!. ." */
542 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000088 "........" */
543 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000090 "........" */
544 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000098 "........" */
545 0x00,0x00,0x00,0x00,0x10,0x14,0x18,0x00, /* 000000A0 "........" */
546 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000A8 "........" */
547 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000B0 "........" */
548 0x00,0x00,0x00,0x00 /* 000000B8 "...." */
549 };

551 /* MADT with ACPI 5.0 subtables */

553 const unsigned char TemplateMadt[] =
554 {
555 0x41,0x50,0x49,0x43,0xF6,0x00,0x00,0x00, /* 00000000 "APIC...." */
556 0x01,0xB0,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
557 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
558 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
559 0x23,0x06,0x11,0x20,0x00,0x00,0x00,0x00, /* 00000020 "#.." */
560 0x01,0x00,0x00,0x00,0x00,0x08,0x00,0x00, /* 00000028 "........" */
561 0x01,0x00,0x00,0x00,0x01,0x0C,0x01,0x00, /* 00000030 "........" */
562 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
563 0x02,0x0A,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000040 "........" */
564 0x00,0x00,0x03,0x08,0x0D,0x00,0x01,0x00, /* 00000048 "........" */
565 0x00,0x00,0x04,0x06,0x00,0x05,0x00,0x01, /* 00000050 "........" */
566 0x05,0x0C,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000058 "........" */
567 0x00,0x00,0x00,0x00,0x06,0x10,0x00,0x00, /* 00000060 "........" */
568 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000068 "........" */
569 0x00,0x00,0x00,0x00,0x07,0x16,0x00,0x00, /* 00000070 "........" */
570 0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 00000078 "........" */
571 0x00,0x00,0x00,0x00,0x5C,0x43,0x50,0x55, /* 00000080 "....\CPU" */
572 0x30,0x00,0x08,0x10,0x05,0x00,0x00,0x00, /* 00000088 "0......." */
573 0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x00, /* 00000090 "........" */
574 0x00,0x00,0x09,0x10,0x00,0x00,0x00,0x00, /* 00000098 "........" */
575 0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x00, /* 000000A0 "........" */
576 0x00,0x00,0x0A,0x0C,0x05,0x00,0x00,0x00, /* 000000A8 "........" */
577 0x00,0x00,0x00,0x00,0x00,0x00,0x0B,0x28, /* 000000B0 ".......(" */
578 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000B8 "........" */
579 0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x00, /* 000000C0 "........" */
580 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000C8 "........" */
581 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000D0 "........" */
582 0x00,0x00,0x00,0x00,0x00,0x00,0x0C,0x18, /* 000000D8 "........" */
583 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000E0 "........" */
584 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000E8 "........" */
585 0x00,0x00,0x00,0x00,0x00,0x00 /* 000000F0 "......" */
586 };

new/usr/src/common/acpica/compiler/dttemplate.h 10

588 const unsigned char TemplateMcfg[] =
589 {
590 0x4D,0x43,0x46,0x47,0x3C,0x00,0x00,0x00, /* 00000000 "MCFG<..." */
591 0x01,0x19,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
592 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
593 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
594 0x28,0x05,0x10,0x20,0x00,0x00,0x00,0x00, /* 00000020 "(.." */
595 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
596 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000030 "........" */
597 0x00,0x00,0x00,0x00 /* 00000038 "...." */
598 };

600 const unsigned char TemplateMchi[] =
601 {
602 0x4D,0x43,0x48,0x49,0x45,0x00,0x00,0x00, /* 00000000 "MCHIE..." */
603 0x01,0xE4,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
604 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
605 0x15,0x07,0x00,0x02,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
606 0x28,0x05,0x10,0x20,0x01,0x00,0x00,0x00, /* 00000020 "(.." */
607 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
608 0x00,0x00,0x00,0x00,0x00,0x02,0x08,0x00, /* 00000030 "........" */
609 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
610 0x00,0x00,0x00,0x00,0x00 /* 00000040 "....." */
611 };

613 const unsigned char TemplateMpst[] =
614 {
615 0x4D,0x50,0x53,0x54,0xB6,0x00,0x00,0x00, /* 00000000 "MPST...." */
616 0x01,0x77,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 ".wINTEL " */
617 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
618 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
619 0x13,0x09,0x12,0x20,0x00,0x00,0x00,0x00, /* 00000020 "..." */
620 0x02,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
621 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000030 "........" */
622 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
623 0x00,0x00,0x00,0x00,0x02,0x00,0x00,0x00, /* 00000040 "........" */
624 0x03,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000048 "........" */
625 0x00,0x00,0x01,0x00,0x02,0x00,0x00,0x00, /* 00000050 "........" */
626 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000058 "........" */
627 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000060 "........" */
628 0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00, /* 00000068 "........" */
629 0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x00, /* 00000070 "........" */
630 0x00,0x00,0x02,0x00,0x00,0x00,0x01,0x00, /* 00000078 "........" */
631 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000080 "........" */
632 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000088 "........" */
633 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000090 "........" */
634 0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x00, /* 00000098 "........" */
635 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000A0 "........" */
636 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000A8 "........" */
637 0x00,0x00,0x00,0x00,0x00,0x00 /* 000000B0 "......" */
638 };

640 const unsigned char TemplateMsct[] =
641 {
642 0x4D,0x53,0x43,0x54,0x90,0x00,0x00,0x00, /* 00000000 "MSCT...." */
643 0x01,0xB7,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
644 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
645 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
646 0x28,0x05,0x10,0x20,0x38,0x00,0x00,0x00, /* 00000020 "(.. 8..." */
647 0x03,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
648 0xFF,0xFF,0xFF,0xFF,0xFF,0x0F,0x00,0x00, /* 00000030 "........" */
649 0x01,0x16,0x00,0x00,0x00,0x00,0x03,0x00, /* 00000038 "........" */
650 0x00,0x00,0x10,0x00,0x00,0x00,0x00,0x00, /* 00000040 "........" */
651 0x00,0x00,0x40,0x00,0x00,0x00,0x01,0x16, /* 00000048 "..@....." */
652 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000050 "........" */
653 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000058 "........" */

new/usr/src/common/acpica/compiler/dttemplate.h 11

654 0x00,0x00,0x00,0x00,0x01,0x16,0x00,0x00, /* 00000060 "........" */
655 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000068 "........" */
656 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000070 "........" */
657 0x00,0x00,0x01,0x16,0x00,0x00,0x00,0x00, /* 00000078 "........" */
658 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000080 "........" */
659 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /* 00000088 "........" */
660 };

662 const unsigned char TemplateMtmr[] =
663 {
664 0x4D,0x54,0x4D,0x52,0x4C,0x00,0x00,0x00, /* 00000000 "MTMRL..." */
665 0x01,0xB0,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
666 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
667 0x03,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
668 0x17,0x01,0x13,0x20,0x00,0x20,0x00,0x03, /* 00000020 "... . .." */
669 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
670 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000030 "........" */
671 0x00,0x20,0x00,0x03,0x00,0x00,0x00,0x00, /* 00000038 "." */
672 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000040 "........" */
673 0x00,0x00,0x00,0x00 /* 00000048 "...." */
674 };

676 const unsigned char TemplatePcct[] =
677 {
678 0x50,0x43,0x43,0x54,0xAC,0x00,0x00,0x00, /* 00000000 "PCCT...." */
679 0x01,0x97,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
680 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
681 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
682 0x15,0x11,0x13,0x20,0x01,0x00,0x00,0x00, /* 00000020 "..." */
683 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
684 0x00,0x3E,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000030 ".>......" */
685 0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11, /* 00000038 "........" */
686 0x22,0x22,0x22,0x22,0x22,0x22,0x22,0x22, /* 00000040 """""""""" */
687 0x01,0x32,0x00,0x03,0x33,0x33,0x33,0x33, /* 00000048 ".2..3333" */
688 0x33,0x33,0x33,0x33,0x44,0x44,0x44,0x44, /* 00000050 "3333DDDD" */
689 0x44,0x44,0x44,0x44,0x55,0x55,0x55,0x55, /* 00000058 "DDDDUUUU" */
690 0x55,0x55,0x55,0x55,0x66,0x66,0x66,0x66, /* 00000060 "UUUUffff" */
691 0x77,0x77,0x77,0x77,0x88,0x88,0x00,0x3E, /* 00000068 "wwww...>" */
692 0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0xFF, /* 00000070 "........" */
693 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xEE,0xEE, /* 00000078 "........" */
694 0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0x01,0x32, /* 00000080 ".......2" */
695 0x00,0x03,0xDD,0xDD,0xDD,0xDD,0xDD,0xDD, /* 00000088 "........" */
696 0xDD,0xDD,0xCC,0xCC,0xCC,0xCC,0xCC,0xCC, /* 00000090 "........" */
697 0xCC,0xCC,0xBB,0xBB,0xBB,0xBB,0xBB,0xBB, /* 00000098 "........" */
698 0xBB,0xBB,0xAA,0xAA,0xAA,0xAA,0x99,0x99, /* 000000A0 "........" */
699 0x99,0x99,0x88,0x88 /* 000000A8 "...." */
700 };

702 const unsigned char TemplatePmtt[] =
703 {
704 0x50,0x4D,0x54,0x54,0xB4,0x00,0x00,0x00, /* 00000000 "PMTT...." */
705 0x01,0x3A,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 ".:INTEL " */
706 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
707 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
708 0x26,0x08,0x11,0x20,0x00,0x00,0x00,0x00, /* 00000020 "&.." */
709 0x00,0x00,0x80,0x00,0x01,0x00,0x00,0x00, /* 00000028 "........" */
710 0x00,0x00,0x00,0x00,0x01,0x00,0x54,0x00, /* 00000030 "......T." */
711 0x05,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
712 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000040 "........" */
713 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000048 "........" */
714 0x00,0x00,0x03,0x00,0x00,0x00,0x00,0x00, /* 00000050 "........" */
715 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000058 "........" */
716 0x02,0x00,0x14,0x00,0x02,0x00,0x00,0x00, /* 00000060 "........" */
717 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000068 "........" */
718 0x00,0x00,0x00,0x00,0x02,0x00,0x14,0x00, /* 00000070 "........" */
719 0x02,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000078 "........" */

new/usr/src/common/acpica/compiler/dttemplate.h 12

720 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000080 "........" */
721 0x01,0x00,0x20,0x00,0x01,0x00,0x00,0x00, /* 00000088 ".." */
722 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000090 "........" */
723 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000098 "........" */
724 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000A0 "........" */
725 0x00,0x00,0x0C,0x00,0x01,0x00,0x00,0x00, /* 000000A8 "........" */
726 0x00,0x00,0x00,0x00 /* 000000B0 "...." */
727 };

729 const unsigned char TemplateRsdp[] =
730 {
731 0x52,0x53,0x44,0x20,0x50,0x54,0x52,0x20, /* 00000000 "RSD PTR " */
732 0x43,0x49,0x4E,0x54,0x45,0x4C,0x20,0x02, /* 00000008 "CINTEL ." */
733 0x00,0x00,0x00,0x00,0x24,0x00,0x00,0x00, /* 00000010 "....$..." */
734 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000018 "........" */
735 0xDC,0x00,0x00,0x00 /* 00000020 "...." */
736 };

738 const unsigned char TemplateRsdt[] =
739 {
740 0x52,0x53,0x44,0x54,0x44,0x00,0x00,0x00, /* 00000000 "RSDTD..." */
741 0x01,0xB1,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
742 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
743 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
744 0x28,0x05,0x10,0x20,0x10,0x00,0x00,0x00, /* 00000020 "(.." */
745 0x20,0x00,0x00,0x00,0x30,0x00,0x00,0x00, /* 00000028 " ...0..." */
746 0x40,0x00,0x00,0x00,0x50,0x00,0x00,0x00, /* 00000030 "@...P..." */
747 0x60,0x00,0x00,0x00,0x70,0x00,0x00,0x00, /* 00000038 "‘...p..." */
748 0x80,0x00,0x00,0x00 /* 00000040 "...." */
749 };

751 const unsigned char TemplateS3pt[] =
752 {
753 0x53,0x33,0x50,0x54,0x34,0x00,0x00,0x00, /* 00000000 "S3PT4..." */
754 0x00,0x00,0x18,0x01,0x00,0x00,0x00,0x00, /* 00000008 "........" */
755 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000010 "........" */
756 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000018 "........" */
757 0x01,0x00,0x14,0x01,0x00,0x00,0x00,0x00, /* 00000020 "........" */
758 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
759 0x00,0x00,0x00,0x00 /* 00000030 "...." */
760 };

762 const unsigned char TemplateSbst[] =
763 {
764 0x53,0x42,0x53,0x54,0x30,0x00,0x00,0x00, /* 00000000 "SBST0..." */
765 0x01,0x06,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
766 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
767 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
768 0x28,0x05,0x10,0x20,0x00,0x00,0x00,0x00, /* 00000020 "(.." */
769 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /* 00000028 "........" */
770 };

772 const unsigned char TemplateSlic[] =
773 {
774 0x53,0x4C,0x49,0x43,0x76,0x01,0x00,0x00, /* 00000000 "SLICv..." */
775 0x01,0x07,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
776 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
777 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
778 0x11,0x02,0x11,0x20,0x00,0x00,0x00,0x00, /* 00000020 "..." */
779 0x9C,0x00,0x00,0x00,0x06,0x02,0x00,0x00, /* 00000028 "........" */
780 0x00,0x24,0x00,0x00,0x52,0x53,0x41,0x31, /* 00000030 ".$..RSA1" */
781 0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
782 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000040 "........" */
783 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000048 "........" */
784 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000050 "........" */
785 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000058 "........" */

new/usr/src/common/acpica/compiler/dttemplate.h 13

786 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000060 "........" */
787 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000068 "........" */
788 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000070 "........" */
789 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000078 "........" */
790 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000080 "........" */
791 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000088 "........" */
792 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000090 "........" */
793 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000098 "........" */
794 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000A0 "........" */
795 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000A8 "........" */
796 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000B0 "........" */
797 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000B8 "........" */
798 0x01,0x00,0x00,0x00,0xB6,0x00,0x00,0x00, /* 000000C0 "........" */
799 0x00,0x00,0x02,0x00,0x49,0x4E,0x54,0x45, /* 000000C8 "....INTE" */
800 0x4C,0x20,0x54,0x45,0x4D,0x50,0x4C,0x41, /* 000000D0 "L TEMPLA" */
801 0x54,0x45,0x57,0x49,0x4E,0x44,0x4F,0x57, /* 000000D8 "TEWINDOW" */
802 0x53,0x20,0x01,0x00,0x02,0x00,0x00,0x00, /* 000000E0 "S" */
803 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000E8 "........" */
804 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000F0 "........" */
805 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000F8 "........" */
806 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000100 "........" */
807 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000108 "........" */
808 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000110 "........" */
809 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000118 "........" */
810 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000120 "........" */
811 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000128 "........" */
812 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000130 "........" */
813 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000138 "........" */
814 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000140 "........" */
815 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000148 "........" */
816 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000150 "........" */
817 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000158 "........" */
818 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000160 "........" */
819 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000168 "........" */
820 0x00,0x00,0x00,0x00,0x00,0x00 /* 00000170 "......" */
821 };

823 const unsigned char TemplateSlit[] =
824 {
825 0x53,0x4C,0x49,0x54,0xBC,0x01,0x00,0x00, /* 00000000 "SLIT...." */
826 0x01,0x00,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
827 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
828 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
829 0x16,0x03,0x11,0x20,0x14,0x00,0x00,0x00, /* 00000020 "..." */
830 0x00,0x00,0x00,0x00,0x0A,0x10,0x16,0x17, /* 00000028 "........" */
831 0x18,0x19,0x1A,0x1B,0x1C,0x1D,0x1E,0x1F, /* 00000030 "........" */
832 0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27, /* 00000038 " !"#$%&’" */
833 0x10,0x0A,0x15,0x16,0x17,0x18,0x19,0x1A, /* 00000040 "........" */
834 0x1B,0x1C,0x1D,0x1E,0x1F,0x20,0x21,0x22, /* 00000048 "..... !"" */
835 0x23,0x24,0x25,0x26,0x16,0x15,0x0A,0x10, /* 00000050 "#$%&...." */
836 0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D, /* 00000058 "........" */
837 0x1E,0x1F,0x20,0x21,0x22,0x23,0x24,0x25, /* 00000060 ".. !"#$%" */
838 0x17,0x16,0x10,0x0A,0x15,0x16,0x17,0x18, /* 00000068 "........" */
839 0x19,0x1A,0x1B,0x1C,0x1D,0x1E,0x1F,0x20, /* 00000070 "....... " */
840 0x21,0x22,0x23,0x24,0x18,0x17,0x16,0x15, /* 00000078 "!"#$...." */
841 0x0A,0x10,0x16,0x17,0x18,0x19,0x1A,0x1B, /* 00000080 "........" */
842 0x1C,0x1D,0x1E,0x1F,0x20,0x21,0x22,0x23, /* 00000088 ".... !"#" */
843 0x19,0x18,0x17,0x16,0x10,0x0A,0x15,0x16, /* 00000090 "........" */
844 0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D,0x1E, /* 00000098 "........" */
845 0x1F,0x20,0x21,0x22,0x1A,0x19,0x18,0x17, /* 000000A0 ". !"...." */
846 0x16,0x15,0x0A,0x10,0x16,0x17,0x18,0x19, /* 000000A8 "........" */
847 0x1A,0x1B,0x1C,0x1D,0x1E,0x1F,0x20,0x21, /* 000000B0 "...... !" */
848 0x1B,0x1A,0x19,0x18,0x17,0x16,0x10,0x0A, /* 000000B8 "........" */
849 0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C, /* 000000C0 "........" */
850 0x1D,0x1E,0x1F,0x20,0x1C,0x1B,0x1A,0x19, /* 000000C8 "..." */
851 0x18,0x17,0x16,0x15,0x0A,0x10,0x16,0x17, /* 000000D0 "........" */

new/usr/src/common/acpica/compiler/dttemplate.h 14

852 0x18,0x19,0x1A,0x1B,0x1C,0x1D,0x1E,0x1F, /* 000000D8 "........" */
853 0x1D,0x1C,0x1B,0x1A,0x19,0x18,0x17,0x16, /* 000000E0 "........" */
854 0x10,0x0A,0x15,0x16,0x17,0x18,0x19,0x1A, /* 000000E8 "........" */
855 0x1B,0x1C,0x1D,0x1E,0x1E,0x1D,0x1C,0x1B, /* 000000F0 "........" */
856 0x1A,0x19,0x18,0x17,0x16,0x15,0x0A,0x10, /* 000000F8 "........" */
857 0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D, /* 00000100 "........" */
858 0x1F,0x1E,0x1D,0x1C,0x1B,0x1A,0x19,0x18, /* 00000108 "........" */
859 0x17,0x16,0x10,0x0A,0x15,0x16,0x17,0x18, /* 00000110 "........" */
860 0x19,0x1A,0x1B,0x1C,0x20,0x1F,0x1E,0x1D, /* 00000118 ".... ..." */
861 0x1C,0x1B,0x1A,0x19,0x18,0x17,0x16,0x15, /* 00000120 "........" */
862 0x0A,0x10,0x16,0x17,0x18,0x19,0x1A,0x1B, /* 00000128 "........" */
863 0x21,0x20,0x1F,0x1E,0x1D,0x1C,0x1B,0x1A, /* 00000130 "!" */
864 0x19,0x18,0x17,0x16,0x10,0x0A,0x15,0x16, /* 00000138 "........" */
865 0x17,0x18,0x19,0x1A,0x22,0x21,0x20,0x1F, /* 00000140 "...."! ." */
866 0x1E,0x1D,0x1C,0x1B,0x1A,0x19,0x18,0x17, /* 00000148 "........" */
867 0x16,0x15,0x0A,0x10,0x16,0x17,0x18,0x19, /* 00000150 "........" */
868 0x23,0x22,0x21,0x20,0x1F,0x1E,0x1D,0x1C, /* 00000158 "#"!" */
869 0x1B,0x1A,0x19,0x18,0x17,0x16,0x10,0x0A, /* 00000160 "........" */
870 0x15,0x16,0x17,0x18,0x24,0x23,0x22,0x21, /* 00000168 "....$#"!" */
871 0x20,0x1F,0x1E,0x1D,0x1C,0x1B,0x1A,0x19, /* 00000170 "" */
872 0x18,0x17,0x16,0x15,0x0A,0x10,0x16,0x17, /* 00000178 "........" */
873 0x25,0x24,0x23,0x22,0x21,0x20,0x1F,0x1E, /* 00000180 "%$#"! .." */
874 0x1D,0x1C,0x1B,0x1A,0x19,0x18,0x17,0x16, /* 00000188 "........" */
875 0x10,0x0A,0x15,0x16,0x26,0x25,0x24,0x23, /* 00000190 "....&%$#" */
876 0x22,0x21,0x20,0x1F,0x1E,0x1D,0x1C,0x1B, /* 00000198 ""!" */
877 0x1A,0x19,0x18,0x17,0x16,0x15,0x0A,0x10, /* 000001A0 "........" */
878 0x27,0x26,0x25,0x24,0x23,0x22,0x21,0x20, /* 000001A8 "’&%$#"! " */
879 0x1F,0x1E,0x1D,0x1C,0x1B,0x1A,0x19,0x18, /* 000001B0 "........" */
880 0x17,0x16,0x10,0x0A /* 000001B8 "...." */
881 };

883 const unsigned char TemplateSpcr[] =
884 {
885 0x53,0x50,0x43,0x52,0x50,0x00,0x00,0x00, /* 00000000 "SPCRP..." */
886 0x01,0xE3,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
887 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
888 0x00,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
889 0x28,0x05,0x10,0x20,0x00,0x00,0x00,0x00, /* 00000020 "(.." */
890 0x00,0x08,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
891 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000030 "........" */
892 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
893 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000040 "........" */
894 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /* 00000048 "........" */
895 };

897 const unsigned char TemplateSpmi[] =
898 {
899 0x53,0x50,0x4D,0x49,0x41,0x00,0x00,0x00, /* 00000000 "SPMIA..." */
900 0x04,0xED,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
901 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
902 0x00,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
903 0x28,0x05,0x10,0x20,0x00,0x00,0x00,0x00, /* 00000020 "(.." */
904 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
905 0x00,0x08,0x00,0x01,0x00,0x00,0x00,0x00, /* 00000030 "........" */
906 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
907 0x00 /* 00000040 "." */
908 };

910 const unsigned char TemplateSrat[] =
911 {
912 0x53,0x52,0x41,0x54,0x80,0x00,0x00,0x00, /* 00000000 "SRAT...." */
913 0x03,0x5A,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 ".ZINTEL " */
914 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
915 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
916 0x28,0x05,0x10,0x20,0x01,0x00,0x00,0x00, /* 00000020 "(.." */
917 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */

new/usr/src/common/acpica/compiler/dttemplate.h 15

918 0x00,0x10,0x00,0x00,0x01,0x00,0x00,0x00, /* 00000030 "........" */
919 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
920 0x01,0x28,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000040 ".(......" */
921 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000048 "........" */
922 0x00,0xFC,0x09,0x00,0x00,0x00,0x00,0x00, /* 00000050 "........" */
923 0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 00000058 "........" */
924 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000060 "........" */
925 0x02,0x18,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000068 "........" */
926 0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 00000070 "........" */
927 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /* 00000078 "........" */
928 };

930 const unsigned char TemplateTcpa[] =
931 {
932 0x54,0x43,0x50,0x41,0x32,0x00,0x00,0x00, /* 00000000 "TCPA2..." */
933 0x01,0x67,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 ".gINTEL " */
934 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
935 0x80,0x31,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 ".1..INTL" */
936 0x28,0x05,0x10,0x20,0x00,0x00,0x00,0x00, /* 00000020 "(.." */
937 0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
938 0x00,0x00 /* 00000030 ".." */
939 };

941 const unsigned char TemplateTpm2[] =
942 {
943 0x54,0x50,0x4D,0x32,0x34,0x00,0x00,0x00, /* 00000000 "TPM24..." */
944 0x03,0x42,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 ".BINTEL " */
945 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
946 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
947 0x14,0x11,0x12,0x20,0x00,0x00,0x00,0x00, /* 00000020 "..." */
948 0x77,0x66,0x55,0x44,0x33,0x22,0x11,0x00, /* 00000028 "wfUD3".." */
949 0x01,0x00,0x00,0x00 /* 00000030 "...." */
950 };

952 const unsigned char TemplateUefi[] =
953 {
954 0x55,0x45,0x46,0x49,0x36,0x00,0x00,0x00, /* 00000000 "UEFI6..." */
955 0x01,0x9B,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
956 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
957 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
958 0x28,0x05,0x10,0x20,0x00,0x01,0x02,0x03, /* 00000020 "(.." */
959 0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B, /* 00000028 "........" */
960 0x0C,0x0D,0x0E,0x0F,0x00,0x00 /* 00000030 "......" */
961 };

963 const unsigned char TemplateVrtc[] =
964 {
965 0x56,0x52,0x54,0x43,0x44,0x00,0x00,0x00, /* 00000000 "VRTCD..." */
966 0x01,0xEF,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
967 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
968 0x03,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
969 0x17,0x01,0x13,0x20,0x00,0x08,0x00,0x00, /* 00000020 "..." */
970 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
971 0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x00, /* 00000030 "........" */
972 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
973 0x00,0x00,0x00,0x00 /* 00000040 "...." */
974 };

976 const unsigned char TemplateWaet[] =
977 {
978 0x57,0x41,0x45,0x54,0x28,0x00,0x00,0x00, /* 00000000 "WAET(..." */
979 0x01,0x19,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
980 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
981 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
982 0x28,0x05,0x10,0x20,0x00,0x00,0x00,0x00 /* 00000020 "(.." */
983 };

new/usr/src/common/acpica/compiler/dttemplate.h 16

985 const unsigned char TemplateWdat[] =
986 {
987 0x57,0x44,0x41,0x54,0x5C,0x00,0x00,0x00, /* 00000000 "WDAT\..." */
988 0x01,0xE3,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
989 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
990 0x00,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
991 0x28,0x05,0x10,0x20,0x20,0x00,0x00,0x00, /* 00000020 "(.. ..." */
992 0xFF,0x00,0xFF,0xFF,0xFF,0x00,0x00,0x00, /* 00000028 "........" */
993 0x58,0x02,0x00,0x00,0xFF,0x03,0x00,0x00, /* 00000030 "X......." */
994 0x02,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
995 0x0E,0x00,0x00,0x00,0x01,0x02,0x00,0x00, /* 00000040 "........" */
996 0x01,0x10,0x00,0x02,0x60,0x04,0x00,0x00, /* 00000048 "....‘..." */
997 0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 00000050 "........" */
998 0x01,0x00,0x00,0x00 /* 00000058 "...." */
999 };

1001 const unsigned char TemplateWddt[] =
1002 {
1003 0x57,0x44,0x44,0x54,0x40,0x00,0x00,0x00, /* 00000000 "WDDT@..." */
1004 0x01,0x00,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
1005 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
1006 0x00,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
1007 0x28,0x05,0x10,0x20,0x00,0x00,0x00,0x00, /* 00000020 "(.." */
1008 0x00,0x00,0x01,0xFF,0x00,0x00,0x00,0x00, /* 00000028 "........" */
1009 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000030 "........" */
1010 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /* 00000038 "........" */
1011 };

1013 const unsigned char TemplateWdrt[] =
1014 {
1015 0x57,0x44,0x52,0x54,0x47,0x00,0x00,0x00, /* 00000000 "WDRTG..." */
1016 0x01,0xB0,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
1017 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
1018 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
1019 0x28,0x05,0x10,0x20,0x00,0x20,0x00,0x00, /* 00000020 "(.. . .." */
1020 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
1021 0x00,0x20,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000030 "." */
1022 0x00,0x00,0x00,0x00,0xFF,0xFF,0xFF,0xFF, /* 00000038 "........" */
1023 0x00,0x00,0x00,0x00,0xFF,0xFF,0x00 /* 00000040 "......." */
1024 };

1026 const unsigned char TemplateXsdt[] =
1027 {
1028 0x58,0x53,0x44,0x54,0x64,0x00,0x00,0x00, /* 00000000 "XSDTd..." */
1029 0x01,0x8B,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
1030 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
1031 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
1032 0x28,0x05,0x10,0x20,0x10,0x00,0x00,0x00, /* 00000020 "(.." */
1033 0x00,0x00,0x00,0x00,0x20,0x00,0x00,0x00, /* 00000028 ".... ..." */
1034 0x00,0x00,0x00,0x00,0x30,0x00,0x00,0x00, /* 00000030 "....0..." */
1035 0x00,0x00,0x00,0x00,0x40,0x00,0x00,0x00, /* 00000038 "....@..." */
1036 0x00,0x00,0x00,0x00,0x50,0x00,0x00,0x00, /* 00000040 "....P..." */
1037 0x00,0x00,0x00,0x00,0x60,0x00,0x00,0x00, /* 00000048 "....‘..." */
1038 0x00,0x00,0x00,0x00,0x70,0x00,0x00,0x00, /* 00000050 "....p..." */
1039 0x00,0x00,0x00,0x00,0x80,0x00,0x00,0x00, /* 00000058 "........" */
1040 0x00,0x00,0x00,0x00 /* 00000060 "...." */
1041 };

1043 #endif

new/usr/src/common/acpica/compiler/dtutils.c 1

**
 21549 Thu Dec 26 13:48:39 2013
new/usr/src/common/acpica/compiler/dtutils.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dtutils.c - Utility routines for the data table compiler
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DTUTILS_C__

46 #include "aslcompiler.h"
47 #include "dtcompiler.h"
48 #include "actables.h"

50 #define _COMPONENT DT_COMPILER
51 ACPI_MODULE_NAME ("dtutils")

53 /* Local prototypes */

55 static void
56 DtSum (
57 DT_SUBTABLE *Subtable,
58 void *Context,
59 void *ReturnValue);

new/usr/src/common/acpica/compiler/dtutils.c 2

62 /**
63 *
64 * FUNCTION: DtError
65 *
66 * PARAMETERS: Level - Seriousness (Warning/error, etc.)
67 * MessageId - Index into global message buffer
68 * Op - Parse node where error happened
69 * ExtraMessage - additional error message
70 *
71 * RETURN: None
72 *
73 * DESCRIPTION: Common error interface for data table compiler
74 *
75 ***/

77 void
78 DtError (
79 UINT8 Level,
80 UINT8 MessageId,
81 DT_FIELD *FieldObject,
82 char *ExtraMessage)
83 {

85 /* Check if user wants to ignore this exception */

87 if (AslIsExceptionDisabled (Level, MessageId))
88 {
89 return;
90 }

92 if (FieldObject)
93 {
94 AslCommonError (Level, MessageId,
95 FieldObject->Line,
96 FieldObject->Line,
97 FieldObject->ByteOffset,
98 FieldObject->Column,
99 Gbl_Files[ASL_FILE_INPUT].Filename, ExtraMessage);
100 }
101 else
102 {
103 AslCommonError (Level, MessageId, 0,
104 0, 0, 0, 0, ExtraMessage);
105 }
106 }

109 /**
110 *
111 * FUNCTION: DtNameError
112 *
113 * PARAMETERS: Level - Seriousness (Warning/error, etc.)
114 * MessageId - Index into global message buffer
115 * Op - Parse node where error happened
116 * ExtraMessage - additional error message
117 *
118 * RETURN: None
119 *
120 * DESCRIPTION: Error interface for named objects
121 *
122 ***/

124 void
125 DtNameError (

new/usr/src/common/acpica/compiler/dtutils.c 3

126 UINT8 Level,
127 UINT8 MessageId,
128 DT_FIELD *FieldObject,
129 char *ExtraMessage)
130 {

132 switch (Level)
133 {
134 case ASL_WARNING2:
135 case ASL_WARNING3:

137 if (Gbl_WarningLevel < Level)
138 {
139 return;
140 }
141 break;

143 default:

145 break;
146 }

148 if (FieldObject)
149 {
150 AslCommonError (Level, MessageId,
151 FieldObject->Line,
152 FieldObject->Line,
153 FieldObject->ByteOffset,
154 FieldObject->NameColumn,
155 Gbl_Files[ASL_FILE_INPUT].Filename, ExtraMessage);
156 }
157 else
158 {
159 AslCommonError (Level, MessageId, 0,
160 0, 0, 0, 0, ExtraMessage);
161 }
162 }

165 /***
166 *
167 * FUNCTION: DtFatal
168 *
169 * PARAMETERS: None
170 *
171 * RETURN: None
172 *
173 * DESCRIPTION: Dump the error log and abort the compiler. Used for serious
174 * compile or I/O errors
175 *
176 **/

178 void
179 DtFatal (
180 UINT8 MessageId,
181 DT_FIELD *FieldObject,
182 char *ExtraMessage)
183 {

185 DtError (ASL_ERROR, MessageId, FieldObject, ExtraMessage);

187 /*
188 * TBD: remove this entire function, DtFatal
189 *
190 * We cannot abort the compiler on error, because we may be compiling a
191 * list of files. We must move on to the next file.

new/usr/src/common/acpica/compiler/dtutils.c 4

192 */
193 #ifdef __OBSOLETE
194 CmCleanupAndExit ();
195 exit (1);
196 #endif
197 }

200 /**
201 *
202 * FUNCTION: DtStrtoul64
203 *
204 * PARAMETERS: String - Null terminated string
205 * ReturnInteger - Where the converted integer is returned
206 *
207 * RETURN: Status
208 *
209 * DESCRIPTION: Simple conversion of a string hex integer constant to unsigned
210 * value. Assumes no leading "0x" for the constant.
211 *
212 * Portability note: The reason this function exists is because a 64-bit
213 * sscanf is not available in all environments.
214 *
215 ***/

217 ACPI_STATUS
218 DtStrtoul64 (
219 char *String,
220 UINT64 *ReturnInteger)
221 {
222 char *ThisChar = String;
223 UINT32 ThisDigit;
224 UINT64 ReturnValue = 0;
225 int DigitCount = 0;

228 /* Skip over any white space in the buffer */

230 while ((*ThisChar == ’ ’) || (*ThisChar == ’\t’))
231 {
232 ThisChar++;
233 }

235 /* Skip leading zeros */

237 while ((*ThisChar) == ’0’)
238 {
239 ThisChar++;
240 }

242 /* Convert character-by-character */

244 while (*ThisChar)
245 {
246 if (ACPI_IS_DIGIT (*ThisChar))
247 {
248 /* Convert ASCII 0-9 to Decimal value */

250 ThisDigit = ((UINT8) *ThisChar) - ’0’;
251 }
252 else /* Letter */
253 {
254 ThisDigit = (UINT32) ACPI_TOUPPER (*ThisChar);
255 if (!ACPI_IS_XDIGIT ((char) ThisDigit))
256 {
257 /* Not A-F */

new/usr/src/common/acpica/compiler/dtutils.c 5

259 return (AE_BAD_CHARACTER);
260 }

262 /* Convert ASCII Hex char (A-F) to value */

264 ThisDigit = (ThisDigit - ’A’) + 10;
265 }

267 /* Insert the 4-bit hex digit */

269 ReturnValue <<= 4;
270 ReturnValue += ThisDigit;

272 ThisChar++;
273 DigitCount++;
274 if (DigitCount > 16)
275 {
276 /* Value is too large (> 64 bits/8 bytes/16 hex digits) */

278 return (AE_LIMIT);
279 }
280 }

282 *ReturnInteger = ReturnValue;
283 return (AE_OK);
284 }

287 /**
288 *
289 * FUNCTION: DtGetFileSize
290 *
291 * PARAMETERS: Handle - Open file handler
292 *
293 * RETURN: Current file size
294 *
295 * DESCRIPTION: Get the current size of a file. Seek to the EOF and get the
296 * offset. Seek back to the original location.
297 *
298 ***/

300 UINT32
301 DtGetFileSize (
302 FILE *Handle)
303 {
304 int CurrentOffset;
305 int LastOffset;

308 CurrentOffset = ftell (Handle);
309 fseek (Handle, 0, SEEK_END);
310 LastOffset = ftell (Handle);
311 fseek (Handle, CurrentOffset, SEEK_SET);

313 return ((UINT32) LastOffset);
314 }

317 /**
318 *
319 * FUNCTION: DtGetFieldValue
320 *
321 * PARAMETERS: Field - Current field list pointer
322 *
323 * RETURN: Field value

new/usr/src/common/acpica/compiler/dtutils.c 6

324 *
325 * DESCRIPTION: Get field value
326 *
327 ***/

329 char *
330 DtGetFieldValue (
331 DT_FIELD *Field)
332 {
333 if (!Field)
334 {
335 return (NULL);
336 }

338 return (Field->Value);
339 }

342 /**
343 *
344 * FUNCTION: DtGetFieldType
345 *
346 * PARAMETERS: Info - Data table info
347 *
348 * RETURN: Field type
349 *
350 * DESCRIPTION: Get field type
351 *
352 ***/

354 UINT8
355 DtGetFieldType (
356 ACPI_DMTABLE_INFO *Info)
357 {
358 UINT8 Type;

361 /* DT_FLAG means that this is the start of a block of flag bits */
362 /* TBD - we can make these a separate opcode later */

364 if (Info->Flags & DT_FLAG)
365 {
366 return (DT_FIELD_TYPE_FLAGS_INTEGER);
367 }

369 /* Type is based upon the opcode for this field in the info table */

371 switch (Info->Opcode)
372 {
373 case ACPI_DMT_FLAG0:
374 case ACPI_DMT_FLAG1:
375 case ACPI_DMT_FLAG2:
376 case ACPI_DMT_FLAG3:
377 case ACPI_DMT_FLAG4:
378 case ACPI_DMT_FLAG5:
379 case ACPI_DMT_FLAG6:
380 case ACPI_DMT_FLAG7:
381 case ACPI_DMT_FLAGS0:
382 case ACPI_DMT_FLAGS1:
383 case ACPI_DMT_FLAGS2:
384 case ACPI_DMT_FLAGS4:

386 Type = DT_FIELD_TYPE_FLAG;
387 break;

389 case ACPI_DMT_NAME4:

new/usr/src/common/acpica/compiler/dtutils.c 7

390 case ACPI_DMT_SIG:
391 case ACPI_DMT_NAME6:
392 case ACPI_DMT_NAME8:
393 case ACPI_DMT_STRING:

395 Type = DT_FIELD_TYPE_STRING;
396 break;

398 case ACPI_DMT_BUFFER:
399 case ACPI_DMT_BUF7:
400 case ACPI_DMT_BUF10:
401 case ACPI_DMT_BUF16:
402 case ACPI_DMT_BUF128:
403 case ACPI_DMT_PCI_PATH:

405 Type = DT_FIELD_TYPE_BUFFER;
406 break;

408 case ACPI_DMT_GAS:
409 case ACPI_DMT_HESTNTFY:

411 Type = DT_FIELD_TYPE_INLINE_SUBTABLE;
412 break;

414 case ACPI_DMT_UNICODE:

416 Type = DT_FIELD_TYPE_UNICODE;
417 break;

419 case ACPI_DMT_UUID:

421 Type = DT_FIELD_TYPE_UUID;
422 break;

424 case ACPI_DMT_DEVICE_PATH:

426 Type = DT_FIELD_TYPE_DEVICE_PATH;
427 break;

429 case ACPI_DMT_LABEL:

431 Type = DT_FIELD_TYPE_LABEL;
432 break;

434 default:

436 Type = DT_FIELD_TYPE_INTEGER;
437 break;
438 }

440 return (Type);
441 }

444 /**
445 *
446 * FUNCTION: DtGetBufferLength
447 *
448 * PARAMETERS: Buffer - List of integers,
449 * for example "10 3A 4F 2E"
450 *
451 * RETURN: Count of integer
452 *
453 * DESCRIPTION: Get length of bytes needed to store the integers
454 *
455 ***/

new/usr/src/common/acpica/compiler/dtutils.c 8

457 UINT32
458 DtGetBufferLength (
459 char *Buffer)
460 {
461 UINT32 ByteLength = 0;

464 while (*Buffer)
465 {
466 if (*Buffer == ’ ’)
467 {
468 ByteLength++;

470 while (*Buffer == ’ ’)
471 {
472 Buffer++;
473 }
474 }

476 Buffer++;
477 }

479 return (++ByteLength);
480 }

483 /**
484 *
485 * FUNCTION: DtGetFieldLength
486 *
487 * PARAMETERS: Field - Current field
488 * Info - Data table info
489 *
490 * RETURN: Field length
491 *
492 * DESCRIPTION: Get length of bytes needed to compile the field
493 *
494 * Note: This function must remain in sync with AcpiDmDumpTable.
495 *
496 ***/

498 UINT32
499 DtGetFieldLength (
500 DT_FIELD *Field,
501 ACPI_DMTABLE_INFO *Info)
502 {
503 UINT32 ByteLength = 0;
504 char *Value;

507 /* Length is based upon the opcode for this field in the info table */

509 switch (Info->Opcode)
510 {
511 case ACPI_DMT_FLAG0:
512 case ACPI_DMT_FLAG1:
513 case ACPI_DMT_FLAG2:
514 case ACPI_DMT_FLAG3:
515 case ACPI_DMT_FLAG4:
516 case ACPI_DMT_FLAG5:
517 case ACPI_DMT_FLAG6:
518 case ACPI_DMT_FLAG7:
519 case ACPI_DMT_FLAGS0:
520 case ACPI_DMT_FLAGS1:
521 case ACPI_DMT_FLAGS2:

new/usr/src/common/acpica/compiler/dtutils.c 9

522 case ACPI_DMT_FLAGS4:
523 case ACPI_DMT_LABEL:
524 case ACPI_DMT_EXTRA_TEXT:

526 ByteLength = 0;
527 break;

529 case ACPI_DMT_UINT8:
530 case ACPI_DMT_CHKSUM:
531 case ACPI_DMT_SPACEID:
532 case ACPI_DMT_ACCWIDTH:
533 case ACPI_DMT_IVRS:
534 case ACPI_DMT_MADT:
535 case ACPI_DMT_PCCT:
536 case ACPI_DMT_PMTT:
537 case ACPI_DMT_SRAT:
538 case ACPI_DMT_ASF:
539 case ACPI_DMT_HESTNTYP:
540 case ACPI_DMT_FADTPM:
541 case ACPI_DMT_EINJACT:
542 case ACPI_DMT_EINJINST:
543 case ACPI_DMT_ERSTACT:
544 case ACPI_DMT_ERSTINST:

546 ByteLength = 1;
547 break;

549 case ACPI_DMT_UINT16:
550 case ACPI_DMT_DMAR:
551 case ACPI_DMT_HEST:
552 case ACPI_DMT_PCI_PATH:

554 ByteLength = 2;
555 break;

557 case ACPI_DMT_UINT24:

559 ByteLength = 3;
560 break;

562 case ACPI_DMT_UINT32:
563 case ACPI_DMT_NAME4:
564 case ACPI_DMT_SLIC:
565 case ACPI_DMT_SIG:

567 ByteLength = 4;
568 break;

570 case ACPI_DMT_UINT40:

572 ByteLength = 5;
573 break;

575 case ACPI_DMT_UINT48:
576 case ACPI_DMT_NAME6:

578 ByteLength = 6;
579 break;

581 case ACPI_DMT_UINT56:
582 case ACPI_DMT_BUF7:

584 ByteLength = 7;
585 break;

587 case ACPI_DMT_UINT64:

new/usr/src/common/acpica/compiler/dtutils.c 10

588 case ACPI_DMT_NAME8:

590 ByteLength = 8;
591 break;

593 case ACPI_DMT_STRING:

595 Value = DtGetFieldValue (Field);
596 if (Value)
597 {
598 ByteLength = ACPI_STRLEN (Value) + 1;
599 }
600 else
601 { /* At this point, this is a fatal error */

603 sprintf (MsgBuffer, "Expected \"%s\"", Info->Name);
604 DtFatal (ASL_MSG_COMPILER_INTERNAL, NULL, MsgBuffer);
605 return (0);
606 }
607 break;

609 case ACPI_DMT_GAS:

611 ByteLength = sizeof (ACPI_GENERIC_ADDRESS);
612 break;

614 case ACPI_DMT_HESTNTFY:

616 ByteLength = sizeof (ACPI_HEST_NOTIFY);
617 break;

619 case ACPI_DMT_BUFFER:

621 Value = DtGetFieldValue (Field);
622 if (Value)
623 {
624 ByteLength = DtGetBufferLength (Value);
625 }
626 else
627 { /* At this point, this is a fatal error */

629 sprintf (MsgBuffer, "Expected \"%s\"", Info->Name);
630 DtFatal (ASL_MSG_COMPILER_INTERNAL, NULL, MsgBuffer);
631 return (0);
632 }
633 break;

635 case ACPI_DMT_BUF10:

637 ByteLength = 10;
638 break;

640 case ACPI_DMT_BUF16:
641 case ACPI_DMT_UUID:

643 ByteLength = 16;
644 break;

646 case ACPI_DMT_BUF128:

648 ByteLength = 128;
649 break;

651 case ACPI_DMT_UNICODE:

653 Value = DtGetFieldValue (Field);

new/usr/src/common/acpica/compiler/dtutils.c 11

655 /* TBD: error if Value is NULL? (as below?) */

657 ByteLength = (ACPI_STRLEN (Value) + 1) * sizeof(UINT16);
658 break;

660 default:

662 DtFatal (ASL_MSG_COMPILER_INTERNAL, Field, "Invalid table opcode");
663 return (0);
664 }

666 return (ByteLength);
667 }

670 /**
671 *
672 * FUNCTION: DtSum
673 *
674 * PARAMETERS: DT_WALK_CALLBACK:
675 * Subtable - Subtable
676 * Context - Unused
677 * ReturnValue - Store the checksum of subtable
678 *
679 * RETURN: Status
680 *
681 * DESCRIPTION: Get the checksum of subtable
682 *
683 ***/

685 static void
686 DtSum (
687 DT_SUBTABLE *Subtable,
688 void *Context,
689 void *ReturnValue)
690 {
691 UINT8 Checksum;
692 UINT8 *Sum = ReturnValue;

695 Checksum = AcpiTbChecksum (Subtable->Buffer, Subtable->Length);
696 *Sum = (UINT8) (*Sum + Checksum);
697 }

700 /**
701 *
702 * FUNCTION: DtSetTableChecksum
703 *
704 * PARAMETERS: ChecksumPointer - Where to return the checksum
705 *
706 * RETURN: None
707 *
708 * DESCRIPTION: Set checksum of the whole data table into the checksum field
709 *
710 ***/

712 void
713 DtSetTableChecksum (
714 UINT8 *ChecksumPointer)
715 {
716 UINT8 Checksum = 0;
717 UINT8 OldSum;

new/usr/src/common/acpica/compiler/dtutils.c 12

720 DtWalkTableTree (Gbl_RootTable, DtSum, NULL, &Checksum);

722 OldSum = *ChecksumPointer;
723 Checksum = (UINT8) (Checksum - OldSum);

725 /* Compute the final checksum */

727 Checksum = (UINT8) (0 - Checksum);
728 *ChecksumPointer = Checksum;
729 }

732 /**
733 *
734 * FUNCTION: DtSetTableLength
735 *
736 * PARAMETERS: None
737 *
738 * RETURN: None
739 *
740 * DESCRIPTION: Walk the subtables and set all the length fields
741 *
742 ***/

744 void
745 DtSetTableLength (
746 void)
747 {
748 DT_SUBTABLE *ParentTable;
749 DT_SUBTABLE *ChildTable;

752 ParentTable = Gbl_RootTable;
753 ChildTable = NULL;

755 if (!ParentTable)
756 {
757 return;
758 }

760 DtSetSubtableLength (ParentTable);

762 while (1)
763 {
764 ChildTable = DtGetNextSubtable (ParentTable, ChildTable);
765 if (ChildTable)
766 {
767 if (ChildTable->LengthField)
768 {
769 DtSetSubtableLength (ChildTable);
770 }

772 if (ChildTable->Child)
773 {
774 ParentTable = ChildTable;
775 ChildTable = NULL;
776 }
777 else
778 {
779 ParentTable->TotalLength += ChildTable->TotalLength;
780 if (ParentTable->LengthField)
781 {
782 DtSetSubtableLength (ParentTable);
783 }
784 }
785 }

new/usr/src/common/acpica/compiler/dtutils.c 13

786 else
787 {
788 ChildTable = ParentTable;

790 if (ChildTable == Gbl_RootTable)
791 {
792 break;
793 }

795 ParentTable = DtGetParentSubtable (ParentTable);

797 ParentTable->TotalLength += ChildTable->TotalLength;
798 if (ParentTable->LengthField)
799 {
800 DtSetSubtableLength (ParentTable);
801 }
802 }
803 }
804 }

807 /**
808 *
809 * FUNCTION: DtWalkTableTree
810 *
811 * PARAMETERS: StartTable - Subtable in the tree where walking begins
812 * UserFunction - Called during the walk
813 * Context - Passed to user function
814 * ReturnValue - The return value of UserFunction
815 *
816 * RETURN: None
817 *
818 * DESCRIPTION: Performs a depth-first walk of the subtable tree
819 *
820 ***/

822 void
823 DtWalkTableTree (
824 DT_SUBTABLE *StartTable,
825 DT_WALK_CALLBACK UserFunction,
826 void *Context,
827 void *ReturnValue)
828 {
829 DT_SUBTABLE *ParentTable;
830 DT_SUBTABLE *ChildTable;

833 ParentTable = StartTable;
834 ChildTable = NULL;

836 if (!ParentTable)
837 {
838 return;
839 }

841 UserFunction (ParentTable, Context, ReturnValue);

843 while (1)
844 {
845 ChildTable = DtGetNextSubtable (ParentTable, ChildTable);
846 if (ChildTable)
847 {
848 UserFunction (ChildTable, Context, ReturnValue);

850 if (ChildTable->Child)
851 {

new/usr/src/common/acpica/compiler/dtutils.c 14

852 ParentTable = ChildTable;
853 ChildTable = NULL;
854 }
855 }
856 else
857 {
858 ChildTable = ParentTable;
859 if (ChildTable == Gbl_RootTable)
860 {
861 break;
862 }

864 ParentTable = DtGetParentSubtable (ParentTable);

866 if (ChildTable->Peer == StartTable)
867 {
868 break;
869 }
870 }
871 }
872 }

875 /**
876 *
877 * FUNCTION: DtFreeFieldList
878 *
879 * PARAMETERS: None
880 *
881 * RETURN: None
882 *
883 * DESCRIPTION: Free the field list
884 *
885 ***/

887 void
888 DtFreeFieldList (
889 void)
890 {
891 DT_FIELD *Field = Gbl_FieldList;
892 DT_FIELD *NextField;

895 /* Walk and free entire field list */

897 while (Field)
898 {
899 NextField = Field->Next; /* Save link */

901 if (!(Field->Flags & DT_FIELD_NOT_ALLOCATED))
902 {
903 ACPI_FREE (Field->Name);
904 ACPI_FREE (Field->Value);
905 }

907 ACPI_FREE (Field);
908 Field = NextField;
909 }
910 }

new/usr/src/common/acpica/compiler/new_table.txt 1

**
 3581 Thu Dec 26 13:48:39 2013
new/usr/src/common/acpica/compiler/new_table.txt
acpica-unix2-20130823
**

1 How to add a new ACPI table to ACPICA and the iASL compiler.
2 --

4 There are four main tasks that are needed to provide support for a
5 new ACPI table:
6 1) Create a full definition of the table and any subtables
7 in the ACPICA headers.
8 2) Add disassembler support for the new table
9 3) Add iASL table compiler support for the new table
10 4) Create a default template for the new table for iASL -T
11 option.

13 Notes for each of these tasks provided below.

16 1) Header Support
17 -----------------

19 New tables should be added to the appropriate header:
20 actbl2.h: Used for new tables that are not defined in the ACPI spec.
21 actbl3.h: Used for new tables that are defined in the ACPI spec.

23 Use ACPI_TABLE_HEADER for the common ACPI table header.
24 Subtables should be defined separately from the main table.
25 Don’t add placeholder fields for subtables and other multiple data items.
26 (Don’t use xxxxx[1] for a field that can have multiple items.)
27 The disassembler and data table compiler depends on this.
28 For tables not defined in the ACPI spec, add a comment to indicate where
29 the table came from.
30 Use other table definitions for additional guidance.

33 2) iASL Disassembler Support
34 ----------------------------

36 Add definition of the table (and subtables) in common/dmtbinfo.c
37 Add table access macro(s) of the form ACPI_xxxx_OFFSET
38 Add ACPI_DMT_TERMINATOR at the end of every table/subtable definition

40 Add externals for the table/subtable definitions in acdisasm.h
41 Add an entry for the new table in the AcpiDmTableData in common/dmtable.c

43 If there are no subtables, add the AcpiDmTableInfoXXXX name to the
44 AcpiDmTableData and it will automatically be disassembled.

46 If there are subtables, a dump routine must be written:
47 Add an AcpiDmDumpXXXX function to dmtbdump.c -- note, code for another
48 similar table can often be ported for the new table.
49 Add an external for this function to acdisasm.h
50 Add this function to the AcpiDmTableData entry for the new ACPI table

52 Debug/Test: Either find an existing example of the new ACPI table, or
53 create one using the "generic ACPI table support" included in the
54 iASL data table compiler. Use the -G option to force a
55 generic compile. It is often best to create the table from scratch,
56 since this clearly exposes the dependencies (lengths, offsets, etc.)
57 that the Table Compiler support will need to generate.

60 3) iASL Table Compiler Support
61 ------------------------------

new/usr/src/common/acpica/compiler/new_table.txt 2

63 Simple tables do not require a compile routine. The definition of the
64 table in common/dmtbinfo.c (created in step 2 above) will suffice.

66 Complex tables with subtables will require a compile routine with a name
67 of the form DtCompileXXXX.
68 Add a DtCompileXXXX function to the dttable.c module.
69 Add an external for this function in dtcompiler.h
70 Add this function to the AcpiDmTableData entry for the new ACPI table
71 in common/dmtable.c

74 4) Template Support (-T iASL option)
75 ------------------------------------

77 Create an example of the new ACPI table. This example should create
78 multiple subtables (if supported), and multiple instances of any
79 variable length data.

81 Compile the example file with the -sc option. This will create a C
82 array that contains the table contents.

84 Add this array to the dttemplate.h file. Name the array TemplateXXXX.
85 Add this array name to the AcpiDmTableData entry for the new ACPI table

87 Debug/Test: Create the template file. Compile the file. Disassemble the file.
88 Compile the disassembly file.

new/usr/src/common/acpica/compiler/preprocess.h 1

**
 7820 Thu Dec 26 13:48:39 2013
new/usr/src/common/acpica/compiler/preprocess.h
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: preprocess.h - header for iASL Preprocessor
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __PREPROCESS_H__

46 #ifndef _PREPROCESS
47 #define _PREPROCESS

49 #undef PR_EXTERN

51 #ifdef _DECLARE_PR_GLOBALS
52 #define PR_EXTERN
53 #define PR_INIT_GLOBAL(a,b) (a)=(b)
54 #else
55 #define PR_EXTERN extern
56 #define PR_INIT_GLOBAL(a,b) (a)
57 #endif

60 /*
61 * Configuration

new/usr/src/common/acpica/compiler/preprocess.h 2

62 */
63 #define PR_MAX_MACRO_ARGS 32 /* Max number of macro args */
64 #define PR_MAX_ARG_INSTANCES 24 /* Max instances of any one arg
65 #define PR_LINES_PER_BLOCK 4096 /* Max input source lines per bl

68 /*
69 * Local defines and macros
70 */
71 #define PR_TOKEN_SEPARATORS " ,(){}\t\n"
72 #define PR_MACRO_SEPARATORS " ,(){}~!*/%+-<>=&^|\"\t\n"
73 #define PR_MACRO_ARGUMENTS " ,\t\n"
74 #define PR_EXPR_SEPARATORS " ,(){}~!*/%+-<>=&^|\"\t\n"

76 #define PR_PREFIX_ID "Pr(%.4u) - " /* Used for debug outp

78 #define THIS_TOKEN_OFFSET(t) ((t-Gbl_MainTokenBuffer) + 1)

81 /*
82 * Preprocessor structures
83 */
84 typedef struct pr_macro_arg
85 {
86 char *Name;
87 UINT32 Offset[PR_MAX_ARG_INSTANCES];
88 UINT16 UseCount;

90 } PR_MACRO_ARG;

92 typedef struct pr_define_info
93 {
94 struct pr_define_info *Previous;
95 struct pr_define_info *Next;
96 char *Identifier;
97 char *Replacement;
98 char *Body; /* Macro body */
99 PR_MACRO_ARG *Args; /* Macro arg list */
100 UINT16 ArgCount; /* Macro arg count */
101 BOOLEAN Persist; /* Keep for entire compiler run

103 } PR_DEFINE_INFO;

105 typedef struct pr_directive_info
106 {
107 char *Name; /* Directive name */
108 UINT8 ArgCount; /* Required # of args */

110 } PR_DIRECTIVE_INFO;

112 typedef struct pr_operator_info
113 {
114 char *Op;

116 } PR_OPERATOR_INFO;

118 typedef struct pr_file_node
119 {
120 struct pr_file_node *Next;
121 FILE *File;
122 char *Filename;
123 UINT32 CurrentLineNumber;

125 } PR_FILE_NODE;

127 #define MAX_ARGUMENT_LENGTH 24

new/usr/src/common/acpica/compiler/preprocess.h 3

129 typedef struct directive_info
130 {
131 struct directive_info *Next;
132 char Argument[MAX_ARGUMENT_LENGTH];
133 int Directive;
134 BOOLEAN IgnoringThisCodeBlock;

136 } DIRECTIVE_INFO;

139 /*
140 * Globals
141 */
142 #if 0 /* TBD for macros */
143 PR_EXTERN char PR_INIT_GLOBAL (*XXXEvalBuffer, NULL); /* [ASL_L
144 #endif

146 PR_EXTERN char PR_INIT_GLOBAL (*Gbl_MainTokenBuffer, NULL); /*
147 PR_EXTERN char PR_INIT_GLOBAL (*Gbl_MacroTokenBuffer, NULL); /*
148 PR_EXTERN char PR_INIT_GLOBAL (*Gbl_ExpressionTokenBuffer, NULL

150 PR_EXTERN UINT32 Gbl_PreprocessorLineNumber;
151 PR_EXTERN int Gbl_IfDepth;
152 PR_EXTERN PR_FILE_NODE *Gbl_InputFileList;
153 PR_EXTERN PR_DEFINE_INFO PR_INIT_GLOBAL (*Gbl_DefineList, NULL);
154 PR_EXTERN BOOLEAN PR_INIT_GLOBAL (Gbl_PreprocessorError, FALSE);
155 PR_EXTERN BOOLEAN PR_INIT_GLOBAL (Gbl_IgnoringThisCodeBlock, FALSE
156 PR_EXTERN DIRECTIVE_INFO PR_INIT_GLOBAL (*Gbl_DirectiveStack, NULL);

158 /*
159 * prscan - Preprocessor entry
160 */
161 void
162 PrInitializePreprocessor (
163 void);

165 void
166 PrInitializeGlobals (
167 void);

169 void
170 PrTerminatePreprocessor (
171 void);

173 void
174 PrDoPreprocess (
175 void);

177 UINT64
178 PrIsDefined (
179 char *Identifier);

181 UINT64
182 PrResolveDefine (
183 char *Identifier);

185 int
186 PrInitLexer (
187 char *String);

189 void
190 PrTerminateLexer (
191 void);

new/usr/src/common/acpica/compiler/preprocess.h 4

194 /*
195 * prmacros - Support for #defines and macros
196 */
197 void
198 PrDumpPredefinedNames (
199 void);

201 PR_DEFINE_INFO *
202 PrAddDefine (
203 char *Token,
204 char *Token2,
205 BOOLEAN Persist);

207 void
208 PrRemoveDefine (
209 char *DefineName);

211 PR_DEFINE_INFO *
212 PrMatchDefine (
213 char *MatchString);

215 void
216 PrAddMacro (
217 char *Name,
218 char **Next);

220 void
221 PrDoMacroInvocation (
222 char *TokenBuffer,
223 char *MacroStart,
224 PR_DEFINE_INFO *DefineInfo,
225 char **Next);

228 /*
229 * prexpress - #if expression support
230 */
231 ACPI_STATUS
232 PrResolveIntegerExpression (
233 char *Line,
234 UINT64 *ReturnValue);

236 char *
237 PrPrioritizeExpression (
238 char *OriginalLine);

240 /*
241 * prparser - lex/yacc expression parser
242 */
243 UINT64
244 PrEvaluateExpression (
245 char *ExprString);

248 /*
249 * prutils - Preprocesor utilities
250 */
251 char *
252 PrGetNextToken (
253 char *Buffer,
254 char *MatchString,
255 char **Next);

257 void
258 PrError (
259 UINT8 Level,

new/usr/src/common/acpica/compiler/preprocess.h 5

260 UINT8 MessageId,
261 UINT32 Column);

263 void
264 PrReplaceData (
265 char *Buffer,
266 UINT32 LengthToRemove,
267 char *BufferToAdd,
268 UINT32 LengthToAdd);

270 void
271 PrOpenIncludeFile (
272 char *Filename);

274 FILE *
275 PrOpenIncludeWithPrefix (
276 char *PrefixDir,
277 char *Filename);

279 void
280 PrPushInputFileStack (
281 FILE *InputFile,
282 char *Filename);

284 BOOLEAN
285 PrPopInputFileStack (
286 void);

288 #endif

new/usr/src/common/acpica/compiler/prexpress.c 1

**
 9317 Thu Dec 26 13:48:39 2013
new/usr/src/common/acpica/compiler/prexpress.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: prexpress - Preprocessor #if expression support
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aslcompiler.h"
45 #include "dtcompiler.h"

48 #define _COMPONENT ASL_PREPROCESSOR
49 ACPI_MODULE_NAME ("prexpress")

51 /* Local prototypes */

53 static char *
54 PrExpandMacros (
55 char *Line);

58 #ifdef _UNDER_DEVELOPMENT
59 /**
60 *
61 * FUNCTION: PrUnTokenize

new/usr/src/common/acpica/compiler/prexpress.c 2

62 *
63 * PARAMETERS: Buffer - Token Buffer
64 * Next - "Next" buffer from GetNextToken
65 *
66 * RETURN: None
67 *
68 * DESCRIPTION: Un-tokenized the current token buffer. The implementation is
69 * to simply set the null inserted by GetNextToken to a blank.
70 * If Next is NULL, there were no tokens found in the Buffer,
71 * so there is nothing to do.
72 *
73 ***/

75 static void
76 PrUnTokenize (
77 char *Buffer,
78 char *Next)
79 {
80 UINT32 Length = strlen (Buffer);

83 if (!Next)
84 {
85 return;
86 }
87 if (Buffer[Length] != ’\n’)
88 {
89 Buffer[strlen(Buffer)] = ’ ’;
90 }
91 }
92 #endif

95 /**
96 *
97 * FUNCTION: PrExpandMacros
98 *
99 * PARAMETERS: Line - Pointer into the current line
100 *
101 * RETURN: Updated pointer into the current line
102 *
103 * DESCRIPTION: Expand any macros found in the current line buffer.
104 *
105 ***/

107 static char *
108 PrExpandMacros (
109 char *Line)
110 {
111 char *Token;
112 char *ReplaceString;
113 PR_DEFINE_INFO *DefineInfo;
114 ACPI_SIZE TokenOffset;
115 char *Next;
116 int OffsetAdjust;

119 strcpy (Gbl_ExpressionTokenBuffer, Gbl_CurrentLineBuffer);
120 Token = PrGetNextToken (Gbl_ExpressionTokenBuffer, PR_EXPR_SEPARATORS, &Next
121 OffsetAdjust = 0;

123 while (Token)
124 {
125 DefineInfo = PrMatchDefine (Token);
126 if (DefineInfo)
127 {

new/usr/src/common/acpica/compiler/prexpress.c 3

128 if (DefineInfo->Body)
129 {
130 /* This is a macro. TBD: Is this allowed? */

132 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
133 "Matched Macro: %s->%s\n",
134 Gbl_CurrentLineNumber, DefineInfo->Identifier,
135 DefineInfo->Replacement);

137 PrDoMacroInvocation (Gbl_ExpressionTokenBuffer, Token,
138 DefineInfo, &Next);
139 }
140 else
141 {
142 ReplaceString = DefineInfo->Replacement;

144 /* Replace the name in the original line buffer */

146 TokenOffset = Token - Gbl_ExpressionTokenBuffer + OffsetAdjust;
147 PrReplaceData (
148 &Gbl_CurrentLineBuffer[TokenOffset], strlen (Token),
149 ReplaceString, strlen (ReplaceString));

151 /* Adjust for length difference between old and new name length

153 OffsetAdjust += strlen (ReplaceString) - strlen (Token);

155 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
156 "Matched #define within expression: %s->%s\n",
157 Gbl_CurrentLineNumber, Token,
158 *ReplaceString ? ReplaceString : "(NULL STRING)");
159 }
160 }

162 Token = PrGetNextToken (NULL, PR_EXPR_SEPARATORS, &Next);
163 }

165 return (Line);
166 }

169 /**
170 *
171 * FUNCTION: PrIsDefined
172 *
173 * PARAMETERS: Identifier - Name to be resolved
174 *
175 * RETURN: 64-bit boolean integer value
176 *
177 * DESCRIPTION: Returns TRUE if the name is defined, FALSE otherwise (0).
178 *
179 ***/

181 UINT64
182 PrIsDefined (
183 char *Identifier)
184 {
185 UINT64 Value;
186 PR_DEFINE_INFO *DefineInfo;

189 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
190 "**** Is defined?: %s\n", Gbl_CurrentLineNumber, Identifier);

192 Value = 0; /* Default is "Not defined" -- FALSE */

new/usr/src/common/acpica/compiler/prexpress.c 4

194 DefineInfo = PrMatchDefine (Identifier);
195 if (DefineInfo)
196 {
197 Value = ACPI_UINT64_MAX; /* TRUE */
198 }

200 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
201 "[#if defined %s] resolved to: %8.8X%8.8X\n",
202 Gbl_CurrentLineNumber, Identifier, ACPI_FORMAT_UINT64 (Value));

204 return (Value);
205 }

208 /**
209 *
210 * FUNCTION: PrResolveDefine
211 *
212 * PARAMETERS: Identifier - Name to be resolved
213 *
214 * RETURN: A 64-bit boolean integer value
215 *
216 * DESCRIPTION: Returns TRUE if the name is defined, FALSE otherwise (0).
217 *
218 ***/

220 UINT64
221 PrResolveDefine (
222 char *Identifier)
223 {
224 UINT64 Value;
225 PR_DEFINE_INFO *DefineInfo;

228 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
229 "**** Resolve #define: %s\n", Gbl_CurrentLineNumber, Identifier);

231 Value = 0; /* Default is "Not defined" -- FALSE */

233 DefineInfo = PrMatchDefine (Identifier);
234 if (DefineInfo)
235 {
236 Value = ACPI_UINT64_MAX; /* TRUE */
237 }

239 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
240 "[#if defined %s] resolved to: %8.8X%8.8X\n",
241 Gbl_CurrentLineNumber, Identifier, ACPI_FORMAT_UINT64 (Value));

243 return (Value);
244 }

247 /**
248 *
249 * FUNCTION: PrResolveIntegerExpression
250 *
251 * PARAMETERS: Line - Pointer to integer expression
252 * ReturnValue - Where the resolved 64-bit integer is
253 * returned.
254 *
255 * RETURN: Status
256 *
257 * DESCRIPTION: Resolve an integer expression to a single value. Supports
258 * both integer constants and labels.
259 *

new/usr/src/common/acpica/compiler/prexpress.c 5

260 ***/

262 ACPI_STATUS
263 PrResolveIntegerExpression (
264 char *Line,
265 UINT64 *ReturnValue)
266 {
267 UINT64 Result;
268 char *ExpandedLine;

271 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
272 "**** Resolve #if: %s\n", Gbl_CurrentLineNumber, Line);

274 /* Expand all macros within the expression first */

276 ExpandedLine = PrExpandMacros (Line);

278 /* Now we can evaluate the expression */

280 Result = PrEvaluateExpression (ExpandedLine);
281 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
282 "**** Expression Resolved to: %8.8X%8.8X\n",
283 Gbl_CurrentLineNumber, ACPI_FORMAT_UINT64 (Result));

285 *ReturnValue = Result;
286 return (AE_OK);

288 #if 0
289 InvalidExpression:

291 ACPI_FREE (EvalBuffer);
292 PrError (ASL_ERROR, ASL_MSG_INVALID_EXPRESSION, 0);
293 return (AE_ERROR);

296 NormalExit:

298 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
299 "**** Expression Resolved to: %8.8X%8.8X\n",
300 Gbl_CurrentLineNumber, ACPI_FORMAT_UINT64 (Value1));

302 *ReturnValue = Value1;
303 return (AE_OK);
304 #endif
305 }

new/usr/src/common/acpica/compiler/prmacros.c 1

**
 16160 Thu Dec 26 13:48:39 2013
new/usr/src/common/acpica/compiler/prmacros.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: prmacros - Preprocessor #define macro support
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aslcompiler.h"
45 #include "dtcompiler.h"

48 #define _COMPONENT ASL_PREPROCESSOR
49 ACPI_MODULE_NAME ("prmacros")

52 /***
53 *
54 * FUNCTION: PrDumpPredefinedNames
55 *
56 * PARAMETERS: None
57 *
58 * RETURN: None
59 *
60 * DESCRIPTION: Dump the list of #defines. Used as the preprocessor starts, to
61 * display the names that were defined on the command line.

new/usr/src/common/acpica/compiler/prmacros.c 2

62 * Debug information only.
63 *
64 **/

66 void
67 PrDumpPredefinedNames (
68 void)
69 {
70 PR_DEFINE_INFO *DefineInfo;

73 DefineInfo = Gbl_DefineList;
74 while (DefineInfo)
75 {
76 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
77 "Predefined #define: %s->%s\n",
78 0, DefineInfo->Identifier, DefineInfo->Replacement);

80 DefineInfo = DefineInfo->Next;
81 }
82 }

85 /***
86 *
87 * FUNCTION: PrAddDefine
88 *
89 * PARAMETERS: Identifier - Name to be replaced
90 * Replacement - Replacement for Identifier
91 * Persist - Keep define across multiple compiles?
92 *
93 * RETURN: A new define_info struct. NULL on error.
94 *
95 * DESCRIPTION: Add a new #define to the global list
96 *
97 **/

99 PR_DEFINE_INFO *
100 PrAddDefine (
101 char *Identifier,
102 char *Replacement,
103 BOOLEAN Persist)
104 {
105 char *IdentifierString;
106 char *ReplacementString;
107 PR_DEFINE_INFO *DefineInfo;

110 if (!Replacement)
111 {
112 Replacement = "";
113 }

115 /* Check for already-defined first */

117 DefineInfo = PrMatchDefine (Identifier);
118 if (DefineInfo)
119 {
120 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID,
121 "#define: name already exists: %s\n",
122 Gbl_CurrentLineNumber, Identifier);

124 /*
125 * Name already exists. This is only an error if the target name
126 * is different.
127 */

new/usr/src/common/acpica/compiler/prmacros.c 3

128 if (strcmp (Replacement, DefineInfo->Replacement))
129 {
130 PrError (ASL_ERROR, ASL_MSG_EXISTING_NAME,
131 THIS_TOKEN_OFFSET (Identifier));

133 return (NULL);
134 }

136 return (DefineInfo);
137 }

139 /* Copy input strings */

141 IdentifierString = UtLocalCalloc (strlen (Identifier) + 1);
142 strcpy (IdentifierString, Identifier);

144 ReplacementString = UtLocalCalloc (strlen (Replacement) + 1);
145 strcpy (ReplacementString, Replacement);

147 /* Init and link new define info struct */

149 DefineInfo = UtLocalCalloc (sizeof (PR_DEFINE_INFO));
150 DefineInfo->Replacement = ReplacementString;
151 DefineInfo->Identifier = IdentifierString;
152 DefineInfo->Persist = Persist;

154 if (Gbl_DefineList)
155 {
156 Gbl_DefineList->Previous = DefineInfo;
157 }

159 DefineInfo->Next = Gbl_DefineList;
160 Gbl_DefineList = DefineInfo;
161 return (DefineInfo);
162 }

165 /***
166 *
167 * FUNCTION: PrRemoveDefine
168 *
169 * PARAMETERS: DefineName - Name of define to be removed
170 *
171 * RETURN: None
172 *
173 * DESCRIPTION: Implements #undef. Remove a #define if found in the global
174 * list. No error if the target of the #undef does not exist,
175 * as per the C #undef definition.
176 *
177 **/

179 void
180 PrRemoveDefine (
181 char *DefineName)
182 {
183 PR_DEFINE_INFO *DefineInfo;

186 /* Match name and delete the node */

188 DefineInfo = Gbl_DefineList;
189 while (DefineInfo)
190 {
191 if (!strcmp (DefineName, DefineInfo->Identifier))
192 {
193 /* Remove from linked list */

new/usr/src/common/acpica/compiler/prmacros.c 4

195 if (DefineInfo->Previous)
196 {
197 (DefineInfo->Previous)->Next = DefineInfo->Next;
198 }
199 else
200 {
201 Gbl_DefineList = DefineInfo->Next;
202 }

204 if (DefineInfo->Next)
205 {
206 (DefineInfo->Next)->Previous = DefineInfo->Previous;
207 }

209 free (DefineInfo);
210 return;
211 }

213 DefineInfo = DefineInfo->Next;
214 }

216 /*
217 * Name was not found. By definition of #undef, this is not
218 * an error, however.
219 */
220 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
221 "#undef: could not find %s\n",
222 Gbl_CurrentLineNumber, DefineName);
223 }

226 /***
227 *
228 * FUNCTION: PrMatchDefine
229 *
230 * PARAMETERS: MatchString - Name associated with the #define
231 *
232 * RETURN: Matched string if found. NULL otherwise.
233 *
234 * DESCRIPTION: Find a name in global #define list
235 *
236 **/

238 PR_DEFINE_INFO *
239 PrMatchDefine (
240 char *MatchString)
241 {
242 PR_DEFINE_INFO *DefineInfo;

245 DefineInfo = Gbl_DefineList;
246 while (DefineInfo)
247 {
248 if (!strcmp (MatchString, DefineInfo->Identifier))
249 {
250 return (DefineInfo);
251 }

253 DefineInfo = DefineInfo->Next;
254 }

256 return (NULL);
257 }

new/usr/src/common/acpica/compiler/prmacros.c 5

260 /***
261 *
262 * FUNCTION: PrAddMacro
263 *
264 * PARAMETERS: Name - Start of the macro definition
265 * Next - "Next" buffer from GetNextToken
266 *
267 * RETURN: None
268 *
269 * DESCRIPTION: Add a new macro to the list of #defines. Handles argument
270 * processing.
271 *
272 **/

274 void
275 PrAddMacro (
276 char *Name,
277 char **Next)
278 {
279 char *Token = NULL;
280 ACPI_SIZE TokenOffset;
281 ACPI_SIZE MacroBodyOffset;
282 PR_DEFINE_INFO *DefineInfo;
283 PR_MACRO_ARG *Args;
284 char *Body;
285 char *BodyInSource;
286 UINT32 i;
287 UINT16 UseCount = 0;
288 UINT16 ArgCount = 0;
289 UINT32 Depth = 1;
290 UINT32 EndOfArgList;
291 char BufferChar;

294 /* Find the end of the arguments list */

296 TokenOffset = Name - Gbl_MainTokenBuffer + strlen (Name) + 1;
297 while (1)
298 {
299 BufferChar = Gbl_CurrentLineBuffer[TokenOffset];
300 if (BufferChar == ’(’)
301 {
302 Depth++;
303 }
304 else if (BufferChar == ’)’)
305 {
306 Depth--;
307 }
308 else if (BufferChar == 0)
309 {
310 PrError (ASL_ERROR, ASL_MSG_MACRO_SYNTAX, TokenOffset);
311 return;
312 }

314 if (Depth == 0)
315 {
316 /* Found arg list end */

318 EndOfArgList = TokenOffset;
319 break;
320 }

322 TokenOffset++;
323 }

325 /* At this point, we know that we have a reasonable argument list */

new/usr/src/common/acpica/compiler/prmacros.c 6

327 Args = UtLocalCalloc (sizeof (PR_MACRO_ARG) * PR_MAX_MACRO_ARGS);

329 /* Get the macro argument names */

331 for (i = 0; i < PR_MAX_MACRO_ARGS; i++)
332 {
333 Token = PrGetNextToken (NULL, PR_MACRO_SEPARATORS, Next);
334 if (!Token)
335 {
336 /* This is the case for a NULL macro body */

338 BodyInSource = "";
339 goto AddMacroToList;
340 }

342 /* Don’t go beyond the argument list */

344 TokenOffset = Token - Gbl_MainTokenBuffer + strlen (Token);
345 if (TokenOffset > EndOfArgList)
346 {
347 break;
348 }

350 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
351 "Macro arg: %s \n",
352 Gbl_CurrentLineNumber, Token);

354 Args[i].Name = UtLocalCalloc (strlen (Token) + 1);
355 strcpy (Args[i].Name, Token);

357 Args[i].UseCount = 0;

359 ArgCount++;
360 if (ArgCount >= PR_MAX_MACRO_ARGS)
361 {
362 PrError (ASL_ERROR, ASL_MSG_TOO_MANY_ARGUMENTS, TokenOffset);
363 return;
364 }
365 }

367 /* Get the macro body. Token now points to start of body */

369 MacroBodyOffset = Token - Gbl_MainTokenBuffer;

371 /* Match each method arg in the macro body for later use */

373 Token = PrGetNextToken (NULL, PR_MACRO_SEPARATORS, Next);
374 while (Token)
375 {
376 /* Search the macro arg list for matching arg */

378 for (i = 0; Args[i].Name && (i < PR_MAX_MACRO_ARGS); i++)
379 {
380 /*
381 * Save argument offset within macro body. This is the mechanism
382 * used to expand the macro upon invocation.
383 *
384 * Handles multiple instances of the same argument
385 */
386 if (!strcmp (Token, Args[i].Name))
387 {
388 UseCount = Args[i].UseCount;

390 Args[i].Offset[UseCount] = (Token - Gbl_MainTokenBuffer) - Macro

new/usr/src/common/acpica/compiler/prmacros.c 7

392 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
393 "Macro Arg #%u: %s UseCount %u Offset %u \n",
394 Gbl_CurrentLineNumber, i, Token,
395 UseCount+1, Args[i].Offset[UseCount]);

397 Args[i].UseCount++;
398 if (Args[i].UseCount >= PR_MAX_ARG_INSTANCES)
399 {
400 PrError (ASL_ERROR, ASL_MSG_TOO_MANY_ARGUMENTS,
401 THIS_TOKEN_OFFSET (Token));

403 return;
404 }
405 break;
406 }
407 }

409 Token = PrGetNextToken (NULL, PR_MACRO_SEPARATORS, Next);
410 }

412 BodyInSource = &Gbl_CurrentLineBuffer[MacroBodyOffset];

415 AddMacroToList:

417 /* Check if name is already defined first */

419 DefineInfo = PrMatchDefine (Name);
420 if (DefineInfo)
421 {
422 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
423 "#define: macro name already exists: %s\n",
424 Gbl_CurrentLineNumber, Name);

426 /* Error only if not exactly the same macro */

428 if (strcmp (DefineInfo->Body, BodyInSource) ||
429 (DefineInfo->ArgCount != ArgCount))
430 {
431 PrError (ASL_ERROR, ASL_MSG_EXISTING_NAME,
432 THIS_TOKEN_OFFSET (Name));
433 }

435 return;
436 }

438 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
439 "Macro body: %s \n",
440 Gbl_CurrentLineNumber, BodyInSource);

442 /* Add macro to the #define list */

444 DefineInfo = PrAddDefine (Name, BodyInSource, FALSE);
445 if (DefineInfo)
446 {
447 Body = UtLocalCalloc (strlen (BodyInSource) + 1);
448 strcpy (Body, BodyInSource);

450 DefineInfo->Body = Body;
451 DefineInfo->Args = Args;
452 DefineInfo->ArgCount = ArgCount;
453 }
454 }

457 /***

new/usr/src/common/acpica/compiler/prmacros.c 8

458 *
459 * FUNCTION: PrDoMacroInvocation
460 *
461 * PARAMETERS: TokenBuffer - Current line buffer
462 * MacroStart - Start of the macro invocation within
463 * the token buffer
464 * DefineInfo - Info for this macro
465 * Next - "Next" buffer from GetNextToken
466 *
467 * RETURN: None
468 *
469 * DESCRIPTION: Expand a macro invocation
470 *
471 **/

473 void
474 PrDoMacroInvocation (
475 char *TokenBuffer,
476 char *MacroStart,
477 PR_DEFINE_INFO *DefineInfo,
478 char **Next)
479 {
480 PR_MACRO_ARG *Args;
481 char *Token = NULL;
482 UINT32 TokenOffset;
483 UINT32 Length;
484 UINT32 i;

487 /* Take a copy of the macro body for expansion */

489 strcpy (Gbl_MacroTokenBuffer, DefineInfo->Body);

491 /* Replace each argument within the prototype body */

493 Args = DefineInfo->Args;
494 if (!Args->Name)
495 {
496 /* This macro has no arguments */

498 Token = PrGetNextToken (NULL, PR_MACRO_ARGUMENTS, Next);
499 if (!Token)
500 {
501 goto BadInvocation;
502 }

504 TokenOffset = (MacroStart - TokenBuffer);
505 Length = Token - MacroStart + strlen (Token) + 1;

507 PrReplaceData (
508 &Gbl_CurrentLineBuffer[TokenOffset], Length,
509 Gbl_MacroTokenBuffer, strlen (Gbl_MacroTokenBuffer));
510 return;
511 }

513 while (Args->Name)
514 {
515 /* Get the next argument from macro invocation */

517 Token = PrGetNextToken (NULL, PR_MACRO_SEPARATORS, Next);
518 if (!Token)
519 {
520 goto BadInvocation;
521 }

523 /* Replace all instances of this argument */

new/usr/src/common/acpica/compiler/prmacros.c 9

525 for (i = 0; i < Args->UseCount; i++)
526 {
527 /* Offset zero indicates "arg not used" */
528 /* TBD: Not really needed now, with UseCount available */

530 if (Args->Offset[i] == 0)
531 {
532 break;
533 }

535 PrReplaceData (
536 &Gbl_MacroTokenBuffer[Args->Offset[i]], strlen (Args->Name),
537 Token, strlen (Token));

539 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
540 "ExpandArg: %s \n",
541 Gbl_CurrentLineNumber, Gbl_MacroTokenBuffer);
542 }

544 Args++;
545 }

547 /* TBD: need to make sure macro was not invoked with too many arguments */

549 if (!Token)
550 {
551 return;
552 }

554 /* Replace the entire macro invocation with the expanded macro */

556 TokenOffset = (MacroStart - TokenBuffer);
557 Length = Token - MacroStart + strlen (Token) + 1;

559 PrReplaceData (
560 &Gbl_CurrentLineBuffer[TokenOffset], Length,
561 Gbl_MacroTokenBuffer, strlen (Gbl_MacroTokenBuffer));

563 return;

566 BadInvocation:
567 PrError (ASL_ERROR, ASL_MSG_INVALID_INVOCATION,
568 THIS_TOKEN_OFFSET (MacroStart));

570 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
571 "Bad macro invocation: %s \n",
572 Gbl_CurrentLineNumber, Gbl_MacroTokenBuffer);
573 return;
574 }

new/usr/src/common/acpica/compiler/prparser.l 1

**
 4947 Thu Dec 26 13:48:40 2013
new/usr/src/common/acpica/compiler/prparser.l
acpica-unix2-20130823
**

1 %{
2 /**
3 *
4 * Module Name: prparser.l - Flex input file for preprocessor lexer
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #include "aslcompiler.h"
46 #include "prparser.y.h"

48 /* Buffer to pass strings to the parser */

50 #define STRING_SETUP strcpy (StringBuffer, PrParsertext);\
51 PrParserlval.str = StringBuffer

53 #define YY_NO_INPUT /* No file input, we use strings only */

55 #define _COMPONENT ACPI_COMPILER
56 ACPI_MODULE_NAME ("prscanner")
57 %}

59 %option noyywrap
60 %option nounput

new/usr/src/common/acpica/compiler/prparser.l 2

62 Number [0-9a-fA-F]+
63 HexNumber 0[xX][0-9a-fA-F]+
64 WhiteSpace [\t\v\r]+
65 NewLine [\n]
66 Identifier [a-zA-Z][0-9a-zA-Z]*

68 %%

70 \(return (EXPOP_PAREN_OPEN);
71 \) return (EXPOP_PAREN_CLOSE);
72 \~ return (EXPOP_ONES_COMPLIMENT);
73 \! return (EXPOP_LOGICAL_NOT);
74 * return (EXPOP_MULTIPLY);
75 \/ return (EXPOP_DIVIDE);
76 \% return (EXPOP_MODULO);
77 \+ return (EXPOP_ADD);
78 \- return (EXPOP_SUBTRACT);
79 ">>" return (EXPOP_SHIFT_RIGHT);
80 "<<" return (EXPOP_SHIFT_LEFT);
81 \< return (EXPOP_LESS);
82 \> return (EXPOP_GREATER);
83 "<=" return (EXPOP_LESS_EQUAL);
84 ">=" return (EXPOP_GREATER_EQUAL);
85 "==" return (EXPOP_EQUAL);
86 "!=" return (EXPOP_NOT_EQUAL);
87 \& return (EXPOP_AND);
88 \^ return (EXPOP_XOR);
89 \| return (EXPOP_OR);
90 "&&" return (EXPOP_LOGICAL_AND);
91 "||" return (EXPOP_LOGICAL_OR);

93 "defined" return (EXPOP_DEFINE);
94 {Identifier} {STRING_SETUP; return (EXPOP_IDENTIFIER);}

96 <<EOF>> return (EXPOP_EOF); /* null end-of-string */

98 {Number} return (EXPOP_NUMBER);
99 {HexNumber} return (EXPOP_HEX_NUMBER);
100 {NewLine} return (EXPOP_NEW_LINE);
101 {WhiteSpace} /* Ignore */

103 . return (EXPOP_EOF);
104 %%

106 /*
107 * Local support functions
108 */
109 YY_BUFFER_STATE LexBuffer;

112 /**
113 *
114 * FUNCTION: PrInitLexer
115 *
116 * PARAMETERS: String - Input string to be parsed
117 *
118 * RETURN: TRUE if parser returns NULL. FALSE otherwise.
119 *
120 * DESCRIPTION: Initialization routine for lexer. The lexer needs
121 * a buffer to handle strings instead of a file.
122 *
123 ***/

125 int
126 PrInitLexer (
127 char *String)

new/usr/src/common/acpica/compiler/prparser.l 3

128 {

130 LexBuffer = yy_scan_string (String);
131 return (LexBuffer == NULL);
132 }

135 /**
136 *
137 * FUNCTION: PrTerminateLexer
138 *
139 * PARAMETERS: None
140 *
141 * RETURN: None
142 *
143 * DESCRIPTION: Termination routine for thelexer.
144 *
145 ***/

147 void
148 PrTerminateLexer (
149 void)
150 {

152 yy_delete_buffer (LexBuffer);
153 }

new/usr/src/common/acpica/compiler/prparser.y 1

**
 10174 Thu Dec 26 13:48:40 2013
new/usr/src/common/acpica/compiler/prparser.y
acpica-unix2-20130823
**

1 %{
2 /**
3 *
4 * Module Name: prparser.y - Bison input file for preprocessor parser
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #include "aslcompiler.h"
46 #include "dtcompiler.h"

48 #define _COMPONENT ASL_PREPROCESSOR
49 ACPI_MODULE_NAME ("prparser")

51 int PrParserlex (void);
52 int PrParserparse (void);
53 void PrParsererror (char const *msg);
54 extern char *PrParsertext;

56 UINT64 PrParserResult; /* Expression return value */

58 /* Bison/yacc configuration */

60 #define yytname PrParsername
61 #define YYDEBUG 1 /* Enable debug output */

new/usr/src/common/acpica/compiler/prparser.y 2

62 #define YYERROR_VERBOSE 1 /* Verbose error messages */
63 #define YYFLAG -32768

65 /* Define YYMALLOC/YYFREE to prevent redefinition errors */

67 #define YYMALLOC malloc
68 #define YYFREE free
69 %}

71 %union
72 {
73 UINT64 value;
74 UINT32 op;
75 char *str;
76 }

78 /*! [Begin] no source code translation */

80 %type <value> Expression

82 %token <op> EXPOP_EOF
83 %token <op> EXPOP_NEW_LINE
84 %token <op> EXPOP_NUMBER
85 %token <op> EXPOP_HEX_NUMBER
86 %token <op> EXPOP_RESERVED1
87 %token <op> EXPOP_RESERVED2
88 %token <op> EXPOP_PAREN_OPEN
89 %token <op> EXPOP_PAREN_CLOSE

91 %left <op> EXPOP_LOGICAL_OR
92 %left <op> EXPOP_LOGICAL_AND
93 %left <op> EXPOP_OR
94 %left <op> EXPOP_XOR
95 %left <op> EXPOP_AND
96 %left <op> EXPOP_EQUAL EXPOP_NOT_EQUAL
97 %left <op> EXPOP_GREATER EXPOP_LESS EXPOP_GREATER_EQUAL EXPOP_LESS_EQUAL
98 %left <op> EXPOP_SHIFT_RIGHT EXPOP_SHIFT_LEFT
99 %left <op> EXPOP_ADD EXPOP_SUBTRACT
100 %left <op> EXPOP_MULTIPLY EXPOP_DIVIDE EXPOP_MODULO
101 %right <op> EXPOP_ONES_COMPLIMENT EXPOP_LOGICAL_NOT

103 /* Tokens above must be kept in synch with dtparser.y */

105 %token <op> EXPOP_DEFINE
106 %token <op> EXPOP_IDENTIFIER

108 %%

110 /*
111 * Operator precedence rules (from K&R)
112 *
113 * 1) ()
114 * 2) ! ~ (unary operators that are supported here)
115 * 3) * / %
116 * 4) + -
117 * 5) >> <<
118 * 6) < > <= >=
119 * 7) == !=
120 * 8) &
121 * 9) ^
122 * 10) |
123 * 11) &&
124 * 12) ||
125 */

127 /*! [End] no source code translation !*/

new/usr/src/common/acpica/compiler/prparser.y 3

129 Value
130 : Expression EXPOP_NEW_LINE { PrParserResult=$1; return
131 | Expression EXPOP_EOF { PrParserResult=$1; return
132 ;

134 Expression

136 /* Unary operators */

138 : EXPOP_LOGICAL_NOT Expression { $$ = DtDoOperator ($2, EXP
139 | EXPOP_ONES_COMPLIMENT Expression { $$ = DtDoOperator ($2, EXP

141 /* Binary operators */

143 | Expression EXPOP_MULTIPLY Expression { $$ = DtDoOperator ($1, EXP
144 | Expression EXPOP_DIVIDE Expression { $$ = DtDoOperator ($1, EXP
145 | Expression EXPOP_MODULO Expression { $$ = DtDoOperator ($1, EXP
146 | Expression EXPOP_ADD Expression { $$ = DtDoOperator ($1, EXP
147 | Expression EXPOP_SUBTRACT Expression { $$ = DtDoOperator ($1, EXP
148 | Expression EXPOP_SHIFT_RIGHT Expression { $$ = DtDoOperator ($1, EXP
149 | Expression EXPOP_SHIFT_LEFT Expression { $$ = DtDoOperator ($1, EXP
150 | Expression EXPOP_GREATER Expression { $$ = DtDoOperator ($1, EXP
151 | Expression EXPOP_LESS Expression { $$ = DtDoOperator ($1, EXP
152 | Expression EXPOP_GREATER_EQUAL Expression { $$ = DtDoOperator ($1, EXP
153 | Expression EXPOP_LESS_EQUAL Expression { $$ = DtDoOperator ($1, EXP
154 | Expression EXPOP_EQUAL Expression { $$ = DtDoOperator ($1, EXP
155 | Expression EXPOP_NOT_EQUAL Expression { $$ = DtDoOperator ($1, EXP
156 | Expression EXPOP_AND Expression { $$ = DtDoOperator ($1, EXP
157 | Expression EXPOP_XOR Expression { $$ = DtDoOperator ($1, EXP
158 | Expression EXPOP_OR Expression { $$ = DtDoOperator ($1, EXP
159 | Expression EXPOP_LOGICAL_AND Expression { $$ = DtDoOperator ($1, EXP
160 | Expression EXPOP_LOGICAL_OR Expression { $$ = DtDoOperator ($1, EXP

162 /* Parentheses: ’(’ Expression ’)’ */

164 | EXPOP_PAREN_OPEN Expression
165 EXPOP_PAREN_CLOSE { $$ = $2;}

167 /* #if defined (ID) or #if defined ID */

169 | EXPOP_DEFINE EXPOP_PAREN_OPEN EXPOP_IDENTIFIER
170 EXPOP_PAREN_CLOSE { $$ = PrIsDefined (PrParser

172 | EXPOP_DEFINE EXPOP_IDENTIFIER { $$ = PrIsDefined (PrParser

174 | EXPOP_IDENTIFIER { $$ = PrResolveDefine (PrPa

176 /* Default base for a non-prefixed integer is 10 */

178 | EXPOP_NUMBER { UtStrtoul64 (PrParsertext,

180 /* Standard hex number (0x1234) */

182 | EXPOP_HEX_NUMBER { UtStrtoul64 (PrParsertext,
183 ;
184 %%

186 /*
187 * Local support functions, including parser entry point
188 */
189 #define PR_FIRST_PARSE_OPCODE EXPOP_EOF
190 #define PR_YYTNAME_START 3

193 /**

new/usr/src/common/acpica/compiler/prparser.y 4

194 *
195 * FUNCTION: PrParsererror
196 *
197 * PARAMETERS: Message - Parser-generated error message
198 *
199 * RETURN: None
200 *
201 * DESCRIPTION: Handler for parser errors
202 *
203 ***/

205 void
206 PrParsererror (
207 char const *Message)
208 {
209 DtError (ASL_ERROR, ASL_MSG_SYNTAX,
210 NULL, (char *) Message);
211 }

214 /**
215 *
216 * FUNCTION: PrGetOpName
217 *
218 * PARAMETERS: ParseOpcode - Parser token (EXPOP_*)
219 *
220 * RETURN: Pointer to the opcode name
221 *
222 * DESCRIPTION: Get the ascii name of the parse opcode for debug output
223 *
224 ***/

226 char *
227 PrGetOpName (
228 UINT32 ParseOpcode)
229 {
230 #ifdef ASL_YYTNAME_START
231 /*
232 * First entries (PR_YYTNAME_START) in yytname are special reserved names.
233 * Ignore first 6 characters of name (EXPOP_)
234 */
235 return ((char *) yytname
236 [(ParseOpcode - PR_FIRST_PARSE_OPCODE) + PR_YYTNAME_START] + 6);
237 #else
238 return ("[Unknown parser generator]");
239 #endif
240 }

243 /**
244 *
245 * FUNCTION: PrEvaluateExpression
246 *
247 * PARAMETERS: ExprString - Expression to be evaluated. Must be
248 * terminated by either a newline or a NUL
249 * string terminator
250 *
251 * RETURN: 64-bit value for the expression
252 *
253 * DESCRIPTION: Main entry point for the DT expression parser
254 *
255 ***/

257 UINT64
258 PrEvaluateExpression (
259 char *ExprString)

new/usr/src/common/acpica/compiler/prparser.y 5

260 {

262 DbgPrint (ASL_DEBUG_OUTPUT,
263 "**** Input expression: %s\n", ExprString);

265 /* Point lexer to the input string */

267 if (PrInitLexer (ExprString))
268 {
269 DtError (ASL_ERROR, ASL_MSG_COMPILER_INTERNAL,
270 NULL, "Could not initialize lexer");
271 return (0);
272 }

274 /* Parse/Evaluate the input string (value returned in PrParserResult) */

276 PrParserparse ();
277 PrTerminateLexer ();

279 DbgPrint (ASL_DEBUG_OUTPUT,
280 "**** Parser returned value: %u (%8.8X%8.8X)\n",
281 (UINT32) PrParserResult, ACPI_FORMAT_UINT64 (PrParserResult));

283 return (PrParserResult);
284 }

new/usr/src/common/acpica/compiler/prscan.c 1

**
 26485 Thu Dec 26 13:48:40 2013
new/usr/src/common/acpica/compiler/prscan.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: prscan - Preprocessor start-up and file scan module
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define _DECLARE_PR_GLOBALS

46 #include "aslcompiler.h"
47 #include "dtcompiler.h"

49 /*
50 * TBDs:
51 *
52 * No nested macros, maybe never
53 * Implement ASL "Include" as well as "#include" here?
54 */
55 #define _COMPONENT ASL_PREPROCESSOR
56 ACPI_MODULE_NAME ("prscan")

59 /* Local prototypes */

61 static void

new/usr/src/common/acpica/compiler/prscan.c 2

62 PrPreprocessInputFile (
63 void);

65 static void
66 PrDoDirective (
67 char *DirectiveToken,
68 char **Next);

70 static int
71 PrMatchDirective (
72 char *Directive);

74 static void
75 PrPushDirective (
76 int Directive,
77 char *Argument);

79 static ACPI_STATUS
80 PrPopDirective (
81 void);

83 static void
84 PrDbgPrint (
85 char *Action,
86 char *DirectiveName);

89 /*
90 * Supported preprocessor directives
91 */
92 static const PR_DIRECTIVE_INFO Gbl_DirectiveInfo[] =
93 {
94 {"define", 1},
95 {"elif", 0}, /* Converted to #else..#if internally */
96 {"else", 0},
97 {"endif", 0},
98 {"error", 1},
99 {"if", 1},
100 {"ifdef", 1},
101 {"ifndef", 1},
102 {"include", 0}, /* Argument is not standard format, so 0 */
103 {"line", 1},
104 {"pragma", 1},
105 {"undef", 1},
106 {"warning", 1},
107 {NULL, 0}
108 };

110 enum Gbl_DirectiveIndexes
111 {
112 PR_DIRECTIVE_DEFINE = 0,
113 PR_DIRECTIVE_ELIF,
114 PR_DIRECTIVE_ELSE,
115 PR_DIRECTIVE_ENDIF,
116 PR_DIRECTIVE_ERROR,
117 PR_DIRECTIVE_IF,
118 PR_DIRECTIVE_IFDEF,
119 PR_DIRECTIVE_IFNDEF,
120 PR_DIRECTIVE_INCLUDE,
121 PR_DIRECTIVE_LINE,
122 PR_DIRECTIVE_PRAGMA,
123 PR_DIRECTIVE_UNDEF,
124 PR_DIRECTIVE_WARNING,
125 };

127 #define ASL_DIRECTIVE_NOT_FOUND -1

new/usr/src/common/acpica/compiler/prscan.c 3

130 /***
131 *
132 * FUNCTION: PrInitializePreprocessor
133 *
134 * PARAMETERS: None
135 *
136 * RETURN: None
137 *
138 * DESCRIPTION: Startup initialization for the Preprocessor.
139 *
140 **/

142 void
143 PrInitializePreprocessor (
144 void)
145 {
146 /* Init globals and the list of #defines */

148 PrInitializeGlobals ();
149 Gbl_DefineList = NULL;
150 }

153 /***
154 *
155 * FUNCTION: PrInitializeGlobals
156 *
157 * PARAMETERS: None
158 *
159 * RETURN: None
160 *
161 * DESCRIPTION: Initialize globals for the Preprocessor. Used for startuup
162 * initialization and re-initialization between compiles during
163 * a multiple source file compile.
164 *
165 **/

167 void
168 PrInitializeGlobals (
169 void)
170 {
171 /* Init globals */

173 Gbl_InputFileList = NULL;
174 Gbl_CurrentLineNumber = 0;
175 Gbl_PreprocessorLineNumber = 1;
176 Gbl_PreprocessorError = FALSE;

178 /* These are used to track #if/#else blocks (possibly nested) */

180 Gbl_IfDepth = 0;
181 Gbl_IgnoringThisCodeBlock = FALSE;
182 Gbl_DirectiveStack = NULL;
183 }

186 /***
187 *
188 * FUNCTION: PrTerminatePreprocessor
189 *
190 * PARAMETERS: None
191 *
192 * RETURN: None
193 *

new/usr/src/common/acpica/compiler/prscan.c 4

194 * DESCRIPTION: Termination of the preprocessor. Delete lists. Keep any
195 * defines that were specified on the command line, in order to
196 * support multiple compiles with a single compiler invocation.
197 *
198 **/

200 void
201 PrTerminatePreprocessor (
202 void)
203 {
204 PR_DEFINE_INFO *DefineInfo;

207 /*
208 * The persistent defines (created on the command line) are always at the
209 * end of the list. We save them.
210 */
211 while ((Gbl_DefineList) && (!Gbl_DefineList->Persist))
212 {
213 DefineInfo = Gbl_DefineList;
214 Gbl_DefineList = DefineInfo->Next;

216 ACPI_FREE (DefineInfo->Replacement);
217 ACPI_FREE (DefineInfo->Identifier);
218 ACPI_FREE (DefineInfo);
219 }
220 }

223 /***
224 *
225 * FUNCTION: PrDoPreprocess
226 *
227 * PARAMETERS: None
228 *
229 * RETURN: None
230 *
231 * DESCRIPTION: Main entry point for the iASL Preprocessor. Input file must
232 * be already open. Handles multiple input files via the
233 * #include directive.
234 *
235 **/

237 void
238 PrDoPreprocess (
239 void)
240 {
241 BOOLEAN MoreInputFiles;

244 DbgPrint (ASL_DEBUG_OUTPUT, "Starting preprocessing phase\n\n");

247 FlSeekFile (ASL_FILE_INPUT, 0);
248 PrDumpPredefinedNames ();

250 /* Main preprocessor loop, handles include files */

252 do
253 {
254 PrPreprocessInputFile ();
255 MoreInputFiles = PrPopInputFileStack ();

257 } while (MoreInputFiles);

259 /* Point compiler input to the new preprocessor output file (.i) */

new/usr/src/common/acpica/compiler/prscan.c 5

261 FlCloseFile (ASL_FILE_INPUT);
262 Gbl_Files[ASL_FILE_INPUT].Handle = Gbl_Files[ASL_FILE_PREPROCESSOR].Handle;
263 AslCompilerin = Gbl_Files[ASL_FILE_INPUT].Handle;

265 /* Reset globals to allow compiler to run */

267 FlSeekFile (ASL_FILE_INPUT, 0);
268 Gbl_CurrentLineNumber = 1;

270 DbgPrint (ASL_DEBUG_OUTPUT, "Preprocessing phase complete \n\n");
271 }

274 /***
275 *
276 * FUNCTION: PrPreprocessInputFile
277 *
278 * PARAMETERS: None
279 *
280 * RETURN: None
281 *
282 * DESCRIPTION: Preprocess one entire file, line-by-line.
283 *
284 * Input: Raw user ASL from ASL_FILE_INPUT
285 * Output: Preprocessed file written to ASL_FILE_PREPROCESSOR
286 *
287 **/

289 static void
290 PrPreprocessInputFile (
291 void)
292 {
293 UINT32 Offset;
294 char *Token;
295 char *ReplaceString;
296 PR_DEFINE_INFO *DefineInfo;
297 ACPI_SIZE TokenOffset;
298 char *Next;
299 int OffsetAdjust;

302 /* Scan line-by-line. Comments and blank lines are skipped by this function

304 while ((Offset = DtGetNextLine (Gbl_Files[ASL_FILE_INPUT].Handle)) != ASL_EO
305 {
306 /* Need a copy of the input line for strok() */

308 strcpy (Gbl_MainTokenBuffer, Gbl_CurrentLineBuffer);
309 Token = PrGetNextToken (Gbl_MainTokenBuffer, PR_TOKEN_SEPARATORS, &Next)
310 OffsetAdjust = 0;

312 /* All preprocessor directives must begin with ’#’ */

314 if (Token && (*Token == ’#’))
315 {
316 if (strlen (Token) == 1)
317 {
318 Token = PrGetNextToken (NULL, PR_TOKEN_SEPARATORS, &Next);
319 }
320 else
321 {
322 Token++; /* Skip leading # */
323 }

325 /* Execute the directive, do not write line to output file */

new/usr/src/common/acpica/compiler/prscan.c 6

327 PrDoDirective (Token, &Next);
328 continue;
329 }

331 /*
332 * If we are currently within the part of an IF/ELSE block that is
333 * FALSE, ignore the line and do not write it to the output file.
334 * This continues until an #else or #endif is encountered.
335 */
336 if (Gbl_IgnoringThisCodeBlock)
337 {
338 continue;
339 }

341 /* Match and replace all #defined names within this source line */

343 while (Token)
344 {
345 DefineInfo = PrMatchDefine (Token);
346 if (DefineInfo)
347 {
348 if (DefineInfo->Body)
349 {
350 /* This is a macro */

352 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
353 "Matched Macro: %s->%s\n",
354 Gbl_CurrentLineNumber, DefineInfo->Identifier,
355 DefineInfo->Replacement);

357 PrDoMacroInvocation (Gbl_MainTokenBuffer, Token,
358 DefineInfo, &Next);
359 }
360 else
361 {
362 ReplaceString = DefineInfo->Replacement;

364 /* Replace the name in the original line buffer */

366 TokenOffset = Token - Gbl_MainTokenBuffer + OffsetAdjust;
367 PrReplaceData (
368 &Gbl_CurrentLineBuffer[TokenOffset], strlen (Token),
369 ReplaceString, strlen (ReplaceString));

371 /* Adjust for length difference between old and new name len

373 OffsetAdjust += strlen (ReplaceString) - strlen (Token);

375 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
376 "Matched #define: %s->%s\n",
377 Gbl_CurrentLineNumber, Token,
378 *ReplaceString ? ReplaceString : "(NULL STRING)");
379 }
380 }

382 Token = PrGetNextToken (NULL, PR_TOKEN_SEPARATORS, &Next);
383 }

385 #if 0
386 /* Line prefix */
387 FlPrintFile (ASL_FILE_PREPROCESSOR, "/* %14s %.5u i:%.5u */ ",
388 Gbl_Files[ASL_FILE_INPUT].Filename,
389 Gbl_CurrentLineNumber, Gbl_PreprocessorLineNumber);
390 #endif

new/usr/src/common/acpica/compiler/prscan.c 7

392 /*
393 * Emit a #line directive if necessary, to keep the line numbers in
394 * the (.i) file synchronized with the original source code file, so
395 * that the correct line number appears in any error messages
396 * generated by the actual compiler.
397 */
398 if (Gbl_CurrentLineNumber > (Gbl_PreviousLineNumber + 1))
399 {
400 FlPrintFile (ASL_FILE_PREPROCESSOR, "#line %u\n",
401 Gbl_CurrentLineNumber);
402 }

404 Gbl_PreviousLineNumber = Gbl_CurrentLineNumber;
405 Gbl_PreprocessorLineNumber++;

407 /*
408 * Now we can write the possibly modified source line to the
409 * preprocessor (.i) file
410 */
411 FlWriteFile (ASL_FILE_PREPROCESSOR, Gbl_CurrentLineBuffer,
412 strlen (Gbl_CurrentLineBuffer));
413 }
414 }

417 /***
418 *
419 * FUNCTION: PrDoDirective
420 *
421 * PARAMETERS: Directive - Pointer to directive name token
422 * Next - "Next" buffer from GetNextToken
423 *
424 * RETURN: None.
425 *
426 * DESCRIPTION: Main processing for all preprocessor directives
427 *
428 **/

430 static void
431 PrDoDirective (
432 char *DirectiveToken,
433 char **Next)
434 {
435 char *Token = Gbl_MainTokenBuffer;
436 char *Token2;
437 char *End;
438 UINT64 Value;
439 ACPI_SIZE TokenOffset;
440 int Directive;
441 ACPI_STATUS Status;

444 if (!DirectiveToken)
445 {
446 goto SyntaxError;
447 }

449 Directive = PrMatchDirective (DirectiveToken);
450 if (Directive == ASL_DIRECTIVE_NOT_FOUND)
451 {
452 PrError (ASL_ERROR, ASL_MSG_UNKNOWN_DIRECTIVE,
453 THIS_TOKEN_OFFSET (DirectiveToken));

455 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
456 "#%s: Unknown directive\n",
457 Gbl_CurrentLineNumber, DirectiveToken);

new/usr/src/common/acpica/compiler/prscan.c 8

458 return;
459 }

461 /*
462 * If we are currently ignoring this block and we encounter a #else or
463 * #elif, we must ignore their blocks also if the parent block is also
464 * being ignored.
465 */
466 if (Gbl_IgnoringThisCodeBlock)
467 {
468 switch (Directive)
469 {
470 case PR_DIRECTIVE_ELSE:
471 case PR_DIRECTIVE_ELIF:

473 if (Gbl_DirectiveStack && Gbl_DirectiveStack->IgnoringThisCodeBlock)
474 {
475 PrDbgPrint ("Ignoring", Gbl_DirectiveInfo[Directive].Name);
476 return;
477 }
478 break;

480 default:
481 break;
482 }
483 }

485 /*
486 * Need to always check for #else, #elif, #endif regardless of
487 * whether we are ignoring the current code block, since these
488 * are conditional code block terminators.
489 */
490 switch (Directive)
491 {
492 case PR_DIRECTIVE_ELSE:

494 Gbl_IgnoringThisCodeBlock = !(Gbl_IgnoringThisCodeBlock);
495 PrDbgPrint ("Executing", "else block");
496 return;

498 case PR_DIRECTIVE_ELIF:

500 Gbl_IgnoringThisCodeBlock = !(Gbl_IgnoringThisCodeBlock);
501 Directive = PR_DIRECTIVE_IF;

503 if (Gbl_IgnoringThisCodeBlock == TRUE)
504 {
505 /* Not executing the ELSE part -- all done here */
506 PrDbgPrint ("Ignoring", "elif block");
507 return;
508 }

510 /*
511 * After this, we will execute the IF part further below.
512 * First, however, pop off the original #if directive.
513 */
514 if (ACPI_FAILURE (PrPopDirective ()))
515 {
516 PrError (ASL_ERROR, ASL_MSG_COMPILER_INTERNAL,
517 THIS_TOKEN_OFFSET (DirectiveToken));
518 }

520 PrDbgPrint ("Executing", "elif block");
521 break;

523 case PR_DIRECTIVE_ENDIF:

new/usr/src/common/acpica/compiler/prscan.c 9

525 PrDbgPrint ("Executing", "endif");

527 /* Pop the owning #if/#ifdef/#ifndef */

529 if (ACPI_FAILURE (PrPopDirective ()))
530 {
531 PrError (ASL_ERROR, ASL_MSG_ENDIF_MISMATCH,
532 THIS_TOKEN_OFFSET (DirectiveToken));
533 }
534 return;

536 default:
537 break;
538 }

540 /* Most directives have at least one argument */

542 if (Gbl_DirectiveInfo[Directive].ArgCount == 1)
543 {
544 Token = PrGetNextToken (NULL, PR_TOKEN_SEPARATORS, Next);
545 if (!Token)
546 {
547 goto SyntaxError;
548 }
549 }

551 /*
552 * At this point, if we are ignoring the current code block,
553 * do not process any more directives (i.e., ignore them also.)
554 * For "if" style directives, open/push a new block anyway. We
555 * must do this to keep track of #endif directives
556 */
557 if (Gbl_IgnoringThisCodeBlock)
558 {
559 switch (Directive)
560 {
561 case PR_DIRECTIVE_IF:
562 case PR_DIRECTIVE_IFDEF:
563 case PR_DIRECTIVE_IFNDEF:

565 PrPushDirective (Directive, Token);
566 PrDbgPrint ("Ignoring", Gbl_DirectiveInfo[Directive].Name);
567 break;

569 default:
570 break;
571 }

573 return;
574 }

576 /*
577 * Execute the directive
578 */
579 PrDbgPrint ("Begin execution", Gbl_DirectiveInfo[Directive].Name);

581 switch (Directive)
582 {
583 case PR_DIRECTIVE_IF:

585 TokenOffset = Token - Gbl_MainTokenBuffer;

587 /* Need to expand #define macros in the expression string first */

589 Status = PrResolveIntegerExpression (

new/usr/src/common/acpica/compiler/prscan.c 10

590 &Gbl_CurrentLineBuffer[TokenOffset-1], &Value);
591 if (ACPI_FAILURE (Status))
592 {
593 return;
594 }

596 PrPushDirective (Directive, Token);
597 if (!Value)
598 {
599 Gbl_IgnoringThisCodeBlock = TRUE;
600 }

602 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
603 "Resolved #if: %8.8X%8.8X %s\n",
604 Gbl_CurrentLineNumber, ACPI_FORMAT_UINT64 (Value),
605 Gbl_IgnoringThisCodeBlock ? "<Skipping Block>" : "<Executing Block>"
606 break;

608 case PR_DIRECTIVE_IFDEF:

610 PrPushDirective (Directive, Token);
611 if (!PrMatchDefine (Token))
612 {
613 Gbl_IgnoringThisCodeBlock = TRUE;
614 }

616 PrDbgPrint ("Evaluated", "ifdef");
617 break;

619 case PR_DIRECTIVE_IFNDEF:

621 PrPushDirective (Directive, Token);
622 if (PrMatchDefine (Token))
623 {
624 Gbl_IgnoringThisCodeBlock = TRUE;
625 }

627 PrDbgPrint ("Evaluated", "ifndef");
628 break;

630 case PR_DIRECTIVE_DEFINE:
631 /*
632 * By definition, if first char after the name is a paren,
633 * this is a function macro.
634 */
635 TokenOffset = Token - Gbl_MainTokenBuffer + strlen (Token);
636 if (*(&Gbl_CurrentLineBuffer[TokenOffset]) == ’(’)
637 {
638 #ifndef MACROS_SUPPORTED
639 AcpiOsPrintf ("%s ERROR - line %u: #define macros are not supported
640 Gbl_CurrentLineBuffer, Gbl_CurrentLineNumber);
641 exit(1);
642 #else
643 PrAddMacro (Token, Next);
644 #endif
645 }
646 else
647 {
648 /* Use the remainder of the line for the #define */

650 Token2 = *Next;
651 if (Token2)
652 {
653 while ((*Token2 == ’ ’) || (*Token2 == ’\t’))
654 {
655 Token2++;

new/usr/src/common/acpica/compiler/prscan.c 11

656 }
657 End = Token2;
658 while (*End != ’\n’)
659 {
660 End++;
661 }
662 *End = 0;
663 }
664 else
665 {
666 Token2 = "";
667 }
668 #if 0
669 Token2 = PrGetNextToken (NULL, "\n", /*PR_TOKEN_SEPARATORS,*/ Next);
670 if (!Token2)
671 {
672 Token2 = "";
673 }
674 #endif
675 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
676 "New #define: %s->%s\n",
677 Gbl_CurrentLineNumber, Token, Token2);

679 PrAddDefine (Token, Token2, FALSE);
680 }
681 break;

683 case PR_DIRECTIVE_ERROR:

685 /* Note: No macro expansion */

687 PrError (ASL_ERROR, ASL_MSG_ERROR_DIRECTIVE,
688 THIS_TOKEN_OFFSET (Token));

690 Gbl_SourceLine = 0;
691 Gbl_NextError = Gbl_ErrorLog;
692 CmCleanupAndExit ();
693 exit(1);

695 case PR_DIRECTIVE_INCLUDE:

697 Token = PrGetNextToken (NULL, " \"<>", Next);
698 if (!Token)
699 {
700 goto SyntaxError;
701 }

703 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
704 "Start #include file \"%s\"\n", Gbl_CurrentLineNumber,
705 Token, Gbl_CurrentLineNumber);

707 PrOpenIncludeFile (Token);
708 break;

710 case PR_DIRECTIVE_LINE:

712 TokenOffset = Token - Gbl_MainTokenBuffer;

714 Status = PrResolveIntegerExpression (
715 &Gbl_CurrentLineBuffer[TokenOffset-1], &Value);
716 if (ACPI_FAILURE (Status))
717 {
718 return;
719 }

721 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID

new/usr/src/common/acpica/compiler/prscan.c 12

722 "User #line invocation %s\n", Gbl_CurrentLineNumber,
723 Token);

725 /* Update local line numbers */

727 Gbl_CurrentLineNumber = (UINT32) Value;
728 Gbl_PreviousLineNumber = 0;

730 /* Emit #line into the preprocessor file */

732 FlPrintFile (ASL_FILE_PREPROCESSOR, "#line %u \"%s\"\n",
733 Gbl_CurrentLineNumber, Gbl_Files[ASL_FILE_INPUT].Filename);
734 break;

736 case PR_DIRECTIVE_PRAGMA:

738 if (!strcmp (Token, "disable"))
739 {
740 Token = PrGetNextToken (NULL, PR_TOKEN_SEPARATORS, Next);
741 if (!Token)
742 {
743 goto SyntaxError;
744 }

746 TokenOffset = Token - Gbl_MainTokenBuffer;
747 AslDisableException (&Gbl_CurrentLineBuffer[TokenOffset]);
748 }
749 else if (!strcmp (Token, "message"))
750 {
751 Token = PrGetNextToken (NULL, PR_TOKEN_SEPARATORS, Next);
752 if (!Token)
753 {
754 goto SyntaxError;
755 }

757 TokenOffset = Token - Gbl_MainTokenBuffer;
758 AcpiOsPrintf ("%s\n", &Gbl_CurrentLineBuffer[TokenOffset]);
759 }
760 else
761 {
762 PrError (ASL_ERROR, ASL_MSG_UNKNOWN_PRAGMA,
763 THIS_TOKEN_OFFSET (Token));
764 return;
765 }

767 break;

769 case PR_DIRECTIVE_UNDEF:

771 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
772 "#undef: %s\n", Gbl_CurrentLineNumber, Token);

774 PrRemoveDefine (Token);
775 break;

777 case PR_DIRECTIVE_WARNING:

779 PrError (ASL_WARNING, ASL_MSG_WARNING_DIRECTIVE,
780 THIS_TOKEN_OFFSET (Token));
781 break;

783 default:

785 /* Should never get here */
786 DbgPrint (ASL_DEBUG_OUTPUT, PR_PREFIX_ID
787 "Unrecognized directive: %u\n",

new/usr/src/common/acpica/compiler/prscan.c 13

788 Gbl_CurrentLineNumber, Directive);
789 break;
790 }

792 return;

794 SyntaxError:

796 PrError (ASL_ERROR, ASL_MSG_DIRECTIVE_SYNTAX,
797 THIS_TOKEN_OFFSET (DirectiveToken));
798 return;
799 }

802 /***
803 *
804 * FUNCTION: PrMatchDirective
805 *
806 * PARAMETERS: Directive - Pointer to directive name token
807 *
808 * RETURN: Index into command array, -1 if not found
809 *
810 * DESCRIPTION: Lookup the incoming directive in the known directives table.
811 *
812 **/

814 static int
815 PrMatchDirective (
816 char *Directive)
817 {
818 int i;

821 if (!Directive || Directive[0] == 0)
822 {
823 return (ASL_DIRECTIVE_NOT_FOUND);
824 }

826 for (i = 0; Gbl_DirectiveInfo[i].Name; i++)
827 {
828 if (!strcmp (Gbl_DirectiveInfo[i].Name, Directive))
829 {
830 return (i);
831 }
832 }

834 return (ASL_DIRECTIVE_NOT_FOUND); /* Command not recognized */
835 }

838 /***
839 *
840 * FUNCTION: PrPushDirective
841 *
842 * PARAMETERS: Directive - Encoded directive ID
843 * Argument - String containing argument to the
844 * directive
845 *
846 * RETURN: None
847 *
848 * DESCRIPTION: Push an item onto the directive stack. Used for processing
849 * nested #if/#else type conditional compilation directives.
850 * Specifically: Used on detection of #if/#ifdef/#ifndef to open
851 * a block.
852 *
853 **/

new/usr/src/common/acpica/compiler/prscan.c 14

855 static void
856 PrPushDirective (
857 int Directive,
858 char *Argument)
859 {
860 DIRECTIVE_INFO *Info;

863 /* Allocate and populate a stack info item */

865 Info = ACPI_ALLOCATE (sizeof (DIRECTIVE_INFO));

867 Info->Next = Gbl_DirectiveStack;
868 Info->Directive = Directive;
869 Info->IgnoringThisCodeBlock = Gbl_IgnoringThisCodeBlock;
870 strncpy (Info->Argument, Argument, MAX_ARGUMENT_LENGTH);

872 DbgPrint (ASL_DEBUG_OUTPUT,
873 "Pr(%.4u) - [%u %s] %*s Pushed [#%s %s]: IgnoreFlag = %s\n",
874 Gbl_CurrentLineNumber, Gbl_IfDepth,
875 Gbl_IgnoringThisCodeBlock ? "I" : "E",
876 Gbl_IfDepth * 4, " ",
877 Gbl_DirectiveInfo[Directive].Name,
878 Argument, Gbl_IgnoringThisCodeBlock ? "TRUE" : "FALSE");

880 /* Push new item */

882 Gbl_DirectiveStack = Info;
883 Gbl_IfDepth++;
884 }

887 /***
888 *
889 * FUNCTION: PrPopDirective
890 *
891 * PARAMETERS: None
892 *
893 * RETURN: Status. Error if the stack is empty.
894 *
895 * DESCRIPTION: Pop an item off the directive stack. Used for processing
896 * nested #if/#else type conditional compilation directives.
897 * Specifically: Used on detection of #elif and #endif to remove
898 * the original #if/#ifdef/#ifndef from the stack and close
899 * the block.
900 *
901 **/

903 static ACPI_STATUS
904 PrPopDirective (
905 void)
906 {
907 DIRECTIVE_INFO *Info;

910 /* Check for empty stack */

912 Info = Gbl_DirectiveStack;
913 if (!Info)
914 {
915 return (AE_ERROR);
916 }

918 /* Pop one item, keep globals up-to-date */

new/usr/src/common/acpica/compiler/prscan.c 15

920 Gbl_IfDepth--;
921 Gbl_IgnoringThisCodeBlock = Info->IgnoringThisCodeBlock;
922 Gbl_DirectiveStack = Info->Next;

924 DbgPrint (ASL_DEBUG_OUTPUT,
925 "Pr(%.4u) - [%u %s] %*s Popped [#%s %s]: IgnoreFlag now = %s\n",
926 Gbl_CurrentLineNumber, Gbl_IfDepth,
927 Gbl_IgnoringThisCodeBlock ? "I" : "E",
928 Gbl_IfDepth * 4, " ",
929 Gbl_DirectiveInfo[Info->Directive].Name,
930 Info->Argument, Gbl_IgnoringThisCodeBlock ? "TRUE" : "FALSE");

932 ACPI_FREE (Info);
933 return (AE_OK);
934 }

937 /***
938 *
939 * FUNCTION: PrDbgPrint
940 *
941 * PARAMETERS: Action - Action being performed
942 * DirectiveName - Directive being processed
943 *
944 * RETURN: None
945 *
946 * DESCRIPTION: Special debug print for directive processing.
947 *
948 **/

950 static void
951 PrDbgPrint (
952 char *Action,
953 char *DirectiveName)
954 {

956 DbgPrint (ASL_DEBUG_OUTPUT, "Pr(%.4u) - [%u %s] "
957 "%*s %s #%s, Depth %u\n",
958 Gbl_CurrentLineNumber, Gbl_IfDepth,
959 Gbl_IgnoringThisCodeBlock ? "I" : "E",
960 Gbl_IfDepth * 4, " ",
961 Action, DirectiveName, Gbl_IfDepth);
962 }

new/usr/src/common/acpica/compiler/prutils.c 1

**
 13064 Thu Dec 26 13:48:40 2013
new/usr/src/common/acpica/compiler/prutils.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: prutils - Preprocessor utilities
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aslcompiler.h"
45 #include "dtcompiler.h"

48 #define _COMPONENT ASL_PREPROCESSOR
49 ACPI_MODULE_NAME ("prutils")

52 /**
53 *
54 * FUNCTION: PrGetNextToken
55 *
56 * PARAMETERS: Buffer - Current line buffer
57 * MatchString - String with valid token delimiters
58 * Next - Set to next possible token in buffer
59 *
60 * RETURN: Next token (null-terminated). Modifies the input line.
61 * Remainder of line is stored in *Next.

new/usr/src/common/acpica/compiler/prutils.c 2

62 *
63 * DESCRIPTION: Local implementation of strtok() with local storage for the
64 * next pointer. Not only thread-safe, but allows multiple
65 * parsing of substrings such as expressions.
66 *
67 ***/

69 char *
70 PrGetNextToken (
71 char *Buffer,
72 char *MatchString,
73 char **Next)
74 {
75 char *TokenStart;

78 if (!Buffer)
79 {
80 /* Use Next if it is valid */

82 Buffer = *Next;
83 if (!(*Next))
84 {
85 return (NULL);
86 }
87 }

89 /* Skip any leading delimiters */

91 while (*Buffer)
92 {
93 if (strchr (MatchString, *Buffer))
94 {
95 Buffer++;
96 }
97 else
98 {
99 break;
100 }
101 }

103 /* Anything left on the line? */

105 if (!(*Buffer))
106 {
107 *Next = NULL;
108 return (NULL);
109 }

111 TokenStart = Buffer;

113 /* Find the end of this token */

115 while (*Buffer)
116 {
117 if (strchr (MatchString, *Buffer))
118 {
119 *Buffer = 0;
120 *Next = Buffer+1;
121 if (!**Next)
122 {
123 *Next = NULL;
124 }
125 return (TokenStart);
126 }
127 Buffer++;

new/usr/src/common/acpica/compiler/prutils.c 3

128 }

130 *Next = NULL;
131 return (TokenStart);
132 }

135 /***
136 *
137 * FUNCTION: PrError
138 *
139 * PARAMETERS: Level - Seriousness (Warning/error, etc.)
140 * MessageId - Index into global message buffer
141 * Column - Column in current line
142 *
143 * RETURN: None
144 *
145 * DESCRIPTION: Preprocessor error reporting. Front end to AslCommonError2
146 *
147 **/

149 void
150 PrError (
151 UINT8 Level,
152 UINT8 MessageId,
153 UINT32 Column)
154 {
155 #if 0
156 AcpiOsPrintf ("%s (%u) : %s", Gbl_Files[ASL_FILE_INPUT].Filename,
157 Gbl_CurrentLineNumber, Gbl_CurrentLineBuffer);
158 #endif

161 if (Column > 120)
162 {
163 Column = 0;
164 }

166 /* TBD: Need Logical line number? */

168 AslCommonError2 (Level, MessageId,
169 Gbl_CurrentLineNumber, Column,
170 Gbl_CurrentLineBuffer,
171 Gbl_Files[ASL_FILE_INPUT].Filename, "Preprocessor");

173 Gbl_PreprocessorError = TRUE;
174 }

177 /***
178 *
179 * FUNCTION: PrReplaceData
180 *
181 * PARAMETERS: Buffer - Original(target) buffer pointer
182 * LengthToRemove - Length to be removed from target buffer
183 * BufferToAdd - Data to be inserted into target buffer
184 * LengthToAdd - Length of BufferToAdd
185 *
186 * RETURN: None
187 *
188 * DESCRIPTION: Generic buffer data replacement.
189 *
190 **/

192 void
193 PrReplaceData (

new/usr/src/common/acpica/compiler/prutils.c 4

194 char *Buffer,
195 UINT32 LengthToRemove,
196 char *BufferToAdd,
197 UINT32 LengthToAdd)
198 {
199 UINT32 BufferLength;

202 /* Buffer is a string, so the length must include the terminating zero */

204 BufferLength = strlen (Buffer) + 1;

206 if (LengthToRemove != LengthToAdd)
207 {
208 /*
209 * Move some of the existing data
210 * 1) If adding more bytes than removing, make room for the new data
211 * 2) if removing more bytes than adding, delete the extra space
212 */
213 if (LengthToRemove > 0)
214 {
215 memmove ((Buffer + LengthToAdd), (Buffer + LengthToRemove),
216 (BufferLength - LengthToRemove));
217 }
218 }

220 /* Now we can move in the new data */

222 if (LengthToAdd > 0)
223 {
224 memmove (Buffer, BufferToAdd, LengthToAdd);
225 }
226 }

229 /***
230 *
231 * FUNCTION: PrOpenIncludeFile
232 *
233 * PARAMETERS: Filename - Filename or pathname for include file
234 *
235 * RETURN: None.
236 *
237 * DESCRIPTION: Open an include file and push it on the input file stack.
238 *
239 **/

241 void
242 PrOpenIncludeFile (
243 char *Filename)
244 {
245 FILE *IncludeFile;
246 ASL_INCLUDE_DIR *NextDir;

249 /* Start the actual include file on the next line */

251 Gbl_CurrentLineOffset++;

253 /* Attempt to open the include file */
254 /* If the file specifies an absolute path, just open it */

256 if ((Filename[0] == ’/’) ||
257 (Filename[0] == ’\\’) ||
258 (Filename[1] == ’:’))
259 {

new/usr/src/common/acpica/compiler/prutils.c 5

260 IncludeFile = PrOpenIncludeWithPrefix ("", Filename);
261 if (!IncludeFile)
262 {
263 goto ErrorExit;
264 }
265 return;
266 }

268 /*
269 * The include filename is not an absolute path.
270 *
271 * First, search for the file within the "local" directory -- meaning
272 * the same directory that contains the source file.
273 *
274 * Construct the file pathname from the global directory name.
275 */
276 IncludeFile = PrOpenIncludeWithPrefix (Gbl_DirectoryPath, Filename);
277 if (IncludeFile)
278 {
279 return;
280 }

282 /*
283 * Second, search for the file within the (possibly multiple)
284 * directories specified by the -I option on the command line.
285 */
286 NextDir = Gbl_IncludeDirList;
287 while (NextDir)
288 {
289 IncludeFile = PrOpenIncludeWithPrefix (NextDir->Dir, Filename);
290 if (IncludeFile)
291 {
292 return;
293 }

295 NextDir = NextDir->Next;
296 }

298 /* We could not open the include file after trying very hard */

300 ErrorExit:
301 sprintf (Gbl_MainTokenBuffer, "%s, %s", Filename, strerror (errno));
302 PrError (ASL_ERROR, ASL_MSG_INCLUDE_FILE_OPEN, 0);
303 }

306 /***
307 *
308 * FUNCTION: FlOpenIncludeWithPrefix
309 *
310 * PARAMETERS: PrefixDir - Prefix directory pathname. Can be a zero
311 * length string.
312 * Filename - The include filename from the source ASL.
313 *
314 * RETURN: Valid file descriptor if successful. Null otherwise.
315 *
316 * DESCRIPTION: Open an include file and push it on the input file stack.
317 *
318 **/

320 FILE *
321 PrOpenIncludeWithPrefix (
322 char *PrefixDir,
323 char *Filename)
324 {
325 FILE *IncludeFile;

new/usr/src/common/acpica/compiler/prutils.c 6

326 char *Pathname;

329 /* Build the full pathname to the file */

331 Pathname = FlMergePathnames (PrefixDir, Filename);

333 DbgPrint (ASL_PARSE_OUTPUT, PR_PREFIX_ID
334 "Include: Opening file - \"%s\"\n",
335 Gbl_CurrentLineNumber, Pathname);

337 /* Attempt to open the file, push if successful */

339 IncludeFile = fopen (Pathname, "r");
340 if (!IncludeFile)
341 {
342 fprintf (stderr, "Could not open include file %s\n", Pathname);
343 ACPI_FREE (Pathname);
344 return (NULL);
345 }

347 /* Push the include file on the open input file stack */

349 PrPushInputFileStack (IncludeFile, Pathname);
350 return (IncludeFile);
351 }

354 /***
355 *
356 * FUNCTION: AslPushInputFileStack
357 *
358 * PARAMETERS: InputFile - Open file pointer
359 * Filename - Name of the file
360 *
361 * RETURN: None
362 *
363 * DESCRIPTION: Push the InputFile onto the file stack, and point the parser
364 * to this file. Called when an include file is successfully
365 * opened.
366 *
367 **/

369 void
370 PrPushInputFileStack (
371 FILE *InputFile,
372 char *Filename)
373 {
374 PR_FILE_NODE *Fnode;

377 /* Save the current state in an Fnode */

379 Fnode = UtLocalCalloc (sizeof (PR_FILE_NODE));

381 Fnode->File = Gbl_Files[ASL_FILE_INPUT].Handle;
382 Fnode->Next = Gbl_InputFileList;
383 Fnode->Filename = Gbl_Files[ASL_FILE_INPUT].Filename;
384 Fnode->CurrentLineNumber = Gbl_CurrentLineNumber;

386 /* Push it on the stack */

388 Gbl_InputFileList = Fnode;

390 DbgPrint (ASL_PARSE_OUTPUT, PR_PREFIX_ID
391 "Push InputFile Stack: handle %p\n\n",

new/usr/src/common/acpica/compiler/prutils.c 7

392 Gbl_CurrentLineNumber, InputFile);

394 /* Reset the global line count and filename */

396 Gbl_Files[ASL_FILE_INPUT].Filename = Filename;
397 Gbl_Files[ASL_FILE_INPUT].Handle = InputFile;
398 Gbl_PreviousLineNumber = 0;
399 Gbl_CurrentLineNumber = 0;

401 /* Emit a new #line directive for the include file */

403 FlPrintFile (ASL_FILE_PREPROCESSOR, "#line %u \"%s\"\n",
404 1, Filename);
405 }

408 /***
409 *
410 * FUNCTION: AslPopInputFileStack
411 *
412 * PARAMETERS: None
413 *
414 * RETURN: 0 if a node was popped, -1 otherwise
415 *
416 * DESCRIPTION: Pop the top of the input file stack and point the parser to
417 * the saved parse buffer contained in the fnode. Also, set the
418 * global line counters to the saved values. This function is
419 * called when an include file reaches EOF.
420 *
421 **/

423 BOOLEAN
424 PrPopInputFileStack (
425 void)
426 {
427 PR_FILE_NODE *Fnode;

430 Fnode = Gbl_InputFileList;
431 DbgPrint (ASL_PARSE_OUTPUT, "\n" PR_PREFIX_ID
432 "Pop InputFile Stack, Fnode %p\n\n",
433 Gbl_CurrentLineNumber, Fnode);

435 if (!Fnode)
436 {
437 return (FALSE);
438 }

440 /* Close the current include file */

442 fclose (Gbl_Files[ASL_FILE_INPUT].Handle);

444 /* Update the top-of-stack */

446 Gbl_InputFileList = Fnode->Next;

448 /* Reset global line counter and filename */

450 Gbl_Files[ASL_FILE_INPUT].Filename = Fnode->Filename;
451 Gbl_Files[ASL_FILE_INPUT].Handle = Fnode->File;
452 Gbl_CurrentLineNumber = Fnode->CurrentLineNumber;
453 Gbl_PreviousLineNumber = 0;

455 /* Emit a new #line directive after the include file */

457 FlPrintFile (ASL_FILE_PREPROCESSOR, "#line %u \"%s\"\n",

new/usr/src/common/acpica/compiler/prutils.c 8

458 Gbl_CurrentLineNumber + 1, Fnode->Filename);

460 /* All done with this node */

462 ACPI_FREE (Fnode);
463 return (TRUE);
464 }

new/usr/src/common/acpica/compiler/readme.txt 1

**
 4383 Thu Dec 26 13:48:40 2013
new/usr/src/common/acpica/compiler/readme.txt
update to acpica-unix2-20131218
acpica-unix2-20130823
**

1 /*
2 * Miscellaneous instructions for building and using the iASL compiler.
3 */
4 Last update 9 December 2013.

7 1) Generating iASL from source
8 ------------------------------

10 Generation of the ASL compiler from source code requires these items:

12 1) The ACPICA source code tree.
13 2) An ANSI C compiler.
14 3) The Flex (or Lex) lexical analyzer generator.
15 4) The Bison (or Yacc) parser generator.

17 There are three major ACPICA source code components that are required to
18 generate the compiler (Basically, the entire ACPICA source tree should
19 be installed):

21 1) The ASL compiler source.
22 2) The ACPICA Core Subsystem source. In particular, the Namespace
23 Manager component is used to create an internal ACPI namespace
24 and symbol table, and the AML Interpreter is used to evaluate
25 constant expressions.
26 3) The "common" source directory that is used for all ACPI components.

29 1a) Notes for Linux/Unix generation
30 -----------------------------------

32 iASL has been generated with these versions of Flex/Bison:

34 flex: Version 2.5.32
35 bison: Version 2.6.2

37 Other required packages:

39 make
40 gcc C compiler
41 m4 (macro processor required by bison)

43 On Linux/Unix systems, the following commands will build the compiler:

45 cd acpica (or cd acpica/generate/unix)
46 make clean
47 make iasl

50 1b) Notes for Windows generation
51 --------------------------------

53 On Windows, the Visual Studio 2008 project file appears in this directory:

55 generate/msvc9/AcpiComponents.sln

57 The Windows versions of GNU Flex/Bison must be installed, and they must
58 be installed in a directory that contains no embedded spaces in the
59 pathname. They cannot be installed in the default "c:\Program Files"
60 directory. This is a bug in Bison. The default Windows project file for

new/usr/src/common/acpica/compiler/readme.txt 2

61 iASL assumes that these tools are installed at this location:

63 c:\GnuWin32

65 Once the tools are installed, ensure that this path is added to the
66 default system $Path environment variable:

68 c:\GnuWin32\bin

70 Goto: ControlPanel/System/AdvancedSystemSettings/EnvironmentVariables

72 Important: Now Windows must be rebooted to make the system aware of
73 the updated $Path. Otherwise, Bison will not be able to find the M4
74 interpreter library and will fail.

76 iASL has been generated with these versions of Flex/Bison for Windows:

78 Flex for Windows: V2.5.4a
79 Bison for Windows: V2.4.1

81 Flex is available at: http://gnuwin32.sourceforge.net/packages/flex.htm
82 Bison is available at: http://gnuwin32.sourceforge.net/packages/bison.htm

86 2) Integration as a custom tool for Visual Studio
87 ---

89 This procedure adds the iASL compiler as a custom tool that can be used
90 to compile ASL source files. The output is sent to the VC output
91 window.

93 a) Select Tools->Customize.

95 b) Select the "Tools" tab.

97 c) Scroll down to the bottom of the "Menu Contents" window. There you
98 will see an empty rectangle. Click in the rectangle to enter a
99 name for this tool.

101 d) Type "iASL Compiler" in the box and hit enter. You can now edit
102 the other fields for this new custom tool.

104 e) Enter the following into the fields:

106 Command: C:\Acpi\iasl.exe
107 Arguments: -vi "$(FilePath)"
108 Initial Directory "$(FileDir)"
109 Use Output Window <Check this option>

111 "Command" must be the path to wherever you copied the compiler.
112 "-vi" instructs the compiler to produce messages appropriate for VC.
113 Quotes around FilePath and FileDir enable spaces in filenames.

115 f) Select "Close".

117 These steps will add the compiler to the tools menu as a custom tool.
118 By enabling "Use Output Window", you can click on error messages in
119 the output window and the source file and source line will be
120 automatically displayed by VC. Also, you can use F4 to step through
121 the messages and the corresponding source line(s).

125 3) Integrating iASL into a Visual Studio ASL project build
126 --

new/usr/src/common/acpica/compiler/readme.txt 3

128 This procedure creates a project that compiles ASL files to AML.

130 a) Create a new, empty project and add your .ASL files to the project

132 b) For all ASL files in the project, specify a custom build (under
133 Project/Settings/CustomBuild with the following settings (or similar):

135 Commands:
136 c:\acpi\libraries\iasl.exe -vs -vi "$(InputPath)"

138 Output:
139 $(InputDir)\$(InputPath).aml

new/usr/src/common/acpica/components/debugger/dbcmds.c 1

**
 33864 Thu Dec 26 13:48:40 2013
new/usr/src/common/acpica/components/debugger/dbcmds.c
update to acpica-unix2-20131115
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dbcmds - Miscellaneous debug commands and output routines
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acevents.h"
48 #include "acdebug.h"
49 #include "acnamesp.h"
50 #include "acresrc.h"
51 #include "actables.h"

53 #ifdef ACPI_DEBUGGER

55 #define _COMPONENT ACPI_CA_DEBUGGER
56 ACPI_MODULE_NAME ("dbcmds")

59 /* Local prototypes */

new/usr/src/common/acpica/components/debugger/dbcmds.c 2

61 static void
62 AcpiDmCompareAmlResources (
63 UINT8 *Aml1Buffer,
64 ACPI_RSDESC_SIZE Aml1BufferLength,
65 UINT8 *Aml2Buffer,
66 ACPI_RSDESC_SIZE Aml2BufferLength);

68 static ACPI_STATUS
69 AcpiDmTestResourceConversion (
70 ACPI_NAMESPACE_NODE *Node,
71 char *Name);

73 static ACPI_STATUS
74 AcpiDbResourceCallback (
75 ACPI_RESOURCE *Resource,
76 void *Context);

78 static ACPI_STATUS
79 AcpiDbDeviceResources (
80 ACPI_HANDLE ObjHandle,
81 UINT32 NestingLevel,
82 void *Context,
83 void **ReturnValue);

85 static void
86 AcpiDbDoOneSleepState (
87 UINT8 SleepState);

90 /***
91 *
92 * FUNCTION: AcpiDbConvertToNode
93 *
94 * PARAMETERS: InString - String to convert
95 *
96 * RETURN: Pointer to a NS node
97 *
98 * DESCRIPTION: Convert a string to a valid NS pointer. Handles numeric or
99 * alphanumeric strings.
100 *
101 **/

103 ACPI_NAMESPACE_NODE *
104 AcpiDbConvertToNode (
105 char *InString)
106 {
107 ACPI_NAMESPACE_NODE *Node;
108 ACPI_SIZE Address;

111 if ((*InString >= 0x30) && (*InString <= 0x39))
112 {
113 /* Numeric argument, convert */

115 Address = ACPI_STRTOUL (InString, NULL, 16);
116 Node = ACPI_TO_POINTER (Address);
117 if (!AcpiOsReadable (Node, sizeof (ACPI_NAMESPACE_NODE)))
118 {
119 AcpiOsPrintf ("Address %p is invalid in this address space\n",
120 Node);
121 return (NULL);
122 }

124 /* Make sure pointer is valid NS node */

new/usr/src/common/acpica/components/debugger/dbcmds.c 3

126 if (ACPI_GET_DESCRIPTOR_TYPE (Node) != ACPI_DESC_TYPE_NAMED)
127 {
128 AcpiOsPrintf ("Address %p is not a valid NS node [%s]\n",
129 Node, AcpiUtGetDescriptorName (Node));
130 return (NULL);
131 }
132 }
133 else
134 {
135 /*
136 * Alpha argument: The parameter is a name string that must be
137 * resolved to a Namespace object.
138 */
139 Node = AcpiDbLocalNsLookup (InString);
140 if (!Node)
141 {
142 Node = AcpiGbl_RootNode;
143 }
144 }

146 return (Node);
147 }

150 /***
151 *
152 * FUNCTION: AcpiDbSleep
153 *
154 * PARAMETERS: ObjectArg - Desired sleep state (0-5). NULL means
155 * invoke all possible sleep states.
156 *
157 * RETURN: Status
158 *
159 * DESCRIPTION: Simulate sleep/wake sequences
160 *
161 **/

163 ACPI_STATUS
164 AcpiDbSleep (
165 char *ObjectArg)
166 {
167 UINT8 SleepState;
168 UINT32 i;

171 ACPI_FUNCTION_TRACE (AcpiDbSleep);

174 /* Null input (no arguments) means to invoke all sleep states */

176 if (!ObjectArg)
177 {
178 AcpiOsPrintf ("Invoking all possible sleep states, 0-%d\n",
179 ACPI_S_STATES_MAX);

181 for (i = 0; i <= ACPI_S_STATES_MAX; i++)
182 {
183 AcpiDbDoOneSleepState ((UINT8) i);
184 }

186 return_ACPI_STATUS (AE_OK);
187 }

189 /* Convert argument to binary and invoke the sleep state */

191 SleepState = (UINT8) ACPI_STRTOUL (ObjectArg, NULL, 0);

new/usr/src/common/acpica/components/debugger/dbcmds.c 4

192 AcpiDbDoOneSleepState (SleepState);
193 return_ACPI_STATUS (AE_OK);
194 }

197 /***
198 *
199 * FUNCTION: AcpiDbDoOneSleepState
200 *
201 * PARAMETERS: SleepState - Desired sleep state (0-5)
202 *
203 * RETURN: Status
204 *
205 * DESCRIPTION: Simulate a sleep/wake sequence
206 *
207 **/

209 static void
210 AcpiDbDoOneSleepState (
211 UINT8 SleepState)
212 {
213 ACPI_STATUS Status;
214 UINT8 SleepTypeA;
215 UINT8 SleepTypeB;

218 /* Validate parameter */

220 if (SleepState > ACPI_S_STATES_MAX)
221 {
222 AcpiOsPrintf ("Sleep state %d out of range (%d max)\n",
223 SleepState, ACPI_S_STATES_MAX);
224 return;
225 }

227 AcpiOsPrintf ("\n---- Invoking sleep state S%d (%s):\n",
228 SleepState, AcpiGbl_SleepStateNames[SleepState]);

230 /* Get the values for the sleep type registers (for display only) */

232 Status = AcpiGetSleepTypeData (SleepState, &SleepTypeA, &SleepTypeB);
233 if (ACPI_FAILURE (Status))
234 {
235 AcpiOsPrintf ("Could not evaluate [%s] method, %s\n",
236 AcpiGbl_SleepStateNames[SleepState],
237 AcpiFormatException (Status));
238 return;
239 }

241 AcpiOsPrintf (
242 "Register values for sleep state S%d: Sleep-A: %.2X, Sleep-B: %.2X\n",
243 SleepState, SleepTypeA, SleepTypeB);

245 /* Invoke the various sleep/wake interfaces */

247 AcpiOsPrintf ("**** Sleep: Prepare to sleep (S%d) ****\n",
248 SleepState);
249 Status = AcpiEnterSleepStatePrep (SleepState);
250 if (ACPI_FAILURE (Status))
251 {
252 goto ErrorExit;
253 }

255 AcpiOsPrintf ("**** Sleep: Going to sleep (S%d) ****\n",
256 SleepState);
257 Status = AcpiEnterSleepState (SleepState);

new/usr/src/common/acpica/components/debugger/dbcmds.c 5

258 if (ACPI_FAILURE (Status))
259 {
260 goto ErrorExit;
261 }

263 AcpiOsPrintf ("**** Wake: Prepare to return from sleep (S%d) ****\n",
264 SleepState);
265 Status = AcpiLeaveSleepStatePrep (SleepState);
266 if (ACPI_FAILURE (Status))
267 {
268 goto ErrorExit;
269 }

271 AcpiOsPrintf ("**** Wake: Return from sleep (S%d) ****\n",
272 SleepState);
273 Status = AcpiLeaveSleepState (SleepState);
274 if (ACPI_FAILURE (Status))
275 {
276 goto ErrorExit;
277 }

279 return;

282 ErrorExit:
283 ACPI_EXCEPTION ((AE_INFO, Status, "During invocation of sleep state S%d",
284 SleepState));
285 }

288 /***
289 *
290 * FUNCTION: AcpiDbDisplayLocks
291 *
292 * PARAMETERS: None
293 *
294 * RETURN: None
295 *
296 * DESCRIPTION: Display information about internal mutexes.
297 *
298 **/

300 void
301 AcpiDbDisplayLocks (
302 void)
303 {
304 UINT32 i;

307 for (i = 0; i < ACPI_MAX_MUTEX; i++)
308 {
309 AcpiOsPrintf ("%26s : %s\n", AcpiUtGetMutexName (i),
310 AcpiGbl_MutexInfo[i].ThreadId == ACPI_MUTEX_NOT_ACQUIRED
311 ? "Locked" : "Unlocked");
312 }
313 }

316 /***
317 *
318 * FUNCTION: AcpiDbDisplayTableInfo
319 *
320 * PARAMETERS: TableArg - Name of table to be displayed
321 *
322 * RETURN: None
323 *

new/usr/src/common/acpica/components/debugger/dbcmds.c 6

324 * DESCRIPTION: Display information about loaded tables. Current
325 * implementation displays all loaded tables.
326 *
327 **/

329 void
330 AcpiDbDisplayTableInfo (
331 char *TableArg)
332 {
333 UINT32 i;
334 ACPI_TABLE_DESC *TableDesc;
335 ACPI_STATUS Status;

338 /* Header */

340 AcpiOsPrintf ("Idx ID Status Type Sig Address Len Header\n

342 /* Walk the entire root table list */

344 for (i = 0; i < AcpiGbl_RootTableList.CurrentTableCount; i++)
345 {
346 TableDesc = &AcpiGbl_RootTableList.Tables[i];

348 /* Index and Table ID */

350 AcpiOsPrintf ("%3u %.2u ", i, TableDesc->OwnerId);

352 /* Decode the table flags */

354 if (!(TableDesc->Flags & ACPI_TABLE_IS_LOADED))
355 {
356 AcpiOsPrintf ("NotLoaded ");
357 }
358 else
359 {
360 AcpiOsPrintf (" Loaded ");
361 }

363 switch (TableDesc->Flags & ACPI_TABLE_ORIGIN_MASK)
364 {
365 case ACPI_TABLE_ORIGIN_UNKNOWN:

367 AcpiOsPrintf ("Unknown ");
368 break;

370 case ACPI_TABLE_ORIGIN_MAPPED:

372 AcpiOsPrintf ("Mapped ");
373 break;

375 case ACPI_TABLE_ORIGIN_ALLOCATED:

377 AcpiOsPrintf ("Allocated ");
378 break;

380 case ACPI_TABLE_ORIGIN_OVERRIDE:

382 AcpiOsPrintf ("Override ");
383 break;

385 default:

387 AcpiOsPrintf ("INVALID ");
388 break;
389 }

new/usr/src/common/acpica/components/debugger/dbcmds.c 7

391 /* Make sure that the table is mapped */

393 Status = AcpiTbVerifyTable (TableDesc);
394 if (ACPI_FAILURE (Status))
395 {
396 return;
397 }

399 /* Dump the table header */

401 if (TableDesc->Pointer)
402 {
403 AcpiTbPrintTableHeader (TableDesc->Address, TableDesc->Pointer);
404 }
405 else
406 {
407 /* If the pointer is null, the table has been unloaded */

409 ACPI_INFO ((AE_INFO, "%4.4s - Table has been unloaded",
410 TableDesc->Signature.Ascii));
411 }
412 }
413 }

416 /***
417 *
418 * FUNCTION: AcpiDbUnloadAcpiTable
419 *
420 * PARAMETERS: ObjectName - Namespace pathname for an object that
421 * is owned by the table to be unloaded
422 *
423 * RETURN: None
424 *
425 * DESCRIPTION: Unload an ACPI table, via any namespace node that is owned
426 * by the table.
427 *
428 **/

430 void
431 AcpiDbUnloadAcpiTable (
432 char *ObjectName)
433 {
434 ACPI_NAMESPACE_NODE *Node;
435 ACPI_STATUS Status;

438 /* Translate name to an Named object */

440 Node = AcpiDbConvertToNode (ObjectName);
441 if (!Node)
442 {
443 AcpiOsPrintf ("Could not find [%s] in namespace\n",
444 ObjectName);
445 return;
446 }

448 Status = AcpiUnloadParentTable (ACPI_CAST_PTR (ACPI_HANDLE, Node));
449 if (ACPI_SUCCESS (Status))
450 {
451 AcpiOsPrintf ("Parent of [%s] (%p) unloaded and uninstalled\n",
452 ObjectName, Node);
453 }
454 else
455 {

new/usr/src/common/acpica/components/debugger/dbcmds.c 8

456 AcpiOsPrintf ("%s, while unloading parent table of [%s]\n",
457 AcpiFormatException (Status), ObjectName);
458 }
459 }

462 /***
463 *
464 * FUNCTION: AcpiDbSendNotify
465 *
466 * PARAMETERS: Name - Name of ACPI object where to send notify
467 * Value - Value of the notify to send.
468 *
469 * RETURN: None
470 *
471 * DESCRIPTION: Send an ACPI notification. The value specified is sent to the
472 * named object as an ACPI notify.
473 *
474 **/

476 void
477 AcpiDbSendNotify (
478 char *Name,
479 UINT32 Value)
480 {
481 ACPI_NAMESPACE_NODE *Node;
482 ACPI_STATUS Status;

485 /* Translate name to an Named object */

487 Node = AcpiDbConvertToNode (Name);
488 if (!Node)
489 {
490 return;
491 }

493 /* Dispatch the notify if legal */

495 if (AcpiEvIsNotifyObject (Node))
496 {
497 Status = AcpiEvQueueNotifyRequest (Node, Value);
498 if (ACPI_FAILURE (Status))
499 {
500 AcpiOsPrintf ("Could not queue notify\n");
501 }
502 }
503 else
504 {
505 AcpiOsPrintf (
506 "Named object [%4.4s] Type %s, must be Device/Thermal/Processor type
507 AcpiUtGetNodeName (Node), AcpiUtGetTypeName (Node->Type));
508 }
509 }

512 /***
513 *
514 * FUNCTION: AcpiDbDisplayInterfaces
515 *
516 * PARAMETERS: ActionArg - Null, "install", or "remove"
517 * InterfaceNameArg - Name for install/remove options
518 *
519 * RETURN: None
520 *
521 * DESCRIPTION: Display or modify the global _OSI interface list

new/usr/src/common/acpica/components/debugger/dbcmds.c 9

522 *
523 **/

525 void
526 AcpiDbDisplayInterfaces (
527 char *ActionArg,
528 char *InterfaceNameArg)
529 {
530 ACPI_INTERFACE_INFO *NextInterface;
531 char *SubString;
532 ACPI_STATUS Status;

535 /* If no arguments, just display current interface list */

537 if (!ActionArg)
538 {
539 (void) AcpiOsAcquireMutex (AcpiGbl_OsiMutex,
540 ACPI_WAIT_FOREVER);

542 NextInterface = AcpiGbl_SupportedInterfaces;
543 while (NextInterface)
544 {
545 if (!(NextInterface->Flags & ACPI_OSI_INVALID))
546 {
547 AcpiOsPrintf ("%s\n", NextInterface->Name);
548 }
549 NextInterface = NextInterface->Next;
550 }

552 AcpiOsReleaseMutex (AcpiGbl_OsiMutex);
553 return;
554 }

556 /* If ActionArg exists, so must InterfaceNameArg */

558 if (!InterfaceNameArg)
559 {
560 AcpiOsPrintf ("Missing Interface Name argument\n");
561 return;
562 }

564 /* Uppercase the action for match below */

566 AcpiUtStrupr (ActionArg);

568 /* Install - install an interface */

570 SubString = ACPI_STRSTR ("INSTALL", ActionArg);
571 if (SubString)
572 {
573 Status = AcpiInstallInterface (InterfaceNameArg);
574 if (ACPI_FAILURE (Status))
575 {
576 AcpiOsPrintf ("%s, while installing \"%s\"\n",
577 AcpiFormatException (Status), InterfaceNameArg);
578 }
579 return;
580 }

582 /* Remove - remove an interface */

584 SubString = ACPI_STRSTR ("REMOVE", ActionArg);
585 if (SubString)
586 {
587 Status = AcpiRemoveInterface (InterfaceNameArg);

new/usr/src/common/acpica/components/debugger/dbcmds.c 10

588 if (ACPI_FAILURE (Status))
589 {
590 AcpiOsPrintf ("%s, while removing \"%s\"\n",
591 AcpiFormatException (Status), InterfaceNameArg);
592 }
593 return;
594 }

596 /* Invalid ActionArg */

598 AcpiOsPrintf ("Invalid action argument: %s\n", ActionArg);
599 return;
600 }

603 /***
604 *
605 * FUNCTION: AcpiDbDisplayTemplate
606 *
607 * PARAMETERS: BufferArg - Buffer name or address
608 *
609 * RETURN: None
610 *
611 * DESCRIPTION: Dump a buffer that contains a resource template
612 *
613 **/

615 void
616 AcpiDbDisplayTemplate (
617 char *BufferArg)
618 {
619 ACPI_NAMESPACE_NODE *Node;
620 ACPI_STATUS Status;
621 ACPI_BUFFER ReturnBuffer;

624 /* Translate BufferArg to an Named object */

626 Node = AcpiDbConvertToNode (BufferArg);
627 if (!Node || (Node == AcpiGbl_RootNode))
628 {
629 AcpiOsPrintf ("Invalid argument: %s\n", BufferArg);
630 return;
631 }

633 /* We must have a buffer object */

635 if (Node->Type != ACPI_TYPE_BUFFER)
636 {
637 AcpiOsPrintf ("Not a Buffer object, cannot be a template: %s\n",
638 BufferArg);
639 return;
640 }

642 ReturnBuffer.Length = ACPI_DEBUG_BUFFER_SIZE;
643 ReturnBuffer.Pointer = AcpiGbl_DbBuffer;

645 /* Attempt to convert the raw buffer to a resource list */

647 Status = AcpiRsCreateResourceList (Node->Object, &ReturnBuffer);

649 AcpiDbSetOutputDestination (ACPI_DB_REDIRECTABLE_OUTPUT);
650 AcpiDbgLevel |= ACPI_LV_RESOURCES;

652 if (ACPI_FAILURE (Status))
653 {

new/usr/src/common/acpica/components/debugger/dbcmds.c 11

654 AcpiOsPrintf ("Could not convert Buffer to a resource list: %s, %s\n",
655 BufferArg, AcpiFormatException (Status));
656 goto DumpBuffer;
657 }

659 /* Now we can dump the resource list */

661 AcpiRsDumpResourceList (ACPI_CAST_PTR (ACPI_RESOURCE,
662 ReturnBuffer.Pointer));

664 DumpBuffer:
665 AcpiOsPrintf ("\nRaw data buffer:\n");
666 AcpiUtDebugDumpBuffer ((UINT8 *) Node->Object->Buffer.Pointer,
667 Node->Object->Buffer.Length,
668 DB_BYTE_DISPLAY, ACPI_UINT32_MAX);

670 AcpiDbSetOutputDestination (ACPI_DB_CONSOLE_OUTPUT);
671 return;
672 }

675 /***
676 *
677 * FUNCTION: AcpiDmCompareAmlResources
678 *
679 * PARAMETERS: Aml1Buffer - Contains first resource list
680 * Aml1BufferLength - Length of first resource list
681 * Aml2Buffer - Contains second resource list
682 * Aml2BufferLength - Length of second resource list
683 *
684 * RETURN: None
685 *
686 * DESCRIPTION: Compare two AML resource lists, descriptor by descriptor (in
687 * order to isolate a miscompare to an individual resource)
688 *
689 **/

691 static void
692 AcpiDmCompareAmlResources (
693 UINT8 *Aml1Buffer,
694 ACPI_RSDESC_SIZE Aml1BufferLength,
695 UINT8 *Aml2Buffer,
696 ACPI_RSDESC_SIZE Aml2BufferLength)
697 {
698 UINT8 *Aml1;
699 UINT8 *Aml2;
700 UINT8 *Aml1End;
701 UINT8 *Aml2End;
702 ACPI_RSDESC_SIZE Aml1Length;
703 ACPI_RSDESC_SIZE Aml2Length;
704 ACPI_RSDESC_SIZE Offset = 0;
705 UINT8 ResourceType;
706 UINT32 Count = 0;
707 UINT32 i;

710 /* Compare overall buffer sizes (may be different due to size rounding) */

712 if (Aml1BufferLength != Aml2BufferLength)
713 {
714 AcpiOsPrintf (
715 "**** Buffer length mismatch in converted AML: Original %X, New %X *
716 Aml1BufferLength, Aml2BufferLength);
717 }

719 Aml1 = Aml1Buffer;

new/usr/src/common/acpica/components/debugger/dbcmds.c 12

720 Aml2 = Aml2Buffer;
721 Aml1End = Aml1Buffer + Aml1BufferLength;
722 Aml2End = Aml2Buffer + Aml2BufferLength;

724 /* Walk the descriptor lists, comparing each descriptor */

726 while ((Aml1 < Aml1End) && (Aml2 < Aml2End))
727 {
728 /* Get the lengths of each descriptor */

730 Aml1Length = AcpiUtGetDescriptorLength (Aml1);
731 Aml2Length = AcpiUtGetDescriptorLength (Aml2);
732 ResourceType = AcpiUtGetResourceType (Aml1);

734 /* Check for descriptor length match */

736 if (Aml1Length != Aml2Length)
737 {
738 AcpiOsPrintf (
739 "**** Length mismatch in descriptor [%.2X] type %2.2X, Offset %8
740 Count, ResourceType, Offset, Aml1Length, Aml2Length);
741 }

743 /* Check for descriptor byte match */

745 else if (ACPI_MEMCMP (Aml1, Aml2, Aml1Length))
746 {
747 AcpiOsPrintf (
748 "**** Data mismatch in descriptor [%.2X] type %2.2X, Offset %8.8
749 Count, ResourceType, Offset);

751 for (i = 0; i < Aml1Length; i++)
752 {
753 if (Aml1[i] != Aml2[i])
754 {
755 AcpiOsPrintf (
756 "Mismatch at byte offset %.2X: is %2.2X, should be %2.2X
757 i, Aml2[i], Aml1[i]);
758 }
759 }
760 }

762 /* Exit on EndTag descriptor */

764 if (ResourceType == ACPI_RESOURCE_NAME_END_TAG)
765 {
766 return;
767 }

769 /* Point to next descriptor in each buffer */

771 Count++;
772 Offset += Aml1Length;
773 Aml1 += Aml1Length;
774 Aml2 += Aml2Length;
775 }
776 }

779 /***
780 *
781 * FUNCTION: AcpiDmTestResourceConversion
782 *
783 * PARAMETERS: Node - Parent device node
784 * Name - resource method name (_CRS)
785 *

new/usr/src/common/acpica/components/debugger/dbcmds.c 13

786 * RETURN: Status
787 *
788 * DESCRIPTION: Compare the original AML with a conversion of the AML to
789 * internal resource list, then back to AML.
790 *
791 **/

793 static ACPI_STATUS
794 AcpiDmTestResourceConversion (
795 ACPI_NAMESPACE_NODE *Node,
796 char *Name)
797 {
798 ACPI_STATUS Status;
799 ACPI_BUFFER ReturnBuffer;
800 ACPI_BUFFER ResourceBuffer;
801 ACPI_BUFFER NewAml;
802 ACPI_OBJECT *OriginalAml;

805 AcpiOsPrintf ("Resource Conversion Comparison:\n");

807 NewAml.Length = ACPI_ALLOCATE_LOCAL_BUFFER;
808 ReturnBuffer.Length = ACPI_ALLOCATE_LOCAL_BUFFER;
809 ResourceBuffer.Length = ACPI_ALLOCATE_LOCAL_BUFFER;

811 /* Get the original _CRS AML resource template */

813 Status = AcpiEvaluateObject (Node, Name, NULL, &ReturnBuffer);
814 if (ACPI_FAILURE (Status))
815 {
816 AcpiOsPrintf ("Could not obtain %s: %s\n",
817 Name, AcpiFormatException (Status));
818 return (Status);
819 }

821 /* Get the AML resource template, converted to internal resource structs */

823 Status = AcpiGetCurrentResources (Node, &ResourceBuffer);
824 if (ACPI_FAILURE (Status))
825 {
826 AcpiOsPrintf ("AcpiGetCurrentResources failed: %s\n",
827 AcpiFormatException (Status));
828 goto Exit1;
829 }

831 /* Convert internal resource list to external AML resource template */

833 Status = AcpiRsCreateAmlResources (&ResourceBuffer, &NewAml);
834 if (ACPI_FAILURE (Status))
835 {
836 AcpiOsPrintf ("AcpiRsCreateAmlResources failed: %s\n",
837 AcpiFormatException (Status));
838 goto Exit2;
839 }

841 /* Compare original AML to the newly created AML resource list */

843 OriginalAml = ReturnBuffer.Pointer;

845 AcpiDmCompareAmlResources (OriginalAml->Buffer.Pointer,
846 (ACPI_RSDESC_SIZE) OriginalAml->Buffer.Length,
847 NewAml.Pointer, (ACPI_RSDESC_SIZE) NewAml.Length);

849 /* Cleanup and exit */

851 ACPI_FREE (NewAml.Pointer);

new/usr/src/common/acpica/components/debugger/dbcmds.c 14

852 Exit2:
853 ACPI_FREE (ResourceBuffer.Pointer);
854 Exit1:
855 ACPI_FREE (ReturnBuffer.Pointer);
856 return (Status);
857 }

860 /***
861 *
862 * FUNCTION: AcpiDbResourceCallback
863 *
864 * PARAMETERS: ACPI_WALK_RESOURCE_CALLBACK
865 *
866 * RETURN: Status
867 *
868 * DESCRIPTION: Simple callback to exercise AcpiWalkResources and
869 * AcpiWalkResourceBuffer.
870 *
871 **/

873 static ACPI_STATUS
874 AcpiDbResourceCallback (
875 ACPI_RESOURCE *Resource,
876 void *Context)
877 {

879 return (AE_OK);
880 }

883 /***
884 *
885 * FUNCTION: AcpiDbDeviceResources
886 *
887 * PARAMETERS: ACPI_WALK_CALLBACK
888 *
889 * RETURN: Status
890 *
891 * DESCRIPTION: Display the _PRT/_CRS/_PRS resources for a device object.
892 *
893 **/

895 static ACPI_STATUS
896 AcpiDbDeviceResources (
897 ACPI_HANDLE ObjHandle,
898 UINT32 NestingLevel,
899 void *Context,
900 void **ReturnValue)
901 {
902 ACPI_NAMESPACE_NODE *Node;
903 ACPI_NAMESPACE_NODE *PrtNode = NULL;
904 ACPI_NAMESPACE_NODE *CrsNode = NULL;
905 ACPI_NAMESPACE_NODE *PrsNode = NULL;
906 ACPI_NAMESPACE_NODE *AeiNode = NULL;
907 char *ParentPath;
908 ACPI_BUFFER ReturnBuffer;
909 ACPI_STATUS Status;

912 Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, ObjHandle);
913 ParentPath = AcpiNsGetExternalPathname (Node);
914 if (!ParentPath)
915 {
916 return (AE_NO_MEMORY);
917 }

new/usr/src/common/acpica/components/debugger/dbcmds.c 15

919 /* Get handles to the resource methods for this device */

921 (void) AcpiGetHandle (Node, METHOD_NAME__PRT, ACPI_CAST_PTR (ACPI_HANDLE, &P
922 (void) AcpiGetHandle (Node, METHOD_NAME__CRS, ACPI_CAST_PTR (ACPI_HANDLE, &C
923 (void) AcpiGetHandle (Node, METHOD_NAME__PRS, ACPI_CAST_PTR (ACPI_HANDLE, &P
924 (void) AcpiGetHandle (Node, METHOD_NAME__AEI, ACPI_CAST_PTR (ACPI_HANDLE, &A
925 if (!PrtNode && !CrsNode && !PrsNode && !AeiNode)
926 {
927 goto Cleanup; /* Nothing to do */
928 }

930 AcpiOsPrintf ("\nDevice: %s\n", ParentPath);

932 /* Prepare for a return object of arbitrary size */

934 ReturnBuffer.Pointer = AcpiGbl_DbBuffer;
935 ReturnBuffer.Length = ACPI_DEBUG_BUFFER_SIZE;

938 /* _PRT */

940 if (PrtNode)
941 {
942 AcpiOsPrintf ("Evaluating _PRT\n");

944 Status = AcpiEvaluateObject (PrtNode, NULL, NULL, &ReturnBuffer);
945 if (ACPI_FAILURE (Status))
946 {
947 AcpiOsPrintf ("Could not evaluate _PRT: %s\n",
948 AcpiFormatException (Status));
949 goto GetCrs;
950 }

952 ReturnBuffer.Pointer = AcpiGbl_DbBuffer;
953 ReturnBuffer.Length = ACPI_DEBUG_BUFFER_SIZE;

955 Status = AcpiGetIrqRoutingTable (Node, &ReturnBuffer);
956 if (ACPI_FAILURE (Status))
957 {
958 AcpiOsPrintf ("GetIrqRoutingTable failed: %s\n",
959 AcpiFormatException (Status));
960 goto GetCrs;
961 }

963 AcpiRsDumpIrqList (ACPI_CAST_PTR (UINT8, AcpiGbl_DbBuffer));
964 }

967 /* _CRS */

969 GetCrs:
970 if (CrsNode)
971 {
972 AcpiOsPrintf ("Evaluating _CRS\n");

974 ReturnBuffer.Pointer = AcpiGbl_DbBuffer;
975 ReturnBuffer.Length = ACPI_DEBUG_BUFFER_SIZE;

977 Status = AcpiEvaluateObject (CrsNode, NULL, NULL, &ReturnBuffer);
978 if (ACPI_FAILURE (Status))
979 {
980 AcpiOsPrintf ("Could not evaluate _CRS: %s\n",
981 AcpiFormatException (Status));
982 goto GetPrs;
983 }

new/usr/src/common/acpica/components/debugger/dbcmds.c 16

985 /* This code exercises the AcpiWalkResources interface */

987 Status = AcpiWalkResources (Node, METHOD_NAME__CRS,
988 AcpiDbResourceCallback, NULL);
989 if (ACPI_FAILURE (Status))
990 {
991 AcpiOsPrintf ("AcpiWalkResources failed: %s\n",
992 AcpiFormatException (Status));
993 goto GetPrs;
994 }

996 /* Get the _CRS resource list (test ALLOCATE buffer) */

998 ReturnBuffer.Pointer = NULL;
999 ReturnBuffer.Length = ACPI_ALLOCATE_LOCAL_BUFFER;

1001 Status = AcpiGetCurrentResources (Node, &ReturnBuffer);
1002 if (ACPI_FAILURE (Status))
1003 {
1004 AcpiOsPrintf ("AcpiGetCurrentResources failed: %s\n",
1005 AcpiFormatException (Status));
1006 goto GetPrs;
1007 }

1009 /* This code exercises the AcpiWalkResourceBuffer interface */

1011 Status = AcpiWalkResourceBuffer (&ReturnBuffer,
1012 AcpiDbResourceCallback, NULL);
1013 if (ACPI_FAILURE (Status))
1014 {
1015 AcpiOsPrintf ("AcpiWalkResourceBuffer failed: %s\n",
1016 AcpiFormatException (Status));
1017 goto EndCrs;
1018 }

1020 /* Dump the _CRS resource list */

1022 AcpiRsDumpResourceList (ACPI_CAST_PTR (ACPI_RESOURCE,
1023 ReturnBuffer.Pointer));

1025 /*
1026 * Perform comparison of original AML to newly created AML. This
1027 * tests both the AML->Resource conversion and the Resource->AML
1028 * conversion.
1029 */
1030 (void) AcpiDmTestResourceConversion (Node, METHOD_NAME__CRS);

1032 /* Execute _SRS with the resource list */

1034 AcpiOsPrintf ("Evaluating _SRS\n");

1036 Status = AcpiSetCurrentResources (Node, &ReturnBuffer);
1037 if (ACPI_FAILURE (Status))
1038 {
1039 AcpiOsPrintf ("AcpiSetCurrentResources failed: %s\n",
1040 AcpiFormatException (Status));
1041 goto EndCrs;
1042 }

1044 EndCrs:
1045 ACPI_FREE (ReturnBuffer.Pointer);
1046 }

1049 /* _PRS */

new/usr/src/common/acpica/components/debugger/dbcmds.c 17

1051 GetPrs:
1052 if (PrsNode)
1053 {
1054 AcpiOsPrintf ("Evaluating _PRS\n");

1056 ReturnBuffer.Pointer = AcpiGbl_DbBuffer;
1057 ReturnBuffer.Length = ACPI_DEBUG_BUFFER_SIZE;

1059 Status = AcpiEvaluateObject (PrsNode, NULL, NULL, &ReturnBuffer);
1060 if (ACPI_FAILURE (Status))
1061 {
1062 AcpiOsPrintf ("Could not evaluate _PRS: %s\n",
1063 AcpiFormatException (Status));
1064 goto GetAei;
1065 }

1067 ReturnBuffer.Pointer = AcpiGbl_DbBuffer;
1068 ReturnBuffer.Length = ACPI_DEBUG_BUFFER_SIZE;

1070 Status = AcpiGetPossibleResources (Node, &ReturnBuffer);
1071 if (ACPI_FAILURE (Status))
1072 {
1073 AcpiOsPrintf ("AcpiGetPossibleResources failed: %s\n",
1074 AcpiFormatException (Status));
1075 goto GetAei;
1076 }

1078 AcpiRsDumpResourceList (ACPI_CAST_PTR (ACPI_RESOURCE, AcpiGbl_DbBuffer))
1079 }

1082 /* _AEI */

1084 GetAei:
1085 if (AeiNode)
1086 {
1087 AcpiOsPrintf ("Evaluating _AEI\n");

1089 ReturnBuffer.Pointer = AcpiGbl_DbBuffer;
1090 ReturnBuffer.Length = ACPI_DEBUG_BUFFER_SIZE;

1092 Status = AcpiEvaluateObject (AeiNode, NULL, NULL, &ReturnBuffer);
1093 if (ACPI_FAILURE (Status))
1094 {
1095 AcpiOsPrintf ("Could not evaluate _AEI: %s\n",
1096 AcpiFormatException (Status));
1097 goto Cleanup;
1098 }

1100 ReturnBuffer.Pointer = AcpiGbl_DbBuffer;
1101 ReturnBuffer.Length = ACPI_DEBUG_BUFFER_SIZE;

1103 Status = AcpiGetEventResources (Node, &ReturnBuffer);
1104 if (ACPI_FAILURE (Status))
1105 {
1106 AcpiOsPrintf ("AcpiGetEventResources failed: %s\n",
1107 AcpiFormatException (Status));
1108 goto Cleanup;
1109 }

1111 AcpiRsDumpResourceList (ACPI_CAST_PTR (ACPI_RESOURCE, AcpiGbl_DbBuffer))
1112 }

1115 Cleanup:

new/usr/src/common/acpica/components/debugger/dbcmds.c 18

1116 ACPI_FREE (ParentPath);
1117 return (AE_OK);
1118 }

1121 /***
1122 *
1123 * FUNCTION: AcpiDbDisplayResources
1124 *
1125 * PARAMETERS: ObjectArg - String object name or object pointer.
1126 * NULL or "*" means "display resources for
1127 * all devices"
1128 *
1129 * RETURN: None
1130 *
1131 * DESCRIPTION: Display the resource objects associated with a device.
1132 *
1133 **/

1135 void
1136 AcpiDbDisplayResources (
1137 char *ObjectArg)
1138 {
1139 ACPI_NAMESPACE_NODE *Node;

1142 AcpiDbSetOutputDestination (ACPI_DB_REDIRECTABLE_OUTPUT);
1143 AcpiDbgLevel |= ACPI_LV_RESOURCES;

1145 /* Asterisk means "display resources for all devices" */

1147 if (!ObjectArg || (!ACPI_STRCMP (ObjectArg, "*")))
1148 {
1149 (void) AcpiWalkNamespace (ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
1150 ACPI_UINT32_MAX, AcpiDbDeviceResources, NULL, NULL, NULL);
1151 }
1152 else
1153 {
1154 /* Convert string to object pointer */

1156 Node = AcpiDbConvertToNode (ObjectArg);
1157 if (Node)
1158 {
1159 if (Node->Type != ACPI_TYPE_DEVICE)
1160 {
1161 AcpiOsPrintf ("%4.4s: Name is not a device object (%s)\n",
1162 Node->Name.Ascii, AcpiUtGetTypeName (Node->Type));
1163 }
1164 else
1165 {
1166 (void) AcpiDbDeviceResources (Node, 0, NULL, NULL);
1167 }
1168 }
1169 }

1171 AcpiDbSetOutputDestination (ACPI_DB_CONSOLE_OUTPUT);
1172 }

1175 #if (!ACPI_REDUCED_HARDWARE)
1176 /***
1177 *
1178 * FUNCTION: AcpiDbGenerateGpe
1179 *
1180 * PARAMETERS: GpeArg - Raw GPE number, ascii string
1181 * BlockArg - GPE block number, ascii string

new/usr/src/common/acpica/components/debugger/dbcmds.c 19

1182 * 0 or 1 for FADT GPE blocks
1183 *
1184 * RETURN: None
1185 *
1186 * DESCRIPTION: Simulate firing of a GPE
1187 *
1188 **/

1190 void
1191 AcpiDbGenerateGpe (
1192 char *GpeArg,
1193 char *BlockArg)
1194 {
1195 UINT32 BlockNumber;
1196 UINT32 GpeNumber;
1197 ACPI_GPE_EVENT_INFO *GpeEventInfo;

1200 GpeNumber = ACPI_STRTOUL (GpeArg, NULL, 0);
1201 BlockNumber = ACPI_STRTOUL (BlockArg, NULL, 0);

1204 GpeEventInfo = AcpiEvGetGpeEventInfo (ACPI_TO_POINTER (BlockNumber),
1205 GpeNumber);
1206 if (!GpeEventInfo)
1207 {
1208 AcpiOsPrintf ("Invalid GPE\n");
1209 return;
1210 }

1212 (void) AcpiEvGpeDispatch (NULL, GpeEventInfo, GpeNumber);
1213 }

1215 void
1216 AcpiDbGenerateSci (
1217 void)
1218 {
1219 AcpiEvSciDispatch ();
1220 }

1222 #endif /* !ACPI_REDUCED_HARDWARE */

1224 #endif /* ACPI_DEBUGGER */

new/usr/src/common/acpica/components/debugger/dbconvert.c 1

**
 15819 Thu Dec 26 13:48:41 2013
new/usr/src/common/acpica/components/debugger/dbconvert.c
acpica-unix2-20130823
**

1 /***
2 *
3 * Module Name: dbconvert - debugger miscellaneous conversion routines
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acdebug.h"

49 #ifdef ACPI_DEBUGGER

51 #define _COMPONENT ACPI_CA_DEBUGGER
52 ACPI_MODULE_NAME ("dbconvert")

55 #define DB_DEFAULT_PKG_ELEMENTS 33

58 /***
59 *
60 * FUNCTION: AcpiDbHexCharToValue
61 *

new/usr/src/common/acpica/components/debugger/dbconvert.c 2

62 * PARAMETERS: HexChar - Ascii Hex digit, 0-9|a-f|A-F
63 * ReturnValue - Where the converted value is returned
64 *
65 * RETURN: Status
66 *
67 * DESCRIPTION: Convert a single hex character to a 4-bit number (0-16).
68 *
69 **/

71 ACPI_STATUS
72 AcpiDbHexCharToValue (
73 int HexChar,
74 UINT8 *ReturnValue)
75 {
76 UINT8 Value;

79 /* Digit must be ascii [0-9a-fA-F] */

81 if (!ACPI_IS_XDIGIT (HexChar))
82 {
83 return (AE_BAD_HEX_CONSTANT);
84 }

86 if (HexChar <= 0x39)
87 {
88 Value = (UINT8) (HexChar - 0x30);
89 }
90 else
91 {
92 Value = (UINT8) (ACPI_TOUPPER (HexChar) - 0x37);
93 }

95 *ReturnValue = Value;
96 return (AE_OK);
97 }

100 /***
101 *
102 * FUNCTION: AcpiDbHexByteToBinary
103 *
104 * PARAMETERS: HexByte - Double hex digit (0x00 - 0xFF) in format:
105 * HiByte then LoByte.
106 * ReturnValue - Where the converted value is returned
107 *
108 * RETURN: Status
109 *
110 * DESCRIPTION: Convert two hex characters to an 8 bit number (0 - 255).
111 *
112 **/

114 static ACPI_STATUS
115 AcpiDbHexByteToBinary (
116 char *HexByte,
117 UINT8 *ReturnValue)
118 {
119 UINT8 Local0;
120 UINT8 Local1;
121 ACPI_STATUS Status;

124 /* High byte */

126 Status = AcpiDbHexCharToValue (HexByte[0], &Local0);
127 if (ACPI_FAILURE (Status))

new/usr/src/common/acpica/components/debugger/dbconvert.c 3

128 {
129 return (Status);
130 }

132 /* Low byte */

134 Status = AcpiDbHexCharToValue (HexByte[1], &Local1);
135 if (ACPI_FAILURE (Status))
136 {
137 return (Status);
138 }

140 *ReturnValue = (UINT8) ((Local0 << 4) | Local1);
141 return (AE_OK);
142 }

145 /***
146 *
147 * FUNCTION: AcpiDbConvertToBuffer
148 *
149 * PARAMETERS: String - Input string to be converted
150 * Object - Where the buffer object is returned
151 *
152 * RETURN: Status
153 *
154 * DESCRIPTION: Convert a string to a buffer object. String is treated a list
155 * of buffer elements, each separated by a space or comma.
156 *
157 **/

159 static ACPI_STATUS
160 AcpiDbConvertToBuffer (
161 char *String,
162 ACPI_OBJECT *Object)
163 {
164 UINT32 i;
165 UINT32 j;
166 UINT32 Length;
167 UINT8 *Buffer;
168 ACPI_STATUS Status;

171 /* Generate the final buffer length */

173 for (i = 0, Length = 0; String[i];)
174 {
175 i+=2;
176 Length++;

178 while (String[i] &&
179 ((String[i] == ’,’) || (String[i] == ’ ’)))
180 {
181 i++;
182 }
183 }

185 Buffer = ACPI_ALLOCATE (Length);
186 if (!Buffer)
187 {
188 return (AE_NO_MEMORY);
189 }

191 /* Convert the command line bytes to the buffer */

193 for (i = 0, j = 0; String[i];)

new/usr/src/common/acpica/components/debugger/dbconvert.c 4

194 {
195 Status = AcpiDbHexByteToBinary (&String[i], &Buffer[j]);
196 if (ACPI_FAILURE (Status))
197 {
198 ACPI_FREE (Buffer);
199 return (Status);
200 }

202 j++;
203 i+=2;
204 while (String[i] &&
205 ((String[i] == ’,’) || (String[i] == ’ ’)))
206 {
207 i++;
208 }
209 }

211 Object->Type = ACPI_TYPE_BUFFER;
212 Object->Buffer.Pointer = Buffer;
213 Object->Buffer.Length = Length;
214 return (AE_OK);
215 }

218 /***
219 *
220 * FUNCTION: AcpiDbConvertToPackage
221 *
222 * PARAMETERS: String - Input string to be converted
223 * Object - Where the package object is returned
224 *
225 * RETURN: Status
226 *
227 * DESCRIPTION: Convert a string to a package object. Handles nested packages
228 * via recursion with AcpiDbConvertToObject.
229 *
230 **/

232 ACPI_STATUS
233 AcpiDbConvertToPackage (
234 char *String,
235 ACPI_OBJECT *Object)
236 {
237 char *This;
238 char *Next;
239 UINT32 i;
240 ACPI_OBJECT_TYPE Type;
241 ACPI_OBJECT *Elements;
242 ACPI_STATUS Status;

245 Elements = ACPI_ALLOCATE_ZEROED (
246 DB_DEFAULT_PKG_ELEMENTS * sizeof (ACPI_OBJECT));

248 This = String;
249 for (i = 0; i < (DB_DEFAULT_PKG_ELEMENTS - 1); i++)
250 {
251 This = AcpiDbGetNextToken (This, &Next, &Type);
252 if (!This)
253 {
254 break;
255 }

257 /* Recursive call to convert each package element */

259 Status = AcpiDbConvertToObject (Type, This, &Elements[i]);

new/usr/src/common/acpica/components/debugger/dbconvert.c 5

260 if (ACPI_FAILURE (Status))
261 {
262 AcpiDbDeleteObjects (i + 1, Elements);
263 ACPI_FREE (Elements);
264 return (Status);
265 }

267 This = Next;
268 }

270 Object->Type = ACPI_TYPE_PACKAGE;
271 Object->Package.Count = i;
272 Object->Package.Elements = Elements;
273 return (AE_OK);
274 }

277 /***
278 *
279 * FUNCTION: AcpiDbConvertToObject
280 *
281 * PARAMETERS: Type - Object type as determined by parser
282 * String - Input string to be converted
283 * Object - Where the new object is returned
284 *
285 * RETURN: Status
286 *
287 * DESCRIPTION: Convert a typed and tokenized string to an ACPI_OBJECT. Typing:
288 * 1) String objects were surrounded by quotes.
289 * 2) Buffer objects were surrounded by parentheses.
290 * 3) Package objects were surrounded by brackets "[]".
291 * 4) All standalone tokens are treated as integers.
292 *
293 **/

295 ACPI_STATUS
296 AcpiDbConvertToObject (
297 ACPI_OBJECT_TYPE Type,
298 char *String,
299 ACPI_OBJECT *Object)
300 {
301 ACPI_STATUS Status = AE_OK;

304 switch (Type)
305 {
306 case ACPI_TYPE_STRING:

308 Object->Type = ACPI_TYPE_STRING;
309 Object->String.Pointer = String;
310 Object->String.Length = (UINT32) ACPI_STRLEN (String);
311 break;

313 case ACPI_TYPE_BUFFER:

315 Status = AcpiDbConvertToBuffer (String, Object);
316 break;

318 case ACPI_TYPE_PACKAGE:

320 Status = AcpiDbConvertToPackage (String, Object);
321 break;

323 default:

325 Object->Type = ACPI_TYPE_INTEGER;

new/usr/src/common/acpica/components/debugger/dbconvert.c 6

326 Status = AcpiUtStrtoul64 (String, 16, &Object->Integer.Value);
327 break;
328 }

330 return (Status);
331 }

334 /***
335 *
336 * FUNCTION: AcpiDbEncodePldBuffer
337 *
338 * PARAMETERS: PldInfo - _PLD buffer struct (Using local struct)
339 *
340 * RETURN: Encode _PLD buffer suitable for return value from _PLD
341 *
342 * DESCRIPTION: Bit-packs a _PLD buffer struct. Used to test the _PLD macros
343 *
344 **/

346 UINT8 *
347 AcpiDbEncodePldBuffer (
348 ACPI_PLD_INFO *PldInfo)
349 {
350 UINT32 *Buffer;
351 UINT32 Dword;

354 Buffer = ACPI_ALLOCATE_ZEROED (ACPI_PLD_BUFFER_SIZE);
355 if (!Buffer)
356 {
357 return (NULL);
358 }

360 /* First 32 bits */

362 Dword = 0;
363 ACPI_PLD_SET_REVISION (&Dword, PldInfo->Revision);
364 ACPI_PLD_SET_IGNORE_COLOR (&Dword, PldInfo->IgnoreColor);
365 ACPI_PLD_SET_COLOR (&Dword, PldInfo->Color);
366 ACPI_MOVE_32_TO_32 (&Buffer[0], &Dword);

368 /* Second 32 bits */

370 Dword = 0;
371 ACPI_PLD_SET_WIDTH (&Dword, PldInfo->Width);
372 ACPI_PLD_SET_HEIGHT (&Dword, PldInfo->Height);
373 ACPI_MOVE_32_TO_32 (&Buffer[1], &Dword);

375 /* Third 32 bits */

377 Dword = 0;
378 ACPI_PLD_SET_USER_VISIBLE (&Dword, PldInfo->UserVisible);
379 ACPI_PLD_SET_DOCK (&Dword, PldInfo->Dock);
380 ACPI_PLD_SET_LID (&Dword, PldInfo->Lid);
381 ACPI_PLD_SET_PANEL (&Dword, PldInfo->Panel);
382 ACPI_PLD_SET_VERTICAL (&Dword, PldInfo->VerticalPosition);
383 ACPI_PLD_SET_HORIZONTAL (&Dword, PldInfo->HorizontalPosition);
384 ACPI_PLD_SET_SHAPE (&Dword, PldInfo->Shape);
385 ACPI_PLD_SET_ORIENTATION (&Dword, PldInfo->GroupOrientation);
386 ACPI_PLD_SET_TOKEN (&Dword, PldInfo->GroupToken);
387 ACPI_PLD_SET_POSITION (&Dword, PldInfo->GroupPosition);
388 ACPI_PLD_SET_BAY (&Dword, PldInfo->Bay);
389 ACPI_MOVE_32_TO_32 (&Buffer[2], &Dword);

391 /* Fourth 32 bits */

new/usr/src/common/acpica/components/debugger/dbconvert.c 7

393 Dword = 0;
394 ACPI_PLD_SET_EJECTABLE (&Dword, PldInfo->Ejectable);
395 ACPI_PLD_SET_OSPM_EJECT (&Dword, PldInfo->OspmEjectRequired);
396 ACPI_PLD_SET_CABINET (&Dword, PldInfo->CabinetNumber);
397 ACPI_PLD_SET_CARD_CAGE (&Dword, PldInfo->CardCageNumber);
398 ACPI_PLD_SET_REFERENCE (&Dword, PldInfo->Reference);
399 ACPI_PLD_SET_ROTATION (&Dword, PldInfo->Rotation);
400 ACPI_PLD_SET_ORDER (&Dword, PldInfo->Order);
401 ACPI_MOVE_32_TO_32 (&Buffer[3], &Dword);

403 if (PldInfo->Revision >= 2)
404 {
405 /* Fifth 32 bits */

407 Dword = 0;
408 ACPI_PLD_SET_VERT_OFFSET (&Dword, PldInfo->VerticalOffset);
409 ACPI_PLD_SET_HORIZ_OFFSET (&Dword, PldInfo->HorizontalOffset);
410 ACPI_MOVE_32_TO_32 (&Buffer[4], &Dword);
411 }

413 return (ACPI_CAST_PTR (UINT8, Buffer));
414 }

417 /***
418 *
419 * FUNCTION: AcpiDbDumpPldBuffer
420 *
421 * PARAMETERS: ObjDesc - Object returned from _PLD method
422 *
423 * RETURN: None.
424 *
425 * DESCRIPTION: Dumps formatted contents of a _PLD return buffer.
426 *
427 **/

429 #define ACPI_PLD_OUTPUT "%20s : %-6X\n"

431 void
432 AcpiDbDumpPldBuffer (
433 ACPI_OBJECT *ObjDesc)
434 {
435 ACPI_OBJECT *BufferDesc;
436 ACPI_PLD_INFO *PldInfo;
437 UINT8 *NewBuffer;
438 ACPI_STATUS Status;

441 /* Object must be of type Package with at least one Buffer element */

443 if (ObjDesc->Type != ACPI_TYPE_PACKAGE)
444 {
445 return;
446 }

448 BufferDesc = &ObjDesc->Package.Elements[0];
449 if (BufferDesc->Type != ACPI_TYPE_BUFFER)
450 {
451 return;
452 }

454 /* Convert _PLD buffer to local _PLD struct */

456 Status = AcpiDecodePldBuffer (BufferDesc->Buffer.Pointer,
457 BufferDesc->Buffer.Length, &PldInfo);

new/usr/src/common/acpica/components/debugger/dbconvert.c 8

458 if (ACPI_FAILURE (Status))
459 {
460 return;
461 }

463 /* Encode local _PLD struct back to a _PLD buffer */

465 NewBuffer = AcpiDbEncodePldBuffer (PldInfo);
466 if (!NewBuffer)
467 {
468 return;
469 }

471 /* The two bit-packed buffers should match */

473 if (ACPI_MEMCMP (NewBuffer, BufferDesc->Buffer.Pointer,
474 BufferDesc->Buffer.Length))
475 {
476 AcpiOsPrintf ("Converted _PLD buffer does not compare. New:\n");

478 AcpiUtDumpBuffer (NewBuffer,
479 BufferDesc->Buffer.Length, DB_BYTE_DISPLAY, 0);
480 }

482 /* First 32-bit dword */

484 AcpiOsPrintf (ACPI_PLD_OUTPUT, "Revision", PldInfo->Revision);
485 AcpiOsPrintf (ACPI_PLD_OUTPUT, "IgnoreColor", PldInfo->IgnoreColor);
486 AcpiOsPrintf (ACPI_PLD_OUTPUT, "Color", PldInfo->Color);

488 /* Second 32-bit dword */

490 AcpiOsPrintf (ACPI_PLD_OUTPUT, "Width", PldInfo->Width);
491 AcpiOsPrintf (ACPI_PLD_OUTPUT, "Height", PldInfo->Height);

493 /* Third 32-bit dword */

495 AcpiOsPrintf (ACPI_PLD_OUTPUT, "UserVisible", PldInfo->UserVisible);
496 AcpiOsPrintf (ACPI_PLD_OUTPUT, "Dock", PldInfo->Dock);
497 AcpiOsPrintf (ACPI_PLD_OUTPUT, "Lid", PldInfo->Lid);
498 AcpiOsPrintf (ACPI_PLD_OUTPUT, "Panel", PldInfo->Panel);
499 AcpiOsPrintf (ACPI_PLD_OUTPUT, "VerticalPosition", PldInfo->VerticalPosition
500 AcpiOsPrintf (ACPI_PLD_OUTPUT, "HorizontalPosition", PldInfo->HorizontalPosi
501 AcpiOsPrintf (ACPI_PLD_OUTPUT, "Shape", PldInfo->Shape);
502 AcpiOsPrintf (ACPI_PLD_OUTPUT, "GroupOrientation", PldInfo->GroupOrientation
503 AcpiOsPrintf (ACPI_PLD_OUTPUT, "GroupToken", PldInfo->GroupToken);
504 AcpiOsPrintf (ACPI_PLD_OUTPUT, "GroupPosition", PldInfo->GroupPosition);
505 AcpiOsPrintf (ACPI_PLD_OUTPUT, "Bay", PldInfo->Bay);

507 /* Fourth 32-bit dword */

509 AcpiOsPrintf (ACPI_PLD_OUTPUT, "Ejectable", PldInfo->Ejectable);
510 AcpiOsPrintf (ACPI_PLD_OUTPUT, "OspmEjectRequired", PldInfo->OspmEjectRequir
511 AcpiOsPrintf (ACPI_PLD_OUTPUT, "CabinetNumber", PldInfo->CabinetNumber);
512 AcpiOsPrintf (ACPI_PLD_OUTPUT, "CardCageNumber", PldInfo->CardCageNumber);
513 AcpiOsPrintf (ACPI_PLD_OUTPUT, "Reference", PldInfo->Reference);
514 AcpiOsPrintf (ACPI_PLD_OUTPUT, "Rotation", PldInfo->Rotation);
515 AcpiOsPrintf (ACPI_PLD_OUTPUT, "Order", PldInfo->Order);

517 /* Fifth 32-bit dword */

519 if (BufferDesc->Buffer.Length > 16)
520 {
521 AcpiOsPrintf (ACPI_PLD_OUTPUT, "VerticalOffset", PldInfo->VerticalOffset
522 AcpiOsPrintf (ACPI_PLD_OUTPUT, "HorizontalOffset", PldInfo->HorizontalOf
523 }

new/usr/src/common/acpica/components/debugger/dbconvert.c 9

525 ACPI_FREE (PldInfo);
526 ACPI_FREE (NewBuffer);
527 }

529 #endif /* ACPI_DEBUGGER */

new/usr/src/common/acpica/components/debugger/dbdisply.c 1

**
 32871 Thu Dec 26 13:48:41 2013
new/usr/src/common/acpica/components/debugger/dbdisply.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dbdisply - debug display commands
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "amlcode.h"
48 #include "acdispat.h"
49 #include "acnamesp.h"
50 #include "acparser.h"
51 #include "acinterp.h"
52 #include "acdebug.h"
53 #include "acdisasm.h"

56 #ifdef ACPI_DEBUGGER

58 #define _COMPONENT ACPI_CA_DEBUGGER
59 ACPI_MODULE_NAME ("dbdisply")

new/usr/src/common/acpica/components/debugger/dbdisply.c 2

61 /* Local prototypes */

63 static void
64 AcpiDbDumpParserDescriptor (
65 ACPI_PARSE_OBJECT *Op);

67 static void *
68 AcpiDbGetPointer (
69 void *Target);

71 static ACPI_STATUS
72 AcpiDbDisplayNonRootHandlers (
73 ACPI_HANDLE ObjHandle,
74 UINT32 NestingLevel,
75 void *Context,
76 void **ReturnValue);

78 /*
79 * System handler information.
80 * Used for Handlers command, in AcpiDbDisplayHandlers.
81 */
82 #define ACPI_PREDEFINED_PREFIX "%25s (%.2X) : "
83 #define ACPI_HANDLER_NAME_STRING "%30s : "
84 #define ACPI_HANDLER_PRESENT_STRING "%-9s (%p)\n"
85 #define ACPI_HANDLER_PRESENT_STRING2 "%-9s (%p)"
86 #define ACPI_HANDLER_NOT_PRESENT_STRING "%-9s\n"

88 /* All predefined Address Space IDs */

90 static ACPI_ADR_SPACE_TYPE AcpiGbl_SpaceIdList[] =
91 {
92 ACPI_ADR_SPACE_SYSTEM_MEMORY,
93 ACPI_ADR_SPACE_SYSTEM_IO,
94 ACPI_ADR_SPACE_PCI_CONFIG,
95 ACPI_ADR_SPACE_EC,
96 ACPI_ADR_SPACE_SMBUS,
97 ACPI_ADR_SPACE_CMOS,
98 ACPI_ADR_SPACE_PCI_BAR_TARGET,
99 ACPI_ADR_SPACE_IPMI,
100 ACPI_ADR_SPACE_GPIO,
101 ACPI_ADR_SPACE_GSBUS,
102 ACPI_ADR_SPACE_DATA_TABLE,
103 ACPI_ADR_SPACE_FIXED_HARDWARE
104 };

______unchanged_portion_omitted_

115 static ACPI_HANDLER_INFO AcpiGbl_HandlerList[] =
116 {
117 {&AcpiGbl_GlobalNotify[0].Handler, "System Notifications"},
118 {&AcpiGbl_GlobalNotify[1].Handler, "Device Notifications"},
108 {&AcpiGbl_SystemNotify.Handler, "System Notifications"},
109 {&AcpiGbl_DeviceNotify.Handler, "Device Notifications"},
119 {&AcpiGbl_TableHandler, "ACPI Table Events"},
120 {&AcpiGbl_ExceptionHandler, "Control Method Exceptions"},
121 {&AcpiGbl_InterfaceHandler, "OSI Invocations"}
122 };

125 /***
126 *
127 * FUNCTION: AcpiDbGetPointer
128 *
129 * PARAMETERS: Target - Pointer to string to be converted
130 *
131 * RETURN: Converted pointer

new/usr/src/common/acpica/components/debugger/dbdisply.c 3

132 *
133 * DESCRIPTION: Convert an ascii pointer value to a real value
134 *
135 **/

137 static void *
138 AcpiDbGetPointer (
139 void *Target)
140 {
141 void *ObjPtr;
142 ACPI_SIZE Address;

145 Address = ACPI_STRTOUL (Target, NULL, 16);
146 ObjPtr = ACPI_TO_POINTER (Address);
135 ObjPtr = ACPI_TO_POINTER (ACPI_STRTOUL (Target, NULL, 16));
147 return (ObjPtr);
148 }

______unchanged_portion_omitted_

184 /***
185 *
186 * FUNCTION: AcpiDbDecodeAndDisplayObject
187 *
188 * PARAMETERS: Target - String with object to be displayed. Names
189 * and hex pointers are supported.
190 * OutputType - Byte, Word, Dword, or Qword (B|W|D|Q)
191 *
192 * RETURN: None
193 *
194 * DESCRIPTION: Display a formatted ACPI object
195 *
196 **/

198 void
199 AcpiDbDecodeAndDisplayObject (
200 char *Target,
201 char *OutputType)
202 {
203 void *ObjPtr;
204 ACPI_NAMESPACE_NODE *Node;
205 ACPI_OPERAND_OBJECT *ObjDesc;
206 UINT32 Display = DB_BYTE_DISPLAY;
207 char Buffer[80];
208 ACPI_BUFFER RetBuf;
209 ACPI_STATUS Status;
210 UINT32 Size;

213 if (!Target)
214 {
215 return;
216 }

218 /* Decode the output type */

220 if (OutputType)
221 {
222 AcpiUtStrupr (OutputType);
223 if (OutputType[0] == ’W’)
224 {
225 Display = DB_WORD_DISPLAY;
226 }
227 else if (OutputType[0] == ’D’)
228 {

new/usr/src/common/acpica/components/debugger/dbdisply.c 4

229 Display = DB_DWORD_DISPLAY;
230 }
231 else if (OutputType[0] == ’Q’)
232 {
233 Display = DB_QWORD_DISPLAY;
234 }
235 }

237 RetBuf.Length = sizeof (Buffer);
238 RetBuf.Pointer = Buffer;

240 /* Differentiate between a number and a name */

242 if ((Target[0] >= 0x30) && (Target[0] <= 0x39))
243 {
244 ObjPtr = AcpiDbGetPointer (Target);
245 if (!AcpiOsReadable (ObjPtr, 16))
246 {
247 AcpiOsPrintf ("Address %p is invalid in this address space\n",
248 ObjPtr);
249 return;
250 }

252 /* Decode the object type */

254 switch (ACPI_GET_DESCRIPTOR_TYPE (ObjPtr))
255 {
256 case ACPI_DESC_TYPE_NAMED:

258 /* This is a namespace Node */

260 if (!AcpiOsReadable (ObjPtr, sizeof (ACPI_NAMESPACE_NODE)))
261 {
262 AcpiOsPrintf (
263 "Cannot read entire Named object at address %p\n", ObjPtr);
264 return;
265 }

267 Node = ObjPtr;
268 goto DumpNode;

270 case ACPI_DESC_TYPE_OPERAND:

272 /* This is a ACPI OPERAND OBJECT */

274 if (!AcpiOsReadable (ObjPtr, sizeof (ACPI_OPERAND_OBJECT)))
275 {
276 AcpiOsPrintf ("Cannot read entire ACPI object at address %p\n",
277 ObjPtr);
278 return;
279 }

281 AcpiUtDebugDumpBuffer (ObjPtr, sizeof (ACPI_OPERAND_OBJECT), Display
271 AcpiUtDumpBuffer (ObjPtr, sizeof (ACPI_OPERAND_OBJECT), Display,
282 ACPI_UINT32_MAX);
283 AcpiExDumpObjectDescriptor (ObjPtr, 1);
284 break;

286 case ACPI_DESC_TYPE_PARSER:

288 /* This is a Parser Op object */

290 if (!AcpiOsReadable (ObjPtr, sizeof (ACPI_PARSE_OBJECT)))
291 {

new/usr/src/common/acpica/components/debugger/dbdisply.c 5

292 AcpiOsPrintf (
293 "Cannot read entire Parser object at address %p\n", ObjPtr);
294 return;
295 }

297 AcpiUtDebugDumpBuffer (ObjPtr, sizeof (ACPI_PARSE_OBJECT), Display,
288 AcpiUtDumpBuffer (ObjPtr, sizeof (ACPI_PARSE_OBJECT), Display,
298 ACPI_UINT32_MAX);
299 AcpiDbDumpParserDescriptor ((ACPI_PARSE_OBJECT *) ObjPtr);
300 break;

302 default:

304 /* Is not a recognizeable object */

306 Size = 16;
307 if (AcpiOsReadable (ObjPtr, 64))
308 {
309 Size = 64;
310 }

312 /* Just dump some memory */

314 AcpiUtDebugDumpBuffer (ObjPtr, Size, Display, ACPI_UINT32_MAX);
306 AcpiUtDumpBuffer (ObjPtr, Size, Display, ACPI_UINT32_MAX);
315 break;
316 }

318 return;
319 }

321 /* The parameter is a name string that must be resolved to a Named obj */

323 Node = AcpiDbLocalNsLookup (Target);
324 if (!Node)
325 {
326 return;
327 }

330 DumpNode:
331 /* Now dump the NS node */

333 Status = AcpiGetName (Node, ACPI_FULL_PATHNAME, &RetBuf);
334 if (ACPI_FAILURE (Status))
335 {
336 AcpiOsPrintf ("Could not convert name to pathname\n");
337 }

339 else
340 {
341 AcpiOsPrintf ("Object (%p) Pathname: %s\n",
342 Node, (char *) RetBuf.Pointer);
343 }

345 if (!AcpiOsReadable (Node, sizeof (ACPI_NAMESPACE_NODE)))
346 {
347 AcpiOsPrintf ("Invalid Named object at address %p\n", Node);
348 return;
349 }

351 AcpiUtDebugDumpBuffer ((void *) Node, sizeof (ACPI_NAMESPACE_NODE),
343 AcpiUtDumpBuffer ((void *) Node, sizeof (ACPI_NAMESPACE_NODE),
352 Display, ACPI_UINT32_MAX);
353 AcpiExDumpNamespaceNode (Node, 1);

new/usr/src/common/acpica/components/debugger/dbdisply.c 6

355 ObjDesc = AcpiNsGetAttachedObject (Node);
356 if (ObjDesc)
357 {
358 AcpiOsPrintf ("\nAttached Object (%p):\n", ObjDesc);
359 if (!AcpiOsReadable (ObjDesc, sizeof (ACPI_OPERAND_OBJECT)))
360 {
361 AcpiOsPrintf ("Invalid internal ACPI Object at address %p\n",
362 ObjDesc);
363 return;
364 }

366 AcpiUtDebugDumpBuffer ((void *) ObjDesc, sizeof (ACPI_OPERAND_OBJECT),
358 AcpiUtDumpBuffer ((void *) ObjDesc, sizeof (ACPI_OPERAND_OBJECT),
367 Display, ACPI_UINT32_MAX);
368 AcpiExDumpObjectDescriptor (ObjDesc, 1);
369 }
370 }

373 /***
374 *
375 * FUNCTION: AcpiDbDisplayMethodInfo
376 *
377 * PARAMETERS: StartOp - Root of the control method parse tree
378 *
379 * RETURN: None
380 *
381 * DESCRIPTION: Display information about the current method
382 *
383 **/

385 void
386 AcpiDbDisplayMethodInfo (
387 ACPI_PARSE_OBJECT *StartOp)
388 {
389 ACPI_WALK_STATE *WalkState;
390 ACPI_OPERAND_OBJECT *ObjDesc;
391 ACPI_NAMESPACE_NODE *Node;
392 ACPI_PARSE_OBJECT *RootOp;
393 ACPI_PARSE_OBJECT *Op;
394 const ACPI_OPCODE_INFO *OpInfo;
395 UINT32 NumOps = 0;
396 UINT32 NumOperands = 0;
397 UINT32 NumOperators = 0;
398 UINT32 NumRemainingOps = 0;
399 UINT32 NumRemainingOperands = 0;
400 UINT32 NumRemainingOperators = 0;
401 BOOLEAN CountRemaining = FALSE;

404 WalkState = AcpiDsGetCurrentWalkState (AcpiGbl_CurrentWalkList);
405 if (!WalkState)
406 {
407 AcpiOsPrintf ("There is no method currently executing\n");
408 return;
409 }

411 ObjDesc = WalkState->MethodDesc;
412 Node = WalkState->MethodNode;

414 AcpiOsPrintf ("Currently executing control method is [%4.4s]\n",
415 AcpiUtGetNodeName (Node));
416 AcpiOsPrintf ("%X Arguments, SyncLevel = %X\n",
417 (UINT32) ObjDesc->Method.ParamCount,
418 (UINT32) ObjDesc->Method.SyncLevel);

new/usr/src/common/acpica/components/debugger/dbdisply.c 7

421 RootOp = StartOp;
422 while (RootOp->Common.Parent)
423 {
424 RootOp = RootOp->Common.Parent;
425 }

427 Op = RootOp;

429 while (Op)
430 {
431 if (Op == StartOp)
432 {
433 CountRemaining = TRUE;
434 }

436 NumOps++;
437 if (CountRemaining)
438 {
439 NumRemainingOps++;
440 }

442 /* Decode the opcode */

444 OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);
445 switch (OpInfo->Class)
446 {
447 case AML_CLASS_ARGUMENT:

449 if (CountRemaining)
450 {
451 NumRemainingOperands++;
452 }

454 NumOperands++;
455 break;

457 case AML_CLASS_UNKNOWN:

459 /* Bad opcode or ASCII character */

461 continue;

463 default:

465 if (CountRemaining)
466 {
467 NumRemainingOperators++;
468 }

470 NumOperators++;
471 break;
472 }

474 Op = AcpiPsGetDepthNext (StartOp, Op);
475 }

477 AcpiOsPrintf (
478 "Method contains: %X AML Opcodes - %X Operators, %X Operands\n",
479 NumOps, NumOperators, NumOperands);

481 AcpiOsPrintf (
482 "Remaining to execute: %X AML Opcodes - %X Operators, %X Operands\n",
483 NumRemainingOps, NumRemainingOperators, NumRemainingOperands);
484 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/debugger/dbdisply.c 8

651 /***
652 *
653 * FUNCTION: AcpiDbDisplayObjectType
654 *
655 * PARAMETERS: Name - User entered NS node handle or name
644 * PARAMETERS: ObjectArg - User entered NS node handle
656 *
657 * RETURN: None
658 *
659 * DESCRIPTION: Display type of an arbitrary NS node
660 *
661 **/

663 void
664 AcpiDbDisplayObjectType (
665 char *Name)
654 char *ObjectArg)
666 {
667 ACPI_NAMESPACE_NODE *Node;
656 ACPI_HANDLE Handle;
668 ACPI_DEVICE_INFO *Info;
669 ACPI_STATUS Status;
670 UINT32 i;

673 Node = AcpiDbConvertToNode (Name);
674 if (!Node)
675 {
676 return;
677 }
662 Handle = ACPI_TO_POINTER (ACPI_STRTOUL (ObjectArg, NULL, 16));

679 Status = AcpiGetObjectInfo (ACPI_CAST_PTR (ACPI_HANDLE, Node), &Info);
664 Status = AcpiGetObjectInfo (Handle, &Info);
680 if (ACPI_FAILURE (Status))
681 {
682 AcpiOsPrintf ("Could not get object info, %s\n",
683 AcpiFormatException (Status));
684 return;
685 }

687 if (Info->Valid & ACPI_VALID_ADR)
688 {
689 AcpiOsPrintf ("ADR: %8.8X%8.8X, STA: %8.8X, Flags: %X\n",
690 ACPI_FORMAT_UINT64 (Info->Address),
691 Info->CurrentStatus, Info->Flags);
692 }
693 if (Info->Valid & ACPI_VALID_SXDS)
694 {

695 AcpiOsPrintf ("S1D-%2.2X S2D-%2.2X S3D-%2.2X S4D-%2.2X\n",
696 Info->HighestDstates[0], Info->HighestDstates[1],
697 Info->HighestDstates[2], Info->HighestDstates[3]);
698 }
699 if (Info->Valid & ACPI_VALID_SXWS)
700 {

701 AcpiOsPrintf ("S0W-%2.2X S1W-%2.2X S2W-%2.2X S3W-%2.2X S4W-%2.2X\n",
702 Info->LowestDstates[0], Info->LowestDstates[1],
703 Info->LowestDstates[2], Info->LowestDstates[3],
704 Info->LowestDstates[4]);
705 }

707 if (Info->Valid & ACPI_VALID_HID)

new/usr/src/common/acpica/components/debugger/dbdisply.c 9

708 {
709 AcpiOsPrintf ("HID: %s\n", Info->HardwareId.String);
710 }
711 if (Info->Valid & ACPI_VALID_UID)
712 {
713 AcpiOsPrintf ("UID: %s\n", Info->UniqueId.String);
714 }
715 if (Info->Valid & ACPI_VALID_SUB)
716 {
717 AcpiOsPrintf ("SUB: %s\n", Info->SubsystemId.String);
718 }
719 if (Info->Valid & ACPI_VALID_CID)
720 {
721 for (i = 0; i < Info->CompatibleIdList.Count; i++)
722 {
723 AcpiOsPrintf ("CID %u: %s\n", i,
724 Info->CompatibleIdList.Ids[i].String);
725 }
726 }

728 ACPI_FREE (Info);
729 }

______unchanged_portion_omitted_

797 #if (!ACPI_REDUCED_HARDWARE)
798 /***
799 *
800 * FUNCTION: AcpiDbDisplayGpes
801 *
802 * PARAMETERS: None
803 *
804 * RETURN: None
805 *
806 * DESCRIPTION: Display the current GPE structures
807 *
808 **/

810 void
811 AcpiDbDisplayGpes (
812 void)
813 {
814 ACPI_GPE_BLOCK_INFO *GpeBlock;
815 ACPI_GPE_XRUPT_INFO *GpeXruptInfo;
816 ACPI_GPE_EVENT_INFO *GpeEventInfo;
817 ACPI_GPE_REGISTER_INFO *GpeRegisterInfo;
818 char *GpeType;
819 ACPI_GPE_NOTIFY_INFO *Notify;
820 UINT32 GpeIndex;
821 UINT32 Block = 0;
822 UINT32 i;
823 UINT32 j;
824 UINT32 Count;
825 char Buffer[80];
826 ACPI_BUFFER RetBuf;
827 ACPI_STATUS Status;

830 RetBuf.Length = sizeof (Buffer);
831 RetBuf.Pointer = Buffer;

833 Block = 0;

835 /* Walk the GPE lists */

837 GpeXruptInfo = AcpiGbl_GpeXruptListHead;

new/usr/src/common/acpica/components/debugger/dbdisply.c 10

838 while (GpeXruptInfo)
839 {
840 GpeBlock = GpeXruptInfo->GpeBlockListHead;
841 while (GpeBlock)
842 {
843 Status = AcpiGetName (GpeBlock->Node, ACPI_FULL_PATHNAME, &RetBuf);
844 if (ACPI_FAILURE (Status))
845 {
846 AcpiOsPrintf ("Could not convert name to pathname\n");
847 }

849 if (GpeBlock->Node == AcpiGbl_FadtGpeDevice)
850 {
851 GpeType = "FADT-defined GPE block";
852 }
853 else
854 {
855 GpeType = "GPE Block Device";
856 }

858 AcpiOsPrintf ("\nBlock %u - Info %p DeviceNode %p [%s] - %s\n",
859 Block, GpeBlock, GpeBlock->Node, Buffer, GpeType);

861 AcpiOsPrintf (" Registers: %u (%u GPEs)\n",
862 GpeBlock->RegisterCount, GpeBlock->GpeCount);

864 AcpiOsPrintf (" GPE range: 0x%X to 0x%X on interrupt %u\n",
865 GpeBlock->BlockBaseNumber,
866 GpeBlock->BlockBaseNumber + (GpeBlock->GpeCount - 1),
867 GpeXruptInfo->InterruptNumber);

869 AcpiOsPrintf (
870 " RegisterInfo: %p Status %8.8X%8.8X Enable %8.8X%8.8X\n",
871 GpeBlock->RegisterInfo,
872 ACPI_FORMAT_UINT64 (GpeBlock->RegisterInfo->StatusAddress.Addres
873 ACPI_FORMAT_UINT64 (GpeBlock->RegisterInfo->EnableAddress.Addres

875 AcpiOsPrintf (" EventInfo: %p\n", GpeBlock->EventInfo);

877 /* Examine each GPE Register within the block */

879 for (i = 0; i < GpeBlock->RegisterCount; i++)
880 {
881 GpeRegisterInfo = &GpeBlock->RegisterInfo[i];

883 AcpiOsPrintf (
884 " Reg %u: (GPE %.2X-%.2X) RunEnable %2.2X WakeEnable %2.
885 " Status %8.8X%8.8X Enable %8.8X%8.8X\n",
886 i, GpeRegisterInfo->BaseGpeNumber,
887 GpeRegisterInfo->BaseGpeNumber + (ACPI_GPE_REGISTER_WIDTH -
888 GpeRegisterInfo->EnableForRun,
889 GpeRegisterInfo->EnableForWake,
890 ACPI_FORMAT_UINT64 (GpeRegisterInfo->StatusAddress.Address),
891 ACPI_FORMAT_UINT64 (GpeRegisterInfo->EnableAddress.Address))

893 /* Now look at the individual GPEs in this byte register */

895 for (j = 0; j < ACPI_GPE_REGISTER_WIDTH; j++)
896 {
897 GpeIndex = (i * ACPI_GPE_REGISTER_WIDTH) + j;
898 GpeEventInfo = &GpeBlock->EventInfo[GpeIndex];

900 if ((GpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK) ==
901 ACPI_GPE_DISPATCH_NONE)
902 {
903 /* This GPE is not used (no method or handler), ignore i

new/usr/src/common/acpica/components/debugger/dbdisply.c 11

905 continue;
906 }

908 AcpiOsPrintf (
909 " GPE %.2X: %p RunRefs %2.2X Flags %2.2X (",
910 GpeBlock->BlockBaseNumber + GpeIndex, GpeEventInfo,
911 GpeEventInfo->RuntimeCount, GpeEventInfo->Flags);

913 /* Decode the flags byte */

915 if (GpeEventInfo->Flags & ACPI_GPE_LEVEL_TRIGGERED)
916 {
917 AcpiOsPrintf ("Level, ");
918 }
919 else
920 {
921 AcpiOsPrintf ("Edge, ");
922 }

924 if (GpeEventInfo->Flags & ACPI_GPE_CAN_WAKE)
925 {
926 AcpiOsPrintf ("CanWake, ");
927 }
928 else
929 {
930 AcpiOsPrintf ("RunOnly, ");
931 }

933 switch (GpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK)
934 {
935 case ACPI_GPE_DISPATCH_NONE:

937 AcpiOsPrintf ("NotUsed");
938 break;

940 case ACPI_GPE_DISPATCH_METHOD:

942 AcpiOsPrintf ("Method");
943 break;
944 case ACPI_GPE_DISPATCH_HANDLER:

946 AcpiOsPrintf ("Handler");
947 break;

949 case ACPI_GPE_DISPATCH_NOTIFY:

951 Count = 0;
952 Notify = GpeEventInfo->Dispatch.NotifyList;
953 while (Notify)
954 {
955 Count++;
956 Notify = Notify->Next;
957 }
958 AcpiOsPrintf ("Implicit Notify on %u devices", Count);
916 AcpiOsPrintf ("Notify");
959 break;

961 default:

963 AcpiOsPrintf ("UNKNOWN: %X",
964 GpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK);
965 break;
966 }

968 AcpiOsPrintf (")\n");

new/usr/src/common/acpica/components/debugger/dbdisply.c 12

969 }
970 }
971 Block++;
972 GpeBlock = GpeBlock->Next;
973 }
974 GpeXruptInfo = GpeXruptInfo->Next;
975 }
976 }
977 #endif /* !ACPI_REDUCED_HARDWARE */

980 /***
981 *
982 * FUNCTION: AcpiDbDisplayHandlers
983 *
984 * PARAMETERS: None
985 *
986 * RETURN: None
987 *
988 * DESCRIPTION: Display the currently installed global handlers
989 *
990 **/

992 void
993 AcpiDbDisplayHandlers (
994 void)
995 {
996 ACPI_OPERAND_OBJECT *ObjDesc;
997 ACPI_OPERAND_OBJECT *HandlerObj;
998 ACPI_ADR_SPACE_TYPE SpaceId;
999 UINT32 i;

1002 /* Operation region handlers */

1004 AcpiOsPrintf ("\nOperation Region Handlers at the namespace root:\n");
959 AcpiOsPrintf ("\nOperation Region Handlers:\n");

1006 ObjDesc = AcpiNsGetAttachedObject (AcpiGbl_RootNode);
1007 if (ObjDesc)
1008 {
1009 for (i = 0; i < ACPI_ARRAY_LENGTH (AcpiGbl_SpaceIdList); i++)
1010 {
1011 SpaceId = AcpiGbl_SpaceIdList[i];
1012 HandlerObj = ObjDesc->Device.Handler;

1014 AcpiOsPrintf (ACPI_PREDEFINED_PREFIX,
1015 AcpiUtGetRegionName ((UINT8) SpaceId), SpaceId);

1017 while (HandlerObj)
1018 {
1019 if (AcpiGbl_SpaceIdList[i] == HandlerObj->AddressSpace.SpaceId)
974 if (i == HandlerObj->AddressSpace.SpaceId)
1020 {
1021 AcpiOsPrintf (ACPI_HANDLER_PRESENT_STRING,
1022 (HandlerObj->AddressSpace.HandlerFlags &
1023 ACPI_ADDR_HANDLER_DEFAULT_INSTALLED) ? "Default" : "
1024 HandlerObj->AddressSpace.Handler);
1025 goto FoundHandler;
1026 }

1028 HandlerObj = HandlerObj->AddressSpace.Next;
1029 }

1031 /* There is no handler for this SpaceId */

new/usr/src/common/acpica/components/debugger/dbdisply.c 13

1033 AcpiOsPrintf ("None\n");

1035 FoundHandler:;
1036 }

1038 /* Find all handlers for user-defined SpaceIDs */

1040 HandlerObj = ObjDesc->Device.Handler;
1041 while (HandlerObj)
1042 {
1043 if (HandlerObj->AddressSpace.SpaceId >= ACPI_USER_REGION_BEGIN)
1044 {
1045 AcpiOsPrintf (ACPI_PREDEFINED_PREFIX,
1046 "User-defined ID", HandlerObj->AddressSpace.SpaceId);
1047 AcpiOsPrintf (ACPI_HANDLER_PRESENT_STRING,
1048 (HandlerObj->AddressSpace.HandlerFlags &
1049 ACPI_ADDR_HANDLER_DEFAULT_INSTALLED) ? "Default" : "User
1050 HandlerObj->AddressSpace.Handler);
1051 }

1053 HandlerObj = HandlerObj->AddressSpace.Next;
1054 }
1055 }

1057 #if (!ACPI_REDUCED_HARDWARE)

1059 /* Fixed event handlers */

1061 AcpiOsPrintf ("\nFixed Event Handlers:\n");

1063 for (i = 0; i < ACPI_NUM_FIXED_EVENTS; i++)
1064 {
1065 AcpiOsPrintf (ACPI_PREDEFINED_PREFIX, AcpiUtGetEventName (i), i);
1066 if (AcpiGbl_FixedEventHandlers[i].Handler)
1067 {
1068 AcpiOsPrintf (ACPI_HANDLER_PRESENT_STRING, "User",
1069 AcpiGbl_FixedEventHandlers[i].Handler);
1070 }
1071 else
1072 {
1073 AcpiOsPrintf (ACPI_HANDLER_NOT_PRESENT_STRING, "None");
1074 }
1075 }

1077 #endif /* !ACPI_REDUCED_HARDWARE */

1079 /* Miscellaneous global handlers */

1081 AcpiOsPrintf ("\nMiscellaneous Global Handlers:\n");

1083 for (i = 0; i < ACPI_ARRAY_LENGTH (AcpiGbl_HandlerList); i++)
1084 {
1085 AcpiOsPrintf (ACPI_HANDLER_NAME_STRING, AcpiGbl_HandlerList[i].Name);
1086 if (AcpiGbl_HandlerList[i].Handler)
1087 {
1088 AcpiOsPrintf (ACPI_HANDLER_PRESENT_STRING, "User",
1089 AcpiGbl_HandlerList[i].Handler);
1090 }
1091 else
1092 {
1093 AcpiOsPrintf (ACPI_HANDLER_NOT_PRESENT_STRING, "None");
1094 }
1095 }

1098 /* Other handlers that are installed throughout the namespace */

new/usr/src/common/acpica/components/debugger/dbdisply.c 14

1100 AcpiOsPrintf ("\nOperation Region Handlers for specific devices:\n");

1102 (void) AcpiWalkNamespace (ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
1103 ACPI_UINT32_MAX, AcpiDbDisplayNonRootHandlers,
1104 NULL, NULL, NULL);
1105 }

1108 /***
1109 *
1110 * FUNCTION: AcpiDbDisplayNonRootHandlers
1111 *
1112 * PARAMETERS: ACPI_WALK_CALLBACK
1113 *
1114 * RETURN: Status
1115 *
1116 * DESCRIPTION: Display information about all handlers installed for a
1117 * device object.
1118 *
1119 **/

1121 static ACPI_STATUS
1122 AcpiDbDisplayNonRootHandlers (
1123 ACPI_HANDLE ObjHandle,
1124 UINT32 NestingLevel,
1125 void *Context,
1126 void **ReturnValue)
1127 {
1128 ACPI_NAMESPACE_NODE *Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, ObjHandl
1129 ACPI_OPERAND_OBJECT *ObjDesc;
1130 ACPI_OPERAND_OBJECT *HandlerObj;
1131 char *Pathname;

1134 ObjDesc = AcpiNsGetAttachedObject (Node);
1135 if (!ObjDesc)
1136 {
1137 return (AE_OK);
1138 }

1140 Pathname = AcpiNsGetExternalPathname (Node);
1141 if (!Pathname)
1142 {
1143 return (AE_OK);
1144 }

1146 /* Display all handlers associated with this device */

1148 HandlerObj = ObjDesc->Device.Handler;
1149 while (HandlerObj)
1150 {
1151 AcpiOsPrintf (ACPI_PREDEFINED_PREFIX,
1152 AcpiUtGetRegionName ((UINT8) HandlerObj->AddressSpace.SpaceId),
1153 HandlerObj->AddressSpace.SpaceId);

1155 AcpiOsPrintf (ACPI_HANDLER_PRESENT_STRING2,
1156 (HandlerObj->AddressSpace.HandlerFlags &
1157 ACPI_ADDR_HANDLER_DEFAULT_INSTALLED) ? "Default" : "User",
1158 HandlerObj->AddressSpace.Handler);

1160 AcpiOsPrintf (" Device Name: %s (%p)\n", Pathname, Node);

1162 HandlerObj = HandlerObj->AddressSpace.Next;
1163 }

new/usr/src/common/acpica/components/debugger/dbdisply.c 15

1165 ACPI_FREE (Pathname);
1166 return (AE_OK);
1167 }

1169 #endif /* ACPI_DEBUGGER */

new/usr/src/common/acpica/components/debugger/dbexec.c 1

**
 23658 Thu Dec 26 13:48:41 2013
new/usr/src/common/acpica/components/debugger/dbexec.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dbexec - debugger control method execution
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acdebug.h"
48 #include "acnamesp.h"

50 #ifdef ACPI_DEBUGGER

52 #define _COMPONENT ACPI_CA_DEBUGGER
53 ACPI_MODULE_NAME ("dbexec")

56 static ACPI_DB_METHOD_INFO AcpiGbl_DbMethodInfo;

58 /* Local prototypes */

new/usr/src/common/acpica/components/debugger/dbexec.c 2

60 static ACPI_STATUS
61 AcpiDbExecuteMethod (
62 ACPI_DB_METHOD_INFO *Info,
63 ACPI_BUFFER *ReturnObj);

65 static ACPI_STATUS
66 AcpiDbExecuteSetup (
67 ACPI_DB_METHOD_INFO *Info);

69 static UINT32
70 AcpiDbGetOutstandingAllocations (
71 void);

73 static void ACPI_SYSTEM_XFACE
74 AcpiDbMethodThread (
75 void *Context);

77 static ACPI_STATUS
78 AcpiDbExecutionWalk (
79 ACPI_HANDLE ObjHandle,
80 UINT32 NestingLevel,
81 void *Context,
82 void **ReturnValue);

85 /***
86 *
87 * FUNCTION: AcpiDbDeleteObjects
88 *
89 * PARAMETERS: Count - Count of objects in the list
90 * Objects - Array of ACPI_OBJECTs to be deleted
91 *
92 * RETURN: None
93 *
94 * DESCRIPTION: Delete a list of ACPI_OBJECTS. Handles packages and nested
95 * packages via recursion.
96 *
97 **/

99 void
100 AcpiDbDeleteObjects (
101 UINT32 Count,
102 ACPI_OBJECT *Objects)
103 {
104 UINT32 i;

107 for (i = 0; i < Count; i++)
108 {
109 switch (Objects[i].Type)
110 {
111 case ACPI_TYPE_BUFFER:

113 ACPI_FREE (Objects[i].Buffer.Pointer);
114 break;

116 case ACPI_TYPE_PACKAGE:

118 /* Recursive call to delete package elements */

120 AcpiDbDeleteObjects (Objects[i].Package.Count,
121 Objects[i].Package.Elements);

123 /* Free the elements array */

125 ACPI_FREE (Objects[i].Package.Elements);

new/usr/src/common/acpica/components/debugger/dbexec.c 3

126 break;

128 default:

130 break;
131 }
132 }
133 }

136 /***
137 *
138 * FUNCTION: AcpiDbExecuteMethod
139 *
140 * PARAMETERS: Info - Valid info segment
141 * ReturnObj - Where to put return object
142 *
143 * RETURN: Status
144 *
145 * DESCRIPTION: Execute a control method.
146 *
147 **/

149 static ACPI_STATUS
150 AcpiDbExecuteMethod (
151 ACPI_DB_METHOD_INFO *Info,
152 ACPI_BUFFER *ReturnObj)
153 {
154 ACPI_STATUS Status;
155 ACPI_OBJECT_LIST ParamObjects;
156 ACPI_OBJECT Params[ACPI_DEBUGGER_MAX_ARGS + 1];
157 UINT32 i;

160 ACPI_FUNCTION_TRACE (DbExecuteMethod);

163 if (AcpiGbl_DbOutputToFile && !AcpiDbgLevel)
164 {
165 AcpiOsPrintf ("Warning: debug output is not enabled!\n");
166 }

168 ParamObjects.Count = 0;
169 ParamObjects.Pointer = NULL;

171 /* Pass through any command-line arguments */

173 if (Info->Args && Info->Args[0])
174 {
175 /* Get arguments passed on the command line */

177 for (i = 0; (Info->Args[i] && *(Info->Args[i])); i++)
178 {
179 /* Convert input string (token) to an actual ACPI_OBJECT */

181 Status = AcpiDbConvertToObject (Info->Types[i],
182 Info->Args[i], &Params[i]);
183 if (ACPI_FAILURE (Status))
184 {
185 ACPI_EXCEPTION ((AE_INFO, Status,
186 "While parsing method arguments"));
187 goto Cleanup;
188 }
189 }

191 ParamObjects.Count = i;

new/usr/src/common/acpica/components/debugger/dbexec.c 4

192 ParamObjects.Pointer = Params;
193 }

195 /* Prepare for a return object of arbitrary size */

197 ReturnObj->Pointer = AcpiGbl_DbBuffer;
198 ReturnObj->Length = ACPI_DEBUG_BUFFER_SIZE;

200 /* Do the actual method execution */

202 AcpiGbl_MethodExecuting = TRUE;
203 Status = AcpiEvaluateObject (NULL, Info->Pathname,
204 &ParamObjects, ReturnObj);

206 AcpiGbl_CmSingleStep = FALSE;
207 AcpiGbl_MethodExecuting = FALSE;

209 if (ACPI_FAILURE (Status))
210 {
211 ACPI_EXCEPTION ((AE_INFO, Status,
212 "while executing %s from debugger", Info->Pathname));

214 if (Status == AE_BUFFER_OVERFLOW)
215 {
216 ACPI_ERROR ((AE_INFO,
217 "Possible overflow of internal debugger buffer (size 0x%X needed
218 ACPI_DEBUG_BUFFER_SIZE, (UINT32) ReturnObj->Length));
219 }
220 }

222 Cleanup:
223 AcpiDbDeleteObjects (ParamObjects.Count, Params);
224 return_ACPI_STATUS (Status);
225 }

228 /***
229 *
230 * FUNCTION: AcpiDbExecuteSetup
231 *
232 * PARAMETERS: Info - Valid method info
233 *
234 * RETURN: None
235 *
236 * DESCRIPTION: Setup info segment prior to method execution
237 *
238 **/

240 static ACPI_STATUS
241 AcpiDbExecuteSetup (
242 ACPI_DB_METHOD_INFO *Info)
243 {
244 ACPI_STATUS Status;

247 ACPI_FUNCTION_NAME (DbExecuteSetup);

250 /* Catenate the current scope to the supplied name */

252 Info->Pathname[0] = 0;
253 if ((Info->Name[0] != ’\\’) &&
254 (Info->Name[0] != ’/’))
255 {
256 if (AcpiUtSafeStrcat (Info->Pathname, sizeof (Info->Pathname),
257 AcpiGbl_DbScopeBuf))

new/usr/src/common/acpica/components/debugger/dbexec.c 5

258 {
259 Status = AE_BUFFER_OVERFLOW;
260 goto ErrorExit;
261 }
262 }

264 if (AcpiUtSafeStrcat (Info->Pathname, sizeof (Info->Pathname),
265 Info->Name))
266 {
267 Status = AE_BUFFER_OVERFLOW;
268 goto ErrorExit;
269 }

271 AcpiDbPrepNamestring (Info->Pathname);

273 AcpiDbSetOutputDestination (ACPI_DB_DUPLICATE_OUTPUT);
274 AcpiOsPrintf ("Evaluating %s\n", Info->Pathname);

276 if (Info->Flags & EX_SINGLE_STEP)
277 {
278 AcpiGbl_CmSingleStep = TRUE;
279 AcpiDbSetOutputDestination (ACPI_DB_CONSOLE_OUTPUT);
280 }

282 else
283 {
284 /* No single step, allow redirection to a file */

286 AcpiDbSetOutputDestination (ACPI_DB_REDIRECTABLE_OUTPUT);
287 }

289 return (AE_OK);

291 ErrorExit:

293 ACPI_EXCEPTION ((AE_INFO, Status, "During setup for method execution"));
294 return (Status);
295 }

298 #ifdef ACPI_DBG_TRACK_ALLOCATIONS
299 UINT32
300 AcpiDbGetCacheInfo (
301 ACPI_MEMORY_LIST *Cache)
302 {

304 return (Cache->TotalAllocated - Cache->TotalFreed - Cache->CurrentDepth);
305 }
306 #endif

308 /***
309 *
310 * FUNCTION: AcpiDbGetOutstandingAllocations
311 *
312 * PARAMETERS: None
313 *
314 * RETURN: Current global allocation count minus cache entries
315 *
316 * DESCRIPTION: Determine the current number of "outstanding" allocations --
317 * those allocations that have not been freed and also are not
318 * in one of the various object caches.
319 *
320 **/

322 static UINT32
323 AcpiDbGetOutstandingAllocations (

new/usr/src/common/acpica/components/debugger/dbexec.c 6

324 void)
325 {
326 UINT32 Outstanding = 0;

328 #ifdef ACPI_DBG_TRACK_ALLOCATIONS

330 Outstanding += AcpiDbGetCacheInfo (AcpiGbl_StateCache);
331 Outstanding += AcpiDbGetCacheInfo (AcpiGbl_PsNodeCache);
332 Outstanding += AcpiDbGetCacheInfo (AcpiGbl_PsNodeExtCache);
333 Outstanding += AcpiDbGetCacheInfo (AcpiGbl_OperandCache);
334 #endif

336 return (Outstanding);
337 }

340 /***
341 *
342 * FUNCTION: AcpiDbExecutionWalk
343 *
344 * PARAMETERS: WALK_CALLBACK
345 *
346 * RETURN: Status
347 *
348 * DESCRIPTION: Execute a control method. Name is relative to the current
349 * scope.
350 *
351 **/

353 static ACPI_STATUS
354 AcpiDbExecutionWalk (
355 ACPI_HANDLE ObjHandle,
356 UINT32 NestingLevel,
357 void *Context,
358 void **ReturnValue)
359 {
360 ACPI_OPERAND_OBJECT *ObjDesc;
361 ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) ObjHandle;
362 ACPI_BUFFER ReturnObj;
363 ACPI_STATUS Status;

366 ObjDesc = AcpiNsGetAttachedObject (Node);
367 if (ObjDesc->Method.ParamCount)
368 {
369 return (AE_OK);
370 }

372 ReturnObj.Pointer = NULL;
373 ReturnObj.Length = ACPI_ALLOCATE_BUFFER;

375 AcpiNsPrintNodePathname (Node, "Evaluating");

377 /* Do the actual method execution */

379 AcpiOsPrintf ("\n");
380 AcpiGbl_MethodExecuting = TRUE;

382 Status = AcpiEvaluateObject (Node, NULL, NULL, &ReturnObj);

384 AcpiOsPrintf ("Evaluation of [%4.4s] returned %s\n", AcpiUtGetNodeName (Node
385 AcpiFormatException (Status));
386 AcpiGbl_MethodExecuting = FALSE;

388 return (AE_OK);
389 }

new/usr/src/common/acpica/components/debugger/dbexec.c 7

392 /***
393 *
394 * FUNCTION: AcpiDbExecute
395 *
396 * PARAMETERS: Name - Name of method to execute
397 * Args - Parameters to the method
398 * Flags - single step/no single step
399 *
400 * RETURN: None
401 *
402 * DESCRIPTION: Execute a control method. Name is relative to the current
403 * scope.
404 *
405 **/

407 void
408 AcpiDbExecute (
409 char *Name,
410 char **Args,
411 ACPI_OBJECT_TYPE *Types,
412 UINT32 Flags)
413 {
414 ACPI_STATUS Status;
415 ACPI_BUFFER ReturnObj;
416 char *NameString;

419 #ifdef ACPI_DEBUG_OUTPUT
420 UINT32 PreviousAllocations;
421 UINT32 Allocations;

424 /* Memory allocation tracking */

426 PreviousAllocations = AcpiDbGetOutstandingAllocations ();
427 #endif

429 if (*Name == ’*’)
430 {
431 (void) AcpiWalkNamespace (ACPI_TYPE_METHOD, ACPI_ROOT_OBJECT,
432 ACPI_UINT32_MAX, AcpiDbExecutionWalk, NULL, NULL, NULL);
433 return;
434 }
435 else
436 {
437 NameString = ACPI_ALLOCATE (ACPI_STRLEN (Name) + 1);
438 if (!NameString)
439 {
440 return;
441 }

443 ACPI_MEMSET (&AcpiGbl_DbMethodInfo, 0, sizeof (ACPI_DB_METHOD_INFO));

445 ACPI_STRCPY (NameString, Name);
446 AcpiUtStrupr (NameString);
447 AcpiGbl_DbMethodInfo.Name = NameString;
448 AcpiGbl_DbMethodInfo.Args = Args;
449 AcpiGbl_DbMethodInfo.Types = Types;
450 AcpiGbl_DbMethodInfo.Flags = Flags;

452 ReturnObj.Pointer = NULL;
453 ReturnObj.Length = ACPI_ALLOCATE_BUFFER;

455 Status = AcpiDbExecuteSetup (&AcpiGbl_DbMethodInfo);

new/usr/src/common/acpica/components/debugger/dbexec.c 8

456 if (ACPI_FAILURE (Status))
457 {
458 ACPI_FREE (NameString);
459 return;
460 }

462 /* Get the NS node, determines existence also */

464 Status = AcpiGetHandle (NULL, AcpiGbl_DbMethodInfo.Pathname,
465 &AcpiGbl_DbMethodInfo.Method);
466 if (ACPI_SUCCESS (Status))
467 {
468 Status = AcpiDbExecuteMethod (&AcpiGbl_DbMethodInfo, &ReturnObj);
469 }
470 ACPI_FREE (NameString);
471 }

473 /*
474 * Allow any handlers in separate threads to complete.
475 * (Such as Notify handlers invoked from AML executed above).
476 */
477 AcpiOsSleep ((UINT64) 10);

479 #ifdef ACPI_DEBUG_OUTPUT

481 /* Memory allocation tracking */

483 Allocations = AcpiDbGetOutstandingAllocations () - PreviousAllocations;

485 AcpiDbSetOutputDestination (ACPI_DB_DUPLICATE_OUTPUT);

487 if (Allocations > 0)
488 {
489 AcpiOsPrintf ("0x%X Outstanding allocations after evaluation of %s\n",
490 Allocations, AcpiGbl_DbMethodInfo.Pathname);
491 }
492 #endif

494 if (ACPI_FAILURE (Status))
495 {
496 AcpiOsPrintf ("Evaluation of %s failed with status %s\n",
497 AcpiGbl_DbMethodInfo.Pathname, AcpiFormatException (Status));
498 }
499 else
500 {
501 /* Display a return object, if any */

503 if (ReturnObj.Length)
504 {
505 AcpiOsPrintf (
506 "Evaluation of %s returned object %p, external buffer length %X\
507 AcpiGbl_DbMethodInfo.Pathname, ReturnObj.Pointer,
508 (UINT32) ReturnObj.Length);
509 AcpiDbDumpExternalObject (ReturnObj.Pointer, 1);

511 /* Dump a _PLD buffer if present */

513 if (ACPI_COMPARE_NAME ((ACPI_CAST_PTR (ACPI_NAMESPACE_NODE,
514 AcpiGbl_DbMethodInfo.Method)->Name.Ascii), METHOD_NAME__PLD)
515 {
516 AcpiDbDumpPldBuffer (ReturnObj.Pointer);
517 }
518 }
519 else
520 {
521 AcpiOsPrintf ("No object was returned from evaluation of %s\n",

new/usr/src/common/acpica/components/debugger/dbexec.c 9

522 AcpiGbl_DbMethodInfo.Pathname);
523 }
524 }

526 AcpiDbSetOutputDestination (ACPI_DB_CONSOLE_OUTPUT);
527 }

530 /***
531 *
532 * FUNCTION: AcpiDbMethodThread
533 *
534 * PARAMETERS: Context - Execution info segment
535 *
536 * RETURN: None
537 *
538 * DESCRIPTION: Debugger execute thread. Waits for a command line, then
539 * simply dispatches it.
540 *
541 **/

543 static void ACPI_SYSTEM_XFACE
544 AcpiDbMethodThread (
545 void *Context)
546 {
547 ACPI_STATUS Status;
548 ACPI_DB_METHOD_INFO *Info = Context;
549 ACPI_DB_METHOD_INFO LocalInfo;
550 UINT32 i;
551 UINT8 Allow;
552 ACPI_BUFFER ReturnObj;

555 /*
556 * AcpiGbl_DbMethodInfo.Arguments will be passed as method arguments.
557 * Prevent AcpiGbl_DbMethodInfo from being modified by multiple threads
558 * concurrently.
559 *
560 * Note: The arguments we are passing are used by the ASL test suite
561 * (aslts). Do not change them without updating the tests.
562 */
563 (void) AcpiOsWaitSemaphore (Info->InfoGate, 1, ACPI_WAIT_FOREVER);

565 if (Info->InitArgs)
566 {
567 AcpiDbUint32ToHexString (Info->NumCreated, Info->IndexOfThreadStr);
568 AcpiDbUint32ToHexString ((UINT32) AcpiOsGetThreadId (), Info->IdOfThread
569 }

571 if (Info->Threads && (Info->NumCreated < Info->NumThreads))
572 {
573 Info->Threads[Info->NumCreated++] = AcpiOsGetThreadId();
574 }

576 LocalInfo = *Info;
577 LocalInfo.Args = LocalInfo.Arguments;
578 LocalInfo.Arguments[0] = LocalInfo.NumThreadsStr;
579 LocalInfo.Arguments[1] = LocalInfo.IdOfThreadStr;
580 LocalInfo.Arguments[2] = LocalInfo.IndexOfThreadStr;
581 LocalInfo.Arguments[3] = NULL;

583 LocalInfo.Types = LocalInfo.ArgTypes;

585 (void) AcpiOsSignalSemaphore (Info->InfoGate, 1);

587 for (i = 0; i < Info->NumLoops; i++)

new/usr/src/common/acpica/components/debugger/dbexec.c 10

588 {
589 Status = AcpiDbExecuteMethod (&LocalInfo, &ReturnObj);
590 if (ACPI_FAILURE (Status))
591 {
592 AcpiOsPrintf ("%s During evaluation of %s at iteration %X\n",
593 AcpiFormatException (Status), Info->Pathname, i);
594 if (Status == AE_ABORT_METHOD)
595 {
596 break;
597 }
598 }

600 #if 0
601 if ((i % 100) == 0)
602 {
603 AcpiOsPrintf ("%u loops, Thread 0x%x\n", i, AcpiOsGetThreadId ());
604 }

606 if (ReturnObj.Length)
607 {
608 AcpiOsPrintf ("Evaluation of %s returned object %p Buflen %X\n",
609 Info->Pathname, ReturnObj.Pointer, (UINT32) ReturnObj.Length);
610 AcpiDbDumpExternalObject (ReturnObj.Pointer, 1);
611 }
612 #endif
613 }

615 /* Signal our completion */

617 Allow = 0;
618 (void) AcpiOsWaitSemaphore (Info->ThreadCompleteGate, 1, ACPI_WAIT_FOREVER);
619 Info->NumCompleted++;

621 if (Info->NumCompleted == Info->NumThreads)
622 {
623 /* Do signal for main thread once only */
624 Allow = 1;
625 }

627 (void) AcpiOsSignalSemaphore (Info->ThreadCompleteGate, 1);

629 if (Allow)
630 {
631 Status = AcpiOsSignalSemaphore (Info->MainThreadGate, 1);
632 if (ACPI_FAILURE (Status))
633 {
634 AcpiOsPrintf ("Could not signal debugger thread sync semaphore, %s\n
635 AcpiFormatException (Status));
636 }
637 }
638 }

641 /***
642 *
643 * FUNCTION: AcpiDbCreateExecutionThreads
644 *
645 * PARAMETERS: NumThreadsArg - Number of threads to create
646 * NumLoopsArg - Loop count for the thread(s)
647 * MethodNameArg - Control method to execute
648 *
649 * RETURN: None
650 *
651 * DESCRIPTION: Create threads to execute method(s)
652 *
653 **/

new/usr/src/common/acpica/components/debugger/dbexec.c 11

655 void
656 AcpiDbCreateExecutionThreads (
657 char *NumThreadsArg,
658 char *NumLoopsArg,
659 char *MethodNameArg)
660 {
661 ACPI_STATUS Status;
662 UINT32 NumThreads;
663 UINT32 NumLoops;
664 UINT32 i;
665 UINT32 Size;
666 ACPI_MUTEX MainThreadGate;
667 ACPI_MUTEX ThreadCompleteGate;
668 ACPI_MUTEX InfoGate;

671 /* Get the arguments */

673 NumThreads = ACPI_STRTOUL (NumThreadsArg, NULL, 0);
674 NumLoops = ACPI_STRTOUL (NumLoopsArg, NULL, 0);

676 if (!NumThreads || !NumLoops)
677 {
678 AcpiOsPrintf ("Bad argument: Threads %X, Loops %X\n",
679 NumThreads, NumLoops);
680 return;
681 }

683 /*
684 * Create the semaphore for synchronization of
685 * the created threads with the main thread.
686 */
687 Status = AcpiOsCreateSemaphore (1, 0, &MainThreadGate);
688 if (ACPI_FAILURE (Status))
689 {
690 AcpiOsPrintf ("Could not create semaphore for synchronization with the m
691 AcpiFormatException (Status));
692 return;
693 }

695 /*
696 * Create the semaphore for synchronization
697 * between the created threads.
698 */
699 Status = AcpiOsCreateSemaphore (1, 1, &ThreadCompleteGate);
700 if (ACPI_FAILURE (Status))
701 {
702 AcpiOsPrintf ("Could not create semaphore for synchronization between th
703 AcpiFormatException (Status));
704 (void) AcpiOsDeleteSemaphore (MainThreadGate);
705 return;
706 }

708 Status = AcpiOsCreateSemaphore (1, 1, &InfoGate);
709 if (ACPI_FAILURE (Status))
710 {
711 AcpiOsPrintf ("Could not create semaphore for synchronization of AcpiGbl
712 AcpiFormatException (Status));
713 (void) AcpiOsDeleteSemaphore (ThreadCompleteGate);
714 (void) AcpiOsDeleteSemaphore (MainThreadGate);
715 return;
716 }

718 ACPI_MEMSET (&AcpiGbl_DbMethodInfo, 0, sizeof (ACPI_DB_METHOD_INFO));

new/usr/src/common/acpica/components/debugger/dbexec.c 12

720 /* Array to store IDs of threads */

722 AcpiGbl_DbMethodInfo.NumThreads = NumThreads;
723 Size = sizeof (ACPI_THREAD_ID) * AcpiGbl_DbMethodInfo.NumThreads;
724 AcpiGbl_DbMethodInfo.Threads = AcpiOsAllocate (Size);
725 if (AcpiGbl_DbMethodInfo.Threads == NULL)
726 {
727 AcpiOsPrintf ("No memory for thread IDs array\n");
728 (void) AcpiOsDeleteSemaphore (MainThreadGate);
729 (void) AcpiOsDeleteSemaphore (ThreadCompleteGate);
730 (void) AcpiOsDeleteSemaphore (InfoGate);
731 return;
732 }
733 ACPI_MEMSET (AcpiGbl_DbMethodInfo.Threads, 0, Size);

735 /* Setup the context to be passed to each thread */

737 AcpiGbl_DbMethodInfo.Name = MethodNameArg;
738 AcpiGbl_DbMethodInfo.Flags = 0;
739 AcpiGbl_DbMethodInfo.NumLoops = NumLoops;
740 AcpiGbl_DbMethodInfo.MainThreadGate = MainThreadGate;
741 AcpiGbl_DbMethodInfo.ThreadCompleteGate = ThreadCompleteGate;
742 AcpiGbl_DbMethodInfo.InfoGate = InfoGate;

744 /* Init arguments to be passed to method */

746 AcpiGbl_DbMethodInfo.InitArgs = 1;
747 AcpiGbl_DbMethodInfo.Args = AcpiGbl_DbMethodInfo.Arguments;
748 AcpiGbl_DbMethodInfo.Arguments[0] = AcpiGbl_DbMethodInfo.NumThreadsStr;
749 AcpiGbl_DbMethodInfo.Arguments[1] = AcpiGbl_DbMethodInfo.IdOfThreadStr;
750 AcpiGbl_DbMethodInfo.Arguments[2] = AcpiGbl_DbMethodInfo.IndexOfThreadStr;
751 AcpiGbl_DbMethodInfo.Arguments[3] = NULL;

753 AcpiGbl_DbMethodInfo.Types = AcpiGbl_DbMethodInfo.ArgTypes;
754 AcpiGbl_DbMethodInfo.ArgTypes[0] = ACPI_TYPE_INTEGER;
755 AcpiGbl_DbMethodInfo.ArgTypes[1] = ACPI_TYPE_INTEGER;
756 AcpiGbl_DbMethodInfo.ArgTypes[2] = ACPI_TYPE_INTEGER;

758 AcpiDbUint32ToHexString (NumThreads, AcpiGbl_DbMethodInfo.NumThreadsStr);

760 Status = AcpiDbExecuteSetup (&AcpiGbl_DbMethodInfo);
761 if (ACPI_FAILURE (Status))
762 {
763 goto CleanupAndExit;
764 }

766 /* Get the NS node, determines existence also */

768 Status = AcpiGetHandle (NULL, AcpiGbl_DbMethodInfo.Pathname,
769 &AcpiGbl_DbMethodInfo.Method);
770 if (ACPI_FAILURE (Status))
771 {
772 AcpiOsPrintf ("%s Could not get handle for %s\n",
773 AcpiFormatException (Status), AcpiGbl_DbMethodInfo.Pathname);
774 goto CleanupAndExit;
775 }

777 /* Create the threads */

779 AcpiOsPrintf ("Creating %X threads to execute %X times each\n",
780 NumThreads, NumLoops);

782 for (i = 0; i < (NumThreads); i++)
783 {
784 Status = AcpiOsExecute (OSL_DEBUGGER_THREAD, AcpiDbMethodThread,
785 &AcpiGbl_DbMethodInfo);

new/usr/src/common/acpica/components/debugger/dbexec.c 13

786 if (ACPI_FAILURE (Status))
787 {
788 break;
789 }
790 }

792 /* Wait for all threads to complete */

794 (void) AcpiOsWaitSemaphore (MainThreadGate, 1, ACPI_WAIT_FOREVER);

796 AcpiDbSetOutputDestination (ACPI_DB_DUPLICATE_OUTPUT);
797 AcpiOsPrintf ("All threads (%X) have completed\n", NumThreads);
798 AcpiDbSetOutputDestination (ACPI_DB_CONSOLE_OUTPUT);

800 CleanupAndExit:

802 /* Cleanup and exit */

804 (void) AcpiOsDeleteSemaphore (MainThreadGate);
805 (void) AcpiOsDeleteSemaphore (ThreadCompleteGate);
806 (void) AcpiOsDeleteSemaphore (InfoGate);

808 AcpiOsFree (AcpiGbl_DbMethodInfo.Threads);
809 AcpiGbl_DbMethodInfo.Threads = NULL;
810 }

812 #endif /* ACPI_DEBUGGER */

new/usr/src/common/acpica/components/debugger/dbfileio.c 1

**
 15886 Thu Dec 26 13:48:42 2013
new/usr/src/common/acpica/components/debugger/dbfileio.c
update to acpica-unix2-20131218
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dbfileio - Debugger file I/O commands. These can’t usually
4 * be used when running the debugger in Ring 0 (Kernel mode)
5 *
6 **/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acdebug.h"

50 #ifdef ACPI_APPLICATION
51 #include "actables.h"
52 #endif

54 #ifdef ACPI_ASL_COMPILER
55 #include "aslcompiler.h"
56 #endif

new/usr/src/common/acpica/components/debugger/dbfileio.c 2

58 #if (defined ACPI_DEBUGGER || defined ACPI_DISASSEMBLER)

60 #define _COMPONENT ACPI_CA_DEBUGGER
61 ACPI_MODULE_NAME ("dbfileio")

59 /*
60 * NOTE: this is here for lack of a better place. It is used in all
61 * flavors of the debugger, need LCD file
62 */
63 #ifdef ACPI_APPLICATION
64 #include <stdio.h>
65 FILE *AcpiGbl_DebugFile = NULL;
66 #endif

63 #ifdef ACPI_DEBUGGER

65 /* Local prototypes */

67 #ifdef ACPI_APPLICATION

69 static ACPI_STATUS
70 AcpiDbCheckTextModeCorruption (
71 UINT8 *Table,
72 UINT32 TableLength,
73 UINT32 FileLength);

75 #endif

77 /***
78 *
79 * FUNCTION: AcpiDbCloseDebugFile
80 *
81 * PARAMETERS: None
82 *
83 * RETURN: None
84 *
85 * DESCRIPTION: If open, close the current debug output file
86 *
87 **/

89 void
90 AcpiDbCloseDebugFile (
91 void)
92 {

94 #ifdef ACPI_APPLICATION

96 if (AcpiGbl_DebugFile)
97 {
98 fclose (AcpiGbl_DebugFile);
99 AcpiGbl_DebugFile = NULL;
100 AcpiGbl_DbOutputToFile = FALSE;
101 AcpiOsPrintf ("Debug output file %s closed\n", AcpiGbl_DbDebugFilename);
102 }
103 #endif
104 }

107 /***
108 *
109 * FUNCTION: AcpiDbOpenDebugFile
110 *
111 * PARAMETERS: Name - Filename to open
112 *
113 * RETURN: None

new/usr/src/common/acpica/components/debugger/dbfileio.c 3

114 *
115 * DESCRIPTION: Open a file where debug output will be directed.
116 *
117 **/

119 void
120 AcpiDbOpenDebugFile (
121 char *Name)
122 {

124 #ifdef ACPI_APPLICATION

126 AcpiDbCloseDebugFile ();
127 AcpiGbl_DebugFile = fopen (Name, "w+");
128 if (!AcpiGbl_DebugFile)
134 if (AcpiGbl_DebugFile)
129 {
136 AcpiOsPrintf ("Debug output file %s opened\n", Name);
137 ACPI_STRCPY (AcpiGbl_DbDebugFilename, Name);
138 AcpiGbl_DbOutputToFile = TRUE;
139 }
140 else
141 {
130 AcpiOsPrintf ("Could not open debug file %s\n", Name);
131 return;
132 }

134 AcpiOsPrintf ("Debug output file %s opened\n", Name);
135 ACPI_STRNCPY (AcpiGbl_DbDebugFilename, Name,
136 sizeof (AcpiGbl_DbDebugFilename));
137 AcpiGbl_DbOutputToFile = TRUE;

139 #endif
140 }

______unchanged_portion_omitted_

220 /***
221 *
222 * FUNCTION: AcpiDbReadTable
223 *
224 * PARAMETERS: fp - File that contains table
225 * Table - Return value, buffer with table
226 * TableLength - Return value, length of table
227 *
228 * RETURN: Status
229 *
230 * DESCRIPTION: Load the DSDT from the file pointer
231 *
232 **/

234 static ACPI_STATUS
235 AcpiDbReadTable (
236 FILE *fp,
237 ACPI_TABLE_HEADER **Table,
238 UINT32 *TableLength)
239 {
240 ACPI_TABLE_HEADER TableHeader;
241 UINT32 Actual;
242 ACPI_STATUS Status;
243 UINT32 FileSize;
244 BOOLEAN StandardHeader = TRUE;

247 /* Get the file size */

new/usr/src/common/acpica/components/debugger/dbfileio.c 4

249 fseek (fp, 0, SEEK_END);
250 FileSize = (UINT32) ftell (fp);
251 fseek (fp, 0, SEEK_SET);

253 if (FileSize < 4)
254 {
255 return (AE_BAD_HEADER);
256 }

258 /* Read the signature */

260 if (fread (&TableHeader, 1, 4, fp) != 4)
261 {
262 AcpiOsPrintf ("Could not read the table signature\n");
263 return (AE_BAD_HEADER);
264 }

266 fseek (fp, 0, SEEK_SET);

268 /* The RSDP table does not have standard ACPI header */
274 /* The RSDT and FACS tables do not have standard ACPI headers */

270 if (ACPI_COMPARE_NAME (TableHeader.Signature, "RSD "))
276 if (ACPI_COMPARE_NAME (TableHeader.Signature, "RSD ") ||
277 ACPI_COMPARE_NAME (TableHeader.Signature, "FACS"))
271 {
272 *TableLength = FileSize;
273 StandardHeader = FALSE;
274 }
275 else
276 {
277 /* Read the table header */

279 if (fread (&TableHeader, 1, sizeof (ACPI_TABLE_HEADER), fp) !=
286 if (fread (&TableHeader, 1, sizeof (TableHeader), fp) !=
280 sizeof (ACPI_TABLE_HEADER))
281 {
282 AcpiOsPrintf ("Could not read the table header\n");
283 return (AE_BAD_HEADER);
284 }

286 #if 0
287 /* Validate the table header/length */

289 Status = AcpiTbValidateTableHeader (&TableHeader);
290 if (ACPI_FAILURE (Status))
291 {
292 AcpiOsPrintf ("Table header is invalid!\n");
293 return (Status);
294 }
295 #endif

297 /* File size must be at least as long as the Header-specified length */

299 if (TableHeader.Length > FileSize)
300 {
301 AcpiOsPrintf (
302 "TableHeader length [0x%X] greater than the input file size [0x%
303 TableHeader.Length, FileSize);

305 #ifdef ACPI_ASL_COMPILER
306 Status = FlCheckForAscii (fp, NULL, FALSE);
307 if (ACPI_SUCCESS (Status))
308 {
309 AcpiOsPrintf ("File appears to be ASCII only, must be binary\n",
310 TableHeader.Length, FileSize);

new/usr/src/common/acpica/components/debugger/dbfileio.c 5

311 }
312 #endif
313 return (AE_BAD_HEADER);
314 }

316 #ifdef ACPI_OBSOLETE_CODE
317 /* We only support a limited number of table types */

319 if (!ACPI_COMPARE_NAME ((char *) TableHeader.Signature, ACPI_SIG_DSDT) &
320 !ACPI_COMPARE_NAME ((char *) TableHeader.Signature, ACPI_SIG_PSDT) &
321 !ACPI_COMPARE_NAME ((char *) TableHeader.Signature, ACPI_SIG_SSDT))
317 if (ACPI_STRNCMP ((char *) TableHeader.Signature, DSDT_SIG, 4) &&
318 ACPI_STRNCMP ((char *) TableHeader.Signature, PSDT_SIG, 4) &&
319 ACPI_STRNCMP ((char *) TableHeader.Signature, SSDT_SIG, 4))
322 {
323 AcpiOsPrintf ("Table signature [%4.4s] is invalid or not supported\n
324 (char *) TableHeader.Signature);
325 ACPI_DUMP_BUFFER (&TableHeader, sizeof (ACPI_TABLE_HEADER));
326 return (AE_ERROR);
327 }
328 #endif

330 *TableLength = TableHeader.Length;
331 }

333 /* Allocate a buffer for the table */

335 *Table = AcpiOsAllocate ((size_t) FileSize);
336 if (!*Table)
337 {
338 AcpiOsPrintf (
339 "Could not allocate memory for ACPI table %4.4s (size=0x%X)\n",
340 TableHeader.Signature, *TableLength);
341 return (AE_NO_MEMORY);
342 }

344 /* Get the rest of the table */

346 fseek (fp, 0, SEEK_SET);
347 Actual = fread (*Table, 1, (size_t) FileSize, fp);
348 if (Actual == FileSize)
349 {
350 if (StandardHeader)
351 {
352 /* Now validate the checksum */

354 Status = AcpiTbVerifyChecksum ((void *) *Table,
355 ACPI_CAST_PTR (ACPI_TABLE_HEADER, *Table)->Length);

357 if (Status == AE_BAD_CHECKSUM)
358 {
359 Status = AcpiDbCheckTextModeCorruption ((UINT8 *) *Table,
360 FileSize, (*Table)->Length);
361 return (Status);
362 }
363 }
364 return (AE_OK);
365 }

367 if (Actual > 0)
368 {
369 AcpiOsPrintf ("Warning - reading table, asked for %X got %X\n",
370 FileSize, Actual);
371 return (AE_OK);
372 }

new/usr/src/common/acpica/components/debugger/dbfileio.c 6

374 AcpiOsPrintf ("Error - could not read the table file\n");
375 AcpiOsFree (*Table);
376 *Table = NULL;
377 *TableLength = 0;

378 return (AE_ERROR);
379 }

______unchanged_portion_omitted_

457 /***
458 *
459 * FUNCTION: AcpiDbReadTableFromFile
460 *
461 * PARAMETERS: Filename - File where table is located
462 * Table - Where a pointer to the table is returned
463 *
464 * RETURN: Status
465 *
466 * DESCRIPTION: Get an ACPI table from a file
467 *
468 **/

470 ACPI_STATUS
471 AcpiDbReadTableFromFile (
472 char *Filename,
473 ACPI_TABLE_HEADER **Table)
474 {
475 FILE *File;
474 FILE *fp;
476 UINT32 TableLength;
477 ACPI_STATUS Status;

480 /* Open the file */

482 File = fopen (Filename, "rb");
483 if (!File)
481 fp = fopen (Filename, "rb");
482 if (!fp)
484 {
485 perror ("Could not open input file");
484 AcpiOsPrintf ("Could not open input file %s\n", Filename);
486 return (AE_ERROR);
487 }

489 /* Get the entire file */

491 fprintf (stderr, "Loading Acpi table from file %s\n", Filename);
492 Status = AcpiDbReadTable (File, Table, &TableLength);
493 fclose(File);
491 Status = AcpiDbReadTable (fp, Table, &TableLength);
492 fclose(fp);

495 if (ACPI_FAILURE (Status))
496 {
497 AcpiOsPrintf ("Could not get table from the file\n");
498 return (Status);
499 }

501 return (AE_OK);
502 }
503 #endif

506 /***

new/usr/src/common/acpica/components/debugger/dbfileio.c 7

507 *
508 * FUNCTION: AcpiDbGetTableFromFile
509 *
510 * PARAMETERS: Filename - File where table is located
511 * ReturnTable - Where a pointer to the table is returned
512 *
513 * RETURN: Status
514 *
515 * DESCRIPTION: Load an ACPI table from a file
516 *
517 **/

519 ACPI_STATUS
520 AcpiDbGetTableFromFile (
521 char *Filename,
522 ACPI_TABLE_HEADER **ReturnTable)
523 {
524 #ifdef ACPI_APPLICATION
525 ACPI_STATUS Status;
526 ACPI_TABLE_HEADER *Table;
527 BOOLEAN IsAmlTable = TRUE;

530 Status = AcpiDbReadTableFromFile (Filename, &Table);
531 if (ACPI_FAILURE (Status))
532 {
533 return (Status);
534 }

536 #ifdef ACPI_DATA_TABLE_DISASSEMBLY
537 IsAmlTable = AcpiUtIsAmlTable (Table);
538 #endif

540 if (IsAmlTable)
541 {
542 /* Attempt to recognize and install the table */

544 Status = AeLocalLoadTable (Table);
545 if (ACPI_FAILURE (Status))
546 {
547 if (Status == AE_ALREADY_EXISTS)
548 {
549 AcpiOsPrintf ("Table %4.4s is already installed\n",
550 Table->Signature);
551 }
552 else
553 {
554 AcpiOsPrintf ("Could not install table, %s\n",
555 AcpiFormatException (Status));
556 }

558 return (Status);
559 }

561 fprintf (stderr,
562 "Acpi table [%4.4s] successfully installed and loaded\n",
563 Table->Signature);
564 }

566 AcpiGbl_AcpiHardwarePresent = FALSE;
567 if (ReturnTable)
568 {
569 *ReturnTable = Table;
570 }

new/usr/src/common/acpica/components/debugger/dbfileio.c 8

573 #endif /* ACPI_APPLICATION */
574 return (AE_OK);
575 }

577 #endif /* ACPI_DEBUGGER */

new/usr/src/common/acpica/components/debugger/dbhistry.c 1

**
 7672 Thu Dec 26 13:48:42 2013
new/usr/src/common/acpica/components/debugger/dbhistry.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dbhistry - debugger HISTORY command
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acdebug.h"

49 #ifdef ACPI_DEBUGGER

51 #define _COMPONENT ACPI_CA_DEBUGGER
52 ACPI_MODULE_NAME ("dbhistry")

55 #define HI_NO_HISTORY 0
56 #define HI_RECORD_HISTORY 1
57 #define HISTORY_SIZE 40

new/usr/src/common/acpica/components/debugger/dbhistry.c 2

60 typedef struct HistoryInfo
61 {
62 char *Command;
63 UINT32 CmdNum;

65 } HISTORY_INFO;

68 static HISTORY_INFO AcpiGbl_HistoryBuffer[HISTORY_SIZE];
69 static UINT16 AcpiGbl_LoHistory = 0;
70 static UINT16 AcpiGbl_NumHistory = 0;
71 static UINT16 AcpiGbl_NextHistoryIndex = 0;
72 UINT32 AcpiGbl_NextCmdNum = 1;

75 /***
76 *
77 * FUNCTION: AcpiDbAddToHistory
78 *
79 * PARAMETERS: CommandLine - Command to add
80 *
81 * RETURN: None
82 *
83 * DESCRIPTION: Add a command line to the history buffer.
84 *
85 **/

87 void
88 AcpiDbAddToHistory (
89 char *CommandLine)
90 {
91 UINT16 CmdLen;
92 UINT16 BufferLen;

94 /* Put command into the next available slot */

96 CmdLen = (UINT16) ACPI_STRLEN (CommandLine);
97 if (!CmdLen)
98 {
99 return;
100 }

102 if (AcpiGbl_HistoryBuffer[AcpiGbl_NextHistoryIndex].Command != NULL)
103 {
104 BufferLen = (UINT16) ACPI_STRLEN (
105 AcpiGbl_HistoryBuffer[AcpiGbl_NextHistoryIndex].Command);
106 if (CmdLen > BufferLen)
107 {
108 AcpiOsFree (AcpiGbl_HistoryBuffer[AcpiGbl_NextHistoryIndex].
109 Command);
110 AcpiGbl_HistoryBuffer[AcpiGbl_NextHistoryIndex].Command =
111 AcpiOsAllocate (CmdLen + 1);
112 }
113 }
114 else
115 {
116 AcpiGbl_HistoryBuffer[AcpiGbl_NextHistoryIndex].Command =
117 AcpiOsAllocate (CmdLen + 1);
118 }

120 ACPI_STRCPY (AcpiGbl_HistoryBuffer[AcpiGbl_NextHistoryIndex].Command,
121 CommandLine);

123 AcpiGbl_HistoryBuffer[AcpiGbl_NextHistoryIndex].CmdNum =
124 AcpiGbl_NextCmdNum;

new/usr/src/common/acpica/components/debugger/dbhistry.c 3

126 /* Adjust indexes */

128 if ((AcpiGbl_NumHistory == HISTORY_SIZE) &&
129 (AcpiGbl_NextHistoryIndex == AcpiGbl_LoHistory))
130 {
131 AcpiGbl_LoHistory++;
132 if (AcpiGbl_LoHistory >= HISTORY_SIZE)
133 {
134 AcpiGbl_LoHistory = 0;
135 }
136 }

138 AcpiGbl_NextHistoryIndex++;
139 if (AcpiGbl_NextHistoryIndex >= HISTORY_SIZE)
140 {
141 AcpiGbl_NextHistoryIndex = 0;
142 }

144 AcpiGbl_NextCmdNum++;
145 if (AcpiGbl_NumHistory < HISTORY_SIZE)
146 {
147 AcpiGbl_NumHistory++;
148 }
149 }

152 /***
153 *
154 * FUNCTION: AcpiDbDisplayHistory
155 *
156 * PARAMETERS: None
157 *
158 * RETURN: None
159 *
160 * DESCRIPTION: Display the contents of the history buffer
161 *
162 **/

164 void
165 AcpiDbDisplayHistory (
166 void)
167 {
168 UINT32 i;
169 UINT16 HistoryIndex;

172 HistoryIndex = AcpiGbl_LoHistory;

174 /* Dump entire history buffer */

176 for (i = 0; i < AcpiGbl_NumHistory; i++)
177 {
178 if (AcpiGbl_HistoryBuffer[HistoryIndex].Command)
179 {
180 AcpiOsPrintf ("%3ld %s\n",
181 AcpiGbl_HistoryBuffer[HistoryIndex].CmdNum,
182 AcpiGbl_HistoryBuffer[HistoryIndex].Command);
183 }

185 HistoryIndex++;
186 if (HistoryIndex >= HISTORY_SIZE)
187 {
188 HistoryIndex = 0;
189 }
190 }
191 }

new/usr/src/common/acpica/components/debugger/dbhistry.c 4

194 /***
195 *
196 * FUNCTION: AcpiDbGetFromHistory
197 *
198 * PARAMETERS: CommandNumArg - String containing the number of the
199 * command to be retrieved
200 *
201 * RETURN: Pointer to the retrieved command. Null on error.
202 *
203 * DESCRIPTION: Get a command from the history buffer
204 *
205 **/

207 char *
208 AcpiDbGetFromHistory (
209 char *CommandNumArg)
210 {
211 UINT32 CmdNum;

214 if (CommandNumArg == NULL)
215 {
216 CmdNum = AcpiGbl_NextCmdNum - 1;
217 }

219 else
220 {
221 CmdNum = ACPI_STRTOUL (CommandNumArg, NULL, 0);
222 }

224 return (AcpiDbGetHistoryByIndex (CmdNum));
225 }

228 /***
229 *
230 * FUNCTION: AcpiDbGetHistoryByIndex
231 *
232 * PARAMETERS: CmdNum - Index of the desired history entry.
233 * Values are 0...(AcpiGbl_NextCmdNum - 1)
234 *
235 * RETURN: Pointer to the retrieved command. Null on error.
236 *
237 * DESCRIPTION: Get a command from the history buffer
238 *
239 **/

241 char *
242 AcpiDbGetHistoryByIndex (
243 UINT32 CmdNum)
244 {
245 UINT32 i;
246 UINT16 HistoryIndex;

249 /* Search history buffer */

251 HistoryIndex = AcpiGbl_LoHistory;
252 for (i = 0; i < AcpiGbl_NumHistory; i++)
253 {
254 if (AcpiGbl_HistoryBuffer[HistoryIndex].CmdNum == CmdNum)
255 {
256 /* Found the command, return it */

new/usr/src/common/acpica/components/debugger/dbhistry.c 5

258 return (AcpiGbl_HistoryBuffer[HistoryIndex].Command);
259 }

261 /* History buffer is circular */

263 HistoryIndex++;
264 if (HistoryIndex >= HISTORY_SIZE)
265 {
266 HistoryIndex = 0;
267 }
268 }

270 AcpiOsPrintf ("Invalid history number: %u\n", HistoryIndex);
271 return (NULL);
272 }

274 #endif /* ACPI_DEBUGGER */

new/usr/src/common/acpica/components/debugger/dbinput.c 1

**
 34985 Thu Dec 26 13:48:42 2013
new/usr/src/common/acpica/components/debugger/dbinput.c
update to acpica-unix2-20131218
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dbinput - user front-end to the AML debugger
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acdebug.h"

50 #ifdef ACPI_DEBUGGER

52 #define _COMPONENT ACPI_CA_DEBUGGER
53 ACPI_MODULE_NAME ("dbinput")

55 /* Local prototypes */

57 static UINT32
58 AcpiDbGetLine (

new/usr/src/common/acpica/components/debugger/dbinput.c 2

59 char *InputBuffer);

61 static UINT32
62 AcpiDbMatchCommand (
63 char *UserCommand);

65 static void
66 AcpiDbSingleThread (
67 void);

69 static void
70 AcpiDbDisplayCommandInfo (
71 char *Command,
72 BOOLEAN DisplayAll);

74 static void
75 AcpiDbDisplayHelp (
76 char *Command);

78 static BOOLEAN
79 AcpiDbMatchCommandHelp (
80 char *Command,
81 const ACPI_DB_COMMAND_HELP *Help);

84 /*
85 * Top-level debugger commands.
86 *
87 * This list of commands must match the string table below it
88 */
89 enum AcpiExDebuggerCommands
90 {
91 CMD_NOT_FOUND = 0,
92 CMD_NULL,
93 CMD_ALLOCATIONS,
94 CMD_ARGS,
95 CMD_ARGUMENTS,
96 CMD_BATCH,
97 CMD_BREAKPOINT,
98 CMD_BUSINFO,
99 CMD_CALL,
100 CMD_CLOSE,
101 CMD_DEBUG,
102 CMD_DISASSEMBLE,
103 CMD_DISASM,
104 CMD_DUMP,
105 CMD_ENABLEACPI,
106 CMD_EVALUATE,
107 CMD_EVENT,
108 CMD_EXECUTE,
109 CMD_EXIT,
110 CMD_FIND,
111 CMD_GO,
112 CMD_GPE,
113 CMD_GPES,
114 CMD_HANDLERS,
115 CMD_HELP,
116 CMD_HELP2,
117 CMD_HISTORY,
118 CMD_HISTORY_EXE,
119 CMD_HISTORY_LAST,
120 CMD_INFORMATION,
121 CMD_INTEGRITY,
122 CMD_INTO,
123 CMD_LEVEL,
124 CMD_LIST,

new/usr/src/common/acpica/components/debugger/dbinput.c 3

125 CMD_LOAD,
126 CMD_LOCALS,
127 CMD_LOCKS,
128 CMD_METHODS,
129 CMD_NAMESPACE,
130 CMD_NOTIFY,
131 CMD_OBJECTS,
132 CMD_OPEN,
133 CMD_OSI,
134 CMD_OWNER,
135 CMD_PATHS,
136 CMD_PREDEFINED,
137 CMD_PREFIX,
138 CMD_QUIT,
139 CMD_REFERENCES,
140 CMD_RESOURCES,
141 CMD_RESULTS,
142 CMD_SCI,
143 CMD_SET,
144 CMD_SLEEP,
145 CMD_STATS,
146 CMD_STOP,
147 CMD_TABLES,
148 CMD_TEMPLATE,
149 CMD_TERMINATE,
150 CMD_THREADS,
151 CMD_TRACE,
152 CMD_TREE,
153 CMD_TYPE,
154 CMD_UNLOAD
155 };

157 #define CMD_FIRST_VALID 2

160 /* Second parameter is the required argument count */

162 static const ACPI_DB_COMMAND_INFO AcpiGbl_DbCommands[] =
163 {
164 {"<NOT FOUND>", 0},
165 {"<NULL>", 0},
166 {"ALLOCATIONS", 0},
167 {"ARGS", 0},
168 {"ARGUMENTS", 0},
169 {"BATCH", 0},
170 {"BREAKPOINT", 1},
171 {"BUSINFO", 0},
172 {"CALL", 0},
173 {"CLOSE", 0},
174 {"DEBUG", 1},
175 {"DISASSEMBLE", 1},
176 {"DISASM", 1},
177 {"DUMP", 1},
178 {"ENABLEACPI", 0},
179 {"EVALUATE", 1},
180 {"EVENT", 1},
181 {"EXECUTE", 1},
182 {"EXIT", 0},
183 {"FIND", 1},
184 {"GO", 0},
185 {"GPE", 2},
186 {"GPES", 0},
187 {"HANDLERS", 0},
188 {"HELP", 0},
189 {"?", 0},
190 {"HISTORY", 0},

new/usr/src/common/acpica/components/debugger/dbinput.c 4

191 {"!", 1},
192 {"!!", 0},
193 {"INFORMATION", 0},
194 {"INTEGRITY", 0},
195 {"INTO", 0},
196 {"LEVEL", 0},
197 {"LIST", 0},
198 {"LOAD", 1},
199 {"LOCALS", 0},
200 {"LOCKS", 0},
201 {"METHODS", 0},
202 {"NAMESPACE", 0},
203 {"NOTIFY", 2},
204 {"OBJECTS", 1},
205 {"OPEN", 1},
206 {"OSI", 0},
207 {"OWNER", 1},
208 {"PATHS", 0},
209 {"PREDEFINED", 0},
210 {"PREFIX", 0},
211 {"QUIT", 0},
212 {"REFERENCES", 1},
213 {"RESOURCES", 0},
214 {"RESULTS", 0},
215 {"SCI", 0},
216 {"SET", 3},
217 {"SLEEP", 0},
218 {"STATS", 1},
219 {"STOP", 0},
220 {"TABLES", 0},
221 {"TEMPLATE", 1},
222 {"TERMINATE", 0},
223 {"THREADS", 3},
224 {"TRACE", 1},
225 {"TREE", 0},
226 {"TYPE", 1},
227 {"UNLOAD", 1},
228 {NULL, 0}
229 };

231 /*
232 * Help for all debugger commands. First argument is the number of lines
233 * of help to output for the command.
234 */
235 static const ACPI_DB_COMMAND_HELP AcpiGbl_DbCommandHelp[] =
236 {
237 {0, "\nGeneral-Purpose Commands:", "\n"},
238 {1, " Allocations", "Display list of current memory a
239 {2, " Dump <Address>|<Namepath>", "\n"},
240 {0, " [Byte|Word|Dword|Qword]", "Display ACPI objects or memory\n
241 {1, " EnableAcpi", "Enable ACPI (hardware) mode\n"},
242 {1, " Handlers", "Info about global handlers\n"},
243 {1, " Help [Command]", "This help screen or individual c
244 {1, " History", "Display command history buffer\n
245 {1, " Level <DebugLevel>] [console]", "Get/Set debug level for file or
246 {1, " Locks", "Current status of internal mutex
247 {1, " Osi [Install|Remove <name>]", "Display or modify global _OSI li
248 {1, " Quit or Exit", "Exit this command\n"},
249 {9, " Stats [Allocations|Memory|Misc|", "\n"},
250 {1, " Objects|Sizes|Stack|Tables]", "Display namespace and memory sta
251 {1, " Allocations", "Display list of current memory a
252 {1, " Memory", "Dump internal memory lists\n"},
253 {1, " Misc", "Namespace search and mutex stats
254 {1, " Objects", "Summary of namespace objects\n"}
255 {1, " Sizes", "Sizes for each of the internal o
256 {1, " Stack", "Display CPU stack usage\n"},

new/usr/src/common/acpica/components/debugger/dbinput.c 5

257 {1, " Tables", "Info about current ACPI table(s)
258 {1, " Tables", "Display info about loaded ACPI t
259 {1, " Unload <Namepath>", "Unload an ACPI table via namespa
260 {1, " ! <CommandNumber>", "Execute command from history buf
261 {1, " !!", "Execute last command again\n"},

263 {0, "\nNamespace Access Commands:", "\n"},
264 {1, " Businfo", "Display system bus info\n"},
265 {1, " Disassemble <Method>", "Disassemble a control method\n"}
266 {1, " Find <AcpiName> (? is wildcard)", "Find ACPI name(s) with wildcards
267 {1, " Integrity", "Validate namespace integrity\n"}
268 {1, " Methods", "Display list of loaded control m
269 {1, " Namespace [Object] [Depth]", "Display loaded namespace tree/su
270 {1, " Notify <Object> <Value>", "Send a notification on Object\n"
271 {1, " Objects <ObjectType>", "Display all objects of the given
272 {1, " Owner <OwnerId> [Depth]", "Display loaded namespace by obje
273 {1, " Paths", "Display full pathnames of namesp
274 {1, " Predefined", "Check all predefined names\n"},
275 {1, " Prefix [<NamePath>]", "Set or Get current execution pre
276 {1, " References <Addr>", "Find all references to object at
277 {1, " Resources [DeviceName]", "Display Device resources (no arg
278 {1, " Set N <NamedObject> <Value>", "Set value for named integer\n"},
279 {1, " Template <Object>", "Format/dump a Buffer/ResourceTem
280 {1, " Terminate", "Delete namespace and all interna
281 {1, " Type <Object>", "Display object type\n"},

283 {0, "\nControl Method Execution Commands:","\n"},
284 {1, " Arguments (or Args)", "Display method arguments\n"},
285 {1, " Breakpoint <AmlOffset>", "Set an AML execution breakpoint\
286 {1, " Call", "Run to next control method invoc
287 {1, " Debug <Namepath> [Arguments]", "Single Step a control method\n"}
288 {6, " Evaluate", "Synonym for Execute\n"},
289 {5, " Execute <Namepath> [Arguments]", "Execute control method\n"},
290 {1, " Hex Integer", "Integer method argument\n"},
291 {1, " \"Ascii String\"", "String method argument\n"},
292 {1, " (Hex Byte List)", "Buffer method argument\n"},
293 {1, " [Package Element List]", "Package method argument\n"},
294 {1, " Go", "Allow method to run to completio
295 {1, " Information", "Display info about the current m
296 {1, " Into", "Step into (not over) a method ca
297 {1, " List [# of Aml Opcodes]", "Display method ASL statements\n"
298 {1, " Locals", "Display method local variables\n
299 {1, " Results", "Display method result stack\n"},
300 {1, " Set <A|L> <#> <Value>", "Set method data (Arguments/Local
301 {1, " Stop", "Terminate control method\n"},
302 {1, " Thread <Threads><Loops><NamePath>", "Spawn threads to execute method(
303 {1, " Trace <method name>", "Trace method execution\n"},
304 {1, " Tree", "Display control method calling t
305 {1, " <Enter>", "Single step next AML opcode (ove

307 {0, "\nHardware Related Commands:", "\n"},
308 {1, " Event <F|G> <Value>", "Generate AcpiEvent (Fixed/GPE)\n
309 {1, " Gpe <GpeNum> <GpeBlock>", "Simulate a GPE\n"},
310 {1, " Gpes", "Display info on all GPEs\n"},
311 {1, " Sci", "Generate an SCI\n"},
312 {1, " Sleep [SleepState]", "Simulate sleep/wake sequence(s)

314 {0, "\nFile I/O Commands:", "\n"},
315 {1, " Close", "Close debug output file\n"},
316 {1, " Load <Input Filename>", "Load ACPI table from a file\n"},
317 {1, " Open <Output Filename>", "Open a file for debug output\n"}
318 {0, NULL, NULL}
319 };

322 /***

new/usr/src/common/acpica/components/debugger/dbinput.c 6

323 *
324 * FUNCTION: AcpiDbMatchCommandHelp
325 *
326 * PARAMETERS: Command - Command string to match
327 * Help - Help table entry to attempt match
328 *
329 * RETURN: TRUE if command matched, FALSE otherwise
330 *
331 * DESCRIPTION: Attempt to match a command in the help table in order to
332 * print help information for a single command.
333 *
334 **/

336 static BOOLEAN
337 AcpiDbMatchCommandHelp (
338 char *Command,
339 const ACPI_DB_COMMAND_HELP *Help)
340 {
341 char *Invocation = Help->Invocation;
342 UINT32 LineCount;

345 /* Valid commands in the help table begin with a couple of spaces */

347 if (*Invocation != ’ ’)
348 {
349 return (FALSE);
350 }

352 while (*Invocation == ’ ’)
353 {
354 Invocation++;
355 }

357 /* Match command name (full command or substring) */

359 while ((*Command) && (*Invocation) && (*Invocation != ’ ’))
360 {
361 if (ACPI_TOLOWER (*Command) != ACPI_TOLOWER (*Invocation))
362 {
363 return (FALSE);
364 }

366 Invocation++;
367 Command++;
368 }

370 /* Print the appropriate number of help lines */

372 LineCount = Help->LineCount;
373 while (LineCount)
374 {
375 AcpiOsPrintf ("%-38s : %s", Help->Invocation, Help->Description);
376 Help++;
377 LineCount--;
378 }

380 return (TRUE);
381 }

384 /***
385 *
386 * FUNCTION: AcpiDbDisplayCommandInfo
387 *
388 * PARAMETERS: Command - Command string to match

new/usr/src/common/acpica/components/debugger/dbinput.c 7

389 * DisplayAll - Display all matching commands, or just
390 * the first one (substring match)
391 *
392 * RETURN: None
393 *
394 * DESCRIPTION: Display help information for a Debugger command.
395 *
396 **/

398 static void
399 AcpiDbDisplayCommandInfo (
400 char *Command,
401 BOOLEAN DisplayAll)
402 {
403 const ACPI_DB_COMMAND_HELP *Next;
404 BOOLEAN Matched;

407 Next = AcpiGbl_DbCommandHelp;
408 while (Next->Invocation)
409 {
410 Matched = AcpiDbMatchCommandHelp (Command, Next);
411 if (!DisplayAll && Matched)
412 {
413 return;
414 }

416 Next++;
417 }
418 }

421 /***
422 *
423 * FUNCTION: AcpiDbDisplayHelp
424 *
425 * PARAMETERS: Command - Optional command string to display help.
426 * if not specified, all debugger command
427 * help strings are displayed
428 *
429 * RETURN: None
430 *
431 * DESCRIPTION: Display help for a single debugger command, or all of them.
432 *
433 **/

435 static void
436 AcpiDbDisplayHelp (
437 char *Command)
438 {
439 const ACPI_DB_COMMAND_HELP *Next = AcpiGbl_DbCommandHelp;

442 if (!Command)
443 {
444 /* No argument to help, display help for all commands */

446 while (Next->Invocation)
447 {
448 AcpiOsPrintf ("%-38s%s", Next->Invocation, Next->Description);
449 Next++;
450 }
451 }
452 else
453 {
454 /* Display help for all commands that match the subtring */

new/usr/src/common/acpica/components/debugger/dbinput.c 8

456 AcpiDbDisplayCommandInfo (Command, TRUE);
457 }
458 }

461 /***
462 *
463 * FUNCTION: AcpiDbGetNextToken
464 *
465 * PARAMETERS: String - Command buffer
466 * Next - Return value, end of next token
467 *
468 * RETURN: Pointer to the start of the next token.
469 *
470 * DESCRIPTION: Command line parsing. Get the next token on the command line
471 *
472 **/

474 char *
475 AcpiDbGetNextToken (
476 char *String,
477 char **Next,
478 ACPI_OBJECT_TYPE *ReturnType)
479 {
480 char *Start;
481 UINT32 Depth;
482 ACPI_OBJECT_TYPE Type = ACPI_TYPE_INTEGER;

485 /* At end of buffer? */

487 if (!String || !(*String))
488 {
489 return (NULL);
490 }

492 /* Remove any spaces at the beginning */

494 if (*String == ’ ’)
495 {
496 while (*String && (*String == ’ ’))
497 {
498 String++;
499 }

501 if (!(*String))
502 {
503 return (NULL);
504 }
505 }

507 switch (*String)
508 {
509 case ’"’:

511 /* This is a quoted string, scan until closing quote */

513 String++;
514 Start = String;
515 Type = ACPI_TYPE_STRING;

517 /* Find end of string */

519 while (*String && (*String != ’"’))
520 {

new/usr/src/common/acpica/components/debugger/dbinput.c 9

521 String++;
522 }
523 break;

525 case ’(’:

527 /* This is the start of a buffer, scan until closing paren */

529 String++;
530 Start = String;
531 Type = ACPI_TYPE_BUFFER;

533 /* Find end of buffer */

535 while (*String && (*String != ’)’))
536 {
537 String++;
538 }
539 break;

541 case ’[’:

543 /* This is the start of a package, scan until closing bracket */

545 String++;
546 Depth = 1;
547 Start = String;
548 Type = ACPI_TYPE_PACKAGE;

550 /* Find end of package (closing bracket) */

552 while (*String)
553 {
554 /* Handle String package elements */

556 if (*String == ’"’)
557 {
558 /* Find end of string */

560 String++;
561 while (*String && (*String != ’"’))
562 {
563 String++;
564 }
565 if (!(*String))
566 {
567 break;
568 }
569 }
570 else if (*String == ’[’)
571 {
572 Depth++; /* A nested package declaration */
573 }
574 else if (*String == ’]’)
575 {
576 Depth--;
577 if (Depth == 0) /* Found final package closing bracket */
578 {
579 break;
580 }
581 }

583 String++;
584 }
585 break;

new/usr/src/common/acpica/components/debugger/dbinput.c 10

587 default:

589 Start = String;

591 /* Find end of token */

593 while (*String && (*String != ’ ’))
594 {
595 String++;
596 }
597 break;
598 }

600 if (!(*String))
601 {
602 *Next = NULL;
603 }
604 else
605 {
606 *String = 0;
607 *Next = String + 1;
608 }

610 *ReturnType = Type;
611 return (Start);
612 }

615 /***
616 *
617 * FUNCTION: AcpiDbGetLine
618 *
619 * PARAMETERS: InputBuffer - Command line buffer
620 *
621 * RETURN: Count of arguments to the command
622 *
623 * DESCRIPTION: Get the next command line from the user. Gets entire line
624 * up to the next newline
625 *
626 **/

628 static UINT32
629 AcpiDbGetLine (
630 char *InputBuffer)
631 {
632 UINT32 i;
633 UINT32 Count;
634 char *Next;
635 char *This;

638 if (AcpiUtSafeStrcpy (AcpiGbl_DbParsedBuf, sizeof (AcpiGbl_DbParsedBuf),
639 InputBuffer))
640 {
641 AcpiOsPrintf ("Buffer overflow while parsing input line (max %u characte
642 sizeof (AcpiGbl_DbParsedBuf));
643 return (0);
644 }

646 This = AcpiGbl_DbParsedBuf;
647 for (i = 0; i < ACPI_DEBUGGER_MAX_ARGS; i++)
648 {
649 AcpiGbl_DbArgs[i] = AcpiDbGetNextToken (This, &Next,
650 &AcpiGbl_DbArgTypes[i]);
651 if (!AcpiGbl_DbArgs[i])
652 {

new/usr/src/common/acpica/components/debugger/dbinput.c 11

653 break;
654 }

656 This = Next;
657 }

659 /* Uppercase the actual command */

661 if (AcpiGbl_DbArgs[0])
662 {
663 AcpiUtStrupr (AcpiGbl_DbArgs[0]);
664 }

666 Count = i;
667 if (Count)
668 {
669 Count--; /* Number of args only */
670 }

672 return (Count);
673 }

676 /***
677 *
678 * FUNCTION: AcpiDbMatchCommand
679 *
680 * PARAMETERS: UserCommand - User command line
681 *
682 * RETURN: Index into command array, -1 if not found
683 *
684 * DESCRIPTION: Search command array for a command match
685 *
686 **/

688 static UINT32
689 AcpiDbMatchCommand (
690 char *UserCommand)
691 {
692 UINT32 i;

695 if (!UserCommand || UserCommand[0] == 0)
696 {
697 return (CMD_NULL);
698 }

700 for (i = CMD_FIRST_VALID; AcpiGbl_DbCommands[i].Name; i++)
701 {
702 if (ACPI_STRSTR (AcpiGbl_DbCommands[i].Name, UserCommand) ==
703 AcpiGbl_DbCommands[i].Name)
704 {
705 return (i);
706 }
707 }

709 /* Command not recognized */

711 return (CMD_NOT_FOUND);
712 }

715 /***
716 *
717 * FUNCTION: AcpiDbCommandDispatch
718 *

new/usr/src/common/acpica/components/debugger/dbinput.c 12

719 * PARAMETERS: InputBuffer - Command line buffer
720 * WalkState - Current walk
721 * Op - Current (executing) parse op
722 *
723 * RETURN: Status
724 *
725 * DESCRIPTION: Command dispatcher.
726 *
727 **/

729 ACPI_STATUS
730 AcpiDbCommandDispatch (
731 char *InputBuffer,
732 ACPI_WALK_STATE *WalkState,
733 ACPI_PARSE_OBJECT *Op)
734 {
735 UINT32 Temp;
736 UINT32 CommandIndex;
737 UINT32 ParamCount;
738 char *CommandLine;
739 ACPI_STATUS Status = AE_CTRL_TRUE;

742 /* If AcpiTerminate has been called, terminate this thread */

744 if (AcpiGbl_DbTerminateThreads)
745 {
746 return (AE_CTRL_TERMINATE);
747 }

750 /* Add all commands that come here to the history buffer */

752 AcpiDbAddToHistory (InputBuffer);

754 ParamCount = AcpiDbGetLine (InputBuffer);
755 CommandIndex = AcpiDbMatchCommand (AcpiGbl_DbArgs[0]);
756 Temp = 0;

758 /* Verify that we have the minimum number of params */

760 if (ParamCount < AcpiGbl_DbCommands[CommandIndex].MinArgs)
761 {
762 AcpiOsPrintf ("%u parameters entered, [%s] requires %u parameters\n",
763 ParamCount, AcpiGbl_DbCommands[CommandIndex].Name,
764 AcpiGbl_DbCommands[CommandIndex].MinArgs);

766 AcpiDbDisplayCommandInfo (AcpiGbl_DbCommands[CommandIndex].Name, FALSE);
767 return (AE_CTRL_TRUE);
768 }

770 /* Decode and dispatch the command */

772 switch (CommandIndex)
773 {
774 case CMD_NULL:

776 if (Op)
777 {
778 return (AE_OK);
779 }
780 break;

782 case CMD_ALLOCATIONS:

784 #ifdef ACPI_DBG_TRACK_ALLOCATIONS

new/usr/src/common/acpica/components/debugger/dbinput.c 13

785 AcpiUtDumpAllocations ((UINT32) -1, NULL);
786 #endif
787 break;

789 case CMD_ARGS:
790 case CMD_ARGUMENTS:

792 AcpiDbDisplayArguments ();
793 break;

795 case CMD_BATCH:

797 AcpiDbBatchExecute (AcpiGbl_DbArgs[1]);
798 break;

800 case CMD_BREAKPOINT:

802 AcpiDbSetMethodBreakpoint (AcpiGbl_DbArgs[1], WalkState, Op);
803 break;

805 case CMD_BUSINFO:

807 AcpiDbGetBusInfo ();
808 break;

810 case CMD_CALL:

812 AcpiDbSetMethodCallBreakpoint (Op);
813 Status = AE_OK;
814 break;

816 case CMD_CLOSE:

818 AcpiDbCloseDebugFile ();
819 break;

821 case CMD_DEBUG:

823 AcpiDbExecute (AcpiGbl_DbArgs[1],
824 &AcpiGbl_DbArgs[2], &AcpiGbl_DbArgTypes[2], EX_SINGLE_STEP);
825 break;

827 case CMD_DISASSEMBLE:
828 case CMD_DISASM:

830 (void) AcpiDbDisassembleMethod (AcpiGbl_DbArgs[1]);
831 break;

833 case CMD_DUMP:

835 AcpiDbDecodeAndDisplayObject (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]);
836 break;

838 case CMD_ENABLEACPI:
839 #if (!ACPI_REDUCED_HARDWARE)

841 Status = AcpiEnable();
842 if (ACPI_FAILURE(Status))
843 {
844 AcpiOsPrintf("AcpiEnable failed (Status=%X)\n", Status);
845 return (Status);
846 }
847 #endif /* !ACPI_REDUCED_HARDWARE */
848 break;

850 case CMD_EVENT:

new/usr/src/common/acpica/components/debugger/dbinput.c 14

852 AcpiOsPrintf ("Event command not implemented\n");
853 break;

855 case CMD_EVALUATE:
856 case CMD_EXECUTE:

858 AcpiDbExecute (AcpiGbl_DbArgs[1],
859 &AcpiGbl_DbArgs[2], &AcpiGbl_DbArgTypes[2], EX_NO_SINGLE_STEP);
860 break;

862 case CMD_FIND:

864 Status = AcpiDbFindNameInNamespace (AcpiGbl_DbArgs[1]);
865 break;

867 case CMD_GO:

869 AcpiGbl_CmSingleStep = FALSE;
870 return (AE_OK);

872 case CMD_GPE:

874 AcpiDbGenerateGpe (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]);
875 break;

877 case CMD_GPES:

879 AcpiDbDisplayGpes ();
880 break;

882 case CMD_HANDLERS:

884 AcpiDbDisplayHandlers ();
885 break;

887 case CMD_HELP:
888 case CMD_HELP2:

890 AcpiDbDisplayHelp (AcpiGbl_DbArgs[1]);
891 break;

893 case CMD_HISTORY:

895 AcpiDbDisplayHistory ();
896 break;

898 case CMD_HISTORY_EXE: /* ! command */

900 CommandLine = AcpiDbGetFromHistory (AcpiGbl_DbArgs[1]);
901 if (!CommandLine)
902 {
903 return (AE_CTRL_TRUE);
904 }

906 Status = AcpiDbCommandDispatch (CommandLine, WalkState, Op);
907 return (Status);

909 case CMD_HISTORY_LAST: /* !! command */

911 CommandLine = AcpiDbGetFromHistory (NULL);
912 if (!CommandLine)
913 {
914 return (AE_CTRL_TRUE);
915 }

new/usr/src/common/acpica/components/debugger/dbinput.c 15

917 Status = AcpiDbCommandDispatch (CommandLine, WalkState, Op);
918 return (Status);

920 case CMD_INFORMATION:

922 AcpiDbDisplayMethodInfo (Op);
923 break;

925 case CMD_INTEGRITY:

927 AcpiDbCheckIntegrity ();
928 break;

930 case CMD_INTO:

932 if (Op)
933 {
934 AcpiGbl_CmSingleStep = TRUE;
935 return (AE_OK);
936 }
937 break;

939 case CMD_LEVEL:

941 if (ParamCount == 0)
942 {
943 AcpiOsPrintf ("Current debug level for file output is: %8.8lX\n",
944 AcpiGbl_DbDebugLevel);
945 AcpiOsPrintf ("Current debug level for console output is: %8.8lX\n",
946 AcpiGbl_DbConsoleDebugLevel);
947 }
948 else if (ParamCount == 2)
949 {
950 Temp = AcpiGbl_DbConsoleDebugLevel;
951 AcpiGbl_DbConsoleDebugLevel = ACPI_STRTOUL (AcpiGbl_DbArgs[1],
952 NULL, 16);
953 AcpiOsPrintf (
954 "Debug Level for console output was %8.8lX, now %8.8lX\n",
955 Temp, AcpiGbl_DbConsoleDebugLevel);
956 }
957 else
958 {
959 Temp = AcpiGbl_DbDebugLevel;
960 AcpiGbl_DbDebugLevel = ACPI_STRTOUL (AcpiGbl_DbArgs[1], NULL, 16);
961 AcpiOsPrintf (
962 "Debug Level for file output was %8.8lX, now %8.8lX\n",
963 Temp, AcpiGbl_DbDebugLevel);
964 }
965 break;

967 case CMD_LIST:

969 AcpiDbDisassembleAml (AcpiGbl_DbArgs[1], Op);
970 break;

972 case CMD_LOAD:

974 Status = AcpiDbGetTableFromFile (AcpiGbl_DbArgs[1], NULL);
975 break;

977 case CMD_LOCKS:

979 AcpiDbDisplayLocks ();
980 break;

982 case CMD_LOCALS:

new/usr/src/common/acpica/components/debugger/dbinput.c 16

984 AcpiDbDisplayLocals ();
985 break;

987 case CMD_METHODS:

989 Status = AcpiDbDisplayObjects ("METHOD", AcpiGbl_DbArgs[1]);
990 break;

992 case CMD_NAMESPACE:

994 AcpiDbDumpNamespace (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]);
995 break;

997 case CMD_NOTIFY:

999 Temp = ACPI_STRTOUL (AcpiGbl_DbArgs[2], NULL, 0);
1000 AcpiDbSendNotify (AcpiGbl_DbArgs[1], Temp);
1001 break;

1003 case CMD_OBJECTS:

1005 AcpiUtStrupr (AcpiGbl_DbArgs[1]);
1006 Status = AcpiDbDisplayObjects (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]);
1007 break;

1009 case CMD_OPEN:

1011 AcpiDbOpenDebugFile (AcpiGbl_DbArgs[1]);
1012 break;

1014 case CMD_OSI:

1016 AcpiDbDisplayInterfaces (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]);
1017 break;

1019 case CMD_OWNER:

1021 AcpiDbDumpNamespaceByOwner (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]);
1022 break;

1024 case CMD_PATHS:

1026 AcpiDbDumpNamespacePaths ();
1027 break;

1029 case CMD_PREDEFINED:

1031 AcpiDbCheckPredefinedNames ();
1032 break;

1034 case CMD_PREFIX:

1036 AcpiDbSetScope (AcpiGbl_DbArgs[1]);
1037 break;

1039 case CMD_REFERENCES:

1041 AcpiDbFindReferences (AcpiGbl_DbArgs[1]);
1042 break;

1044 case CMD_RESOURCES:

1046 AcpiDbDisplayResources (AcpiGbl_DbArgs[1]);
1047 break;

new/usr/src/common/acpica/components/debugger/dbinput.c 17

1049 case CMD_RESULTS:

1051 AcpiDbDisplayResults ();
1052 break;

1054 case CMD_SCI:

1056 AcpiDbGenerateSci ();
1057 break;

1059 case CMD_SET:

1061 AcpiDbSetMethodData (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2],
1062 AcpiGbl_DbArgs[3]);
1063 break;

1065 case CMD_SLEEP:

1067 Status = AcpiDbSleep (AcpiGbl_DbArgs[1]);
1068 break;

1070 case CMD_STATS:

1072 Status = AcpiDbDisplayStatistics (AcpiGbl_DbArgs[1]);
1073 break;

1075 case CMD_STOP:

1077 return (AE_NOT_IMPLEMENTED);

1079 case CMD_TABLES:

1081 AcpiDbDisplayTableInfo (AcpiGbl_DbArgs[1]);
1082 break;

1084 case CMD_TEMPLATE:

1086 AcpiDbDisplayTemplate (AcpiGbl_DbArgs[1]);
1087 break;

1089 case CMD_TERMINATE:

1091 AcpiDbSetOutputDestination (ACPI_DB_REDIRECTABLE_OUTPUT);
1092 AcpiUtSubsystemShutdown ();

1094 /*
1095 * TBD: [Restructure] Need some way to re-initialize without
1096 * re-creating the semaphores!
1097 */

1099 /* AcpiInitialize (NULL); */
1100 break;

1102 case CMD_THREADS:

1104 AcpiDbCreateExecutionThreads (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2],
1105 AcpiGbl_DbArgs[3]);
1106 break;

1108 case CMD_TRACE:

1110 (void) AcpiDebugTrace (AcpiGbl_DbArgs[1],0,0,1);
1111 break;

1113 case CMD_TREE:

new/usr/src/common/acpica/components/debugger/dbinput.c 18

1115 AcpiDbDisplayCallingTree ();
1116 break;

1118 case CMD_TYPE:

1120 AcpiDbDisplayObjectType (AcpiGbl_DbArgs[1]);
1121 break;

1123 case CMD_UNLOAD:

1125 AcpiDbUnloadAcpiTable (AcpiGbl_DbArgs[1]);
1126 break;

1128 case CMD_EXIT:
1129 case CMD_QUIT:

1131 if (Op)
1132 {
1133 AcpiOsPrintf ("Method execution terminated\n");
1134 return (AE_CTRL_TERMINATE);
1135 }

1137 if (!AcpiGbl_DbOutputToFile)
1138 {
1139 AcpiDbgLevel = ACPI_DEBUG_DEFAULT;
1140 }

1142 AcpiDbCloseDebugFile ();
1143 AcpiGbl_DbTerminateThreads = TRUE;
1144 return (AE_CTRL_TERMINATE);

1146 case CMD_NOT_FOUND:
1147 default:

1149 AcpiOsPrintf ("%s: unknown command\n", AcpiGbl_DbArgs[0]);
1150 return (AE_CTRL_TRUE);
1151 }

1153 if (ACPI_SUCCESS (Status))
1154 {
1155 Status = AE_CTRL_TRUE;
1156 }

1158 return (Status);
1159 }

1162 /***
1163 *
1164 * FUNCTION: AcpiDbExecuteThread
1165 *
1166 * PARAMETERS: Context - Not used
1167 *
1168 * RETURN: None
1169 *
1170 * DESCRIPTION: Debugger execute thread. Waits for a command line, then
1171 * simply dispatches it.
1172 *
1173 **/

1175 void ACPI_SYSTEM_XFACE
1176 AcpiDbExecuteThread (
1177 void *Context)
1178 {
1179 ACPI_STATUS Status = AE_OK;
1180 ACPI_STATUS MStatus;

new/usr/src/common/acpica/components/debugger/dbinput.c 19

1183 while (Status != AE_CTRL_TERMINATE)
1184 {
1185 AcpiGbl_MethodExecuting = FALSE;
1186 AcpiGbl_StepToNextCall = FALSE;

1188 MStatus = AcpiUtAcquireMutex (ACPI_MTX_DEBUG_CMD_READY);
1189 if (ACPI_FAILURE (MStatus))
1190 {
1191 return;
1192 }

1194 Status = AcpiDbCommandDispatch (AcpiGbl_DbLineBuf, NULL, NULL);

1196 MStatus = AcpiUtReleaseMutex (ACPI_MTX_DEBUG_CMD_COMPLETE);
1197 if (ACPI_FAILURE (MStatus))
1198 {
1199 return;
1200 }
1201 }
1202 }

1205 /***
1206 *
1207 * FUNCTION: AcpiDbSingleThread
1208 *
1209 * PARAMETERS: None
1210 *
1211 * RETURN: None
1212 *
1213 * DESCRIPTION: Debugger execute thread. Waits for a command line, then
1214 * simply dispatches it.
1215 *
1216 **/

1218 static void
1219 AcpiDbSingleThread (
1220 void)
1221 {

1223 AcpiGbl_MethodExecuting = FALSE;
1224 AcpiGbl_StepToNextCall = FALSE;

1226 (void) AcpiDbCommandDispatch (AcpiGbl_DbLineBuf, NULL, NULL);
1227 }

1230 /***
1231 *
1232 * FUNCTION: AcpiDbUserCommands
1233 *
1234 * PARAMETERS: Prompt - User prompt (depends on mode)
1235 * Op - Current executing parse op
1236 *
1237 * RETURN: None
1238 *
1239 * DESCRIPTION: Command line execution for the AML debugger. Commands are
1240 * matched and dispatched here.
1241 *
1242 **/

1244 ACPI_STATUS
1245 AcpiDbUserCommands (
1246 char Prompt,

new/usr/src/common/acpica/components/debugger/dbinput.c 20

1247 ACPI_PARSE_OBJECT *Op)
1248 {
1249 ACPI_STATUS Status = AE_OK;

1252 AcpiOsPrintf ("\n");

1254 /* TBD: [Restructure] Need a separate command line buffer for step mode */

1256 while (!AcpiGbl_DbTerminateThreads)
1257 {
1258 /* Force output to console until a command is entered */

1260 AcpiDbSetOutputDestination (ACPI_DB_CONSOLE_OUTPUT);

1262 /* Different prompt if method is executing */

1264 if (!AcpiGbl_MethodExecuting)
1265 {
1266 AcpiOsPrintf ("%1c ", ACPI_DEBUGGER_COMMAND_PROMPT);
1267 }
1268 else
1269 {
1270 AcpiOsPrintf ("%1c ", ACPI_DEBUGGER_EXECUTE_PROMPT);
1271 }

1273 /* Get the user input line */

1275 Status = AcpiOsGetLine (AcpiGbl_DbLineBuf,
1276 ACPI_DB_LINE_BUFFER_SIZE, NULL);
1277 if (ACPI_FAILURE (Status))
1278 {
1279 ACPI_EXCEPTION ((AE_INFO, Status, "While parsing command line"));
1280 return (Status);
1281 }

1283 /* Check for single or multithreaded debug */

1285 if (AcpiGbl_DebuggerConfiguration & DEBUGGER_MULTI_THREADED)
1286 {
1287 /*
1288 * Signal the debug thread that we have a command to execute,
1289 * and wait for the command to complete.
1290 */
1291 Status = AcpiUtReleaseMutex (ACPI_MTX_DEBUG_CMD_READY);
1292 if (ACPI_FAILURE (Status))
1293 {
1294 return (Status);
1295 }

1297 Status = AcpiUtAcquireMutex (ACPI_MTX_DEBUG_CMD_COMPLETE);
1298 if (ACPI_FAILURE (Status))
1299 {
1300 return (Status);
1301 }
1302 }
1303 else
1304 {
1305 /* Just call to the command line interpreter */

1307 AcpiDbSingleThread ();
1308 }
1309 }

1311 /*
1312 * Only this thread (the original thread) should actually terminate the

new/usr/src/common/acpica/components/debugger/dbinput.c 21

1313 * subsystem, because all the semaphores are deleted during termination
1314 */
1315 Status = AcpiTerminate ();
1316 return (Status);
1317 }

1319 #endif /* ACPI_DEBUGGER */

new/usr/src/common/acpica/components/debugger/dbmethod.c 1

**
 16409 Thu Dec 26 13:48:43 2013
new/usr/src/common/acpica/components/debugger/dbmethod.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dbmethod - Debug commands for control methods
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acdispat.h"
48 #include "acnamesp.h"
49 #include "acdebug.h"
50 #include "acdisasm.h"
51 #include "acparser.h"
52 #include "acpredef.h"

55 #ifdef ACPI_DEBUGGER

57 #define _COMPONENT ACPI_CA_DEBUGGER
58 ACPI_MODULE_NAME ("dbmethod")

new/usr/src/common/acpica/components/debugger/dbmethod.c 2

61 /* Local prototypes */

63 static ACPI_STATUS
64 AcpiDbWalkForExecute (
65 ACPI_HANDLE ObjHandle,
66 UINT32 NestingLevel,
67 void *Context,
68 void **ReturnValue);

71 /***
72 *
73 * FUNCTION: AcpiDbSetMethodBreakpoint
74 *
75 * PARAMETERS: Location - AML offset of breakpoint
76 * WalkState - Current walk info
77 * Op - Current Op (from parse walk)
78 *
79 * RETURN: None
80 *
81 * DESCRIPTION: Set a breakpoint in a control method at the specified
82 * AML offset
83 *
84 **/

86 void
87 AcpiDbSetMethodBreakpoint (
88 char *Location,
89 ACPI_WALK_STATE *WalkState,
90 ACPI_PARSE_OBJECT *Op)
91 {
92 UINT32 Address;

95 if (!Op)
96 {
97 AcpiOsPrintf ("There is no method currently executing\n");
98 return;
99 }

101 /* Get and verify the breakpoint address */

103 Address = ACPI_STRTOUL (Location, NULL, 16);
104 if (Address <= Op->Common.AmlOffset)
105 {
106 AcpiOsPrintf ("Breakpoint %X is beyond current address %X\n",
107 Address, Op->Common.AmlOffset);
108 }

110 /* Save breakpoint in current walk */

112 WalkState->UserBreakpoint = Address;
113 AcpiOsPrintf ("Breakpoint set at AML offset %X\n", Address);
114 }

______unchanged_portion_omitted_

146 /***
147 *
148 * FUNCTION: AcpiDbSetMethodData
149 *
150 * PARAMETERS: TypeArg - L for local, A for argument
151 * IndexArg - which one
152 * ValueArg - Value to set.
153 *

new/usr/src/common/acpica/components/debugger/dbmethod.c 3

154 * RETURN: None
155 *
156 * DESCRIPTION: Set a local or argument for the running control method.
157 * NOTE: only object supported is Number.
158 *
159 **/

161 void
162 AcpiDbSetMethodData (
163 char *TypeArg,
164 char *IndexArg,
165 char *ValueArg)
166 {
167 char Type;
168 UINT32 Index;
169 UINT32 Value;
170 ACPI_WALK_STATE *WalkState;
171 ACPI_OPERAND_OBJECT *ObjDesc;
172 ACPI_STATUS Status;
173 ACPI_NAMESPACE_NODE *Node;

176 /* Validate TypeArg */

178 AcpiUtStrupr (TypeArg);
179 Type = TypeArg[0];
180 if ((Type != ’L’) &&
181 (Type != ’A’) &&
182 (Type != ’N’))
183 {
184 AcpiOsPrintf ("Invalid SET operand: %s\n", TypeArg);
185 return;
186 }

188 Value = ACPI_STRTOUL (ValueArg, NULL, 16);

190 if (Type == ’N’)
191 {
192 Node = AcpiDbConvertToNode (IndexArg);
193 if (Node->Type != ACPI_TYPE_INTEGER)
194 {
195 AcpiOsPrintf ("Can only set Integer nodes\n");
196 return;
197 }
198 ObjDesc = Node->Object;
199 ObjDesc->Integer.Value = Value;
200 return;
201 }

203 /* Get the index and value */

205 Index = ACPI_STRTOUL (IndexArg, NULL, 16);

207 WalkState = AcpiDsGetCurrentWalkState (AcpiGbl_CurrentWalkList);
208 if (!WalkState)
209 {
210 AcpiOsPrintf ("There is no method currently executing\n");
211 return;
212 }

214 /* Create and initialize the new object */

216 ObjDesc = AcpiUtCreateIntegerObject ((UINT64) Value);
217 if (!ObjDesc)
218 {
219 AcpiOsPrintf ("Could not create an internal object\n");

new/usr/src/common/acpica/components/debugger/dbmethod.c 4

220 return;
221 }

223 /* Store the new object into the target */

225 switch (Type)
226 {
227 case ’A’:

229 /* Set a method argument */

231 if (Index > ACPI_METHOD_MAX_ARG)
232 {
233 AcpiOsPrintf ("Arg%u - Invalid argument name\n", Index);
234 goto Cleanup;
235 }

237 Status = AcpiDsStoreObjectToLocal (ACPI_REFCLASS_ARG, Index, ObjDesc,
238 WalkState);
239 if (ACPI_FAILURE (Status))
240 {
241 goto Cleanup;
242 }

244 ObjDesc = WalkState->Arguments[Index].Object;

246 AcpiOsPrintf ("Arg%u: ", Index);
247 AcpiDmDisplayInternalObject (ObjDesc, WalkState);
248 break;

250 case ’L’:

252 /* Set a method local */

254 if (Index > ACPI_METHOD_MAX_LOCAL)
255 {
256 AcpiOsPrintf ("Local%u - Invalid local variable name\n", Index);
257 goto Cleanup;
258 }

260 Status = AcpiDsStoreObjectToLocal (ACPI_REFCLASS_LOCAL, Index, ObjDesc,
261 WalkState);
262 if (ACPI_FAILURE (Status))
263 {
264 goto Cleanup;
265 }

267 ObjDesc = WalkState->LocalVariables[Index].Object;

269 AcpiOsPrintf ("Local%u: ", Index);
270 AcpiDmDisplayInternalObject (ObjDesc, WalkState);
271 break;

273 default:

275 break;
276 }

278 Cleanup:
279 AcpiUtRemoveReference (ObjDesc);
280 }

______unchanged_portion_omitted_

320 /***
321 *

new/usr/src/common/acpica/components/debugger/dbmethod.c 5

322 * FUNCTION: AcpiDbDisassembleMethod
323 *
324 * PARAMETERS: Name - Name of control method
325 *
326 * RETURN: None
327 *
328 * DESCRIPTION: Display disassembled AML (ASL) starting from Op for the number
329 * of statements specified.
330 *
331 **/

333 ACPI_STATUS
334 AcpiDbDisassembleMethod (
335 char *Name)
336 {
337 ACPI_STATUS Status;
338 ACPI_PARSE_OBJECT *Op;
339 ACPI_WALK_STATE *WalkState;
340 ACPI_OPERAND_OBJECT *ObjDesc;
341 ACPI_NAMESPACE_NODE *Method;

344 Method = AcpiDbConvertToNode (Name);
345 if (!Method)
346 {
347 return (AE_BAD_PARAMETER);
348 }

350 if (Method->Type != ACPI_TYPE_METHOD)
351 {
352 ACPI_ERROR ((AE_INFO, "%s (%s): Object must be a control method",
353 Name, AcpiUtGetTypeName (Method->Type)));
354 return (AE_BAD_PARAMETER);
355 }

357 ObjDesc = Method->Object;

359 Op = AcpiPsCreateScopeOp ();
360 if (!Op)
361 {
362 return (AE_NO_MEMORY);
363 }

365 /* Create and initialize a new walk state */

367 WalkState = AcpiDsCreateWalkState (0, Op, NULL, NULL);
368 if (!WalkState)
369 {
370 return (AE_NO_MEMORY);
371 }

373 Status = AcpiDsInitAmlWalk (WalkState, Op, NULL,
374 ObjDesc->Method.AmlStart,
375 ObjDesc->Method.AmlLength, NULL, ACPI_IMODE_LOAD_PASS1);
376 if (ACPI_FAILURE (Status))
377 {
378 return (Status);
379 }

381 Status = AcpiUtAllocateOwnerId (&ObjDesc->Method.OwnerId);
382 WalkState->OwnerId = ObjDesc->Method.OwnerId;
372 /* Parse the AML */

384 /* Push start scope on scope stack and make it current */

386 Status = AcpiDsScopeStackPush (Method,

new/usr/src/common/acpica/components/debugger/dbmethod.c 6

387 Method->Type, WalkState);
388 if (ACPI_FAILURE (Status))
389 {
390 return (Status);
391 }

393 /* Parse the entire method AML including deferred operators */

395 WalkState->ParseFlags &= ~ACPI_PARSE_DELETE_TREE;
396 WalkState->ParseFlags |= ACPI_PARSE_DISASSEMBLE;

398 Status = AcpiPsParseAml (WalkState);
399 (void) AcpiDmParseDeferredOps (Op);

401 /* Now we can disassemble the method */

403 AcpiGbl_DbOpt_verbose = FALSE;
404 AcpiDmDisassemble (NULL, Op, 0);
405 AcpiGbl_DbOpt_verbose = TRUE;

407 AcpiPsDeleteParseTree (Op);

409 /* Method cleanup */

411 AcpiNsDeleteNamespaceSubtree (Method);
412 AcpiNsDeleteNamespaceByOwner (ObjDesc->Method.OwnerId);
413 AcpiUtReleaseOwnerId (&ObjDesc->Method.OwnerId);
414 return (AE_OK);
415 }

418 /***
419 *
420 * FUNCTION: AcpiDbWalkForExecute
421 *
422 * PARAMETERS: Callback from WalkNamespace
423 *
424 * RETURN: Status
425 *
426 * DESCRIPTION: Batch execution module. Currently only executes predefined
427 * ACPI names.
428 *
429 **/

431 static ACPI_STATUS
432 AcpiDbWalkForExecute (
433 ACPI_HANDLE ObjHandle,
434 UINT32 NestingLevel,
435 void *Context,
436 void **ReturnValue)
437 {
438 ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) ObjHandle;
439 ACPI_DB_EXECUTE_WALK *Info = (ACPI_DB_EXECUTE_WALK *) Context;
405 ACPI_EXECUTE_WALK *Info = (ACPI_EXECUTE_WALK *) Context;
406 ACPI_BUFFER ReturnObj;
407 ACPI_STATUS Status;
440 char *Pathname;
441 const ACPI_PREDEFINED_INFO *Predefined;
409 UINT32 i;
442 ACPI_DEVICE_INFO *ObjInfo;
443 ACPI_OBJECT_LIST ParamObjects;
444 ACPI_OBJECT Params[ACPI_METHOD_NUM_ARGS];
445 ACPI_OBJECT *ThisParam;
446 ACPI_BUFFER ReturnObj;
447 ACPI_STATUS Status;
448 UINT16 ArgTypeList;

new/usr/src/common/acpica/components/debugger/dbmethod.c 7

449 UINT8 ArgCount;
450 UINT8 ArgType;
451 UINT32 i;
413 const ACPI_PREDEFINED_INFO *Predefined;

454 /* The name must be a predefined ACPI name */

456 Predefined = AcpiUtMatchPredefinedMethod (Node->Name.Ascii);
416 Predefined = AcpiNsCheckForPredefinedName (Node);
457 if (!Predefined)
458 {
459 return (AE_OK);
460 }

462 if (Node->Type == ACPI_TYPE_LOCAL_SCOPE)
463 {
464 return (AE_OK);
465 }

467 Pathname = AcpiNsGetExternalPathname (Node);
468 if (!Pathname)
469 {
470 return (AE_OK);
471 }

473 /* Get the object info for number of method parameters */

475 Status = AcpiGetObjectInfo (ObjHandle, &ObjInfo);
476 if (ACPI_FAILURE (Status))
477 {
478 return (Status);
479 }

481 ParamObjects.Count = 0;
482 ParamObjects.Pointer = NULL;
442 ParamObjects.Count = 0;

484 if (ObjInfo->Type == ACPI_TYPE_METHOD)
485 {
486 /* Setup default parameters (with proper types) */
446 /* Setup default parameters */

488 ArgTypeList = Predefined->Info.ArgumentList;
489 ArgCount = METHOD_GET_ARG_COUNT (ArgTypeList);

491 /*
492 * Setup the ACPI-required number of arguments, regardless of what
493 * the actual method defines. If there is a difference, then the
494 * method is wrong and a warning will be issued during execution.
495 */
496 ThisParam = Params;
497 for (i = 0; i < ArgCount; i++)
448 for (i = 0; i < ObjInfo->ParamCount; i++)
498 {
499 ArgType = METHOD_GET_NEXT_TYPE (ArgTypeList);
500 ThisParam->Type = ArgType;

502 switch (ArgType)
503 {
504 case ACPI_TYPE_INTEGER:

506 ThisParam->Integer.Value = 1;
507 break;

509 case ACPI_TYPE_STRING:

new/usr/src/common/acpica/components/debugger/dbmethod.c 8

511 ThisParam->String.Pointer = "This is the default argument string
512 ThisParam->String.Length = ACPI_STRLEN (ThisParam->String.Pointe
513 break;

515 case ACPI_TYPE_BUFFER:

517 ThisParam->Buffer.Pointer = (UINT8 *) Params; /* just a garbage
518 ThisParam->Buffer.Length = 48;
519 break;

521 case ACPI_TYPE_PACKAGE:

523 ThisParam->Package.Elements = NULL;
524 ThisParam->Package.Count = 0;
525 break;

527 default:

529 AcpiOsPrintf ("%s: Unsupported argument type: %u\n",
530 Pathname, ArgType);
531 break;
450 Params[i].Type = ACPI_TYPE_INTEGER;
451 Params[i].Integer.Value = 1;
532 }

534 ThisParam++;
535 }

537 ParamObjects.Count = ArgCount;
538 ParamObjects.Pointer = Params;
455 ParamObjects.Count = ObjInfo->ParamCount;
539 }

541 ACPI_FREE (ObjInfo);
542 ReturnObj.Pointer = NULL;
543 ReturnObj.Length = ACPI_ALLOCATE_BUFFER;

545 /* Do the actual method execution */

547 AcpiGbl_MethodExecuting = TRUE;

549 Status = AcpiEvaluateObject (Node, NULL, &ParamObjects, &ReturnObj);

551 AcpiOsPrintf ("%-32s returned %s\n", Pathname, AcpiFormatException (Status))
552 AcpiGbl_MethodExecuting = FALSE;
553 ACPI_FREE (Pathname);

555 /* Ignore status from method execution */

557 Status = AE_OK;

559 /* Update count, check if we have executed enough methods */

561 Info->Count++;
562 if (Info->Count >= Info->MaxCount)
563 {
564 Status = AE_CTRL_TERMINATE;
565 }

567 return (Status);
568 }

571 /***
572 *

new/usr/src/common/acpica/components/debugger/dbmethod.c 9

573 * FUNCTION: AcpiDbBatchExecute
574 *
575 * PARAMETERS: CountArg - Max number of methods to execute
576 *
577 * RETURN: None
578 *
579 * DESCRIPTION: Namespace batch execution. Execute predefined names in the
580 * namespace, up to the max count, if specified.
581 *
582 **/

584 void
585 AcpiDbBatchExecute (
586 char *CountArg)
587 {
588 ACPI_DB_EXECUTE_WALK Info;
505 ACPI_EXECUTE_WALK Info;

591 Info.Count = 0;
592 Info.MaxCount = ACPI_UINT32_MAX;

594 if (CountArg)
595 {
596 Info.MaxCount = ACPI_STRTOUL (CountArg, NULL, 0);
597 }

600 /* Search all nodes in namespace */

602 (void) AcpiWalkNamespace (ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, ACPI_UINT32_MAX,
603 AcpiDbWalkForExecute, NULL, (void *) &Info, NULL);

605 AcpiOsPrintf ("Evaluated %u predefined names in the namespace\n", Info.Count
522 AcpiOsPrintf ("Executed %u predefined names in the namespace\n", Info.Count)
606 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/debugger/dbnames.c 1

**
 26977 Thu Dec 26 13:48:43 2013
new/usr/src/common/acpica/components/debugger/dbnames.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dbnames - Debugger commands for the acpi namespace
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acnamesp.h"
48 #include "acdebug.h"
49 #include "acpredef.h"

52 #ifdef ACPI_DEBUGGER

54 #define _COMPONENT ACPI_CA_DEBUGGER
55 ACPI_MODULE_NAME ("dbnames")

58 /* Local prototypes */

new/usr/src/common/acpica/components/debugger/dbnames.c 2

60 static ACPI_STATUS
61 AcpiDbWalkAndMatchName (
62 ACPI_HANDLE ObjHandle,
63 UINT32 NestingLevel,
64 void *Context,
65 void **ReturnValue);

67 static ACPI_STATUS
68 AcpiDbWalkForPredefinedNames (
69 ACPI_HANDLE ObjHandle,
70 UINT32 NestingLevel,
71 void *Context,
72 void **ReturnValue);

74 static ACPI_STATUS
75 AcpiDbWalkForSpecificObjects (
76 ACPI_HANDLE ObjHandle,
77 UINT32 NestingLevel,
78 void *Context,
79 void **ReturnValue);

81 static ACPI_STATUS
82 AcpiDbIntegrityWalk (
83 ACPI_HANDLE ObjHandle,
84 UINT32 NestingLevel,
85 void *Context,
86 void **ReturnValue);

88 static ACPI_STATUS
89 AcpiDbWalkForReferences (
90 ACPI_HANDLE ObjHandle,
91 UINT32 NestingLevel,
92 void *Context,
93 void **ReturnValue);

95 static ACPI_STATUS
96 AcpiDbBusWalk (
97 ACPI_HANDLE ObjHandle,
98 UINT32 NestingLevel,
99 void *Context,
100 void **ReturnValue);

102 /*
103 * Arguments for the Objects command
104 * These object types map directly to the ACPI_TYPES
105 */
106 static ACPI_DB_ARGUMENT_INFO AcpiDbObjectTypes [] =
105 static ARGUMENT_INFO AcpiDbObjectTypes [] =
107 {
108 {"ANY"},
109 {"INTEGERS"},
110 {"STRINGS"},
111 {"BUFFERS"},
112 {"PACKAGES"},
113 {"FIELDS"},
114 {"DEVICES"},
115 {"EVENTS"},
116 {"METHODS"},
117 {"MUTEXES"},
118 {"REGIONS"},
119 {"POWERRESOURCES"},
120 {"PROCESSORS"},
121 {"THERMALZONES"},
122 {"BUFFERFIELDS"},
123 {"DDBHANDLES"},

new/usr/src/common/acpica/components/debugger/dbnames.c 3

124 {"DEBUG"},
125 {"REGIONFIELDS"},
126 {"BANKFIELDS"},
127 {"INDEXFIELDS"},
128 {"REFERENCES"},
129 {"ALIAS"},
130 {NULL} /* Must be null terminated */
131 };

134 /***
135 *
136 * FUNCTION: AcpiDbSetScope
137 *
138 * PARAMETERS: Name - New scope path
139 *
140 * RETURN: Status
141 *
142 * DESCRIPTION: Set the "current scope" as maintained by this utility.
143 * The scope is used as a prefix to ACPI paths.
144 *
145 **/

147 void
148 AcpiDbSetScope (
149 char *Name)
150 {
151 ACPI_STATUS Status;
152 ACPI_NAMESPACE_NODE *Node;

155 if (!Name || Name[0] == 0)
156 {
157 AcpiOsPrintf ("Current scope: %s\n", AcpiGbl_DbScopeBuf);
158 return;
159 }

161 AcpiDbPrepNamestring (Name);

163 if (ACPI_IS_ROOT_PREFIX (Name[0]))
162 if (Name[0] == ’\\’)
164 {
165 /* Validate new scope from the root */

167 Status = AcpiNsGetNode (AcpiGbl_RootNode, Name, ACPI_NS_NO_UPSEARCH,
168 &Node);
169 if (ACPI_FAILURE (Status))
170 {
171 goto ErrorExit;
172 }

174 AcpiGbl_DbScopeBuf[0] = 0;
173 ACPI_STRCPY (AcpiGbl_DbScopeBuf, Name);
174 ACPI_STRCAT (AcpiGbl_DbScopeBuf, "\\");
175 }
176 else
177 {
178 /* Validate new scope relative to old scope */

180 Status = AcpiNsGetNode (AcpiGbl_DbScopeNode, Name, ACPI_NS_NO_UPSEARCH,
181 &Node);
182 if (ACPI_FAILURE (Status))
183 {
184 goto ErrorExit;
185 }
186 }

new/usr/src/common/acpica/components/debugger/dbnames.c 4

188 /* Build the final pathname */

190 if (AcpiUtSafeStrcat (AcpiGbl_DbScopeBuf, sizeof (AcpiGbl_DbScopeBuf),
191 Name))
192 {
193 Status = AE_BUFFER_OVERFLOW;
194 goto ErrorExit;
187 ACPI_STRCAT (AcpiGbl_DbScopeBuf, Name);
188 ACPI_STRCAT (AcpiGbl_DbScopeBuf, "\\");
195 }

197 if (AcpiUtSafeStrcat (AcpiGbl_DbScopeBuf, sizeof (AcpiGbl_DbScopeBuf),
198 "\\"))
199 {
200 Status = AE_BUFFER_OVERFLOW;
201 goto ErrorExit;
202 }

204 AcpiGbl_DbScopeNode = Node;
205 AcpiOsPrintf ("New scope: %s\n", AcpiGbl_DbScopeBuf);
206 return;

208 ErrorExit:

210 AcpiOsPrintf ("Could not attach scope: %s, %s\n",
211 Name, AcpiFormatException (Status));
212 }

______unchanged_portion_omitted_

269 /***
270 *
271 * FUNCTION: AcpiDbDumpNamespacePaths
272 *
273 * PARAMETERS: None
274 *
275 * RETURN: None
276 *
277 * DESCRIPTION: Dump entire namespace with full object pathnames and object
278 * type information. Alternative to "namespace" command.
279 *
280 **/

282 void
283 AcpiDbDumpNamespacePaths (
284 void)
285 {

287 AcpiDbSetOutputDestination (ACPI_DB_DUPLICATE_OUTPUT);
288 AcpiOsPrintf ("ACPI Namespace (from root):\n");

290 /* Display the entire namespace */

292 AcpiDbSetOutputDestination (ACPI_DB_REDIRECTABLE_OUTPUT);
293 AcpiNsDumpObjectPaths (ACPI_TYPE_ANY, ACPI_DISPLAY_SUMMARY,
294 ACPI_UINT32_MAX, ACPI_OWNER_ID_MAX, AcpiGbl_RootNode);

296 AcpiDbSetOutputDestination (ACPI_DB_CONSOLE_OUTPUT);
297 }

300 /***
301 *
302 * FUNCTION: AcpiDbDumpNamespaceByOwner
303 *

new/usr/src/common/acpica/components/debugger/dbnames.c 5

304 * PARAMETERS: OwnerArg - Owner ID whose nodes will be displayed
305 * DepthArg - Maximum tree depth to be dumped
306 *
307 * RETURN: None
308 *
309 * DESCRIPTION: Dump elements of the namespace that are owned by the OwnerId.
310 *
311 **/

313 void
314 AcpiDbDumpNamespaceByOwner (
315 char *OwnerArg,
316 char *DepthArg)
317 {
318 ACPI_HANDLE SubtreeEntry = AcpiGbl_RootNode;
319 UINT32 MaxDepth = ACPI_UINT32_MAX;
320 ACPI_OWNER_ID OwnerId;

323 OwnerId = (ACPI_OWNER_ID) ACPI_STRTOUL (OwnerArg, NULL, 0);

325 /* Now we can check for the depth argument */

327 if (DepthArg)
328 {
329 MaxDepth = ACPI_STRTOUL (DepthArg, NULL, 0);
330 }

332 AcpiDbSetOutputDestination (ACPI_DB_DUPLICATE_OUTPUT);
333 AcpiOsPrintf ("ACPI Namespace by owner %X:\n", OwnerId);

335 /* Display the subtree */

337 AcpiDbSetOutputDestination (ACPI_DB_REDIRECTABLE_OUTPUT);
338 AcpiNsDumpObjects (ACPI_TYPE_ANY, ACPI_DISPLAY_SUMMARY, MaxDepth, OwnerId,
339 SubtreeEntry);
340 AcpiDbSetOutputDestination (ACPI_DB_CONSOLE_OUTPUT);
341 }

______unchanged_portion_omitted_

456 /***
457 *
458 * FUNCTION: AcpiDbWalkForPredefinedNames
459 *
460 * PARAMETERS: Callback from WalkNamespace
461 *
462 * RETURN: Status
463 *
464 * DESCRIPTION: Detect and display predefined ACPI names (names that start with
465 * an underscore)
466 *
467 **/

469 static ACPI_STATUS
470 AcpiDbWalkForPredefinedNames (
471 ACPI_HANDLE ObjHandle,
472 UINT32 NestingLevel,
473 void *Context,
474 void **ReturnValue)
475 {
476 ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) ObjHandle;
477 UINT32 *Count = (UINT32 *) Context;
478 const ACPI_PREDEFINED_INFO *Predefined;
479 const ACPI_PREDEFINED_INFO *Package = NULL;
480 char *Pathname;

new/usr/src/common/acpica/components/debugger/dbnames.c 6

481 char StringBuffer[48];

484 Predefined = AcpiUtMatchPredefinedMethod (Node->Name.Ascii);
439 Predefined = AcpiNsCheckForPredefinedName (Node);
485 if (!Predefined)
486 {
487 return (AE_OK);
488 }

490 Pathname = AcpiNsGetExternalPathname (Node);
491 if (!Pathname)
492 {
493 return (AE_OK);
494 }

496 /* If method returns a package, the info is in the next table entry */

498 if (Predefined->Info.ExpectedBtypes & ACPI_RTYPE_PACKAGE)
453 if (Predefined->Info.ExpectedBtypes & ACPI_BTYPE_PACKAGE)
499 {
500 Package = Predefined + 1;
501 }

503 AcpiUtGetExpectedReturnTypes (StringBuffer,
504 Predefined->Info.ExpectedBtypes);
458 AcpiOsPrintf ("%-32s arg %X ret %2.2X", Pathname,
459 Predefined->Info.ParamCount, Predefined->Info.ExpectedBtypes);

506 AcpiOsPrintf ("%-32s Arguments %X, Return Types: %s", Pathname,
507 METHOD_GET_ARG_COUNT (Predefined->Info.ArgumentList),
508 StringBuffer);

510 if (Package)
511 {
512 AcpiOsPrintf (" (PkgType %2.2X, ObjType %2.2X, Count %2.2X)",
463 AcpiOsPrintf (" PkgType %2.2X ObjType %2.2X Count %2.2X",
513 Package->RetInfo.Type, Package->RetInfo.ObjectType1,
514 Package->RetInfo.Count1);
515 }

517 AcpiOsPrintf("\n");

519 /* Check that the declared argument count matches the ACPI spec */

521 AcpiNsCheckAcpiCompliance (Pathname, Node, Predefined);

470 AcpiNsCheckParameterCount (Pathname, Node, ACPI_UINT32_MAX, Predefined);
523 ACPI_FREE (Pathname);
524 (*Count)++;

525 return (AE_OK);
526 }

______unchanged_portion_omitted_

660 /***
661 *
662 * FUNCTION: AcpiDbIntegrityWalk
663 *
664 * PARAMETERS: Callback from WalkNamespace
665 *
666 * RETURN: Status
667 *
668 * DESCRIPTION: Examine one NS node for valid values.
669 *

new/usr/src/common/acpica/components/debugger/dbnames.c 7

670 **/

672 static ACPI_STATUS
673 AcpiDbIntegrityWalk (
674 ACPI_HANDLE ObjHandle,
675 UINT32 NestingLevel,
676 void *Context,
677 void **ReturnValue)
678 {
679 ACPI_INTEGRITY_INFO *Info = (ACPI_INTEGRITY_INFO *) Context;
680 ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) ObjHandle;
681 ACPI_OPERAND_OBJECT *Object;
682 BOOLEAN Alias = TRUE;

685 Info->Nodes++;

687 /* Verify the NS node, and dereference aliases */

689 while (Alias)
690 {
691 if (ACPI_GET_DESCRIPTOR_TYPE (Node) != ACPI_DESC_TYPE_NAMED)
692 {
693 AcpiOsPrintf ("Invalid Descriptor Type for Node %p [%s] - is %2.2X s
694 Node, AcpiUtGetDescriptorName (Node), ACPI_GET_DESCRIPTOR_TYPE (
695 ACPI_DESC_TYPE_NAMED);
696 return (AE_OK);
697 }

699 if ((Node->Type == ACPI_TYPE_LOCAL_ALIAS) ||
700 (Node->Type == ACPI_TYPE_LOCAL_METHOD_ALIAS))
701 {
702 Node = (ACPI_NAMESPACE_NODE *) Node->Object;
703 }
704 else
705 {
706 Alias = FALSE;
707 }
708 }

710 if (Node->Type > ACPI_TYPE_LOCAL_MAX)
711 {
712 AcpiOsPrintf ("Invalid Object Type for Node %p, Type = %X\n",
713 Node, Node->Type);
714 return (AE_OK);
715 }

717 if (!AcpiUtValidAcpiName (Node->Name.Ascii))
666 if (!AcpiUtValidAcpiName (Node->Name.Integer))
718 {
719 AcpiOsPrintf ("Invalid AcpiName for Node %p\n", Node);
720 return (AE_OK);
721 }

723 Object = AcpiNsGetAttachedObject (Node);
724 if (Object)
725 {
726 Info->Objects++;
727 if (ACPI_GET_DESCRIPTOR_TYPE (Object) != ACPI_DESC_TYPE_OPERAND)
728 {
729 AcpiOsPrintf ("Invalid Descriptor Type for Object %p [%s]\n",
730 Object, AcpiUtGetDescriptorName (Object));
731 }
732 }

734 return (AE_OK);

new/usr/src/common/acpica/components/debugger/dbnames.c 8

735 }
______unchanged_portion_omitted_

812 /***
813 *
814 * FUNCTION: AcpiDbFindReferences
815 *
816 * PARAMETERS: ObjectArg - String with hex value of the object
817 *
818 * RETURN: None
819 *
820 * DESCRIPTION: Search namespace for all references to the input object
821 *
822 **/

824 void
825 AcpiDbFindReferences (
826 char *ObjectArg)
827 {
828 ACPI_OPERAND_OBJECT *ObjDesc;
829 ACPI_SIZE Address;

832 /* Convert string to object pointer */

834 Address = ACPI_STRTOUL (ObjectArg, NULL, 16);
835 ObjDesc = ACPI_TO_POINTER (Address);
782 ObjDesc = ACPI_TO_POINTER (ACPI_STRTOUL (ObjectArg, NULL, 16));

837 /* Search all nodes in namespace */

839 (void) AcpiWalkNamespace (ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, ACPI_UINT32_MAX,
840 AcpiDbWalkForReferences, NULL, (void *) ObjDesc, NULL);
841 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/debugger/dbstats.c 1

**
 17059 Thu Dec 26 13:48:44 2013
new/usr/src/common/acpica/components/debugger/dbstats.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dbstats - Generation and display of ACPI table statistics
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acdebug.h"
48 #include "acnamesp.h"

50 #ifdef ACPI_DEBUGGER

52 #define _COMPONENT ACPI_CA_DEBUGGER
53 ACPI_MODULE_NAME ("dbstats")

55 /* Local prototypes */

57 static void
58 AcpiDbCountNamespaceObjects (
59 void);

new/usr/src/common/acpica/components/debugger/dbstats.c 2

61 static void
62 AcpiDbEnumerateObject (
63 ACPI_OPERAND_OBJECT *ObjDesc);

65 static ACPI_STATUS
66 AcpiDbClassifyOneObject (
67 ACPI_HANDLE ObjHandle,
68 UINT32 NestingLevel,
69 void *Context,
70 void **ReturnValue);

72 #if defined ACPI_DBG_TRACK_ALLOCATIONS || defined ACPI_USE_LOCAL_CACHE
73 static void
74 AcpiDbListInfo (
75 ACPI_MEMORY_LIST *List);
76 #endif

79 /*
80 * Statistics subcommands
81 */
82 static ACPI_DB_ARGUMENT_INFO AcpiDbStatTypes [] =
82 static ARGUMENT_INFO AcpiDbStatTypes [] =
83 {
84 {"ALLOCATIONS"},
85 {"OBJECTS"},
86 {"MEMORY"},
87 {"MISC"},
88 {"TABLES"},
89 {"SIZES"},
90 {"STACK"},
91 {NULL} /* Must be null terminated */
92 };

______unchanged_portion_omitted_
174 #endif

177 /***
178 *
179 * FUNCTION: AcpiDbEnumerateObject
180 *
181 * PARAMETERS: ObjDesc - Object to be counted
182 *
183 * RETURN: None
184 *
185 * DESCRIPTION: Add this object to the global counts, by object type.
186 * Limited recursion handles subobjects and packages, and this
187 * is probably acceptable within the AML debugger only.
188 *
189 **/

191 static void
192 AcpiDbEnumerateObject (
193 ACPI_OPERAND_OBJECT *ObjDesc)
194 {
195 UINT32 i;

198 if (!ObjDesc)
199 {
200 return;
201 }

203 /* Enumerate this object first */

new/usr/src/common/acpica/components/debugger/dbstats.c 3

205 AcpiGbl_NumObjects++;

207 if (ObjDesc->Common.Type > ACPI_TYPE_NS_NODE_MAX)
208 {
209 AcpiGbl_ObjTypeCountMisc++;
210 }
211 else
212 {
213 AcpiGbl_ObjTypeCount [ObjDesc->Common.Type]++;
214 }

216 /* Count the sub-objects */

218 switch (ObjDesc->Common.Type)
219 {
220 case ACPI_TYPE_PACKAGE:

222 for (i = 0; i < ObjDesc->Package.Count; i++)
223 {
224 AcpiDbEnumerateObject (ObjDesc->Package.Elements[i]);
225 }
226 break;

228 case ACPI_TYPE_DEVICE:

230 AcpiDbEnumerateObject (ObjDesc->Device.NotifyList[0]);
231 AcpiDbEnumerateObject (ObjDesc->Device.NotifyList[1]);
230 AcpiDbEnumerateObject (ObjDesc->Device.SystemNotify);
231 AcpiDbEnumerateObject (ObjDesc->Device.DeviceNotify);
232 AcpiDbEnumerateObject (ObjDesc->Device.Handler);
233 break;

235 case ACPI_TYPE_BUFFER_FIELD:

237 if (AcpiNsGetSecondaryObject (ObjDesc))
238 {
239 AcpiGbl_ObjTypeCount [ACPI_TYPE_BUFFER_FIELD]++;
240 }
241 break;

243 case ACPI_TYPE_REGION:

245 AcpiGbl_ObjTypeCount [ACPI_TYPE_LOCAL_REGION_FIELD]++;
246 AcpiDbEnumerateObject (ObjDesc->Region.Handler);
247 break;

249 case ACPI_TYPE_POWER:

251 AcpiDbEnumerateObject (ObjDesc->PowerResource.NotifyList[0]);
252 AcpiDbEnumerateObject (ObjDesc->PowerResource.NotifyList[1]);
251 AcpiDbEnumerateObject (ObjDesc->PowerResource.SystemNotify);
252 AcpiDbEnumerateObject (ObjDesc->PowerResource.DeviceNotify);
253 break;

255 case ACPI_TYPE_PROCESSOR:

257 AcpiDbEnumerateObject (ObjDesc->Processor.NotifyList[0]);
258 AcpiDbEnumerateObject (ObjDesc->Processor.NotifyList[1]);
257 AcpiDbEnumerateObject (ObjDesc->Processor.SystemNotify);
258 AcpiDbEnumerateObject (ObjDesc->Processor.DeviceNotify);
259 AcpiDbEnumerateObject (ObjDesc->Processor.Handler);
260 break;

262 case ACPI_TYPE_THERMAL:

264 AcpiDbEnumerateObject (ObjDesc->ThermalZone.NotifyList[0]);

new/usr/src/common/acpica/components/debugger/dbstats.c 4

265 AcpiDbEnumerateObject (ObjDesc->ThermalZone.NotifyList[1]);
264 AcpiDbEnumerateObject (ObjDesc->ThermalZone.SystemNotify);
265 AcpiDbEnumerateObject (ObjDesc->ThermalZone.DeviceNotify);
266 AcpiDbEnumerateObject (ObjDesc->ThermalZone.Handler);
267 break;

269 default:

271 break;
272 }
273 }

276 /***
277 *
278 * FUNCTION: AcpiDbClassifyOneObject
279 *
280 * PARAMETERS: Callback for WalkNamespace
281 *
282 * RETURN: Status
283 *
284 * DESCRIPTION: Enumerate both the object descriptor (including subobjects) and
285 * the parent namespace node.
286 *
287 **/

289 static ACPI_STATUS
290 AcpiDbClassifyOneObject (
291 ACPI_HANDLE ObjHandle,
292 UINT32 NestingLevel,
293 void *Context,
294 void **ReturnValue)
295 {
296 ACPI_NAMESPACE_NODE *Node;
297 ACPI_OPERAND_OBJECT *ObjDesc;
298 UINT32 Type;

301 AcpiGbl_NumNodes++;

303 Node = (ACPI_NAMESPACE_NODE *) ObjHandle;
304 ObjDesc = AcpiNsGetAttachedObject (Node);

306 AcpiDbEnumerateObject (ObjDesc);

308 Type = Node->Type;
309 if (Type > ACPI_TYPE_NS_NODE_MAX)
310 {
311 AcpiGbl_NodeTypeCountMisc++;
312 }
313 else
314 {
315 AcpiGbl_NodeTypeCount [Type]++;
316 }

318 return (AE_OK);
317 return AE_OK;

321 #ifdef ACPI_FUTURE_IMPLEMENTATION

323 /* TBD: These need to be counted during the initial parsing phase */

325 if (AcpiPsIsNamedOp (Op->Opcode))
326 {
327 NumNodes++;

new/usr/src/common/acpica/components/debugger/dbstats.c 5

328 }

330 if (IsMethod)
331 {
332 NumMethodElements++;
333 }

335 NumGrammarElements++;
336 Op = AcpiPsGetDepthNext (Root, Op);

338 SizeOfParseTree = (NumGrammarElements - NumMethodElements) *
339 (UINT32) sizeof (ACPI_PARSE_OBJECT);
340 SizeOfMethodTrees = NumMethodElements * (UINT32) sizeof (ACPI_PARSE_OBJECT);
341 SizeOfNodeEntries = NumNodes * (UINT32) sizeof (ACPI_NAMESPACE_NODE);
342 SizeOfAcpiObjects = NumNodes * (UINT32) sizeof (ACPI_OPERAND_OBJECT);
343 #endif
344 }

______unchanged_portion_omitted_

382 /***
383 *
384 * FUNCTION: AcpiDbDisplayStatistics
385 *
386 * PARAMETERS: TypeArg - Subcommand
387 *
388 * RETURN: Status
389 *
390 * DESCRIPTION: Display various statistics
391 *
392 **/

394 ACPI_STATUS
395 AcpiDbDisplayStatistics (
396 char *TypeArg)
397 {
398 UINT32 i;
399 UINT32 Temp;

401 if (!TypeArg)
402 {
403 AcpiOsPrintf ("The following subcommands are available:\n ALLOCATIONS
404 return (AE_OK);
405 }

402 AcpiUtStrupr (TypeArg);
403 Temp = AcpiDbMatchArgument (TypeArg, AcpiDbStatTypes);
404 if (Temp == (UINT32) -1)
405 {
406 AcpiOsPrintf ("Invalid or unsupported argument\n");
407 return (AE_OK);
408 }

411 switch (Temp)
412 {
413 case CMD_STAT_ALLOCATIONS:

415 #ifdef ACPI_DBG_TRACK_ALLOCATIONS
416 AcpiUtDumpAllocationInfo ();
417 #endif
418 break;

420 case CMD_STAT_TABLES:

new/usr/src/common/acpica/components/debugger/dbstats.c 6

422 AcpiOsPrintf ("ACPI Table Information (not implemented):\n\n");
423 break;

425 case CMD_STAT_OBJECTS:

427 AcpiDbCountNamespaceObjects ();

429 AcpiOsPrintf ("\nObjects defined in the current namespace:\n\n");

431 AcpiOsPrintf ("%16.16s %10.10s %10.10s\n",
432 "ACPI_TYPE", "NODES", "OBJECTS");

434 for (i = 0; i < ACPI_TYPE_NS_NODE_MAX; i++)
435 {
436 AcpiOsPrintf ("%16.16s % 10ld% 10ld\n", AcpiUtGetTypeName (i),
437 AcpiGbl_NodeTypeCount [i], AcpiGbl_ObjTypeCount [i]);
438 }
439 AcpiOsPrintf ("%16.16s % 10ld% 10ld\n", "Misc/Unknown",
440 AcpiGbl_NodeTypeCountMisc, AcpiGbl_ObjTypeCountMisc);

442 AcpiOsPrintf ("%16.16s % 10ld% 10ld\n", "TOTALS:",
443 AcpiGbl_NumNodes, AcpiGbl_NumObjects);
444 break;

446 case CMD_STAT_MEMORY:

448 #ifdef ACPI_DBG_TRACK_ALLOCATIONS
449 AcpiOsPrintf ("\n----Object Statistics (all in hex)---------\n");

451 AcpiDbListInfo (AcpiGbl_GlobalList);
452 AcpiDbListInfo (AcpiGbl_NsNodeList);
453 #endif

455 #ifdef ACPI_USE_LOCAL_CACHE
456 AcpiOsPrintf ("\n----Cache Statistics (all in hex)---------\n");
457 AcpiDbListInfo (AcpiGbl_OperandCache);
458 AcpiDbListInfo (AcpiGbl_PsNodeCache);
459 AcpiDbListInfo (AcpiGbl_PsNodeExtCache);
460 AcpiDbListInfo (AcpiGbl_StateCache);
461 #endif

463 break;

465 case CMD_STAT_MISC:

467 AcpiOsPrintf ("\nMiscellaneous Statistics:\n\n");
468 AcpiOsPrintf ("Calls to AcpiPsFind:.. % 7ld\n",
469 AcpiGbl_PsFindCount);
470 AcpiOsPrintf ("Calls to AcpiNsLookup:..........% 7ld\n",
471 AcpiGbl_NsLookupCount);

473 AcpiOsPrintf ("\n");

475 AcpiOsPrintf ("Mutex usage:\n\n");
476 for (i = 0; i < ACPI_NUM_MUTEX; i++)
477 {
478 AcpiOsPrintf ("%-28s: % 7ld\n",
479 AcpiUtGetMutexName (i), AcpiGbl_MutexInfo[i].UseCount);
480 }
481 break;

483 case CMD_STAT_SIZES:

485 AcpiOsPrintf ("\nInternal object sizes:\n\n");

new/usr/src/common/acpica/components/debugger/dbstats.c 7

487 AcpiOsPrintf ("Common %3d\n", sizeof (ACPI_OBJECT_COMMON));
488 AcpiOsPrintf ("Number %3d\n", sizeof (ACPI_OBJECT_INTEGER));
489 AcpiOsPrintf ("String %3d\n", sizeof (ACPI_OBJECT_STRING));
490 AcpiOsPrintf ("Buffer %3d\n", sizeof (ACPI_OBJECT_BUFFER));
491 AcpiOsPrintf ("Package %3d\n", sizeof (ACPI_OBJECT_PACKAGE));
492 AcpiOsPrintf ("BufferField %3d\n", sizeof (ACPI_OBJECT_BUFFER_FIELD
493 AcpiOsPrintf ("Device %3d\n", sizeof (ACPI_OBJECT_DEVICE));
494 AcpiOsPrintf ("Event %3d\n", sizeof (ACPI_OBJECT_EVENT));
495 AcpiOsPrintf ("Method %3d\n", sizeof (ACPI_OBJECT_METHOD));
496 AcpiOsPrintf ("Mutex %3d\n", sizeof (ACPI_OBJECT_MUTEX));
497 AcpiOsPrintf ("Region %3d\n", sizeof (ACPI_OBJECT_REGION));
498 AcpiOsPrintf ("PowerResource %3d\n", sizeof (ACPI_OBJECT_POWER_RESOUR
499 AcpiOsPrintf ("Processor %3d\n", sizeof (ACPI_OBJECT_PROCESSOR));
500 AcpiOsPrintf ("ThermalZone %3d\n", sizeof (ACPI_OBJECT_THERMAL_ZONE
501 AcpiOsPrintf ("RegionField %3d\n", sizeof (ACPI_OBJECT_REGION_FIELD
502 AcpiOsPrintf ("BankField %3d\n", sizeof (ACPI_OBJECT_BANK_FIELD))
503 AcpiOsPrintf ("IndexField %3d\n", sizeof (ACPI_OBJECT_INDEX_FIELD)
504 AcpiOsPrintf ("Reference %3d\n", sizeof (ACPI_OBJECT_REFERENCE));
505 AcpiOsPrintf ("Notify %3d\n", sizeof (ACPI_OBJECT_NOTIFY_HANDL
506 AcpiOsPrintf ("AddressSpace %3d\n", sizeof (ACPI_OBJECT_ADDR_HANDLER
507 AcpiOsPrintf ("Extra %3d\n", sizeof (ACPI_OBJECT_EXTRA));
508 AcpiOsPrintf ("Data %3d\n", sizeof (ACPI_OBJECT_DATA));

510 AcpiOsPrintf ("\n");

512 AcpiOsPrintf ("ParseObject %3d\n", sizeof (ACPI_PARSE_OBJ_COMMON));
513 AcpiOsPrintf ("ParseObjectNamed %3d\n", sizeof (ACPI_PARSE_OBJ_NAMED));
514 AcpiOsPrintf ("ParseObjectAsl %3d\n", sizeof (ACPI_PARSE_OBJ_ASL));
515 AcpiOsPrintf ("OperandObject %3d\n", sizeof (ACPI_OPERAND_OBJECT));
516 AcpiOsPrintf ("NamespaceNode %3d\n", sizeof (ACPI_NAMESPACE_NODE));
517 AcpiOsPrintf ("AcpiObject %3d\n", sizeof (ACPI_OBJECT));

519 AcpiOsPrintf ("\n");

521 AcpiOsPrintf ("Generic State %3d\n", sizeof (ACPI_GENERIC_STATE));
522 AcpiOsPrintf ("Common State %3d\n", sizeof (ACPI_COMMON_STATE));
523 AcpiOsPrintf ("Control State %3d\n", sizeof (ACPI_CONTROL_STATE));
524 AcpiOsPrintf ("Update State %3d\n", sizeof (ACPI_UPDATE_STATE));
525 AcpiOsPrintf ("Scope State %3d\n", sizeof (ACPI_SCOPE_STATE));
526 AcpiOsPrintf ("Parse Scope %3d\n", sizeof (ACPI_PSCOPE_STATE));
527 AcpiOsPrintf ("Package State %3d\n", sizeof (ACPI_PKG_STATE));
528 AcpiOsPrintf ("Thread State %3d\n", sizeof (ACPI_THREAD_STATE));
529 AcpiOsPrintf ("Result Values %3d\n", sizeof (ACPI_RESULT_VALUES));
530 AcpiOsPrintf ("Notify Info %3d\n", sizeof (ACPI_NOTIFY_INFO));
531 break;

533 case CMD_STAT_STACK:
534 #if defined(ACPI_DEBUG_OUTPUT)

536 Temp = (UINT32) ACPI_PTR_DIFF (AcpiGbl_EntryStackPointer, AcpiGbl_Lowest

538 AcpiOsPrintf ("\nSubsystem Stack Usage:\n\n");
539 AcpiOsPrintf ("Entry Stack Pointer %p\n", AcpiGbl_EntryStackPoi
540 AcpiOsPrintf ("Lowest Stack Pointer %p\n", AcpiGbl_LowestStackPo
541 AcpiOsPrintf ("Stack Use %X (%u)\n", Temp, Temp);
542 AcpiOsPrintf ("Deepest Procedure Nesting %u\n", AcpiGbl_DeepestNestin
543 #endif
544 break;

546 default:

548 break;
549 }

551 AcpiOsPrintf ("\n");

new/usr/src/common/acpica/components/debugger/dbstats.c 8

552 return (AE_OK);
553 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/debugger/dbutils.c 1

**
 13449 Thu Dec 26 13:48:44 2013
new/usr/src/common/acpica/components/debugger/dbutils.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dbutils - AML debugger utilities
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acnamesp.h"
48 #include "acdebug.h"
49 #include "acdisasm.h"

52 #ifdef ACPI_DEBUGGER

54 #define _COMPONENT ACPI_CA_DEBUGGER
55 ACPI_MODULE_NAME ("dbutils")

57 /* Local prototypes */

59 #ifdef ACPI_OBSOLETE_FUNCTIONS

new/usr/src/common/acpica/components/debugger/dbutils.c 2

60 ACPI_STATUS
61 AcpiDbSecondPassParse (
62 ACPI_PARSE_OBJECT *Root);

64 void
65 AcpiDbDumpBuffer (
66 UINT32 Address);
67 #endif

69 static char *Converter = "0123456789ABCDEF";

72 /***
73 *
74 * FUNCTION: AcpiDbMatchArgument
75 *
76 * PARAMETERS: UserArgument - User command line
77 * Arguments - Array of commands to match against
78 *
79 * RETURN: Index into command array or ACPI_TYPE_NOT_FOUND if not found
80 *
81 * DESCRIPTION: Search command array for a command match
82 *
83 **/

85 ACPI_OBJECT_TYPE
86 AcpiDbMatchArgument (
87 char *UserArgument,
88 ACPI_DB_ARGUMENT_INFO *Arguments)
88 ARGUMENT_INFO *Arguments)
89 {
90 UINT32 i;

93 if (!UserArgument || UserArgument[0] == 0)
94 {
95 return (ACPI_TYPE_NOT_FOUND);
96 }

98 for (i = 0; Arguments[i].Name; i++)
99 {
100 if (ACPI_STRSTR (Arguments[i].Name, UserArgument) == Arguments[i].Name)
101 {
102 return (i);
103 }
104 }

106 /* Argument not recognized */

108 return (ACPI_TYPE_NOT_FOUND);
109 }

______unchanged_portion_omitted_

143 /***
144 *
145 * FUNCTION: AcpiDbDumpExternalObject
146 *
147 * PARAMETERS: ObjDesc - External ACPI object to dump
148 * Level - Nesting level.
149 *
150 * RETURN: None
151 *
152 * DESCRIPTION: Dump the contents of an ACPI external object
153 *
154 **/

new/usr/src/common/acpica/components/debugger/dbutils.c 3

156 void
157 AcpiDbDumpExternalObject (
158 ACPI_OBJECT *ObjDesc,
159 UINT32 Level)
160 {
161 UINT32 i;

164 if (!ObjDesc)
165 {
166 AcpiOsPrintf ("[Null Object]\n");
167 return;
168 }

170 for (i = 0; i < Level; i++)
171 {
172 AcpiOsPrintf (" ");
173 }

175 switch (ObjDesc->Type)
176 {
177 case ACPI_TYPE_ANY:

179 AcpiOsPrintf ("[Null Object] (Type=0)\n");
180 break;

182 case ACPI_TYPE_INTEGER:

184 AcpiOsPrintf ("[Integer] = %8.8X%8.8X\n",
185 ACPI_FORMAT_UINT64 (ObjDesc->Integer.Value));
186 break;

188 case ACPI_TYPE_STRING:

190 AcpiOsPrintf ("[String] Length %.2X = ", ObjDesc->String.Length);
191 AcpiUtPrintString (ObjDesc->String.Pointer, ACPI_UINT8_MAX);
193 for (i = 0; i < ObjDesc->String.Length; i++)
194 {
195 AcpiOsPrintf ("%c", ObjDesc->String.Pointer[i]);
196 }
192 AcpiOsPrintf ("\n");
193 break;

195 case ACPI_TYPE_BUFFER:

197 AcpiOsPrintf ("[Buffer] Length %.2X = ", ObjDesc->Buffer.Length);
198 if (ObjDesc->Buffer.Length)
199 {
200 if (ObjDesc->Buffer.Length > 16)
201 {
202 AcpiOsPrintf ("\n");
203 }
204 AcpiUtDebugDumpBuffer (ACPI_CAST_PTR (UINT8, ObjDesc->Buffer.Pointer
205 ObjDesc->Buffer.Length, DB_BYTE_DISPLAY, _COMPONENT);
210 AcpiUtDumpBuffer (ACPI_CAST_PTR (UINT8, ObjDesc->Buffer.Pointer),
211 ObjDesc->Buffer.Length, DB_DWORD_DISPLAY, _COMPONENT);
206 }
207 else
208 {
209 AcpiOsPrintf ("\n");
210 }
211 break;

new/usr/src/common/acpica/components/debugger/dbutils.c 4

213 case ACPI_TYPE_PACKAGE:

215 AcpiOsPrintf ("[Package] Contains %u Elements:\n",
216 ObjDesc->Package.Count);

218 for (i = 0; i < ObjDesc->Package.Count; i++)
219 {
220 AcpiDbDumpExternalObject (&ObjDesc->Package.Elements[i], Level+1);
221 }
222 break;

224 case ACPI_TYPE_LOCAL_REFERENCE:

226 AcpiOsPrintf ("[Object Reference] = ");
227 AcpiDmDisplayInternalObject (ObjDesc->Reference.Handle, NULL);
228 break;

230 case ACPI_TYPE_PROCESSOR:

232 AcpiOsPrintf ("[Processor]\n");
233 break;

235 case ACPI_TYPE_POWER:

237 AcpiOsPrintf ("[Power Resource]\n");
238 break;

240 default:

242 AcpiOsPrintf ("[Unknown Type] %X\n", ObjDesc->Type);
243 break;
244 }
245 }

248 /***
249 *
250 * FUNCTION: AcpiDbPrepNamestring
251 *
252 * PARAMETERS: Name - String to prepare
253 *
254 * RETURN: None
255 *
256 * DESCRIPTION: Translate all forward slashes and dots to backslashes.
257 *
258 **/

260 void
261 AcpiDbPrepNamestring (
262 char *Name)
263 {

265 if (!Name)
266 {
267 return;
268 }

270 AcpiUtStrupr (Name);

272 /* Convert a leading forward slash to a backslash */

new/usr/src/common/acpica/components/debugger/dbutils.c 5

274 if (*Name == ’/’)
275 {
276 *Name = ’\\’;
277 }

279 /* Ignore a leading backslash, this is the root prefix */

281 if (ACPI_IS_ROOT_PREFIX (*Name))
292 if (*Name == ’\\’)
282 {
283 Name++;
284 }

286 /* Convert all slash path separators to dots */

288 while (*Name)
289 {
290 if ((*Name == ’/’) ||
291 (*Name == ’\\’))
292 {
293 *Name = ’.’;
294 }

296 Name++;
297 }
298 }

______unchanged_portion_omitted_

353 /***
354 *
355 * FUNCTION: AcpiDbUint32ToHexString
366 * FUNCTION: AcpiDbUInt32ToHexString
356 *
357 * PARAMETERS: Value - The value to be converted to string
358 * Buffer - Buffer for result (not less than 11 bytes)
359 *
360 * RETURN: None
361 *
362 * DESCRIPTION: Convert the unsigned 32-bit value to the hexadecimal image
363 *
364 * NOTE: It is the caller’s responsibility to ensure that the length of buffer
365 * is sufficient.
366 *
367 **/

369 void
370 AcpiDbUint32ToHexString (
381 AcpiDbUInt32ToHexString (
371 UINT32 Value,
372 char *Buffer)
373 {
374 int i;

377 if (Value == 0)
378 {
379 ACPI_STRCPY (Buffer, "0");
380 return;
381 }

383 Buffer[8] = ’\0’;

385 for (i = 7; i >= 0; i--)
386 {

new/usr/src/common/acpica/components/debugger/dbutils.c 6

387 Buffer[i] = Converter [Value & 0x0F];
388 Value = Value >> 4;
389 }
390 }

______unchanged_portion_omitted_

488 /***
489 *
490 * FUNCTION: AcpiDbDumpBuffer
491 *
492 * PARAMETERS: Address - Pointer to the buffer
493 *
494 * RETURN: None
495 *
496 * DESCRIPTION: Print a portion of a buffer
497 *
498 **/

500 void
501 AcpiDbDumpBuffer (
502 UINT32 Address)
503 {

505 AcpiOsPrintf ("\nLocation %X:\n", Address);

507 AcpiDbgLevel |= ACPI_LV_TABLES;
508 AcpiUtDebugDumpBuffer (ACPI_TO_POINTER (Address), 64, DB_BYTE_DISPLAY,
519 AcpiUtDumpBuffer (ACPI_TO_POINTER (Address), 64, DB_BYTE_DISPLAY,
509 ACPI_UINT32_MAX);
510 }
511 #endif

513 #endif /* ACPI_DEBUGGER */

new/usr/src/common/acpica/components/debugger/dbxface.c 1

**
 15621 Thu Dec 26 13:48:44 2013
new/usr/src/common/acpica/components/debugger/dbxface.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dbxface - AML Debugger external interfaces
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "amlcode.h"
48 #include "acdebug.h"
49 #include "acdisasm.h"

52 #ifdef ACPI_DEBUGGER

54 #define _COMPONENT ACPI_CA_DEBUGGER
55 ACPI_MODULE_NAME ("dbxface")

58 /* Local prototypes */

new/usr/src/common/acpica/components/debugger/dbxface.c 2

60 static ACPI_STATUS
61 AcpiDbStartCommand (
62 ACPI_WALK_STATE *WalkState,
63 ACPI_PARSE_OBJECT *Op);

65 #ifdef ACPI_OBSOLETE_FUNCTIONS
66 void
67 AcpiDbMethodEnd (
68 ACPI_WALK_STATE *WalkState);
69 #endif

72 /***
73 *
74 * FUNCTION: AcpiDbStartCommand
75 *
76 * PARAMETERS: WalkState - Current walk
77 * Op - Current executing Op, from AML interpreter
78 *
79 * RETURN: Status
80 *
81 * DESCRIPTION: Enter debugger command loop
82 *
83 **/

85 static ACPI_STATUS
86 AcpiDbStartCommand (
87 ACPI_WALK_STATE *WalkState,
88 ACPI_PARSE_OBJECT *Op)
89 {
90 ACPI_STATUS Status;

93 /* TBD: [Investigate] are there namespace locking issues here? */

95 /* AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); */

97 /* Go into the command loop and await next user command */

100 AcpiGbl_MethodExecuting = TRUE;
101 Status = AE_CTRL_TRUE;
102 while (Status == AE_CTRL_TRUE)
103 {
104 if (AcpiGbl_DebuggerConfiguration == DEBUGGER_MULTI_THREADED)
105 {
106 /* Handshake with the front-end that gets user command lines */

108 Status = AcpiUtReleaseMutex (ACPI_MTX_DEBUG_CMD_COMPLETE);
109 if (ACPI_FAILURE (Status))
110 {
111 return (Status);
112 }
113 Status = AcpiUtAcquireMutex (ACPI_MTX_DEBUG_CMD_READY);
114 if (ACPI_FAILURE (Status))
115 {
116 return (Status);
117 }
118 }
119 else
120 {
121 /* Single threaded, we must get a command line ourselves */

123 /* Force output to console until a command is entered */

new/usr/src/common/acpica/components/debugger/dbxface.c 3

125 AcpiDbSetOutputDestination (ACPI_DB_CONSOLE_OUTPUT);

127 /* Different prompt if method is executing */

129 if (!AcpiGbl_MethodExecuting)
130 {
131 AcpiOsPrintf ("%1c ", ACPI_DEBUGGER_COMMAND_PROMPT);
132 }
133 else
134 {
135 AcpiOsPrintf ("%1c ", ACPI_DEBUGGER_EXECUTE_PROMPT);
136 }

138 /* Get the user input line */

140 Status = AcpiOsGetLine (AcpiGbl_DbLineBuf,
141 ACPI_DB_LINE_BUFFER_SIZE, NULL);
142 if (ACPI_FAILURE (Status))
143 {
144 ACPI_EXCEPTION ((AE_INFO, Status, "While parsing command line"))
145 return (Status);
146 }
147 }

149 Status = AcpiDbCommandDispatch (AcpiGbl_DbLineBuf, WalkState, Op);
150 }

152 /* AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); */

154 return (Status);
155 }

158 /***
159 *
160 * FUNCTION: AcpiDbSingleStep
161 *
162 * PARAMETERS: WalkState - Current walk
163 * Op - Current executing op (from aml interpreter)
164 * OpcodeClass - Class of the current AML Opcode
165 *
166 * RETURN: Status
167 *
168 * DESCRIPTION: Called just before execution of an AML opcode.
169 *
170 **/

172 ACPI_STATUS
173 AcpiDbSingleStep (
174 ACPI_WALK_STATE *WalkState,
175 ACPI_PARSE_OBJECT *Op,
176 UINT32 OpcodeClass)
177 {
178 ACPI_PARSE_OBJECT *Next;
179 ACPI_STATUS Status = AE_OK;
180 UINT32 OriginalDebugLevel;
181 ACPI_PARSE_OBJECT *DisplayOp;
182 ACPI_PARSE_OBJECT *ParentOp;

185 ACPI_FUNCTION_ENTRY ();

188 /* Check the abort flag */

190 if (AcpiGbl_AbortMethod)

new/usr/src/common/acpica/components/debugger/dbxface.c 4

191 {
192 AcpiGbl_AbortMethod = FALSE;
193 return (AE_ABORT_METHOD);
194 }

196 /* Check for single-step breakpoint */

198 if (WalkState->MethodBreakpoint &&
199 (WalkState->MethodBreakpoint <= Op->Common.AmlOffset))
200 {
201 /* Check if the breakpoint has been reached or passed */
202 /* Hit the breakpoint, resume single step, reset breakpoint */

204 AcpiOsPrintf ("***Break*** at AML offset %X\n", Op->Common.AmlOffset);
205 AcpiGbl_CmSingleStep = TRUE;
206 AcpiGbl_StepToNextCall = FALSE;
207 WalkState->MethodBreakpoint = 0;
208 }

210 /* Check for user breakpoint (Must be on exact Aml offset) */

212 else if (WalkState->UserBreakpoint &&
213 (WalkState->UserBreakpoint == Op->Common.AmlOffset))
214 {
215 AcpiOsPrintf ("***UserBreakpoint*** at AML offset %X\n",
216 Op->Common.AmlOffset);
217 AcpiGbl_CmSingleStep = TRUE;
218 AcpiGbl_StepToNextCall = FALSE;
219 WalkState->MethodBreakpoint = 0;
220 }

222 /*
223 * Check if this is an opcode that we are interested in --
224 * namely, opcodes that have arguments
225 */
226 if (Op->Common.AmlOpcode == AML_INT_NAMEDFIELD_OP)
227 {
228 return (AE_OK);
229 }

231 switch (OpcodeClass)
232 {
233 case AML_CLASS_UNKNOWN:
234 case AML_CLASS_ARGUMENT: /* constants, literals, etc. do nothing */

236 return (AE_OK);

238 default:

240 /* All other opcodes -- continue */
241 break;
242 }

244 /*
245 * Under certain debug conditions, display this opcode and its operands
246 */
247 if ((AcpiGbl_DbOutputToFile) ||
248 (AcpiGbl_CmSingleStep) ||
249 (AcpiDbgLevel & ACPI_LV_PARSE))
250 {
251 if ((AcpiGbl_DbOutputToFile) ||
252 (AcpiDbgLevel & ACPI_LV_PARSE))
253 {
254 AcpiOsPrintf ("\n[AmlDebug] Next AML Opcode to execute:\n");
255 }

new/usr/src/common/acpica/components/debugger/dbxface.c 5

257 /*
258 * Display this op (and only this op - zero out the NEXT field
259 * temporarily, and disable parser trace output for the duration of
260 * the display because we don’t want the extraneous debug output)
261 */
262 OriginalDebugLevel = AcpiDbgLevel;
263 AcpiDbgLevel &= ~(ACPI_LV_PARSE | ACPI_LV_FUNCTIONS);
264 Next = Op->Common.Next;
265 Op->Common.Next = NULL;

268 DisplayOp = Op;
269 ParentOp = Op->Common.Parent;
270 if (ParentOp)
271 {
272 if ((WalkState->ControlState) &&
273 (WalkState->ControlState->Common.State ==
274 ACPI_CONTROL_PREDICATE_EXECUTING))
275 {
276 /*
277 * We are executing the predicate of an IF or WHILE statement
278 * Search upwards for the containing IF or WHILE so that the
279 * entire predicate can be displayed.
280 */
281 while (ParentOp)
282 {
283 if ((ParentOp->Common.AmlOpcode == AML_IF_OP) ||
284 (ParentOp->Common.AmlOpcode == AML_WHILE_OP))
285 {
286 DisplayOp = ParentOp;
287 break;
288 }
289 ParentOp = ParentOp->Common.Parent;
290 }
291 }
292 else
293 {
294 while (ParentOp)
295 {
296 if ((ParentOp->Common.AmlOpcode == AML_IF_OP) ||
297 (ParentOp->Common.AmlOpcode == AML_ELSE_OP) ||
298 (ParentOp->Common.AmlOpcode == AML_SCOPE_OP) ||
299 (ParentOp->Common.AmlOpcode == AML_METHOD_OP) ||
300 (ParentOp->Common.AmlOpcode == AML_WHILE_OP))
301 {
302 break;
303 }
304 DisplayOp = ParentOp;
305 ParentOp = ParentOp->Common.Parent;
306 }
307 }
308 }

310 /* Now we can display it */

312 AcpiDmDisassemble (WalkState, DisplayOp, ACPI_UINT32_MAX);

314 if ((Op->Common.AmlOpcode == AML_IF_OP) ||
315 (Op->Common.AmlOpcode == AML_WHILE_OP))
316 {
317 if (WalkState->ControlState->Common.Value)
318 {
319 AcpiOsPrintf ("Predicate = [True], IF block was executed\n");
320 }
321 else
322 {

new/usr/src/common/acpica/components/debugger/dbxface.c 6

323 AcpiOsPrintf ("Predicate = [False], Skipping IF block\n");
324 }
325 }
326 else if (Op->Common.AmlOpcode == AML_ELSE_OP)
327 {
328 AcpiOsPrintf ("Predicate = [False], ELSE block was executed\n");
329 }

331 /* Restore everything */

333 Op->Common.Next = Next;
334 AcpiOsPrintf ("\n");
335 if ((AcpiGbl_DbOutputToFile) ||
336 (AcpiDbgLevel & ACPI_LV_PARSE))
337 {
338 AcpiOsPrintf ("\n");
339 }
340 AcpiDbgLevel = OriginalDebugLevel;
341 }

343 /* If we are not single stepping, just continue executing the method */

345 if (!AcpiGbl_CmSingleStep)
346 {
347 return (AE_OK);
348 }

350 /*
351 * If we are executing a step-to-call command,
352 * Check if this is a method call.
353 */
354 if (AcpiGbl_StepToNextCall)
355 {
356 if (Op->Common.AmlOpcode != AML_INT_METHODCALL_OP)
357 {
358 /* Not a method call, just keep executing */

360 return (AE_OK);
361 }

363 /* Found a method call, stop executing */

365 AcpiGbl_StepToNextCall = FALSE;
366 }

368 /*
369 * If the next opcode is a method call, we will "step over" it
370 * by default.
371 */
372 if (Op->Common.AmlOpcode == AML_INT_METHODCALL_OP)
373 {
374 /* Force no more single stepping while executing called method */

376 AcpiGbl_CmSingleStep = FALSE;

378 /*
379 * Set the breakpoint on/before the call, it will stop execution
380 * as soon as we return
381 */
382 WalkState->MethodBreakpoint = 1; /* Must be non-zero! */
383 }

386 Status = AcpiDbStartCommand (WalkState, Op);

388 /* User commands complete, continue execution of the interrupted method */

new/usr/src/common/acpica/components/debugger/dbxface.c 7

390 return (Status);
391 }

394 /***
395 *
396 * FUNCTION: AcpiDbInitialize
397 *
398 * PARAMETERS: None
399 *
400 * RETURN: Status
401 *
402 * DESCRIPTION: Init and start debugger
403 *
404 **/

406 ACPI_STATUS
407 AcpiDbInitialize (
408 void)
409 {
410 ACPI_STATUS Status;

413 ACPI_FUNCTION_TRACE (DbInitialize);

416 /* Init globals */

418 AcpiGbl_DbBuffer = NULL;
419 AcpiGbl_DbFilename = NULL;
420 AcpiGbl_DbOutputToFile = FALSE;

422 AcpiGbl_DbDebugLevel = ACPI_LV_VERBOSITY2;
423 AcpiGbl_DbConsoleDebugLevel = ACPI_NORMAL_DEFAULT | ACPI_LV_TABLES;
424 AcpiGbl_DbOutputFlags = ACPI_DB_CONSOLE_OUTPUT;

426 AcpiGbl_DbOpt_tables = FALSE;
427 AcpiGbl_DbOpt_disasm = FALSE;
428 AcpiGbl_DbOpt_stats = FALSE;
429 AcpiGbl_DbOpt_verbose = TRUE;
430 AcpiGbl_DbOpt_ini_methods = TRUE;

432 AcpiGbl_DbBuffer = AcpiOsAllocate (ACPI_DEBUG_BUFFER_SIZE);
433 if (!AcpiGbl_DbBuffer)
434 {
435 return_ACPI_STATUS (AE_NO_MEMORY);
430 return (AE_NO_MEMORY);
436 }
437 ACPI_MEMSET (AcpiGbl_DbBuffer, 0, ACPI_DEBUG_BUFFER_SIZE);

439 /* Initial scope is the root */

441 AcpiGbl_DbScopeBuf [0] = AML_ROOT_PREFIX;
436 AcpiGbl_DbScopeBuf [0] = ’\\’;
442 AcpiGbl_DbScopeBuf [1] = 0;
443 AcpiGbl_DbScopeNode = AcpiGbl_RootNode;

445 /*
446 * If configured for multi-thread support, the debug executor runs in
447 * a separate thread so that the front end can be in another address
448 * space, environment, or even another machine.
449 */
450 if (AcpiGbl_DebuggerConfiguration & DEBUGGER_MULTI_THREADED)
451 {
452 /* These were created with one unit, grab it */

new/usr/src/common/acpica/components/debugger/dbxface.c 8

454 Status = AcpiUtAcquireMutex (ACPI_MTX_DEBUG_CMD_COMPLETE);
455 if (ACPI_FAILURE (Status))
456 {
457 AcpiOsPrintf ("Could not get debugger mutex\n");
458 return_ACPI_STATUS (Status);
453 return (Status);
459 }

461 Status = AcpiUtAcquireMutex (ACPI_MTX_DEBUG_CMD_READY);
462 if (ACPI_FAILURE (Status))
463 {
464 AcpiOsPrintf ("Could not get debugger mutex\n");
465 return_ACPI_STATUS (Status);
460 return (Status);
466 }

468 /* Create the debug execution thread to execute commands */

470 Status = AcpiOsExecute (OSL_DEBUGGER_THREAD, AcpiDbExecuteThread, NULL);
471 if (ACPI_FAILURE (Status))
472 {
473 ACPI_EXCEPTION ((AE_INFO, Status, "Could not start debugger thread")
474 return_ACPI_STATUS (Status);
468 AcpiOsPrintf ("Could not start debugger thread\n");
469 return (Status);
475 }
476 }

478 if (!AcpiGbl_DbOpt_verbose)
479 {
480 AcpiGbl_DbOpt_disasm = TRUE;
481 AcpiGbl_DbOpt_stats = FALSE;
482 }

484 return_ACPI_STATUS (AE_OK);
479 return (AE_OK);
485 }

488 /***
489 *
490 * FUNCTION: AcpiDbTerminate
491 *
492 * PARAMETERS: None
493 *
494 * RETURN: None
495 *
496 * DESCRIPTION: Stop debugger
497 *
498 **/

500 void
501 AcpiDbTerminate (
502 void)
503 {

505 if (AcpiGbl_DbBuffer)
506 {
507 AcpiOsFree (AcpiGbl_DbBuffer);
508 AcpiGbl_DbBuffer = NULL;
509 }

511 /* Ensure that debug output is now disabled */

513 AcpiGbl_DbOutputFlags = ACPI_DB_DISABLE_OUTPUT;

new/usr/src/common/acpica/components/debugger/dbxface.c 9

514 }
______unchanged_portion_omitted_

new/usr/src/common/acpica/components/disassembler/dmbuffer.c 1

**
 18848 Thu Dec 26 13:48:45 2013
new/usr/src/common/acpica/components/disassembler/dmbuffer.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dmbuffer - AML disassembler, buffer and string support
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acdisasm.h"
48 #include "acparser.h"
49 #include "amlcode.h"

52 #ifdef ACPI_DISASSEMBLER

54 #define _COMPONENT ACPI_CA_DEBUGGER
55 ACPI_MODULE_NAME ("dmbuffer")

57 /* Local prototypes */

59 static void
60 AcpiDmUnicode (

new/usr/src/common/acpica/components/disassembler/dmbuffer.c 2

61 ACPI_PARSE_OBJECT *Op);

63 static void
64 AcpiDmIsEisaIdElement (
65 ACPI_PARSE_OBJECT *Op);

67 static void
68 AcpiDmPldBuffer (
69 UINT32 Level,
70 UINT8 *ByteData,
71 UINT32 ByteCount);

74 /***
75 *
76 * FUNCTION: AcpiDmDisasmByteList
77 *
78 * PARAMETERS: Level - Current source code indentation level
79 * ByteData - Pointer to the byte list
80 * ByteCount - Length of the byte list
81 *
82 * RETURN: None
83 *
84 * DESCRIPTION: Dump an AML "ByteList" in Hex format. 8 bytes per line, prefixed
85 * with the hex buffer offset.
86 *
87 **/

89 void
90 AcpiDmDisasmByteList (
91 UINT32 Level,
92 UINT8 *ByteData,
93 UINT32 ByteCount)
94 {
95 UINT32 i;

98 if (!ByteCount)
99 {
100 return;
101 }

103 /* Dump the byte list */

105 for (i = 0; i < ByteCount; i++)
106 {
107 /* New line every 8 bytes */

109 if (((i % 8) == 0) && (i < ByteCount))
110 {
111 if (i > 0)
112 {
113 AcpiOsPrintf ("\n");
114 }

116 AcpiDmIndent (Level);
117 if (ByteCount > 8)
118 {
119 AcpiOsPrintf ("/* %04X */ ", i);
120 }
121 }

123 AcpiOsPrintf (" 0x%2.2X", (UINT32) ByteData[i]);

125 /* Add comma if there are more bytes to display */

new/usr/src/common/acpica/components/disassembler/dmbuffer.c 3

127 if (i < (ByteCount -1))
128 {
129 AcpiOsPrintf (",");
130 }
131 }

133 if (Level)
134 {
135 AcpiOsPrintf ("\n");
136 }
137 }

140 /***
141 *
142 * FUNCTION: AcpiDmByteList
143 *
144 * PARAMETERS: Info - Parse tree walk info
145 * Op - Byte list op
146 *
147 * RETURN: None
148 *
149 * DESCRIPTION: Dump a buffer byte list, handling the various types of buffers.
150 * Buffer type must be already set in the Op DisasmOpcode.
151 *
152 **/

154 void
155 AcpiDmByteList (
156 ACPI_OP_WALK_INFO *Info,
157 ACPI_PARSE_OBJECT *Op)
158 {
159 UINT8 *ByteData;
160 UINT32 ByteCount;

163 ByteData = Op->Named.Data;
164 ByteCount = (UINT32) Op->Common.Value.Integer;

166 /*
167 * The byte list belongs to a buffer, and can be produced by either
168 * a ResourceTemplate, Unicode, quoted string, or a plain byte list.
169 */
170 switch (Op->Common.Parent->Common.DisasmOpcode)
171 {
172 case ACPI_DASM_RESOURCE:

174 AcpiDmResourceTemplate (Info, Op->Common.Parent, ByteData, ByteCount);
175 break;

177 case ACPI_DASM_STRING:

179 AcpiDmIndent (Info->Level);
180 AcpiUtPrintString ((char *) ByteData, ACPI_UINT16_MAX);
181 AcpiOsPrintf ("\n");
182 break;

184 case ACPI_DASM_UNICODE:

186 AcpiDmUnicode (Op);
187 break;

189 case ACPI_DASM_PLD_METHOD:

191 AcpiDmDisasmByteList (Info->Level, ByteData, ByteCount);
192 AcpiDmPldBuffer (Info->Level, ByteData, ByteCount);

new/usr/src/common/acpica/components/disassembler/dmbuffer.c 4

193 break;

195 case ACPI_DASM_BUFFER:
196 default:
197 /*
198 * Not a resource, string, or unicode string.
199 * Just dump the buffer
200 */
201 AcpiDmDisasmByteList (Info->Level, ByteData, ByteCount);
202 break;
203 }
204 }

207 /***
208 *
209 * FUNCTION: AcpiDmIsUnicodeBuffer
210 *
211 * PARAMETERS: Op - Buffer Object to be examined
212 *
213 * RETURN: TRUE if buffer contains a UNICODE string
214 *
215 * DESCRIPTION: Determine if a buffer Op contains a Unicode string
216 *
217 **/

219 BOOLEAN
220 AcpiDmIsUnicodeBuffer (
221 ACPI_PARSE_OBJECT *Op)
222 {
223 UINT8 *ByteData;
224 UINT32 ByteCount;
225 UINT32 WordCount;
226 ACPI_PARSE_OBJECT *SizeOp;
227 ACPI_PARSE_OBJECT *NextOp;
228 UINT32 i;

231 /* Buffer size is the buffer argument */

233 SizeOp = Op->Common.Value.Arg;

235 /* Next, the initializer byte list to examine */

237 NextOp = SizeOp->Common.Next;
238 if (!NextOp)
239 {
240 return (FALSE);
241 }

243 /* Extract the byte list info */

245 ByteData = NextOp->Named.Data;
246 ByteCount = (UINT32) NextOp->Common.Value.Integer;
247 WordCount = ACPI_DIV_2 (ByteCount);

249 /*
250 * Unicode string must have an even number of bytes and last
251 * word must be zero
252 */
253 if ((!ByteCount) ||
254 (ByteCount < 4) ||
255 (ByteCount & 1) ||
256 ((UINT16 *) (void *) ByteData)[WordCount - 1] != 0)
257 {
258 return (FALSE);

new/usr/src/common/acpica/components/disassembler/dmbuffer.c 5

259 }

261 /* For each word, 1st byte must be ascii, 2nd byte must be zero */

263 for (i = 0; i < (ByteCount - 2); i += 2)
264 {
265 if ((!ACPI_IS_PRINT (ByteData[i])) ||
266 (ByteData[(ACPI_SIZE) i + 1] != 0))
267 {
268 return (FALSE);
269 }
270 }

272 /* Ignore the Size argument in the disassembly of this buffer op */

274 SizeOp->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE;
275 return (TRUE);
276 }

279 /***
280 *
281 * FUNCTION: AcpiDmIsStringBuffer
282 *
283 * PARAMETERS: Op - Buffer Object to be examined
284 *
285 * RETURN: TRUE if buffer contains a ASCII string, FALSE otherwise
286 *
287 * DESCRIPTION: Determine if a buffer Op contains a ASCII string
288 *
289 **/

291 BOOLEAN
292 AcpiDmIsStringBuffer (
293 ACPI_PARSE_OBJECT *Op)
294 {
295 UINT8 *ByteData;
296 UINT32 ByteCount;
297 ACPI_PARSE_OBJECT *SizeOp;
298 ACPI_PARSE_OBJECT *NextOp;
299 UINT32 i;

302 /* Buffer size is the buffer argument */

304 SizeOp = Op->Common.Value.Arg;

306 /* Next, the initializer byte list to examine */

308 NextOp = SizeOp->Common.Next;
309 if (!NextOp)
310 {
311 return (FALSE);
312 }

314 /* Extract the byte list info */

316 ByteData = NextOp->Named.Data;
317 ByteCount = (UINT32) NextOp->Common.Value.Integer;

319 /* Last byte must be the null terminator */

321 if ((!ByteCount) ||
322 (ByteCount < 2) ||
323 (ByteData[ByteCount-1] != 0))
324 {

new/usr/src/common/acpica/components/disassembler/dmbuffer.c 6

325 return (FALSE);
326 }

328 for (i = 0; i < (ByteCount - 1); i++)
329 {
330 /* TBD: allow some escapes (non-ascii chars).
331 * they will be handled in the string output routine
332 */

334 if (!ACPI_IS_PRINT (ByteData[i]))
335 {
336 return (FALSE);
337 }
338 }

340 return (TRUE);
341 }

344 /***
345 *
346 * FUNCTION: AcpiDmIsPldBuffer
347 *
348 * PARAMETERS: Op - Buffer Object to be examined
349 *
350 * RETURN: TRUE if buffer contains a ASCII string, FALSE otherwise
351 *
352 * DESCRIPTION: Determine if a buffer Op contains a _PLD structure
353 *
354 **/

356 BOOLEAN
357 AcpiDmIsPldBuffer (
358 ACPI_PARSE_OBJECT *Op)
359 {
360 ACPI_NAMESPACE_NODE *Node;
361 ACPI_PARSE_OBJECT *ParentOp;

364 ParentOp = Op->Common.Parent;
365 if (!ParentOp)
366 {
367 return (FALSE);
368 }

370 /* Check for form: Name(_PLD, Buffer() {}). Not legal, however */

372 if (ParentOp->Common.AmlOpcode == AML_NAME_OP)
373 {
374 Node = ParentOp->Common.Node;

376 if (ACPI_COMPARE_NAME (Node->Name.Ascii, METHOD_NAME__PLD))
377 {
378 return (TRUE);
379 }

381 return (FALSE);
382 }

384 /* Check for proper form: Name(_PLD, Package() {Buffer() {}}) */

386 if (ParentOp->Common.AmlOpcode == AML_PACKAGE_OP)
387 {
388 ParentOp = ParentOp->Common.Parent;
389 if (!ParentOp)
390 {

new/usr/src/common/acpica/components/disassembler/dmbuffer.c 7

391 return (FALSE);
392 }

394 if (ParentOp->Common.AmlOpcode == AML_NAME_OP)
395 {
396 Node = ParentOp->Common.Node;

398 if (ACPI_COMPARE_NAME (Node->Name.Ascii, METHOD_NAME__PLD))
399 {
400 return (TRUE);
401 }
402 }
403 }

405 return (FALSE);
406 }

409 /***
410 *
411 * FUNCTION: AcpiDmPldBuffer
412 *
413 * PARAMETERS: Level - Current source code indentation level
414 * ByteData - Pointer to the byte list
415 * ByteCount - Length of the byte list
416 *
417 * RETURN: None
418 *
419 * DESCRIPTION: Dump and format the contents of a _PLD buffer object
420 *
421 **/

423 #define ACPI_PLD_OUTPUT08 "%*.s/* %18s : %-6.2X */\n", ACPI_MUL_4 (Level), "
424 #define ACPI_PLD_OUTPUT16 "%*.s/* %18s : %-6.4X */\n", ACPI_MUL_4 (Level), " "
425 #define ACPI_PLD_OUTPUT24 "%*.s/* %18s : %-6.6X */\n", ACPI_MUL_4 (Level), " "

427 static void
428 AcpiDmPldBuffer (
429 UINT32 Level,
430 UINT8 *ByteData,
431 UINT32 ByteCount)
432 {
433 ACPI_PLD_INFO *PldInfo;
434 ACPI_STATUS Status;

437 /* Check for valid byte count */

439 if (ByteCount < ACPI_PLD_REV1_BUFFER_SIZE)
440 {
441 return;
442 }

444 /* Convert _PLD buffer to local _PLD struct */

446 Status = AcpiDecodePldBuffer (ByteData, ByteCount, &PldInfo);
447 if (ACPI_FAILURE (Status))
448 {
449 return;
450 }

452 /* First 32-bit dword */

454 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "Revision", PldInfo->Revision);
455 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "IgnoreColor", PldInfo->IgnoreColor);
456 AcpiOsPrintf (ACPI_PLD_OUTPUT24,"Color", PldInfo->Color);

new/usr/src/common/acpica/components/disassembler/dmbuffer.c 8

458 /* Second 32-bit dword */

460 AcpiOsPrintf (ACPI_PLD_OUTPUT16,"Width", PldInfo->Width);
461 AcpiOsPrintf (ACPI_PLD_OUTPUT16,"Height", PldInfo->Height);

463 /* Third 32-bit dword */

465 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "UserVisible", PldInfo->UserVisible);
466 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "Dock", PldInfo->Dock);
467 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "Lid", PldInfo->Lid);
468 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "Panel", PldInfo->Panel);
469 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "VerticalPosition", PldInfo->VerticalPosit
470 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "HorizontalPosition", PldInfo->HorizontalP
471 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "Shape", PldInfo->Shape);
472 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "GroupOrientation", PldInfo->GroupOrientat
473 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "GroupToken", PldInfo->GroupToken);
474 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "GroupPosition", PldInfo->GroupPosition);
475 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "Bay", PldInfo->Bay);

477 /* Fourth 32-bit dword */

479 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "Ejectable", PldInfo->Ejectable);
480 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "OspmEjectRequired", PldInfo->OspmEjectReq
481 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "CabinetNumber", PldInfo->CabinetNumber);
482 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "CardCageNumber", PldInfo->CardCageNumber)
483 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "Reference", PldInfo->Reference);
484 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "Rotation", PldInfo->Rotation);
485 AcpiOsPrintf (ACPI_PLD_OUTPUT08, "Order", PldInfo->Order);

487 /* Fifth 32-bit dword */

489 if (ByteCount >= ACPI_PLD_REV1_BUFFER_SIZE)
490 {
491 AcpiOsPrintf (ACPI_PLD_OUTPUT16,"VerticalOffset", PldInfo->VerticalOffse
492 AcpiOsPrintf (ACPI_PLD_OUTPUT16,"HorizontalOffset", PldInfo->HorizontalO
493 }

495 ACPI_FREE (PldInfo);
496 }

499 /***
500 *
501 * FUNCTION: AcpiDmUnicode
502 *
503 * PARAMETERS: Op - Byte List op containing Unicode string
504 *
505 * RETURN: None
506 *
507 * DESCRIPTION: Dump Unicode string as a standard ASCII string. (Remove
508 * the extra zero bytes).
509 *
510 **/

512 static void
513 AcpiDmUnicode (
514 ACPI_PARSE_OBJECT *Op)
515 {
516 UINT16 *WordData;
517 UINT32 WordCount;
518 UINT32 i;

521 /* Extract the buffer info as a WORD buffer */

new/usr/src/common/acpica/components/disassembler/dmbuffer.c 9

523 WordData = ACPI_CAST_PTR (UINT16, Op->Named.Data);
524 WordCount = ACPI_DIV_2 (((UINT32) Op->Common.Value.Integer));

526 /* Write every other byte as an ASCII character */

528 AcpiOsPrintf ("\"");
529 for (i = 0; i < (WordCount - 1); i++)
530 {
531 AcpiOsPrintf ("%c", (int) WordData[i]);
532 }

534 AcpiOsPrintf ("\")");
535 }

538 /***
539 *
540 * FUNCTION: AcpiDmIsEisaIdElement
541 *
542 * PARAMETERS: Op - Op to be examined
543 *
544 * RETURN: None
545 *
546 * DESCRIPTION: Determine if an Op (argument to _HID or _CID) can be converted
547 * to an EISA ID.
548 *
549 **/

551 static void
552 AcpiDmIsEisaIdElement (
553 ACPI_PARSE_OBJECT *Op)
554 {
555 UINT32 BigEndianId;
556 UINT32 Prefix[3];
557 UINT32 i;

560 /* The parameter must be either a word or a dword */

562 if ((Op->Common.AmlOpcode != AML_DWORD_OP) &&
563 (Op->Common.AmlOpcode != AML_WORD_OP))
564 {
565 return;
566 }

568 /* Swap from little-endian to big-endian to simplify conversion */

570 BigEndianId = AcpiUtDwordByteSwap ((UINT32) Op->Common.Value.Integer);

572 /* Create the 3 leading ASCII letters */

574 Prefix[0] = ((BigEndianId >> 26) & 0x1F) + 0x40;
575 Prefix[1] = ((BigEndianId >> 21) & 0x1F) + 0x40;
576 Prefix[2] = ((BigEndianId >> 16) & 0x1F) + 0x40;

578 /* Verify that all 3 are ascii and alpha */

580 for (i = 0; i < 3; i++)
581 {
582 if (!ACPI_IS_ASCII (Prefix[i]) ||
583 !ACPI_IS_ALPHA (Prefix[i]))
584 {
585 return;
586 }
587 }

new/usr/src/common/acpica/components/disassembler/dmbuffer.c 10

589 /* OK - mark this node as convertable to an EISA ID */

591 Op->Common.DisasmOpcode = ACPI_DASM_EISAID;
592 }

595 /***
596 *
597 * FUNCTION: AcpiDmIsEisaId
598 *
599 * PARAMETERS: Op - Op to be examined
600 *
601 * RETURN: None
602 *
603 * DESCRIPTION: Determine if a Name() Op can be converted to an EisaId.
604 *
605 **/

607 void
608 AcpiDmIsEisaId (
609 ACPI_PARSE_OBJECT *Op)
610 {
611 UINT32 Name;
612 ACPI_PARSE_OBJECT *NextOp;

615 /* Get the NameSegment */

617 Name = AcpiPsGetName (Op);
618 if (!Name)
619 {
620 return;
621 }

623 NextOp = AcpiPsGetDepthNext (NULL, Op);
624 if (!NextOp)
625 {
626 return;
627 }

629 /* Check for _HID - has one argument */

631 if (ACPI_COMPARE_NAME (&Name, METHOD_NAME__HID))
632 {
633 AcpiDmIsEisaIdElement (NextOp);
634 return;
635 }

637 /* Exit if not _CID */

639 if (!ACPI_COMPARE_NAME (&Name, METHOD_NAME__CID))
640 {
641 return;
642 }

644 /* _CID can contain a single argument or a package */

646 if (NextOp->Common.AmlOpcode != AML_PACKAGE_OP)
647 {
648 AcpiDmIsEisaIdElement (NextOp);
649 return;
650 }

652 /* _CID with Package: get the package length */

654 NextOp = AcpiPsGetDepthNext (NULL, NextOp);

new/usr/src/common/acpica/components/disassembler/dmbuffer.c 11

656 /* Don’t need to use the length, just walk the peer list */

658 NextOp = NextOp->Common.Next;
659 while (NextOp)
660 {
661 AcpiDmIsEisaIdElement (NextOp);
662 NextOp = NextOp->Common.Next;
663 }
664 }

667 /***
668 *
669 * FUNCTION: AcpiDmEisaId
670 *
671 * PARAMETERS: EncodedId - Raw encoded EISA ID.
672 *
673 * RETURN: None
674 *
675 * DESCRIPTION: Convert an encoded EISAID back to the original ASCII String.
676 *
677 **/

679 void
680 AcpiDmEisaId (
681 UINT32 EncodedId)
682 {
683 UINT32 BigEndianId;

686 /* Swap from little-endian to big-endian to simplify conversion */

688 BigEndianId = AcpiUtDwordByteSwap (EncodedId);

691 /* Split to form "AAANNNN" string */

693 AcpiOsPrintf ("EisaId (\"%c%c%c%4.4X\")",

695 /* Three Alpha characters (AAA), 5 bits each */

697 (int) ((BigEndianId >> 26) & 0x1F) + 0x40,
698 (int) ((BigEndianId >> 21) & 0x1F) + 0x40,
699 (int) ((BigEndianId >> 16) & 0x1F) + 0x40,

701 /* Numeric part (NNNN) is simply the lower 16 bits */

703 (UINT32) (BigEndianId & 0xFFFF));
704 }

706 #endif

new/usr/src/common/acpica/components/disassembler/dmdeferred.c 1

**
 7921 Thu Dec 26 13:48:45 2013
new/usr/src/common/acpica/components/disassembler/dmdeferred.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: dmdeferred - Disassembly of deferred AML opcodes
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acdispat.h"
48 #include "amlcode.h"
49 #include "acdisasm.h"
50 #include "acparser.h"

52 #define _COMPONENT ACPI_CA_DISASSEMBLER
53 ACPI_MODULE_NAME ("dmdeferred")

56 /* Local prototypes */

58 static ACPI_STATUS
59 AcpiDmDeferredParse (
60 ACPI_PARSE_OBJECT *Op,
61 UINT8 *Aml,

new/usr/src/common/acpica/components/disassembler/dmdeferred.c 2

62 UINT32 AmlLength);

65 /**
66 *
67 * FUNCTION: AcpiDmParseDeferredOps
68 *
69 * PARAMETERS: Root - Root of the parse tree
70 *
71 * RETURN: Status
72 *
73 * DESCRIPTION: Parse the deferred opcodes (Methods, regions, etc.)
74 *
75 ***/

77 ACPI_STATUS
78 AcpiDmParseDeferredOps (
79 ACPI_PARSE_OBJECT *Root)
80 {
81 const ACPI_OPCODE_INFO *OpInfo;
82 ACPI_PARSE_OBJECT *Op = Root;
83 ACPI_STATUS Status;

86 ACPI_FUNCTION_ENTRY ();

89 /* Traverse the entire parse tree */

91 while (Op)
92 {
93 OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);
94 if (!(OpInfo->Flags & AML_DEFER))
95 {
96 Op = AcpiPsGetDepthNext (Root, Op);
97 continue;
98 }

100 /* Now we know we have a deferred opcode */

102 switch (Op->Common.AmlOpcode)
103 {
104 case AML_METHOD_OP:
105 case AML_BUFFER_OP:
106 case AML_PACKAGE_OP:
107 case AML_VAR_PACKAGE_OP:

109 Status = AcpiDmDeferredParse (Op, Op->Named.Data, Op->Named.Length);
110 if (ACPI_FAILURE (Status))
111 {
112 return (Status);
113 }
114 break;

116 /* We don’t need to do anything for these deferred opcodes */

118 case AML_REGION_OP:
119 case AML_DATA_REGION_OP:
120 case AML_CREATE_QWORD_FIELD_OP:
121 case AML_CREATE_DWORD_FIELD_OP:
122 case AML_CREATE_WORD_FIELD_OP:
123 case AML_CREATE_BYTE_FIELD_OP:
124 case AML_CREATE_BIT_FIELD_OP:
125 case AML_CREATE_FIELD_OP:
126 case AML_BANK_FIELD_OP:

new/usr/src/common/acpica/components/disassembler/dmdeferred.c 3

128 break;

130 default:

132 ACPI_ERROR ((AE_INFO, "Unhandled deferred AML opcode [0x%.4X]",
133 Op->Common.AmlOpcode));
134 break;
135 }

137 Op = AcpiPsGetDepthNext (Root, Op);
138 }

140 return (AE_OK);
141 }

144 /**
145 *
146 * FUNCTION: AcpiDmDeferredParse
147 *
148 * PARAMETERS: Op - Root Op of the deferred opcode
149 * Aml - Pointer to the raw AML
150 * AmlLength - Length of the AML
151 *
152 * RETURN: Status
153 *
154 * DESCRIPTION: Parse one deferred opcode
155 * (Methods, operation regions, etc.)
156 *
157 ***/

159 static ACPI_STATUS
160 AcpiDmDeferredParse (
161 ACPI_PARSE_OBJECT *Op,
162 UINT8 *Aml,
163 UINT32 AmlLength)
164 {
165 ACPI_WALK_STATE *WalkState;
166 ACPI_STATUS Status;
167 ACPI_PARSE_OBJECT *SearchOp;
168 ACPI_PARSE_OBJECT *StartOp;
169 UINT32 BaseAmlOffset;
170 ACPI_PARSE_OBJECT *NewRootOp;
171 ACPI_PARSE_OBJECT *ExtraOp;

174 ACPI_FUNCTION_TRACE (DmDeferredParse);

177 if (!Aml || !AmlLength)
178 {
179 return_ACPI_STATUS (AE_OK);
180 }

182 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Parsing deferred opcode %s [%4.4s]\n",
183 Op->Common.AmlOpName, (char *) &Op->Named.Name));

185 /* Need a new walk state to parse the AML */

187 WalkState = AcpiDsCreateWalkState (0, Op, NULL, NULL);
188 if (!WalkState)
189 {
190 return_ACPI_STATUS (AE_NO_MEMORY);
191 }

193 Status = AcpiDsInitAmlWalk (WalkState, Op, NULL, Aml,

new/usr/src/common/acpica/components/disassembler/dmdeferred.c 4

194 AmlLength, NULL, ACPI_IMODE_LOAD_PASS1);
195 if (ACPI_FAILURE (Status))
196 {
197 return_ACPI_STATUS (Status);
198 }

200 /* Parse the AML for this deferred opcode */

202 WalkState->ParseFlags &= ~ACPI_PARSE_DELETE_TREE;
203 WalkState->ParseFlags |= ACPI_PARSE_DISASSEMBLE;
204 Status = AcpiPsParseAml (WalkState);

206 /*
207 * We need to update all of the AML offsets, since the parser thought
208 * that the method began at offset zero. In reality, it began somewhere
209 * within the ACPI table, at the BaseAmlOffset. Walk the entire tree that
210 * was just created and update the AmlOffset in each Op.
211 */
212 BaseAmlOffset = (Op->Common.Value.Arg)->Common.AmlOffset + 1;
213 StartOp = (Op->Common.Value.Arg)->Common.Next;
214 SearchOp = StartOp;

216 while (SearchOp)
217 {
218 SearchOp->Common.AmlOffset += BaseAmlOffset;
219 SearchOp = AcpiPsGetDepthNext (StartOp, SearchOp);
220 }

222 /*
223 * For Buffer and Package opcodes, link the newly parsed subtree
224 * into the main parse tree
225 */
226 switch (Op->Common.AmlOpcode)
227 {
228 case AML_BUFFER_OP:
229 case AML_PACKAGE_OP:
230 case AML_VAR_PACKAGE_OP:

232 switch (Op->Common.AmlOpcode)
233 {
234 case AML_PACKAGE_OP:

236 ExtraOp = Op->Common.Value.Arg;
237 NewRootOp = ExtraOp->Common.Next;
238 ACPI_FREE (ExtraOp);
239 break;

241 case AML_VAR_PACKAGE_OP:
242 case AML_BUFFER_OP:
243 default:

245 NewRootOp = Op->Common.Value.Arg;
246 break;
247 }

249 Op->Common.Value.Arg = NewRootOp->Common.Value.Arg;

251 /* Must point all parents to the main tree */

253 StartOp = Op;
254 SearchOp = StartOp;
255 while (SearchOp)
256 {
257 if (SearchOp->Common.Parent == NewRootOp)
258 {
259 SearchOp->Common.Parent = Op;

new/usr/src/common/acpica/components/disassembler/dmdeferred.c 5

260 }

262 SearchOp = AcpiPsGetDepthNext (StartOp, SearchOp);
263 }

265 ACPI_FREE (NewRootOp);
266 break;

268 default:

270 break;
271 }

273 return_ACPI_STATUS (AE_OK);
274 }

new/usr/src/common/acpica/components/disassembler/dmnames.c 1

**
 11854 Thu Dec 26 13:48:45 2013
new/usr/src/common/acpica/components/disassembler/dmnames.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dmnames - AML disassembler, names, namestrings, pathnames
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acparser.h"
47 #include "amlcode.h"
48 #include "acnamesp.h"
49 #include "acdisasm.h"

52 #ifdef ACPI_DISASSEMBLER

54 #define _COMPONENT ACPI_CA_DEBUGGER
55 ACPI_MODULE_NAME ("dmnames")

57 /* Local prototypes */

new/usr/src/common/acpica/components/disassembler/dmnames.c 2

59 #ifdef ACPI_OBSOLETE_FUNCTIONS
60 void
61 AcpiDmDisplayPath (
62 ACPI_PARSE_OBJECT *Op);
63 #endif

66 /***
67 *
68 * FUNCTION: AcpiDmDumpName
69 *
70 * PARAMETERS: Name - 4 character ACPI name
71 *
72 * RETURN: Final length of name
73 *
74 * DESCRIPTION: Dump an ACPI name, minus any trailing underscores.
75 *
76 **/

78 UINT32
79 AcpiDmDumpName (
80 UINT32 Name)
81 {
82 UINT32 i;
83 UINT32 Length;
84 char NewName[4];

87 /* Copy name locally in case the original name is not writeable */

89 *ACPI_CAST_PTR (UINT32, &NewName[0]) = Name;

91 /* Ensure that the name is printable, even if we have to fix it */

93 AcpiUtRepairName (NewName);

95 /* Remove all trailing underscores from the name */

97 Length = ACPI_NAME_SIZE;
98 for (i = (ACPI_NAME_SIZE - 1); i != 0; i--)
99 {
100 if (NewName[i] == ’_’)
101 {
102 Length--;
103 }
104 else
105 {
106 break;
107 }
108 }

110 /* Dump the name, up to the start of the trailing underscores */

112 for (i = 0; i < Length; i++)
113 {
114 AcpiOsPrintf ("%c", NewName[i]);
115 }

117 return (Length);
118 }

______unchanged_portion_omitted_

202 /***
203 *
204 * FUNCTION: AcpiDmNamestring

new/usr/src/common/acpica/components/disassembler/dmnames.c 3

205 *
206 * PARAMETERS: Name - ACPI Name string to store
207 *
208 * RETURN: None
209 *
210 * DESCRIPTION: Decode and dump an ACPI namestring. Handles prefix characters
211 *
212 **/

214 void
215 AcpiDmNamestring (
216 char *Name)
217 {
218 UINT32 SegCount;

221 if (!Name)
222 {
223 return;
224 }

226 /* Handle all Scope Prefix operators */

228 while (ACPI_IS_ROOT_PREFIX (ACPI_GET8 (Name)) ||
229 ACPI_IS_PARENT_PREFIX (ACPI_GET8 (Name)))
229 while (AcpiPsIsPrefixChar (ACPI_GET8 (Name)))
230 {
231 /* Append prefix character */

233 AcpiOsPrintf ("%1c", ACPI_GET8 (Name));
234 Name++;
235 }

237 switch (ACPI_GET8 (Name))
238 {
239 case 0:

241 SegCount = 0;
242 break;

244 case AML_DUAL_NAME_PREFIX:

246 SegCount = 2;
247 Name++;
248 break;

250 case AML_MULTI_NAME_PREFIX_OP:

252 SegCount = (UINT32) ACPI_GET8 (Name + 1);
253 Name += 2;
254 break;

256 default:

258 SegCount = 1;
259 break;
260 }

262 while (SegCount)
263 {
264 /* Append Name segment */

266 AcpiDmDumpName (*ACPI_CAST_PTR (UINT32, Name));

268 SegCount--;
269 if (SegCount)

new/usr/src/common/acpica/components/disassembler/dmnames.c 4

270 {
271 /* Not last name, append dot separator */

273 AcpiOsPrintf (".");
274 }
275 Name += ACPI_NAME_SIZE;
276 }
277 }

280 #ifdef ACPI_OBSOLETE_FUNCTIONS
281 /***
282 *
283 * FUNCTION: AcpiDmDisplayPath
284 *
285 * PARAMETERS: Op - Named Op whose path is to be constructed
286 *
287 * RETURN: None
288 *
289 * DESCRIPTION: Walk backwards from current scope and display the name
290 * of each previous level of scope up to the root scope
291 * (like "pwd" does with file systems)
292 *
293 **/

295 void
296 AcpiDmDisplayPath (
297 ACPI_PARSE_OBJECT *Op)
298 {
299 ACPI_PARSE_OBJECT *Prev;
300 ACPI_PARSE_OBJECT *Search;
301 UINT32 Name;
302 BOOLEAN DoDot = FALSE;
303 ACPI_PARSE_OBJECT *NamePath;
304 const ACPI_OPCODE_INFO *OpInfo;

307 /* We are only interested in named objects */

309 OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);
310 if (!(OpInfo->Flags & AML_NSNODE))
311 {
312 return;
313 }

315 if (OpInfo->Flags & AML_CREATE)
316 {
317 /* Field creation - check for a fully qualified namepath */

319 if (Op->Common.AmlOpcode == AML_CREATE_FIELD_OP)
320 {
321 NamePath = AcpiPsGetArg (Op, 3);
322 }
323 else
324 {
325 NamePath = AcpiPsGetArg (Op, 2);
326 }

328 if ((NamePath) &&
329 (NamePath->Common.Value.String) &&
330 (ACPI_IS_ROOT_PREFIX (NamePath->Common.Value.String[0])))
326 (NamePath->Common.Value.String[0] == ’\\’))
331 {
332 AcpiDmNamestring (NamePath->Common.Value.String);
333 return;
334 }

new/usr/src/common/acpica/components/disassembler/dmnames.c 5

335 }

337 Prev = NULL; /* Start with Root Node */

339 while (Prev != Op)
340 {
341 /* Search upwards in the tree to find scope with "prev" as its parent */

343 Search = Op;
344 for (; ;)
345 {
346 if (Search->Common.Parent == Prev)
347 {
348 break;
349 }

351 /* Go up one level */

353 Search = Search->Common.Parent;
354 }

356 if (Prev)
357 {
358 OpInfo = AcpiPsGetOpcodeInfo (Search->Common.AmlOpcode);
359 if (!(OpInfo->Flags & AML_FIELD))
360 {
361 /* Below root scope, append scope name */

363 if (DoDot)
364 {
365 /* Append dot */

367 AcpiOsPrintf (".");
368 }

370 if (OpInfo->Flags & AML_CREATE)
371 {
372 if (Op->Common.AmlOpcode == AML_CREATE_FIELD_OP)
373 {
374 NamePath = AcpiPsGetArg (Op, 3);
375 }
376 else
377 {
378 NamePath = AcpiPsGetArg (Op, 2);
379 }

381 if ((NamePath) &&
382 (NamePath->Common.Value.String))
383 {
384 AcpiDmDumpName (NamePath->Common.Value.String);
385 }
386 }
387 else
388 {
389 Name = AcpiPsGetName (Search);
390 AcpiDmDumpName ((char *) &Name);
391 }

393 DoDot = TRUE;
394 }
395 }
396 Prev = Search;
397 }
398 }

______unchanged_portion_omitted_
453 #endif

new/usr/src/common/acpica/components/disassembler/dmnames.c 6

455 #endif

new/usr/src/common/acpica/components/disassembler/dmobject.c 1

**
 15696 Thu Dec 26 13:48:46 2013
new/usr/src/common/acpica/components/disassembler/dmobject.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dmobject - ACPI object decode and display
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acnamesp.h"
48 #include "acdisasm.h"

51 #ifdef ACPI_DISASSEMBLER

53 #define _COMPONENT ACPI_CA_DEBUGGER
54 ACPI_MODULE_NAME ("dmnames")

56 /* Local prototypes */

58 static void
59 AcpiDmDecodeNode (

new/usr/src/common/acpica/components/disassembler/dmobject.c 2

60 ACPI_NAMESPACE_NODE *Node);

63 /***
64 *
65 * FUNCTION: AcpiDmDumpMethodInfo
66 *
67 * PARAMETERS: Status - Method execution status
68 * WalkState - Current state of the parse tree walk
69 * Op - Executing parse op
70 *
71 * RETURN: None
72 *
73 * DESCRIPTION: Called when a method has been aborted because of an error.
74 * Dumps the method execution stack, and the method locals/args,
75 * and disassembles the AML opcode that failed.
76 *
77 **/

79 void
80 AcpiDmDumpMethodInfo (
81 ACPI_STATUS Status,
82 ACPI_WALK_STATE *WalkState,
83 ACPI_PARSE_OBJECT *Op)
84 {
85 ACPI_PARSE_OBJECT *Next;
86 ACPI_THREAD_STATE *Thread;
87 ACPI_WALK_STATE *NextWalkState;
88 ACPI_NAMESPACE_NODE *PreviousMethod = NULL;

91 /* Ignore control codes, they are not errors */

93 if ((Status & AE_CODE_MASK) == AE_CODE_CONTROL)
94 {
95 return;
96 }

98 /* We may be executing a deferred opcode */

100 if (WalkState->DeferredNode)
101 {
102 AcpiOsPrintf ("Executing subtree for Buffer/Package/Region\n");
103 return;
104 }

106 /*
107 * If there is no Thread, we are not actually executing a method.
108 * This can happen when the iASL compiler calls the interpreter
109 * to perform constant folding.
110 */
111 Thread = WalkState->Thread;
112 if (!Thread)
113 {
114 return;
115 }

117 /* Display exception and method name */

119 AcpiOsPrintf ("\n**** Exception %s during execution of method ",
120 AcpiFormatException (Status));
121 AcpiNsPrintNodePathname (WalkState->MethodNode, NULL);

123 /* Display stack of executing methods */

125 AcpiOsPrintf ("\n\nMethod Execution Stack:\n");

new/usr/src/common/acpica/components/disassembler/dmobject.c 3

126 NextWalkState = Thread->WalkStateList;

128 /* Walk list of linked walk states */

130 while (NextWalkState)
131 {
132 AcpiOsPrintf (" Method [%4.4s] executing: ",
133 AcpiUtGetNodeName (NextWalkState->MethodNode));

135 /* First method is the currently executing method */

137 if (NextWalkState == WalkState)
138 {
139 if (Op)
140 {
141 /* Display currently executing ASL statement */

143 Next = Op->Common.Next;
144 Op->Common.Next = NULL;

146 AcpiDmDisassemble (NextWalkState, Op, ACPI_UINT32_MAX);
147 Op->Common.Next = Next;
148 }
149 }
150 else
151 {
152 /*
153 * This method has called another method
154 * NOTE: the method call parse subtree is already deleted at this
155 * point, so we cannot disassemble the method invocation.
156 */
157 AcpiOsPrintf ("Call to method ");
158 AcpiNsPrintNodePathname (PreviousMethod, NULL);
159 }

161 PreviousMethod = NextWalkState->MethodNode;
162 NextWalkState = NextWalkState->Next;
163 AcpiOsPrintf ("\n");
164 }

166 /* Display the method locals and arguments */

168 AcpiOsPrintf ("\n");
169 AcpiDmDisplayLocals (WalkState);
170 AcpiOsPrintf ("\n");
171 AcpiDmDisplayArguments (WalkState);
172 AcpiOsPrintf ("\n");
173 }

176 /***
177 *
178 * FUNCTION: AcpiDmDecodeInternalObject
179 *
180 * PARAMETERS: ObjDesc - Object to be displayed
181 *
182 * RETURN: None
183 *
184 * DESCRIPTION: Short display of an internal object. Numbers/Strings/Buffers.
185 *
186 **/

188 void
189 AcpiDmDecodeInternalObject (
190 ACPI_OPERAND_OBJECT *ObjDesc)
191 {

new/usr/src/common/acpica/components/disassembler/dmobject.c 4

192 UINT32 i;

195 if (!ObjDesc)
196 {
197 AcpiOsPrintf (" Uninitialized");
198 return;
199 }

201 if (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc) != ACPI_DESC_TYPE_OPERAND)
202 {
203 AcpiOsPrintf (" %p [%s]", ObjDesc, AcpiUtGetDescriptorName (ObjDesc));
204 return;
205 }

207 AcpiOsPrintf (" %s", AcpiUtGetObjectTypeName (ObjDesc));

209 switch (ObjDesc->Common.Type)
210 {
211 case ACPI_TYPE_INTEGER:

213 AcpiOsPrintf (" %8.8X%8.8X",
214 ACPI_FORMAT_UINT64 (ObjDesc->Integer.Value));
215 break;

217 case ACPI_TYPE_STRING:

219 AcpiOsPrintf ("(%u) \"%.24s",
220 ObjDesc->String.Length, ObjDesc->String.Pointer);

222 if (ObjDesc->String.Length > 24)
223 {
224 AcpiOsPrintf ("...");
225 }
226 else
227 {
228 AcpiOsPrintf ("\"");
229 }
230 break;

232 case ACPI_TYPE_BUFFER:

234 AcpiOsPrintf ("(%u)", ObjDesc->Buffer.Length);
235 for (i = 0; (i < 8) && (i < ObjDesc->Buffer.Length); i++)
236 {
237 AcpiOsPrintf (" %2.2X", ObjDesc->Buffer.Pointer[i]);
238 }
239 break;

241 default:

243 AcpiOsPrintf (" %p", ObjDesc);
244 break;
245 }
246 }

249 /***
250 *
251 * FUNCTION: AcpiDmDecodeNode
252 *
253 * PARAMETERS: Node - Object to be displayed
254 *

new/usr/src/common/acpica/components/disassembler/dmobject.c 5

255 * RETURN: None
256 *
257 * DESCRIPTION: Short display of a namespace node
258 *
259 **/

261 static void
262 AcpiDmDecodeNode (
263 ACPI_NAMESPACE_NODE *Node)
264 {

266 AcpiOsPrintf ("<Node> Name %4.4s",
267 AcpiUtGetNodeName (Node));

269 if (Node->Flags & ANOBJ_METHOD_ARG)
270 {
271 AcpiOsPrintf (" [Method Arg]");
272 }
273 if (Node->Flags & ANOBJ_METHOD_LOCAL)
274 {
275 AcpiOsPrintf (" [Method Local]");
276 }

278 switch (Node->Type)
279 {
280 /* These types have no attached object */

282 case ACPI_TYPE_DEVICE:

284 AcpiOsPrintf (" Device");
285 break;

287 case ACPI_TYPE_THERMAL:

289 AcpiOsPrintf (" Thermal Zone");
290 break;

292 default:

294 AcpiDmDecodeInternalObject (AcpiNsGetAttachedObject (Node));
295 break;
296 }
297 }

300 /***
301 *
302 * FUNCTION: AcpiDmDisplayInternalObject
303 *
304 * PARAMETERS: ObjDesc - Object to be displayed
305 * WalkState - Current walk state
306 *
307 * RETURN: None
308 *
309 * DESCRIPTION: Short display of an internal object
310 *
311 **/

313 void
314 AcpiDmDisplayInternalObject (
315 ACPI_OPERAND_OBJECT *ObjDesc,
316 ACPI_WALK_STATE *WalkState)
317 {
318 UINT8 Type;

new/usr/src/common/acpica/components/disassembler/dmobject.c 6

321 AcpiOsPrintf ("%p ", ObjDesc);

323 if (!ObjDesc)
324 {
325 AcpiOsPrintf ("<Null Object>\n");
326 return;
327 }

329 /* Decode the object type */

331 switch (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc))
332 {
333 case ACPI_DESC_TYPE_PARSER:

335 AcpiOsPrintf ("<Parser> ");
336 break;

338 case ACPI_DESC_TYPE_NAMED:

340 AcpiDmDecodeNode ((ACPI_NAMESPACE_NODE *) ObjDesc);
341 break;

343 case ACPI_DESC_TYPE_OPERAND:

345 Type = ObjDesc->Common.Type;
346 if (Type > ACPI_TYPE_LOCAL_MAX)
347 {
348 AcpiOsPrintf (" Type %X [Invalid Type]", (UINT32) Type);
349 return;
350 }

352 /* Decode the ACPI object type */

354 switch (ObjDesc->Common.Type)
355 {
356 case ACPI_TYPE_LOCAL_REFERENCE:

358 AcpiOsPrintf ("[%s] ", AcpiUtGetReferenceName (ObjDesc));

360 /* Decode the refererence */

362 switch (ObjDesc->Reference.Class)
363 {
364 case ACPI_REFCLASS_LOCAL:

366 AcpiOsPrintf ("%X ", ObjDesc->Reference.Value);
367 if (WalkState)
368 {
369 ObjDesc = WalkState->LocalVariables
370 [ObjDesc->Reference.Value].Object;
371 AcpiOsPrintf ("%p", ObjDesc);
372 AcpiDmDecodeInternalObject (ObjDesc);
373 }
374 break;

376 case ACPI_REFCLASS_ARG:

378 AcpiOsPrintf ("%X ", ObjDesc->Reference.Value);
379 if (WalkState)
380 {
381 ObjDesc = WalkState->Arguments
382 [ObjDesc->Reference.Value].Object;
383 AcpiOsPrintf ("%p", ObjDesc);

new/usr/src/common/acpica/components/disassembler/dmobject.c 7

384 AcpiDmDecodeInternalObject (ObjDesc);
385 }
386 break;

388 case ACPI_REFCLASS_INDEX:

390 switch (ObjDesc->Reference.TargetType)
391 {
392 case ACPI_TYPE_BUFFER_FIELD:

394 AcpiOsPrintf ("%p", ObjDesc->Reference.Object);
395 AcpiDmDecodeInternalObject (ObjDesc->Reference.Object);
396 break;

398 case ACPI_TYPE_PACKAGE:

400 AcpiOsPrintf ("%p", ObjDesc->Reference.Where);
401 if (!ObjDesc->Reference.Where)
402 {
403 AcpiOsPrintf (" Uninitialized WHERE pointer");
404 }
405 else
406 {
407 AcpiDmDecodeInternalObject (
408 *(ObjDesc->Reference.Where));
409 }
410 break;

412 default:

414 AcpiOsPrintf ("Unknown index target type");
415 break;
416 }
417 break;

419 case ACPI_REFCLASS_REFOF:

421 if (!ObjDesc->Reference.Object)
422 {
423 AcpiOsPrintf ("Uninitialized reference subobject pointer");
424 break;
425 }

427 /* Reference can be to a Node or an Operand object */

429 switch (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc->Reference.Object))
430 {
431 case ACPI_DESC_TYPE_NAMED:
432 AcpiDmDecodeNode (ObjDesc->Reference.Object);
433 break;

435 case ACPI_DESC_TYPE_OPERAND:
436 AcpiDmDecodeInternalObject (ObjDesc->Reference.Object);
437 break;

439 default:
440 break;
441 }
442 break;

444 case ACPI_REFCLASS_NAME:

446 AcpiDmDecodeNode (ObjDesc->Reference.Node);

new/usr/src/common/acpica/components/disassembler/dmobject.c 8

447 break;

449 case ACPI_REFCLASS_DEBUG:
450 case ACPI_REFCLASS_TABLE:

452 AcpiOsPrintf ("\n");
453 break;

455 default: /* Unknown reference class */

457 AcpiOsPrintf ("%2.2X\n", ObjDesc->Reference.Class);
458 break;
459 }
460 break;

462 default:

464 AcpiOsPrintf ("<Obj> ");
465 AcpiDmDecodeInternalObject (ObjDesc);
466 break;
467 }
468 break;

470 default:

472 AcpiOsPrintf ("<Not a valid ACPI Object Descriptor> [%s]",
473 AcpiUtGetDescriptorName (ObjDesc));
474 break;
475 }

477 AcpiOsPrintf ("\n");
478 }

______unchanged_portion_omitted_

577 #endif

new/usr/src/common/acpica/components/disassembler/dmopcode.c 1

**
 20503 Thu Dec 26 13:48:46 2013
new/usr/src/common/acpica/components/disassembler/dmopcode.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dmopcode - AML disassembler, specific AML opcodes
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "acparser.h"
47 #include "amlcode.h"
48 #include "acdisasm.h"

50 #ifdef ACPI_DISASSEMBLER

52 #define _COMPONENT ACPI_CA_DEBUGGER
53 ACPI_MODULE_NAME ("dmopcode")

55 /* Local prototypes */

57 static void
58 AcpiDmMatchKeyword (
59 ACPI_PARSE_OBJECT *Op);

new/usr/src/common/acpica/components/disassembler/dmopcode.c 2

62 /***
63 *
64 * FUNCTION: AcpiDmPredefinedDescription
65 *
66 * PARAMETERS: Op - Name() parse object
67 *
68 * RETURN: None
69 *
70 * DESCRIPTION: Emit a description comment for a predefined ACPI name.
71 * Used for iASL compiler only.
72 *
73 **/

75 void
76 AcpiDmPredefinedDescription (
77 ACPI_PARSE_OBJECT *Op)
78 {
79 #ifdef ACPI_ASL_COMPILER
80 const AH_PREDEFINED_NAME *Info;
81 char *NameString;
82 int LastCharIsDigit;
83 int LastCharsAreHex;

86 if (!Op)
87 {
88 return;
89 }

91 /* Ensure that the comment field is emitted only once */

93 if (Op->Common.DisasmFlags & ACPI_PARSEOP_PREDEF_CHECKED)
94 {
95 return;
96 }
97 Op->Common.DisasmFlags |= ACPI_PARSEOP_PREDEF_CHECKED;

99 /* Predefined name must start with an underscore */

101 NameString = ACPI_CAST_PTR (char, &Op->Named.Name);
102 if (NameString[0] != ’_’)
103 {
104 return;
105 }

107 /*
108 * Check for the special ACPI names:
109 * _ACd, _ALd, _EJd, _Exx, _Lxx, _Qxx, _Wxx, _T_a
110 * (where d=decimal_digit, x=hex_digit, a=anything)
111 *
112 * Convert these to the generic name for table lookup.
113 * Note: NameString is guaranteed to be upper case here.
114 */
115 LastCharIsDigit =
116 (ACPI_IS_DIGIT (NameString[3])); /* d */
117 LastCharsAreHex =
118 (ACPI_IS_XDIGIT (NameString[2]) && /* xx */
119 ACPI_IS_XDIGIT (NameString[3]));

121 switch (NameString[1])
122 {
123 case ’A’:

125 if ((NameString[2] == ’C’) && (LastCharIsDigit))
126 {

new/usr/src/common/acpica/components/disassembler/dmopcode.c 3

127 NameString = "_ACx";
128 }
129 else if ((NameString[2] == ’L’) && (LastCharIsDigit))
130 {
131 NameString = "_ALx";
132 }
133 break;

135 case ’E’:

137 if ((NameString[2] == ’J’) && (LastCharIsDigit))
138 {
139 NameString = "_EJx";
140 }
141 else if (LastCharsAreHex)
142 {
143 NameString = "_Exx";
144 }
145 break;

147 case ’L’:

149 if (LastCharsAreHex)
150 {
151 NameString = "_Lxx";
152 }
153 break;

155 case ’Q’:

157 if (LastCharsAreHex)
158 {
159 NameString = "_Qxx";
160 }
161 break;

163 case ’T’:

165 if (NameString[2] == ’_’)
166 {
167 NameString = "_T_x";
168 }
169 break;

171 case ’W’:

173 if (LastCharsAreHex)
174 {
175 NameString = "_Wxx";
176 }
177 break;

179 default:

181 break;
182 }

184 /* Match the name in the info table */

186 for (Info = AslPredefinedInfo; Info->Name; Info++)
187 {
188 if (ACPI_COMPARE_NAME (NameString, Info->Name))
189 {
190 AcpiOsPrintf (" // %4.4s: %s",
191 NameString, ACPI_CAST_PTR (char, Info->Description));
192 return;

new/usr/src/common/acpica/components/disassembler/dmopcode.c 4

193 }
194 }

196 #endif
197 return;
198 }

201 /***
202 *
203 * FUNCTION: AcpiDmFieldPredefinedDescription
204 *
205 * PARAMETERS: Op - Parse object
206 *
207 * RETURN: None
208 *
209 * DESCRIPTION: Emit a description comment for a resource descriptor tag
210 * (which is a predefined ACPI name.) Used for iASL compiler only.
211 *
212 **/

214 void
215 AcpiDmFieldPredefinedDescription (
216 ACPI_PARSE_OBJECT *Op)
217 {
218 #ifdef ACPI_ASL_COMPILER
219 ACPI_PARSE_OBJECT *IndexOp;
220 char *Tag;
221 const ACPI_OPCODE_INFO *OpInfo;
222 const AH_PREDEFINED_NAME *Info;

225 if (!Op)
226 {
227 return;
228 }

230 /* Ensure that the comment field is emitted only once */

232 if (Op->Common.DisasmFlags & ACPI_PARSEOP_PREDEF_CHECKED)
233 {
234 return;
235 }
236 Op->Common.DisasmFlags |= ACPI_PARSEOP_PREDEF_CHECKED;

238 /*
239 * Op must be one of the Create* operators: CreateField, CreateBitField,
240 * CreateByteField, CreateWordField, CreateDwordField, CreateQwordField
241 */
242 OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);
243 if (!(OpInfo->Flags & AML_CREATE))
244 {
245 return;
246 }

248 /* Second argument is the Index argument */

250 IndexOp = Op->Common.Value.Arg;
251 IndexOp = IndexOp->Common.Next;

253 /* Index argument must be a namepath */

255 if (IndexOp->Common.AmlOpcode != AML_INT_NAMEPATH_OP)
256 {
257 return;
258 }

new/usr/src/common/acpica/components/disassembler/dmopcode.c 5

260 /* Major cheat: We previously put the Tag ptr in the Node field */

262 Tag = ACPI_CAST_PTR (char, IndexOp->Common.Node);
263 if (!Tag)
264 {
265 return;
266 }

268 /* Match the name in the info table */

270 for (Info = AslPredefinedInfo; Info->Name; Info++)
271 {
272 if (ACPI_COMPARE_NAME (Tag, Info->Name))
273 {
274 AcpiOsPrintf (" // %4.4s: %s", Tag,
275 ACPI_CAST_PTR (char, Info->Description));
276 return;
277 }
278 }

280 #endif
281 return;
282 }

285 /***
286 *
287 * FUNCTION: AcpiDmMethodFlags
288 *
289 * PARAMETERS: Op - Method Object to be examined
290 *
291 * RETURN: None
292 *
293 * DESCRIPTION: Decode control method flags
294 *
295 **/

297 void
298 AcpiDmMethodFlags (
299 ACPI_PARSE_OBJECT *Op)
300 {
301 UINT32 Flags;
302 UINT32 Args;

305 /* The next Op contains the flags */

307 Op = AcpiPsGetDepthNext (NULL, Op);
308 Flags = (UINT8) Op->Common.Value.Integer;
309 Args = Flags & 0x07;

311 /* Mark the Op as completed */

313 Op->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE;

315 /* 1) Method argument count */

317 AcpiOsPrintf (", %u, ", Args);

319 /* 2) Serialize rule */

321 if (!(Flags & 0x08))
322 {
323 AcpiOsPrintf ("Not");
324 }

new/usr/src/common/acpica/components/disassembler/dmopcode.c 6

326 AcpiOsPrintf ("Serialized");

328 /* 3) SyncLevel */

330 if (Flags & 0xF0)
331 {
332 AcpiOsPrintf (", %u", Flags >> 4);
333 }
334 }

337 /***
338 *
339 * FUNCTION: AcpiDmFieldFlags
340 *
341 * PARAMETERS: Op - Field Object to be examined
342 *
343 * RETURN: None
344 *
345 * DESCRIPTION: Decode Field definition flags
346 *
347 **/

349 void
350 AcpiDmFieldFlags (
351 ACPI_PARSE_OBJECT *Op)
352 {
353 UINT32 Flags;

356 Op = Op->Common.Next;
357 Flags = (UINT8) Op->Common.Value.Integer;

359 /* Mark the Op as completed */

361 Op->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE;

363 AcpiOsPrintf ("%s, ", AcpiGbl_AccessTypes [Flags & 0x07]);
364 AcpiOsPrintf ("%s, ", AcpiGbl_LockRule [(Flags & 0x10) >> 4]);
365 AcpiOsPrintf ("%s)", AcpiGbl_UpdateRules [(Flags & 0x60) >> 5]);
366 }

369 /***
370 *
371 * FUNCTION: AcpiDmAddressSpace
372 *
373 * PARAMETERS: SpaceId - ID to be translated
374 *
375 * RETURN: None
376 *
377 * DESCRIPTION: Decode a SpaceId to an AddressSpaceKeyword
378 *
379 **/

381 void
382 AcpiDmAddressSpace (
383 UINT8 SpaceId)
384 {

386 if (SpaceId >= ACPI_NUM_PREDEFINED_REGIONS)
387 {
388 if (SpaceId == 0x7F)
389 {
390 AcpiOsPrintf ("FFixedHW, ");

new/usr/src/common/acpica/components/disassembler/dmopcode.c 7

391 }
392 else
393 {
394 AcpiOsPrintf ("0x%.2X, ", SpaceId);
395 }
396 }
397 else
398 {
399 AcpiOsPrintf ("%s, ", AcpiGbl_RegionTypes [SpaceId]);
400 }
401 }

404 /***
405 *
406 * FUNCTION: AcpiDmRegionFlags
407 *
408 * PARAMETERS: Op - Object to be examined
409 *
410 * RETURN: None
411 *
412 * DESCRIPTION: Decode OperationRegion flags
413 *
414 **/

416 void
417 AcpiDmRegionFlags (
418 ACPI_PARSE_OBJECT *Op)
419 {

422 /* The next Op contains the SpaceId */

424 Op = AcpiPsGetDepthNext (NULL, Op);

426 /* Mark the Op as completed */

428 Op->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE;

430 AcpiOsPrintf (", ");
431 AcpiDmAddressSpace ((UINT8) Op->Common.Value.Integer);
432 }

435 /***
436 *
437 * FUNCTION: AcpiDmMatchOp
438 *
439 * PARAMETERS: Op - Match Object to be examined
440 *
441 * RETURN: None
442 *
443 * DESCRIPTION: Decode Match opcode operands
444 *
445 **/

447 void
448 AcpiDmMatchOp (
449 ACPI_PARSE_OBJECT *Op)
450 {
451 ACPI_PARSE_OBJECT *NextOp;

454 NextOp = AcpiPsGetDepthNext (NULL, Op);
455 NextOp = NextOp->Common.Next;

new/usr/src/common/acpica/components/disassembler/dmopcode.c 8

457 if (!NextOp)
458 {
459 /* Handle partial tree during single-step */

461 return;
462 }

464 /* Mark the two nodes that contain the encoding for the match keywords */

466 NextOp->Common.DisasmOpcode = ACPI_DASM_MATCHOP;

468 NextOp = NextOp->Common.Next;
469 NextOp = NextOp->Common.Next;
470 NextOp->Common.DisasmOpcode = ACPI_DASM_MATCHOP;
471 }

474 /***
475 *
476 * FUNCTION: AcpiDmMatchKeyword
477 *
478 * PARAMETERS: Op - Match Object to be examined
479 *
480 * RETURN: None
481 *
482 * DESCRIPTION: Decode Match opcode operands
483 *
484 **/

486 static void
487 AcpiDmMatchKeyword (
488 ACPI_PARSE_OBJECT *Op)
489 {

492 if (((UINT32) Op->Common.Value.Integer) > ACPI_MAX_MATCH_OPCODE)
493 {
494 AcpiOsPrintf ("/* Unknown Match Keyword encoding */");
495 }
496 else
497 {
498 AcpiOsPrintf ("%s", ACPI_CAST_PTR (char,
499 AcpiGbl_MatchOps[(ACPI_SIZE) Op->Common.Value.Integer]));
500 }
501 }

504 /***
505 *
506 * FUNCTION: AcpiDmDisassembleOneOp
507 *
508 * PARAMETERS: WalkState - Current walk info
509 * Info - Parse tree walk info
510 * Op - Op that is to be printed
511 *
512 * RETURN: None
513 *
514 * DESCRIPTION: Disassemble a single AML opcode
515 *
516 **/

518 void
519 AcpiDmDisassembleOneOp (
520 ACPI_WALK_STATE *WalkState,
521 ACPI_OP_WALK_INFO *Info,
522 ACPI_PARSE_OBJECT *Op)

new/usr/src/common/acpica/components/disassembler/dmopcode.c 9

523 {
524 const ACPI_OPCODE_INFO *OpInfo = NULL;
525 UINT32 Offset;
526 UINT32 Length;
527 ACPI_PARSE_OBJECT *Child;
528 ACPI_STATUS Status;
529 UINT8 *Aml;

532 if (!Op)
533 {
534 AcpiOsPrintf ("<NULL OP PTR>");
535 return;
536 }

538 switch (Op->Common.DisasmOpcode)
539 {
540 case ACPI_DASM_MATCHOP:

542 AcpiDmMatchKeyword (Op);
543 return;

545 case ACPI_DASM_LNOT_SUFFIX:

547 switch (Op->Common.AmlOpcode)
548 {
549 case AML_LEQUAL_OP:

551 AcpiOsPrintf ("LNotEqual");
552 break;

554 case AML_LGREATER_OP:

556 AcpiOsPrintf ("LLessEqual");
557 break;

559 case AML_LLESS_OP:

561 AcpiOsPrintf ("LGreaterEqual");
562 break;

564 default:

566 break;
567 }
568 Op->Common.DisasmOpcode = 0;
569 Op->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE;
570 return;

572 default:
573 break;
574 }

577 OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);

579 /* The op and arguments */

581 switch (Op->Common.AmlOpcode)
582 {
583 case AML_LNOT_OP:

585 Child = Op->Common.Value.Arg;
586 if ((Child->Common.AmlOpcode == AML_LEQUAL_OP) ||
587 (Child->Common.AmlOpcode == AML_LGREATER_OP) ||
588 (Child->Common.AmlOpcode == AML_LLESS_OP))

new/usr/src/common/acpica/components/disassembler/dmopcode.c 10

589 {
590 Child->Common.DisasmOpcode = ACPI_DASM_LNOT_SUFFIX;
591 Op->Common.DisasmOpcode = ACPI_DASM_LNOT_PREFIX;
592 }
593 else
594 {
595 AcpiOsPrintf ("%s", OpInfo->Name);
596 }
597 break;

599 case AML_BYTE_OP:

601 AcpiOsPrintf ("0x%2.2X", (UINT32) Op->Common.Value.Integer);
602 break;

604 case AML_WORD_OP:

606 if (Op->Common.DisasmOpcode == ACPI_DASM_EISAID)
607 {
608 AcpiDmEisaId ((UINT32) Op->Common.Value.Integer);
609 }
610 else
611 {
612 AcpiOsPrintf ("0x%4.4X", (UINT32) Op->Common.Value.Integer);
613 }
614 break;

616 case AML_DWORD_OP:

618 if (Op->Common.DisasmOpcode == ACPI_DASM_EISAID)
619 {
620 AcpiDmEisaId ((UINT32) Op->Common.Value.Integer);
621 }
622 else
623 {
624 AcpiOsPrintf ("0x%8.8X", (UINT32) Op->Common.Value.Integer);
625 }
626 break;

628 case AML_QWORD_OP:

630 AcpiOsPrintf ("0x%8.8X%8.8X",
631 ACPI_FORMAT_UINT64 (Op->Common.Value.Integer));
632 break;

634 case AML_STRING_OP:

636 AcpiUtPrintString (Op->Common.Value.String, ACPI_UINT16_MAX);
637 break;

639 case AML_BUFFER_OP:
640 /*
641 * Determine the type of buffer. We can have one of the following:
642 *
643 * 1) ResourceTemplate containing Resource Descriptors.
644 * 2) Unicode String buffer
645 * 3) ASCII String buffer
646 * 4) Raw data buffer (if none of the above)
647 *
648 * Since there are no special AML opcodes to differentiate these
649 * types of buffers, we have to closely look at the data in the
650 * buffer to determine the type.
651 */
652 if (!AcpiGbl_NoResourceDisassembly)
653 {
654 Status = AcpiDmIsResourceTemplate (WalkState, Op);

new/usr/src/common/acpica/components/disassembler/dmopcode.c 11

655 if (ACPI_SUCCESS (Status))
656 {
657 Op->Common.DisasmOpcode = ACPI_DASM_RESOURCE;
658 AcpiOsPrintf ("ResourceTemplate");
659 break;
660 }
661 else if (Status == AE_AML_NO_RESOURCE_END_TAG)
662 {
663 AcpiOsPrintf ("/**** Is ResourceTemplate, but EndTag not at buff
664 }
665 }

667 if (AcpiDmIsUnicodeBuffer (Op))
668 {
669 Op->Common.DisasmOpcode = ACPI_DASM_UNICODE;
670 AcpiOsPrintf ("Unicode (");
671 }
672 else if (AcpiDmIsStringBuffer (Op))
673 {
674 Op->Common.DisasmOpcode = ACPI_DASM_STRING;
675 AcpiOsPrintf ("Buffer");
676 }
677 else if (AcpiDmIsPldBuffer (Op))
678 {
679 Op->Common.DisasmOpcode = ACPI_DASM_PLD_METHOD;
680 AcpiOsPrintf ("Buffer");
681 }
682 else
683 {
684 Op->Common.DisasmOpcode = ACPI_DASM_BUFFER;
685 AcpiOsPrintf ("Buffer");
686 }
687 break;

689 case AML_INT_STATICSTRING_OP:

691 if (Op->Common.Value.String)
692 {
693 AcpiOsPrintf ("%s", Op->Common.Value.String);
694 }
695 else
696 {
697 AcpiOsPrintf ("\"<NULL STATIC STRING PTR>\"");
698 }
699 break;

701 case AML_INT_NAMEPATH_OP:

703 AcpiDmNamestring (Op->Common.Value.Name);
704 break;

706 case AML_INT_NAMEDFIELD_OP:

708 Length = AcpiDmDumpName (Op->Named.Name);
709 AcpiOsPrintf (",%*.s %u", (unsigned) (5 - Length), " ",
710 (UINT32) Op->Common.Value.Integer);
711 AcpiDmCommaIfFieldMember (Op);

713 Info->BitOffset += (UINT32) Op->Common.Value.Integer;
714 break;

716 case AML_INT_RESERVEDFIELD_OP:

718 /* Offset() -- Must account for previous offsets */

720 Offset = (UINT32) Op->Common.Value.Integer;

new/usr/src/common/acpica/components/disassembler/dmopcode.c 12

721 Info->BitOffset += Offset;

723 if (Info->BitOffset % 8 == 0)
724 {
725 AcpiOsPrintf ("Offset (0x%.2X)", ACPI_DIV_8 (Info->BitOffset));
726 }
727 else
728 {
729 AcpiOsPrintf (" , %u", Offset);
730 }

732 AcpiDmCommaIfFieldMember (Op);
733 break;

735 case AML_INT_ACCESSFIELD_OP:
736 case AML_INT_EXTACCESSFIELD_OP:

738 AcpiOsPrintf ("AccessAs (%s, ",
739 AcpiGbl_AccessTypes [(UINT32) (Op->Common.Value.Integer & 0x7)]);

741 AcpiDmDecodeAttribute ((UINT8) (Op->Common.Value.Integer >> 8));

743 if (Op->Common.AmlOpcode == AML_INT_EXTACCESSFIELD_OP)
744 {
745 AcpiOsPrintf (" (0x%2.2X)", (unsigned) ((Op->Common.Value.Integer >>
746 }

748 AcpiOsPrintf (")");
749 AcpiDmCommaIfFieldMember (Op);
750 break;

752 case AML_INT_CONNECTION_OP:
753 /*
754 * Two types of Connection() - one with a buffer object, the
755 * other with a namestring that points to a buffer object.
756 */
757 AcpiOsPrintf ("Connection (");
758 Child = Op->Common.Value.Arg;

760 if (Child->Common.AmlOpcode == AML_INT_BYTELIST_OP)
761 {
762 AcpiOsPrintf ("\n");

764 Aml = Child->Named.Data;
765 Length = (UINT32) Child->Common.Value.Integer;

767 Info->Level += 1;
768 Op->Common.DisasmOpcode = ACPI_DASM_RESOURCE;
769 AcpiDmResourceTemplate (Info, Op->Common.Parent, Aml, Length);

771 Info->Level -= 1;
772 AcpiDmIndent (Info->Level);
773 }
774 else
775 {
776 AcpiDmNamestring (Child->Common.Value.Name);
777 }

779 AcpiOsPrintf (")");
780 AcpiDmCommaIfFieldMember (Op);
781 AcpiOsPrintf ("\n");

783 Op->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; /* for now, ignore in Acp
784 Child->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE;
785 break;

new/usr/src/common/acpica/components/disassembler/dmopcode.c 13

787 case AML_INT_BYTELIST_OP:

789 AcpiDmByteList (Info, Op);
790 break;

792 case AML_INT_METHODCALL_OP:

794 Op = AcpiPsGetDepthNext (NULL, Op);
795 Op->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE;

797 AcpiDmNamestring (Op->Common.Value.Name);
798 break;

800 default:

802 /* Just get the opcode name and print it */

804 AcpiOsPrintf ("%s", OpInfo->Name);

807 #ifdef ACPI_DEBUGGER

809 if ((Op->Common.AmlOpcode == AML_INT_RETURN_VALUE_OP) &&
810 (WalkState) &&
811 (WalkState->Results) &&
812 (WalkState->ResultCount))
813 {
814 AcpiDmDecodeInternalObject (
815 WalkState->Results->Results.ObjDesc [
816 (WalkState->ResultCount - 1) %
817 ACPI_RESULTS_FRAME_OBJ_NUM]);
818 }
819 #endif

821 break;
822 }
823 }

825 #endif /* ACPI_DISASSEMBLER */

new/usr/src/common/acpica/components/disassembler/dmresrc.c 1

**
 13510 Thu Dec 26 13:48:46 2013
new/usr/src/common/acpica/components/disassembler/dmresrc.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dmresrc.c - Resource Descriptor disassembly
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "amlcode.h"
48 #include "acdisasm.h"

50 #ifdef ACPI_DISASSEMBLER

52 #define _COMPONENT ACPI_CA_DEBUGGER
53 ACPI_MODULE_NAME ("dbresrc")

56 /* Dispatch tables for Resource disassembly functions */

58 typedef
59 void (*ACPI_RESOURCE_HANDLER) (

new/usr/src/common/acpica/components/disassembler/dmresrc.c 2

60 AML_RESOURCE *Resource,
61 UINT32 Length,
62 UINT32 Level);

58 static ACPI_RESOURCE_HANDLER AcpiGbl_DmResourceDispatch [] =
59 {
60 /* Small descriptors */

62 NULL, /* 0x00, Reserved */
63 NULL, /* 0x01, Reserved */
64 NULL, /* 0x02, Reserved */
65 NULL, /* 0x03, Reserved */
66 AcpiDmIrqDescriptor, /* 0x04, ACPI_RESOURCE_NAME_IRQ_FORMAT */
67 AcpiDmDmaDescriptor, /* 0x05, ACPI_RESOURCE_NAME_DMA_FORMAT */
68 AcpiDmStartDependentDescriptor, /* 0x06, ACPI_RESOURCE_NAME_START_DEPENDENT
69 AcpiDmEndDependentDescriptor, /* 0x07, ACPI_RESOURCE_NAME_END_DEPENDENT */
70 AcpiDmIoDescriptor, /* 0x08, ACPI_RESOURCE_NAME_IO_PORT */
71 AcpiDmFixedIoDescriptor, /* 0x09, ACPI_RESOURCE_NAME_FIXED_IO_PORT */
72 AcpiDmFixedDmaDescriptor, /* 0x0A, ACPI_RESOURCE_NAME_FIXED_DMA */
78 NULL, /* 0x0A, Reserved */
73 NULL, /* 0x0B, Reserved */
74 NULL, /* 0x0C, Reserved */
75 NULL, /* 0x0D, Reserved */
76 AcpiDmVendorSmallDescriptor, /* 0x0E, ACPI_RESOURCE_NAME_SMALL_VENDOR */
77 NULL, /* 0x0F, ACPI_RESOURCE_NAME_END_TAG (not use

79 /* Large descriptors */

81 NULL, /* 0x00, Reserved */
82 AcpiDmMemory24Descriptor, /* 0x01, ACPI_RESOURCE_NAME_MEMORY_24 */
83 AcpiDmGenericRegisterDescriptor,/* 0x02, ACPI_RESOURCE_NAME_GENERIC_REGISTER
84 NULL, /* 0x03, Reserved */
85 AcpiDmVendorLargeDescriptor, /* 0x04, ACPI_RESOURCE_NAME_LARGE_VENDOR */
86 AcpiDmMemory32Descriptor, /* 0x05, ACPI_RESOURCE_NAME_MEMORY_32 */
87 AcpiDmFixedMemory32Descriptor, /* 0x06, ACPI_RESOURCE_NAME_FIXED_MEMORY_32
88 AcpiDmDwordDescriptor, /* 0x07, ACPI_RESOURCE_NAME_DWORD_ADDRESS_SP
89 AcpiDmWordDescriptor, /* 0x08, ACPI_RESOURCE_NAME_WORD_ADDRESS_SPA
90 AcpiDmInterruptDescriptor, /* 0x09, ACPI_RESOURCE_NAME_EXTENDED_XRUPT *
91 AcpiDmQwordDescriptor, /* 0x0A, ACPI_RESOURCE_NAME_QWORD_ADDRESS_SP
92 AcpiDmExtendedDescriptor, /* 0x0B, ACPI_RESOURCE_NAME_EXTENDED_ADDRESS
93 AcpiDmGpioDescriptor, /* 0x0C, ACPI_RESOURCE_NAME_GPIO */
94 NULL, /* 0x0D, Reserved */
95 AcpiDmSerialBusDescriptor /* 0x0E, ACPI_RESOURCE_NAME_SERIAL_BUS */
98 AcpiDmExtendedDescriptor /* 0x0B, ACPI_RESOURCE_NAME_EXTENDED_ADDRESS
96 };

______unchanged_portion_omitted_

230 /***
231 *
232 * FUNCTION: AcpiDmResourceTemplate
233 *
234 * PARAMETERS: Info - Curent parse tree walk info
235 * ByteData - Pointer to the byte list data
236 * ByteCount - Length of the byte list
237 *
238 * RETURN: None
239 *
240 * DESCRIPTION: Dump the contents of a Resource Template containing a set of
241 * Resource Descriptors.
242 *
243 **/

245 void
246 AcpiDmResourceTemplate (
247 ACPI_OP_WALK_INFO *Info,

new/usr/src/common/acpica/components/disassembler/dmresrc.c 3

248 ACPI_PARSE_OBJECT *Op,
249 UINT8 *ByteData,
250 UINT32 ByteCount)
251 {
252 ACPI_STATUS Status;
253 UINT32 CurrentByteOffset;
254 UINT8 ResourceType;
255 UINT32 ResourceLength;
256 void *Aml;
257 UINT32 Level;
258 BOOLEAN DependentFns = FALSE;
259 UINT8 ResourceIndex;
260 ACPI_NAMESPACE_NODE *Node;

263 Level = Info->Level;
264 ResourceName = ACPI_DEFAULT_RESNAME;
265 Node = Op->Common.Node;
266 if (Node)
267 {
268 Node = Node->Child;
269 }

271 for (CurrentByteOffset = 0; CurrentByteOffset < ByteCount;)
272 {
273 Aml = &ByteData[CurrentByteOffset];

275 /* Get the descriptor type and length */

277 ResourceType = AcpiUtGetResourceType (Aml);
278 ResourceLength = AcpiUtGetResourceLength (Aml);

280 /* Validate the Resource Type and Resource Length */

282 Status = AcpiUtValidateResource (NULL, Aml, &ResourceIndex);
285 Status = AcpiUtValidateResource (Aml, &ResourceIndex);
283 if (ACPI_FAILURE (Status))
284 {
285 AcpiOsPrintf ("/*** Could not validate Resource, type (%X) %s***/\n"
286 ResourceType, AcpiFormatException (Status));
287 return;
288 }

290 /* Point to next descriptor */

292 CurrentByteOffset += AcpiUtGetDescriptorLength (Aml);

294 /* Descriptor pre-processing */

296 switch (ResourceType)
297 {
298 case ACPI_RESOURCE_NAME_START_DEPENDENT:

300 /* Finish a previous StartDependentFns */

302 if (DependentFns)
303 {
304 Level--;
305 AcpiDmIndent (Level);
306 AcpiOsPrintf ("}\n");
307 }
308 break;

310 case ACPI_RESOURCE_NAME_END_DEPENDENT:

312 Level--;

new/usr/src/common/acpica/components/disassembler/dmresrc.c 4

313 DependentFns = FALSE;
314 break;

316 case ACPI_RESOURCE_NAME_END_TAG:

318 /* Normal exit, the resource list is finished */

320 if (DependentFns)
321 {
322 /*
323 * Close an open StartDependentDescriptor. This indicates a
324 * missing EndDependentDescriptor.
325 */
326 Level--;
327 DependentFns = FALSE;

329 /* Go ahead and insert EndDependentFn() */

331 AcpiDmEndDependentDescriptor (Aml, ResourceLength, Level);

333 AcpiDmIndent (Level);
334 AcpiOsPrintf (
335 "/*** Disassembler: inserted missing EndDependentFn () ***/\
336 }
337 return;

339 default:

341 break;
342 }

344 /* Disassemble the resource structure */

346 if (Node)
347 {
348 ResourceName = Node->Name.Integer;
349 Node = Node->Peer;
350 }

352 AcpiGbl_DmResourceDispatch [ResourceIndex] (
353 Aml, ResourceLength, Level);

355 /* Descriptor post-processing */

357 if (ResourceType == ACPI_RESOURCE_NAME_START_DEPENDENT)
358 {
359 DependentFns = TRUE;
360 Level++;
361 }
362 }
363 }

366 /***
367 *
368 * FUNCTION: AcpiDmIsResourceTemplate
369 *
370 * PARAMETERS: WalkState - Current walk info
371 * Op - Buffer Op to be examined
372 * PARAMETERS: Op - Buffer Op to be examined
372 *
373 * RETURN: Status. AE_OK if valid template
374 *
375 * DESCRIPTION: Walk a byte list to determine if it consists of a valid set
376 * of resource descriptors. Nothing is output.
377 *

new/usr/src/common/acpica/components/disassembler/dmresrc.c 5

378 **/

380 ACPI_STATUS
381 AcpiDmIsResourceTemplate (
382 ACPI_WALK_STATE *WalkState,
383 ACPI_PARSE_OBJECT *Op)
384 {
385 ACPI_STATUS Status;
386 ACPI_PARSE_OBJECT *NextOp;
387 UINT8 *Aml;
388 UINT8 *EndAml;
389 ACPI_SIZE Length;

392 /* This op must be a buffer */

394 if (Op->Common.AmlOpcode != AML_BUFFER_OP)
395 {
396 return (AE_TYPE);
397 }

399 /* Get the ByteData list and length */

401 NextOp = Op->Common.Value.Arg;
402 if (!NextOp)
403 {
404 AcpiOsPrintf ("NULL byte list in buffer\n");
405 return (AE_TYPE);
406 }

408 NextOp = NextOp->Common.Next;
409 if (!NextOp)
410 {
411 return (AE_TYPE);
412 }

414 Aml = NextOp->Named.Data;
415 Length = (ACPI_SIZE) NextOp->Common.Value.Integer;

417 /* Walk the byte list, abort on any invalid descriptor type or length */

419 Status = AcpiUtWalkAmlResources (WalkState, Aml, Length,
420 NULL, ACPI_CAST_INDIRECT_PTR (void, &EndAml));
413 Status = AcpiUtWalkAmlResources (Aml, Length, NULL, &EndAml);
421 if (ACPI_FAILURE (Status))
422 {
423 return (AE_TYPE);
424 }

426 /*
427 * For the resource template to be valid, one EndTag must appear
428 * at the very end of the ByteList, not before. (For proper disassembly
429 * of a ResourceTemplate, the buffer must not have any extra data after
430 * the EndTag.)
431 */
432 if ((Aml + Length - sizeof (AML_RESOURCE_END_TAG)) != EndAml)
433 {
434 return (AE_AML_NO_RESOURCE_END_TAG);
435 }

437 /*
438 * All resource descriptors are valid, therefore this list appears
439 * to be a valid resource template
440 */
441 return (AE_OK);
442 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/disassembler/dmresrcl.c 1

**
 29253 Thu Dec 26 13:48:47 2013
new/usr/src/common/acpica/components/disassembler/dmresrcl.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dmresrcl.c - "Large" Resource Descriptor disassembly
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acdisasm.h"

50 #ifdef ACPI_DISASSEMBLER

52 #define _COMPONENT ACPI_CA_DEBUGGER
53 ACPI_MODULE_NAME ("dbresrcl")

56 /* Common names for address and memory descriptors */

58 static char *AcpiDmAddressNames[] =
59 {

new/usr/src/common/acpica/components/disassembler/dmresrcl.c 2

60 "Granularity",
61 "Range Minimum",
62 "Range Maximum",
63 "Translation Offset",
64 "Length"
65 };

______unchanged_portion_omitted_

76 /* Local prototypes */

78 static void
79 AcpiDmSpaceFlags (
80 UINT8 Flags);

82 static void
83 AcpiDmIoFlags (
84 UINT8 Flags);

86 static void
87 AcpiDmIoFlags2 (
88 UINT8 SpecificFlags);

90 static void
91 AcpiDmMemoryFlags (
92 UINT8 Flags,
93 UINT8 SpecificFlags);

95 static void
96 AcpiDmMemoryFlags2 (
97 UINT8 SpecificFlags);

99 static void
100 AcpiDmResourceSource (
101 AML_RESOURCE *Resource,
102 ACPI_SIZE MinimumLength,
103 UINT32 Length);

105 static void
106 AcpiDmAddressFields (
107 void *Source,
108 UINT8 Type,
109 UINT32 Level);

111 static void
112 AcpiDmAddressPrefix (
113 UINT8 Type);

115 static void
116 AcpiDmAddressCommon (
117 AML_RESOURCE *Resource,
118 UINT8 Type,
119 UINT32 Level);

121 static void
122 AcpiDmAddressFlags (
123 AML_RESOURCE *Resource);

126 /***
127 *
128 * FUNCTION: AcpiDmMemoryFields
129 *
130 * PARAMETERS: Source - Pointer to the contiguous data fields
131 * Type - 16 or 32 (bit)
132 * Level - Current source code indentation level

new/usr/src/common/acpica/components/disassembler/dmresrcl.c 3

133 *
134 * RETURN: None
135 *
136 * DESCRIPTION: Decode fields common to Memory24 and Memory32 descriptors
137 *
138 **/

140 static void
141 AcpiDmMemoryFields (
142 void *Source,
143 UINT8 Type,
144 UINT32 Level)
145 {
146 UINT32 i;

149 for (i = 0; i < 4; i++)
150 {
151 AcpiDmIndent (Level + 1);

153 switch (Type)
154 {
155 case 16:

157 AcpiDmDumpInteger16 (ACPI_CAST_PTR (UINT16, Source)[i],
158 AcpiDmMemoryNames[i]);
159 break;

161 case 32:

163 AcpiDmDumpInteger32 (ACPI_CAST_PTR (UINT32, Source)[i],
164 AcpiDmMemoryNames[i]);
165 break;

167 default:

169 return;
170 }
171 }
172 }

175 /***
176 *
177 * FUNCTION: AcpiDmAddressFields
178 *
179 * PARAMETERS: Source - Pointer to the contiguous data fields
180 * Type - 16, 32, or 64 (bit)
181 * Level - Current source code indentation level
182 *
183 * RETURN: None
184 *
185 * DESCRIPTION: Decode fields common to address descriptors
186 *
187 **/

189 static void
190 AcpiDmAddressFields (
191 void *Source,
192 UINT8 Type,
193 UINT32 Level)
194 {
195 UINT32 i;

198 AcpiOsPrintf ("\n");

new/usr/src/common/acpica/components/disassembler/dmresrcl.c 4

200 for (i = 0; i < 5; i++)
201 {
202 AcpiDmIndent (Level + 1);

204 switch (Type)
205 {
206 case 16:

208 AcpiDmDumpInteger16 (ACPI_CAST_PTR (UINT16, Source)[i],
209 AcpiDmAddressNames[i]);
210 break;

212 case 32:

214 AcpiDmDumpInteger32 (ACPI_CAST_PTR (UINT32, Source)[i],
215 AcpiDmAddressNames[i]);
216 break;

218 case 64:

220 AcpiDmDumpInteger64 (ACPI_CAST_PTR (UINT64, Source)[i],
221 AcpiDmAddressNames[i]);
222 break;

224 default:

226 return;
227 }
228 }
229 }

232 /***
233 *
234 * FUNCTION: AcpiDmAddressPrefix
235 *
236 * PARAMETERS: Type - Descriptor type
237 *
238 * RETURN: None
239 *
240 * DESCRIPTION: Emit name prefix representing the address descriptor type
241 *
242 **/

244 static void
245 AcpiDmAddressPrefix (
246 UINT8 Type)
247 {

249 switch (Type)
250 {
251 case ACPI_RESOURCE_TYPE_ADDRESS16:

253 AcpiOsPrintf ("Word");
254 break;

256 case ACPI_RESOURCE_TYPE_ADDRESS32:

258 AcpiOsPrintf ("DWord");
259 break;

261 case ACPI_RESOURCE_TYPE_ADDRESS64:

263 AcpiOsPrintf ("QWord");
264 break;

new/usr/src/common/acpica/components/disassembler/dmresrcl.c 5

266 case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64:

268 AcpiOsPrintf ("Extended");
269 break;

271 default:

273 return;
274 }
275 }

278 /***
279 *
280 * FUNCTION: AcpiDmAddressCommon
281 *
282 * PARAMETERS: Resource - Raw AML descriptor
283 * Type - Descriptor type
284 * Level - Current source code indentation level
285 *
286 * RETURN: None
287 *
288 * DESCRIPTION: Emit common name and flag fields common to address descriptors
289 *
290 **/

292 static void
293 AcpiDmAddressCommon (
294 AML_RESOURCE *Resource,
295 UINT8 Type,
296 UINT32 Level)
297 {
298 UINT8 ResourceType;
299 UINT8 SpecificFlags;
300 UINT8 Flags;

303 ResourceType = Resource->Address.ResourceType;
304 SpecificFlags = Resource->Address.SpecificFlags;
305 Flags = Resource->Address.Flags;

307 AcpiDmIndent (Level);

309 /* Validate ResourceType */

311 if ((ResourceType > 2) && (ResourceType < 0xC0))
312 {
313 AcpiOsPrintf ("/**** Invalid Resource Type: 0x%X ****/", ResourceType);
314 return;
315 }

317 /* Prefix is either Word, DWord, QWord, or Extended */

319 AcpiDmAddressPrefix (Type);

321 /* Resource Types above 0xC0 are vendor-defined */

323 if (ResourceType > 2)
324 {
325 AcpiOsPrintf ("Space (0x%2.2X, ", ResourceType);
326 AcpiDmSpaceFlags (Flags);
327 AcpiOsPrintf (" 0x%2.2X,", SpecificFlags);
328 return;
329 }

new/usr/src/common/acpica/components/disassembler/dmresrcl.c 6

331 /* This is either a Memory, IO, or BusNumber descriptor (0,1,2) */

333 AcpiOsPrintf ("%s (", AcpiGbl_WordDecode [ACPI_GET_2BIT_FLAG (ResourceType)]
321 AcpiOsPrintf ("%s (", AcpiGbl_WordDecode [ResourceType & 0x3]);

335 /* Decode the general and type-specific flags */

337 if (ResourceType == ACPI_MEMORY_RANGE)
338 {
339 AcpiDmMemoryFlags (Flags, SpecificFlags);
340 }
341 else /* IO range or BusNumberRange */
342 {
343 AcpiDmIoFlags (Flags);
344 if (ResourceType == ACPI_IO_RANGE)
345 {
346 AcpiOsPrintf (" %s,", AcpiGbl_RngDecode [ACPI_GET_2BIT_FLAG (Specifi
334 AcpiOsPrintf (" %s,", AcpiGbl_RngDecode [SpecificFlags & 0x3]);
347 }
348 }
349 }

______unchanged_portion_omitted_

380 /***
381 *
382 * FUNCTION: AcpiDmSpaceFlags
383 *
384 * PARAMETERS: Flags - Flag byte to be decoded
385 *
386 * RETURN: None
387 *
388 * DESCRIPTION: Decode the flags specific to Space Address space descriptors
389 *
390 **/

392 static void
393 AcpiDmSpaceFlags (
394 UINT8 Flags)
395 {

397 AcpiOsPrintf ("%s, %s, %s, %s,",
398 AcpiGbl_ConsumeDecode [ACPI_GET_1BIT_FLAG (Flags)],
399 AcpiGbl_DecDecode [ACPI_EXTRACT_1BIT_FLAG (Flags, 1)],
400 AcpiGbl_MinDecode [ACPI_EXTRACT_1BIT_FLAG (Flags, 2)],
401 AcpiGbl_MaxDecode [ACPI_EXTRACT_1BIT_FLAG (Flags, 3)]);
386 AcpiGbl_ConsumeDecode [(Flags & 1)],
387 AcpiGbl_DecDecode [(Flags & 0x2) >> 1],
388 AcpiGbl_MinDecode [(Flags & 0x4) >> 2],
389 AcpiGbl_MaxDecode [(Flags & 0x8) >> 3]);
402 }

405 /***
406 *
407 * FUNCTION: AcpiDmIoFlags
408 *
409 * PARAMETERS: Flags - Flag byte to be decoded
410 *
411 * RETURN: None
412 *
413 * DESCRIPTION: Decode the flags specific to IO Address space descriptors
414 *
415 **/

417 static void

new/usr/src/common/acpica/components/disassembler/dmresrcl.c 7

418 AcpiDmIoFlags (
419 UINT8 Flags)
420 {
421 AcpiOsPrintf ("%s, %s, %s, %s,",
422 AcpiGbl_ConsumeDecode [ACPI_GET_1BIT_FLAG (Flags)],
423 AcpiGbl_MinDecode [ACPI_EXTRACT_1BIT_FLAG (Flags, 2)],
424 AcpiGbl_MaxDecode [ACPI_EXTRACT_1BIT_FLAG (Flags, 3)],
425 AcpiGbl_DecDecode [ACPI_EXTRACT_1BIT_FLAG (Flags, 1)]);
410 AcpiGbl_ConsumeDecode [(Flags & 1)],
411 AcpiGbl_MinDecode [(Flags & 0x4) >> 2],
412 AcpiGbl_MaxDecode [(Flags & 0x8) >> 3],
413 AcpiGbl_DecDecode [(Flags & 0x2) >> 1]);
426 }

429 /***
430 *
431 * FUNCTION: AcpiDmIoFlags2
432 *
433 * PARAMETERS: SpecificFlags - "Specific" flag byte to be decoded
434 *
435 * RETURN: None
436 *
437 * DESCRIPTION: Decode the flags specific to IO Address space descriptors
438 *
439 **/

441 static void
442 AcpiDmIoFlags2 (
443 UINT8 SpecificFlags)
444 {

446 AcpiOsPrintf (", %s",
447 AcpiGbl_TtpDecode [ACPI_EXTRACT_1BIT_FLAG (SpecificFlags, 4)]);
435 AcpiGbl_TtpDecode [(SpecificFlags & 0x10) >> 4]);

449 /* TRS is only used if TTP is TypeTranslation */

451 if (SpecificFlags & 0x10)
452 {
453 AcpiOsPrintf (", %s",
454 AcpiGbl_TrsDecode [ACPI_EXTRACT_1BIT_FLAG (SpecificFlags, 5)]);
442 AcpiGbl_TrsDecode [(SpecificFlags & 0x20) >> 5]);
455 }
456 }

459 /***
460 *
461 * FUNCTION: AcpiDmMemoryFlags
462 *
463 * PARAMETERS: Flags - Flag byte to be decoded
464 * SpecificFlags - "Specific" flag byte to be decoded
465 *
466 * RETURN: None
467 *
468 * DESCRIPTION: Decode flags specific to Memory Address Space descriptors
469 *
470 **/

472 static void
473 AcpiDmMemoryFlags (
474 UINT8 Flags,
475 UINT8 SpecificFlags)
476 {

new/usr/src/common/acpica/components/disassembler/dmresrcl.c 8

478 AcpiOsPrintf ("%s, %s, %s, %s, %s, %s,",
479 AcpiGbl_ConsumeDecode [ACPI_GET_1BIT_FLAG (Flags)],
480 AcpiGbl_DecDecode [ACPI_EXTRACT_1BIT_FLAG (Flags, 1)],
481 AcpiGbl_MinDecode [ACPI_EXTRACT_1BIT_FLAG (Flags, 2)],
482 AcpiGbl_MaxDecode [ACPI_EXTRACT_1BIT_FLAG (Flags, 3)],
483 AcpiGbl_MemDecode [ACPI_EXTRACT_2BIT_FLAG (SpecificFlags, 1)],
484 AcpiGbl_RwDecode [ACPI_GET_1BIT_FLAG (SpecificFlags)]);
467 AcpiGbl_ConsumeDecode [(Flags & 1)],
468 AcpiGbl_DecDecode [(Flags & 0x2) >> 1],
469 AcpiGbl_MinDecode [(Flags & 0x4) >> 2],
470 AcpiGbl_MaxDecode [(Flags & 0x8) >> 3],
471 AcpiGbl_MemDecode [(SpecificFlags & 0x6) >> 1],
472 AcpiGbl_RwDecode [(SpecificFlags & 0x1)]);
485 }

488 /***
489 *
490 * FUNCTION: AcpiDmMemoryFlags2
491 *
492 * PARAMETERS: SpecificFlags - "Specific" flag byte to be decoded
493 *
494 * RETURN: None
495 *
496 * DESCRIPTION: Decode flags specific to Memory Address Space descriptors
497 *
498 **/

500 static void
501 AcpiDmMemoryFlags2 (
502 UINT8 SpecificFlags)
503 {

505 AcpiOsPrintf (", %s, %s",
506 AcpiGbl_MtpDecode [ACPI_EXTRACT_2BIT_FLAG (SpecificFlags, 3)],
507 AcpiGbl_TtpDecode [ACPI_EXTRACT_1BIT_FLAG (SpecificFlags, 5)]);
494 AcpiGbl_MtpDecode [(SpecificFlags & 0x18) >> 3],
495 AcpiGbl_TtpDecode [(SpecificFlags & 0x20) >> 5]);
508 }

511 /***
512 *
513 * FUNCTION: AcpiDmResourceSource
514 *
515 * PARAMETERS: Resource - Raw AML descriptor
516 * MinimumLength - descriptor length without optional fields
517 * ResourceLength
518 *
519 * RETURN: None
520 *
521 * DESCRIPTION: Dump optional ResourceSource fields of an address descriptor
522 *
523 **/

525 static void
526 AcpiDmResourceSource (
527 AML_RESOURCE *Resource,
528 ACPI_SIZE MinimumTotalLength,
529 UINT32 ResourceLength)
530 {
531 UINT8 *AmlResourceSource;
532 UINT32 TotalLength;

535 TotalLength = ResourceLength + sizeof (AML_RESOURCE_LARGE_HEADER);

new/usr/src/common/acpica/components/disassembler/dmresrcl.c 9

537 /* Check if the optional ResourceSource fields are present */

539 if (TotalLength <= MinimumTotalLength)
540 {
541 /* The two optional fields are not used */

543 AcpiOsPrintf (",, ");
544 return;
545 }

547 /* Get a pointer to the ResourceSource */

549 AmlResourceSource = ACPI_ADD_PTR (UINT8, Resource, MinimumTotalLength);

551 /*
552 * Always emit the ResourceSourceIndex (Byte)
553 *
554 * NOTE: Some ASL compilers always create a 0 byte (in the AML) for the
555 * Index even if the String does not exist. Although this is in violation
556 * of the ACPI specification, it is very important to emit ASL code that
557 * can be compiled back to the identical AML. There may be fields and/or
558 * indexes into the resource template buffer that are compiled to absolute
559 * offsets, and these will be broken if the AML length is changed.
560 */
561 AcpiOsPrintf ("0x%2.2X,", (UINT32) AmlResourceSource[0]);

563 /* Make sure that the ResourceSource string exists before dumping it */

565 if (TotalLength > (MinimumTotalLength + 1))
566 {
567 AcpiOsPrintf (" ");
568 AcpiUtPrintString ((char *) &AmlResourceSource[1], ACPI_UINT16_MAX);
556 AcpiUtPrintString ((char *) &AmlResourceSource[1], ACPI_UINT8_MAX);
569 }

571 AcpiOsPrintf (", ");
572 }

______unchanged_portion_omitted_

757 /***
758 *
759 * FUNCTION: AcpiDmMemory24Descriptor
760 *
761 * PARAMETERS: Resource - Pointer to the resource descriptor
762 * Length - Length of the descriptor in bytes
763 * Level - Current source code indentation level
764 *
765 * RETURN: None
766 *
767 * DESCRIPTION: Decode a Memory24 descriptor
768 *
769 **/

771 void
772 AcpiDmMemory24Descriptor (
773 AML_RESOURCE *Resource,
774 UINT32 Length,
775 UINT32 Level)
776 {

778 /* Dump name and read/write flag */

780 AcpiDmIndent (Level);
781 AcpiOsPrintf ("Memory24 (%s,\n",

new/usr/src/common/acpica/components/disassembler/dmresrcl.c 10

782 AcpiGbl_RwDecode [ACPI_GET_1BIT_FLAG (Resource->Memory24.Flags)]);
770 AcpiGbl_RwDecode [Resource->Memory24.Flags & 1]);

784 /* Dump the 4 contiguous WORD values */

786 AcpiDmMemoryFields (&Resource->Memory24.Minimum, 16, Level);

788 /* Insert a descriptor name */

790 AcpiDmIndent (Level + 1);
791 AcpiDmDescriptorName ();
792 AcpiOsPrintf (")\n");
793 }

796 /***
797 *
798 * FUNCTION: AcpiDmMemory32Descriptor
799 *
800 * PARAMETERS: Resource - Pointer to the resource descriptor
801 * Length - Length of the descriptor in bytes
802 * Level - Current source code indentation level
803 *
804 * RETURN: None
805 *
806 * DESCRIPTION: Decode a Memory32 descriptor
807 *
808 **/

810 void
811 AcpiDmMemory32Descriptor (
812 AML_RESOURCE *Resource,
813 UINT32 Length,
814 UINT32 Level)
815 {

817 /* Dump name and read/write flag */

819 AcpiDmIndent (Level);
820 AcpiOsPrintf ("Memory32 (%s,\n",
821 AcpiGbl_RwDecode [ACPI_GET_1BIT_FLAG (Resource->Memory32.Flags)]);
809 AcpiGbl_RwDecode [Resource->Memory32.Flags & 1]);

823 /* Dump the 4 contiguous DWORD values */

825 AcpiDmMemoryFields (&Resource->Memory32.Minimum, 32, Level);

827 /* Insert a descriptor name */

829 AcpiDmIndent (Level + 1);
830 AcpiDmDescriptorName ();
831 AcpiOsPrintf (")\n");
832 }

835 /***
836 *
837 * FUNCTION: AcpiDmFixedMemory32Descriptor
838 *
839 * PARAMETERS: Resource - Pointer to the resource descriptor
840 * Length - Length of the descriptor in bytes
841 * Level - Current source code indentation level
842 *
843 * RETURN: None
844 *
845 * DESCRIPTION: Decode a Fixed Memory32 descriptor

new/usr/src/common/acpica/components/disassembler/dmresrcl.c 11

846 *
847 **/

849 void
850 AcpiDmFixedMemory32Descriptor (
851 AML_RESOURCE *Resource,
852 UINT32 Length,
853 UINT32 Level)
854 {

856 /* Dump name and read/write flag */

858 AcpiDmIndent (Level);
859 AcpiOsPrintf ("Memory32Fixed (%s,\n",
860 AcpiGbl_RwDecode [ACPI_GET_1BIT_FLAG (Resource->FixedMemory32.Flags)]);
848 AcpiGbl_RwDecode [Resource->FixedMemory32.Flags & 1]);

862 AcpiDmIndent (Level + 1);
863 AcpiDmDumpInteger32 (Resource->FixedMemory32.Address, "Address Base");

865 AcpiDmIndent (Level + 1);
866 AcpiDmDumpInteger32 (Resource->FixedMemory32.AddressLength, "Address Length"

868 /* Insert a descriptor name */

870 AcpiDmIndent (Level + 1);
871 AcpiDmDescriptorName ();
872 AcpiOsPrintf (")\n");
873 }

______unchanged_portion_omitted_

932 /***
933 *
934 * FUNCTION: AcpiDmInterruptDescriptor
935 *
936 * PARAMETERS: Resource - Pointer to the resource descriptor
937 * Length - Length of the descriptor in bytes
938 * Level - Current source code indentation level
939 *
940 * RETURN: None
941 *
942 * DESCRIPTION: Decode a extended Interrupt descriptor
943 *
944 **/

946 void
947 AcpiDmInterruptDescriptor (
948 AML_RESOURCE *Resource,
949 UINT32 Length,
950 UINT32 Level)
951 {
952 UINT32 i;

955 AcpiDmIndent (Level);
956 AcpiOsPrintf ("Interrupt (%s, %s, %s, %s, ",
957 AcpiGbl_ConsumeDecode [ACPI_GET_1BIT_FLAG (Resource->ExtendedIrq.Flags)]
958 AcpiGbl_HeDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->ExtendedIrq.Flags, 1
959 AcpiGbl_LlDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->ExtendedIrq.Flags, 2
960 AcpiGbl_ShrDecode [ACPI_EXTRACT_2BIT_FLAG (Resource->ExtendedIrq.Flags,
945 AcpiGbl_ConsumeDecode [(Resource->ExtendedIrq.Flags & 1)],
946 AcpiGbl_HeDecode [(Resource->ExtendedIrq.Flags >> 1) & 1],
947 AcpiGbl_LlDecode [(Resource->ExtendedIrq.Flags >> 2) & 1],
948 AcpiGbl_ShrDecode [(Resource->ExtendedIrq.Flags >> 3) & 1]);

new/usr/src/common/acpica/components/disassembler/dmresrcl.c 12

962 /*
963 * The ResourceSource fields are optional and appear after the interrupt
964 * list. Must compute length based on length of the list. First xrupt
965 * is included in the struct (reason for -1 below)
966 */
967 AcpiDmResourceSource (Resource,
968 sizeof (AML_RESOURCE_EXTENDED_IRQ) +
969 ((UINT32) Resource->ExtendedIrq.InterruptCount - 1) * sizeof (UINT32
970 Resource->ExtendedIrq.ResourceLength);

972 /* Insert a descriptor name */

974 AcpiDmDescriptorName ();
975 AcpiOsPrintf (")\n");

977 /* Dump the interrupt list */

979 AcpiDmIndent (Level);
980 AcpiOsPrintf ("{\n");
981 for (i = 0; i < Resource->ExtendedIrq.InterruptCount; i++)
982 {
983 AcpiDmIndent (Level + 1);
984 AcpiOsPrintf ("0x%8.8X,\n",
985 (UINT32) Resource->ExtendedIrq.Interrupts[i]);
986 }

988 AcpiDmIndent (Level);
989 AcpiOsPrintf ("}\n");
990 }

______unchanged_portion_omitted_

1064 #endif

new/usr/src/common/acpica/components/disassembler/dmresrcl2.c 1

**
 20667 Thu Dec 26 13:48:47 2013
new/usr/src/common/acpica/components/disassembler/dmresrcl2.c
acpica-unix2-20130823
**

1 /***
2 *
3 * Module Name: dmresrcl2.c - "Large" Resource Descriptor disassembly (#2)
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acdisasm.h"

50 #ifdef ACPI_DISASSEMBLER

52 #define _COMPONENT ACPI_CA_DEBUGGER
53 ACPI_MODULE_NAME ("dbresrcl2")

55 /* Local prototypes */

57 static void
58 AcpiDmI2cSerialBusDescriptor (
59 AML_RESOURCE *Resource,
60 UINT32 Length,
61 UINT32 Level);

new/usr/src/common/acpica/components/disassembler/dmresrcl2.c 2

63 static void
64 AcpiDmSpiSerialBusDescriptor (
65 AML_RESOURCE *Resource,
66 UINT32 Length,
67 UINT32 Level);

69 static void
70 AcpiDmUartSerialBusDescriptor (
71 AML_RESOURCE *Resource,
72 UINT32 Length,
73 UINT32 Level);

75 static void
76 AcpiDmGpioCommon (
77 AML_RESOURCE *Resource,
78 UINT32 Level);

80 static void
81 AcpiDmDumpRawDataBuffer (
82 UINT8 *Buffer,
83 UINT32 Length,
84 UINT32 Level);

87 /* Dispatch table for the serial bus descriptors */

89 static ACPI_RESOURCE_HANDLER SerialBusResourceDispatch [] =
90 {
91 NULL,
92 AcpiDmI2cSerialBusDescriptor,
93 AcpiDmSpiSerialBusDescriptor,
94 AcpiDmUartSerialBusDescriptor
95 };

98 /***
99 *
100 * FUNCTION: AcpiDmDumpRawDataBuffer
101 *
102 * PARAMETERS: Buffer - Pointer to the data bytes
103 * Length - Length of the descriptor in bytes
104 * Level - Current source code indentation level
105 *
106 * RETURN: None
107 *
108 * DESCRIPTION: Dump a data buffer as a RawDataBuffer() object. Used for
109 * vendor data bytes.
110 *
111 **/

113 static void
114 AcpiDmDumpRawDataBuffer (
115 UINT8 *Buffer,
116 UINT32 Length,
117 UINT32 Level)
118 {
119 UINT32 Index;
120 UINT32 i;
121 UINT32 j;

124 if (!Length)
125 {
126 return;
127 }

new/usr/src/common/acpica/components/disassembler/dmresrcl2.c 3

129 AcpiOsPrintf ("RawDataBuffer (0x%.2X) // Vendor Data", Length);

131 AcpiOsPrintf ("\n");
132 AcpiDmIndent (Level + 1);
133 AcpiOsPrintf ("{\n");
134 AcpiDmIndent (Level + 2);

136 for (i = 0; i < Length;)
137 {
138 for (j = 0; j < 8; j++)
139 {
140 Index = i + j;
141 if (Index >= Length)
142 {
143 goto Finish;
144 }

146 AcpiOsPrintf ("0x%2.2X", Buffer[Index]);
147 if ((Index + 1) >= Length)
148 {
149 goto Finish;
150 }

152 AcpiOsPrintf (", ");
153 }
154 AcpiOsPrintf ("\n");
155 AcpiDmIndent (Level + 2);

157 i += 8;
158 }

160 Finish:
161 AcpiOsPrintf ("\n");
162 AcpiDmIndent (Level + 1);
163 AcpiOsPrintf ("}");
164 }

167 /***
168 *
169 * FUNCTION: AcpiDmGpioCommon
170 *
171 * PARAMETERS: Resource - Pointer to the resource descriptor
172 * Level - Current source code indentation level
173 *
174 * RETURN: None
175 *
176 * DESCRIPTION: Decode common parts of a GPIO Interrupt descriptor
177 *
178 **/

180 static void
181 AcpiDmGpioCommon (
182 AML_RESOURCE *Resource,
183 UINT32 Level)
184 {
185 UINT32 PinCount;
186 UINT16 *PinList;
187 UINT8 *VendorData;
188 UINT32 i;

191 /* ResourceSource, ResourceSourceIndex, ResourceType */

193 AcpiDmIndent (Level + 1);

new/usr/src/common/acpica/components/disassembler/dmresrcl2.c 4

194 if (Resource->Gpio.ResSourceOffset)
195 {
196 AcpiUtPrintString (
197 ACPI_ADD_PTR (char, Resource, Resource->Gpio.ResSourceOffset),
198 ACPI_UINT16_MAX);
199 }

201 AcpiOsPrintf (", ");
202 AcpiOsPrintf ("0x%2.2X, ", Resource->Gpio.ResSourceIndex);
203 AcpiOsPrintf ("%s, ",
204 AcpiGbl_ConsumeDecode [ACPI_GET_1BIT_FLAG (Resource->Gpio.Flags)]);

206 /* Insert a descriptor name */

208 AcpiDmDescriptorName ();
209 AcpiOsPrintf (",");

211 /* Dump the vendor data */

213 if (Resource->Gpio.VendorOffset)
214 {
215 AcpiOsPrintf ("\n");
216 AcpiDmIndent (Level + 1);
217 VendorData = ACPI_ADD_PTR (UINT8, Resource,
218 Resource->Gpio.VendorOffset);

220 AcpiDmDumpRawDataBuffer (VendorData,
221 Resource->Gpio.VendorLength, Level);
222 }

224 AcpiOsPrintf (")\n");

226 /* Dump the interrupt list */

228 AcpiDmIndent (Level + 1);
229 AcpiOsPrintf ("{ // Pin list\n");

231 PinCount = ((UINT32) (Resource->Gpio.ResSourceOffset -
232 Resource->Gpio.PinTableOffset)) /
233 sizeof (UINT16);

235 PinList = (UINT16 *) ACPI_ADD_PTR (char, Resource,
236 Resource->Gpio.PinTableOffset);

238 for (i = 0; i < PinCount; i++)
239 {
240 AcpiDmIndent (Level + 2);
241 AcpiOsPrintf ("0x%4.4X%s\n", PinList[i], ((i + 1) < PinCount) ? "," : ""
242 }

244 AcpiDmIndent (Level + 1);
245 AcpiOsPrintf ("}\n");
246 }

249 /***
250 *
251 * FUNCTION: AcpiDmGpioIntDescriptor
252 *
253 * PARAMETERS: Resource - Pointer to the resource descriptor
254 * Length - Length of the descriptor in bytes
255 * Level - Current source code indentation level
256 *
257 * RETURN: None
258 *
259 * DESCRIPTION: Decode a GPIO Interrupt descriptor

new/usr/src/common/acpica/components/disassembler/dmresrcl2.c 5

260 *
261 **/

263 static void
264 AcpiDmGpioIntDescriptor (
265 AML_RESOURCE *Resource,
266 UINT32 Length,
267 UINT32 Level)
268 {

270 /* Dump the GpioInt-specific portion of the descriptor */

272 /* EdgeLevel, ActiveLevel, Shared */

274 AcpiDmIndent (Level);
275 AcpiOsPrintf ("GpioInt (%s, %s, %s, ",
276 AcpiGbl_HeDecode [ACPI_GET_1BIT_FLAG (Resource->Gpio.IntFlags)],
277 AcpiGbl_LlDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->Gpio.IntFlags, 1)],
278 AcpiGbl_ShrDecode [ACPI_EXTRACT_2BIT_FLAG (Resource->Gpio.IntFlags, 3)])

280 /* PinConfig, DebounceTimeout */

282 if (Resource->Gpio.PinConfig <= 3)
283 {
284 AcpiOsPrintf ("%s, ",
285 AcpiGbl_PpcDecode[Resource->Gpio.PinConfig]);
286 }
287 else
288 {
289 AcpiOsPrintf ("0x%2.2X, ", Resource->Gpio.PinConfig);
290 }
291 AcpiOsPrintf ("0x%4.4X,\n", Resource->Gpio.DebounceTimeout);

293 /* Dump the GpioInt/GpioIo common portion of the descriptor */

295 AcpiDmGpioCommon (Resource, Level);
296 }

299 /***
300 *
301 * FUNCTION: AcpiDmGpioIoDescriptor
302 *
303 * PARAMETERS: Resource - Pointer to the resource descriptor
304 * Length - Length of the descriptor in bytes
305 * Level - Current source code indentation level
306 *
307 * RETURN: None
308 *
309 * DESCRIPTION: Decode a GPIO I/O descriptor
310 *
311 **/

313 static void
314 AcpiDmGpioIoDescriptor (
315 AML_RESOURCE *Resource,
316 UINT32 Length,
317 UINT32 Level)
318 {

320 /* Dump the GpioIo-specific portion of the descriptor */

322 /* Shared, PinConfig */

324 AcpiDmIndent (Level);
325 AcpiOsPrintf ("GpioIo (%s, ",

new/usr/src/common/acpica/components/disassembler/dmresrcl2.c 6

326 AcpiGbl_ShrDecode [ACPI_EXTRACT_2BIT_FLAG (Resource->Gpio.IntFlags, 3)])

328 if (Resource->Gpio.PinConfig <= 3)
329 {
330 AcpiOsPrintf ("%s, ",
331 AcpiGbl_PpcDecode[Resource->Gpio.PinConfig]);
332 }
333 else
334 {
335 AcpiOsPrintf ("0x%2.2X, ", Resource->Gpio.PinConfig);
336 }

338 /* DebounceTimeout, DriveStrength, IoRestriction */

340 AcpiOsPrintf ("0x%4.4X, ", Resource->Gpio.DebounceTimeout);
341 AcpiOsPrintf ("0x%4.4X, ", Resource->Gpio.DriveStrength);
342 AcpiOsPrintf ("%s,\n",
343 AcpiGbl_IorDecode [ACPI_GET_2BIT_FLAG (Resource->Gpio.IntFlags)]);

345 /* Dump the GpioInt/GpioIo common portion of the descriptor */

347 AcpiDmGpioCommon (Resource, Level);
348 }

351 /***
352 *
353 * FUNCTION: AcpiDmGpioDescriptor
354 *
355 * PARAMETERS: Resource - Pointer to the resource descriptor
356 * Length - Length of the descriptor in bytes
357 * Level - Current source code indentation level
358 *
359 * RETURN: None
360 *
361 * DESCRIPTION: Decode a GpioInt/GpioIo GPIO Interrupt/IO descriptor
362 *
363 **/

365 void
366 AcpiDmGpioDescriptor (
367 AML_RESOURCE *Resource,
368 UINT32 Length,
369 UINT32 Level)
370 {
371 UINT8 ConnectionType;

374 ConnectionType = Resource->Gpio.ConnectionType;

376 switch (ConnectionType)
377 {
378 case AML_RESOURCE_GPIO_TYPE_INT:

380 AcpiDmGpioIntDescriptor (Resource, Length, Level);
381 break;

383 case AML_RESOURCE_GPIO_TYPE_IO:

385 AcpiDmGpioIoDescriptor (Resource, Length, Level);
386 break;

388 default:

390 AcpiOsPrintf ("Unknown GPIO type\n");
391 break;

new/usr/src/common/acpica/components/disassembler/dmresrcl2.c 7

392 }
393 }

396 /***
397 *
398 * FUNCTION: AcpiDmDumpSerialBusVendorData
399 *
400 * PARAMETERS: Resource - Pointer to the resource descriptor
401 *
402 * RETURN: None
403 *
404 * DESCRIPTION: Dump optional serial bus vendor data
405 *
406 **/

408 static void
409 AcpiDmDumpSerialBusVendorData (
410 AML_RESOURCE *Resource,
411 UINT32 Level)
412 {
413 UINT8 *VendorData;
414 UINT32 VendorLength;

417 /* Get the (optional) vendor data and length */

419 switch (Resource->CommonSerialBus.Type)
420 {
421 case AML_RESOURCE_I2C_SERIALBUSTYPE:

423 VendorLength = Resource->CommonSerialBus.TypeDataLength -
424 AML_RESOURCE_I2C_MIN_DATA_LEN;

426 VendorData = ACPI_ADD_PTR (UINT8, Resource,
427 sizeof (AML_RESOURCE_I2C_SERIALBUS));
428 break;

430 case AML_RESOURCE_SPI_SERIALBUSTYPE:

432 VendorLength = Resource->CommonSerialBus.TypeDataLength -
433 AML_RESOURCE_SPI_MIN_DATA_LEN;

435 VendorData = ACPI_ADD_PTR (UINT8, Resource,
436 sizeof (AML_RESOURCE_SPI_SERIALBUS));
437 break;

439 case AML_RESOURCE_UART_SERIALBUSTYPE:

441 VendorLength = Resource->CommonSerialBus.TypeDataLength -
442 AML_RESOURCE_UART_MIN_DATA_LEN;

444 VendorData = ACPI_ADD_PTR (UINT8, Resource,
445 sizeof (AML_RESOURCE_UART_SERIALBUS));
446 break;

448 default:

450 return;
451 }

453 /* Dump the vendor bytes as a RawDataBuffer object */

455 AcpiDmDumpRawDataBuffer (VendorData, VendorLength, Level);
456 }

new/usr/src/common/acpica/components/disassembler/dmresrcl2.c 8

459 /***
460 *
461 * FUNCTION: AcpiDmI2cSerialBusDescriptor
462 *
463 * PARAMETERS: Resource - Pointer to the resource descriptor
464 * Length - Length of the descriptor in bytes
465 * Level - Current source code indentation level
466 *
467 * RETURN: None
468 *
469 * DESCRIPTION: Decode a I2C serial bus descriptor
470 *
471 **/

473 static void
474 AcpiDmI2cSerialBusDescriptor (
475 AML_RESOURCE *Resource,
476 UINT32 Length,
477 UINT32 Level)
478 {
479 UINT32 ResourceSourceOffset;

482 /* SlaveAddress, SlaveMode, ConnectionSpeed, AddressingMode */

484 AcpiDmIndent (Level);
485 AcpiOsPrintf ("I2cSerialBus (0x%4.4X, %s, 0x%8.8X,\n",
486 Resource->I2cSerialBus.SlaveAddress,
487 AcpiGbl_SmDecode [ACPI_GET_1BIT_FLAG (Resource->I2cSerialBus.Flags)],
488 Resource->I2cSerialBus.ConnectionSpeed);

490 AcpiDmIndent (Level + 1);
491 AcpiOsPrintf ("%s, ",
492 AcpiGbl_AmDecode [ACPI_GET_1BIT_FLAG (Resource->I2cSerialBus.TypeSpecifi

494 /* ResourceSource is a required field */

496 ResourceSourceOffset = sizeof (AML_RESOURCE_COMMON_SERIALBUS) +
497 Resource->CommonSerialBus.TypeDataLength;

499 AcpiUtPrintString (
500 ACPI_ADD_PTR (char, Resource, ResourceSourceOffset),
501 ACPI_UINT16_MAX);

503 /* ResourceSourceIndex, ResourceUsage */

505 AcpiOsPrintf (",\n");
506 AcpiDmIndent (Level + 1);
507 AcpiOsPrintf ("0x%2.2X, ", Resource->I2cSerialBus.ResSourceIndex);

509 AcpiOsPrintf ("%s, ",
510 AcpiGbl_ConsumeDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->I2cSerialBus.Fl

512 /* Insert a descriptor name */

514 AcpiDmDescriptorName ();
515 AcpiOsPrintf (",\n");

517 /* Dump the vendor data */

519 AcpiDmIndent (Level + 1);
520 AcpiDmDumpSerialBusVendorData (Resource, Level);
521 AcpiOsPrintf (")\n");
522 }

new/usr/src/common/acpica/components/disassembler/dmresrcl2.c 9

525 /***
526 *
527 * FUNCTION: AcpiDmSpiSerialBusDescriptor
528 *
529 * PARAMETERS: Resource - Pointer to the resource descriptor
530 * Length - Length of the descriptor in bytes
531 * Level - Current source code indentation level
532 *
533 * RETURN: None
534 *
535 * DESCRIPTION: Decode a SPI serial bus descriptor
536 *
537 **/

539 static void
540 AcpiDmSpiSerialBusDescriptor (
541 AML_RESOURCE *Resource,
542 UINT32 Length,
543 UINT32 Level)
544 {
545 UINT32 ResourceSourceOffset;

548 /* DeviceSelection, DeviceSelectionPolarity, WireMode, DataBitLength */

550 AcpiDmIndent (Level);
551 AcpiOsPrintf ("SpiSerialBus (0x%4.4X, %s, %s, 0x%2.2X,\n",
552 Resource->SpiSerialBus.DeviceSelection,
553 AcpiGbl_DpDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->SpiSerialBus.TypeSpe
554 AcpiGbl_WmDecode [ACPI_GET_1BIT_FLAG (Resource->SpiSerialBus.TypeSpecifi
555 Resource->SpiSerialBus.DataBitLength);

557 /* SlaveMode, ConnectionSpeed, ClockPolarity, ClockPhase */

559 AcpiDmIndent (Level + 1);
560 AcpiOsPrintf ("%s, 0x%8.8X, %s,\n",
561 AcpiGbl_SmDecode [ACPI_GET_1BIT_FLAG (Resource->SpiSerialBus.Flags)],
562 Resource->SpiSerialBus.ConnectionSpeed,
563 AcpiGbl_CpoDecode [ACPI_GET_1BIT_FLAG (Resource->SpiSerialBus.ClockPolar

565 AcpiDmIndent (Level + 1);
566 AcpiOsPrintf ("%s, ",
567 AcpiGbl_CphDecode [ACPI_GET_1BIT_FLAG (Resource->SpiSerialBus.ClockPhase

569 /* ResourceSource is a required field */

571 ResourceSourceOffset = sizeof (AML_RESOURCE_COMMON_SERIALBUS) +
572 Resource->CommonSerialBus.TypeDataLength;

574 AcpiUtPrintString (
575 ACPI_ADD_PTR (char, Resource, ResourceSourceOffset),
576 ACPI_UINT16_MAX);

578 /* ResourceSourceIndex, ResourceUsage */

580 AcpiOsPrintf (",\n");
581 AcpiDmIndent (Level + 1);
582 AcpiOsPrintf ("0x%2.2X, ", Resource->SpiSerialBus.ResSourceIndex);

584 AcpiOsPrintf ("%s, ",
585 AcpiGbl_ConsumeDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->SpiSerialBus.Fl

587 /* Insert a descriptor name */

589 AcpiDmDescriptorName ();

new/usr/src/common/acpica/components/disassembler/dmresrcl2.c 10

590 AcpiOsPrintf (",\n");

592 /* Dump the vendor data */

594 AcpiDmIndent (Level + 1);
595 AcpiDmDumpSerialBusVendorData (Resource, Level);
596 AcpiOsPrintf (")\n");
597 }

600 /***
601 *
602 * FUNCTION: AcpiDmUartSerialBusDescriptor
603 *
604 * PARAMETERS: Resource - Pointer to the resource descriptor
605 * Length - Length of the descriptor in bytes
606 * Level - Current source code indentation level
607 *
608 * RETURN: None
609 *
610 * DESCRIPTION: Decode a UART serial bus descriptor
611 *
612 **/

614 static void
615 AcpiDmUartSerialBusDescriptor (
616 AML_RESOURCE *Resource,
617 UINT32 Length,
618 UINT32 Level)
619 {
620 UINT32 ResourceSourceOffset;

623 /* ConnectionSpeed, BitsPerByte, StopBits */

625 AcpiDmIndent (Level);
626 AcpiOsPrintf ("UartSerialBus (0x%8.8X, %s, %s,\n",
627 Resource->UartSerialBus.DefaultBaudRate,
628 AcpiGbl_BpbDecode [ACPI_EXTRACT_3BIT_FLAG (Resource->UartSerialBus.TypeS
629 AcpiGbl_SbDecode [ACPI_EXTRACT_2BIT_FLAG (Resource->UartSerialBus.TypeSp

631 /* LinesInUse, IsBigEndian, Parity, FlowControl */

633 AcpiDmIndent (Level + 1);
634 AcpiOsPrintf ("0x%2.2X, %s, %s, %s,\n",
635 Resource->UartSerialBus.LinesEnabled,
636 AcpiGbl_EdDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->UartSerialBus.TypeSp
637 AcpiGbl_PtDecode [ACPI_GET_3BIT_FLAG (Resource->UartSerialBus.Parity)],
638 AcpiGbl_FcDecode [ACPI_GET_2BIT_FLAG (Resource->UartSerialBus.TypeSpecif

640 /* ReceiveBufferSize, TransmitBufferSize */

642 AcpiDmIndent (Level + 1);
643 AcpiOsPrintf ("0x%4.4X, 0x%4.4X, ",
644 Resource->UartSerialBus.RxFifoSize,
645 Resource->UartSerialBus.TxFifoSize);

647 /* ResourceSource is a required field */

649 ResourceSourceOffset = sizeof (AML_RESOURCE_COMMON_SERIALBUS) +
650 Resource->CommonSerialBus.TypeDataLength;

652 AcpiUtPrintString (
653 ACPI_ADD_PTR (char, Resource, ResourceSourceOffset),
654 ACPI_UINT16_MAX);

new/usr/src/common/acpica/components/disassembler/dmresrcl2.c 11

656 /* ResourceSourceIndex, ResourceUsage */

658 AcpiOsPrintf (",\n");
659 AcpiDmIndent (Level + 1);
660 AcpiOsPrintf ("0x%2.2X, ", Resource->UartSerialBus.ResSourceIndex);

662 AcpiOsPrintf ("%s, ",
663 AcpiGbl_ConsumeDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->UartSerialBus.F

665 /* Insert a descriptor name */

667 AcpiDmDescriptorName ();
668 AcpiOsPrintf (",\n");

670 /* Dump the vendor data */

672 AcpiDmIndent (Level + 1);
673 AcpiDmDumpSerialBusVendorData (Resource, Level);
674 AcpiOsPrintf (")\n");
675 }

678 /***
679 *
680 * FUNCTION: AcpiDmSerialBusDescriptor
681 *
682 * PARAMETERS: Resource - Pointer to the resource descriptor
683 * Length - Length of the descriptor in bytes
684 * Level - Current source code indentation level
685 *
686 * RETURN: None
687 *
688 * DESCRIPTION: Decode a I2C/SPI/UART serial bus descriptor
689 *
690 **/

692 void
693 AcpiDmSerialBusDescriptor (
694 AML_RESOURCE *Resource,
695 UINT32 Length,
696 UINT32 Level)
697 {

699 SerialBusResourceDispatch [Resource->CommonSerialBus.Type] (
700 Resource, Length, Level);
701 }

703 #endif

new/usr/src/common/acpica/components/disassembler/dmresrcs.c 1

**
 10814 Thu Dec 26 13:48:47 2013
new/usr/src/common/acpica/components/disassembler/dmresrcs.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dmresrcs.c - "Small" Resource Descriptor disassembly
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acdisasm.h"

50 #ifdef ACPI_DISASSEMBLER

52 #define _COMPONENT ACPI_CA_DEBUGGER
53 ACPI_MODULE_NAME ("dbresrcs")

56 /***
57 *
58 * FUNCTION: AcpiDmIrqDescriptor
59 *

new/usr/src/common/acpica/components/disassembler/dmresrcs.c 2

60 * PARAMETERS: Resource - Pointer to the resource descriptor
61 * Length - Length of the descriptor in bytes
62 * Level - Current source code indentation level
63 *
64 * RETURN: None
65 *
66 * DESCRIPTION: Decode a IRQ descriptor, either Irq() or IrqNoFlags()
67 *
68 **/

70 void
71 AcpiDmIrqDescriptor (
72 AML_RESOURCE *Resource,
73 UINT32 Length,
74 UINT32 Level)
75 {

77 AcpiDmIndent (Level);
78 AcpiOsPrintf ("%s (",
79 AcpiGbl_IrqDecode [ACPI_GET_1BIT_FLAG (Length)]);
79 AcpiGbl_IrqDecode [Length & 1]);

81 /* Decode flags byte if present */

83 if (Length & 1)
84 {
85 AcpiOsPrintf ("%s, %s, %s, ",
86 AcpiGbl_HeDecode [ACPI_GET_1BIT_FLAG (Resource->Irq.Flags)],
87 AcpiGbl_LlDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->Irq.Flags, 3)],
88 AcpiGbl_ShrDecode [ACPI_EXTRACT_2BIT_FLAG (Resource->Irq.Flags, 4)])
86 AcpiGbl_HeDecode [Resource->Irq.Flags & 1],
87 AcpiGbl_LlDecode [(Resource->Irq.Flags >> 3) & 1],
88 AcpiGbl_ShrDecode [(Resource->Irq.Flags >> 4) & 1]);
89 }

91 /* Insert a descriptor name */

93 AcpiDmDescriptorName ();
94 AcpiOsPrintf (")\n");

96 AcpiDmIndent (Level + 1);
97 AcpiDmBitList (Resource->Irq.IrqMask);
98 }

101 /***
102 *
103 * FUNCTION: AcpiDmDmaDescriptor
104 *
105 * PARAMETERS: Resource - Pointer to the resource descriptor
106 * Length - Length of the descriptor in bytes
107 * Level - Current source code indentation level
108 *
109 * RETURN: None
110 *
111 * DESCRIPTION: Decode a DMA descriptor
112 *
113 **/

115 void
116 AcpiDmDmaDescriptor (
117 AML_RESOURCE *Resource,
118 UINT32 Length,
119 UINT32 Level)
120 {

new/usr/src/common/acpica/components/disassembler/dmresrcs.c 3

122 AcpiDmIndent (Level);
123 AcpiOsPrintf ("DMA (%s, %s, %s, ",
124 AcpiGbl_TypDecode [ACPI_EXTRACT_2BIT_FLAG (Resource->Dma.Flags, 5)],
125 AcpiGbl_BmDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->Dma.Flags, 2)],
126 AcpiGbl_SizDecode [ACPI_GET_2BIT_FLAG (Resource->Dma.Flags)]);
124 AcpiGbl_TypDecode [(Resource->Dma.Flags >> 5) & 3],
125 AcpiGbl_BmDecode [(Resource->Dma.Flags >> 2) & 1],
126 AcpiGbl_SizDecode [(Resource->Dma.Flags >> 0) & 3]);

128 /* Insert a descriptor name */

130 AcpiDmDescriptorName ();
131 AcpiOsPrintf (")\n");

133 AcpiDmIndent (Level + 1);
134 AcpiDmBitList (Resource->Dma.DmaChannelMask);
135 }

138 /***
139 *
140 * FUNCTION: AcpiDmFixedDmaDescriptor
141 *
142 * PARAMETERS: Resource - Pointer to the resource descriptor
143 * Length - Length of the descriptor in bytes
144 * Level - Current source code indentation level
145 *
146 * RETURN: None
147 *
148 * DESCRIPTION: Decode a FixedDMA descriptor
149 *
150 **/

152 void
153 AcpiDmFixedDmaDescriptor (
154 AML_RESOURCE *Resource,
155 UINT32 Length,
156 UINT32 Level)
157 {

159 AcpiDmIndent (Level);
160 AcpiOsPrintf ("FixedDMA (0x%4.4X, 0x%4.4X, ",
161 Resource->FixedDma.RequestLines,
162 Resource->FixedDma.Channels);

164 if (Resource->FixedDma.Width <= 5)
165 {
166 AcpiOsPrintf ("%s, ",
167 AcpiGbl_DtsDecode [Resource->FixedDma.Width]);
168 }
169 else
170 {
171 AcpiOsPrintf ("%X /* INVALID DMA WIDTH */, ", Resource->FixedDma.Width);
172 }

174 /* Insert a descriptor name */

176 AcpiDmDescriptorName ();
177 AcpiOsPrintf (")\n");
178 }

181 /***
182 *
183 * FUNCTION: AcpiDmIoDescriptor
184 *

new/usr/src/common/acpica/components/disassembler/dmresrcs.c 4

185 * PARAMETERS: Resource - Pointer to the resource descriptor
186 * Length - Length of the descriptor in bytes
187 * Level - Current source code indentation level
188 *
189 * RETURN: None
190 *
191 * DESCRIPTION: Decode an IO descriptor
192 *
193 **/

195 void
196 AcpiDmIoDescriptor (
197 AML_RESOURCE *Resource,
198 UINT32 Length,
199 UINT32 Level)
200 {

202 AcpiDmIndent (Level);
203 AcpiOsPrintf ("IO (%s,\n",
204 AcpiGbl_IoDecode [ACPI_GET_1BIT_FLAG (Resource->Io.Flags)]);
161 AcpiGbl_IoDecode [(Resource->Io.Flags & 1)]);

206 AcpiDmIndent (Level + 1);
207 AcpiDmDumpInteger16 (Resource->Io.Minimum, "Range Minimum");

209 AcpiDmIndent (Level + 1);
210 AcpiDmDumpInteger16 (Resource->Io.Maximum, "Range Maximum");

212 AcpiDmIndent (Level + 1);
213 AcpiDmDumpInteger8 (Resource->Io.Alignment, "Alignment");

215 AcpiDmIndent (Level + 1);
216 AcpiDmDumpInteger8 (Resource->Io.AddressLength, "Length");

218 /* Insert a descriptor name */

220 AcpiDmIndent (Level + 1);
221 AcpiDmDescriptorName ();
222 AcpiOsPrintf (")\n");
223 }

______unchanged_portion_omitted_

264 /***
265 *
266 * FUNCTION: AcpiDmStartDependentDescriptor
267 *
268 * PARAMETERS: Resource - Pointer to the resource descriptor
269 * Length - Length of the descriptor in bytes
270 * Level - Current source code indentation level
271 *
272 * RETURN: None
273 *
274 * DESCRIPTION: Decode a Start Dependendent functions descriptor
275 *
276 **/

278 void
279 AcpiDmStartDependentDescriptor (
280 AML_RESOURCE *Resource,
281 UINT32 Length,
282 UINT32 Level)
283 {

285 AcpiDmIndent (Level);

new/usr/src/common/acpica/components/disassembler/dmresrcs.c 5

287 if (Length & 1)
288 {
289 AcpiOsPrintf ("StartDependentFn (0x%2.2X, 0x%2.2X)\n",
290 (UINT32) ACPI_GET_2BIT_FLAG (Resource->StartDpf.Flags),
291 (UINT32) ACPI_EXTRACT_2BIT_FLAG (Resource->StartDpf.Flags, 2));
247 (UINT32) Resource->StartDpf.Flags & 3,
248 (UINT32) (Resource->StartDpf.Flags >> 2) & 3);
292 }
293 else
294 {
295 AcpiOsPrintf ("StartDependentFnNoPri ()\n");
296 }

298 AcpiDmIndent (Level);
299 AcpiOsPrintf ("{\n");
300 }

______unchanged_portion_omitted_

357 #endif

new/usr/src/common/acpica/components/disassembler/dmutils.c 1

**
 7799 Thu Dec 26 13:48:48 2013
new/usr/src/common/acpica/components/disassembler/dmutils.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dmutils - AML disassembler utilities
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "amlcode.h"
48 #include "acdisasm.h"

50 #ifdef ACPI_ASL_COMPILER
51 #include <acnamesp.h>
52 #endif

54 #ifdef ACPI_DISASSEMBLER

56 #define _COMPONENT ACPI_CA_DEBUGGER
57 ACPI_MODULE_NAME ("dmutils")

new/usr/src/common/acpica/components/disassembler/dmutils.c 2

60 /* Data used in keeping track of fields */
61 #if 0
62 const char *AcpiGbl_FENames[] =
63 {
64 "skip",
65 "?access?"
66 }; /* FE = Field Element */

______unchanged_portion_omitted_

130 /***
131 *
132 * FUNCTION: AcpiDmDecodeAttribute
133 *
134 * PARAMETERS: Attribute - Attribute field of AccessAs keyword
135 *
136 * RETURN: None
137 *
138 * DESCRIPTION: Decode the AccessAs attribute byte. (Mostly SMBus and
139 * GenericSerialBus stuff.)
138 * DESCRIPTION: Decode the AccessAs attribute byte. (Mostly SMBus stuff)
140 *
141 **/

143 void
144 AcpiDmDecodeAttribute (
145 UINT8 Attribute)
146 {

148 switch (Attribute)
149 {
150 case AML_FIELD_ATTRIB_QUICK:
149 case AML_FIELD_ATTRIB_SMB_QUICK:

152 AcpiOsPrintf ("AttribQuick");
151 AcpiOsPrintf ("SMBQuick");
153 break;

155 case AML_FIELD_ATTRIB_SEND_RCV:
154 case AML_FIELD_ATTRIB_SMB_SEND_RCV:

157 AcpiOsPrintf ("AttribSendReceive");
156 AcpiOsPrintf ("SMBSendReceive");
158 break;

160 case AML_FIELD_ATTRIB_BYTE:
159 case AML_FIELD_ATTRIB_SMB_BYTE:

162 AcpiOsPrintf ("AttribByte");
161 AcpiOsPrintf ("SMBByte");
163 break;

165 case AML_FIELD_ATTRIB_WORD:
164 case AML_FIELD_ATTRIB_SMB_WORD:

167 AcpiOsPrintf ("AttribWord");
166 AcpiOsPrintf ("SMBWord");
168 break;

170 case AML_FIELD_ATTRIB_BLOCK:
169 case AML_FIELD_ATTRIB_SMB_WORD_CALL:

172 AcpiOsPrintf ("AttribBlock");
171 AcpiOsPrintf ("SMBProcessCall");
173 break;

new/usr/src/common/acpica/components/disassembler/dmutils.c 3

175 case AML_FIELD_ATTRIB_MULTIBYTE:
174 case AML_FIELD_ATTRIB_SMB_BLOCK:

177 AcpiOsPrintf ("AttribBytes");
176 AcpiOsPrintf ("SMBBlock");
178 break;

180 case AML_FIELD_ATTRIB_WORD_CALL:
179 case AML_FIELD_ATTRIB_SMB_BLOCK_CALL:

182 AcpiOsPrintf ("AttribProcessCall");
181 AcpiOsPrintf ("SMBBlockProcessCall");
183 break;

185 case AML_FIELD_ATTRIB_BLOCK_CALL:

187 AcpiOsPrintf ("AttribBlockProcessCall");
188 break;

190 case AML_FIELD_ATTRIB_RAW_BYTES:

192 AcpiOsPrintf ("AttribRawBytes");
193 break;

195 case AML_FIELD_ATTRIB_RAW_PROCESS:

197 AcpiOsPrintf ("AttribRawProcessBytes");
198 break;

200 default:

202 /* A ByteConst is allowed by the grammar */

204 AcpiOsPrintf ("0x%2.2X", Attribute);
186 AcpiOsPrintf ("0x%.2X", Attribute);
205 break;
206 }
207 }

______unchanged_portion_omitted_

236 /***
237 *
238 * FUNCTION: AcpiDmCommaIfListMember
239 *
240 * PARAMETERS: Op - Current operator/operand
241 *
242 * RETURN: TRUE if a comma was inserted
243 *
244 * DESCRIPTION: Insert a comma if this Op is a member of an argument list.
245 *
246 **/

248 BOOLEAN
249 AcpiDmCommaIfListMember (
250 ACPI_PARSE_OBJECT *Op)
251 {

253 if (!Op->Common.Next)
254 {
255 return (FALSE);
237 return FALSE;
256 }

258 if (AcpiDmListType (Op->Common.Parent) & BLOCK_COMMA_LIST)
259 {

new/usr/src/common/acpica/components/disassembler/dmutils.c 4

260 /* Check for a NULL target operand */

262 if ((Op->Common.Next->Common.AmlOpcode == AML_INT_NAMEPATH_OP) &&
263 (!Op->Common.Next->Common.Value.String))
264 {
265 /*
266 * To handle the Divide() case where there are two optional
267 * targets, look ahead one more op. If null, this null target
268 * is the one and only target -- no comma needed. Otherwise,
269 * we need a comma to prepare for the next target.
270 */
271 if (!Op->Common.Next->Common.Next)
272 {
273 return (FALSE);
255 return FALSE;
274 }
275 }

277 if ((Op->Common.DisasmFlags & ACPI_PARSEOP_PARAMLIST) &&
278 (!(Op->Common.Next->Common.DisasmFlags & ACPI_PARSEOP_PARAMLIST)))
279 {
280 return (FALSE);
262 return FALSE;
281 }

283 AcpiOsPrintf (", ");
284 return (TRUE);
285 }

287 else if ((Op->Common.DisasmFlags & ACPI_PARSEOP_PARAMLIST) &&
288 (Op->Common.Next->Common.DisasmFlags & ACPI_PARSEOP_PARAMLIST))
289 {
290 AcpiOsPrintf (", ");
291 return (TRUE);
292 }

294 return (FALSE);
295 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/disassembler/dmwalk.c 1

**
 26408 Thu Dec 26 13:48:48 2013
new/usr/src/common/acpica/components/disassembler/dmwalk.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dmwalk - AML disassembly tree walk
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acparser.h"
48 #include "amlcode.h"
49 #include "acdisasm.h"
50 #include "acdebug.h"

53 #ifdef ACPI_DISASSEMBLER

55 #define _COMPONENT ACPI_CA_DEBUGGER
56 ACPI_MODULE_NAME ("dmwalk")

59 #define DB_FULL_OP_INFO "[%4.4s] @%5.5X #%4.4X: "

new/usr/src/common/acpica/components/disassembler/dmwalk.c 2

61 /* Stub for non-compiler code */

63 #ifndef ACPI_ASL_COMPILER
64 void
65 AcpiDmEmitExternals (
66 void)
67 {
68 return;
69 }

______unchanged_portion_omitted_

378 /***
379 *
380 * FUNCTION: AcpiDmDescendingOp
381 *
382 * PARAMETERS: ASL_WALK_CALLBACK
383 *
384 * RETURN: Status
385 *
386 * DESCRIPTION: First visitation of a parse object during tree descent.
387 * Decode opcode name and begin parameter list(s), if any.
388 *
389 **/

391 static ACPI_STATUS
392 AcpiDmDescendingOp (
393 ACPI_PARSE_OBJECT *Op,
394 UINT32 Level,
395 void *Context)
396 {
397 ACPI_OP_WALK_INFO *Info = Context;
398 const ACPI_OPCODE_INFO *OpInfo;
399 UINT32 Name;
400 ACPI_PARSE_OBJECT *NextOp;

403 if (Op->Common.DisasmFlags & ACPI_PARSEOP_IGNORE)
404 {
405 /* Ignore this op -- it was handled elsewhere */

407 return (AE_CTRL_DEPTH);
408 }

410 /* Level 0 is at the Definition Block level */

412 if (Level == 0)
413 {
414 /* In verbose mode, print the AML offset, opcode and depth count */

416 if (Info->WalkState)
417 {
418 VERBOSE_PRINT ((DB_FULL_OP_INFO,
419 (Info->WalkState->MethodNode ?
420 Info->WalkState->MethodNode->Name.Ascii : " "),
421 Op->Common.AmlOffset, (UINT32) Op->Common.AmlOpcode));
422 }

424 if (Op->Common.AmlOpcode == AML_SCOPE_OP)
425 {
426 /* This is the beginning of the Definition Block */

428 AcpiOsPrintf ("{\n");

430 /* Emit all External() declarations here */

new/usr/src/common/acpica/components/disassembler/dmwalk.c 3

432 AcpiDmEmitExternals ();
433 return (AE_OK);
434 }
435 }
436 else if ((AcpiDmBlockType (Op->Common.Parent) & BLOCK_BRACE) &&
437 (!(Op->Common.DisasmFlags & ACPI_PARSEOP_PARAMLIST)) &&
438 (Op->Common.AmlOpcode != AML_INT_BYTELIST_OP))
439 {
440 /*
441 * This is a first-level element of a term list,
442 * indent a new line
443 */
444 switch (Op->Common.AmlOpcode)
445 {
446 case AML_NOOP_OP:
447 /*
448 * Optionally just ignore this opcode. Some tables use
449 * NoOp opcodes for "padding" out packages that the BIOS
450 * changes dynamically. This can leave hundreds or
451 * thousands of NoOp opcodes that if disassembled,
452 * cannot be compiled because they are syntactically
453 * incorrect.
454 */
455 if (AcpiGbl_IgnoreNoopOperator)
456 {
457 Op->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE;
458 return (AE_OK);
459 }

461 /* Fallthrough */

463 default:

465 AcpiDmIndent (Level);
466 break;
467 }

469 Info->LastLevel = Level;
470 Info->Count = 0;
471 }

473 /*
474 * This is an inexpensive mechanism to try and keep lines from getting
475 * too long. When the limit is hit, start a new line at the previous
476 * indent plus one. A better but more expensive mechanism would be to
477 * keep track of the current column.
478 */
479 Info->Count++;
480 if (Info->Count /* +Info->LastLevel */ > 10)
456 if (Info->Count /*+Info->LastLevel*/ > 10)
481 {
482 Info->Count = 0;
483 AcpiOsPrintf ("\n");
484 AcpiDmIndent (Info->LastLevel + 1);
485 }

487 /* Print the opcode name */

489 AcpiDmDisassembleOneOp (NULL, Info, Op);

491 if ((Op->Common.DisasmOpcode == ACPI_DASM_LNOT_PREFIX) ||
492 (Op->Common.AmlOpcode == AML_INT_CONNECTION_OP))
467 if (Op->Common.DisasmOpcode == ACPI_DASM_LNOT_PREFIX)
493 {
494 return (AE_OK);

new/usr/src/common/acpica/components/disassembler/dmwalk.c 4

495 }

497 if ((Op->Common.AmlOpcode == AML_NAME_OP) ||
498 (Op->Common.AmlOpcode == AML_RETURN_OP))
499 {
500 Info->Level--;
501 }

503 /* Start the opcode argument list if necessary */

505 OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);

507 if ((OpInfo->Flags & AML_HAS_ARGS) ||
508 (Op->Common.AmlOpcode == AML_EVENT_OP))
509 {
510 /* This opcode has an argument list */

512 if (AcpiDmBlockType (Op) & BLOCK_PAREN)
513 {
514 AcpiOsPrintf (" (");
515 }

517 /* If this is a named opcode, print the associated name value */

519 if (OpInfo->Flags & AML_NAMED)
520 {
521 switch (Op->Common.AmlOpcode)
522 {
523 case AML_ALIAS_OP:

525 NextOp = AcpiPsGetDepthNext (NULL, Op);
526 NextOp->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE;
527 AcpiDmNamestring (NextOp->Common.Value.Name);
528 AcpiOsPrintf (", ");

530 /*lint -fallthrough */

532 default:

534 Name = AcpiPsGetName (Op);
535 if (Op->Named.Path)
536 {
537 AcpiDmNamestring ((char *) Op->Named.Path);
538 }
539 else
540 {
541 AcpiDmDumpName (Name);
542 }

544 if (Op->Common.AmlOpcode != AML_INT_NAMEDFIELD_OP)
545 {
546 if (AcpiGbl_DbOpt_verbose)
547 {
548 (void) AcpiPsDisplayObjectPathname (NULL, Op);
549 }
550 }
551 break;
552 }

554 switch (Op->Common.AmlOpcode)
555 {
556 case AML_METHOD_OP:

558 AcpiDmMethodFlags (Op);
559 AcpiOsPrintf (")");

new/usr/src/common/acpica/components/disassembler/dmwalk.c 5

561 /* Emit description comment for Method() with a predefined ACPI

563 AcpiDmPredefinedDescription (Op);
564 break;

567 case AML_NAME_OP:

569 /* Check for _HID and related EISAID() */

571 AcpiDmIsEisaId (Op);
572 AcpiOsPrintf (", ");
573 break;

576 case AML_REGION_OP:

578 AcpiDmRegionFlags (Op);
579 break;

582 case AML_POWER_RES_OP:

584 /* Mark the next two Ops as part of the parameter list */

586 AcpiOsPrintf (", ");
587 NextOp = AcpiPsGetDepthNext (NULL, Op);
588 NextOp->Common.DisasmFlags |= ACPI_PARSEOP_PARAMLIST;

590 NextOp = NextOp->Common.Next;
591 NextOp->Common.DisasmFlags |= ACPI_PARSEOP_PARAMLIST;
592 return (AE_OK);

595 case AML_PROCESSOR_OP:

597 /* Mark the next three Ops as part of the parameter list */

599 AcpiOsPrintf (", ");
600 NextOp = AcpiPsGetDepthNext (NULL, Op);
601 NextOp->Common.DisasmFlags |= ACPI_PARSEOP_PARAMLIST;

603 NextOp = NextOp->Common.Next;
604 NextOp->Common.DisasmFlags |= ACPI_PARSEOP_PARAMLIST;

606 NextOp = NextOp->Common.Next;
607 NextOp->Common.DisasmFlags |= ACPI_PARSEOP_PARAMLIST;
608 return (AE_OK);

611 case AML_MUTEX_OP:
612 case AML_DATA_REGION_OP:

614 AcpiOsPrintf (", ");
615 return (AE_OK);

618 case AML_EVENT_OP:
619 case AML_ALIAS_OP:

621 return (AE_OK);

624 case AML_SCOPE_OP:
625 case AML_DEVICE_OP:
626 case AML_THERMAL_ZONE_OP:

new/usr/src/common/acpica/components/disassembler/dmwalk.c 6

628 AcpiOsPrintf (")");
629 break;

632 default:

634 AcpiOsPrintf ("*** Unhandled named opcode %X\n",
635 Op->Common.AmlOpcode);
605 AcpiOsPrintf ("*** Unhandled named opcode %X\n", Op->Common.AmlO
636 break;
637 }
638 }

640 else switch (Op->Common.AmlOpcode)
641 {
642 case AML_FIELD_OP:
643 case AML_BANK_FIELD_OP:
644 case AML_INDEX_FIELD_OP:

646 Info->BitOffset = 0;

648 /* Name of the parent OperationRegion */

650 NextOp = AcpiPsGetDepthNext (NULL, Op);
651 AcpiDmNamestring (NextOp->Common.Value.Name);
652 AcpiOsPrintf (", ");
653 NextOp->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE;

655 switch (Op->Common.AmlOpcode)
656 {
657 case AML_BANK_FIELD_OP:

659 /* Namestring - Bank Name */

661 NextOp = AcpiPsGetDepthNext (NULL, NextOp);
662 AcpiDmNamestring (NextOp->Common.Value.Name);
663 NextOp->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE;
664 AcpiOsPrintf (", ");

666 /*
667 * Bank Value. This is a TermArg in the middle of the parameter
668 * list, must handle it here.
669 *
670 * Disassemble the TermArg parse tree. ACPI_PARSEOP_PARAMLIST
671 * eliminates newline in the output.
672 */
673 NextOp = NextOp->Common.Next;

675 Info->Flags = ACPI_PARSEOP_PARAMLIST;
676 AcpiDmWalkParseTree (NextOp, AcpiDmDescendingOp,
677 AcpiDmAscendingOp, Info);
646 AcpiDmWalkParseTree (NextOp, AcpiDmDescendingOp, AcpiDmAscending
678 Info->Flags = 0;
679 Info->Level = Level;

681 NextOp->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE;
682 AcpiOsPrintf (", ");
683 break;

685 case AML_INDEX_FIELD_OP:

687 /* Namestring - Data Name */

689 NextOp = AcpiPsGetDepthNext (NULL, NextOp);
690 AcpiDmNamestring (NextOp->Common.Value.Name);

new/usr/src/common/acpica/components/disassembler/dmwalk.c 7

691 AcpiOsPrintf (", ");
692 NextOp->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE;
693 break;

695 default:

697 break;
698 }

700 AcpiDmFieldFlags (NextOp);
701 break;

703 case AML_BUFFER_OP:

705 /* The next op is the size parameter */

707 NextOp = AcpiPsGetDepthNext (NULL, Op);
708 if (!NextOp)
709 {
710 /* Single-step support */

712 return (AE_OK);
713 }

715 if (Op->Common.DisasmOpcode == ACPI_DASM_RESOURCE)
716 {
717 /*
718 * We have a resource list. Don’t need to output
719 * the buffer size Op. Open up a new block
720 */
721 NextOp->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE;
722 NextOp = NextOp->Common.Next;
723 AcpiOsPrintf (")");

725 /* Emit description comment for Name() with a predefined ACPI na

727 AcpiDmPredefinedDescription (Op->Asl.Parent);

729 AcpiOsPrintf ("\n");
693 AcpiOsPrintf (")\n");
730 AcpiDmIndent (Info->Level);
731 AcpiOsPrintf ("{\n");
732 return (AE_OK);
733 }

735 /* Normal Buffer, mark size as in the parameter list */

737 NextOp->Common.DisasmFlags |= ACPI_PARSEOP_PARAMLIST;
738 return (AE_OK);

740 case AML_VAR_PACKAGE_OP:
741 case AML_IF_OP:
742 case AML_WHILE_OP:

744 /* The next op is the size or predicate parameter */

746 NextOp = AcpiPsGetDepthNext (NULL, Op);
747 if (NextOp)
748 {
749 NextOp->Common.DisasmFlags |= ACPI_PARSEOP_PARAMLIST;
750 }
751 return (AE_OK);

new/usr/src/common/acpica/components/disassembler/dmwalk.c 8

753 case AML_PACKAGE_OP:

755 /* The next op is the size parameter */
721 /* The next op is the size or predicate parameter */

757 NextOp = AcpiPsGetDepthNext (NULL, Op);
758 if (NextOp)
759 {
760 NextOp->Common.DisasmFlags |= ACPI_PARSEOP_PARAMLIST;
761 }
762 return (AE_OK);

764 case AML_MATCH_OP:

766 AcpiDmMatchOp (Op);
767 break;

769 default:

771 break;
772 }

774 if (AcpiDmBlockType (Op) & BLOCK_BRACE)
775 {
776 AcpiOsPrintf ("\n");
777 AcpiDmIndent (Level);
778 AcpiOsPrintf ("{\n");
779 }
780 }

782 return (AE_OK);
783 }

786 /***
787 *
788 * FUNCTION: AcpiDmAscendingOp
789 *
790 * PARAMETERS: ASL_WALK_CALLBACK
791 *
792 * RETURN: Status
793 *
794 * DESCRIPTION: Second visitation of a parse object, during ascent of parse
795 * tree. Close out any parameter lists and complete the opcode.
796 *
797 **/

799 static ACPI_STATUS
800 AcpiDmAscendingOp (
801 ACPI_PARSE_OBJECT *Op,
802 UINT32 Level,
803 void *Context)
804 {
805 ACPI_OP_WALK_INFO *Info = Context;
806 ACPI_PARSE_OBJECT *ParentOp;

809 if (Op->Common.DisasmFlags & ACPI_PARSEOP_IGNORE)
810 {
811 /* Ignore this op -- it was handled elsewhere */

813 return (AE_OK);
814 }

new/usr/src/common/acpica/components/disassembler/dmwalk.c 9

816 if ((Level == 0) && (Op->Common.AmlOpcode == AML_SCOPE_OP))
817 {
818 /* Indicates the end of the current descriptor block (table) */

820 AcpiOsPrintf ("}\n\n");
821 return (AE_OK);
822 }

824 switch (AcpiDmBlockType (Op))
825 {
826 case BLOCK_PAREN:

828 /* Completed an op that has arguments, add closing paren */

830 AcpiOsPrintf (")");

832 if (Op->Common.AmlOpcode == AML_NAME_OP)
833 {
834 /* Emit description comment for Name() with a predefined ACPI name *

836 AcpiDmPredefinedDescription (Op);
837 }
838 else
839 {
840 /* For Create* operators, attempt to emit resource tag description *

842 AcpiDmFieldPredefinedDescription (Op);
843 }

845 /* Could be a nested operator, check if comma required */

847 if (!AcpiDmCommaIfListMember (Op))
848 {
849 if ((AcpiDmBlockType (Op->Common.Parent) & BLOCK_BRACE) &&
850 (!(Op->Common.DisasmFlags & ACPI_PARSEOP_PARAMLIST)) &&
851 (Op->Common.AmlOpcode != AML_INT_BYTELIST_OP))
852 {
853 /*
854 * This is a first-level element of a term list
855 * start a new line
856 */
857 if (!(Info->Flags & ACPI_PARSEOP_PARAMLIST))
858 {
859 AcpiOsPrintf ("\n");
860 }
861 }
862 }
863 break;

865 case BLOCK_BRACE:
866 case (BLOCK_BRACE | BLOCK_PAREN):

868 /* Completed an op that has a term list, add closing brace */

870 if (Op->Common.DisasmFlags & ACPI_PARSEOP_EMPTY_TERMLIST)
871 {
872 AcpiOsPrintf ("}");
873 }
874 else
875 {
876 AcpiDmIndent (Level);
877 AcpiOsPrintf ("}");
878 }

880 AcpiDmCommaIfListMember (Op);

new/usr/src/common/acpica/components/disassembler/dmwalk.c 10

882 if (AcpiDmBlockType (Op->Common.Parent) != BLOCK_PAREN)
883 {
884 AcpiOsPrintf ("\n");
885 if (!(Op->Common.DisasmFlags & ACPI_PARSEOP_EMPTY_TERMLIST))
886 {
887 if ((Op->Common.AmlOpcode == AML_IF_OP) &&
888 (Op->Common.Next) &&
889 (Op->Common.Next->Common.AmlOpcode == AML_ELSE_OP))
890 {
891 break;
892 }

894 if ((AcpiDmBlockType (Op->Common.Parent) & BLOCK_BRACE) &&
895 (!Op->Common.Next))
896 {
897 break;
898 }
899 AcpiOsPrintf ("\n");
900 }
901 }
902 break;

904 case BLOCK_NONE:
905 default:

907 /* Could be a nested operator, check if comma required */

909 if (!AcpiDmCommaIfListMember (Op))
910 {
911 if ((AcpiDmBlockType (Op->Common.Parent) & BLOCK_BRACE) &&
912 (!(Op->Common.DisasmFlags & ACPI_PARSEOP_PARAMLIST)) &&
913 (Op->Common.AmlOpcode != AML_INT_BYTELIST_OP))
914 {
915 /*
916 * This is a first-level element of a term list
917 * start a new line
918 */
919 AcpiOsPrintf ("\n");
920 }
921 }
922 else if (Op->Common.Parent)
923 {
924 switch (Op->Common.Parent->Common.AmlOpcode)
925 {
926 case AML_PACKAGE_OP:
927 case AML_VAR_PACKAGE_OP:

929 if (!(Op->Common.DisasmFlags & ACPI_PARSEOP_PARAMLIST))
930 {
931 AcpiOsPrintf ("\n");
932 }
933 break;

935 default:

937 break;
938 }
939 }
940 break;
941 }

943 if (Op->Common.DisasmFlags & ACPI_PARSEOP_PARAMLIST)
944 {
945 if ((Op->Common.Next) &&

new/usr/src/common/acpica/components/disassembler/dmwalk.c 11

946 (Op->Common.Next->Common.DisasmFlags & ACPI_PARSEOP_PARAMLIST))
947 {
948 return (AE_OK);
949 }

951 /*
952 * Just completed a parameter node for something like "Buffer (param)".
953 * Close the paren and open up the term list block with a brace
954 */
955 if (Op->Common.Next)
956 {
957 AcpiOsPrintf (")");

959 /* Emit description comment for Name() with a predefined ACPI name *

961 ParentOp = Op->Common.Parent;
962 if (ParentOp)
963 {
964 ParentOp = ParentOp->Common.Parent;
965 if (ParentOp && ParentOp->Asl.AmlOpcode == AML_NAME_OP)
966 {
967 AcpiDmPredefinedDescription (ParentOp);
968 }
969 }
970 AcpiOsPrintf ("\n");
913 AcpiOsPrintf (")\n");
971 AcpiDmIndent (Level - 1);
972 AcpiOsPrintf ("{\n");
973 }
974 else
975 {
976 Op->Common.Parent->Common.DisasmFlags |=
977 ACPI_PARSEOP_EMPTY_TERMLIST;
978 AcpiOsPrintf (") {");
979 }
980 }

982 if ((Op->Common.AmlOpcode == AML_NAME_OP) ||
983 (Op->Common.AmlOpcode == AML_RETURN_OP))
984 {
985 Info->Level++;
986 }
987 return (AE_OK);
988 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/dispatcher/dsargs.c 1

**
 12480 Thu Dec 26 13:48:49 2013
new/usr/src/common/acpica/components/dispatcher/dsargs.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dsargs - Support for execution of dynamic arguments for static
4 * objects (regions, fields, buffer fields, etc.)
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #define __DSARGS_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acparser.h"
50 #include "amlcode.h"
51 #include "acdispat.h"
52 #include "acnamesp.h"

54 #define _COMPONENT ACPI_DISPATCHER
55 ACPI_MODULE_NAME ("dsargs")

57 /* Local prototypes */

59 static ACPI_STATUS

new/usr/src/common/acpica/components/dispatcher/dsargs.c 2

60 AcpiDsExecuteArguments (
61 ACPI_NAMESPACE_NODE *Node,
62 ACPI_NAMESPACE_NODE *ScopeNode,
63 UINT32 AmlLength,
64 UINT8 *AmlStart);

67 /***
68 *
69 * FUNCTION: AcpiDsExecuteArguments
70 *
71 * PARAMETERS: Node - Object NS node
72 * ScopeNode - Parent NS node
73 * AmlLength - Length of executable AML
74 * AmlStart - Pointer to the AML
75 *
76 * RETURN: Status.
77 *
78 * DESCRIPTION: Late (deferred) execution of region or field arguments
79 *
80 **/

82 static ACPI_STATUS
83 AcpiDsExecuteArguments (
84 ACPI_NAMESPACE_NODE *Node,
85 ACPI_NAMESPACE_NODE *ScopeNode,
86 UINT32 AmlLength,
87 UINT8 *AmlStart)
88 {
89 ACPI_STATUS Status;
90 ACPI_PARSE_OBJECT *Op;
91 ACPI_WALK_STATE *WalkState;

94 ACPI_FUNCTION_TRACE (DsExecuteArguments);

97 /* Allocate a new parser op to be the root of the parsed tree */

99 Op = AcpiPsAllocOp (AML_INT_EVAL_SUBTREE_OP);
100 if (!Op)
101 {
102 return_ACPI_STATUS (AE_NO_MEMORY);
103 }

105 /* Save the Node for use in AcpiPsParseAml */

107 Op->Common.Node = ScopeNode;

109 /* Create and initialize a new parser state */

111 WalkState = AcpiDsCreateWalkState (0, NULL, NULL, NULL);
112 if (!WalkState)
113 {
114 Status = AE_NO_MEMORY;
115 goto Cleanup;
116 }

118 Status = AcpiDsInitAmlWalk (WalkState, Op, NULL, AmlStart,
119 AmlLength, NULL, ACPI_IMODE_LOAD_PASS1);
120 if (ACPI_FAILURE (Status))
121 {
122 AcpiDsDeleteWalkState (WalkState);
123 goto Cleanup;
124 }

new/usr/src/common/acpica/components/dispatcher/dsargs.c 3

126 /* Mark this parse as a deferred opcode */

128 WalkState->ParseFlags = ACPI_PARSE_DEFERRED_OP;
129 WalkState->DeferredNode = Node;

131 /* Pass1: Parse the entire declaration */

133 Status = AcpiPsParseAml (WalkState);
134 if (ACPI_FAILURE (Status))
135 {
136 goto Cleanup;
137 }

139 /* Get and init the Op created above */

141 Op->Common.Node = Node;
142 AcpiPsDeleteParseTree (Op);

144 /* Evaluate the deferred arguments */

146 Op = AcpiPsAllocOp (AML_INT_EVAL_SUBTREE_OP);
147 if (!Op)
148 {
149 return_ACPI_STATUS (AE_NO_MEMORY);
150 }

152 Op->Common.Node = ScopeNode;

154 /* Create and initialize a new parser state */

156 WalkState = AcpiDsCreateWalkState (0, NULL, NULL, NULL);
157 if (!WalkState)
158 {
159 Status = AE_NO_MEMORY;
160 goto Cleanup;
161 }

163 /* Execute the opcode and arguments */

165 Status = AcpiDsInitAmlWalk (WalkState, Op, NULL, AmlStart,
166 AmlLength, NULL, ACPI_IMODE_EXECUTE);
167 if (ACPI_FAILURE (Status))
168 {
169 AcpiDsDeleteWalkState (WalkState);
170 goto Cleanup;
171 }

173 /* Mark this execution as a deferred opcode */

175 WalkState->DeferredNode = Node;
176 Status = AcpiPsParseAml (WalkState);

178 Cleanup:
179 AcpiPsDeleteParseTree (Op);
180 return_ACPI_STATUS (Status);
181 }

______unchanged_portion_omitted_

380 /***
381 *
382 * FUNCTION: AcpiDsGetRegionArguments
383 *
384 * PARAMETERS: ObjDesc - A valid region object
385 *
386 * RETURN: Status.

new/usr/src/common/acpica/components/dispatcher/dsargs.c 4

387 *
388 * DESCRIPTION: Get region address and length. This implements the late
389 * evaluation of these region attributes.
390 *
391 **/

393 ACPI_STATUS
394 AcpiDsGetRegionArguments (
395 ACPI_OPERAND_OBJECT *ObjDesc)
396 {
397 ACPI_NAMESPACE_NODE *Node;
398 ACPI_STATUS Status;
399 ACPI_OPERAND_OBJECT *ExtraDesc;

402 ACPI_FUNCTION_TRACE_PTR (DsGetRegionArguments, ObjDesc);

405 if (ObjDesc->Region.Flags & AOPOBJ_DATA_VALID)
406 {
407 return_ACPI_STATUS (AE_OK);
408 }

410 ExtraDesc = AcpiNsGetSecondaryObject (ObjDesc);
411 if (!ExtraDesc)
412 {
413 return_ACPI_STATUS (AE_NOT_EXIST);
414 }

416 /* Get the Region node */

418 Node = ObjDesc->Region.Node;

420 ACPI_DEBUG_EXEC (AcpiUtDisplayInitPathname (ACPI_TYPE_REGION, Node, NULL));

422 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "[%4.4s] OpRegion Arg Init at AML %p\n",
423 AcpiUtGetNodeName (Node), ExtraDesc->Extra.AmlStart));

425 /* Execute the argument AML */

427 Status = AcpiDsExecuteArguments (Node, ExtraDesc->Extra.ScopeNode,
427 Status = AcpiDsExecuteArguments (Node, Node->Parent,
428 ExtraDesc->Extra.AmlLength, ExtraDesc->Extra.AmlStart);
429 if (ACPI_FAILURE (Status))
430 {
431 return_ACPI_STATUS (Status);
432 }

434 Status = AcpiUtAddAddressRange (ObjDesc->Region.SpaceId,
435 ObjDesc->Region.Address, ObjDesc->Region.Length,
436 Node);
437 return_ACPI_STATUS (Status);
438 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/dispatcher/dscontrol.c 1

**
 12954 Thu Dec 26 13:48:49 2013
new/usr/src/common/acpica/components/dispatcher/dscontrol.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dscontrol - Support for execution control opcodes -
4 * if/else/while/return
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #define __DSCONTROL_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "amlcode.h"
50 #include "acdispat.h"
51 #include "acinterp.h"

53 #define _COMPONENT ACPI_DISPATCHER
54 ACPI_MODULE_NAME ("dscontrol")

57 /***
58 *
59 * FUNCTION: AcpiDsExecBeginControlOp

new/usr/src/common/acpica/components/dispatcher/dscontrol.c 2

60 *
61 * PARAMETERS: WalkList - The list that owns the walk stack
62 * Op - The control Op
63 *
64 * RETURN: Status
65 *
66 * DESCRIPTION: Handles all control ops encountered during control method
67 * execution.
68 *
69 **/

71 ACPI_STATUS
72 AcpiDsExecBeginControlOp (
73 ACPI_WALK_STATE *WalkState,
74 ACPI_PARSE_OBJECT *Op)
75 {
76 ACPI_STATUS Status = AE_OK;
77 ACPI_GENERIC_STATE *ControlState;

80 ACPI_FUNCTION_NAME (DsExecBeginControlOp);

83 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Op=%p Opcode=%2.2X State=%p\n",
84 Op, Op->Common.AmlOpcode, WalkState));

86 switch (Op->Common.AmlOpcode)
87 {
88 case AML_WHILE_OP:

89 /*
90 * If this is an additional iteration of a while loop, continue.
91 * There is no need to allocate a new control state.
92 */
93 if (WalkState->ControlState)
94 {
95 if (WalkState->ControlState->Control.AmlPredicateStart ==
96 (WalkState->ParserState.Aml - 1))
97 {
98 /* Reset the state to start-of-loop */

100 WalkState->ControlState->Common.State =
101 ACPI_CONTROL_CONDITIONAL_EXECUTING;
102 break;
103 }
104 }

106 /*lint -fallthrough */

108 case AML_IF_OP:

109 /*
110 * IF/WHILE: Create a new control state to manage these
111 * constructs. We need to manage these as a stack, in order
112 * to handle nesting.
113 */
114 ControlState = AcpiUtCreateControlState ();
115 if (!ControlState)
116 {
117 Status = AE_NO_MEMORY;
118 break;
119 }
120 /*
121 * Save a pointer to the predicate for multiple executions
122 * of a loop
123 */

new/usr/src/common/acpica/components/dispatcher/dscontrol.c 3

124 ControlState->Control.AmlPredicateStart = WalkState->ParserState.Aml - 1
125 ControlState->Control.PackageEnd = WalkState->ParserState.PkgEnd;
126 ControlState->Control.Opcode = Op->Common.AmlOpcode;

129 /* Push the control state on this walk’s control stack */

131 AcpiUtPushGenericState (&WalkState->ControlState, ControlState);
132 break;

134 case AML_ELSE_OP:

136 /* Predicate is in the state object */
137 /* If predicate is true, the IF was executed, ignore ELSE part */

139 if (WalkState->LastPredicate)
140 {
141 Status = AE_CTRL_TRUE;
142 }

144 break;

146 case AML_RETURN_OP:

148 break;

150 default:

152 break;
153 }

155 return (Status);
156 }

159 /***
160 *
161 * FUNCTION: AcpiDsExecEndControlOp
162 *
163 * PARAMETERS: WalkList - The list that owns the walk stack
164 * Op - The control Op
165 *
166 * RETURN: Status
167 *
168 * DESCRIPTION: Handles all control ops encountered during control method
169 * execution.
170 *
171 **/

173 ACPI_STATUS
174 AcpiDsExecEndControlOp (
175 ACPI_WALK_STATE *WalkState,
176 ACPI_PARSE_OBJECT *Op)
177 {
178 ACPI_STATUS Status = AE_OK;
179 ACPI_GENERIC_STATE *ControlState;

182 ACPI_FUNCTION_NAME (DsExecEndControlOp);

185 switch (Op->Common.AmlOpcode)
186 {
187 case AML_IF_OP:

189 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "[IF_OP] Op=%p\n", Op));

new/usr/src/common/acpica/components/dispatcher/dscontrol.c 4

191 /*
192 * Save the result of the predicate in case there is an
193 * ELSE to come
194 */
195 WalkState->LastPredicate =
196 (BOOLEAN) WalkState->ControlState->Common.Value;

198 /*
199 * Pop the control state that was created at the start
200 * of the IF and free it
201 */
202 ControlState = AcpiUtPopGenericState (&WalkState->ControlState);
203 AcpiUtDeleteGenericState (ControlState);
204 break;

206 case AML_ELSE_OP:

208 break;

210 case AML_WHILE_OP:

212 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "[WHILE_OP] Op=%p\n", Op));

214 ControlState = WalkState->ControlState;
215 if (ControlState->Common.Value)
216 {
217 /* Predicate was true, the body of the loop was just executed */

219 /*
220 * This loop counter mechanism allows the interpreter to escape
221 * possibly infinite loops. This can occur in poorly written AML
222 * when the hardware does not respond within a while loop and the
223 * loop does not implement a timeout.
224 */
225 ControlState->Control.LoopCount++;
226 if (ControlState->Control.LoopCount > ACPI_MAX_LOOP_ITERATIONS)
227 {
228 Status = AE_AML_INFINITE_LOOP;
229 break;
230 }

232 /*
233 * Go back and evaluate the predicate and maybe execute the loop
234 * another time
235 */
236 Status = AE_CTRL_PENDING;
237 WalkState->AmlLastWhile = ControlState->Control.AmlPredicateStart;
238 break;
239 }

241 /* Predicate was false, terminate this while loop */

243 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
244 "[WHILE_OP] termination! Op=%p\n",Op));

246 /* Pop this control state and free it */

248 ControlState = AcpiUtPopGenericState (&WalkState->ControlState);
249 AcpiUtDeleteGenericState (ControlState);
250 break;

252 case AML_RETURN_OP:

new/usr/src/common/acpica/components/dispatcher/dscontrol.c 5

254 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
255 "[RETURN_OP] Op=%p Arg=%p\n",Op, Op->Common.Value.Arg));

257 /*
258 * One optional operand -- the return value
259 * It can be either an immediate operand or a result that
260 * has been bubbled up the tree
261 */
262 if (Op->Common.Value.Arg)
263 {
264 /* Since we have a real Return(), delete any implicit return */

266 AcpiDsClearImplicitReturn (WalkState);

268 /* Return statement has an immediate operand */

270 Status = AcpiDsCreateOperands (WalkState, Op->Common.Value.Arg);
271 if (ACPI_FAILURE (Status))
272 {
273 return (Status);
274 }

276 /*
277 * If value being returned is a Reference (such as
278 * an arg or local), resolve it now because it may
279 * cease to exist at the end of the method.
280 */
281 Status = AcpiExResolveToValue (&WalkState->Operands [0], WalkState);
282 if (ACPI_FAILURE (Status))
283 {
284 return (Status);
285 }

287 /*
288 * Get the return value and save as the last result
289 * value. This is the only place where WalkState->ReturnDesc
290 * is set to anything other than zero!
291 */
292 WalkState->ReturnDesc = WalkState->Operands[0];
293 }
294 else if (WalkState->ResultCount)
295 {
296 /* Since we have a real Return(), delete any implicit return */

298 AcpiDsClearImplicitReturn (WalkState);

300 /*
301 * The return value has come from a previous calculation.
302 *
303 * If value being returned is a Reference (such as
304 * an arg or local), resolve it now because it may
305 * cease to exist at the end of the method.
306 *
307 * Allow references created by the Index operator to return
308 * unchanged.
309 */
310 if ((ACPI_GET_DESCRIPTOR_TYPE (WalkState->Results->Results.ObjDesc[0
311 ((WalkState->Results->Results.ObjDesc [0])->Common.Type == ACPI_
312 ((WalkState->Results->Results.ObjDesc [0])->Reference.Class != A
313 {
314 Status = AcpiExResolveToValue (&WalkState->Results->Results.ObjD
315 if (ACPI_FAILURE (Status))
316 {
317 return (Status);
318 }

new/usr/src/common/acpica/components/dispatcher/dscontrol.c 6

319 }

321 WalkState->ReturnDesc = WalkState->Results->Results.ObjDesc [0];
322 }
323 else
324 {
325 /* No return operand */

327 if (WalkState->NumOperands)
328 {
329 AcpiUtRemoveReference (WalkState->Operands [0]);
330 }

332 WalkState->Operands [0] = NULL;
333 WalkState->NumOperands = 0;
334 WalkState->ReturnDesc = NULL;
335 }

338 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
339 "Completed RETURN_OP State=%p, RetVal=%p\n",
340 WalkState, WalkState->ReturnDesc));

342 /* End the control method execution right now */

344 Status = AE_CTRL_TERMINATE;
345 break;

347 case AML_NOOP_OP:

349 /* Just do nothing! */

351 break;

353 case AML_BREAK_POINT_OP:

355 /*
356 * Set the single-step flag. This will cause the debugger (if present)
357 * to break to the console within the AML debugger at the start of the
358 * next AML instruction.
359 */
360 ACPI_DEBUGGER_EXEC (
361 AcpiGbl_CmSingleStep = TRUE);
362 ACPI_DEBUGGER_EXEC (
363 AcpiOsPrintf ("**break** Executed AML BreakPoint opcode\n"));

365 /* Call to the OSL in case OS wants a piece of the action */

367 Status = AcpiOsSignal (ACPI_SIGNAL_BREAKPOINT,
368 "Executed AML Breakpoint opcode");
369 break;

371 case AML_BREAK_OP:
372 case AML_CONTINUE_OP: /* ACPI 2.0 */

374 /* Pop and delete control states until we find a while */

376 while (WalkState->ControlState &&
377 (WalkState->ControlState->Control.Opcode != AML_WHILE_OP))
378 {
379 ControlState = AcpiUtPopGenericState (&WalkState->ControlState);
380 AcpiUtDeleteGenericState (ControlState);

new/usr/src/common/acpica/components/dispatcher/dscontrol.c 7

381 }

383 /* No while found? */

385 if (!WalkState->ControlState)
386 {
387 return (AE_AML_NO_WHILE);
388 }

390 /* Was: WalkState->AmlLastWhile = WalkState->ControlState->Control.AmlPr

392 WalkState->AmlLastWhile = WalkState->ControlState->Control.PackageEnd;

394 /* Return status depending on opcode */

396 if (Op->Common.AmlOpcode == AML_BREAK_OP)
397 {
398 Status = AE_CTRL_BREAK;
399 }
400 else
401 {
402 Status = AE_CTRL_CONTINUE;
403 }
404 break;

406 default:

408 ACPI_ERROR ((AE_INFO, "Unknown control opcode=0x%X Op=%p",
409 Op->Common.AmlOpcode, Op));

411 Status = AE_AML_BAD_OPCODE;
412 break;
413 }

415 return (Status);
416 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/dispatcher/dsfield.c 1

**
 26047 Thu Dec 26 13:48:50 2013
new/usr/src/common/acpica/components/dispatcher/dsfield.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dsfield - Dispatcher field routines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DSFIELD_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "amlcode.h"
49 #include "acdispat.h"
50 #include "acinterp.h"
51 #include "acnamesp.h"
52 #include "acparser.h"

55 #define _COMPONENT ACPI_DISPATCHER
56 ACPI_MODULE_NAME ("dsfield")

58 /* Local prototypes */

new/usr/src/common/acpica/components/dispatcher/dsfield.c 2

60 #ifdef ACPI_ASL_COMPILER
61 #include "acdisasm.h"

63 static ACPI_STATUS
64 AcpiDsCreateExternalRegion (
65 ACPI_STATUS LookupStatus,
66 ACPI_PARSE_OBJECT *Op,
67 char *Path,
68 ACPI_WALK_STATE *WalkState,
69 ACPI_NAMESPACE_NODE **Node);
70 #endif

72 static ACPI_STATUS
73 AcpiDsGetFieldNames (
74 ACPI_CREATE_FIELD_INFO *Info,
75 ACPI_WALK_STATE *WalkState,
76 ACPI_PARSE_OBJECT *Arg);

79 #ifdef ACPI_ASL_COMPILER
80 /***
81 *
82 * FUNCTION: AcpiDsCreateExternalRegion (iASL Disassembler only)
83 *
84 * PARAMETERS: LookupStatus - Status from NsLookup operation
85 * Op - Op containing the Field definition and args
86 * Path - Pathname of the region
87 * ‘ WalkState - Current method state
88 * Node - Where the new region node is returned
89 *
90 * RETURN: Status
91 *
92 * DESCRIPTION: Add region to the external list if NOT_FOUND. Create a new
93 * region node/object.
94 *
95 **/

97 static ACPI_STATUS
98 AcpiDsCreateExternalRegion (
99 ACPI_STATUS LookupStatus,
100 ACPI_PARSE_OBJECT *Op,
101 char *Path,
102 ACPI_WALK_STATE *WalkState,
103 ACPI_NAMESPACE_NODE **Node)
104 {
105 ACPI_STATUS Status;
106 ACPI_OPERAND_OBJECT *ObjDesc;

109 if (LookupStatus != AE_NOT_FOUND)
110 {
111 return (LookupStatus);
112 }

114 /*
115 * Table disassembly:
116 * OperationRegion not found. Generate an External for it, and
117 * insert the name into the namespace.
118 */
119 AcpiDmAddOpToExternalList (Op, Path, ACPI_TYPE_REGION, 0, 0);
120 Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ACPI_TYPE_REGION,
121 ACPI_IMODE_LOAD_PASS1, ACPI_NS_SEARCH_PARENT, WalkState, Node);
122 if (ACPI_FAILURE (Status))
123 {
124 return (Status);

new/usr/src/common/acpica/components/dispatcher/dsfield.c 3

125 }

127 /* Must create and install a region object for the new node */

129 ObjDesc = AcpiUtCreateInternalObject (ACPI_TYPE_REGION);
130 if (!ObjDesc)
131 {
132 return (AE_NO_MEMORY);
133 }

135 ObjDesc->Region.Node = *Node;
136 Status = AcpiNsAttachObject (*Node, ObjDesc, ACPI_TYPE_REGION);
137 return (Status);
138 }
139 #endif

142 /***
143 *
144 * FUNCTION: AcpiDsCreateBufferField
145 *
146 * PARAMETERS: Op - Current parse op (CreateXXField)
147 * WalkState - Current state
148 *
149 * RETURN: Status
150 *
151 * DESCRIPTION: Execute the CreateField operators:
152 * CreateBitFieldOp,
153 * CreateByteFieldOp,
154 * CreateWordFieldOp,
155 * CreateDwordFieldOp,
156 * CreateQwordFieldOp,
80 * CreateDWordFieldOp,
81 * CreateQWordFieldOp,
157 * CreateFieldOp (all of which define a field in a buffer)
158 *
159 **/

161 ACPI_STATUS
162 AcpiDsCreateBufferField (
163 ACPI_PARSE_OBJECT *Op,
164 ACPI_WALK_STATE *WalkState)
165 {
166 ACPI_PARSE_OBJECT *Arg;
167 ACPI_NAMESPACE_NODE *Node;
168 ACPI_STATUS Status;
169 ACPI_OPERAND_OBJECT *ObjDesc;
170 ACPI_OPERAND_OBJECT *SecondDesc = NULL;
171 UINT32 Flags;

174 ACPI_FUNCTION_TRACE (DsCreateBufferField);

177 /*
178 * Get the NameString argument (name of the new BufferField)
179 */
180 if (Op->Common.AmlOpcode == AML_CREATE_FIELD_OP)
181 {
182 /* For CreateField, name is the 4th argument */

184 Arg = AcpiPsGetArg (Op, 3);
185 }
186 else
187 {
188 /* For all other CreateXXXField operators, name is the 3rd argument */

new/usr/src/common/acpica/components/dispatcher/dsfield.c 4

190 Arg = AcpiPsGetArg (Op, 2);
191 }

193 if (!Arg)
194 {
195 return_ACPI_STATUS (AE_AML_NO_OPERAND);
196 }

198 if (WalkState->DeferredNode)
199 {
200 Node = WalkState->DeferredNode;
201 Status = AE_OK;
202 }
203 else
204 {
205 /* Execute flag should always be set when this function is entered */

207 if (!(WalkState->ParseFlags & ACPI_PARSE_EXECUTE))
208 {
209 return_ACPI_STATUS (AE_AML_INTERNAL);
210 }

212 /* Creating new namespace node, should not already exist */

214 Flags = ACPI_NS_NO_UPSEARCH | ACPI_NS_DONT_OPEN_SCOPE |
215 ACPI_NS_ERROR_IF_FOUND;

217 /*
218 * Mark node temporary if we are executing a normal control
219 * method. (Don’t mark if this is a module-level code method)
220 */
221 if (WalkState->MethodNode &&
222 !(WalkState->ParseFlags & ACPI_PARSE_MODULE_LEVEL))
223 {
224 Flags |= ACPI_NS_TEMPORARY;
225 }

227 /* Enter the NameString into the namespace */

229 Status = AcpiNsLookup (WalkState->ScopeInfo, Arg->Common.Value.String,
230 ACPI_TYPE_ANY, ACPI_IMODE_LOAD_PASS1,
231 Flags, WalkState, &Node);
232 if (ACPI_FAILURE (Status))
233 {
234 ACPI_ERROR_NAMESPACE (Arg->Common.Value.String, Status);
235 return_ACPI_STATUS (Status);
236 }
237 }

239 /*
240 * We could put the returned object (Node) on the object stack for later,
241 * but for now, we will put it in the "op" object that the parser uses,
242 * so we can get it again at the end of this scope.
243 */
244 Op->Common.Node = Node;

246 /*
247 * If there is no object attached to the node, this node was just created
248 * and we need to create the field object. Otherwise, this was a lookup
249 * of an existing node and we don’t want to create the field object again.
250 */
251 ObjDesc = AcpiNsGetAttachedObject (Node);
252 if (ObjDesc)
253 {
254 return_ACPI_STATUS (AE_OK);

new/usr/src/common/acpica/components/dispatcher/dsfield.c 5

255 }

257 /*
258 * The Field definition is not fully parsed at this time.
259 * (We must save the address of the AML for the buffer and index operands)
260 */

262 /* Create the buffer field object */

264 ObjDesc = AcpiUtCreateInternalObject (ACPI_TYPE_BUFFER_FIELD);
265 if (!ObjDesc)
266 {
267 Status = AE_NO_MEMORY;
268 goto Cleanup;
269 }

271 /*
272 * Remember location in AML stream of the field unit opcode and operands --
273 * since the buffer and index operands must be evaluated.
274 */
275 SecondDesc = ObjDesc->Common.NextObject;
276 SecondDesc->Extra.AmlStart = Op->Named.Data;
277 SecondDesc->Extra.AmlLength = Op->Named.Length;
278 ObjDesc->BufferField.Node = Node;

280 /* Attach constructed field descriptors to parent node */

282 Status = AcpiNsAttachObject (Node, ObjDesc, ACPI_TYPE_BUFFER_FIELD);
283 if (ACPI_FAILURE (Status))
284 {
285 goto Cleanup;
286 }

289 Cleanup:

291 /* Remove local reference to the object */

293 AcpiUtRemoveReference (ObjDesc);
294 return_ACPI_STATUS (Status);
295 }

298 /***
299 *
300 * FUNCTION: AcpiDsGetFieldNames
301 *
302 * PARAMETERS: Info - CreateField info structure
303 * ‘ WalkState - Current method state
304 * Arg - First parser arg for the field name list
305 *
306 * RETURN: Status
307 *
308 * DESCRIPTION: Process all named fields in a field declaration. Names are
309 * entered into the namespace.
310 *
311 **/

313 static ACPI_STATUS
314 AcpiDsGetFieldNames (
315 ACPI_CREATE_FIELD_INFO *Info,
316 ACPI_WALK_STATE *WalkState,
317 ACPI_PARSE_OBJECT *Arg)
318 {
319 ACPI_STATUS Status;
320 UINT64 Position;

new/usr/src/common/acpica/components/dispatcher/dsfield.c 6

321 ACPI_PARSE_OBJECT *Child;

324 ACPI_FUNCTION_TRACE_PTR (DsGetFieldNames, Info);

327 /* First field starts at bit zero */

329 Info->FieldBitPosition = 0;

331 /* Process all elements in the field list (of parse nodes) */

333 while (Arg)
334 {
335 /*
336 * Four types of field elements are handled:
337 * 1) Name - Enters a new named field into the namespace
338 * 2) Offset - specifies a bit offset
339 * 3) AccessAs - changes the access mode/attributes
340 * 4) Connection - Associate a resource template with the field
260 * Three types of field elements are handled:
261 * 1) Offset - specifies a bit offset
262 * 2) AccessAs - changes the access mode
263 * 3) Name - Enters a new named field into the namespace
341 */
342 switch (Arg->Common.AmlOpcode)
343 {
344 case AML_INT_RESERVEDFIELD_OP:

346 Position = (UINT64) Info->FieldBitPosition
347 + (UINT64) Arg->Common.Value.Size;

349 if (Position > ACPI_UINT32_MAX)
350 {
351 ACPI_ERROR ((AE_INFO,
352 "Bit offset within field too large (> 0xFFFFFFFF)"));
353 return_ACPI_STATUS (AE_SUPPORT);
354 }

356 Info->FieldBitPosition = (UINT32) Position;
357 break;

359 case AML_INT_ACCESSFIELD_OP:
360 case AML_INT_EXTACCESSFIELD_OP:

361 /*
362 * Get new AccessType, AccessAttribute, and AccessLength fields
363 * -- to be used for all field units that follow, until the
364 * end-of-field or another AccessAs keyword is encountered.
365 * NOTE. These three bytes are encoded in the integer value
366 * of the parseop for convenience.
286 * Get a new AccessType and AccessAttribute -- to be used for all
287 * field units that follow, until field end or another AccessAs
288 * keyword.
367 *
368 * In FieldFlags, preserve the flag bits other than the
369 * ACCESS_TYPE bits.
291 * ACCESS_TYPE bits
370 */

372 /* AccessType (ByteAcc, WordAcc, etc.) */

374 Info->FieldFlags = (UINT8)
375 ((Info->FieldFlags & ~(AML_FIELD_ACCESS_TYPE_MASK)) |
376 ((UINT8) ((UINT32) (Arg->Common.Value.Integer & 0x07))));

new/usr/src/common/acpica/components/dispatcher/dsfield.c 7

295 ((UINT8) ((UINT32) Arg->Common.Value.Integer >> 8)));

378 /* AccessAttribute (AttribQuick, AttribByte, etc.) */

380 Info->Attribute = (UINT8) ((Arg->Common.Value.Integer >> 8) & 0xFF);

382 /* AccessLength (for serial/buffer protocols) */

384 Info->AccessLength = (UINT8) ((Arg->Common.Value.Integer >> 16) & 0x
297 Info->Attribute = (UINT8) (Arg->Common.Value.Integer);
385 break;

387 case AML_INT_CONNECTION_OP:
388 /*
389 * Clear any previous connection. New connection is used for all
390 * fields that follow, similar to AccessAs
391 */
392 Info->ResourceBuffer = NULL;
393 Info->ConnectionNode = NULL;

395 /*
396 * A Connection() is either an actual resource descriptor (buffer)
397 * or a named reference to a resource template
398 */
399 Child = Arg->Common.Value.Arg;
400 if (Child->Common.AmlOpcode == AML_INT_BYTELIST_OP)
401 {
402 Info->ResourceBuffer = Child->Named.Data;
403 Info->ResourceLength = (UINT16) Child->Named.Value.Integer;
404 }
405 else
406 {
407 /* Lookup the Connection() namepath, it should already exist */

409 Status = AcpiNsLookup (WalkState->ScopeInfo,
410 Child->Common.Value.Name, ACPI_TYPE_ANY,
411 ACPI_IMODE_EXECUTE, ACPI_NS_DONT_OPEN_SCOPE,
412 WalkState, &Info->ConnectionNode);
413 if (ACPI_FAILURE (Status))
414 {
415 ACPI_ERROR_NAMESPACE (Child->Common.Value.Name, Status);
416 return_ACPI_STATUS (Status);
417 }
418 }
419 break;

421 case AML_INT_NAMEDFIELD_OP:

423 /* Lookup the name, it should already exist */

425 Status = AcpiNsLookup (WalkState->ScopeInfo,
426 (char *) &Arg->Named.Name, Info->FieldType,
427 ACPI_IMODE_EXECUTE, ACPI_NS_DONT_OPEN_SCOPE,
428 WalkState, &Info->FieldNode);
429 if (ACPI_FAILURE (Status))
430 {
431 ACPI_ERROR_NAMESPACE ((char *) &Arg->Named.Name, Status);
432 return_ACPI_STATUS (Status);
433 }
434 else
435 {
436 Arg->Common.Node = Info->FieldNode;
437 Info->FieldBitLength = Arg->Common.Value.Size;

439 /*
440 * If there is no object attached to the node, this node was

new/usr/src/common/acpica/components/dispatcher/dsfield.c 8

441 * just created and we need to create the field object.
442 * Otherwise, this was a lookup of an existing node and we
443 * don’t want to create the field object again.
444 */
445 if (!AcpiNsGetAttachedObject (Info->FieldNode))
446 {
447 Status = AcpiExPrepFieldValue (Info);
448 if (ACPI_FAILURE (Status))
449 {
450 return_ACPI_STATUS (Status);
451 }
452 }
453 }

455 /* Keep track of bit position for the next field */

457 Position = (UINT64) Info->FieldBitPosition
458 + (UINT64) Arg->Common.Value.Size;

460 if (Position > ACPI_UINT32_MAX)
461 {
462 ACPI_ERROR ((AE_INFO,
463 "Field [%4.4s] bit offset too large (> 0xFFFFFFFF)",
464 ACPI_CAST_PTR (char, &Info->FieldNode->Name)));
465 return_ACPI_STATUS (AE_SUPPORT);
466 }

468 Info->FieldBitPosition += Info->FieldBitLength;
469 break;

471 default:

473 ACPI_ERROR ((AE_INFO,
474 "Invalid opcode in field list: 0x%X", Arg->Common.AmlOpcode));
475 return_ACPI_STATUS (AE_AML_BAD_OPCODE);
476 }

478 Arg = Arg->Common.Next;
479 }

481 return_ACPI_STATUS (AE_OK);
482 }

485 /***
486 *
487 * FUNCTION: AcpiDsCreateField
488 *
489 * PARAMETERS: Op - Op containing the Field definition and args
490 * RegionNode - Object for the containing Operation Region
491 * ‘ WalkState - Current method state
492 *
493 * RETURN: Status
494 *
495 * DESCRIPTION: Create a new field in the specified operation region
496 *
497 **/

499 ACPI_STATUS
500 AcpiDsCreateField (
501 ACPI_PARSE_OBJECT *Op,
502 ACPI_NAMESPACE_NODE *RegionNode,
503 ACPI_WALK_STATE *WalkState)
504 {
505 ACPI_STATUS Status;

new/usr/src/common/acpica/components/dispatcher/dsfield.c 9

506 ACPI_PARSE_OBJECT *Arg;
507 ACPI_CREATE_FIELD_INFO Info;

510 ACPI_FUNCTION_TRACE_PTR (DsCreateField, Op);

513 /* First arg is the name of the parent OpRegion (must already exist) */

515 Arg = Op->Common.Value.Arg;

517 if (!RegionNode)
518 {
519 Status = AcpiNsLookup (WalkState->ScopeInfo, Arg->Common.Value.Name,
520 ACPI_TYPE_REGION, ACPI_IMODE_EXECUTE,
521 ACPI_NS_SEARCH_PARENT, WalkState, &RegionNode);
522 #ifdef ACPI_ASL_COMPILER
523 Status = AcpiDsCreateExternalRegion (Status, Arg,
524 Arg->Common.Value.Name, WalkState, &RegionNode);
525 #endif
526 if (ACPI_FAILURE (Status))
527 {
528 ACPI_ERROR_NAMESPACE (Arg->Common.Value.Name, Status);
529 return_ACPI_STATUS (Status);
530 }
531 }

533 ACPI_MEMSET (&Info, 0, sizeof (ACPI_CREATE_FIELD_INFO));

535 /* Second arg is the field flags */

537 Arg = Arg->Common.Next;
538 Info.FieldFlags = (UINT8) Arg->Common.Value.Integer;
539 Info.Attribute = 0;

541 /* Each remaining arg is a Named Field */

543 Info.FieldType = ACPI_TYPE_LOCAL_REGION_FIELD;
544 Info.RegionNode = RegionNode;

546 Status = AcpiDsGetFieldNames (&Info, WalkState, Arg->Common.Next);

547 return_ACPI_STATUS (Status);
548 }

551 /***
552 *
553 * FUNCTION: AcpiDsInitFieldObjects
554 *
555 * PARAMETERS: Op - Op containing the Field definition and args
556 * ‘ WalkState - Current method state
557 *
558 * RETURN: Status
559 *
560 * DESCRIPTION: For each "Field Unit" name in the argument list that is
561 * part of the field declaration, enter the name into the
562 * namespace.
563 *
564 **/

566 ACPI_STATUS
567 AcpiDsInitFieldObjects (
568 ACPI_PARSE_OBJECT *Op,
569 ACPI_WALK_STATE *WalkState)
570 {

new/usr/src/common/acpica/components/dispatcher/dsfield.c 10

571 ACPI_STATUS Status;
572 ACPI_PARSE_OBJECT *Arg = NULL;
573 ACPI_NAMESPACE_NODE *Node;
574 UINT8 Type = 0;
575 UINT32 Flags;

578 ACPI_FUNCTION_TRACE_PTR (DsInitFieldObjects, Op);

581 /* Execute flag should always be set when this function is entered */

583 if (!(WalkState->ParseFlags & ACPI_PARSE_EXECUTE))
584 {
585 if (WalkState->ParseFlags & ACPI_PARSE_DEFERRED_OP)
586 {
587 /* BankField Op is deferred, just return OK */

589 return_ACPI_STATUS (AE_OK);
590 }

592 return_ACPI_STATUS (AE_AML_INTERNAL);
593 }

595 /*
596 * Get the FieldList argument for this opcode. This is the start of the
597 * list of field elements.
598 */
599 switch (WalkState->Opcode)
600 {
601 case AML_FIELD_OP:

603 Arg = AcpiPsGetArg (Op, 2);
604 Type = ACPI_TYPE_LOCAL_REGION_FIELD;
605 break;

607 case AML_BANK_FIELD_OP:

609 Arg = AcpiPsGetArg (Op, 4);
610 Type = ACPI_TYPE_LOCAL_BANK_FIELD;
611 break;

613 case AML_INDEX_FIELD_OP:

615 Arg = AcpiPsGetArg (Op, 3);
616 Type = ACPI_TYPE_LOCAL_INDEX_FIELD;
617 break;

619 default:

621 return_ACPI_STATUS (AE_BAD_PARAMETER);
622 }

624 /* Creating new namespace node(s), should not already exist */

626 Flags = ACPI_NS_NO_UPSEARCH | ACPI_NS_DONT_OPEN_SCOPE |
627 ACPI_NS_ERROR_IF_FOUND;

629 /*
630 * Mark node(s) temporary if we are executing a normal control
631 * method. (Don’t mark if this is a module-level code method)
632 */
633 if (WalkState->MethodNode &&
634 !(WalkState->ParseFlags & ACPI_PARSE_MODULE_LEVEL))
635 {
636 Flags |= ACPI_NS_TEMPORARY;

new/usr/src/common/acpica/components/dispatcher/dsfield.c 11

637 }

639 /*
640 * Walk the list of entries in the FieldList
641 * Note: FieldList can be of zero length. In this case, Arg will be NULL.
642 */
643 while (Arg)
644 {
645 /*
646 * Ignore OFFSET/ACCESSAS/CONNECTION terms here; we are only interested
647 * in the field names in order to enter them into the namespace.
517 * Ignore OFFSET and ACCESSAS terms here; we are only interested in the
518 * field names in order to enter them into the namespace.
648 */
649 if (Arg->Common.AmlOpcode == AML_INT_NAMEDFIELD_OP)
650 {
651 Status = AcpiNsLookup (WalkState->ScopeInfo,
652 (char *) &Arg->Named.Name, Type, ACPI_IMODE_LOAD_PASS1,
653 Flags, WalkState, &Node);
654 if (ACPI_FAILURE (Status))
655 {
656 ACPI_ERROR_NAMESPACE ((char *) &Arg->Named.Name, Status);
657 if (Status != AE_ALREADY_EXISTS)
658 {
659 return_ACPI_STATUS (Status);
660 }

662 /* Name already exists, just ignore this error */

664 Status = AE_OK;
665 }

667 Arg->Common.Node = Node;
668 }

670 /* Get the next field element in the list */

672 Arg = Arg->Common.Next;
673 }

675 return_ACPI_STATUS (AE_OK);
676 }

679 /***
680 *
681 * FUNCTION: AcpiDsCreateBankField
682 *
683 * PARAMETERS: Op - Op containing the Field definition and args
684 * RegionNode - Object for the containing Operation Region
685 * WalkState - Current method state
686 *
687 * RETURN: Status
688 *
689 * DESCRIPTION: Create a new bank field in the specified operation region
690 *
691 **/

693 ACPI_STATUS
694 AcpiDsCreateBankField (
695 ACPI_PARSE_OBJECT *Op,
696 ACPI_NAMESPACE_NODE *RegionNode,
697 ACPI_WALK_STATE *WalkState)
698 {
699 ACPI_STATUS Status;
700 ACPI_PARSE_OBJECT *Arg;

new/usr/src/common/acpica/components/dispatcher/dsfield.c 12

701 ACPI_CREATE_FIELD_INFO Info;

704 ACPI_FUNCTION_TRACE_PTR (DsCreateBankField, Op);

707 /* First arg is the name of the parent OpRegion (must already exist) */

709 Arg = Op->Common.Value.Arg;
710 if (!RegionNode)
711 {
712 Status = AcpiNsLookup (WalkState->ScopeInfo, Arg->Common.Value.Name,
713 ACPI_TYPE_REGION, ACPI_IMODE_EXECUTE,
714 ACPI_NS_SEARCH_PARENT, WalkState, &RegionNode);
715 #ifdef ACPI_ASL_COMPILER
716 Status = AcpiDsCreateExternalRegion (Status, Arg,
717 Arg->Common.Value.Name, WalkState, &RegionNode);
718 #endif
719 if (ACPI_FAILURE (Status))
720 {
721 ACPI_ERROR_NAMESPACE (Arg->Common.Value.Name, Status);
722 return_ACPI_STATUS (Status);
723 }
724 }

726 /* Second arg is the Bank Register (Field) (must already exist) */

728 Arg = Arg->Common.Next;
729 Status = AcpiNsLookup (WalkState->ScopeInfo, Arg->Common.Value.String,
730 ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE,
731 ACPI_NS_SEARCH_PARENT, WalkState, &Info.RegisterNode);
732 if (ACPI_FAILURE (Status))
733 {
734 ACPI_ERROR_NAMESPACE (Arg->Common.Value.String, Status);
735 return_ACPI_STATUS (Status);
736 }

738 /*
739 * Third arg is the BankValue
740 * This arg is a TermArg, not a constant
741 * It will be evaluated later, by AcpiDsEvalBankFieldOperands
742 */
743 Arg = Arg->Common.Next;

745 /* Fourth arg is the field flags */

747 Arg = Arg->Common.Next;
748 Info.FieldFlags = (UINT8) Arg->Common.Value.Integer;

750 /* Each remaining arg is a Named Field */

752 Info.FieldType = ACPI_TYPE_LOCAL_BANK_FIELD;
753 Info.RegionNode = RegionNode;

755 /*
756 * Use Info.DataRegisterNode to store BankField Op
757 * It’s safe because DataRegisterNode will never be used when create bank fi
758 * We store AmlStart and AmlLength in the BankField Op for late evaluation
759 * Used in AcpiExPrepFieldValue(Info)
760 *
761 * TBD: Or, should we add a field in ACPI_CREATE_FIELD_INFO, like "void *Par
762 */
763 Info.DataRegisterNode = (ACPI_NAMESPACE_NODE*) Op;

765 Status = AcpiDsGetFieldNames (&Info, WalkState, Arg->Common.Next);
766 return_ACPI_STATUS (Status);

new/usr/src/common/acpica/components/dispatcher/dsfield.c 13

767 }

770 /***
771 *
772 * FUNCTION: AcpiDsCreateIndexField
773 *
774 * PARAMETERS: Op - Op containing the Field definition and args
775 * RegionNode - Object for the containing Operation Region
776 * ‘ WalkState - Current method state
777 *
778 * RETURN: Status
779 *
780 * DESCRIPTION: Create a new index field in the specified operation region
781 *
782 **/

784 ACPI_STATUS
785 AcpiDsCreateIndexField (
786 ACPI_PARSE_OBJECT *Op,
787 ACPI_NAMESPACE_NODE *RegionNode,
788 ACPI_WALK_STATE *WalkState)
789 {
790 ACPI_STATUS Status;
791 ACPI_PARSE_OBJECT *Arg;
792 ACPI_CREATE_FIELD_INFO Info;

795 ACPI_FUNCTION_TRACE_PTR (DsCreateIndexField, Op);

798 /* First arg is the name of the Index register (must already exist) */

800 Arg = Op->Common.Value.Arg;
801 Status = AcpiNsLookup (WalkState->ScopeInfo, Arg->Common.Value.String,
802 ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE,
803 ACPI_NS_SEARCH_PARENT, WalkState, &Info.RegisterNode);
804 if (ACPI_FAILURE (Status))
805 {
806 ACPI_ERROR_NAMESPACE (Arg->Common.Value.String, Status);
807 return_ACPI_STATUS (Status);
808 }

810 /* Second arg is the data register (must already exist) */

812 Arg = Arg->Common.Next;
813 Status = AcpiNsLookup (WalkState->ScopeInfo, Arg->Common.Value.String,
814 ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE,
815 ACPI_NS_SEARCH_PARENT, WalkState, &Info.DataRegisterNode);
816 if (ACPI_FAILURE (Status))
817 {
818 ACPI_ERROR_NAMESPACE (Arg->Common.Value.String, Status);
819 return_ACPI_STATUS (Status);
820 }

822 /* Next arg is the field flags */

824 Arg = Arg->Common.Next;
825 Info.FieldFlags = (UINT8) Arg->Common.Value.Integer;

827 /* Each remaining arg is a Named Field */

829 Info.FieldType = ACPI_TYPE_LOCAL_INDEX_FIELD;
830 Info.RegionNode = RegionNode;

832 Status = AcpiDsGetFieldNames (&Info, WalkState, Arg->Common.Next);

new/usr/src/common/acpica/components/dispatcher/dsfield.c 14

833 return_ACPI_STATUS (Status);
834 }

new/usr/src/common/acpica/components/dispatcher/dsinit.c 1

**
 7212 Thu Dec 26 13:48:50 2013
new/usr/src/common/acpica/components/dispatcher/dsinit.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dsinit - Object initialization namespace walk
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DSINIT_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acdispat.h"
49 #include "acnamesp.h"
50 #include "actables.h"

52 #define _COMPONENT ACPI_DISPATCHER
53 ACPI_MODULE_NAME ("dsinit")

55 /* Local prototypes */

57 static ACPI_STATUS
58 AcpiDsInitOneObject (
59 ACPI_HANDLE ObjHandle,

new/usr/src/common/acpica/components/dispatcher/dsinit.c 2

60 UINT32 Level,
61 void *Context,
62 void **ReturnValue);

65 /***
66 *
67 * FUNCTION: AcpiDsInitOneObject
68 *
69 * PARAMETERS: ObjHandle - Node for the object
70 * Level - Current nesting level
71 * Context - Points to a init info struct
72 * ReturnValue - Not used
73 *
74 * RETURN: Status
75 *
76 * DESCRIPTION: Callback from AcpiWalkNamespace. Invoked for every object
77 * within the namespace.
78 *
79 * Currently, the only objects that require initialization are:
80 * 1) Methods
81 * 2) Operation Regions
82 *
83 **/

85 static ACPI_STATUS
86 AcpiDsInitOneObject (
87 ACPI_HANDLE ObjHandle,
88 UINT32 Level,
89 void *Context,
90 void **ReturnValue)
91 {
92 ACPI_INIT_WALK_INFO *Info = (ACPI_INIT_WALK_INFO *) Context;
93 ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) ObjHandle;
94 ACPI_OBJECT_TYPE Type;
95 ACPI_STATUS Status;

98 ACPI_FUNCTION_ENTRY ();

101 /*
102 * We are only interested in NS nodes owned by the table that
103 * was just loaded
104 */
105 if (Node->OwnerId != Info->OwnerId)
106 {
107 return (AE_OK);
108 }

110 Info->ObjectCount++;

112 /* And even then, we are only interested in a few object types */

114 Type = AcpiNsGetType (ObjHandle);

116 switch (Type)
117 {
118 case ACPI_TYPE_REGION:

120 Status = AcpiDsInitializeRegion (ObjHandle);
121 if (ACPI_FAILURE (Status))
122 {
123 ACPI_EXCEPTION ((AE_INFO, Status,
124 "During Region initialization %p [%4.4s]",
125 ObjHandle, AcpiUtGetNodeName (ObjHandle)));

new/usr/src/common/acpica/components/dispatcher/dsinit.c 3

126 }

128 Info->OpRegionCount++;
129 break;

131 case ACPI_TYPE_METHOD:

133 Info->MethodCount++;
134 break;

136 case ACPI_TYPE_DEVICE:

138 Info->DeviceCount++;
139 break;

141 default:

144 default:
143 break;
144 }

146 /*
147 * We ignore errors from above, and always return OK, since
148 * we don’t want to abort the walk on a single error.
149 */
150 return (AE_OK);
151 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/dispatcher/dsmethod.c 1

**
 23030 Thu Dec 26 13:48:51 2013
new/usr/src/common/acpica/components/dispatcher/dsmethod.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dsmethod - Parser/Interpreter interface - control method parsing
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DSMETHOD_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acdispat.h"
49 #include "acinterp.h"
50 #include "acnamesp.h"
51 #include "acdisasm.h"

54 #define _COMPONENT ACPI_DISPATCHER
55 ACPI_MODULE_NAME ("dsmethod")

57 /* Local prototypes */

59 static ACPI_STATUS

new/usr/src/common/acpica/components/dispatcher/dsmethod.c 2

60 AcpiDsCreateMethodMutex (
61 ACPI_OPERAND_OBJECT *MethodDesc);

64 /***
65 *
66 * FUNCTION: AcpiDsMethodError
67 *
68 * PARAMETERS: Status - Execution status
69 * WalkState - Current state
70 *
71 * RETURN: Status
72 *
73 * DESCRIPTION: Called on method error. Invoke the global exception handler if
74 * present, dump the method data if the disassembler is configured
75 *
76 * Note: Allows the exception handler to change the status code
77 *
78 **/

80 ACPI_STATUS
81 AcpiDsMethodError (
82 ACPI_STATUS Status,
83 ACPI_WALK_STATE *WalkState)
84 {
85 ACPI_FUNCTION_ENTRY ();

88 /* Ignore AE_OK and control exception codes */

90 if (ACPI_SUCCESS (Status) ||
91 (Status & AE_CODE_CONTROL))
92 {
93 return (Status);
94 }

96 /* Invoke the global exception handler */

98 if (AcpiGbl_ExceptionHandler)
99 {
100 /* Exit the interpreter, allow handler to execute methods */

102 AcpiExExitInterpreter ();

104 /*
105 * Handler can map the exception code to anything it wants, including
106 * AE_OK, in which case the executing method will not be aborted.
107 */
108 Status = AcpiGbl_ExceptionHandler (Status,
109 WalkState->MethodNode ?
110 WalkState->MethodNode->Name.Integer : 0,
111 WalkState->Opcode, WalkState->AmlOffset, NULL);
112 AcpiExEnterInterpreter ();
113 }

115 AcpiDsClearImplicitReturn (WalkState);

117 #ifdef ACPI_DISASSEMBLER
118 if (ACPI_FAILURE (Status))
119 {
120 /* Display method locals/args if disassembler is present */

122 AcpiDmDumpMethodInfo (Status, WalkState, WalkState->Op);
123 }
124 #endif

new/usr/src/common/acpica/components/dispatcher/dsmethod.c 3

126 return (Status);
127 }

130 /***
131 *
132 * FUNCTION: AcpiDsCreateMethodMutex
133 *
134 * PARAMETERS: ObjDesc - The method object
135 *
136 * RETURN: Status
137 *
138 * DESCRIPTION: Create a mutex object for a serialized control method
139 *
140 **/

142 static ACPI_STATUS
143 AcpiDsCreateMethodMutex (
144 ACPI_OPERAND_OBJECT *MethodDesc)
145 {
146 ACPI_OPERAND_OBJECT *MutexDesc;
147 ACPI_STATUS Status;

150 ACPI_FUNCTION_TRACE (DsCreateMethodMutex);

153 /* Create the new mutex object */

155 MutexDesc = AcpiUtCreateInternalObject (ACPI_TYPE_MUTEX);
156 if (!MutexDesc)
157 {
158 return_ACPI_STATUS (AE_NO_MEMORY);
159 }

161 /* Create the actual OS Mutex */

163 Status = AcpiOsCreateMutex (&MutexDesc->Mutex.OsMutex);
164 if (ACPI_FAILURE (Status))
165 {
166 AcpiUtDeleteObjectDesc (MutexDesc);
167 return_ACPI_STATUS (Status);
168 }

170 MutexDesc->Mutex.SyncLevel = MethodDesc->Method.SyncLevel;
171 MethodDesc->Method.Mutex = MutexDesc;
172 return_ACPI_STATUS (AE_OK);
173 }

______unchanged_portion_omitted_

331 /***
332 *
333 * FUNCTION: AcpiDsCallControlMethod
334 *
335 * PARAMETERS: Thread - Info for this thread
336 * ThisWalkState - Current walk state
337 * Op - Current Op to be walked
338 *
339 * RETURN: Status
340 *
341 * DESCRIPTION: Transfer execution to a called control method
342 *
343 **/

345 ACPI_STATUS

new/usr/src/common/acpica/components/dispatcher/dsmethod.c 4

346 AcpiDsCallControlMethod (
347 ACPI_THREAD_STATE *Thread,
348 ACPI_WALK_STATE *ThisWalkState,
349 ACPI_PARSE_OBJECT *Op)
350 {
351 ACPI_STATUS Status;
352 ACPI_NAMESPACE_NODE *MethodNode;
353 ACPI_WALK_STATE *NextWalkState = NULL;
354 ACPI_OPERAND_OBJECT *ObjDesc;
355 ACPI_EVALUATE_INFO *Info;
356 UINT32 i;

359 ACPI_FUNCTION_TRACE_PTR (DsCallControlMethod, ThisWalkState);

361 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Calling method %p, currentstate=%p\n",
362 ThisWalkState->PrevOp, ThisWalkState));

364 /*
365 * Get the namespace entry for the control method we are about to call
366 */
367 MethodNode = ThisWalkState->MethodCallNode;
368 if (!MethodNode)
369 {
370 return_ACPI_STATUS (AE_NULL_ENTRY);
371 }

373 ObjDesc = AcpiNsGetAttachedObject (MethodNode);
374 if (!ObjDesc)
375 {
376 return_ACPI_STATUS (AE_NULL_OBJECT);
377 }

379 /* Init for new method, possibly wait on method mutex */

381 Status = AcpiDsBeginMethodExecution (MethodNode, ObjDesc,
382 ThisWalkState);
383 if (ACPI_FAILURE (Status))
384 {
385 return_ACPI_STATUS (Status);
386 }

388 /* Begin method parse/execution. Create a new walk state */

390 NextWalkState = AcpiDsCreateWalkState (ObjDesc->Method.OwnerId,
391 NULL, ObjDesc, Thread);
392 if (!NextWalkState)
393 {
394 Status = AE_NO_MEMORY;
395 goto Cleanup;
396 }

398 /*
399 * The resolved arguments were put on the previous walk state’s operand
400 * stack. Operands on the previous walk state stack always
401 * start at index 0. Also, null terminate the list of arguments
402 */
403 ThisWalkState->Operands [ThisWalkState->NumOperands] = NULL;

405 /*
406 * Allocate and initialize the evaluation information block
407 * TBD: this is somewhat inefficient, should change interface to
408 * DsInitAmlWalk. For now, keeps this struct off the CPU stack
409 */
410 Info = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_EVALUATE_INFO));
411 if (!Info)

new/usr/src/common/acpica/components/dispatcher/dsmethod.c 5

412 {
413 Status = AE_NO_MEMORY;
414 goto Cleanup;
412 return_ACPI_STATUS (AE_NO_MEMORY);
415 }

417 Info->Parameters = &ThisWalkState->Operands[0];

419 Status = AcpiDsInitAmlWalk (NextWalkState, NULL, MethodNode,
420 ObjDesc->Method.AmlStart, ObjDesc->Method.AmlLength,
421 Info, ACPI_IMODE_EXECUTE);

423 ACPI_FREE (Info);
424 if (ACPI_FAILURE (Status))
425 {
426 goto Cleanup;
427 }

429 /*
430 * Delete the operands on the previous walkstate operand stack
431 * (they were copied to new objects)
432 */
433 for (i = 0; i < ObjDesc->Method.ParamCount; i++)
434 {
435 AcpiUtRemoveReference (ThisWalkState->Operands [i]);
436 ThisWalkState->Operands [i] = NULL;
437 }

439 /* Clear the operand stack */

441 ThisWalkState->NumOperands = 0;

443 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
444 "**** Begin nested execution of [%4.4s] **** WalkState=%p\n",
445 MethodNode->Name.Ascii, NextWalkState));

447 /* Invoke an internal method if necessary */

449 if (ObjDesc->Method.InfoFlags & ACPI_METHOD_INTERNAL_ONLY)
450 {
451 Status = ObjDesc->Method.Dispatch.Implementation (NextWalkState);
452 if (Status == AE_OK)
453 {
454 Status = AE_CTRL_TERMINATE;
455 }
456 }

458 return_ACPI_STATUS (Status);

461 Cleanup:

463 /* On error, we must terminate the method properly */

465 AcpiDsTerminateControlMethod (ObjDesc, NextWalkState);
466 if (NextWalkState)
467 {
468 AcpiDsDeleteWalkState (NextWalkState);
469 }

471 return_ACPI_STATUS (Status);
472 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/dispatcher/dsmthdat.c 1

**
 23466 Thu Dec 26 13:48:51 2013
new/usr/src/common/acpica/components/dispatcher/dsmthdat.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dsmthdat - control method arguments and local variables
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DSMTHDAT_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acdispat.h"
49 #include "acnamesp.h"
50 #include "acinterp.h"

53 #define _COMPONENT ACPI_DISPATCHER
54 ACPI_MODULE_NAME ("dsmthdat")

56 /* Local prototypes */

58 static void
59 AcpiDsMethodDataDeleteValue (

new/usr/src/common/acpica/components/dispatcher/dsmthdat.c 2

60 UINT8 Type,
61 UINT32 Index,
62 ACPI_WALK_STATE *WalkState);

64 static ACPI_STATUS
65 AcpiDsMethodDataSetValue (
66 UINT8 Type,
67 UINT32 Index,
68 ACPI_OPERAND_OBJECT *Object,
69 ACPI_WALK_STATE *WalkState);

71 #ifdef ACPI_OBSOLETE_FUNCTIONS
72 ACPI_OBJECT_TYPE
73 AcpiDsMethodDataGetType (
74 UINT16 Opcode,
75 UINT32 Index,
76 ACPI_WALK_STATE *WalkState);
77 #endif

80 /***
81 *
82 * FUNCTION: AcpiDsMethodDataInit
83 *
84 * PARAMETERS: WalkState - Current walk state object
85 *
86 * RETURN: Status
87 *
88 * DESCRIPTION: Initialize the data structures that hold the method’s arguments
89 * and locals. The data struct is an array of namespace nodes for
90 * each - this allows RefOf and DeRefOf to work properly for these
91 * special data types.
92 *
93 * NOTES: WalkState fields are initialized to zero by the
94 * ACPI_ALLOCATE_ZEROED().
95 *
96 * A pseudo-Namespace Node is assigned to each argument and local
97 * so that RefOf() can return a pointer to the Node.
98 *
99 **/

101 void
102 AcpiDsMethodDataInit (
103 ACPI_WALK_STATE *WalkState)
104 {
105 UINT32 i;

108 ACPI_FUNCTION_TRACE (DsMethodDataInit);

111 /* Init the method arguments */

113 for (i = 0; i < ACPI_METHOD_NUM_ARGS; i++)
114 {
115 ACPI_MOVE_32_TO_32 (&WalkState->Arguments[i].Name, NAMEOF_ARG_NTE);
116 WalkState->Arguments[i].Name.Integer |= (i << 24);
117 WalkState->Arguments[i].DescriptorType = ACPI_DESC_TYPE_NAMED;
118 WalkState->Arguments[i].Type = ACPI_TYPE_ANY;
119 WalkState->Arguments[i].Flags = ANOBJ_METHOD_ARG;
120 }

122 /* Init the method locals */

124 for (i = 0; i < ACPI_METHOD_NUM_LOCALS; i++)
125 {

new/usr/src/common/acpica/components/dispatcher/dsmthdat.c 3

126 ACPI_MOVE_32_TO_32 (&WalkState->LocalVariables[i].Name, NAMEOF_LOCAL_NTE

128 WalkState->LocalVariables[i].Name.Integer |= (i << 24);
129 WalkState->LocalVariables[i].DescriptorType = ACPI_DESC_TYPE_NAMED;
130 WalkState->LocalVariables[i].Type = ACPI_TYPE_ANY;
131 WalkState->LocalVariables[i].Flags = ANOBJ_METHOD_LOCAL;
132 }

134 return_VOID;
135 }

______unchanged_portion_omitted_

256 /***
257 *
258 * FUNCTION: AcpiDsMethodDataGetNode
259 *
260 * PARAMETERS: Type - Either ACPI_REFCLASS_LOCAL or
261 * ACPI_REFCLASS_ARG
262 * Index - Which Local or Arg whose type to get
263 * WalkState - Current walk state object
264 * Node - Where the node is returned.
265 *
266 * RETURN: Status and node
267 *
268 * DESCRIPTION: Get the Node associated with a local or arg.
269 *
270 **/

272 ACPI_STATUS
273 AcpiDsMethodDataGetNode (
274 UINT8 Type,
275 UINT32 Index,
276 ACPI_WALK_STATE *WalkState,
277 ACPI_NAMESPACE_NODE **Node)
278 {
279 ACPI_FUNCTION_TRACE (DsMethodDataGetNode);

282 /*
283 * Method Locals and Arguments are supported
284 */
285 switch (Type)
286 {
287 case ACPI_REFCLASS_LOCAL:

289 if (Index > ACPI_METHOD_MAX_LOCAL)
290 {
291 ACPI_ERROR ((AE_INFO,
292 "Local index %u is invalid (max %u)",
293 Index, ACPI_METHOD_MAX_LOCAL));
294 return_ACPI_STATUS (AE_AML_INVALID_INDEX);
295 }

297 /* Return a pointer to the pseudo-node */

299 *Node = &WalkState->LocalVariables[Index];
300 break;

302 case ACPI_REFCLASS_ARG:

304 if (Index > ACPI_METHOD_MAX_ARG)
305 {
306 ACPI_ERROR ((AE_INFO,
307 "Arg index %u is invalid (max %u)",
308 Index, ACPI_METHOD_MAX_ARG));

new/usr/src/common/acpica/components/dispatcher/dsmthdat.c 4

309 return_ACPI_STATUS (AE_AML_INVALID_INDEX);
310 }

312 /* Return a pointer to the pseudo-node */

314 *Node = &WalkState->Arguments[Index];
315 break;

317 default:

319 ACPI_ERROR ((AE_INFO, "Type %u is invalid", Type));
320 return_ACPI_STATUS (AE_TYPE);
321 }

323 return_ACPI_STATUS (AE_OK);
324 }

______unchanged_portion_omitted_

386 /***
387 *
388 * FUNCTION: AcpiDsMethodDataGetValue
389 *
390 * PARAMETERS: Type - Either ACPI_REFCLASS_LOCAL or
391 * ACPI_REFCLASS_ARG
392 * Index - Which localVar or argument to get
393 * WalkState - Current walk state object
394 * DestDesc - Where Arg or Local value is returned
395 *
396 * RETURN: Status
397 *
398 * DESCRIPTION: Retrieve value of selected Arg or Local for this method
399 * Used only in AcpiExResolveToValue().
400 *
401 **/

403 ACPI_STATUS
404 AcpiDsMethodDataGetValue (
405 UINT8 Type,
406 UINT32 Index,
407 ACPI_WALK_STATE *WalkState,
408 ACPI_OPERAND_OBJECT **DestDesc)
409 {
410 ACPI_STATUS Status;
411 ACPI_NAMESPACE_NODE *Node;
412 ACPI_OPERAND_OBJECT *Object;

415 ACPI_FUNCTION_TRACE (DsMethodDataGetValue);

418 /* Validate the object descriptor */

420 if (!DestDesc)
421 {
422 ACPI_ERROR ((AE_INFO, "Null object descriptor pointer"));
423 return_ACPI_STATUS (AE_BAD_PARAMETER);
424 }

426 /* Get the namespace node for the arg/local */

428 Status = AcpiDsMethodDataGetNode (Type, Index, WalkState, &Node);
429 if (ACPI_FAILURE (Status))
430 {
431 return_ACPI_STATUS (Status);
432 }

new/usr/src/common/acpica/components/dispatcher/dsmthdat.c 5

434 /* Get the object from the node */

436 Object = Node->Object;

438 /* Examine the returned object, it must be valid. */

440 if (!Object)
441 {
442 /*
443 * Index points to uninitialized object.
444 * This means that either 1) The expected argument was
445 * not passed to the method, or 2) A local variable
446 * was referenced by the method (via the ASL)
447 * before it was initialized. Either case is an error.
448 */

450 /* If slack enabled, init the LocalX/ArgX to an Integer of value zero */

452 if (AcpiGbl_EnableInterpreterSlack)
453 {
454 Object = AcpiUtCreateIntegerObject ((UINT64) 0);
455 if (!Object)
456 {
457 return_ACPI_STATUS (AE_NO_MEMORY);
458 }

460 Node->Object = Object;
461 }

463 /* Otherwise, return the error */

465 else switch (Type)
466 {
467 case ACPI_REFCLASS_ARG:

469 ACPI_ERROR ((AE_INFO,
470 "Uninitialized Arg[%u] at node %p",
471 Index, Node));

473 return_ACPI_STATUS (AE_AML_UNINITIALIZED_ARG);

475 case ACPI_REFCLASS_LOCAL:

476 /*
477 * No error message for this case, will be trapped again later to
478 * detect and ignore cases of Store(LocalX,LocalX)
479 */
480 return_ACPI_STATUS (AE_AML_UNINITIALIZED_LOCAL);

482 default:

484 ACPI_ERROR ((AE_INFO, "Not a Arg/Local opcode: 0x%X", Type));
485 return_ACPI_STATUS (AE_AML_INTERNAL);
486 }
487 }

489 /*
490 * The Index points to an initialized and valid object.
491 * Return an additional reference to the object
492 */
493 *DestDesc = Object;
494 AcpiUtAddReference (Object);

496 return_ACPI_STATUS (AE_OK);
497 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/dispatcher/dsmthdat.c 6

770 #endif

new/usr/src/common/acpica/components/dispatcher/dsobject.c 1

**
 28342 Thu Dec 26 13:48:52 2013
new/usr/src/common/acpica/components/dispatcher/dsobject.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dsobject - Dispatcher object management routines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DSOBJECT_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acparser.h"
49 #include "amlcode.h"
50 #include "acdispat.h"
51 #include "acnamesp.h"
52 #include "acinterp.h"

54 #define _COMPONENT ACPI_DISPATCHER
55 ACPI_MODULE_NAME ("dsobject")

57 /* Local prototypes */

59 static ACPI_STATUS

new/usr/src/common/acpica/components/dispatcher/dsobject.c 2

60 AcpiDsBuildInternalObject (
61 ACPI_WALK_STATE *WalkState,
62 ACPI_PARSE_OBJECT *Op,
63 ACPI_OPERAND_OBJECT **ObjDescPtr);

66 #ifndef ACPI_NO_METHOD_EXECUTION
67 /***
68 *
69 * FUNCTION: AcpiDsBuildInternalObject
70 *
71 * PARAMETERS: WalkState - Current walk state
72 * Op - Parser object to be translated
73 * ObjDescPtr - Where the ACPI internal object is returned
74 *
75 * RETURN: Status
76 *
77 * DESCRIPTION: Translate a parser Op object to the equivalent namespace object
78 * Simple objects are any objects other than a package object!
79 *
80 **/

82 static ACPI_STATUS
83 AcpiDsBuildInternalObject (
84 ACPI_WALK_STATE *WalkState,
85 ACPI_PARSE_OBJECT *Op,
86 ACPI_OPERAND_OBJECT **ObjDescPtr)
87 {
88 ACPI_OPERAND_OBJECT *ObjDesc;
89 ACPI_STATUS Status;
90 ACPI_OBJECT_TYPE Type;

93 ACPI_FUNCTION_TRACE (DsBuildInternalObject);

96 *ObjDescPtr = NULL;
97 if (Op->Common.AmlOpcode == AML_INT_NAMEPATH_OP)
98 {
99 /*
100 * This is a named object reference. If this name was
101 * previously looked up in the namespace, it was stored in this op.
102 * Otherwise, go ahead and look it up now
103 */
104 if (!Op->Common.Node)
105 {
106 Status = AcpiNsLookup (WalkState->ScopeInfo,
107 Op->Common.Value.String,
108 ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE,
109 ACPI_NS_SEARCH_PARENT | ACPI_NS_DONT_OPEN_SCOPE, NULL,
110 ACPI_CAST_INDIRECT_PTR (ACPI_NAMESPACE_NODE, &(Op->Commo
111 if (ACPI_FAILURE (Status))
112 {
113 /* Check if we are resolving a named reference within a package

115 if ((Status == AE_NOT_FOUND) && (AcpiGbl_EnableInterpreterSlack)

117 ((Op->Common.Parent->Common.AmlOpcode == AML_PACKAGE_OP) ||
118 (Op->Common.Parent->Common.AmlOpcode == AML_VAR_PACKAGE_OP)
119 {
120 /*
121 * We didn’t find the target and we are populating elements
122 * of a package - ignore if slack enabled. Some ASL code
123 * contains dangling invalid references in packages and
124 * expects that no exception will be issued. Leave the
125 * element as a null element. It cannot be used, but it

new/usr/src/common/acpica/components/dispatcher/dsobject.c 3

126 * can be overwritten by subsequent ASL code - this is
127 * typically the case.
128 */
129 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
130 "Ignoring unresolved reference in package [%4.4s]\n",
131 WalkState->ScopeInfo->Scope.Node->Name.Ascii));

133 return_ACPI_STATUS (AE_OK);
134 }
135 else
136 {
137 ACPI_ERROR_NAMESPACE (Op->Common.Value.String, Status);
138 }

140 return_ACPI_STATUS (Status);
141 }
142 }

144 /* Special object resolution for elements of a package */

146 if ((Op->Common.Parent->Common.AmlOpcode == AML_PACKAGE_OP) ||
147 (Op->Common.Parent->Common.AmlOpcode == AML_VAR_PACKAGE_OP))
148 {
149 /*
150 * Attempt to resolve the node to a value before we insert it into
151 * the package. If this is a reference to a common data type,
152 * resolve it immediately. According to the ACPI spec, package
153 * elements can only be "data objects" or method references.
154 * Attempt to resolve to an Integer, Buffer, String or Package.
155 * If cannot, return the named reference (for things like Devices,
156 * Methods, etc.) Buffer Fields and Fields will resolve to simple
157 * objects (int/buf/str/pkg).
158 *
159 * NOTE: References to things like Devices, Methods, Mutexes, etc.
160 * will remain as named references. This behavior is not described
161 * in the ACPI spec, but it appears to be an oversight.
162 */
163 ObjDesc = ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, Op->Common.Node);

165 Status = AcpiExResolveNodeToValue (
166 ACPI_CAST_INDIRECT_PTR (ACPI_NAMESPACE_NODE, &ObjDesc),
167 WalkState);
168 if (ACPI_FAILURE (Status))
169 {
170 return_ACPI_STATUS (Status);
171 }

173 /*
174 * Special handling for Alias objects. We need to setup the type
175 * and the Op->Common.Node to point to the Alias target. Note,
176 * Alias has at most one level of indirection internally.
177 */
178 Type = Op->Common.Node->Type;
179 if (Type == ACPI_TYPE_LOCAL_ALIAS)
180 {
181 Type = ObjDesc->Common.Type;
182 Op->Common.Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE,
183 Op->Common.Node->Object);
184 }

186 switch (Type)
187 {
188 /*
189 * For these types, we need the actual node, not the subobject.
190 * However, the subobject did not get an extra reference count above
191 *

new/usr/src/common/acpica/components/dispatcher/dsobject.c 4

192 * TBD: should ExResolveNodeToValue be changed to fix this?
193 */
194 case ACPI_TYPE_DEVICE:
195 case ACPI_TYPE_THERMAL:

197 AcpiUtAddReference (Op->Common.Node->Object);

199 /*lint -fallthrough */
200 /*
201 * For these types, we need the actual node, not the subobject.
202 * The subobject got an extra reference count in ExResolveNodeToValu
203 */
204 case ACPI_TYPE_MUTEX:
205 case ACPI_TYPE_METHOD:
206 case ACPI_TYPE_POWER:
207 case ACPI_TYPE_PROCESSOR:
208 case ACPI_TYPE_EVENT:
209 case ACPI_TYPE_REGION:

211 /* We will create a reference object for these types below */
212 break;

214 default:
215 /*
216 * All other types - the node was resolved to an actual
217 * object, we are done.
218 */
219 goto Exit;
220 }
221 }
222 }

224 /* Create and init a new internal ACPI object */

226 ObjDesc = AcpiUtCreateInternalObject (
227 (AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode))->ObjectType);
228 if (!ObjDesc)
229 {
230 return_ACPI_STATUS (AE_NO_MEMORY);
231 }

233 Status = AcpiDsInitObjectFromOp (WalkState, Op, Op->Common.AmlOpcode,
234 &ObjDesc);
235 if (ACPI_FAILURE (Status))
236 {
237 AcpiUtRemoveReference (ObjDesc);
238 return_ACPI_STATUS (Status);
239 }

241 Exit:
242 *ObjDescPtr = ObjDesc;
243 return_ACPI_STATUS (Status);
244 }

______unchanged_portion_omitted_

364 /***
365 *
366 * FUNCTION: AcpiDsBuildInternalPackageObj
367 *
368 * PARAMETERS: WalkState - Current walk state
369 * Op - Parser object to be translated
370 * ElementCount - Number of elements in the package - this is
371 * the NumElements argument to Package()
372 * ObjDescPtr - Where the ACPI internal object is returned
373 *

new/usr/src/common/acpica/components/dispatcher/dsobject.c 5

374 * RETURN: Status
375 *
376 * DESCRIPTION: Translate a parser Op package object to the equivalent
377 * namespace object
378 *
379 * NOTE: The number of elements in the package will be always be the NumElements
380 * count, regardless of the number of elements in the package list. If
381 * NumElements is smaller, only that many package list elements are used.
382 * if NumElements is larger, the Package object is padded out with
383 * objects of type Uninitialized (as per ACPI spec.)
384 *
385 * Even though the ASL compilers do not allow NumElements to be smaller
386 * than the Package list length (for the fixed length package opcode), some
387 * BIOS code modifies the AML on the fly to adjust the NumElements, and
388 * this code compensates for that. This also provides compatibility with
389 * other AML interpreters.
390 *
391 **/

393 ACPI_STATUS
394 AcpiDsBuildInternalPackageObj (
395 ACPI_WALK_STATE *WalkState,
396 ACPI_PARSE_OBJECT *Op,
397 UINT32 ElementCount,
398 ACPI_OPERAND_OBJECT **ObjDescPtr)
399 {
400 ACPI_PARSE_OBJECT *Arg;
401 ACPI_PARSE_OBJECT *Parent;
402 ACPI_OPERAND_OBJECT *ObjDesc = NULL;
403 ACPI_STATUS Status = AE_OK;
404 UINT32 i;
405 UINT16 Index;
406 UINT16 ReferenceCount;

409 ACPI_FUNCTION_TRACE (DsBuildInternalPackageObj);

412 /* Find the parent of a possibly nested package */

414 Parent = Op->Common.Parent;
415 while ((Parent->Common.AmlOpcode == AML_PACKAGE_OP) ||
416 (Parent->Common.AmlOpcode == AML_VAR_PACKAGE_OP))
417 {
418 Parent = Parent->Common.Parent;
419 }

421 /*
422 * If we are evaluating a Named package object "Name (xxxx, Package)",
423 * the package object already exists, otherwise it must be created.
424 */
425 ObjDesc = *ObjDescPtr;
426 if (!ObjDesc)
427 {
428 ObjDesc = AcpiUtCreateInternalObject (ACPI_TYPE_PACKAGE);
429 *ObjDescPtr = ObjDesc;
430 if (!ObjDesc)
431 {
432 return_ACPI_STATUS (AE_NO_MEMORY);
433 }

435 ObjDesc->Package.Node = Parent->Common.Node;
436 }

438 /*
439 * Allocate the element array (array of pointers to the individual

new/usr/src/common/acpica/components/dispatcher/dsobject.c 6

440 * objects) based on the NumElements parameter. Add an extra pointer slot
441 * so that the list is always null terminated.
442 */
443 ObjDesc->Package.Elements = ACPI_ALLOCATE_ZEROED (
444 ((ACPI_SIZE) ElementCount + 1) * sizeof (void *));

446 if (!ObjDesc->Package.Elements)
447 {
448 AcpiUtDeleteObjectDesc (ObjDesc);
449 return_ACPI_STATUS (AE_NO_MEMORY);
450 }

452 ObjDesc->Package.Count = ElementCount;

454 /*
455 * Initialize the elements of the package, up to the NumElements count.
456 * Package is automatically padded with uninitialized (NULL) elements
457 * if NumElements is greater than the package list length. Likewise,
458 * Package is truncated if NumElements is less than the list length.
459 */
460 Arg = Op->Common.Value.Arg;
461 Arg = Arg->Common.Next;
462 for (i = 0; Arg && (i < ElementCount); i++)
463 {
464 if (Arg->Common.AmlOpcode == AML_INT_RETURN_VALUE_OP)
465 {
466 if (Arg->Common.Node->Type == ACPI_TYPE_METHOD)
467 {
468 /*
469 * A method reference "looks" to the parser to be a method
470 * invocation, so we special case it here
471 */
472 Arg->Common.AmlOpcode = AML_INT_NAMEPATH_OP;
473 Status = AcpiDsBuildInternalObject (WalkState, Arg,
474 &ObjDesc->Package.Elements[i]);
475 }
476 else
477 {
478 /* This package element is already built, just get it */

480 ObjDesc->Package.Elements[i] =
481 ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, Arg->Common.Node);
482 }
483 }
484 else
485 {
486 Status = AcpiDsBuildInternalObject (WalkState, Arg,
487 &ObjDesc->Package.Elements[i]);
488 }

490 if (*ObjDescPtr)
491 {
492 /* Existing package, get existing reference count */

494 ReferenceCount = (*ObjDescPtr)->Common.ReferenceCount;
495 if (ReferenceCount > 1)
496 {
497 /* Make new element ref count match original ref count */

499 for (Index = 0; Index < (ReferenceCount - 1); Index++)
500 {
501 AcpiUtAddReference ((ObjDesc->Package.Elements[i]));
502 }
503 }
504 }

new/usr/src/common/acpica/components/dispatcher/dsobject.c 7

506 Arg = Arg->Common.Next;
507 }

509 /* Check for match between NumElements and actual length of PackageList */

511 if (Arg)
512 {
513 /*
514 * NumElements was exhausted, but there are remaining elements in the
515 * PackageList. Truncate the package to NumElements.
516 *
517 * Note: technically, this is an error, from ACPI spec: "It is an error
518 * for NumElements to be less than the number of elements in the
519 * PackageList". However, we just print a message and
520 * no exception is returned. This provides Windows compatibility. Some
521 * BIOSs will alter the NumElements on the fly, creating this type
522 * of ill-formed package object.
523 */
524 while (Arg)
525 {
526 /*
527 * We must delete any package elements that were created earlier
528 * and are not going to be used because of the package truncation.
529 */
530 if (Arg->Common.Node)
531 {
532 AcpiUtRemoveReference (
533 ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, Arg->Common.Node));
534 Arg->Common.Node = NULL;
535 }

537 /* Find out how many elements there really are */

539 i++;
540 Arg = Arg->Common.Next;
541 }

543 ACPI_INFO ((AE_INFO,
544 "Actual Package length (%u) is larger than NumElements field (%u), t
544 "Actual Package length (%u) is larger than NumElements field (%u), t
545 i, ElementCount));
546 }
547 else if (i < ElementCount)
548 {
549 /*
550 * Arg list (elements) was exhausted, but we did not reach NumElements c
551 * Note: this is not an error, the package is padded out with NULLs.
552 */
553 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
554 "Package List length (%u) smaller than NumElements count (%u), padde
555 i, ElementCount));
556 }

558 ObjDesc->Package.Flags |= AOPOBJ_DATA_VALID;
559 Op->Common.Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, ObjDesc);
560 return_ACPI_STATUS (Status);
561 }

______unchanged_portion_omitted_

631 #endif /* ACPI_NO_METHOD_EXECUTION */

634 /***
635 *
636 * FUNCTION: AcpiDsInitObjectFromOp
637 *

new/usr/src/common/acpica/components/dispatcher/dsobject.c 8

638 * PARAMETERS: WalkState - Current walk state
639 * Op - Parser op used to init the internal object
640 * Opcode - AML opcode associated with the object
641 * RetObjDesc - Namespace object to be initialized
642 *
643 * RETURN: Status
644 *
645 * DESCRIPTION: Initialize a namespace object from a parser Op and its
646 * associated arguments. The namespace object is a more compact
647 * representation of the Op and its arguments.
648 *
649 **/

651 ACPI_STATUS
652 AcpiDsInitObjectFromOp (
653 ACPI_WALK_STATE *WalkState,
654 ACPI_PARSE_OBJECT *Op,
655 UINT16 Opcode,
656 ACPI_OPERAND_OBJECT **RetObjDesc)
657 {
658 const ACPI_OPCODE_INFO *OpInfo;
659 ACPI_OPERAND_OBJECT *ObjDesc;
660 ACPI_STATUS Status = AE_OK;

663 ACPI_FUNCTION_TRACE (DsInitObjectFromOp);

666 ObjDesc = *RetObjDesc;
667 OpInfo = AcpiPsGetOpcodeInfo (Opcode);
668 if (OpInfo->Class == AML_CLASS_UNKNOWN)
669 {
670 /* Unknown opcode */

672 return_ACPI_STATUS (AE_TYPE);
673 }

675 /* Perform per-object initialization */

677 switch (ObjDesc->Common.Type)
678 {
679 case ACPI_TYPE_BUFFER:

680 /*
681 * Defer evaluation of Buffer TermArg operand
682 */
683 ObjDesc->Buffer.Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE,
684 WalkState->Operands[0]);
685 ObjDesc->Buffer.AmlStart = Op->Named.Data;
686 ObjDesc->Buffer.AmlLength = Op->Named.Length;
687 break;

689 case ACPI_TYPE_PACKAGE:

690 /*
691 * Defer evaluation of Package TermArg operand
692 */
693 ObjDesc->Package.Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE,
694 WalkState->Operands[0]);
695 ObjDesc->Package.AmlStart = Op->Named.Data;
696 ObjDesc->Package.AmlLength = Op->Named.Length;
697 break;

699 case ACPI_TYPE_INTEGER:

new/usr/src/common/acpica/components/dispatcher/dsobject.c 9

701 switch (OpInfo->Type)
702 {
703 case AML_TYPE_CONSTANT:
704 /*
705 * Resolve AML Constants here - AND ONLY HERE!
706 * All constants are integers.
707 * We mark the integer with a flag that indicates that it started
708 * life as a constant -- so that stores to constants will perform
709 * as expected (noop). ZeroOp is used as a placeholder for optional
710 * target operands.
711 */
712 ObjDesc->Common.Flags = AOPOBJ_AML_CONSTANT;

714 switch (Opcode)
715 {
716 case AML_ZERO_OP:

718 ObjDesc->Integer.Value = 0;
719 break;

721 case AML_ONE_OP:

723 ObjDesc->Integer.Value = 1;
724 break;

726 case AML_ONES_OP:

728 ObjDesc->Integer.Value = ACPI_UINT64_MAX;

730 /* Truncate value if we are executing from a 32-bit ACPI table *

732 #ifndef ACPI_NO_METHOD_EXECUTION
733 (void) AcpiExTruncateFor32bitTable (ObjDesc);
737 AcpiExTruncateFor32bitTable (ObjDesc);
734 #endif
735 break;

737 case AML_REVISION_OP:

739 ObjDesc->Integer.Value = ACPI_CA_VERSION;
740 break;

742 default:

744 ACPI_ERROR ((AE_INFO,
745 "Unknown constant opcode 0x%X", Opcode));
746 Status = AE_AML_OPERAND_TYPE;
747 break;
748 }
749 break;

751 case AML_TYPE_LITERAL:

753 ObjDesc->Integer.Value = Op->Common.Value.Integer;

755 #ifndef ACPI_NO_METHOD_EXECUTION
756 if (AcpiExTruncateFor32bitTable (ObjDesc))
757 {
758 /* Warn if we found a 64-bit constant in a 32-bit table */

760 ACPI_WARNING ((AE_INFO,
761 "Truncated 64-bit constant found in 32-bit table: %8.8X%8.8X
762 ACPI_FORMAT_UINT64 (Op->Common.Value.Integer),
763 (UINT32) ObjDesc->Integer.Value));

new/usr/src/common/acpica/components/dispatcher/dsobject.c 10

764 }
760 AcpiExTruncateFor32bitTable (ObjDesc);
765 #endif
766 break;

768 default:

765 default:
770 ACPI_ERROR ((AE_INFO, "Unknown Integer type 0x%X",
771 OpInfo->Type));
772 Status = AE_AML_OPERAND_TYPE;
773 break;
774 }
775 break;

777 case ACPI_TYPE_STRING:

779 ObjDesc->String.Pointer = Op->Common.Value.String;
780 ObjDesc->String.Length = (UINT32) ACPI_STRLEN (Op->Common.Value.String);

782 /*
783 * The string is contained in the ACPI table, don’t ever try
784 * to delete it
785 */
786 ObjDesc->Common.Flags |= AOPOBJ_STATIC_POINTER;
787 break;

789 case ACPI_TYPE_METHOD:
790 break;

792 case ACPI_TYPE_LOCAL_REFERENCE:

794 switch (OpInfo->Type)
795 {
796 case AML_TYPE_LOCAL_VARIABLE:

798 /* Local ID (0-7) is (AML opcode - base AML_LOCAL_OP) */

800 ObjDesc->Reference.Value = ((UINT32) Opcode) - AML_LOCAL_OP;
801 ObjDesc->Reference.Class = ACPI_REFCLASS_LOCAL;

803 #ifndef ACPI_NO_METHOD_EXECUTION
804 Status = AcpiDsMethodDataGetNode (ACPI_REFCLASS_LOCAL,
805 ObjDesc->Reference.Value, WalkState,
806 ACPI_CAST_INDIRECT_PTR (ACPI_NAMESPACE_NODE,
807 &ObjDesc->Reference.Object));
808 #endif
809 break;

811 case AML_TYPE_METHOD_ARGUMENT:

813 /* Arg ID (0-6) is (AML opcode - base AML_ARG_OP) */

815 ObjDesc->Reference.Value = ((UINT32) Opcode) - AML_ARG_OP;
816 ObjDesc->Reference.Class = ACPI_REFCLASS_ARG;

818 #ifndef ACPI_NO_METHOD_EXECUTION
819 Status = AcpiDsMethodDataGetNode (ACPI_REFCLASS_ARG,
820 ObjDesc->Reference.Value, WalkState,
821 ACPI_CAST_INDIRECT_PTR (ACPI_NAMESPACE_NODE,
822 &ObjDesc->Reference.Object));
823 #endif

new/usr/src/common/acpica/components/dispatcher/dsobject.c 11

824 break;

826 default: /* Object name or Debug object */

828 switch (Op->Common.AmlOpcode)
829 {
830 case AML_INT_NAMEPATH_OP:

832 /* Node was saved in Op */

834 ObjDesc->Reference.Node = Op->Common.Node;
835 ObjDesc->Reference.Object = Op->Common.Node->Object;
836 ObjDesc->Reference.Class = ACPI_REFCLASS_NAME;
837 break;

839 case AML_DEBUG_OP:

841 ObjDesc->Reference.Class = ACPI_REFCLASS_DEBUG;
842 break;

844 default:

846 ACPI_ERROR ((AE_INFO,
847 "Unimplemented reference type for AML opcode: 0x%4.4X", Opco
848 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
849 }
850 break;
851 }
852 break;

854 default:

856 ACPI_ERROR ((AE_INFO, "Unimplemented data type: 0x%X",
857 ObjDesc->Common.Type));

859 Status = AE_AML_OPERAND_TYPE;
860 break;
861 }

863 return_ACPI_STATUS (Status);
864 }

new/usr/src/common/acpica/components/dispatcher/dsopcode.c 1

**
 22489 Thu Dec 26 13:48:52 2013
new/usr/src/common/acpica/components/dispatcher/dsopcode.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dsopcode - Dispatcher support for regions and fields
3 * Module Name: dsopcode - Dispatcher suport for regions and fields
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DSOPCODE_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acparser.h"
49 #include "amlcode.h"
50 #include "acdispat.h"
51 #include "acinterp.h"
52 #include "acnamesp.h"
53 #include "acevents.h"
54 #include "actables.h"

56 #define _COMPONENT ACPI_DISPATCHER
57 ACPI_MODULE_NAME ("dsopcode")

new/usr/src/common/acpica/components/dispatcher/dsopcode.c 2

59 /* Local prototypes */

61 static ACPI_STATUS
62 AcpiDsInitBufferField (
63 UINT16 AmlOpcode,
64 ACPI_OPERAND_OBJECT *ObjDesc,
65 ACPI_OPERAND_OBJECT *BufferDesc,
66 ACPI_OPERAND_OBJECT *OffsetDesc,
67 ACPI_OPERAND_OBJECT *LengthDesc,
68 ACPI_OPERAND_OBJECT *ResultDesc);

71 /***
72 *
73 * FUNCTION: AcpiDsInitializeRegion
74 *
75 * PARAMETERS: ObjHandle - Region namespace node
76 *
77 * RETURN: Status
78 *
79 * DESCRIPTION: Front end to EvInitializeRegion
80 *
81 **/

83 ACPI_STATUS
84 AcpiDsInitializeRegion (
85 ACPI_HANDLE ObjHandle)
86 {
87 ACPI_OPERAND_OBJECT *ObjDesc;
88 ACPI_STATUS Status;

91 ObjDesc = AcpiNsGetAttachedObject (ObjHandle);

93 /* Namespace is NOT locked */

95 Status = AcpiEvInitializeRegion (ObjDesc, FALSE);
96 return (Status);
97 }

______unchanged_portion_omitted_

493 /***
494 *
495 * FUNCTION: AcpiDsEvalTableRegionOperands
496 *
497 * PARAMETERS: WalkState - Current walk
498 * Op - A valid region Op object
499 *
500 * RETURN: Status
501 *
502 * DESCRIPTION: Get region address and length.
503 * Called from AcpiDsExecEndOp during DataTableRegion parse
504 * tree walk.
505 *
506 **/

508 ACPI_STATUS
509 AcpiDsEvalTableRegionOperands (
510 ACPI_WALK_STATE *WalkState,
511 ACPI_PARSE_OBJECT *Op)
512 {
513 ACPI_STATUS Status;
514 ACPI_OPERAND_OBJECT *ObjDesc;
515 ACPI_OPERAND_OBJECT **Operand;
516 ACPI_NAMESPACE_NODE *Node;

new/usr/src/common/acpica/components/dispatcher/dsopcode.c 3

517 ACPI_PARSE_OBJECT *NextOp;
518 UINT32 TableIndex;
519 ACPI_TABLE_HEADER *Table;

522 ACPI_FUNCTION_TRACE_PTR (DsEvalTableRegionOperands, Op);

525 /*
526 * This is where we evaluate the Signature string, OemId string,
527 * and OemTableId string of the Data Table Region declaration
526 * This is where we evaluate the SignatureString and OemIDString
527 * and OemTableIDString of the DataTableRegion declaration
528 */
529 Node = Op->Common.Node;

531 /* NextOp points to Signature string op */
531 /* NextOp points to SignatureString op */

533 NextOp = Op->Common.Value.Arg;

535 /*
536 * Evaluate/create the Signature string, OemId string,
537 * and OemTableId string operands
536 * Evaluate/create the SignatureString and OemIDString
537 * and OemTableIDString operands
538 */
539 Status = AcpiDsCreateOperands (WalkState, NextOp);
540 if (ACPI_FAILURE (Status))
541 {
542 return_ACPI_STATUS (Status);
543 }

545 /*
546 * Resolve the Signature string, OemId string,
547 * and OemTableId string operands
546 * Resolve the SignatureString and OemIDString
547 * and OemTableIDString operands
548 */
549 Status = AcpiExResolveOperands (Op->Common.AmlOpcode,
550 ACPI_WALK_OPERANDS, WalkState);
551 if (ACPI_FAILURE (Status))
552 {
553 return_ACPI_STATUS (Status);
554 }

556 Operand = &WalkState->Operands[0];

558 /* Find the ACPI table */

560 Status = AcpiTbFindTable (Operand[0]->String.Pointer,
561 Operand[1]->String.Pointer, Operand[2]->String.Pointer,
562 &TableIndex);
563 if (ACPI_FAILURE (Status))
564 {
565 return_ACPI_STATUS (Status);
566 }

568 AcpiUtRemoveReference (Operand[0]);
569 AcpiUtRemoveReference (Operand[1]);
570 AcpiUtRemoveReference (Operand[2]);

572 Status = AcpiGetTableByIndex (TableIndex, &Table);
573 if (ACPI_FAILURE (Status))
574 {
575 return_ACPI_STATUS (Status);

new/usr/src/common/acpica/components/dispatcher/dsopcode.c 4

576 }

578 ObjDesc = AcpiNsGetAttachedObject (Node);
579 if (!ObjDesc)
580 {
581 return_ACPI_STATUS (AE_NOT_EXIST);
582 }

584 ObjDesc->Region.Address = (ACPI_PHYSICAL_ADDRESS) ACPI_TO_INTEGER (Table);
585 ObjDesc->Region.Length = Table->Length;

587 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "RgnObj %p Addr %8.8X%8.8X Len %X\n",
588 ObjDesc,
589 ACPI_FORMAT_NATIVE_UINT (ObjDesc->Region.Address),
590 ObjDesc->Region.Length));

592 /* Now the address and length are valid for this opregion */

594 ObjDesc->Region.Flags |= AOPOBJ_DATA_VALID;

596 return_ACPI_STATUS (Status);
597 }

600 /***
601 *
602 * FUNCTION: AcpiDsEvalDataObjectOperands
603 *
604 * PARAMETERS: WalkState - Current walk
605 * Op - A valid DataObject Op object
606 * ObjDesc - DataObject
607 *
608 * RETURN: Status
609 *
610 * DESCRIPTION: Get the operands and complete the following data object types:
611 * Buffer, Package.
612 *
613 **/

615 ACPI_STATUS
616 AcpiDsEvalDataObjectOperands (
617 ACPI_WALK_STATE *WalkState,
618 ACPI_PARSE_OBJECT *Op,
619 ACPI_OPERAND_OBJECT *ObjDesc)
620 {
621 ACPI_STATUS Status;
622 ACPI_OPERAND_OBJECT *ArgDesc;
623 UINT32 Length;

626 ACPI_FUNCTION_TRACE (DsEvalDataObjectOperands);

629 /* The first operand (for all of these data objects) is the length */

631 /*
632 * Set proper index into operand stack for AcpiDsObjStackPush
633 * invoked inside AcpiDsCreateOperand.
634 */
635 WalkState->OperandIndex = WalkState->NumOperands;

637 Status = AcpiDsCreateOperand (WalkState, Op->Common.Value.Arg, 1);
638 if (ACPI_FAILURE (Status))
639 {
640 return_ACPI_STATUS (Status);
641 }

new/usr/src/common/acpica/components/dispatcher/dsopcode.c 5

643 Status = AcpiExResolveOperands (WalkState->Opcode,
644 &(WalkState->Operands [WalkState->NumOperands -1]),
645 WalkState);
646 if (ACPI_FAILURE (Status))
647 {
648 return_ACPI_STATUS (Status);
649 }

651 /* Extract length operand */

653 ArgDesc = WalkState->Operands [WalkState->NumOperands - 1];
654 Length = (UINT32) ArgDesc->Integer.Value;

656 /* Cleanup for length operand */

658 Status = AcpiDsObjStackPop (1, WalkState);
659 if (ACPI_FAILURE (Status))
660 {
661 return_ACPI_STATUS (Status);
662 }

664 AcpiUtRemoveReference (ArgDesc);

666 /*
667 * Create the actual data object
668 */
669 switch (Op->Common.AmlOpcode)
670 {
671 case AML_BUFFER_OP:

673 Status = AcpiDsBuildInternalBufferObj (WalkState, Op, Length, &ObjDesc);
674 break;

676 case AML_PACKAGE_OP:
677 case AML_VAR_PACKAGE_OP:

679 Status = AcpiDsBuildInternalPackageObj (WalkState, Op, Length, &ObjDesc)
680 break;

682 default:

684 return_ACPI_STATUS (AE_AML_BAD_OPCODE);
685 }

687 if (ACPI_SUCCESS (Status))
688 {
689 /*
690 * Return the object in the WalkState, unless the parent is a package -
691 * in this case, the return object will be stored in the parse tree
692 * for the package.
693 */
694 if ((!Op->Common.Parent) ||
695 ((Op->Common.Parent->Common.AmlOpcode != AML_PACKAGE_OP) &&
696 (Op->Common.Parent->Common.AmlOpcode != AML_VAR_PACKAGE_OP) &&
697 (Op->Common.Parent->Common.AmlOpcode != AML_NAME_OP)))
698 {
699 WalkState->ResultObj = ObjDesc;
700 }
701 }

703 return_ACPI_STATUS (Status);
704 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/dispatcher/dsutils.c 1

**
 28491 Thu Dec 26 13:48:53 2013
new/usr/src/common/acpica/components/dispatcher/dsutils.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: dsutils - Dispatcher utilities
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DSUTILS_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acparser.h"
49 #include "amlcode.h"
50 #include "acdispat.h"
51 #include "acinterp.h"
52 #include "acnamesp.h"
53 #include "acdebug.h"

55 #define _COMPONENT ACPI_DISPATCHER
56 ACPI_MODULE_NAME ("dsutils")

new/usr/src/common/acpica/components/dispatcher/dsutils.c 2

59 /***
60 *
61 * FUNCTION: AcpiDsClearImplicitReturn
62 *
63 * PARAMETERS: WalkState - Current State
64 *
65 * RETURN: None.
66 *
67 * DESCRIPTION: Clear and remove a reference on an implicit return value. Used
68 * to delete "stale" return values (if enabled, the return value
69 * from every operator is saved at least momentarily, in case the
70 * parent method exits.)
71 *
72 **/

74 void
75 AcpiDsClearImplicitReturn (
76 ACPI_WALK_STATE *WalkState)
77 {
78 ACPI_FUNCTION_NAME (DsClearImplicitReturn);

81 /*
82 * Slack must be enabled for this feature
83 */
84 if (!AcpiGbl_EnableInterpreterSlack)
85 {
86 return;
87 }

89 if (WalkState->ImplicitReturnObj)
90 {
91 /*
92 * Delete any "stale" implicit return. However, in
93 * complex statements, the implicit return value can be
94 * bubbled up several levels.
95 */
96 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
97 "Removing reference on stale implicit return obj %p\n",
98 WalkState->ImplicitReturnObj));

100 AcpiUtRemoveReference (WalkState->ImplicitReturnObj);
101 WalkState->ImplicitReturnObj = NULL;
102 }
103 }

______unchanged_portion_omitted_

176 /***
177 *
178 * FUNCTION: AcpiDsIsResultUsed
179 *
180 * PARAMETERS: Op - Current Op
181 * WalkState - Current State
182 *
183 * RETURN: TRUE if result is used, FALSE otherwise
184 *
185 * DESCRIPTION: Check if a result object will be used by the parent
186 *
187 **/

189 BOOLEAN
190 AcpiDsIsResultUsed (
191 ACPI_PARSE_OBJECT *Op,
192 ACPI_WALK_STATE *WalkState)
193 {

new/usr/src/common/acpica/components/dispatcher/dsutils.c 3

194 const ACPI_OPCODE_INFO *ParentInfo;

196 ACPI_FUNCTION_TRACE_PTR (DsIsResultUsed, Op);

199 /* Must have both an Op and a Result Object */

201 if (!Op)
202 {
203 ACPI_ERROR ((AE_INFO, "Null Op"));
204 return_UINT8 (TRUE);
205 }

207 /*
208 * We know that this operator is not a
209 * Return() operator (would not come here.) The following code is the
210 * optional support for a so-called "implicit return". Some AML code
211 * assumes that the last value of the method is "implicitly" returned
212 * to the caller. Just save the last result as the return value.
213 * NOTE: this is optional because the ASL language does not actually
214 * support this behavior.
215 */
216 (void) AcpiDsDoImplicitReturn (WalkState->ResultObj, WalkState, TRUE);

218 /*
219 * Now determine if the parent will use the result
220 *
221 * If there is no parent, or the parent is a ScopeOp, we are executing
222 * at the method level. An executing method typically has no parent,
223 * since each method is parsed separately. A method invoked externally
224 * via ExecuteControlMethod has a ScopeOp as the parent.
225 */
226 if ((!Op->Common.Parent) ||
227 (Op->Common.Parent->Common.AmlOpcode == AML_SCOPE_OP))
228 {
229 /* No parent, the return value cannot possibly be used */

231 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
232 "At Method level, result of [%s] not used\n",
233 AcpiPsGetOpcodeName (Op->Common.AmlOpcode)));
234 return_UINT8 (FALSE);
235 }

237 /* Get info on the parent. The RootOp is AML_SCOPE */

239 ParentInfo = AcpiPsGetOpcodeInfo (Op->Common.Parent->Common.AmlOpcode);
240 if (ParentInfo->Class == AML_CLASS_UNKNOWN)
241 {
242 ACPI_ERROR ((AE_INFO,
243 "Unknown parent opcode Op=%p", Op));
244 return_UINT8 (FALSE);
245 }

247 /*
248 * Decide what to do with the result based on the parent. If
249 * the parent opcode will not use the result, delete the object.
250 * Otherwise leave it as is, it will be deleted when it is used
251 * as an operand later.
252 */
253 switch (ParentInfo->Class)
254 {
255 case AML_CLASS_CONTROL:

257 switch (Op->Common.Parent->Common.AmlOpcode)
258 {
259 case AML_RETURN_OP:

new/usr/src/common/acpica/components/dispatcher/dsutils.c 4

261 /* Never delete the return value associated with a return opcode */

263 goto ResultUsed;

265 case AML_IF_OP:
266 case AML_WHILE_OP:

267 /*
268 * If we are executing the predicate AND this is the predicate op,
269 * we will use the return value
270 */
271 if ((WalkState->ControlState->Common.State == ACPI_CONTROL_PREDICATE
272 (WalkState->ControlState->Control.PredicateOp == Op))
273 {
274 goto ResultUsed;
275 }
276 break;

278 default:

280 /* Ignore other control opcodes */

282 break;
283 }

285 /* The general control opcode returns no result */

287 goto ResultNotUsed;

289 case AML_CLASS_CREATE:

290 /*
291 * These opcodes allow TermArg(s) as operands and therefore
292 * the operands can be method calls. The result is used.
293 */
294 goto ResultUsed;

296 case AML_CLASS_NAMED_OBJECT:

298 if ((Op->Common.Parent->Common.AmlOpcode == AML_REGION_OP) ||
299 (Op->Common.Parent->Common.AmlOpcode == AML_DATA_REGION_OP) ||
300 (Op->Common.Parent->Common.AmlOpcode == AML_PACKAGE_OP) ||
301 (Op->Common.Parent->Common.AmlOpcode == AML_VAR_PACKAGE_OP) ||
302 (Op->Common.Parent->Common.AmlOpcode == AML_BUFFER_OP) ||
303 (Op->Common.Parent->Common.AmlOpcode == AML_INT_EVAL_SUBTREE_OP) ||
304 (Op->Common.Parent->Common.AmlOpcode == AML_BANK_FIELD_OP))
305 {
306 /*
307 * These opcodes allow TermArg(s) as operands and therefore
308 * the operands can be method calls. The result is used.
309 */
310 goto ResultUsed;
311 }

313 goto ResultNotUsed;

315 default:

316 /*
317 * In all other cases. the parent will actually use the return
318 * object, so keep it.
319 */

new/usr/src/common/acpica/components/dispatcher/dsutils.c 5

320 goto ResultUsed;
321 }

324 ResultUsed:
325 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
326 "Result of [%s] used by Parent [%s] Op=%p\n",
327 AcpiPsGetOpcodeName (Op->Common.AmlOpcode),
328 AcpiPsGetOpcodeName (Op->Common.Parent->Common.AmlOpcode), Op));

330 return_UINT8 (TRUE);

333 ResultNotUsed:
334 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
335 "Result of [%s] not used by Parent [%s] Op=%p\n",
336 AcpiPsGetOpcodeName (Op->Common.AmlOpcode),
337 AcpiPsGetOpcodeName (Op->Common.Parent->Common.AmlOpcode), Op));

339 return_UINT8 (FALSE);
340 }

______unchanged_portion_omitted_

731 /***
732 *
733 * FUNCTION: AcpiDsCreateOperands
734 *
735 * PARAMETERS: WalkState - Current state
736 * FirstArg - First argument of a parser argument tree
737 *
738 * RETURN: Status
739 *
740 * DESCRIPTION: Convert an operator’s arguments from a parse tree format to
741 * namespace objects and place those argument object on the object
742 * stack in preparation for evaluation by the interpreter.
743 *
744 **/

746 ACPI_STATUS
747 AcpiDsCreateOperands (
748 ACPI_WALK_STATE *WalkState,
749 ACPI_PARSE_OBJECT *FirstArg)
750 {
751 ACPI_STATUS Status = AE_OK;
752 ACPI_PARSE_OBJECT *Arg;
753 ACPI_PARSE_OBJECT *Arguments[ACPI_OBJ_NUM_OPERANDS];
754 UINT32 ArgCount = 0;
755 UINT32 Index = WalkState->NumOperands;
756 UINT32 i;

759 ACPI_FUNCTION_TRACE_PTR (DsCreateOperands, FirstArg);

762 /* Get all arguments in the list */

764 Arg = FirstArg;
765 while (Arg)
766 {
767 if (Index >= ACPI_OBJ_NUM_OPERANDS)
768 {
769 return_ACPI_STATUS (AE_BAD_DATA);
770 }

772 Arguments[Index] = Arg;

new/usr/src/common/acpica/components/dispatcher/dsutils.c 6

773 WalkState->Operands [Index] = NULL;

775 /* Move on to next argument, if any */

777 Arg = Arg->Common.Next;
778 ArgCount++;
779 Index++;
780 }

782 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
783 "NumOperands %d, ArgCount %d, Index %d\n",
784 WalkState->NumOperands, ArgCount, Index));
786 Index--;

786 /* Create the interpreter arguments, in reverse order */
788 /* It is the appropriate order to get objects from the Result stack */

788 Index--;
789 for (i = 0; i < ArgCount; i++)
790 {
791 Arg = Arguments[Index];

794 /* Force the filling of the operand stack in inverse order */

792 WalkState->OperandIndex = (UINT8) Index;

794 Status = AcpiDsCreateOperand (WalkState, Arg, Index);
795 if (ACPI_FAILURE (Status))
796 {
797 goto Cleanup;
798 }

800 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
801 "Created Arg #%u (%p) %u args total\n",
802 Index, Arg, ArgCount));
803 Index--;

806 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Arg #%u (%p) done, Arg1=%p\n",
807 Index, Arg, FirstArg));
804 }

806 return_ACPI_STATUS (Status);

809 Cleanup:
810 /*
811 * We must undo everything done above; meaning that we must
812 * pop everything off of the operand stack and delete those
813 * objects
814 */
815 AcpiDsObjStackPopAndDelete (ArgCount, WalkState);

817 ACPI_EXCEPTION ((AE_INFO, Status, "While creating Arg %u", Index));
818 return_ACPI_STATUS (Status);
819 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/dispatcher/dswexec.c 1

**
 23264 Thu Dec 26 13:48:53 2013
new/usr/src/common/acpica/components/dispatcher/dswexec.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dswexec - Dispatcher method execution callbacks;
4 * dispatch to interpreter.
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #define __DSWEXEC_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acparser.h"
50 #include "amlcode.h"
51 #include "acdispat.h"
52 #include "acinterp.h"
53 #include "acnamesp.h"
54 #include "acdebug.h"

57 #define _COMPONENT ACPI_DISPATCHER
58 ACPI_MODULE_NAME ("dswexec")

new/usr/src/common/acpica/components/dispatcher/dswexec.c 2

60 /*
61 * Dispatch table for opcode classes
62 */
63 static ACPI_EXECUTE_OP AcpiGbl_OpTypeDispatch [] =
64 {
65 AcpiExOpcode_0A_0T_1R,
66 AcpiExOpcode_1A_0T_0R,
67 AcpiExOpcode_1A_0T_1R,
68 AcpiExOpcode_1A_1T_0R,
69 AcpiExOpcode_1A_1T_1R,
70 AcpiExOpcode_2A_0T_0R,
71 AcpiExOpcode_2A_0T_1R,
72 AcpiExOpcode_2A_1T_1R,
73 AcpiExOpcode_2A_2T_1R,
74 AcpiExOpcode_3A_0T_0R,
75 AcpiExOpcode_3A_1T_1R,
76 AcpiExOpcode_6A_0T_1R
77 };

80 /***
81 *
82 * FUNCTION: AcpiDsGetPredicateValue
83 *
84 * PARAMETERS: WalkState - Current state of the parse tree walk
85 * ResultObj - if non-zero, pop result from result stack
86 *
87 * RETURN: Status
88 *
89 * DESCRIPTION: Get the result of a predicate evaluation
90 *
91 **/

93 ACPI_STATUS
94 AcpiDsGetPredicateValue (
95 ACPI_WALK_STATE *WalkState,
96 ACPI_OPERAND_OBJECT *ResultObj)
97 {
98 ACPI_STATUS Status = AE_OK;
99 ACPI_OPERAND_OBJECT *ObjDesc;
100 ACPI_OPERAND_OBJECT *LocalObjDesc = NULL;

103 ACPI_FUNCTION_TRACE_PTR (DsGetPredicateValue, WalkState);

106 WalkState->ControlState->Common.State = 0;

108 if (ResultObj)
109 {
110 Status = AcpiDsResultPop (&ObjDesc, WalkState);
111 if (ACPI_FAILURE (Status))
112 {
113 ACPI_EXCEPTION ((AE_INFO, Status,
114 "Could not get result from predicate evaluation"));

116 return_ACPI_STATUS (Status);
117 }
118 }
119 else
120 {
121 Status = AcpiDsCreateOperand (WalkState, WalkState->Op, 0);
122 if (ACPI_FAILURE (Status))
123 {
124 return_ACPI_STATUS (Status);

new/usr/src/common/acpica/components/dispatcher/dswexec.c 3

125 }

127 Status = AcpiExResolveToValue (&WalkState->Operands [0], WalkState);
128 if (ACPI_FAILURE (Status))
129 {
130 return_ACPI_STATUS (Status);
131 }

133 ObjDesc = WalkState->Operands [0];
134 }

136 if (!ObjDesc)
137 {
138 ACPI_ERROR ((AE_INFO,
139 "No predicate ObjDesc=%p State=%p",
140 ObjDesc, WalkState));

142 return_ACPI_STATUS (AE_AML_NO_OPERAND);
143 }

145 /*
146 * Result of predicate evaluation must be an Integer
147 * object. Implicitly convert the argument if necessary.
148 */
149 Status = AcpiExConvertToInteger (ObjDesc, &LocalObjDesc, 16);
150 if (ACPI_FAILURE (Status))
151 {
152 goto Cleanup;
153 }

155 if (LocalObjDesc->Common.Type != ACPI_TYPE_INTEGER)
156 {
157 ACPI_ERROR ((AE_INFO,
158 "Bad predicate (not an integer) ObjDesc=%p State=%p Type=0x%X",
159 ObjDesc, WalkState, ObjDesc->Common.Type));

161 Status = AE_AML_OPERAND_TYPE;
162 goto Cleanup;
163 }

165 /* Truncate the predicate to 32-bits if necessary */

167 (void) AcpiExTruncateFor32bitTable (LocalObjDesc);
167 AcpiExTruncateFor32bitTable (LocalObjDesc);

169 /*
170 * Save the result of the predicate evaluation on
171 * the control stack
172 */
173 if (LocalObjDesc->Integer.Value)
174 {
175 WalkState->ControlState->Common.Value = TRUE;
176 }
177 else
178 {
179 /*
180 * Predicate is FALSE, we will just toss the
181 * rest of the package
182 */
183 WalkState->ControlState->Common.Value = FALSE;
184 Status = AE_CTRL_FALSE;
185 }

187 /* Predicate can be used for an implicit return value */

189 (void) AcpiDsDoImplicitReturn (LocalObjDesc, WalkState, TRUE);

new/usr/src/common/acpica/components/dispatcher/dswexec.c 4

192 Cleanup:

194 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Completed a predicate eval=%X Op=%p\n",
195 WalkState->ControlState->Common.Value, WalkState->Op));

197 /* Break to debugger to display result */

199 ACPI_DEBUGGER_EXEC (AcpiDbDisplayResultObject (LocalObjDesc, WalkState));

201 /*
202 * Delete the predicate result object (we know that
203 * we don’t need it anymore)
204 */
205 if (LocalObjDesc != ObjDesc)
206 {
207 AcpiUtRemoveReference (LocalObjDesc);
208 }
209 AcpiUtRemoveReference (ObjDesc);

211 WalkState->ControlState->Common.State = ACPI_CONTROL_NORMAL;
212 return_ACPI_STATUS (Status);
213 }

216 /***
217 *
218 * FUNCTION: AcpiDsExecBeginOp
219 *
220 * PARAMETERS: WalkState - Current state of the parse tree walk
221 * OutOp - Where to return op if a new one is created
222 *
223 * RETURN: Status
224 *
225 * DESCRIPTION: Descending callback used during the execution of control
226 * methods. This is where most operators and operands are
227 * dispatched to the interpreter.
228 *
229 **/

231 ACPI_STATUS
232 AcpiDsExecBeginOp (
233 ACPI_WALK_STATE *WalkState,
234 ACPI_PARSE_OBJECT **OutOp)
235 {
236 ACPI_PARSE_OBJECT *Op;
237 ACPI_STATUS Status = AE_OK;
238 UINT32 OpcodeClass;

241 ACPI_FUNCTION_TRACE_PTR (DsExecBeginOp, WalkState);

244 Op = WalkState->Op;
245 if (!Op)
246 {
247 Status = AcpiDsLoad2BeginOp (WalkState, OutOp);
248 if (ACPI_FAILURE (Status))
249 {
250 goto ErrorExit;
251 }

253 Op = *OutOp;
254 WalkState->Op = Op;
255 WalkState->Opcode = Op->Common.AmlOpcode;

new/usr/src/common/acpica/components/dispatcher/dswexec.c 5

256 WalkState->OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);

258 if (AcpiNsOpensScope (WalkState->OpInfo->ObjectType))
259 {
260 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
261 "(%s) Popping scope for Op %p\n",
262 AcpiUtGetTypeName (WalkState->OpInfo->ObjectType), Op));

264 Status = AcpiDsScopeStackPop (WalkState);
265 if (ACPI_FAILURE (Status))
266 {
267 goto ErrorExit;
268 }
269 }
270 }

272 if (Op == WalkState->Origin)
273 {
274 if (OutOp)
275 {
276 *OutOp = Op;
277 }

279 return_ACPI_STATUS (AE_OK);
280 }

282 /*
283 * If the previous opcode was a conditional, this opcode
284 * must be the beginning of the associated predicate.
285 * Save this knowledge in the current scope descriptor
286 */
287 if ((WalkState->ControlState) &&
288 (WalkState->ControlState->Common.State ==
289 ACPI_CONTROL_CONDITIONAL_EXECUTING))
290 {
291 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Exec predicate Op=%p State=%p\n",
292 Op, WalkState));

294 WalkState->ControlState->Common.State = ACPI_CONTROL_PREDICATE_EXECUTING

296 /* Save start of predicate */

298 WalkState->ControlState->Control.PredicateOp = Op;
299 }

302 OpcodeClass = WalkState->OpInfo->Class;

304 /* We want to send namepaths to the load code */

306 if (Op->Common.AmlOpcode == AML_INT_NAMEPATH_OP)
307 {
308 OpcodeClass = AML_CLASS_NAMED_OBJECT;
309 }

311 /*
312 * Handle the opcode based upon the opcode type
313 */
314 switch (OpcodeClass)
315 {
316 case AML_CLASS_CONTROL:

318 Status = AcpiDsExecBeginControlOp (WalkState, Op);
319 break;

new/usr/src/common/acpica/components/dispatcher/dswexec.c 6

321 case AML_CLASS_NAMED_OBJECT:

323 if (WalkState->WalkType & ACPI_WALK_METHOD)
324 {
325 /*
326 * Found a named object declaration during method execution;
327 * we must enter this object into the namespace. The created
328 * object is temporary and will be deleted upon completion of
329 * the execution of this method.
330 *
331 * Note 10/2010: Except for the Scope() op. This opcode does
332 * not actually create a new object, it refers to an existing
333 * object. However, for Scope(), we want to indeed open a
334 * new scope.
335 */
336 if (Op->Common.AmlOpcode != AML_SCOPE_OP)
337 {
338 Status = AcpiDsLoad2BeginOp (WalkState, NULL);
339 }
340 else
341 {
342 Status = AcpiDsScopeStackPush (Op->Named.Node,
343 Op->Named.Node->Type, WalkState);
344 if (ACPI_FAILURE (Status))
345 {
346 return_ACPI_STATUS (Status);
347 }
348 }
349 }
350 break;

352 case AML_CLASS_EXECUTE:
353 case AML_CLASS_CREATE:

355 break;

357 default:

360 default:
359 break;
360 }

362 /* Nothing to do here during method execution */

364 return_ACPI_STATUS (Status);

367 ErrorExit:
368 Status = AcpiDsMethodError (Status, WalkState);
369 return_ACPI_STATUS (Status);
370 }

373 /***
374 *
375 * FUNCTION: AcpiDsExecEndOp
376 *
377 * PARAMETERS: WalkState - Current state of the parse tree walk
378 *
379 * RETURN: Status
380 *
381 * DESCRIPTION: Ascending callback used during the execution of control
382 * methods. The only thing we really need to do here is to
383 * notice the beginning of IF, ELSE, and WHILE blocks.
384 *

new/usr/src/common/acpica/components/dispatcher/dswexec.c 7

385 **/

387 ACPI_STATUS
388 AcpiDsExecEndOp (
389 ACPI_WALK_STATE *WalkState)
390 {
391 ACPI_PARSE_OBJECT *Op;
392 ACPI_STATUS Status = AE_OK;
393 UINT32 OpType;
394 UINT32 OpClass;
395 ACPI_PARSE_OBJECT *NextOp;
396 ACPI_PARSE_OBJECT *FirstArg;

399 ACPI_FUNCTION_TRACE_PTR (DsExecEndOp, WalkState);

402 Op = WalkState->Op;
403 OpType = WalkState->OpInfo->Type;
404 OpClass = WalkState->OpInfo->Class;

406 if (OpClass == AML_CLASS_UNKNOWN)
407 {
408 ACPI_ERROR ((AE_INFO, "Unknown opcode 0x%X", Op->Common.AmlOpcode));
409 return_ACPI_STATUS (AE_NOT_IMPLEMENTED);
410 }

412 FirstArg = Op->Common.Value.Arg;

414 /* Init the walk state */

416 WalkState->NumOperands = 0;
417 WalkState->OperandIndex = 0;
418 WalkState->ReturnDesc = NULL;
419 WalkState->ResultObj = NULL;

421 /* Call debugger for single step support (DEBUG build only) */

423 ACPI_DEBUGGER_EXEC (Status = AcpiDbSingleStep (WalkState, Op, OpClass));
424 ACPI_DEBUGGER_EXEC (if (ACPI_FAILURE (Status)) {return_ACPI_STATUS (Status);

426 /* Decode the Opcode Class */

428 switch (OpClass)
429 {
430 case AML_CLASS_ARGUMENT: /* Constants, literals, etc. */

432 if (WalkState->Opcode == AML_INT_NAMEPATH_OP)
433 {
434 Status = AcpiDsEvaluateNamePath (WalkState);
435 if (ACPI_FAILURE (Status))
436 {
437 goto Cleanup;
438 }
439 }
440 break;

442 case AML_CLASS_EXECUTE: /* Most operators with arguments */

444 /* Build resolved operand stack */

446 Status = AcpiDsCreateOperands (WalkState, FirstArg);
447 if (ACPI_FAILURE (Status))
448 {
449 goto Cleanup;

new/usr/src/common/acpica/components/dispatcher/dswexec.c 8

450 }

452 /*
453 * All opcodes require operand resolution, with the only exceptions
454 * being the ObjectType and SizeOf operators.
455 */
456 if (!(WalkState->OpInfo->Flags & AML_NO_OPERAND_RESOLVE))
457 {
458 /* Resolve all operands */

460 Status = AcpiExResolveOperands (WalkState->Opcode,
461 &(WalkState->Operands [WalkState->NumOperands -1]),
462 WalkState);
463 }

465 if (ACPI_SUCCESS (Status))
466 {
467 /*
468 * Dispatch the request to the appropriate interpreter handler
469 * routine. There is one routine per opcode "type" based upon the
470 * number of opcode arguments and return type.
471 */
472 Status = AcpiGbl_OpTypeDispatch[OpType] (WalkState);
473 }
474 else
475 {
476 /*
477 * Treat constructs of the form "Store(LocalX,LocalX)" as noops when
478 * Local is uninitialized.
479 */
480 if ((Status == AE_AML_UNINITIALIZED_LOCAL) &&
481 (WalkState->Opcode == AML_STORE_OP) &&
482 (WalkState->Operands[0]->Common.Type == ACPI_TYPE_LOCAL_REFERENC
483 (WalkState->Operands[1]->Common.Type == ACPI_TYPE_LOCAL_REFERENC
484 (WalkState->Operands[0]->Reference.Class ==
485 WalkState->Operands[1]->Reference.Class) &&
486 (WalkState->Operands[0]->Reference.Value ==
487 WalkState->Operands[1]->Reference.Value))
488 {
489 Status = AE_OK;
490 }
491 else
492 {
493 ACPI_EXCEPTION ((AE_INFO, Status,
494 "While resolving operands for [%s]",
495 AcpiPsGetOpcodeName (WalkState->Opcode)));
496 }
497 }

499 /* Always delete the argument objects and clear the operand stack */

501 AcpiDsClearOperands (WalkState);

503 /*
504 * If a result object was returned from above, push it on the
505 * current result stack
506 */
507 if (ACPI_SUCCESS (Status) &&
508 WalkState->ResultObj)
509 {
510 Status = AcpiDsResultPush (WalkState->ResultObj, WalkState);
511 }
512 break;

514 default:

new/usr/src/common/acpica/components/dispatcher/dswexec.c 9

516 switch (OpType)
517 {
518 case AML_TYPE_CONTROL: /* Type 1 opcode, IF/ELSE/WHILE/NOOP */

520 /* 1 Operand, 0 ExternalResult, 0 InternalResult */

522 Status = AcpiDsExecEndControlOp (WalkState, Op);

524 break;

526 case AML_TYPE_METHOD_CALL:

527 /*
528 * If the method is referenced from within a package
529 * declaration, it is not a invocation of the method, just
530 * a reference to it.
531 */
532 if ((Op->Asl.Parent) &&
533 ((Op->Asl.Parent->Asl.AmlOpcode == AML_PACKAGE_OP) ||
534 (Op->Asl.Parent->Asl.AmlOpcode == AML_VAR_PACKAGE_OP)))
535 {
536 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
537 "Method Reference in a Package, Op=%p\n", Op));

539 Op->Common.Node = (ACPI_NAMESPACE_NODE *) Op->Asl.Value.Arg->Asl
540 AcpiUtAddReference (Op->Asl.Value.Arg->Asl.Node->Object);
541 return_ACPI_STATUS (AE_OK);
542 }

544 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
545 "Method invocation, Op=%p\n", Op));
550 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Method invocation, Op=%p\n", O

547 /*
548 * (AML_METHODCALL) Op->Asl.Value.Arg->Asl.Node contains
549 * the method Node pointer
550 */
551 /* NextOp points to the op that holds the method name */

553 NextOp = FirstArg;

555 /* NextOp points to first argument op */

557 NextOp = NextOp->Common.Next;

559 /*
560 * Get the method’s arguments and put them on the operand stack
561 */
562 Status = AcpiDsCreateOperands (WalkState, NextOp);
563 if (ACPI_FAILURE (Status))
564 {
565 break;
566 }

568 /*
569 * Since the operands will be passed to another control method,
570 * we must resolve all local references here (Local variables,
571 * arguments to *this* method, etc.)
572 */
573 Status = AcpiDsResolveOperands (WalkState);
574 if (ACPI_FAILURE (Status))
575 {
576 /* On error, clear all resolved operands */

new/usr/src/common/acpica/components/dispatcher/dswexec.c 10

578 AcpiDsClearOperands (WalkState);
579 break;
580 }

582 /*
583 * Tell the walk loop to preempt this running method and
584 * execute the new method
585 */
586 Status = AE_CTRL_TRANSFER;

588 /*
589 * Return now; we don’t want to disturb anything,
590 * especially the operand count!
591 */
592 return_ACPI_STATUS (Status);

594 case AML_TYPE_CREATE_FIELD:

596 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
597 "Executing CreateField Buffer/Index Op=%p\n", Op));

599 Status = AcpiDsLoad2EndOp (WalkState);
600 if (ACPI_FAILURE (Status))
601 {
602 break;
603 }

605 Status = AcpiDsEvalBufferFieldOperands (WalkState, Op);
606 break;

609 case AML_TYPE_CREATE_OBJECT:

611 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
612 "Executing CreateObject (Buffer/Package) Op=%p\n", Op));

614 switch (Op->Common.Parent->Common.AmlOpcode)
615 {
616 case AML_NAME_OP:

617 /*
618 * Put the Node on the object stack (Contains the ACPI Name
619 * of this object)
620 */
621 WalkState->Operands[0] = (void *) Op->Common.Parent->Common.Node
622 WalkState->NumOperands = 1;

624 Status = AcpiDsCreateNode (WalkState,
625 Op->Common.Parent->Common.Node,
626 Op->Common.Parent);
627 if (ACPI_FAILURE (Status))
628 {
629 break;
630 }

632 /* Fall through */
633 /*lint -fallthrough */

635 case AML_INT_EVAL_SUBTREE_OP:

637 Status = AcpiDsEvalDataObjectOperands (WalkState, Op,
638 AcpiNsGetAttachedObject (Op->Common.Parent->Common.N
639 break;

641 default:

new/usr/src/common/acpica/components/dispatcher/dswexec.c 11

643 Status = AcpiDsEvalDataObjectOperands (WalkState, Op, NULL);
644 break;
645 }

647 /*
648 * If a result object was returned from above, push it on the
649 * current result stack
650 */
651 if (WalkState->ResultObj)
652 {
653 Status = AcpiDsResultPush (WalkState->ResultObj, WalkState);
654 }
655 break;

657 case AML_TYPE_NAMED_FIELD:
658 case AML_TYPE_NAMED_COMPLEX:
659 case AML_TYPE_NAMED_SIMPLE:
660 case AML_TYPE_NAMED_NO_OBJ:

662 Status = AcpiDsLoad2EndOp (WalkState);
663 if (ACPI_FAILURE (Status))
664 {
665 break;
666 }

668 if (Op->Common.AmlOpcode == AML_REGION_OP)
669 {
670 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
671 "Executing OpRegion Address/Length Op=%p\n", Op));

673 Status = AcpiDsEvalRegionOperands (WalkState, Op);
674 if (ACPI_FAILURE (Status))
675 {
676 break;
677 }
678 }
679 else if (Op->Common.AmlOpcode == AML_DATA_REGION_OP)
680 {
681 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
682 "Executing DataTableRegion Strings Op=%p\n", Op));

684 Status = AcpiDsEvalTableRegionOperands (WalkState, Op);
685 if (ACPI_FAILURE (Status))
686 {
687 break;
688 }
689 }
690 else if (Op->Common.AmlOpcode == AML_BANK_FIELD_OP)
691 {
692 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
693 "Executing BankField Op=%p\n", Op));

695 Status = AcpiDsEvalBankFieldOperands (WalkState, Op);
696 if (ACPI_FAILURE (Status))
697 {
698 break;
699 }
700 }
701 break;

703 case AML_TYPE_UNDEFINED:

705 ACPI_ERROR ((AE_INFO,

new/usr/src/common/acpica/components/dispatcher/dswexec.c 12

706 "Undefined opcode type Op=%p", Op));
707 return_ACPI_STATUS (AE_NOT_IMPLEMENTED);

709 case AML_TYPE_BOGUS:

711 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
712 "Internal opcode=%X type Op=%p\n",
713 WalkState->Opcode, Op));
714 break;

716 default:

718 ACPI_ERROR ((AE_INFO,
719 "Unimplemented opcode, class=0x%X type=0x%X Opcode=0x%X Op=%p",
730 "Unimplemented opcode, class=0x%X type=0x%X Opcode=-0x%X Op=%p",
720 OpClass, OpType, Op->Common.AmlOpcode, Op));

722 Status = AE_NOT_IMPLEMENTED;
723 break;
724 }
725 }

727 /*
728 * ACPI 2.0 support for 64-bit integers: Truncate numeric
729 * result value if we are executing from a 32-bit ACPI table
730 */
731 (void) AcpiExTruncateFor32bitTable (WalkState->ResultObj);
742 AcpiExTruncateFor32bitTable (WalkState->ResultObj);

733 /*
734 * Check if we just completed the evaluation of a
735 * conditional predicate
736 */
737 if ((ACPI_SUCCESS (Status)) &&
738 (WalkState->ControlState) &&
739 (WalkState->ControlState->Common.State ==
740 ACPI_CONTROL_PREDICATE_EXECUTING) &&
741 (WalkState->ControlState->Control.PredicateOp == Op))
742 {
743 Status = AcpiDsGetPredicateValue (WalkState, WalkState->ResultObj);
744 WalkState->ResultObj = NULL;
745 }

748 Cleanup:

750 if (WalkState->ResultObj)
751 {
752 /* Break to debugger to display result */

754 ACPI_DEBUGGER_EXEC (AcpiDbDisplayResultObject (WalkState->ResultObj,
755 WalkState));

757 /*
758 * Delete the result op if and only if:
759 * Parent will not use the result -- such as any
760 * non-nested type2 op in a method (parent will be method)
761 */
762 AcpiDsDeleteResultIfNotUsed (Op, WalkState->ResultObj, WalkState);
763 }

765 #ifdef _UNDER_DEVELOPMENT

767 if (WalkState->ParserState.Aml == WalkState->ParserState.AmlEnd)

new/usr/src/common/acpica/components/dispatcher/dswexec.c 13

768 {
769 AcpiDbMethodEnd (WalkState);
770 }
771 #endif

773 /* Invoke exception handler on error */

775 if (ACPI_FAILURE (Status))
776 {
777 Status = AcpiDsMethodError (Status, WalkState);
778 }

780 /* Always clear the object stack */

782 WalkState->NumOperands = 0;
783 return_ACPI_STATUS (Status);
784 }

new/usr/src/common/acpica/components/dispatcher/dswload.c 1

**
 17940 Thu Dec 26 13:48:53 2013
new/usr/src/common/acpica/components/dispatcher/dswload.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dswload - Dispatcher first pass namespace load callbacks
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DSWLOAD_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acparser.h"
49 #include "amlcode.h"
50 #include "acdispat.h"
51 #include "acinterp.h"
52 #include "acnamesp.h"

54 #ifdef ACPI_ASL_COMPILER
55 #include "acdisasm.h"
56 #endif

58 #define _COMPONENT ACPI_DISPATCHER

new/usr/src/common/acpica/components/dispatcher/dswload.c 2

59 ACPI_MODULE_NAME ("dswload")

62 /***
63 *
64 * FUNCTION: AcpiDsInitCallbacks
65 *
66 * PARAMETERS: WalkState - Current state of the parse tree walk
67 * PassNumber - 1, 2, or 3
68 *
69 * RETURN: Status
70 *
71 * DESCRIPTION: Init walk state callbacks
72 *
73 **/

75 ACPI_STATUS
76 AcpiDsInitCallbacks (
77 ACPI_WALK_STATE *WalkState,
78 UINT32 PassNumber)
79 {

81 switch (PassNumber)
82 {
83 case 1:

85 WalkState->ParseFlags = ACPI_PARSE_LOAD_PASS1 |
86 ACPI_PARSE_DELETE_TREE;
87 WalkState->DescendingCallback = AcpiDsLoad1BeginOp;
88 WalkState->AscendingCallback = AcpiDsLoad1EndOp;
89 break;

91 case 2:

93 WalkState->ParseFlags = ACPI_PARSE_LOAD_PASS1 |
94 ACPI_PARSE_DELETE_TREE;
95 WalkState->DescendingCallback = AcpiDsLoad2BeginOp;
96 WalkState->AscendingCallback = AcpiDsLoad2EndOp;
97 break;

99 case 3:

101 #ifndef ACPI_NO_METHOD_EXECUTION
102 WalkState->ParseFlags |= ACPI_PARSE_EXECUTE |
103 ACPI_PARSE_DELETE_TREE;
104 WalkState->DescendingCallback = AcpiDsExecBeginOp;
105 WalkState->AscendingCallback = AcpiDsExecEndOp;
106 #endif
107 break;

109 default:

111 return (AE_BAD_PARAMETER);
112 }

114 return (AE_OK);
115 }

118 /***
119 *
120 * FUNCTION: AcpiDsLoad1BeginOp
121 *
122 * PARAMETERS: WalkState - Current state of the parse tree walk
123 * OutOp - Where to return op if a new one is created
124 *

new/usr/src/common/acpica/components/dispatcher/dswload.c 3

125 * RETURN: Status
126 *
127 * DESCRIPTION: Descending callback used during the loading of ACPI tables.
128 *
129 **/

131 ACPI_STATUS
132 AcpiDsLoad1BeginOp (
133 ACPI_WALK_STATE *WalkState,
134 ACPI_PARSE_OBJECT **OutOp)
135 {
136 ACPI_PARSE_OBJECT *Op;
137 ACPI_NAMESPACE_NODE *Node;
138 ACPI_STATUS Status;
139 ACPI_OBJECT_TYPE ObjectType;
140 char *Path;
141 UINT32 Flags;

144 ACPI_FUNCTION_TRACE (DsLoad1BeginOp);

147 Op = WalkState->Op;
148 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Op=%p State=%p\n", Op, WalkState));

150 /* We are only interested in opcodes that have an associated name */

152 if (Op)
153 {
154 if (!(WalkState->OpInfo->Flags & AML_NAMED))
155 {
156 *OutOp = Op;
157 return_ACPI_STATUS (AE_OK);
158 }

160 /* Check if this object has already been installed in the namespace */

162 if (Op->Common.Node)
163 {
164 *OutOp = Op;
165 return_ACPI_STATUS (AE_OK);
166 }
167 }

169 Path = AcpiPsGetNextNamestring (&WalkState->ParserState);

171 /* Map the raw opcode into an internal object type */

173 ObjectType = WalkState->OpInfo->ObjectType;

175 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
176 "State=%p Op=%p [%s]\n", WalkState, Op, AcpiUtGetTypeName (ObjectType)))

178 switch (WalkState->Opcode)
179 {
180 case AML_SCOPE_OP:

181 /*
182 * The target name of the Scope() operator must exist at this point so
183 * that we can actually open the scope to enter new names underneath it.
184 * Allow search-to-root for single namesegs.
185 */
186 Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ObjectType,
187 ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT, WalkState, &(
188 #ifdef ACPI_ASL_COMPILER
189 if (Status == AE_NOT_FOUND)

new/usr/src/common/acpica/components/dispatcher/dswload.c 4

190 {
191 /*
192 * Table disassembly:
193 * Target of Scope() not found. Generate an External for it, and
194 * insert the name into the namespace.
195 */
196 AcpiDmAddOpToExternalList (Op, Path, ACPI_TYPE_DEVICE, 0, 0);
193 AcpiDmAddToExternalList (Op, Path, ACPI_TYPE_DEVICE, 0);
197 Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ObjectType,
198 ACPI_IMODE_LOAD_PASS1, ACPI_NS_SEARCH_PARENT,
199 WalkState, &Node);
200 }
201 #endif
202 if (ACPI_FAILURE (Status))
203 {
204 ACPI_ERROR_NAMESPACE (Path, Status);
205 return_ACPI_STATUS (Status);
206 }

208 /*
209 * Check to make sure that the target is
210 * one of the opcodes that actually opens a scope
211 */
212 switch (Node->Type)
213 {
214 case ACPI_TYPE_ANY:
215 case ACPI_TYPE_LOCAL_SCOPE: /* Scope */
216 case ACPI_TYPE_DEVICE:
217 case ACPI_TYPE_POWER:
218 case ACPI_TYPE_PROCESSOR:
219 case ACPI_TYPE_THERMAL:

221 /* These are acceptable types */
222 break;

224 case ACPI_TYPE_INTEGER:
225 case ACPI_TYPE_STRING:
226 case ACPI_TYPE_BUFFER:

227 /*
228 * These types we will allow, but we will change the type.
229 * This enables some existing code of the form:
230 *
231 * Name (DEB, 0)
232 * Scope (DEB) { ... }
233 *
234 * Note: silently change the type here. On the second pass,
235 * we will report a warning
236 */
237 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
238 "Type override - [%4.4s] had invalid type (%s) "
239 "for Scope operator, changed to type ANY\n",
240 AcpiUtGetNodeName (Node), AcpiUtGetTypeName (Node->Type)));

242 Node->Type = ACPI_TYPE_ANY;
243 WalkState->ScopeInfo->Common.Value = ACPI_TYPE_ANY;
244 break;

246 case ACPI_TYPE_METHOD:
247 /*
248 * Allow scope change to root during execution of module-level
249 * code. Root is typed METHOD during this time.
250 */
251 if ((Node == AcpiGbl_RootNode) &&
252 (WalkState->ParseFlags & ACPI_PARSE_MODULE_LEVEL))
253 {

new/usr/src/common/acpica/components/dispatcher/dswload.c 5

254 break;
255 }

257 /*lint -fallthrough */

259 default:

261 /* All other types are an error */

263 ACPI_ERROR ((AE_INFO,
264 "Invalid type (%s) for target of "
265 "Scope operator [%4.4s] (Cannot override)",
266 AcpiUtGetTypeName (Node->Type), AcpiUtGetNodeName (Node)));

268 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
269 }
270 break;

272 default:
273 /*
274 * For all other named opcodes, we will enter the name into
275 * the namespace.
276 *
277 * Setup the search flags.
278 * Since we are entering a name into the namespace, we do not want to
279 * enable the search-to-root upsearch.
280 *
281 * There are only two conditions where it is acceptable that the name
282 * already exists:
283 * 1) the Scope() operator can reopen a scoping object that was
284 * previously defined (Scope, Method, Device, etc.)
285 * 2) Whenever we are parsing a deferred opcode (OpRegion, Buffer,
286 * BufferField, or Package), the name of the object is already
287 * in the namespace.
288 */
289 if (WalkState->DeferredNode)
290 {
291 /* This name is already in the namespace, get the node */

293 Node = WalkState->DeferredNode;
294 Status = AE_OK;
295 break;
296 }

298 /*
299 * If we are executing a method, do not create any namespace objects
300 * during the load phase, only during execution.
301 */
302 if (WalkState->MethodNode)
303 {
304 Node = NULL;
305 Status = AE_OK;
306 break;
307 }

309 Flags = ACPI_NS_NO_UPSEARCH;
310 if ((WalkState->Opcode != AML_SCOPE_OP) &&
311 (!(WalkState->ParseFlags & ACPI_PARSE_DEFERRED_OP)))
312 {
313 Flags |= ACPI_NS_ERROR_IF_FOUND;
314 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "[%s] Cannot already exist\n",
315 AcpiUtGetTypeName (ObjectType)));
316 }
317 else
318 {

new/usr/src/common/acpica/components/dispatcher/dswload.c 6

319 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
320 "[%s] Both Find or Create allowed\n",
321 AcpiUtGetTypeName (ObjectType)));
322 }

324 /*
325 * Enter the named type into the internal namespace. We enter the name
326 * as we go downward in the parse tree. Any necessary subobjects that
327 * involve arguments to the opcode must be created as we go back up the
328 * parse tree later.
329 */
330 Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ObjectType,
331 ACPI_IMODE_LOAD_PASS1, Flags, WalkState, &Node);
332 if (ACPI_FAILURE (Status))
333 {
334 if (Status == AE_ALREADY_EXISTS)
335 {
336 /* The name already exists in this scope */

338 if (Node->Flags & ANOBJ_IS_EXTERNAL)
339 {
340 /*
341 * Allow one create on an object or segment that was
342 * previously declared External
343 */
344 Node->Flags &= ~ANOBJ_IS_EXTERNAL;
345 Node->Type = (UINT8) ObjectType;

347 /* Just retyped a node, probably will need to open a scope *

349 if (AcpiNsOpensScope (ObjectType))
350 {
351 Status = AcpiDsScopeStackPush (Node, ObjectType, WalkSta
352 if (ACPI_FAILURE (Status))
353 {
354 return_ACPI_STATUS (Status);
355 }
356 }

358 Status = AE_OK;
359 }
360 }

362 if (ACPI_FAILURE (Status))
363 {
364 ACPI_ERROR_NAMESPACE (Path, Status);
365 return_ACPI_STATUS (Status);
366 }
367 }
368 break;
369 }

371 /* Common exit */

373 if (!Op)
374 {
375 /* Create a new op */

377 Op = AcpiPsAllocOp (WalkState->Opcode);
378 if (!Op)
379 {
380 return_ACPI_STATUS (AE_NO_MEMORY);
381 }
382 }

384 /* Initialize the op */

new/usr/src/common/acpica/components/dispatcher/dswload.c 7

386 #if (defined (ACPI_NO_METHOD_EXECUTION) || defined (ACPI_CONSTANT_EVAL_ONLY))
387 Op->Named.Path = ACPI_CAST_PTR (UINT8, Path);
388 #endif

390 if (Node)
391 {
392 /*
393 * Put the Node in the "op" object that the parser uses, so we
394 * can get it again quickly when this scope is closed
395 */
396 Op->Common.Node = Node;
397 Op->Named.Name = Node->Name.Integer;
398 }

400 AcpiPsAppendArg (AcpiPsGetParentScope (&WalkState->ParserState), Op);
401 *OutOp = Op;
402 return_ACPI_STATUS (Status);
403 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/dispatcher/dswload2.c 1

**
 21930 Thu Dec 26 13:48:54 2013
new/usr/src/common/acpica/components/dispatcher/dswload2.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dswload2 - Dispatcher second pass namespace load callbacks
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DSWLOAD2_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acparser.h"
49 #include "amlcode.h"
50 #include "acdispat.h"
51 #include "acinterp.h"
52 #include "acnamesp.h"
53 #include "acevents.h"

55 #define _COMPONENT ACPI_DISPATCHER
56 ACPI_MODULE_NAME ("dswload2")

59 /***

new/usr/src/common/acpica/components/dispatcher/dswload2.c 2

60 *
61 * FUNCTION: AcpiDsLoad2BeginOp
62 *
63 * PARAMETERS: WalkState - Current state of the parse tree walk
64 * OutOp - Wher to return op if a new one is created
65 *
66 * RETURN: Status
67 *
68 * DESCRIPTION: Descending callback used during the loading of ACPI tables.
69 *
70 **/

72 ACPI_STATUS
73 AcpiDsLoad2BeginOp (
74 ACPI_WALK_STATE *WalkState,
75 ACPI_PARSE_OBJECT **OutOp)
76 {
77 ACPI_PARSE_OBJECT *Op;
78 ACPI_NAMESPACE_NODE *Node;
79 ACPI_STATUS Status;
80 ACPI_OBJECT_TYPE ObjectType;
81 char *BufferPtr;
82 UINT32 Flags;

85 ACPI_FUNCTION_TRACE (DsLoad2BeginOp);

88 Op = WalkState->Op;
89 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Op=%p State=%p\n", Op, WalkState));

91 if (Op)
92 {
93 if ((WalkState->ControlState) &&
94 (WalkState->ControlState->Common.State ==
95 ACPI_CONTROL_CONDITIONAL_EXECUTING))
96 {
97 /* We are executing a while loop outside of a method */

99 Status = AcpiDsExecBeginOp (WalkState, OutOp);
100 return_ACPI_STATUS (Status);
101 }

103 /* We only care about Namespace opcodes here */

105 if ((!(WalkState->OpInfo->Flags & AML_NSOPCODE) &&
106 (WalkState->Opcode != AML_INT_NAMEPATH_OP)) ||
107 (!(WalkState->OpInfo->Flags & AML_NAMED)))
108 {
109 return_ACPI_STATUS (AE_OK);
110 }

112 /* Get the name we are going to enter or lookup in the namespace */

114 if (WalkState->Opcode == AML_INT_NAMEPATH_OP)
115 {
116 /* For Namepath op, get the path string */

118 BufferPtr = Op->Common.Value.String;
119 if (!BufferPtr)
120 {
121 /* No name, just exit */

123 return_ACPI_STATUS (AE_OK);
124 }
125 }

new/usr/src/common/acpica/components/dispatcher/dswload2.c 3

126 else
127 {
128 /* Get name from the op */

130 BufferPtr = ACPI_CAST_PTR (char, &Op->Named.Name);
131 }
132 }
133 else
134 {
135 /* Get the namestring from the raw AML */

137 BufferPtr = AcpiPsGetNextNamestring (&WalkState->ParserState);
138 }

140 /* Map the opcode into an internal object type */

142 ObjectType = WalkState->OpInfo->ObjectType;

144 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
145 "State=%p Op=%p Type=%X\n", WalkState, Op, ObjectType));

147 switch (WalkState->Opcode)
148 {
149 case AML_FIELD_OP:
150 case AML_BANK_FIELD_OP:
151 case AML_INDEX_FIELD_OP:

153 Node = NULL;
154 Status = AE_OK;
155 break;

157 case AML_INT_NAMEPATH_OP:
158 /*
159 * The NamePath is an object reference to an existing object.
160 * Don’t enter the name into the namespace, but look it up
161 * for use later.
162 */
163 Status = AcpiNsLookup (WalkState->ScopeInfo, BufferPtr, ObjectType,
164 ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT,
165 WalkState, &(Node));
166 break;

168 case AML_SCOPE_OP:

170 /* Special case for Scope(\) -> refers to the Root node */

172 if (Op && (Op->Named.Node == AcpiGbl_RootNode))
173 {
174 Node = Op->Named.Node;

176 Status = AcpiDsScopeStackPush (Node, ObjectType, WalkState);
177 if (ACPI_FAILURE (Status))
178 {
179 return_ACPI_STATUS (Status);
180 }
181 }
182 else
183 {
184 /*
185 * The Path is an object reference to an existing object.
186 * Don’t enter the name into the namespace, but look it up
187 * for use later.
188 */
189 Status = AcpiNsLookup (WalkState->ScopeInfo, BufferPtr, ObjectType,
190 ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT,
191 WalkState, &(Node));

new/usr/src/common/acpica/components/dispatcher/dswload2.c 4

192 if (ACPI_FAILURE (Status))
193 {
194 #ifdef ACPI_ASL_COMPILER
195 if (Status == AE_NOT_FOUND)
196 {
197 Status = AE_OK;
198 }
199 else
200 {
201 ACPI_ERROR_NAMESPACE (BufferPtr, Status);
202 }
203 #else
204 ACPI_ERROR_NAMESPACE (BufferPtr, Status);
205 #endif
206 return_ACPI_STATUS (Status);
207 }
208 }

210 /*
211 * We must check to make sure that the target is
212 * one of the opcodes that actually opens a scope
213 */
214 switch (Node->Type)
215 {
216 case ACPI_TYPE_ANY:
217 case ACPI_TYPE_LOCAL_SCOPE: /* Scope */
218 case ACPI_TYPE_DEVICE:
219 case ACPI_TYPE_POWER:
220 case ACPI_TYPE_PROCESSOR:
221 case ACPI_TYPE_THERMAL:

223 /* These are acceptable types */
224 break;

226 case ACPI_TYPE_INTEGER:
227 case ACPI_TYPE_STRING:
228 case ACPI_TYPE_BUFFER:

230 /*
231 * These types we will allow, but we will change the type.
232 * This enables some existing code of the form:
233 *
234 * Name (DEB, 0)
235 * Scope (DEB) { ... }
236 */
237 ACPI_WARNING ((AE_INFO,
238 "Type override - [%4.4s] had invalid type (%s) "
239 "for Scope operator, changed to type ANY",
239 "for Scope operator, changed to type ANY\n",
240 AcpiUtGetNodeName (Node), AcpiUtGetTypeName (Node->Type)));

242 Node->Type = ACPI_TYPE_ANY;
243 WalkState->ScopeInfo->Common.Value = ACPI_TYPE_ANY;
244 break;

246 case ACPI_TYPE_METHOD:

248 /*
249 * Allow scope change to root during execution of module-level
250 * code. Root is typed METHOD during this time.
251 */
252 if ((Node == AcpiGbl_RootNode) &&
253 (WalkState->ParseFlags & ACPI_PARSE_MODULE_LEVEL))
254 {
255 break;
256 }

new/usr/src/common/acpica/components/dispatcher/dswload2.c 5

258 /*lint -fallthrough */

260 default:

262 /* All other types are an error */

264 ACPI_ERROR ((AE_INFO,
265 "Invalid type (%s) for target of "
266 "Scope operator [%4.4s] (Cannot override)",
267 AcpiUtGetTypeName (Node->Type), AcpiUtGetNodeName (Node)));

269 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
255 return (AE_AML_OPERAND_TYPE);
270 }
271 break;

273 default:

275 /* All other opcodes */

277 if (Op && Op->Common.Node)
278 {
279 /* This op/node was previously entered into the namespace */

281 Node = Op->Common.Node;

283 if (AcpiNsOpensScope (ObjectType))
284 {
285 Status = AcpiDsScopeStackPush (Node, ObjectType, WalkState);
286 if (ACPI_FAILURE (Status))
287 {
288 return_ACPI_STATUS (Status);
289 }
290 }

292 return_ACPI_STATUS (AE_OK);
293 }

295 /*
296 * Enter the named type into the internal namespace. We enter the name
297 * as we go downward in the parse tree. Any necessary subobjects that
298 * involve arguments to the opcode must be created as we go back up the
299 * parse tree later.
300 *
301 * Note: Name may already exist if we are executing a deferred opcode.
302 */
303 if (WalkState->DeferredNode)
304 {
305 /* This name is already in the namespace, get the node */

307 Node = WalkState->DeferredNode;
308 Status = AE_OK;
309 break;
310 }

312 Flags = ACPI_NS_NO_UPSEARCH;
313 if (WalkState->PassNumber == ACPI_IMODE_EXECUTE)
314 {
315 /* Execution mode, node cannot already exist, node is temporary */

317 Flags |= ACPI_NS_ERROR_IF_FOUND;

319 if (!(WalkState->ParseFlags & ACPI_PARSE_MODULE_LEVEL))
320 {
321 Flags |= ACPI_NS_TEMPORARY;

new/usr/src/common/acpica/components/dispatcher/dswload2.c 6

322 }
323 }

325 /* Add new entry or lookup existing entry */

327 Status = AcpiNsLookup (WalkState->ScopeInfo, BufferPtr, ObjectType,
328 ACPI_IMODE_LOAD_PASS2, Flags, WalkState, &Node);

330 if (ACPI_SUCCESS (Status) && (Flags & ACPI_NS_TEMPORARY))
331 {
332 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
333 "***New Node [%4.4s] %p is temporary\n",
334 AcpiUtGetNodeName (Node), Node));
335 }
336 break;
337 }

339 if (ACPI_FAILURE (Status))
340 {
341 ACPI_ERROR_NAMESPACE (BufferPtr, Status);
342 return_ACPI_STATUS (Status);
343 }

345 if (!Op)
346 {
347 /* Create a new op */

349 Op = AcpiPsAllocOp (WalkState->Opcode);
350 if (!Op)
351 {
352 return_ACPI_STATUS (AE_NO_MEMORY);
353 }

355 /* Initialize the new op */

357 if (Node)
358 {
359 Op->Named.Name = Node->Name.Integer;
360 }
361 *OutOp = Op;
362 }

364 /*
365 * Put the Node in the "op" object that the parser uses, so we
366 * can get it again quickly when this scope is closed
367 */
368 Op->Common.Node = Node;
369 return_ACPI_STATUS (Status);
370 }

373 /***
374 *
375 * FUNCTION: AcpiDsLoad2EndOp
376 *
377 * PARAMETERS: WalkState - Current state of the parse tree walk
378 *
379 * RETURN: Status
380 *
381 * DESCRIPTION: Ascending callback used during the loading of the namespace,
382 * both control methods and everything else.
383 *
384 **/

386 ACPI_STATUS
387 AcpiDsLoad2EndOp (

new/usr/src/common/acpica/components/dispatcher/dswload2.c 7

388 ACPI_WALK_STATE *WalkState)
389 {
390 ACPI_PARSE_OBJECT *Op;
391 ACPI_STATUS Status = AE_OK;
392 ACPI_OBJECT_TYPE ObjectType;
393 ACPI_NAMESPACE_NODE *Node;
394 ACPI_PARSE_OBJECT *Arg;
395 ACPI_NAMESPACE_NODE *NewNode;
396 #ifndef ACPI_NO_METHOD_EXECUTION
397 UINT32 i;
398 UINT8 RegionSpace;
399 #endif

402 ACPI_FUNCTION_TRACE (DsLoad2EndOp);

404 Op = WalkState->Op;
405 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Opcode [%s] Op %p State %p\n",
406 WalkState->OpInfo->Name, Op, WalkState));

408 /* Check if opcode had an associated namespace object */

410 if (!(WalkState->OpInfo->Flags & AML_NSOBJECT))
411 {
412 return_ACPI_STATUS (AE_OK);
413 }

415 if (Op->Common.AmlOpcode == AML_SCOPE_OP)
416 {
417 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
418 "Ending scope Op=%p State=%p\n", Op, WalkState));
419 }

421 ObjectType = WalkState->OpInfo->ObjectType;

423 /*
424 * Get the Node/name from the earlier lookup
425 * (It was saved in the *op structure)
426 */
427 Node = Op->Common.Node;

429 /*
430 * Put the Node on the object stack (Contains the ACPI Name of
431 * this object)
432 */
433 WalkState->Operands[0] = (void *) Node;
434 WalkState->NumOperands = 1;

436 /* Pop the scope stack */

438 if (AcpiNsOpensScope (ObjectType) &&
439 (Op->Common.AmlOpcode != AML_INT_METHODCALL_OP))
440 {
441 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "(%s) Popping scope for Op %p\n",
442 AcpiUtGetTypeName (ObjectType), Op));

444 Status = AcpiDsScopeStackPop (WalkState);
445 if (ACPI_FAILURE (Status))
446 {
447 goto Cleanup;
448 }
449 }

451 /*
452 * Named operations are as follows:
453 *

new/usr/src/common/acpica/components/dispatcher/dswload2.c 8

454 * AML_ALIAS
455 * AML_BANKFIELD
456 * AML_CREATEBITFIELD
457 * AML_CREATEBYTEFIELD
458 * AML_CREATEDWORDFIELD
459 * AML_CREATEFIELD
460 * AML_CREATEQWORDFIELD
461 * AML_CREATEWORDFIELD
462 * AML_DATA_REGION
463 * AML_DEVICE
464 * AML_EVENT
465 * AML_FIELD
466 * AML_INDEXFIELD
467 * AML_METHOD
468 * AML_METHODCALL
469 * AML_MUTEX
470 * AML_NAME
471 * AML_NAMEDFIELD
472 * AML_OPREGION
473 * AML_POWERRES
474 * AML_PROCESSOR
475 * AML_SCOPE
476 * AML_THERMALZONE
477 */

479 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
480 "Create-Load [%s] State=%p Op=%p NamedObj=%p\n",
481 AcpiPsGetOpcodeName (Op->Common.AmlOpcode), WalkState, Op, Node));

483 /* Decode the opcode */

485 Arg = Op->Common.Value.Arg;

487 switch (WalkState->OpInfo->Type)
488 {
489 #ifndef ACPI_NO_METHOD_EXECUTION

491 case AML_TYPE_CREATE_FIELD:
492 /*
493 * Create the field object, but the field buffer and index must
494 * be evaluated later during the execution phase
495 */
496 Status = AcpiDsCreateBufferField (Op, WalkState);
497 break;

499 case AML_TYPE_NAMED_FIELD:
500 /*
501 * If we are executing a method, initialize the field
502 */
503 if (WalkState->MethodNode)
504 {
505 Status = AcpiDsInitFieldObjects (Op, WalkState);
506 }

508 switch (Op->Common.AmlOpcode)
509 {
510 case AML_INDEX_FIELD_OP:

512 Status = AcpiDsCreateIndexField (Op, (ACPI_HANDLE) Arg->Common.Node,
513 WalkState);
514 break;

516 case AML_BANK_FIELD_OP:

518 Status = AcpiDsCreateBankField (Op, Arg->Common.Node, WalkState);

new/usr/src/common/acpica/components/dispatcher/dswload2.c 9

519 break;

521 case AML_FIELD_OP:

523 Status = AcpiDsCreateField (Op, Arg->Common.Node, WalkState);
524 break;

526 default:

528 /* All NAMED_FIELD opcodes must be handled above */
529 break;
530 }
531 break;

533 case AML_TYPE_NAMED_SIMPLE:

535 Status = AcpiDsCreateOperands (WalkState, Arg);
536 if (ACPI_FAILURE (Status))
537 {
538 goto Cleanup;
539 }

541 switch (Op->Common.AmlOpcode)
542 {
543 case AML_PROCESSOR_OP:

545 Status = AcpiExCreateProcessor (WalkState);
546 break;

548 case AML_POWER_RES_OP:

550 Status = AcpiExCreatePowerResource (WalkState);
551 break;

553 case AML_MUTEX_OP:

555 Status = AcpiExCreateMutex (WalkState);
556 break;

558 case AML_EVENT_OP:

560 Status = AcpiExCreateEvent (WalkState);
561 break;

563 case AML_ALIAS_OP:

565 Status = AcpiExCreateAlias (WalkState);
566 break;

568 default:

570 /* Unknown opcode */

572 Status = AE_OK;
573 goto Cleanup;
574 }

576 /* Delete operands */

578 for (i = 1; i < WalkState->NumOperands; i++)
579 {
580 AcpiUtRemoveReference (WalkState->Operands[i]);
581 WalkState->Operands[i] = NULL;
582 }

new/usr/src/common/acpica/components/dispatcher/dswload2.c 10

584 break;
585 #endif /* ACPI_NO_METHOD_EXECUTION */

587 case AML_TYPE_NAMED_COMPLEX:

589 switch (Op->Common.AmlOpcode)
590 {
591 #ifndef ACPI_NO_METHOD_EXECUTION
592 case AML_REGION_OP:
593 case AML_DATA_REGION_OP:

595 if (Op->Common.AmlOpcode == AML_REGION_OP)
596 {
597 RegionSpace = (ACPI_ADR_SPACE_TYPE)
598 ((Op->Common.Value.Arg)->Common.Value.Integer);
599 }
600 else
601 {
602 RegionSpace = ACPI_ADR_SPACE_DATA_TABLE;
603 }

605 /*
606 * The OpRegion is not fully parsed at this time. The only valid
607 * argument is the SpaceId. (We must save the address of the
608 * AML of the address and length operands)
609 *
610 * If we have a valid region, initialize it. The namespace is
611 * unlocked at this point.
612 *
613 * Need to unlock interpreter if it is locked (if we are running
614 * a control method), in order to allow _REG methods to be run
615 * during AcpiEvInitializeRegion.
616 */
617 if (WalkState->MethodNode)
618 {
619 /*
620 * Executing a method: initialize the region and unlock
621 * the interpreter
622 */
623 Status = AcpiExCreateRegion (Op->Named.Data, Op->Named.Length,
624 RegionSpace, WalkState);
625 if (ACPI_FAILURE (Status))
626 {
627 return_ACPI_STATUS (Status);
614 return (Status);
628 }

630 AcpiExExitInterpreter ();
631 }

633 Status = AcpiEvInitializeRegion (AcpiNsGetAttachedObject (Node),
634 FALSE);
635 if (WalkState->MethodNode)
636 {
637 AcpiExEnterInterpreter ();
638 }

640 if (ACPI_FAILURE (Status))
641 {
642 /*
643 * If AE_NOT_EXIST is returned, it is not fatal
644 * because many regions get created before a handler
645 * is installed for said region.
646 */
647 if (AE_NOT_EXIST == Status)

new/usr/src/common/acpica/components/dispatcher/dswload2.c 11

648 {
649 Status = AE_OK;
650 }
651 }
652 break;

654 case AML_NAME_OP:

656 Status = AcpiDsCreateNode (WalkState, Node, Op);
657 break;

659 case AML_METHOD_OP:
660 /*
661 * MethodOp PkgLength NameString MethodFlags TermList
662 *
663 * Note: We must create the method node/object pair as soon as we
664 * see the method declaration. This allows later pass1 parsing
665 * of invocations of the method (need to know the number of
666 * arguments.)
667 */
668 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
669 "LOADING-Method: State=%p Op=%p NamedObj=%p\n",
670 WalkState, Op, Op->Named.Node));

672 if (!AcpiNsGetAttachedObject (Op->Named.Node))
673 {
674 WalkState->Operands[0] = ACPI_CAST_PTR (void, Op->Named.Node);
675 WalkState->NumOperands = 1;

677 Status = AcpiDsCreateOperands (WalkState, Op->Common.Value.Arg);
678 if (ACPI_SUCCESS (Status))
679 {
680 Status = AcpiExCreateMethod (Op->Named.Data,
681 Op->Named.Length, WalkState);
682 }
683 WalkState->Operands[0] = NULL;
684 WalkState->NumOperands = 0;

686 if (ACPI_FAILURE (Status))
687 {
688 return_ACPI_STATUS (Status);
689 }
690 }
691 break;

693 #endif /* ACPI_NO_METHOD_EXECUTION */

695 default:

697 /* All NAMED_COMPLEX opcodes must be handled above */
698 break;
699 }
700 break;

702 case AML_CLASS_INTERNAL:

704 /* case AML_INT_NAMEPATH_OP: */
705 break;

707 case AML_CLASS_METHOD_CALL:

709 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,

new/usr/src/common/acpica/components/dispatcher/dswload2.c 12

710 "RESOLVING-MethodCall: State=%p Op=%p NamedObj=%p\n",
711 WalkState, Op, Node));

713 /*
714 * Lookup the method name and save the Node
715 */
716 Status = AcpiNsLookup (WalkState->ScopeInfo, Arg->Common.Value.String,
717 ACPI_TYPE_ANY, ACPI_IMODE_LOAD_PASS2,
718 ACPI_NS_SEARCH_PARENT | ACPI_NS_DONT_OPEN_SCOPE,
719 WalkState, &(NewNode));
720 if (ACPI_SUCCESS (Status))
721 {
722 /*
723 * Make sure that what we found is indeed a method
724 * We didn’t search for a method on purpose, to see if the name
725 * would resolve
726 */
727 if (NewNode->Type != ACPI_TYPE_METHOD)
728 {
729 Status = AE_AML_OPERAND_TYPE;
730 }

732 /* We could put the returned object (Node) on the object stack for
733 * later, but for now, we will put it in the "op" object that the
734 * parser uses, so we can get it again at the end of this scope
735 */
736 Op->Common.Node = NewNode;
737 }
738 else
739 {
740 ACPI_ERROR_NAMESPACE (Arg->Common.Value.String, Status);
741 }
742 break;

745 default:

747 break;
748 }

750 Cleanup:

752 /* Remove the Node pushed at the very beginning */

754 WalkState->Operands[0] = NULL;
755 WalkState->NumOperands = 0;
756 return_ACPI_STATUS (Status);
757 }

new/usr/src/common/acpica/components/dispatcher/dswscope.c 1

**
 6978 Thu Dec 26 13:48:54 2013
new/usr/src/common/acpica/components/dispatcher/dswscope.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dswscope - Scope stack manipulation
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __DSWSCOPE_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acdispat.h"

51 #define _COMPONENT ACPI_DISPATCHER
52 ACPI_MODULE_NAME ("dswscope")

55 /**
56 *
57 * FUNCTION: AcpiDsScopeStackClear
58 *
59 * PARAMETERS: WalkState - Current state

new/usr/src/common/acpica/components/dispatcher/dswscope.c 2

60 *
61 * RETURN: None
62 *
63 * DESCRIPTION: Pop (and free) everything on the scope stack except the
64 * root scope object (which remains at the stack top.)
65 *
66 ***/

68 void
69 AcpiDsScopeStackClear (
70 ACPI_WALK_STATE *WalkState)
71 {
72 ACPI_GENERIC_STATE *ScopeInfo;

74 ACPI_FUNCTION_NAME (DsScopeStackClear);

77 while (WalkState->ScopeInfo)
78 {
79 /* Pop a scope off the stack */

81 ScopeInfo = WalkState->ScopeInfo;
82 WalkState->ScopeInfo = ScopeInfo->Scope.Next;

84 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
85 "Popped object type (%s)\n",
86 AcpiUtGetTypeName (ScopeInfo->Common.Value)));
87 AcpiUtDeleteGenericState (ScopeInfo);
88 }
89 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/dispatcher/dswstate.c 1

**
 22835 Thu Dec 26 13:48:55 2013
new/usr/src/common/acpica/components/dispatcher/dswstate.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: dswstate - Dispatcher parse tree walk management routines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __DSWSTATE_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acparser.h"
50 #include "acdispat.h"
51 #include "acnamesp.h"

53 #define _COMPONENT ACPI_DISPATCHER
54 ACPI_MODULE_NAME ("dswstate")

56 /* Local prototypes */

58 static ACPI_STATUS
59 AcpiDsResultStackPush (

new/usr/src/common/acpica/components/dispatcher/dswstate.c 2

60 ACPI_WALK_STATE *WalkState);

62 static ACPI_STATUS
63 AcpiDsResultStackPop (
64 ACPI_WALK_STATE *WalkState);

67 /***
68 *
69 * FUNCTION: AcpiDsResultPop
70 *
71 * PARAMETERS: Object - Where to return the popped object
72 * WalkState - Current Walk state
73 *
74 * RETURN: Status
75 *
76 * DESCRIPTION: Pop an object off the top of this walk’s result stack
77 *
78 **/

80 ACPI_STATUS
81 AcpiDsResultPop (
82 ACPI_OPERAND_OBJECT **Object,
83 ACPI_WALK_STATE *WalkState)
84 {
85 UINT32 Index;
86 ACPI_GENERIC_STATE *State;
87 ACPI_STATUS Status;

90 ACPI_FUNCTION_NAME (DsResultPop);

93 State = WalkState->Results;

95 /* Incorrect state of result stack */

97 if (State && !WalkState->ResultCount)
98 {
99 ACPI_ERROR ((AE_INFO, "No results on result stack"));
100 return (AE_AML_INTERNAL);
101 }

103 if (!State && WalkState->ResultCount)
104 {
105 ACPI_ERROR ((AE_INFO, "No result state for result stack"));
106 return (AE_AML_INTERNAL);
107 }

109 /* Empty result stack */

111 if (!State)
112 {
113 ACPI_ERROR ((AE_INFO, "Result stack is empty! State=%p", WalkState));
114 return (AE_AML_NO_RETURN_VALUE);
115 }

117 /* Return object of the top element and clean that top element result stack

119 WalkState->ResultCount--;
120 Index = (UINT32) WalkState->ResultCount % ACPI_RESULTS_FRAME_OBJ_NUM;

122 *Object = State->Results.ObjDesc [Index];
123 if (!*Object)
124 {
125 ACPI_ERROR ((AE_INFO, "No result objects on result stack, State=%p",

new/usr/src/common/acpica/components/dispatcher/dswstate.c 3

126 WalkState));
127 return (AE_AML_NO_RETURN_VALUE);
128 }

130 State->Results.ObjDesc [Index] = NULL;
131 if (Index == 0)
132 {
133 Status = AcpiDsResultStackPop (WalkState);
134 if (ACPI_FAILURE (Status))
135 {
136 return (Status);
137 }
138 }

140 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
141 "Obj=%p [%s] Index=%X State=%p Num=%X\n", *Object,
142 AcpiUtGetObjectTypeName (*Object),
143 Index, WalkState, WalkState->ResultCount));

145 return (AE_OK);
146 }

______unchanged_portion_omitted_

769 /***
770 *
771 * FUNCTION: AcpiDsDeleteWalkState
772 *
773 * PARAMETERS: WalkState - State to delete
774 *
775 * RETURN: Status
776 *
777 * DESCRIPTION: Delete a walk state including all internal data structures
778 *
779 **/

781 void
782 AcpiDsDeleteWalkState (
783 ACPI_WALK_STATE *WalkState)
784 {
785 ACPI_GENERIC_STATE *State;

788 ACPI_FUNCTION_TRACE_PTR (DsDeleteWalkState, WalkState);

791 if (!WalkState)
792 {
793 return_VOID;
793 return;
794 }

796 if (WalkState->DescriptorType != ACPI_DESC_TYPE_WALK)
797 {
798 ACPI_ERROR ((AE_INFO, "%p is not a valid walk state",
799 WalkState));
800 return_VOID;
800 return;
801 }

803 /* There should not be any open scopes */

805 if (WalkState->ParserState.Scope)
806 {
807 ACPI_ERROR ((AE_INFO, "%p walk still has a scope list",
808 WalkState));

new/usr/src/common/acpica/components/dispatcher/dswstate.c 4

809 AcpiPsCleanupScope (&WalkState->ParserState);
810 }

812 /* Always must free any linked control states */

814 while (WalkState->ControlState)
815 {
816 State = WalkState->ControlState;
817 WalkState->ControlState = State->Common.Next;

819 AcpiUtDeleteGenericState (State);
820 }

822 /* Always must free any linked parse states */

824 while (WalkState->ScopeInfo)
825 {
826 State = WalkState->ScopeInfo;
827 WalkState->ScopeInfo = State->Common.Next;

829 AcpiUtDeleteGenericState (State);
830 }

832 /* Always must free any stacked result states */

834 while (WalkState->Results)
835 {
836 State = WalkState->Results;
837 WalkState->Results = State->Common.Next;

839 AcpiUtDeleteGenericState (State);
840 }

842 ACPI_FREE (WalkState);
843 return_VOID;
844 }

new/usr/src/common/acpica/components/events/evevent.c 1

**
 9694 Thu Dec 26 13:48:55 2013
new/usr/src/common/acpica/components/events/evevent.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: evevent - Fixed Event handling and dispatch
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "acevents.h"

48 #define _COMPONENT ACPI_EVENTS
49 ACPI_MODULE_NAME ("evevent")

51 #if (!ACPI_REDUCED_HARDWARE) /* Entire module */

53 /* Local prototypes */

55 static ACPI_STATUS
56 AcpiEvFixedEventInitialize (
57 void);

59 static UINT32

new/usr/src/common/acpica/components/events/evevent.c 2

60 AcpiEvFixedEventDispatch (
61 UINT32 Event);

64 /***
65 *
66 * FUNCTION: AcpiEvInitializeEvents
67 *
68 * PARAMETERS: None
69 *
70 * RETURN: Status
71 *
72 * DESCRIPTION: Initialize global data structures for ACPI events (Fixed, GPE)
73 *
74 **/

76 ACPI_STATUS
77 AcpiEvInitializeEvents (
78 void)
79 {
80 ACPI_STATUS Status;

83 ACPI_FUNCTION_TRACE (EvInitializeEvents);

86 /* If Hardware Reduced flag is set, there are no fixed events */

88 if (AcpiGbl_ReducedHardware)
89 {
90 return_ACPI_STATUS (AE_OK);
91 }

93 /*
94 * Initialize the Fixed and General Purpose Events. This is done prior to
95 * enabling SCIs to prevent interrupts from occurring before the handlers
96 * are installed.
97 */
98 Status = AcpiEvFixedEventInitialize ();
99 if (ACPI_FAILURE (Status))
100 {
101 ACPI_EXCEPTION ((AE_INFO, Status,
102 "Unable to initialize fixed events"));
103 return_ACPI_STATUS (Status);
104 }

106 Status = AcpiEvGpeInitialize ();
107 if (ACPI_FAILURE (Status))
108 {
109 ACPI_EXCEPTION ((AE_INFO, Status,
110 "Unable to initialize general purpose events"));
111 return_ACPI_STATUS (Status);
112 }

114 return_ACPI_STATUS (Status);
115 }

118 /***
119 *
120 * FUNCTION: AcpiEvInstallXruptHandlers
121 *
122 * PARAMETERS: None
123 *
124 * RETURN: Status
125 *

new/usr/src/common/acpica/components/events/evevent.c 3

126 * DESCRIPTION: Install interrupt handlers for the SCI and Global Lock
127 *
128 **/

130 ACPI_STATUS
131 AcpiEvInstallXruptHandlers (
132 void)
133 {
134 ACPI_STATUS Status;

137 ACPI_FUNCTION_TRACE (EvInstallXruptHandlers);

140 /* If Hardware Reduced flag is set, there is no ACPI h/w */

142 if (AcpiGbl_ReducedHardware)
143 {
144 return_ACPI_STATUS (AE_OK);
145 }

147 /* Install the SCI handler */

149 Status = AcpiEvInstallSciHandler ();
150 if (ACPI_FAILURE (Status))
151 {
152 ACPI_EXCEPTION ((AE_INFO, Status,
153 "Unable to install System Control Interrupt handler"));
154 return_ACPI_STATUS (Status);
155 }

157 /* Install the handler for the Global Lock */

159 Status = AcpiEvInitGlobalLockHandler ();
160 if (ACPI_FAILURE (Status))
161 {
162 ACPI_EXCEPTION ((AE_INFO, Status,
163 "Unable to initialize Global Lock handler"));
164 return_ACPI_STATUS (Status);
165 }

167 AcpiGbl_EventsInitialized = TRUE;
168 return_ACPI_STATUS (Status);
169 }

______unchanged_portion_omitted_

284 /***
285 *
286 * FUNCTION: AcpiEvFixedEventDispatch
287 *
288 * PARAMETERS: Event - Event type
289 *
290 * RETURN: INTERRUPT_HANDLED or INTERRUPT_NOT_HANDLED
291 *
292 * DESCRIPTION: Clears the status bit for the requested event, calls the
293 * handler that previously registered for the event.
294 * NOTE: If there is no handler for the event, the event is
295 * disabled to prevent further interrupts.
296 *
297 **/

299 static UINT32
300 AcpiEvFixedEventDispatch (
301 UINT32 Event)
302 {

new/usr/src/common/acpica/components/events/evevent.c 4

304 ACPI_FUNCTION_ENTRY ();

307 /* Clear the status bit */

309 (void) AcpiWriteBitRegister (
310 AcpiGbl_FixedEventInfo[Event].StatusRegisterId,
311 ACPI_CLEAR_STATUS);

313 /*
314 * Make sure that a handler exists. If not, report an error
315 * and disable the event to prevent further interrupts.
296 * Make sure we’ve got a handler. If not, report an error. The event is
297 * disabled to prevent further interrupts.
316 */
317 if (!AcpiGbl_FixedEventHandlers[Event].Handler)
299 if (NULL == AcpiGbl_FixedEventHandlers[Event].Handler)
318 {
319 (void) AcpiWriteBitRegister (
320 AcpiGbl_FixedEventInfo[Event].EnableRegisterId,
321 ACPI_DISABLE_EVENT);

323 ACPI_ERROR ((AE_INFO,
324 "No installed handler for fixed event - %s (%u), disabling",
325 AcpiUtGetEventName (Event), Event));
306 "No installed handler for fixed event [0x%08X]",
307 Event));

327 return (ACPI_INTERRUPT_NOT_HANDLED);
328 }

330 /* Invoke the Fixed Event handler */

332 return ((AcpiGbl_FixedEventHandlers[Event].Handler)(
333 AcpiGbl_FixedEventHandlers[Event].Context));
334 }

336 #endif /* !ACPI_REDUCED_HARDWARE */

new/usr/src/common/acpica/components/events/evglock.c 1

**
 11425 Thu Dec 26 13:48:56 2013
new/usr/src/common/acpica/components/events/evglock.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: evglock - Global Lock support
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "acevents.h"
47 #include "acinterp.h"

49 #define _COMPONENT ACPI_EVENTS
50 ACPI_MODULE_NAME ("evglock")

52 #if (!ACPI_REDUCED_HARDWARE) /* Entire module */

54 /* Local prototypes */

56 static UINT32
57 AcpiEvGlobalLockHandler (
58 void *Context);

new/usr/src/common/acpica/components/events/evglock.c 2

61 /***
62 *
63 * FUNCTION: AcpiEvInitGlobalLockHandler
64 *
65 * PARAMETERS: None
66 *
67 * RETURN: Status
68 *
69 * DESCRIPTION: Install a handler for the global lock release event
70 *
71 **/

73 ACPI_STATUS
74 AcpiEvInitGlobalLockHandler (
75 void)
76 {
77 ACPI_STATUS Status;

80 ACPI_FUNCTION_TRACE (EvInitGlobalLockHandler);

83 /* If Hardware Reduced flag is set, there is no global lock */

85 if (AcpiGbl_ReducedHardware)
86 {
87 return_ACPI_STATUS (AE_OK);
88 }

90 /* Attempt installation of the global lock handler */

92 Status = AcpiInstallFixedEventHandler (ACPI_EVENT_GLOBAL,
93 AcpiEvGlobalLockHandler, NULL);

95 /*
96 * If the global lock does not exist on this platform, the attempt to
97 * enable GBL_STATUS will fail (the GBL_ENABLE bit will not stick).
98 * Map to AE_OK, but mark global lock as not present. Any attempt to
99 * actually use the global lock will be flagged with an error.
100 */
101 AcpiGbl_GlobalLockPresent = FALSE;
102 if (Status == AE_NO_HARDWARE_RESPONSE)
103 {
104 ACPI_ERROR ((AE_INFO,
105 "No response from Global Lock hardware, disabling lock"));

107 return_ACPI_STATUS (AE_OK);
108 }

110 Status = AcpiOsCreateLock (&AcpiGbl_GlobalLockPendingLock);
111 if (ACPI_FAILURE (Status))
112 {
113 return_ACPI_STATUS (Status);
114 }

116 AcpiGbl_GlobalLockPending = FALSE;
117 AcpiGbl_GlobalLockPresent = TRUE;
118 return_ACPI_STATUS (Status);
119 }

122 /***
123 *
124 * FUNCTION: AcpiEvRemoveGlobalLockHandler
125 *

new/usr/src/common/acpica/components/events/evglock.c 3

126 * PARAMETERS: None
127 *
128 * RETURN: Status
129 *
130 * DESCRIPTION: Remove the handler for the Global Lock
131 *
132 **/

134 ACPI_STATUS
135 AcpiEvRemoveGlobalLockHandler (
136 void)
137 {
138 ACPI_STATUS Status;

141 ACPI_FUNCTION_TRACE (EvRemoveGlobalLockHandler);

143 AcpiGbl_GlobalLockPresent = FALSE;
144 Status = AcpiRemoveFixedEventHandler (ACPI_EVENT_GLOBAL,
145 AcpiEvGlobalLockHandler);

147 AcpiOsDeleteLock (AcpiGbl_GlobalLockPendingLock);
148 return_ACPI_STATUS (Status);
149 }

______unchanged_portion_omitted_

378 #endif /* !ACPI_REDUCED_HARDWARE */

new/usr/src/common/acpica/components/events/evgpe.c 1

**
 25182 Thu Dec 26 13:48:56 2013
new/usr/src/common/acpica/components/events/evgpe.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: evgpe - General Purpose Event handling and dispatch
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "acevents.h"
47 #include "acnamesp.h"

49 #define _COMPONENT ACPI_EVENTS
50 ACPI_MODULE_NAME ("evgpe")

52 #if (!ACPI_REDUCED_HARDWARE) /* Entire module */

54 /* Local prototypes */

56 static void ACPI_SYSTEM_XFACE
57 AcpiEvAsynchExecuteGpeMethod (
58 void *Context);

new/usr/src/common/acpica/components/events/evgpe.c 2

60 static void ACPI_SYSTEM_XFACE
61 AcpiEvAsynchEnableGpe (
62 void *Context);

65 /***
66 *
67 * FUNCTION: AcpiEvUpdateGpeEnableMask
68 *
69 * PARAMETERS: GpeEventInfo - GPE to update
70 *
71 * RETURN: Status
72 *
73 * DESCRIPTION: Updates GPE register enable mask based upon whether there are
74 * runtime references to this GPE
75 *
76 **/

78 ACPI_STATUS
79 AcpiEvUpdateGpeEnableMask (
80 ACPI_GPE_EVENT_INFO *GpeEventInfo)
81 {
82 ACPI_GPE_REGISTER_INFO *GpeRegisterInfo;
83 UINT32 RegisterBit;

86 ACPI_FUNCTION_TRACE (EvUpdateGpeEnableMask);

89 GpeRegisterInfo = GpeEventInfo->RegisterInfo;
90 if (!GpeRegisterInfo)
91 {
92 return_ACPI_STATUS (AE_NOT_EXIST);
93 }

95 RegisterBit = AcpiHwGetGpeRegisterBit (GpeEventInfo);
93 RegisterBit = AcpiHwGetGpeRegisterBit (GpeEventInfo, GpeRegisterInfo);

97 /* Clear the run bit up front */

99 ACPI_CLEAR_BIT (GpeRegisterInfo->EnableForRun, RegisterBit);

101 /* Set the mask bit only if there are references to this GPE */

103 if (GpeEventInfo->RuntimeCount)
104 {
105 ACPI_SET_BIT (GpeRegisterInfo->EnableForRun, (UINT8) RegisterBit);
106 }

108 return_ACPI_STATUS (AE_OK);
109 }

______unchanged_portion_omitted_

366 /***
367 *
368 * FUNCTION: AcpiEvGpeDetect
369 *
370 * PARAMETERS: GpeXruptList - Interrupt block for this interrupt.
371 * Can have multiple GPE blocks attached.
372 *
373 * RETURN: INTERRUPT_HANDLED or INTERRUPT_NOT_HANDLED
374 *
375 * DESCRIPTION: Detect if any GP events have occurred. This function is
376 * executed at interrupt level.

new/usr/src/common/acpica/components/events/evgpe.c 3

377 *
378 **/

380 UINT32
381 AcpiEvGpeDetect (
382 ACPI_GPE_XRUPT_INFO *GpeXruptList)
383 {
384 ACPI_STATUS Status;
385 ACPI_GPE_BLOCK_INFO *GpeBlock;
386 ACPI_GPE_REGISTER_INFO *GpeRegisterInfo;
387 UINT32 IntStatus = ACPI_INTERRUPT_NOT_HANDLED;
388 UINT8 EnabledStatusByte;
389 UINT32 StatusReg;
390 UINT32 EnableReg;
391 ACPI_CPU_FLAGS Flags;
392 UINT32 i;
393 UINT32 j;

396 ACPI_FUNCTION_NAME (EvGpeDetect);

398 /* Check for the case where there are no GPEs */

400 if (!GpeXruptList)
401 {
402 return (IntStatus);
403 }

405 /*
406 * We need to obtain the GPE lock for both the data structs and registers
407 * Note: Not necessary to obtain the hardware lock, since the GPE
408 * registers are owned by the GpeLock.
409 */
410 Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock);

412 /* Examine all GPE blocks attached to this interrupt level */

414 GpeBlock = GpeXruptList->GpeBlockListHead;
415 while (GpeBlock)
416 {
417 /*
418 * Read all of the 8-bit GPE status and enable registers in this GPE
419 * block, saving all of them. Find all currently active GP events.
420 */
421 for (i = 0; i < GpeBlock->RegisterCount; i++)
422 {
423 /* Get the next status/enable pair */

425 GpeRegisterInfo = &GpeBlock->RegisterInfo[i];

427 /*
428 * Optimization: If there are no GPEs enabled within this
429 * register, we can safely ignore the entire register.
430 */
431 if (!(GpeRegisterInfo->EnableForRun |
432 GpeRegisterInfo->EnableForWake))
433 {
434 ACPI_DEBUG_PRINT ((ACPI_DB_INTERRUPTS,
435 "Ignore disabled registers for GPE%02X-GPE%02X: "
436 "RunEnable=%02X, WakeEnable=%02X\n",
437 GpeRegisterInfo->BaseGpeNumber,
438 GpeRegisterInfo->BaseGpeNumber + (ACPI_GPE_REGISTER_WIDTH -
439 GpeRegisterInfo->EnableForRun,
440 GpeRegisterInfo->EnableForWake));
441 continue;
442 }

new/usr/src/common/acpica/components/events/evgpe.c 4

444 /* Read the Status Register */

446 Status = AcpiHwRead (&StatusReg, &GpeRegisterInfo->StatusAddress);
447 if (ACPI_FAILURE (Status))
448 {
449 goto UnlockAndExit;
450 }

452 /* Read the Enable Register */

454 Status = AcpiHwRead (&EnableReg, &GpeRegisterInfo->EnableAddress);
455 if (ACPI_FAILURE (Status))
456 {
457 goto UnlockAndExit;
458 }

460 ACPI_DEBUG_PRINT ((ACPI_DB_INTERRUPTS,
461 "Read registers for GPE%02X-GPE%02X: Status=%02X, Enable=%02X, "
462 "RunEnable=%02X, WakeEnable=%02X\n",
463 GpeRegisterInfo->BaseGpeNumber,
464 GpeRegisterInfo->BaseGpeNumber + (ACPI_GPE_REGISTER_WIDTH - 1),
465 StatusReg, EnableReg,
466 GpeRegisterInfo->EnableForRun,
467 GpeRegisterInfo->EnableForWake));
452 "Read GPE Register at GPE%02X: Status=%02X, Enable=%02X\n",
453 GpeRegisterInfo->BaseGpeNumber, StatusReg, EnableReg));

469 /* Check if there is anything active at all in this register */

471 EnabledStatusByte = (UINT8) (StatusReg & EnableReg);
472 if (!EnabledStatusByte)
473 {
474 /* No active GPEs in this register, move on */

476 continue;
477 }

479 /* Now look at the individual GPEs in this byte register */

481 for (j = 0; j < ACPI_GPE_REGISTER_WIDTH; j++)
482 {
483 /* Examine one GPE bit */

485 if (EnabledStatusByte & (1 << j))
486 {
487 /*
488 * Found an active GPE. Dispatch the event to a handler
489 * or method.
490 */
491 IntStatus |= AcpiEvGpeDispatch (GpeBlock->Node,
492 &GpeBlock->EventInfo[((ACPI_SIZE) i *
493 ACPI_GPE_REGISTER_WIDTH) + j],
494 j + GpeRegisterInfo->BaseGpeNumber);
495 }
496 }
497 }

499 GpeBlock = GpeBlock->Next;
500 }

502 UnlockAndExit:

504 AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags);
505 return (IntStatus);
506 }

new/usr/src/common/acpica/components/events/evgpe.c 5

509 /***
510 *
511 * FUNCTION: AcpiEvAsynchExecuteGpeMethod
512 *
513 * PARAMETERS: Context (GpeEventInfo) - Info for this GPE
514 *
515 * RETURN: None
516 *
517 * DESCRIPTION: Perform the actual execution of a GPE control method. This
518 * function is called from an invocation of AcpiOsExecute and
519 * therefore does NOT execute at interrupt level - so that
520 * the control method itself is not executed in the context of
521 * an interrupt handler.
522 *
523 **/

525 static void ACPI_SYSTEM_XFACE
526 AcpiEvAsynchExecuteGpeMethod (
527 void *Context)
528 {
529 ACPI_GPE_EVENT_INFO *GpeEventInfo = Context;
530 ACPI_STATUS Status;
531 ACPI_GPE_EVENT_INFO *LocalGpeEventInfo;
532 ACPI_EVALUATE_INFO *Info;
533 ACPI_GPE_NOTIFY_INFO *Notify;

536 ACPI_FUNCTION_TRACE (EvAsynchExecuteGpeMethod);

539 /* Allocate a local GPE block */

541 LocalGpeEventInfo = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_GPE_EVENT_INFO));
542 if (!LocalGpeEventInfo)
543 {
544 ACPI_EXCEPTION ((AE_INFO, AE_NO_MEMORY,
545 "while handling a GPE"));
546 return_VOID;
547 }

549 Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS);
550 if (ACPI_FAILURE (Status))
551 {
552 ACPI_FREE (LocalGpeEventInfo);
553 return_VOID;
554 }

556 /* Must revalidate the GpeNumber/GpeBlock */

558 if (!AcpiEvValidGpeEvent (GpeEventInfo))
559 {
560 Status = AcpiUtReleaseMutex (ACPI_MTX_EVENTS);
561 ACPI_FREE (LocalGpeEventInfo);
562 return_VOID;
563 }

565 /*
566 * Take a snapshot of the GPE info for this level - we copy the info to
567 * prevent a race condition with RemoveHandler/RemoveBlock.
568 */
569 ACPI_MEMCPY (LocalGpeEventInfo, GpeEventInfo,
570 sizeof (ACPI_GPE_EVENT_INFO));

572 Status = AcpiUtReleaseMutex (ACPI_MTX_EVENTS);

new/usr/src/common/acpica/components/events/evgpe.c 6

573 if (ACPI_FAILURE (Status))
574 {
575 ACPI_FREE (LocalGpeEventInfo);
576 return_VOID;
577 }

579 /* Do the correct dispatch - normal method or implicit notify */

581 switch (LocalGpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK)
582 {
583 case ACPI_GPE_DISPATCH_NOTIFY:

584 /*
585 * Implicit notify.
586 * Dispatch a DEVICE_WAKE notify to the appropriate handler.
587 * NOTE: the request is queued for execution after this method
588 * completes. The notify handlers are NOT invoked synchronously
589 * from this thread -- because handlers may in turn run other
590 * control methods.
591 *
592 * June 2012: Expand implicit notify mechanism to support
593 * notifies on multiple device objects.
594 */
595 Notify = LocalGpeEventInfo->Dispatch.NotifyList;
596 while (ACPI_SUCCESS (Status) && Notify)
597 {
598 Status = AcpiEvQueueNotifyRequest (Notify->DeviceNode,
575 Status = AcpiEvQueueNotifyRequest (
576 LocalGpeEventInfo->Dispatch.DeviceNode,
599 ACPI_NOTIFY_DEVICE_WAKE);

601 Notify = Notify->Next;
602 }
603 break;

605 case ACPI_GPE_DISPATCH_METHOD:

607 /* Allocate the evaluation information block */

609 Info = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_EVALUATE_INFO));
610 if (!Info)
611 {
612 Status = AE_NO_MEMORY;
613 }
614 else
615 {
616 /*
617 * Invoke the GPE Method (_Lxx, _Exx) i.e., evaluate the
618 * _Lxx/_Exx control method that corresponds to this GPE
619 */
620 Info->PrefixNode = LocalGpeEventInfo->Dispatch.MethodNode;
621 Info->Flags = ACPI_IGNORE_RETURN_VALUE;

623 Status = AcpiNsEvaluate (Info);
624 ACPI_FREE (Info);
625 }

627 if (ACPI_FAILURE (Status))
628 {
629 ACPI_EXCEPTION ((AE_INFO, Status,
630 "while evaluating GPE method [%4.4s]",
631 AcpiUtGetNodeName (LocalGpeEventInfo->Dispatch.MethodNode)));
632 }

633 break;

new/usr/src/common/acpica/components/events/evgpe.c 7

635 default:

637 return_VOID; /* Should never happen */
638 }

640 /* Defer enabling of GPE until all notify handlers are done */

642 Status = AcpiOsExecute (OSL_NOTIFY_HANDLER,
643 AcpiEvAsynchEnableGpe, LocalGpeEventInfo);
644 if (ACPI_FAILURE (Status))
645 {
646 ACPI_FREE (LocalGpeEventInfo);
647 }
648 return_VOID;
649 }

______unchanged_portion_omitted_

724 /***
725 *
726 * FUNCTION: AcpiEvGpeDispatch
727 *
728 * PARAMETERS: GpeDevice - Device node. NULL for GPE0/GPE1
729 * GpeEventInfo - Info for this GPE
730 * GpeNumber - Number relative to the parent GPE block
731 *
732 * RETURN: INTERRUPT_HANDLED or INTERRUPT_NOT_HANDLED
733 *
734 * DESCRIPTION: Dispatch a General Purpose Event to either a function (e.g. EC)
735 * or method (e.g. _Lxx/_Exx) handler.
736 *
737 * This function executes at interrupt level.
738 *
739 **/

741 UINT32
742 AcpiEvGpeDispatch (
743 ACPI_NAMESPACE_NODE *GpeDevice,
744 ACPI_GPE_EVENT_INFO *GpeEventInfo,
745 UINT32 GpeNumber)
746 {
747 ACPI_STATUS Status;
748 UINT32 ReturnValue;

751 ACPI_FUNCTION_TRACE (EvGpeDispatch);

754 /* Invoke global event handler if present */

756 AcpiGpeCount++;
757 if (AcpiGbl_GlobalEventHandler)
758 {
759 AcpiGbl_GlobalEventHandler (ACPI_EVENT_TYPE_GPE, GpeDevice,
760 GpeNumber, AcpiGbl_GlobalEventHandlerContext);
761 }

763 /*
764 * If edge-triggered, clear the GPE status bit now. Note that
765 * level-triggered events are cleared after the GPE is serviced.
766 */
767 if ((GpeEventInfo->Flags & ACPI_GPE_XRUPT_TYPE_MASK) ==
768 ACPI_GPE_EDGE_TRIGGERED)
769 {
770 Status = AcpiHwClearGpe (GpeEventInfo);
771 if (ACPI_FAILURE (Status))

new/usr/src/common/acpica/components/events/evgpe.c 8

772 {
773 ACPI_EXCEPTION ((AE_INFO, Status,
774 "Unable to clear GPE%02X", GpeNumber));
775 return_UINT32 (ACPI_INTERRUPT_NOT_HANDLED);
776 }
777 }

779 /*
780 * Always disable the GPE so that it does not keep firing before
781 * any asynchronous activity completes (either from the execution
782 * of a GPE method or an asynchronous GPE handler.)
783 *
784 * If there is no handler or method to run, just disable the
785 * GPE and leave it disabled permanently to prevent further such
786 * pointless events from firing.
787 */
788 Status = AcpiHwLowSetGpe (GpeEventInfo, ACPI_GPE_DISABLE);
789 if (ACPI_FAILURE (Status))
790 {
791 ACPI_EXCEPTION ((AE_INFO, Status,
792 "Unable to disable GPE%02X", GpeNumber));
793 return_UINT32 (ACPI_INTERRUPT_NOT_HANDLED);
794 }

796 /*
797 * Dispatch the GPE to either an installed handler or the control
798 * method associated with this GPE (_Lxx or _Exx). If a handler
799 * exists, we invoke it and do not attempt to run the method.
800 * If there is neither a handler nor a method, leave the GPE
801 * disabled.
802 */
803 switch (GpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK)
804 {
805 case ACPI_GPE_DISPATCH_HANDLER:

807 /* Invoke the installed handler (at interrupt level) */

809 ReturnValue = GpeEventInfo->Dispatch.Handler->Address (
810 GpeDevice, GpeNumber,
811 GpeEventInfo->Dispatch.Handler->Context);

813 /* If requested, clear (if level-triggered) and reenable the GPE */

815 if (ReturnValue & ACPI_REENABLE_GPE)
816 {
817 (void) AcpiEvFinishGpe (GpeEventInfo);
818 }
819 break;

821 case ACPI_GPE_DISPATCH_METHOD:
822 case ACPI_GPE_DISPATCH_NOTIFY:

823 /*
824 * Execute the method associated with the GPE
825 * NOTE: Level-triggered GPEs are cleared after the method completes.
826 */
827 Status = AcpiOsExecute (OSL_GPE_HANDLER,
828 AcpiEvAsynchExecuteGpeMethod, GpeEventInfo);
829 if (ACPI_FAILURE (Status))
830 {
831 ACPI_EXCEPTION ((AE_INFO, Status,
832 "Unable to queue handler for GPE%02X - event disabled",
833 GpeNumber));
834 }
835 break;

new/usr/src/common/acpica/components/events/evgpe.c 9

837 default:

838 /*
839 * No handler or method to run!
840 * 03/2010: This case should no longer be possible. We will not allow
841 * a GPE to be enabled if it has no handler or method.
842 */
843 ACPI_ERROR ((AE_INFO,
844 "No handler or method for GPE%02X, disabling event",
845 GpeNumber));
846 break;
847 }

849 return_UINT32 (ACPI_INTERRUPT_HANDLED);
850 }

852 #endif /* !ACPI_REDUCED_HARDWARE */

new/usr/src/common/acpica/components/events/evgpeblk.c 1

**
 16556 Thu Dec 26 13:48:57 2013
new/usr/src/common/acpica/components/events/evgpeblk.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: evgpeblk - GPE block creation and initialization.
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "acevents.h"
47 #include "acnamesp.h"

49 #define _COMPONENT ACPI_EVENTS
50 ACPI_MODULE_NAME ("evgpeblk")

52 #if (!ACPI_REDUCED_HARDWARE) /* Entire module */

54 /* Local prototypes */

56 static ACPI_STATUS
57 AcpiEvInstallGpeBlock (
58 ACPI_GPE_BLOCK_INFO *GpeBlock,

new/usr/src/common/acpica/components/events/evgpeblk.c 2

59 UINT32 InterruptNumber);

61 static ACPI_STATUS
62 AcpiEvCreateGpeInfoBlocks (
63 ACPI_GPE_BLOCK_INFO *GpeBlock);

66 /***
67 *
68 * FUNCTION: AcpiEvInstallGpeBlock
69 *
70 * PARAMETERS: GpeBlock - New GPE block
71 * InterruptNumber - Xrupt to be associated with this
72 * GPE block
73 *
74 * RETURN: Status
75 *
76 * DESCRIPTION: Install new GPE block with mutex support
77 *
78 **/

80 static ACPI_STATUS
81 AcpiEvInstallGpeBlock (
82 ACPI_GPE_BLOCK_INFO *GpeBlock,
83 UINT32 InterruptNumber)
84 {
85 ACPI_GPE_BLOCK_INFO *NextGpeBlock;
86 ACPI_GPE_XRUPT_INFO *GpeXruptBlock;
87 ACPI_STATUS Status;
88 ACPI_CPU_FLAGS Flags;

91 ACPI_FUNCTION_TRACE (EvInstallGpeBlock);

94 Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS);
95 if (ACPI_FAILURE (Status))
96 {
97 return_ACPI_STATUS (Status);
98 }

100 Status = AcpiEvGetGpeXruptBlock (InterruptNumber, &GpeXruptBlock);
101 if (ACPI_FAILURE (Status))
98 GpeXruptBlock = AcpiEvGetGpeXruptBlock (InterruptNumber);
99 if (!GpeXruptBlock)
102 {
101 Status = AE_NO_MEMORY;
103 goto UnlockAndExit;
104 }

106 /* Install the new block at the end of the list with lock */

108 Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock);
109 if (GpeXruptBlock->GpeBlockListHead)
110 {
111 NextGpeBlock = GpeXruptBlock->GpeBlockListHead;
112 while (NextGpeBlock->Next)
113 {
114 NextGpeBlock = NextGpeBlock->Next;
115 }

117 NextGpeBlock->Next = GpeBlock;
118 GpeBlock->Previous = NextGpeBlock;
119 }
120 else
121 {

new/usr/src/common/acpica/components/events/evgpeblk.c 3

122 GpeXruptBlock->GpeBlockListHead = GpeBlock;
123 }

125 GpeBlock->XruptBlock = GpeXruptBlock;
126 AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags);

129 UnlockAndExit:
130 (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS);
129 Status = AcpiUtReleaseMutex (ACPI_MTX_EVENTS);
131 return_ACPI_STATUS (Status);
132 }

______unchanged_portion_omitted_

346 /***
347 *
348 * FUNCTION: AcpiEvCreateGpeBlock
349 *
350 * PARAMETERS: GpeDevice - Handle to the parent GPE block
351 * GpeBlockAddress - Address and SpaceID
352 * RegisterCount - Number of GPE register pairs in the block
353 * GpeBlockBaseNumber - Starting GPE number for the block
354 * InterruptNumber - H/W interrupt for the block
355 * ReturnGpeBlock - Where the new block descriptor is returned
356 *
357 * RETURN: Status
358 *
359 * DESCRIPTION: Create and Install a block of GPE registers. All GPEs within
360 * the block are disabled at exit.
361 * Note: Assumes namespace is locked.
362 *
363 **/

365 ACPI_STATUS
366 AcpiEvCreateGpeBlock (
367 ACPI_NAMESPACE_NODE *GpeDevice,
368 ACPI_GENERIC_ADDRESS *GpeBlockAddress,
369 UINT32 RegisterCount,
370 UINT8 GpeBlockBaseNumber,
371 UINT32 InterruptNumber,
372 ACPI_GPE_BLOCK_INFO **ReturnGpeBlock)
373 {
374 ACPI_STATUS Status;
375 ACPI_GPE_BLOCK_INFO *GpeBlock;
376 ACPI_GPE_WALK_INFO WalkInfo;

379 ACPI_FUNCTION_TRACE (EvCreateGpeBlock);

382 if (!RegisterCount)
383 {
384 return_ACPI_STATUS (AE_OK);
385 }

387 /* Allocate a new GPE block */

389 GpeBlock = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_GPE_BLOCK_INFO));
390 if (!GpeBlock)
391 {
392 return_ACPI_STATUS (AE_NO_MEMORY);
393 }

395 /* Initialize the new GPE block */

new/usr/src/common/acpica/components/events/evgpeblk.c 4

397 GpeBlock->Node = GpeDevice;
398 GpeBlock->GpeCount = (UINT16) (RegisterCount * ACPI_GPE_REGISTER_WIDTH);
399 GpeBlock->Initialized = FALSE;
400 GpeBlock->RegisterCount = RegisterCount;
401 GpeBlock->BlockBaseNumber = GpeBlockBaseNumber;

403 ACPI_MEMCPY (&GpeBlock->BlockAddress, GpeBlockAddress,
404 sizeof (ACPI_GENERIC_ADDRESS));

406 /*
407 * Create the RegisterInfo and EventInfo sub-structures
408 * Note: disables and clears all GPEs in the block
409 */
410 Status = AcpiEvCreateGpeInfoBlocks (GpeBlock);
411 if (ACPI_FAILURE (Status))
412 {
413 ACPI_FREE (GpeBlock);
414 return_ACPI_STATUS (Status);
415 }

417 /* Install the new block in the global lists */

419 Status = AcpiEvInstallGpeBlock (GpeBlock, InterruptNumber);
420 if (ACPI_FAILURE (Status))
421 {
422 ACPI_FREE (GpeBlock->RegisterInfo);
423 ACPI_FREE (GpeBlock->EventInfo);
424 ACPI_FREE (GpeBlock);
425 return_ACPI_STATUS (Status);
426 }

428 AcpiGbl_AllGpesInitialized = FALSE;

430 /* Find all GPE methods (_Lxx or_Exx) for this block */

432 WalkInfo.GpeBlock = GpeBlock;
433 WalkInfo.GpeDevice = GpeDevice;
434 WalkInfo.ExecuteByOwnerId = FALSE;

436 Status = AcpiNsWalkNamespace (ACPI_TYPE_METHOD, GpeDevice,
437 ACPI_UINT32_MAX, ACPI_NS_WALK_NO_UNLOCK,
438 AcpiEvMatchGpeMethod, NULL, &WalkInfo, NULL);

440 /* Return the new block */

442 if (ReturnGpeBlock)
443 {
444 (*ReturnGpeBlock) = GpeBlock;
445 }

447 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INIT,
448 " Initialized GPE %02X to %02X [%4.4s] %u regs on interrupt 0x%X\n",
444 ACPI_DEBUG_PRINT ((ACPI_DB_INIT,
445 "GPE %02X to %02X [%4.4s] %u regs on int 0x%X\n",
449 (UINT32) GpeBlock->BlockBaseNumber,
450 (UINT32) (GpeBlock->BlockBaseNumber + (GpeBlock->GpeCount - 1)),
451 GpeDevice->Name.Ascii, GpeBlock->RegisterCount,
452 InterruptNumber));

454 /* Update global count of currently available GPEs */

456 AcpiCurrentGpeCount += GpeBlock->GpeCount;
457 return_ACPI_STATUS (AE_OK);
458 }

new/usr/src/common/acpica/components/events/evgpeblk.c 5

461 /***
462 *
463 * FUNCTION: AcpiEvInitializeGpeBlock
464 *
465 * PARAMETERS: ACPI_GPE_CALLBACK
466 *
467 * RETURN: Status
468 *
469 * DESCRIPTION: Initialize and enable a GPE block. Enable GPEs that have
470 * associated methods.
471 * Note: Assumes namespace is locked.
472 *
473 **/

475 ACPI_STATUS
476 AcpiEvInitializeGpeBlock (
477 ACPI_GPE_XRUPT_INFO *GpeXruptInfo,
478 ACPI_GPE_BLOCK_INFO *GpeBlock,
479 void *Ignored)
480 {
481 ACPI_STATUS Status;
482 ACPI_GPE_EVENT_INFO *GpeEventInfo;
483 UINT32 GpeEnabledCount;
484 UINT32 GpeIndex;
485 UINT32 i;
486 UINT32 j;

489 ACPI_FUNCTION_TRACE (EvInitializeGpeBlock);

492 /*
493 * Ignore a null GPE block (e.g., if no GPE block 1 exists), and
494 * any GPE blocks that have been initialized already.
495 */
496 if (!GpeBlock || GpeBlock->Initialized)
497 {
498 return_ACPI_STATUS (AE_OK);
499 }

501 /*
502 * Enable all GPEs that have a corresponding method and have the
503 * ACPI_GPE_CAN_WAKE flag unset. Any other GPEs within this block
504 * must be enabled via the acpi_enable_gpe() interface.
505 */
506 GpeEnabledCount = 0;

508 for (i = 0; i < GpeBlock->RegisterCount; i++)
509 {
510 for (j = 0; j < ACPI_GPE_REGISTER_WIDTH; j++)
511 {
512 /* Get the info block for this particular GPE */

514 GpeIndex = (i * ACPI_GPE_REGISTER_WIDTH) + j;
515 GpeEventInfo = &GpeBlock->EventInfo[GpeIndex];

517 /*
518 * Ignore GPEs that have no corresponding _Lxx/_Exx method
519 * and GPEs that are used to wake the system
520 */
521 if (((GpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK) == ACPI_GPE_DISP
522 ((GpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK) == ACPI_GPE_DISP
523 (GpeEventInfo->Flags & ACPI_GPE_CAN_WAKE))
524 {
525 continue;
526 }

new/usr/src/common/acpica/components/events/evgpeblk.c 6

528 Status = AcpiEvAddGpeReference (GpeEventInfo);
529 if (ACPI_FAILURE (Status))
530 {
531 ACPI_EXCEPTION ((AE_INFO, Status,
532 "Could not enable GPE 0x%02X",
533 GpeIndex + GpeBlock->BlockBaseNumber));
534 continue;
535 }

537 GpeEnabledCount++;
538 }
539 }

541 if (GpeEnabledCount)
542 {
543 ACPI_INFO ((AE_INFO,
544 "Enabled %u GPEs in block %02X to %02X", GpeEnabledCount,
545 (UINT32) GpeBlock->BlockBaseNumber,
546 (UINT32) (GpeBlock->BlockBaseNumber + (GpeBlock->GpeCount - 1))));
540 ACPI_DEBUG_PRINT ((ACPI_DB_INIT,
541 "Enabled %u GPEs in this block\n", GpeEnabledCount));
547 }

549 GpeBlock->Initialized = TRUE;
550 return_ACPI_STATUS (AE_OK);
551 }

553 #endif /* !ACPI_REDUCED_HARDWARE */

new/usr/src/common/acpica/components/events/evgpeinit.c 1

**
 14987 Thu Dec 26 13:48:57 2013
new/usr/src/common/acpica/components/events/evgpeinit.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: evgpeinit - System GPE initialization and update
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acevents.h"
48 #include "acnamesp.h"

50 #define _COMPONENT ACPI_EVENTS
51 ACPI_MODULE_NAME ("evgpeinit")

53 #if (!ACPI_REDUCED_HARDWARE) /* Entire module */

55 /*
56 * Note: History of _PRW support in ACPICA
57 *
58 * Originally (2000 - 2010), the GPE initialization code performed a walk of
59 * the entire namespace to execute the _PRW methods and detect all GPEs

new/usr/src/common/acpica/components/events/evgpeinit.c 2

60 * capable of waking the system.
61 *
62 * As of 10/2010, the _PRW method execution has been removed since it is
63 * actually unnecessary. The host OS must in fact execute all _PRW methods
64 * in order to identify the device/power-resource dependencies. We now put
65 * the onus on the host OS to identify the wake GPEs as part of this process
66 * and to inform ACPICA of these GPEs via the AcpiSetupGpeForWake interface. Thi
67 * not only reduces the complexity of the ACPICA initialization code, but in
68 * some cases (on systems with very large namespaces) it should reduce the
69 * kernel boot time as well.
70 */

72 /***
73 *
74 * FUNCTION: AcpiEvGpeInitialize
75 *
76 * PARAMETERS: None
77 *
78 * RETURN: Status
79 *
80 * DESCRIPTION: Initialize the GPE data structures and the FADT GPE 0/1 blocks
81 *
82 **/

84 ACPI_STATUS
85 AcpiEvGpeInitialize (
86 void)
87 {
88 UINT32 RegisterCount0 = 0;
89 UINT32 RegisterCount1 = 0;
90 UINT32 GpeNumberMax = 0;
91 ACPI_STATUS Status;

94 ACPI_FUNCTION_TRACE (EvGpeInitialize);

97 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INIT,
98 "Initializing General Purpose Events (GPEs):\n"));

100 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
101 if (ACPI_FAILURE (Status))
102 {
103 return_ACPI_STATUS (Status);
104 }

106 /*
107 * Initialize the GPE Block(s) defined in the FADT
108 *
109 * Why the GPE register block lengths are divided by 2: From the ACPI
110 * Spec, section "General-Purpose Event Registers", we have:
111 *
112 * "Each register block contains two registers of equal length
113 * GPEx_STS and GPEx_EN (where x is 0 or 1). The length of the
114 * GPE0_STS and GPE0_EN registers is equal to half the GPE0_LEN
115 * The length of the GPE1_STS and GPE1_EN registers is equal to
116 * half the GPE1_LEN. If a generic register block is not supported
117 * then its respective block pointer and block length values in the
118 * FADT table contain zeros. The GPE0_LEN and GPE1_LEN do not need
119 * to be the same size."
120 */

122 /*
123 * Determine the maximum GPE number for this machine.
124 *
125 * Note: both GPE0 and GPE1 are optional, and either can exist without

new/usr/src/common/acpica/components/events/evgpeinit.c 3

126 * the other.
127 *
128 * If EITHER the register length OR the block address are zero, then that
129 * particular block is not supported.
130 */
131 if (AcpiGbl_FADT.Gpe0BlockLength &&
132 AcpiGbl_FADT.XGpe0Block.Address)
133 {
134 /* GPE block 0 exists (has both length and address > 0) */

136 RegisterCount0 = (UINT16) (AcpiGbl_FADT.Gpe0BlockLength / 2);

137 GpeNumberMax = (RegisterCount0 * ACPI_GPE_REGISTER_WIDTH) - 1;

139 /* Install GPE Block 0 */

141 Status = AcpiEvCreateGpeBlock (AcpiGbl_FadtGpeDevice,
142 &AcpiGbl_FADT.XGpe0Block, RegisterCount0, 0,
143 AcpiGbl_FADT.SciInterrupt, &AcpiGbl_GpeFadtBlocks[0]);

145 if (ACPI_FAILURE (Status))
146 {
147 ACPI_EXCEPTION ((AE_INFO, Status,
148 "Could not create GPE Block 0"));
149 }
150 }

152 if (AcpiGbl_FADT.Gpe1BlockLength &&
153 AcpiGbl_FADT.XGpe1Block.Address)
154 {
155 /* GPE block 1 exists (has both length and address > 0) */

157 RegisterCount1 = (UINT16) (AcpiGbl_FADT.Gpe1BlockLength / 2);

159 /* Check for GPE0/GPE1 overlap (if both banks exist) */

161 if ((RegisterCount0) &&
162 (GpeNumberMax >= AcpiGbl_FADT.Gpe1Base))
163 {
164 ACPI_ERROR ((AE_INFO,
165 "GPE0 block (GPE 0 to %u) overlaps the GPE1 block "
166 "(GPE %u to %u) - Ignoring GPE1",
167 GpeNumberMax, AcpiGbl_FADT.Gpe1Base,
168 AcpiGbl_FADT.Gpe1Base +
169 ((RegisterCount1 * ACPI_GPE_REGISTER_WIDTH) - 1)));

171 /* Ignore GPE1 block by setting the register count to zero */

173 RegisterCount1 = 0;
174 }
175 else
176 {
177 /* Install GPE Block 1 */

179 Status = AcpiEvCreateGpeBlock (AcpiGbl_FadtGpeDevice,
180 &AcpiGbl_FADT.XGpe1Block, RegisterCount1,
181 AcpiGbl_FADT.Gpe1Base,
182 AcpiGbl_FADT.SciInterrupt, &AcpiGbl_GpeFadtBlocks[1]);

184 if (ACPI_FAILURE (Status))
185 {
186 ACPI_EXCEPTION ((AE_INFO, Status,
187 "Could not create GPE Block 1"));
188 }

190 /*

new/usr/src/common/acpica/components/events/evgpeinit.c 4

191 * GPE0 and GPE1 do not have to be contiguous in the GPE number
192 * space. However, GPE0 always starts at GPE number zero.
193 */
194 GpeNumberMax = AcpiGbl_FADT.Gpe1Base +
195 ((RegisterCount1 * ACPI_GPE_REGISTER_WIDTH) - 1);
196 }
197 }

199 /* Exit if there are no GPE registers */

201 if ((RegisterCount0 + RegisterCount1) == 0)
202 {
203 /* GPEs are not required by ACPI, this is OK */

205 ACPI_DEBUG_PRINT ((ACPI_DB_INIT,
206 "There are no GPE blocks defined in the FADT\n"));
207 Status = AE_OK;
208 goto Cleanup;
209 }

208 /* Check for Max GPE number out-of-range */

210 if (GpeNumberMax > ACPI_GPE_MAX)
211 {
212 ACPI_ERROR ((AE_INFO,
213 "Maximum GPE number from FADT is too large: 0x%X",
214 GpeNumberMax));
215 Status = AE_BAD_VALUE;
216 goto Cleanup;
217 }

212 Cleanup:
213 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
214 return_ACPI_STATUS (AE_OK);
215 }

______unchanged_portion_omitted_

300 /***
301 *
302 * FUNCTION: AcpiEvMatchGpeMethod
303 *
304 * PARAMETERS: Callback from WalkNamespace
305 *
306 * RETURN: Status
307 *
308 * DESCRIPTION: Called from AcpiWalkNamespace. Expects each object to be a
309 * control method under the _GPE portion of the namespace.
310 * Extract the name and GPE type from the object, saving this
311 * information for quick lookup during GPE dispatch. Allows a
312 * per-OwnerId evaluation if ExecuteByOwnerId is TRUE in the
313 * WalkInfo parameter block.
314 *
315 * The name of each GPE control method is of the form:
316 * "_Lxx" or "_Exx", where:
317 * L - means that the GPE is level triggered
318 * E - means that the GPE is edge triggered
319 * xx - is the GPE number [in HEX]
320 *
321 * If WalkInfo->ExecuteByOwnerId is TRUE, we only execute examine GPE methods
322 * with that owner.
323 *
324 **/

326 ACPI_STATUS
327 AcpiEvMatchGpeMethod (

new/usr/src/common/acpica/components/events/evgpeinit.c 5

328 ACPI_HANDLE ObjHandle,
329 UINT32 Level,
330 void *Context,
331 void **ReturnValue)
332 {
333 ACPI_NAMESPACE_NODE *MethodNode = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Ob
334 ACPI_GPE_WALK_INFO *WalkInfo = ACPI_CAST_PTR (ACPI_GPE_WALK_INFO, Conte
335 ACPI_GPE_EVENT_INFO *GpeEventInfo;
336 UINT32 GpeNumber;
337 char Name[ACPI_NAME_SIZE + 1];
338 UINT8 Type;

341 ACPI_FUNCTION_TRACE (EvMatchGpeMethod);

344 /* Check if requested OwnerId matches this OwnerId */

346 if ((WalkInfo->ExecuteByOwnerId) &&
347 (MethodNode->OwnerId != WalkInfo->OwnerId))
348 {
349 return_ACPI_STATUS (AE_OK);
350 }

352 /*
353 * Match and decode the _Lxx and _Exx GPE method names
354 *
355 * 1) Extract the method name and null terminate it
356 */
357 ACPI_MOVE_32_TO_32 (Name, &MethodNode->Name.Integer);
358 Name[ACPI_NAME_SIZE] = 0;

360 /* 2) Name must begin with an underscore */

362 if (Name[0] != ’_’)
363 {
364 return_ACPI_STATUS (AE_OK); /* Ignore this method */
365 }

367 /*
368 * 3) Edge/Level determination is based on the 2nd character
369 * of the method name
370 */
371 switch (Name[1])
372 {
373 case ’L’:

375 Type = ACPI_GPE_LEVEL_TRIGGERED;
376 break;

378 case ’E’:

380 Type = ACPI_GPE_EDGE_TRIGGERED;
381 break;

383 default:

385 /* Unknown method type, just ignore it */

387 ACPI_DEBUG_PRINT ((ACPI_DB_LOAD,
388 "Ignoring unknown GPE method type: %s "
389 "(name not of form _Lxx or _Exx)", Name));
390 return_ACPI_STATUS (AE_OK);
391 }

393 /* 4) The last two characters of the name are the hex GPE Number */

new/usr/src/common/acpica/components/events/evgpeinit.c 6

395 GpeNumber = ACPI_STRTOUL (&Name[2], NULL, 16);
396 if (GpeNumber == ACPI_UINT32_MAX)
397 {
398 /* Conversion failed; invalid method, just ignore it */

400 ACPI_DEBUG_PRINT ((ACPI_DB_LOAD,
401 "Could not extract GPE number from name: %s "
402 "(name is not of form _Lxx or _Exx)", Name));
403 return_ACPI_STATUS (AE_OK);
404 }

406 /* Ensure that we have a valid GPE number for this GPE block */

408 GpeEventInfo = AcpiEvLowGetGpeInfo (GpeNumber, WalkInfo->GpeBlock);
409 if (!GpeEventInfo)
410 {
411 /*
412 * This GpeNumber is not valid for this GPE block, just ignore it.
413 * However, it may be valid for a different GPE block, since GPE0
414 * and GPE1 methods both appear under _GPE.
415 */
416 return_ACPI_STATUS (AE_OK);
417 }

419 if ((GpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK) ==
420 ACPI_GPE_DISPATCH_HANDLER)
421 {
422 /* If there is already a handler, ignore this GPE method */

424 return_ACPI_STATUS (AE_OK);
425 }

427 if ((GpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK) ==
428 ACPI_GPE_DISPATCH_METHOD)
429 {
430 /*
431 * If there is already a method, ignore this method. But check
432 * for a type mismatch (if both the _Lxx AND _Exx exist)
433 */
434 if (Type != (GpeEventInfo->Flags & ACPI_GPE_XRUPT_TYPE_MASK))
435 {
436 ACPI_ERROR ((AE_INFO,
437 "For GPE 0x%.2X, found both _L%2.2X and _E%2.2X methods",
438 GpeNumber, GpeNumber, GpeNumber));
439 }
440 return_ACPI_STATUS (AE_OK);
441 }

443 /*
444 * Add the GPE information from above to the GpeEventInfo block for
445 * use during dispatch of this GPE.
446 */
447 GpeEventInfo->Flags &= ~(ACPI_GPE_DISPATCH_MASK);
448 GpeEventInfo->Flags |= (UINT8) (Type | ACPI_GPE_DISPATCH_METHOD);
449 GpeEventInfo->Dispatch.MethodNode = MethodNode;

451 ACPI_DEBUG_PRINT ((ACPI_DB_LOAD,
452 "Registered GPE method %s as GPE number 0x%.2X\n",
453 Name, GpeNumber));
454 return_ACPI_STATUS (AE_OK);
455 }

457 #endif /* !ACPI_REDUCED_HARDWARE */

new/usr/src/common/acpica/components/events/evgpeutil.c 1

**
 12952 Thu Dec 26 13:48:57 2013
new/usr/src/common/acpica/components/events/evgpeutil.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: evgpeutil - GPE utilities
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "acevents.h"

48 #define _COMPONENT ACPI_EVENTS
49 ACPI_MODULE_NAME ("evgpeutil")

52 #if (!ACPI_REDUCED_HARDWARE) /* Entire module */
53 /***
54 *
55 * FUNCTION: AcpiEvWalkGpeList
56 *
57 * PARAMETERS: GpeWalkCallback - Routine called for each GPE block

new/usr/src/common/acpica/components/events/evgpeutil.c 2

58 * Context - Value passed to callback
59 *
60 * RETURN: Status
61 *
62 * DESCRIPTION: Walk the GPE lists.
63 *
64 **/

66 ACPI_STATUS
67 AcpiEvWalkGpeList (
68 ACPI_GPE_CALLBACK GpeWalkCallback,
69 void *Context)
70 {
71 ACPI_GPE_BLOCK_INFO *GpeBlock;
72 ACPI_GPE_XRUPT_INFO *GpeXruptInfo;
73 ACPI_STATUS Status = AE_OK;
74 ACPI_CPU_FLAGS Flags;

77 ACPI_FUNCTION_TRACE (EvWalkGpeList);

80 Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock);

82 /* Walk the interrupt level descriptor list */

84 GpeXruptInfo = AcpiGbl_GpeXruptListHead;
85 while (GpeXruptInfo)
86 {
87 /* Walk all Gpe Blocks attached to this interrupt level */

89 GpeBlock = GpeXruptInfo->GpeBlockListHead;
90 while (GpeBlock)
91 {
92 /* One callback per GPE block */

94 Status = GpeWalkCallback (GpeXruptInfo, GpeBlock, Context);
95 if (ACPI_FAILURE (Status))
96 {
97 if (Status == AE_CTRL_END) /* Callback abort */
98 {
99 Status = AE_OK;
100 }
101 goto UnlockAndExit;
102 }

104 GpeBlock = GpeBlock->Next;
105 }

107 GpeXruptInfo = GpeXruptInfo->Next;
108 }

110 UnlockAndExit:
111 AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags);
112 return_ACPI_STATUS (Status);
113 }

______unchanged_portion_omitted_

215 /***
216 *
217 * FUNCTION: AcpiEvGetGpeXruptBlock
218 *
219 * PARAMETERS: InterruptNumber - Interrupt for a GPE block
220 * GpeXruptBlock - Where the block is returned
221 *

new/usr/src/common/acpica/components/events/evgpeutil.c 3

222 * RETURN: Status
221 * RETURN: A GPE interrupt block
223 *
224 * DESCRIPTION: Get or Create a GPE interrupt block. There is one interrupt
225 * block per unique interrupt level used for GPEs. Should be
226 * called only when the GPE lists are semaphore locked and not
227 * subject to change.
228 *
229 **/

231 ACPI_STATUS
230 ACPI_GPE_XRUPT_INFO *
232 AcpiEvGetGpeXruptBlock (
233 UINT32 InterruptNumber,
234 ACPI_GPE_XRUPT_INFO **GpeXruptBlock)
232 UINT32 InterruptNumber)
235 {
236 ACPI_GPE_XRUPT_INFO *NextGpeXrupt;
237 ACPI_GPE_XRUPT_INFO *GpeXrupt;
238 ACPI_STATUS Status;
239 ACPI_CPU_FLAGS Flags;

242 ACPI_FUNCTION_TRACE (EvGetGpeXruptBlock);

245 /* No need for lock since we are not changing any list elements here */

247 NextGpeXrupt = AcpiGbl_GpeXruptListHead;
248 while (NextGpeXrupt)
249 {
250 if (NextGpeXrupt->InterruptNumber == InterruptNumber)
251 {
252 *GpeXruptBlock = NextGpeXrupt;
253 return_ACPI_STATUS (AE_OK);
250 return_PTR (NextGpeXrupt);
254 }

256 NextGpeXrupt = NextGpeXrupt->Next;
257 }

259 /* Not found, must allocate a new xrupt descriptor */

261 GpeXrupt = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_GPE_XRUPT_INFO));
262 if (!GpeXrupt)
263 {
264 return_ACPI_STATUS (AE_NO_MEMORY);
261 return_PTR (NULL);
265 }

267 GpeXrupt->InterruptNumber = InterruptNumber;

269 /* Install new interrupt descriptor with spin lock */

271 Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock);
272 if (AcpiGbl_GpeXruptListHead)
273 {
274 NextGpeXrupt = AcpiGbl_GpeXruptListHead;
275 while (NextGpeXrupt->Next)
276 {
277 NextGpeXrupt = NextGpeXrupt->Next;
278 }

280 NextGpeXrupt->Next = GpeXrupt;
281 GpeXrupt->Previous = NextGpeXrupt;
282 }

new/usr/src/common/acpica/components/events/evgpeutil.c 4

283 else
284 {
285 AcpiGbl_GpeXruptListHead = GpeXrupt;
286 }

288 AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags);

290 /* Install new interrupt handler if not SCI_INT */

292 if (InterruptNumber != AcpiGbl_FADT.SciInterrupt)
293 {
294 Status = AcpiOsInstallInterruptHandler (InterruptNumber,
295 AcpiEvGpeXruptHandler, GpeXrupt);
296 if (ACPI_FAILURE (Status))
297 {
298 ACPI_EXCEPTION ((AE_INFO, Status,
294 ACPI_ERROR ((AE_INFO,
299 "Could not install GPE interrupt handler at level 0x%X",
300 InterruptNumber));
301 return_ACPI_STATUS (Status);
297 return_PTR (NULL);
302 }
303 }

305 *GpeXruptBlock = GpeXrupt;
306 return_ACPI_STATUS (AE_OK);
301 return_PTR (GpeXrupt);
307 }

______unchanged_portion_omitted_

378 /***
379 *
380 * FUNCTION: AcpiEvDeleteGpeHandlers
381 *
382 * PARAMETERS: GpeXruptInfo - GPE Interrupt info
383 * GpeBlock - Gpe Block info
384 *
385 * RETURN: Status
386 *
387 * DESCRIPTION: Delete all Handler objects found in the GPE data structs.
388 * Used only prior to termination.
389 *
390 **/

392 ACPI_STATUS
393 AcpiEvDeleteGpeHandlers (
394 ACPI_GPE_XRUPT_INFO *GpeXruptInfo,
395 ACPI_GPE_BLOCK_INFO *GpeBlock,
396 void *Context)
397 {
398 ACPI_GPE_EVENT_INFO *GpeEventInfo;
399 ACPI_GPE_NOTIFY_INFO *Notify;
400 ACPI_GPE_NOTIFY_INFO *Next;
401 UINT32 i;
402 UINT32 j;

405 ACPI_FUNCTION_TRACE (EvDeleteGpeHandlers);

408 /* Examine each GPE Register within the block */

410 for (i = 0; i < GpeBlock->RegisterCount; i++)
411 {
412 /* Now look at the individual GPEs in this byte register */

new/usr/src/common/acpica/components/events/evgpeutil.c 5

414 for (j = 0; j < ACPI_GPE_REGISTER_WIDTH; j++)
415 {
416 GpeEventInfo = &GpeBlock->EventInfo[((ACPI_SIZE) i *
417 ACPI_GPE_REGISTER_WIDTH) + j];

419 if ((GpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK) ==
420 ACPI_GPE_DISPATCH_HANDLER)
421 {
422 /* Delete an installed handler block */

424 ACPI_FREE (GpeEventInfo->Dispatch.Handler);
425 GpeEventInfo->Dispatch.Handler = NULL;
426 GpeEventInfo->Flags &= ~ACPI_GPE_DISPATCH_MASK;
427 }
428 else if ((GpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK) ==
429 ACPI_GPE_DISPATCH_NOTIFY)
430 {
431 /* Delete the implicit notification device list */

433 Notify = GpeEventInfo->Dispatch.NotifyList;
434 while (Notify)
435 {
436 Next = Notify->Next;
437 ACPI_FREE (Notify);
438 Notify = Next;
439 }
440 GpeEventInfo->Dispatch.NotifyList = NULL;
441 GpeEventInfo->Flags &= ~ACPI_GPE_DISPATCH_MASK;
442 }
443 }
444 }

446 return_ACPI_STATUS (AE_OK);
447 }

449 #endif /* !ACPI_REDUCED_HARDWARE */

new/usr/src/common/acpica/components/events/evhandler.c 1

**
 17268 Thu Dec 26 13:48:58 2013
new/usr/src/common/acpica/components/events/evhandler.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: evhandler - Support for Address Space handlers
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __EVHANDLER_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acevents.h"
50 #include "acnamesp.h"
51 #include "acinterp.h"

53 #define _COMPONENT ACPI_EVENTS
54 ACPI_MODULE_NAME ("evhandler")

57 /* Local prototypes */

59 static ACPI_STATUS
60 AcpiEvInstallHandler (
61 ACPI_HANDLE ObjHandle,

new/usr/src/common/acpica/components/events/evhandler.c 2

62 UINT32 Level,
63 void *Context,
64 void **ReturnValue);

66 /* These are the address spaces that will get default handlers */

68 UINT8 AcpiGbl_DefaultAddressSpaces[ACPI_NUM_DEFAULT_SPACES] =
69 {
70 ACPI_ADR_SPACE_SYSTEM_MEMORY,
71 ACPI_ADR_SPACE_SYSTEM_IO,
72 ACPI_ADR_SPACE_PCI_CONFIG,
73 ACPI_ADR_SPACE_DATA_TABLE
74 };

77 /***
78 *
79 * FUNCTION: AcpiEvInstallRegionHandlers
80 *
81 * PARAMETERS: None
82 *
83 * RETURN: Status
84 *
85 * DESCRIPTION: Installs the core subsystem default address space handlers.
86 *
87 **/

89 ACPI_STATUS
90 AcpiEvInstallRegionHandlers (
91 void)
92 {
93 ACPI_STATUS Status;
94 UINT32 i;

97 ACPI_FUNCTION_TRACE (EvInstallRegionHandlers);

100 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
101 if (ACPI_FAILURE (Status))
102 {
103 return_ACPI_STATUS (Status);
104 }

106 /*
107 * All address spaces (PCI Config, EC, SMBus) are scope dependent and
108 * registration must occur for a specific device.
109 *
110 * In the case of the system memory and IO address spaces there is
111 * currently no device associated with the address space. For these we
112 * use the root.
113 *
114 * We install the default PCI config space handler at the root so that
115 * this space is immediately available even though the we have not
116 * enumerated all the PCI Root Buses yet. This is to conform to the ACPI
117 * specification which states that the PCI config space must be always
118 * available -- even though we are nowhere near ready to find the PCI root
119 * buses at this point.
120 *
121 * NOTE: We ignore AE_ALREADY_EXISTS because this means that a handler
122 * has already been installed (via AcpiInstallAddressSpaceHandler).
123 * Similar for AE_SAME_HANDLER.
124 */
125 for (i = 0; i < ACPI_NUM_DEFAULT_SPACES; i++)
126 {
127 Status = AcpiEvInstallSpaceHandler (AcpiGbl_RootNode,

new/usr/src/common/acpica/components/events/evhandler.c 3

128 AcpiGbl_DefaultAddressSpaces[i],
129 ACPI_DEFAULT_HANDLER, NULL, NULL);
130 switch (Status)
131 {
132 case AE_OK:
133 case AE_SAME_HANDLER:
134 case AE_ALREADY_EXISTS:

136 /* These exceptions are all OK */

138 Status = AE_OK;
139 break;

141 default:

143 goto UnlockAndExit;
144 }
145 }

147 UnlockAndExit:
148 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
149 return_ACPI_STATUS (Status);
150 }

153 /***
154 *
155 * FUNCTION: AcpiEvHasDefaultHandler
156 *
157 * PARAMETERS: Node - Namespace node for the device
158 * SpaceId - The address space ID
159 *
160 * RETURN: TRUE if default handler is installed, FALSE otherwise
161 *
162 * DESCRIPTION: Check if the default handler is installed for the requested
163 * space ID.
164 *
165 **/

167 BOOLEAN
168 AcpiEvHasDefaultHandler (
169 ACPI_NAMESPACE_NODE *Node,
170 ACPI_ADR_SPACE_TYPE SpaceId)
171 {
172 ACPI_OPERAND_OBJECT *ObjDesc;
173 ACPI_OPERAND_OBJECT *HandlerObj;

176 /* Must have an existing internal object */

178 ObjDesc = AcpiNsGetAttachedObject (Node);
179 if (ObjDesc)
180 {
181 HandlerObj = ObjDesc->Device.Handler;

183 /* Walk the linked list of handlers for this object */

185 while (HandlerObj)
186 {
187 if (HandlerObj->AddressSpace.SpaceId == SpaceId)
188 {
189 if (HandlerObj->AddressSpace.HandlerFlags &
190 ACPI_ADDR_HANDLER_DEFAULT_INSTALLED)
191 {
192 return (TRUE);
193 }

new/usr/src/common/acpica/components/events/evhandler.c 4

194 }

196 HandlerObj = HandlerObj->AddressSpace.Next;
197 }
198 }

200 return (FALSE);
201 }

204 /***
205 *
206 * FUNCTION: AcpiEvInstallHandler
207 *
208 * PARAMETERS: WalkNamespace callback
209 *
210 * DESCRIPTION: This routine installs an address handler into objects that are
211 * of type Region or Device.
212 *
213 * If the Object is a Device, and the device has a handler of
214 * the same type then the search is terminated in that branch.
215 *
216 * This is because the existing handler is closer in proximity
217 * to any more regions than the one we are trying to install.
218 *
219 **/

221 static ACPI_STATUS
222 AcpiEvInstallHandler (
223 ACPI_HANDLE ObjHandle,
224 UINT32 Level,
225 void *Context,
226 void **ReturnValue)
227 {
228 ACPI_OPERAND_OBJECT *HandlerObj;
229 ACPI_OPERAND_OBJECT *NextHandlerObj;
230 ACPI_OPERAND_OBJECT *ObjDesc;
231 ACPI_NAMESPACE_NODE *Node;
232 ACPI_STATUS Status;

235 ACPI_FUNCTION_NAME (EvInstallHandler);

238 HandlerObj = (ACPI_OPERAND_OBJECT *) Context;

240 /* Parameter validation */

242 if (!HandlerObj)
243 {
244 return (AE_OK);
245 }

247 /* Convert and validate the device handle */

249 Node = AcpiNsValidateHandle (ObjHandle);
250 if (!Node)
251 {
252 return (AE_BAD_PARAMETER);
253 }

255 /*
256 * We only care about regions and objects that are allowed to have
257 * address space handlers
258 */
259 if ((Node->Type != ACPI_TYPE_DEVICE) &&

new/usr/src/common/acpica/components/events/evhandler.c 5

260 (Node->Type != ACPI_TYPE_REGION) &&
261 (Node != AcpiGbl_RootNode))
262 {
263 return (AE_OK);
264 }

266 /* Check for an existing internal object */

268 ObjDesc = AcpiNsGetAttachedObject (Node);
269 if (!ObjDesc)
270 {
271 /* No object, just exit */

273 return (AE_OK);
274 }

276 /* Devices are handled different than regions */

278 if (ObjDesc->Common.Type == ACPI_TYPE_DEVICE)
279 {
280 /* Check if this Device already has a handler for this address space */

282 NextHandlerObj = ObjDesc->Device.Handler;
283 while (NextHandlerObj)
284 {
285 /* Found a handler, is it for the same address space? */

287 if (NextHandlerObj->AddressSpace.SpaceId ==
288 HandlerObj->AddressSpace.SpaceId)
289 {
290 ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION,
291 "Found handler for region [%s] in device %p(%p) "
292 "handler %p\n",
293 AcpiUtGetRegionName (HandlerObj->AddressSpace.SpaceId),
294 ObjDesc, NextHandlerObj, HandlerObj));

296 /*
297 * Since the object we found it on was a device, then it
298 * means that someone has already installed a handler for
299 * the branch of the namespace from this device on. Just
300 * bail out telling the walk routine to not traverse this
301 * branch. This preserves the scoping rule for handlers.
302 */
303 return (AE_CTRL_DEPTH);
304 }

306 /* Walk the linked list of handlers attached to this device */

308 NextHandlerObj = NextHandlerObj->AddressSpace.Next;
309 }

311 /*
312 * As long as the device didn’t have a handler for this space we
313 * don’t care about it. We just ignore it and proceed.
314 */
315 return (AE_OK);
316 }

318 /* Object is a Region */

320 if (ObjDesc->Region.SpaceId != HandlerObj->AddressSpace.SpaceId)
321 {
322 /* This region is for a different address space, just ignore it */

324 return (AE_OK);
325 }

new/usr/src/common/acpica/components/events/evhandler.c 6

327 /*
328 * Now we have a region and it is for the handler’s address space type.
329 *
330 * First disconnect region for any previous handler (if any)
331 */
332 AcpiEvDetachRegion (ObjDesc, FALSE);

334 /* Connect the region to the new handler */

336 Status = AcpiEvAttachRegion (HandlerObj, ObjDesc, FALSE);
337 return (Status);
338 }

341 /***
342 *
343 * FUNCTION: AcpiEvInstallSpaceHandler
344 *
345 * PARAMETERS: Node - Namespace node for the device
346 * SpaceId - The address space ID
347 * Handler - Address of the handler
348 * Setup - Address of the setup function
349 * Context - Value passed to the handler on each access
350 *
351 * RETURN: Status
352 *
353 * DESCRIPTION: Install a handler for all OpRegions of a given SpaceId.
354 * Assumes namespace is locked
355 *
356 **/

358 ACPI_STATUS
359 AcpiEvInstallSpaceHandler (
360 ACPI_NAMESPACE_NODE *Node,
361 ACPI_ADR_SPACE_TYPE SpaceId,
362 ACPI_ADR_SPACE_HANDLER Handler,
363 ACPI_ADR_SPACE_SETUP Setup,
364 void *Context)
365 {
366 ACPI_OPERAND_OBJECT *ObjDesc;
367 ACPI_OPERAND_OBJECT *HandlerObj;
368 ACPI_STATUS Status;
369 ACPI_OBJECT_TYPE Type;
370 UINT8 Flags = 0;

373 ACPI_FUNCTION_TRACE (EvInstallSpaceHandler);

376 /*
377 * This registration is valid for only the types below and the root. This
378 * is where the default handlers get placed.
379 */
380 if ((Node->Type != ACPI_TYPE_DEVICE) &&
381 (Node->Type != ACPI_TYPE_PROCESSOR) &&
382 (Node->Type != ACPI_TYPE_THERMAL) &&
383 (Node != AcpiGbl_RootNode))
384 {
385 Status = AE_BAD_PARAMETER;
386 goto UnlockAndExit;
387 }

389 if (Handler == ACPI_DEFAULT_HANDLER)
390 {
391 Flags = ACPI_ADDR_HANDLER_DEFAULT_INSTALLED;

new/usr/src/common/acpica/components/events/evhandler.c 7

393 switch (SpaceId)
394 {
395 case ACPI_ADR_SPACE_SYSTEM_MEMORY:

397 Handler = AcpiExSystemMemorySpaceHandler;
398 Setup = AcpiEvSystemMemoryRegionSetup;
399 break;

401 case ACPI_ADR_SPACE_SYSTEM_IO:

403 Handler = AcpiExSystemIoSpaceHandler;
404 Setup = AcpiEvIoSpaceRegionSetup;
405 break;

407 case ACPI_ADR_SPACE_PCI_CONFIG:

409 Handler = AcpiExPciConfigSpaceHandler;
410 Setup = AcpiEvPciConfigRegionSetup;
411 break;

413 case ACPI_ADR_SPACE_CMOS:

415 Handler = AcpiExCmosSpaceHandler;
416 Setup = AcpiEvCmosRegionSetup;
417 break;

419 case ACPI_ADR_SPACE_PCI_BAR_TARGET:

421 Handler = AcpiExPciBarSpaceHandler;
422 Setup = AcpiEvPciBarRegionSetup;
423 break;

425 case ACPI_ADR_SPACE_DATA_TABLE:

427 Handler = AcpiExDataTableSpaceHandler;
428 Setup = NULL;
429 break;

431 default:

433 Status = AE_BAD_PARAMETER;
434 goto UnlockAndExit;
435 }
436 }

438 /* If the caller hasn’t specified a setup routine, use the default */

440 if (!Setup)
441 {
442 Setup = AcpiEvDefaultRegionSetup;
443 }

445 /* Check for an existing internal object */

447 ObjDesc = AcpiNsGetAttachedObject (Node);
448 if (ObjDesc)
449 {
450 /*
451 * The attached device object already exists. Make sure the handler
452 * is not already installed.
453 */
454 HandlerObj = ObjDesc->Device.Handler;

456 /* Walk the handler list for this device */

new/usr/src/common/acpica/components/events/evhandler.c 8

458 while (HandlerObj)
459 {
460 /* Same SpaceId indicates a handler already installed */

462 if (HandlerObj->AddressSpace.SpaceId == SpaceId)
463 {
464 if (HandlerObj->AddressSpace.Handler == Handler)
465 {
466 /*
467 * It is (relatively) OK to attempt to install the SAME
468 * handler twice. This can easily happen with the
469 * PCI_Config space.
470 */
471 Status = AE_SAME_HANDLER;
472 goto UnlockAndExit;
473 }
474 else
475 {
476 /* A handler is already installed */

478 Status = AE_ALREADY_EXISTS;
479 }
480 goto UnlockAndExit;
481 }

483 /* Walk the linked list of handlers */

485 HandlerObj = HandlerObj->AddressSpace.Next;
486 }
487 }
488 else
489 {
490 ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION,
491 "Creating object on Device %p while installing handler\n", Node));

493 /* ObjDesc does not exist, create one */

495 if (Node->Type == ACPI_TYPE_ANY)
496 {
497 Type = ACPI_TYPE_DEVICE;
498 }
499 else
500 {
501 Type = Node->Type;
502 }

504 ObjDesc = AcpiUtCreateInternalObject (Type);
505 if (!ObjDesc)
506 {
507 Status = AE_NO_MEMORY;
508 goto UnlockAndExit;
509 }

511 /* Init new descriptor */

513 ObjDesc->Common.Type = (UINT8) Type;

515 /* Attach the new object to the Node */

517 Status = AcpiNsAttachObject (Node, ObjDesc, Type);

519 /* Remove local reference to the object */

521 AcpiUtRemoveReference (ObjDesc);

523 if (ACPI_FAILURE (Status))

new/usr/src/common/acpica/components/events/evhandler.c 9

524 {
525 goto UnlockAndExit;
526 }
527 }

529 ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION,
530 "Installing address handler for region %s(%X) on Device %4.4s %p(%p)\n",
531 AcpiUtGetRegionName (SpaceId), SpaceId,
532 AcpiUtGetNodeName (Node), Node, ObjDesc));

534 /*
535 * Install the handler
536 *
537 * At this point there is no existing handler. Just allocate the object
538 * for the handler and link it into the list.
539 */
540 HandlerObj = AcpiUtCreateInternalObject (ACPI_TYPE_LOCAL_ADDRESS_HANDLER);
541 if (!HandlerObj)
542 {
543 Status = AE_NO_MEMORY;
544 goto UnlockAndExit;
545 }

547 /* Init handler obj */

549 HandlerObj->AddressSpace.SpaceId = (UINT8) SpaceId;
550 HandlerObj->AddressSpace.HandlerFlags = Flags;
551 HandlerObj->AddressSpace.RegionList = NULL;
552 HandlerObj->AddressSpace.Node = Node;
553 HandlerObj->AddressSpace.Handler = Handler;
554 HandlerObj->AddressSpace.Context = Context;
555 HandlerObj->AddressSpace.Setup = Setup;

557 /* Install at head of Device.AddressSpace list */

559 HandlerObj->AddressSpace.Next = ObjDesc->Device.Handler;

561 /*
562 * The Device object is the first reference on the HandlerObj.
563 * Each region that uses the handler adds a reference.
564 */
565 ObjDesc->Device.Handler = HandlerObj;

567 /*
568 * Walk the namespace finding all of the regions this
569 * handler will manage.
570 *
571 * Start at the device and search the branch toward
572 * the leaf nodes until either the leaf is encountered or
573 * a device is detected that has an address handler of the
574 * same type.
575 *
576 * In either case, back up and search down the remainder
577 * of the branch
578 */
579 Status = AcpiNsWalkNamespace (ACPI_TYPE_ANY, Node, ACPI_UINT32_MAX,
580 ACPI_NS_WALK_UNLOCK, AcpiEvInstallHandler, NULL,
581 HandlerObj, NULL);

583 UnlockAndExit:
584 return_ACPI_STATUS (Status);
585 }

new/usr/src/common/acpica/components/events/evmisc.c 1

**
 9419 Thu Dec 26 13:48:58 2013
new/usr/src/common/acpica/components/events/evmisc.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: evmisc - Miscellaneous event manager support functions
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "acevents.h"
47 #include "acnamesp.h"

49 #define _COMPONENT ACPI_EVENTS
50 ACPI_MODULE_NAME ("evmisc")

53 /* Local prototypes */

55 static void ACPI_SYSTEM_XFACE
56 AcpiEvNotifyDispatch (
57 void *Context);

60 /***

new/usr/src/common/acpica/components/events/evmisc.c 2

61 *
62 * FUNCTION: AcpiEvIsNotifyObject
63 *
64 * PARAMETERS: Node - Node to check
65 *
66 * RETURN: TRUE if notifies allowed on this object
67 *
68 * DESCRIPTION: Check type of node for a object that supports notifies.
69 *
70 * TBD: This could be replaced by a flag bit in the node.
71 *
72 **/

74 BOOLEAN
75 AcpiEvIsNotifyObject (
76 ACPI_NAMESPACE_NODE *Node)
77 {
78 switch (Node->Type)
79 {
80 case ACPI_TYPE_DEVICE:
81 case ACPI_TYPE_PROCESSOR:
82 case ACPI_TYPE_THERMAL:
83 /*
84 * These are the ONLY objects that can receive ACPI notifications
85 */
86 return (TRUE);

88 default:

90 return (FALSE);
91 }
92 }

95 /***
96 *
97 * FUNCTION: AcpiEvQueueNotifyRequest
98 *
99 * PARAMETERS: Node - NS node for the notified object
100 * NotifyValue - Value from the Notify() request
101 *
102 * RETURN: Status
103 *
104 * DESCRIPTION: Dispatch a device notification event to a previously
105 * installed handler.
106 *
107 **/

109 ACPI_STATUS
110 AcpiEvQueueNotifyRequest (
111 ACPI_NAMESPACE_NODE *Node,
112 UINT32 NotifyValue)
113 {
114 ACPI_OPERAND_OBJECT *ObjDesc;
115 ACPI_OPERAND_OBJECT *HandlerListHead = NULL;
116 ACPI_GENERIC_STATE *Info;
117 UINT8 HandlerListId = 0;
118 ACPI_STATUS Status = AE_OK;

121 ACPI_FUNCTION_NAME (EvQueueNotifyRequest);

124 /* Are Notifies allowed on this object? */

126 if (!AcpiEvIsNotifyObject (Node))

new/usr/src/common/acpica/components/events/evmisc.c 3

127 {
128 return (AE_TYPE);
129 }

131 /* Get the correct notify list type (System or Device) */

133 if (NotifyValue <= ACPI_MAX_SYS_NOTIFY)
134 {
135 HandlerListId = ACPI_SYSTEM_HANDLER_LIST;
136 }
137 else
138 {
139 HandlerListId = ACPI_DEVICE_HANDLER_LIST;
140 }

142 /* Get the notify object attached to the namespace Node */

144 ObjDesc = AcpiNsGetAttachedObject (Node);
145 if (ObjDesc)
146 {
147 /* We have an attached object, Get the correct handler list */

149 HandlerListHead = ObjDesc->CommonNotify.NotifyList[HandlerListId];
150 }

152 /*
153 * If there is no notify handler (Global or Local)
154 * for this object, just ignore the notify
155 */
156 if (!AcpiGbl_GlobalNotify[HandlerListId].Handler && !HandlerListHead)
157 {
158 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
159 "No notify handler for Notify, ignoring (%4.4s, %X) node %p\n",
160 AcpiUtGetNodeName (Node), NotifyValue, Node));

162 return (AE_OK);
163 }

165 /* Setup notify info and schedule the notify dispatcher */

167 Info = AcpiUtCreateGenericState ();
168 if (!Info)
169 {
170 return (AE_NO_MEMORY);
171 }

173 Info->Common.DescriptorType = ACPI_DESC_TYPE_STATE_NOTIFY;

175 Info->Notify.Node = Node;
176 Info->Notify.Value = (UINT16) NotifyValue;
177 Info->Notify.HandlerListId = HandlerListId;
178 Info->Notify.HandlerListHead = HandlerListHead;
179 Info->Notify.Global = &AcpiGbl_GlobalNotify[HandlerListId];

181 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
182 "Dispatching Notify on [%4.4s] (%s) Value 0x%2.2X (%s) Node %p\n",
183 AcpiUtGetNodeName (Node), AcpiUtGetTypeName (Node->Type),
184 NotifyValue, AcpiUtGetNotifyName (NotifyValue), Node));

186 Status = AcpiOsExecute (OSL_NOTIFY_HANDLER, AcpiEvNotifyDispatch,
187 Info);
188 if (ACPI_FAILURE (Status))
189 {
190 AcpiUtDeleteGenericState (Info);
191 }

new/usr/src/common/acpica/components/events/evmisc.c 4

193 return (Status);
194 }

197 /***
198 *
199 * FUNCTION: AcpiEvNotifyDispatch
200 *
201 * PARAMETERS: Context - To be passed to the notify handler
202 *
203 * RETURN: None.
204 *
205 * DESCRIPTION: Dispatch a device notification event to a previously
206 * installed handler.
207 *
208 **/

210 static void ACPI_SYSTEM_XFACE
211 AcpiEvNotifyDispatch (
212 void *Context)
213 {
214 ACPI_GENERIC_STATE *Info = (ACPI_GENERIC_STATE *) Context;
215 ACPI_OPERAND_OBJECT *HandlerObj;

218 ACPI_FUNCTION_ENTRY ();

221 /* Invoke a global notify handler if installed */

223 if (Info->Notify.Global->Handler)
224 {
225 Info->Notify.Global->Handler (Info->Notify.Node,
226 Info->Notify.Value,
227 Info->Notify.Global->Context);
228 }

230 /* Now invoke the local notify handler(s) if any are installed */

232 HandlerObj = Info->Notify.HandlerListHead;
233 while (HandlerObj)
234 {
235 HandlerObj->Notify.Handler (Info->Notify.Node,
236 Info->Notify.Value,
237 HandlerObj->Notify.Context);

239 HandlerObj = HandlerObj->Notify.Next[Info->Notify.HandlerListId];
240 }

242 /* All done with the info object */

244 AcpiUtDeleteGenericState (Info);
245 }

248 #if (!ACPI_REDUCED_HARDWARE)
249 /**
250 *
251 * FUNCTION: AcpiEvTerminate
252 *
253 * PARAMETERS: none
254 *
255 * RETURN: none
256 *
257 * DESCRIPTION: Disable events and free memory allocated for table storage.
258 *

new/usr/src/common/acpica/components/events/evmisc.c 5

259 **/

261 void
262 AcpiEvTerminate (
263 void)
264 {
265 UINT32 i;
266 ACPI_STATUS Status;

269 ACPI_FUNCTION_TRACE (EvTerminate);

272 if (AcpiGbl_EventsInitialized)
273 {
274 /*
275 * Disable all event-related functionality. In all cases, on error,
276 * print a message but obviously we don’t abort.
277 */

279 /* Disable all fixed events */

281 for (i = 0; i < ACPI_NUM_FIXED_EVENTS; i++)
282 {
283 Status = AcpiDisableEvent (i, 0);
284 if (ACPI_FAILURE (Status))
285 {
286 ACPI_ERROR ((AE_INFO,
287 "Could not disable fixed event %u", (UINT32) i));
288 }
289 }

291 /* Disable all GPEs in all GPE blocks */

293 Status = AcpiEvWalkGpeList (AcpiHwDisableGpeBlock, NULL);

295 Status = AcpiEvRemoveGlobalLockHandler ();
296 if (ACPI_FAILURE(Status))
297 {
298 ACPI_ERROR ((AE_INFO,
299 "Could not remove Global Lock handler"));
300 }

302 AcpiGbl_EventsInitialized = FALSE;
303 }

305 /* Remove SCI handlers */

307 Status = AcpiEvRemoveAllSciHandlers ();
308 if (ACPI_FAILURE(Status))
309 {
310 ACPI_ERROR ((AE_INFO,
311 "Could not remove SCI handler"));
312 }

314 /* Deallocate all handler objects installed within GPE info structs */

316 Status = AcpiEvWalkGpeList (AcpiEvDeleteGpeHandlers, NULL);

318 /* Return to original mode if necessary */

320 if (AcpiGbl_OriginalMode == ACPI_SYS_MODE_LEGACY)
321 {
322 Status = AcpiDisable ();
323 if (ACPI_FAILURE (Status))
324 {

new/usr/src/common/acpica/components/events/evmisc.c 6

325 ACPI_WARNING ((AE_INFO, "AcpiDisable failed"));
326 }
327 }
328 return_VOID;
329 }

331 #endif /* !ACPI_REDUCED_HARDWARE */

new/usr/src/common/acpica/components/events/evregion.c 1

**
 24892 Thu Dec 26 13:48:58 2013
new/usr/src/common/acpica/components/events/evregion.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: evregion - Operation Region support
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __EVREGION_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acevents.h"
50 #include "acnamesp.h"
51 #include "acinterp.h"

53 #define _COMPONENT ACPI_EVENTS
54 ACPI_MODULE_NAME ("evregion")

57 extern UINT8 AcpiGbl_DefaultAddressSpaces[];

59 /* Local prototypes */

new/usr/src/common/acpica/components/events/evregion.c 2

61 static void
62 AcpiEvOrphanEcRegMethod (
63 ACPI_NAMESPACE_NODE *EcDeviceNode);

65 static ACPI_STATUS
66 AcpiEvRegRun (
67 ACPI_HANDLE ObjHandle,
68 UINT32 Level,
69 void *Context,
70 void **ReturnValue);

73 /***
74 *
75 * FUNCTION: AcpiEvInitializeOpRegions
76 *
77 * PARAMETERS: None
78 *
79 * RETURN: Status
80 *
81 * DESCRIPTION: Execute _REG methods for all Operation Regions that have
82 * an installed default region handler.
83 *
84 **/

86 ACPI_STATUS
87 AcpiEvInitializeOpRegions (
88 void)
89 {
90 ACPI_STATUS Status;
91 UINT32 i;

94 ACPI_FUNCTION_TRACE (EvInitializeOpRegions);

97 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
98 if (ACPI_FAILURE (Status))
99 {
100 return_ACPI_STATUS (Status);
101 }

103 /* Run the _REG methods for OpRegions in each default address space */

105 for (i = 0; i < ACPI_NUM_DEFAULT_SPACES; i++)
106 {
107 /*
108 * Make sure the installed handler is the DEFAULT handler. If not the
109 * default, the _REG methods will have already been run (when the
110 * handler was installed)
111 */
112 if (AcpiEvHasDefaultHandler (AcpiGbl_RootNode,
113 AcpiGbl_DefaultAddressSpaces[i]))
114 {
115 Status = AcpiEvExecuteRegMethods (AcpiGbl_RootNode,
116 AcpiGbl_DefaultAddressSpaces[i]);
117 }
118 }

120 AcpiGbl_RegMethodsExecuted = TRUE;

122 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
123 return_ACPI_STATUS (Status);
124 }

new/usr/src/common/acpica/components/events/evregion.c 3

127 /***
128 *
129 * FUNCTION: AcpiEvAddressSpaceDispatch
130 *
131 * PARAMETERS: RegionObj - Internal region object
132 * FieldObj - Corresponding field. Can be NULL.
133 * Function - Read or Write operation
134 * RegionOffset - Where in the region to read or write
135 * BitWidth - Field width in bits (8, 16, 32, or 64)
136 * Value - Pointer to in or out value, must be
137 * a full 64-bit integer
138 *
139 * RETURN: Status
140 *
141 * DESCRIPTION: Dispatch an address space or operation region access to
142 * a previously installed handler.
143 *
144 **/

146 ACPI_STATUS
147 AcpiEvAddressSpaceDispatch (
148 ACPI_OPERAND_OBJECT *RegionObj,
149 ACPI_OPERAND_OBJECT *FieldObj,
150 UINT32 Function,
151 UINT32 RegionOffset,
152 UINT32 BitWidth,
153 UINT64 *Value)
154 {
155 ACPI_STATUS Status;
156 ACPI_ADR_SPACE_HANDLER Handler;
157 ACPI_ADR_SPACE_SETUP RegionSetup;
158 ACPI_OPERAND_OBJECT *HandlerDesc;
159 ACPI_OPERAND_OBJECT *RegionObj2;
160 void *RegionContext = NULL;
161 ACPI_CONNECTION_INFO *Context;

164 ACPI_FUNCTION_TRACE (EvAddressSpaceDispatch);

167 RegionObj2 = AcpiNsGetSecondaryObject (RegionObj);
168 if (!RegionObj2)
169 {
170 return_ACPI_STATUS (AE_NOT_EXIST);
171 }

173 /* Ensure that there is a handler associated with this region */

175 HandlerDesc = RegionObj->Region.Handler;
176 if (!HandlerDesc)
177 {
178 ACPI_ERROR ((AE_INFO,
179 "No handler for Region [%4.4s] (%p) [%s]",
180 AcpiUtGetNodeName (RegionObj->Region.Node),
181 RegionObj, AcpiUtGetRegionName (RegionObj->Region.SpaceId)));

183 return_ACPI_STATUS (AE_NOT_EXIST);
184 }

186 Context = HandlerDesc->AddressSpace.Context;

188 /*
189 * It may be the case that the region has never been initialized.
190 * Some types of regions require special init code
191 */
192 if (!(RegionObj->Region.Flags & AOPOBJ_SETUP_COMPLETE))

new/usr/src/common/acpica/components/events/evregion.c 4

193 {
194 /* This region has not been initialized yet, do it */

196 RegionSetup = HandlerDesc->AddressSpace.Setup;
197 if (!RegionSetup)
198 {
199 /* No initialization routine, exit with error */

201 ACPI_ERROR ((AE_INFO,
202 "No init routine for region(%p) [%s]",
203 RegionObj, AcpiUtGetRegionName (RegionObj->Region.SpaceId)));
204 return_ACPI_STATUS (AE_NOT_EXIST);
205 }

207 /*
208 * We must exit the interpreter because the region setup will
209 * potentially execute control methods (for example, the _REG method
210 * for this region)
211 */
212 AcpiExExitInterpreter ();

214 Status = RegionSetup (RegionObj, ACPI_REGION_ACTIVATE,
215 Context, &RegionContext);

217 /* Re-enter the interpreter */

219 AcpiExEnterInterpreter ();

221 /* Check for failure of the Region Setup */

223 if (ACPI_FAILURE (Status))
224 {
225 ACPI_EXCEPTION ((AE_INFO, Status,
226 "During region initialization: [%s]",
227 AcpiUtGetRegionName (RegionObj->Region.SpaceId)));
228 return_ACPI_STATUS (Status);
229 }

231 /* Region initialization may have been completed by RegionSetup */

233 if (!(RegionObj->Region.Flags & AOPOBJ_SETUP_COMPLETE))
234 {
235 RegionObj->Region.Flags |= AOPOBJ_SETUP_COMPLETE;

237 /*
238 * Save the returned context for use in all accesses to
239 * the handler for this particular region
240 */
241 if (!(RegionObj2->Extra.RegionContext))
242 {
243 RegionObj2->Extra.RegionContext = RegionContext;
244 }
245 }
246 }

248 /* We have everything we need, we can invoke the address space handler */

250 Handler = HandlerDesc->AddressSpace.Handler;

252 ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION,
253 "Handler %p (@%p) Address %8.8X%8.8X [%s]\n",
254 &RegionObj->Region.Handler->AddressSpace, Handler,
255 ACPI_FORMAT_NATIVE_UINT (RegionObj->Region.Address + RegionOffset),
256 AcpiUtGetRegionName (RegionObj->Region.SpaceId)));

258 /*

new/usr/src/common/acpica/components/events/evregion.c 5

259 * Special handling for GenericSerialBus and GeneralPurposeIo:
260 * There are three extra parameters that must be passed to the
261 * handler via the context:
262 * 1) Connection buffer, a resource template from Connection() op.
263 * 2) Length of the above buffer.
264 * 3) Actual access length from the AccessAs() op.
265 */
266 if (((RegionObj->Region.SpaceId == ACPI_ADR_SPACE_GSBUS) ||
267 (RegionObj->Region.SpaceId == ACPI_ADR_SPACE_GPIO)) &&
268 Context &&
269 FieldObj)
270 {
271 /* Get the Connection (ResourceTemplate) buffer */

273 Context->Connection = FieldObj->Field.ResourceBuffer;
274 Context->Length = FieldObj->Field.ResourceLength;
275 Context->AccessLength = FieldObj->Field.AccessLength;
276 }

278 if (!(HandlerDesc->AddressSpace.HandlerFlags &
279 ACPI_ADDR_HANDLER_DEFAULT_INSTALLED))
280 {
281 /*
282 * For handlers other than the default (supplied) handlers, we must
283 * exit the interpreter because the handler *might* block -- we don’t
284 * know what it will do, so we can’t hold the lock on the intepreter.
285 */
286 AcpiExExitInterpreter();
287 }

289 /* Call the handler */

291 Status = Handler (Function,
292 (RegionObj->Region.Address + RegionOffset), BitWidth, Value,
293 Context, RegionObj2->Extra.RegionContext);

295 if (ACPI_FAILURE (Status))
296 {
297 ACPI_EXCEPTION ((AE_INFO, Status, "Returned by Handler for [%s]",
298 AcpiUtGetRegionName (RegionObj->Region.SpaceId)));
299 }

301 if (!(HandlerDesc->AddressSpace.HandlerFlags &
302 ACPI_ADDR_HANDLER_DEFAULT_INSTALLED))
303 {
304 /*
305 * We just returned from a non-default handler, we must re-enter the
306 * interpreter
307 */
308 AcpiExEnterInterpreter ();
309 }

311 return_ACPI_STATUS (Status);
312 }

315 /***
316 *
317 * FUNCTION: AcpiEvDetachRegion
318 *
319 * PARAMETERS: RegionObj - Region Object
320 * AcpiNsIsLocked - Namespace Region Already Locked?
321 *
322 * RETURN: None
323 *
324 * DESCRIPTION: Break the association between the handler and the region

new/usr/src/common/acpica/components/events/evregion.c 6

325 * this is a two way association.
326 *
327 **/

329 void
330 AcpiEvDetachRegion(
331 ACPI_OPERAND_OBJECT *RegionObj,
332 BOOLEAN AcpiNsIsLocked)
333 {
334 ACPI_OPERAND_OBJECT *HandlerObj;
335 ACPI_OPERAND_OBJECT *ObjDesc;
336 ACPI_OPERAND_OBJECT **LastObjPtr;
337 ACPI_ADR_SPACE_SETUP RegionSetup;
338 void **RegionContext;
339 ACPI_OPERAND_OBJECT *RegionObj2;
340 ACPI_STATUS Status;

343 ACPI_FUNCTION_TRACE (EvDetachRegion);

346 RegionObj2 = AcpiNsGetSecondaryObject (RegionObj);
347 if (!RegionObj2)
348 {
349 return_VOID;
350 }
351 RegionContext = &RegionObj2->Extra.RegionContext;

353 /* Get the address handler from the region object */

355 HandlerObj = RegionObj->Region.Handler;
356 if (!HandlerObj)
357 {
358 /* This region has no handler, all done */

360 return_VOID;
361 }

363 /* Find this region in the handler’s list */

365 ObjDesc = HandlerObj->AddressSpace.RegionList;
366 LastObjPtr = &HandlerObj->AddressSpace.RegionList;

368 while (ObjDesc)
369 {
370 /* Is this the correct Region? */

372 if (ObjDesc == RegionObj)
373 {
374 ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION,
375 "Removing Region %p from address handler %p\n",
376 RegionObj, HandlerObj));

378 /* This is it, remove it from the handler’s list */

380 *LastObjPtr = ObjDesc->Region.Next;
381 ObjDesc->Region.Next = NULL; /* Must clear field */

383 if (AcpiNsIsLocked)
384 {
385 Status = AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
386 if (ACPI_FAILURE (Status))
387 {
388 return_VOID;
389 }
390 }

new/usr/src/common/acpica/components/events/evregion.c 7

392 /* Now stop region accesses by executing the _REG method */

394 Status = AcpiEvExecuteRegMethod (RegionObj, ACPI_REG_DISCONNECT);
395 if (ACPI_FAILURE (Status))
396 {
397 ACPI_EXCEPTION ((AE_INFO, Status, "from region _REG, [%s]",
398 AcpiUtGetRegionName (RegionObj->Region.SpaceId)));
399 }

401 if (AcpiNsIsLocked)
402 {
403 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
404 if (ACPI_FAILURE (Status))
405 {
406 return_VOID;
407 }
408 }

410 /*
411 * If the region has been activated, call the setup handler with
412 * the deactivate notification
413 */
414 if (RegionObj->Region.Flags & AOPOBJ_SETUP_COMPLETE)
415 {
416 RegionSetup = HandlerObj->AddressSpace.Setup;
417 Status = RegionSetup (RegionObj, ACPI_REGION_DEACTIVATE,
418 HandlerObj->AddressSpace.Context, RegionContext);

420 /*
421 * RegionContext should have been released by the deactivate
422 * operation. We don’t need access to it anymore here.
423 */
424 if (RegionContext)
425 {
426 *RegionContext = NULL;
427 }

429 /* Init routine may fail, Just ignore errors */

431 if (ACPI_FAILURE (Status))
432 {
433 ACPI_EXCEPTION ((AE_INFO, Status,
434 "from region handler - deactivate, [%s]",
435 AcpiUtGetRegionName (RegionObj->Region.SpaceId)));
436 }

438 RegionObj->Region.Flags &= ~(AOPOBJ_SETUP_COMPLETE);
439 }

441 /*
442 * Remove handler reference in the region
443 *
444 * NOTE: this doesn’t mean that the region goes away, the region
445 * is just inaccessible as indicated to the _REG method
446 *
447 * If the region is on the handler’s list, this must be the
448 * region’s handler
449 */
450 RegionObj->Region.Handler = NULL;
451 AcpiUtRemoveReference (HandlerObj);

453 return_VOID;
454 }

456 /* Walk the linked list of handlers */

new/usr/src/common/acpica/components/events/evregion.c 8

458 LastObjPtr = &ObjDesc->Region.Next;
459 ObjDesc = ObjDesc->Region.Next;
460 }

462 /* If we get here, the region was not in the handler’s region list */

464 ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION,
465 "Cannot remove region %p from address handler %p\n",
466 RegionObj, HandlerObj));

468 return_VOID;
469 }

472 /***
473 *
474 * FUNCTION: AcpiEvAttachRegion
475 *
476 * PARAMETERS: HandlerObj - Handler Object
477 * RegionObj - Region Object
478 * AcpiNsIsLocked - Namespace Region Already Locked?
479 *
480 * RETURN: None
481 *
482 * DESCRIPTION: Create the association between the handler and the region
483 * this is a two way association.
484 *
485 **/

487 ACPI_STATUS
488 AcpiEvAttachRegion (
489 ACPI_OPERAND_OBJECT *HandlerObj,
490 ACPI_OPERAND_OBJECT *RegionObj,
491 BOOLEAN AcpiNsIsLocked)
492 {

494 ACPI_FUNCTION_TRACE (EvAttachRegion);

497 ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION,
498 "Adding Region [%4.4s] %p to address handler %p [%s]\n",
499 AcpiUtGetNodeName (RegionObj->Region.Node),
500 RegionObj, HandlerObj,
501 AcpiUtGetRegionName (RegionObj->Region.SpaceId)));

503 /* Link this region to the front of the handler’s list */

505 RegionObj->Region.Next = HandlerObj->AddressSpace.RegionList;
506 HandlerObj->AddressSpace.RegionList = RegionObj;

508 /* Install the region’s handler */

510 if (RegionObj->Region.Handler)
511 {
512 return_ACPI_STATUS (AE_ALREADY_EXISTS);
513 }

515 RegionObj->Region.Handler = HandlerObj;
516 AcpiUtAddReference (HandlerObj);

518 return_ACPI_STATUS (AE_OK);
519 }

522 /***

new/usr/src/common/acpica/components/events/evregion.c 9

523 *
524 * FUNCTION: AcpiEvExecuteRegMethod
525 *
526 * PARAMETERS: RegionObj - Region object
527 * Function - Passed to _REG: On (1) or Off (0)
528 *
529 * RETURN: Status
530 *
531 * DESCRIPTION: Execute _REG method for a region
532 *
533 **/

535 ACPI_STATUS
536 AcpiEvExecuteRegMethod (
537 ACPI_OPERAND_OBJECT *RegionObj,
538 UINT32 Function)
539 {
540 ACPI_EVALUATE_INFO *Info;
541 ACPI_OPERAND_OBJECT *Args[3];
542 ACPI_OPERAND_OBJECT *RegionObj2;
543 ACPI_STATUS Status;

546 ACPI_FUNCTION_TRACE (EvExecuteRegMethod);

549 RegionObj2 = AcpiNsGetSecondaryObject (RegionObj);
550 if (!RegionObj2)
551 {
552 return_ACPI_STATUS (AE_NOT_EXIST);
553 }

555 if (RegionObj2->Extra.Method_REG == NULL)
556 {
557 return_ACPI_STATUS (AE_OK);
558 }

560 /* Allocate and initialize the evaluation information block */

562 Info = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_EVALUATE_INFO));
563 if (!Info)
564 {
565 return_ACPI_STATUS (AE_NO_MEMORY);
566 }

568 Info->PrefixNode = RegionObj2->Extra.Method_REG;
569 Info->RelativePathname = NULL;
570 Info->Parameters = Args;
571 Info->Flags = ACPI_IGNORE_RETURN_VALUE;

573 /*
574 * The _REG method has two arguments:
575 *
576 * Arg0 - Integer:
577 * Operation region space ID Same value as RegionObj->Region.SpaceId
578 *
579 * Arg1 - Integer:
580 * connection status 1 for connecting the handler, 0 for disconnecting
581 * the handler (Passed as a parameter)
582 */
583 Args[0] = AcpiUtCreateIntegerObject ((UINT64) RegionObj->Region.SpaceId);
584 if (!Args[0])
585 {
586 Status = AE_NO_MEMORY;
587 goto Cleanup1;
588 }

new/usr/src/common/acpica/components/events/evregion.c 10

590 Args[1] = AcpiUtCreateIntegerObject ((UINT64) Function);
591 if (!Args[1])
592 {
593 Status = AE_NO_MEMORY;
594 goto Cleanup2;
595 }

597 Args[2] = NULL; /* Terminate list */

599 /* Execute the method, no return value */

601 ACPI_DEBUG_EXEC (
602 AcpiUtDisplayInitPathname (ACPI_TYPE_METHOD, Info->PrefixNode, NULL));

604 Status = AcpiNsEvaluate (Info);
605 AcpiUtRemoveReference (Args[1]);

607 Cleanup2:
608 AcpiUtRemoveReference (Args[0]);

610 Cleanup1:
611 ACPI_FREE (Info);
612 return_ACPI_STATUS (Status);
613 }

616 /***
617 *
618 * FUNCTION: AcpiEvExecuteRegMethods
619 *
620 * PARAMETERS: Node - Namespace node for the device
621 * SpaceId - The address space ID
622 *
623 * RETURN: Status
624 *
625 * DESCRIPTION: Run all _REG methods for the input Space ID;
626 * Note: assumes namespace is locked, or system init time.
627 *
628 **/

630 ACPI_STATUS
631 AcpiEvExecuteRegMethods (
632 ACPI_NAMESPACE_NODE *Node,
633 ACPI_ADR_SPACE_TYPE SpaceId)
634 {
635 ACPI_STATUS Status;

638 ACPI_FUNCTION_TRACE (EvExecuteRegMethods);

641 /*
642 * Run all _REG methods for all Operation Regions for this space ID. This
643 * is a separate walk in order to handle any interdependencies between
644 * regions and _REG methods. (i.e. handlers must be installed for all
645 * regions of this Space ID before we can run any _REG methods)
646 */
647 Status = AcpiNsWalkNamespace (ACPI_TYPE_ANY, Node, ACPI_UINT32_MAX,
648 ACPI_NS_WALK_UNLOCK, AcpiEvRegRun, NULL,
649 &SpaceId, NULL);

651 /* Special case for EC: handle "orphan" _REG methods with no region */

653 if (SpaceId == ACPI_ADR_SPACE_EC)
654 {

new/usr/src/common/acpica/components/events/evregion.c 11

655 AcpiEvOrphanEcRegMethod (Node);
656 }

658 return_ACPI_STATUS (Status);
659 }

662 /***
663 *
664 * FUNCTION: AcpiEvRegRun
665 *
666 * PARAMETERS: WalkNamespace callback
667 *
668 * DESCRIPTION: Run _REG method for region objects of the requested spaceID
669 *
670 **/

672 static ACPI_STATUS
673 AcpiEvRegRun (
674 ACPI_HANDLE ObjHandle,
675 UINT32 Level,
676 void *Context,
677 void **ReturnValue)
678 {
679 ACPI_OPERAND_OBJECT *ObjDesc;
680 ACPI_NAMESPACE_NODE *Node;
681 ACPI_ADR_SPACE_TYPE SpaceId;
682 ACPI_STATUS Status;

685 SpaceId = *ACPI_CAST_PTR (ACPI_ADR_SPACE_TYPE, Context);

687 /* Convert and validate the device handle */

689 Node = AcpiNsValidateHandle (ObjHandle);
690 if (!Node)
691 {
692 return (AE_BAD_PARAMETER);
693 }

695 /*
696 * We only care about regions.and objects that are allowed to have address
697 * space handlers
698 */
699 if ((Node->Type != ACPI_TYPE_REGION) &&
700 (Node != AcpiGbl_RootNode))
701 {
702 return (AE_OK);
703 }

705 /* Check for an existing internal object */

707 ObjDesc = AcpiNsGetAttachedObject (Node);
708 if (!ObjDesc)
709 {
710 /* No object, just exit */

712 return (AE_OK);
713 }

715 /* Object is a Region */

717 if (ObjDesc->Region.SpaceId != SpaceId)
718 {
719 /* This region is for a different address space, just ignore it */

new/usr/src/common/acpica/components/events/evregion.c 12

721 return (AE_OK);
722 }

724 Status = AcpiEvExecuteRegMethod (ObjDesc, ACPI_REG_CONNECT);
725 return (Status);
726 }

729 /***
730 *
731 * FUNCTION: AcpiEvOrphanEcRegMethod
732 *
733 * PARAMETERS: EcDeviceNode - Namespace node for an EC device
734 *
735 * RETURN: None
736 *
737 * DESCRIPTION: Execute an "orphan" _REG method that appears under the EC
738 * device. This is a _REG method that has no corresponding region
739 * within the EC device scope. The orphan _REG method appears to
740 * have been enabled by the description of the ECDT in the ACPI
741 * specification: "The availability of the region space can be
742 * detected by providing a _REG method object underneath the
743 * Embedded Controller device."
744 *
745 * To quickly access the EC device, we use the EcDeviceNode used
746 * during EC handler installation. Otherwise, we would need to
747 * perform a time consuming namespace walk, executing _HID
748 * methods to find the EC device.
749 *
750 * MUTEX: Assumes the namespace is locked
751 *
752 **/

754 static void
755 AcpiEvOrphanEcRegMethod (
756 ACPI_NAMESPACE_NODE *EcDeviceNode)
757 {
758 ACPI_HANDLE RegMethod;
759 ACPI_NAMESPACE_NODE *NextNode;
760 ACPI_STATUS Status;
761 ACPI_OBJECT_LIST Args;
762 ACPI_OBJECT Objects[2];

765 ACPI_FUNCTION_TRACE (EvOrphanEcRegMethod);

768 if (!EcDeviceNode)
769 {
770 return_VOID;
771 }

773 /* Namespace is currently locked, must release */

775 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);

777 /* Get a handle to a _REG method immediately under the EC device */

779 Status = AcpiGetHandle (EcDeviceNode, METHOD_NAME__REG, &RegMethod);
780 if (ACPI_FAILURE (Status))
781 {
782 goto Exit; /* There is no _REG method present */
783 }

785 /*
786 * Execute the _REG method only if there is no Operation Region in

new/usr/src/common/acpica/components/events/evregion.c 13

787 * this scope with the Embedded Controller space ID. Otherwise, it
788 * will already have been executed. Note, this allows for Regions
789 * with other space IDs to be present; but the code below will then
790 * execute the _REG method with the EmbeddedControl SpaceID argument.
791 */
792 NextNode = AcpiNsGetNextNode (EcDeviceNode, NULL);
793 while (NextNode)
794 {
795 if ((NextNode->Type == ACPI_TYPE_REGION) &&
796 (NextNode->Object) &&
797 (NextNode->Object->Region.SpaceId == ACPI_ADR_SPACE_EC))
798 {
799 goto Exit; /* Do not execute the _REG */
800 }

802 NextNode = AcpiNsGetNextNode (EcDeviceNode, NextNode);
803 }

805 /* Evaluate the _REG(EmbeddedControl,Connect) method */

807 Args.Count = 2;
808 Args.Pointer = Objects;
809 Objects[0].Type = ACPI_TYPE_INTEGER;
810 Objects[0].Integer.Value = ACPI_ADR_SPACE_EC;
811 Objects[1].Type = ACPI_TYPE_INTEGER;
812 Objects[1].Integer.Value = ACPI_REG_CONNECT;

814 Status = AcpiEvaluateObject (RegMethod, NULL, &Args, NULL);

816 Exit:
817 /* We ignore all errors from above, don’t care */

819 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
820 return_VOID;
821 }

new/usr/src/common/acpica/components/events/evrgnini.c 1

**
 22020 Thu Dec 26 13:48:58 2013
new/usr/src/common/acpica/components/events/evrgnini.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: evrgnini- ACPI AddressSpace (OpRegion) init
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __EVRGNINI_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acevents.h"
50 #include "acnamesp.h"

52 #define _COMPONENT ACPI_EVENTS
53 ACPI_MODULE_NAME ("evrgnini")

55 /* Local prototypes */

57 static BOOLEAN
58 AcpiEvIsPciRootBridge (
59 ACPI_NAMESPACE_NODE *Node);

new/usr/src/common/acpica/components/events/evrgnini.c 2

62 /***
63 *
64 * FUNCTION: AcpiEvSystemMemoryRegionSetup
65 *
66 * PARAMETERS: Handle - Region we are interested in
67 * Function - Start or stop
68 * HandlerContext - Address space handler context
69 * RegionContext - Region specific context
70 *
71 * RETURN: Status
72 *
73 * DESCRIPTION: Setup a SystemMemory operation region
74 *
75 **/

77 ACPI_STATUS
78 AcpiEvSystemMemoryRegionSetup (
79 ACPI_HANDLE Handle,
80 UINT32 Function,
81 void *HandlerContext,
82 void **RegionContext)
83 {
84 ACPI_OPERAND_OBJECT *RegionDesc = (ACPI_OPERAND_OBJECT *) Handle;
85 ACPI_MEM_SPACE_CONTEXT *LocalRegionContext;

88 ACPI_FUNCTION_TRACE (EvSystemMemoryRegionSetup);

91 if (Function == ACPI_REGION_DEACTIVATE)
92 {
93 if (*RegionContext)
94 {
95 LocalRegionContext = (ACPI_MEM_SPACE_CONTEXT *) *RegionContext;

97 /* Delete a cached mapping if present */

99 if (LocalRegionContext->MappedLength)
100 {
101 AcpiOsUnmapMemory (LocalRegionContext->MappedLogicalAddress,
102 LocalRegionContext->MappedLength);
103 }
104 ACPI_FREE (LocalRegionContext);
105 *RegionContext = NULL;
106 }
107 return_ACPI_STATUS (AE_OK);
108 }

110 /* Create a new context */

112 LocalRegionContext = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_MEM_SPACE_CONTEXT));
113 if (!(LocalRegionContext))
114 {
115 return_ACPI_STATUS (AE_NO_MEMORY);
116 }

118 /* Save the region length and address for use in the handler */

120 LocalRegionContext->Length = RegionDesc->Region.Length;
121 LocalRegionContext->Address = RegionDesc->Region.Address;

123 *RegionContext = LocalRegionContext;
124 return_ACPI_STATUS (AE_OK);
125 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/events/evrgnini.c 3

374 /***
375 *
376 * FUNCTION: AcpiEvIsPciRootBridge
377 *
378 * PARAMETERS: Node - Device node being examined
379 *
380 * RETURN: TRUE if device is a PCI/PCI-Express Root Bridge
381 *
382 * DESCRIPTION: Determine if the input device represents a PCI Root Bridge by
383 * examining the _HID and _CID for the device.
384 *
385 **/

387 static BOOLEAN
388 AcpiEvIsPciRootBridge (
389 ACPI_NAMESPACE_NODE *Node)
390 {
391 ACPI_STATUS Status;
392 ACPI_PNP_DEVICE_ID *Hid;
393 ACPI_PNP_DEVICE_ID_LIST *Cid;
392 ACPI_DEVICE_ID *Hid;
393 ACPI_DEVICE_ID_LIST *Cid;
394 UINT32 i;
395 BOOLEAN Match;

398 /* Get the _HID and check for a PCI Root Bridge */

400 Status = AcpiUtExecute_HID (Node, &Hid);
401 if (ACPI_FAILURE (Status))
402 {
403 return (FALSE);
404 }

406 Match = AcpiUtIsPciRootBridge (Hid->String);
407 ACPI_FREE (Hid);

409 if (Match)
410 {
411 return (TRUE);
412 }

414 /* The _HID did not match. Get the _CID and check for a PCI Root Bridge */

416 Status = AcpiUtExecute_CID (Node, &Cid);
417 if (ACPI_FAILURE (Status))
418 {
419 return (FALSE);
420 }

422 /* Check all _CIDs in the returned list */

424 for (i = 0; i < Cid->Count; i++)
425 {
426 if (AcpiUtIsPciRootBridge (Cid->Ids[i].String))
427 {
428 ACPI_FREE (Cid);
429 return (TRUE);
430 }
431 }

433 ACPI_FREE (Cid);
434 return (FALSE);
435 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/events/evrgnini.c 4

538 /***
539 *
540 * FUNCTION: AcpiEvInitializeRegion
541 *
542 * PARAMETERS: RegionObj - Region we are initializing
543 * AcpiNsLocked - Is namespace locked?
544 *
545 * RETURN: Status
546 *
547 * DESCRIPTION: Initializes the region, finds any _REG methods and saves them
548 * for execution at a later time
549 *
550 * Get the appropriate address space handler for a newly
551 * created region.
552 *
553 * This also performs address space specific initialization. For
554 * example, PCI regions must have an _ADR object that contains
555 * a PCI address in the scope of the definition. This address is
556 * required to perform an access to PCI config space.
557 *
558 * MUTEX: Interpreter should be unlocked, because we may run the _REG
559 * method for this region.
560 *
561 **/

563 ACPI_STATUS
564 AcpiEvInitializeRegion (
565 ACPI_OPERAND_OBJECT *RegionObj,
566 BOOLEAN AcpiNsLocked)
567 {
568 ACPI_OPERAND_OBJECT *HandlerObj;
569 ACPI_OPERAND_OBJECT *ObjDesc;
570 ACPI_ADR_SPACE_TYPE SpaceId;
571 ACPI_NAMESPACE_NODE *Node;
572 ACPI_STATUS Status;
573 ACPI_NAMESPACE_NODE *MethodNode;
574 ACPI_NAME *RegNamePtr = (ACPI_NAME *) METHOD_NAME__REG;
575 ACPI_OPERAND_OBJECT *RegionObj2;

578 ACPI_FUNCTION_TRACE_U32 (EvInitializeRegion, AcpiNsLocked);

581 if (!RegionObj)
582 {
583 return_ACPI_STATUS (AE_BAD_PARAMETER);
584 }

586 if (RegionObj->Common.Flags & AOPOBJ_OBJECT_INITIALIZED)
587 {
588 return_ACPI_STATUS (AE_OK);
589 }

591 RegionObj2 = AcpiNsGetSecondaryObject (RegionObj);
592 if (!RegionObj2)
593 {
594 return_ACPI_STATUS (AE_NOT_EXIST);
595 }

597 Node = RegionObj->Region.Node->Parent;
598 SpaceId = RegionObj->Region.SpaceId;

600 /* Setup defaults */

new/usr/src/common/acpica/components/events/evrgnini.c 5

602 RegionObj->Region.Handler = NULL;
603 RegionObj2->Extra.Method_REG = NULL;
604 RegionObj->Common.Flags &= ~(AOPOBJ_SETUP_COMPLETE);
605 RegionObj->Common.Flags |= AOPOBJ_OBJECT_INITIALIZED;

607 /* Find any "_REG" method associated with this region definition */

609 Status = AcpiNsSearchOneScope (
610 *RegNamePtr, Node, ACPI_TYPE_METHOD, &MethodNode);
611 if (ACPI_SUCCESS (Status))
612 {
613 /*
614 * The _REG method is optional and there can be only one per region
615 * definition. This will be executed when the handler is attached
616 * or removed
617 */
618 RegionObj2->Extra.Method_REG = MethodNode;
619 }

621 /*
622 * The following loop depends upon the root Node having no parent
623 * ie: AcpiGbl_RootNode->ParentEntry being set to NULL
624 */
625 while (Node)
626 {
627 /* Check to see if a handler exists */

629 HandlerObj = NULL;
630 ObjDesc = AcpiNsGetAttachedObject (Node);
631 if (ObjDesc)
632 {
633 /* Can only be a handler if the object exists */

635 switch (Node->Type)
636 {
637 case ACPI_TYPE_DEVICE:

639 HandlerObj = ObjDesc->Device.Handler;
640 break;

642 case ACPI_TYPE_PROCESSOR:

644 HandlerObj = ObjDesc->Processor.Handler;
645 break;

647 case ACPI_TYPE_THERMAL:

649 HandlerObj = ObjDesc->ThermalZone.Handler;
650 break;

652 case ACPI_TYPE_METHOD:
653 /*
654 * If we are executing module level code, the original
655 * Node’s object was replaced by this Method object and we
656 * saved the handler in the method object.
657 *
658 * See AcpiNsExecModuleCode
659 */
660 if (ObjDesc->Method.InfoFlags & ACPI_METHOD_MODULE_LEVEL)
661 {
662 HandlerObj = ObjDesc->Method.Dispatch.Handler;
663 }
664 break;

666 default:

new/usr/src/common/acpica/components/events/evrgnini.c 6

668 /* Ignore other objects */

670 break;
671 }

673 while (HandlerObj)
674 {
675 /* Is this handler of the correct type? */

677 if (HandlerObj->AddressSpace.SpaceId == SpaceId)
678 {
679 /* Found correct handler */

681 ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION,
682 "Found handler %p for region %p in obj %p\n",
683 HandlerObj, RegionObj, ObjDesc));

685 Status = AcpiEvAttachRegion (HandlerObj, RegionObj,
686 AcpiNsLocked);

688 /*
689 * Tell all users that this region is usable by
690 * running the _REG method
691 */
692 if (AcpiNsLocked)
693 {
694 Status = AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
695 if (ACPI_FAILURE (Status))
696 {
697 return_ACPI_STATUS (Status);
698 }
699 }

701 Status = AcpiEvExecuteRegMethod (RegionObj, ACPI_REG_CONNECT

703 if (AcpiNsLocked)
704 {
705 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
706 if (ACPI_FAILURE (Status))
707 {
708 return_ACPI_STATUS (Status);
709 }
710 }

712 return_ACPI_STATUS (AE_OK);
713 }

715 /* Try next handler in the list */

717 HandlerObj = HandlerObj->AddressSpace.Next;
718 }
719 }

721 /* This node does not have the handler we need; Pop up one level */

723 Node = Node->Parent;
724 }

726 /* If we get here, there is no handler for this region */

728 ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION,
729 "No handler for RegionType %s(%X) (RegionObj %p)\n",
730 AcpiUtGetRegionName (SpaceId), SpaceId, RegionObj));

732 return_ACPI_STATUS (AE_NOT_EXIST);
733 }

new/usr/src/common/acpica/components/events/evrgnini.c 7

new/usr/src/common/acpica/components/events/evsci.c 1

**
 8237 Thu Dec 26 13:48:59 2013
new/usr/src/common/acpica/components/events/evsci.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: evsci - System Control Interrupt configuration and
4 * legacy to ACPI mode state transition functions
5 *
6 **/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acevents.h"

50 #define _COMPONENT ACPI_EVENTS
51 ACPI_MODULE_NAME ("evsci")

53 #if (!ACPI_REDUCED_HARDWARE) /* Entire module */

55 /* Local prototypes */

57 static UINT32 ACPI_SYSTEM_XFACE
58 AcpiEvSciXruptHandler (
59 void *Context);

new/usr/src/common/acpica/components/events/evsci.c 2

62 /***
63 *
64 * FUNCTION: AcpiEvSciDispatch
65 *
66 * PARAMETERS: None
67 *
68 * RETURN: Status code indicates whether interrupt was handled.
69 *
70 * DESCRIPTION: Dispatch the SCI to all host-installed SCI handlers.
71 *
72 **/

74 UINT32
75 AcpiEvSciDispatch (
76 void)
77 {
78 ACPI_SCI_HANDLER_INFO *SciHandler;
79 ACPI_CPU_FLAGS Flags;
80 UINT32 IntStatus = ACPI_INTERRUPT_NOT_HANDLED;

83 ACPI_FUNCTION_NAME (EvSciDispatch);

86 /* Are there any host-installed SCI handlers? */

88 if (!AcpiGbl_SciHandlerList)
89 {
90 return (IntStatus);
91 }

93 Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock);

95 /* Invoke all host-installed SCI handlers */

97 SciHandler = AcpiGbl_SciHandlerList;
98 while (SciHandler)
99 {
100 /* Invoke the installed handler (at interrupt level) */

102 IntStatus |= SciHandler->Address (
103 SciHandler->Context);

105 SciHandler = SciHandler->Next;
106 }

108 AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags);
109 return (IntStatus);
110 }

113 /***
114 *
115 * FUNCTION: AcpiEvSciXruptHandler
116 *
117 * PARAMETERS: Context - Calling Context
118 *
119 * RETURN: Status code indicates whether interrupt was handled.
120 *
121 * DESCRIPTION: Interrupt handler that will figure out what function or
122 * control method to call to deal with a SCI.
123 *
124 **/

126 static UINT32 ACPI_SYSTEM_XFACE

new/usr/src/common/acpica/components/events/evsci.c 3

127 AcpiEvSciXruptHandler (
128 void *Context)
129 {
130 ACPI_GPE_XRUPT_INFO *GpeXruptList = Context;
131 UINT32 InterruptHandled = ACPI_INTERRUPT_NOT_HANDLED;

134 ACPI_FUNCTION_TRACE (EvSciXruptHandler);

137 /*
138 * We are guaranteed by the ACPI CA initialization/shutdown code that
139 * if this interrupt handler is installed, ACPI is enabled.
140 */

142 /*
143 * Fixed Events:
144 * Check for and dispatch any Fixed Events that have occurred
145 */
146 InterruptHandled |= AcpiEvFixedEventDetect ();

148 /*
149 * General Purpose Events:
150 * Check for and dispatch any GPEs that have occurred
151 */
152 InterruptHandled |= AcpiEvGpeDetect (GpeXruptList);

154 /* Invoke all host-installed SCI handlers */

156 InterruptHandled |= AcpiEvSciDispatch ();

158 AcpiSciCount++;
159 return_UINT32 (InterruptHandled);
160 }

163 /***
164 *
165 * FUNCTION: AcpiEvGpeXruptHandler
166 *
167 * PARAMETERS: Context - Calling Context
168 *
169 * RETURN: Status code indicates whether interrupt was handled.
170 *
171 * DESCRIPTION: Handler for GPE Block Device interrupts
172 *
173 **/

175 UINT32 ACPI_SYSTEM_XFACE
176 AcpiEvGpeXruptHandler (
177 void *Context)
178 {
179 ACPI_GPE_XRUPT_INFO *GpeXruptList = Context;
180 UINT32 InterruptHandled = ACPI_INTERRUPT_NOT_HANDLED;

183 ACPI_FUNCTION_TRACE (EvGpeXruptHandler);

186 /*
187 * We are guaranteed by the ACPICA initialization/shutdown code that
188 * if this interrupt handler is installed, ACPI is enabled.
189 */

191 /* GPEs: Check for and dispatch any GPEs that have occurred */

new/usr/src/common/acpica/components/events/evsci.c 4

193 InterruptHandled |= AcpiEvGpeDetect (GpeXruptList);
194 return_UINT32 (InterruptHandled);
195 }

198 /**
199 *
200 * FUNCTION: AcpiEvInstallSciHandler
201 *
202 * PARAMETERS: none
203 *
204 * RETURN: Status
205 *
206 * DESCRIPTION: Installs SCI handler.
207 *
208 **/

210 UINT32
211 AcpiEvInstallSciHandler (
212 void)
213 {
214 UINT32 Status = AE_OK;

217 ACPI_FUNCTION_TRACE (EvInstallSciHandler);

220 Status = AcpiOsInstallInterruptHandler ((UINT32) AcpiGbl_FADT.SciInterrupt,
221 AcpiEvSciXruptHandler, AcpiGbl_GpeXruptListHead);
222 return_ACPI_STATUS (Status);
223 }

226 /**
227 *
228 * FUNCTION: AcpiEvRemoveAllSciHandlers
229 *
230 * PARAMETERS: none
231 *
232 * RETURN: AE_OK if handler uninstalled, AE_ERROR if handler was not
233 * installed to begin with
234 *
235 * DESCRIPTION: Remove the SCI interrupt handler. No further SCIs will be
236 * taken. Remove all host-installed SCI handlers.
237 *
238 * Note: It doesn’t seem important to disable all events or set the event
239 * enable registers to their original values. The OS should disable
240 * the SCI interrupt level when the handler is removed, so no more
241 * events will come in.
242 *
243 **/

245 ACPI_STATUS
246 AcpiEvRemoveAllSciHandlers (
247 void)
248 {
249 ACPI_SCI_HANDLER_INFO *SciHandler;
250 ACPI_CPU_FLAGS Flags;
251 ACPI_STATUS Status;

254 ACPI_FUNCTION_TRACE (EvRemoveAllSciHandlers);

257 /* Just let the OS remove the handler and disable the level */

new/usr/src/common/acpica/components/events/evsci.c 5

259 Status = AcpiOsRemoveInterruptHandler ((UINT32) AcpiGbl_FADT.SciInterrupt,
260 AcpiEvSciXruptHandler);

262 if (!AcpiGbl_SciHandlerList)
263 {
264 return (Status);
265 }

267 Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock);

269 /* Free all host-installed SCI handlers */

271 while (AcpiGbl_SciHandlerList)
272 {
273 SciHandler = AcpiGbl_SciHandlerList;
274 AcpiGbl_SciHandlerList = SciHandler->Next;
275 ACPI_FREE (SciHandler);
276 }

278 AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags);
279 return_ACPI_STATUS (Status);
280 }

282 #endif /* !ACPI_REDUCED_HARDWARE */

new/usr/src/common/acpica/components/events/evxface.c 1

**
 30979 Thu Dec 26 13:48:59 2013
new/usr/src/common/acpica/components/events/evxface.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: evxface - External interfaces for ACPI events
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __EVXFACE_C__
46 #define EXPORT_ACPI_INTERFACES

48 #include "acpi.h"
49 #include "accommon.h"
50 #include "acnamesp.h"
51 #include "acevents.h"
52 #include "acinterp.h"

54 #define _COMPONENT ACPI_EVENTS
55 ACPI_MODULE_NAME ("evxface")

58 /***
59 *

new/usr/src/common/acpica/components/events/evxface.c 2

60 * FUNCTION: AcpiInstallNotifyHandler
61 *
62 * PARAMETERS: Device - The device for which notifies will be handled
63 * HandlerType - The type of handler:
64 * ACPI_SYSTEM_NOTIFY: System Handler (00-7F)
65 * ACPI_DEVICE_NOTIFY: Device Handler (80-FF)
66 * ACPI_ALL_NOTIFY: Both System and Device
67 * Handler - Address of the handler
68 * Context - Value passed to the handler on each GPE
69 *
70 * RETURN: Status
71 *
72 * DESCRIPTION: Install a handler for notifications on an ACPI Device,
73 * ThermalZone, or Processor object.
74 *
75 * NOTES: The Root namespace object may have only one handler for each
76 * type of notify (System/Device). Device/Thermal/Processor objects
77 * may have one device notify handler, and multiple system notify
78 * handlers.
79 *
80 **/

82 ACPI_STATUS
83 AcpiInstallNotifyHandler (
84 ACPI_HANDLE Device,
85 UINT32 HandlerType,
86 ACPI_NOTIFY_HANDLER Handler,
87 void *Context)
88 {
89 ACPI_NAMESPACE_NODE *Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Device);
90 ACPI_OPERAND_OBJECT *ObjDesc;
91 ACPI_OPERAND_OBJECT *HandlerObj;
92 ACPI_STATUS Status;
93 UINT32 i;

96 ACPI_FUNCTION_TRACE (AcpiInstallNotifyHandler);

99 /* Parameter validation */

101 if ((!Device) || (!Handler) || (!HandlerType) ||
102 (HandlerType > ACPI_MAX_NOTIFY_HANDLER_TYPE))
103 {
104 return_ACPI_STATUS (AE_BAD_PARAMETER);
105 }

107 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
108 if (ACPI_FAILURE (Status))
109 {
110 return_ACPI_STATUS (Status);
111 }

113 /*
114 * Root Object:
115 * Registering a notify handler on the root object indicates that the
116 * caller wishes to receive notifications for all objects. Note that
117 * only one global handler can be registered per notify type.
118 * Ensure that a handler is not already installed.
119 */
120 if (Device == ACPI_ROOT_OBJECT)
121 {
122 for (i = 0; i < ACPI_NUM_NOTIFY_TYPES; i++)
123 {
124 if (HandlerType & (i+1))
125 {

new/usr/src/common/acpica/components/events/evxface.c 3

126 if (AcpiGbl_GlobalNotify[i].Handler)
127 {
128 Status = AE_ALREADY_EXISTS;
129 goto UnlockAndExit;
130 }

132 AcpiGbl_GlobalNotify[i].Handler = Handler;
133 AcpiGbl_GlobalNotify[i].Context = Context;
134 }
135 }

137 goto UnlockAndExit; /* Global notify handler installed, all done */
138 }

140 /*
141 * All Other Objects:
142 * Caller will only receive notifications specific to the target
143 * object. Note that only certain object types are allowed to
144 * receive notifications.
145 */

147 /* Are Notifies allowed on this object? */

149 if (!AcpiEvIsNotifyObject (Node))
150 {
151 Status = AE_TYPE;
152 goto UnlockAndExit;
153 }

155 /* Check for an existing internal object, might not exist */

157 ObjDesc = AcpiNsGetAttachedObject (Node);
158 if (!ObjDesc)
159 {
160 /* Create a new object */

162 ObjDesc = AcpiUtCreateInternalObject (Node->Type);
163 if (!ObjDesc)
164 {
165 Status = AE_NO_MEMORY;
166 goto UnlockAndExit;
167 }

169 /* Attach new object to the Node, remove local reference */

171 Status = AcpiNsAttachObject (Device, ObjDesc, Node->Type);
172 AcpiUtRemoveReference (ObjDesc);
173 if (ACPI_FAILURE (Status))
174 {
175 goto UnlockAndExit;
176 }
177 }

179 /* Ensure that the handler is not already installed in the lists */

181 for (i = 0; i < ACPI_NUM_NOTIFY_TYPES; i++)
182 {
183 if (HandlerType & (i+1))
184 {
185 HandlerObj = ObjDesc->CommonNotify.NotifyList[i];
186 while (HandlerObj)
187 {
188 if (HandlerObj->Notify.Handler == Handler)
189 {
190 Status = AE_ALREADY_EXISTS;
191 goto UnlockAndExit;

new/usr/src/common/acpica/components/events/evxface.c 4

192 }

194 HandlerObj = HandlerObj->Notify.Next[i];
195 }
196 }
197 }

199 /* Create and populate a new notify handler object */

201 HandlerObj = AcpiUtCreateInternalObject (ACPI_TYPE_LOCAL_NOTIFY);
202 if (!HandlerObj)
203 {
204 Status = AE_NO_MEMORY;
205 goto UnlockAndExit;
206 }

208 HandlerObj->Notify.Node = Node;
209 HandlerObj->Notify.HandlerType = HandlerType;
210 HandlerObj->Notify.Handler = Handler;
211 HandlerObj->Notify.Context = Context;

213 /* Install the handler at the list head(s) */

215 for (i = 0; i < ACPI_NUM_NOTIFY_TYPES; i++)
216 {
217 if (HandlerType & (i+1))
218 {
219 HandlerObj->Notify.Next[i] =
220 ObjDesc->CommonNotify.NotifyList[i];

222 ObjDesc->CommonNotify.NotifyList[i] = HandlerObj;
223 }
224 }

226 /* Add an extra reference if handler was installed in both lists */

228 if (HandlerType == ACPI_ALL_NOTIFY)
229 {
230 AcpiUtAddReference (HandlerObj);
231 }

234 UnlockAndExit:
235 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
236 return_ACPI_STATUS (Status);
237 }

239 ACPI_EXPORT_SYMBOL (AcpiInstallNotifyHandler)

242 /***
243 *
244 * FUNCTION: AcpiRemoveNotifyHandler
245 *
246 * PARAMETERS: Device - The device for which the handler is installed
247 * HandlerType - The type of handler:
248 * ACPI_SYSTEM_NOTIFY: System Handler (00-7F)
249 * ACPI_DEVICE_NOTIFY: Device Handler (80-FF)
250 * ACPI_ALL_NOTIFY: Both System and Device
251 * Handler - Address of the handler
252 *
253 * RETURN: Status
254 *
255 * DESCRIPTION: Remove a handler for notifies on an ACPI device
256 *
257 **/

new/usr/src/common/acpica/components/events/evxface.c 5

259 ACPI_STATUS
260 AcpiRemoveNotifyHandler (
261 ACPI_HANDLE Device,
262 UINT32 HandlerType,
263 ACPI_NOTIFY_HANDLER Handler)
264 {
265 ACPI_NAMESPACE_NODE *Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Device);
266 ACPI_OPERAND_OBJECT *ObjDesc;
267 ACPI_OPERAND_OBJECT *HandlerObj;
268 ACPI_OPERAND_OBJECT *PreviousHandlerObj;
269 ACPI_STATUS Status;
270 UINT32 i;

273 ACPI_FUNCTION_TRACE (AcpiRemoveNotifyHandler);

276 /* Parameter validation */

278 if ((!Device) || (!Handler) || (!HandlerType) ||
279 (HandlerType > ACPI_MAX_NOTIFY_HANDLER_TYPE))
280 {
281 return_ACPI_STATUS (AE_BAD_PARAMETER);
282 }

284 /* Make sure all deferred notify tasks are completed */

286 AcpiOsWaitEventsComplete ();

288 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
289 if (ACPI_FAILURE (Status))
290 {
291 return_ACPI_STATUS (Status);
292 }

294 /* Root Object. Global handlers are removed here */

296 if (Device == ACPI_ROOT_OBJECT)
297 {
298 for (i = 0; i < ACPI_NUM_NOTIFY_TYPES; i++)
299 {
300 if (HandlerType & (i+1))
301 {
302 if (!AcpiGbl_GlobalNotify[i].Handler ||
303 (AcpiGbl_GlobalNotify[i].Handler != Handler))
304 {
305 Status = AE_NOT_EXIST;
306 goto UnlockAndExit;
307 }

309 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
310 "Removing global notify handler\n"));

312 AcpiGbl_GlobalNotify[i].Handler = NULL;
313 AcpiGbl_GlobalNotify[i].Context = NULL;
314 }
315 }

317 goto UnlockAndExit;
318 }

320 /* All other objects: Are Notifies allowed on this object? */

322 if (!AcpiEvIsNotifyObject (Node))
323 {

new/usr/src/common/acpica/components/events/evxface.c 6

324 Status = AE_TYPE;
325 goto UnlockAndExit;
326 }

328 /* Must have an existing internal object */

330 ObjDesc = AcpiNsGetAttachedObject (Node);
331 if (!ObjDesc)
332 {
333 Status = AE_NOT_EXIST;
334 goto UnlockAndExit;
335 }

337 /* Internal object exists. Find the handler and remove it */

339 for (i = 0; i < ACPI_NUM_NOTIFY_TYPES; i++)
340 {
341 if (HandlerType & (i+1))
342 {
343 HandlerObj = ObjDesc->CommonNotify.NotifyList[i];
344 PreviousHandlerObj = NULL;

346 /* Attempt to find the handler in the handler list */

348 while (HandlerObj &&
349 (HandlerObj->Notify.Handler != Handler))
350 {
351 PreviousHandlerObj = HandlerObj;
352 HandlerObj = HandlerObj->Notify.Next[i];
353 }

355 if (!HandlerObj)
356 {
357 Status = AE_NOT_EXIST;
358 goto UnlockAndExit;
359 }

361 /* Remove the handler object from the list */

363 if (PreviousHandlerObj) /* Handler is not at the list head */
364 {
365 PreviousHandlerObj->Notify.Next[i] =
366 HandlerObj->Notify.Next[i];
367 }
368 else /* Handler is at the list head */
369 {
370 ObjDesc->CommonNotify.NotifyList[i] =
371 HandlerObj->Notify.Next[i];
372 }

374 AcpiUtRemoveReference (HandlerObj);
375 }
376 }

379 UnlockAndExit:
380 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
381 return_ACPI_STATUS (Status);
382 }

384 ACPI_EXPORT_SYMBOL (AcpiRemoveNotifyHandler)

387 /***
388 *
389 * FUNCTION: AcpiInstallExceptionHandler

new/usr/src/common/acpica/components/events/evxface.c 7

390 *
391 * PARAMETERS: Handler - Pointer to the handler function for the
392 * event
393 *
394 * RETURN: Status
395 *
396 * DESCRIPTION: Saves the pointer to the handler function
397 *
398 **/

400 ACPI_STATUS
401 AcpiInstallExceptionHandler (
402 ACPI_EXCEPTION_HANDLER Handler)
403 {
404 ACPI_STATUS Status;

407 ACPI_FUNCTION_TRACE (AcpiInstallExceptionHandler);

410 Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS);
411 if (ACPI_FAILURE (Status))
412 {
413 return_ACPI_STATUS (Status);
414 }

416 /* Don’t allow two handlers. */

418 if (AcpiGbl_ExceptionHandler)
419 {
420 Status = AE_ALREADY_EXISTS;
421 goto Cleanup;
422 }

424 /* Install the handler */

426 AcpiGbl_ExceptionHandler = Handler;

428 Cleanup:
429 (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS);
430 return_ACPI_STATUS (Status);
431 }

433 ACPI_EXPORT_SYMBOL (AcpiInstallExceptionHandler)

436 #if (!ACPI_REDUCED_HARDWARE)
437 /***
438 *
439 * FUNCTION: AcpiInstallSciHandler
440 *
441 * PARAMETERS: Address - Address of the handler
442 * Context - Value passed to the handler on each SCI
443 *
444 * RETURN: Status
445 *
446 * DESCRIPTION: Install a handler for a System Control Interrupt.
447 *
448 **/

450 ACPI_STATUS
451 AcpiInstallSciHandler (
452 ACPI_SCI_HANDLER Address,
453 void *Context)
454 {
455 ACPI_SCI_HANDLER_INFO *NewSciHandler;

new/usr/src/common/acpica/components/events/evxface.c 8

456 ACPI_SCI_HANDLER_INFO *SciHandler;
457 ACPI_CPU_FLAGS Flags;
458 ACPI_STATUS Status;

461 ACPI_FUNCTION_TRACE (AcpiInstallSciHandler);

464 if (!Address)
465 {
466 return_ACPI_STATUS (AE_BAD_PARAMETER);
467 }

469 /* Allocate and init a handler object */

471 NewSciHandler = ACPI_ALLOCATE (sizeof (ACPI_SCI_HANDLER_INFO));
472 if (!NewSciHandler)
473 {
474 return_ACPI_STATUS (AE_NO_MEMORY);
475 }

477 NewSciHandler->Address = Address;
478 NewSciHandler->Context = Context;

480 Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS);
481 if (ACPI_FAILURE (Status))
482 {
483 goto Exit;
484 }

486 /* Lock list during installation */

488 Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock);
489 SciHandler = AcpiGbl_SciHandlerList;

491 /* Ensure handler does not already exist */

493 while (SciHandler)
494 {
495 if (Address == SciHandler->Address)
496 {
497 Status = AE_ALREADY_EXISTS;
498 goto UnlockAndExit;
499 }

501 SciHandler = SciHandler->Next;
502 }

504 /* Install the new handler into the global list (at head) */

506 NewSciHandler->Next = AcpiGbl_SciHandlerList;
507 AcpiGbl_SciHandlerList = NewSciHandler;

510 UnlockAndExit:

512 AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags);
513 (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS);

515 Exit:
516 if (ACPI_FAILURE (Status))
517 {
518 ACPI_FREE (NewSciHandler);
519 }
520 return_ACPI_STATUS (Status);
521 }

new/usr/src/common/acpica/components/events/evxface.c 9

524 /***
525 *
526 * FUNCTION: AcpiRemoveSciHandler
527 *
528 * PARAMETERS: Address - Address of the handler
529 *
530 * RETURN: Status
531 *
532 * DESCRIPTION: Remove a handler for a System Control Interrupt.
533 *
534 **/

536 ACPI_STATUS
537 AcpiRemoveSciHandler (
538 ACPI_SCI_HANDLER Address)
539 {
540 ACPI_SCI_HANDLER_INFO *PrevSciHandler;
541 ACPI_SCI_HANDLER_INFO *NextSciHandler;
542 ACPI_CPU_FLAGS Flags;
543 ACPI_STATUS Status;

546 ACPI_FUNCTION_TRACE (AcpiRemoveSciHandler);

549 if (!Address)
550 {
551 return_ACPI_STATUS (AE_BAD_PARAMETER);
552 }

554 Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS);
555 if (ACPI_FAILURE (Status))
556 {
557 return_ACPI_STATUS (Status);
558 }

560 /* Remove the SCI handler with lock */

562 Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock);

564 PrevSciHandler = NULL;
565 NextSciHandler = AcpiGbl_SciHandlerList;
566 while (NextSciHandler)
567 {
568 if (NextSciHandler->Address == Address)
569 {
570 /* Unlink and free the SCI handler info block */

572 if (PrevSciHandler)
573 {
574 PrevSciHandler->Next = NextSciHandler->Next;
575 }
576 else
577 {
578 AcpiGbl_SciHandlerList = NextSciHandler->Next;
579 }

581 AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags);
582 ACPI_FREE (NextSciHandler);
583 goto UnlockAndExit;
584 }

586 PrevSciHandler = NextSciHandler;
587 NextSciHandler = NextSciHandler->Next;

new/usr/src/common/acpica/components/events/evxface.c 10

588 }

590 AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags);
591 Status = AE_NOT_EXIST;

594 UnlockAndExit:
595 (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS);
596 return_ACPI_STATUS (Status);
597 }

600 /***
601 *
602 * FUNCTION: AcpiInstallGlobalEventHandler
603 *
604 * PARAMETERS: Handler - Pointer to the global event handler function
605 * Context - Value passed to the handler on each event
606 *
607 * RETURN: Status
608 *
609 * DESCRIPTION: Saves the pointer to the handler function. The global handler
610 * is invoked upon each incoming GPE and Fixed Event. It is
611 * invoked at interrupt level at the time of the event dispatch.
612 * Can be used to update event counters, etc.
613 *
614 **/

616 ACPI_STATUS
617 AcpiInstallGlobalEventHandler (
618 ACPI_GBL_EVENT_HANDLER Handler,
619 void *Context)
620 {
621 ACPI_STATUS Status;

624 ACPI_FUNCTION_TRACE (AcpiInstallGlobalEventHandler);

627 /* Parameter validation */

629 if (!Handler)
630 {
631 return_ACPI_STATUS (AE_BAD_PARAMETER);
632 }

634 Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS);
635 if (ACPI_FAILURE (Status))
636 {
637 return_ACPI_STATUS (Status);
638 }

640 /* Don’t allow two handlers. */

642 if (AcpiGbl_GlobalEventHandler)
643 {
644 Status = AE_ALREADY_EXISTS;
645 goto Cleanup;
646 }

648 AcpiGbl_GlobalEventHandler = Handler;
649 AcpiGbl_GlobalEventHandlerContext = Context;

652 Cleanup:
653 (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS);

new/usr/src/common/acpica/components/events/evxface.c 11

654 return_ACPI_STATUS (Status);
655 }

657 ACPI_EXPORT_SYMBOL (AcpiInstallGlobalEventHandler)

660 /***
661 *
662 * FUNCTION: AcpiInstallFixedEventHandler
663 *
664 * PARAMETERS: Event - Event type to enable.
665 * Handler - Pointer to the handler function for the
666 * event
667 * Context - Value passed to the handler on each GPE
668 *
669 * RETURN: Status
670 *
671 * DESCRIPTION: Saves the pointer to the handler function and then enables the
672 * event.
673 *
674 **/

676 ACPI_STATUS
677 AcpiInstallFixedEventHandler (
678 UINT32 Event,
679 ACPI_EVENT_HANDLER Handler,
680 void *Context)
681 {
682 ACPI_STATUS Status;

685 ACPI_FUNCTION_TRACE (AcpiInstallFixedEventHandler);

688 /* Parameter validation */

690 if (Event > ACPI_EVENT_MAX)
691 {
692 return_ACPI_STATUS (AE_BAD_PARAMETER);
693 }

695 Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS);
696 if (ACPI_FAILURE (Status))
697 {
698 return_ACPI_STATUS (Status);
699 }

701 /* Do not allow multiple handlers */

703 if (AcpiGbl_FixedEventHandlers[Event].Handler)
704 {
705 Status = AE_ALREADY_EXISTS;
706 goto Cleanup;
707 }

709 /* Install the handler before enabling the event */

711 AcpiGbl_FixedEventHandlers[Event].Handler = Handler;
712 AcpiGbl_FixedEventHandlers[Event].Context = Context;

714 Status = AcpiEnableEvent (Event, 0);
715 if (ACPI_FAILURE (Status))
716 {
717 ACPI_WARNING ((AE_INFO,
718 "Could not enable fixed event - %s (%u)",
719 AcpiUtGetEventName (Event), Event));

new/usr/src/common/acpica/components/events/evxface.c 12

721 /* Remove the handler */

723 AcpiGbl_FixedEventHandlers[Event].Handler = NULL;
724 AcpiGbl_FixedEventHandlers[Event].Context = NULL;
725 }
726 else
727 {
728 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
729 "Enabled fixed event %s (%X), Handler=%p\n",
730 AcpiUtGetEventName (Event), Event, Handler));
731 }

734 Cleanup:
735 (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS);
736 return_ACPI_STATUS (Status);
737 }

739 ACPI_EXPORT_SYMBOL (AcpiInstallFixedEventHandler)

742 /***
743 *
744 * FUNCTION: AcpiRemoveFixedEventHandler
745 *
746 * PARAMETERS: Event - Event type to disable.
747 * Handler - Address of the handler
748 *
749 * RETURN: Status
750 *
751 * DESCRIPTION: Disables the event and unregisters the event handler.
752 *
753 **/

755 ACPI_STATUS
756 AcpiRemoveFixedEventHandler (
757 UINT32 Event,
758 ACPI_EVENT_HANDLER Handler)
759 {
760 ACPI_STATUS Status = AE_OK;

763 ACPI_FUNCTION_TRACE (AcpiRemoveFixedEventHandler);

766 /* Parameter validation */

768 if (Event > ACPI_EVENT_MAX)
769 {
770 return_ACPI_STATUS (AE_BAD_PARAMETER);
771 }

773 Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS);
774 if (ACPI_FAILURE (Status))
775 {
776 return_ACPI_STATUS (Status);
777 }

779 /* Disable the event before removing the handler */

781 Status = AcpiDisableEvent (Event, 0);

783 /* Always Remove the handler */

785 AcpiGbl_FixedEventHandlers[Event].Handler = NULL;

new/usr/src/common/acpica/components/events/evxface.c 13

786 AcpiGbl_FixedEventHandlers[Event].Context = NULL;

788 if (ACPI_FAILURE (Status))
789 {
790 ACPI_WARNING ((AE_INFO,
791 "Could not disable fixed event - %s (%u)",
792 AcpiUtGetEventName (Event), Event));
793 }
794 else
795 {
796 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
797 "Disabled fixed event - %s (%X)\n",
798 AcpiUtGetEventName (Event), Event));
799 }

801 (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS);
802 return_ACPI_STATUS (Status);
803 }

805 ACPI_EXPORT_SYMBOL (AcpiRemoveFixedEventHandler)

808 /***
809 *
810 * FUNCTION: AcpiInstallGpeHandler
811 *
812 * PARAMETERS: GpeDevice - Namespace node for the GPE (NULL for FADT
813 * defined GPEs)
814 * GpeNumber - The GPE number within the GPE block
815 * Type - Whether this GPE should be treated as an
816 * edge- or level-triggered interrupt.
817 * Address - Address of the handler
818 * Context - Value passed to the handler on each GPE
819 *
820 * RETURN: Status
821 *
822 * DESCRIPTION: Install a handler for a General Purpose Event.
823 *
824 **/

826 ACPI_STATUS
827 AcpiInstallGpeHandler (
828 ACPI_HANDLE GpeDevice,
829 UINT32 GpeNumber,
830 UINT32 Type,
831 ACPI_GPE_HANDLER Address,
832 void *Context)
833 {
834 ACPI_GPE_EVENT_INFO *GpeEventInfo;
835 ACPI_GPE_HANDLER_INFO *Handler;
836 ACPI_STATUS Status;
837 ACPI_CPU_FLAGS Flags;

840 ACPI_FUNCTION_TRACE (AcpiInstallGpeHandler);

843 /* Parameter validation */

845 if ((!Address) || (Type & ~ACPI_GPE_XRUPT_TYPE_MASK))
846 {
847 return_ACPI_STATUS (AE_BAD_PARAMETER);
848 }

850 Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS);
851 if (ACPI_FAILURE (Status))

new/usr/src/common/acpica/components/events/evxface.c 14

852 {
853 return_ACPI_STATUS (Status);
854 }

856 /* Allocate and init handler object (before lock) */

858 Handler = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_GPE_HANDLER_INFO));
859 if (!Handler)
860 {
861 Status = AE_NO_MEMORY;
862 goto UnlockAndExit;
863 }

865 Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock);

867 /* Ensure that we have a valid GPE number */

869 GpeEventInfo = AcpiEvGetGpeEventInfo (GpeDevice, GpeNumber);
870 if (!GpeEventInfo)
871 {
872 Status = AE_BAD_PARAMETER;
873 goto FreeAndExit;
874 }

876 /* Make sure that there isn’t a handler there already */

878 if ((GpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK) ==
879 ACPI_GPE_DISPATCH_HANDLER)
880 {
881 Status = AE_ALREADY_EXISTS;
882 goto FreeAndExit;
883 }

885 Handler->Address = Address;
886 Handler->Context = Context;
887 Handler->MethodNode = GpeEventInfo->Dispatch.MethodNode;
888 Handler->OriginalFlags = (UINT8) (GpeEventInfo->Flags &
889 (ACPI_GPE_XRUPT_TYPE_MASK | ACPI_GPE_DISPATCH_MASK));

891 /*
892 * If the GPE is associated with a method, it may have been enabled
893 * automatically during initialization, in which case it has to be
894 * disabled now to avoid spurious execution of the handler.
895 */
896 if (((Handler->OriginalFlags & ACPI_GPE_DISPATCH_METHOD) ||
897 (Handler->OriginalFlags & ACPI_GPE_DISPATCH_NOTIFY)) &&
898 GpeEventInfo->RuntimeCount)
899 {
900 Handler->OriginallyEnabled = TRUE;
901 (void) AcpiEvRemoveGpeReference (GpeEventInfo);

903 /* Sanity check of original type against new type */

905 if (Type != (UINT32) (GpeEventInfo->Flags & ACPI_GPE_XRUPT_TYPE_MASK))
906 {
907 ACPI_WARNING ((AE_INFO, "GPE type mismatch (level/edge)"));
908 }
909 }

911 /* Install the handler */

913 GpeEventInfo->Dispatch.Handler = Handler;

915 /* Setup up dispatch flags to indicate handler (vs. method/notify) */

917 GpeEventInfo->Flags &= ~(ACPI_GPE_XRUPT_TYPE_MASK | ACPI_GPE_DISPATCH_MASK);

new/usr/src/common/acpica/components/events/evxface.c 15

918 GpeEventInfo->Flags |= (UINT8) (Type | ACPI_GPE_DISPATCH_HANDLER);

920 AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags);

923 UnlockAndExit:
924 (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS);
925 return_ACPI_STATUS (Status);

927 FreeAndExit:
928 AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags);
929 ACPI_FREE (Handler);
930 goto UnlockAndExit;
931 }

933 ACPI_EXPORT_SYMBOL (AcpiInstallGpeHandler)

936 /***
937 *
938 * FUNCTION: AcpiRemoveGpeHandler
939 *
940 * PARAMETERS: GpeDevice - Namespace node for the GPE (NULL for FADT
941 * defined GPEs)
942 * GpeNumber - The event to remove a handler
943 * Address - Address of the handler
944 *
945 * RETURN: Status
946 *
947 * DESCRIPTION: Remove a handler for a General Purpose AcpiEvent.
948 *
949 **/

951 ACPI_STATUS
952 AcpiRemoveGpeHandler (
953 ACPI_HANDLE GpeDevice,
954 UINT32 GpeNumber,
955 ACPI_GPE_HANDLER Address)
956 {
957 ACPI_GPE_EVENT_INFO *GpeEventInfo;
958 ACPI_GPE_HANDLER_INFO *Handler;
959 ACPI_STATUS Status;
960 ACPI_CPU_FLAGS Flags;

963 ACPI_FUNCTION_TRACE (AcpiRemoveGpeHandler);

966 /* Parameter validation */

968 if (!Address)
969 {
970 return_ACPI_STATUS (AE_BAD_PARAMETER);
971 }

973 /* Make sure all deferred GPE tasks are completed */

975 AcpiOsWaitEventsComplete ();

977 Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS);
978 if (ACPI_FAILURE (Status))
979 {
980 return_ACPI_STATUS (Status);
981 }

983 Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock);

new/usr/src/common/acpica/components/events/evxface.c 16

985 /* Ensure that we have a valid GPE number */

987 GpeEventInfo = AcpiEvGetGpeEventInfo (GpeDevice, GpeNumber);
988 if (!GpeEventInfo)
989 {
990 Status = AE_BAD_PARAMETER;
991 goto UnlockAndExit;
992 }

994 /* Make sure that a handler is indeed installed */

996 if ((GpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK) !=
997 ACPI_GPE_DISPATCH_HANDLER)
998 {
999 Status = AE_NOT_EXIST;

1000 goto UnlockAndExit;
1001 }

1003 /* Make sure that the installed handler is the same */

1005 if (GpeEventInfo->Dispatch.Handler->Address != Address)
1006 {
1007 Status = AE_BAD_PARAMETER;
1008 goto UnlockAndExit;
1009 }

1011 /* Remove the handler */

1013 Handler = GpeEventInfo->Dispatch.Handler;

1015 /* Restore Method node (if any), set dispatch flags */

1017 GpeEventInfo->Dispatch.MethodNode = Handler->MethodNode;
1018 GpeEventInfo->Flags &=
1019 ~(ACPI_GPE_XRUPT_TYPE_MASK | ACPI_GPE_DISPATCH_MASK);
1020 GpeEventInfo->Flags |= Handler->OriginalFlags;

1022 /*
1023 * If the GPE was previously associated with a method and it was
1024 * enabled, it should be enabled at this point to restore the
1025 * post-initialization configuration.
1026 */
1027 if ((Handler->OriginalFlags & ACPI_GPE_DISPATCH_METHOD) &&
1028 Handler->OriginallyEnabled)
1029 {
1030 (void) AcpiEvAddGpeReference (GpeEventInfo);
1031 }

1033 /* Now we can free the handler object */

1035 ACPI_FREE (Handler);

1038 UnlockAndExit:
1039 AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags);
1040 (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS);
1041 return_ACPI_STATUS (Status);
1042 }

1044 ACPI_EXPORT_SYMBOL (AcpiRemoveGpeHandler)

1047 /***
1048 *
1049 * FUNCTION: AcpiAcquireGlobalLock

new/usr/src/common/acpica/components/events/evxface.c 17

1050 *
1051 * PARAMETERS: Timeout - How long the caller is willing to wait
1052 * Handle - Where the handle to the lock is returned
1053 * (if acquired)
1054 *
1055 * RETURN: Status
1056 *
1057 * DESCRIPTION: Acquire the ACPI Global Lock
1058 *
1059 * Note: Allows callers with the same thread ID to acquire the global lock
1060 * multiple times. In other words, externally, the behavior of the global lock
1061 * is identical to an AML mutex. On the first acquire, a new handle is
1062 * returned. On any subsequent calls to acquire by the same thread, the same
1063 * handle is returned.
1064 *
1065 **/

1067 ACPI_STATUS
1068 AcpiAcquireGlobalLock (
1069 UINT16 Timeout,
1070 UINT32 *Handle)
1071 {
1072 ACPI_STATUS Status;

1075 if (!Handle)
1076 {
1077 return (AE_BAD_PARAMETER);
1078 }

1080 /* Must lock interpreter to prevent race conditions */

1082 AcpiExEnterInterpreter ();

1084 Status = AcpiExAcquireMutexObject (Timeout,
1085 AcpiGbl_GlobalLockMutex, AcpiOsGetThreadId ());

1087 if (ACPI_SUCCESS (Status))
1088 {
1089 /* Return the global lock handle (updated in AcpiEvAcquireGlobalLock) */

1091 *Handle = AcpiGbl_GlobalLockHandle;
1092 }

1094 AcpiExExitInterpreter ();
1095 return (Status);
1096 }

1098 ACPI_EXPORT_SYMBOL (AcpiAcquireGlobalLock)

1101 /***
1102 *
1103 * FUNCTION: AcpiReleaseGlobalLock
1104 *
1105 * PARAMETERS: Handle - Returned from AcpiAcquireGlobalLock
1106 *
1107 * RETURN: Status
1108 *
1109 * DESCRIPTION: Release the ACPI Global Lock. The handle must be valid.
1110 *
1111 **/

1113 ACPI_STATUS
1114 AcpiReleaseGlobalLock (
1115 UINT32 Handle)

new/usr/src/common/acpica/components/events/evxface.c 18

1116 {
1117 ACPI_STATUS Status;

1120 if (!Handle || (Handle != AcpiGbl_GlobalLockHandle))
1121 {
1122 return (AE_NOT_ACQUIRED);
1123 }

1125 Status = AcpiExReleaseMutexObject (AcpiGbl_GlobalLockMutex);
1126 return (Status);
1127 }

1129 ACPI_EXPORT_SYMBOL (AcpiReleaseGlobalLock)

1131 #endif /* !ACPI_REDUCED_HARDWARE */

new/usr/src/common/acpica/components/events/evxfevnt.c 1

**
 10127 Thu Dec 26 13:48:59 2013
new/usr/src/common/acpica/components/events/evxfevnt.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: evxfevnt - External Interfaces, ACPI event disable/enable
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __EVXFEVNT_C__
46 #define EXPORT_ACPI_INTERFACES

48 #include "acpi.h"
49 #include "accommon.h"
50 #include "actables.h"

52 #define _COMPONENT ACPI_EVENTS
53 ACPI_MODULE_NAME ("evxfevnt")

56 #if (!ACPI_REDUCED_HARDWARE) /* Entire module */
57 /***
58 *

new/usr/src/common/acpica/components/events/evxfevnt.c 2

59 * FUNCTION: AcpiEnable
60 *
61 * PARAMETERS: None
62 *
63 * RETURN: Status
64 *
65 * DESCRIPTION: Transfers the system into ACPI mode.
66 *
67 **/

69 ACPI_STATUS
70 AcpiEnable (
71 void)
72 {
73 ACPI_STATUS Status = AE_OK;

76 ACPI_FUNCTION_TRACE (AcpiEnable);

79 /* ACPI tables must be present */

81 if (!AcpiTbTablesLoaded ())
82 {
83 return_ACPI_STATUS (AE_NO_ACPI_TABLES);
84 }

86 /* If the Hardware Reduced flag is set, machine is always in acpi mode */

88 if (AcpiGbl_ReducedHardware)
89 {
90 return_ACPI_STATUS (AE_OK);
91 }

93 /* Check current mode */

95 if (AcpiHwGetMode() == ACPI_SYS_MODE_ACPI)
96 {
97 ACPI_DEBUG_PRINT ((ACPI_DB_INIT, "System is already in ACPI mode\n"));
98 }
99 else
100 {
101 /* Transition to ACPI mode */

103 Status = AcpiHwSetMode (ACPI_SYS_MODE_ACPI);
104 if (ACPI_FAILURE (Status))
105 {
106 ACPI_ERROR ((AE_INFO, "Could not transition to ACPI mode"));
107 return_ACPI_STATUS (Status);
108 }

110 ACPI_DEBUG_PRINT ((ACPI_DB_INIT,
111 "Transition to ACPI mode successful\n"));
112 }

114 return_ACPI_STATUS (Status);
115 }

117 ACPI_EXPORT_SYMBOL (AcpiEnable)

120 /***
121 *
122 * FUNCTION: AcpiDisable
123 *
124 * PARAMETERS: None

new/usr/src/common/acpica/components/events/evxfevnt.c 3

125 *
126 * RETURN: Status
127 *
128 * DESCRIPTION: Transfers the system into LEGACY (non-ACPI) mode.
129 *
130 **/

132 ACPI_STATUS
133 AcpiDisable (
134 void)
135 {
136 ACPI_STATUS Status = AE_OK;

139 ACPI_FUNCTION_TRACE (AcpiDisable);

142 /* If the Hardware Reduced flag is set, machine is always in acpi mode */

144 if (AcpiGbl_ReducedHardware)
145 {
146 return_ACPI_STATUS (AE_OK);
147 }

149 if (AcpiHwGetMode() == ACPI_SYS_MODE_LEGACY)
150 {
151 ACPI_DEBUG_PRINT ((ACPI_DB_INIT,
152 "System is already in legacy (non-ACPI) mode\n"));
153 }
154 else
155 {
156 /* Transition to LEGACY mode */

158 Status = AcpiHwSetMode (ACPI_SYS_MODE_LEGACY);

160 if (ACPI_FAILURE (Status))
161 {
162 ACPI_ERROR ((AE_INFO,
163 "Could not exit ACPI mode to legacy mode"));
164 return_ACPI_STATUS (Status);
165 }

167 ACPI_DEBUG_PRINT ((ACPI_DB_INIT, "ACPI mode disabled\n"));
168 }

170 return_ACPI_STATUS (Status);
171 }

______unchanged_portion_omitted_

394 ACPI_EXPORT_SYMBOL (AcpiGetEventStatus)

396 #endif /* !ACPI_REDUCED_HARDWARE */

new/usr/src/common/acpica/components/events/evxfgpe.c 1

**
 26082 Thu Dec 26 13:49:00 2013
new/usr/src/common/acpica/components/events/evxfgpe.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: evxfgpe - External Interfaces for General Purpose Events (GPEs)
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __EVXFGPE_C__
46 #define EXPORT_ACPI_INTERFACES

48 #include "acpi.h"
49 #include "accommon.h"
50 #include "acevents.h"
51 #include "acnamesp.h"

53 #define _COMPONENT ACPI_EVENTS
54 ACPI_MODULE_NAME ("evxfgpe")

57 #if (!ACPI_REDUCED_HARDWARE) /* Entire module */
58 /***

new/usr/src/common/acpica/components/events/evxfgpe.c 2

59 *
60 * FUNCTION: AcpiUpdateAllGpes
61 *
62 * PARAMETERS: None
63 *
64 * RETURN: Status
65 *
66 * DESCRIPTION: Complete GPE initialization and enable all GPEs that have
67 * associated _Lxx or _Exx methods and are not pointed to by any
68 * device _PRW methods (this indicates that these GPEs are
69 * generally intended for system or device wakeup. Such GPEs
70 * have to be enabled directly when the devices whose _PRW
71 * methods point to them are set up for wakeup signaling.)
72 *
73 * NOTE: Should be called after any GPEs are added to the system. Primarily,
74 * after the system _PRW methods have been run, but also after a GPE Block
75 * Device has been added or if any new GPE methods have been added via a
76 * dynamic table load.
77 *
78 **/

80 ACPI_STATUS
81 AcpiUpdateAllGpes (
82 void)
83 {
84 ACPI_STATUS Status;

87 ACPI_FUNCTION_TRACE (AcpiUpdateAllGpes);
85 ACPI_FUNCTION_TRACE (AcpiUpdateGpes);

90 Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS);
91 if (ACPI_FAILURE (Status))
92 {
93 return_ACPI_STATUS (Status);
94 }

96 if (AcpiGbl_AllGpesInitialized)
97 {
98 goto UnlockAndExit;
99 }

101 Status = AcpiEvWalkGpeList (AcpiEvInitializeGpeBlock, NULL);
102 if (ACPI_SUCCESS (Status))
103 {
104 AcpiGbl_AllGpesInitialized = TRUE;
105 }

107 UnlockAndExit:
108 (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS);
109 return_ACPI_STATUS (Status);
110 }

______unchanged_portion_omitted_

201 ACPI_EXPORT_SYMBOL (AcpiDisableGpe)

204 /***
205 *
206 * FUNCTION: AcpiSetGpe
207 *
208 * PARAMETERS: GpeDevice - Parent GPE Device. NULL for GPE0/GPE1
209 * GpeNumber - GPE level within the GPE block
210 * Action - ACPI_GPE_ENABLE or ACPI_GPE_DISABLE
211 *

new/usr/src/common/acpica/components/events/evxfgpe.c 3

212 * RETURN: Status
213 *
214 * DESCRIPTION: Enable or disable an individual GPE. This function bypasses
215 * the reference count mechanism used in the AcpiEnableGpe and
216 * AcpiDisableGpe interfaces -- and should be used with care.
217 *
218 * Note: Typically used to disable a runtime GPE for short period of time,
219 * then re-enable it, without disturbing the existing reference counts. This
220 * is useful, for example, in the Embedded Controller (EC) driver.
221 *
222 **/

224 ACPI_STATUS
225 AcpiSetGpe (
226 ACPI_HANDLE GpeDevice,
227 UINT32 GpeNumber,
228 UINT8 Action)
229 {
230 ACPI_GPE_EVENT_INFO *GpeEventInfo;
231 ACPI_STATUS Status;
232 ACPI_CPU_FLAGS Flags;

235 ACPI_FUNCTION_TRACE (AcpiSetGpe);

238 Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock);

240 /* Ensure that we have a valid GPE number */

242 GpeEventInfo = AcpiEvGetGpeEventInfo (GpeDevice, GpeNumber);
243 if (!GpeEventInfo)
244 {
245 Status = AE_BAD_PARAMETER;
246 goto UnlockAndExit;
247 }

249 /* Perform the action */

251 switch (Action)
252 {
253 case ACPI_GPE_ENABLE:

255 Status = AcpiEvEnableGpe (GpeEventInfo);
256 break;

258 case ACPI_GPE_DISABLE:

260 Status = AcpiHwLowSetGpe (GpeEventInfo, ACPI_GPE_DISABLE);
261 break;

263 default:

265 Status = AE_BAD_PARAMETER;
266 break;
267 }

269 UnlockAndExit:
270 AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags);
271 return_ACPI_STATUS (Status);
272 }

274 ACPI_EXPORT_SYMBOL (AcpiSetGpe)

277 /***

new/usr/src/common/acpica/components/events/evxfgpe.c 4

278 *
279 * FUNCTION: AcpiSetupGpeForWake
280 *
281 * PARAMETERS: WakeDevice - Device associated with the GPE (via _PRW)
282 * GpeDevice - Parent GPE Device. NULL for GPE0/GPE1
283 * GpeNumber - GPE level within the GPE block
284 *
285 * RETURN: Status
286 *
287 * DESCRIPTION: Mark a GPE as having the ability to wake the system. This
288 * interface is intended to be used as the host executes the
289 * _PRW methods (Power Resources for Wake) in the system tables.
290 * Each _PRW appears under a Device Object (The WakeDevice), and
291 * contains the info for the wake GPE associated with the
292 * WakeDevice.
293 *
294 **/

296 ACPI_STATUS
297 AcpiSetupGpeForWake (
298 ACPI_HANDLE WakeDevice,
299 ACPI_HANDLE GpeDevice,
300 UINT32 GpeNumber)
301 {
302 ACPI_STATUS Status;
297 ACPI_STATUS Status = AE_BAD_PARAMETER;
303 ACPI_GPE_EVENT_INFO *GpeEventInfo;
304 ACPI_NAMESPACE_NODE *DeviceNode;
305 ACPI_GPE_NOTIFY_INFO *Notify;
306 ACPI_GPE_NOTIFY_INFO *NewNotify;
307 ACPI_CPU_FLAGS Flags;

310 ACPI_FUNCTION_TRACE (AcpiSetupGpeForWake);

313 /* Parameter Validation */

315 if (!WakeDevice)
316 {
317 /*
318 * By forcing WakeDevice to be valid, we automatically enable the
319 * implicit notify feature on all hosts.
320 */
321 return_ACPI_STATUS (AE_BAD_PARAMETER);
322 }

324 /* Handle root object case */

326 if (WakeDevice == ACPI_ROOT_OBJECT)
327 {
328 DeviceNode = AcpiGbl_RootNode;
329 }
330 else
331 {
332 DeviceNode = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, WakeDevice);
333 }

335 /* Validate WakeDevice is of type Device */

337 if (DeviceNode->Type != ACPI_TYPE_DEVICE)
338 {
339 return_ACPI_STATUS (AE_BAD_PARAMETER);
340 }

342 /*

new/usr/src/common/acpica/components/events/evxfgpe.c 5

343 * Allocate a new notify object up front, in case it is needed.
344 * Memory allocation while holding a spinlock is a big no-no
345 * on some hosts.
346 */
347 NewNotify = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_GPE_NOTIFY_INFO));
348 if (!NewNotify)
349 {
350 return_ACPI_STATUS (AE_NO_MEMORY);
351 }

353 Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock);

355 /* Ensure that we have a valid GPE number */

357 GpeEventInfo = AcpiEvGetGpeEventInfo (GpeDevice, GpeNumber);
358 if (!GpeEventInfo)
340 if (GpeEventInfo)
359 {
360 Status = AE_BAD_PARAMETER;
361 goto UnlockAndExit;
362 }

364 /*
365 * If there is no method or handler for this GPE, then the
366 * WakeDevice will be notified whenever this GPE fires. This is
367 * known as an "implicit notify". Note: The GPE is assumed to be
344 * WakeDevice will be notified whenever this GPE fires (aka
345 * "implicit notify") Note: The GPE is assumed to be
368 * level-triggered (for windows compatibility).
369 */
370 if ((GpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK) ==
371 ACPI_GPE_DISPATCH_NONE)
372 {
373 /*
374 * This is the first device for implicit notify on this GPE.
375 * Just set the flags here, and enter the NOTIFY block below.
376 */
377 GpeEventInfo->Flags =
378 (ACPI_GPE_DISPATCH_NOTIFY | ACPI_GPE_LEVEL_TRIGGERED);
353 GpeEventInfo->Dispatch.DeviceNode = DeviceNode;
379 }

381 /*
382 * If we already have an implicit notify on this GPE, add
383 * this device to the notify list.
384 */
385 if ((GpeEventInfo->Flags & ACPI_GPE_DISPATCH_MASK) ==
386 ACPI_GPE_DISPATCH_NOTIFY)
387 {
388 /* Ensure that the device is not already in the list */

390 Notify = GpeEventInfo->Dispatch.NotifyList;
391 while (Notify)
392 {
393 if (Notify->DeviceNode == DeviceNode)
394 {
395 Status = AE_ALREADY_EXISTS;
396 goto UnlockAndExit;
397 }
398 Notify = Notify->Next;
399 }

401 /* Add this device to the notify list for this GPE */

403 NewNotify->DeviceNode = DeviceNode;
404 NewNotify->Next = GpeEventInfo->Dispatch.NotifyList;

new/usr/src/common/acpica/components/events/evxfgpe.c 6

405 GpeEventInfo->Dispatch.NotifyList = NewNotify;
406 NewNotify = NULL;
407 }

409 /* Mark the GPE as a possible wake event */

411 GpeEventInfo->Flags |= ACPI_GPE_CAN_WAKE;
412 Status = AE_OK;
358 }

415 UnlockAndExit:
416 AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags);

418 /* Delete the notify object if it was not used above */

420 if (NewNotify)
421 {
422 ACPI_FREE (NewNotify);
423 }
424 return_ACPI_STATUS (Status);
425 }

427 ACPI_EXPORT_SYMBOL (AcpiSetupGpeForWake)

430 /***
431 *
432 * FUNCTION: AcpiSetGpeWakeMask
433 *
434 * PARAMETERS: GpeDevice - Parent GPE Device. NULL for GPE0/GPE1
435 * GpeNumber - GPE level within the GPE block
436 * Action - Enable or Disable
437 *
438 * RETURN: Status
439 *
440 * DESCRIPTION: Set or clear the GPE’s wakeup enable mask bit. The GPE must
441 * already be marked as a WAKE GPE.
442 *
443 **/

445 ACPI_STATUS
446 AcpiSetGpeWakeMask (
447 ACPI_HANDLE GpeDevice,
448 UINT32 GpeNumber,
449 UINT8 Action)
450 {
451 ACPI_STATUS Status = AE_OK;
452 ACPI_GPE_EVENT_INFO *GpeEventInfo;
453 ACPI_GPE_REGISTER_INFO *GpeRegisterInfo;
454 ACPI_CPU_FLAGS Flags;
455 UINT32 RegisterBit;

458 ACPI_FUNCTION_TRACE (AcpiSetGpeWakeMask);

461 Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock);

463 /*
464 * Ensure that we have a valid GPE number and that this GPE is in
465 * fact a wake GPE
466 */
467 GpeEventInfo = AcpiEvGetGpeEventInfo (GpeDevice, GpeNumber);
468 if (!GpeEventInfo)
469 {

new/usr/src/common/acpica/components/events/evxfgpe.c 7

470 Status = AE_BAD_PARAMETER;
471 goto UnlockAndExit;
472 }

474 if (!(GpeEventInfo->Flags & ACPI_GPE_CAN_WAKE))
475 {
476 Status = AE_TYPE;
477 goto UnlockAndExit;
478 }

480 GpeRegisterInfo = GpeEventInfo->RegisterInfo;
481 if (!GpeRegisterInfo)
482 {
483 Status = AE_NOT_EXIST;
484 goto UnlockAndExit;
485 }

487 RegisterBit = AcpiHwGetGpeRegisterBit (GpeEventInfo);
424 RegisterBit = AcpiHwGetGpeRegisterBit (GpeEventInfo, GpeRegisterInfo);

489 /* Perform the action */

491 switch (Action)
492 {
493 case ACPI_GPE_ENABLE:

495 ACPI_SET_BIT (GpeRegisterInfo->EnableForWake, (UINT8) RegisterBit);
496 break;

498 case ACPI_GPE_DISABLE:

500 ACPI_CLEAR_BIT (GpeRegisterInfo->EnableForWake, (UINT8) RegisterBit);
501 break;

503 default:

505 ACPI_ERROR ((AE_INFO, "%u, Invalid action", Action));
506 Status = AE_BAD_PARAMETER;
507 break;
508 }

510 UnlockAndExit:
511 AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags);
512 return_ACPI_STATUS (Status);
513 }

______unchanged_portion_omitted_

739 ACPI_EXPORT_SYMBOL (AcpiEnableAllRuntimeGpes)

742 /***
743 *
744 * FUNCTION: AcpiInstallGpeBlock
745 *
746 * PARAMETERS: GpeDevice - Handle to the parent GPE Block Device
747 * GpeBlockAddress - Address and SpaceID
748 * RegisterCount - Number of GPE register pairs in the block
749 * InterruptNumber - H/W interrupt for the block
750 *
751 * RETURN: Status
752 *
753 * DESCRIPTION: Create and Install a block of GPE registers. The GPEs are not
754 * enabled here.
755 *
756 **/

new/usr/src/common/acpica/components/events/evxfgpe.c 8

758 ACPI_STATUS
759 AcpiInstallGpeBlock (
760 ACPI_HANDLE GpeDevice,
761 ACPI_GENERIC_ADDRESS *GpeBlockAddress,
762 UINT32 RegisterCount,
763 UINT32 InterruptNumber)
764 {
765 ACPI_STATUS Status;
766 ACPI_OPERAND_OBJECT *ObjDesc;
767 ACPI_NAMESPACE_NODE *Node;
768 ACPI_GPE_BLOCK_INFO *GpeBlock;

771 ACPI_FUNCTION_TRACE (AcpiInstallGpeBlock);

774 if ((!GpeDevice) ||
775 (!GpeBlockAddress) ||
776 (!RegisterCount))
777 {
778 return_ACPI_STATUS (AE_BAD_PARAMETER);
779 }

781 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
782 if (ACPI_FAILURE (Status))
783 {
784 return_ACPI_STATUS (Status);
718 return (Status);
785 }

787 Node = AcpiNsValidateHandle (GpeDevice);
788 if (!Node)
789 {
790 Status = AE_BAD_PARAMETER;
791 goto UnlockAndExit;
792 }

794 /*
795 * For user-installed GPE Block Devices, the GpeBlockBaseNumber
796 * is always zero
797 */
798 Status = AcpiEvCreateGpeBlock (Node, GpeBlockAddress, RegisterCount,
799 0, InterruptNumber, &GpeBlock);
800 if (ACPI_FAILURE (Status))
801 {
802 goto UnlockAndExit;
803 }

805 /* Install block in the DeviceObject attached to the node */

807 ObjDesc = AcpiNsGetAttachedObject (Node);
808 if (!ObjDesc)
809 {
810 /*
811 * No object, create a new one (Device nodes do not always have
812 * an attached object)
813 */
814 ObjDesc = AcpiUtCreateInternalObject (ACPI_TYPE_DEVICE);
815 if (!ObjDesc)
816 {
817 Status = AE_NO_MEMORY;
818 goto UnlockAndExit;
819 }

821 Status = AcpiNsAttachObject (Node, ObjDesc, ACPI_TYPE_DEVICE);

new/usr/src/common/acpica/components/events/evxfgpe.c 9

823 /* Remove local reference to the object */

825 AcpiUtRemoveReference (ObjDesc);
826 if (ACPI_FAILURE (Status))
827 {
828 goto UnlockAndExit;
829 }
830 }

832 /* Now install the GPE block in the DeviceObject */

834 ObjDesc->Device.GpeBlock = GpeBlock;

837 UnlockAndExit:
838 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
839 return_ACPI_STATUS (Status);
840 }

842 ACPI_EXPORT_SYMBOL (AcpiInstallGpeBlock)

845 /***
846 *
847 * FUNCTION: AcpiRemoveGpeBlock
848 *
849 * PARAMETERS: GpeDevice - Handle to the parent GPE Block Device
850 *
851 * RETURN: Status
852 *
853 * DESCRIPTION: Remove a previously installed block of GPE registers
854 *
855 **/

857 ACPI_STATUS
858 AcpiRemoveGpeBlock (
859 ACPI_HANDLE GpeDevice)
860 {
861 ACPI_OPERAND_OBJECT *ObjDesc;
862 ACPI_STATUS Status;
863 ACPI_NAMESPACE_NODE *Node;

866 ACPI_FUNCTION_TRACE (AcpiRemoveGpeBlock);

869 if (!GpeDevice)
870 {
871 return_ACPI_STATUS (AE_BAD_PARAMETER);
872 }

874 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
875 if (ACPI_FAILURE (Status))
876 {
877 return_ACPI_STATUS (Status);
811 return (Status);
878 }

880 Node = AcpiNsValidateHandle (GpeDevice);
881 if (!Node)
882 {
883 Status = AE_BAD_PARAMETER;
884 goto UnlockAndExit;
885 }

887 /* Get the DeviceObject attached to the node */

new/usr/src/common/acpica/components/events/evxfgpe.c 10

889 ObjDesc = AcpiNsGetAttachedObject (Node);
890 if (!ObjDesc ||
891 !ObjDesc->Device.GpeBlock)
892 {
893 return_ACPI_STATUS (AE_NULL_OBJECT);
894 }

896 /* Delete the GPE block (but not the DeviceObject) */

898 Status = AcpiEvDeleteGpeBlock (ObjDesc->Device.GpeBlock);
899 if (ACPI_SUCCESS (Status))
900 {
901 ObjDesc->Device.GpeBlock = NULL;
902 }

904 UnlockAndExit:
905 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
906 return_ACPI_STATUS (Status);
907 }

______unchanged_portion_omitted_

966 ACPI_EXPORT_SYMBOL (AcpiGetGpeDevice)

968 #endif /* !ACPI_REDUCED_HARDWARE */

new/usr/src/common/acpica/components/events/evxfregn.c 1

**
 10049 Thu Dec 26 13:49:00 2013
new/usr/src/common/acpica/components/events/evxfregn.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: evxfregn - External Interfaces, ACPI Operation Regions and
4 * Address Spaces.
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #define __EVXFREGN_C__
46 #define EXPORT_ACPI_INTERFACES

48 #include "acpi.h"
49 #include "accommon.h"
50 #include "acnamesp.h"
51 #include "acevents.h"

53 #define _COMPONENT ACPI_EVENTS
54 ACPI_MODULE_NAME ("evxfregn")

57 /***
58 *

new/usr/src/common/acpica/components/events/evxfregn.c 2

59 * FUNCTION: AcpiInstallAddressSpaceHandler
60 *
61 * PARAMETERS: Device - Handle for the device
62 * SpaceId - The address space ID
63 * Handler - Address of the handler
64 * Setup - Address of the setup function
65 * Context - Value passed to the handler on each access
66 *
67 * RETURN: Status
68 *
69 * DESCRIPTION: Install a handler for all OpRegions of a given SpaceId.
70 *
71 * NOTE: This function should only be called after AcpiEnableSubsystem has
72 * been called. This is because any _REG methods associated with the Space ID
73 * are executed here, and these methods can only be safely executed after
74 * the default handlers have been installed and the hardware has been
75 * initialized (via AcpiEnableSubsystem.)
76 *
77 **/

79 ACPI_STATUS
80 AcpiInstallAddressSpaceHandler (
81 ACPI_HANDLE Device,
82 ACPI_ADR_SPACE_TYPE SpaceId,
83 ACPI_ADR_SPACE_HANDLER Handler,
84 ACPI_ADR_SPACE_SETUP Setup,
85 void *Context)
86 {
87 ACPI_NAMESPACE_NODE *Node;
88 ACPI_STATUS Status;

91 ACPI_FUNCTION_TRACE (AcpiInstallAddressSpaceHandler);

94 /* Parameter validation */

96 if (!Device)
97 {
98 return_ACPI_STATUS (AE_BAD_PARAMETER);
99 }

101 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
102 if (ACPI_FAILURE (Status))
103 {
104 return_ACPI_STATUS (Status);
105 }

107 /* Convert and validate the device handle */

109 Node = AcpiNsValidateHandle (Device);
110 if (!Node)
111 {
112 Status = AE_BAD_PARAMETER;
113 goto UnlockAndExit;
114 }

116 /* Install the handler for all Regions for this Space ID */

118 Status = AcpiEvInstallSpaceHandler (Node, SpaceId, Handler, Setup, Context);
119 if (ACPI_FAILURE (Status))
120 {
121 goto UnlockAndExit;
122 }

124 /*

new/usr/src/common/acpica/components/events/evxfregn.c 3

125 * For the default SpaceIDs, (the IDs for which there are default region han
126 * installed) Only execute the _REG methods if the global initialization _RE
127 * methods have already been run (via AcpiInitializeObjects). In other words
128 * we will defer the execution of the _REG methods for these SpaceIDs until
129 * execution of AcpiInitializeObjects. This is done because we need the hand
130 * for the default spaces (mem/io/pci/table) to be installed before we can r
131 * any control methods (or _REG methods). There is known BIOS code that depe
132 * on this.
133 *
134 * For all other SpaceIDs, we can safely execute the _REG methods immediatel
135 * This means that for IDs like EmbeddedController, this function should be
136 * only after AcpiEnableSubsystem has been called.
137 */
138 switch (SpaceId)
139 {
140 case ACPI_ADR_SPACE_SYSTEM_MEMORY:
141 case ACPI_ADR_SPACE_SYSTEM_IO:
142 case ACPI_ADR_SPACE_PCI_CONFIG:
143 case ACPI_ADR_SPACE_DATA_TABLE:

145 if (!AcpiGbl_RegMethodsExecuted)
146 {
147 /* We will defer execution of the _REG methods for this space */
148 goto UnlockAndExit;
149 }
150 break;

152 default:

154 break;
155 }

157 /* Run all _REG methods for this address space */

159 Status = AcpiEvExecuteRegMethods (Node, SpaceId);

162 UnlockAndExit:
163 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
164 return_ACPI_STATUS (Status);
165 }

______unchanged_portion_omitted_

314 ACPI_EXPORT_SYMBOL (AcpiRemoveAddressSpaceHandler)

new/usr/src/common/acpica/components/executer/exconfig.c 1

**
 20453 Thu Dec 26 13:49:01 2013
new/usr/src/common/acpica/components/executer/exconfig.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exconfig - Namespace reconfiguration (Load/Unload opcodes)
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXCONFIG_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acinterp.h"
49 #include "acnamesp.h"
50 #include "actables.h"
51 #include "acdispat.h"
52 #include "acevents.h"
53 #include "amlcode.h"

56 #define _COMPONENT ACPI_EXECUTER
57 ACPI_MODULE_NAME ("exconfig")

59 /* Local prototypes */

new/usr/src/common/acpica/components/executer/exconfig.c 2

61 static ACPI_STATUS
62 AcpiExAddTable (
63 UINT32 TableIndex,
64 ACPI_NAMESPACE_NODE *ParentNode,
65 ACPI_OPERAND_OBJECT **DdbHandle);

67 static ACPI_STATUS
68 AcpiExRegionRead (
69 ACPI_OPERAND_OBJECT *ObjDesc,
70 UINT32 Length,
71 UINT8 *Buffer);

74 /***
75 *
76 * FUNCTION: AcpiExAddTable
77 *
78 * PARAMETERS: Table - Pointer to raw table
79 * ParentNode - Where to load the table (scope)
80 * DdbHandle - Where to return the table handle.
81 *
82 * RETURN: Status
83 *
84 * DESCRIPTION: Common function to Install and Load an ACPI table with a
85 * returned table handle.
86 *
87 **/

89 static ACPI_STATUS
90 AcpiExAddTable (
91 UINT32 TableIndex,
92 ACPI_NAMESPACE_NODE *ParentNode,
93 ACPI_OPERAND_OBJECT **DdbHandle)
94 {
95 ACPI_OPERAND_OBJECT *ObjDesc;
96 ACPI_STATUS Status;
97 ACPI_OWNER_ID OwnerId;

100 ACPI_FUNCTION_TRACE (ExAddTable);

103 /* Create an object to be the table handle */

105 ObjDesc = AcpiUtCreateInternalObject (ACPI_TYPE_LOCAL_REFERENCE);
106 if (!ObjDesc)
107 {
108 return_ACPI_STATUS (AE_NO_MEMORY);
109 }

111 /* Init the table handle */

113 ObjDesc->Common.Flags |= AOPOBJ_DATA_VALID;
114 ObjDesc->Reference.Class = ACPI_REFCLASS_TABLE;
115 *DdbHandle = ObjDesc;

117 /* Install the new table into the local data structures */

119 ObjDesc->Reference.Value = TableIndex;

121 /* Add the table to the namespace */

123 Status = AcpiNsLoadTable (TableIndex, ParentNode);
124 if (ACPI_FAILURE (Status))
125 {

new/usr/src/common/acpica/components/executer/exconfig.c 3

126 AcpiUtRemoveReference (ObjDesc);
127 *DdbHandle = NULL;
128 return_ACPI_STATUS (Status);
129 }

131 /* Execute any module-level code that was found in the table */

133 AcpiExExitInterpreter ();
134 AcpiNsExecModuleCodeList ();
135 AcpiExEnterInterpreter ();

137 /*
138 * Update GPEs for any new _Lxx/_Exx methods. Ignore errors. The host is
139 * responsible for discovering any new wake GPEs by running _PRW methods
140 * that may have been loaded by this table.
141 */
142 Status = AcpiTbGetOwnerId (TableIndex, &OwnerId);
143 if (ACPI_SUCCESS (Status))
144 {
145 AcpiEvUpdateGpes (OwnerId);
146 }

148 return_ACPI_STATUS (AE_OK);
149 }

152 /***
153 *
154 * FUNCTION: AcpiExLoadTableOp
155 *
156 * PARAMETERS: WalkState - Current state with operands
157 * ReturnDesc - Where to store the return object
158 *
159 * RETURN: Status
160 *
161 * DESCRIPTION: Load an ACPI table from the RSDT/XSDT
162 *
163 **/

165 ACPI_STATUS
166 AcpiExLoadTableOp (
167 ACPI_WALK_STATE *WalkState,
168 ACPI_OPERAND_OBJECT **ReturnDesc)
169 {
170 ACPI_STATUS Status;
171 ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0];
172 ACPI_NAMESPACE_NODE *ParentNode;
173 ACPI_NAMESPACE_NODE *StartNode;
174 ACPI_NAMESPACE_NODE *ParameterNode = NULL;
175 ACPI_OPERAND_OBJECT *DdbHandle;
176 ACPI_TABLE_HEADER *Table;
177 UINT32 TableIndex;

180 ACPI_FUNCTION_TRACE (ExLoadTableOp);

183 /* Validate lengths for the Signature, OemId, and OemTableId strings */
182 /* Validate lengths for the SignatureString, OEMIDString, OEMTableID */

185 if ((Operand[0]->String.Length > ACPI_NAME_SIZE) ||
186 (Operand[1]->String.Length > ACPI_OEM_ID_SIZE) ||
187 (Operand[2]->String.Length > ACPI_OEM_TABLE_ID_SIZE))
188 {
189 return_ACPI_STATUS (AE_AML_STRING_LIMIT);
188 return_ACPI_STATUS (AE_BAD_PARAMETER);

new/usr/src/common/acpica/components/executer/exconfig.c 4

190 }

192 /* Find the ACPI table in the RSDT/XSDT */

194 Status = AcpiTbFindTable (
195 Operand[0]->String.Pointer,
193 Status = AcpiTbFindTable (Operand[0]->String.Pointer,
196 Operand[1]->String.Pointer,
197 Operand[2]->String.Pointer, &TableIndex);
198 if (ACPI_FAILURE (Status))
199 {
200 if (Status != AE_NOT_FOUND)
201 {
202 return_ACPI_STATUS (Status);
203 }

205 /* Table not found, return an Integer=0 and AE_OK */

207 DdbHandle = AcpiUtCreateIntegerObject ((UINT64) 0);
208 if (!DdbHandle)
209 {
210 return_ACPI_STATUS (AE_NO_MEMORY);
211 }

213 *ReturnDesc = DdbHandle;
214 return_ACPI_STATUS (AE_OK);
215 }

217 /* Default nodes */

219 StartNode = WalkState->ScopeInfo->Scope.Node;
220 ParentNode = AcpiGbl_RootNode;

222 /* RootPath (optional parameter) */

224 if (Operand[3]->String.Length > 0)
225 {
226 /*
227 * Find the node referenced by the RootPathString. This is the
228 * location within the namespace where the table will be loaded.
229 */
230 Status = AcpiNsGetNode (StartNode, Operand[3]->String.Pointer,
231 ACPI_NS_SEARCH_PARENT, &ParentNode);
232 if (ACPI_FAILURE (Status))
233 {
234 return_ACPI_STATUS (Status);
235 }
236 }

238 /* ParameterPath (optional parameter) */

240 if (Operand[4]->String.Length > 0)
241 {
242 if ((Operand[4]->String.Pointer[0] != AML_ROOT_PREFIX) &&
243 (Operand[4]->String.Pointer[0] != AML_PARENT_PREFIX))
240 if ((Operand[4]->String.Pointer[0] != ’\\’) &&
241 (Operand[4]->String.Pointer[0] != ’^’))
244 {
245 /*
246 * Path is not absolute, so it will be relative to the node
247 * referenced by the RootPathString (or the NS root if omitted)
248 */
249 StartNode = ParentNode;
250 }

252 /* Find the node referenced by the ParameterPathString */

new/usr/src/common/acpica/components/executer/exconfig.c 5

254 Status = AcpiNsGetNode (StartNode, Operand[4]->String.Pointer,
255 ACPI_NS_SEARCH_PARENT, &ParameterNode);
256 if (ACPI_FAILURE (Status))
257 {
258 return_ACPI_STATUS (Status);
259 }
260 }

262 /* Load the table into the namespace */

264 Status = AcpiExAddTable (TableIndex, ParentNode, &DdbHandle);
265 if (ACPI_FAILURE (Status))
266 {
267 return_ACPI_STATUS (Status);
268 }

270 /* Parameter Data (optional) */

272 if (ParameterNode)
273 {
274 /* Store the parameter data into the optional parameter object */

276 Status = AcpiExStore (Operand[5],
277 ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, ParameterNode),
278 WalkState);
279 if (ACPI_FAILURE (Status))
280 {
281 (void) AcpiExUnloadTable (DdbHandle);

283 AcpiUtRemoveReference (DdbHandle);
284 return_ACPI_STATUS (Status);
285 }
286 }

288 Status = AcpiGetTableByIndex (TableIndex, &Table);
289 if (ACPI_SUCCESS (Status))
290 {
291 ACPI_INFO ((AE_INFO, "Dynamic OEM Table Load:"));
292 AcpiTbPrintTableHeader (0, Table);
293 }

295 /* Invoke table handler if present */

297 if (AcpiGbl_TableHandler)
298 {
299 (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_LOAD, Table,
300 AcpiGbl_TableHandlerContext);
301 }

303 *ReturnDesc = DdbHandle;
304 return_ACPI_STATUS (Status);
305 }

308 /***
309 *
310 * FUNCTION: AcpiExRegionRead
311 *
312 * PARAMETERS: ObjDesc - Region descriptor
313 * Length - Number of bytes to read
314 * Buffer - Pointer to where to put the data
315 *
316 * RETURN: Status
317 *
318 * DESCRIPTION: Read data from an operation region. The read starts from the

new/usr/src/common/acpica/components/executer/exconfig.c 6

319 * beginning of the region.
320 *
321 **/

323 static ACPI_STATUS
324 AcpiExRegionRead (
325 ACPI_OPERAND_OBJECT *ObjDesc,
326 UINT32 Length,
327 UINT8 *Buffer)
328 {
329 ACPI_STATUS Status;
330 UINT64 Value;
331 UINT32 RegionOffset = 0;
332 UINT32 i;

335 /* Bytewise reads */

337 for (i = 0; i < Length; i++)
338 {
339 Status = AcpiEvAddressSpaceDispatch (ObjDesc, NULL, ACPI_READ,
337 Status = AcpiEvAddressSpaceDispatch (ObjDesc, ACPI_READ,
340 RegionOffset, 8, &Value);
341 if (ACPI_FAILURE (Status))
342 {
343 return (Status);
344 }

346 *Buffer = (UINT8) Value;
347 Buffer++;
348 RegionOffset++;
349 }

351 return (AE_OK);
352 }

355 /***
356 *
357 * FUNCTION: AcpiExLoadOp
358 *
359 * PARAMETERS: ObjDesc - Region or Buffer/Field where the table will be
360 * obtained
361 * Target - Where a handle to the table will be stored
362 * WalkState - Current state
363 *
364 * RETURN: Status
365 *
366 * DESCRIPTION: Load an ACPI table from a field or operation region
367 *
368 * NOTE: Region Fields (Field, BankField, IndexFields) are resolved to buffer
369 * objects before this code is reached.
370 *
371 * If source is an operation region, it must refer to SystemMemory, as
372 * per the ACPI specification.
373 *
374 **/

376 ACPI_STATUS
377 AcpiExLoadOp (
378 ACPI_OPERAND_OBJECT *ObjDesc,
379 ACPI_OPERAND_OBJECT *Target,
380 ACPI_WALK_STATE *WalkState)
381 {
382 ACPI_OPERAND_OBJECT *DdbHandle;
383 ACPI_TABLE_HEADER *Table;

new/usr/src/common/acpica/components/executer/exconfig.c 7

384 ACPI_TABLE_DESC TableDesc;
385 UINT32 TableIndex;
386 ACPI_STATUS Status;
387 UINT32 Length;

390 ACPI_FUNCTION_TRACE (ExLoadOp);

393 ACPI_MEMSET (&TableDesc, 0, sizeof (ACPI_TABLE_DESC));

395 /* Source Object can be either an OpRegion or a Buffer/Field */

397 switch (ObjDesc->Common.Type)
398 {
399 case ACPI_TYPE_REGION:

401 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
402 "Load table from Region %p\n", ObjDesc));

404 /* Region must be SystemMemory (from ACPI spec) */

406 if (ObjDesc->Region.SpaceId != ACPI_ADR_SPACE_SYSTEM_MEMORY)
407 {
408 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
409 }

411 /*
412 * If the Region Address and Length have not been previously evaluated,
413 * evaluate them now and save the results.
414 */
415 if (!(ObjDesc->Common.Flags & AOPOBJ_DATA_VALID))
416 {
417 Status = AcpiDsGetRegionArguments (ObjDesc);
418 if (ACPI_FAILURE (Status))
419 {
420 return_ACPI_STATUS (Status);
421 }
422 }

424 /* Get the table header first so we can get the table length */

426 Table = ACPI_ALLOCATE (sizeof (ACPI_TABLE_HEADER));
427 if (!Table)
428 {
429 return_ACPI_STATUS (AE_NO_MEMORY);
430 }

432 Status = AcpiExRegionRead (ObjDesc, sizeof (ACPI_TABLE_HEADER),
433 ACPI_CAST_PTR (UINT8, Table));
434 Length = Table->Length;
435 ACPI_FREE (Table);

437 if (ACPI_FAILURE (Status))
438 {
439 return_ACPI_STATUS (Status);
440 }

442 /* Must have at least an ACPI table header */

444 if (Length < sizeof (ACPI_TABLE_HEADER))
445 {
446 return_ACPI_STATUS (AE_INVALID_TABLE_LENGTH);
447 }

449 /*

new/usr/src/common/acpica/components/executer/exconfig.c 8

450 * The original implementation simply mapped the table, with no copy.
451 * However, the memory region is not guaranteed to remain stable and
452 * we must copy the table to a local buffer. For example, the memory
453 * region is corrupted after suspend on some machines. Dynamically
454 * loaded tables are usually small, so this overhead is minimal.
455 *
456 * The latest implementation (5/2009) does not use a mapping at all.
457 * We use the low-level operation region interface to read the table
458 * instead of the obvious optimization of using a direct mapping.
459 * This maintains a consistent use of operation regions across the
460 * entire subsystem. This is important if additional processing must
461 * be performed in the (possibly user-installed) operation region
462 * handler. For example, AcpiExec and ASLTS depend on this.
463 */

465 /* Allocate a buffer for the table */

467 TableDesc.Pointer = ACPI_ALLOCATE (Length);
468 if (!TableDesc.Pointer)
469 {
470 return_ACPI_STATUS (AE_NO_MEMORY);
471 }

473 /* Read the entire table */

475 Status = AcpiExRegionRead (ObjDesc, Length,
476 ACPI_CAST_PTR (UINT8, TableDesc.Pointer));
477 if (ACPI_FAILURE (Status))
478 {
479 ACPI_FREE (TableDesc.Pointer);
480 return_ACPI_STATUS (Status);
481 }

483 TableDesc.Address = ObjDesc->Region.Address;
484 break;

486 case ACPI_TYPE_BUFFER: /* Buffer or resolved RegionField */

488 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
489 "Load table from Buffer or Field %p\n", ObjDesc));

491 /* Must have at least an ACPI table header */

493 if (ObjDesc->Buffer.Length < sizeof (ACPI_TABLE_HEADER))
494 {
495 return_ACPI_STATUS (AE_INVALID_TABLE_LENGTH);
496 }

498 /* Get the actual table length from the table header */

500 Table = ACPI_CAST_PTR (ACPI_TABLE_HEADER, ObjDesc->Buffer.Pointer);
501 Length = Table->Length;

503 /* Table cannot extend beyond the buffer */

505 if (Length > ObjDesc->Buffer.Length)
506 {
507 return_ACPI_STATUS (AE_AML_BUFFER_LIMIT);
508 }
509 if (Length < sizeof (ACPI_TABLE_HEADER))
510 {
511 return_ACPI_STATUS (AE_INVALID_TABLE_LENGTH);
512 }

514 /*

new/usr/src/common/acpica/components/executer/exconfig.c 9

515 * Copy the table from the buffer because the buffer could be modified
516 * or even deleted in the future
517 */
518 TableDesc.Pointer = ACPI_ALLOCATE (Length);
519 if (!TableDesc.Pointer)
520 {
521 return_ACPI_STATUS (AE_NO_MEMORY);
522 }

524 ACPI_MEMCPY (TableDesc.Pointer, Table, Length);
525 TableDesc.Address = ACPI_TO_INTEGER (TableDesc.Pointer);
526 break;

528 default:

528 default:
530 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
531 }

533 /* Validate table checksum (will not get validated in TbAddTable) */

535 Status = AcpiTbVerifyChecksum (TableDesc.Pointer, Length);
536 if (ACPI_FAILURE (Status))
537 {
538 ACPI_FREE (TableDesc.Pointer);
539 return_ACPI_STATUS (Status);
540 }

542 /* Complete the table descriptor */

544 TableDesc.Length = Length;
545 TableDesc.Flags = ACPI_TABLE_ORIGIN_ALLOCATED;

547 /* Install the new table into the local data structures */

549 Status = AcpiTbAddTable (&TableDesc, &TableIndex);
550 if (ACPI_FAILURE (Status))
551 {
552 /* Delete allocated table buffer */

554 AcpiTbDeleteTable (&TableDesc);
555 return_ACPI_STATUS (Status);
556 }

558 /*
559 * Add the table to the namespace.
560 *
561 * Note: Load the table objects relative to the root of the namespace.
562 * This appears to go against the ACPI specification, but we do it for
563 * compatibility with other ACPI implementations.
564 */
565 Status = AcpiExAddTable (TableIndex, AcpiGbl_RootNode, &DdbHandle);
566 if (ACPI_FAILURE (Status))
567 {
568 /* On error, TablePtr was deallocated above */

570 return_ACPI_STATUS (Status);
571 }

573 /* Store the DdbHandle into the Target operand */

575 Status = AcpiExStore (DdbHandle, Target, WalkState);
576 if (ACPI_FAILURE (Status))
577 {
578 (void) AcpiExUnloadTable (DdbHandle);

new/usr/src/common/acpica/components/executer/exconfig.c 10

580 /* TablePtr was deallocated above */

582 AcpiUtRemoveReference (DdbHandle);
583 return_ACPI_STATUS (Status);
584 }

586 ACPI_INFO ((AE_INFO, "Dynamic OEM Table Load:"));
587 AcpiTbPrintTableHeader (0, TableDesc.Pointer);

589 /* Remove the reference by added by AcpiExStore above */

591 AcpiUtRemoveReference (DdbHandle);

593 /* Invoke table handler if present */

595 if (AcpiGbl_TableHandler)
596 {
597 (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_LOAD, TableDesc.Pointer,
598 AcpiGbl_TableHandlerContext);
599 }

601 return_ACPI_STATUS (Status);
602 }

605 /***
606 *
607 * FUNCTION: AcpiExUnloadTable
608 *
609 * PARAMETERS: DdbHandle - Handle to a previously loaded table
610 *
611 * RETURN: Status
612 *
613 * DESCRIPTION: Unload an ACPI table
614 *
615 **/

617 ACPI_STATUS
618 AcpiExUnloadTable (
619 ACPI_OPERAND_OBJECT *DdbHandle)
620 {
621 ACPI_STATUS Status = AE_OK;
622 ACPI_OPERAND_OBJECT *TableDesc = DdbHandle;
623 UINT32 TableIndex;
624 ACPI_TABLE_HEADER *Table;

627 ACPI_FUNCTION_TRACE (ExUnloadTable);

630 /*
631 * Validate the handle
632 * Although the handle is partially validated in AcpiExReconfiguration()
633 * when it calls AcpiExResolveOperands(), the handle is more completely
634 * validated here.
635 *
636 * Handle must be a valid operand object of type reference. Also, the
637 * DdbHandle must still be marked valid (table has not been previously
638 * unloaded)
639 */
640 if ((!DdbHandle) ||
641 (ACPI_GET_DESCRIPTOR_TYPE (DdbHandle) != ACPI_DESC_TYPE_OPERAND) ||
642 (DdbHandle->Common.Type != ACPI_TYPE_LOCAL_REFERENCE) ||
643 (!(DdbHandle->Common.Flags & AOPOBJ_DATA_VALID)))
644 {
645 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);

new/usr/src/common/acpica/components/executer/exconfig.c 11

644 return_ACPI_STATUS (AE_BAD_PARAMETER);
646 }

648 /* Get the table index from the DdbHandle */

650 TableIndex = TableDesc->Reference.Value;

652 /* Ensure the table is still loaded */

654 if (!AcpiTbIsTableLoaded (TableIndex))
655 {
656 return_ACPI_STATUS (AE_NOT_EXIST);
657 }

659 /* Invoke table handler if present */

661 if (AcpiGbl_TableHandler)
662 {
663 Status = AcpiGetTableByIndex (TableIndex, &Table);
664 if (ACPI_SUCCESS (Status))
665 {
666 (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_UNLOAD, Table,
667 AcpiGbl_TableHandlerContext);
668 }
669 }

671 /* Delete the portion of the namespace owned by this table */

673 Status = AcpiTbDeleteNamespaceByOwner (TableIndex);
674 if (ACPI_FAILURE (Status))
675 {
676 return_ACPI_STATUS (Status);
677 }

679 (void) AcpiTbReleaseOwnerId (TableIndex);
680 AcpiTbSetTableLoadedFlag (TableIndex, FALSE);

682 /*
683 * Invalidate the handle. We do this because the handle may be stored
684 * in a named object and may not be actually deleted until much later.
685 */
686 DdbHandle->Common.Flags &= ~AOPOBJ_DATA_VALID;
687 return_ACPI_STATUS (AE_OK);
688 }

new/usr/src/common/acpica/components/executer/exconvrt.c 1

**
 21068 Thu Dec 26 13:49:01 2013
new/usr/src/common/acpica/components/executer/exconvrt.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exconvrt - Object conversion routines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __EXCONVRT_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acinterp.h"
50 #include "amlcode.h"

53 #define _COMPONENT ACPI_EXECUTER
54 ACPI_MODULE_NAME ("exconvrt")

56 /* Local prototypes */

58 static UINT32
59 AcpiExConvertToAscii (

new/usr/src/common/acpica/components/executer/exconvrt.c 2

60 UINT64 Integer,
61 UINT16 Base,
62 UINT8 *String,
63 UINT8 MaxLength);

66 /***
67 *
68 * FUNCTION: AcpiExConvertToInteger
69 *
70 * PARAMETERS: ObjDesc - Object to be converted. Must be an
71 * Integer, Buffer, or String
72 * ResultDesc - Where the new Integer object is returned
73 * Flags - Used for string conversion
74 *
75 * RETURN: Status
76 *
77 * DESCRIPTION: Convert an ACPI Object to an integer.
78 *
79 **/

81 ACPI_STATUS
82 AcpiExConvertToInteger (
83 ACPI_OPERAND_OBJECT *ObjDesc,
84 ACPI_OPERAND_OBJECT **ResultDesc,
85 UINT32 Flags)
86 {
87 ACPI_OPERAND_OBJECT *ReturnDesc;
88 UINT8 *Pointer;
89 UINT64 Result;
90 UINT32 i;
91 UINT32 Count;
92 ACPI_STATUS Status;

95 ACPI_FUNCTION_TRACE_PTR (ExConvertToInteger, ObjDesc);

98 switch (ObjDesc->Common.Type)
99 {
100 case ACPI_TYPE_INTEGER:

102 /* No conversion necessary */

104 *ResultDesc = ObjDesc;
105 return_ACPI_STATUS (AE_OK);

107 case ACPI_TYPE_BUFFER:
108 case ACPI_TYPE_STRING:

110 /* Note: Takes advantage of common buffer/string fields */

112 Pointer = ObjDesc->Buffer.Pointer;
113 Count = ObjDesc->Buffer.Length;
114 break;

116 default:

118 return_ACPI_STATUS (AE_TYPE);
119 }

121 /*
122 * Convert the buffer/string to an integer. Note that both buffers and
123 * strings are treated as raw data - we don’t convert ascii to hex for
124 * strings.
125 *

new/usr/src/common/acpica/components/executer/exconvrt.c 3

126 * There are two terminating conditions for the loop:
127 * 1) The size of an integer has been reached, or
128 * 2) The end of the buffer or string has been reached
129 */
130 Result = 0;

132 /* String conversion is different than Buffer conversion */

134 switch (ObjDesc->Common.Type)
135 {
136 case ACPI_TYPE_STRING:

137 /*
138 * Convert string to an integer - for most cases, the string must be
139 * hexadecimal as per the ACPI specification. The only exception (as
140 * of ACPI 3.0) is that the ToInteger() operator allows both decimal
141 * and hexadecimal strings (hex prefixed with "0x").
142 */
143 Status = AcpiUtStrtoul64 ((char *) Pointer, Flags, &Result);
144 if (ACPI_FAILURE (Status))
145 {
146 return_ACPI_STATUS (Status);
147 }
148 break;

150 case ACPI_TYPE_BUFFER:

152 /* Check for zero-length buffer */

154 if (!Count)
155 {
156 return_ACPI_STATUS (AE_AML_BUFFER_LIMIT);
157 }

159 /* Transfer no more than an integer’s worth of data */

161 if (Count > AcpiGbl_IntegerByteWidth)
162 {
163 Count = AcpiGbl_IntegerByteWidth;
164 }

166 /*
167 * Convert buffer to an integer - we simply grab enough raw data
168 * from the buffer to fill an integer
169 */
170 for (i = 0; i < Count; i++)
171 {
172 /*
173 * Get next byte and shift it into the Result.
174 * Little endian is used, meaning that the first byte of the buffer
175 * is the LSB of the integer
176 */
177 Result |= (((UINT64) Pointer[i]) << (i * 8));
178 }
179 break;

181 default:

183 /* No other types can get here */

185 break;
186 }

188 /* Create a new integer */

new/usr/src/common/acpica/components/executer/exconvrt.c 4

190 ReturnDesc = AcpiUtCreateIntegerObject (Result);
191 if (!ReturnDesc)
192 {
193 return_ACPI_STATUS (AE_NO_MEMORY);
194 }

196 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Converted value: %8.8X%8.8X\n",
197 ACPI_FORMAT_UINT64 (Result)));

199 /* Save the Result */

201 (void) AcpiExTruncateFor32bitTable (ReturnDesc);
202 AcpiExTruncateFor32bitTable (ReturnDesc);
202 *ResultDesc = ReturnDesc;
203 return_ACPI_STATUS (AE_OK);
204 }

207 /***
208 *
209 * FUNCTION: AcpiExConvertToBuffer
210 *
211 * PARAMETERS: ObjDesc - Object to be converted. Must be an
212 * Integer, Buffer, or String
213 * ResultDesc - Where the new buffer object is returned
214 *
215 * RETURN: Status
216 *
217 * DESCRIPTION: Convert an ACPI Object to a Buffer
218 *
219 **/

221 ACPI_STATUS
222 AcpiExConvertToBuffer (
223 ACPI_OPERAND_OBJECT *ObjDesc,
224 ACPI_OPERAND_OBJECT **ResultDesc)
225 {
226 ACPI_OPERAND_OBJECT *ReturnDesc;
227 UINT8 *NewBuf;

230 ACPI_FUNCTION_TRACE_PTR (ExConvertToBuffer, ObjDesc);

233 switch (ObjDesc->Common.Type)
234 {
235 case ACPI_TYPE_BUFFER:

237 /* No conversion necessary */

239 *ResultDesc = ObjDesc;
240 return_ACPI_STATUS (AE_OK);

243 case ACPI_TYPE_INTEGER:

244 /*
245 * Create a new Buffer object.
246 * Need enough space for one integer
247 */
248 ReturnDesc = AcpiUtCreateBufferObject (AcpiGbl_IntegerByteWidth);
249 if (!ReturnDesc)
250 {
251 return_ACPI_STATUS (AE_NO_MEMORY);
252 }

new/usr/src/common/acpica/components/executer/exconvrt.c 5

254 /* Copy the integer to the buffer, LSB first */

256 NewBuf = ReturnDesc->Buffer.Pointer;
257 ACPI_MEMCPY (NewBuf,
258 &ObjDesc->Integer.Value,
259 AcpiGbl_IntegerByteWidth);
260 break;

262 case ACPI_TYPE_STRING:

263 /*
264 * Create a new Buffer object
265 * Size will be the string length
266 *
267 * NOTE: Add one to the string length to include the null terminator.
268 * The ACPI spec is unclear on this subject, but there is existing
269 * ASL/AML code that depends on the null being transferred to the new
270 * buffer.
271 */
272 ReturnDesc = AcpiUtCreateBufferObject (
273 (ACPI_SIZE) ObjDesc->String.Length + 1);
274 if (!ReturnDesc)
275 {
276 return_ACPI_STATUS (AE_NO_MEMORY);
277 }

279 /* Copy the string to the buffer */

281 NewBuf = ReturnDesc->Buffer.Pointer;
282 ACPI_STRNCPY ((char *) NewBuf, (char *) ObjDesc->String.Pointer,
283 ObjDesc->String.Length);
284 break;

286 default:

291 default:
288 return_ACPI_STATUS (AE_TYPE);
289 }

291 /* Mark buffer initialized */

293 ReturnDesc->Common.Flags |= AOPOBJ_DATA_VALID;
294 *ResultDesc = ReturnDesc;
295 return_ACPI_STATUS (AE_OK);
296 }

299 /***
300 *
301 * FUNCTION: AcpiExConvertToAscii
302 *
303 * PARAMETERS: Integer - Value to be converted
304 * Base - ACPI_STRING_DECIMAL or ACPI_STRING_HEX
305 * String - Where the string is returned
306 * DataWidth - Size of data item to be converted, in bytes
307 *
308 * RETURN: Actual string length
309 *
310 * DESCRIPTION: Convert an ACPI Integer to a hex or decimal string
311 *
312 **/

314 static UINT32
315 AcpiExConvertToAscii (

new/usr/src/common/acpica/components/executer/exconvrt.c 6

316 UINT64 Integer,
317 UINT16 Base,
318 UINT8 *String,
319 UINT8 DataWidth)
320 {
321 UINT64 Digit;
322 UINT32 i;
323 UINT32 j;
324 UINT32 k = 0;
325 UINT32 HexLength;
326 UINT32 DecimalLength;
327 UINT32 Remainder;
328 BOOLEAN SupressZeros;

331 ACPI_FUNCTION_ENTRY ();

334 switch (Base)
335 {
336 case 10:

338 /* Setup max length for the decimal number */

340 switch (DataWidth)
341 {
342 case 1:

344 DecimalLength = ACPI_MAX8_DECIMAL_DIGITS;
345 break;

347 case 4:

349 DecimalLength = ACPI_MAX32_DECIMAL_DIGITS;
350 break;

352 case 8:
353 default:

355 DecimalLength = ACPI_MAX64_DECIMAL_DIGITS;
356 break;
357 }

359 SupressZeros = TRUE; /* No leading zeros */
360 Remainder = 0;

362 for (i = DecimalLength; i > 0; i--)
363 {
364 /* Divide by nth factor of 10 */

366 Digit = Integer;
367 for (j = 0; j < i; j++)
368 {
369 (void) AcpiUtShortDivide (Digit, 10, &Digit, &Remainder);
370 }

372 /* Handle leading zeros */

374 if (Remainder != 0)
375 {
376 SupressZeros = FALSE;
377 }

379 if (!SupressZeros)
380 {
381 String[k] = (UINT8) (ACPI_ASCII_ZERO + Remainder);

new/usr/src/common/acpica/components/executer/exconvrt.c 7

382 k++;
383 }
384 }
385 break;

387 case 16:

389 /* HexLength: 2 ascii hex chars per data byte */

391 HexLength = ACPI_MUL_2 (DataWidth);
392 for (i = 0, j = (HexLength-1); i < HexLength; i++, j--)
393 {
394 /* Get one hex digit, most significant digits first */

396 String[k] = (UINT8) AcpiUtHexToAsciiChar (Integer, ACPI_MUL_4 (j));
397 k++;
398 }
399 break;

401 default:
402 return (0);
403 }

405 /*
406 * Since leading zeros are suppressed, we must check for the case where
407 * the integer equals 0
408 *
409 * Finally, null terminate the string and return the length
410 */
411 if (!k)
412 {
413 String [0] = ACPI_ASCII_ZERO;
414 k = 1;
415 }

417 String [k] = 0;
418 return ((UINT32) k);
419 }

422 /***
423 *
424 * FUNCTION: AcpiExConvertToString
425 *
426 * PARAMETERS: ObjDesc - Object to be converted. Must be an
427 * Integer, Buffer, or String
428 * ResultDesc - Where the string object is returned
429 * Type - String flags (base and conversion type)
430 *
431 * RETURN: Status
432 *
433 * DESCRIPTION: Convert an ACPI Object to a string
434 *
435 **/

437 ACPI_STATUS
438 AcpiExConvertToString (
439 ACPI_OPERAND_OBJECT *ObjDesc,
440 ACPI_OPERAND_OBJECT **ResultDesc,
441 UINT32 Type)
442 {
443 ACPI_OPERAND_OBJECT *ReturnDesc;
444 UINT8 *NewBuf;
445 UINT32 i;
446 UINT32 StringLength = 0;
447 UINT16 Base = 16;

new/usr/src/common/acpica/components/executer/exconvrt.c 8

448 UINT8 Separator = ’,’;

451 ACPI_FUNCTION_TRACE_PTR (ExConvertToString, ObjDesc);

454 switch (ObjDesc->Common.Type)
455 {
456 case ACPI_TYPE_STRING:

458 /* No conversion necessary */

460 *ResultDesc = ObjDesc;
461 return_ACPI_STATUS (AE_OK);

463 case ACPI_TYPE_INTEGER:

465 switch (Type)
466 {
467 case ACPI_EXPLICIT_CONVERT_DECIMAL:

469 /* Make room for maximum decimal number */

471 StringLength = ACPI_MAX_DECIMAL_DIGITS;
472 Base = 10;
473 break;

475 default:

477 /* Two hex string characters for each integer byte */

479 StringLength = ACPI_MUL_2 (AcpiGbl_IntegerByteWidth);
480 break;
481 }

483 /*
484 * Create a new String
485 * Need enough space for one ASCII integer (plus null terminator)
486 */
487 ReturnDesc = AcpiUtCreateStringObject ((ACPI_SIZE) StringLength);
488 if (!ReturnDesc)
489 {
490 return_ACPI_STATUS (AE_NO_MEMORY);
491 }

493 NewBuf = ReturnDesc->Buffer.Pointer;

495 /* Convert integer to string */

497 StringLength = AcpiExConvertToAscii (ObjDesc->Integer.Value, Base,
498 NewBuf, AcpiGbl_IntegerByteWidth);

500 /* Null terminate at the correct place */

502 ReturnDesc->String.Length = StringLength;
503 NewBuf [StringLength] = 0;
504 break;

506 case ACPI_TYPE_BUFFER:

508 /* Setup string length, base, and separator */

510 switch (Type)
511 {

new/usr/src/common/acpica/components/executer/exconvrt.c 9

512 case ACPI_EXPLICIT_CONVERT_DECIMAL: /* Used by ToDecimalString */
513 /*
514 * From ACPI: "If Data is a buffer, it is converted to a string of
515 * decimal values separated by commas."
516 */
517 Base = 10;

519 /*
520 * Calculate the final string length. Individual string values
521 * are variable length (include separator for each)
522 */
523 for (i = 0; i < ObjDesc->Buffer.Length; i++)
524 {
525 if (ObjDesc->Buffer.Pointer[i] >= 100)
526 {
527 StringLength += 4;
528 }
529 else if (ObjDesc->Buffer.Pointer[i] >= 10)
530 {
531 StringLength += 3;
532 }
533 else
534 {
535 StringLength += 2;
536 }
537 }
538 break;

540 case ACPI_IMPLICIT_CONVERT_HEX:
541 /*
542 * From the ACPI spec:
543 *"The entire contents of the buffer are converted to a string of
544 * two-character hexadecimal numbers, each separated by a space."
545 */
546 Separator = ’ ’;
547 StringLength = (ObjDesc->Buffer.Length * 3);
548 break;

550 case ACPI_EXPLICIT_CONVERT_HEX: /* Used by ToHexString */
551 /*
552 * From ACPI: "If Data is a buffer, it is converted to a string of
553 * hexadecimal values separated by commas."
554 */
555 StringLength = (ObjDesc->Buffer.Length * 3);
556 break;

558 default:
559 return_ACPI_STATUS (AE_BAD_PARAMETER);
560 }

562 /*
563 * Create a new string object and string buffer
564 * (-1 because of extra separator included in StringLength from above)
565 * Allow creation of zero-length strings from zero-length buffers.
566 */
567 if (StringLength)
568 {
569 StringLength--;
570 }

572 ReturnDesc = AcpiUtCreateStringObject ((ACPI_SIZE) StringLength);
573 if (!ReturnDesc)
574 {
575 return_ACPI_STATUS (AE_NO_MEMORY);
576 }

new/usr/src/common/acpica/components/executer/exconvrt.c 10

578 NewBuf = ReturnDesc->Buffer.Pointer;

580 /*
581 * Convert buffer bytes to hex or decimal values
582 * (separated by commas or spaces)
583 */
584 for (i = 0; i < ObjDesc->Buffer.Length; i++)
585 {
586 NewBuf += AcpiExConvertToAscii (
587 (UINT64) ObjDesc->Buffer.Pointer[i], Base,
588 NewBuf, 1);
589 *NewBuf++ = Separator; /* each separated by a comma or space */
590 }

592 /*
593 * Null terminate the string
594 * (overwrites final comma/space from above)
595 */
596 if (ObjDesc->Buffer.Length)
597 {
598 NewBuf--;
599 }
600 *NewBuf = 0;
601 break;

603 default:

605 return_ACPI_STATUS (AE_TYPE);
606 }

608 *ResultDesc = ReturnDesc;
609 return_ACPI_STATUS (AE_OK);
610 }

613 /***
614 *
615 * FUNCTION: AcpiExConvertToTargetType
616 *
617 * PARAMETERS: DestinationType - Current type of the destination
618 * SourceDesc - Source object to be converted.
619 * ResultDesc - Where the converted object is returned
620 * WalkState - Current method state
621 *
622 * RETURN: Status
623 *
624 * DESCRIPTION: Implements "implicit conversion" rules for storing an object.
625 *
626 **/

628 ACPI_STATUS
629 AcpiExConvertToTargetType (
630 ACPI_OBJECT_TYPE DestinationType,
631 ACPI_OPERAND_OBJECT *SourceDesc,
632 ACPI_OPERAND_OBJECT **ResultDesc,
633 ACPI_WALK_STATE *WalkState)
634 {
635 ACPI_STATUS Status = AE_OK;

638 ACPI_FUNCTION_TRACE (ExConvertToTargetType);

641 /* Default behavior */

643 *ResultDesc = SourceDesc;

new/usr/src/common/acpica/components/executer/exconvrt.c 11

645 /*
646 * If required by the target,
647 * perform implicit conversion on the source before we store it.
648 */
649 switch (GET_CURRENT_ARG_TYPE (WalkState->OpInfo->RuntimeArgs))
650 {
651 case ARGI_SIMPLE_TARGET:
652 case ARGI_FIXED_TARGET:
653 case ARGI_INTEGER_REF: /* Handles Increment, Decrement cases */

655 switch (DestinationType)
656 {
657 case ACPI_TYPE_LOCAL_REGION_FIELD:
658 /*
659 * Named field can always handle conversions
660 */
661 break;

663 default:

665 /* No conversion allowed for these types */

667 if (DestinationType != SourceDesc->Common.Type)
668 {
669 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
670 "Explicit operator, will store (%s) over existing type (%s)\
671 AcpiUtGetObjectTypeName (SourceDesc),
672 AcpiUtGetTypeName (DestinationType)));
673 Status = AE_TYPE;
674 }
675 }
676 break;

678 case ARGI_TARGETREF:

680 switch (DestinationType)
681 {
682 case ACPI_TYPE_INTEGER:
683 case ACPI_TYPE_BUFFER_FIELD:
684 case ACPI_TYPE_LOCAL_BANK_FIELD:
685 case ACPI_TYPE_LOCAL_INDEX_FIELD:
686 /*
687 * These types require an Integer operand. We can convert
688 * a Buffer or a String to an Integer if necessary.
689 */
690 Status = AcpiExConvertToInteger (SourceDesc, ResultDesc,
691 16);
692 break;

694 case ACPI_TYPE_STRING:
695 /*
696 * The operand must be a String. We can convert an
697 * Integer or Buffer if necessary
698 */
699 Status = AcpiExConvertToString (SourceDesc, ResultDesc,
700 ACPI_IMPLICIT_CONVERT_HEX);
701 break;

703 case ACPI_TYPE_BUFFER:
704 /*
705 * The operand must be a Buffer. We can convert an
706 * Integer or String if necessary

new/usr/src/common/acpica/components/executer/exconvrt.c 12

707 */
708 Status = AcpiExConvertToBuffer (SourceDesc, ResultDesc);
709 break;

711 default:

716 default:
713 ACPI_ERROR ((AE_INFO, "Bad destination type during conversion: 0x%X"
714 DestinationType));
715 Status = AE_AML_INTERNAL;
716 break;
717 }
718 break;

720 case ARGI_REFERENCE:
721 /*
722 * CreateXxxxField cases - we are storing the field object into the name
723 */
724 break;

726 default:

732 default:
728 ACPI_ERROR ((AE_INFO,
729 "Unknown Target type ID 0x%X AmlOpcode 0x%X DestType %s",
730 GET_CURRENT_ARG_TYPE (WalkState->OpInfo->RuntimeArgs),
731 WalkState->Opcode, AcpiUtGetTypeName (DestinationType)));
732 Status = AE_AML_INTERNAL;
733 }

735 /*
736 * Source-to-Target conversion semantics:
737 *
738 * If conversion to the target type cannot be performed, then simply
739 * overwrite the target with the new object and type.
740 */
741 if (Status == AE_TYPE)
742 {
743 Status = AE_OK;
744 }

746 return_ACPI_STATUS (Status);
747 }

new/usr/src/common/acpica/components/executer/excreate.c 1

**
 16473 Thu Dec 26 13:49:02 2013
new/usr/src/common/acpica/components/executer/excreate.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: excreate - Named object creation
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXCREATE_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acinterp.h"
49 #include "amlcode.h"
50 #include "acnamesp.h"

53 #define _COMPONENT ACPI_EXECUTER
54 ACPI_MODULE_NAME ("excreate")

57 #ifndef ACPI_NO_METHOD_EXECUTION
58 /***
59 *

new/usr/src/common/acpica/components/executer/excreate.c 2

60 * FUNCTION: AcpiExCreateAlias
61 *
62 * PARAMETERS: WalkState - Current state, contains operands
63 *
64 * RETURN: Status
65 *
66 * DESCRIPTION: Create a new named alias
67 *
68 **/

70 ACPI_STATUS
71 AcpiExCreateAlias (
72 ACPI_WALK_STATE *WalkState)
73 {
74 ACPI_NAMESPACE_NODE *TargetNode;
75 ACPI_NAMESPACE_NODE *AliasNode;
76 ACPI_STATUS Status = AE_OK;

79 ACPI_FUNCTION_TRACE (ExCreateAlias);

82 /* Get the source/alias operands (both namespace nodes) */

84 AliasNode = (ACPI_NAMESPACE_NODE *) WalkState->Operands[0];
85 TargetNode = (ACPI_NAMESPACE_NODE *) WalkState->Operands[1];

87 if ((TargetNode->Type == ACPI_TYPE_LOCAL_ALIAS) ||
88 (TargetNode->Type == ACPI_TYPE_LOCAL_METHOD_ALIAS))
89 {
90 /*
91 * Dereference an existing alias so that we don’t create a chain
92 * of aliases. With this code, we guarantee that an alias is
93 * always exactly one level of indirection away from the
94 * actual aliased name.
95 */
96 TargetNode = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, TargetNode->Object);
97 }

99 /*
100 * For objects that can never change (i.e., the NS node will
101 * permanently point to the same object), we can simply attach
102 * the object to the new NS node. For other objects (such as
103 * Integers, buffers, etc.), we have to point the Alias node
104 * to the original Node.
105 */
106 switch (TargetNode->Type)
107 {

109 /* For these types, the sub-object can change dynamically via a Store */

111 case ACPI_TYPE_INTEGER:
112 case ACPI_TYPE_STRING:
113 case ACPI_TYPE_BUFFER:
114 case ACPI_TYPE_PACKAGE:
115 case ACPI_TYPE_BUFFER_FIELD:

116 /*
117 * These types open a new scope, so we need the NS node in order to access
118 * any children.
119 */
120 case ACPI_TYPE_DEVICE:
121 case ACPI_TYPE_POWER:
122 case ACPI_TYPE_PROCESSOR:
123 case ACPI_TYPE_THERMAL:
124 case ACPI_TYPE_LOCAL_SCOPE:

new/usr/src/common/acpica/components/executer/excreate.c 3

125 /*
126 * The new alias has the type ALIAS and points to the original
127 * NS node, not the object itself.
128 */
129 AliasNode->Type = ACPI_TYPE_LOCAL_ALIAS;
130 AliasNode->Object = ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, TargetNode);
131 break;

133 case ACPI_TYPE_METHOD:

134 /*
135 * Control method aliases need to be differentiated
136 */
137 AliasNode->Type = ACPI_TYPE_LOCAL_METHOD_ALIAS;
138 AliasNode->Object = ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, TargetNode);
139 break;

141 default:

143 /* Attach the original source object to the new Alias Node */

145 /*
146 * The new alias assumes the type of the target, and it points
147 * to the same object. The reference count of the object has an
148 * additional reference to prevent deletion out from under either the
149 * target node or the alias Node
150 */
151 Status = AcpiNsAttachObject (AliasNode,
152 AcpiNsGetAttachedObject (TargetNode), TargetNode->Type);
153 break;
154 }

156 /* Since both operands are Nodes, we don’t need to delete them */

158 return_ACPI_STATUS (Status);
159 }

______unchanged_portion_omitted_

278 /***
279 *
280 * FUNCTION: AcpiExCreateRegion
281 *
282 * PARAMETERS: AmlStart - Pointer to the region declaration AML
283 * AmlLength - Max length of the declaration AML
284 * SpaceId - Address space ID for the region
287 * RegionSpace - SpaceID for the region
285 * WalkState - Current state
286 *
287 * RETURN: Status
288 *
289 * DESCRIPTION: Create a new operation region object
290 *
291 **/

293 ACPI_STATUS
294 AcpiExCreateRegion (
295 UINT8 *AmlStart,
296 UINT32 AmlLength,
297 UINT8 SpaceId,
300 UINT8 RegionSpace,
298 ACPI_WALK_STATE *WalkState)
299 {
300 ACPI_STATUS Status;
301 ACPI_OPERAND_OBJECT *ObjDesc;

new/usr/src/common/acpica/components/executer/excreate.c 4

302 ACPI_NAMESPACE_NODE *Node;
303 ACPI_OPERAND_OBJECT *RegionObj2;

306 ACPI_FUNCTION_TRACE (ExCreateRegion);

309 /* Get the Namespace Node */

311 Node = WalkState->Op->Common.Node;

313 /*
314 * If the region object is already attached to this node,
315 * just return
316 */
317 if (AcpiNsGetAttachedObject (Node))
318 {
319 return_ACPI_STATUS (AE_OK);
320 }

322 /*
323 * Space ID must be one of the predefined IDs, or in the user-defined
324 * range
325 */
326 if (!AcpiIsValidSpaceId (SpaceId))
329 if ((RegionSpace >= ACPI_NUM_PREDEFINED_REGIONS) &&
330 (RegionSpace < ACPI_USER_REGION_BEGIN) &&
331 (RegionSpace != ACPI_ADR_SPACE_DATA_TABLE))
327 {
328 /*
329 * Print an error message, but continue. We don’t want to abort
330 * a table load for this exception. Instead, if the region is
331 * actually used at runtime, abort the executing method.
332 */
333 ACPI_ERROR ((AE_INFO, "Invalid/unknown Address Space ID: 0x%2.2X", Space
333 ACPI_ERROR ((AE_INFO, "Invalid AddressSpace type 0x%X", RegionSpace));
334 return_ACPI_STATUS (AE_AML_INVALID_SPACE_ID);
334 }

336 ACPI_DEBUG_PRINT ((ACPI_DB_LOAD, "Region Type - %s (0x%X)\n",
337 AcpiUtGetRegionName (SpaceId), SpaceId));
338 AcpiUtGetRegionName (RegionSpace), RegionSpace));

339 /* Create the region descriptor */

341 ObjDesc = AcpiUtCreateInternalObject (ACPI_TYPE_REGION);
342 if (!ObjDesc)
343 {
344 Status = AE_NO_MEMORY;
345 goto Cleanup;
346 }

348 /*
349 * Remember location in AML stream of address & length
350 * operands since they need to be evaluated at run time.
351 */
352 RegionObj2 = ObjDesc->Common.NextObject;
353 RegionObj2->Extra.AmlStart = AmlStart;
354 RegionObj2->Extra.AmlLength = AmlLength;
355 if (WalkState->ScopeInfo)
356 {
357 RegionObj2->Extra.ScopeNode = WalkState->ScopeInfo->Scope.Node;
358 }
359 else
360 {
361 RegionObj2->Extra.ScopeNode = Node;

new/usr/src/common/acpica/components/executer/excreate.c 5

362 }

364 /* Init the region from the operands */

366 ObjDesc->Region.SpaceId = SpaceId;
359 ObjDesc->Region.SpaceId = RegionSpace;
367 ObjDesc->Region.Address = 0;
368 ObjDesc->Region.Length = 0;
369 ObjDesc->Region.Node = Node;

371 /* Install the new region object in the parent Node */

373 Status = AcpiNsAttachObject (Node, ObjDesc, ACPI_TYPE_REGION);

376 Cleanup:

378 /* Remove local reference to the object */

380 AcpiUtRemoveReference (ObjDesc);
381 return_ACPI_STATUS (Status);
382 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/executer/exdebug.c 1

**
 8374 Thu Dec 26 13:49:02 2013
new/usr/src/common/acpica/components/executer/exdebug.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exdebug - Support for stores to the AML Debug Object
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXDEBUG_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acinterp.h"

51 #define _COMPONENT ACPI_EXECUTER
52 ACPI_MODULE_NAME ("exdebug")

55 #ifndef ACPI_NO_ERROR_MESSAGES
56 /***
57 *
58 * FUNCTION: AcpiExDoDebugObject
59 *

new/usr/src/common/acpica/components/executer/exdebug.c 2

60 * PARAMETERS: SourceDesc - Object to be output to "Debug Object"
61 * Level - Indentation level (used for packages)
62 * Index - Current package element, zero if not pkg
63 *
64 * RETURN: None
65 *
66 * DESCRIPTION: Handles stores to the AML Debug Object. For example:
67 * Store(INT1, Debug)
68 *
69 * This function is not compiled if ACPI_NO_ERROR_MESSAGES is set.
70 *
71 * This function is only enabled if AcpiGbl_EnableAmlDebugObject is set, or
72 * if ACPI_LV_DEBUG_OBJECT is set in the AcpiDbgLevel. Thus, in the normal
73 * operational case, stores to the debug object are ignored but can be easily
74 * enabled if necessary.
75 *
76 **/

78 void
79 AcpiExDoDebugObject (
80 ACPI_OPERAND_OBJECT *SourceDesc,
81 UINT32 Level,
82 UINT32 Index)
83 {
84 UINT32 i;

87 ACPI_FUNCTION_TRACE_PTR (ExDoDebugObject, SourceDesc);

90 /* Output must be enabled via the DebugObject global or the DbgLevel */

92 if (!AcpiGbl_EnableAmlDebugObject &&
93 !(AcpiDbgLevel & ACPI_LV_DEBUG_OBJECT))
94 {
95 return_VOID;
96 }

98 /*
99 * Print line header as long as we are not in the middle of an
100 * object display
101 */
102 if (!((Level > 0) && Index == 0))
103 {
104 AcpiOsPrintf ("[ACPI Debug] %*s", Level, " ");
105 }

107 /* Display the index for package output only */

109 if (Index > 0)
110 {
111 AcpiOsPrintf ("(%.2u) ", Index-1);
112 }

114 if (!SourceDesc)
115 {
116 AcpiOsPrintf ("[Null Object]\n");
117 return_VOID;
118 }

120 if (ACPI_GET_DESCRIPTOR_TYPE (SourceDesc) == ACPI_DESC_TYPE_OPERAND)
121 {
122 AcpiOsPrintf ("%s ", AcpiUtGetObjectTypeName (SourceDesc));

124 if (!AcpiUtValidInternalObject (SourceDesc))
125 {

new/usr/src/common/acpica/components/executer/exdebug.c 3

126 AcpiOsPrintf ("%p, Invalid Internal Object!\n", SourceDesc);
127 return_VOID;
128 }
129 }
130 else if (ACPI_GET_DESCRIPTOR_TYPE (SourceDesc) == ACPI_DESC_TYPE_NAMED)
131 {
132 AcpiOsPrintf ("%s: %p\n",
133 AcpiUtGetTypeName (((ACPI_NAMESPACE_NODE *) SourceDesc)->Type),
134 SourceDesc);
135 return_VOID;
136 }
137 else
138 {
139 return_VOID;
140 }

142 /* SourceDesc is of type ACPI_DESC_TYPE_OPERAND */

144 switch (SourceDesc->Common.Type)
145 {
146 case ACPI_TYPE_INTEGER:

148 /* Output correct integer width */

150 if (AcpiGbl_IntegerByteWidth == 4)
151 {
152 AcpiOsPrintf ("0x%8.8X\n",
153 (UINT32) SourceDesc->Integer.Value);
154 }
155 else
156 {
157 AcpiOsPrintf ("0x%8.8X%8.8X\n",
158 ACPI_FORMAT_UINT64 (SourceDesc->Integer.Value));
159 }
160 break;

162 case ACPI_TYPE_BUFFER:

164 AcpiOsPrintf ("[0x%.2X]\n", (UINT32) SourceDesc->Buffer.Length);
165 AcpiUtDumpBuffer (SourceDesc->Buffer.Pointer,
165 AcpiUtDumpBuffer2 (SourceDesc->Buffer.Pointer,
166 (SourceDesc->Buffer.Length < 256) ?
167 SourceDesc->Buffer.Length : 256, DB_BYTE_DISPLAY, 0);
167 SourceDesc->Buffer.Length : 256, DB_BYTE_DISPLAY);
168 break;

170 case ACPI_TYPE_STRING:

172 AcpiOsPrintf ("[0x%.2X] \"%s\"\n",
173 SourceDesc->String.Length, SourceDesc->String.Pointer);
174 break;

176 case ACPI_TYPE_PACKAGE:

178 AcpiOsPrintf ("[Contains 0x%.2X Elements]\n",
179 SourceDesc->Package.Count);

181 /* Output the entire contents of the package */

183 for (i = 0; i < SourceDesc->Package.Count; i++)
184 {
185 AcpiExDoDebugObject (SourceDesc->Package.Elements[i],
186 Level+4, i+1);
187 }
188 break;

new/usr/src/common/acpica/components/executer/exdebug.c 4

190 case ACPI_TYPE_LOCAL_REFERENCE:

192 AcpiOsPrintf ("[%s] ", AcpiUtGetReferenceName (SourceDesc));

194 /* Decode the reference */

196 switch (SourceDesc->Reference.Class)
197 {
198 case ACPI_REFCLASS_INDEX:

200 AcpiOsPrintf ("0x%X\n", SourceDesc->Reference.Value);
201 break;

203 case ACPI_REFCLASS_TABLE:

205 /* Case for DdbHandle */

207 AcpiOsPrintf ("Table Index 0x%X\n", SourceDesc->Reference.Value);
208 return_VOID;
208 return;

210 default:

212 break;
213 }

215 AcpiOsPrintf (" ");

217 /* Check for valid node first, then valid object */

219 if (SourceDesc->Reference.Node)
220 {
221 if (ACPI_GET_DESCRIPTOR_TYPE (SourceDesc->Reference.Node) !=
222 ACPI_DESC_TYPE_NAMED)
223 {
224 AcpiOsPrintf (" %p - Not a valid namespace node\n",
225 SourceDesc->Reference.Node);
226 }
227 else
228 {
229 AcpiOsPrintf ("Node %p [%4.4s] ", SourceDesc->Reference.Node,
230 (SourceDesc->Reference.Node)->Name.Ascii);

232 switch ((SourceDesc->Reference.Node)->Type)
233 {
234 /* These types have no attached object */

236 case ACPI_TYPE_DEVICE:
237 AcpiOsPrintf ("Device\n");
238 break;

240 case ACPI_TYPE_THERMAL:
241 AcpiOsPrintf ("Thermal Zone\n");
242 break;

244 default:

246 AcpiExDoDebugObject ((SourceDesc->Reference.Node)->Object,
247 Level+4, 0);
248 break;
249 }
250 }
251 }
252 else if (SourceDesc->Reference.Object)
253 {
254 if (ACPI_GET_DESCRIPTOR_TYPE (SourceDesc->Reference.Object) ==

new/usr/src/common/acpica/components/executer/exdebug.c 5

255 ACPI_DESC_TYPE_NAMED)
256 {
257 AcpiExDoDebugObject (((ACPI_NAMESPACE_NODE *)
258 SourceDesc->Reference.Object)->Object,
259 Level+4, 0);
260 }
261 else
262 {
263 AcpiExDoDebugObject (SourceDesc->Reference.Object,
264 Level+4, 0);
265 }
266 }
267 break;

269 default:

271 AcpiOsPrintf ("%p\n", SourceDesc);
272 break;
273 }

275 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_EXEC, "\n"));
276 return_VOID;
277 }
278 #endif

new/usr/src/common/acpica/components/executer/exdump.c 1

**
 34334 Thu Dec 26 13:49:02 2013
new/usr/src/common/acpica/components/executer/exdump.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exdump - Interpreter debug output routines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXDUMP_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acinterp.h"
49 #include "amlcode.h"
50 #include "acnamesp.h"

53 #define _COMPONENT ACPI_EXECUTER
54 ACPI_MODULE_NAME ("exdump")

56 /*
57 * The following routines are used for debug output only
58 */
59 #if defined(ACPI_DEBUG_OUTPUT) || defined(ACPI_DEBUGGER)

new/usr/src/common/acpica/components/executer/exdump.c 2

61 /* Local prototypes */

63 static void
64 AcpiExOutString (
65 char *Title,
66 char *Value);

68 static void
69 AcpiExOutPointer (
70 char *Title,
71 void *Value);

73 static void
74 AcpiExDumpObject (
75 ACPI_OPERAND_OBJECT *ObjDesc,
76 ACPI_EXDUMP_INFO *Info);

78 static void
79 AcpiExDumpReferenceObj (
80 ACPI_OPERAND_OBJECT *ObjDesc);

82 static void
83 AcpiExDumpPackageObj (
84 ACPI_OPERAND_OBJECT *ObjDesc,
85 UINT32 Level,
86 UINT32 Index);

89 /***
90 *
91 * Object Descriptor info tables
92 *
93 * Note: The first table entry must be an INIT opcode and must contain
94 * the table length (number of table entries)
95 *
96 **/

98 static ACPI_EXDUMP_INFO AcpiExDumpInteger[2] =
99 {
100 {ACPI_EXD_INIT, ACPI_EXD_TABLE_SIZE (AcpiExDumpInteger), NULL},
101 {ACPI_EXD_UINT64, ACPI_EXD_OFFSET (Integer.Value), "Value"}
102 };

______unchanged_portion_omitted_

130 static ACPI_EXDUMP_INFO AcpiExDumpDevice[4] =
131 {
132 {ACPI_EXD_INIT, ACPI_EXD_TABLE_SIZE (AcpiExDumpDevice), NULL},
133 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Device.Handler), "Handler
134 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Device.NotifyList[0]), "System
135 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Device.NotifyList[1]), "Device
134 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Device.SystemNotify), "System
135 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Device.DeviceNotify), "Device
136 };

______unchanged_portion_omitted_

177 static ACPI_EXDUMP_INFO AcpiExDumpPower[5] =
178 {
179 {ACPI_EXD_INIT, ACPI_EXD_TABLE_SIZE (AcpiExDumpPower), NULL},
180 {ACPI_EXD_UINT32, ACPI_EXD_OFFSET (PowerResource.SystemLevel), "System
181 {ACPI_EXD_UINT32, ACPI_EXD_OFFSET (PowerResource.ResourceOrder), "Resourc
182 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (PowerResource.NotifyList[0]), "System
183 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (PowerResource.NotifyList[1]), "Device
182 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (PowerResource.SystemNotify), "System
183 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (PowerResource.DeviceNotify), "Device
184 };

new/usr/src/common/acpica/components/executer/exdump.c 3

186 static ACPI_EXDUMP_INFO AcpiExDumpProcessor[7] =
187 {
188 {ACPI_EXD_INIT, ACPI_EXD_TABLE_SIZE (AcpiExDumpProcessor), NULL},
189 {ACPI_EXD_UINT8, ACPI_EXD_OFFSET (Processor.ProcId), "Process
190 {ACPI_EXD_UINT8 , ACPI_EXD_OFFSET (Processor.Length), "Length"
191 {ACPI_EXD_ADDRESS, ACPI_EXD_OFFSET (Processor.Address), "Address
192 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Processor.NotifyList[0]), "System
193 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Processor.NotifyList[1]), "Device
192 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Processor.SystemNotify), "System
193 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Processor.DeviceNotify), "Device
194 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Processor.Handler), "Handler
195 };

197 static ACPI_EXDUMP_INFO AcpiExDumpThermal[4] =
198 {
199 {ACPI_EXD_INIT, ACPI_EXD_TABLE_SIZE (AcpiExDumpThermal), NULL},
200 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (ThermalZone.NotifyList[0]), "System
201 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (ThermalZone.NotifyList[1]), "Device
200 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (ThermalZone.SystemNotify), "System
201 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (ThermalZone.DeviceNotify), "Device
202 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (ThermalZone.Handler), "Handler
203 };

______unchanged_portion_omitted_

212 static ACPI_EXDUMP_INFO AcpiExDumpRegionField[5] =
212 static ACPI_EXDUMP_INFO AcpiExDumpRegionField[3] =
213 {
214 {ACPI_EXD_INIT, ACPI_EXD_TABLE_SIZE (AcpiExDumpRegionField), NULL},
215 {ACPI_EXD_FIELD, 0, NULL},
216 {ACPI_EXD_UINT8, ACPI_EXD_OFFSET (Field.AccessLength), "AccessL
217 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Field.RegionObj), "Region
218 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Field.ResourceBuffer), "Resourc
216 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Field.RegionObj), "Region
219 };

______unchanged_portion_omitted_

261 static ACPI_EXDUMP_INFO AcpiExDumpNotify[7] =
259 static ACPI_EXDUMP_INFO AcpiExDumpNotify[3] =
262 {
263 {ACPI_EXD_INIT, ACPI_EXD_TABLE_SIZE (AcpiExDumpNotify), NULL},
264 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Notify.Node), "Node"},
265 {ACPI_EXD_UINT32, ACPI_EXD_OFFSET (Notify.HandlerType), "Handler
266 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Notify.Handler), "Handler
267 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Notify.Context), "Context
268 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Notify.Next[0]), "Next Sy
269 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Notify.Next[1]), "Next De
263 {ACPI_EXD_POINTER, ACPI_EXD_OFFSET (Notify.Context), "Context
270 };

______unchanged_portion_omitted_

339 /***
340 *
341 * FUNCTION: AcpiExDumpObject
342 *
343 * PARAMETERS: ObjDesc - Descriptor to dump
344 * Info - Info table corresponding to this object
345 * type
346 *
347 * RETURN: None
348 *
349 * DESCRIPTION: Walk the info table for this object
350 *
351 **/

new/usr/src/common/acpica/components/executer/exdump.c 4

353 static void
354 AcpiExDumpObject (
355 ACPI_OPERAND_OBJECT *ObjDesc,
356 ACPI_EXDUMP_INFO *Info)
357 {
358 UINT8 *Target;
359 char *Name;
360 const char *ReferenceName;
361 UINT8 Count;

364 if (!Info)
365 {
366 AcpiOsPrintf (
367 "ExDumpObject: Display not implemented for object type %s\n",
368 AcpiUtGetObjectTypeName (ObjDesc));
369 return;
370 }

372 /* First table entry must contain the table length (# of table entries) */

374 Count = Info->Offset;

376 while (Count)
377 {
378 Target = ACPI_ADD_PTR (UINT8, ObjDesc, Info->Offset);
379 Name = Info->Name;

381 switch (Info->Opcode)
382 {
383 case ACPI_EXD_INIT:

385 break;

387 case ACPI_EXD_TYPE:

389 AcpiExOutString ("Type", AcpiUtGetObjectTypeName (ObjDesc));
390 break;

392 case ACPI_EXD_UINT8:

394 AcpiOsPrintf ("%20s : %2.2X\n", Name, *Target);
395 break;

397 case ACPI_EXD_UINT16:

399 AcpiOsPrintf ("%20s : %4.4X\n", Name, ACPI_GET16 (Target));
400 break;

402 case ACPI_EXD_UINT32:

404 AcpiOsPrintf ("%20s : %8.8X\n", Name, ACPI_GET32 (Target));
405 break;

407 case ACPI_EXD_UINT64:

409 AcpiOsPrintf ("%20s : %8.8X%8.8X\n", "Value",
410 ACPI_FORMAT_UINT64 (ACPI_GET64 (Target)));
411 break;

413 case ACPI_EXD_POINTER:
414 case ACPI_EXD_ADDRESS:

416 AcpiExOutPointer (Name, *ACPI_CAST_PTR (void *, Target));
417 break;

new/usr/src/common/acpica/components/executer/exdump.c 5

419 case ACPI_EXD_STRING:

421 AcpiUtPrintString (ObjDesc->String.Pointer, ACPI_UINT8_MAX);
422 AcpiOsPrintf ("\n");
423 break;

425 case ACPI_EXD_BUFFER:

427 ACPI_DUMP_BUFFER (ObjDesc->Buffer.Pointer, ObjDesc->Buffer.Length);
428 break;

430 case ACPI_EXD_PACKAGE:

432 /* Dump the package contents */

434 AcpiOsPrintf ("\nPackage Contents:\n");
435 AcpiExDumpPackageObj (ObjDesc, 0, 0);
436 break;

438 case ACPI_EXD_FIELD:

440 AcpiExDumpObject (ObjDesc, AcpiExDumpFieldCommon);
441 break;

443 case ACPI_EXD_REFERENCE:

445 ReferenceName = AcpiUtGetReferenceName (ObjDesc);
446 AcpiExOutString ("Class Name", ACPI_CAST_PTR (char, ReferenceName));
437 AcpiExOutString ("Class Name",
438 ACPI_CAST_PTR (char, AcpiUtGetReferenceName (ObjDesc)));
447 AcpiExDumpReferenceObj (ObjDesc);
448 break;

450 default:

452 AcpiOsPrintf ("**** Invalid table opcode [%X] ****\n",
453 Info->Opcode);
454 return;
455 }

457 Info++;
458 Count--;
459 }
460 }

463 /***
464 *
465 * FUNCTION: AcpiExDumpOperand
466 *
467 * PARAMETERS: *ObjDesc - Pointer to entry to be dumped
468 * Depth - Current nesting depth
469 *
470 * RETURN: None
471 *
472 * DESCRIPTION: Dump an operand object
473 *
474 **/

476 void
477 AcpiExDumpOperand (
478 ACPI_OPERAND_OBJECT *ObjDesc,
479 UINT32 Depth)
480 {
481 UINT32 Length;
482 UINT32 Index;

new/usr/src/common/acpica/components/executer/exdump.c 6

485 ACPI_FUNCTION_NAME (ExDumpOperand)

488 /* Check if debug output enabled */

490 if (!ACPI_IS_DEBUG_ENABLED (ACPI_LV_EXEC, _COMPONENT))
480 if (!((ACPI_LV_EXEC & AcpiDbgLevel) && (_COMPONENT & AcpiDbgLayer)))
491 {
492 return;
493 }

495 if (!ObjDesc)
496 {
497 /* This could be a null element of a package */

499 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Null Object Descriptor\n"));
500 return;
501 }

503 if (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc) == ACPI_DESC_TYPE_NAMED)
504 {
505 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "%p Namespace Node: ", ObjDesc));
506 ACPI_DUMP_ENTRY (ObjDesc, ACPI_LV_EXEC);
507 return;
508 }

510 if (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc) != ACPI_DESC_TYPE_OPERAND)
511 {
512 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
513 "%p is not a node or operand object: [%s]\n",
514 ObjDesc, AcpiUtGetDescriptorName (ObjDesc)));
515 ACPI_DUMP_BUFFER (ObjDesc, sizeof (ACPI_OPERAND_OBJECT));
516 return;
517 }

519 /* ObjDesc is a valid object */

521 if (Depth > 0)
522 {
523 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "%*s[%u] %p ",
524 Depth, " ", Depth, ObjDesc));
525 }
526 else
527 {
528 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "%p ", ObjDesc));
529 }

531 /* Decode object type */

533 switch (ObjDesc->Common.Type)
534 {
535 case ACPI_TYPE_LOCAL_REFERENCE:

537 AcpiOsPrintf ("Reference: [%s] ", AcpiUtGetReferenceName (ObjDesc));

539 switch (ObjDesc->Reference.Class)
540 {
541 case ACPI_REFCLASS_DEBUG:

543 AcpiOsPrintf ("\n");
544 break;

546 case ACPI_REFCLASS_INDEX:

new/usr/src/common/acpica/components/executer/exdump.c 7

548 AcpiOsPrintf ("%p\n", ObjDesc->Reference.Object);
549 break;

551 case ACPI_REFCLASS_TABLE:

553 AcpiOsPrintf ("Table Index %X\n", ObjDesc->Reference.Value);
554 break;

556 case ACPI_REFCLASS_REFOF:

558 AcpiOsPrintf ("%p [%s]\n", ObjDesc->Reference.Object,
559 AcpiUtGetTypeName (((ACPI_OPERAND_OBJECT *)
560 ObjDesc->Reference.Object)->Common.Type));
561 break;

563 case ACPI_REFCLASS_NAME:

565 AcpiOsPrintf ("- [%4.4s]\n", ObjDesc->Reference.Node->Name.Ascii);
566 break;

568 case ACPI_REFCLASS_ARG:
569 case ACPI_REFCLASS_LOCAL:

571 AcpiOsPrintf ("%X\n", ObjDesc->Reference.Value);
572 break;

574 default: /* Unknown reference class */

576 AcpiOsPrintf ("%2.2X\n", ObjDesc->Reference.Class);
577 break;
578 }
579 break;

581 case ACPI_TYPE_BUFFER:

583 AcpiOsPrintf ("Buffer length %.2X @ %p\n",
584 ObjDesc->Buffer.Length, ObjDesc->Buffer.Pointer);

586 /* Debug only -- dump the buffer contents */

588 if (ObjDesc->Buffer.Pointer)
589 {
590 Length = ObjDesc->Buffer.Length;
591 if (Length > 128)
592 {
593 Length = 128;
594 }

596 AcpiOsPrintf ("Buffer Contents: (displaying length 0x%.2X)\n",
597 Length);
598 ACPI_DUMP_BUFFER (ObjDesc->Buffer.Pointer, Length);
599 }
600 break;

602 case ACPI_TYPE_INTEGER:

604 AcpiOsPrintf ("Integer %8.8X%8.8X\n",
605 ACPI_FORMAT_UINT64 (ObjDesc->Integer.Value));

new/usr/src/common/acpica/components/executer/exdump.c 8

606 break;

608 case ACPI_TYPE_PACKAGE:

610 AcpiOsPrintf ("Package [Len %X] ElementArray %p\n",
611 ObjDesc->Package.Count, ObjDesc->Package.Elements);

613 /*
614 * If elements exist, package element pointer is valid,
615 * and debug_level exceeds 1, dump package’s elements.
616 */
617 if (ObjDesc->Package.Count &&
618 ObjDesc->Package.Elements &&
619 AcpiDbgLevel > 1)
620 {
621 for (Index = 0; Index < ObjDesc->Package.Count; Index++)
622 {
623 AcpiExDumpOperand (ObjDesc->Package.Elements[Index], Depth+1);
624 }
625 }
626 break;

628 case ACPI_TYPE_REGION:

630 AcpiOsPrintf ("Region %s (%X)",
631 AcpiUtGetRegionName (ObjDesc->Region.SpaceId),
632 ObjDesc->Region.SpaceId);

634 /*
635 * If the address and length have not been evaluated,
636 * don’t print them.
637 */
638 if (!(ObjDesc->Region.Flags & AOPOBJ_DATA_VALID))
639 {
640 AcpiOsPrintf ("\n");
641 }
642 else
643 {
644 AcpiOsPrintf (" base %8.8X%8.8X Length %X\n",
645 ACPI_FORMAT_NATIVE_UINT (ObjDesc->Region.Address),
646 ObjDesc->Region.Length);
647 }
648 break;

650 case ACPI_TYPE_STRING:

652 AcpiOsPrintf ("String length %X @ %p ",
653 ObjDesc->String.Length,
654 ObjDesc->String.Pointer);

656 AcpiUtPrintString (ObjDesc->String.Pointer, ACPI_UINT8_MAX);
657 AcpiOsPrintf ("\n");
658 break;

660 case ACPI_TYPE_LOCAL_BANK_FIELD:

662 AcpiOsPrintf ("BankField\n");
663 break;

665 case ACPI_TYPE_LOCAL_REGION_FIELD:

new/usr/src/common/acpica/components/executer/exdump.c 9

667 AcpiOsPrintf ("RegionField: Bits=%X AccWidth=%X Lock=%X Update=%X at "
668 "byte=%X bit=%X of below:\n",
669 ObjDesc->Field.BitLength,
670 ObjDesc->Field.AccessByteWidth,
671 ObjDesc->Field.FieldFlags & AML_FIELD_LOCK_RULE_MASK,
672 ObjDesc->Field.FieldFlags & AML_FIELD_UPDATE_RULE_MASK,
673 ObjDesc->Field.BaseByteOffset,
674 ObjDesc->Field.StartFieldBitOffset);

676 AcpiExDumpOperand (ObjDesc->Field.RegionObj, Depth+1);
677 break;

679 case ACPI_TYPE_LOCAL_INDEX_FIELD:

681 AcpiOsPrintf ("IndexField\n");
682 break;

684 case ACPI_TYPE_BUFFER_FIELD:

686 AcpiOsPrintf ("BufferField: %X bits at byte %X bit %X of\n",
687 ObjDesc->BufferField.BitLength,
688 ObjDesc->BufferField.BaseByteOffset,
689 ObjDesc->BufferField.StartFieldBitOffset);

691 if (!ObjDesc->BufferField.BufferObj)
692 {
693 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "*NULL*\n"));
694 }
695 else if ((ObjDesc->BufferField.BufferObj)->Common.Type !=
696 ACPI_TYPE_BUFFER)
697 {
698 AcpiOsPrintf ("*not a Buffer*\n");
699 }
700 else
701 {
702 AcpiExDumpOperand (ObjDesc->BufferField.BufferObj, Depth+1);
703 }
704 break;

706 case ACPI_TYPE_EVENT:

708 AcpiOsPrintf ("Event\n");
709 break;

711 case ACPI_TYPE_METHOD:

713 AcpiOsPrintf ("Method(%X) @ %p:%X\n",
714 ObjDesc->Method.ParamCount,
715 ObjDesc->Method.AmlStart,
716 ObjDesc->Method.AmlLength);
717 break;

719 case ACPI_TYPE_MUTEX:

721 AcpiOsPrintf ("Mutex\n");
722 break;

724 case ACPI_TYPE_DEVICE:

726 AcpiOsPrintf ("Device\n");

new/usr/src/common/acpica/components/executer/exdump.c 10

727 break;

729 case ACPI_TYPE_POWER:

731 AcpiOsPrintf ("Power\n");
732 break;

734 case ACPI_TYPE_PROCESSOR:

736 AcpiOsPrintf ("Processor\n");
737 break;

739 case ACPI_TYPE_THERMAL:

741 AcpiOsPrintf ("Thermal\n");
742 break;

744 default:

757 default:
746 /* Unknown Type */

748 AcpiOsPrintf ("Unknown Type %X\n", ObjDesc->Common.Type);
749 break;
750 }

752 return;
753 }

______unchanged_portion_omitted_

836 /***
837 *
838 * FUNCTION: AcpiExDumpNamespaceNode
839 *
840 * PARAMETERS: Node - Descriptor to dump
841 * Flags - Force display if TRUE
842 *
843 * DESCRIPTION: Dumps the members of the given.Node
844 *
845 **/

847 void
848 AcpiExDumpNamespaceNode (
849 ACPI_NAMESPACE_NODE *Node,
850 UINT32 Flags)
851 {

853 ACPI_FUNCTION_ENTRY ();

856 if (!Flags)
857 {
858 /* Check if debug output enabled */

860 if (!ACPI_IS_DEBUG_ENABLED (ACPI_LV_OBJECTS, _COMPONENT))
870 if (!((ACPI_LV_OBJECTS & AcpiDbgLevel) && (_COMPONENT & AcpiDbgLayer)))
861 {
862 return;
863 }
864 }

866 AcpiOsPrintf ("%20s : %4.4s\n", "Name", AcpiUtGetNodeName (Node));

new/usr/src/common/acpica/components/executer/exdump.c 11

867 AcpiExOutString ("Type", AcpiUtGetTypeName (Node->Type));
868 AcpiExOutPointer ("Attached Object", AcpiNsGetAttachedObject (Node));
869 AcpiExOutPointer ("Parent", Node->Parent);

871 AcpiExDumpObject (ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, Node),
872 AcpiExDumpNode);
873 }

______unchanged_portion_omitted_

935 /***
936 *
937 * FUNCTION: AcpiExDumpPackageObj
938 *
939 * PARAMETERS: ObjDesc - Descriptor to dump
940 * Level - Indentation Level
941 * Index - Package index for this object
942 *
943 * DESCRIPTION: Dumps the elements of the package
944 *
945 **/

947 static void
948 AcpiExDumpPackageObj (
949 ACPI_OPERAND_OBJECT *ObjDesc,
950 UINT32 Level,
951 UINT32 Index)
952 {
953 UINT32 i;

956 /* Indentation and index output */

958 if (Level > 0)
959 {
960 for (i = 0; i < Level; i++)
961 {
962 AcpiOsPrintf (" ");
963 }

965 AcpiOsPrintf ("[%.2d] ", Index);
966 }

968 AcpiOsPrintf ("%p ", ObjDesc);

970 /* Null package elements are allowed */

972 if (!ObjDesc)
973 {
974 AcpiOsPrintf ("[Null Object]\n");
975 return;
976 }

978 /* Packages may only contain a few object types */

980 switch (ObjDesc->Common.Type)
981 {
982 case ACPI_TYPE_INTEGER:

984 AcpiOsPrintf ("[Integer] = %8.8X%8.8X\n",
985 ACPI_FORMAT_UINT64 (ObjDesc->Integer.Value));
986 break;

988 case ACPI_TYPE_STRING:

new/usr/src/common/acpica/components/executer/exdump.c 12

990 AcpiOsPrintf ("[String] Value: ");
991 AcpiUtPrintString (ObjDesc->String.Pointer, ACPI_UINT8_MAX);

1002 for (i = 0; i < ObjDesc->String.Length; i++)
1003 {
1004 AcpiOsPrintf ("%c", ObjDesc->String.Pointer[i]);
1005 }
992 AcpiOsPrintf ("\n");
993 break;

995 case ACPI_TYPE_BUFFER:

997 AcpiOsPrintf ("[Buffer] Length %.2X = ", ObjDesc->Buffer.Length);
998 if (ObjDesc->Buffer.Length)
999 {

1000 AcpiUtDebugDumpBuffer (ACPI_CAST_PTR (UINT8, ObjDesc->Buffer.Pointer
1015 AcpiUtDumpBuffer (ACPI_CAST_PTR (UINT8, ObjDesc->Buffer.Pointer),
1001 ObjDesc->Buffer.Length, DB_DWORD_DISPLAY, _COMPONENT);
1002 }
1003 else
1004 {
1005 AcpiOsPrintf ("\n");
1006 }
1007 break;

1009 case ACPI_TYPE_PACKAGE:

1011 AcpiOsPrintf ("[Package] Contains %u Elements:\n",
1012 ObjDesc->Package.Count);

1014 for (i = 0; i < ObjDesc->Package.Count; i++)
1015 {
1016 AcpiExDumpPackageObj (ObjDesc->Package.Elements[i], Level+1, i);
1017 }
1018 break;

1020 case ACPI_TYPE_LOCAL_REFERENCE:

1022 AcpiOsPrintf ("[Object Reference] Type [%s] %2.2X",
1023 AcpiUtGetReferenceName (ObjDesc),
1024 ObjDesc->Reference.Class);
1025 AcpiExDumpReferenceObj (ObjDesc);
1026 break;

1028 default:

1030 AcpiOsPrintf ("[Unknown Type] %X\n", ObjDesc->Common.Type);
1031 break;
1032 }
1033 }

1036 /***
1037 *
1038 * FUNCTION: AcpiExDumpObjectDescriptor
1039 *
1040 * PARAMETERS: ObjDesc - Descriptor to dump
1041 * Flags - Force display if TRUE
1042 *
1043 * DESCRIPTION: Dumps the members of the object descriptor given.
1044 *
1045 **/

new/usr/src/common/acpica/components/executer/exdump.c 13

1047 void
1048 AcpiExDumpObjectDescriptor (
1049 ACPI_OPERAND_OBJECT *ObjDesc,
1050 UINT32 Flags)
1051 {
1052 ACPI_FUNCTION_TRACE (ExDumpObjectDescriptor);

1055 if (!ObjDesc)
1056 {
1057 return_VOID;
1058 }

1060 if (!Flags)
1061 {
1062 /* Check if debug output enabled */

1064 if (!ACPI_IS_DEBUG_ENABLED (ACPI_LV_OBJECTS, _COMPONENT))
1080 if (!((ACPI_LV_OBJECTS & AcpiDbgLevel) && (_COMPONENT & AcpiDbgLayer)))
1065 {
1066 return_VOID;
1067 }
1068 }

1070 if (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc) == ACPI_DESC_TYPE_NAMED)
1071 {
1072 AcpiExDumpNamespaceNode ((ACPI_NAMESPACE_NODE *) ObjDesc, Flags);

1074 AcpiOsPrintf ("\nAttached Object (%p):\n",
1075 ((ACPI_NAMESPACE_NODE *) ObjDesc)->Object);

1077 AcpiExDumpObjectDescriptor (
1078 ((ACPI_NAMESPACE_NODE *) ObjDesc)->Object, Flags);
1079 return_VOID;
1080 }

1082 if (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc) != ACPI_DESC_TYPE_OPERAND)
1083 {
1084 AcpiOsPrintf (
1085 "ExDumpObjectDescriptor: %p is not an ACPI operand object: [%s]\n",
1086 ObjDesc, AcpiUtGetDescriptorName (ObjDesc));
1087 return_VOID;
1088 }

1090 if (ObjDesc->Common.Type > ACPI_TYPE_NS_NODE_MAX)
1091 {
1092 return_VOID;
1093 }

1095 /* Common Fields */

1097 AcpiExDumpObject (ObjDesc, AcpiExDumpCommon);

1099 /* Object-specific fields */

1101 AcpiExDumpObject (ObjDesc, AcpiExDumpInfo[ObjDesc->Common.Type]);
1102 return_VOID;
1103 }

1105 #endif

new/usr/src/common/acpica/components/executer/exfield.c 1

**
 13428 Thu Dec 26 13:49:03 2013
new/usr/src/common/acpica/components/executer/exfield.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exfield - ACPI AML (p-code) execution - field manipulation
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __EXFIELD_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acdispat.h"
50 #include "acinterp.h"

53 #define _COMPONENT ACPI_EXECUTER
54 ACPI_MODULE_NAME ("exfield")

57 /***
58 *
59 * FUNCTION: AcpiExReadDataFromField

new/usr/src/common/acpica/components/executer/exfield.c 2

60 *
61 * PARAMETERS: WalkState - Current execution state
62 * ObjDesc - The named field
63 * RetBufferDesc - Where the return data object is stored
64 *
65 * RETURN: Status
66 *
67 * DESCRIPTION: Read from a named field. Returns either an Integer or a
68 * Buffer, depending on the size of the field.
69 *
70 **/

72 ACPI_STATUS
73 AcpiExReadDataFromField (
74 ACPI_WALK_STATE *WalkState,
75 ACPI_OPERAND_OBJECT *ObjDesc,
76 ACPI_OPERAND_OBJECT **RetBufferDesc)
77 {
78 ACPI_STATUS Status;
79 ACPI_OPERAND_OBJECT *BufferDesc;
80 ACPI_SIZE Length;
81 void *Buffer;
82 UINT32 Function;

85 ACPI_FUNCTION_TRACE_PTR (ExReadDataFromField, ObjDesc);

88 /* Parameter validation */

90 if (!ObjDesc)
91 {
92 return_ACPI_STATUS (AE_AML_NO_OPERAND);
93 }
94 if (!RetBufferDesc)
95 {
96 return_ACPI_STATUS (AE_BAD_PARAMETER);
97 }

99 if (ObjDesc->Common.Type == ACPI_TYPE_BUFFER_FIELD)
100 {
101 /*
102 * If the BufferField arguments have not been previously evaluated,
103 * evaluate them now and save the results.
104 */
105 if (!(ObjDesc->Common.Flags & AOPOBJ_DATA_VALID))
106 {
107 Status = AcpiDsGetBufferFieldArguments (ObjDesc);
108 if (ACPI_FAILURE (Status))
109 {
110 return_ACPI_STATUS (Status);
111 }
112 }
113 }
114 else if ((ObjDesc->Common.Type == ACPI_TYPE_LOCAL_REGION_FIELD) &&
115 (ObjDesc->Field.RegionObj->Region.SpaceId == ACPI_ADR_SPACE_SMBUS |
116 ObjDesc->Field.RegionObj->Region.SpaceId == ACPI_ADR_SPACE_GSBUS |
117 ObjDesc->Field.RegionObj->Region.SpaceId == ACPI_ADR_SPACE_IPMI))
118 {
119 /*
120 * This is an SMBus, GSBus or IPMI read. We must create a buffer to hold
119 * This is an SMBus or IPMI read. We must create a buffer to hold
121 * the data and then directly access the region handler.
122 *
123 * Note: SMBus and GSBus protocol value is passed in upper 16-bits of Fu
122 * Note: Smbus protocol value is passed in upper 16-bits of Function

new/usr/src/common/acpica/components/executer/exfield.c 3

124 */
125 if (ObjDesc->Field.RegionObj->Region.SpaceId == ACPI_ADR_SPACE_SMBUS)
126 {
127 Length = ACPI_SMBUS_BUFFER_SIZE;
128 Function = ACPI_READ | (ObjDesc->Field.Attribute << 16);
129 }
130 else if (ObjDesc->Field.RegionObj->Region.SpaceId == ACPI_ADR_SPACE_GSBU
131 {
132 Length = ACPI_GSBUS_BUFFER_SIZE;
133 Function = ACPI_READ | (ObjDesc->Field.Attribute << 16);
134 }
135 else /* IPMI */
136 {
137 Length = ACPI_IPMI_BUFFER_SIZE;
138 Function = ACPI_READ;
139 }

141 BufferDesc = AcpiUtCreateBufferObject (Length);
142 if (!BufferDesc)
143 {
144 return_ACPI_STATUS (AE_NO_MEMORY);
145 }

147 /* Lock entire transaction if requested */

149 AcpiExAcquireGlobalLock (ObjDesc->CommonField.FieldFlags);

151 /* Call the region handler for the read */

153 Status = AcpiExAccessRegion (ObjDesc, 0,
154 ACPI_CAST_PTR (UINT64, BufferDesc->Buffer.Pointer),
155 Function);
156 AcpiExReleaseGlobalLock (ObjDesc->CommonField.FieldFlags);
157 goto Exit;
158 }

160 /*
161 * Allocate a buffer for the contents of the field.
162 *
163 * If the field is larger than the current integer width, create
164 * a BUFFER to hold it. Otherwise, use an INTEGER. This allows
165 * the use of arithmetic operators on the returned value if the
166 * field size is equal or smaller than an Integer.
167 *
168 * Note: Field.length is in bits.
169 */
170 Length = (ACPI_SIZE) ACPI_ROUND_BITS_UP_TO_BYTES (ObjDesc->Field.BitLength);
171 if (Length > AcpiGbl_IntegerByteWidth)
172 {
173 /* Field is too large for an Integer, create a Buffer instead */

175 BufferDesc = AcpiUtCreateBufferObject (Length);
176 if (!BufferDesc)
177 {
178 return_ACPI_STATUS (AE_NO_MEMORY);
179 }
180 Buffer = BufferDesc->Buffer.Pointer;
181 }
182 else
183 {
184 /* Field will fit within an Integer (normal case) */

186 BufferDesc = AcpiUtCreateIntegerObject ((UINT64) 0);
187 if (!BufferDesc)
188 {
189 return_ACPI_STATUS (AE_NO_MEMORY);

new/usr/src/common/acpica/components/executer/exfield.c 4

190 }

192 Length = AcpiGbl_IntegerByteWidth;
193 Buffer = &BufferDesc->Integer.Value;
194 }

196 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
197 "FieldRead [TO]: Obj %p, Type %X, Buf %p, ByteLen %X\n",
198 ObjDesc, ObjDesc->Common.Type, Buffer, (UINT32) Length));
199 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
200 "FieldRead [FROM]: BitLen %X, BitOff %X, ByteOff %X\n",
201 ObjDesc->CommonField.BitLength,
202 ObjDesc->CommonField.StartFieldBitOffset,
203 ObjDesc->CommonField.BaseByteOffset));

205 /* Lock entire transaction if requested */

207 AcpiExAcquireGlobalLock (ObjDesc->CommonField.FieldFlags);

209 /* Read from the field */

211 Status = AcpiExExtractFromField (ObjDesc, Buffer, (UINT32) Length);
212 AcpiExReleaseGlobalLock (ObjDesc->CommonField.FieldFlags);

215 Exit:
216 if (ACPI_FAILURE (Status))
217 {
218 AcpiUtRemoveReference (BufferDesc);
219 }
220 else
221 {
222 *RetBufferDesc = BufferDesc;
223 }

225 return_ACPI_STATUS (Status);
226 }

229 /***
230 *
231 * FUNCTION: AcpiExWriteDataToField
232 *
233 * PARAMETERS: SourceDesc - Contains data to write
234 * ObjDesc - The named field
235 * ResultDesc - Where the return value is returned, if any
236 *
237 * RETURN: Status
238 *
239 * DESCRIPTION: Write to a named field
240 *
241 **/

243 ACPI_STATUS
244 AcpiExWriteDataToField (
245 ACPI_OPERAND_OBJECT *SourceDesc,
246 ACPI_OPERAND_OBJECT *ObjDesc,
247 ACPI_OPERAND_OBJECT **ResultDesc)
248 {
249 ACPI_STATUS Status;
250 UINT32 Length;
251 void *Buffer;
252 ACPI_OPERAND_OBJECT *BufferDesc;
253 UINT32 Function;

new/usr/src/common/acpica/components/executer/exfield.c 5

256 ACPI_FUNCTION_TRACE_PTR (ExWriteDataToField, ObjDesc);

259 /* Parameter validation */

261 if (!SourceDesc || !ObjDesc)
262 {
263 return_ACPI_STATUS (AE_AML_NO_OPERAND);
264 }

266 if (ObjDesc->Common.Type == ACPI_TYPE_BUFFER_FIELD)
267 {
268 /*
269 * If the BufferField arguments have not been previously evaluated,
270 * evaluate them now and save the results.
271 */
272 if (!(ObjDesc->Common.Flags & AOPOBJ_DATA_VALID))
273 {
274 Status = AcpiDsGetBufferFieldArguments (ObjDesc);
275 if (ACPI_FAILURE (Status))
276 {
277 return_ACPI_STATUS (Status);
278 }
279 }
280 }
281 else if ((ObjDesc->Common.Type == ACPI_TYPE_LOCAL_REGION_FIELD) &&
282 (ObjDesc->Field.RegionObj->Region.SpaceId == ACPI_ADR_SPACE_SMBUS |
283 ObjDesc->Field.RegionObj->Region.SpaceId == ACPI_ADR_SPACE_GSBUS |
284 ObjDesc->Field.RegionObj->Region.SpaceId == ACPI_ADR_SPACE_IPMI))
285 {
286 /*
287 * This is an SMBus, GSBus or IPMI write. We will bypass the entire fiel
280 * This is an SMBus or IPMI write. We will bypass the entire field
288 * mechanism and handoff the buffer directly to the handler. For
289 * these address spaces, the buffer is bi-directional; on a write,
290 * return data is returned in the same buffer.
291 *
292 * Source must be a buffer of sufficient size:
293 * ACPI_SMBUS_BUFFER_SIZE, ACPI_GSBUS_BUFFER_SIZE, or ACPI_IPMI_BUFFER_S
286 * ACPI_SMBUS_BUFFER_SIZE or ACPI_IPMI_BUFFER_SIZE.
294 *
295 * Note: SMBus and GSBus protocol type is passed in upper 16-bits of Fun
288 * Note: SMBus protocol type is passed in upper 16-bits of Function
296 */
297 if (SourceDesc->Common.Type != ACPI_TYPE_BUFFER)
298 {
299 ACPI_ERROR ((AE_INFO,
300 "SMBus/IPMI/GenericSerialBus write requires Buffer, found type %
293 "SMBus or IPMI write requires Buffer, found type %s",
301 AcpiUtGetObjectTypeName (SourceDesc)));

303 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
304 }

306 if (ObjDesc->Field.RegionObj->Region.SpaceId == ACPI_ADR_SPACE_SMBUS)
307 {
308 Length = ACPI_SMBUS_BUFFER_SIZE;
309 Function = ACPI_WRITE | (ObjDesc->Field.Attribute << 16);
310 }
311 else if (ObjDesc->Field.RegionObj->Region.SpaceId == ACPI_ADR_SPACE_GSBU
312 {
313 Length = ACPI_GSBUS_BUFFER_SIZE;
314 Function = ACPI_WRITE | (ObjDesc->Field.Attribute << 16);
315 }
316 else /* IPMI */
317 {

new/usr/src/common/acpica/components/executer/exfield.c 6

318 Length = ACPI_IPMI_BUFFER_SIZE;
319 Function = ACPI_WRITE;
320 }

322 if (SourceDesc->Buffer.Length < Length)
323 {
324 ACPI_ERROR ((AE_INFO,
325 "SMBus/IPMI/GenericSerialBus write requires Buffer of length %u,
313 "SMBus or IPMI write requires Buffer of length %u, found length
326 Length, SourceDesc->Buffer.Length));

328 return_ACPI_STATUS (AE_AML_BUFFER_LIMIT);
329 }

331 /* Create the bi-directional buffer */

333 BufferDesc = AcpiUtCreateBufferObject (Length);
334 if (!BufferDesc)
335 {
336 return_ACPI_STATUS (AE_NO_MEMORY);
337 }

339 Buffer = BufferDesc->Buffer.Pointer;
340 ACPI_MEMCPY (Buffer, SourceDesc->Buffer.Pointer, Length);

342 /* Lock entire transaction if requested */

344 AcpiExAcquireGlobalLock (ObjDesc->CommonField.FieldFlags);

346 /*
347 * Perform the write (returns status and perhaps data in the
348 * same buffer)
349 */
350 Status = AcpiExAccessRegion (ObjDesc, 0,
351 (UINT64 *) Buffer, Function);
352 AcpiExReleaseGlobalLock (ObjDesc->CommonField.FieldFlags);

354 *ResultDesc = BufferDesc;
355 return_ACPI_STATUS (Status);
356 }

358 /* Get a pointer to the data to be written */

360 switch (SourceDesc->Common.Type)
361 {
362 case ACPI_TYPE_INTEGER:

364 Buffer = &SourceDesc->Integer.Value;
365 Length = sizeof (SourceDesc->Integer.Value);
366 break;

368 case ACPI_TYPE_BUFFER:

370 Buffer = SourceDesc->Buffer.Pointer;
371 Length = SourceDesc->Buffer.Length;
372 break;

374 case ACPI_TYPE_STRING:

376 Buffer = SourceDesc->String.Pointer;
377 Length = SourceDesc->String.Length;
378 break;

380 default:

382 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);

new/usr/src/common/acpica/components/executer/exfield.c 7

383 }

385 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
386 "FieldWrite [FROM]: Obj %p (%s:%X), Buf %p, ByteLen %X\n",
387 SourceDesc, AcpiUtGetTypeName (SourceDesc->Common.Type),
388 SourceDesc->Common.Type, Buffer, Length));

390 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
391 "FieldWrite [TO]: Obj %p (%s:%X), BitLen %X, BitOff %X, ByteOff %X\n",
392 ObjDesc, AcpiUtGetTypeName (ObjDesc->Common.Type),
393 ObjDesc->Common.Type,
394 ObjDesc->CommonField.BitLength,
395 ObjDesc->CommonField.StartFieldBitOffset,
396 ObjDesc->CommonField.BaseByteOffset));

398 /* Lock entire transaction if requested */

400 AcpiExAcquireGlobalLock (ObjDesc->CommonField.FieldFlags);

402 /* Write to the field */

404 Status = AcpiExInsertIntoField (ObjDesc, Buffer, Length);
405 AcpiExReleaseGlobalLock (ObjDesc->CommonField.FieldFlags);

407 return_ACPI_STATUS (Status);
408 }

new/usr/src/common/acpica/components/executer/exfldio.c 1

**
 33386 Thu Dec 26 13:49:03 2013
new/usr/src/common/acpica/components/executer/exfldio.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exfldio - Aml Field I/O
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __EXFLDIO_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acinterp.h"
50 #include "amlcode.h"
51 #include "acevents.h"
52 #include "acdispat.h"

55 #define _COMPONENT ACPI_EXECUTER
56 ACPI_MODULE_NAME ("exfldio")

58 /* Local prototypes */

new/usr/src/common/acpica/components/executer/exfldio.c 2

60 static ACPI_STATUS
61 AcpiExFieldDatumIo (
62 ACPI_OPERAND_OBJECT *ObjDesc,
63 UINT32 FieldDatumByteOffset,
64 UINT64 *Value,
65 UINT32 ReadWrite);

67 static BOOLEAN
68 AcpiExRegisterOverflow (
69 ACPI_OPERAND_OBJECT *ObjDesc,
70 UINT64 Value);

72 static ACPI_STATUS
73 AcpiExSetupRegion (
74 ACPI_OPERAND_OBJECT *ObjDesc,
75 UINT32 FieldDatumByteOffset);

78 /***
79 *
80 * FUNCTION: AcpiExSetupRegion
81 *
82 * PARAMETERS: ObjDesc - Field to be read or written
83 * FieldDatumByteOffset - Byte offset of this datum within the
84 * parent field
85 *
86 * RETURN: Status
87 *
88 * DESCRIPTION: Common processing for AcpiExExtractFromField and
89 * AcpiExInsertIntoField. Initialize the Region if necessary and
90 * validate the request.
91 *
92 **/

94 static ACPI_STATUS
95 AcpiExSetupRegion (
96 ACPI_OPERAND_OBJECT *ObjDesc,
97 UINT32 FieldDatumByteOffset)
98 {
99 ACPI_STATUS Status = AE_OK;
100 ACPI_OPERAND_OBJECT *RgnDesc;
101 UINT8 SpaceId;

104 ACPI_FUNCTION_TRACE_U32 (ExSetupRegion, FieldDatumByteOffset);

107 RgnDesc = ObjDesc->CommonField.RegionObj;

109 /* We must have a valid region */

111 if (RgnDesc->Common.Type != ACPI_TYPE_REGION)
112 {
113 ACPI_ERROR ((AE_INFO, "Needed Region, found type 0x%X (%s)",
114 RgnDesc->Common.Type,
115 AcpiUtGetObjectTypeName (RgnDesc)));

117 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
118 }

120 SpaceId = RgnDesc->Region.SpaceId;

122 /* Validate the Space ID */

124 if (!AcpiIsValidSpaceId (SpaceId))
125 {

new/usr/src/common/acpica/components/executer/exfldio.c 3

126 ACPI_ERROR ((AE_INFO, "Invalid/unknown Address Space ID: 0x%2.2X", Space
127 return_ACPI_STATUS (AE_AML_INVALID_SPACE_ID);
128 }

130 /*
131 * If the Region Address and Length have not been previously evaluated,
132 * evaluate them now and save the results.
133 */
134 if (!(RgnDesc->Common.Flags & AOPOBJ_DATA_VALID))
135 {
136 Status = AcpiDsGetRegionArguments (RgnDesc);
137 if (ACPI_FAILURE (Status))
138 {
139 return_ACPI_STATUS (Status);
140 }
141 }

143 /*
144 * Exit now for SMBus, GSBus or IPMI address space, it has a non-linear
133 * Exit now for SMBus or IPMI address space, it has a non-linear
145 * address space and the request cannot be directly validated
146 */
147 if (SpaceId == ACPI_ADR_SPACE_SMBUS ||
148 SpaceId == ACPI_ADR_SPACE_GSBUS ||
149 SpaceId == ACPI_ADR_SPACE_IPMI)
136 if (RgnDesc->Region.SpaceId == ACPI_ADR_SPACE_SMBUS ||
137 RgnDesc->Region.SpaceId == ACPI_ADR_SPACE_IPMI)
150 {
151 /* SMBus or IPMI has a non-linear address space */

153 return_ACPI_STATUS (AE_OK);
154 }

156 #ifdef ACPI_UNDER_DEVELOPMENT
157 /*
158 * If the Field access is AnyAcc, we can now compute the optimal
159 * access (because we know know the length of the parent region)
160 */
161 if (!(ObjDesc->Common.Flags & AOPOBJ_DATA_VALID))
162 {
163 if (ACPI_FAILURE (Status))
164 {
165 return_ACPI_STATUS (Status);
166 }
167 }
168 #endif

170 /*
171 * Validate the request. The entire request from the byte offset for a
172 * length of one field datum (access width) must fit within the region.
173 * (Region length is specified in bytes)
174 */
175 if (RgnDesc->Region.Length <
176 (ObjDesc->CommonField.BaseByteOffset + FieldDatumByteOffset +
177 ObjDesc->CommonField.AccessByteWidth))
178 {
179 if (AcpiGbl_EnableInterpreterSlack)
180 {
181 /*
182 * Slack mode only: We will go ahead and allow access to this
183 * field if it is within the region length rounded up to the next
184 * access width boundary. ACPI_SIZE cast for 64-bit compile.
185 */
186 if (ACPI_ROUND_UP (RgnDesc->Region.Length,
187 ObjDesc->CommonField.AccessByteWidth) >=
188 ((ACPI_SIZE) ObjDesc->CommonField.BaseByteOffset +

new/usr/src/common/acpica/components/executer/exfldio.c 4

189 ObjDesc->CommonField.AccessByteWidth +
190 FieldDatumByteOffset))
191 {
192 return_ACPI_STATUS (AE_OK);
193 }
194 }

196 if (RgnDesc->Region.Length < ObjDesc->CommonField.AccessByteWidth)
197 {
198 /*
199 * This is the case where the AccessType (AccWord, etc.) is wider
200 * than the region itself. For example, a region of length one
201 * byte, and a field with Dword access specified.
202 */
203 ACPI_ERROR ((AE_INFO,
204 "Field [%4.4s] access width (%u bytes) too large for region [%4.
205 AcpiUtGetNodeName (ObjDesc->CommonField.Node),
206 ObjDesc->CommonField.AccessByteWidth,
207 AcpiUtGetNodeName (RgnDesc->Region.Node),
208 RgnDesc->Region.Length));
209 }

211 /*
212 * Offset rounded up to next multiple of field width
213 * exceeds region length, indicate an error
214 */
215 ACPI_ERROR ((AE_INFO,
216 "Field [%4.4s] Base+Offset+Width %u+%u+%u is beyond end of region [%
217 AcpiUtGetNodeName (ObjDesc->CommonField.Node),
218 ObjDesc->CommonField.BaseByteOffset,
219 FieldDatumByteOffset, ObjDesc->CommonField.AccessByteWidth,
220 AcpiUtGetNodeName (RgnDesc->Region.Node),
221 RgnDesc->Region.Length));

223 return_ACPI_STATUS (AE_AML_REGION_LIMIT);
224 }

226 return_ACPI_STATUS (AE_OK);
227 }

230 /***
231 *
232 * FUNCTION: AcpiExAccessRegion
233 *
234 * PARAMETERS: ObjDesc - Field to be read
235 * FieldDatumByteOffset - Byte offset of this datum within the
236 * parent field
237 * Value - Where to store value (must at least
238 * 64 bits)
239 * Function - Read or Write flag plus other region-
240 * dependent flags
241 *
242 * RETURN: Status
243 *
244 * DESCRIPTION: Read or Write a single field datum to an Operation Region.
245 *
246 **/

248 ACPI_STATUS
249 AcpiExAccessRegion (
250 ACPI_OPERAND_OBJECT *ObjDesc,
251 UINT32 FieldDatumByteOffset,
252 UINT64 *Value,
253 UINT32 Function)
254 {

new/usr/src/common/acpica/components/executer/exfldio.c 5

255 ACPI_STATUS Status;
256 ACPI_OPERAND_OBJECT *RgnDesc;
257 UINT32 RegionOffset;

260 ACPI_FUNCTION_TRACE (ExAccessRegion);

263 /*
264 * Ensure that the region operands are fully evaluated and verify
265 * the validity of the request
266 */
267 Status = AcpiExSetupRegion (ObjDesc, FieldDatumByteOffset);
268 if (ACPI_FAILURE (Status))
269 {
270 return_ACPI_STATUS (Status);
271 }

273 /*
274 * The physical address of this field datum is:
275 *
276 * 1) The base of the region, plus
277 * 2) The base offset of the field, plus
278 * 3) The current offset into the field
279 */
280 RgnDesc = ObjDesc->CommonField.RegionObj;
281 RegionOffset =
282 ObjDesc->CommonField.BaseByteOffset +
283 FieldDatumByteOffset;

285 if ((Function & ACPI_IO_MASK) == ACPI_READ)
286 {
287 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "[READ]"));
288 }
289 else
290 {
291 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "[WRITE]"));
292 }

294 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_BFIELD,
295 " Region [%s:%X], Width %X, ByteBase %X, Offset %X at %p\n",
296 AcpiUtGetRegionName (RgnDesc->Region.SpaceId),
297 RgnDesc->Region.SpaceId,
298 ObjDesc->CommonField.AccessByteWidth,
299 ObjDesc->CommonField.BaseByteOffset,
300 FieldDatumByteOffset,
301 ACPI_CAST_PTR (void, (RgnDesc->Region.Address + RegionOffset))));

303 /* Invoke the appropriate AddressSpace/OpRegion handler */

305 Status = AcpiEvAddressSpaceDispatch (RgnDesc, ObjDesc,
306 Function, RegionOffset,
293 Status = AcpiEvAddressSpaceDispatch (RgnDesc, Function, RegionOffset,
307 ACPI_MUL_8 (ObjDesc->CommonField.AccessByteWidth), Value);

309 if (ACPI_FAILURE (Status))
310 {
311 if (Status == AE_NOT_IMPLEMENTED)
312 {
313 ACPI_ERROR ((AE_INFO,
314 "Region %s (ID=%u) not implemented",
315 AcpiUtGetRegionName (RgnDesc->Region.SpaceId),
316 RgnDesc->Region.SpaceId));
317 }
318 else if (Status == AE_NOT_EXIST)
319 {

new/usr/src/common/acpica/components/executer/exfldio.c 6

320 ACPI_ERROR ((AE_INFO,
321 "Region %s (ID=%u) has no handler",
322 AcpiUtGetRegionName (RgnDesc->Region.SpaceId),
323 RgnDesc->Region.SpaceId));
324 }
325 }

327 return_ACPI_STATUS (Status);
328 }

331 /***
332 *
333 * FUNCTION: AcpiExRegisterOverflow
334 *
335 * PARAMETERS: ObjDesc - Register(Field) to be written
336 * Value - Value to be stored
337 *
338 * RETURN: TRUE if value overflows the field, FALSE otherwise
339 *
340 * DESCRIPTION: Check if a value is out of range of the field being written.
341 * Used to check if the values written to Index and Bank registers
342 * are out of range. Normally, the value is simply truncated
343 * to fit the field, but this case is most likely a serious
344 * coding error in the ASL.
345 *
346 **/

348 static BOOLEAN
349 AcpiExRegisterOverflow (
350 ACPI_OPERAND_OBJECT *ObjDesc,
351 UINT64 Value)
352 {

354 if (ObjDesc->CommonField.BitLength >= ACPI_INTEGER_BIT_SIZE)
355 {
356 /*
357 * The field is large enough to hold the maximum integer, so we can
358 * never overflow it.
359 */
360 return (FALSE);
361 }

363 if (Value >= ((UINT64) 1 << ObjDesc->CommonField.BitLength))
364 {
365 /*
366 * The Value is larger than the maximum value that can fit into
367 * the register.
368 */
369 ACPI_ERROR ((AE_INFO,
370 "Index value 0x%8.8X%8.8X overflows field width 0x%X",
371 ACPI_FORMAT_UINT64 (Value),
372 ObjDesc->CommonField.BitLength));

374 return (TRUE);
375 }

377 /* The Value will fit into the field with no truncation */

379 return (FALSE);
380 }

383 /***
384 *
385 * FUNCTION: AcpiExFieldDatumIo

new/usr/src/common/acpica/components/executer/exfldio.c 7

386 *
387 * PARAMETERS: ObjDesc - Field to be read
388 * FieldDatumByteOffset - Byte offset of this datum within the
389 * parent field
390 * Value - Where to store value (must be 64 bits)
391 * ReadWrite - Read or Write flag
392 *
393 * RETURN: Status
394 *
395 * DESCRIPTION: Read or Write a single datum of a field. The FieldType is
396 * demultiplexed here to handle the different types of fields
397 * (BufferField, RegionField, IndexField, BankField)
398 *
399 **/

401 static ACPI_STATUS
402 AcpiExFieldDatumIo (
403 ACPI_OPERAND_OBJECT *ObjDesc,
404 UINT32 FieldDatumByteOffset,
405 UINT64 *Value,
406 UINT32 ReadWrite)
407 {
408 ACPI_STATUS Status;
409 UINT64 LocalValue;

412 ACPI_FUNCTION_TRACE_U32 (ExFieldDatumIo, FieldDatumByteOffset);

415 if (ReadWrite == ACPI_READ)
416 {
417 if (!Value)
418 {
419 LocalValue = 0;

421 /* To support reads without saving return value */
422 Value = &LocalValue;
423 }

425 /* Clear the entire return buffer first, [Very Important!] */

427 *Value = 0;
428 }

430 /*
431 * The four types of fields are:
432 *
433 * BufferField - Read/write from/to a Buffer
434 * RegionField - Read/write from/to a Operation Region.
435 * BankField - Write to a Bank Register, then read/write from/to an
436 * OperationRegion
437 * IndexField - Write to an Index Register, then read/write from/to a
438 * Data Register
439 */
440 switch (ObjDesc->Common.Type)
441 {
442 case ACPI_TYPE_BUFFER_FIELD:
443 /*
444 * If the BufferField arguments have not been previously evaluated,
445 * evaluate them now and save the results.
446 */
447 if (!(ObjDesc->Common.Flags & AOPOBJ_DATA_VALID))
448 {
449 Status = AcpiDsGetBufferFieldArguments (ObjDesc);
450 if (ACPI_FAILURE (Status))
451 {

new/usr/src/common/acpica/components/executer/exfldio.c 8

452 return_ACPI_STATUS (Status);
453 }
454 }

456 if (ReadWrite == ACPI_READ)
457 {
458 /*
459 * Copy the data from the source buffer.
460 * Length is the field width in bytes.
461 */
462 ACPI_MEMCPY (Value,
463 (ObjDesc->BufferField.BufferObj)->Buffer.Pointer +
464 ObjDesc->BufferField.BaseByteOffset +
465 FieldDatumByteOffset,
466 ObjDesc->CommonField.AccessByteWidth);
467 }
468 else
469 {
470 /*
471 * Copy the data to the target buffer.
472 * Length is the field width in bytes.
473 */
474 ACPI_MEMCPY ((ObjDesc->BufferField.BufferObj)->Buffer.Pointer +
475 ObjDesc->BufferField.BaseByteOffset +
476 FieldDatumByteOffset,
477 Value, ObjDesc->CommonField.AccessByteWidth);
478 }

480 Status = AE_OK;
481 break;

483 case ACPI_TYPE_LOCAL_BANK_FIELD:

484 /*
485 * Ensure that the BankValue is not beyond the capacity of
486 * the register
487 */
488 if (AcpiExRegisterOverflow (ObjDesc->BankField.BankObj,
489 (UINT64) ObjDesc->BankField.Value))
490 {
491 return_ACPI_STATUS (AE_AML_REGISTER_LIMIT);
492 }

494 /*
495 * For BankFields, we must write the BankValue to the BankRegister
496 * (itself a RegionField) before we can access the data.
497 */
498 Status = AcpiExInsertIntoField (ObjDesc->BankField.BankObj,
499 &ObjDesc->BankField.Value,
500 sizeof (ObjDesc->BankField.Value));
501 if (ACPI_FAILURE (Status))
502 {
503 return_ACPI_STATUS (Status);
504 }

506 /*
507 * Now that the Bank has been selected, fall through to the
508 * RegionField case and write the datum to the Operation Region
509 */

511 /*lint -fallthrough */

513 case ACPI_TYPE_LOCAL_REGION_FIELD:
514 /*

new/usr/src/common/acpica/components/executer/exfldio.c 9

515 * For simple RegionFields, we just directly access the owning
516 * Operation Region.
517 */
518 Status = AcpiExAccessRegion (ObjDesc, FieldDatumByteOffset, Value,
519 ReadWrite);
520 break;

522 case ACPI_TYPE_LOCAL_INDEX_FIELD:

523 /*
524 * Ensure that the IndexValue is not beyond the capacity of
525 * the register
526 */
527 if (AcpiExRegisterOverflow (ObjDesc->IndexField.IndexObj,
528 (UINT64) ObjDesc->IndexField.Value))
529 {
530 return_ACPI_STATUS (AE_AML_REGISTER_LIMIT);
531 }

533 /* Write the index value to the IndexRegister (itself a RegionField) */

535 FieldDatumByteOffset += ObjDesc->IndexField.Value;

537 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
538 "Write to Index Register: Value %8.8X\n",
539 FieldDatumByteOffset));

541 Status = AcpiExInsertIntoField (ObjDesc->IndexField.IndexObj,
542 &FieldDatumByteOffset,
543 sizeof (FieldDatumByteOffset));
544 if (ACPI_FAILURE (Status))
545 {
546 return_ACPI_STATUS (Status);
547 }

549 if (ReadWrite == ACPI_READ)
550 {
551 /* Read the datum from the DataRegister */

553 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
554 "Read from Data Register\n"));

556 Status = AcpiExExtractFromField (ObjDesc->IndexField.DataObj,
557 Value, sizeof (UINT64));
558 }
559 else
560 {
561 /* Write the datum to the DataRegister */

563 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
564 "Write to Data Register: Value %8.8X%8.8X\n",
565 ACPI_FORMAT_UINT64 (*Value)));

567 Status = AcpiExInsertIntoField (ObjDesc->IndexField.DataObj,
568 Value, sizeof (UINT64));
569 }
570 break;

572 default:

574 ACPI_ERROR ((AE_INFO, "Wrong object type in field I/O %u",
575 ObjDesc->Common.Type));
576 Status = AE_AML_INTERNAL;

new/usr/src/common/acpica/components/executer/exfldio.c 10

577 break;
578 }

580 if (ACPI_SUCCESS (Status))
581 {
582 if (ReadWrite == ACPI_READ)
583 {
584 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
585 "Value Read %8.8X%8.8X, Width %u\n",
586 ACPI_FORMAT_UINT64 (*Value),
587 ObjDesc->CommonField.AccessByteWidth));
588 }
589 else
590 {
591 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
592 "Value Written %8.8X%8.8X, Width %u\n",
593 ACPI_FORMAT_UINT64 (*Value),
594 ObjDesc->CommonField.AccessByteWidth));
595 }
596 }

598 return_ACPI_STATUS (Status);
599 }

______unchanged_portion_omitted_

707 /***
708 *
709 * FUNCTION: AcpiExExtractFromField
710 *
711 * PARAMETERS: ObjDesc - Field to be read
712 * Buffer - Where to store the field data
713 * BufferLength - Length of Buffer
714 *
715 * RETURN: Status
716 *
717 * DESCRIPTION: Retrieve the current value of the given field
718 *
719 **/

721 ACPI_STATUS
722 AcpiExExtractFromField (
723 ACPI_OPERAND_OBJECT *ObjDesc,
724 void *Buffer,
725 UINT32 BufferLength)
726 {
727 ACPI_STATUS Status;
728 UINT64 RawDatum;
729 UINT64 MergedDatum;
730 UINT32 FieldOffset = 0;
731 UINT32 BufferOffset = 0;
732 UINT32 BufferTailBits;
733 UINT32 DatumCount;
734 UINT32 FieldDatumCount;
735 UINT32 AccessBitWidth;
736 UINT32 i;

739 ACPI_FUNCTION_TRACE (ExExtractFromField);

742 /* Validate target buffer and clear it */

744 if (BufferLength <
745 ACPI_ROUND_BITS_UP_TO_BYTES (ObjDesc->CommonField.BitLength))
746 {

new/usr/src/common/acpica/components/executer/exfldio.c 11

747 ACPI_ERROR ((AE_INFO,
748 "Field size %u (bits) is too large for buffer (%u)",
749 ObjDesc->CommonField.BitLength, BufferLength));

751 return_ACPI_STATUS (AE_BUFFER_OVERFLOW);
752 }

754 ACPI_MEMSET (Buffer, 0, BufferLength);
755 AccessBitWidth = ACPI_MUL_8 (ObjDesc->CommonField.AccessByteWidth);

757 /* Handle the simple case here */

759 if ((ObjDesc->CommonField.StartFieldBitOffset == 0) &&
760 (ObjDesc->CommonField.BitLength == AccessBitWidth))
761 {
762 if (BufferLength >= sizeof (UINT64))
763 {
764 Status = AcpiExFieldDatumIo (ObjDesc, 0, Buffer, ACPI_READ);
765 }
766 else
767 {
768 /* Use RawDatum (UINT64) to handle buffers < 64 bits */

770 Status = AcpiExFieldDatumIo (ObjDesc, 0, &RawDatum, ACPI_READ);
771 ACPI_MEMCPY (Buffer, &RawDatum, BufferLength);
772 }

774 return_ACPI_STATUS (Status);
775 }

777 /* TBD: Move to common setup code */

779 /* Field algorithm is limited to sizeof(UINT64), truncate if needed */

781 if (ObjDesc->CommonField.AccessByteWidth > sizeof (UINT64))
782 {
783 ObjDesc->CommonField.AccessByteWidth = sizeof (UINT64);
784 AccessBitWidth = sizeof (UINT64) * 8;
785 }

787 /* Compute the number of datums (access width data items) */

789 DatumCount = ACPI_ROUND_UP_TO (
790 ObjDesc->CommonField.BitLength, AccessBitWidth);

792 FieldDatumCount = ACPI_ROUND_UP_TO (
793 ObjDesc->CommonField.BitLength +
794 ObjDesc->CommonField.StartFieldBitOffset, AccessBitWidth);

796 /* Priming read from the field */

798 Status = AcpiExFieldDatumIo (ObjDesc, FieldOffset, &RawDatum, ACPI_READ);
799 if (ACPI_FAILURE (Status))
800 {
801 return_ACPI_STATUS (Status);
802 }
803 MergedDatum = RawDatum >> ObjDesc->CommonField.StartFieldBitOffset;

805 /* Read the rest of the field */

807 for (i = 1; i < FieldDatumCount; i++)
808 {
809 /* Get next input datum from the field */

811 FieldOffset += ObjDesc->CommonField.AccessByteWidth;
812 Status = AcpiExFieldDatumIo (ObjDesc, FieldOffset,

new/usr/src/common/acpica/components/executer/exfldio.c 12

813 &RawDatum, ACPI_READ);
814 if (ACPI_FAILURE (Status))
815 {
816 return_ACPI_STATUS (Status);
817 }

819 /*
820 * Merge with previous datum if necessary.
821 *
822 * Note: Before the shift, check if the shift value will be larger than
823 * the integer size. If so, there is no need to perform the operation.
824 * This avoids the differences in behavior between different compilers
825 * concerning shift values larger than the target data width.
826 */
827 if (AccessBitWidth - ObjDesc->CommonField.StartFieldBitOffset <
828 ACPI_INTEGER_BIT_SIZE)
829 {
830 MergedDatum |= RawDatum <<
831 (AccessBitWidth - ObjDesc->CommonField.StartFieldBitOffset);
832 }

834 if (i == DatumCount)
835 {
836 break;
837 }

839 /* Write merged datum to target buffer */

841 ACPI_MEMCPY (((char *) Buffer) + BufferOffset, &MergedDatum,
842 ACPI_MIN(ObjDesc->CommonField.AccessByteWidth,
843 BufferLength - BufferOffset));

845 BufferOffset += ObjDesc->CommonField.AccessByteWidth;
846 MergedDatum = RawDatum >> ObjDesc->CommonField.StartFieldBitOffset;
847 }

849 /* Mask off any extra bits in the last datum */

851 BufferTailBits = ObjDesc->CommonField.BitLength % AccessBitWidth;
852 if (BufferTailBits)
853 {
854 MergedDatum &= ACPI_MASK_BITS_ABOVE (BufferTailBits);
855 }

857 /* Write the last datum to the buffer */

859 ACPI_MEMCPY (((char *) Buffer) + BufferOffset, &MergedDatum,
860 ACPI_MIN(ObjDesc->CommonField.AccessByteWidth,
861 BufferLength - BufferOffset));

863 return_ACPI_STATUS (AE_OK);
864 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/executer/exmisc.c 1

**
 23075 Thu Dec 26 13:49:04 2013
new/usr/src/common/acpica/components/executer/exmisc.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exmisc - ACPI AML (p-code) execution - specific opcodes
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXMISC_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acinterp.h"
49 #include "amlcode.h"
50 #include "amlresrc.h"

53 #define _COMPONENT ACPI_EXECUTER
54 ACPI_MODULE_NAME ("exmisc")

57 /***
58 *

new/usr/src/common/acpica/components/executer/exmisc.c 2

59 * FUNCTION: AcpiExGetObjectReference
60 *
61 * PARAMETERS: ObjDesc - Create a reference to this object
62 * ReturnDesc - Where to store the reference
63 * WalkState - Current state
64 *
65 * RETURN: Status
66 *
67 * DESCRIPTION: Obtain and return a "reference" to the target object
68 * Common code for the RefOfOp and the CondRefOfOp.
69 *
70 **/

72 ACPI_STATUS
73 AcpiExGetObjectReference (
74 ACPI_OPERAND_OBJECT *ObjDesc,
75 ACPI_OPERAND_OBJECT **ReturnDesc,
76 ACPI_WALK_STATE *WalkState)
77 {
78 ACPI_OPERAND_OBJECT *ReferenceObj;
79 ACPI_OPERAND_OBJECT *ReferencedObj;

82 ACPI_FUNCTION_TRACE_PTR (ExGetObjectReference, ObjDesc);

85 *ReturnDesc = NULL;

87 switch (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc))
88 {
89 case ACPI_DESC_TYPE_OPERAND:

91 if (ObjDesc->Common.Type != ACPI_TYPE_LOCAL_REFERENCE)
92 {
93 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
94 }

96 /*
97 * Must be a reference to a Local or Arg
98 */
99 switch (ObjDesc->Reference.Class)
100 {
101 case ACPI_REFCLASS_LOCAL:
102 case ACPI_REFCLASS_ARG:
103 case ACPI_REFCLASS_DEBUG:

105 /* The referenced object is the pseudo-node for the local/arg */

107 ReferencedObj = ObjDesc->Reference.Object;
108 break;

110 default:

112 ACPI_ERROR ((AE_INFO, "Unknown Reference Class 0x%2.2X",
113 ObjDesc->Reference.Class));
114 return_ACPI_STATUS (AE_AML_INTERNAL);
115 }
116 break;

118 case ACPI_DESC_TYPE_NAMED:

119 /*
120 * A named reference that has already been resolved to a Node
121 */
122 ReferencedObj = ObjDesc;

new/usr/src/common/acpica/components/executer/exmisc.c 3

123 break;

125 default:

127 ACPI_ERROR ((AE_INFO, "Invalid descriptor type 0x%X",
128 ACPI_GET_DESCRIPTOR_TYPE (ObjDesc)));
129 return_ACPI_STATUS (AE_TYPE);
130 }

133 /* Create a new reference object */

135 ReferenceObj = AcpiUtCreateInternalObject (ACPI_TYPE_LOCAL_REFERENCE);
136 if (!ReferenceObj)
137 {
138 return_ACPI_STATUS (AE_NO_MEMORY);
139 }

141 ReferenceObj->Reference.Class = ACPI_REFCLASS_REFOF;
142 ReferenceObj->Reference.Object = ReferencedObj;
143 *ReturnDesc = ReferenceObj;

145 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
146 "Object %p Type [%s], returning Reference %p\n",
147 ObjDesc, AcpiUtGetObjectTypeName (ObjDesc), *ReturnDesc));

149 return_ACPI_STATUS (AE_OK);
150 }

______unchanged_portion_omitted_

245 /***
246 *
247 * FUNCTION: AcpiExDoConcatenate
248 *
249 * PARAMETERS: Operand0 - First source object
250 * Operand1 - Second source object
251 * ActualReturnDesc - Where to place the return object
252 * WalkState - Current walk state
253 *
254 * RETURN: Status
255 *
256 * DESCRIPTION: Concatenate two objects OF THE SAME TYPE.
257 *
258 **/

260 ACPI_STATUS
261 AcpiExDoConcatenate (
262 ACPI_OPERAND_OBJECT *Operand0,
263 ACPI_OPERAND_OBJECT *Operand1,
264 ACPI_OPERAND_OBJECT **ActualReturnDesc,
265 ACPI_WALK_STATE *WalkState)
266 {
267 ACPI_OPERAND_OBJECT *LocalOperand1 = Operand1;
268 ACPI_OPERAND_OBJECT *ReturnDesc;
269 char *NewBuf;
270 ACPI_STATUS Status;

273 ACPI_FUNCTION_TRACE (ExDoConcatenate);

276 /*
277 * Convert the second operand if necessary. The first operand
278 * determines the type of the second operand, (See the Data Types

new/usr/src/common/acpica/components/executer/exmisc.c 4

279 * section of the ACPI specification.) Both object types are
280 * guaranteed to be either Integer/String/Buffer by the operand
281 * resolution mechanism.
282 */
283 switch (Operand0->Common.Type)
284 {
285 case ACPI_TYPE_INTEGER:

287 Status = AcpiExConvertToInteger (Operand1, &LocalOperand1, 16);
288 break;

290 case ACPI_TYPE_STRING:

292 Status = AcpiExConvertToString (Operand1, &LocalOperand1,
293 ACPI_IMPLICIT_CONVERT_HEX);
294 break;

296 case ACPI_TYPE_BUFFER:

298 Status = AcpiExConvertToBuffer (Operand1, &LocalOperand1);
299 break;

301 default:

303 ACPI_ERROR ((AE_INFO, "Invalid object type: 0x%X",
304 Operand0->Common.Type));
305 Status = AE_AML_INTERNAL;
306 }

308 if (ACPI_FAILURE (Status))
309 {
310 goto Cleanup;
311 }

313 /*
314 * Both operands are now known to be the same object type
315 * (Both are Integer, String, or Buffer), and we can now perform the
316 * concatenation.
317 */

319 /*
320 * There are three cases to handle:
321 *
322 * 1) Two Integers concatenated to produce a new Buffer
323 * 2) Two Strings concatenated to produce a new String
324 * 3) Two Buffers concatenated to produce a new Buffer
325 */
326 switch (Operand0->Common.Type)
327 {
328 case ACPI_TYPE_INTEGER:

330 /* Result of two Integers is a Buffer */
331 /* Need enough buffer space for two integers */

333 ReturnDesc = AcpiUtCreateBufferObject ((ACPI_SIZE)
334 ACPI_MUL_2 (AcpiGbl_IntegerByteWidth));
335 if (!ReturnDesc)
336 {
337 Status = AE_NO_MEMORY;
338 goto Cleanup;
339 }

341 NewBuf = (char *) ReturnDesc->Buffer.Pointer;

343 /* Copy the first integer, LSB first */

new/usr/src/common/acpica/components/executer/exmisc.c 5

345 ACPI_MEMCPY (NewBuf, &Operand0->Integer.Value,
346 AcpiGbl_IntegerByteWidth);

348 /* Copy the second integer (LSB first) after the first */

350 ACPI_MEMCPY (NewBuf + AcpiGbl_IntegerByteWidth,
351 &LocalOperand1->Integer.Value,
352 AcpiGbl_IntegerByteWidth);
353 break;

355 case ACPI_TYPE_STRING:

357 /* Result of two Strings is a String */

359 ReturnDesc = AcpiUtCreateStringObject (
360 ((ACPI_SIZE) Operand0->String.Length +
361 LocalOperand1->String.Length));
362 if (!ReturnDesc)
363 {
364 Status = AE_NO_MEMORY;
365 goto Cleanup;
366 }

368 NewBuf = ReturnDesc->String.Pointer;

370 /* Concatenate the strings */

372 ACPI_STRCPY (NewBuf, Operand0->String.Pointer);
373 ACPI_STRCPY (NewBuf + Operand0->String.Length,
374 LocalOperand1->String.Pointer);
375 break;

377 case ACPI_TYPE_BUFFER:

379 /* Result of two Buffers is a Buffer */

381 ReturnDesc = AcpiUtCreateBufferObject (
382 ((ACPI_SIZE) Operand0->Buffer.Length +
383 LocalOperand1->Buffer.Length));
384 if (!ReturnDesc)
385 {
386 Status = AE_NO_MEMORY;
387 goto Cleanup;
388 }

390 NewBuf = (char *) ReturnDesc->Buffer.Pointer;

392 /* Concatenate the buffers */

394 ACPI_MEMCPY (NewBuf, Operand0->Buffer.Pointer,
395 Operand0->Buffer.Length);
396 ACPI_MEMCPY (NewBuf + Operand0->Buffer.Length,
397 LocalOperand1->Buffer.Pointer,
398 LocalOperand1->Buffer.Length);
399 break;

401 default:

403 /* Invalid object type, should not happen here */

405 ACPI_ERROR ((AE_INFO, "Invalid object type: 0x%X",
406 Operand0->Common.Type));
407 Status =AE_AML_INTERNAL;
408 goto Cleanup;
409 }

new/usr/src/common/acpica/components/executer/exmisc.c 6

411 *ActualReturnDesc = ReturnDesc;

413 Cleanup:
414 if (LocalOperand1 != Operand1)
415 {
416 AcpiUtRemoveReference (LocalOperand1);
417 }
418 return_ACPI_STATUS (Status);
419 }

422 /***
423 *
424 * FUNCTION: AcpiExDoMathOp
425 *
426 * PARAMETERS: Opcode - AML opcode
427 * Integer0 - Integer operand #0
428 * Integer1 - Integer operand #1
429 *
430 * RETURN: Integer result of the operation
431 *
432 * DESCRIPTION: Execute a math AML opcode. The purpose of having all of the
433 * math functions here is to prevent a lot of pointer dereferencing
434 * to obtain the operands.
435 *
436 **/

438 UINT64
439 AcpiExDoMathOp (
440 UINT16 Opcode,
441 UINT64 Integer0,
442 UINT64 Integer1)
443 {

445 ACPI_FUNCTION_ENTRY ();

448 switch (Opcode)
449 {
450 case AML_ADD_OP: /* Add (Integer0, Integer1, Result) */

452 return (Integer0 + Integer1);

454 case AML_BIT_AND_OP: /* And (Integer0, Integer1, Result) */

456 return (Integer0 & Integer1);

458 case AML_BIT_NAND_OP: /* NAnd (Integer0, Integer1, Result) */

460 return (~(Integer0 & Integer1));

462 case AML_BIT_OR_OP: /* Or (Integer0, Integer1, Result) */

464 return (Integer0 | Integer1);

466 case AML_BIT_NOR_OP: /* NOr (Integer0, Integer1, Result) */

468 return (~(Integer0 | Integer1));

470 case AML_BIT_XOR_OP: /* XOr (Integer0, Integer1, Result) */

new/usr/src/common/acpica/components/executer/exmisc.c 7

472 return (Integer0 ^ Integer1);

474 case AML_MULTIPLY_OP: /* Multiply (Integer0, Integer1, Result) */

476 return (Integer0 * Integer1);

478 case AML_SHIFT_LEFT_OP: /* ShiftLeft (Operand, ShiftCount, Result)*/

480 /*
481 * We need to check if the shiftcount is larger than the integer bit
482 * width since the behavior of this is not well-defined in the C languag
483 */
484 if (Integer1 >= AcpiGbl_IntegerBitWidth)
485 {
486 return (0);
487 }
488 return (Integer0 << Integer1);

490 case AML_SHIFT_RIGHT_OP: /* ShiftRight (Operand, ShiftCount, Result)

492 /*
493 * We need to check if the shiftcount is larger than the integer bit
494 * width since the behavior of this is not well-defined in the C languag
495 */
496 if (Integer1 >= AcpiGbl_IntegerBitWidth)
497 {
498 return (0);
499 }
500 return (Integer0 >> Integer1);

502 case AML_SUBTRACT_OP: /* Subtract (Integer0, Integer1, Result) */

504 return (Integer0 - Integer1);

506 default:

508 return (0);
509 }
510 }

513 /***
514 *
515 * FUNCTION: AcpiExDoLogicalNumericOp
516 *
517 * PARAMETERS: Opcode - AML opcode
518 * Integer0 - Integer operand #0
519 * Integer1 - Integer operand #1
520 * LogicalResult - TRUE/FALSE result of the operation
521 *
522 * RETURN: Status
523 *
524 * DESCRIPTION: Execute a logical "Numeric" AML opcode. For these Numeric
525 * operators (LAnd and LOr), both operands must be integers.
526 *
527 * Note: cleanest machine code seems to be produced by the code
528 * below, rather than using statements of the form:
529 * Result = (Integer0 && Integer1);
530 *
531 **/

533 ACPI_STATUS

new/usr/src/common/acpica/components/executer/exmisc.c 8

534 AcpiExDoLogicalNumericOp (
535 UINT16 Opcode,
536 UINT64 Integer0,
537 UINT64 Integer1,
538 BOOLEAN *LogicalResult)
539 {
540 ACPI_STATUS Status = AE_OK;
541 BOOLEAN LocalResult = FALSE;

544 ACPI_FUNCTION_TRACE (ExDoLogicalNumericOp);

547 switch (Opcode)
548 {
549 case AML_LAND_OP: /* LAnd (Integer0, Integer1) */

551 if (Integer0 && Integer1)
552 {
553 LocalResult = TRUE;
554 }
555 break;

557 case AML_LOR_OP: /* LOr (Integer0, Integer1) */

559 if (Integer0 || Integer1)
560 {
561 LocalResult = TRUE;
562 }
563 break;

565 default:

567 Status = AE_AML_INTERNAL;
568 break;
569 }

571 /* Return the logical result and status */

573 *LogicalResult = LocalResult;
574 return_ACPI_STATUS (Status);
575 }

578 /***
579 *
580 * FUNCTION: AcpiExDoLogicalOp
581 *
582 * PARAMETERS: Opcode - AML opcode
583 * Operand0 - operand #0
584 * Operand1 - operand #1
585 * LogicalResult - TRUE/FALSE result of the operation
586 *
587 * RETURN: Status
588 *
589 * DESCRIPTION: Execute a logical AML opcode. The purpose of having all of the
590 * functions here is to prevent a lot of pointer dereferencing
591 * to obtain the operands and to simplify the generation of the
592 * logical value. For the Numeric operators (LAnd and LOr), both
593 * operands must be integers. For the other logical operators,
594 * operands can be any combination of Integer/String/Buffer. The
595 * first operand determines the type to which the second operand
596 * will be converted.
597 *
598 * Note: cleanest machine code seems to be produced by the code
599 * below, rather than using statements of the form:

new/usr/src/common/acpica/components/executer/exmisc.c 9

600 * Result = (Operand0 == Operand1);
601 *
602 **/

604 ACPI_STATUS
605 AcpiExDoLogicalOp (
606 UINT16 Opcode,
607 ACPI_OPERAND_OBJECT *Operand0,
608 ACPI_OPERAND_OBJECT *Operand1,
609 BOOLEAN *LogicalResult)
610 {
611 ACPI_OPERAND_OBJECT *LocalOperand1 = Operand1;
612 UINT64 Integer0;
613 UINT64 Integer1;
614 UINT32 Length0;
615 UINT32 Length1;
616 ACPI_STATUS Status = AE_OK;
617 BOOLEAN LocalResult = FALSE;
618 int Compare;

621 ACPI_FUNCTION_TRACE (ExDoLogicalOp);

624 /*
625 * Convert the second operand if necessary. The first operand
626 * determines the type of the second operand, (See the Data Types
627 * section of the ACPI 3.0+ specification.) Both object types are
628 * guaranteed to be either Integer/String/Buffer by the operand
629 * resolution mechanism.
630 */
631 switch (Operand0->Common.Type)
632 {
633 case ACPI_TYPE_INTEGER:

635 Status = AcpiExConvertToInteger (Operand1, &LocalOperand1, 16);
636 break;

638 case ACPI_TYPE_STRING:

640 Status = AcpiExConvertToString (Operand1, &LocalOperand1,
641 ACPI_IMPLICIT_CONVERT_HEX);
642 break;

644 case ACPI_TYPE_BUFFER:

646 Status = AcpiExConvertToBuffer (Operand1, &LocalOperand1);
647 break;

649 default:

651 Status = AE_AML_INTERNAL;
652 break;
653 }

655 if (ACPI_FAILURE (Status))
656 {
657 goto Cleanup;
658 }

660 /*
661 * Two cases: 1) Both Integers, 2) Both Strings or Buffers
662 */
663 if (Operand0->Common.Type == ACPI_TYPE_INTEGER)
664 {
665 /*

new/usr/src/common/acpica/components/executer/exmisc.c 10

666 * 1) Both operands are of type integer
667 * Note: LocalOperand1 may have changed above
668 */
669 Integer0 = Operand0->Integer.Value;
670 Integer1 = LocalOperand1->Integer.Value;

672 switch (Opcode)
673 {
674 case AML_LEQUAL_OP: /* LEqual (Operand0, Operand1) */

676 if (Integer0 == Integer1)
677 {
678 LocalResult = TRUE;
679 }
680 break;

682 case AML_LGREATER_OP: /* LGreater (Operand0, Operand1) */

684 if (Integer0 > Integer1)
685 {
686 LocalResult = TRUE;
687 }
688 break;

690 case AML_LLESS_OP: /* LLess (Operand0, Operand1) */

692 if (Integer0 < Integer1)
693 {
694 LocalResult = TRUE;
695 }
696 break;

698 default:

700 Status = AE_AML_INTERNAL;
701 break;
702 }
703 }
704 else
705 {
706 /*
707 * 2) Both operands are Strings or both are Buffers
708 * Note: Code below takes advantage of common Buffer/String
709 * object fields. LocalOperand1 may have changed above. Use
710 * memcmp to handle nulls in buffers.
711 */
712 Length0 = Operand0->Buffer.Length;
713 Length1 = LocalOperand1->Buffer.Length;

715 /* Lexicographic compare: compare the data bytes */

717 Compare = ACPI_MEMCMP (Operand0->Buffer.Pointer,
718 LocalOperand1->Buffer.Pointer,
719 (Length0 > Length1) ? Length1 : Length0);

721 switch (Opcode)
722 {
723 case AML_LEQUAL_OP: /* LEqual (Operand0, Operand1) */

725 /* Length and all bytes must be equal */

727 if ((Length0 == Length1) &&
728 (Compare == 0))
729 {
730 /* Length and all bytes match ==> TRUE */

new/usr/src/common/acpica/components/executer/exmisc.c 11

732 LocalResult = TRUE;
733 }
734 break;

736 case AML_LGREATER_OP: /* LGreater (Operand0, Operand1) */

738 if (Compare > 0)
739 {
740 LocalResult = TRUE;
741 goto Cleanup; /* TRUE */
742 }
743 if (Compare < 0)
744 {
745 goto Cleanup; /* FALSE */
746 }

748 /* Bytes match (to shortest length), compare lengths */

750 if (Length0 > Length1)
751 {
752 LocalResult = TRUE;
753 }
754 break;

756 case AML_LLESS_OP: /* LLess (Operand0, Operand1) */

758 if (Compare > 0)
759 {
760 goto Cleanup; /* FALSE */
761 }
762 if (Compare < 0)
763 {
764 LocalResult = TRUE;
765 goto Cleanup; /* TRUE */
766 }

768 /* Bytes match (to shortest length), compare lengths */

770 if (Length0 < Length1)
771 {
772 LocalResult = TRUE;
773 }
774 break;

776 default:

778 Status = AE_AML_INTERNAL;
779 break;
780 }
781 }

783 Cleanup:

785 /* New object was created if implicit conversion performed - delete */

787 if (LocalOperand1 != Operand1)
788 {
789 AcpiUtRemoveReference (LocalOperand1);
790 }

792 /* Return the logical result and status */

794 *LogicalResult = LocalResult;
795 return_ACPI_STATUS (Status);
796 }

new/usr/src/common/acpica/components/executer/exmisc.c 12

new/usr/src/common/acpica/components/executer/exmutex.c 1

**
 16339 Thu Dec 26 13:49:05 2013
new/usr/src/common/acpica/components/executer/exmutex.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exmutex - ASL Mutex Acquire/Release functions
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXMUTEX_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acinterp.h"
49 #include "acevents.h"

51 #define _COMPONENT ACPI_EXECUTER
52 ACPI_MODULE_NAME ("exmutex")

54 /* Local prototypes */

56 static void
57 AcpiExLinkMutex (
58 ACPI_OPERAND_OBJECT *ObjDesc,

new/usr/src/common/acpica/components/executer/exmutex.c 2

59 ACPI_THREAD_STATE *Thread);

62 /***
63 *
64 * FUNCTION: AcpiExUnlinkMutex
65 *
66 * PARAMETERS: ObjDesc - The mutex to be unlinked
67 *
68 * RETURN: None
69 *
70 * DESCRIPTION: Remove a mutex from the "AcquiredMutex" list
71 *
72 **/

74 void
75 AcpiExUnlinkMutex (
76 ACPI_OPERAND_OBJECT *ObjDesc)
77 {
78 ACPI_THREAD_STATE *Thread = ObjDesc->Mutex.OwnerThread;

81 if (!Thread)
82 {
83 return;
84 }

86 /* Doubly linked list */

88 if (ObjDesc->Mutex.Next)
89 {
90 (ObjDesc->Mutex.Next)->Mutex.Prev = ObjDesc->Mutex.Prev;
91 }

93 if (ObjDesc->Mutex.Prev)
94 {
95 (ObjDesc->Mutex.Prev)->Mutex.Next = ObjDesc->Mutex.Next;

97 /*
98 * Migrate the previous sync level associated with this mutex to
99 * the previous mutex on the list so that it may be preserved.
100 * This handles the case where several mutexes have been acquired
101 * at the same level, but are not released in opposite order.
102 */
103 (ObjDesc->Mutex.Prev)->Mutex.OriginalSyncLevel =
104 ObjDesc->Mutex.OriginalSyncLevel;
105 }
106 else
107 {
108 Thread->AcquiredMutexList = ObjDesc->Mutex.Next;
109 }
110 }

______unchanged_portion_omitted_

309 /***
310 *
311 * FUNCTION: AcpiExReleaseMutexObject
312 *
313 * PARAMETERS: ObjDesc - The object descriptor for this op
314 *
315 * RETURN: Status
316 *
317 * DESCRIPTION: Release a previously acquired Mutex, low level interface.
318 * Provides a common path that supports multiple releases (after
319 * previous multiple acquires) by the same thread.

new/usr/src/common/acpica/components/executer/exmutex.c 3

320 *
321 * MUTEX: Interpreter must be locked
322 *
323 * NOTE: This interface is called from three places:
324 * 1) From AcpiExReleaseMutex, via an AML Acquire() operator
325 * 2) From AcpiExReleaseGlobalLock when an AML Field access requires the
326 * global lock
327 * 3) From the external interface, AcpiReleaseGlobalLock
328 *
329 **/

331 ACPI_STATUS
332 AcpiExReleaseMutexObject (
333 ACPI_OPERAND_OBJECT *ObjDesc)
334 {
335 ACPI_STATUS Status = AE_OK;

338 ACPI_FUNCTION_TRACE (ExReleaseMutexObject);

341 if (ObjDesc->Mutex.AcquisitionDepth == 0)
342 {
343 return_ACPI_STATUS (AE_NOT_ACQUIRED);
344 return (AE_NOT_ACQUIRED);
344 }

346 /* Match multiple Acquires with multiple Releases */

348 ObjDesc->Mutex.AcquisitionDepth--;
349 if (ObjDesc->Mutex.AcquisitionDepth != 0)
350 {
351 /* Just decrement the depth and return */

353 return_ACPI_STATUS (AE_OK);
354 }

356 if (ObjDesc->Mutex.OwnerThread)
357 {
358 /* Unlink the mutex from the owner’s list */

360 AcpiExUnlinkMutex (ObjDesc);
361 ObjDesc->Mutex.OwnerThread = NULL;
362 }

364 /* Release the mutex, special case for Global Lock */

366 if (ObjDesc == AcpiGbl_GlobalLockMutex)
367 {
368 Status = AcpiEvReleaseGlobalLock ();
369 }
370 else
371 {
372 AcpiOsReleaseMutex (ObjDesc->Mutex.OsMutex);
373 }

375 /* Clear mutex info */

377 ObjDesc->Mutex.ThreadId = 0;
378 return_ACPI_STATUS (Status);
379 }

______unchanged_portion_omitted_

491 /***
492 *

new/usr/src/common/acpica/components/executer/exmutex.c 4

493 * FUNCTION: AcpiExReleaseAllMutexes
494 *
495 * PARAMETERS: Thread - Current executing thread object
496 *
497 * RETURN: Status
498 *
499 * DESCRIPTION: Release all mutexes held by this thread
500 *
501 * NOTE: This function is called as the thread is exiting the interpreter.
502 * Mutexes are not released when an individual control method is exited, but
503 * only when the parent thread actually exits the interpreter. This allows one
504 * method to acquire a mutex, and a different method to release it, as long as
505 * this is performed underneath a single parent control method.
506 *
507 **/

509 void
510 AcpiExReleaseAllMutexes (
511 ACPI_THREAD_STATE *Thread)
512 {
513 ACPI_OPERAND_OBJECT *Next = Thread->AcquiredMutexList;
514 ACPI_OPERAND_OBJECT *ObjDesc;

517 ACPI_FUNCTION_NAME (ExReleaseAllMutexes);
518 ACPI_FUNCTION_ENTRY ();

520 /* Traverse the list of owned mutexes, releasing each one */

522 while (Next)
523 {
524 ObjDesc = Next;
525 Next = ObjDesc->Mutex.Next;

527 ObjDesc->Mutex.Prev = NULL;
528 ObjDesc->Mutex.Next = NULL;
529 ObjDesc->Mutex.AcquisitionDepth = 0;

531 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
532 "Force-releasing held mutex: %p\n", ObjDesc));

534 /* Release the mutex, special case for Global Lock */

536 if (ObjDesc == AcpiGbl_GlobalLockMutex)
537 {
538 /* Ignore errors */

540 (void) AcpiEvReleaseGlobalLock ();
541 }
542 else
543 {
544 AcpiOsReleaseMutex (ObjDesc->Mutex.OsMutex);
545 }

547 /* Mark mutex unowned */

549 ObjDesc->Mutex.OwnerThread = NULL;
550 ObjDesc->Mutex.ThreadId = 0;

552 /* Update Thread SyncLevel (Last mutex is the important one) */

554 Thread->CurrentSyncLevel = ObjDesc->Mutex.OriginalSyncLevel;
555 }
556 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/executer/exnames.c 1

**
 13641 Thu Dec 26 13:49:05 2013
new/usr/src/common/acpica/components/executer/exnames.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exnames - interpreter/scanner name load/execute
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXNAMES_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acinterp.h"
49 #include "amlcode.h"

51 #define _COMPONENT ACPI_EXECUTER
52 ACPI_MODULE_NAME ("exnames")

54 /* Local prototypes */

56 static char *
57 AcpiExAllocateNameString (
58 UINT32 PrefixCount,

new/usr/src/common/acpica/components/executer/exnames.c 2

59 UINT32 NumNameSegs);

61 static ACPI_STATUS
62 AcpiExNameSegment (
63 UINT8 **InAmlAddress,
64 char *NameString);

67 /***
68 *
69 * FUNCTION: AcpiExAllocateNameString
70 *
71 * PARAMETERS: PrefixCount - Count of parent levels. Special cases:
72 * (-1)==root, 0==none
73 * NumNameSegs - count of 4-character name segments
74 *
75 * RETURN: A pointer to the allocated string segment. This segment must
76 * be deleted by the caller.
77 *
78 * DESCRIPTION: Allocate a buffer for a name string. Ensure allocated name
79 * string is long enough, and set up prefix if any.
80 *
81 **/

83 static char *
84 AcpiExAllocateNameString (
85 UINT32 PrefixCount,
86 UINT32 NumNameSegs)
87 {
88 char *TempPtr;
89 char *NameString;
90 UINT32 SizeNeeded;

92 ACPI_FUNCTION_TRACE (ExAllocateNameString);

95 /*
96 * Allow room for all \ and ^ prefixes, all segments and a MultiNamePrefix.
97 * Also, one byte for the null terminator.
98 * This may actually be somewhat longer than needed.
99 */
100 if (PrefixCount == ACPI_UINT32_MAX)
101 {
102 /* Special case for root */

104 SizeNeeded = 1 + (ACPI_NAME_SIZE * NumNameSegs) + 2 + 1;
105 }
106 else
107 {
108 SizeNeeded = PrefixCount + (ACPI_NAME_SIZE * NumNameSegs) + 2 + 1;
109 }

111 /*
112 * Allocate a buffer for the name.
113 * This buffer must be deleted by the caller!
114 */
115 NameString = ACPI_ALLOCATE (SizeNeeded);
116 if (!NameString)
117 {
118 ACPI_ERROR ((AE_INFO,
119 "Could not allocate size %u", SizeNeeded));
120 return_PTR (NULL);
121 }

123 TempPtr = NameString;

new/usr/src/common/acpica/components/executer/exnames.c 3

125 /* Set up Root or Parent prefixes if needed */

127 if (PrefixCount == ACPI_UINT32_MAX)
128 {
129 *TempPtr++ = AML_ROOT_PREFIX;
130 }
131 else
132 {
133 while (PrefixCount--)
134 {
135 *TempPtr++ = AML_PARENT_PREFIX;
136 }
137 }

140 /* Set up Dual or Multi prefixes if needed */

142 if (NumNameSegs > 2)
143 {
144 /* Set up multi prefixes */

146 *TempPtr++ = AML_MULTI_NAME_PREFIX_OP;
147 *TempPtr++ = (char) NumNameSegs;
148 }
149 else if (2 == NumNameSegs)
150 {
151 /* Set up dual prefixes */

153 *TempPtr++ = AML_DUAL_NAME_PREFIX;
154 }

156 /*
157 * Terminate string following prefixes. AcpiExNameSegment() will
158 * append the segment(s)
159 */
160 *TempPtr = 0;

162 return_PTR (NameString);
163 }

______unchanged_portion_omitted_

264 /***
265 *
266 * FUNCTION: AcpiExGetNameString
267 *
268 * PARAMETERS: DataType - Object type to be associated with this
269 * name
270 * InAmlAddress - Pointer to the namestring in the AML code
271 * OutNameString - Where the namestring is returned
272 * OutNameLength - Length of the returned string
273 *
274 * RETURN: Status, namestring and length
275 *
276 * DESCRIPTION: Extract a full namepath from the AML byte stream,
277 * including any prefixes.
278 *
279 **/

281 ACPI_STATUS
282 AcpiExGetNameString (
283 ACPI_OBJECT_TYPE DataType,
284 UINT8 *InAmlAddress,
285 char **OutNameString,
286 UINT32 *OutNameLength)
287 {

new/usr/src/common/acpica/components/executer/exnames.c 4

288 ACPI_STATUS Status = AE_OK;
289 UINT8 *AmlAddress = InAmlAddress;
290 char *NameString = NULL;
291 UINT32 NumSegments;
292 UINT32 PrefixCount = 0;
293 BOOLEAN HasPrefix = FALSE;

296 ACPI_FUNCTION_TRACE_PTR (ExGetNameString, AmlAddress);

299 if (ACPI_TYPE_LOCAL_REGION_FIELD == DataType ||
300 ACPI_TYPE_LOCAL_BANK_FIELD == DataType ||
301 ACPI_TYPE_LOCAL_INDEX_FIELD == DataType)
302 {
303 /* Disallow prefixes for types associated with FieldUnit names */

305 NameString = AcpiExAllocateNameString (0, 1);
306 if (!NameString)
307 {
308 Status = AE_NO_MEMORY;
309 }
310 else
311 {
312 Status = AcpiExNameSegment (&AmlAddress, NameString);
313 }
314 }
315 else
316 {
317 /*
318 * DataType is not a field name.
319 * Examine first character of name for root or parent prefix operators
320 */
321 switch (*AmlAddress)
322 {
323 case AML_ROOT_PREFIX:

325 ACPI_DEBUG_PRINT ((ACPI_DB_LOAD, "RootPrefix(\\) at %p\n",
326 AmlAddress));

328 /*
329 * Remember that we have a RootPrefix --
330 * see comment in AcpiExAllocateNameString()
331 */
332 AmlAddress++;
333 PrefixCount = ACPI_UINT32_MAX;
334 HasPrefix = TRUE;
335 break;

337 case AML_PARENT_PREFIX:

339 /* Increment past possibly multiple parent prefixes */

341 do
342 {
343 ACPI_DEBUG_PRINT ((ACPI_DB_LOAD, "ParentPrefix (^) at %p\n",
344 AmlAddress));

346 AmlAddress++;
347 PrefixCount++;

349 } while (*AmlAddress == AML_PARENT_PREFIX);

351 HasPrefix = TRUE;
352 break;

new/usr/src/common/acpica/components/executer/exnames.c 5

354 default:

356 /* Not a prefix character */

358 break;
359 }

361 /* Examine first character of name for name segment prefix operator */

363 switch (*AmlAddress)
364 {
365 case AML_DUAL_NAME_PREFIX:

367 ACPI_DEBUG_PRINT ((ACPI_DB_LOAD, "DualNamePrefix at %p\n",
368 AmlAddress));

370 AmlAddress++;
371 NameString = AcpiExAllocateNameString (PrefixCount, 2);
372 if (!NameString)
373 {
374 Status = AE_NO_MEMORY;
375 break;
376 }

378 /* Indicate that we processed a prefix */

380 HasPrefix = TRUE;

382 Status = AcpiExNameSegment (&AmlAddress, NameString);
383 if (ACPI_SUCCESS (Status))
384 {
385 Status = AcpiExNameSegment (&AmlAddress, NameString);
386 }
387 break;

389 case AML_MULTI_NAME_PREFIX_OP:

391 ACPI_DEBUG_PRINT ((ACPI_DB_LOAD, "MultiNamePrefix at %p\n",
392 AmlAddress));

394 /* Fetch count of segments remaining in name path */

396 AmlAddress++;
397 NumSegments = *AmlAddress;

399 NameString = AcpiExAllocateNameString (PrefixCount, NumSegments);
400 if (!NameString)
401 {
402 Status = AE_NO_MEMORY;
403 break;
404 }

406 /* Indicate that we processed a prefix */

408 AmlAddress++;
409 HasPrefix = TRUE;

411 while (NumSegments &&
412 (Status = AcpiExNameSegment (&AmlAddress, NameString)) ==
413 AE_OK)
414 {
415 NumSegments--;
416 }

new/usr/src/common/acpica/components/executer/exnames.c 6

418 break;

420 case 0:

422 /* NullName valid as of 8-12-98 ASL/AML Grammar Update */

424 if (PrefixCount == ACPI_UINT32_MAX)
425 {
426 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
427 "NameSeg is \"\\\" followed by NULL\n"));
428 }

430 /* Consume the NULL byte */

432 AmlAddress++;
433 NameString = AcpiExAllocateNameString (PrefixCount, 0);
434 if (!NameString)
435 {
436 Status = AE_NO_MEMORY;
437 break;
438 }

440 break;

442 default:

444 /* Name segment string */

446 NameString = AcpiExAllocateNameString (PrefixCount, 1);
447 if (!NameString)
448 {
449 Status = AE_NO_MEMORY;
450 break;
451 }

453 Status = AcpiExNameSegment (&AmlAddress, NameString);
454 break;
455 }
456 }

458 if (AE_CTRL_PENDING == Status && HasPrefix)
459 {
460 /* Ran out of segments after processing a prefix */

462 ACPI_ERROR ((AE_INFO,
463 "Malformed Name at %p", NameString));
464 Status = AE_AML_BAD_NAME;
465 }

467 if (ACPI_FAILURE (Status))
468 {
469 if (NameString)
470 {
471 ACPI_FREE (NameString);
472 }
473 return_ACPI_STATUS (Status);
474 }

476 *OutNameString = NameString;
477 *OutNameLength = (UINT32) (AmlAddress - InAmlAddress);

479 return_ACPI_STATUS (Status);
480 }

new/usr/src/common/acpica/components/executer/exnames.c 7

new/usr/src/common/acpica/components/executer/exoparg1.c 1

**
 34340 Thu Dec 26 13:49:05 2013
new/usr/src/common/acpica/components/executer/exoparg1.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exoparg1 - AML execution - opcodes with 1 argument
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXOPARG1_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acparser.h"
49 #include "acdispat.h"
50 #include "acinterp.h"
51 #include "amlcode.h"
52 #include "acnamesp.h"

55 #define _COMPONENT ACPI_EXECUTER
56 ACPI_MODULE_NAME ("exoparg1")

new/usr/src/common/acpica/components/executer/exoparg1.c 2

59 /*!
60 * Naming convention for AML interpreter execution routines.
61 *
62 * The routines that begin execution of AML opcodes are named with a common
63 * convention based upon the number of arguments, the number of target operands,
64 * and whether or not a value is returned:
65 *
66 * AcpiExOpcode_xA_yT_zR
67 *
68 * Where:
69 *
70 * xA - ARGUMENTS: The number of arguments (input operands) that are
71 * required for this opcode type (0 through 6 args).
72 * yT - TARGETS: The number of targets (output operands) that are required
73 * for this opcode type (0, 1, or 2 targets).
74 * zR - RETURN VALUE: Indicates whether this opcode type returns a value
75 * as the function return (0 or 1).
76 *
77 * The AcpiExOpcode* functions are called via the Dispatcher component with
78 * fully resolved operands.
79 !*/

81 /***
82 *
83 * FUNCTION: AcpiExOpcode_0A_0T_1R
84 *
85 * PARAMETERS: WalkState - Current state (contains AML opcode)
86 *
87 * RETURN: Status
88 *
89 * DESCRIPTION: Execute operator with no operands, one return value
90 *
91 **/

93 ACPI_STATUS
94 AcpiExOpcode_0A_0T_1R (
95 ACPI_WALK_STATE *WalkState)
96 {
97 ACPI_STATUS Status = AE_OK;
98 ACPI_OPERAND_OBJECT *ReturnDesc = NULL;

101 ACPI_FUNCTION_TRACE_STR (ExOpcode_0A_0T_1R,
102 AcpiPsGetOpcodeName (WalkState->Opcode));

105 /* Examine the AML opcode */

107 switch (WalkState->Opcode)
108 {
109 case AML_TIMER_OP: /* Timer () */

111 /* Create a return object of type Integer */

113 ReturnDesc = AcpiUtCreateIntegerObject (AcpiOsGetTimer ());
114 if (!ReturnDesc)
115 {
116 Status = AE_NO_MEMORY;
117 goto Cleanup;
118 }
119 break;

121 default: /* Unknown opcode */

123 ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X",
124 WalkState->Opcode));

new/usr/src/common/acpica/components/executer/exoparg1.c 3

125 Status = AE_AML_BAD_OPCODE;
126 break;
127 }

129 Cleanup:

131 /* Delete return object on error */

133 if ((ACPI_FAILURE (Status)) || WalkState->ResultObj)
134 {
135 AcpiUtRemoveReference (ReturnDesc);
136 WalkState->ResultObj = NULL;
137 }
138 else
139 {
140 /* Save the return value */

142 WalkState->ResultObj = ReturnDesc;
143 }

145 return_ACPI_STATUS (Status);
146 }

149 /***
150 *
151 * FUNCTION: AcpiExOpcode_1A_0T_0R
152 *
153 * PARAMETERS: WalkState - Current state (contains AML opcode)
154 *
155 * RETURN: Status
156 *
157 * DESCRIPTION: Execute Type 1 monadic operator with numeric operand on
158 * object stack
159 *
160 **/

162 ACPI_STATUS
163 AcpiExOpcode_1A_0T_0R (
164 ACPI_WALK_STATE *WalkState)
165 {
166 ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0];
167 ACPI_STATUS Status = AE_OK;

170 ACPI_FUNCTION_TRACE_STR (ExOpcode_1A_0T_0R,
171 AcpiPsGetOpcodeName (WalkState->Opcode));

174 /* Examine the AML opcode */

176 switch (WalkState->Opcode)
177 {
178 case AML_RELEASE_OP: /* Release (MutexObject) */

180 Status = AcpiExReleaseMutex (Operand[0], WalkState);
181 break;

183 case AML_RESET_OP: /* Reset (EventObject) */

185 Status = AcpiExSystemResetEvent (Operand[0]);
186 break;

188 case AML_SIGNAL_OP: /* Signal (EventObject) */

new/usr/src/common/acpica/components/executer/exoparg1.c 4

190 Status = AcpiExSystemSignalEvent (Operand[0]);
191 break;

193 case AML_SLEEP_OP: /* Sleep (MsecTime) */

195 Status = AcpiExSystemDoSleep (Operand[0]->Integer.Value);
196 break;

198 case AML_STALL_OP: /* Stall (UsecTime) */

200 Status = AcpiExSystemDoStall ((UINT32) Operand[0]->Integer.Value);
201 break;

203 case AML_UNLOAD_OP: /* Unload (Handle) */

205 Status = AcpiExUnloadTable (Operand[0]);
206 break;

208 default: /* Unknown opcode */

210 ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X",
211 WalkState->Opcode));
212 Status = AE_AML_BAD_OPCODE;
213 break;
214 }

216 return_ACPI_STATUS (Status);
217 }

______unchanged_portion_omitted_

269 /***
270 *
271 * FUNCTION: AcpiExOpcode_1A_1T_1R
272 *
273 * PARAMETERS: WalkState - Current state (contains AML opcode)
274 *
275 * RETURN: Status
276 *
277 * DESCRIPTION: Execute opcode with one argument, one target, and a
278 * return value.
279 *
280 **/

282 ACPI_STATUS
283 AcpiExOpcode_1A_1T_1R (
284 ACPI_WALK_STATE *WalkState)
285 {
286 ACPI_STATUS Status = AE_OK;
287 ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0];
288 ACPI_OPERAND_OBJECT *ReturnDesc = NULL;
289 ACPI_OPERAND_OBJECT *ReturnDesc2 = NULL;
290 UINT32 Temp32;
291 UINT32 i;
292 UINT64 PowerOfTen;
293 UINT64 Digit;

296 ACPI_FUNCTION_TRACE_STR (ExOpcode_1A_1T_1R,
297 AcpiPsGetOpcodeName (WalkState->Opcode));

new/usr/src/common/acpica/components/executer/exoparg1.c 5

300 /* Examine the AML opcode */

302 switch (WalkState->Opcode)
303 {
304 case AML_BIT_NOT_OP:
305 case AML_FIND_SET_LEFT_BIT_OP:
306 case AML_FIND_SET_RIGHT_BIT_OP:
307 case AML_FROM_BCD_OP:
308 case AML_TO_BCD_OP:
309 case AML_COND_REF_OF_OP:

311 /* Create a return object of type Integer for these opcodes */

313 ReturnDesc = AcpiUtCreateInternalObject (ACPI_TYPE_INTEGER);
314 if (!ReturnDesc)
315 {
316 Status = AE_NO_MEMORY;
317 goto Cleanup;
318 }

320 switch (WalkState->Opcode)
321 {
322 case AML_BIT_NOT_OP: /* Not (Operand, Result) */

324 ReturnDesc->Integer.Value = ~Operand[0]->Integer.Value;
325 break;

327 case AML_FIND_SET_LEFT_BIT_OP: /* FindSetLeftBit (Operand, Result) */

329 ReturnDesc->Integer.Value = Operand[0]->Integer.Value;

331 /*
332 * Acpi specification describes Integer type as a little
333 * endian unsigned value, so this boundary condition is valid.
334 */
335 for (Temp32 = 0; ReturnDesc->Integer.Value &&
336 Temp32 < ACPI_INTEGER_BIT_SIZE; ++Temp32)
337 {
338 ReturnDesc->Integer.Value >>= 1;
339 }

341 ReturnDesc->Integer.Value = Temp32;
342 break;

344 case AML_FIND_SET_RIGHT_BIT_OP: /* FindSetRightBit (Operand, Result) */

346 ReturnDesc->Integer.Value = Operand[0]->Integer.Value;

348 /*
349 * The Acpi specification describes Integer type as a little
350 * endian unsigned value, so this boundary condition is valid.
351 */
352 for (Temp32 = 0; ReturnDesc->Integer.Value &&
353 Temp32 < ACPI_INTEGER_BIT_SIZE; ++Temp32)
354 {
355 ReturnDesc->Integer.Value <<= 1;
356 }

358 /* Since the bit position is one-based, subtract from 33 (65) */

360 ReturnDesc->Integer.Value =
361 Temp32 == 0 ? 0 : (ACPI_INTEGER_BIT_SIZE + 1) - Temp32;
362 break;

new/usr/src/common/acpica/components/executer/exoparg1.c 6

364 case AML_FROM_BCD_OP: /* FromBcd (BCDValue, Result) */

365 /*
366 * The 64-bit ACPI integer can hold 16 4-bit BCD characters
367 * (if table is 32-bit, integer can hold 8 BCD characters)
368 * Convert each 4-bit BCD value
369 */
370 PowerOfTen = 1;
371 ReturnDesc->Integer.Value = 0;
372 Digit = Operand[0]->Integer.Value;

374 /* Convert each BCD digit (each is one nybble wide) */

376 for (i = 0; (i < AcpiGbl_IntegerNybbleWidth) && (Digit > 0); i++)
377 {
378 /* Get the least significant 4-bit BCD digit */

380 Temp32 = ((UINT32) Digit) & 0xF;

382 /* Check the range of the digit */

384 if (Temp32 > 9)
385 {
386 ACPI_ERROR ((AE_INFO,
387 "BCD digit too large (not decimal): 0x%X",
388 Temp32));

390 Status = AE_AML_NUMERIC_OVERFLOW;
391 goto Cleanup;
392 }

394 /* Sum the digit into the result with the current power of 10 */

396 ReturnDesc->Integer.Value +=
397 (((UINT64) Temp32) * PowerOfTen);

399 /* Shift to next BCD digit */

401 Digit >>= 4;

403 /* Next power of 10 */

405 PowerOfTen *= 10;
406 }
407 break;

409 case AML_TO_BCD_OP: /* ToBcd (Operand, Result) */

411 ReturnDesc->Integer.Value = 0;
412 Digit = Operand[0]->Integer.Value;

414 /* Each BCD digit is one nybble wide */

416 for (i = 0; (i < AcpiGbl_IntegerNybbleWidth) && (Digit > 0); i++)
417 {
418 (void) AcpiUtShortDivide (Digit, 10, &Digit, &Temp32);

420 /*
421 * Insert the BCD digit that resides in the
422 * remainder from above
423 */
424 ReturnDesc->Integer.Value |=
425 (((UINT64) Temp32) << ACPI_MUL_4 (i));

new/usr/src/common/acpica/components/executer/exoparg1.c 7

426 }

428 /* Overflow if there is any data left in Digit */

430 if (Digit > 0)
431 {
432 ACPI_ERROR ((AE_INFO,
433 "Integer too large to convert to BCD: 0x%8.8X%8.8X",
434 ACPI_FORMAT_UINT64 (Operand[0]->Integer.Value)));
435 Status = AE_AML_NUMERIC_OVERFLOW;
436 goto Cleanup;
437 }
438 break;

440 case AML_COND_REF_OF_OP: /* CondRefOf (SourceObject, Result) */

441 /*
442 * This op is a little strange because the internal return value is
443 * different than the return value stored in the result descriptor
444 * (There are really two return values)
445 */
446 if ((ACPI_NAMESPACE_NODE *) Operand[0] == AcpiGbl_RootNode)
447 {
448 /*
449 * This means that the object does not exist in the namespace,
450 * return FALSE
451 */
452 ReturnDesc->Integer.Value = 0;
453 goto Cleanup;
454 }

456 /* Get the object reference, store it, and remove our reference */

458 Status = AcpiExGetObjectReference (Operand[0],
459 &ReturnDesc2, WalkState);
460 if (ACPI_FAILURE (Status))
461 {
462 goto Cleanup;
463 }

465 Status = AcpiExStore (ReturnDesc2, Operand[1], WalkState);
466 AcpiUtRemoveReference (ReturnDesc2);

468 /* The object exists in the namespace, return TRUE */

470 ReturnDesc->Integer.Value = ACPI_UINT64_MAX;
471 goto Cleanup;

474 default:

476 /* No other opcodes get here */

478 break;
479 }
480 break;

482 case AML_STORE_OP: /* Store (Source, Target) */

483 /*
484 * A store operand is typically a number, string, buffer or lvalue
485 * Be careful about deleting the source object,
486 * since the object itself may have been stored.
487 */

new/usr/src/common/acpica/components/executer/exoparg1.c 8

488 Status = AcpiExStore (Operand[0], Operand[1], WalkState);
489 if (ACPI_FAILURE (Status))
490 {
491 return_ACPI_STATUS (Status);
492 }

494 /* It is possible that the Store already produced a return object */

496 if (!WalkState->ResultObj)
497 {
498 /*
499 * Normally, we would remove a reference on the Operand[0]
500 * parameter; But since it is being used as the internal return
501 * object (meaning we would normally increment it), the two
502 * cancel out, and we simply don’t do anything.
503 */
504 WalkState->ResultObj = Operand[0];
505 WalkState->Operands[0] = NULL; /* Prevent deletion */
506 }
507 return_ACPI_STATUS (Status);

509 /*
510 * ACPI 2.0 Opcodes
511 */
512 case AML_COPY_OP: /* Copy (Source, Target) */

514 Status = AcpiUtCopyIobjectToIobject (Operand[0], &ReturnDesc,
515 WalkState);
516 break;

518 case AML_TO_DECSTRING_OP: /* ToDecimalString (Data, Result) */

520 Status = AcpiExConvertToString (Operand[0], &ReturnDesc,
521 ACPI_EXPLICIT_CONVERT_DECIMAL);
522 if (ReturnDesc == Operand[0])
523 {
524 /* No conversion performed, add ref to handle return value */
525 AcpiUtAddReference (ReturnDesc);
526 }
527 break;

529 case AML_TO_HEXSTRING_OP: /* ToHexString (Data, Result) */

531 Status = AcpiExConvertToString (Operand[0], &ReturnDesc,
532 ACPI_EXPLICIT_CONVERT_HEX);
533 if (ReturnDesc == Operand[0])
534 {
535 /* No conversion performed, add ref to handle return value */
536 AcpiUtAddReference (ReturnDesc);
537 }
538 break;

540 case AML_TO_BUFFER_OP: /* ToBuffer (Data, Result) */

542 Status = AcpiExConvertToBuffer (Operand[0], &ReturnDesc);
543 if (ReturnDesc == Operand[0])
544 {
545 /* No conversion performed, add ref to handle return value */
546 AcpiUtAddReference (ReturnDesc);
547 }
548 break;

new/usr/src/common/acpica/components/executer/exoparg1.c 9

550 case AML_TO_INTEGER_OP: /* ToInteger (Data, Result) */

552 Status = AcpiExConvertToInteger (Operand[0], &ReturnDesc,
553 ACPI_ANY_BASE);
554 if (ReturnDesc == Operand[0])
555 {
556 /* No conversion performed, add ref to handle return value */
557 AcpiUtAddReference (ReturnDesc);
558 }
559 break;

561 case AML_SHIFT_LEFT_BIT_OP: /* ShiftLeftBit (Source, BitNum) */
562 case AML_SHIFT_RIGHT_BIT_OP: /* ShiftRightBit (Source, BitNum) */

564 /* These are two obsolete opcodes */

566 ACPI_ERROR ((AE_INFO,
567 "%s is obsolete and not implemented",
568 AcpiPsGetOpcodeName (WalkState->Opcode)));
569 Status = AE_SUPPORT;
570 goto Cleanup;

572 default: /* Unknown opcode */

574 ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X",
575 WalkState->Opcode));
576 Status = AE_AML_BAD_OPCODE;
577 goto Cleanup;
578 }

580 if (ACPI_SUCCESS (Status))
581 {
582 /* Store the return value computed above into the target object */

584 Status = AcpiExStore (ReturnDesc, Operand[1], WalkState);
585 }

588 Cleanup:

590 /* Delete return object on error */

592 if (ACPI_FAILURE (Status))
593 {
594 AcpiUtRemoveReference (ReturnDesc);
595 }

597 /* Save return object on success */

599 else if (!WalkState->ResultObj)
600 {
601 WalkState->ResultObj = ReturnDesc;
602 }

604 return_ACPI_STATUS (Status);
605 }

608 /***
609 *
610 * FUNCTION: AcpiExOpcode_1A_0T_1R
611 *
612 * PARAMETERS: WalkState - Current state (contains AML opcode)

new/usr/src/common/acpica/components/executer/exoparg1.c 10

613 *
614 * RETURN: Status
615 *
616 * DESCRIPTION: Execute opcode with one argument, no target, and a return value
617 *
618 **/

620 ACPI_STATUS
621 AcpiExOpcode_1A_0T_1R (
622 ACPI_WALK_STATE *WalkState)
623 {
624 ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0];
625 ACPI_OPERAND_OBJECT *TempDesc;
626 ACPI_OPERAND_OBJECT *ReturnDesc = NULL;
627 ACPI_STATUS Status = AE_OK;
628 UINT32 Type;
629 UINT64 Value;

632 ACPI_FUNCTION_TRACE_STR (ExOpcode_1A_0T_1R,
633 AcpiPsGetOpcodeName (WalkState->Opcode));

636 /* Examine the AML opcode */

638 switch (WalkState->Opcode)
639 {
640 case AML_LNOT_OP: /* LNot (Operand) */

642 ReturnDesc = AcpiUtCreateIntegerObject ((UINT64) 0);
643 if (!ReturnDesc)
644 {
645 Status = AE_NO_MEMORY;
646 goto Cleanup;
647 }

649 /*
650 * Set result to ONES (TRUE) if Value == 0. Note:
651 * ReturnDesc->Integer.Value is initially == 0 (FALSE) from above.
652 */
653 if (!Operand[0]->Integer.Value)
654 {
655 ReturnDesc->Integer.Value = ACPI_UINT64_MAX;
656 }
657 break;

659 case AML_DECREMENT_OP: /* Decrement (Operand) */
660 case AML_INCREMENT_OP: /* Increment (Operand) */

661 /*
662 * Create a new integer. Can’t just get the base integer and
663 * increment it because it may be an Arg or Field.
664 */
665 ReturnDesc = AcpiUtCreateInternalObject (ACPI_TYPE_INTEGER);
666 if (!ReturnDesc)
667 {
668 Status = AE_NO_MEMORY;
669 goto Cleanup;
670 }

672 /*
673 * Since we are expecting a Reference operand, it can be either a
674 * NS Node or an internal object.
675 */
676 TempDesc = Operand[0];

new/usr/src/common/acpica/components/executer/exoparg1.c 11

677 if (ACPI_GET_DESCRIPTOR_TYPE (TempDesc) == ACPI_DESC_TYPE_OPERAND)
678 {
679 /* Internal reference object - prevent deletion */

681 AcpiUtAddReference (TempDesc);
682 }

684 /*
685 * Convert the Reference operand to an Integer (This removes a
686 * reference on the Operand[0] object)
687 *
688 * NOTE: We use LNOT_OP here in order to force resolution of the
689 * reference operand to an actual integer.
690 */
691 Status = AcpiExResolveOperands (AML_LNOT_OP, &TempDesc, WalkState);
692 if (ACPI_FAILURE (Status))
693 {
694 ACPI_EXCEPTION ((AE_INFO, Status,
695 "While resolving operands for [%s]",
696 AcpiPsGetOpcodeName (WalkState->Opcode)));

698 goto Cleanup;
699 }

701 /*
702 * TempDesc is now guaranteed to be an Integer object --
703 * Perform the actual increment or decrement
704 */
705 if (WalkState->Opcode == AML_INCREMENT_OP)
706 {
707 ReturnDesc->Integer.Value = TempDesc->Integer.Value +1;
708 }
709 else
710 {
711 ReturnDesc->Integer.Value = TempDesc->Integer.Value -1;
712 }

714 /* Finished with this Integer object */

716 AcpiUtRemoveReference (TempDesc);

718 /*
719 * Store the result back (indirectly) through the original
720 * Reference object
721 */
722 Status = AcpiExStore (ReturnDesc, Operand[0], WalkState);
723 break;

725 case AML_TYPE_OP: /* ObjectType (SourceObject) */

726 /*
727 * Note: The operand is not resolved at this point because we want to
728 * get the associated object, not its value. For example, we don’t
729 * want to resolve a FieldUnit to its value, we want the actual
730 * FieldUnit object.
731 */

733 /* Get the type of the base object */

735 Status = AcpiExResolveMultiple (WalkState, Operand[0], &Type, NULL);
736 if (ACPI_FAILURE (Status))
737 {
738 goto Cleanup;
739 }

new/usr/src/common/acpica/components/executer/exoparg1.c 12

741 /* Allocate a descriptor to hold the type. */

743 ReturnDesc = AcpiUtCreateIntegerObject ((UINT64) Type);
744 if (!ReturnDesc)
745 {
746 Status = AE_NO_MEMORY;
747 goto Cleanup;
748 }
749 break;

751 case AML_SIZE_OF_OP: /* SizeOf (SourceObject) */

752 /*
753 * Note: The operand is not resolved at this point because we want to
754 * get the associated object, not its value.
755 */

757 /* Get the base object */

759 Status = AcpiExResolveMultiple (WalkState,
760 Operand[0], &Type, &TempDesc);
761 if (ACPI_FAILURE (Status))
762 {
763 goto Cleanup;
764 }

766 /*
767 * The type of the base object must be integer, buffer, string, or
768 * package. All others are not supported.
769 *
770 * NOTE: Integer is not specifically supported by the ACPI spec,
771 * but is supported implicitly via implicit operand conversion.
772 * rather than bother with conversion, we just use the byte width
773 * global (4 or 8 bytes).
774 */
775 switch (Type)
776 {
777 case ACPI_TYPE_INTEGER:

779 Value = AcpiGbl_IntegerByteWidth;
780 break;

782 case ACPI_TYPE_STRING:

784 Value = TempDesc->String.Length;
785 break;

787 case ACPI_TYPE_BUFFER:

789 /* Buffer arguments may not be evaluated at this point */

791 Status = AcpiDsGetBufferArguments (TempDesc);
792 Value = TempDesc->Buffer.Length;
793 break;

795 case ACPI_TYPE_PACKAGE:

797 /* Package arguments may not be evaluated at this point */

799 Status = AcpiDsGetPackageArguments (TempDesc);
800 Value = TempDesc->Package.Count;
801 break;

803 default:

new/usr/src/common/acpica/components/executer/exoparg1.c 13

805 ACPI_ERROR ((AE_INFO,
806 "Operand must be Buffer/Integer/String/Package - found type %s",
807 AcpiUtGetTypeName (Type)));
808 Status = AE_AML_OPERAND_TYPE;
809 goto Cleanup;
810 }

812 if (ACPI_FAILURE (Status))
813 {
814 goto Cleanup;
815 }

817 /*
818 * Now that we have the size of the object, create a result
819 * object to hold the value
820 */
821 ReturnDesc = AcpiUtCreateIntegerObject (Value);
822 if (!ReturnDesc)
823 {
824 Status = AE_NO_MEMORY;
825 goto Cleanup;
826 }
827 break;

830 case AML_REF_OF_OP: /* RefOf (SourceObject) */

832 Status = AcpiExGetObjectReference (Operand[0], &ReturnDesc, WalkState);
833 if (ACPI_FAILURE (Status))
834 {
835 goto Cleanup;
836 }
837 break;

840 case AML_DEREF_OF_OP: /* DerefOf (ObjReference | String) */

842 /* Check for a method local or argument, or standalone String */

844 if (ACPI_GET_DESCRIPTOR_TYPE (Operand[0]) == ACPI_DESC_TYPE_NAMED)
845 {
846 TempDesc = AcpiNsGetAttachedObject (
847 (ACPI_NAMESPACE_NODE *) Operand[0]);
848 if (TempDesc &&
849 ((TempDesc->Common.Type == ACPI_TYPE_STRING) ||
850 (TempDesc->Common.Type == ACPI_TYPE_LOCAL_REFERENCE)))
851 {
852 Operand[0] = TempDesc;
853 AcpiUtAddReference (TempDesc);
854 }
855 else
856 {
857 Status = AE_AML_OPERAND_TYPE;
858 goto Cleanup;
859 }
860 }
861 else
862 {
863 switch ((Operand[0])->Common.Type)
864 {
865 case ACPI_TYPE_LOCAL_REFERENCE:
866 /*
867 * This is a DerefOf (LocalX | ArgX)
868 *
869 * Must resolve/dereference the local/arg reference first
870 */

new/usr/src/common/acpica/components/executer/exoparg1.c 14

871 switch (Operand[0]->Reference.Class)
872 {
873 case ACPI_REFCLASS_LOCAL:
874 case ACPI_REFCLASS_ARG:

876 /* Set Operand[0] to the value of the local/arg */

878 Status = AcpiDsMethodDataGetValue (
879 Operand[0]->Reference.Class,
880 Operand[0]->Reference.Value,
881 WalkState, &TempDesc);
882 if (ACPI_FAILURE (Status))
883 {
884 goto Cleanup;
885 }

887 /*
888 * Delete our reference to the input object and
889 * point to the object just retrieved
890 */
891 AcpiUtRemoveReference (Operand[0]);
892 Operand[0] = TempDesc;
893 break;

895 case ACPI_REFCLASS_REFOF:

897 /* Get the object to which the reference refers */

899 TempDesc = Operand[0]->Reference.Object;
900 AcpiUtRemoveReference (Operand[0]);
901 Operand[0] = TempDesc;
902 break;

904 default:

906 /* Must be an Index op - handled below */
907 break;
908 }
909 break;

911 case ACPI_TYPE_STRING:

913 break;

915 default:

917 Status = AE_AML_OPERAND_TYPE;
918 goto Cleanup;
919 }
920 }

922 if (ACPI_GET_DESCRIPTOR_TYPE (Operand[0]) != ACPI_DESC_TYPE_NAMED)
923 {
924 if ((Operand[0])->Common.Type == ACPI_TYPE_STRING)
925 {
926 /*
927 * This is a DerefOf (String). The string is a reference
928 * to a named ACPI object.
929 *
930 * 1) Find the owning Node
931 * 2) Dereference the node to an actual object. Could be a
932 * Field, so we need to resolve the node to a value.
933 */
934 Status = AcpiNsGetNode (WalkState->ScopeInfo->Scope.Node,
935 Operand[0]->String.Pointer,
936 ACPI_NS_SEARCH_PARENT,

new/usr/src/common/acpica/components/executer/exoparg1.c 15

937 ACPI_CAST_INDIRECT_PTR (
938 ACPI_NAMESPACE_NODE, &ReturnDesc));
939 if (ACPI_FAILURE (Status))
940 {
941 goto Cleanup;
942 }

944 Status = AcpiExResolveNodeToValue (
945 ACPI_CAST_INDIRECT_PTR (
946 ACPI_NAMESPACE_NODE, &ReturnDesc),
947 WalkState);
948 goto Cleanup;
949 }
950 }

952 /* Operand[0] may have changed from the code above */

954 if (ACPI_GET_DESCRIPTOR_TYPE (Operand[0]) == ACPI_DESC_TYPE_NAMED)
955 {
956 /*
957 * This is a DerefOf (ObjectReference)
958 * Get the actual object from the Node (This is the dereference).
959 * This case may only happen when a LocalX or ArgX is
960 * dereferenced above.
961 */
962 ReturnDesc = AcpiNsGetAttachedObject (
963 (ACPI_NAMESPACE_NODE *) Operand[0]);
964 AcpiUtAddReference (ReturnDesc);
965 }
966 else
967 {
968 /*
969 * This must be a reference object produced by either the
970 * Index() or RefOf() operator
971 */
972 switch (Operand[0]->Reference.Class)
973 {
974 case ACPI_REFCLASS_INDEX:

975 /*
976 * The target type for the Index operator must be
977 * either a Buffer or a Package
978 */
979 switch (Operand[0]->Reference.TargetType)
980 {
981 case ACPI_TYPE_BUFFER_FIELD:

983 TempDesc = Operand[0]->Reference.Object;

985 /*
986 * Create a new object that contains one element of the
987 * buffer -- the element pointed to by the index.
988 *
989 * NOTE: index into a buffer is NOT a pointer to a
990 * sub-buffer of the main buffer, it is only a pointer to a
991 * single element (byte) of the buffer!
992 *
993 * Since we are returning the value of the buffer at the
994 * indexed location, we don’t need to add an additional
995 * reference to the buffer itself.
996 */
997 ReturnDesc = AcpiUtCreateIntegerObject ((UINT64)
998 TempDesc->Buffer.Pointer[Operand[0]->Reference.Value]);
999 if (!ReturnDesc)

1000 {
1001 Status = AE_NO_MEMORY;

new/usr/src/common/acpica/components/executer/exoparg1.c 16

1002 goto Cleanup;
1003 }
1004 break;

1006 case ACPI_TYPE_PACKAGE:

1007 /*
1008 * Return the referenced element of the package. We must
1009 * add another reference to the referenced object, however.
1010 */
1011 ReturnDesc = *(Operand[0]->Reference.Where);
1012 if (!ReturnDesc)
1037 if (ReturnDesc)
1013 {
1014 /*
1015 * Element is NULL, do not allow the dereference.
1016 * This provides compatibility with other ACPI
1017 * implementations.
1018 */
1019 return_ACPI_STATUS (AE_AML_UNINITIALIZED_ELEMENT);
1020 }

1022 AcpiUtAddReference (ReturnDesc);
1040 }
1023 break;

1025 default:

1027 ACPI_ERROR ((AE_INFO,
1028 "Unknown Index TargetType 0x%X in reference object %p",
1029 Operand[0]->Reference.TargetType, Operand[0]));
1030 Status = AE_AML_OPERAND_TYPE;
1031 goto Cleanup;
1032 }
1033 break;

1035 case ACPI_REFCLASS_REFOF:

1037 ReturnDesc = Operand[0]->Reference.Object;

1039 if (ACPI_GET_DESCRIPTOR_TYPE (ReturnDesc) ==
1040 ACPI_DESC_TYPE_NAMED)
1041 {
1042 ReturnDesc = AcpiNsGetAttachedObject (
1043 (ACPI_NAMESPACE_NODE *) ReturnDesc);
1044 if (!ReturnDesc)
1045 {
1046 break;
1047 }

1049 /*
1050 * June 2013:
1051 * BufferFields/FieldUnits require additional resolution
1052 */
1053 switch (ReturnDesc->Common.Type)
1054 {
1055 case ACPI_TYPE_BUFFER_FIELD:
1056 case ACPI_TYPE_LOCAL_REGION_FIELD:
1057 case ACPI_TYPE_LOCAL_BANK_FIELD:
1058 case ACPI_TYPE_LOCAL_INDEX_FIELD:
1066 /* Add another reference to the object! */

1060 Status = AcpiExReadDataFromField (WalkState,

new/usr/src/common/acpica/components/executer/exoparg1.c 17

1061 ReturnDesc, &TempDesc);
1062 if (ACPI_FAILURE (Status))
1063 {
1064 goto Cleanup;
1065 }

1067 ReturnDesc = TempDesc;
1068 break;

1070 default:

1072 /* Add another reference to the object */

1074 AcpiUtAddReference (ReturnDesc);
1075 break;
1076 }
1077 }
1078 break;

1080 default:

1072 default:
1082 ACPI_ERROR ((AE_INFO,
1083 "Unknown class in reference(%p) - 0x%2.2X",
1084 Operand[0], Operand[0]->Reference.Class));

1086 Status = AE_TYPE;
1087 goto Cleanup;
1088 }
1089 }
1090 break;

1092 default:

1094 ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X",
1095 WalkState->Opcode));
1096 Status = AE_AML_BAD_OPCODE;
1097 goto Cleanup;
1098 }

1101 Cleanup:

1103 /* Delete return object on error */

1105 if (ACPI_FAILURE (Status))
1106 {
1107 AcpiUtRemoveReference (ReturnDesc);
1108 }

1110 /* Save return object on success */

1112 else
1113 {
1114 WalkState->ResultObj = ReturnDesc;
1115 }

1117 return_ACPI_STATUS (Status);
1118 }

new/usr/src/common/acpica/components/executer/exoparg2.c 1

**
 17928 Thu Dec 26 13:49:06 2013
new/usr/src/common/acpica/components/executer/exoparg2.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exoparg2 - AML execution - opcodes with 2 arguments
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __EXOPARG2_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acparser.h"
50 #include "acinterp.h"
51 #include "acevents.h"
52 #include "amlcode.h"

55 #define _COMPONENT ACPI_EXECUTER
56 ACPI_MODULE_NAME ("exoparg2")

59 /*!

new/usr/src/common/acpica/components/executer/exoparg2.c 2

60 * Naming convention for AML interpreter execution routines.
61 *
62 * The routines that begin execution of AML opcodes are named with a common
63 * convention based upon the number of arguments, the number of target operands,
64 * and whether or not a value is returned:
65 *
66 * AcpiExOpcode_xA_yT_zR
67 *
68 * Where:
69 *
70 * xA - ARGUMENTS: The number of arguments (input operands) that are
71 * required for this opcode type (1 through 6 args).
72 * yT - TARGETS: The number of targets (output operands) that are required
73 * for this opcode type (0, 1, or 2 targets).
74 * zR - RETURN VALUE: Indicates whether this opcode type returns a value
75 * as the function return (0 or 1).
76 *
77 * The AcpiExOpcode* functions are called via the Dispatcher component with
78 * fully resolved operands.
79 !*/

82 /***
83 *
84 * FUNCTION: AcpiExOpcode_2A_0T_0R
85 *
86 * PARAMETERS: WalkState - Current walk state
87 *
88 * RETURN: Status
89 *
90 * DESCRIPTION: Execute opcode with two arguments, no target, and no return
91 * value.
92 *
93 * ALLOCATION: Deletes both operands
94 *
95 **/

97 ACPI_STATUS
98 AcpiExOpcode_2A_0T_0R (
99 ACPI_WALK_STATE *WalkState)
100 {
101 ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0];
102 ACPI_NAMESPACE_NODE *Node;
103 UINT32 Value;
104 ACPI_STATUS Status = AE_OK;

107 ACPI_FUNCTION_TRACE_STR (ExOpcode_2A_0T_0R,
108 AcpiPsGetOpcodeName (WalkState->Opcode));

111 /* Examine the opcode */

113 switch (WalkState->Opcode)
114 {
115 case AML_NOTIFY_OP: /* Notify (NotifyObject, NotifyValue) */

117 /* The first operand is a namespace node */

119 Node = (ACPI_NAMESPACE_NODE *) Operand[0];

121 /* Second value is the notify value */

123 Value = (UINT32) Operand[1]->Integer.Value;

125 /* Are notifies allowed on this object? */

new/usr/src/common/acpica/components/executer/exoparg2.c 3

127 if (!AcpiEvIsNotifyObject (Node))
128 {
129 ACPI_ERROR ((AE_INFO,
130 "Unexpected notify object type [%s]",
131 AcpiUtGetTypeName (Node->Type)));

133 Status = AE_AML_OPERAND_TYPE;
134 break;
135 }

137 /*
138 * Dispatch the notify to the appropriate handler
139 * NOTE: the request is queued for execution after this method
140 * completes. The notify handlers are NOT invoked synchronously
141 * from this thread -- because handlers may in turn run other
142 * control methods.
143 */
144 Status = AcpiEvQueueNotifyRequest (Node, Value);
145 break;

147 default:

149 ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X",
150 WalkState->Opcode));
151 Status = AE_AML_BAD_OPCODE;
152 }

154 return_ACPI_STATUS (Status);
155 }

158 /***
159 *
160 * FUNCTION: AcpiExOpcode_2A_2T_1R
161 *
162 * PARAMETERS: WalkState - Current walk state
163 *
164 * RETURN: Status
165 *
166 * DESCRIPTION: Execute a dyadic operator (2 operands) with 2 output targets
167 * and one implicit return value.
168 *
169 **/

171 ACPI_STATUS
172 AcpiExOpcode_2A_2T_1R (
173 ACPI_WALK_STATE *WalkState)
174 {
175 ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0];
176 ACPI_OPERAND_OBJECT *ReturnDesc1 = NULL;
177 ACPI_OPERAND_OBJECT *ReturnDesc2 = NULL;
178 ACPI_STATUS Status;

181 ACPI_FUNCTION_TRACE_STR (ExOpcode_2A_2T_1R,
182 AcpiPsGetOpcodeName (WalkState->Opcode));

185 /* Execute the opcode */

187 switch (WalkState->Opcode)
188 {
189 case AML_DIVIDE_OP:

new/usr/src/common/acpica/components/executer/exoparg2.c 4

191 /* Divide (Dividend, Divisor, RemainderResult QuotientResult) */

193 ReturnDesc1 = AcpiUtCreateInternalObject (ACPI_TYPE_INTEGER);
194 if (!ReturnDesc1)
195 {
196 Status = AE_NO_MEMORY;
197 goto Cleanup;
198 }

200 ReturnDesc2 = AcpiUtCreateInternalObject (ACPI_TYPE_INTEGER);
201 if (!ReturnDesc2)
202 {
203 Status = AE_NO_MEMORY;
204 goto Cleanup;
205 }

207 /* Quotient to ReturnDesc1, remainder to ReturnDesc2 */

209 Status = AcpiUtDivide (Operand[0]->Integer.Value,
210 Operand[1]->Integer.Value,
211 &ReturnDesc1->Integer.Value,
212 &ReturnDesc2->Integer.Value);
213 if (ACPI_FAILURE (Status))
214 {
215 goto Cleanup;
216 }
217 break;

219 default:

221 ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X",
222 WalkState->Opcode));
223 Status = AE_AML_BAD_OPCODE;
224 goto Cleanup;
225 }

227 /* Store the results to the target reference operands */

229 Status = AcpiExStore (ReturnDesc2, Operand[2], WalkState);
230 if (ACPI_FAILURE (Status))
231 {
232 goto Cleanup;
233 }

235 Status = AcpiExStore (ReturnDesc1, Operand[3], WalkState);
236 if (ACPI_FAILURE (Status))
237 {
238 goto Cleanup;
239 }

241 Cleanup:
242 /*
243 * Since the remainder is not returned indirectly, remove a reference to
244 * it. Only the quotient is returned indirectly.
245 */
246 AcpiUtRemoveReference (ReturnDesc2);

248 if (ACPI_FAILURE (Status))
249 {
250 /* Delete the return object */

252 AcpiUtRemoveReference (ReturnDesc1);
253 }

255 /* Save return object (the remainder) on success */

new/usr/src/common/acpica/components/executer/exoparg2.c 5

257 else
258 {
259 WalkState->ResultObj = ReturnDesc1;
260 }

262 return_ACPI_STATUS (Status);
263 }

266 /***
267 *
268 * FUNCTION: AcpiExOpcode_2A_1T_1R
269 *
270 * PARAMETERS: WalkState - Current walk state
271 *
272 * RETURN: Status
273 *
274 * DESCRIPTION: Execute opcode with two arguments, one target, and a return
275 * value.
276 *
277 **/

279 ACPI_STATUS
280 AcpiExOpcode_2A_1T_1R (
281 ACPI_WALK_STATE *WalkState)
282 {
283 ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0];
284 ACPI_OPERAND_OBJECT *ReturnDesc = NULL;
285 UINT64 Index;
286 ACPI_STATUS Status = AE_OK;
287 ACPI_SIZE Length = 0;
289 ACPI_SIZE Length;

290 ACPI_FUNCTION_TRACE_STR (ExOpcode_2A_1T_1R,
291 AcpiPsGetOpcodeName (WalkState->Opcode));

294 /* Execute the opcode */

296 if (WalkState->OpInfo->Flags & AML_MATH)
297 {
298 /* All simple math opcodes (add, etc.) */

300 ReturnDesc = AcpiUtCreateInternalObject (ACPI_TYPE_INTEGER);
301 if (!ReturnDesc)
302 {
303 Status = AE_NO_MEMORY;
304 goto Cleanup;
305 }

307 ReturnDesc->Integer.Value = AcpiExDoMathOp (WalkState->Opcode,
308 Operand[0]->Integer.Value,
309 Operand[1]->Integer.Value);
310 goto StoreResultToTarget;
311 }

313 switch (WalkState->Opcode)
314 {
315 case AML_MOD_OP: /* Mod (Dividend, Divisor, RemainderResult (ACPI 2.0) */

317 ReturnDesc = AcpiUtCreateInternalObject (ACPI_TYPE_INTEGER);
318 if (!ReturnDesc)
319 {
320 Status = AE_NO_MEMORY;

new/usr/src/common/acpica/components/executer/exoparg2.c 6

321 goto Cleanup;
322 }

324 /* ReturnDesc will contain the remainder */

326 Status = AcpiUtDivide (Operand[0]->Integer.Value,
327 Operand[1]->Integer.Value,
328 NULL,
329 &ReturnDesc->Integer.Value);
330 break;

332 case AML_CONCAT_OP: /* Concatenate (Data1, Data2, Result) */

334 Status = AcpiExDoConcatenate (Operand[0], Operand[1],
335 &ReturnDesc, WalkState);
336 break;

338 case AML_TO_STRING_OP: /* ToString (Buffer, Length, Result) (ACPI 2.0) */

339 /*
340 * Input object is guaranteed to be a buffer at this point (it may have
341 * been converted.) Copy the raw buffer data to a new object of
342 * type String.
343 */

345 /*
346 * Get the length of the new string. It is the smallest of:
347 * 1) Length of the input buffer
348 * 2) Max length as specified in the ToString operator
349 * 3) Length of input buffer up to a zero byte (null terminator)
350 *
351 * NOTE: A length of zero is ok, and will create a zero-length, null
352 * terminated string.
353 */
359 Length = 0;
354 while ((Length < Operand[0]->Buffer.Length) &&
355 (Length < Operand[1]->Integer.Value) &&
356 (Operand[0]->Buffer.Pointer[Length]))
357 {
358 Length++;
359 }

361 /* Allocate a new string object */

363 ReturnDesc = AcpiUtCreateStringObject (Length);
364 if (!ReturnDesc)
365 {
366 Status = AE_NO_MEMORY;
367 goto Cleanup;
368 }

370 /*
371 * Copy the raw buffer data with no transform.
372 * (NULL terminated already)
373 */
374 ACPI_MEMCPY (ReturnDesc->String.Pointer,
375 Operand[0]->Buffer.Pointer, Length);
376 break;

378 case AML_CONCAT_RES_OP:

380 /* ConcatenateResTemplate (Buffer, Buffer, Result) (ACPI 2.0) */

new/usr/src/common/acpica/components/executer/exoparg2.c 7

382 Status = AcpiExConcatTemplate (Operand[0], Operand[1],
383 &ReturnDesc, WalkState);
384 break;

386 case AML_INDEX_OP: /* Index (Source Index Result) */

388 /* Create the internal return object */

390 ReturnDesc = AcpiUtCreateInternalObject (ACPI_TYPE_LOCAL_REFERENCE);
391 if (!ReturnDesc)
392 {
393 Status = AE_NO_MEMORY;
394 goto Cleanup;
395 }

397 /* Initialize the Index reference object */

399 Index = Operand[1]->Integer.Value;
400 ReturnDesc->Reference.Value = (UINT32) Index;
401 ReturnDesc->Reference.Class = ACPI_REFCLASS_INDEX;

403 /*
404 * At this point, the Source operand is a String, Buffer, or Package.
405 * Verify that the index is within range.
406 */
407 switch ((Operand[0])->Common.Type)
408 {
409 case ACPI_TYPE_STRING:

411 if (Index >= Operand[0]->String.Length)
412 {
413 Length = Operand[0]->String.Length;
414 Status = AE_AML_STRING_LIMIT;
415 }

417 ReturnDesc->Reference.TargetType = ACPI_TYPE_BUFFER_FIELD;
418 break;

420 case ACPI_TYPE_BUFFER:

422 if (Index >= Operand[0]->Buffer.Length)
423 {
424 Length = Operand[0]->Buffer.Length;
425 Status = AE_AML_BUFFER_LIMIT;
426 }

428 ReturnDesc->Reference.TargetType = ACPI_TYPE_BUFFER_FIELD;
429 break;

431 case ACPI_TYPE_PACKAGE:

433 if (Index >= Operand[0]->Package.Count)
434 {
435 Length = Operand[0]->Package.Count;
436 Status = AE_AML_PACKAGE_LIMIT;
437 }

439 ReturnDesc->Reference.TargetType = ACPI_TYPE_PACKAGE;
440 ReturnDesc->Reference.Where = &Operand[0]->Package.Elements [Index];
441 break;

443 default:

445 Status = AE_AML_INTERNAL;
446 goto Cleanup;

new/usr/src/common/acpica/components/executer/exoparg2.c 8

447 }

449 /* Failure means that the Index was beyond the end of the object */

451 if (ACPI_FAILURE (Status))
452 {
453 ACPI_EXCEPTION ((AE_INFO, Status,
454 "Index (0x%X%8.8X) is beyond end of object (length 0x%X)",
455 ACPI_FORMAT_UINT64 (Index), (UINT32) Length));
459 "Index (0x%8.8X%8.8X) is beyond end of object",
460 ACPI_FORMAT_UINT64 (Index)));
456 goto Cleanup;
457 }

459 /*
460 * Save the target object and add a reference to it for the life
461 * of the index
462 */
463 ReturnDesc->Reference.Object = Operand[0];
464 AcpiUtAddReference (Operand[0]);

466 /* Store the reference to the Target */

468 Status = AcpiExStore (ReturnDesc, Operand[2], WalkState);

470 /* Return the reference */

472 WalkState->ResultObj = ReturnDesc;
473 goto Cleanup;

475 default:

477 ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X",
478 WalkState->Opcode));
479 Status = AE_AML_BAD_OPCODE;
480 break;
481 }

484 StoreResultToTarget:

486 if (ACPI_SUCCESS (Status))
487 {
488 /*
489 * Store the result of the operation (which is now in ReturnDesc) into
490 * the Target descriptor.
491 */
492 Status = AcpiExStore (ReturnDesc, Operand[2], WalkState);
493 if (ACPI_FAILURE (Status))
494 {
495 goto Cleanup;
496 }

498 if (!WalkState->ResultObj)
499 {
500 WalkState->ResultObj = ReturnDesc;
501 }
502 }

505 Cleanup:

507 /* Delete return object on error */

509 if (ACPI_FAILURE (Status))

new/usr/src/common/acpica/components/executer/exoparg2.c 9

510 {
511 AcpiUtRemoveReference (ReturnDesc);
512 WalkState->ResultObj = NULL;
513 }

515 return_ACPI_STATUS (Status);
516 }

519 /***
520 *
521 * FUNCTION: AcpiExOpcode_2A_0T_1R
522 *
523 * PARAMETERS: WalkState - Current walk state
524 *
525 * RETURN: Status
526 *
527 * DESCRIPTION: Execute opcode with 2 arguments, no target, and a return value
528 *
529 **/

531 ACPI_STATUS
532 AcpiExOpcode_2A_0T_1R (
533 ACPI_WALK_STATE *WalkState)
534 {
535 ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0];
536 ACPI_OPERAND_OBJECT *ReturnDesc = NULL;
537 ACPI_STATUS Status = AE_OK;
538 BOOLEAN LogicalResult = FALSE;

541 ACPI_FUNCTION_TRACE_STR (ExOpcode_2A_0T_1R,
542 AcpiPsGetOpcodeName (WalkState->Opcode));

545 /* Create the internal return object */

547 ReturnDesc = AcpiUtCreateInternalObject (ACPI_TYPE_INTEGER);
548 if (!ReturnDesc)
549 {
550 Status = AE_NO_MEMORY;
551 goto Cleanup;
552 }

554 /* Execute the Opcode */

556 if (WalkState->OpInfo->Flags & AML_LOGICAL_NUMERIC)
557 {
558 /* LogicalOp (Operand0, Operand1) */

560 Status = AcpiExDoLogicalNumericOp (WalkState->Opcode,
561 Operand[0]->Integer.Value, Operand[1]->Integer.Value,
562 &LogicalResult);
563 goto StoreLogicalResult;
564 }
565 else if (WalkState->OpInfo->Flags & AML_LOGICAL)
566 {
567 /* LogicalOp (Operand0, Operand1) */

569 Status = AcpiExDoLogicalOp (WalkState->Opcode, Operand[0],
570 Operand[1], &LogicalResult);
571 goto StoreLogicalResult;
572 }

574 switch (WalkState->Opcode)
575 {

new/usr/src/common/acpica/components/executer/exoparg2.c 10

576 case AML_ACQUIRE_OP: /* Acquire (MutexObject, Timeout) */

578 Status = AcpiExAcquireMutex (Operand[1], Operand[0], WalkState);
579 if (Status == AE_TIME)
580 {
581 LogicalResult = TRUE; /* TRUE = Acquire timed out */
582 Status = AE_OK;
583 }
584 break;

587 case AML_WAIT_OP: /* Wait (EventObject, Timeout) */

589 Status = AcpiExSystemWaitEvent (Operand[1], Operand[0]);
590 if (Status == AE_TIME)
591 {
592 LogicalResult = TRUE; /* TRUE, Wait timed out */
593 Status = AE_OK;
594 }
595 break;

597 default:

599 ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X",
600 WalkState->Opcode));
601 Status = AE_AML_BAD_OPCODE;
602 goto Cleanup;
603 }

606 StoreLogicalResult:
607 /*
608 * Set return value to according to LogicalResult. logical TRUE (all ones)
609 * Default is FALSE (zero)
610 */
611 if (LogicalResult)
612 {
613 ReturnDesc->Integer.Value = ACPI_UINT64_MAX;
614 }

616 Cleanup:

618 /* Delete return object on error */

620 if (ACPI_FAILURE (Status))
621 {
622 AcpiUtRemoveReference (ReturnDesc);
623 }

625 /* Save return object on success */

627 else
628 {
629 WalkState->ResultObj = ReturnDesc;
630 }

632 return_ACPI_STATUS (Status);
633 }

new/usr/src/common/acpica/components/executer/exoparg3.c 1

**
 9032 Thu Dec 26 13:49:06 2013
new/usr/src/common/acpica/components/executer/exoparg3.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exoparg3 - AML execution - opcodes with 3 arguments
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXOPARG3_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acinterp.h"
49 #include "acparser.h"
50 #include "amlcode.h"

53 #define _COMPONENT ACPI_EXECUTER
54 ACPI_MODULE_NAME ("exoparg3")

57 /*!
58 * Naming convention for AML interpreter execution routines.

new/usr/src/common/acpica/components/executer/exoparg3.c 2

59 *
60 * The routines that begin execution of AML opcodes are named with a common
61 * convention based upon the number of arguments, the number of target operands,
62 * and whether or not a value is returned:
63 *
64 * AcpiExOpcode_xA_yT_zR
65 *
66 * Where:
67 *
68 * xA - ARGUMENTS: The number of arguments (input operands) that are
69 * required for this opcode type (1 through 6 args).
70 * yT - TARGETS: The number of targets (output operands) that are required
71 * for this opcode type (0, 1, or 2 targets).
72 * zR - RETURN VALUE: Indicates whether this opcode type returns a value
73 * as the function return (0 or 1).
74 *
75 * The AcpiExOpcode* functions are called via the Dispatcher component with
76 * fully resolved operands.
77 !*/

80 /***
81 *
82 * FUNCTION: AcpiExOpcode_3A_0T_0R
83 *
84 * PARAMETERS: WalkState - Current walk state
85 *
86 * RETURN: Status
87 *
88 * DESCRIPTION: Execute Triadic operator (3 operands)
89 *
90 **/

92 ACPI_STATUS
93 AcpiExOpcode_3A_0T_0R (
94 ACPI_WALK_STATE *WalkState)
95 {
96 ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0];
97 ACPI_SIGNAL_FATAL_INFO *Fatal;
98 ACPI_STATUS Status = AE_OK;

101 ACPI_FUNCTION_TRACE_STR (ExOpcode_3A_0T_0R,
102 AcpiPsGetOpcodeName (WalkState->Opcode));

105 switch (WalkState->Opcode)
106 {
107 case AML_FATAL_OP: /* Fatal (FatalType FatalCode FatalArg) */

109 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
110 "FatalOp: Type %X Code %X Arg %X <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n",
111 (UINT32) Operand[0]->Integer.Value,
112 (UINT32) Operand[1]->Integer.Value,
113 (UINT32) Operand[2]->Integer.Value));

115 Fatal = ACPI_ALLOCATE (sizeof (ACPI_SIGNAL_FATAL_INFO));
116 if (Fatal)
117 {
118 Fatal->Type = (UINT32) Operand[0]->Integer.Value;
119 Fatal->Code = (UINT32) Operand[1]->Integer.Value;
120 Fatal->Argument = (UINT32) Operand[2]->Integer.Value;
121 }

123 /* Always signal the OS! */

new/usr/src/common/acpica/components/executer/exoparg3.c 3

125 Status = AcpiOsSignal (ACPI_SIGNAL_FATAL, Fatal);

127 /* Might return while OS is shutting down, just continue */

129 ACPI_FREE (Fatal);
130 break;

132 default:

134 ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X",
135 WalkState->Opcode));
136 Status = AE_AML_BAD_OPCODE;
137 goto Cleanup;
138 }

141 Cleanup:

143 return_ACPI_STATUS (Status);
144 }

147 /***
148 *
149 * FUNCTION: AcpiExOpcode_3A_1T_1R
150 *
151 * PARAMETERS: WalkState - Current walk state
152 *
153 * RETURN: Status
154 *
155 * DESCRIPTION: Execute Triadic operator (3 operands)
156 *
157 **/

159 ACPI_STATUS
160 AcpiExOpcode_3A_1T_1R (
161 ACPI_WALK_STATE *WalkState)
162 {
163 ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0];
164 ACPI_OPERAND_OBJECT *ReturnDesc = NULL;
165 char *Buffer = NULL;
166 ACPI_STATUS Status = AE_OK;
167 UINT64 Index;
168 ACPI_SIZE Length;

171 ACPI_FUNCTION_TRACE_STR (ExOpcode_3A_1T_1R,
172 AcpiPsGetOpcodeName (WalkState->Opcode));

175 switch (WalkState->Opcode)
176 {
177 case AML_MID_OP: /* Mid (Source[0], Index[1], Length[2], Result[3]) */

178 /*
179 * Create the return object. The Source operand is guaranteed to be
180 * either a String or a Buffer, so just use its type.
181 */
182 ReturnDesc = AcpiUtCreateInternalObject (
183 (Operand[0])->Common.Type);
184 if (!ReturnDesc)
185 {
186 Status = AE_NO_MEMORY;
187 goto Cleanup;
188 }

new/usr/src/common/acpica/components/executer/exoparg3.c 4

190 /* Get the Integer values from the objects */

192 Index = Operand[1]->Integer.Value;
193 Length = (ACPI_SIZE) Operand[2]->Integer.Value;

195 /*
196 * If the index is beyond the length of the String/Buffer, or if the
197 * requested length is zero, return a zero-length String/Buffer
198 */
199 if (Index >= Operand[0]->String.Length)
200 {
201 Length = 0;
202 }

204 /* Truncate request if larger than the actual String/Buffer */

206 else if ((Index + Length) > Operand[0]->String.Length)
207 {
208 Length = (ACPI_SIZE) Operand[0]->String.Length -
209 (ACPI_SIZE) Index;
210 }

212 /* Strings always have a sub-pointer, not so for buffers */

214 switch ((Operand[0])->Common.Type)
215 {
216 case ACPI_TYPE_STRING:

218 /* Always allocate a new buffer for the String */

220 Buffer = ACPI_ALLOCATE_ZEROED ((ACPI_SIZE) Length + 1);
221 if (!Buffer)
222 {
223 Status = AE_NO_MEMORY;
224 goto Cleanup;
225 }
226 break;

228 case ACPI_TYPE_BUFFER:

230 /* If the requested length is zero, don’t allocate a buffer */

232 if (Length > 0)
233 {
234 /* Allocate a new buffer for the Buffer */

236 Buffer = ACPI_ALLOCATE_ZEROED (Length);
237 if (!Buffer)
238 {
239 Status = AE_NO_MEMORY;
240 goto Cleanup;
241 }
242 }
243 break;

245 default: /* Should not happen */

247 Status = AE_AML_OPERAND_TYPE;
248 goto Cleanup;
249 }

251 if (Buffer)
252 {
253 /* We have a buffer, copy the portion requested */

new/usr/src/common/acpica/components/executer/exoparg3.c 5

255 ACPI_MEMCPY (Buffer, Operand[0]->String.Pointer + Index,
256 Length);
257 }

259 /* Set the length of the new String/Buffer */

261 ReturnDesc->String.Pointer = Buffer;
262 ReturnDesc->String.Length = (UINT32) Length;

264 /* Mark buffer initialized */

266 ReturnDesc->Buffer.Flags |= AOPOBJ_DATA_VALID;
267 break;

269 default:

271 ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X",
272 WalkState->Opcode));
273 Status = AE_AML_BAD_OPCODE;
274 goto Cleanup;
275 }

277 /* Store the result in the target */

279 Status = AcpiExStore (ReturnDesc, Operand[3], WalkState);

281 Cleanup:

283 /* Delete return object on error */

285 if (ACPI_FAILURE (Status) || WalkState->ResultObj)
286 {
287 AcpiUtRemoveReference (ReturnDesc);
288 WalkState->ResultObj = NULL;
289 }

291 /* Set the return object and exit */

293 else
294 {
295 WalkState->ResultObj = ReturnDesc;
296 }
297 return_ACPI_STATUS (Status);
298 }

new/usr/src/common/acpica/components/executer/exoparg6.c 1

**
 11135 Thu Dec 26 13:49:07 2013
new/usr/src/common/acpica/components/executer/exoparg6.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exoparg6 - AML execution - opcodes with 6 arguments
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXOPARG6_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acinterp.h"
49 #include "acparser.h"
50 #include "amlcode.h"

53 #define _COMPONENT ACPI_EXECUTER
54 ACPI_MODULE_NAME ("exoparg6")

57 /*!
58 * Naming convention for AML interpreter execution routines.

new/usr/src/common/acpica/components/executer/exoparg6.c 2

59 *
60 * The routines that begin execution of AML opcodes are named with a common
61 * convention based upon the number of arguments, the number of target operands,
62 * and whether or not a value is returned:
63 *
64 * AcpiExOpcode_xA_yT_zR
65 *
66 * Where:
67 *
68 * xA - ARGUMENTS: The number of arguments (input operands) that are
69 * required for this opcode type (1 through 6 args).
70 * yT - TARGETS: The number of targets (output operands) that are required
71 * for this opcode type (0, 1, or 2 targets).
72 * zR - RETURN VALUE: Indicates whether this opcode type returns a value
73 * as the function return (0 or 1).
74 *
75 * The AcpiExOpcode* functions are called via the Dispatcher component with
76 * fully resolved operands.
77 !*/

79 /* Local prototypes */

81 static BOOLEAN
82 AcpiExDoMatch (
83 UINT32 MatchOp,
84 ACPI_OPERAND_OBJECT *PackageObj,
85 ACPI_OPERAND_OBJECT *MatchObj);

88 /***
89 *
90 * FUNCTION: AcpiExDoMatch
91 *
92 * PARAMETERS: MatchOp - The AML match operand
93 * PackageObj - Object from the target package
94 * MatchObj - Object to be matched
95 *
96 * RETURN: TRUE if the match is successful, FALSE otherwise
97 *
98 * DESCRIPTION: Implements the low-level match for the ASL Match operator.
99 * Package elements will be implicitly converted to the type of
100 * the match object (Integer/Buffer/String).
101 *
102 **/

104 static BOOLEAN
105 AcpiExDoMatch (
106 UINT32 MatchOp,
107 ACPI_OPERAND_OBJECT *PackageObj,
108 ACPI_OPERAND_OBJECT *MatchObj)
109 {
110 BOOLEAN LogicalResult = TRUE;
111 ACPI_STATUS Status;

114 /*
115 * Note: Since the PackageObj/MatchObj ordering is opposite to that of
116 * the standard logical operators, we have to reverse them when we call
117 * DoLogicalOp in order to make the implicit conversion rules work
118 * correctly. However, this means we have to flip the entire equation
119 * also. A bit ugly perhaps, but overall, better than fussing the
120 * parameters around at runtime, over and over again.
121 *
122 * Below, P[i] refers to the package element, M refers to the Match object.
123 */
124 switch (MatchOp)

new/usr/src/common/acpica/components/executer/exoparg6.c 3

125 {
126 case MATCH_MTR:

128 /* Always true */

130 break;

132 case MATCH_MEQ:

133 /*
134 * True if equal: (P[i] == M)
135 * Change to: (M == P[i])
136 */
137 Status = AcpiExDoLogicalOp (AML_LEQUAL_OP, MatchObj, PackageObj,
138 &LogicalResult);
139 if (ACPI_FAILURE (Status))
140 {
141 return (FALSE);
142 }
143 break;

145 case MATCH_MLE:

146 /*
147 * True if less than or equal: (P[i] <= M) (P[i] NotGreater than M)
148 * Change to: (M >= P[i]) (M NotLess than P[i])
149 */
150 Status = AcpiExDoLogicalOp (AML_LLESS_OP, MatchObj, PackageObj,
151 &LogicalResult);
152 if (ACPI_FAILURE (Status))
153 {
154 return (FALSE);
155 }
156 LogicalResult = (BOOLEAN) !LogicalResult;
157 break;

159 case MATCH_MLT:

160 /*
161 * True if less than: (P[i] < M)
162 * Change to: (M > P[i])
163 */
164 Status = AcpiExDoLogicalOp (AML_LGREATER_OP, MatchObj, PackageObj,
165 &LogicalResult);
166 if (ACPI_FAILURE (Status))
167 {
168 return (FALSE);
169 }
170 break;

172 case MATCH_MGE:

173 /*
174 * True if greater than or equal: (P[i] >= M) (P[i] NotLess than M)
175 * Change to: (M <= P[i]) (M NotGreater than P[i])
176 */
177 Status = AcpiExDoLogicalOp (AML_LGREATER_OP, MatchObj, PackageObj,
178 &LogicalResult);
179 if (ACPI_FAILURE (Status))
180 {
181 return (FALSE);
182 }
183 LogicalResult = (BOOLEAN)!LogicalResult;
184 break;

186 case MATCH_MGT:

new/usr/src/common/acpica/components/executer/exoparg6.c 4

187 /*
188 * True if greater than: (P[i] > M)
189 * Change to: (M < P[i])
190 */
191 Status = AcpiExDoLogicalOp (AML_LLESS_OP, MatchObj, PackageObj,
192 &LogicalResult);
193 if (ACPI_FAILURE (Status))
194 {
195 return (FALSE);
196 }
197 break;

199 default:

201 /* Undefined */

203 return (FALSE);
204 }

206 return (LogicalResult);
212 return LogicalResult;
207 }

210 /***
211 *
212 * FUNCTION: AcpiExOpcode_6A_0T_1R
213 *
214 * PARAMETERS: WalkState - Current walk state
215 *
216 * RETURN: Status
217 *
218 * DESCRIPTION: Execute opcode with 6 arguments, no target, and a return value
219 *
220 **/

222 ACPI_STATUS
223 AcpiExOpcode_6A_0T_1R (
224 ACPI_WALK_STATE *WalkState)
225 {
226 ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0];
227 ACPI_OPERAND_OBJECT *ReturnDesc = NULL;
228 ACPI_STATUS Status = AE_OK;
229 UINT64 Index;
230 ACPI_OPERAND_OBJECT *ThisElement;

233 ACPI_FUNCTION_TRACE_STR (ExOpcode_6A_0T_1R,
234 AcpiPsGetOpcodeName (WalkState->Opcode));

237 switch (WalkState->Opcode)
238 {
239 case AML_MATCH_OP:
240 /*
241 * Match (SearchPkg[0], MatchOp1[1], MatchObj1[2],
242 * MatchOp2[3], MatchObj2[4], StartIndex[5])
243 */

245 /* Validate both Match Term Operators (MTR, MEQ, etc.) */

247 if ((Operand[1]->Integer.Value > MAX_MATCH_OPERATOR) ||
248 (Operand[3]->Integer.Value > MAX_MATCH_OPERATOR))
249 {
250 ACPI_ERROR ((AE_INFO, "Match operator out of range"));

new/usr/src/common/acpica/components/executer/exoparg6.c 5

251 Status = AE_AML_OPERAND_VALUE;
252 goto Cleanup;
253 }

255 /* Get the package StartIndex, validate against the package length */

257 Index = Operand[5]->Integer.Value;
258 if (Index >= Operand[0]->Package.Count)
259 {
260 ACPI_ERROR ((AE_INFO,
261 "Index (0x%8.8X%8.8X) beyond package end (0x%X)",
262 ACPI_FORMAT_UINT64 (Index), Operand[0]->Package.Count));
263 Status = AE_AML_PACKAGE_LIMIT;
264 goto Cleanup;
265 }

267 /* Create an integer for the return value */
268 /* Default return value is ACPI_UINT64_MAX if no match found */

270 ReturnDesc = AcpiUtCreateIntegerObject (ACPI_UINT64_MAX);
271 if (!ReturnDesc)
272 {
273 Status = AE_NO_MEMORY;
274 goto Cleanup;

276 }

278 /*
279 * Examine each element until a match is found. Both match conditions
280 * must be satisfied for a match to occur. Within the loop,
281 * "continue" signifies that the current element does not match
282 * and the next should be examined.
283 *
284 * Upon finding a match, the loop will terminate via "break" at
285 * the bottom. If it terminates "normally", MatchValue will be
286 * ACPI_UINT64_MAX (Ones) (its initial value) indicating that no
287 * match was found.
288 */
289 for (; Index < Operand[0]->Package.Count; Index++)
290 {
291 /* Get the current package element */

293 ThisElement = Operand[0]->Package.Elements[Index];

295 /* Treat any uninitialized (NULL) elements as non-matching */

297 if (!ThisElement)
298 {
299 continue;
300 }

302 /*
303 * Both match conditions must be satisfied. Execution of a continue
304 * (proceed to next iteration of enclosing for loop) signifies a
305 * non-match.
306 */
307 if (!AcpiExDoMatch ((UINT32) Operand[1]->Integer.Value,
308 ThisElement, Operand[2]))
309 {
310 continue;
311 }

313 if (!AcpiExDoMatch ((UINT32) Operand[3]->Integer.Value,
314 ThisElement, Operand[4]))
315 {
316 continue;

new/usr/src/common/acpica/components/executer/exoparg6.c 6

317 }

319 /* Match found: Index is the return value */

321 ReturnDesc->Integer.Value = Index;
322 break;
323 }
324 break;

326 case AML_LOAD_TABLE_OP:

328 Status = AcpiExLoadTableOp (WalkState, &ReturnDesc);
329 break;

331 default:

333 ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X",
334 WalkState->Opcode));
335 Status = AE_AML_BAD_OPCODE;
336 goto Cleanup;
337 }

340 Cleanup:

342 /* Delete return object on error */

344 if (ACPI_FAILURE (Status))
345 {
346 AcpiUtRemoveReference (ReturnDesc);
347 }

349 /* Save return object on success */

351 else
352 {
353 WalkState->ResultObj = ReturnDesc;
354 }

356 return_ACPI_STATUS (Status);
357 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/executer/exprep.c 1

**
 22243 Thu Dec 26 13:49:07 2013
new/usr/src/common/acpica/components/executer/exprep.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exprep - ACPI AML (p-code) execution - field prep utilities
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXPREP_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acinterp.h"
49 #include "amlcode.h"
50 #include "acnamesp.h"
51 #include "acdispat.h"

54 #define _COMPONENT ACPI_EXECUTER
55 ACPI_MODULE_NAME ("exprep")

57 /* Local prototypes */

new/usr/src/common/acpica/components/executer/exprep.c 2

59 static UINT32
60 AcpiExDecodeFieldAccess (
61 ACPI_OPERAND_OBJECT *ObjDesc,
62 UINT8 FieldFlags,
63 UINT32 *ReturnByteAlignment);

66 #ifdef ACPI_UNDER_DEVELOPMENT

68 static UINT32
69 AcpiExGenerateAccess (
70 UINT32 FieldBitOffset,
71 UINT32 FieldBitLength,
72 UINT32 RegionLength);

74 /***
75 *
76 * FUNCTION: AcpiExGenerateAccess
77 *
78 * PARAMETERS: FieldBitOffset - Start of field within parent region/buffer
79 * FieldBitLength - Length of field in bits
80 * RegionLength - Length of parent in bytes
81 *
82 * RETURN: Field granularity (8, 16, 32 or 64) and
83 * ByteAlignment (1, 2, 3, or 4)
84 *
85 * DESCRIPTION: Generate an optimal access width for fields defined with the
86 * AnyAcc keyword.
87 *
88 * NOTE: Need to have the RegionLength in order to check for boundary
89 * conditions (end-of-region). However, the RegionLength is a deferred
90 * operation. Therefore, to complete this implementation, the generation
91 * of this access width must be deferred until the region length has
92 * been evaluated.
93 *
94 **/

96 static UINT32
97 AcpiExGenerateAccess (
98 UINT32 FieldBitOffset,
99 UINT32 FieldBitLength,
100 UINT32 RegionLength)
101 {
102 UINT32 FieldByteLength;
103 UINT32 FieldByteOffset;
104 UINT32 FieldByteEndOffset;
105 UINT32 AccessByteWidth;
106 UINT32 FieldStartOffset;
107 UINT32 FieldEndOffset;
108 UINT32 MinimumAccessWidth = 0xFFFFFFFF;
109 UINT32 MinimumAccesses = 0xFFFFFFFF;
110 UINT32 Accesses;

113 ACPI_FUNCTION_TRACE (ExGenerateAccess);

116 /* Round Field start offset and length to "minimal" byte boundaries */

118 FieldByteOffset = ACPI_DIV_8 (ACPI_ROUND_DOWN (FieldBitOffset, 8));
119 FieldByteEndOffset = ACPI_DIV_8 (ACPI_ROUND_UP (FieldBitLength +
120 FieldBitOffset, 8));
121 FieldByteLength = FieldByteEndOffset - FieldByteOffset;

123 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
124 "Bit length %u, Bit offset %u\n",

new/usr/src/common/acpica/components/executer/exprep.c 3

125 FieldBitLength, FieldBitOffset));

127 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
128 "Byte Length %u, Byte Offset %u, End Offset %u\n",
129 FieldByteLength, FieldByteOffset, FieldByteEndOffset));

131 /*
132 * Iterative search for the maximum access width that is both aligned
133 * and does not go beyond the end of the region
134 *
135 * Start at ByteAcc and work upwards to QwordAcc max. (1,2,4,8 bytes)
136 */
137 for (AccessByteWidth = 1; AccessByteWidth <= 8; AccessByteWidth <<= 1)
138 {
139 /*
140 * 1) Round end offset up to next access boundary and make sure that
141 * this does not go beyond the end of the parent region.
142 * 2) When the Access width is greater than the FieldByteLength, we
143 * are done. (This does not optimize for the perfectly aligned
144 * case yet).
145 */
146 if (ACPI_ROUND_UP (FieldByteEndOffset, AccessByteWidth) <= RegionLength)
147 {
148 FieldStartOffset =
149 ACPI_ROUND_DOWN (FieldByteOffset, AccessByteWidth) /
150 AccessByteWidth;

152 FieldEndOffset =
153 ACPI_ROUND_UP ((FieldByteLength + FieldByteOffset),
154 AccessByteWidth) / AccessByteWidth;

156 Accesses = FieldEndOffset - FieldStartOffset;

158 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
159 "AccessWidth %u end is within region\n", AccessByteWidth));

161 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
162 "Field Start %u, Field End %u -- requires %u accesses\n",
163 FieldStartOffset, FieldEndOffset, Accesses));

165 /* Single access is optimal */

167 if (Accesses <= 1)
168 {
169 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
170 "Entire field can be accessed with one operation of size %u\
171 AccessByteWidth));
172 return_VALUE (AccessByteWidth);
173 }

175 /*
176 * Fits in the region, but requires more than one read/write.
177 * try the next wider access on next iteration
178 */
179 if (Accesses < MinimumAccesses)
180 {
181 MinimumAccesses = Accesses;
182 MinimumAccessWidth = AccessByteWidth;
183 }
184 }
185 else
186 {
187 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
188 "AccessWidth %u end is NOT within region\n", AccessByteWidth));
189 if (AccessByteWidth == 1)
190 {

new/usr/src/common/acpica/components/executer/exprep.c 4

191 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
192 "Field goes beyond end-of-region!\n"));

194 /* Field does not fit in the region at all */

196 return_VALUE (0);
197 }

199 /*
200 * This width goes beyond the end-of-region, back off to
201 * previous access
202 */
203 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
204 "Backing off to previous optimal access width of %u\n",
205 MinimumAccessWidth));
206 return_VALUE (MinimumAccessWidth);
207 }
208 }

210 /*
211 * Could not read/write field with one operation,
212 * just use max access width
213 */
214 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
215 "Cannot access field in one operation, using width 8\n"));
216 return_VALUE (8);
217 }
218 #endif /* ACPI_UNDER_DEVELOPMENT */

221 /***
222 *
223 * FUNCTION: AcpiExDecodeFieldAccess
224 *
225 * PARAMETERS: ObjDesc - Field object
226 * FieldFlags - Encoded fieldflags (contains access bits)
227 * ReturnByteAlignment - Where the byte alignment is returned
228 *
229 * RETURN: Field granularity (8, 16, 32 or 64) and
230 * ByteAlignment (1, 2, 3, or 4)
231 *
232 * DESCRIPTION: Decode the AccessType bits of a field definition.
233 *
234 **/

236 static UINT32
237 AcpiExDecodeFieldAccess (
238 ACPI_OPERAND_OBJECT *ObjDesc,
239 UINT8 FieldFlags,
240 UINT32 *ReturnByteAlignment)
241 {
242 UINT32 Access;
243 UINT32 ByteAlignment;
244 UINT32 BitLength;

247 ACPI_FUNCTION_TRACE (ExDecodeFieldAccess);

250 Access = (FieldFlags & AML_FIELD_ACCESS_TYPE_MASK);

252 switch (Access)
253 {
254 case AML_FIELD_ACCESS_ANY:

256 #ifdef ACPI_UNDER_DEVELOPMENT

new/usr/src/common/acpica/components/executer/exprep.c 5

257 ByteAlignment =
258 AcpiExGenerateAccess (ObjDesc->CommonField.StartFieldBitOffset,
259 ObjDesc->CommonField.BitLength,
260 0xFFFFFFFF /* Temp until we pass RegionLength as parameter */);
261 BitLength = ByteAlignment * 8;
262 #endif

264 ByteAlignment = 1;
265 BitLength = 8;
266 break;

268 case AML_FIELD_ACCESS_BYTE:
269 case AML_FIELD_ACCESS_BUFFER: /* ACPI 2.0 (SMBus Buffer) */

271 ByteAlignment = 1;
272 BitLength = 8;
273 break;

275 case AML_FIELD_ACCESS_WORD:

277 ByteAlignment = 2;
278 BitLength = 16;
279 break;

281 case AML_FIELD_ACCESS_DWORD:

283 ByteAlignment = 4;
284 BitLength = 32;
285 break;

287 case AML_FIELD_ACCESS_QWORD: /* ACPI 2.0 */

289 ByteAlignment = 8;
290 BitLength = 64;
291 break;

293 default:

295 /* Invalid field access type */

297 ACPI_ERROR ((AE_INFO,
298 "Unknown field access type 0x%X",
299 Access));
300 return_UINT32 (0);
301 }

303 if (ObjDesc->Common.Type == ACPI_TYPE_BUFFER_FIELD)
304 {
305 /*
306 * BufferField access can be on any byte boundary, so the
307 * ByteAlignment is always 1 byte -- regardless of any ByteAlignment
308 * implied by the field access type.
309 */
310 ByteAlignment = 1;
311 }

313 *ReturnByteAlignment = ByteAlignment;
314 return_UINT32 (BitLength);
315 }

______unchanged_portion_omitted_

417 /***
418 *
419 * FUNCTION: AcpiExPrepFieldValue
420 *

new/usr/src/common/acpica/components/executer/exprep.c 6

421 * PARAMETERS: Info - Contains all field creation info
422 *
423 * RETURN: Status
424 *
425 * DESCRIPTION: Construct an object of type ACPI_OPERAND_OBJECT with a
426 * subtype of DefField and connect it to the parent Node.
420 * DESCRIPTION: Construct an ACPI_OPERAND_OBJECT of type DefField and
421 * connect it to the parent Node.
427 *
428 **/

430 ACPI_STATUS
431 AcpiExPrepFieldValue (
432 ACPI_CREATE_FIELD_INFO *Info)
433 {
434 ACPI_OPERAND_OBJECT *ObjDesc;
435 ACPI_OPERAND_OBJECT *SecondDesc = NULL;
436 ACPI_STATUS Status;
437 UINT32 AccessByteWidth;
438 UINT32 Type;

441 ACPI_FUNCTION_TRACE (ExPrepFieldValue);

444 /* Parameter validation */

446 if (Info->FieldType != ACPI_TYPE_LOCAL_INDEX_FIELD)
447 {
448 if (!Info->RegionNode)
449 {
450 ACPI_ERROR ((AE_INFO, "Null RegionNode"));
451 return_ACPI_STATUS (AE_AML_NO_OPERAND);
452 }

454 Type = AcpiNsGetType (Info->RegionNode);
455 if (Type != ACPI_TYPE_REGION)
456 {
457 ACPI_ERROR ((AE_INFO, "Needed Region, found type 0x%X (%s)",
458 Type, AcpiUtGetTypeName (Type)));

460 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
461 }
462 }

464 /* Allocate a new field object */

466 ObjDesc = AcpiUtCreateInternalObject (Info->FieldType);
467 if (!ObjDesc)
468 {
469 return_ACPI_STATUS (AE_NO_MEMORY);
470 }

472 /* Initialize areas of the object that are common to all fields */

474 ObjDesc->CommonField.Node = Info->FieldNode;
475 Status = AcpiExPrepCommonFieldObject (ObjDesc,
476 Info->FieldFlags, Info->Attribute,
477 Info->FieldBitPosition, Info->FieldBitLength);
478 if (ACPI_FAILURE (Status))
479 {
480 AcpiUtDeleteObjectDesc (ObjDesc);
481 return_ACPI_STATUS (Status);
482 }

484 /* Initialize areas of the object that are specific to the field type */

new/usr/src/common/acpica/components/executer/exprep.c 7

486 switch (Info->FieldType)
487 {
488 case ACPI_TYPE_LOCAL_REGION_FIELD:

490 ObjDesc->Field.RegionObj = AcpiNsGetAttachedObject (Info->RegionNode);

492 /* Fields specific to GenericSerialBus fields */

494 ObjDesc->Field.AccessLength = Info->AccessLength;

496 if (Info->ConnectionNode)
497 {
498 SecondDesc = Info->ConnectionNode->Object;
499 if (!(SecondDesc->Common.Flags & AOPOBJ_DATA_VALID))
500 {
501 Status = AcpiDsGetBufferArguments (SecondDesc);
502 if (ACPI_FAILURE (Status))
503 {
504 AcpiUtDeleteObjectDesc (ObjDesc);
505 return_ACPI_STATUS (Status);
506 }
507 }

509 ObjDesc->Field.ResourceBuffer = SecondDesc->Buffer.Pointer;
510 ObjDesc->Field.ResourceLength = (UINT16) SecondDesc->Buffer.Length;
511 }
512 else if (Info->ResourceBuffer)
513 {
514 ObjDesc->Field.ResourceBuffer = Info->ResourceBuffer;
515 ObjDesc->Field.ResourceLength = Info->ResourceLength;
516 }

518 /* Allow full data read from EC address space */

520 if ((ObjDesc->Field.RegionObj->Region.SpaceId == ACPI_ADR_SPACE_EC) &&
521 (ObjDesc->CommonField.BitLength > 8))
522 {
523 AccessByteWidth = ACPI_ROUND_BITS_UP_TO_BYTES (
524 ObjDesc->CommonField.BitLength);

526 /* Maximum byte width supported is 255 */

528 if (AccessByteWidth < 256)
529 {
530 ObjDesc->CommonField.AccessByteWidth = (UINT8) AccessByteWidth;
531 }
532 }

534 /* An additional reference for the container */

536 AcpiUtAddReference (ObjDesc->Field.RegionObj);

538 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
539 "RegionField: BitOff %X, Off %X, Gran %X, Region %p\n",
540 ObjDesc->Field.StartFieldBitOffset, ObjDesc->Field.BaseByteOffset,
541 ObjDesc->Field.AccessByteWidth, ObjDesc->Field.RegionObj));
542 break;

544 case ACPI_TYPE_LOCAL_BANK_FIELD:

546 ObjDesc->BankField.Value = Info->BankValue;
547 ObjDesc->BankField.RegionObj =
548 AcpiNsGetAttachedObject (Info->RegionNode);
549 ObjDesc->BankField.BankObj =

new/usr/src/common/acpica/components/executer/exprep.c 8

550 AcpiNsGetAttachedObject (Info->RegisterNode);

552 /* An additional reference for the attached objects */

554 AcpiUtAddReference (ObjDesc->BankField.RegionObj);
555 AcpiUtAddReference (ObjDesc->BankField.BankObj);

557 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
558 "Bank Field: BitOff %X, Off %X, Gran %X, Region %p, BankReg %p\n",
559 ObjDesc->BankField.StartFieldBitOffset,
560 ObjDesc->BankField.BaseByteOffset,
561 ObjDesc->Field.AccessByteWidth,
562 ObjDesc->BankField.RegionObj,
563 ObjDesc->BankField.BankObj));

565 /*
566 * Remember location in AML stream of the field unit
567 * opcode and operands -- since the BankValue
568 * operands must be evaluated.
569 */
570 SecondDesc = ObjDesc->Common.NextObject;
571 SecondDesc->Extra.AmlStart = ACPI_CAST_PTR (ACPI_PARSE_OBJECT,
572 Info->DataRegisterNode)->Named.Data;
573 SecondDesc->Extra.AmlLength = ACPI_CAST_PTR (ACPI_PARSE_OBJECT,
574 Info->DataRegisterNode)->Named.Length;

576 break;

578 case ACPI_TYPE_LOCAL_INDEX_FIELD:

580 /* Get the Index and Data registers */

582 ObjDesc->IndexField.IndexObj =
583 AcpiNsGetAttachedObject (Info->RegisterNode);
584 ObjDesc->IndexField.DataObj =
585 AcpiNsGetAttachedObject (Info->DataRegisterNode);

587 if (!ObjDesc->IndexField.DataObj || !ObjDesc->IndexField.IndexObj)
588 {
589 ACPI_ERROR ((AE_INFO, "Null Index Object during field prep"));
590 AcpiUtDeleteObjectDesc (ObjDesc);
591 return_ACPI_STATUS (AE_AML_INTERNAL);
592 }

594 /* An additional reference for the attached objects */

596 AcpiUtAddReference (ObjDesc->IndexField.DataObj);
597 AcpiUtAddReference (ObjDesc->IndexField.IndexObj);

599 /*
600 * April 2006: Changed to match MS behavior
601 *
602 * The value written to the Index register is the byte offset of the
603 * target field in units of the granularity of the IndexField
604 *
605 * Previously, the value was calculated as an index in terms of the
606 * width of the Data register, as below:
607 *
608 * ObjDesc->IndexField.Value = (UINT32)
609 * (Info->FieldBitPosition / ACPI_MUL_8 (
610 * ObjDesc->Field.AccessByteWidth));
611 *
612 * February 2006: Tried value as a byte offset:
613 * ObjDesc->IndexField.Value = (UINT32)
614 * ACPI_DIV_8 (Info->FieldBitPosition);

new/usr/src/common/acpica/components/executer/exprep.c 9

615 */
616 ObjDesc->IndexField.Value = (UINT32) ACPI_ROUND_DOWN (
617 ACPI_DIV_8 (Info->FieldBitPosition),
618 ObjDesc->IndexField.AccessByteWidth);

620 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD,
621 "IndexField: BitOff %X, Off %X, Value %X, Gran %X, Index %p, Data %p
622 ObjDesc->IndexField.StartFieldBitOffset,
623 ObjDesc->IndexField.BaseByteOffset,
624 ObjDesc->IndexField.Value,
625 ObjDesc->Field.AccessByteWidth,
626 ObjDesc->IndexField.IndexObj,
627 ObjDesc->IndexField.DataObj));
628 break;

630 default:

632 /* No other types should get here */

634 break;
635 }

637 /*
638 * Store the constructed descriptor (ObjDesc) into the parent Node,
639 * preserving the current type of that NamedObj.
640 */
641 Status = AcpiNsAttachObject (Info->FieldNode, ObjDesc,
642 AcpiNsGetType (Info->FieldNode));

644 ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "Set NamedObj %p [%4.4s], ObjDesc %p\n",
645 Info->FieldNode, AcpiUtGetNodeName (Info->FieldNode), ObjDesc));

647 /* Remove local reference to the object */

649 AcpiUtRemoveReference (ObjDesc);
650 return_ACPI_STATUS (Status);
651 }

new/usr/src/common/acpica/components/executer/exregion.c 1

**
 17443 Thu Dec 26 13:49:08 2013
new/usr/src/common/acpica/components/executer/exregion.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exregion - ACPI default OpRegion (address space) handlers
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __EXREGION_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acinterp.h"

52 #define _COMPONENT ACPI_EXECUTER
53 ACPI_MODULE_NAME ("exregion")

56 /***
57 *
58 * FUNCTION: AcpiExSystemMemorySpaceHandler

new/usr/src/common/acpica/components/executer/exregion.c 2

59 *
60 * PARAMETERS: Function - Read or Write operation
61 * Address - Where in the space to read or write
62 * BitWidth - Field width in bits (8, 16, or 32)
63 * Value - Pointer to in or out value
64 * HandlerContext - Pointer to Handler’s context
65 * RegionContext - Pointer to context specific to the
66 * accessed region
67 *
68 * RETURN: Status
69 *
70 * DESCRIPTION: Handler for the System Memory address space (Op Region)
71 *
72 **/

74 ACPI_STATUS
75 AcpiExSystemMemorySpaceHandler (
76 UINT32 Function,
77 ACPI_PHYSICAL_ADDRESS Address,
78 UINT32 BitWidth,
79 UINT64 *Value,
80 void *HandlerContext,
81 void *RegionContext)
82 {
83 ACPI_STATUS Status = AE_OK;
84 void *LogicalAddrPtr = NULL;
85 ACPI_MEM_SPACE_CONTEXT *MemInfo = RegionContext;
86 UINT32 Length;
87 ACPI_SIZE MapLength;
88 ACPI_SIZE PageBoundaryMapLength;
89 #ifdef ACPI_MISALIGNMENT_NOT_SUPPORTED
90 UINT32 Remainder;
91 #endif

94 ACPI_FUNCTION_TRACE (ExSystemMemorySpaceHandler);

97 /* Validate and translate the bit width */

99 switch (BitWidth)
100 {
101 case 8:

103 Length = 1;
104 break;

106 case 16:

108 Length = 2;
109 break;

111 case 32:

113 Length = 4;
114 break;

116 case 64:

118 Length = 8;
119 break;

121 default:

123 ACPI_ERROR ((AE_INFO, "Invalid SystemMemory width %u",
124 BitWidth));

new/usr/src/common/acpica/components/executer/exregion.c 3

125 return_ACPI_STATUS (AE_AML_OPERAND_VALUE);
126 }

128 #ifdef ACPI_MISALIGNMENT_NOT_SUPPORTED
129 /*
130 * Hardware does not support non-aligned data transfers, we must verify
131 * the request.
132 */
133 (void) AcpiUtShortDivide ((UINT64) Address, Length, NULL, &Remainder);
134 if (Remainder != 0)
135 {
136 return_ACPI_STATUS (AE_AML_ALIGNMENT);
137 }
138 #endif

140 /*
141 * Does the request fit into the cached memory mapping?
142 * Is 1) Address below the current mapping? OR
143 * 2) Address beyond the current mapping?
144 */
145 if ((Address < MemInfo->MappedPhysicalAddress) ||
146 (((UINT64) Address + Length) >
147 ((UINT64)
148 MemInfo->MappedPhysicalAddress + MemInfo->MappedLength)))
149 {
150 /*
151 * The request cannot be resolved by the current memory mapping;
152 * Delete the existing mapping and create a new one.
153 */
154 if (MemInfo->MappedLength)
155 {
156 /* Valid mapping, delete it */

158 AcpiOsUnmapMemory (MemInfo->MappedLogicalAddress,
159 MemInfo->MappedLength);
160 }

162 /*
163 * October 2009: Attempt to map from the requested address to the
164 * end of the region. However, we will never map more than one
165 * page, nor will we cross a page boundary.
166 */
167 MapLength = (ACPI_SIZE)
168 ((MemInfo->Address + MemInfo->Length) - Address);

170 /*
171 * If mapping the entire remaining portion of the region will cross
172 * a page boundary, just map up to the page boundary, do not cross.
173 * On some systems, crossing a page boundary while mapping regions
174 * can cause warnings if the pages have different attributes
175 * due to resource management.
176 *
177 * This has the added benefit of constraining a single mapping to
178 * one page, which is similar to the original code that used a 4k
179 * maximum window.
180 */
181 PageBoundaryMapLength =
182 ACPI_ROUND_UP (Address, ACPI_DEFAULT_PAGE_SIZE) - Address;
183 if (PageBoundaryMapLength == 0)
184 {
185 PageBoundaryMapLength = ACPI_DEFAULT_PAGE_SIZE;
186 }

188 if (MapLength > PageBoundaryMapLength)
189 {
190 MapLength = PageBoundaryMapLength;

new/usr/src/common/acpica/components/executer/exregion.c 4

191 }

193 /* Create a new mapping starting at the address given */

195 MemInfo->MappedLogicalAddress = AcpiOsMapMemory (
196 (ACPI_PHYSICAL_ADDRESS) Address, MapLength);
197 if (!MemInfo->MappedLogicalAddress)
198 {
199 ACPI_ERROR ((AE_INFO,
200 "Could not map memory at 0x%8.8X%8.8X, size %u",
201 ACPI_FORMAT_NATIVE_UINT (Address), (UINT32) MapLength));
202 MemInfo->MappedLength = 0;
203 return_ACPI_STATUS (AE_NO_MEMORY);
204 }

206 /* Save the physical address and mapping size */

208 MemInfo->MappedPhysicalAddress = Address;
209 MemInfo->MappedLength = MapLength;
210 }

212 /*
213 * Generate a logical pointer corresponding to the address we want to
214 * access
215 */
216 LogicalAddrPtr = MemInfo->MappedLogicalAddress +
217 ((UINT64) Address - (UINT64) MemInfo->MappedPhysicalAddress);

219 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
220 "System-Memory (width %u) R/W %u Address=%8.8X%8.8X\n",
221 BitWidth, Function, ACPI_FORMAT_NATIVE_UINT (Address)));

223 /*
224 * Perform the memory read or write
225 *
226 * Note: For machines that do not support non-aligned transfers, the target
227 * address was checked for alignment above. We do not attempt to break the
228 * transfer up into smaller (byte-size) chunks because the AML specifically
229 * asked for a transfer width that the hardware may require.
230 */
231 switch (Function)
232 {
233 case ACPI_READ:

235 *Value = 0;
236 switch (BitWidth)
237 {
238 case 8:

240 *Value = (UINT64) ACPI_GET8 (LogicalAddrPtr);
241 break;

243 case 16:

245 *Value = (UINT64) ACPI_GET16 (LogicalAddrPtr);
246 break;

248 case 32:

250 *Value = (UINT64) ACPI_GET32 (LogicalAddrPtr);
251 break;

253 case 64:

255 *Value = (UINT64) ACPI_GET64 (LogicalAddrPtr);
256 break;

new/usr/src/common/acpica/components/executer/exregion.c 5

258 default:

260 /* BitWidth was already validated */

262 break;
263 }
264 break;

266 case ACPI_WRITE:

268 switch (BitWidth)
269 {
270 case 8:

272 ACPI_SET8 (LogicalAddrPtr, *Value);
261 ACPI_SET8 (LogicalAddrPtr) = (UINT8) *Value;
273 break;

275 case 16:

277 ACPI_SET16 (LogicalAddrPtr, *Value);
265 ACPI_SET16 (LogicalAddrPtr) = (UINT16) *Value;
278 break;

280 case 32:

282 ACPI_SET32 (LogicalAddrPtr, *Value);
269 ACPI_SET32 (LogicalAddrPtr) = (UINT32) *Value;
283 break;

285 case 64:

287 ACPI_SET64 (LogicalAddrPtr, *Value);
273 ACPI_SET64 (LogicalAddrPtr) = (UINT64) *Value;
288 break;

290 default:

292 /* BitWidth was already validated */

294 break;
295 }
296 break;

298 default:

300 Status = AE_BAD_PARAMETER;
301 break;
302 }

304 return_ACPI_STATUS (Status);
305 }

308 /***
309 *
310 * FUNCTION: AcpiExSystemIoSpaceHandler
311 *
312 * PARAMETERS: Function - Read or Write operation
313 * Address - Where in the space to read or write
314 * BitWidth - Field width in bits (8, 16, or 32)
315 * Value - Pointer to in or out value
316 * HandlerContext - Pointer to Handler’s context
317 * RegionContext - Pointer to context specific to the
318 * accessed region

new/usr/src/common/acpica/components/executer/exregion.c 6

319 *
320 * RETURN: Status
321 *
322 * DESCRIPTION: Handler for the System IO address space (Op Region)
323 *
324 **/

326 ACPI_STATUS
327 AcpiExSystemIoSpaceHandler (
328 UINT32 Function,
329 ACPI_PHYSICAL_ADDRESS Address,
330 UINT32 BitWidth,
331 UINT64 *Value,
332 void *HandlerContext,
333 void *RegionContext)
334 {
335 ACPI_STATUS Status = AE_OK;
336 UINT32 Value32;

339 ACPI_FUNCTION_TRACE (ExSystemIoSpaceHandler);

342 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
343 "System-IO (width %u) R/W %u Address=%8.8X%8.8X\n",
344 BitWidth, Function, ACPI_FORMAT_NATIVE_UINT (Address)));

346 /* Decode the function parameter */

348 switch (Function)
349 {
350 case ACPI_READ:

352 Status = AcpiHwReadPort ((ACPI_IO_ADDRESS) Address,
353 &Value32, BitWidth);
354 *Value = Value32;
355 break;

357 case ACPI_WRITE:

359 Status = AcpiHwWritePort ((ACPI_IO_ADDRESS) Address,
360 (UINT32) *Value, BitWidth);
361 break;

363 default:

365 Status = AE_BAD_PARAMETER;
366 break;
367 }

369 return_ACPI_STATUS (Status);
370 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/executer/exresnte.c 1

**
 9366 Thu Dec 26 13:49:08 2013
new/usr/src/common/acpica/components/executer/exresnte.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exresnte - AML Interpreter object resolution
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXRESNTE_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acdispat.h"
49 #include "acinterp.h"
50 #include "acnamesp.h"

53 #define _COMPONENT ACPI_EXECUTER
54 ACPI_MODULE_NAME ("exresnte")

57 /***

new/usr/src/common/acpica/components/executer/exresnte.c 2

58 *
59 * FUNCTION: AcpiExResolveNodeToValue
60 *
61 * PARAMETERS: ObjectPtr - Pointer to a location that contains
62 * a pointer to a NS node, and will receive a
63 * pointer to the resolved object.
64 * WalkState - Current state. Valid only if executing AML
65 * code. NULL if simply resolving an object
66 *
67 * RETURN: Status
68 *
69 * DESCRIPTION: Resolve a Namespace node to a valued object
70 *
71 * Note: for some of the data types, the pointer attached to the Node
72 * can be either a pointer to an actual internal object or a pointer into the
73 * AML stream itself. These types are currently:
74 *
75 * ACPI_TYPE_INTEGER
76 * ACPI_TYPE_STRING
77 * ACPI_TYPE_BUFFER
78 * ACPI_TYPE_MUTEX
79 * ACPI_TYPE_PACKAGE
80 *
81 **/

83 ACPI_STATUS
84 AcpiExResolveNodeToValue (
85 ACPI_NAMESPACE_NODE **ObjectPtr,
86 ACPI_WALK_STATE *WalkState)

88 {
89 ACPI_STATUS Status = AE_OK;
90 ACPI_OPERAND_OBJECT *SourceDesc;
91 ACPI_OPERAND_OBJECT *ObjDesc = NULL;
92 ACPI_NAMESPACE_NODE *Node;
93 ACPI_OBJECT_TYPE EntryType;

96 ACPI_FUNCTION_TRACE (ExResolveNodeToValue);

99 /*
100 * The stack pointer points to a ACPI_NAMESPACE_NODE (Node). Get the
101 * object that is attached to the Node.
102 */
103 Node = *ObjectPtr;
104 SourceDesc = AcpiNsGetAttachedObject (Node);
105 EntryType = AcpiNsGetType ((ACPI_HANDLE) Node);

107 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Entry=%p SourceDesc=%p [%s]\n",
108 Node, SourceDesc, AcpiUtGetTypeName (EntryType)));

110 if ((EntryType == ACPI_TYPE_LOCAL_ALIAS) ||
111 (EntryType == ACPI_TYPE_LOCAL_METHOD_ALIAS))
112 {
113 /* There is always exactly one level of indirection */

115 Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Node->Object);
116 SourceDesc = AcpiNsGetAttachedObject (Node);
117 EntryType = AcpiNsGetType ((ACPI_HANDLE) Node);
118 *ObjectPtr = Node;
119 }

121 /*
122 * Several object types require no further processing:
123 * 1) Device/Thermal objects don’t have a "real" subobject, return the Node

new/usr/src/common/acpica/components/executer/exresnte.c 3

124 * 2) Method locals and arguments have a pseudo-Node
125 * 3) 10/2007: Added method type to assist with Package construction.
126 */
127 if ((EntryType == ACPI_TYPE_DEVICE) ||
128 (EntryType == ACPI_TYPE_THERMAL) ||
129 (EntryType == ACPI_TYPE_METHOD) ||
130 (Node->Flags & (ANOBJ_METHOD_ARG | ANOBJ_METHOD_LOCAL)))
131 {
132 return_ACPI_STATUS (AE_OK);
133 }

135 if (!SourceDesc)
136 {
137 ACPI_ERROR ((AE_INFO, "No object attached to node [%4.4s] %p",
138 Node->Name.Ascii, Node));
138 ACPI_ERROR ((AE_INFO, "No object attached to node %p",
139 Node));
139 return_ACPI_STATUS (AE_AML_NO_OPERAND);
140 }

142 /*
143 * Action is based on the type of the Node, which indicates the type
144 * of the attached object or pointer
145 */
146 switch (EntryType)
147 {
148 case ACPI_TYPE_PACKAGE:

150 if (SourceDesc->Common.Type != ACPI_TYPE_PACKAGE)
151 {
152 ACPI_ERROR ((AE_INFO, "Object not a Package, type %s",
153 AcpiUtGetObjectTypeName (SourceDesc)));
154 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
155 }

157 Status = AcpiDsGetPackageArguments (SourceDesc);
158 if (ACPI_SUCCESS (Status))
159 {
160 /* Return an additional reference to the object */

162 ObjDesc = SourceDesc;
163 AcpiUtAddReference (ObjDesc);
164 }
165 break;

167 case ACPI_TYPE_BUFFER:

169 if (SourceDesc->Common.Type != ACPI_TYPE_BUFFER)
170 {
171 ACPI_ERROR ((AE_INFO, "Object not a Buffer, type %s",
172 AcpiUtGetObjectTypeName (SourceDesc)));
173 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
174 }

176 Status = AcpiDsGetBufferArguments (SourceDesc);
177 if (ACPI_SUCCESS (Status))
178 {
179 /* Return an additional reference to the object */

181 ObjDesc = SourceDesc;
182 AcpiUtAddReference (ObjDesc);
183 }
184 break;

new/usr/src/common/acpica/components/executer/exresnte.c 4

186 case ACPI_TYPE_STRING:

188 if (SourceDesc->Common.Type != ACPI_TYPE_STRING)
189 {
190 ACPI_ERROR ((AE_INFO, "Object not a String, type %s",
191 AcpiUtGetObjectTypeName (SourceDesc)));
192 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
193 }

195 /* Return an additional reference to the object */

197 ObjDesc = SourceDesc;
198 AcpiUtAddReference (ObjDesc);
199 break;

201 case ACPI_TYPE_INTEGER:

203 if (SourceDesc->Common.Type != ACPI_TYPE_INTEGER)
204 {
205 ACPI_ERROR ((AE_INFO, "Object not a Integer, type %s",
206 AcpiUtGetObjectTypeName (SourceDesc)));
207 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
208 }

210 /* Return an additional reference to the object */

212 ObjDesc = SourceDesc;
213 AcpiUtAddReference (ObjDesc);
214 break;

216 case ACPI_TYPE_BUFFER_FIELD:
217 case ACPI_TYPE_LOCAL_REGION_FIELD:
218 case ACPI_TYPE_LOCAL_BANK_FIELD:
219 case ACPI_TYPE_LOCAL_INDEX_FIELD:

221 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
222 "FieldRead Node=%p SourceDesc=%p Type=%X\n",
223 Node, SourceDesc, EntryType));

225 Status = AcpiExReadDataFromField (WalkState, SourceDesc, &ObjDesc);
226 break;

228 /* For these objects, just return the object attached to the Node */

230 case ACPI_TYPE_MUTEX:
231 case ACPI_TYPE_POWER:
232 case ACPI_TYPE_PROCESSOR:
233 case ACPI_TYPE_EVENT:
234 case ACPI_TYPE_REGION:

236 /* Return an additional reference to the object */

238 ObjDesc = SourceDesc;
239 AcpiUtAddReference (ObjDesc);
240 break;

242 /* TYPE_ANY is untyped, and thus there is no object associated with it */

244 case ACPI_TYPE_ANY:

246 ACPI_ERROR ((AE_INFO,
247 "Untyped entry %p, no attached object!", Node));

249 return_ACPI_STATUS (AE_AML_OPERAND_TYPE); /* Cannot be AE_TYPE */

new/usr/src/common/acpica/components/executer/exresnte.c 5

251 case ACPI_TYPE_LOCAL_REFERENCE:

253 switch (SourceDesc->Reference.Class)
254 {
255 case ACPI_REFCLASS_TABLE: /* This is a DdbHandle */
256 case ACPI_REFCLASS_REFOF:
257 case ACPI_REFCLASS_INDEX:

259 /* Return an additional reference to the object */

261 ObjDesc = SourceDesc;
262 AcpiUtAddReference (ObjDesc);
263 break;

265 default:

267 /* No named references are allowed here */

269 ACPI_ERROR ((AE_INFO,
270 "Unsupported Reference type 0x%X",
271 SourceDesc->Reference.Class));

273 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
274 }
275 break;

277 default:

279 /* Default case is for unknown types */

281 ACPI_ERROR ((AE_INFO,
282 "Node %p - Unknown object type 0x%X",
283 Node, EntryType));

285 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);

287 } /* switch (EntryType) */

290 /* Return the object descriptor */

292 *ObjectPtr = (void *) ObjDesc;
293 return_ACPI_STATUS (Status);
294 }

new/usr/src/common/acpica/components/executer/exresolv.c 1

**
 17048 Thu Dec 26 13:49:09 2013
new/usr/src/common/acpica/components/executer/exresolv.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exresolv - AML Interpreter object resolution
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXRESOLV_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "amlcode.h"
49 #include "acdispat.h"
50 #include "acinterp.h"
51 #include "acnamesp.h"

54 #define _COMPONENT ACPI_EXECUTER
55 ACPI_MODULE_NAME ("exresolv")

57 /* Local prototypes */

new/usr/src/common/acpica/components/executer/exresolv.c 2

59 static ACPI_STATUS
60 AcpiExResolveObjectToValue (
61 ACPI_OPERAND_OBJECT **StackPtr,
62 ACPI_WALK_STATE *WalkState);

65 /***
66 *
67 * FUNCTION: AcpiExResolveToValue
68 *
69 * PARAMETERS: **StackPtr - Points to entry on ObjStack, which can
70 * be either an (ACPI_OPERAND_OBJECT *)
71 * or an ACPI_HANDLE.
72 * WalkState - Current method state
73 *
74 * RETURN: Status
75 *
76 * DESCRIPTION: Convert Reference objects to values
77 *
78 **/

80 ACPI_STATUS
81 AcpiExResolveToValue (
82 ACPI_OPERAND_OBJECT **StackPtr,
83 ACPI_WALK_STATE *WalkState)
84 {
85 ACPI_STATUS Status;

88 ACPI_FUNCTION_TRACE_PTR (ExResolveToValue, StackPtr);

91 if (!StackPtr || !*StackPtr)
92 {
93 ACPI_ERROR ((AE_INFO, "Internal - null pointer"));
94 return_ACPI_STATUS (AE_AML_NO_OPERAND);
95 }

97 /*
98 * The entity pointed to by the StackPtr can be either
99 * 1) A valid ACPI_OPERAND_OBJECT, or
100 * 2) A ACPI_NAMESPACE_NODE (NamedObj)
101 */
102 if (ACPI_GET_DESCRIPTOR_TYPE (*StackPtr) == ACPI_DESC_TYPE_OPERAND)
103 {
104 Status = AcpiExResolveObjectToValue (StackPtr, WalkState);
105 if (ACPI_FAILURE (Status))
106 {
107 return_ACPI_STATUS (Status);
108 }

110 if (!*StackPtr)
111 {
112 ACPI_ERROR ((AE_INFO, "Internal - null pointer"));
113 return_ACPI_STATUS (AE_AML_NO_OPERAND);
114 }
115 }

117 /*
118 * Object on the stack may have changed if AcpiExResolveObjectToValue()
119 * was called (i.e., we can’t use an _else_ here.)
120 */
121 if (ACPI_GET_DESCRIPTOR_TYPE (*StackPtr) == ACPI_DESC_TYPE_NAMED)
122 {
123 Status = AcpiExResolveNodeToValue (
124 ACPI_CAST_INDIRECT_PTR (ACPI_NAMESPACE_NODE, StackPtr),

new/usr/src/common/acpica/components/executer/exresolv.c 3

125 WalkState);
126 if (ACPI_FAILURE (Status))
127 {
128 return_ACPI_STATUS (Status);
129 }
130 }

132 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Resolved object %p\n", *StackPtr));
133 return_ACPI_STATUS (AE_OK);
134 }

137 /***
138 *
139 * FUNCTION: AcpiExResolveObjectToValue
140 *
141 * PARAMETERS: StackPtr - Pointer to an internal object
142 * WalkState - Current method state
143 *
144 * RETURN: Status
145 *
146 * DESCRIPTION: Retrieve the value from an internal object. The Reference type
147 * uses the associated AML opcode to determine the value.
148 *
149 **/

151 static ACPI_STATUS
152 AcpiExResolveObjectToValue (
153 ACPI_OPERAND_OBJECT **StackPtr,
154 ACPI_WALK_STATE *WalkState)
155 {
156 ACPI_STATUS Status = AE_OK;
157 ACPI_OPERAND_OBJECT *StackDesc;
158 ACPI_OPERAND_OBJECT *ObjDesc = NULL;
159 UINT8 RefType;

162 ACPI_FUNCTION_TRACE (ExResolveObjectToValue);

165 StackDesc = *StackPtr;

167 /* This is an object of type ACPI_OPERAND_OBJECT */
168 /* This is an ACPI_OPERAND_OBJECT */

169 switch (StackDesc->Common.Type)
170 {
171 case ACPI_TYPE_LOCAL_REFERENCE:

173 RefType = StackDesc->Reference.Class;

175 switch (RefType)
176 {
177 case ACPI_REFCLASS_LOCAL:
178 case ACPI_REFCLASS_ARG:

179 /*
180 * Get the local from the method’s state info
181 * Note: this increments the local’s object reference count
182 */
183 Status = AcpiDsMethodDataGetValue (RefType,
184 StackDesc->Reference.Value, WalkState, &ObjDesc);
185 if (ACPI_FAILURE (Status))
186 {
187 return_ACPI_STATUS (Status);
188 }

new/usr/src/common/acpica/components/executer/exresolv.c 4

190 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "[Arg/Local %X] ValueObj is %p\n",
191 StackDesc->Reference.Value, ObjDesc));

193 /*
194 * Now we can delete the original Reference Object and
195 * replace it with the resolved value
196 */
197 AcpiUtRemoveReference (StackDesc);
198 *StackPtr = ObjDesc;
199 break;

201 case ACPI_REFCLASS_INDEX:

203 switch (StackDesc->Reference.TargetType)
204 {
205 case ACPI_TYPE_BUFFER_FIELD:

207 /* Just return - do not dereference */
208 break;

210 case ACPI_TYPE_PACKAGE:

212 /* If method call or CopyObject - do not dereference */

214 if ((WalkState->Opcode == AML_INT_METHODCALL_OP) ||
215 (WalkState->Opcode == AML_COPY_OP))
216 {
217 break;
218 }

220 /* Otherwise, dereference the PackageIndex to a package element

222 ObjDesc = *StackDesc->Reference.Where;
223 if (ObjDesc)
224 {
225 /*
226 * Valid object descriptor, copy pointer to return value
227 * (i.e., dereference the package index)
228 * Delete the ref object, increment the returned object
229 */
230 AcpiUtRemoveReference (StackDesc);
231 AcpiUtAddReference (ObjDesc);
232 *StackPtr = ObjDesc;
233 }
234 else
235 {
236 /*
237 * A NULL object descriptor means an uninitialized element o
238 * the package, can’t dereference it
239 */
240 ACPI_ERROR ((AE_INFO,
241 "Attempt to dereference an Index to NULL package element
242 StackDesc));
243 Status = AE_AML_UNINITIALIZED_ELEMENT;
244 }
245 break;

247 default:

249 /* Invalid reference object */

251 ACPI_ERROR ((AE_INFO,

new/usr/src/common/acpica/components/executer/exresolv.c 5

252 "Unknown TargetType 0x%X in Index/Reference object %p",
253 StackDesc->Reference.TargetType, StackDesc));
254 Status = AE_AML_INTERNAL;
255 break;
256 }
257 break;

259 case ACPI_REFCLASS_REFOF:
260 case ACPI_REFCLASS_DEBUG:
261 case ACPI_REFCLASS_TABLE:

263 /* Just leave the object as-is, do not dereference */

265 break;

267 case ACPI_REFCLASS_NAME: /* Reference to a named object */

269 /* Dereference the name */

271 if ((StackDesc->Reference.Node->Type == ACPI_TYPE_DEVICE) ||
272 (StackDesc->Reference.Node->Type == ACPI_TYPE_THERMAL))
273 {
274 /* These node types do not have ’real’ subobjects */

276 *StackPtr = (void *) StackDesc->Reference.Node;
277 }
278 else
279 {
280 /* Get the object pointed to by the namespace node */

282 *StackPtr = (StackDesc->Reference.Node)->Object;
283 AcpiUtAddReference (*StackPtr);
284 }

286 AcpiUtRemoveReference (StackDesc);
287 break;

289 default:

291 ACPI_ERROR ((AE_INFO,
292 "Unknown Reference type 0x%X in %p", RefType, StackDesc));
293 Status = AE_AML_INTERNAL;
294 break;
295 }
296 break;

298 case ACPI_TYPE_BUFFER:

300 Status = AcpiDsGetBufferArguments (StackDesc);
301 break;

303 case ACPI_TYPE_PACKAGE:

305 Status = AcpiDsGetPackageArguments (StackDesc);
306 break;

308 case ACPI_TYPE_BUFFER_FIELD:
309 case ACPI_TYPE_LOCAL_REGION_FIELD:
310 case ACPI_TYPE_LOCAL_BANK_FIELD:
311 case ACPI_TYPE_LOCAL_INDEX_FIELD:

313 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "FieldRead SourceDesc=%p Type=%X\n",

new/usr/src/common/acpica/components/executer/exresolv.c 6

314 StackDesc, StackDesc->Common.Type));

316 Status = AcpiExReadDataFromField (WalkState, StackDesc, &ObjDesc);

318 /* Remove a reference to the original operand, then override */

320 AcpiUtRemoveReference (*StackPtr);
321 *StackPtr = (void *) ObjDesc;
322 break;

324 default:

326 break;
327 }

329 return_ACPI_STATUS (Status);
330 }

333 /***
334 *
335 * FUNCTION: AcpiExResolveMultiple
336 *
337 * PARAMETERS: WalkState - Current state (contains AML opcode)
338 * Operand - Starting point for resolution
339 * ReturnType - Where the object type is returned
340 * ReturnDesc - Where the resolved object is returned
341 *
342 * RETURN: Status
343 *
344 * DESCRIPTION: Return the base object and type. Traverse a reference list if
345 * necessary to get to the base object.
346 *
347 **/

349 ACPI_STATUS
350 AcpiExResolveMultiple (
351 ACPI_WALK_STATE *WalkState,
352 ACPI_OPERAND_OBJECT *Operand,
353 ACPI_OBJECT_TYPE *ReturnType,
354 ACPI_OPERAND_OBJECT **ReturnDesc)
355 {
356 ACPI_OPERAND_OBJECT *ObjDesc = (void *) Operand;
357 ACPI_NAMESPACE_NODE *Node;
358 ACPI_OBJECT_TYPE Type;
359 ACPI_STATUS Status;

362 ACPI_FUNCTION_TRACE (AcpiExResolveMultiple);

365 /* Operand can be either a namespace node or an operand descriptor */

367 switch (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc))
368 {
369 case ACPI_DESC_TYPE_OPERAND:

371 Type = ObjDesc->Common.Type;
372 break;

374 case ACPI_DESC_TYPE_NAMED:

376 Type = ((ACPI_NAMESPACE_NODE *) ObjDesc)->Type;
377 ObjDesc = AcpiNsGetAttachedObject ((ACPI_NAMESPACE_NODE *) ObjDesc);

379 /* If we had an Alias node, use the attached object for type info */

new/usr/src/common/acpica/components/executer/exresolv.c 7

381 if (Type == ACPI_TYPE_LOCAL_ALIAS)
382 {
383 Type = ((ACPI_NAMESPACE_NODE *) ObjDesc)->Type;
384 ObjDesc = AcpiNsGetAttachedObject ((ACPI_NAMESPACE_NODE *) ObjDesc);
385 }
386 break;

388 default:
389 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
390 }

392 /* If type is anything other than a reference, we are done */

394 if (Type != ACPI_TYPE_LOCAL_REFERENCE)
395 {
396 goto Exit;
397 }

399 /*
400 * For reference objects created via the RefOf, Index, or Load/LoadTable
401 * operators, we need to get to the base object (as per the ACPI
402 * specification of the ObjectType and SizeOf operators). This means
403 * traversing the list of possibly many nested references.
404 */
405 while (ObjDesc->Common.Type == ACPI_TYPE_LOCAL_REFERENCE)
406 {
407 switch (ObjDesc->Reference.Class)
408 {
409 case ACPI_REFCLASS_REFOF:
410 case ACPI_REFCLASS_NAME:

412 /* Dereference the reference pointer */

414 if (ObjDesc->Reference.Class == ACPI_REFCLASS_REFOF)
415 {
416 Node = ObjDesc->Reference.Object;
417 }
418 else /* AML_INT_NAMEPATH_OP */
419 {
420 Node = ObjDesc->Reference.Node;
421 }

423 /* All "References" point to a NS node */

425 if (ACPI_GET_DESCRIPTOR_TYPE (Node) != ACPI_DESC_TYPE_NAMED)
426 {
427 ACPI_ERROR ((AE_INFO,
428 "Not a namespace node %p [%s]",
429 Node, AcpiUtGetDescriptorName (Node)));
430 return_ACPI_STATUS (AE_AML_INTERNAL);
431 }

433 /* Get the attached object */

435 ObjDesc = AcpiNsGetAttachedObject (Node);
436 if (!ObjDesc)
437 {
438 /* No object, use the NS node type */

440 Type = AcpiNsGetType (Node);
441 goto Exit;
442 }

444 /* Check for circular references */

new/usr/src/common/acpica/components/executer/exresolv.c 8

446 if (ObjDesc == Operand)
447 {
448 return_ACPI_STATUS (AE_AML_CIRCULAR_REFERENCE);
449 }
450 break;

452 case ACPI_REFCLASS_INDEX:

454 /* Get the type of this reference (index into another object) */

456 Type = ObjDesc->Reference.TargetType;
457 if (Type != ACPI_TYPE_PACKAGE)
458 {
459 goto Exit;
460 }

462 /*
463 * The main object is a package, we want to get the type
464 * of the individual package element that is referenced by
465 * the index.
466 *
467 * This could of course in turn be another reference object.
468 */
469 ObjDesc = *(ObjDesc->Reference.Where);
470 if (!ObjDesc)
471 {
472 /* NULL package elements are allowed */

474 Type = 0; /* Uninitialized */
475 goto Exit;
476 }
477 break;

479 case ACPI_REFCLASS_TABLE:

481 Type = ACPI_TYPE_DDB_HANDLE;
482 goto Exit;

484 case ACPI_REFCLASS_LOCAL:
485 case ACPI_REFCLASS_ARG:

487 if (ReturnDesc)
488 {
489 Status = AcpiDsMethodDataGetValue (ObjDesc->Reference.Class,
490 ObjDesc->Reference.Value, WalkState, &ObjDesc);
491 if (ACPI_FAILURE (Status))
492 {
493 return_ACPI_STATUS (Status);
494 }
495 AcpiUtRemoveReference (ObjDesc);
496 }
497 else
498 {
499 Status = AcpiDsMethodDataGetNode (ObjDesc->Reference.Class,
500 ObjDesc->Reference.Value, WalkState, &Node);
501 if (ACPI_FAILURE (Status))
502 {
503 return_ACPI_STATUS (Status);
504 }

506 ObjDesc = AcpiNsGetAttachedObject (Node);
507 if (!ObjDesc)
508 {

new/usr/src/common/acpica/components/executer/exresolv.c 9

509 Type = ACPI_TYPE_ANY;
510 goto Exit;
511 }
512 }
513 break;

515 case ACPI_REFCLASS_DEBUG:

517 /* The Debug Object is of type "DebugObject" */

519 Type = ACPI_TYPE_DEBUG_OBJECT;
520 goto Exit;

522 default:

524 ACPI_ERROR ((AE_INFO,
525 "Unknown Reference Class 0x%2.2X", ObjDesc->Reference.Class));
526 return_ACPI_STATUS (AE_AML_INTERNAL);
527 }
528 }

530 /*
531 * Now we are guaranteed to have an object that has not been created
532 * via the RefOf or Index operators.
533 */
534 Type = ObjDesc->Common.Type;

537 Exit:
538 /* Convert internal types to external types */

540 switch (Type)
541 {
542 case ACPI_TYPE_LOCAL_REGION_FIELD:
543 case ACPI_TYPE_LOCAL_BANK_FIELD:
544 case ACPI_TYPE_LOCAL_INDEX_FIELD:

546 Type = ACPI_TYPE_FIELD_UNIT;
547 break;

549 case ACPI_TYPE_LOCAL_SCOPE:

551 /* Per ACPI Specification, Scope is untyped */

553 Type = ACPI_TYPE_ANY;
554 break;

556 default:

558 /* No change to Type required */

560 break;
561 }

563 *ReturnType = Type;
564 if (ReturnDesc)
565 {
566 *ReturnDesc = ObjDesc;
567 }
568 return_ACPI_STATUS (AE_OK);
569 }

new/usr/src/common/acpica/components/executer/exresop.c 1

**
 22214 Thu Dec 26 13:49:09 2013
new/usr/src/common/acpica/components/executer/exresop.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exresop - AML Interpreter operand/object resolution
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXRESOP_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "amlcode.h"
49 #include "acparser.h"
50 #include "acinterp.h"
51 #include "acnamesp.h"

54 #define _COMPONENT ACPI_EXECUTER
55 ACPI_MODULE_NAME ("exresop")

57 /* Local prototypes */

new/usr/src/common/acpica/components/executer/exresop.c 2

59 static ACPI_STATUS
60 AcpiExCheckObjectType (
61 ACPI_OBJECT_TYPE TypeNeeded,
62 ACPI_OBJECT_TYPE ThisType,
63 void *Object);

66 /***
67 *
68 * FUNCTION: AcpiExCheckObjectType
69 *
70 * PARAMETERS: TypeNeeded Object type needed
71 * ThisType Actual object type
72 * Object Object pointer
73 *
74 * RETURN: Status
75 *
76 * DESCRIPTION: Check required type against actual type
77 *
78 **/

80 static ACPI_STATUS
81 AcpiExCheckObjectType (
82 ACPI_OBJECT_TYPE TypeNeeded,
83 ACPI_OBJECT_TYPE ThisType,
84 void *Object)
85 {
86 ACPI_FUNCTION_ENTRY ();

89 if (TypeNeeded == ACPI_TYPE_ANY)
90 {
91 /* All types OK, so we don’t perform any typechecks */

93 return (AE_OK);
94 }

96 if (TypeNeeded == ACPI_TYPE_LOCAL_REFERENCE)
97 {
98 /*
99 * Allow the AML "Constant" opcodes (Zero, One, etc.) to be reference
100 * objects and thus allow them to be targets. (As per the ACPI
101 * specification, a store to a constant is a noop.)
102 */
103 if ((ThisType == ACPI_TYPE_INTEGER) &&
104 (((ACPI_OPERAND_OBJECT *) Object)->Common.Flags & AOPOBJ_AML_CONSTAN
105 {
106 return (AE_OK);
107 }
108 }

110 if (TypeNeeded != ThisType)
111 {
112 ACPI_ERROR ((AE_INFO,
113 "Needed type [%s], found [%s] %p",
114 AcpiUtGetTypeName (TypeNeeded),
115 AcpiUtGetTypeName (ThisType), Object));

117 return (AE_AML_OPERAND_TYPE);
118 }

120 return (AE_OK);
121 }

124 /***

new/usr/src/common/acpica/components/executer/exresop.c 3

125 *
126 * FUNCTION: AcpiExResolveOperands
127 *
128 * PARAMETERS: Opcode - Opcode being interpreted
129 * StackPtr - Pointer to the operand stack to be
130 * resolved
131 * WalkState - Current state
132 *
133 * RETURN: Status
134 *
135 * DESCRIPTION: Convert multiple input operands to the types required by the
136 * target operator.
137 *
138 * Each 5-bit group in ArgTypes represents one required
139 * operand and indicates the required Type. The corresponding operand
140 * will be converted to the required type if possible, otherwise we
141 * abort with an exception.
142 *
143 **/

145 ACPI_STATUS
146 AcpiExResolveOperands (
147 UINT16 Opcode,
148 ACPI_OPERAND_OBJECT **StackPtr,
149 ACPI_WALK_STATE *WalkState)
150 {
151 ACPI_OPERAND_OBJECT *ObjDesc;
152 ACPI_STATUS Status = AE_OK;
153 UINT8 ObjectType;
154 UINT32 ArgTypes;
155 const ACPI_OPCODE_INFO *OpInfo;
156 UINT32 ThisArgType;
157 ACPI_OBJECT_TYPE TypeNeeded;
158 UINT16 TargetOp = 0;

161 ACPI_FUNCTION_TRACE_U32 (ExResolveOperands, Opcode);

164 OpInfo = AcpiPsGetOpcodeInfo (Opcode);
165 if (OpInfo->Class == AML_CLASS_UNKNOWN)
166 {
167 return_ACPI_STATUS (AE_AML_BAD_OPCODE);
168 }

170 ArgTypes = OpInfo->RuntimeArgs;
171 if (ArgTypes == ARGI_INVALID_OPCODE)
172 {
173 ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X",
174 Opcode));

176 return_ACPI_STATUS (AE_AML_INTERNAL);
177 }

179 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
180 "Opcode %X [%s] RequiredOperandTypes=%8.8X\n",
181 Opcode, OpInfo->Name, ArgTypes));

183 /*
184 * Normal exit is with (ArgTypes == 0) at end of argument list.
185 * Function will return an exception from within the loop upon
186 * finding an entry which is not (or cannot be converted
187 * to) the required type; if stack underflows; or upon
188 * finding a NULL stack entry (which should not happen).
189 */
190 while (GET_CURRENT_ARG_TYPE (ArgTypes))

new/usr/src/common/acpica/components/executer/exresop.c 4

191 {
192 if (!StackPtr || !*StackPtr)
193 {
194 ACPI_ERROR ((AE_INFO, "Null stack entry at %p",
195 StackPtr));

197 return_ACPI_STATUS (AE_AML_INTERNAL);
198 }

200 /* Extract useful items */

202 ObjDesc = *StackPtr;

204 /* Decode the descriptor type */

206 switch (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc))
207 {
208 case ACPI_DESC_TYPE_NAMED:

210 /* Namespace Node */

212 ObjectType = ((ACPI_NAMESPACE_NODE *) ObjDesc)->Type;

214 /*
215 * Resolve an alias object. The construction of these objects
216 * guarantees that there is only one level of alias indirection;
217 * thus, the attached object is always the aliased namespace node
218 */
219 if (ObjectType == ACPI_TYPE_LOCAL_ALIAS)
220 {
221 ObjDesc = AcpiNsGetAttachedObject ((ACPI_NAMESPACE_NODE *) ObjDe
222 *StackPtr = ObjDesc;
223 ObjectType = ((ACPI_NAMESPACE_NODE *) ObjDesc)->Type;
224 }
225 break;

227 case ACPI_DESC_TYPE_OPERAND:

229 /* ACPI internal object */

231 ObjectType = ObjDesc->Common.Type;

233 /* Check for bad ACPI_OBJECT_TYPE */

235 if (!AcpiUtValidObjectType (ObjectType))
236 {
237 ACPI_ERROR ((AE_INFO,
238 "Bad operand object type [0x%X]", ObjectType));

240 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
241 }

243 if (ObjectType == (UINT8) ACPI_TYPE_LOCAL_REFERENCE)
244 {
245 /* Validate the Reference */

247 switch (ObjDesc->Reference.Class)
248 {
249 case ACPI_REFCLASS_DEBUG:

251 TargetOp = AML_DEBUG_OP;

253 /*lint -fallthrough */

255 case ACPI_REFCLASS_ARG:

new/usr/src/common/acpica/components/executer/exresop.c 5

256 case ACPI_REFCLASS_LOCAL:
257 case ACPI_REFCLASS_INDEX:
258 case ACPI_REFCLASS_REFOF:
259 case ACPI_REFCLASS_TABLE: /* DdbHandle from LOAD_OP or LOAD_T
260 case ACPI_REFCLASS_NAME: /* Reference to a named object */

262 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
263 "Operand is a Reference, Class [%s] %2.2X\n",
264 AcpiUtGetReferenceName (ObjDesc),
265 ObjDesc->Reference.Class));
266 break;

268 default:

270 ACPI_ERROR ((AE_INFO,
271 "Unknown Reference Class 0x%2.2X in %p",
272 ObjDesc->Reference.Class, ObjDesc));

274 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
275 }
276 }
277 break;

279 default:

281 /* Invalid descriptor */

283 ACPI_ERROR ((AE_INFO, "Invalid descriptor %p [%s]",
284 ObjDesc, AcpiUtGetDescriptorName (ObjDesc)));

286 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
287 }

289 /* Get one argument type, point to the next */

291 ThisArgType = GET_CURRENT_ARG_TYPE (ArgTypes);
292 INCREMENT_ARG_LIST (ArgTypes);

294 /*
295 * Handle cases where the object does not need to be
296 * resolved to a value
297 */
298 switch (ThisArgType)
299 {
300 case ARGI_REF_OR_STRING: /* Can be a String or Reference */

302 if ((ACPI_GET_DESCRIPTOR_TYPE (ObjDesc) == ACPI_DESC_TYPE_OPERAND) &
303 (ObjDesc->Common.Type == ACPI_TYPE_STRING))
304 {
305 /*
306 * String found - the string references a named object and
307 * must be resolved to a node
308 */
309 goto NextOperand;
310 }

312 /*
313 * Else not a string - fall through to the normal Reference
314 * case below
315 */
316 /*lint -fallthrough */

318 case ARGI_REFERENCE: /* References: */
319 case ARGI_INTEGER_REF:
320 case ARGI_OBJECT_REF:

new/usr/src/common/acpica/components/executer/exresop.c 6

321 case ARGI_DEVICE_REF:
322 case ARGI_TARGETREF: /* Allows implicit conversion rules before stor
323 case ARGI_FIXED_TARGET: /* No implicit conversion before store to targe
324 case ARGI_SIMPLE_TARGET: /* Name, Local, or Arg - no implicit conversion

325 /*
326 * Need an operand of type ACPI_TYPE_LOCAL_REFERENCE
327 * A Namespace Node is OK as-is
328 */
329 if (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc) == ACPI_DESC_TYPE_NAMED)
330 {
331 goto NextOperand;
332 }

334 Status = AcpiExCheckObjectType (ACPI_TYPE_LOCAL_REFERENCE,
335 ObjectType, ObjDesc);
336 if (ACPI_FAILURE (Status))
337 {
338 return_ACPI_STATUS (Status);
339 }
340 goto NextOperand;

342 case ARGI_DATAREFOBJ: /* Store operator only */

343 /*
344 * We don’t want to resolve IndexOp reference objects during
345 * a store because this would be an implicit DeRefOf operation.
346 * Instead, we just want to store the reference object.
347 * -- All others must be resolved below.
348 */
349 if ((Opcode == AML_STORE_OP) &&
350 ((*StackPtr)->Common.Type == ACPI_TYPE_LOCAL_REFERENCE) &&
351 ((*StackPtr)->Reference.Class == ACPI_REFCLASS_INDEX))
352 {
353 goto NextOperand;
354 }
355 break;

357 default:

359 /* All cases covered above */

361 break;
362 }

364 /*
365 * Resolve this object to a value
366 */
367 Status = AcpiExResolveToValue (StackPtr, WalkState);
368 if (ACPI_FAILURE (Status))
369 {
370 return_ACPI_STATUS (Status);
371 }

373 /* Get the resolved object */

375 ObjDesc = *StackPtr;

377 /*
378 * Check the resulting object (value) type
379 */
380 switch (ThisArgType)
381 {
382 /*
383 * For the simple cases, only one type of resolved object

new/usr/src/common/acpica/components/executer/exresop.c 7

384 * is allowed
385 */
386 case ARGI_MUTEX:

388 /* Need an operand of type ACPI_TYPE_MUTEX */

390 TypeNeeded = ACPI_TYPE_MUTEX;
391 break;

393 case ARGI_EVENT:

395 /* Need an operand of type ACPI_TYPE_EVENT */

397 TypeNeeded = ACPI_TYPE_EVENT;
398 break;

400 case ARGI_PACKAGE: /* Package */

402 /* Need an operand of type ACPI_TYPE_PACKAGE */

404 TypeNeeded = ACPI_TYPE_PACKAGE;
405 break;

407 case ARGI_ANYTYPE:

409 /* Any operand type will do */

411 TypeNeeded = ACPI_TYPE_ANY;
412 break;

414 case ARGI_DDBHANDLE:

416 /* Need an operand of type ACPI_TYPE_DDB_HANDLE */

418 TypeNeeded = ACPI_TYPE_LOCAL_REFERENCE;
419 break;

422 /*
423 * The more complex cases allow multiple resolved object types
424 */
425 case ARGI_INTEGER:

427 /*
428 * Need an operand of type ACPI_TYPE_INTEGER,
429 * But we can implicitly convert from a STRING or BUFFER
430 * Aka - "Implicit Source Operand Conversion"
431 */
432 Status = AcpiExConvertToInteger (ObjDesc, StackPtr, 16);
433 if (ACPI_FAILURE (Status))
434 {
435 if (Status == AE_TYPE)
436 {
437 ACPI_ERROR ((AE_INFO,
438 "Needed [Integer/String/Buffer], found [%s] %p",
439 AcpiUtGetObjectTypeName (ObjDesc), ObjDesc));

441 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
442 }

444 return_ACPI_STATUS (Status);
445 }

447 if (ObjDesc != *StackPtr)
448 {
449 AcpiUtRemoveReference (ObjDesc);

new/usr/src/common/acpica/components/executer/exresop.c 8

450 }
451 goto NextOperand;

453 case ARGI_BUFFER:

454 /*
455 * Need an operand of type ACPI_TYPE_BUFFER,
456 * But we can implicitly convert from a STRING or INTEGER
457 * Aka - "Implicit Source Operand Conversion"
458 */
459 Status = AcpiExConvertToBuffer (ObjDesc, StackPtr);
460 if (ACPI_FAILURE (Status))
461 {
462 if (Status == AE_TYPE)
463 {
464 ACPI_ERROR ((AE_INFO,
465 "Needed [Integer/String/Buffer], found [%s] %p",
466 AcpiUtGetObjectTypeName (ObjDesc), ObjDesc));

468 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
469 }

471 return_ACPI_STATUS (Status);
472 }

474 if (ObjDesc != *StackPtr)
475 {
476 AcpiUtRemoveReference (ObjDesc);
477 }
478 goto NextOperand;

480 case ARGI_STRING:

481 /*
482 * Need an operand of type ACPI_TYPE_STRING,
483 * But we can implicitly convert from a BUFFER or INTEGER
484 * Aka - "Implicit Source Operand Conversion"
485 */
486 Status = AcpiExConvertToString (ObjDesc, StackPtr,
487 ACPI_IMPLICIT_CONVERT_HEX);
488 if (ACPI_FAILURE (Status))
489 {
490 if (Status == AE_TYPE)
491 {
492 ACPI_ERROR ((AE_INFO,
493 "Needed [Integer/String/Buffer], found [%s] %p",
494 AcpiUtGetObjectTypeName (ObjDesc), ObjDesc));

496 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
497 }

499 return_ACPI_STATUS (Status);
500 }

502 if (ObjDesc != *StackPtr)
503 {
504 AcpiUtRemoveReference (ObjDesc);
505 }
506 goto NextOperand;

508 case ARGI_COMPUTEDATA:

510 /* Need an operand of type INTEGER, STRING or BUFFER */

new/usr/src/common/acpica/components/executer/exresop.c 9

512 switch (ObjDesc->Common.Type)
513 {
514 case ACPI_TYPE_INTEGER:
515 case ACPI_TYPE_STRING:
516 case ACPI_TYPE_BUFFER:

518 /* Valid operand */
519 break;

521 default:
522 ACPI_ERROR ((AE_INFO,
523 "Needed [Integer/String/Buffer], found [%s] %p",
524 AcpiUtGetObjectTypeName (ObjDesc), ObjDesc));

526 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
527 }
528 goto NextOperand;

530 case ARGI_BUFFER_OR_STRING:

532 /* Need an operand of type STRING or BUFFER */

534 switch (ObjDesc->Common.Type)
535 {
536 case ACPI_TYPE_STRING:
537 case ACPI_TYPE_BUFFER:

539 /* Valid operand */
540 break;

542 case ACPI_TYPE_INTEGER:

544 /* Highest priority conversion is to type Buffer */

546 Status = AcpiExConvertToBuffer (ObjDesc, StackPtr);
547 if (ACPI_FAILURE (Status))
548 {
549 return_ACPI_STATUS (Status);
550 }

552 if (ObjDesc != *StackPtr)
553 {
554 AcpiUtRemoveReference (ObjDesc);
555 }
556 break;

558 default:
559 ACPI_ERROR ((AE_INFO,
560 "Needed [Integer/String/Buffer], found [%s] %p",
561 AcpiUtGetObjectTypeName (ObjDesc), ObjDesc));

563 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
564 }
565 goto NextOperand;

567 case ARGI_DATAOBJECT:
568 /*
569 * ARGI_DATAOBJECT is only used by the SizeOf operator.
570 * Need a buffer, string, package, or RefOf reference.
571 *
572 * The only reference allowed here is a direct reference to
573 * a namespace node.
574 */

new/usr/src/common/acpica/components/executer/exresop.c 10

575 switch (ObjDesc->Common.Type)
576 {
577 case ACPI_TYPE_PACKAGE:
578 case ACPI_TYPE_STRING:
579 case ACPI_TYPE_BUFFER:
580 case ACPI_TYPE_LOCAL_REFERENCE:

582 /* Valid operand */
583 break;

585 default:

587 ACPI_ERROR ((AE_INFO,
588 "Needed [Buffer/String/Package/Reference], found [%s] %p",
589 AcpiUtGetObjectTypeName (ObjDesc), ObjDesc));

591 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
592 }
593 goto NextOperand;

595 case ARGI_COMPLEXOBJ:

597 /* Need a buffer or package or (ACPI 2.0) String */

599 switch (ObjDesc->Common.Type)
600 {
601 case ACPI_TYPE_PACKAGE:
602 case ACPI_TYPE_STRING:
603 case ACPI_TYPE_BUFFER:

605 /* Valid operand */
606 break;

608 default:

610 ACPI_ERROR ((AE_INFO,
611 "Needed [Buffer/String/Package], found [%s] %p",
612 AcpiUtGetObjectTypeName (ObjDesc), ObjDesc));

614 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
615 }
616 goto NextOperand;

618 case ARGI_REGION_OR_BUFFER: /* Used by Load() only */

620 /* Need an operand of type REGION or a BUFFER (which could be a reso

622 switch (ObjDesc->Common.Type)
623 {
624 case ACPI_TYPE_BUFFER:
625 case ACPI_TYPE_REGION:

627 /* Valid operand */
628 break;

630 default:

632 ACPI_ERROR ((AE_INFO,
633 "Needed [Region/Buffer], found [%s] %p",
634 AcpiUtGetObjectTypeName (ObjDesc), ObjDesc));

636 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
637 }
638 goto NextOperand;

new/usr/src/common/acpica/components/executer/exresop.c 11

640 case ARGI_DATAREFOBJ:

642 /* Used by the Store() operator only */

644 switch (ObjDesc->Common.Type)
645 {
646 case ACPI_TYPE_INTEGER:
647 case ACPI_TYPE_PACKAGE:
648 case ACPI_TYPE_STRING:
649 case ACPI_TYPE_BUFFER:
650 case ACPI_TYPE_BUFFER_FIELD:
651 case ACPI_TYPE_LOCAL_REFERENCE:
652 case ACPI_TYPE_LOCAL_REGION_FIELD:
653 case ACPI_TYPE_LOCAL_BANK_FIELD:
654 case ACPI_TYPE_LOCAL_INDEX_FIELD:
655 case ACPI_TYPE_DDB_HANDLE:

657 /* Valid operand */
658 break;

660 default:

662 if (AcpiGbl_EnableInterpreterSlack)
663 {
664 /*
665 * Enable original behavior of Store(), allowing any and all
666 * objects as the source operand. The ACPI spec does not
667 * allow this, however.
668 */
669 break;
670 }

672 if (TargetOp == AML_DEBUG_OP)
673 {
674 /* Allow store of any object to the Debug object */

676 break;
677 }

679 ACPI_ERROR ((AE_INFO,
680 "Needed Integer/Buffer/String/Package/Ref/Ddb], found [%s] %
681 AcpiUtGetObjectTypeName (ObjDesc), ObjDesc));

683 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
684 }
685 goto NextOperand;

687 default:

689 /* Unknown type */

691 ACPI_ERROR ((AE_INFO,
692 "Internal - Unknown ARGI (required operand) type 0x%X",
693 ThisArgType));

695 return_ACPI_STATUS (AE_BAD_PARAMETER);
696 }

698 /*
699 * Make sure that the original object was resolved to the
700 * required object type (Simple cases only).
701 */
702 Status = AcpiExCheckObjectType (TypeNeeded,

new/usr/src/common/acpica/components/executer/exresop.c 12

703 (*StackPtr)->Common.Type, *StackPtr);
704 if (ACPI_FAILURE (Status))
705 {
706 return_ACPI_STATUS (Status);
707 }

709 NextOperand:
710 /*
711 * If more operands needed, decrement StackPtr to point
712 * to next operand on stack
713 */
714 if (GET_CURRENT_ARG_TYPE (ArgTypes))
715 {
716 StackPtr--;
717 }
718 }

720 ACPI_DUMP_OPERANDS (WalkState->Operands,
721 AcpiPsGetOpcodeName (Opcode), WalkState->NumOperands);

723 return_ACPI_STATUS (Status);
724 }

new/usr/src/common/acpica/components/executer/exstore.c 1

**
 18686 Thu Dec 26 13:49:09 2013
new/usr/src/common/acpica/components/executer/exstore.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exstore - AML Interpreter object store support
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXSTORE_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acdispat.h"
49 #include "acinterp.h"
50 #include "amlcode.h"
51 #include "acnamesp.h"

54 #define _COMPONENT ACPI_EXECUTER
55 ACPI_MODULE_NAME ("exstore")

57 /* Local prototypes */

new/usr/src/common/acpica/components/executer/exstore.c 2

59 static ACPI_STATUS
60 AcpiExStoreObjectToIndex (
61 ACPI_OPERAND_OBJECT *ValDesc,
62 ACPI_OPERAND_OBJECT *DestDesc,
63 ACPI_WALK_STATE *WalkState);

65 static ACPI_STATUS
66 AcpiExStoreDirectToNode (
67 ACPI_OPERAND_OBJECT *SourceDesc,
68 ACPI_NAMESPACE_NODE *Node,
69 ACPI_WALK_STATE *WalkState);

72 /***
73 *
74 * FUNCTION: AcpiExStore
75 *
76 * PARAMETERS: *SourceDesc - Value to be stored
77 * *DestDesc - Where to store it. Must be an NS node
78 * or ACPI_OPERAND_OBJECT of type
72 * or an ACPI_OPERAND_OBJECT of type
79 * Reference;
80 * WalkState - Current walk state
81 *
82 * RETURN: Status
83 *
84 * DESCRIPTION: Store the value described by SourceDesc into the location
85 * described by DestDesc. Called by various interpreter
86 * functions to store the result of an operation into
87 * the destination operand -- not just simply the actual "Store"
88 * ASL operator.
89 *
90 **/

92 ACPI_STATUS
93 AcpiExStore (
94 ACPI_OPERAND_OBJECT *SourceDesc,
95 ACPI_OPERAND_OBJECT *DestDesc,
96 ACPI_WALK_STATE *WalkState)
97 {
98 ACPI_STATUS Status = AE_OK;
99 ACPI_OPERAND_OBJECT *RefDesc = DestDesc;

102 ACPI_FUNCTION_TRACE_PTR (ExStore, DestDesc);

105 /* Validate parameters */

107 if (!SourceDesc || !DestDesc)
108 {
109 ACPI_ERROR ((AE_INFO, "Null parameter"));
110 return_ACPI_STATUS (AE_AML_NO_OPERAND);
111 }

113 /* DestDesc can be either a namespace node or an ACPI object */

115 if (ACPI_GET_DESCRIPTOR_TYPE (DestDesc) == ACPI_DESC_TYPE_NAMED)
116 {
117 /*
118 * Dest is a namespace node,
119 * Storing an object into a Named node.
120 */
121 Status = AcpiExStoreObjectToNode (SourceDesc,
122 (ACPI_NAMESPACE_NODE *) DestDesc, WalkState,
123 ACPI_IMPLICIT_CONVERSION);

new/usr/src/common/acpica/components/executer/exstore.c 3

125 return_ACPI_STATUS (Status);
126 }

128 /* Destination object must be a Reference or a Constant object */

130 switch (DestDesc->Common.Type)
131 {
132 case ACPI_TYPE_LOCAL_REFERENCE:

134 break;

136 case ACPI_TYPE_INTEGER:

138 /* Allow stores to Constants -- a Noop as per ACPI spec */

140 if (DestDesc->Common.Flags & AOPOBJ_AML_CONSTANT)
141 {
142 return_ACPI_STATUS (AE_OK);
143 }

145 /*lint -fallthrough */

147 default:

149 /* Destination is not a Reference object */

151 ACPI_ERROR ((AE_INFO,
152 "Target is not a Reference or Constant object - %s [%p]",
153 AcpiUtGetObjectTypeName (DestDesc), DestDesc));

155 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
156 }

158 /*
159 * Examine the Reference class. These cases are handled:
160 *
161 * 1) Store to Name (Change the object associated with a name)
162 * 2) Store to an indexed area of a Buffer or Package
163 * 3) Store to a Method Local or Arg
164 * 4) Store to the debug object
165 */
166 switch (RefDesc->Reference.Class)
167 {
168 case ACPI_REFCLASS_REFOF:

170 /* Storing an object into a Name "container" */

172 Status = AcpiExStoreObjectToNode (SourceDesc,
173 RefDesc->Reference.Object,
174 WalkState, ACPI_IMPLICIT_CONVERSION);
175 break;

177 case ACPI_REFCLASS_INDEX:

179 /* Storing to an Index (pointer into a packager or buffer) */

181 Status = AcpiExStoreObjectToIndex (SourceDesc, RefDesc, WalkState);
182 break;

184 case ACPI_REFCLASS_LOCAL:
185 case ACPI_REFCLASS_ARG:

187 /* Store to a method local/arg */

new/usr/src/common/acpica/components/executer/exstore.c 4

189 Status = AcpiDsStoreObjectToLocal (RefDesc->Reference.Class,
190 RefDesc->Reference.Value, SourceDesc, WalkState);
191 break;

193 case ACPI_REFCLASS_DEBUG:

194 /*
195 * Storing to the Debug object causes the value stored to be
196 * displayed and otherwise has no effect -- see ACPI Specification
197 */
198 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
199 "**** Write to Debug Object: Object %p %s ****:\n\n",
200 SourceDesc, AcpiUtGetObjectTypeName (SourceDesc)));

202 ACPI_DEBUG_OBJECT (SourceDesc, 0, 0);
203 break;

205 default:

207 ACPI_ERROR ((AE_INFO, "Unknown Reference Class 0x%2.2X",
208 RefDesc->Reference.Class));
209 ACPI_DUMP_ENTRY (RefDesc, ACPI_LV_INFO);

211 Status = AE_AML_INTERNAL;
212 break;
213 }

215 return_ACPI_STATUS (Status);
216 }

219 /***
220 *
221 * FUNCTION: AcpiExStoreObjectToIndex
222 *
223 * PARAMETERS: *SourceDesc - Value to be stored
224 * *DestDesc - Named object to receive the value
225 * WalkState - Current walk state
226 *
227 * RETURN: Status
228 *
229 * DESCRIPTION: Store the object to indexed Buffer or Package element
230 *
231 **/

233 static ACPI_STATUS
234 AcpiExStoreObjectToIndex (
235 ACPI_OPERAND_OBJECT *SourceDesc,
236 ACPI_OPERAND_OBJECT *IndexDesc,
237 ACPI_WALK_STATE *WalkState)
238 {
239 ACPI_STATUS Status = AE_OK;
240 ACPI_OPERAND_OBJECT *ObjDesc;
241 ACPI_OPERAND_OBJECT *NewDesc;
242 UINT8 Value = 0;
243 UINT32 i;

246 ACPI_FUNCTION_TRACE (ExStoreObjectToIndex);

249 /*
250 * Destination must be a reference pointer, and

new/usr/src/common/acpica/components/executer/exstore.c 5

251 * must point to either a buffer or a package
252 */
253 switch (IndexDesc->Reference.TargetType)
254 {
255 case ACPI_TYPE_PACKAGE:
256 /*
257 * Storing to a package element. Copy the object and replace
258 * any existing object with the new object. No implicit
259 * conversion is performed.
260 *
261 * The object at *(IndexDesc->Reference.Where) is the
262 * element within the package that is to be modified.
263 * The parent package object is at IndexDesc->Reference.Object
264 */
265 ObjDesc = *(IndexDesc->Reference.Where);

267 if (SourceDesc->Common.Type == ACPI_TYPE_LOCAL_REFERENCE &&
268 SourceDesc->Reference.Class == ACPI_REFCLASS_TABLE)
269 {
270 /* This is a DDBHandle, just add a reference to it */

272 AcpiUtAddReference (SourceDesc);
273 NewDesc = SourceDesc;
274 }
275 else
276 {
277 /* Normal object, copy it */

279 Status = AcpiUtCopyIobjectToIobject (SourceDesc, &NewDesc, WalkState
280 if (ACPI_FAILURE (Status))
281 {
282 return_ACPI_STATUS (Status);
283 }
284 }

286 if (ObjDesc)
287 {
288 /* Decrement reference count by the ref count of the parent package

290 for (i = 0;
291 i < ((ACPI_OPERAND_OBJECT *)
292 IndexDesc->Reference.Object)->Common.ReferenceCount;
293 i++)
294 {
295 AcpiUtRemoveReference (ObjDesc);
296 }
297 }

299 *(IndexDesc->Reference.Where) = NewDesc;

301 /* Increment ref count by the ref count of the parent package-1 */

303 for (i = 1;
304 i < ((ACPI_OPERAND_OBJECT *)
305 IndexDesc->Reference.Object)->Common.ReferenceCount;
306 i++)
307 {
308 AcpiUtAddReference (NewDesc);
309 }

311 break;

313 case ACPI_TYPE_BUFFER_FIELD:

314 /*

new/usr/src/common/acpica/components/executer/exstore.c 6

315 * Store into a Buffer or String (not actually a real BufferField)
316 * at a location defined by an Index.
317 *
318 * The first 8-bit element of the source object is written to the
319 * 8-bit Buffer location defined by the Index destination object,
320 * according to the ACPI 2.0 specification.
321 */

323 /*
324 * Make sure the target is a Buffer or String. An error should
325 * not happen here, since the ReferenceObject was constructed
326 * by the INDEX_OP code.
327 */
328 ObjDesc = IndexDesc->Reference.Object;
329 if ((ObjDesc->Common.Type != ACPI_TYPE_BUFFER) &&
330 (ObjDesc->Common.Type != ACPI_TYPE_STRING))
331 {
332 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
333 }

335 /*
336 * The assignment of the individual elements will be slightly
337 * different for each source type.
338 */
339 switch (SourceDesc->Common.Type)
340 {
341 case ACPI_TYPE_INTEGER:

343 /* Use the least-significant byte of the integer */

345 Value = (UINT8) (SourceDesc->Integer.Value);
346 break;

348 case ACPI_TYPE_BUFFER:
349 case ACPI_TYPE_STRING:

351 /* Note: Takes advantage of common string/buffer fields */

353 Value = SourceDesc->Buffer.Pointer[0];
354 break;

356 default:

358 /* All other types are invalid */

360 ACPI_ERROR ((AE_INFO,
361 "Source must be Integer/Buffer/String type, not %s",
362 AcpiUtGetObjectTypeName (SourceDesc)));
363 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
364 }

366 /* Store the source value into the target buffer byte */

368 ObjDesc->Buffer.Pointer[IndexDesc->Reference.Value] = Value;
369 break;

371 default:
372 ACPI_ERROR ((AE_INFO,
373 "Target is not a Package or BufferField"));
374 Status = AE_AML_OPERAND_TYPE;
375 break;
376 }

378 return_ACPI_STATUS (Status);
379 }

new/usr/src/common/acpica/components/executer/exstore.c 7

382 /***
383 *
384 * FUNCTION: AcpiExStoreObjectToNode
385 *
386 * PARAMETERS: SourceDesc - Value to be stored
387 * Node - Named object to receive the value
388 * WalkState - Current walk state
389 * ImplicitConversion - Perform implicit conversion (yes/no)
390 *
391 * RETURN: Status
392 *
393 * DESCRIPTION: Store the object to the named object.
394 *
395 * The Assignment of an object to a named object is handled here
396 * The value passed in will replace the current value (if any)
397 * with the input value.
398 *
399 * When storing into an object the data is converted to the
400 * target object type then stored in the object. This means
401 * that the target object type (for an initialized target) will
402 * not be changed by a store operation. A CopyObject can change
403 * the target type, however.
403 * not be changed by a store operation.
404 *
405 * The ImplicitConversion flag is set to NO/FALSE only when
406 * storing to an ArgX -- as per the rules of the ACPI spec.
407 *
408 * Assumes parameters are already validated.
409 *
410 **/

412 ACPI_STATUS
413 AcpiExStoreObjectToNode (
414 ACPI_OPERAND_OBJECT *SourceDesc,
415 ACPI_NAMESPACE_NODE *Node,
416 ACPI_WALK_STATE *WalkState,
417 UINT8 ImplicitConversion)
418 {
419 ACPI_STATUS Status = AE_OK;
420 ACPI_OPERAND_OBJECT *TargetDesc;
421 ACPI_OPERAND_OBJECT *NewDesc;
422 ACPI_OBJECT_TYPE TargetType;

425 ACPI_FUNCTION_TRACE_PTR (ExStoreObjectToNode, SourceDesc);

428 /* Get current type of the node, and object attached to Node */

430 TargetType = AcpiNsGetType (Node);
431 TargetDesc = AcpiNsGetAttachedObject (Node);

433 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Storing %p (%s) to node %p (%s)\n",
430 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Storing %p(%s) into node %p(%s)\n",
434 SourceDesc, AcpiUtGetObjectTypeName (SourceDesc),
435 Node, AcpiUtGetTypeName (TargetType)));

437 /*
438 * Resolve the source object to an actual value
439 * (If it is a reference object)
440 */
441 Status = AcpiExResolveObject (&SourceDesc, TargetType, WalkState);
442 if (ACPI_FAILURE (Status))
443 {

new/usr/src/common/acpica/components/executer/exstore.c 8

444 return_ACPI_STATUS (Status);
445 }

444 /* If no implicit conversion, drop into the default case below */

446 if ((!ImplicitConversion) ||
447 ((WalkState->Opcode == AML_COPY_OP) &&
448 (TargetType != ACPI_TYPE_LOCAL_REGION_FIELD) &&
449 (TargetType != ACPI_TYPE_LOCAL_BANK_FIELD) &&
450 (TargetType != ACPI_TYPE_LOCAL_INDEX_FIELD)))
451 {
452 /*
453 * Force execution of default (no implicit conversion). Note:
454 * CopyObject does not perform an implicit conversion, as per the ACPI
455 * spec -- except in case of region/bank/index fields -- because these
456 * objects must retain their original type permanently.
457 */
458 TargetType = ACPI_TYPE_ANY;
459 }

447 /* Do the actual store operation */

449 switch (TargetType)
450 {
465 case ACPI_TYPE_BUFFER_FIELD:
466 case ACPI_TYPE_LOCAL_REGION_FIELD:
467 case ACPI_TYPE_LOCAL_BANK_FIELD:
468 case ACPI_TYPE_LOCAL_INDEX_FIELD:

470 /* For fields, copy the source data to the target field. */

472 Status = AcpiExWriteDataToField (SourceDesc, TargetDesc,
473 &WalkState->ResultObj);
474 break;

451 case ACPI_TYPE_INTEGER:
452 case ACPI_TYPE_STRING:
453 case ACPI_TYPE_BUFFER:
454 /*
455 * The simple data types all support implicit source operand
456 * conversion before the store.
457 */

459 if ((WalkState->Opcode == AML_COPY_OP) ||
460 !ImplicitConversion)
461 {
462 /*
463 * However, CopyObject and Stores to ArgX do not perform
464 * an implicit conversion, as per the ACPI specification.
465 * A direct store is performed instead.
482 * These target types are all of type Integer/String/Buffer, and
483 * therefore support implicit conversion before the store.
484 *
485 * Copy and/or convert the source object to a new target object
466 */
467 Status = AcpiExStoreDirectToNode (SourceDesc, Node,
468 WalkState);
469 break;
470 }

472 /* Store with implicit source operand conversion support */

474 Status = AcpiExStoreObjectToObject (SourceDesc, TargetDesc,
475 &NewDesc, WalkState);
476 if (ACPI_FAILURE (Status))

new/usr/src/common/acpica/components/executer/exstore.c 9

477 {
478 return_ACPI_STATUS (Status);
479 }

481 if (NewDesc != TargetDesc)
482 {
483 /*
484 * Store the new NewDesc as the new value of the Name, and set
485 * the Name’s type to that of the value being stored in it.
486 * SourceDesc reference count is incremented by AttachObject.
487 *
488 * Note: This may change the type of the node if an explicit
489 * store has been performed such that the node/object type
490 * has been changed.
501 * Note: This may change the type of the node if an explicit store
502 * has been performed such that the node/object type has been
503 * changed.
491 */
492 Status = AcpiNsAttachObject (Node, NewDesc,
493 NewDesc->Common.Type);
505 Status = AcpiNsAttachObject (Node, NewDesc, NewDesc->Common.Type);

495 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
496 "Store %s into %s via Convert/Attach\n",
497 AcpiUtGetObjectTypeName (SourceDesc),
498 AcpiUtGetObjectTypeName (NewDesc)));
499 }
500 break;

502 case ACPI_TYPE_BUFFER_FIELD:
503 case ACPI_TYPE_LOCAL_REGION_FIELD:
504 case ACPI_TYPE_LOCAL_BANK_FIELD:
505 case ACPI_TYPE_LOCAL_INDEX_FIELD:
506 /*
507 * For all fields, always write the source data to the target
508 * field. Any required implicit source operand conversion is
509 * performed in the function below as necessary. Note, field
510 * objects must retain their original type permanently.
511 */
512 Status = AcpiExWriteDataToField (SourceDesc, TargetDesc,
513 &WalkState->ResultObj);
514 break;

516 default:
517 /*
518 * No conversions for all other types. Directly store a copy of
519 * the source object. This is the ACPI spec-defined behavior for
520 * the CopyObject operator.
521 *
522 * NOTE: For the Store operator, this is a departure from the
523 * ACPI spec, which states "If conversion is impossible, abort
524 * the running control method". Instead, this code implements
525 * "If conversion is impossible, treat the Store operation as
526 * a CopyObject".
527 */
528 Status = AcpiExStoreDirectToNode (SourceDesc, Node,
529 WalkState);
530 break;
531 }

533 return_ACPI_STATUS (Status);
534 }

537 /***
538 *

new/usr/src/common/acpica/components/executer/exstore.c 10

539 * FUNCTION: AcpiExStoreDirectToNode
540 *
541 * PARAMETERS: SourceDesc - Value to be stored
542 * Node - Named object to receive the value
543 * WalkState - Current walk state
544 *
545 * RETURN: Status
546 *
547 * DESCRIPTION: "Store" an object directly to a node. This involves a copy
548 * and an attach.
549 *
550 **/

552 static ACPI_STATUS
553 AcpiExStoreDirectToNode (
554 ACPI_OPERAND_OBJECT *SourceDesc,
555 ACPI_NAMESPACE_NODE *Node,
556 ACPI_WALK_STATE *WalkState)
557 {
558 ACPI_STATUS Status;
559 ACPI_OPERAND_OBJECT *NewDesc;

562 ACPI_FUNCTION_TRACE (ExStoreDirectToNode);

565 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
566 "Storing [%s] (%p) directly into node [%s] (%p)"
567 " with no implicit conversion\n",
568 AcpiUtGetObjectTypeName (SourceDesc), SourceDesc,
569 AcpiUtGetTypeName (Node->Type), Node));
518 "Storing %s (%p) directly into node (%p) with no implicit conversion
519 AcpiUtGetObjectTypeName (SourceDesc), SourceDesc, Node));

571 /* Copy the source object to a new object */
521 /* No conversions for all other types. Just attach the source object */

573 Status = AcpiUtCopyIobjectToIobject (SourceDesc, &NewDesc, WalkState);
574 if (ACPI_FAILURE (Status))
575 {
576 return_ACPI_STATUS (Status);
523 Status = AcpiNsAttachObject (Node, SourceDesc,
524 SourceDesc->Common.Type);
525 break;
577 }

579 /* Attach the new object to the node */

581 Status = AcpiNsAttachObject (Node, NewDesc, NewDesc->Common.Type);
582 AcpiUtRemoveReference (NewDesc);
583 return_ACPI_STATUS (Status);
584 }

new/usr/src/common/acpica/components/executer/exstoren.c 1

**
 10281 Thu Dec 26 13:49:10 2013
new/usr/src/common/acpica/components/executer/exstoren.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exstoren - AML Interpreter object store support,
4 * Store to Node (namespace object)
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
10 * Copyright (C) 2000 - 2011, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #define __EXSTOREN_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acinterp.h"
50 #include "amlcode.h"

53 #define _COMPONENT ACPI_EXECUTER
54 ACPI_MODULE_NAME ("exstoren")

57 /***
58 *

new/usr/src/common/acpica/components/executer/exstoren.c 2

59 * FUNCTION: AcpiExResolveObject
60 *
61 * PARAMETERS: SourceDescPtr - Pointer to the source object
62 * TargetType - Current type of the target
63 * WalkState - Current walk state
64 *
65 * RETURN: Status, resolved object in SourceDescPtr.
66 *
67 * DESCRIPTION: Resolve an object. If the object is a reference, dereference
68 * it and return the actual object in the SourceDescPtr.
69 *
70 **/

72 ACPI_STATUS
73 AcpiExResolveObject (
74 ACPI_OPERAND_OBJECT **SourceDescPtr,
75 ACPI_OBJECT_TYPE TargetType,
76 ACPI_WALK_STATE *WalkState)
77 {
78 ACPI_OPERAND_OBJECT *SourceDesc = *SourceDescPtr;
79 ACPI_STATUS Status = AE_OK;

82 ACPI_FUNCTION_TRACE (ExResolveObject);

85 /* Ensure we have a Target that can be stored to */

87 switch (TargetType)
88 {
89 case ACPI_TYPE_BUFFER_FIELD:
90 case ACPI_TYPE_LOCAL_REGION_FIELD:
91 case ACPI_TYPE_LOCAL_BANK_FIELD:
92 case ACPI_TYPE_LOCAL_INDEX_FIELD:
93 /*
94 * These cases all require only Integers or values that
95 * can be converted to Integers (Strings or Buffers)
96 */

97 case ACPI_TYPE_INTEGER:
98 case ACPI_TYPE_STRING:
99 case ACPI_TYPE_BUFFER:

100 /*
101 * Stores into a Field/Region or into a Integer/Buffer/String
102 * are all essentially the same. This case handles the
103 * "interchangeable" types Integer, String, and Buffer.
104 */
105 if (SourceDesc->Common.Type == ACPI_TYPE_LOCAL_REFERENCE)
106 {
107 /* Resolve a reference object first */

109 Status = AcpiExResolveToValue (SourceDescPtr, WalkState);
110 if (ACPI_FAILURE (Status))
111 {
112 break;
113 }
114 }

116 /* For CopyObject, no further validation necessary */

118 if (WalkState->Opcode == AML_COPY_OP)
119 {
120 break;
121 }

new/usr/src/common/acpica/components/executer/exstoren.c 3

123 /* Must have a Integer, Buffer, or String */

125 if ((SourceDesc->Common.Type != ACPI_TYPE_INTEGER) &&
126 (SourceDesc->Common.Type != ACPI_TYPE_BUFFER) &&
127 (SourceDesc->Common.Type != ACPI_TYPE_STRING) &&
128 !((SourceDesc->Common.Type == ACPI_TYPE_LOCAL_REFERENCE) &&
129 (SourceDesc->Reference.Class== ACPI_REFCLASS_TABLE)))
130 {
131 /* Conversion successful but still not a valid type */

133 ACPI_ERROR ((AE_INFO,
134 "Cannot assign type %s to %s (must be type Int/Str/Buf)",
135 AcpiUtGetObjectTypeName (SourceDesc),
136 AcpiUtGetTypeName (TargetType)));
137 Status = AE_AML_OPERAND_TYPE;
138 }
139 break;

141 case ACPI_TYPE_LOCAL_ALIAS:
142 case ACPI_TYPE_LOCAL_METHOD_ALIAS:

143 /*
144 * All aliases should have been resolved earlier, during the
145 * operand resolution phase.
146 */
147 ACPI_ERROR ((AE_INFO, "Store into an unresolved Alias object"));
148 Status = AE_AML_INTERNAL;
149 break;

151 case ACPI_TYPE_PACKAGE:
152 default:

153 /*
154 * All other types than Alias and the various Fields come here,
155 * including the untyped case - ACPI_TYPE_ANY.
156 */
157 break;
158 }

160 return_ACPI_STATUS (Status);
161 }

164 /***
165 *
166 * FUNCTION: AcpiExStoreObjectToObject
167 *
168 * PARAMETERS: SourceDesc - Object to store
169 * DestDesc - Object to receive a copy of the source
170 * NewDesc - New object if DestDesc is obsoleted
171 * WalkState - Current walk state
172 *
173 * RETURN: Status
174 *
175 * DESCRIPTION: "Store" an object to another object. This may include
176 * converting the source type to the target type (implicit
177 * conversion), and a copy of the value of the source to
178 * the target.
179 *
180 * The Assignment of an object to another (not named) object
181 * is handled here.
182 * The Source passed in will replace the current value (if any)
183 * with the input value.
184 *

new/usr/src/common/acpica/components/executer/exstoren.c 4

185 * When storing into an object the data is converted to the
186 * target object type then stored in the object. This means
187 * that the target object type (for an initialized target) will
188 * not be changed by a store operation.
189 *
190 * This module allows destination types of Number, String,
191 * Buffer, and Package.
192 *
193 * Assumes parameters are already validated. NOTE: SourceDesc
194 * resolution (from a reference object) must be performed by
195 * the caller if necessary.
196 *
197 **/

199 ACPI_STATUS
200 AcpiExStoreObjectToObject (
201 ACPI_OPERAND_OBJECT *SourceDesc,
202 ACPI_OPERAND_OBJECT *DestDesc,
203 ACPI_OPERAND_OBJECT **NewDesc,
204 ACPI_WALK_STATE *WalkState)
205 {
206 ACPI_OPERAND_OBJECT *ActualSrcDesc;
207 ACPI_STATUS Status = AE_OK;

210 ACPI_FUNCTION_TRACE_PTR (ExStoreObjectToObject, SourceDesc);

213 ActualSrcDesc = SourceDesc;
214 if (!DestDesc)
215 {
216 /*
217 * There is no destination object (An uninitialized node or
218 * package element), so we can simply copy the source object
219 * creating a new destination object
220 */
221 Status = AcpiUtCopyIobjectToIobject (ActualSrcDesc, NewDesc, WalkState);
222 return_ACPI_STATUS (Status);
223 }

225 if (SourceDesc->Common.Type != DestDesc->Common.Type)
226 {
227 /*
228 * The source type does not match the type of the destination.
229 * Perform the "implicit conversion" of the source to the current type
230 * of the target as per the ACPI specification.
231 *
232 * If no conversion performed, ActualSrcDesc = SourceDesc.
233 * Otherwise, ActualSrcDesc is a temporary object to hold the
234 * converted object.
235 */
236 Status = AcpiExConvertToTargetType (DestDesc->Common.Type,
237 SourceDesc, &ActualSrcDesc, WalkState);
238 if (ACPI_FAILURE (Status))
239 {
240 return_ACPI_STATUS (Status);
241 }

243 if (SourceDesc == ActualSrcDesc)
244 {
245 /*
246 * No conversion was performed. Return the SourceDesc as the
247 * new object.
248 */
249 *NewDesc = SourceDesc;
250 return_ACPI_STATUS (AE_OK);

new/usr/src/common/acpica/components/executer/exstoren.c 5

251 }
252 }

254 /*
255 * We now have two objects of identical types, and we can perform a
256 * copy of the *value* of the source object.
257 */
258 switch (DestDesc->Common.Type)
259 {
260 case ACPI_TYPE_INTEGER:

262 DestDesc->Integer.Value = ActualSrcDesc->Integer.Value;

264 /* Truncate value if we are executing from a 32-bit ACPI table */

266 (void) AcpiExTruncateFor32bitTable (DestDesc);
273 AcpiExTruncateFor32bitTable (DestDesc);
267 break;

269 case ACPI_TYPE_STRING:

271 Status = AcpiExStoreStringToString (ActualSrcDesc, DestDesc);
272 break;

274 case ACPI_TYPE_BUFFER:

276 Status = AcpiExStoreBufferToBuffer (ActualSrcDesc, DestDesc);
277 break;

279 case ACPI_TYPE_PACKAGE:

281 Status = AcpiUtCopyIobjectToIobject (ActualSrcDesc, &DestDesc,
282 WalkState);
283 break;

285 default:
286 /*
287 * All other types come here.
288 */
289 ACPI_WARNING ((AE_INFO, "Store into type %s not implemented",
290 AcpiUtGetObjectTypeName (DestDesc)));

292 Status = AE_NOT_IMPLEMENTED;
293 break;
294 }

296 if (ActualSrcDesc != SourceDesc)
297 {
298 /* Delete the intermediate (temporary) source object */

300 AcpiUtRemoveReference (ActualSrcDesc);
301 }

303 *NewDesc = DestDesc;
304 return_ACPI_STATUS (Status);
305 }

new/usr/src/common/acpica/components/executer/exstorob.c 1

**
 7845 Thu Dec 26 13:49:10 2013
new/usr/src/common/acpica/components/executer/exstorob.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exstorob - AML Interpreter object store support, store to object
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXSTOROB_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acinterp.h"

51 #define _COMPONENT ACPI_EXECUTER
52 ACPI_MODULE_NAME ("exstorob")

55 /***
56 *
57 * FUNCTION: AcpiExStoreBufferToBuffer
58 *

new/usr/src/common/acpica/components/executer/exstorob.c 2

59 * PARAMETERS: SourceDesc - Source object to copy
60 * TargetDesc - Destination object of the copy
61 *
62 * RETURN: Status
63 *
64 * DESCRIPTION: Copy a buffer object to another buffer object.
65 *
66 **/

68 ACPI_STATUS
69 AcpiExStoreBufferToBuffer (
70 ACPI_OPERAND_OBJECT *SourceDesc,
71 ACPI_OPERAND_OBJECT *TargetDesc)
72 {
73 UINT32 Length;
74 UINT8 *Buffer;

77 ACPI_FUNCTION_TRACE_PTR (ExStoreBufferToBuffer, SourceDesc);

80 /* If Source and Target are the same, just return */

82 if (SourceDesc == TargetDesc)
83 {
84 return_ACPI_STATUS (AE_OK);
85 }

87 /* We know that SourceDesc is a buffer by now */

89 Buffer = ACPI_CAST_PTR (UINT8, SourceDesc->Buffer.Pointer);
90 Length = SourceDesc->Buffer.Length;

92 /*
93 * If target is a buffer of length zero or is a static buffer,
94 * allocate a new buffer of the proper length
95 */
96 if ((TargetDesc->Buffer.Length == 0) ||
97 (TargetDesc->Common.Flags & AOPOBJ_STATIC_POINTER))
98 {
99 TargetDesc->Buffer.Pointer = ACPI_ALLOCATE (Length);
100 if (!TargetDesc->Buffer.Pointer)
101 {
102 return_ACPI_STATUS (AE_NO_MEMORY);
103 }

105 TargetDesc->Buffer.Length = Length;
106 }

108 /* Copy source buffer to target buffer */

110 if (Length <= TargetDesc->Buffer.Length)
111 {
112 /* Clear existing buffer and copy in the new one */

114 ACPI_MEMSET (TargetDesc->Buffer.Pointer, 0, TargetDesc->Buffer.Length);
115 ACPI_MEMCPY (TargetDesc->Buffer.Pointer, Buffer, Length);

117 #ifdef ACPI_OBSOLETE_BEHAVIOR
118 /*
119 * NOTE: ACPI versions up to 3.0 specified that the buffer must be
120 * truncated if the string is smaller than the buffer. However, "other"
121 * implementations of ACPI never did this and thus became the defacto
122 * standard. ACPI 3.0A changes this behavior such that the buffer
123 * is no longer truncated.
124 */

new/usr/src/common/acpica/components/executer/exstorob.c 3

126 /*
127 * OBSOLETE BEHAVIOR:
128 * If the original source was a string, we must truncate the buffer,
129 * according to the ACPI spec. Integer-to-Buffer and Buffer-to-Buffer
130 * copy must not truncate the original buffer.
131 */
132 if (OriginalSrcType == ACPI_TYPE_STRING)
133 {
134 /* Set the new length of the target */

136 TargetDesc->Buffer.Length = Length;
137 }
138 #endif
139 }
140 else
141 {
142 /* Truncate the source, copy only what will fit */

144 ACPI_MEMCPY (TargetDesc->Buffer.Pointer, Buffer,
145 TargetDesc->Buffer.Length);

147 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
148 "Truncating source buffer from %X to %X\n",
149 Length, TargetDesc->Buffer.Length));
150 }

152 /* Copy flags */

154 TargetDesc->Buffer.Flags = SourceDesc->Buffer.Flags;
155 TargetDesc->Common.Flags &= ~AOPOBJ_STATIC_POINTER;
156 return_ACPI_STATUS (AE_OK);
157 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/executer/exsystem.c 1

**
 9896 Thu Dec 26 13:49:11 2013
new/usr/src/common/acpica/components/executer/exsystem.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exsystem - Interface to OS services
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXSYSTEM_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acinterp.h"

50 #define _COMPONENT ACPI_EXECUTER
51 ACPI_MODULE_NAME ("exsystem")

54 /***
55 *
56 * FUNCTION: AcpiExSystemWaitSemaphore
57 *
58 * PARAMETERS: Semaphore - Semaphore to wait on

new/usr/src/common/acpica/components/executer/exsystem.c 2

59 * Timeout - Max time to wait
60 *
61 * RETURN: Status
62 *
63 * DESCRIPTION: Implements a semaphore wait with a check to see if the
64 * semaphore is available immediately. If it is not, the
65 * interpreter is released before waiting.
66 *
67 **/

69 ACPI_STATUS
70 AcpiExSystemWaitSemaphore (
71 ACPI_SEMAPHORE Semaphore,
72 UINT16 Timeout)
73 {
74 ACPI_STATUS Status;

77 ACPI_FUNCTION_TRACE (ExSystemWaitSemaphore);

80 Status = AcpiOsWaitSemaphore (Semaphore, 1, ACPI_DO_NOT_WAIT);
81 if (ACPI_SUCCESS (Status))
82 {
83 return_ACPI_STATUS (Status);
84 }

86 if (Status == AE_TIME)
87 {
88 /* We must wait, so unlock the interpreter */

90 AcpiExRelinquishInterpreter ();

92 Status = AcpiOsWaitSemaphore (Semaphore, 1, Timeout);

94 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
95 "*** Thread awake after blocking, %s\n",
96 AcpiFormatException (Status)));

98 /* Reacquire the interpreter */

100 AcpiExReacquireInterpreter ();
101 }

103 return_ACPI_STATUS (Status);
104 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/executer/exutils.c 1

**
 15228 Thu Dec 26 13:49:11 2013
new/usr/src/common/acpica/components/executer/exutils.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: exutils - interpreter/scanner utilities
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXUTILS_C__

46 /*
47 * DEFINE_AML_GLOBALS is tested in amlcode.h
48 * to determine whether certain global names should be "defined" or only
49 * "declared" in the current compilation. This enhances maintainability
50 * by enabling a single header file to embody all knowledge of the names
51 * in question.
52 *
53 * Exactly one module of any executable should #define DEFINE_GLOBALS
54 * before #including the header files which use this convention. The
55 * names in question will be defined and initialized in that module,
56 * and declared as extern in all other modules which #include those
57 * header files.
58 */

new/usr/src/common/acpica/components/executer/exutils.c 2

60 #define DEFINE_AML_GLOBALS

62 #include "acpi.h"
63 #include "accommon.h"
64 #include "acinterp.h"
65 #include "amlcode.h"

67 #define _COMPONENT ACPI_EXECUTER
68 ACPI_MODULE_NAME ("exutils")

70 /* Local prototypes */

72 static UINT32
73 AcpiExDigitsNeeded (
74 UINT64 Value,
75 UINT32 Base);

78 #ifndef ACPI_NO_METHOD_EXECUTION
79 /***
80 *
81 * FUNCTION: AcpiExEnterInterpreter
82 *
83 * PARAMETERS: None
84 *
85 * RETURN: None
86 *
87 * DESCRIPTION: Enter the interpreter execution region. Failure to enter
88 * the interpreter region is a fatal system error. Used in
89 * conjunction with ExitInterpreter.
90 *
91 **/

93 void
94 AcpiExEnterInterpreter (
95 void)
96 {
97 ACPI_STATUS Status;

100 ACPI_FUNCTION_TRACE (ExEnterInterpreter);

103 Status = AcpiUtAcquireMutex (ACPI_MTX_INTERPRETER);
104 if (ACPI_FAILURE (Status))
105 {
106 ACPI_ERROR ((AE_INFO, "Could not acquire AML Interpreter mutex"));
107 }

109 return_VOID;
110 }

113 /***
114 *
115 * FUNCTION: AcpiExReacquireInterpreter
116 *
117 * PARAMETERS: None
118 *
119 * RETURN: None
120 *
121 * DESCRIPTION: Reacquire the interpreter execution region from within the
122 * interpreter code. Failure to enter the interpreter region is a
123 * fatal system error. Used in conjunction with
124 * fatal system error. Used in conjuction with

new/usr/src/common/acpica/components/executer/exutils.c 3

124 * RelinquishInterpreter
125 *
126 **/

128 void
129 AcpiExReacquireInterpreter (
130 void)
131 {
132 ACPI_FUNCTION_TRACE (ExReacquireInterpreter);

135 /*
136 * If the global serialized flag is set, do not release the interpreter,
137 * since it was not actually released by AcpiExRelinquishInterpreter.
138 * This forces the interpreter to be single threaded.
139 */
140 if (!AcpiGbl_AllMethodsSerialized)
141 {
142 AcpiExEnterInterpreter ();
143 }

145 return_VOID;
146 }

______unchanged_portion_omitted_

226 /***
227 *
228 * FUNCTION: AcpiExTruncateFor32bitTable
229 *
230 * PARAMETERS: ObjDesc - Object to be truncated
231 *
232 * RETURN: TRUE if a truncation was performed, FALSE otherwise.
233 * RETURN: none
233 *
234 * DESCRIPTION: Truncate an ACPI Integer to 32 bits if the execution mode is
235 * 32-bit, as determined by the revision of the DSDT.
236 *
237 **/

239 BOOLEAN
240 void
240 AcpiExTruncateFor32bitTable (
241 ACPI_OPERAND_OBJECT *ObjDesc)
242 {

244 ACPI_FUNCTION_ENTRY ();

247 /*
248 * Object must be a valid number and we must be executing
249 * a control method. Object could be NS node for AML_INT_NAMEPATH_OP.
250 * a control method. NS node could be there for AML_INT_NAMEPATH_OP.
250 */
251 if ((!ObjDesc) ||
252 (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc) != ACPI_DESC_TYPE_OPERAND) ||
253 (ObjDesc->Common.Type != ACPI_TYPE_INTEGER))
254 {
255 return (FALSE);
256 return;
256 }

258 if ((AcpiGbl_IntegerByteWidth == 4) &&
259 (ObjDesc->Integer.Value > (UINT64) ACPI_UINT32_MAX))
259 if (AcpiGbl_IntegerByteWidth == 4)
260 {

new/usr/src/common/acpica/components/executer/exutils.c 4

261 /*
262 * We are executing in a 32-bit ACPI table.
262 * We are running a method that exists in a 32-bit ACPI table.
263 * Truncate the value to 32 bits by zeroing out the upper 32-bit field
264 */
265 ObjDesc->Integer.Value &= (UINT64) ACPI_UINT32_MAX;
266 return (TRUE);
267 }

269 return (FALSE);
270 }

______unchanged_portion_omitted_

506 /***
507 *
508 * FUNCTION: AcpiIsValidSpaceId
509 *
510 * PARAMETERS: SpaceId - ID to be validated
511 *
512 * RETURN: TRUE if valid/supported ID.
513 *
514 * DESCRIPTION: Validate an operation region SpaceID.
515 *
516 **/

518 BOOLEAN
519 AcpiIsValidSpaceId (
520 UINT8 SpaceId)
521 {

523 if ((SpaceId >= ACPI_NUM_PREDEFINED_REGIONS) &&
524 (SpaceId < ACPI_USER_REGION_BEGIN) &&
525 (SpaceId != ACPI_ADR_SPACE_DATA_TABLE) &&
526 (SpaceId != ACPI_ADR_SPACE_FIXED_HARDWARE))
527 {
528 return (FALSE);
529 }

531 return (TRUE);
532 }

535 #endif

new/usr/src/common/acpica/components/hardware/hwacpi.c 1

**
 6700 Thu Dec 26 13:49:12 2013
new/usr/src/common/acpica/components/hardware/hwacpi.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: hwacpi - ACPI Hardware Initialization/Mode Interface
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __HWACPI_C__

46 #include "acpi.h"
47 #include "accommon.h"

50 #define _COMPONENT ACPI_HARDWARE
51 ACPI_MODULE_NAME ("hwacpi")

54 #if (!ACPI_REDUCED_HARDWARE) /* Entire module */
55 /**
56 *
57 * FUNCTION: AcpiHwSetMode
58 *

new/usr/src/common/acpica/components/hardware/hwacpi.c 2

59 * PARAMETERS: Mode - SYS_MODE_ACPI or SYS_MODE_LEGACY
60 *
61 * RETURN: Status
62 *
63 * DESCRIPTION: Transitions the system into the requested mode.
64 *
65 **/

67 ACPI_STATUS
68 AcpiHwSetMode (
69 UINT32 Mode)
70 {

72 ACPI_STATUS Status;
73 UINT32 Retry;

76 ACPI_FUNCTION_TRACE (HwSetMode);

79 /* If the Hardware Reduced flag is set, machine is always in acpi mode */

81 if (AcpiGbl_ReducedHardware)
82 {
83 return_ACPI_STATUS (AE_OK);
84 }

86 /*
87 * ACPI 2.0 clarified that if SMI_CMD in FADT is zero,
88 * system does not support mode transition.
89 */
90 if (!AcpiGbl_FADT.SmiCommand)
91 {
92 ACPI_ERROR ((AE_INFO, "No SMI_CMD in FADT, mode transition failed"));
93 return_ACPI_STATUS (AE_NO_HARDWARE_RESPONSE);
94 }

96 /*
97 * ACPI 2.0 clarified the meaning of ACPI_ENABLE and ACPI_DISABLE
98 * in FADT: If it is zero, enabling or disabling is not supported.
99 * As old systems may have used zero for mode transition,
100 * we make sure both the numbers are zero to determine these
101 * transitions are not supported.
102 */
103 if (!AcpiGbl_FADT.AcpiEnable && !AcpiGbl_FADT.AcpiDisable)
104 {
105 ACPI_ERROR ((AE_INFO,
106 "No ACPI mode transition supported in this system "
107 "(enable/disable both zero)"));
108 return_ACPI_STATUS (AE_OK);
109 }

111 switch (Mode)
112 {
113 case ACPI_SYS_MODE_ACPI:

115 /* BIOS should have disabled ALL fixed and GP events */

117 Status = AcpiHwWritePort (AcpiGbl_FADT.SmiCommand,
118 (UINT32) AcpiGbl_FADT.AcpiEnable, 8);
119 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Attempting to enable ACPI mode\n"));
120 break;

122 case ACPI_SYS_MODE_LEGACY:

123 /*

new/usr/src/common/acpica/components/hardware/hwacpi.c 3

124 * BIOS should clear all fixed status bits and restore fixed event
125 * enable bits to default
126 */
127 Status = AcpiHwWritePort (AcpiGbl_FADT.SmiCommand,
128 (UINT32) AcpiGbl_FADT.AcpiDisable, 8);
129 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
130 "Attempting to enable Legacy (non-ACPI) mode\n"));
131 break;

133 default:

135 return_ACPI_STATUS (AE_BAD_PARAMETER);
136 }

138 if (ACPI_FAILURE (Status))
139 {
140 ACPI_EXCEPTION ((AE_INFO, Status,
141 "Could not write ACPI mode change"));
142 return_ACPI_STATUS (Status);
143 }

145 /*
146 * Some hardware takes a LONG time to switch modes. Give them 3 sec to
147 * do so, but allow faster systems to proceed more quickly.
148 */
149 Retry = 3000;
150 while (Retry)
151 {
152 if (AcpiHwGetMode () == Mode)
144 if (AcpiHwGetMode() == Mode)
153 {
154 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Mode %X successfully enabled\n",
155 Mode));
156 return_ACPI_STATUS (AE_OK);
157 }
158 AcpiOsStall (ACPI_USEC_PER_MSEC);
150 AcpiOsStall(1000);
159 Retry--;
160 }

162 ACPI_ERROR ((AE_INFO, "Hardware did not change modes"));
163 return_ACPI_STATUS (AE_NO_HARDWARE_RESPONSE);
164 }

167 /***
168 *
169 * FUNCTION: AcpiHwGetMode
170 *
171 * PARAMETERS: none
172 *
173 * RETURN: SYS_MODE_ACPI or SYS_MODE_LEGACY
174 *
175 * DESCRIPTION: Return current operating state of system. Determined by
176 * querying the SCI_EN bit.
177 *
178 **/

180 UINT32
181 AcpiHwGetMode (
182 void)
183 {
184 ACPI_STATUS Status;
185 UINT32 Value;

new/usr/src/common/acpica/components/hardware/hwacpi.c 4

188 ACPI_FUNCTION_TRACE (HwGetMode);

191 /* If the Hardware Reduced flag is set, machine is always in acpi mode */

193 if (AcpiGbl_ReducedHardware)
194 {
195 return_UINT32 (ACPI_SYS_MODE_ACPI);
196 }

198 /*
199 * ACPI 2.0 clarified that if SMI_CMD in FADT is zero,
200 * system does not support mode transition.
201 */
202 if (!AcpiGbl_FADT.SmiCommand)
203 {
204 return_UINT32 (ACPI_SYS_MODE_ACPI);
205 }

207 Status = AcpiReadBitRegister (ACPI_BITREG_SCI_ENABLE, &Value);
208 if (ACPI_FAILURE (Status))
209 {
210 return_UINT32 (ACPI_SYS_MODE_LEGACY);
211 }

213 if (Value)
214 {
215 return_UINT32 (ACPI_SYS_MODE_ACPI);
216 }
217 else
218 {
219 return_UINT32 (ACPI_SYS_MODE_LEGACY);
220 }
221 }

223 #endif /* !ACPI_REDUCED_HARDWARE */

new/usr/src/common/acpica/components/hardware/hwesleep.c 1

**
 8029 Thu Dec 26 13:49:12 2013
new/usr/src/common/acpica/components/hardware/hwesleep.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Name: hwesleep.c - ACPI Hardware Sleep/Wake Support functions for the
4 * extended FADT-V5 sleep registers.
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #include "acpi.h"
46 #include "accommon.h"

48 #define _COMPONENT ACPI_HARDWARE
49 ACPI_MODULE_NAME ("hwesleep")

52 /***
53 *
54 * FUNCTION: AcpiHwExecuteSleepMethod
55 *
56 * PARAMETERS: MethodPathname - Pathname of method to execute
57 * IntegerArgument - Argument to pass to the method
58 *
59 * RETURN: None
60 *
61 * DESCRIPTION: Execute a sleep/wake related method with one integer argument

new/usr/src/common/acpica/components/hardware/hwesleep.c 2

62 * and no return value.
63 *
64 **/

66 void
67 AcpiHwExecuteSleepMethod (
68 char *MethodPathname,
69 UINT32 IntegerArgument)
70 {
71 ACPI_OBJECT_LIST ArgList;
72 ACPI_OBJECT Arg;
73 ACPI_STATUS Status;

76 ACPI_FUNCTION_TRACE (HwExecuteSleepMethod);

79 /* One argument, IntegerArgument; No return value expected */

81 ArgList.Count = 1;
82 ArgList.Pointer = &Arg;
83 Arg.Type = ACPI_TYPE_INTEGER;
84 Arg.Integer.Value = (UINT64) IntegerArgument;

86 Status = AcpiEvaluateObject (NULL, MethodPathname, &ArgList, NULL);
87 if (ACPI_FAILURE (Status) && Status != AE_NOT_FOUND)
88 {
89 ACPI_EXCEPTION ((AE_INFO, Status, "While executing method %s",
90 MethodPathname));
91 }

93 return_VOID;
94 }

97 /***
98 *
99 * FUNCTION: AcpiHwExtendedSleep
100 *
101 * PARAMETERS: SleepState - Which sleep state to enter
102 *
103 * RETURN: Status
104 *
105 * DESCRIPTION: Enter a system sleep state via the extended FADT sleep
106 * registers (V5 FADT).
107 * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED
108 *
109 **/

111 ACPI_STATUS
112 AcpiHwExtendedSleep (
113 UINT8 SleepState)
114 {
115 ACPI_STATUS Status;
116 UINT8 SleepTypeValue;
117 UINT64 SleepStatus;

120 ACPI_FUNCTION_TRACE (HwExtendedSleep);

123 /* Extended sleep registers must be valid */

125 if (!AcpiGbl_FADT.SleepControl.Address ||
126 !AcpiGbl_FADT.SleepStatus.Address)
127 {

new/usr/src/common/acpica/components/hardware/hwesleep.c 3

128 return_ACPI_STATUS (AE_NOT_EXIST);
129 }

131 /* Clear wake status (WAK_STS) */

133 Status = AcpiWrite ((UINT64) ACPI_X_WAKE_STATUS, &AcpiGbl_FADT.SleepStatus);
134 if (ACPI_FAILURE (Status))
135 {
136 return_ACPI_STATUS (Status);
137 }

139 AcpiGbl_SystemAwakeAndRunning = FALSE;

141 /* Flush caches, as per ACPI specification */

143 ACPI_FLUSH_CPU_CACHE ();

145 /*
146 * Set the SLP_TYP and SLP_EN bits.
147 *
148 * Note: We only use the first value returned by the _Sx method
149 * (AcpiGbl_SleepTypeA) - As per ACPI specification.
150 */
151 ACPI_DEBUG_PRINT ((ACPI_DB_INIT,
152 "Entering sleep state [S%u]\n", SleepState));

154 SleepTypeValue = ((AcpiGbl_SleepTypeA << ACPI_X_SLEEP_TYPE_POSITION) &
155 ACPI_X_SLEEP_TYPE_MASK);

157 Status = AcpiWrite ((UINT64) (SleepTypeValue | ACPI_X_SLEEP_ENABLE),
158 &AcpiGbl_FADT.SleepControl);
159 if (ACPI_FAILURE (Status))
160 {
161 return_ACPI_STATUS (Status);
162 }

164 /* Wait for transition back to Working State */

166 do
167 {
168 Status = AcpiRead (&SleepStatus, &AcpiGbl_FADT.SleepStatus);
169 if (ACPI_FAILURE (Status))
170 {
171 return_ACPI_STATUS (Status);
172 }

174 } while (!(((UINT8) SleepStatus) & ACPI_X_WAKE_STATUS));

176 return_ACPI_STATUS (AE_OK);
177 }

180 /***
181 *
182 * FUNCTION: AcpiHwExtendedWakePrep
183 *
184 * PARAMETERS: SleepState - Which sleep state we just exited
185 *
186 * RETURN: Status
187 *
188 * DESCRIPTION: Perform first part of OS-independent ACPI cleanup after
189 * a sleep. Called with interrupts ENABLED.
190 *
191 **/

193 ACPI_STATUS

new/usr/src/common/acpica/components/hardware/hwesleep.c 4

194 AcpiHwExtendedWakePrep (
195 UINT8 SleepState)
196 {
197 ACPI_STATUS Status;
198 UINT8 SleepTypeValue;

201 ACPI_FUNCTION_TRACE (HwExtendedWakePrep);

204 Status = AcpiGetSleepTypeData (ACPI_STATE_S0,
205 &AcpiGbl_SleepTypeA, &AcpiGbl_SleepTypeB);
206 if (ACPI_SUCCESS (Status))
207 {
208 SleepTypeValue = ((AcpiGbl_SleepTypeA << ACPI_X_SLEEP_TYPE_POSITION) &
209 ACPI_X_SLEEP_TYPE_MASK);

211 (void) AcpiWrite ((UINT64) (SleepTypeValue | ACPI_X_SLEEP_ENABLE),
212 &AcpiGbl_FADT.SleepControl);
213 }

215 return_ACPI_STATUS (AE_OK);
216 }

219 /***
220 *
221 * FUNCTION: AcpiHwExtendedWake
222 *
223 * PARAMETERS: SleepState - Which sleep state we just exited
224 *
225 * RETURN: Status
226 *
227 * DESCRIPTION: Perform OS-independent ACPI cleanup after a sleep
228 * Called with interrupts ENABLED.
229 *
230 **/

232 ACPI_STATUS
233 AcpiHwExtendedWake (
234 UINT8 SleepState)
235 {
236 ACPI_FUNCTION_TRACE (HwExtendedWake);

239 /* Ensure EnterSleepStatePrep -> EnterSleepState ordering */

241 AcpiGbl_SleepTypeA = ACPI_SLEEP_TYPE_INVALID;

243 /* Execute the wake methods */

245 AcpiHwExecuteSleepMethod (METHOD_PATHNAME__SST, ACPI_SST_WAKING);
246 AcpiHwExecuteSleepMethod (METHOD_PATHNAME__WAK, SleepState);

248 /*
249 * Some BIOS code assumes that WAK_STS will be cleared on resume
250 * and use it to determine whether the system is rebooting or
251 * resuming. Clear WAK_STS for compatibility.
252 */
253 (void) AcpiWrite ((UINT64) ACPI_X_WAKE_STATUS, &AcpiGbl_FADT.SleepStatus);
254 AcpiGbl_SystemAwakeAndRunning = TRUE;

256 AcpiHwExecuteSleepMethod (METHOD_PATHNAME__SST, ACPI_SST_WORKING);
257 return_ACPI_STATUS (AE_OK);
258 }

new/usr/src/common/acpica/components/hardware/hwgpe.c 1

**
 14266 Thu Dec 26 13:49:12 2013
new/usr/src/common/acpica/components/hardware/hwgpe.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: hwgpe - Low level GPE enable/disable/clear functions
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "acevents.h"

48 #define _COMPONENT ACPI_HARDWARE
49 ACPI_MODULE_NAME ("hwgpe")

51 #if (!ACPI_REDUCED_HARDWARE) /* Entire module */

53 /* Local prototypes */

55 static ACPI_STATUS
56 AcpiHwEnableWakeupGpeBlock (
57 ACPI_GPE_XRUPT_INFO *GpeXruptInfo,
58 ACPI_GPE_BLOCK_INFO *GpeBlock,

new/usr/src/common/acpica/components/hardware/hwgpe.c 2

59 void *Context);

62 /**
63 *
64 * FUNCTION: AcpiHwGetGpeRegisterBit
65 *
66 * PARAMETERS: GpeEventInfo - Info block for the GPE
66 * GpeRegisterInfo - Info block for the GPE register
67 *
68 * RETURN: Register mask with a one in the GPE bit position
69 *
70 * DESCRIPTION: Compute the register mask for this GPE. One bit is set in the
71 * correct position for the input GPE.
72 *
73 **/

75 UINT32
76 AcpiHwGetGpeRegisterBit (
77 ACPI_GPE_EVENT_INFO *GpeEventInfo)
77 ACPI_GPE_EVENT_INFO *GpeEventInfo,
78 ACPI_GPE_REGISTER_INFO *GpeRegisterInfo)
78 {

80 return ((UINT32) 1 <<
81 (GpeEventInfo->GpeNumber - GpeEventInfo->RegisterInfo->BaseGpeNumber));
82 (GpeEventInfo->GpeNumber - GpeRegisterInfo->BaseGpeNumber));
82 }

85 /**
86 *
87 * FUNCTION: AcpiHwLowSetGpe
88 *
89 * PARAMETERS: GpeEventInfo - Info block for the GPE to be disabled
90 * Action - Enable or disable
91 *
92 * RETURN: Status
93 *
94 * DESCRIPTION: Enable or disable a single GPE in the parent enable register.
95 *
96 **/

98 ACPI_STATUS
99 AcpiHwLowSetGpe (
100 ACPI_GPE_EVENT_INFO *GpeEventInfo,
101 UINT32 Action)
102 {
103 ACPI_GPE_REGISTER_INFO *GpeRegisterInfo;
104 ACPI_STATUS Status;
105 UINT32 EnableMask;
106 UINT32 RegisterBit;

109 ACPI_FUNCTION_ENTRY ();

112 /* Get the info block for the entire GPE register */

114 GpeRegisterInfo = GpeEventInfo->RegisterInfo;
115 if (!GpeRegisterInfo)
116 {
117 return (AE_NOT_EXIST);
118 }

120 /* Get current value of the enable register that contains this GPE */

new/usr/src/common/acpica/components/hardware/hwgpe.c 3

122 Status = AcpiHwRead (&EnableMask, &GpeRegisterInfo->EnableAddress);
123 if (ACPI_FAILURE (Status))
124 {
125 return (Status);
126 }

128 /* Set or clear just the bit that corresponds to this GPE */

130 RegisterBit = AcpiHwGetGpeRegisterBit (GpeEventInfo);
131 RegisterBit = AcpiHwGetGpeRegisterBit (GpeEventInfo, GpeRegisterInfo);
131 switch (Action)
132 {
133 case ACPI_GPE_CONDITIONAL_ENABLE:

135 /* Only enable if the EnableForRun bit is set */

137 if (!(RegisterBit & GpeRegisterInfo->EnableForRun))
138 {
139 return (AE_BAD_PARAMETER);
140 }

142 /*lint -fallthrough */

144 case ACPI_GPE_ENABLE:

146 ACPI_SET_BIT (EnableMask, RegisterBit);
147 break;

149 case ACPI_GPE_DISABLE:

151 ACPI_CLEAR_BIT (EnableMask, RegisterBit);
152 break;

154 default:

156 ACPI_ERROR ((AE_INFO, "Invalid GPE Action, %u", Action));
154 ACPI_ERROR ((AE_INFO, "Invalid GPE Action, %u\n", Action));
157 return (AE_BAD_PARAMETER);
158 }

160 /* Write the updated enable mask */

162 Status = AcpiHwWrite (EnableMask, &GpeRegisterInfo->EnableAddress);
163 return (Status);
164 }

167 /**
168 *
169 * FUNCTION: AcpiHwClearGpe
170 *
171 * PARAMETERS: GpeEventInfo - Info block for the GPE to be cleared
172 *
173 * RETURN: Status
174 *
175 * DESCRIPTION: Clear the status bit for a single GPE.
176 *
177 **/

179 ACPI_STATUS
180 AcpiHwClearGpe (
181 ACPI_GPE_EVENT_INFO *GpeEventInfo)
182 {
183 ACPI_GPE_REGISTER_INFO *GpeRegisterInfo;
184 ACPI_STATUS Status;

new/usr/src/common/acpica/components/hardware/hwgpe.c 4

185 UINT32 RegisterBit;

188 ACPI_FUNCTION_ENTRY ();

190 /* Get the info block for the entire GPE register */

192 GpeRegisterInfo = GpeEventInfo->RegisterInfo;
193 if (!GpeRegisterInfo)
194 {
195 return (AE_NOT_EXIST);
196 }

198 /*
199 * Write a one to the appropriate bit in the status register to
200 * clear this GPE.
201 */
202 RegisterBit = AcpiHwGetGpeRegisterBit (GpeEventInfo);
200 RegisterBit = AcpiHwGetGpeRegisterBit (GpeEventInfo, GpeRegisterInfo);

204 Status = AcpiHwWrite (RegisterBit,
205 &GpeRegisterInfo->StatusAddress);

207 return (Status);
208 }

211 /**
212 *
213 * FUNCTION: AcpiHwGetGpeStatus
214 *
215 * PARAMETERS: GpeEventInfo - Info block for the GPE to queried
216 * EventStatus - Where the GPE status is returned
217 *
218 * RETURN: Status
219 *
220 * DESCRIPTION: Return the status of a single GPE.
221 *
222 **/

224 ACPI_STATUS
225 AcpiHwGetGpeStatus (
226 ACPI_GPE_EVENT_INFO *GpeEventInfo,
227 ACPI_EVENT_STATUS *EventStatus)
228 {
229 UINT32 InByte;
230 UINT32 RegisterBit;
231 ACPI_GPE_REGISTER_INFO *GpeRegisterInfo;
232 ACPI_EVENT_STATUS LocalEventStatus = 0;
233 ACPI_STATUS Status;

236 ACPI_FUNCTION_ENTRY ();

239 if (!EventStatus)
240 {
241 return (AE_BAD_PARAMETER);
242 }

244 /* Get the info block for the entire GPE register */

246 GpeRegisterInfo = GpeEventInfo->RegisterInfo;

248 /* Get the register bitmask for this GPE */

new/usr/src/common/acpica/components/hardware/hwgpe.c 5

250 RegisterBit = AcpiHwGetGpeRegisterBit (GpeEventInfo);
248 RegisterBit = AcpiHwGetGpeRegisterBit (GpeEventInfo, GpeRegisterInfo);

252 /* GPE currently enabled? (enabled for runtime?) */

254 if (RegisterBit & GpeRegisterInfo->EnableForRun)
255 {
256 LocalEventStatus |= ACPI_EVENT_FLAG_ENABLED;
257 }

259 /* GPE enabled for wake? */

261 if (RegisterBit & GpeRegisterInfo->EnableForWake)
262 {
263 LocalEventStatus |= ACPI_EVENT_FLAG_WAKE_ENABLED;
264 }

266 /* GPE currently active (status bit == 1)? */

268 Status = AcpiHwRead (&InByte, &GpeRegisterInfo->StatusAddress);
269 if (ACPI_FAILURE (Status))
270 {
271 return (Status);
272 }

274 if (RegisterBit & InByte)
275 {
276 LocalEventStatus |= ACPI_EVENT_FLAG_SET;
277 }

279 /* Set return value */

281 (*EventStatus) = LocalEventStatus;
282 return (AE_OK);
283 }

______unchanged_portion_omitted_

543 #endif /* !ACPI_REDUCED_HARDWARE */

new/usr/src/common/acpica/components/hardware/hwpci.c 1

**
 14483 Thu Dec 26 13:49:13 2013
new/usr/src/common/acpica/components/hardware/hwpci.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: hwpci - Obtain PCI bus, device, and function numbers
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __HWPCI_C__

46 #include "acpi.h"
47 #include "accommon.h"

50 #define _COMPONENT ACPI_NAMESPACE
51 ACPI_MODULE_NAME ("hwpci")

54 /* PCI configuration space values */

56 #define PCI_CFG_HEADER_TYPE_REG 0x0E
57 #define PCI_CFG_PRIMARY_BUS_NUMBER_REG 0x18
58 #define PCI_CFG_SECONDARY_BUS_NUMBER_REG 0x19

new/usr/src/common/acpica/components/hardware/hwpci.c 2

60 /* PCI header values */

62 #define PCI_HEADER_TYPE_MASK 0x7F
63 #define PCI_TYPE_BRIDGE 0x01
64 #define PCI_TYPE_CARDBUS_BRIDGE 0x02

66 typedef struct acpi_pci_device
67 {
68 ACPI_HANDLE Device;
69 struct acpi_pci_device *Next;

71 } ACPI_PCI_DEVICE;
______unchanged_portion_omitted_

244 /***
245 *
246 * FUNCTION: AcpiHwProcessPciList
247 *
248 * PARAMETERS: PciId - Initial values for the PCI ID. May be
249 * modified by this function.
250 * ListHead - Device list created by
251 * AcpiHwBuildPciList
252 *
253 * RETURN: Status
254 *
255 * DESCRIPTION: Walk downward through the PCI device list, getting the device
256 * info for each, via the PCI configuration space and updating
257 * the PCI ID as necessary. Deletes the list during traversal.
258 *
259 **/

261 static ACPI_STATUS
262 AcpiHwProcessPciList (
263 ACPI_PCI_ID *PciId,
264 ACPI_PCI_DEVICE *ListHead)
265 {
266 ACPI_STATUS Status = AE_OK;
267 ACPI_PCI_DEVICE *Info;
268 UINT16 BusNumber;
269 BOOLEAN IsBridge = TRUE;

272 ACPI_FUNCTION_NAME (HwProcessPciList);

275 ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION,
276 "Input PciId: Seg %4.4X Bus %4.4X Dev %4.4X Func %4.4X\n",
277 PciId->Segment, PciId->Bus, PciId->Device, PciId->Function));

279 BusNumber = PciId->Bus;

281 /*
282 * Descend down the namespace tree, collecting PCI device, function,
283 * and bus numbers. BusNumber is only important for PCI bridges.
284 * Algorithm: As we descend the tree, use the last valid PCI device,
285 * function, and bus numbers that are discovered, and assign them
286 * to the PCI ID for the target device.
287 */
288 Info = ListHead;
289 while (Info)
290 {
291 Status = AcpiHwGetPciDeviceInfo (PciId, Info->Device,
292 &BusNumber, &IsBridge);
293 if (ACPI_FAILURE (Status))
294 {

new/usr/src/common/acpica/components/hardware/hwpci.c 3

295 return (Status);
295 return_ACPI_STATUS (Status);
296 }

298 Info = Info->Next;
299 }

301 ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION,
302 "Output PciId: Seg %4.4X Bus %4.4X Dev %4.4X Func %4.4X "
303 "Status %X BusNumber %X IsBridge %X\n",
304 PciId->Segment, PciId->Bus, PciId->Device, PciId->Function,
305 Status, BusNumber, IsBridge));

307 return (AE_OK);
307 return_ACPI_STATUS (AE_OK);
308 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/hardware/hwregs.c 1

**
 21657 Thu Dec 26 13:49:13 2013
new/usr/src/common/acpica/components/hardware/hwregs.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: hwregs - Read/write access functions for the various ACPI
4 * control and status registers.
5 *
6 **/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
10 * Copyright (C) 2000 - 2011, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #define __HWREGS_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acevents.h"

51 #define _COMPONENT ACPI_HARDWARE
52 ACPI_MODULE_NAME ("hwregs")

55 #if (!ACPI_REDUCED_HARDWARE)

57 /* Local Prototypes */

new/usr/src/common/acpica/components/hardware/hwregs.c 2

59 static ACPI_STATUS
60 AcpiHwReadMultiple (
61 UINT32 *Value,
62 ACPI_GENERIC_ADDRESS *RegisterA,
63 ACPI_GENERIC_ADDRESS *RegisterB);

65 static ACPI_STATUS
66 AcpiHwWriteMultiple (
67 UINT32 Value,
68 ACPI_GENERIC_ADDRESS *RegisterA,
69 ACPI_GENERIC_ADDRESS *RegisterB);

71 #endif /* !ACPI_REDUCED_HARDWARE */

73 /**
74 *
75 * FUNCTION: AcpiHwValidateRegister
76 *
77 * PARAMETERS: Reg - GAS register structure
78 * MaxBitWidth - Max BitWidth supported (32 or 64)
79 * Address - Pointer to where the gas->address
80 * is returned
81 *
82 * RETURN: Status
83 *
84 * DESCRIPTION: Validate the contents of a GAS register. Checks the GAS
85 * pointer, Address, SpaceId, BitWidth, and BitOffset.
86 *
87 **/

89 ACPI_STATUS
90 AcpiHwValidateRegister (
91 ACPI_GENERIC_ADDRESS *Reg,
92 UINT8 MaxBitWidth,
93 UINT64 *Address)
94 {

96 /* Must have a valid pointer to a GAS structure */

98 if (!Reg)
99 {
100 return (AE_BAD_PARAMETER);
101 }

103 /*
104 * Copy the target address. This handles possible alignment issues.
105 * Address must not be null. A null address also indicates an optional
106 * ACPI register that is not supported, so no error message.
107 */
108 ACPI_MOVE_64_TO_64 (Address, &Reg->Address);
109 if (!(*Address))
110 {
111 return (AE_BAD_ADDRESS);
112 }

114 /* Validate the SpaceID */

116 if ((Reg->SpaceId != ACPI_ADR_SPACE_SYSTEM_MEMORY) &&
117 (Reg->SpaceId != ACPI_ADR_SPACE_SYSTEM_IO))
118 {
119 ACPI_ERROR ((AE_INFO,
120 "Unsupported address space: 0x%X", Reg->SpaceId));
121 return (AE_SUPPORT);
122 }

124 /* Validate the BitWidth */

new/usr/src/common/acpica/components/hardware/hwregs.c 3

126 if ((Reg->BitWidth != 8) &&
127 (Reg->BitWidth != 16) &&
128 (Reg->BitWidth != 32) &&
129 (Reg->BitWidth != MaxBitWidth))
130 {
131 ACPI_ERROR ((AE_INFO,
132 "Unsupported register bit width: 0x%X", Reg->BitWidth));
133 return (AE_SUPPORT);
134 }

136 /* Validate the BitOffset. Just a warning for now. */

138 if (Reg->BitOffset != 0)
139 {
140 ACPI_WARNING ((AE_INFO,
141 "Unsupported register bit offset: 0x%X", Reg->BitOffset));
142 }

144 return (AE_OK);
145 }

148 /**
149 *
150 * FUNCTION: AcpiHwRead
151 *
152 * PARAMETERS: Value - Where the value is returned
153 * Reg - GAS register structure
154 *
155 * RETURN: Status
156 *
157 * DESCRIPTION: Read from either memory or IO space. This is a 32-bit max
158 * version of AcpiRead, used internally since the overhead of
159 * 64-bit values is not needed.
160 *
161 * LIMITATIONS: <These limitations also apply to AcpiHwWrite>
162 * BitWidth must be exactly 8, 16, or 32.
163 * SpaceID must be SystemMemory or SystemIO.
164 * BitOffset and AccessWidth are currently ignored, as there has
165 * not been a need to implement these.
166 *
167 **/

169 ACPI_STATUS
170 AcpiHwRead (
171 UINT32 *Value,
172 ACPI_GENERIC_ADDRESS *Reg)
173 {
174 UINT64 Address;
175 UINT64 Value64;
176 ACPI_STATUS Status;

179 ACPI_FUNCTION_NAME (HwRead);

182 /* Validate contents of the GAS register */

184 Status = AcpiHwValidateRegister (Reg, 32, &Address);
185 if (ACPI_FAILURE (Status))
186 {
187 return (Status);
188 }

190 /* Initialize entire 32-bit return value to zero */

new/usr/src/common/acpica/components/hardware/hwregs.c 4

192 *Value = 0;

194 /*
195 * Two address spaces supported: Memory or IO. PCI_Config is
196 * not supported here because the GAS structure is insufficient
197 */
198 if (Reg->SpaceId == ACPI_ADR_SPACE_SYSTEM_MEMORY)
199 {
200 Status = AcpiOsReadMemory ((ACPI_PHYSICAL_ADDRESS)
201 Address, &Value64, Reg->BitWidth);

203 *Value = (UINT32) Value64;
198 Address, Value, Reg->BitWidth);
204 }
205 else /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */
206 {
207 Status = AcpiHwReadPort ((ACPI_IO_ADDRESS)
208 Address, Value, Reg->BitWidth);
209 }

211 ACPI_DEBUG_PRINT ((ACPI_DB_IO,
212 "Read: %8.8X width %2d from %8.8X%8.8X (%s)\n",
213 *Value, Reg->BitWidth, ACPI_FORMAT_UINT64 (Address),
214 AcpiUtGetRegionName (Reg->SpaceId)));

216 return (Status);
217 }

220 /**
221 *
222 * FUNCTION: AcpiHwWrite
223 *
224 * PARAMETERS: Value - Value to be written
225 * Reg - GAS register structure
226 *
227 * RETURN: Status
228 *
229 * DESCRIPTION: Write to either memory or IO space. This is a 32-bit max
230 * version of AcpiWrite, used internally since the overhead of
231 * 64-bit values is not needed.
232 *
233 **/

235 ACPI_STATUS
236 AcpiHwWrite (
237 UINT32 Value,
238 ACPI_GENERIC_ADDRESS *Reg)
239 {
240 UINT64 Address;
241 ACPI_STATUS Status;

244 ACPI_FUNCTION_NAME (HwWrite);

247 /* Validate contents of the GAS register */

249 Status = AcpiHwValidateRegister (Reg, 32, &Address);
250 if (ACPI_FAILURE (Status))
251 {
252 return (Status);
253 }

255 /*

new/usr/src/common/acpica/components/hardware/hwregs.c 5

256 * Two address spaces supported: Memory or IO. PCI_Config is
257 * not supported here because the GAS structure is insufficient
258 */
259 if (Reg->SpaceId == ACPI_ADR_SPACE_SYSTEM_MEMORY)
260 {
261 Status = AcpiOsWriteMemory ((ACPI_PHYSICAL_ADDRESS)
262 Address, (UINT64) Value, Reg->BitWidth);
257 Address, Value, Reg->BitWidth);
263 }
264 else /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */
265 {
266 Status = AcpiHwWritePort ((ACPI_IO_ADDRESS)
267 Address, Value, Reg->BitWidth);
268 }

270 ACPI_DEBUG_PRINT ((ACPI_DB_IO,
271 "Wrote: %8.8X width %2d to %8.8X%8.8X (%s)\n",
272 Value, Reg->BitWidth, ACPI_FORMAT_UINT64 (Address),
273 AcpiUtGetRegionName (Reg->SpaceId)));

275 return (Status);
276 }

279 #if (!ACPI_REDUCED_HARDWARE)
280 /***
281 *
282 * FUNCTION: AcpiHwClearAcpiStatus
283 *
284 * PARAMETERS: None
285 *
286 * RETURN: Status
287 *
288 * DESCRIPTION: Clears all fixed and general purpose status bits
289 *
290 **/

292 ACPI_STATUS
293 AcpiHwClearAcpiStatus (
294 void)
295 {
296 ACPI_STATUS Status;
297 ACPI_CPU_FLAGS LockFlags = 0;

300 ACPI_FUNCTION_TRACE (HwClearAcpiStatus);

303 ACPI_DEBUG_PRINT ((ACPI_DB_IO, "About to write %04X to %8.8X%8.8X\n",
304 ACPI_BITMASK_ALL_FIXED_STATUS,
305 ACPI_FORMAT_UINT64 (AcpiGbl_XPm1aStatus.Address)));

307 LockFlags = AcpiOsAcquireLock (AcpiGbl_HardwareLock);

309 /* Clear the fixed events in PM1 A/B */

311 Status = AcpiHwRegisterWrite (ACPI_REGISTER_PM1_STATUS,
312 ACPI_BITMASK_ALL_FIXED_STATUS);
313 if (ACPI_FAILURE (Status))
314 {
315 goto UnlockAndExit;
316 }

318 /* Clear the GPE Bits in all GPE registers in all GPE blocks */

320 Status = AcpiEvWalkGpeList (AcpiHwClearGpeBlock, NULL);

new/usr/src/common/acpica/components/hardware/hwregs.c 6

322 UnlockAndExit:
323 AcpiOsReleaseLock (AcpiGbl_HardwareLock, LockFlags);
324 return_ACPI_STATUS (Status);
325 }

328 /***
329 *
330 * FUNCTION: AcpiHwGetBitRegisterInfo
324 * FUNCTION: AcpiHwGetRegisterBitMask
331 *
332 * PARAMETERS: RegisterId - Index of ACPI Register to access
333 *
334 * RETURN: The bitmask to be used when accessing the register
335 *
336 * DESCRIPTION: Map RegisterId into a register bitmask.
337 *
338 **/

340 ACPI_BIT_REGISTER_INFO *
341 AcpiHwGetBitRegisterInfo (
342 UINT32 RegisterId)
343 {
344 ACPI_FUNCTION_ENTRY ();

347 if (RegisterId > ACPI_BITREG_MAX)
348 {
349 ACPI_ERROR ((AE_INFO, "Invalid BitRegister ID: 0x%X", RegisterId));
350 return (NULL);
351 }

353 return (&AcpiGbl_BitRegisterInfo[RegisterId]);
354 }

______unchanged_portion_omitted_

399 /**
400 *
401 * FUNCTION: AcpiHwRegisterRead
402 *
403 * PARAMETERS: RegisterId - ACPI Register ID
404 * ReturnValue - Where the register value is returned
405 *
406 * RETURN: Status and the value read.
407 *
408 * DESCRIPTION: Read from the specified ACPI register
409 *
410 **/

412 ACPI_STATUS
413 AcpiHwRegisterRead (
414 UINT32 RegisterId,
415 UINT32 *ReturnValue)
416 {
417 UINT32 Value = 0;
418 ACPI_STATUS Status;

421 ACPI_FUNCTION_TRACE (HwRegisterRead);

424 switch (RegisterId)
425 {
426 case ACPI_REGISTER_PM1_STATUS: /* PM1 A/B: 16-bit access each */

new/usr/src/common/acpica/components/hardware/hwregs.c 7

428 Status = AcpiHwReadMultiple (&Value,
429 &AcpiGbl_XPm1aStatus,
430 &AcpiGbl_XPm1bStatus);
431 break;

433 case ACPI_REGISTER_PM1_ENABLE: /* PM1 A/B: 16-bit access each */

435 Status = AcpiHwReadMultiple (&Value,
436 &AcpiGbl_XPm1aEnable,
437 &AcpiGbl_XPm1bEnable);
438 break;

440 case ACPI_REGISTER_PM1_CONTROL: /* PM1 A/B: 16-bit access each */

442 Status = AcpiHwReadMultiple (&Value,
443 &AcpiGbl_FADT.XPm1aControlBlock,
444 &AcpiGbl_FADT.XPm1bControlBlock);

446 /*
447 * Zero the write-only bits. From the ACPI specification, "Hardware
448 * Write-Only Bits": "Upon reads to registers with write-only bits,
449 * software masks out all write-only bits."
450 */
451 Value &= ~ACPI_PM1_CONTROL_WRITEONLY_BITS;
452 break;

454 case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */

456 Status = AcpiHwRead (&Value, &AcpiGbl_FADT.XPm2ControlBlock);
457 break;

459 case ACPI_REGISTER_PM_TIMER: /* 32-bit access */

461 Status = AcpiHwRead (&Value, &AcpiGbl_FADT.XPmTimerBlock);
462 break;

464 case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */

466 Status = AcpiHwReadPort (AcpiGbl_FADT.SmiCommand, &Value, 8);
467 break;

469 default:

469 default:
471 ACPI_ERROR ((AE_INFO, "Unknown Register ID: 0x%X",
472 RegisterId));
473 Status = AE_BAD_PARAMETER;
474 break;
475 }

477 if (ACPI_SUCCESS (Status))
478 {
479 *ReturnValue = Value;
480 }

482 return_ACPI_STATUS (Status);
483 }

486 /**

new/usr/src/common/acpica/components/hardware/hwregs.c 8

487 *
488 * FUNCTION: AcpiHwRegisterWrite
489 *
490 * PARAMETERS: RegisterId - ACPI Register ID
491 * Value - The value to write
492 *
493 * RETURN: Status
494 *
495 * DESCRIPTION: Write to the specified ACPI register
496 *
497 * NOTE: In accordance with the ACPI specification, this function automatically
498 * preserves the value of the following bits, meaning that these bits cannot be
499 * changed via this interface:
500 *
501 * PM1_CONTROL[0] = SCI_EN
502 * PM1_CONTROL[9]
503 * PM1_STATUS[11]
504 *
505 * ACPI References:
506 * 1) Hardware Ignored Bits: When software writes to a register with ignored
507 * bit fields, it preserves the ignored bit fields
508 * 2) SCI_EN: OSPM always preserves this bit position
509 *
510 **/

512 ACPI_STATUS
513 AcpiHwRegisterWrite (
514 UINT32 RegisterId,
515 UINT32 Value)
516 {
517 ACPI_STATUS Status;
518 UINT32 ReadValue;

521 ACPI_FUNCTION_TRACE (HwRegisterWrite);

524 switch (RegisterId)
525 {
526 case ACPI_REGISTER_PM1_STATUS: /* PM1 A/B: 16-bit access each */
527 /*
528 * Handle the "ignored" bit in PM1 Status. According to the ACPI
529 * specification, ignored bits are to be preserved when writing.
530 * Normally, this would mean a read/modify/write sequence. However,
531 * preserving a bit in the status register is different. Writing a
532 * one clears the status, and writing a zero preserves the status.
533 * Therefore, we must always write zero to the ignored bit.
534 *
535 * This behavior is clarified in the ACPI 4.0 specification.
536 */
537 Value &= ~ACPI_PM1_STATUS_PRESERVED_BITS;

539 Status = AcpiHwWriteMultiple (Value,
540 &AcpiGbl_XPm1aStatus,
541 &AcpiGbl_XPm1bStatus);
542 break;

544 case ACPI_REGISTER_PM1_ENABLE: /* PM1 A/B: 16-bit access each */

546 Status = AcpiHwWriteMultiple (Value,
547 &AcpiGbl_XPm1aEnable,
548 &AcpiGbl_XPm1bEnable);
549 break;

new/usr/src/common/acpica/components/hardware/hwregs.c 9

551 case ACPI_REGISTER_PM1_CONTROL: /* PM1 A/B: 16-bit access each */

552 /*
553 * Perform a read first to preserve certain bits (per ACPI spec)
554 * Note: This includes SCI_EN, we never want to change this bit
555 */
556 Status = AcpiHwReadMultiple (&ReadValue,
557 &AcpiGbl_FADT.XPm1aControlBlock,
558 &AcpiGbl_FADT.XPm1bControlBlock);
559 if (ACPI_FAILURE (Status))
560 {
561 goto Exit;
562 }

564 /* Insert the bits to be preserved */

566 ACPI_INSERT_BITS (Value, ACPI_PM1_CONTROL_PRESERVED_BITS, ReadValue);

568 /* Now we can write the data */

570 Status = AcpiHwWriteMultiple (Value,
571 &AcpiGbl_FADT.XPm1aControlBlock,
572 &AcpiGbl_FADT.XPm1bControlBlock);
573 break;

575 case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */

576 /*
577 * For control registers, all reserved bits must be preserved,
578 * as per the ACPI spec.
579 */
580 Status = AcpiHwRead (&ReadValue, &AcpiGbl_FADT.XPm2ControlBlock);
581 if (ACPI_FAILURE (Status))
582 {
583 goto Exit;
584 }

586 /* Insert the bits to be preserved */

588 ACPI_INSERT_BITS (Value, ACPI_PM2_CONTROL_PRESERVED_BITS, ReadValue);

590 Status = AcpiHwWrite (Value, &AcpiGbl_FADT.XPm2ControlBlock);
591 break;

593 case ACPI_REGISTER_PM_TIMER: /* 32-bit access */

595 Status = AcpiHwWrite (Value, &AcpiGbl_FADT.XPmTimerBlock);
596 break;

598 case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */

600 /* SMI_CMD is currently always in IO space */

602 Status = AcpiHwWritePort (AcpiGbl_FADT.SmiCommand, Value, 8);
603 break;

605 default:

612 default:
607 ACPI_ERROR ((AE_INFO, "Unknown Register ID: 0x%X",
608 RegisterId));
609 Status = AE_BAD_PARAMETER;
610 break;

new/usr/src/common/acpica/components/hardware/hwregs.c 10

611 }

613 Exit:
614 return_ACPI_STATUS (Status);
615 }

______unchanged_portion_omitted_

728 #endif /* !ACPI_REDUCED_HARDWARE */

new/usr/src/common/acpica/components/hardware/hwsleep.c 1

**
 10864 Thu Dec 26 13:49:14 2013
new/usr/src/common/acpica/components/hardware/hwsleep.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: hwsleep.c - ACPI Hardware Sleep/Wake Support functions for the
4 * original/legacy sleep/PM registers.
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #include "acpi.h"
46 #include "accommon.h"

48 #define _COMPONENT ACPI_HARDWARE
49 ACPI_MODULE_NAME ("hwsleep")

52 #if (!ACPI_REDUCED_HARDWARE) /* Entire module */
53 /***
54 *
55 * FUNCTION: AcpiHwLegacySleep
56 *
57 * PARAMETERS: SleepState - Which sleep state to enter
58 *
59 * RETURN: Status
60 *

new/usr/src/common/acpica/components/hardware/hwsleep.c 2

61 * DESCRIPTION: Enter a system sleep state via the legacy FADT PM registers
62 * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED
63 *
64 **/

66 ACPI_STATUS
67 AcpiHwLegacySleep (
68 UINT8 SleepState)
69 {
70 ACPI_BIT_REGISTER_INFO *SleepTypeRegInfo;
71 ACPI_BIT_REGISTER_INFO *SleepEnableRegInfo;
72 UINT32 Pm1aControl;
73 UINT32 Pm1bControl;
74 UINT32 InValue;
75 ACPI_STATUS Status;

78 ACPI_FUNCTION_TRACE (HwLegacySleep);

81 SleepTypeRegInfo = AcpiHwGetBitRegisterInfo (ACPI_BITREG_SLEEP_TYPE);
82 SleepEnableRegInfo = AcpiHwGetBitRegisterInfo (ACPI_BITREG_SLEEP_ENABLE);

84 /* Clear wake status */

86 Status = AcpiWriteBitRegister (ACPI_BITREG_WAKE_STATUS, ACPI_CLEAR_STATUS);
87 if (ACPI_FAILURE (Status))
88 {
89 return_ACPI_STATUS (Status);
90 }

92 /* Clear all fixed and general purpose status bits */

94 Status = AcpiHwClearAcpiStatus ();
95 if (ACPI_FAILURE (Status))
96 {
97 return_ACPI_STATUS (Status);
98 }

100 /*
101 * 1) Disable/Clear all GPEs
102 * 2) Enable all wakeup GPEs
103 */
104 Status = AcpiHwDisableAllGpes ();
105 if (ACPI_FAILURE (Status))
106 {
107 return_ACPI_STATUS (Status);
108 }
109 AcpiGbl_SystemAwakeAndRunning = FALSE;

111 Status = AcpiHwEnableAllWakeupGpes ();
112 if (ACPI_FAILURE (Status))
113 {
114 return_ACPI_STATUS (Status);
115 }

117 /* Get current value of PM1A control */

119 Status = AcpiHwRegisterRead (ACPI_REGISTER_PM1_CONTROL,
120 &Pm1aControl);
121 if (ACPI_FAILURE (Status))
122 {
123 return_ACPI_STATUS (Status);
124 }
125 ACPI_DEBUG_PRINT ((ACPI_DB_INIT,
126 "Entering sleep state [S%u]\n", SleepState));

new/usr/src/common/acpica/components/hardware/hwsleep.c 3

128 /* Clear the SLP_EN and SLP_TYP fields */

130 Pm1aControl &= ~(SleepTypeRegInfo->AccessBitMask |
131 SleepEnableRegInfo->AccessBitMask);
132 Pm1bControl = Pm1aControl;

134 /* Insert the SLP_TYP bits */

136 Pm1aControl |= (AcpiGbl_SleepTypeA << SleepTypeRegInfo->BitPosition);
137 Pm1bControl |= (AcpiGbl_SleepTypeB << SleepTypeRegInfo->BitPosition);

139 /*
140 * We split the writes of SLP_TYP and SLP_EN to workaround
141 * poorly implemented hardware.
142 */

144 /* Write #1: write the SLP_TYP data to the PM1 Control registers */

146 Status = AcpiHwWritePm1Control (Pm1aControl, Pm1bControl);
147 if (ACPI_FAILURE (Status))
148 {
149 return_ACPI_STATUS (Status);
150 }

152 /* Insert the sleep enable (SLP_EN) bit */

154 Pm1aControl |= SleepEnableRegInfo->AccessBitMask;
155 Pm1bControl |= SleepEnableRegInfo->AccessBitMask;

157 /* Flush caches, as per ACPI specification */

159 ACPI_FLUSH_CPU_CACHE ();

161 /* Write #2: Write both SLP_TYP + SLP_EN */

163 Status = AcpiHwWritePm1Control (Pm1aControl, Pm1bControl);
164 if (ACPI_FAILURE (Status))
165 {
166 return_ACPI_STATUS (Status);
167 }

169 if (SleepState > ACPI_STATE_S3)
170 {
171 /*
172 * We wanted to sleep > S3, but it didn’t happen (by virtue of the
173 * fact that we are still executing!)
174 *
175 * Wait ten seconds, then try again. This is to get S4/S5 to work on
176 * all machines.
177 *
178 * We wait so long to allow chipsets that poll this reg very slowly
179 * to still read the right value. Ideally, this block would go
180 * away entirely.
181 */
182 AcpiOsStall (10 * ACPI_USEC_PER_SEC);

184 Status = AcpiHwRegisterWrite (ACPI_REGISTER_PM1_CONTROL,
185 SleepEnableRegInfo->AccessBitMask);
186 if (ACPI_FAILURE (Status))
187 {
188 return_ACPI_STATUS (Status);
189 }
190 }

192 /* Wait for transition back to Working State */

new/usr/src/common/acpica/components/hardware/hwsleep.c 4

194 do
195 {
196 Status = AcpiReadBitRegister (ACPI_BITREG_WAKE_STATUS, &InValue);
197 if (ACPI_FAILURE (Status))
198 {
199 return_ACPI_STATUS (Status);
200 }

202 } while (!InValue);

204 return_ACPI_STATUS (AE_OK);
205 }

208 /***
209 *
210 * FUNCTION: AcpiHwLegacyWakePrep
211 *
212 * PARAMETERS: SleepState - Which sleep state we just exited
213 *
214 * RETURN: Status
215 *
216 * DESCRIPTION: Perform the first state of OS-independent ACPI cleanup after a
217 * sleep.
218 * Called with interrupts ENABLED.
219 *
220 **/

222 ACPI_STATUS
223 AcpiHwLegacyWakePrep (
224 UINT8 SleepState)
225 {
226 ACPI_STATUS Status;
227 ACPI_BIT_REGISTER_INFO *SleepTypeRegInfo;
228 ACPI_BIT_REGISTER_INFO *SleepEnableRegInfo;
229 UINT32 Pm1aControl;
230 UINT32 Pm1bControl;

233 ACPI_FUNCTION_TRACE (HwLegacyWakePrep);

235 /*
236 * Set SLP_TYPE and SLP_EN to state S0.
237 * This is unclear from the ACPI Spec, but it is required
238 * by some machines.
239 */
240 Status = AcpiGetSleepTypeData (ACPI_STATE_S0,
241 &AcpiGbl_SleepTypeA, &AcpiGbl_SleepTypeB);
242 if (ACPI_SUCCESS (Status))
243 {
244 SleepTypeRegInfo =
245 AcpiHwGetBitRegisterInfo (ACPI_BITREG_SLEEP_TYPE);
246 SleepEnableRegInfo =
247 AcpiHwGetBitRegisterInfo (ACPI_BITREG_SLEEP_ENABLE);

249 /* Get current value of PM1A control */

251 Status = AcpiHwRegisterRead (ACPI_REGISTER_PM1_CONTROL,
252 &Pm1aControl);
253 if (ACPI_SUCCESS (Status))
254 {
255 /* Clear the SLP_EN and SLP_TYP fields */

257 Pm1aControl &= ~(SleepTypeRegInfo->AccessBitMask |
258 SleepEnableRegInfo->AccessBitMask);

new/usr/src/common/acpica/components/hardware/hwsleep.c 5

259 Pm1bControl = Pm1aControl;

261 /* Insert the SLP_TYP bits */

263 Pm1aControl |= (AcpiGbl_SleepTypeA <<
264 SleepTypeRegInfo->BitPosition);
265 Pm1bControl |= (AcpiGbl_SleepTypeB <<
266 SleepTypeRegInfo->BitPosition);

268 /* Write the control registers and ignore any errors */

270 (void) AcpiHwWritePm1Control (Pm1aControl, Pm1bControl);
271 }
272 }

274 return_ACPI_STATUS (Status);
275 }

278 /***
279 *
280 * FUNCTION: AcpiHwLegacyWake
281 *
282 * PARAMETERS: SleepState - Which sleep state we just exited
283 *
284 * RETURN: Status
285 *
286 * DESCRIPTION: Perform OS-independent ACPI cleanup after a sleep
287 * Called with interrupts ENABLED.
288 *
289 **/

291 ACPI_STATUS
292 AcpiHwLegacyWake (
293 UINT8 SleepState)
294 {
295 ACPI_STATUS Status;

298 ACPI_FUNCTION_TRACE (HwLegacyWake);

301 /* Ensure EnterSleepStatePrep -> EnterSleepState ordering */

303 AcpiGbl_SleepTypeA = ACPI_SLEEP_TYPE_INVALID;
304 AcpiHwExecuteSleepMethod (METHOD_PATHNAME__SST, ACPI_SST_WAKING);

306 /*
307 * GPEs must be enabled before _WAK is called as GPEs
308 * might get fired there
309 *
310 * Restore the GPEs:
311 * 1) Disable/Clear all GPEs
312 * 2) Enable all runtime GPEs
313 */
314 Status = AcpiHwDisableAllGpes ();
315 if (ACPI_FAILURE (Status))
316 {
317 return_ACPI_STATUS (Status);
318 }

320 Status = AcpiHwEnableAllRuntimeGpes ();
321 if (ACPI_FAILURE (Status))
322 {
323 return_ACPI_STATUS (Status);
324 }

new/usr/src/common/acpica/components/hardware/hwsleep.c 6

326 /*
327 * Now we can execute _WAK, etc. Some machines require that the GPEs
328 * are enabled before the wake methods are executed.
329 */
330 AcpiHwExecuteSleepMethod (METHOD_PATHNAME__WAK, SleepState);

332 /*
333 * Some BIOS code assumes that WAK_STS will be cleared on resume
334 * and use it to determine whether the system is rebooting or
335 * resuming. Clear WAK_STS for compatibility.
336 */
337 (void) AcpiWriteBitRegister (ACPI_BITREG_WAKE_STATUS, ACPI_CLEAR_STATUS);
338 AcpiGbl_SystemAwakeAndRunning = TRUE;

340 /* Enable power button */

342 (void) AcpiWriteBitRegister(
343 AcpiGbl_FixedEventInfo[ACPI_EVENT_POWER_BUTTON].EnableRegisterId,
344 ACPI_ENABLE_EVENT);

346 (void) AcpiWriteBitRegister(
347 AcpiGbl_FixedEventInfo[ACPI_EVENT_POWER_BUTTON].StatusRegisterId,
348 ACPI_CLEAR_STATUS);

350 AcpiHwExecuteSleepMethod (METHOD_PATHNAME__SST, ACPI_SST_WORKING);
351 return_ACPI_STATUS (Status);
352 }

354 #endif /* !ACPI_REDUCED_HARDWARE */

new/usr/src/common/acpica/components/hardware/hwtimer.c 1

**
 7124 Thu Dec 26 13:49:14 2013
new/usr/src/common/acpica/components/hardware/hwtimer.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: hwtimer.c - ACPI Power Management Timer Interface
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define EXPORT_ACPI_INTERFACES

46 #include "acpi.h"
47 #include "accommon.h"

49 #define _COMPONENT ACPI_HARDWARE
50 ACPI_MODULE_NAME ("hwtimer")

53 #if (!ACPI_REDUCED_HARDWARE) /* Entire module */
54 /**
55 *
56 * FUNCTION: AcpiGetTimerResolution
57 *

new/usr/src/common/acpica/components/hardware/hwtimer.c 2

58 * PARAMETERS: Resolution - Where the resolution is returned
59 *
60 * RETURN: Status and timer resolution
61 *
62 * DESCRIPTION: Obtains resolution of the ACPI PM Timer (24 or 32 bits).
63 *
64 **/

66 ACPI_STATUS
67 AcpiGetTimerResolution (
68 UINT32 *Resolution)
69 {
70 ACPI_FUNCTION_TRACE (AcpiGetTimerResolution);

73 if (!Resolution)
74 {
75 return_ACPI_STATUS (AE_BAD_PARAMETER);
76 }

78 if ((AcpiGbl_FADT.Flags & ACPI_FADT_32BIT_TIMER) == 0)
79 {
80 *Resolution = 24;
81 }
82 else
83 {
84 *Resolution = 32;
85 }

87 return_ACPI_STATUS (AE_OK);
88 }

90 ACPI_EXPORT_SYMBOL (AcpiGetTimerResolution)

93 /**
94 *
95 * FUNCTION: AcpiGetTimer
96 *
97 * PARAMETERS: Ticks - Where the timer value is returned
98 *
99 * RETURN: Status and current timer value (ticks)
100 *
101 * DESCRIPTION: Obtains current value of ACPI PM Timer (in ticks).
102 *
103 **/

105 ACPI_STATUS
106 AcpiGetTimer (
107 UINT32 *Ticks)
108 {
109 ACPI_STATUS Status;

112 ACPI_FUNCTION_TRACE (AcpiGetTimer);

115 if (!Ticks)
116 {
117 return_ACPI_STATUS (AE_BAD_PARAMETER);
118 }

120 /* ACPI 5.0A: PM Timer is optional */

122 if (!AcpiGbl_FADT.XPmTimerBlock.Address)
123 {

new/usr/src/common/acpica/components/hardware/hwtimer.c 3

124 return_ACPI_STATUS (AE_SUPPORT);
125 }

127 Status = AcpiHwRead (Ticks, &AcpiGbl_FADT.XPmTimerBlock);

128 return_ACPI_STATUS (Status);
129 }

131 ACPI_EXPORT_SYMBOL (AcpiGetTimer)

134 /**
135 *
136 * FUNCTION: AcpiGetTimerDuration
137 *
138 * PARAMETERS: StartTicks - Starting timestamp
139 * EndTicks - End timestamp
140 * TimeElapsed - Where the elapsed time is returned
141 *
142 * RETURN: Status and TimeElapsed
143 *
144 * DESCRIPTION: Computes the time elapsed (in microseconds) between two
145 * PM Timer time stamps, taking into account the possibility of
146 * rollovers, the timer resolution, and timer frequency.
147 *
148 * The PM Timer’s clock ticks at roughly 3.6 times per
149 * _microsecond_, and its clock continues through Cx state
150 * transitions (unlike many CPU timestamp counters) -- making it
151 * a versatile and accurate timer.
152 *
153 * Note that this function accommodates only a single timer
154 * rollover. Thus for 24-bit timers, this function should only
155 * be used for calculating durations less than ~4.6 seconds
156 * (~20 minutes for 32-bit timers) -- calculations below:
157 *
158 * 2**24 Ticks / 3,600,000 Ticks/Sec = 4.66 sec
159 * 2**32 Ticks / 3,600,000 Ticks/Sec = 1193 sec or 19.88 minutes
160 *
161 **/

163 ACPI_STATUS
164 AcpiGetTimerDuration (
165 UINT32 StartTicks,
166 UINT32 EndTicks,
167 UINT32 *TimeElapsed)
168 {
169 ACPI_STATUS Status;
170 UINT32 DeltaTicks;
171 UINT64 Quotient;

174 ACPI_FUNCTION_TRACE (AcpiGetTimerDuration);

177 if (!TimeElapsed)
178 {
179 return_ACPI_STATUS (AE_BAD_PARAMETER);
180 }

182 /* ACPI 5.0A: PM Timer is optional */

184 if (!AcpiGbl_FADT.XPmTimerBlock.Address)
185 {
186 return_ACPI_STATUS (AE_SUPPORT);
187 }

new/usr/src/common/acpica/components/hardware/hwtimer.c 4

189 /*
190 * Compute Tick Delta:
191 * Handle (max one) timer rollovers on 24-bit versus 32-bit timers.
192 */
193 if (StartTicks < EndTicks)
194 {
195 DeltaTicks = EndTicks - StartTicks;
196 }
197 else if (StartTicks > EndTicks)
198 {
199 if ((AcpiGbl_FADT.Flags & ACPI_FADT_32BIT_TIMER) == 0)
200 {
201 /* 24-bit Timer */

203 DeltaTicks = (((0x00FFFFFF - StartTicks) + EndTicks) & 0x00FFFFFF);
204 }
205 else
206 {
207 /* 32-bit Timer */

209 DeltaTicks = (0xFFFFFFFF - StartTicks) + EndTicks;
210 }
211 }
212 else /* StartTicks == EndTicks */
213 {
214 *TimeElapsed = 0;
215 return_ACPI_STATUS (AE_OK);
216 }

218 /*
219 * Compute Duration (Requires a 64-bit multiply and divide):
220 *
221 * TimeElapsed (microseconds) =
222 * (DeltaTicks * ACPI_USEC_PER_SEC) / ACPI_PM_TIMER_FREQUENCY;
206 * TimeElapsed = (DeltaTicks * 1000000) / PM_TIMER_FREQUENCY;
223 */
224 Status = AcpiUtShortDivide (((UINT64) DeltaTicks) * ACPI_USEC_PER_SEC,
225 ACPI_PM_TIMER_FREQUENCY, &Quotient, NULL);
208 Status = AcpiUtShortDivide (((UINT64) DeltaTicks) * 1000000,
209 PM_TIMER_FREQUENCY, &Quotient, NULL);

227 *TimeElapsed = (UINT32) Quotient;
228 return_ACPI_STATUS (Status);
229 }

231 ACPI_EXPORT_SYMBOL (AcpiGetTimerDuration)

233 #endif /* !ACPI_REDUCED_HARDWARE */

new/usr/src/common/acpica/components/hardware/hwvalid.c 1

**
 11591 Thu Dec 26 13:49:14 2013
new/usr/src/common/acpica/components/hardware/hwvalid.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: hwvalid - I/O request validation
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __HWVALID_C__

46 #include "acpi.h"
47 #include "accommon.h"

49 #define _COMPONENT ACPI_HARDWARE
50 ACPI_MODULE_NAME ("hwvalid")

52 /* Local prototypes */

54 static ACPI_STATUS
55 AcpiHwValidateIoRequest (
56 ACPI_IO_ADDRESS Address,
57 UINT32 BitWidth);

new/usr/src/common/acpica/components/hardware/hwvalid.c 2

60 /*
61 * Protected I/O ports. Some ports are always illegal, and some are
62 * conditionally illegal. This table must remain ordered by port address.
63 *
64 * The table is used to implement the Microsoft port access rules that
65 * first appeared in Windows XP. Some ports are always illegal, and some
66 * ports are only illegal if the BIOS calls _OSI with a WinXP string or
67 * later (meaning that the BIOS itelf is post-XP.)
68 *
69 * This provides ACPICA with the desired port protections and
70 * Microsoft compatibility.
71 *
72 * Description of port entries:
73 * DMA: DMA controller
74 * PIC0: Programmable Interrupt Controller (8259A)
75 * PIT1: System Timer 1
76 * PIT2: System Timer 2 failsafe
77 * RTC: Real-time clock
78 * CMOS: Extended CMOS
79 * DMA1: DMA 1 page registers
80 * DMA1L: DMA 1 Ch 0 low page
81 * DMA2: DMA 2 page registers
82 * DMA2L: DMA 2 low page refresh
83 * ARBC: Arbitration control
84 * SETUP: Reserved system board setup
85 * POS: POS channel select
86 * PIC1: Cascaded PIC
87 * IDMA: ISA DMA
88 * ELCR: PIC edge/level registers
89 * PCI: PCI configuration space
90 */
91 static const ACPI_PORT_INFO AcpiProtectedPorts[] =
92 {
93 {"DMA", 0x0000, 0x000F, ACPI_OSI_WIN_XP},
94 {"PIC0", 0x0020, 0x0021, ACPI_ALWAYS_ILLEGAL},
95 {"PIT1", 0x0040, 0x0043, ACPI_OSI_WIN_XP},
96 {"PIT2", 0x0048, 0x004B, ACPI_OSI_WIN_XP},
97 {"RTC", 0x0070, 0x0071, ACPI_OSI_WIN_XP},
98 {"CMOS", 0x0074, 0x0076, ACPI_OSI_WIN_XP},
99 {"DMA1", 0x0081, 0x0083, ACPI_OSI_WIN_XP},
100 {"DMA1L", 0x0087, 0x0087, ACPI_OSI_WIN_XP},
101 {"DMA2", 0x0089, 0x008B, ACPI_OSI_WIN_XP},
102 {"DMA2L", 0x008F, 0x008F, ACPI_OSI_WIN_XP},
103 {"ARBC", 0x0090, 0x0091, ACPI_OSI_WIN_XP},
104 {"SETUP", 0x0093, 0x0094, ACPI_OSI_WIN_XP},
105 {"POS", 0x0096, 0x0097, ACPI_OSI_WIN_XP},
106 {"PIC1", 0x00A0, 0x00A1, ACPI_ALWAYS_ILLEGAL},
107 {"IDMA", 0x00C0, 0x00DF, ACPI_OSI_WIN_XP},
108 {"ELCR", 0x04D0, 0x04D1, ACPI_ALWAYS_ILLEGAL},
109 {"PCI", 0x0CF8, 0x0CFF, ACPI_OSI_WIN_XP}
110 };

112 #define ACPI_PORT_INFO_ENTRIES ACPI_ARRAY_LENGTH (AcpiProtectedPorts)

115 /**
116 *
117 * FUNCTION: AcpiHwValidateIoRequest
118 *
119 * PARAMETERS: Address Address of I/O port/register
120 * BitWidth Number of bits (8,16,32)
121 *
122 * RETURN: Status
123 *
124 * DESCRIPTION: Validates an I/O request (address/length). Certain ports are

new/usr/src/common/acpica/components/hardware/hwvalid.c 3

125 * always illegal and some ports are only illegal depending on
126 * the requests the BIOS AML code makes to the predefined
127 * _OSI method.
128 *
129 **/

131 static ACPI_STATUS
132 AcpiHwValidateIoRequest (
133 ACPI_IO_ADDRESS Address,
134 UINT32 BitWidth)
135 {
136 UINT32 i;
137 UINT32 ByteWidth;
138 ACPI_IO_ADDRESS LastAddress;
139 const ACPI_PORT_INFO *PortInfo;

142 ACPI_FUNCTION_TRACE (HwValidateIoRequest);

145 /* Supported widths are 8/16/32 */

147 if ((BitWidth != 8) &&
148 (BitWidth != 16) &&
149 (BitWidth != 32))
150 {
151 ACPI_ERROR ((AE_INFO,
152 "Bad BitWidth parameter: %8.8X", BitWidth));
153 return (AE_BAD_PARAMETER);
154 }

156 PortInfo = AcpiProtectedPorts;
157 ByteWidth = ACPI_DIV_8 (BitWidth);
158 LastAddress = Address + ByteWidth - 1;

160 ACPI_DEBUG_PRINT ((ACPI_DB_IO, "Address %p LastAddress %p Length %X",
161 ACPI_CAST_PTR (void, Address), ACPI_CAST_PTR (void, LastAddress),
162 ByteWidth));

164 /* Maximum 16-bit address in I/O space */

166 if (LastAddress > ACPI_UINT16_MAX)
167 {
168 ACPI_ERROR ((AE_INFO,
169 "Illegal I/O port address/length above 64K: %p/0x%X",
170 ACPI_CAST_PTR (void, Address), ByteWidth));
171 return_ACPI_STATUS (AE_LIMIT);
172 }

174 /* Exit if requested address is not within the protected port table */

176 if (Address > AcpiProtectedPorts[ACPI_PORT_INFO_ENTRIES - 1].End)
177 {
178 return_ACPI_STATUS (AE_OK);
179 }

181 /* Check request against the list of protected I/O ports */

183 for (i = 0; i < ACPI_PORT_INFO_ENTRIES; i++, PortInfo++)
184 {
185 /*
186 * Check if the requested address range will write to a reserved
187 * port. Four cases to consider:
188 *
189 * 1) Address range is contained completely in the port address range
190 * 2) Address range overlaps port range at the port range start

new/usr/src/common/acpica/components/hardware/hwvalid.c 4

191 * 3) Address range overlaps port range at the port range end
192 * 4) Address range completely encompasses the port range
193 */
194 if ((Address <= PortInfo->End) && (LastAddress >= PortInfo->Start))
195 {
196 /* Port illegality may depend on the _OSI calls made by the BIOS */

198 if (AcpiGbl_OsiData >= PortInfo->OsiDependency)
199 {
200 ACPI_DEBUG_PRINT ((ACPI_DB_IO,
201 "Denied AML access to port 0x%p/%X (%s 0x%.4X-0x%.4X)",
202 ACPI_CAST_PTR (void, Address), ByteWidth, PortInfo->Name,
203 PortInfo->Start, PortInfo->End));

205 return_ACPI_STATUS (AE_AML_ILLEGAL_ADDRESS);
206 }
207 }

209 /* Finished if address range ends before the end of this port */

211 if (LastAddress <= PortInfo->End)
212 {
213 break;
214 }
215 }

217 return_ACPI_STATUS (AE_OK);
218 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/hardware/hwxface.c 1

**
 19617 Thu Dec 26 13:49:15 2013
new/usr/src/common/acpica/components/hardware/hwxface.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: hwxface - Public ACPICA hardware interfaces
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define EXPORT_ACPI_INTERFACES

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acnamesp.h"

50 #define _COMPONENT ACPI_HARDWARE
51 ACPI_MODULE_NAME ("hwxface")

54 /**
55 *
56 * FUNCTION: AcpiReset
57 *

new/usr/src/common/acpica/components/hardware/hwxface.c 2

58 * PARAMETERS: None
59 *
60 * RETURN: Status
61 *
62 * DESCRIPTION: Set reset register in memory or IO space. Note: Does not
63 * support reset register in PCI config space, this must be
64 * handled separately.
65 *
66 **/

68 ACPI_STATUS
69 AcpiReset (
70 void)
71 {
72 ACPI_GENERIC_ADDRESS *ResetReg;
73 ACPI_STATUS Status;

76 ACPI_FUNCTION_TRACE (AcpiReset);

79 ResetReg = &AcpiGbl_FADT.ResetRegister;

81 /* Check if the reset register is supported */

83 if (!(AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) ||
84 !ResetReg->Address)
85 {
86 return_ACPI_STATUS (AE_NOT_EXIST);
87 }

89 if (ResetReg->SpaceId == ACPI_ADR_SPACE_SYSTEM_IO)
90 {
91 /*
92 * For I/O space, write directly to the OSL. This bypasses the port
93 * validation mechanism, which may block a valid write to the reset
94 * register.
95 *
96 * NOTE:
97 * The ACPI spec requires the reset register width to be 8, so we
98 * hardcode it here and ignore the FADT value. This maintains
99 * compatibility with other ACPI implementations that have allowed
100 * BIOS code with bad register width values to go unnoticed.
101 */
102 Status = AcpiOsWritePort ((ACPI_IO_ADDRESS) ResetReg->Address,
103 AcpiGbl_FADT.ResetValue, ACPI_RESET_REGISTER_WIDTH);
96 AcpiGbl_FADT.ResetValue, ResetReg->BitWidth);
104 }
105 else
106 {
107 /* Write the reset value to the reset register */

109 Status = AcpiHwWrite (AcpiGbl_FADT.ResetValue, ResetReg);
110 }

112 return_ACPI_STATUS (Status);
113 }

115 ACPI_EXPORT_SYMBOL (AcpiReset)

118 /**
119 *
120 * FUNCTION: AcpiRead
121 *
122 * PARAMETERS: Value - Where the value is returned

new/usr/src/common/acpica/components/hardware/hwxface.c 3

123 * Reg - GAS register structure
124 *
125 * RETURN: Status
126 *
127 * DESCRIPTION: Read from either memory or IO space.
128 *
129 * LIMITATIONS: <These limitations also apply to AcpiWrite>
130 * BitWidth must be exactly 8, 16, 32, or 64.
131 * SpaceID must be SystemMemory or SystemIO.
132 * BitOffset and AccessWidth are currently ignored, as there has
133 * not been a need to implement these.
134 *
135 **/

137 ACPI_STATUS
138 AcpiRead (
139 UINT64 *ReturnValue,
140 ACPI_GENERIC_ADDRESS *Reg)
141 {
142 UINT32 ValueLo;
143 UINT32 ValueHi;
135 UINT32 Value;
144 UINT32 Width;
145 UINT64 Address;
146 ACPI_STATUS Status;

149 ACPI_FUNCTION_NAME (AcpiRead);

152 if (!ReturnValue)
153 {
154 return (AE_BAD_PARAMETER);
155 }

157 /* Validate contents of the GAS register. Allow 64-bit transfers */

159 Status = AcpiHwValidateRegister (Reg, 64, &Address);
160 if (ACPI_FAILURE (Status))
161 {
162 return (Status);
163 }

157 Width = Reg->BitWidth;
158 if (Width == 64)
159 {
160 Width = 32; /* Break into two 32-bit transfers */
161 }

163 /* Initialize entire 64-bit return value to zero */

165 *ReturnValue = 0;
166 Value = 0;

165 /*
166 * Two address spaces supported: Memory or I/O. PCI_Config is
169 * Two address spaces supported: Memory or IO. PCI_Config is
167 * not supported here because the GAS structure is insufficient
168 */
169 if (Reg->SpaceId == ACPI_ADR_SPACE_SYSTEM_MEMORY)
170 {
171 Status = AcpiOsReadMemory ((ACPI_PHYSICAL_ADDRESS)
172 Address, ReturnValue, Reg->BitWidth);
175 Address, &Value, Width);
173 if (ACPI_FAILURE (Status))
174 {

new/usr/src/common/acpica/components/hardware/hwxface.c 4

175 return (Status);
176 }
177 }
178 else /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */
180 *ReturnValue = Value;

182 if (Reg->BitWidth == 64)
179 {
180 ValueLo = 0;
181 ValueHi = 0;
184 /* Read the top 32 bits */

183 Width = Reg->BitWidth;
184 if (Width == 64)
186 Status = AcpiOsReadMemory ((ACPI_PHYSICAL_ADDRESS)
187 (Address + 4), &Value, 32);
188 if (ACPI_FAILURE (Status))
185 {
186 Width = 32; /* Break into two 32-bit transfers */
190 return (Status);
187 }

192 *ReturnValue |= ((UINT64) Value << 32);
193 }
194 }
195 else /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */
196 {
189 Status = AcpiHwReadPort ((ACPI_IO_ADDRESS)
190 Address, &ValueLo, Width);
198 Address, &Value, Width);
191 if (ACPI_FAILURE (Status))
192 {
193 return (Status);
194 }
203 *ReturnValue = Value;

196 if (Reg->BitWidth == 64)
197 {
198 /* Read the top 32 bits */

200 Status = AcpiHwReadPort ((ACPI_IO_ADDRESS)
201 (Address + 4), &ValueHi, 32);
210 (Address + 4), &Value, 32);
202 if (ACPI_FAILURE (Status))
203 {
204 return (Status);
205 }
215 *ReturnValue |= ((UINT64) Value << 32);
206 }

208 /* Set the return value only if status is AE_OK */

210 *ReturnValue = (ValueLo | ((UINT64) ValueHi << 32));
211 }

213 ACPI_DEBUG_PRINT ((ACPI_DB_IO,
214 "Read: %8.8X%8.8X width %2d from %8.8X%8.8X (%s)\n",
215 ACPI_FORMAT_UINT64 (*ReturnValue), Reg->BitWidth,
216 ACPI_FORMAT_UINT64 (Address),
217 AcpiUtGetRegionName (Reg->SpaceId)));

219 return (AE_OK);
225 return (Status);
220 }

222 ACPI_EXPORT_SYMBOL (AcpiRead)

new/usr/src/common/acpica/components/hardware/hwxface.c 5

225 /**
226 *
227 * FUNCTION: AcpiWrite
228 *
229 * PARAMETERS: Value - Value to be written
230 * Reg - GAS register structure
231 *
232 * RETURN: Status
233 *
234 * DESCRIPTION: Write to either memory or IO space.
235 *
236 **/

238 ACPI_STATUS
239 AcpiWrite (
240 UINT64 Value,
241 ACPI_GENERIC_ADDRESS *Reg)
242 {
243 UINT32 Width;
244 UINT64 Address;
245 ACPI_STATUS Status;

248 ACPI_FUNCTION_NAME (AcpiWrite);

251 /* Validate contents of the GAS register. Allow 64-bit transfers */

253 Status = AcpiHwValidateRegister (Reg, 64, &Address);
254 if (ACPI_FAILURE (Status))
255 {
256 return (Status);
257 }

265 Width = Reg->BitWidth;
266 if (Width == 64)
267 {
268 Width = 32; /* Break into two 32-bit transfers */
269 }

259 /*
260 * Two address spaces supported: Memory or IO. PCI_Config is
261 * not supported here because the GAS structure is insufficient
262 */
263 if (Reg->SpaceId == ACPI_ADR_SPACE_SYSTEM_MEMORY)
264 {
265 Status = AcpiOsWriteMemory ((ACPI_PHYSICAL_ADDRESS)
266 Address, Value, Reg->BitWidth);
278 Address, ACPI_LODWORD (Value), Width);
267 if (ACPI_FAILURE (Status))
268 {
269 return (Status);
270 }
271 }
272 else /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */

284 if (Reg->BitWidth == 64)
273 {
274 Width = Reg->BitWidth;
275 if (Width == 64)
286 Status = AcpiOsWriteMemory ((ACPI_PHYSICAL_ADDRESS)
287 (Address + 4), ACPI_HIDWORD (Value), 32);
288 if (ACPI_FAILURE (Status))
276 {

new/usr/src/common/acpica/components/hardware/hwxface.c 6

277 Width = 32; /* Break into two 32-bit transfers */
290 return (Status);
278 }

292 }
293 }
294 else /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */
295 {
280 Status = AcpiHwWritePort ((ACPI_IO_ADDRESS)
281 Address, ACPI_LODWORD (Value), Width);
282 if (ACPI_FAILURE (Status))
283 {
284 return (Status);
285 }

287 if (Reg->BitWidth == 64)
288 {
289 Status = AcpiHwWritePort ((ACPI_IO_ADDRESS)
290 (Address + 4), ACPI_HIDWORD (Value), 32);
291 if (ACPI_FAILURE (Status))
292 {
293 return (Status);
294 }
295 }
296 }

298 ACPI_DEBUG_PRINT ((ACPI_DB_IO,
299 "Wrote: %8.8X%8.8X width %2d to %8.8X%8.8X (%s)\n",
300 ACPI_FORMAT_UINT64 (Value), Reg->BitWidth,
301 ACPI_FORMAT_UINT64 (Address),
302 AcpiUtGetRegionName (Reg->SpaceId)));

304 return (Status);
305 }

307 ACPI_EXPORT_SYMBOL (AcpiWrite)

310 #if (!ACPI_REDUCED_HARDWARE)
311 /***
312 *
313 * FUNCTION: AcpiReadBitRegister
314 *
315 * PARAMETERS: RegisterId - ID of ACPI Bit Register to access
316 * ReturnValue - Value that was read from the register,
317 * normalized to bit position zero.
318 *
319 * RETURN: Status and the value read from the specified Register. Value
320 * returned is normalized to bit0 (is shifted all the way right)
321 *
322 * DESCRIPTION: ACPI BitRegister read function. Does not acquire the HW lock.
323 *
324 * SUPPORTS: Bit fields in PM1 Status, PM1 Enable, PM1 Control, and
325 * PM2 Control.
326 *
327 * Note: The hardware lock is not required when reading the ACPI bit registers
328 * since almost all of them are single bit and it does not matter that
329 * the parent hardware register can be split across two physical
330 * registers. The only multi-bit field is SLP_TYP in the PM1 control
331 * register, but this field does not cross an 8-bit boundary (nor does
332 * it make much sense to actually read this field.)
333 *
334 **/

336 ACPI_STATUS
337 AcpiReadBitRegister (

new/usr/src/common/acpica/components/hardware/hwxface.c 7

338 UINT32 RegisterId,
339 UINT32 *ReturnValue)
340 {
341 ACPI_BIT_REGISTER_INFO *BitRegInfo;
342 UINT32 RegisterValue;
343 UINT32 Value;
344 ACPI_STATUS Status;

347 ACPI_FUNCTION_TRACE_U32 (AcpiReadBitRegister, RegisterId);

350 /* Get the info structure corresponding to the requested ACPI Register */

352 BitRegInfo = AcpiHwGetBitRegisterInfo (RegisterId);
353 if (!BitRegInfo)
354 {
355 return_ACPI_STATUS (AE_BAD_PARAMETER);
356 }

358 /* Read the entire parent register */

360 Status = AcpiHwRegisterRead (BitRegInfo->ParentRegister,
361 &RegisterValue);
362 if (ACPI_FAILURE (Status))
363 {
364 return_ACPI_STATUS (Status);
365 }

367 /* Normalize the value that was read, mask off other bits */

369 Value = ((RegisterValue & BitRegInfo->AccessBitMask)
370 >> BitRegInfo->BitPosition);

372 ACPI_DEBUG_PRINT ((ACPI_DB_IO,
373 "BitReg %X, ParentReg %X, Actual %8.8X, ReturnValue %8.8X\n",
374 RegisterId, BitRegInfo->ParentRegister, RegisterValue, Value));

376 *ReturnValue = Value;
377 return_ACPI_STATUS (AE_OK);
378 }

380 ACPI_EXPORT_SYMBOL (AcpiReadBitRegister)

383 /***
384 *
385 * FUNCTION: AcpiWriteBitRegister
386 *
387 * PARAMETERS: RegisterId - ID of ACPI Bit Register to access
388 * Value - Value to write to the register, in bit
389 * position zero. The bit is automatically
404 * position zero. The bit is automaticallly
390 * shifted to the correct position.
391 *
392 * RETURN: Status
393 *
394 * DESCRIPTION: ACPI Bit Register write function. Acquires the hardware lock
395 * since most operations require a read/modify/write sequence.
396 *
397 * SUPPORTS: Bit fields in PM1 Status, PM1 Enable, PM1 Control, and
398 * PM2 Control.
399 *
400 * Note that at this level, the fact that there may be actually two
401 * hardware registers (A and B - and B may not exist) is abstracted.
402 *

new/usr/src/common/acpica/components/hardware/hwxface.c 8

403 **/

405 ACPI_STATUS
406 AcpiWriteBitRegister (
407 UINT32 RegisterId,
408 UINT32 Value)
409 {
410 ACPI_BIT_REGISTER_INFO *BitRegInfo;
411 ACPI_CPU_FLAGS LockFlags;
412 UINT32 RegisterValue;
413 ACPI_STATUS Status = AE_OK;

416 ACPI_FUNCTION_TRACE_U32 (AcpiWriteBitRegister, RegisterId);

419 /* Get the info structure corresponding to the requested ACPI Register */

421 BitRegInfo = AcpiHwGetBitRegisterInfo (RegisterId);
422 if (!BitRegInfo)
423 {
424 return_ACPI_STATUS (AE_BAD_PARAMETER);
425 }

427 LockFlags = AcpiOsAcquireLock (AcpiGbl_HardwareLock);

429 /*
430 * At this point, we know that the parent register is one of the
431 * following: PM1 Status, PM1 Enable, PM1 Control, or PM2 Control
432 */
433 if (BitRegInfo->ParentRegister != ACPI_REGISTER_PM1_STATUS)
434 {
435 /*
436 * 1) Case for PM1 Enable, PM1 Control, and PM2 Control
437 *
438 * Perform a register read to preserve the bits that we are not
439 * interested in
440 */
441 Status = AcpiHwRegisterRead (BitRegInfo->ParentRegister,
442 &RegisterValue);
443 if (ACPI_FAILURE (Status))
444 {
445 goto UnlockAndExit;
446 }

448 /*
449 * Insert the input bit into the value that was just read
450 * and write the register
451 */
452 ACPI_REGISTER_INSERT_VALUE (RegisterValue, BitRegInfo->BitPosition,
453 BitRegInfo->AccessBitMask, Value);

455 Status = AcpiHwRegisterWrite (BitRegInfo->ParentRegister,
456 RegisterValue);
457 }
458 else
459 {
460 /*
461 * 2) Case for PM1 Status
462 *
463 * The Status register is different from the rest. Clear an event
464 * by writing 1, writing 0 has no effect. So, the only relevant
465 * information is the single bit we’re interested in, all others
466 * should be written as 0 so they will be left unchanged.
467 */
468 RegisterValue = ACPI_REGISTER_PREPARE_BITS (Value,

new/usr/src/common/acpica/components/hardware/hwxface.c 9

469 BitRegInfo->BitPosition, BitRegInfo->AccessBitMask);

471 /* No need to write the register if value is all zeros */

473 if (RegisterValue)
474 {
475 Status = AcpiHwRegisterWrite (ACPI_REGISTER_PM1_STATUS,
476 RegisterValue);
477 }
478 }

480 ACPI_DEBUG_PRINT ((ACPI_DB_IO,
481 "BitReg %X, ParentReg %X, Value %8.8X, Actual %8.8X\n",
482 RegisterId, BitRegInfo->ParentRegister, Value, RegisterValue));

485 UnlockAndExit:

487 AcpiOsReleaseLock (AcpiGbl_HardwareLock, LockFlags);
488 return_ACPI_STATUS (Status);
489 }

491 ACPI_EXPORT_SYMBOL (AcpiWriteBitRegister)

493 #endif /* !ACPI_REDUCED_HARDWARE */

496 /***
497 *
498 * FUNCTION: AcpiGetSleepTypeData
499 *
500 * PARAMETERS: SleepState - Numeric sleep state
501 * *SleepTypeA - Where SLP_TYPa is returned
502 * *SleepTypeB - Where SLP_TYPb is returned
503 *
504 * RETURN: Status
517 * RETURN: Status - ACPI status
505 *
506 * DESCRIPTION: Obtain the SLP_TYPa and SLP_TYPb values for the requested
507 * sleep state via the appropriate _Sx object.
519 * DESCRIPTION: Obtain the SLP_TYPa and SLP_TYPb values for the requested sleep
520 * state.
508 *
509 * The sleep state package returned from the corresponding _Sx_ object
510 * must contain at least one integer.
511 *
512 * March 2005:
513 * Added support for a package that contains two integers. This
514 * goes against the ACPI specification which defines this object as a
515 * package with one encoded DWORD integer. However, existing practice
516 * by many BIOS vendors is to return a package with 2 or more integer
517 * elements, at least one per sleep type (A/B).
518 *
519 * January 2013:
520 * Therefore, we must be prepared to accept a package with either a
521 * single integer or multiple integers.
522 *
523 * The single integer DWORD format is as follows:
524 * BYTE 0 - Value for the PM1A SLP_TYP register
525 * BYTE 1 - Value for the PM1B SLP_TYP register
526 * BYTE 2-3 - Reserved
527 *
528 * The dual integer format is as follows:
529 * Integer 0 - Value for the PM1A SLP_TYP register
530 * Integer 1 - Value for the PM1A SLP_TYP register
531 *

new/usr/src/common/acpica/components/hardware/hwxface.c 10

532 **/

534 ACPI_STATUS
535 AcpiGetSleepTypeData (
536 UINT8 SleepState,
537 UINT8 *SleepTypeA,
538 UINT8 *SleepTypeB)
539 {
540 ACPI_STATUS Status;
530 ACPI_STATUS Status = AE_OK;
541 ACPI_EVALUATE_INFO *Info;
542 ACPI_OPERAND_OBJECT **Elements;

545 ACPI_FUNCTION_TRACE (AcpiGetSleepTypeData);

548 /* Validate parameters */

550 if ((SleepState > ACPI_S_STATES_MAX) ||
551 !SleepTypeA || !SleepTypeB)
540 !SleepTypeA ||
541 !SleepTypeB)
552 {
553 return_ACPI_STATUS (AE_BAD_PARAMETER);
554 }

556 /* Allocate the evaluation information block */

558 Info = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_EVALUATE_INFO));
559 if (!Info)
560 {
561 return_ACPI_STATUS (AE_NO_MEMORY);
562 }

564 /*
565 * Evaluate the _Sx namespace object containing the register values
566 * for this state
567 */
568 Info->RelativePathname = ACPI_CAST_PTR (
569 char, AcpiGbl_SleepStateNames[SleepState]);
554 Info->Pathname = ACPI_CAST_PTR (char, AcpiGbl_SleepStateNames[SleepState]);

556 /* Evaluate the namespace object containing the values for this state */

570 Status = AcpiNsEvaluate (Info);
571 if (ACPI_FAILURE (Status))
572 {
561 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
562 "%s while evaluating SleepState [%s]\n",
563 AcpiFormatException (Status), Info->Pathname));

573 goto Cleanup;
574 }

576 /* Must have a return object */

578 if (!Info->ReturnObject)
579 {
580 ACPI_ERROR ((AE_INFO, "No Sleep State object returned from [%s]",
581 Info->RelativePathname));
582 Status = AE_AML_NO_RETURN_VALUE;
583 goto Cleanup;
573 Info->Pathname));
574 Status = AE_NOT_EXIST;
584 }

new/usr/src/common/acpica/components/hardware/hwxface.c 11

586 /* Return object must be of type Package */
577 /* It must be of type Package */

588 if (Info->ReturnObject->Common.Type != ACPI_TYPE_PACKAGE)
579 else if (Info->ReturnObject->Common.Type != ACPI_TYPE_PACKAGE)
589 {
590 ACPI_ERROR ((AE_INFO, "Sleep State return object is not a Package"));
591 Status = AE_AML_OPERAND_TYPE;
592 goto Cleanup1;
593 }

595 /*
596 * Any warnings about the package length or the object types have
597 * already been issued by the predefined name module -- there is no
598 * need to repeat them here.
586 * The package must have at least two elements. NOTE (March 2005): This
587 * goes against the current ACPI spec which defines this object as a
588 * package with one encoded DWORD element. However, existing practice
589 * by BIOS vendors seems to be to have 2 or more elements, at least
590 * one per sleep type (A/B).
599 */
600 Elements = Info->ReturnObject->Package.Elements;
601 switch (Info->ReturnObject->Package.Count)
592 else if (Info->ReturnObject->Package.Count < 2)
602 {
603 case 0:

605 Status = AE_AML_PACKAGE_LIMIT;
606 break;

608 case 1:

610 if (Elements[0]->Common.Type != ACPI_TYPE_INTEGER)
611 {
612 Status = AE_AML_OPERAND_TYPE;
613 break;
594 ACPI_ERROR ((AE_INFO,
595 "Sleep State return package does not have at least two elements"));
596 Status = AE_AML_NO_OPERAND;
614 }

616 /* A valid _Sx_ package with one integer */
599 /* The first two elements must both be of type Integer */

618 *SleepTypeA = (UINT8) Elements[0]->Integer.Value;
619 *SleepTypeB = (UINT8) (Elements[0]->Integer.Value >> 8);
620 break;

622 case 2:
623 default:

625 if ((Elements[0]->Common.Type != ACPI_TYPE_INTEGER) ||
626 (Elements[1]->Common.Type != ACPI_TYPE_INTEGER))
601 else if (((Info->ReturnObject->Package.Elements[0])->Common.Type
602 != ACPI_TYPE_INTEGER) ||
603 ((Info->ReturnObject->Package.Elements[1])->Common.Type
604 != ACPI_TYPE_INTEGER))
627 {
606 ACPI_ERROR ((AE_INFO,
607 "Sleep State return package elements are not both Integers "
608 "(%s, %s)",
609 AcpiUtGetObjectTypeName (Info->ReturnObject->Package.Elements[0]),
610 AcpiUtGetObjectTypeName (Info->ReturnObject->Package.Elements[1])));
628 Status = AE_AML_OPERAND_TYPE;
629 break;

new/usr/src/common/acpica/components/hardware/hwxface.c 12

630 }
613 else
614 {
615 /* Valid _Sx_ package size, type, and value */

632 /* A valid _Sx_ package with two integers */

634 *SleepTypeA = (UINT8) Elements[0]->Integer.Value;
635 *SleepTypeB = (UINT8) Elements[1]->Integer.Value;
636 break;
617 *SleepTypeA = (UINT8)
618 (Info->ReturnObject->Package.Elements[0])->Integer.Value;
619 *SleepTypeB = (UINT8)
620 (Info->ReturnObject->Package.Elements[1])->Integer.Value;
637 }

639 Cleanup1:
640 AcpiUtRemoveReference (Info->ReturnObject);

642 Cleanup:
643 if (ACPI_FAILURE (Status))
644 {
645 ACPI_EXCEPTION ((AE_INFO, Status,
646 "While evaluating Sleep State [%s]", Info->RelativePathname));
626 "While evaluating SleepState [%s], bad Sleep object %p type %s",
627 Info->Pathname, Info->ReturnObject,
628 AcpiUtGetObjectTypeName (Info->ReturnObject)));
647 }

631 AcpiUtRemoveReference (Info->ReturnObject);

633 Cleanup:
649 ACPI_FREE (Info);
650 return_ACPI_STATUS (Status);
651 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/hardware/hwxfsleep.c 1

**
 13990 Thu Dec 26 13:49:15 2013
new/usr/src/common/acpica/components/hardware/hwxfsleep.c
update to acpica-unix2-20130927
acpica-unix2-20130823
**

1 /**
2 *
3 * Name: hwxfsleep.c - ACPI Hardware Sleep/Wake External Interfaces
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define EXPORT_ACPI_INTERFACES

46 #include "acpi.h"
47 #include "accommon.h"

49 #define _COMPONENT ACPI_HARDWARE
50 ACPI_MODULE_NAME ("hwxfsleep")

52 /* Local prototypes */

54 static ACPI_STATUS
55 AcpiHwSleepDispatch (
56 UINT8 SleepState,
57 UINT32 FunctionId);

59 /*
60 * Dispatch table used to efficiently branch to the various sleep

new/usr/src/common/acpica/components/hardware/hwxfsleep.c 2

61 * functions.
62 */
63 #define ACPI_SLEEP_FUNCTION_ID 0
64 #define ACPI_WAKE_PREP_FUNCTION_ID 1
65 #define ACPI_WAKE_FUNCTION_ID 2

67 /* Legacy functions are optional, based upon ACPI_REDUCED_HARDWARE */

69 static ACPI_SLEEP_FUNCTIONS AcpiSleepDispatch[] =
70 {
71 {ACPI_HW_OPTIONAL_FUNCTION (AcpiHwLegacySleep), AcpiHwExtendedSleep},
72 {ACPI_HW_OPTIONAL_FUNCTION (AcpiHwLegacyWakePrep), AcpiHwExtendedWakePrep},
73 {ACPI_HW_OPTIONAL_FUNCTION (AcpiHwLegacyWake), AcpiHwExtendedWake}
74 };

77 /*
78 * These functions are removed for the ACPI_REDUCED_HARDWARE case:
79 * AcpiSetFirmwareWakingVector
80 * AcpiSetFirmwareWakingVector64
81 * AcpiEnterSleepStateS4bios
82 */

84 #if (!ACPI_REDUCED_HARDWARE)
85 /***
86 *
87 * FUNCTION: AcpiSetFirmwareWakingVector
88 *
89 * PARAMETERS: PhysicalAddress - 32-bit physical address of ACPI real mode
90 * entry point.
91 *
92 * RETURN: Status
93 *
94 * DESCRIPTION: Sets the 32-bit FirmwareWakingVector field of the FACS
95 *
96 **/

98 ACPI_STATUS
99 AcpiSetFirmwareWakingVector (
100 UINT32 PhysicalAddress)
101 {
102 ACPI_FUNCTION_TRACE (AcpiSetFirmwareWakingVector);

105 /*
106 * According to the ACPI specification 2.0c and later, the 64-bit
107 * waking vector should be cleared and the 32-bit waking vector should
108 * be used, unless we want the wake-up code to be called by the BIOS in
109 * Protected Mode. Some systems (for example HP dv5-1004nr) are known
110 * to fail to resume if the 64-bit vector is used.
111 */

113 /* Set the 32-bit vector */

115 AcpiGbl_FACS->FirmwareWakingVector = PhysicalAddress;

117 /* Clear the 64-bit vector if it exists */

119 if ((AcpiGbl_FACS->Length > 32) && (AcpiGbl_FACS->Version >= 1))
120 {
121 AcpiGbl_FACS->XFirmwareWakingVector = 0;
122 }

124 return_ACPI_STATUS (AE_OK);
125 }

new/usr/src/common/acpica/components/hardware/hwxfsleep.c 3

127 ACPI_EXPORT_SYMBOL (AcpiSetFirmwareWakingVector)

130 #if ACPI_MACHINE_WIDTH == 64
131 /***
132 *
133 * FUNCTION: AcpiSetFirmwareWakingVector64
134 *
135 * PARAMETERS: PhysicalAddress - 64-bit physical address of ACPI protected
136 * mode entry point.
137 *
138 * RETURN: Status
139 *
140 * DESCRIPTION: Sets the 64-bit X_FirmwareWakingVector field of the FACS, if
141 * it exists in the table. This function is intended for use with
142 * 64-bit host operating systems.
143 *
144 **/

146 ACPI_STATUS
147 AcpiSetFirmwareWakingVector64 (
148 UINT64 PhysicalAddress)
149 {
150 ACPI_FUNCTION_TRACE (AcpiSetFirmwareWakingVector64);

153 /* Determine if the 64-bit vector actually exists */

155 if ((AcpiGbl_FACS->Length <= 32) || (AcpiGbl_FACS->Version < 1))
156 {
157 return_ACPI_STATUS (AE_NOT_EXIST);
158 }

160 /* Clear 32-bit vector, set the 64-bit X_ vector */

162 AcpiGbl_FACS->FirmwareWakingVector = 0;
163 AcpiGbl_FACS->XFirmwareWakingVector = PhysicalAddress;
164 return_ACPI_STATUS (AE_OK);
165 }

167 ACPI_EXPORT_SYMBOL (AcpiSetFirmwareWakingVector64)
168 #endif

171 /***
172 *
173 * FUNCTION: AcpiEnterSleepStateS4bios
174 *
175 * PARAMETERS: None
176 *
177 * RETURN: Status
178 *
179 * DESCRIPTION: Perform a S4 bios request.
180 * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED
181 *
182 **/

184 ACPI_STATUS
185 AcpiEnterSleepStateS4bios (
186 void)
187 {
188 UINT32 InValue;
189 ACPI_STATUS Status;

192 ACPI_FUNCTION_TRACE (AcpiEnterSleepStateS4bios);

new/usr/src/common/acpica/components/hardware/hwxfsleep.c 4

195 /* Clear the wake status bit (PM1) */

197 Status = AcpiWriteBitRegister (ACPI_BITREG_WAKE_STATUS, ACPI_CLEAR_STATUS);
198 if (ACPI_FAILURE (Status))
199 {
200 return_ACPI_STATUS (Status);
201 }

203 Status = AcpiHwClearAcpiStatus ();
204 if (ACPI_FAILURE (Status))
205 {
206 return_ACPI_STATUS (Status);
207 }

209 /*
210 * 1) Disable/Clear all GPEs
211 * 2) Enable all wakeup GPEs
212 */
213 Status = AcpiHwDisableAllGpes ();
214 if (ACPI_FAILURE (Status))
215 {
216 return_ACPI_STATUS (Status);
217 }
218 AcpiGbl_SystemAwakeAndRunning = FALSE;

220 Status = AcpiHwEnableAllWakeupGpes ();
221 if (ACPI_FAILURE (Status))
222 {
223 return_ACPI_STATUS (Status);
224 }

226 ACPI_FLUSH_CPU_CACHE ();

228 Status = AcpiHwWritePort (AcpiGbl_FADT.SmiCommand,
229 (UINT32) AcpiGbl_FADT.S4BiosRequest, 8);

231 do {
232 AcpiOsStall (ACPI_USEC_PER_MSEC);
233 Status = AcpiReadBitRegister (ACPI_BITREG_WAKE_STATUS, &InValue);
234 if (ACPI_FAILURE (Status))
235 {
236 return_ACPI_STATUS (Status);
237 }
238 } while (!InValue);

240 return_ACPI_STATUS (AE_OK);
241 }

243 ACPI_EXPORT_SYMBOL (AcpiEnterSleepStateS4bios)

245 #endif /* !ACPI_REDUCED_HARDWARE */

248 /***
249 *
250 * FUNCTION: AcpiHwSleepDispatch
251 *
252 * PARAMETERS: SleepState - Which sleep state to enter/exit
253 * FunctionId - Sleep, WakePrep, or Wake
254 *
255 * RETURN: Status from the invoked sleep handling function.
256 *
257 * DESCRIPTION: Dispatch a sleep/wake request to the appropriate handling
258 * function.

new/usr/src/common/acpica/components/hardware/hwxfsleep.c 5

259 *
260 **/

262 static ACPI_STATUS
263 AcpiHwSleepDispatch (
264 UINT8 SleepState,
265 UINT32 FunctionId)
266 {
267 ACPI_STATUS Status;
268 ACPI_SLEEP_FUNCTIONS *SleepFunctions = &AcpiSleepDispatch[FunctionId];

271 #if (!ACPI_REDUCED_HARDWARE)
272 /*
273 * If the Hardware Reduced flag is set (from the FADT), we must
274 * use the extended sleep registers (FADT). Note: As per the ACPI
275 * specification, these extended registers are to be used for HW-reduced
276 * platforms only. They are not general-purpose replacements for the
277 * legacy PM register sleep support.
278 */
279 if (AcpiGbl_ReducedHardware)
280 {
281 Status = SleepFunctions->ExtendedFunction (SleepState);
282 }
283 else
284 {
285 /* Legacy sleep */

287 Status = SleepFunctions->LegacyFunction (SleepState);
288 }

290 return (Status);

292 #else
293 /*
294 * For the case where reduced-hardware-only code is being generated,
295 * we know that only the extended sleep registers are available
296 */
297 Status = SleepFunctions->ExtendedFunction (SleepState);
298 return (Status);

300 #endif /* !ACPI_REDUCED_HARDWARE */
301 }

304 /***
305 *
306 * FUNCTION: AcpiEnterSleepStatePrep
307 *
308 * PARAMETERS: SleepState - Which sleep state to enter
309 *
310 * RETURN: Status
311 *
312 * DESCRIPTION: Prepare to enter a system sleep state.
313 * This function must execute with interrupts enabled.
314 * We break sleeping into 2 stages so that OSPM can handle
315 * various OS-specific tasks between the two steps.
316 *
317 **/

319 ACPI_STATUS
320 AcpiEnterSleepStatePrep (
321 UINT8 SleepState)
322 {
323 ACPI_STATUS Status;
324 ACPI_OBJECT_LIST ArgList;

new/usr/src/common/acpica/components/hardware/hwxfsleep.c 6

325 ACPI_OBJECT Arg;
326 UINT32 SstValue;

329 ACPI_FUNCTION_TRACE (AcpiEnterSleepStatePrep);

332 Status = AcpiGetSleepTypeData (SleepState,
333 &AcpiGbl_SleepTypeA, &AcpiGbl_SleepTypeB);
334 if (ACPI_FAILURE (Status))
335 {
336 return_ACPI_STATUS (Status);
337 }

339 /* Execute the _PTS method (Prepare To Sleep) */

341 ArgList.Count = 1;
342 ArgList.Pointer = &Arg;
343 Arg.Type = ACPI_TYPE_INTEGER;
344 Arg.Integer.Value = SleepState;

346 Status = AcpiEvaluateObject (NULL, METHOD_PATHNAME__PTS, &ArgList, NULL);
347 if (ACPI_FAILURE (Status) && Status != AE_NOT_FOUND)
348 {
349 return_ACPI_STATUS (Status);
350 }

352 /* Setup the argument to the _SST method (System STatus) */

354 switch (SleepState)
355 {
356 case ACPI_STATE_S0:

358 SstValue = ACPI_SST_WORKING;
359 break;

361 case ACPI_STATE_S1:
362 case ACPI_STATE_S2:
363 case ACPI_STATE_S3:

365 SstValue = ACPI_SST_SLEEPING;
366 break;

368 case ACPI_STATE_S4:

370 SstValue = ACPI_SST_SLEEP_CONTEXT;
371 break;

373 default:

375 SstValue = ACPI_SST_INDICATOR_OFF; /* Default is off */
376 break;
377 }

379 /*
380 * Set the system indicators to show the desired sleep state.
381 * _SST is an optional method (return no error if not found)
382 */
383 AcpiHwExecuteSleepMethod (METHOD_PATHNAME__SST, SstValue);
384 return_ACPI_STATUS (AE_OK);
385 }

387 ACPI_EXPORT_SYMBOL (AcpiEnterSleepStatePrep)

390 /***

new/usr/src/common/acpica/components/hardware/hwxfsleep.c 7

391 *
392 * FUNCTION: AcpiEnterSleepState
393 *
394 * PARAMETERS: SleepState - Which sleep state to enter
395 *
396 * RETURN: Status
397 *
398 * DESCRIPTION: Enter a system sleep state
399 * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED
400 *
401 **/

403 ACPI_STATUS
404 AcpiEnterSleepState (
405 UINT8 SleepState)
406 {
407 ACPI_STATUS Status;

410 ACPI_FUNCTION_TRACE (AcpiEnterSleepState);

413 if ((AcpiGbl_SleepTypeA > ACPI_SLEEP_TYPE_MAX) ||
414 (AcpiGbl_SleepTypeB > ACPI_SLEEP_TYPE_MAX))
415 {
416 ACPI_ERROR ((AE_INFO, "Sleep values out of range: A=0x%X B=0x%X",
417 AcpiGbl_SleepTypeA, AcpiGbl_SleepTypeB));
418 return_ACPI_STATUS (AE_AML_OPERAND_VALUE);
419 }

421 Status = AcpiHwSleepDispatch (SleepState, ACPI_SLEEP_FUNCTION_ID);
422 return_ACPI_STATUS (Status);
423 }

425 ACPI_EXPORT_SYMBOL (AcpiEnterSleepState)

428 /***
429 *
430 * FUNCTION: AcpiLeaveSleepStatePrep
431 *
432 * PARAMETERS: SleepState - Which sleep state we are exiting
433 *
434 * RETURN: Status
435 *
436 * DESCRIPTION: Perform the first state of OS-independent ACPI cleanup after a
437 * sleep. Called with interrupts DISABLED.
438 * We break wake/resume into 2 stages so that OSPM can handle
439 * various OS-specific tasks between the two steps.
440 *
441 **/

443 ACPI_STATUS
444 AcpiLeaveSleepStatePrep (
445 UINT8 SleepState)
446 {
447 ACPI_STATUS Status;

450 ACPI_FUNCTION_TRACE (AcpiLeaveSleepStatePrep);

453 Status = AcpiHwSleepDispatch (SleepState, ACPI_WAKE_PREP_FUNCTION_ID);
454 return_ACPI_STATUS (Status);
455 }

new/usr/src/common/acpica/components/hardware/hwxfsleep.c 8

457 ACPI_EXPORT_SYMBOL (AcpiLeaveSleepStatePrep)

460 /***
461 *
462 * FUNCTION: AcpiLeaveSleepState
463 *
464 * PARAMETERS: SleepState - Which sleep state we are exiting
465 *
466 * RETURN: Status
467 *
468 * DESCRIPTION: Perform OS-independent ACPI cleanup after a sleep
469 * Called with interrupts ENABLED.
470 *
471 **/

473 ACPI_STATUS
474 AcpiLeaveSleepState (
475 UINT8 SleepState)
476 {
477 ACPI_STATUS Status;

480 ACPI_FUNCTION_TRACE (AcpiLeaveSleepState);

483 Status = AcpiHwSleepDispatch (SleepState, ACPI_WAKE_FUNCTION_ID);
484 return_ACPI_STATUS (Status);
485 }

487 ACPI_EXPORT_SYMBOL (AcpiLeaveSleepState)

new/usr/src/common/acpica/components/namespace/nsaccess.c 1

**
 22575 Thu Dec 26 13:49:15 2013
new/usr/src/common/acpica/components/namespace/nsaccess.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: nsaccess - Top-level functions for accessing ACPI namespace
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __NSACCESS_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "amlcode.h"
49 #include "acnamesp.h"
50 #include "acdispat.h"

53 #define _COMPONENT ACPI_NAMESPACE
54 ACPI_MODULE_NAME ("nsaccess")

57 /***
58 *
59 * FUNCTION: AcpiNsRootInitialize

new/usr/src/common/acpica/components/namespace/nsaccess.c 2

60 *
61 * PARAMETERS: None
62 *
63 * RETURN: Status
64 *
65 * DESCRIPTION: Allocate and initialize the default root named objects
66 *
67 * MUTEX: Locks namespace for entire execution
68 *
69 **/

71 ACPI_STATUS
72 AcpiNsRootInitialize (
73 void)
74 {
75 ACPI_STATUS Status;
76 const ACPI_PREDEFINED_NAMES *InitVal = NULL;
77 ACPI_NAMESPACE_NODE *NewNode;
78 ACPI_OPERAND_OBJECT *ObjDesc;
79 ACPI_STRING Val = NULL;

82 ACPI_FUNCTION_TRACE (NsRootInitialize);

85 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
86 if (ACPI_FAILURE (Status))
87 {
88 return_ACPI_STATUS (Status);
89 }

91 /*
92 * The global root ptr is initially NULL, so a non-NULL value indicates
93 * that AcpiNsRootInitialize() has already been called; just return.
94 */
95 if (AcpiGbl_RootNode)
96 {
97 Status = AE_OK;
98 goto UnlockAndExit;
99 }

101 /*
102 * Tell the rest of the subsystem that the root is initialized
103 * (This is OK because the namespace is locked)
104 */
105 AcpiGbl_RootNode = &AcpiGbl_RootNodeStruct;

107 /* Enter the pre-defined names in the name table */

109 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
110 "Entering predefined entries into namespace\n"));

112 for (InitVal = AcpiGbl_PreDefinedNames; InitVal->Name; InitVal++)
113 {
114 /* _OSI is optional for now, will be permanent later */

116 if (!ACPI_STRCMP (InitVal->Name, "_OSI") && !AcpiGbl_CreateOsiMethod)
117 {
118 continue;
119 }

121 Status = AcpiNsLookup (NULL, InitVal->Name, InitVal->Type,
122 ACPI_IMODE_LOAD_PASS2, ACPI_NS_NO_UPSEARCH,
123 NULL, &NewNode);
124 if (ACPI_FAILURE (Status))

new/usr/src/common/acpica/components/namespace/nsaccess.c 3

125 if (ACPI_FAILURE (Status) || (!NewNode)) /* Must be on same line for cod
125 {
126 ACPI_EXCEPTION ((AE_INFO, Status,
127 "Could not create predefined name %s",
128 InitVal->Name));
129 continue;
130 }

132 /*
133 * Name entered successfully. If entry in PreDefinedNames[] specifies
134 * an initial value, create the initial value.
135 */
136 if (InitVal->Val)
137 {
138 Status = AcpiOsPredefinedOverride (InitVal, &Val);
139 if (ACPI_FAILURE (Status))
140 {
141 ACPI_ERROR ((AE_INFO,
142 "Could not override predefined %s",
143 InitVal->Name));
144 }

146 if (!Val)
147 {
148 Val = InitVal->Val;
149 }

151 /*
152 * Entry requests an initial value, allocate a
153 * descriptor for it.
154 */
155 ObjDesc = AcpiUtCreateInternalObject (InitVal->Type);
156 if (!ObjDesc)
157 {
158 Status = AE_NO_MEMORY;
159 goto UnlockAndExit;
160 }

162 /*
163 * Convert value string from table entry to
164 * internal representation. Only types actually
165 * used for initial values are implemented here.
166 */
167 switch (InitVal->Type)
168 {
169 case ACPI_TYPE_METHOD:

171 ObjDesc->Method.ParamCount = (UINT8) ACPI_TO_INTEGER (Val);
172 ObjDesc->Common.Flags |= AOPOBJ_DATA_VALID;

174 #if defined (ACPI_ASL_COMPILER)

176 /* Save the parameter count for the iASL compiler */

178 NewNode->Value = ObjDesc->Method.ParamCount;
179 #else
180 /* Mark this as a very SPECIAL method */

182 ObjDesc->Method.InfoFlags = ACPI_METHOD_INTERNAL_ONLY;
183 ObjDesc->Method.Dispatch.Implementation = AcpiUtOsiImplementatio
184 #endif
185 break;

187 case ACPI_TYPE_INTEGER:

189 ObjDesc->Integer.Value = ACPI_TO_INTEGER (Val);

new/usr/src/common/acpica/components/namespace/nsaccess.c 4

190 break;

192 case ACPI_TYPE_STRING:

194 /* Build an object around the static string */

196 ObjDesc->String.Length = (UINT32) ACPI_STRLEN (Val);
197 ObjDesc->String.Pointer = Val;
198 ObjDesc->Common.Flags |= AOPOBJ_STATIC_POINTER;
199 break;

201 case ACPI_TYPE_MUTEX:

203 ObjDesc->Mutex.Node = NewNode;
204 ObjDesc->Mutex.SyncLevel = (UINT8) (ACPI_TO_INTEGER (Val) - 1);

206 /* Create a mutex */

208 Status = AcpiOsCreateMutex (&ObjDesc->Mutex.OsMutex);
209 if (ACPI_FAILURE (Status))
210 {
211 AcpiUtRemoveReference (ObjDesc);
212 goto UnlockAndExit;
213 }

215 /* Special case for ACPI Global Lock */

217 if (ACPI_STRCMP (InitVal->Name, "_GL_") == 0)
218 {
219 AcpiGbl_GlobalLockMutex = ObjDesc;

221 /* Create additional counting semaphore for global lock */

223 Status = AcpiOsCreateSemaphore (
224 1, 0, &AcpiGbl_GlobalLockSemaphore);
225 if (ACPI_FAILURE (Status))
226 {
227 AcpiUtRemoveReference (ObjDesc);
228 goto UnlockAndExit;
229 }
230 }
231 break;

233 default:

235 ACPI_ERROR ((AE_INFO, "Unsupported initial type value 0x%X",
236 InitVal->Type));
237 AcpiUtRemoveReference (ObjDesc);
238 ObjDesc = NULL;
239 continue;
240 }

242 /* Store pointer to value descriptor in the Node */

244 Status = AcpiNsAttachObject (NewNode, ObjDesc,
245 ObjDesc->Common.Type);

247 /* Remove local reference to the object */

249 AcpiUtRemoveReference (ObjDesc);
250 }
251 }

new/usr/src/common/acpica/components/namespace/nsaccess.c 5

254 UnlockAndExit:
255 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);

257 /* Save a handle to "_GPE", it is always present */

259 if (ACPI_SUCCESS (Status))
260 {
261 Status = AcpiNsGetNode (NULL, "_GPE", ACPI_NS_NO_UPSEARCH,
262 &AcpiGbl_FadtGpeDevice);
263 }

265 return_ACPI_STATUS (Status);
266 }

269 /***
270 *
271 * FUNCTION: AcpiNsLookup
272 *
273 * PARAMETERS: ScopeInfo - Current scope info block
274 * Pathname - Search pathname, in internal format
275 * (as represented in the AML stream)
276 * Type - Type associated with name
277 * InterpreterMode - IMODE_LOAD_PASS2 => add name if not found
278 * Flags - Flags describing the search restrictions
279 * WalkState - Current state of the walk
280 * ReturnNode - Where the Node is placed (if found
281 * or created successfully)
282 *
283 * RETURN: Status
284 *
285 * DESCRIPTION: Find or enter the passed name in the name space.
286 * Log an error if name not found in Exec mode.
287 *
288 * MUTEX: Assumes namespace is locked.
289 *
290 **/

292 ACPI_STATUS
293 AcpiNsLookup (
294 ACPI_GENERIC_STATE *ScopeInfo,
295 char *Pathname,
296 ACPI_OBJECT_TYPE Type,
297 ACPI_INTERPRETER_MODE InterpreterMode,
298 UINT32 Flags,
299 ACPI_WALK_STATE *WalkState,
300 ACPI_NAMESPACE_NODE **ReturnNode)
301 {
302 ACPI_STATUS Status;
303 char *Path = Pathname;
304 ACPI_NAMESPACE_NODE *PrefixNode;
305 ACPI_NAMESPACE_NODE *CurrentNode = NULL;
306 ACPI_NAMESPACE_NODE *ThisNode = NULL;
307 UINT32 NumSegments;
308 UINT32 NumCarats;
309 ACPI_NAME SimpleName;
310 ACPI_OBJECT_TYPE TypeToCheckFor;
311 ACPI_OBJECT_TYPE ThisSearchType;
312 UINT32 SearchParentFlag = ACPI_NS_SEARCH_PARENT;
313 UINT32 LocalFlags;

316 ACPI_FUNCTION_TRACE (NsLookup);

new/usr/src/common/acpica/components/namespace/nsaccess.c 6

319 if (!ReturnNode)
320 {
321 return_ACPI_STATUS (AE_BAD_PARAMETER);
322 }

324 LocalFlags = Flags & ~(ACPI_NS_ERROR_IF_FOUND | ACPI_NS_SEARCH_PARENT);
325 *ReturnNode = ACPI_ENTRY_NOT_FOUND;
326 AcpiGbl_NsLookupCount++;

328 if (!AcpiGbl_RootNode)
329 {
330 return_ACPI_STATUS (AE_NO_NAMESPACE);
331 }

333 /* Get the prefix scope. A null scope means use the root scope */

335 if ((!ScopeInfo) ||
336 (!ScopeInfo->Scope.Node))
337 {
338 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,
339 "Null scope prefix, using root node (%p)\n",
340 AcpiGbl_RootNode));

342 PrefixNode = AcpiGbl_RootNode;
343 }
344 else
345 {
346 PrefixNode = ScopeInfo->Scope.Node;
347 if (ACPI_GET_DESCRIPTOR_TYPE (PrefixNode) != ACPI_DESC_TYPE_NAMED)
348 {
349 ACPI_ERROR ((AE_INFO, "%p is not a namespace node [%s]",
350 PrefixNode, AcpiUtGetDescriptorName (PrefixNode)));
351 return_ACPI_STATUS (AE_AML_INTERNAL);
352 }

354 if (!(Flags & ACPI_NS_PREFIX_IS_SCOPE))
355 {
356 /*
357 * This node might not be a actual "scope" node (such as a
358 * Device/Method, etc.) It could be a Package or other object
359 * node. Backup up the tree to find the containing scope node.
360 */
361 while (!AcpiNsOpensScope (PrefixNode->Type) &&
362 PrefixNode->Type != ACPI_TYPE_ANY)
363 {
364 PrefixNode = PrefixNode->Parent;
365 }
366 }
367 }

369 /* Save type. TBD: may be no longer necessary */

371 TypeToCheckFor = Type;

373 /*
374 * Begin examination of the actual pathname
375 */
376 if (!Pathname)
377 {
378 /* A Null NamePath is allowed and refers to the root */

380 NumSegments = 0;
381 ThisNode = AcpiGbl_RootNode;
382 Path = "";

384 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,

new/usr/src/common/acpica/components/namespace/nsaccess.c 7

385 "Null Pathname (Zero segments), Flags=%X\n", Flags));
386 }
387 else
388 {
389 /*
390 * Name pointer is valid (and must be in internal name format)
391 *
392 * Check for scope prefixes:
393 *
394 * As represented in the AML stream, a namepath consists of an
395 * optional scope prefix followed by a name segment part.
396 *
397 * If present, the scope prefix is either a Root Prefix (in
398 * which case the name is fully qualified), or one or more
399 * Parent Prefixes (in which case the name’s scope is relative
400 * to the current scope).
401 */
402 if (*Path == (UINT8) AML_ROOT_PREFIX)
403 {
404 /* Pathname is fully qualified, start from the root */

406 ThisNode = AcpiGbl_RootNode;
407 SearchParentFlag = ACPI_NS_NO_UPSEARCH;

409 /* Point to name segment part */

411 Path++;

413 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,
414 "Path is absolute from root [%p]\n", ThisNode));
415 }
416 else
417 {
418 /* Pathname is relative to current scope, start there */

420 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,
421 "Searching relative to prefix scope [%4.4s] (%p)\n",
422 AcpiUtGetNodeName (PrefixNode), PrefixNode));

424 /*
425 * Handle multiple Parent Prefixes (carat) by just getting
426 * the parent node for each prefix instance.
427 */
428 ThisNode = PrefixNode;
429 NumCarats = 0;
430 while (*Path == (UINT8) AML_PARENT_PREFIX)
431 {
432 /* Name is fully qualified, no search rules apply */

434 SearchParentFlag = ACPI_NS_NO_UPSEARCH;

436 /*
437 * Point past this prefix to the name segment
438 * part or the next Parent Prefix
439 */
440 Path++;

442 /* Backup to the parent node */

444 NumCarats++;
445 ThisNode = ThisNode->Parent;
446 if (!ThisNode)
447 {
448 /* Current scope has no parent scope */

450 ACPI_ERROR ((AE_INFO,

new/usr/src/common/acpica/components/namespace/nsaccess.c 8

451 "%s: Path has too many parent prefixes (^) "
452 "- reached beyond root node", Pathname));
453 "ACPI path has too many parent prefixes (^) "
454 "- reached beyond root node"));
453 return_ACPI_STATUS (AE_NOT_FOUND);
454 }
455 }

457 if (SearchParentFlag == ACPI_NS_NO_UPSEARCH)
458 {
459 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,
460 "Search scope is [%4.4s], path has %u carat(s)\n",
461 AcpiUtGetNodeName (ThisNode), NumCarats));
462 }
463 }

465 /*
466 * Determine the number of ACPI name segments in this pathname.
467 *
468 * The segment part consists of either:
469 * - A Null name segment (0)
470 * - A DualNamePrefix followed by two 4-byte name segments
471 * - A MultiNamePrefix followed by a byte indicating the
472 * number of segments and the segments themselves.
473 * - A single 4-byte name segment
474 *
475 * Examine the name prefix opcode, if any, to determine the number of
476 * segments.
477 */
478 switch (*Path)
479 {
480 case 0:
481 /*
482 * Null name after a root or parent prefixes. We already
483 * have the correct target node and there are no name segments.
484 */
485 NumSegments = 0;
486 Type = ThisNode->Type;

488 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,
489 "Prefix-only Pathname (Zero name segments), Flags=%X\n",
490 Flags));
491 break;

493 case AML_DUAL_NAME_PREFIX:

495 /* More than one NameSeg, search rules do not apply */

497 SearchParentFlag = ACPI_NS_NO_UPSEARCH;

499 /* Two segments, point to first name segment */

501 NumSegments = 2;
502 Path++;

504 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,
505 "Dual Pathname (2 segments, Flags=%X)\n", Flags));
506 break;

508 case AML_MULTI_NAME_PREFIX_OP:

510 /* More than one NameSeg, search rules do not apply */

512 SearchParentFlag = ACPI_NS_NO_UPSEARCH;

514 /* Extract segment count, point to first name segment */

new/usr/src/common/acpica/components/namespace/nsaccess.c 9

516 Path++;
517 NumSegments = (UINT32) (UINT8) *Path;
518 Path++;

520 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,
521 "Multi Pathname (%u Segments, Flags=%X)\n",
522 NumSegments, Flags));
523 break;

525 default:
526 /*
527 * Not a Null name, no Dual or Multi prefix, hence there is
528 * only one name segment and Pathname is already pointing to it.
529 */
530 NumSegments = 1;

532 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,
533 "Simple Pathname (1 segment, Flags=%X)\n", Flags));
534 break;
535 }

537 ACPI_DEBUG_EXEC (AcpiNsPrintPathname (NumSegments, Path));
538 }

541 /*
542 * Search namespace for each segment of the name. Loop through and
543 * verify (or add to the namespace) each name segment.
544 *
545 * The object type is significant only at the last name
546 * segment. (We don’t care about the types along the path, only
547 * the type of the final target object.)
548 */
549 ThisSearchType = ACPI_TYPE_ANY;
550 CurrentNode = ThisNode;
551 while (NumSegments && CurrentNode)
552 {
553 NumSegments--;
554 if (!NumSegments)
555 {
556 /* This is the last segment, enable typechecking */

558 ThisSearchType = Type;

560 /*
561 * Only allow automatic parent search (search rules) if the caller
562 * requested it AND we have a single, non-fully-qualified NameSeg
563 */
564 if ((SearchParentFlag != ACPI_NS_NO_UPSEARCH) &&
565 (Flags & ACPI_NS_SEARCH_PARENT))
566 {
567 LocalFlags |= ACPI_NS_SEARCH_PARENT;
568 }

570 /* Set error flag according to caller */

572 if (Flags & ACPI_NS_ERROR_IF_FOUND)
573 {
574 LocalFlags |= ACPI_NS_ERROR_IF_FOUND;
575 }
576 }

578 /* Extract one ACPI name from the front of the pathname */

580 ACPI_MOVE_32_TO_32 (&SimpleName, Path);

new/usr/src/common/acpica/components/namespace/nsaccess.c 10

582 /* Try to find the single (4 character) ACPI name */

584 Status = AcpiNsSearchAndEnter (SimpleName, WalkState, CurrentNode,
585 InterpreterMode, ThisSearchType, LocalFlags, &ThisNode);
586 if (ACPI_FAILURE (Status))
587 {
588 if (Status == AE_NOT_FOUND)
589 {
590 /* Name not found in ACPI namespace */

592 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,
593 "Name [%4.4s] not found in scope [%4.4s] %p\n",
594 (char *) &SimpleName, (char *) &CurrentNode->Name,
595 CurrentNode));
596 }

598 *ReturnNode = ThisNode;
599 return_ACPI_STATUS (Status);
600 }

602 /* More segments to follow? */

604 if (NumSegments > 0)
605 {
606 /*
607 * If we have an alias to an object that opens a scope (such as a
608 * device or processor), we need to dereference the alias here so
609 * that we can access any children of the original node (via the
610 * remaining segments).
611 */
612 if (ThisNode->Type == ACPI_TYPE_LOCAL_ALIAS)
613 {
614 if (!ThisNode->Object)
615 {
616 return_ACPI_STATUS (AE_NOT_EXIST);
617 }

619 if (AcpiNsOpensScope (((ACPI_NAMESPACE_NODE *)
620 ThisNode->Object)->Type))
621 {
622 ThisNode = (ACPI_NAMESPACE_NODE *) ThisNode->Object;
623 }
624 }
625 }

627 /* Special handling for the last segment (NumSegments == 0) */

629 else
630 {
631 /*
632 * Sanity typecheck of the target object:
633 *
634 * If 1) This is the last segment (NumSegments == 0)
635 * 2) And we are looking for a specific type
636 * (Not checking for TYPE_ANY)
637 * 3) Which is not an alias
638 * 4) Which is not a local type (TYPE_SCOPE)
639 * 5) And the type of target object is known (not TYPE_ANY)
640 * 6) And target object does not match what we are looking for
641 *
642 * Then we have a type mismatch. Just warn and ignore it.
643 */
644 if ((TypeToCheckFor != ACPI_TYPE_ANY) &&
645 (TypeToCheckFor != ACPI_TYPE_LOCAL_ALIAS) &&
646 (TypeToCheckFor != ACPI_TYPE_LOCAL_METHOD_ALIAS) &&

new/usr/src/common/acpica/components/namespace/nsaccess.c 11

647 (TypeToCheckFor != ACPI_TYPE_LOCAL_SCOPE) &&
648 (ThisNode->Type != ACPI_TYPE_ANY) &&
649 (ThisNode->Type != TypeToCheckFor))
650 {
651 /* Complain about a type mismatch */

653 ACPI_WARNING ((AE_INFO,
654 "NsLookup: Type mismatch on %4.4s (%s), searching for (%s)",
655 ACPI_CAST_PTR (char, &SimpleName),
656 AcpiUtGetTypeName (ThisNode->Type),
657 AcpiUtGetTypeName (TypeToCheckFor)));
658 }

660 /*
661 * If this is the last name segment and we are not looking for a
662 * specific type, but the type of found object is known, use that
663 * type to (later) see if it opens a scope.
664 */
665 if (Type == ACPI_TYPE_ANY)
666 {
667 Type = ThisNode->Type;
668 }
669 }

671 /* Point to next name segment and make this node current */

673 Path += ACPI_NAME_SIZE;
674 CurrentNode = ThisNode;
675 }

677 /* Always check if we need to open a new scope */

679 if (!(Flags & ACPI_NS_DONT_OPEN_SCOPE) && (WalkState))
680 {
681 /*
682 * If entry is a type which opens a scope, push the new scope on the
683 * scope stack.
684 */
685 if (AcpiNsOpensScope (Type))
686 {
687 Status = AcpiDsScopeStackPush (ThisNode, Type, WalkState);
688 if (ACPI_FAILURE (Status))
689 {
690 return_ACPI_STATUS (Status);
691 }
692 }
693 }

695 *ReturnNode = ThisNode;
696 return_ACPI_STATUS (AE_OK);
697 }

new/usr/src/common/acpica/components/namespace/nsalloc.c 1

**
 16136 Thu Dec 26 13:49:16 2013
new/usr/src/common/acpica/components/namespace/nsalloc.c
update to acpica-unix2-20131115
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: nsalloc - Namespace allocation and deletion utilities
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __NSALLOC_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acnamesp.h"

52 #define _COMPONENT ACPI_NAMESPACE
53 ACPI_MODULE_NAME ("nsalloc")

56 /***
57 *
58 * FUNCTION: AcpiNsCreateNode

new/usr/src/common/acpica/components/namespace/nsalloc.c 2

59 *
60 * PARAMETERS: Name - Name of the new node (4 char ACPI name)
61 *
62 * RETURN: New namespace node (Null on failure)
63 *
64 * DESCRIPTION: Create a namespace node
65 *
66 **/

68 ACPI_NAMESPACE_NODE *
69 AcpiNsCreateNode (
70 UINT32 Name)
71 {
72 ACPI_NAMESPACE_NODE *Node;
73 #ifdef ACPI_DBG_TRACK_ALLOCATIONS
74 UINT32 Temp;
75 #endif

78 ACPI_FUNCTION_TRACE (NsCreateNode);

81 Node = AcpiOsAcquireObject (AcpiGbl_NamespaceCache);
82 if (!Node)
83 {
84 return_PTR (NULL);
85 }

87 ACPI_MEM_TRACKING (AcpiGbl_NsNodeList->TotalAllocated++);

89 #ifdef ACPI_DBG_TRACK_ALLOCATIONS
90 Temp = AcpiGbl_NsNodeList->TotalAllocated -
91 AcpiGbl_NsNodeList->TotalFreed;
92 if (Temp > AcpiGbl_NsNodeList->MaxOccupied)
93 {
94 AcpiGbl_NsNodeList->MaxOccupied = Temp;
95 }
96 #endif

98 Node->Name.Integer = Name;
99 ACPI_SET_DESCRIPTOR_TYPE (Node, ACPI_DESC_TYPE_NAMED);
100 return_PTR (Node);
101 }

104 /***
105 *
106 * FUNCTION: AcpiNsDeleteNode
107 *
108 * PARAMETERS: Node - Node to be deleted
109 *
110 * RETURN: None
111 *
112 * DESCRIPTION: Delete a namespace node. All node deletions must come through
113 * here. Detaches any attached objects, including any attached
114 * data. If a handler is associated with attached data, it is
115 * invoked before the node is deleted.
116 *
117 **/

119 void
120 AcpiNsDeleteNode (
121 ACPI_NAMESPACE_NODE *Node)
122 {
123 ACPI_OPERAND_OBJECT *ObjDesc;
124 ACPI_OPERAND_OBJECT *NextDesc;

new/usr/src/common/acpica/components/namespace/nsalloc.c 3

127 ACPI_FUNCTION_NAME (NsDeleteNode);

130 /* Detach an object if there is one */

132 AcpiNsDetachObject (Node);

134 /*
135 * Delete an attached data object list if present (objects that were
136 * attached via AcpiAttachData). Note: After any normal object is
137 * detached above, the only possible remaining object(s) are data
138 * objects, in a linked list.
134 * Delete an attached data object if present (an object that was created
135 * and attached via AcpiAttachData). Note: After any normal object is
136 * detached above, the only possible remaining object is a data object.
139 */
140 ObjDesc = Node->Object;
141 while (ObjDesc &&
139 if (ObjDesc &&
142 (ObjDesc->Common.Type == ACPI_TYPE_LOCAL_DATA))
143 {
144 /* Invoke the attached data deletion handler if present */

146 if (ObjDesc->Data.Handler)
147 {
148 ObjDesc->Data.Handler (Node, ObjDesc->Data.Pointer);
149 }

151 NextDesc = ObjDesc->Common.NextObject;
152 AcpiUtRemoveReference (ObjDesc);
153 ObjDesc = NextDesc;
154 }

156 /* Special case for the statically allocated root node */

158 if (Node == AcpiGbl_RootNode)
159 {
160 return;
161 }

163 /* Now we can delete the node */

165 (void) AcpiOsReleaseObject (AcpiGbl_NamespaceCache, Node);

167 ACPI_MEM_TRACKING (AcpiGbl_NsNodeList->TotalFreed++);
168 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS, "Node %p, Remaining %X\n",
169 Node, AcpiGbl_CurrentNodeCount));
170 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/namespace/nsarguments.c 1

**
 10923 Thu Dec 26 13:49:16 2013
new/usr/src/common/acpica/components/namespace/nsarguments.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: nsarguments - Validation of args for ACPI predefined methods
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "acnamesp.h"
47 #include "acpredef.h"

50 #define _COMPONENT ACPI_NAMESPACE
51 ACPI_MODULE_NAME ("nsarguments")

54 /***
55 *
56 * FUNCTION: AcpiNsCheckArgumentTypes
57 *
58 * PARAMETERS: Info - Method execution information block
59 *
60 * RETURN: None
61 *

new/usr/src/common/acpica/components/namespace/nsarguments.c 2

62 * DESCRIPTION: Check the incoming argument count and all argument types
63 * against the argument type list for a predefined name.
64 *
65 **/

67 void
68 AcpiNsCheckArgumentTypes (
69 ACPI_EVALUATE_INFO *Info)
70 {
71 UINT16 ArgTypeList;
72 UINT8 ArgCount;
73 UINT8 ArgType;
74 UINT8 UserArgType;
75 UINT32 i;

78 /* If not a predefined name, cannot typecheck args */

80 if (!Info->Predefined)
81 {
82 return;
83 }

85 ArgTypeList = Info->Predefined->Info.ArgumentList;
86 ArgCount = METHOD_GET_ARG_COUNT (ArgTypeList);

88 /* Typecheck all arguments */

90 for (i = 0; ((i < ArgCount) && (i < Info->ParamCount)); i++)
91 {
92 ArgType = METHOD_GET_NEXT_TYPE (ArgTypeList);
93 UserArgType = Info->Parameters[i]->Common.Type;

95 if (UserArgType != ArgType)
96 {
97 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, ACPI_WARN_ALWAYS
98 "Argument #%u type mismatch - "
99 "Found [%s], ACPI requires [%s]", (i + 1),
100 AcpiUtGetTypeName (UserArgType),
101 AcpiUtGetTypeName (ArgType)));
102 }
103 }
104 }

107 /***
108 *
109 * FUNCTION: AcpiNsCheckAcpiCompliance
110 *
111 * PARAMETERS: Pathname - Full pathname to the node (for error msgs)
112 * Node - Namespace node for the method/object
113 * Predefined - Pointer to entry in predefined name table
114 *
115 * RETURN: None
116 *
117 * DESCRIPTION: Check that the declared parameter count (in ASL/AML) for a
118 * predefined name is what is expected (matches what is defined in
119 * the ACPI specification for this predefined name.)
120 *
121 **/

123 void
124 AcpiNsCheckAcpiCompliance (
125 char *Pathname,
126 ACPI_NAMESPACE_NODE *Node,
127 const ACPI_PREDEFINED_INFO *Predefined)

new/usr/src/common/acpica/components/namespace/nsarguments.c 3

128 {
129 UINT32 AmlParamCount;
130 UINT32 RequiredParamCount;

133 if (!Predefined)
134 {
135 return;
136 }

138 /* Get the ACPI-required arg count from the predefined info table */

140 RequiredParamCount = METHOD_GET_ARG_COUNT (Predefined->Info.ArgumentList);

142 /*
143 * If this object is not a control method, we can check if the ACPI
144 * spec requires that it be a method.
145 */
146 if (Node->Type != ACPI_TYPE_METHOD)
147 {
148 if (RequiredParamCount > 0)
149 {
150 /* Object requires args, must be implemented as a method */

152 ACPI_BIOS_ERROR_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS,
153 "Object (%s) must be a control method with %u arguments",
154 AcpiUtGetTypeName (Node->Type), RequiredParamCount));
155 }
156 else if (!RequiredParamCount && !Predefined->Info.ExpectedBtypes)
157 {
158 /* Object requires no args and no return value, must be a method */

160 ACPI_BIOS_ERROR_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS,
161 "Object (%s) must be a control method "
162 "with no arguments and no return value",
163 AcpiUtGetTypeName (Node->Type)));
164 }

166 return;
167 }

169 /*
170 * This is a control method.
171 * Check that the ASL/AML-defined parameter count for this method
172 * matches the ACPI-required parameter count
173 *
174 * Some methods are allowed to have a "minimum" number of args (_SCP)
175 * because their definition in ACPI has changed over time.
176 *
177 * Note: These are BIOS errors in the declaration of the object
178 */
179 AmlParamCount = Node->Object->Method.ParamCount;

181 if (AmlParamCount < RequiredParamCount)
182 {
183 ACPI_BIOS_ERROR_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS,
184 "Insufficient arguments - "
185 "ASL declared %u, ACPI requires %u",
186 AmlParamCount, RequiredParamCount));
187 }
188 else if ((AmlParamCount > RequiredParamCount) &&
189 !(Predefined->Info.ArgumentList & ARG_COUNT_IS_MINIMUM))
190 {
191 ACPI_BIOS_ERROR_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS,
192 "Excess arguments - "
193 "ASL declared %u, ACPI requires %u",

new/usr/src/common/acpica/components/namespace/nsarguments.c 4

194 AmlParamCount, RequiredParamCount));
195 }
196 }

199 /***
200 *
201 * FUNCTION: AcpiNsCheckArgumentCount
202 *
203 * PARAMETERS: Pathname - Full pathname to the node (for error msgs)
204 * Node - Namespace node for the method/object
205 * UserParamCount - Number of args passed in by the caller
206 * Predefined - Pointer to entry in predefined name table
207 *
208 * RETURN: None
209 *
210 * DESCRIPTION: Check that incoming argument count matches the declared
211 * parameter count (in the ASL/AML) for an object.
212 *
213 **/

215 void
216 AcpiNsCheckArgumentCount (
217 char *Pathname,
218 ACPI_NAMESPACE_NODE *Node,
219 UINT32 UserParamCount,
220 const ACPI_PREDEFINED_INFO *Predefined)
221 {
222 UINT32 AmlParamCount;
223 UINT32 RequiredParamCount;

226 if (!Predefined)
227 {
228 /*
229 * Not a predefined name. Check the incoming user argument count
230 * against the count that is specified in the method/object.
231 */
232 if (Node->Type != ACPI_TYPE_METHOD)
233 {
234 if (UserParamCount)
235 {
236 ACPI_INFO_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS,
237 "%u arguments were passed to a non-method ACPI object (%s)",
238 UserParamCount, AcpiUtGetTypeName (Node->Type)));
239 }

241 return;
242 }

244 /*
245 * This is a control method. Check the parameter count.
246 * We can only check the incoming argument count against the
247 * argument count declared for the method in the ASL/AML.
248 *
249 * Emit a message if too few or too many arguments have been passed
250 * by the caller.
251 *
252 * Note: Too many arguments will not cause the method to
253 * fail. However, the method will fail if there are too few
254 * arguments and the method attempts to use one of the missing ones.
255 */
256 AmlParamCount = Node->Object->Method.ParamCount;

258 if (UserParamCount < AmlParamCount)
259 {

new/usr/src/common/acpica/components/namespace/nsarguments.c 5

260 ACPI_WARN_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS,
261 "Insufficient arguments - "
262 "Caller passed %u, method requires %u",
263 UserParamCount, AmlParamCount));
264 }
265 else if (UserParamCount > AmlParamCount)
266 {
267 ACPI_INFO_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS,
268 "Excess arguments - "
269 "Caller passed %u, method requires %u",
270 UserParamCount, AmlParamCount));
271 }

273 return;
274 }

276 /*
277 * This is a predefined name. Validate the user-supplied parameter
278 * count against the ACPI specification. We don’t validate against
279 * the method itself because what is important here is that the
280 * caller is in conformance with the spec. (The arg count for the
281 * method was checked against the ACPI spec earlier.)
282 *
283 * Some methods are allowed to have a "minimum" number of args (_SCP)
284 * because their definition in ACPI has changed over time.
285 */
286 RequiredParamCount = METHOD_GET_ARG_COUNT (Predefined->Info.ArgumentList);

288 if (UserParamCount < RequiredParamCount)
289 {
290 ACPI_WARN_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS,
291 "Insufficient arguments - "
292 "Caller passed %u, ACPI requires %u",
293 UserParamCount, RequiredParamCount));
294 }
295 else if ((UserParamCount > RequiredParamCount) &&
296 !(Predefined->Info.ArgumentList & ARG_COUNT_IS_MINIMUM))
297 {
298 ACPI_INFO_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS,
299 "Excess arguments - "
300 "Caller passed %u, ACPI requires %u",
301 UserParamCount, RequiredParamCount));
302 }
303 }

new/usr/src/common/acpica/components/namespace/nsconvert.c 1

**
 14083 Thu Dec 26 13:49:16 2013
new/usr/src/common/acpica/components/namespace/nsconvert.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: nsconvert - Object conversions for objects returned by
4 * predefined methods
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #define __NSCONVERT_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acnamesp.h"
50 #include "acinterp.h"
51 #include "acpredef.h"
52 #include "amlresrc.h"

54 #define _COMPONENT ACPI_NAMESPACE
55 ACPI_MODULE_NAME ("nsconvert")

58 /***
59 *
60 * FUNCTION: AcpiNsConvertToInteger
61 *

new/usr/src/common/acpica/components/namespace/nsconvert.c 2

62 * PARAMETERS: OriginalObject - Object to be converted
63 * ReturnObject - Where the new converted object is returned
64 *
65 * RETURN: Status. AE_OK if conversion was successful.
66 *
67 * DESCRIPTION: Attempt to convert a String/Buffer object to an Integer.
68 *
69 **/

71 ACPI_STATUS
72 AcpiNsConvertToInteger (
73 ACPI_OPERAND_OBJECT *OriginalObject,
74 ACPI_OPERAND_OBJECT **ReturnObject)
75 {
76 ACPI_OPERAND_OBJECT *NewObject;
77 ACPI_STATUS Status;
78 UINT64 Value = 0;
79 UINT32 i;

82 switch (OriginalObject->Common.Type)
83 {
84 case ACPI_TYPE_STRING:

86 /* String-to-Integer conversion */

88 Status = AcpiUtStrtoul64 (OriginalObject->String.Pointer,
89 ACPI_ANY_BASE, &Value);
90 if (ACPI_FAILURE (Status))
91 {
92 return (Status);
93 }
94 break;

96 case ACPI_TYPE_BUFFER:

98 /* Buffer-to-Integer conversion. Max buffer size is 64 bits. */

100 if (OriginalObject->Buffer.Length > 8)
101 {
102 return (AE_AML_OPERAND_TYPE);
103 }

105 /* Extract each buffer byte to create the integer */

107 for (i = 0; i < OriginalObject->Buffer.Length; i++)
108 {
109 Value |= ((UINT64) OriginalObject->Buffer.Pointer[i] << (i * 8));
110 }
111 break;

113 default:

115 return (AE_AML_OPERAND_TYPE);
116 }

118 NewObject = AcpiUtCreateIntegerObject (Value);
119 if (!NewObject)
120 {
121 return (AE_NO_MEMORY);
122 }

124 *ReturnObject = NewObject;
125 return (AE_OK);
126 }

new/usr/src/common/acpica/components/namespace/nsconvert.c 3

129 /***
130 *
131 * FUNCTION: AcpiNsConvertToString
132 *
133 * PARAMETERS: OriginalObject - Object to be converted
134 * ReturnObject - Where the new converted object is returned
135 *
136 * RETURN: Status. AE_OK if conversion was successful.
137 *
138 * DESCRIPTION: Attempt to convert a Integer/Buffer object to a String.
139 *
140 **/

142 ACPI_STATUS
143 AcpiNsConvertToString (
144 ACPI_OPERAND_OBJECT *OriginalObject,
145 ACPI_OPERAND_OBJECT **ReturnObject)
146 {
147 ACPI_OPERAND_OBJECT *NewObject;
148 ACPI_SIZE Length;
149 ACPI_STATUS Status;

152 switch (OriginalObject->Common.Type)
153 {
154 case ACPI_TYPE_INTEGER:
155 /*
156 * Integer-to-String conversion. Commonly, convert
157 * an integer of value 0 to a NULL string. The last element of
158 * _BIF and _BIX packages occasionally need this fix.
159 */
160 if (OriginalObject->Integer.Value == 0)
161 {
162 /* Allocate a new NULL string object */

164 NewObject = AcpiUtCreateStringObject (0);
165 if (!NewObject)
166 {
167 return (AE_NO_MEMORY);
168 }
169 }
170 else
171 {
172 Status = AcpiExConvertToString (OriginalObject, &NewObject,
173 ACPI_IMPLICIT_CONVERT_HEX);
174 if (ACPI_FAILURE (Status))
175 {
176 return (Status);
177 }
178 }
179 break;

181 case ACPI_TYPE_BUFFER:
182 /*
183 * Buffer-to-String conversion. Use a ToString
184 * conversion, no transform performed on the buffer data. The best
185 * example of this is the _BIF method, where the string data from
186 * the battery is often (incorrectly) returned as buffer object(s).
187 */
188 Length = 0;
189 while ((Length < OriginalObject->Buffer.Length) &&
190 (OriginalObject->Buffer.Pointer[Length]))
191 {
192 Length++;
193 }

new/usr/src/common/acpica/components/namespace/nsconvert.c 4

195 /* Allocate a new string object */

197 NewObject = AcpiUtCreateStringObject (Length);
198 if (!NewObject)
199 {
200 return (AE_NO_MEMORY);
201 }

203 /*
204 * Copy the raw buffer data with no transform. String is already NULL
205 * terminated at Length+1.
206 */
207 ACPI_MEMCPY (NewObject->String.Pointer,
208 OriginalObject->Buffer.Pointer, Length);
209 break;

211 default:

213 return (AE_AML_OPERAND_TYPE);
214 }

216 *ReturnObject = NewObject;
217 return (AE_OK);
218 }

221 /***
222 *
223 * FUNCTION: AcpiNsConvertToBuffer
224 *
225 * PARAMETERS: OriginalObject - Object to be converted
226 * ReturnObject - Where the new converted object is returned
227 *
228 * RETURN: Status. AE_OK if conversion was successful.
229 *
230 * DESCRIPTION: Attempt to convert a Integer/String/Package object to a Buffer.
231 *
232 **/

234 ACPI_STATUS
235 AcpiNsConvertToBuffer (
236 ACPI_OPERAND_OBJECT *OriginalObject,
237 ACPI_OPERAND_OBJECT **ReturnObject)
238 {
239 ACPI_OPERAND_OBJECT *NewObject;
240 ACPI_STATUS Status;
241 ACPI_OPERAND_OBJECT **Elements;
242 UINT32 *DwordBuffer;
243 UINT32 Count;
244 UINT32 i;

247 switch (OriginalObject->Common.Type)
248 {
249 case ACPI_TYPE_INTEGER:
250 /*
251 * Integer-to-Buffer conversion.
252 * Convert the Integer to a packed-byte buffer. _MAT and other
253 * objects need this sometimes, if a read has been performed on a
254 * Field object that is less than or equal to the global integer
255 * size (32 or 64 bits).
256 */
257 Status = AcpiExConvertToBuffer (OriginalObject, &NewObject);
258 if (ACPI_FAILURE (Status))
259 {

new/usr/src/common/acpica/components/namespace/nsconvert.c 5

260 return (Status);
261 }
262 break;

264 case ACPI_TYPE_STRING:

266 /* String-to-Buffer conversion. Simple data copy */

268 NewObject = AcpiUtCreateBufferObject (OriginalObject->String.Length);
269 if (!NewObject)
270 {
271 return (AE_NO_MEMORY);
272 }

274 ACPI_MEMCPY (NewObject->Buffer.Pointer,
275 OriginalObject->String.Pointer, OriginalObject->String.Length);
276 break;

278 case ACPI_TYPE_PACKAGE:
279 /*
280 * This case is often seen for predefined names that must return a
281 * Buffer object with multiple DWORD integers within. For example,
282 * _FDE and _GTM. The Package can be converted to a Buffer.
283 */

285 /* All elements of the Package must be integers */

287 Elements = OriginalObject->Package.Elements;
288 Count = OriginalObject->Package.Count;

290 for (i = 0; i < Count; i++)
291 {
292 if ((!*Elements) ||
293 ((*Elements)->Common.Type != ACPI_TYPE_INTEGER))
294 {
295 return (AE_AML_OPERAND_TYPE);
296 }
297 Elements++;
298 }

300 /* Create the new buffer object to replace the Package */

302 NewObject = AcpiUtCreateBufferObject (ACPI_MUL_4 (Count));
303 if (!NewObject)
304 {
305 return (AE_NO_MEMORY);
306 }

308 /* Copy the package elements (integers) to the buffer as DWORDs */

310 Elements = OriginalObject->Package.Elements;
311 DwordBuffer = ACPI_CAST_PTR (UINT32, NewObject->Buffer.Pointer);

313 for (i = 0; i < Count; i++)
314 {
315 *DwordBuffer = (UINT32) (*Elements)->Integer.Value;
316 DwordBuffer++;
317 Elements++;
318 }
319 break;

321 default:

323 return (AE_AML_OPERAND_TYPE);
324 }

new/usr/src/common/acpica/components/namespace/nsconvert.c 6

326 *ReturnObject = NewObject;
327 return (AE_OK);
328 }

331 /***
332 *
333 * FUNCTION: AcpiNsConvertToUnicode
334 *
335 * PARAMETERS: OriginalObject - ASCII String Object to be converted
336 * ReturnObject - Where the new converted object is returned
337 *
338 * RETURN: Status. AE_OK if conversion was successful.
339 *
340 * DESCRIPTION: Attempt to convert a String object to a Unicode string Buffer.
341 *
342 **/

344 ACPI_STATUS
345 AcpiNsConvertToUnicode (
346 ACPI_OPERAND_OBJECT *OriginalObject,
347 ACPI_OPERAND_OBJECT **ReturnObject)
348 {
349 ACPI_OPERAND_OBJECT *NewObject;
350 char *AsciiString;
351 UINT16 *UnicodeBuffer;
352 UINT32 UnicodeLength;
353 UINT32 i;

356 if (!OriginalObject)
357 {
358 return (AE_OK);
359 }

361 /* If a Buffer was returned, it must be at least two bytes long */

363 if (OriginalObject->Common.Type == ACPI_TYPE_BUFFER)
364 {
365 if (OriginalObject->Buffer.Length < 2)
366 {
367 return (AE_AML_OPERAND_VALUE);
368 }

370 *ReturnObject = NULL;
371 return (AE_OK);
372 }

374 /*
375 * The original object is an ASCII string. Convert this string to
376 * a unicode buffer.
377 */
378 AsciiString = OriginalObject->String.Pointer;
379 UnicodeLength = (OriginalObject->String.Length * 2) + 2;

381 /* Create a new buffer object for the Unicode data */

383 NewObject = AcpiUtCreateBufferObject (UnicodeLength);
384 if (!NewObject)
385 {
386 return (AE_NO_MEMORY);
387 }

389 UnicodeBuffer = ACPI_CAST_PTR (UINT16, NewObject->Buffer.Pointer);

391 /* Convert ASCII to Unicode */

new/usr/src/common/acpica/components/namespace/nsconvert.c 7

393 for (i = 0; i < OriginalObject->String.Length; i++)
394 {
395 UnicodeBuffer[i] = (UINT16) AsciiString[i];
396 }

398 *ReturnObject = NewObject;
399 return (AE_OK);
400 }

403 /***
404 *
405 * FUNCTION: AcpiNsConvertToResource
406 *
407 * PARAMETERS: OriginalObject - Object to be converted
408 * ReturnObject - Where the new converted object is returned
409 *
410 * RETURN: Status. AE_OK if conversion was successful
411 *
412 * DESCRIPTION: Attempt to convert a Integer object to a ResourceTemplate
413 * Buffer.
414 *
415 **/

417 ACPI_STATUS
418 AcpiNsConvertToResource (
419 ACPI_OPERAND_OBJECT *OriginalObject,
420 ACPI_OPERAND_OBJECT **ReturnObject)
421 {
422 ACPI_OPERAND_OBJECT *NewObject;
423 UINT8 *Buffer;

426 /*
427 * We can fix the following cases for an expected resource template:
428 * 1. No return value (interpreter slack mode is disabled)
429 * 2. A "Return (Zero)" statement
430 * 3. A "Return empty buffer" statement
431 *
432 * We will return a buffer containing a single EndTag
433 * resource descriptor.
434 */
435 if (OriginalObject)
436 {
437 switch (OriginalObject->Common.Type)
438 {
439 case ACPI_TYPE_INTEGER:

441 /* We can only repair an Integer==0 */

443 if (OriginalObject->Integer.Value)
444 {
445 return (AE_AML_OPERAND_TYPE);
446 }
447 break;

449 case ACPI_TYPE_BUFFER:

451 if (OriginalObject->Buffer.Length)
452 {
453 /* Additional checks can be added in the future */

455 *ReturnObject = NULL;
456 return (AE_OK);
457 }

new/usr/src/common/acpica/components/namespace/nsconvert.c 8

458 break;

460 case ACPI_TYPE_STRING:
461 default:

463 return (AE_AML_OPERAND_TYPE);
464 }
465 }

467 /* Create the new buffer object for the resource descriptor */

469 NewObject = AcpiUtCreateBufferObject (2);
470 if (!NewObject)
471 {
472 return (AE_NO_MEMORY);
473 }

475 Buffer = ACPI_CAST_PTR (UINT8, NewObject->Buffer.Pointer);

477 /* Initialize the Buffer with a single EndTag descriptor */

479 Buffer[0] = (ACPI_RESOURCE_NAME_END_TAG | ASL_RDESC_END_TAG_SIZE);
480 Buffer[1] = 0x00;

482 *ReturnObject = NewObject;
483 return (AE_OK);
484 }

new/usr/src/common/acpica/components/namespace/nsdump.c 1

**
 26291 Thu Dec 26 13:49:17 2013
new/usr/src/common/acpica/components/namespace/nsdump.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: nsdump - table dumping routines for debug
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __NSDUMP_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acnamesp.h"
49 #include "acoutput.h"

52 #define _COMPONENT ACPI_NAMESPACE
53 ACPI_MODULE_NAME ("nsdump")

55 /* Local prototypes */

57 #ifdef ACPI_OBSOLETE_FUNCTIONS
58 void

new/usr/src/common/acpica/components/namespace/nsdump.c 2

59 AcpiNsDumpRootDevices (
60 void);

62 static ACPI_STATUS
63 AcpiNsDumpOneDevice (
64 ACPI_HANDLE ObjHandle,
65 UINT32 Level,
66 void *Context,
67 void **ReturnValue);
68 #endif

71 #if defined(ACPI_DEBUG_OUTPUT) || defined(ACPI_DEBUGGER)

73 static ACPI_STATUS
74 AcpiNsDumpOneObjectPath (
75 ACPI_HANDLE ObjHandle,
76 UINT32 Level,
77 void *Context,
78 void **ReturnValue);

80 static ACPI_STATUS
81 AcpiNsGetMaxDepth (
82 ACPI_HANDLE ObjHandle,
83 UINT32 Level,
84 void *Context,
85 void **ReturnValue);

88 /***
89 *
90 * FUNCTION: AcpiNsPrintPathname
91 *
92 * PARAMETERS: NumSegments - Number of ACPI name segments
93 * Pathname - The compressed (internal) path
94 *
95 * RETURN: None
96 *
97 * DESCRIPTION: Print an object’s full namespace pathname
98 *
99 **/

101 void
102 AcpiNsPrintPathname (
103 UINT32 NumSegments,
104 char *Pathname)
105 {
106 UINT32 i;

109 ACPI_FUNCTION_NAME (NsPrintPathname);

112 /* Check if debug output enabled */

114 if (!ACPI_IS_DEBUG_ENABLED (ACPI_LV_NAMES, ACPI_NAMESPACE))
95 if (!(AcpiDbgLevel & ACPI_LV_NAMES) || !(AcpiDbgLayer & ACPI_NAMESPACE))
115 {
116 return;
117 }

119 /* Print the entire name */

121 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "["));

123 while (NumSegments)

new/usr/src/common/acpica/components/namespace/nsdump.c 3

124 {
125 for (i = 0; i < 4; i++)
126 {
127 ACPI_IS_PRINT (Pathname[i]) ?
128 AcpiOsPrintf ("%c", Pathname[i]) :
129 AcpiOsPrintf ("?");
130 }

132 Pathname += ACPI_NAME_SIZE;
133 NumSegments--;
134 if (NumSegments)
135 {
136 AcpiOsPrintf (".");
137 }
138 }

140 AcpiOsPrintf ("]\n");
141 }

144 /***
145 *
146 * FUNCTION: AcpiNsDumpPathname
147 *
148 * PARAMETERS: Handle - Object
149 * Msg - Prefix message
150 * Level - Desired debug level
151 * Component - Caller’s component ID
152 *
153 * RETURN: None
154 *
155 * DESCRIPTION: Print an object’s full namespace pathname
156 * Manages allocation/freeing of a pathname buffer
157 *
158 **/

160 void
161 AcpiNsDumpPathname (
162 ACPI_HANDLE Handle,
163 char *Msg,
164 UINT32 Level,
165 UINT32 Component)
166 {

168 ACPI_FUNCTION_TRACE (NsDumpPathname);

171 /* Do this only if the requested debug level and component are enabled */

173 if (!ACPI_IS_DEBUG_ENABLED (Level, Component))
154 if (!(AcpiDbgLevel & Level) || !(AcpiDbgLayer & Component))
174 {
175 return_VOID;
176 }

178 /* Convert handle to a full pathname and print it (with supplied message) */

180 AcpiNsPrintNodePathname (Handle, Msg);
181 AcpiOsPrintf ("\n");
182 return_VOID;
183 }

186 /***
187 *
188 * FUNCTION: AcpiNsDumpOneObject

new/usr/src/common/acpica/components/namespace/nsdump.c 4

189 *
190 * PARAMETERS: ObjHandle - Node to be dumped
191 * Level - Nesting level of the handle
192 * Context - Passed into WalkNamespace
193 * ReturnValue - Not used
194 *
195 * RETURN: Status
196 *
197 * DESCRIPTION: Dump a single Node
198 * This procedure is a UserFunction called by AcpiNsWalkNamespace.
199 *
200 **/

202 ACPI_STATUS
203 AcpiNsDumpOneObject (
204 ACPI_HANDLE ObjHandle,
205 UINT32 Level,
206 void *Context,
207 void **ReturnValue)
208 {
209 ACPI_WALK_INFO *Info = (ACPI_WALK_INFO *) Context;
210 ACPI_NAMESPACE_NODE *ThisNode;
211 ACPI_OPERAND_OBJECT *ObjDesc = NULL;
212 ACPI_OBJECT_TYPE ObjType;
213 ACPI_OBJECT_TYPE Type;
214 UINT32 BytesToDump;
215 UINT32 DbgLevel;
216 UINT32 i;

219 ACPI_FUNCTION_NAME (NsDumpOneObject);

222 /* Is output enabled? */

224 if (!(AcpiDbgLevel & Info->DebugLevel))
225 {
226 return (AE_OK);
227 }

229 if (!ObjHandle)
230 {
231 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Null object handle\n"));
232 return (AE_OK);
233 }

235 ThisNode = AcpiNsValidateHandle (ObjHandle);
236 if (!ThisNode)
237 {
238 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Invalid object handle %p\n",
239 ObjHandle));
240 return (AE_OK);
241 }

243 Type = ThisNode->Type;

245 /* Check if the owner matches */

247 if ((Info->OwnerId != ACPI_OWNER_ID_MAX) &&
248 (Info->OwnerId != ThisNode->OwnerId))
249 {
250 return (AE_OK);
251 }

253 if (!(Info->DisplayType & ACPI_DISPLAY_SHORT))
254 {

new/usr/src/common/acpica/components/namespace/nsdump.c 5

255 /* Indent the object according to the level */

257 AcpiOsPrintf ("%2d%*s", (UINT32) Level - 1, (int) Level * 2, " ");

259 /* Check the node type and name */

261 if (Type > ACPI_TYPE_LOCAL_MAX)
262 {
263 ACPI_WARNING ((AE_INFO, "Invalid ACPI Object Type 0x%08X", Type));
264 }

266 AcpiOsPrintf ("%4.4s", AcpiUtGetNodeName (ThisNode));
267 }

269 /* Now we can print out the pertinent information */

271 AcpiOsPrintf (" %-12s %p %2.2X ",
272 AcpiUtGetTypeName (Type), ThisNode, ThisNode->OwnerId);

274 DbgLevel = AcpiDbgLevel;
275 AcpiDbgLevel = 0;
276 ObjDesc = AcpiNsGetAttachedObject (ThisNode);
277 AcpiDbgLevel = DbgLevel;

279 /* Temp nodes are those nodes created by a control method */

281 if (ThisNode->Flags & ANOBJ_TEMPORARY)
282 {
283 AcpiOsPrintf ("(T) ");
284 }

286 switch (Info->DisplayType & ACPI_DISPLAY_MASK)
287 {
288 case ACPI_DISPLAY_SUMMARY:

290 if (!ObjDesc)
291 {
292 /* No attached object. Some types should always have an object */
273 /* No attached object, we are done */

294 switch (Type)
295 {
296 case ACPI_TYPE_INTEGER:
297 case ACPI_TYPE_PACKAGE:
298 case ACPI_TYPE_BUFFER:
299 case ACPI_TYPE_STRING:
300 case ACPI_TYPE_METHOD:

302 AcpiOsPrintf ("<No attached object>");
303 break;

305 default:

307 break;
308 }

310 AcpiOsPrintf ("\n");
311 return (AE_OK);
312 }

314 switch (Type)
315 {
316 case ACPI_TYPE_PROCESSOR:

318 AcpiOsPrintf ("ID %02X Len %02X Addr %p\n",
283 AcpiOsPrintf ("ID %X Len %.4X Addr %p\n",

new/usr/src/common/acpica/components/namespace/nsdump.c 6

319 ObjDesc->Processor.ProcId, ObjDesc->Processor.Length,
320 ACPI_CAST_PTR (void, ObjDesc->Processor.Address));
321 break;

323 case ACPI_TYPE_DEVICE:

325 AcpiOsPrintf ("Notify Object: %p\n", ObjDesc);
326 break;

328 case ACPI_TYPE_METHOD:

330 AcpiOsPrintf ("Args %X Len %.4X Aml %p\n",
331 (UINT32) ObjDesc->Method.ParamCount,
332 ObjDesc->Method.AmlLength, ObjDesc->Method.AmlStart);
333 break;

335 case ACPI_TYPE_INTEGER:

337 AcpiOsPrintf ("= %8.8X%8.8X\n",
338 ACPI_FORMAT_UINT64 (ObjDesc->Integer.Value));
339 break;

341 case ACPI_TYPE_PACKAGE:

343 if (ObjDesc->Common.Flags & AOPOBJ_DATA_VALID)
344 {
345 AcpiOsPrintf ("Elements %.2X\n",
346 ObjDesc->Package.Count);
347 }
348 else
349 {
350 AcpiOsPrintf ("[Length not yet evaluated]\n");
351 }
352 break;

354 case ACPI_TYPE_BUFFER:

356 if (ObjDesc->Common.Flags & AOPOBJ_DATA_VALID)
357 {
358 AcpiOsPrintf ("Len %.2X",
359 ObjDesc->Buffer.Length);

361 /* Dump some of the buffer */

363 if (ObjDesc->Buffer.Length > 0)
364 {
365 AcpiOsPrintf (" =");
366 for (i = 0; (i < ObjDesc->Buffer.Length && i < 12); i++)
367 {
368 AcpiOsPrintf (" %.2hX", ObjDesc->Buffer.Pointer[i]);
369 }
370 }
371 AcpiOsPrintf ("\n");
372 }
373 else
374 {
375 AcpiOsPrintf ("[Length not yet evaluated]\n");
376 }
377 break;

new/usr/src/common/acpica/components/namespace/nsdump.c 7

379 case ACPI_TYPE_STRING:

381 AcpiOsPrintf ("Len %.2X ", ObjDesc->String.Length);
382 AcpiUtPrintString (ObjDesc->String.Pointer, 32);
383 AcpiOsPrintf ("\n");
384 break;

386 case ACPI_TYPE_REGION:

388 AcpiOsPrintf ("[%s]",
389 AcpiUtGetRegionName (ObjDesc->Region.SpaceId));
390 if (ObjDesc->Region.Flags & AOPOBJ_DATA_VALID)
391 {
392 AcpiOsPrintf (" Addr %8.8X%8.8X Len %.4X\n",
393 ACPI_FORMAT_NATIVE_UINT (ObjDesc->Region.Address),
394 ObjDesc->Region.Length);
395 }
396 else
397 {
398 AcpiOsPrintf (" [Address/Length not yet evaluated]\n");
399 }
400 break;

402 case ACPI_TYPE_LOCAL_REFERENCE:

404 AcpiOsPrintf ("[%s]\n", AcpiUtGetReferenceName (ObjDesc));
405 break;

407 case ACPI_TYPE_BUFFER_FIELD:

409 if (ObjDesc->BufferField.BufferObj &&
410 ObjDesc->BufferField.BufferObj->Buffer.Node)
411 {
412 AcpiOsPrintf ("Buf [%4.4s]",
413 AcpiUtGetNodeName (
414 ObjDesc->BufferField.BufferObj->Buffer.Node));
415 }
416 break;

418 case ACPI_TYPE_LOCAL_REGION_FIELD:

420 AcpiOsPrintf ("Rgn [%4.4s]",
421 AcpiUtGetNodeName (
422 ObjDesc->CommonField.RegionObj->Region.Node));
423 break;

425 case ACPI_TYPE_LOCAL_BANK_FIELD:

427 AcpiOsPrintf ("Rgn [%4.4s] Bnk [%4.4s]",
428 AcpiUtGetNodeName (
429 ObjDesc->CommonField.RegionObj->Region.Node),
430 AcpiUtGetNodeName (
431 ObjDesc->BankField.BankObj->CommonField.Node));
432 break;

434 case ACPI_TYPE_LOCAL_INDEX_FIELD:

436 AcpiOsPrintf ("Idx [%4.4s] Dat [%4.4s]",
437 AcpiUtGetNodeName (
438 ObjDesc->IndexField.IndexObj->CommonField.Node),

new/usr/src/common/acpica/components/namespace/nsdump.c 8

439 AcpiUtGetNodeName (
440 ObjDesc->IndexField.DataObj->CommonField.Node));
441 break;

443 case ACPI_TYPE_LOCAL_ALIAS:
444 case ACPI_TYPE_LOCAL_METHOD_ALIAS:

446 AcpiOsPrintf ("Target %4.4s (%p)\n",
447 AcpiUtGetNodeName (ObjDesc), ObjDesc);
448 break;

450 default:

452 AcpiOsPrintf ("Object %p\n", ObjDesc);
453 break;
454 }

456 /* Common field handling */

458 switch (Type)
459 {
460 case ACPI_TYPE_BUFFER_FIELD:
461 case ACPI_TYPE_LOCAL_REGION_FIELD:
462 case ACPI_TYPE_LOCAL_BANK_FIELD:
463 case ACPI_TYPE_LOCAL_INDEX_FIELD:

465 AcpiOsPrintf (" Off %.3X Len %.2X Acc %.2hd\n",
466 (ObjDesc->CommonField.BaseByteOffset * 8)
467 + ObjDesc->CommonField.StartFieldBitOffset,
468 ObjDesc->CommonField.BitLength,
469 ObjDesc->CommonField.AccessByteWidth);
470 break;

472 default:

474 break;
475 }
476 break;

478 case ACPI_DISPLAY_OBJECTS:

480 AcpiOsPrintf ("O:%p", ObjDesc);
481 if (!ObjDesc)
482 {
483 /* No attached object, we are done */

485 AcpiOsPrintf ("\n");
486 return (AE_OK);
487 }

489 AcpiOsPrintf ("(R%u)", ObjDesc->Common.ReferenceCount);

491 switch (Type)
492 {
493 case ACPI_TYPE_METHOD:

495 /* Name is a Method and its AML offset/length are set */

497 AcpiOsPrintf (" M:%p-%X\n", ObjDesc->Method.AmlStart,
498 ObjDesc->Method.AmlLength);
499 break;

501 case ACPI_TYPE_INTEGER:

new/usr/src/common/acpica/components/namespace/nsdump.c 9

503 AcpiOsPrintf (" I:%8.8X8.8%X\n",
504 ACPI_FORMAT_UINT64 (ObjDesc->Integer.Value));
505 break;

507 case ACPI_TYPE_STRING:

509 AcpiOsPrintf (" S:%p-%X\n", ObjDesc->String.Pointer,
510 ObjDesc->String.Length);
511 break;

513 case ACPI_TYPE_BUFFER:

515 AcpiOsPrintf (" B:%p-%X\n", ObjDesc->Buffer.Pointer,
516 ObjDesc->Buffer.Length);
517 break;

519 default:

521 AcpiOsPrintf ("\n");
522 break;
523 }
524 break;

526 default:
527 AcpiOsPrintf ("\n");
528 break;
529 }

531 /* If debug turned off, done */

533 if (!(AcpiDbgLevel & ACPI_LV_VALUES))
534 {
535 return (AE_OK);
536 }

538 /* If there is an attached object, display it */

540 DbgLevel = AcpiDbgLevel;
541 AcpiDbgLevel = 0;
542 ObjDesc = AcpiNsGetAttachedObject (ThisNode);
543 AcpiDbgLevel = DbgLevel;

545 /* Dump attached objects */

547 while (ObjDesc)
548 {
549 ObjType = ACPI_TYPE_INVALID;
550 AcpiOsPrintf ("Attached Object %p: ", ObjDesc);

552 /* Decode the type of attached object and dump the contents */

554 switch (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc))
555 {
556 case ACPI_DESC_TYPE_NAMED:

558 AcpiOsPrintf ("(Ptr to Node)\n");
559 BytesToDump = sizeof (ACPI_NAMESPACE_NODE);
560 ACPI_DUMP_BUFFER (ObjDesc, BytesToDump);
561 break;

563 case ACPI_DESC_TYPE_OPERAND:

565 ObjType = ObjDesc->Common.Type;

567 if (ObjType > ACPI_TYPE_LOCAL_MAX)

new/usr/src/common/acpica/components/namespace/nsdump.c 10

568 {
569 AcpiOsPrintf ("(Pointer to ACPI Object type %.2X [UNKNOWN])\n",
570 ObjType);
571 BytesToDump = 32;
572 }
573 else
574 {
575 AcpiOsPrintf ("(Pointer to ACPI Object type %.2X [%s])\n",
576 ObjType, AcpiUtGetTypeName (ObjType));
577 BytesToDump = sizeof (ACPI_OPERAND_OBJECT);
578 }

580 ACPI_DUMP_BUFFER (ObjDesc, BytesToDump);
581 break;

583 default:

585 break;
586 }

588 /* If value is NOT an internal object, we are done */

590 if (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc) != ACPI_DESC_TYPE_OPERAND)
591 {
592 goto Cleanup;
593 }

595 /* Valid object, get the pointer to next level, if any */

597 switch (ObjType)
598 {
599 case ACPI_TYPE_BUFFER:
600 case ACPI_TYPE_STRING:
601 /*
602 * NOTE: takes advantage of common fields between string/buffer
603 */
604 BytesToDump = ObjDesc->String.Length;
605 ObjDesc = (void *) ObjDesc->String.Pointer;
606 AcpiOsPrintf ("(Buffer/String pointer %p length %X)\n",
607 ObjDesc, BytesToDump);
608 ACPI_DUMP_BUFFER (ObjDesc, BytesToDump);
609 goto Cleanup;

611 case ACPI_TYPE_BUFFER_FIELD:

613 ObjDesc = (ACPI_OPERAND_OBJECT *) ObjDesc->BufferField.BufferObj;
614 break;

616 case ACPI_TYPE_PACKAGE:

618 ObjDesc = (void *) ObjDesc->Package.Elements;
619 break;

621 case ACPI_TYPE_METHOD:

623 ObjDesc = (void *) ObjDesc->Method.AmlStart;
624 break;

626 case ACPI_TYPE_LOCAL_REGION_FIELD:

628 ObjDesc = (void *) ObjDesc->Field.RegionObj;
629 break;

631 case ACPI_TYPE_LOCAL_BANK_FIELD:

633 ObjDesc = (void *) ObjDesc->BankField.RegionObj;

new/usr/src/common/acpica/components/namespace/nsdump.c 11

634 break;

636 case ACPI_TYPE_LOCAL_INDEX_FIELD:

638 ObjDesc = (void *) ObjDesc->IndexField.IndexObj;
639 break;

641 default:

643 goto Cleanup;
644 }

646 ObjType = ACPI_TYPE_INVALID; /* Terminate loop after next pass */
647 }

649 Cleanup:
650 AcpiOsPrintf ("\n");
651 return (AE_OK);
652 }

______unchanged_portion_omitted_

714 /***
715 *
716 * FUNCTION: AcpiNsDumpOneObjectPath, AcpiNsGetMaxDepth
717 *
718 * PARAMETERS: ObjHandle - Node to be dumped
719 * Level - Nesting level of the handle
720 * Context - Passed into WalkNamespace
721 * ReturnValue - Not used
722 *
723 * RETURN: Status
724 *
725 * DESCRIPTION: Dump the full pathname to a namespace object. AcpNsGetMaxDepth
726 * computes the maximum nesting depth in the namespace tree, in
727 * order to simplify formatting in AcpiNsDumpOneObjectPath.
728 * These procedures are UserFunctions called by AcpiNsWalkNamespace
729 *
730 **/

732 static ACPI_STATUS
733 AcpiNsDumpOneObjectPath (
734 ACPI_HANDLE ObjHandle,
735 UINT32 Level,
736 void *Context,
737 void **ReturnValue)
738 {
739 UINT32 MaxLevel = *((UINT32 *) Context);
740 char *Pathname;
741 ACPI_NAMESPACE_NODE *Node;
742 int PathIndent;

745 if (!ObjHandle)
746 {
747 return (AE_OK);
748 }

750 Node = AcpiNsValidateHandle (ObjHandle);
751 if (!Node)
752 {
753 /* Ignore bad node during namespace walk */

755 return (AE_OK);
756 }

new/usr/src/common/acpica/components/namespace/nsdump.c 12

758 Pathname = AcpiNsGetExternalPathname (Node);

760 PathIndent = 1;
761 if (Level <= MaxLevel)
762 {
763 PathIndent = MaxLevel - Level + 1;
764 }

766 AcpiOsPrintf ("%2d%*s%-12s%*s",
767 Level, Level, " ", AcpiUtGetTypeName (Node->Type),
768 PathIndent, " ");

770 AcpiOsPrintf ("%s\n", &Pathname[1]);
771 ACPI_FREE (Pathname);
772 return (AE_OK);
773 }

776 static ACPI_STATUS
777 AcpiNsGetMaxDepth (
778 ACPI_HANDLE ObjHandle,
779 UINT32 Level,
780 void *Context,
781 void **ReturnValue)
782 {
783 UINT32 *MaxLevel = (UINT32 *) Context;

786 if (Level > *MaxLevel)
787 {
788 *MaxLevel = Level;
789 }
790 return (AE_OK);
791 }

794 /***
795 *
796 * FUNCTION: AcpiNsDumpObjectPaths
797 *
798 * PARAMETERS: Type - Object type to be dumped
799 * DisplayType - 0 or ACPI_DISPLAY_SUMMARY
800 * MaxDepth - Maximum depth of dump. Use ACPI_UINT32_MAX
801 * for an effectively unlimited depth.
802 * OwnerId - Dump only objects owned by this ID. Use
803 * ACPI_UINT32_MAX to match all owners.
804 * StartHandle - Where in namespace to start/end search
805 *
806 * RETURN: None
807 *
808 * DESCRIPTION: Dump full object pathnames within the loaded namespace. Uses
809 * AcpiNsWalkNamespace in conjunction with AcpiNsDumpOneObjectPath.
810 *
811 **/

813 void
814 AcpiNsDumpObjectPaths (
815 ACPI_OBJECT_TYPE Type,
816 UINT8 DisplayType,
817 UINT32 MaxDepth,
818 ACPI_OWNER_ID OwnerId,
819 ACPI_HANDLE StartHandle)
820 {
821 ACPI_STATUS Status;
822 UINT32 MaxLevel = 0;

new/usr/src/common/acpica/components/namespace/nsdump.c 13

825 ACPI_FUNCTION_ENTRY ();

828 /*
829 * Just lock the entire namespace for the duration of the dump.
830 * We don’t want any changes to the namespace during this time,
831 * especially the temporary nodes since we are going to display
832 * them also.
833 */
834 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
835 if (ACPI_FAILURE (Status))
836 {
837 AcpiOsPrintf ("Could not acquire namespace mutex\n");
838 return;
839 }

841 /* Get the max depth of the namespace tree, for formatting later */

843 (void) AcpiNsWalkNamespace (Type, StartHandle, MaxDepth,
844 ACPI_NS_WALK_NO_UNLOCK | ACPI_NS_WALK_TEMP_NODES,
845 AcpiNsGetMaxDepth, NULL, (void *) &MaxLevel, NULL);

847 /* Now dump the entire namespace */

849 (void) AcpiNsWalkNamespace (Type, StartHandle, MaxDepth,
850 ACPI_NS_WALK_NO_UNLOCK | ACPI_NS_WALK_TEMP_NODES,
851 AcpiNsDumpOneObjectPath, NULL, (void *) &MaxLevel, NULL);

853 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
854 }

857 /***
858 *
859 * FUNCTION: AcpiNsDumpEntry
860 *
861 * PARAMETERS: Handle - Node to be dumped
862 * DebugLevel - Output level
863 *
864 * RETURN: None
865 *
866 * DESCRIPTION: Dump a single Node
867 *
868 **/

870 void
871 AcpiNsDumpEntry (
872 ACPI_HANDLE Handle,
873 UINT32 DebugLevel)
874 {
875 ACPI_WALK_INFO Info;

878 ACPI_FUNCTION_ENTRY ();

881 Info.DebugLevel = DebugLevel;
882 Info.OwnerId = ACPI_OWNER_ID_MAX;
883 Info.DisplayType = ACPI_DISPLAY_SUMMARY;

885 (void) AcpiNsDumpOneObject (Handle, 1, &Info, NULL);
886 }

______unchanged_portion_omitted_
938 #endif
939 #endif

new/usr/src/common/acpica/components/namespace/nsdump.c 14

new/usr/src/common/acpica/components/namespace/nsdumpdv.c 1

**
 5063 Thu Dec 26 13:49:17 2013
new/usr/src/common/acpica/components/namespace/nsdumpdv.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: nsdump - table dumping routines for debug
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __NSDUMPDV_C__

46 #include "acpi.h"

49 /* TBD: This entire module is apparently obsolete and should be removed */

51 #define _COMPONENT ACPI_NAMESPACE
52 ACPI_MODULE_NAME ("nsdumpdv")

54 #ifdef ACPI_OBSOLETE_FUNCTIONS
55 #if defined(ACPI_DEBUG_OUTPUT) || defined(ACPI_DEBUGGER)

57 #include "acnamesp.h"

59 /***

new/usr/src/common/acpica/components/namespace/nsdumpdv.c 2

60 *
61 * FUNCTION: AcpiNsDumpOneDevice
62 *
63 * PARAMETERS: Handle - Node to be dumped
64 * Level - Nesting level of the handle
65 * Context - Passed into WalkNamespace
66 * ReturnValue - Not used
67 *
68 * RETURN: Status
69 *
70 * DESCRIPTION: Dump a single Node that represents a device
71 * This procedure is a UserFunction called by AcpiNsWalkNamespace.
72 *
73 **/

75 static ACPI_STATUS
76 AcpiNsDumpOneDevice (
77 ACPI_HANDLE ObjHandle,
78 UINT32 Level,
79 void *Context,
80 void **ReturnValue)
81 {
82 ACPI_BUFFER Buffer;
83 ACPI_DEVICE_INFO *Info;
84 ACPI_STATUS Status;
85 UINT32 i;

88 ACPI_FUNCTION_NAME (NsDumpOneDevice);

91 Status = AcpiNsDumpOneObject (ObjHandle, Level, Context, ReturnValue);

93 Buffer.Length = ACPI_ALLOCATE_LOCAL_BUFFER;
94 Status = AcpiGetObjectInfo (ObjHandle, &Buffer);
95 if (ACPI_SUCCESS (Status))
96 {
97 Info = Buffer.Pointer;
98 for (i = 0; i < Level; i++)
99 {
100 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_TABLES, " "));
101 }

103 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_TABLES,
104 " HID: %s, ADR: %8.8X%8.8X, Status: %X\n",
105 Info->HardwareId.Value, ACPI_FORMAT_UINT64 (Info->Address),
106 Info->CurrentStatus));
107 ACPI_FREE (Info);
108 }

110 return (Status);
111 }

114 /***
115 *
116 * FUNCTION: AcpiNsDumpRootDevices
117 *
118 * PARAMETERS: None
119 *
120 * RETURN: None
121 *
122 * DESCRIPTION: Dump all objects of type "device"
123 *
124 **/

new/usr/src/common/acpica/components/namespace/nsdumpdv.c 3

126 void
127 AcpiNsDumpRootDevices (
128 void)
129 {
130 ACPI_HANDLE SysBusHandle;
131 ACPI_STATUS Status;

134 ACPI_FUNCTION_NAME (NsDumpRootDevices);

137 /* Only dump the table if tracing is enabled */

139 if (!(ACPI_LV_TABLES & AcpiDbgLevel))
140 {
141 return;
142 }

144 Status = AcpiGetHandle (NULL, METHOD_NAME__SB_, &SysBusHandle);
144 Status = AcpiGetHandle (NULL, ACPI_NS_SYSTEM_BUS, &SysBusHandle);
145 if (ACPI_FAILURE (Status))
146 {
147 return;
148 }

150 ACPI_DEBUG_PRINT ((ACPI_DB_TABLES,
151 "Display of all devices in the namespace:\n"));

153 Status = AcpiNsWalkNamespace (ACPI_TYPE_DEVICE, SysBusHandle,
154 ACPI_UINT32_MAX, ACPI_NS_WALK_NO_UNLOCK,
155 AcpiNsDumpOneDevice, NULL, NULL, NULL);
156 }

158 #endif
159 #endif

new/usr/src/common/acpica/components/namespace/nseval.c 1

**
 16392 Thu Dec 26 13:49:18 2013
new/usr/src/common/acpica/components/namespace/nseval.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: nseval - Object evaluation, includes control method execution
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __NSEVAL_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acparser.h"
49 #include "acinterp.h"
50 #include "acnamesp.h"

53 #define _COMPONENT ACPI_NAMESPACE
54 ACPI_MODULE_NAME ("nseval")

56 /* Local prototypes */

58 static void
59 AcpiNsExecModuleCode (
60 ACPI_OPERAND_OBJECT *MethodObj,

new/usr/src/common/acpica/components/namespace/nseval.c 2

61 ACPI_EVALUATE_INFO *Info);

64 /***
65 *
66 * FUNCTION: AcpiNsEvaluate
67 *
68 * PARAMETERS: Info - Evaluation info block, contains:
69 * PrefixNode - Prefix or Method/Object Node to execute
70 * RelativePath - Name of method to execute, If NULL, the
71 * Node is the object to execute
72 * Parameters - List of parameters to pass to the method,
73 * terminated by NULL. Params itself may be
74 * NULL if no parameters are being passed.
75 * ReturnObject - Where to put method’s return value (if
76 * any). If NULL, no value is returned.
77 * ParameterType - Type of Parameter list
78 * ReturnObject - Where to put method’s return value (if
79 * any). If NULL, no value is returned.
80 * Flags - ACPI_IGNORE_RETURN_VALUE to delete return
81 *
82 * RETURN: Status
83 *
84 * DESCRIPTION: Execute a control method or return the current value of an
85 * ACPI namespace object.
86 *
87 * MUTEX: Locks interpreter
88 *
89 **/

91 ACPI_STATUS
92 AcpiNsEvaluate (
93 ACPI_EVALUATE_INFO *Info)
94 {
95 ACPI_STATUS Status;

98 ACPI_FUNCTION_TRACE (NsEvaluate);

101 if (!Info)
102 {
103 return_ACPI_STATUS (AE_BAD_PARAMETER);
104 }

106 if (!Info->Node)
107 {
108 /*
109 * Get the actual namespace node for the target object if we
110 * need to. Handles these cases:
111 *
112 * 1) Null node, valid pathname from root (absolute path)
113 * 2) Node and valid pathname (path relative to Node)
114 * 3) Node, Null pathname
115 */
116 Status = AcpiNsGetNode (Info->PrefixNode, Info->RelativePathname,
117 ACPI_NS_NO_UPSEARCH, &Info->Node);
118 if (ACPI_FAILURE (Status))
119 {
120 return_ACPI_STATUS (Status);
121 }
122 }

124 /*
125 * For a method alias, we must grab the actual method node so that
126 * proper scoping context will be established before execution.

new/usr/src/common/acpica/components/namespace/nseval.c 3

127 */
128 if (AcpiNsGetType (Info->Node) == ACPI_TYPE_LOCAL_METHOD_ALIAS)
129 {
130 Info->Node = ACPI_CAST_PTR (
131 ACPI_NAMESPACE_NODE, Info->Node->Object);
132 }

134 /* Complete the info block initialization */

136 Info->ReturnObject = NULL;
137 Info->NodeFlags = Info->Node->Flags;
138 Info->ObjDesc = AcpiNsGetAttachedObject (Info->Node);

140 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "%s [%p] Value %p\n",
141 Info->RelativePathname, Info->Node,
142 AcpiNsGetAttachedObject (Info->Node)));

144 /* Get info if we have a predefined name (_HID, etc.) */

146 Info->Predefined = AcpiUtMatchPredefinedMethod (Info->Node->Name.Ascii);

148 /* Get the full pathname to the object, for use in warning messages */

150 Info->FullPathname = AcpiNsGetExternalPathname (Info->Node);
151 if (!Info->FullPathname)
152 {
153 return_ACPI_STATUS (AE_NO_MEMORY);
154 }

156 /* Count the number of arguments being passed in */

158 Info->ParamCount = 0;
159 if (Info->Parameters)
160 {
161 while (Info->Parameters[Info->ParamCount])
162 {
163 Info->ParamCount++;
164 }

166 /* Warn on impossible argument count */

168 if (Info->ParamCount > ACPI_METHOD_NUM_ARGS)
169 {
170 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, ACPI_WARN_ALWAYS
171 "Excess arguments (%u) - using only %u",
172 Info->ParamCount, ACPI_METHOD_NUM_ARGS));

174 Info->ParamCount = ACPI_METHOD_NUM_ARGS;
175 }
176 }

178 /*
179 * For predefined names: Check that the declared argument count
180 * matches the ACPI spec -- otherwise this is a BIOS error.
181 */
182 AcpiNsCheckAcpiCompliance (Info->FullPathname, Info->Node,
183 Info->Predefined);

185 /*
186 * For all names: Check that the incoming argument count for
187 * this method/object matches the actual ASL/AML definition.
188 */
189 AcpiNsCheckArgumentCount (Info->FullPathname, Info->Node,
190 Info->ParamCount, Info->Predefined);

192 /* For predefined names: Typecheck all incoming arguments */

new/usr/src/common/acpica/components/namespace/nseval.c 4

194 AcpiNsCheckArgumentTypes (Info);

196 /*
197 * Three major evaluation cases:
198 *
199 * 1) Object types that cannot be evaluated by definition
200 * 2) The object is a control method -- execute it
201 * 3) The object is not a method -- just return it’s current value
202 */
203 switch (AcpiNsGetType (Info->Node))
204 {
205 case ACPI_TYPE_DEVICE:
206 case ACPI_TYPE_EVENT:
207 case ACPI_TYPE_MUTEX:
208 case ACPI_TYPE_REGION:
209 case ACPI_TYPE_THERMAL:
210 case ACPI_TYPE_LOCAL_SCOPE:
211 /*
212 * 1) Disallow evaluation of certain object types. For these,
213 * object evaluation is undefined and not supported.
214 */
215 ACPI_ERROR ((AE_INFO,
216 "%s: Evaluation of object type [%s] is not supported",
217 Info->FullPathname,
218 AcpiUtGetTypeName (Info->Node->Type)));

220 Status = AE_TYPE;
221 goto Cleanup;

223 case ACPI_TYPE_METHOD:
224 /*
225 * 2) Object is a control method - execute it
226 */

228 /* Verify that there is a method object associated with this node */

230 if (!Info->ObjDesc)
231 {
232 ACPI_ERROR ((AE_INFO, "%s: Method has no attached sub-object",
233 Info->FullPathname));
234 Status = AE_NULL_OBJECT;
235 goto Cleanup;
236 }

238 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
239 "**** Execute method [%s] at AML address %p length %X\n",
240 Info->FullPathname,
241 Info->ObjDesc->Method.AmlStart + 1,
242 Info->ObjDesc->Method.AmlLength - 1));

244 /*
245 * Any namespace deletion must acquire both the namespace and
246 * interpreter locks to ensure that no thread is using the portion of
247 * the namespace that is being deleted.
248 *
249 * Execute the method via the interpreter. The interpreter is locked
250 * here before calling into the AML parser
251 */
252 AcpiExEnterInterpreter ();
253 Status = AcpiPsExecuteMethod (Info);
254 AcpiExExitInterpreter ();
255 break;

257 default:
258 /*

new/usr/src/common/acpica/components/namespace/nseval.c 5

259 * 3) All other non-method objects -- get the current object value
260 */

262 /*
263 * Some objects require additional resolution steps (e.g., the Node
264 * may be a field that must be read, etc.) -- we can’t just grab
265 * the object out of the node.
266 *
267 * Use ResolveNodeToValue() to get the associated value.
268 *
269 * NOTE: we can get away with passing in NULL for a walk state because
270 * the Node is guaranteed to not be a reference to either a method
271 * local or a method argument (because this interface is never called
272 * from a running method.)
273 *
274 * Even though we do not directly invoke the interpreter for object
275 * resolution, we must lock it because we could access an OpRegion.
276 * The OpRegion access code assumes that the interpreter is locked.
277 */
278 AcpiExEnterInterpreter ();

280 /* TBD: ResolveNodeToValue has a strange interface, fix */

282 Info->ReturnObject = ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, Info->Node);

284 Status = AcpiExResolveNodeToValue (ACPI_CAST_INDIRECT_PTR (
285 ACPI_NAMESPACE_NODE, &Info->ReturnObject), NULL);
286 AcpiExExitInterpreter ();

288 if (ACPI_FAILURE (Status))
289 {
290 goto Cleanup;
291 }

293 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "Returned object %p [%s]\n",
294 Info->ReturnObject,
295 AcpiUtGetObjectTypeName (Info->ReturnObject)));

297 Status = AE_CTRL_RETURN_VALUE; /* Always has a "return value" */
298 break;
299 }

301 /*
302 * For predefined names, check the return value against the ACPI
303 * specification. Some incorrect return value types are repaired.
304 */
305 (void) AcpiNsCheckReturnValue (Info->Node, Info, Info->ParamCount,
306 Status, &Info->ReturnObject);

308 /* Check if there is a return value that must be dealt with */

310 if (Status == AE_CTRL_RETURN_VALUE)
311 {
312 /* If caller does not want the return value, delete it */

314 if (Info->Flags & ACPI_IGNORE_RETURN_VALUE)
315 {
316 AcpiUtRemoveReference (Info->ReturnObject);
317 Info->ReturnObject = NULL;
318 }

320 /* Map AE_CTRL_RETURN_VALUE to AE_OK, we are done with it */

322 Status = AE_OK;
323 }

new/usr/src/common/acpica/components/namespace/nseval.c 6

325 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,
326 "*** Completed evaluation of object %s ***\n",
327 Info->RelativePathname));

329 Cleanup:
330 /*
331 * Namespace was unlocked by the handling AcpiNs* function, so we
332 * just free the pathname and return
333 */
334 ACPI_FREE (Info->FullPathname);
335 Info->FullPathname = NULL;
336 return_ACPI_STATUS (Status);
337 }

340 /***
341 *
342 * FUNCTION: AcpiNsExecModuleCodeList
343 *
344 * PARAMETERS: None
345 *
346 * RETURN: None. Exceptions during method execution are ignored, since
347 * we cannot abort a table load.
348 *
349 * DESCRIPTION: Execute all elements of the global module-level code list.
350 * Each element is executed as a single control method.
351 *
352 **/

354 void
355 AcpiNsExecModuleCodeList (
356 void)
357 {
358 ACPI_OPERAND_OBJECT *Prev;
359 ACPI_OPERAND_OBJECT *Next;
360 ACPI_EVALUATE_INFO *Info;
361 UINT32 MethodCount = 0;

364 ACPI_FUNCTION_TRACE (NsExecModuleCodeList);

367 /* Exit now if the list is empty */

369 Next = AcpiGbl_ModuleCodeList;
370 if (!Next)
371 {
372 return_VOID;
373 }

375 /* Allocate the evaluation information block */

377 Info = ACPI_ALLOCATE (sizeof (ACPI_EVALUATE_INFO));
378 if (!Info)
379 {
380 return_VOID;
381 }

383 /* Walk the list, executing each "method" */

385 while (Next)
386 {
387 Prev = Next;
388 Next = Next->Method.Mutex;

390 /* Clear the link field and execute the method */

new/usr/src/common/acpica/components/namespace/nseval.c 7

392 Prev->Method.Mutex = NULL;
393 AcpiNsExecModuleCode (Prev, Info);
394 MethodCount++;

396 /* Delete the (temporary) method object */

398 AcpiUtRemoveReference (Prev);
399 }

401 ACPI_INFO ((AE_INFO,
402 "Executed %u blocks of module-level executable AML code",
403 MethodCount));

405 ACPI_FREE (Info);
406 AcpiGbl_ModuleCodeList = NULL;
407 return_VOID;
408 }

411 /***
412 *
413 * FUNCTION: AcpiNsExecModuleCode
414 *
415 * PARAMETERS: MethodObj - Object container for the module-level code
416 * Info - Info block for method evaluation
417 *
418 * RETURN: None. Exceptions during method execution are ignored, since
419 * we cannot abort a table load.
420 *
421 * DESCRIPTION: Execute a control method containing a block of module-level
422 * executable AML code. The control method is temporarily
423 * installed to the root node, then evaluated.
424 *
425 **/

427 static void
428 AcpiNsExecModuleCode (
429 ACPI_OPERAND_OBJECT *MethodObj,
430 ACPI_EVALUATE_INFO *Info)
431 {
432 ACPI_OPERAND_OBJECT *ParentObj;
433 ACPI_NAMESPACE_NODE *ParentNode;
434 ACPI_OBJECT_TYPE Type;
435 ACPI_STATUS Status;

438 ACPI_FUNCTION_TRACE (NsExecModuleCode);

441 /*
442 * Get the parent node. We cheat by using the NextObject field
443 * of the method object descriptor.
444 */
445 ParentNode = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE,
446 MethodObj->Method.NextObject);
447 Type = AcpiNsGetType (ParentNode);

449 /*
450 * Get the region handler and save it in the method object. We may need
451 * this if an operation region declaration causes a _REG method to be run.
452 *
453 * We can’t do this in AcpiPsLinkModuleCode because
454 * AcpiGbl_RootNode->Object is NULL at PASS1.
455 */
456 if ((Type == ACPI_TYPE_DEVICE) && ParentNode->Object)

new/usr/src/common/acpica/components/namespace/nseval.c 8

457 {
458 MethodObj->Method.Dispatch.Handler =
459 ParentNode->Object->Device.Handler;
460 }

462 /* Must clear NextObject (AcpiNsAttachObject needs the field) */

464 MethodObj->Method.NextObject = NULL;

466 /* Initialize the evaluation information block */

468 ACPI_MEMSET (Info, 0, sizeof (ACPI_EVALUATE_INFO));
469 Info->PrefixNode = ParentNode;

471 /*
472 * Get the currently attached parent object. Add a reference, because the
473 * ref count will be decreased when the method object is installed to
474 * the parent node.
475 */
476 ParentObj = AcpiNsGetAttachedObject (ParentNode);
477 if (ParentObj)
478 {
479 AcpiUtAddReference (ParentObj);
480 }

482 /* Install the method (module-level code) in the parent node */

484 Status = AcpiNsAttachObject (ParentNode, MethodObj,
485 ACPI_TYPE_METHOD);
486 if (ACPI_FAILURE (Status))
487 {
488 goto Exit;
489 }

491 /* Execute the parent node as a control method */

493 Status = AcpiNsEvaluate (Info);

495 ACPI_DEBUG_PRINT ((ACPI_DB_INIT, "Executed module-level code at %p\n",
496 MethodObj->Method.AmlStart));

498 /* Delete a possible implicit return value (in slack mode) */

500 if (Info->ReturnObject)
501 {
502 AcpiUtRemoveReference (Info->ReturnObject);
503 }

505 /* Detach the temporary method object */

507 AcpiNsDetachObject (ParentNode);

509 /* Restore the original parent object */

511 if (ParentObj)
512 {
513 Status = AcpiNsAttachObject (ParentNode, ParentObj, Type);
514 }
515 else
516 {
517 ParentNode->Type = (UINT8) Type;
518 }

520 Exit:
521 if (ParentObj)
522 {

new/usr/src/common/acpica/components/namespace/nseval.c 9

523 AcpiUtRemoveReference (ParentObj);
524 }
525 return_VOID;
526 }

new/usr/src/common/acpica/components/namespace/nsinit.c 1

**
 19552 Thu Dec 26 13:49:18 2013
new/usr/src/common/acpica/components/namespace/nsinit.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: nsinit - namespace initialization
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __NSXFINIT_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acnamesp.h"
50 #include "acdispat.h"
51 #include "acinterp.h"

53 #define _COMPONENT ACPI_NAMESPACE
54 ACPI_MODULE_NAME ("nsinit")

56 /* Local prototypes */

58 static ACPI_STATUS
59 AcpiNsInitOneObject (

new/usr/src/common/acpica/components/namespace/nsinit.c 2

60 ACPI_HANDLE ObjHandle,
61 UINT32 Level,
62 void *Context,
63 void **ReturnValue);

65 static ACPI_STATUS
66 AcpiNsInitOneDevice (
67 ACPI_HANDLE ObjHandle,
68 UINT32 NestingLevel,
69 void *Context,
70 void **ReturnValue);

72 static ACPI_STATUS
73 AcpiNsFindIniMethods (
74 ACPI_HANDLE ObjHandle,
75 UINT32 NestingLevel,
76 void *Context,
77 void **ReturnValue);

80 /***
81 *
82 * FUNCTION: AcpiNsInitializeObjects
83 *
84 * PARAMETERS: None
85 *
86 * RETURN: Status
87 *
88 * DESCRIPTION: Walk the entire namespace and perform any necessary
89 * initialization on the objects found therein
90 *
91 **/

93 ACPI_STATUS
94 AcpiNsInitializeObjects (
95 void)
96 {
97 ACPI_STATUS Status;
98 ACPI_INIT_WALK_INFO Info;

101 ACPI_FUNCTION_TRACE (NsInitializeObjects);

104 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
105 "**** Starting initialization of namespace objects ****\n"));
106 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INIT,
107 "Completing Region/Field/Buffer/Package initialization:\n"));
107 "Completing Region/Field/Buffer/Package initialization:"));

109 /* Set all init info to zero */

111 ACPI_MEMSET (&Info, 0, sizeof (ACPI_INIT_WALK_INFO));

113 /* Walk entire namespace from the supplied root */

115 Status = AcpiWalkNamespace (ACPI_TYPE_ANY, ACPI_ROOT_OBJECT,
116 ACPI_UINT32_MAX, AcpiNsInitOneObject, NULL,
117 &Info, NULL);
118 if (ACPI_FAILURE (Status))
119 {
120 ACPI_EXCEPTION ((AE_INFO, Status, "During WalkNamespace"));
121 }

123 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INIT,
124 " Initialized %u/%u Regions %u/%u Fields %u/%u "

new/usr/src/common/acpica/components/namespace/nsinit.c 3

124 "\nInitialized %u/%u Regions %u/%u Fields %u/%u "
125 "Buffers %u/%u Packages (%u nodes)\n",
126 Info.OpRegionInit, Info.OpRegionCount,
127 Info.FieldInit, Info.FieldCount,
128 Info.BufferInit, Info.BufferCount,
129 Info.PackageInit, Info.PackageCount, Info.ObjectCount));

131 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
132 "%u Control Methods found\n", Info.MethodCount));
133 ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
134 "%u Op Regions found\n", Info.OpRegionCount));

136 return_ACPI_STATUS (AE_OK);
137 }

140 /***
141 *
142 * FUNCTION: AcpiNsInitializeDevices
143 *
144 * PARAMETERS: None
145 *
146 * RETURN: ACPI_STATUS
147 *
148 * DESCRIPTION: Walk the entire namespace and initialize all ACPI devices.
149 * This means running _INI on all present devices.
150 *
151 * Note: We install PCI config space handler on region access,
152 * not here.
153 *
154 **/

156 ACPI_STATUS
157 AcpiNsInitializeDevices (
158 void)
159 {
160 ACPI_STATUS Status;
161 ACPI_DEVICE_WALK_INFO Info;

164 ACPI_FUNCTION_TRACE (NsInitializeDevices);

167 /* Init counters */

169 Info.DeviceCount = 0;
170 Info.Num_STA = 0;
171 Info.Num_INI = 0;

173 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INIT,
174 "Initializing Device/Processor/Thermal objects "
175 "and executing _INI/_STA methods:\n"));
175 "by executing _INI methods:"));

177 /* Tree analysis: find all subtrees that contain _INI methods */

179 Status = AcpiNsWalkNamespace (ACPI_TYPE_ANY, ACPI_ROOT_OBJECT,
180 ACPI_UINT32_MAX, FALSE, AcpiNsFindIniMethods, NULL, &Info, NULL)
181 if (ACPI_FAILURE (Status))
182 {
183 goto ErrorExit;
184 }

186 /* Allocate the evaluation information block */

188 Info.EvaluateInfo = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_EVALUATE_INFO));

new/usr/src/common/acpica/components/namespace/nsinit.c 4

189 if (!Info.EvaluateInfo)
190 {
191 Status = AE_NO_MEMORY;
192 goto ErrorExit;
193 }

195 /*
196 * Execute the "global" _INI method that may appear at the root. This
197 * support is provided for Windows compatibility (Vista+) and is not
198 * part of the ACPI specification.
199 */
200 Info.EvaluateInfo->PrefixNode = AcpiGbl_RootNode;
201 Info.EvaluateInfo->RelativePathname = METHOD_NAME__INI;
201 Info.EvaluateInfo->Pathname = METHOD_NAME__INI;
202 Info.EvaluateInfo->Parameters = NULL;
203 Info.EvaluateInfo->Flags = ACPI_IGNORE_RETURN_VALUE;

205 Status = AcpiNsEvaluate (Info.EvaluateInfo);
206 if (ACPI_SUCCESS (Status))
207 {
208 Info.Num_INI++;
209 }

211 /* Walk namespace to execute all _INIs on present devices */

213 Status = AcpiNsWalkNamespace (ACPI_TYPE_ANY, ACPI_ROOT_OBJECT,
214 ACPI_UINT32_MAX, FALSE, AcpiNsInitOneDevice, NULL, &Info, NULL);

216 /*
217 * Any _OSI requests should be completed by now. If the BIOS has
218 * requested any Windows OSI strings, we will always truncate
219 * I/O addresses to 16 bits -- for Windows compatibility.
220 */
221 if (AcpiGbl_OsiData >= ACPI_OSI_WIN_2000)
222 {
223 AcpiGbl_TruncateIoAddresses = TRUE;
224 }

226 ACPI_FREE (Info.EvaluateInfo);
227 if (ACPI_FAILURE (Status))
228 {
229 goto ErrorExit;
230 }

232 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INIT,
233 " Executed %u _INI methods requiring %u _STA executions "
233 "\nExecuted %u _INI methods requiring %u _STA executions "
234 "(examined %u objects)\n",
235 Info.Num_INI, Info.Num_STA, Info.DeviceCount));

237 return_ACPI_STATUS (Status);

240 ErrorExit:
241 ACPI_EXCEPTION ((AE_INFO, Status, "During device initialization"));
242 return_ACPI_STATUS (Status);
243 }

246 /***
247 *
248 * FUNCTION: AcpiNsInitOneObject
249 *
250 * PARAMETERS: ObjHandle - Node
251 * Level - Current nesting level
252 * Context - Points to a init info struct

new/usr/src/common/acpica/components/namespace/nsinit.c 5

253 * ReturnValue - Not used
254 *
255 * RETURN: Status
256 *
257 * DESCRIPTION: Callback from AcpiWalkNamespace. Invoked for every object
258 * within the namespace.
259 *
260 * Currently, the only objects that require initialization are:
261 * 1) Methods
262 * 2) Op Regions
263 *
264 **/

266 static ACPI_STATUS
267 AcpiNsInitOneObject (
268 ACPI_HANDLE ObjHandle,
269 UINT32 Level,
270 void *Context,
271 void **ReturnValue)
272 {
273 ACPI_OBJECT_TYPE Type;
274 ACPI_STATUS Status = AE_OK;
275 ACPI_INIT_WALK_INFO *Info = (ACPI_INIT_WALK_INFO *) Context;
276 ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) ObjHandle;
277 ACPI_OPERAND_OBJECT *ObjDesc;

280 ACPI_FUNCTION_NAME (NsInitOneObject);

283 Info->ObjectCount++;

285 /* And even then, we are only interested in a few object types */

287 Type = AcpiNsGetType (ObjHandle);
288 ObjDesc = AcpiNsGetAttachedObject (Node);
289 if (!ObjDesc)
290 {
291 return (AE_OK);
292 }

294 /* Increment counters for object types we are looking for */

296 switch (Type)
297 {
298 case ACPI_TYPE_REGION:

300 Info->OpRegionCount++;
301 break;

303 case ACPI_TYPE_BUFFER_FIELD:

305 Info->FieldCount++;
306 break;

308 case ACPI_TYPE_LOCAL_BANK_FIELD:

310 Info->FieldCount++;
311 break;

313 case ACPI_TYPE_BUFFER:

315 Info->BufferCount++;
316 break;

318 case ACPI_TYPE_PACKAGE:

new/usr/src/common/acpica/components/namespace/nsinit.c 6

320 Info->PackageCount++;
321 break;

323 default:

325 /* No init required, just exit now */

327 return (AE_OK);
328 }

330 /* If the object is already initialized, nothing else to do */

332 if (ObjDesc->Common.Flags & AOPOBJ_DATA_VALID)
333 {
334 return (AE_OK);
335 }

337 /* Must lock the interpreter before executing AML code */

339 AcpiExEnterInterpreter ();

341 /*
342 * Each of these types can contain executable AML code within the
343 * declaration.
344 */
345 switch (Type)
346 {
347 case ACPI_TYPE_REGION:

349 Info->OpRegionInit++;
350 Status = AcpiDsGetRegionArguments (ObjDesc);
351 break;

353 case ACPI_TYPE_BUFFER_FIELD:

355 Info->FieldInit++;
356 Status = AcpiDsGetBufferFieldArguments (ObjDesc);
357 break;

359 case ACPI_TYPE_LOCAL_BANK_FIELD:

361 Info->FieldInit++;
362 Status = AcpiDsGetBankFieldArguments (ObjDesc);
363 break;

365 case ACPI_TYPE_BUFFER:

367 Info->BufferInit++;
368 Status = AcpiDsGetBufferArguments (ObjDesc);
369 break;

371 case ACPI_TYPE_PACKAGE:

373 Info->PackageInit++;
374 Status = AcpiDsGetPackageArguments (ObjDesc);
375 break;

377 default:

379 /* No other types can get here */

381 break;
382 }

384 if (ACPI_FAILURE (Status))

new/usr/src/common/acpica/components/namespace/nsinit.c 7

385 {
386 ACPI_EXCEPTION ((AE_INFO, Status,
387 "Could not execute arguments for [%4.4s] (%s)",
388 AcpiUtGetNodeName (Node), AcpiUtGetTypeName (Type)));
389 }

391 /*
384 * Print a dot for each object unless we are going to print the entire
385 * pathname
386 */
387 if (!(AcpiDbgLevel & ACPI_LV_INIT_NAMES))
388 {
389 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INIT, "."));
390 }

392 /*
392 * We ignore errors from above, and always return OK, since we don’t want
393 * to abort the walk on any single error.
394 */
395 AcpiExExitInterpreter ();
396 return (AE_OK);
397 }

400 /***
401 *
402 * FUNCTION: AcpiNsFindIniMethods
403 *
404 * PARAMETERS: ACPI_WALK_CALLBACK
405 *
406 * RETURN: ACPI_STATUS
407 *
408 * DESCRIPTION: Called during namespace walk. Finds objects named _INI under
409 * device/processor/thermal objects, and marks the entire subtree
410 * with a SUBTREE_HAS_INI flag. This flag is used during the
411 * subsequent device initialization walk to avoid entire subtrees
412 * that do not contain an _INI.
413 *
414 **/

416 static ACPI_STATUS
417 AcpiNsFindIniMethods (
418 ACPI_HANDLE ObjHandle,
419 UINT32 NestingLevel,
420 void *Context,
421 void **ReturnValue)
422 {
423 ACPI_DEVICE_WALK_INFO *Info = ACPI_CAST_PTR (ACPI_DEVICE_WALK_INFO, Contex
424 ACPI_NAMESPACE_NODE *Node;
425 ACPI_NAMESPACE_NODE *ParentNode;

428 /* Keep count of device/processor/thermal objects */

430 Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, ObjHandle);
431 if ((Node->Type == ACPI_TYPE_DEVICE) ||
432 (Node->Type == ACPI_TYPE_PROCESSOR) ||
433 (Node->Type == ACPI_TYPE_THERMAL))
434 {
435 Info->DeviceCount++;
436 return (AE_OK);
437 }

439 /* We are only looking for methods named _INI */

441 if (!ACPI_COMPARE_NAME (Node->Name.Ascii, METHOD_NAME__INI))

new/usr/src/common/acpica/components/namespace/nsinit.c 8

442 {
443 return (AE_OK);
444 }

446 /*
447 * The only _INI methods that we care about are those that are
448 * present under Device, Processor, and Thermal objects.
449 */
450 ParentNode = Node->Parent;
451 switch (ParentNode->Type)
452 {
453 case ACPI_TYPE_DEVICE:
454 case ACPI_TYPE_PROCESSOR:
455 case ACPI_TYPE_THERMAL:

457 /* Mark parent and bubble up the INI present flag to the root */

459 while (ParentNode)
460 {
461 ParentNode->Flags |= ANOBJ_SUBTREE_HAS_INI;
462 ParentNode = ParentNode->Parent;
463 }
464 break;

466 default:

468 break;
469 }

471 return (AE_OK);
472 }

475 /***
476 *
477 * FUNCTION: AcpiNsInitOneDevice
478 *
479 * PARAMETERS: ACPI_WALK_CALLBACK
480 *
481 * RETURN: ACPI_STATUS
482 *
483 * DESCRIPTION: This is called once per device soon after ACPI is enabled
484 * to initialize each device. It determines if the device is
485 * present, and if so, calls _INI.
486 *
487 **/

489 static ACPI_STATUS
490 AcpiNsInitOneDevice (
491 ACPI_HANDLE ObjHandle,
492 UINT32 NestingLevel,
493 void *Context,
494 void **ReturnValue)
495 {
496 ACPI_DEVICE_WALK_INFO *WalkInfo = ACPI_CAST_PTR (ACPI_DEVICE_WALK_INFO, Co
497 ACPI_EVALUATE_INFO *Info = WalkInfo->EvaluateInfo;
498 UINT32 Flags;
499 ACPI_STATUS Status;
500 ACPI_NAMESPACE_NODE *DeviceNode;

503 ACPI_FUNCTION_TRACE (NsInitOneDevice);

506 /* We are interested in Devices, Processors and ThermalZones only */

new/usr/src/common/acpica/components/namespace/nsinit.c 9

508 DeviceNode = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, ObjHandle);
509 if ((DeviceNode->Type != ACPI_TYPE_DEVICE) &&
510 (DeviceNode->Type != ACPI_TYPE_PROCESSOR) &&
511 (DeviceNode->Type != ACPI_TYPE_THERMAL))
512 {
513 return_ACPI_STATUS (AE_OK);
514 }

516 /*
517 * Because of an earlier namespace analysis, all subtrees that contain an
518 * _INI method are tagged.
519 *
520 * If this device subtree does not contain any _INI methods, we
521 * can exit now and stop traversing this entire subtree.
522 */
523 if (!(DeviceNode->Flags & ANOBJ_SUBTREE_HAS_INI))
524 {
525 return_ACPI_STATUS (AE_CTRL_DEPTH);
526 }

528 /*
529 * Run _STA to determine if this device is present and functioning. We
530 * must know this information for two important reasons (from ACPI spec):
531 *
532 * 1) We can only run _INI if the device is present.
533 * 2) We must abort the device tree walk on this subtree if the device is
534 * not present and is not functional (we will not examine the children)
535 *
536 * The _STA method is not required to be present under the device, we
537 * assume the device is present if _STA does not exist.
538 */
539 ACPI_DEBUG_EXEC (AcpiUtDisplayInitPathname (
540 ACPI_TYPE_METHOD, DeviceNode, METHOD_NAME__STA));

542 Status = AcpiUtExecute_STA (DeviceNode, &Flags);
543 if (ACPI_FAILURE (Status))
544 {
545 /* Ignore error and move on to next device */

547 return_ACPI_STATUS (AE_OK);
548 }

550 /*
551 * Flags == -1 means that _STA was not found. In this case, we assume that
552 * the device is both present and functional.
553 *
554 * From the ACPI spec, description of _STA:
555 *
556 * "If a device object (including the processor object) does not have an
557 * _STA object, then OSPM assumes that all of the above bits are set (in
558 * other words, the device is present, ..., and functioning)"
559 */
560 if (Flags != ACPI_UINT32_MAX)
561 {
562 WalkInfo->Num_STA++;
563 }

565 /*
566 * Examine the PRESENT and FUNCTIONING status bits
567 *
568 * Note: ACPI spec does not seem to specify behavior for the present but
569 * not functioning case, so we assume functioning if present.
570 */
571 if (!(Flags & ACPI_STA_DEVICE_PRESENT))
572 {
573 /* Device is not present, we must examine the Functioning bit */

new/usr/src/common/acpica/components/namespace/nsinit.c 10

575 if (Flags & ACPI_STA_DEVICE_FUNCTIONING)
576 {
577 /*
578 * Device is not present but is "functioning". In this case,
579 * we will not run _INI, but we continue to examine the children
580 * of this device.
581 *
582 * From the ACPI spec, description of _STA: (Note - no mention
583 * of whether to run _INI or not on the device in question)
584 *
585 * "_STA may return bit 0 clear (not present) with bit 3 set
586 * (device is functional). This case is used to indicate a valid
587 * device for which no device driver should be loaded (for example,
588 * a bridge device.) Children of this device may be present and
589 * valid. OSPM should continue enumeration below a device whose
590 * _STA returns this bit combination"
591 */
592 return_ACPI_STATUS (AE_OK);
593 }
594 else
595 {
596 /*
597 * Device is not present and is not functioning. We must abort the
598 * walk of this subtree immediately -- don’t look at the children
599 * of such a device.
600 *
601 * From the ACPI spec, description of _INI:
602 *
603 * "If the _STA method indicates that the device is not present,
604 * OSPM will not run the _INI and will not examine the children
605 * of the device for _INI methods"
606 */
607 return_ACPI_STATUS (AE_CTRL_DEPTH);
608 }
609 }

611 /*
612 * The device is present or is assumed present if no _STA exists.
613 * Run the _INI if it exists (not required to exist)
614 *
615 * Note: We know there is an _INI within this subtree, but it may not be
616 * under this particular device, it may be lower in the branch.
617 */
618 ACPI_DEBUG_EXEC (AcpiUtDisplayInitPathname (
619 ACPI_TYPE_METHOD, DeviceNode, METHOD_NAME__INI));

621 ACPI_MEMSET (Info, 0, sizeof (ACPI_EVALUATE_INFO));
622 Info->PrefixNode = DeviceNode;
623 Info->RelativePathname = METHOD_NAME__INI;
622 Info->Pathname = METHOD_NAME__INI;
624 Info->Parameters = NULL;
625 Info->Flags = ACPI_IGNORE_RETURN_VALUE;

627 Status = AcpiNsEvaluate (Info);
628 if (ACPI_SUCCESS (Status))
629 {
630 WalkInfo->Num_INI++;

631 if ((AcpiDbgLevel <= ACPI_LV_ALL_EXCEPTIONS) &&
632 (!(AcpiDbgLevel & ACPI_LV_INFO)))
633 {
634 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INIT, "."));
631 }
636 }

new/usr/src/common/acpica/components/namespace/nsinit.c 11

633 #ifdef ACPI_DEBUG_OUTPUT
634 else if (Status != AE_NOT_FOUND)
635 {
636 /* Ignore error and move on to next device */

638 char *ScopeName = AcpiNsGetExternalPathname (Info->Node);
643 char *ScopeName = AcpiNsGetExternalPathname (Info->ResolvedNode);

640 ACPI_EXCEPTION ((AE_INFO, Status, "during %s._INI execution",
641 ScopeName));
642 ACPI_FREE (ScopeName);
643 }
644 #endif

646 /* Ignore errors from above */

648 Status = AE_OK;

650 /*
651 * The _INI method has been run if present; call the Global Initialization
652 * Handler for this device.
653 */
654 if (AcpiGbl_InitHandler)
655 {
656 Status = AcpiGbl_InitHandler (DeviceNode, ACPI_INIT_DEVICE_INI);
657 }

659 return_ACPI_STATUS (Status);
660 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/namespace/nsload.c 1

**
 10010 Thu Dec 26 13:49:18 2013
new/usr/src/common/acpica/components/namespace/nsload.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: nsload - namespace loading/expanding/contracting procedures
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __NSLOAD_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acnamesp.h"
49 #include "acdispat.h"
50 #include "actables.h"

53 #define _COMPONENT ACPI_NAMESPACE
54 ACPI_MODULE_NAME ("nsload")

56 /* Local prototypes */

58 #ifdef ACPI_FUTURE_IMPLEMENTATION
59 ACPI_STATUS

new/usr/src/common/acpica/components/namespace/nsload.c 2

60 AcpiNsUnloadNamespace (
61 ACPI_HANDLE Handle);

63 static ACPI_STATUS
64 AcpiNsDeleteSubtree (
65 ACPI_HANDLE StartHandle);
66 #endif

69 #ifndef ACPI_NO_METHOD_EXECUTION
70 /***
71 *
72 * FUNCTION: AcpiNsLoadTable
73 *
74 * PARAMETERS: TableIndex - Index for table to be loaded
75 * Node - Owning NS node
76 *
77 * RETURN: Status
78 *
79 * DESCRIPTION: Load one ACPI table into the namespace
80 *
81 **/

83 ACPI_STATUS
84 AcpiNsLoadTable (
85 UINT32 TableIndex,
86 ACPI_NAMESPACE_NODE *Node)
87 {
88 ACPI_STATUS Status;

91 ACPI_FUNCTION_TRACE (NsLoadTable);

94 /*
95 * Parse the table and load the namespace with all named
96 * objects found within. Control methods are NOT parsed
97 * at this time. In fact, the control methods cannot be
98 * parsed until the entire namespace is loaded, because
99 * if a control method makes a forward reference (call)
100 * to another control method, we can’t continue parsing
101 * because we don’t know how many arguments to parse next!
102 */
103 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
104 if (ACPI_FAILURE (Status))
105 {
106 return_ACPI_STATUS (Status);
107 }

109 /* If table already loaded into namespace, just return */

111 if (AcpiTbIsTableLoaded (TableIndex))
112 {
113 Status = AE_ALREADY_EXISTS;
114 goto Unlock;
115 }

117 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
118 "**** Loading table into namespace ****\n"));

120 Status = AcpiTbAllocateOwnerId (TableIndex);
121 if (ACPI_FAILURE (Status))
122 {
123 goto Unlock;
124 }

new/usr/src/common/acpica/components/namespace/nsload.c 3

126 Status = AcpiNsParseTable (TableIndex, Node);
127 if (ACPI_SUCCESS (Status))
128 {
129 AcpiTbSetTableLoadedFlag (TableIndex, TRUE);
130 }
131 else
132 {
133 (void) AcpiTbReleaseOwnerId (TableIndex);
134 }

136 Unlock:
137 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);

139 if (ACPI_FAILURE (Status))
140 {
141 return_ACPI_STATUS (Status);
142 }

144 /*
145 * Now we can parse the control methods. We always parse
146 * them here for a sanity check, and if configured for
147 * just-in-time parsing, we delete the control method
148 * parse trees.
149 */
150 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
151 "**** Begin Table Method Parsing and Object Initialization\n"));

153 Status = AcpiDsInitializeObjects (TableIndex, Node);

155 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
156 "**** Completed Table Method Parsing and Object Initialization\n"));

158 return_ACPI_STATUS (Status);
159 }

______unchanged_portion_omitted_
354 #endif
355 #endif

new/usr/src/common/acpica/components/namespace/nsnames.c 1

**
 8693 Thu Dec 26 13:49:19 2013
new/usr/src/common/acpica/components/namespace/nsnames.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: nsnames - Name manipulation and search
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __NSNAMES_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "amlcode.h"
49 #include "acnamesp.h"

52 #define _COMPONENT ACPI_NAMESPACE
53 ACPI_MODULE_NAME ("nsnames")

56 /***
57 *
58 * FUNCTION: AcpiNsBuildExternalPath
59 *

new/usr/src/common/acpica/components/namespace/nsnames.c 2

60 * PARAMETERS: Node - NS node whose pathname is needed
61 * Size - Size of the pathname
62 * *NameBuffer - Where to return the pathname
63 *
64 * RETURN: Status
65 * Places the pathname into the NameBuffer, in external format
66 * (name segments separated by path separators)
67 *
68 * DESCRIPTION: Generate a full pathaname
69 *
70 **/

72 ACPI_STATUS
73 AcpiNsBuildExternalPath (
74 ACPI_NAMESPACE_NODE *Node,
75 ACPI_SIZE Size,
76 char *NameBuffer)
77 {
78 ACPI_SIZE Index;
79 ACPI_NAMESPACE_NODE *ParentNode;

82 ACPI_FUNCTION_ENTRY ();

85 /* Special case for root */

87 Index = Size - 1;
88 if (Index < ACPI_NAME_SIZE)
89 {
90 NameBuffer[0] = AML_ROOT_PREFIX;
91 NameBuffer[1] = 0;
92 return (AE_OK);
93 }

95 /* Store terminator byte, then build name backwards */

97 ParentNode = Node;
98 NameBuffer[Index] = 0;

100 while ((Index > ACPI_NAME_SIZE) && (ParentNode != AcpiGbl_RootNode))
101 {
102 Index -= ACPI_NAME_SIZE;

104 /* Put the name into the buffer */

106 ACPI_MOVE_32_TO_32 ((NameBuffer + Index), &ParentNode->Name);
107 ParentNode = ParentNode->Parent;

109 /* Prefix name with the path separator */

111 Index--;
112 NameBuffer[Index] = ACPI_PATH_SEPARATOR;
113 }

115 /* Overwrite final separator with the root prefix character */

117 NameBuffer[Index] = AML_ROOT_PREFIX;

119 if (Index != 0)
120 {
121 ACPI_ERROR ((AE_INFO,
122 "Could not construct external pathname; index=%u, size=%u, Path=%s",
123 (UINT32) Index, (UINT32) Size, &NameBuffer[Size]));

125 return (AE_BAD_PARAMETER);

new/usr/src/common/acpica/components/namespace/nsnames.c 3

126 }

128 return (AE_OK);
129 }

______unchanged_portion_omitted_

189 /***
190 *
191 * FUNCTION: AcpiNsGetPathnameLength
192 *
193 * PARAMETERS: Node - Namespace node
194 *
195 * RETURN: Length of path, including prefix
196 *
197 * DESCRIPTION: Get the length of the pathname string for this node
198 *
199 **/

201 ACPI_SIZE
202 AcpiNsGetPathnameLength (
203 ACPI_NAMESPACE_NODE *Node)
204 {
205 ACPI_SIZE Size;
206 ACPI_NAMESPACE_NODE *NextNode;

209 ACPI_FUNCTION_ENTRY ();

212 /*
213 * Compute length of pathname as 5 * number of name segments.
214 * Go back up the parent tree to the root
215 */
216 Size = 0;
217 NextNode = Node;

219 while (NextNode && (NextNode != AcpiGbl_RootNode))
220 {
221 if (ACPI_GET_DESCRIPTOR_TYPE (NextNode) != ACPI_DESC_TYPE_NAMED)
222 {
223 ACPI_ERROR ((AE_INFO,
224 "Invalid Namespace Node (%p) while traversing namespace",
225 NextNode));
226 return (0);
226 return 0;
227 }
228 Size += ACPI_PATH_SEGMENT_LENGTH;
229 NextNode = NextNode->Parent;
230 }

232 if (!Size)
233 {
234 Size = 1; /* Root node case */
235 }

237 return (Size + 1); /* +1 for null string terminator */
238 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/namespace/nsobject.c 1

**
 13934 Thu Dec 26 13:49:19 2013
new/usr/src/common/acpica/components/namespace/nsobject.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: nsobject - Utilities for objects attached to namespace
4 * table entries
5 *
6 **/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

46 #define __NSOBJECT_C__

48 #include "acpi.h"
49 #include "accommon.h"
50 #include "acnamesp.h"

53 #define _COMPONENT ACPI_NAMESPACE
54 ACPI_MODULE_NAME ("nsobject")

57 /***
58 *
59 * FUNCTION: AcpiNsAttachObject

new/usr/src/common/acpica/components/namespace/nsobject.c 2

60 *
61 * PARAMETERS: Node - Parent Node
62 * Object - Object to be attached
63 * Type - Type of object, or ACPI_TYPE_ANY if not
64 * known
65 *
66 * RETURN: Status
67 *
68 * DESCRIPTION: Record the given object as the value associated with the
69 * name whose ACPI_HANDLE is passed. If Object is NULL
70 * and Type is ACPI_TYPE_ANY, set the name as having no value.
71 * Note: Future may require that the Node->Flags field be passed
72 * as a parameter.
73 *
74 * MUTEX: Assumes namespace is locked
75 *
76 **/

78 ACPI_STATUS
79 AcpiNsAttachObject (
80 ACPI_NAMESPACE_NODE *Node,
81 ACPI_OPERAND_OBJECT *Object,
82 ACPI_OBJECT_TYPE Type)
83 {
84 ACPI_OPERAND_OBJECT *ObjDesc;
85 ACPI_OPERAND_OBJECT *LastObjDesc;
86 ACPI_OBJECT_TYPE ObjectType = ACPI_TYPE_ANY;

89 ACPI_FUNCTION_TRACE (NsAttachObject);

92 /*
93 * Parameter validation
94 */
95 if (!Node)
96 {
97 /* Invalid handle */

99 ACPI_ERROR ((AE_INFO, "Null NamedObj handle"));
100 return_ACPI_STATUS (AE_BAD_PARAMETER);
101 }

103 if (!Object && (ACPI_TYPE_ANY != Type))
104 {
105 /* Null object */

107 ACPI_ERROR ((AE_INFO,
108 "Null object, but type not ACPI_TYPE_ANY"));
109 return_ACPI_STATUS (AE_BAD_PARAMETER);
110 }

112 if (ACPI_GET_DESCRIPTOR_TYPE (Node) != ACPI_DESC_TYPE_NAMED)
113 {
114 /* Not a name handle */

116 ACPI_ERROR ((AE_INFO, "Invalid handle %p [%s]",
117 Node, AcpiUtGetDescriptorName (Node)));
118 return_ACPI_STATUS (AE_BAD_PARAMETER);
119 }

121 /* Check if this object is already attached */

123 if (Node->Object == Object)
124 {
125 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,

new/usr/src/common/acpica/components/namespace/nsobject.c 3

126 "Obj %p already installed in NameObj %p\n",
127 Object, Node));

129 return_ACPI_STATUS (AE_OK);
130 }

132 /* If null object, we will just install it */

134 if (!Object)
135 {
136 ObjDesc = NULL;
137 ObjectType = ACPI_TYPE_ANY;
138 }

140 /*
141 * If the source object is a namespace Node with an attached object,
142 * we will use that (attached) object
143 */
144 else if ((ACPI_GET_DESCRIPTOR_TYPE (Object) == ACPI_DESC_TYPE_NAMED) &&
145 ((ACPI_NAMESPACE_NODE *) Object)->Object)
146 {
147 /*
148 * Value passed is a name handle and that name has a
149 * non-null value. Use that name’s value and type.
150 */
151 ObjDesc = ((ACPI_NAMESPACE_NODE *) Object)->Object;
152 ObjectType = ((ACPI_NAMESPACE_NODE *) Object)->Type;
153 }

155 /*
156 * Otherwise, we will use the parameter object, but we must type
157 * it first
158 */
159 else
160 {
161 ObjDesc = (ACPI_OPERAND_OBJECT *) Object;

163 /* Use the given type */

165 ObjectType = Type;
166 }

168 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Installing %p into Node %p [%4.4s]\n",
169 ObjDesc, Node, AcpiUtGetNodeName (Node)));

171 /* Detach an existing attached object if present */

173 if (Node->Object)
174 {
175 AcpiNsDetachObject (Node);
176 }

178 if (ObjDesc)
179 {
180 /*
181 * Must increment the new value’s reference count
182 * (if it is an internal object)
183 */
184 AcpiUtAddReference (ObjDesc);

186 /*
187 * Handle objects with multiple descriptors - walk
188 * to the end of the descriptor list
189 */
190 LastObjDesc = ObjDesc;
191 while (LastObjDesc->Common.NextObject)

new/usr/src/common/acpica/components/namespace/nsobject.c 4

192 {
193 LastObjDesc = LastObjDesc->Common.NextObject;
194 }

196 /* Install the object at the front of the object list */

198 LastObjDesc->Common.NextObject = Node->Object;
199 }

201 Node->Type = (UINT8) ObjectType;
202 Node->Object = ObjDesc;

204 return_ACPI_STATUS (AE_OK);
205 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/namespace/nsparse.c 1

**
 7053 Thu Dec 26 13:49:19 2013
new/usr/src/common/acpica/components/namespace/nsparse.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: nsparse - namespace interface to AML parser
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __NSPARSE_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acnamesp.h"
49 #include "acparser.h"
50 #include "acdispat.h"
51 #include "actables.h"

54 #define _COMPONENT ACPI_NAMESPACE
55 ACPI_MODULE_NAME ("nsparse")

58 /***
59 *

new/usr/src/common/acpica/components/namespace/nsparse.c 2

60 * FUNCTION: NsOneCompleteParse
61 *
62 * PARAMETERS: PassNumber - 1 or 2
63 * TableDesc - The table to be parsed.
64 *
65 * RETURN: Status
66 *
67 * DESCRIPTION: Perform one complete parse of an ACPI/AML table.
68 *
69 **/

71 ACPI_STATUS
72 AcpiNsOneCompleteParse (
73 UINT32 PassNumber,
74 UINT32 TableIndex,
75 ACPI_NAMESPACE_NODE *StartNode)
76 {
77 ACPI_PARSE_OBJECT *ParseRoot;
78 ACPI_STATUS Status;
79 UINT32 AmlLength;
80 UINT8 *AmlStart;
81 ACPI_WALK_STATE *WalkState;
82 ACPI_TABLE_HEADER *Table;
83 ACPI_OWNER_ID OwnerId;

86 ACPI_FUNCTION_TRACE (NsOneCompleteParse);

89 Status = AcpiTbGetOwnerId (TableIndex, &OwnerId);
90 if (ACPI_FAILURE (Status))
91 {
92 return_ACPI_STATUS (Status);
93 }

95 /* Create and init a Root Node */

97 ParseRoot = AcpiPsCreateScopeOp ();
98 if (!ParseRoot)
99 {
100 return_ACPI_STATUS (AE_NO_MEMORY);
101 }

103 /* Create and initialize a new walk state */

105 WalkState = AcpiDsCreateWalkState (OwnerId, NULL, NULL, NULL);
106 if (!WalkState)
107 {
108 AcpiPsFreeOp (ParseRoot);
109 return_ACPI_STATUS (AE_NO_MEMORY);
110 }

112 Status = AcpiGetTableByIndex (TableIndex, &Table);
113 if (ACPI_FAILURE (Status))
114 {
115 AcpiDsDeleteWalkState (WalkState);
116 AcpiPsFreeOp (ParseRoot);
117 return_ACPI_STATUS (Status);
118 }

120 /* Table must consist of at least a complete header */

122 if (Table->Length < sizeof (ACPI_TABLE_HEADER))
123 {
124 Status = AE_BAD_HEADER;
125 }

new/usr/src/common/acpica/components/namespace/nsparse.c 3

126 else
127 {
128 AmlStart = (UINT8 *) Table + sizeof (ACPI_TABLE_HEADER);
129 AmlLength = Table->Length - sizeof (ACPI_TABLE_HEADER);
130 Status = AcpiDsInitAmlWalk (WalkState, ParseRoot, NULL,
131 AmlStart, AmlLength, NULL, (UINT8) PassNumber);
132 }

134 if (ACPI_FAILURE (Status))
135 {
136 AcpiDsDeleteWalkState (WalkState);
137 goto Cleanup;
138 }

140 /* StartNode is the default location to load the table */

142 if (StartNode && StartNode != AcpiGbl_RootNode)
143 {
144 Status = AcpiDsScopeStackPush (StartNode, ACPI_TYPE_METHOD, WalkState);
145 if (ACPI_FAILURE (Status))
146 {
147 AcpiDsDeleteWalkState (WalkState);
148 goto Cleanup;
149 }
150 }

152 /* Parse the AML */

154 ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "*PARSE* pass %u parse\n", PassNumber));
155 Status = AcpiPsParseAml (WalkState);

157 Cleanup:
158 AcpiPsDeleteParseTree (ParseRoot);
159 return_ACPI_STATUS (Status);
160 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/namespace/nspredef.c 1

**
 14310 Thu Dec 26 13:49:20 2013
new/usr/src/common/acpica/components/namespace/nspredef.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: nspredef - Validation of ACPI predefined methods and objects
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define ACPI_CREATE_PREDEFINED_TABLE

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acnamesp.h"
49 #include "acpredef.h"

52 #define _COMPONENT ACPI_NAMESPACE
53 ACPI_MODULE_NAME ("nspredef")

56 /***
57 *
58 * This module validates predefined ACPI objects that appear in the namespace,
59 * at the time they are evaluated (via AcpiEvaluateObject). The purpose of this
60 * validation is to detect problems with BIOS-exposed predefined ACPI objects

new/usr/src/common/acpica/components/namespace/nspredef.c 2

61 * before the results are returned to the ACPI-related drivers.
62 *
63 * There are several areas that are validated:
64 *
65 * 1) The number of input arguments as defined by the method/object in the
66 * ASL is validated against the ACPI specification.
67 * 2) The type of the return object (if any) is validated against the ACPI
68 * specification.
69 * 3) For returned package objects, the count of package elements is
70 * validated, as well as the type of each package element. Nested
71 * packages are supported.
72 *
73 * For any problems found, a warning message is issued.
74 *
75 **/

78 /* Local prototypes */

80 static ACPI_STATUS
81 AcpiNsCheckReference (
82 ACPI_EVALUATE_INFO *Info,
83 ACPI_OPERAND_OBJECT *ReturnObject);

85 static UINT32
86 AcpiNsGetBitmappedType (
87 ACPI_OPERAND_OBJECT *ReturnObject);

90 /***
91 *
92 * FUNCTION: AcpiNsCheckReturnValue
93 *
94 * PARAMETERS: Node - Namespace node for the method/object
95 * Info - Method execution information block
96 * UserParamCount - Number of parameters actually passed
97 * ReturnStatus - Status from the object evaluation
98 * ReturnObjectPtr - Pointer to the object returned from the
99 * evaluation of a method or object
100 *
101 * RETURN: Status
102 *
103 * DESCRIPTION: Check the value returned from a predefined name.
104 *
105 **/

107 ACPI_STATUS
108 AcpiNsCheckReturnValue (
109 ACPI_NAMESPACE_NODE *Node,
110 ACPI_EVALUATE_INFO *Info,
111 UINT32 UserParamCount,
112 ACPI_STATUS ReturnStatus,
113 ACPI_OPERAND_OBJECT **ReturnObjectPtr)
114 {
115 ACPI_STATUS Status;
116 const ACPI_PREDEFINED_INFO *Predefined;

119 /* If not a predefined name, we cannot validate the return object */

121 Predefined = Info->Predefined;
122 if (!Predefined)
123 {
124 return (AE_OK);
125 }

new/usr/src/common/acpica/components/namespace/nspredef.c 3

127 /*
128 * If the method failed or did not actually return an object, we cannot
129 * validate the return object
130 */
131 if ((ReturnStatus != AE_OK) &&
132 (ReturnStatus != AE_CTRL_RETURN_VALUE))
133 {
134 return (AE_OK);
135 }

137 /*
138 * Return value validation and possible repair.
139 *
140 * 1) Don’t perform return value validation/repair if this feature
141 * has been disabled via a global option.
142 *
143 * 2) We have a return value, but if one wasn’t expected, just exit,
144 * this is not a problem. For example, if the "Implicit Return"
145 * feature is enabled, methods will always return a value.
146 *
147 * 3) If the return value can be of any type, then we cannot perform
148 * any validation, just exit.
149 */
150 if (AcpiGbl_DisableAutoRepair ||
151 (!Predefined->Info.ExpectedBtypes) ||
152 (Predefined->Info.ExpectedBtypes == ACPI_RTYPE_ALL))
153 {
154 return (AE_OK);
155 }

157 /*
158 * Check that the type of the main return object is what is expected
159 * for this predefined name
160 */
161 Status = AcpiNsCheckObjectType (Info, ReturnObjectPtr,
162 Predefined->Info.ExpectedBtypes, ACPI_NOT_PACKAGE_ELEMENT);
163 if (ACPI_FAILURE (Status))
164 {
165 goto Exit;
166 }

168 /*
169 *
170 * 4) If there is no return value and it is optional, just return
171 * AE_OK (_WAK).
172 */
173 if (!(*ReturnObjectPtr))
174 {
175 goto Exit;
176 }

178 /*
179 * For returned Package objects, check the type of all sub-objects.
180 * Note: Package may have been newly created by call above.
181 */
182 if ((*ReturnObjectPtr)->Common.Type == ACPI_TYPE_PACKAGE)
183 {
184 Info->ParentPackage = *ReturnObjectPtr;
185 Status = AcpiNsCheckPackage (Info, ReturnObjectPtr);
186 if (ACPI_FAILURE (Status))
187 {
188 /* We might be able to fix some errors */

190 if ((Status != AE_AML_OPERAND_TYPE) &&
191 (Status != AE_AML_OPERAND_VALUE))
192 {

new/usr/src/common/acpica/components/namespace/nspredef.c 4

193 goto Exit;
194 }
195 }
196 }

198 /*
199 * The return object was OK, or it was successfully repaired above.
200 * Now make some additional checks such as verifying that package
201 * objects are sorted correctly (if required) or buffer objects have
202 * the correct data width (bytes vs. dwords). These repairs are
203 * performed on a per-name basis, i.e., the code is specific to
204 * particular predefined names.
205 */
206 Status = AcpiNsComplexRepairs (Info, Node, Status, ReturnObjectPtr);

208 Exit:
209 /*
210 * If the object validation failed or if we successfully repaired one
211 * or more objects, mark the parent node to suppress further warning
212 * messages during the next evaluation of the same method/object.
213 */
214 if (ACPI_FAILURE (Status) ||
215 (Info->ReturnFlags & ACPI_OBJECT_REPAIRED))
216 {
217 Node->Flags |= ANOBJ_EVALUATED;
218 }

220 return (Status);
221 }

224 /***
225 *
226 * FUNCTION: AcpiNsCheckObjectType
227 *
228 * PARAMETERS: Info - Method execution information block
229 * ReturnObjectPtr - Pointer to the object returned from the
230 * evaluation of a method or object
231 * ExpectedBtypes - Bitmap of expected return type(s)
232 * PackageIndex - Index of object within parent package (if
233 * applicable - ACPI_NOT_PACKAGE_ELEMENT
234 * otherwise)
235 *
236 * RETURN: Status
237 *
238 * DESCRIPTION: Check the type of the return object against the expected object
239 * type(s). Use of Btype allows multiple expected object types.
240 *
241 **/

243 ACPI_STATUS
244 AcpiNsCheckObjectType (
245 ACPI_EVALUATE_INFO *Info,
246 ACPI_OPERAND_OBJECT **ReturnObjectPtr,
247 UINT32 ExpectedBtypes,
248 UINT32 PackageIndex)
249 {
250 ACPI_OPERAND_OBJECT *ReturnObject = *ReturnObjectPtr;
251 ACPI_STATUS Status = AE_OK;
252 char TypeBuffer[48]; /* Room for 5 types */

255 /* A Namespace node should not get here, but make sure */

257 if (ReturnObject &&
258 ACPI_GET_DESCRIPTOR_TYPE (ReturnObject) == ACPI_DESC_TYPE_NAMED)

new/usr/src/common/acpica/components/namespace/nspredef.c 5

259 {
260 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, Info->NodeFlags,
261 "Invalid return type - Found a Namespace node [%4.4s] type %s",
262 ReturnObject->Node.Name.Ascii,
263 AcpiUtGetTypeName (ReturnObject->Node.Type)));
264 return (AE_AML_OPERAND_TYPE);
265 }

267 /*
268 * Convert the object type (ACPI_TYPE_xxx) to a bitmapped object type.
269 * The bitmapped type allows multiple possible return types.
270 *
271 * Note, the cases below must handle all of the possible types returned
272 * from all of the predefined names (including elements of returned
273 * packages)
274 */
275 Info->ReturnBtype = AcpiNsGetBitmappedType (ReturnObject);
276 if (Info->ReturnBtype == ACPI_RTYPE_ANY)
277 {
278 /* Not one of the supported objects, must be incorrect */
279 goto TypeErrorExit;
280 }

282 /* For reference objects, check that the reference type is correct */

284 if ((Info->ReturnBtype & ExpectedBtypes) == ACPI_RTYPE_REFERENCE)
285 {
286 Status = AcpiNsCheckReference (Info, ReturnObject);
287 return (Status);
288 }

290 /* Attempt simple repair of the returned object if necessary */

292 Status = AcpiNsSimpleRepair (Info, ExpectedBtypes,
293 PackageIndex, ReturnObjectPtr);
294 if (ACPI_SUCCESS (Status))
295 {
296 return (AE_OK); /* Successful repair */
297 }

300 TypeErrorExit:

302 /* Create a string with all expected types for this predefined object */

304 AcpiUtGetExpectedReturnTypes (TypeBuffer, ExpectedBtypes);

306 if (!ReturnObject)
307 {
308 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, Info->NodeFlags,
309 "Expected return object of type %s",
310 TypeBuffer));
311 }
312 else if (PackageIndex == ACPI_NOT_PACKAGE_ELEMENT)
313 {
314 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, Info->NodeFlags,
315 "Return type mismatch - found %s, expected %s",
316 AcpiUtGetObjectTypeName (ReturnObject), TypeBuffer));
317 }
318 else
319 {
320 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, Info->NodeFlags,
321 "Return Package type mismatch at index %u - "
322 "found %s, expected %s", PackageIndex,
323 AcpiUtGetObjectTypeName (ReturnObject), TypeBuffer));
324 }

new/usr/src/common/acpica/components/namespace/nspredef.c 6

326 return (AE_AML_OPERAND_TYPE);
327 }

330 /***
331 *
332 * FUNCTION: AcpiNsCheckReference
333 *
334 * PARAMETERS: Info - Method execution information block
335 * ReturnObject - Object returned from the evaluation of a
336 * method or object
337 *
338 * RETURN: Status
339 *
340 * DESCRIPTION: Check a returned reference object for the correct reference
341 * type. The only reference type that can be returned from a
342 * predefined method is a named reference. All others are invalid.
343 *
344 **/

346 static ACPI_STATUS
347 AcpiNsCheckReference (
348 ACPI_EVALUATE_INFO *Info,
349 ACPI_OPERAND_OBJECT *ReturnObject)
350 {

352 /*
353 * Check the reference object for the correct reference type (opcode).
354 * The only type of reference that can be converted to an ACPI_OBJECT is
355 * a reference to a named object (reference class: NAME)
356 */
357 if (ReturnObject->Reference.Class == ACPI_REFCLASS_NAME)
358 {
359 return (AE_OK);
360 }

362 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, Info->NodeFlags,
363 "Return type mismatch - unexpected reference object type [%s] %2.2X",
364 AcpiUtGetReferenceName (ReturnObject),
365 ReturnObject->Reference.Class));

367 return (AE_AML_OPERAND_TYPE);
368 }

371 /***
372 *
373 * FUNCTION: AcpiNsGetBitmappedType
374 *
375 * PARAMETERS: ReturnObject - Object returned from method/obj evaluation
376 *
377 * RETURN: Object return type. ACPI_RTYPE_ANY indicates that the object
378 * type is not supported. ACPI_RTYPE_NONE indicates that no
379 * object was returned (ReturnObject is NULL).
380 *
381 * DESCRIPTION: Convert object type into a bitmapped object return type.
382 *
383 **/

385 static UINT32
386 AcpiNsGetBitmappedType (
387 ACPI_OPERAND_OBJECT *ReturnObject)
388 {
389 UINT32 ReturnBtype;

new/usr/src/common/acpica/components/namespace/nspredef.c 7

392 if (!ReturnObject)
393 {
394 return (ACPI_RTYPE_NONE);
395 }

397 /* Map ACPI_OBJECT_TYPE to internal bitmapped type */

399 switch (ReturnObject->Common.Type)
400 {
401 case ACPI_TYPE_INTEGER:

403 ReturnBtype = ACPI_RTYPE_INTEGER;
404 break;

406 case ACPI_TYPE_BUFFER:

408 ReturnBtype = ACPI_RTYPE_BUFFER;
409 break;

411 case ACPI_TYPE_STRING:

413 ReturnBtype = ACPI_RTYPE_STRING;
414 break;

416 case ACPI_TYPE_PACKAGE:

418 ReturnBtype = ACPI_RTYPE_PACKAGE;
419 break;

421 case ACPI_TYPE_LOCAL_REFERENCE:

423 ReturnBtype = ACPI_RTYPE_REFERENCE;
424 break;

426 default:

428 /* Not one of the supported objects, must be incorrect */

430 ReturnBtype = ACPI_RTYPE_ANY;
431 break;
432 }

434 return (ReturnBtype);
435 }

new/usr/src/common/acpica/components/namespace/nsprepkg.c 1

**
 20409 Thu Dec 26 13:49:20 2013
new/usr/src/common/acpica/components/namespace/nsprepkg.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: nsprepkg - Validation of package objects for predefined names
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "acnamesp.h"
47 #include "acpredef.h"

50 #define _COMPONENT ACPI_NAMESPACE
51 ACPI_MODULE_NAME ("nsprepkg")

54 /* Local prototypes */

56 static ACPI_STATUS
57 AcpiNsCheckPackageList (
58 ACPI_EVALUATE_INFO *Info,
59 const ACPI_PREDEFINED_INFO *Package,
60 ACPI_OPERAND_OBJECT **Elements,
61 UINT32 Count);

new/usr/src/common/acpica/components/namespace/nsprepkg.c 2

63 static ACPI_STATUS
64 AcpiNsCheckPackageElements (
65 ACPI_EVALUATE_INFO *Info,
66 ACPI_OPERAND_OBJECT **Elements,
67 UINT8 Type1,
68 UINT32 Count1,
69 UINT8 Type2,
70 UINT32 Count2,
71 UINT32 StartIndex);

74 /***
75 *
76 * FUNCTION: AcpiNsCheckPackage
77 *
78 * PARAMETERS: Info - Method execution information block
79 * ReturnObjectPtr - Pointer to the object returned from the
80 * evaluation of a method or object
81 *
82 * RETURN: Status
83 *
84 * DESCRIPTION: Check a returned package object for the correct count and
85 * correct type of all sub-objects.
86 *
87 **/

89 ACPI_STATUS
90 AcpiNsCheckPackage (
91 ACPI_EVALUATE_INFO *Info,
92 ACPI_OPERAND_OBJECT **ReturnObjectPtr)
93 {
94 ACPI_OPERAND_OBJECT *ReturnObject = *ReturnObjectPtr;
95 const ACPI_PREDEFINED_INFO *Package;
96 ACPI_OPERAND_OBJECT **Elements;
97 ACPI_STATUS Status = AE_OK;
98 UINT32 ExpectedCount;
99 UINT32 Count;
100 UINT32 i;

103 ACPI_FUNCTION_NAME (NsCheckPackage);

106 /* The package info for this name is in the next table entry */

108 Package = Info->Predefined + 1;

110 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,
111 "%s Validating return Package of Type %X, Count %X\n",
112 Info->FullPathname, Package->RetInfo.Type,
113 ReturnObject->Package.Count));

115 /*
116 * For variable-length Packages, we can safely remove all embedded
117 * and trailing NULL package elements
118 */
119 AcpiNsRemoveNullElements (Info, Package->RetInfo.Type, ReturnObject);

121 /* Extract package count and elements array */

123 Elements = ReturnObject->Package.Elements;
124 Count = ReturnObject->Package.Count;

126 /*
127 * Most packages must have at least one element. The only exception

new/usr/src/common/acpica/components/namespace/nsprepkg.c 3

128 * is the variable-length package (ACPI_PTYPE1_VAR).
129 */
130 if (!Count)
131 {
132 if (Package->RetInfo.Type == ACPI_PTYPE1_VAR)
133 {
134 return (AE_OK);
135 }

137 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, Info->NodeFlags,
138 "Return Package has no elements (empty)"));

140 return (AE_AML_OPERAND_VALUE);
141 }

143 /*
144 * Decode the type of the expected package contents
145 *
146 * PTYPE1 packages contain no subpackages
147 * PTYPE2 packages contain sub-packages
148 */
149 switch (Package->RetInfo.Type)
150 {
151 case ACPI_PTYPE1_FIXED:
152 /*
153 * The package count is fixed and there are no sub-packages
154 *
155 * If package is too small, exit.
156 * If package is larger than expected, issue warning but continue
157 */
158 ExpectedCount = Package->RetInfo.Count1 + Package->RetInfo.Count2;
159 if (Count < ExpectedCount)
160 {
161 goto PackageTooSmall;
162 }
163 else if (Count > ExpectedCount)
164 {
165 ACPI_DEBUG_PRINT ((ACPI_DB_REPAIR,
166 "%s: Return Package is larger than needed - "
167 "found %u, expected %u\n",
168 Info->FullPathname, Count, ExpectedCount));
169 }

171 /* Validate all elements of the returned package */

173 Status = AcpiNsCheckPackageElements (Info, Elements,
174 Package->RetInfo.ObjectType1, Package->RetInfo.Count1,
175 Package->RetInfo.ObjectType2, Package->RetInfo.Count2, 0);
176 break;

178 case ACPI_PTYPE1_VAR:
179 /*
180 * The package count is variable, there are no sub-packages, and all
181 * elements must be of the same type
182 */
183 for (i = 0; i < Count; i++)
184 {
185 Status = AcpiNsCheckObjectType (Info, Elements,
186 Package->RetInfo.ObjectType1, i);
187 if (ACPI_FAILURE (Status))
188 {
189 return (Status);
190 }
191 Elements++;
192 }
193 break;

new/usr/src/common/acpica/components/namespace/nsprepkg.c 4

195 case ACPI_PTYPE1_OPTION:
196 /*
197 * The package count is variable, there are no sub-packages. There are
198 * a fixed number of required elements, and a variable number of
199 * optional elements.
200 *
201 * Check if package is at least as large as the minimum required
202 */
203 ExpectedCount = Package->RetInfo3.Count;
204 if (Count < ExpectedCount)
205 {
206 goto PackageTooSmall;
207 }

209 /* Variable number of sub-objects */

211 for (i = 0; i < Count; i++)
212 {
213 if (i < Package->RetInfo3.Count)
214 {
215 /* These are the required package elements (0, 1, or 2) */

217 Status = AcpiNsCheckObjectType (Info, Elements,
218 Package->RetInfo3.ObjectType[i], i);
219 if (ACPI_FAILURE (Status))
220 {
221 return (Status);
222 }
223 }
224 else
225 {
226 /* These are the optional package elements */

228 Status = AcpiNsCheckObjectType (Info, Elements,
229 Package->RetInfo3.TailObjectType, i);
230 if (ACPI_FAILURE (Status))
231 {
232 return (Status);
233 }
234 }
235 Elements++;
236 }
237 break;

239 case ACPI_PTYPE2_REV_FIXED:

241 /* First element is the (Integer) revision */

243 Status = AcpiNsCheckObjectType (Info, Elements,
244 ACPI_RTYPE_INTEGER, 0);
245 if (ACPI_FAILURE (Status))
246 {
247 return (Status);
248 }

250 Elements++;
251 Count--;

253 /* Examine the sub-packages */

255 Status = AcpiNsCheckPackageList (Info, Package, Elements, Count);
256 break;

258 case ACPI_PTYPE2_PKG_COUNT:

new/usr/src/common/acpica/components/namespace/nsprepkg.c 5

260 /* First element is the (Integer) count of sub-packages to follow */

262 Status = AcpiNsCheckObjectType (Info, Elements,
263 ACPI_RTYPE_INTEGER, 0);
264 if (ACPI_FAILURE (Status))
265 {
266 return (Status);
267 }

269 /*
270 * Count cannot be larger than the parent package length, but allow it
271 * to be smaller. The >= accounts for the Integer above.
272 */
273 ExpectedCount = (UINT32) (*Elements)->Integer.Value;
274 if (ExpectedCount >= Count)
275 {
276 goto PackageTooSmall;
277 }

279 Count = ExpectedCount;
280 Elements++;

282 /* Examine the sub-packages */

284 Status = AcpiNsCheckPackageList (Info, Package, Elements, Count);
285 break;

287 case ACPI_PTYPE2:
288 case ACPI_PTYPE2_FIXED:
289 case ACPI_PTYPE2_MIN:
290 case ACPI_PTYPE2_COUNT:
291 case ACPI_PTYPE2_FIX_VAR:
292 /*
293 * These types all return a single Package that consists of a
294 * variable number of sub-Packages.
295 *
296 * First, ensure that the first element is a sub-Package. If not,
297 * the BIOS may have incorrectly returned the object as a single
298 * package instead of a Package of Packages (a common error if
299 * there is only one entry). We may be able to repair this by
300 * wrapping the returned Package with a new outer Package.
301 */
302 if (*Elements && ((*Elements)->Common.Type != ACPI_TYPE_PACKAGE))
303 {
304 /* Create the new outer package and populate it */

306 Status = AcpiNsWrapWithPackage (Info, ReturnObject, ReturnObjectPtr)
307 if (ACPI_FAILURE (Status))
308 {
309 return (Status);
310 }

312 /* Update locals to point to the new package (of 1 element) */

314 ReturnObject = *ReturnObjectPtr;
315 Elements = ReturnObject->Package.Elements;
316 Count = 1;
317 }

319 /* Examine the sub-packages */

321 Status = AcpiNsCheckPackageList (Info, Package, Elements, Count);
322 break;

324 default:

new/usr/src/common/acpica/components/namespace/nsprepkg.c 6

326 /* Should not get here if predefined info table is correct */

328 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, Info->NodeFlags,
329 "Invalid internal return type in table entry: %X",
330 Package->RetInfo.Type));

332 return (AE_AML_INTERNAL);
333 }

335 return (Status);

338 PackageTooSmall:

340 /* Error exit for the case with an incorrect package count */

342 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, Info->NodeFlags,
343 "Return Package is too small - found %u elements, expected %u",
344 Count, ExpectedCount));

346 return (AE_AML_OPERAND_VALUE);
347 }

350 /***
351 *
352 * FUNCTION: AcpiNsCheckPackageList
353 *
354 * PARAMETERS: Info - Method execution information block
355 * Package - Pointer to package-specific info for method
356 * Elements - Element list of parent package. All elements
357 * of this list should be of type Package.
358 * Count - Count of subpackages
359 *
360 * RETURN: Status
361 *
362 * DESCRIPTION: Examine a list of subpackages
363 *
364 **/

366 static ACPI_STATUS
367 AcpiNsCheckPackageList (
368 ACPI_EVALUATE_INFO *Info,
369 const ACPI_PREDEFINED_INFO *Package,
370 ACPI_OPERAND_OBJECT **Elements,
371 UINT32 Count)
372 {
373 ACPI_OPERAND_OBJECT *SubPackage;
374 ACPI_OPERAND_OBJECT **SubElements;
375 ACPI_STATUS Status;
376 UINT32 ExpectedCount;
377 UINT32 i;
378 UINT32 j;

381 /*
382 * Validate each sub-Package in the parent Package
383 *
384 * NOTE: assumes list of sub-packages contains no NULL elements.
385 * Any NULL elements should have been removed by earlier call
386 * to AcpiNsRemoveNullElements.
387 */
388 for (i = 0; i < Count; i++)
389 {
390 SubPackage = *Elements;
391 SubElements = SubPackage->Package.Elements;

new/usr/src/common/acpica/components/namespace/nsprepkg.c 7

392 Info->ParentPackage = SubPackage;

394 /* Each sub-object must be of type Package */

396 Status = AcpiNsCheckObjectType (Info, &SubPackage,
397 ACPI_RTYPE_PACKAGE, i);
398 if (ACPI_FAILURE (Status))
399 {
400 return (Status);
401 }

403 /* Examine the different types of expected sub-packages */

405 Info->ParentPackage = SubPackage;
406 switch (Package->RetInfo.Type)
407 {
408 case ACPI_PTYPE2:
409 case ACPI_PTYPE2_PKG_COUNT:
410 case ACPI_PTYPE2_REV_FIXED:

412 /* Each subpackage has a fixed number of elements */

414 ExpectedCount = Package->RetInfo.Count1 + Package->RetInfo.Count2;
415 if (SubPackage->Package.Count < ExpectedCount)
416 {
417 goto PackageTooSmall;
418 }

420 Status = AcpiNsCheckPackageElements (Info, SubElements,
421 Package->RetInfo.ObjectType1,
422 Package->RetInfo.Count1,
423 Package->RetInfo.ObjectType2,
424 Package->RetInfo.Count2, 0);
425 if (ACPI_FAILURE (Status))
426 {
427 return (Status);
428 }
429 break;

431 case ACPI_PTYPE2_FIX_VAR:
432 /*
433 * Each subpackage has a fixed number of elements and an
434 * optional element
435 */
436 ExpectedCount = Package->RetInfo.Count1 + Package->RetInfo.Count2;
437 if (SubPackage->Package.Count < ExpectedCount)
438 {
439 goto PackageTooSmall;
440 }

442 Status = AcpiNsCheckPackageElements (Info, SubElements,
443 Package->RetInfo.ObjectType1,
444 Package->RetInfo.Count1,
445 Package->RetInfo.ObjectType2,
446 SubPackage->Package.Count - Package->RetInfo.Count1, 0);
447 if (ACPI_FAILURE (Status))
448 {
449 return (Status);
450 }
451 break;

453 case ACPI_PTYPE2_FIXED:

455 /* Each sub-package has a fixed length */

457 ExpectedCount = Package->RetInfo2.Count;

new/usr/src/common/acpica/components/namespace/nsprepkg.c 8

458 if (SubPackage->Package.Count < ExpectedCount)
459 {
460 goto PackageTooSmall;
461 }

463 /* Check the type of each sub-package element */

465 for (j = 0; j < ExpectedCount; j++)
466 {
467 Status = AcpiNsCheckObjectType (Info, &SubElements[j],
468 Package->RetInfo2.ObjectType[j], j);
469 if (ACPI_FAILURE (Status))
470 {
471 return (Status);
472 }
473 }
474 break;

476 case ACPI_PTYPE2_MIN:

478 /* Each sub-package has a variable but minimum length */

480 ExpectedCount = Package->RetInfo.Count1;
481 if (SubPackage->Package.Count < ExpectedCount)
482 {
483 goto PackageTooSmall;
484 }

486 /* Check the type of each sub-package element */

488 Status = AcpiNsCheckPackageElements (Info, SubElements,
489 Package->RetInfo.ObjectType1,
490 SubPackage->Package.Count, 0, 0, 0);
491 if (ACPI_FAILURE (Status))
492 {
493 return (Status);
494 }
495 break;

497 case ACPI_PTYPE2_COUNT:
498 /*
499 * First element is the (Integer) count of elements, including
500 * the count field (the ACPI name is NumElements)
501 */
502 Status = AcpiNsCheckObjectType (Info, SubElements,
503 ACPI_RTYPE_INTEGER, 0);
504 if (ACPI_FAILURE (Status))
505 {
506 return (Status);
507 }

509 /*
510 * Make sure package is large enough for the Count and is
511 * is as large as the minimum size
512 */
513 ExpectedCount = (UINT32) (*SubElements)->Integer.Value;
514 if (SubPackage->Package.Count < ExpectedCount)
515 {
516 goto PackageTooSmall;
517 }
518 if (SubPackage->Package.Count < Package->RetInfo.Count1)
519 {
520 ExpectedCount = Package->RetInfo.Count1;
521 goto PackageTooSmall;
522 }
523 if (ExpectedCount == 0)

new/usr/src/common/acpica/components/namespace/nsprepkg.c 9

524 {
525 /*
526 * Either the NumEntries element was originally zero or it was
527 * a NULL element and repaired to an Integer of value zero.
528 * In either case, repair it by setting NumEntries to be the
529 * actual size of the subpackage.
530 */
531 ExpectedCount = SubPackage->Package.Count;
532 (*SubElements)->Integer.Value = ExpectedCount;
533 }

535 /* Check the type of each sub-package element */

537 Status = AcpiNsCheckPackageElements (Info, (SubElements + 1),
538 Package->RetInfo.ObjectType1,
539 (ExpectedCount - 1), 0, 0, 1);
540 if (ACPI_FAILURE (Status))
541 {
542 return (Status);
543 }
544 break;

546 default: /* Should not get here, type was validated by caller */

548 return (AE_AML_INTERNAL);
549 }

551 Elements++;
552 }

554 return (AE_OK);

557 PackageTooSmall:

559 /* The sub-package count was smaller than required */

561 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, Info->NodeFlags,
562 "Return Sub-Package[%u] is too small - found %u elements, expected %u",
563 i, SubPackage->Package.Count, ExpectedCount));

565 return (AE_AML_OPERAND_VALUE);
566 }

569 /***
570 *
571 * FUNCTION: AcpiNsCheckPackageElements
572 *
573 * PARAMETERS: Info - Method execution information block
574 * Elements - Pointer to the package elements array
575 * Type1 - Object type for first group
576 * Count1 - Count for first group
577 * Type2 - Object type for second group
578 * Count2 - Count for second group
579 * StartIndex - Start of the first group of elements
580 *
581 * RETURN: Status
582 *
583 * DESCRIPTION: Check that all elements of a package are of the correct object
584 * type. Supports up to two groups of different object types.
585 *
586 **/

588 static ACPI_STATUS
589 AcpiNsCheckPackageElements (

new/usr/src/common/acpica/components/namespace/nsprepkg.c 10

590 ACPI_EVALUATE_INFO *Info,
591 ACPI_OPERAND_OBJECT **Elements,
592 UINT8 Type1,
593 UINT32 Count1,
594 UINT8 Type2,
595 UINT32 Count2,
596 UINT32 StartIndex)
597 {
598 ACPI_OPERAND_OBJECT **ThisElement = Elements;
599 ACPI_STATUS Status;
600 UINT32 i;

603 /*
604 * Up to two groups of package elements are supported by the data
605 * structure. All elements in each group must be of the same type.
606 * The second group can have a count of zero.
607 */
608 for (i = 0; i < Count1; i++)
609 {
610 Status = AcpiNsCheckObjectType (Info, ThisElement,
611 Type1, i + StartIndex);
612 if (ACPI_FAILURE (Status))
613 {
614 return (Status);
615 }
616 ThisElement++;
617 }

619 for (i = 0; i < Count2; i++)
620 {
621 Status = AcpiNsCheckObjectType (Info, ThisElement,
622 Type2, (i + Count1 + StartIndex));
623 if (ACPI_FAILURE (Status))
624 {
625 return (Status);
626 }
627 ThisElement++;
628 }

630 return (AE_OK);
631 }

new/usr/src/common/acpica/components/namespace/nsrepair.c 1

**
 20212 Thu Dec 26 13:49:20 2013
new/usr/src/common/acpica/components/namespace/nsrepair.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: nsrepair - Repair for objects returned by predefined methods
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __NSREPAIR_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acnamesp.h"
49 #include "acinterp.h"
50 #include "acpredef.h"
51 #include "amlresrc.h"

53 #define _COMPONENT ACPI_NAMESPACE
54 ACPI_MODULE_NAME ("nsrepair")

57 /***
58 *
59 * This module attempts to repair or convert objects returned by the
60 * predefined methods to an object type that is expected, as per the ACPI

new/usr/src/common/acpica/components/namespace/nsrepair.c 2

61 * specification. The need for this code is dictated by the many machines that
62 * return incorrect types for the standard predefined methods. Performing these
63 * conversions here, in one place, eliminates the need for individual ACPI
64 * device drivers to do the same. Note: Most of these conversions are different
65 * than the internal object conversion routines used for implicit object
66 * conversion.
67 *
68 * The following conversions can be performed as necessary:
69 *
70 * Integer -> String
71 * Integer -> Buffer
72 * String -> Integer
73 * String -> Buffer
74 * Buffer -> Integer
75 * Buffer -> String
76 * Buffer -> Package of Integers
77 * Package -> Package of one Package
78 *
79 * Additional conversions that are available:
80 * Convert a null return or zero return value to an EndTag descriptor
81 * Convert an ASCII string to a Unicode buffer
82 *
83 * An incorrect standalone object is wrapped with required outer package
84 *
85 * Additional possible repairs:
86 * Required package elements that are NULL replaced by Integer/String/Buffer
87 *
88 **/

91 /* Local prototypes */

93 static const ACPI_SIMPLE_REPAIR_INFO *
94 AcpiNsMatchSimpleRepair (
95 ACPI_NAMESPACE_NODE *Node,
96 UINT32 ReturnBtype,
97 UINT32 PackageIndex);

100 /*
101 * Special but simple repairs for some names.
102 *
103 * 2nd argument: Unexpected types that can be repaired
104 */
105 static const ACPI_SIMPLE_REPAIR_INFO AcpiObjectRepairInfo[] =
106 {
107 /* Resource descriptor conversions */

109 { "_CRS", ACPI_RTYPE_INTEGER | ACPI_RTYPE_STRING | ACPI_RTYPE_BUFFER | ACPI_
110 ACPI_NOT_PACKAGE_ELEMENT,
111 AcpiNsConvertToResource },
112 { "_DMA", ACPI_RTYPE_INTEGER | ACPI_RTYPE_STRING | ACPI_RTYPE_BUFFER | ACPI_
113 ACPI_NOT_PACKAGE_ELEMENT,
114 AcpiNsConvertToResource },
115 { "_PRS", ACPI_RTYPE_INTEGER | ACPI_RTYPE_STRING | ACPI_RTYPE_BUFFER | ACPI_
116 ACPI_NOT_PACKAGE_ELEMENT,
117 AcpiNsConvertToResource },

119 /* Unicode conversions */

121 { "_MLS", ACPI_RTYPE_STRING, 1,
122 AcpiNsConvertToUnicode },
123 { "_STR", ACPI_RTYPE_STRING | ACPI_RTYPE_BUFFER,
124 ACPI_NOT_PACKAGE_ELEMENT,
125 AcpiNsConvertToUnicode },
126 { {0,0,0,0}, 0, 0, NULL } /* Table terminator */

new/usr/src/common/acpica/components/namespace/nsrepair.c 3

127 };

130 /***
131 *
132 * FUNCTION: AcpiNsSimpleRepair
133 *
134 * PARAMETERS: Info - Method execution information block
135 * ExpectedBtypes - Object types expected
136 * PackageIndex - Index of object within parent package (if
137 * applicable - ACPI_NOT_PACKAGE_ELEMENT
138 * otherwise)
139 * ReturnObjectPtr - Pointer to the object returned from the
140 * evaluation of a method or object
141 *
142 * RETURN: Status. AE_OK if repair was successful.
143 *
144 * DESCRIPTION: Attempt to repair/convert a return object of a type that was
145 * not expected.
146 *
147 **/

149 ACPI_STATUS
150 AcpiNsSimpleRepair (
151 ACPI_EVALUATE_INFO *Info,
152 UINT32 ExpectedBtypes,
153 UINT32 PackageIndex,
154 ACPI_OPERAND_OBJECT **ReturnObjectPtr)
155 {
156 ACPI_OPERAND_OBJECT *ReturnObject = *ReturnObjectPtr;
157 ACPI_OPERAND_OBJECT *NewObject = NULL;
158 ACPI_STATUS Status;
159 const ACPI_SIMPLE_REPAIR_INFO *Predefined;

162 ACPI_FUNCTION_NAME (NsSimpleRepair);

165 /*
166 * Special repairs for certain names that are in the repair table.
167 * Check if this name is in the list of repairable names.
168 */
169 Predefined = AcpiNsMatchSimpleRepair (Info->Node,
170 Info->ReturnBtype, PackageIndex);
171 if (Predefined)
172 {
173 if (!ReturnObject)
174 {
175 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname,
176 ACPI_WARN_ALWAYS, "Missing expected return value"));
177 }

179 Status = Predefined->ObjectConverter (ReturnObject, &NewObject);
180 if (ACPI_FAILURE (Status))
181 {
182 /* A fatal error occurred during a conversion */

184 ACPI_EXCEPTION ((AE_INFO, Status,
185 "During return object analysis"));
186 return (Status);
187 }
188 if (NewObject)
189 {
190 goto ObjectRepaired;
191 }
192 }

new/usr/src/common/acpica/components/namespace/nsrepair.c 4

194 /*
195 * Do not perform simple object repair unless the return type is not
196 * expected.
197 */
198 if (Info->ReturnBtype & ExpectedBtypes)
199 {
200 return (AE_OK);
201 }

203 /*
204 * At this point, we know that the type of the returned object was not
205 * one of the expected types for this predefined name. Attempt to
206 * repair the object by converting it to one of the expected object
207 * types for this predefined name.
208 */

210 /*
211 * If there is no return value, check if we require a return value for
212 * this predefined name. Either one return value is expected, or none,
213 * for both methods and other objects.
214 *
215 * Exit now if there is no return object. Warning if one was expected.
216 */
217 if (!ReturnObject)
218 {
219 if (ExpectedBtypes && (!(ExpectedBtypes & ACPI_RTYPE_NONE)))
220 {
221 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname,
222 ACPI_WARN_ALWAYS, "Missing expected return value"));

224 return (AE_AML_NO_RETURN_VALUE);
225 }
226 }

228 if (ExpectedBtypes & ACPI_RTYPE_INTEGER)
229 {
230 Status = AcpiNsConvertToInteger (ReturnObject, &NewObject);
231 if (ACPI_SUCCESS (Status))
232 {
233 goto ObjectRepaired;
234 }
235 }
236 if (ExpectedBtypes & ACPI_RTYPE_STRING)
237 {
238 Status = AcpiNsConvertToString (ReturnObject, &NewObject);
239 if (ACPI_SUCCESS (Status))
240 {
241 goto ObjectRepaired;
242 }
243 }
244 if (ExpectedBtypes & ACPI_RTYPE_BUFFER)
245 {
246 Status = AcpiNsConvertToBuffer (ReturnObject, &NewObject);
247 if (ACPI_SUCCESS (Status))
248 {
249 goto ObjectRepaired;
250 }
251 }
252 if (ExpectedBtypes & ACPI_RTYPE_PACKAGE)
253 {
254 /*
255 * A package is expected. We will wrap the existing object with a
256 * new package object. It is often the case that if a variable-length
257 * package is required, but there is only a single object needed, the
258 * BIOS will return that object instead of wrapping it with a Package

new/usr/src/common/acpica/components/namespace/nsrepair.c 5

259 * object. Note: after the wrapping, the package will be validated
260 * for correct contents (expected object type or types).
261 */
262 Status = AcpiNsWrapWithPackage (Info, ReturnObject, &NewObject);
263 if (ACPI_SUCCESS (Status))
264 {
265 /*
266 * The original object just had its reference count
267 * incremented for being inserted into the new package.
268 */
269 *ReturnObjectPtr = NewObject; /* New Package object */
270 Info->ReturnFlags |= ACPI_OBJECT_REPAIRED;
271 return (AE_OK);
272 }
273 }

275 /* We cannot repair this object */

277 return (AE_AML_OPERAND_TYPE);

280 ObjectRepaired:

282 /* Object was successfully repaired */

284 if (PackageIndex != ACPI_NOT_PACKAGE_ELEMENT)
285 {
286 /*
287 * The original object is a package element. We need to
288 * decrement the reference count of the original object,
289 * for removing it from the package.
290 *
291 * However, if the original object was just wrapped with a
292 * package object as part of the repair, we don’t need to
293 * change the reference count.
294 */
295 if (!(Info->ReturnFlags & ACPI_OBJECT_WRAPPED))
296 {
297 NewObject->Common.ReferenceCount =
298 ReturnObject->Common.ReferenceCount;

300 if (ReturnObject->Common.ReferenceCount > 1)
301 {
302 ReturnObject->Common.ReferenceCount--;
303 }
304 }

306 ACPI_DEBUG_PRINT ((ACPI_DB_REPAIR,
307 "%s: Converted %s to expected %s at Package index %u\n",
308 Info->FullPathname, AcpiUtGetObjectTypeName (ReturnObject),
309 AcpiUtGetObjectTypeName (NewObject), PackageIndex));
310 }
311 else
312 {
313 ACPI_DEBUG_PRINT ((ACPI_DB_REPAIR,
314 "%s: Converted %s to expected %s\n",
315 Info->FullPathname, AcpiUtGetObjectTypeName (ReturnObject),
316 AcpiUtGetObjectTypeName (NewObject)));
317 }

319 /* Delete old object, install the new return object */

321 AcpiUtRemoveReference (ReturnObject);
322 *ReturnObjectPtr = NewObject;
323 Info->ReturnFlags |= ACPI_OBJECT_REPAIRED;
324 return (AE_OK);

new/usr/src/common/acpica/components/namespace/nsrepair.c 6

325 }

328 /**
329 *
330 * FUNCTION: AcpiNsMatchSimpleRepair
331 *
332 * PARAMETERS: Node - Namespace node for the method/object
333 * ReturnBtype - Object type that was returned
334 * PackageIndex - Index of object within parent package (if
335 * applicable - ACPI_NOT_PACKAGE_ELEMENT
336 * otherwise)
337 *
338 * RETURN: Pointer to entry in repair table. NULL indicates not found.
339 *
340 * DESCRIPTION: Check an object name against the repairable object list.
341 *
342 ***/

344 static const ACPI_SIMPLE_REPAIR_INFO *
345 AcpiNsMatchSimpleRepair (
346 ACPI_NAMESPACE_NODE *Node,
347 UINT32 ReturnBtype,
348 UINT32 PackageIndex)
349 {
350 const ACPI_SIMPLE_REPAIR_INFO *ThisName;

353 /* Search info table for a repairable predefined method/object name */

355 ThisName = AcpiObjectRepairInfo;
356 while (ThisName->ObjectConverter)
357 {
358 if (ACPI_COMPARE_NAME (Node->Name.Ascii, ThisName->Name))
359 {
360 /* Check if we can actually repair this name/type combination */

362 if ((ReturnBtype & ThisName->UnexpectedBtypes) &&
363 (PackageIndex == ThisName->PackageIndex))
364 {
365 return (ThisName);
366 }

368 return (NULL);
369 }
370 ThisName++;
371 }

373 return (NULL); /* Name was not found in the repair table */
374 }

377 /***
378 *
379 * FUNCTION: AcpiNsRepairNullElement
380 *
381 * PARAMETERS: Info - Method execution information block
382 * ExpectedBtypes - Object types expected
383 * PackageIndex - Index of object within parent package (if
384 * applicable - ACPI_NOT_PACKAGE_ELEMENT
385 * otherwise)
386 * ReturnObjectPtr - Pointer to the object returned from the
387 * evaluation of a method or object
388 *
389 * RETURN: Status. AE_OK if repair was successful.
390 *

new/usr/src/common/acpica/components/namespace/nsrepair.c 7

391 * DESCRIPTION: Attempt to repair a NULL element of a returned Package object.
392 *
393 **/

395 ACPI_STATUS
396 AcpiNsRepairNullElement (
397 ACPI_EVALUATE_INFO *Info,
398 UINT32 ExpectedBtypes,
399 UINT32 PackageIndex,
400 ACPI_OPERAND_OBJECT **ReturnObjectPtr)
401 {
402 ACPI_OPERAND_OBJECT *ReturnObject = *ReturnObjectPtr;
403 ACPI_OPERAND_OBJECT *NewObject;

406 ACPI_FUNCTION_NAME (NsRepairNullElement);

409 /* No repair needed if return object is non-NULL */

411 if (ReturnObject)
412 {
413 return (AE_OK);
414 }

416 /*
417 * Attempt to repair a NULL element of a Package object. This applies to
418 * predefined names that return a fixed-length package and each element
419 * is required. It does not apply to variable-length packages where NULL
420 * elements are allowed, especially at the end of the package.
421 */
422 if (ExpectedBtypes & ACPI_RTYPE_INTEGER)
423 {
424 /* Need an Integer - create a zero-value integer */

426 NewObject = AcpiUtCreateIntegerObject ((UINT64) 0);
427 }
428 else if (ExpectedBtypes & ACPI_RTYPE_STRING)
429 {
430 /* Need a String - create a NULL string */

432 NewObject = AcpiUtCreateStringObject (0);
433 }
434 else if (ExpectedBtypes & ACPI_RTYPE_BUFFER)
435 {
436 /* Need a Buffer - create a zero-length buffer */

438 NewObject = AcpiUtCreateBufferObject (0);
439 }
440 else
441 {
442 /* Error for all other expected types */

444 return (AE_AML_OPERAND_TYPE);
445 }

447 if (!NewObject)
448 {
449 return (AE_NO_MEMORY);
450 }

452 /* Set the reference count according to the parent Package object */

454 NewObject->Common.ReferenceCount = Info->ParentPackage->Common.ReferenceCoun

456 ACPI_DEBUG_PRINT ((ACPI_DB_REPAIR,

new/usr/src/common/acpica/components/namespace/nsrepair.c 8

457 "%s: Converted NULL package element to expected %s at index %u\n",
458 Info->FullPathname, AcpiUtGetObjectTypeName (NewObject), PackageIndex))

460 *ReturnObjectPtr = NewObject;
461 Info->ReturnFlags |= ACPI_OBJECT_REPAIRED;
462 return (AE_OK);
463 }

466 /**
467 *
468 * FUNCTION: AcpiNsRemoveNullElements
469 *
470 * PARAMETERS: Info - Method execution information block
471 * PackageType - An AcpiReturnPackageTypes value
472 * ObjDesc - A Package object
473 *
474 * RETURN: None.
475 *
476 * DESCRIPTION: Remove all NULL package elements from packages that contain
477 * a variable number of sub-packages. For these types of
478 * packages, NULL elements can be safely removed.
479 *
480 ***/

482 void
483 AcpiNsRemoveNullElements (
484 ACPI_EVALUATE_INFO *Info,
485 UINT8 PackageType,
486 ACPI_OPERAND_OBJECT *ObjDesc)
487 {
488 ACPI_OPERAND_OBJECT **Source;
489 ACPI_OPERAND_OBJECT **Dest;
490 UINT32 Count;
491 UINT32 NewCount;
492 UINT32 i;

495 ACPI_FUNCTION_NAME (NsRemoveNullElements);

498 /*
499 * We can safely remove all NULL elements from these package types:
500 * PTYPE1_VAR packages contain a variable number of simple data types.
501 * PTYPE2 packages contain a variable number of sub-packages.
502 */
503 switch (PackageType)
504 {
505 case ACPI_PTYPE1_VAR:
506 case ACPI_PTYPE2:
507 case ACPI_PTYPE2_COUNT:
508 case ACPI_PTYPE2_PKG_COUNT:
509 case ACPI_PTYPE2_FIXED:
510 case ACPI_PTYPE2_MIN:
511 case ACPI_PTYPE2_REV_FIXED:
512 case ACPI_PTYPE2_FIX_VAR:

514 break;

516 default:
517 case ACPI_PTYPE1_FIXED:
518 case ACPI_PTYPE1_OPTION:
519 return;
520 }

522 Count = ObjDesc->Package.Count;

new/usr/src/common/acpica/components/namespace/nsrepair.c 9

523 NewCount = Count;

525 Source = ObjDesc->Package.Elements;
526 Dest = Source;

528 /* Examine all elements of the package object, remove nulls */

530 for (i = 0; i < Count; i++)
531 {
532 if (!*Source)
533 {
534 NewCount--;
535 }
536 else
537 {
538 *Dest = *Source;
539 Dest++;
540 }
541 Source++;
542 }

544 /* Update parent package if any null elements were removed */

546 if (NewCount < Count)
547 {
548 ACPI_DEBUG_PRINT ((ACPI_DB_REPAIR,
549 "%s: Found and removed %u NULL elements\n",
550 Info->FullPathname, (Count - NewCount)));

552 /* NULL terminate list and update the package count */

554 *Dest = NULL;
555 ObjDesc->Package.Count = NewCount;
556 }
557 }

560 /***
561 *
562 * FUNCTION: AcpiNsWrapWithPackage
563 *
564 * PARAMETERS: Info - Method execution information block
565 * OriginalObject - Pointer to the object to repair.
566 * ObjDescPtr - The new package object is returned here
567 *
568 * RETURN: Status, new object in *ObjDescPtr
569 *
570 * DESCRIPTION: Repair a common problem with objects that are defined to
571 * return a variable-length Package of sub-objects. If there is
572 * only one sub-object, some BIOS code mistakenly simply declares
573 * the single object instead of a Package with one sub-object.
574 * This function attempts to repair this error by wrapping a
575 * Package object around the original object, creating the
576 * correct and expected Package with one sub-object.
577 *
578 * Names that can be repaired in this manner include:
579 * _ALR, _CSD, _HPX, _MLS, _PLD, _PRT, _PSS, _TRT, _TSS,
580 * _BCL, _DOD, _FIX, _Sx
581 *
582 **/

584 ACPI_STATUS
585 AcpiNsWrapWithPackage (
586 ACPI_EVALUATE_INFO *Info,
587 ACPI_OPERAND_OBJECT *OriginalObject,
588 ACPI_OPERAND_OBJECT **ObjDescPtr)

new/usr/src/common/acpica/components/namespace/nsrepair.c 10

589 {
590 ACPI_OPERAND_OBJECT *PkgObjDesc;

593 ACPI_FUNCTION_NAME (NsWrapWithPackage);

596 /*
597 * Create the new outer package and populate it. The new package will
598 * have a single element, the lone sub-object.
599 */
600 PkgObjDesc = AcpiUtCreatePackageObject (1);
601 if (!PkgObjDesc)
602 {
603 return (AE_NO_MEMORY);
604 }

606 PkgObjDesc->Package.Elements[0] = OriginalObject;

608 ACPI_DEBUG_PRINT ((ACPI_DB_REPAIR,
609 "%s: Wrapped %s with expected Package object\n",
610 Info->FullPathname, AcpiUtGetObjectTypeName (OriginalObject)));

612 /* Return the new object in the object pointer */

614 *ObjDescPtr = PkgObjDesc;
615 Info->ReturnFlags |= ACPI_OBJECT_REPAIRED | ACPI_OBJECT_WRAPPED;
616 return (AE_OK);
617 }

new/usr/src/common/acpica/components/namespace/nsrepair2.c 1

**
 33442 Thu Dec 26 13:49:21 2013
new/usr/src/common/acpica/components/namespace/nsrepair2.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: nsrepair2 - Repair for objects returned by specific
4 * predefined methods
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #define __NSREPAIR2_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acnamesp.h"

51 #define _COMPONENT ACPI_NAMESPACE
52 ACPI_MODULE_NAME ("nsrepair2")

55 /*
56 * Information structure and handler for ACPI predefined names that can
57 * be repaired on a per-name basis.
58 */
59 typedef
60 ACPI_STATUS (*ACPI_REPAIR_FUNCTION) (

new/usr/src/common/acpica/components/namespace/nsrepair2.c 2

61 ACPI_EVALUATE_INFO *Info,
62 ACPI_OPERAND_OBJECT **ReturnObjectPtr);

64 typedef struct acpi_repair_info
65 {
66 char Name[ACPI_NAME_SIZE];
67 ACPI_REPAIR_FUNCTION RepairFunction;

69 } ACPI_REPAIR_INFO;

72 /* Local prototypes */

74 static const ACPI_REPAIR_INFO *
75 AcpiNsMatchComplexRepair (
76 ACPI_NAMESPACE_NODE *Node);

78 static ACPI_STATUS
79 AcpiNsRepair_ALR (
80 ACPI_EVALUATE_INFO *Info,
81 ACPI_OPERAND_OBJECT **ReturnObjectPtr);

83 static ACPI_STATUS
84 AcpiNsRepair_CID (
85 ACPI_EVALUATE_INFO *Info,
86 ACPI_OPERAND_OBJECT **ReturnObjectPtr);

88 static ACPI_STATUS
89 AcpiNsRepair_CST (
90 ACPI_EVALUATE_INFO *Info,
91 ACPI_OPERAND_OBJECT **ReturnObjectPtr);

93 static ACPI_STATUS
94 AcpiNsRepair_FDE (
95 ACPI_EVALUATE_INFO *Info,
96 ACPI_OPERAND_OBJECT **ReturnObjectPtr);

98 static ACPI_STATUS
99 AcpiNsRepair_HID (
100 ACPI_EVALUATE_INFO *Info,
101 ACPI_OPERAND_OBJECT **ReturnObjectPtr);

103 static ACPI_STATUS
104 AcpiNsRepair_PRT (
105 ACPI_EVALUATE_INFO *Info,
106 ACPI_OPERAND_OBJECT **ReturnObjectPtr);

108 static ACPI_STATUS
109 AcpiNsRepair_PSS (
110 ACPI_EVALUATE_INFO *Info,
111 ACPI_OPERAND_OBJECT **ReturnObjectPtr);

113 static ACPI_STATUS
114 AcpiNsRepair_TSS (
115 ACPI_EVALUATE_INFO *Info,
116 ACPI_OPERAND_OBJECT **ReturnObjectPtr);

118 static ACPI_STATUS
119 AcpiNsCheckSortedList (
120 ACPI_EVALUATE_INFO *Info,
121 ACPI_OPERAND_OBJECT *ReturnObject,
122 UINT32 StartIndex,
123 UINT32 ExpectedCount,
124 UINT32 SortIndex,
125 UINT8 SortDirection,
126 char *SortKeyName);

new/usr/src/common/acpica/components/namespace/nsrepair2.c 3

128 /* Values for SortDirection above */

130 #define ACPI_SORT_ASCENDING 0
131 #define ACPI_SORT_DESCENDING 1

133 static void
134 AcpiNsRemoveElement (
135 ACPI_OPERAND_OBJECT *ObjDesc,
136 UINT32 Index);

138 static void
139 AcpiNsSortList (
140 ACPI_OPERAND_OBJECT **Elements,
141 UINT32 Count,
142 UINT32 Index,
143 UINT8 SortDirection);

146 /*
147 * This table contains the names of the predefined methods for which we can
148 * perform more complex repairs.
149 *
150 * As necessary:
151 *
152 * _ALR: Sort the list ascending by AmbientIlluminance
153 * _CID: Strings: uppercase all, remove any leading asterisk
154 * _CST: Sort the list ascending by C state type
155 * _FDE: Convert Buffer of BYTEs to a Buffer of DWORDs
156 * _GTM: Convert Buffer of BYTEs to a Buffer of DWORDs
157 * _HID: Strings: uppercase all, remove any leading asterisk
158 * _PRT: Fix reversed SourceName and SourceIndex
159 * _PSS: Sort the list descending by Power
160 * _TSS: Sort the list descending by Power
161 *
162 * Names that must be packages, but cannot be sorted:
163 *
164 * _BCL: Values are tied to the Package index where they appear, and cannot
165 * be moved or sorted. These index values are used for _BQC and _BCM.
166 * However, we can fix the case where a buffer is returned, by converting
167 * it to a Package of integers.
168 */
169 static const ACPI_REPAIR_INFO AcpiNsRepairableNames[] =
170 {
171 {"_ALR", AcpiNsRepair_ALR},
172 {"_CID", AcpiNsRepair_CID},
173 {"_CST", AcpiNsRepair_CST},
174 {"_FDE", AcpiNsRepair_FDE},
175 {"_GTM", AcpiNsRepair_FDE}, /* _GTM has same repair as _FDE */
176 {"_HID", AcpiNsRepair_HID},
177 {"_PRT", AcpiNsRepair_PRT},
178 {"_PSS", AcpiNsRepair_PSS},
179 {"_TSS", AcpiNsRepair_TSS},
180 {{0,0,0,0}, NULL} /* Table terminator */
181 };

184 #define ACPI_FDE_FIELD_COUNT 5
185 #define ACPI_FDE_BYTE_BUFFER_SIZE 5
186 #define ACPI_FDE_DWORD_BUFFER_SIZE (ACPI_FDE_FIELD_COUNT * sizeof (UINT32))

189 /**
190 *
191 * FUNCTION: AcpiNsComplexRepairs
192 *

new/usr/src/common/acpica/components/namespace/nsrepair2.c 4

193 * PARAMETERS: Info - Method execution information block
194 * Node - Namespace node for the method/object
195 * ValidateStatus - Original status of earlier validation
196 * ReturnObjectPtr - Pointer to the object returned from the
197 * evaluation of a method or object
198 *
199 * RETURN: Status. AE_OK if repair was successful. If name is not
200 * matched, ValidateStatus is returned.
201 *
202 * DESCRIPTION: Attempt to repair/convert a return object of a type that was
203 * not expected.
204 *
205 ***/

207 ACPI_STATUS
208 AcpiNsComplexRepairs (
209 ACPI_EVALUATE_INFO *Info,
210 ACPI_NAMESPACE_NODE *Node,
211 ACPI_STATUS ValidateStatus,
212 ACPI_OPERAND_OBJECT **ReturnObjectPtr)
213 {
214 const ACPI_REPAIR_INFO *Predefined;
215 ACPI_STATUS Status;

218 /* Check if this name is in the list of repairable names */

220 Predefined = AcpiNsMatchComplexRepair (Node);
221 if (!Predefined)
222 {
223 return (ValidateStatus);
224 }

226 Status = Predefined->RepairFunction (Info, ReturnObjectPtr);
227 return (Status);
228 }

231 /**
232 *
233 * FUNCTION: AcpiNsMatchComplexRepair
234 *
235 * PARAMETERS: Node - Namespace node for the method/object
236 *
237 * RETURN: Pointer to entry in repair table. NULL indicates not found.
238 *
239 * DESCRIPTION: Check an object name against the repairable object list.
240 *
241 ***/

243 static const ACPI_REPAIR_INFO *
244 AcpiNsMatchComplexRepair (
245 ACPI_NAMESPACE_NODE *Node)
246 {
247 const ACPI_REPAIR_INFO *ThisName;

250 /* Search info table for a repairable predefined method/object name */

252 ThisName = AcpiNsRepairableNames;
253 while (ThisName->RepairFunction)
254 {
255 if (ACPI_COMPARE_NAME (Node->Name.Ascii, ThisName->Name))
256 {
257 return (ThisName);
258 }

new/usr/src/common/acpica/components/namespace/nsrepair2.c 5

259 ThisName++;
260 }

262 return (NULL); /* Not found */
263 }

266 /**
267 *
268 * FUNCTION: AcpiNsRepair_ALR
269 *
270 * PARAMETERS: Info - Method execution information block
271 * ReturnObjectPtr - Pointer to the object returned from the
272 * evaluation of a method or object
273 *
274 * RETURN: Status. AE_OK if object is OK or was repaired successfully
275 *
276 * DESCRIPTION: Repair for the _ALR object. If necessary, sort the object list
277 * ascending by the ambient illuminance values.
278 *
279 ***/

281 static ACPI_STATUS
282 AcpiNsRepair_ALR (
283 ACPI_EVALUATE_INFO *Info,
284 ACPI_OPERAND_OBJECT **ReturnObjectPtr)
285 {
286 ACPI_OPERAND_OBJECT *ReturnObject = *ReturnObjectPtr;
287 ACPI_STATUS Status;

290 Status = AcpiNsCheckSortedList (Info, ReturnObject, 0, 2, 1,
291 ACPI_SORT_ASCENDING, "AmbientIlluminance");

293 return (Status);
294 }

297 /**
298 *
299 * FUNCTION: AcpiNsRepair_FDE
300 *
301 * PARAMETERS: Info - Method execution information block
302 * ReturnObjectPtr - Pointer to the object returned from the
303 * evaluation of a method or object
304 *
305 * RETURN: Status. AE_OK if object is OK or was repaired successfully
306 *
307 * DESCRIPTION: Repair for the _FDE and _GTM objects. The expected return
308 * value is a Buffer of 5 DWORDs. This function repairs a common
309 * problem where the return value is a Buffer of BYTEs, not
310 * DWORDs.
311 *
312 ***/

314 static ACPI_STATUS
315 AcpiNsRepair_FDE (
316 ACPI_EVALUATE_INFO *Info,
317 ACPI_OPERAND_OBJECT **ReturnObjectPtr)
318 {
319 ACPI_OPERAND_OBJECT *ReturnObject = *ReturnObjectPtr;
320 ACPI_OPERAND_OBJECT *BufferObject;
321 UINT8 *ByteBuffer;
322 UINT32 *DwordBuffer;
323 UINT32 i;

new/usr/src/common/acpica/components/namespace/nsrepair2.c 6

326 ACPI_FUNCTION_NAME (NsRepair_FDE);

329 switch (ReturnObject->Common.Type)
330 {
331 case ACPI_TYPE_BUFFER:

333 /* This is the expected type. Length should be (at least) 5 DWORDs */

335 if (ReturnObject->Buffer.Length >= ACPI_FDE_DWORD_BUFFER_SIZE)
336 {
337 return (AE_OK);
338 }

340 /* We can only repair if we have exactly 5 BYTEs */

342 if (ReturnObject->Buffer.Length != ACPI_FDE_BYTE_BUFFER_SIZE)
343 {
344 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, Info->NodeFlags,
345 "Incorrect return buffer length %u, expected %u",
346 ReturnObject->Buffer.Length, ACPI_FDE_DWORD_BUFFER_SIZE));

348 return (AE_AML_OPERAND_TYPE);
349 }

351 /* Create the new (larger) buffer object */

353 BufferObject = AcpiUtCreateBufferObject (ACPI_FDE_DWORD_BUFFER_SIZE);
354 if (!BufferObject)
355 {
356 return (AE_NO_MEMORY);
357 }

359 /* Expand each byte to a DWORD */

361 ByteBuffer = ReturnObject->Buffer.Pointer;
362 DwordBuffer = ACPI_CAST_PTR (UINT32, BufferObject->Buffer.Pointer);

364 for (i = 0; i < ACPI_FDE_FIELD_COUNT; i++)
365 {
366 *DwordBuffer = (UINT32) *ByteBuffer;
367 DwordBuffer++;
368 ByteBuffer++;
369 }

371 ACPI_DEBUG_PRINT ((ACPI_DB_REPAIR,
372 "%s Expanded Byte Buffer to expected DWord Buffer\n",
373 Info->FullPathname));
374 break;

376 default:

378 return (AE_AML_OPERAND_TYPE);
379 }

381 /* Delete the original return object, return the new buffer object */

383 AcpiUtRemoveReference (ReturnObject);
384 *ReturnObjectPtr = BufferObject;

386 Info->ReturnFlags |= ACPI_OBJECT_REPAIRED;
387 return (AE_OK);
388 }

new/usr/src/common/acpica/components/namespace/nsrepair2.c 7

391 /**
392 *
393 * FUNCTION: AcpiNsRepair_CID
394 *
395 * PARAMETERS: Info - Method execution information block
396 * ReturnObjectPtr - Pointer to the object returned from the
397 * evaluation of a method or object
398 *
399 * RETURN: Status. AE_OK if object is OK or was repaired successfully
400 *
401 * DESCRIPTION: Repair for the _CID object. If a string, ensure that all
402 * letters are uppercase and that there is no leading asterisk.
403 * If a Package, ensure same for all string elements.
404 *
405 ***/

407 static ACPI_STATUS
408 AcpiNsRepair_CID (
409 ACPI_EVALUATE_INFO *Info,
410 ACPI_OPERAND_OBJECT **ReturnObjectPtr)
411 {
412 ACPI_STATUS Status;
413 ACPI_OPERAND_OBJECT *ReturnObject = *ReturnObjectPtr;
414 ACPI_OPERAND_OBJECT **ElementPtr;
415 ACPI_OPERAND_OBJECT *OriginalElement;
416 UINT16 OriginalRefCount;
417 UINT32 i;

420 /* Check for _CID as a simple string */

422 if (ReturnObject->Common.Type == ACPI_TYPE_STRING)
423 {
424 Status = AcpiNsRepair_HID (Info, ReturnObjectPtr);
425 return (Status);
426 }

428 /* Exit if not a Package */

430 if (ReturnObject->Common.Type != ACPI_TYPE_PACKAGE)
431 {
432 return (AE_OK);
433 }

435 /* Examine each element of the _CID package */

437 ElementPtr = ReturnObject->Package.Elements;
438 for (i = 0; i < ReturnObject->Package.Count; i++)
439 {
440 OriginalElement = *ElementPtr;
441 OriginalRefCount = OriginalElement->Common.ReferenceCount;

443 Status = AcpiNsRepair_HID (Info, ElementPtr);
444 if (ACPI_FAILURE (Status))
445 {
446 return (Status);
447 }

449 /* Take care with reference counts */

451 if (OriginalElement != *ElementPtr)
452 {
453 /* Element was replaced */

455 (*ElementPtr)->Common.ReferenceCount =
456 OriginalRefCount;

new/usr/src/common/acpica/components/namespace/nsrepair2.c 8

458 AcpiUtRemoveReference (OriginalElement);
459 }

461 ElementPtr++;
462 }

464 return (AE_OK);
465 }

468 /**
469 *
470 * FUNCTION: AcpiNsRepair_CST
471 *
472 * PARAMETERS: Info - Method execution information block
473 * ReturnObjectPtr - Pointer to the object returned from the
474 * evaluation of a method or object
475 *
476 * RETURN: Status. AE_OK if object is OK or was repaired successfully
477 *
478 * DESCRIPTION: Repair for the _CST object:
479 * 1. Sort the list ascending by C state type
480 * 2. Ensure type cannot be zero
481 * 3. A sub-package count of zero means _CST is meaningless
482 * 4. Count must match the number of C state sub-packages
483 *
484 ***/

486 static ACPI_STATUS
487 AcpiNsRepair_CST (
488 ACPI_EVALUATE_INFO *Info,
489 ACPI_OPERAND_OBJECT **ReturnObjectPtr)
490 {
491 ACPI_OPERAND_OBJECT *ReturnObject = *ReturnObjectPtr;
492 ACPI_OPERAND_OBJECT **OuterElements;
493 UINT32 OuterElementCount;
494 ACPI_OPERAND_OBJECT *ObjDesc;
495 ACPI_STATUS Status;
496 BOOLEAN Removing;
497 UINT32 i;

500 ACPI_FUNCTION_NAME (NsRepair_CST);

503 /*
504 * Check if the C-state type values are proportional.
505 */
506 OuterElementCount = ReturnObject->Package.Count - 1;
507 i = 0;
508 while (i < OuterElementCount)
509 {
510 OuterElements = &ReturnObject->Package.Elements[i + 1];
511 Removing = FALSE;

513 if ((*OuterElements)->Package.Count == 0)
514 {
515 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, Info->NodeFlags,
516 "SubPackage[%u] - removing entry due to zero count", i));
517 Removing = TRUE;
518 goto RemoveElement;
519 }

521 ObjDesc = (*OuterElements)->Package.Elements[1]; /* Index1 = Type */
522 if ((UINT32) ObjDesc->Integer.Value == 0)

new/usr/src/common/acpica/components/namespace/nsrepair2.c 9

523 {
524 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, Info->NodeFlags,
525 "SubPackage[%u] - removing entry due to invalid Type(0)", i));
526 Removing = TRUE;
527 }

529 RemoveElement:
530 if (Removing)
531 {
532 AcpiNsRemoveElement (ReturnObject, i + 1);
533 OuterElementCount--;
534 }
535 else
536 {
537 i++;
538 }
539 }

541 /* Update top-level package count, Type "Integer" checked elsewhere */

543 ObjDesc = ReturnObject->Package.Elements[0];
544 ObjDesc->Integer.Value = OuterElementCount;

546 /*
547 * Entries (subpackages) in the _CST Package must be sorted by the
548 * C-state type, in ascending order.
549 */
550 Status = AcpiNsCheckSortedList (Info, ReturnObject, 1, 4, 1,
551 ACPI_SORT_ASCENDING, "C-State Type");
552 if (ACPI_FAILURE (Status))
553 {
554 return (Status);
555 }

557 return (AE_OK);
558 }

561 /**
562 *
563 * FUNCTION: AcpiNsRepair_HID
564 *
565 * PARAMETERS: Info - Method execution information block
566 * ReturnObjectPtr - Pointer to the object returned from the
567 * evaluation of a method or object
568 *
569 * RETURN: Status. AE_OK if object is OK or was repaired successfully
570 *
571 * DESCRIPTION: Repair for the _HID object. If a string, ensure that all
572 * letters are uppercase and that there is no leading asterisk.
573 *
574 ***/

576 static ACPI_STATUS
577 AcpiNsRepair_HID (
578 ACPI_EVALUATE_INFO *Info,
579 ACPI_OPERAND_OBJECT **ReturnObjectPtr)
580 {
581 ACPI_OPERAND_OBJECT *ReturnObject = *ReturnObjectPtr;
582 ACPI_OPERAND_OBJECT *NewString;
583 char *Source;
584 char *Dest;

587 ACPI_FUNCTION_NAME (NsRepair_HID);

new/usr/src/common/acpica/components/namespace/nsrepair2.c 10

590 /* We only care about string _HID objects (not integers) */

592 if (ReturnObject->Common.Type != ACPI_TYPE_STRING)
593 {
594 return (AE_OK);
595 }

597 if (ReturnObject->String.Length == 0)
598 {
599 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, Info->NodeFlags,
600 "Invalid zero-length _HID or _CID string"));

602 /* Return AE_OK anyway, let driver handle it */

604 Info->ReturnFlags |= ACPI_OBJECT_REPAIRED;
605 return (AE_OK);
606 }

608 /* It is simplest to always create a new string object */

610 NewString = AcpiUtCreateStringObject (ReturnObject->String.Length);
611 if (!NewString)
612 {
613 return (AE_NO_MEMORY);
614 }

616 /*
617 * Remove a leading asterisk if present. For some unknown reason, there
618 * are many machines in the field that contains IDs like this.
619 *
620 * Examples: "*PNP0C03", "*ACPI0003"
621 */
622 Source = ReturnObject->String.Pointer;
623 if (*Source == ’*’)
624 {
625 Source++;
626 NewString->String.Length--;

628 ACPI_DEBUG_PRINT ((ACPI_DB_REPAIR,
629 "%s: Removed invalid leading asterisk\n", Info->FullPathname));
630 }

632 /*
633 * Copy and uppercase the string. From the ACPI 5.0 specification:
634 *
635 * A valid PNP ID must be of the form "AAA####" where A is an uppercase
636 * letter and # is a hex digit. A valid ACPI ID must be of the form
637 * "NNNN####" where N is an uppercase letter or decimal digit, and
638 * # is a hex digit.
639 */
640 for (Dest = NewString->String.Pointer; *Source; Dest++, Source++)
641 {
642 *Dest = (char) ACPI_TOUPPER (*Source);
643 }

645 AcpiUtRemoveReference (ReturnObject);
646 *ReturnObjectPtr = NewString;
647 return (AE_OK);
648 }

651 /**
652 *
653 * FUNCTION: AcpiNsRepair_PRT
654 *

new/usr/src/common/acpica/components/namespace/nsrepair2.c 11

655 * PARAMETERS: Info - Method execution information block
656 * ReturnObjectPtr - Pointer to the object returned from the
657 * evaluation of a method or object
658 *
659 * RETURN: Status. AE_OK if object is OK or was repaired successfully
660 *
661 * DESCRIPTION: Repair for the _PRT object. If necessary, fix reversed
662 * SourceName and SourceIndex field, a common BIOS bug.
663 *
664 ***/

666 static ACPI_STATUS
667 AcpiNsRepair_PRT (
668 ACPI_EVALUATE_INFO *Info,
669 ACPI_OPERAND_OBJECT **ReturnObjectPtr)
670 {
671 ACPI_OPERAND_OBJECT *PackageObject = *ReturnObjectPtr;
672 ACPI_OPERAND_OBJECT **TopObjectList;
673 ACPI_OPERAND_OBJECT **SubObjectList;
674 ACPI_OPERAND_OBJECT *ObjDesc;
675 UINT32 ElementCount;
676 UINT32 Index;

679 /* Each element in the _PRT package is a subpackage */

681 TopObjectList = PackageObject->Package.Elements;
682 ElementCount = PackageObject->Package.Count;

684 for (Index = 0; Index < ElementCount; Index++)
685 {
686 SubObjectList = (*TopObjectList)->Package.Elements;

688 /*
689 * If the BIOS has erroneously reversed the _PRT SourceName (index 2)
690 * and the SourceIndex (index 3), fix it. _PRT is important enough to
691 * workaround this BIOS error. This also provides compatibility with
692 * other ACPI implementations.
693 */
694 ObjDesc = SubObjectList[3];
695 if (!ObjDesc || (ObjDesc->Common.Type != ACPI_TYPE_INTEGER))
696 {
697 SubObjectList[3] = SubObjectList[2];
698 SubObjectList[2] = ObjDesc;
699 Info->ReturnFlags |= ACPI_OBJECT_REPAIRED;

701 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, Info->NodeFlags,
702 "PRT[%X]: Fixed reversed SourceName and SourceIndex",
703 Index));
704 }

706 /* Point to the next ACPI_OPERAND_OBJECT in the top level package */

708 TopObjectList++;
709 }

711 return (AE_OK);
712 }

715 /**
716 *
717 * FUNCTION: AcpiNsRepair_PSS
718 *
719 * PARAMETERS: Info - Method execution information block
720 * ReturnObjectPtr - Pointer to the object returned from the

new/usr/src/common/acpica/components/namespace/nsrepair2.c 12

721 * evaluation of a method or object
722 *
723 * RETURN: Status. AE_OK if object is OK or was repaired successfully
724 *
725 * DESCRIPTION: Repair for the _PSS object. If necessary, sort the object list
726 * by the CPU frequencies. Check that the power dissipation values
727 * are all proportional to CPU frequency (i.e., sorting by
728 * frequency should be the same as sorting by power.)
729 *
730 ***/

732 static ACPI_STATUS
733 AcpiNsRepair_PSS (
734 ACPI_EVALUATE_INFO *Info,
735 ACPI_OPERAND_OBJECT **ReturnObjectPtr)
736 {
737 ACPI_OPERAND_OBJECT *ReturnObject = *ReturnObjectPtr;
738 ACPI_OPERAND_OBJECT **OuterElements;
739 UINT32 OuterElementCount;
740 ACPI_OPERAND_OBJECT **Elements;
741 ACPI_OPERAND_OBJECT *ObjDesc;
742 UINT32 PreviousValue;
743 ACPI_STATUS Status;
744 UINT32 i;

747 /*
748 * Entries (sub-packages) in the _PSS Package must be sorted by power
749 * dissipation, in descending order. If it appears that the list is
750 * incorrectly sorted, sort it. We sort by CpuFrequency, since this
751 * should be proportional to the power.
752 */
753 Status =AcpiNsCheckSortedList (Info, ReturnObject, 0, 6, 0,
754 ACPI_SORT_DESCENDING, "CpuFrequency");
755 if (ACPI_FAILURE (Status))
756 {
757 return (Status);
758 }

760 /*
761 * We now know the list is correctly sorted by CPU frequency. Check if
762 * the power dissipation values are proportional.
763 */
764 PreviousValue = ACPI_UINT32_MAX;
765 OuterElements = ReturnObject->Package.Elements;
766 OuterElementCount = ReturnObject->Package.Count;

768 for (i = 0; i < OuterElementCount; i++)
769 {
770 Elements = (*OuterElements)->Package.Elements;
771 ObjDesc = Elements[1]; /* Index1 = PowerDissipation */

773 if ((UINT32) ObjDesc->Integer.Value > PreviousValue)
774 {
775 ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, Info->NodeFlags,
776 "SubPackage[%u,%u] - suspicious power dissipation values",
777 i-1, i));
778 }

780 PreviousValue = (UINT32) ObjDesc->Integer.Value;
781 OuterElements++;
782 }

784 return (AE_OK);
785 }

new/usr/src/common/acpica/components/namespace/nsrepair2.c 13

788 /**
789 *
790 * FUNCTION: AcpiNsRepair_TSS
791 *
792 * PARAMETERS: Info - Method execution information block
793 * ReturnObjectPtr - Pointer to the object returned from the
794 * evaluation of a method or object
795 *
796 * RETURN: Status. AE_OK if object is OK or was repaired successfully
797 *
798 * DESCRIPTION: Repair for the _TSS object. If necessary, sort the object list
799 * descending by the power dissipation values.
800 *
801 ***/

803 static ACPI_STATUS
804 AcpiNsRepair_TSS (
805 ACPI_EVALUATE_INFO *Info,
806 ACPI_OPERAND_OBJECT **ReturnObjectPtr)
807 {
808 ACPI_OPERAND_OBJECT *ReturnObject = *ReturnObjectPtr;
809 ACPI_STATUS Status;
810 ACPI_NAMESPACE_NODE *Node;

813 /*
814 * We can only sort the _TSS return package if there is no _PSS in the
815 * same scope. This is because if _PSS is present, the ACPI specification
816 * dictates that the _TSS Power Dissipation field is to be ignored, and
817 * therefore some BIOSs leave garbage values in the _TSS Power field(s).
818 * In this case, it is best to just return the _TSS package as-is.
819 * (May, 2011)
820 */
821 Status = AcpiNsGetNode (Info->Node, "^_PSS",
822 ACPI_NS_NO_UPSEARCH, &Node);
823 if (ACPI_SUCCESS (Status))
824 {
825 return (AE_OK);
826 }

828 Status = AcpiNsCheckSortedList (Info, ReturnObject, 0, 5, 1,
829 ACPI_SORT_DESCENDING, "PowerDissipation");

831 return (Status);
832 }

835 /**
836 *
837 * FUNCTION: AcpiNsCheckSortedList
838 *
839 * PARAMETERS: Info - Method execution information block
840 * ReturnObject - Pointer to the top-level returned object
841 * StartIndex - Index of the first sub-package
842 * ExpectedCount - Minimum length of each sub-package
843 * SortIndex - Sub-package entry to sort on
844 * SortDirection - Ascending or descending
845 * SortKeyName - Name of the SortIndex field
846 *
847 * RETURN: Status. AE_OK if the list is valid and is sorted correctly or
848 * has been repaired by sorting the list.
849 *
850 * DESCRIPTION: Check if the package list is valid and sorted correctly by the
851 * SortIndex. If not, then sort the list.
852 *

new/usr/src/common/acpica/components/namespace/nsrepair2.c 14

853 ***/

855 static ACPI_STATUS
856 AcpiNsCheckSortedList (
857 ACPI_EVALUATE_INFO *Info,
858 ACPI_OPERAND_OBJECT *ReturnObject,
859 UINT32 StartIndex,
860 UINT32 ExpectedCount,
861 UINT32 SortIndex,
862 UINT8 SortDirection,
863 char *SortKeyName)
864 {
865 UINT32 OuterElementCount;
866 ACPI_OPERAND_OBJECT **OuterElements;
867 ACPI_OPERAND_OBJECT **Elements;
868 ACPI_OPERAND_OBJECT *ObjDesc;
869 UINT32 i;
870 UINT32 PreviousValue;

873 ACPI_FUNCTION_NAME (NsCheckSortedList);

876 /* The top-level object must be a package */

878 if (ReturnObject->Common.Type != ACPI_TYPE_PACKAGE)
879 {
880 return (AE_AML_OPERAND_TYPE);
881 }

883 /*
884 * NOTE: assumes list of sub-packages contains no NULL elements.
885 * Any NULL elements should have been removed by earlier call
886 * to AcpiNsRemoveNullElements.
887 */
888 OuterElementCount = ReturnObject->Package.Count;
889 if (!OuterElementCount || StartIndex >= OuterElementCount)
890 {
891 return (AE_AML_PACKAGE_LIMIT);
892 }

894 OuterElements = &ReturnObject->Package.Elements[StartIndex];
895 OuterElementCount -= StartIndex;

897 PreviousValue = 0;
898 if (SortDirection == ACPI_SORT_DESCENDING)
899 {
900 PreviousValue = ACPI_UINT32_MAX;
901 }

903 /* Examine each subpackage */

905 for (i = 0; i < OuterElementCount; i++)
906 {
907 /* Each element of the top-level package must also be a package */

909 if ((*OuterElements)->Common.Type != ACPI_TYPE_PACKAGE)
910 {
911 return (AE_AML_OPERAND_TYPE);
912 }

914 /* Each sub-package must have the minimum length */

916 if ((*OuterElements)->Package.Count < ExpectedCount)
917 {
918 return (AE_AML_PACKAGE_LIMIT);

new/usr/src/common/acpica/components/namespace/nsrepair2.c 15

919 }

921 Elements = (*OuterElements)->Package.Elements;
922 ObjDesc = Elements[SortIndex];

924 if (ObjDesc->Common.Type != ACPI_TYPE_INTEGER)
925 {
926 return (AE_AML_OPERAND_TYPE);
927 }

929 /*
930 * The list must be sorted in the specified order. If we detect a
931 * discrepancy, sort the entire list.
932 */
933 if (((SortDirection == ACPI_SORT_ASCENDING) &&
934 (ObjDesc->Integer.Value < PreviousValue)) ||
935 ((SortDirection == ACPI_SORT_DESCENDING) &&
936 (ObjDesc->Integer.Value > PreviousValue)))
937 {
938 AcpiNsSortList (&ReturnObject->Package.Elements[StartIndex],
939 OuterElementCount, SortIndex, SortDirection);

941 Info->ReturnFlags |= ACPI_OBJECT_REPAIRED;

943 ACPI_DEBUG_PRINT ((ACPI_DB_REPAIR,
944 "%s: Repaired unsorted list - now sorted by %s\n",
945 Info->FullPathname, SortKeyName));
946 return (AE_OK);
947 }

949 PreviousValue = (UINT32) ObjDesc->Integer.Value;
950 OuterElements++;
951 }

953 return (AE_OK);
954 }

957 /**
958 *
959 * FUNCTION: AcpiNsSortList
960 *
961 * PARAMETERS: Elements - Package object element list
962 * Count - Element count for above
963 * Index - Sort by which package element
964 * SortDirection - Ascending or Descending sort
965 *
966 * RETURN: None
967 *
968 * DESCRIPTION: Sort the objects that are in a package element list.
969 *
970 * NOTE: Assumes that all NULL elements have been removed from the package,
971 * and that all elements have been verified to be of type Integer.
972 *
973 ***/

975 static void
976 AcpiNsSortList (
977 ACPI_OPERAND_OBJECT **Elements,
978 UINT32 Count,
979 UINT32 Index,
980 UINT8 SortDirection)
981 {
982 ACPI_OPERAND_OBJECT *ObjDesc1;
983 ACPI_OPERAND_OBJECT *ObjDesc2;
984 ACPI_OPERAND_OBJECT *TempObj;

new/usr/src/common/acpica/components/namespace/nsrepair2.c 16

985 UINT32 i;
986 UINT32 j;

989 /* Simple bubble sort */

991 for (i = 1; i < Count; i++)
992 {
993 for (j = (Count - 1); j >= i; j--)
994 {
995 ObjDesc1 = Elements[j-1]->Package.Elements[Index];
996 ObjDesc2 = Elements[j]->Package.Elements[Index];

998 if (((SortDirection == ACPI_SORT_ASCENDING) &&
999 (ObjDesc1->Integer.Value > ObjDesc2->Integer.Value)) ||

1001 ((SortDirection == ACPI_SORT_DESCENDING) &&
1002 (ObjDesc1->Integer.Value < ObjDesc2->Integer.Value)))
1003 {
1004 TempObj = Elements[j-1];
1005 Elements[j-1] = Elements[j];
1006 Elements[j] = TempObj;
1007 }
1008 }
1009 }
1010 }

1013 /**
1014 *
1015 * FUNCTION: AcpiNsRemoveElement
1016 *
1017 * PARAMETERS: ObjDesc - Package object element list
1018 * Index - Index of element to remove
1019 *
1020 * RETURN: None
1021 *
1022 * DESCRIPTION: Remove the requested element of a package and delete it.
1023 *
1024 ***/

1026 static void
1027 AcpiNsRemoveElement (
1028 ACPI_OPERAND_OBJECT *ObjDesc,
1029 UINT32 Index)
1030 {
1031 ACPI_OPERAND_OBJECT **Source;
1032 ACPI_OPERAND_OBJECT **Dest;
1033 UINT32 Count;
1034 UINT32 NewCount;
1035 UINT32 i;

1038 ACPI_FUNCTION_NAME (NsRemoveElement);

1041 Count = ObjDesc->Package.Count;
1042 NewCount = Count - 1;

1044 Source = ObjDesc->Package.Elements;
1045 Dest = Source;

1047 /* Examine all elements of the package object, remove matched index */

1049 for (i = 0; i < Count; i++)
1050 {

new/usr/src/common/acpica/components/namespace/nsrepair2.c 17

1051 if (i == Index)
1052 {
1053 AcpiUtRemoveReference (*Source); /* Remove one ref for being in pkg
1054 AcpiUtRemoveReference (*Source);
1055 }
1056 else
1057 {
1058 *Dest = *Source;
1059 Dest++;
1060 }
1061 Source++;
1062 }

1064 /* NULL terminate list and update the package count */

1066 *Dest = NULL;
1067 ObjDesc->Package.Count = NewCount;
1068 }

new/usr/src/common/acpica/components/namespace/nssearch.c 1

**
 14383 Thu Dec 26 13:49:21 2013
new/usr/src/common/acpica/components/namespace/nssearch.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: nssearch - Namespace search
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __NSSEARCH_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acnamesp.h"

50 #ifdef ACPI_ASL_COMPILER
51 #include "amlcode.h"
52 #endif

54 #define _COMPONENT ACPI_NAMESPACE
55 ACPI_MODULE_NAME ("nssearch")

57 /* Local prototypes */

59 static ACPI_STATUS

new/usr/src/common/acpica/components/namespace/nssearch.c 2

60 AcpiNsSearchParentTree (
61 UINT32 TargetName,
62 ACPI_NAMESPACE_NODE *Node,
63 ACPI_OBJECT_TYPE Type,
64 ACPI_NAMESPACE_NODE **ReturnNode);

67 /***
68 *
69 * FUNCTION: AcpiNsSearchOneScope
70 *
71 * PARAMETERS: TargetName - Ascii ACPI name to search for
72 * ParentNode - Starting node where search will begin
73 * Type - Object type to match
74 * ReturnNode - Where the matched Named obj is returned
75 *
76 * RETURN: Status
77 *
78 * DESCRIPTION: Search a single level of the namespace. Performs a
79 * simple search of the specified level, and does not add
80 * entries or search parents.
81 *
82 *
83 * Named object lists are built (and subsequently dumped) in the
84 * order in which the names are encountered during the namespace load;
85 *
86 * All namespace searching is linear in this implementation, but
87 * could be easily modified to support any improved search
88 * algorithm. However, the linear search was chosen for simplicity
89 * and because the trees are small and the other interpreter
90 * execution overhead is relatively high.
91 *
92 * Note: CPU execution analysis has shown that the AML interpreter spends
93 * a very small percentage of its time searching the namespace. Therefore,
94 * the linear search seems to be sufficient, as there would seem to be
95 * little value in improving the search.
96 *
97 **/

99 ACPI_STATUS
100 AcpiNsSearchOneScope (
101 UINT32 TargetName,
102 ACPI_NAMESPACE_NODE *ParentNode,
103 ACPI_OBJECT_TYPE Type,
104 ACPI_NAMESPACE_NODE **ReturnNode)
105 {
106 ACPI_NAMESPACE_NODE *Node;

109 ACPI_FUNCTION_TRACE (NsSearchOneScope);

112 #ifdef ACPI_DEBUG_OUTPUT
113 if (ACPI_LV_NAMES & AcpiDbgLevel)
114 {
115 char *ScopeName;

117 ScopeName = AcpiNsGetExternalPathname (ParentNode);
118 if (ScopeName)
119 {
120 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,
121 "Searching %s (%p) For [%4.4s] (%s)\n",
122 ScopeName, ParentNode, ACPI_CAST_PTR (char, &TargetName),
123 AcpiUtGetTypeName (Type)));

125 ACPI_FREE (ScopeName);

new/usr/src/common/acpica/components/namespace/nssearch.c 3

126 }
127 }
128 #endif

130 /*
131 * Search for name at this namespace level, which is to say that we
132 * must search for the name among the children of this object
133 */
134 Node = ParentNode->Child;
135 while (Node)
136 {
137 /* Check for match against the name */

139 if (Node->Name.Integer == TargetName)
140 {
141 /* Resolve a control method alias if any */

143 if (AcpiNsGetType (Node) == ACPI_TYPE_LOCAL_METHOD_ALIAS)
144 {
145 Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Node->Object);
146 }

148 /* Found matching entry */

150 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,
151 "Name [%4.4s] (%s) %p found in scope [%4.4s] %p\n",
152 ACPI_CAST_PTR (char, &TargetName),
153 AcpiUtGetTypeName (Node->Type),
154 Node, AcpiUtGetNodeName (ParentNode), ParentNode));

156 *ReturnNode = Node;
157 return_ACPI_STATUS (AE_OK);
158 }

160 /* Didn’t match name, move on to the next peer object */

162 Node = Node->Peer;
163 }

165 /* Searched entire namespace level, not found */

167 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,
168 "Name [%4.4s] (%s) not found in search in scope [%4.4s] "
169 "%p first child %p\n",
170 ACPI_CAST_PTR (char, &TargetName), AcpiUtGetTypeName (Type),
171 AcpiUtGetNodeName (ParentNode), ParentNode, ParentNode->Child));

173 return_ACPI_STATUS (AE_NOT_FOUND);
174 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/namespace/nsutils.c 1

**
 22821 Thu Dec 26 13:49:21 2013
new/usr/src/common/acpica/components/namespace/nsutils.c
update to acpica-unix2-20131115
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: nsutils - Utilities for accessing ACPI namespace, accessing
4 * parents and siblings and Scope manipulation
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #define __NSUTILS_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acnamesp.h"
50 #include "amlcode.h"

52 #define _COMPONENT ACPI_NAMESPACE
53 ACPI_MODULE_NAME ("nsutils")

55 /* Local prototypes */

57 static BOOLEAN
58 AcpiNsValidPathSeparator (

new/usr/src/common/acpica/components/namespace/nsutils.c 2

59 char Sep);

57 #ifdef ACPI_OBSOLETE_FUNCTIONS
58 ACPI_NAME
59 AcpiNsFindParentName (
60 ACPI_NAMESPACE_NODE *NodeToSearch);
61 #endif

64 /***
65 *
66 * FUNCTION: AcpiNsPrintNodePathname
67 *
68 * PARAMETERS: Node - Object
69 * Message - Prefix message
70 *
71 * DESCRIPTION: Print an object’s full namespace pathname
72 * Manages allocation/freeing of a pathname buffer
73 *
74 **/

76 void
77 AcpiNsPrintNodePathname (
78 ACPI_NAMESPACE_NODE *Node,
79 const char *Message)
80 {
81 ACPI_BUFFER Buffer;
82 ACPI_STATUS Status;

85 if (!Node)
86 {
87 AcpiOsPrintf ("[NULL NAME]");
88 return;
89 }

91 /* Convert handle to full pathname and print it (with supplied message) */

93 Buffer.Length = ACPI_ALLOCATE_LOCAL_BUFFER;

95 Status = AcpiNsHandleToPathname (Node, &Buffer);
96 if (ACPI_SUCCESS (Status))
97 {
98 if (Message)
99 {
100 AcpiOsPrintf ("%s ", Message);
101 }

103 AcpiOsPrintf ("[%s] (Node %p)", (char *) Buffer.Pointer, Node);
104 ACPI_FREE (Buffer.Pointer);
105 }
106 }

109 /***
110 *
115 * FUNCTION: AcpiNsValidRootPrefix
116 *
117 * PARAMETERS: Prefix - Character to be checked
118 *
119 * RETURN: TRUE if a valid prefix
120 *
121 * DESCRIPTION: Check if a character is a valid ACPI Root prefix
122 *
123 **/

new/usr/src/common/acpica/components/namespace/nsutils.c 3

125 BOOLEAN
126 AcpiNsValidRootPrefix (
127 char Prefix)
128 {

130 return ((BOOLEAN) (Prefix == ’\\’));
131 }

134 /***
135 *
136 * FUNCTION: AcpiNsValidPathSeparator
137 *
138 * PARAMETERS: Sep - Character to be checked
139 *
140 * RETURN: TRUE if a valid path separator
141 *
142 * DESCRIPTION: Check if a character is a valid ACPI path separator
143 *
144 **/

146 static BOOLEAN
147 AcpiNsValidPathSeparator (
148 char Sep)
149 {

151 return ((BOOLEAN) (Sep == ’.’));
152 }

155 /***
156 *
111 * FUNCTION: AcpiNsGetType
112 *
113 * PARAMETERS: Node - Parent Node to be examined
114 *
115 * RETURN: Type field from Node whose handle is passed
116 *
117 * DESCRIPTION: Return the type of a Namespace node
118 *
119 **/

121 ACPI_OBJECT_TYPE
122 AcpiNsGetType (
123 ACPI_NAMESPACE_NODE *Node)
124 {
125 ACPI_FUNCTION_TRACE (NsGetType);

128 if (!Node)
129 {
130 ACPI_WARNING ((AE_INFO, "Null Node parameter"));
131 return_UINT8 (ACPI_TYPE_ANY);
177 return_UINT32 (ACPI_TYPE_ANY);
132 }

134 return_UINT8 (Node->Type);
180 return_UINT32 ((ACPI_OBJECT_TYPE) Node->Type);
135 }

138 /***
139 *
140 * FUNCTION: AcpiNsLocal
141 *
142 * PARAMETERS: Type - A namespace object type

new/usr/src/common/acpica/components/namespace/nsutils.c 4

143 *
144 * RETURN: LOCAL if names must be found locally in objects of the
145 * passed type, 0 if enclosing scopes should be searched
146 *
147 * DESCRIPTION: Returns scope rule for the given object type.
148 *
149 **/

151 UINT32
152 AcpiNsLocal (
153 ACPI_OBJECT_TYPE Type)
154 {
155 ACPI_FUNCTION_TRACE (NsLocal);

158 if (!AcpiUtValidObjectType (Type))
159 {
160 /* Type code out of range */

162 ACPI_WARNING ((AE_INFO, "Invalid Object Type 0x%X", Type));
163 return_UINT32 (ACPI_NS_NORMAL);
164 }

166 return_UINT32 (AcpiGbl_NsProperties[Type] & ACPI_NS_LOCAL);
212 return_UINT32 ((UINT32) AcpiGbl_NsProperties[Type] & ACPI_NS_LOCAL);
167 }

170 /***
171 *
172 * FUNCTION: AcpiNsGetInternalNameLength
173 *
174 * PARAMETERS: Info - Info struct initialized with the
175 * external name pointer.
176 *
177 * RETURN: None
178 *
179 * DESCRIPTION: Calculate the length of the internal (AML) namestring
180 * corresponding to the external (ASL) namestring.
181 *
182 **/

184 void
185 AcpiNsGetInternalNameLength (
186 ACPI_NAMESTRING_INFO *Info)
187 {
188 const char *NextExternalChar;
189 UINT32 i;

192 ACPI_FUNCTION_ENTRY ();

195 NextExternalChar = Info->ExternalName;
196 Info->NumCarats = 0;
197 Info->NumSegments = 0;
198 Info->FullyQualified = FALSE;

200 /*
201 * For the internal name, the required length is 4 bytes per segment, plus
202 * 1 each for RootPrefix, MultiNamePrefixOp, segment count, trailing null
203 * (which is not really needed, but no there’s harm in putting it there)
204 *
205 * strlen() + 1 covers the first NameSeg, which has no path separator
206 */
207 if (ACPI_IS_ROOT_PREFIX (*NextExternalChar))

new/usr/src/common/acpica/components/namespace/nsutils.c 5

253 if (AcpiNsValidRootPrefix (*NextExternalChar))
208 {
209 Info->FullyQualified = TRUE;
210 NextExternalChar++;

212 /* Skip redundant RootPrefix, like _SB.PCI0.SBRG.EC0 */

214 while (ACPI_IS_ROOT_PREFIX (*NextExternalChar))
260 while (AcpiNsValidRootPrefix (*NextExternalChar))
215 {
216 NextExternalChar++;
217 }
218 }
219 else
220 {
221 /* Handle Carat prefixes */

223 while (ACPI_IS_PARENT_PREFIX (*NextExternalChar))
269 while (*NextExternalChar == ’^’)
224 {
225 Info->NumCarats++;
226 NextExternalChar++;
227 }
228 }

230 /*
231 * Determine the number of ACPI name "segments" by counting the number of
232 * path separators within the string. Start with one segment since the
233 * segment count is [(# separators) + 1], and zero separators is ok.
234 */
235 if (*NextExternalChar)
236 {
237 Info->NumSegments = 1;
238 for (i = 0; NextExternalChar[i]; i++)
239 {
240 if (ACPI_IS_PATH_SEPARATOR (NextExternalChar[i]))
286 if (AcpiNsValidPathSeparator (NextExternalChar[i]))
241 {
242 Info->NumSegments++;
243 }
244 }
245 }

247 Info->Length = (ACPI_NAME_SIZE * Info->NumSegments) +
248 4 + Info->NumCarats;

250 Info->NextExternalChar = NextExternalChar;
251 }

254 /***
255 *
256 * FUNCTION: AcpiNsBuildInternalName
257 *
258 * PARAMETERS: Info - Info struct fully initialized
259 *
260 * RETURN: Status
261 *
262 * DESCRIPTION: Construct the internal (AML) namestring
263 * corresponding to the external (ASL) namestring.
264 *
265 **/

267 ACPI_STATUS
268 AcpiNsBuildInternalName (
269 ACPI_NAMESTRING_INFO *Info)

new/usr/src/common/acpica/components/namespace/nsutils.c 6

270 {
271 UINT32 NumSegments = Info->NumSegments;
272 char *InternalName = Info->InternalName;
273 const char *ExternalName = Info->NextExternalChar;
274 char *Result = NULL;
275 UINT32 i;

278 ACPI_FUNCTION_TRACE (NsBuildInternalName);

281 /* Setup the correct prefixes, counts, and pointers */

283 if (Info->FullyQualified)
284 {
285 InternalName[0] = AML_ROOT_PREFIX;
331 InternalName[0] = ’\\’;

287 if (NumSegments <= 1)
288 {
289 Result = &InternalName[1];
290 }
291 else if (NumSegments == 2)
292 {
293 InternalName[1] = AML_DUAL_NAME_PREFIX;
294 Result = &InternalName[2];
295 }
296 else
297 {
298 InternalName[1] = AML_MULTI_NAME_PREFIX_OP;
299 InternalName[2] = (char) NumSegments;
300 Result = &InternalName[3];
301 }
302 }
303 else
304 {
305 /*
306 * Not fully qualified.
307 * Handle Carats first, then append the name segments
308 */
309 i = 0;
310 if (Info->NumCarats)
311 {
312 for (i = 0; i < Info->NumCarats; i++)
313 {
314 InternalName[i] = AML_PARENT_PREFIX;
360 InternalName[i] = ’^’;
315 }
316 }

318 if (NumSegments <= 1)
319 {
320 Result = &InternalName[i];
321 }
322 else if (NumSegments == 2)
323 {
324 InternalName[i] = AML_DUAL_NAME_PREFIX;
325 Result = &InternalName[(ACPI_SIZE) i+1];
326 }
327 else
328 {
329 InternalName[i] = AML_MULTI_NAME_PREFIX_OP;
330 InternalName[(ACPI_SIZE) i+1] = (char) NumSegments;
331 Result = &InternalName[(ACPI_SIZE) i+2];
332 }
333 }

new/usr/src/common/acpica/components/namespace/nsutils.c 7

335 /* Build the name (minus path separators) */

337 for (; NumSegments; NumSegments--)
338 {
339 for (i = 0; i < ACPI_NAME_SIZE; i++)
340 {
341 if (ACPI_IS_PATH_SEPARATOR (*ExternalName) ||
387 if (AcpiNsValidPathSeparator (*ExternalName) ||
342 (*ExternalName == 0))
343 {
344 /* Pad the segment with underscore(s) if segment is short */

346 Result[i] = ’_’;
347 }
348 else
349 {
350 /* Convert the character to uppercase and save it */

352 Result[i] = (char) ACPI_TOUPPER ((int) *ExternalName);
353 ExternalName++;
354 }
355 }

357 /* Now we must have a path separator, or the pathname is bad */

359 if (!ACPI_IS_PATH_SEPARATOR (*ExternalName) &&
405 if (!AcpiNsValidPathSeparator (*ExternalName) &&
360 (*ExternalName != 0))
361 {
362 return_ACPI_STATUS (AE_BAD_PATHNAME);
408 return_ACPI_STATUS (AE_BAD_PARAMETER);
363 }

365 /* Move on the next segment */

367 ExternalName++;
368 Result += ACPI_NAME_SIZE;
369 }

371 /* Terminate the string */

373 *Result = 0;

375 if (Info->FullyQualified)
376 {
377 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Returning [%p] (abs) \"\\%s\"\n",
378 InternalName, InternalName));
379 }
380 else
381 {
382 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Returning [%p] (rel) \"%s\"\n",
383 InternalName, InternalName));
384 }

386 return_ACPI_STATUS (AE_OK);
387 }

______unchanged_portion_omitted_

453 /***
454 *
455 * FUNCTION: AcpiNsExternalizeName
456 *
457 * PARAMETERS: InternalNameLength - Lenth of the internal name below
458 * InternalName - Internal representation of name

new/usr/src/common/acpica/components/namespace/nsutils.c 8

459 * ConvertedNameLength - Where the length is returned
460 * ConvertedName - Where the resulting external name
461 * is returned
462 *
463 * RETURN: Status
464 *
465 * DESCRIPTION: Convert internal name (e.g. 5c 2f 02 5f 50 52 5f 43 50 55 30)
466 * to its external (printable) form (e.g. "_PR_.CPU0")
467 *
468 **/

470 ACPI_STATUS
471 AcpiNsExternalizeName (
472 UINT32 InternalNameLength,
473 const char *InternalName,
474 UINT32 *ConvertedNameLength,
475 char **ConvertedName)
476 {
477 UINT32 NamesIndex = 0;
478 UINT32 NumSegments = 0;
479 UINT32 RequiredLength;
480 UINT32 PrefixLength = 0;
481 UINT32 i = 0;
482 UINT32 j = 0;

485 ACPI_FUNCTION_TRACE (NsExternalizeName);

488 if (!InternalNameLength ||
489 !InternalName ||
490 !ConvertedName)
491 {
492 return_ACPI_STATUS (AE_BAD_PARAMETER);
493 }

495 /* Check for a prefix (one ’\’ | one or more ’^’) */

497 switch (InternalName[0])
498 {
499 case AML_ROOT_PREFIX:

545 case ’\\’:
501 PrefixLength = 1;
502 break;

504 case AML_PARENT_PREFIX:

549 case ’^’:
506 for (i = 0; i < InternalNameLength; i++)
507 {
508 if (ACPI_IS_PARENT_PREFIX (InternalName[i]))
552 if (InternalName[i] == ’^’)
509 {
510 PrefixLength = i + 1;
511 }
512 else
513 {
514 break;
515 }
516 }

518 if (i == InternalNameLength)
519 {
520 PrefixLength = i;
521 }

new/usr/src/common/acpica/components/namespace/nsutils.c 9

523 break;

525 default:

527 break;
528 }

530 /*
531 * Check for object names. Note that there could be 0-255 of these
532 * 4-byte elements.
533 */
534 if (PrefixLength < InternalNameLength)
535 {
536 switch (InternalName[PrefixLength])
537 {
538 case AML_MULTI_NAME_PREFIX_OP:

540 /* <count> 4-byte names */

542 NamesIndex = PrefixLength + 2;
543 NumSegments = (UINT8)
544 InternalName[(ACPI_SIZE) PrefixLength + 1];
545 break;

547 case AML_DUAL_NAME_PREFIX:

549 /* Two 4-byte names */

551 NamesIndex = PrefixLength + 1;
552 NumSegments = 2;
553 break;

555 case 0:

557 /* NullName */

559 NamesIndex = 0;
560 NumSegments = 0;
561 break;

563 default:

565 /* one 4-byte name */

567 NamesIndex = PrefixLength;
568 NumSegments = 1;
569 break;
570 }
571 }

573 /*
574 * Calculate the length of ConvertedName, which equals the length
575 * of the prefix, length of all object names, length of any required
576 * punctuation (’.’) between object names, plus the NULL terminator.
577 */
578 RequiredLength = PrefixLength + (4 * NumSegments) +
579 ((NumSegments > 0) ? (NumSegments - 1) : 0) + 1;

581 /*
582 * Check to see if we’re still in bounds. If not, there’s a problem
583 * with InternalName (invalid format).
584 */
585 if (RequiredLength > InternalNameLength)
586 {
587 ACPI_ERROR ((AE_INFO, "Invalid internal name"));

new/usr/src/common/acpica/components/namespace/nsutils.c 10

588 return_ACPI_STATUS (AE_BAD_PATHNAME);
589 }

591 /* Build the ConvertedName */

593 *ConvertedName = ACPI_ALLOCATE_ZEROED (RequiredLength);
594 if (!(*ConvertedName))
595 {
596 return_ACPI_STATUS (AE_NO_MEMORY);
597 }

599 j = 0;

601 for (i = 0; i < PrefixLength; i++)
602 {
603 (*ConvertedName)[j++] = InternalName[i];
604 }

606 if (NumSegments > 0)
607 {
608 for (i = 0; i < NumSegments; i++)
609 {
610 if (i > 0)
611 {
612 (*ConvertedName)[j++] = ’.’;
613 }

615 /* Copy and validate the 4-char name segment */

617 ACPI_MOVE_NAME (&(*ConvertedName)[j], &InternalName[NamesIndex]);
618 AcpiUtRepairName (&(*ConvertedName)[j]);

620 j += ACPI_NAME_SIZE;
621 NamesIndex += ACPI_NAME_SIZE;
658 (*ConvertedName)[j++] = InternalName[NamesIndex++];
659 (*ConvertedName)[j++] = InternalName[NamesIndex++];
660 (*ConvertedName)[j++] = InternalName[NamesIndex++];
661 (*ConvertedName)[j++] = InternalName[NamesIndex++];
622 }
623 }

625 if (ConvertedNameLength)
626 {
627 *ConvertedNameLength = (UINT32) RequiredLength;
628 }

630 return_ACPI_STATUS (AE_OK);
631 }

______unchanged_portion_omitted_

680 /***
681 *
682 * FUNCTION: AcpiNsTerminate
683 *
684 * PARAMETERS: none
685 *
686 * RETURN: none
687 *
688 * DESCRIPTION: free memory allocated for namespace and ACPI table storage.
689 *
690 **/

692 void
693 AcpiNsTerminate (
694 void)

new/usr/src/common/acpica/components/namespace/nsutils.c 11

695 {
696 ACPI_STATUS Status;
736 ACPI_OPERAND_OBJECT *ObjDesc;

699 ACPI_FUNCTION_TRACE (NsTerminate);

702 /*
703 * Free the entire namespace -- all nodes and all objects
704 * attached to the nodes
743 * 1) Free the entire namespace -- all nodes and objects
744 *
745 * Delete all object descriptors attached to namepsace nodes
705 */
706 AcpiNsDeleteNamespaceSubtree (AcpiGbl_RootNode);

708 /* Delete any objects attached to the root node */
749 /* Detach any objects attached to the root */

710 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
711 if (ACPI_FAILURE (Status))
751 ObjDesc = AcpiNsGetAttachedObject (AcpiGbl_RootNode);
752 if (ObjDesc)
712 {
713 return_VOID;
754 AcpiNsDetachObject (AcpiGbl_RootNode);
714 }

716 AcpiNsDeleteNode (AcpiGbl_RootNode);
717 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);

719 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Namespace freed\n"));
720 return_VOID;
721 }

724 /***
725 *
726 * FUNCTION: AcpiNsOpensScope
727 *
728 * PARAMETERS: Type - A valid namespace type
729 *
730 * RETURN: NEWSCOPE if the passed type "opens a name scope" according
731 * to the ACPI specification, else 0
732 *
733 **/

735 UINT32
736 AcpiNsOpensScope (
737 ACPI_OBJECT_TYPE Type)
738 {
739 ACPI_FUNCTION_ENTRY ();
777 ACPI_FUNCTION_TRACE_STR (NsOpensScope, AcpiUtGetTypeName (Type));

742 if (Type > ACPI_TYPE_LOCAL_MAX)
780 if (!AcpiUtValidObjectType (Type))
743 {
744 /* type code out of range */

746 ACPI_WARNING ((AE_INFO, "Invalid Object Type 0x%X", Type));
747 return (ACPI_NS_NORMAL);
785 return_UINT32 (ACPI_NS_NORMAL);
748 }

new/usr/src/common/acpica/components/namespace/nsutils.c 12

750 return (((UINT32) AcpiGbl_NsProperties[Type]) & ACPI_NS_NEWSCOPE);
788 return_UINT32 (((UINT32) AcpiGbl_NsProperties[Type]) & ACPI_NS_NEWSCOPE);
751 }

754 /***
755 *
756 * FUNCTION: AcpiNsGetNode
757 *
758 * PARAMETERS: *Pathname - Name to be found, in external (ASL) format. The
759 * \ (backslash) and ^ (carat) prefixes, and the
760 * . (period) to separate segments are supported.
761 * PrefixNode - Root of subtree to be searched, or NS_ALL for the
762 * root of the name space. If Name is fully
763 * qualified (first INT8 is ’\’), the passed value
764 * of Scope will not be accessed.
765 * Flags - Used to indicate whether to perform upsearch or
766 * not.
767 * ReturnNode - Where the Node is returned
768 *
769 * DESCRIPTION: Look up a name relative to a given scope and return the
770 * corresponding Node. NOTE: Scope can be null.
771 *
772 * MUTEX: Locks namespace
773 *
774 **/

776 ACPI_STATUS
777 AcpiNsGetNode (
778 ACPI_NAMESPACE_NODE *PrefixNode,
779 const char *Pathname,
780 UINT32 Flags,
781 ACPI_NAMESPACE_NODE **ReturnNode)
782 {
783 ACPI_GENERIC_STATE ScopeInfo;
784 ACPI_STATUS Status;
785 char *InternalPath;

788 ACPI_FUNCTION_TRACE_PTR (NsGetNode, ACPI_CAST_PTR (char, Pathname));

791 /* Simplest case is a null pathname */

793 if (!Pathname)
794 {
795 *ReturnNode = PrefixNode;
796 if (!PrefixNode)
797 {
798 *ReturnNode = AcpiGbl_RootNode;
799 }
800 return_ACPI_STATUS (AE_OK);
801 }

803 /* Quick check for a reference to the root */

805 if (ACPI_IS_ROOT_PREFIX (Pathname[0]) && (!Pathname[1]))
806 {
807 *ReturnNode = AcpiGbl_RootNode;
808 return_ACPI_STATUS (AE_OK);
809 }

811 /* Convert path to internal representation */

813 Status = AcpiNsInternalizeName (Pathname, &InternalPath);
814 if (ACPI_FAILURE (Status))

new/usr/src/common/acpica/components/namespace/nsutils.c 13

815 {
816 return_ACPI_STATUS (Status);
817 }

819 /* Must lock namespace during lookup */

821 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
822 if (ACPI_FAILURE (Status))
823 {
824 goto Cleanup;
825 }

827 /* Setup lookup scope (search starting point) */

829 ScopeInfo.Scope.Node = PrefixNode;

831 /* Lookup the name in the namespace */

833 Status = AcpiNsLookup (&ScopeInfo, InternalPath, ACPI_TYPE_ANY,
834 ACPI_IMODE_EXECUTE, (Flags | ACPI_NS_DONT_OPEN_SCOPE),
835 NULL, ReturnNode);
836 if (ACPI_FAILURE (Status))
837 {
838 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "%s, %s\n",
839 Pathname, AcpiFormatException (Status)));
840 }

842 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);

844 Cleanup:
845 ACPI_FREE (InternalPath);
846 return_ACPI_STATUS (Status);
847 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/namespace/nswalk.c 1

**
 12574 Thu Dec 26 13:49:22 2013
new/usr/src/common/acpica/components/namespace/nswalk.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: nswalk - Functions for walking the ACPI namespace
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __NSWALK_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acnamesp.h"

52 #define _COMPONENT ACPI_NAMESPACE
53 ACPI_MODULE_NAME ("nswalk")

56 /***
57 *
58 * FUNCTION: AcpiNsGetNextNode
59 *

new/usr/src/common/acpica/components/namespace/nswalk.c 2

60 * PARAMETERS: ParentNode - Parent node whose children we are
61 * getting
62 * ChildNode - Previous child that was found.
63 * The NEXT child will be returned
64 *
65 * RETURN: ACPI_NAMESPACE_NODE - Pointer to the NEXT child or NULL if
66 * none is found.
67 *
68 * DESCRIPTION: Return the next peer node within the namespace. If Handle
69 * is valid, Scope is ignored. Otherwise, the first node
70 * within Scope is returned.
71 *
72 **/

74 ACPI_NAMESPACE_NODE *
75 AcpiNsGetNextNode (
76 ACPI_NAMESPACE_NODE *ParentNode,
77 ACPI_NAMESPACE_NODE *ChildNode)
78 {
79 ACPI_FUNCTION_ENTRY ();

82 if (!ChildNode)
83 {
84 /* It’s really the parent’s _scope_ that we want */

86 return (ParentNode->Child);
87 }

89 /* Otherwise just return the next peer */

91 return (ChildNode->Peer);
92 }

______unchanged_portion_omitted_

159 /***
160 *
161 * FUNCTION: AcpiNsWalkNamespace
162 *
163 * PARAMETERS: Type - ACPI_OBJECT_TYPE to search for
164 * StartNode - Handle in namespace where search begins
165 * MaxDepth - Depth to which search is to reach
166 * Flags - Whether to unlock the NS before invoking
167 * the callback routine
168 * DescendingCallback - Called during tree descent
168 * PreOrderVisit - Called during tree pre-order visit
169 * when an object of "Type" is found
170 * AscendingCallback - Called during tree ascent
170 * PostOrderVisit - Called during tree post-order visit
171 * when an object of "Type" is found
172 * Context - Passed to user function(s) above
173 * ReturnValue - from the UserFunction if terminated
174 * early. Otherwise, returns NULL.
175 * RETURNS: Status
176 *
177 * DESCRIPTION: Performs a modified depth-first walk of the namespace tree,
178 * starting (and ending) at the node specified by StartHandle.
179 * The callback function is called whenever a node that matches
180 * the type parameter is found. If the callback function returns
181 * a non-zero value, the search is terminated immediately and
182 * this value is returned to the caller.
183 *
184 * The point of this procedure is to provide a generic namespace
185 * walk routine that can be called from multiple places to
186 * provide multiple services; the callback function(s) can be

new/usr/src/common/acpica/components/namespace/nswalk.c 3

187 * tailored to each task, whether it is a print function,
188 * a compare function, etc.
189 *
190 **/

192 ACPI_STATUS
193 AcpiNsWalkNamespace (
194 ACPI_OBJECT_TYPE Type,
195 ACPI_HANDLE StartNode,
196 UINT32 MaxDepth,
197 UINT32 Flags,
198 ACPI_WALK_CALLBACK DescendingCallback,
199 ACPI_WALK_CALLBACK AscendingCallback,
198 ACPI_WALK_CALLBACK PreOrderVisit,
199 ACPI_WALK_CALLBACK PostOrderVisit,
200 void *Context,
201 void **ReturnValue)
202 {
203 ACPI_STATUS Status;
204 ACPI_STATUS MutexStatus;
205 ACPI_NAMESPACE_NODE *ChildNode;
206 ACPI_NAMESPACE_NODE *ParentNode;
207 ACPI_OBJECT_TYPE ChildType;
208 UINT32 Level;
209 BOOLEAN NodePreviouslyVisited = FALSE;

212 ACPI_FUNCTION_TRACE (NsWalkNamespace);

215 /* Special case for the namespace Root Node */

217 if (StartNode == ACPI_ROOT_OBJECT)
218 {
219 StartNode = AcpiGbl_RootNode;
220 }

222 /* Null child means "get first node" */

224 ParentNode = StartNode;
225 ChildNode = AcpiNsGetNextNode (ParentNode, NULL);
226 ChildType = ACPI_TYPE_ANY;
227 Level = 1;

229 /*
230 * Traverse the tree of nodes until we bubble back up to where we
231 * started. When Level is zero, the loop is done because we have
232 * bubbled up to (and passed) the original parent handle (StartEntry)
233 */
234 while (Level > 0 && ChildNode)
235 {
236 Status = AE_OK;

238 /* Found next child, get the type if we are not searching for ANY */

240 if (Type != ACPI_TYPE_ANY)
241 {
242 ChildType = ChildNode->Type;
243 }

245 /*
246 * Ignore all temporary namespace nodes (created during control
247 * method execution) unless told otherwise. These temporary nodes
248 * can cause a race condition because they can be deleted during
249 * the execution of the user function (if the namespace is
250 * unlocked before invocation of the user function.) Only the

new/usr/src/common/acpica/components/namespace/nswalk.c 4

251 * debugger namespace dump will examine the temporary nodes.
252 */
253 if ((ChildNode->Flags & ANOBJ_TEMPORARY) &&
254 !(Flags & ACPI_NS_WALK_TEMP_NODES))
255 {
256 Status = AE_CTRL_DEPTH;
257 }

259 /* Type must match requested type */

261 else if (ChildType == Type)
262 {
263 /*
264 * Found a matching node, invoke the user callback function.
265 * Unlock the namespace if flag is set.
266 */
267 if (Flags & ACPI_NS_WALK_UNLOCK)
268 {
269 MutexStatus = AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
270 if (ACPI_FAILURE (MutexStatus))
271 {
272 return_ACPI_STATUS (MutexStatus);
273 }
274 }

276 /*
277 * Invoke the user function, either descending, ascending,
277 * Invoke the user function, either pre-order or post-order
278 * or both.
279 */
280 if (!NodePreviouslyVisited)
281 {
282 if (DescendingCallback)
282 if (PreOrderVisit)
283 {
284 Status = DescendingCallback (ChildNode, Level,
284 Status = PreOrderVisit (ChildNode, Level,
285 Context, ReturnValue);
286 }
287 }
288 else
289 {
290 if (AscendingCallback)
290 if (PostOrderVisit)
291 {
292 Status = AscendingCallback (ChildNode, Level,
292 Status = PostOrderVisit (ChildNode, Level,
293 Context, ReturnValue);
294 }
295 }

297 if (Flags & ACPI_NS_WALK_UNLOCK)
298 {
299 MutexStatus = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
300 if (ACPI_FAILURE (MutexStatus))
301 {
302 return_ACPI_STATUS (MutexStatus);
303 }
304 }

306 switch (Status)
307 {
308 case AE_OK:
309 case AE_CTRL_DEPTH:

311 /* Just keep going */

new/usr/src/common/acpica/components/namespace/nswalk.c 5

312 break;

314 case AE_CTRL_TERMINATE:

316 /* Exit now, with OK status */

318 return_ACPI_STATUS (AE_OK);

320 default:

322 /* All others are valid exceptions */

324 return_ACPI_STATUS (Status);
325 }
326 }

328 /*
329 * Depth first search: Attempt to go down another level in the
330 * namespace if we are allowed to. Don’t go any further if we have
331 * reached the caller specified maximum depth or if the user
332 * function has specified that the maximum depth has been reached.
333 */
334 if (!NodePreviouslyVisited &&
335 (Level < MaxDepth) &&
336 (Status != AE_CTRL_DEPTH))
337 {
338 if (ChildNode->Child)
339 {
340 /* There is at least one child of this node, visit it */

342 Level++;
343 ParentNode = ChildNode;
344 ChildNode = AcpiNsGetNextNode (ParentNode, NULL);
345 continue;
346 }
347 }

349 /* No more children, re-visit this node */

351 if (!NodePreviouslyVisited)
352 {
353 NodePreviouslyVisited = TRUE;
354 continue;
355 }

357 /* No more children, visit peers */

359 ChildNode = AcpiNsGetNextNode (ParentNode, ChildNode);
360 if (ChildNode)
361 {
362 NodePreviouslyVisited = FALSE;
363 }

365 /* No peers, re-visit parent */

367 else
368 {
369 /*
370 * No more children of this node (AcpiNsGetNextNode failed), go
371 * back upwards in the namespace tree to the node’s parent.
372 */
373 Level--;
374 ChildNode = ParentNode;
375 ParentNode = ParentNode->Parent;

377 NodePreviouslyVisited = TRUE;

new/usr/src/common/acpica/components/namespace/nswalk.c 6

378 }
379 }

381 /* Complete walk, not terminated by user function */

383 return_ACPI_STATUS (AE_OK);
384 }

new/usr/src/common/acpica/components/namespace/nsxfeval.c 1

**
 32410 Thu Dec 26 13:49:22 2013
new/usr/src/common/acpica/components/namespace/nsxfeval.c
update to acpica-unix2-20131218
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: nsxfeval - Public interfaces to the ACPI subsystem
4 * ACPI Object evaluation interfaces
5 *
6 **/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

46 #define __NSXFEVAL_C__
47 #define EXPORT_ACPI_INTERFACES

49 #include "acpi.h"
50 #include "accommon.h"
51 #include "acnamesp.h"
52 #include "acinterp.h"

55 #define _COMPONENT ACPI_NAMESPACE
56 ACPI_MODULE_NAME ("nsxfeval")

new/usr/src/common/acpica/components/namespace/nsxfeval.c 2

58 /* Local prototypes */

60 static void
61 AcpiNsResolveReferences (
62 ACPI_EVALUATE_INFO *Info);

65 /***
66 *
67 * FUNCTION: AcpiEvaluateObjectTyped
68 *
69 * PARAMETERS: Handle - Object handle (optional)
70 * Pathname - Object pathname (optional)
71 * ExternalParams - List of parameters to pass to method,
72 * terminated by NULL. May be NULL
73 * if no parameters are being passed.
74 * ReturnBuffer - Where to put method’s return value (if
75 * any). If NULL, no value is returned.
76 * ReturnType - Expected type of return object
77 *
78 * RETURN: Status
79 *
80 * DESCRIPTION: Find and evaluate the given object, passing the given
81 * parameters if necessary. One of "Handle" or "Pathname" must
82 * be valid (non-null)
83 *
84 **/

86 ACPI_STATUS
87 AcpiEvaluateObjectTyped (
88 ACPI_HANDLE Handle,
89 ACPI_STRING Pathname,
90 ACPI_OBJECT_LIST *ExternalParams,
91 ACPI_BUFFER *ReturnBuffer,
92 ACPI_OBJECT_TYPE ReturnType)
93 {
94 ACPI_STATUS Status;
95 BOOLEAN FreeBufferOnError = FALSE;
94 BOOLEAN MustFree = FALSE;

98 ACPI_FUNCTION_TRACE (AcpiEvaluateObjectTyped);

101 /* Return buffer must be valid */

103 if (!ReturnBuffer)
104 {
105 return_ACPI_STATUS (AE_BAD_PARAMETER);
106 }

108 if (ReturnBuffer->Length == ACPI_ALLOCATE_BUFFER)
109 {
110 FreeBufferOnError = TRUE;
109 MustFree = TRUE;
111 }

113 /* Evaluate the object */

115 Status = AcpiEvaluateObject (Handle, Pathname,
116 ExternalParams, ReturnBuffer);
114 Status = AcpiEvaluateObject (Handle, Pathname, ExternalParams, ReturnBuffer)
117 if (ACPI_FAILURE (Status))
118 {
119 return_ACPI_STATUS (Status);
120 }

new/usr/src/common/acpica/components/namespace/nsxfeval.c 3

122 /* Type ANY means "don’t care" */

124 if (ReturnType == ACPI_TYPE_ANY)
125 {
126 return_ACPI_STATUS (AE_OK);
127 }

129 if (ReturnBuffer->Length == 0)
130 {
131 /* Error because caller specifically asked for a return value */

133 ACPI_ERROR ((AE_INFO, "No return value"));
134 return_ACPI_STATUS (AE_NULL_OBJECT);
135 }

137 /* Examine the object type returned from EvaluateObject */

139 if (((ACPI_OBJECT *) ReturnBuffer->Pointer)->Type == ReturnType)
140 {
141 return_ACPI_STATUS (AE_OK);
142 }

144 /* Return object type does not match requested type */

146 ACPI_ERROR ((AE_INFO,
147 "Incorrect return type [%s] requested [%s]",
148 AcpiUtGetTypeName (((ACPI_OBJECT *) ReturnBuffer->Pointer)->Type),
149 AcpiUtGetTypeName (ReturnType)));

151 if (FreeBufferOnError)
149 if (MustFree)
152 {
153 /*
154 * Free a buffer created via ACPI_ALLOCATE_BUFFER.
155 * Note: We use AcpiOsFree here because AcpiOsAllocate was used
156 * to allocate the buffer. This purposefully bypasses the
157 * (optionally enabled) allocation tracking mechanism since we
158 * only want to track internal allocations.
159 */
151 /* Caller used ACPI_ALLOCATE_BUFFER, free the return buffer */

160 AcpiOsFree (ReturnBuffer->Pointer);
161 ReturnBuffer->Pointer = NULL;
162 }

164 ReturnBuffer->Length = 0;
165 return_ACPI_STATUS (AE_TYPE);
166 }

168 ACPI_EXPORT_SYMBOL (AcpiEvaluateObjectTyped)

171 /***
172 *
173 * FUNCTION: AcpiEvaluateObject
174 *
175 * PARAMETERS: Handle - Object handle (optional)
176 * Pathname - Object pathname (optional)
177 * ExternalParams - List of parameters to pass to method,
178 * terminated by NULL. May be NULL
179 * if no parameters are being passed.
180 * ReturnBuffer - Where to put method’s return value (if
181 * any). If NULL, no value is returned.
182 *
183 * RETURN: Status

new/usr/src/common/acpica/components/namespace/nsxfeval.c 4

184 *
185 * DESCRIPTION: Find and evaluate the given object, passing the given
186 * parameters if necessary. One of "Handle" or "Pathname" must
187 * be valid (non-null)
188 *
189 **/

191 ACPI_STATUS
192 AcpiEvaluateObject (
193 ACPI_HANDLE Handle,
194 ACPI_STRING Pathname,
195 ACPI_OBJECT_LIST *ExternalParams,
196 ACPI_BUFFER *ReturnBuffer)
197 {
198 ACPI_STATUS Status;
199 ACPI_EVALUATE_INFO *Info;
200 ACPI_SIZE BufferSpaceNeeded;
201 UINT32 i;

204 ACPI_FUNCTION_TRACE (AcpiEvaluateObject);

207 /* Allocate and initialize the evaluation information block */

209 Info = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_EVALUATE_INFO));
210 if (!Info)
211 {
212 return_ACPI_STATUS (AE_NO_MEMORY);
213 }

208 Info->Pathname = Pathname;

215 /* Convert and validate the device handle */

217 Info->PrefixNode = AcpiNsValidateHandle (Handle);
218 if (!Info->PrefixNode)
219 {
220 Status = AE_BAD_PARAMETER;
221 goto Cleanup;
222 }

224 /*
225 * Get the actual namespace node for the target object.
226 * Handles these cases:
227 *
228 * 1) Null node, valid pathname from root (absolute path)
229 * 2) Node and valid pathname (path relative to Node)
230 * 3) Node, Null pathname
220 * If there are parameters to be passed to a control method, the external
221 * objects must all be converted to internal objects
231 */
232 if ((Pathname) &&
233 (ACPI_IS_ROOT_PREFIX (Pathname[0])))
234 {
235 /* The path is fully qualified, just evaluate by name */

237 Info->PrefixNode = NULL;
238 }
239 else if (!Handle)
240 {
241 /*
242 * A handle is optional iff a fully qualified pathname is specified.
243 * Since we’ve already handled fully qualified names above, this is
244 * an error.
245 */

new/usr/src/common/acpica/components/namespace/nsxfeval.c 5

246 if (!Pathname)
247 {
248 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
249 "Both Handle and Pathname are NULL"));
250 }
251 else
252 {
253 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
254 "Null Handle with relative pathname [%s]", Pathname));
255 }

257 Status = AE_BAD_PARAMETER;
258 goto Cleanup;
259 }

261 Info->RelativePathname = Pathname;

263 /*
264 * Convert all external objects passed as arguments to the
265 * internal version(s).
266 */
267 if (ExternalParams && ExternalParams->Count)
268 {
269 Info->ParamCount = (UINT16) ExternalParams->Count;

271 /* Warn on impossible argument count */

273 if (Info->ParamCount > ACPI_METHOD_NUM_ARGS)
274 {
275 ACPI_WARN_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS,
276 "Excess arguments (%u) - using only %u",
277 Info->ParamCount, ACPI_METHOD_NUM_ARGS));

279 Info->ParamCount = ACPI_METHOD_NUM_ARGS;
280 }

282 /*
283 * Allocate a new parameter block for the internal objects
284 * Add 1 to count to allow for null terminated internal list
285 */
286 Info->Parameters = ACPI_ALLOCATE_ZEROED (
287 ((ACPI_SIZE) Info->ParamCount + 1) * sizeof (void *));
230 ((ACPI_SIZE) ExternalParams->Count + 1) * sizeof (void *));
288 if (!Info->Parameters)
289 {
290 Status = AE_NO_MEMORY;
291 goto Cleanup;
292 }

294 /* Convert each external object in the list to an internal object */

296 for (i = 0; i < Info->ParamCount; i++)
239 for (i = 0; i < ExternalParams->Count; i++)
297 {
298 Status = AcpiUtCopyEobjectToIobject (
299 &ExternalParams->Pointer[i], &Info->Parameters[i]);
300 if (ACPI_FAILURE (Status))
301 {
302 goto Cleanup;
303 }
304 }

306 Info->Parameters[Info->ParamCount] = NULL;
248 Info->Parameters[ExternalParams->Count] = NULL;
307 }

new/usr/src/common/acpica/components/namespace/nsxfeval.c 6

310 #if 0

312 /*
313 * Begin incoming argument count analysis. Check for too few args
314 * and too many args.
252 * Three major cases:
253 * 1) Fully qualified pathname
254 * 2) No handle, not fully qualified pathname (error)
255 * 3) Valid handle
315 */

317 switch (AcpiNsGetType (Info->Node))
257 if ((Pathname) &&
258 (AcpiNsValidRootPrefix (Pathname[0])))
318 {
319 case ACPI_TYPE_METHOD:
260 /* The path is fully qualified, just evaluate by name */

321 /* Check incoming argument count against the method definition */

323 if (Info->ObjDesc->Method.ParamCount > Info->ParamCount)
324 {
325 ACPI_ERROR ((AE_INFO,
326 "Insufficient arguments (%u) - %u are required",
327 Info->ParamCount,
328 Info->ObjDesc->Method.ParamCount));

330 Status = AE_MISSING_ARGUMENTS;
331 goto Cleanup;
262 Info->PrefixNode = NULL;
263 Status = AcpiNsEvaluate (Info);
332 }

334 else if (Info->ObjDesc->Method.ParamCount < Info->ParamCount)
265 else if (!Handle)
335 {
336 ACPI_WARNING ((AE_INFO,
337 "Excess arguments (%u) - only %u are required",
338 Info->ParamCount,
339 Info->ObjDesc->Method.ParamCount));

341 /* Just pass the required number of arguments */

343 Info->ParamCount = Info->ObjDesc->Method.ParamCount;
344 }

346 /*
347 * Any incoming external objects to be passed as arguments to the
348 * method must be converted to internal objects
268 * A handle is optional iff a fully qualified pathname is specified.
269 * Since we’ve already handled fully qualified names above, this is
270 * an error
349 */
350 if (Info->ParamCount)
272 if (!Pathname)
351 {
352 /*
353 * Allocate a new parameter block for the internal objects
354 * Add 1 to count to allow for null terminated internal list
355 */
356 Info->Parameters = ACPI_ALLOCATE_ZEROED (
357 ((ACPI_SIZE) Info->ParamCount + 1) * sizeof (void *));
358 if (!Info->Parameters)
359 {
360 Status = AE_NO_MEMORY;

new/usr/src/common/acpica/components/namespace/nsxfeval.c 7

361 goto Cleanup;
274 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
275 "Both Handle and Pathname are NULL"));
362 }

364 /* Convert each external object in the list to an internal object */

366 for (i = 0; i < Info->ParamCount; i++)
277 else
367 {
368 Status = AcpiUtCopyEobjectToIobject (
369 &ExternalParams->Pointer[i], &Info->Parameters[i]);
370 if (ACPI_FAILURE (Status))
371 {
372 goto Cleanup;
279 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
280 "Null Handle with relative pathname [%s]", Pathname));
373 }
374 }

376 Info->Parameters[Info->ParamCount] = NULL;
283 Status = AE_BAD_PARAMETER;
377 }
378 break;

380 default:

382 /* Warn if arguments passed to an object that is not a method */

384 if (Info->ParamCount)
285 else
385 {
386 ACPI_WARNING ((AE_INFO,
387 "%u arguments were passed to a non-method ACPI object",
388 Info->ParamCount));
389 }
390 break;
391 }
287 /* We have a namespace a node and a possible relative path */

393 #endif

396 /* Now we can evaluate the object */

398 Status = AcpiNsEvaluate (Info);
290 }

400 /*
401 * If we are expecting a return value, and all went well above,
402 * copy the return value to an external object.
403 */
404 if (ReturnBuffer)
405 {
406 if (!Info->ReturnObject)
407 {
408 ReturnBuffer->Length = 0;
409 }
410 else
411 {
412 if (ACPI_GET_DESCRIPTOR_TYPE (Info->ReturnObject) ==
413 ACPI_DESC_TYPE_NAMED)
414 {
415 /*
416 * If we received a NS Node as a return object, this means that
417 * the object we are evaluating has nothing interesting to

new/usr/src/common/acpica/components/namespace/nsxfeval.c 8

418 * return (such as a mutex, etc.) We return an error because
419 * these types are essentially unsupported by this interface.
420 * We don’t check up front because this makes it easier to add
421 * support for various types at a later date if necessary.
422 */
423 Status = AE_TYPE;
424 Info->ReturnObject = NULL; /* No need to delete a NS Node */
425 ReturnBuffer->Length = 0;
426 }

428 if (ACPI_SUCCESS (Status))
429 {
430 /* Dereference Index and RefOf references */

432 AcpiNsResolveReferences (Info);

434 /* Get the size of the returned object */

436 Status = AcpiUtGetObjectSize (Info->ReturnObject,
437 &BufferSpaceNeeded);
438 if (ACPI_SUCCESS (Status))
439 {
440 /* Validate/Allocate/Clear caller buffer */

442 Status = AcpiUtInitializeBuffer (ReturnBuffer,
443 BufferSpaceNeeded);
444 if (ACPI_FAILURE (Status))
445 {
446 /*
447 * Caller’s buffer is too small or a new one can’t
448 * be allocated
449 */
450 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
451 "Needed buffer size %X, %s\n",
452 (UINT32) BufferSpaceNeeded,
453 AcpiFormatException (Status)));
454 }
455 else
456 {
457 /* We have enough space for the object, build it */

459 Status = AcpiUtCopyIobjectToEobject (Info->ReturnObject,
460 ReturnBuffer);
461 }
462 }
463 }
464 }
465 }

467 if (Info->ReturnObject)
468 {
469 /*
470 * Delete the internal return object. NOTE: Interpreter must be
471 * locked to avoid race condition.
472 */
473 AcpiExEnterInterpreter ();

475 /* Remove one reference on the return object (should delete it) */

477 AcpiUtRemoveReference (Info->ReturnObject);
478 AcpiExExitInterpreter ();
479 }

482 Cleanup:

new/usr/src/common/acpica/components/namespace/nsxfeval.c 9

484 /* Free the input parameter list (if we created one) */

486 if (Info->Parameters)
487 {
488 /* Free the allocated parameter block */

490 AcpiUtDeleteInternalObjectList (Info->Parameters);
491 }

493 ACPI_FREE (Info);
494 return_ACPI_STATUS (Status);
495 }

497 ACPI_EXPORT_SYMBOL (AcpiEvaluateObject)

500 /***
501 *
502 * FUNCTION: AcpiNsResolveReferences
503 *
504 * PARAMETERS: Info - Evaluation info block
505 *
506 * RETURN: Info->ReturnObject is replaced with the dereferenced object
507 *
508 * DESCRIPTION: Dereference certain reference objects. Called before an
509 * internal return object is converted to an external ACPI_OBJECT.
510 *
511 * Performs an automatic dereference of Index and RefOf reference objects.
512 * These reference objects are not supported by the ACPI_OBJECT, so this is a
513 * last resort effort to return something useful. Also, provides compatibility
514 * with other ACPI implementations.
515 *
516 * NOTE: does not handle references within returned package objects or nested
517 * references, but this support could be added later if found to be necessary.
518 *
519 **/

521 static void
522 AcpiNsResolveReferences (
523 ACPI_EVALUATE_INFO *Info)
524 {
525 ACPI_OPERAND_OBJECT *ObjDesc = NULL;
526 ACPI_NAMESPACE_NODE *Node;

529 /* We are interested in reference objects only */

531 if ((Info->ReturnObject)->Common.Type != ACPI_TYPE_LOCAL_REFERENCE)
532 {
533 return;
534 }

536 /*
537 * Two types of references are supported - those created by Index and
538 * RefOf operators. A name reference (AML_NAMEPATH_OP) can be converted
539 * to an ACPI_OBJECT, so it is not dereferenced here. A DdbHandle
540 * (AML_LOAD_OP) cannot be dereferenced, nor can it be converted to
541 * an ACPI_OBJECT.
542 */
543 switch (Info->ReturnObject->Reference.Class)
544 {
545 case ACPI_REFCLASS_INDEX:

547 ObjDesc = *(Info->ReturnObject->Reference.Where);
548 break;

new/usr/src/common/acpica/components/namespace/nsxfeval.c 10

550 case ACPI_REFCLASS_REFOF:

552 Node = Info->ReturnObject->Reference.Object;
553 if (Node)
554 {
555 ObjDesc = Node->Object;
556 }
557 break;

559 default:

561 return;
562 }

564 /* Replace the existing reference object */

566 if (ObjDesc)
567 {
568 AcpiUtAddReference (ObjDesc);
569 AcpiUtRemoveReference (Info->ReturnObject);
570 Info->ReturnObject = ObjDesc;
571 }

573 return;
574 }

577 /***
578 *
579 * FUNCTION: AcpiWalkNamespace
580 *
581 * PARAMETERS: Type - ACPI_OBJECT_TYPE to search for
582 * StartObject - Handle in namespace where search begins
583 * MaxDepth - Depth to which search is to reach
584 * DescendingCallback - Called during tree descent
475 * PreOrderVisit - Called during tree pre-order visit
585 * when an object of "Type" is found
586 * AscendingCallback - Called during tree ascent
477 * PostOrderVisit - Called during tree post-order visit
587 * when an object of "Type" is found
588 * Context - Passed to user function(s) above
589 * ReturnValue - Location where return value of
590 * UserFunction is put if terminated early
591 *
592 * RETURNS Return value from the UserFunction if terminated early.
593 * Otherwise, returns NULL.
594 *
595 * DESCRIPTION: Performs a modified depth-first walk of the namespace tree,
596 * starting (and ending) at the object specified by StartHandle.
597 * The callback function is called whenever an object that matches
598 * the type parameter is found. If the callback function returns
599 * a non-zero value, the search is terminated immediately and this
600 * value is returned to the caller.
601 *
602 * The point of this procedure is to provide a generic namespace
603 * walk routine that can be called from multiple places to
604 * provide multiple services; the callback function(s) can be
605 * tailored to each task, whether it is a print function,
606 * a compare function, etc.
607 *
608 **/

610 ACPI_STATUS
611 AcpiWalkNamespace (
612 ACPI_OBJECT_TYPE Type,
613 ACPI_HANDLE StartObject,

new/usr/src/common/acpica/components/namespace/nsxfeval.c 11

614 UINT32 MaxDepth,
615 ACPI_WALK_CALLBACK DescendingCallback,
616 ACPI_WALK_CALLBACK AscendingCallback,
506 ACPI_WALK_CALLBACK PreOrderVisit,
507 ACPI_WALK_CALLBACK PostOrderVisit,
617 void *Context,
618 void **ReturnValue)
619 {
620 ACPI_STATUS Status;

623 ACPI_FUNCTION_TRACE (AcpiWalkNamespace);

626 /* Parameter validation */

628 if ((Type > ACPI_TYPE_LOCAL_MAX) ||
629 (!MaxDepth) ||
630 (!DescendingCallback && !AscendingCallback))
521 (!PreOrderVisit && !PostOrderVisit))
631 {
632 return_ACPI_STATUS (AE_BAD_PARAMETER);
633 }

635 /*
636 * Need to acquire the namespace reader lock to prevent interference
637 * with any concurrent table unloads (which causes the deletion of
638 * namespace objects). We cannot allow the deletion of a namespace node
639 * while the user function is using it. The exception to this are the
640 * nodes created and deleted during control method execution -- these
641 * nodes are marked as temporary nodes and are ignored by the namespace
642 * walk. Thus, control methods can be executed while holding the
643 * namespace deletion lock (and the user function can execute control
644 * methods.)
645 */
646 Status = AcpiUtAcquireReadLock (&AcpiGbl_NamespaceRwLock);
647 if (ACPI_FAILURE (Status))
648 {
649 return_ACPI_STATUS (Status);
540 return (Status);
650 }

652 /*
653 * Lock the namespace around the walk. The namespace will be
654 * unlocked/locked around each call to the user function - since the user
655 * function must be allowed to make ACPICA calls itself (for example, it
656 * will typically execute control methods during device enumeration.)
657 */
658 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
659 if (ACPI_FAILURE (Status))
660 {
661 goto UnlockAndExit;
662 }

664 /* Now we can validate the starting node */

666 if (!AcpiNsValidateHandle (StartObject))
667 {
668 Status = AE_BAD_PARAMETER;
669 goto UnlockAndExit2;
670 }

672 Status = AcpiNsWalkNamespace (Type, StartObject, MaxDepth,
673 ACPI_NS_WALK_UNLOCK, DescendingCallback,
674 AscendingCallback, Context, ReturnValue);
556 ACPI_NS_WALK_UNLOCK, PreOrderVisit,

new/usr/src/common/acpica/components/namespace/nsxfeval.c 12

557 PostOrderVisit, Context, ReturnValue);

676 UnlockAndExit2:
677 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);

679 UnlockAndExit:
680 (void) AcpiUtReleaseReadLock (&AcpiGbl_NamespaceRwLock);
681 return_ACPI_STATUS (Status);
682 }

684 ACPI_EXPORT_SYMBOL (AcpiWalkNamespace)

687 /***
688 *
689 * FUNCTION: AcpiNsGetDeviceCallback
690 *
691 * PARAMETERS: Callback from AcpiGetDevice
692 *
693 * RETURN: Status
694 *
695 * DESCRIPTION: Takes callbacks from WalkNamespace and filters out all non-
696 * present devices, or if they specified a HID, it filters based
697 * on that.
698 *
699 **/

701 static ACPI_STATUS
702 AcpiNsGetDeviceCallback (
703 ACPI_HANDLE ObjHandle,
704 UINT32 NestingLevel,
705 void *Context,
706 void **ReturnValue)
707 {
708 ACPI_GET_DEVICES_INFO *Info = Context;
709 ACPI_STATUS Status;
710 ACPI_NAMESPACE_NODE *Node;
711 UINT32 Flags;
712 ACPI_PNP_DEVICE_ID *Hid;
713 ACPI_PNP_DEVICE_ID_LIST *Cid;
594 ACPI_DEVICE_ID *Hid;
595 ACPI_DEVICE_ID_LIST *Cid;
714 UINT32 i;
715 BOOLEAN Found;
716 int NoMatch;

719 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
720 if (ACPI_FAILURE (Status))
721 {
722 return (Status);
723 }

725 Node = AcpiNsValidateHandle (ObjHandle);
726 Status = AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
727 if (ACPI_FAILURE (Status))
728 {
729 return (Status);
730 }

732 if (!Node)
733 {
734 return (AE_BAD_PARAMETER);
735 }

737 /*

new/usr/src/common/acpica/components/namespace/nsxfeval.c 13

738 * First, filter based on the device HID and CID.
739 *
740 * 01/2010: For this case where a specific HID is requested, we don’t
741 * want to run _STA until we have an actual HID match. Thus, we will
742 * not unnecessarily execute _STA on devices for which the caller
743 * doesn’t care about. Previously, _STA was executed unconditionally
744 * on all devices found here.
745 *
746 * A side-effect of this change is that now we will continue to search
747 * for a matching HID even under device trees where the parent device
748 * would have returned a _STA that indicates it is not present or
749 * not functioning (thus aborting the search on that branch).
750 */
751 if (Info->Hid != NULL)
752 {
753 Status = AcpiUtExecute_HID (Node, &Hid);
754 if (Status == AE_NOT_FOUND)
755 {
756 return (AE_OK);
757 }
758 else if (ACPI_FAILURE (Status))
759 {
760 return (AE_CTRL_DEPTH);
761 }

763 NoMatch = ACPI_STRCMP (Hid->String, Info->Hid);
764 ACPI_FREE (Hid);

766 if (NoMatch)
767 {
768 /*
769 * HID does not match, attempt match within the
770 * list of Compatible IDs (CIDs)
771 */
772 Status = AcpiUtExecute_CID (Node, &Cid);
773 if (Status == AE_NOT_FOUND)
774 {
775 return (AE_OK);
776 }
777 else if (ACPI_FAILURE (Status))
778 {
779 return (AE_CTRL_DEPTH);
780 }

782 /* Walk the CID list */

784 Found = FALSE;
785 for (i = 0; i < Cid->Count; i++)
786 {
787 if (ACPI_STRCMP (Cid->Ids[i].String, Info->Hid) == 0)
788 {
789 /* Found a matching CID */

791 Found = TRUE;
792 break;
793 }
794 }

796 ACPI_FREE (Cid);
797 if (!Found)
798 {
799 return (AE_OK);
800 }
801 }
802 }

new/usr/src/common/acpica/components/namespace/nsxfeval.c 14

804 /* Run _STA to determine if device is present */

806 Status = AcpiUtExecute_STA (Node, &Flags);
807 if (ACPI_FAILURE (Status))
808 {
809 return (AE_CTRL_DEPTH);
810 }

812 if (!(Flags & ACPI_STA_DEVICE_PRESENT) &&
813 !(Flags & ACPI_STA_DEVICE_FUNCTIONING))
814 {
815 /*
816 * Don’t examine the children of the device only when the
817 * device is neither present nor functional. See ACPI spec,
818 * description of _STA for more information.
819 */
820 return (AE_CTRL_DEPTH);
821 }

823 /* We have a valid device, invoke the user function */

825 Status = Info->UserFunction (ObjHandle, NestingLevel, Info->Context,
826 ReturnValue);
827 return (Status);
828 }

______unchanged_portion_omitted_

1076 ACPI_EXPORT_SYMBOL (AcpiGetData)

new/usr/src/common/acpica/components/namespace/nsxfname.c 1

**
 20599 Thu Dec 26 13:49:23 2013
new/usr/src/common/acpica/components/namespace/nsxfname.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: nsxfname - Public interfaces to the ACPI subsystem
4 * ACPI Namespace oriented interfaces
5 *
6 ***/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

45 #define __NSXFNAME_C__
46 #define EXPORT_ACPI_INTERFACES

48 #include "acpi.h"
49 #include "accommon.h"
50 #include "acnamesp.h"
51 #include "acparser.h"
52 #include "amlcode.h"

55 #define _COMPONENT ACPI_NAMESPACE
56 ACPI_MODULE_NAME ("nsxfname")

58 /* Local prototypes */

new/usr/src/common/acpica/components/namespace/nsxfname.c 2

60 static char *
61 AcpiNsCopyDeviceId (
62 ACPI_PNP_DEVICE_ID *Dest,
63 ACPI_PNP_DEVICE_ID *Source,
61 ACPI_DEVICE_ID *Dest,
62 ACPI_DEVICE_ID *Source,
64 char *StringArea);

67 /**
68 *
69 * FUNCTION: AcpiGetHandle
70 *
71 * PARAMETERS: Parent - Object to search under (search scope).
72 * Pathname - Pointer to an asciiz string containing the
73 * name
74 * RetHandle - Where the return handle is returned
75 *
76 * RETURN: Status
77 *
78 * DESCRIPTION: This routine will search for a caller specified name in the
79 * name space. The caller can restrict the search region by
80 * specifying a non NULL parent. The parent value is itself a
81 * namespace handle.
82 *
83 **/

85 ACPI_STATUS
86 AcpiGetHandle (
87 ACPI_HANDLE Parent,
88 ACPI_STRING Pathname,
89 ACPI_HANDLE *RetHandle)
90 {
91 ACPI_STATUS Status;
92 ACPI_NAMESPACE_NODE *Node = NULL;
93 ACPI_NAMESPACE_NODE *PrefixNode = NULL;

96 ACPI_FUNCTION_ENTRY ();

99 /* Parameter Validation */

101 if (!RetHandle || !Pathname)
102 {
103 return (AE_BAD_PARAMETER);
104 }

106 /* Convert a parent handle to a prefix node */

108 if (Parent)
109 {
110 PrefixNode = AcpiNsValidateHandle (Parent);
111 if (!PrefixNode)
112 {
113 return (AE_BAD_PARAMETER);
114 }
115 }

117 /*
118 * Valid cases are:
119 * 1) Fully qualified pathname
120 * 2) Parent + Relative pathname
121 *
122 * Error for <null Parent + relative path>

new/usr/src/common/acpica/components/namespace/nsxfname.c 3

123 */
124 if (ACPI_IS_ROOT_PREFIX (Pathname[0]))
123 if (AcpiNsValidRootPrefix (Pathname[0]))
125 {
126 /* Pathname is fully qualified (starts with ’\’) */

128 /* Special case for root-only, since we can’t search for it */

130 if (!ACPI_STRCMP (Pathname, ACPI_NS_ROOT_PATH))
131 {
132 *RetHandle = ACPI_CAST_PTR (ACPI_HANDLE, AcpiGbl_RootNode);
133 return (AE_OK);
134 }
135 }
136 else if (!PrefixNode)
137 {
138 /* Relative path with null prefix is disallowed */

140 return (AE_BAD_PARAMETER);
141 }

143 /* Find the Node and convert to a handle */

145 Status = AcpiNsGetNode (PrefixNode, Pathname, ACPI_NS_NO_UPSEARCH, &Node);
146 if (ACPI_SUCCESS (Status))
147 {
148 *RetHandle = ACPI_CAST_PTR (ACPI_HANDLE, Node);
149 }

151 return (Status);
152 }

154 ACPI_EXPORT_SYMBOL (AcpiGetHandle)

157 /**
158 *
159 * FUNCTION: AcpiGetName
160 *
161 * PARAMETERS: Handle - Handle to be converted to a pathname
162 * NameType - Full pathname or single segment
163 * Buffer - Buffer for returned path
164 *
165 * RETURN: Pointer to a string containing the fully qualified Name.
166 *
167 * DESCRIPTION: This routine returns the fully qualified name associated with
168 * the Handle parameter. This and the AcpiPathnameToHandle are
169 * complementary functions.
170 *
171 **/

173 ACPI_STATUS
174 AcpiGetName (
175 ACPI_HANDLE Handle,
176 UINT32 NameType,
177 ACPI_BUFFER *Buffer)
178 {
179 ACPI_STATUS Status;
180 ACPI_NAMESPACE_NODE *Node;
181 char *NodeName;

184 /* Parameter validation */

186 if (NameType > ACPI_NAME_TYPE_MAX)
187 {

new/usr/src/common/acpica/components/namespace/nsxfname.c 4

188 return (AE_BAD_PARAMETER);
189 }

191 Status = AcpiUtValidateBuffer (Buffer);
192 if (ACPI_FAILURE (Status))
193 {
194 return (Status);
195 }

197 if (NameType == ACPI_FULL_PATHNAME)
198 {
199 /* Get the full pathname (From the namespace root) */

201 Status = AcpiNsHandleToPathname (Handle, Buffer);
202 return (Status);
203 }

205 /*
206 * Wants the single segment ACPI name.
207 * Validate handle and convert to a namespace Node
208 */
209 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
210 if (ACPI_FAILURE (Status))
211 {
212 return (Status);
213 }

215 Node = AcpiNsValidateHandle (Handle);
216 if (!Node)
217 {
218 Status = AE_BAD_PARAMETER;
219 goto UnlockAndExit;
220 }

222 /* Validate/Allocate/Clear caller buffer */

224 Status = AcpiUtInitializeBuffer (Buffer, ACPI_PATH_SEGMENT_LENGTH);
225 if (ACPI_FAILURE (Status))
226 {
227 goto UnlockAndExit;
228 }

230 /* Just copy the ACPI name from the Node and zero terminate it */

232 NodeName = AcpiUtGetNodeName (Node);
233 ACPI_MOVE_NAME (Buffer->Pointer, NodeName);
230 ACPI_STRNCPY (Buffer->Pointer, AcpiUtGetNodeName (Node),
231 ACPI_NAME_SIZE);
234 ((char *) Buffer->Pointer) [ACPI_NAME_SIZE] = 0;
235 Status = AE_OK;

238 UnlockAndExit:

240 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
241 return (Status);
242 }

244 ACPI_EXPORT_SYMBOL (AcpiGetName)

247 /**
248 *
249 * FUNCTION: AcpiNsCopyDeviceId
250 *
251 * PARAMETERS: Dest - Pointer to the destination PNP_DEVICE_ID

new/usr/src/common/acpica/components/namespace/nsxfname.c 5

252 * Source - Pointer to the source PNP_DEVICE_ID
249 * PARAMETERS: Dest - Pointer to the destination DEVICE_ID
250 * Source - Pointer to the source DEVICE_ID
253 * StringArea - Pointer to where to copy the dest string
254 *
255 * RETURN: Pointer to the next string area
256 *
257 * DESCRIPTION: Copy a single PNP_DEVICE_ID, including the string data.
255 * DESCRIPTION: Copy a single DEVICE_ID, including the string data.
258 *
259 **/

261 static char *
262 AcpiNsCopyDeviceId (
263 ACPI_PNP_DEVICE_ID *Dest,
264 ACPI_PNP_DEVICE_ID *Source,
261 ACPI_DEVICE_ID *Dest,
262 ACPI_DEVICE_ID *Source,
265 char *StringArea)
266 {
265 /* Create the destination DEVICE_ID */

268 /* Create the destination PNP_DEVICE_ID */

270 Dest->String = StringArea;
271 Dest->Length = Source->Length;

273 /* Copy actual string and return a pointer to the next string area */

275 ACPI_MEMCPY (StringArea, Source->String, Source->Length);
276 return (StringArea + Source->Length);
277 }

280 /**
281 *
282 * FUNCTION: AcpiGetObjectInfo
283 *
284 * PARAMETERS: Handle - Object Handle
285 * ReturnBuffer - Where the info is returned
286 *
287 * RETURN: Status
288 *
289 * DESCRIPTION: Returns information about an object as gleaned from the
290 * namespace node and possibly by running several standard
291 * control methods (Such as in the case of a device.)
292 *
293 * For Device and Processor objects, run the Device _HID, _UID, _CID, _SUB,
294 * _STA, _ADR, _SxW, and _SxD methods.
290 * For Device and Processor objects, run the Device _HID, _UID, _CID, _STA,
291 * _ADR, _SxW, and _SxD methods.
295 *
296 * Note: Allocates the return buffer, must be freed by the caller.
297 *
298 **/

300 ACPI_STATUS
301 AcpiGetObjectInfo (
302 ACPI_HANDLE Handle,
303 ACPI_DEVICE_INFO **ReturnBuffer)
304 {
305 ACPI_NAMESPACE_NODE *Node;
306 ACPI_DEVICE_INFO *Info;
307 ACPI_PNP_DEVICE_ID_LIST *CidList = NULL;
308 ACPI_PNP_DEVICE_ID *Hid = NULL;
309 ACPI_PNP_DEVICE_ID *Uid = NULL;

new/usr/src/common/acpica/components/namespace/nsxfname.c 6

310 ACPI_PNP_DEVICE_ID *Sub = NULL;
304 ACPI_DEVICE_ID_LIST *CidList = NULL;
305 ACPI_DEVICE_ID *Hid = NULL;
306 ACPI_DEVICE_ID *Uid = NULL;
311 char *NextIdString;
312 ACPI_OBJECT_TYPE Type;
313 ACPI_NAME Name;
314 UINT8 ParamCount= 0;
315 UINT8 Valid = 0;
316 UINT32 InfoSize;
317 UINT32 i;
318 ACPI_STATUS Status;

321 /* Parameter validation */

323 if (!Handle || !ReturnBuffer)
324 {
325 return (AE_BAD_PARAMETER);
326 }

328 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
329 if (ACPI_FAILURE (Status))
330 {
331 return (Status);
327 goto Cleanup;
332 }

334 Node = AcpiNsValidateHandle (Handle);
335 if (!Node)
336 {
337 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
338 return (AE_BAD_PARAMETER);
339 }

341 /* Get the namespace node data while the namespace is locked */

343 InfoSize = sizeof (ACPI_DEVICE_INFO);
344 Type = Node->Type;
345 Name = Node->Name.Integer;

347 if (Node->Type == ACPI_TYPE_METHOD)
348 {
349 ParamCount = Node->Object->Method.ParamCount;
350 }

352 Status = AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
353 if (ACPI_FAILURE (Status))
354 {
355 return (Status);
356 }

358 if ((Type == ACPI_TYPE_DEVICE) ||
359 (Type == ACPI_TYPE_PROCESSOR))
360 {
361 /*
362 * Get extra info for ACPI Device/Processor objects only:
363 * Run the Device _HID, _UID, _SUB, and _CID methods.
359 * Run the Device _HID, _UID, and _CID methods.
364 *
365 * Note: none of these methods are required, so they may or may
366 * not be present for this device. The Info->Valid bitfield is used
367 * to indicate which methods were found and run successfully.
368 */

370 /* Execute the Device._HID method */

new/usr/src/common/acpica/components/namespace/nsxfname.c 7

372 Status = AcpiUtExecute_HID (Node, &Hid);
373 if (ACPI_SUCCESS (Status))
374 {
375 InfoSize += Hid->Length;
376 Valid |= ACPI_VALID_HID;
377 }

379 /* Execute the Device._UID method */

381 Status = AcpiUtExecute_UID (Node, &Uid);
382 if (ACPI_SUCCESS (Status))
383 {
384 InfoSize += Uid->Length;
385 Valid |= ACPI_VALID_UID;
386 }

388 /* Execute the Device._SUB method */

390 Status = AcpiUtExecute_SUB (Node, &Sub);
391 if (ACPI_SUCCESS (Status))
392 {
393 InfoSize += Sub->Length;
394 Valid |= ACPI_VALID_SUB;
395 }

397 /* Execute the Device._CID method */

399 Status = AcpiUtExecute_CID (Node, &CidList);
400 if (ACPI_SUCCESS (Status))
401 {
402 /* Add size of CID strings and CID pointer array */

404 InfoSize += (CidList->ListSize - sizeof (ACPI_PNP_DEVICE_ID_LIST));
391 InfoSize += (CidList->ListSize - sizeof (ACPI_DEVICE_ID_LIST));
405 Valid |= ACPI_VALID_CID;
406 }
407 }

409 /*
410 * Now that we have the variable-length data, we can allocate the
411 * return buffer
412 */
413 Info = ACPI_ALLOCATE_ZEROED (InfoSize);
414 if (!Info)
415 {
416 Status = AE_NO_MEMORY;
417 goto Cleanup;
418 }

420 /* Get the fixed-length data */

422 if ((Type == ACPI_TYPE_DEVICE) ||
423 (Type == ACPI_TYPE_PROCESSOR))
424 {
425 /*
426 * Get extra info for ACPI Device/Processor objects only:
427 * Run the _STA, _ADR and, SxW, and _SxD methods.
428 *
429 * Notes: none of these methods are required, so they may or may
416 * Note: none of these methods are required, so they may or may
430 * not be present for this device. The Info->Valid bitfield is used
431 * to indicate which methods were found and run successfully.
432 *
433 * For _STA, if the method does not exist, then (as per the ACPI
434 * specification), the returned CurrentStatus flags will indicate

new/usr/src/common/acpica/components/namespace/nsxfname.c 8

435 * that the device is present/functional/enabled. Otherwise, the
436 * CurrentStatus flags reflect the value returned from _STA.
437 */

439 /* Execute the Device._STA method */

441 Status = AcpiUtExecute_STA (Node, &Info->CurrentStatus);
442 if (ACPI_SUCCESS (Status))
443 {
444 Valid |= ACPI_VALID_STA;
445 }

447 /* Execute the Device._ADR method */

449 Status = AcpiUtEvaluateNumericObject (METHOD_NAME__ADR, Node,
450 &Info->Address);
451 if (ACPI_SUCCESS (Status))
452 {
453 Valid |= ACPI_VALID_ADR;
454 }

456 /* Execute the Device._SxW methods */

458 Status = AcpiUtExecutePowerMethods (Node,
459 AcpiGbl_LowestDstateNames, ACPI_NUM_SxW_METHODS,
460 Info->LowestDstates);
461 if (ACPI_SUCCESS (Status))
462 {
463 Valid |= ACPI_VALID_SXWS;
464 }

466 /* Execute the Device._SxD methods */

468 Status = AcpiUtExecutePowerMethods (Node,
469 AcpiGbl_HighestDstateNames, ACPI_NUM_SxD_METHODS,
470 Info->HighestDstates);
471 if (ACPI_SUCCESS (Status))
472 {
473 Valid |= ACPI_VALID_SXDS;
474 }
475 }

477 /*
478 * Create a pointer to the string area of the return buffer.
479 * Point to the end of the base ACPI_DEVICE_INFO structure.
480 */
481 NextIdString = ACPI_CAST_PTR (char, Info->CompatibleIdList.Ids);
482 if (CidList)
483 {
484 /* Point past the CID PNP_DEVICE_ID array */
466 /* Point past the CID DEVICE_ID array */

486 NextIdString += ((ACPI_SIZE) CidList->Count * sizeof (ACPI_PNP_DEVICE_ID
468 NextIdString += ((ACPI_SIZE) CidList->Count * sizeof (ACPI_DEVICE_ID));
487 }

489 /*
490 * Copy the HID, UID, SUB, and CIDs to the return buffer.
491 * The variable-length strings are copied to the reserved area
492 * at the end of the buffer.
472 * Copy the HID, UID, and CIDs to the return buffer. The variable-length
473 * strings are copied to the reserved area at the end of the buffer.
493 *
494 * For HID and CID, check if the ID is a PCI Root Bridge.
495 */
496 if (Hid)

new/usr/src/common/acpica/components/namespace/nsxfname.c 9

497 {
498 NextIdString = AcpiNsCopyDeviceId (&Info->HardwareId,
499 Hid, NextIdString);

501 if (AcpiUtIsPciRootBridge (Hid->String))
502 {
503 Info->Flags |= ACPI_PCI_ROOT_BRIDGE;
504 }
505 }

507 if (Uid)
508 {
509 NextIdString = AcpiNsCopyDeviceId (&Info->UniqueId,
510 Uid, NextIdString);
511 }

513 if (Sub)
514 {
515 NextIdString = AcpiNsCopyDeviceId (&Info->SubsystemId,
516 Sub, NextIdString);
517 }

519 if (CidList)
520 {
521 Info->CompatibleIdList.Count = CidList->Count;
522 Info->CompatibleIdList.ListSize = CidList->ListSize;

524 /* Copy each CID */

526 for (i = 0; i < CidList->Count; i++)
527 {
528 NextIdString = AcpiNsCopyDeviceId (&Info->CompatibleIdList.Ids[i],
529 &CidList->Ids[i], NextIdString);

531 if (AcpiUtIsPciRootBridge (CidList->Ids[i].String))
532 {
533 Info->Flags |= ACPI_PCI_ROOT_BRIDGE;
534 }
535 }
536 }

538 /* Copy the fixed-length data */

540 Info->InfoSize = InfoSize;
541 Info->Type = Type;
542 Info->Name = Name;
543 Info->ParamCount = ParamCount;
544 Info->Valid = Valid;

546 *ReturnBuffer = Info;
547 Status = AE_OK;

550 Cleanup:
551 if (Hid)
552 {
553 ACPI_FREE (Hid);
554 }
555 if (Uid)
556 {
557 ACPI_FREE (Uid);
558 }
559 if (Sub)
560 {
561 ACPI_FREE (Sub);
562 }

new/usr/src/common/acpica/components/namespace/nsxfname.c 10

563 if (CidList)
564 {
565 ACPI_FREE (CidList);
566 }
567 return (Status);
568 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/namespace/nsxfobj.c 1

**
 7714 Thu Dec 26 13:49:23 2013
new/usr/src/common/acpica/components/namespace/nsxfobj.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: nsxfobj - Public interfaces to the ACPI subsystem
4 * ACPI Object oriented interfaces
5 *
6 **/

8 /*
9 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions, and the following disclaimer,
17 * without modification.
18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19 * substantially similar to the "NO WARRANTY" disclaimer below
20 * ("Disclaimer") and any redistribution must be conditioned upon
21 * including a substantially similar Disclaimer requirement for further
22 * binary redistribution.
23 * 3. Neither the names of the above-listed copyright holders nor the names
24 * of any contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * Alternatively, this software may be distributed under the terms of the
28 * GNU General Public License ("GPL") version 2 as published by the Free
29 * Software Foundation.
30 *
31 * NO WARRANTY
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42 * POSSIBILITY OF SUCH DAMAGES.
43 */

46 #define __NSXFOBJ_C__
47 #define EXPORT_ACPI_INTERFACES

49 #include "acpi.h"
50 #include "accommon.h"
51 #include "acnamesp.h"

54 #define _COMPONENT ACPI_NAMESPACE
55 ACPI_MODULE_NAME ("nsxfobj")

57 /***
58 *

new/usr/src/common/acpica/components/namespace/nsxfobj.c 2

59 * FUNCTION: AcpiGetType
60 *
61 * PARAMETERS: Handle - Handle of object whose type is desired
62 * RetType - Where the type will be placed
63 *
64 * RETURN: Status
65 *
66 * DESCRIPTION: This routine returns the type associatd with a particular handle
67 *
68 **/

70 ACPI_STATUS
71 AcpiGetType (
72 ACPI_HANDLE Handle,
73 ACPI_OBJECT_TYPE *RetType)
74 {
75 ACPI_NAMESPACE_NODE *Node;
76 ACPI_STATUS Status;

79 /* Parameter Validation */

81 if (!RetType)
82 {
83 return (AE_BAD_PARAMETER);
84 }

86 /*
87 * Special case for the predefined Root Node
88 * (return type ANY)
89 */
90 if (Handle == ACPI_ROOT_OBJECT)
91 {
92 *RetType = ACPI_TYPE_ANY;
93 return (AE_OK);
94 }

96 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
97 if (ACPI_FAILURE (Status))
98 {
99 return (Status);
100 }

102 /* Convert and validate the handle */

104 Node = AcpiNsValidateHandle (Handle);
105 if (!Node)
106 {
107 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
108 return (AE_BAD_PARAMETER);
109 }

111 *RetType = Node->Type;

114 Status = AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
115 return (Status);
116 }

______unchanged_portion_omitted_

285 ACPI_EXPORT_SYMBOL (AcpiGetNextObject)

new/usr/src/common/acpica/components/parser/psargs.c 1

**
 25895 Thu Dec 26 13:49:23 2013
new/usr/src/common/acpica/components/parser/psargs.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: psargs - Parse AML opcode arguments
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __PSARGS_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acparser.h"
49 #include "amlcode.h"
50 #include "acnamesp.h"
51 #include "acdispat.h"

53 #define _COMPONENT ACPI_PARSER
54 ACPI_MODULE_NAME ("psargs")

56 /* Local prototypes */

58 static UINT32
59 AcpiPsGetNextPackageLength (

new/usr/src/common/acpica/components/parser/psargs.c 2

60 ACPI_PARSE_STATE *ParserState);

62 static ACPI_PARSE_OBJECT *
63 AcpiPsGetNextField (
64 ACPI_PARSE_STATE *ParserState);

67 /***
68 *
69 * FUNCTION: AcpiPsGetNextPackageLength
70 *
71 * PARAMETERS: ParserState - Current parser state object
72 *
73 * RETURN: Decoded package length. On completion, the AML pointer points
74 * past the length byte or bytes.
75 *
76 * DESCRIPTION: Decode and return a package length field.
77 * Note: Largest package length is 28 bits, from ACPI specification
78 *
79 **/

81 static UINT32
82 AcpiPsGetNextPackageLength (
83 ACPI_PARSE_STATE *ParserState)
84 {
85 UINT8 *Aml = ParserState->Aml;
86 UINT32 PackageLength = 0;
87 UINT32 ByteCount;
88 UINT8 ByteZeroMask = 0x3F; /* Default [0:5] */

91 ACPI_FUNCTION_TRACE (PsGetNextPackageLength);

94 /*
95 * Byte 0 bits [6:7] contain the number of additional bytes
96 * used to encode the package length, either 0,1,2, or 3
97 */
98 ByteCount = (Aml[0] >> 6);
99 ParserState->Aml += ((ACPI_SIZE) ByteCount + 1);

101 /* Get bytes 3, 2, 1 as needed */

103 while (ByteCount)
104 {
105 /*
106 * Final bit positions for the package length bytes:
107 * Byte3->[20:27]
108 * Byte2->[12:19]
109 * Byte1->[04:11]
110 * Byte0->[00:03]
111 */
112 PackageLength |= (Aml[ByteCount] << ((ByteCount << 3) - 4));

114 ByteZeroMask = 0x0F; /* Use bits [0:3] of byte 0 */
115 ByteCount--;
116 }

118 /* Byte 0 is a special case, either bits [0:3] or [0:5] are used */

120 PackageLength |= (Aml[0] & ByteZeroMask);
121 return_UINT32 (PackageLength);
122 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/parser/psargs.c 3

157 /***
158 *
159 * FUNCTION: AcpiPsGetNextNamestring
160 *
161 * PARAMETERS: ParserState - Current parser state object
162 *
163 * RETURN: Pointer to the start of the name string (pointer points into
164 * the AML.
165 *
166 * DESCRIPTION: Get next raw namestring within the AML stream. Handles all name
167 * prefix characters. Set parser state to point past the string.
168 * (Name is consumed from the AML.)
169 *
170 **/

172 char *
173 AcpiPsGetNextNamestring (
174 ACPI_PARSE_STATE *ParserState)
175 {
176 UINT8 *Start = ParserState->Aml;
177 UINT8 *End = ParserState->Aml;

180 ACPI_FUNCTION_TRACE (PsGetNextNamestring);

183 /* Point past any namestring prefix characters (backslash or carat) */

185 while (ACPI_IS_ROOT_PREFIX (*End) ||
186 ACPI_IS_PARENT_PREFIX (*End))
185 while (AcpiPsIsPrefixChar (*End))
187 {
188 End++;
189 }

191 /* Decode the path prefix character */

193 switch (*End)
194 {
195 case 0:

197 /* NullName */

199 if (End == Start)
200 {
201 Start = NULL;
202 }
203 End++;
204 break;

206 case AML_DUAL_NAME_PREFIX:

208 /* Two name segments */

210 End += 1 + (2 * ACPI_NAME_SIZE);
211 break;

213 case AML_MULTI_NAME_PREFIX_OP:

215 /* Multiple name segments, 4 chars each, count in next byte */

217 End += 2 + (*(End + 1) * ACPI_NAME_SIZE);
218 break;

220 default:

new/usr/src/common/acpica/components/parser/psargs.c 4

222 /* Single name segment */

224 End += ACPI_NAME_SIZE;
225 break;
226 }

228 ParserState->Aml = End;
229 return_PTR ((char *) Start);
230 }

______unchanged_portion_omitted_

411 /***
412 *
413 * FUNCTION: AcpiPsGetNextSimpleArg
414 *
415 * PARAMETERS: ParserState - Current parser state object
416 * ArgType - The argument type (AML_*_ARG)
417 * Arg - Where the argument is returned
418 *
419 * RETURN: None
420 *
421 * DESCRIPTION: Get the next simple argument (constant, string, or namestring)
422 *
423 **/

425 void
426 AcpiPsGetNextSimpleArg (
427 ACPI_PARSE_STATE *ParserState,
428 UINT32 ArgType,
429 ACPI_PARSE_OBJECT *Arg)
430 {
431 UINT32 Length;
432 UINT16 Opcode;
433 UINT8 *Aml = ParserState->Aml;

436 ACPI_FUNCTION_TRACE_U32 (PsGetNextSimpleArg, ArgType);

439 switch (ArgType)
440 {
441 case ARGP_BYTEDATA:

443 /* Get 1 byte from the AML stream */

445 Opcode = AML_BYTE_OP;
446 Arg->Common.Value.Integer = (UINT64) *Aml;
447 Length = 1;
448 break;

450 case ARGP_WORDDATA:

452 /* Get 2 bytes from the AML stream */

454 Opcode = AML_WORD_OP;
455 ACPI_MOVE_16_TO_64 (&Arg->Common.Value.Integer, Aml);
456 Length = 2;
457 break;

459 case ARGP_DWORDDATA:

461 /* Get 4 bytes from the AML stream */

new/usr/src/common/acpica/components/parser/psargs.c 5

463 Opcode = AML_DWORD_OP;
464 ACPI_MOVE_32_TO_64 (&Arg->Common.Value.Integer, Aml);
465 Length = 4;
466 break;

468 case ARGP_QWORDDATA:

470 /* Get 8 bytes from the AML stream */

472 Opcode = AML_QWORD_OP;
473 ACPI_MOVE_64_TO_64 (&Arg->Common.Value.Integer, Aml);
474 Length = 8;
475 break;

477 case ARGP_CHARLIST:

479 /* Get a pointer to the string, point past the string */

481 Opcode = AML_STRING_OP;
482 Arg->Common.Value.String = ACPI_CAST_PTR (char, Aml);

484 /* Find the null terminator */

486 Length = 0;
487 while (Aml[Length])
488 {
489 Length++;
490 }
491 Length++;
492 break;

494 case ARGP_NAME:
495 case ARGP_NAMESTRING:

497 AcpiPsInitOp (Arg, AML_INT_NAMEPATH_OP);
498 Arg->Common.Value.Name = AcpiPsGetNextNamestring (ParserState);
499 return_VOID;

501 default:

503 ACPI_ERROR ((AE_INFO, "Invalid ArgType 0x%X", ArgType));
504 return_VOID;
505 }

507 AcpiPsInitOp (Arg, Opcode);
508 ParserState->Aml += Length;
509 return_VOID;
510 }

513 /***
514 *
515 * FUNCTION: AcpiPsGetNextField
516 *
517 * PARAMETERS: ParserState - Current parser state object
518 *
519 * RETURN: A newly allocated FIELD op
520 *
521 * DESCRIPTION: Get next field (NamedField, ReservedField, or AccessField)
522 *
523 **/

new/usr/src/common/acpica/components/parser/psargs.c 6

525 static ACPI_PARSE_OBJECT *
526 AcpiPsGetNextField (
527 ACPI_PARSE_STATE *ParserState)
528 {
529 UINT32 AmlOffset;
534 UINT32 AmlOffset = (UINT32)
535 ACPI_PTR_DIFF (ParserState->Aml,
536 ParserState->AmlStart);
530 ACPI_PARSE_OBJECT *Field;
531 ACPI_PARSE_OBJECT *Arg = NULL;
532 UINT16 Opcode;
533 UINT32 Name;
534 UINT8 AccessType;
535 UINT8 AccessAttribute;
536 UINT8 AccessLength;
537 UINT32 PkgLength;
538 UINT8 *PkgEnd;
539 UINT32 BufferLength;

542 ACPI_FUNCTION_TRACE (PsGetNextField);

545 AmlOffset = (UINT32) ACPI_PTR_DIFF (
546 ParserState->Aml, ParserState->AmlStart);

548 /* Determine field type */

550 switch (ACPI_GET8 (ParserState->Aml))
551 {
552 case AML_FIELD_OFFSET_OP:
549 default:

554 Opcode = AML_INT_RESERVEDFIELD_OP;
555 ParserState->Aml++;
551 Opcode = AML_INT_NAMEDFIELD_OP;
556 break;

558 case AML_FIELD_ACCESS_OP:
554 case 0x00:

560 Opcode = AML_INT_ACCESSFIELD_OP;
556 Opcode = AML_INT_RESERVEDFIELD_OP;
561 ParserState->Aml++;
562 break;

564 case AML_FIELD_CONNECTION_OP:
560 case 0x01:

566 Opcode = AML_INT_CONNECTION_OP;
562 Opcode = AML_INT_ACCESSFIELD_OP;
567 ParserState->Aml++;
568 break;

570 case AML_FIELD_EXT_ACCESS_OP:

572 Opcode = AML_INT_EXTACCESSFIELD_OP;
573 ParserState->Aml++;
574 break;

576 default:

578 Opcode = AML_INT_NAMEDFIELD_OP;
579 break;
580 }

new/usr/src/common/acpica/components/parser/psargs.c 7

582 /* Allocate a new field op */

584 Field = AcpiPsAllocOp (Opcode);
585 if (!Field)
586 {
587 return_PTR (NULL);
588 }

590 Field->Common.AmlOffset = AmlOffset;

592 /* Decode the field type */

594 switch (Opcode)
595 {
596 case AML_INT_NAMEDFIELD_OP:

598 /* Get the 4-character name */

600 ACPI_MOVE_32_TO_32 (&Name, ParserState->Aml);
601 AcpiPsSetName (Field, Name);
602 ParserState->Aml += ACPI_NAME_SIZE;

604 /* Get the length which is encoded as a package length */

606 Field->Common.Value.Size = AcpiPsGetNextPackageLength (ParserState);
607 break;

610 case AML_INT_RESERVEDFIELD_OP:

612 /* Get the length which is encoded as a package length */

614 Field->Common.Value.Size = AcpiPsGetNextPackageLength (ParserState);
615 break;

618 case AML_INT_ACCESSFIELD_OP:
619 case AML_INT_EXTACCESSFIELD_OP:

621 /*
622 * Get AccessType and AccessAttrib and merge into the field Op
623 * AccessType is first operand, AccessAttribute is second. stuff
624 * these bytes into the node integer value for convenience.
607 * AccessType is first operand, AccessAttribute is second
625 */

627 /* Get the two bytes (Type/Attribute) */

629 AccessType = ACPI_GET8 (ParserState->Aml);
609 Field->Common.Value.Integer = (((UINT32) ACPI_GET8 (ParserState->Aml) <<
630 ParserState->Aml++;
631 AccessAttribute = ACPI_GET8 (ParserState->Aml);
611 Field->Common.Value.Integer |= ACPI_GET8 (ParserState->Aml);
632 ParserState->Aml++;

634 Field->Common.Value.Integer = (UINT8) AccessType;
635 Field->Common.Value.Integer |= (UINT16) (AccessAttribute << 8);

637 /* This opcode has a third byte, AccessLength */

639 if (Opcode == AML_INT_EXTACCESSFIELD_OP)
640 {
641 AccessLength = ACPI_GET8 (ParserState->Aml);
642 ParserState->Aml++;

644 Field->Common.Value.Integer |= (UINT32) (AccessLength << 16);

new/usr/src/common/acpica/components/parser/psargs.c 8

645 }
646 break;

649 case AML_INT_CONNECTION_OP:

651 /*
652 * Argument for Connection operator can be either a Buffer
653 * (resource descriptor), or a NameString.
654 */
655 if (ACPI_GET8 (ParserState->Aml) == AML_BUFFER_OP)
656 {
657 ParserState->Aml++;

659 PkgEnd = ParserState->Aml;
660 PkgLength = AcpiPsGetNextPackageLength (ParserState);
661 PkgEnd += PkgLength;

663 if (ParserState->Aml < PkgEnd)
664 {
665 /* Non-empty list */

667 Arg = AcpiPsAllocOp (AML_INT_BYTELIST_OP);
668 if (!Arg)
669 {
670 AcpiPsFreeOp (Field);
671 return_PTR (NULL);
672 }

674 /* Get the actual buffer length argument */

676 Opcode = ACPI_GET8 (ParserState->Aml);
677 ParserState->Aml++;

679 switch (Opcode)
680 {
681 case AML_BYTE_OP: /* AML_BYTEDATA_ARG */

683 BufferLength = ACPI_GET8 (ParserState->Aml);
684 ParserState->Aml += 1;
685 break;

687 case AML_WORD_OP: /* AML_WORDDATA_ARG */

689 BufferLength = ACPI_GET16 (ParserState->Aml);
690 ParserState->Aml += 2;
691 break;

693 case AML_DWORD_OP: /* AML_DWORDATA_ARG */

695 BufferLength = ACPI_GET32 (ParserState->Aml);
696 ParserState->Aml += 4;
697 break;

699 default:

701 BufferLength = 0;
702 break;
703 }

705 /* Fill in bytelist data */

707 Arg->Named.Value.Size = BufferLength;
708 Arg->Named.Data = ParserState->Aml;
709 }

new/usr/src/common/acpica/components/parser/psargs.c 9

711 /* Skip to End of byte data */

713 ParserState->Aml = PkgEnd;
714 }
715 else
716 {
717 Arg = AcpiPsAllocOp (AML_INT_NAMEPATH_OP);
718 if (!Arg)
719 {
720 AcpiPsFreeOp (Field);
721 return_PTR (NULL);
722 }

724 /* Get the Namestring argument */

726 Arg->Common.Value.Name = AcpiPsGetNextNamestring (ParserState);
727 }

729 /* Link the buffer/namestring to parent (CONNECTION_OP) */

731 AcpiPsAppendArg (Field, Arg);
732 break;

735 default:

737 /* Opcode was set in previous switch */
738 break;
739 }

741 return_PTR (Field);
742 }

745 /***
746 *
747 * FUNCTION: AcpiPsGetNextArg
748 *
749 * PARAMETERS: WalkState - Current state
750 * ParserState - Current parser state object
751 * ArgType - The argument type (AML_*_ARG)
752 * ReturnArg - Where the next arg is returned
753 *
754 * RETURN: Status, and an op object containing the next argument.
755 *
756 * DESCRIPTION: Get next argument (including complex list arguments that require
757 * pushing the parser stack)
758 *
759 **/

761 ACPI_STATUS
762 AcpiPsGetNextArg (
763 ACPI_WALK_STATE *WalkState,
764 ACPI_PARSE_STATE *ParserState,
765 UINT32 ArgType,
766 ACPI_PARSE_OBJECT **ReturnArg)
767 {
768 ACPI_PARSE_OBJECT *Arg = NULL;
769 ACPI_PARSE_OBJECT *Prev = NULL;
770 ACPI_PARSE_OBJECT *Field;
771 UINT32 Subop;
772 ACPI_STATUS Status = AE_OK;

775 ACPI_FUNCTION_TRACE_PTR (PsGetNextArg, ParserState);

new/usr/src/common/acpica/components/parser/psargs.c 10

778 switch (ArgType)
779 {
780 case ARGP_BYTEDATA:
781 case ARGP_WORDDATA:
782 case ARGP_DWORDDATA:
783 case ARGP_CHARLIST:
784 case ARGP_NAME:
785 case ARGP_NAMESTRING:

787 /* Constants, strings, and namestrings are all the same size */

789 Arg = AcpiPsAllocOp (AML_BYTE_OP);
790 if (!Arg)
791 {
792 return_ACPI_STATUS (AE_NO_MEMORY);
793 }
794 AcpiPsGetNextSimpleArg (ParserState, ArgType, Arg);
795 break;

797 case ARGP_PKGLENGTH:

799 /* Package length, nothing returned */

801 ParserState->PkgEnd = AcpiPsGetNextPackageEnd (ParserState);
802 break;

804 case ARGP_FIELDLIST:

806 if (ParserState->Aml < ParserState->PkgEnd)
807 {
808 /* Non-empty list */

810 while (ParserState->Aml < ParserState->PkgEnd)
811 {
812 Field = AcpiPsGetNextField (ParserState);
813 if (!Field)
814 {
815 return_ACPI_STATUS (AE_NO_MEMORY);
816 }

818 if (Prev)
819 {
820 Prev->Common.Next = Field;
821 }
822 else
823 {
824 Arg = Field;
825 }
826 Prev = Field;
827 }

829 /* Skip to End of byte data */

831 ParserState->Aml = ParserState->PkgEnd;
832 }
833 break;

835 case ARGP_BYTELIST:

837 if (ParserState->Aml < ParserState->PkgEnd)
838 {
839 /* Non-empty list */

new/usr/src/common/acpica/components/parser/psargs.c 11

841 Arg = AcpiPsAllocOp (AML_INT_BYTELIST_OP);
842 if (!Arg)
843 {
844 return_ACPI_STATUS (AE_NO_MEMORY);
845 }

847 /* Fill in bytelist data */

849 Arg->Common.Value.Size = (UINT32)
850 ACPI_PTR_DIFF (ParserState->PkgEnd, ParserState->Aml);
851 Arg->Named.Data = ParserState->Aml;

853 /* Skip to End of byte data */

855 ParserState->Aml = ParserState->PkgEnd;
856 }
857 break;

859 case ARGP_TARGET:
860 case ARGP_SUPERNAME:
861 case ARGP_SIMPLENAME:

863 Subop = AcpiPsPeekOpcode (ParserState);
864 if (Subop == 0 ||
865 AcpiPsIsLeadingChar (Subop) ||
866 ACPI_IS_ROOT_PREFIX (Subop) ||
867 ACPI_IS_PARENT_PREFIX (Subop))
750 AcpiPsIsPrefixChar (Subop))
868 {
869 /* NullName or NameString */

871 Arg = AcpiPsAllocOp (AML_INT_NAMEPATH_OP);
872 if (!Arg)
873 {
874 return_ACPI_STATUS (AE_NO_MEMORY);
875 }

877 /* To support SuperName arg of Unload */

879 if (WalkState->Opcode == AML_UNLOAD_OP)
880 {
881 Status = AcpiPsGetNextNamepath (WalkState, ParserState, Arg, 1);

883 /*
884 * If the SuperName arg of Unload is a method call,
885 * we have restored the AML pointer, just free this Arg
886 */
887 if (Arg->Common.AmlOpcode == AML_INT_METHODCALL_OP)
888 {
889 AcpiPsFreeOp (Arg);
890 Arg = NULL;
891 }
892 }
893 else
894 {
895 Status = AcpiPsGetNextNamepath (WalkState, ParserState, Arg, 0);
896 }
897 }
898 else
899 {
900 /* Single complex argument, nothing returned */

902 WalkState->ArgCount = 1;
903 }

new/usr/src/common/acpica/components/parser/psargs.c 12

904 break;

906 case ARGP_DATAOBJ:
907 case ARGP_TERMARG:

909 /* Single complex argument, nothing returned */

911 WalkState->ArgCount = 1;
912 break;

914 case ARGP_DATAOBJLIST:
915 case ARGP_TERMLIST:
916 case ARGP_OBJLIST:

918 if (ParserState->Aml < ParserState->PkgEnd)
919 {
920 /* Non-empty list of variable arguments, nothing returned */

922 WalkState->ArgCount = ACPI_VAR_ARGS;
923 }
924 break;

926 default:

928 ACPI_ERROR ((AE_INFO, "Invalid ArgType: 0x%X", ArgType));
929 Status = AE_AML_OPERAND_TYPE;
930 break;
931 }

933 *ReturnArg = Arg;
934 return_ACPI_STATUS (Status);
935 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/parser/psloop.c 1

**
 20478 Thu Dec 26 13:49:24 2013
new/usr/src/common/acpica/components/parser/psloop.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: psloop - Main AML parse loop
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 /*
46 * Parse the AML and build an operation tree as most interpreters, (such as
47 * Perl) do. Parsing is done by hand rather than with a YACC generated parser
48 * to tightly constrain stack and dynamic memory usage. Parsing is kept
49 * flexible and the code fairly compact by parsing based on a list of AML
50 * opcode templates in AmlOpInfo[].
51 */

53 #include "acpi.h"
54 #include "accommon.h"
55 #include "acparser.h"
56 #include "acdispat.h"
57 #include "amlcode.h"

59 #define _COMPONENT ACPI_PARSER
60 ACPI_MODULE_NAME ("psloop")

new/usr/src/common/acpica/components/parser/psloop.c 2

63 /* Local prototypes */

65 static ACPI_STATUS
66 AcpiPsGetArguments (
67 ACPI_WALK_STATE *WalkState,
68 UINT8 *AmlOpStart,
69 ACPI_PARSE_OBJECT *Op);

71 static void
72 AcpiPsLinkModuleCode (
73 ACPI_PARSE_OBJECT *ParentOp,
74 UINT8 *AmlStart,
75 UINT32 AmlLength,
76 ACPI_OWNER_ID OwnerId);

79 /***
80 *
81 * FUNCTION: AcpiPsGetArguments
82 *
83 * PARAMETERS: WalkState - Current state
84 * AmlOpStart - Op start in AML
85 * Op - Current Op
86 *
87 * RETURN: Status
88 *
89 * DESCRIPTION: Get arguments for passed Op.
90 *
91 **/

93 static ACPI_STATUS
94 AcpiPsGetArguments (
95 ACPI_WALK_STATE *WalkState,
96 UINT8 *AmlOpStart,
97 ACPI_PARSE_OBJECT *Op)
98 {
99 ACPI_STATUS Status = AE_OK;
100 ACPI_PARSE_OBJECT *Arg = NULL;
101 const ACPI_OPCODE_INFO *OpInfo;

104 ACPI_FUNCTION_TRACE_PTR (PsGetArguments, WalkState);

107 switch (Op->Common.AmlOpcode)
108 {
109 case AML_BYTE_OP: /* AML_BYTEDATA_ARG */
110 case AML_WORD_OP: /* AML_WORDDATA_ARG */
111 case AML_DWORD_OP: /* AML_DWORDATA_ARG */
112 case AML_QWORD_OP: /* AML_QWORDATA_ARG */
113 case AML_STRING_OP: /* AML_ASCIICHARLIST_ARG */

115 /* Fill in constant or string argument directly */

117 AcpiPsGetNextSimpleArg (&(WalkState->ParserState),
118 GET_CURRENT_ARG_TYPE (WalkState->ArgTypes), Op);
119 break;

121 case AML_INT_NAMEPATH_OP: /* AML_NAMESTRING_ARG */

123 Status = AcpiPsGetNextNamepath (WalkState, &(WalkState->ParserState), Op
124 if (ACPI_FAILURE (Status))
125 {
126 return_ACPI_STATUS (Status);

new/usr/src/common/acpica/components/parser/psloop.c 3

127 }

129 WalkState->ArgTypes = 0;
130 break;

132 default:
133 /*
134 * Op is not a constant or string, append each argument to the Op
135 */
136 while (GET_CURRENT_ARG_TYPE (WalkState->ArgTypes) && !WalkState->ArgCoun
137 {
138 WalkState->AmlOffset = (UINT32) ACPI_PTR_DIFF (WalkState->ParserStat
139 WalkState->ParserState.AmlStart);

141 Status = AcpiPsGetNextArg (WalkState, &(WalkState->ParserState),
142 GET_CURRENT_ARG_TYPE (WalkState->ArgTypes), &Arg);
143 if (ACPI_FAILURE (Status))
144 {
145 return_ACPI_STATUS (Status);
146 }

148 if (Arg)
149 {
150 Arg->Common.AmlOffset = WalkState->AmlOffset;
151 AcpiPsAppendArg (Op, Arg);
152 }

154 INCREMENT_ARG_LIST (WalkState->ArgTypes);
155 }

158 /*
159 * Handle executable code at "module-level". This refers to
160 * executable opcodes that appear outside of any control method.
161 */
162 if ((WalkState->PassNumber <= ACPI_IMODE_LOAD_PASS2) &&
163 ((WalkState->ParseFlags & ACPI_PARSE_DISASSEMBLE) == 0))
164 {
165 /*
166 * We want to skip If/Else/While constructs during Pass1 because we
167 * want to actually conditionally execute the code during Pass2.
168 *
169 * Except for disassembly, where we always want to walk the
170 * If/Else/While packages
171 */
172 switch (Op->Common.AmlOpcode)
173 {
174 case AML_IF_OP:
175 case AML_ELSE_OP:
176 case AML_WHILE_OP:
177 /*
178 * Currently supported module-level opcodes are:
179 * IF/ELSE/WHILE. These appear to be the most common,
180 * and easiest to support since they open an AML
181 * package.
182 */
183 if (WalkState->PassNumber == ACPI_IMODE_LOAD_PASS1)
184 {
185 AcpiPsLinkModuleCode (Op->Common.Parent, AmlOpStart,
186 (UINT32) (WalkState->ParserState.PkgEnd - AmlOpStart),
187 WalkState->OwnerId);
188 }

190 ACPI_DEBUG_PRINT ((ACPI_DB_PARSE,
191 "Pass1: Skipping an If/Else/While body\n"));

new/usr/src/common/acpica/components/parser/psloop.c 4

193 /* Skip body of if/else/while in pass 1 */

195 WalkState->ParserState.Aml = WalkState->ParserState.PkgEnd;
196 WalkState->ArgCount = 0;
197 break;

199 default:
200 /*
201 * Check for an unsupported executable opcode at module
202 * level. We must be in PASS1, the parent must be a SCOPE,
203 * The opcode class must be EXECUTE, and the opcode must
204 * not be an argument to another opcode.
205 */
206 if ((WalkState->PassNumber == ACPI_IMODE_LOAD_PASS1) &&
207 (Op->Common.Parent->Common.AmlOpcode == AML_SCOPE_OP))
208 {
209 OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);
210 if ((OpInfo->Class == AML_CLASS_EXECUTE) &&
211 (!Arg))
212 {
213 ACPI_WARNING ((AE_INFO,
214 "Unsupported module-level executable opcode "
215 "0x%.2X at table offset 0x%.4X",
216 Op->Common.AmlOpcode,
217 (UINT32) (ACPI_PTR_DIFF (AmlOpStart,
218 WalkState->ParserState.AmlStart) +
219 sizeof (ACPI_TABLE_HEADER))));
220 }
221 }
222 break;
223 }
224 }

226 /* Special processing for certain opcodes */

228 switch (Op->Common.AmlOpcode)
229 {
230 case AML_METHOD_OP:
231 /*
232 * Skip parsing of control method because we don’t have enough
233 * info in the first pass to parse it correctly.
234 *
235 * Save the length and address of the body
236 */
237 Op->Named.Data = WalkState->ParserState.Aml;
238 Op->Named.Length = (UINT32)
239 (WalkState->ParserState.PkgEnd - WalkState->ParserState.Aml);

241 /* Skip body of method */

243 WalkState->ParserState.Aml = WalkState->ParserState.PkgEnd;
244 WalkState->ArgCount = 0;
245 break;

247 case AML_BUFFER_OP:
248 case AML_PACKAGE_OP:
249 case AML_VAR_PACKAGE_OP:

251 if ((Op->Common.Parent) &&
252 (Op->Common.Parent->Common.AmlOpcode == AML_NAME_OP) &&
253 (WalkState->PassNumber <= ACPI_IMODE_LOAD_PASS2))
254 {
255 /*
256 * Skip parsing of Buffers and Packages because we don’t have
257 * enough info in the first pass to parse them correctly.
258 */

new/usr/src/common/acpica/components/parser/psloop.c 5

259 Op->Named.Data = AmlOpStart;
260 Op->Named.Length = (UINT32)
261 (WalkState->ParserState.PkgEnd - AmlOpStart);

263 /* Skip body */

265 WalkState->ParserState.Aml = WalkState->ParserState.PkgEnd;
266 WalkState->ArgCount = 0;
267 }
268 break;

270 case AML_WHILE_OP:

272 if (WalkState->ControlState)
273 {
274 WalkState->ControlState->Control.PackageEnd =
275 WalkState->ParserState.PkgEnd;
276 }
277 break;

279 default:

281 /* No action for all other opcodes */

283 break;
284 }

286 break;
287 }

289 return_ACPI_STATUS (AE_OK);
290 }

293 /***
294 *
295 * FUNCTION: AcpiPsLinkModuleCode
296 *
297 * PARAMETERS: ParentOp - Parent parser op
298 * AmlStart - Pointer to the AML
299 * AmlLength - Length of executable AML
300 * OwnerId - OwnerId of module level code
301 *
302 * RETURN: None.
303 *
304 * DESCRIPTION: Wrap the module-level code with a method object and link the
305 * object to the global list. Note, the mutex field of the method
306 * object is used to link multiple module-level code objects.
307 *
308 **/

310 static void
311 AcpiPsLinkModuleCode (
312 ACPI_PARSE_OBJECT *ParentOp,
313 UINT8 *AmlStart,
314 UINT32 AmlLength,
315 ACPI_OWNER_ID OwnerId)
316 {
317 ACPI_OPERAND_OBJECT *Prev;
318 ACPI_OPERAND_OBJECT *Next;
319 ACPI_OPERAND_OBJECT *MethodObj;
320 ACPI_NAMESPACE_NODE *ParentNode;

323 /* Get the tail of the list */

new/usr/src/common/acpica/components/parser/psloop.c 6

325 Prev = Next = AcpiGbl_ModuleCodeList;
326 while (Next)
327 {
328 Prev = Next;
329 Next = Next->Method.Mutex;
330 }

332 /*
333 * Insert the module level code into the list. Merge it if it is
334 * adjacent to the previous element.
335 */
336 if (!Prev ||
337 ((Prev->Method.AmlStart + Prev->Method.AmlLength) != AmlStart))
338 {
339 /* Create, initialize, and link a new temporary method object */

341 MethodObj = AcpiUtCreateInternalObject (ACPI_TYPE_METHOD);
342 if (!MethodObj)
343 {
344 return;
345 }

347 if (ParentOp->Common.Node)
348 {
349 ParentNode = ParentOp->Common.Node;
350 }
351 else
352 {
353 ParentNode = AcpiGbl_RootNode;
354 }

356 MethodObj->Method.AmlStart = AmlStart;
357 MethodObj->Method.AmlLength = AmlLength;
358 MethodObj->Method.OwnerId = OwnerId;
359 MethodObj->Method.InfoFlags |= ACPI_METHOD_MODULE_LEVEL;

361 /*
362 * Save the parent node in NextObject. This is cheating, but we
363 * don’t want to expand the method object.
364 */
365 MethodObj->Method.NextObject =
366 ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, ParentNode);

368 if (!Prev)
369 {
370 AcpiGbl_ModuleCodeList = MethodObj;
371 }
372 else
373 {
374 Prev->Method.Mutex = MethodObj;
375 }
376 }
377 else
378 {
379 Prev->Method.AmlLength += AmlLength;
380 }
381 }

383 /***
384 *
385 * FUNCTION: AcpiPsParseLoop
386 *
387 * PARAMETERS: WalkState - Current state
388 *
389 * RETURN: Status
390 *

new/usr/src/common/acpica/components/parser/psloop.c 7

391 * DESCRIPTION: Parse AML (pointed to by the current parser state) and return
392 * a tree of ops.
393 *
394 **/

396 ACPI_STATUS
397 AcpiPsParseLoop (
398 ACPI_WALK_STATE *WalkState)
399 {
400 ACPI_STATUS Status = AE_OK;
401 ACPI_PARSE_OBJECT *Op = NULL; /* current op */
402 ACPI_PARSE_STATE *ParserState;
403 UINT8 *AmlOpStart = NULL;

406 ACPI_FUNCTION_TRACE_PTR (PsParseLoop, WalkState);

409 if (WalkState->DescendingCallback == NULL)
410 {
411 return_ACPI_STATUS (AE_BAD_PARAMETER);
412 }

414 ParserState = &WalkState->ParserState;
415 WalkState->ArgTypes = 0;

417 #if (!defined (ACPI_NO_METHOD_EXECUTION) && !defined (ACPI_CONSTANT_EVAL_ONLY))

419 if (WalkState->WalkType & ACPI_WALK_METHOD_RESTART)
420 {
421 /* We are restarting a preempted control method */

423 if (AcpiPsHasCompletedScope (ParserState))
424 {
425 /*
426 * We must check if a predicate to an IF or WHILE statement
427 * was just completed
428 */
429 if ((ParserState->Scope->ParseScope.Op) &&
430 ((ParserState->Scope->ParseScope.Op->Common.AmlOpcode == AML_IF_O
431 (ParserState->Scope->ParseScope.Op->Common.AmlOpcode == AML_WHIL
432 (WalkState->ControlState) &&
433 (WalkState->ControlState->Common.State ==
434 ACPI_CONTROL_PREDICATE_EXECUTING))
435 {
436 /*
437 * A predicate was just completed, get the value of the
438 * predicate and branch based on that value
439 */
440 WalkState->Op = NULL;
441 Status = AcpiDsGetPredicateValue (WalkState, ACPI_TO_POINTER (TR
442 if (ACPI_FAILURE (Status) &&
443 ((Status & AE_CODE_MASK) != AE_CODE_CONTROL))
444 {
445 if (Status == AE_AML_NO_RETURN_VALUE)
446 {
447 ACPI_EXCEPTION ((AE_INFO, Status,
448 "Invoked method did not return a value"));
449 }

451 ACPI_EXCEPTION ((AE_INFO, Status, "GetPredicate Failed"));
452 return_ACPI_STATUS (Status);
453 }

455 Status = AcpiPsNextParseState (WalkState, Op, Status);
456 }

new/usr/src/common/acpica/components/parser/psloop.c 8

458 AcpiPsPopScope (ParserState, &Op,
459 &WalkState->ArgTypes, &WalkState->ArgCount);
460 ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "Popped scope, Op=%p\n", Op));
461 }
462 else if (WalkState->PrevOp)
463 {
464 /* We were in the middle of an op */

466 Op = WalkState->PrevOp;
467 WalkState->ArgTypes = WalkState->PrevArgTypes;
468 }
469 }
470 #endif

472 /* Iterative parsing loop, while there is more AML to process: */

474 while ((ParserState->Aml < ParserState->AmlEnd) || (Op))
475 {
476 AmlOpStart = ParserState->Aml;
477 if (!Op)
478 {
479 Status = AcpiPsCreateOp (WalkState, AmlOpStart, &Op);
480 if (ACPI_FAILURE (Status))
481 {
482 if (Status == AE_CTRL_PARSE_CONTINUE)
483 {
484 continue;
485 }

487 if (Status == AE_CTRL_PARSE_PENDING)
488 {
489 Status = AE_OK;
490 }

492 Status = AcpiPsCompleteOp (WalkState, &Op, Status);
493 if (ACPI_FAILURE (Status))
494 {
495 return_ACPI_STATUS (Status);
496 }

498 continue;
499 }

501 Op->Common.AmlOffset = WalkState->AmlOffset;

503 if (WalkState->OpInfo)
504 {
505 ACPI_DEBUG_PRINT ((ACPI_DB_PARSE,
506 "Opcode %4.4X [%s] Op %p Aml %p AmlOffset %5.5X\n",
507 (UINT32) Op->Common.AmlOpcode, WalkState->OpInfo->Name,
508 Op, ParserState->Aml, Op->Common.AmlOffset));
509 }
510 }

513 /*
514 * Start ArgCount at zero because we don’t know if there are
515 * any args yet
516 */
517 WalkState->ArgCount = 0;

519 /* Are there any arguments that must be processed? */

521 if (WalkState->ArgTypes)
522 {

new/usr/src/common/acpica/components/parser/psloop.c 9

523 /* Get arguments */

525 Status = AcpiPsGetArguments (WalkState, AmlOpStart, Op);
526 if (ACPI_FAILURE (Status))
527 {
528 Status = AcpiPsCompleteOp (WalkState, &Op, Status);
529 if (ACPI_FAILURE (Status))
530 {
531 return_ACPI_STATUS (Status);
532 }

534 continue;
535 }
536 }

538 /* Check for arguments that need to be processed */

540 if (WalkState->ArgCount)
541 {
542 /*
543 * There are arguments (complex ones), push Op and
544 * prepare for argument
545 */
546 Status = AcpiPsPushScope (ParserState, Op,
547 WalkState->ArgTypes, WalkState->ArgCount);
548 if (ACPI_FAILURE (Status))
549 {
550 Status = AcpiPsCompleteOp (WalkState, &Op, Status);
551 if (ACPI_FAILURE (Status))
552 {
553 return_ACPI_STATUS (Status);
554 }

556 continue;
557 }

559 Op = NULL;
560 continue;
561 }

563 /*
564 * All arguments have been processed -- Op is complete,
565 * prepare for next
566 */
567 WalkState->OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);
568 if (WalkState->OpInfo->Flags & AML_NAMED)
569 {
570 if (Op->Common.AmlOpcode == AML_REGION_OP ||
571 Op->Common.AmlOpcode == AML_DATA_REGION_OP)
572 {
573 /*
574 * Skip parsing of control method or opregion body,
575 * because we don’t have enough info in the first pass
576 * to parse them correctly.
577 *
578 * Completed parsing an OpRegion declaration, we now
579 * know the length.
580 */
581 Op->Named.Length = (UINT32) (ParserState->Aml - Op->Named.Data);
582 }
583 }

585 if (WalkState->OpInfo->Flags & AML_CREATE)
586 {
587 /*
588 * Backup to beginning of CreateXXXfield declaration (1 for

new/usr/src/common/acpica/components/parser/psloop.c 10

589 * Opcode)
590 *
591 * BodyLength is unknown until we parse the body
592 */
593 Op->Named.Length = (UINT32) (ParserState->Aml - Op->Named.Data);
594 }

596 if (Op->Common.AmlOpcode == AML_BANK_FIELD_OP)
597 {
598 /*
599 * Backup to beginning of BankField declaration
600 *
601 * BodyLength is unknown until we parse the body
602 */
603 Op->Named.Length = (UINT32) (ParserState->Aml - Op->Named.Data);
604 }

606 /* This op complete, notify the dispatcher */

608 if (WalkState->AscendingCallback != NULL)
609 {
610 WalkState->Op = Op;
611 WalkState->Opcode = Op->Common.AmlOpcode;

613 Status = WalkState->AscendingCallback (WalkState);
614 Status = AcpiPsNextParseState (WalkState, Op, Status);
615 if (Status == AE_CTRL_PENDING)
616 {
617 Status = AE_OK;
618 }
619 }

621 Status = AcpiPsCompleteOp (WalkState, &Op, Status);
622 if (ACPI_FAILURE (Status))
623 {
624 return_ACPI_STATUS (Status);
625 }

627 } /* while ParserState->Aml */

629 Status = AcpiPsCompleteFinalOp (WalkState, Op, Status);
630 return_ACPI_STATUS (Status);
631 }

new/usr/src/common/acpica/components/parser/psobject.c 1

**
 19963 Thu Dec 26 13:49:24 2013
new/usr/src/common/acpica/components/parser/psobject.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: psobject - Support for parse objects
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acparser.h"
48 #include "amlcode.h"

50 #define _COMPONENT ACPI_PARSER
51 ACPI_MODULE_NAME ("psobject")

54 /* Local prototypes */

56 static ACPI_STATUS
57 AcpiPsGetAmlOpcode (
58 ACPI_WALK_STATE *WalkState);

61 /***

new/usr/src/common/acpica/components/parser/psobject.c 2

62 *
63 * FUNCTION: AcpiPsGetAmlOpcode
64 *
65 * PARAMETERS: WalkState - Current state
66 *
67 * RETURN: Status
68 *
69 * DESCRIPTION: Extract the next AML opcode from the input stream.
70 *
71 **/

73 static ACPI_STATUS
74 AcpiPsGetAmlOpcode (
75 ACPI_WALK_STATE *WalkState)
76 {

78 ACPI_FUNCTION_TRACE_PTR (PsGetAmlOpcode, WalkState);

81 WalkState->AmlOffset = (UINT32) ACPI_PTR_DIFF (WalkState->ParserState.Aml,
82 WalkState->ParserState.AmlStart);
83 WalkState->Opcode = AcpiPsPeekOpcode (&(WalkState->ParserState));

85 /*
86 * First cut to determine what we have found:
87 * 1) A valid AML opcode
88 * 2) A name string
89 * 3) An unknown/invalid opcode
90 */
91 WalkState->OpInfo = AcpiPsGetOpcodeInfo (WalkState->Opcode);

93 switch (WalkState->OpInfo->Class)
94 {
95 case AML_CLASS_ASCII:
96 case AML_CLASS_PREFIX:
97 /*
98 * Starts with a valid prefix or ASCII char, this is a name
99 * string. Convert the bare name string to a namepath.
100 */
101 WalkState->Opcode = AML_INT_NAMEPATH_OP;
102 WalkState->ArgTypes = ARGP_NAMESTRING;
103 break;

105 case AML_CLASS_UNKNOWN:

107 /* The opcode is unrecognized. Complain and skip unknown opcodes */

109 if (WalkState->PassNumber == 2)
110 {
111 ACPI_ERROR ((AE_INFO,
112 "Unknown opcode 0x%.2X at table offset 0x%.4X, ignoring",
113 WalkState->Opcode,
114 (UINT32) (WalkState->AmlOffset + sizeof (ACPI_TABLE_HEADER))));

116 ACPI_DUMP_BUFFER ((WalkState->ParserState.Aml - 16), 48);

118 #ifdef ACPI_ASL_COMPILER
119 /*
120 * This is executed for the disassembler only. Output goes
121 * to the disassembled ASL output file.
122 */
123 AcpiOsPrintf (
124 "/*\nError: Unknown opcode 0x%.2X at table offset 0x%.4X, contex
125 WalkState->Opcode,
126 (UINT32) (WalkState->AmlOffset + sizeof (ACPI_TABLE_HEADER)));

new/usr/src/common/acpica/components/parser/psobject.c 3

128 /* Dump the context surrounding the invalid opcode */

130 AcpiUtDumpBuffer (((UINT8 *) WalkState->ParserState.Aml - 16),
131 48, DB_BYTE_DISPLAY,
132 (WalkState->AmlOffset + sizeof (ACPI_TABLE_HEADER) - 16));
133 AcpiOsPrintf (" */\n");
134 #endif
135 }

137 /* Increment past one-byte or two-byte opcode */

139 WalkState->ParserState.Aml++;
140 if (WalkState->Opcode > 0xFF) /* Can only happen if first byte is 0x5B *
141 {
142 WalkState->ParserState.Aml++;
143 }

145 return_ACPI_STATUS (AE_CTRL_PARSE_CONTINUE);

147 default:

149 /* Found opcode info, this is a normal opcode */

151 WalkState->ParserState.Aml += AcpiPsGetOpcodeSize (WalkState->Opcode);
152 WalkState->ArgTypes = WalkState->OpInfo->ParseArgs;
153 break;
154 }

156 return_ACPI_STATUS (AE_OK);
157 }

160 /***
161 *
162 * FUNCTION: AcpiPsBuildNamedOp
163 *
164 * PARAMETERS: WalkState - Current state
165 * AmlOpStart - Begin of named Op in AML
166 * UnnamedOp - Early Op (not a named Op)
167 * Op - Returned Op
168 *
169 * RETURN: Status
170 *
171 * DESCRIPTION: Parse a named Op
172 *
173 **/

175 ACPI_STATUS
176 AcpiPsBuildNamedOp (
177 ACPI_WALK_STATE *WalkState,
178 UINT8 *AmlOpStart,
179 ACPI_PARSE_OBJECT *UnnamedOp,
180 ACPI_PARSE_OBJECT **Op)
181 {
182 ACPI_STATUS Status = AE_OK;
183 ACPI_PARSE_OBJECT *Arg = NULL;

186 ACPI_FUNCTION_TRACE_PTR (PsBuildNamedOp, WalkState);

189 UnnamedOp->Common.Value.Arg = NULL;
190 UnnamedOp->Common.ArgListLength = 0;
191 UnnamedOp->Common.AmlOpcode = WalkState->Opcode;

193 /*

new/usr/src/common/acpica/components/parser/psobject.c 4

194 * Get and append arguments until we find the node that contains
195 * the name (the type ARGP_NAME).
196 */
197 while (GET_CURRENT_ARG_TYPE (WalkState->ArgTypes) &&
198 (GET_CURRENT_ARG_TYPE (WalkState->ArgTypes) != ARGP_NAME))
199 {
200 Status = AcpiPsGetNextArg (WalkState, &(WalkState->ParserState),
201 GET_CURRENT_ARG_TYPE (WalkState->ArgTypes), &Arg);
202 if (ACPI_FAILURE (Status))
203 {
204 return_ACPI_STATUS (Status);
205 }

207 AcpiPsAppendArg (UnnamedOp, Arg);
208 INCREMENT_ARG_LIST (WalkState->ArgTypes);
209 }

211 /*
212 * Make sure that we found a NAME and didn’t run out of arguments
213 */
214 if (!GET_CURRENT_ARG_TYPE (WalkState->ArgTypes))
215 {
216 return_ACPI_STATUS (AE_AML_NO_OPERAND);
217 }

219 /* We know that this arg is a name, move to next arg */

221 INCREMENT_ARG_LIST (WalkState->ArgTypes);

223 /*
224 * Find the object. This will either insert the object into
225 * the namespace or simply look it up
226 */
227 WalkState->Op = NULL;

229 Status = WalkState->DescendingCallback (WalkState, Op);
230 if (ACPI_FAILURE (Status))
231 {
232 ACPI_EXCEPTION ((AE_INFO, Status, "During name lookup/catalog"));
233 return_ACPI_STATUS (Status);
234 }

236 if (!*Op)
237 {
238 return_ACPI_STATUS (AE_CTRL_PARSE_CONTINUE);
239 }

241 Status = AcpiPsNextParseState (WalkState, *Op, Status);
242 if (ACPI_FAILURE (Status))
243 {
244 if (Status == AE_CTRL_PENDING)
245 {
246 return_ACPI_STATUS (AE_CTRL_PARSE_PENDING);
247 }
248 return_ACPI_STATUS (Status);
249 }

251 AcpiPsAppendArg (*Op, UnnamedOp->Common.Value.Arg);

253 if ((*Op)->Common.AmlOpcode == AML_REGION_OP ||
254 (*Op)->Common.AmlOpcode == AML_DATA_REGION_OP)
255 {
256 /*
257 * Defer final parsing of an OperationRegion body, because we don’t
258 * have enough info in the first pass to parse it correctly (i.e.,
259 * there may be method calls within the TermArg elements of the body.)

new/usr/src/common/acpica/components/parser/psobject.c 5

260 *
261 * However, we must continue parsing because the opregion is not a
262 * standalone package -- we don’t know where the end is at this point.
263 *
264 * (Length is unknown until parse of the body complete)
265 */
266 (*Op)->Named.Data = AmlOpStart;
267 (*Op)->Named.Length = 0;
268 }

270 return_ACPI_STATUS (AE_OK);
271 }

274 /***
275 *
276 * FUNCTION: AcpiPsCreateOp
277 *
278 * PARAMETERS: WalkState - Current state
279 * AmlOpStart - Op start in AML
280 * NewOp - Returned Op
281 *
282 * RETURN: Status
283 *
284 * DESCRIPTION: Get Op from AML
285 *
286 **/

288 ACPI_STATUS
289 AcpiPsCreateOp (
290 ACPI_WALK_STATE *WalkState,
291 UINT8 *AmlOpStart,
292 ACPI_PARSE_OBJECT **NewOp)
293 {
294 ACPI_STATUS Status = AE_OK;
295 ACPI_PARSE_OBJECT *Op;
296 ACPI_PARSE_OBJECT *NamedOp = NULL;
297 ACPI_PARSE_OBJECT *ParentScope;
298 UINT8 ArgumentCount;
299 const ACPI_OPCODE_INFO *OpInfo;

302 ACPI_FUNCTION_TRACE_PTR (PsCreateOp, WalkState);

305 Status = AcpiPsGetAmlOpcode (WalkState);
306 if (Status == AE_CTRL_PARSE_CONTINUE)
307 {
308 return_ACPI_STATUS (AE_CTRL_PARSE_CONTINUE);
309 }

311 /* Create Op structure and append to parent’s argument list */

313 WalkState->OpInfo = AcpiPsGetOpcodeInfo (WalkState->Opcode);
314 Op = AcpiPsAllocOp (WalkState->Opcode);
315 if (!Op)
316 {
317 return_ACPI_STATUS (AE_NO_MEMORY);
318 }

320 if (WalkState->OpInfo->Flags & AML_NAMED)
321 {
322 Status = AcpiPsBuildNamedOp (WalkState, AmlOpStart, Op, &NamedOp);
323 AcpiPsFreeOp (Op);
324 if (ACPI_FAILURE (Status))
325 {

new/usr/src/common/acpica/components/parser/psobject.c 6

326 return_ACPI_STATUS (Status);
327 }

329 *NewOp = NamedOp;
330 return_ACPI_STATUS (AE_OK);
331 }

333 /* Not a named opcode, just allocate Op and append to parent */

335 if (WalkState->OpInfo->Flags & AML_CREATE)
336 {
337 /*
338 * Backup to beginning of CreateXXXfield declaration
339 * BodyLength is unknown until we parse the body
340 */
341 Op->Named.Data = AmlOpStart;
342 Op->Named.Length = 0;
343 }

345 if (WalkState->Opcode == AML_BANK_FIELD_OP)
346 {
347 /*
348 * Backup to beginning of BankField declaration
349 * BodyLength is unknown until we parse the body
350 */
351 Op->Named.Data = AmlOpStart;
352 Op->Named.Length = 0;
353 }

355 ParentScope = AcpiPsGetParentScope (&(WalkState->ParserState));
356 AcpiPsAppendArg (ParentScope, Op);

358 if (ParentScope)
359 {
360 OpInfo = AcpiPsGetOpcodeInfo (ParentScope->Common.AmlOpcode);
361 if (OpInfo->Flags & AML_HAS_TARGET)
362 {
363 ArgumentCount = AcpiPsGetArgumentCount (OpInfo->Type);
364 if (ParentScope->Common.ArgListLength > ArgumentCount)
365 {
366 Op->Common.Flags |= ACPI_PARSEOP_TARGET;
367 }
368 }
369 else if (ParentScope->Common.AmlOpcode == AML_INCREMENT_OP)
370 {
371 Op->Common.Flags |= ACPI_PARSEOP_TARGET;
372 }
373 }

375 if (WalkState->DescendingCallback != NULL)
376 {
377 /*
378 * Find the object. This will either insert the object into
379 * the namespace or simply look it up
380 */
381 WalkState->Op = *NewOp = Op;

383 Status = WalkState->DescendingCallback (WalkState, &Op);
384 Status = AcpiPsNextParseState (WalkState, Op, Status);
385 if (Status == AE_CTRL_PENDING)
386 {
387 Status = AE_CTRL_PARSE_PENDING;
388 }
389 }

391 return_ACPI_STATUS (Status);

new/usr/src/common/acpica/components/parser/psobject.c 7

392 }

395 /***
396 *
397 * FUNCTION: AcpiPsCompleteOp
398 *
399 * PARAMETERS: WalkState - Current state
400 * Op - Returned Op
401 * Status - Parse status before complete Op
402 *
403 * RETURN: Status
404 *
405 * DESCRIPTION: Complete Op
406 *
407 **/

409 ACPI_STATUS
410 AcpiPsCompleteOp (
411 ACPI_WALK_STATE *WalkState,
412 ACPI_PARSE_OBJECT **Op,
413 ACPI_STATUS Status)
414 {
415 ACPI_STATUS Status2;

418 ACPI_FUNCTION_TRACE_PTR (PsCompleteOp, WalkState);

421 /*
422 * Finished one argument of the containing scope
423 */
424 WalkState->ParserState.Scope->ParseScope.ArgCount--;

426 /* Close this Op (will result in parse subtree deletion) */

428 Status2 = AcpiPsCompleteThisOp (WalkState, *Op);
429 if (ACPI_FAILURE (Status2))
430 {
431 return_ACPI_STATUS (Status2);
432 }

434 *Op = NULL;

436 switch (Status)
437 {
438 case AE_OK:

440 break;

442 case AE_CTRL_TRANSFER:

444 /* We are about to transfer to a called method */

446 WalkState->PrevOp = NULL;
447 WalkState->PrevArgTypes = WalkState->ArgTypes;
448 return_ACPI_STATUS (Status);

450 case AE_CTRL_END:

452 AcpiPsPopScope (&(WalkState->ParserState), Op,
453 &WalkState->ArgTypes, &WalkState->ArgCount);

455 if (*Op)
456 {
457 WalkState->Op = *Op;

new/usr/src/common/acpica/components/parser/psobject.c 8

458 WalkState->OpInfo = AcpiPsGetOpcodeInfo ((*Op)->Common.AmlOpcode);
459 WalkState->Opcode = (*Op)->Common.AmlOpcode;

461 Status = WalkState->AscendingCallback (WalkState);
462 Status = AcpiPsNextParseState (WalkState, *Op, Status);

464 Status2 = AcpiPsCompleteThisOp (WalkState, *Op);
465 if (ACPI_FAILURE (Status2))
466 {
467 return_ACPI_STATUS (Status2);
468 }
469 }

471 Status = AE_OK;
472 break;

474 case AE_CTRL_BREAK:
475 case AE_CTRL_CONTINUE:

477 /* Pop off scopes until we find the While */

479 while (!(*Op) || ((*Op)->Common.AmlOpcode != AML_WHILE_OP))
480 {
481 AcpiPsPopScope (&(WalkState->ParserState), Op,
482 &WalkState->ArgTypes, &WalkState->ArgCount);
483 }

485 /* Close this iteration of the While loop */

487 WalkState->Op = *Op;
488 WalkState->OpInfo = AcpiPsGetOpcodeInfo ((*Op)->Common.AmlOpcode);
489 WalkState->Opcode = (*Op)->Common.AmlOpcode;

491 Status = WalkState->AscendingCallback (WalkState);
492 Status = AcpiPsNextParseState (WalkState, *Op, Status);

494 Status2 = AcpiPsCompleteThisOp (WalkState, *Op);
495 if (ACPI_FAILURE (Status2))
496 {
497 return_ACPI_STATUS (Status2);
498 }

500 Status = AE_OK;
501 break;

503 case AE_CTRL_TERMINATE:

505 /* Clean up */
506 do
507 {
508 if (*Op)
509 {
510 Status2 = AcpiPsCompleteThisOp (WalkState, *Op);
511 if (ACPI_FAILURE (Status2))
512 {
513 return_ACPI_STATUS (Status2);
514 }

516 AcpiUtDeleteGenericState (
517 AcpiUtPopGenericState (&WalkState->ControlState));
518 }

520 AcpiPsPopScope (&(WalkState->ParserState), Op,
521 &WalkState->ArgTypes, &WalkState->ArgCount);

523 } while (*Op);

new/usr/src/common/acpica/components/parser/psobject.c 9

525 return_ACPI_STATUS (AE_OK);

527 default: /* All other non-AE_OK status */

529 do
530 {
531 if (*Op)
532 {
533 Status2 = AcpiPsCompleteThisOp (WalkState, *Op);
534 if (ACPI_FAILURE (Status2))
535 {
536 return_ACPI_STATUS (Status2);
537 }
538 }

540 AcpiPsPopScope (&(WalkState->ParserState), Op,
541 &WalkState->ArgTypes, &WalkState->ArgCount);

543 } while (*Op);

546 #if 0
547 /*
548 * TBD: Cleanup parse ops on error
549 */
550 if (*Op == NULL)
551 {
552 AcpiPsPopScope (ParserState, Op,
553 &WalkState->ArgTypes, &WalkState->ArgCount);
554 }
555 #endif
556 WalkState->PrevOp = NULL;
557 WalkState->PrevArgTypes = WalkState->ArgTypes;
558 return_ACPI_STATUS (Status);
559 }

561 /* This scope complete? */

563 if (AcpiPsHasCompletedScope (&(WalkState->ParserState)))
564 {
565 AcpiPsPopScope (&(WalkState->ParserState), Op,
566 &WalkState->ArgTypes, &WalkState->ArgCount);
567 ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "Popped scope, Op=%p\n", *Op));
568 }
569 else
570 {
571 *Op = NULL;
572 }

574 return_ACPI_STATUS (AE_OK);
575 }

578 /***
579 *
580 * FUNCTION: AcpiPsCompleteFinalOp
581 *
582 * PARAMETERS: WalkState - Current state
583 * Op - Current Op
584 * Status - Current parse status before complete last
585 * Op
586 *
587 * RETURN: Status
588 *
589 * DESCRIPTION: Complete last Op.

new/usr/src/common/acpica/components/parser/psobject.c 10

590 *
591 **/

593 ACPI_STATUS
594 AcpiPsCompleteFinalOp (
595 ACPI_WALK_STATE *WalkState,
596 ACPI_PARSE_OBJECT *Op,
597 ACPI_STATUS Status)
598 {
599 ACPI_STATUS Status2;

602 ACPI_FUNCTION_TRACE_PTR (PsCompleteFinalOp, WalkState);

605 /*
606 * Complete the last Op (if not completed), and clear the scope stack.
607 * It is easily possible to end an AML "package" with an unbounded number
608 * of open scopes (such as when several ASL blocks are closed with
609 * sequential closing braces). We want to terminate each one cleanly.
610 */
611 ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "AML package complete at Op %p\n", Op));
612 do
613 {
614 if (Op)
615 {
616 if (WalkState->AscendingCallback != NULL)
617 {
618 WalkState->Op = Op;
619 WalkState->OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);
620 WalkState->Opcode = Op->Common.AmlOpcode;

622 Status = WalkState->AscendingCallback (WalkState);
623 Status = AcpiPsNextParseState (WalkState, Op, Status);
624 if (Status == AE_CTRL_PENDING)
625 {
626 Status = AcpiPsCompleteOp (WalkState, &Op, AE_OK);
627 if (ACPI_FAILURE (Status))
628 {
629 return_ACPI_STATUS (Status);
630 }
631 }

633 if (Status == AE_CTRL_TERMINATE)
634 {
635 Status = AE_OK;

637 /* Clean up */
638 do
639 {
640 if (Op)
641 {
642 Status2 = AcpiPsCompleteThisOp (WalkState, Op);
643 if (ACPI_FAILURE (Status2))
644 {
645 return_ACPI_STATUS (Status2);
646 }
647 }

649 AcpiPsPopScope (&(WalkState->ParserState), &Op,
650 &WalkState->ArgTypes, &WalkState->ArgCount);

652 } while (Op);

654 return_ACPI_STATUS (Status);
655 }

new/usr/src/common/acpica/components/parser/psobject.c 11

657 else if (ACPI_FAILURE (Status))
658 {
659 /* First error is most important */

661 (void) AcpiPsCompleteThisOp (WalkState, Op);
662 return_ACPI_STATUS (Status);
663 }
664 }

666 Status2 = AcpiPsCompleteThisOp (WalkState, Op);
667 if (ACPI_FAILURE (Status2))
668 {
669 return_ACPI_STATUS (Status2);
670 }
671 }

673 AcpiPsPopScope (&(WalkState->ParserState), &Op, &WalkState->ArgTypes,
674 &WalkState->ArgCount);

676 } while (Op);

678 return_ACPI_STATUS (Status);
679 }

new/usr/src/common/acpica/components/parser/psopcode.c 1

**
 33177 Thu Dec 26 13:49:24 2013
new/usr/src/common/acpica/components/parser/psopcode.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: psopcode - Parser/Interpreter opcode information table
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acparser.h"
47 #include "acopcode.h"
48 #include "amlcode.h"

51 #define _COMPONENT ACPI_PARSER
52 ACPI_MODULE_NAME ("psopcode")

56 static const UINT8 AcpiGbl_ArgumentCount[] = {0,1,1,1,1,2,2,2,2,3,3,6};

55 /***

new/usr/src/common/acpica/components/parser/psopcode.c 2

56 *
57 * NAME: AcpiGbl_AmlOpInfo
58 *
59 * DESCRIPTION: Opcode table. Each entry contains <opcode, type, name, operands>
60 * The name is a simple ascii string, the operand specifier is an
61 * ascii string with one letter per operand. The letter specifies
62 * the operand type.
63 *
64 **/

66 /*
67 * Summary of opcode types/flags
68 *

70 Opcodes that have associated namespace objects (AML_NSOBJECT flag)

72 AML_SCOPE_OP
73 AML_DEVICE_OP
74 AML_THERMAL_ZONE_OP
75 AML_METHOD_OP
76 AML_POWER_RES_OP
77 AML_PROCESSOR_OP
78 AML_FIELD_OP
79 AML_INDEX_FIELD_OP
80 AML_BANK_FIELD_OP
81 AML_NAME_OP
82 AML_ALIAS_OP
83 AML_MUTEX_OP
84 AML_EVENT_OP
85 AML_REGION_OP
86 AML_CREATE_FIELD_OP
87 AML_CREATE_BIT_FIELD_OP
88 AML_CREATE_BYTE_FIELD_OP
89 AML_CREATE_WORD_FIELD_OP
90 AML_CREATE_DWORD_FIELD_OP
91 AML_CREATE_QWORD_FIELD_OP
92 AML_INT_NAMEDFIELD_OP
93 AML_INT_METHODCALL_OP
94 AML_INT_NAMEPATH_OP

96 Opcodes that are "namespace" opcodes (AML_NSOPCODE flag)

98 AML_SCOPE_OP
99 AML_DEVICE_OP
100 AML_THERMAL_ZONE_OP
101 AML_METHOD_OP
102 AML_POWER_RES_OP
103 AML_PROCESSOR_OP
104 AML_FIELD_OP
105 AML_INDEX_FIELD_OP
106 AML_BANK_FIELD_OP
107 AML_NAME_OP
108 AML_ALIAS_OP
109 AML_MUTEX_OP
110 AML_EVENT_OP
111 AML_REGION_OP
112 AML_INT_NAMEDFIELD_OP

114 Opcodes that have an associated namespace node (AML_NSNODE flag)

116 AML_SCOPE_OP
117 AML_DEVICE_OP
118 AML_THERMAL_ZONE_OP
119 AML_METHOD_OP
120 AML_POWER_RES_OP
121 AML_PROCESSOR_OP

new/usr/src/common/acpica/components/parser/psopcode.c 3

122 AML_NAME_OP
123 AML_ALIAS_OP
124 AML_MUTEX_OP
125 AML_EVENT_OP
126 AML_REGION_OP
127 AML_CREATE_FIELD_OP
128 AML_CREATE_BIT_FIELD_OP
129 AML_CREATE_BYTE_FIELD_OP
130 AML_CREATE_WORD_FIELD_OP
131 AML_CREATE_DWORD_FIELD_OP
132 AML_CREATE_QWORD_FIELD_OP
133 AML_INT_NAMEDFIELD_OP
134 AML_INT_METHODCALL_OP
135 AML_INT_NAMEPATH_OP

137 Opcodes that define named ACPI objects (AML_NAMED flag)

139 AML_SCOPE_OP
140 AML_DEVICE_OP
141 AML_THERMAL_ZONE_OP
142 AML_METHOD_OP
143 AML_POWER_RES_OP
144 AML_PROCESSOR_OP
145 AML_NAME_OP
146 AML_ALIAS_OP
147 AML_MUTEX_OP
148 AML_EVENT_OP
149 AML_REGION_OP
150 AML_INT_NAMEDFIELD_OP

152 Opcodes that contain executable AML as part of the definition that
153 must be deferred until needed

155 AML_METHOD_OP
156 AML_VAR_PACKAGE_OP
157 AML_CREATE_FIELD_OP
158 AML_CREATE_BIT_FIELD_OP
159 AML_CREATE_BYTE_FIELD_OP
160 AML_CREATE_WORD_FIELD_OP
161 AML_CREATE_DWORD_FIELD_OP
162 AML_CREATE_QWORD_FIELD_OP
163 AML_REGION_OP
164 AML_BUFFER_OP

166 Field opcodes

168 AML_CREATE_FIELD_OP
169 AML_FIELD_OP
170 AML_INDEX_FIELD_OP
171 AML_BANK_FIELD_OP

173 Field "Create" opcodes

175 AML_CREATE_FIELD_OP
176 AML_CREATE_BIT_FIELD_OP
177 AML_CREATE_BYTE_FIELD_OP
178 AML_CREATE_WORD_FIELD_OP
179 AML_CREATE_DWORD_FIELD_OP
180 AML_CREATE_QWORD_FIELD_OP

182 **/

185 /*
186 * Master Opcode information table. A summary of everything we know about each
187 * opcode, all in one place.

new/usr/src/common/acpica/components/parser/psopcode.c 4

188 */
189 const ACPI_OPCODE_INFO AcpiGbl_AmlOpInfo[AML_NUM_OPCODES] =
190 {
191 /*! [Begin] no source code translation */
192 /* Index Name Parser Args Interpreter Ar

194 /* 00 */ ACPI_OP ("Zero", ARGP_ZERO_OP, ARGI_ZERO_OP,
195 /* 01 */ ACPI_OP ("One", ARGP_ONE_OP, ARGI_ONE_OP,
196 /* 02 */ ACPI_OP ("Alias", ARGP_ALIAS_OP, ARGI_ALIAS_OP
197 /* 03 */ ACPI_OP ("Name", ARGP_NAME_OP, ARGI_NAME_OP,
198 /* 04 */ ACPI_OP ("ByteConst", ARGP_BYTE_OP, ARGI_BYTE_OP,
199 /* 05 */ ACPI_OP ("WordConst", ARGP_WORD_OP, ARGI_WORD_OP,
200 /* 06 */ ACPI_OP ("DwordConst", ARGP_DWORD_OP, ARGI_DWORD_OP
201 /* 07 */ ACPI_OP ("String", ARGP_STRING_OP, ARGI_STRING_O
202 /* 08 */ ACPI_OP ("Scope", ARGP_SCOPE_OP, ARGI_SCOPE_OP
203 /* 09 */ ACPI_OP ("Buffer", ARGP_BUFFER_OP, ARGI_BUFFER_O
204 /* 0A */ ACPI_OP ("Package", ARGP_PACKAGE_OP, ARGI_PACKAGE_
205 /* 0B */ ACPI_OP ("Method", ARGP_METHOD_OP, ARGI_METHOD_O
206 /* 0C */ ACPI_OP ("Local0", ARGP_LOCAL0, ARGI_LOCAL0,
207 /* 0D */ ACPI_OP ("Local1", ARGP_LOCAL1, ARGI_LOCAL1,
208 /* 0E */ ACPI_OP ("Local2", ARGP_LOCAL2, ARGI_LOCAL2,
209 /* 0F */ ACPI_OP ("Local3", ARGP_LOCAL3, ARGI_LOCAL3,
210 /* 10 */ ACPI_OP ("Local4", ARGP_LOCAL4, ARGI_LOCAL4,
211 /* 11 */ ACPI_OP ("Local5", ARGP_LOCAL5, ARGI_LOCAL5,
212 /* 12 */ ACPI_OP ("Local6", ARGP_LOCAL6, ARGI_LOCAL6,
213 /* 13 */ ACPI_OP ("Local7", ARGP_LOCAL7, ARGI_LOCAL7,
214 /* 14 */ ACPI_OP ("Arg0", ARGP_ARG0, ARGI_ARG0,
215 /* 15 */ ACPI_OP ("Arg1", ARGP_ARG1, ARGI_ARG1,
216 /* 16 */ ACPI_OP ("Arg2", ARGP_ARG2, ARGI_ARG2,
217 /* 17 */ ACPI_OP ("Arg3", ARGP_ARG3, ARGI_ARG3,
218 /* 18 */ ACPI_OP ("Arg4", ARGP_ARG4, ARGI_ARG4,
219 /* 19 */ ACPI_OP ("Arg5", ARGP_ARG5, ARGI_ARG5,
220 /* 1A */ ACPI_OP ("Arg6", ARGP_ARG6, ARGI_ARG6,
221 /* 1B */ ACPI_OP ("Store", ARGP_STORE_OP, ARGI_STORE_OP
222 /* 1C */ ACPI_OP ("RefOf", ARGP_REF_OF_OP, ARGI_REF_OF_O
223 /* 1D */ ACPI_OP ("Add", ARGP_ADD_OP, ARGI_ADD_OP,
224 /* 1E */ ACPI_OP ("Concatenate", ARGP_CONCAT_OP, ARGI_CONCAT_O
225 /* 1F */ ACPI_OP ("Subtract", ARGP_SUBTRACT_OP, ARGI_SUBTRACT
226 /* 20 */ ACPI_OP ("Increment", ARGP_INCREMENT_OP, ARGI_INCREMEN
227 /* 21 */ ACPI_OP ("Decrement", ARGP_DECREMENT_OP, ARGI_DECREMEN
228 /* 22 */ ACPI_OP ("Multiply", ARGP_MULTIPLY_OP, ARGI_MULTIPLY
229 /* 23 */ ACPI_OP ("Divide", ARGP_DIVIDE_OP, ARGI_DIVIDE_O
230 /* 24 */ ACPI_OP ("ShiftLeft", ARGP_SHIFT_LEFT_OP, ARGI_SHIFT_LE
231 /* 25 */ ACPI_OP ("ShiftRight", ARGP_SHIFT_RIGHT_OP, ARGI_SHIFT_RI
232 /* 26 */ ACPI_OP ("And", ARGP_BIT_AND_OP, ARGI_BIT_AND_
233 /* 27 */ ACPI_OP ("NAnd", ARGP_BIT_NAND_OP, ARGI_BIT_NAND
234 /* 28 */ ACPI_OP ("Or", ARGP_BIT_OR_OP, ARGI_BIT_OR_O
235 /* 29 */ ACPI_OP ("NOr", ARGP_BIT_NOR_OP, ARGI_BIT_NOR_
236 /* 2A */ ACPI_OP ("XOr", ARGP_BIT_XOR_OP, ARGI_BIT_XOR_
237 /* 2B */ ACPI_OP ("Not", ARGP_BIT_NOT_OP, ARGI_BIT_NOT_
238 /* 2C */ ACPI_OP ("FindSetLeftBit", ARGP_FIND_SET_LEFT_BIT_OP, ARGI_FIND_SET
239 /* 2D */ ACPI_OP ("FindSetRightBit", ARGP_FIND_SET_RIGHT_BIT_OP,ARGI_FIND_SET
240 /* 2E */ ACPI_OP ("DerefOf", ARGP_DEREF_OF_OP, ARGI_DEREF_OF
241 /* 2F */ ACPI_OP ("Notify", ARGP_NOTIFY_OP, ARGI_NOTIFY_O
242 /* 30 */ ACPI_OP ("SizeOf", ARGP_SIZE_OF_OP, ARGI_SIZE_OF_
243 /* 31 */ ACPI_OP ("Index", ARGP_INDEX_OP, ARGI_INDEX_OP
244 /* 32 */ ACPI_OP ("Match", ARGP_MATCH_OP, ARGI_MATCH_OP
245 /* 33 */ ACPI_OP ("CreateDWordField", ARGP_CREATE_DWORD_FIELD_OP,ARGI_CREATE_D
246 /* 34 */ ACPI_OP ("CreateWordField", ARGP_CREATE_WORD_FIELD_OP, ARGI_CREATE_W
247 /* 35 */ ACPI_OP ("CreateByteField", ARGP_CREATE_BYTE_FIELD_OP, ARGI_CREATE_B
248 /* 36 */ ACPI_OP ("CreateBitField", ARGP_CREATE_BIT_FIELD_OP, ARGI_CREATE_B
249 /* 37 */ ACPI_OP ("ObjectType", ARGP_TYPE_OP, ARGI_TYPE_OP,
250 /* 38 */ ACPI_OP ("LAnd", ARGP_LAND_OP, ARGI_LAND_OP,
251 /* 39 */ ACPI_OP ("LOr", ARGP_LOR_OP, ARGI_LOR_OP,
252 /* 3A */ ACPI_OP ("LNot", ARGP_LNOT_OP, ARGI_LNOT_OP,
253 /* 3B */ ACPI_OP ("LEqual", ARGP_LEQUAL_OP, ARGI_LEQUAL_O

new/usr/src/common/acpica/components/parser/psopcode.c 5

254 /* 3C */ ACPI_OP ("LGreater", ARGP_LGREATER_OP, ARGI_LGREATER
255 /* 3D */ ACPI_OP ("LLess", ARGP_LLESS_OP, ARGI_LLESS_OP
256 /* 3E */ ACPI_OP ("If", ARGP_IF_OP, ARGI_IF_OP,
257 /* 3F */ ACPI_OP ("Else", ARGP_ELSE_OP, ARGI_ELSE_OP,
258 /* 40 */ ACPI_OP ("While", ARGP_WHILE_OP, ARGI_WHILE_OP
259 /* 41 */ ACPI_OP ("Noop", ARGP_NOOP_OP, ARGI_NOOP_OP,
260 /* 42 */ ACPI_OP ("Return", ARGP_RETURN_OP, ARGI_RETURN_O
261 /* 43 */ ACPI_OP ("Break", ARGP_BREAK_OP, ARGI_BREAK_OP
262 /* 44 */ ACPI_OP ("BreakPoint", ARGP_BREAK_POINT_OP, ARGI_BREAK_PO
263 /* 45 */ ACPI_OP ("Ones", ARGP_ONES_OP, ARGI_ONES_OP,

265 /* Prefixed opcodes (Two-byte opcodes with a prefix op) */

267 /* 46 */ ACPI_OP ("Mutex", ARGP_MUTEX_OP, ARGI_MUTEX_OP
268 /* 47 */ ACPI_OP ("Event", ARGP_EVENT_OP, ARGI_EVENT_OP
269 /* 48 */ ACPI_OP ("CondRefOf", ARGP_COND_REF_OF_OP, ARGI_COND_REF
270 /* 49 */ ACPI_OP ("CreateField", ARGP_CREATE_FIELD_OP, ARGI_CREATE_F
271 /* 4A */ ACPI_OP ("Load", ARGP_LOAD_OP, ARGI_LOAD_OP,
272 /* 4B */ ACPI_OP ("Stall", ARGP_STALL_OP, ARGI_STALL_OP
273 /* 4C */ ACPI_OP ("Sleep", ARGP_SLEEP_OP, ARGI_SLEEP_OP
274 /* 4D */ ACPI_OP ("Acquire", ARGP_ACQUIRE_OP, ARGI_ACQUIRE_
275 /* 4E */ ACPI_OP ("Signal", ARGP_SIGNAL_OP, ARGI_SIGNAL_O
276 /* 4F */ ACPI_OP ("Wait", ARGP_WAIT_OP, ARGI_WAIT_OP,
277 /* 50 */ ACPI_OP ("Reset", ARGP_RESET_OP, ARGI_RESET_OP
278 /* 51 */ ACPI_OP ("Release", ARGP_RELEASE_OP, ARGI_RELEASE_
279 /* 52 */ ACPI_OP ("FromBCD", ARGP_FROM_BCD_OP, ARGI_FROM_BCD
280 /* 53 */ ACPI_OP ("ToBCD", ARGP_TO_BCD_OP, ARGI_TO_BCD_O
281 /* 54 */ ACPI_OP ("Unload", ARGP_UNLOAD_OP, ARGI_UNLOAD_O
282 /* 55 */ ACPI_OP ("Revision", ARGP_REVISION_OP, ARGI_REVISION
283 /* 56 */ ACPI_OP ("Debug", ARGP_DEBUG_OP, ARGI_DEBUG_OP
284 /* 57 */ ACPI_OP ("Fatal", ARGP_FATAL_OP, ARGI_FATAL_OP
285 /* 58 */ ACPI_OP ("OperationRegion", ARGP_REGION_OP, ARGI_REGION_O
286 /* 59 */ ACPI_OP ("Field", ARGP_FIELD_OP, ARGI_FIELD_OP
287 /* 5A */ ACPI_OP ("Device", ARGP_DEVICE_OP, ARGI_DEVICE_O
288 /* 5B */ ACPI_OP ("Processor", ARGP_PROCESSOR_OP, ARGI_PROCESSO
289 /* 5C */ ACPI_OP ("PowerResource", ARGP_POWER_RES_OP, ARGI_POWER_RE
290 /* 5D */ ACPI_OP ("ThermalZone", ARGP_THERMAL_ZONE_OP, ARGI_THERMAL_
291 /* 5E */ ACPI_OP ("IndexField", ARGP_INDEX_FIELD_OP, ARGI_INDEX_FI
292 /* 5F */ ACPI_OP ("BankField", ARGP_BANK_FIELD_OP, ARGI_BANK_FIE

294 /* Internal opcodes that map to invalid AML opcodes */

296 /* 60 */ ACPI_OP ("LNotEqual", ARGP_LNOTEQUAL_OP, ARGI_LNOTEQUA
297 /* 61 */ ACPI_OP ("LLessEqual", ARGP_LLESSEQUAL_OP, ARGI_LLESSEQU
298 /* 62 */ ACPI_OP ("LGreaterEqual", ARGP_LGREATEREQUAL_OP, ARGI_LGREATER
299 /* 63 */ ACPI_OP ("-NamePath-", ARGP_NAMEPATH_OP, ARGI_NAMEPATH
300 /* 64 */ ACPI_OP ("-MethodCall-", ARGP_METHODCALL_OP, ARGI_METHODCA
301 /* 65 */ ACPI_OP ("-ByteList-", ARGP_BYTELIST_OP, ARGI_BYTELIST
302 /* 66 */ ACPI_OP ("-ReservedField-", ARGP_RESERVEDFIELD_OP, ARGI_RESERVED
303 /* 67 */ ACPI_OP ("-NamedField-", ARGP_NAMEDFIELD_OP, ARGI_NAMEDFIE
304 /* 68 */ ACPI_OP ("-AccessField-", ARGP_ACCESSFIELD_OP, ARGI_ACCESSFI
305 /* 69 */ ACPI_OP ("-StaticString", ARGP_STATICSTRING_OP, ARGI_STATICST
306 /* 6A */ ACPI_OP ("-Return Value-", ARG_NONE, ARG_NONE,
307 /* 6B */ ACPI_OP ("-UNKNOWN_OP-", ARG_NONE, ARG_NONE,
308 /* 6C */ ACPI_OP ("-ASCII_ONLY-", ARG_NONE, ARG_NONE,
309 /* 6D */ ACPI_OP ("-PREFIX_ONLY-", ARG_NONE, ARG_NONE,

311 /* ACPI 2.0 opcodes */

313 /* 6E */ ACPI_OP ("QwordConst", ARGP_QWORD_OP, ARGI_QWORD_OP
314 /* 6F */ ACPI_OP ("Package", /* Var */ ARGP_VAR_PACKAGE_OP, ARGI_VAR_PACK
315 /* 70 */ ACPI_OP ("ConcatenateResTemplate", ARGP_CONCAT_RES_OP, ARGI_CONCAT_R
316 /* 71 */ ACPI_OP ("Mod", ARGP_MOD_OP, ARGI_MOD_OP,
317 /* 72 */ ACPI_OP ("CreateQWordField", ARGP_CREATE_QWORD_FIELD_OP,ARGI_CREATE_Q
318 /* 73 */ ACPI_OP ("ToBuffer", ARGP_TO_BUFFER_OP, ARGI_TO_BUFFE
319 /* 74 */ ACPI_OP ("ToDecimalString", ARGP_TO_DEC_STR_OP, ARGI_TO_DEC_S

new/usr/src/common/acpica/components/parser/psopcode.c 6

320 /* 75 */ ACPI_OP ("ToHexString", ARGP_TO_HEX_STR_OP, ARGI_TO_HEX_S
321 /* 76 */ ACPI_OP ("ToInteger", ARGP_TO_INTEGER_OP, ARGI_TO_INTEG
322 /* 77 */ ACPI_OP ("ToString", ARGP_TO_STRING_OP, ARGI_TO_STRIN
323 /* 78 */ ACPI_OP ("CopyObject", ARGP_COPY_OP, ARGI_COPY_OP,
324 /* 79 */ ACPI_OP ("Mid", ARGP_MID_OP, ARGI_MID_OP,
325 /* 7A */ ACPI_OP ("Continue", ARGP_CONTINUE_OP, ARGI_CONTINUE
326 /* 7B */ ACPI_OP ("LoadTable", ARGP_LOAD_TABLE_OP, ARGI_LOAD_TAB
327 /* 7C */ ACPI_OP ("DataTableRegion", ARGP_DATA_REGION_OP, ARGI_DATA_REG
328 /* 7D */ ACPI_OP ("[EvalSubTree]", ARGP_SCOPE_OP, ARGI_SCOPE_OP

330 /* ACPI 3.0 opcodes */

332 /* 7E */ ACPI_OP ("Timer", ARGP_TIMER_OP, ARGI_TIMER_OP
336 /* 7E */ ACPI_OP ("Timer", ARGP_TIMER_OP, ARGI_TIMER_OP

334 /* ACPI 5.0 opcodes */
338 /*! [End] no source code translation !*/
339 };

336 /* 7F */ ACPI_OP ("-ConnectField-", ARGP_CONNECTFIELD_OP, ARGI_CONNECTF
337 /* 80 */ ACPI_OP ("-ExtAccessField-", ARGP_CONNECTFIELD_OP, ARGI_CONNECTF
341 /*
342 * This table is directly indexed by the opcodes, and returns an
343 * index into the table above
344 */
345 static const UINT8 AcpiGbl_ShortOpIndex[256] =
346 {
347 /* 0 1 2 3 4 5 6 7 */
348 /* 8 9 A B C D E F */
349 /* 0x00 */ 0x00, 0x01, _UNK, _UNK, _UNK, _UNK, 0x02, _UNK,
350 /* 0x08 */ 0x03, _UNK, 0x04, 0x05, 0x06, 0x07, 0x6E, _UNK,
351 /* 0x10 */ 0x08, 0x09, 0x0a, 0x6F, 0x0b, _UNK, _UNK, _UNK,
352 /* 0x18 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
353 /* 0x20 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
354 /* 0x28 */ _UNK, _UNK, _UNK, _UNK, _UNK, 0x63, _PFX, _PFX,
355 /* 0x30 */ 0x67, 0x66, 0x68, 0x65, 0x69, 0x64, 0x6A, 0x7D,
356 /* 0x38 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
357 /* 0x40 */ _UNK, _ASC, _ASC, _ASC, _ASC, _ASC, _ASC, _ASC,
358 /* 0x48 */ _ASC, _ASC, _ASC, _ASC, _ASC, _ASC, _ASC, _ASC,
359 /* 0x50 */ _ASC, _ASC, _ASC, _ASC, _ASC, _ASC, _ASC, _ASC,
360 /* 0x58 */ _ASC, _ASC, _ASC, _UNK, _PFX, _UNK, _PFX, _ASC,
361 /* 0x60 */ 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
362 /* 0x68 */ 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, _UNK,
363 /* 0x70 */ 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22,
364 /* 0x78 */ 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a,
365 /* 0x80 */ 0x2b, 0x2c, 0x2d, 0x2e, 0x70, 0x71, 0x2f, 0x30,
366 /* 0x88 */ 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x72,
367 /* 0x90 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x73, 0x74,
368 /* 0x98 */ 0x75, 0x76, _UNK, _UNK, 0x77, 0x78, 0x79, 0x7A,
369 /* 0xA0 */ 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x60, 0x61,
370 /* 0xA8 */ 0x62, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
371 /* 0xB0 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
372 /* 0xB8 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
373 /* 0xC0 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
374 /* 0xC8 */ _UNK, _UNK, _UNK, _UNK, 0x44, _UNK, _UNK, _UNK,
375 /* 0xD0 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
376 /* 0xD8 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
377 /* 0xE0 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
378 /* 0xE8 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
379 /* 0xF0 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
380 /* 0xF8 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, 0x45,
381 };

339 /*! [End] no source code translation !*/
383 /*
384 * This table is indexed by the second opcode of the extended opcode

new/usr/src/common/acpica/components/parser/psopcode.c 7

385 * pair. It returns an index into the opcode table (AcpiGbl_AmlOpInfo)
386 */
387 static const UINT8 AcpiGbl_LongOpIndex[NUM_EXTENDED_OPCODE] =
388 {
389 /* 0 1 2 3 4 5 6 7 */
390 /* 8 9 A B C D E F */
391 /* 0x00 */ _UNK, 0x46, 0x47, _UNK, _UNK, _UNK, _UNK, _UNK,
392 /* 0x08 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
393 /* 0x10 */ _UNK, _UNK, 0x48, 0x49, _UNK, _UNK, _UNK, _UNK,
394 /* 0x18 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, 0x7B,
395 /* 0x20 */ 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51,
396 /* 0x28 */ 0x52, 0x53, 0x54, _UNK, _UNK, _UNK, _UNK, _UNK,
397 /* 0x30 */ 0x55, 0x56, 0x57, 0x7e, _UNK, _UNK, _UNK, _UNK,
398 /* 0x38 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
399 /* 0x40 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
400 /* 0x48 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
401 /* 0x50 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
402 /* 0x58 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
403 /* 0x60 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
404 /* 0x68 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
405 /* 0x70 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
406 /* 0x78 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
407 /* 0x80 */ 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
408 /* 0x88 */ 0x7C,
340 };

412 /***
413 *
414 * FUNCTION: AcpiPsGetOpcodeInfo
415 *
416 * PARAMETERS: Opcode - The AML opcode
417 *
418 * RETURN: A pointer to the info about the opcode.
419 *
420 * DESCRIPTION: Find AML opcode description based on the opcode.
421 * NOTE: This procedure must ALWAYS return a valid pointer!
422 *
423 **/

425 const ACPI_OPCODE_INFO *
426 AcpiPsGetOpcodeInfo (
427 UINT16 Opcode)
428 {
429 ACPI_FUNCTION_NAME (PsGetOpcodeInfo);

432 /*
433 * Detect normal 8-bit opcode or extended 16-bit opcode
434 */
435 if (!(Opcode & 0xFF00))
436 {
437 /* Simple (8-bit) opcode: 0-255, can’t index beyond table */

439 return (&AcpiGbl_AmlOpInfo [AcpiGbl_ShortOpIndex [(UINT8) Opcode]]);
440 }

442 if (((Opcode & 0xFF00) == AML_EXTENDED_OPCODE) &&
443 (((UINT8) Opcode) <= MAX_EXTENDED_OPCODE))
444 {
445 /* Valid extended (16-bit) opcode */

447 return (&AcpiGbl_AmlOpInfo [AcpiGbl_LongOpIndex [(UINT8) Opcode]]);
448 }

450 /* Unknown AML opcode */

new/usr/src/common/acpica/components/parser/psopcode.c 8

452 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
453 "Unknown AML opcode [%4.4X]\n", Opcode));

455 return (&AcpiGbl_AmlOpInfo [_UNK]);
456 }

459 /***
460 *
461 * FUNCTION: AcpiPsGetOpcodeName
462 *
463 * PARAMETERS: Opcode - The AML opcode
464 *
465 * RETURN: A pointer to the name of the opcode (ASCII String)
466 * Note: Never returns NULL.
467 *
468 * DESCRIPTION: Translate an opcode into a human-readable string
469 *
470 **/

472 char *
473 AcpiPsGetOpcodeName (
474 UINT16 Opcode)
475 {
476 #if defined(ACPI_DISASSEMBLER) || defined (ACPI_DEBUG_OUTPUT)

478 const ACPI_OPCODE_INFO *Op;

481 Op = AcpiPsGetOpcodeInfo (Opcode);

483 /* Always guaranteed to return a valid pointer */

485 return (Op->Name);

487 #else
488 return ("OpcodeName unavailable");

490 #endif
491 }

494 /***
495 *
496 * FUNCTION: AcpiPsGetArgumentCount
497 *
498 * PARAMETERS: OpType - Type associated with the AML opcode
499 *
500 * RETURN: Argument count
501 *
502 * DESCRIPTION: Obtain the number of expected arguments for an AML opcode
503 *
504 **/

506 UINT8
507 AcpiPsGetArgumentCount (
508 UINT32 OpType)
509 {

511 if (OpType <= AML_TYPE_EXEC_6A_0T_1R)
512 {
513 return (AcpiGbl_ArgumentCount[OpType]);
514 }

516 return (0);

new/usr/src/common/acpica/components/parser/psopcode.c 9

517 }

new/usr/src/common/acpica/components/parser/psopinfo.c 1

**
 9834 Thu Dec 26 13:49:25 2013
new/usr/src/common/acpica/components/parser/psopinfo.c
update to acpica-unix2-20131218
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: psopinfo - AML opcode information functions and dispatch tables
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acparser.h"
48 #include "acopcode.h"
49 #include "amlcode.h"

52 #define _COMPONENT ACPI_PARSER
53 ACPI_MODULE_NAME ("psopinfo")

56 extern const UINT8 AcpiGbl_ShortOpIndex[];
57 extern const UINT8 AcpiGbl_LongOpIndex[];

59 static const UINT8 AcpiGbl_ArgumentCount[] = {0,1,1,1,1,2,2,2,2,3,3,6};

new/usr/src/common/acpica/components/parser/psopinfo.c 2

62 /***
63 *
64 * FUNCTION: AcpiPsGetOpcodeInfo
65 *
66 * PARAMETERS: Opcode - The AML opcode
67 *
68 * RETURN: A pointer to the info about the opcode.
69 *
70 * DESCRIPTION: Find AML opcode description based on the opcode.
71 * NOTE: This procedure must ALWAYS return a valid pointer!
72 *
73 **/

75 const ACPI_OPCODE_INFO *
76 AcpiPsGetOpcodeInfo (
77 UINT16 Opcode)
78 {
79 #ifdef ACPI_DEBUG_OUTPUT
80 const char *OpcodeName = "Unknown AML opcode";
81 #endif

83 ACPI_FUNCTION_NAME (PsGetOpcodeInfo);

86 /*
87 * Detect normal 8-bit opcode or extended 16-bit opcode
88 */
89 if (!(Opcode & 0xFF00))
90 {
91 /* Simple (8-bit) opcode: 0-255, can’t index beyond table */

93 return (&AcpiGbl_AmlOpInfo [AcpiGbl_ShortOpIndex [(UINT8) Opcode]]);
94 }

96 if (((Opcode & 0xFF00) == AML_EXTENDED_OPCODE) &&
97 (((UINT8) Opcode) <= MAX_EXTENDED_OPCODE))
98 {
99 /* Valid extended (16-bit) opcode */

101 return (&AcpiGbl_AmlOpInfo [AcpiGbl_LongOpIndex [(UINT8) Opcode]]);
102 }

104 #if defined ACPI_ASL_COMPILER && defined ACPI_DEBUG_OUTPUT
105 #include "asldefine.h"

107 switch (Opcode)
108 {
109 case AML_RAW_DATA_BYTE:
110 OpcodeName = "-Raw Data Byte-";
111 break;

113 case AML_RAW_DATA_WORD:
114 OpcodeName = "-Raw Data Word-";
115 break;

117 case AML_RAW_DATA_DWORD:
118 OpcodeName = "-Raw Data Dword-";
119 break;

121 case AML_RAW_DATA_QWORD:
122 OpcodeName = "-Raw Data Qword-";
123 break;

125 case AML_RAW_DATA_BUFFER:
126 OpcodeName = "-Raw Data Buffer-";

new/usr/src/common/acpica/components/parser/psopinfo.c 3

127 break;

129 case AML_RAW_DATA_CHAIN:
130 OpcodeName = "-Raw Data Buffer Chain-";
131 break;

133 case AML_PACKAGE_LENGTH:
134 OpcodeName = "-Package Length-";
135 break;

137 case AML_UNASSIGNED_OPCODE:
138 OpcodeName = "-Unassigned Opcode-";
139 break;

141 case AML_DEFAULT_ARG_OP:
142 OpcodeName = "-Default Arg-";
143 break;

145 default:
146 break;
147 }
148 #endif

150 /* Unknown AML opcode */

152 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
153 "%s [%4.4X]\n", OpcodeName, Opcode));

155 return (&AcpiGbl_AmlOpInfo [_UNK]);
156 }

159 /***
160 *
161 * FUNCTION: AcpiPsGetOpcodeName
162 *
163 * PARAMETERS: Opcode - The AML opcode
164 *
165 * RETURN: A pointer to the name of the opcode (ASCII String)
166 * Note: Never returns NULL.
167 *
168 * DESCRIPTION: Translate an opcode into a human-readable string
169 *
170 **/

172 char *
173 AcpiPsGetOpcodeName (
174 UINT16 Opcode)
175 {
176 #if defined(ACPI_DISASSEMBLER) || defined (ACPI_DEBUG_OUTPUT)

178 const ACPI_OPCODE_INFO *Op;

181 Op = AcpiPsGetOpcodeInfo (Opcode);

183 /* Always guaranteed to return a valid pointer */

185 return (Op->Name);

187 #else
188 return ("OpcodeName unavailable");

190 #endif
191 }

new/usr/src/common/acpica/components/parser/psopinfo.c 4

194 /***
195 *
196 * FUNCTION: AcpiPsGetArgumentCount
197 *
198 * PARAMETERS: OpType - Type associated with the AML opcode
199 *
200 * RETURN: Argument count
201 *
202 * DESCRIPTION: Obtain the number of expected arguments for an AML opcode
203 *
204 **/

206 UINT8
207 AcpiPsGetArgumentCount (
208 UINT32 OpType)
209 {

211 if (OpType <= AML_TYPE_EXEC_6A_0T_1R)
212 {
213 return (AcpiGbl_ArgumentCount[OpType]);
214 }

216 return (0);
217 }

220 /*
221 * This table is directly indexed by the opcodes It returns
222 * an index into the opcode table (AcpiGbl_AmlOpInfo)
223 */
224 const UINT8 AcpiGbl_ShortOpIndex[256] =
225 {
226 /* 0 1 2 3 4 5 6 7 */
227 /* 8 9 A B C D E F */
228 /* 0x00 */ 0x00, 0x01, _UNK, _UNK, _UNK, _UNK, 0x02, _UNK,
229 /* 0x08 */ 0x03, _UNK, 0x04, 0x05, 0x06, 0x07, 0x6E, _UNK,
230 /* 0x10 */ 0x08, 0x09, 0x0a, 0x6F, 0x0b, _UNK, _UNK, _UNK,
231 /* 0x18 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
232 /* 0x20 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
233 /* 0x28 */ _UNK, _UNK, _UNK, _UNK, _UNK, 0x63, _PFX, _PFX,
234 /* 0x30 */ 0x67, 0x66, 0x68, 0x65, 0x69, 0x64, 0x6A, 0x7D,
235 /* 0x38 */ 0x7F, 0x80, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
236 /* 0x40 */ _UNK, _ASC, _ASC, _ASC, _ASC, _ASC, _ASC, _ASC,
237 /* 0x48 */ _ASC, _ASC, _ASC, _ASC, _ASC, _ASC, _ASC, _ASC,
238 /* 0x50 */ _ASC, _ASC, _ASC, _ASC, _ASC, _ASC, _ASC, _ASC,
239 /* 0x58 */ _ASC, _ASC, _ASC, _UNK, _PFX, _UNK, _PFX, _ASC,
240 /* 0x60 */ 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
241 /* 0x68 */ 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, _UNK,
242 /* 0x70 */ 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22,
243 /* 0x78 */ 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a,
244 /* 0x80 */ 0x2b, 0x2c, 0x2d, 0x2e, 0x70, 0x71, 0x2f, 0x30,
245 /* 0x88 */ 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x72,
246 /* 0x90 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x73, 0x74,
247 /* 0x98 */ 0x75, 0x76, _UNK, _UNK, 0x77, 0x78, 0x79, 0x7A,
248 /* 0xA0 */ 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x60, 0x61,
249 /* 0xA8 */ 0x62, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
250 /* 0xB0 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
251 /* 0xB8 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
252 /* 0xC0 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
253 /* 0xC8 */ _UNK, _UNK, _UNK, _UNK, 0x44, _UNK, _UNK, _UNK,
254 /* 0xD0 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
255 /* 0xD8 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
256 /* 0xE0 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
257 /* 0xE8 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
258 /* 0xF0 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,

new/usr/src/common/acpica/components/parser/psopinfo.c 5

259 /* 0xF8 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, 0x45,
260 };

262 /*
263 * This table is indexed by the second opcode of the extended opcode
264 * pair. It returns an index into the opcode table (AcpiGbl_AmlOpInfo)
265 */
266 const UINT8 AcpiGbl_LongOpIndex[NUM_EXTENDED_OPCODE] =
267 {
268 /* 0 1 2 3 4 5 6 7 */
269 /* 8 9 A B C D E F */
270 /* 0x00 */ _UNK, 0x46, 0x47, _UNK, _UNK, _UNK, _UNK, _UNK,
271 /* 0x08 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
272 /* 0x10 */ _UNK, _UNK, 0x48, 0x49, _UNK, _UNK, _UNK, _UNK,
273 /* 0x18 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, 0x7B,
274 /* 0x20 */ 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51,
275 /* 0x28 */ 0x52, 0x53, 0x54, _UNK, _UNK, _UNK, _UNK, _UNK,
276 /* 0x30 */ 0x55, 0x56, 0x57, 0x7e, _UNK, _UNK, _UNK, _UNK,
277 /* 0x38 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
278 /* 0x40 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
279 /* 0x48 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
280 /* 0x50 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
281 /* 0x58 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
282 /* 0x60 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
283 /* 0x68 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
284 /* 0x70 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
285 /* 0x78 */ _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK, _UNK,
286 /* 0x80 */ 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
287 /* 0x88 */ 0x7C,
288 };

new/usr/src/common/acpica/components/parser/psparse.c 1

**
 21770 Thu Dec 26 13:49:25 2013
new/usr/src/common/acpica/components/parser/psparse.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: psparse - Parser top level AML parse routines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 /*
46 * Parse the AML and build an operation tree as most interpreters,
47 * like Perl, do. Parsing is done by hand rather than with a YACC
48 * generated parser to tightly constrain stack and dynamic memory
49 * usage. At the same time, parsing is kept flexible and the code
50 * fairly compact by parsing based on a list of AML opcode
51 * templates in AmlOpInfo[]
52 */

54 #include "acpi.h"
55 #include "accommon.h"
56 #include "acparser.h"
57 #include "acdispat.h"
58 #include "amlcode.h"
59 #include "acinterp.h"

new/usr/src/common/acpica/components/parser/psparse.c 2

61 #define _COMPONENT ACPI_PARSER
62 ACPI_MODULE_NAME ("psparse")

65 /***
66 *
67 * FUNCTION: AcpiPsGetOpcodeSize
68 *
69 * PARAMETERS: Opcode - An AML opcode
70 *
71 * RETURN: Size of the opcode, in bytes (1 or 2)
72 *
73 * DESCRIPTION: Get the size of the current opcode.
74 *
75 **/

77 UINT32
78 AcpiPsGetOpcodeSize (
79 UINT32 Opcode)
80 {

82 /* Extended (2-byte) opcode if > 255 */

84 if (Opcode > 0x00FF)
85 {
86 return (2);
87 }

89 /* Otherwise, just a single byte opcode */

91 return (1);
92 }

______unchanged_portion_omitted_

130 /***
131 *
132 * FUNCTION: AcpiPsCompleteThisOp
133 *
134 * PARAMETERS: WalkState - Current State
135 * Op - Op to complete
136 *
137 * RETURN: Status
138 *
139 * DESCRIPTION: Perform any cleanup at the completion of an Op.
140 *
141 **/

143 ACPI_STATUS
144 AcpiPsCompleteThisOp (
145 ACPI_WALK_STATE *WalkState,
146 ACPI_PARSE_OBJECT *Op)
147 {
148 ACPI_PARSE_OBJECT *Prev;
149 ACPI_PARSE_OBJECT *Next;
150 const ACPI_OPCODE_INFO *ParentInfo;
151 ACPI_PARSE_OBJECT *ReplacementOp = NULL;
152 ACPI_STATUS Status = AE_OK;

155 ACPI_FUNCTION_TRACE_PTR (PsCompleteThisOp, Op);

158 /* Check for null Op, can happen if AML code is corrupt */

new/usr/src/common/acpica/components/parser/psparse.c 3

160 if (!Op)
161 {
162 return_ACPI_STATUS (AE_OK); /* OK for now */
163 }

165 /* Delete this op and the subtree below it if asked to */

167 if (((WalkState->ParseFlags & ACPI_PARSE_TREE_MASK) != ACPI_PARSE_DELETE_TRE
168 (WalkState->OpInfo->Class == AML_CLASS_ARGUMENT))
169 {
170 return_ACPI_STATUS (AE_OK);
171 }

173 /* Make sure that we only delete this subtree */

175 if (Op->Common.Parent)
176 {
177 Prev = Op->Common.Parent->Common.Value.Arg;
178 if (!Prev)
179 {
180 /* Nothing more to do */

182 goto Cleanup;
183 }

185 /*
186 * Check if we need to replace the operator and its subtree
187 * with a return value op (placeholder op)
188 */
189 ParentInfo = AcpiPsGetOpcodeInfo (Op->Common.Parent->Common.AmlOpcode);

191 switch (ParentInfo->Class)
192 {
193 case AML_CLASS_CONTROL:

195 break;

197 case AML_CLASS_CREATE:

198 /*
199 * These opcodes contain TermArg operands. The current
200 * op must be replaced by a placeholder return op
201 */
202 ReplacementOp = AcpiPsAllocOp (AML_INT_RETURN_VALUE_OP);
203 if (!ReplacementOp)
204 {
205 Status = AE_NO_MEMORY;
206 }
207 break;

209 case AML_CLASS_NAMED_OBJECT:

210 /*
211 * These opcodes contain TermArg operands. The current
212 * op must be replaced by a placeholder return op
213 */
214 if ((Op->Common.Parent->Common.AmlOpcode == AML_REGION_OP) ||
215 (Op->Common.Parent->Common.AmlOpcode == AML_DATA_REGION_OP) ||
216 (Op->Common.Parent->Common.AmlOpcode == AML_BUFFER_OP) ||
217 (Op->Common.Parent->Common.AmlOpcode == AML_PACKAGE_OP) ||
218 (Op->Common.Parent->Common.AmlOpcode == AML_BANK_FIELD_OP) ||
219 (Op->Common.Parent->Common.AmlOpcode == AML_VAR_PACKAGE_OP))
220 {
221 ReplacementOp = AcpiPsAllocOp (AML_INT_RETURN_VALUE_OP);
222 if (!ReplacementOp)
223 {

new/usr/src/common/acpica/components/parser/psparse.c 4

224 Status = AE_NO_MEMORY;
225 }
226 }
227 else if ((Op->Common.Parent->Common.AmlOpcode == AML_NAME_OP) &&
228 (WalkState->PassNumber <= ACPI_IMODE_LOAD_PASS2))
229 {
230 if ((Op->Common.AmlOpcode == AML_BUFFER_OP) ||
231 (Op->Common.AmlOpcode == AML_PACKAGE_OP) ||
232 (Op->Common.AmlOpcode == AML_VAR_PACKAGE_OP))
233 {
234 ReplacementOp = AcpiPsAllocOp (Op->Common.AmlOpcode);
235 if (!ReplacementOp)
236 {
237 Status = AE_NO_MEMORY;
238 }
239 else
240 {
241 ReplacementOp->Named.Data = Op->Named.Data;
242 ReplacementOp->Named.Length = Op->Named.Length;
243 }
244 }
245 }
246 break;

248 default:

250 ReplacementOp = AcpiPsAllocOp (AML_INT_RETURN_VALUE_OP);
251 if (!ReplacementOp)
252 {
253 Status = AE_NO_MEMORY;
254 }
255 }

257 /* We must unlink this op from the parent tree */

259 if (Prev == Op)
260 {
261 /* This op is the first in the list */

263 if (ReplacementOp)
264 {
265 ReplacementOp->Common.Parent = Op->Common.Parent;
266 ReplacementOp->Common.Value.Arg = NULL;
267 ReplacementOp->Common.Node = Op->Common.Node;
268 Op->Common.Parent->Common.Value.Arg = ReplacementOp;
269 ReplacementOp->Common.Next = Op->Common.Next;
270 }
271 else
272 {
273 Op->Common.Parent->Common.Value.Arg = Op->Common.Next;
274 }
275 }

277 /* Search the parent list */

279 else while (Prev)
280 {
281 /* Traverse all siblings in the parent’s argument list */

283 Next = Prev->Common.Next;
284 if (Next == Op)
285 {
286 if (ReplacementOp)
287 {
288 ReplacementOp->Common.Parent = Op->Common.Parent;
289 ReplacementOp->Common.Value.Arg = NULL;

new/usr/src/common/acpica/components/parser/psparse.c 5

290 ReplacementOp->Common.Node = Op->Common.Node;
291 Prev->Common.Next = ReplacementOp;
292 ReplacementOp->Common.Next = Op->Common.Next;
293 Next = NULL;
294 }
295 else
296 {
297 Prev->Common.Next = Op->Common.Next;
298 Next = NULL;
299 }
300 }
301 Prev = Next;
302 }
303 }

306 Cleanup:

308 /* Now we can actually delete the subtree rooted at Op */

310 AcpiPsDeleteParseTree (Op);
311 return_ACPI_STATUS (Status);
312 }

315 /***
316 *
317 * FUNCTION: AcpiPsNextParseState
318 *
319 * PARAMETERS: WalkState - Current state
320 * Op - Current parse op
321 * CallbackStatus - Status from previous operation
322 *
323 * RETURN: Status
324 *
325 * DESCRIPTION: Update the parser state based upon the return exception from
326 * the parser callback.
327 *
328 **/

330 ACPI_STATUS
331 AcpiPsNextParseState (
332 ACPI_WALK_STATE *WalkState,
333 ACPI_PARSE_OBJECT *Op,
334 ACPI_STATUS CallbackStatus)
335 {
336 ACPI_PARSE_STATE *ParserState = &WalkState->ParserState;
337 ACPI_STATUS Status = AE_CTRL_PENDING;

340 ACPI_FUNCTION_TRACE_PTR (PsNextParseState, Op);

343 switch (CallbackStatus)
344 {
345 case AE_CTRL_TERMINATE:
346 /*
347 * A control method was terminated via a RETURN statement.
348 * The walk of this method is complete.
349 */
350 ParserState->Aml = ParserState->AmlEnd;
351 Status = AE_CTRL_TERMINATE;
352 break;

354 case AE_CTRL_BREAK:

new/usr/src/common/acpica/components/parser/psparse.c 6

356 ParserState->Aml = WalkState->AmlLastWhile;
357 WalkState->ControlState->Common.Value = FALSE;
358 Status = AE_CTRL_BREAK;
359 break;

361 case AE_CTRL_CONTINUE:

363 ParserState->Aml = WalkState->AmlLastWhile;
364 Status = AE_CTRL_CONTINUE;
365 break;

367 case AE_CTRL_PENDING:

369 ParserState->Aml = WalkState->AmlLastWhile;
370 break;

372 #if 0
373 case AE_CTRL_SKIP:

375 ParserState->Aml = ParserState->Scope->ParseScope.PkgEnd;
376 Status = AE_OK;
377 break;
378 #endif

380 case AE_CTRL_TRUE:
381 /*
382 * Predicate of an IF was true, and we are at the matching ELSE.
383 * Just close out this package
384 */
385 ParserState->Aml = AcpiPsGetNextPackageEnd (ParserState);
386 Status = AE_CTRL_PENDING;
387 break;

389 case AE_CTRL_FALSE:
390 /*
391 * Either an IF/WHILE Predicate was false or we encountered a BREAK
392 * opcode. In both cases, we do not execute the rest of the
393 * package; We simply close out the parent (finishing the walk of
394 * this branch of the tree) and continue execution at the parent
395 * level.
396 */
397 ParserState->Aml = ParserState->Scope->ParseScope.PkgEnd;

399 /* In the case of a BREAK, just force a predicate (if any) to FALSE */

401 WalkState->ControlState->Common.Value = FALSE;
402 Status = AE_CTRL_END;
403 break;

405 case AE_CTRL_TRANSFER:

407 /* A method call (invocation) -- transfer control */

409 Status = AE_CTRL_TRANSFER;
410 WalkState->PrevOp = Op;
411 WalkState->MethodCallOp = Op;
412 WalkState->MethodCallNode = (Op->Common.Value.Arg)->Common.Node;

414 /* Will return value (if any) be used by the caller? */

416 WalkState->ReturnUsed = AcpiDsIsResultUsed (Op, WalkState);

new/usr/src/common/acpica/components/parser/psparse.c 7

417 break;

419 default:

421 Status = CallbackStatus;
422 if ((CallbackStatus & AE_CODE_MASK) == AE_CODE_CONTROL)
423 {
424 Status = AE_OK;
425 }
426 break;
427 }

429 return_ACPI_STATUS (Status);
430 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/parser/psscope.c 1

**
 8723 Thu Dec 26 13:49:26 2013
new/usr/src/common/acpica/components/parser/psscope.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: psscope - Parser scope stack management routines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acparser.h"

49 #define _COMPONENT ACPI_PARSER
50 ACPI_MODULE_NAME ("psscope")

53 /***
54 *
55 * FUNCTION: AcpiPsGetParentScope
56 *
57 * PARAMETERS: ParserState - Current parser state object
58 *
59 * RETURN: Pointer to an Op object

new/usr/src/common/acpica/components/parser/psscope.c 2

60 *
61 * DESCRIPTION: Get parent of current op being parsed
62 *
63 **/

65 ACPI_PARSE_OBJECT *
66 AcpiPsGetParentScope (
67 ACPI_PARSE_STATE *ParserState)
68 {

70 return (ParserState->Scope->ParseScope.Op);
71 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/parser/pstree.c 1

**
 8614 Thu Dec 26 13:49:26 2013
new/usr/src/common/acpica/components/parser/pstree.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: pstree - Parser op tree manipulation/traversal/search
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __PSTREE_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acparser.h"
50 #include "amlcode.h"

52 #define _COMPONENT ACPI_PARSER
53 ACPI_MODULE_NAME ("pstree")

55 /* Local prototypes */

57 #ifdef ACPI_OBSOLETE_FUNCTIONS
58 ACPI_PARSE_OBJECT *
59 AcpiPsGetChild (

new/usr/src/common/acpica/components/parser/pstree.c 2

60 ACPI_PARSE_OBJECT *op);
61 #endif

64 /***
65 *
66 * FUNCTION: AcpiPsGetArg
67 *
68 * PARAMETERS: Op - Get an argument for this op
69 * Argn - Nth argument to get
70 *
71 * RETURN: The argument (as an Op object). NULL if argument does not exist
72 *
73 * DESCRIPTION: Get the specified op’s argument.
74 *
75 **/

77 ACPI_PARSE_OBJECT *
78 AcpiPsGetArg (
79 ACPI_PARSE_OBJECT *Op,
80 UINT32 Argn)
81 {
82 ACPI_PARSE_OBJECT *Arg = NULL;
83 const ACPI_OPCODE_INFO *OpInfo;

86 ACPI_FUNCTION_ENTRY ();

88 /*
89 if (Op->Common.AmlOpcode == AML_INT_CONNECTION_OP)
90 {
91 return (Op->Common.Value.Arg);
92 }
93 */

94 /* Get the info structure for this opcode */

96 OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode);
97 if (OpInfo->Class == AML_CLASS_UNKNOWN)
98 {
99 /* Invalid opcode or ASCII character */

101 return (NULL);
102 }

104 /* Check if this opcode requires argument sub-objects */

106 if (!(OpInfo->Flags & AML_HAS_ARGS))
107 {
108 /* Has no linked argument objects */

110 return (NULL);
111 }

113 /* Get the requested argument object */

115 Arg = Op->Common.Value.Arg;
116 while (Arg && Argn)
117 {
118 Argn--;
119 Arg = Arg->Common.Next;
120 }

122 return (Arg);
123 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/parser/pstree.c 3

291 #ifdef ACPI_OBSOLETE_FUNCTIONS
292 /***
293 *
294 * FUNCTION: AcpiPsGetChild
295 *
296 * PARAMETERS: Op - Get the child of this Op
297 *
298 * RETURN: Child Op, Null if none is found.
299 *
300 * DESCRIPTION: Get op’s children or NULL if none
301 *
302 **/

304 ACPI_PARSE_OBJECT *
305 AcpiPsGetChild (
306 ACPI_PARSE_OBJECT *Op)
307 {
308 ACPI_PARSE_OBJECT *Child = NULL;

311 ACPI_FUNCTION_ENTRY ();

314 switch (Op->Common.AmlOpcode)
315 {
316 case AML_SCOPE_OP:
317 case AML_ELSE_OP:
318 case AML_DEVICE_OP:
319 case AML_THERMAL_ZONE_OP:
320 case AML_INT_METHODCALL_OP:

322 Child = AcpiPsGetArg (Op, 0);
323 break;

325 case AML_BUFFER_OP:
326 case AML_PACKAGE_OP:
327 case AML_METHOD_OP:
328 case AML_IF_OP:
329 case AML_WHILE_OP:
330 case AML_FIELD_OP:

332 Child = AcpiPsGetArg (Op, 1);
333 break;

335 case AML_POWER_RES_OP:
336 case AML_INDEX_FIELD_OP:

338 Child = AcpiPsGetArg (Op, 2);
339 break;

341 case AML_PROCESSOR_OP:
342 case AML_BANK_FIELD_OP:

344 Child = AcpiPsGetArg (Op, 3);
345 break;

347 default:

346 default:
349 /* All others have no children */

new/usr/src/common/acpica/components/parser/pstree.c 4

351 break;
352 }

354 return (Child);
355 }
356 #endif

new/usr/src/common/acpica/components/parser/psutils.c 1

**
 7255 Thu Dec 26 13:49:26 2013
new/usr/src/common/acpica/components/parser/psutils.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: psutils - Parser miscellaneous utilities (Parser only)
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acparser.h"
48 #include "amlcode.h"

50 #define _COMPONENT ACPI_PARSER
51 ACPI_MODULE_NAME ("psutils")

54 /***
55 *
56 * FUNCTION: AcpiPsCreateScopeOp
57 *
58 * PARAMETERS: None
59 *

new/usr/src/common/acpica/components/parser/psutils.c 2

60 * RETURN: A new Scope object, null on failure
61 *
62 * DESCRIPTION: Create a Scope and associated namepath op with the root name
63 *
64 **/

66 ACPI_PARSE_OBJECT *
67 AcpiPsCreateScopeOp (
68 void)
69 {
70 ACPI_PARSE_OBJECT *ScopeOp;

73 ScopeOp = AcpiPsAllocOp (AML_SCOPE_OP);
74 if (!ScopeOp)
75 {
76 return (NULL);
77 }

79 ScopeOp->Named.Name = ACPI_ROOT_NAME;
80 return (ScopeOp);
81 }

______unchanged_portion_omitted_

240 /*
241 * Is "c" a namestring prefix character?
242 */
243 BOOLEAN
244 AcpiPsIsPrefixChar (
245 UINT32 c)
246 {
247 return ((BOOLEAN) (c == ’\\’ || c == ’^’));
248 }

251 /*
241 * Get op’s name (4-byte name segment) or 0 if unnamed
242 */
243 UINT32
244 AcpiPsGetName (
245 ACPI_PARSE_OBJECT *Op)
246 {

248 /* The "generic" object has no name associated with it */

250 if (Op->Common.Flags & ACPI_PARSEOP_GENERIC)
251 {
252 return (0);
253 }

255 /* Only the "Extended" parse objects have a name */

257 return (Op->Named.Name);
258 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/parser/pswalk.c 1

**
 3794 Thu Dec 26 13:49:27 2013
new/usr/src/common/acpica/components/parser/pswalk.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: pswalk - Parser routines to walk parsed op tree(s)
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpi.h"
46 #include "accommon.h"
47 #include "acparser.h"

49 #define _COMPONENT ACPI_PARSER
50 ACPI_MODULE_NAME ("pswalk")

53 /***
54 *
55 * FUNCTION: AcpiPsDeleteParseTree
56 *
57 * PARAMETERS: SubtreeRoot - Root of tree (or subtree) to delete
58 *
59 * RETURN: None

new/usr/src/common/acpica/components/parser/pswalk.c 2

60 *
61 * DESCRIPTION: Delete a portion of or an entire parse tree.
62 *
63 **/

65 void
66 AcpiPsDeleteParseTree (
67 ACPI_PARSE_OBJECT *SubtreeRoot)
68 {
69 ACPI_PARSE_OBJECT *Op = SubtreeRoot;
70 ACPI_PARSE_OBJECT *Next = NULL;
71 ACPI_PARSE_OBJECT *Parent = NULL;

74 ACPI_FUNCTION_TRACE_PTR (PsDeleteParseTree, SubtreeRoot);

77 /* Visit all nodes in the subtree */

79 while (Op)
80 {
81 /* Check if we are not ascending */

83 if (Op != Parent)
84 {
85 /* Look for an argument or child of the current op */

87 Next = AcpiPsGetArg (Op, 0);
88 if (Next)
89 {
90 /* Still going downward in tree (Op is not completed yet) */

92 Op = Next;
93 continue;
94 }
95 }

97 /* No more children, this Op is complete. */

99 Next = Op->Common.Next;
100 Parent = Op->Common.Parent;

102 AcpiPsFreeOp (Op);

104 /* If we are back to the starting point, the walk is complete. */

106 if (Op == SubtreeRoot)
107 {
108 return_VOID;
109 }
110 if (Next)
111 {
112 Op = Next;
113 }
114 else
115 {
116 Op = Parent;
117 }
118 }

120 return_VOID;
121 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/parser/psxface.c 1

**
 11999 Thu Dec 26 13:49:27 2013
new/usr/src/common/acpica/components/parser/psxface.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: psxface - Parser external interfaces
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __PSXFACE_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acparser.h"
49 #include "acdispat.h"
50 #include "acinterp.h"
51 #include "actables.h"

54 #define _COMPONENT ACPI_PARSER
55 ACPI_MODULE_NAME ("psxface")

57 /* Local Prototypes */

59 static void

new/usr/src/common/acpica/components/parser/psxface.c 2

60 AcpiPsStartTrace (
61 ACPI_EVALUATE_INFO *Info);

63 static void
64 AcpiPsStopTrace (
65 ACPI_EVALUATE_INFO *Info);

67 static void
68 AcpiPsUpdateParameterList (
69 ACPI_EVALUATE_INFO *Info,
70 UINT16 Action);

73 /***
74 *
75 * FUNCTION: AcpiDebugTrace
76 *
77 * PARAMETERS: MethodName - Valid ACPI name string
78 * DebugLevel - Optional level mask. 0 to use default
79 * DebugLayer - Optional layer mask. 0 to use default
80 * Flags - bit 1: one shot(1) or persistent(0)
81 *
82 * RETURN: Status
83 *
84 * DESCRIPTION: External interface to enable debug tracing during control
85 * method execution
86 *
87 **/

89 ACPI_STATUS
90 AcpiDebugTrace (
91 char *Name,
92 UINT32 DebugLevel,
93 UINT32 DebugLayer,
94 UINT32 Flags)
95 {
96 ACPI_STATUS Status;

99 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
100 if (ACPI_FAILURE (Status))
101 {
102 return (Status);
103 }

105 /* TBDs: Validate name, allow full path or just nameseg */

107 AcpiGbl_TraceMethodName = *ACPI_CAST_PTR (UINT32, Name);
108 AcpiGbl_TraceFlags = Flags;

110 if (DebugLevel)
111 {
112 AcpiGbl_TraceDbgLevel = DebugLevel;
113 }
114 if (DebugLayer)
115 {
116 AcpiGbl_TraceDbgLayer = DebugLayer;
117 }

119 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
120 return (AE_OK);
121 }

124 /***
125 *

new/usr/src/common/acpica/components/parser/psxface.c 3

126 * FUNCTION: AcpiPsStartTrace
127 *
128 * PARAMETERS: Info - Method info struct
129 *
130 * RETURN: None
131 *
132 * DESCRIPTION: Start control method execution trace
133 *
134 **/

136 static void
137 AcpiPsStartTrace (
138 ACPI_EVALUATE_INFO *Info)
139 {
140 ACPI_STATUS Status;

143 ACPI_FUNCTION_ENTRY ();

146 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
147 if (ACPI_FAILURE (Status))
148 {
149 return;
150 }

152 if ((!AcpiGbl_TraceMethodName) ||
153 (AcpiGbl_TraceMethodName != Info->Node->Name.Integer))
153 (AcpiGbl_TraceMethodName != Info->ResolvedNode->Name.Integer))
154 {
155 goto Exit;
156 }

158 AcpiGbl_OriginalDbgLevel = AcpiDbgLevel;
159 AcpiGbl_OriginalDbgLayer = AcpiDbgLayer;

161 AcpiDbgLevel = 0x00FFFFFF;
162 AcpiDbgLayer = ACPI_UINT32_MAX;

164 if (AcpiGbl_TraceDbgLevel)
165 {
166 AcpiDbgLevel = AcpiGbl_TraceDbgLevel;
167 }
168 if (AcpiGbl_TraceDbgLayer)
169 {
170 AcpiDbgLayer = AcpiGbl_TraceDbgLayer;
171 }

174 Exit:
175 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
176 }

179 /***
180 *
181 * FUNCTION: AcpiPsStopTrace
182 *
183 * PARAMETERS: Info - Method info struct
184 *
185 * RETURN: None
186 *
187 * DESCRIPTION: Stop control method execution trace
188 *
189 **/

new/usr/src/common/acpica/components/parser/psxface.c 4

191 static void
192 AcpiPsStopTrace (
193 ACPI_EVALUATE_INFO *Info)
194 {
195 ACPI_STATUS Status;

198 ACPI_FUNCTION_ENTRY ();

201 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
202 if (ACPI_FAILURE (Status))
203 {
204 return;
205 }

207 if ((!AcpiGbl_TraceMethodName) ||
208 (AcpiGbl_TraceMethodName != Info->Node->Name.Integer))
208 (AcpiGbl_TraceMethodName != Info->ResolvedNode->Name.Integer))
209 {
210 goto Exit;
211 }

213 /* Disable further tracing if type is one-shot */

215 if (AcpiGbl_TraceFlags & 1)
216 {
217 AcpiGbl_TraceMethodName = 0;
218 AcpiGbl_TraceDbgLevel = 0;
219 AcpiGbl_TraceDbgLayer = 0;
220 }

222 AcpiDbgLevel = AcpiGbl_OriginalDbgLevel;
223 AcpiDbgLayer = AcpiGbl_OriginalDbgLayer;

225 Exit:
226 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
227 }

230 /***
231 *
232 * FUNCTION: AcpiPsExecuteMethod
233 *
234 * PARAMETERS: Info - Method info block, contains:
235 * Node - Method Node to execute
236 * ObjDesc - Method object
237 * Parameters - List of parameters to pass to the method,
238 * terminated by NULL. Params itself may be
239 * NULL if no parameters are being passed.
240 * ReturnObject - Where to put method’s return value (if
241 * any). If NULL, no value is returned.
242 * ParameterType - Type of Parameter list
243 * ReturnObject - Where to put method’s return value (if
244 * any). If NULL, no value is returned.
245 * PassNumber - Parse or execute pass
246 *
247 * RETURN: Status
248 *
249 * DESCRIPTION: Execute a control method
250 *
251 **/

253 ACPI_STATUS
254 AcpiPsExecuteMethod (
255 ACPI_EVALUATE_INFO *Info)

new/usr/src/common/acpica/components/parser/psxface.c 5

256 {
257 ACPI_STATUS Status;
258 ACPI_PARSE_OBJECT *Op;
259 ACPI_WALK_STATE *WalkState;

262 ACPI_FUNCTION_TRACE (PsExecuteMethod);

265 /* Quick validation of DSDT header */

267 AcpiTbCheckDsdtHeader ();

269 /* Validate the Info and method Node */

271 if (!Info || !Info->Node)
271 if (!Info || !Info->ResolvedNode)
272 {
273 return_ACPI_STATUS (AE_NULL_ENTRY);
274 }

276 /* Init for new method, wait on concurrency semaphore */

278 Status = AcpiDsBeginMethodExecution (Info->Node, Info->ObjDesc, NULL);
278 Status = AcpiDsBeginMethodExecution (Info->ResolvedNode, Info->ObjDesc, NULL
279 if (ACPI_FAILURE (Status))
280 {
281 return_ACPI_STATUS (Status);
282 }

284 /*
285 * The caller "owns" the parameters, so give each one an extra reference
286 */
287 AcpiPsUpdateParameterList (Info, REF_INCREMENT);

289 /* Begin tracing if requested */

291 AcpiPsStartTrace (Info);

293 /*
294 * Execute the method. Performs parse simultaneously
295 */
296 ACPI_DEBUG_PRINT ((ACPI_DB_PARSE,
297 "**** Begin Method Parse/Execute [%4.4s] **** Node=%p Obj=%p\n",
298 Info->Node->Name.Ascii, Info->Node, Info->ObjDesc));
298 Info->ResolvedNode->Name.Ascii, Info->ResolvedNode, Info->ObjDesc));

300 /* Create and init a Root Node */

302 Op = AcpiPsCreateScopeOp ();
303 if (!Op)
304 {
305 Status = AE_NO_MEMORY;
306 goto Cleanup;
307 }

309 /* Create and initialize a new walk state */

311 Info->PassNumber = ACPI_IMODE_EXECUTE;
312 WalkState = AcpiDsCreateWalkState (
313 Info->ObjDesc->Method.OwnerId, NULL, NULL, NULL);
314 if (!WalkState)
315 {
316 Status = AE_NO_MEMORY;
317 goto Cleanup;
318 }

new/usr/src/common/acpica/components/parser/psxface.c 6

320 Status = AcpiDsInitAmlWalk (WalkState, Op, Info->Node,
320 Status = AcpiDsInitAmlWalk (WalkState, Op, Info->ResolvedNode,
321 Info->ObjDesc->Method.AmlStart,
322 Info->ObjDesc->Method.AmlLength, Info, Info->PassNumber);
323 if (ACPI_FAILURE (Status))
324 {
325 AcpiDsDeleteWalkState (WalkState);
326 goto Cleanup;
327 }

329 if (Info->ObjDesc->Method.InfoFlags & ACPI_METHOD_MODULE_LEVEL)
330 {
331 WalkState->ParseFlags |= ACPI_PARSE_MODULE_LEVEL;
332 }

334 /* Invoke an internal method if necessary */

336 if (Info->ObjDesc->Method.InfoFlags & ACPI_METHOD_INTERNAL_ONLY)
337 {
338 Status = Info->ObjDesc->Method.Dispatch.Implementation (WalkState);
339 Info->ReturnObject = WalkState->ReturnDesc;

341 /* Cleanup states */

343 AcpiDsScopeStackClear (WalkState);
344 AcpiPsCleanupScope (&WalkState->ParserState);
345 AcpiDsTerminateControlMethod (WalkState->MethodDesc, WalkState);
346 AcpiDsDeleteWalkState (WalkState);
347 goto Cleanup;
348 }

350 /*
351 * Start method evaluation with an implicit return of zero.
352 * This is done for Windows compatibility.
351 * Start method evaluation with an implicit return of zero. This is done
352 * for Windows compatibility.
353 */
354 if (AcpiGbl_EnableInterpreterSlack)
355 {
356 WalkState->ImplicitReturnObj =
357 AcpiUtCreateIntegerObject ((UINT64) 0);
358 if (!WalkState->ImplicitReturnObj)
359 {
360 Status = AE_NO_MEMORY;
361 AcpiDsDeleteWalkState (WalkState);
362 goto Cleanup;
363 }
364 }

366 /* Parse the AML */

368 Status = AcpiPsParseAml (WalkState);

370 /* WalkState was deleted by ParseAml */

372 Cleanup:
373 AcpiPsDeleteParseTree (Op);

375 /* End optional tracing */

377 AcpiPsStopTrace (Info);

379 /* Take away the extra reference that we gave the parameters above */

381 AcpiPsUpdateParameterList (Info, REF_DECREMENT);

new/usr/src/common/acpica/components/parser/psxface.c 7

383 /* Exit now if error above */

385 if (ACPI_FAILURE (Status))
386 {
387 return_ACPI_STATUS (Status);
388 }

390 /*
391 * If the method has returned an object, signal this to the caller with
392 * a control exception code
393 */
394 if (Info->ReturnObject)
395 {
396 ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "Method returned ObjDesc=%p\n",
397 Info->ReturnObject));
398 ACPI_DUMP_STACK_ENTRY (Info->ReturnObject);

400 Status = AE_CTRL_RETURN_VALUE;
401 }

403 return_ACPI_STATUS (Status);
404 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/resources/rsaddr.c 1

**
 13908 Thu Dec 26 13:49:28 2013
new/usr/src/common/acpica/components/resources/rsaddr.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: rsaddr - Address resource descriptors (16/32/64)
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __RSADDR_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acresrc.h"

50 #define _COMPONENT ACPI_RESOURCES
51 ACPI_MODULE_NAME ("rsaddr")

54 /***
55 *
56 * AcpiRsConvertAddress16 - All WORD (16-bit) address resources
57 *
58 **/

new/usr/src/common/acpica/components/resources/rsaddr.c 2

60 ACPI_RSCONVERT_INFO AcpiRsConvertAddress16[5] =
61 {
62 {ACPI_RSC_INITGET, ACPI_RESOURCE_TYPE_ADDRESS16,
63 ACPI_RS_SIZE (ACPI_RESOURCE_ADDRESS16),
64 ACPI_RSC_TABLE_SIZE (AcpiRsConvertAddress16)},

66 {ACPI_RSC_INITSET, ACPI_RESOURCE_NAME_ADDRESS16,
67 sizeof (AML_RESOURCE_ADDRESS16),
68 0},

70 /* Resource Type, General Flags, and Type-Specific Flags */

72 {ACPI_RSC_ADDRESS, 0, 0, 0},

74 /*
75 * These fields are contiguous in both the source and destination:
76 * Address Granularity
77 * Address Range Minimum
78 * Address Range Maximum
79 * Address Translation Offset
80 * Address Length
81 */
82 {ACPI_RSC_MOVE16, ACPI_RS_OFFSET (Data.Address16.Granularity),
83 AML_OFFSET (Address16.Granularity),
84 5},

86 /* Optional ResourceSource (Index and String) */

88 {ACPI_RSC_SOURCE, ACPI_RS_OFFSET (Data.Address16.ResourceSource),
89 0,
90 sizeof (AML_RESOURCE_ADDRESS16)}
91 };

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/resources/rscalc.c 1

**
 23607 Thu Dec 26 13:49:28 2013
new/usr/src/common/acpica/components/resources/rscalc.c
update to acpica-unix2-20131115
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: rscalc - Calculate stream and list lengths
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __RSCALC_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acresrc.h"
49 #include "acnamesp.h"

52 #define _COMPONENT ACPI_RESOURCES
53 ACPI_MODULE_NAME ("rscalc")

56 /* Local prototypes */

58 static UINT8

new/usr/src/common/acpica/components/resources/rscalc.c 2

59 AcpiRsCountSetBits (
60 UINT16 BitField);

62 static ACPI_RS_LENGTH
63 AcpiRsStructOptionLength (
64 ACPI_RESOURCE_SOURCE *ResourceSource);

66 static UINT32
67 AcpiRsStreamOptionLength (
68 UINT32 ResourceLength,
69 UINT32 MinimumTotalLength);

72 /***
73 *
74 * FUNCTION: AcpiRsCountSetBits
75 *
76 * PARAMETERS: BitField - Field in which to count bits
77 *
78 * RETURN: Number of bits set within the field
79 *
80 * DESCRIPTION: Count the number of bits set in a resource field. Used for
81 * (Short descriptor) interrupt and DMA lists.
82 *
83 **/

85 static UINT8
86 AcpiRsCountSetBits (
87 UINT16 BitField)
88 {
89 UINT8 BitsSet;

92 ACPI_FUNCTION_ENTRY ();

95 for (BitsSet = 0; BitField; BitsSet++)
96 {
97 /* Zero the least significant bit that is set */

99 BitField &= (UINT16) (BitField - 1);
100 }

102 return (BitsSet);
103 }

______unchanged_portion_omitted_

195 /***
196 *
197 * FUNCTION: AcpiRsGetAmlLength
198 *
199 * PARAMETERS: Resource - Pointer to the resource linked list
200 * ResourceListSize - Size of the resource linked list
201 * SizeNeeded - Where the required size is returned
202 *
203 * RETURN: Status
204 *
205 * DESCRIPTION: Takes a linked list of internal resource descriptors and
206 * calculates the size buffer needed to hold the corresponding
207 * external resource byte stream.
208 *
209 **/

211 ACPI_STATUS
212 AcpiRsGetAmlLength (

new/usr/src/common/acpica/components/resources/rscalc.c 3

213 ACPI_RESOURCE *Resource,
214 ACPI_SIZE ResourceListSize,
215 ACPI_SIZE *SizeNeeded)
216 {
217 ACPI_SIZE AmlSizeNeeded = 0;
218 ACPI_RESOURCE *ResourceEnd;
219 ACPI_RS_LENGTH TotalSize;

222 ACPI_FUNCTION_TRACE (RsGetAmlLength);

225 /* Traverse entire list of internal resource descriptors */

227 ResourceEnd = ACPI_ADD_PTR (ACPI_RESOURCE, Resource, ResourceListSize);
228 while (Resource < ResourceEnd)
224 while (Resource)
229 {
230 /* Validate the descriptor type */

232 if (Resource->Type > ACPI_RESOURCE_TYPE_MAX)
233 {
234 return_ACPI_STATUS (AE_AML_INVALID_RESOURCE_TYPE);
235 }

237 /* Sanity check the length. It must not be zero, or we loop forever */

239 if (!Resource->Length)
240 {
241 return_ACPI_STATUS (AE_AML_BAD_RESOURCE_LENGTH);
242 }

244 /* Get the base size of the (external stream) resource descriptor */

246 TotalSize = AcpiGbl_AmlResourceSizes [Resource->Type];

248 /*
249 * Augment the base size for descriptors with optional and/or
250 * variable-length fields
251 */
252 switch (Resource->Type)
253 {
254 case ACPI_RESOURCE_TYPE_IRQ:

256 /* Length can be 3 or 2 */

258 if (Resource->Data.Irq.DescriptorLength == 2)
259 {
260 TotalSize--;
261 }
262 break;

265 case ACPI_RESOURCE_TYPE_START_DEPENDENT:

267 /* Length can be 1 or 0 */

269 if (Resource->Data.Irq.DescriptorLength == 0)
270 {
271 TotalSize--;
272 }
273 break;

276 case ACPI_RESOURCE_TYPE_VENDOR:
277 /*

new/usr/src/common/acpica/components/resources/rscalc.c 4

278 * Vendor Defined Resource:
279 * For a Vendor Specific resource, if the Length is between 1 and 7
280 * it will be created as a Small Resource data type, otherwise it
281 * is a Large Resource data type.
282 */
283 if (Resource->Data.Vendor.ByteLength > 7)
284 {
285 /* Base size of a Large resource descriptor */

287 TotalSize = sizeof (AML_RESOURCE_LARGE_HEADER);
288 }

290 /* Add the size of the vendor-specific data */

292 TotalSize = (ACPI_RS_LENGTH)
293 (TotalSize + Resource->Data.Vendor.ByteLength);
294 break;

297 case ACPI_RESOURCE_TYPE_END_TAG:
298 /*
299 * End Tag:
300 * We are done -- return the accumulated total size.
301 */
302 *SizeNeeded = AmlSizeNeeded + TotalSize;

304 /* Normal exit */

306 return_ACPI_STATUS (AE_OK);

309 case ACPI_RESOURCE_TYPE_ADDRESS16:
310 /*
311 * 16-Bit Address Resource:
312 * Add the size of the optional ResourceSource info
313 */
314 TotalSize = (ACPI_RS_LENGTH)
315 (TotalSize + AcpiRsStructOptionLength (
316 &Resource->Data.Address16.ResourceSource));
317 break;

320 case ACPI_RESOURCE_TYPE_ADDRESS32:
321 /*
322 * 32-Bit Address Resource:
323 * Add the size of the optional ResourceSource info
324 */
325 TotalSize = (ACPI_RS_LENGTH)
326 (TotalSize + AcpiRsStructOptionLength (
327 &Resource->Data.Address32.ResourceSource));
328 break;

331 case ACPI_RESOURCE_TYPE_ADDRESS64:
332 /*
333 * 64-Bit Address Resource:
334 * Add the size of the optional ResourceSource info
335 */
336 TotalSize = (ACPI_RS_LENGTH)
337 (TotalSize + AcpiRsStructOptionLength (
338 &Resource->Data.Address64.ResourceSource));
339 break;

342 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
343 /*

new/usr/src/common/acpica/components/resources/rscalc.c 5

344 * Extended IRQ Resource:
345 * Add the size of each additional optional interrupt beyond the
346 * required 1 (4 bytes for each UINT32 interrupt number)
347 */
348 TotalSize = (ACPI_RS_LENGTH)
349 (TotalSize +
350 ((Resource->Data.ExtendedIrq.InterruptCount - 1) * 4) +

352 /* Add the size of the optional ResourceSource info */

354 AcpiRsStructOptionLength (
355 &Resource->Data.ExtendedIrq.ResourceSource));
356 break;

359 case ACPI_RESOURCE_TYPE_GPIO:

361 TotalSize = (ACPI_RS_LENGTH) (TotalSize + (Resource->Data.Gpio.PinTa
362 Resource->Data.Gpio.ResourceSource.StringLength +
363 Resource->Data.Gpio.VendorLength);

365 break;

368 case ACPI_RESOURCE_TYPE_SERIAL_BUS:

370 TotalSize = AcpiGbl_AmlResourceSerialBusSizes [Resource->Data.Common

372 TotalSize = (ACPI_RS_LENGTH) (TotalSize +
373 Resource->Data.I2cSerialBus.ResourceSource.StringLength +
374 Resource->Data.I2cSerialBus.VendorLength);

376 break;

378 default:

380 break;
381 }

383 /* Update the total */

385 AmlSizeNeeded += TotalSize;

387 /* Point to the next object */

389 Resource = ACPI_ADD_PTR (ACPI_RESOURCE, Resource, Resource->Length);
390 }

392 /* Did not find an EndTag resource descriptor */

394 return_ACPI_STATUS (AE_AML_NO_RESOURCE_END_TAG);
395 }

398 /***
399 *
400 * FUNCTION: AcpiRsGetListLength
401 *
402 * PARAMETERS: AmlBuffer - Pointer to the resource byte stream
403 * AmlBufferLength - Size of AmlBuffer
404 * SizeNeeded - Where the size needed is returned
405 *
406 * RETURN: Status
407 *
408 * DESCRIPTION: Takes an external resource byte stream and calculates the size
409 * buffer needed to hold the corresponding internal resource

new/usr/src/common/acpica/components/resources/rscalc.c 6

410 * descriptor linked list.
411 *
412 **/

414 ACPI_STATUS
415 AcpiRsGetListLength (
416 UINT8 *AmlBuffer,
417 UINT32 AmlBufferLength,
418 ACPI_SIZE *SizeNeeded)
419 {
420 ACPI_STATUS Status;
421 UINT8 *EndAml;
422 UINT8 *Buffer;
423 UINT32 BufferSize;
424 UINT16 Temp16;
425 UINT16 ResourceLength;
426 UINT32 ExtraStructBytes;
427 UINT8 ResourceIndex;
428 UINT8 MinimumAmlResourceLength;
429 AML_RESOURCE *AmlResource;

432 ACPI_FUNCTION_TRACE (RsGetListLength);

435 *SizeNeeded = ACPI_RS_SIZE_MIN; /* Minimum size is one EndTag */
403 *SizeNeeded = 0;
436 EndAml = AmlBuffer + AmlBufferLength;

438 /* Walk the list of AML resource descriptors */

440 while (AmlBuffer < EndAml)
441 {
442 /* Validate the Resource Type and Resource Length */

444 Status = AcpiUtValidateResource (NULL, AmlBuffer, &ResourceIndex);
412 Status = AcpiUtValidateResource (AmlBuffer, &ResourceIndex);
445 if (ACPI_FAILURE (Status))
446 {
447 /*
448 * Exit on failure. Cannot continue because the descriptor length
449 * may be bogus also.
450 */
451 return_ACPI_STATUS (Status);
452 }

454 AmlResource = (void *) AmlBuffer;

456 /* Get the resource length and base (minimum) AML size */

458 ResourceLength = AcpiUtGetResourceLength (AmlBuffer);
459 MinimumAmlResourceLength = AcpiGbl_ResourceAmlSizes[ResourceIndex];

461 /*
462 * Augment the size for descriptors with optional
463 * and/or variable length fields
464 */
465 ExtraStructBytes = 0;
466 Buffer = AmlBuffer + AcpiUtGetResourceHeaderLength (AmlBuffer);

468 switch (AcpiUtGetResourceType (AmlBuffer))
469 {
470 case ACPI_RESOURCE_NAME_IRQ:
471 /*
472 * IRQ Resource:
473 * Get the number of bits set in the 16-bit IRQ mask

new/usr/src/common/acpica/components/resources/rscalc.c 7

474 */
475 ACPI_MOVE_16_TO_16 (&Temp16, Buffer);
476 ExtraStructBytes = AcpiRsCountSetBits (Temp16);
477 break;

480 case ACPI_RESOURCE_NAME_DMA:
481 /*
482 * DMA Resource:
483 * Get the number of bits set in the 8-bit DMA mask
484 */
485 ExtraStructBytes = AcpiRsCountSetBits (*Buffer);
486 break;

489 case ACPI_RESOURCE_NAME_VENDOR_SMALL:
490 case ACPI_RESOURCE_NAME_VENDOR_LARGE:
491 /*
492 * Vendor Resource:
493 * Get the number of vendor data bytes
494 */
495 ExtraStructBytes = ResourceLength;

497 /*
498 * There is already one byte included in the minimum
499 * descriptor size. If there are extra struct bytes,
500 * subtract one from the count.
501 */
502 if (ExtraStructBytes)
503 {
504 ExtraStructBytes--;
505 }
506 break;

509 case ACPI_RESOURCE_NAME_END_TAG:
510 /*
511 * End Tag: This is the normal exit
463 * End Tag:
464 * This is the normal exit, add size of EndTag
512 */
466 *SizeNeeded += ACPI_RS_SIZE_MIN;
513 return_ACPI_STATUS (AE_OK);

516 case ACPI_RESOURCE_NAME_ADDRESS32:
517 case ACPI_RESOURCE_NAME_ADDRESS16:
518 case ACPI_RESOURCE_NAME_ADDRESS64:
519 /*
520 * Address Resource:
521 * Add the size of the optional ResourceSource
522 */
523 ExtraStructBytes = AcpiRsStreamOptionLength (
524 ResourceLength, MinimumAmlResourceLength);
525 break;

528 case ACPI_RESOURCE_NAME_EXTENDED_IRQ:
529 /*
530 * Extended IRQ Resource:
531 * Using the InterruptTableLength, add 4 bytes for each additional
532 * interrupt. Note: at least one interrupt is required and is
533 * included in the minimum descriptor size (reason for the -1)
534 */
535 ExtraStructBytes = (Buffer[1] - 1) * sizeof (UINT32);

new/usr/src/common/acpica/components/resources/rscalc.c 8

537 /* Add the size of the optional ResourceSource */

539 ExtraStructBytes += AcpiRsStreamOptionLength (
540 ResourceLength - ExtraStructBytes, MinimumAmlResourceLength);
541 break;

543 case ACPI_RESOURCE_NAME_GPIO:

545 /* Vendor data is optional */

547 if (AmlResource->Gpio.VendorLength)
548 {
549 ExtraStructBytes += AmlResource->Gpio.VendorOffset -
550 AmlResource->Gpio.PinTableOffset + AmlResource->Gpio.VendorL
551 }
552 else
553 {
554 ExtraStructBytes += AmlResource->LargeHeader.ResourceLength +
555 sizeof (AML_RESOURCE_LARGE_HEADER) -
556 AmlResource->Gpio.PinTableOffset;
557 }
558 break;

560 case ACPI_RESOURCE_NAME_SERIAL_BUS:

562 MinimumAmlResourceLength = AcpiGbl_ResourceAmlSerialBusSizes[
563 AmlResource->CommonSerialBus.Type];
564 ExtraStructBytes += AmlResource->CommonSerialBus.ResourceLength -
565 MinimumAmlResourceLength;
566 break;

568 default:

570 break;
571 }

573 /*
574 * Update the required buffer size for the internal descriptor structs
575 *
576 * Important: Round the size up for the appropriate alignment. This
577 * is a requirement on IA64.
578 */
579 if (AcpiUtGetResourceType (AmlBuffer) == ACPI_RESOURCE_NAME_SERIAL_BUS)
580 {
581 BufferSize = AcpiGbl_ResourceStructSerialBusSizes[
582 AmlResource->CommonSerialBus.Type] + ExtraStructBytes;
583 }
584 else
585 {
586 BufferSize = AcpiGbl_ResourceStructSizes[ResourceIndex] +
587 ExtraStructBytes;
588 }
589 BufferSize = (UINT32) ACPI_ROUND_UP_TO_NATIVE_WORD (BufferSize);

591 *SizeNeeded += BufferSize;

593 ACPI_DEBUG_PRINT ((ACPI_DB_RESOURCES,
594 "Type %.2X, AmlLength %.2X InternalLength %.2X\n",
595 AcpiUtGetResourceType (AmlBuffer),
596 AcpiUtGetDescriptorLength (AmlBuffer), BufferSize));

598 /*
599 * Point to the next resource within the AML stream using the length
600 * contained in the resource descriptor header
601 */
602 AmlBuffer += AcpiUtGetDescriptorLength (AmlBuffer);

new/usr/src/common/acpica/components/resources/rscalc.c 9

603 }

605 /* Did not find an EndTag resource descriptor */

607 return_ACPI_STATUS (AE_AML_NO_RESOURCE_END_TAG);
608 }

611 /***
612 *
613 * FUNCTION: AcpiRsGetPciRoutingTableLength
614 *
615 * PARAMETERS: PackageObject - Pointer to the package object
616 * BufferSizeNeeded - UINT32 pointer of the size buffer
617 * needed to properly return the
618 * parsed data
619 *
620 * RETURN: Status
621 *
622 * DESCRIPTION: Given a package representing a PCI routing table, this
623 * calculates the size of the corresponding linked list of
624 * descriptions.
625 *
626 **/

628 ACPI_STATUS
629 AcpiRsGetPciRoutingTableLength (
630 ACPI_OPERAND_OBJECT *PackageObject,
631 ACPI_SIZE *BufferSizeNeeded)
632 {
633 UINT32 NumberOfElements;
634 ACPI_SIZE TempSizeNeeded = 0;
635 ACPI_OPERAND_OBJECT **TopObjectList;
636 UINT32 Index;
637 ACPI_OPERAND_OBJECT *PackageElement;
638 ACPI_OPERAND_OBJECT **SubObjectList;
639 BOOLEAN NameFound;
640 UINT32 TableIndex;

643 ACPI_FUNCTION_TRACE (RsGetPciRoutingTableLength);

646 NumberOfElements = PackageObject->Package.Count;

648 /*
649 * Calculate the size of the return buffer.
650 * The base size is the number of elements * the sizes of the
651 * structures. Additional space for the strings is added below.
652 * The minus one is to subtract the size of the UINT8 Source[1]
653 * member because it is added below.
654 *
655 * But each PRT_ENTRY structure has a pointer to a string and
656 * the size of that string must be found.
657 */
658 TopObjectList = PackageObject->Package.Elements;

660 for (Index = 0; Index < NumberOfElements; Index++)
661 {
662 /* Dereference the sub-package */

664 PackageElement = *TopObjectList;

666 /* We must have a valid Package object */

668 if (!PackageElement ||

new/usr/src/common/acpica/components/resources/rscalc.c 10

669 (PackageElement->Common.Type != ACPI_TYPE_PACKAGE))
670 {
671 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
672 }

674 /*
675 * The SubObjectList will now point to an array of the
676 * four IRQ elements: Address, Pin, Source and SourceIndex
677 */
678 SubObjectList = PackageElement->Package.Elements;

680 /* Scan the IrqTableElements for the Source Name String */

682 NameFound = FALSE;

684 for (TableIndex = 0;
685 TableIndex < PackageElement->Package.Count && !NameFound;
686 TableIndex++)
605 for (TableIndex = 0; TableIndex < 4 && !NameFound; TableIndex++)
687 {
688 if (*SubObjectList && /* Null object allowed */

690 ((ACPI_TYPE_STRING ==
691 (*SubObjectList)->Common.Type) ||

693 ((ACPI_TYPE_LOCAL_REFERENCE ==
694 (*SubObjectList)->Common.Type) &&

696 ((*SubObjectList)->Reference.Class ==
697 ACPI_REFCLASS_NAME))))
698 {
699 NameFound = TRUE;
700 }
701 else
702 {
703 /* Look at the next element */

705 SubObjectList++;
706 }
707 }

709 TempSizeNeeded += (sizeof (ACPI_PCI_ROUTING_TABLE) - 4);

711 /* Was a String type found? */

713 if (NameFound)
714 {
715 if ((*SubObjectList)->Common.Type == ACPI_TYPE_STRING)
716 {
717 /*
718 * The length String.Length field does not include the
719 * terminating NULL, add 1
720 */
721 TempSizeNeeded += ((ACPI_SIZE)
722 (*SubObjectList)->String.Length + 1);
723 }
724 else
725 {
726 TempSizeNeeded += AcpiNsGetPathnameLength (
727 (*SubObjectList)->Reference.Node);
728 }
729 }
730 else
731 {
732 /*
733 * If no name was found, then this is a NULL, which is

new/usr/src/common/acpica/components/resources/rscalc.c 11

734 * translated as a UINT32 zero.
735 */
736 TempSizeNeeded += sizeof (UINT32);
737 }

739 /* Round up the size since each element must be aligned */

741 TempSizeNeeded = ACPI_ROUND_UP_TO_64BIT (TempSizeNeeded);

743 /* Point to the next ACPI_OPERAND_OBJECT */

745 TopObjectList++;
746 }

748 /*
749 * Add an extra element to the end of the list, essentially a
750 * NULL terminator
751 */
752 *BufferSizeNeeded = TempSizeNeeded + sizeof (ACPI_PCI_ROUTING_TABLE);
753 return_ACPI_STATUS (AE_OK);
754 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/resources/rscreate.c 1

**
 16706 Thu Dec 26 13:49:28 2013
new/usr/src/common/acpica/components/resources/rscreate.c
update to acpica-unix2-20131115
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: rscreate - Create resource lists/tables
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __RSCREATE_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acresrc.h"
49 #include "acnamesp.h"

51 #define _COMPONENT ACPI_RESOURCES
52 ACPI_MODULE_NAME ("rscreate")

55 /***
56 *
57 * FUNCTION: AcpiBufferToResource
58 *

new/usr/src/common/acpica/components/resources/rscreate.c 2

59 * PARAMETERS: AmlBuffer - Pointer to the resource byte stream
60 * AmlBufferLength - Length of the AmlBuffer
61 * ResourcePtr - Where the converted resource is returned
62 *
63 * RETURN: Status
64 *
65 * DESCRIPTION: Convert a raw AML buffer to a resource list
66 *
67 **/

69 ACPI_STATUS
70 AcpiBufferToResource (
71 UINT8 *AmlBuffer,
72 UINT16 AmlBufferLength,
73 ACPI_RESOURCE **ResourcePtr)
74 {
75 ACPI_STATUS Status;
76 ACPI_SIZE ListSizeNeeded;
77 void *Resource;
78 void *CurrentResourcePtr;

80 /*
81 * Note: we allow AE_AML_NO_RESOURCE_END_TAG, since an end tag
82 * is not required here.
83 */

85 /* Get the required length for the converted resource */

87 Status = AcpiRsGetListLength (AmlBuffer, AmlBufferLength,
88 &ListSizeNeeded);
89 if (Status == AE_AML_NO_RESOURCE_END_TAG)
90 {
91 Status = AE_OK;
92 }
93 if (ACPI_FAILURE (Status))
94 {
95 return (Status);
96 }

98 /* Allocate a buffer for the converted resource */

100 Resource = ACPI_ALLOCATE_ZEROED (ListSizeNeeded);
101 CurrentResourcePtr = Resource;
102 if (!Resource)
103 {
104 return (AE_NO_MEMORY);
105 }

107 /* Perform the AML-to-Resource conversion */

109 Status = AcpiUtWalkAmlResources (NULL, AmlBuffer, AmlBufferLength,
110 AcpiRsConvertAmlToResources, &CurrentResourcePtr);
111 if (Status == AE_AML_NO_RESOURCE_END_TAG)
112 {
113 Status = AE_OK;
114 }
115 if (ACPI_FAILURE (Status))
116 {
117 ACPI_FREE (Resource);
118 }
119 else
120 {
121 *ResourcePtr = Resource;
122 }

124 return (Status);

new/usr/src/common/acpica/components/resources/rscreate.c 3

125 }

128 /***
129 *
130 * FUNCTION: AcpiRsCreateResourceList
131 *
132 * PARAMETERS: AmlBuffer - Pointer to the resource byte stream
133 * OutputBuffer - Pointer to the user’s buffer
134 *
135 * RETURN: Status: AE_OK if okay, else a valid ACPI_STATUS code
136 * If OutputBuffer is not large enough, OutputBufferLength
137 * indicates how large OutputBuffer should be, else it
138 * indicates how may UINT8 elements of OutputBuffer are valid.
139 *
140 * DESCRIPTION: Takes the byte stream returned from a _CRS, _PRS control method
141 * execution and parses the stream to create a linked list
142 * of device resources.
143 *
144 **/

146 ACPI_STATUS
147 AcpiRsCreateResourceList (
148 ACPI_OPERAND_OBJECT *AmlBuffer,
149 ACPI_BUFFER *OutputBuffer)
150 {

152 ACPI_STATUS Status;
153 UINT8 *AmlStart;
154 ACPI_SIZE ListSizeNeeded = 0;
155 UINT32 AmlBufferLength;
156 void *Resource;

159 ACPI_FUNCTION_TRACE (RsCreateResourceList);

162 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "AmlBuffer = %p\n",
163 AmlBuffer));

165 /* Params already validated, so we don’t re-validate here */

167 AmlBufferLength = AmlBuffer->Buffer.Length;
168 AmlStart = AmlBuffer->Buffer.Pointer;

170 /*
171 * Pass the AmlBuffer into a module that can calculate
172 * the buffer size needed for the linked list
173 */
174 Status = AcpiRsGetListLength (AmlStart, AmlBufferLength,
175 &ListSizeNeeded);

177 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Status=%X ListSizeNeeded=%X\n",
178 Status, (UINT32) ListSizeNeeded));
179 if (ACPI_FAILURE (Status))
180 {
181 return_ACPI_STATUS (Status);
182 }

184 /* Validate/Allocate/Clear caller buffer */

186 Status = AcpiUtInitializeBuffer (OutputBuffer, ListSizeNeeded);
187 if (ACPI_FAILURE (Status))
188 {
189 return_ACPI_STATUS (Status);
190 }

new/usr/src/common/acpica/components/resources/rscreate.c 4

192 /* Do the conversion */

194 Resource = OutputBuffer->Pointer;
195 Status = AcpiUtWalkAmlResources (NULL, AmlStart, AmlBufferLength,
122 Status = AcpiUtWalkAmlResources (AmlStart, AmlBufferLength,
196 AcpiRsConvertAmlToResources, &Resource);
197 if (ACPI_FAILURE (Status))
198 {
199 return_ACPI_STATUS (Status);
200 }

202 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "OutputBuffer %p Length %X\n",
203 OutputBuffer->Pointer, (UINT32) OutputBuffer->Length));
204 return_ACPI_STATUS (AE_OK);
205 }

208 /***
209 *
210 * FUNCTION: AcpiRsCreatePciRoutingTable
211 *
212 * PARAMETERS: PackageObject - Pointer to a package containing one
213 * of more ACPI_OPERAND_OBJECTs
139 * PARAMETERS: PackageObject - Pointer to an ACPI_OPERAND_OBJECT
140 * package
214 * OutputBuffer - Pointer to the user’s buffer
215 *
216 * RETURN: Status AE_OK if okay, else a valid ACPI_STATUS code.
217 * If the OutputBuffer is too small, the error will be
218 * AE_BUFFER_OVERFLOW and OutputBuffer->Length will point
219 * to the size buffer needed.
220 *
221 * DESCRIPTION: Takes the ACPI_OPERAND_OBJECT package and creates a
222 * linked list of PCI interrupt descriptions
223 *
224 * NOTE: It is the caller’s responsibility to ensure that the start of the
225 * output buffer is aligned properly (if necessary).
226 *
227 **/

229 ACPI_STATUS
230 AcpiRsCreatePciRoutingTable (
231 ACPI_OPERAND_OBJECT *PackageObject,
232 ACPI_BUFFER *OutputBuffer)
233 {
234 UINT8 *Buffer;
235 ACPI_OPERAND_OBJECT **TopObjectList;
236 ACPI_OPERAND_OBJECT **SubObjectList;
237 ACPI_OPERAND_OBJECT *ObjDesc;
238 ACPI_SIZE BufferSizeNeeded = 0;
239 UINT32 NumberOfElements;
240 UINT32 Index;
241 ACPI_PCI_ROUTING_TABLE *UserPrt;
242 ACPI_NAMESPACE_NODE *Node;
243 ACPI_STATUS Status;
244 ACPI_BUFFER PathBuffer;

247 ACPI_FUNCTION_TRACE (RsCreatePciRoutingTable);

250 /* Params already validated, so we don’t re-validate here */

252 /* Get the required buffer length */

new/usr/src/common/acpica/components/resources/rscreate.c 5

254 Status = AcpiRsGetPciRoutingTableLength (PackageObject,
255 &BufferSizeNeeded);
256 if (ACPI_FAILURE (Status))
257 {
258 return_ACPI_STATUS (Status);
259 }

261 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "BufferSizeNeeded = %X\n",
262 (UINT32) BufferSizeNeeded));

264 /* Validate/Allocate/Clear caller buffer */

266 Status = AcpiUtInitializeBuffer (OutputBuffer, BufferSizeNeeded);
267 if (ACPI_FAILURE (Status))
268 {
269 return_ACPI_STATUS (Status);
270 }

272 /*
273 * Loop through the ACPI_INTERNAL_OBJECTS - Each object should be a
274 * package that in turn contains an UINT64 Address, a UINT8 Pin,
275 * a Name, and a UINT8 SourceIndex.
276 */
277 TopObjectList = PackageObject->Package.Elements;
278 NumberOfElements = PackageObject->Package.Count;
279 Buffer = OutputBuffer->Pointer;
280 UserPrt = ACPI_CAST_PTR (ACPI_PCI_ROUTING_TABLE, Buffer);

282 for (Index = 0; Index < NumberOfElements; Index++)
283 {
284 /*
285 * Point UserPrt past this current structure
286 *
287 * NOTE: On the first iteration, UserPrt->Length will
288 * be zero because we cleared the return buffer earlier
289 */
290 Buffer += UserPrt->Length;
291 UserPrt = ACPI_CAST_PTR (ACPI_PCI_ROUTING_TABLE, Buffer);

293 /*
294 * Fill in the Length field with the information we have at this point.
295 * The minus four is to subtract the size of the UINT8 Source[4] member
296 * because it is added below.
297 */
298 UserPrt->Length = (sizeof (ACPI_PCI_ROUTING_TABLE) - 4);

227 /* Each element of the top-level package must also be a package */

229 if ((*TopObjectList)->Common.Type != ACPI_TYPE_PACKAGE)
230 {
231 ACPI_ERROR ((AE_INFO,
232 "(PRT[%u]) Need sub-package, found %s",
233 Index, AcpiUtGetObjectTypeName (*TopObjectList)));
234 return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
235 }

300 /* Each sub-package must be of length 4 */

302 if ((*TopObjectList)->Package.Count != 4)
303 {
304 ACPI_ERROR ((AE_INFO,
305 "(PRT[%u]) Need package of length 4, found length %u",
306 Index, (*TopObjectList)->Package.Count));
307 return_ACPI_STATUS (AE_AML_PACKAGE_LIMIT);
308 }

new/usr/src/common/acpica/components/resources/rscreate.c 6

310 /*
311 * Dereference the sub-package.
312 * The SubObjectList will now point to an array of the four IRQ
313 * elements: [Address, Pin, Source, SourceIndex]
314 */
315 SubObjectList = (*TopObjectList)->Package.Elements;

317 /* 1) First subobject: Dereference the PRT.Address */

319 ObjDesc = SubObjectList[0];
320 if (ObjDesc->Common.Type != ACPI_TYPE_INTEGER)
321 {
322 ACPI_ERROR ((AE_INFO, "(PRT[%u].Address) Need Integer, found %s",
323 Index, AcpiUtGetObjectTypeName (ObjDesc)));
324 return_ACPI_STATUS (AE_BAD_DATA);
325 }

327 UserPrt->Address = ObjDesc->Integer.Value;

329 /* 2) Second subobject: Dereference the PRT.Pin */

331 ObjDesc = SubObjectList[1];
332 if (ObjDesc->Common.Type != ACPI_TYPE_INTEGER)
333 {
334 ACPI_ERROR ((AE_INFO, "(PRT[%u].Pin) Need Integer, found %s",
335 Index, AcpiUtGetObjectTypeName (ObjDesc)));
336 return_ACPI_STATUS (AE_BAD_DATA);
337 }

339 UserPrt->Pin = (UINT32) ObjDesc->Integer.Value;

341 /*
279 * If the BIOS has erroneously reversed the _PRT SourceName (index 2)
280 * and the SourceIndex (index 3), fix it. _PRT is important enough to
281 * workaround this BIOS error. This also provides compatibility with
282 * other ACPI implementations.
283 */
284 ObjDesc = SubObjectList[3];
285 if (!ObjDesc || (ObjDesc->Common.Type != ACPI_TYPE_INTEGER))
286 {
287 SubObjectList[3] = SubObjectList[2];
288 SubObjectList[2] = ObjDesc;

290 ACPI_WARNING ((AE_INFO,
291 "(PRT[%X].Source) SourceName and SourceIndex are reversed, fixed
292 Index));
293 }

295 /*
342 * 3) Third subobject: Dereference the PRT.SourceName
343 * The name may be unresolved (slack mode), so allow a null object
344 */
345 ObjDesc = SubObjectList[2];
346 if (ObjDesc)
347 {
348 switch (ObjDesc->Common.Type)
349 {
350 case ACPI_TYPE_LOCAL_REFERENCE:

352 if (ObjDesc->Reference.Class != ACPI_REFCLASS_NAME)
353 {
354 ACPI_ERROR ((AE_INFO,
355 "(PRT[%u].Source) Need name, found Reference Class 0x%X"
356 Index, ObjDesc->Reference.Class));
357 return_ACPI_STATUS (AE_BAD_DATA);
358 }

new/usr/src/common/acpica/components/resources/rscreate.c 7

360 Node = ObjDesc->Reference.Node;

362 /* Use *remaining* length of the buffer as max for pathname */

364 PathBuffer.Length = OutputBuffer->Length -
365 (UINT32) ((UINT8 *) UserPrt->Source -
366 (UINT8 *) OutputBuffer->Pointer);
367 PathBuffer.Pointer = UserPrt->Source;

369 Status = AcpiNsHandleToPathname ((ACPI_HANDLE) Node, &PathBuffer

371 /* +1 to include null terminator */

373 UserPrt->Length += (UINT32) ACPI_STRLEN (UserPrt->Source) + 1;
374 break;

376 case ACPI_TYPE_STRING:

378 ACPI_STRCPY (UserPrt->Source, ObjDesc->String.Pointer);

380 /*
381 * Add to the Length field the length of the string
382 * (add 1 for terminator)
383 */
384 UserPrt->Length += ObjDesc->String.Length + 1;
385 break;

387 case ACPI_TYPE_INTEGER:
388 /*
389 * If this is a number, then the Source Name is NULL, since the
390 * entire buffer was zeroed out, we can leave this alone.
391 *
392 * Add to the Length field the length of the UINT32 NULL
393 */
394 UserPrt->Length += sizeof (UINT32);
395 break;

397 default:

399 ACPI_ERROR ((AE_INFO,
400 "(PRT[%u].Source) Need Ref/String/Integer, found %s",
401 Index, AcpiUtGetObjectTypeName (ObjDesc)));
402 return_ACPI_STATUS (AE_BAD_DATA);
403 }
404 }

406 /* Now align the current length */

408 UserPrt->Length = (UINT32) ACPI_ROUND_UP_TO_64BIT (UserPrt->Length);

410 /* 4) Fourth subobject: Dereference the PRT.SourceIndex */

412 ObjDesc = SubObjectList[3];
413 if (ObjDesc->Common.Type != ACPI_TYPE_INTEGER)
414 {
415 ACPI_ERROR ((AE_INFO,
416 "(PRT[%u].SourceIndex) Need Integer, found %s",
417 Index, AcpiUtGetObjectTypeName (ObjDesc)));
418 return_ACPI_STATUS (AE_BAD_DATA);
419 }

421 UserPrt->SourceIndex = (UINT32) ObjDesc->Integer.Value;

new/usr/src/common/acpica/components/resources/rscreate.c 8

423 /* Point to the next ACPI_OPERAND_OBJECT in the top level package */

425 TopObjectList++;
426 }

428 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "OutputBuffer %p Length %X\n",
429 OutputBuffer->Pointer, (UINT32) OutputBuffer->Length));
430 return_ACPI_STATUS (AE_OK);
431 }

434 /***
435 *
436 * FUNCTION: AcpiRsCreateAmlResources
437 *
438 * PARAMETERS: ResourceList - Pointer to the resource list buffer
439 * OutputBuffer - Where the AML buffer is returned
395 * PARAMETERS: LinkedListBuffer - Pointer to the resource linked list
396 * OutputBuffer - Pointer to the user’s buffer
440 *
441 * RETURN: Status AE_OK if okay, else a valid ACPI_STATUS code.
442 * If the OutputBuffer is too small, the error will be
443 * AE_BUFFER_OVERFLOW and OutputBuffer->Length will point
444 * to the size buffer needed.
445 *
446 * DESCRIPTION: Converts a list of device resources to an AML bytestream
447 * to be used as input for the _SRS control method.
403 * DESCRIPTION: Takes the linked list of device resources and
404 * creates a bytestream to be used as input for the
405 * _SRS control method.
448 *
449 **/

451 ACPI_STATUS
452 AcpiRsCreateAmlResources (
453 ACPI_BUFFER *ResourceList,
411 ACPI_RESOURCE *LinkedListBuffer,
454 ACPI_BUFFER *OutputBuffer)
455 {
456 ACPI_STATUS Status;
457 ACPI_SIZE AmlSizeNeeded = 0;

460 ACPI_FUNCTION_TRACE (RsCreateAmlResources);

463 /* Params already validated, no need to re-validate here */
421 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "LinkedListBuffer = %p\n",
422 LinkedListBuffer));

465 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "ResourceList Buffer = %p\n",
466 ResourceList->Pointer));
424 /*
425 * Params already validated, so we don’t re-validate here
426 *
427 * Pass the LinkedListBuffer into a module that calculates
428 * the buffer size needed for the byte stream.
429 */
430 Status = AcpiRsGetAmlLength (LinkedListBuffer,
431 &AmlSizeNeeded);

468 /* Get the buffer size needed for the AML byte stream */

470 Status = AcpiRsGetAmlLength (ResourceList->Pointer,
471 ResourceList->Length, &AmlSizeNeeded);

new/usr/src/common/acpica/components/resources/rscreate.c 9

473 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "AmlSizeNeeded=%X, %s\n",
474 (UINT32) AmlSizeNeeded, AcpiFormatException (Status)));
475 if (ACPI_FAILURE (Status))
476 {
477 return_ACPI_STATUS (Status);
478 }

480 /* Validate/Allocate/Clear caller buffer */

482 Status = AcpiUtInitializeBuffer (OutputBuffer, AmlSizeNeeded);
483 if (ACPI_FAILURE (Status))
484 {
485 return_ACPI_STATUS (Status);
486 }

488 /* Do the conversion */

490 Status = AcpiRsConvertResourcesToAml (ResourceList->Pointer,
491 AmlSizeNeeded, OutputBuffer->Pointer);
450 Status = AcpiRsConvertResourcesToAml (LinkedListBuffer, AmlSizeNeeded,
451 OutputBuffer->Pointer);
492 if (ACPI_FAILURE (Status))
493 {
494 return_ACPI_STATUS (Status);
495 }

497 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "OutputBuffer %p Length %X\n",
498 OutputBuffer->Pointer, (UINT32) OutputBuffer->Length));
499 return_ACPI_STATUS (AE_OK);
500 }

new/usr/src/common/acpica/components/resources/rsdump.c 1

**
 17150 Thu Dec 26 13:49:29 2013
new/usr/src/common/acpica/components/resources/rsdump.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: rsdump - Functions to display the resource structures.
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __RSDUMP_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acresrc.h"

51 #define _COMPONENT ACPI_RESOURCES
52 ACPI_MODULE_NAME ("rsdump")

55 #if defined(ACPI_DEBUG_OUTPUT) || defined(ACPI_DEBUGGER)

57 /* Local prototypes */

59 static void
60 AcpiRsOutString (

new/usr/src/common/acpica/components/resources/rsdump.c 2

61 char *Title,
62 char *Value);

64 static void
65 AcpiRsOutInteger8 (
66 char *Title,
67 UINT8 Value);

69 static void
70 AcpiRsOutInteger16 (
71 char *Title,
72 UINT16 Value);

74 static void
75 AcpiRsOutInteger32 (
76 char *Title,
77 UINT32 Value);

79 static void
80 AcpiRsOutInteger64 (
81 char *Title,
82 UINT64 Value);

84 static void
85 AcpiRsOutTitle (
86 char *Title);

88 static void
89 AcpiRsDumpByteList (
90 UINT16 Length,
91 UINT8 *Data);

93 static void
94 AcpiRsDumpWordList (
95 UINT16 Length,
96 UINT16 *Data);

98 static void
99 AcpiRsDumpDwordList (
100 UINT8 Length,
101 UINT32 *Data);

103 static void
104 AcpiRsDumpShortByteList (
105 UINT8 Length,
106 UINT8 *Data);

108 static void
109 AcpiRsDumpResourceSource (
110 ACPI_RESOURCE_SOURCE *ResourceSource);

112 static void
113 AcpiRsDumpAddressCommon (
114 ACPI_RESOURCE_DATA *Resource);

116 static void
117 AcpiRsDumpDescriptor (
118 void *Resource,
119 ACPI_RSDUMP_INFO *Table);

122 /***
123 *
124 * FUNCTION: AcpiRsDumpDescriptor
125 *
126 * PARAMETERS: Resource - Buffer containing the resource

new/usr/src/common/acpica/components/resources/rsdump.c 3

127 * Table - Table entry to decode the resource
128 *
129 * RETURN: None
130 *
131 * DESCRIPTION: Dump a resource descriptor based on a dump table entry.
132 *
133 **/

135 static void
136 AcpiRsDumpDescriptor (
137 void *Resource,
138 ACPI_RSDUMP_INFO *Table)
139 {
140 UINT8 *Target = NULL;
141 UINT8 *PreviousTarget;
142 char *Name;
143 UINT8 Count;

146 /* First table entry must contain the table length (# of table entries) */

148 Count = Table->Offset;

150 while (Count)
151 {
152 PreviousTarget = Target;
153 Target = ACPI_ADD_PTR (UINT8, Resource, Table->Offset);
154 Name = Table->Name;

156 switch (Table->Opcode)
157 {
158 case ACPI_RSD_TITLE:
159 /*
160 * Optional resource title
161 */
162 if (Table->Name)
163 {
164 AcpiOsPrintf ("%s Resource\n", Name);
165 }
166 break;

168 /* Strings */

170 case ACPI_RSD_LITERAL:

172 AcpiRsOutString (Name, ACPI_CAST_PTR (char, Table->Pointer));
173 break;

175 case ACPI_RSD_STRING:

177 AcpiRsOutString (Name, ACPI_CAST_PTR (char, Target));
178 break;

180 /* Data items, 8/16/32/64 bit */

182 case ACPI_RSD_UINT8:

184 if (Table->Pointer)
185 {
186 AcpiRsOutString (Name, ACPI_CAST_PTR (char,
187 Table->Pointer [*Target]));
188 }
189 else
190 {
191 AcpiRsOutInteger8 (Name, ACPI_GET8 (Target));
192 }

new/usr/src/common/acpica/components/resources/rsdump.c 4

193 break;

195 case ACPI_RSD_UINT16:

197 AcpiRsOutInteger16 (Name, ACPI_GET16 (Target));
198 break;

200 case ACPI_RSD_UINT32:

202 AcpiRsOutInteger32 (Name, ACPI_GET32 (Target));
203 break;

205 case ACPI_RSD_UINT64:

207 AcpiRsOutInteger64 (Name, ACPI_GET64 (Target));
208 break;

210 /* Flags: 1-bit and 2-bit flags supported */

212 case ACPI_RSD_1BITFLAG:

214 AcpiRsOutString (Name, ACPI_CAST_PTR (char,
215 Table->Pointer [*Target & 0x01]));
216 break;

218 case ACPI_RSD_2BITFLAG:

220 AcpiRsOutString (Name, ACPI_CAST_PTR (char,
221 Table->Pointer [*Target & 0x03]));
222 break;

224 case ACPI_RSD_3BITFLAG:

226 AcpiRsOutString (Name, ACPI_CAST_PTR (char,
227 Table->Pointer [*Target & 0x07]));
228 break;

230 case ACPI_RSD_SHORTLIST:
231 /*
232 * Short byte list (single line output) for DMA and IRQ resources
233 * Note: The list length is obtained from the previous table entry
234 */
235 if (PreviousTarget)
236 {
237 AcpiRsOutTitle (Name);
238 AcpiRsDumpShortByteList (*PreviousTarget, Target);
239 }
240 break;

242 case ACPI_RSD_SHORTLISTX:
243 /*
244 * Short byte list (single line output) for GPIO vendor data
245 * Note: The list length is obtained from the previous table entry
246 */
247 if (PreviousTarget)
248 {
249 AcpiRsOutTitle (Name);
250 AcpiRsDumpShortByteList (*PreviousTarget,
251 *(ACPI_CAST_INDIRECT_PTR (UINT8, Target)));
252 }
253 break;

255 case ACPI_RSD_LONGLIST:
256 /*
257 * Long byte list for Vendor resource data
258 * Note: The list length is obtained from the previous table entry

new/usr/src/common/acpica/components/resources/rsdump.c 5

259 */
260 if (PreviousTarget)
261 {
262 AcpiRsDumpByteList (ACPI_GET16 (PreviousTarget), Target);
263 }
264 break;

266 case ACPI_RSD_DWORDLIST:
267 /*
268 * Dword list for Extended Interrupt resources
269 * Note: The list length is obtained from the previous table entry
270 */
271 if (PreviousTarget)
272 {
273 AcpiRsDumpDwordList (*PreviousTarget,
274 ACPI_CAST_PTR (UINT32, Target));
275 }
276 break;

278 case ACPI_RSD_WORDLIST:
279 /*
280 * Word list for GPIO Pin Table
281 * Note: The list length is obtained from the previous table entry
282 */
283 if (PreviousTarget)
284 {
285 AcpiRsDumpWordList (*PreviousTarget,
286 *(ACPI_CAST_INDIRECT_PTR (UINT16, Target)));
287 }
288 break;

290 case ACPI_RSD_ADDRESS:
291 /*
292 * Common flags for all Address resources
293 */
294 AcpiRsDumpAddressCommon (ACPI_CAST_PTR (ACPI_RESOURCE_DATA, Target))
295 break;

297 case ACPI_RSD_SOURCE:
298 /*
299 * Optional ResourceSource for Address resources
300 */
301 AcpiRsDumpResourceSource (ACPI_CAST_PTR (ACPI_RESOURCE_SOURCE, Targe
302 break;

304 default:

306 AcpiOsPrintf ("**** Invalid table opcode [%X] ****\n",
307 Table->Opcode);
308 return;
309 }

311 Table++;
312 Count--;
313 }
314 }

317 /***
318 *
319 * FUNCTION: AcpiRsDumpResourceSource
320 *
321 * PARAMETERS: ResourceSource - Pointer to a Resource Source struct
322 *
323 * RETURN: None
324 *

new/usr/src/common/acpica/components/resources/rsdump.c 6

325 * DESCRIPTION: Common routine for dumping the optional ResourceSource and the
326 * corresponding ResourceSourceIndex.
327 *
328 **/

330 static void
331 AcpiRsDumpResourceSource (
332 ACPI_RESOURCE_SOURCE *ResourceSource)
333 {
334 ACPI_FUNCTION_ENTRY ();

337 if (ResourceSource->Index == 0xFF)
338 {
339 return;
340 }

342 AcpiRsOutInteger8 ("Resource Source Index",
343 ResourceSource->Index);

345 AcpiRsOutString ("Resource Source",
346 ResourceSource->StringPtr ?
347 ResourceSource->StringPtr : "[Not Specified]");
348 }

351 /***
352 *
353 * FUNCTION: AcpiRsDumpAddressCommon
354 *
355 * PARAMETERS: Resource - Pointer to an internal resource descriptor
356 *
357 * RETURN: None
358 *
359 * DESCRIPTION: Dump the fields that are common to all Address resource
360 * descriptors
361 *
362 **/

364 static void
365 AcpiRsDumpAddressCommon (
366 ACPI_RESOURCE_DATA *Resource)
367 {
368 ACPI_FUNCTION_ENTRY ();

371 /* Decode the type-specific flags */

373 switch (Resource->Address.ResourceType)
374 {
375 case ACPI_MEMORY_RANGE:

377 AcpiRsDumpDescriptor (Resource, AcpiRsDumpMemoryFlags);
378 break;

380 case ACPI_IO_RANGE:

382 AcpiRsDumpDescriptor (Resource, AcpiRsDumpIoFlags);
383 break;

385 case ACPI_BUS_NUMBER_RANGE:

387 AcpiRsOutString ("Resource Type", "Bus Number Range");
388 break;

390 default:

new/usr/src/common/acpica/components/resources/rsdump.c 7

392 AcpiRsOutInteger8 ("Resource Type",
393 (UINT8) Resource->Address.ResourceType);
394 break;
395 }

397 /* Decode the general flags */

399 AcpiRsDumpDescriptor (Resource, AcpiRsDumpGeneralFlags);
400 }

403 /***
404 *
405 * FUNCTION: AcpiRsDumpResourceList
406 *
407 * PARAMETERS: ResourceList - Pointer to a resource descriptor list
408 *
409 * RETURN: None
410 *
411 * DESCRIPTION: Dispatches the structure to the correct dump routine.
412 *
413 **/

415 void
416 AcpiRsDumpResourceList (
417 ACPI_RESOURCE *ResourceList)
418 {
419 UINT32 Count = 0;
420 UINT32 Type;

423 ACPI_FUNCTION_ENTRY ();

426 /* Check if debug output enabled */

428 if (!ACPI_IS_DEBUG_ENABLED (ACPI_LV_RESOURCES, _COMPONENT))
429 {
430 return;
431 }

433 /* Walk list and dump all resource descriptors (END_TAG terminates) */

435 do
436 {
437 AcpiOsPrintf ("\n[%02X] ", Count);
438 Count++;

440 /* Validate Type before dispatch */

442 Type = ResourceList->Type;
443 if (Type > ACPI_RESOURCE_TYPE_MAX)
444 {
445 AcpiOsPrintf (
446 "Invalid descriptor type (%X) in resource list\n",
447 ResourceList->Type);
448 return;
449 }

451 /* Sanity check the length. It must not be zero, or we loop forever */

453 if (!ResourceList->Length)
454 {
455 AcpiOsPrintf (
456 "Invalid zero length descriptor in resource list\n");

new/usr/src/common/acpica/components/resources/rsdump.c 8

457 return;
458 }

460 /* Dump the resource descriptor */

462 if (Type == ACPI_RESOURCE_TYPE_SERIAL_BUS)
463 {
464 AcpiRsDumpDescriptor (&ResourceList->Data,
465 AcpiGbl_DumpSerialBusDispatch[ResourceList->Data.CommonSerialBus
466 }
467 else
468 {
469 AcpiRsDumpDescriptor (&ResourceList->Data,
470 AcpiGbl_DumpResourceDispatch[Type]);
471 }

473 /* Point to the next resource structure */

475 ResourceList = ACPI_NEXT_RESOURCE (ResourceList);

477 /* Exit when END_TAG descriptor is reached */

479 } while (Type != ACPI_RESOURCE_TYPE_END_TAG);
480 }

483 /***
484 *
485 * FUNCTION: AcpiRsDumpIrqList
486 *
487 * PARAMETERS: RouteTable - Pointer to the routing table to dump.
488 *
489 * RETURN: None
490 *
491 * DESCRIPTION: Print IRQ routing table
492 *
493 **/

495 void
496 AcpiRsDumpIrqList (
497 UINT8 *RouteTable)
498 {
499 ACPI_PCI_ROUTING_TABLE *PrtElement;
500 UINT8 Count;

503 ACPI_FUNCTION_ENTRY ();

506 /* Check if debug output enabled */

508 if (!ACPI_IS_DEBUG_ENABLED (ACPI_LV_RESOURCES, _COMPONENT))
509 {
510 return;
511 }

513 PrtElement = ACPI_CAST_PTR (ACPI_PCI_ROUTING_TABLE, RouteTable);

515 /* Dump all table elements, Exit on zero length element */

517 for (Count = 0; PrtElement->Length; Count++)
518 {
519 AcpiOsPrintf ("\n[%02X] PCI IRQ Routing Table Package\n", Count);
520 AcpiRsDumpDescriptor (PrtElement, AcpiRsDumpPrt);

522 PrtElement = ACPI_ADD_PTR (ACPI_PCI_ROUTING_TABLE,

new/usr/src/common/acpica/components/resources/rsdump.c 9

523 PrtElement, PrtElement->Length);
524 }
525 }

528 /***
529 *
530 * FUNCTION: AcpiRsOut*
531 *
532 * PARAMETERS: Title - Name of the resource field
533 * Value - Value of the resource field
534 *
535 * RETURN: None
536 *
537 * DESCRIPTION: Miscellaneous helper functions to consistently format the
538 * output of the resource dump routines
539 *
540 **/

542 static void
543 AcpiRsOutString (
544 char *Title,
545 char *Value)
546 {
547 AcpiOsPrintf ("%27s : %s", Title, Value);
548 if (!*Value)
549 {
550 AcpiOsPrintf ("[NULL NAMESTRING]");
551 }
552 AcpiOsPrintf ("\n");
553 }

555 static void
556 AcpiRsOutInteger8 (
557 char *Title,
558 UINT8 Value)
559 {
560 AcpiOsPrintf ("%27s : %2.2X\n", Title, Value);
561 }

563 static void
564 AcpiRsOutInteger16 (
565 char *Title,
566 UINT16 Value)
567 {
568 AcpiOsPrintf ("%27s : %4.4X\n", Title, Value);
569 }

571 static void
572 AcpiRsOutInteger32 (
573 char *Title,
574 UINT32 Value)
575 {
576 AcpiOsPrintf ("%27s : %8.8X\n", Title, Value);
577 }

579 static void
580 AcpiRsOutInteger64 (
581 char *Title,
582 UINT64 Value)
583 {
584 AcpiOsPrintf ("%27s : %8.8X%8.8X\n", Title,
585 ACPI_FORMAT_UINT64 (Value));
586 }

588 static void

new/usr/src/common/acpica/components/resources/rsdump.c 10

589 AcpiRsOutTitle (
590 char *Title)
591 {
592 AcpiOsPrintf ("%27s : ", Title);
593 }

596 /***
597 *
598 * FUNCTION: AcpiRsDump*List
599 *
600 * PARAMETERS: Length - Number of elements in the list
601 * Data - Start of the list
602 *
603 * RETURN: None
604 *
605 * DESCRIPTION: Miscellaneous functions to dump lists of raw data
606 *
607 **/

609 static void
610 AcpiRsDumpByteList (
611 UINT16 Length,
612 UINT8 *Data)
613 {
614 UINT8 i;

617 for (i = 0; i < Length; i++)
618 {
619 AcpiOsPrintf ("%25s%2.2X : %2.2X\n",
620 "Byte", i, Data[i]);
621 }
622 }

624 static void
625 AcpiRsDumpShortByteList (
626 UINT8 Length,
627 UINT8 *Data)
628 {
629 UINT8 i;

632 for (i = 0; i < Length; i++)
633 {
634 AcpiOsPrintf ("%X ", Data[i]);
635 }
636 AcpiOsPrintf ("\n");
637 }

639 static void
640 AcpiRsDumpDwordList (
641 UINT8 Length,
642 UINT32 *Data)
643 {
644 UINT8 i;

647 for (i = 0; i < Length; i++)
648 {
649 AcpiOsPrintf ("%25s%2.2X : %8.8X\n",
650 "Dword", i, Data[i]);
651 }
652 }

654 static void

new/usr/src/common/acpica/components/resources/rsdump.c 11

655 AcpiRsDumpWordList (
656 UINT16 Length,
657 UINT16 *Data)
658 {
659 UINT16 i;

662 for (i = 0; i < Length; i++)
663 {
664 AcpiOsPrintf ("%25s%2.2X : %4.4X\n",
665 "Word", i, Data[i]);
666 }
667 }

669 #endif

new/usr/src/common/acpica/components/resources/rsdumpinfo.c 1

**
 23563 Thu Dec 26 13:49:29 2013
new/usr/src/common/acpica/components/resources/rsdumpinfo.c
acpica-unix2-20130823
**

1 /***
2 *
3 * Module Name: rsdumpinfo - Tables used to display resource descriptors.
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __RSDUMPINFO_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acresrc.h"

51 #define _COMPONENT ACPI_RESOURCES
52 ACPI_MODULE_NAME ("rsdumpinfo")

55 #if defined(ACPI_DEBUG_OUTPUT) || defined(ACPI_DEBUGGER)

58 #define ACPI_RSD_OFFSET(f) (UINT8) ACPI_OFFSET (ACPI_RESOURCE_DATA,f)
59 #define ACPI_PRT_OFFSET(f) (UINT8) ACPI_OFFSET (ACPI_PCI_ROUTING_TABLE,
60 #define ACPI_RSD_TABLE_SIZE(name) (sizeof(name) / sizeof (ACPI_RSDUMP_INFO))

new/usr/src/common/acpica/components/resources/rsdumpinfo.c 2

63 /***
64 *
65 * Resource Descriptor info tables
66 *
67 * Note: The first table entry must be a Title or Literal and must contain
68 * the table length (number of table entries)
69 *
70 **/

72 ACPI_RSDUMP_INFO AcpiRsDumpIrq[7] =
73 {
74 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpIrq), "IRQ
75 {ACPI_RSD_UINT8 , ACPI_RSD_OFFSET (Irq.DescriptorLength), "Des
76 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (Irq.Triggering), "Tri
77 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (Irq.Polarity), "Pol
78 {ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET (Irq.Sharable), "Sha
79 {ACPI_RSD_UINT8 , ACPI_RSD_OFFSET (Irq.InterruptCount), "Int
80 {ACPI_RSD_SHORTLIST,ACPI_RSD_OFFSET (Irq.Interrupts[0]), "Int
81 };

83 ACPI_RSDUMP_INFO AcpiRsDumpDma[6] =
84 {
85 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpDma), "DMA
86 {ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET (Dma.Type), "Spe
87 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (Dma.BusMaster), "Mas
88 {ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET (Dma.Transfer), "Tra
89 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (Dma.ChannelCount), "Cha
90 {ACPI_RSD_SHORTLIST,ACPI_RSD_OFFSET (Dma.Channels[0]), "Cha
91 };

93 ACPI_RSDUMP_INFO AcpiRsDumpStartDpf[4] =
94 {
95 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpStartDpf), "Sta
96 {ACPI_RSD_UINT8 , ACPI_RSD_OFFSET (StartDpf.DescriptorLength), "Des
97 {ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET (StartDpf.CompatibilityPriority), "Com
98 {ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET (StartDpf.PerformanceRobustness), "Per
99 };

101 ACPI_RSDUMP_INFO AcpiRsDumpEndDpf[1] =
102 {
103 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpEndDpf), "End
104 };

106 ACPI_RSDUMP_INFO AcpiRsDumpIo[6] =
107 {
108 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpIo), "I/O
109 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (Io.IoDecode), "Add
110 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (Io.Minimum), "Add
111 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (Io.Maximum), "Add
112 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (Io.Alignment), "Ali
113 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (Io.AddressLength), "Add
114 };

116 ACPI_RSDUMP_INFO AcpiRsDumpFixedIo[3] =
117 {
118 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpFixedIo), "Fix
119 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (FixedIo.Address), "Add
120 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (FixedIo.AddressLength), "Add
121 };

123 ACPI_RSDUMP_INFO AcpiRsDumpVendor[3] =
124 {
125 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpVendor), "Ven
126 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (Vendor.ByteLength), "Len
127 {ACPI_RSD_LONGLIST, ACPI_RSD_OFFSET (Vendor.ByteData[0]), "Ven

new/usr/src/common/acpica/components/resources/rsdumpinfo.c 3

128 };

130 ACPI_RSDUMP_INFO AcpiRsDumpEndTag[1] =
131 {
132 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpEndTag), "End
133 };

135 ACPI_RSDUMP_INFO AcpiRsDumpMemory24[6] =
136 {
137 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpMemory24), "24-
138 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (Memory24.WriteProtect), "Wri
139 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (Memory24.Minimum), "Add
140 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (Memory24.Maximum), "Add
141 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (Memory24.Alignment), "Ali
142 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (Memory24.AddressLength), "Add
143 };

145 ACPI_RSDUMP_INFO AcpiRsDumpMemory32[6] =
146 {
147 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpMemory32), "32-
148 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (Memory32.WriteProtect), "Wri
149 {ACPI_RSD_UINT32, ACPI_RSD_OFFSET (Memory32.Minimum), "Add
150 {ACPI_RSD_UINT32, ACPI_RSD_OFFSET (Memory32.Maximum), "Add
151 {ACPI_RSD_UINT32, ACPI_RSD_OFFSET (Memory32.Alignment), "Ali
152 {ACPI_RSD_UINT32, ACPI_RSD_OFFSET (Memory32.AddressLength), "Add
153 };

155 ACPI_RSDUMP_INFO AcpiRsDumpFixedMemory32[4] =
156 {
157 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpFixedMemory32), "32-
158 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (FixedMemory32.WriteProtect), "Wri
159 {ACPI_RSD_UINT32, ACPI_RSD_OFFSET (FixedMemory32.Address), "Add
160 {ACPI_RSD_UINT32, ACPI_RSD_OFFSET (FixedMemory32.AddressLength), "Add
161 };

163 ACPI_RSDUMP_INFO AcpiRsDumpAddress16[8] =
164 {
165 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpAddress16), "16-
166 {ACPI_RSD_ADDRESS, 0, NULL
167 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (Address16.Granularity), "Gra
168 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (Address16.Minimum), "Add
169 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (Address16.Maximum), "Add
170 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (Address16.TranslationOffset), "Tra
171 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (Address16.AddressLength), "Add
172 {ACPI_RSD_SOURCE, ACPI_RSD_OFFSET (Address16.ResourceSource), NULL
173 };

175 ACPI_RSDUMP_INFO AcpiRsDumpAddress32[8] =
176 {
177 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpAddress32), "32-B
178 {ACPI_RSD_ADDRESS, 0, NULL
179 {ACPI_RSD_UINT32, ACPI_RSD_OFFSET (Address32.Granularity), "Gra
180 {ACPI_RSD_UINT32, ACPI_RSD_OFFSET (Address32.Minimum), "Add
181 {ACPI_RSD_UINT32, ACPI_RSD_OFFSET (Address32.Maximum), "Add
182 {ACPI_RSD_UINT32, ACPI_RSD_OFFSET (Address32.TranslationOffset), "Tra
183 {ACPI_RSD_UINT32, ACPI_RSD_OFFSET (Address32.AddressLength), "Add
184 {ACPI_RSD_SOURCE, ACPI_RSD_OFFSET (Address32.ResourceSource), NULL
185 };

187 ACPI_RSDUMP_INFO AcpiRsDumpAddress64[8] =
188 {
189 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpAddress64), "64-
190 {ACPI_RSD_ADDRESS, 0, NULL
191 {ACPI_RSD_UINT64, ACPI_RSD_OFFSET (Address64.Granularity), "Gra
192 {ACPI_RSD_UINT64, ACPI_RSD_OFFSET (Address64.Minimum), "Add
193 {ACPI_RSD_UINT64, ACPI_RSD_OFFSET (Address64.Maximum), "Add

new/usr/src/common/acpica/components/resources/rsdumpinfo.c 4

194 {ACPI_RSD_UINT64, ACPI_RSD_OFFSET (Address64.TranslationOffset), "Tra
195 {ACPI_RSD_UINT64, ACPI_RSD_OFFSET (Address64.AddressLength), "Add
196 {ACPI_RSD_SOURCE, ACPI_RSD_OFFSET (Address64.ResourceSource), NULL
197 };

199 ACPI_RSDUMP_INFO AcpiRsDumpExtAddress64[8] =
200 {
201 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpExtAddress64), "64-
202 {ACPI_RSD_ADDRESS, 0, NULL
203 {ACPI_RSD_UINT64, ACPI_RSD_OFFSET (ExtAddress64.Granularity), "Gra
204 {ACPI_RSD_UINT64, ACPI_RSD_OFFSET (ExtAddress64.Minimum), "Add
205 {ACPI_RSD_UINT64, ACPI_RSD_OFFSET (ExtAddress64.Maximum), "Add
206 {ACPI_RSD_UINT64, ACPI_RSD_OFFSET (ExtAddress64.TranslationOffset), "Tra
207 {ACPI_RSD_UINT64, ACPI_RSD_OFFSET (ExtAddress64.AddressLength), "Add
208 {ACPI_RSD_UINT64, ACPI_RSD_OFFSET (ExtAddress64.TypeSpecific), "Typ
209 };

211 ACPI_RSDUMP_INFO AcpiRsDumpExtIrq[8] =
212 {
213 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpExtIrq), "Ext
214 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (ExtendedIrq.ProducerConsumer), "Typ
215 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (ExtendedIrq.Triggering), "Tri
216 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (ExtendedIrq.Polarity), "Pol
217 {ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET (ExtendedIrq.Sharable), "Sha
218 {ACPI_RSD_SOURCE, ACPI_RSD_OFFSET (ExtendedIrq.ResourceSource), NULL
219 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (ExtendedIrq.InterruptCount), "Int
220 {ACPI_RSD_DWORDLIST,ACPI_RSD_OFFSET (ExtendedIrq.Interrupts[0]), "Int
221 };

223 ACPI_RSDUMP_INFO AcpiRsDumpGenericReg[6] =
224 {
225 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpGenericReg), "Gen
226 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (GenericReg.SpaceId), "Spa
227 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (GenericReg.BitWidth), "Bit
228 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (GenericReg.BitOffset), "Bit
229 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (GenericReg.AccessSize), "Acc
230 {ACPI_RSD_UINT64, ACPI_RSD_OFFSET (GenericReg.Address), "Add
231 };

233 ACPI_RSDUMP_INFO AcpiRsDumpGpio[16] =
234 {
235 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpGpio), "GPI
236 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (Gpio.RevisionId), "Rev
237 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (Gpio.ConnectionType), "Con
238 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (Gpio.ProducerConsumer), "Pro
239 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (Gpio.PinConfig), "Pin
240 {ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET (Gpio.Sharable), "Sha
241 {ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET (Gpio.IoRestriction), "IoR
242 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (Gpio.Triggering), "Tri
243 {ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET (Gpio.Polarity), "Pol
244 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (Gpio.DriveStrength), "Dri
245 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (Gpio.DebounceTimeout), "Deb
246 {ACPI_RSD_SOURCE, ACPI_RSD_OFFSET (Gpio.ResourceSource), "Res
247 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (Gpio.PinTableLength), "Pin
248 {ACPI_RSD_WORDLIST, ACPI_RSD_OFFSET (Gpio.PinTable), "Pin
249 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (Gpio.VendorLength), "Ven
250 {ACPI_RSD_SHORTLISTX,ACPI_RSD_OFFSET (Gpio.VendorData), "Ven
251 };

253 ACPI_RSDUMP_INFO AcpiRsDumpFixedDma[4] =
254 {
255 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpFixedDma), "Fix
256 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (FixedDma.RequestLines), "Req
257 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (FixedDma.Channels), "Cha
258 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (FixedDma.Width), "Tra
259 };

new/usr/src/common/acpica/components/resources/rsdumpinfo.c 5

261 #define ACPI_RS_DUMP_COMMON_SERIAL_BUS \
262 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (CommonSerialBus.RevisionId), "Rev
263 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (CommonSerialBus.Type), "Typ
264 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (CommonSerialBus.ProducerConsumer), "Pro
265 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (CommonSerialBus.SlaveMode), "Sla
266 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (CommonSerialBus.TypeRevisionId), "Typ
267 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (CommonSerialBus.TypeDataLength), "Typ
268 {ACPI_RSD_SOURCE, ACPI_RSD_OFFSET (CommonSerialBus.ResourceSource), "Res
269 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (CommonSerialBus.VendorLength), "Ven
270 {ACPI_RSD_SHORTLISTX,ACPI_RSD_OFFSET (CommonSerialBus.VendorData), "Ven

272 ACPI_RSDUMP_INFO AcpiRsDumpCommonSerialBus[10] =
273 {
274 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpCommonSerialBus), "Com
275 ACPI_RS_DUMP_COMMON_SERIAL_BUS
276 };

278 ACPI_RSDUMP_INFO AcpiRsDumpI2cSerialBus[13] =
279 {
280 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpI2cSerialBus), "I2C
281 ACPI_RS_DUMP_COMMON_SERIAL_BUS
282 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (I2cSerialBus.AccessMode), "Acc
283 {ACPI_RSD_UINT32, ACPI_RSD_OFFSET (I2cSerialBus.ConnectionSpeed), "Con
284 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (I2cSerialBus.SlaveAddress), "Sla
285 };

287 ACPI_RSDUMP_INFO AcpiRsDumpSpiSerialBus[17] =
288 {
289 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpSpiSerialBus), "Spi
290 ACPI_RS_DUMP_COMMON_SERIAL_BUS
291 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (SpiSerialBus.WireMode), "Wir
292 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (SpiSerialBus.DevicePolarity), "Dev
293 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (SpiSerialBus.DataBitLength), "Dat
294 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (SpiSerialBus.ClockPhase), "Clo
295 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (SpiSerialBus.ClockPolarity), "Clo
296 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (SpiSerialBus.DeviceSelection), "Dev
297 {ACPI_RSD_UINT32, ACPI_RSD_OFFSET (SpiSerialBus.ConnectionSpeed), "Con
298 };

300 ACPI_RSDUMP_INFO AcpiRsDumpUartSerialBus[19] =
301 {
302 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpUartSerialBus), "Ua
303 ACPI_RS_DUMP_COMMON_SERIAL_BUS
304 {ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET (UartSerialBus.FlowControl), "Fl
305 {ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET (UartSerialBus.StopBits), "St
306 {ACPI_RSD_3BITFLAG, ACPI_RSD_OFFSET (UartSerialBus.DataBits), "Da
307 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (UartSerialBus.Endian), "En
308 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (UartSerialBus.Parity), "Pa
309 {ACPI_RSD_UINT8, ACPI_RSD_OFFSET (UartSerialBus.LinesEnabled), "Li
310 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (UartSerialBus.RxFifoSize), "Rx
311 {ACPI_RSD_UINT16, ACPI_RSD_OFFSET (UartSerialBus.TxFifoSize), "Tx
312 {ACPI_RSD_UINT32, ACPI_RSD_OFFSET (UartSerialBus.DefaultBaudRate), "Co
313 };

315 /*
316 * Tables used for common address descriptor flag fields
317 */
318 ACPI_RSDUMP_INFO AcpiRsDumpGeneralFlags[5] =
319 {
320 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpGeneralFlags), NULL
321 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (Address.ProducerConsumer), "Con
322 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (Address.Decode), "Add
323 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (Address.MinAddressFixed), "Min
324 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (Address.MaxAddressFixed), "Max
325 };

new/usr/src/common/acpica/components/resources/rsdumpinfo.c 6

327 ACPI_RSDUMP_INFO AcpiRsDumpMemoryFlags[5] =
328 {
329 {ACPI_RSD_LITERAL, ACPI_RSD_TABLE_SIZE (AcpiRsDumpMemoryFlags), "Res
330 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (Address.Info.Mem.WriteProtect), "Wri
331 {ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET (Address.Info.Mem.Caching), "Cac
332 {ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET (Address.Info.Mem.RangeType), "Ran
333 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (Address.Info.Mem.Translation), "Tra
334 };

336 ACPI_RSDUMP_INFO AcpiRsDumpIoFlags[4] =
337 {
338 {ACPI_RSD_LITERAL, ACPI_RSD_TABLE_SIZE (AcpiRsDumpIoFlags), "Res
339 {ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET (Address.Info.Io.RangeType), "Ran
340 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (Address.Info.Io.Translation), "Tra
341 {ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET (Address.Info.Io.TranslationType), "Tra
342 };

345 /*
346 * Table used to dump _PRT contents
347 */
348 ACPI_RSDUMP_INFO AcpiRsDumpPrt[5] =
349 {
350 {ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE (AcpiRsDumpPrt), NULL
351 {ACPI_RSD_UINT64, ACPI_PRT_OFFSET (Address), "Add
352 {ACPI_RSD_UINT32, ACPI_PRT_OFFSET (Pin), "Pin
353 {ACPI_RSD_STRING, ACPI_PRT_OFFSET (Source[0]), "Sou
354 {ACPI_RSD_UINT32, ACPI_PRT_OFFSET (SourceIndex), "Sou
355 };

357 #endif

new/usr/src/common/acpica/components/resources/rsinfo.c 1

**
 12406 Thu Dec 26 13:49:29 2013
new/usr/src/common/acpica/components/resources/rsinfo.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: rsinfo - Dispatch and Info tables
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __RSINFO_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acresrc.h"

50 #define _COMPONENT ACPI_RESOURCES
51 ACPI_MODULE_NAME ("rsinfo")

53 /*
54 * Resource dispatch and information tables. Any new resource types (either
55 * Large or Small) must be reflected in each of these tables, so they are here
56 * in one place.
57 *
58 * The tables for Large descriptors are indexed by bits 6:0 of the AML
59 * descriptor type byte. The tables for Small descriptors are indexed by

new/usr/src/common/acpica/components/resources/rsinfo.c 2

60 * bits 6:3 of the descriptor byte. The tables for internal resource
61 * descriptors are indexed by the ACPI_RESOURCE_TYPE field.
62 */

65 /* Dispatch table for resource-to-AML (Set Resource) conversion functions */

67 ACPI_RSCONVERT_INFO *AcpiGbl_SetResourceDispatch[] =
68 {
69 AcpiRsSetIrq, /* 0x00, ACPI_RESOURCE_TYPE_IRQ */
70 AcpiRsConvertDma, /* 0x01, ACPI_RESOURCE_TYPE_DMA */
71 AcpiRsSetStartDpf, /* 0x02, ACPI_RESOURCE_TYPE_START_DEPENDENT
72 AcpiRsConvertEndDpf, /* 0x03, ACPI_RESOURCE_TYPE_END_DEPENDENT */
73 AcpiRsConvertIo, /* 0x04, ACPI_RESOURCE_TYPE_IO */
74 AcpiRsConvertFixedIo, /* 0x05, ACPI_RESOURCE_TYPE_FIXED_IO */
75 AcpiRsSetVendor, /* 0x06, ACPI_RESOURCE_TYPE_VENDOR */
76 AcpiRsConvertEndTag, /* 0x07, ACPI_RESOURCE_TYPE_END_TAG */
77 AcpiRsConvertMemory24, /* 0x08, ACPI_RESOURCE_TYPE_MEMORY24 */
78 AcpiRsConvertMemory32, /* 0x09, ACPI_RESOURCE_TYPE_MEMORY32 */
79 AcpiRsConvertFixedMemory32, /* 0x0A, ACPI_RESOURCE_TYPE_FIXED_MEMORY32 *
80 AcpiRsConvertAddress16, /* 0x0B, ACPI_RESOURCE_TYPE_ADDRESS16 */
81 AcpiRsConvertAddress32, /* 0x0C, ACPI_RESOURCE_TYPE_ADDRESS32 */
82 AcpiRsConvertAddress64, /* 0x0D, ACPI_RESOURCE_TYPE_ADDRESS64 */
83 AcpiRsConvertExtAddress64, /* 0x0E, ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS
84 AcpiRsConvertExtIrq, /* 0x0F, ACPI_RESOURCE_TYPE_EXTENDED_IRQ */
85 AcpiRsConvertGenericReg, /* 0x10, ACPI_RESOURCE_TYPE_GENERIC_REGISTER
86 AcpiRsConvertGpio, /* 0x11, ACPI_RESOURCE_TYPE_GPIO */
87 AcpiRsConvertFixedDma, /* 0x12, ACPI_RESOURCE_TYPE_FIXED_DMA */
88 NULL, /* 0x13, ACPI_RESOURCE_TYPE_SERIAL_BUS - Use
85 AcpiRsConvertGenericReg /* 0x10, ACPI_RESOURCE_TYPE_GENERIC_REGISTER
89 };

91 /* Dispatch tables for AML-to-resource (Get Resource) conversion functions */

93 ACPI_RSCONVERT_INFO *AcpiGbl_GetResourceDispatch[] =
94 {
95 /* Small descriptors */

97 NULL, /* 0x00, Reserved */
98 NULL, /* 0x01, Reserved */
99 NULL, /* 0x02, Reserved */
100 NULL, /* 0x03, Reserved */
101 AcpiRsGetIrq, /* 0x04, ACPI_RESOURCE_NAME_IRQ */
102 AcpiRsConvertDma, /* 0x05, ACPI_RESOURCE_NAME_DMA */
103 AcpiRsGetStartDpf, /* 0x06, ACPI_RESOURCE_NAME_START_DEPENDENT
104 AcpiRsConvertEndDpf, /* 0x07, ACPI_RESOURCE_NAME_END_DEPENDENT */
105 AcpiRsConvertIo, /* 0x08, ACPI_RESOURCE_NAME_IO */
106 AcpiRsConvertFixedIo, /* 0x09, ACPI_RESOURCE_NAME_FIXED_IO */
107 AcpiRsConvertFixedDma, /* 0x0A, ACPI_RESOURCE_NAME_FIXED_DMA */
104 NULL, /* 0x0A, Reserved */
108 NULL, /* 0x0B, Reserved */
109 NULL, /* 0x0C, Reserved */
110 NULL, /* 0x0D, Reserved */
111 AcpiRsGetVendorSmall, /* 0x0E, ACPI_RESOURCE_NAME_VENDOR_SMALL */
112 AcpiRsConvertEndTag, /* 0x0F, ACPI_RESOURCE_NAME_END_TAG */

114 /* Large descriptors */

116 NULL, /* 0x00, Reserved */
117 AcpiRsConvertMemory24, /* 0x01, ACPI_RESOURCE_NAME_MEMORY24 */
118 AcpiRsConvertGenericReg, /* 0x02, ACPI_RESOURCE_NAME_GENERIC_REGISTER
119 NULL, /* 0x03, Reserved */
120 AcpiRsGetVendorLarge, /* 0x04, ACPI_RESOURCE_NAME_VENDOR_LARGE */
121 AcpiRsConvertMemory32, /* 0x05, ACPI_RESOURCE_NAME_MEMORY32 */
122 AcpiRsConvertFixedMemory32, /* 0x06, ACPI_RESOURCE_NAME_FIXED_MEMORY32 *
123 AcpiRsConvertAddress32, /* 0x07, ACPI_RESOURCE_NAME_ADDRESS32 */

new/usr/src/common/acpica/components/resources/rsinfo.c 3

124 AcpiRsConvertAddress16, /* 0x08, ACPI_RESOURCE_NAME_ADDRESS16 */
125 AcpiRsConvertExtIrq, /* 0x09, ACPI_RESOURCE_NAME_EXTENDED_IRQ */
126 AcpiRsConvertAddress64, /* 0x0A, ACPI_RESOURCE_NAME_ADDRESS64 */
127 AcpiRsConvertExtAddress64, /* 0x0B, ACPI_RESOURCE_NAME_EXTENDED_ADDRESS
128 AcpiRsConvertGpio, /* 0x0C, ACPI_RESOURCE_NAME_GPIO */
129 NULL, /* 0x0D, Reserved */
130 NULL, /* 0x0E, ACPI_RESOURCE_NAME_SERIAL_BUS - Use
124 AcpiRsConvertExtAddress64 /* 0x0B, ACPI_RESOURCE_NAME_EXTENDED_ADDRESS
131 };

133 /* Subtype table for SerialBus -- I2C, SPI, and UART */

135 ACPI_RSCONVERT_INFO *AcpiGbl_ConvertResourceSerialBusDispatch[] =
136 {
137 NULL,
138 AcpiRsConvertI2cSerialBus,
139 AcpiRsConvertSpiSerialBus,
140 AcpiRsConvertUartSerialBus,
141 };

144 #if defined(ACPI_DEBUG_OUTPUT) || defined(ACPI_DEBUGGER)

146 /* Dispatch table for resource dump functions */

148 ACPI_RSDUMP_INFO *AcpiGbl_DumpResourceDispatch[] =
149 {
150 AcpiRsDumpIrq, /* ACPI_RESOURCE_TYPE_IRQ */
151 AcpiRsDumpDma, /* ACPI_RESOURCE_TYPE_DMA */
152 AcpiRsDumpStartDpf, /* ACPI_RESOURCE_TYPE_START_DEPENDENT */
153 AcpiRsDumpEndDpf, /* ACPI_RESOURCE_TYPE_END_DEPENDENT */
154 AcpiRsDumpIo, /* ACPI_RESOURCE_TYPE_IO */
155 AcpiRsDumpFixedIo, /* ACPI_RESOURCE_TYPE_FIXED_IO */
156 AcpiRsDumpVendor, /* ACPI_RESOURCE_TYPE_VENDOR */
157 AcpiRsDumpEndTag, /* ACPI_RESOURCE_TYPE_END_TAG */
158 AcpiRsDumpMemory24, /* ACPI_RESOURCE_TYPE_MEMORY24 */
159 AcpiRsDumpMemory32, /* ACPI_RESOURCE_TYPE_MEMORY32 */
160 AcpiRsDumpFixedMemory32, /* ACPI_RESOURCE_TYPE_FIXED_MEMORY32 */
161 AcpiRsDumpAddress16, /* ACPI_RESOURCE_TYPE_ADDRESS16 */
162 AcpiRsDumpAddress32, /* ACPI_RESOURCE_TYPE_ADDRESS32 */
163 AcpiRsDumpAddress64, /* ACPI_RESOURCE_TYPE_ADDRESS64 */
164 AcpiRsDumpExtAddress64, /* ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64 */
165 AcpiRsDumpExtIrq, /* ACPI_RESOURCE_TYPE_EXTENDED_IRQ */
166 AcpiRsDumpGenericReg, /* ACPI_RESOURCE_TYPE_GENERIC_REGISTER */
167 AcpiRsDumpGpio, /* ACPI_RESOURCE_TYPE_GPIO */
168 AcpiRsDumpFixedDma, /* ACPI_RESOURCE_TYPE_FIXED_DMA */
169 NULL, /* ACPI_RESOURCE_TYPE_SERIAL_BUS */
170 };

172 ACPI_RSDUMP_INFO *AcpiGbl_DumpSerialBusDispatch[] =
173 {
174 NULL,
175 AcpiRsDumpI2cSerialBus, /* AML_RESOURCE_I2C_BUS_TYPE */
176 AcpiRsDumpSpiSerialBus, /* AML_RESOURCE_SPI_BUS_TYPE */
177 AcpiRsDumpUartSerialBus, /* AML_RESOURCE_UART_BUS_TYPE */
178 };
179 #endif

182 /*
183 * Base sizes for external AML resource descriptors, indexed by internal type.
184 * Includes size of the descriptor header (1 byte for small descriptors,
185 * 3 bytes for large descriptors)
186 */
187 const UINT8 AcpiGbl_AmlResourceSizes[] =
188 {

new/usr/src/common/acpica/components/resources/rsinfo.c 4

189 sizeof (AML_RESOURCE_IRQ), /* ACPI_RESOURCE_TYPE_IRQ (optional
190 sizeof (AML_RESOURCE_DMA), /* ACPI_RESOURCE_TYPE_DMA */
191 sizeof (AML_RESOURCE_START_DEPENDENT), /* ACPI_RESOURCE_TYPE_START_DEPENDEN
192 sizeof (AML_RESOURCE_END_DEPENDENT), /* ACPI_RESOURCE_TYPE_END_DEPENDENT
193 sizeof (AML_RESOURCE_IO), /* ACPI_RESOURCE_TYPE_IO */
194 sizeof (AML_RESOURCE_FIXED_IO), /* ACPI_RESOURCE_TYPE_FIXED_IO */
195 sizeof (AML_RESOURCE_VENDOR_SMALL), /* ACPI_RESOURCE_TYPE_VENDOR */
196 sizeof (AML_RESOURCE_END_TAG), /* ACPI_RESOURCE_TYPE_END_TAG */
197 sizeof (AML_RESOURCE_MEMORY24), /* ACPI_RESOURCE_TYPE_MEMORY24 */
198 sizeof (AML_RESOURCE_MEMORY32), /* ACPI_RESOURCE_TYPE_MEMORY32 */
199 sizeof (AML_RESOURCE_FIXED_MEMORY32), /* ACPI_RESOURCE_TYPE_FIXED_MEMORY32
200 sizeof (AML_RESOURCE_ADDRESS16), /* ACPI_RESOURCE_TYPE_ADDRESS16 */
201 sizeof (AML_RESOURCE_ADDRESS32), /* ACPI_RESOURCE_TYPE_ADDRESS32 */
202 sizeof (AML_RESOURCE_ADDRESS64), /* ACPI_RESOURCE_TYPE_ADDRESS64 */
203 sizeof (AML_RESOURCE_EXTENDED_ADDRESS64),/*ACPI_RESOURCE_TYPE_EXTENDED_ADDRE
204 sizeof (AML_RESOURCE_EXTENDED_IRQ), /* ACPI_RESOURCE_TYPE_EXTENDED_IRQ *
205 sizeof (AML_RESOURCE_GENERIC_REGISTER), /* ACPI_RESOURCE_TYPE_GENERIC_REGIST
206 sizeof (AML_RESOURCE_GPIO), /* ACPI_RESOURCE_TYPE_GPIO */
207 sizeof (AML_RESOURCE_FIXED_DMA), /* ACPI_RESOURCE_TYPE_FIXED_DMA */
208 sizeof (AML_RESOURCE_COMMON_SERIALBUS), /* ACPI_RESOURCE_TYPE_SERIAL_BUS */
178 sizeof (AML_RESOURCE_GENERIC_REGISTER) /* ACPI_RESOURCE_TYPE_GENERIC_REGIST
209 };

212 const UINT8 AcpiGbl_ResourceStructSizes[] =
213 {
214 /* Small descriptors */

216 0,
217 0,
218 0,
219 0,
220 ACPI_RS_SIZE (ACPI_RESOURCE_IRQ),
221 ACPI_RS_SIZE (ACPI_RESOURCE_DMA),
222 ACPI_RS_SIZE (ACPI_RESOURCE_START_DEPENDENT),
223 ACPI_RS_SIZE_MIN,
224 ACPI_RS_SIZE (ACPI_RESOURCE_IO),
225 ACPI_RS_SIZE (ACPI_RESOURCE_FIXED_IO),
226 ACPI_RS_SIZE (ACPI_RESOURCE_FIXED_DMA),
227 0,
228 0,
229 0,
199 0,
230 ACPI_RS_SIZE (ACPI_RESOURCE_VENDOR),
231 ACPI_RS_SIZE_MIN,

233 /* Large descriptors */

235 0,
236 ACPI_RS_SIZE (ACPI_RESOURCE_MEMORY24),
237 ACPI_RS_SIZE (ACPI_RESOURCE_GENERIC_REGISTER),
238 0,
239 ACPI_RS_SIZE (ACPI_RESOURCE_VENDOR),
240 ACPI_RS_SIZE (ACPI_RESOURCE_MEMORY32),
241 ACPI_RS_SIZE (ACPI_RESOURCE_FIXED_MEMORY32),
242 ACPI_RS_SIZE (ACPI_RESOURCE_ADDRESS32),
243 ACPI_RS_SIZE (ACPI_RESOURCE_ADDRESS16),
244 ACPI_RS_SIZE (ACPI_RESOURCE_EXTENDED_IRQ),
245 ACPI_RS_SIZE (ACPI_RESOURCE_ADDRESS64),
246 ACPI_RS_SIZE (ACPI_RESOURCE_EXTENDED_ADDRESS64),
247 ACPI_RS_SIZE (ACPI_RESOURCE_GPIO),
248 ACPI_RS_SIZE (ACPI_RESOURCE_COMMON_SERIALBUS)
216 ACPI_RS_SIZE (ACPI_RESOURCE_EXTENDED_ADDRESS64)
249 };

251 const UINT8 AcpiGbl_AmlResourceSerialBusSizes[] =

new/usr/src/common/acpica/components/resources/rsinfo.c 5

252 {
253 0,
254 sizeof (AML_RESOURCE_I2C_SERIALBUS),
255 sizeof (AML_RESOURCE_SPI_SERIALBUS),
256 sizeof (AML_RESOURCE_UART_SERIALBUS),
257 };

259 const UINT8 AcpiGbl_ResourceStructSerialBusSizes[] =
260 {
261 0,
262 ACPI_RS_SIZE (ACPI_RESOURCE_I2C_SERIALBUS),
263 ACPI_RS_SIZE (ACPI_RESOURCE_SPI_SERIALBUS),
264 ACPI_RS_SIZE (ACPI_RESOURCE_UART_SERIALBUS),
265 };

new/usr/src/common/acpica/components/resources/rsio.c 1

**
 10605 Thu Dec 26 13:49:30 2013
new/usr/src/common/acpica/components/resources/rsio.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: rsio - IO and DMA resource descriptors
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __RSIO_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acresrc.h"

50 #define _COMPONENT ACPI_RESOURCES
51 ACPI_MODULE_NAME ("rsio")

54 /***
55 *
56 * AcpiRsConvertIo
57 *
58 **/

new/usr/src/common/acpica/components/resources/rsio.c 2

60 ACPI_RSCONVERT_INFO AcpiRsConvertIo[5] =
61 {
62 {ACPI_RSC_INITGET, ACPI_RESOURCE_TYPE_IO,
63 ACPI_RS_SIZE (ACPI_RESOURCE_IO),
64 ACPI_RSC_TABLE_SIZE (AcpiRsConvertIo)},

66 {ACPI_RSC_INITSET, ACPI_RESOURCE_NAME_IO,
67 sizeof (AML_RESOURCE_IO),
68 0},

70 /* Decode flag */

72 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.Io.IoDecode),
73 AML_OFFSET (Io.Flags),
74 0},
75 /*
76 * These fields are contiguous in both the source and destination:
77 * Address Alignment
78 * Length
79 * Minimum Base Address
80 * Maximum Base Address
81 */
82 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.Io.Alignment),
83 AML_OFFSET (Io.Alignment),
84 2},

86 {ACPI_RSC_MOVE16, ACPI_RS_OFFSET (Data.Io.Minimum),
87 AML_OFFSET (Io.Minimum),
88 2}
89 };

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/resources/rsirq.c 1

**
 11371 Thu Dec 26 13:49:30 2013
new/usr/src/common/acpica/components/resources/rsirq.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: rsirq - IRQ resource descriptors
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __RSIRQ_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acresrc.h"

50 #define _COMPONENT ACPI_RESOURCES
51 ACPI_MODULE_NAME ("rsirq")

54 /***
55 *
56 * AcpiRsGetIrq
57 *
58 **/

new/usr/src/common/acpica/components/resources/rsirq.c 2

60 ACPI_RSCONVERT_INFO AcpiRsGetIrq[9] =
60 ACPI_RSCONVERT_INFO AcpiRsGetIrq[8] =
61 {
62 {ACPI_RSC_INITGET, ACPI_RESOURCE_TYPE_IRQ,
63 ACPI_RS_SIZE (ACPI_RESOURCE_IRQ),
64 ACPI_RSC_TABLE_SIZE (AcpiRsGetIrq)},

66 /* Get the IRQ mask (bytes 1:2) */

68 {ACPI_RSC_BITMASK16,ACPI_RS_OFFSET (Data.Irq.Interrupts[0]),
69 AML_OFFSET (Irq.IrqMask),
70 ACPI_RS_OFFSET (Data.Irq.InterruptCount)},

72 /* Set default flags (others are zero) */

74 {ACPI_RSC_SET8, ACPI_RS_OFFSET (Data.Irq.Triggering),
75 ACPI_EDGE_SENSITIVE,
76 1},

78 /* Get the descriptor length (2 or 3 for IRQ descriptor) */

80 {ACPI_RSC_2BITFLAG, ACPI_RS_OFFSET (Data.Irq.DescriptorLength),
81 AML_OFFSET (Irq.DescriptorType),
82 0},

84 /* All done if no flag byte present in descriptor */

86 {ACPI_RSC_EXIT_NE, ACPI_RSC_COMPARE_AML_LENGTH, 0, 3},

88 /* Get flags: Triggering[0], Polarity[3], Sharing[4], Wake[5] */
88 /* Get flags: Triggering[0], Polarity[3], Sharing[4] */

90 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.Irq.Triggering),
91 AML_OFFSET (Irq.Flags),
92 0},

94 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.Irq.Polarity),
95 AML_OFFSET (Irq.Flags),
96 3},

98 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.Irq.Sharable),
99 AML_OFFSET (Irq.Flags),
100 4},

102 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.Irq.WakeCapable),
103 AML_OFFSET (Irq.Flags),
104 5}
100 4}
105 };

108 /***
109 *
110 * AcpiRsSetIrq
111 *
112 **/

114 ACPI_RSCONVERT_INFO AcpiRsSetIrq[14] =
110 ACPI_RSCONVERT_INFO AcpiRsSetIrq[13] =
115 {
116 /* Start with a default descriptor of length 3 */

118 {ACPI_RSC_INITSET, ACPI_RESOURCE_NAME_IRQ,
119 sizeof (AML_RESOURCE_IRQ),
120 ACPI_RSC_TABLE_SIZE (AcpiRsSetIrq)},

new/usr/src/common/acpica/components/resources/rsirq.c 3

122 /* Convert interrupt list to 16-bit IRQ bitmask */

124 {ACPI_RSC_BITMASK16,ACPI_RS_OFFSET (Data.Irq.Interrupts[0]),
125 AML_OFFSET (Irq.IrqMask),
126 ACPI_RS_OFFSET (Data.Irq.InterruptCount)},

128 /* Set flags: Triggering[0], Polarity[3], Sharing[4], Wake[5] */
124 /* Set the flags byte */

130 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.Irq.Triggering),
131 AML_OFFSET (Irq.Flags),
132 0},

134 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.Irq.Polarity),
135 AML_OFFSET (Irq.Flags),
136 3},

138 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.Irq.Sharable),
139 AML_OFFSET (Irq.Flags),
140 4},

142 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.Irq.WakeCapable),
143 AML_OFFSET (Irq.Flags),
144 5},

146 /*
147 * All done if the output descriptor length is required to be 3
148 * (i.e., optimization to 2 bytes cannot be attempted)
149 */
150 {ACPI_RSC_EXIT_EQ, ACPI_RSC_COMPARE_VALUE,
151 ACPI_RS_OFFSET(Data.Irq.DescriptorLength),
152 3},

154 /* Set length to 2 bytes (no flags byte) */

156 {ACPI_RSC_LENGTH, 0, 0, sizeof (AML_RESOURCE_IRQ_NOFLAGS)},

158 /*
159 * All done if the output descriptor length is required to be 2.
160 *
161 * TBD: Perhaps we should check for error if input flags are not
162 * compatible with a 2-byte descriptor.
163 */
164 {ACPI_RSC_EXIT_EQ, ACPI_RSC_COMPARE_VALUE,
165 ACPI_RS_OFFSET(Data.Irq.DescriptorLength),
166 2},

168 /* Reset length to 3 bytes (descriptor with flags byte) */

170 {ACPI_RSC_LENGTH, 0, 0, sizeof (AML_RESOURCE_IRQ)},

172 /*
173 * Check if the flags byte is necessary. Not needed if the flags are:
174 * ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH, ACPI_EXCLUSIVE
175 */
176 {ACPI_RSC_EXIT_NE, ACPI_RSC_COMPARE_VALUE,
177 ACPI_RS_OFFSET (Data.Irq.Triggering),
178 ACPI_EDGE_SENSITIVE},

180 {ACPI_RSC_EXIT_NE, ACPI_RSC_COMPARE_VALUE,
181 ACPI_RS_OFFSET (Data.Irq.Polarity),
182 ACPI_ACTIVE_HIGH},

184 {ACPI_RSC_EXIT_NE, ACPI_RSC_COMPARE_VALUE,
185 ACPI_RS_OFFSET (Data.Irq.Sharable),
186 ACPI_EXCLUSIVE},

new/usr/src/common/acpica/components/resources/rsirq.c 4

188 /* We can optimize to a 2-byte IrqNoFlags() descriptor */

190 {ACPI_RSC_LENGTH, 0, 0, sizeof (AML_RESOURCE_IRQ_NOFLAGS)}
191 };

194 /***
195 *
196 * AcpiRsConvertExtIrq
197 *
198 **/

200 ACPI_RSCONVERT_INFO AcpiRsConvertExtIrq[10] =
192 ACPI_RSCONVERT_INFO AcpiRsConvertExtIrq[9] =
201 {
202 {ACPI_RSC_INITGET, ACPI_RESOURCE_TYPE_EXTENDED_IRQ,
203 ACPI_RS_SIZE (ACPI_RESOURCE_EXTENDED_IRQ),
204 ACPI_RSC_TABLE_SIZE (AcpiRsConvertExtIrq)},

206 {ACPI_RSC_INITSET, ACPI_RESOURCE_NAME_EXTENDED_IRQ,
207 sizeof (AML_RESOURCE_EXTENDED_IRQ),
208 0},

210 /*
211 * Flags: Producer/Consumer[0], Triggering[1], Polarity[2],
212 * Sharing[3], Wake[4]
213 */
202 /* Flag bits */

214 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.ExtendedIrq.ProducerConsumer),
215 AML_OFFSET (ExtendedIrq.Flags),
216 0},

218 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.ExtendedIrq.Triggering),
219 AML_OFFSET (ExtendedIrq.Flags),
220 1},

222 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.ExtendedIrq.Polarity),
223 AML_OFFSET (ExtendedIrq.Flags),
224 2},

226 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.ExtendedIrq.Sharable),
227 AML_OFFSET (ExtendedIrq.Flags),
228 3},

230 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.ExtendedIrq.WakeCapable),
231 AML_OFFSET (ExtendedIrq.Flags),
232 4},

234 /* IRQ Table length (Byte4) */

236 {ACPI_RSC_COUNT, ACPI_RS_OFFSET (Data.ExtendedIrq.InterruptCount),
237 AML_OFFSET (ExtendedIrq.InterruptCount),
238 sizeof (UINT32)},

240 /* Copy every IRQ in the table, each is 32 bits */

242 {ACPI_RSC_MOVE32, ACPI_RS_OFFSET (Data.ExtendedIrq.Interrupts[0]),
243 AML_OFFSET (ExtendedIrq.Interrupts[0]),
244 0},

246 /* Optional ResourceSource (Index and String) */

248 {ACPI_RSC_SOURCEX, ACPI_RS_OFFSET (Data.ExtendedIrq.ResourceSource),
249 ACPI_RS_OFFSET (Data.ExtendedIrq.Interrupts[0]),

new/usr/src/common/acpica/components/resources/rsirq.c 5

250 sizeof (AML_RESOURCE_EXTENDED_IRQ)}
251 };

______unchanged_portion_omitted_

292 /***
293 *
294 * AcpiRsConvertFixedDma
295 *
296 **/

298 ACPI_RSCONVERT_INFO AcpiRsConvertFixedDma[4] =
299 {
300 {ACPI_RSC_INITGET, ACPI_RESOURCE_TYPE_FIXED_DMA,
301 ACPI_RS_SIZE (ACPI_RESOURCE_FIXED_DMA),
302 ACPI_RSC_TABLE_SIZE (AcpiRsConvertFixedDma)},

304 {ACPI_RSC_INITSET, ACPI_RESOURCE_NAME_FIXED_DMA,
305 sizeof (AML_RESOURCE_FIXED_DMA),
306 0},

308 /*
309 * These fields are contiguous in both the source and destination:
310 * RequestLines
311 * Channels
312 */
313 {ACPI_RSC_MOVE16, ACPI_RS_OFFSET (Data.FixedDma.RequestLines),
314 AML_OFFSET (FixedDma.RequestLines),
315 2},

317 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.FixedDma.Width),
318 AML_OFFSET (FixedDma.Width),
319 1},
320 };

new/usr/src/common/acpica/components/resources/rslist.c 1

**
 9588 Thu Dec 26 13:49:31 2013
new/usr/src/common/acpica/components/resources/rslist.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: rslist - Linked list utilities
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __RSLIST_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acresrc.h"

50 #define _COMPONENT ACPI_RESOURCES
51 ACPI_MODULE_NAME ("rslist")

54 /***
55 *
56 * FUNCTION: AcpiRsConvertAmlToResources
57 *
58 * PARAMETERS: ACPI_WALK_AML_CALLBACK
59 * ResourcePtr - Pointer to the buffer that will
60 * contain the output structures

new/usr/src/common/acpica/components/resources/rslist.c 2

61 *
62 * RETURN: Status
63 *
64 * DESCRIPTION: Convert an AML resource to an internal representation of the
65 * resource that is aligned and easier to access.
66 *
67 **/

69 ACPI_STATUS
70 AcpiRsConvertAmlToResources (
71 UINT8 *Aml,
72 UINT32 Length,
73 UINT32 Offset,
74 UINT8 ResourceIndex,
75 void **Context)
76 {
77 ACPI_RESOURCE **ResourcePtr = ACPI_CAST_INDIRECT_PTR (
78 ACPI_RESOURCE, Context);
79 ACPI_RESOURCE *Resource;
80 AML_RESOURCE *AmlResource;
81 ACPI_RSCONVERT_INFO *ConversionTable;
82 ACPI_STATUS Status;

85 ACPI_FUNCTION_TRACE (RsConvertAmlToResources);

88 /*
89 * Check that the input buffer and all subsequent pointers into it
90 * are aligned on a native word boundary. Most important on IA64
91 */
92 Resource = *ResourcePtr;
93 if (ACPI_IS_MISALIGNED (Resource))
94 {
95 ACPI_WARNING ((AE_INFO,
96 "Misaligned resource pointer %p", Resource));
97 }

99 /* Get the appropriate conversion info table */

101 AmlResource = ACPI_CAST_PTR (AML_RESOURCE, Aml);
102 if (AcpiUtGetResourceType (Aml) == ACPI_RESOURCE_NAME_SERIAL_BUS)
103 {
104 if (AmlResource->CommonSerialBus.Type > AML_RESOURCE_MAX_SERIALBUSTYPE)
105 {
106 ConversionTable = NULL;
107 }
108 else
109 {
110 /* This is an I2C, SPI, or UART SerialBus descriptor */

112 ConversionTable =
113 AcpiGbl_ConvertResourceSerialBusDispatch[
114 AmlResource->CommonSerialBus.Type];
115 }
116 }
117 else
118 {
119 ConversionTable =
120 AcpiGbl_GetResourceDispatch[ResourceIndex];
121 }

123 if (!ConversionTable)
124 {
125 ACPI_ERROR ((AE_INFO,
126 "Invalid/unsupported resource descriptor: Type 0x%2.2X",

new/usr/src/common/acpica/components/resources/rslist.c 3

127 ResourceIndex));
128 return_ACPI_STATUS (AE_AML_INVALID_RESOURCE_TYPE);
129 }

131 /* Convert the AML byte stream resource to a local resource struct */

133 Status = AcpiRsConvertAmlToResource (
134 Resource, AmlResource, ConversionTable);
135 if (ACPI_FAILURE (Status))
136 {
137 ACPI_EXCEPTION ((AE_INFO, Status,
138 "Could not convert AML resource (Type 0x%X)", *Aml));
139 return_ACPI_STATUS (Status);
140 }

142 ACPI_DEBUG_PRINT ((ACPI_DB_RESOURCES,
143 "Type %.2X, AmlLength %.2X InternalLength %.2X\n",
144 AcpiUtGetResourceType (Aml), Length,
145 Resource->Length));

147 /* Point to the next structure in the output buffer */

149 *ResourcePtr = ACPI_NEXT_RESOURCE (Resource);
150 return_ACPI_STATUS (AE_OK);
151 }

154 /***
155 *
156 * FUNCTION: AcpiRsConvertResourcesToAml
157 *
158 * PARAMETERS: Resource - Pointer to the resource linked list
159 * AmlSizeNeeded - Calculated size of the byte stream
160 * needed from calling AcpiRsGetAmlLength()
161 * The size of the OutputBuffer is
162 * guaranteed to be >= AmlSizeNeeded
163 * OutputBuffer - Pointer to the buffer that will
164 * contain the byte stream
165 *
166 * RETURN: Status
167 *
168 * DESCRIPTION: Takes the resource linked list and parses it, creating a
169 * byte stream of resources in the caller’s output buffer
170 *
171 **/

173 ACPI_STATUS
174 AcpiRsConvertResourcesToAml (
175 ACPI_RESOURCE *Resource,
176 ACPI_SIZE AmlSizeNeeded,
177 UINT8 *OutputBuffer)
178 {
179 UINT8 *Aml = OutputBuffer;
180 UINT8 *EndAml = OutputBuffer + AmlSizeNeeded;
181 ACPI_RSCONVERT_INFO *ConversionTable;
182 ACPI_STATUS Status;

185 ACPI_FUNCTION_TRACE (RsConvertResourcesToAml);

188 /* Walk the resource descriptor list, convert each descriptor */

190 while (Aml < EndAml)
191 {
192 /* Validate the (internal) Resource Type */

new/usr/src/common/acpica/components/resources/rslist.c 4

194 if (Resource->Type > ACPI_RESOURCE_TYPE_MAX)
195 {
196 ACPI_ERROR ((AE_INFO,
197 "Invalid descriptor type (0x%X) in resource list",
198 Resource->Type));
199 return_ACPI_STATUS (AE_BAD_DATA);
200 }

202 /* Sanity check the length. It must not be zero, or we loop forever */

204 if (!Resource->Length)
205 {
206 ACPI_ERROR ((AE_INFO,
207 "Invalid zero length descriptor in resource list\n"));
208 return_ACPI_STATUS (AE_AML_BAD_RESOURCE_LENGTH);
209 }

211 /* Perform the conversion */

213 if (Resource->Type == ACPI_RESOURCE_TYPE_SERIAL_BUS)
214 {
215 if (Resource->Data.CommonSerialBus.Type > AML_RESOURCE_MAX_SERIALBUS
216 {
217 ConversionTable = NULL;
218 }
219 else
220 {
221 /* This is an I2C, SPI, or UART SerialBus descriptor */

223 ConversionTable = AcpiGbl_ConvertResourceSerialBusDispatch[
224 Resource->Data.CommonSerialBus.Type];
225 }
226 }
227 else
228 {
229 ConversionTable = AcpiGbl_SetResourceDispatch[Resource->Type];
230 }

232 if (!ConversionTable)
233 {
234 ACPI_ERROR ((AE_INFO,
235 "Invalid/unsupported resource descriptor: Type 0x%2.2X",
236 Resource->Type));
237 return_ACPI_STATUS (AE_AML_INVALID_RESOURCE_TYPE);
238 }

240 Status = AcpiRsConvertResourceToAml (Resource,
241 ACPI_CAST_PTR (AML_RESOURCE, Aml),
242 ConversionTable);
243 if (ACPI_FAILURE (Status))
244 {
245 ACPI_EXCEPTION ((AE_INFO, Status,
246 "Could not convert resource (type 0x%X) to AML",
247 Resource->Type));
248 return_ACPI_STATUS (Status);
249 }

251 /* Perform final sanity check on the new AML resource descriptor */

253 Status = AcpiUtValidateResource (NULL,
254 ACPI_CAST_PTR (AML_RESOURCE, Aml), NULL);
255 if (ACPI_FAILURE (Status))
256 {
257 return_ACPI_STATUS (Status);
258 }

new/usr/src/common/acpica/components/resources/rslist.c 5

260 /* Check for end-of-list, normal exit */

262 if (Resource->Type == ACPI_RESOURCE_TYPE_END_TAG)
263 {
264 /* An End Tag indicates the end of the input Resource Template */

266 return_ACPI_STATUS (AE_OK);
267 }

269 /*
270 * Extract the total length of the new descriptor and set the
271 * Aml to point to the next (output) resource descriptor
272 */
273 Aml += AcpiUtGetDescriptorLength (Aml);

275 /* Point to the next input resource descriptor */

277 Resource = ACPI_NEXT_RESOURCE (Resource);
278 }

280 /* Completed buffer, but did not find an EndTag resource descriptor */

282 return_ACPI_STATUS (AE_AML_NO_RESOURCE_END_TAG);
283 }

new/usr/src/common/acpica/components/resources/rsmemory.c 1

**
 8546 Thu Dec 26 13:49:31 2013
new/usr/src/common/acpica/components/resources/rsmemory.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: rsmem24 - Memory resource descriptors
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __RSMEMORY_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acresrc.h"

50 #define _COMPONENT ACPI_RESOURCES
51 ACPI_MODULE_NAME ("rsmemory")

54 /***
55 *
56 * AcpiRsConvertMemory24
57 *
58 **/

new/usr/src/common/acpica/components/resources/rsmemory.c 2

60 ACPI_RSCONVERT_INFO AcpiRsConvertMemory24[4] =
61 {
62 {ACPI_RSC_INITGET, ACPI_RESOURCE_TYPE_MEMORY24,
63 ACPI_RS_SIZE (ACPI_RESOURCE_MEMORY24),
64 ACPI_RSC_TABLE_SIZE (AcpiRsConvertMemory24)},

66 {ACPI_RSC_INITSET, ACPI_RESOURCE_NAME_MEMORY24,
67 sizeof (AML_RESOURCE_MEMORY24),
68 0},

70 /* Read/Write bit */

72 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.Memory24.WriteProtect),
73 AML_OFFSET (Memory24.Flags),
74 0},
75 /*
76 * These fields are contiguous in both the source and destination:
77 * Minimum Base Address
78 * Maximum Base Address
79 * Address Base Alignment
80 * Range Length
81 */
82 {ACPI_RSC_MOVE16, ACPI_RS_OFFSET (Data.Memory24.Minimum),
83 AML_OFFSET (Memory24.Minimum),
84 4}
85 };

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/resources/rsmisc.c 1

**
 25173 Thu Dec 26 13:49:31 2013
new/usr/src/common/acpica/components/resources/rsmisc.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: rsmisc - Miscellaneous resource descriptors
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __RSMISC_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acresrc.h"

50 #define _COMPONENT ACPI_RESOURCES
51 ACPI_MODULE_NAME ("rsmisc")

54 #define INIT_RESOURCE_TYPE(i) i->ResourceOffset
55 #define INIT_RESOURCE_LENGTH(i) i->AmlOffset
56 #define INIT_TABLE_LENGTH(i) i->Value

58 #define COMPARE_OPCODE(i) i->ResourceOffset
59 #define COMPARE_TARGET(i) i->AmlOffset
60 #define COMPARE_VALUE(i) i->Value

new/usr/src/common/acpica/components/resources/rsmisc.c 2

63 /***
64 *
65 * FUNCTION: AcpiRsConvertAmlToResource
66 *
67 * PARAMETERS: Resource - Pointer to the resource descriptor
68 * Aml - Where the AML descriptor is returned
69 * Info - Pointer to appropriate conversion table
70 *
71 * RETURN: Status
72 *
73 * DESCRIPTION: Convert an external AML resource descriptor to the corresponding
74 * internal resource descriptor
75 *
76 **/

78 ACPI_STATUS
79 AcpiRsConvertAmlToResource (
80 ACPI_RESOURCE *Resource,
81 AML_RESOURCE *Aml,
82 ACPI_RSCONVERT_INFO *Info)
83 {
84 ACPI_RS_LENGTH AmlResourceLength;
85 void *Source;
86 void *Destination;
87 char *Target;
88 UINT8 Count;
89 UINT8 FlagsMode = FALSE;
90 UINT16 ItemCount = 0;
91 UINT16 Temp16 = 0;

94 ACPI_FUNCTION_TRACE (RsConvertAmlToResource);

97 if (!Info)
98 {
99 return_ACPI_STATUS (AE_BAD_PARAMETER);
100 }

102 if (((ACPI_SIZE) Resource) & 0x3)
103 {
104 /* Each internal resource struct is expected to be 32-bit aligned */

106 ACPI_WARNING ((AE_INFO,
107 "Misaligned resource pointer (get): %p Type 0x%2.2X Length %u",
108 Resource, Resource->Type, Resource->Length));
109 }

111 /* Extract the resource Length field (does not include header length) */

113 AmlResourceLength = AcpiUtGetResourceLength (Aml);

115 /*
116 * First table entry must be ACPI_RSC_INITxxx and must contain the
117 * table length (# of table entries)
118 */
119 Count = INIT_TABLE_LENGTH (Info);
120 while (Count)
121 {
122 /*
123 * Source is the external AML byte stream buffer,
124 * destination is the internal resource descriptor
125 */
126 Source = ACPI_ADD_PTR (void, Aml, Info->AmlOffset);

new/usr/src/common/acpica/components/resources/rsmisc.c 3

127 Destination = ACPI_ADD_PTR (void, Resource, Info->ResourceOffset);

129 switch (Info->Opcode)
130 {
131 case ACPI_RSC_INITGET:
132 /*
133 * Get the resource type and the initial (minimum) length
134 */
135 ACPI_MEMSET (Resource, 0, INIT_RESOURCE_LENGTH (Info));
136 Resource->Type = INIT_RESOURCE_TYPE (Info);
137 Resource->Length = INIT_RESOURCE_LENGTH (Info);
138 break;

140 case ACPI_RSC_INITSET:
141 break;

143 case ACPI_RSC_FLAGINIT:

145 FlagsMode = TRUE;
146 break;

148 case ACPI_RSC_1BITFLAG:
149 /*
150 * Mask and shift the flag bit
151 */
152 ACPI_SET8 (Destination,
153 ((ACPI_GET8 (Source) >> Info->Value) & 0x01));
154 break;

156 case ACPI_RSC_2BITFLAG:
157 /*
158 * Mask and shift the flag bits
159 */
160 ACPI_SET8 (Destination,
161 ((ACPI_GET8 (Source) >> Info->Value) & 0x03));
162 break;

164 case ACPI_RSC_3BITFLAG:
165 /*
166 * Mask and shift the flag bits
167 */
168 ACPI_SET8 (Destination,
169 ((ACPI_GET8 (Source) >> Info->Value) & 0x07));
170 break;

172 case ACPI_RSC_COUNT:

174 ItemCount = ACPI_GET8 (Source);
175 ACPI_SET8 (Destination, ItemCount);

177 Resource->Length = Resource->Length +
178 (Info->Value * (ItemCount - 1));
179 break;

181 case ACPI_RSC_COUNT16:

183 ItemCount = AmlResourceLength;
184 ACPI_SET16 (Destination, ItemCount);

186 Resource->Length = Resource->Length +
187 (Info->Value * (ItemCount - 1));
188 break;

190 case ACPI_RSC_COUNT_GPIO_PIN:

192 Target = ACPI_ADD_PTR (void, Aml, Info->Value);

new/usr/src/common/acpica/components/resources/rsmisc.c 4

193 ItemCount = ACPI_GET16 (Target) - ACPI_GET16 (Source);

195 Resource->Length = Resource->Length + ItemCount;
196 ItemCount = ItemCount / 2;
197 ACPI_SET16 (Destination, ItemCount);
198 break;

200 case ACPI_RSC_COUNT_GPIO_VEN:

202 ItemCount = ACPI_GET8 (Source);
203 ACPI_SET8 (Destination, ItemCount);

205 Resource->Length = Resource->Length +
206 (Info->Value * ItemCount);
207 break;

209 case ACPI_RSC_COUNT_GPIO_RES:
210 /*
211 * Vendor data is optional (length/offset may both be zero)
212 * Examine vendor data length field first
213 */
214 Target = ACPI_ADD_PTR (void, Aml, (Info->Value + 2));
215 if (ACPI_GET16 (Target))
216 {
217 /* Use vendor offset to get resource source length */

219 Target = ACPI_ADD_PTR (void, Aml, Info->Value);
220 ItemCount = ACPI_GET16 (Target) - ACPI_GET16 (Source);
221 }
222 else
223 {
224 /* No vendor data to worry about */

226 ItemCount = Aml->LargeHeader.ResourceLength +
227 sizeof (AML_RESOURCE_LARGE_HEADER) -
228 ACPI_GET16 (Source);
229 }

231 Resource->Length = Resource->Length + ItemCount;
232 ACPI_SET16 (Destination, ItemCount);
233 break;

235 case ACPI_RSC_COUNT_SERIAL_VEN:

237 ItemCount = ACPI_GET16 (Source) - Info->Value;

239 Resource->Length = Resource->Length + ItemCount;
240 ACPI_SET16 (Destination, ItemCount);
241 break;

243 case ACPI_RSC_COUNT_SERIAL_RES:

245 ItemCount = (AmlResourceLength +
246 sizeof (AML_RESOURCE_LARGE_HEADER)) -
247 ACPI_GET16 (Source) - Info->Value;

249 Resource->Length = Resource->Length + ItemCount;
250 ACPI_SET16 (Destination, ItemCount);
251 break;

253 case ACPI_RSC_LENGTH:

255 Resource->Length = Resource->Length + Info->Value;
256 break;

258 case ACPI_RSC_MOVE8:

new/usr/src/common/acpica/components/resources/rsmisc.c 5

259 case ACPI_RSC_MOVE16:
260 case ACPI_RSC_MOVE32:
261 case ACPI_RSC_MOVE64:
262 /*
263 * Raw data move. Use the Info value field unless ItemCount has
264 * been previously initialized via a COUNT opcode
265 */
266 if (Info->Value)
267 {
268 ItemCount = Info->Value;
269 }
270 AcpiRsMoveData (Destination, Source, ItemCount, Info->Opcode);
271 break;

273 case ACPI_RSC_MOVE_GPIO_PIN:

275 /* Generate and set the PIN data pointer */

277 Target = (char *) ACPI_ADD_PTR (void, Resource,
278 (Resource->Length - ItemCount * 2));
279 *(UINT16 **) Destination = ACPI_CAST_PTR (UINT16, Target);

281 /* Copy the PIN data */

283 Source = ACPI_ADD_PTR (void, Aml, ACPI_GET16 (Source));
284 AcpiRsMoveData (Target, Source, ItemCount, Info->Opcode);
285 break;

287 case ACPI_RSC_MOVE_GPIO_RES:

289 /* Generate and set the ResourceSource string pointer */

291 Target = (char *) ACPI_ADD_PTR (void, Resource,
292 (Resource->Length - ItemCount));
293 *(UINT8 **) Destination = ACPI_CAST_PTR (UINT8, Target);

295 /* Copy the ResourceSource string */

297 Source = ACPI_ADD_PTR (void, Aml, ACPI_GET16 (Source));
298 AcpiRsMoveData (Target, Source, ItemCount, Info->Opcode);
299 break;

301 case ACPI_RSC_MOVE_SERIAL_VEN:

303 /* Generate and set the Vendor Data pointer */

305 Target = (char *) ACPI_ADD_PTR (void, Resource,
306 (Resource->Length - ItemCount));
307 *(UINT8 **) Destination = ACPI_CAST_PTR (UINT8, Target);

309 /* Copy the Vendor Data */

311 Source = ACPI_ADD_PTR (void, Aml, Info->Value);
312 AcpiRsMoveData (Target, Source, ItemCount, Info->Opcode);
313 break;

315 case ACPI_RSC_MOVE_SERIAL_RES:

317 /* Generate and set the ResourceSource string pointer */

319 Target = (char *) ACPI_ADD_PTR (void, Resource,
320 (Resource->Length - ItemCount));
321 *(UINT8 **) Destination = ACPI_CAST_PTR (UINT8, Target);

323 /* Copy the ResourceSource string */

new/usr/src/common/acpica/components/resources/rsmisc.c 6

325 Source = ACPI_ADD_PTR (void, Aml, (ACPI_GET16 (Source) + Info->Value
326 AcpiRsMoveData (Target, Source, ItemCount, Info->Opcode);
327 break;

329 case ACPI_RSC_SET8:

331 ACPI_MEMSET (Destination, Info->AmlOffset, Info->Value);
332 break;

334 case ACPI_RSC_DATA8:

336 Target = ACPI_ADD_PTR (char, Resource, Info->Value);
337 ACPI_MEMCPY (Destination, Source, ACPI_GET16 (Target));
338 break;

340 case ACPI_RSC_ADDRESS:
341 /*
342 * Common handler for address descriptor flags
343 */
344 if (!AcpiRsGetAddressCommon (Resource, Aml))
345 {
346 return_ACPI_STATUS (AE_AML_INVALID_RESOURCE_TYPE);
347 }
348 break;

350 case ACPI_RSC_SOURCE:
351 /*
352 * Optional ResourceSource (Index and String)
353 */
354 Resource->Length +=
355 AcpiRsGetResourceSource (AmlResourceLength, Info->Value,
356 Destination, Aml, NULL);
357 break;

359 case ACPI_RSC_SOURCEX:
360 /*
361 * Optional ResourceSource (Index and String). This is the more
362 * complicated case used by the Interrupt() macro
363 */
364 Target = ACPI_ADD_PTR (char, Resource,
365 Info->AmlOffset + (ItemCount * 4));

367 Resource->Length +=
368 AcpiRsGetResourceSource (AmlResourceLength, (ACPI_RS_LENGTH)
369 (((ItemCount - 1) * sizeof (UINT32)) + Info->Value),
370 Destination, Aml, Target);
371 break;

373 case ACPI_RSC_BITMASK:
374 /*
375 * 8-bit encoded bitmask (DMA macro)
376 */
377 ItemCount = AcpiRsDecodeBitmask (ACPI_GET8 (Source), Destination);
378 if (ItemCount)
379 {
380 Resource->Length += (ItemCount - 1);
381 }

383 Target = ACPI_ADD_PTR (char, Resource, Info->Value);
384 ACPI_SET8 (Target, ItemCount);
385 break;

387 case ACPI_RSC_BITMASK16:
388 /*
389 * 16-bit encoded bitmask (IRQ macro)
390 */

new/usr/src/common/acpica/components/resources/rsmisc.c 7

391 ACPI_MOVE_16_TO_16 (&Temp16, Source);

393 ItemCount = AcpiRsDecodeBitmask (Temp16, Destination);
394 if (ItemCount)
395 {
396 Resource->Length += (ItemCount - 1);
397 }

399 Target = ACPI_ADD_PTR (char, Resource, Info->Value);
400 ACPI_SET8 (Target, ItemCount);
401 break;

403 case ACPI_RSC_EXIT_NE:
404 /*
405 * Control - Exit conversion if not equal
406 */
407 switch (Info->ResourceOffset)
408 {
409 case ACPI_RSC_COMPARE_AML_LENGTH:

411 if (AmlResourceLength != Info->Value)
412 {
413 goto Exit;
414 }
415 break;

417 case ACPI_RSC_COMPARE_VALUE:

419 if (ACPI_GET8 (Source) != Info->Value)
420 {
421 goto Exit;
422 }
423 break;

425 default:

427 ACPI_ERROR ((AE_INFO, "Invalid conversion sub-opcode"));
428 return_ACPI_STATUS (AE_BAD_PARAMETER);
429 }
430 break;

432 default:

434 ACPI_ERROR ((AE_INFO, "Invalid conversion opcode"));
435 return_ACPI_STATUS (AE_BAD_PARAMETER);
436 }

438 Count--;
439 Info++;
440 }

442 Exit:
443 if (!FlagsMode)
444 {
445 /* Round the resource struct length up to the next boundary (32 or 64) *

447 Resource->Length = (UINT32) ACPI_ROUND_UP_TO_NATIVE_WORD (Resource->Leng
448 }
449 return_ACPI_STATUS (AE_OK);
450 }

453 /***
454 *
455 * FUNCTION: AcpiRsConvertResourceToAml
456 *

new/usr/src/common/acpica/components/resources/rsmisc.c 8

457 * PARAMETERS: Resource - Pointer to the resource descriptor
458 * Aml - Where the AML descriptor is returned
459 * Info - Pointer to appropriate conversion table
460 *
461 * RETURN: Status
462 *
463 * DESCRIPTION: Convert an internal resource descriptor to the corresponding
464 * external AML resource descriptor.
465 *
466 **/

468 ACPI_STATUS
469 AcpiRsConvertResourceToAml (
470 ACPI_RESOURCE *Resource,
471 AML_RESOURCE *Aml,
472 ACPI_RSCONVERT_INFO *Info)
473 {
474 void *Source = NULL;
475 void *Destination;
476 char *Target;
477 ACPI_RSDESC_SIZE AmlLength = 0;
478 UINT8 Count;
479 UINT16 Temp16 = 0;
480 UINT16 ItemCount = 0;

483 ACPI_FUNCTION_TRACE (RsConvertResourceToAml);

486 if (!Info)
487 {
488 return_ACPI_STATUS (AE_BAD_PARAMETER);
489 }

491 /*
492 * First table entry must be ACPI_RSC_INITxxx and must contain the
493 * table length (# of table entries)
494 */
495 Count = INIT_TABLE_LENGTH (Info);

497 while (Count)
498 {
499 /*
500 * Source is the internal resource descriptor,
501 * destination is the external AML byte stream buffer
502 */
503 Source = ACPI_ADD_PTR (void, Resource, Info->ResourceOffset);
504 Destination = ACPI_ADD_PTR (void, Aml, Info->AmlOffset);

506 switch (Info->Opcode)
507 {
508 case ACPI_RSC_INITSET:

510 ACPI_MEMSET (Aml, 0, INIT_RESOURCE_LENGTH (Info));
511 AmlLength = INIT_RESOURCE_LENGTH (Info);
512 AcpiRsSetResourceHeader (INIT_RESOURCE_TYPE (Info), AmlLength, Aml);
513 break;

515 case ACPI_RSC_INITGET:
516 break;

518 case ACPI_RSC_FLAGINIT:
519 /*
520 * Clear the flag byte
521 */
522 ACPI_SET8 (Destination, 0);

new/usr/src/common/acpica/components/resources/rsmisc.c 9

523 break;

525 case ACPI_RSC_1BITFLAG:
526 /*
527 * Mask and shift the flag bit
528 */
529 ACPI_SET_BIT (*ACPI_CAST8 (Destination), (UINT8)
530 ((ACPI_GET8 (Source) & 0x01) << Info->Value));
531 break;

533 case ACPI_RSC_2BITFLAG:
534 /*
535 * Mask and shift the flag bits
536 */
537 ACPI_SET_BIT (*ACPI_CAST8 (Destination), (UINT8)
538 ((ACPI_GET8 (Source) & 0x03) << Info->Value));
539 break;

541 case ACPI_RSC_3BITFLAG:
542 /*
543 * Mask and shift the flag bits
544 */
545 ACPI_SET_BIT (*ACPI_CAST8 (Destination), (UINT8)
546 ((ACPI_GET8 (Source) & 0x07) << Info->Value));
547 break;

549 case ACPI_RSC_COUNT:

551 ItemCount = ACPI_GET8 (Source);
552 ACPI_SET8 (Destination, ItemCount);

554 AmlLength = (UINT16) (AmlLength + (Info->Value * (ItemCount - 1)));
555 break;

557 case ACPI_RSC_COUNT16:

559 ItemCount = ACPI_GET16 (Source);
560 AmlLength = (UINT16) (AmlLength + ItemCount);
561 AcpiRsSetResourceLength (AmlLength, Aml);
562 break;

564 case ACPI_RSC_COUNT_GPIO_PIN:

566 ItemCount = ACPI_GET16 (Source);
567 ACPI_SET16 (Destination, AmlLength);

569 AmlLength = (UINT16) (AmlLength + ItemCount * 2);
570 Target = ACPI_ADD_PTR (void, Aml, Info->Value);
571 ACPI_SET16 (Target, AmlLength);
572 AcpiRsSetResourceLength (AmlLength, Aml);
573 break;

575 case ACPI_RSC_COUNT_GPIO_VEN:

577 ItemCount = ACPI_GET16 (Source);
578 ACPI_SET16 (Destination, ItemCount);

580 AmlLength = (UINT16) (AmlLength + (Info->Value * ItemCount));
581 AcpiRsSetResourceLength (AmlLength, Aml);
582 break;

584 case ACPI_RSC_COUNT_GPIO_RES:

586 /* Set resource source string length */

588 ItemCount = ACPI_GET16 (Source);

new/usr/src/common/acpica/components/resources/rsmisc.c 10

589 ACPI_SET16 (Destination, AmlLength);

591 /* Compute offset for the Vendor Data */

593 AmlLength = (UINT16) (AmlLength + ItemCount);
594 Target = ACPI_ADD_PTR (void, Aml, Info->Value);

596 /* Set vendor offset only if there is vendor data */

598 if (Resource->Data.Gpio.VendorLength)
599 {
600 ACPI_SET16 (Target, AmlLength);
601 }

603 AcpiRsSetResourceLength (AmlLength, Aml);
604 break;

606 case ACPI_RSC_COUNT_SERIAL_VEN:

608 ItemCount = ACPI_GET16 (Source);
609 ACPI_SET16 (Destination, ItemCount + Info->Value);
610 AmlLength = (UINT16) (AmlLength + ItemCount);
611 AcpiRsSetResourceLength (AmlLength, Aml);
612 break;

614 case ACPI_RSC_COUNT_SERIAL_RES:

616 ItemCount = ACPI_GET16 (Source);
617 AmlLength = (UINT16) (AmlLength + ItemCount);
618 AcpiRsSetResourceLength (AmlLength, Aml);
619 break;

621 case ACPI_RSC_LENGTH:

623 AcpiRsSetResourceLength (Info->Value, Aml);
624 break;

626 case ACPI_RSC_MOVE8:
627 case ACPI_RSC_MOVE16:
628 case ACPI_RSC_MOVE32:
629 case ACPI_RSC_MOVE64:

631 if (Info->Value)
632 {
633 ItemCount = Info->Value;
634 }
635 AcpiRsMoveData (Destination, Source, ItemCount, Info->Opcode);
636 break;

638 case ACPI_RSC_MOVE_GPIO_PIN:

640 Destination = (char *) ACPI_ADD_PTR (void, Aml,
641 ACPI_GET16 (Destination));
642 Source = * (UINT16 **) Source;
643 AcpiRsMoveData (Destination, Source, ItemCount, Info->Opcode);
644 break;

646 case ACPI_RSC_MOVE_GPIO_RES:

648 /* Used for both ResourceSource string and VendorData */

650 Destination = (char *) ACPI_ADD_PTR (void, Aml,
651 ACPI_GET16 (Destination));
652 Source = * (UINT8 **) Source;
653 AcpiRsMoveData (Destination, Source, ItemCount, Info->Opcode);
654 break;

new/usr/src/common/acpica/components/resources/rsmisc.c 11

656 case ACPI_RSC_MOVE_SERIAL_VEN:

658 Destination = (char *) ACPI_ADD_PTR (void, Aml,
659 (AmlLength - ItemCount));
660 Source = * (UINT8 **) Source;
661 AcpiRsMoveData (Destination, Source, ItemCount, Info->Opcode);
662 break;

664 case ACPI_RSC_MOVE_SERIAL_RES:

666 Destination = (char *) ACPI_ADD_PTR (void, Aml,
667 (AmlLength - ItemCount));
668 Source = * (UINT8 **) Source;
669 AcpiRsMoveData (Destination, Source, ItemCount, Info->Opcode);
670 break;

672 case ACPI_RSC_ADDRESS:

674 /* Set the Resource Type, General Flags, and Type-Specific Flags */

676 AcpiRsSetAddressCommon (Aml, Resource);
677 break;

679 case ACPI_RSC_SOURCEX:
680 /*
681 * Optional ResourceSource (Index and String)
682 */
683 AmlLength = AcpiRsSetResourceSource (
684 Aml, (ACPI_RS_LENGTH) AmlLength, Source);
685 AcpiRsSetResourceLength (AmlLength, Aml);
686 break;

688 case ACPI_RSC_SOURCE:
689 /*
690 * Optional ResourceSource (Index and String). This is the more
691 * complicated case used by the Interrupt() macro
692 */
693 AmlLength = AcpiRsSetResourceSource (Aml, Info->Value, Source);
694 AcpiRsSetResourceLength (AmlLength, Aml);
695 break;

697 case ACPI_RSC_BITMASK:
698 /*
699 * 8-bit encoded bitmask (DMA macro)
700 */
701 ACPI_SET8 (Destination,
702 AcpiRsEncodeBitmask (Source,
703 *ACPI_ADD_PTR (UINT8, Resource, Info->Value)));
704 break;

706 case ACPI_RSC_BITMASK16:
707 /*
708 * 16-bit encoded bitmask (IRQ macro)
709 */
710 Temp16 = AcpiRsEncodeBitmask (Source,
711 *ACPI_ADD_PTR (UINT8, Resource, Info->Value));
712 ACPI_MOVE_16_TO_16 (Destination, &Temp16);
713 break;

715 case ACPI_RSC_EXIT_LE:
716 /*
717 * Control - Exit conversion if less than or equal
718 */
719 if (ItemCount <= Info->Value)
720 {

new/usr/src/common/acpica/components/resources/rsmisc.c 12

721 goto Exit;
722 }
723 break;

725 case ACPI_RSC_EXIT_NE:
726 /*
727 * Control - Exit conversion if not equal
728 */
729 switch (COMPARE_OPCODE (Info))
730 {
731 case ACPI_RSC_COMPARE_VALUE:

733 if (*ACPI_ADD_PTR (UINT8, Resource,
734 COMPARE_TARGET (Info)) != COMPARE_VALUE (Info))
735 {
736 goto Exit;
737 }
738 break;

740 default:

742 ACPI_ERROR ((AE_INFO, "Invalid conversion sub-opcode"));
743 return_ACPI_STATUS (AE_BAD_PARAMETER);
744 }
745 break;

747 case ACPI_RSC_EXIT_EQ:
748 /*
749 * Control - Exit conversion if equal
750 */
751 if (*ACPI_ADD_PTR (UINT8, Resource,
752 COMPARE_TARGET (Info)) == COMPARE_VALUE (Info))
753 {
754 goto Exit;
755 }
756 break;

758 default:

760 ACPI_ERROR ((AE_INFO, "Invalid conversion opcode"));
761 return_ACPI_STATUS (AE_BAD_PARAMETER);
762 }

764 Count--;
765 Info++;
766 }

768 Exit:
769 return_ACPI_STATUS (AE_OK);
770 }

773 #if 0
774 /* Previous resource validations */

776 if (Aml->ExtAddress64.RevisionID != AML_RESOURCE_EXTENDED_ADDRESS_REVISION)
777 {
778 return_ACPI_STATUS (AE_SUPPORT);
779 }

781 if (Resource->Data.StartDpf.PerformanceRobustness >= 3)
782 {
783 return_ACPI_STATUS (AE_AML_BAD_RESOURCE_VALUE);
784 }

786 if (((Aml->Irq.Flags & 0x09) == 0x00) ||

new/usr/src/common/acpica/components/resources/rsmisc.c 13

787 ((Aml->Irq.Flags & 0x09) == 0x09))
788 {
789 /*
790 * Only [ActiveHigh, EdgeSensitive] or [ActiveLow, LevelSensitive]
791 * polarity/trigger interrupts are allowed (ACPI spec, section
792 * "IRQ Format"), so 0x00 and 0x09 are illegal.
793 */
794 ACPI_ERROR ((AE_INFO,
795 "Invalid interrupt polarity/trigger in resource list, 0x%X",
796 Aml->Irq.Flags));
797 return_ACPI_STATUS (AE_BAD_DATA);
798 }

800 Resource->Data.ExtendedIrq.InterruptCount = Temp8;
801 if (Temp8 < 1)
802 {
803 /* Must have at least one IRQ */

805 return_ACPI_STATUS (AE_AML_BAD_RESOURCE_LENGTH);
806 }

808 if (Resource->Data.Dma.Transfer == 0x03)
809 {
810 ACPI_ERROR ((AE_INFO,
811 "Invalid DMA.Transfer preference (3)"));
812 return_ACPI_STATUS (AE_BAD_DATA);
813 }
814 #endif

new/usr/src/common/acpica/components/resources/rsserial.c 1

**
 17026 Thu Dec 26 13:49:31 2013
new/usr/src/common/acpica/components/resources/rsserial.c
acpica-unix2-20130823
**

1 /***
2 *
3 * Module Name: rsserial - GPIO/SerialBus resource descriptors
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __RSIRQ_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acresrc.h"

50 #define _COMPONENT ACPI_RESOURCES
51 ACPI_MODULE_NAME ("rsserial")

54 /***
55 *
56 * AcpiRsConvertGpio
57 *
58 **/

60 ACPI_RSCONVERT_INFO AcpiRsConvertGpio[18] =
61 {

new/usr/src/common/acpica/components/resources/rsserial.c 2

62 {ACPI_RSC_INITGET, ACPI_RESOURCE_TYPE_GPIO,
63 ACPI_RS_SIZE (ACPI_RESOURCE_GPIO),
64 ACPI_RSC_TABLE_SIZE (AcpiRsConvertGpio)},

66 {ACPI_RSC_INITSET, ACPI_RESOURCE_NAME_GPIO,
67 sizeof (AML_RESOURCE_GPIO),
68 0},

70 /*
71 * These fields are contiguous in both the source and destination:
72 * RevisionId
73 * ConnectionType
74 */
75 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.Gpio.RevisionId),
76 AML_OFFSET (Gpio.RevisionId),
77 2},

79 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.Gpio.ProducerConsumer),
80 AML_OFFSET (Gpio.Flags),
81 0},

83 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.Gpio.Sharable),
84 AML_OFFSET (Gpio.IntFlags),
85 3},

87 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.Gpio.WakeCapable),
88 AML_OFFSET (Gpio.IntFlags),
89 4},

91 {ACPI_RSC_2BITFLAG, ACPI_RS_OFFSET (Data.Gpio.IoRestriction),
92 AML_OFFSET (Gpio.IntFlags),
93 0},

95 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.Gpio.Triggering),
96 AML_OFFSET (Gpio.IntFlags),
97 0},

99 {ACPI_RSC_2BITFLAG, ACPI_RS_OFFSET (Data.Gpio.Polarity),
100 AML_OFFSET (Gpio.IntFlags),
101 1},

103 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.Gpio.PinConfig),
104 AML_OFFSET (Gpio.PinConfig),
105 1},

107 /*
108 * These fields are contiguous in both the source and destination:
109 * DriveStrength
110 * DebounceTimeout
111 */
112 {ACPI_RSC_MOVE16, ACPI_RS_OFFSET (Data.Gpio.DriveStrength),
113 AML_OFFSET (Gpio.DriveStrength),
114 2},

116 /* Pin Table */

118 {ACPI_RSC_COUNT_GPIO_PIN, ACPI_RS_OFFSET (Data.Gpio.PinTableLength),
119 AML_OFFSET (Gpio.PinTableOffset),
120 AML_OFFSET (Gpio.ResSourceOffset)},

122 {ACPI_RSC_MOVE_GPIO_PIN, ACPI_RS_OFFSET (Data.Gpio.PinTable),
123 AML_OFFSET (Gpio.PinTableOffset),
124 0},

126 /* Resource Source */

new/usr/src/common/acpica/components/resources/rsserial.c 3

128 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.Gpio.ResourceSource.Index),
129 AML_OFFSET (Gpio.ResSourceIndex),
130 1},

132 {ACPI_RSC_COUNT_GPIO_RES, ACPI_RS_OFFSET (Data.Gpio.ResourceSource.StringLe
133 AML_OFFSET (Gpio.ResSourceOffset),
134 AML_OFFSET (Gpio.VendorOffset)},

136 {ACPI_RSC_MOVE_GPIO_RES, ACPI_RS_OFFSET (Data.Gpio.ResourceSource.StringPt
137 AML_OFFSET (Gpio.ResSourceOffset),
138 0},

140 /* Vendor Data */

142 {ACPI_RSC_COUNT_GPIO_VEN, ACPI_RS_OFFSET (Data.Gpio.VendorLength),
143 AML_OFFSET (Gpio.VendorLength),
144 1},

146 {ACPI_RSC_MOVE_GPIO_RES, ACPI_RS_OFFSET (Data.Gpio.VendorData),
147 AML_OFFSET (Gpio.VendorOffset),
148 0},
149 };

152 /***
153 *
154 * AcpiRsConvertI2cSerialBus
155 *
156 **/

158 ACPI_RSCONVERT_INFO AcpiRsConvertI2cSerialBus[16] =
159 {
160 {ACPI_RSC_INITGET, ACPI_RESOURCE_TYPE_SERIAL_BUS,
161 ACPI_RS_SIZE (ACPI_RESOURCE_I2C_SERIALBUS),
162 ACPI_RSC_TABLE_SIZE (AcpiRsConvertI2cSerialBus)},

164 {ACPI_RSC_INITSET, ACPI_RESOURCE_NAME_SERIAL_BUS,
165 sizeof (AML_RESOURCE_I2C_SERIALBUS),
166 0},

168 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.CommonSerialBus.RevisionId),
169 AML_OFFSET (CommonSerialBus.RevisionId),
170 1},

172 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.CommonSerialBus.Type),
173 AML_OFFSET (CommonSerialBus.Type),
174 1},

176 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.CommonSerialBus.SlaveMode),
177 AML_OFFSET (CommonSerialBus.Flags),
178 0},

180 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.CommonSerialBus.ProducerConsumer),
181 AML_OFFSET (CommonSerialBus.Flags),
182 1},

184 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.CommonSerialBus.TypeRevisionId),
185 AML_OFFSET (CommonSerialBus.TypeRevisionId),
186 1},

188 {ACPI_RSC_MOVE16, ACPI_RS_OFFSET (Data.CommonSerialBus.TypeDataLength),
189 AML_OFFSET (CommonSerialBus.TypeDataLength),
190 1},

192 /* Vendor data */

new/usr/src/common/acpica/components/resources/rsserial.c 4

194 {ACPI_RSC_COUNT_SERIAL_VEN, ACPI_RS_OFFSET (Data.CommonSerialBus.VendorLengt
195 AML_OFFSET (CommonSerialBus.TypeDataLength),
196 AML_RESOURCE_I2C_MIN_DATA_LEN},

198 {ACPI_RSC_MOVE_SERIAL_VEN, ACPI_RS_OFFSET (Data.CommonSerialBus.VendorData)
199 0,
200 sizeof (AML_RESOURCE_I2C_SERIALBUS)},

202 /* Resource Source */

204 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.CommonSerialBus.ResourceSource.Inde
205 AML_OFFSET (CommonSerialBus.ResSourceIndex),
206 1},

208 {ACPI_RSC_COUNT_SERIAL_RES, ACPI_RS_OFFSET (Data.CommonSerialBus.ResourceSou
209 AML_OFFSET (CommonSerialBus.TypeDataLength),
210 sizeof (AML_RESOURCE_COMMON_SERIALBUS)},

212 {ACPI_RSC_MOVE_SERIAL_RES, ACPI_RS_OFFSET (Data.CommonSerialBus.ResourceSou
213 AML_OFFSET (CommonSerialBus.TypeDataLength),
214 sizeof (AML_RESOURCE_COMMON_SERIALBUS)},

216 /* I2C bus type specific */

218 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.I2cSerialBus.AccessMode),
219 AML_OFFSET (I2cSerialBus.TypeSpecificFlags),
220 0},

222 {ACPI_RSC_MOVE32, ACPI_RS_OFFSET (Data.I2cSerialBus.ConnectionSpeed),
223 AML_OFFSET (I2cSerialBus.ConnectionSpeed),
224 1},

226 {ACPI_RSC_MOVE16, ACPI_RS_OFFSET (Data.I2cSerialBus.SlaveAddress),
227 AML_OFFSET (I2cSerialBus.SlaveAddress),
228 1},
229 };

232 /***
233 *
234 * AcpiRsConvertSpiSerialBus
235 *
236 **/

238 ACPI_RSCONVERT_INFO AcpiRsConvertSpiSerialBus[20] =
239 {
240 {ACPI_RSC_INITGET, ACPI_RESOURCE_TYPE_SERIAL_BUS,
241 ACPI_RS_SIZE (ACPI_RESOURCE_SPI_SERIALBUS),
242 ACPI_RSC_TABLE_SIZE (AcpiRsConvertSpiSerialBus)},

244 {ACPI_RSC_INITSET, ACPI_RESOURCE_NAME_SERIAL_BUS,
245 sizeof (AML_RESOURCE_SPI_SERIALBUS),
246 0},

248 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.CommonSerialBus.RevisionId),
249 AML_OFFSET (CommonSerialBus.RevisionId),
250 1},

252 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.CommonSerialBus.Type),
253 AML_OFFSET (CommonSerialBus.Type),
254 1},

256 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.CommonSerialBus.SlaveMode),
257 AML_OFFSET (CommonSerialBus.Flags),
258 0},

new/usr/src/common/acpica/components/resources/rsserial.c 5

260 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.CommonSerialBus.ProducerConsumer),
261 AML_OFFSET (CommonSerialBus.Flags),
262 1},

264 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.CommonSerialBus.TypeRevisionId),
265 AML_OFFSET (CommonSerialBus.TypeRevisionId),
266 1},

268 {ACPI_RSC_MOVE16, ACPI_RS_OFFSET (Data.CommonSerialBus.TypeDataLength),
269 AML_OFFSET (CommonSerialBus.TypeDataLength),
270 1},

272 /* Vendor data */

274 {ACPI_RSC_COUNT_SERIAL_VEN, ACPI_RS_OFFSET (Data.CommonSerialBus.VendorLengt
275 AML_OFFSET (CommonSerialBus.TypeDataLength),
276 AML_RESOURCE_SPI_MIN_DATA_LEN},

278 {ACPI_RSC_MOVE_SERIAL_VEN, ACPI_RS_OFFSET (Data.CommonSerialBus.VendorData)
279 0,
280 sizeof (AML_RESOURCE_SPI_SERIALBUS)},

282 /* Resource Source */

284 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.CommonSerialBus.ResourceSource.Inde
285 AML_OFFSET (CommonSerialBus.ResSourceIndex),
286 1},

288 {ACPI_RSC_COUNT_SERIAL_RES, ACPI_RS_OFFSET (Data.CommonSerialBus.ResourceSou
289 AML_OFFSET (CommonSerialBus.TypeDataLength),
290 sizeof (AML_RESOURCE_COMMON_SERIALBUS)},

292 {ACPI_RSC_MOVE_SERIAL_RES, ACPI_RS_OFFSET (Data.CommonSerialBus.ResourceSou
293 AML_OFFSET (CommonSerialBus.TypeDataLength),
294 sizeof (AML_RESOURCE_COMMON_SERIALBUS)},

296 /* Spi bus type specific */

298 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.SpiSerialBus.WireMode),
299 AML_OFFSET (SpiSerialBus.TypeSpecificFlags),
300 0},

302 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.SpiSerialBus.DevicePolarity),
303 AML_OFFSET (SpiSerialBus.TypeSpecificFlags),
304 1},

306 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.SpiSerialBus.DataBitLength),
307 AML_OFFSET (SpiSerialBus.DataBitLength),
308 1},

310 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.SpiSerialBus.ClockPhase),
311 AML_OFFSET (SpiSerialBus.ClockPhase),
312 1},

314 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.SpiSerialBus.ClockPolarity),
315 AML_OFFSET (SpiSerialBus.ClockPolarity),
316 1},

318 {ACPI_RSC_MOVE16, ACPI_RS_OFFSET (Data.SpiSerialBus.DeviceSelection),
319 AML_OFFSET (SpiSerialBus.DeviceSelection),
320 1},

322 {ACPI_RSC_MOVE32, ACPI_RS_OFFSET (Data.SpiSerialBus.ConnectionSpeed),
323 AML_OFFSET (SpiSerialBus.ConnectionSpeed),
324 1},
325 };

new/usr/src/common/acpica/components/resources/rsserial.c 6

328 /***
329 *
330 * AcpiRsConvertUartSerialBus
331 *
332 **/

334 ACPI_RSCONVERT_INFO AcpiRsConvertUartSerialBus[22] =
335 {
336 {ACPI_RSC_INITGET, ACPI_RESOURCE_TYPE_SERIAL_BUS,
337 ACPI_RS_SIZE (ACPI_RESOURCE_UART_SERIALBUS),
338 ACPI_RSC_TABLE_SIZE (AcpiRsConvertUartSerialBus)},

340 {ACPI_RSC_INITSET, ACPI_RESOURCE_NAME_SERIAL_BUS,
341 sizeof (AML_RESOURCE_UART_SERIALBUS),
342 0},

344 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.CommonSerialBus.RevisionId),
345 AML_OFFSET (CommonSerialBus.RevisionId),
346 1},

348 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.CommonSerialBus.Type),
349 AML_OFFSET (CommonSerialBus.Type),
350 1},

352 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.CommonSerialBus.SlaveMode),
353 AML_OFFSET (CommonSerialBus.Flags),
354 0},

356 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.CommonSerialBus.ProducerConsumer),
357 AML_OFFSET (CommonSerialBus.Flags),
358 1},

360 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.CommonSerialBus.TypeRevisionId),
361 AML_OFFSET (CommonSerialBus.TypeRevisionId),
362 1},

364 {ACPI_RSC_MOVE16, ACPI_RS_OFFSET (Data.CommonSerialBus.TypeDataLength),
365 AML_OFFSET (CommonSerialBus.TypeDataLength),
366 1},

368 /* Vendor data */

370 {ACPI_RSC_COUNT_SERIAL_VEN, ACPI_RS_OFFSET (Data.CommonSerialBus.VendorLengt
371 AML_OFFSET (CommonSerialBus.TypeDataLength),
372 AML_RESOURCE_UART_MIN_DATA_LEN},

374 {ACPI_RSC_MOVE_SERIAL_VEN, ACPI_RS_OFFSET (Data.CommonSerialBus.VendorData)
375 0,
376 sizeof (AML_RESOURCE_UART_SERIALBUS)},

378 /* Resource Source */

380 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.CommonSerialBus.ResourceSource.Inde
381 AML_OFFSET (CommonSerialBus.ResSourceIndex),
382 1},

384 {ACPI_RSC_COUNT_SERIAL_RES, ACPI_RS_OFFSET (Data.CommonSerialBus.ResourceSou
385 AML_OFFSET (CommonSerialBus.TypeDataLength),
386 sizeof (AML_RESOURCE_COMMON_SERIALBUS)},

388 {ACPI_RSC_MOVE_SERIAL_RES, ACPI_RS_OFFSET (Data.CommonSerialBus.ResourceSou
389 AML_OFFSET (CommonSerialBus.TypeDataLength),
390 sizeof (AML_RESOURCE_COMMON_SERIALBUS)},

new/usr/src/common/acpica/components/resources/rsserial.c 7

392 /* Uart bus type specific */

394 {ACPI_RSC_2BITFLAG, ACPI_RS_OFFSET (Data.UartSerialBus.FlowControl),
395 AML_OFFSET (UartSerialBus.TypeSpecificFlags),
396 0},

398 {ACPI_RSC_2BITFLAG, ACPI_RS_OFFSET (Data.UartSerialBus.StopBits),
399 AML_OFFSET (UartSerialBus.TypeSpecificFlags),
400 2},

402 {ACPI_RSC_3BITFLAG, ACPI_RS_OFFSET (Data.UartSerialBus.DataBits),
403 AML_OFFSET (UartSerialBus.TypeSpecificFlags),
404 4},

406 {ACPI_RSC_1BITFLAG, ACPI_RS_OFFSET (Data.UartSerialBus.Endian),
407 AML_OFFSET (UartSerialBus.TypeSpecificFlags),
408 7},

410 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.UartSerialBus.Parity),
411 AML_OFFSET (UartSerialBus.Parity),
412 1},

414 {ACPI_RSC_MOVE8, ACPI_RS_OFFSET (Data.UartSerialBus.LinesEnabled),
415 AML_OFFSET (UartSerialBus.LinesEnabled),
416 1},

418 {ACPI_RSC_MOVE16, ACPI_RS_OFFSET (Data.UartSerialBus.RxFifoSize),
419 AML_OFFSET (UartSerialBus.RxFifoSize),
420 1},

422 {ACPI_RSC_MOVE16, ACPI_RS_OFFSET (Data.UartSerialBus.TxFifoSize),
423 AML_OFFSET (UartSerialBus.TxFifoSize),
424 1},

426 {ACPI_RSC_MOVE32, ACPI_RS_OFFSET (Data.UartSerialBus.DefaultBaudRate),
427 AML_OFFSET (UartSerialBus.DefaultBaudRate),
428 1},
429 };

new/usr/src/common/acpica/components/resources/rsutils.c 1

**
 25635 Thu Dec 26 13:49:32 2013
new/usr/src/common/acpica/components/resources/rsutils.c
update to acpica-unix2-20131115
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: rsutils - Utilities for the resource manager
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __RSUTILS_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acnamesp.h"
50 #include "acresrc.h"

53 #define _COMPONENT ACPI_RESOURCES
54 ACPI_MODULE_NAME ("rsutils")

57 /***
58 *

new/usr/src/common/acpica/components/resources/rsutils.c 2

59 * FUNCTION: AcpiRsDecodeBitmask
60 *
61 * PARAMETERS: Mask - Bitmask to decode
62 * List - Where the converted list is returned
63 *
64 * RETURN: Count of bits set (length of list)
65 *
66 * DESCRIPTION: Convert a bit mask into a list of values
67 *
68 **/

70 UINT8
71 AcpiRsDecodeBitmask (
72 UINT16 Mask,
73 UINT8 *List)
74 {
75 UINT8 i;
76 UINT8 BitCount;

79 ACPI_FUNCTION_ENTRY ();

82 /* Decode the mask bits */

84 for (i = 0, BitCount = 0; Mask; i++)
85 {
86 if (Mask & 0x0001)
87 {
88 List[BitCount] = i;
89 BitCount++;
90 }

92 Mask >>= 1;
93 }

95 return (BitCount);
96 }

______unchanged_portion_omitted_

135 /***
136 *
137 * FUNCTION: AcpiRsMoveData
138 *
139 * PARAMETERS: Destination - Pointer to the destination descriptor
140 * Source - Pointer to the source descriptor
141 * ItemCount - How many items to move
142 * MoveType - Byte width
143 *
144 * RETURN: None
145 *
146 * DESCRIPTION: Move multiple data items from one descriptor to another. Handles
147 * alignment issues and endian issues if necessary, as configured
148 * via the ACPI_MOVE_* macros. (This is why a memcpy is not used)
149 *
150 **/

152 void
153 AcpiRsMoveData (
154 void *Destination,
155 void *Source,
156 UINT16 ItemCount,
157 UINT8 MoveType)
158 {
159 UINT32 i;

new/usr/src/common/acpica/components/resources/rsutils.c 3

162 ACPI_FUNCTION_ENTRY ();

165 /* One move per item */

167 for (i = 0; i < ItemCount; i++)
168 {
169 switch (MoveType)
170 {
171 /*
172 * For the 8-bit case, we can perform the move all at once
173 * since there are no alignment or endian issues
174 */
175 case ACPI_RSC_MOVE8:
176 case ACPI_RSC_MOVE_GPIO_RES:
177 case ACPI_RSC_MOVE_SERIAL_VEN:
178 case ACPI_RSC_MOVE_SERIAL_RES:

180 ACPI_MEMCPY (Destination, Source, ItemCount);
181 return;

183 /*
184 * 16-, 32-, and 64-bit cases must use the move macros that perform
185 * endian conversion and/or accommodate hardware that cannot perform
181 * endian conversion and/or accomodate hardware that cannot perform
186 * misaligned memory transfers
187 */
188 case ACPI_RSC_MOVE16:
189 case ACPI_RSC_MOVE_GPIO_PIN:

191 ACPI_MOVE_16_TO_16 (&ACPI_CAST_PTR (UINT16, Destination)[i],
192 &ACPI_CAST_PTR (UINT16, Source)[i]);
193 break;

195 case ACPI_RSC_MOVE32:

197 ACPI_MOVE_32_TO_32 (&ACPI_CAST_PTR (UINT32, Destination)[i],
198 &ACPI_CAST_PTR (UINT32, Source)[i]);
199 break;

201 case ACPI_RSC_MOVE64:

203 ACPI_MOVE_64_TO_64 (&ACPI_CAST_PTR (UINT64, Destination)[i],
204 &ACPI_CAST_PTR (UINT64, Source)[i]);
205 break;

207 default:

209 return;
210 }
211 }
212 }

______unchanged_portion_omitted_

663 /***
664 *
665 * FUNCTION: AcpiRsGetAeiMethodData
666 *
667 * PARAMETERS: Node - Device node
668 * RetBuffer - Pointer to a buffer structure for the
669 * results
670 *
671 * RETURN: Status

new/usr/src/common/acpica/components/resources/rsutils.c 4

672 *
673 * DESCRIPTION: This function is called to get the _AEI value of an object
674 * contained in an object specified by the handle passed in
675 *
676 * If the function fails an appropriate status will be returned
677 * and the contents of the callers buffer is undefined.
678 *
679 **/

681 ACPI_STATUS
682 AcpiRsGetAeiMethodData (
683 ACPI_NAMESPACE_NODE *Node,
684 ACPI_BUFFER *RetBuffer)
685 {
686 ACPI_OPERAND_OBJECT *ObjDesc;
687 ACPI_STATUS Status;

690 ACPI_FUNCTION_TRACE (RsGetAeiMethodData);

693 /* Parameters guaranteed valid by caller */

695 /* Execute the method, no parameters */

697 Status = AcpiUtEvaluateObject (Node, METHOD_NAME__AEI,
698 ACPI_BTYPE_BUFFER, &ObjDesc);
699 if (ACPI_FAILURE (Status))
700 {
701 return_ACPI_STATUS (Status);
702 }

704 /*
705 * Make the call to create a resource linked list from the
706 * byte stream buffer that comes back from the _CRS method
707 * execution.
708 */
709 Status = AcpiRsCreateResourceList (ObjDesc, RetBuffer);

711 /* On exit, we must delete the object returned by evaluateObject */

713 AcpiUtRemoveReference (ObjDesc);
714 return_ACPI_STATUS (Status);
715 }

718 /***
719 *
720 * FUNCTION: AcpiRsGetMethodData
721 *
722 * PARAMETERS: Handle - Handle to the containing object
723 * Path - Path to method, relative to Handle
724 * RetBuffer - Pointer to a buffer structure for the
725 * results
726 *
727 * RETURN: Status
728 *
729 * DESCRIPTION: This function is called to get the _CRS or _PRS value of an
730 * object contained in an object specified by the handle passed in
731 *
732 * If the function fails an appropriate status will be returned
733 * and the contents of the callers buffer is undefined.
734 *
735 **/

737 ACPI_STATUS

new/usr/src/common/acpica/components/resources/rsutils.c 5

738 AcpiRsGetMethodData (
739 ACPI_HANDLE Handle,
740 char *Path,
741 ACPI_BUFFER *RetBuffer)
742 {
743 ACPI_OPERAND_OBJECT *ObjDesc;
744 ACPI_STATUS Status;

747 ACPI_FUNCTION_TRACE (RsGetMethodData);

750 /* Parameters guaranteed valid by caller */

752 /* Execute the method, no parameters */

754 Status = AcpiUtEvaluateObject (ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Handle),
755 Path, ACPI_BTYPE_BUFFER, &ObjDesc);
690 Status = AcpiUtEvaluateObject (Handle, Path, ACPI_BTYPE_BUFFER, &ObjDesc);
756 if (ACPI_FAILURE (Status))
757 {
758 return_ACPI_STATUS (Status);
759 }

761 /*
762 * Make the call to create a resource linked list from the
763 * byte stream buffer that comes back from the method
764 * execution.
765 */
766 Status = AcpiRsCreateResourceList (ObjDesc, RetBuffer);

768 /* On exit, we must delete the object returned by EvaluateObject */

770 AcpiUtRemoveReference (ObjDesc);
771 return_ACPI_STATUS (Status);
772 }

775 /***
776 *
777 * FUNCTION: AcpiRsSetSrsMethodData
778 *
779 * PARAMETERS: Node - Device node
780 * InBuffer - Pointer to a buffer structure of the
781 * parameter
782 *
783 * RETURN: Status
784 *
785 * DESCRIPTION: This function is called to set the _SRS of an object contained
786 * in an object specified by the handle passed in
787 *
788 * If the function fails an appropriate status will be returned
789 * and the contents of the callers buffer is undefined.
790 *
791 * Note: Parameters guaranteed valid by caller
792 *
793 **/

795 ACPI_STATUS
796 AcpiRsSetSrsMethodData (
797 ACPI_NAMESPACE_NODE *Node,
798 ACPI_BUFFER *InBuffer)
799 {
800 ACPI_EVALUATE_INFO *Info;
801 ACPI_OPERAND_OBJECT *Args[2];
802 ACPI_STATUS Status;

new/usr/src/common/acpica/components/resources/rsutils.c 6

803 ACPI_BUFFER Buffer;

806 ACPI_FUNCTION_TRACE (RsSetSrsMethodData);

809 /* Allocate and initialize the evaluation information block */

811 Info = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_EVALUATE_INFO));
812 if (!Info)
813 {
814 return_ACPI_STATUS (AE_NO_MEMORY);
815 }

817 Info->PrefixNode = Node;
818 Info->RelativePathname = METHOD_NAME__SRS;
753 Info->Pathname = METHOD_NAME__SRS;
819 Info->Parameters = Args;
820 Info->Flags = ACPI_IGNORE_RETURN_VALUE;

822 /*
823 * The InBuffer parameter will point to a linked list of
824 * resource parameters. It needs to be formatted into a
825 * byte stream to be sent in as an input parameter to _SRS
826 *
827 * Convert the linked list into a byte stream
828 */
829 Buffer.Length = ACPI_ALLOCATE_LOCAL_BUFFER;
830 Status = AcpiRsCreateAmlResources (InBuffer, &Buffer);
765 Status = AcpiRsCreateAmlResources (InBuffer->Pointer, &Buffer);
831 if (ACPI_FAILURE (Status))
832 {
833 goto Cleanup;
834 }

836 /* Create and initialize the method parameter object */

838 Args[0] = AcpiUtCreateInternalObject (ACPI_TYPE_BUFFER);
839 if (!Args[0])
840 {
841 /*
842 * Must free the buffer allocated above (otherwise it is freed
843 * later)
844 */
845 ACPI_FREE (Buffer.Pointer);
846 Status = AE_NO_MEMORY;
847 goto Cleanup;
848 }

850 Args[0]->Buffer.Length = (UINT32) Buffer.Length;
851 Args[0]->Buffer.Pointer = Buffer.Pointer;
852 Args[0]->Common.Flags = AOPOBJ_DATA_VALID;
853 Args[1] = NULL;

855 /* Execute the method, no return value is expected */

857 Status = AcpiNsEvaluate (Info);

859 /* Clean up and return the status from AcpiNsEvaluate */

861 AcpiUtRemoveReference (Args[0]);

863 Cleanup:
864 ACPI_FREE (Info);
865 return_ACPI_STATUS (Status);
866 }

new/usr/src/common/acpica/components/resources/rsutils.c 7

new/usr/src/common/acpica/components/resources/rsxface.c 1

**
 22711 Thu Dec 26 13:49:32 2013
new/usr/src/common/acpica/components/resources/rsxface.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: rsxface - Public interfaces to the resource manager
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __RSXFACE_C__
46 #define EXPORT_ACPI_INTERFACES

48 #include "acpi.h"
49 #include "accommon.h"
50 #include "acresrc.h"
51 #include "acnamesp.h"

53 #define _COMPONENT ACPI_RESOURCES
54 ACPI_MODULE_NAME ("rsxface")

56 /* Local macros for 16,32-bit to 64-bit conversion */

58 #define ACPI_COPY_FIELD(Out, In, Field) ((Out)->Field = (In)->Field)

new/usr/src/common/acpica/components/resources/rsxface.c 2

59 #define ACPI_COPY_ADDRESS(Out, In) \
60 ACPI_COPY_FIELD(Out, In, ResourceType); \
61 ACPI_COPY_FIELD(Out, In, ProducerConsumer); \
62 ACPI_COPY_FIELD(Out, In, Decode); \
63 ACPI_COPY_FIELD(Out, In, MinAddressFixed); \
64 ACPI_COPY_FIELD(Out, In, MaxAddressFixed); \
65 ACPI_COPY_FIELD(Out, In, Info); \
66 ACPI_COPY_FIELD(Out, In, Granularity); \
67 ACPI_COPY_FIELD(Out, In, Minimum); \
68 ACPI_COPY_FIELD(Out, In, Maximum); \
69 ACPI_COPY_FIELD(Out, In, TranslationOffset); \
70 ACPI_COPY_FIELD(Out, In, AddressLength); \
71 ACPI_COPY_FIELD(Out, In, ResourceSource);

74 /* Local prototypes */

76 static ACPI_STATUS
77 AcpiRsMatchVendorResource (
78 ACPI_RESOURCE *Resource,
79 void *Context);

81 static ACPI_STATUS
82 AcpiRsValidateParameters (
83 ACPI_HANDLE DeviceHandle,
84 ACPI_BUFFER *Buffer,
85 ACPI_NAMESPACE_NODE **ReturnNode);

88 /***
89 *
90 * FUNCTION: AcpiRsValidateParameters
91 *
92 * PARAMETERS: DeviceHandle - Handle to a device
93 * Buffer - Pointer to a data buffer
94 * ReturnNode - Pointer to where the device node is returned
95 *
96 * RETURN: Status
97 *
98 * DESCRIPTION: Common parameter validation for resource interfaces
99 *
100 **/

102 static ACPI_STATUS
103 AcpiRsValidateParameters (
104 ACPI_HANDLE DeviceHandle,
105 ACPI_BUFFER *Buffer,
106 ACPI_NAMESPACE_NODE **ReturnNode)
107 {
108 ACPI_STATUS Status;
109 ACPI_NAMESPACE_NODE *Node;

112 ACPI_FUNCTION_TRACE (RsValidateParameters);

115 /*
116 * Must have a valid handle to an ACPI device
117 */
118 if (!DeviceHandle)
119 {
120 return_ACPI_STATUS (AE_BAD_PARAMETER);
121 }

123 Node = AcpiNsValidateHandle (DeviceHandle);
124 if (!Node)

new/usr/src/common/acpica/components/resources/rsxface.c 3

125 {
126 return_ACPI_STATUS (AE_BAD_PARAMETER);
127 }

129 if (Node->Type != ACPI_TYPE_DEVICE)
130 {
131 return_ACPI_STATUS (AE_TYPE);
132 }

134 /*
135 * Validate the user buffer object
136 *
137 * if there is a non-zero buffer length we also need a valid pointer in
138 * the buffer. If it’s a zero buffer length, we’ll be returning the
139 * needed buffer size (later), so keep going.
140 */
141 Status = AcpiUtValidateBuffer (Buffer);
142 if (ACPI_FAILURE (Status))
143 {
144 return_ACPI_STATUS (Status);
145 }

147 *ReturnNode = Node;
148 return_ACPI_STATUS (AE_OK);
149 }

______unchanged_portion_omitted_

352 ACPI_EXPORT_SYMBOL (AcpiSetCurrentResources)

355 /***
356 *
357 * FUNCTION: AcpiGetEventResources
358 *
359 * PARAMETERS: DeviceHandle - Handle to the device object for the
360 * device we are getting resources
361 * InBuffer - Pointer to a buffer containing the
362 * resources to be set for the device
363 *
364 * RETURN: Status
365 *
366 * DESCRIPTION: This function is called to get the event resources for a
367 * specific device. The caller must first acquire a handle for
368 * the desired device. The resource data is passed to the routine
369 * the buffer pointed to by the InBuffer variable. Uses the
370 * _AEI method.
371 *
372 **/

374 ACPI_STATUS
375 AcpiGetEventResources (
376 ACPI_HANDLE DeviceHandle,
377 ACPI_BUFFER *RetBuffer)
378 {
379 ACPI_STATUS Status;
380 ACPI_NAMESPACE_NODE *Node;

383 ACPI_FUNCTION_TRACE (AcpiGetEventResources);

386 /* Validate parameters then dispatch to internal routine */

388 Status = AcpiRsValidateParameters (DeviceHandle, RetBuffer, &Node);
389 if (ACPI_FAILURE (Status))
390 {

new/usr/src/common/acpica/components/resources/rsxface.c 4

391 return_ACPI_STATUS (Status);
392 }

394 Status = AcpiRsGetAeiMethodData (Node, RetBuffer);
395 return_ACPI_STATUS (Status);
396 }

398 ACPI_EXPORT_SYMBOL (AcpiGetEventResources)

401 /**
402 *
403 * FUNCTION: AcpiResourceToAddress64
404 *
405 * PARAMETERS: Resource - Pointer to a resource
406 * Out - Pointer to the users’s return buffer
407 * (a struct acpi_resource_address64)
408 *
409 * RETURN: Status
410 *
411 * DESCRIPTION: If the resource is an address16, address32, or address64,
412 * copy it to the address64 return buffer. This saves the
413 * caller from having to duplicate code for different-sized
414 * addresses.
415 *
416 **/

418 ACPI_STATUS
419 AcpiResourceToAddress64 (
420 ACPI_RESOURCE *Resource,
421 ACPI_RESOURCE_ADDRESS64 *Out)
422 {
423 ACPI_RESOURCE_ADDRESS16 *Address16;
424 ACPI_RESOURCE_ADDRESS32 *Address32;

427 if (!Resource || !Out)
428 {
429 return (AE_BAD_PARAMETER);
430 }

432 /* Convert 16 or 32 address descriptor to 64 */

434 switch (Resource->Type)
435 {
436 case ACPI_RESOURCE_TYPE_ADDRESS16:

438 Address16 = ACPI_CAST_PTR (ACPI_RESOURCE_ADDRESS16, &Resource->Data);
439 ACPI_COPY_ADDRESS (Out, Address16);
440 break;

442 case ACPI_RESOURCE_TYPE_ADDRESS32:

444 Address32 = ACPI_CAST_PTR (ACPI_RESOURCE_ADDRESS32, &Resource->Data);
445 ACPI_COPY_ADDRESS (Out, Address32);
446 break;

448 case ACPI_RESOURCE_TYPE_ADDRESS64:

450 /* Simple copy for 64 bit source */

452 ACPI_MEMCPY (Out, &Resource->Data, sizeof (ACPI_RESOURCE_ADDRESS64));
453 break;

455 default:

new/usr/src/common/acpica/components/resources/rsxface.c 5

457 return (AE_BAD_PARAMETER);
458 }

460 return (AE_OK);
461 }

463 ACPI_EXPORT_SYMBOL (AcpiResourceToAddress64)

466 /***
467 *
468 * FUNCTION: AcpiGetVendorResource
469 *
470 * PARAMETERS: DeviceHandle - Handle for the parent device object
471 * Name - Method name for the parent resource
472 * (METHOD_NAME__CRS or METHOD_NAME__PRS)
473 * Uuid - Pointer to the UUID to be matched.
474 * includes both subtype and 16-byte UUID
475 * RetBuffer - Where the vendor resource is returned
476 *
477 * RETURN: Status
478 *
479 * DESCRIPTION: Walk a resource template for the specified device to find a
431 * DESCRIPTION: Walk a resource template for the specified evice to find a
480 * vendor-defined resource that matches the supplied UUID and
481 * UUID subtype. Returns a ACPI_RESOURCE of type Vendor.
482 *
483 **/

485 ACPI_STATUS
486 AcpiGetVendorResource (
487 ACPI_HANDLE DeviceHandle,
488 char *Name,
489 ACPI_VENDOR_UUID *Uuid,
490 ACPI_BUFFER *RetBuffer)
491 {
492 ACPI_VENDOR_WALK_INFO Info;
493 ACPI_STATUS Status;

496 /* Other parameters are validated by AcpiWalkResources */

498 if (!Uuid || !RetBuffer)
499 {
500 return (AE_BAD_PARAMETER);
501 }

503 Info.Uuid = Uuid;
504 Info.Buffer = RetBuffer;
505 Info.Status = AE_NOT_EXIST;

507 /* Walk the _CRS or _PRS resource list for this device */

509 Status = AcpiWalkResources (DeviceHandle, Name, AcpiRsMatchVendorResource,
510 &Info);
511 if (ACPI_FAILURE (Status))
512 {
513 return (Status);
514 }

516 return (Info.Status);
517 }

______unchanged_portion_omitted_

589 /***

new/usr/src/common/acpica/components/resources/rsxface.c 6

590 *
591 * FUNCTION: AcpiWalkResourceBuffer
543 * FUNCTION: AcpiWalkResources
592 *
593 * PARAMETERS: Buffer - Formatted buffer returned by one of the
594 * various Get*Resource functions
545 * PARAMETERS: DeviceHandle - Handle to the device object for the
546 * device we are querying
547 * Name - Method name of the resources we want
548 * (METHOD_NAME__CRS or METHOD_NAME__PRS)
595 * UserFunction - Called for each resource
596 * Context - Passed to UserFunction
597 *
598 * RETURN: Status
599 *
600 * DESCRIPTION: Walks the input resource template. The UserFunction is called
601 * once for each resource in the list.
554 * DESCRIPTION: Retrieves the current or possible resource list for the
555 * specified device. The UserFunction is called once for
556 * each resource in the list.
602 *
603 **/

605 ACPI_STATUS
606 AcpiWalkResourceBuffer (
607 ACPI_BUFFER *Buffer,
561 AcpiWalkResources (
562 ACPI_HANDLE DeviceHandle,
563 char *Name,
608 ACPI_WALK_RESOURCE_CALLBACK UserFunction,
609 void *Context)
610 {
611 ACPI_STATUS Status = AE_OK;
567 ACPI_STATUS Status;
568 ACPI_BUFFER Buffer;
612 ACPI_RESOURCE *Resource;
613 ACPI_RESOURCE *ResourceEnd;

616 ACPI_FUNCTION_TRACE (AcpiWalkResourceBuffer);
573 ACPI_FUNCTION_TRACE (AcpiWalkResources);

619 /* Parameter validation */

621 if (!Buffer || !Buffer->Pointer || !UserFunction)
578 if (!DeviceHandle || !UserFunction || !Name ||
579 (!ACPI_COMPARE_NAME (Name, METHOD_NAME__CRS) &&
580 !ACPI_COMPARE_NAME (Name, METHOD_NAME__PRS)))
622 {
623 return_ACPI_STATUS (AE_BAD_PARAMETER);
624 }

626 /* Buffer contains the resource list and length */
585 /* Get the _CRS or _PRS resource list */

628 Resource = ACPI_CAST_PTR (ACPI_RESOURCE, Buffer->Pointer);
629 ResourceEnd = ACPI_ADD_PTR (ACPI_RESOURCE, Buffer->Pointer, Buffer->Length);
587 Buffer.Length = ACPI_ALLOCATE_LOCAL_BUFFER;
588 Status = AcpiRsGetMethodData (DeviceHandle, Name, &Buffer);
589 if (ACPI_FAILURE (Status))
590 {
591 return_ACPI_STATUS (Status);
592 }

594 /* Buffer now contains the resource list */

new/usr/src/common/acpica/components/resources/rsxface.c 7

596 Resource = ACPI_CAST_PTR (ACPI_RESOURCE, Buffer.Pointer);
597 ResourceEnd = ACPI_ADD_PTR (ACPI_RESOURCE, Buffer.Pointer, Buffer.Length);

631 /* Walk the resource list until the EndTag is found (or buffer end) */

633 while (Resource < ResourceEnd)
634 {
635 /* Sanity check the resource type */
603 /* Sanity check the resource */

637 if (Resource->Type > ACPI_RESOURCE_TYPE_MAX)
638 {
639 Status = AE_AML_INVALID_RESOURCE_TYPE;
640 break;
641 }

643 /* Sanity check the length. It must not be zero, or we loop forever */

645 if (!Resource->Length)
646 {
647 return_ACPI_STATUS (AE_AML_BAD_RESOURCE_LENGTH);
648 }

650 /* Invoke the user function, abort on any error returned */

652 Status = UserFunction (Resource, Context);
653 if (ACPI_FAILURE (Status))
654 {
655 if (Status == AE_CTRL_TERMINATE)
656 {
657 /* This is an OK termination by the user function */

659 Status = AE_OK;
660 }
661 break;
662 }

664 /* EndTag indicates end-of-list */

666 if (Resource->Type == ACPI_RESOURCE_TYPE_END_TAG)
667 {
668 break;
669 }

671 /* Get the next resource descriptor */

673 Resource = ACPI_NEXT_RESOURCE (Resource);
634 Resource = ACPI_ADD_PTR (ACPI_RESOURCE, Resource, Resource->Length);
674 }

676 return_ACPI_STATUS (Status);
677 }

679 ACPI_EXPORT_SYMBOL (AcpiWalkResourceBuffer)

682 /***
683 *
684 * FUNCTION: AcpiWalkResources
685 *
686 * PARAMETERS: DeviceHandle - Handle to the device object for the
687 * device we are querying
688 * Name - Method name of the resources we want.
689 * (METHOD_NAME__CRS, METHOD_NAME__PRS, or
690 * METHOD_NAME__AEI)

new/usr/src/common/acpica/components/resources/rsxface.c 8

691 * UserFunction - Called for each resource
692 * Context - Passed to UserFunction
693 *
694 * RETURN: Status
695 *
696 * DESCRIPTION: Retrieves the current or possible resource list for the
697 * specified device. The UserFunction is called once for
698 * each resource in the list.
699 *
700 **/

702 ACPI_STATUS
703 AcpiWalkResources (
704 ACPI_HANDLE DeviceHandle,
705 char *Name,
706 ACPI_WALK_RESOURCE_CALLBACK UserFunction,
707 void *Context)
708 {
709 ACPI_STATUS Status;
710 ACPI_BUFFER Buffer;

713 ACPI_FUNCTION_TRACE (AcpiWalkResources);

716 /* Parameter validation */

718 if (!DeviceHandle || !UserFunction || !Name ||
719 (!ACPI_COMPARE_NAME (Name, METHOD_NAME__CRS) &&
720 !ACPI_COMPARE_NAME (Name, METHOD_NAME__PRS) &&
721 !ACPI_COMPARE_NAME (Name, METHOD_NAME__AEI)))
722 {
723 return_ACPI_STATUS (AE_BAD_PARAMETER);
724 }

726 /* Get the _CRS/_PRS/_AEI resource list */

728 Buffer.Length = ACPI_ALLOCATE_LOCAL_BUFFER;
729 Status = AcpiRsGetMethodData (DeviceHandle, Name, &Buffer);
730 if (ACPI_FAILURE (Status))
731 {
732 return_ACPI_STATUS (Status);
733 }

735 /* Walk the resource list and cleanup */

737 Status = AcpiWalkResourceBuffer (&Buffer, UserFunction, Context);
738 ACPI_FREE (Buffer.Pointer);
739 return_ACPI_STATUS (Status);
740 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/tables/tbfadt.c 1

**
 25213 Thu Dec 26 13:49:33 2013
new/usr/src/common/acpica/components/tables/tbfadt.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: tbfadt - FADT table utilities
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __TBFADT_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "actables.h"

50 #define _COMPONENT ACPI_TABLES
51 ACPI_MODULE_NAME ("tbfadt")

53 /* Local prototypes */

55 static void
56 AcpiTbInitGenericAddress (
57 ACPI_GENERIC_ADDRESS *GenericAddress,
58 UINT8 SpaceId,
59 UINT8 ByteWidth,

new/usr/src/common/acpica/components/tables/tbfadt.c 2

60 UINT64 Address,
61 char *RegisterName);

63 static void
64 AcpiTbConvertFadt (
65 void);

67 static void
68 AcpiTbSetupFadtRegisters (
69 void);

71 static UINT64
72 AcpiTbSelectAddress (
73 char *RegisterName,
74 UINT32 Address32,
75 UINT64 Address64);

78 /* Table for conversion of FADT to common internal format and FADT validation */

80 typedef struct acpi_fadt_info
81 {
82 char *Name;
83 UINT16 Address64;
84 UINT16 Address32;
85 UINT16 Length;
86 UINT8 DefaultLength;
87 UINT8 Type;

89 } ACPI_FADT_INFO;

91 #define ACPI_FADT_OPTIONAL 0
92 #define ACPI_FADT_REQUIRED 1
93 #define ACPI_FADT_SEPARATE_LENGTH 2

95 static ACPI_FADT_INFO FadtInfoTable[] =
96 {
97 {"Pm1aEventBlock",
98 ACPI_FADT_OFFSET (XPm1aEventBlock),
99 ACPI_FADT_OFFSET (Pm1aEventBlock),
100 ACPI_FADT_OFFSET (Pm1EventLength),
101 ACPI_PM1_REGISTER_WIDTH * 2, /* Enable + Status register */
102 ACPI_FADT_REQUIRED},

104 {"Pm1bEventBlock",
105 ACPI_FADT_OFFSET (XPm1bEventBlock),
106 ACPI_FADT_OFFSET (Pm1bEventBlock),
107 ACPI_FADT_OFFSET (Pm1EventLength),
108 ACPI_PM1_REGISTER_WIDTH * 2, /* Enable + Status register */
109 ACPI_FADT_OPTIONAL},

111 {"Pm1aControlBlock",
112 ACPI_FADT_OFFSET (XPm1aControlBlock),
113 ACPI_FADT_OFFSET (Pm1aControlBlock),
114 ACPI_FADT_OFFSET (Pm1ControlLength),
115 ACPI_PM1_REGISTER_WIDTH,
116 ACPI_FADT_REQUIRED},

118 {"Pm1bControlBlock",
119 ACPI_FADT_OFFSET (XPm1bControlBlock),
120 ACPI_FADT_OFFSET (Pm1bControlBlock),
121 ACPI_FADT_OFFSET (Pm1ControlLength),
122 ACPI_PM1_REGISTER_WIDTH,
123 ACPI_FADT_OPTIONAL},

125 {"Pm2ControlBlock",

new/usr/src/common/acpica/components/tables/tbfadt.c 3

126 ACPI_FADT_OFFSET (XPm2ControlBlock),
127 ACPI_FADT_OFFSET (Pm2ControlBlock),
128 ACPI_FADT_OFFSET (Pm2ControlLength),
129 ACPI_PM2_REGISTER_WIDTH,
130 ACPI_FADT_SEPARATE_LENGTH},

132 {"PmTimerBlock",
133 ACPI_FADT_OFFSET (XPmTimerBlock),
134 ACPI_FADT_OFFSET (PmTimerBlock),
135 ACPI_FADT_OFFSET (PmTimerLength),
136 ACPI_PM_TIMER_WIDTH,
137 ACPI_FADT_SEPARATE_LENGTH}, /* ACPI 5.0A: Timer is optional */

139 {"Gpe0Block",
140 ACPI_FADT_OFFSET (XGpe0Block),
141 ACPI_FADT_OFFSET (Gpe0Block),
142 ACPI_FADT_OFFSET (Gpe0BlockLength),
143 0,
144 ACPI_FADT_SEPARATE_LENGTH},

146 {"Gpe1Block",
147 ACPI_FADT_OFFSET (XGpe1Block),
148 ACPI_FADT_OFFSET (Gpe1Block),
149 ACPI_FADT_OFFSET (Gpe1BlockLength),
150 0,
151 ACPI_FADT_SEPARATE_LENGTH}
152 };

154 #define ACPI_FADT_INFO_ENTRIES \
155 (sizeof (FadtInfoTable) / sizeof (ACPI_FADT_INFO))

158 /* Table used to split Event Blocks into separate status/enable registers */

160 typedef struct acpi_fadt_pm_info
161 {
162 ACPI_GENERIC_ADDRESS *Target;
163 UINT16 Source;
164 UINT8 RegisterNum;

166 } ACPI_FADT_PM_INFO;

168 static ACPI_FADT_PM_INFO FadtPmInfoTable[] =
169 {
170 {&AcpiGbl_XPm1aStatus,
171 ACPI_FADT_OFFSET (XPm1aEventBlock),
172 0},

174 {&AcpiGbl_XPm1aEnable,
175 ACPI_FADT_OFFSET (XPm1aEventBlock),
176 1},

178 {&AcpiGbl_XPm1bStatus,
179 ACPI_FADT_OFFSET (XPm1bEventBlock),
180 0},

182 {&AcpiGbl_XPm1bEnable,
183 ACPI_FADT_OFFSET (XPm1bEventBlock),
184 1}
185 };

187 #define ACPI_FADT_PM_INFO_ENTRIES \
188 (sizeof (FadtPmInfoTable) / sizeof (ACPI_FADT_PM_INFO))

191 /***

new/usr/src/common/acpica/components/tables/tbfadt.c 4

192 *
193 * FUNCTION: AcpiTbInitGenericAddress
194 *
195 * PARAMETERS: GenericAddress - GAS struct to be initialized
196 * SpaceId - ACPI Space ID for this register
197 * ByteWidth - Width of this register
198 * Address - Address of the register
199 * RegisterName - ASCII name of the ACPI register
200 *
201 * RETURN: None
202 *
203 * DESCRIPTION: Initialize a Generic Address Structure (GAS)
204 * See the ACPI specification for a full description and
205 * definition of this structure.
206 *
207 **/

209 static void
210 AcpiTbInitGenericAddress (
211 ACPI_GENERIC_ADDRESS *GenericAddress,
212 UINT8 SpaceId,
213 UINT8 ByteWidth,
214 UINT64 Address,
215 char *RegisterName)
216 {
217 UINT8 BitWidth;

220 /* Bit width field in the GAS is only one byte long, 255 max */

222 BitWidth = (UINT8) (ByteWidth * 8);

224 if (ByteWidth > 31) /* (31*8)=248 */
225 {
226 ACPI_ERROR ((AE_INFO,
227 "%s - 32-bit FADT register is too long (%u bytes, %u bits) "
228 "to convert to GAS struct - 255 bits max, truncating",
229 RegisterName, ByteWidth, (ByteWidth * 8)));

231 BitWidth = 255;
232 }

234 /*
235 * The 64-bit Address field is non-aligned in the byte packed
236 * GAS struct.
237 */
238 ACPI_MOVE_64_TO_64 (&GenericAddress->Address, &Address);

240 /* All other fields are byte-wide */

242 GenericAddress->SpaceId = SpaceId;
243 GenericAddress->BitWidth = BitWidth;
244 GenericAddress->BitOffset = 0;
245 GenericAddress->AccessWidth = 0; /* Access width ANY */
246 }

249 /***
250 *
251 * FUNCTION: AcpiTbSelectAddress
252 *
253 * PARAMETERS: RegisterName - ASCII name of the ACPI register
254 * Address32 - 32-bit address of the register
255 * Address64 - 64-bit address of the register
256 *
257 * RETURN: The resolved 64-bit address

new/usr/src/common/acpica/components/tables/tbfadt.c 5

258 *
259 * DESCRIPTION: Select between 32-bit and 64-bit versions of addresses within
260 * the FADT. Used for the FACS and DSDT addresses.
261 *
262 * NOTES:
263 *
264 * Check for FACS and DSDT address mismatches. An address mismatch between
265 * the 32-bit and 64-bit address fields (FIRMWARE_CTRL/X_FIRMWARE_CTRL and
266 * DSDT/X_DSDT) could be a corrupted address field or it might indicate
267 * the presence of two FACS or two DSDT tables.
268 *
269 * November 2013:
270 * By default, as per the ACPICA specification, a valid 64-bit address is
271 * used regardless of the value of the 32-bit address. However, this
272 * behavior can be overridden via the AcpiGbl_Use32BitFadtAddresses flag.
273 *
274 **/

276 static UINT64
277 AcpiTbSelectAddress (
278 char *RegisterName,
279 UINT32 Address32,
280 UINT64 Address64)
281 {

283 if (!Address64)
284 {
285 /* 64-bit address is zero, use 32-bit address */

287 return ((UINT64) Address32);
288 }

290 if (Address32 &&
291 (Address64 != (UINT64) Address32))
292 {
293 /* Address mismatch between 32-bit and 64-bit versions */

295 ACPI_BIOS_WARNING ((AE_INFO,
296 "32/64X %s address mismatch in FADT: "
297 "0x%8.8X/0x%8.8X%8.8X, using %u-bit address",
298 RegisterName, Address32, ACPI_FORMAT_UINT64 (Address64),
299 AcpiGbl_Use32BitFadtAddresses ? 32 : 64));

301 /* 32-bit address override */

303 if (AcpiGbl_Use32BitFadtAddresses)
304 {
305 return ((UINT64) Address32);
306 }
307 }

309 /* Default is to use the 64-bit address */

311 return (Address64);
312 }

315 /***
316 *
317 * FUNCTION: AcpiTbParseFadt
318 *
319 * PARAMETERS: TableIndex - Index for the FADT
320 *
321 * RETURN: None
322 *
323 * DESCRIPTION: Initialize the FADT, DSDT and FACS tables

new/usr/src/common/acpica/components/tables/tbfadt.c 6

324 * (FADT contains the addresses of the DSDT and FACS)
325 *
326 **/

328 void
329 AcpiTbParseFadt (
330 UINT32 TableIndex)
331 {
332 UINT32 Length;
333 ACPI_TABLE_HEADER *Table;

336 /*
337 * The FADT has multiple versions with different lengths,
338 * and it contains pointers to both the DSDT and FACS tables.
339 *
340 * Get a local copy of the FADT and convert it to a common format
341 * Map entire FADT, assumed to be smaller than one page.
342 */
343 Length = AcpiGbl_RootTableList.Tables[TableIndex].Length;

345 Table = AcpiOsMapMemory (
346 AcpiGbl_RootTableList.Tables[TableIndex].Address, Length);
347 if (!Table)
348 {
349 return;
350 }

352 /*
353 * Validate the FADT checksum before we copy the table. Ignore
354 * checksum error as we want to try to get the DSDT and FACS.
355 */
356 (void) AcpiTbVerifyChecksum (Table, Length);

358 /* Create a local copy of the FADT in common ACPI 2.0+ format */

360 AcpiTbCreateLocalFadt (Table, Length);

362 /* All done with the real FADT, unmap it */

364 AcpiOsUnmapMemory (Table, Length);

366 /* Obtain the DSDT and FACS tables via their addresses within the FADT */

368 AcpiTbInstallTable ((ACPI_PHYSICAL_ADDRESS) AcpiGbl_FADT.XDsdt,
369 ACPI_SIG_DSDT, ACPI_TABLE_INDEX_DSDT);

371 /* If Hardware Reduced flag is set, there is no FACS */

373 if (!AcpiGbl_ReducedHardware)
374 {
375 AcpiTbInstallTable ((ACPI_PHYSICAL_ADDRESS) AcpiGbl_FADT.XFacs,
376 ACPI_SIG_FACS, ACPI_TABLE_INDEX_FACS);
377 }
378 }

381 /***
382 *
383 * FUNCTION: AcpiTbCreateLocalFadt
384 *
385 * PARAMETERS: Table - Pointer to BIOS FADT
386 * Length - Length of the table
387 *
388 * RETURN: None
389 *

new/usr/src/common/acpica/components/tables/tbfadt.c 7

390 * DESCRIPTION: Get a local copy of the FADT and convert it to a common format.
391 * Performs validation on some important FADT fields.
392 *
393 * NOTE: We create a local copy of the FADT regardless of the version.
394 *
395 **/

397 void
398 AcpiTbCreateLocalFadt (
399 ACPI_TABLE_HEADER *Table,
400 UINT32 Length)
401 {

403 /*
404 * Check if the FADT is larger than the largest table that we expect
405 * (the ACPI 5.0 version). If so, truncate the table, and issue
406 * a warning.
407 */
408 if (Length > sizeof (ACPI_TABLE_FADT))
409 {
410 ACPI_BIOS_WARNING ((AE_INFO,
411 "FADT (revision %u) is longer than ACPI 5.0 version, "
412 "truncating length %u to %u",
413 Table->Revision, Length, (UINT32) sizeof (ACPI_TABLE_FADT)));
414 }

416 /* Clear the entire local FADT */

418 ACPI_MEMSET (&AcpiGbl_FADT, 0, sizeof (ACPI_TABLE_FADT));

420 /* Copy the original FADT, up to sizeof (ACPI_TABLE_FADT) */

422 ACPI_MEMCPY (&AcpiGbl_FADT, Table,
423 ACPI_MIN (Length, sizeof (ACPI_TABLE_FADT)));

425 /* Take a copy of the Hardware Reduced flag */

427 AcpiGbl_ReducedHardware = FALSE;
428 if (AcpiGbl_FADT.Flags & ACPI_FADT_HW_REDUCED)
429 {
430 AcpiGbl_ReducedHardware = TRUE;
431 }

433 /* Convert the local copy of the FADT to the common internal format */

435 AcpiTbConvertFadt ();

437 /* Initialize the global ACPI register structures */

439 AcpiTbSetupFadtRegisters ();
440 }

443 /***
444 *
445 * FUNCTION: AcpiTbConvertFadt
446 *
447 * PARAMETERS: None - AcpiGbl_FADT is used.
448 *
449 * RETURN: None
450 *
451 * DESCRIPTION: Converts all versions of the FADT to a common internal format.
452 * Expand 32-bit addresses to 64-bit as necessary. Also validate
453 * important fields within the FADT.
454 *
455 * NOTE: AcpiGbl_FADT must be of size (ACPI_TABLE_FADT), and must

new/usr/src/common/acpica/components/tables/tbfadt.c 8

456 * contain a copy of the actual BIOS-provided FADT.
457 *
458 * Notes on 64-bit register addresses:
459 *
460 * After this FADT conversion, later ACPICA code will only use the 64-bit "X"
461 * fields of the FADT for all ACPI register addresses.
462 *
463 * The 64-bit X fields are optional extensions to the original 32-bit FADT
464 * V1.0 fields. Even if they are present in the FADT, they are optional and
465 * are unused if the BIOS sets them to zero. Therefore, we must copy/expand
466 * 32-bit V1.0 fields to the 64-bit X fields if the the 64-bit X field is
467 * originally zero.
468 *
469 * For ACPI 1.0 FADTs (that contain no 64-bit addresses), all 32-bit address
470 * fields are expanded to the corresponding 64-bit X fields in the internal
471 * common FADT.
472 *
473 * For ACPI 2.0+ FADTs, all valid (non-zero) 32-bit address fields are expanded
474 * to the corresponding 64-bit X fields, if the 64-bit field is originally
475 * zero. Adhering to the ACPI specification, we completely ignore the 32-bit
476 * field if the 64-bit field is valid, regardless of whether the host OS is
477 * 32-bit or 64-bit.
478 *
479 * Possible additional checks:
480 * (AcpiGbl_FADT.Pm1EventLength >= 4)
481 * (AcpiGbl_FADT.Pm1ControlLength >= 2)
482 * (AcpiGbl_FADT.PmTimerLength >= 4)
483 * Gpe block lengths must be multiple of 2
484 *
485 **/

487 static void
488 AcpiTbConvertFadt (
489 void)
490 {
491 char *Name;
492 ACPI_GENERIC_ADDRESS *Address64;
493 UINT32 Address32;
494 UINT8 Length;
495 UINT32 i;

498 /*
499 * For ACPI 1.0 FADTs (revision 1 or 2), ensure that reserved fields which
500 * should be zero are indeed zero. This will workaround BIOSs that
501 * inadvertently place values in these fields.
502 *
503 * The ACPI 1.0 reserved fields that will be zeroed are the bytes located
504 * at offset 45, 55, 95, and the word located at offset 109, 110.
505 *
506 * Note: The FADT revision value is unreliable. Only the length can be
507 * trusted.
508 */
509 if (AcpiGbl_FADT.Header.Length <= ACPI_FADT_V2_SIZE)
510 {
511 AcpiGbl_FADT.PreferredProfile = 0;
512 AcpiGbl_FADT.PstateControl = 0;
513 AcpiGbl_FADT.CstControl = 0;
514 AcpiGbl_FADT.BootFlags = 0;
515 }

517 /*
518 * Now we can update the local FADT length to the length of the
519 * current FADT version as defined by the ACPI specification.
520 * Thus, we will have a common FADT internally.
521 */

new/usr/src/common/acpica/components/tables/tbfadt.c 9

522 AcpiGbl_FADT.Header.Length = sizeof (ACPI_TABLE_FADT);

524 /*
525 * Expand the 32-bit FACS and DSDT addresses to 64-bit as necessary.
526 * Later ACPICA code will always use the X 64-bit field.
527 */
528 AcpiGbl_FADT.XFacs = AcpiTbSelectAddress ("FACS",
529 AcpiGbl_FADT.Facs, AcpiGbl_FADT.XFacs);

531 AcpiGbl_FADT.XDsdt = AcpiTbSelectAddress ("DSDT",
532 AcpiGbl_FADT.Dsdt, AcpiGbl_FADT.XDsdt);

534 /* If Hardware Reduced flag is set, we are all done */

536 if (AcpiGbl_ReducedHardware)
537 {
538 return;
539 }

541 /* Examine all of the 64-bit extended address fields (X fields) */

543 for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++)
544 {
545 /*
546 * Get the 32-bit and 64-bit addresses, as well as the register
547 * length and register name.
548 */
549 Address32 = *ACPI_ADD_PTR (UINT32,
550 &AcpiGbl_FADT, FadtInfoTable[i].Address32);

552 Address64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS,
553 &AcpiGbl_FADT, FadtInfoTable[i].Address64);

555 Length = *ACPI_ADD_PTR (UINT8,
556 &AcpiGbl_FADT, FadtInfoTable[i].Length);

558 Name = FadtInfoTable[i].Name;

560 /*
561 * Expand the ACPI 1.0 32-bit addresses to the ACPI 2.0 64-bit "X"
562 * generic address structures as necessary. Later code will always use
563 * the 64-bit address structures.
564 *
565 * November 2013:
566 * Now always use the 64-bit address if it is valid (non-zero), in
567 * accordance with the ACPI specification which states that a 64-bit
568 * address supersedes the 32-bit version. This behavior can be
569 * overridden by the AcpiGbl_Use32BitFadtAddresses flag.
570 *
571 * During 64-bit address construction and verification,
572 * these cases are handled:
573 *
574 * Address32 zero, Address64 [don’t care] - Use Address64
575 *
576 * Address32 non-zero, Address64 zero - Copy/use Address32
577 * Address32 non-zero == Address64 non-zero - Use Address64
578 * Address32 non-zero != Address64 non-zero - Warning, use Address64
579 *
580 * Override: if AcpiGbl_Use32BitFadtAddresses is TRUE, and:
581 * Address32 non-zero != Address64 non-zero - Warning, copy/use Address3
582 *
583 * Note: SpaceId is always I/O for 32-bit legacy address fields
584 */
585 if (Address32)
586 {
587 if (!Address64->Address)

new/usr/src/common/acpica/components/tables/tbfadt.c 10

588 {
589 /* 64-bit address is zero, use 32-bit address */

591 AcpiTbInitGenericAddress (Address64,
592 ACPI_ADR_SPACE_SYSTEM_IO,
593 *ACPI_ADD_PTR (UINT8, &AcpiGbl_FADT,
594 FadtInfoTable[i].Length),
595 (UINT64) Address32, Name);
596 }
597 else if (Address64->Address != (UINT64) Address32)
598 {
599 /* Address mismatch */

601 ACPI_BIOS_WARNING ((AE_INFO,
602 "32/64X address mismatch in FADT/%s: "
603 "0x%8.8X/0x%8.8X%8.8X, using %u-bit address",
604 Name, Address32,
605 ACPI_FORMAT_UINT64 (Address64->Address),
606 AcpiGbl_Use32BitFadtAddresses ? 32 : 64));

608 if (AcpiGbl_Use32BitFadtAddresses)
609 {
610 /* 32-bit address override */

612 AcpiTbInitGenericAddress (Address64,
613 ACPI_ADR_SPACE_SYSTEM_IO,
614 *ACPI_ADD_PTR (UINT8, &AcpiGbl_FADT,
615 FadtInfoTable[i].Length),
616 (UINT64) Address32, Name);
617 }
618 }
619 }

621 /*
622 * For each extended field, check for length mismatch between the
623 * legacy length field and the corresponding 64-bit X length field.
624 * Note: If the legacy length field is > 0xFF bits, ignore this
625 * check. (GPE registers can be larger than the 64-bit GAS structure
626 * can accomodate, 0xFF bits).
627 */
628 if (Address64->Address &&
629 (ACPI_MUL_8 (Length) <= ACPI_UINT8_MAX) &&
630 (Address64->BitWidth != ACPI_MUL_8 (Length)))
631 {
632 ACPI_BIOS_WARNING ((AE_INFO,
633 "32/64X length mismatch in FADT/%s: %u/%u",
634 Name, ACPI_MUL_8 (Length), Address64->BitWidth));
635 }

637 if (FadtInfoTable[i].Type & ACPI_FADT_REQUIRED)
638 {
639 /*
640 * Field is required (PM1aEvent, PM1aControl).
641 * Both the address and length must be non-zero.
642 */
643 if (!Address64->Address || !Length)
644 {
645 ACPI_BIOS_ERROR ((AE_INFO,
646 "Required FADT field %s has zero address and/or length: "
647 "0x%8.8X%8.8X/0x%X",
648 Name, ACPI_FORMAT_UINT64 (Address64->Address), Length));
649 }
650 }
651 else if (FadtInfoTable[i].Type & ACPI_FADT_SEPARATE_LENGTH)
652 {
653 /*

new/usr/src/common/acpica/components/tables/tbfadt.c 11

654 * Field is optional (PM2Control, GPE0, GPE1) AND has its own
655 * length field. If present, both the address and length must
656 * be valid.
657 */
658 if ((Address64->Address && !Length) ||
659 (!Address64->Address && Length))
660 {
661 ACPI_BIOS_WARNING ((AE_INFO,
662 "Optional FADT field %s has zero address or length: "
663 "0x%8.8X%8.8X/0x%X",
664 Name, ACPI_FORMAT_UINT64 (Address64->Address), Length));
665 }
666 }
667 }
668 }

671 /***
672 *
673 * FUNCTION: AcpiTbSetupFadtRegisters
674 *
675 * PARAMETERS: None, uses AcpiGbl_FADT.
676 *
677 * RETURN: None
678 *
679 * DESCRIPTION: Initialize global ACPI PM1 register definitions. Optionally,
680 * force FADT register definitions to their default lengths.
681 *
682 **/

684 static void
685 AcpiTbSetupFadtRegisters (
686 void)
687 {
688 ACPI_GENERIC_ADDRESS *Target64;
689 ACPI_GENERIC_ADDRESS *Source64;
690 UINT8 Pm1RegisterByteWidth;
691 UINT32 i;

694 /*
695 * Optionally check all register lengths against the default values and
696 * update them if they are incorrect.
697 */
698 if (AcpiGbl_UseDefaultRegisterWidths)
699 {
700 for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++)
701 {
702 Target64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS, &AcpiGbl_FADT,
703 FadtInfoTable[i].Address64);

705 /*
706 * If a valid register (Address != 0) and the (DefaultLength > 0)
707 * (Not a GPE register), then check the width against the default.
708 */
709 if ((Target64->Address) &&
710 (FadtInfoTable[i].DefaultLength > 0) &&
711 (FadtInfoTable[i].DefaultLength != Target64->BitWidth))
712 {
713 ACPI_BIOS_WARNING ((AE_INFO,
714 "Invalid length for FADT/%s: %u, using default %u",
715 FadtInfoTable[i].Name, Target64->BitWidth,
716 FadtInfoTable[i].DefaultLength));

718 /* Incorrect size, set width to the default */

new/usr/src/common/acpica/components/tables/tbfadt.c 12

720 Target64->BitWidth = FadtInfoTable[i].DefaultLength;
721 }
722 }
723 }

725 /*
726 * Get the length of the individual PM1 registers (enable and status).
727 * Each register is defined to be (event block length / 2). Extra divide
728 * by 8 converts bits to bytes.
729 */
730 Pm1RegisterByteWidth = (UINT8)
731 ACPI_DIV_16 (AcpiGbl_FADT.XPm1aEventBlock.BitWidth);

733 /*
734 * Calculate separate GAS structs for the PM1x (A/B) Status and Enable
735 * registers. These addresses do not appear (directly) in the FADT, so it
736 * is useful to pre-calculate them from the PM1 Event Block definitions.
737 *
738 * The PM event blocks are split into two register blocks, first is the
739 * PM Status Register block, followed immediately by the PM Enable
740 * Register block. Each is of length (Pm1EventLength/2)
741 *
742 * Note: The PM1A event block is required by the ACPI specification.
743 * However, the PM1B event block is optional and is rarely, if ever,
744 * used.
745 */

747 for (i = 0; i < ACPI_FADT_PM_INFO_ENTRIES; i++)
748 {
749 Source64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS, &AcpiGbl_FADT,
750 FadtPmInfoTable[i].Source);

752 if (Source64->Address)
753 {
754 AcpiTbInitGenericAddress (FadtPmInfoTable[i].Target,
755 Source64->SpaceId, Pm1RegisterByteWidth,
756 Source64->Address +
757 (FadtPmInfoTable[i].RegisterNum * Pm1RegisterByteWidth),
758 "PmRegisters");
759 }
760 }
761 }

new/usr/src/common/acpica/components/tables/tbfind.c 1

**
 5211 Thu Dec 26 13:49:33 2013
new/usr/src/common/acpica/components/tables/tbfind.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: tbfind - find table
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __TBFIND_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "actables.h"

50 #define _COMPONENT ACPI_TABLES
51 ACPI_MODULE_NAME ("tbfind")

54 /***
55 *
56 * FUNCTION: AcpiTbFindTable
57 *
58 * PARAMETERS: Signature - String with ACPI table signature
59 * OemId - String with the table OEM ID

new/usr/src/common/acpica/components/tables/tbfind.c 2

60 * OemTableId - String with the OEM Table ID
61 * TableIndex - Where the table index is returned
62 *
63 * RETURN: Status and table index
64 *
65 * DESCRIPTION: Find an ACPI table (in the RSDT/XSDT) that matches the
66 * Signature, OEM ID and OEM Table ID. Returns an index that can
67 * be used to get the table header or entire table.
68 *
69 **/

71 ACPI_STATUS
72 AcpiTbFindTable (
73 char *Signature,
74 char *OemId,
75 char *OemTableId,
76 UINT32 *TableIndex)
77 {
78 UINT32 i;
79 ACPI_STATUS Status;
80 ACPI_TABLE_HEADER Header;

83 ACPI_FUNCTION_TRACE (TbFindTable);

86 /* Normalize the input strings */

88 ACPI_MEMSET (&Header, 0, sizeof (ACPI_TABLE_HEADER));
89 ACPI_MOVE_NAME (Header.Signature, Signature);
89 ACPI_STRNCPY (Header.Signature, Signature, ACPI_NAME_SIZE);
90 ACPI_STRNCPY (Header.OemId, OemId, ACPI_OEM_ID_SIZE);
91 ACPI_STRNCPY (Header.OemTableId, OemTableId, ACPI_OEM_TABLE_ID_SIZE);

93 /* Search for the table */

95 for (i = 0; i < AcpiGbl_RootTableList.CurrentTableCount; ++i)
96 {
97 if (ACPI_MEMCMP (&(AcpiGbl_RootTableList.Tables[i].Signature),
98 Header.Signature, ACPI_NAME_SIZE))
99 {
100 /* Not the requested table */

102 continue;
103 }

105 /* Table with matching signature has been found */

107 if (!AcpiGbl_RootTableList.Tables[i].Pointer)
108 {
109 /* Table is not currently mapped, map it */

111 Status = AcpiTbVerifyTable (&AcpiGbl_RootTableList.Tables[i]);
112 if (ACPI_FAILURE (Status))
113 {
114 return_ACPI_STATUS (Status);
115 }

117 if (!AcpiGbl_RootTableList.Tables[i].Pointer)
118 {
119 continue;
120 }
121 }

123 /* Check for table match on all IDs */

new/usr/src/common/acpica/components/tables/tbfind.c 3

125 if (!ACPI_MEMCMP (AcpiGbl_RootTableList.Tables[i].Pointer->Signature,
126 Header.Signature, ACPI_NAME_SIZE) &&
127 (!OemId[0] ||
128 !ACPI_MEMCMP (AcpiGbl_RootTableList.Tables[i].Pointer->OemId,
129 Header.OemId, ACPI_OEM_ID_SIZE)) &&
130 (!OemTableId[0] ||
131 !ACPI_MEMCMP (AcpiGbl_RootTableList.Tables[i].Pointer->OemTableId,
132 Header.OemTableId, ACPI_OEM_TABLE_ID_SIZE)))
133 {
134 *TableIndex = i;

136 ACPI_DEBUG_PRINT ((ACPI_DB_TABLES, "Found table [%4.4s]\n",
137 Header.Signature));
138 return_ACPI_STATUS (AE_OK);
139 }
140 }

142 return_ACPI_STATUS (AE_NOT_FOUND);
143 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/tables/tbinstal.c 1

**
 23377 Thu Dec 26 13:49:33 2013
new/usr/src/common/acpica/components/tables/tbinstal.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: tbinstal - ACPI table installation and removal
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __TBINSTAL_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acnamesp.h"
50 #include "actables.h"

53 #define _COMPONENT ACPI_TABLES
54 ACPI_MODULE_NAME ("tbinstal")

57 /**
58 *
59 * FUNCTION: AcpiTbVerifyTable

new/usr/src/common/acpica/components/tables/tbinstal.c 2

60 *
61 * PARAMETERS: TableDesc - table
62 *
63 * RETURN: Status
64 *
65 * DESCRIPTION: this function is called to verify and map table
66 *
67 ***/

69 ACPI_STATUS
70 AcpiTbVerifyTable (
71 ACPI_TABLE_DESC *TableDesc)
72 {
73 ACPI_STATUS Status = AE_OK;

76 ACPI_FUNCTION_TRACE (TbVerifyTable);

79 /* Map the table if necessary */

81 if (!TableDesc->Pointer)
82 {
83 if ((TableDesc->Flags & ACPI_TABLE_ORIGIN_MASK) ==
84 ACPI_TABLE_ORIGIN_MAPPED)
85 {
86 TableDesc->Pointer = AcpiOsMapMemory (
87 TableDesc->Address, TableDesc->Length);
88 }

90 if (!TableDesc->Pointer)
91 {
92 return_ACPI_STATUS (AE_NO_MEMORY);
93 }
94 }

96 /* FACS is the odd table, has no standard ACPI header and no checksum */

98 if (!ACPI_COMPARE_NAME (&TableDesc->Signature, ACPI_SIG_FACS))
99 {
96 /* Always calculate checksum, ignore bad checksum if requested */

98 Status = AcpiTbVerifyChecksum (TableDesc->Pointer, TableDesc->Length);
103 }

100 return_ACPI_STATUS (Status);
101 }

104 /***
105 *
106 * FUNCTION: AcpiTbAddTable
107 *
108 * PARAMETERS: TableDesc - Table descriptor
109 * TableIndex - Where the table index is returned
110 *
111 * RETURN: Status
112 *
113 * DESCRIPTION: This function is called to add an ACPI table. It is used to
114 * dynamically load tables via the Load and LoadTable AML
115 * operators.
116 *
117 **/

119 ACPI_STATUS
120 AcpiTbAddTable (

new/usr/src/common/acpica/components/tables/tbinstal.c 3

121 ACPI_TABLE_DESC *TableDesc,
122 UINT32 *TableIndex)
123 {
124 UINT32 i;
125 ACPI_STATUS Status = AE_OK;
131 ACPI_TABLE_HEADER *OverrideTable = NULL;

128 ACPI_FUNCTION_TRACE (TbAddTable);

131 if (!TableDesc->Pointer)
132 {
133 Status = AcpiTbVerifyTable (TableDesc);
134 if (ACPI_FAILURE (Status) || !TableDesc->Pointer)
135 {
136 return_ACPI_STATUS (Status);
137 }
138 }

140 /*
141 * Validate the incoming table signature.
142 *
143 * 1) Originally, we checked the table signature for "SSDT" or "PSDT".
144 * 2) We added support for OEMx tables, signature "OEM".
145 * 3) Valid tables were encountered with a null signature, so we just
146 * gave up on validating the signature, (05/2008).
147 * 4) We encountered non-AML tables such as the MADT, which caused
148 * interpreter errors and kernel faults. So now, we once again allow
149 * only "SSDT", "OEMx", and now, also a null signature. (05/2011).
150 */
151 if ((TableDesc->Pointer->Signature[0] != 0x00) &&
152 (!ACPI_COMPARE_NAME (TableDesc->Pointer->Signature, ACPI_SIG_SSDT)) &&
153 (ACPI_STRNCMP (TableDesc->Pointer->Signature, "OEM", 3)))
154 {
155 ACPI_BIOS_ERROR ((AE_INFO,
156 "Table has invalid signature [%4.4s] (0x%8.8X), "
157 "must be SSDT or OEMx",
158 AcpiUtValidAcpiName (TableDesc->Pointer->Signature) ?
161 ACPI_ERROR ((AE_INFO,
162 "Table has invalid signature [%4.4s] (0x%8.8X), must be SSDT or OEMx
163 AcpiUtValidAcpiName (*(UINT32 *) TableDesc->Pointer->Signature) ?
159 TableDesc->Pointer->Signature : "????",
160 *(UINT32 *) TableDesc->Pointer->Signature));

162 return_ACPI_STATUS (AE_BAD_SIGNATURE);
163 }

165 (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES);

167 /* Check if table is already registered */

169 for (i = 0; i < AcpiGbl_RootTableList.CurrentTableCount; ++i)
170 {
171 if (!AcpiGbl_RootTableList.Tables[i].Pointer)
172 {
173 Status = AcpiTbVerifyTable (&AcpiGbl_RootTableList.Tables[i]);
174 if (ACPI_FAILURE (Status) ||
175 !AcpiGbl_RootTableList.Tables[i].Pointer)
176 {
177 continue;
178 }
179 }

181 /*
182 * Check for a table match on the entire table length,

new/usr/src/common/acpica/components/tables/tbinstal.c 4

183 * not just the header.
184 */
185 if (TableDesc->Length != AcpiGbl_RootTableList.Tables[i].Length)
186 {
187 continue;
188 }

190 if (ACPI_MEMCMP (TableDesc->Pointer,
191 AcpiGbl_RootTableList.Tables[i].Pointer,
192 AcpiGbl_RootTableList.Tables[i].Length))
193 {
194 continue;
195 }

197 /*
198 * Note: the current mechanism does not unregister a table if it is
199 * dynamically unloaded. The related namespace entries are deleted,
200 * but the table remains in the root table list.
201 *
202 * The assumption here is that the number of different tables that
203 * will be loaded is actually small, and there is minimal overhead
204 * in just keeping the table in case it is needed again.
205 *
206 * If this assumption changes in the future (perhaps on large
207 * machines with many table load/unload operations), tables will
208 * need to be unregistered when they are unloaded, and slots in the
209 * root table list should be reused when empty.
210 */

212 /*
213 * Table is already registered.
214 * We can delete the table that was passed as a parameter.
215 */
216 AcpiTbDeleteTable (TableDesc);
217 *TableIndex = i;

219 if (AcpiGbl_RootTableList.Tables[i].Flags & ACPI_TABLE_IS_LOADED)
220 {
221 /* Table is still loaded, this is an error */

223 Status = AE_ALREADY_EXISTS;
224 goto Release;
225 }
226 else
227 {
228 /* Table was unloaded, allow it to be reloaded */

230 TableDesc->Pointer = AcpiGbl_RootTableList.Tables[i].Pointer;
231 TableDesc->Address = AcpiGbl_RootTableList.Tables[i].Address;
232 Status = AE_OK;
233 goto PrintHeader;
234 }
235 }

237 /*
238 * ACPI Table Override:
239 * Allow the host to override dynamically loaded tables.
240 * NOTE: the table is fully mapped at this point, and the mapping will
241 * be deleted by TbTableOverride if the table is actually overridden.
242 */
243 (void) AcpiTbTableOverride (TableDesc->Pointer, TableDesc);
246 Status = AcpiOsTableOverride (TableDesc->Pointer, &OverrideTable);
247 if (ACPI_SUCCESS (Status) && OverrideTable)
248 {
249 ACPI_INFO ((AE_INFO,
250 "%4.4s @ 0x%p Table override, replaced with:",

new/usr/src/common/acpica/components/tables/tbinstal.c 5

251 TableDesc->Pointer->Signature,
252 ACPI_CAST_PTR (void, TableDesc->Address)));

254 /* We can delete the table that was passed as a parameter */

256 AcpiTbDeleteTable (TableDesc);

258 /* Setup descriptor for the new table */

260 TableDesc->Address = ACPI_PTR_TO_PHYSADDR (OverrideTable);
261 TableDesc->Pointer = OverrideTable;
262 TableDesc->Length = OverrideTable->Length;
263 TableDesc->Flags = ACPI_TABLE_ORIGIN_OVERRIDE;
264 }

245 /* Add the table to the global root table list */

247 Status = AcpiTbStoreTable (TableDesc->Address, TableDesc->Pointer,
248 TableDesc->Length, TableDesc->Flags, TableIndex);
249 if (ACPI_FAILURE (Status))
250 {
251 goto Release;
252 }

254 PrintHeader:
255 AcpiTbPrintTableHeader (TableDesc->Address, TableDesc->Pointer);

257 Release:
258 (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES);
259 return_ACPI_STATUS (Status);
260 }

263 /***
264 *
265 * FUNCTION: AcpiTbTableOverride
266 *
267 * PARAMETERS: TableHeader - Header for the original table
268 * TableDesc - Table descriptor initialized for the
269 * original table. May or may not be mapped.
270 *
271 * RETURN: Pointer to the entire new table. NULL if table not overridden.
272 * If overridden, installs the new table within the input table
273 * descriptor.
274 *
275 * DESCRIPTION: Attempt table override by calling the OSL override functions.
276 * Note: If the table is overridden, then the entire new table
277 * is mapped and returned by this function.
278 *
279 **/

281 ACPI_TABLE_HEADER *
282 AcpiTbTableOverride (
283 ACPI_TABLE_HEADER *TableHeader,
284 ACPI_TABLE_DESC *TableDesc)
285 {
286 ACPI_STATUS Status;
287 ACPI_TABLE_HEADER *NewTable = NULL;
288 ACPI_PHYSICAL_ADDRESS NewAddress = 0;
289 UINT32 NewTableLength = 0;
290 UINT8 NewFlags;
291 char *OverrideType;

294 /* (1) Attempt logical override (returns a logical address) */

new/usr/src/common/acpica/components/tables/tbinstal.c 6

296 Status = AcpiOsTableOverride (TableHeader, &NewTable);
297 if (ACPI_SUCCESS (Status) && NewTable)
298 {
299 NewAddress = ACPI_PTR_TO_PHYSADDR (NewTable);
300 NewTableLength = NewTable->Length;
301 NewFlags = ACPI_TABLE_ORIGIN_OVERRIDE;
302 OverrideType = "Logical";
303 goto FinishOverride;
304 }

306 /* (2) Attempt physical override (returns a physical address) */

308 Status = AcpiOsPhysicalTableOverride (TableHeader,
309 &NewAddress, &NewTableLength);
310 if (ACPI_SUCCESS (Status) && NewAddress && NewTableLength)
311 {
312 /* Map the entire new table */

314 NewTable = AcpiOsMapMemory (NewAddress, NewTableLength);
315 if (!NewTable)
316 {
317 ACPI_EXCEPTION ((AE_INFO, AE_NO_MEMORY,
318 "%4.4s %p Attempted physical table override failed",
319 TableHeader->Signature,
320 ACPI_CAST_PTR (void, TableDesc->Address)));
321 return (NULL);
322 }

324 OverrideType = "Physical";
325 NewFlags = ACPI_TABLE_ORIGIN_MAPPED;
326 goto FinishOverride;
327 }

329 return (NULL); /* There was no override */

332 FinishOverride:

334 ACPI_INFO ((AE_INFO,
335 "%4.4s %p %s table override, new table: %p",
336 TableHeader->Signature,
337 ACPI_CAST_PTR (void, TableDesc->Address),
338 OverrideType, NewTable));

340 /* We can now unmap/delete the original table (if fully mapped) */

342 AcpiTbDeleteTable (TableDesc);

344 /* Setup descriptor for the new table */

346 TableDesc->Address = NewAddress;
347 TableDesc->Pointer = NewTable;
348 TableDesc->Length = NewTableLength;
349 TableDesc->Flags = NewFlags;

351 return (NewTable);
352 }

355 /***
356 *
357 * FUNCTION: AcpiTbResizeRootTableList
358 *
359 * PARAMETERS: None
360 *
361 * RETURN: Status

new/usr/src/common/acpica/components/tables/tbinstal.c 7

362 *
363 * DESCRIPTION: Expand the size of global table array
364 *
365 **/

367 ACPI_STATUS
368 AcpiTbResizeRootTableList (
369 void)
370 {
371 ACPI_TABLE_DESC *Tables;
372 UINT32 TableCount;

375 ACPI_FUNCTION_TRACE (TbResizeRootTableList);

378 /* AllowResize flag is a parameter to AcpiInitializeTables */

380 if (!(AcpiGbl_RootTableList.Flags & ACPI_ROOT_ALLOW_RESIZE))
381 {
382 ACPI_ERROR ((AE_INFO, "Resize of Root Table Array is not allowed"));
383 return_ACPI_STATUS (AE_SUPPORT);
384 }

386 /* Increase the Table Array size */

388 if (AcpiGbl_RootTableList.Flags & ACPI_ROOT_ORIGIN_ALLOCATED)
389 {
390 TableCount = AcpiGbl_RootTableList.MaxTableCount;
391 }
392 else
393 {
394 TableCount = AcpiGbl_RootTableList.CurrentTableCount;
395 }

397 Tables = ACPI_ALLOCATE_ZEROED (
398 ((ACPI_SIZE) TableCount + ACPI_ROOT_TABLE_SIZE_INCREMENT) *
317 ((ACPI_SIZE) AcpiGbl_RootTableList.MaxTableCount +
318 ACPI_ROOT_TABLE_SIZE_INCREMENT) *
399 sizeof (ACPI_TABLE_DESC));
400 if (!Tables)
401 {
402 ACPI_ERROR ((AE_INFO, "Could not allocate new root table array"));
403 return_ACPI_STATUS (AE_NO_MEMORY);
404 }

406 /* Copy and free the previous table array */

408 if (AcpiGbl_RootTableList.Tables)
409 {
410 ACPI_MEMCPY (Tables, AcpiGbl_RootTableList.Tables,
411 (ACPI_SIZE) TableCount * sizeof (ACPI_TABLE_DESC));
331 (ACPI_SIZE) AcpiGbl_RootTableList.MaxTableCount * sizeof (ACPI_TABLE

413 if (AcpiGbl_RootTableList.Flags & ACPI_ROOT_ORIGIN_ALLOCATED)
414 {
415 ACPI_FREE (AcpiGbl_RootTableList.Tables);
416 }
417 }

419 AcpiGbl_RootTableList.Tables = Tables;
420 AcpiGbl_RootTableList.MaxTableCount =
421 TableCount + ACPI_ROOT_TABLE_SIZE_INCREMENT;
422 AcpiGbl_RootTableList.Flags |= ACPI_ROOT_ORIGIN_ALLOCATED;
340 AcpiGbl_RootTableList.MaxTableCount += ACPI_ROOT_TABLE_SIZE_INCREMENT;
341 AcpiGbl_RootTableList.Flags |= (UINT8) ACPI_ROOT_ORIGIN_ALLOCATED;

new/usr/src/common/acpica/components/tables/tbinstal.c 8

424 return_ACPI_STATUS (AE_OK);
425 }

______unchanged_portion_omitted_

485 /***
486 *
487 * FUNCTION: AcpiTbDeleteTable
488 *
489 * PARAMETERS: TableIndex - Table index
490 *
491 * RETURN: None
492 *
493 * DESCRIPTION: Delete one internal ACPI table
494 *
495 **/

497 void
498 AcpiTbDeleteTable (
499 ACPI_TABLE_DESC *TableDesc)
500 {

502 /* Table must be mapped or allocated */

504 if (!TableDesc->Pointer)
505 {
506 return;
507 }

509 switch (TableDesc->Flags & ACPI_TABLE_ORIGIN_MASK)
510 {
511 case ACPI_TABLE_ORIGIN_MAPPED:

513 AcpiOsUnmapMemory (TableDesc->Pointer, TableDesc->Length);
514 break;

516 case ACPI_TABLE_ORIGIN_ALLOCATED:

518 ACPI_FREE (TableDesc->Pointer);
519 break;

521 /* Not mapped or allocated, there is nothing we can do */

523 default:

525 return;
439 break;
526 }

528 TableDesc->Pointer = NULL;
529 }

532 /***
533 *
534 * FUNCTION: AcpiTbTerminate
535 *
536 * PARAMETERS: None
537 *
538 * RETURN: None
539 *
540 * DESCRIPTION: Delete all internal ACPI tables
541 *
542 **/

new/usr/src/common/acpica/components/tables/tbinstal.c 9

544 void
545 AcpiTbTerminate (
546 void)
547 {
548 UINT32 i;

551 ACPI_FUNCTION_TRACE (TbTerminate);

554 (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES);

556 /* Delete the individual tables */

558 for (i = 0; i < AcpiGbl_RootTableList.CurrentTableCount; i++)
559 {
560 AcpiTbDeleteTable (&AcpiGbl_RootTableList.Tables[i]);
561 }

563 /*
564 * Delete the root table array if allocated locally. Array cannot be
565 * mapped, so we don’t need to check for that flag.
566 */
567 if (AcpiGbl_RootTableList.Flags & ACPI_ROOT_ORIGIN_ALLOCATED)
568 {
569 ACPI_FREE (AcpiGbl_RootTableList.Tables);
570 }

572 AcpiGbl_RootTableList.Tables = NULL;
573 AcpiGbl_RootTableList.Flags = 0;
574 AcpiGbl_RootTableList.CurrentTableCount = 0;

576 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "ACPI Tables freed\n"));
577 (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES);

579 return_VOID;
580 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/tables/tbprint.c 1

**
 8532 Thu Dec 26 13:49:34 2013
new/usr/src/common/acpica/components/tables/tbprint.c
update to acpica-unix2-20130927
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: tbprint - Table output utilities
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __TBPRINT_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "actables.h"

50 #define _COMPONENT ACPI_TABLES
51 ACPI_MODULE_NAME ("tbprint")

54 /* Local prototypes */

56 static void
57 AcpiTbFixString (
58 char *String,
59 ACPI_SIZE Length);

new/usr/src/common/acpica/components/tables/tbprint.c 2

61 static void
62 AcpiTbCleanupTableHeader (
63 ACPI_TABLE_HEADER *OutHeader,
64 ACPI_TABLE_HEADER *Header);

67 /***
68 *
69 * FUNCTION: AcpiTbFixString
70 *
71 * PARAMETERS: String - String to be repaired
72 * Length - Maximum length
73 *
74 * RETURN: None
75 *
76 * DESCRIPTION: Replace every non-printable or non-ascii byte in the string
77 * with a question mark ’?’.
78 *
79 **/

81 static void
82 AcpiTbFixString (
83 char *String,
84 ACPI_SIZE Length)
85 {

87 while (Length && *String)
88 {
89 if (!ACPI_IS_PRINT (*String))
90 {
91 *String = ’?’;
92 }
93 String++;
94 Length--;
95 }
96 }

99 /***
100 *
101 * FUNCTION: AcpiTbCleanupTableHeader
102 *
103 * PARAMETERS: OutHeader - Where the cleaned header is returned
104 * Header - Input ACPI table header
105 *
106 * RETURN: Returns the cleaned header in OutHeader
107 *
108 * DESCRIPTION: Copy the table header and ensure that all "string" fields in
109 * the header consist of printable characters.
110 *
111 **/

113 static void
114 AcpiTbCleanupTableHeader (
115 ACPI_TABLE_HEADER *OutHeader,
116 ACPI_TABLE_HEADER *Header)
117 {

119 ACPI_MEMCPY (OutHeader, Header, sizeof (ACPI_TABLE_HEADER));

121 AcpiTbFixString (OutHeader->Signature, ACPI_NAME_SIZE);
122 AcpiTbFixString (OutHeader->OemId, ACPI_OEM_ID_SIZE);
123 AcpiTbFixString (OutHeader->OemTableId, ACPI_OEM_TABLE_ID_SIZE);
124 AcpiTbFixString (OutHeader->AslCompilerId, ACPI_NAME_SIZE);
125 }

new/usr/src/common/acpica/components/tables/tbprint.c 3

128 /***
129 *
130 * FUNCTION: AcpiTbPrintTableHeader
131 *
132 * PARAMETERS: Address - Table physical address
133 * Header - Table header
134 *
135 * RETURN: None
136 *
137 * DESCRIPTION: Print an ACPI table header. Special cases for FACS and RSDP.
138 *
139 **/

141 void
142 AcpiTbPrintTableHeader (
143 ACPI_PHYSICAL_ADDRESS Address,
144 ACPI_TABLE_HEADER *Header)
145 {
146 ACPI_TABLE_HEADER LocalHeader;

149 /*
150 * The reason that the Address is cast to a void pointer is so that we
151 * can use %p which will work properly on both 32-bit and 64-bit hosts.
152 */
153 if (ACPI_COMPARE_NAME (Header->Signature, ACPI_SIG_FACS))
154 {
155 /* FACS only has signature and length fields */

157 ACPI_INFO ((AE_INFO, "%4.4s %p %06X",
158 Header->Signature, ACPI_CAST_PTR (void, Address),
159 Header->Length));
160 }
161 else if (ACPI_VALIDATE_RSDP_SIG (Header->Signature))
162 {
163 /* RSDP has no common fields */

165 ACPI_MEMCPY (LocalHeader.OemId,
166 ACPI_CAST_PTR (ACPI_TABLE_RSDP, Header)->OemId, ACPI_OEM_ID_SIZE);
167 AcpiTbFixString (LocalHeader.OemId, ACPI_OEM_ID_SIZE);

169 ACPI_INFO ((AE_INFO, "RSDP %p %06X (v%.2d %6.6s)",
170 ACPI_CAST_PTR (void, Address),
171 (ACPI_CAST_PTR (ACPI_TABLE_RSDP, Header)->Revision > 0) ?
172 ACPI_CAST_PTR (ACPI_TABLE_RSDP, Header)->Length : 20,
173 ACPI_CAST_PTR (ACPI_TABLE_RSDP, Header)->Revision,
174 LocalHeader.OemId));
175 }
176 else
177 {
178 /* Standard ACPI table with full common header */

180 AcpiTbCleanupTableHeader (&LocalHeader, Header);

182 ACPI_INFO ((AE_INFO,
183 "%4.4s %p %06X (v%.2d %6.6s %8.8s %08X %4.4s %08X)",
184 LocalHeader.Signature, ACPI_CAST_PTR (void, Address),
185 LocalHeader.Length, LocalHeader.Revision, LocalHeader.OemId,
186 LocalHeader.OemTableId, LocalHeader.OemRevision,
187 LocalHeader.AslCompilerId, LocalHeader.AslCompilerRevision));
188 }
189 }

192 /***

new/usr/src/common/acpica/components/tables/tbprint.c 4

193 *
194 * FUNCTION: AcpiTbValidateChecksum
195 *
196 * PARAMETERS: Table - ACPI table to verify
197 * Length - Length of entire table
198 *
199 * RETURN: Status
200 *
201 * DESCRIPTION: Verifies that the table checksums to zero. Optionally returns
202 * exception on bad checksum.
203 *
204 **/

206 ACPI_STATUS
207 AcpiTbVerifyChecksum (
208 ACPI_TABLE_HEADER *Table,
209 UINT32 Length)
210 {
211 UINT8 Checksum;

214 /*
215 * FACS/S3PT:
216 * They are the odd tables, have no standard ACPI header and no checksum
217 */

219 if (ACPI_COMPARE_NAME (Table->Signature, ACPI_SIG_S3PT) ||
220 ACPI_COMPARE_NAME (Table->Signature, ACPI_SIG_FACS))
221 {
222 return (AE_OK);
223 }

225 /* Compute the checksum on the table */

227 Checksum = AcpiTbChecksum (ACPI_CAST_PTR (UINT8, Table), Length);

229 /* Checksum ok? (should be zero) */

231 if (Checksum)
232 {
233 ACPI_BIOS_WARNING ((AE_INFO,
234 "Incorrect checksum in table [%4.4s] - 0x%2.2X, "
235 "should be 0x%2.2X",
236 Table->Signature, Table->Checksum,
237 (UINT8) (Table->Checksum - Checksum)));

239 #if (ACPI_CHECKSUM_ABORT)
240 return (AE_BAD_CHECKSUM);
241 #endif
242 }

244 return (AE_OK);
245 }

248 /***
249 *
250 * FUNCTION: AcpiTbChecksum
251 *
252 * PARAMETERS: Buffer - Pointer to memory region to be checked
253 * Length - Length of this memory region
254 *
255 * RETURN: Checksum (UINT8)
256 *
257 * DESCRIPTION: Calculates circular checksum of memory region.
258 *

new/usr/src/common/acpica/components/tables/tbprint.c 5

259 **/

261 UINT8
262 AcpiTbChecksum (
263 UINT8 *Buffer,
264 UINT32 Length)
265 {
266 UINT8 Sum = 0;
267 UINT8 *End = Buffer + Length;

270 while (Buffer < End)
271 {
272 Sum = (UINT8) (Sum + *(Buffer++));
273 }

275 return (Sum);
276 }

new/usr/src/common/acpica/components/tables/tbutils.c 1

**
 20805 Thu Dec 26 13:49:34 2013
new/usr/src/common/acpica/components/tables/tbutils.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: tbutils - ACPI Table utilities
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __TBUTILS_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "actables.h"

50 #define _COMPONENT ACPI_TABLES
51 ACPI_MODULE_NAME ("tbutils")

54 /* Local prototypes */

56 static ACPI_STATUS
57 AcpiTbValidateXsdt (
58 ACPI_PHYSICAL_ADDRESS Address);

new/usr/src/common/acpica/components/tables/tbutils.c 2

60 static ACPI_PHYSICAL_ADDRESS
61 AcpiTbGetRootTableEntry (
62 UINT8 *TableEntry,
63 UINT32 TableEntrySize);

66 #if (!ACPI_REDUCED_HARDWARE)
67 /***
68 *
69 * FUNCTION: AcpiTbInitializeFacs
70 *
71 * PARAMETERS: None
72 *
73 * RETURN: Status
74 *
75 * DESCRIPTION: Create a permanent mapping for the FADT and save it in a global
76 * for accessing the Global Lock and Firmware Waking Vector
77 *
78 **/

80 ACPI_STATUS
81 AcpiTbInitializeFacs (
82 void)
83 {
84 ACPI_STATUS Status;

87 /* If Hardware Reduced flag is set, there is no FACS */

89 if (AcpiGbl_ReducedHardware)
90 {
91 AcpiGbl_FACS = NULL;
92 return (AE_OK);
93 }

95 Status = AcpiGetTableByIndex (ACPI_TABLE_INDEX_FACS,
96 ACPI_CAST_INDIRECT_PTR (ACPI_TABLE_HEADER, &AcpiGbl_FACS));
97 return (Status);
98 }
99 #endif /* !ACPI_REDUCED_HARDWARE */

102 /***
103 *
104 * FUNCTION: AcpiTbTablesLoaded
105 *
106 * PARAMETERS: None
107 *
108 * RETURN: TRUE if required ACPI tables are loaded
109 *
110 * DESCRIPTION: Determine if the minimum required ACPI tables are present
111 * (FADT, FACS, DSDT)
112 *
113 **/

115 BOOLEAN
116 AcpiTbTablesLoaded (
117 void)
118 {

120 if (AcpiGbl_RootTableList.CurrentTableCount >= 3)
121 {
122 return (TRUE);
123 }

125 return (FALSE);

new/usr/src/common/acpica/components/tables/tbutils.c 3

126 }

129 /***
130 *
131 * FUNCTION: AcpiTbCheckDsdtHeader
132 *
133 * PARAMETERS: None
134 *
135 * RETURN: None
136 *
137 * DESCRIPTION: Quick compare to check validity of the DSDT. This will detect
138 * if the DSDT has been replaced from outside the OS and/or if
139 * the DSDT header has been corrupted.
140 *
141 **/

143 void
144 AcpiTbCheckDsdtHeader (
145 void)
146 {

148 /* Compare original length and checksum to current values */

150 if (AcpiGbl_OriginalDsdtHeader.Length != AcpiGbl_DSDT->Length ||
151 AcpiGbl_OriginalDsdtHeader.Checksum != AcpiGbl_DSDT->Checksum)
152 {
153 ACPI_BIOS_ERROR ((AE_INFO,
154 "The DSDT has been corrupted or replaced - "
155 "old, new headers below"));
156 AcpiTbPrintTableHeader (0, &AcpiGbl_OriginalDsdtHeader);
157 AcpiTbPrintTableHeader (0, AcpiGbl_DSDT);

159 /* Disable further error messages */

161 AcpiGbl_OriginalDsdtHeader.Length = AcpiGbl_DSDT->Length;
162 AcpiGbl_OriginalDsdtHeader.Checksum = AcpiGbl_DSDT->Checksum;
163 }
164 }

167 /***
168 *
169 * FUNCTION: AcpiTbCopyDsdt
170 *
171 * PARAMETERS: TableDesc - Installed table to copy
172 *
173 * RETURN: None
174 *
175 * DESCRIPTION: Implements a subsystem option to copy the DSDT to local memory.
176 * Some very bad BIOSs are known to either corrupt the DSDT or
177 * install a new, bad DSDT. This copy works around the problem.
178 *
179 **/

181 ACPI_TABLE_HEADER *
182 AcpiTbCopyDsdt (
183 UINT32 TableIndex)
184 {
185 ACPI_TABLE_HEADER *NewTable;
186 ACPI_TABLE_DESC *TableDesc;

189 TableDesc = &AcpiGbl_RootTableList.Tables[TableIndex];

191 NewTable = ACPI_ALLOCATE (TableDesc->Length);

new/usr/src/common/acpica/components/tables/tbutils.c 4

192 if (!NewTable)
193 {
194 ACPI_ERROR ((AE_INFO, "Could not copy DSDT of length 0x%X",
195 TableDesc->Length));
196 return (NULL);
197 }

199 ACPI_MEMCPY (NewTable, TableDesc->Pointer, TableDesc->Length);
200 AcpiTbDeleteTable (TableDesc);
201 TableDesc->Pointer = NewTable;
202 TableDesc->Flags = ACPI_TABLE_ORIGIN_ALLOCATED;

204 ACPI_INFO ((AE_INFO,
205 "Forced DSDT copy: length 0x%05X copied locally, original unmapped",
206 NewTable->Length));

208 return (NewTable);
209 }

212 /***
213 *
214 * FUNCTION: AcpiTbInstallTable
215 *
216 * PARAMETERS: Address - Physical address of DSDT or FACS
217 * Signature - Table signature, NULL if no need to
218 * match
219 * TableIndex - Index into root table array
220 *
221 * RETURN: None
222 *
223 * DESCRIPTION: Install an ACPI table into the global data structure. The
224 * table override mechanism is called to allow the host
225 * OS to replace any table before it is installed in the root
226 * table array.
227 *
228 **/

230 void
231 AcpiTbInstallTable (
232 ACPI_PHYSICAL_ADDRESS Address,
233 char *Signature,
234 UINT32 TableIndex)
235 {
236 ACPI_TABLE_HEADER *Table;
237 ACPI_TABLE_HEADER *FinalTable;
238 ACPI_TABLE_DESC *TableDesc;

241 if (!Address)
242 {
243 ACPI_ERROR ((AE_INFO, "Null physical address for ACPI table [%s]",
244 Signature));
245 return;
246 }

248 /* Map just the table header */

250 Table = AcpiOsMapMemory (Address, sizeof (ACPI_TABLE_HEADER));
251 if (!Table)
252 {
253 ACPI_ERROR ((AE_INFO, "Could not map memory for table [%s] at %p",
254 Signature, ACPI_CAST_PTR (void, Address)));
255 return;
256 }

new/usr/src/common/acpica/components/tables/tbutils.c 5

258 /* If a particular signature is expected (DSDT/FACS), it must match */

260 if (Signature &&
261 !ACPI_COMPARE_NAME (Table->Signature, Signature))
262 {
263 ACPI_BIOS_ERROR ((AE_INFO,
264 "Invalid signature 0x%X for ACPI table, expected [%s]",
265 *ACPI_CAST_PTR (UINT32, Table->Signature), Signature));
266 goto UnmapAndExit;
267 }

269 /*
270 * Initialize the table entry. Set the pointer to NULL, since the
271 * table is not fully mapped at this time.
272 */
273 TableDesc = &AcpiGbl_RootTableList.Tables[TableIndex];

275 TableDesc->Address = Address;
276 TableDesc->Pointer = NULL;
277 TableDesc->Length = Table->Length;
278 TableDesc->Flags = ACPI_TABLE_ORIGIN_MAPPED;
279 ACPI_MOVE_32_TO_32 (TableDesc->Signature.Ascii, Table->Signature);

281 /*
282 * ACPI Table Override:
283 *
284 * Before we install the table, let the host OS override it with a new
285 * one if desired. Any table within the RSDT/XSDT can be replaced,
286 * including the DSDT which is pointed to by the FADT.
287 *
288 * NOTE: If the table is overridden, then FinalTable will contain a
289 * mapped pointer to the full new table. If the table is not overridden,
290 * or if there has been a physical override, then the table will be
291 * fully mapped later (in verify table). In any case, we must
292 * unmap the header that was mapped above.
293 */
294 FinalTable = AcpiTbTableOverride (Table, TableDesc);
295 if (!FinalTable)
296 {
297 FinalTable = Table; /* There was no override */
298 }

300 AcpiTbPrintTableHeader (TableDesc->Address, FinalTable);

302 /* Set the global integer width (based upon revision of the DSDT) */

304 if (TableIndex == ACPI_TABLE_INDEX_DSDT)
305 {
306 AcpiUtSetIntegerWidth (FinalTable->Revision);
307 }

309 /*
310 * If we have a physical override during this early loading of the ACPI
311 * tables, unmap the table for now. It will be mapped again later when
312 * it is actually used. This supports very early loading of ACPI tables,
313 * before virtual memory is fully initialized and running within the
314 * host OS. Note: A logical override has the ACPI_TABLE_ORIGIN_OVERRIDE
315 * flag set and will not be deleted below.
316 */
317 if (FinalTable != Table)
318 {
319 AcpiTbDeleteTable (TableDesc);
320 }

323 UnmapAndExit:

new/usr/src/common/acpica/components/tables/tbutils.c 6

325 /* Always unmap the table header that we mapped above */

327 AcpiOsUnmapMemory (Table, sizeof (ACPI_TABLE_HEADER));
328 }

331 /***
332 *
333 * FUNCTION: AcpiTbGetRootTableEntry
334 *
335 * PARAMETERS: TableEntry - Pointer to the RSDT/XSDT table entry
336 * TableEntrySize - sizeof 32 or 64 (RSDT or XSDT)
337 *
338 * RETURN: Physical address extracted from the root table
339 *
340 * DESCRIPTION: Get one root table entry. Handles 32-bit and 64-bit cases on
341 * both 32-bit and 64-bit platforms
342 *
343 * NOTE: ACPI_PHYSICAL_ADDRESS is 32-bit on 32-bit platforms, 64-bit on
344 * 64-bit platforms.
345 *
346 **/

348 static ACPI_PHYSICAL_ADDRESS
349 AcpiTbGetRootTableEntry (
350 UINT8 *TableEntry,
351 UINT32 TableEntrySize)
352 {
353 UINT64 Address64;

356 /*
357 * Get the table physical address (32-bit for RSDT, 64-bit for XSDT):
358 * Note: Addresses are 32-bit aligned (not 64) in both RSDT and XSDT
359 */
360 if (TableEntrySize == ACPI_RSDT_ENTRY_SIZE)
361 {
362 /*
363 * 32-bit platform, RSDT: Return 32-bit table entry
364 * 64-bit platform, RSDT: Expand 32-bit to 64-bit and return
365 */
366 return ((ACPI_PHYSICAL_ADDRESS) (*ACPI_CAST_PTR (UINT32, TableEntry)));
367 }
368 else
369 {
370 /*
371 * 32-bit platform, XSDT: Truncate 64-bit to 32-bit and return
372 * 64-bit platform, XSDT: Move (unaligned) 64-bit to local,
373 * return 64-bit
374 */
375 ACPI_MOVE_64_TO_64 (&Address64, TableEntry);

377 #if ACPI_MACHINE_WIDTH == 32
378 if (Address64 > ACPI_UINT32_MAX)
379 {
380 /* Will truncate 64-bit address to 32 bits, issue warning */

382 ACPI_BIOS_WARNING ((AE_INFO,
383 "64-bit Physical Address in XSDT is too large (0x%8.8X%8.8X),"
384 " truncating",
385 ACPI_FORMAT_UINT64 (Address64)));
386 }
387 #endif
388 return ((ACPI_PHYSICAL_ADDRESS) (Address64));
389 }

new/usr/src/common/acpica/components/tables/tbutils.c 7

390 }

393 /***
394 *
395 * FUNCTION: AcpiTbValidateXsdt
396 *
397 * PARAMETERS: Address - Physical address of the XSDT (from RSDP)
398 *
399 * RETURN: Status. AE_OK if the table appears to be valid.
400 *
401 * DESCRIPTION: Validate an XSDT to ensure that it is of minimum size and does
402 * not contain any NULL entries. A problem that is seen in the
403 * field is that the XSDT exists, but is actually useless because
404 * of one or more (or all) NULL entries.
405 *
406 **/

408 static ACPI_STATUS
409 AcpiTbValidateXsdt (
410 ACPI_PHYSICAL_ADDRESS XsdtAddress)
411 {
412 ACPI_TABLE_HEADER *Table;
413 UINT8 *NextEntry;
414 ACPI_PHYSICAL_ADDRESS Address;
415 UINT32 Length;
416 UINT32 EntryCount;
417 ACPI_STATUS Status;
418 UINT32 i;

421 /* Get the XSDT length */

423 Table = AcpiOsMapMemory (XsdtAddress, sizeof (ACPI_TABLE_HEADER));
424 if (!Table)
425 {
426 return (AE_NO_MEMORY);
427 }

429 Length = Table->Length;
430 AcpiOsUnmapMemory (Table, sizeof (ACPI_TABLE_HEADER));

432 /*
433 * Minimum XSDT length is the size of the standard ACPI header
434 * plus one physical address entry
435 */
436 if (Length < (sizeof (ACPI_TABLE_HEADER) + ACPI_XSDT_ENTRY_SIZE))
437 {
438 return (AE_INVALID_TABLE_LENGTH);
439 }

441 /* Map the entire XSDT */

443 Table = AcpiOsMapMemory (XsdtAddress, Length);
444 if (!Table)
445 {
446 return (AE_NO_MEMORY);
447 }

449 /* Get the number of entries and pointer to first entry */

451 Status = AE_OK;
452 NextEntry = ACPI_ADD_PTR (UINT8, Table, sizeof (ACPI_TABLE_HEADER));
453 EntryCount = (UINT32) ((Table->Length - sizeof (ACPI_TABLE_HEADER)) /
454 ACPI_XSDT_ENTRY_SIZE);

new/usr/src/common/acpica/components/tables/tbutils.c 8

456 /* Validate each entry (physical address) within the XSDT */

458 for (i = 0; i < EntryCount; i++)
459 {
460 Address = AcpiTbGetRootTableEntry (NextEntry, ACPI_XSDT_ENTRY_SIZE);
461 if (!Address)
462 {
463 /* Detected a NULL entry, XSDT is invalid */

465 Status = AE_NULL_ENTRY;
466 break;
467 }

469 NextEntry += ACPI_XSDT_ENTRY_SIZE;
470 }

472 /* Unmap table */

474 AcpiOsUnmapMemory (Table, Length);
475 return (Status);
476 }

479 /***
480 *
481 * FUNCTION: AcpiTbParseRootTable
482 *
483 * PARAMETERS: Rsdp - Pointer to the RSDP
484 *
485 * RETURN: Status
486 *
487 * DESCRIPTION: This function is called to parse the Root System Description
488 * Table (RSDT or XSDT)
489 *
490 * NOTE: Tables are mapped (not copied) for efficiency. The FACS must
491 * be mapped and cannot be copied because it contains the actual
492 * memory location of the ACPI Global Lock.
493 *
494 **/

496 ACPI_STATUS
497 AcpiTbParseRootTable (
498 ACPI_PHYSICAL_ADDRESS RsdpAddress)
499 {
500 ACPI_TABLE_RSDP *Rsdp;
501 UINT32 TableEntrySize;
502 UINT32 i;
503 UINT32 TableCount;
504 ACPI_TABLE_HEADER *Table;
505 ACPI_PHYSICAL_ADDRESS Address;
506 UINT32 Length;
507 UINT8 *TableEntry;
508 ACPI_STATUS Status;

511 ACPI_FUNCTION_TRACE (TbParseRootTable);

514 /* Map the entire RSDP and extract the address of the RSDT or XSDT */

516 Rsdp = AcpiOsMapMemory (RsdpAddress, sizeof (ACPI_TABLE_RSDP));
517 if (!Rsdp)
518 {
519 return_ACPI_STATUS (AE_NO_MEMORY);
520 }

new/usr/src/common/acpica/components/tables/tbutils.c 9

522 AcpiTbPrintTableHeader (RsdpAddress,
523 ACPI_CAST_PTR (ACPI_TABLE_HEADER, Rsdp));

525 /* Use XSDT if present and not overridden. Otherwise, use RSDT */

527 if ((Rsdp->Revision > 1) &&
528 Rsdp->XsdtPhysicalAddress &&
529 !AcpiGbl_DoNotUseXsdt)
530 {
531 /*
532 * RSDP contains an XSDT (64-bit physical addresses). We must use
533 * the XSDT if the revision is > 1 and the XSDT pointer is present,
534 * as per the ACPI specification.
535 */
536 Address = (ACPI_PHYSICAL_ADDRESS) Rsdp->XsdtPhysicalAddress;
537 TableEntrySize = ACPI_XSDT_ENTRY_SIZE;
538 }
539 else
540 {
541 /* Root table is an RSDT (32-bit physical addresses) */

543 Address = (ACPI_PHYSICAL_ADDRESS) Rsdp->RsdtPhysicalAddress;
544 TableEntrySize = ACPI_RSDT_ENTRY_SIZE;
545 }

547 /*
548 * It is not possible to map more than one entry in some environments,
549 * so unmap the RSDP here before mapping other tables
550 */
551 AcpiOsUnmapMemory (Rsdp, sizeof (ACPI_TABLE_RSDP));

553 /*
554 * If it is present and used, validate the XSDT for access/size
555 * and ensure that all table entries are at least non-NULL
556 */
557 if (TableEntrySize == ACPI_XSDT_ENTRY_SIZE)
558 {
559 Status = AcpiTbValidateXsdt (Address);
560 if (ACPI_FAILURE (Status))
561 {
562 ACPI_BIOS_WARNING ((AE_INFO, "XSDT is invalid (%s), using RSDT",
563 AcpiFormatException (Status)));

565 /* Fall back to the RSDT */

567 Address = (ACPI_PHYSICAL_ADDRESS) Rsdp->RsdtPhysicalAddress;
568 TableEntrySize = ACPI_RSDT_ENTRY_SIZE;
569 }
570 }

572 /* Map the RSDT/XSDT table header to get the full table length */

574 Table = AcpiOsMapMemory (Address, sizeof (ACPI_TABLE_HEADER));
575 if (!Table)
576 {
577 return_ACPI_STATUS (AE_NO_MEMORY);
578 }

580 AcpiTbPrintTableHeader (Address, Table);

582 /*
583 * Validate length of the table, and map entire table.
584 * Minimum length table must contain at least one entry.
585 */
586 Length = Table->Length;
587 AcpiOsUnmapMemory (Table, sizeof (ACPI_TABLE_HEADER));

new/usr/src/common/acpica/components/tables/tbutils.c 10

589 if (Length < (sizeof (ACPI_TABLE_HEADER) + TableEntrySize))
590 {
591 ACPI_BIOS_ERROR ((AE_INFO,
592 "Invalid table length 0x%X in RSDT/XSDT", Length));
593 return_ACPI_STATUS (AE_INVALID_TABLE_LENGTH);
594 }

596 Table = AcpiOsMapMemory (Address, Length);
597 if (!Table)
598 {
599 return_ACPI_STATUS (AE_NO_MEMORY);
600 }

602 /* Validate the root table checksum */

604 Status = AcpiTbVerifyChecksum (Table, Length);
605 if (ACPI_FAILURE (Status))
606 {
607 AcpiOsUnmapMemory (Table, Length);
608 return_ACPI_STATUS (Status);
609 }

611 /* Get the number of entries and pointer to first entry */

613 TableCount = (UINT32) ((Table->Length - sizeof (ACPI_TABLE_HEADER)) /
614 TableEntrySize);
615 TableEntry = ACPI_ADD_PTR (UINT8, Table, sizeof (ACPI_TABLE_HEADER));

617 /*
618 * First two entries in the table array are reserved for the DSDT
619 * and FACS, which are not actually present in the RSDT/XSDT - they
620 * come from the FADT
621 */
622 AcpiGbl_RootTableList.CurrentTableCount = 2;

624 /* Initialize the root table array from the RSDT/XSDT */

626 for (i = 0; i < TableCount; i++)
627 {
628 if (AcpiGbl_RootTableList.CurrentTableCount >=
629 AcpiGbl_RootTableList.MaxTableCount)
630 {
631 /* There is no more room in the root table array, attempt resize */

633 Status = AcpiTbResizeRootTableList ();
634 if (ACPI_FAILURE (Status))
635 {
636 ACPI_WARNING ((AE_INFO, "Truncating %u table entries!",
637 (unsigned) (TableCount -
638 (AcpiGbl_RootTableList.CurrentTableCount - 2))));
639 break;
640 }
641 }

643 /* Get the table physical address (32-bit for RSDT, 64-bit for XSDT) */

645 AcpiGbl_RootTableList.Tables[AcpiGbl_RootTableList.CurrentTableCount].Ad
646 AcpiTbGetRootTableEntry (TableEntry, TableEntrySize);

648 TableEntry += TableEntrySize;
649 AcpiGbl_RootTableList.CurrentTableCount++;
650 }

652 /*
653 * It is not possible to map more than one entry in some environments,

new/usr/src/common/acpica/components/tables/tbutils.c 11

654 * so unmap the root table here before mapping other tables
655 */
656 AcpiOsUnmapMemory (Table, Length);

658 /*
659 * Complete the initialization of the root table array by examining
660 * the header of each table
661 */
662 for (i = 2; i < AcpiGbl_RootTableList.CurrentTableCount; i++)
663 {
664 AcpiTbInstallTable (AcpiGbl_RootTableList.Tables[i].Address,
665 NULL, i);

667 /* Special case for FADT - validate it then get the DSDT and FACS */

669 if (ACPI_COMPARE_NAME (
670 &AcpiGbl_RootTableList.Tables[i].Signature, ACPI_SIG_FADT))
671 {
672 AcpiTbParseFadt (i);
673 }
674 }

676 return_ACPI_STATUS (AE_OK);
677 }

new/usr/src/common/acpica/components/tables/tbxface.c 1

**
 15006 Thu Dec 26 13:49:34 2013
new/usr/src/common/acpica/components/tables/tbxface.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: tbxface - ACPI table-oriented external interfaces
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __TBXFACE_C__
45 #define EXPORT_ACPI_INTERFACES

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "actables.h"

51 #define _COMPONENT ACPI_TABLES
52 ACPI_MODULE_NAME ("tbxface")

55 /***
56 *
57 * FUNCTION: AcpiAllocateRootTable
58 *
59 * PARAMETERS: InitialTableCount - Size of InitialTableArray, in number of

new/usr/src/common/acpica/components/tables/tbxface.c 2

60 * ACPI_TABLE_DESC structures
61 *
62 * RETURN: Status
63 *
64 * DESCRIPTION: Allocate a root table array. Used by iASL compiler and
65 * AcpiInitializeTables.
66 *
67 **/

69 ACPI_STATUS
70 AcpiAllocateRootTable (
71 UINT32 InitialTableCount)
72 {

74 AcpiGbl_RootTableList.MaxTableCount = InitialTableCount;
75 AcpiGbl_RootTableList.Flags = ACPI_ROOT_ALLOW_RESIZE;

77 return (AcpiTbResizeRootTableList ());
78 }

81 /***
82 *
83 * FUNCTION: AcpiInitializeTables
84 *
85 * PARAMETERS: InitialTableArray - Pointer to an array of pre-allocated
86 * ACPI_TABLE_DESC structures. If NULL, the
87 * array is dynamically allocated.
88 * InitialTableCount - Size of InitialTableArray, in number of
89 * ACPI_TABLE_DESC structures
90 * AllowResize - Flag to tell Table Manager if resize of
91 * pre-allocated array is allowed. Ignored
92 * if InitialTableArray is NULL.
93 *
94 * RETURN: Status
95 *
96 * DESCRIPTION: Initialize the table manager, get the RSDP and RSDT/XSDT.
97 *
98 * NOTE: Allows static allocation of the initial table array in order
99 * to avoid the use of dynamic memory in confined environments
100 * such as the kernel boot sequence where it may not be available.
101 *
102 * If the host OS memory managers are initialized, use NULL for
103 * InitialTableArray, and the table will be dynamically allocated.
104 *
105 **/

107 ACPI_STATUS
108 AcpiInitializeTables (
109 ACPI_TABLE_DESC *InitialTableArray,
110 UINT32 InitialTableCount,
111 BOOLEAN AllowResize)
112 {
113 ACPI_PHYSICAL_ADDRESS RsdpAddress;
114 ACPI_STATUS Status;

117 ACPI_FUNCTION_TRACE (AcpiInitializeTables);

120 /*
121 * Setup the Root Table Array and allocate the table array
122 * if requested
123 */
124 if (!InitialTableArray)
125 {

new/usr/src/common/acpica/components/tables/tbxface.c 3

126 Status = AcpiAllocateRootTable (InitialTableCount);
127 if (ACPI_FAILURE (Status))
128 {
129 return_ACPI_STATUS (Status);
130 }
131 }
132 else
133 {
134 /* Root Table Array has been statically allocated by the host */

136 ACPI_MEMSET (InitialTableArray, 0,
137 (ACPI_SIZE) InitialTableCount * sizeof (ACPI_TABLE_DESC));

139 AcpiGbl_RootTableList.Tables = InitialTableArray;
140 AcpiGbl_RootTableList.MaxTableCount = InitialTableCount;
141 AcpiGbl_RootTableList.Flags = ACPI_ROOT_ORIGIN_UNKNOWN;
142 if (AllowResize)
143 {
144 AcpiGbl_RootTableList.Flags |= ACPI_ROOT_ALLOW_RESIZE;
145 }
146 }

148 /* Get the address of the RSDP */

150 RsdpAddress = AcpiOsGetRootPointer ();
151 if (!RsdpAddress)
152 {
153 return_ACPI_STATUS (AE_NOT_FOUND);
154 }

156 /*
157 * Get the root table (RSDT or XSDT) and extract all entries to the local
158 * Root Table Array. This array contains the information of the RSDT/XSDT
159 * in a common, more useable format.
160 */
161 Status = AcpiTbParseRootTable (RsdpAddress);
162 return_ACPI_STATUS (Status);
163 }

165 ACPI_EXPORT_SYMBOL_INIT (AcpiInitializeTables)

168 /***
169 *
170 * FUNCTION: AcpiReallocateRootTable
171 *
172 * PARAMETERS: None
173 *
174 * RETURN: Status
175 *
176 * DESCRIPTION: Reallocate Root Table List into dynamic memory. Copies the
177 * root list from the previously provided scratch area. Should
178 * be called once dynamic memory allocation is available in the
179 * kernel.
180 *
181 **/

183 ACPI_STATUS
184 AcpiReallocateRootTable (
185 void)
186 {
187 ACPI_STATUS Status;

190 ACPI_FUNCTION_TRACE (AcpiReallocateRootTable);

new/usr/src/common/acpica/components/tables/tbxface.c 4

193 /*
194 * Only reallocate the root table if the host provided a static buffer
195 * for the table array in the call to AcpiInitializeTables.
196 */
197 if (AcpiGbl_RootTableList.Flags & ACPI_ROOT_ORIGIN_ALLOCATED)
198 {
199 return_ACPI_STATUS (AE_SUPPORT);
200 }

202 AcpiGbl_RootTableList.Flags |= ACPI_ROOT_ALLOW_RESIZE;

204 Status = AcpiTbResizeRootTableList ();
205 return_ACPI_STATUS (Status);
206 }

208 ACPI_EXPORT_SYMBOL_INIT (AcpiReallocateRootTable)

211 /***
212 *
213 * FUNCTION: AcpiGetTableHeader
214 *
215 * PARAMETERS: Signature - ACPI signature of needed table
216 * Instance - Which instance (for SSDTs)
217 * OutTableHeader - The pointer to the table header to fill
218 *
219 * RETURN: Status and pointer to mapped table header
220 *
221 * DESCRIPTION: Finds an ACPI table header.
222 *
223 * NOTE: Caller is responsible in unmapping the header with
224 * AcpiOsUnmapMemory
225 *
226 **/

228 ACPI_STATUS
229 AcpiGetTableHeader (
230 char *Signature,
231 UINT32 Instance,
232 ACPI_TABLE_HEADER *OutTableHeader)
233 {
234 UINT32 i;
235 UINT32 j;
236 ACPI_TABLE_HEADER *Header;

239 /* Parameter validation */

241 if (!Signature || !OutTableHeader)
242 {
243 return (AE_BAD_PARAMETER);
244 }

246 /* Walk the root table list */

248 for (i = 0, j = 0; i < AcpiGbl_RootTableList.CurrentTableCount; i++)
249 {
250 if (!ACPI_COMPARE_NAME (&(AcpiGbl_RootTableList.Tables[i].Signature),
251 Signature))
252 {
253 continue;
254 }

256 if (++j < Instance)
257 {

new/usr/src/common/acpica/components/tables/tbxface.c 5

258 continue;
259 }

261 if (!AcpiGbl_RootTableList.Tables[i].Pointer)
262 {
263 if ((AcpiGbl_RootTableList.Tables[i].Flags &
264 ACPI_TABLE_ORIGIN_MASK) ==
265 ACPI_TABLE_ORIGIN_MAPPED)
266 {
267 Header = AcpiOsMapMemory (
268 AcpiGbl_RootTableList.Tables[i].Address,
269 sizeof (ACPI_TABLE_HEADER));
270 if (!Header)
271 {
272 return (AE_NO_MEMORY);
273 }

275 ACPI_MEMCPY (OutTableHeader, Header,
276 sizeof (ACPI_TABLE_HEADER));
277 AcpiOsUnmapMemory (Header, sizeof (ACPI_TABLE_HEADER));
278 }
279 else
280 {
281 return (AE_NOT_FOUND);
282 }
283 }
284 else
285 {
286 ACPI_MEMCPY (OutTableHeader,
287 AcpiGbl_RootTableList.Tables[i].Pointer,
288 sizeof (ACPI_TABLE_HEADER));
289 }

291 return (AE_OK);
292 }

294 return (AE_NOT_FOUND);
295 }

297 ACPI_EXPORT_SYMBOL (AcpiGetTableHeader)

300 /***
301 *
302 * FUNCTION: AcpiGetTable
303 *
304 * PARAMETERS: Signature - ACPI signature of needed table
305 * Instance - Which instance (for SSDTs)
306 * OutTable - Where the pointer to the table is returned
307 *
308 * RETURN: Status and pointer to the requested table
309 *
310 * DESCRIPTION: Finds and verifies an ACPI table. Table must be in the
311 * RSDT/XSDT.
312 *
313 **/

315 ACPI_STATUS
316 AcpiGetTable (
317 char *Signature,
318 UINT32 Instance,
319 ACPI_TABLE_HEADER **OutTable)
320 {
321 UINT32 i;
322 UINT32 j;
323 ACPI_STATUS Status;

new/usr/src/common/acpica/components/tables/tbxface.c 6

326 /* Parameter validation */

328 if (!Signature || !OutTable)
329 {
330 return (AE_BAD_PARAMETER);
331 }

333 /* Walk the root table list */

335 for (i = 0, j = 0; i < AcpiGbl_RootTableList.CurrentTableCount; i++)
336 {
337 if (!ACPI_COMPARE_NAME (&(AcpiGbl_RootTableList.Tables[i].Signature),
338 Signature))
339 {
340 continue;
341 }

343 if (++j < Instance)
344 {
345 continue;
346 }

348 Status = AcpiTbVerifyTable (&AcpiGbl_RootTableList.Tables[i]);
349 if (ACPI_SUCCESS (Status))
350 {
351 *OutTable = AcpiGbl_RootTableList.Tables[i].Pointer;
352 }

354 return (Status);
355 }

357 return (AE_NOT_FOUND);
358 }

360 ACPI_EXPORT_SYMBOL (AcpiGetTable)

363 /***
364 *
365 * FUNCTION: AcpiGetTableByIndex
366 *
367 * PARAMETERS: TableIndex - Table index
368 * Table - Where the pointer to the table is returned
369 *
370 * RETURN: Status and pointer to the requested table
371 *
372 * DESCRIPTION: Obtain a table by an index into the global table list. Used
373 * internally also.
374 *
375 **/

377 ACPI_STATUS
378 AcpiGetTableByIndex (
379 UINT32 TableIndex,
380 ACPI_TABLE_HEADER **Table)
381 {
382 ACPI_STATUS Status;

385 ACPI_FUNCTION_TRACE (AcpiGetTableByIndex);

388 /* Parameter validation */

new/usr/src/common/acpica/components/tables/tbxface.c 7

390 if (!Table)
391 {
392 return_ACPI_STATUS (AE_BAD_PARAMETER);
393 }

395 (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES);

397 /* Validate index */

399 if (TableIndex >= AcpiGbl_RootTableList.CurrentTableCount)
400 {
401 (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES);
402 return_ACPI_STATUS (AE_BAD_PARAMETER);
403 }

405 if (!AcpiGbl_RootTableList.Tables[TableIndex].Pointer)
406 {
407 /* Table is not mapped, map it */

409 Status = AcpiTbVerifyTable (&AcpiGbl_RootTableList.Tables[TableIndex]);
410 if (ACPI_FAILURE (Status))
411 {
412 (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES);
413 return_ACPI_STATUS (Status);
414 }
415 }

417 *Table = AcpiGbl_RootTableList.Tables[TableIndex].Pointer;
418 (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES);
419 return_ACPI_STATUS (AE_OK);
420 }

422 ACPI_EXPORT_SYMBOL (AcpiGetTableByIndex)

425 /***
426 *
427 * FUNCTION: AcpiInstallTableHandler
428 *
429 * PARAMETERS: Handler - Table event handler
430 * Context - Value passed to the handler on each event
431 *
432 * RETURN: Status
433 *
434 * DESCRIPTION: Install a global table event handler.
435 *
436 **/

438 ACPI_STATUS
439 AcpiInstallTableHandler (
440 ACPI_TABLE_HANDLER Handler,
441 void *Context)
442 {
443 ACPI_STATUS Status;

446 ACPI_FUNCTION_TRACE (AcpiInstallTableHandler);

449 if (!Handler)
450 {
451 return_ACPI_STATUS (AE_BAD_PARAMETER);
452 }

454 Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS);
455 if (ACPI_FAILURE (Status))

new/usr/src/common/acpica/components/tables/tbxface.c 8

456 {
457 return_ACPI_STATUS (Status);
458 }

460 /* Don’t allow more than one handler */

462 if (AcpiGbl_TableHandler)
463 {
464 Status = AE_ALREADY_EXISTS;
465 goto Cleanup;
466 }

468 /* Install the handler */

470 AcpiGbl_TableHandler = Handler;
471 AcpiGbl_TableHandlerContext = Context;

473 Cleanup:
474 (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS);
475 return_ACPI_STATUS (Status);
476 }

478 ACPI_EXPORT_SYMBOL (AcpiInstallTableHandler)

481 /***
482 *
483 * FUNCTION: AcpiRemoveTableHandler
484 *
485 * PARAMETERS: Handler - Table event handler that was installed
486 * previously.
487 *
488 * RETURN: Status
489 *
490 * DESCRIPTION: Remove a table event handler
491 *
492 **/

494 ACPI_STATUS
495 AcpiRemoveTableHandler (
496 ACPI_TABLE_HANDLER Handler)
497 {
498 ACPI_STATUS Status;

501 ACPI_FUNCTION_TRACE (AcpiRemoveTableHandler);

504 Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS);
505 if (ACPI_FAILURE (Status))
506 {
507 return_ACPI_STATUS (Status);
508 }

510 /* Make sure that the installed handler is the same */

512 if (!Handler ||
513 Handler != AcpiGbl_TableHandler)
514 {
515 Status = AE_BAD_PARAMETER;
516 goto Cleanup;
517 }

519 /* Remove the handler */

521 AcpiGbl_TableHandler = NULL;

new/usr/src/common/acpica/components/tables/tbxface.c 9

523 Cleanup:
524 (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS);
525 return_ACPI_STATUS (Status);
526 }

528 ACPI_EXPORT_SYMBOL (AcpiRemoveTableHandler)

new/usr/src/common/acpica/components/tables/tbxfload.c 1

**
 12699 Thu Dec 26 13:49:34 2013
new/usr/src/common/acpica/components/tables/tbxfload.c
update to acpica-unix2-20130927
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: tbxfload - Table load/unload external interfaces
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __TBXFLOAD_C__
45 #define EXPORT_ACPI_INTERFACES

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acnamesp.h"
50 #include "actables.h"

52 #define _COMPONENT ACPI_TABLES
53 ACPI_MODULE_NAME ("tbxfload")

55 /* Local prototypes */

57 static ACPI_STATUS
58 AcpiTbLoadNamespace (
59 void);

new/usr/src/common/acpica/components/tables/tbxfload.c 2

62 /***
63 *
64 * FUNCTION: AcpiLoadTables
65 *
66 * PARAMETERS: None
67 *
68 * RETURN: Status
69 *
70 * DESCRIPTION: Load the ACPI tables from the RSDT/XSDT
71 *
72 **/

74 ACPI_STATUS
75 AcpiLoadTables (
76 void)
77 {
78 ACPI_STATUS Status;

81 ACPI_FUNCTION_TRACE (AcpiLoadTables);

84 /* Load the namespace from the tables */

86 Status = AcpiTbLoadNamespace ();
87 if (ACPI_FAILURE (Status))
88 {
89 ACPI_EXCEPTION ((AE_INFO, Status,
90 "While loading namespace from ACPI tables"));
91 }

93 return_ACPI_STATUS (Status);
94 }

96 ACPI_EXPORT_SYMBOL_INIT (AcpiLoadTables)

99 /***
100 *
101 * FUNCTION: AcpiTbLoadNamespace
102 *
103 * PARAMETERS: None
104 *
105 * RETURN: Status
106 *
107 * DESCRIPTION: Load the namespace from the DSDT and all SSDTs/PSDTs found in
108 * the RSDT/XSDT.
109 *
110 **/

112 static ACPI_STATUS
113 AcpiTbLoadNamespace (
114 void)
115 {
116 ACPI_STATUS Status;
117 UINT32 i;
118 ACPI_TABLE_HEADER *NewDsdt;

121 ACPI_FUNCTION_TRACE (TbLoadNamespace);

124 (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES);

126 /*

new/usr/src/common/acpica/components/tables/tbxfload.c 3

127 * Load the namespace. The DSDT is required, but any SSDT and
128 * PSDT tables are optional. Verify the DSDT.
129 */
130 if (!AcpiGbl_RootTableList.CurrentTableCount ||
131 !ACPI_COMPARE_NAME (
132 &(AcpiGbl_RootTableList.Tables[ACPI_TABLE_INDEX_DSDT].Signature),
133 ACPI_SIG_DSDT) ||
134 ACPI_FAILURE (AcpiTbVerifyTable (
135 &AcpiGbl_RootTableList.Tables[ACPI_TABLE_INDEX_DSDT])))
136 {
137 Status = AE_NO_ACPI_TABLES;
138 goto UnlockAndExit;
139 }

141 /*
142 * Save the DSDT pointer for simple access. This is the mapped memory
143 * address. We must take care here because the address of the .Tables
144 * array can change dynamically as tables are loaded at run-time. Note:
145 * .Pointer field is not validated until after call to AcpiTbVerifyTable.
146 */
147 AcpiGbl_DSDT = AcpiGbl_RootTableList.Tables[ACPI_TABLE_INDEX_DSDT].Pointer;

149 /*
150 * Optionally copy the entire DSDT to local memory (instead of simply
151 * mapping it.) There are some BIOSs that corrupt or replace the original
152 * DSDT, creating the need for this option. Default is FALSE, do not copy
153 * the DSDT.
154 */
155 if (AcpiGbl_CopyDsdtLocally)
156 {
157 NewDsdt = AcpiTbCopyDsdt (ACPI_TABLE_INDEX_DSDT);
158 if (NewDsdt)
159 {
160 AcpiGbl_DSDT = NewDsdt;
161 }
162 }

164 /*
165 * Save the original DSDT header for detection of table corruption
166 * and/or replacement of the DSDT from outside the OS.
167 */
168 ACPI_MEMCPY (&AcpiGbl_OriginalDsdtHeader, AcpiGbl_DSDT,
169 sizeof (ACPI_TABLE_HEADER));

171 (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES);

173 /* Load and parse tables */

175 Status = AcpiNsLoadTable (ACPI_TABLE_INDEX_DSDT, AcpiGbl_RootNode);
176 if (ACPI_FAILURE (Status))
177 {
178 return_ACPI_STATUS (Status);
179 }

181 /* Load any SSDT or PSDT tables. Note: Loop leaves tables locked */

183 (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES);
184 for (i = 0; i < AcpiGbl_RootTableList.CurrentTableCount; ++i)
185 {
186 if ((!ACPI_COMPARE_NAME (&(AcpiGbl_RootTableList.Tables[i].Signature),
187 ACPI_SIG_SSDT) &&
188 !ACPI_COMPARE_NAME (&(AcpiGbl_RootTableList.Tables[i].Signature),
189 ACPI_SIG_PSDT)) ||
190 ACPI_FAILURE (AcpiTbVerifyTable (
191 &AcpiGbl_RootTableList.Tables[i])))
192 {

new/usr/src/common/acpica/components/tables/tbxfload.c 4

193 continue;
194 }

196 /*
197 * Optionally do not load any SSDTs from the RSDT/XSDT. This can
198 * be useful for debugging ACPI problems on some machines.
199 */
200 if (AcpiGbl_DisableSsdtTableLoad)
201 {
202 ACPI_INFO ((AE_INFO, "Ignoring %4.4s at %p",
203 AcpiGbl_RootTableList.Tables[i].Signature.Ascii,
204 ACPI_CAST_PTR (void, AcpiGbl_RootTableList.Tables[i].Address)));
205 continue;
206 }

208 /* Ignore errors while loading tables, get as many as possible */

210 (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES);
211 (void) AcpiNsLoadTable (i, AcpiGbl_RootNode);
212 (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES);
213 }

215 ACPI_INFO ((AE_INFO, "All ACPI Tables successfully acquired"));

217 UnlockAndExit:
218 (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES);
219 return_ACPI_STATUS (Status);
220 }

223 /***
224 *
225 * FUNCTION: AcpiLoadTable
226 *
227 * PARAMETERS: Table - Pointer to a buffer containing the ACPI
228 * table to be loaded.
229 *
230 * RETURN: Status
231 *
232 * DESCRIPTION: Dynamically load an ACPI table from the caller’s buffer. Must
233 * be a valid ACPI table with a valid ACPI table header.
234 * Note1: Mainly intended to support hotplug addition of SSDTs.
235 * Note2: Does not copy the incoming table. User is responsible
236 * to ensure that the table is not deleted or unmapped.
237 *
238 **/

240 ACPI_STATUS
241 AcpiLoadTable (
242 ACPI_TABLE_HEADER *Table)
243 {
244 ACPI_STATUS Status;
245 ACPI_TABLE_DESC TableDesc;
246 UINT32 TableIndex;

249 ACPI_FUNCTION_TRACE (AcpiLoadTable);

252 /* Parameter validation */

254 if (!Table)
255 {
256 return_ACPI_STATUS (AE_BAD_PARAMETER);
257 }

new/usr/src/common/acpica/components/tables/tbxfload.c 5

259 /* Init local table descriptor */

261 ACPI_MEMSET (&TableDesc, 0, sizeof (ACPI_TABLE_DESC));
262 TableDesc.Address = ACPI_PTR_TO_PHYSADDR (Table);
263 TableDesc.Pointer = Table;
264 TableDesc.Length = Table->Length;
265 TableDesc.Flags = ACPI_TABLE_ORIGIN_UNKNOWN;

267 /* Must acquire the interpreter lock during this operation */

269 Status = AcpiUtAcquireMutex (ACPI_MTX_INTERPRETER);
270 if (ACPI_FAILURE (Status))
271 {
272 return_ACPI_STATUS (Status);
273 }

275 /* Install the table and load it into the namespace */

277 ACPI_INFO ((AE_INFO, "Host-directed Dynamic ACPI Table Load:"));
278 Status = AcpiTbAddTable (&TableDesc, &TableIndex);
279 if (ACPI_FAILURE (Status))
280 {
281 goto UnlockAndExit;
282 }

284 Status = AcpiNsLoadTable (TableIndex, AcpiGbl_RootNode);

286 /* Invoke table handler if present */

288 if (AcpiGbl_TableHandler)
289 {
290 (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_LOAD, Table,
291 AcpiGbl_TableHandlerContext);
292 }

294 UnlockAndExit:
295 (void) AcpiUtReleaseMutex (ACPI_MTX_INTERPRETER);
296 return_ACPI_STATUS (Status);
297 }

299 ACPI_EXPORT_SYMBOL (AcpiLoadTable)

302 /***
303 *
304 * FUNCTION: AcpiUnloadParentTable
305 *
306 * PARAMETERS: Object - Handle to any namespace object owned by
307 * the table to be unloaded
308 *
309 * RETURN: Status
310 *
311 * DESCRIPTION: Via any namespace object within an SSDT or OEMx table, unloads
312 * the table and deletes all namespace objects associated with
313 * that table. Unloading of the DSDT is not allowed.
314 * Note: Mainly intended to support hotplug removal of SSDTs.
315 *
316 **/

318 ACPI_STATUS
319 AcpiUnloadParentTable (
320 ACPI_HANDLE Object)
321 {
322 ACPI_NAMESPACE_NODE *Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Object);
323 ACPI_STATUS Status = AE_NOT_EXIST;
324 ACPI_OWNER_ID OwnerId;

new/usr/src/common/acpica/components/tables/tbxfload.c 6

325 UINT32 i;

328 ACPI_FUNCTION_TRACE (AcpiUnloadParentTable);

331 /* Parameter validation */

333 if (!Object)
334 {
335 return_ACPI_STATUS (AE_BAD_PARAMETER);
336 }

338 /*
339 * The node OwnerId is currently the same as the parent table ID.
340 * However, this could change in the future.
341 */
342 OwnerId = Node->OwnerId;
343 if (!OwnerId)
344 {
345 /* OwnerId==0 means DSDT is the owner. DSDT cannot be unloaded */

347 return_ACPI_STATUS (AE_TYPE);
348 }

350 /* Must acquire the interpreter lock during this operation */

352 Status = AcpiUtAcquireMutex (ACPI_MTX_INTERPRETER);
353 if (ACPI_FAILURE (Status))
354 {
355 return_ACPI_STATUS (Status);
356 }

358 /* Find the table in the global table list */

360 for (i = 0; i < AcpiGbl_RootTableList.CurrentTableCount; i++)
361 {
362 if (OwnerId != AcpiGbl_RootTableList.Tables[i].OwnerId)
363 {
364 continue;
365 }

367 /*
368 * Allow unload of SSDT and OEMx tables only. Do not allow unload
369 * of the DSDT. No other types of tables should get here, since
370 * only these types can contain AML and thus are the only types
371 * that can create namespace objects.
372 */
373 if (ACPI_COMPARE_NAME (
374 AcpiGbl_RootTableList.Tables[i].Signature.Ascii,
375 ACPI_SIG_DSDT))
376 {
377 Status = AE_TYPE;
378 break;
379 }

381 /* Ensure the table is actually loaded */

383 if (!AcpiTbIsTableLoaded (i))
384 {
385 Status = AE_NOT_EXIST;
386 break;
387 }

389 /* Invoke table handler if present */

new/usr/src/common/acpica/components/tables/tbxfload.c 7

391 if (AcpiGbl_TableHandler)
392 {
393 (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_UNLOAD,
394 AcpiGbl_RootTableList.Tables[i].Pointer,
395 AcpiGbl_TableHandlerContext);
396 }

398 /*
399 * Delete all namespace objects owned by this table. Note that
400 * these objects can appear anywhere in the namespace by virtue
401 * of the AML "Scope" operator. Thus, we need to track ownership
402 * by an ID, not simply a position within the hierarchy.
403 */
404 Status = AcpiTbDeleteNamespaceByOwner (i);
405 if (ACPI_FAILURE (Status))
406 {
407 break;
408 }

410 Status = AcpiTbReleaseOwnerId (i);
411 AcpiTbSetTableLoadedFlag (i, FALSE);
412 break;
413 }

415 (void) AcpiUtReleaseMutex (ACPI_MTX_INTERPRETER);
416 return_ACPI_STATUS (Status);
417 }

419 ACPI_EXPORT_SYMBOL (AcpiUnloadParentTable)

new/usr/src/common/acpica/components/tables/tbxfroot.c 1

**
 8842 Thu Dec 26 13:49:35 2013
new/usr/src/common/acpica/components/tables/tbxfroot.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: tbxfroot - Find the root ACPI table (RSDT)
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __TBXFROOT_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "actables.h"

51 #define _COMPONENT ACPI_TABLES
52 ACPI_MODULE_NAME ("tbxfroot")

54 /* Local prototypes */

56 static UINT8 *
57 AcpiTbScanMemoryForRsdp (
58 UINT8 *StartAddress,
59 UINT32 Length);

new/usr/src/common/acpica/components/tables/tbxfroot.c 2

61 static ACPI_STATUS
62 AcpiTbValidateRsdp (
63 ACPI_TABLE_RSDP *Rsdp);

55 /***
56 *
57 * FUNCTION: AcpiTbValidateRsdp
58 *
59 * PARAMETERS: Rsdp - Pointer to unvalidated RSDP
60 *
61 * RETURN: Status
62 *
63 * DESCRIPTION: Validate the RSDP (ptr)
64 *
65 **/

67 ACPI_STATUS
78 static ACPI_STATUS
68 AcpiTbValidateRsdp (
69 ACPI_TABLE_RSDP *Rsdp)
70 {
82 ACPI_FUNCTION_ENTRY ();

72 /*
73 * The signature and checksum must both be correct
74 *
75 * Note: Sometimes there exists more than one RSDP in memory; the valid
76 * RSDP has a valid checksum, all others have an invalid checksum.
77 */
78 if (!ACPI_VALIDATE_RSDP_SIG (Rsdp->Signature))
91 if (ACPI_STRNCMP ((char *) Rsdp, ACPI_SIG_RSDP,
92 sizeof (ACPI_SIG_RSDP)-1) != 0)
79 {
80 /* Nope, BAD Signature */

82 return (AE_BAD_SIGNATURE);
83 }

85 /* Check the standard checksum */

87 if (AcpiTbChecksum ((UINT8 *) Rsdp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
88 {
89 return (AE_BAD_CHECKSUM);
90 }

92 /* Check extended checksum if table version >= 2 */

94 if ((Rsdp->Revision >= 2) &&
95 (AcpiTbChecksum ((UINT8 *) Rsdp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0))
96 {
97 return (AE_BAD_CHECKSUM);
98 }

100 return (AE_OK);
101 }

104 /***
105 *
106 * FUNCTION: AcpiFindRootPointer
107 *
108 * PARAMETERS: TableAddress - Where the table pointer is returned
109 *

new/usr/src/common/acpica/components/tables/tbxfroot.c 3

110 * RETURN: Status, RSDP physical address
111 *
112 * DESCRIPTION: Search lower 1Mbyte of memory for the root system descriptor
113 * pointer structure. If it is found, set *RSDP to point to it.
114 *
115 * NOTE1: The RSDP must be either in the first 1K of the Extended
116 * BIOS Data Area or between E0000 and FFFFF (From ACPI Spec.)
117 * Only a 32-bit physical address is necessary.
118 *
119 * NOTE2: This function is always available, regardless of the
120 * initialization state of the rest of ACPI.
121 *
122 **/

124 ACPI_STATUS
125 AcpiFindRootPointer (
126 ACPI_SIZE *TableAddress)
127 {
128 UINT8 *TablePtr;
129 UINT8 *MemRover;
130 UINT32 PhysicalAddress;

133 ACPI_FUNCTION_TRACE (AcpiFindRootPointer);

136 /* 1a) Get the location of the Extended BIOS Data Area (EBDA) */

138 TablePtr = AcpiOsMapMemory (
139 (ACPI_PHYSICAL_ADDRESS) ACPI_EBDA_PTR_LOCATION,
140 ACPI_EBDA_PTR_LENGTH);
141 if (!TablePtr)
142 {
143 ACPI_ERROR ((AE_INFO,
144 "Could not map memory at 0x%8.8X for length %u",
145 ACPI_EBDA_PTR_LOCATION, ACPI_EBDA_PTR_LENGTH));

147 return_ACPI_STATUS (AE_NO_MEMORY);
148 }

150 ACPI_MOVE_16_TO_32 (&PhysicalAddress, TablePtr);

152 /* Convert segment part to physical address */

154 PhysicalAddress <<= 4;
155 AcpiOsUnmapMemory (TablePtr, ACPI_EBDA_PTR_LENGTH);

157 /* EBDA present? */

159 if (PhysicalAddress > 0x400)
160 {
161 /*
162 * 1b) Search EBDA paragraphs (EBDA is required to be a
163 * minimum of 1K length)
164 */
165 TablePtr = AcpiOsMapMemory (
166 (ACPI_PHYSICAL_ADDRESS) PhysicalAddress,
167 ACPI_EBDA_WINDOW_SIZE);
168 if (!TablePtr)
169 {
170 ACPI_ERROR ((AE_INFO,
171 "Could not map memory at 0x%8.8X for length %u",
172 PhysicalAddress, ACPI_EBDA_WINDOW_SIZE));

174 return_ACPI_STATUS (AE_NO_MEMORY);
175 }

new/usr/src/common/acpica/components/tables/tbxfroot.c 4

177 MemRover = AcpiTbScanMemoryForRsdp (TablePtr, ACPI_EBDA_WINDOW_SIZE);
178 AcpiOsUnmapMemory (TablePtr, ACPI_EBDA_WINDOW_SIZE);

180 if (MemRover)
181 {
182 /* Return the physical address */

184 PhysicalAddress += (UINT32) ACPI_PTR_DIFF (MemRover, TablePtr);

186 *TableAddress = PhysicalAddress;
187 return_ACPI_STATUS (AE_OK);
188 }
189 }

191 /*
192 * 2) Search upper memory: 16-byte boundaries in E0000h-FFFFFh
193 */
194 TablePtr = AcpiOsMapMemory (
195 (ACPI_PHYSICAL_ADDRESS) ACPI_HI_RSDP_WINDOW_BASE,
196 ACPI_HI_RSDP_WINDOW_SIZE);

198 if (!TablePtr)
199 {
200 ACPI_ERROR ((AE_INFO,
201 "Could not map memory at 0x%8.8X for length %u",
202 ACPI_HI_RSDP_WINDOW_BASE, ACPI_HI_RSDP_WINDOW_SIZE));

204 return_ACPI_STATUS (AE_NO_MEMORY);
205 }

207 MemRover = AcpiTbScanMemoryForRsdp (TablePtr, ACPI_HI_RSDP_WINDOW_SIZE);
208 AcpiOsUnmapMemory (TablePtr, ACPI_HI_RSDP_WINDOW_SIZE);

210 if (MemRover)
211 {
212 /* Return the physical address */

214 PhysicalAddress = (UINT32)
215 (ACPI_HI_RSDP_WINDOW_BASE + ACPI_PTR_DIFF (MemRover, TablePtr));

217 *TableAddress = PhysicalAddress;
218 return_ACPI_STATUS (AE_OK);
219 }

221 /* A valid RSDP was not found */

223 ACPI_BIOS_ERROR ((AE_INFO, "A valid RSDP was not found"));
237 ACPI_ERROR ((AE_INFO, "A valid RSDP was not found"));
224 return_ACPI_STATUS (AE_NOT_FOUND);
225 }

227 ACPI_EXPORT_SYMBOL (AcpiFindRootPointer)

230 /***
231 *
232 * FUNCTION: AcpiTbScanMemoryForRsdp
233 *
234 * PARAMETERS: StartAddress - Starting pointer for search
235 * Length - Maximum length to search
236 *
237 * RETURN: Pointer to the RSDP if found, otherwise NULL.
238 *
239 * DESCRIPTION: Search a block of memory for the RSDP signature
240 *

new/usr/src/common/acpica/components/tables/tbxfroot.c 5

241 **/

243 UINT8 *
257 static UINT8 *
244 AcpiTbScanMemoryForRsdp (
245 UINT8 *StartAddress,
246 UINT32 Length)
247 {
248 ACPI_STATUS Status;
249 UINT8 *MemRover;
250 UINT8 *EndAddress;

253 ACPI_FUNCTION_TRACE (TbScanMemoryForRsdp);

256 EndAddress = StartAddress + Length;

258 /* Search from given start address for the requested length */

260 for (MemRover = StartAddress; MemRover < EndAddress;
261 MemRover += ACPI_RSDP_SCAN_STEP)
262 {
263 /* The RSDP signature and checksum must both be correct */

265 Status = AcpiTbValidateRsdp (ACPI_CAST_PTR (ACPI_TABLE_RSDP, MemRover));
266 if (ACPI_SUCCESS (Status))
267 {
268 /* Sig and checksum valid, we have found a real RSDP */

270 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
271 "RSDP located at physical address %p\n", MemRover));
272 return_PTR (MemRover);
273 }

275 /* No sig match or bad checksum, keep searching */
276 }

278 /* Searched entire block, no RSDP was found */

280 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
281 "Searched entire block from %p, valid RSDP was not found\n",
282 StartAddress));
283 return_PTR (NULL);
284 }

new/usr/src/common/acpica/components/utilities/utaddress.c 1

**
 10352 Thu Dec 26 13:49:35 2013
new/usr/src/common/acpica/components/utilities/utaddress.c
update to acpica-unix2-20131218
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: utaddress - OpRegion address range check
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTADDRESS_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acnamesp.h"

51 #define _COMPONENT ACPI_UTILITIES
52 ACPI_MODULE_NAME ("utaddress")

55 /***
56 *
57 * FUNCTION: AcpiUtAddAddressRange
58 *
59 * PARAMETERS: SpaceId - Address space ID
60 * Address - OpRegion start address

new/usr/src/common/acpica/components/utilities/utaddress.c 2

61 * Length - OpRegion length
62 * RegionNode - OpRegion namespace node
63 *
64 * RETURN: Status
65 *
66 * DESCRIPTION: Add the Operation Region address range to the global list.
67 * The only supported Space IDs are Memory and I/O. Called when
68 * the OpRegion address/length operands are fully evaluated.
69 *
70 * MUTEX: Locks the namespace
71 *
72 * NOTE: Because this interface is only called when an OpRegion argument
73 * list is evaluated, there cannot be any duplicate RegionNodes.
74 * Duplicate Address/Length values are allowed, however, so that multiple
75 * address conflicts can be detected.
76 *
77 **/

79 ACPI_STATUS
80 AcpiUtAddAddressRange (
81 ACPI_ADR_SPACE_TYPE SpaceId,
82 ACPI_PHYSICAL_ADDRESS Address,
83 UINT32 Length,
84 ACPI_NAMESPACE_NODE *RegionNode)
85 {
86 ACPI_ADDRESS_RANGE *RangeInfo;
87 ACPI_STATUS Status;

90 ACPI_FUNCTION_TRACE (UtAddAddressRange);

93 if ((SpaceId != ACPI_ADR_SPACE_SYSTEM_MEMORY) &&
94 (SpaceId != ACPI_ADR_SPACE_SYSTEM_IO))
95 {
96 return_ACPI_STATUS (AE_OK);
97 }

99 /* Allocate/init a new info block, add it to the appropriate list */

101 RangeInfo = ACPI_ALLOCATE (sizeof (ACPI_ADDRESS_RANGE));
102 if (!RangeInfo)
103 {
104 return_ACPI_STATUS (AE_NO_MEMORY);
105 }

107 RangeInfo->StartAddress = Address;
108 RangeInfo->EndAddress = (Address + Length - 1);
109 RangeInfo->RegionNode = RegionNode;

111 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
112 if (ACPI_FAILURE (Status))
113 {
114 ACPI_FREE (RangeInfo);
115 return_ACPI_STATUS (Status);
116 }

118 RangeInfo->Next = AcpiGbl_AddressRangeList[SpaceId];
119 AcpiGbl_AddressRangeList[SpaceId] = RangeInfo;

121 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,
122 "\nAdded [%4.4s] address range: 0x%p-0x%p\n",
123 AcpiUtGetNodeName (RangeInfo->RegionNode),
124 ACPI_CAST_PTR (void, Address),
125 ACPI_CAST_PTR (void, RangeInfo->EndAddress)));

new/usr/src/common/acpica/components/utilities/utaddress.c 3

127 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
128 return_ACPI_STATUS (AE_OK);
129 }

132 /***
133 *
134 * FUNCTION: AcpiUtRemoveAddressRange
135 *
136 * PARAMETERS: SpaceId - Address space ID
137 * RegionNode - OpRegion namespace node
138 *
139 * RETURN: None
140 *
141 * DESCRIPTION: Remove the Operation Region from the global list. The only
142 * supported Space IDs are Memory and I/O. Called when an
143 * OpRegion is deleted.
144 *
145 * MUTEX: Assumes the namespace is locked
146 *
147 **/

149 void
150 AcpiUtRemoveAddressRange (
151 ACPI_ADR_SPACE_TYPE SpaceId,
152 ACPI_NAMESPACE_NODE *RegionNode)
153 {
154 ACPI_ADDRESS_RANGE *RangeInfo;
155 ACPI_ADDRESS_RANGE *Prev;

158 ACPI_FUNCTION_TRACE (UtRemoveAddressRange);

161 if ((SpaceId != ACPI_ADR_SPACE_SYSTEM_MEMORY) &&
162 (SpaceId != ACPI_ADR_SPACE_SYSTEM_IO))
163 {
164 return_VOID;
165 }

167 /* Get the appropriate list head and check the list */

169 RangeInfo = Prev = AcpiGbl_AddressRangeList[SpaceId];
170 while (RangeInfo)
171 {
172 if (RangeInfo->RegionNode == RegionNode)
173 {
174 if (RangeInfo == Prev) /* Found at list head */
175 {
176 AcpiGbl_AddressRangeList[SpaceId] = RangeInfo->Next;
177 }
178 else
179 {
180 Prev->Next = RangeInfo->Next;
181 }

183 ACPI_DEBUG_PRINT ((ACPI_DB_NAMES,
184 "\nRemoved [%4.4s] address range: 0x%p-0x%p\n",
185 AcpiUtGetNodeName (RangeInfo->RegionNode),
186 ACPI_CAST_PTR (void, RangeInfo->StartAddress),
187 ACPI_CAST_PTR (void, RangeInfo->EndAddress)));

189 ACPI_FREE (RangeInfo);
190 return_VOID;
191 }

new/usr/src/common/acpica/components/utilities/utaddress.c 4

193 Prev = RangeInfo;
194 RangeInfo = RangeInfo->Next;
195 }

197 return_VOID;
198 }

201 /***
202 *
203 * FUNCTION: AcpiUtCheckAddressRange
204 *
205 * PARAMETERS: SpaceId - Address space ID
206 * Address - Start address
207 * Length - Length of address range
208 * Warn - TRUE if warning on overlap desired
209 *
210 * RETURN: Count of the number of conflicts detected. Zero is always
211 * returned for Space IDs other than Memory or I/O.
212 *
213 * DESCRIPTION: Check if the input address range overlaps any of the
214 * ASL operation region address ranges. The only supported
215 * Space IDs are Memory and I/O.
216 *
217 * MUTEX: Assumes the namespace is locked.
218 *
219 **/

221 UINT32
222 AcpiUtCheckAddressRange (
223 ACPI_ADR_SPACE_TYPE SpaceId,
224 ACPI_PHYSICAL_ADDRESS Address,
225 UINT32 Length,
226 BOOLEAN Warn)
227 {
228 ACPI_ADDRESS_RANGE *RangeInfo;
229 ACPI_PHYSICAL_ADDRESS EndAddress;
230 char *Pathname;
231 UINT32 OverlapCount = 0;

234 ACPI_FUNCTION_TRACE (UtCheckAddressRange);

237 if ((SpaceId != ACPI_ADR_SPACE_SYSTEM_MEMORY) &&
238 (SpaceId != ACPI_ADR_SPACE_SYSTEM_IO))
239 {
240 return_UINT32 (0);
241 }

243 RangeInfo = AcpiGbl_AddressRangeList[SpaceId];
244 EndAddress = Address + Length - 1;

246 /* Check entire list for all possible conflicts */

248 while (RangeInfo)
249 {
250 /*
251 * Check if the requested address/length overlaps this
252 * address range. There are four cases to consider:
253 *
254 * 1) Input address/length is contained completely in the
255 * address range
256 * 2) Input address/length overlaps range at the range start
257 * 3) Input address/length overlaps range at the range end
258 * 4) Input address/length completely encompasses the range

new/usr/src/common/acpica/components/utilities/utaddress.c 5

259 */
260 if ((Address <= RangeInfo->EndAddress) &&
261 (EndAddress >= RangeInfo->StartAddress))
262 {
263 /* Found an address range overlap */

265 OverlapCount++;
266 if (Warn) /* Optional warning message */
267 {
268 Pathname = AcpiNsGetExternalPathname (RangeInfo->RegionNode);

270 ACPI_WARNING ((AE_INFO,
271 "%s range 0x%p-0x%p conflicts with OpRegion 0x%p-0x%p (%s)",
272 AcpiUtGetRegionName (SpaceId),
273 ACPI_CAST_PTR (void, Address),
274 ACPI_CAST_PTR (void, EndAddress),
275 ACPI_CAST_PTR (void, RangeInfo->StartAddress),
276 ACPI_CAST_PTR (void, RangeInfo->EndAddress),
277 Pathname));
278 ACPI_FREE (Pathname);
279 }
280 }

282 RangeInfo = RangeInfo->Next;
283 }

285 return_UINT32 (OverlapCount);
286 }

289 /***
290 *
291 * FUNCTION: AcpiUtDeleteAddressLists
292 *
293 * PARAMETERS: None
294 *
295 * RETURN: None
296 *
297 * DESCRIPTION: Delete all global address range lists (called during
298 * subsystem shutdown).
299 *
300 **/

302 void
303 AcpiUtDeleteAddressLists (
304 void)
305 {
306 ACPI_ADDRESS_RANGE *Next;
307 ACPI_ADDRESS_RANGE *RangeInfo;
308 int i;

311 /* Delete all elements in all address range lists */

313 for (i = 0; i < ACPI_ADDRESS_RANGE_MAX; i++)
314 {
315 Next = AcpiGbl_AddressRangeList[i];

317 while (Next)
318 {
319 RangeInfo = Next;
320 Next = RangeInfo->Next;
321 ACPI_FREE (RangeInfo);
322 }

324 AcpiGbl_AddressRangeList[i] = NULL;

new/usr/src/common/acpica/components/utilities/utaddress.c 6

325 }
326 }

new/usr/src/common/acpica/components/utilities/utalloc.c 1

**
 10014 Thu Dec 26 13:49:35 2013
new/usr/src/common/acpica/components/utilities/utalloc.c
update to acpica-unix2-20131218
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: utalloc - local memory allocation routines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTALLOC_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acdebug.h"

50 #define _COMPONENT ACPI_UTILITIES
51 ACPI_MODULE_NAME ("utalloc")

54 #if !defined (USE_NATIVE_ALLOCATE_ZEROED)
55 /***
56 *
57 * FUNCTION: AcpiOsAllocateZeroed

new/usr/src/common/acpica/components/utilities/utalloc.c 2

58 *
59 * PARAMETERS: Size - Size of the allocation
60 *
61 * RETURN: Address of the allocated memory on success, NULL on failure.
62 *
63 * DESCRIPTION: Subsystem equivalent of calloc. Allocate and zero memory.
64 * This is the default implementation. Can be overridden via the
65 * USE_NATIVE_ALLOCATE_ZEROED flag.
66 *
67 **/

69 void *
70 AcpiOsAllocateZeroed (
71 ACPI_SIZE Size)
72 {
73 void *Allocation;

76 ACPI_FUNCTION_ENTRY ();

79 Allocation = AcpiOsAllocate (Size);
80 if (Allocation)
81 {
82 /* Clear the memory block */

84 ACPI_MEMSET (Allocation, 0, Size);
85 }

87 return (Allocation);
88 }

90 #endif /* !USE_NATIVE_ALLOCATE_ZEROED */

93 /***
94 *
95 * FUNCTION: AcpiUtCreateCaches
96 *
97 * PARAMETERS: None
98 *
99 * RETURN: Status
100 *
101 * DESCRIPTION: Create all local caches
102 *
103 **/

105 ACPI_STATUS
106 AcpiUtCreateCaches (
107 void)
108 {
109 ACPI_STATUS Status;

112 /* Object Caches, for frequently used objects */

114 Status = AcpiOsCreateCache ("Acpi-Namespace", sizeof (ACPI_NAMESPACE_NODE),
115 ACPI_MAX_NAMESPACE_CACHE_DEPTH, &AcpiGbl_NamespaceCache);
116 if (ACPI_FAILURE (Status))
117 {
118 return (Status);
119 }

121 Status = AcpiOsCreateCache ("Acpi-State", sizeof (ACPI_GENERIC_STATE),
122 ACPI_MAX_STATE_CACHE_DEPTH, &AcpiGbl_StateCache);
123 if (ACPI_FAILURE (Status))

new/usr/src/common/acpica/components/utilities/utalloc.c 3

124 {
125 return (Status);
126 }

128 Status = AcpiOsCreateCache ("Acpi-Parse", sizeof (ACPI_PARSE_OBJ_COMMON),
129 ACPI_MAX_PARSE_CACHE_DEPTH, &AcpiGbl_PsNodeCache);
130 if (ACPI_FAILURE (Status))
131 {
132 return (Status);
133 }

135 Status = AcpiOsCreateCache ("Acpi-ParseExt", sizeof (ACPI_PARSE_OBJ_NAMED),
136 ACPI_MAX_EXTPARSE_CACHE_DEPTH, &AcpiGbl_PsNodeExtCache);
137 if (ACPI_FAILURE (Status))
138 {
139 return (Status);
140 }

142 Status = AcpiOsCreateCache ("Acpi-Operand", sizeof (ACPI_OPERAND_OBJECT),
143 ACPI_MAX_OBJECT_CACHE_DEPTH, &AcpiGbl_OperandCache);
144 if (ACPI_FAILURE (Status))
145 {
146 return (Status);
147 }

150 #ifdef ACPI_DBG_TRACK_ALLOCATIONS

152 /* Memory allocation lists */

154 Status = AcpiUtCreateList ("Acpi-Global", 0,
155 &AcpiGbl_GlobalList);
156 if (ACPI_FAILURE (Status))
157 {
158 return (Status);
159 }

161 Status = AcpiUtCreateList ("Acpi-Namespace", sizeof (ACPI_NAMESPACE_NODE),
162 &AcpiGbl_NsNodeList);
163 if (ACPI_FAILURE (Status))
164 {
165 return (Status);
166 }
167 #endif

169 return (AE_OK);
170 }

______unchanged_portion_omitted_

278 /***
279 *
280 * FUNCTION: AcpiUtInitializeBuffer
281 *
282 * PARAMETERS: Buffer - Buffer to be validated
283 * RequiredLength - Length needed
284 *
285 * RETURN: Status
286 *
287 * DESCRIPTION: Validate that the buffer is of the required length or
288 * allocate a new buffer. Returned buffer is always zeroed.
289 *
290 **/

292 ACPI_STATUS
293 AcpiUtInitializeBuffer (

new/usr/src/common/acpica/components/utilities/utalloc.c 4

294 ACPI_BUFFER *Buffer,
295 ACPI_SIZE RequiredLength)
296 {
297 ACPI_SIZE InputBufferLength;

300 /* Parameter validation */

302 if (!Buffer || !RequiredLength)
303 {
304 return (AE_BAD_PARAMETER);
305 }

307 /*
308 * Buffer->Length is used as both an input and output parameter. Get the
309 * input actual length and set the output required buffer length.
310 */
311 InputBufferLength = Buffer->Length;
312 Buffer->Length = RequiredLength;

314 /*
315 * The input buffer length contains the actual buffer length, or the type
316 * of buffer to be allocated by this routine.
317 */
318 switch (InputBufferLength)
319 {
320 case ACPI_NO_BUFFER:

322 /* Return the exception (and the required buffer length) */

324 return (AE_BUFFER_OVERFLOW);

326 case ACPI_ALLOCATE_BUFFER:
327 /*
328 * Allocate a new buffer. We directectly call AcpiOsAllocate here to
329 * purposefully bypass the (optionally enabled) internal allocation
330 * tracking mechanism since we only want to track internal
331 * allocations. Note: The caller should use AcpiOsFree to free this
332 * buffer created via ACPI_ALLOCATE_BUFFER.
333 */

289 /* Allocate a new buffer */

334 Buffer->Pointer = AcpiOsAllocate (RequiredLength);
335 break;

337 case ACPI_ALLOCATE_LOCAL_BUFFER:

339 /* Allocate a new buffer with local interface to allow tracking */

341 Buffer->Pointer = ACPI_ALLOCATE (RequiredLength);
342 break;

344 default:

346 /* Existing buffer: Validate the size of the buffer */

348 if (InputBufferLength < RequiredLength)
349 {
350 return (AE_BUFFER_OVERFLOW);
351 }
352 break;
353 }

355 /* Validate allocation from above or input buffer pointer */

new/usr/src/common/acpica/components/utilities/utalloc.c 5

357 if (!Buffer->Pointer)
358 {
359 return (AE_NO_MEMORY);
360 }

362 /* Have a valid buffer, clear it */

364 ACPI_MEMSET (Buffer->Pointer, 0, RequiredLength);
365 return (AE_OK);
366 }

326 /***
327 *
328 * FUNCTION: AcpiUtAllocate
329 *
330 * PARAMETERS: Size - Size of the allocation
331 * Component - Component type of caller
332 * Module - Source file name of caller
333 * Line - Line number of caller
334 *
335 * RETURN: Address of the allocated memory on success, NULL on failure.
336 *
337 * DESCRIPTION: Subsystem equivalent of malloc.
338 *
339 **/

341 void *
342 AcpiUtAllocate (
343 ACPI_SIZE Size,
344 UINT32 Component,
345 const char *Module,
346 UINT32 Line)
347 {
348 void *Allocation;

351 ACPI_FUNCTION_TRACE_U32 (UtAllocate, Size);

354 /* Check for an inadvertent size of zero bytes */

356 if (!Size)
357 {
358 ACPI_WARNING ((Module, Line,
359 "Attempt to allocate zero bytes, allocating 1 byte"));
360 Size = 1;
361 }

363 Allocation = AcpiOsAllocate (Size);
364 if (!Allocation)
365 {
366 /* Report allocation error */

368 ACPI_WARNING ((Module, Line,
369 "Could not allocate size %u", (UINT32) Size));

371 return_PTR (NULL);
372 }

374 return_PTR (Allocation);
375 }

378 /***
379 *

new/usr/src/common/acpica/components/utilities/utalloc.c 6

380 * FUNCTION: AcpiUtAllocateZeroed
381 *
382 * PARAMETERS: Size - Size of the allocation
383 * Component - Component type of caller
384 * Module - Source file name of caller
385 * Line - Line number of caller
386 *
387 * RETURN: Address of the allocated memory on success, NULL on failure.
388 *
389 * DESCRIPTION: Subsystem equivalent of calloc. Allocate and zero memory.
390 *
391 **/

393 void *
394 AcpiUtAllocateZeroed (
395 ACPI_SIZE Size,
396 UINT32 Component,
397 const char *Module,
398 UINT32 Line)
399 {
400 void *Allocation;

403 ACPI_FUNCTION_ENTRY ();

406 Allocation = AcpiUtAllocate (Size, Component, Module, Line);
407 if (Allocation)
408 {
409 /* Clear the memory block */

411 ACPI_MEMSET (Allocation, 0, Size);
412 }

414 return (Allocation);
415 }

new/usr/src/common/acpica/components/utilities/utbuffer.c 1

**
 6838 Thu Dec 26 13:49:36 2013
new/usr/src/common/acpica/components/utilities/utbuffer.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: utbuffer - Buffer dump routines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTBUFFER_C__

46 #include "acpi.h"
47 #include "accommon.h"

49 #define _COMPONENT ACPI_UTILITIES
50 ACPI_MODULE_NAME ("utbuffer")

53 /***
54 *
55 * FUNCTION: AcpiUtDumpBuffer
56 *
57 * PARAMETERS: Buffer - Buffer to dump
58 * Count - Amount to dump, in bytes
59 * Display - BYTE, WORD, DWORD, or QWORD display:
60 * DB_BYTE_DISPLAY
61 * DB_WORD_DISPLAY

new/usr/src/common/acpica/components/utilities/utbuffer.c 2

62 * DB_DWORD_DISPLAY
63 * DB_QWORD_DISPLAY
64 * BaseOffset - Beginning buffer offset (display only)
65 *
66 * RETURN: None
67 *
68 * DESCRIPTION: Generic dump buffer in both hex and ascii.
69 *
70 **/

72 void
73 AcpiUtDumpBuffer (
74 UINT8 *Buffer,
75 UINT32 Count,
76 UINT32 Display,
77 UINT32 BaseOffset)
78 {
79 UINT32 i = 0;
80 UINT32 j;
81 UINT32 Temp32;
82 UINT8 BufChar;

85 if (!Buffer)
86 {
87 AcpiOsPrintf ("Null Buffer Pointer in DumpBuffer!\n");
88 return;
89 }

91 if ((Count < 4) || (Count & 0x01))
92 {
93 Display = DB_BYTE_DISPLAY;
94 }

96 /* Nasty little dump buffer routine! */

98 while (i < Count)
99 {
100 /* Print current offset */

102 AcpiOsPrintf ("%6.4X: ", (BaseOffset + i));

104 /* Print 16 hex chars */

106 for (j = 0; j < 16;)
107 {
108 if (i + j >= Count)
109 {
110 /* Dump fill spaces */

112 AcpiOsPrintf ("%*s", ((Display * 2) + 1), " ");
113 j += Display;
114 continue;
115 }

117 switch (Display)
118 {
119 case DB_BYTE_DISPLAY:
120 default: /* Default is BYTE display */

122 AcpiOsPrintf ("%02X ", Buffer[(ACPI_SIZE) i + j]);
123 break;

125 case DB_WORD_DISPLAY:

127 ACPI_MOVE_16_TO_32 (&Temp32, &Buffer[(ACPI_SIZE) i + j]);

new/usr/src/common/acpica/components/utilities/utbuffer.c 3

128 AcpiOsPrintf ("%04X ", Temp32);
129 break;

131 case DB_DWORD_DISPLAY:

133 ACPI_MOVE_32_TO_32 (&Temp32, &Buffer[(ACPI_SIZE) i + j]);
134 AcpiOsPrintf ("%08X ", Temp32);
135 break;

137 case DB_QWORD_DISPLAY:

139 ACPI_MOVE_32_TO_32 (&Temp32, &Buffer[(ACPI_SIZE) i + j]);
140 AcpiOsPrintf ("%08X", Temp32);

142 ACPI_MOVE_32_TO_32 (&Temp32, &Buffer[(ACPI_SIZE) i + j + 4]);
143 AcpiOsPrintf ("%08X ", Temp32);
144 break;
145 }

147 j += Display;
148 }

150 /*
151 * Print the ASCII equivalent characters but watch out for the bad
152 * unprintable ones (printable chars are 0x20 through 0x7E)
153 */
154 AcpiOsPrintf (" ");
155 for (j = 0; j < 16; j++)
156 {
157 if (i + j >= Count)
158 {
159 AcpiOsPrintf ("\n");
160 return;
161 }

163 BufChar = Buffer[(ACPI_SIZE) i + j];
164 if (ACPI_IS_PRINT (BufChar))
165 {
166 AcpiOsPrintf ("%c", BufChar);
167 }
168 else
169 {
170 AcpiOsPrintf (".");
171 }
172 }

174 /* Done with that line. */

176 AcpiOsPrintf ("\n");
177 i += 16;
178 }

180 return;
181 }

184 /***
185 *
186 * FUNCTION: AcpiUtDebugDumpBuffer
187 *
188 * PARAMETERS: Buffer - Buffer to dump
189 * Count - Amount to dump, in bytes
190 * Display - BYTE, WORD, DWORD, or QWORD display:
191 * DB_BYTE_DISPLAY
192 * DB_WORD_DISPLAY
193 * DB_DWORD_DISPLAY

new/usr/src/common/acpica/components/utilities/utbuffer.c 4

194 * DB_QWORD_DISPLAY
195 * ComponentID - Caller’s component ID
196 *
197 * RETURN: None
198 *
199 * DESCRIPTION: Generic dump buffer in both hex and ascii.
200 *
201 **/

203 void
204 AcpiUtDebugDumpBuffer (
205 UINT8 *Buffer,
206 UINT32 Count,
207 UINT32 Display,
208 UINT32 ComponentId)
209 {

211 /* Only dump the buffer if tracing is enabled */

213 if (!((ACPI_LV_TABLES & AcpiDbgLevel) &&
214 (ComponentId & AcpiDbgLayer)))
215 {
216 return;
217 }

219 AcpiUtDumpBuffer (Buffer, Count, Display, 0);
220 }

new/usr/src/common/acpica/components/utilities/utcache.c 1

**
 9247 Thu Dec 26 13:49:36 2013
new/usr/src/common/acpica/components/utilities/utcache.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: utcache - local cache allocation routines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTCACHE_C__

46 #include "acpi.h"
47 #include "accommon.h"

49 #define _COMPONENT ACPI_UTILITIES
50 ACPI_MODULE_NAME ("utcache")

53 #ifdef ACPI_USE_LOCAL_CACHE
54 /***
55 *
56 * FUNCTION: AcpiOsCreateCache
57 *
58 * PARAMETERS: CacheName - Ascii name for the cache

new/usr/src/common/acpica/components/utilities/utcache.c 2

59 * ObjectSize - Size of each cached object
60 * MaxDepth - Maximum depth of the cache (in objects)
61 * ReturnCache - Where the new cache object is returned
62 *
63 * RETURN: Status
64 *
65 * DESCRIPTION: Create a cache object
66 *
67 **/

69 ACPI_STATUS
70 AcpiOsCreateCache (
71 char *CacheName,
72 UINT16 ObjectSize,
73 UINT16 MaxDepth,
74 ACPI_MEMORY_LIST **ReturnCache)
75 {
76 ACPI_MEMORY_LIST *Cache;

79 ACPI_FUNCTION_ENTRY ();

82 if (!CacheName || !ReturnCache || (ObjectSize < 16))
83 {
84 return (AE_BAD_PARAMETER);
85 }

87 /* Create the cache object */

89 Cache = AcpiOsAllocate (sizeof (ACPI_MEMORY_LIST));
90 if (!Cache)
91 {
92 return (AE_NO_MEMORY);
93 }

95 /* Populate the cache object and return it */

97 ACPI_MEMSET (Cache, 0, sizeof (ACPI_MEMORY_LIST));
98 Cache->LinkOffset = 8;
98 Cache->ListName = CacheName;
99 Cache->ObjectSize = ObjectSize;
100 Cache->MaxDepth = MaxDepth;

102 *ReturnCache = Cache;
103 return (AE_OK);
104 }

107 /***
108 *
109 * FUNCTION: AcpiOsPurgeCache
110 *
111 * PARAMETERS: Cache - Handle to cache object
112 *
113 * RETURN: Status
114 *
115 * DESCRIPTION: Free all objects within the requested cache.
116 *
117 **/

119 ACPI_STATUS
120 AcpiOsPurgeCache (
121 ACPI_MEMORY_LIST *Cache)
122 {
123 void *Next;

new/usr/src/common/acpica/components/utilities/utcache.c 3

124 char *Next;
124 ACPI_STATUS Status;

127 ACPI_FUNCTION_ENTRY ();

130 if (!Cache)
131 {
132 return (AE_BAD_PARAMETER);
133 }

135 Status = AcpiUtAcquireMutex (ACPI_MTX_CACHES);
136 if (ACPI_FAILURE (Status))
137 {
138 return (Status);
139 }

141 /* Walk the list of objects in this cache */

143 while (Cache->ListHead)
144 {
145 /* Delete and unlink one cached state object */

147 Next = ACPI_GET_DESCRIPTOR_PTR (Cache->ListHead);
148 Next = *(ACPI_CAST_INDIRECT_PTR (char,
149 &(((char *) Cache->ListHead)[Cache->LinkOffset])));
148 ACPI_FREE (Cache->ListHead);

150 Cache->ListHead = Next;
151 Cache->CurrentDepth--;
152 }

154 (void) AcpiUtReleaseMutex (ACPI_MTX_CACHES);
155 return (AE_OK);
156 }

______unchanged_portion_omitted_

197 /***
198 *
199 * FUNCTION: AcpiOsReleaseObject
200 *
201 * PARAMETERS: Cache - Handle to cache object
202 * Object - The object to be released
203 *
204 * RETURN: None
205 *
206 * DESCRIPTION: Release an object to the specified cache. If cache is full,
207 * the object is deleted.
208 *
209 **/

211 ACPI_STATUS
212 AcpiOsReleaseObject (
213 ACPI_MEMORY_LIST *Cache,
214 void *Object)
215 {
216 ACPI_STATUS Status;

219 ACPI_FUNCTION_ENTRY ();

222 if (!Cache || !Object)
223 {

new/usr/src/common/acpica/components/utilities/utcache.c 4

224 return (AE_BAD_PARAMETER);
225 }

227 /* If cache is full, just free this object */

229 if (Cache->CurrentDepth >= Cache->MaxDepth)
230 {
231 ACPI_FREE (Object);
232 ACPI_MEM_TRACKING (Cache->TotalFreed++);
233 }

235 /* Otherwise put this object back into the cache */

237 else
238 {
239 Status = AcpiUtAcquireMutex (ACPI_MTX_CACHES);
240 if (ACPI_FAILURE (Status))
241 {
242 return (Status);
243 }

245 /* Mark the object as cached */

247 ACPI_MEMSET (Object, 0xCA, Cache->ObjectSize);
248 ACPI_SET_DESCRIPTOR_TYPE (Object, ACPI_DESC_TYPE_CACHED);

250 /* Put the object at the head of the cache list */

252 ACPI_SET_DESCRIPTOR_PTR (Object, Cache->ListHead);
254 * (ACPI_CAST_INDIRECT_PTR (char,
255 &(((char *) Object)[Cache->LinkOffset]))) = Cache->ListHead;
253 Cache->ListHead = Object;
254 Cache->CurrentDepth++;

256 (void) AcpiUtReleaseMutex (ACPI_MTX_CACHES);
257 }

259 return (AE_OK);
260 }

263 /***
264 *
265 * FUNCTION: AcpiOsAcquireObject
266 *
267 * PARAMETERS: Cache - Handle to cache object
268 *
269 * RETURN: the acquired object. NULL on error
270 *
271 * DESCRIPTION: Get an object from the specified cache. If cache is empty,
272 * the object is allocated.
273 *
274 **/

276 void *
277 AcpiOsAcquireObject (
278 ACPI_MEMORY_LIST *Cache)
279 {
280 ACPI_STATUS Status;
281 void *Object;

284 ACPI_FUNCTION_NAME (OsAcquireObject);

287 if (!Cache)

new/usr/src/common/acpica/components/utilities/utcache.c 5

288 {
289 return_PTR (NULL);
292 return (NULL);
290 }

292 Status = AcpiUtAcquireMutex (ACPI_MTX_CACHES);
293 if (ACPI_FAILURE (Status))
294 {
295 return_PTR (NULL);
298 return (NULL);
296 }

298 ACPI_MEM_TRACKING (Cache->Requests++);

300 /* Check the cache first */

302 if (Cache->ListHead)
303 {
304 /* There is an object available, use it */

306 Object = Cache->ListHead;
307 Cache->ListHead = ACPI_GET_DESCRIPTOR_PTR (Object);
310 Cache->ListHead = *(ACPI_CAST_INDIRECT_PTR (char,
311 &(((char *) Object)[Cache->LinkOffset])));

309 Cache->CurrentDepth--;

311 ACPI_MEM_TRACKING (Cache->Hits++);
312 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
313 "Object %p from %s cache\n", Object, Cache->ListName));

315 Status = AcpiUtReleaseMutex (ACPI_MTX_CACHES);
316 if (ACPI_FAILURE (Status))
317 {
318 return_PTR (NULL);
322 return (NULL);
319 }

321 /* Clear (zero) the previously used Object */

323 ACPI_MEMSET (Object, 0, Cache->ObjectSize);
324 }
325 else
326 {
327 /* The cache is empty, create a new object */

329 ACPI_MEM_TRACKING (Cache->TotalAllocated++);

331 #ifdef ACPI_DBG_TRACK_ALLOCATIONS
332 if ((Cache->TotalAllocated - Cache->TotalFreed) > Cache->MaxOccupied)
333 {
334 Cache->MaxOccupied = Cache->TotalAllocated - Cache->TotalFreed;
335 }
336 #endif

338 /* Avoid deadlock with ACPI_ALLOCATE_ZEROED */

340 Status = AcpiUtReleaseMutex (ACPI_MTX_CACHES);
341 if (ACPI_FAILURE (Status))
342 {
343 return_PTR (NULL);
347 return (NULL);
344 }

346 Object = ACPI_ALLOCATE_ZEROED (Cache->ObjectSize);
347 if (!Object)

new/usr/src/common/acpica/components/utilities/utcache.c 6

348 {
349 return_PTR (NULL);
353 return (NULL);
350 }
351 }

353 return_PTR (Object);
357 return (Object);
354 }
355 #endif /* ACPI_USE_LOCAL_CACHE */

new/usr/src/common/acpica/components/utilities/utclib.c 1

**
 24537 Thu Dec 26 13:49:36 2013
new/usr/src/common/acpica/components/utilities/utclib.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: cmclib - Local implementation of C library functions
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __CMCLIB_C__

47 #include "acpi.h"
48 #include "accommon.h"

50 /*
51 * These implementations of standard C Library routines can optionally be
52 * used if a C library is not available. In general, they are less efficient
53 * than an inline or assembly implementation
54 */

56 #define _COMPONENT ACPI_UTILITIES
57 ACPI_MODULE_NAME ("cmclib")

60 #ifndef ACPI_USE_SYSTEM_CLIBRARY

new/usr/src/common/acpica/components/utilities/utclib.c 2

62 #define NEGATIVE 1
63 #define POSITIVE 0

66 /***
67 *
68 * FUNCTION: AcpiUtMemcmp (memcmp)
69 *
70 * PARAMETERS: Buffer1 - First Buffer
71 * Buffer2 - Second Buffer
72 * Count - Maximum # of bytes to compare
73 *
74 * RETURN: Index where Buffers mismatched, or 0 if Buffers matched
75 *
76 * DESCRIPTION: Compare two Buffers, with a maximum length
77 *
78 **/

80 int
81 AcpiUtMemcmp (
82 const char *Buffer1,
83 const char *Buffer2,
84 ACPI_SIZE Count)
85 {

87 for (; Count-- && (*Buffer1 == *Buffer2); Buffer1++, Buffer2++)
88 {
89 }

91 return ((Count == ACPI_SIZE_MAX) ? 0 : ((unsigned char) *Buffer1 -
92 (unsigned char) *Buffer2));
93 }

96 /***
97 *
98 * FUNCTION: AcpiUtMemcpy (memcpy)
99 *
100 * PARAMETERS: Dest - Target of the copy
101 * Src - Source buffer to copy
102 * Count - Number of bytes to copy
103 *
104 * RETURN: Dest
105 *
106 * DESCRIPTION: Copy arbitrary bytes of memory
107 *
108 **/

110 void *
111 AcpiUtMemcpy (
112 void *Dest,
113 const void *Src,
114 ACPI_SIZE Count)
115 {
116 char *New = (char *) Dest;
117 char *Old = (char *) Src;

120 while (Count)
121 {
122 *New = *Old;
123 New++;
124 Old++;
125 Count--;
126 }

new/usr/src/common/acpica/components/utilities/utclib.c 3

128 return (Dest);
129 }

132 /***
133 *
134 * FUNCTION: AcpiUtMemset (memset)
135 *
136 * PARAMETERS: Dest - Buffer to set
137 * Value - Value to set each byte of memory
138 * Count - Number of bytes to set
139 *
140 * RETURN: Dest
141 *
142 * DESCRIPTION: Initialize a buffer to a known value.
143 *
144 **/

146 void *
147 AcpiUtMemset (
148 void *Dest,
149 UINT8 Value,
150 ACPI_SIZE Count)
151 {
152 char *New = (char *) Dest;

155 while (Count)
156 {
157 *New = (char) Value;
158 New++;
159 Count--;
160 }

162 return (Dest);
163 }

166 /***
167 *
168 * FUNCTION: AcpiUtStrlen (strlen)
169 *
170 * PARAMETERS: String - Null terminated string
171 *
172 * RETURN: Length
173 *
174 * DESCRIPTION: Returns the length of the input string
175 *
176 **/

179 ACPI_SIZE
180 AcpiUtStrlen (
181 const char *String)
182 {
183 UINT32 Length = 0;

186 /* Count the string until a null is encountered */

188 while (*String)
189 {
190 Length++;
191 String++;
192 }

new/usr/src/common/acpica/components/utilities/utclib.c 4

194 return (Length);
195 }

198 /***
199 *
200 * FUNCTION: AcpiUtStrcpy (strcpy)
201 *
202 * PARAMETERS: DstString - Target of the copy
203 * SrcString - The source string to copy
204 *
205 * RETURN: DstString
206 *
207 * DESCRIPTION: Copy a null terminated string
208 *
209 **/

211 char *
212 AcpiUtStrcpy (
213 char *DstString,
214 const char *SrcString)
215 {
216 char *String = DstString;

219 /* Move bytes brute force */

221 while (*SrcString)
222 {
223 *String = *SrcString;

225 String++;
226 SrcString++;
227 }

229 /* Null terminate */

231 *String = 0;
232 return (DstString);
233 }

236 /***
237 *
238 * FUNCTION: AcpiUtStrncpy (strncpy)
239 *
240 * PARAMETERS: DstString - Target of the copy
241 * SrcString - The source string to copy
242 * Count - Maximum # of bytes to copy
243 *
244 * RETURN: DstString
245 *
246 * DESCRIPTION: Copy a null terminated string, with a maximum length
247 *
248 **/

250 char *
251 AcpiUtStrncpy (
252 char *DstString,
253 const char *SrcString,
254 ACPI_SIZE Count)
255 {
256 char *String = DstString;

new/usr/src/common/acpica/components/utilities/utclib.c 5

259 /* Copy the string */

261 for (String = DstString;
262 Count && (Count--, (*String++ = *SrcString++));)
263 {;}

265 /* Pad with nulls if necessary */

267 while (Count--)
268 {
269 *String = 0;
270 String++;
271 }

273 /* Return original pointer */

275 return (DstString);
276 }

279 /***
280 *
281 * FUNCTION: AcpiUtStrcmp (strcmp)
282 *
283 * PARAMETERS: String1 - First string
284 * String2 - Second string
285 *
286 * RETURN: Index where strings mismatched, or 0 if strings matched
287 *
288 * DESCRIPTION: Compare two null terminated strings
289 *
290 **/

292 int
293 AcpiUtStrcmp (
294 const char *String1,
295 const char *String2)
296 {

299 for (; (*String1 == *String2); String2++)
300 {
301 if (!*String1++)
302 {
303 return (0);
304 }
305 }

307 return ((unsigned char) *String1 - (unsigned char) *String2);
308 }

311 #ifdef ACPI_FUTURE_IMPLEMENTATION
312 /* Not used at this time */
313 /***
314 *
315 * FUNCTION: AcpiUtStrchr (strchr)
316 *
317 * PARAMETERS: String - Search string
318 * ch - character to search for
319 *
320 * RETURN: Ptr to char or NULL if not found
321 *
322 * DESCRIPTION: Search a string for a character
323 *
324 **/

new/usr/src/common/acpica/components/utilities/utclib.c 6

326 char *
327 AcpiUtStrchr (
328 const char *String,
329 int ch)
330 {

333 for (; (*String); String++)
334 {
335 if ((*String) == (char) ch)
336 {
337 return ((char *) String);
338 }
339 }

341 return (NULL);
342 }
343 #endif

345 /***
346 *
347 * FUNCTION: AcpiUtStrncmp (strncmp)
348 *
349 * PARAMETERS: String1 - First string
350 * String2 - Second string
351 * Count - Maximum # of bytes to compare
352 *
353 * RETURN: Index where strings mismatched, or 0 if strings matched
354 *
355 * DESCRIPTION: Compare two null terminated strings, with a maximum length
356 *
357 **/

359 int
360 AcpiUtStrncmp (
361 const char *String1,
362 const char *String2,
363 ACPI_SIZE Count)
364 {

367 for (; Count-- && (*String1 == *String2); String2++)
368 {
369 if (!*String1++)
370 {
371 return (0);
372 }
373 }

375 return ((Count == ACPI_SIZE_MAX) ? 0 : ((unsigned char) *String1 -
376 (unsigned char) *String2));
377 }

380 /***
381 *
382 * FUNCTION: AcpiUtStrcat (Strcat)
383 *
384 * PARAMETERS: DstString - Target of the copy
385 * SrcString - The source string to copy
386 *
387 * RETURN: DstString
388 *
389 * DESCRIPTION: Append a null terminated string to a null terminated string
390 *

new/usr/src/common/acpica/components/utilities/utclib.c 7

391 **/

393 char *
394 AcpiUtStrcat (
395 char *DstString,
396 const char *SrcString)
397 {
398 char *String;

401 /* Find end of the destination string */

403 for (String = DstString; *String++;)
404 { ; }

406 /* Concatenate the string */

408 for (--String; (*String++ = *SrcString++);)
409 { ; }

411 return (DstString);
412 }

415 /***
416 *
417 * FUNCTION: AcpiUtStrncat (strncat)
418 *
419 * PARAMETERS: DstString - Target of the copy
420 * SrcString - The source string to copy
421 * Count - Maximum # of bytes to copy
422 *
423 * RETURN: DstString
424 *
425 * DESCRIPTION: Append a null terminated string to a null terminated string,
426 * with a maximum count.
427 *
428 **/

430 char *
431 AcpiUtStrncat (
432 char *DstString,
433 const char *SrcString,
434 ACPI_SIZE Count)
435 {
436 char *String;

439 if (Count)
440 {
441 /* Find end of the destination string */

443 for (String = DstString; *String++;)
444 { ; }

446 /* Concatenate the string */

448 for (--String; (*String++ = *SrcString++) && --Count;)
449 { ; }

451 /* Null terminate if necessary */

453 if (!Count)
454 {
455 *String = 0;
456 }

new/usr/src/common/acpica/components/utilities/utclib.c 8

457 }

459 return (DstString);
460 }

463 /***
464 *
465 * FUNCTION: AcpiUtStrstr (strstr)
466 *
467 * PARAMETERS: String1 - Target string
468 * String2 - Substring to search for
469 *
470 * RETURN: Where substring match starts, Null if no match found
471 *
472 * DESCRIPTION: Checks if String2 occurs in String1. This is not really a
473 * full implementation of strstr, only sufficient for command
474 * matching
475 *
476 **/

478 char *
479 AcpiUtStrstr (
480 char *String1,
481 char *String2)
482 {
483 char *String;

486 if (AcpiUtStrlen (String2) > AcpiUtStrlen (String1))
487 {
488 return (NULL);
489 }

491 /* Walk entire string, comparing the letters */

493 for (String = String1; *String2;)
494 {
495 if (*String2 != *String)
496 {
497 return (NULL);
498 }

500 String2++;
501 String++;
502 }

504 return (String1);
505 }

508 /***
509 *
510 * FUNCTION: AcpiUtStrtoul (strtoul)
511 *
512 * PARAMETERS: String - Null terminated string
513 * Terminater - Where a pointer to the terminating byte is
514 * returned
515 * Base - Radix of the string
516 *
517 * RETURN: Converted value
518 *
519 * DESCRIPTION: Convert a string into a 32-bit unsigned value.
520 * Note: use AcpiUtStrtoul64 for 64-bit integers.
521 *
522 **/

new/usr/src/common/acpica/components/utilities/utclib.c 9

524 UINT32
525 AcpiUtStrtoul (
526 const char *String,
527 char **Terminator,
528 UINT32 Base)
529 {
530 UINT32 converted = 0;
531 UINT32 index;
532 UINT32 sign;
533 const char *StringStart;
534 UINT32 ReturnValue = 0;
535 ACPI_STATUS Status = AE_OK;

538 /*
539 * Save the value of the pointer to the buffer’s first
540 * character, save the current errno value, and then
541 * skip over any white space in the buffer:
542 */
543 StringStart = String;
544 while (ACPI_IS_SPACE (*String) || *String == ’\t’)
545 {
546 ++String;
547 }

549 /*
550 * The buffer may contain an optional plus or minus sign.
551 * If it does, then skip over it but remember what is was:
552 */
553 if (*String == ’-’)
554 {
555 sign = NEGATIVE;
556 ++String;
557 }
558 else if (*String == ’+’)
559 {
560 ++String;
561 sign = POSITIVE;
562 }
563 else
564 {
565 sign = POSITIVE;
566 }

568 /*
569 * If the input parameter Base is zero, then we need to
570 * determine if it is octal, decimal, or hexadecimal:
571 */
572 if (Base == 0)
573 {
574 if (*String == ’0’)
575 {
576 if (AcpiUtToLower (*(++String)) == ’x’)
577 {
578 Base = 16;
579 ++String;
580 }
581 else
582 {
583 Base = 8;
584 }
585 }
586 else
587 {
588 Base = 10;

new/usr/src/common/acpica/components/utilities/utclib.c 10

589 }
590 }
591 else if (Base < 2 || Base > 36)
592 {
593 /*
594 * The specified Base parameter is not in the domain of
595 * this function:
596 */
597 goto done;
598 }

600 /*
601 * For octal and hexadecimal bases, skip over the leading
602 * 0 or 0x, if they are present.
603 */
604 if (Base == 8 && *String == ’0’)
605 {
606 String++;
607 }

609 if (Base == 16 &&
610 *String == ’0’ &&
611 AcpiUtToLower (*(++String)) == ’x’)
612 {
613 String++;
614 }

616 /*
617 * Main loop: convert the string to an unsigned long:
618 */
619 while (*String)
620 {
621 if (ACPI_IS_DIGIT (*String))
622 {
623 index = (UINT32) ((UINT8) *String - ’0’);
624 }
625 else
626 {
627 index = (UINT32) AcpiUtToUpper (*String);
628 if (ACPI_IS_UPPER (index))
629 {
630 index = index - ’A’ + 10;
631 }
632 else
633 {
634 goto done;
635 }
636 }

638 if (index >= Base)
639 {
640 goto done;
641 }

643 /*
644 * Check to see if value is out of range:
645 */

647 if (ReturnValue > ((ACPI_UINT32_MAX - (UINT32) index) /
648 (UINT32) Base))
649 {
650 Status = AE_ERROR;
651 ReturnValue = 0; /* reset */
652 }
653 else
654 {

new/usr/src/common/acpica/components/utilities/utclib.c 11

655 ReturnValue *= Base;
656 ReturnValue += index;
657 converted = 1;
658 }

660 ++String;
661 }

663 done:
664 /*
665 * If appropriate, update the caller’s pointer to the next
666 * unconverted character in the buffer.
667 */
668 if (Terminator)
669 {
670 if (converted == 0 && ReturnValue == 0 && String != NULL)
671 {
672 *Terminator = (char *) StringStart;
673 }
674 else
675 {
676 *Terminator = (char *) String;
677 }
678 }

680 if (Status == AE_ERROR)
681 {
682 ReturnValue = ACPI_UINT32_MAX;
683 }

685 /*
686 * If a minus sign was present, then "the conversion is negated":
687 */
688 if (sign == NEGATIVE)
689 {
690 ReturnValue = (ACPI_UINT32_MAX - ReturnValue) + 1;
691 }

693 return (ReturnValue);
694 }

697 /***
698 *
699 * FUNCTION: AcpiUtToUpper (TOUPPER)
700 *
701 * PARAMETERS: c - Character to convert
702 *
703 * RETURN: Converted character as an int
704 *
705 * DESCRIPTION: Convert character to uppercase
706 *
707 **/

709 int
710 AcpiUtToUpper (
711 int c)
712 {

714 return (ACPI_IS_LOWER(c) ? ((c)-0x20) : (c));
715 }

718 /***
719 *
720 * FUNCTION: AcpiUtToLower (TOLOWER)

new/usr/src/common/acpica/components/utilities/utclib.c 12

721 *
722 * PARAMETERS: c - Character to convert
723 *
724 * RETURN: Converted character as an int
725 *
726 * DESCRIPTION: Convert character to lowercase
727 *
728 **/

730 int
731 AcpiUtToLower (
732 int c)
733 {

735 return (ACPI_IS_UPPER(c) ? ((c)+0x20) : (c));
736 }

739 /***
740 *
741 * FUNCTION: is* functions
742 *
743 * DESCRIPTION: is* functions use the ctype table below
744 *
745 **/

747 const UINT8 _acpi_ctype[257] = {
748 _ACPI_CN, /* 0x00 0 NUL */
749 _ACPI_CN, /* 0x01 1 SOH */
750 _ACPI_CN, /* 0x02 2 STX */
751 _ACPI_CN, /* 0x03 3 ETX */
752 _ACPI_CN, /* 0x04 4 EOT */
753 _ACPI_CN, /* 0x05 5 ENQ */
754 _ACPI_CN, /* 0x06 6 ACK */
755 _ACPI_CN, /* 0x07 7 BEL */
756 _ACPI_CN, /* 0x08 8 BS */
757 _ACPI_CN|_ACPI_SP, /* 0x09 9 TAB */
758 _ACPI_CN|_ACPI_SP, /* 0x0A 10 LF */
759 _ACPI_CN|_ACPI_SP, /* 0x0B 11 VT */
760 _ACPI_CN|_ACPI_SP, /* 0x0C 12 FF */
761 _ACPI_CN|_ACPI_SP, /* 0x0D 13 CR */
762 _ACPI_CN, /* 0x0E 14 SO */
763 _ACPI_CN, /* 0x0F 15 SI */
764 _ACPI_CN, /* 0x10 16 DLE */
765 _ACPI_CN, /* 0x11 17 DC1 */
766 _ACPI_CN, /* 0x12 18 DC2 */
767 _ACPI_CN, /* 0x13 19 DC3 */
768 _ACPI_CN, /* 0x14 20 DC4 */
769 _ACPI_CN, /* 0x15 21 NAK */
770 _ACPI_CN, /* 0x16 22 SYN */
771 _ACPI_CN, /* 0x17 23 ETB */
772 _ACPI_CN, /* 0x18 24 CAN */
773 _ACPI_CN, /* 0x19 25 EM */
774 _ACPI_CN, /* 0x1A 26 SUB */
775 _ACPI_CN, /* 0x1B 27 ESC */
776 _ACPI_CN, /* 0x1C 28 FS */
777 _ACPI_CN, /* 0x1D 29 GS */
778 _ACPI_CN, /* 0x1E 30 RS */
779 _ACPI_CN, /* 0x1F 31 US */
780 _ACPI_XS|_ACPI_SP, /* 0x20 32 ’ ’ */
781 _ACPI_PU, /* 0x21 33 ’!’ */
782 _ACPI_PU, /* 0x22 34 ’"’ */
783 _ACPI_PU, /* 0x23 35 ’#’ */
784 _ACPI_PU, /* 0x24 36 ’$’ */
785 _ACPI_PU, /* 0x25 37 ’%’ */
786 _ACPI_PU, /* 0x26 38 ’&’ */

new/usr/src/common/acpica/components/utilities/utclib.c 13

787 _ACPI_PU, /* 0x27 39 ’’’ */
788 _ACPI_PU, /* 0x28 40 ’(’ */
789 _ACPI_PU, /* 0x29 41 ’)’ */
790 _ACPI_PU, /* 0x2A 42 ’*’ */
791 _ACPI_PU, /* 0x2B 43 ’+’ */
792 _ACPI_PU, /* 0x2C 44 ’,’ */
793 _ACPI_PU, /* 0x2D 45 ’-’ */
794 _ACPI_PU, /* 0x2E 46 ’.’ */
795 _ACPI_PU, /* 0x2F 47 ’/’ */
796 _ACPI_XD|_ACPI_DI, /* 0x30 48 ’0’ */
797 _ACPI_XD|_ACPI_DI, /* 0x31 49 ’1’ */
798 _ACPI_XD|_ACPI_DI, /* 0x32 50 ’2’ */
799 _ACPI_XD|_ACPI_DI, /* 0x33 51 ’3’ */
800 _ACPI_XD|_ACPI_DI, /* 0x34 52 ’4’ */
801 _ACPI_XD|_ACPI_DI, /* 0x35 53 ’5’ */
802 _ACPI_XD|_ACPI_DI, /* 0x36 54 ’6’ */
803 _ACPI_XD|_ACPI_DI, /* 0x37 55 ’7’ */
804 _ACPI_XD|_ACPI_DI, /* 0x38 56 ’8’ */
805 _ACPI_XD|_ACPI_DI, /* 0x39 57 ’9’ */
806 _ACPI_PU, /* 0x3A 58 ’:’ */
807 _ACPI_PU, /* 0x3B 59 ’;’ */
808 _ACPI_PU, /* 0x3C 60 ’<’ */
809 _ACPI_PU, /* 0x3D 61 ’=’ */
810 _ACPI_PU, /* 0x3E 62 ’>’ */
811 _ACPI_PU, /* 0x3F 63 ’?’ */
812 _ACPI_PU, /* 0x40 64 ’@’ */
813 _ACPI_XD|_ACPI_UP, /* 0x41 65 ’A’ */
814 _ACPI_XD|_ACPI_UP, /* 0x42 66 ’B’ */
815 _ACPI_XD|_ACPI_UP, /* 0x43 67 ’C’ */
816 _ACPI_XD|_ACPI_UP, /* 0x44 68 ’D’ */
817 _ACPI_XD|_ACPI_UP, /* 0x45 69 ’E’ */
818 _ACPI_XD|_ACPI_UP, /* 0x46 70 ’F’ */
819 _ACPI_UP, /* 0x47 71 ’G’ */
820 _ACPI_UP, /* 0x48 72 ’H’ */
821 _ACPI_UP, /* 0x49 73 ’I’ */
822 _ACPI_UP, /* 0x4A 74 ’J’ */
823 _ACPI_UP, /* 0x4B 75 ’K’ */
824 _ACPI_UP, /* 0x4C 76 ’L’ */
825 _ACPI_UP, /* 0x4D 77 ’M’ */
826 _ACPI_UP, /* 0x4E 78 ’N’ */
827 _ACPI_UP, /* 0x4F 79 ’O’ */
828 _ACPI_UP, /* 0x50 80 ’P’ */
829 _ACPI_UP, /* 0x51 81 ’Q’ */
830 _ACPI_UP, /* 0x52 82 ’R’ */
831 _ACPI_UP, /* 0x53 83 ’S’ */
832 _ACPI_UP, /* 0x54 84 ’T’ */
833 _ACPI_UP, /* 0x55 85 ’U’ */
834 _ACPI_UP, /* 0x56 86 ’V’ */
835 _ACPI_UP, /* 0x57 87 ’W’ */
836 _ACPI_UP, /* 0x58 88 ’X’ */
837 _ACPI_UP, /* 0x59 89 ’Y’ */
838 _ACPI_UP, /* 0x5A 90 ’Z’ */
839 _ACPI_PU, /* 0x5B 91 ’[’ */
840 _ACPI_PU, /* 0x5C 92 ’\’ */
841 _ACPI_PU, /* 0x5D 93 ’]’ */
842 _ACPI_PU, /* 0x5E 94 ’^’ */
843 _ACPI_PU, /* 0x5F 95 ’_’ */
844 _ACPI_PU, /* 0x60 96 ’‘’ */
845 _ACPI_XD|_ACPI_LO, /* 0x61 97 ’a’ */
846 _ACPI_XD|_ACPI_LO, /* 0x62 98 ’b’ */
847 _ACPI_XD|_ACPI_LO, /* 0x63 99 ’c’ */
848 _ACPI_XD|_ACPI_LO, /* 0x64 100 ’d’ */
849 _ACPI_XD|_ACPI_LO, /* 0x65 101 ’e’ */
850 _ACPI_XD|_ACPI_LO, /* 0x66 102 ’f’ */
851 _ACPI_LO, /* 0x67 103 ’g’ */
852 _ACPI_LO, /* 0x68 104 ’h’ */

new/usr/src/common/acpica/components/utilities/utclib.c 14

853 _ACPI_LO, /* 0x69 105 ’i’ */
854 _ACPI_LO, /* 0x6A 106 ’j’ */
855 _ACPI_LO, /* 0x6B 107 ’k’ */
856 _ACPI_LO, /* 0x6C 108 ’l’ */
857 _ACPI_LO, /* 0x6D 109 ’m’ */
858 _ACPI_LO, /* 0x6E 110 ’n’ */
859 _ACPI_LO, /* 0x6F 111 ’o’ */
860 _ACPI_LO, /* 0x70 112 ’p’ */
861 _ACPI_LO, /* 0x71 113 ’q’ */
862 _ACPI_LO, /* 0x72 114 ’r’ */
863 _ACPI_LO, /* 0x73 115 ’s’ */
864 _ACPI_LO, /* 0x74 116 ’t’ */
865 _ACPI_LO, /* 0x75 117 ’u’ */
866 _ACPI_LO, /* 0x76 118 ’v’ */
867 _ACPI_LO, /* 0x77 119 ’w’ */
868 _ACPI_LO, /* 0x78 120 ’x’ */
869 _ACPI_LO, /* 0x79 121 ’y’ */
870 _ACPI_LO, /* 0x7A 122 ’z’ */
871 _ACPI_PU, /* 0x7B 123 ’{’ */
872 _ACPI_PU, /* 0x7C 124 ’|’ */
873 _ACPI_PU, /* 0x7D 125 ’}’ */
874 _ACPI_PU, /* 0x7E 126 ’~’ */
875 _ACPI_CN, /* 0x7F 127 DEL */

877 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x80 to 0x8F */
878 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x90 to 0x9F */
879 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0xA0 to 0xAF */
880 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0xB0 to 0xBF */
881 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0xC0 to 0xCF */
882 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0xD0 to 0xDF */
883 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0xE0 to 0xEF */
884 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0xF0 to 0xFF */
885 0 /* 0x100 */
886 };

889 #endif /* ACPI_USE_SYSTEM_CLIBRARY */

new/usr/src/common/acpica/components/utilities/utcopy.c 1

**
 31384 Thu Dec 26 13:49:37 2013
new/usr/src/common/acpica/components/utilities/utcopy.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: utcopy - Internal to external object translation utilities
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTCOPY_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acnamesp.h"

51 #define _COMPONENT ACPI_UTILITIES
52 ACPI_MODULE_NAME ("utcopy")

54 /* Local prototypes */

56 static ACPI_STATUS
57 AcpiUtCopyIsimpleToEsimple (
58 ACPI_OPERAND_OBJECT *InternalObject,
59 ACPI_OBJECT *ExternalObject,

new/usr/src/common/acpica/components/utilities/utcopy.c 2

60 UINT8 *DataSpace,
61 ACPI_SIZE *BufferSpaceUsed);

63 static ACPI_STATUS
64 AcpiUtCopyIelementToIelement (
65 UINT8 ObjectType,
66 ACPI_OPERAND_OBJECT *SourceObject,
67 ACPI_GENERIC_STATE *State,
68 void *Context);

70 static ACPI_STATUS
71 AcpiUtCopyIpackageToEpackage (
72 ACPI_OPERAND_OBJECT *InternalObject,
73 UINT8 *Buffer,
74 ACPI_SIZE *SpaceUsed);

76 static ACPI_STATUS
77 AcpiUtCopyEsimpleToIsimple(
78 ACPI_OBJECT *UserObj,
79 ACPI_OPERAND_OBJECT **ReturnObj);

81 static ACPI_STATUS
82 AcpiUtCopyEpackageToIpackage (
83 ACPI_OBJECT *ExternalObject,
84 ACPI_OPERAND_OBJECT **InternalObject);

86 static ACPI_STATUS
87 AcpiUtCopySimpleObject (
88 ACPI_OPERAND_OBJECT *SourceDesc,
89 ACPI_OPERAND_OBJECT *DestDesc);

91 static ACPI_STATUS
92 AcpiUtCopyIelementToEelement (
93 UINT8 ObjectType,
94 ACPI_OPERAND_OBJECT *SourceObject,
95 ACPI_GENERIC_STATE *State,
96 void *Context);

98 static ACPI_STATUS
99 AcpiUtCopyIpackageToIpackage (
100 ACPI_OPERAND_OBJECT *SourceObj,
101 ACPI_OPERAND_OBJECT *DestObj,
102 ACPI_WALK_STATE *WalkState);

105 /***
106 *
107 * FUNCTION: AcpiUtCopyIsimpleToEsimple
108 *
109 * PARAMETERS: InternalObject - Source object to be copied
110 * ExternalObject - Where to return the copied object
111 * DataSpace - Where object data is returned (such as
112 * buffer and string data)
113 * BufferSpaceUsed - Length of DataSpace that was used
114 *
115 * RETURN: Status
116 *
117 * DESCRIPTION: This function is called to copy a simple internal object to
118 * an external object.
119 *
120 * The DataSpace buffer is assumed to have sufficient space for
121 * the object.
122 *
123 **/

125 static ACPI_STATUS

new/usr/src/common/acpica/components/utilities/utcopy.c 3

126 AcpiUtCopyIsimpleToEsimple (
127 ACPI_OPERAND_OBJECT *InternalObject,
128 ACPI_OBJECT *ExternalObject,
129 UINT8 *DataSpace,
130 ACPI_SIZE *BufferSpaceUsed)
131 {
132 ACPI_STATUS Status = AE_OK;

135 ACPI_FUNCTION_TRACE (UtCopyIsimpleToEsimple);

138 *BufferSpaceUsed = 0;

140 /*
141 * Check for NULL object case (could be an uninitialized
142 * package element)
143 */
144 if (!InternalObject)
145 {
146 return_ACPI_STATUS (AE_OK);
147 }

149 /* Always clear the external object */

151 ACPI_MEMSET (ExternalObject, 0, sizeof (ACPI_OBJECT));

153 /*
154 * In general, the external object will be the same type as
155 * the internal object
156 */
157 ExternalObject->Type = InternalObject->Common.Type;

159 /* However, only a limited number of external types are supported */

161 switch (InternalObject->Common.Type)
162 {
163 case ACPI_TYPE_STRING:

165 ExternalObject->String.Pointer = (char *) DataSpace;
166 ExternalObject->String.Length = InternalObject->String.Length;
167 *BufferSpaceUsed = ACPI_ROUND_UP_TO_NATIVE_WORD (
168 (ACPI_SIZE) InternalObject->String.Length + 1);

170 ACPI_MEMCPY ((void *) DataSpace,
171 (void *) InternalObject->String.Pointer,
172 (ACPI_SIZE) InternalObject->String.Length + 1);
173 break;

175 case ACPI_TYPE_BUFFER:

177 ExternalObject->Buffer.Pointer = DataSpace;
178 ExternalObject->Buffer.Length = InternalObject->Buffer.Length;
179 *BufferSpaceUsed = ACPI_ROUND_UP_TO_NATIVE_WORD (
180 InternalObject->String.Length);

182 ACPI_MEMCPY ((void *) DataSpace,
183 (void *) InternalObject->Buffer.Pointer,
184 InternalObject->Buffer.Length);
185 break;

187 case ACPI_TYPE_INTEGER:

189 ExternalObject->Integer.Value = InternalObject->Integer.Value;

new/usr/src/common/acpica/components/utilities/utcopy.c 4

190 break;

192 case ACPI_TYPE_LOCAL_REFERENCE:

194 /* This is an object reference. */

196 switch (InternalObject->Reference.Class)
197 {
198 case ACPI_REFCLASS_NAME:

199 /*
200 * For namepath, return the object handle ("reference")
201 * We are referring to the namespace node
202 */
203 ExternalObject->Reference.Handle =
204 InternalObject->Reference.Node;
205 ExternalObject->Reference.ActualType =
206 AcpiNsGetType (InternalObject->Reference.Node);
207 break;

209 default:

211 /* All other reference types are unsupported */

213 return_ACPI_STATUS (AE_TYPE);
214 }
215 break;

217 case ACPI_TYPE_PROCESSOR:

219 ExternalObject->Processor.ProcId =
220 InternalObject->Processor.ProcId;
221 ExternalObject->Processor.PblkAddress =
222 InternalObject->Processor.Address;
223 ExternalObject->Processor.PblkLength =
224 InternalObject->Processor.Length;
225 break;

227 case ACPI_TYPE_POWER:

229 ExternalObject->PowerResource.SystemLevel =
230 InternalObject->PowerResource.SystemLevel;

232 ExternalObject->PowerResource.ResourceOrder =
233 InternalObject->PowerResource.ResourceOrder;
234 break;

236 default:
237 /*
238 * There is no corresponding external object type
239 */
240 ACPI_ERROR ((AE_INFO,
241 "Unsupported object type, cannot convert to external object: %s",
242 AcpiUtGetTypeName (InternalObject->Common.Type)));

244 return_ACPI_STATUS (AE_SUPPORT);
245 }

247 return_ACPI_STATUS (Status);
248 }

new/usr/src/common/acpica/components/utilities/utcopy.c 5

251 /***
252 *
253 * FUNCTION: AcpiUtCopyIelementToEelement
254 *
255 * PARAMETERS: ACPI_PKG_CALLBACK
256 *
257 * RETURN: Status
258 *
259 * DESCRIPTION: Copy one package element to another package element
260 *
261 **/

263 static ACPI_STATUS
264 AcpiUtCopyIelementToEelement (
265 UINT8 ObjectType,
266 ACPI_OPERAND_OBJECT *SourceObject,
267 ACPI_GENERIC_STATE *State,
268 void *Context)
269 {
270 ACPI_STATUS Status = AE_OK;
271 ACPI_PKG_INFO *Info = (ACPI_PKG_INFO *) Context;
272 ACPI_SIZE ObjectSpace;
273 UINT32 ThisIndex;
274 ACPI_OBJECT *TargetObject;

277 ACPI_FUNCTION_ENTRY ();

280 ThisIndex = State->Pkg.Index;
281 TargetObject = (ACPI_OBJECT *)
282 &((ACPI_OBJECT *)(State->Pkg.DestObject))->Package.Elements[ThisIndex];

284 switch (ObjectType)
285 {
286 case ACPI_COPY_TYPE_SIMPLE:

287 /*
288 * This is a simple or null object
289 */
290 Status = AcpiUtCopyIsimpleToEsimple (SourceObject,
291 TargetObject, Info->FreeSpace, &ObjectSpace);
292 if (ACPI_FAILURE (Status))
293 {
294 return (Status);
295 }
296 break;

298 case ACPI_COPY_TYPE_PACKAGE:

299 /*
300 * Build the package object
301 */
302 TargetObject->Type = ACPI_TYPE_PACKAGE;
303 TargetObject->Package.Count = SourceObject->Package.Count;
304 TargetObject->Package.Elements =
305 ACPI_CAST_PTR (ACPI_OBJECT, Info->FreeSpace);

307 /*
308 * Pass the new package object back to the package walk routine
309 */
310 State->Pkg.ThisTargetObj = TargetObject;

312 /*
313 * Save space for the array of objects (Package elements)

new/usr/src/common/acpica/components/utilities/utcopy.c 6

314 * update the buffer length counter
315 */
316 ObjectSpace = ACPI_ROUND_UP_TO_NATIVE_WORD (
317 (ACPI_SIZE) TargetObject->Package.Count *
318 sizeof (ACPI_OBJECT));
319 break;

321 default:

332 default:
323 return (AE_BAD_PARAMETER);
324 }

326 Info->FreeSpace += ObjectSpace;
327 Info->Length += ObjectSpace;
328 return (Status);
329 }

______unchanged_portion_omitted_

456 /***
457 *
458 * FUNCTION: AcpiUtCopyEsimpleToIsimple
459 *
460 * PARAMETERS: ExternalObject - The external object to be converted
461 * RetInternalObject - Where the internal object is returned
462 *
463 * RETURN: Status
464 *
465 * DESCRIPTION: This function copies an external object to an internal one.
466 * NOTE: Pointers can be copied, we don’t need to copy data.
467 * (The pointers have to be valid in our address space no matter
468 * what we do with them!)
469 *
470 **/

472 static ACPI_STATUS
473 AcpiUtCopyEsimpleToIsimple (
474 ACPI_OBJECT *ExternalObject,
475 ACPI_OPERAND_OBJECT **RetInternalObject)
476 {
477 ACPI_OPERAND_OBJECT *InternalObject;

480 ACPI_FUNCTION_TRACE (UtCopyEsimpleToIsimple);

483 /*
484 * Simple types supported are: String, Buffer, Integer
485 */
486 switch (ExternalObject->Type)
487 {
488 case ACPI_TYPE_STRING:
489 case ACPI_TYPE_BUFFER:
490 case ACPI_TYPE_INTEGER:
491 case ACPI_TYPE_LOCAL_REFERENCE:

493 InternalObject = AcpiUtCreateInternalObject (
494 (UINT8) ExternalObject->Type);
495 if (!InternalObject)
496 {
497 return_ACPI_STATUS (AE_NO_MEMORY);
498 }
499 break;

501 case ACPI_TYPE_ANY: /* This is the case for a NULL object */

new/usr/src/common/acpica/components/utilities/utcopy.c 7

503 *RetInternalObject = NULL;
504 return_ACPI_STATUS (AE_OK);

506 default:

508 /* All other types are not supported */

510 ACPI_ERROR ((AE_INFO,
511 "Unsupported object type, cannot convert to internal object: %s",
512 AcpiUtGetTypeName (ExternalObject->Type)));

514 return_ACPI_STATUS (AE_SUPPORT);
515 }

518 /* Must COPY string and buffer contents */

520 switch (ExternalObject->Type)
521 {
522 case ACPI_TYPE_STRING:

524 InternalObject->String.Pointer =
525 ACPI_ALLOCATE_ZEROED ((ACPI_SIZE)
526 ExternalObject->String.Length + 1);

528 if (!InternalObject->String.Pointer)
529 {
530 goto ErrorExit;
531 }

533 ACPI_MEMCPY (InternalObject->String.Pointer,
534 ExternalObject->String.Pointer,
535 ExternalObject->String.Length);

537 InternalObject->String.Length = ExternalObject->String.Length;
538 break;

540 case ACPI_TYPE_BUFFER:

542 InternalObject->Buffer.Pointer =
543 ACPI_ALLOCATE_ZEROED (ExternalObject->Buffer.Length);
544 if (!InternalObject->Buffer.Pointer)
545 {
546 goto ErrorExit;
547 }

549 ACPI_MEMCPY (InternalObject->Buffer.Pointer,
550 ExternalObject->Buffer.Pointer,
551 ExternalObject->Buffer.Length);

553 InternalObject->Buffer.Length = ExternalObject->Buffer.Length;

555 /* Mark buffer data valid */

557 InternalObject->Buffer.Flags |= AOPOBJ_DATA_VALID;
558 break;

560 case ACPI_TYPE_INTEGER:

562 InternalObject->Integer.Value = ExternalObject->Integer.Value;
563 break;

565 case ACPI_TYPE_LOCAL_REFERENCE:

new/usr/src/common/acpica/components/utilities/utcopy.c 8

567 /* TBD: should validate incoming handle */

569 InternalObject->Reference.Class = ACPI_REFCLASS_NAME;
570 InternalObject->Reference.Node = ExternalObject->Reference.Handle;
571 break;

573 default:

575 /* Other types can’t get here */

577 break;
578 }

580 *RetInternalObject = InternalObject;
581 return_ACPI_STATUS (AE_OK);

584 ErrorExit:
585 AcpiUtRemoveReference (InternalObject);
586 return_ACPI_STATUS (AE_NO_MEMORY);
587 }

______unchanged_portion_omitted_

697 /***
698 *
699 * FUNCTION: AcpiUtCopySimpleObject
700 *
701 * PARAMETERS: SourceDesc - The internal object to be copied
702 * DestDesc - New target object
703 *
704 * RETURN: Status
705 *
706 * DESCRIPTION: Simple copy of one internal object to another. Reference count
707 * of the destination object is preserved.
708 *
709 **/

711 static ACPI_STATUS
712 AcpiUtCopySimpleObject (
713 ACPI_OPERAND_OBJECT *SourceDesc,
714 ACPI_OPERAND_OBJECT *DestDesc)
715 {
716 UINT16 ReferenceCount;
717 ACPI_OPERAND_OBJECT *NextObject;
718 ACPI_STATUS Status;
719 ACPI_SIZE CopySize;

722 /* Save fields from destination that we don’t want to overwrite */

724 ReferenceCount = DestDesc->Common.ReferenceCount;
725 NextObject = DestDesc->Common.NextObject;

727 /*
728 * Copy the entire source object over the destination object.
729 * Note: Source can be either an operand object or namespace node.
730 */
731 CopySize = sizeof (ACPI_OPERAND_OBJECT);
732 if (ACPI_GET_DESCRIPTOR_TYPE (SourceDesc) == ACPI_DESC_TYPE_NAMED)
733 {
734 CopySize = sizeof (ACPI_NAMESPACE_NODE);
735 }

737 ACPI_MEMCPY (ACPI_CAST_PTR (char, DestDesc),

new/usr/src/common/acpica/components/utilities/utcopy.c 9

738 ACPI_CAST_PTR (char, SourceDesc), CopySize);

740 /* Restore the saved fields */

742 DestDesc->Common.ReferenceCount = ReferenceCount;
743 DestDesc->Common.NextObject = NextObject;

745 /* New object is not static, regardless of source */

747 DestDesc->Common.Flags &= ~AOPOBJ_STATIC_POINTER;

749 /* Handle the objects with extra data */

751 switch (DestDesc->Common.Type)
752 {
753 case ACPI_TYPE_BUFFER:
754 /*
755 * Allocate and copy the actual buffer if and only if:
756 * 1) There is a valid buffer pointer
757 * 2) The buffer has a length > 0
758 */
759 if ((SourceDesc->Buffer.Pointer) &&
760 (SourceDesc->Buffer.Length))
761 {
762 DestDesc->Buffer.Pointer =
763 ACPI_ALLOCATE (SourceDesc->Buffer.Length);
764 if (!DestDesc->Buffer.Pointer)
765 {
766 return (AE_NO_MEMORY);
767 }

769 /* Copy the actual buffer data */

771 ACPI_MEMCPY (DestDesc->Buffer.Pointer,
772 SourceDesc->Buffer.Pointer, SourceDesc->Buffer.Length);
773 }
774 break;

776 case ACPI_TYPE_STRING:
777 /*
778 * Allocate and copy the actual string if and only if:
779 * 1) There is a valid string pointer
780 * (Pointer to a NULL string is allowed)
781 */
782 if (SourceDesc->String.Pointer)
783 {
784 DestDesc->String.Pointer =
785 ACPI_ALLOCATE ((ACPI_SIZE) SourceDesc->String.Length + 1);
786 if (!DestDesc->String.Pointer)
787 {
788 return (AE_NO_MEMORY);
789 }

791 /* Copy the actual string data */

793 ACPI_MEMCPY (DestDesc->String.Pointer, SourceDesc->String.Pointer,
794 (ACPI_SIZE) SourceDesc->String.Length + 1);
795 }
796 break;

798 case ACPI_TYPE_LOCAL_REFERENCE:
799 /*
800 * We copied the reference object, so we now must add a reference
801 * to the object pointed to by the reference
802 *
803 * DDBHandle reference (from Load/LoadTable) is a special reference,

new/usr/src/common/acpica/components/utilities/utcopy.c 10

804 * it does not have a Reference.Object, so does not need to
805 * increase the reference count
806 */
807 if (SourceDesc->Reference.Class == ACPI_REFCLASS_TABLE)
808 {
809 break;
810 }

812 AcpiUtAddReference (SourceDesc->Reference.Object);
813 break;

815 case ACPI_TYPE_REGION:
816 /*
817 * We copied the Region Handler, so we now must add a reference
818 */
819 if (DestDesc->Region.Handler)
820 {
821 AcpiUtAddReference (DestDesc->Region.Handler);
822 }
823 break;

825 /*
826 * For Mutex and Event objects, we cannot simply copy the underlying
827 * OS object. We must create a new one.
828 */
829 case ACPI_TYPE_MUTEX:

831 Status = AcpiOsCreateMutex (&DestDesc->Mutex.OsMutex);
832 if (ACPI_FAILURE (Status))
833 {
834 return (Status);
835 }
836 break;

838 case ACPI_TYPE_EVENT:

840 Status = AcpiOsCreateSemaphore (ACPI_NO_UNIT_LIMIT, 0,
841 &DestDesc->Event.OsSemaphore);
842 if (ACPI_FAILURE (Status))
843 {
844 return (Status);
845 }
846 break;

848 default:

850 /* Nothing to do for other simple objects */

852 break;
853 }

855 return (AE_OK);
856 }

859 /***
860 *
861 * FUNCTION: AcpiUtCopyIelementToIelement
862 *
863 * PARAMETERS: ACPI_PKG_CALLBACK
864 *
865 * RETURN: Status
866 *
867 * DESCRIPTION: Copy one package element to another package element
868 *
869 **/

new/usr/src/common/acpica/components/utilities/utcopy.c 11

871 static ACPI_STATUS
872 AcpiUtCopyIelementToIelement (
873 UINT8 ObjectType,
874 ACPI_OPERAND_OBJECT *SourceObject,
875 ACPI_GENERIC_STATE *State,
876 void *Context)
877 {
878 ACPI_STATUS Status = AE_OK;
879 UINT32 ThisIndex;
880 ACPI_OPERAND_OBJECT **ThisTargetPtr;
881 ACPI_OPERAND_OBJECT *TargetObject;

884 ACPI_FUNCTION_ENTRY ();

887 ThisIndex = State->Pkg.Index;
888 ThisTargetPtr = (ACPI_OPERAND_OBJECT **)
889 &State->Pkg.DestObject->Package.Elements[ThisIndex];

891 switch (ObjectType)
892 {
893 case ACPI_COPY_TYPE_SIMPLE:

895 /* A null source object indicates a (legal) null package element */

897 if (SourceObject)
898 {
899 /*
900 * This is a simple object, just copy it
901 */
902 TargetObject = AcpiUtCreateInternalObject (
903 SourceObject->Common.Type);
904 if (!TargetObject)
905 {
906 return (AE_NO_MEMORY);
907 }

909 Status = AcpiUtCopySimpleObject (SourceObject, TargetObject);
910 if (ACPI_FAILURE (Status))
911 {
912 goto ErrorExit;
913 }

915 *ThisTargetPtr = TargetObject;
916 }
917 else
918 {
919 /* Pass through a null element */

921 *ThisTargetPtr = NULL;
922 }
923 break;

925 case ACPI_COPY_TYPE_PACKAGE:

926 /*
927 * This object is a package - go down another nesting level
928 * Create and build the package object
929 */
930 TargetObject = AcpiUtCreatePackageObject (SourceObject->Package.Count);
931 if (!TargetObject)
932 {
933 return (AE_NO_MEMORY);

new/usr/src/common/acpica/components/utilities/utcopy.c 12

934 }

936 TargetObject->Common.Flags = SourceObject->Common.Flags;

938 /* Pass the new package object back to the package walk routine */

940 State->Pkg.ThisTargetObj = TargetObject;

942 /* Store the object pointer in the parent package object */

944 *ThisTargetPtr = TargetObject;
945 break;

947 default:

957 default:
949 return (AE_BAD_PARAMETER);
950 }

952 return (Status);

954 ErrorExit:
955 AcpiUtRemoveReference (TargetObject);
956 return (Status);
957 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/utilities/utdebug.c 1

**
 19080 Thu Dec 26 13:49:37 2013
new/usr/src/common/acpica/components/utilities/utdebug.c
update to acpica-unix2-20131218
update to acpica-unix2-20131115
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: utdebug - Debug print/trace routines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTDEBUG_C__
45 #define EXPORT_ACPI_INTERFACES

47 #include "acpi.h"
48 #include "accommon.h"

50 #define _COMPONENT ACPI_UTILITIES
51 ACPI_MODULE_NAME ("utdebug")

54 #ifdef ACPI_DEBUG_OUTPUT

56 static ACPI_THREAD_ID AcpiGbl_PrevThreadId = (ACPI_THREAD_ID) 0xFFFFFFFF;
57 static char *AcpiGbl_FnEntryStr = "----Entry";

new/usr/src/common/acpica/components/utilities/utdebug.c 2

58 static char *AcpiGbl_FnExitStr = "----Exit-";

60 /* Local prototypes */

62 static const char *
63 AcpiUtTrimFunctionName (
64 const char *FunctionName);

67 /***
68 *
69 * FUNCTION: AcpiUtInitStackPtrTrace
70 *
71 * PARAMETERS: None
72 *
73 * RETURN: None
74 *
75 * DESCRIPTION: Save the current CPU stack pointer at subsystem startup
76 *
77 **/

79 void
80 AcpiUtInitStackPtrTrace (
81 void)
82 {
83 ACPI_SIZE CurrentSp;

86 AcpiGbl_EntryStackPointer = &CurrentSp;
87 }

90 /***
91 *
92 * FUNCTION: AcpiUtTrackStackPtr
93 *
94 * PARAMETERS: None
95 *
96 * RETURN: None
97 *
98 * DESCRIPTION: Save the current CPU stack pointer
99 *
100 **/

102 void
103 AcpiUtTrackStackPtr (
104 void)
105 {
106 ACPI_SIZE CurrentSp;

109 if (&CurrentSp < AcpiGbl_LowestStackPointer)
110 {
111 AcpiGbl_LowestStackPointer = &CurrentSp;
112 }

114 if (AcpiGbl_NestingLevel > AcpiGbl_DeepestNesting)
115 {
116 AcpiGbl_DeepestNesting = AcpiGbl_NestingLevel;
117 }
118 }

121 /***
122 *
123 * FUNCTION: AcpiUtTrimFunctionName

new/usr/src/common/acpica/components/utilities/utdebug.c 3

124 *
125 * PARAMETERS: FunctionName - Ascii string containing a procedure name
126 *
127 * RETURN: Updated pointer to the function name
128 *
129 * DESCRIPTION: Remove the "Acpi" prefix from the function name, if present.
130 * This allows compiler macros such as __FUNCTION__ to be used
131 * with no change to the debug output.
132 *
133 **/

135 static const char *
136 AcpiUtTrimFunctionName (
137 const char *FunctionName)
138 {

140 /* All Function names are longer than 4 chars, check is safe */

142 if (*(ACPI_CAST_PTR (UINT32, FunctionName)) == ACPI_PREFIX_MIXED)
143 {
144 /* This is the case where the original source has not been modified */

146 return (FunctionName + 4);
147 }

149 if (*(ACPI_CAST_PTR (UINT32, FunctionName)) == ACPI_PREFIX_LOWER)
150 {
151 /* This is the case where the source has been ’linuxized’ */

153 return (FunctionName + 5);
154 }

156 return (FunctionName);
157 }

160 /***
161 *
162 * FUNCTION: AcpiDebugPrint
163 *
164 * PARAMETERS: RequestedDebugLevel - Requested debug print level
165 * LineNumber - Caller’s line number (for error output)
166 * FunctionName - Caller’s procedure name
167 * ModuleName - Caller’s module name
168 * ComponentId - Caller’s component ID
169 * Format - Printf format field
170 * ... - Optional printf arguments
171 *
172 * RETURN: None
173 *
174 * DESCRIPTION: Print error message with prefix consisting of the module name,
175 * line number, and component ID.
176 *
177 **/

179 void ACPI_INTERNAL_VAR_XFACE
180 AcpiDebugPrint (
181 UINT32 RequestedDebugLevel,
182 UINT32 LineNumber,
183 const char *FunctionName,
184 const char *ModuleName,
185 UINT32 ComponentId,
186 const char *Format,
187 ...)
188 {
189 ACPI_THREAD_ID ThreadId;

new/usr/src/common/acpica/components/utilities/utdebug.c 4

190 va_list args;

193 /* Check if debug output enabled */

195 if (!ACPI_IS_DEBUG_ENABLED (RequestedDebugLevel, ComponentId))
196 {
197 return;
198 }

200 /*
201 * Thread tracking and context switch notification
202 */
203 ThreadId = AcpiOsGetThreadId ();
204 if (ThreadId != AcpiGbl_PrevThreadId)
205 {
206 if (ACPI_LV_THREADS & AcpiDbgLevel)
207 {
208 AcpiOsPrintf (
209 "\n**** Context Switch from TID %u to TID %u ****\n\n",
210 (UINT32) AcpiGbl_PrevThreadId, (UINT32) ThreadId);
211 }

213 AcpiGbl_PrevThreadId = ThreadId;
214 AcpiGbl_NestingLevel = 0;
215 }

217 /*
218 * Display the module name, current line number, thread ID (if requested),
219 * current procedure nesting level, and the current procedure name
220 */
221 AcpiOsPrintf ("%9s-%04ld ", ModuleName, LineNumber);

223 #ifdef ACPI_APPLICATION
224 /*
225 * For AcpiExec/iASL only, emit the thread ID and nesting level.
226 * Note: nesting level is really only useful during a single-thread
227 * execution. Otherwise, multiple threads will keep resetting the
228 * level.
229 */
230 if (ACPI_LV_THREADS & AcpiDbgLevel)
231 {
232 AcpiOsPrintf ("[%u] ", (UINT32) ThreadId);
233 }

235 AcpiOsPrintf ("[%02ld] ", AcpiGbl_NestingLevel);
236 #endif

238 AcpiOsPrintf ("%-22.22s: ", AcpiUtTrimFunctionName (FunctionName));

240 va_start (args, Format);
241 AcpiOsVprintf (Format, args);
242 va_end (args);
243 }

245 ACPI_EXPORT_SYMBOL (AcpiDebugPrint)

248 /***
249 *
250 * FUNCTION: AcpiDebugPrintRaw
251 *
252 * PARAMETERS: RequestedDebugLevel - Requested debug print level
253 * LineNumber - Caller’s line number
254 * FunctionName - Caller’s procedure name
255 * ModuleName - Caller’s module name

new/usr/src/common/acpica/components/utilities/utdebug.c 5

256 * ComponentId - Caller’s component ID
257 * Format - Printf format field
258 * ... - Optional printf arguments
259 *
260 * RETURN: None
261 *
262 * DESCRIPTION: Print message with no headers. Has same interface as
263 * DebugPrint so that the same macros can be used.
264 *
265 **/

267 void ACPI_INTERNAL_VAR_XFACE
268 AcpiDebugPrintRaw (
269 UINT32 RequestedDebugLevel,
270 UINT32 LineNumber,
271 const char *FunctionName,
272 const char *ModuleName,
273 UINT32 ComponentId,
274 const char *Format,
275 ...)
276 {
277 va_list args;

280 /* Check if debug output enabled */

282 if (!ACPI_IS_DEBUG_ENABLED (RequestedDebugLevel, ComponentId))
283 {
284 return;
285 }

287 va_start (args, Format);
288 AcpiOsVprintf (Format, args);
289 va_end (args);
290 }

292 ACPI_EXPORT_SYMBOL (AcpiDebugPrintRaw)

295 /***
296 *
297 * FUNCTION: AcpiUtTrace
298 *
299 * PARAMETERS: LineNumber - Caller’s line number
300 * FunctionName - Caller’s procedure name
301 * ModuleName - Caller’s module name
302 * ComponentId - Caller’s component ID
303 *
304 * RETURN: None
305 *
306 * DESCRIPTION: Function entry trace. Prints only if TRACE_FUNCTIONS bit is
307 * set in DebugLevel
308 *
309 **/

311 void
312 AcpiUtTrace (
313 UINT32 LineNumber,
314 const char *FunctionName,
315 const char *ModuleName,
316 UINT32 ComponentId)
317 {

319 AcpiGbl_NestingLevel++;
320 AcpiUtTrackStackPtr ();

new/usr/src/common/acpica/components/utilities/utdebug.c 6

322 /* Check if enabled up-front for performance */

324 if (ACPI_IS_DEBUG_ENABLED (ACPI_LV_FUNCTIONS, ComponentId))
325 {
326 AcpiDebugPrint (ACPI_LV_FUNCTIONS,
327 LineNumber, FunctionName, ModuleName, ComponentId,
328 "%s\n", AcpiGbl_FnEntryStr);
329 }
330 }

332 ACPI_EXPORT_SYMBOL (AcpiUtTrace)

335 /***
336 *
337 * FUNCTION: AcpiUtTracePtr
338 *
339 * PARAMETERS: LineNumber - Caller’s line number
340 * FunctionName - Caller’s procedure name
341 * ModuleName - Caller’s module name
342 * ComponentId - Caller’s component ID
343 * Pointer - Pointer to display
344 *
345 * RETURN: None
346 *
347 * DESCRIPTION: Function entry trace. Prints only if TRACE_FUNCTIONS bit is
348 * set in DebugLevel
349 *
350 **/

352 void
353 AcpiUtTracePtr (
354 UINT32 LineNumber,
355 const char *FunctionName,
356 const char *ModuleName,
357 UINT32 ComponentId,
358 void *Pointer)
359 {

361 AcpiGbl_NestingLevel++;
362 AcpiUtTrackStackPtr ();

364 /* Check if enabled up-front for performance */

366 if (ACPI_IS_DEBUG_ENABLED (ACPI_LV_FUNCTIONS, ComponentId))
367 {
368 AcpiDebugPrint (ACPI_LV_FUNCTIONS,
369 LineNumber, FunctionName, ModuleName, ComponentId,
370 "%s %p\n", AcpiGbl_FnEntryStr, Pointer);
371 }
372 }

375 /***
376 *
377 * FUNCTION: AcpiUtTraceStr
378 *
379 * PARAMETERS: LineNumber - Caller’s line number
380 * FunctionName - Caller’s procedure name
381 * ModuleName - Caller’s module name
382 * ComponentId - Caller’s component ID
383 * String - Additional string to display
384 *
385 * RETURN: None
386 *
387 * DESCRIPTION: Function entry trace. Prints only if TRACE_FUNCTIONS bit is

new/usr/src/common/acpica/components/utilities/utdebug.c 7

388 * set in DebugLevel
389 *
390 **/

392 void
393 AcpiUtTraceStr (
394 UINT32 LineNumber,
395 const char *FunctionName,
396 const char *ModuleName,
397 UINT32 ComponentId,
398 char *String)
399 {

401 AcpiGbl_NestingLevel++;
402 AcpiUtTrackStackPtr ();

404 /* Check if enabled up-front for performance */

406 if (ACPI_IS_DEBUG_ENABLED (ACPI_LV_FUNCTIONS, ComponentId))
407 {
408 AcpiDebugPrint (ACPI_LV_FUNCTIONS,
409 LineNumber, FunctionName, ModuleName, ComponentId,
410 "%s %s\n", AcpiGbl_FnEntryStr, String);
411 }
412 }

415 /***
416 *
417 * FUNCTION: AcpiUtTraceU32
418 *
419 * PARAMETERS: LineNumber - Caller’s line number
420 * FunctionName - Caller’s procedure name
421 * ModuleName - Caller’s module name
422 * ComponentId - Caller’s component ID
423 * Integer - Integer to display
424 *
425 * RETURN: None
426 *
427 * DESCRIPTION: Function entry trace. Prints only if TRACE_FUNCTIONS bit is
428 * set in DebugLevel
429 *
430 **/

432 void
433 AcpiUtTraceU32 (
434 UINT32 LineNumber,
435 const char *FunctionName,
436 const char *ModuleName,
437 UINT32 ComponentId,
438 UINT32 Integer)
439 {

441 AcpiGbl_NestingLevel++;
442 AcpiUtTrackStackPtr ();

444 /* Check if enabled up-front for performance */

446 if (ACPI_IS_DEBUG_ENABLED (ACPI_LV_FUNCTIONS, ComponentId))
447 {
448 AcpiDebugPrint (ACPI_LV_FUNCTIONS,
449 LineNumber, FunctionName, ModuleName, ComponentId,
450 "%s %08X\n", AcpiGbl_FnEntryStr, Integer);
451 }
452 }

new/usr/src/common/acpica/components/utilities/utdebug.c 8

455 /***
456 *
457 * FUNCTION: AcpiUtExit
458 *
459 * PARAMETERS: LineNumber - Caller’s line number
460 * FunctionName - Caller’s procedure name
461 * ModuleName - Caller’s module name
462 * ComponentId - Caller’s component ID
463 *
464 * RETURN: None
465 *
466 * DESCRIPTION: Function exit trace. Prints only if TRACE_FUNCTIONS bit is
467 * set in DebugLevel
468 *
469 **/

471 void
472 AcpiUtExit (
473 UINT32 LineNumber,
474 const char *FunctionName,
475 const char *ModuleName,
476 UINT32 ComponentId)
477 {

479 /* Check if enabled up-front for performance */

481 if (ACPI_IS_DEBUG_ENABLED (ACPI_LV_FUNCTIONS, ComponentId))
482 {
483 AcpiDebugPrint (ACPI_LV_FUNCTIONS,
484 LineNumber, FunctionName, ModuleName, ComponentId,
485 "%s\n", AcpiGbl_FnExitStr);
486 }

488 if (AcpiGbl_NestingLevel)
489 {
490 AcpiGbl_NestingLevel--;
491 }
492 }

494 ACPI_EXPORT_SYMBOL (AcpiUtExit)

497 /***
498 *
499 * FUNCTION: AcpiUtStatusExit
500 *
501 * PARAMETERS: LineNumber - Caller’s line number
502 * FunctionName - Caller’s procedure name
503 * ModuleName - Caller’s module name
504 * ComponentId - Caller’s component ID
505 * Status - Exit status code
506 *
507 * RETURN: None
508 *
509 * DESCRIPTION: Function exit trace. Prints only if TRACE_FUNCTIONS bit is
510 * set in DebugLevel. Prints exit status also.
511 *
512 **/

514 void
515 AcpiUtStatusExit (
516 UINT32 LineNumber,
517 const char *FunctionName,
518 const char *ModuleName,
519 UINT32 ComponentId,

new/usr/src/common/acpica/components/utilities/utdebug.c 9

520 ACPI_STATUS Status)
521 {

523 /* Check if enabled up-front for performance */

525 if (ACPI_IS_DEBUG_ENABLED (ACPI_LV_FUNCTIONS, ComponentId))
526 {
527 if (ACPI_SUCCESS (Status))
528 {
529 AcpiDebugPrint (ACPI_LV_FUNCTIONS,
530 LineNumber, FunctionName, ModuleName, ComponentId,
531 "%s %s\n", AcpiGbl_FnExitStr,
532 AcpiFormatException (Status));
533 }
534 else
535 {
536 AcpiDebugPrint (ACPI_LV_FUNCTIONS,
537 LineNumber, FunctionName, ModuleName, ComponentId,
538 "%s ****Exception****: %s\n", AcpiGbl_FnExitStr,
539 AcpiFormatException (Status));
540 }
541 }

543 if (AcpiGbl_NestingLevel)
544 {
545 AcpiGbl_NestingLevel--;
546 }
547 }

549 ACPI_EXPORT_SYMBOL (AcpiUtStatusExit)

552 /***
553 *
554 * FUNCTION: AcpiUtValueExit
555 *
556 * PARAMETERS: LineNumber - Caller’s line number
557 * FunctionName - Caller’s procedure name
558 * ModuleName - Caller’s module name
559 * ComponentId - Caller’s component ID
560 * Value - Value to be printed with exit msg
561 *
562 * RETURN: None
563 *
564 * DESCRIPTION: Function exit trace. Prints only if TRACE_FUNCTIONS bit is
565 * set in DebugLevel. Prints exit value also.
566 *
567 **/

569 void
570 AcpiUtValueExit (
571 UINT32 LineNumber,
572 const char *FunctionName,
573 const char *ModuleName,
574 UINT32 ComponentId,
575 UINT64 Value)
576 {

578 /* Check if enabled up-front for performance */

580 if (ACPI_IS_DEBUG_ENABLED (ACPI_LV_FUNCTIONS, ComponentId))
581 {
582 AcpiDebugPrint (ACPI_LV_FUNCTIONS,
583 LineNumber, FunctionName, ModuleName, ComponentId,
584 "%s %8.8X%8.8X\n", AcpiGbl_FnExitStr,
585 ACPI_FORMAT_UINT64 (Value));

new/usr/src/common/acpica/components/utilities/utdebug.c 10

586 }

588 if (AcpiGbl_NestingLevel)
589 {
590 AcpiGbl_NestingLevel--;
591 }
592 }

594 ACPI_EXPORT_SYMBOL (AcpiUtValueExit)

597 /***
598 *
599 * FUNCTION: AcpiUtPtrExit
600 *
601 * PARAMETERS: LineNumber - Caller’s line number
602 * FunctionName - Caller’s procedure name
603 * ModuleName - Caller’s module name
604 * ComponentId - Caller’s component ID
605 * Ptr - Pointer to display
606 *
607 * RETURN: None
608 *
609 * DESCRIPTION: Function exit trace. Prints only if TRACE_FUNCTIONS bit is
610 * set in DebugLevel. Prints exit value also.
611 *
612 **/

614 void
615 AcpiUtPtrExit (
616 UINT32 LineNumber,
617 const char *FunctionName,
618 const char *ModuleName,
619 UINT32 ComponentId,
620 UINT8 *Ptr)
621 {

623 /* Check if enabled up-front for performance */

625 if (ACPI_IS_DEBUG_ENABLED (ACPI_LV_FUNCTIONS, ComponentId))
626 {
627 AcpiDebugPrint (ACPI_LV_FUNCTIONS,
628 LineNumber, FunctionName, ModuleName, ComponentId,
629 "%s %p\n", AcpiGbl_FnExitStr, Ptr);
630 }

632 if (AcpiGbl_NestingLevel)
633 {
634 AcpiGbl_NestingLevel--;
635 }
636 }

638 #endif

new/usr/src/common/acpica/components/utilities/utdecode.c 1

**
 16487 Thu Dec 26 13:49:37 2013
new/usr/src/common/acpica/components/utilities/utdecode.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: utdecode - Utility decoding routines (value-to-string)
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTDECODE_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acnamesp.h"

50 #define _COMPONENT ACPI_UTILITIES
51 ACPI_MODULE_NAME ("utdecode")

54 /***
55 *
56 * FUNCTION: AcpiFormatException
57 *
58 * PARAMETERS: Status - The ACPI_STATUS code to be formatted
59 *

new/usr/src/common/acpica/components/utilities/utdecode.c 2

60 * RETURN: A string containing the exception text. A valid pointer is
61 * always returned.
62 *
63 * DESCRIPTION: This function translates an ACPI exception into an ASCII string
64 * It is here instead of utxface.c so it is always present.
65 *
66 **/

68 const char *
69 AcpiFormatException (
70 ACPI_STATUS Status)
71 {
72 const char *Exception = NULL;

75 ACPI_FUNCTION_ENTRY ();

78 Exception = AcpiUtValidateException (Status);
79 if (!Exception)
80 {
81 /* Exception code was not recognized */

83 ACPI_ERROR ((AE_INFO,
84 "Unknown exception code: 0x%8.8X", Status));

86 Exception = "UNKNOWN_STATUS_CODE";
87 }

89 return (ACPI_CAST_PTR (const char, Exception));
90 }

92 ACPI_EXPORT_SYMBOL (AcpiFormatException)

54 /*
55 * Properties of the ACPI Object Types, both internal and external.
56 * The table is indexed by values of ACPI_OBJECT_TYPE
57 */
58 const UINT8 AcpiGbl_NsProperties[ACPI_NUM_NS_TYPES] =
59 {
60 ACPI_NS_NORMAL, /* 00 Any */
61 ACPI_NS_NORMAL, /* 01 Number */
62 ACPI_NS_NORMAL, /* 02 String */
63 ACPI_NS_NORMAL, /* 03 Buffer */
64 ACPI_NS_NORMAL, /* 04 Package */
65 ACPI_NS_NORMAL, /* 05 FieldUnit */
66 ACPI_NS_NEWSCOPE, /* 06 Device */
67 ACPI_NS_NORMAL, /* 07 Event */
68 ACPI_NS_NEWSCOPE, /* 08 Method */
69 ACPI_NS_NORMAL, /* 09 Mutex */
70 ACPI_NS_NORMAL, /* 10 Region */
71 ACPI_NS_NEWSCOPE, /* 11 Power */
72 ACPI_NS_NEWSCOPE, /* 12 Processor */
73 ACPI_NS_NEWSCOPE, /* 13 Thermal */
74 ACPI_NS_NORMAL, /* 14 BufferField */
75 ACPI_NS_NORMAL, /* 15 DdbHandle */
76 ACPI_NS_NORMAL, /* 16 Debug Object */
77 ACPI_NS_NORMAL, /* 17 DefField */
78 ACPI_NS_NORMAL, /* 18 BankField */
79 ACPI_NS_NORMAL, /* 19 IndexField */
80 ACPI_NS_NORMAL, /* 20 Reference */
81 ACPI_NS_NORMAL, /* 21 Alias */
82 ACPI_NS_NORMAL, /* 22 MethodAlias */
83 ACPI_NS_NORMAL, /* 23 Notify */
84 ACPI_NS_NORMAL, /* 24 Address Handler */

new/usr/src/common/acpica/components/utilities/utdecode.c 3

85 ACPI_NS_NEWSCOPE | ACPI_NS_LOCAL, /* 25 Resource Desc */
86 ACPI_NS_NEWSCOPE | ACPI_NS_LOCAL, /* 26 Resource Field */
87 ACPI_NS_NEWSCOPE, /* 27 Scope */
88 ACPI_NS_NORMAL, /* 28 Extra */
89 ACPI_NS_NORMAL, /* 29 Data */
90 ACPI_NS_NORMAL /* 30 Invalid */
91 };

______unchanged_portion_omitted_

126 /***
127 *
128 * FUNCTION: AcpiUtGetRegionName
129 *
130 * PARAMETERS: Space ID - ID for the region
131 *
132 * RETURN: Decoded region SpaceId name
133 *
134 * DESCRIPTION: Translate a Space ID into a name string (Debug only)
135 *
136 **/

138 /* Region type decoding */

140 const char *AcpiGbl_RegionTypes[ACPI_NUM_PREDEFINED_REGIONS] =
141 {
142 "SystemMemory", /* 0x00 */
143 "SystemIO", /* 0x01 */
144 "PCI_Config", /* 0x02 */
145 "EmbeddedControl", /* 0x03 */
146 "SMBus", /* 0x04 */
147 "SystemCMOS", /* 0x05 */
148 "PCIBARTarget", /* 0x06 */
149 "IPMI", /* 0x07 */
150 "GeneralPurposeIo", /* 0x08 */
151 "GenericSerialBus", /* 0x09 */
152 "PCC" /* 0x0A */
183 "SystemMemory",
184 "SystemIO",
185 "PCI_Config",
186 "EmbeddedControl",
187 "SMBus",
188 "SystemCMOS",
189 "PCIBARTarget",
190 "IPMI"
153 };

______unchanged_portion_omitted_

516 /***
517 *
518 * FUNCTION: AcpiUtGetNotifyName
519 *
520 * PARAMETERS: NotifyValue - Value from the Notify() request
521 *
522 * RETURN: Decoded name for the notify value
523 *
524 * DESCRIPTION: Translate a Notify Value to a notify namestring.
525 *
526 **/

528 /* Names for Notify() values, used for debug output */

530 static const char *AcpiGbl_NotifyValueNames[ACPI_NOTIFY_MAX + 1] =
568 static const char *AcpiGbl_NotifyValueNames[] =
531 {

new/usr/src/common/acpica/components/utilities/utdecode.c 4

532 /* 00 */ "Bus Check",
533 /* 01 */ "Device Check",
534 /* 02 */ "Device Wake",
535 /* 03 */ "Eject Request",
536 /* 04 */ "Device Check Light",
537 /* 05 */ "Frequency Mismatch",
538 /* 06 */ "Bus Mode Mismatch",
539 /* 07 */ "Power Fault",
540 /* 08 */ "Capabilities Check",
541 /* 09 */ "Device PLD Check",
542 /* 10 */ "Reserved",
543 /* 11 */ "System Locality Update",
544 /* 12 */ "Shutdown Request"
570 "Bus Check",
571 "Device Check",
572 "Device Wake",
573 "Eject Request",
574 "Device Check Light",
575 "Frequency Mismatch",
576 "Bus Mode Mismatch",
577 "Power Fault",
578 "Capabilities Check",
579 "Device PLD Check",
580 "Reserved",
581 "System Locality Update"
545 };

547 const char *
548 AcpiUtGetNotifyName (
549 UINT32 NotifyValue)
550 {

552 if (NotifyValue <= ACPI_NOTIFY_MAX)
553 {
554 return (AcpiGbl_NotifyValueNames[NotifyValue]);
555 }
556 else if (NotifyValue <= ACPI_MAX_SYS_NOTIFY)
557 {
558 return ("Reserved");
559 }
560 else if (NotifyValue <= ACPI_MAX_DEVICE_SPECIFIC_NOTIFY)
597 else /* Greater or equal to 0x80 */
561 {
562 return ("Device Specific");
599 return ("**Device Specific**");
563 }
564 else
565 {
566 return ("Hardware Specific");
567 }
568 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/utilities/utdelete.c 1

**
 23081 Thu Dec 26 13:49:38 2013
new/usr/src/common/acpica/components/utilities/utdelete.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: utdelete - object deletion and reference count utilities
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTDELETE_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acinterp.h"
49 #include "acnamesp.h"
50 #include "acevents.h"

53 #define _COMPONENT ACPI_UTILITIES
54 ACPI_MODULE_NAME ("utdelete")

56 /* Local prototypes */

58 static void
59 AcpiUtDeleteInternalObj (

new/usr/src/common/acpica/components/utilities/utdelete.c 2

60 ACPI_OPERAND_OBJECT *Object);

62 static void
63 AcpiUtUpdateRefCount (
64 ACPI_OPERAND_OBJECT *Object,
65 UINT32 Action);

68 /***
69 *
70 * FUNCTION: AcpiUtDeleteInternalObj
71 *
72 * PARAMETERS: Object - Object to be deleted
73 *
74 * RETURN: None
75 *
76 * DESCRIPTION: Low level object deletion, after reference counts have been
77 * updated (All reference counts, including sub-objects!)
78 *
79 **/

81 static void
82 AcpiUtDeleteInternalObj (
83 ACPI_OPERAND_OBJECT *Object)
84 {
85 void *ObjPointer = NULL;
86 ACPI_OPERAND_OBJECT *HandlerDesc;
87 ACPI_OPERAND_OBJECT *SecondDesc;
88 ACPI_OPERAND_OBJECT *NextDesc;
89 ACPI_OPERAND_OBJECT **LastObjPtr;

92 ACPI_FUNCTION_TRACE_PTR (UtDeleteInternalObj, Object);

95 if (!Object)
96 {
97 return_VOID;
98 }

100 /*
101 * Must delete or free any pointers within the object that are not
102 * actual ACPI objects (for example, a raw buffer pointer).
103 */
104 switch (Object->Common.Type)
105 {
106 case ACPI_TYPE_STRING:

108 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS, "**** String %p, ptr %p\n",
109 Object, Object->String.Pointer));

111 /* Free the actual string buffer */

113 if (!(Object->Common.Flags & AOPOBJ_STATIC_POINTER))
114 {
115 /* But only if it is NOT a pointer into an ACPI table */

117 ObjPointer = Object->String.Pointer;
118 }
119 break;

121 case ACPI_TYPE_BUFFER:

123 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS, "**** Buffer %p, ptr %p\n",
124 Object, Object->Buffer.Pointer));

new/usr/src/common/acpica/components/utilities/utdelete.c 3

126 /* Free the actual buffer */

128 if (!(Object->Common.Flags & AOPOBJ_STATIC_POINTER))
129 {
130 /* But only if it is NOT a pointer into an ACPI table */

132 ObjPointer = Object->Buffer.Pointer;
133 }
134 break;

136 case ACPI_TYPE_PACKAGE:

138 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS, " **** Package of count %X\n",
139 Object->Package.Count));

141 /*
142 * Elements of the package are not handled here, they are deleted
143 * separately
144 */

146 /* Free the (variable length) element pointer array */

148 ObjPointer = Object->Package.Elements;
149 break;

151 /*
152 * These objects have a possible list of notify handlers.
153 * Device object also may have a GPE block.
154 */
155 case ACPI_TYPE_DEVICE:

157 if (Object->Device.GpeBlock)
158 {
159 (void) AcpiEvDeleteGpeBlock (Object->Device.GpeBlock);
160 }

162 /*lint -fallthrough */

164 case ACPI_TYPE_PROCESSOR:
165 case ACPI_TYPE_THERMAL:

167 /* Walk the address handler list for this object */
170 /* Walk the notify handler list for this object */

169 HandlerDesc = Object->CommonNotify.Handler;
170 while (HandlerDesc)
171 {
172 NextDesc = HandlerDesc->AddressSpace.Next;
173 AcpiUtRemoveReference (HandlerDesc);
174 HandlerDesc = NextDesc;
175 }
176 break;

178 case ACPI_TYPE_MUTEX:

180 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS,
181 "***** Mutex %p, OS Mutex %p\n",
182 Object, Object->Mutex.OsMutex));

184 if (Object == AcpiGbl_GlobalLockMutex)
185 {
186 /* Global Lock has extra semaphore */

new/usr/src/common/acpica/components/utilities/utdelete.c 4

188 (void) AcpiOsDeleteSemaphore (AcpiGbl_GlobalLockSemaphore);
189 AcpiGbl_GlobalLockSemaphore = NULL;

191 AcpiOsDeleteMutex (Object->Mutex.OsMutex);
192 AcpiGbl_GlobalLockMutex = NULL;
193 }
194 else
195 {
196 AcpiExUnlinkMutex (Object);
197 AcpiOsDeleteMutex (Object->Mutex.OsMutex);
198 }
199 break;

201 case ACPI_TYPE_EVENT:

203 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS,
204 "***** Event %p, OS Semaphore %p\n",
205 Object, Object->Event.OsSemaphore));

207 (void) AcpiOsDeleteSemaphore (Object->Event.OsSemaphore);
208 Object->Event.OsSemaphore = NULL;
209 break;

211 case ACPI_TYPE_METHOD:

213 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS,
214 "***** Method %p\n", Object));

216 /* Delete the method mutex if it exists */

218 if (Object->Method.Mutex)
219 {
220 AcpiOsDeleteMutex (Object->Method.Mutex->Mutex.OsMutex);
221 AcpiUtDeleteObjectDesc (Object->Method.Mutex);
222 Object->Method.Mutex = NULL;
223 }
224 break;

226 case ACPI_TYPE_REGION:

228 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS,
229 "***** Region %p\n", Object));

231 /*
232 * Update AddressRange list. However, only permanent regions
233 * are installed in this list. (Not created within a method)
234 */
235 if (!(Object->Region.Node->Flags & ANOBJ_TEMPORARY))
236 {
237 AcpiUtRemoveAddressRange (Object->Region.SpaceId,
238 Object->Region.Node);
239 }

241 SecondDesc = AcpiNsGetSecondaryObject (Object);
242 if (SecondDesc)
243 {
244 /*
245 * Free the RegionContext if and only if the handler is one of the
246 * default handlers -- and therefore, we created the context object
247 * locally, it was not created by an external caller.
248 */
249 HandlerDesc = Object->Region.Handler;

new/usr/src/common/acpica/components/utilities/utdelete.c 5

250 if (HandlerDesc)
251 {
252 NextDesc = HandlerDesc->AddressSpace.RegionList;
253 LastObjPtr = &HandlerDesc->AddressSpace.RegionList;

255 /* Remove the region object from the handler’s list */

257 while (NextDesc)
258 {
259 if (NextDesc == Object)
260 {
261 *LastObjPtr = NextDesc->Region.Next;
262 break;
263 }

265 /* Walk the linked list of handler */

267 LastObjPtr = &NextDesc->Region.Next;
268 NextDesc = NextDesc->Region.Next;
269 }

271 if (HandlerDesc->AddressSpace.HandlerFlags &
272 ACPI_ADDR_HANDLER_DEFAULT_INSTALLED)
273 {
274 /* Deactivate region and free region context */

276 if (HandlerDesc->AddressSpace.Setup)
277 {
278 (void) HandlerDesc->AddressSpace.Setup (Object,
279 ACPI_REGION_DEACTIVATE,
280 HandlerDesc->AddressSpace.Context,
281 &SecondDesc->Extra.RegionContext);
282 }
283 }

285 AcpiUtRemoveReference (HandlerDesc);
286 }

288 /* Now we can free the Extra object */

290 AcpiUtDeleteObjectDesc (SecondDesc);
291 }
292 break;

294 case ACPI_TYPE_BUFFER_FIELD:

296 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS,
297 "***** Buffer Field %p\n", Object));

299 SecondDesc = AcpiNsGetSecondaryObject (Object);
300 if (SecondDesc)
301 {
302 AcpiUtDeleteObjectDesc (SecondDesc);
303 }
304 break;

306 case ACPI_TYPE_LOCAL_BANK_FIELD:

308 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS,
309 "***** Bank Field %p\n", Object));

311 SecondDesc = AcpiNsGetSecondaryObject (Object);
312 if (SecondDesc)
313 {

new/usr/src/common/acpica/components/utilities/utdelete.c 6

314 AcpiUtDeleteObjectDesc (SecondDesc);
315 }
316 break;

318 default:

318 default:
320 break;
321 }

323 /* Free any allocated memory (pointer within the object) found above */

325 if (ObjPointer)
326 {
327 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS, "Deleting Object Subptr %p\n",
328 ObjPointer));
329 ACPI_FREE (ObjPointer);
330 }

332 /* Now the object can be safely deleted */

334 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS, "Deleting Object %p [%s]\n",
335 Object, AcpiUtGetObjectTypeName (Object)));

337 AcpiUtDeleteObjectDesc (Object);
338 return_VOID;
339 }

342 /***
343 *
344 * FUNCTION: AcpiUtDeleteInternalObjectList
345 *
346 * PARAMETERS: ObjList - Pointer to the list to be deleted
347 *
348 * RETURN: None
349 *
350 * DESCRIPTION: This function deletes an internal object list, including both
351 * simple objects and package objects
352 *
353 **/

355 void
356 AcpiUtDeleteInternalObjectList (
357 ACPI_OPERAND_OBJECT **ObjList)
358 {
359 ACPI_OPERAND_OBJECT **InternalObj;

362 ACPI_FUNCTION_ENTRY ();
361 ACPI_FUNCTION_TRACE (UtDeleteInternalObjectList);

365 /* Walk the null-terminated internal list */

367 for (InternalObj = ObjList; *InternalObj; InternalObj++)
368 {
369 AcpiUtRemoveReference (*InternalObj);
370 }

372 /* Free the combined parameter pointer list and object array */

374 ACPI_FREE (ObjList);
375 return;
374 return_VOID;
376 }

new/usr/src/common/acpica/components/utilities/utdelete.c 7

379 /***
380 *
381 * FUNCTION: AcpiUtUpdateRefCount
382 *
383 * PARAMETERS: Object - Object whose ref count is to be updated
384 * Action - What to do (REF_INCREMENT or REF_DECREMENT)
383 * Action - What to do
385 *
386 * RETURN: None. Sets new reference count within the object
385 * RETURN: New ref count
387 *
388 * DESCRIPTION: Modify the reference count for an internal acpi object
387 * DESCRIPTION: Modify the ref count and return it.
389 *
390 **/

392 static void
393 AcpiUtUpdateRefCount (
394 ACPI_OPERAND_OBJECT *Object,
395 UINT32 Action)
396 {
397 UINT16 OriginalCount;
398 UINT16 NewCount = 0;
399 ACPI_CPU_FLAGS LockFlags;
396 UINT16 Count;
397 UINT16 NewCount;

402 ACPI_FUNCTION_NAME (UtUpdateRefCount);

405 if (!Object)
406 {
407 return;
408 }

408 Count = Object->Common.ReferenceCount;
409 NewCount = Count;

410 /*
411 * Always get the reference count lock. Note: Interpreter and/or
412 * Namespace is not always locked when this function is called.
412 * Perform the reference count action (increment, decrement, force delete)
413 */
414 LockFlags = AcpiOsAcquireLock (AcpiGbl_ReferenceCountLock);
415 OriginalCount = Object->Common.ReferenceCount;

417 /* Perform the reference count action (increment, decrement) */

419 switch (Action)
420 {
421 case REF_INCREMENT:

423 NewCount = OriginalCount + 1;
418 NewCount++;
424 Object->Common.ReferenceCount = NewCount;
425 AcpiOsReleaseLock (AcpiGbl_ReferenceCountLock, LockFlags);

427 /* The current reference count should never be zero here */

429 if (!OriginalCount)
430 {
431 ACPI_WARNING ((AE_INFO,
432 "Obj %p, Reference Count was zero before increment\n",

new/usr/src/common/acpica/components/utilities/utdelete.c 8

433 Object));
434 }

436 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS,
437 "Obj %p Type %.2X Refs %.2X [Incremented]\n",
438 Object, Object->Common.Type, NewCount));
422 "Obj %p Refs=%X, [Incremented]\n",
423 Object, NewCount));
439 break;

441 case REF_DECREMENT:

443 /* The current reference count must be non-zero */
428 if (Count < 1)
429 {
430 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS,
431 "Obj %p Refs=%X, can’t decrement! (Set to 0)\n",
432 Object, NewCount));

445 if (OriginalCount)
434 NewCount = 0;
435 }
436 else
446 {
447 NewCount = OriginalCount - 1;
448 Object->Common.ReferenceCount = NewCount;
438 NewCount--;

440 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS,
441 "Obj %p Refs=%X, [Decremented]\n",
442 Object, NewCount));
449 }

451 AcpiOsReleaseLock (AcpiGbl_ReferenceCountLock, LockFlags);

453 if (!OriginalCount)
445 if (Object->Common.Type == ACPI_TYPE_METHOD)
454 {
455 ACPI_WARNING ((AE_INFO,
456 "Obj %p, Reference Count is already zero, cannot decrement\n",
457 Object));
447 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS,
448 "Method Obj %p Refs=%X, [Decremented]\n", Object, NewCount));
458 }

460 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS,
461 "Obj %p Type %.2X Refs %.2X [Decremented]\n",
462 Object, Object->Common.Type, NewCount));

464 /* Actually delete the object on a reference count of zero */

451 Object->Common.ReferenceCount = NewCount;
466 if (NewCount == 0)
467 {
468 AcpiUtDeleteInternalObj (Object);
469 }
470 break;

458 case REF_FORCE_DELETE:

460 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS,
461 "Obj %p Refs=%X, Force delete! (Set to 0)\n", Object, Count));

463 NewCount = 0;
464 Object->Common.ReferenceCount = NewCount;
465 AcpiUtDeleteInternalObj (Object);

new/usr/src/common/acpica/components/utilities/utdelete.c 9

466 break;

472 default:

474 AcpiOsReleaseLock (AcpiGbl_ReferenceCountLock, LockFlags);
475 ACPI_ERROR ((AE_INFO, "Unknown Reference Count action (0x%X)",
476 Action));
477 return;
470 ACPI_ERROR ((AE_INFO, "Unknown action (0x%X)", Action));
471 break;
478 }

480 /*
481 * Sanity check the reference count, for debug purposes only.
482 * (A deleted object will have a huge reference count)
483 */
484 if (NewCount > ACPI_MAX_REFERENCE_COUNT)
478 if (Count > ACPI_MAX_REFERENCE_COUNT)
485 {
486 ACPI_WARNING ((AE_INFO,
487 "Large Reference Count (0x%X) in object %p, Type=0x%.2X",
488 NewCount, Object, Object->Common.Type));
481 "Large Reference Count (0x%X) in object %p", Count, Object));
489 }
490 }

493 /***
494 *
495 * FUNCTION: AcpiUtUpdateObjectReference
496 *
497 * PARAMETERS: Object - Increment ref count for this object
498 * and all sub-objects
499 * Action - Either REF_INCREMENT or REF_DECREMENT
492 * Action - Either REF_INCREMENT or REF_DECREMENT or
493 * REF_FORCE_DELETE
500 *
501 * RETURN: Status
502 *
503 * DESCRIPTION: Increment the object reference count
504 *
505 * Object references are incremented when:
506 * 1) An object is attached to a Node (namespace object)
507 * 2) An object is copied (all subobjects must be incremented)
508 *
509 * Object references are decremented when:
510 * 1) An object is detached from an Node
511 *
512 **/

514 ACPI_STATUS
515 AcpiUtUpdateObjectReference (
516 ACPI_OPERAND_OBJECT *Object,
517 UINT16 Action)
518 {
519 ACPI_STATUS Status = AE_OK;
520 ACPI_GENERIC_STATE *StateList = NULL;
521 ACPI_OPERAND_OBJECT *NextObject = NULL;
522 ACPI_OPERAND_OBJECT *PrevObject;
523 ACPI_GENERIC_STATE *State;
524 UINT32 i;

527 ACPI_FUNCTION_NAME (UtUpdateObjectReference);
520 ACPI_FUNCTION_TRACE_PTR (UtUpdateObjectReference, Object);

new/usr/src/common/acpica/components/utilities/utdelete.c 10

530 while (Object)
531 {
532 /* Make sure that this isn’t a namespace handle */

534 if (ACPI_GET_DESCRIPTOR_TYPE (Object) == ACPI_DESC_TYPE_NAMED)
535 {
536 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS,
537 "Object %p is NS handle\n", Object));
538 return (AE_OK);
531 return_ACPI_STATUS (AE_OK);
539 }

541 /*
542 * All sub-objects must have their reference count incremented also.
543 * Different object types have different subobjects.
544 */
545 switch (Object->Common.Type)
546 {
547 case ACPI_TYPE_DEVICE:
548 case ACPI_TYPE_PROCESSOR:
549 case ACPI_TYPE_POWER:
550 case ACPI_TYPE_THERMAL:
551 /*
552 * Update the notify objects for these types (if present)
553 * Two lists, system and device notify handlers.
554 */
555 for (i = 0; i < ACPI_NUM_NOTIFY_TYPES; i++)
556 {
557 PrevObject = Object->CommonNotify.NotifyList[i];
558 while (PrevObject)
559 {
560 NextObject = PrevObject->Notify.Next[i];
561 AcpiUtUpdateRefCount (PrevObject, Action);
562 PrevObject = NextObject;
563 }
564 }

545 /* Update the notify objects for these types (if present) */

547 AcpiUtUpdateRefCount (Object->CommonNotify.SystemNotify, Action);
548 AcpiUtUpdateRefCount (Object->CommonNotify.DeviceNotify, Action);
565 break;

567 case ACPI_TYPE_PACKAGE:
568 /*
569 * We must update all the sub-objects of the package,
570 * each of whom may have their own sub-objects.
571 */
572 for (i = 0; i < Object->Package.Count; i++)
573 {
574 /*
575 * Null package elements are legal and can be simply
576 * ignored.
559 * Push each element onto the stack for later processing.
560 * Note: There can be null elements within the package,
561 * these are simply ignored
577 */
578 NextObject = Object->Package.Elements[i];
579 if (!NextObject)
580 {
581 continue;
582 }

584 switch (NextObject->Common.Type)
585 {

new/usr/src/common/acpica/components/utilities/utdelete.c 11

586 case ACPI_TYPE_INTEGER:
587 case ACPI_TYPE_STRING:
588 case ACPI_TYPE_BUFFER:
589 /*
590 * For these very simple sub-objects, we can just
591 * update the reference count here and continue.
592 * Greatly increases performance of this operation.
593 */
594 AcpiUtUpdateRefCount (NextObject, Action);
595 break;

597 default:
598 /*
599 * For complex sub-objects, push them onto the stack
600 * for later processing (this eliminates recursion.)
601 */
602 Status = AcpiUtCreateUpdateStateAndPush (
603 NextObject, Action, &StateList);
564 Object->Package.Elements[i], Action, &StateList);
604 if (ACPI_FAILURE (Status))
605 {
606 goto ErrorExit;
607 }
608 break;
609 }
610 }
611 NextObject = NULL;
612 break;

614 case ACPI_TYPE_BUFFER_FIELD:

616 NextObject = Object->BufferField.BufferObj;
617 break;

619 case ACPI_TYPE_LOCAL_REGION_FIELD:

621 NextObject = Object->Field.RegionObj;
622 break;

624 case ACPI_TYPE_LOCAL_BANK_FIELD:

626 NextObject = Object->BankField.BankObj;
627 Status = AcpiUtCreateUpdateStateAndPush (
628 Object->BankField.RegionObj, Action, &StateList);
629 if (ACPI_FAILURE (Status))
630 {
631 goto ErrorExit;
632 }
633 break;

635 case ACPI_TYPE_LOCAL_INDEX_FIELD:

637 NextObject = Object->IndexField.IndexObj;
638 Status = AcpiUtCreateUpdateStateAndPush (
639 Object->IndexField.DataObj, Action, &StateList);
640 if (ACPI_FAILURE (Status))
641 {
642 goto ErrorExit;
643 }
644 break;

646 case ACPI_TYPE_LOCAL_REFERENCE:
647 /*
648 * The target of an Index (a package, string, or buffer) or a named
649 * reference must track changes to the ref count of the index or
650 * target object.

new/usr/src/common/acpica/components/utilities/utdelete.c 12

651 */
652 if ((Object->Reference.Class == ACPI_REFCLASS_INDEX) ||
653 (Object->Reference.Class== ACPI_REFCLASS_NAME))
654 {
655 NextObject = Object->Reference.Object;
656 }
657 break;

659 case ACPI_TYPE_REGION:
660 default:

662 break; /* No subobjects for all other types */
663 }

665 /*
666 * Now we can update the count in the main object. This can only
667 * happen after we update the sub-objects in case this causes the
668 * main object to be deleted.
669 */
670 AcpiUtUpdateRefCount (Object, Action);
671 Object = NULL;

673 /* Move on to the next object to be updated */

675 if (NextObject)
676 {
677 Object = NextObject;
678 NextObject = NULL;
679 }
680 else if (StateList)
681 {
682 State = AcpiUtPopGenericState (&StateList);
683 Object = State->Update.Object;
684 AcpiUtDeleteGenericState (State);
685 }
686 }

688 return (AE_OK);
645 return_ACPI_STATUS (AE_OK);

691 ErrorExit:

693 ACPI_EXCEPTION ((AE_INFO, Status,
694 "Could not update object reference count"));

696 /* Free any stacked Update State objects */

698 while (StateList)
699 {
700 State = AcpiUtPopGenericState (&StateList);
701 AcpiUtDeleteGenericState (State);
702 }

704 return (Status);
661 return_ACPI_STATUS (Status);
705 }

708 /***
709 *
710 * FUNCTION: AcpiUtAddReference
711 *
712 * PARAMETERS: Object - Object whose reference count is to be
713 * incremented
714 *

new/usr/src/common/acpica/components/utilities/utdelete.c 13

715 * RETURN: None
716 *
717 * DESCRIPTION: Add one reference to an ACPI object
718 *
719 **/

721 void
722 AcpiUtAddReference (
723 ACPI_OPERAND_OBJECT *Object)
724 {

726 ACPI_FUNCTION_NAME (UtAddReference);
683 ACPI_FUNCTION_TRACE_PTR (UtAddReference, Object);

729 /* Ensure that we have a valid object */

731 if (!AcpiUtValidInternalObject (Object))
732 {
733 return;
690 return_VOID;
734 }

736 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS,
737 "Obj %p Current Refs=%X [To Be Incremented]\n",
738 Object, Object->Common.ReferenceCount));

740 /* Increment the reference count */

742 (void) AcpiUtUpdateObjectReference (Object, REF_INCREMENT);
743 return;
700 return_VOID;
744 }

747 /***
748 *
749 * FUNCTION: AcpiUtRemoveReference
750 *
751 * PARAMETERS: Object - Object whose ref count will be decremented
752 *
753 * RETURN: None
754 *
755 * DESCRIPTION: Decrement the reference count of an ACPI internal object
756 *
757 **/

759 void
760 AcpiUtRemoveReference (
761 ACPI_OPERAND_OBJECT *Object)
762 {

764 ACPI_FUNCTION_NAME (UtRemoveReference);
721 ACPI_FUNCTION_TRACE_PTR (UtRemoveReference, Object);

767 /*
768 * Allow a NULL pointer to be passed in, just ignore it. This saves
769 * each caller from having to check. Also, ignore NS nodes.
727 *
770 */
771 if (!Object ||
772 (ACPI_GET_DESCRIPTOR_TYPE (Object) == ACPI_DESC_TYPE_NAMED))

774 {
775 return;

new/usr/src/common/acpica/components/utilities/utdelete.c 14

733 return_VOID;
776 }

778 /* Ensure that we have a valid object */

780 if (!AcpiUtValidInternalObject (Object))
781 {
782 return;
740 return_VOID;
783 }

785 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS,
786 "Obj %p Current Refs=%X [To Be Decremented]\n",
787 Object, Object->Common.ReferenceCount));

789 /*
790 * Decrement the reference count, and only actually delete the object
791 * if the reference count becomes 0. (Must also decrement the ref count
792 * of all subobjects!)
793 */
794 (void) AcpiUtUpdateObjectReference (Object, REF_DECREMENT);
795 return;
753 return_VOID;
796 }

new/usr/src/common/acpica/components/utilities/uterror.c 1

**
 10595 Thu Dec 26 13:49:38 2013
new/usr/src/common/acpica/components/utilities/uterror.c
acpica-unix2-20130823
**

1 /***
2 *
3 * Module Name: uterror - Various internal error/warning output functions
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTERROR_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acnamesp.h"

51 #define _COMPONENT ACPI_UTILITIES
52 ACPI_MODULE_NAME ("uterror")

55 /*
56 * This module contains internal error functions that may
57 * be configured out.
58 */
59 #if !defined (ACPI_NO_ERROR_MESSAGES)

61 /***

new/usr/src/common/acpica/components/utilities/uterror.c 2

62 *
63 * FUNCTION: AcpiUtPredefinedWarning
64 *
65 * PARAMETERS: ModuleName - Caller’s module name (for error output)
66 * LineNumber - Caller’s line number (for error output)
67 * Pathname - Full pathname to the node
68 * NodeFlags - From Namespace node for the method/object
69 * Format - Printf format string + additional args
70 *
71 * RETURN: None
72 *
73 * DESCRIPTION: Warnings for the predefined validation module. Messages are
74 * only emitted the first time a problem with a particular
75 * method/object is detected. This prevents a flood of error
76 * messages for methods that are repeatedly evaluated.
77 *
78 **/

80 void ACPI_INTERNAL_VAR_XFACE
81 AcpiUtPredefinedWarning (
82 const char *ModuleName,
83 UINT32 LineNumber,
84 char *Pathname,
85 UINT8 NodeFlags,
86 const char *Format,
87 ...)
88 {
89 va_list ArgList;

92 /*
93 * Warning messages for this method/object will be disabled after the
94 * first time a validation fails or an object is successfully repaired.
95 */
96 if (NodeFlags & ANOBJ_EVALUATED)
97 {
98 return;
99 }

101 AcpiOsPrintf (ACPI_MSG_WARNING "%s: ", Pathname);

103 va_start (ArgList, Format);
104 AcpiOsVprintf (Format, ArgList);
105 ACPI_MSG_SUFFIX;
106 va_end (ArgList);
107 }

110 /***
111 *
112 * FUNCTION: AcpiUtPredefinedInfo
113 *
114 * PARAMETERS: ModuleName - Caller’s module name (for error output)
115 * LineNumber - Caller’s line number (for error output)
116 * Pathname - Full pathname to the node
117 * NodeFlags - From Namespace node for the method/object
118 * Format - Printf format string + additional args
119 *
120 * RETURN: None
121 *
122 * DESCRIPTION: Info messages for the predefined validation module. Messages
123 * are only emitted the first time a problem with a particular
124 * method/object is detected. This prevents a flood of
125 * messages for methods that are repeatedly evaluated.
126 *
127 **/

new/usr/src/common/acpica/components/utilities/uterror.c 3

129 void ACPI_INTERNAL_VAR_XFACE
130 AcpiUtPredefinedInfo (
131 const char *ModuleName,
132 UINT32 LineNumber,
133 char *Pathname,
134 UINT8 NodeFlags,
135 const char *Format,
136 ...)
137 {
138 va_list ArgList;

141 /*
142 * Warning messages for this method/object will be disabled after the
143 * first time a validation fails or an object is successfully repaired.
144 */
145 if (NodeFlags & ANOBJ_EVALUATED)
146 {
147 return;
148 }

150 AcpiOsPrintf (ACPI_MSG_INFO "%s: ", Pathname);

152 va_start (ArgList, Format);
153 AcpiOsVprintf (Format, ArgList);
154 ACPI_MSG_SUFFIX;
155 va_end (ArgList);
156 }

159 /***
160 *
161 * FUNCTION: AcpiUtPredefinedBiosError
162 *
163 * PARAMETERS: ModuleName - Caller’s module name (for error output)
164 * LineNumber - Caller’s line number (for error output)
165 * Pathname - Full pathname to the node
166 * NodeFlags - From Namespace node for the method/object
167 * Format - Printf format string + additional args
168 *
169 * RETURN: None
170 *
171 * DESCRIPTION: BIOS error message for predefined names. Messages
172 * are only emitted the first time a problem with a particular
173 * method/object is detected. This prevents a flood of
174 * messages for methods that are repeatedly evaluated.
175 *
176 **/

178 void ACPI_INTERNAL_VAR_XFACE
179 AcpiUtPredefinedBiosError (
180 const char *ModuleName,
181 UINT32 LineNumber,
182 char *Pathname,
183 UINT8 NodeFlags,
184 const char *Format,
185 ...)
186 {
187 va_list ArgList;

190 /*
191 * Warning messages for this method/object will be disabled after the
192 * first time a validation fails or an object is successfully repaired.
193 */

new/usr/src/common/acpica/components/utilities/uterror.c 4

194 if (NodeFlags & ANOBJ_EVALUATED)
195 {
196 return;
197 }

199 AcpiOsPrintf (ACPI_MSG_BIOS_ERROR "%s: ", Pathname);

201 va_start (ArgList, Format);
202 AcpiOsVprintf (Format, ArgList);
203 ACPI_MSG_SUFFIX;
204 va_end (ArgList);
205 }

208 /***
209 *
210 * FUNCTION: AcpiUtNamespaceError
211 *
212 * PARAMETERS: ModuleName - Caller’s module name (for error output)
213 * LineNumber - Caller’s line number (for error output)
214 * InternalName - Name or path of the namespace node
215 * LookupStatus - Exception code from NS lookup
216 *
217 * RETURN: None
218 *
219 * DESCRIPTION: Print error message with the full pathname for the NS node.
220 *
221 **/

223 void
224 AcpiUtNamespaceError (
225 const char *ModuleName,
226 UINT32 LineNumber,
227 const char *InternalName,
228 ACPI_STATUS LookupStatus)
229 {
230 ACPI_STATUS Status;
231 UINT32 BadName;
232 char *Name = NULL;

235 ACPI_MSG_REDIRECT_BEGIN;
236 AcpiOsPrintf (ACPI_MSG_ERROR);

238 if (LookupStatus == AE_BAD_CHARACTER)
239 {
240 /* There is a non-ascii character in the name */

242 ACPI_MOVE_32_TO_32 (&BadName, ACPI_CAST_PTR (UINT32, InternalName));
243 AcpiOsPrintf ("[0x%.8X] (NON-ASCII)", BadName);
244 }
245 else
246 {
247 /* Convert path to external format */

249 Status = AcpiNsExternalizeName (ACPI_UINT32_MAX,
250 InternalName, NULL, &Name);

252 /* Print target name */

254 if (ACPI_SUCCESS (Status))
255 {
256 AcpiOsPrintf ("[%s]", Name);
257 }
258 else
259 {

new/usr/src/common/acpica/components/utilities/uterror.c 5

260 AcpiOsPrintf ("[COULD NOT EXTERNALIZE NAME]");
261 }

263 if (Name)
264 {
265 ACPI_FREE (Name);
266 }
267 }

269 AcpiOsPrintf (" Namespace lookup failure, %s",
270 AcpiFormatException (LookupStatus));

272 ACPI_MSG_SUFFIX;
273 ACPI_MSG_REDIRECT_END;
274 }

277 /***
278 *
279 * FUNCTION: AcpiUtMethodError
280 *
281 * PARAMETERS: ModuleName - Caller’s module name (for error output)
282 * LineNumber - Caller’s line number (for error output)
283 * Message - Error message to use on failure
284 * PrefixNode - Prefix relative to the path
285 * Path - Path to the node (optional)
286 * MethodStatus - Execution status
287 *
288 * RETURN: None
289 *
290 * DESCRIPTION: Print error message with the full pathname for the method.
291 *
292 **/

294 void
295 AcpiUtMethodError (
296 const char *ModuleName,
297 UINT32 LineNumber,
298 const char *Message,
299 ACPI_NAMESPACE_NODE *PrefixNode,
300 const char *Path,
301 ACPI_STATUS MethodStatus)
302 {
303 ACPI_STATUS Status;
304 ACPI_NAMESPACE_NODE *Node = PrefixNode;

307 ACPI_MSG_REDIRECT_BEGIN;
308 AcpiOsPrintf (ACPI_MSG_ERROR);

310 if (Path)
311 {
312 Status = AcpiNsGetNode (PrefixNode, Path, ACPI_NS_NO_UPSEARCH,
313 &Node);
314 if (ACPI_FAILURE (Status))
315 {
316 AcpiOsPrintf ("[Could not get node by pathname]");
317 }
318 }

320 AcpiNsPrintNodePathname (Node, Message);
321 AcpiOsPrintf (", %s", AcpiFormatException (MethodStatus));

323 ACPI_MSG_SUFFIX;
324 ACPI_MSG_REDIRECT_END;
325 }

new/usr/src/common/acpica/components/utilities/uterror.c 6

327 #endif /* ACPI_NO_ERROR_MESSAGES */

new/usr/src/common/acpica/components/utilities/uteval.c 1

**
 11359 Thu Dec 26 13:49:38 2013
new/usr/src/common/acpica/components/utilities/uteval.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: uteval - Object evaluation
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTEVAL_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acnamesp.h"

51 #define _COMPONENT ACPI_UTILITIES
52 ACPI_MODULE_NAME ("uteval")

55 /***
56 *
57 * FUNCTION: AcpiUtEvaluateObject
58 *
59 * PARAMETERS: PrefixNode - Starting node

new/usr/src/common/acpica/components/utilities/uteval.c 2

60 * Path - Path to object from starting node
61 * ExpectedReturnTypes - Bitmap of allowed return types
62 * ReturnDesc - Where a return value is stored
63 *
64 * RETURN: Status
65 *
66 * DESCRIPTION: Evaluates a namespace object and verifies the type of the
67 * return object. Common code that simplifies accessing objects
68 * that have required return objects of fixed types.
69 *
70 * NOTE: Internal function, no parameter validation
71 *
72 **/

74 ACPI_STATUS
75 AcpiUtEvaluateObject (
76 ACPI_NAMESPACE_NODE *PrefixNode,
77 char *Path,
78 UINT32 ExpectedReturnBtypes,
79 ACPI_OPERAND_OBJECT **ReturnDesc)
80 {
81 ACPI_EVALUATE_INFO *Info;
82 ACPI_STATUS Status;
83 UINT32 ReturnBtype;

86 ACPI_FUNCTION_TRACE (UtEvaluateObject);

89 /* Allocate the evaluation information block */

91 Info = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_EVALUATE_INFO));
92 if (!Info)
93 {
94 return_ACPI_STATUS (AE_NO_MEMORY);
95 }

97 Info->PrefixNode = PrefixNode;
98 Info->RelativePathname = Path;
98 Info->Pathname = Path;

100 /* Evaluate the object/method */

102 Status = AcpiNsEvaluate (Info);
103 if (ACPI_FAILURE (Status))
104 {
105 if (Status == AE_NOT_FOUND)
106 {
107 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "[%4.4s.%s] was not found\n",
108 AcpiUtGetNodeName (PrefixNode), Path));
109 }
110 else
111 {
112 ACPI_ERROR_METHOD ("Method execution failed",
113 PrefixNode, Path, Status);
114 }

116 goto Cleanup;
117 }

119 /* Did we get a return object? */

121 if (!Info->ReturnObject)
122 {
123 if (ExpectedReturnBtypes)
124 {

new/usr/src/common/acpica/components/utilities/uteval.c 3

125 ACPI_ERROR_METHOD ("No object was returned from",
126 PrefixNode, Path, AE_NOT_EXIST);

128 Status = AE_NOT_EXIST;
129 }

131 goto Cleanup;
132 }

134 /* Map the return object type to the bitmapped type */

136 switch ((Info->ReturnObject)->Common.Type)
137 {
138 case ACPI_TYPE_INTEGER:

140 ReturnBtype = ACPI_BTYPE_INTEGER;
141 break;

143 case ACPI_TYPE_BUFFER:

145 ReturnBtype = ACPI_BTYPE_BUFFER;
146 break;

148 case ACPI_TYPE_STRING:

150 ReturnBtype = ACPI_BTYPE_STRING;
151 break;

153 case ACPI_TYPE_PACKAGE:

155 ReturnBtype = ACPI_BTYPE_PACKAGE;
156 break;

158 default:

160 ReturnBtype = 0;
161 break;
162 }

164 if ((AcpiGbl_EnableInterpreterSlack) &&
165 (!ExpectedReturnBtypes))
166 {
167 /*
168 * We received a return object, but one was not expected. This can
169 * happen frequently if the "implicit return" feature is enabled.
170 * Just delete the return object and return AE_OK.
171 */
172 AcpiUtRemoveReference (Info->ReturnObject);
173 goto Cleanup;
174 }

176 /* Is the return object one of the expected types? */

178 if (!(ExpectedReturnBtypes & ReturnBtype))
179 {
180 ACPI_ERROR_METHOD ("Return object type is incorrect",
181 PrefixNode, Path, AE_TYPE);

183 ACPI_ERROR ((AE_INFO,
184 "Type returned from %s was incorrect: %s, expected Btypes: 0x%X",
185 Path, AcpiUtGetObjectTypeName (Info->ReturnObject),
186 ExpectedReturnBtypes));

188 /* On error exit, we must delete the return object */

190 AcpiUtRemoveReference (Info->ReturnObject);

new/usr/src/common/acpica/components/utilities/uteval.c 4

191 Status = AE_TYPE;
192 goto Cleanup;
193 }

195 /* Object type is OK, return it */

197 *ReturnDesc = Info->ReturnObject;

199 Cleanup:
200 ACPI_FREE (Info);
201 return_ACPI_STATUS (Status);
202 }

______unchanged_portion_omitted_

253 /***
254 *
255 * FUNCTION: AcpiUtExecute_STA
256 *
257 * PARAMETERS: DeviceNode - Node for the device
258 * Flags - Where the status flags are returned
259 *
260 * RETURN: Status
261 *
262 * DESCRIPTION: Executes _STA for selected device and stores results in
263 * *Flags. If _STA does not exist, then the device is assumed
264 * to be present/functional/enabled (as per the ACPI spec).
258 * *Flags.
265 *
266 * NOTE: Internal function, no parameter validation
267 *
268 **/

270 ACPI_STATUS
271 AcpiUtExecute_STA (
272 ACPI_NAMESPACE_NODE *DeviceNode,
273 UINT32 *Flags)
274 {
275 ACPI_OPERAND_OBJECT *ObjDesc;
276 ACPI_STATUS Status;

279 ACPI_FUNCTION_TRACE (UtExecute_STA);

282 Status = AcpiUtEvaluateObject (DeviceNode, METHOD_NAME__STA,
283 ACPI_BTYPE_INTEGER, &ObjDesc);
284 if (ACPI_FAILURE (Status))
285 {
286 if (AE_NOT_FOUND == Status)
287 {
288 /*
289 * if _STA does not exist, then (as per the ACPI specification),
290 * the returned flags will indicate that the device is present,
291 * functional, and enabled.
292 */
293 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
294 "_STA on %4.4s was not found, assuming device is present\n",
295 AcpiUtGetNodeName (DeviceNode)));

297 *Flags = ACPI_UINT32_MAX;
298 Status = AE_OK;
299 }

301 return_ACPI_STATUS (Status);
302 }

new/usr/src/common/acpica/components/utilities/uteval.c 5

304 /* Extract the status flags */

306 *Flags = (UINT32) ObjDesc->Integer.Value;

308 /* On exit, we must delete the return object */

310 AcpiUtRemoveReference (ObjDesc);
311 return_ACPI_STATUS (Status);
312 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/utilities/utexcep.c 1

**
 5238 Thu Dec 26 13:49:39 2013
new/usr/src/common/acpica/components/utilities/utexcep.c
update to acpica-unix2-20130927
acpica-unix2-20130823
**

1 /***
2 *
3 * Module Name: utexcep - Exception code support
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __UTEXCEP_C__
46 #define EXPORT_ACPI_INTERFACES

48 #define ACPI_DEFINE_EXCEPTION_TABLE
49 #include "acpi.h"
50 #include "accommon.h"

53 #define _COMPONENT ACPI_UTILITIES
54 ACPI_MODULE_NAME ("utexcep")

57 /***
58 *
59 * FUNCTION: AcpiFormatException
60 *

new/usr/src/common/acpica/components/utilities/utexcep.c 2

61 * PARAMETERS: Status - The ACPI_STATUS code to be formatted
62 *
63 * RETURN: A string containing the exception text. A valid pointer is
64 * always returned.
65 *
66 * DESCRIPTION: This function translates an ACPI exception into an ASCII
67 * string. Returns "unknown status" string for invalid codes.
68 *
69 **/

71 const char *
72 AcpiFormatException (
73 ACPI_STATUS Status)
74 {
75 const ACPI_EXCEPTION_INFO *Exception;

78 ACPI_FUNCTION_ENTRY ();

81 Exception = AcpiUtValidateException (Status);
82 if (!Exception)
83 {
84 /* Exception code was not recognized */

86 ACPI_ERROR ((AE_INFO,
87 "Unknown exception code: 0x%8.8X", Status));

89 return ("UNKNOWN_STATUS_CODE");
90 }

92 return (Exception->Name);
93 }

95 ACPI_EXPORT_SYMBOL (AcpiFormatException)

98 /***
99 *
100 * FUNCTION: AcpiUtValidateException
101 *
102 * PARAMETERS: Status - The ACPI_STATUS code to be formatted
103 *
104 * RETURN: A string containing the exception text. NULL if exception is
105 * not valid.
106 *
107 * DESCRIPTION: This function validates and translates an ACPI exception into
108 * an ASCII string.
109 *
110 **/

112 const ACPI_EXCEPTION_INFO *
113 AcpiUtValidateException (
114 ACPI_STATUS Status)
115 {
116 UINT32 SubStatus;
117 const ACPI_EXCEPTION_INFO *Exception = NULL;

120 ACPI_FUNCTION_ENTRY ();

123 /*
124 * Status is composed of two parts, a "type" and an actual code
125 */
126 SubStatus = (Status & ~AE_CODE_MASK);

new/usr/src/common/acpica/components/utilities/utexcep.c 3

128 switch (Status & AE_CODE_MASK)
129 {
130 case AE_CODE_ENVIRONMENTAL:

132 if (SubStatus <= AE_CODE_ENV_MAX)
133 {
134 Exception = &AcpiGbl_ExceptionNames_Env [SubStatus];
135 }
136 break;

138 case AE_CODE_PROGRAMMER:

140 if (SubStatus <= AE_CODE_PGM_MAX)
141 {
142 Exception = &AcpiGbl_ExceptionNames_Pgm [SubStatus];
143 }
144 break;

146 case AE_CODE_ACPI_TABLES:

148 if (SubStatus <= AE_CODE_TBL_MAX)
149 {
150 Exception = &AcpiGbl_ExceptionNames_Tbl [SubStatus];
151 }
152 break;

154 case AE_CODE_AML:

156 if (SubStatus <= AE_CODE_AML_MAX)
157 {
158 Exception = &AcpiGbl_ExceptionNames_Aml [SubStatus];
159 }
160 break;

162 case AE_CODE_CONTROL:

164 if (SubStatus <= AE_CODE_CTRL_MAX)
165 {
166 Exception = &AcpiGbl_ExceptionNames_Ctrl [SubStatus];
167 }
168 break;

170 default:

172 break;
173 }

175 if (!Exception || !Exception->Name)
176 {
177 return (NULL);
178 }

180 return (Exception);
181 }

new/usr/src/common/acpica/components/utilities/utglobal.c 1

**
 14312 Thu Dec 26 13:49:39 2013
new/usr/src/common/acpica/components/utilities/utglobal.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: utglobal - Global variables for the ACPI subsystem
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTGLOBAL_C__
45 #define EXPORT_ACPI_INTERFACES
46 #define DEFINE_ACPI_GLOBALS

48 #include "acpi.h"
49 #include "accommon.h"

51 #define _COMPONENT ACPI_UTILITIES
52 ACPI_MODULE_NAME ("utglobal")

55 /***
56 *
57 * Static global variable initialization.
58 *

new/usr/src/common/acpica/components/utilities/utglobal.c 2

59 **/

61 /*
62 * We want the debug switches statically initialized so they
63 * are already set when the debugger is entered.
64 */

66 /* Debug switch - level and trace mask */

68 #ifdef ACPI_DEBUG_OUTPUT
69 UINT32 AcpiDbgLevel = ACPI_DEBUG_DEFAULT;
70 #else
71 UINT32 AcpiDbgLevel = ACPI_NORMAL_DEFAULT;
72 #endif

74 /* Debug switch - layer (component) mask */

76 UINT32 AcpiDbgLayer = ACPI_COMPONENT_DEFAULT;
77 UINT32 AcpiGbl_NestingLevel = 0;

79 /* Debugger globals */

81 BOOLEAN AcpiGbl_DbTerminateThreads = FALSE;
82 BOOLEAN AcpiGbl_AbortMethod = FALSE;
83 BOOLEAN AcpiGbl_MethodExecuting = FALSE;

85 /* System flags */

87 UINT32 AcpiGbl_StartupFlags = 0;

89 /* System starts uninitialized */

91 BOOLEAN AcpiGbl_Shutdown = TRUE;

93 const char *AcpiGbl_SleepStateNames[ACPI_S_STATE_COUNT] =
94 {
95 "_S0_",
96 "_S1_",
97 "_S2_",
98 "_S3_",
99 "_S4_",
100 "_S5_"
101 };

______unchanged_portion_omitted_

159 #if (!ACPI_REDUCED_HARDWARE)
160 /**
161 *
162 * Event and Hardware globals
163 *
164 **/

166 ACPI_BIT_REGISTER_INFO AcpiGbl_BitRegisterInfo[ACPI_NUM_BITREG] =
167 {
168 /* Name Parent Register Regi

170 /* ACPI_BITREG_TIMER_STATUS */ {ACPI_REGISTER_PM1_STATUS, ACPI_B
171 /* ACPI_BITREG_BUS_MASTER_STATUS */ {ACPI_REGISTER_PM1_STATUS, ACPI_B
172 /* ACPI_BITREG_GLOBAL_LOCK_STATUS */ {ACPI_REGISTER_PM1_STATUS, ACPI_B
173 /* ACPI_BITREG_POWER_BUTTON_STATUS */ {ACPI_REGISTER_PM1_STATUS, ACPI_B
174 /* ACPI_BITREG_SLEEP_BUTTON_STATUS */ {ACPI_REGISTER_PM1_STATUS, ACPI_B
175 /* ACPI_BITREG_RT_CLOCK_STATUS */ {ACPI_REGISTER_PM1_STATUS, ACPI_B
176 /* ACPI_BITREG_WAKE_STATUS */ {ACPI_REGISTER_PM1_STATUS, ACPI_B
177 /* ACPI_BITREG_PCIEXP_WAKE_STATUS */ {ACPI_REGISTER_PM1_STATUS, ACPI_B

new/usr/src/common/acpica/components/utilities/utglobal.c 3

179 /* ACPI_BITREG_TIMER_ENABLE */ {ACPI_REGISTER_PM1_ENABLE, ACPI_B
180 /* ACPI_BITREG_GLOBAL_LOCK_ENABLE */ {ACPI_REGISTER_PM1_ENABLE, ACPI_B
181 /* ACPI_BITREG_POWER_BUTTON_ENABLE */ {ACPI_REGISTER_PM1_ENABLE, ACPI_B
182 /* ACPI_BITREG_SLEEP_BUTTON_ENABLE */ {ACPI_REGISTER_PM1_ENABLE, ACPI_B
183 /* ACPI_BITREG_RT_CLOCK_ENABLE */ {ACPI_REGISTER_PM1_ENABLE, ACPI_B
184 /* ACPI_BITREG_PCIEXP_WAKE_DISABLE */ {ACPI_REGISTER_PM1_ENABLE, ACPI_B

186 /* ACPI_BITREG_SCI_ENABLE */ {ACPI_REGISTER_PM1_CONTROL, ACPI_B
187 /* ACPI_BITREG_BUS_MASTER_RLD */ {ACPI_REGISTER_PM1_CONTROL, ACPI_B
188 /* ACPI_BITREG_GLOBAL_LOCK_RELEASE */ {ACPI_REGISTER_PM1_CONTROL, ACPI_B
189 /* ACPI_BITREG_SLEEP_TYPE */ {ACPI_REGISTER_PM1_CONTROL, ACPI_B
190 /* ACPI_BITREG_SLEEP_ENABLE */ {ACPI_REGISTER_PM1_CONTROL, ACPI_B

192 /* ACPI_BITREG_ARB_DIS */ {ACPI_REGISTER_PM2_CONTROL, ACPI_B
193 };

______unchanged_portion_omitted_
204 #endif /* !ACPI_REDUCED_HARDWARE */

207 /***
208 *
209 * FUNCTION: AcpiUtInitGlobals
210 *
211 * PARAMETERS: None
212 *
213 * RETURN: Status
214 *
215 * DESCRIPTION: Initialize ACPICA globals. All globals that require specific
216 * initialization should be initialized here. This allows for
217 * a warm restart.
212 * DESCRIPTION: Init ACPICA globals. All globals that require specific
213 * initialization should be initialized here!
218 *
219 **/

221 ACPI_STATUS
222 AcpiUtInitGlobals (
223 void)
224 {
225 ACPI_STATUS Status;
226 UINT32 i;

229 ACPI_FUNCTION_TRACE (UtInitGlobals);

232 /* Create all memory caches */

234 Status = AcpiUtCreateCaches ();
235 if (ACPI_FAILURE (Status))
236 {
237 return_ACPI_STATUS (Status);
238 }

240 /* Address Range lists */

242 for (i = 0; i < ACPI_ADDRESS_RANGE_MAX; i++)
243 {
244 AcpiGbl_AddressRangeList[i] = NULL;
245 }

247 /* Mutex locked flags */

249 for (i = 0; i < ACPI_NUM_MUTEX; i++)
250 {
251 AcpiGbl_MutexInfo[i].Mutex = NULL;

new/usr/src/common/acpica/components/utilities/utglobal.c 4

252 AcpiGbl_MutexInfo[i].ThreadId = ACPI_MUTEX_NOT_ACQUIRED;
253 AcpiGbl_MutexInfo[i].UseCount = 0;
254 }

256 for (i = 0; i < ACPI_NUM_OWNERID_MASKS; i++)
257 {
258 AcpiGbl_OwnerIdMask[i] = 0;
259 }

261 /* Last OwnerID is never valid */

263 AcpiGbl_OwnerIdMask[ACPI_NUM_OWNERID_MASKS - 1] = 0x80000000;

265 /* Event counters */

267 AcpiMethodCount = 0;
268 AcpiSciCount = 0;
269 AcpiGpeCount = 0;

271 for (i = 0; i < ACPI_NUM_FIXED_EVENTS; i++)
272 {
273 AcpiFixedEventCount[i] = 0;
274 }

276 #if (!ACPI_REDUCED_HARDWARE)
265 /* GPE support */

278 /* GPE/SCI support */

280 AcpiGbl_AllGpesInitialized = FALSE;
281 AcpiGbl_GpeXruptListHead = NULL;
282 AcpiGbl_GpeFadtBlocks[0] = NULL;
283 AcpiGbl_GpeFadtBlocks[1] = NULL;
284 AcpiCurrentGpeCount = 0;

286 AcpiGbl_GlobalEventHandler = NULL;
287 AcpiGbl_SciHandlerList = NULL;

289 #endif /* !ACPI_REDUCED_HARDWARE */

291 /* Global handlers */

293 AcpiGbl_GlobalNotify[0].Handler = NULL;
294 AcpiGbl_GlobalNotify[1].Handler = NULL;
275 AcpiGbl_SystemNotify.Handler = NULL;
276 AcpiGbl_DeviceNotify.Handler = NULL;
295 AcpiGbl_ExceptionHandler = NULL;
296 AcpiGbl_InitHandler = NULL;
297 AcpiGbl_TableHandler = NULL;
298 AcpiGbl_InterfaceHandler = NULL;
281 AcpiGbl_GlobalEventHandler = NULL;

300 /* Global Lock support */

302 AcpiGbl_GlobalLockSemaphore = NULL;
303 AcpiGbl_GlobalLockMutex = NULL;
304 AcpiGbl_GlobalLockAcquired = FALSE;
305 AcpiGbl_GlobalLockHandle = 0;
306 AcpiGbl_GlobalLockPresent = FALSE;

308 /* Miscellaneous variables */

310 AcpiGbl_DSDT = NULL;
311 AcpiGbl_CmSingleStep = FALSE;
312 AcpiGbl_DbTerminateThreads = FALSE;
313 AcpiGbl_Shutdown = FALSE;

new/usr/src/common/acpica/components/utilities/utglobal.c 5

314 AcpiGbl_NsLookupCount = 0;
315 AcpiGbl_PsFindCount = 0;
316 AcpiGbl_AcpiHardwarePresent = TRUE;
317 AcpiGbl_LastOwnerIdIndex = 0;
318 AcpiGbl_NextOwnerIdOffset = 0;
319 AcpiGbl_TraceMethodName = 0;
320 AcpiGbl_TraceDbgLevel = 0;
321 AcpiGbl_TraceDbgLayer = 0;
322 AcpiGbl_DebuggerConfiguration = DEBUGGER_THREADING;
323 AcpiGbl_DbOutputFlags = ACPI_DB_CONSOLE_OUTPUT;
307 AcpiGbl_OsiData = 0;
324 AcpiGbl_OsiMutex = NULL;
325 AcpiGbl_RegMethodsExecuted = FALSE;

327 /* Hardware oriented */

329 AcpiGbl_EventsInitialized = FALSE;
330 AcpiGbl_SystemAwakeAndRunning = TRUE;

332 /* Namespace */

334 AcpiGbl_ModuleCodeList = NULL;
335 AcpiGbl_RootNode = NULL;
336 AcpiGbl_RootNodeStruct.Name.Integer = ACPI_ROOT_NAME;
337 AcpiGbl_RootNodeStruct.DescriptorType = ACPI_DESC_TYPE_NAMED;
338 AcpiGbl_RootNodeStruct.Type = ACPI_TYPE_DEVICE;
339 AcpiGbl_RootNodeStruct.Parent = NULL;
340 AcpiGbl_RootNodeStruct.Child = NULL;
341 AcpiGbl_RootNodeStruct.Peer = NULL;
342 AcpiGbl_RootNodeStruct.Object = NULL;

345 #ifdef ACPI_DISASSEMBLER
346 AcpiGbl_ExternalList = NULL;
347 AcpiGbl_NumExternalMethods = 0;
348 AcpiGbl_ResolvedExternalMethods = 0;
349 #endif

351 #ifdef ACPI_DEBUG_OUTPUT
352 AcpiGbl_LowestStackPointer = ACPI_CAST_PTR (ACPI_SIZE, ACPI_SIZE_MA
353 #endif

355 #ifdef ACPI_DBG_TRACK_ALLOCATIONS
356 AcpiGbl_DisplayFinalMemStats = FALSE;
357 AcpiGbl_DisableMemTracking = FALSE;
358 #endif

360 return_ACPI_STATUS (AE_OK);
361 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/utilities/utids.c 1

**
 13188 Thu Dec 26 13:49:39 2013
new/usr/src/common/acpica/components/utilities/utids.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: utids - support for device IDs - HID, UID, CID
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTIDS_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acinterp.h"

51 #define _COMPONENT ACPI_UTILITIES
52 ACPI_MODULE_NAME ("utids")

55 /***
56 *
57 * FUNCTION: AcpiUtExecute_HID
58 *
59 * PARAMETERS: DeviceNode - Node for the device

new/usr/src/common/acpica/components/utilities/utids.c 2

60 * ReturnId - Where the string HID is returned
61 *
62 * RETURN: Status
63 *
64 * DESCRIPTION: Executes the _HID control method that returns the hardware
65 * ID of the device. The HID is either an 32-bit encoded EISAID
66 * Integer or a String. A string is always returned. An EISAID
67 * is converted to a string.
68 *
69 * NOTE: Internal function, no parameter validation
70 *
71 **/

73 ACPI_STATUS
74 AcpiUtExecute_HID (
75 ACPI_NAMESPACE_NODE *DeviceNode,
76 ACPI_PNP_DEVICE_ID **ReturnId)
76 ACPI_DEVICE_ID **ReturnId)
77 {
78 ACPI_OPERAND_OBJECT *ObjDesc;
79 ACPI_PNP_DEVICE_ID *Hid;
79 ACPI_DEVICE_ID *Hid;
80 UINT32 Length;
81 ACPI_STATUS Status;

84 ACPI_FUNCTION_TRACE (UtExecute_HID);

87 Status = AcpiUtEvaluateObject (DeviceNode, METHOD_NAME__HID,
88 ACPI_BTYPE_INTEGER | ACPI_BTYPE_STRING, &ObjDesc);
89 if (ACPI_FAILURE (Status))
90 {
91 return_ACPI_STATUS (Status);
92 }

94 /* Get the size of the String to be returned, includes null terminator */

96 if (ObjDesc->Common.Type == ACPI_TYPE_INTEGER)
97 {
98 Length = ACPI_EISAID_STRING_SIZE;
99 }
100 else
101 {
102 Length = ObjDesc->String.Length + 1;
103 }

105 /* Allocate a buffer for the HID */

107 Hid = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_PNP_DEVICE_ID) + (ACPI_SIZE) Length
107 Hid = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_DEVICE_ID) + (ACPI_SIZE) Length);
108 if (!Hid)
109 {
110 Status = AE_NO_MEMORY;
111 goto Cleanup;
112 }

114 /* Area for the string starts after PNP_DEVICE_ID struct */
114 /* Area for the string starts after DEVICE_ID struct */

116 Hid->String = ACPI_ADD_PTR (char, Hid, sizeof (ACPI_PNP_DEVICE_ID));
116 Hid->String = ACPI_ADD_PTR (char, Hid, sizeof (ACPI_DEVICE_ID));

118 /* Convert EISAID to a string or simply copy existing string */

120 if (ObjDesc->Common.Type == ACPI_TYPE_INTEGER)

new/usr/src/common/acpica/components/utilities/utids.c 3

121 {
122 AcpiExEisaIdToString (Hid->String, ObjDesc->Integer.Value);
123 }
124 else
125 {
126 ACPI_STRCPY (Hid->String, ObjDesc->String.Pointer);
127 }

129 Hid->Length = Length;
130 *ReturnId = Hid;

133 Cleanup:

135 /* On exit, we must delete the return object */

137 AcpiUtRemoveReference (ObjDesc);
138 return_ACPI_STATUS (Status);
139 }

142 /***
143 *
144 * FUNCTION: AcpiUtExecute_SUB
145 *
146 * PARAMETERS: DeviceNode - Node for the device
147 * ReturnId - Where the _SUB is returned
148 *
149 * RETURN: Status
150 *
151 * DESCRIPTION: Executes the _SUB control method that returns the subsystem
152 * ID of the device. The _SUB value is always a string containing
153 * either a valid PNP or ACPI ID.
154 *
155 * NOTE: Internal function, no parameter validation
156 *
157 **/

159 ACPI_STATUS
160 AcpiUtExecute_SUB (
161 ACPI_NAMESPACE_NODE *DeviceNode,
162 ACPI_PNP_DEVICE_ID **ReturnId)
163 {
164 ACPI_OPERAND_OBJECT *ObjDesc;
165 ACPI_PNP_DEVICE_ID *Sub;
166 UINT32 Length;
167 ACPI_STATUS Status;

170 ACPI_FUNCTION_TRACE (UtExecute_SUB);

173 Status = AcpiUtEvaluateObject (DeviceNode, METHOD_NAME__SUB,
174 ACPI_BTYPE_STRING, &ObjDesc);
175 if (ACPI_FAILURE (Status))
176 {
177 return_ACPI_STATUS (Status);
178 }

180 /* Get the size of the String to be returned, includes null terminator */

182 Length = ObjDesc->String.Length + 1;

184 /* Allocate a buffer for the SUB */

186 Sub = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_PNP_DEVICE_ID) + (ACPI_SIZE) Length

new/usr/src/common/acpica/components/utilities/utids.c 4

187 if (!Sub)
188 {
189 Status = AE_NO_MEMORY;
190 goto Cleanup;
191 }

193 /* Area for the string starts after PNP_DEVICE_ID struct */

195 Sub->String = ACPI_ADD_PTR (char, Sub, sizeof (ACPI_PNP_DEVICE_ID));

197 /* Simply copy existing string */

199 ACPI_STRCPY (Sub->String, ObjDesc->String.Pointer);
200 Sub->Length = Length;
201 *ReturnId = Sub;

204 Cleanup:

206 /* On exit, we must delete the return object */

208 AcpiUtRemoveReference (ObjDesc);
209 return_ACPI_STATUS (Status);
210 }

213 /***
214 *
215 * FUNCTION: AcpiUtExecute_UID
216 *
217 * PARAMETERS: DeviceNode - Node for the device
218 * ReturnId - Where the string UID is returned
219 *
220 * RETURN: Status
221 *
222 * DESCRIPTION: Executes the _UID control method that returns the unique
223 * ID of the device. The UID is either a 64-bit Integer (NOT an
224 * EISAID) or a string. Always returns a string. A 64-bit integer
225 * is converted to a decimal string.
226 *
227 * NOTE: Internal function, no parameter validation
228 *
229 **/

231 ACPI_STATUS
232 AcpiUtExecute_UID (
233 ACPI_NAMESPACE_NODE *DeviceNode,
234 ACPI_PNP_DEVICE_ID **ReturnId)
163 ACPI_DEVICE_ID **ReturnId)
235 {
236 ACPI_OPERAND_OBJECT *ObjDesc;
237 ACPI_PNP_DEVICE_ID *Uid;
166 ACPI_DEVICE_ID *Uid;
238 UINT32 Length;
239 ACPI_STATUS Status;

242 ACPI_FUNCTION_TRACE (UtExecute_UID);

245 Status = AcpiUtEvaluateObject (DeviceNode, METHOD_NAME__UID,
246 ACPI_BTYPE_INTEGER | ACPI_BTYPE_STRING, &ObjDesc);
247 if (ACPI_FAILURE (Status))
248 {
249 return_ACPI_STATUS (Status);
250 }

new/usr/src/common/acpica/components/utilities/utids.c 5

252 /* Get the size of the String to be returned, includes null terminator */

254 if (ObjDesc->Common.Type == ACPI_TYPE_INTEGER)
255 {
256 Length = ACPI_MAX64_DECIMAL_DIGITS + 1;
257 }
258 else
259 {
260 Length = ObjDesc->String.Length + 1;
261 }

263 /* Allocate a buffer for the UID */

265 Uid = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_PNP_DEVICE_ID) + (ACPI_SIZE) Length
194 Uid = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_DEVICE_ID) + (ACPI_SIZE) Length);
266 if (!Uid)
267 {
268 Status = AE_NO_MEMORY;
269 goto Cleanup;
270 }

272 /* Area for the string starts after PNP_DEVICE_ID struct */
201 /* Area for the string starts after DEVICE_ID struct */

274 Uid->String = ACPI_ADD_PTR (char, Uid, sizeof (ACPI_PNP_DEVICE_ID));
203 Uid->String = ACPI_ADD_PTR (char, Uid, sizeof (ACPI_DEVICE_ID));

276 /* Convert an Integer to string, or just copy an existing string */

278 if (ObjDesc->Common.Type == ACPI_TYPE_INTEGER)
279 {
280 AcpiExIntegerToString (Uid->String, ObjDesc->Integer.Value);
281 }
282 else
283 {
284 ACPI_STRCPY (Uid->String, ObjDesc->String.Pointer);
285 }

287 Uid->Length = Length;
288 *ReturnId = Uid;

291 Cleanup:

293 /* On exit, we must delete the return object */

295 AcpiUtRemoveReference (ObjDesc);
296 return_ACPI_STATUS (Status);
297 }

300 /***
301 *
302 * FUNCTION: AcpiUtExecute_CID
303 *
304 * PARAMETERS: DeviceNode - Node for the device
305 * ReturnCidList - Where the CID list is returned
306 *
307 * RETURN: Status, list of CID strings
308 *
309 * DESCRIPTION: Executes the _CID control method that returns one or more
310 * compatible hardware IDs for the device.
311 *
312 * NOTE: Internal function, no parameter validation
313 *

new/usr/src/common/acpica/components/utilities/utids.c 6

314 * A _CID method can return either a single compatible ID or a package of
315 * compatible IDs. Each compatible ID can be one of the following:
316 * 1) Integer (32 bit compressed EISA ID) or
317 * 2) String (PCI ID format, e.g. "PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss")
318 *
319 * The Integer CIDs are converted to string format by this function.
320 *
321 **/

323 ACPI_STATUS
324 AcpiUtExecute_CID (
325 ACPI_NAMESPACE_NODE *DeviceNode,
326 ACPI_PNP_DEVICE_ID_LIST **ReturnCidList)
255 ACPI_DEVICE_ID_LIST **ReturnCidList)
327 {
328 ACPI_OPERAND_OBJECT **CidObjects;
329 ACPI_OPERAND_OBJECT *ObjDesc;
330 ACPI_PNP_DEVICE_ID_LIST *CidList;
259 ACPI_DEVICE_ID_LIST *CidList;
331 char *NextIdString;
332 UINT32 StringAreaSize;
333 UINT32 Length;
334 UINT32 CidListSize;
335 ACPI_STATUS Status;
336 UINT32 Count;
337 UINT32 i;

340 ACPI_FUNCTION_TRACE (UtExecute_CID);

343 /* Evaluate the _CID method for this device */

345 Status = AcpiUtEvaluateObject (DeviceNode, METHOD_NAME__CID,
346 ACPI_BTYPE_INTEGER | ACPI_BTYPE_STRING | ACPI_BTYPE_PACKAGE,
347 &ObjDesc);
348 if (ACPI_FAILURE (Status))
349 {
350 return_ACPI_STATUS (Status);
351 }

353 /*
354 * Get the count and size of the returned _CIDs. _CID can return either
355 * a Package of Integers/Strings or a single Integer or String.
356 * Note: This section also validates that all CID elements are of the
357 * correct type (Integer or String).
358 */
359 if (ObjDesc->Common.Type == ACPI_TYPE_PACKAGE)
360 {
361 Count = ObjDesc->Package.Count;
362 CidObjects = ObjDesc->Package.Elements;
363 }
364 else /* Single Integer or String CID */
365 {
366 Count = 1;
367 CidObjects = &ObjDesc;
368 }

370 StringAreaSize = 0;
371 for (i = 0; i < Count; i++)
372 {
373 /* String lengths include null terminator */

375 switch (CidObjects[i]->Common.Type)
376 {
377 case ACPI_TYPE_INTEGER:

new/usr/src/common/acpica/components/utilities/utids.c 7

379 StringAreaSize += ACPI_EISAID_STRING_SIZE;
380 break;

382 case ACPI_TYPE_STRING:

384 StringAreaSize += CidObjects[i]->String.Length + 1;
385 break;

387 default:

389 Status = AE_TYPE;
390 goto Cleanup;
391 }
392 }

394 /*
395 * Now that we know the length of the CIDs, allocate return buffer:
396 * 1) Size of the base structure +
397 * 2) Size of the CID PNP_DEVICE_ID array +
323 * 2) Size of the CID DEVICE_ID array +
398 * 3) Size of the actual CID strings
399 */
400 CidListSize = sizeof (ACPI_PNP_DEVICE_ID_LIST) +
401 ((Count - 1) * sizeof (ACPI_PNP_DEVICE_ID)) +
326 CidListSize = sizeof (ACPI_DEVICE_ID_LIST) +
327 ((Count - 1) * sizeof (ACPI_DEVICE_ID)) +
402 StringAreaSize;

404 CidList = ACPI_ALLOCATE_ZEROED (CidListSize);
405 if (!CidList)
406 {
407 Status = AE_NO_MEMORY;
408 goto Cleanup;
409 }

411 /* Area for CID strings starts after the CID PNP_DEVICE_ID array */
337 /* Area for CID strings starts after the CID DEVICE_ID array */

413 NextIdString = ACPI_CAST_PTR (char, CidList->Ids) +
414 ((ACPI_SIZE) Count * sizeof (ACPI_PNP_DEVICE_ID));
340 ((ACPI_SIZE) Count * sizeof (ACPI_DEVICE_ID));

416 /* Copy/convert the CIDs to the return buffer */

418 for (i = 0; i < Count; i++)
419 {
420 if (CidObjects[i]->Common.Type == ACPI_TYPE_INTEGER)
421 {
422 /* Convert the Integer (EISAID) CID to a string */

424 AcpiExEisaIdToString (NextIdString, CidObjects[i]->Integer.Value);
425 Length = ACPI_EISAID_STRING_SIZE;
426 }
427 else /* ACPI_TYPE_STRING */
428 {
429 /* Copy the String CID from the returned object */

431 ACPI_STRCPY (NextIdString, CidObjects[i]->String.Pointer);
432 Length = CidObjects[i]->String.Length + 1;
433 }

435 CidList->Ids[i].String = NextIdString;
436 CidList->Ids[i].Length = Length;
437 NextIdString += Length;
438 }

new/usr/src/common/acpica/components/utilities/utids.c 8

440 /* Finish the CID list */

442 CidList->Count = Count;
443 CidList->ListSize = CidListSize;
444 *ReturnCidList = CidList;

447 Cleanup:

449 /* On exit, we must delete the _CID return object */

451 AcpiUtRemoveReference (ObjDesc);
452 return_ACPI_STATUS (Status);
453 }

new/usr/src/common/acpica/components/utilities/utinit.c 1

**
 5073 Thu Dec 26 13:49:40 2013
new/usr/src/common/acpica/components/utilities/utinit.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: utinit - Common ACPI subsystem initialization
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __UTINIT_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acnamesp.h"
50 #include "acevents.h"
51 #include "actables.h"

53 #define _COMPONENT ACPI_UTILITIES
54 ACPI_MODULE_NAME ("utinit")

56 /* Local prototypes */

58 static void AcpiUtTerminate (
59 void);

new/usr/src/common/acpica/components/utilities/utinit.c 2

61 #if (!ACPI_REDUCED_HARDWARE)

63 static void
64 AcpiUtFreeGpeLists (
65 void);

67 #else

69 #define AcpiUtFreeGpeLists()
70 #endif /* !ACPI_REDUCED_HARDWARE */

73 #if (!ACPI_REDUCED_HARDWARE)
74 /**
75 *
76 * FUNCTION: AcpiUtFreeGpeLists
64 * FUNCTION: AcpiUtTerminate
77 *
78 * PARAMETERS: none
79 *
80 * RETURN: none
81 *
82 * DESCRIPTION: Free global GPE lists
70 * DESCRIPTION: Free global memory
83 *
84 **/

86 static void
87 AcpiUtFreeGpeLists (
75 AcpiUtTerminate (
88 void)
89 {
90 ACPI_GPE_BLOCK_INFO *GpeBlock;
91 ACPI_GPE_BLOCK_INFO *NextGpeBlock;
92 ACPI_GPE_XRUPT_INFO *GpeXruptInfo;
93 ACPI_GPE_XRUPT_INFO *NextGpeXruptInfo;

84 ACPI_FUNCTION_TRACE (UtTerminate);

96 /* Free global GPE blocks and related info structures */

98 GpeXruptInfo = AcpiGbl_GpeXruptListHead;
99 while (GpeXruptInfo)
100 {
101 GpeBlock = GpeXruptInfo->GpeBlockListHead;
102 while (GpeBlock)
103 {
104 NextGpeBlock = GpeBlock->Next;
105 ACPI_FREE (GpeBlock->EventInfo);
106 ACPI_FREE (GpeBlock->RegisterInfo);
107 ACPI_FREE (GpeBlock);

109 GpeBlock = NextGpeBlock;
110 }
111 NextGpeXruptInfo = GpeXruptInfo->Next;
112 ACPI_FREE (GpeXruptInfo);
113 GpeXruptInfo = NextGpeXruptInfo;
114 }
115 }
116 #endif /* !ACPI_REDUCED_HARDWARE */

119 /**

new/usr/src/common/acpica/components/utilities/utinit.c 3

120 *
121 * FUNCTION: AcpiUtTerminate
122 *
123 * PARAMETERS: none
124 *
125 * RETURN: none
126 *
127 * DESCRIPTION: Free global memory
128 *
129 **/

131 static void
132 AcpiUtTerminate (
133 void)
134 {
135 ACPI_FUNCTION_TRACE (UtTerminate);

137 AcpiUtFreeGpeLists ();
138 AcpiUtDeleteAddressLists ();
139 return_VOID;
140 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/utilities/utlock.c 1

**
 5989 Thu Dec 26 13:49:40 2013
new/usr/src/common/acpica/components/utilities/utlock.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: utlock - Reader/Writer lock interfaces
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTLOCK_C__

46 #include "acpi.h"
47 #include "accommon.h"

50 #define _COMPONENT ACPI_UTILITIES
51 ACPI_MODULE_NAME ("utlock")

54 /***
55 *
56 * FUNCTION: AcpiUtCreateRwLock
57 * AcpiUtDeleteRwLock
58 *
59 * PARAMETERS: Lock - Pointer to a valid RW lock

new/usr/src/common/acpica/components/utilities/utlock.c 2

60 *
61 * RETURN: Status
62 *
63 * DESCRIPTION: Reader/writer lock creation and deletion interfaces.
64 *
65 **/

67 ACPI_STATUS
68 AcpiUtCreateRwLock (
69 ACPI_RW_LOCK *Lock)
70 {
71 ACPI_STATUS Status;

74 Lock->NumReaders = 0;
75 Status = AcpiOsCreateMutex (&Lock->ReaderMutex);
76 if (ACPI_FAILURE (Status))
77 {
78 return (Status);
79 }

81 Status = AcpiOsCreateMutex (&Lock->WriterMutex);
82 return (Status);
83 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/utilities/utmath.c 1

**
 11267 Thu Dec 26 13:49:41 2013
new/usr/src/common/acpica/components/utilities/utmath.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: utmath - Integer math support routines
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __UTMATH_C__

47 #include "acpi.h"
48 #include "accommon.h"

51 #define _COMPONENT ACPI_UTILITIES
52 ACPI_MODULE_NAME ("utmath")

54 /*
55 * Optional support for 64-bit double-precision integer divide. This code
56 * is configurable and is implemented in order to support 32-bit kernel
57 * environments where a 64-bit double-precision math library is not available.
58 *
59 * Support for a more normal 64-bit divide/modulo (with check for a divide-

new/usr/src/common/acpica/components/utilities/utmath.c 2

60 * by-zero) appears after this optional section of code.
61 */
62 #ifndef ACPI_USE_NATIVE_DIVIDE

64 /* Structures used only for 64-bit divide */

66 typedef struct uint64_struct
67 {
68 UINT32 Lo;
69 UINT32 Hi;

71 } UINT64_STRUCT;
______unchanged_portion_omitted_

377 #endif

new/usr/src/common/acpica/components/utilities/utmisc.c 1

**
 13127 Thu Dec 26 13:49:41 2013
new/usr/src/common/acpica/components/utilities/utmisc.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: utmisc - common utility procedures
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __UTMISC_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acnamesp.h"

52 #define _COMPONENT ACPI_UTILITIES
53 ACPI_MODULE_NAME ("utmisc")

56 /***
57 *
58 * FUNCTION: AcpiUtIsPciRootBridge
59 *
60 * PARAMETERS: Id - The HID/CID in string format

new/usr/src/common/acpica/components/utilities/utmisc.c 2

61 *
62 * RETURN: TRUE if the Id is a match for a PCI/PCI-Express Root Bridge
63 *
64 * DESCRIPTION: Determine if the input ID is a PCI Root Bridge ID.
65 *
66 **/

68 BOOLEAN
69 AcpiUtIsPciRootBridge (
70 char *Id)
71 {

73 /*
74 * Check if this is a PCI root bridge.
75 * ACPI 3.0+: check for a PCI Express root also.
76 */
77 if (!(ACPI_STRCMP (Id,
78 PCI_ROOT_HID_STRING)) ||

80 !(ACPI_STRCMP (Id,
81 PCI_EXPRESS_ROOT_HID_STRING)))
82 {
83 return (TRUE);
84 }

86 return (FALSE);
87 }

90 /***
91 *
92 * FUNCTION: AcpiUtIsAmlTable
93 *
94 * PARAMETERS: Table - An ACPI table
95 *
96 * RETURN: TRUE if table contains executable AML; FALSE otherwise
97 *
98 * DESCRIPTION: Check ACPI Signature for a table that contains AML code.
99 * Currently, these are DSDT,SSDT,PSDT. All other table types are
100 * data tables that do not contain AML code.
101 *
102 **/

104 BOOLEAN
105 AcpiUtIsAmlTable (
106 ACPI_TABLE_HEADER *Table)
107 {

109 /* These are the only tables that contain executable AML */

111 if (ACPI_COMPARE_NAME (Table->Signature, ACPI_SIG_DSDT) ||
112 ACPI_COMPARE_NAME (Table->Signature, ACPI_SIG_PSDT) ||
113 ACPI_COMPARE_NAME (Table->Signature, ACPI_SIG_SSDT))
114 {
115 return (TRUE);
116 }

118 return (FALSE);
119 }

122 /***
123 *
124 * FUNCTION: AcpiUtDwordByteSwap
125 *
126 * PARAMETERS: Value - Value to be converted

new/usr/src/common/acpica/components/utilities/utmisc.c 3

127 *
128 * RETURN: UINT32 integer with bytes swapped
129 *
130 * DESCRIPTION: Convert a 32-bit value to big-endian (swap the bytes)
131 *
132 **/

134 UINT32
135 AcpiUtDwordByteSwap (
136 UINT32 Value)
137 {
138 union
139 {
140 UINT32 Value;
141 UINT8 Bytes[4];
142 } Out;
143 union
144 {
145 UINT32 Value;
146 UINT8 Bytes[4];
147 } In;

150 ACPI_FUNCTION_ENTRY ();

153 In.Value = Value;

155 Out.Bytes[0] = In.Bytes[3];
156 Out.Bytes[1] = In.Bytes[2];
157 Out.Bytes[2] = In.Bytes[1];
158 Out.Bytes[3] = In.Bytes[0];

160 return (Out.Value);
161 }

164 /***
165 *
166 * FUNCTION: AcpiUtSetIntegerWidth
167 *
168 * PARAMETERS: Revision From DSDT header
169 *
170 * RETURN: None
171 *
172 * DESCRIPTION: Set the global integer bit width based upon the revision
173 * of the DSDT. For Revision 1 and 0, Integers are 32 bits.
174 * For Revision 2 and above, Integers are 64 bits. Yes, this
175 * makes a difference.
176 *
177 **/

179 void
180 AcpiUtSetIntegerWidth (
181 UINT8 Revision)
182 {

184 if (Revision < 2)
185 {
186 /* 32-bit case */

188 AcpiGbl_IntegerBitWidth = 32;
189 AcpiGbl_IntegerNybbleWidth = 8;
190 AcpiGbl_IntegerByteWidth = 4;
191 }
192 else

new/usr/src/common/acpica/components/utilities/utmisc.c 4

193 {
194 /* 64-bit case (ACPI 2.0+) */

196 AcpiGbl_IntegerBitWidth = 64;
197 AcpiGbl_IntegerNybbleWidth = 16;
198 AcpiGbl_IntegerByteWidth = 8;
199 }
200 }

203 /***
204 *
205 * FUNCTION: AcpiUtCreateUpdateStateAndPush
206 *
207 * PARAMETERS: Object - Object to be added to the new state
208 * Action - Increment/Decrement
209 * StateList - List the state will be added to
210 *
211 * RETURN: Status
212 *
213 * DESCRIPTION: Create a new state and push it
214 *
215 **/

217 ACPI_STATUS
218 AcpiUtCreateUpdateStateAndPush (
219 ACPI_OPERAND_OBJECT *Object,
220 UINT16 Action,
221 ACPI_GENERIC_STATE **StateList)
222 {
223 ACPI_GENERIC_STATE *State;

226 ACPI_FUNCTION_ENTRY ();

229 /* Ignore null objects; these are expected */

231 if (!Object)
232 {
233 return (AE_OK);
234 }

236 State = AcpiUtCreateUpdateState (Object, Action);
237 if (!State)
238 {
239 return (AE_NO_MEMORY);
240 }

242 AcpiUtPushGenericState (StateList, State);
243 return (AE_OK);
244 }

247 /***
248 *
249 * FUNCTION: AcpiUtWalkPackageTree
250 *
251 * PARAMETERS: SourceObject - The package to walk
252 * TargetObject - Target object (if package is being copied)
253 * WalkCallback - Called once for each package element
254 * Context - Passed to the callback function
255 *
256 * RETURN: Status
257 *
258 * DESCRIPTION: Walk through a package

new/usr/src/common/acpica/components/utilities/utmisc.c 5

259 *
260 **/

262 ACPI_STATUS
263 AcpiUtWalkPackageTree (
264 ACPI_OPERAND_OBJECT *SourceObject,
265 void *TargetObject,
266 ACPI_PKG_CALLBACK WalkCallback,
267 void *Context)
268 {
269 ACPI_STATUS Status = AE_OK;
270 ACPI_GENERIC_STATE *StateList = NULL;
271 ACPI_GENERIC_STATE *State;
272 UINT32 ThisIndex;
273 ACPI_OPERAND_OBJECT *ThisSourceObj;

276 ACPI_FUNCTION_TRACE (UtWalkPackageTree);

279 State = AcpiUtCreatePkgState (SourceObject, TargetObject, 0);
280 if (!State)
281 {
282 return_ACPI_STATUS (AE_NO_MEMORY);
283 }

285 while (State)
286 {
287 /* Get one element of the package */

289 ThisIndex = State->Pkg.Index;
290 ThisSourceObj = (ACPI_OPERAND_OBJECT *)
291 State->Pkg.SourceObject->Package.Elements[ThisIndex];

293 /*
294 * Check for:
295 * 1) An uninitialized package element. It is completely
296 * legal to declare a package and leave it uninitialized
297 * 2) Not an internal object - can be a namespace node instead
298 * 3) Any type other than a package. Packages are handled in else
299 * case below.
300 */
301 if ((!ThisSourceObj) ||
302 (ACPI_GET_DESCRIPTOR_TYPE (ThisSourceObj) != ACPI_DESC_TYPE_OPERAND)
303 (ThisSourceObj->Common.Type != ACPI_TYPE_PACKAGE))
304 {
305 Status = WalkCallback (ACPI_COPY_TYPE_SIMPLE, ThisSourceObj,
306 State, Context);
307 if (ACPI_FAILURE (Status))
308 {
309 return_ACPI_STATUS (Status);
310 }

312 State->Pkg.Index++;
313 while (State->Pkg.Index >= State->Pkg.SourceObject->Package.Count)
314 {
315 /*
316 * We’ve handled all of the objects at this level, This means
317 * that we have just completed a package. That package may
318 * have contained one or more packages itself.
319 *
320 * Delete this state and pop the previous state (package).
321 */
322 AcpiUtDeleteGenericState (State);
323 State = AcpiUtPopGenericState (&StateList);

new/usr/src/common/acpica/components/utilities/utmisc.c 6

325 /* Finished when there are no more states */

327 if (!State)
328 {
329 /*
330 * We have handled all of the objects in the top level
331 * package just add the length of the package objects
332 * and exit
333 */
334 return_ACPI_STATUS (AE_OK);
335 }

337 /*
338 * Go back up a level and move the index past the just
339 * completed package object.
340 */
341 State->Pkg.Index++;
342 }
343 }
344 else
345 {
346 /* This is a subobject of type package */

348 Status = WalkCallback (ACPI_COPY_TYPE_PACKAGE, ThisSourceObj,
349 State, Context);
350 if (ACPI_FAILURE (Status))
351 {
352 return_ACPI_STATUS (Status);
353 }

355 /*
356 * Push the current state and create a new one
357 * The callback above returned a new target package object.
358 */
359 AcpiUtPushGenericState (&StateList, State);
360 State = AcpiUtCreatePkgState (ThisSourceObj,
361 State->Pkg.ThisTargetObj, 0);
362 if (!State)
363 {
364 /* Free any stacked Update State objects */

366 while (StateList)
367 {
368 State = AcpiUtPopGenericState (&StateList);
369 AcpiUtDeleteGenericState (State);
370 }
371 return_ACPI_STATUS (AE_NO_MEMORY);
372 }
373 }
374 }

376 /* We should never get here */

378 return_ACPI_STATUS (AE_AML_INTERNAL);
379 }

382 #ifdef ACPI_DEBUG_OUTPUT
383 /***
384 *
385 * FUNCTION: AcpiUtDisplayInitPathname
386 *
387 * PARAMETERS: Type - Object type of the node
388 * ObjHandle - Handle whose pathname will be displayed
389 * Path - Additional path string to be appended.
390 * (NULL if no extra path)

new/usr/src/common/acpica/components/utilities/utmisc.c 7

391 *
392 * RETURN: ACPI_STATUS
393 *
394 * DESCRIPTION: Display full pathname of an object, DEBUG ONLY
395 *
396 **/

398 void
399 AcpiUtDisplayInitPathname (
400 UINT8 Type,
401 ACPI_NAMESPACE_NODE *ObjHandle,
402 char *Path)
403 {
404 ACPI_STATUS Status;
405 ACPI_BUFFER Buffer;

408 ACPI_FUNCTION_ENTRY ();

411 /* Only print the path if the appropriate debug level is enabled */

413 if (!(AcpiDbgLevel & ACPI_LV_INIT_NAMES))
414 {
415 return;
416 }

418 /* Get the full pathname to the node */

420 Buffer.Length = ACPI_ALLOCATE_LOCAL_BUFFER;
421 Status = AcpiNsHandleToPathname (ObjHandle, &Buffer);
422 if (ACPI_FAILURE (Status))
423 {
424 return;
425 }

427 /* Print what we’re doing */

429 switch (Type)
430 {
431 case ACPI_TYPE_METHOD:

433 AcpiOsPrintf ("Executing ");
434 break;

436 default:

438 AcpiOsPrintf ("Initializing ");
439 break;
440 }

442 /* Print the object type and pathname */

444 AcpiOsPrintf ("%-12s %s",
445 AcpiUtGetTypeName (Type), (char *) Buffer.Pointer);

447 /* Extra path is used to append names like _STA, _INI, etc. */

449 if (Path)
450 {
451 AcpiOsPrintf (".%s", Path);
452 }
453 AcpiOsPrintf ("\n");

455 ACPI_FREE (Buffer.Pointer);
456 }

new/usr/src/common/acpica/components/utilities/utmisc.c 8

457 #endif

new/usr/src/common/acpica/components/utilities/utmutex.c 1

**
 11172 Thu Dec 26 13:49:41 2013
new/usr/src/common/acpica/components/utilities/utmutex.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: utmutex - local mutex support
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __UTMUTEX_C__

47 #include "acpi.h"
48 #include "accommon.h"

50 #define _COMPONENT ACPI_UTILITIES
51 ACPI_MODULE_NAME ("utmutex")

53 /* Local prototypes */

55 static ACPI_STATUS
56 AcpiUtCreateMutex (
57 ACPI_MUTEX_HANDLE MutexId);

59 static void

new/usr/src/common/acpica/components/utilities/utmutex.c 2

60 AcpiUtDeleteMutex (
61 ACPI_MUTEX_HANDLE MutexId);

64 /***
65 *
66 * FUNCTION: AcpiUtMutexInitialize
67 *
68 * PARAMETERS: None.
69 *
70 * RETURN: Status
71 *
72 * DESCRIPTION: Create the system mutex objects. This includes mutexes,
73 * spin locks, and reader/writer locks.
74 *
75 **/

77 ACPI_STATUS
78 AcpiUtMutexInitialize (
79 void)
80 {
81 UINT32 i;
82 ACPI_STATUS Status;

85 ACPI_FUNCTION_TRACE (UtMutexInitialize);

88 /* Create each of the predefined mutex objects */

90 for (i = 0; i < ACPI_NUM_MUTEX; i++)
91 {
92 Status = AcpiUtCreateMutex (i);
93 if (ACPI_FAILURE (Status))
94 {
95 return_ACPI_STATUS (Status);
96 }
97 }

99 /* Create the spinlocks for use at interrupt level or for speed */
99 /* Create the spinlocks for use at interrupt level */

101 Status = AcpiOsCreateLock (&AcpiGbl_GpeLock);
102 if (ACPI_FAILURE (Status))
103 {
104 return_ACPI_STATUS (Status);
105 }

107 Status = AcpiOsCreateLock (&AcpiGbl_HardwareLock);
108 if (ACPI_FAILURE (Status))
109 {
110 return_ACPI_STATUS (Status);
111 }

113 Status = AcpiOsCreateLock (&AcpiGbl_ReferenceCountLock);
114 if (ACPI_FAILURE (Status))
115 {
116 return_ACPI_STATUS (Status);
117 }

119 /* Mutex for _OSI support */

121 Status = AcpiOsCreateMutex (&AcpiGbl_OsiMutex);
122 if (ACPI_FAILURE (Status))
123 {
124 return_ACPI_STATUS (Status);

new/usr/src/common/acpica/components/utilities/utmutex.c 3

125 }

127 /* Create the reader/writer lock for namespace access */

129 Status = AcpiUtCreateRwLock (&AcpiGbl_NamespaceRwLock);
130 return_ACPI_STATUS (Status);
131 }

134 /***
135 *
136 * FUNCTION: AcpiUtMutexTerminate
137 *
138 * PARAMETERS: None.
139 *
140 * RETURN: None.
141 *
142 * DESCRIPTION: Delete all of the system mutex objects. This includes mutexes,
143 * spin locks, and reader/writer locks.
144 *
145 **/

147 void
148 AcpiUtMutexTerminate (
149 void)
150 {
151 UINT32 i;

154 ACPI_FUNCTION_TRACE (UtMutexTerminate);

157 /* Delete each predefined mutex object */

159 for (i = 0; i < ACPI_NUM_MUTEX; i++)
160 {
161 AcpiUtDeleteMutex (i);
162 }

164 AcpiOsDeleteMutex (AcpiGbl_OsiMutex);

166 /* Delete the spinlocks */

168 AcpiOsDeleteLock (AcpiGbl_GpeLock);
169 AcpiOsDeleteLock (AcpiGbl_HardwareLock);
170 AcpiOsDeleteLock (AcpiGbl_ReferenceCountLock);

172 /* Delete the reader/writer lock */

174 AcpiUtDeleteRwLock (&AcpiGbl_NamespaceRwLock);
175 return_VOID;
176 }

______unchanged_portion_omitted_

212 /***
213 *
214 * FUNCTION: AcpiUtDeleteMutex
215 *
216 * PARAMETERS: MutexID - ID of the mutex to be deleted
217 *
218 * RETURN: Status
219 *
220 * DESCRIPTION: Delete a mutex object.
221 *
222 **/

new/usr/src/common/acpica/components/utilities/utmutex.c 4

224 static void
225 AcpiUtDeleteMutex (
226 ACPI_MUTEX_HANDLE MutexId)
227 {

229 ACPI_FUNCTION_TRACE_U32 (UtDeleteMutex, MutexId);

232 AcpiOsDeleteMutex (AcpiGbl_MutexInfo[MutexId].Mutex);

234 AcpiGbl_MutexInfo[MutexId].Mutex = NULL;
235 AcpiGbl_MutexInfo[MutexId].ThreadId = ACPI_MUTEX_NOT_ACQUIRED;

237 return_VOID;
238 }

______unchanged_portion_omitted_

332 /***
333 *
334 * FUNCTION: AcpiUtReleaseMutex
335 *
336 * PARAMETERS: MutexID - ID of the mutex to be released
337 *
338 * RETURN: Status
339 *
340 * DESCRIPTION: Release a mutex object.
341 *
342 **/

344 ACPI_STATUS
345 AcpiUtReleaseMutex (
346 ACPI_MUTEX_HANDLE MutexId)
347 {
338 ACPI_THREAD_ID ThisThreadId;

348 ACPI_FUNCTION_NAME (UtReleaseMutex);

344 ThisThreadId = AcpiOsGetThreadId ();
351 ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Thread %u releasing Mutex [%s]\n",
352 (UINT32) AcpiOsGetThreadId (), AcpiUtGetMutexName (MutexId)));
346 (UINT32) ThisThreadId, AcpiUtGetMutexName (MutexId)));

354 if (MutexId > ACPI_MAX_MUTEX)
355 {
356 return (AE_BAD_PARAMETER);
357 }

359 /*
360 * Mutex must be acquired in order to release it!
361 */
362 if (AcpiGbl_MutexInfo[MutexId].ThreadId == ACPI_MUTEX_NOT_ACQUIRED)
363 {
364 ACPI_ERROR ((AE_INFO,
365 "Mutex [0x%X] is not acquired, cannot release", MutexId));

367 return (AE_NOT_ACQUIRED);
368 }

370 #ifdef ACPI_MUTEX_DEBUG
371 {
372 UINT32 i;
373 /*

new/usr/src/common/acpica/components/utilities/utmutex.c 5

374 * Mutex debug code, for internal debugging only.
375 *
376 * Deadlock prevention. Check if this thread owns any mutexes of value
377 * greater than this one. If so, the thread has violated the mutex
378 * ordering rule. This indicates a coding error somewhere in
379 * the ACPI subsystem code.
380 */
381 for (i = MutexId; i < ACPI_NUM_MUTEX; i++)
382 {
383 if (AcpiGbl_MutexInfo[i].ThreadId == AcpiOsGetThreadId ())
377 if (AcpiGbl_MutexInfo[i].ThreadId == ThisThreadId)
384 {
385 if (i == MutexId)
386 {
387 continue;
388 }

390 ACPI_ERROR ((AE_INFO,
391 "Invalid release order: owns [%s], releasing [%s]",
392 AcpiUtGetMutexName (i), AcpiUtGetMutexName (MutexId)));

394 return (AE_RELEASE_DEADLOCK);
395 }
396 }
397 }
398 #endif

400 /* Mark unlocked FIRST */

402 AcpiGbl_MutexInfo[MutexId].ThreadId = ACPI_MUTEX_NOT_ACQUIRED;

404 AcpiOsReleaseMutex (AcpiGbl_MutexInfo[MutexId].Mutex);
405 return (AE_OK);
406 }

new/usr/src/common/acpica/components/utilities/utobject.c 1

**
 21968 Thu Dec 26 13:49:42 2013
new/usr/src/common/acpica/components/utilities/utobject.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: utobject - ACPI object create/delete/size/cache routines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTOBJECT_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acnamesp.h"

51 #define _COMPONENT ACPI_UTILITIES
52 ACPI_MODULE_NAME ("utobject")

54 /* Local prototypes */

56 static ACPI_STATUS
57 AcpiUtGetSimpleObjectSize (
58 ACPI_OPERAND_OBJECT *Obj,
59 ACPI_SIZE *ObjLength);

new/usr/src/common/acpica/components/utilities/utobject.c 2

61 static ACPI_STATUS
62 AcpiUtGetPackageObjectSize (
63 ACPI_OPERAND_OBJECT *Obj,
64 ACPI_SIZE *ObjLength);

66 static ACPI_STATUS
67 AcpiUtGetElementLength (
68 UINT8 ObjectType,
69 ACPI_OPERAND_OBJECT *SourceObject,
70 ACPI_GENERIC_STATE *State,
71 void *Context);

74 /***
75 *
76 * FUNCTION: AcpiUtCreateInternalObjectDbg
77 *
78 * PARAMETERS: ModuleName - Source file name of caller
79 * LineNumber - Line number of caller
80 * ComponentId - Component type of caller
81 * Type - ACPI Type of the new object
82 *
83 * RETURN: A new internal object, null on failure
84 *
85 * DESCRIPTION: Create and initialize a new internal object.
86 *
87 * NOTE: We always allocate the worst-case object descriptor because
88 * these objects are cached, and we want them to be
89 * one-size-satisifies-any-request. This in itself may not be
90 * the most memory efficient, but the efficiency of the object
91 * cache should more than make up for this!
92 *
93 **/

95 ACPI_OPERAND_OBJECT *
96 AcpiUtCreateInternalObjectDbg (
97 const char *ModuleName,
98 UINT32 LineNumber,
99 UINT32 ComponentId,
100 ACPI_OBJECT_TYPE Type)
101 {
102 ACPI_OPERAND_OBJECT *Object;
103 ACPI_OPERAND_OBJECT *SecondObject;

106 ACPI_FUNCTION_TRACE_STR (UtCreateInternalObjectDbg,
107 AcpiUtGetTypeName (Type));

110 /* Allocate the raw object descriptor */

112 Object = AcpiUtAllocateObjectDescDbg (ModuleName, LineNumber, ComponentId);
113 if (!Object)
114 {
115 return_PTR (NULL);
116 }

118 switch (Type)
119 {
120 case ACPI_TYPE_REGION:
121 case ACPI_TYPE_BUFFER_FIELD:
122 case ACPI_TYPE_LOCAL_BANK_FIELD:

124 /* These types require a secondary object */

new/usr/src/common/acpica/components/utilities/utobject.c 3

126 SecondObject = AcpiUtAllocateObjectDescDbg (ModuleName,
127 LineNumber, ComponentId);
128 if (!SecondObject)
129 {
130 AcpiUtDeleteObjectDesc (Object);
131 return_PTR (NULL);
132 }

134 SecondObject->Common.Type = ACPI_TYPE_LOCAL_EXTRA;
135 SecondObject->Common.ReferenceCount = 1;

137 /* Link the second object to the first */

139 Object->Common.NextObject = SecondObject;
140 break;

142 default:

144 /* All others have no secondary object */
145 break;
146 }

148 /* Save the object type in the object descriptor */

150 Object->Common.Type = (UINT8) Type;

152 /* Init the reference count */

154 Object->Common.ReferenceCount = 1;

156 /* Any per-type initialization should go here */

158 return_PTR (Object);
159 }

______unchanged_portion_omitted_

362 /***
363 *
364 * FUNCTION: AcpiUtValidInternalObject
365 *
366 * PARAMETERS: Object - Object to be validated
367 *
368 * RETURN: TRUE if object is valid, FALSE otherwise
369 *
370 * DESCRIPTION: Validate a pointer to be of type ACPI_OPERAND_OBJECT
369 * DESCRIPTION: Validate a pointer to be an ACPI_OPERAND_OBJECT
371 *
372 **/

374 BOOLEAN
375 AcpiUtValidInternalObject (
376 void *Object)
377 {

379 ACPI_FUNCTION_NAME (UtValidInternalObject);

382 /* Check for a null pointer */

384 if (!Object)
385 {
386 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "**** Null Object Ptr\n"));
387 return (FALSE);
388 }

new/usr/src/common/acpica/components/utilities/utobject.c 4

390 /* Check the descriptor type field */

392 switch (ACPI_GET_DESCRIPTOR_TYPE (Object))
393 {
394 case ACPI_DESC_TYPE_OPERAND:

396 /* The object appears to be a valid ACPI_OPERAND_OBJECT */

398 return (TRUE);

400 default:

402 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
403 "%p is not not an ACPI operand obj [%s]\n",
404 Object, AcpiUtGetDescriptorName (Object)));
405 break;
406 }

408 return (FALSE);
409 }

______unchanged_portion_omitted_

459 /***
460 *
461 * FUNCTION: AcpiUtDeleteObjectDesc
462 *
463 * PARAMETERS: Object - An Acpi internal object to be deleted
464 *
465 * RETURN: None.
466 *
467 * DESCRIPTION: Free an ACPI object descriptor or add it to the object cache
468 *
469 **/

471 void
472 AcpiUtDeleteObjectDesc (
473 ACPI_OPERAND_OBJECT *Object)
474 {
475 ACPI_FUNCTION_TRACE_PTR (UtDeleteObjectDesc, Object);

478 /* Object must be of type ACPI_OPERAND_OBJECT */
476 /* Object must be an ACPI_OPERAND_OBJECT */

480 if (ACPI_GET_DESCRIPTOR_TYPE (Object) != ACPI_DESC_TYPE_OPERAND)
481 {
482 ACPI_ERROR ((AE_INFO,
483 "%p is not an ACPI Operand object [%s]", Object,
484 AcpiUtGetDescriptorName (Object)));
485 return_VOID;
486 }

488 (void) AcpiOsReleaseObject (AcpiGbl_OperandCache, Object);
489 return_VOID;
490 }

493 /***
494 *
495 * FUNCTION: AcpiUtGetSimpleObjectSize
496 *
497 * PARAMETERS: InternalObject - An ACPI operand object
498 * ObjLength - Where the length is returned
499 *
500 * RETURN: Status

new/usr/src/common/acpica/components/utilities/utobject.c 5

501 *
502 * DESCRIPTION: This function is called to determine the space required to
503 * contain a simple object for return to an external user.
504 *
505 * The length includes the object structure plus any additional
506 * needed space.
507 *
508 **/

510 static ACPI_STATUS
511 AcpiUtGetSimpleObjectSize (
512 ACPI_OPERAND_OBJECT *InternalObject,
513 ACPI_SIZE *ObjLength)
514 {
515 ACPI_SIZE Length;
516 ACPI_SIZE Size;
517 ACPI_STATUS Status = AE_OK;

520 ACPI_FUNCTION_TRACE_PTR (UtGetSimpleObjectSize, InternalObject);

523 /* Start with the length of the (external) Acpi object */

525 Length = sizeof (ACPI_OBJECT);

527 /* A NULL object is allowed, can be a legal uninitialized package element */

529 if (!InternalObject)
530 {
531 /*
532 * Object is NULL, just return the length of ACPI_OBJECT
533 * (A NULL ACPI_OBJECT is an object of all zeroes.)
534 */
535 *ObjLength = ACPI_ROUND_UP_TO_NATIVE_WORD (Length);
536 return_ACPI_STATUS (AE_OK);
537 }

539 /* A Namespace Node should never appear here */

541 if (ACPI_GET_DESCRIPTOR_TYPE (InternalObject) == ACPI_DESC_TYPE_NAMED)
542 {
543 /* A namespace node should never get here */

545 return_ACPI_STATUS (AE_AML_INTERNAL);
546 }

548 /*
549 * The final length depends on the object type
550 * Strings and Buffers are packed right up against the parent object and
551 * must be accessed bytewise or there may be alignment problems on
552 * certain processors
553 */
554 switch (InternalObject->Common.Type)
555 {
556 case ACPI_TYPE_STRING:

558 Length += (ACPI_SIZE) InternalObject->String.Length + 1;
559 break;

561 case ACPI_TYPE_BUFFER:

563 Length += (ACPI_SIZE) InternalObject->Buffer.Length;
564 break;

new/usr/src/common/acpica/components/utilities/utobject.c 6

566 case ACPI_TYPE_INTEGER:
567 case ACPI_TYPE_PROCESSOR:
568 case ACPI_TYPE_POWER:

570 /* No extra data for these types */

572 break;

574 case ACPI_TYPE_LOCAL_REFERENCE:

576 switch (InternalObject->Reference.Class)
577 {
578 case ACPI_REFCLASS_NAME:

579 /*
580 * Get the actual length of the full pathname to this object.
581 * The reference will be converted to the pathname to the object
582 */
583 Size = AcpiNsGetPathnameLength (InternalObject->Reference.Node);
584 if (!Size)
585 {
586 return_ACPI_STATUS (AE_BAD_PARAMETER);
587 }

589 Length += ACPI_ROUND_UP_TO_NATIVE_WORD (Size);
590 break;

592 default:

593 /*
594 * No other reference opcodes are supported.
595 * Notably, Locals and Args are not supported, but this may be
596 * required eventually.
597 */
598 ACPI_ERROR ((AE_INFO, "Cannot convert to external object - "
599 "unsupported Reference Class [%s] 0x%X in object %p",
600 AcpiUtGetReferenceName (InternalObject),
601 InternalObject->Reference.Class, InternalObject));
602 Status = AE_TYPE;
603 break;
604 }
605 break;

607 default:

609 ACPI_ERROR ((AE_INFO, "Cannot convert to external object - "
610 "unsupported type [%s] 0x%X in object %p",
611 AcpiUtGetObjectTypeName (InternalObject),
612 InternalObject->Common.Type, InternalObject));
613 Status = AE_TYPE;
614 break;
615 }

617 /*
618 * Account for the space required by the object rounded up to the next
619 * multiple of the machine word size. This keeps each object aligned
620 * on a machine word boundary. (preventing alignment faults on some
621 * machines.)
622 */
623 *ObjLength = ACPI_ROUND_UP_TO_NATIVE_WORD (Length);
624 return_ACPI_STATUS (Status);
625 }

new/usr/src/common/acpica/components/utilities/utobject.c 7

628 /***
629 *
630 * FUNCTION: AcpiUtGetElementLength
631 *
632 * PARAMETERS: ACPI_PKG_CALLBACK
633 *
634 * RETURN: Status
635 *
636 * DESCRIPTION: Get the length of one package element.
637 *
638 **/

640 static ACPI_STATUS
641 AcpiUtGetElementLength (
642 UINT8 ObjectType,
643 ACPI_OPERAND_OBJECT *SourceObject,
644 ACPI_GENERIC_STATE *State,
645 void *Context)
646 {
647 ACPI_STATUS Status = AE_OK;
648 ACPI_PKG_INFO *Info = (ACPI_PKG_INFO *) Context;
649 ACPI_SIZE ObjectSpace;

652 switch (ObjectType)
653 {
654 case ACPI_COPY_TYPE_SIMPLE:

655 /*
656 * Simple object - just get the size (Null object/entry is handled
657 * here also) and sum it into the running package length
658 */
659 Status = AcpiUtGetSimpleObjectSize (SourceObject, &ObjectSpace);
660 if (ACPI_FAILURE (Status))
661 {
662 return (Status);
663 }

665 Info->Length += ObjectSpace;
666 break;

668 case ACPI_COPY_TYPE_PACKAGE:

670 /* Package object - nothing much to do here, let the walk handle it */

672 Info->NumPackages++;
673 State->Pkg.ThisTargetObj = NULL;
674 break;

676 default:

678 /* No other types allowed */

680 return (AE_BAD_PARAMETER);
681 }

683 return (Status);
684 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/utilities/utosi.c 1

**
 15789 Thu Dec 26 13:49:42 2013
new/usr/src/common/acpica/components/utilities/utosi.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: utosi - Support for the _OSI predefined control method
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTOSI_C__

46 #include "acpi.h"
47 #include "accommon.h"

50 #define _COMPONENT ACPI_UTILITIES
51 ACPI_MODULE_NAME ("utosi")

53 /*
54 * Strings supported by the _OSI predefined control method (which is
55 * implemented internally within this module.)
56 *
57 * March 2009: Removed "Linux" as this host no longer wants to respond true
58 * for this string. Basically, the only safe OS strings are windows-related
59 * and in many or most cases represent the only test path within the

new/usr/src/common/acpica/components/utilities/utosi.c 2

60 * BIOS-provided ASL code.
61 *
62 * The last element of each entry is used to track the newest version of
63 * Windows that the BIOS has requested.
64 */
65 static ACPI_INTERFACE_INFO AcpiDefaultSupportedInterfaces[] =
66 {
67 /* Operating System Vendor Strings */

69 {"Windows 2000", NULL, 0, ACPI_OSI_WIN_2000}, /* Windows 2000
70 {"Windows 2001", NULL, 0, ACPI_OSI_WIN_XP}, /* Windows XP *
71 {"Windows 2001 SP1", NULL, 0, ACPI_OSI_WIN_XP_SP1}, /* Windows XP S
72 {"Windows 2001.1", NULL, 0, ACPI_OSI_WINSRV_2003}, /* Windows Serv
73 {"Windows 2001 SP2", NULL, 0, ACPI_OSI_WIN_XP_SP2}, /* Windows XP S
74 {"Windows 2001.1 SP1", NULL, 0, ACPI_OSI_WINSRV_2003_SP1}, /* Windows Serv
75 {"Windows 2006", NULL, 0, ACPI_OSI_WIN_VISTA}, /* Windows Vist
76 {"Windows 2006.1", NULL, 0, ACPI_OSI_WINSRV_2008}, /* Windows Serv
77 {"Windows 2006 SP1", NULL, 0, ACPI_OSI_WIN_VISTA_SP1}, /* Windows Vist
78 {"Windows 2006 SP2", NULL, 0, ACPI_OSI_WIN_VISTA_SP2}, /* Windows Vist
79 {"Windows 2009", NULL, 0, ACPI_OSI_WIN_7}, /* Windows 7 an
80 {"Windows 2012", NULL, 0, ACPI_OSI_WIN_8}, /* Windows 8 an

82 /* Feature Group Strings */

84 {"Extended Address Space Descriptor", NULL, ACPI_OSI_FEATURE, 0},
83 {"Extended Address Space Descriptor", NULL, 0, 0}

86 /*
87 * All "optional" feature group strings (features that are implemented
88 * by the host) should be dynamically modified to VALID by the host via
89 * AcpiInstallInterface or AcpiUpdateInterfaces. Such optional feature
90 * group strings are set as INVALID by default here.
87 * by the host) should be dynamically added by the host via
88 * AcpiInstallInterface and should not be manually added here.
89 *
90 * Examples of optional feature group strings:
91 *
92 * "Module Device"
93 * "Processor Device"
94 * "3.0 Thermal Model"
95 * "3.0 _SCP Extensions"
96 * "Processor Aggregator Device"
91 */

93 {"Module Device", NULL, ACPI_OSI_OPTIONAL_FEATURE, 0},
94 {"Processor Device", NULL, ACPI_OSI_OPTIONAL_FEATURE, 0},
95 {"3.0 Thermal Model", NULL, ACPI_OSI_OPTIONAL_FEATURE, 0},
96 {"3.0 _SCP Extensions", NULL, ACPI_OSI_OPTIONAL_FEATURE, 0},
97 {"Processor Aggregator Device", NULL, ACPI_OSI_OPTIONAL_FEATURE, 0}
98 };

101 /***
102 *
103 * FUNCTION: AcpiUtInitializeInterfaces
104 *
105 * PARAMETERS: None
106 *
107 * RETURN: Status
108 *
109 * DESCRIPTION: Initialize the global _OSI supported interfaces list
110 *
111 **/

113 ACPI_STATUS
114 AcpiUtInitializeInterfaces (

new/usr/src/common/acpica/components/utilities/utosi.c 3

115 void)
116 {
117 ACPI_STATUS Status;
118 UINT32 i;

121 Status = AcpiOsAcquireMutex (AcpiGbl_OsiMutex, ACPI_WAIT_FOREVER);
122 if (ACPI_FAILURE (Status))
123 {
124 return (Status);
125 }

120 (void) AcpiOsAcquireMutex (AcpiGbl_OsiMutex, ACPI_WAIT_FOREVER);
127 AcpiGbl_SupportedInterfaces = AcpiDefaultSupportedInterfaces;

129 /* Link the static list of supported interfaces */

131 for (i = 0; i < (ACPI_ARRAY_LENGTH (AcpiDefaultSupportedInterfaces) - 1); i+
132 {
133 AcpiDefaultSupportedInterfaces[i].Next =
134 &AcpiDefaultSupportedInterfaces[(ACPI_SIZE) i + 1];
135 }

137 AcpiOsReleaseMutex (AcpiGbl_OsiMutex);
138 return (AE_OK);
139 }

142 /***
143 *
144 * FUNCTION: AcpiUtInterfaceTerminate
145 *
146 * PARAMETERS: None
147 *
148 * RETURN: Status
142 * RETURN: None
149 *
150 * DESCRIPTION: Delete all interfaces in the global list. Sets
151 * AcpiGbl_SupportedInterfaces to NULL.
152 *
153 **/

155 ACPI_STATUS
149 void
156 AcpiUtInterfaceTerminate (
157 void)
158 {
159 ACPI_STATUS Status;
160 ACPI_INTERFACE_INFO *NextInterface;

163 Status = AcpiOsAcquireMutex (AcpiGbl_OsiMutex, ACPI_WAIT_FOREVER);
164 if (ACPI_FAILURE (Status))
165 {
166 return (Status);
167 }

156 (void) AcpiOsAcquireMutex (AcpiGbl_OsiMutex, ACPI_WAIT_FOREVER);
169 NextInterface = AcpiGbl_SupportedInterfaces;

170 while (NextInterface)
171 {
172 AcpiGbl_SupportedInterfaces = NextInterface->Next;

174 if (NextInterface->Flags & ACPI_OSI_DYNAMIC)
175 {

new/usr/src/common/acpica/components/utilities/utosi.c 4

176 /* Only interfaces added at runtime can be freed */

165 if (NextInterface->Flags & ACPI_OSI_DYNAMIC)
166 {
178 ACPI_FREE (NextInterface->Name);
179 ACPI_FREE (NextInterface);
180 }
181 else
182 {
183 /* Interface is in static list. Reset it to invalid or valid. */

185 if (NextInterface->Flags & ACPI_OSI_DEFAULT_INVALID)
186 {
187 NextInterface->Flags |= ACPI_OSI_INVALID;
188 }
189 else
190 {
191 NextInterface->Flags &= ~ACPI_OSI_INVALID;
192 }
193 }

195 NextInterface = AcpiGbl_SupportedInterfaces;
196 }

198 AcpiOsReleaseMutex (AcpiGbl_OsiMutex);
199 return (AE_OK);
200 }

______unchanged_portion_omitted_

320 /***
321 *
322 * FUNCTION: AcpiUtUpdateInterfaces
323 *
324 * PARAMETERS: Action - Actions to be performed during the
325 * update
326 *
327 * RETURN: Status
328 *
329 * DESCRIPTION: Update _OSI interface strings, disabling or enabling OS vendor
330 * strings or/and feature group strings.
331 * Caller MUST hold AcpiGbl_OsiMutex
332 *
333 **/

335 ACPI_STATUS
336 AcpiUtUpdateInterfaces (
337 UINT8 Action)
338 {
339 ACPI_INTERFACE_INFO *NextInterface;

342 NextInterface = AcpiGbl_SupportedInterfaces;
343 while (NextInterface)
344 {
345 if (((NextInterface->Flags & ACPI_OSI_FEATURE) &&
346 (Action & ACPI_FEATURE_STRINGS)) ||
347 (!(NextInterface->Flags & ACPI_OSI_FEATURE) &&
348 (Action & ACPI_VENDOR_STRINGS)))
349 {
350 if (Action & ACPI_DISABLE_INTERFACES)
351 {
352 /* Mark the interfaces as invalid */

354 NextInterface->Flags |= ACPI_OSI_INVALID;
355 }

new/usr/src/common/acpica/components/utilities/utosi.c 5

356 else
357 {
358 /* Mark the interfaces as valid */

360 NextInterface->Flags &= ~ACPI_OSI_INVALID;
361 }
362 }

364 NextInterface = NextInterface->Next;
365 }

367 return (AE_OK);
368 }

371 /***
372 *
373 * FUNCTION: AcpiUtGetInterface
374 *
375 * PARAMETERS: InterfaceName - The interface to find
376 *
377 * RETURN: ACPI_INTERFACE_INFO if found. NULL if not found.
378 *
379 * DESCRIPTION: Search for the specified interface name in the global list.
380 * Caller MUST hold AcpiGbl_OsiMutex
381 *
382 **/

384 ACPI_INTERFACE_INFO *
385 AcpiUtGetInterface (
386 ACPI_STRING InterfaceName)
387 {
388 ACPI_INTERFACE_INFO *NextInterface;

391 NextInterface = AcpiGbl_SupportedInterfaces;
392 while (NextInterface)
393 {
394 if (!ACPI_STRCMP (InterfaceName, NextInterface->Name))
395 {
396 return (NextInterface);
397 }

399 NextInterface = NextInterface->Next;
400 }

402 return (NULL);
403 }

406 /***
407 *
408 * FUNCTION: AcpiUtOsiImplementation
409 *
410 * PARAMETERS: WalkState - Current walk state
411 *
412 * RETURN: Status
413 *
414 * DESCRIPTION: Implementation of the _OSI predefined control method. When
415 * an invocation of _OSI is encountered in the system AML,
416 * control is transferred to this function.
417 *
418 **/

420 ACPI_STATUS
421 AcpiUtOsiImplementation (

new/usr/src/common/acpica/components/utilities/utosi.c 6

422 ACPI_WALK_STATE *WalkState)
423 {
424 ACPI_OPERAND_OBJECT *StringDesc;
425 ACPI_OPERAND_OBJECT *ReturnDesc;
426 ACPI_INTERFACE_INFO *InterfaceInfo;
427 ACPI_INTERFACE_HANDLER InterfaceHandler;
428 ACPI_STATUS Status;
429 UINT32 ReturnValue;

432 ACPI_FUNCTION_TRACE (UtOsiImplementation);

435 /* Validate the string input argument (from the AML caller) */

437 StringDesc = WalkState->Arguments[0].Object;
438 if (!StringDesc ||
439 (StringDesc->Common.Type != ACPI_TYPE_STRING))
440 {
441 return_ACPI_STATUS (AE_TYPE);
442 }

444 /* Create a return object */

446 ReturnDesc = AcpiUtCreateInternalObject (ACPI_TYPE_INTEGER);
447 if (!ReturnDesc)
448 {
449 return_ACPI_STATUS (AE_NO_MEMORY);
450 }

452 /* Default return value is 0, NOT SUPPORTED */

454 ReturnValue = 0;
455 Status = AcpiOsAcquireMutex (AcpiGbl_OsiMutex, ACPI_WAIT_FOREVER);
456 if (ACPI_FAILURE (Status))
457 {
458 AcpiUtRemoveReference (ReturnDesc);
459 return_ACPI_STATUS (Status);
460 }
378 (void) AcpiOsAcquireMutex (AcpiGbl_OsiMutex, ACPI_WAIT_FOREVER);

462 /* Lookup the interface in the global _OSI list */

464 InterfaceInfo = AcpiUtGetInterface (StringDesc->String.Pointer);
465 if (InterfaceInfo &&
466 !(InterfaceInfo->Flags & ACPI_OSI_INVALID))
467 {
468 /*
469 * The interface is supported.
470 * Update the OsiData if necessary. We keep track of the latest
471 * version of Windows that has been requested by the BIOS.
472 */
473 if (InterfaceInfo->Value > AcpiGbl_OsiData)
474 {
475 AcpiGbl_OsiData = InterfaceInfo->Value;
476 }

478 ReturnValue = ACPI_UINT32_MAX;
479 }

481 AcpiOsReleaseMutex (AcpiGbl_OsiMutex);

483 /*
484 * Invoke an optional _OSI interface handler. The host OS may wish
485 * to do some interface-specific handling. For example, warn about
486 * certain interfaces or override the true/false support value.

new/usr/src/common/acpica/components/utilities/utosi.c 7

487 */
488 InterfaceHandler = AcpiGbl_InterfaceHandler;
489 if (InterfaceHandler)
490 {
491 ReturnValue = InterfaceHandler (
492 StringDesc->String.Pointer, ReturnValue);
493 }

495 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INFO,
496 "ACPI: BIOS _OSI(\"%s\") is %ssupported\n",
497 StringDesc->String.Pointer, ReturnValue == 0 ? "not " : ""));

499 /* Complete the return object */

501 ReturnDesc->Integer.Value = ReturnValue;
502 WalkState->ReturnDesc = ReturnDesc;
503 return_ACPI_STATUS (AE_OK);
504 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/components/utilities/utownerid.c 1

**
 7652 Thu Dec 26 13:49:42 2013
new/usr/src/common/acpica/components/utilities/utownerid.c
acpica-unix2-20130823
**

1 /***
2 *
3 * Module Name: utownerid - Support for Table/Method Owner IDs
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __UTOWNERID_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acnamesp.h"

52 #define _COMPONENT ACPI_UTILITIES
53 ACPI_MODULE_NAME ("utownerid")

56 /***
57 *
58 * FUNCTION: AcpiUtAllocateOwnerId
59 *
60 * PARAMETERS: OwnerId - Where the new owner ID is returned
61 *

new/usr/src/common/acpica/components/utilities/utownerid.c 2

62 * RETURN: Status
63 *
64 * DESCRIPTION: Allocate a table or method owner ID. The owner ID is used to
65 * track objects created by the table or method, to be deleted
66 * when the method exits or the table is unloaded.
67 *
68 **/

70 ACPI_STATUS
71 AcpiUtAllocateOwnerId (
72 ACPI_OWNER_ID *OwnerId)
73 {
74 UINT32 i;
75 UINT32 j;
76 UINT32 k;
77 ACPI_STATUS Status;

80 ACPI_FUNCTION_TRACE (UtAllocateOwnerId);

83 /* Guard against multiple allocations of ID to the same location */

85 if (*OwnerId)
86 {
87 ACPI_ERROR ((AE_INFO, "Owner ID [0x%2.2X] already exists", *OwnerId));
88 return_ACPI_STATUS (AE_ALREADY_EXISTS);
89 }

91 /* Mutex for the global ID mask */

93 Status = AcpiUtAcquireMutex (ACPI_MTX_CACHES);
94 if (ACPI_FAILURE (Status))
95 {
96 return_ACPI_STATUS (Status);
97 }

99 /*
100 * Find a free owner ID, cycle through all possible IDs on repeated
101 * allocations. (ACPI_NUM_OWNERID_MASKS + 1) because first index may have
102 * to be scanned twice.
103 */
104 for (i = 0, j = AcpiGbl_LastOwnerIdIndex;
105 i < (ACPI_NUM_OWNERID_MASKS + 1);
106 i++, j++)
107 {
108 if (j >= ACPI_NUM_OWNERID_MASKS)
109 {
110 j = 0; /* Wraparound to start of mask array */
111 }

113 for (k = AcpiGbl_NextOwnerIdOffset; k < 32; k++)
114 {
115 if (AcpiGbl_OwnerIdMask[j] == ACPI_UINT32_MAX)
116 {
117 /* There are no free IDs in this mask */

119 break;
120 }

122 if (!(AcpiGbl_OwnerIdMask[j] & (1 << k)))
123 {
124 /*
125 * Found a free ID. The actual ID is the bit index plus one,
126 * making zero an invalid Owner ID. Save this as the last ID
127 * allocated and update the global ID mask.

new/usr/src/common/acpica/components/utilities/utownerid.c 3

128 */
129 AcpiGbl_OwnerIdMask[j] |= (1 << k);

131 AcpiGbl_LastOwnerIdIndex = (UINT8) j;
132 AcpiGbl_NextOwnerIdOffset = (UINT8) (k + 1);

134 /*
135 * Construct encoded ID from the index and bit position
136 *
137 * Note: Last [j].k (bit 255) is never used and is marked
138 * permanently allocated (prevents +1 overflow)
139 */
140 *OwnerId = (ACPI_OWNER_ID) ((k + 1) + ACPI_MUL_32 (j));

142 ACPI_DEBUG_PRINT ((ACPI_DB_VALUES,
143 "Allocated OwnerId: %2.2X\n", (unsigned int) *OwnerId));
144 goto Exit;
145 }
146 }

148 AcpiGbl_NextOwnerIdOffset = 0;
149 }

151 /*
152 * All OwnerIds have been allocated. This typically should
153 * not happen since the IDs are reused after deallocation. The IDs are
154 * allocated upon table load (one per table) and method execution, and
155 * they are released when a table is unloaded or a method completes
156 * execution.
157 *
158 * If this error happens, there may be very deep nesting of invoked control
159 * methods, or there may be a bug where the IDs are not released.
160 */
161 Status = AE_OWNER_ID_LIMIT;
162 ACPI_ERROR ((AE_INFO,
163 "Could not allocate new OwnerId (255 max), AE_OWNER_ID_LIMIT"));

165 Exit:
166 (void) AcpiUtReleaseMutex (ACPI_MTX_CACHES);
167 return_ACPI_STATUS (Status);
168 }

171 /***
172 *
173 * FUNCTION: AcpiUtReleaseOwnerId
174 *
175 * PARAMETERS: OwnerIdPtr - Pointer to a previously allocated OwnerID
176 *
177 * RETURN: None. No error is returned because we are either exiting a
178 * control method or unloading a table. Either way, we would
179 * ignore any error anyway.
180 *
181 * DESCRIPTION: Release a table or method owner ID. Valid IDs are 1 - 255
182 *
183 **/

185 void
186 AcpiUtReleaseOwnerId (
187 ACPI_OWNER_ID *OwnerIdPtr)
188 {
189 ACPI_OWNER_ID OwnerId = *OwnerIdPtr;
190 ACPI_STATUS Status;
191 UINT32 Index;
192 UINT32 Bit;

new/usr/src/common/acpica/components/utilities/utownerid.c 4

195 ACPI_FUNCTION_TRACE_U32 (UtReleaseOwnerId, OwnerId);

198 /* Always clear the input OwnerId (zero is an invalid ID) */

200 *OwnerIdPtr = 0;

202 /* Zero is not a valid OwnerID */

204 if (OwnerId == 0)
205 {
206 ACPI_ERROR ((AE_INFO, "Invalid OwnerId: 0x%2.2X", OwnerId));
207 return_VOID;
208 }

210 /* Mutex for the global ID mask */

212 Status = AcpiUtAcquireMutex (ACPI_MTX_CACHES);
213 if (ACPI_FAILURE (Status))
214 {
215 return_VOID;
216 }

218 /* Normalize the ID to zero */

220 OwnerId--;

222 /* Decode ID to index/offset pair */

224 Index = ACPI_DIV_32 (OwnerId);
225 Bit = 1 << ACPI_MOD_32 (OwnerId);

227 /* Free the owner ID only if it is valid */

229 if (AcpiGbl_OwnerIdMask[Index] & Bit)
230 {
231 AcpiGbl_OwnerIdMask[Index] ^= Bit;
232 }
233 else
234 {
235 ACPI_ERROR ((AE_INFO,
236 "Release of non-allocated OwnerId: 0x%2.2X", OwnerId + 1));
237 }

239 (void) AcpiUtReleaseMutex (ACPI_MTX_CACHES);
240 return_VOID;
241 }

new/usr/src/common/acpica/components/utilities/utpredef.c 1

**
 12498 Thu Dec 26 13:49:43 2013
new/usr/src/common/acpica/components/utilities/utpredef.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: utpredef - support functions for predefined names
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTPREDEF_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acpredef.h"

51 #define _COMPONENT ACPI_UTILITIES
52 ACPI_MODULE_NAME ("utpredef")

55 /*
56 * Names for the types that can be returned by the predefined objects.
57 * Used for warning messages. Must be in the same order as the ACPI_RTYPEs
58 */
59 static const char *UtRtypeNames[] =
60 {
61 "/Integer",

new/usr/src/common/acpica/components/utilities/utpredef.c 2

62 "/String",
63 "/Buffer",
64 "/Package",
65 "/Reference",
66 };

69 /***
70 *
71 * FUNCTION: AcpiUtGetNextPredefinedMethod
72 *
73 * PARAMETERS: ThisName - Entry in the predefined method/name table
74 *
75 * RETURN: Pointer to next entry in predefined table.
76 *
77 * DESCRIPTION: Get the next entry in the predefine method table. Handles the
78 * cases where a package info entry follows a method name that
79 * returns a package.
80 *
81 **/

83 const ACPI_PREDEFINED_INFO *
84 AcpiUtGetNextPredefinedMethod (
85 const ACPI_PREDEFINED_INFO *ThisName)
86 {

88 /*
89 * Skip next entry in the table if this name returns a Package
90 * (next entry contains the package info)
91 */
92 if ((ThisName->Info.ExpectedBtypes & ACPI_RTYPE_PACKAGE) &&
93 (ThisName->Info.ExpectedBtypes != ACPI_RTYPE_ALL))
94 {
95 ThisName++;
96 }

98 ThisName++;
99 return (ThisName);
100 }

103 /***
104 *
105 * FUNCTION: AcpiUtMatchPredefinedMethod
106 *
107 * PARAMETERS: Name - Name to find
108 *
109 * RETURN: Pointer to entry in predefined table. NULL indicates not found.
110 *
111 * DESCRIPTION: Check an object name against the predefined object list.
112 *
113 **/

115 const ACPI_PREDEFINED_INFO *
116 AcpiUtMatchPredefinedMethod (
117 char *Name)
118 {
119 const ACPI_PREDEFINED_INFO *ThisName;

122 /* Quick check for a predefined name, first character must be underscore */

124 if (Name[0] != ’_’)
125 {
126 return (NULL);
127 }

new/usr/src/common/acpica/components/utilities/utpredef.c 3

129 /* Search info table for a predefined method/object name */

131 ThisName = AcpiGbl_PredefinedMethods;
132 while (ThisName->Info.Name[0])
133 {
134 if (ACPI_COMPARE_NAME (Name, ThisName->Info.Name))
135 {
136 return (ThisName);
137 }

139 ThisName = AcpiUtGetNextPredefinedMethod (ThisName);
140 }

142 return (NULL); /* Not found */
143 }

146 /***
147 *
148 * FUNCTION: AcpiUtGetExpectedReturnTypes
149 *
150 * PARAMETERS: Buffer - Where the formatted string is returned
151 * ExpectedBTypes - Bitfield of expected data types
152 *
153 * RETURN: Formatted string in Buffer.
154 *
155 * DESCRIPTION: Format the expected object types into a printable string.
156 *
157 **/

159 void
160 AcpiUtGetExpectedReturnTypes (
161 char *Buffer,
162 UINT32 ExpectedBtypes)
163 {
164 UINT32 ThisRtype;
165 UINT32 i;
166 UINT32 j;

169 if (!ExpectedBtypes)
170 {
171 ACPI_STRCPY (Buffer, "NONE");
172 return;
173 }

175 j = 1;
176 Buffer[0] = 0;
177 ThisRtype = ACPI_RTYPE_INTEGER;

179 for (i = 0; i < ACPI_NUM_RTYPES; i++)
180 {
181 /* If one of the expected types, concatenate the name of this type */

183 if (ExpectedBtypes & ThisRtype)
184 {
185 ACPI_STRCAT (Buffer, &UtRtypeNames[i][j]);
186 j = 0; /* Use name separator from now on */
187 }

189 ThisRtype <<= 1; /* Next Rtype */
190 }
191 }

new/usr/src/common/acpica/components/utilities/utpredef.c 4

194 /***
195 *
196 * The remaining functions are used by iASL and AcpiHelp only
197 *
198 **/

200 #if (defined ACPI_ASL_COMPILER || defined ACPI_HELP_APP)
201 #include <stdio.h>
202 #include <string.h>

204 /* Local prototypes */

206 static UINT32
207 AcpiUtGetArgumentTypes (
208 char *Buffer,
209 UINT16 ArgumentTypes);

212 /* Types that can be returned externally by a predefined name */

214 static const char *UtExternalTypeNames[] = /* Indexed by ACPI_TYPE_* */
215 {
216 ", UNSUPPORTED-TYPE",
217 ", Integer",
218 ", String",
219 ", Buffer",
220 ", Package"
221 };

223 /* Bit widths for resource descriptor predefined names */

225 static const char *UtResourceTypeNames[] =
226 {
227 "/1",
228 "/2",
229 "/3",
230 "/8",
231 "/16",
232 "/32",
233 "/64",
234 "/variable",
235 };

238 /***
239 *
240 * FUNCTION: AcpiUtMatchResourceName
241 *
242 * PARAMETERS: Name - Name to find
243 *
244 * RETURN: Pointer to entry in the resource table. NULL indicates not
245 * found.
246 *
247 * DESCRIPTION: Check an object name against the predefined resource
248 * descriptor object list.
249 *
250 **/

252 const ACPI_PREDEFINED_INFO *
253 AcpiUtMatchResourceName (
254 char *Name)
255 {
256 const ACPI_PREDEFINED_INFO *ThisName;

259 /* Quick check for a predefined name, first character must be underscore */

new/usr/src/common/acpica/components/utilities/utpredef.c 5

261 if (Name[0] != ’_’)
262 {
263 return (NULL);
264 }

266 /* Search info table for a predefined method/object name */

268 ThisName = AcpiGbl_ResourceNames;
269 while (ThisName->Info.Name[0])
270 {
271 if (ACPI_COMPARE_NAME (Name, ThisName->Info.Name))
272 {
273 return (ThisName);
274 }

276 ThisName++;
277 }

279 return (NULL); /* Not found */
280 }

283 /***
284 *
285 * FUNCTION: AcpiUtDisplayPredefinedMethod
286 *
287 * PARAMETERS: Buffer - Scratch buffer for this function
288 * ThisName - Entry in the predefined method/name table
289 * MultiLine - TRUE if output should be on >1 line
290 *
291 * RETURN: None
292 *
293 * DESCRIPTION: Display information about a predefined method. Number and
294 * type of the input arguments, and expected type(s) for the
295 * return value, if any.
296 *
297 **/

299 void
300 AcpiUtDisplayPredefinedMethod (
301 char *Buffer,
302 const ACPI_PREDEFINED_INFO *ThisName,
303 BOOLEAN MultiLine)
304 {
305 UINT32 ArgCount;

307 /*
308 * Get the argument count and the string buffer
309 * containing all argument types
310 */
311 ArgCount = AcpiUtGetArgumentTypes (Buffer,
312 ThisName->Info.ArgumentList);

314 if (MultiLine)
315 {
316 printf (" ");
317 }

319 printf ("%4.4s Requires %s%u argument%s",
320 ThisName->Info.Name,
321 (ThisName->Info.ArgumentList & ARG_COUNT_IS_MINIMUM) ?
322 "(at least) " : "",
323 ArgCount, ArgCount != 1 ? "s" : "");

325 /* Display the types for any arguments */

new/usr/src/common/acpica/components/utilities/utpredef.c 6

327 if (ArgCount > 0)
328 {
329 printf (" (%s)", Buffer);
330 }

332 if (MultiLine)
333 {
334 printf ("\n ");
335 }

337 /* Get the return value type(s) allowed */

339 if (ThisName->Info.ExpectedBtypes)
340 {
341 AcpiUtGetExpectedReturnTypes (Buffer, ThisName->Info.ExpectedBtypes);
342 printf (" Return value types: %s\n", Buffer);
343 }
344 else
345 {
346 printf (" No return value\n");
347 }
348 }

351 /***
352 *
353 * FUNCTION: AcpiUtGetArgumentTypes
354 *
355 * PARAMETERS: Buffer - Where to return the formatted types
356 * ArgumentTypes - Types field for this method
357 *
358 * RETURN: Count - the number of arguments required for this method
359 *
360 * DESCRIPTION: Format the required data types for this method (Integer,
361 * String, Buffer, or Package) and return the required argument
362 * count.
363 *
364 **/

366 static UINT32
367 AcpiUtGetArgumentTypes (
368 char *Buffer,
369 UINT16 ArgumentTypes)
370 {
371 UINT16 ThisArgumentType;
372 UINT16 SubIndex;
373 UINT16 ArgCount;
374 UINT32 i;

377 *Buffer = 0;
378 SubIndex = 2;

380 /* First field in the types list is the count of args to follow */

382 ArgCount = METHOD_GET_ARG_COUNT (ArgumentTypes);
383 if (ArgCount > METHOD_PREDEF_ARGS_MAX)
384 {
385 printf ("**** Invalid argument count (%u) "
386 "in predefined info structure\n", ArgCount);
387 return (ArgCount);
388 }

390 /* Get each argument from the list, convert to ascii, store to buffer */

new/usr/src/common/acpica/components/utilities/utpredef.c 7

392 for (i = 0; i < ArgCount; i++)
393 {
394 ThisArgumentType = METHOD_GET_NEXT_TYPE (ArgumentTypes);

396 if (!ThisArgumentType || (ThisArgumentType > METHOD_MAX_ARG_TYPE))
397 {
398 printf ("**** Invalid argument type (%u) "
399 "in predefined info structure\n", ThisArgumentType);
400 return (ArgCount);
401 }

403 strcat (Buffer, UtExternalTypeNames[ThisArgumentType] + SubIndex);
404 SubIndex = 0;
405 }

407 return (ArgCount);
408 }

411 /***
412 *
413 * FUNCTION: AcpiUtGetResourceBitWidth
414 *
415 * PARAMETERS: Buffer - Where the formatted string is returned
416 * Types - Bitfield of expected data types
417 *
418 * RETURN: Count of return types. Formatted string in Buffer.
419 *
420 * DESCRIPTION: Format the resource bit widths into a printable string.
421 *
422 **/

424 UINT32
425 AcpiUtGetResourceBitWidth (
426 char *Buffer,
427 UINT16 Types)
428 {
429 UINT32 i;
430 UINT16 SubIndex;
431 UINT32 Found;

434 *Buffer = 0;
435 SubIndex = 1;
436 Found = 0;

438 for (i = 0; i < NUM_RESOURCE_WIDTHS; i++)
439 {
440 if (Types & 1)
441 {
442 strcat (Buffer, &(UtResourceTypeNames[i][SubIndex]));
443 SubIndex = 0;
444 Found++;
445 }

447 Types >>= 1;
448 }

450 return (Found);
451 }
452 #endif

new/usr/src/common/acpica/components/utilities/utresrc.c 1

**
 24427 Thu Dec 26 13:49:43 2013
new/usr/src/common/acpica/components/utilities/utresrc.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: utresrc - Resource management utilities
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __UTRESRC_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acresrc.h"

52 #define _COMPONENT ACPI_UTILITIES
53 ACPI_MODULE_NAME ("utresrc")

56 #if defined(ACPI_DISASSEMBLER) || defined (ACPI_DEBUGGER)

58 /*
59 * Strings used to decode resource descriptors.
60 * Used by both the disassembler and the debugger resource dump routines

new/usr/src/common/acpica/components/utilities/utresrc.c 2

61 */
62 const char *AcpiGbl_BmDecode[] =
63 {
64 "NotBusMaster",
65 "BusMaster"
66 };

68 const char *AcpiGbl_ConfigDecode[] =
69 {
70 "0 - Good Configuration",
71 "1 - Acceptable Configuration",
72 "2 - Suboptimal Configuration",
73 "3 - ***Invalid Configuration***",
74 };

76 const char *AcpiGbl_ConsumeDecode[] =
77 {
78 "ResourceProducer",
79 "ResourceConsumer"
80 };

82 const char *AcpiGbl_DecDecode[] =
83 {
84 "PosDecode",
85 "SubDecode"
86 };

88 const char *AcpiGbl_HeDecode[] =
89 {
90 "Level",
91 "Edge"
92 };

94 const char *AcpiGbl_IoDecode[] =
95 {
96 "Decode10",
97 "Decode16"
98 };

100 const char *AcpiGbl_LlDecode[] =
101 {
102 "ActiveHigh",
103 "ActiveLow"
104 };

106 const char *AcpiGbl_MaxDecode[] =
107 {
108 "MaxNotFixed",
109 "MaxFixed"
110 };

112 const char *AcpiGbl_MemDecode[] =
113 {
114 "NonCacheable",
115 "Cacheable",
116 "WriteCombining",
117 "Prefetchable"
118 };

120 const char *AcpiGbl_MinDecode[] =
121 {
122 "MinNotFixed",
123 "MinFixed"
124 };

126 const char *AcpiGbl_MtpDecode[] =

new/usr/src/common/acpica/components/utilities/utresrc.c 3

127 {
128 "AddressRangeMemory",
129 "AddressRangeReserved",
130 "AddressRangeACPI",
131 "AddressRangeNVS"
132 };

134 const char *AcpiGbl_RngDecode[] =
135 {
136 "InvalidRanges",
137 "NonISAOnlyRanges",
138 "ISAOnlyRanges",
139 "EntireRange"
140 };

142 const char *AcpiGbl_RwDecode[] =
143 {
144 "ReadOnly",
145 "ReadWrite"
146 };

148 const char *AcpiGbl_ShrDecode[] =
149 {
150 "Exclusive",
151 "Shared",
152 "ExclusiveAndWake", /* ACPI 5.0 */
153 "SharedAndWake" /* ACPI 5.0 */
154 };

156 const char *AcpiGbl_SizDecode[] =
157 {
158 "Transfer8",
159 "Transfer8_16",
160 "Transfer16",
161 "InvalidSize"
162 };

164 const char *AcpiGbl_TrsDecode[] =
165 {
166 "DenseTranslation",
167 "SparseTranslation"
168 };

170 const char *AcpiGbl_TtpDecode[] =
171 {
172 "TypeStatic",
173 "TypeTranslation"
174 };

176 const char *AcpiGbl_TypDecode[] =
177 {
178 "Compatibility",
179 "TypeA",
180 "TypeB",
181 "TypeF"
182 };

184 const char *AcpiGbl_PpcDecode[] =
185 {
186 "PullDefault",
187 "PullUp",
188 "PullDown",
189 "PullNone"
190 };

192 const char *AcpiGbl_IorDecode[] =

new/usr/src/common/acpica/components/utilities/utresrc.c 4

193 {
194 "IoRestrictionNone",
195 "IoRestrictionInputOnly",
196 "IoRestrictionOutputOnly",
197 "IoRestrictionNoneAndPreserve"
198 };

200 const char *AcpiGbl_DtsDecode[] =
201 {
202 "Width8bit",
203 "Width16bit",
204 "Width32bit",
205 "Width64bit",
206 "Width128bit",
207 "Width256bit",
208 };

210 /* GPIO connection type */

212 const char *AcpiGbl_CtDecode[] =
213 {
214 "Interrupt",
215 "I/O"
216 };

218 /* Serial bus type */

220 const char *AcpiGbl_SbtDecode[] =
221 {
222 "/* UNKNOWN serial bus type */",
223 "I2C",
224 "SPI",
225 "UART"
226 };

228 /* I2C serial bus access mode */

230 const char *AcpiGbl_AmDecode[] =
231 {
232 "AddressingMode7Bit",
233 "AddressingMode10Bit"
234 };

236 /* I2C serial bus slave mode */

238 const char *AcpiGbl_SmDecode[] =
239 {
240 "ControllerInitiated",
241 "DeviceInitiated"
242 };

244 /* SPI serial bus wire mode */

246 const char *AcpiGbl_WmDecode[] =
247 {
248 "FourWireMode",
249 "ThreeWireMode"
250 };

252 /* SPI serial clock phase */

254 const char *AcpiGbl_CphDecode[] =
255 {
256 "ClockPhaseFirst",
257 "ClockPhaseSecond"
258 };

new/usr/src/common/acpica/components/utilities/utresrc.c 5

260 /* SPI serial bus clock polarity */

262 const char *AcpiGbl_CpoDecode[] =
263 {
264 "ClockPolarityLow",
265 "ClockPolarityHigh"
266 };

268 /* SPI serial bus device polarity */

270 const char *AcpiGbl_DpDecode[] =
271 {
272 "PolarityLow",
273 "PolarityHigh"
274 };

276 /* UART serial bus endian */

278 const char *AcpiGbl_EdDecode[] =
279 {
280 "LittleEndian",
281 "BigEndian"
282 };

284 /* UART serial bus bits per byte */

286 const char *AcpiGbl_BpbDecode[] =
287 {
288 "DataBitsFive",
289 "DataBitsSix",
290 "DataBitsSeven",
291 "DataBitsEight",
292 "DataBitsNine",
293 "/* UNKNOWN Bits per byte */",
294 "/* UNKNOWN Bits per byte */",
295 "/* UNKNOWN Bits per byte */"
296 };

298 /* UART serial bus stop bits */

300 const char *AcpiGbl_SbDecode[] =
301 {
302 "StopBitsNone",
303 "StopBitsOne",
304 "StopBitsOnePlusHalf",
305 "StopBitsTwo"
306 };

308 /* UART serial bus flow control */

310 const char *AcpiGbl_FcDecode[] =
311 {
312 "FlowControlNone",
313 "FlowControlHardware",
314 "FlowControlXON",
315 "/* UNKNOWN flow control keyword */"
316 };

318 /* UART serial bus parity type */

320 const char *AcpiGbl_PtDecode[] =
321 {
322 "ParityTypeNone",
323 "ParityTypeEven",
324 "ParityTypeOdd",

new/usr/src/common/acpica/components/utilities/utresrc.c 6

325 "ParityTypeMark",
326 "ParityTypeSpace",
327 "/* UNKNOWN parity keyword */",
328 "/* UNKNOWN parity keyword */",
329 "/* UNKNOWN parity keyword */"
330 };

332 #endif

335 /*
336 * Base sizes of the raw AML resource descriptors, indexed by resource type.
337 * Zero indicates a reserved (and therefore invalid) resource type.
338 */
339 const UINT8 AcpiGbl_ResourceAmlSizes[] =
340 {
341 /* Small descriptors */

343 0,
344 0,
345 0,
346 0,
347 ACPI_AML_SIZE_SMALL (AML_RESOURCE_IRQ),
348 ACPI_AML_SIZE_SMALL (AML_RESOURCE_DMA),
349 ACPI_AML_SIZE_SMALL (AML_RESOURCE_START_DEPENDENT),
350 ACPI_AML_SIZE_SMALL (AML_RESOURCE_END_DEPENDENT),
351 ACPI_AML_SIZE_SMALL (AML_RESOURCE_IO),
352 ACPI_AML_SIZE_SMALL (AML_RESOURCE_FIXED_IO),
353 ACPI_AML_SIZE_SMALL (AML_RESOURCE_FIXED_DMA),
354 0,
355 0,
356 0,
357 ACPI_AML_SIZE_SMALL (AML_RESOURCE_VENDOR_SMALL),
358 ACPI_AML_SIZE_SMALL (AML_RESOURCE_END_TAG),

360 /* Large descriptors */

362 0,
363 ACPI_AML_SIZE_LARGE (AML_RESOURCE_MEMORY24),
364 ACPI_AML_SIZE_LARGE (AML_RESOURCE_GENERIC_REGISTER),
365 0,
366 ACPI_AML_SIZE_LARGE (AML_RESOURCE_VENDOR_LARGE),
367 ACPI_AML_SIZE_LARGE (AML_RESOURCE_MEMORY32),
368 ACPI_AML_SIZE_LARGE (AML_RESOURCE_FIXED_MEMORY32),
369 ACPI_AML_SIZE_LARGE (AML_RESOURCE_ADDRESS32),
370 ACPI_AML_SIZE_LARGE (AML_RESOURCE_ADDRESS16),
371 ACPI_AML_SIZE_LARGE (AML_RESOURCE_EXTENDED_IRQ),
372 ACPI_AML_SIZE_LARGE (AML_RESOURCE_ADDRESS64),
373 ACPI_AML_SIZE_LARGE (AML_RESOURCE_EXTENDED_ADDRESS64),
374 ACPI_AML_SIZE_LARGE (AML_RESOURCE_GPIO),
375 0,
376 ACPI_AML_SIZE_LARGE (AML_RESOURCE_COMMON_SERIALBUS),
377 };

379 const UINT8 AcpiGbl_ResourceAmlSerialBusSizes[] =
380 {
381 0,
382 ACPI_AML_SIZE_LARGE (AML_RESOURCE_I2C_SERIALBUS),
383 ACPI_AML_SIZE_LARGE (AML_RESOURCE_SPI_SERIALBUS),
384 ACPI_AML_SIZE_LARGE (AML_RESOURCE_UART_SERIALBUS),
385 };

388 /*
389 * Resource types, used to validate the resource length field.
390 * The length of fixed-length types must match exactly, variable

new/usr/src/common/acpica/components/utilities/utresrc.c 7

391 * lengths must meet the minimum required length, etc.
392 * Zero indicates a reserved (and therefore invalid) resource type.
393 */
394 static const UINT8 AcpiGbl_ResourceTypes[] =
395 {
396 /* Small descriptors */

398 0,
399 0,
400 0,
401 0,
402 ACPI_SMALL_VARIABLE_LENGTH, /* 04 IRQ */
403 ACPI_FIXED_LENGTH, /* 05 DMA */
404 ACPI_SMALL_VARIABLE_LENGTH, /* 06 StartDependentFunctions */
405 ACPI_FIXED_LENGTH, /* 07 EndDependentFunctions */
406 ACPI_FIXED_LENGTH, /* 08 IO */
407 ACPI_FIXED_LENGTH, /* 09 FixedIO */
408 ACPI_FIXED_LENGTH, /* 0A FixedDMA */
409 0,
410 0,
411 0,
412 ACPI_VARIABLE_LENGTH, /* 0E VendorShort */
413 ACPI_FIXED_LENGTH, /* 0F EndTag */

415 /* Large descriptors */

417 0,
418 ACPI_FIXED_LENGTH, /* 01 Memory24 */
419 ACPI_FIXED_LENGTH, /* 02 GenericRegister */
420 0,
421 ACPI_VARIABLE_LENGTH, /* 04 VendorLong */
422 ACPI_FIXED_LENGTH, /* 05 Memory32 */
423 ACPI_FIXED_LENGTH, /* 06 Memory32Fixed */
424 ACPI_VARIABLE_LENGTH, /* 07 Dword* address */
425 ACPI_VARIABLE_LENGTH, /* 08 Word* address */
426 ACPI_VARIABLE_LENGTH, /* 09 ExtendedIRQ */
427 ACPI_VARIABLE_LENGTH, /* 0A Qword* address */
428 ACPI_FIXED_LENGTH, /* 0B Extended* address */
429 ACPI_VARIABLE_LENGTH, /* 0C Gpio* */
430 0,
431 ACPI_VARIABLE_LENGTH /* 0E *SerialBus */
432 };

435 /***
436 *
437 * FUNCTION: AcpiUtWalkAmlResources
438 *
439 * PARAMETERS: WalkState - Current walk info
440 * PARAMETERS: Aml - Pointer to the raw AML resource template
441 * AmlLength - Length of the entire template
442 * UserFunction - Called once for each descriptor found. If
443 * NULL, a pointer to the EndTag is returned
444 * Context - Passed to UserFunction
445 *
446 * RETURN: Status
447 *
448 * DESCRIPTION: Walk a raw AML resource list(buffer). User function called
449 * once for each resource found.
450 *
451 **/

453 ACPI_STATUS
454 AcpiUtWalkAmlResources (
455 ACPI_WALK_STATE *WalkState,
456 UINT8 *Aml,

new/usr/src/common/acpica/components/utilities/utresrc.c 8

457 ACPI_SIZE AmlLength,
458 ACPI_WALK_AML_CALLBACK UserFunction,
459 void **Context)
460 {
461 ACPI_STATUS Status;
462 UINT8 *EndAml;
463 UINT8 ResourceIndex;
464 UINT32 Length;
465 UINT32 Offset = 0;
466 UINT8 EndTag[2] = {0x79, 0x00};

469 ACPI_FUNCTION_TRACE (UtWalkAmlResources);

472 /* The absolute minimum resource template is one EndTag descriptor */

474 if (AmlLength < sizeof (AML_RESOURCE_END_TAG))
475 {
476 return_ACPI_STATUS (AE_AML_NO_RESOURCE_END_TAG);
477 }

479 /* Point to the end of the resource template buffer */

481 EndAml = Aml + AmlLength;

483 /* Walk the byte list, abort on any invalid descriptor type or length */

485 while (Aml < EndAml)
486 {
487 /* Validate the Resource Type and Resource Length */

489 Status = AcpiUtValidateResource (WalkState, Aml, &ResourceIndex);
490 if (ACPI_FAILURE (Status))
491 {
492 /*
493 * Exit on failure. Cannot continue because the descriptor length
494 * may be bogus also.
495 */
496 return_ACPI_STATUS (Status);
497 }

499 /* Get the length of this descriptor */

501 Length = AcpiUtGetDescriptorLength (Aml);

503 /* Invoke the user function */

505 if (UserFunction)
506 {
507 Status = UserFunction (Aml, Length, Offset, ResourceIndex, Context);
508 if (ACPI_FAILURE (Status))
509 {
510 return_ACPI_STATUS (Status);
511 }
512 }

514 /* An EndTag descriptor terminates this resource template */

516 if (AcpiUtGetResourceType (Aml) == ACPI_RESOURCE_NAME_END_TAG)
517 {
518 /*
519 * There must be at least one more byte in the buffer for
520 * the 2nd byte of the EndTag
521 */
522 if ((Aml + 1) >= EndAml)

new/usr/src/common/acpica/components/utilities/utresrc.c 9

523 {
524 return_ACPI_STATUS (AE_AML_NO_RESOURCE_END_TAG);
525 }

527 /* Return the pointer to the EndTag if requested */

529 if (!UserFunction)
530 {
531 *Context = Aml;
532 }

534 /* Normal exit */

536 return_ACPI_STATUS (AE_OK);
537 }

539 Aml += Length;
540 Offset += Length;
541 }

543 /* Did not find an EndTag descriptor */

545 if (UserFunction)
546 {
547 /* Insert an EndTag anyway. AcpiRsGetListLength always leaves room */

549 (void) AcpiUtValidateResource (WalkState, EndTag, &ResourceIndex);
550 Status = UserFunction (EndTag, 2, Offset, ResourceIndex, Context);
551 if (ACPI_FAILURE (Status))
552 {
553 return_ACPI_STATUS (Status);
554 }
555 }

557 return_ACPI_STATUS (AE_AML_NO_RESOURCE_END_TAG);
558 }

561 /***
562 *
563 * FUNCTION: AcpiUtValidateResource
564 *
565 * PARAMETERS: WalkState - Current walk info
566 * Aml - Pointer to the raw AML resource descriptor
567 * ReturnIndex - Where the resource index is returned. NULL
568 * if the index is not required.
569 *
570 * RETURN: Status, and optionally the Index into the global resource tables
571 *
572 * DESCRIPTION: Validate an AML resource descriptor by checking the Resource
573 * Type and Resource Length. Returns an index into the global
574 * resource information/dispatch tables for later use.
575 *
576 **/

578 ACPI_STATUS
579 AcpiUtValidateResource (
580 ACPI_WALK_STATE *WalkState,
581 void *Aml,
582 UINT8 *ReturnIndex)
583 {
584 AML_RESOURCE *AmlResource;
585 UINT8 ResourceType;
586 UINT8 ResourceIndex;
587 ACPI_RS_LENGTH ResourceLength;
588 ACPI_RS_LENGTH MinimumResourceLength;

new/usr/src/common/acpica/components/utilities/utresrc.c 10

591 ACPI_FUNCTION_ENTRY ();

594 /*
595 * 1) Validate the ResourceType field (Byte 0)
596 */
597 ResourceType = ACPI_GET8 (Aml);

599 /*
600 * Byte 0 contains the descriptor name (Resource Type)
601 * Examine the large/small bit in the resource header
602 */
603 if (ResourceType & ACPI_RESOURCE_NAME_LARGE)
604 {
605 /* Verify the large resource type (name) against the max */

607 if (ResourceType > ACPI_RESOURCE_NAME_LARGE_MAX)
608 {
609 goto InvalidResource;
610 }

612 /*
613 * Large Resource Type -- bits 6:0 contain the name
614 * Translate range 0x80-0x8B to index range 0x10-0x1B
615 */
616 ResourceIndex = (UINT8) (ResourceType - 0x70);
617 }
618 else
619 {
620 /*
621 * Small Resource Type -- bits 6:3 contain the name
622 * Shift range to index range 0x00-0x0F
623 */
624 ResourceIndex = (UINT8)
625 ((ResourceType & ACPI_RESOURCE_NAME_SMALL_MASK) >> 3);
626 }

628 /*
629 * Check validity of the resource type, via AcpiGbl_ResourceTypes. Zero
630 * indicates an invalid resource.
631 */
632 if (!AcpiGbl_ResourceTypes[ResourceIndex])
633 {
634 goto InvalidResource;
635 }

637 /*
638 * Validate the ResourceLength field. This ensures that the length
639 * is at least reasonable, and guarantees that it is non-zero.
640 */
641 ResourceLength = AcpiUtGetResourceLength (Aml);
642 MinimumResourceLength = AcpiGbl_ResourceAmlSizes[ResourceIndex];

644 /* Validate based upon the type of resource - fixed length or variable */

646 switch (AcpiGbl_ResourceTypes[ResourceIndex])
647 {
648 case ACPI_FIXED_LENGTH:

650 /* Fixed length resource, length must match exactly */

652 if (ResourceLength != MinimumResourceLength)
653 {
654 goto BadResourceLength;

new/usr/src/common/acpica/components/utilities/utresrc.c 11

655 }
656 break;

658 case ACPI_VARIABLE_LENGTH:

660 /* Variable length resource, length must be at least the minimum */

662 if (ResourceLength < MinimumResourceLength)
663 {
664 goto BadResourceLength;
665 }
666 break;

668 case ACPI_SMALL_VARIABLE_LENGTH:

670 /* Small variable length resource, length can be (Min) or (Min-1) */

672 if ((ResourceLength > MinimumResourceLength) ||
673 (ResourceLength < (MinimumResourceLength - 1)))
674 {
675 goto BadResourceLength;
676 }
677 break;

679 default:

681 /* Shouldn’t happen (because of validation earlier), but be sure */

683 goto InvalidResource;
684 }

686 AmlResource = ACPI_CAST_PTR (AML_RESOURCE, Aml);
687 if (ResourceType == ACPI_RESOURCE_NAME_SERIAL_BUS)
688 {
689 /* Validate the BusType field */

691 if ((AmlResource->CommonSerialBus.Type == 0) ||
692 (AmlResource->CommonSerialBus.Type > AML_RESOURCE_MAX_SERIALBUSTYPE)
693 {
694 if (WalkState)
695 {
696 ACPI_ERROR ((AE_INFO,
697 "Invalid/unsupported SerialBus resource descriptor: BusType
698 AmlResource->CommonSerialBus.Type));
699 }
700 return (AE_AML_INVALID_RESOURCE_TYPE);
701 }
702 }

704 /* Optionally return the resource table index */

706 if (ReturnIndex)
707 {
708 *ReturnIndex = ResourceIndex;
709 }

711 return (AE_OK);

714 InvalidResource:

716 if (WalkState)
717 {
718 ACPI_ERROR ((AE_INFO,
719 "Invalid/unsupported resource descriptor: Type 0x%2.2X",
720 ResourceType));

new/usr/src/common/acpica/components/utilities/utresrc.c 12

721 }
722 return (AE_AML_INVALID_RESOURCE_TYPE);

724 BadResourceLength:

726 if (WalkState)
727 {
728 ACPI_ERROR ((AE_INFO,
729 "Invalid resource descriptor length: Type "
730 "0x%2.2X, Length 0x%4.4X, MinLength 0x%4.4X",
731 ResourceType, ResourceLength, MinimumResourceLength));
732 }
733 return (AE_AML_BAD_RESOURCE_LENGTH);
734 }

737 /***
738 *
739 * FUNCTION: AcpiUtGetResourceType
740 *
741 * PARAMETERS: Aml - Pointer to the raw AML resource descriptor
742 *
743 * RETURN: The Resource Type with no extraneous bits (except the
744 * Large/Small descriptor bit -- this is left alone)
745 *
746 * DESCRIPTION: Extract the Resource Type/Name from the first byte of
747 * a resource descriptor.
748 *
749 **/

751 UINT8
752 AcpiUtGetResourceType (
753 void *Aml)
754 {
755 ACPI_FUNCTION_ENTRY ();

758 /*
759 * Byte 0 contains the descriptor name (Resource Type)
760 * Examine the large/small bit in the resource header
761 */
762 if (ACPI_GET8 (Aml) & ACPI_RESOURCE_NAME_LARGE)
763 {
764 /* Large Resource Type -- bits 6:0 contain the name */

766 return (ACPI_GET8 (Aml));
767 }
768 else
769 {
770 /* Small Resource Type -- bits 6:3 contain the name */

772 return ((UINT8) (ACPI_GET8 (Aml) & ACPI_RESOURCE_NAME_SMALL_MASK));
773 }
774 }

777 /***
778 *
779 * FUNCTION: AcpiUtGetResourceLength
780 *
781 * PARAMETERS: Aml - Pointer to the raw AML resource descriptor
782 *
783 * RETURN: Byte Length
784 *
785 * DESCRIPTION: Get the "Resource Length" of a raw AML descriptor. By
786 * definition, this does not include the size of the descriptor

new/usr/src/common/acpica/components/utilities/utresrc.c 13

787 * header or the length field itself.
788 *
789 **/

791 UINT16
792 AcpiUtGetResourceLength (
793 void *Aml)
794 {
795 ACPI_RS_LENGTH ResourceLength;

798 ACPI_FUNCTION_ENTRY ();

801 /*
802 * Byte 0 contains the descriptor name (Resource Type)
803 * Examine the large/small bit in the resource header
804 */
805 if (ACPI_GET8 (Aml) & ACPI_RESOURCE_NAME_LARGE)
806 {
807 /* Large Resource type -- bytes 1-2 contain the 16-bit length */

809 ACPI_MOVE_16_TO_16 (&ResourceLength, ACPI_ADD_PTR (UINT8, Aml, 1));

811 }
812 else
813 {
814 /* Small Resource type -- bits 2:0 of byte 0 contain the length */

816 ResourceLength = (UINT16) (ACPI_GET8 (Aml) &
817 ACPI_RESOURCE_NAME_SMALL_LENGTH_MASK);
818 }

820 return (ResourceLength);
821 }

824 /***
825 *
826 * FUNCTION: AcpiUtGetResourceHeaderLength
827 *
828 * PARAMETERS: Aml - Pointer to the raw AML resource descriptor
829 *
830 * RETURN: Length of the AML header (depends on large/small descriptor)
831 *
832 * DESCRIPTION: Get the length of the header for this resource.
833 *
834 **/

836 UINT8
837 AcpiUtGetResourceHeaderLength (
838 void *Aml)
839 {
840 ACPI_FUNCTION_ENTRY ();

843 /* Examine the large/small bit in the resource header */

845 if (ACPI_GET8 (Aml) & ACPI_RESOURCE_NAME_LARGE)
846 {
847 return (sizeof (AML_RESOURCE_LARGE_HEADER));
848 }
849 else
850 {
851 return (sizeof (AML_RESOURCE_SMALL_HEADER));
852 }

new/usr/src/common/acpica/components/utilities/utresrc.c 14

853 }

856 /***
857 *
858 * FUNCTION: AcpiUtGetDescriptorLength
859 *
860 * PARAMETERS: Aml - Pointer to the raw AML resource descriptor
861 *
862 * RETURN: Byte length
863 *
864 * DESCRIPTION: Get the total byte length of a raw AML descriptor, including the
865 * length of the descriptor header and the length field itself.
866 * Used to walk descriptor lists.
867 *
868 **/

870 UINT32
871 AcpiUtGetDescriptorLength (
872 void *Aml)
873 {
874 ACPI_FUNCTION_ENTRY ();

877 /*
878 * Get the Resource Length (does not include header length) and add
879 * the header length (depends on if this is a small or large resource)
880 */
881 return (AcpiUtGetResourceLength (Aml) +
882 AcpiUtGetResourceHeaderLength (Aml));
883 }

886 /***
887 *
888 * FUNCTION: AcpiUtGetResourceEndTag
889 *
890 * PARAMETERS: ObjDesc - The resource template buffer object
891 * EndTag - Where the pointer to the EndTag is returned
892 *
893 * RETURN: Status, pointer to the end tag
894 *
895 * DESCRIPTION: Find the EndTag resource descriptor in an AML resource template
896 * Note: allows a buffer length of zero.
897 *
898 **/

900 ACPI_STATUS
901 AcpiUtGetResourceEndTag (
902 ACPI_OPERAND_OBJECT *ObjDesc,
903 UINT8 **EndTag)
904 {
905 ACPI_STATUS Status;

908 ACPI_FUNCTION_TRACE (UtGetResourceEndTag);

911 /* Allow a buffer length of zero */

913 if (!ObjDesc->Buffer.Length)
914 {
915 *EndTag = ObjDesc->Buffer.Pointer;
916 return_ACPI_STATUS (AE_OK);
917 }

new/usr/src/common/acpica/components/utilities/utresrc.c 15

919 /* Validate the template and get a pointer to the EndTag */

921 Status = AcpiUtWalkAmlResources (NULL, ObjDesc->Buffer.Pointer,
922 ObjDesc->Buffer.Length, NULL, (void **) EndTag);

924 return_ACPI_STATUS (Status);
925 }

new/usr/src/common/acpica/components/utilities/utstate.c 1

**
 10412 Thu Dec 26 13:49:43 2013
new/usr/src/common/acpica/components/utilities/utstate.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: utstate - state object support procedures
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __UTSTATE_C__

47 #include "acpi.h"
48 #include "accommon.h"

50 #define _COMPONENT ACPI_UTILITIES
51 ACPI_MODULE_NAME ("utstate")

54 /***
55 *
56 * FUNCTION: AcpiUtCreatePkgStateAndPush
57 *
58 * PARAMETERS: Object - Object to be added to the new state
59 * Action - Increment/Decrement

new/usr/src/common/acpica/components/utilities/utstate.c 2

60 * StateList - List the state will be added to
61 *
62 * RETURN: Status
63 *
64 * DESCRIPTION: Create a new state and push it
65 *
66 **/

68 ACPI_STATUS
69 AcpiUtCreatePkgStateAndPush (
70 void *InternalObject,
71 void *ExternalObject,
72 UINT16 Index,
73 ACPI_GENERIC_STATE **StateList)
74 {
75 ACPI_GENERIC_STATE *State;

78 ACPI_FUNCTION_ENTRY ();

81 State = AcpiUtCreatePkgState (InternalObject, ExternalObject, Index);
82 if (!State)
83 {
84 return (AE_NO_MEMORY);
85 }

87 AcpiUtPushGenericState (StateList, State);
88 return (AE_OK);
89 }

92 /***
93 *
94 * FUNCTION: AcpiUtPushGenericState
95 *
96 * PARAMETERS: ListHead - Head of the state stack
97 * State - State object to push
98 *
99 * RETURN: None
100 *
101 * DESCRIPTION: Push a state object onto a state stack
102 *
103 **/

105 void
106 AcpiUtPushGenericState (
107 ACPI_GENERIC_STATE **ListHead,
108 ACPI_GENERIC_STATE *State)
109 {
110 ACPI_FUNCTION_ENTRY ();
110 ACPI_FUNCTION_TRACE (UtPushGenericState);

113 /* Push the state object onto the front of the list (stack) */

115 State->Common.Next = *ListHead;
116 *ListHead = State;
117 return;

118 return_VOID;
118 }

121 /***
122 *

new/usr/src/common/acpica/components/utilities/utstate.c 3

123 * FUNCTION: AcpiUtPopGenericState
124 *
125 * PARAMETERS: ListHead - Head of the state stack
126 *
127 * RETURN: The popped state object
128 *
129 * DESCRIPTION: Pop a state object from a state stack
130 *
131 **/

133 ACPI_GENERIC_STATE *
134 AcpiUtPopGenericState (
135 ACPI_GENERIC_STATE **ListHead)
136 {
137 ACPI_GENERIC_STATE *State;

140 ACPI_FUNCTION_ENTRY ();
141 ACPI_FUNCTION_TRACE (UtPopGenericState);

143 /* Remove the state object at the head of the list (stack) */

145 State = *ListHead;
146 if (State)
147 {
148 /* Update the list head */

150 *ListHead = State->Common.Next;
151 }

153 return (State);
154 return_PTR (State);
154 }

______unchanged_portion_omitted_

191 /***
192 *
193 * FUNCTION: AcpiUtCreateThreadState
194 *
195 * PARAMETERS: None
196 *
197 * RETURN: New Thread State. NULL on failure
198 *
199 * DESCRIPTION: Create a "Thread State" - a flavor of the generic state used
200 * to track per-thread info during method execution
201 *
202 **/

204 ACPI_THREAD_STATE *
205 AcpiUtCreateThreadState (
206 void)
207 {
208 ACPI_GENERIC_STATE *State;

211 ACPI_FUNCTION_ENTRY ();
212 ACPI_FUNCTION_TRACE (UtCreateThreadState);

214 /* Create the generic state object */

216 State = AcpiUtCreateGenericState ();
217 if (!State)
218 {

new/usr/src/common/acpica/components/utilities/utstate.c 4

219 return (NULL);
220 return_PTR (NULL);
220 }

222 /* Init fields specific to the update struct */

224 State->Common.DescriptorType = ACPI_DESC_TYPE_STATE_THREAD;
225 State->Thread.ThreadId = AcpiOsGetThreadId ();

227 /* Check for invalid thread ID - zero is very bad, it will break things */

229 if (!State->Thread.ThreadId)
230 {
231 ACPI_ERROR ((AE_INFO, "Invalid zero ID from AcpiOsGetThreadId"));
232 State->Thread.ThreadId = (ACPI_THREAD_ID) 1;
233 }

235 return ((ACPI_THREAD_STATE *) State);
236 return_PTR ((ACPI_THREAD_STATE *) State);
236 }

239 /***
240 *
241 * FUNCTION: AcpiUtCreateUpdateState
242 *
243 * PARAMETERS: Object - Initial Object to be installed in the state
244 * Action - Update action to be performed
245 *
246 * RETURN: New state object, null on failure
247 *
248 * DESCRIPTION: Create an "Update State" - a flavor of the generic state used
249 * to update reference counts and delete complex objects such
250 * as packages.
251 *
252 **/

254 ACPI_GENERIC_STATE *
255 AcpiUtCreateUpdateState (
256 ACPI_OPERAND_OBJECT *Object,
257 UINT16 Action)
258 {
259 ACPI_GENERIC_STATE *State;

262 ACPI_FUNCTION_ENTRY ();
263 ACPI_FUNCTION_TRACE_PTR (UtCreateUpdateState, Object);

265 /* Create the generic state object */

267 State = AcpiUtCreateGenericState ();
268 if (!State)
269 {
270 return (NULL);
271 return_PTR (NULL);
271 }

273 /* Init fields specific to the update struct */

275 State->Common.DescriptorType = ACPI_DESC_TYPE_STATE_UPDATE;
276 State->Update.Object = Object;
277 State->Update.Value = Action;
278 return (State);

280 return_PTR (State);

new/usr/src/common/acpica/components/utilities/utstate.c 5

279 }

282 /***
283 *
284 * FUNCTION: AcpiUtCreatePkgState
285 *
286 * PARAMETERS: Object - Initial Object to be installed in the state
287 * Action - Update action to be performed
288 *
289 * RETURN: New state object, null on failure
290 *
291 * DESCRIPTION: Create a "Package State"
292 *
293 **/

295 ACPI_GENERIC_STATE *
296 AcpiUtCreatePkgState (
297 void *InternalObject,
298 void *ExternalObject,
299 UINT16 Index)
300 {
301 ACPI_GENERIC_STATE *State;

304 ACPI_FUNCTION_ENTRY ();
306 ACPI_FUNCTION_TRACE_PTR (UtCreatePkgState, InternalObject);

307 /* Create the generic state object */

309 State = AcpiUtCreateGenericState ();
310 if (!State)
311 {
312 return (NULL);
314 return_PTR (NULL);
313 }

315 /* Init fields specific to the update struct */

317 State->Common.DescriptorType = ACPI_DESC_TYPE_STATE_PACKAGE;
318 State->Pkg.SourceObject = (ACPI_OPERAND_OBJECT *) InternalObject;
319 State->Pkg.DestObject = ExternalObject;
320 State->Pkg.Index= Index;
321 State->Pkg.NumPackages = 1;
322 return (State);

325 return_PTR (State);
323 }

326 /***
327 *
328 * FUNCTION: AcpiUtCreateControlState
329 *
330 * PARAMETERS: None
331 *
332 * RETURN: New state object, null on failure
333 *
334 * DESCRIPTION: Create a "Control State" - a flavor of the generic state used
335 * to support nested IF/WHILE constructs in the AML.
336 *
337 **/

339 ACPI_GENERIC_STATE *
340 AcpiUtCreateControlState (

new/usr/src/common/acpica/components/utilities/utstate.c 6

341 void)
342 {
343 ACPI_GENERIC_STATE *State;

346 ACPI_FUNCTION_ENTRY ();
349 ACPI_FUNCTION_TRACE (UtCreateControlState);

349 /* Create the generic state object */

351 State = AcpiUtCreateGenericState ();
352 if (!State)
353 {
354 return (NULL);
357 return_PTR (NULL);
355 }

357 /* Init fields specific to the control struct */

359 State->Common.DescriptorType = ACPI_DESC_TYPE_STATE_CONTROL;
360 State->Common.State = ACPI_CONTROL_CONDITIONAL_EXECUTING;
361 return (State);

365 return_PTR (State);
362 }

365 /***
366 *
367 * FUNCTION: AcpiUtDeleteGenericState
368 *
369 * PARAMETERS: State - The state object to be deleted
370 *
371 * RETURN: None
372 *
373 * DESCRIPTION: Release a state object to the state cache. NULL state objects
374 * are ignored.
375 *
376 **/

378 void
379 AcpiUtDeleteGenericState (
380 ACPI_GENERIC_STATE *State)
381 {
382 ACPI_FUNCTION_ENTRY ();
386 ACPI_FUNCTION_TRACE (UtDeleteGenericState);

385 /* Ignore null state */

387 if (State)
388 {
389 (void) AcpiOsReleaseObject (AcpiGbl_StateCache, State);
390 }
391 return;
395 return_VOID;
392 }

new/usr/src/common/acpica/components/utilities/utstring.c 1

**
 19423 Thu Dec 26 13:49:44 2013
new/usr/src/common/acpica/components/utilities/utstring.c
update to acpica-unix2-20130927
acpica-unix2-20130823
**

1 /***
2 *
3 * Module Name: utstring - Common functions for strings and characters
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __UTSTRING_C__

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acnamesp.h"

52 #define _COMPONENT ACPI_UTILITIES
53 ACPI_MODULE_NAME ("utstring")

56 /*
57 * Non-ANSI C library functions - strlwr, strupr, stricmp, and a 64-bit
58 * version of strtoul.
59 */

new/usr/src/common/acpica/components/utilities/utstring.c 2

61 #ifdef ACPI_ASL_COMPILER
62 /***
63 *
64 * FUNCTION: AcpiUtStrlwr (strlwr)
65 *
66 * PARAMETERS: SrcString - The source string to convert
67 *
68 * RETURN: None
69 *
70 * DESCRIPTION: Convert string to lowercase
71 *
72 * NOTE: This is not a POSIX function, so it appears here, not in utclib.c
73 *
74 **/

76 void
77 AcpiUtStrlwr (
78 char *SrcString)
79 {
80 char *String;

83 ACPI_FUNCTION_ENTRY ();

86 if (!SrcString)
87 {
88 return;
89 }

91 /* Walk entire string, lowercasing the letters */

93 for (String = SrcString; *String; String++)
94 {
95 *String = (char) ACPI_TOLOWER (*String);
96 }

98 return;
99 }

102 /**
103 *
104 * FUNCTION: AcpiUtStricmp (stricmp)
105 *
106 * PARAMETERS: String1 - first string to compare
107 * String2 - second string to compare
108 *
109 * RETURN: int that signifies string relationship. Zero means strings
110 * are equal.
111 *
112 * DESCRIPTION: Implementation of the non-ANSI stricmp function (compare
113 * strings with no case sensitivity)
114 *
115 **/

117 int
118 AcpiUtStricmp (
119 char *String1,
120 char *String2)
121 {
122 int c1;
123 int c2;

126 do

new/usr/src/common/acpica/components/utilities/utstring.c 3

127 {
128 c1 = tolower ((int) *String1);
129 c2 = tolower ((int) *String2);

131 String1++;
132 String2++;
133 }
134 while ((c1 == c2) && (c1));

136 return (c1 - c2);
137 }
138 #endif

141 /***
142 *
143 * FUNCTION: AcpiUtStrupr (strupr)
144 *
145 * PARAMETERS: SrcString - The source string to convert
146 *
147 * RETURN: None
148 *
149 * DESCRIPTION: Convert string to uppercase
150 *
151 * NOTE: This is not a POSIX function, so it appears here, not in utclib.c
152 *
153 **/

155 void
156 AcpiUtStrupr (
157 char *SrcString)
158 {
159 char *String;

162 ACPI_FUNCTION_ENTRY ();

165 if (!SrcString)
166 {
167 return;
168 }

170 /* Walk entire string, uppercasing the letters */

172 for (String = SrcString; *String; String++)
173 {
174 *String = (char) ACPI_TOUPPER (*String);
175 }

177 return;
178 }

181 /***
182 *
183 * FUNCTION: AcpiUtStrtoul64
184 *
185 * PARAMETERS: String - Null terminated string
186 * Base - Radix of the string: 16 or ACPI_ANY_BASE;
187 * ACPI_ANY_BASE means ’in behalf of ToInteger’
188 * RetInteger - Where the converted integer is returned
189 *
190 * RETURN: Status and Converted value
191 *
192 * DESCRIPTION: Convert a string into an unsigned value. Performs either a

new/usr/src/common/acpica/components/utilities/utstring.c 4

193 * 32-bit or 64-bit conversion, depending on the current mode
194 * of the interpreter.
195 * NOTE: Does not support Octal strings, not needed.
196 *
197 **/

199 ACPI_STATUS
200 AcpiUtStrtoul64 (
201 char *String,
202 UINT32 Base,
203 UINT64 *RetInteger)
204 {
205 UINT32 ThisDigit = 0;
206 UINT64 ReturnValue = 0;
207 UINT64 Quotient;
208 UINT64 Dividend;
209 UINT32 ToIntegerOp = (Base == ACPI_ANY_BASE);
210 UINT32 Mode32 = (AcpiGbl_IntegerByteWidth == 4);
211 UINT8 ValidDigits = 0;
212 UINT8 SignOf0x = 0;
213 UINT8 Term = 0;

216 ACPI_FUNCTION_TRACE_STR (UtStroul64, String);

219 switch (Base)
220 {
221 case ACPI_ANY_BASE:
222 case 16:

224 break;

226 default:

228 /* Invalid Base */

230 return_ACPI_STATUS (AE_BAD_PARAMETER);
231 }

233 if (!String)
234 {
235 goto ErrorExit;
236 }

238 /* Skip over any white space in the buffer */

240 while ((*String) && (ACPI_IS_SPACE (*String) || *String == ’\t’))
241 {
242 String++;
243 }

245 if (ToIntegerOp)
246 {
247 /*
248 * Base equal to ACPI_ANY_BASE means ’ToInteger operation case’.
249 * We need to determine if it is decimal or hexadecimal.
250 */
251 if ((*String == ’0’) && (ACPI_TOLOWER (*(String + 1)) == ’x’))
252 {
253 SignOf0x = 1;
254 Base = 16;

256 /* Skip over the leading ’0x’ */
257 String += 2;
258 }

new/usr/src/common/acpica/components/utilities/utstring.c 5

259 else
260 {
261 Base = 10;
262 }
263 }

265 /* Any string left? Check that ’0x’ is not followed by white space. */

267 if (!(*String) || ACPI_IS_SPACE (*String) || *String == ’\t’)
268 {
269 if (ToIntegerOp)
270 {
271 goto ErrorExit;
272 }
273 else
274 {
275 goto AllDone;
276 }
277 }

279 /*
280 * Perform a 32-bit or 64-bit conversion, depending upon the current
281 * execution mode of the interpreter
282 */
283 Dividend = (Mode32) ? ACPI_UINT32_MAX : ACPI_UINT64_MAX;

285 /* Main loop: convert the string to a 32- or 64-bit integer */

287 while (*String)
288 {
289 if (ACPI_IS_DIGIT (*String))
290 {
291 /* Convert ASCII 0-9 to Decimal value */

293 ThisDigit = ((UINT8) *String) - ’0’;
294 }
295 else if (Base == 10)
296 {
297 /* Digit is out of range; possible in ToInteger case only */

299 Term = 1;
300 }
301 else
302 {
303 ThisDigit = (UINT8) ACPI_TOUPPER (*String);
304 if (ACPI_IS_XDIGIT ((char) ThisDigit))
305 {
306 /* Convert ASCII Hex char to value */

308 ThisDigit = ThisDigit - ’A’ + 10;
309 }
310 else
311 {
312 Term = 1;
313 }
314 }

316 if (Term)
317 {
318 if (ToIntegerOp)
319 {
320 goto ErrorExit;
321 }
322 else
323 {
324 break;

new/usr/src/common/acpica/components/utilities/utstring.c 6

325 }
326 }
327 else if ((ValidDigits == 0) && (ThisDigit == 0) && !SignOf0x)
328 {
329 /* Skip zeros */
330 String++;
331 continue;
332 }

334 ValidDigits++;

336 if (SignOf0x && ((ValidDigits > 16) || ((ValidDigits > 8) && Mode32)))
337 {
338 /*
339 * This is ToInteger operation case.
340 * No any restrictions for string-to-integer conversion,
341 * see ACPI spec.
342 */
343 goto ErrorExit;
344 }

346 /* Divide the digit into the correct position */

348 (void) AcpiUtShortDivide ((Dividend - (UINT64) ThisDigit),
349 Base, &Quotient, NULL);

351 if (ReturnValue > Quotient)
352 {
353 if (ToIntegerOp)
354 {
355 goto ErrorExit;
356 }
357 else
358 {
359 break;
360 }
361 }

363 ReturnValue *= Base;
364 ReturnValue += ThisDigit;
365 String++;
366 }

368 /* All done, normal exit */

370 AllDone:

372 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Converted value: %8.8X%8.8X\n",
373 ACPI_FORMAT_UINT64 (ReturnValue)));

375 *RetInteger = ReturnValue;
376 return_ACPI_STATUS (AE_OK);

379 ErrorExit:
380 /* Base was set/validated above */

382 if (Base == 10)
383 {
384 return_ACPI_STATUS (AE_BAD_DECIMAL_CONSTANT);
385 }
386 else
387 {
388 return_ACPI_STATUS (AE_BAD_HEX_CONSTANT);
389 }
390 }

new/usr/src/common/acpica/components/utilities/utstring.c 7

393 /***
394 *
395 * FUNCTION: AcpiUtPrintString
396 *
397 * PARAMETERS: String - Null terminated ASCII string
398 * MaxLength - Maximum output length. Used to constrain the
399 * length of strings during debug output only.
400 *
401 * RETURN: None
402 *
403 * DESCRIPTION: Dump an ASCII string with support for ACPI-defined escape
404 * sequences.
405 *
406 **/

408 void
409 AcpiUtPrintString (
410 char *String,
411 UINT16 MaxLength)
412 {
413 UINT32 i;

416 if (!String)
417 {
418 AcpiOsPrintf ("<\"NULL STRING PTR\">");
419 return;
420 }

422 AcpiOsPrintf ("\"");
423 for (i = 0; String[i] && (i < MaxLength); i++)
424 {
425 /* Escape sequences */

427 switch (String[i])
428 {
429 case 0x07:

431 AcpiOsPrintf ("\\a"); /* BELL */
432 break;

434 case 0x08:

436 AcpiOsPrintf ("\\b"); /* BACKSPACE */
437 break;

439 case 0x0C:

441 AcpiOsPrintf ("\\f"); /* FORMFEED */
442 break;

444 case 0x0A:

446 AcpiOsPrintf ("\\n"); /* LINEFEED */
447 break;

449 case 0x0D:

451 AcpiOsPrintf ("\\r"); /* CARRIAGE RETURN*/
452 break;

454 case 0x09:

456 AcpiOsPrintf ("\\t"); /* HORIZONTAL TAB */

new/usr/src/common/acpica/components/utilities/utstring.c 8

457 break;

459 case 0x0B:

461 AcpiOsPrintf ("\\v"); /* VERTICAL TAB */
462 break;

464 case ’\’’: /* Single Quote */
465 case ’\"’: /* Double Quote */
466 case ’\\’: /* Backslash */

468 AcpiOsPrintf ("\\%c", (int) String[i]);
469 break;

471 default:

473 /* Check for printable character or hex escape */

475 if (ACPI_IS_PRINT (String[i]))
476 {
477 /* This is a normal character */

479 AcpiOsPrintf ("%c", (int) String[i]);
480 }
481 else
482 {
483 /* All others will be Hex escapes */

485 AcpiOsPrintf ("\\x%2.2X", (INT32) String[i]);
486 }
487 break;
488 }
489 }
490 AcpiOsPrintf ("\"");

492 if (i == MaxLength && String[i])
493 {
494 AcpiOsPrintf ("...");
495 }
496 }

499 /***
500 *
501 * FUNCTION: AcpiUtValidAcpiChar
502 *
503 * PARAMETERS: Char - The character to be examined
504 * Position - Byte position (0-3)
505 *
506 * RETURN: TRUE if the character is valid, FALSE otherwise
507 *
508 * DESCRIPTION: Check for a valid ACPI character. Must be one of:
509 * 1) Upper case alpha
510 * 2) numeric
511 * 3) underscore
512 *
513 * We allow a ’!’ as the last character because of the ASF! table
514 *
515 **/

517 BOOLEAN
518 AcpiUtValidAcpiChar (
519 char Character,
520 UINT32 Position)
521 {

new/usr/src/common/acpica/components/utilities/utstring.c 9

523 if (!((Character >= ’A’ && Character <= ’Z’) ||
524 (Character >= ’0’ && Character <= ’9’) ||
525 (Character == ’_’)))
526 {
527 /* Allow a ’!’ in the last position */

529 if (Character == ’!’ && Position == 3)
530 {
531 return (TRUE);
532 }

534 return (FALSE);
535 }

537 return (TRUE);
538 }

541 /***
542 *
543 * FUNCTION: AcpiUtValidAcpiName
544 *
545 * PARAMETERS: Name - The name to be examined. Does not have to
546 * be NULL terminated string.
547 *
548 * RETURN: TRUE if the name is valid, FALSE otherwise
549 *
550 * DESCRIPTION: Check for a valid ACPI name. Each character must be one of:
551 * 1) Upper case alpha
552 * 2) numeric
553 * 3) underscore
554 *
555 **/

557 BOOLEAN
558 AcpiUtValidAcpiName (
559 char *Name)
560 {
561 UINT32 i;

564 ACPI_FUNCTION_ENTRY ();

567 for (i = 0; i < ACPI_NAME_SIZE; i++)
568 {
569 if (!AcpiUtValidAcpiChar (Name[i], i))
570 {
571 return (FALSE);
572 }
573 }

575 return (TRUE);
576 }

579 /***
580 *
581 * FUNCTION: AcpiUtRepairName
582 *
583 * PARAMETERS: Name - The ACPI name to be repaired
584 *
585 * RETURN: Repaired version of the name
586 *
587 * DESCRIPTION: Repair an ACPI name: Change invalid characters to ’*’ and
588 * return the new name. NOTE: the Name parameter must reside in

new/usr/src/common/acpica/components/utilities/utstring.c 10

589 * read/write memory, cannot be a const.
590 *
591 * An ACPI Name must consist of valid ACPI characters. We will repair the name
592 * if necessary because we don’t want to abort because of this, but we want
593 * all namespace names to be printable. A warning message is appropriate.
594 *
595 * This issue came up because there are in fact machines that exhibit
596 * this problem, and we want to be able to enable ACPI support for them,
597 * even though there are a few bad names.
598 *
599 **/

601 void
602 AcpiUtRepairName (
603 char *Name)
604 {
605 UINT32 i;
606 BOOLEAN FoundBadChar = FALSE;
607 UINT32 OriginalName;

610 ACPI_FUNCTION_NAME (UtRepairName);

613 ACPI_MOVE_NAME (&OriginalName, Name);

615 /* Check each character in the name */

617 for (i = 0; i < ACPI_NAME_SIZE; i++)
618 {
619 if (AcpiUtValidAcpiChar (Name[i], i))
620 {
621 continue;
622 }

624 /*
625 * Replace a bad character with something printable, yet technically
626 * still invalid. This prevents any collisions with existing "good"
627 * names in the namespace.
628 */
629 Name[i] = ’*’;
630 FoundBadChar = TRUE;
631 }

633 if (FoundBadChar)
634 {
635 /* Report warning only if in strict mode or debug mode */

637 if (!AcpiGbl_EnableInterpreterSlack)
638 {
639 ACPI_WARNING ((AE_INFO,
640 "Invalid character(s) in name (0x%.8X), repaired: [%4.4s]",
641 OriginalName, Name));
642 }
643 else
644 {
645 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
646 "Invalid character(s) in name (0x%.8X), repaired: [%4.4s]",
647 OriginalName, Name));
648 }
649 }
650 }

653 #if defined ACPI_ASL_COMPILER || defined ACPI_EXEC_APP
654 /***

new/usr/src/common/acpica/components/utilities/utstring.c 11

655 *
656 * FUNCTION: UtConvertBackslashes
657 *
658 * PARAMETERS: Pathname - File pathname string to be converted
659 *
660 * RETURN: Modifies the input Pathname
661 *
662 * DESCRIPTION: Convert all backslashes (0x5C) to forward slashes (0x2F) within
663 * the entire input file pathname string.
664 *
665 **/

667 void
668 UtConvertBackslashes (
669 char *Pathname)
670 {

672 if (!Pathname)
673 {
674 return;
675 }

677 while (*Pathname)
678 {
679 if (*Pathname == ’\\’)
680 {
681 *Pathname = ’/’;
682 }

684 Pathname++;
685 }
686 }
687 #endif

689 #if defined (ACPI_DEBUGGER) || defined (ACPI_APPLICATION)
690 /***
691 *
692 * FUNCTION: AcpiUtSafeStrcpy, AcpiUtSafeStrcat, AcpiUtSafeStrncat
693 *
694 * PARAMETERS: Adds a "DestSize" parameter to each of the standard string
695 * functions. This is the size of the Destination buffer.
696 *
697 * RETURN: TRUE if the operation would overflow the destination buffer.
698 *
699 * DESCRIPTION: Safe versions of standard Clib string functions. Ensure that
700 * the result of the operation will not overflow the output string
701 * buffer.
702 *
703 * NOTE: These functions are typically only helpful for processing
704 * user input and command lines. For most ACPICA code, the
705 * required buffer length is precisely calculated before buffer
706 * allocation, so the use of these functions is unnecessary.
707 *
708 **/

710 BOOLEAN
711 AcpiUtSafeStrcpy (
712 char *Dest,
713 ACPI_SIZE DestSize,
714 char *Source)
715 {

717 if (ACPI_STRLEN (Source) >= DestSize)
718 {
719 return (TRUE);
720 }

new/usr/src/common/acpica/components/utilities/utstring.c 12

722 ACPI_STRCPY (Dest, Source);
723 return (FALSE);
724 }

726 BOOLEAN
727 AcpiUtSafeStrcat (
728 char *Dest,
729 ACPI_SIZE DestSize,
730 char *Source)
731 {

733 if ((ACPI_STRLEN (Dest) + ACPI_STRLEN (Source)) >= DestSize)
734 {
735 return (TRUE);
736 }

738 ACPI_STRCAT (Dest, Source);
739 return (FALSE);
740 }

742 BOOLEAN
743 AcpiUtSafeStrncat (
744 char *Dest,
745 ACPI_SIZE DestSize,
746 char *Source,
747 ACPI_SIZE MaxTransferLength)
748 {
749 ACPI_SIZE ActualTransferLength;

752 ActualTransferLength = ACPI_MIN (MaxTransferLength, ACPI_STRLEN (Source));

754 if ((ACPI_STRLEN (Dest) + ActualTransferLength) >= DestSize)
755 {
756 return (TRUE);
757 }

759 ACPI_STRNCAT (Dest, Source, MaxTransferLength);
760 return (FALSE);
761 }
762 #endif

new/usr/src/common/acpica/components/utilities/uttrack.c 1

**
 23065 Thu Dec 26 13:49:44 2013
new/usr/src/common/acpica/components/utilities/uttrack.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: uttrack - Memory allocation tracking routines (debug only)
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 /*
45 * These procedures are used for tracking memory leaks in the subsystem, and
46 * they get compiled out when the ACPI_DBG_TRACK_ALLOCATIONS is not set.
47 *
48 * Each memory allocation is tracked via a doubly linked list. Each
49 * element contains the caller’s component, module name, function name, and
50 * line number. AcpiUtAllocate and AcpiUtAllocateZeroed call
51 * AcpiUtTrackAllocation to add an element to the list; deletion
52 * occurs in the body of AcpiUtFree.
53 */

55 #define __UTTRACK_C__

57 #include "acpi.h"
58 #include "accommon.h"

new/usr/src/common/acpica/components/utilities/uttrack.c 2

60 #ifdef ACPI_DBG_TRACK_ALLOCATIONS

62 #define _COMPONENT ACPI_UTILITIES
63 ACPI_MODULE_NAME ("uttrack")

66 /* Local prototypes */

68 static ACPI_DEBUG_MEM_BLOCK *
69 AcpiUtFindAllocation (
70 ACPI_DEBUG_MEM_BLOCK *Allocation);
69 void *Allocation);

72 static ACPI_STATUS
73 AcpiUtTrackAllocation (
74 ACPI_DEBUG_MEM_BLOCK *Address,
75 ACPI_SIZE Size,
76 UINT8 AllocType,
77 UINT32 Component,
78 const char *Module,
79 UINT32 Line);

81 static ACPI_STATUS
82 AcpiUtRemoveAllocation (
83 ACPI_DEBUG_MEM_BLOCK *Address,
84 UINT32 Component,
85 const char *Module,
86 UINT32 Line);

89 /***
90 *
91 * FUNCTION: AcpiUtCreateList
92 *
93 * PARAMETERS: CacheName - Ascii name for the cache
94 * ObjectSize - Size of each cached object
95 * ReturnCache - Where the new cache object is returned
96 *
97 * RETURN: Status
98 *
99 * DESCRIPTION: Create a local memory list for tracking purposed
100 *
101 **/

103 ACPI_STATUS
104 AcpiUtCreateList (
105 char *ListName,
106 UINT16 ObjectSize,
107 ACPI_MEMORY_LIST **ReturnCache)
108 {
109 ACPI_MEMORY_LIST *Cache;

112 Cache = AcpiOsAllocate (sizeof (ACPI_MEMORY_LIST));
113 if (!Cache)
114 {
115 return (AE_NO_MEMORY);
116 }

118 ACPI_MEMSET (Cache, 0, sizeof (ACPI_MEMORY_LIST));

120 Cache->ListName = ListName;
121 Cache->ObjectSize = ObjectSize;

123 *ReturnCache = Cache;

new/usr/src/common/acpica/components/utilities/uttrack.c 3

124 return (AE_OK);
125 }

128 /***
129 *
130 * FUNCTION: AcpiUtAllocateAndTrack
131 *
132 * PARAMETERS: Size - Size of the allocation
133 * Component - Component type of caller
134 * Module - Source file name of caller
135 * Line - Line number of caller
136 *
137 * RETURN: Address of the allocated memory on success, NULL on failure.
138 *
139 * DESCRIPTION: The subsystem’s equivalent of malloc.
140 *
141 **/

143 void *
144 AcpiUtAllocateAndTrack (
145 ACPI_SIZE Size,
146 UINT32 Component,
147 const char *Module,
148 UINT32 Line)
149 {
150 ACPI_DEBUG_MEM_BLOCK *Allocation;
151 ACPI_STATUS Status;

154 /* Check for an inadvertent size of zero bytes */

156 if (!Size)
157 {
158 ACPI_WARNING ((Module, Line,
159 "Attempt to allocate zero bytes, allocating 1 byte"));
160 Size = 1;
161 }

163 Allocation = AcpiOsAllocate (Size + sizeof (ACPI_DEBUG_MEM_HEADER));
153 Allocation = AcpiUtAllocate (Size + sizeof (ACPI_DEBUG_MEM_HEADER),
154 Component, Module, Line);
164 if (!Allocation)
165 {
166 /* Report allocation error */

168 ACPI_WARNING ((Module, Line,
169 "Could not allocate size %u", (UINT32) Size));

171 return (NULL);
172 }

174 Status = AcpiUtTrackAllocation (Allocation, Size,
175 ACPI_MEM_MALLOC, Component, Module, Line);
176 if (ACPI_FAILURE (Status))
177 {
178 AcpiOsFree (Allocation);
179 return (NULL);
180 }

182 AcpiGbl_GlobalList->TotalAllocated++;
183 AcpiGbl_GlobalList->TotalSize += (UINT32) Size;
184 AcpiGbl_GlobalList->CurrentTotalSize += (UINT32) Size;
185 if (AcpiGbl_GlobalList->CurrentTotalSize > AcpiGbl_GlobalList->MaxOccupied)
186 {
187 AcpiGbl_GlobalList->MaxOccupied = AcpiGbl_GlobalList->CurrentTotalSize;

new/usr/src/common/acpica/components/utilities/uttrack.c 4

188 }

190 return ((void *) &Allocation->UserSpace);
191 }

194 /***
195 *
196 * FUNCTION: AcpiUtAllocateZeroedAndTrack
197 *
198 * PARAMETERS: Size - Size of the allocation
199 * Component - Component type of caller
200 * Module - Source file name of caller
201 * Line - Line number of caller
202 *
203 * RETURN: Address of the allocated memory on success, NULL on failure.
204 *
205 * DESCRIPTION: Subsystem equivalent of calloc.
206 *
207 **/

209 void *
210 AcpiUtAllocateZeroedAndTrack (
211 ACPI_SIZE Size,
212 UINT32 Component,
213 const char *Module,
214 UINT32 Line)
215 {
216 ACPI_DEBUG_MEM_BLOCK *Allocation;
217 ACPI_STATUS Status;

220 /* Check for an inadvertent size of zero bytes */

222 if (!Size)
223 {
224 ACPI_WARNING ((Module, Line,
225 "Attempt to allocate zero bytes, allocating 1 byte"));
226 Size = 1;
227 }

229 Allocation = AcpiOsAllocateZeroed (Size + sizeof (ACPI_DEBUG_MEM_HEADER));
206 Allocation = AcpiUtAllocateZeroed (Size + sizeof (ACPI_DEBUG_MEM_HEADER),
207 Component, Module, Line);
230 if (!Allocation)
231 {
232 /* Report allocation error */

234 ACPI_ERROR ((Module, Line,
235 "Could not allocate size %u", (UINT32) Size));
236 return (NULL);
237 }

239 Status = AcpiUtTrackAllocation (Allocation, Size,
240 ACPI_MEM_CALLOC, Component, Module, Line);
241 if (ACPI_FAILURE (Status))
242 {
243 AcpiOsFree (Allocation);
244 return (NULL);
245 }

247 AcpiGbl_GlobalList->TotalAllocated++;
248 AcpiGbl_GlobalList->TotalSize += (UINT32) Size;
249 AcpiGbl_GlobalList->CurrentTotalSize += (UINT32) Size;
250 if (AcpiGbl_GlobalList->CurrentTotalSize > AcpiGbl_GlobalList->MaxOccupied)
251 {

new/usr/src/common/acpica/components/utilities/uttrack.c 5

252 AcpiGbl_GlobalList->MaxOccupied = AcpiGbl_GlobalList->CurrentTotalSize;
253 }

255 return ((void *) &Allocation->UserSpace);
256 }

______unchanged_portion_omitted_

315 /***
316 *
317 * FUNCTION: AcpiUtFindAllocation
318 *
319 * PARAMETERS: Allocation - Address of allocated memory
320 *
321 * RETURN: Three cases:
322 * 1) List is empty, NULL is returned.
323 * 2) Element was found. Returns Allocation parameter.
324 * 3) Element was not found. Returns position where it should be
325 * inserted into the list.
299 * RETURN: A list element if found; NULL otherwise.
326 *
327 * DESCRIPTION: Searches for an element in the global allocation tracking list.
328 * If the element is not found, returns the location within the
329 * list where the element should be inserted.
330 *
331 * Note: The list is ordered by larger-to-smaller addresses.
332 *
333 * This global list is used to detect memory leaks in ACPICA as
334 * well as other issues such as an attempt to release the same
335 * internal object more than once. Although expensive as far
336 * as cpu time, this list is much more helpful for finding these
337 * types of issues than using memory leak detectors outside of
338 * the ACPICA code.
339 *
340 **/

342 static ACPI_DEBUG_MEM_BLOCK *
343 AcpiUtFindAllocation (
344 ACPI_DEBUG_MEM_BLOCK *Allocation)
307 void *Allocation)
345 {
346 ACPI_DEBUG_MEM_BLOCK *Element;

312 ACPI_FUNCTION_ENTRY ();

349 Element = AcpiGbl_GlobalList->ListHead;
350 if (!Element)
351 {
352 return (NULL);
353 }

355 /*
356 * Search for the address.
357 *
358 * Note: List is ordered by larger-to-smaller addresses, on the
359 * assumption that a new allocation usually has a larger address
360 * than previous allocations.
361 */
362 while (Element > Allocation)
363 {
364 /* Check for end-of-list */
317 /* Search for the address. */

366 if (!Element->Next)

new/usr/src/common/acpica/components/utilities/uttrack.c 6

319 while (Element)
367 {
321 if (Element == Allocation)
322 {
368 return (Element);
369 }

371 Element = Element->Next;
372 }

374 if (Element == Allocation)
375 {
376 return (Element);
377 }

379 return (Element->Previous);
329 return (NULL);
380 }

383 /***
384 *
385 * FUNCTION: AcpiUtTrackAllocation
386 *
387 * PARAMETERS: Allocation - Address of allocated memory
388 * Size - Size of the allocation
389 * AllocType - MEM_MALLOC or MEM_CALLOC
390 * Component - Component type of caller
391 * Module - Source file name of caller
392 * Line - Line number of caller
393 *
394 * RETURN: Status
344 * RETURN: None.
395 *
396 * DESCRIPTION: Inserts an element into the global allocation tracking list.
397 *
398 **/

400 static ACPI_STATUS
401 AcpiUtTrackAllocation (
402 ACPI_DEBUG_MEM_BLOCK *Allocation,
403 ACPI_SIZE Size,
404 UINT8 AllocType,
405 UINT32 Component,
406 const char *Module,
407 UINT32 Line)
408 {
409 ACPI_MEMORY_LIST *MemList;
410 ACPI_DEBUG_MEM_BLOCK *Element;
411 ACPI_STATUS Status = AE_OK;

414 ACPI_FUNCTION_TRACE_PTR (UtTrackAllocation, Allocation);

417 if (AcpiGbl_DisableMemTracking)
418 {
419 return_ACPI_STATUS (AE_OK);
420 }

422 MemList = AcpiGbl_GlobalList;
423 Status = AcpiUtAcquireMutex (ACPI_MTX_MEMORY);
424 if (ACPI_FAILURE (Status))
425 {
426 return_ACPI_STATUS (Status);
427 }

new/usr/src/common/acpica/components/utilities/uttrack.c 7

429 /*
430 * Search the global list for this address to make sure it is not
431 * already present. This will catch several kinds of problems.
380 * Search list for this address to make sure it is not already on the list.
381 * This will catch several kinds of problems.
432 */
433 Element = AcpiUtFindAllocation (Allocation);
434 if (Element == Allocation)
384 if (Element)
435 {
436 ACPI_ERROR ((AE_INFO,
437 "UtTrackAllocation: Allocation (%p) already present in global list!"
387 "UtTrackAllocation: Allocation already present in list! (%p)",
438 Allocation));

390 ACPI_ERROR ((AE_INFO, "Element %p Address %p",
391 Element, Allocation));

439 goto UnlockAndExit;
440 }

442 /* Fill in the instance data */
396 /* Fill in the instance data. */

444 Allocation->Size = (UINT32) Size;
445 Allocation->AllocType = AllocType;
446 Allocation->Component = Component;
447 Allocation->Line = Line;

449 ACPI_STRNCPY (Allocation->Module, Module, ACPI_MAX_MODULE_NAME);
450 Allocation->Module[ACPI_MAX_MODULE_NAME-1] = 0;

452 if (!Element)
453 {
454 /* Insert at list head */

456 if (MemList->ListHead)
457 {
458 ((ACPI_DEBUG_MEM_BLOCK *)(MemList->ListHead))->Previous = Allocation
459 }

461 Allocation->Next = MemList->ListHead;
462 Allocation->Previous = NULL;

464 MemList->ListHead = Allocation;
465 }
466 else
467 {
468 /* Insert after element */

470 Allocation->Next = Element->Next;
471 Allocation->Previous = Element;

473 if (Element->Next)
474 {
475 (Element->Next)->Previous = Allocation;
476 }

478 Element->Next = Allocation;
479 }

482 UnlockAndExit:
483 Status = AcpiUtReleaseMutex (ACPI_MTX_MEMORY);
484 return_ACPI_STATUS (Status);

new/usr/src/common/acpica/components/utilities/uttrack.c 8

485 }

488 /***
489 *
490 * FUNCTION: AcpiUtRemoveAllocation
491 *
492 * PARAMETERS: Allocation - Address of allocated memory
493 * Component - Component type of caller
494 * Module - Source file name of caller
495 * Line - Line number of caller
496 *
497 * RETURN: Status
434 * RETURN:
498 *
499 * DESCRIPTION: Deletes an element from the global allocation tracking list.
500 *
501 **/

503 static ACPI_STATUS
504 AcpiUtRemoveAllocation (
505 ACPI_DEBUG_MEM_BLOCK *Allocation,
506 UINT32 Component,
507 const char *Module,
508 UINT32 Line)
509 {
510 ACPI_MEMORY_LIST *MemList;
511 ACPI_STATUS Status;

514 ACPI_FUNCTION_NAME (UtRemoveAllocation);
451 ACPI_FUNCTION_TRACE (UtRemoveAllocation);

517 if (AcpiGbl_DisableMemTracking)
518 {
519 return (AE_OK);
456 return_ACPI_STATUS (AE_OK);
520 }

522 MemList = AcpiGbl_GlobalList;
523 if (NULL == MemList->ListHead)
524 {
525 /* No allocations! */

527 ACPI_ERROR ((Module, Line,
528 "Empty allocation list, nothing to free!"));

530 return (AE_OK);
467 return_ACPI_STATUS (AE_OK);
531 }

533 Status = AcpiUtAcquireMutex (ACPI_MTX_MEMORY);
534 if (ACPI_FAILURE (Status))
535 {
536 return (Status);
473 return_ACPI_STATUS (Status);
537 }

539 /* Unlink */

541 if (Allocation->Previous)
542 {
543 (Allocation->Previous)->Next = Allocation->Next;
544 }
545 else

new/usr/src/common/acpica/components/utilities/uttrack.c 9

546 {
547 MemList->ListHead = Allocation->Next;
548 }

550 if (Allocation->Next)
551 {
552 (Allocation->Next)->Previous = Allocation->Previous;
553 }

555 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS, "Freeing %p, size 0%X\n",
556 &Allocation->UserSpace, Allocation->Size));

558 /* Mark the segment as deleted */

560 ACPI_MEMSET (&Allocation->UserSpace, 0xEA, Allocation->Size);

496 ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS, "Freeing size 0%X\n",
497 Allocation->Size));

562 Status = AcpiUtReleaseMutex (ACPI_MTX_MEMORY);
563 return (Status);
500 return_ACPI_STATUS (Status);
564 }

567 /***
568 *
569 * FUNCTION: AcpiUtDumpAllocationInfo
570 *
571 * PARAMETERS: None
508 * PARAMETERS:
572 *
573 * RETURN: None
574 *
575 * DESCRIPTION: Print some info about the outstanding allocations.
576 *
577 **/

579 void
580 AcpiUtDumpAllocationInfo (
581 void)
582 {
583 /*
584 ACPI_MEMORY_LIST *MemList;
585 */

587 ACPI_FUNCTION_TRACE (UtDumpAllocationInfo);

589 /*
590 ACPI_DEBUG_PRINT (TRACE_ALLOCATIONS | TRACE_TABLES,
591 ("%30s: %4d (%3d Kb)\n", "Current allocations",
592 MemList->CurrentCount,
593 ROUND_UP_TO_1K (MemList->CurrentSize)));

595 ACPI_DEBUG_PRINT (TRACE_ALLOCATIONS | TRACE_TABLES,
596 ("%30s: %4d (%3d Kb)\n", "Max concurrent allocations",
597 MemList->MaxConcurrentCount,
598 ROUND_UP_TO_1K (MemList->MaxConcurrentSize)));

601 ACPI_DEBUG_PRINT (TRACE_ALLOCATIONS | TRACE_TABLES,
602 ("%30s: %4d (%3d Kb)\n", "Total (all) internal objects",
603 RunningObjectCount,
604 ROUND_UP_TO_1K (RunningObjectSize)));

606 ACPI_DEBUG_PRINT (TRACE_ALLOCATIONS | TRACE_TABLES,

new/usr/src/common/acpica/components/utilities/uttrack.c 10

607 ("%30s: %4d (%3d Kb)\n", "Total (all) allocations",
608 RunningAllocCount,
609 ROUND_UP_TO_1K (RunningAllocSize)));

612 ACPI_DEBUG_PRINT (TRACE_ALLOCATIONS | TRACE_TABLES,
613 ("%30s: %4d (%3d Kb)\n", "Current Nodes",
614 AcpiGbl_CurrentNodeCount,
615 ROUND_UP_TO_1K (AcpiGbl_CurrentNodeSize)));

617 ACPI_DEBUG_PRINT (TRACE_ALLOCATIONS | TRACE_TABLES,
618 ("%30s: %4d (%3d Kb)\n", "Max Nodes",
619 AcpiGbl_MaxConcurrentNodeCount,
620 ROUND_UP_TO_1K ((AcpiGbl_MaxConcurrentNodeCount *
621 sizeof (ACPI_NAMESPACE_NODE)))));
622 */
623 return_VOID;
624 }

627 /***
628 *
629 * FUNCTION: AcpiUtDumpAllocations
630 *
631 * PARAMETERS: Component - Component(s) to dump info for.
632 * Module - Module to dump info for. NULL means all.
633 *
634 * RETURN: None
635 *
636 * DESCRIPTION: Print a list of all outstanding allocations.
637 *
638 **/

640 void
641 AcpiUtDumpAllocations (
642 UINT32 Component,
643 const char *Module)
644 {
645 ACPI_DEBUG_MEM_BLOCK *Element;
646 ACPI_DESCRIPTOR *Descriptor;
647 UINT32 NumOutstanding = 0;
648 UINT8 DescriptorType;

651 ACPI_FUNCTION_TRACE (UtDumpAllocations);

654 if (AcpiGbl_DisableMemTracking)
655 {
656 return_VOID;
593 return;
657 }

659 /*
660 * Walk the allocation list.
661 */
662 if (ACPI_FAILURE (AcpiUtAcquireMutex (ACPI_MTX_MEMORY)))
663 {
664 return_VOID;
601 return;
665 }

667 Element = AcpiGbl_GlobalList->ListHead;
668 while (Element)
669 {
670 if ((Element->Component & Component) &&

new/usr/src/common/acpica/components/utilities/uttrack.c 11

671 ((Module == NULL) || (0 == ACPI_STRCMP (Module, Element->Module))))
672 {
673 Descriptor = ACPI_CAST_PTR (ACPI_DESCRIPTOR, &Element->UserSpace);

675 if (Element->Size < sizeof (ACPI_COMMON_DESCRIPTOR))
676 {
677 AcpiOsPrintf ("%p Length 0x%04X %9.9s-%u "
678 "[Not a Descriptor - too small]\n",
679 Descriptor, Element->Size, Element->Module,
680 Element->Line);
681 }
682 else
683 {
684 /* Ignore allocated objects that are in a cache */

686 if (ACPI_GET_DESCRIPTOR_TYPE (Descriptor) != ACPI_DESC_TYPE_CACH
687 {
688 AcpiOsPrintf ("%p Length 0x%04X %9.9s-%u [%s] ",
689 Descriptor, Element->Size, Element->Module,
690 Element->Line, AcpiUtGetDescriptorName (Descriptor));

692 /* Validate the descriptor type using Type field and length

694 DescriptorType = 0; /* Not a valid descriptor type */

696 switch (ACPI_GET_DESCRIPTOR_TYPE (Descriptor))
697 {
698 case ACPI_DESC_TYPE_OPERAND:

700 if (Element->Size == sizeof (ACPI_OPERAND_OBJECT))
636 if (Element->Size == sizeof (ACPI_DESC_TYPE_OPERAND))
701 {
702 DescriptorType = ACPI_DESC_TYPE_OPERAND;
703 }
704 break;

706 case ACPI_DESC_TYPE_PARSER:

708 if (Element->Size == sizeof (ACPI_PARSE_OBJECT))
643 if (Element->Size == sizeof (ACPI_DESC_TYPE_PARSER))
709 {
710 DescriptorType = ACPI_DESC_TYPE_PARSER;
711 }
712 break;

714 case ACPI_DESC_TYPE_NAMED:

716 if (Element->Size == sizeof (ACPI_NAMESPACE_NODE))
650 if (Element->Size == sizeof (ACPI_DESC_TYPE_NAMED))
717 {
718 DescriptorType = ACPI_DESC_TYPE_NAMED;
719 }
720 break;

722 default:

724 break;
725 }

727 /* Display additional info for the major descriptor types */

729 switch (DescriptorType)
730 {
731 case ACPI_DESC_TYPE_OPERAND:

733 AcpiOsPrintf ("%12.12s RefCount 0x%04X\n",

new/usr/src/common/acpica/components/utilities/uttrack.c 12

734 AcpiUtGetTypeName (Descriptor->Object.Common.Type),
735 Descriptor->Object.Common.ReferenceCount);
736 break;

738 case ACPI_DESC_TYPE_PARSER:

740 AcpiOsPrintf ("AmlOpcode 0x%04hX\n",
741 Descriptor->Op.Asl.AmlOpcode);
742 break;

744 case ACPI_DESC_TYPE_NAMED:

746 AcpiOsPrintf ("%4.4s\n",
747 AcpiUtGetNodeName (&Descriptor->Node));
748 break;

750 default:

752 AcpiOsPrintf ("\n");
753 break;
754 }
755 }
756 }

758 NumOutstanding++;
759 }

761 Element = Element->Next;
762 }

764 (void) AcpiUtReleaseMutex (ACPI_MTX_MEMORY);

766 /* Print summary */

768 if (!NumOutstanding)
769 {
770 ACPI_INFO ((AE_INFO, "No outstanding allocations"));
771 }
772 else
773 {
774 ACPI_ERROR ((AE_INFO, "%u(0x%X) Outstanding allocations",
775 NumOutstanding, NumOutstanding));
776 }

778 return_VOID;
779 }

781 #endif /* ACPI_DBG_TRACK_ALLOCATIONS */

new/usr/src/common/acpica/components/utilities/utxface.c 1

**
 18241 Thu Dec 26 13:49:44 2013
new/usr/src/common/acpica/components/utilities/utxface.c
update to acpica-unix2-20131115
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: utxface - External interfaces, miscellaneous utility functions
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __UTXFACE_C__
46 #define EXPORT_ACPI_INTERFACES

48 #include "acpi.h"
49 #include "accommon.h"
50 #include "acdebug.h"

52 #define _COMPONENT ACPI_UTILITIES
53 ACPI_MODULE_NAME ("utxface")

56 /***
57 *
58 * FUNCTION: AcpiTerminate

new/usr/src/common/acpica/components/utilities/utxface.c 2

59 *
60 * PARAMETERS: None
61 *
62 * RETURN: Status
63 *
64 * DESCRIPTION: Shutdown the ACPICA subsystem and release all resources.
65 *
66 **/

68 ACPI_STATUS
69 AcpiTerminate (
70 void)
71 {
72 ACPI_STATUS Status;

75 ACPI_FUNCTION_TRACE (AcpiTerminate);

78 /* Just exit if subsystem is already shutdown */

80 if (AcpiGbl_Shutdown)
81 {
82 ACPI_ERROR ((AE_INFO, "ACPI Subsystem is already terminated"));
83 return_ACPI_STATUS (AE_OK);
84 }

86 /* Subsystem appears active, go ahead and shut it down */

88 AcpiGbl_Shutdown = TRUE;
89 AcpiGbl_StartupFlags = 0;
90 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Shutting down ACPI Subsystem\n"));

92 /* Terminate the AML Debugger if present */

94 ACPI_DEBUGGER_EXEC (AcpiGbl_DbTerminateThreads = TRUE);

96 /* Shutdown and free all resources */

98 AcpiUtSubsystemShutdown ();

100 /* Free the mutex objects */

102 AcpiUtMutexTerminate ();

105 #ifdef ACPI_DEBUGGER

107 /* Shut down the debugger */

109 AcpiDbTerminate ();
110 #endif

112 /* Now we can shutdown the OS-dependent layer */

114 Status = AcpiOsTerminate ();
115 return_ACPI_STATUS (Status);
116 }

118 ACPI_EXPORT_SYMBOL_INIT (AcpiTerminate)

121 #ifndef ACPI_ASL_COMPILER
122 /***
123 *
124 * FUNCTION: AcpiSubsystemStatus

new/usr/src/common/acpica/components/utilities/utxface.c 3

125 *
126 * PARAMETERS: None
127 *
128 * RETURN: Status of the ACPI subsystem
129 *
130 * DESCRIPTION: Other drivers that use the ACPI subsystem should call this
131 * before making any other calls, to ensure the subsystem
132 * initialized successfully.
133 *
134 **/

136 ACPI_STATUS
137 AcpiSubsystemStatus (
138 void)
139 {

141 if (AcpiGbl_StartupFlags & ACPI_INITIALIZED_OK)
142 {
143 return (AE_OK);
144 }
145 else
146 {
147 return (AE_ERROR);
148 }
149 }

151 ACPI_EXPORT_SYMBOL (AcpiSubsystemStatus)

154 /***
155 *
156 * FUNCTION: AcpiGetSystemInfo
157 *
158 * PARAMETERS: OutBuffer - A buffer to receive the resources for the
159 * device
160 *
161 * RETURN: Status - the status of the call
162 *
163 * DESCRIPTION: This function is called to get information about the current
164 * state of the ACPI subsystem. It will return system information
165 * in the OutBuffer.
166 *
167 * If the function fails an appropriate status will be returned
168 * and the value of OutBuffer is undefined.
169 *
170 **/

172 ACPI_STATUS
173 AcpiGetSystemInfo (
174 ACPI_BUFFER *OutBuffer)
175 {
176 ACPI_SYSTEM_INFO *InfoPtr;
177 ACPI_STATUS Status;

180 ACPI_FUNCTION_TRACE (AcpiGetSystemInfo);

183 /* Parameter validation */

185 Status = AcpiUtValidateBuffer (OutBuffer);
186 if (ACPI_FAILURE (Status))
187 {
188 return_ACPI_STATUS (Status);
189 }

new/usr/src/common/acpica/components/utilities/utxface.c 4

191 /* Validate/Allocate/Clear caller buffer */

193 Status = AcpiUtInitializeBuffer (OutBuffer, sizeof (ACPI_SYSTEM_INFO));
194 if (ACPI_FAILURE (Status))
195 {
196 return_ACPI_STATUS (Status);
197 }

199 /*
200 * Populate the return buffer
201 */
202 InfoPtr = (ACPI_SYSTEM_INFO *) OutBuffer->Pointer;

204 InfoPtr->AcpiCaVersion = ACPI_CA_VERSION;

206 /* System flags (ACPI capabilities) */

208 InfoPtr->Flags = ACPI_SYS_MODE_ACPI;

210 /* Timer resolution - 24 or 32 bits */

212 if (AcpiGbl_FADT.Flags & ACPI_FADT_32BIT_TIMER)
213 {
214 InfoPtr->TimerResolution = 24;
215 }
216 else
217 {
218 InfoPtr->TimerResolution = 32;
219 }

221 /* Clear the reserved fields */

223 InfoPtr->Reserved1 = 0;
224 InfoPtr->Reserved2 = 0;

226 /* Current debug levels */

228 InfoPtr->DebugLayer = AcpiDbgLayer;
229 InfoPtr->DebugLevel = AcpiDbgLevel;

231 return_ACPI_STATUS (AE_OK);
232 }

234 ACPI_EXPORT_SYMBOL (AcpiGetSystemInfo)

237 /***
238 *
239 * FUNCTION: AcpiGetStatistics
240 *
241 * PARAMETERS: Stats - Where the statistics are returned
242 *
243 * RETURN: Status - the status of the call
244 *
245 * DESCRIPTION: Get the contents of the various system counters
246 *
247 **/

249 ACPI_STATUS
250 AcpiGetStatistics (
251 ACPI_STATISTICS *Stats)
252 {
253 ACPI_FUNCTION_TRACE (AcpiGetStatistics);

256 /* Parameter validation */

new/usr/src/common/acpica/components/utilities/utxface.c 5

258 if (!Stats)
259 {
260 return_ACPI_STATUS (AE_BAD_PARAMETER);
261 }

263 /* Various interrupt-based event counters */

265 Stats->SciCount = AcpiSciCount;
266 Stats->GpeCount = AcpiGpeCount;

268 ACPI_MEMCPY (Stats->FixedEventCount, AcpiFixedEventCount,
269 sizeof (AcpiFixedEventCount));

272 /* Other counters */

274 Stats->MethodCount = AcpiMethodCount;

276 return_ACPI_STATUS (AE_OK);
277 }

279 ACPI_EXPORT_SYMBOL (AcpiGetStatistics)

282 /***
283 *
284 * FUNCTION: AcpiInstallInitializationHandler
285 *
286 * PARAMETERS: Handler - Callback procedure
287 * Function - Not (currently) used, see below
288 *
289 * RETURN: Status
290 *
291 * DESCRIPTION: Install an initialization handler
292 *
293 * TBD: When a second function is added, must save the Function also.
294 *
295 **/

297 ACPI_STATUS
298 AcpiInstallInitializationHandler (
299 ACPI_INIT_HANDLER Handler,
300 UINT32 Function)
301 {

303 if (!Handler)
304 {
305 return (AE_BAD_PARAMETER);
306 }

308 if (AcpiGbl_InitHandler)
309 {
310 return (AE_ALREADY_EXISTS);
311 }

313 AcpiGbl_InitHandler = Handler;
314 return (AE_OK);
315 }

317 ACPI_EXPORT_SYMBOL (AcpiInstallInitializationHandler)

320 /***
321 *
322 * FUNCTION: AcpiPurgeCachedObjects

new/usr/src/common/acpica/components/utilities/utxface.c 6

323 *
324 * PARAMETERS: None
325 *
326 * RETURN: Status
327 *
328 * DESCRIPTION: Empty all caches (delete the cached objects)
329 *
330 **/

332 ACPI_STATUS
333 AcpiPurgeCachedObjects (
334 void)
335 {
336 ACPI_FUNCTION_TRACE (AcpiPurgeCachedObjects);

339 (void) AcpiOsPurgeCache (AcpiGbl_StateCache);
340 (void) AcpiOsPurgeCache (AcpiGbl_OperandCache);
341 (void) AcpiOsPurgeCache (AcpiGbl_PsNodeCache);
342 (void) AcpiOsPurgeCache (AcpiGbl_PsNodeExtCache);

344 return_ACPI_STATUS (AE_OK);
345 }

347 ACPI_EXPORT_SYMBOL (AcpiPurgeCachedObjects)

350 /***
351 *
352 * FUNCTION: AcpiInstallInterface
353 *
354 * PARAMETERS: InterfaceName - The interface to install
355 *
356 * RETURN: Status
357 *
358 * DESCRIPTION: Install an _OSI interface to the global list
359 *
360 **/

362 ACPI_STATUS
363 AcpiInstallInterface (
364 ACPI_STRING InterfaceName)
365 {
366 ACPI_STATUS Status;
367 ACPI_INTERFACE_INFO *InterfaceInfo;

370 /* Parameter validation */

372 if (!InterfaceName || (ACPI_STRLEN (InterfaceName) == 0))
373 {
374 return (AE_BAD_PARAMETER);
375 }

377 Status = AcpiOsAcquireMutex (AcpiGbl_OsiMutex, ACPI_WAIT_FOREVER);
378 if (ACPI_FAILURE (Status))
379 {
380 return (Status);
381 }

383 /* Check if the interface name is already in the global list */

385 InterfaceInfo = AcpiUtGetInterface (InterfaceName);
386 if (InterfaceInfo)
387 {
388 /*

new/usr/src/common/acpica/components/utilities/utxface.c 7

389 * The interface already exists in the list. This is OK if the
390 * interface has been marked invalid -- just clear the bit.
391 */
392 if (InterfaceInfo->Flags & ACPI_OSI_INVALID)
393 {
394 InterfaceInfo->Flags &= ~ACPI_OSI_INVALID;
395 Status = AE_OK;
396 }
397 else
398 {
399 Status = AE_ALREADY_EXISTS;
400 }
401 }
402 else
403 {
404 /* New interface name, install into the global list */

406 Status = AcpiUtInstallInterface (InterfaceName);
407 }

409 AcpiOsReleaseMutex (AcpiGbl_OsiMutex);
410 return (Status);
411 }

413 ACPI_EXPORT_SYMBOL (AcpiInstallInterface)

416 /***
417 *
418 * FUNCTION: AcpiRemoveInterface
419 *
420 * PARAMETERS: InterfaceName - The interface to remove
421 *
422 * RETURN: Status
423 *
424 * DESCRIPTION: Remove an _OSI interface from the global list
425 *
426 **/

428 ACPI_STATUS
429 AcpiRemoveInterface (
430 ACPI_STRING InterfaceName)
431 {
432 ACPI_STATUS Status;

435 /* Parameter validation */

437 if (!InterfaceName || (ACPI_STRLEN (InterfaceName) == 0))
438 {
439 return (AE_BAD_PARAMETER);
440 }

442 Status = AcpiOsAcquireMutex (AcpiGbl_OsiMutex, ACPI_WAIT_FOREVER);
443 if (ACPI_FAILURE (Status))
444 {
445 return (Status);
446 }

448 Status = AcpiUtRemoveInterface (InterfaceName);

450 AcpiOsReleaseMutex (AcpiGbl_OsiMutex);
451 return (Status);
452 }

454 ACPI_EXPORT_SYMBOL (AcpiRemoveInterface)

new/usr/src/common/acpica/components/utilities/utxface.c 8

457 /***
458 *
459 * FUNCTION: AcpiInstallInterfaceHandler
460 *
461 * PARAMETERS: Handler - The _OSI interface handler to install
462 * NULL means "remove existing handler"
463 *
464 * RETURN: Status
465 *
466 * DESCRIPTION: Install a handler for the predefined _OSI ACPI method.
467 * invoked during execution of the internal implementation of
468 * _OSI. A NULL handler simply removes any existing handler.
469 *
470 **/

472 ACPI_STATUS
473 AcpiInstallInterfaceHandler (
474 ACPI_INTERFACE_HANDLER Handler)
475 {
476 ACPI_STATUS Status;

479 Status = AcpiOsAcquireMutex (AcpiGbl_OsiMutex, ACPI_WAIT_FOREVER);
480 if (ACPI_FAILURE (Status))
481 {
482 return (Status);
483 }

485 if (Handler && AcpiGbl_InterfaceHandler)
486 {
487 Status = AE_ALREADY_EXISTS;
488 }
489 else
490 {
491 AcpiGbl_InterfaceHandler = Handler;
492 }

494 AcpiOsReleaseMutex (AcpiGbl_OsiMutex);
495 return (Status);
496 }

498 ACPI_EXPORT_SYMBOL (AcpiInstallInterfaceHandler)

501 /***
502 *
503 * FUNCTION: AcpiUpdateInterfaces
504 *
505 * PARAMETERS: Action - Actions to be performed during the
506 * update
507 *
508 * RETURN: Status
509 *
510 * DESCRIPTION: Update _OSI interface strings, disabling or enabling OS vendor
511 * string or/and feature group strings.
512 *
513 **/

515 ACPI_STATUS
516 AcpiUpdateInterfaces (
517 UINT8 Action)
518 {
519 ACPI_STATUS Status;

new/usr/src/common/acpica/components/utilities/utxface.c 9

522 Status = AcpiOsAcquireMutex (AcpiGbl_OsiMutex, ACPI_WAIT_FOREVER);
523 if (ACPI_FAILURE (Status))
524 {
525 return (Status);
526 }

528 Status = AcpiUtUpdateInterfaces (Action);

530 AcpiOsReleaseMutex (AcpiGbl_OsiMutex);
531 return (Status);
532 }

535 /***
536 *
537 * FUNCTION: AcpiCheckAddressRange
538 *
539 * PARAMETERS: SpaceId - Address space ID
540 * Address - Start address
541 * Length - Length
542 * Warn - TRUE if warning on overlap desired
543 *
544 * RETURN: Count of the number of conflicts detected.
545 *
546 * DESCRIPTION: Check if the input address range overlaps any of the
547 * ASL operation region address ranges.
548 *
549 **/

551 UINT32
552 AcpiCheckAddressRange (
553 ACPI_ADR_SPACE_TYPE SpaceId,
554 ACPI_PHYSICAL_ADDRESS Address,
555 ACPI_SIZE Length,
556 BOOLEAN Warn)
557 {
558 UINT32 Overlaps;
559 ACPI_STATUS Status;

562 Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE);
563 if (ACPI_FAILURE (Status))
564 {
565 return (0);
566 }

568 Overlaps = AcpiUtCheckAddressRange (SpaceId, Address,
569 (UINT32) Length, Warn);

571 (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE);
572 return (Overlaps);
573 }

575 ACPI_EXPORT_SYMBOL (AcpiCheckAddressRange)

577 #endif /* !ACPI_ASL_COMPILER */

580 /***
581 *
582 * FUNCTION: AcpiDecodePldBuffer
583 *
584 * PARAMETERS: InBuffer - Buffer returned by _PLD method
585 * Length - Length of the InBuffer
586 * ReturnBuffer - Where the decode buffer is returned

new/usr/src/common/acpica/components/utilities/utxface.c 10

587 *
588 * RETURN: Status and the decoded _PLD buffer. User must deallocate
589 * the buffer via ACPI_FREE.
590 *
591 * DESCRIPTION: Decode the bit-packed buffer returned by the _PLD method into
592 * a local struct that is much more useful to an ACPI driver.
593 *
594 **/

596 ACPI_STATUS
597 AcpiDecodePldBuffer (
598 UINT8 *InBuffer,
599 ACPI_SIZE Length,
600 ACPI_PLD_INFO **ReturnBuffer)
601 {
602 ACPI_PLD_INFO *PldInfo;
603 UINT32 *Buffer = ACPI_CAST_PTR (UINT32, InBuffer);
604 UINT32 Dword;

607 /* Parameter validation */

609 if (!InBuffer || !ReturnBuffer || (Length < 16))
610 {
611 return (AE_BAD_PARAMETER);
612 }

614 PldInfo = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_PLD_INFO));
615 if (!PldInfo)
616 {
617 return (AE_NO_MEMORY);
618 }

620 /* First 32-bit DWord */

622 ACPI_MOVE_32_TO_32 (&Dword, &Buffer[0]);
623 PldInfo->Revision = ACPI_PLD_GET_REVISION (&Dword);
624 PldInfo->IgnoreColor = ACPI_PLD_GET_IGNORE_COLOR (&Dword);
625 PldInfo->Color = ACPI_PLD_GET_COLOR (&Dword);

627 /* Second 32-bit DWord */

629 ACPI_MOVE_32_TO_32 (&Dword, &Buffer[1]);
630 PldInfo->Width = ACPI_PLD_GET_WIDTH (&Dword);
631 PldInfo->Height = ACPI_PLD_GET_HEIGHT(&Dword);

633 /* Third 32-bit DWord */

635 ACPI_MOVE_32_TO_32 (&Dword, &Buffer[2]);
636 PldInfo->UserVisible = ACPI_PLD_GET_USER_VISIBLE (&Dword);
637 PldInfo->Dock = ACPI_PLD_GET_DOCK (&Dword);
638 PldInfo->Lid = ACPI_PLD_GET_LID (&Dword);
639 PldInfo->Panel = ACPI_PLD_GET_PANEL (&Dword);
640 PldInfo->VerticalPosition = ACPI_PLD_GET_VERTICAL (&Dword);
641 PldInfo->HorizontalPosition = ACPI_PLD_GET_HORIZONTAL (&Dword);
642 PldInfo->Shape = ACPI_PLD_GET_SHAPE (&Dword);
643 PldInfo->GroupOrientation = ACPI_PLD_GET_ORIENTATION (&Dword);
644 PldInfo->GroupToken = ACPI_PLD_GET_TOKEN (&Dword);
645 PldInfo->GroupPosition = ACPI_PLD_GET_POSITION (&Dword);
646 PldInfo->Bay = ACPI_PLD_GET_BAY (&Dword);

648 /* Fourth 32-bit DWord */

650 ACPI_MOVE_32_TO_32 (&Dword, &Buffer[3]);
651 PldInfo->Ejectable = ACPI_PLD_GET_EJECTABLE (&Dword);
652 PldInfo->OspmEjectRequired = ACPI_PLD_GET_OSPM_EJECT (&Dword);

new/usr/src/common/acpica/components/utilities/utxface.c 11

653 PldInfo->CabinetNumber = ACPI_PLD_GET_CABINET (&Dword);
654 PldInfo->CardCageNumber = ACPI_PLD_GET_CARD_CAGE (&Dword);
655 PldInfo->Reference = ACPI_PLD_GET_REFERENCE (&Dword);
656 PldInfo->Rotation = ACPI_PLD_GET_ROTATION (&Dword);
657 PldInfo->Order = ACPI_PLD_GET_ORDER (&Dword);

659 if (Length >= ACPI_PLD_BUFFER_SIZE)
660 {
661 /* Fifth 32-bit DWord (Revision 2 of _PLD) */

663 ACPI_MOVE_32_TO_32 (&Dword, &Buffer[4]);
664 PldInfo->VerticalOffset = ACPI_PLD_GET_VERT_OFFSET (&Dword);
665 PldInfo->HorizontalOffset = ACPI_PLD_GET_HORIZ_OFFSET (&Dword);
666 }

668 *ReturnBuffer = PldInfo;
669 return (AE_OK);
670 }

672 ACPI_EXPORT_SYMBOL (AcpiDecodePldBuffer)

new/usr/src/common/acpica/components/utilities/utxferror.c 1

**
 8737 Thu Dec 26 13:49:45 2013
new/usr/src/common/acpica/components/utilities/utxferror.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /***
2 *
3 * Module Name: utxferror - Various error/warning output functions
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTXFERROR_C__
45 #define EXPORT_ACPI_INTERFACES

47 #include "acpi.h"
48 #include "accommon.h"

51 #define _COMPONENT ACPI_UTILITIES
52 ACPI_MODULE_NAME ("utxferror")

54 /*
55 * This module is used for the in-kernel ACPICA as well as the ACPICA
56 * tools/applications.
57 */

59 /***

new/usr/src/common/acpica/components/utilities/utxferror.c 2

60 *
61 * FUNCTION: AcpiError
62 *
63 * PARAMETERS: ModuleName - Caller’s module name (for error output)
64 * LineNumber - Caller’s line number (for error output)
65 * Format - Printf format string + additional args
66 *
67 * RETURN: None
68 *
69 * DESCRIPTION: Print "ACPI Error" message with module/line/version info
70 *
71 **/

73 void ACPI_INTERNAL_VAR_XFACE
74 AcpiError (
75 const char *ModuleName,
76 UINT32 LineNumber,
77 const char *Format,
78 ...)
79 {
80 va_list ArgList;

83 ACPI_MSG_REDIRECT_BEGIN;
84 AcpiOsPrintf (ACPI_MSG_ERROR);

86 va_start (ArgList, Format);
87 AcpiOsVprintf (Format, ArgList);
88 ACPI_MSG_SUFFIX;
89 va_end (ArgList);

91 ACPI_MSG_REDIRECT_END;
92 }

94 ACPI_EXPORT_SYMBOL (AcpiError)

97 /***
98 *
99 * FUNCTION: AcpiException
100 *
101 * PARAMETERS: ModuleName - Caller’s module name (for error output)
102 * LineNumber - Caller’s line number (for error output)
103 * Status - Status to be formatted
104 * Format - Printf format string + additional args
105 *
106 * RETURN: None
107 *
108 * DESCRIPTION: Print "ACPI Exception" message with module/line/version info
109 * and decoded ACPI_STATUS.
110 *
111 **/

113 void ACPI_INTERNAL_VAR_XFACE
114 AcpiException (
115 const char *ModuleName,
116 UINT32 LineNumber,
117 ACPI_STATUS Status,
118 const char *Format,
119 ...)
120 {
121 va_list ArgList;

124 ACPI_MSG_REDIRECT_BEGIN;
125 AcpiOsPrintf (ACPI_MSG_EXCEPTION "%s, ", AcpiFormatException (Status));

new/usr/src/common/acpica/components/utilities/utxferror.c 3

127 va_start (ArgList, Format);
128 AcpiOsVprintf (Format, ArgList);
129 ACPI_MSG_SUFFIX;
130 va_end (ArgList);

132 ACPI_MSG_REDIRECT_END;
133 }

135 ACPI_EXPORT_SYMBOL (AcpiException)

138 /***
139 *
140 * FUNCTION: AcpiWarning
141 *
142 * PARAMETERS: ModuleName - Caller’s module name (for error output)
143 * LineNumber - Caller’s line number (for error output)
144 * Format - Printf format string + additional args
145 *
146 * RETURN: None
147 *
148 * DESCRIPTION: Print "ACPI Warning" message with module/line/version info
149 *
150 **/

152 void ACPI_INTERNAL_VAR_XFACE
153 AcpiWarning (
154 const char *ModuleName,
155 UINT32 LineNumber,
156 const char *Format,
157 ...)
158 {
159 va_list ArgList;

162 ACPI_MSG_REDIRECT_BEGIN;
163 AcpiOsPrintf (ACPI_MSG_WARNING);

165 va_start (ArgList, Format);
166 AcpiOsVprintf (Format, ArgList);
167 ACPI_MSG_SUFFIX;
168 va_end (ArgList);

170 ACPI_MSG_REDIRECT_END;
171 }

173 ACPI_EXPORT_SYMBOL (AcpiWarning)

176 /***
177 *
178 * FUNCTION: AcpiInfo
179 *
180 * PARAMETERS: ModuleName - Caller’s module name (for error output)
181 * LineNumber - Caller’s line number (for error output)
182 * Format - Printf format string + additional args
183 *
184 * RETURN: None
185 *
186 * DESCRIPTION: Print generic "ACPI:" information message. There is no
187 * module/line/version info in order to keep the message simple.
188 *
189 * TBD: ModuleName and LineNumber args are not needed, should be removed.
190 *
191 **/

new/usr/src/common/acpica/components/utilities/utxferror.c 4

193 void ACPI_INTERNAL_VAR_XFACE
194 AcpiInfo (
195 const char *ModuleName,
196 UINT32 LineNumber,
197 const char *Format,
198 ...)
199 {
200 va_list ArgList;

203 ACPI_MSG_REDIRECT_BEGIN;
204 AcpiOsPrintf (ACPI_MSG_INFO);

206 va_start (ArgList, Format);
207 AcpiOsVprintf (Format, ArgList);
208 AcpiOsPrintf ("\n");
209 va_end (ArgList);

211 ACPI_MSG_REDIRECT_END;
212 }

214 ACPI_EXPORT_SYMBOL (AcpiInfo)

217 /***
218 *
219 * FUNCTION: AcpiBiosError
220 *
221 * PARAMETERS: ModuleName - Caller’s module name (for error output)
222 * LineNumber - Caller’s line number (for error output)
223 * Format - Printf format string + additional args
224 *
225 * RETURN: None
226 *
227 * DESCRIPTION: Print "ACPI Firmware Error" message with module/line/version
228 * info
229 *
230 **/

232 void ACPI_INTERNAL_VAR_XFACE
233 AcpiBiosError (
234 const char *ModuleName,
235 UINT32 LineNumber,
236 const char *Format,
237 ...)
238 {
239 va_list ArgList;

242 ACPI_MSG_REDIRECT_BEGIN;
243 AcpiOsPrintf (ACPI_MSG_BIOS_ERROR);

245 va_start (ArgList, Format);
246 AcpiOsVprintf (Format, ArgList);
247 ACPI_MSG_SUFFIX;
248 va_end (ArgList);

250 ACPI_MSG_REDIRECT_END;
251 }

253 ACPI_EXPORT_SYMBOL (AcpiBiosError)

256 /***
257 *

new/usr/src/common/acpica/components/utilities/utxferror.c 5

258 * FUNCTION: AcpiBiosWarning
259 *
260 * PARAMETERS: ModuleName - Caller’s module name (for error output)
261 * LineNumber - Caller’s line number (for error output)
262 * Format - Printf format string + additional args
263 *
264 * RETURN: None
265 *
266 * DESCRIPTION: Print "ACPI Firmware Warning" message with module/line/version
267 * info
268 *
269 **/

271 void ACPI_INTERNAL_VAR_XFACE
272 AcpiBiosWarning (
273 const char *ModuleName,
274 UINT32 LineNumber,
275 const char *Format,
276 ...)
277 {
278 va_list ArgList;

281 ACPI_MSG_REDIRECT_BEGIN;
282 AcpiOsPrintf (ACPI_MSG_BIOS_WARNING);

284 va_start (ArgList, Format);
285 AcpiOsVprintf (Format, ArgList);
286 ACPI_MSG_SUFFIX;
287 va_end (ArgList);

289 ACPI_MSG_REDIRECT_END;
290 }

292 ACPI_EXPORT_SYMBOL (AcpiBiosWarning)

new/usr/src/common/acpica/components/utilities/utxfinit.c 1

**
 11038 Thu Dec 26 13:49:45 2013
new/usr/src/common/acpica/components/utilities/utxfinit.c
update to acpica-unix2-20131218
update to acpica-unix2-20131115
update to acpica-unix2-20130927
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: utxfinit - External interfaces for ACPICA initialization
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define __UTXFINIT_C__
46 #define EXPORT_ACPI_INTERFACES

48 #include "acpi.h"
49 #include "accommon.h"
50 #include "acevents.h"
51 #include "acnamesp.h"
52 #include "acdebug.h"
53 #include "actables.h"

55 #define _COMPONENT ACPI_UTILITIES
56 ACPI_MODULE_NAME ("utxfinit")

new/usr/src/common/acpica/components/utilities/utxfinit.c 2

59 /***
60 *
61 * FUNCTION: AcpiInitializeSubsystem
62 *
63 * PARAMETERS: None
64 *
65 * RETURN: Status
66 *
67 * DESCRIPTION: Initializes all global variables. This is the first function
68 * called, so any early initialization belongs here.
69 *
70 **/

72 ACPI_STATUS
73 AcpiInitializeSubsystem (
74 void)
75 {
76 ACPI_STATUS Status;

79 ACPI_FUNCTION_TRACE (AcpiInitializeSubsystem);

82 AcpiGbl_StartupFlags = ACPI_SUBSYSTEM_INITIALIZE;
83 ACPI_DEBUG_EXEC (AcpiUtInitStackPtrTrace ());

85 /* Initialize the OS-Dependent layer */

87 Status = AcpiOsInitialize ();
88 if (ACPI_FAILURE (Status))
89 {
90 ACPI_EXCEPTION ((AE_INFO, Status, "During OSL initialization"));
91 return_ACPI_STATUS (Status);
92 }

94 /* Initialize all globals used by the subsystem */

96 Status = AcpiUtInitGlobals ();
97 if (ACPI_FAILURE (Status))
98 {
99 ACPI_EXCEPTION ((AE_INFO, Status, "During initialization of globals"));
100 return_ACPI_STATUS (Status);
101 }

103 /* Create the default mutex objects */

105 Status = AcpiUtMutexInitialize ();
106 if (ACPI_FAILURE (Status))
107 {
108 ACPI_EXCEPTION ((AE_INFO, Status, "During Global Mutex creation"));
109 return_ACPI_STATUS (Status);
110 }

112 /*
113 * Initialize the namespace manager and
114 * the root of the namespace tree
115 */
116 Status = AcpiNsRootInitialize ();
117 if (ACPI_FAILURE (Status))
118 {
119 ACPI_EXCEPTION ((AE_INFO, Status, "During Namespace initialization"));
120 return_ACPI_STATUS (Status);
121 }

123 /* Initialize the global OSI interfaces list with the static names */

new/usr/src/common/acpica/components/utilities/utxfinit.c 3

125 Status = AcpiUtInitializeInterfaces ();
126 if (ACPI_FAILURE (Status))
127 {
128 ACPI_EXCEPTION ((AE_INFO, Status, "During OSI interfaces initialization"
129 return_ACPI_STATUS (Status);
130 }

132 /* If configured, initialize the AML debugger */

134 #ifdef ACPI_DEBUGGER
135 Status = AcpiDbInitialize ();
136 if (ACPI_FAILURE (Status))
137 {
138 ACPI_EXCEPTION ((AE_INFO, Status, "During Debugger initialization"));
139 return_ACPI_STATUS (Status);
140 }
141 #endif

143 return_ACPI_STATUS (AE_OK);
144 }

146 ACPI_EXPORT_SYMBOL_INIT (AcpiInitializeSubsystem)

149 /***
150 *
151 * FUNCTION: AcpiEnableSubsystem
152 *
153 * PARAMETERS: Flags - Init/enable Options
154 *
155 * RETURN: Status
156 *
157 * DESCRIPTION: Completes the subsystem initialization including hardware.
158 * Puts system into ACPI mode if it isn’t already.
159 *
160 **/

162 ACPI_STATUS
163 AcpiEnableSubsystem (
164 UINT32 Flags)
165 {
166 ACPI_STATUS Status = AE_OK;

169 ACPI_FUNCTION_TRACE (AcpiEnableSubsystem);

172 #if (!ACPI_REDUCED_HARDWARE)

174 /* Enable ACPI mode */

176 if (!(Flags & ACPI_NO_ACPI_ENABLE))
177 {
178 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "[Init] Going into ACPI mode\n"));

180 AcpiGbl_OriginalMode = AcpiHwGetMode();

182 Status = AcpiEnable ();
183 if (ACPI_FAILURE (Status))
184 {
185 ACPI_WARNING ((AE_INFO, "AcpiEnable failed"));
186 return_ACPI_STATUS (Status);
187 }
188 }

190 /*

new/usr/src/common/acpica/components/utilities/utxfinit.c 4

191 * Obtain a permanent mapping for the FACS. This is required for the
192 * Global Lock and the Firmware Waking Vector
193 */
194 Status = AcpiTbInitializeFacs ();
195 if (ACPI_FAILURE (Status))
196 {
197 ACPI_WARNING ((AE_INFO, "Could not map the FACS table"));
198 return_ACPI_STATUS (Status);
199 }

201 #endif /* !ACPI_REDUCED_HARDWARE */

203 /*
204 * Install the default OpRegion handlers. These are installed unless
205 * other handlers have already been installed via the
206 * InstallAddressSpaceHandler interface.
207 */
208 if (!(Flags & ACPI_NO_ADDRESS_SPACE_INIT))
209 {
210 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
211 "[Init] Installing default address space handlers\n"));

213 Status = AcpiEvInstallRegionHandlers ();
214 if (ACPI_FAILURE (Status))
215 {
216 return_ACPI_STATUS (Status);
217 }
218 }

220 #if (!ACPI_REDUCED_HARDWARE)
221 /*
222 * Initialize ACPI Event handling (Fixed and General Purpose)
223 *
224 * Note1: We must have the hardware and events initialized before we can
225 * execute any control methods safely. Any control method can require
226 * ACPI hardware support, so the hardware must be fully initialized before
227 * any method execution!
228 *
229 * Note2: Fixed events are initialized and enabled here. GPEs are
230 * initialized, but cannot be enabled until after the hardware is
231 * completely initialized (SCI and GlobalLock activated) and the various
232 * initialization control methods are run (_REG, _STA, _INI) on the
233 * entire namespace.
234 */
235 if (!(Flags & ACPI_NO_EVENT_INIT))
236 {
237 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
238 "[Init] Initializing ACPI events\n"));

240 Status = AcpiEvInitializeEvents ();
241 if (ACPI_FAILURE (Status))
242 {
243 return_ACPI_STATUS (Status);
244 }
245 }

247 /*
248 * Install the SCI handler and Global Lock handler. This completes the
249 * hardware initialization.
250 */
251 if (!(Flags & ACPI_NO_HANDLER_INIT))
252 {
253 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
254 "[Init] Installing SCI/GL handlers\n"));

256 Status = AcpiEvInstallXruptHandlers ();

new/usr/src/common/acpica/components/utilities/utxfinit.c 5

257 if (ACPI_FAILURE (Status))
258 {
259 return_ACPI_STATUS (Status);
260 }
261 }

263 #endif /* !ACPI_REDUCED_HARDWARE */

265 return_ACPI_STATUS (Status);
266 }

268 ACPI_EXPORT_SYMBOL_INIT (AcpiEnableSubsystem)

271 /***
272 *
273 * FUNCTION: AcpiInitializeObjects
274 *
275 * PARAMETERS: Flags - Init/enable Options
276 *
277 * RETURN: Status
278 *
279 * DESCRIPTION: Completes namespace initialization by initializing device
280 * objects and executing AML code for Regions, buffers, etc.
281 *
282 **/

284 ACPI_STATUS
285 AcpiInitializeObjects (
286 UINT32 Flags)
287 {
288 ACPI_STATUS Status = AE_OK;

291 ACPI_FUNCTION_TRACE (AcpiInitializeObjects);

294 /*
295 * Run all _REG methods
296 *
297 * Note: Any objects accessed by the _REG methods will be automatically
298 * initialized, even if they contain executable AML (see the call to
299 * AcpiNsInitializeObjects below).
300 */
301 if (!(Flags & ACPI_NO_ADDRESS_SPACE_INIT))
302 {
303 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
304 "[Init] Executing _REG OpRegion methods\n"));

306 Status = AcpiEvInitializeOpRegions ();
307 if (ACPI_FAILURE (Status))
308 {
309 return_ACPI_STATUS (Status);
310 }
311 }

313 /*
314 * Execute any module-level code that was detected during the table load
315 * phase. Although illegal since ACPI 2.0, there are many machines that
316 * contain this type of code. Each block of detected executable AML code
317 * outside of any control method is wrapped with a temporary control
318 * method object and placed on a global list. The methods on this list
319 * are executed below.
320 */
321 AcpiNsExecModuleCodeList ();

new/usr/src/common/acpica/components/utilities/utxfinit.c 6

323 /*
324 * Initialize the objects that remain uninitialized. This runs the
325 * executable AML that may be part of the declaration of these objects:
326 * OperationRegions, BufferFields, Buffers, and Packages.
327 */
328 if (!(Flags & ACPI_NO_OBJECT_INIT))
329 {
330 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
331 "[Init] Completing Initialization of ACPI Objects\n"));

333 Status = AcpiNsInitializeObjects ();
334 if (ACPI_FAILURE (Status))
335 {
336 return_ACPI_STATUS (Status);
337 }
338 }

340 /*
341 * Initialize all device objects in the namespace. This runs the device
342 * _STA and _INI methods.
343 */
344 if (!(Flags & ACPI_NO_DEVICE_INIT))
345 {
346 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
347 "[Init] Initializing ACPI Devices\n"));

349 Status = AcpiNsInitializeDevices ();
350 if (ACPI_FAILURE (Status))
351 {
352 return_ACPI_STATUS (Status);
353 }
354 }

356 /*
357 * Empty the caches (delete the cached objects) on the assumption that
358 * the table load filled them up more than they will be at runtime --
359 * thus wasting non-paged memory.
360 */
361 Status = AcpiPurgeCachedObjects ();

363 AcpiGbl_StartupFlags |= ACPI_INITIALIZED_OK;
364 return_ACPI_STATUS (Status);
365 }

367 ACPI_EXPORT_SYMBOL_INIT (AcpiInitializeObjects)

new/usr/src/common/acpica/components/utilities/utxfmutex.c 1

**
 6663 Thu Dec 26 13:49:45 2013
new/usr/src/common/acpica/components/utilities/utxfmutex.c
acpica-unix2-20130823
**

1 /***
2 *
3 * Module Name: utxfmutex - external AML mutex access functions
4 *
5 **/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __UTXFMUTEX_C__

46 #include "acpi.h"
47 #include "accommon.h"
48 #include "acnamesp.h"

51 #define _COMPONENT ACPI_UTILITIES
52 ACPI_MODULE_NAME ("utxfmutex")

55 /* Local prototypes */

57 static ACPI_STATUS
58 AcpiUtGetMutexObject (
59 ACPI_HANDLE Handle,
60 ACPI_STRING Pathname,
61 ACPI_OPERAND_OBJECT **RetObj);

new/usr/src/common/acpica/components/utilities/utxfmutex.c 2

64 /***
65 *
66 * FUNCTION: AcpiUtGetMutexObject
67 *
68 * PARAMETERS: Handle - Mutex or prefix handle (optional)
69 * Pathname - Mutex pathname (optional)
70 * RetObj - Where the mutex object is returned
71 *
72 * RETURN: Status
73 *
74 * DESCRIPTION: Get an AML mutex object. The mutex node is pointed to by
75 * Handle:Pathname. Either Handle or Pathname can be NULL, but
76 * not both.
77 *
78 **/

80 static ACPI_STATUS
81 AcpiUtGetMutexObject (
82 ACPI_HANDLE Handle,
83 ACPI_STRING Pathname,
84 ACPI_OPERAND_OBJECT **RetObj)
85 {
86 ACPI_NAMESPACE_NODE *MutexNode;
87 ACPI_OPERAND_OBJECT *MutexObj;
88 ACPI_STATUS Status;

91 /* Parameter validation */

93 if (!RetObj || (!Handle && !Pathname))
94 {
95 return (AE_BAD_PARAMETER);
96 }

98 /* Get a the namespace node for the mutex */

100 MutexNode = Handle;
101 if (Pathname != NULL)
102 {
103 Status = AcpiGetHandle (Handle, Pathname,
104 ACPI_CAST_PTR (ACPI_HANDLE, &MutexNode));
105 if (ACPI_FAILURE (Status))
106 {
107 return (Status);
108 }
109 }

111 /* Ensure that we actually have a Mutex object */

113 if (!MutexNode ||
114 (MutexNode->Type != ACPI_TYPE_MUTEX))
115 {
116 return (AE_TYPE);
117 }

119 /* Get the low-level mutex object */

121 MutexObj = AcpiNsGetAttachedObject (MutexNode);
122 if (!MutexObj)
123 {
124 return (AE_NULL_OBJECT);
125 }

127 *RetObj = MutexObj;

new/usr/src/common/acpica/components/utilities/utxfmutex.c 3

128 return (AE_OK);
129 }

132 /***
133 *
134 * FUNCTION: AcpiAcquireMutex
135 *
136 * PARAMETERS: Handle - Mutex or prefix handle (optional)
137 * Pathname - Mutex pathname (optional)
138 * Timeout - Max time to wait for the lock (millisec)
139 *
140 * RETURN: Status
141 *
142 * DESCRIPTION: Acquire an AML mutex. This is a device driver interface to
143 * AML mutex objects, and allows for transaction locking between
144 * drivers and AML code. The mutex node is pointed to by
145 * Handle:Pathname. Either Handle or Pathname can be NULL, but
146 * not both.
147 *
148 **/

150 ACPI_STATUS
151 AcpiAcquireMutex (
152 ACPI_HANDLE Handle,
153 ACPI_STRING Pathname,
154 UINT16 Timeout)
155 {
156 ACPI_STATUS Status;
157 ACPI_OPERAND_OBJECT *MutexObj;

160 /* Get the low-level mutex associated with Handle:Pathname */

162 Status = AcpiUtGetMutexObject (Handle, Pathname, &MutexObj);
163 if (ACPI_FAILURE (Status))
164 {
165 return (Status);
166 }

168 /* Acquire the OS mutex */

170 Status = AcpiOsAcquireMutex (MutexObj->Mutex.OsMutex, Timeout);
171 return (Status);
172 }

175 /***
176 *
177 * FUNCTION: AcpiReleaseMutex
178 *
179 * PARAMETERS: Handle - Mutex or prefix handle (optional)
180 * Pathname - Mutex pathname (optional)
181 *
182 * RETURN: Status
183 *
184 * DESCRIPTION: Release an AML mutex. This is a device driver interface to
185 * AML mutex objects, and allows for transaction locking between
186 * drivers and AML code. The mutex node is pointed to by
187 * Handle:Pathname. Either Handle or Pathname can be NULL, but
188 * not both.
189 *
190 **/

192 ACPI_STATUS
193 AcpiReleaseMutex (

new/usr/src/common/acpica/components/utilities/utxfmutex.c 4

194 ACPI_HANDLE Handle,
195 ACPI_STRING Pathname)
196 {
197 ACPI_STATUS Status;
198 ACPI_OPERAND_OBJECT *MutexObj;

201 /* Get the low-level mutex associated with Handle:Pathname */

203 Status = AcpiUtGetMutexObject (Handle, Pathname, &MutexObj);
204 if (ACPI_FAILURE (Status))
205 {
206 return (Status);
207 }

209 /* Release the OS mutex */

211 AcpiOsReleaseMutex (MutexObj->Mutex.OsMutex);
212 return (AE_OK);
213 }

new/usr/src/common/acpica/include/acapps.h 1

**
 6054 Thu Dec 26 13:49:45 2013
new/usr/src/common/acpica/include/acapps.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: acapps - common include for ACPI applications/tools
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef _ACAPPS
45 #define _ACAPPS

48 #ifdef _MSC_VER /* disable some level-4 warnings */
49 #pragma warning(disable:4100) /* warning C4100: unreferenced formal parameter
50 #endif

52 /* Common info for tool signons */

54 #define ACPICA_NAME "Intel ACPI Component Architecture"
55 #define ACPICA_COPYRIGHT "Copyright (c) 2000 - 2013 Intel Corporation
55 #define ACPICA_COPYRIGHT "Copyright (c) 2000 - 2011 Intel Corporation

57 #if ACPI_MACHINE_WIDTH == 64
58 #define ACPI_WIDTH "-64"

new/usr/src/common/acpica/include/acapps.h 2

60 #elif ACPI_MACHINE_WIDTH == 32
61 #define ACPI_WIDTH "-32"

63 #else
64 #error unknown ACPI_MACHINE_WIDTH
65 #define ACPI_WIDTH "-??"

67 #endif

69 /* Macros for signons and file headers */

71 #define ACPI_COMMON_SIGNON(UtilityName) \
72 "\n%s\n%s version %8.8X%s [%s]\n%s\n\n", \
73 ACPICA_NAME, \
74 UtilityName, ((UINT32) ACPI_CA_VERSION), ACPI_WIDTH, __DATE__, \
75 ACPICA_COPYRIGHT

77 #define ACPI_COMMON_HEADER(UtilityName, Prefix) \
78 "%s%s\n%s%s version %8.8X%s [%s]\n%s%s\n%s\n", \
79 Prefix, ACPICA_NAME, \
80 Prefix, UtilityName, ((UINT32) ACPI_CA_VERSION), ACPI_WIDTH, __DATE__, \
81 Prefix, ACPICA_COPYRIGHT, \
82 Prefix

84 /* Macros for usage messages */

86 #define ACPI_USAGE_HEADER(Usage) \
87 printf ("Usage: %s\nOptions:\n", Usage);

89 #define ACPI_OPTION(Name, Description) \
90 printf (" %-18s%s\n", Name, Description);

93 #define FILE_SUFFIX_DISASSEMBLY "dsl"
94 #define ACPI_TABLE_FILE_SUFFIX ".dat"

97 /*
98 * getopt
99 */
100 int
101 AcpiGetopt(
102 int argc,
103 char **argv,
104 char *opts);

106 int
107 AcpiGetoptArgument (
108 int argc,
109 char **argv);

111 extern int AcpiGbl_Optind;
112 extern int AcpiGbl_Opterr;
113 extern int AcpiGbl_SubOptChar;
114 extern char *AcpiGbl_Optarg;

117 #ifndef ACPI_DUMP_APP
118 /*
119 * adisasm
120 */
121 ACPI_STATUS
122 AdAmlDisassemble (
123 BOOLEAN OutToFile,
124 char *Filename,

new/usr/src/common/acpica/include/acapps.h 3

125 char *Prefix,
126 char **OutFilename,
127 BOOLEAN GetAllTables);

129 void
130 AdPrintStatistics (
131 void);

133 ACPI_STATUS
134 AdFindDsdt(
135 UINT8 **DsdtPtr,
136 UINT32 *DsdtLength);

138 void
139 AdDumpTables (
140 void);

142 ACPI_STATUS
143 AdGetLocalTables (
144 char *Filename,
145 BOOLEAN GetAllTables);

147 ACPI_STATUS
148 AdParseTable (
149 ACPI_TABLE_HEADER *Table,
150 ACPI_OWNER_ID *OwnerId,
151 BOOLEAN LoadTable,
152 BOOLEAN External);

154 ACPI_STATUS
155 AdDisplayTables (
156 char *Filename,
157 ACPI_TABLE_HEADER *Table);

159 ACPI_STATUS
160 AdDisplayStatistics (
161 void);

164 /*
165 * adwalk
166 */
167 void
168 AcpiDmCrossReferenceNamespace (
169 ACPI_PARSE_OBJECT *ParseTreeRoot,
170 ACPI_NAMESPACE_NODE *NamespaceRoot,
171 ACPI_OWNER_ID OwnerId);

173 void
174 AcpiDmDumpTree (
175 ACPI_PARSE_OBJECT *Origin);

177 void
178 AcpiDmFindOrphanMethods (
179 ACPI_PARSE_OBJECT *Origin);

181 void
182 AcpiDmFinishNamespaceLoad (
183 ACPI_PARSE_OBJECT *ParseTreeRoot,
184 ACPI_NAMESPACE_NODE *NamespaceRoot,
185 ACPI_OWNER_ID OwnerId);

187 void
188 AcpiDmConvertResourceIndexes (
189 ACPI_PARSE_OBJECT *ParseTreeRoot,
190 ACPI_NAMESPACE_NODE *NamespaceRoot);

new/usr/src/common/acpica/include/acapps.h 4

193 /*
194 * adfile
195 */
196 ACPI_STATUS
197 AdInitialize (
198 void);

200 char *
201 FlGenerateFilename (
202 char *InputFilename,
203 char *Suffix);

205 ACPI_STATUS
206 FlSplitInputPathname (
207 char *InputPath,
208 char **OutDirectoryPath,
209 char **OutFilename);

211 char *
212 AdGenerateFilename (
213 char *Prefix,
214 char *TableId);

216 void
217 AdWriteTable (
218 ACPI_TABLE_HEADER *Table,
219 UINT32 Length,
220 char *TableName,
221 char *OemTableId);
222 #endif

224 #endif /* _ACAPPS */

new/usr/src/common/acpica/include/acbuffer.h 1

**
 11132 Thu Dec 26 13:49:45 2013
new/usr/src/common/acpica/include/acbuffer.h
acpica-unix2-20130823
**

1 /**
2 *
3 * Name: acbuffer.h - Support for buffers returned by ACPI predefined names
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACBUFFER_H__
45 #define __ACBUFFER_H__

47 /*
48 * Contains buffer structures for these predefined names:
49 * _FDE, _GRT, _GTM, _PLD, _SRT
50 */

52 /*
53 * Note: C bitfields are not used for this reason:
54 *
55 * "Bitfields are great and easy to read, but unfortunately the C language
56 * does not specify the layout of bitfields in memory, which means they are
57 * essentially useless for dealing with packed data in on-disk formats or
58 * binary wire protocols." (Or ACPI tables and buffers.) "If you ask me,
59 * this decision was a design error in C. Ritchie could have picked an order
60 * and stuck with it." Norman Ramsey.
61 * See http://stackoverflow.com/a/1053662/41661

new/usr/src/common/acpica/include/acbuffer.h 2

62 */

65 /* _FDE return value */

67 typedef struct acpi_fde_info
68 {
69 UINT32 Floppy0;
70 UINT32 Floppy1;
71 UINT32 Floppy2;
72 UINT32 Floppy3;
73 UINT32 Tape;

75 } ACPI_FDE_INFO;

77 /*
78 * _GRT return value
79 * _SRT input value
80 */
81 typedef struct acpi_grt_info
82 {
83 UINT16 Year;
84 UINT8 Month;
85 UINT8 Day;
86 UINT8 Hour;
87 UINT8 Minute;
88 UINT8 Second;
89 UINT8 Valid;
90 UINT16 Milliseconds;
91 UINT16 Timezone;
92 UINT8 Daylight;
93 UINT8 Reserved[3];

95 } ACPI_GRT_INFO;

97 /* _GTM return value */

99 typedef struct acpi_gtm_info
100 {
101 UINT32 PioSpeed0;
102 UINT32 DmaSpeed0;
103 UINT32 PioSpeed1;
104 UINT32 DmaSpeed1;
105 UINT32 Flags;

107 } ACPI_GTM_INFO;

109 /*
110 * Formatted _PLD return value. The minimum size is a package containing
111 * one buffer.
112 * Revision 1: Buffer is 16 bytes (128 bits)
113 * Revision 2: Buffer is 20 bytes (160 bits)
114 *
115 * Note: This structure is returned from the AcpiDecodePldBuffer
116 * interface.
117 */
118 typedef struct acpi_pld_info
119 {
120 UINT8 Revision;
121 UINT8 IgnoreColor;
122 UINT32 Color;
123 UINT16 Width;
124 UINT16 Height;
125 UINT8 UserVisible;
126 UINT8 Dock;
127 UINT8 Lid;

new/usr/src/common/acpica/include/acbuffer.h 3

128 UINT8 Panel;
129 UINT8 VerticalPosition;
130 UINT8 HorizontalPosition;
131 UINT8 Shape;
132 UINT8 GroupOrientation;
133 UINT8 GroupToken;
134 UINT8 GroupPosition;
135 UINT8 Bay;
136 UINT8 Ejectable;
137 UINT8 OspmEjectRequired;
138 UINT8 CabinetNumber;
139 UINT8 CardCageNumber;
140 UINT8 Reference;
141 UINT8 Rotation;
142 UINT8 Order;
143 UINT8 Reserved;
144 UINT16 VerticalOffset;
145 UINT16 HorizontalOffset;

147 } ACPI_PLD_INFO;

150 /*
151 * Macros to:
152 * 1) Convert a _PLD buffer to internal ACPI_PLD_INFO format - ACPI_PLD_GET*
153 * (Used by AcpiDecodePldBuffer)
154 * 2) Construct a _PLD buffer - ACPI_PLD_SET*
155 * (Intended for BIOS use only)
156 */
157 #define ACPI_PLD_REV1_BUFFER_SIZE 16 /* For Revision 1 of the buff
158 #define ACPI_PLD_BUFFER_SIZE 20 /* For Revision 2 of the buff

160 /* First 32-bit dword, bits 0:32 */

162 #define ACPI_PLD_GET_REVISION(dword) ACPI_GET_BITS (dword, 0, ACPI_7B
163 #define ACPI_PLD_SET_REVISION(dword,value) ACPI_SET_BITS (dword, 0, ACPI_7B

165 #define ACPI_PLD_GET_IGNORE_COLOR(dword) ACPI_GET_BITS (dword, 7, ACPI_1B
166 #define ACPI_PLD_SET_IGNORE_COLOR(dword,value) ACPI_SET_BITS (dword, 7, ACPI_1B

168 #define ACPI_PLD_GET_COLOR(dword) ACPI_GET_BITS (dword, 8, ACPI_24
169 #define ACPI_PLD_SET_COLOR(dword,value) ACPI_SET_BITS (dword, 8, ACPI_24

171 /* Second 32-bit dword, bits 33:63 */

173 #define ACPI_PLD_GET_WIDTH(dword) ACPI_GET_BITS (dword, 0, ACPI_16
174 #define ACPI_PLD_SET_WIDTH(dword,value) ACPI_SET_BITS (dword, 0, ACPI_16

176 #define ACPI_PLD_GET_HEIGHT(dword) ACPI_GET_BITS (dword, 16, ACPI_1
177 #define ACPI_PLD_SET_HEIGHT(dword,value) ACPI_SET_BITS (dword, 16, ACPI_1

179 /* Third 32-bit dword, bits 64:95 */

181 #define ACPI_PLD_GET_USER_VISIBLE(dword) ACPI_GET_BITS (dword, 0, ACPI_1B
182 #define ACPI_PLD_SET_USER_VISIBLE(dword,value) ACPI_SET_BITS (dword, 0, ACPI_1B

184 #define ACPI_PLD_GET_DOCK(dword) ACPI_GET_BITS (dword, 1, ACPI_1B
185 #define ACPI_PLD_SET_DOCK(dword,value) ACPI_SET_BITS (dword, 1, ACPI_1B

187 #define ACPI_PLD_GET_LID(dword) ACPI_GET_BITS (dword, 2, ACPI_1B
188 #define ACPI_PLD_SET_LID(dword,value) ACPI_SET_BITS (dword, 2, ACPI_1B

190 #define ACPI_PLD_GET_PANEL(dword) ACPI_GET_BITS (dword, 3, ACPI_3B
191 #define ACPI_PLD_SET_PANEL(dword,value) ACPI_SET_BITS (dword, 3, ACPI_3B

193 #define ACPI_PLD_GET_VERTICAL(dword) ACPI_GET_BITS (dword, 6, ACPI_2B

new/usr/src/common/acpica/include/acbuffer.h 4

194 #define ACPI_PLD_SET_VERTICAL(dword,value) ACPI_SET_BITS (dword, 6, ACPI_2B

196 #define ACPI_PLD_GET_HORIZONTAL(dword) ACPI_GET_BITS (dword, 8, ACPI_2B
197 #define ACPI_PLD_SET_HORIZONTAL(dword,value) ACPI_SET_BITS (dword, 8, ACPI_2B

199 #define ACPI_PLD_GET_SHAPE(dword) ACPI_GET_BITS (dword, 10, ACPI_4
200 #define ACPI_PLD_SET_SHAPE(dword,value) ACPI_SET_BITS (dword, 10, ACPI_4

202 #define ACPI_PLD_GET_ORIENTATION(dword) ACPI_GET_BITS (dword, 14, ACPI_1
203 #define ACPI_PLD_SET_ORIENTATION(dword,value) ACPI_SET_BITS (dword, 14, ACPI_1

205 #define ACPI_PLD_GET_TOKEN(dword) ACPI_GET_BITS (dword, 15, ACPI_8
206 #define ACPI_PLD_SET_TOKEN(dword,value) ACPI_SET_BITS (dword, 15, ACPI_8

208 #define ACPI_PLD_GET_POSITION(dword) ACPI_GET_BITS (dword, 23, ACPI_8
209 #define ACPI_PLD_SET_POSITION(dword,value) ACPI_SET_BITS (dword, 23, ACPI_8

211 #define ACPI_PLD_GET_BAY(dword) ACPI_GET_BITS (dword, 31, ACPI_1
212 #define ACPI_PLD_SET_BAY(dword,value) ACPI_SET_BITS (dword, 31, ACPI_1

214 /* Fourth 32-bit dword, bits 96:127 */

216 #define ACPI_PLD_GET_EJECTABLE(dword) ACPI_GET_BITS (dword, 0, ACPI_1B
217 #define ACPI_PLD_SET_EJECTABLE(dword,value) ACPI_SET_BITS (dword, 0, ACPI_1B

219 #define ACPI_PLD_GET_OSPM_EJECT(dword) ACPI_GET_BITS (dword, 1, ACPI_1B
220 #define ACPI_PLD_SET_OSPM_EJECT(dword,value) ACPI_SET_BITS (dword, 1, ACPI_1B

222 #define ACPI_PLD_GET_CABINET(dword) ACPI_GET_BITS (dword, 2, ACPI_8B
223 #define ACPI_PLD_SET_CABINET(dword,value) ACPI_SET_BITS (dword, 2, ACPI_8B

225 #define ACPI_PLD_GET_CARD_CAGE(dword) ACPI_GET_BITS (dword, 10, ACPI_8
226 #define ACPI_PLD_SET_CARD_CAGE(dword,value) ACPI_SET_BITS (dword, 10, ACPI_8

228 #define ACPI_PLD_GET_REFERENCE(dword) ACPI_GET_BITS (dword, 18, ACPI_1
229 #define ACPI_PLD_SET_REFERENCE(dword,value) ACPI_SET_BITS (dword, 18, ACPI_1

231 #define ACPI_PLD_GET_ROTATION(dword) ACPI_GET_BITS (dword, 19, ACPI_4
232 #define ACPI_PLD_SET_ROTATION(dword,value) ACPI_SET_BITS (dword, 19, ACPI_4

234 #define ACPI_PLD_GET_ORDER(dword) ACPI_GET_BITS (dword, 23, ACPI_5
235 #define ACPI_PLD_SET_ORDER(dword,value) ACPI_SET_BITS (dword, 23, ACPI_5

237 /* Fifth 32-bit dword, bits 128:159 (Revision 2 of _PLD only) */

239 #define ACPI_PLD_GET_VERT_OFFSET(dword) ACPI_GET_BITS (dword, 0, ACPI_16
240 #define ACPI_PLD_SET_VERT_OFFSET(dword,value) ACPI_SET_BITS (dword, 0, ACPI_16

242 #define ACPI_PLD_GET_HORIZ_OFFSET(dword) ACPI_GET_BITS (dword, 16, ACPI_1
243 #define ACPI_PLD_SET_HORIZ_OFFSET(dword,value) ACPI_SET_BITS (dword, 16, ACPI_1

246 #endif /* ACBUFFER_H */

new/usr/src/common/acpica/include/accommon.h 1

**
 2898 Thu Dec 26 13:49:46 2013
new/usr/src/common/acpica/include/accommon.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: accommon.h - Common include files for generation of ACPICA source
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACCOMMON_H__
45 #define __ACCOMMON_H__

47 /*
48 * Common set of includes for all ACPICA source files.
49 * We put them here because we don’t want to duplicate them
50 * in the the source code again and again.
51 *
52 * Note: The order of these include files is important.
53 */
54 #include "acconfig.h" /* Global configuration constants */
55 #include "acmacros.h" /* C macros */
56 #include "aclocal.h" /* Internal data types */
57 #include "acobject.h" /* ACPI internal object */
58 #include "acstruct.h" /* Common structures */
59 #include "acglobal.h" /* All global variables */

new/usr/src/common/acpica/include/accommon.h 2

60 #include "achware.h" /* Hardware defines and interfaces */
61 #include "acutils.h" /* Utility interfaces */

64 #endif /* __ACCOMMON_H__ */

new/usr/src/common/acpica/include/acconfig.h 1

**
 8300 Thu Dec 26 13:49:46 2013
new/usr/src/common/acpica/include/acconfig.h
update to acpica-unix2-20131115
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acconfig.h - Global configuration constants
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef _ACCONFIG_H
45 #define _ACCONFIG_H

48 /**
49 *
50 * Configuration options
51 *
52 ***/

54 /*
55 * ACPI_DEBUG_OUTPUT - This switch enables all the debug facilities of the
56 * ACPI subsystem. This includes the DEBUG_PRINT output
57 * statements. When disabled, all DEBUG_PRINT

new/usr/src/common/acpica/include/acconfig.h 2

58 * statements are compiled out.
59 *
60 * ACPI_APPLICATION - Use this switch if the subsystem is going to be run
61 * at the application level.
62 *
63 */

65 /*
66 * OS name, used for the _OS object. The _OS object is essentially obsolete,
67 * but there is a large base of ASL/AML code in existing machines that check
68 * for the string below. The use of this string usually guarantees that
69 * the ASL will execute down the most tested code path. Also, there is some
70 * code that will not execute the _OSI method unless _OS matches the string
71 * below. Therefore, change this string at your own risk.
72 */
73 #define ACPI_OS_NAME "Microsoft Windows NT"

75 /* Maximum objects in the various object caches */

77 #define ACPI_MAX_STATE_CACHE_DEPTH 96 /* State objects */
78 #define ACPI_MAX_PARSE_CACHE_DEPTH 96 /* Parse tree objects */
79 #define ACPI_MAX_EXTPARSE_CACHE_DEPTH 96 /* Parse tree objects */
80 #define ACPI_MAX_OBJECT_CACHE_DEPTH 96 /* Interpreter operand objec
81 #define ACPI_MAX_NAMESPACE_CACHE_DEPTH 96 /* Namespace objects */

83 /*
84 * Should the subsystem abort the loading of an ACPI table if the
85 * table checksum is incorrect?
86 */
87 #ifndef ACPI_CHECKSUM_ABORT
88 #define ACPI_CHECKSUM_ABORT FALSE
89 #endif

91 /*
92 * Generate a version of ACPICA that only supports "reduced hardware"
93 * platforms (as defined in ACPI 5.0). Set to TRUE to generate a specialized
94 * version of ACPICA that ONLY supports the ACPI 5.0 "reduced hardware"
95 * model. In other words, no ACPI hardware is supported.
96 *
97 * If TRUE, this means no support for the following:
98 * PM Event and Control registers
99 * SCI interrupt (and handler)
100 * Fixed Events
101 * General Purpose Events (GPEs)
102 * Global Lock
103 * ACPI PM timer
104 * FACS table (Waking vectors and Global Lock)
105 */
106 #ifndef ACPI_REDUCED_HARDWARE
107 #define ACPI_REDUCED_HARDWARE FALSE
108 #endif

111 /**
112 *
113 * Subsystem Constants
114 *
115 ***/

117 /* Version of ACPI supported */

119 #define ACPI_CA_SUPPORT_LEVEL 5
98 #define ACPI_CA_SUPPORT_LEVEL 3

121 /* Maximum count for a semaphore object */

new/usr/src/common/acpica/include/acconfig.h 3

123 #define ACPI_MAX_SEMAPHORE_COUNT 256

125 /* Maximum object reference count (detects object deletion issues) */

127 #define ACPI_MAX_REFERENCE_COUNT 0x800

129 /* Default page size for use in mapping memory for operation regions */

131 #define ACPI_DEFAULT_PAGE_SIZE 4096 /* Must be power of 2 */

133 /* OwnerId tracking. 8 entries allows for 255 OwnerIds */

135 #define ACPI_NUM_OWNERID_MASKS 8

137 /* Size of the root table array is increased by this increment */

139 #define ACPI_ROOT_TABLE_SIZE_INCREMENT 4

141 /* Maximum number of While() loop iterations before forced abort */

143 #define ACPI_MAX_LOOP_ITERATIONS 0xFFFF

145 /* Maximum sleep allowed via Sleep() operator */

147 #define ACPI_MAX_SLEEP 2000 /* 2000 millisec == two seconds
126 #define ACPI_MAX_SLEEP 20000 /* Two seconds */

149 /* Address Range lists are per-SpaceId (Memory and I/O only) */

151 #define ACPI_ADDRESS_RANGE_MAX 2

154 /**
155 *
156 * ACPI Specification constants (Do not change unless the specification changes)
157 *
158 ***/

160 /* Method info (in WALK_STATE), containing local variables and argumetns */

162 #define ACPI_METHOD_NUM_LOCALS 8
163 #define ACPI_METHOD_MAX_LOCAL 7

165 #define ACPI_METHOD_NUM_ARGS 7
166 #define ACPI_METHOD_MAX_ARG 6

168 /*
169 * Operand Stack (in WALK_STATE), Must be large enough to contain METHOD_MAX_ARG
170 */
171 #define ACPI_OBJ_NUM_OPERANDS 8
172 #define ACPI_OBJ_MAX_OPERAND 7

174 /* Number of elements in the Result Stack frame, can be an arbitrary value */

176 #define ACPI_RESULTS_FRAME_OBJ_NUM 8

178 /*
179 * Maximal number of elements the Result Stack can contain,
180 * it may be an arbitray value not exceeding the types of
181 * ResultSize and ResultCount (now UINT8).
182 */
183 #define ACPI_RESULTS_OBJ_NUM_MAX 255

185 /* Constants used in searching for the RSDP in low memory */

187 #define ACPI_EBDA_PTR_LOCATION 0x0000040E /* Physical Address */

new/usr/src/common/acpica/include/acconfig.h 4

188 #define ACPI_EBDA_PTR_LENGTH 2
189 #define ACPI_EBDA_WINDOW_SIZE 1024
190 #define ACPI_HI_RSDP_WINDOW_BASE 0x000E0000 /* Physical Address */
191 #define ACPI_HI_RSDP_WINDOW_SIZE 0x00020000
192 #define ACPI_RSDP_SCAN_STEP 16

194 /* Operation regions */

196 #define ACPI_USER_REGION_BEGIN 0x80

198 /* Maximum SpaceIds for Operation Regions */

200 #define ACPI_MAX_ADDRESS_SPACE 255
201 #define ACPI_NUM_DEFAULT_SPACES 4

203 /* Array sizes. Used for range checking also */

205 #define ACPI_MAX_MATCH_OPCODE 5

207 /* RSDP checksums */

209 #define ACPI_RSDP_CHECKSUM_LENGTH 20
210 #define ACPI_RSDP_XCHECKSUM_LENGTH 36

212 /* SMBus, GSBus and IPMI bidirectional buffer size */
186 /* SMBus and IPMI bidirectional buffer size */

214 #define ACPI_SMBUS_BUFFER_SIZE 34
215 #define ACPI_GSBUS_BUFFER_SIZE 34
216 #define ACPI_IPMI_BUFFER_SIZE 66

218 /* _SxD and _SxW control methods */

220 #define ACPI_NUM_SxD_METHODS 4
221 #define ACPI_NUM_SxW_METHODS 5

224 /**
225 *
226 * ACPI AML Debugger
227 *
228 ***/

230 #define ACPI_DEBUGGER_MAX_ARGS ACPI_METHOD_NUM_ARGS + 4 /* Max command
203 #define ACPI_DEBUGGER_MAX_ARGS ACPI_METHOD_NUM_ARGS + 2 /* Max command
231 #define ACPI_DB_LINE_BUFFER_SIZE 512

233 #define ACPI_DEBUGGER_COMMAND_PROMPT ’-’
234 #define ACPI_DEBUGGER_EXECUTE_PROMPT ’%’

237 #endif /* _ACCONFIG_H */

new/usr/src/common/acpica/include/acdebug.h 1

**
 10173 Thu Dec 26 13:49:46 2013
new/usr/src/common/acpica/include/acdebug.h
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acdebug.h - ACPI/AML debugger
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACDEBUG_H__
45 #define __ACDEBUG_H__

48 #define ACPI_DEBUG_BUFFER_SIZE 0x4000 /* 16K buffer for return objects */

50 typedef struct acpi_db_command_info
50 typedef struct CommandInfo
51 {
52 char *Name; /* Command Name */
53 UINT8 MinArgs; /* Minimum arguments required */

55 } ACPI_DB_COMMAND_INFO;
55 } COMMAND_INFO;

new/usr/src/common/acpica/include/acdebug.h 2

57 typedef struct acpi_db_command_help
57 typedef struct ArgumentInfo
58 {
59 UINT8 LineCount; /* Number of help lines */
60 char *Invocation; /* Command Invocation */
61 char *Description; /* Command Description */

63 } ACPI_DB_COMMAND_HELP;

65 typedef struct acpi_db_argument_info
66 {
67 char *Name; /* Argument Name */

69 } ACPI_DB_ARGUMENT_INFO;
61 } ARGUMENT_INFO;

71 typedef struct acpi_db_execute_walk
63 typedef struct acpi_execute_walk
72 {
73 UINT32 Count;
74 UINT32 MaxCount;

76 } ACPI_DB_EXECUTE_WALK;
68 } ACPI_EXECUTE_WALK;

79 #define PARAM_LIST(pl) pl
80 #define DBTEST_OUTPUT_LEVEL(lvl) if (AcpiGbl_DbOpt_verbose)
81 #define VERBOSE_PRINT(fp) DBTEST_OUTPUT_LEVEL(lvl) {\
82 AcpiOsPrintf PARAM_LIST(fp);}

84 #define EX_NO_SINGLE_STEP 1
85 #define EX_SINGLE_STEP 2

88 /*
89 * dbxface - external debugger interfaces
90 */
91 ACPI_STATUS
92 AcpiDbInitialize (
93 void);

95 void
96 AcpiDbTerminate (
97 void);

99 ACPI_STATUS
100 AcpiDbSingleStep (
101 ACPI_WALK_STATE *WalkState,
102 ACPI_PARSE_OBJECT *Op,
103 UINT32 OpType);

106 /*
107 * dbcmds - debug commands and output routines
108 */
109 ACPI_NAMESPACE_NODE *
110 AcpiDbConvertToNode (
111 char *InString);

113 void
114 AcpiDbDisplayTableInfo (
115 char *TableArg);

117 void
118 AcpiDbDisplayTemplate (

new/usr/src/common/acpica/include/acdebug.h 3

119 char *BufferArg);

121 void
122 AcpiDbUnloadAcpiTable (
123 char *Name);
111 char *TableArg,
112 char *InstanceArg);

125 void
126 AcpiDbSendNotify (
127 char *Name,
128 UINT32 Value);

130 void
131 AcpiDbDisplayInterfaces (
132 char *ActionArg,
133 char *InterfaceNameArg);

135 ACPI_STATUS
136 AcpiDbSleep (
137 char *ObjectArg);

139 void
140 AcpiDbDisplayLocks (
141 void);

143 void
144 AcpiDbDisplayResources (
145 char *ObjectArg);

147 ACPI_HW_DEPENDENT_RETURN_VOID (
148 void
149 AcpiDbDisplayGpes (
150 void))
138 void);

152 void
153 AcpiDbDisplayHandlers (
154 void);

156 ACPI_HW_DEPENDENT_RETURN_VOID (
157 void
158 AcpiDbGenerateGpe (
159 char *GpeArg,
160 char *BlockArg))
147 char *BlockArg);

162 ACPI_HW_DEPENDENT_RETURN_VOID (
163 void
164 AcpiDbGenerateSci (
165 void))

167 /*
168 * dbconvert - miscellaneous conversion routines
169 */
170 ACPI_STATUS
171 AcpiDbHexCharToValue (
172 int HexChar,
173 UINT8 *ReturnValue);

175 ACPI_STATUS
176 AcpiDbConvertToPackage (
177 char *String,
178 ACPI_OBJECT *Object);

180 ACPI_STATUS

new/usr/src/common/acpica/include/acdebug.h 4

181 AcpiDbConvertToObject (
182 ACPI_OBJECT_TYPE Type,
183 char *String,
184 ACPI_OBJECT *Object);

186 UINT8 *
187 AcpiDbEncodePldBuffer (
188 ACPI_PLD_INFO *PldInfo);

190 void
191 AcpiDbDumpPldBuffer (
192 ACPI_OBJECT *ObjDesc);

195 /*
196 * dbmethod - control method commands
197 */
198 void
199 AcpiDbSetMethodBreakpoint (
200 char *Location,
201 ACPI_WALK_STATE *WalkState,
202 ACPI_PARSE_OBJECT *Op);

204 void
205 AcpiDbSetMethodCallBreakpoint (
206 ACPI_PARSE_OBJECT *Op);

208 void
209 AcpiDbSetMethodData (
210 char *TypeArg,
211 char *IndexArg,
212 char *ValueArg);

214 ACPI_STATUS
215 AcpiDbDisassembleMethod (
216 char *Name);

218 void
219 AcpiDbDisassembleAml (
220 char *Statements,
221 ACPI_PARSE_OBJECT *Op);

223 void
224 AcpiDbBatchExecute (
225 char *CountArg);

228 /*
229 * dbnames - namespace commands
230 */
231 void
232 AcpiDbSetScope (
233 char *Name);

235 void
236 AcpiDbDumpNamespace (
237 char *StartArg,
238 char *DepthArg);

240 void
241 AcpiDbDumpNamespacePaths (
242 void);

244 void
245 AcpiDbDumpNamespaceByOwner (
246 char *OwnerArg,

new/usr/src/common/acpica/include/acdebug.h 5

247 char *DepthArg);

249 ACPI_STATUS
250 AcpiDbFindNameInNamespace (
251 char *NameArg);

253 void
254 AcpiDbCheckPredefinedNames (
255 void);

257 ACPI_STATUS
258 AcpiDbDisplayObjects (
259 char *ObjTypeArg,
260 char *DisplayCountArg);

262 void
263 AcpiDbCheckIntegrity (
264 void);

266 void
267 AcpiDbFindReferences (
268 char *ObjectArg);

270 void
271 AcpiDbGetBusInfo (
272 void);

275 /*
276 * dbdisply - debug display commands
277 */
278 void
279 AcpiDbDisplayMethodInfo (
280 ACPI_PARSE_OBJECT *Op);

282 void
283 AcpiDbDecodeAndDisplayObject (
284 char *Target,
285 char *OutputType);

287 void
288 AcpiDbDisplayResultObject (
289 ACPI_OPERAND_OBJECT *ObjDesc,
290 ACPI_WALK_STATE *WalkState);

292 ACPI_STATUS
293 AcpiDbDisplayAllMethods (
294 char *DisplayCountArg);

296 void
297 AcpiDbDisplayArguments (
298 void);

300 void
301 AcpiDbDisplayLocals (
302 void);

304 void
305 AcpiDbDisplayResults (
306 void);

308 void
309 AcpiDbDisplayCallingTree (
310 void);

312 void

new/usr/src/common/acpica/include/acdebug.h 6

313 AcpiDbDisplayObjectType (
314 char *ObjectArg);

316 void
317 AcpiDbDisplayArgumentObject (
318 ACPI_OPERAND_OBJECT *ObjDesc,
319 ACPI_WALK_STATE *WalkState);

322 /*
323 * dbexec - debugger control method execution
324 */
325 void
326 AcpiDbExecute (
327 char *Name,
328 char **Args,
329 ACPI_OBJECT_TYPE *Types,
330 UINT32 Flags);

332 void
333 AcpiDbCreateExecutionThreads (
334 char *NumThreadsArg,
335 char *NumLoopsArg,
336 char *MethodNameArg);

338 void
339 AcpiDbDeleteObjects (
340 UINT32 Count,
341 ACPI_OBJECT *Objects);

343 #ifdef ACPI_DBG_TRACK_ALLOCATIONS
344 UINT32
345 AcpiDbGetCacheInfo (
346 ACPI_MEMORY_LIST *Cache);
347 #endif

350 /*
351 * dbfileio - Debugger file I/O commands
352 */
353 ACPI_OBJECT_TYPE
354 AcpiDbMatchArgument (
355 char *UserArgument,
356 ACPI_DB_ARGUMENT_INFO *Arguments);
302 ARGUMENT_INFO *Arguments);

358 void
359 AcpiDbCloseDebugFile (
360 void);

362 void
363 AcpiDbOpenDebugFile (
364 char *Name);

366 ACPI_STATUS
367 AcpiDbLoadAcpiTable (
368 char *Filename);

370 ACPI_STATUS
371 AcpiDbGetTableFromFile (
372 char *Filename,
373 ACPI_TABLE_HEADER **Table);

375 ACPI_STATUS
376 AcpiDbReadTableFromFile (
377 char *Filename,

new/usr/src/common/acpica/include/acdebug.h 7

378 ACPI_TABLE_HEADER **Table);

381 /*
382 * dbhistry - debugger HISTORY command
383 */
384 void
385 AcpiDbAddToHistory (
386 char *CommandLine);

388 void
389 AcpiDbDisplayHistory (
390 void);

392 char *
393 AcpiDbGetFromHistory (
394 char *CommandNumArg);

396 char *
397 AcpiDbGetHistoryByIndex (
398 UINT32 CommanddNum);

401 /*
402 * dbinput - user front-end to the AML debugger
403 */
404 ACPI_STATUS
405 AcpiDbCommandDispatch (
406 char *InputBuffer,
407 ACPI_WALK_STATE *WalkState,
408 ACPI_PARSE_OBJECT *Op);

410 void ACPI_SYSTEM_XFACE
411 AcpiDbExecuteThread (
412 void *Context);

414 ACPI_STATUS
415 AcpiDbUserCommands (
416 char Prompt,
417 ACPI_PARSE_OBJECT *Op);

419 char *
420 AcpiDbGetNextToken (
421 char *String,
422 char **Next,
423 ACPI_OBJECT_TYPE *ReturnType);

426 /*
427 * dbstats - Generation and display of ACPI table statistics
428 */
429 void
430 AcpiDbGenerateStatistics (
431 ACPI_PARSE_OBJECT *Root,
432 BOOLEAN IsMethod);

434 ACPI_STATUS
435 AcpiDbDisplayStatistics (
436 char *TypeArg);

439 /*
440 * dbutils - AML debugger utilities
441 */
442 void
443 AcpiDbSetOutputDestination (

new/usr/src/common/acpica/include/acdebug.h 8

444 UINT32 Where);

446 void
447 AcpiDbDumpExternalObject (
448 ACPI_OBJECT *ObjDesc,
449 UINT32 Level);

451 void
452 AcpiDbPrepNamestring (
453 char *Name);

455 ACPI_NAMESPACE_NODE *
456 AcpiDbLocalNsLookup (
457 char *Name);

459 void
460 AcpiDbUint32ToHexString (
402 AcpiDbUInt32ToHexString (
461 UINT32 Value,
462 char *Buffer);

464 #endif /* __ACDEBUG_H__ */

new/usr/src/common/acpica/include/acdisasm.h 1

**
 24447 Thu Dec 26 13:49:47 2013
new/usr/src/common/acpica/include/acdisasm.h
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acdisasm.h - AML disassembler
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACDISASM_H__
45 #define __ACDISASM_H__

47 #include "amlresrc.h"

50 #define BLOCK_NONE 0
51 #define BLOCK_PAREN 1
52 #define BLOCK_BRACE 2
53 #define BLOCK_COMMA_LIST 4
54 #define ACPI_DEFAULT_RESNAME *(UINT32 *) "__RD"

56 /*
57 * Raw table data header. Used by disassembler and data table compiler.
58 * Do not change.
59 */

new/usr/src/common/acpica/include/acdisasm.h 2

60 #define ACPI_RAW_TABLE_DATA_HEADER "Raw Table Data"

63 typedef const struct acpi_dmtable_info
64 {
65 UINT8 Opcode;
66 UINT16 Offset;
67 char *Name;
68 UINT8 Flags;

70 } ACPI_DMTABLE_INFO;

72 /* Values for Flags field above */

74 #define DT_LENGTH 0x01 /* Field is a subtable length */
75 #define DT_FLAG 0x02 /* Field is a flag value */
76 #define DT_NON_ZERO 0x04 /* Field must be non-zero */
77 #define DT_OPTIONAL 0x08 /* Field is optional */
78 #define DT_DESCRIBES_OPTIONAL 0x10 /* Field describes an optional f
79 #define DT_COUNT 0x20 /* Currently not used */

81 /*
82 * Values for Opcode above.
83 * Note: 0-7 must not change, they are used as a flag shift value. Other
84 * than those, new values can be added wherever appropriate.
85 */
86 typedef enum
87 {
88 /* Simple Data Types */

90 ACPI_DMT_FLAG0 = 0,
91 ACPI_DMT_FLAG1 = 1,
92 ACPI_DMT_FLAG2 = 2,
93 ACPI_DMT_FLAG3 = 3,
94 ACPI_DMT_FLAG4 = 4,
95 ACPI_DMT_FLAG5 = 5,
96 ACPI_DMT_FLAG6 = 6,
97 ACPI_DMT_FLAG7 = 7,
98 ACPI_DMT_FLAGS0,
99 ACPI_DMT_FLAGS1,
100 ACPI_DMT_FLAGS2,
101 ACPI_DMT_FLAGS4,
102 ACPI_DMT_UINT8,
103 ACPI_DMT_UINT16,
104 ACPI_DMT_UINT24,
105 ACPI_DMT_UINT32,
106 ACPI_DMT_UINT40,
107 ACPI_DMT_UINT48,
108 ACPI_DMT_UINT56,
109 ACPI_DMT_UINT64,
110 ACPI_DMT_BUF7,
111 ACPI_DMT_BUF10,
112 ACPI_DMT_BUF16,
113 ACPI_DMT_BUF128,
114 ACPI_DMT_SIG,
115 ACPI_DMT_STRING,
116 ACPI_DMT_NAME4,
117 ACPI_DMT_NAME6,
118 ACPI_DMT_NAME8,

120 /* Types that are decoded to strings and miscellaneous */

122 ACPI_DMT_ACCWIDTH,
123 ACPI_DMT_CHKSUM,
124 ACPI_DMT_GAS,
125 ACPI_DMT_SPACEID,

new/usr/src/common/acpica/include/acdisasm.h 3

126 ACPI_DMT_UNICODE,
127 ACPI_DMT_UUID,

129 /* Types used only for the Data Table Compiler */

131 ACPI_DMT_BUFFER,
132 ACPI_DMT_DEVICE_PATH,
133 ACPI_DMT_LABEL,
134 ACPI_DMT_PCI_PATH,

136 /* Types that are specific to particular ACPI tables */

138 ACPI_DMT_ASF,
139 ACPI_DMT_DMAR,
140 ACPI_DMT_EINJACT,
141 ACPI_DMT_EINJINST,
142 ACPI_DMT_ERSTACT,
143 ACPI_DMT_ERSTINST,
144 ACPI_DMT_FADTPM,
145 ACPI_DMT_HEST,
146 ACPI_DMT_HESTNTFY,
147 ACPI_DMT_HESTNTYP,
148 ACPI_DMT_IVRS,
149 ACPI_DMT_MADT,
150 ACPI_DMT_PCCT,
151 ACPI_DMT_PMTT,
152 ACPI_DMT_SLIC,
153 ACPI_DMT_SRAT,

155 /* Special opcodes */

157 ACPI_DMT_EXTRA_TEXT,
158 ACPI_DMT_EXIT

160 } ACPI_ENTRY_TYPES;

162 typedef
163 void (*ACPI_DMTABLE_HANDLER) (
164 ACPI_TABLE_HEADER *Table);

166 typedef
167 ACPI_STATUS (*ACPI_CMTABLE_HANDLER) (
168 void **PFieldList);

170 typedef struct acpi_dmtable_data
171 {
172 char *Signature;
173 ACPI_DMTABLE_INFO *TableInfo;
174 ACPI_DMTABLE_HANDLER TableHandler;
175 ACPI_CMTABLE_HANDLER CmTableHandler;
176 const unsigned char *Template;
177 char *Name;

179 } ACPI_DMTABLE_DATA;

182 typedef struct acpi_op_walk_info
183 {
184 UINT32 Level;
185 UINT32 LastLevel;
186 UINT32 Count;
187 UINT32 BitOffset;
188 UINT32 Flags;
189 ACPI_WALK_STATE *WalkState;

191 } ACPI_OP_WALK_INFO;

new/usr/src/common/acpica/include/acdisasm.h 4

193 /*
194 * TBD - another copy of this is in asltypes.h, fix
195 */
196 #ifndef ASL_WALK_CALLBACK_DEFINED
197 typedef
198 ACPI_STATUS (*ASL_WALK_CALLBACK) (
199 ACPI_PARSE_OBJECT *Op,
200 UINT32 Level,
201 void *Context);
202 #define ASL_WALK_CALLBACK_DEFINED
203 #endif

205 typedef
206 void (*ACPI_RESOURCE_HANDLER) (
207 AML_RESOURCE *Resource,
208 UINT32 Length,
209 UINT32 Level);

211 typedef struct acpi_resource_tag
212 {
213 UINT32 BitIndex;
214 char *Tag;

216 } ACPI_RESOURCE_TAG;

218 /* Strings used for decoding flags to ASL keywords */

220 extern const char *AcpiGbl_WordDecode[];
221 extern const char *AcpiGbl_IrqDecode[];
222 extern const char *AcpiGbl_LockRule[];
223 extern const char *AcpiGbl_AccessTypes[];
224 extern const char *AcpiGbl_UpdateRules[];
225 extern const char *AcpiGbl_MatchOps[];

227 extern ACPI_DMTABLE_INFO AcpiDmTableInfoAsf0[];
228 extern ACPI_DMTABLE_INFO AcpiDmTableInfoAsf1[];
229 extern ACPI_DMTABLE_INFO AcpiDmTableInfoAsf1a[];
230 extern ACPI_DMTABLE_INFO AcpiDmTableInfoAsf2[];
231 extern ACPI_DMTABLE_INFO AcpiDmTableInfoAsf2a[];
232 extern ACPI_DMTABLE_INFO AcpiDmTableInfoAsf3[];
233 extern ACPI_DMTABLE_INFO AcpiDmTableInfoAsf4[];
234 extern ACPI_DMTABLE_INFO AcpiDmTableInfoAsfHdr[];
235 extern ACPI_DMTABLE_INFO AcpiDmTableInfoBoot[];
236 extern ACPI_DMTABLE_INFO AcpiDmTableInfoBert[];
237 extern ACPI_DMTABLE_INFO AcpiDmTableInfoBgrt[];
238 extern ACPI_DMTABLE_INFO AcpiDmTableInfoCpep[];
239 extern ACPI_DMTABLE_INFO AcpiDmTableInfoCpep0[];
240 extern ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt0[];
241 extern ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt1[];
242 extern ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt2[];
243 extern ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2[];
244 extern ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Device[];
245 extern ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Addr[];
246 extern ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Size[];
247 extern ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Name[];
248 extern ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2OemData[];
249 extern ACPI_DMTABLE_INFO AcpiDmTableInfoDbgp[];
250 extern ACPI_DMTABLE_INFO AcpiDmTableInfoDmar[];
251 extern ACPI_DMTABLE_INFO AcpiDmTableInfoDmarHdr[];
252 extern ACPI_DMTABLE_INFO AcpiDmTableInfoDmarScope[];
253 extern ACPI_DMTABLE_INFO AcpiDmTableInfoDmar0[];
254 extern ACPI_DMTABLE_INFO AcpiDmTableInfoDmar1[];
255 extern ACPI_DMTABLE_INFO AcpiDmTableInfoDmar2[];
256 extern ACPI_DMTABLE_INFO AcpiDmTableInfoDmar3[];
257 extern ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm[];

new/usr/src/common/acpica/include/acdisasm.h 5

258 extern ACPI_DMTABLE_INFO AcpiDmTableInfoEcdt[];
259 extern ACPI_DMTABLE_INFO AcpiDmTableInfoEinj[];
260 extern ACPI_DMTABLE_INFO AcpiDmTableInfoEinj0[];
261 extern ACPI_DMTABLE_INFO AcpiDmTableInfoErst[];
262 extern ACPI_DMTABLE_INFO AcpiDmTableInfoErst0[];
263 extern ACPI_DMTABLE_INFO AcpiDmTableInfoFacs[];
264 extern ACPI_DMTABLE_INFO AcpiDmTableInfoFadt1[];
265 extern ACPI_DMTABLE_INFO AcpiDmTableInfoFadt2[];
266 extern ACPI_DMTABLE_INFO AcpiDmTableInfoFadt3[];
267 extern ACPI_DMTABLE_INFO AcpiDmTableInfoFadt5[];
268 extern ACPI_DMTABLE_INFO AcpiDmTableInfoFpdt[];
269 extern ACPI_DMTABLE_INFO AcpiDmTableInfoFpdtHdr[];
270 extern ACPI_DMTABLE_INFO AcpiDmTableInfoFpdt0[];
271 extern ACPI_DMTABLE_INFO AcpiDmTableInfoFpdt1[];
272 extern ACPI_DMTABLE_INFO AcpiDmTableInfoGas[];
273 extern ACPI_DMTABLE_INFO AcpiDmTableInfoGtdt[];
274 extern ACPI_DMTABLE_INFO AcpiDmTableInfoHeader[];
275 extern ACPI_DMTABLE_INFO AcpiDmTableInfoHest[];
276 extern ACPI_DMTABLE_INFO AcpiDmTableInfoHest0[];
277 extern ACPI_DMTABLE_INFO AcpiDmTableInfoHest1[];
278 extern ACPI_DMTABLE_INFO AcpiDmTableInfoHest2[];
279 extern ACPI_DMTABLE_INFO AcpiDmTableInfoHest6[];
280 extern ACPI_DMTABLE_INFO AcpiDmTableInfoHest7[];
281 extern ACPI_DMTABLE_INFO AcpiDmTableInfoHest8[];
282 extern ACPI_DMTABLE_INFO AcpiDmTableInfoHest9[];
283 extern ACPI_DMTABLE_INFO AcpiDmTableInfoHestNotify[];
284 extern ACPI_DMTABLE_INFO AcpiDmTableInfoHestBank[];
285 extern ACPI_DMTABLE_INFO AcpiDmTableInfoHpet[];
286 extern ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs[];
287 extern ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs0[];
288 extern ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs1[];
289 extern ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs4[];
290 extern ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs8a[];
291 extern ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs8b[];
292 extern ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs8c[];
293 extern ACPI_DMTABLE_INFO AcpiDmTableInfoIvrsHdr[];
294 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt[];
295 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt0[];
296 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt1[];
297 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt2[];
298 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt3[];
299 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt4[];
300 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt5[];
301 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt6[];
302 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt7[];
303 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt8[];
304 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt9[];
305 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt10[];
306 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt11[];
307 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt12[];
308 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadtHdr[];
309 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMcfg[];
310 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMcfg0[];
311 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMchi[];
312 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMpst[];
313 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMpst0[];
314 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMpst0A[];
315 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMpst0B[];
316 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMpst1[];
317 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMpst2[];
318 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMsct[];
319 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMsct0[];
320 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMtmr[];
321 extern ACPI_DMTABLE_INFO AcpiDmTableInfoMtmr0[];
322 extern ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt[];
323 extern ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt0[];

new/usr/src/common/acpica/include/acdisasm.h 6

324 extern ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt1[];
325 extern ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt1a[];
326 extern ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt2[];
327 extern ACPI_DMTABLE_INFO AcpiDmTableInfoPmttHdr[];
328 extern ACPI_DMTABLE_INFO AcpiDmTableInfoPcct[];
329 extern ACPI_DMTABLE_INFO AcpiDmTableInfoPcctHdr[];
330 extern ACPI_DMTABLE_INFO AcpiDmTableInfoPcct0[];
331 extern ACPI_DMTABLE_INFO AcpiDmTableInfoRsdp1[];
332 extern ACPI_DMTABLE_INFO AcpiDmTableInfoRsdp2[];
333 extern ACPI_DMTABLE_INFO AcpiDmTableInfoS3pt[];
334 extern ACPI_DMTABLE_INFO AcpiDmTableInfoS3ptHdr[];
335 extern ACPI_DMTABLE_INFO AcpiDmTableInfoS3pt0[];
336 extern ACPI_DMTABLE_INFO AcpiDmTableInfoS3pt1[];
337 extern ACPI_DMTABLE_INFO AcpiDmTableInfoSbst[];
338 extern ACPI_DMTABLE_INFO AcpiDmTableInfoSlicHdr[];
339 extern ACPI_DMTABLE_INFO AcpiDmTableInfoSlic0[];
340 extern ACPI_DMTABLE_INFO AcpiDmTableInfoSlic1[];
341 extern ACPI_DMTABLE_INFO AcpiDmTableInfoSlit[];
342 extern ACPI_DMTABLE_INFO AcpiDmTableInfoSpcr[];
343 extern ACPI_DMTABLE_INFO AcpiDmTableInfoSpmi[];
344 extern ACPI_DMTABLE_INFO AcpiDmTableInfoSrat[];
345 extern ACPI_DMTABLE_INFO AcpiDmTableInfoSratHdr[];
346 extern ACPI_DMTABLE_INFO AcpiDmTableInfoSrat0[];
347 extern ACPI_DMTABLE_INFO AcpiDmTableInfoSrat1[];
348 extern ACPI_DMTABLE_INFO AcpiDmTableInfoSrat2[];
349 extern ACPI_DMTABLE_INFO AcpiDmTableInfoTcpa[];
350 extern ACPI_DMTABLE_INFO AcpiDmTableInfoTpm2[];
351 extern ACPI_DMTABLE_INFO AcpiDmTableInfoUefi[];
352 extern ACPI_DMTABLE_INFO AcpiDmTableInfoVrtc[];
353 extern ACPI_DMTABLE_INFO AcpiDmTableInfoVrtc0[];
354 extern ACPI_DMTABLE_INFO AcpiDmTableInfoWaet[];
355 extern ACPI_DMTABLE_INFO AcpiDmTableInfoWdat[];
356 extern ACPI_DMTABLE_INFO AcpiDmTableInfoWdat0[];
357 extern ACPI_DMTABLE_INFO AcpiDmTableInfoWddt[];
358 extern ACPI_DMTABLE_INFO AcpiDmTableInfoWdrt[];

360 extern ACPI_DMTABLE_INFO AcpiDmTableInfoGeneric[][2];

363 /*
364 * dmtable
365 */
366 extern ACPI_DMTABLE_DATA AcpiDmTableData[];

368 UINT8
369 AcpiDmGenerateChecksum (
370 void *Table,
371 UINT32 Length,
372 UINT8 OriginalChecksum);

374 ACPI_DMTABLE_DATA *
375 AcpiDmGetTableData (
376 char *Signature);

378 void
379 AcpiDmDumpDataTable (
380 ACPI_TABLE_HEADER *Table);

382 ACPI_STATUS
383 AcpiDmDumpTable (
384 UINT32 TableLength,
385 UINT32 TableOffset,
386 void *Table,
387 UINT32 SubTableLength,
388 ACPI_DMTABLE_INFO *Info);

new/usr/src/common/acpica/include/acdisasm.h 7

390 void
391 AcpiDmLineHeader (
392 UINT32 Offset,
393 UINT32 ByteLength,
394 char *Name);

396 void
397 AcpiDmLineHeader2 (
398 UINT32 Offset,
399 UINT32 ByteLength,
400 char *Name,
401 UINT32 Value);

404 /*
405 * dmtbdump
406 */
407 void
408 AcpiDmDumpAsf (
409 ACPI_TABLE_HEADER *Table);

411 void
412 AcpiDmDumpCpep (
413 ACPI_TABLE_HEADER *Table);

415 void
416 AcpiDmDumpCsrt (
417 ACPI_TABLE_HEADER *Table);

419 void
420 AcpiDmDumpDbg2 (
421 ACPI_TABLE_HEADER *Table);

423 void
424 AcpiDmDumpDmar (
425 ACPI_TABLE_HEADER *Table);

427 void
428 AcpiDmDumpEinj (
429 ACPI_TABLE_HEADER *Table);

431 void
432 AcpiDmDumpErst (
433 ACPI_TABLE_HEADER *Table);

435 void
436 AcpiDmDumpFadt (
437 ACPI_TABLE_HEADER *Table);

439 void
440 AcpiDmDumpFpdt (
441 ACPI_TABLE_HEADER *Table);

443 void
444 AcpiDmDumpHest (
445 ACPI_TABLE_HEADER *Table);

447 void
448 AcpiDmDumpIvrs (
449 ACPI_TABLE_HEADER *Table);

451 void
452 AcpiDmDumpMadt (
453 ACPI_TABLE_HEADER *Table);

455 void

new/usr/src/common/acpica/include/acdisasm.h 8

456 AcpiDmDumpMcfg (
457 ACPI_TABLE_HEADER *Table);

459 void
460 AcpiDmDumpMpst (
461 ACPI_TABLE_HEADER *Table);

463 void
464 AcpiDmDumpMsct (
465 ACPI_TABLE_HEADER *Table);

467 void
468 AcpiDmDumpMtmr (
469 ACPI_TABLE_HEADER *Table);

471 void
472 AcpiDmDumpPcct (
473 ACPI_TABLE_HEADER *Table);

475 void
476 AcpiDmDumpPmtt (
477 ACPI_TABLE_HEADER *Table);

479 UINT32
480 AcpiDmDumpRsdp (
481 ACPI_TABLE_HEADER *Table);

483 void
484 AcpiDmDumpRsdt (
485 ACPI_TABLE_HEADER *Table);

487 UINT32
488 AcpiDmDumpS3pt (
489 ACPI_TABLE_HEADER *Table);

491 void
492 AcpiDmDumpSlic (
493 ACPI_TABLE_HEADER *Table);

495 void
496 AcpiDmDumpSlit (
497 ACPI_TABLE_HEADER *Table);

499 void
500 AcpiDmDumpSrat (
501 ACPI_TABLE_HEADER *Table);

503 void
504 AcpiDmDumpVrtc (
505 ACPI_TABLE_HEADER *Table);

507 void
508 AcpiDmDumpWdat (
509 ACPI_TABLE_HEADER *Table);

511 void
512 AcpiDmDumpXsdt (
513 ACPI_TABLE_HEADER *Table);

516 /*
517 * dmwalk
518 */
519 void
520 AcpiDmDisassemble (
521 ACPI_WALK_STATE *WalkState,

new/usr/src/common/acpica/include/acdisasm.h 9

522 ACPI_PARSE_OBJECT *Origin,
523 UINT32 NumOpcodes);

525 void
526 AcpiDmWalkParseTree (
527 ACPI_PARSE_OBJECT *Op,
528 ASL_WALK_CALLBACK DescendingCallback,
529 ASL_WALK_CALLBACK AscendingCallback,
530 void *Context);

533 /*
534 * dmopcode
535 */
536 void
537 AcpiDmDisassembleOneOp (
538 ACPI_WALK_STATE *WalkState,
539 ACPI_OP_WALK_INFO *Info,
540 ACPI_PARSE_OBJECT *Op);

542 void
543 AcpiDmDecodeInternalObject (
544 ACPI_OPERAND_OBJECT *ObjDesc);

546 UINT32
547 AcpiDmListType (
548 ACPI_PARSE_OBJECT *Op);

550 void
551 AcpiDmMethodFlags (
552 ACPI_PARSE_OBJECT *Op);

554 void
555 AcpiDmPredefinedDescription (
556 ACPI_PARSE_OBJECT *Op);

558 void
559 AcpiDmFieldPredefinedDescription (
560 ACPI_PARSE_OBJECT *Op);

562 void
563 AcpiDmFieldFlags (
564 ACPI_PARSE_OBJECT *Op);

566 void
567 AcpiDmAddressSpace (
568 UINT8 SpaceId);

570 void
571 AcpiDmRegionFlags (
572 ACPI_PARSE_OBJECT *Op);

574 void
575 AcpiDmMatchOp (
576 ACPI_PARSE_OBJECT *Op);

579 /*
580 * dmnames
581 */
582 UINT32
583 AcpiDmDumpName (
584 UINT32 Name);

586 ACPI_STATUS
587 AcpiPsDisplayObjectPathname (

new/usr/src/common/acpica/include/acdisasm.h 10

588 ACPI_WALK_STATE *WalkState,
589 ACPI_PARSE_OBJECT *Op);

591 void
592 AcpiDmNamestring (
593 char *Name);

596 /*
597 * dmobject
598 */
599 void
600 AcpiDmDisplayInternalObject (
601 ACPI_OPERAND_OBJECT *ObjDesc,
602 ACPI_WALK_STATE *WalkState);

604 void
605 AcpiDmDisplayArguments (
606 ACPI_WALK_STATE *WalkState);

608 void
609 AcpiDmDisplayLocals (
610 ACPI_WALK_STATE *WalkState);

612 void
613 AcpiDmDumpMethodInfo (
614 ACPI_STATUS Status,
615 ACPI_WALK_STATE *WalkState,
616 ACPI_PARSE_OBJECT *Op);

619 /*
620 * dmbuffer
621 */
622 void
623 AcpiDmDisasmByteList (
624 UINT32 Level,
625 UINT8 *ByteData,
626 UINT32 ByteCount);

628 void
629 AcpiDmByteList (
630 ACPI_OP_WALK_INFO *Info,
631 ACPI_PARSE_OBJECT *Op);

633 void
634 AcpiDmIsEisaId (
635 ACPI_PARSE_OBJECT *Op);

637 void
638 AcpiDmEisaId (
639 UINT32 EncodedId);

641 BOOLEAN
642 AcpiDmIsUnicodeBuffer (
643 ACPI_PARSE_OBJECT *Op);

645 BOOLEAN
646 AcpiDmIsStringBuffer (
647 ACPI_PARSE_OBJECT *Op);

649 BOOLEAN
650 AcpiDmIsPldBuffer (
651 ACPI_PARSE_OBJECT *Op);

new/usr/src/common/acpica/include/acdisasm.h 11

654 /*
655 * dmdeferred
656 */
657 ACPI_STATUS
658 AcpiDmParseDeferredOps (
659 ACPI_PARSE_OBJECT *Root);

662 /*
663 * dmextern
664 */
665 ACPI_STATUS
666 AcpiDmAddToExternalFileList (
667 char *PathList);

669 void
670 AcpiDmClearExternalFileList (
671 void);

673 void
674 AcpiDmAddOpToExternalList (
675 ACPI_PARSE_OBJECT *Op,
676 char *Path,
677 UINT8 Type,
678 UINT32 Value,
679 UINT16 Flags);

681 void
682 AcpiDmAddNodeToExternalList (
683 ACPI_NAMESPACE_NODE *Node,
684 UINT8 Type,
685 UINT32 Value,
686 UINT16 Flags);

688 void
689 AcpiDmAddExternalsToNamespace (
690 void);

692 UINT32
693 AcpiDmGetExternalMethodCount (
694 void);

696 void
697 AcpiDmClearExternalList (
698 void);

700 void
701 AcpiDmEmitExternals (
702 void);

704 void
705 AcpiDmUnresolvedWarning (
706 UINT8 Type);

708 void
709 AcpiDmGetExternalsFromFile (
710 void);

712 /*
713 * dmresrc
714 */
715 void
716 AcpiDmDumpInteger8 (
717 UINT8 Value,
718 char *Name);

new/usr/src/common/acpica/include/acdisasm.h 12

720 void
721 AcpiDmDumpInteger16 (
722 UINT16 Value,
723 char *Name);

725 void
726 AcpiDmDumpInteger32 (
727 UINT32 Value,
728 char *Name);

730 void
731 AcpiDmDumpInteger64 (
732 UINT64 Value,
733 char *Name);

735 void
736 AcpiDmResourceTemplate (
737 ACPI_OP_WALK_INFO *Info,
738 ACPI_PARSE_OBJECT *Op,
739 UINT8 *ByteData,
740 UINT32 ByteCount);

742 ACPI_STATUS
743 AcpiDmIsResourceTemplate (
744 ACPI_WALK_STATE *WalkState,
745 ACPI_PARSE_OBJECT *Op);

747 void
748 AcpiDmBitList (
749 UINT16 Mask);

751 void
752 AcpiDmDescriptorName (
753 void);

756 /*
757 * dmresrcl
758 */
759 void
760 AcpiDmWordDescriptor (
761 AML_RESOURCE *Resource,
762 UINT32 Length,
763 UINT32 Level);

765 void
766 AcpiDmDwordDescriptor (
767 AML_RESOURCE *Resource,
768 UINT32 Length,
769 UINT32 Level);

771 void
772 AcpiDmExtendedDescriptor (
773 AML_RESOURCE *Resource,
774 UINT32 Length,
775 UINT32 Level);

777 void
778 AcpiDmQwordDescriptor (
779 AML_RESOURCE *Resource,
780 UINT32 Length,
781 UINT32 Level);

783 void
784 AcpiDmMemory24Descriptor (
785 AML_RESOURCE *Resource,

new/usr/src/common/acpica/include/acdisasm.h 13

786 UINT32 Length,
787 UINT32 Level);

789 void
790 AcpiDmMemory32Descriptor (
791 AML_RESOURCE *Resource,
792 UINT32 Length,
793 UINT32 Level);

795 void
796 AcpiDmFixedMemory32Descriptor (
797 AML_RESOURCE *Resource,
798 UINT32 Length,
799 UINT32 Level);

801 void
802 AcpiDmGenericRegisterDescriptor (
803 AML_RESOURCE *Resource,
804 UINT32 Length,
805 UINT32 Level);

807 void
808 AcpiDmInterruptDescriptor (
809 AML_RESOURCE *Resource,
810 UINT32 Length,
811 UINT32 Level);

813 void
814 AcpiDmVendorLargeDescriptor (
815 AML_RESOURCE *Resource,
816 UINT32 Length,
817 UINT32 Level);

819 void
820 AcpiDmGpioDescriptor (
821 AML_RESOURCE *Resource,
822 UINT32 Length,
823 UINT32 Level);

825 void
826 AcpiDmSerialBusDescriptor (
827 AML_RESOURCE *Resource,
828 UINT32 Length,
829 UINT32 Level);

831 void
832 AcpiDmVendorCommon (
833 char *Name,
834 UINT8 *ByteData,
835 UINT32 Length,
836 UINT32 Level);

839 /*
840 * dmresrcs
841 */
842 void
843 AcpiDmIrqDescriptor (
844 AML_RESOURCE *Resource,
845 UINT32 Length,
846 UINT32 Level);

848 void
849 AcpiDmDmaDescriptor (
850 AML_RESOURCE *Resource,
851 UINT32 Length,

new/usr/src/common/acpica/include/acdisasm.h 14

852 UINT32 Level);

854 void
855 AcpiDmFixedDmaDescriptor (
856 AML_RESOURCE *Resource,
857 UINT32 Length,
858 UINT32 Level);

860 void
861 AcpiDmIoDescriptor (
862 AML_RESOURCE *Resource,
863 UINT32 Length,
864 UINT32 Level);

866 void
867 AcpiDmFixedIoDescriptor (
868 AML_RESOURCE *Resource,
869 UINT32 Length,
870 UINT32 Level);

872 void
873 AcpiDmStartDependentDescriptor (
874 AML_RESOURCE *Resource,
875 UINT32 Length,
876 UINT32 Level);

878 void
879 AcpiDmEndDependentDescriptor (
880 AML_RESOURCE *Resource,
881 UINT32 Length,
882 UINT32 Level);

884 void
885 AcpiDmVendorSmallDescriptor (
886 AML_RESOURCE *Resource,
887 UINT32 Length,
888 UINT32 Level);

891 /*
892 * dmutils
893 */
894 void
895 AcpiDmDecodeAttribute (
896 UINT8 Attribute);

898 void
899 AcpiDmIndent (
900 UINT32 Level);

902 BOOLEAN
903 AcpiDmCommaIfListMember (
904 ACPI_PARSE_OBJECT *Op);

906 void
907 AcpiDmCommaIfFieldMember (
908 ACPI_PARSE_OBJECT *Op);

911 /*
912 * dmrestag
913 */
914 void
915 AcpiDmFindResources (
916 ACPI_PARSE_OBJECT *Root);

new/usr/src/common/acpica/include/acdisasm.h 15

918 void
919 AcpiDmCheckResourceReference (
920 ACPI_PARSE_OBJECT *Op,
921 ACPI_WALK_STATE *WalkState);

924 /*
925 * acdisasm
926 */
927 void
928 AdDisassemblerHeader (
929 char *Filename);

932 #endif /* __ACDISASM_H__ */

new/usr/src/common/acpica/include/acdispat.h 1

**
 11413 Thu Dec 26 13:49:47 2013
new/usr/src/common/acpica/include/acdispat.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acdispat.h - dispatcher (parser to interpreter interface)
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #ifndef _ACDISPAT_H_
46 #define _ACDISPAT_H_

49 #define NAMEOF_LOCAL_NTE "__L0"
50 #define NAMEOF_ARG_NTE "__A0"

53 /*
54 * dsargs - execution of dynamic arguments for static objects
55 */
56 ACPI_STATUS
57 AcpiDsGetBufferFieldArguments (
58 ACPI_OPERAND_OBJECT *ObjDesc);

new/usr/src/common/acpica/include/acdispat.h 2

60 ACPI_STATUS
61 AcpiDsGetBankFieldArguments (
62 ACPI_OPERAND_OBJECT *ObjDesc);

64 ACPI_STATUS
65 AcpiDsGetRegionArguments (
66 ACPI_OPERAND_OBJECT *RgnDesc);

68 ACPI_STATUS
69 AcpiDsGetBufferArguments (
70 ACPI_OPERAND_OBJECT *ObjDesc);

72 ACPI_STATUS
73 AcpiDsGetPackageArguments (
74 ACPI_OPERAND_OBJECT *ObjDesc);

77 /*
78 * dscontrol - support for execution control opcodes
79 */
80 ACPI_STATUS
81 AcpiDsExecBeginControlOp (
82 ACPI_WALK_STATE *WalkState,
83 ACPI_PARSE_OBJECT *Op);

85 ACPI_STATUS
86 AcpiDsExecEndControlOp (
87 ACPI_WALK_STATE *WalkState,
88 ACPI_PARSE_OBJECT *Op);

91 /*
92 * dsopcode - support for late operand evaluation
93 */
94 ACPI_STATUS
95 AcpiDsEvalBufferFieldOperands (
96 ACPI_WALK_STATE *WalkState,
97 ACPI_PARSE_OBJECT *Op);

99 ACPI_STATUS
100 AcpiDsEvalRegionOperands (
101 ACPI_WALK_STATE *WalkState,
102 ACPI_PARSE_OBJECT *Op);

104 ACPI_STATUS
105 AcpiDsEvalTableRegionOperands (
106 ACPI_WALK_STATE *WalkState,
107 ACPI_PARSE_OBJECT *Op);

109 ACPI_STATUS
110 AcpiDsEvalDataObjectOperands (
111 ACPI_WALK_STATE *WalkState,
112 ACPI_PARSE_OBJECT *Op,
113 ACPI_OPERAND_OBJECT *ObjDesc);

115 ACPI_STATUS
116 AcpiDsEvalBankFieldOperands (
117 ACPI_WALK_STATE *WalkState,
118 ACPI_PARSE_OBJECT *Op);

120 ACPI_STATUS
121 AcpiDsInitializeRegion (
122 ACPI_HANDLE ObjHandle);

125 /*

new/usr/src/common/acpica/include/acdispat.h 3

126 * dsexec - Parser/Interpreter interface, method execution callbacks
127 */
128 ACPI_STATUS
129 AcpiDsGetPredicateValue (
130 ACPI_WALK_STATE *WalkState,
131 ACPI_OPERAND_OBJECT *ResultObj);

133 ACPI_STATUS
134 AcpiDsExecBeginOp (
135 ACPI_WALK_STATE *WalkState,
136 ACPI_PARSE_OBJECT **OutOp);

138 ACPI_STATUS
139 AcpiDsExecEndOp (
140 ACPI_WALK_STATE *State);

143 /*
144 * dsfield - Parser/Interpreter interface for AML fields
145 */
146 ACPI_STATUS
147 AcpiDsCreateField (
148 ACPI_PARSE_OBJECT *Op,
149 ACPI_NAMESPACE_NODE *RegionNode,
150 ACPI_WALK_STATE *WalkState);

152 ACPI_STATUS
153 AcpiDsCreateBankField (
154 ACPI_PARSE_OBJECT *Op,
155 ACPI_NAMESPACE_NODE *RegionNode,
156 ACPI_WALK_STATE *WalkState);

158 ACPI_STATUS
159 AcpiDsCreateIndexField (
160 ACPI_PARSE_OBJECT *Op,
161 ACPI_NAMESPACE_NODE *RegionNode,
162 ACPI_WALK_STATE *WalkState);

164 ACPI_STATUS
165 AcpiDsCreateBufferField (
166 ACPI_PARSE_OBJECT *Op,
167 ACPI_WALK_STATE *WalkState);

169 ACPI_STATUS
170 AcpiDsInitFieldObjects (
171 ACPI_PARSE_OBJECT *Op,
172 ACPI_WALK_STATE *WalkState);

175 /*
176 * dsload - Parser/Interpreter interface, pass 1 namespace load callbacks
177 */
178 ACPI_STATUS
179 AcpiDsInitCallbacks (
180 ACPI_WALK_STATE *WalkState,
181 UINT32 PassNumber);

183 ACPI_STATUS
184 AcpiDsLoad1BeginOp (
185 ACPI_WALK_STATE *WalkState,
186 ACPI_PARSE_OBJECT **OutOp);

188 ACPI_STATUS
189 AcpiDsLoad1EndOp (
190 ACPI_WALK_STATE *WalkState);

new/usr/src/common/acpica/include/acdispat.h 4

193 /*
194 * dsload - Parser/Interpreter interface, pass 2 namespace load callbacks
195 */
196 ACPI_STATUS
197 AcpiDsLoad2BeginOp (
198 ACPI_WALK_STATE *WalkState,
199 ACPI_PARSE_OBJECT **OutOp);

201 ACPI_STATUS
202 AcpiDsLoad2EndOp (
203 ACPI_WALK_STATE *WalkState);

206 /*
207 * dsmthdat - method data (locals/args)
208 */
209 ACPI_STATUS
210 AcpiDsStoreObjectToLocal (
211 UINT8 Type,
212 UINT32 Index,
213 ACPI_OPERAND_OBJECT *SrcDesc,
214 ACPI_WALK_STATE *WalkState);

216 ACPI_STATUS
217 AcpiDsMethodDataGetEntry (
218 UINT16 Opcode,
219 UINT32 Index,
220 ACPI_WALK_STATE *WalkState,
221 ACPI_OPERAND_OBJECT ***Node);

223 void
224 AcpiDsMethodDataDeleteAll (
225 ACPI_WALK_STATE *WalkState);

227 BOOLEAN
228 AcpiDsIsMethodValue (
229 ACPI_OPERAND_OBJECT *ObjDesc);

231 ACPI_STATUS
232 AcpiDsMethodDataGetValue (
233 UINT8 Type,
234 UINT32 Index,
235 ACPI_WALK_STATE *WalkState,
236 ACPI_OPERAND_OBJECT **DestDesc);

238 ACPI_STATUS
239 AcpiDsMethodDataInitArgs (
240 ACPI_OPERAND_OBJECT **Params,
241 UINT32 MaxParamCount,
242 ACPI_WALK_STATE *WalkState);

244 ACPI_STATUS
245 AcpiDsMethodDataGetNode (
246 UINT8 Type,
247 UINT32 Index,
248 ACPI_WALK_STATE *WalkState,
249 ACPI_NAMESPACE_NODE **Node);

251 void
252 AcpiDsMethodDataInit (
253 ACPI_WALK_STATE *WalkState);

256 /*
257 * dsmethod - Parser/Interpreter interface - control method parsing

new/usr/src/common/acpica/include/acdispat.h 5

258 */
259 ACPI_STATUS
260 AcpiDsParseMethod (
261 ACPI_NAMESPACE_NODE *Node);

263 ACPI_STATUS
264 AcpiDsCallControlMethod (
265 ACPI_THREAD_STATE *Thread,
266 ACPI_WALK_STATE *WalkState,
267 ACPI_PARSE_OBJECT *Op);

269 ACPI_STATUS
270 AcpiDsRestartControlMethod (
271 ACPI_WALK_STATE *WalkState,
272 ACPI_OPERAND_OBJECT *ReturnDesc);

274 void
275 AcpiDsTerminateControlMethod (
276 ACPI_OPERAND_OBJECT *MethodDesc,
277 ACPI_WALK_STATE *WalkState);

279 ACPI_STATUS
280 AcpiDsBeginMethodExecution (
281 ACPI_NAMESPACE_NODE *MethodNode,
282 ACPI_OPERAND_OBJECT *ObjDesc,
283 ACPI_WALK_STATE *WalkState);

285 ACPI_STATUS
286 AcpiDsMethodError (
287 ACPI_STATUS Status,
288 ACPI_WALK_STATE *WalkState);

290 /*
291 * dsinit
292 */
293 ACPI_STATUS
294 AcpiDsInitializeObjects (
295 UINT32 TableIndex,
296 ACPI_NAMESPACE_NODE *StartNode);

299 /*
300 * dsobject - Parser/Interpreter interface - object initialization and conversio
301 */
302 ACPI_STATUS
303 AcpiDsBuildInternalBufferObj (
304 ACPI_WALK_STATE *WalkState,
305 ACPI_PARSE_OBJECT *Op,
306 UINT32 BufferLength,
307 ACPI_OPERAND_OBJECT **ObjDescPtr);

309 ACPI_STATUS
310 AcpiDsBuildInternalPackageObj (
311 ACPI_WALK_STATE *WalkState,
312 ACPI_PARSE_OBJECT *op,
313 UINT32 PackageLength,
314 ACPI_OPERAND_OBJECT **ObjDesc);

316 ACPI_STATUS
317 AcpiDsInitObjectFromOp (
318 ACPI_WALK_STATE *WalkState,
319 ACPI_PARSE_OBJECT *Op,
320 UINT16 Opcode,
321 ACPI_OPERAND_OBJECT **ObjDesc);

323 ACPI_STATUS

new/usr/src/common/acpica/include/acdispat.h 6

324 AcpiDsCreateNode (
325 ACPI_WALK_STATE *WalkState,
326 ACPI_NAMESPACE_NODE *Node,
327 ACPI_PARSE_OBJECT *Op);

330 /*
331 * dsutils - Parser/Interpreter interface utility routines
332 */
333 void
334 AcpiDsClearImplicitReturn (
335 ACPI_WALK_STATE *WalkState);

337 BOOLEAN
338 AcpiDsDoImplicitReturn (
339 ACPI_OPERAND_OBJECT *ReturnDesc,
340 ACPI_WALK_STATE *WalkState,
341 BOOLEAN AddReference);

343 BOOLEAN
344 AcpiDsIsResultUsed (
345 ACPI_PARSE_OBJECT *Op,
346 ACPI_WALK_STATE *WalkState);

348 void
349 AcpiDsDeleteResultIfNotUsed (
350 ACPI_PARSE_OBJECT *Op,
351 ACPI_OPERAND_OBJECT *ResultObj,
352 ACPI_WALK_STATE *WalkState);

354 ACPI_STATUS
355 AcpiDsCreateOperand (
356 ACPI_WALK_STATE *WalkState,
357 ACPI_PARSE_OBJECT *Arg,
358 UINT32 ArgsRemaining);

360 ACPI_STATUS
361 AcpiDsCreateOperands (
362 ACPI_WALK_STATE *WalkState,
363 ACPI_PARSE_OBJECT *FirstArg);

365 ACPI_STATUS
366 AcpiDsResolveOperands (
367 ACPI_WALK_STATE *WalkState);

369 void
370 AcpiDsClearOperands (
371 ACPI_WALK_STATE *WalkState);

373 ACPI_STATUS
374 AcpiDsEvaluateNamePath (
375 ACPI_WALK_STATE *WalkState);

378 /*
379 * dswscope - Scope Stack manipulation
380 */
381 ACPI_STATUS
382 AcpiDsScopeStackPush (
383 ACPI_NAMESPACE_NODE *Node,
384 ACPI_OBJECT_TYPE Type,
385 ACPI_WALK_STATE *WalkState);

388 ACPI_STATUS
389 AcpiDsScopeStackPop (

new/usr/src/common/acpica/include/acdispat.h 7

390 ACPI_WALK_STATE *WalkState);

392 void
393 AcpiDsScopeStackClear (
394 ACPI_WALK_STATE *WalkState);

397 /*
398 * dswstate - parser WALK_STATE management routines
399 */
400 ACPI_STATUS
401 AcpiDsObjStackPush (
402 void *Object,
403 ACPI_WALK_STATE *WalkState);

405 ACPI_STATUS
406 AcpiDsObjStackPop (
407 UINT32 PopCount,
408 ACPI_WALK_STATE *WalkState);

410 ACPI_WALK_STATE *
411 AcpiDsCreateWalkState (
412 ACPI_OWNER_ID OwnerId,
413 ACPI_PARSE_OBJECT *Origin,
414 ACPI_OPERAND_OBJECT *MthDesc,
415 ACPI_THREAD_STATE *Thread);

417 ACPI_STATUS
418 AcpiDsInitAmlWalk (
419 ACPI_WALK_STATE *WalkState,
420 ACPI_PARSE_OBJECT *Op,
421 ACPI_NAMESPACE_NODE *MethodNode,
422 UINT8 *AmlStart,
423 UINT32 AmlLength,
424 ACPI_EVALUATE_INFO *Info,
425 UINT8 PassNumber);

427 void
428 AcpiDsObjStackPopAndDelete (
429 UINT32 PopCount,
430 ACPI_WALK_STATE *WalkState);

432 void
433 AcpiDsDeleteWalkState (
434 ACPI_WALK_STATE *WalkState);

436 ACPI_WALK_STATE *
437 AcpiDsPopWalkState (
438 ACPI_THREAD_STATE *Thread);

440 void
441 AcpiDsPushWalkState (
442 ACPI_WALK_STATE *WalkState,
443 ACPI_THREAD_STATE *Thread);

445 ACPI_STATUS
446 AcpiDsResultStackClear (
447 ACPI_WALK_STATE *WalkState);

449 ACPI_WALK_STATE *
450 AcpiDsGetCurrentWalkState (
451 ACPI_THREAD_STATE *Thread);

453 ACPI_STATUS
454 AcpiDsResultPop (
455 ACPI_OPERAND_OBJECT **Object,

new/usr/src/common/acpica/include/acdispat.h 8

456 ACPI_WALK_STATE *WalkState);

458 ACPI_STATUS
459 AcpiDsResultPush (
460 ACPI_OPERAND_OBJECT *Object,
461 ACPI_WALK_STATE *WalkState);

463 #endif /* _ACDISPAT_H_ */

new/usr/src/common/acpica/include/acevents.h 1

**
 8717 Thu Dec 26 13:49:48 2013
new/usr/src/common/acpica/include/acevents.h
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acevents.h - Event subcomponent prototypes and defines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACEVENTS_H__
45 #define __ACEVENTS_H__

48 /*
49 * evevent
50 */
51 ACPI_STATUS
52 AcpiEvInitializeEvents (
53 void);

55 ACPI_STATUS
56 AcpiEvInstallXruptHandlers (
57 void);

new/usr/src/common/acpica/include/acevents.h 2

59 UINT32
60 AcpiEvFixedEventDetect (
61 void);

64 /*
65 * evmisc
66 */
67 BOOLEAN
68 AcpiEvIsNotifyObject (
69 ACPI_NAMESPACE_NODE *Node);

71 UINT32
72 AcpiEvGetGpeNumberIndex (
73 UINT32 GpeNumber);

75 ACPI_STATUS
76 AcpiEvQueueNotifyRequest (
77 ACPI_NAMESPACE_NODE *Node,
78 UINT32 NotifyValue);

81 /*
82 * evglock - Global Lock support
83 */
84 ACPI_STATUS
85 AcpiEvInitGlobalLockHandler (
86 void);

88 ACPI_HW_DEPENDENT_RETURN_OK (
89 ACPI_STATUS
90 AcpiEvAcquireGlobalLock(
91 UINT16 Timeout))
90 UINT16 Timeout);

93 ACPI_HW_DEPENDENT_RETURN_OK (
94 ACPI_STATUS
95 AcpiEvReleaseGlobalLock(
96 void))
94 void);

98 ACPI_STATUS
99 AcpiEvRemoveGlobalLockHandler (
100 void);

103 /*
104 * evgpe - Low-level GPE support
105 */
106 UINT32
107 AcpiEvGpeDetect (
108 ACPI_GPE_XRUPT_INFO *GpeXruptList);

110 ACPI_STATUS
111 AcpiEvUpdateGpeEnableMask (
112 ACPI_GPE_EVENT_INFO *GpeEventInfo);

114 ACPI_STATUS
115 AcpiEvEnableGpe (
116 ACPI_GPE_EVENT_INFO *GpeEventInfo);

118 ACPI_STATUS
119 AcpiEvAddGpeReference (
120 ACPI_GPE_EVENT_INFO *GpeEventInfo);

122 ACPI_STATUS

new/usr/src/common/acpica/include/acevents.h 3

123 AcpiEvRemoveGpeReference (
124 ACPI_GPE_EVENT_INFO *GpeEventInfo);

126 ACPI_GPE_EVENT_INFO *
127 AcpiEvGetGpeEventInfo (
128 ACPI_HANDLE GpeDevice,
129 UINT32 GpeNumber);

131 ACPI_GPE_EVENT_INFO *
132 AcpiEvLowGetGpeInfo (
133 UINT32 GpeNumber,
134 ACPI_GPE_BLOCK_INFO *GpeBlock);

136 ACPI_STATUS
137 AcpiEvFinishGpe (
138 ACPI_GPE_EVENT_INFO *GpeEventInfo);

141 /*
142 * evgpeblk - Upper-level GPE block support
143 */
144 ACPI_STATUS
145 AcpiEvCreateGpeBlock (
146 ACPI_NAMESPACE_NODE *GpeDevice,
147 ACPI_GENERIC_ADDRESS *GpeBlockAddress,
148 UINT32 RegisterCount,
149 UINT8 GpeBlockBaseNumber,
150 UINT32 InterruptNumber,
151 ACPI_GPE_BLOCK_INFO **ReturnGpeBlock);

153 ACPI_STATUS
154 AcpiEvInitializeGpeBlock (
155 ACPI_GPE_XRUPT_INFO *GpeXruptInfo,
156 ACPI_GPE_BLOCK_INFO *GpeBlock,
157 void *Context);

159 ACPI_HW_DEPENDENT_RETURN_OK (
160 ACPI_STATUS
161 AcpiEvDeleteGpeBlock (
162 ACPI_GPE_BLOCK_INFO *GpeBlock))
159 ACPI_GPE_BLOCK_INFO *GpeBlock);

164 UINT32
165 AcpiEvGpeDispatch (
166 ACPI_NAMESPACE_NODE *GpeDevice,
167 ACPI_GPE_EVENT_INFO *GpeEventInfo,
168 UINT32 GpeNumber);

171 /*
172 * evgpeinit - GPE initialization and update
173 */
174 ACPI_STATUS
175 AcpiEvGpeInitialize (
176 void);

178 ACPI_HW_DEPENDENT_RETURN_VOID (
179 void
180 AcpiEvUpdateGpes (
181 ACPI_OWNER_ID TableOwnerId))
176 ACPI_OWNER_ID TableOwnerId);

183 ACPI_STATUS
184 AcpiEvMatchGpeMethod (
185 ACPI_HANDLE ObjHandle,
186 UINT32 Level,

new/usr/src/common/acpica/include/acevents.h 4

187 void *Context,
188 void **ReturnValue);

191 /*
192 * evgpeutil - GPE utilities
193 */
194 ACPI_STATUS
195 AcpiEvWalkGpeList (
196 ACPI_GPE_CALLBACK GpeWalkCallback,
197 void *Context);

199 BOOLEAN
200 AcpiEvValidGpeEvent (
201 ACPI_GPE_EVENT_INFO *GpeEventInfo);

203 ACPI_STATUS
204 AcpiEvGetGpeDevice (
205 ACPI_GPE_XRUPT_INFO *GpeXruptInfo,
206 ACPI_GPE_BLOCK_INFO *GpeBlock,
207 void *Context);

209 ACPI_STATUS
203 ACPI_GPE_XRUPT_INFO *
210 AcpiEvGetGpeXruptBlock (
211 UINT32 InterruptNumber,
212 ACPI_GPE_XRUPT_INFO **GpeXruptBlock);
205 UINT32 InterruptNumber);

214 ACPI_STATUS
215 AcpiEvDeleteGpeXrupt (
216 ACPI_GPE_XRUPT_INFO *GpeXrupt);

218 ACPI_STATUS
219 AcpiEvDeleteGpeHandlers (
220 ACPI_GPE_XRUPT_INFO *GpeXruptInfo,
221 ACPI_GPE_BLOCK_INFO *GpeBlock,
222 void *Context);

225 /*
226 * evhandler - Address space handling
219 * evregion - Address Space handling
227 */
228 BOOLEAN
229 AcpiEvHasDefaultHandler (
230 ACPI_NAMESPACE_NODE *Node,
231 ACPI_ADR_SPACE_TYPE SpaceId);

233 ACPI_STATUS
234 AcpiEvInstallRegionHandlers (
235 void);

237 ACPI_STATUS
238 AcpiEvInstallSpaceHandler (
239 ACPI_NAMESPACE_NODE *Node,
240 ACPI_ADR_SPACE_TYPE SpaceId,
241 ACPI_ADR_SPACE_HANDLER Handler,
242 ACPI_ADR_SPACE_SETUP Setup,
243 void *Context);

246 /*
247 * evregion - Operation region support
248 */
249 ACPI_STATUS

new/usr/src/common/acpica/include/acevents.h 5

250 AcpiEvInitializeOpRegions (
251 void);

253 ACPI_STATUS
254 AcpiEvAddressSpaceDispatch (
255 ACPI_OPERAND_OBJECT *RegionObj,
256 ACPI_OPERAND_OBJECT *FieldObj,
257 UINT32 Function,
258 UINT32 RegionOffset,
259 UINT32 BitWidth,
260 UINT64 *Value);

262 ACPI_STATUS
263 AcpiEvAttachRegion (
264 ACPI_OPERAND_OBJECT *HandlerObj,
265 ACPI_OPERAND_OBJECT *RegionObj,
266 BOOLEAN AcpiNsIsLocked);

268 void
269 AcpiEvDetachRegion (
270 ACPI_OPERAND_OBJECT *RegionObj,
271 BOOLEAN AcpiNsIsLocked);

273 ACPI_STATUS
249 AcpiEvInstallSpaceHandler (
250 ACPI_NAMESPACE_NODE *Node,
251 ACPI_ADR_SPACE_TYPE SpaceId,
252 ACPI_ADR_SPACE_HANDLER Handler,
253 ACPI_ADR_SPACE_SETUP Setup,
254 void *Context);

256 ACPI_STATUS
274 AcpiEvExecuteRegMethods (
275 ACPI_NAMESPACE_NODE *Node,
276 ACPI_ADR_SPACE_TYPE SpaceId);

278 ACPI_STATUS
279 AcpiEvExecuteRegMethod (
280 ACPI_OPERAND_OBJECT *RegionObj,
281 UINT32 Function);

284 /*
285 * evregini - Region initialization and setup
286 */
287 ACPI_STATUS
288 AcpiEvSystemMemoryRegionSetup (
289 ACPI_HANDLE Handle,
290 UINT32 Function,
291 void *HandlerContext,
292 void **RegionContext);

294 ACPI_STATUS
295 AcpiEvIoSpaceRegionSetup (
296 ACPI_HANDLE Handle,
297 UINT32 Function,
298 void *HandlerContext,
299 void **RegionContext);

301 ACPI_STATUS
302 AcpiEvPciConfigRegionSetup (
303 ACPI_HANDLE Handle,
304 UINT32 Function,
305 void *HandlerContext,
306 void **RegionContext);

new/usr/src/common/acpica/include/acevents.h 6

308 ACPI_STATUS
309 AcpiEvCmosRegionSetup (
310 ACPI_HANDLE Handle,
311 UINT32 Function,
312 void *HandlerContext,
313 void **RegionContext);

315 ACPI_STATUS
316 AcpiEvPciBarRegionSetup (
317 ACPI_HANDLE Handle,
318 UINT32 Function,
319 void *HandlerContext,
320 void **RegionContext);

322 ACPI_STATUS
323 AcpiEvDefaultRegionSetup (
324 ACPI_HANDLE Handle,
325 UINT32 Function,
326 void *HandlerContext,
327 void **RegionContext);

329 ACPI_STATUS
330 AcpiEvInitializeRegion (
331 ACPI_OPERAND_OBJECT *RegionObj,
332 BOOLEAN AcpiNsLocked);

335 /*
336 * evsci - SCI (System Control Interrupt) handling/dispatch
337 */
338 UINT32 ACPI_SYSTEM_XFACE
339 AcpiEvGpeXruptHandler (
340 void *Context);

342 UINT32
343 AcpiEvSciDispatch (
344 void);

346 UINT32
347 AcpiEvInstallSciHandler (
348 void);

350 ACPI_STATUS
351 AcpiEvRemoveAllSciHandlers (
330 AcpiEvRemoveSciHandler (
352 void);

354 ACPI_HW_DEPENDENT_RETURN_VOID (
333 UINT32
334 AcpiEvInitializeSCI (
335 UINT32 ProgramSCI);

355 void
356 AcpiEvTerminate (
357 void))
339 void);

359 #endif /* __ACEVENTS_H__ */

new/usr/src/common/acpica/include/acexcep.h 1

**
 18604 Thu Dec 26 13:49:48 2013
new/usr/src/common/acpica/include/acexcep.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acexcep.h - Exception codes returned by the ACPI subsystem
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACEXCEP_H__
45 #define __ACEXCEP_H__

48 /* This module contains all possible exception codes for ACPI_STATUS */

50 /*
51 * Exception code classes
52 */
53 #define AE_CODE_ENVIRONMENTAL 0x0000 /* General ACPICA environment */
54 #define AE_CODE_PROGRAMMER 0x1000 /* External ACPICA interface call
55 #define AE_CODE_ACPI_TABLES 0x2000 /* ACPI tables */
56 #define AE_CODE_AML 0x3000 /* From executing AML code */
57 #define AE_CODE_CONTROL 0x4000 /* Internal control codes */

59 #define AE_CODE_MAX 0x4000
60 #define AE_CODE_MASK 0xF000

new/usr/src/common/acpica/include/acexcep.h 2

62 /*
63 * Macros to insert the exception code classes
64 */
65 #define EXCEP_ENV(code) ((ACPI_STATUS) (code | AE_CODE_ENVIRONME
66 #define EXCEP_PGM(code) ((ACPI_STATUS) (code | AE_CODE_PROGRAMME
67 #define EXCEP_TBL(code) ((ACPI_STATUS) (code | AE_CODE_ACPI_TABL
68 #define EXCEP_AML(code) ((ACPI_STATUS) (code | AE_CODE_AML))
69 #define EXCEP_CTL(code) ((ACPI_STATUS) (code | AE_CODE_CONTROL))

71 /*
72 * Exception info table. The "Description" field is used only by the
73 * ACPICA help application (acpihelp).
74 */
75 typedef struct acpi_exception_info
76 {
77 char *Name;

79 #ifdef ACPI_HELP_APP
80 char *Description;
81 #endif
82 } ACPI_EXCEPTION_INFO;

84 #ifdef ACPI_HELP_APP
85 #define EXCEP_TXT(Name,Description) {Name, Description}
86 #else
87 #define EXCEP_TXT(Name,Description) {Name}
88 #endif

91 /*
92 * Success is always zero, failure is non-zero
93 */
94 #define ACPI_SUCCESS(a) (!(a))
95 #define ACPI_FAILURE(a) (a)

97 #define AE_OK (ACPI_STATUS) 0x0000

99 /*
100 * Environmental exceptions
101 */
102 #define AE_ERROR EXCEP_ENV (0x0001)
103 #define AE_NO_ACPI_TABLES EXCEP_ENV (0x0002)
104 #define AE_NO_NAMESPACE EXCEP_ENV (0x0003)
105 #define AE_NO_MEMORY EXCEP_ENV (0x0004)
106 #define AE_NOT_FOUND EXCEP_ENV (0x0005)
107 #define AE_NOT_EXIST EXCEP_ENV (0x0006)
108 #define AE_ALREADY_EXISTS EXCEP_ENV (0x0007)
109 #define AE_TYPE EXCEP_ENV (0x0008)
110 #define AE_NULL_OBJECT EXCEP_ENV (0x0009)
111 #define AE_NULL_ENTRY EXCEP_ENV (0x000A)
112 #define AE_BUFFER_OVERFLOW EXCEP_ENV (0x000B)
113 #define AE_STACK_OVERFLOW EXCEP_ENV (0x000C)
114 #define AE_STACK_UNDERFLOW EXCEP_ENV (0x000D)
115 #define AE_NOT_IMPLEMENTED EXCEP_ENV (0x000E)
116 #define AE_SUPPORT EXCEP_ENV (0x000F)
117 #define AE_LIMIT EXCEP_ENV (0x0010)
118 #define AE_TIME EXCEP_ENV (0x0011)
119 #define AE_ACQUIRE_DEADLOCK EXCEP_ENV (0x0012)
120 #define AE_RELEASE_DEADLOCK EXCEP_ENV (0x0013)
121 #define AE_NOT_ACQUIRED EXCEP_ENV (0x0014)
122 #define AE_ALREADY_ACQUIRED EXCEP_ENV (0x0015)
123 #define AE_NO_HARDWARE_RESPONSE EXCEP_ENV (0x0016)
124 #define AE_NO_GLOBAL_LOCK EXCEP_ENV (0x0017)
125 #define AE_ABORT_METHOD EXCEP_ENV (0x0018)
126 #define AE_SAME_HANDLER EXCEP_ENV (0x0019)

new/usr/src/common/acpica/include/acexcep.h 3

127 #define AE_NO_HANDLER EXCEP_ENV (0x001A)
128 #define AE_OWNER_ID_LIMIT EXCEP_ENV (0x001B)
129 #define AE_NOT_CONFIGURED EXCEP_ENV (0x001C)
130 #define AE_ACCESS EXCEP_ENV (0x001D)

132 #define AE_CODE_ENV_MAX 0x001D

135 /*
136 * Programmer exceptions
137 */
138 #define AE_BAD_PARAMETER EXCEP_PGM (0x0001)
139 #define AE_BAD_CHARACTER EXCEP_PGM (0x0002)
140 #define AE_BAD_PATHNAME EXCEP_PGM (0x0003)
141 #define AE_BAD_DATA EXCEP_PGM (0x0004)
142 #define AE_BAD_HEX_CONSTANT EXCEP_PGM (0x0005)
143 #define AE_BAD_OCTAL_CONSTANT EXCEP_PGM (0x0006)
144 #define AE_BAD_DECIMAL_CONSTANT EXCEP_PGM (0x0007)
145 #define AE_MISSING_ARGUMENTS EXCEP_PGM (0x0008)
146 #define AE_BAD_ADDRESS EXCEP_PGM (0x0009)

148 #define AE_CODE_PGM_MAX 0x0009

151 /*
152 * Acpi table exceptions
153 */
154 #define AE_BAD_SIGNATURE EXCEP_TBL (0x0001)
155 #define AE_BAD_HEADER EXCEP_TBL (0x0002)
156 #define AE_BAD_CHECKSUM EXCEP_TBL (0x0003)
157 #define AE_BAD_VALUE EXCEP_TBL (0x0004)
158 #define AE_INVALID_TABLE_LENGTH EXCEP_TBL (0x0005)

160 #define AE_CODE_TBL_MAX 0x0005

163 /*
164 * AML exceptions. These are caused by problems with
165 * the actual AML byte stream
166 */
167 #define AE_AML_BAD_OPCODE EXCEP_AML (0x0001)
168 #define AE_AML_NO_OPERAND EXCEP_AML (0x0002)
169 #define AE_AML_OPERAND_TYPE EXCEP_AML (0x0003)
170 #define AE_AML_OPERAND_VALUE EXCEP_AML (0x0004)
171 #define AE_AML_UNINITIALIZED_LOCAL EXCEP_AML (0x0005)
172 #define AE_AML_UNINITIALIZED_ARG EXCEP_AML (0x0006)
173 #define AE_AML_UNINITIALIZED_ELEMENT EXCEP_AML (0x0007)
174 #define AE_AML_NUMERIC_OVERFLOW EXCEP_AML (0x0008)
175 #define AE_AML_REGION_LIMIT EXCEP_AML (0x0009)
176 #define AE_AML_BUFFER_LIMIT EXCEP_AML (0x000A)
177 #define AE_AML_PACKAGE_LIMIT EXCEP_AML (0x000B)
178 #define AE_AML_DIVIDE_BY_ZERO EXCEP_AML (0x000C)
179 #define AE_AML_BAD_NAME EXCEP_AML (0x000D)
180 #define AE_AML_NAME_NOT_FOUND EXCEP_AML (0x000E)
181 #define AE_AML_INTERNAL EXCEP_AML (0x000F)
182 #define AE_AML_INVALID_SPACE_ID EXCEP_AML (0x0010)
183 #define AE_AML_STRING_LIMIT EXCEP_AML (0x0011)
184 #define AE_AML_NO_RETURN_VALUE EXCEP_AML (0x0012)
185 #define AE_AML_METHOD_LIMIT EXCEP_AML (0x0013)
186 #define AE_AML_NOT_OWNER EXCEP_AML (0x0014)
187 #define AE_AML_MUTEX_ORDER EXCEP_AML (0x0015)
188 #define AE_AML_MUTEX_NOT_ACQUIRED EXCEP_AML (0x0016)
189 #define AE_AML_INVALID_RESOURCE_TYPE EXCEP_AML (0x0017)
190 #define AE_AML_INVALID_INDEX EXCEP_AML (0x0018)
191 #define AE_AML_REGISTER_LIMIT EXCEP_AML (0x0019)
192 #define AE_AML_NO_WHILE EXCEP_AML (0x001A)

new/usr/src/common/acpica/include/acexcep.h 4

193 #define AE_AML_ALIGNMENT EXCEP_AML (0x001B)
194 #define AE_AML_NO_RESOURCE_END_TAG EXCEP_AML (0x001C)
195 #define AE_AML_BAD_RESOURCE_VALUE EXCEP_AML (0x001D)
196 #define AE_AML_CIRCULAR_REFERENCE EXCEP_AML (0x001E)
197 #define AE_AML_BAD_RESOURCE_LENGTH EXCEP_AML (0x001F)
198 #define AE_AML_ILLEGAL_ADDRESS EXCEP_AML (0x0020)
199 #define AE_AML_INFINITE_LOOP EXCEP_AML (0x0021)

201 #define AE_CODE_AML_MAX 0x0021

204 /*
205 * Internal exceptions used for control
206 */
207 #define AE_CTRL_RETURN_VALUE EXCEP_CTL (0x0001)
208 #define AE_CTRL_PENDING EXCEP_CTL (0x0002)
209 #define AE_CTRL_TERMINATE EXCEP_CTL (0x0003)
210 #define AE_CTRL_TRUE EXCEP_CTL (0x0004)
211 #define AE_CTRL_FALSE EXCEP_CTL (0x0005)
212 #define AE_CTRL_DEPTH EXCEP_CTL (0x0006)
213 #define AE_CTRL_END EXCEP_CTL (0x0007)
214 #define AE_CTRL_TRANSFER EXCEP_CTL (0x0008)
215 #define AE_CTRL_BREAK EXCEP_CTL (0x0009)
216 #define AE_CTRL_CONTINUE EXCEP_CTL (0x000A)
217 #define AE_CTRL_SKIP EXCEP_CTL (0x000B)
218 #define AE_CTRL_PARSE_CONTINUE EXCEP_CTL (0x000C)
219 #define AE_CTRL_PARSE_PENDING EXCEP_CTL (0x000D)

221 #define AE_CODE_CTRL_MAX 0x000D

224 /* Exception strings for AcpiFormatException */

226 #ifdef ACPI_DEFINE_EXCEPTION_TABLE

228 /*
229 * String versions of the exception codes above
230 * These strings must match the corresponding defines exactly
231 */
232 static const ACPI_EXCEPTION_INFO AcpiGbl_ExceptionNames_Env[] =
233 {
234 EXCEP_TXT ("AE_OK", "No error"),
235 EXCEP_TXT ("AE_ERROR", "Unspecified error"),
236 EXCEP_TXT ("AE_NO_ACPI_TABLES", "ACPI tables could not be found"
237 EXCEP_TXT ("AE_NO_NAMESPACE", "A namespace has not been loaded
238 EXCEP_TXT ("AE_NO_MEMORY", "Insufficient dynamic memory"),
239 EXCEP_TXT ("AE_NOT_FOUND", "A requested entity is not found
240 EXCEP_TXT ("AE_NOT_EXIST", "A required entity does not exis
241 EXCEP_TXT ("AE_ALREADY_EXISTS", "An entity already exists"),
242 EXCEP_TXT ("AE_TYPE", "The object type is incorrect"),
243 EXCEP_TXT ("AE_NULL_OBJECT", "A required object was missing")
244 EXCEP_TXT ("AE_NULL_ENTRY", "The requested object does not e
245 EXCEP_TXT ("AE_BUFFER_OVERFLOW", "The buffer provided is too smal
246 EXCEP_TXT ("AE_STACK_OVERFLOW", "An internal stack overflowed"),
247 EXCEP_TXT ("AE_STACK_UNDERFLOW", "An internal stack underflowed")
248 EXCEP_TXT ("AE_NOT_IMPLEMENTED", "The feature is not implemented"
249 EXCEP_TXT ("AE_SUPPORT", "The feature is not supported"),
250 EXCEP_TXT ("AE_LIMIT", "A predefined limit was exceeded
251 EXCEP_TXT ("AE_TIME", "A time limit or timeout expired
252 EXCEP_TXT ("AE_ACQUIRE_DEADLOCK", "Internal error, attempt was mad
253 EXCEP_TXT ("AE_RELEASE_DEADLOCK", "Internal error, attempt was mad
254 EXCEP_TXT ("AE_NOT_ACQUIRED", "An attempt to release a mutex o
255 EXCEP_TXT ("AE_ALREADY_ACQUIRED", "Internal error, attempt was mad
256 EXCEP_TXT ("AE_NO_HARDWARE_RESPONSE", "Hardware did not respond after
257 EXCEP_TXT ("AE_NO_GLOBAL_LOCK", "There is no FACS Global Lock"),
258 EXCEP_TXT ("AE_ABORT_METHOD", "A control method was aborted"),

new/usr/src/common/acpica/include/acexcep.h 5

259 EXCEP_TXT ("AE_SAME_HANDLER", "Attempt was made to install the
260 EXCEP_TXT ("AE_NO_HANDLER", "A handler for the operation is
261 EXCEP_TXT ("AE_OWNER_ID_LIMIT", "There are no more Owner IDs ava
262 EXCEP_TXT ("AE_NOT_CONFIGURED", "The interface is not part of th
263 EXCEP_TXT ("AE_ACCESS", "Permission denied for the reque
264 };

266 static const ACPI_EXCEPTION_INFO AcpiGbl_ExceptionNames_Pgm[] =
267 {
268 EXCEP_TXT (NULL, NULL),
269 EXCEP_TXT ("AE_BAD_PARAMETER", "A parameter is out of range or
270 EXCEP_TXT ("AE_BAD_CHARACTER", "An invalid character was found
271 EXCEP_TXT ("AE_BAD_PATHNAME", "An invalid character was found
272 EXCEP_TXT ("AE_BAD_DATA", "A package or buffer contained i
273 EXCEP_TXT ("AE_BAD_HEX_CONSTANT", "Invalid character in a Hex cons
274 EXCEP_TXT ("AE_BAD_OCTAL_CONSTANT", "Invalid character in an Octal c
275 EXCEP_TXT ("AE_BAD_DECIMAL_CONSTANT", "Invalid character in a Decimal
276 EXCEP_TXT ("AE_MISSING_ARGUMENTS", "Too few arguments were passed t
277 EXCEP_TXT ("AE_BAD_ADDRESS", "An illegal null I/O address")
278 };

280 static const ACPI_EXCEPTION_INFO AcpiGbl_ExceptionNames_Tbl[] =
281 {
282 EXCEP_TXT (NULL, NULL),
283 EXCEP_TXT ("AE_BAD_SIGNATURE", "An ACPI table has an invalid si
284 EXCEP_TXT ("AE_BAD_HEADER", "Invalid field in an ACPI table
285 EXCEP_TXT ("AE_BAD_CHECKSUM", "An ACPI table checksum is not c
286 EXCEP_TXT ("AE_BAD_VALUE", "An invalid value was found in a
287 EXCEP_TXT ("AE_INVALID_TABLE_LENGTH", "The FADT or FACS has improper l
288 };

290 static const ACPI_EXCEPTION_INFO AcpiGbl_ExceptionNames_Aml[] =
291 {
292 EXCEP_TXT (NULL, NULL),
293 EXCEP_TXT ("AE_AML_BAD_OPCODE", "Invalid AML opcode encountered"
294 EXCEP_TXT ("AE_AML_NO_OPERAND", "A required operand is missing")
295 EXCEP_TXT ("AE_AML_OPERAND_TYPE", "An operand of an incorrect type
296 EXCEP_TXT ("AE_AML_OPERAND_VALUE", "The operand had an inappropriat
297 EXCEP_TXT ("AE_AML_UNINITIALIZED_LOCAL", "Method tried to use an uninitia
298 EXCEP_TXT ("AE_AML_UNINITIALIZED_ARG", "Method tried to use an uninitia
299 EXCEP_TXT ("AE_AML_UNINITIALIZED_ELEMENT", "Method tried to use an empty pa
300 EXCEP_TXT ("AE_AML_NUMERIC_OVERFLOW", "Overflow during BCD conversion
301 EXCEP_TXT ("AE_AML_REGION_LIMIT", "Tried to access beyond the end
302 EXCEP_TXT ("AE_AML_BUFFER_LIMIT", "Tried to access beyond the end
303 EXCEP_TXT ("AE_AML_PACKAGE_LIMIT", "Tried to access beyond the end
304 EXCEP_TXT ("AE_AML_DIVIDE_BY_ZERO", "During execution of AML Divide
305 EXCEP_TXT ("AE_AML_BAD_NAME", "An ACPI name contains invalid c
306 EXCEP_TXT ("AE_AML_NAME_NOT_FOUND", "Could not resolve a named refer
307 EXCEP_TXT ("AE_AML_INTERNAL", "An internal error within the in
308 EXCEP_TXT ("AE_AML_INVALID_SPACE_ID", "An Operation Region SpaceID is
309 EXCEP_TXT ("AE_AML_STRING_LIMIT", "String is longer than 200 chara
310 EXCEP_TXT ("AE_AML_NO_RETURN_VALUE", "A method did not return a requi
311 EXCEP_TXT ("AE_AML_METHOD_LIMIT", "A control method reached the ma
312 EXCEP_TXT ("AE_AML_NOT_OWNER", "A thread tried to release a mut
313 EXCEP_TXT ("AE_AML_MUTEX_ORDER", "Mutex SyncLevel release mismatc
314 EXCEP_TXT ("AE_AML_MUTEX_NOT_ACQUIRED", "Attempt to release a mutex that
315 EXCEP_TXT ("AE_AML_INVALID_RESOURCE_TYPE", "Invalid resource type in resour
316 EXCEP_TXT ("AE_AML_INVALID_INDEX", "Invalid Argx or Localx (x too l
317 EXCEP_TXT ("AE_AML_REGISTER_LIMIT", "Bank value or Index value beyon
318 EXCEP_TXT ("AE_AML_NO_WHILE", "Break or Continue without a Whi
319 EXCEP_TXT ("AE_AML_ALIGNMENT", "Non-aligned memory transfer on
320 EXCEP_TXT ("AE_AML_NO_RESOURCE_END_TAG", "No End Tag in a resource list")
321 EXCEP_TXT ("AE_AML_BAD_RESOURCE_VALUE", "Invalid value of a resource ele
322 EXCEP_TXT ("AE_AML_CIRCULAR_REFERENCE", "Two references refer to each ot
323 EXCEP_TXT ("AE_AML_BAD_RESOURCE_LENGTH", "The length of a Resource Descri
324 EXCEP_TXT ("AE_AML_ILLEGAL_ADDRESS", "A memory, I/O, or PCI configura

new/usr/src/common/acpica/include/acexcep.h 6

325 EXCEP_TXT ("AE_AML_INFINITE_LOOP", "An apparent infinite AML While
326 };

328 static const ACPI_EXCEPTION_INFO AcpiGbl_ExceptionNames_Ctrl[] =
329 {
330 EXCEP_TXT (NULL, NULL),
331 EXCEP_TXT ("AE_CTRL_RETURN_VALUE", "A Method returned a value"),
332 EXCEP_TXT ("AE_CTRL_PENDING", "Method is calling another metho
333 EXCEP_TXT ("AE_CTRL_TERMINATE", "Terminate the executing method"
334 EXCEP_TXT ("AE_CTRL_TRUE", "An If or While predicate result
335 EXCEP_TXT ("AE_CTRL_FALSE", "An If or While predicate result
336 EXCEP_TXT ("AE_CTRL_DEPTH", "Maximum search depth has been r
337 EXCEP_TXT ("AE_CTRL_END", "An If or While predicate is fal
338 EXCEP_TXT ("AE_CTRL_TRANSFER", "Transfer control to called meth
339 EXCEP_TXT ("AE_CTRL_BREAK", "A Break has been executed"),
340 EXCEP_TXT ("AE_CTRL_CONTINUE", "A Continue has been executed"),
341 EXCEP_TXT ("AE_CTRL_SKIP", "Not currently used"),
342 EXCEP_TXT ("AE_CTRL_PARSE_CONTINUE", "Used to skip over bad opcodes")
343 EXCEP_TXT ("AE_CTRL_PARSE_PENDING", "Used to implement AML While loo
344 };

346 #endif /* EXCEPTION_TABLE */

348 #endif /* __ACEXCEP_H__ */

new/usr/src/common/acpica/include/acglobal.h 1

**
 20926 Thu Dec 26 13:49:48 2013
new/usr/src/common/acpica/include/acglobal.h
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acglobal.h - Declarations for global variables
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACGLOBAL_H__
45 #define __ACGLOBAL_H__

48 /*
49 * Ensure that the globals are actually defined and initialized only once.
50 *
51 * The use of these macros allows a single list of globals (here) in order
52 * to simplify maintenance of the code.
53 */
54 #ifdef DEFINE_ACPI_GLOBALS
55 #define ACPI_EXTERN
56 #define ACPI_INIT_GLOBAL(a,b) a=b
57 #else
58 #define ACPI_EXTERN extern

new/usr/src/common/acpica/include/acglobal.h 2

59 #define ACPI_INIT_GLOBAL(a,b) a
60 #endif

63 #ifdef DEFINE_ACPI_GLOBALS

65 /* Public globals, available from outside ACPICA subsystem */

67 /***
68 *
69 * Runtime configuration (static defaults that can be overriden at runtime)
70 *
71 **/

73 /*
74 * Enable "slack" in the AML interpreter? Default is FALSE, and the
75 * interpreter strictly follows the ACPI specification. Setting to TRUE
76 * allows the interpreter to ignore certain errors and/or bad AML constructs.
77 *
78 * Currently, these features are enabled by this flag:
79 *
80 * 1) Allow "implicit return" of last value in a control method
81 * 2) Allow access beyond the end of an operation region
82 * 3) Allow access to uninitialized locals/args (auto-init to integer 0)
83 * 4) Allow ANY object type to be a source operand for the Store() operator
84 * 5) Allow unresolved references (invalid target name) in package objects
85 * 6) Enable warning messages for behavior that is not ACPI spec compliant
86 */
87 UINT8 ACPI_INIT_GLOBAL (AcpiGbl_EnableInterpreterSlack, FALSE);

89 /*
90 * Automatically serialize ALL control methods? Default is FALSE, meaning
91 * to use the Serialized/NotSerialized method flags on a per method basis.
92 * Only change this if the ASL code is poorly written and cannot handle
93 * reentrancy even though methods are marked "NotSerialized".
94 */
95 UINT8 ACPI_INIT_GLOBAL (AcpiGbl_AllMethodsSerialized, FALSE);

97 /*
98 * Create the predefined _OSI method in the namespace? Default is TRUE
99 * because ACPI CA is fully compatible with other ACPI implementations.
100 * Changing this will revert ACPI CA (and machine ASL) to pre-OSI behavior.
101 */
102 UINT8 ACPI_INIT_GLOBAL (AcpiGbl_CreateOsiMethod, TRUE);

104 /*
105 * Optionally use default values for the ACPI register widths. Set this to
106 * TRUE to use the defaults, if an FADT contains incorrect widths/lengths.
107 */
108 UINT8 ACPI_INIT_GLOBAL (AcpiGbl_UseDefaultRegisterWidths, TRUE);

110 /*
111 * Optionally enable output from the AML Debug Object.
112 */
113 UINT8 ACPI_INIT_GLOBAL (AcpiGbl_EnableAmlDebugObject, FALSE);

115 /*
116 * Optionally copy the entire DSDT to local memory (instead of simply
117 * mapping it.) There are some BIOSs that corrupt or replace the original
118 * DSDT, creating the need for this option. Default is FALSE, do not copy
119 * the DSDT.
120 */
121 UINT8 ACPI_INIT_GLOBAL (AcpiGbl_CopyDsdtLocally, FALSE);

123 /*
124 * Optionally ignore an XSDT if present and use the RSDT instead.

new/usr/src/common/acpica/include/acglobal.h 3

125 * Although the ACPI specification requires that an XSDT be used instead
126 * of the RSDT, the XSDT has been found to be corrupt or ill-formed on
127 * some machines. Default behavior is to use the XSDT if present.
128 */
129 UINT8 ACPI_INIT_GLOBAL (AcpiGbl_DoNotUseXsdt, FALSE);

132 /*
133 * Optionally use 32-bit FADT addresses if and when there is a conflict
134 * (address mismatch) between the 32-bit and 64-bit versions of the
135 * address. Although ACPICA adheres to the ACPI specification which
136 * requires the use of the corresponding 64-bit address if it is non-zero,
137 * some machines have been found to have a corrupted non-zero 64-bit
138 * address. Default is FALSE, do not favor the 32-bit addresses.
139 */
140 UINT8 ACPI_INIT_GLOBAL (AcpiGbl_Use32BitFadtAddresses, FALSE);

142 /*
143 * Optionally truncate I/O addresses to 16 bits. Provides compatibility
144 * with other ACPI implementations. NOTE: During ACPICA initialization,
145 * this value is set to TRUE if any Windows OSI strings have been
146 * requested by the BIOS.
147 */
148 UINT8 ACPI_INIT_GLOBAL (AcpiGbl_TruncateIoAddresses, FALSE);

150 /*
151 * Disable runtime checking and repair of values returned by control methods.
152 * Use only if the repair is causing a problem on a particular machine.
153 */
154 UINT8 ACPI_INIT_GLOBAL (AcpiGbl_DisableAutoRepair, FALSE);

156 /*
157 * Optionally do not load any SSDTs from the RSDT/XSDT during initialization.
158 * This can be useful for debugging ACPI problems on some machines.
159 */
160 UINT8 ACPI_INIT_GLOBAL (AcpiGbl_DisableSsdtTableLoad, FALSE);

162 /*
163 * We keep track of the latest version of Windows that has been requested by
164 * the BIOS.
165 */
166 UINT8 ACPI_INIT_GLOBAL (AcpiGbl_OsiData, 0);

169 /* AcpiGbl_FADT is a local copy of the FADT, converted to a common format. */

171 ACPI_TABLE_FADT AcpiGbl_FADT;
172 UINT32 AcpiCurrentGpeCount;
173 UINT32 AcpiGbl_TraceFlags;
174 ACPI_NAME AcpiGbl_TraceMethodName;
175 BOOLEAN AcpiGbl_SystemAwakeAndRunning;

177 /*
178 * ACPI 5.0 introduces the concept of a "reduced hardware platform", meaning
179 * that the ACPI hardware is no longer required. A flag in the FADT indicates
180 * a reduced HW machine, and that flag is duplicated here for convenience.
181 */
182 BOOLEAN AcpiGbl_ReducedHardware;
140 #endif

184 #endif /* DEFINE_ACPI_GLOBALS */

186 /* Do not disassemble buffers to resource descriptors */

188 ACPI_EXTERN UINT8 ACPI_INIT_GLOBAL (AcpiGbl_NoResourceDisassembly, FALSE);

new/usr/src/common/acpica/include/acglobal.h 4

190 /***
191 *
192 * ACPI Table globals
193 *
194 **/

196 /*
197 * AcpiGbl_RootTableList is the master list of ACPI tables that were
198 * found in the RSDT/XSDT.
199 */
200 ACPI_EXTERN ACPI_TABLE_LIST AcpiGbl_RootTableList;

202 #if (!ACPI_REDUCED_HARDWARE)
203 ACPI_EXTERN ACPI_TABLE_FACS *AcpiGbl_FACS;

205 #endif /* !ACPI_REDUCED_HARDWARE */

207 /* These addresses are calculated from the FADT Event Block addresses */

209 ACPI_EXTERN ACPI_GENERIC_ADDRESS AcpiGbl_XPm1aStatus;
210 ACPI_EXTERN ACPI_GENERIC_ADDRESS AcpiGbl_XPm1aEnable;

212 ACPI_EXTERN ACPI_GENERIC_ADDRESS AcpiGbl_XPm1bStatus;
213 ACPI_EXTERN ACPI_GENERIC_ADDRESS AcpiGbl_XPm1bEnable;

215 /* DSDT information. Used to check for DSDT corruption */

217 ACPI_EXTERN ACPI_TABLE_HEADER *AcpiGbl_DSDT;
218 ACPI_EXTERN ACPI_TABLE_HEADER AcpiGbl_OriginalDsdtHeader;

220 /*
221 * Handle both ACPI 1.0 and ACPI 2.0 Integer widths. The integer width is
222 * determined by the revision of the DSDT: If the DSDT revision is less than
223 * 2, use only the lower 32 bits of the internal 64-bit Integer.
224 */
225 ACPI_EXTERN UINT8 AcpiGbl_IntegerBitWidth;
226 ACPI_EXTERN UINT8 AcpiGbl_IntegerByteWidth;
227 ACPI_EXTERN UINT8 AcpiGbl_IntegerNybbleWidth;

230 /***
231 *
232 * Mutual exclusion within ACPICA subsystem
180 * Mutual exlusion within ACPICA subsystem
233 *
234 **/

236 /*
237 * Predefined mutex objects. This array contains the
238 * actual OS mutex handles, indexed by the local ACPI_MUTEX_HANDLEs.
239 * (The table maps local handles to the real OS handles)
240 */
241 ACPI_EXTERN ACPI_MUTEX_INFO AcpiGbl_MutexInfo[ACPI_NUM_MUTEX];

243 /*
244 * Global lock mutex is an actual AML mutex object
245 * Global lock semaphore works in conjunction with the actual global lock
246 * Global lock spinlock is used for "pending" handshake
247 */
248 ACPI_EXTERN ACPI_OPERAND_OBJECT *AcpiGbl_GlobalLockMutex;
249 ACPI_EXTERN ACPI_SEMAPHORE AcpiGbl_GlobalLockSemaphore;
250 ACPI_EXTERN ACPI_SPINLOCK AcpiGbl_GlobalLockPendingLock;
251 ACPI_EXTERN UINT16 AcpiGbl_GlobalLockHandle;
252 ACPI_EXTERN BOOLEAN AcpiGbl_GlobalLockAcquired;
253 ACPI_EXTERN BOOLEAN AcpiGbl_GlobalLockPresent;
254 ACPI_EXTERN BOOLEAN AcpiGbl_GlobalLockPending;

new/usr/src/common/acpica/include/acglobal.h 5

256 /*
257 * Spinlocks are used for interfaces that can be possibly called at
258 * interrupt level
259 */
260 ACPI_EXTERN ACPI_SPINLOCK AcpiGbl_GpeLock; /* For GPE data st
261 ACPI_EXTERN ACPI_SPINLOCK AcpiGbl_HardwareLock; /* For ACPI H/W ex
262 ACPI_EXTERN ACPI_SPINLOCK AcpiGbl_ReferenceCountLock;

264 /* Mutex for _OSI support */

266 ACPI_EXTERN ACPI_MUTEX AcpiGbl_OsiMutex;

268 /* Reader/Writer lock is used for namespace walk and dynamic table unload */

270 ACPI_EXTERN ACPI_RW_LOCK AcpiGbl_NamespaceRwLock;

273 /***
274 *
275 * Miscellaneous globals
276 *
277 **/

279 /* Object caches */

281 ACPI_EXTERN ACPI_CACHE_T *AcpiGbl_NamespaceCache;
282 ACPI_EXTERN ACPI_CACHE_T *AcpiGbl_StateCache;
283 ACPI_EXTERN ACPI_CACHE_T *AcpiGbl_PsNodeCache;
284 ACPI_EXTERN ACPI_CACHE_T *AcpiGbl_PsNodeExtCache;
285 ACPI_EXTERN ACPI_CACHE_T *AcpiGbl_OperandCache;

287 /* Global handlers */

289 ACPI_EXTERN ACPI_GLOBAL_NOTIFY_HANDLER AcpiGbl_GlobalNotify[2];
236 ACPI_EXTERN ACPI_OBJECT_NOTIFY_HANDLER AcpiGbl_DeviceNotify;
237 ACPI_EXTERN ACPI_OBJECT_NOTIFY_HANDLER AcpiGbl_SystemNotify;
290 ACPI_EXTERN ACPI_EXCEPTION_HANDLER AcpiGbl_ExceptionHandler;
291 ACPI_EXTERN ACPI_INIT_HANDLER AcpiGbl_InitHandler;
292 ACPI_EXTERN ACPI_TABLE_HANDLER AcpiGbl_TableHandler;
293 ACPI_EXTERN void *AcpiGbl_TableHandlerContext;
294 ACPI_EXTERN ACPI_WALK_STATE *AcpiGbl_BreakpointWalk;
295 ACPI_EXTERN ACPI_INTERFACE_HANDLER AcpiGbl_InterfaceHandler;
296 ACPI_EXTERN ACPI_SCI_HANDLER_INFO *AcpiGbl_SciHandlerList;

298 /* Owner ID support */

300 ACPI_EXTERN UINT32 AcpiGbl_OwnerIdMask[ACPI_NUM_OWNERID_MAS
301 ACPI_EXTERN UINT8 AcpiGbl_LastOwnerIdIndex;
302 ACPI_EXTERN UINT8 AcpiGbl_NextOwnerIdOffset;

304 /* Initialization sequencing */

306 ACPI_EXTERN BOOLEAN AcpiGbl_RegMethodsExecuted;

308 /* Misc */

310 ACPI_EXTERN UINT32 AcpiGbl_OriginalMode;
311 ACPI_EXTERN UINT32 AcpiGbl_RsdpOriginalLocation;
312 ACPI_EXTERN UINT32 AcpiGbl_NsLookupCount;
313 ACPI_EXTERN UINT32 AcpiGbl_PsFindCount;
314 ACPI_EXTERN UINT16 AcpiGbl_Pm1EnableRegisterSave;
315 ACPI_EXTERN UINT8 AcpiGbl_DebuggerConfiguration;
316 ACPI_EXTERN BOOLEAN AcpiGbl_StepToNextCall;
317 ACPI_EXTERN BOOLEAN AcpiGbl_AcpiHardwarePresent;
318 ACPI_EXTERN BOOLEAN AcpiGbl_EventsInitialized;

new/usr/src/common/acpica/include/acglobal.h 6

266 ACPI_EXTERN UINT8 AcpiGbl_OsiData;
319 ACPI_EXTERN ACPI_INTERFACE_INFO *AcpiGbl_SupportedInterfaces;
320 ACPI_EXTERN ACPI_ADDRESS_RANGE *AcpiGbl_AddressRangeList[ACPI_ADDRESS_RA

322 #ifndef DEFINE_ACPI_GLOBALS

272 /* Exception codes */

274 extern char const *AcpiGbl_ExceptionNames_Env[];
275 extern char const *AcpiGbl_ExceptionNames_Pgm[];
276 extern char const *AcpiGbl_ExceptionNames_Tbl[];
277 extern char const *AcpiGbl_ExceptionNames_Aml[];
278 extern char const *AcpiGbl_ExceptionNames_Ctrl[];

324 /* Other miscellaneous */

326 extern BOOLEAN AcpiGbl_Shutdown;
327 extern UINT32 AcpiGbl_StartupFlags;
328 extern const char *AcpiGbl_SleepStateNames[ACPI_S_STATE_COU
329 extern const char *AcpiGbl_LowestDstateNames[ACPI_NUM_SxW_M
330 extern const char *AcpiGbl_HighestDstateNames[ACPI_NUM_SxD_
331 extern const ACPI_OPCODE_INFO AcpiGbl_AmlOpInfo[AML_NUM_OPCODES];
332 extern const char *AcpiGbl_RegionTypes[ACPI_NUM_PREDEFINED_
333 #endif

336 #ifdef ACPI_DBG_TRACK_ALLOCATIONS

338 /* Lists for tracking memory allocations */

340 ACPI_EXTERN ACPI_MEMORY_LIST *AcpiGbl_GlobalList;
341 ACPI_EXTERN ACPI_MEMORY_LIST *AcpiGbl_NsNodeList;
342 ACPI_EXTERN BOOLEAN AcpiGbl_DisplayFinalMemStats;
343 ACPI_EXTERN BOOLEAN AcpiGbl_DisableMemTracking;
344 #endif

347 /***
348 *
349 * Namespace globals
350 *
351 **/

353 #if !defined (ACPI_NO_METHOD_EXECUTION) || defined (ACPI_CONSTANT_EVAL_ONLY)
354 #define NUM_PREDEFINED_NAMES 10
355 #else
356 #define NUM_PREDEFINED_NAMES 9
357 #endif

359 ACPI_EXTERN ACPI_NAMESPACE_NODE AcpiGbl_RootNodeStruct;
360 ACPI_EXTERN ACPI_NAMESPACE_NODE *AcpiGbl_RootNode;
361 ACPI_EXTERN ACPI_NAMESPACE_NODE *AcpiGbl_FadtGpeDevice;
362 ACPI_EXTERN ACPI_OPERAND_OBJECT *AcpiGbl_ModuleCodeList;

365 extern const UINT8 AcpiGbl_NsProperties [ACPI_NUM_NS_TYPES]
366 extern const ACPI_PREDEFINED_NAMES AcpiGbl_PreDefinedNames [NUM_PREDEFINED_

368 #ifdef ACPI_DEBUG_OUTPUT
369 ACPI_EXTERN UINT32 AcpiGbl_CurrentNodeCount;
370 ACPI_EXTERN UINT32 AcpiGbl_CurrentNodeSize;
371 ACPI_EXTERN UINT32 AcpiGbl_MaxConcurrentNodeCount;
372 ACPI_EXTERN ACPI_SIZE *AcpiGbl_EntryStackPointer;
373 ACPI_EXTERN ACPI_SIZE *AcpiGbl_LowestStackPointer;
374 ACPI_EXTERN UINT32 AcpiGbl_DeepestNesting;

new/usr/src/common/acpica/include/acglobal.h 7

375 #endif

378 /***
379 *
380 * Interpreter globals
381 *
382 **/

384 ACPI_EXTERN ACPI_THREAD_STATE *AcpiGbl_CurrentWalkList;

386 /* Control method single step flag */

388 ACPI_EXTERN UINT8 AcpiGbl_CmSingleStep;

391 /***
392 *
393 * Hardware globals
394 *
395 **/

397 extern ACPI_BIT_REGISTER_INFO AcpiGbl_BitRegisterInfo[ACPI_NUM_BITREG]
398 ACPI_EXTERN UINT8 AcpiGbl_SleepTypeA;
399 ACPI_EXTERN UINT8 AcpiGbl_SleepTypeB;

402 /***
403 *
404 * Event and GPE globals
405 *
406 **/

408 #if (!ACPI_REDUCED_HARDWARE)

410 ACPI_EXTERN UINT8 AcpiGbl_AllGpesInitialized;
411 ACPI_EXTERN ACPI_GPE_XRUPT_INFO *AcpiGbl_GpeXruptListHead;
412 ACPI_EXTERN ACPI_GPE_BLOCK_INFO *AcpiGbl_GpeFadtBlocks[ACPI_MAX_GPE_BLOCK
413 ACPI_EXTERN ACPI_GBL_EVENT_HANDLER AcpiGbl_GlobalEventHandler;
414 ACPI_EXTERN void *AcpiGbl_GlobalEventHandlerContext;
415 ACPI_EXTERN ACPI_FIXED_EVENT_HANDLER AcpiGbl_FixedEventHandlers[ACPI_NUM_FIXE
416 extern ACPI_FIXED_EVENT_INFO AcpiGbl_FixedEventInfo[ACPI_NUM_FIXED_EV

418 #endif /* !ACPI_REDUCED_HARDWARE */

420 /***
421 *
422 * Debug support
423 *
424 **/

426 /* Procedure nesting level for debug output */

428 extern UINT32 AcpiGbl_NestingLevel;

430 /* Event counters */

432 ACPI_EXTERN UINT32 AcpiMethodCount;
433 ACPI_EXTERN UINT32 AcpiGpeCount;
434 ACPI_EXTERN UINT32 AcpiSciCount;
435 ACPI_EXTERN UINT32 AcpiFixedEventCount[ACPI_NUM_FIXED_EVENT

437 /* Support for dynamic control method tracing mechanism */

439 ACPI_EXTERN UINT32 AcpiGbl_OriginalDbgLevel;

new/usr/src/common/acpica/include/acglobal.h 8

440 ACPI_EXTERN UINT32 AcpiGbl_OriginalDbgLayer;
441 ACPI_EXTERN UINT32 AcpiGbl_TraceDbgLevel;
442 ACPI_EXTERN UINT32 AcpiGbl_TraceDbgLayer;

445 /***
446 *
447 * Debugger and Disassembler globals
401 * Debugger globals
448 *
449 **/

451 ACPI_EXTERN UINT8 AcpiGbl_DbOutputFlags;

453 #ifdef ACPI_DISASSEMBLER

455 ACPI_EXTERN BOOLEAN ACPI_INIT_GLOBAL (AcpiGbl_IgnoreNoopOper

457 ACPI_EXTERN BOOLEAN AcpiGbl_DbOpt_disasm;
458 ACPI_EXTERN BOOLEAN AcpiGbl_DbOpt_verbose;
459 ACPI_EXTERN BOOLEAN AcpiGbl_NumExternalMethods;
460 ACPI_EXTERN UINT32 AcpiGbl_ResolvedExternalMethods;
461 ACPI_EXTERN ACPI_EXTERNAL_LIST *AcpiGbl_ExternalList;
462 ACPI_EXTERN ACPI_EXTERNAL_FILE *AcpiGbl_ExternalFileList;
463 #endif

466 #ifdef ACPI_DEBUGGER

468 extern BOOLEAN AcpiGbl_MethodExecuting;
469 extern BOOLEAN AcpiGbl_AbortMethod;
470 extern BOOLEAN AcpiGbl_DbTerminateThreads;

472 ACPI_EXTERN BOOLEAN AcpiGbl_DbOpt_tables;
473 ACPI_EXTERN BOOLEAN AcpiGbl_DbOpt_stats;
474 ACPI_EXTERN BOOLEAN AcpiGbl_DbOpt_ini_methods;
475 ACPI_EXTERN BOOLEAN AcpiGbl_DbOpt_NoRegionSupport;

427 ACPI_EXTERN char *AcpiGbl_DbArgs[ACPI_DEBUGGER_MAX_ARGS];
428 ACPI_EXTERN ACPI_OBJECT_TYPE AcpiGbl_DbArgTypes[ACPI_DEBUGGER_MAX_ARG
429 ACPI_EXTERN char AcpiGbl_DbLineBuf[ACPI_DB_LINE_BUFFER_SI
430 ACPI_EXTERN char AcpiGbl_DbParsedBuf[ACPI_DB_LINE_BUFFER_
431 ACPI_EXTERN char AcpiGbl_DbScopeBuf[80];
432 ACPI_EXTERN char AcpiGbl_DbDebugFilename[80];
476 ACPI_EXTERN BOOLEAN AcpiGbl_DbOutputToFile;
477 ACPI_EXTERN char *AcpiGbl_DbBuffer;
478 ACPI_EXTERN char *AcpiGbl_DbFilename;
479 ACPI_EXTERN UINT32 AcpiGbl_DbDebugLevel;
480 ACPI_EXTERN UINT32 AcpiGbl_DbConsoleDebugLevel;
481 ACPI_EXTERN ACPI_NAMESPACE_NODE *AcpiGbl_DbScopeNode;

483 ACPI_EXTERN char *AcpiGbl_DbArgs[ACPI_DEBUGGER_MAX_ARGS];
484 ACPI_EXTERN ACPI_OBJECT_TYPE AcpiGbl_DbArgTypes[ACPI_DEBUGGER_MAX_ARG

486 /* These buffers should all be the same size */

488 ACPI_EXTERN char AcpiGbl_DbLineBuf[ACPI_DB_LINE_BUFFER_SI
489 ACPI_EXTERN char AcpiGbl_DbParsedBuf[ACPI_DB_LINE_BUFFER_
490 ACPI_EXTERN char AcpiGbl_DbScopeBuf[ACPI_DB_LINE_BUFFER_S
491 ACPI_EXTERN char AcpiGbl_DbDebugFilename[ACPI_DB_LINE_BUF

493 /*
494 * Statistic globals
495 */
496 ACPI_EXTERN UINT16 AcpiGbl_ObjTypeCount[ACPI_TYPE_NS_NODE_M
497 ACPI_EXTERN UINT16 AcpiGbl_NodeTypeCount[ACPI_TYPE_NS_NODE_

new/usr/src/common/acpica/include/acglobal.h 9

498 ACPI_EXTERN UINT16 AcpiGbl_ObjTypeCountMisc;
499 ACPI_EXTERN UINT16 AcpiGbl_NodeTypeCountMisc;
500 ACPI_EXTERN UINT32 AcpiGbl_NumNodes;
501 ACPI_EXTERN UINT32 AcpiGbl_NumObjects;

504 ACPI_EXTERN UINT32 AcpiGbl_SizeOfParseTree;
505 ACPI_EXTERN UINT32 AcpiGbl_SizeOfMethodTrees;
506 ACPI_EXTERN UINT32 AcpiGbl_SizeOfNodeEntries;
507 ACPI_EXTERN UINT32 AcpiGbl_SizeOfAcpiObjects;

509 #endif /* ACPI_DEBUGGER */

512 /***
513 *
514 * Application globals
515 *
516 **/

518 #ifdef ACPI_APPLICATION

520 ACPI_FILE ACPI_INIT_GLOBAL (AcpiGbl_DebugFile, NULL);

522 #endif /* ACPI_APPLICATION */

525 /***
526 *
527 * Info/help support
528 *
529 **/

531 extern const AH_PREDEFINED_NAME AslPredefinedInfo[];

534 #endif /* __ACGLOBAL_H__ */

new/usr/src/common/acpica/include/achware.h 1

**
 5682 Thu Dec 26 13:49:49 2013
new/usr/src/common/acpica/include/achware.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: achware.h -- hardware specific interfaces
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACHWARE_H__
45 #define __ACHWARE_H__

48 /* Values for the _SST predefined method */

50 #define ACPI_SST_INDICATOR_OFF 0
51 #define ACPI_SST_WORKING 1
52 #define ACPI_SST_WAKING 2
53 #define ACPI_SST_SLEEPING 3
54 #define ACPI_SST_SLEEP_CONTEXT 4

57 /*
58 * hwacpi - high level functions
59 */

new/usr/src/common/acpica/include/achware.h 2

60 ACPI_STATUS
61 AcpiHwSetMode (
62 UINT32 Mode);

64 UINT32
65 AcpiHwGetMode (
66 void);

69 /*
70 * hwregs - ACPI Register I/O
71 */
72 ACPI_STATUS
73 AcpiHwValidateRegister (
74 ACPI_GENERIC_ADDRESS *Reg,
75 UINT8 MaxBitWidth,
76 UINT64 *Address);

78 ACPI_STATUS
79 AcpiHwRead (
80 UINT32 *Value,
81 ACPI_GENERIC_ADDRESS *Reg);

83 ACPI_STATUS
84 AcpiHwWrite (
85 UINT32 Value,
86 ACPI_GENERIC_ADDRESS *Reg);

88 ACPI_BIT_REGISTER_INFO *
89 AcpiHwGetBitRegisterInfo (
90 UINT32 RegisterId);

92 ACPI_STATUS
93 AcpiHwWritePm1Control (
94 UINT32 Pm1aControl,
95 UINT32 Pm1bControl);

97 ACPI_STATUS
98 AcpiHwRegisterRead (
99 UINT32 RegisterId,
100 UINT32 *ReturnValue);

102 ACPI_STATUS
103 AcpiHwRegisterWrite (
104 UINT32 RegisterId,
105 UINT32 Value);

107 ACPI_STATUS
108 AcpiHwClearAcpiStatus (
109 void);

112 /*
113 * hwsleep - sleep/wake support (Legacy sleep registers)
114 */
115 ACPI_STATUS
116 AcpiHwLegacySleep (
117 UINT8 SleepState);

119 ACPI_STATUS
120 AcpiHwLegacyWakePrep (
121 UINT8 SleepState);

123 ACPI_STATUS
124 AcpiHwLegacyWake (
125 UINT8 SleepState);

new/usr/src/common/acpica/include/achware.h 3

128 /*
129 * hwesleep - sleep/wake support (Extended FADT-V5 sleep registers)
130 */
131 void
132 AcpiHwExecuteSleepMethod (
133 char *MethodName,
134 UINT32 IntegerArgument);

136 ACPI_STATUS
137 AcpiHwExtendedSleep (
138 UINT8 SleepState);

140 ACPI_STATUS
141 AcpiHwExtendedWakePrep (
142 UINT8 SleepState);

144 ACPI_STATUS
145 AcpiHwExtendedWake (
146 UINT8 SleepState);

149 /*
150 * hwvalid - Port I/O with validation
151 */
152 ACPI_STATUS
153 AcpiHwReadPort (
154 ACPI_IO_ADDRESS Address,
155 UINT32 *Value,
156 UINT32 Width);

158 ACPI_STATUS
159 AcpiHwWritePort (
160 ACPI_IO_ADDRESS Address,
161 UINT32 Value,
162 UINT32 Width);

165 /*
166 * hwgpe - GPE support
167 */
168 UINT32
169 AcpiHwGetGpeRegisterBit (
170 ACPI_GPE_EVENT_INFO *GpeEventInfo);
133 ACPI_GPE_EVENT_INFO *GpeEventInfo,
134 ACPI_GPE_REGISTER_INFO *GpeRegisterInfo);

172 ACPI_STATUS
173 AcpiHwLowSetGpe (
174 ACPI_GPE_EVENT_INFO *GpeEventInfo,
175 UINT32 Action);

177 ACPI_STATUS
178 AcpiHwDisableGpeBlock (
179 ACPI_GPE_XRUPT_INFO *GpeXruptInfo,
180 ACPI_GPE_BLOCK_INFO *GpeBlock,
181 void *Context);

183 ACPI_STATUS
184 AcpiHwClearGpe (
185 ACPI_GPE_EVENT_INFO *GpeEventInfo);

187 ACPI_STATUS
188 AcpiHwClearGpeBlock (
189 ACPI_GPE_XRUPT_INFO *GpeXruptInfo,

new/usr/src/common/acpica/include/achware.h 4

190 ACPI_GPE_BLOCK_INFO *GpeBlock,
191 void *Context);

193 ACPI_STATUS
194 AcpiHwGetGpeStatus (
195 ACPI_GPE_EVENT_INFO *GpeEventInfo,
196 ACPI_EVENT_STATUS *EventStatus);

198 ACPI_STATUS
199 AcpiHwDisableAllGpes (
200 void);

202 ACPI_STATUS
203 AcpiHwEnableAllRuntimeGpes (
204 void);

206 ACPI_STATUS
207 AcpiHwEnableAllWakeupGpes (
208 void);

210 ACPI_STATUS
211 AcpiHwEnableRuntimeGpeBlock (
212 ACPI_GPE_XRUPT_INFO *GpeXruptInfo,
213 ACPI_GPE_BLOCK_INFO *GpeBlock,
214 void *Context);

217 /*
218 * hwpci - PCI configuration support
219 */
220 ACPI_STATUS
221 AcpiHwDerivePciId (
222 ACPI_PCI_ID *PciId,
223 ACPI_HANDLE RootPciDevice,
224 ACPI_HANDLE PciRegion);

191 /*
192 * hwtimer - ACPI Timer prototypes
193 */
194 ACPI_STATUS
195 AcpiGetTimerResolution (
196 UINT32 *Resolution);

198 ACPI_STATUS
199 AcpiGetTimer (
200 UINT32 *Ticks);

202 ACPI_STATUS
203 AcpiGetTimerDuration (
204 UINT32 StartTicks,
205 UINT32 EndTicks,
206 UINT32 *TimeElapsed);

227 #endif /* __ACHWARE_H__ */

new/usr/src/common/acpica/include/acinterp.h 1

**
 18202 Thu Dec 26 13:49:49 2013
new/usr/src/common/acpica/include/acinterp.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acinterp.h - Interpreter subcomponent prototypes and defines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACINTERP_H__
45 #define __ACINTERP_H__

48 #define ACPI_WALK_OPERANDS (&(WalkState->Operands [WalkState->NumOperan

50 /* Macros for tables used for debug output */

52 #define ACPI_EXD_OFFSET(f) (UINT8) ACPI_OFFSET (ACPI_OPERAND_OBJECT,f)
53 #define ACPI_EXD_NSOFFSET(f) (UINT8) ACPI_OFFSET (ACPI_NAMESPACE_NODE,f)
54 #define ACPI_EXD_TABLE_SIZE(name) (sizeof(name) / sizeof (ACPI_EXDUMP_INFO))

56 /*
57 * If possible, pack the following structures to byte alignment, since we
58 * don’t care about performance for debug output. Two cases where we cannot
59 * pack the structures:

new/usr/src/common/acpica/include/acinterp.h 2

60 *
61 * 1) Hardware does not support misaligned memory transfers
62 * 2) Compiler does not support pointers within packed structures
63 */
64 #if (!defined(ACPI_MISALIGNMENT_NOT_SUPPORTED) && !defined(ACPI_PACKED_POINTERS_
65 #pragma pack(1)
66 #endif

68 typedef const struct acpi_exdump_info
69 {
70 UINT8 Opcode;
71 UINT8 Offset;
72 char *Name;

74 } ACPI_EXDUMP_INFO;

76 /* Values for the Opcode field above */

78 #define ACPI_EXD_INIT 0
79 #define ACPI_EXD_TYPE 1
80 #define ACPI_EXD_UINT8 2
81 #define ACPI_EXD_UINT16 3
82 #define ACPI_EXD_UINT32 4
83 #define ACPI_EXD_UINT64 5
84 #define ACPI_EXD_LITERAL 6
85 #define ACPI_EXD_POINTER 7
86 #define ACPI_EXD_ADDRESS 8
87 #define ACPI_EXD_STRING 9
88 #define ACPI_EXD_BUFFER 10
89 #define ACPI_EXD_PACKAGE 11
90 #define ACPI_EXD_FIELD 12
91 #define ACPI_EXD_REFERENCE 13

93 /* restore default alignment */

95 #pragma pack()

98 /*
99 * exconvrt - object conversion
100 */
101 ACPI_STATUS
102 AcpiExConvertToInteger (
103 ACPI_OPERAND_OBJECT *ObjDesc,
104 ACPI_OPERAND_OBJECT **ResultDesc,
105 UINT32 Flags);

107 ACPI_STATUS
108 AcpiExConvertToBuffer (
109 ACPI_OPERAND_OBJECT *ObjDesc,
110 ACPI_OPERAND_OBJECT **ResultDesc);

112 ACPI_STATUS
113 AcpiExConvertToString (
114 ACPI_OPERAND_OBJECT *ObjDesc,
115 ACPI_OPERAND_OBJECT **ResultDesc,
116 UINT32 Type);

118 /* Types for ->String conversion */

120 #define ACPI_EXPLICIT_BYTE_COPY 0x00000000
121 #define ACPI_EXPLICIT_CONVERT_HEX 0x00000001
122 #define ACPI_IMPLICIT_CONVERT_HEX 0x00000002
123 #define ACPI_EXPLICIT_CONVERT_DECIMAL 0x00000003

125 ACPI_STATUS

new/usr/src/common/acpica/include/acinterp.h 3

126 AcpiExConvertToTargetType (
127 ACPI_OBJECT_TYPE DestinationType,
128 ACPI_OPERAND_OBJECT *SourceDesc,
129 ACPI_OPERAND_OBJECT **ResultDesc,
130 ACPI_WALK_STATE *WalkState);

133 /*
134 * exdebug - AML debug object
135 */
136 void
137 AcpiExDoDebugObject (
138 ACPI_OPERAND_OBJECT *SourceDesc,
139 UINT32 Level,
140 UINT32 Index);

143 /*
144 * exfield - ACPI AML (p-code) execution - field manipulation
145 */
146 ACPI_STATUS
147 AcpiExCommonBufferSetup (
148 ACPI_OPERAND_OBJECT *ObjDesc,
149 UINT32 BufferLength,
150 UINT32 *DatumCount);

152 ACPI_STATUS
153 AcpiExWriteWithUpdateRule (
154 ACPI_OPERAND_OBJECT *ObjDesc,
155 UINT64 Mask,
156 UINT64 FieldValue,
157 UINT32 FieldDatumByteOffset);

159 void
160 AcpiExGetBufferDatum(
161 UINT64 *Datum,
162 void *Buffer,
163 UINT32 BufferLength,
164 UINT32 ByteGranularity,
165 UINT32 BufferOffset);

167 void
168 AcpiExSetBufferDatum (
169 UINT64 MergedDatum,
170 void *Buffer,
171 UINT32 BufferLength,
172 UINT32 ByteGranularity,
173 UINT32 BufferOffset);

175 ACPI_STATUS
176 AcpiExReadDataFromField (
177 ACPI_WALK_STATE *WalkState,
178 ACPI_OPERAND_OBJECT *ObjDesc,
179 ACPI_OPERAND_OBJECT **RetBufferDesc);

181 ACPI_STATUS
182 AcpiExWriteDataToField (
183 ACPI_OPERAND_OBJECT *SourceDesc,
184 ACPI_OPERAND_OBJECT *ObjDesc,
185 ACPI_OPERAND_OBJECT **ResultDesc);

188 /*
189 * exfldio - low level field I/O
190 */
191 ACPI_STATUS

new/usr/src/common/acpica/include/acinterp.h 4

192 AcpiExExtractFromField (
193 ACPI_OPERAND_OBJECT *ObjDesc,
194 void *Buffer,
195 UINT32 BufferLength);

197 ACPI_STATUS
198 AcpiExInsertIntoField (
199 ACPI_OPERAND_OBJECT *ObjDesc,
200 void *Buffer,
201 UINT32 BufferLength);

203 ACPI_STATUS
204 AcpiExAccessRegion (
205 ACPI_OPERAND_OBJECT *ObjDesc,
206 UINT32 FieldDatumByteOffset,
207 UINT64 *Value,
208 UINT32 ReadWrite);

211 /*
212 * exmisc - misc support routines
213 */
214 ACPI_STATUS
215 AcpiExGetObjectReference (
216 ACPI_OPERAND_OBJECT *ObjDesc,
217 ACPI_OPERAND_OBJECT **ReturnDesc,
218 ACPI_WALK_STATE *WalkState);

220 ACPI_STATUS
221 AcpiExConcatTemplate (
222 ACPI_OPERAND_OBJECT *ObjDesc,
223 ACPI_OPERAND_OBJECT *ObjDesc2,
224 ACPI_OPERAND_OBJECT **ActualReturnDesc,
225 ACPI_WALK_STATE *WalkState);

227 ACPI_STATUS
228 AcpiExDoConcatenate (
229 ACPI_OPERAND_OBJECT *ObjDesc,
230 ACPI_OPERAND_OBJECT *ObjDesc2,
231 ACPI_OPERAND_OBJECT **ActualReturnDesc,
232 ACPI_WALK_STATE *WalkState);

234 ACPI_STATUS
235 AcpiExDoLogicalNumericOp (
236 UINT16 Opcode,
237 UINT64 Integer0,
238 UINT64 Integer1,
239 BOOLEAN *LogicalResult);

241 ACPI_STATUS
242 AcpiExDoLogicalOp (
243 UINT16 Opcode,
244 ACPI_OPERAND_OBJECT *Operand0,
245 ACPI_OPERAND_OBJECT *Operand1,
246 BOOLEAN *LogicalResult);

248 UINT64
249 AcpiExDoMathOp (
250 UINT16 Opcode,
251 UINT64 Operand0,
252 UINT64 Operand1);

254 ACPI_STATUS
255 AcpiExCreateMutex (
256 ACPI_WALK_STATE *WalkState);

new/usr/src/common/acpica/include/acinterp.h 5

258 ACPI_STATUS
259 AcpiExCreateProcessor (
260 ACPI_WALK_STATE *WalkState);

262 ACPI_STATUS
263 AcpiExCreatePowerResource (
264 ACPI_WALK_STATE *WalkState);

266 ACPI_STATUS
267 AcpiExCreateRegion (
268 UINT8 *AmlStart,
269 UINT32 AmlLength,
270 UINT8 RegionSpace,
271 ACPI_WALK_STATE *WalkState);

273 ACPI_STATUS
274 AcpiExCreateEvent (
275 ACPI_WALK_STATE *WalkState);

277 ACPI_STATUS
278 AcpiExCreateAlias (
279 ACPI_WALK_STATE *WalkState);

281 ACPI_STATUS
282 AcpiExCreateMethod (
283 UINT8 *AmlStart,
284 UINT32 AmlLength,
285 ACPI_WALK_STATE *WalkState);

288 /*
289 * exconfig - dynamic table load/unload
290 */
291 ACPI_STATUS
292 AcpiExLoadOp (
293 ACPI_OPERAND_OBJECT *ObjDesc,
294 ACPI_OPERAND_OBJECT *Target,
295 ACPI_WALK_STATE *WalkState);

297 ACPI_STATUS
298 AcpiExLoadTableOp (
299 ACPI_WALK_STATE *WalkState,
300 ACPI_OPERAND_OBJECT **ReturnDesc);

302 ACPI_STATUS
303 AcpiExUnloadTable (
304 ACPI_OPERAND_OBJECT *DdbHandle);

307 /*
308 * exmutex - mutex support
309 */
310 ACPI_STATUS
311 AcpiExAcquireMutex (
312 ACPI_OPERAND_OBJECT *TimeDesc,
313 ACPI_OPERAND_OBJECT *ObjDesc,
314 ACPI_WALK_STATE *WalkState);

316 ACPI_STATUS
317 AcpiExAcquireMutexObject (
318 UINT16 Timeout,
319 ACPI_OPERAND_OBJECT *ObjDesc,
320 ACPI_THREAD_ID ThreadId);

322 ACPI_STATUS
323 AcpiExReleaseMutex (

new/usr/src/common/acpica/include/acinterp.h 6

324 ACPI_OPERAND_OBJECT *ObjDesc,
325 ACPI_WALK_STATE *WalkState);

327 ACPI_STATUS
328 AcpiExReleaseMutexObject (
329 ACPI_OPERAND_OBJECT *ObjDesc);

331 void
332 AcpiExReleaseAllMutexes (
333 ACPI_THREAD_STATE *Thread);

335 void
336 AcpiExUnlinkMutex (
337 ACPI_OPERAND_OBJECT *ObjDesc);

340 /*
341 * exprep - ACPI AML execution - prep utilities
342 */
343 ACPI_STATUS
344 AcpiExPrepCommonFieldObject (
345 ACPI_OPERAND_OBJECT *ObjDesc,
346 UINT8 FieldFlags,
347 UINT8 FieldAttribute,
348 UINT32 FieldBitPosition,
349 UINT32 FieldBitLength);

351 ACPI_STATUS
352 AcpiExPrepFieldValue (
353 ACPI_CREATE_FIELD_INFO *Info);

356 /*
357 * exsystem - Interface to OS services
358 */
359 ACPI_STATUS
360 AcpiExSystemDoNotifyOp (
361 ACPI_OPERAND_OBJECT *Value,
362 ACPI_OPERAND_OBJECT *ObjDesc);

364 ACPI_STATUS
365 AcpiExSystemDoSleep(
366 UINT64 Time);

368 ACPI_STATUS
369 AcpiExSystemDoStall (
370 UINT32 Time);

372 ACPI_STATUS
373 AcpiExSystemSignalEvent(
374 ACPI_OPERAND_OBJECT *ObjDesc);

376 ACPI_STATUS
377 AcpiExSystemWaitEvent(
378 ACPI_OPERAND_OBJECT *Time,
379 ACPI_OPERAND_OBJECT *ObjDesc);

381 ACPI_STATUS
382 AcpiExSystemResetEvent(
383 ACPI_OPERAND_OBJECT *ObjDesc);

385 ACPI_STATUS
386 AcpiExSystemWaitSemaphore (
387 ACPI_SEMAPHORE Semaphore,
388 UINT16 Timeout);

new/usr/src/common/acpica/include/acinterp.h 7

390 ACPI_STATUS
391 AcpiExSystemWaitMutex (
392 ACPI_MUTEX Mutex,
393 UINT16 Timeout);

395 /*
396 * exoparg1 - ACPI AML execution, 1 operand
397 */
398 ACPI_STATUS
399 AcpiExOpcode_0A_0T_1R (
400 ACPI_WALK_STATE *WalkState);

402 ACPI_STATUS
403 AcpiExOpcode_1A_0T_0R (
404 ACPI_WALK_STATE *WalkState);

406 ACPI_STATUS
407 AcpiExOpcode_1A_0T_1R (
408 ACPI_WALK_STATE *WalkState);

410 ACPI_STATUS
411 AcpiExOpcode_1A_1T_1R (
412 ACPI_WALK_STATE *WalkState);

414 ACPI_STATUS
415 AcpiExOpcode_1A_1T_0R (
416 ACPI_WALK_STATE *WalkState);

418 /*
419 * exoparg2 - ACPI AML execution, 2 operands
420 */
421 ACPI_STATUS
422 AcpiExOpcode_2A_0T_0R (
423 ACPI_WALK_STATE *WalkState);

425 ACPI_STATUS
426 AcpiExOpcode_2A_0T_1R (
427 ACPI_WALK_STATE *WalkState);

429 ACPI_STATUS
430 AcpiExOpcode_2A_1T_1R (
431 ACPI_WALK_STATE *WalkState);

433 ACPI_STATUS
434 AcpiExOpcode_2A_2T_1R (
435 ACPI_WALK_STATE *WalkState);

438 /*
439 * exoparg3 - ACPI AML execution, 3 operands
440 */
441 ACPI_STATUS
442 AcpiExOpcode_3A_0T_0R (
443 ACPI_WALK_STATE *WalkState);

445 ACPI_STATUS
446 AcpiExOpcode_3A_1T_1R (
447 ACPI_WALK_STATE *WalkState);

450 /*
451 * exoparg6 - ACPI AML execution, 6 operands
452 */
453 ACPI_STATUS
454 AcpiExOpcode_6A_0T_1R (
455 ACPI_WALK_STATE *WalkState);

new/usr/src/common/acpica/include/acinterp.h 8

458 /*
459 * exresolv - Object resolution and get value functions
460 */
461 ACPI_STATUS
462 AcpiExResolveToValue (
463 ACPI_OPERAND_OBJECT **StackPtr,
464 ACPI_WALK_STATE *WalkState);

466 ACPI_STATUS
467 AcpiExResolveMultiple (
468 ACPI_WALK_STATE *WalkState,
469 ACPI_OPERAND_OBJECT *Operand,
470 ACPI_OBJECT_TYPE *ReturnType,
471 ACPI_OPERAND_OBJECT **ReturnDesc);

474 /*
475 * exresnte - resolve namespace node
476 */
477 ACPI_STATUS
478 AcpiExResolveNodeToValue (
479 ACPI_NAMESPACE_NODE **StackPtr,
480 ACPI_WALK_STATE *WalkState);

483 /*
484 * exresop - resolve operand to value
485 */
486 ACPI_STATUS
487 AcpiExResolveOperands (
488 UINT16 Opcode,
489 ACPI_OPERAND_OBJECT **StackPtr,
490 ACPI_WALK_STATE *WalkState);

493 /*
494 * exdump - Interpreter debug output routines
495 */
496 void
497 AcpiExDumpOperand (
498 ACPI_OPERAND_OBJECT *ObjDesc,
499 UINT32 Depth);

501 void
502 AcpiExDumpOperands (
503 ACPI_OPERAND_OBJECT **Operands,
504 const char *OpcodeName,
505 UINT32 NumOpcodes);

507 void
508 AcpiExDumpObjectDescriptor (
509 ACPI_OPERAND_OBJECT *Object,
510 UINT32 Flags);

512 void
513 AcpiExDumpNamespaceNode (
514 ACPI_NAMESPACE_NODE *Node,
515 UINT32 Flags);

518 /*
519 * exnames - AML namestring support
520 */
521 ACPI_STATUS

new/usr/src/common/acpica/include/acinterp.h 9

522 AcpiExGetNameString (
523 ACPI_OBJECT_TYPE DataType,
524 UINT8 *InAmlAddress,
525 char **OutNameString,
526 UINT32 *OutNameLength);

529 /*
530 * exstore - Object store support
531 */
532 ACPI_STATUS
533 AcpiExStore (
534 ACPI_OPERAND_OBJECT *ValDesc,
535 ACPI_OPERAND_OBJECT *DestDesc,
536 ACPI_WALK_STATE *WalkState);

538 ACPI_STATUS
539 AcpiExStoreObjectToNode (
540 ACPI_OPERAND_OBJECT *SourceDesc,
541 ACPI_NAMESPACE_NODE *Node,
542 ACPI_WALK_STATE *WalkState,
543 UINT8 ImplicitConversion);

545 #define ACPI_IMPLICIT_CONVERSION TRUE
546 #define ACPI_NO_IMPLICIT_CONVERSION FALSE

549 /*
550 * exstoren - resolve/store object
551 */
552 ACPI_STATUS
553 AcpiExResolveObject (
554 ACPI_OPERAND_OBJECT **SourceDescPtr,
555 ACPI_OBJECT_TYPE TargetType,
556 ACPI_WALK_STATE *WalkState);

558 ACPI_STATUS
559 AcpiExStoreObjectToObject (
560 ACPI_OPERAND_OBJECT *SourceDesc,
561 ACPI_OPERAND_OBJECT *DestDesc,
562 ACPI_OPERAND_OBJECT **NewDesc,
563 ACPI_WALK_STATE *WalkState);

566 /*
567 * exstorob - store object - buffer/string
568 */
569 ACPI_STATUS
570 AcpiExStoreBufferToBuffer (
571 ACPI_OPERAND_OBJECT *SourceDesc,
572 ACPI_OPERAND_OBJECT *TargetDesc);

574 ACPI_STATUS
575 AcpiExStoreStringToString (
576 ACPI_OPERAND_OBJECT *SourceDesc,
577 ACPI_OPERAND_OBJECT *TargetDesc);

580 /*
581 * excopy - object copy
582 */
583 ACPI_STATUS
584 AcpiExCopyIntegerToIndexField (
585 ACPI_OPERAND_OBJECT *SourceDesc,
586 ACPI_OPERAND_OBJECT *TargetDesc);

new/usr/src/common/acpica/include/acinterp.h 10

588 ACPI_STATUS
589 AcpiExCopyIntegerToBankField (
590 ACPI_OPERAND_OBJECT *SourceDesc,
591 ACPI_OPERAND_OBJECT *TargetDesc);

593 ACPI_STATUS
594 AcpiExCopyDataToNamedField (
595 ACPI_OPERAND_OBJECT *SourceDesc,
596 ACPI_NAMESPACE_NODE *Node);

598 ACPI_STATUS
599 AcpiExCopyIntegerToBufferField (
600 ACPI_OPERAND_OBJECT *SourceDesc,
601 ACPI_OPERAND_OBJECT *TargetDesc);

604 /*
605 * exutils - interpreter/scanner utilities
606 */
607 void
608 AcpiExEnterInterpreter (
609 void);

611 void
612 AcpiExExitInterpreter (
613 void);

615 void
616 AcpiExReacquireInterpreter (
617 void);

619 void
620 AcpiExRelinquishInterpreter (
621 void);

623 BOOLEAN
623 void
624 AcpiExTruncateFor32bitTable (
625 ACPI_OPERAND_OBJECT *ObjDesc);

627 void
628 AcpiExAcquireGlobalLock (
629 UINT32 Rule);

631 void
632 AcpiExReleaseGlobalLock (
633 UINT32 Rule);

635 void
636 AcpiExEisaIdToString (
637 char *Dest,
638 UINT64 CompressedId);

640 void
641 AcpiExIntegerToString (
642 char *Dest,
643 UINT64 Value);

645 BOOLEAN
646 AcpiIsValidSpaceId (
647 UINT8 SpaceId);

650 /*
651 * exregion - default OpRegion handlers
652 */

new/usr/src/common/acpica/include/acinterp.h 11

653 ACPI_STATUS
654 AcpiExSystemMemorySpaceHandler (
655 UINT32 Function,
656 ACPI_PHYSICAL_ADDRESS Address,
657 UINT32 BitWidth,
658 UINT64 *Value,
659 void *HandlerContext,
660 void *RegionContext);

662 ACPI_STATUS
663 AcpiExSystemIoSpaceHandler (
664 UINT32 Function,
665 ACPI_PHYSICAL_ADDRESS Address,
666 UINT32 BitWidth,
667 UINT64 *Value,
668 void *HandlerContext,
669 void *RegionContext);

671 ACPI_STATUS
672 AcpiExPciConfigSpaceHandler (
673 UINT32 Function,
674 ACPI_PHYSICAL_ADDRESS Address,
675 UINT32 BitWidth,
676 UINT64 *Value,
677 void *HandlerContext,
678 void *RegionContext);

680 ACPI_STATUS
681 AcpiExCmosSpaceHandler (
682 UINT32 Function,
683 ACPI_PHYSICAL_ADDRESS Address,
684 UINT32 BitWidth,
685 UINT64 *Value,
686 void *HandlerContext,
687 void *RegionContext);

689 ACPI_STATUS
690 AcpiExPciBarSpaceHandler (
691 UINT32 Function,
692 ACPI_PHYSICAL_ADDRESS Address,
693 UINT32 BitWidth,
694 UINT64 *Value,
695 void *HandlerContext,
696 void *RegionContext);

698 ACPI_STATUS
699 AcpiExEmbeddedControllerSpaceHandler (
700 UINT32 Function,
701 ACPI_PHYSICAL_ADDRESS Address,
702 UINT32 BitWidth,
703 UINT64 *Value,
704 void *HandlerContext,
705 void *RegionContext);

707 ACPI_STATUS
708 AcpiExSmBusSpaceHandler (
709 UINT32 Function,
710 ACPI_PHYSICAL_ADDRESS Address,
711 UINT32 BitWidth,
712 UINT64 *Value,
713 void *HandlerContext,
714 void *RegionContext);

717 ACPI_STATUS
718 AcpiExDataTableSpaceHandler (

new/usr/src/common/acpica/include/acinterp.h 12

719 UINT32 Function,
720 ACPI_PHYSICAL_ADDRESS Address,
721 UINT32 BitWidth,
722 UINT64 *Value,
723 void *HandlerContext,
724 void *RegionContext);

726 #endif /* __INTERP_H__ */

new/usr/src/common/acpica/include/aclocal.h 1

**
 47041 Thu Dec 26 13:49:49 2013
new/usr/src/common/acpica/include/aclocal.h
update to acpica-unix2-20131218
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: aclocal.h - Internal data types used across the ACPI subsystem
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACLOCAL_H__
45 #define __ACLOCAL_H__

48 /* acpisrc:StructDefs -- for acpisrc conversion */

50 #define ACPI_SERIALIZED 0xFF

52 typedef UINT32 ACPI_MUTEX_HANDLE;
53 #define ACPI_GLOBAL_LOCK (ACPI_SEMAPHORE) (-1)

55 /* Total number of aml opcodes defined */

57 #define AML_NUM_OPCODES 0x81

new/usr/src/common/acpica/include/aclocal.h 2

57 #define AML_NUM_OPCODES 0x7F

60 /* Forward declarations */

62 struct acpi_walk_state;
63 struct acpi_obj_mutex;
64 union acpi_parse_object;

67 /***
68 *
69 * Mutex typedefs and structs
70 *
71 **/

74 /*
75 * Predefined handles for the mutex objects used within the subsystem
76 * All mutex objects are automatically created by AcpiUtMutexInitialize.
77 *
78 * The acquire/release ordering protocol is implied via this list. Mutexes
79 * with a lower value must be acquired before mutexes with a higher value.
80 *
81 * NOTE: any changes here must be reflected in the AcpiGbl_MutexNames
82 * table below also!
83 */
84 #define ACPI_MTX_INTERPRETER 0 /* AML Interpreter, main lock */
85 #define ACPI_MTX_NAMESPACE 1 /* ACPI Namespace */
86 #define ACPI_MTX_TABLES 2 /* Data for ACPI tables */
87 #define ACPI_MTX_EVENTS 3 /* Data for ACPI events */
88 #define ACPI_MTX_CACHES 4 /* Internal caches, general purposes
89 #define ACPI_MTX_MEMORY 5 /* Debug memory tracking lists */
90 #define ACPI_MTX_DEBUG_CMD_COMPLETE 6 /* AML debugger */
91 #define ACPI_MTX_DEBUG_CMD_READY 7 /* AML debugger */

93 #define ACPI_MAX_MUTEX 7
94 #define ACPI_NUM_MUTEX ACPI_MAX_MUTEX+1

97 /* Lock structure for reader/writer interfaces */

99 typedef struct acpi_rw_lock
100 {
101 ACPI_MUTEX WriterMutex;
102 ACPI_MUTEX ReaderMutex;
103 UINT32 NumReaders;

105 } ACPI_RW_LOCK;
______unchanged_portion_omitted_

203 /* Namespace Node flags */

205 #define ANOBJ_RESERVED 0x01 /* Available for use */
206 #define ANOBJ_TEMPORARY 0x02 /* Node is create by a method an
207 #define ANOBJ_METHOD_ARG 0x04 /* Node is a method argument */
208 #define ANOBJ_METHOD_LOCAL 0x08 /* Node is a method local */
209 #define ANOBJ_SUBTREE_HAS_INI 0x10 /* Used to optimize device initi
210 #define ANOBJ_EVALUATED 0x20 /* Set on first evaluation of no
211 #define ANOBJ_ALLOCATED_BUFFER 0x40 /* Method AML buffer is dynamic

213 #define ANOBJ_IS_EXTERNAL 0x08 /* iASL only: This object create
214 #define ANOBJ_METHOD_NO_RETVAL 0x10 /* iASL only: Method has no retu
215 #define ANOBJ_METHOD_SOME_NO_RETVAL 0x20 /* iASL only: Method has at leas
216 #define ANOBJ_IS_BIT_OFFSET 0x40 /* iASL only: Reference is a bit

new/usr/src/common/acpica/include/aclocal.h 3

216 #define ANOBJ_IS_REFERENCED 0x80 /* iASL only: Object was referen

219 /* Internal ACPI table management - master table list */

221 typedef struct acpi_table_list
222 {
223 ACPI_TABLE_DESC *Tables; /* Table descriptor arra
224 UINT32 CurrentTableCount; /* Tables currently in t
225 UINT32 MaxTableCount; /* Max tables array will
226 UINT8 Flags;

228 } ACPI_TABLE_LIST;
______unchanged_portion_omitted_

280 /* Field creation info */

282 typedef struct acpi_create_field_info
283 {
284 ACPI_NAMESPACE_NODE *RegionNode;
285 ACPI_NAMESPACE_NODE *FieldNode;
286 ACPI_NAMESPACE_NODE *RegisterNode;
287 ACPI_NAMESPACE_NODE *DataRegisterNode;
288 ACPI_NAMESPACE_NODE *ConnectionNode;
289 UINT8 *ResourceBuffer;
290 UINT32 BankValue;
291 UINT32 FieldBitPosition;
292 UINT32 FieldBitLength;
293 UINT16 ResourceLength;
294 UINT8 FieldFlags;
295 UINT8 Attribute;
296 UINT8 FieldType;
297 UINT8 AccessLength;

299 } ACPI_CREATE_FIELD_INFO;

302 typedef
303 ACPI_STATUS (*ACPI_INTERNAL_METHOD) (
304 struct acpi_walk_state *WalkState);

307 /*
308 * Bitmapped ACPI types. Used internally only
309 */
310 #define ACPI_BTYPE_ANY 0x00000000
311 #define ACPI_BTYPE_INTEGER 0x00000001
312 #define ACPI_BTYPE_STRING 0x00000002
313 #define ACPI_BTYPE_BUFFER 0x00000004
314 #define ACPI_BTYPE_PACKAGE 0x00000008
315 #define ACPI_BTYPE_FIELD_UNIT 0x00000010
316 #define ACPI_BTYPE_DEVICE 0x00000020
317 #define ACPI_BTYPE_EVENT 0x00000040
318 #define ACPI_BTYPE_METHOD 0x00000080
319 #define ACPI_BTYPE_MUTEX 0x00000100
320 #define ACPI_BTYPE_REGION 0x00000200
321 #define ACPI_BTYPE_POWER 0x00000400
322 #define ACPI_BTYPE_PROCESSOR 0x00000800
323 #define ACPI_BTYPE_THERMAL 0x00001000
324 #define ACPI_BTYPE_BUFFER_FIELD 0x00002000
325 #define ACPI_BTYPE_DDB_HANDLE 0x00004000
326 #define ACPI_BTYPE_DEBUG_OBJECT 0x00008000
327 #define ACPI_BTYPE_REFERENCE 0x00010000
328 #define ACPI_BTYPE_RESOURCE 0x00020000

new/usr/src/common/acpica/include/aclocal.h 4

330 #define ACPI_BTYPE_COMPUTE_DATA (ACPI_BTYPE_INTEGER | ACPI_BTYPE_STRING

332 #define ACPI_BTYPE_DATA (ACPI_BTYPE_COMPUTE_DATA | ACPI_BTYPE_P
333 #define ACPI_BTYPE_DATA_REFERENCE (ACPI_BTYPE_DATA | ACPI_BTYPE_REFERENCE
334 #define ACPI_BTYPE_DEVICE_OBJECTS (ACPI_BTYPE_DEVICE | ACPI_BTYPE_THERMAL
335 #define ACPI_BTYPE_OBJECTS_AND_REFS 0x0001FFFF /* ARG or LOCAL */
336 #define ACPI_BTYPE_ALL_OBJECTS 0x0000FFFF

338 #pragma pack(1)

340 /*
341 * Information structure for ACPI predefined names.
342 * Each entry in the table contains the following items:
343 *
344 * Name - The ACPI reserved name
345 * ParamCount - Number of arguments to the method
346 * ExpectedReturnBtypes - Allowed type(s) for the return value
347 */
348 typedef struct acpi_name_info
349 {
350 char Name[ACPI_NAME_SIZE];
351 UINT16 ArgumentList;
347 UINT8 ParamCount;
352 UINT8 ExpectedBtypes;

354 } ACPI_NAME_INFO;

356 /*
357 * Secondary information structures for ACPI predefined objects that return
358 * package objects. This structure appears as the next entry in the table
359 * after the NAME_INFO structure above.
360 *
361 * The reason for this is to minimize the size of the predefined name table.
362 */

364 /*
365 * Used for ACPI_PTYPE1_FIXED, ACPI_PTYPE1_VAR, ACPI_PTYPE2,
366 * ACPI_PTYPE2_MIN, ACPI_PTYPE2_PKG_COUNT, ACPI_PTYPE2_COUNT,
367 * ACPI_PTYPE2_FIX_VAR
362 * ACPI_PTYPE2_MIN, ACPI_PTYPE2_PKG_COUNT, ACPI_PTYPE2_COUNT
368 */
369 typedef struct acpi_package_info
370 {
371 UINT8 Type;
372 UINT8 ObjectType1;
373 UINT8 Count1;
374 UINT8 ObjectType2;
375 UINT8 Count2;
376 UINT16 Reserved;
371 UINT8 Reserved;

378 } ACPI_PACKAGE_INFO;

380 /* Used for ACPI_PTYPE2_FIXED */

382 typedef struct acpi_package_info2
383 {
384 UINT8 Type;
385 UINT8 Count;
386 UINT8 ObjectType[4];
387 UINT8 Reserved;

389 } ACPI_PACKAGE_INFO2;

391 /* Used for ACPI_PTYPE1_OPTION */

new/usr/src/common/acpica/include/aclocal.h 5

393 typedef struct acpi_package_info3
394 {
395 UINT8 Type;
396 UINT8 Count;
397 UINT8 ObjectType[2];
398 UINT8 TailObjectType;
399 UINT16 Reserved;
393 UINT8 Reserved;

401 } ACPI_PACKAGE_INFO3;
______unchanged_portion_omitted_

412 /* Reset to default packing */

414 #pragma pack()
407 /* Data block used during object validation */

409 typedef struct acpi_predefined_data
410 {
411 char *Pathname;
412 const ACPI_PREDEFINED_INFO *Predefined;
413 union acpi_operand_object *ParentPackage;
414 UINT32 Flags;
415 UINT8 NodeFlags;

417 /* Return object auto-repair info */
417 } ACPI_PREDEFINED_DATA;

419 typedef ACPI_STATUS (*ACPI_OBJECT_CONVERTER) (
420 union acpi_operand_object *OriginalObject,
421 union acpi_operand_object **ConvertedObject);
419 /* Defines for Flags field above */

423 typedef struct acpi_simple_repair_info
424 {
425 char Name[ACPI_NAME_SIZE];
426 UINT32 UnexpectedBtypes;
427 UINT32 PackageIndex;
428 ACPI_OBJECT_CONVERTER ObjectConverter;
421 #define ACPI_OBJECT_REPAIRED 1

430 } ACPI_SIMPLE_REPAIR_INFO;

433 /*
434 * Bitmapped return value types
435 * Note: the actual data types must be contiguous, a loop in nspredef.c
436 * depends on this.
437 */
438 #define ACPI_RTYPE_ANY 0x00
439 #define ACPI_RTYPE_NONE 0x01
440 #define ACPI_RTYPE_INTEGER 0x02
441 #define ACPI_RTYPE_STRING 0x04
442 #define ACPI_RTYPE_BUFFER 0x08
443 #define ACPI_RTYPE_PACKAGE 0x10
444 #define ACPI_RTYPE_REFERENCE 0x20
445 #define ACPI_RTYPE_ALL 0x3F

447 #define ACPI_NUM_RTYPES 5 /* Number of actual object types */

450 /***
451 *
452 * Event typedefs and structs
453 *
454 **/

new/usr/src/common/acpica/include/aclocal.h 6

456 /* Dispatch info for each host-installed SCI handler */

458 typedef struct acpi_sci_handler_info
459 {
460 struct acpi_sci_handler_info *Next;
461 ACPI_SCI_HANDLER Address; /* Address of handler */
462 void *Context; /* Context to be passed to h

464 } ACPI_SCI_HANDLER_INFO;

466 /* Dispatch info for each GPE -- either a method or handler, cannot be both */

468 typedef struct acpi_gpe_handler_info
469 {
470 ACPI_GPE_HANDLER Address; /* Address of handler, if an
471 void *Context; /* Context to be passed to h
472 ACPI_NAMESPACE_NODE *MethodNode; /* Method node for this GPE
473 UINT8 OriginalFlags; /* Original (pre-handler) GP
474 BOOLEAN OriginallyEnabled; /* True if GPE was origin

476 } ACPI_GPE_HANDLER_INFO;

478 /* Notify info for implicit notify, multiple device objects */

480 typedef struct acpi_gpe_notify_info
481 {
482 ACPI_NAMESPACE_NODE *DeviceNode; /* Device to be notified */
483 struct acpi_gpe_notify_info *Next;

485 } ACPI_GPE_NOTIFY_INFO;

487 /*
488 * GPE dispatch info. At any time, the GPE can have at most one type
489 * of dispatch - Method, Handler, or Implicit Notify.
490 */
491 typedef union acpi_gpe_dispatch_info
492 {
493 ACPI_NAMESPACE_NODE *MethodNode; /* Method node for this GPE
494 ACPI_GPE_HANDLER_INFO *Handler; /* Installed GPE handler */
495 ACPI_GPE_NOTIFY_INFO *NotifyList; /* List of _PRW devices for
466 struct acpi_gpe_handler_info *Handler; /* Installed GPE handler */
467 ACPI_NAMESPACE_NODE *DeviceNode; /* Parent _PRW device for im

497 } ACPI_GPE_DISPATCH_INFO;

499 /*
500 * Information about a GPE, one per each GPE in an array.
501 * NOTE: Important to keep this struct as small as possible.
502 */
503 typedef struct acpi_gpe_event_info
504 {
505 union acpi_gpe_dispatch_info Dispatch; /* Either Method, Handler, o
477 union acpi_gpe_dispatch_info Dispatch; /* Either Method or Handler
506 struct acpi_gpe_register_info *RegisterInfo; /* Backpointer to register i
507 UINT8 Flags; /* Misc info about this GPE
508 UINT8 GpeNumber; /* This GPE */
509 UINT8 RuntimeCount; /* References to a run GPE *

511 } ACPI_GPE_EVENT_INFO;
______unchanged_portion_omitted_

731 typedef
732 ACPI_STATUS (*ACPI_PARSE_DOWNWARDS) (
733 struct acpi_walk_state *WalkState,

new/usr/src/common/acpica/include/aclocal.h 7

734 union acpi_parse_object **OutOp);

736 typedef
737 ACPI_STATUS (*ACPI_PARSE_UPWARDS) (
738 struct acpi_walk_state *WalkState);

741 /* Global handlers for AML Notifies */

743 typedef struct acpi_global_notify_handler
744 {
745 ACPI_NOTIFY_HANDLER Handler;
746 void *Context;

748 } ACPI_GLOBAL_NOTIFY_HANDLER;

750 /*
751 * Notify info - used to pass info to the deferred notify
752 * handler/dispatcher.
753 */
754 typedef struct acpi_notify_info
755 {
756 ACPI_STATE_COMMON
757 UINT8 HandlerListId;
758 ACPI_NAMESPACE_NODE *Node;
759 union acpi_operand_object *HandlerListHead;
760 ACPI_GLOBAL_NOTIFY_HANDLER *Global;
721 union acpi_operand_object *HandlerObj;

762 } ACPI_NOTIFY_INFO;
______unchanged_portion_omitted_

782 /***
783 *
784 * Interpreter typedefs and structs
785 *
786 **/

788 typedef
789 ACPI_STATUS (*ACPI_EXECUTE_OP) (
790 struct acpi_walk_state *WalkState);

792 /* Address Range info block */

794 typedef struct acpi_address_range
795 {
796 struct acpi_address_range *Next;
797 ACPI_NAMESPACE_NODE *RegionNode;
798 ACPI_PHYSICAL_ADDRESS StartAddress;
799 ACPI_PHYSICAL_ADDRESS EndAddress;

801 } ACPI_ADDRESS_RANGE;

804 /***
805 *
806 * Parser typedefs and structs
807 *
808 **/

810 /*
811 * AML opcode, name, and argument layout
812 */
813 typedef struct acpi_opcode_info
814 {

new/usr/src/common/acpica/include/aclocal.h 8

815 #if defined(ACPI_DISASSEMBLER) || defined(ACPI_DEBUG_OUTPUT)
816 char *Name; /* Opcode name (disassembler
817 #endif
818 UINT32 ParseArgs; /* Grammar/Parse time argume
819 UINT32 RuntimeArgs; /* Interpret time arguments
820 UINT16 Flags; /* Misc flags */
821 UINT8 ObjectType; /* Corresponding internal ob
822 UINT8 Class; /* Opcode class */
823 UINT8 Type; /* Opcode type */

825 } ACPI_OPCODE_INFO;

827 /* Structure for Resource Tag information */

829 typedef struct acpi_tag_info
830 {
831 UINT32 BitOffset;
832 UINT32 BitLength;

834 } ACPI_TAG_INFO;

836 /* Value associated with the parse object */

838 typedef union acpi_parse_value
839 {
840 UINT64 Integer; /* Integer constant (Up to 6
841 UINT32 Size; /* bytelist or field size */
842 char *String; /* NULL terminated string */
843 UINT8 *Buffer; /* buffer or string */
844 char *Name; /* NULL terminated string */
845 union acpi_parse_object *Arg; /* arguments and contained o
846 ACPI_TAG_INFO Tag; /* Resource descriptor tag i

848 } ACPI_PARSE_VALUE;

851 #ifdef ACPI_DISASSEMBLER
852 #define ACPI_DISASM_ONLY_MEMBERS(a) a;
853 #else
854 #define ACPI_DISASM_ONLY_MEMBERS(a)
855 #endif

857 #define ACPI_PARSE_COMMON \
858 union acpi_parse_object *Parent; /* Parent op */\
859 UINT8 DescriptorType; /* To differentiate various
860 UINT8 Flags; /* Type of Op */\
861 UINT16 AmlOpcode; /* AML opcode */\
862 UINT32 AmlOffset; /* Offset of declaration in
863 union acpi_parse_object *Next; /* Next op */\
864 ACPI_NAMESPACE_NODE *Node; /* For use by interpreter */
865 ACPI_PARSE_VALUE Value; /* Value or args associated
866 UINT8 ArgListLength; /* Number of elements in the
867 ACPI_DISASM_ONLY_MEMBERS (\
868 UINT8 DisasmFlags; /* Used during AML disassemb
869 UINT8 DisasmOpcode; /* Subtype used for disassem
870 char AmlOpName[16]) /* Op name (debug only) */

873 /* Flags for DisasmFlags field above */
811 #define ACPI_DASM_BUFFER 0x00
812 #define ACPI_DASM_RESOURCE 0x01
813 #define ACPI_DASM_STRING 0x02
814 #define ACPI_DASM_UNICODE 0x03
815 #define ACPI_DASM_EISAID 0x04
816 #define ACPI_DASM_MATCHOP 0x05
817 #define ACPI_DASM_LNOT_PREFIX 0x06

new/usr/src/common/acpica/include/aclocal.h 9

818 #define ACPI_DASM_LNOT_SUFFIX 0x07
819 #define ACPI_DASM_IGNORE 0x08

875 #define ACPI_DASM_BUFFER 0x00 /* Buffer is a simple data b
876 #define ACPI_DASM_RESOURCE 0x01 /* Buffer is a Resource Desc
877 #define ACPI_DASM_STRING 0x02 /* Buffer is a ASCII string
878 #define ACPI_DASM_UNICODE 0x03 /* Buffer is a Unicode strin
879 #define ACPI_DASM_PLD_METHOD 0x04 /* Buffer is a _PLD method b
880 #define ACPI_DASM_EISAID 0x05 /* Integer is an EISAID */
881 #define ACPI_DASM_MATCHOP 0x06 /* Parent opcode is a Match(
882 #define ACPI_DASM_LNOT_PREFIX 0x07 /* Start of a LNotEqual (etc
883 #define ACPI_DASM_LNOT_SUFFIX 0x08 /* End of a LNotEqual (etc.
884 #define ACPI_DASM_IGNORE 0x09 /* Not used at this time */

886 /*
887 * Generic operation (for example: If, While, Store)
888 */
889 typedef struct acpi_parse_obj_common
890 {
891 ACPI_PARSE_COMMON
892 } ACPI_PARSE_OBJ_COMMON;

______unchanged_portion_omitted_

973 /* Parse object flags */

975 #define ACPI_PARSEOP_GENERIC 0x01
976 #define ACPI_PARSEOP_NAMED 0x02
977 #define ACPI_PARSEOP_DEFERRED 0x04
978 #define ACPI_PARSEOP_BYTELIST 0x08
979 #define ACPI_PARSEOP_IN_STACK 0x10
980 #define ACPI_PARSEOP_TARGET 0x20
981 #define ACPI_PARSEOP_IN_CACHE 0x80

983 /* Parse object DisasmFlags */

985 #define ACPI_PARSEOP_IGNORE 0x01
986 #define ACPI_PARSEOP_PARAMLIST 0x02
987 #define ACPI_PARSEOP_EMPTY_TERMLIST 0x04
988 #define ACPI_PARSEOP_PREDEF_CHECKED 0x08
989 #define ACPI_PARSEOP_SPECIAL 0x10

992 /***
993 *
994 * Hardware (ACPI registers) and PNP
995 *
996 **/

998 typedef struct acpi_bit_register_info
999 {

1000 UINT8 ParentRegister;
1001 UINT8 BitPosition;
1002 UINT16 AccessBitMask;

1004 } ACPI_BIT_REGISTER_INFO;

1007 /*
1008 * Some ACPI registers have bits that must be ignored -- meaning that they
1009 * must be preserved.
1010 */
1011 #define ACPI_PM1_STATUS_PRESERVED_BITS 0x0800 /* Bit 11 */

1013 /* Write-only bits must be zeroed by software */

new/usr/src/common/acpica/include/aclocal.h 10

1015 #define ACPI_PM1_CONTROL_WRITEONLY_BITS 0x2004 /* Bits 13, 2 */

1017 /* For control registers, both ignored and reserved bits must be preserved */

1019 /*
1020 * For PM1 control, the SCI enable bit (bit 0, SCI_EN) is defined by the
1021 * ACPI specification to be a "preserved" bit - "OSPM always preserves this
1022 * bit position", section 4.7.3.2.1. However, on some machines the OS must
1023 * write a one to this bit after resume for the machine to work properly.
1024 * To enable this, we no longer attempt to preserve this bit. No machines
1025 * are known to fail if the bit is not preserved. (May 2009)
1026 */
1027 #define ACPI_PM1_CONTROL_IGNORED_BITS 0x0200 /* Bit 9 */
1028 #define ACPI_PM1_CONTROL_RESERVED_BITS 0xC1F8 /* Bits 14-15, 3-8 */
1029 #define ACPI_PM1_CONTROL_PRESERVED_BITS \
1030 (ACPI_PM1_CONTROL_IGNORED_BITS | ACPI_PM1_CONTROL_RESERVED_BITS)

1032 #define ACPI_PM2_CONTROL_PRESERVED_BITS 0xFFFFFFFE /* All except bit 0 *

1034 /*
1035 * Register IDs
1036 * These are the full ACPI registers
1037 */
1038 #define ACPI_REGISTER_PM1_STATUS 0x01
1039 #define ACPI_REGISTER_PM1_ENABLE 0x02
1040 #define ACPI_REGISTER_PM1_CONTROL 0x03
1041 #define ACPI_REGISTER_PM2_CONTROL 0x04
1042 #define ACPI_REGISTER_PM_TIMER 0x05
1043 #define ACPI_REGISTER_PROCESSOR_BLOCK 0x06
1044 #define ACPI_REGISTER_SMI_COMMAND_BLOCK 0x07

1047 /* Masks used to access the BitRegisters */

1049 #define ACPI_BITMASK_TIMER_STATUS 0x0001
1050 #define ACPI_BITMASK_BUS_MASTER_STATUS 0x0010
1051 #define ACPI_BITMASK_GLOBAL_LOCK_STATUS 0x0020
1052 #define ACPI_BITMASK_POWER_BUTTON_STATUS 0x0100
1053 #define ACPI_BITMASK_SLEEP_BUTTON_STATUS 0x0200
1054 #define ACPI_BITMASK_RT_CLOCK_STATUS 0x0400
1055 #define ACPI_BITMASK_PCIEXP_WAKE_STATUS 0x4000 /* ACPI 3.0 */
1056 #define ACPI_BITMASK_WAKE_STATUS 0x8000

1058 #define ACPI_BITMASK_ALL_FIXED_STATUS (\
1059 ACPI_BITMASK_TIMER_STATUS | \
1060 ACPI_BITMASK_BUS_MASTER_STATUS | \
1061 ACPI_BITMASK_GLOBAL_LOCK_STATUS | \
1062 ACPI_BITMASK_POWER_BUTTON_STATUS | \
1063 ACPI_BITMASK_SLEEP_BUTTON_STATUS | \
1064 ACPI_BITMASK_RT_CLOCK_STATUS | \
1065 ACPI_BITMASK_PCIEXP_WAKE_STATUS | \
1066 ACPI_BITMASK_WAKE_STATUS)

1068 #define ACPI_BITMASK_TIMER_ENABLE 0x0001
1069 #define ACPI_BITMASK_GLOBAL_LOCK_ENABLE 0x0020
1070 #define ACPI_BITMASK_POWER_BUTTON_ENABLE 0x0100
1071 #define ACPI_BITMASK_SLEEP_BUTTON_ENABLE 0x0200
1072 #define ACPI_BITMASK_RT_CLOCK_ENABLE 0x0400
1073 #define ACPI_BITMASK_PCIEXP_WAKE_DISABLE 0x4000 /* ACPI 3.0 */

1075 #define ACPI_BITMASK_SCI_ENABLE 0x0001
1076 #define ACPI_BITMASK_BUS_MASTER_RLD 0x0002
1077 #define ACPI_BITMASK_GLOBAL_LOCK_RELEASE 0x0004
1078 #define ACPI_BITMASK_SLEEP_TYPE 0x1C00
1079 #define ACPI_BITMASK_SLEEP_ENABLE 0x2000

new/usr/src/common/acpica/include/aclocal.h 11

1081 #define ACPI_BITMASK_ARB_DISABLE 0x0001

1084 /* Raw bit position of each BitRegister */

1086 #define ACPI_BITPOSITION_TIMER_STATUS 0x00
1087 #define ACPI_BITPOSITION_BUS_MASTER_STATUS 0x04
1088 #define ACPI_BITPOSITION_GLOBAL_LOCK_STATUS 0x05
1089 #define ACPI_BITPOSITION_POWER_BUTTON_STATUS 0x08
1090 #define ACPI_BITPOSITION_SLEEP_BUTTON_STATUS 0x09
1091 #define ACPI_BITPOSITION_RT_CLOCK_STATUS 0x0A
1092 #define ACPI_BITPOSITION_PCIEXP_WAKE_STATUS 0x0E /* ACPI 3.0 */
1093 #define ACPI_BITPOSITION_WAKE_STATUS 0x0F

1095 #define ACPI_BITPOSITION_TIMER_ENABLE 0x00
1096 #define ACPI_BITPOSITION_GLOBAL_LOCK_ENABLE 0x05
1097 #define ACPI_BITPOSITION_POWER_BUTTON_ENABLE 0x08
1098 #define ACPI_BITPOSITION_SLEEP_BUTTON_ENABLE 0x09
1099 #define ACPI_BITPOSITION_RT_CLOCK_ENABLE 0x0A
1100 #define ACPI_BITPOSITION_PCIEXP_WAKE_DISABLE 0x0E /* ACPI 3.0 */

1102 #define ACPI_BITPOSITION_SCI_ENABLE 0x00
1103 #define ACPI_BITPOSITION_BUS_MASTER_RLD 0x01
1104 #define ACPI_BITPOSITION_GLOBAL_LOCK_RELEASE 0x02
1105 #define ACPI_BITPOSITION_SLEEP_TYPE 0x0A
1106 #define ACPI_BITPOSITION_SLEEP_ENABLE 0x0D

1108 #define ACPI_BITPOSITION_ARB_DISABLE 0x00

1111 /* Structs and definitions for _OSI support and I/O port validation */

1047 #define ACPI_OSI_WIN_2000 0x01
1048 #define ACPI_OSI_WIN_XP 0x02
1049 #define ACPI_OSI_WIN_XP_SP1 0x03
1050 #define ACPI_OSI_WINSRV_2003 0x04
1051 #define ACPI_OSI_WIN_XP_SP2 0x05
1052 #define ACPI_OSI_WINSRV_2003_SP1 0x06
1053 #define ACPI_OSI_WIN_VISTA 0x07
1054 #define ACPI_OSI_WINSRV_2008 0x08
1055 #define ACPI_OSI_WIN_VISTA_SP1 0x09
1056 #define ACPI_OSI_WIN_VISTA_SP2 0x0A
1057 #define ACPI_OSI_WIN_7 0x0B

1113 #define ACPI_ALWAYS_ILLEGAL 0x00

1115 typedef struct acpi_interface_info
1116 {
1117 char *Name;
1118 struct acpi_interface_info *Next;
1119 UINT8 Flags;
1120 UINT8 Value;

1122 } ACPI_INTERFACE_INFO;

1124 #define ACPI_OSI_INVALID 0x01
1125 #define ACPI_OSI_DYNAMIC 0x02
1126 #define ACPI_OSI_FEATURE 0x04
1127 #define ACPI_OSI_DEFAULT_INVALID 0x08
1128 #define ACPI_OSI_OPTIONAL_FEATURE (ACPI_OSI_FEATURE | ACPI_OSI_DEFAULT_INV

1130 typedef struct acpi_port_info
1131 {
1132 char *Name;
1133 UINT16 Start;
1134 UINT16 End;

new/usr/src/common/acpica/include/aclocal.h 12

1135 UINT8 OsiDependency;

1137 } ACPI_PORT_INFO;

1140 /***
1141 *
1142 * Resource descriptors
1143 *
1144 **/

1146 /* ResourceType values */

1148 #define ACPI_ADDRESS_TYPE_MEMORY_RANGE 0
1149 #define ACPI_ADDRESS_TYPE_IO_RANGE 1
1150 #define ACPI_ADDRESS_TYPE_BUS_NUMBER_RANGE 2

1152 /* Resource descriptor types and masks */

1154 #define ACPI_RESOURCE_NAME_LARGE 0x80
1155 #define ACPI_RESOURCE_NAME_SMALL 0x00

1157 #define ACPI_RESOURCE_NAME_SMALL_MASK 0x78 /* Bits 6:3 contain the typ
1158 #define ACPI_RESOURCE_NAME_SMALL_LENGTH_MASK 0x07 /* Bits 2:0 contain the len
1159 #define ACPI_RESOURCE_NAME_LARGE_MASK 0x7F /* Bits 6:0 contain the typ

1162 /*
1163 * Small resource descriptor "names" as defined by the ACPI specification.
1164 * Note: Bits 2:0 are used for the descriptor length
1165 */
1166 #define ACPI_RESOURCE_NAME_IRQ 0x20
1167 #define ACPI_RESOURCE_NAME_DMA 0x28
1168 #define ACPI_RESOURCE_NAME_START_DEPENDENT 0x30
1169 #define ACPI_RESOURCE_NAME_END_DEPENDENT 0x38
1170 #define ACPI_RESOURCE_NAME_IO 0x40
1171 #define ACPI_RESOURCE_NAME_FIXED_IO 0x48
1172 #define ACPI_RESOURCE_NAME_FIXED_DMA 0x50
1115 #define ACPI_RESOURCE_NAME_RESERVED_S1 0x50
1173 #define ACPI_RESOURCE_NAME_RESERVED_S2 0x58
1174 #define ACPI_RESOURCE_NAME_RESERVED_S3 0x60
1175 #define ACPI_RESOURCE_NAME_RESERVED_S4 0x68
1176 #define ACPI_RESOURCE_NAME_VENDOR_SMALL 0x70
1177 #define ACPI_RESOURCE_NAME_END_TAG 0x78

1179 /*
1180 * Large resource descriptor "names" as defined by the ACPI specification.
1181 * Note: includes the Large Descriptor bit in bit[7]
1182 */
1183 #define ACPI_RESOURCE_NAME_MEMORY24 0x81
1184 #define ACPI_RESOURCE_NAME_GENERIC_REGISTER 0x82
1185 #define ACPI_RESOURCE_NAME_RESERVED_L1 0x83
1186 #define ACPI_RESOURCE_NAME_VENDOR_LARGE 0x84
1187 #define ACPI_RESOURCE_NAME_MEMORY32 0x85
1188 #define ACPI_RESOURCE_NAME_FIXED_MEMORY32 0x86
1189 #define ACPI_RESOURCE_NAME_ADDRESS32 0x87
1190 #define ACPI_RESOURCE_NAME_ADDRESS16 0x88
1191 #define ACPI_RESOURCE_NAME_EXTENDED_IRQ 0x89
1192 #define ACPI_RESOURCE_NAME_ADDRESS64 0x8A
1193 #define ACPI_RESOURCE_NAME_EXTENDED_ADDRESS64 0x8B
1194 #define ACPI_RESOURCE_NAME_GPIO 0x8C
1195 #define ACPI_RESOURCE_NAME_SERIAL_BUS 0x8E
1196 #define ACPI_RESOURCE_NAME_LARGE_MAX 0x8E
1137 #define ACPI_RESOURCE_NAME_LARGE_MAX 0x8B

new/usr/src/common/acpica/include/aclocal.h 13

1199 /***
1200 *
1201 * Miscellaneous
1202 *
1203 **/

1205 #define ACPI_ASCII_ZERO 0x30

1208 /***
1209 *
1210 * Disassembler
1211 *
1212 **/

1214 typedef struct acpi_external_list
1215 {
1216 char *Path;
1217 char *InternalPath;
1218 struct acpi_external_list *Next;
1219 UINT32 Value;
1220 UINT16 Length;
1221 UINT16 Flags;
1222 UINT8 Type;
1163 UINT8 Flags;

1224 } ACPI_EXTERNAL_LIST;

1226 /* Values for Flags field above */

1228 #define ACPI_EXT_RESOLVED_REFERENCE 0x01 /* Object was resolved durin
1229 #define ACPI_EXT_ORIGIN_FROM_FILE 0x02 /* External came from a file
1230 #define ACPI_EXT_INTERNAL_PATH_ALLOCATED 0x04 /* Deallocate internal path
1231 #define ACPI_EXT_EXTERNAL_EMITTED 0x08 /* External() statement has
1169 #define ACPI_IPATH_ALLOCATED 0x01

1234 typedef struct acpi_external_file
1235 {
1236 char *Path;
1237 struct acpi_external_file *Next;

1239 } ACPI_EXTERNAL_FILE;

1242 /***
1243 *
1244 * Debugger
1245 *
1246 **/

1248 typedef struct acpi_db_method_info
1249 {
1250 ACPI_HANDLE Method;
1251 ACPI_HANDLE MainThreadGate;
1252 ACPI_HANDLE ThreadCompleteGate;
1253 ACPI_HANDLE InfoGate;
1254 ACPI_THREAD_ID *Threads;
1255 UINT32 NumThreads;
1256 UINT32 NumCreated;
1257 UINT32 NumCompleted;

1259 char *Name;
1260 UINT32 Flags;
1261 UINT32 NumLoops;
1262 char Pathname[ACPI_DB_LINE_BUFFER_SIZE];

new/usr/src/common/acpica/include/aclocal.h 14

1199 char Pathname[128];
1263 char **Args;
1264 ACPI_OBJECT_TYPE *Types;

1266 /*
1267 * Arguments to be passed to method for the command
1268 * Threads -
1269 * the Number of threads, ID of current thread and
1270 * Index of current thread inside all them created.
1271 */
1272 char InitArgs;
1273 ACPI_OBJECT_TYPE ArgTypes[4];
1274 char *Arguments[4];
1275 char NumThreadsStr[11];
1276 char IdOfThreadStr[11];
1277 char IndexOfThreadStr[11];

1279 } ACPI_DB_METHOD_INFO;
______unchanged_portion_omitted_

1289 #define ACPI_DB_DISABLE_OUTPUT 0x00
1290 #define ACPI_DB_REDIRECTABLE_OUTPUT 0x01
1291 #define ACPI_DB_CONSOLE_OUTPUT 0x02
1292 #define ACPI_DB_DUPLICATE_OUTPUT 0x03

1295 /***
1296 *
1297 * Debug
1298 *
1299 **/

1301 /* Entry for a memory allocation (debug only) */

1303 #define ACPI_MEM_MALLOC 0
1304 #define ACPI_MEM_CALLOC 1
1305 #define ACPI_MAX_MODULE_NAME 16

1307 #define ACPI_COMMON_DEBUG_MEM_HEADER \
1308 struct acpi_debug_mem_block *Previous; \
1309 struct acpi_debug_mem_block *Next; \
1310 UINT32 Size; \
1311 UINT32 Component; \
1312 UINT32 Line; \
1313 char Module[ACPI_MAX_MODULE_NAME]; \
1314 UINT8 AllocType;

1316 typedef struct acpi_debug_mem_header
1317 {
1318 ACPI_COMMON_DEBUG_MEM_HEADER

1320 } ACPI_DEBUG_MEM_HEADER;
______unchanged_portion_omitted_

1330 #define ACPI_MEM_LIST_GLOBAL 0
1331 #define ACPI_MEM_LIST_NSNODE 1
1332 #define ACPI_MEM_LIST_MAX 1
1333 #define ACPI_NUM_MEM_LISTS 2

1336 /***
1337 *
1338 * Info/help support
1339 *

new/usr/src/common/acpica/include/aclocal.h 15

1340 **/

1342 typedef struct ah_predefined_name
1343 {
1344 char *Name;
1345 char *Description;
1346 #ifndef ACPI_ASL_COMPILER
1347 char *Action;
1348 #endif

1350 } AH_PREDEFINED_NAME;

1352 #endif /* __ACLOCAL_H__ */

new/usr/src/common/acpica/include/acmacros.h 1

**
 19650 Thu Dec 26 13:49:50 2013
new/usr/src/common/acpica/include/acmacros.h
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acmacros.h - C macros for the entire subsystem.
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACMACROS_H__
45 #define __ACMACROS_H__

48 /*
49 * Extract data using a pointer. Any more than a byte and we
50 * get into potential aligment issues -- see the STORE macros below.
51 * Use with care.
52 */
53 #define ACPI_CAST8(ptr) ACPI_CAST_PTR (UINT8, (ptr))
54 #define ACPI_CAST16(ptr) ACPI_CAST_PTR (UINT16, (ptr))
55 #define ACPI_CAST32(ptr) ACPI_CAST_PTR (UINT32, (ptr))
56 #define ACPI_CAST64(ptr) ACPI_CAST_PTR (UINT64, (ptr))
57 #define ACPI_GET8(ptr) (*ACPI_CAST8 (ptr))
58 #define ACPI_GET16(ptr) (*ACPI_CAST16 (ptr))
59 #define ACPI_GET32(ptr) (*ACPI_CAST32 (ptr))

new/usr/src/common/acpica/include/acmacros.h 2

60 #define ACPI_GET64(ptr) (*ACPI_CAST64 (ptr))
61 #define ACPI_SET8(ptr, val) (*ACPI_CAST8 (ptr) = (UINT8) (val))
62 #define ACPI_SET16(ptr, val) (*ACPI_CAST16 (ptr) = (UINT16) (val))
63 #define ACPI_SET32(ptr, val) (*ACPI_CAST32 (ptr) = (UINT32) (val))
64 #define ACPI_SET64(ptr, val) (*ACPI_CAST64 (ptr) = (UINT64) (val))

66 /*
67 * printf() format helpers
68 */

70 /* Split 64-bit integer into two 32-bit values. Use with %8.8X%8.8X */

72 #define ACPI_FORMAT_UINT64(i) ACPI_HIDWORD(i), ACPI_LODWORD(i)

74 #if ACPI_MACHINE_WIDTH == 64
75 #define ACPI_FORMAT_NATIVE_UINT(i) ACPI_FORMAT_UINT64(i)
76 #else
77 #define ACPI_FORMAT_NATIVE_UINT(i) 0, (i)
78 #endif

81 /*
82 * Macros for moving data around to/from buffers that are possibly unaligned.
83 * If the hardware supports the transfer of unaligned data, just do the store.
84 * Otherwise, we have to move one byte at a time.
85 */
86 #ifdef ACPI_BIG_ENDIAN
87 /*
88 * Macros for big-endian machines
89 */

91 /* These macros reverse the bytes during the move, converting little-endian to b

93 /* Big Endian <==
94 /* Hi...Lo
95 /* 16-bit source, 16/32/64 destination */

97 #define ACPI_MOVE_16_TO_16(d, s) {((UINT8 *)(void *)(d))[0] = ((UINT8 *
98 ((UINT8 *)(void *)(d))[1] = ((UINT8 *

100 #define ACPI_MOVE_16_TO_32(d, s) {(*(UINT32 *)(void *)(d))=0;\
101 ((UINT8 *)(void *)(d))[2] = ((UINT8 *
102 ((UINT8 *)(void *)(d))[3] = ((UINT8 *

104 #define ACPI_MOVE_16_TO_64(d, s) {(*(UINT64 *)(void *)(d))=0;\
105 ((UINT8 *)(void *)(d))[6] = ((UINT8 *
106 ((UINT8 *)(void *)(d))[7] = ((UINT8 *

108 /* 32-bit source, 16/32/64 destination */

110 #define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate

112 #define ACPI_MOVE_32_TO_32(d, s) {((UINT8 *)(void *)(d))[0] = ((UINT8 *
113 ((UINT8 *)(void *)(d))[1] = ((UINT8 *
114 ((UINT8 *)(void *)(d))[2] = ((UINT8 *
115 ((UINT8 *)(void *)(d))[3] = ((UINT8 *

117 #define ACPI_MOVE_32_TO_64(d, s) {(*(UINT64 *)(void *)(d))=0;\
118 ((UINT8 *)(void *)(d))[4] = ((UINT8 *
119 ((UINT8 *)(void *)(d))[5] = ((UINT8 *
120 ((UINT8 *)(void *)(d))[6] = ((UINT8 *
121 ((UINT8 *)(void *)(d))[7] = ((UINT8 *

123 /* 64-bit source, 16/32/64 destination */

125 #define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate

new/usr/src/common/acpica/include/acmacros.h 3

127 #define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate

129 #define ACPI_MOVE_64_TO_64(d, s) {((UINT8 *)(void *)(d))[0] = ((UINT8 *
130 ((UINT8 *)(void *)(d))[1] = ((UINT8 *
131 ((UINT8 *)(void *)(d))[2] = ((UINT8 *
132 ((UINT8 *)(void *)(d))[3] = ((UINT8 *
133 ((UINT8 *)(void *)(d))[4] = ((UINT8 *
134 ((UINT8 *)(void *)(d))[5] = ((UINT8 *
135 ((UINT8 *)(void *)(d))[6] = ((UINT8 *
136 ((UINT8 *)(void *)(d))[7] = ((UINT8 *
137 #else
138 /*
139 * Macros for little-endian machines
140 */

142 #ifndef ACPI_MISALIGNMENT_NOT_SUPPORTED

144 /* The hardware supports unaligned transfers, just do the little-endian move */

146 /* 16-bit source, 16/32/64 destination */

148 #define ACPI_MOVE_16_TO_16(d, s) *(UINT16 *)(void *)(d) = *(UINT16 *)(voi
149 #define ACPI_MOVE_16_TO_32(d, s) *(UINT32 *)(void *)(d) = *(UINT16 *)(voi
150 #define ACPI_MOVE_16_TO_64(d, s) *(UINT64 *)(void *)(d) = *(UINT16 *)(voi

152 /* 32-bit source, 16/32/64 destination */

154 #define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate
155 #define ACPI_MOVE_32_TO_32(d, s) *(UINT32 *)(void *)(d) = *(UINT32 *)(voi
156 #define ACPI_MOVE_32_TO_64(d, s) *(UINT64 *)(void *)(d) = *(UINT32 *)(voi

158 /* 64-bit source, 16/32/64 destination */

160 #define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate
161 #define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate
162 #define ACPI_MOVE_64_TO_64(d, s) *(UINT64 *)(void *)(d) = *(UINT64 *)(voi

164 #else
165 /*
166 * The hardware does not support unaligned transfers. We must move the
167 * data one byte at a time. These macros work whether the source or
168 * the destination (or both) is/are unaligned. (Little-endian move)
169 */

171 /* 16-bit source, 16/32/64 destination */

173 #define ACPI_MOVE_16_TO_16(d, s) {((UINT8 *)(void *)(d))[0] = ((UINT8 *
174 ((UINT8 *)(void *)(d))[1] = ((UINT8 *

176 #define ACPI_MOVE_16_TO_32(d, s) {(*(UINT32 *)(void *)(d)) = 0; ACPI_MOVE
177 #define ACPI_MOVE_16_TO_64(d, s) {(*(UINT64 *)(void *)(d)) = 0; ACPI_MOVE

179 /* 32-bit source, 16/32/64 destination */

181 #define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate

183 #define ACPI_MOVE_32_TO_32(d, s) {((UINT8 *)(void *)(d))[0] = ((UINT8 *
184 ((UINT8 *)(void *)(d))[1] = ((UINT8 *
185 ((UINT8 *)(void *)(d))[2] = ((UINT8 *
186 ((UINT8 *)(void *)(d))[3] = ((UINT8 *

188 #define ACPI_MOVE_32_TO_64(d, s) {(*(UINT64 *)(void *)(d)) = 0; ACPI_MOVE

190 /* 64-bit source, 16/32/64 destination */

new/usr/src/common/acpica/include/acmacros.h 4

192 #define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate
193 #define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate
194 #define ACPI_MOVE_64_TO_64(d, s) {((UINT8 *)(void *)(d))[0] = ((UINT8 *
195 ((UINT8 *)(void *)(d))[1] = ((UINT8 *
196 ((UINT8 *)(void *)(d))[2] = ((UINT8 *
197 ((UINT8 *)(void *)(d))[3] = ((UINT8 *
198 ((UINT8 *)(void *)(d))[4] = ((UINT8 *
199 ((UINT8 *)(void *)(d))[5] = ((UINT8 *
200 ((UINT8 *)(void *)(d))[6] = ((UINT8 *
201 ((UINT8 *)(void *)(d))[7] = ((UINT8 *
202 #endif
203 #endif

206 /*
207 * Fast power-of-two math macros for non-optimized compilers
208 */
209 #define _ACPI_DIV(value, PowerOf2) ((UINT32) ((value) >> (PowerOf2)))
210 #define _ACPI_MUL(value, PowerOf2) ((UINT32) ((value) << (PowerOf2)))
211 #define _ACPI_MOD(value, Divisor) ((UINT32) ((value) & ((Divisor) -1)))

213 #define ACPI_DIV_2(a) _ACPI_DIV(a, 1)
214 #define ACPI_MUL_2(a) _ACPI_MUL(a, 1)
215 #define ACPI_MOD_2(a) _ACPI_MOD(a, 2)

217 #define ACPI_DIV_4(a) _ACPI_DIV(a, 2)
218 #define ACPI_MUL_4(a) _ACPI_MUL(a, 2)
219 #define ACPI_MOD_4(a) _ACPI_MOD(a, 4)

221 #define ACPI_DIV_8(a) _ACPI_DIV(a, 3)
222 #define ACPI_MUL_8(a) _ACPI_MUL(a, 3)
223 #define ACPI_MOD_8(a) _ACPI_MOD(a, 8)

225 #define ACPI_DIV_16(a) _ACPI_DIV(a, 4)
226 #define ACPI_MUL_16(a) _ACPI_MUL(a, 4)
227 #define ACPI_MOD_16(a) _ACPI_MOD(a, 16)

229 #define ACPI_DIV_32(a) _ACPI_DIV(a, 5)
230 #define ACPI_MUL_32(a) _ACPI_MUL(a, 5)
231 #define ACPI_MOD_32(a) _ACPI_MOD(a, 32)

233 /*
234 * Rounding macros (Power of two boundaries only)
235 */
236 #define ACPI_ROUND_DOWN(value, boundary) (((ACPI_SIZE)(value)) & \
237 (~(((ACPI_SIZE) boundary)-1)))

239 #define ACPI_ROUND_UP(value, boundary) ((((ACPI_SIZE)(value)) + \
240 (((ACPI_SIZE) boundary)-1)) & \
241 (~(((ACPI_SIZE) boundary)-1)))

243 /* Note: sizeof(ACPI_SIZE) evaluates to either 4 or 8 (32- vs 64-bit mode) */

245 #define ACPI_ROUND_DOWN_TO_32BIT(a) ACPI_ROUND_DOWN(a, 4)
246 #define ACPI_ROUND_DOWN_TO_64BIT(a) ACPI_ROUND_DOWN(a, 8)
247 #define ACPI_ROUND_DOWN_TO_NATIVE_WORD(a) ACPI_ROUND_DOWN(a, sizeof(ACPI_SIZE)

249 #define ACPI_ROUND_UP_TO_32BIT(a) ACPI_ROUND_UP(a, 4)
250 #define ACPI_ROUND_UP_TO_64BIT(a) ACPI_ROUND_UP(a, 8)
251 #define ACPI_ROUND_UP_TO_NATIVE_WORD(a) ACPI_ROUND_UP(a, sizeof(ACPI_SIZE))

253 #define ACPI_ROUND_BITS_UP_TO_BYTES(a) ACPI_DIV_8((a) + 7)
254 #define ACPI_ROUND_BITS_DOWN_TO_BYTES(a) ACPI_DIV_8((a))

256 #define ACPI_ROUND_UP_TO_1K(a) (((a) + 1023) >> 10)

new/usr/src/common/acpica/include/acmacros.h 5

258 /* Generic (non-power-of-two) rounding */

260 #define ACPI_ROUND_UP_TO(value, boundary) (((value) + ((boundary)-1)) / (bound

262 #define ACPI_IS_MISALIGNED(value) (((ACPI_SIZE) value) & (sizeof(ACPI_

264 /*
265 * Bitmask creation
266 * Bit positions start at zero.
267 * MASK_BITS_ABOVE creates a mask starting AT the position and above
268 * MASK_BITS_BELOW creates a mask starting one bit BELOW the position
269 */
270 #define ACPI_MASK_BITS_ABOVE(position) (~((ACPI_UINT64_MAX) << ((UINT32) (p
271 #define ACPI_MASK_BITS_BELOW(position) ((ACPI_UINT64_MAX) << ((UINT32) (pos

273 /* Bitfields within ACPI registers */

275 #define ACPI_REGISTER_PREPARE_BITS(Val, Pos, Mask) \
276 ((Val << Pos) & Mask)

278 #define ACPI_REGISTER_INSERT_VALUE(Reg, Pos, Mask, Val) \
279 Reg = (Reg & (~(Mask))) | ACPI_REGISTER_PREPARE_BITS(Val, Pos, Mask)

281 #define ACPI_INSERT_BITS(Target, Mask, Source) \
282 Target = ((Target & (~(Mask))) | (Source & Mask))

284 /* Generic bitfield macros and masks */

286 #define ACPI_GET_BITS(SourcePtr, Position, Mask) \
287 ((*SourcePtr >> Position) & Mask)

289 #define ACPI_SET_BITS(TargetPtr, Position, Mask, Value) \
290 (*TargetPtr |= ((Value & Mask) << Position))

292 #define ACPI_1BIT_MASK 0x00000001
293 #define ACPI_2BIT_MASK 0x00000003
294 #define ACPI_3BIT_MASK 0x00000007
295 #define ACPI_4BIT_MASK 0x0000000F
296 #define ACPI_5BIT_MASK 0x0000001F
297 #define ACPI_6BIT_MASK 0x0000003F
298 #define ACPI_7BIT_MASK 0x0000007F
299 #define ACPI_8BIT_MASK 0x000000FF
300 #define ACPI_16BIT_MASK 0x0000FFFF
301 #define ACPI_24BIT_MASK 0x00FFFFFF

303 /* Macros to extract flag bits from position zero */

305 #define ACPI_GET_1BIT_FLAG(Value) ((Value) & ACPI_1BIT_MASK)
306 #define ACPI_GET_2BIT_FLAG(Value) ((Value) & ACPI_2BIT_MASK)
307 #define ACPI_GET_3BIT_FLAG(Value) ((Value) & ACPI_3BIT_MASK)
308 #define ACPI_GET_4BIT_FLAG(Value) ((Value) & ACPI_4BIT_MASK)

310 /* Macros to extract flag bits from position one and above */

312 #define ACPI_EXTRACT_1BIT_FLAG(Field, Position) (ACPI_GET_1BIT_FLAG ((Field)
313 #define ACPI_EXTRACT_2BIT_FLAG(Field, Position) (ACPI_GET_2BIT_FLAG ((Field)
314 #define ACPI_EXTRACT_3BIT_FLAG(Field, Position) (ACPI_GET_3BIT_FLAG ((Field)
315 #define ACPI_EXTRACT_4BIT_FLAG(Field, Position) (ACPI_GET_4BIT_FLAG ((Field)

317 /* ACPI Pathname helpers */

319 #define ACPI_IS_ROOT_PREFIX(c) ((c) == (UINT8) 0x5C) /* Backslash */
320 #define ACPI_IS_PARENT_PREFIX(c) ((c) == (UINT8) 0x5E) /* Carat */
321 #define ACPI_IS_PATH_SEPARATOR(c) ((c) == (UINT8) 0x2E) /* Period (dot) */

323 /*

new/usr/src/common/acpica/include/acmacros.h 6

324 * An object of type ACPI_NAMESPACE_NODE can appear in some contexts
325 * where a pointer to an object of type ACPI_OPERAND_OBJECT can also
326 * appear. This macro is used to distinguish them.
327 *
328 * The "DescriptorType" field is the second field in both structures.
329 */
330 #define ACPI_GET_DESCRIPTOR_PTR(d) (((ACPI_DESCRIPTOR *)(void *)(d))->Commo
331 #define ACPI_SET_DESCRIPTOR_PTR(d, p) (((ACPI_DESCRIPTOR *)(void *)(d))->Commo
332 #define ACPI_GET_DESCRIPTOR_TYPE(d) (((ACPI_DESCRIPTOR *)(void *)(d))->Commo
333 #define ACPI_SET_DESCRIPTOR_TYPE(d, t) (((ACPI_DESCRIPTOR *)(void *)(d))->Commo

335 /*
336 * Macros for the master AML opcode table
337 */
338 #if defined (ACPI_DISASSEMBLER) || defined (ACPI_DEBUG_OUTPUT)
339 #define ACPI_OP(Name, PArgs, IArgs, ObjType, Class, Type, Flags) \
340 {Name, (UINT32)(PArgs), (UINT32)(IArgs), (UINT32)(Flags), ObjType, Class, Ty
341 #else
342 #define ACPI_OP(Name, PArgs, IArgs, ObjType, Class, Type, Flags) \
343 {(UINT32)(PArgs), (UINT32)(IArgs), (UINT32)(Flags), ObjType, Class, Type}
344 #endif

346 #define ARG_TYPE_WIDTH 5
347 #define ARG_1(x) ((UINT32)(x))
348 #define ARG_2(x) ((UINT32)(x) << (1 * ARG_TYPE_WIDTH))
349 #define ARG_3(x) ((UINT32)(x) << (2 * ARG_TYPE_WIDTH))
350 #define ARG_4(x) ((UINT32)(x) << (3 * ARG_TYPE_WIDTH))
351 #define ARG_5(x) ((UINT32)(x) << (4 * ARG_TYPE_WIDTH))
352 #define ARG_6(x) ((UINT32)(x) << (5 * ARG_TYPE_WIDTH))

354 #define ARGI_LIST1(a) (ARG_1(a))
355 #define ARGI_LIST2(a, b) (ARG_1(b)|ARG_2(a))
356 #define ARGI_LIST3(a, b, c) (ARG_1(c)|ARG_2(b)|ARG_3(a))
357 #define ARGI_LIST4(a, b, c, d) (ARG_1(d)|ARG_2(c)|ARG_3(b)|ARG_4(a))
358 #define ARGI_LIST5(a, b, c, d, e) (ARG_1(e)|ARG_2(d)|ARG_3(c)|ARG_4(b)|ARG
359 #define ARGI_LIST6(a, b, c, d, e, f) (ARG_1(f)|ARG_2(e)|ARG_3(d)|ARG_4(c)|ARG

361 #define ARGP_LIST1(a) (ARG_1(a))
362 #define ARGP_LIST2(a, b) (ARG_1(a)|ARG_2(b))
363 #define ARGP_LIST3(a, b, c) (ARG_1(a)|ARG_2(b)|ARG_3(c))
364 #define ARGP_LIST4(a, b, c, d) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d))
365 #define ARGP_LIST5(a, b, c, d, e) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)|ARG
366 #define ARGP_LIST6(a, b, c, d, e, f) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)|ARG

368 #define GET_CURRENT_ARG_TYPE(List) (List & ((UINT32) 0x1F))
369 #define INCREMENT_ARG_LIST(List) (List >>= ((UINT32) ARG_TYPE_WIDTH))

371 /*
372 * Ascii error messages can be configured out
373 */
374 #ifndef ACPI_NO_ERROR_MESSAGES
375 /*
376 * Error reporting. Callers module and line number are inserted by AE_INFO,
377 * the plist contains a set of parens to allow variable-length lists.
378 * These macros are used for both the debug and non-debug versions of the code.
379 */
380 #define ACPI_ERROR_NAMESPACE(s, e) AcpiUtNamespaceError (AE_INFO, s, e)
381 #define ACPI_ERROR_METHOD(s, n, p, e) AcpiUtMethodError (AE_INFO, s, n, p,
382 #define ACPI_WARN_PREDEFINED(plist) AcpiUtPredefinedWarning plist
383 #define ACPI_INFO_PREDEFINED(plist) AcpiUtPredefinedInfo plist
384 #define ACPI_BIOS_ERROR_PREDEFINED(plist) AcpiUtPredefinedBiosError plist

386 #else

388 /* No error messages */

new/usr/src/common/acpica/include/acmacros.h 7

390 #define ACPI_ERROR_NAMESPACE(s, e)
391 #define ACPI_ERROR_METHOD(s, n, p, e)
392 #define ACPI_WARN_PREDEFINED(plist)
393 #define ACPI_INFO_PREDEFINED(plist)
394 #define ACPI_BIOS_ERROR_PREDEFINED(plist)

396 #endif /* ACPI_NO_ERROR_MESSAGES */

398 #if (!ACPI_REDUCED_HARDWARE)
399 #define ACPI_HW_OPTIONAL_FUNCTION(addr) addr
400 #else
401 #define ACPI_HW_OPTIONAL_FUNCTION(addr) NULL
402 #endif

405 /*
406 * Some code only gets executed when the debugger is built in.
407 * Note that this is entirely independent of whether the
408 * DEBUG_PRINT stuff (set by ACPI_DEBUG_OUTPUT) is on, or not.
409 */
410 #ifdef ACPI_DEBUGGER
411 #define ACPI_DEBUGGER_EXEC(a) a
412 #else
413 #define ACPI_DEBUGGER_EXEC(a)
414 #endif

417 /*
418 * Macros used for ACPICA utilities only
419 */

421 /* Generate a UUID */

423 #define ACPI_INIT_UUID(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \
424 (a) & 0xFF, ((a) >> 8) & 0xFF, ((a) >> 16) & 0xFF, ((a) >> 24) & 0xFF, \
425 (b) & 0xFF, ((b) >> 8) & 0xFF, \
426 (c) & 0xFF, ((c) >> 8) & 0xFF, \
427 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7)

429 #define ACPI_IS_OCTAL_DIGIT(d) (((char)(d) >= ’0’) && ((char)(d) <=

432 #endif /* ACMACROS_H */

new/usr/src/common/acpica/include/acnames.h 1

**
 3582 Thu Dec 26 13:49:50 2013
new/usr/src/common/acpica/include/acnames.h
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acnames.h - Global names and strings
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACNAMES_H__
45 #define __ACNAMES_H__

47 /* Method names - these methods can appear anywhere in the namespace */

49 #define METHOD_NAME__HID "_HID"
50 #define METHOD_NAME__CID "_CID"
51 #define METHOD_NAME__UID "_UID"
49 #define METHOD_NAME__ADR "_ADR"
50 #define METHOD_NAME__AEI "_AEI"
53 #define METHOD_NAME__INI "_INI"
54 #define METHOD_NAME__STA "_STA"
55 #define METHOD_NAME__REG "_REG"
56 #define METHOD_NAME__SEG "_SEG"
51 #define METHOD_NAME__BBN "_BBN"

new/usr/src/common/acpica/include/acnames.h 2

52 #define METHOD_NAME__CBA "_CBA"
53 #define METHOD_NAME__CID "_CID"
58 #define METHOD_NAME__PRT "_PRT"
54 #define METHOD_NAME__CRS "_CRS"
55 #define METHOD_NAME__HID "_HID"
56 #define METHOD_NAME__INI "_INI"
57 #define METHOD_NAME__PLD "_PLD"
58 #define METHOD_NAME__PRS "_PRS"
59 #define METHOD_NAME__PRT "_PRT"
60 #define METHOD_NAME__PRW "_PRW"
61 #define METHOD_NAME__REG "_REG"
62 #define METHOD_NAME__SB_ "_SB_"
63 #define METHOD_NAME__SEG "_SEG"
64 #define METHOD_NAME__SRS "_SRS"
65 #define METHOD_NAME__STA "_STA"
66 #define METHOD_NAME__SUB "_SUB"
67 #define METHOD_NAME__UID "_UID"

69 /* Method names - these methods must appear at the namespace root */

71 #define METHOD_PATHNAME__PTS "_PTS"
72 #define METHOD_PATHNAME__SST "_SI._SST"
73 #define METHOD_PATHNAME__WAK "_WAK"
66 #define METHOD_NAME__BFS "_BFS"
67 #define METHOD_NAME__GTS "_GTS"
68 #define METHOD_NAME__PTS "_PTS"
69 #define METHOD_NAME__SST "_SI._SST"
70 #define METHOD_NAME__WAK "_WAK"

75 /* Definitions of the predefined namespace names */

77 #define ACPI_UNKNOWN_NAME (UINT32) 0x3F3F3F3F /* Unknown name is "????
78 #define ACPI_ROOT_NAME (UINT32) 0x5F5F5F5C /* Root name is "___

80 #define ACPI_PREFIX_MIXED (UINT32) 0x69706341 /* "Acpi" */
81 #define ACPI_PREFIX_LOWER (UINT32) 0x69706361 /* "acpi" */

83 #define ACPI_NS_ROOT_PATH "\\"
81 #define ACPI_NS_SYSTEM_BUS "_SB_"

85 #endif /* __ACNAMES_H__ */

new/usr/src/common/acpica/include/acnamesp.h 1

**
 13368 Thu Dec 26 13:49:51 2013
new/usr/src/common/acpica/include/acnamesp.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acnamesp.h - Namespace subcomponent prototypes and defines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACNAMESP_H__
45 #define __ACNAMESP_H__

48 /* To search the entire name space, pass this as SearchBase */

50 #define ACPI_NS_ALL ((ACPI_HANDLE)0)

52 /*
53 * Elements of AcpiNsProperties are bit significant
54 * and should be one-to-one with values of ACPI_OBJECT_TYPE
55 */
56 #define ACPI_NS_NORMAL 0
57 #define ACPI_NS_NEWSCOPE 1 /* a definition of this type opens a nam
58 #define ACPI_NS_LOCAL 2 /* suppress search of enclosing scopes *

new/usr/src/common/acpica/include/acnamesp.h 2

60 /* Flags for AcpiNsLookup, AcpiNsSearchAndEnter */

62 #define ACPI_NS_NO_UPSEARCH 0
63 #define ACPI_NS_SEARCH_PARENT 0x01
64 #define ACPI_NS_DONT_OPEN_SCOPE 0x02
65 #define ACPI_NS_NO_PEER_SEARCH 0x04
66 #define ACPI_NS_ERROR_IF_FOUND 0x08
67 #define ACPI_NS_PREFIX_IS_SCOPE 0x10
68 #define ACPI_NS_EXTERNAL 0x20
69 #define ACPI_NS_TEMPORARY 0x40

71 /* Flags for AcpiNsWalkNamespace */

73 #define ACPI_NS_WALK_NO_UNLOCK 0
74 #define ACPI_NS_WALK_UNLOCK 0x01
75 #define ACPI_NS_WALK_TEMP_NODES 0x02

77 /* Object is not a package element */

79 #define ACPI_NOT_PACKAGE_ELEMENT ACPI_UINT32_MAX

81 /* Always emit warning message, not dependent on node flags */

83 #define ACPI_WARN_ALWAYS 0

86 /*
87 * nsinit - Namespace initialization
88 */
89 ACPI_STATUS
90 AcpiNsInitializeObjects (
91 void);

93 ACPI_STATUS
94 AcpiNsInitializeDevices (
95 void);

98 /*
99 * nsload - Namespace loading
100 */
101 ACPI_STATUS
102 AcpiNsLoadNamespace (
103 void);

105 ACPI_STATUS
106 AcpiNsLoadTable (
107 UINT32 TableIndex,
108 ACPI_NAMESPACE_NODE *Node);

111 /*
112 * nswalk - walk the namespace
113 */
114 ACPI_STATUS
115 AcpiNsWalkNamespace (
116 ACPI_OBJECT_TYPE Type,
117 ACPI_HANDLE StartObject,
118 UINT32 MaxDepth,
119 UINT32 Flags,
120 ACPI_WALK_CALLBACK DescendingCallback,
121 ACPI_WALK_CALLBACK AscendingCallback,
120 ACPI_WALK_CALLBACK PreOrderVisit,
121 ACPI_WALK_CALLBACK PostOrderVisit,
122 void *Context,
123 void **ReturnValue);

new/usr/src/common/acpica/include/acnamesp.h 3

125 ACPI_NAMESPACE_NODE *
126 AcpiNsGetNextNode (
127 ACPI_NAMESPACE_NODE *Parent,
128 ACPI_NAMESPACE_NODE *Child);

130 ACPI_NAMESPACE_NODE *
131 AcpiNsGetNextNodeTyped (
132 ACPI_OBJECT_TYPE Type,
133 ACPI_NAMESPACE_NODE *Parent,
134 ACPI_NAMESPACE_NODE *Child);

136 /*
137 * nsparse - table parsing
138 */
139 ACPI_STATUS
140 AcpiNsParseTable (
141 UINT32 TableIndex,
142 ACPI_NAMESPACE_NODE *StartNode);

144 ACPI_STATUS
145 AcpiNsOneCompleteParse (
146 UINT32 PassNumber,
147 UINT32 TableIndex,
148 ACPI_NAMESPACE_NODE *StartNode);

151 /*
152 * nsaccess - Top-level namespace access
153 */
154 ACPI_STATUS
155 AcpiNsRootInitialize (
156 void);

158 ACPI_STATUS
159 AcpiNsLookup (
160 ACPI_GENERIC_STATE *ScopeInfo,
161 char *Name,
162 ACPI_OBJECT_TYPE Type,
163 ACPI_INTERPRETER_MODE InterpreterMode,
164 UINT32 Flags,
165 ACPI_WALK_STATE *WalkState,
166 ACPI_NAMESPACE_NODE **RetNode);

169 /*
170 * nsalloc - Named object allocation/deallocation
171 */
172 ACPI_NAMESPACE_NODE *
173 AcpiNsCreateNode (
174 UINT32 Name);

176 void
177 AcpiNsDeleteNode (
178 ACPI_NAMESPACE_NODE *Node);

180 void
181 AcpiNsRemoveNode (
182 ACPI_NAMESPACE_NODE *Node);

184 void
185 AcpiNsDeleteNamespaceSubtree (
186 ACPI_NAMESPACE_NODE *ParentHandle);

188 void
189 AcpiNsDeleteNamespaceByOwner (

new/usr/src/common/acpica/include/acnamesp.h 4

190 ACPI_OWNER_ID OwnerId);

192 void
193 AcpiNsDetachObject (
194 ACPI_NAMESPACE_NODE *Node);

196 void
197 AcpiNsDeleteChildren (
198 ACPI_NAMESPACE_NODE *Parent);

200 int
201 AcpiNsCompareNames (
202 char *Name1,
203 char *Name2);

206 /*
207 * nsconvert - Dynamic object conversion routines
208 */
209 ACPI_STATUS
210 AcpiNsConvertToInteger (
211 ACPI_OPERAND_OBJECT *OriginalObject,
212 ACPI_OPERAND_OBJECT **ReturnObject);

214 ACPI_STATUS
215 AcpiNsConvertToString (
216 ACPI_OPERAND_OBJECT *OriginalObject,
217 ACPI_OPERAND_OBJECT **ReturnObject);

219 ACPI_STATUS
220 AcpiNsConvertToBuffer (
221 ACPI_OPERAND_OBJECT *OriginalObject,
222 ACPI_OPERAND_OBJECT **ReturnObject);

224 ACPI_STATUS
225 AcpiNsConvertToUnicode (
226 ACPI_OPERAND_OBJECT *OriginalObject,
227 ACPI_OPERAND_OBJECT **ReturnObject);

229 ACPI_STATUS
230 AcpiNsConvertToResource (
231 ACPI_OPERAND_OBJECT *OriginalObject,
232 ACPI_OPERAND_OBJECT **ReturnObject);

235 /*
236 * nsdump - Namespace dump/print utilities
237 */
238 void
239 AcpiNsDumpTables (
240 ACPI_HANDLE SearchBase,
241 UINT32 MaxDepth);

243 void
244 AcpiNsDumpEntry (
245 ACPI_HANDLE Handle,
246 UINT32 DebugLevel);

248 void
249 AcpiNsDumpPathname (
250 ACPI_HANDLE Handle,
251 char *Msg,
252 UINT32 Level,
253 UINT32 Component);

255 void

new/usr/src/common/acpica/include/acnamesp.h 5

256 AcpiNsPrintPathname (
257 UINT32 NumSegments,
258 char *Pathname);

260 ACPI_STATUS
261 AcpiNsDumpOneObject (
262 ACPI_HANDLE ObjHandle,
263 UINT32 Level,
264 void *Context,
265 void **ReturnValue);

267 void
268 AcpiNsDumpObjects (
269 ACPI_OBJECT_TYPE Type,
270 UINT8 DisplayType,
271 UINT32 MaxDepth,
272 ACPI_OWNER_ID OwnerId,
273 ACPI_HANDLE StartHandle);

275 void
276 AcpiNsDumpObjectPaths (
277 ACPI_OBJECT_TYPE Type,
278 UINT8 DisplayType,
279 UINT32 MaxDepth,
280 ACPI_OWNER_ID OwnerId,
281 ACPI_HANDLE StartHandle);

284 /*
285 * nseval - Namespace evaluation functions
286 */
287 ACPI_STATUS
288 AcpiNsEvaluate (
289 ACPI_EVALUATE_INFO *Info);

291 void
292 AcpiNsExecModuleCodeList (
293 void);

296 /*
297 * nsarguments - Argument count/type checking for predefined/reserved names
260 * nspredef - Support for predefined/reserved names
298 */
299 void
300 AcpiNsCheckArgumentCount (
301 char *Pathname,
262 ACPI_STATUS
263 AcpiNsCheckPredefinedNames (
302 ACPI_NAMESPACE_NODE *Node,
303 UINT32 UserParamCount,
304 const ACPI_PREDEFINED_INFO *Info);
266 ACPI_STATUS ReturnStatus,
267 ACPI_OPERAND_OBJECT **ReturnObject);

269 const ACPI_PREDEFINED_INFO *
270 AcpiNsCheckForPredefinedName (
271 ACPI_NAMESPACE_NODE *Node);

306 void
307 AcpiNsCheckAcpiCompliance (
274 AcpiNsCheckParameterCount (
308 char *Pathname,
309 ACPI_NAMESPACE_NODE *Node,
310 const ACPI_PREDEFINED_INFO *Predefined);

new/usr/src/common/acpica/include/acnamesp.h 6

312 void
313 AcpiNsCheckArgumentTypes (
314 ACPI_EVALUATE_INFO *Info);

317 /*
318 * nspredef - Return value checking for predefined/reserved names
319 */
320 ACPI_STATUS
321 AcpiNsCheckReturnValue (
322 ACPI_NAMESPACE_NODE *Node,
323 ACPI_EVALUATE_INFO *Info,
324 UINT32 UserParamCount,
325 ACPI_STATUS ReturnStatus,
326 ACPI_OPERAND_OBJECT **ReturnObject);
278 const ACPI_PREDEFINED_INFO *Info);

328 ACPI_STATUS
329 AcpiNsCheckObjectType (
330 ACPI_EVALUATE_INFO *Info,
331 ACPI_OPERAND_OBJECT **ReturnObjectPtr,
332 UINT32 ExpectedBtypes,
333 UINT32 PackageIndex);

336 /*
337 * nsprepkg - Validation of predefined name packages
338 */
339 ACPI_STATUS
340 AcpiNsCheckPackage (
341 ACPI_EVALUATE_INFO *Info,
342 ACPI_OPERAND_OBJECT **ReturnObjectPtr);

345 /*
346 * nsnames - Name and Scope manipulation
347 */
348 UINT32
349 AcpiNsOpensScope (
350 ACPI_OBJECT_TYPE Type);

352 ACPI_STATUS
353 AcpiNsBuildExternalPath (
354 ACPI_NAMESPACE_NODE *Node,
355 ACPI_SIZE Size,
356 char *NameBuffer);

358 char *
359 AcpiNsGetExternalPathname (
360 ACPI_NAMESPACE_NODE *Node);

362 char *
363 AcpiNsNameOfCurrentScope (
364 ACPI_WALK_STATE *WalkState);

366 ACPI_STATUS
367 AcpiNsHandleToPathname (
368 ACPI_HANDLE TargetHandle,
369 ACPI_BUFFER *Buffer);

371 BOOLEAN
372 AcpiNsPatternMatch (
373 ACPI_NAMESPACE_NODE *ObjNode,
374 char *SearchFor);

376 ACPI_STATUS

new/usr/src/common/acpica/include/acnamesp.h 7

377 AcpiNsGetNode (
378 ACPI_NAMESPACE_NODE *PrefixNode,
379 const char *ExternalPathname,
380 UINT32 Flags,
381 ACPI_NAMESPACE_NODE **OutNode);

383 ACPI_SIZE
384 AcpiNsGetPathnameLength (
385 ACPI_NAMESPACE_NODE *Node);

388 /*
389 * nsobject - Object management for namespace nodes
390 */
391 ACPI_STATUS
392 AcpiNsAttachObject (
393 ACPI_NAMESPACE_NODE *Node,
394 ACPI_OPERAND_OBJECT *Object,
395 ACPI_OBJECT_TYPE Type);

397 ACPI_OPERAND_OBJECT *
398 AcpiNsGetAttachedObject (
399 ACPI_NAMESPACE_NODE *Node);

401 ACPI_OPERAND_OBJECT *
402 AcpiNsGetSecondaryObject (
403 ACPI_OPERAND_OBJECT *ObjDesc);

405 ACPI_STATUS
406 AcpiNsAttachData (
407 ACPI_NAMESPACE_NODE *Node,
408 ACPI_OBJECT_HANDLER Handler,
409 void *Data);

411 ACPI_STATUS
412 AcpiNsDetachData (
413 ACPI_NAMESPACE_NODE *Node,
414 ACPI_OBJECT_HANDLER Handler);

416 ACPI_STATUS
417 AcpiNsGetAttachedData (
418 ACPI_NAMESPACE_NODE *Node,
419 ACPI_OBJECT_HANDLER Handler,
420 void **Data);

423 /*
424 * nsrepair - General return object repair for all
425 * predefined methods/objects
426 */
427 ACPI_STATUS
428 AcpiNsSimpleRepair (
429 ACPI_EVALUATE_INFO *Info,
364 AcpiNsRepairObject (
365 ACPI_PREDEFINED_DATA *Data,
430 UINT32 ExpectedBtypes,
431 UINT32 PackageIndex,
432 ACPI_OPERAND_OBJECT **ReturnObjectPtr);

434 ACPI_STATUS
435 AcpiNsWrapWithPackage (
436 ACPI_EVALUATE_INFO *Info,
437 ACPI_OPERAND_OBJECT *OriginalObject,
371 AcpiNsRepairPackageList (
372 ACPI_PREDEFINED_DATA *Data,
438 ACPI_OPERAND_OBJECT **ObjDescPtr);

new/usr/src/common/acpica/include/acnamesp.h 8

440 ACPI_STATUS
441 AcpiNsRepairNullElement (
442 ACPI_EVALUATE_INFO *Info,
377 ACPI_PREDEFINED_DATA *Data,
443 UINT32 ExpectedBtypes,
444 UINT32 PackageIndex,
445 ACPI_OPERAND_OBJECT **ReturnObjectPtr);

447 void
448 AcpiNsRemoveNullElements (
449 ACPI_EVALUATE_INFO *Info,
384 ACPI_PREDEFINED_DATA *Data,
450 UINT8 PackageType,
451 ACPI_OPERAND_OBJECT *ObjDesc);

454 /*
455 * nsrepair2 - Return object repair for specific
456 * predefined methods/objects
457 */
458 ACPI_STATUS
459 AcpiNsComplexRepairs (
460 ACPI_EVALUATE_INFO *Info,
395 ACPI_PREDEFINED_DATA *Data,
461 ACPI_NAMESPACE_NODE *Node,
462 ACPI_STATUS ValidateStatus,
463 ACPI_OPERAND_OBJECT **ReturnObjectPtr);

466 /*
467 * nssearch - Namespace searching and entry
468 */
469 ACPI_STATUS
470 AcpiNsSearchAndEnter (
471 UINT32 EntryName,
472 ACPI_WALK_STATE *WalkState,
473 ACPI_NAMESPACE_NODE *Node,
474 ACPI_INTERPRETER_MODE InterpreterMode,
475 ACPI_OBJECT_TYPE Type,
476 UINT32 Flags,
477 ACPI_NAMESPACE_NODE **RetNode);

479 ACPI_STATUS
480 AcpiNsSearchOneScope (
481 UINT32 EntryName,
482 ACPI_NAMESPACE_NODE *Node,
483 ACPI_OBJECT_TYPE Type,
484 ACPI_NAMESPACE_NODE **RetNode);

486 void
487 AcpiNsInstallNode (
488 ACPI_WALK_STATE *WalkState,
489 ACPI_NAMESPACE_NODE *ParentNode,
490 ACPI_NAMESPACE_NODE *Node,
491 ACPI_OBJECT_TYPE Type);

494 /*
495 * nsutils - Utility functions
496 */
432 BOOLEAN
433 AcpiNsValidRootPrefix (
434 char Prefix);

497 ACPI_OBJECT_TYPE

new/usr/src/common/acpica/include/acnamesp.h 9

498 AcpiNsGetType (
499 ACPI_NAMESPACE_NODE *Node);

501 UINT32
502 AcpiNsLocal (
503 ACPI_OBJECT_TYPE Type);

505 void
506 AcpiNsPrintNodePathname (
507 ACPI_NAMESPACE_NODE *Node,
508 const char *Msg);

510 ACPI_STATUS
511 AcpiNsBuildInternalName (
512 ACPI_NAMESTRING_INFO *Info);

514 void
515 AcpiNsGetInternalNameLength (
516 ACPI_NAMESTRING_INFO *Info);

518 ACPI_STATUS
519 AcpiNsInternalizeName (
520 const char *DottedName,
521 char **ConvertedName);

523 ACPI_STATUS
524 AcpiNsExternalizeName (
525 UINT32 InternalNameLength,
526 const char *InternalName,
527 UINT32 *ConvertedNameLength,
528 char **ConvertedName);

530 ACPI_NAMESPACE_NODE *
531 AcpiNsValidateHandle (
532 ACPI_HANDLE Handle);

534 void
535 AcpiNsTerminate (
536 void);

538 #endif /* __ACNAMESP_H__ */

new/usr/src/common/acpica/include/acobject.h 1

**
 21194 Thu Dec 26 13:49:51 2013
new/usr/src/common/acpica/include/acobject.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acobject.h - Definition of ACPI_OPERAND_OBJECT (Internal object only)
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef _ACOBJECT_H
45 #define _ACOBJECT_H

47 /* acpisrc:StructDefs -- for acpisrc conversion */

50 /*
51 * The ACPI_OPERAND_OBJECT is used to pass AML operands from the dispatcher
52 * to the interpreter, and to keep track of the various handlers such as
53 * address space handlers and notify handlers. The object is a constant
54 * size in order to allow it to be cached and reused.
55 *
56 * Note: The object is optimized to be aligned and will not work if it is
57 * byte-packed.
58 */

new/usr/src/common/acpica/include/acobject.h 2

59 #if ACPI_MACHINE_WIDTH == 64
60 #pragma pack(8)
61 #else
62 #pragma pack(4)
63 #endif

65 /***
66 *
67 * Common Descriptors
68 *
69 **/

71 /*
72 * Common area for all objects.
73 *
74 * DescriptorType is used to differentiate between internal descriptors, and
75 * must be in the same place across all descriptors
76 *
77 * Note: The DescriptorType and Type fields must appear in the identical
78 * position in both the ACPI_NAMESPACE_NODE and ACPI_OPERAND_OBJECT
79 * structures.
80 */
81 #define ACPI_OBJECT_COMMON_HEADER \
82 union acpi_operand_object *NextObject; /* Objects linked to par
83 UINT8 DescriptorType; /* To differentiate vari
84 UINT8 Type; /* ACPI_OBJECT_TYPE */\
85 UINT16 ReferenceCount; /* For object deletion m
86 UINT8 Flags;
87 /*
88 * Note: There are 3 bytes available here before the
89 * next natural alignment boundary (for both 32/64 cases)
90 */

92 /* Values for Flag byte above */

94 #define AOPOBJ_AML_CONSTANT 0x01 /* Integer is an AML constant */
95 #define AOPOBJ_STATIC_POINTER 0x02 /* Data is part of an ACPI table, do
96 #define AOPOBJ_DATA_VALID 0x04 /* Object is initialized and data is
97 #define AOPOBJ_DATA_VALID 0x04 /* Object is intialized and data is
97 #define AOPOBJ_OBJECT_INITIALIZED 0x08 /* Region is initialized, _REG was r
98 #define AOPOBJ_SETUP_COMPLETE 0x10 /* Region setup is complete */
99 #define AOPOBJ_INVALID 0x20 /* Host OS won’t allow a Region addr

102 /**
103 *
104 * Basic data types
105 *
106 ***/

108 typedef struct acpi_object_common
109 {
110 ACPI_OBJECT_COMMON_HEADER

112 } ACPI_OBJECT_COMMON;
______unchanged_portion_omitted_

124 /*
125 * Note: The String and Buffer object must be identical through the
126 * pointer and length elements. There is code that depends on this.
126 * Note: The String and Buffer object must be identical through the Pointer
127 * and length elements. There is code that depends on this.
127 *
128 * Fields common to both Strings and Buffers
129 */

new/usr/src/common/acpica/include/acobject.h 3

130 #define ACPI_COMMON_BUFFER_INFO(_Type) \
131 _Type *Pointer; \
132 UINT32 Length;

135 typedef struct acpi_object_string /* Null terminated, ASCII characters only */
136 {
137 ACPI_OBJECT_COMMON_HEADER
138 ACPI_COMMON_BUFFER_INFO (char) /* String in AML stream

140 } ACPI_OBJECT_STRING;
______unchanged_portion_omitted_

229 /* Flags for InfoFlags field above */

231 #define ACPI_METHOD_MODULE_LEVEL 0x01 /* Method is actually module-lev
232 #define ACPI_METHOD_INTERNAL_ONLY 0x02 /* Method is implemented interna
233 #define ACPI_METHOD_SERIALIZED 0x04 /* Method is serialized */
234 #define ACPI_METHOD_SERIALIZED_PENDING 0x08 /* Method is to be marked serial
235 #define ACPI_METHOD_MODIFIED_NAMESPACE 0x10 /* Method modified the namespace

238 /**
239 *
240 * Objects that can be notified. All share a common NotifyInfo area.
241 *
242 ***/

244 /*
245 * Common fields for objects that support ASL notifications
246 */
247 #define ACPI_COMMON_NOTIFY_INFO \
248 union acpi_operand_object *NotifyList[2]; /* Handlers for system/d
249 union acpi_operand_object *SystemNotify; /* Handler for system no
250 union acpi_operand_object *DeviceNotify; /* Handler for driver no
249 union acpi_operand_object *Handler; /* Handler for Address s

252 typedef struct acpi_object_notify_common /* COMMON NOTIFY for POWER, PROCESSO
253 {
254 ACPI_OBJECT_COMMON_HEADER
255 ACPI_COMMON_NOTIFY_INFO

257 } ACPI_OBJECT_NOTIFY_COMMON;
______unchanged_portion_omitted_

301 /**
302 *
303 * Fields. All share a common header/info field.
304 *
305 ***/

307 /*
308 * Common bitfield for the field objects
309 * "Field Datum" -- a datum from the actual field object
310 * "Buffer Datum" -- a datum from a user buffer, read from or to be written to t
311 */
312 #define ACPI_COMMON_FIELD_INFO \
313 UINT8 FieldFlags; /* Access, update, and l
314 UINT8 Attribute; /* From AccessAs keyword
315 UINT8 AccessByteWidth; /* Read/Write size in by
316 ACPI_NAMESPACE_NODE *Node; /* Link back to parent n
317 UINT32 BitLength; /* Length of field in bi
318 UINT32 BaseByteOffset; /* Byte offset within co
319 UINT32 Value; /* Value to store into t

new/usr/src/common/acpica/include/acobject.h 4

320 UINT8 StartFieldBitOffset;/* Bit offset within fir
321 UINT8 AccessLength; /* For serial regions/fi

324 typedef struct acpi_object_field_common /* COMMON FIELD (for BUF
325 {
326 ACPI_OBJECT_COMMON_HEADER
327 ACPI_COMMON_FIELD_INFO
328 union acpi_operand_object *RegionObj; /* Parent Operation Regi

330 } ACPI_OBJECT_FIELD_COMMON;

333 typedef struct acpi_object_region_field
334 {
335 ACPI_OBJECT_COMMON_HEADER
336 ACPI_COMMON_FIELD_INFO
337 UINT16 ResourceLength;
338 union acpi_operand_object *RegionObj; /* Containing OpRegion o
339 UINT8 *ResourceBuffer; /* ResourceTemplate for

341 } ACPI_OBJECT_REGION_FIELD;
______unchanged_portion_omitted_

380 /**
381 *
382 * Objects for handlers
383 *
384 ***/

386 typedef struct acpi_object_notify_handler
387 {
388 ACPI_OBJECT_COMMON_HEADER
389 ACPI_NAMESPACE_NODE *Node; /* Parent device */
390 UINT32 HandlerType; /* Type: Device/System/B
391 ACPI_NOTIFY_HANDLER Handler; /* Handler address */
389 ACPI_NOTIFY_HANDLER Handler;
392 void *Context;
393 union acpi_operand_object *Next[2]; /* Device and System han

395 } ACPI_OBJECT_NOTIFY_HANDLER;

398 typedef struct acpi_object_addr_handler
399 {
400 ACPI_OBJECT_COMMON_HEADER
401 UINT8 SpaceId;
402 UINT8 HandlerFlags;
403 ACPI_ADR_SPACE_HANDLER Handler;
404 ACPI_NAMESPACE_NODE *Node; /* Parent device */
405 void *Context;
406 ACPI_ADR_SPACE_SETUP Setup;
407 union acpi_operand_object *RegionList; /* Regions using this ha
404 union acpi_operand_object *RegionList; /* regions using this ha
408 union acpi_operand_object *Next;

410 } ACPI_OBJECT_ADDR_HANDLER;
______unchanged_portion_omitted_

458 /*
459 * Extra object is used as additional storage for types that
460 * have AML code in their declarations (TermArgs) that must be
461 * evaluated at run time.
462 *

new/usr/src/common/acpica/include/acobject.h 5

463 * Currently: Region and FieldUnit types
464 */
465 typedef struct acpi_object_extra
466 {
467 ACPI_OBJECT_COMMON_HEADER
468 ACPI_NAMESPACE_NODE *Method_REG; /* _REG method for this
469 ACPI_NAMESPACE_NODE *ScopeNode;
470 void *RegionContext; /* Region-specific data
471 UINT8 *AmlStart;
472 UINT32 AmlLength;

474 } ACPI_OBJECT_EXTRA;
______unchanged_portion_omitted_

new/usr/src/common/acpica/include/acopcode.h 1

**
 22618 Thu Dec 26 13:49:52 2013
new/usr/src/common/acpica/include/acopcode.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acopcode.h - AML opcode information for the AML parser and interpreter
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACOPCODE_H__
45 #define __ACOPCODE_H__

47 #define MAX_EXTENDED_OPCODE 0x88
48 #define NUM_EXTENDED_OPCODE (MAX_EXTENDED_OPCODE + 1)
49 #define MAX_INTERNAL_OPCODE
50 #define NUM_INTERNAL_OPCODE (MAX_INTERNAL_OPCODE + 1)

52 /* Used for non-assigned opcodes */

54 #define _UNK 0x6B

56 /*
57 * Reserved ASCII characters. Do not use any of these for
58 * internal opcodes, since they are used to differentiate
59 * name strings from AML opcodes

new/usr/src/common/acpica/include/acopcode.h 2

60 */
61 #define _ASC 0x6C
62 #define _NAM 0x6C
63 #define _PFX 0x6D

66 /*
67 * All AML opcodes and the parse-time arguments for each. Used by the AML
68 * parser Each list is compressed into a 32-bit number and stored in the
69 * master opcode table (in psopcode.c).
70 */
71 #define ARGP_ACCESSFIELD_OP ARGP_LIST1 (ARGP_NAMESTRING)
72 #define ARGP_ACQUIRE_OP ARGP_LIST2 (ARGP_SUPERNAME, ARGP_WORDDA
73 #define ARGP_ADD_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
74 #define ARGP_ALIAS_OP ARGP_LIST2 (ARGP_NAMESTRING, ARGP_NAME)
75 #define ARGP_ARG0 ARG_NONE
76 #define ARGP_ARG1 ARG_NONE
77 #define ARGP_ARG2 ARG_NONE
78 #define ARGP_ARG3 ARG_NONE
79 #define ARGP_ARG4 ARG_NONE
80 #define ARGP_ARG5 ARG_NONE
81 #define ARGP_ARG6 ARG_NONE
82 #define ARGP_BANK_FIELD_OP ARGP_LIST6 (ARGP_PKGLENGTH, ARGP_NAMEST
83 #define ARGP_BIT_AND_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
84 #define ARGP_BIT_NAND_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
85 #define ARGP_BIT_NOR_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
86 #define ARGP_BIT_NOT_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET
87 #define ARGP_BIT_OR_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
88 #define ARGP_BIT_XOR_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
89 #define ARGP_BREAK_OP ARG_NONE
90 #define ARGP_BREAK_POINT_OP ARG_NONE
91 #define ARGP_BUFFER_OP ARGP_LIST3 (ARGP_PKGLENGTH, ARGP_TERMAR
92 #define ARGP_BYTE_OP ARGP_LIST1 (ARGP_BYTEDATA)
93 #define ARGP_BYTELIST_OP ARGP_LIST1 (ARGP_NAMESTRING)
94 #define ARGP_CONCAT_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
95 #define ARGP_CONCAT_RES_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
96 #define ARGP_COND_REF_OF_OP ARGP_LIST2 (ARGP_SUPERNAME, ARGP_SUPERN
97 #define ARGP_CONNECTFIELD_OP ARGP_LIST1 (ARGP_NAMESTRING)
98 #define ARGP_CONTINUE_OP ARG_NONE
99 #define ARGP_COPY_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_SIMPLE
100 #define ARGP_CREATE_BIT_FIELD_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
101 #define ARGP_CREATE_BYTE_FIELD_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
102 #define ARGP_CREATE_DWORD_FIELD_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
103 #define ARGP_CREATE_FIELD_OP ARGP_LIST4 (ARGP_TERMARG, ARGP_TERMAR
104 #define ARGP_CREATE_QWORD_FIELD_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
105 #define ARGP_CREATE_WORD_FIELD_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
106 #define ARGP_DATA_REGION_OP ARGP_LIST4 (ARGP_NAME, ARGP_TERMAR
107 #define ARGP_DEBUG_OP ARG_NONE
108 #define ARGP_DECREMENT_OP ARGP_LIST1 (ARGP_SUPERNAME)
109 #define ARGP_DEREF_OF_OP ARGP_LIST1 (ARGP_TERMARG)
110 #define ARGP_DEVICE_OP ARGP_LIST3 (ARGP_PKGLENGTH, ARGP_NAME,
111 #define ARGP_DIVIDE_OP ARGP_LIST4 (ARGP_TERMARG, ARGP_TERMAR
112 #define ARGP_DWORD_OP ARGP_LIST1 (ARGP_DWORDDATA)
113 #define ARGP_ELSE_OP ARGP_LIST2 (ARGP_PKGLENGTH, ARGP_TERMLI
114 #define ARGP_EVENT_OP ARGP_LIST1 (ARGP_NAME)
115 #define ARGP_FATAL_OP ARGP_LIST3 (ARGP_BYTEDATA, ARGP_DWORDD
116 #define ARGP_FIELD_OP ARGP_LIST4 (ARGP_PKGLENGTH, ARGP_NAMEST
117 #define ARGP_FIND_SET_LEFT_BIT_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET
118 #define ARGP_FIND_SET_RIGHT_BIT_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET
119 #define ARGP_FROM_BCD_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET
120 #define ARGP_IF_OP ARGP_LIST3 (ARGP_PKGLENGTH, ARGP_TERMAR
121 #define ARGP_INCREMENT_OP ARGP_LIST1 (ARGP_SUPERNAME)
122 #define ARGP_INDEX_FIELD_OP ARGP_LIST5 (ARGP_PKGLENGTH, ARGP_NAMEST
123 #define ARGP_INDEX_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
124 #define ARGP_LAND_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TERMAR
125 #define ARGP_LEQUAL_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TERMAR

new/usr/src/common/acpica/include/acopcode.h 3

126 #define ARGP_LGREATER_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TERMAR
127 #define ARGP_LGREATEREQUAL_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TERMAR
128 #define ARGP_LLESS_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TERMAR
129 #define ARGP_LLESSEQUAL_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TERMAR
130 #define ARGP_LNOT_OP ARGP_LIST1 (ARGP_TERMARG)
131 #define ARGP_LNOTEQUAL_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TERMAR
132 #define ARGP_LOAD_OP ARGP_LIST2 (ARGP_NAMESTRING, ARGP_SUPERN
133 #define ARGP_LOAD_TABLE_OP ARGP_LIST6 (ARGP_TERMARG, ARGP_TERMAR
134 #define ARGP_LOCAL0 ARG_NONE
135 #define ARGP_LOCAL1 ARG_NONE
136 #define ARGP_LOCAL2 ARG_NONE
137 #define ARGP_LOCAL3 ARG_NONE
138 #define ARGP_LOCAL4 ARG_NONE
139 #define ARGP_LOCAL5 ARG_NONE
140 #define ARGP_LOCAL6 ARG_NONE
141 #define ARGP_LOCAL7 ARG_NONE
142 #define ARGP_LOR_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TERMAR
143 #define ARGP_MATCH_OP ARGP_LIST6 (ARGP_TERMARG, ARGP_BYTEDA
144 #define ARGP_METHOD_OP ARGP_LIST4 (ARGP_PKGLENGTH, ARGP_NAME,
145 #define ARGP_METHODCALL_OP ARGP_LIST1 (ARGP_NAMESTRING)
146 #define ARGP_MID_OP ARGP_LIST4 (ARGP_TERMARG, ARGP_TERMAR
147 #define ARGP_MOD_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
148 #define ARGP_MULTIPLY_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
149 #define ARGP_MUTEX_OP ARGP_LIST2 (ARGP_NAME, ARGP_BYTEDA
150 #define ARGP_NAME_OP ARGP_LIST2 (ARGP_NAME, ARGP_DATAOB
151 #define ARGP_NAMEDFIELD_OP ARGP_LIST1 (ARGP_NAMESTRING)
152 #define ARGP_NAMEPATH_OP ARGP_LIST1 (ARGP_NAMESTRING)
153 #define ARGP_NOOP_OP ARG_NONE
154 #define ARGP_NOTIFY_OP ARGP_LIST2 (ARGP_SUPERNAME, ARGP_TERMAR
155 #define ARGP_ONE_OP ARG_NONE
156 #define ARGP_ONES_OP ARG_NONE
157 #define ARGP_PACKAGE_OP ARGP_LIST3 (ARGP_PKGLENGTH, ARGP_BYTEDA
158 #define ARGP_POWER_RES_OP ARGP_LIST5 (ARGP_PKGLENGTH, ARGP_NAME,
159 #define ARGP_PROCESSOR_OP ARGP_LIST6 (ARGP_PKGLENGTH, ARGP_NAME,
160 #define ARGP_QWORD_OP ARGP_LIST1 (ARGP_QWORDDATA)
161 #define ARGP_REF_OF_OP ARGP_LIST1 (ARGP_SUPERNAME)
162 #define ARGP_REGION_OP ARGP_LIST4 (ARGP_NAME, ARGP_BYTEDA
163 #define ARGP_RELEASE_OP ARGP_LIST1 (ARGP_SUPERNAME)
164 #define ARGP_RESERVEDFIELD_OP ARGP_LIST1 (ARGP_NAMESTRING)
165 #define ARGP_RESET_OP ARGP_LIST1 (ARGP_SUPERNAME)
166 #define ARGP_RETURN_OP ARGP_LIST1 (ARGP_TERMARG)
167 #define ARGP_REVISION_OP ARG_NONE
168 #define ARGP_SCOPE_OP ARGP_LIST3 (ARGP_PKGLENGTH, ARGP_NAME,
169 #define ARGP_SERIALFIELD_OP ARGP_LIST1 (ARGP_NAMESTRING)
170 #define ARGP_SHIFT_LEFT_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
171 #define ARGP_SHIFT_RIGHT_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
172 #define ARGP_SIGNAL_OP ARGP_LIST1 (ARGP_SUPERNAME)
173 #define ARGP_SIZE_OF_OP ARGP_LIST1 (ARGP_SUPERNAME)
174 #define ARGP_SLEEP_OP ARGP_LIST1 (ARGP_TERMARG)
175 #define ARGP_STALL_OP ARGP_LIST1 (ARGP_TERMARG)
176 #define ARGP_STATICSTRING_OP ARGP_LIST1 (ARGP_NAMESTRING)
177 #define ARGP_STORE_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_SUPERN
178 #define ARGP_STRING_OP ARGP_LIST1 (ARGP_CHARLIST)
179 #define ARGP_SUBTRACT_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
180 #define ARGP_THERMAL_ZONE_OP ARGP_LIST3 (ARGP_PKGLENGTH, ARGP_NAME,
181 #define ARGP_TIMER_OP ARG_NONE
182 #define ARGP_TO_BCD_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET
183 #define ARGP_TO_BUFFER_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET
184 #define ARGP_TO_DEC_STR_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET
185 #define ARGP_TO_HEX_STR_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET
186 #define ARGP_TO_INTEGER_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET
187 #define ARGP_TO_STRING_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMAR
188 #define ARGP_TYPE_OP ARGP_LIST1 (ARGP_SUPERNAME)
189 #define ARGP_UNLOAD_OP ARGP_LIST1 (ARGP_SUPERNAME)
190 #define ARGP_VAR_PACKAGE_OP ARGP_LIST3 (ARGP_PKGLENGTH, ARGP_TERMAR
191 #define ARGP_WAIT_OP ARGP_LIST2 (ARGP_SUPERNAME, ARGP_TERMAR

new/usr/src/common/acpica/include/acopcode.h 4

192 #define ARGP_WHILE_OP ARGP_LIST3 (ARGP_PKGLENGTH, ARGP_TERMAR
193 #define ARGP_WORD_OP ARGP_LIST1 (ARGP_WORDDATA)
194 #define ARGP_ZERO_OP ARG_NONE

197 /*
198 * All AML opcodes and the runtime arguments for each. Used by the AML
199 * interpreter Each list is compressed into a 32-bit number and stored
200 * in the master opcode table (in psopcode.c).
201 *
202 * (Used by PrepOperands procedure and the ASL Compiler)
203 */
204 #define ARGI_ACCESSFIELD_OP ARGI_INVALID_OPCODE
205 #define ARGI_ACQUIRE_OP ARGI_LIST2 (ARGI_MUTEX, ARGI_INTEGE
206 #define ARGI_ADD_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGE
207 #define ARGI_ALIAS_OP ARGI_INVALID_OPCODE
208 #define ARGI_ARG0 ARG_NONE
209 #define ARGI_ARG1 ARG_NONE
210 #define ARGI_ARG2 ARG_NONE
211 #define ARGI_ARG3 ARG_NONE
212 #define ARGI_ARG4 ARG_NONE
213 #define ARGI_ARG5 ARG_NONE
214 #define ARGI_ARG6 ARG_NONE
215 #define ARGI_BANK_FIELD_OP ARGI_INVALID_OPCODE
216 #define ARGI_BIT_AND_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGE
217 #define ARGI_BIT_NAND_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGE
218 #define ARGI_BIT_NOR_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGE
219 #define ARGI_BIT_NOT_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_TARGET
220 #define ARGI_BIT_OR_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGE
221 #define ARGI_BIT_XOR_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGE
222 #define ARGI_BREAK_OP ARG_NONE
223 #define ARGI_BREAK_POINT_OP ARG_NONE
224 #define ARGI_BUFFER_OP ARGI_LIST1 (ARGI_INTEGER)
225 #define ARGI_BYTE_OP ARGI_INVALID_OPCODE
226 #define ARGI_BYTELIST_OP ARGI_INVALID_OPCODE
227 #define ARGI_CONCAT_OP ARGI_LIST3 (ARGI_COMPUTEDATA,ARGI_COMPUT
228 #define ARGI_CONCAT_RES_OP ARGI_LIST3 (ARGI_BUFFER, ARGI_BUFFER
229 #define ARGI_COND_REF_OF_OP ARGI_LIST2 (ARGI_OBJECT_REF, ARGI_TARGET
230 #define ARGI_CONNECTFIELD_OP ARGI_INVALID_OPCODE
231 #define ARGI_CONTINUE_OP ARGI_INVALID_OPCODE
232 #define ARGI_COPY_OP ARGI_LIST2 (ARGI_ANYTYPE, ARGI_SIMPLE
233 #define ARGI_CREATE_BIT_FIELD_OP ARGI_LIST3 (ARGI_BUFFER, ARGI_INTEGE
234 #define ARGI_CREATE_BYTE_FIELD_OP ARGI_LIST3 (ARGI_BUFFER, ARGI_INTEGE
235 #define ARGI_CREATE_DWORD_FIELD_OP ARGI_LIST3 (ARGI_BUFFER, ARGI_INTEGE
236 #define ARGI_CREATE_FIELD_OP ARGI_LIST4 (ARGI_BUFFER, ARGI_INTEGE
237 #define ARGI_CREATE_QWORD_FIELD_OP ARGI_LIST3 (ARGI_BUFFER, ARGI_INTEGE
238 #define ARGI_CREATE_WORD_FIELD_OP ARGI_LIST3 (ARGI_BUFFER, ARGI_INTEGE
239 #define ARGI_DATA_REGION_OP ARGI_LIST3 (ARGI_STRING, ARGI_STRING
240 #define ARGI_DEBUG_OP ARG_NONE
241 #define ARGI_DECREMENT_OP ARGI_LIST1 (ARGI_TARGETREF)
242 #define ARGI_DEREF_OF_OP ARGI_LIST1 (ARGI_REF_OR_STRING)
243 #define ARGI_DEVICE_OP ARGI_INVALID_OPCODE
244 #define ARGI_DIVIDE_OP ARGI_LIST4 (ARGI_INTEGER, ARGI_INTEGE
245 #define ARGI_DWORD_OP ARGI_INVALID_OPCODE
246 #define ARGI_ELSE_OP ARGI_INVALID_OPCODE
247 #define ARGI_EVENT_OP ARGI_INVALID_OPCODE
248 #define ARGI_FATAL_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGE
249 #define ARGI_FIELD_OP ARGI_INVALID_OPCODE
250 #define ARGI_FIND_SET_LEFT_BIT_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_TARGET
251 #define ARGI_FIND_SET_RIGHT_BIT_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_TARGET
252 #define ARGI_FROM_BCD_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_FIXED_
253 #define ARGI_IF_OP ARGI_INVALID_OPCODE
254 #define ARGI_INCREMENT_OP ARGI_LIST1 (ARGI_TARGETREF)
255 #define ARGI_INDEX_FIELD_OP ARGI_INVALID_OPCODE
256 #define ARGI_INDEX_OP ARGI_LIST3 (ARGI_COMPLEXOBJ, ARGI_INTEGE
257 #define ARGI_LAND_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_INTEGE

new/usr/src/common/acpica/include/acopcode.h 5

258 #define ARGI_LEQUAL_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_COMPUT
259 #define ARGI_LGREATER_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_COMPUT
260 #define ARGI_LGREATEREQUAL_OP ARGI_INVALID_OPCODE
261 #define ARGI_LLESS_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_COMPUT
262 #define ARGI_LLESSEQUAL_OP ARGI_INVALID_OPCODE
263 #define ARGI_LNOT_OP ARGI_LIST1 (ARGI_INTEGER)
264 #define ARGI_LNOTEQUAL_OP ARGI_INVALID_OPCODE
265 #define ARGI_LOAD_OP ARGI_LIST2 (ARGI_REGION_OR_BUFFER,ARGI_T
266 #define ARGI_LOAD_TABLE_OP ARGI_LIST6 (ARGI_STRING, ARGI_STRING
267 #define ARGI_LOCAL0 ARG_NONE
268 #define ARGI_LOCAL1 ARG_NONE
269 #define ARGI_LOCAL2 ARG_NONE
270 #define ARGI_LOCAL3 ARG_NONE
271 #define ARGI_LOCAL4 ARG_NONE
272 #define ARGI_LOCAL5 ARG_NONE
273 #define ARGI_LOCAL6 ARG_NONE
274 #define ARGI_LOCAL7 ARG_NONE
275 #define ARGI_LOR_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_INTEGE
276 #define ARGI_MATCH_OP ARGI_LIST6 (ARGI_PACKAGE, ARGI_INTEGE
277 #define ARGI_METHOD_OP ARGI_INVALID_OPCODE
278 #define ARGI_METHODCALL_OP ARGI_INVALID_OPCODE
279 #define ARGI_MID_OP ARGI_LIST4 (ARGI_BUFFER_OR_STRING,ARGI_I
280 #define ARGI_MOD_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGE
281 #define ARGI_MULTIPLY_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGE
282 #define ARGI_MUTEX_OP ARGI_INVALID_OPCODE
283 #define ARGI_NAME_OP ARGI_INVALID_OPCODE
284 #define ARGI_NAMEDFIELD_OP ARGI_INVALID_OPCODE
285 #define ARGI_NAMEPATH_OP ARGI_INVALID_OPCODE
286 #define ARGI_NOOP_OP ARG_NONE
287 #define ARGI_NOTIFY_OP ARGI_LIST2 (ARGI_DEVICE_REF, ARGI_INTEGE
288 #define ARGI_ONE_OP ARG_NONE
289 #define ARGI_ONES_OP ARG_NONE
290 #define ARGI_PACKAGE_OP ARGI_LIST1 (ARGI_INTEGER)
291 #define ARGI_POWER_RES_OP ARGI_INVALID_OPCODE
292 #define ARGI_PROCESSOR_OP ARGI_INVALID_OPCODE
293 #define ARGI_QWORD_OP ARGI_INVALID_OPCODE
294 #define ARGI_REF_OF_OP ARGI_LIST1 (ARGI_OBJECT_REF)
295 #define ARGI_REGION_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_INTEGE
296 #define ARGI_RELEASE_OP ARGI_LIST1 (ARGI_MUTEX)
297 #define ARGI_RESERVEDFIELD_OP ARGI_INVALID_OPCODE
298 #define ARGI_RESET_OP ARGI_LIST1 (ARGI_EVENT)
299 #define ARGI_RETURN_OP ARGI_INVALID_OPCODE
300 #define ARGI_REVISION_OP ARG_NONE
301 #define ARGI_SCOPE_OP ARGI_INVALID_OPCODE
302 #define ARGI_SERIALFIELD_OP ARGI_INVALID_OPCODE
303 #define ARGI_SHIFT_LEFT_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGE
304 #define ARGI_SHIFT_RIGHT_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGE
305 #define ARGI_SIGNAL_OP ARGI_LIST1 (ARGI_EVENT)
306 #define ARGI_SIZE_OF_OP ARGI_LIST1 (ARGI_DATAOBJECT)
307 #define ARGI_SLEEP_OP ARGI_LIST1 (ARGI_INTEGER)
308 #define ARGI_STALL_OP ARGI_LIST1 (ARGI_INTEGER)
309 #define ARGI_STATICSTRING_OP ARGI_INVALID_OPCODE
310 #define ARGI_STORE_OP ARGI_LIST2 (ARGI_DATAREFOBJ, ARGI_TARGET
311 #define ARGI_STRING_OP ARGI_INVALID_OPCODE
312 #define ARGI_SUBTRACT_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGE
313 #define ARGI_THERMAL_ZONE_OP ARGI_INVALID_OPCODE
314 #define ARGI_TIMER_OP ARG_NONE
315 #define ARGI_TO_BCD_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_FIXED_
316 #define ARGI_TO_BUFFER_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_FIXED_
317 #define ARGI_TO_DEC_STR_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_FIXED_
318 #define ARGI_TO_HEX_STR_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_FIXED_
319 #define ARGI_TO_INTEGER_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_FIXED_
320 #define ARGI_TO_STRING_OP ARGI_LIST3 (ARGI_BUFFER, ARGI_INTEGE
321 #define ARGI_TYPE_OP ARGI_LIST1 (ARGI_ANYTYPE)
322 #define ARGI_UNLOAD_OP ARGI_LIST1 (ARGI_DDBHANDLE)
323 #define ARGI_VAR_PACKAGE_OP ARGI_LIST1 (ARGI_INTEGER)

new/usr/src/common/acpica/include/acopcode.h 6

324 #define ARGI_WAIT_OP ARGI_LIST2 (ARGI_EVENT, ARGI_INTEGE
325 #define ARGI_WHILE_OP ARGI_INVALID_OPCODE
326 #define ARGI_WORD_OP ARGI_INVALID_OPCODE
327 #define ARGI_ZERO_OP ARG_NONE

329 #endif /* __ACOPCODE_H__ */

new/usr/src/common/acpica/include/acoutput.h 1

**
 17260 Thu Dec 26 13:49:52 2013
new/usr/src/common/acpica/include/acoutput.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acoutput.h -- debug output
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACOUTPUT_H__
45 #define __ACOUTPUT_H__

47 /*
48 * Debug levels and component IDs. These are used to control the
49 * granularity of the output of the ACPI_DEBUG_PRINT macro -- on a
50 * per-component basis and a per-exception-type basis.
51 */

53 /* Component IDs are used in the global "DebugLayer" */

55 #define ACPI_UTILITIES 0x00000001
56 #define ACPI_HARDWARE 0x00000002
57 #define ACPI_EVENTS 0x00000004
58 #define ACPI_TABLES 0x00000008
59 #define ACPI_NAMESPACE 0x00000010
60 #define ACPI_PARSER 0x00000020

new/usr/src/common/acpica/include/acoutput.h 2

61 #define ACPI_DISPATCHER 0x00000040
62 #define ACPI_EXECUTER 0x00000080
63 #define ACPI_RESOURCES 0x00000100
64 #define ACPI_CA_DEBUGGER 0x00000200
65 #define ACPI_OS_SERVICES 0x00000400
66 #define ACPI_CA_DISASSEMBLER 0x00000800

68 /* Component IDs for ACPI tools and utilities */

70 #define ACPI_COMPILER 0x00001000
71 #define ACPI_TOOLS 0x00002000
72 #define ACPI_EXAMPLE 0x00004000
73 #define ACPI_DRIVER 0x00008000
74 #define DT_COMPILER 0x00010000
75 #define ASL_PREPROCESSOR 0x00020000

77 #define ACPI_ALL_COMPONENTS 0x0001FFFF
78 #define ACPI_COMPONENT_DEFAULT (ACPI_ALL_COMPONENTS)

80 /* Component IDs reserved for ACPI drivers */

82 #define ACPI_ALL_DRIVERS 0xFFFF0000

85 /*
86 * Raw debug output levels, do not use these in the ACPI_DEBUG_PRINT macros
87 */
88 #define ACPI_LV_INIT 0x00000001
89 #define ACPI_LV_DEBUG_OBJECT 0x00000002
90 #define ACPI_LV_INFO 0x00000004
91 #define ACPI_LV_REPAIR 0x00000008
92 #define ACPI_LV_ALL_EXCEPTIONS 0x0000000F

94 /* Trace verbosity level 1 [Standard Trace Level] */

96 #define ACPI_LV_INIT_NAMES 0x00000020
97 #define ACPI_LV_PARSE 0x00000040
98 #define ACPI_LV_LOAD 0x00000080
99 #define ACPI_LV_DISPATCH 0x00000100
100 #define ACPI_LV_EXEC 0x00000200
101 #define ACPI_LV_NAMES 0x00000400
102 #define ACPI_LV_OPREGION 0x00000800
103 #define ACPI_LV_BFIELD 0x00001000
104 #define ACPI_LV_TABLES 0x00002000
105 #define ACPI_LV_VALUES 0x00004000
106 #define ACPI_LV_OBJECTS 0x00008000
107 #define ACPI_LV_RESOURCES 0x00010000
108 #define ACPI_LV_USER_REQUESTS 0x00020000
109 #define ACPI_LV_PACKAGE 0x00040000
110 #define ACPI_LV_VERBOSITY1 0x0007FF40 | ACPI_LV_ALL_EXCEPTIONS

112 /* Trace verbosity level 2 [Function tracing and memory allocation] */

114 #define ACPI_LV_ALLOCATIONS 0x00100000
115 #define ACPI_LV_FUNCTIONS 0x00200000
116 #define ACPI_LV_OPTIMIZATIONS 0x00400000
117 #define ACPI_LV_VERBOSITY2 0x00700000 | ACPI_LV_VERBOSITY1
118 #define ACPI_LV_ALL ACPI_LV_VERBOSITY2

120 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */

122 #define ACPI_LV_MUTEX 0x01000000
123 #define ACPI_LV_THREADS 0x02000000
124 #define ACPI_LV_IO 0x04000000
125 #define ACPI_LV_INTERRUPTS 0x08000000
126 #define ACPI_LV_VERBOSITY3 0x0F000000 | ACPI_LV_VERBOSITY2

new/usr/src/common/acpica/include/acoutput.h 3

128 /* Exceptionally verbose output -- also used in the global "DebugLevel" */

130 #define ACPI_LV_AML_DISASSEMBLE 0x10000000
131 #define ACPI_LV_VERBOSE_INFO 0x20000000
132 #define ACPI_LV_FULL_TABLES 0x40000000
133 #define ACPI_LV_EVENTS 0x80000000
134 #define ACPI_LV_VERBOSE 0xF0000000

137 /*
138 * Debug level macros that are used in the DEBUG_PRINT macros
139 */
140 #define ACPI_DEBUG_LEVEL(dl) (UINT32) dl,ACPI_DEBUG_PARAMETERS

142 /*
143 * Exception level -- used in the global "DebugLevel"
144 *
145 * Note: For errors, use the ACPI_ERROR or ACPI_EXCEPTION interfaces.
146 * For warnings, use ACPI_WARNING.
147 */
148 #define ACPI_DB_INIT ACPI_DEBUG_LEVEL (ACPI_LV_INIT)
149 #define ACPI_DB_DEBUG_OBJECT ACPI_DEBUG_LEVEL (ACPI_LV_DEBUG_OBJECT)
150 #define ACPI_DB_INFO ACPI_DEBUG_LEVEL (ACPI_LV_INFO)
151 #define ACPI_DB_REPAIR ACPI_DEBUG_LEVEL (ACPI_LV_REPAIR)
152 #define ACPI_DB_ALL_EXCEPTIONS ACPI_DEBUG_LEVEL (ACPI_LV_ALL_EXCEPTIONS)

154 /* Trace level -- also used in the global "DebugLevel" */

156 #define ACPI_DB_INIT_NAMES ACPI_DEBUG_LEVEL (ACPI_LV_INIT_NAMES)
157 #define ACPI_DB_THREADS ACPI_DEBUG_LEVEL (ACPI_LV_THREADS)
158 #define ACPI_DB_PARSE ACPI_DEBUG_LEVEL (ACPI_LV_PARSE)
159 #define ACPI_DB_DISPATCH ACPI_DEBUG_LEVEL (ACPI_LV_DISPATCH)
160 #define ACPI_DB_LOAD ACPI_DEBUG_LEVEL (ACPI_LV_LOAD)
161 #define ACPI_DB_EXEC ACPI_DEBUG_LEVEL (ACPI_LV_EXEC)
162 #define ACPI_DB_NAMES ACPI_DEBUG_LEVEL (ACPI_LV_NAMES)
163 #define ACPI_DB_OPREGION ACPI_DEBUG_LEVEL (ACPI_LV_OPREGION)
164 #define ACPI_DB_BFIELD ACPI_DEBUG_LEVEL (ACPI_LV_BFIELD)
165 #define ACPI_DB_TABLES ACPI_DEBUG_LEVEL (ACPI_LV_TABLES)
166 #define ACPI_DB_FUNCTIONS ACPI_DEBUG_LEVEL (ACPI_LV_FUNCTIONS)
167 #define ACPI_DB_OPTIMIZATIONS ACPI_DEBUG_LEVEL (ACPI_LV_OPTIMIZATIONS)
168 #define ACPI_DB_VALUES ACPI_DEBUG_LEVEL (ACPI_LV_VALUES)
169 #define ACPI_DB_OBJECTS ACPI_DEBUG_LEVEL (ACPI_LV_OBJECTS)
170 #define ACPI_DB_ALLOCATIONS ACPI_DEBUG_LEVEL (ACPI_LV_ALLOCATIONS)
171 #define ACPI_DB_RESOURCES ACPI_DEBUG_LEVEL (ACPI_LV_RESOURCES)
172 #define ACPI_DB_IO ACPI_DEBUG_LEVEL (ACPI_LV_IO)
173 #define ACPI_DB_INTERRUPTS ACPI_DEBUG_LEVEL (ACPI_LV_INTERRUPTS)
174 #define ACPI_DB_USER_REQUESTS ACPI_DEBUG_LEVEL (ACPI_LV_USER_REQUESTS)
175 #define ACPI_DB_PACKAGE ACPI_DEBUG_LEVEL (ACPI_LV_PACKAGE)
176 #define ACPI_DB_MUTEX ACPI_DEBUG_LEVEL (ACPI_LV_MUTEX)
177 #define ACPI_DB_EVENTS ACPI_DEBUG_LEVEL (ACPI_LV_EVENTS)

179 #define ACPI_DB_ALL ACPI_DEBUG_LEVEL (ACPI_LV_ALL)

181 /* Defaults for DebugLevel, debug and normal */

183 #define ACPI_DEBUG_DEFAULT (ACPI_LV_INIT | ACPI_LV_DEBUG_OBJECT | ACPI_
184 #define ACPI_NORMAL_DEFAULT (ACPI_LV_INIT | ACPI_LV_DEBUG_OBJECT | ACPI_
185 #define ACPI_DEBUG_ALL (ACPI_LV_AML_DISASSEMBLE | ACPI_LV_ALL_EXCEP

188 #if defined (ACPI_DEBUG_OUTPUT) || !defined (ACPI_NO_ERROR_MESSAGES)
189 /*
190 * The module name is used primarily for error and debug messages.
191 * The __FILE__ macro is not very useful for this, because it
192 * usually includes the entire pathname to the module making the

new/usr/src/common/acpica/include/acoutput.h 4

193 * debug output difficult to read.
194 */
195 #define ACPI_MODULE_NAME(Name) static const char ACPI_UNUSED_VAR _AcpiM
196 #else
197 /*
198 * For the no-debug and no-error-msg cases, we must at least define
199 * a null module name.
200 */
201 #define ACPI_MODULE_NAME(Name)
202 #define _AcpiModuleName ""
203 #endif

205 /*
206 * Ascii error messages can be configured out
207 */
208 #ifndef ACPI_NO_ERROR_MESSAGES
209 #define AE_INFO _AcpiModuleName, __LINE__

211 /*
212 * Error reporting. Callers module and line number are inserted by AE_INFO,
213 * the plist contains a set of parens to allow variable-length lists.
214 * These macros are used for both the debug and non-debug versions of the code.
215 */
216 #define ACPI_INFO(plist) AcpiInfo plist
217 #define ACPI_WARNING(plist) AcpiWarning plist
218 #define ACPI_EXCEPTION(plist) AcpiException plist
219 #define ACPI_ERROR(plist) AcpiError plist
220 #define ACPI_BIOS_WARNING(plist) AcpiBiosWarning plist
221 #define ACPI_BIOS_ERROR(plist) AcpiBiosError plist
222 #define ACPI_DEBUG_OBJECT(obj,l,i) AcpiExDoDebugObject(obj,l,i)

224 #else

226 /* No error messages */

228 #define ACPI_INFO(plist)
229 #define ACPI_WARNING(plist)
230 #define ACPI_EXCEPTION(plist)
231 #define ACPI_ERROR(plist)
232 #define ACPI_BIOS_WARNING(plist)
233 #define ACPI_BIOS_ERROR(plist)
234 #define ACPI_DEBUG_OBJECT(obj,l,i)

236 #endif /* ACPI_NO_ERROR_MESSAGES */

239 /*
240 * Debug macros that are conditionally compiled
241 */
242 #ifdef ACPI_DEBUG_OUTPUT

244 /*
245 * If ACPI_GET_FUNCTION_NAME was not defined in the compiler-dependent header,
246 * define it now. This is the case where there the compiler does not support
247 * a __FUNCTION__ macro or equivalent.
248 */
249 #ifndef ACPI_GET_FUNCTION_NAME
250 #define ACPI_GET_FUNCTION_NAME _AcpiFunctionName

252 /*
253 * The Name parameter should be the procedure name as a quoted string.
254 * The function name is also used by the function exit macros below.
255 * Note: (const char) is used to be compatible with the debug interfaces
256 * and macros such as __FUNCTION__.
257 */
258 #define ACPI_FUNCTION_NAME(Name) static const char _AcpiFunctionName[] =

new/usr/src/common/acpica/include/acoutput.h 5

260 #else
261 /* Compiler supports __FUNCTION__ (or equivalent) -- Ignore this macro */

263 #define ACPI_FUNCTION_NAME(Name)
264 #endif /* ACPI_GET_FUNCTION_NAME */

266 /*
267 * Common parameters used for debug output functions:
268 * line number, function name, module(file) name, component ID
269 */
270 #define ACPI_DEBUG_PARAMETERS \
271 __LINE__, ACPI_GET_FUNCTION_NAME, _AcpiModuleName, _COMPONENT

273 /* Check if debug output is currently dynamically enabled */

275 #define ACPI_IS_DEBUG_ENABLED(Level, Component) \
276 ((Level & AcpiDbgLevel) && (Component & AcpiDbgLayer))

278 /*
279 * Master debug print macros
280 * Print message if and only if:
281 * 1) Debug print for the current component is enabled
282 * 2) Debug error level or trace level for the print statement is enabled
283 *
284 * November 2012: Moved the runtime check for whether to actually emit the
285 * debug message outside of the print function itself. This improves overall
286 * performance at a relatively small code cost. Implementation involves the
287 * use of variadic macros supported by C99.
288 *
289 * Note: the ACPI_DO_WHILE0 macro is used to prevent some compilers from
290 * complaining about these constructs. On other compilers the do...while
291 * adds some extra code, so this feature is optional.
292 */
293 #ifdef ACPI_USE_DO_WHILE_0
294 #define ACPI_DO_WHILE0(a) do a while(0)
295 #else
296 #define ACPI_DO_WHILE0(a) a
297 #endif

299 /* DEBUG_PRINT functions */

301 #define ACPI_DEBUG_PRINT(plist) ACPI_ACTUAL_DEBUG plist
302 #define ACPI_DEBUG_PRINT_RAW(plist) ACPI_ACTUAL_DEBUG_RAW plist

304 /* Helper macros for DEBUG_PRINT */

306 #define ACPI_DO_DEBUG_PRINT(Function, Level, Line, Filename, Modulename, Compone
307 ACPI_DO_WHILE0 ({ \
308 if (ACPI_IS_DEBUG_ENABLED (Level, Component)) \
309 { \
310 Function (Level, Line, Filename, Modulename, Component, __VA_ARGS__)
311 } \
312 })

314 #define ACPI_ACTUAL_DEBUG(Level, Line, Filename, Modulename, Component, ...) \
315 ACPI_DO_DEBUG_PRINT (AcpiDebugPrint, Level, Line, \
316 Filename, Modulename, Component, __VA_ARGS__)

318 #define ACPI_ACTUAL_DEBUG_RAW(Level, Line, Filename, Modulename, Component, ...)
319 ACPI_DO_DEBUG_PRINT (AcpiDebugPrintRaw, Level, Line, \
320 Filename, Modulename, Component, __VA_ARGS__)

323 /*
324 * Function entry tracing

new/usr/src/common/acpica/include/acoutput.h 6

325 *
326 * The name of the function is emitted as a local variable that is
327 * intended to be used by both the entry trace and the exit trace.
328 */

330 /* Helper macro */

332 #define ACPI_TRACE_ENTRY(Name, Function, Type, Param) \
333 ACPI_FUNCTION_NAME (Name) \
334 Function (ACPI_DEBUG_PARAMETERS, (Type) (Param))

336 /* The actual entry trace macros */

338 #define ACPI_FUNCTION_TRACE(Name) \
339 ACPI_FUNCTION_NAME(Name) \
340 AcpiUtTrace (ACPI_DEBUG_PARAMETERS)

342 #define ACPI_FUNCTION_TRACE_PTR(Name, Pointer) \
343 ACPI_TRACE_ENTRY (Name, AcpiUtTracePtr, void *, Pointer)

345 #define ACPI_FUNCTION_TRACE_U32(Name, Value) \
346 ACPI_TRACE_ENTRY (Name, AcpiUtTraceU32, UINT32, Value)

348 #define ACPI_FUNCTION_TRACE_STR(Name, String) \
349 ACPI_TRACE_ENTRY (Name, AcpiUtTraceStr, char *, String)

351 #define ACPI_FUNCTION_ENTRY() \
352 AcpiUtTrackStackPtr()

355 /*
356 * Function exit tracing
357 *
358 * These macros include a return statement. This is usually considered
359 * bad form, but having a separate exit macro before the actual return
360 * is very ugly and difficult to maintain.
361 *
362 * One of the FUNCTION_TRACE macros above must be used in conjunction
363 * with these macros so that "_AcpiFunctionName" is defined.
364 *
365 * There are two versions of most of the return macros. The default version is
366 * safer, since it avoids side-effects by guaranteeing that the argument will
367 * not be evaluated twice.
368 *
369 * A less-safe version of the macros is provided for optional use if the
370 * compiler uses excessive CPU stack (for example, this may happen in the
371 * debug case if code optimzation is disabled.)
372 */

374 /* Exit trace helper macro */

376 #ifndef ACPI_SIMPLE_RETURN_MACROS

378 #define ACPI_TRACE_EXIT(Function, Type, Param) \
379 ACPI_DO_WHILE0 ({ \
380 register Type _Param = (Type) (Param); \
381 Function (ACPI_DEBUG_PARAMETERS, _Param); \
382 return (_Param); \
383 })

385 #else /* Use original less-safe macros */

387 #define ACPI_TRACE_EXIT(Function, Type, Param) \
388 ACPI_DO_WHILE0 ({ \
389 Function (ACPI_DEBUG_PARAMETERS, (Type) (Param)); \
390 return (Param); \

new/usr/src/common/acpica/include/acoutput.h 7

391 })

393 #endif /* ACPI_SIMPLE_RETURN_MACROS */

395 /* The actual exit macros */

397 #define return_VOID \
398 ACPI_DO_WHILE0 ({ \
399 AcpiUtExit (ACPI_DEBUG_PARAMETERS); \
400 return; \
401 })

403 #define return_ACPI_STATUS(Status) \
404 ACPI_TRACE_EXIT (AcpiUtStatusExit, ACPI_STATUS, Status)

406 #define return_PTR(Pointer) \
407 ACPI_TRACE_EXIT (AcpiUtPtrExit, void *, Pointer)

409 #define return_VALUE(Value) \
410 ACPI_TRACE_EXIT (AcpiUtValueExit, UINT64, Value)

412 #define return_UINT32(Value) \
413 ACPI_TRACE_EXIT (AcpiUtValueExit, UINT32, Value)

415 #define return_UINT8(Value) \
416 ACPI_TRACE_EXIT (AcpiUtValueExit, UINT8, Value)

418 /* Conditional execution */

420 #define ACPI_DEBUG_EXEC(a) a
421 #define ACPI_DEBUG_ONLY_MEMBERS(a) a;
422 #define _VERBOSE_STRUCTURES

425 /* Various object display routines for debug */

427 #define ACPI_DUMP_STACK_ENTRY(a) AcpiExDumpOperand((a), 0)
428 #define ACPI_DUMP_OPERANDS(a, b ,c) AcpiExDumpOperands(a, b, c)
429 #define ACPI_DUMP_ENTRY(a, b) AcpiNsDumpEntry (a, b)
430 #define ACPI_DUMP_PATHNAME(a, b, c, d) AcpiNsDumpPathname(a, b, c, d)
431 #define ACPI_DUMP_BUFFER(a, b) AcpiUtDebugDumpBuffer((UINT8 *) a, b, DB

433 #else /* ACPI_DEBUG_OUTPUT */
434 /*
435 * This is the non-debug case -- make everything go away,
436 * leaving no executable debug code!
437 */
438 #define ACPI_DEBUG_PRINT(pl)
439 #define ACPI_DEBUG_PRINT_RAW(pl)
440 #define ACPI_DEBUG_EXEC(a)
441 #define ACPI_DEBUG_ONLY_MEMBERS(a)
442 #define ACPI_FUNCTION_NAME(a)
443 #define ACPI_FUNCTION_TRACE(a)
444 #define ACPI_FUNCTION_TRACE_PTR(a, b)
445 #define ACPI_FUNCTION_TRACE_U32(a, b)
446 #define ACPI_FUNCTION_TRACE_STR(a, b)
447 #define ACPI_FUNCTION_ENTRY()
448 #define ACPI_DUMP_STACK_ENTRY(a)
449 #define ACPI_DUMP_OPERANDS(a, b, c)
450 #define ACPI_DUMP_ENTRY(a, b)
451 #define ACPI_DUMP_PATHNAME(a, b, c, d)
452 #define ACPI_DUMP_BUFFER(a, b)
453 #define ACPI_IS_DEBUG_ENABLED(Level, Component) 0

455 /* Return macros must have a return statement at the minimum */

new/usr/src/common/acpica/include/acoutput.h 8

457 #define return_VOID return
458 #define return_ACPI_STATUS(s) return(s)
459 #define return_PTR(s) return(s)
460 #define return_VALUE(s) return(s)
461 #define return_UINT8(s) return(s)
462 #define return_UINT32(s) return(s)

464 #endif /* ACPI_DEBUG_OUTPUT */

467 #endif /* __ACOUTPUT_H__ */

new/usr/src/common/acpica/include/acparser.h 1

**
 8630 Thu Dec 26 13:49:52 2013
new/usr/src/common/acpica/include/acparser.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: acparser.h - AML Parser subcomponent prototypes and defines
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #ifndef __ACPARSER_H__
46 #define __ACPARSER_H__

49 #define OP_HAS_RETURN_VALUE 1

51 /* Variable number of arguments. This field must be 32 bits */

53 #define ACPI_VAR_ARGS ACPI_UINT32_MAX

56 #define ACPI_PARSE_DELETE_TREE 0x0001
57 #define ACPI_PARSE_NO_TREE_DELETE 0x0000
58 #define ACPI_PARSE_TREE_MASK 0x0001

new/usr/src/common/acpica/include/acparser.h 2

60 #define ACPI_PARSE_LOAD_PASS1 0x0010
61 #define ACPI_PARSE_LOAD_PASS2 0x0020
62 #define ACPI_PARSE_EXECUTE 0x0030
63 #define ACPI_PARSE_MODE_MASK 0x0030

65 #define ACPI_PARSE_DEFERRED_OP 0x0100
66 #define ACPI_PARSE_DISASSEMBLE 0x0200

68 #define ACPI_PARSE_MODULE_LEVEL 0x0400

70 /**
71 *
72 * Parser interfaces
73 *
74 ***/

77 /*
78 * psxface - Parser external interfaces
79 */
80 ACPI_STATUS
81 AcpiPsExecuteMethod (
82 ACPI_EVALUATE_INFO *Info);

85 /*
86 * psargs - Parse AML opcode arguments
87 */
88 UINT8 *
89 AcpiPsGetNextPackageEnd (
90 ACPI_PARSE_STATE *ParserState);

92 char *
93 AcpiPsGetNextNamestring (
94 ACPI_PARSE_STATE *ParserState);

96 void
97 AcpiPsGetNextSimpleArg (
98 ACPI_PARSE_STATE *ParserState,
99 UINT32 ArgType,
100 ACPI_PARSE_OBJECT *Arg);

102 ACPI_STATUS
103 AcpiPsGetNextNamepath (
104 ACPI_WALK_STATE *WalkState,
105 ACPI_PARSE_STATE *ParserState,
106 ACPI_PARSE_OBJECT *Arg,
107 BOOLEAN MethodCall);

109 ACPI_STATUS
110 AcpiPsGetNextArg (
111 ACPI_WALK_STATE *WalkState,
112 ACPI_PARSE_STATE *ParserState,
113 UINT32 ArgType,
114 ACPI_PARSE_OBJECT **ReturnArg);

117 /*
118 * psfind
119 */
120 ACPI_PARSE_OBJECT *
121 AcpiPsFindName (
122 ACPI_PARSE_OBJECT *Scope,
123 UINT32 Name,
124 UINT32 Opcode);

new/usr/src/common/acpica/include/acparser.h 3

126 ACPI_PARSE_OBJECT*
127 AcpiPsGetParent (
128 ACPI_PARSE_OBJECT *Op);

131 /*
132 * psobject - support for parse object processing
132 * psopcode - AML Opcode information
133 */
134 ACPI_STATUS
135 AcpiPsBuildNamedOp (
136 ACPI_WALK_STATE *WalkState,
137 UINT8 *AmlOpStart,
138 ACPI_PARSE_OBJECT *UnnamedOp,
139 ACPI_PARSE_OBJECT **Op);

141 ACPI_STATUS
142 AcpiPsCreateOp (
143 ACPI_WALK_STATE *WalkState,
144 UINT8 *AmlOpStart,
145 ACPI_PARSE_OBJECT **NewOp);

147 ACPI_STATUS
148 AcpiPsCompleteOp (
149 ACPI_WALK_STATE *WalkState,
150 ACPI_PARSE_OBJECT **Op,
151 ACPI_STATUS Status);

153 ACPI_STATUS
154 AcpiPsCompleteFinalOp (
155 ACPI_WALK_STATE *WalkState,
156 ACPI_PARSE_OBJECT *Op,
157 ACPI_STATUS Status);

160 /*
161 * psopinfo - AML Opcode information
162 */
163 const ACPI_OPCODE_INFO *
164 AcpiPsGetOpcodeInfo (
165 UINT16 Opcode);

167 char *
168 AcpiPsGetOpcodeName (
169 UINT16 Opcode);

171 UINT8
172 AcpiPsGetArgumentCount (
173 UINT32 OpType);

176 /*
177 * psparse - top level parsing routines
178 */
179 ACPI_STATUS
180 AcpiPsParseAml (
181 ACPI_WALK_STATE *WalkState);

183 UINT32
184 AcpiPsGetOpcodeSize (
185 UINT32 Opcode);

187 UINT16
188 AcpiPsPeekOpcode (
189 ACPI_PARSE_STATE *state);

new/usr/src/common/acpica/include/acparser.h 4

191 ACPI_STATUS
192 AcpiPsCompleteThisOp (
193 ACPI_WALK_STATE *WalkState,
194 ACPI_PARSE_OBJECT *Op);

196 ACPI_STATUS
197 AcpiPsNextParseState (
198 ACPI_WALK_STATE *WalkState,
199 ACPI_PARSE_OBJECT *Op,
200 ACPI_STATUS CallbackStatus);

203 /*
204 * psloop - main parse loop
205 */
206 ACPI_STATUS
207 AcpiPsParseLoop (
208 ACPI_WALK_STATE *WalkState);

211 /*
212 * psscope - Scope stack management routines
213 */
214 ACPI_STATUS
215 AcpiPsInitScope (
216 ACPI_PARSE_STATE *ParserState,
217 ACPI_PARSE_OBJECT *Root);

219 ACPI_PARSE_OBJECT *
220 AcpiPsGetParentScope (
221 ACPI_PARSE_STATE *state);

223 BOOLEAN
224 AcpiPsHasCompletedScope (
225 ACPI_PARSE_STATE *ParserState);

227 void
228 AcpiPsPopScope (
229 ACPI_PARSE_STATE *ParserState,
230 ACPI_PARSE_OBJECT **Op,
231 UINT32 *ArgList,
232 UINT32 *ArgCount);

234 ACPI_STATUS
235 AcpiPsPushScope (
236 ACPI_PARSE_STATE *ParserState,
237 ACPI_PARSE_OBJECT *Op,
238 UINT32 RemainingArgs,
239 UINT32 ArgCount);

241 void
242 AcpiPsCleanupScope (
243 ACPI_PARSE_STATE *state);

246 /*
247 * pstree - parse tree manipulation routines
248 */
249 void
250 AcpiPsAppendArg(
251 ACPI_PARSE_OBJECT *op,
252 ACPI_PARSE_OBJECT *arg);

254 ACPI_PARSE_OBJECT*
255 AcpiPsFind (
256 ACPI_PARSE_OBJECT *Scope,

new/usr/src/common/acpica/include/acparser.h 5

257 char *Path,
258 UINT16 Opcode,
259 UINT32 Create);

261 ACPI_PARSE_OBJECT *
262 AcpiPsGetArg(
263 ACPI_PARSE_OBJECT *op,
264 UINT32 argn);

266 ACPI_PARSE_OBJECT *
267 AcpiPsGetDepthNext (
268 ACPI_PARSE_OBJECT *Origin,
269 ACPI_PARSE_OBJECT *Op);

272 /*
273 * pswalk - parse tree walk routines
274 */
275 ACPI_STATUS
276 AcpiPsWalkParsedAml (
277 ACPI_PARSE_OBJECT *StartOp,
278 ACPI_PARSE_OBJECT *EndOp,
279 ACPI_OPERAND_OBJECT *MthDesc,
280 ACPI_NAMESPACE_NODE *StartNode,
281 ACPI_OPERAND_OBJECT **Params,
282 ACPI_OPERAND_OBJECT **CallerReturnDesc,
283 ACPI_OWNER_ID OwnerId,
284 ACPI_PARSE_DOWNWARDS DescendingCallback,
285 ACPI_PARSE_UPWARDS AscendingCallback);

287 ACPI_STATUS
288 AcpiPsGetNextWalkOp (
289 ACPI_WALK_STATE *WalkState,
290 ACPI_PARSE_OBJECT *Op,
291 ACPI_PARSE_UPWARDS AscendingCallback);

293 ACPI_STATUS
294 AcpiPsDeleteCompletedOp (
295 ACPI_WALK_STATE *WalkState);

297 void
298 AcpiPsDeleteParseTree (
299 ACPI_PARSE_OBJECT *root);

302 /*
303 * psutils - parser utilities
304 */
305 ACPI_PARSE_OBJECT *
306 AcpiPsCreateScopeOp (
307 void);

309 void
310 AcpiPsInitOp (
311 ACPI_PARSE_OBJECT *op,
312 UINT16 opcode);

314 ACPI_PARSE_OBJECT *
315 AcpiPsAllocOp (
316 UINT16 opcode);

318 void
319 AcpiPsFreeOp (
320 ACPI_PARSE_OBJECT *Op);

322 BOOLEAN

new/usr/src/common/acpica/include/acparser.h 6

323 AcpiPsIsLeadingChar (
324 UINT32 c);

297 BOOLEAN
298 AcpiPsIsPrefixChar (
299 UINT32 c);

326 UINT32
327 AcpiPsGetName(
328 ACPI_PARSE_OBJECT *op);

330 void
331 AcpiPsSetName(
332 ACPI_PARSE_OBJECT *op,
333 UINT32 name);

336 /*
337 * psdump - display parser tree
338 */
339 UINT32
340 AcpiPsSprintPath (
341 char *BufferStart,
342 UINT32 BufferSize,
343 ACPI_PARSE_OBJECT *Op);

345 UINT32
346 AcpiPsSprintOp (
347 char *BufferStart,
348 UINT32 BufferSize,
349 ACPI_PARSE_OBJECT *Op);

351 void
352 AcpiPsShow (
353 ACPI_PARSE_OBJECT *op);

356 #endif /* __ACPARSER_H__ */

new/usr/src/common/acpica/include/acpi.h 1

**
 3105 Thu Dec 26 13:49:53 2013
new/usr/src/common/acpica/include/acpi.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acpi.h - Master public include file used to interface to ACPICA
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACPI_H__
45 #define __ACPI_H__

47 /*
48 * Public include files for use by code that will interface to ACPICA.
49 *
50 * Information includes the ACPICA data types, names, exceptions, and
51 * external interface prototypes. Also included are the definitions for
52 * all ACPI tables (FADT, MADT, etc.)
53 *
54 * Note: The order of these include files is important.
55 */
56 #include "platform/acenv.h" /* Environment-specific items */
57 #include "acnames.h" /* Common ACPI names and strings */
58 #include "actypes.h" /* ACPICA data types and structures */
59 #include "acexcep.h" /* ACPICA exceptions */

new/usr/src/common/acpica/include/acpi.h 2

60 #include "actbl.h" /* ACPI table definitions */
61 #include "acoutput.h" /* Error output and Debug macros */
62 #include "acrestyp.h" /* Resource Descriptor structs */
63 #include "acpiosxf.h" /* OSL interfaces (ACPICA-to-OS) */
64 #include "acpixf.h" /* ACPI core subsystem external interfaces */

66 #endif /* __ACPI_H__ */

new/usr/src/common/acpica/include/acpiosxf.h 1

**
 13374 Thu Dec 26 13:49:53 2013
new/usr/src/common/acpica/include/acpiosxf.h
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acpiosxf.h - All interfaces to the OS Services Layer (OSL). These
4 * interfaces must be implemented by OSL to interface the
5 * ACPI components to the host operating system.
6 *
7 ***/

9 /*
10 * Copyright (C) 2000 - 2013, Intel Corp.
11 * All rights reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions, and the following disclaimer,
18 * without modification.
19 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
20 * substantially similar to the "NO WARRANTY" disclaimer below
21 * ("Disclaimer") and any redistribution must be conditioned upon
22 * including a substantially similar Disclaimer requirement for further
23 * binary redistribution.
24 * 3. Neither the names of the above-listed copyright holders nor the names
25 * of any contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * Alternatively, this software may be distributed under the terms of the
29 * GNU General Public License ("GPL") version 2 as published by the Free
30 * Software Foundation.
31 *
32 * NO WARRANTY
33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
42 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
43 * POSSIBILITY OF SUCH DAMAGES.
44 */

46 #ifndef __ACPIOSXF_H__
47 #define __ACPIOSXF_H__

49 #include "platform/acenv.h"
50 #include "actypes.h"

53 /* Types for AcpiOsExecute */

55 typedef enum
56 {
57 OSL_GLOBAL_LOCK_HANDLER,
58 OSL_NOTIFY_HANDLER,
59 OSL_GPE_HANDLER,

new/usr/src/common/acpica/include/acpiosxf.h 2

60 OSL_DEBUGGER_THREAD,
61 OSL_EC_POLL_HANDLER,
62 OSL_EC_BURST_HANDLER

64 } ACPI_EXECUTE_TYPE;

66 #define ACPI_NO_UNIT_LIMIT ((UINT32) -1)
67 #define ACPI_MUTEX_SEM 1

70 /* Functions for AcpiOsSignal */

72 #define ACPI_SIGNAL_FATAL 0
73 #define ACPI_SIGNAL_BREAKPOINT 1

75 typedef struct acpi_signal_fatal_info
76 {
77 UINT32 Type;
78 UINT32 Code;
79 UINT32 Argument;

81 } ACPI_SIGNAL_FATAL_INFO;

84 /*
85 * OSL Initialization and shutdown primitives
86 */
87 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsInitialize
88 ACPI_STATUS
89 AcpiOsInitialize (
90 void);
91 #endif

93 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsTerminate
94 ACPI_STATUS
95 AcpiOsTerminate (
96 void);
97 #endif

100 /*
101 * ACPI Table interfaces
102 */
103 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsGetRootPointer
104 ACPI_PHYSICAL_ADDRESS
105 AcpiOsGetRootPointer (
106 void);
107 #endif

109 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsPredefinedOverride
110 ACPI_STATUS
111 AcpiOsPredefinedOverride (
112 const ACPI_PREDEFINED_NAMES *InitVal,
113 ACPI_STRING *NewVal);
114 #endif

116 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsTableOverride
117 ACPI_STATUS
118 AcpiOsTableOverride (
119 ACPI_TABLE_HEADER *ExistingTable,
120 ACPI_TABLE_HEADER **NewTable);
121 #endif

123 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsPhysicalTableOverride
124 ACPI_STATUS
125 AcpiOsPhysicalTableOverride (

new/usr/src/common/acpica/include/acpiosxf.h 3

126 ACPI_TABLE_HEADER *ExistingTable,
127 ACPI_PHYSICAL_ADDRESS *NewAddress,
128 UINT32 *NewTableLength);
129 #endif

132 /*
133 * Spinlock primitives
134 */
135 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsCreateLock
136 ACPI_STATUS
137 AcpiOsCreateLock (
138 ACPI_SPINLOCK *OutHandle);
139 #endif

141 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsDeleteLock
142 void
143 AcpiOsDeleteLock (
144 ACPI_SPINLOCK Handle);
145 #endif

147 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsAcquireLock
148 ACPI_CPU_FLAGS
149 AcpiOsAcquireLock (
150 ACPI_SPINLOCK Handle);
151 #endif

153 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsReleaseLock
154 void
155 AcpiOsReleaseLock (
156 ACPI_SPINLOCK Handle,
157 ACPI_CPU_FLAGS Flags);
158 #endif

161 /*
162 * Semaphore primitives
163 */
164 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsCreateSemaphore
165 ACPI_STATUS
166 AcpiOsCreateSemaphore (
167 UINT32 MaxUnits,
168 UINT32 InitialUnits,
169 ACPI_SEMAPHORE *OutHandle);
170 #endif

172 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsDeleteSemaphore
173 ACPI_STATUS
174 AcpiOsDeleteSemaphore (
175 ACPI_SEMAPHORE Handle);
176 #endif

178 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsWaitSemaphore
179 ACPI_STATUS
180 AcpiOsWaitSemaphore (
181 ACPI_SEMAPHORE Handle,
182 UINT32 Units,
183 UINT16 Timeout);
184 #endif

186 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsSignalSemaphore
187 ACPI_STATUS
188 AcpiOsSignalSemaphore (
189 ACPI_SEMAPHORE Handle,
190 UINT32 Units);
191 #endif

new/usr/src/common/acpica/include/acpiosxf.h 4

194 /*
195 * Mutex primitives. May be configured to use semaphores instead via
196 * ACPI_MUTEX_TYPE (see platform/acenv.h)
197 */
198 #if (ACPI_MUTEX_TYPE != ACPI_BINARY_SEMAPHORE)

200 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsCreateMutex
201 ACPI_STATUS
202 AcpiOsCreateMutex (
203 ACPI_MUTEX *OutHandle);
204 #endif

206 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsDeleteMutex
207 void
208 AcpiOsDeleteMutex (
209 ACPI_MUTEX Handle);
210 #endif

212 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsAcquireMutex
213 ACPI_STATUS
214 AcpiOsAcquireMutex (
215 ACPI_MUTEX Handle,
216 UINT16 Timeout);
217 #endif

219 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsReleaseMutex
220 void
221 AcpiOsReleaseMutex (
222 ACPI_MUTEX Handle);
223 #endif

225 #endif

228 /*
229 * Memory allocation and mapping
230 */
231 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsAllocate
232 void *
233 AcpiOsAllocate (
234 ACPI_SIZE Size);
235 #endif

237 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsAllocateZeroed
238 void *
239 AcpiOsAllocateZeroed (
240 ACPI_SIZE Size);
241 #endif

243 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsFree
244 void
245 AcpiOsFree (
246 void * Memory);
247 #endif

249 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsMapMemory
250 void *
251 AcpiOsMapMemory (
252 ACPI_PHYSICAL_ADDRESS Where,
253 ACPI_SIZE Length);
254 #endif

256 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsUnmapMemory
257 void

new/usr/src/common/acpica/include/acpiosxf.h 5

258 AcpiOsUnmapMemory (
259 void *LogicalAddress,
260 ACPI_SIZE Size);
261 #endif

263 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsGetPhysicalAddress
264 ACPI_STATUS
265 AcpiOsGetPhysicalAddress (
266 void *LogicalAddress,
267 ACPI_PHYSICAL_ADDRESS *PhysicalAddress);
268 #endif

271 /*
272 * Memory/Object Cache
273 */
274 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsCreateCache
275 ACPI_STATUS
276 AcpiOsCreateCache (
277 char *CacheName,
278 UINT16 ObjectSize,
279 UINT16 MaxDepth,
280 ACPI_CACHE_T **ReturnCache);
281 #endif

283 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsDeleteCache
284 ACPI_STATUS
285 AcpiOsDeleteCache (
286 ACPI_CACHE_T *Cache);
287 #endif

289 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsPurgeCache
290 ACPI_STATUS
291 AcpiOsPurgeCache (
292 ACPI_CACHE_T *Cache);
293 #endif

295 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsAcquireObject
296 void *
297 AcpiOsAcquireObject (
298 ACPI_CACHE_T *Cache);
299 #endif

301 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsReleaseObject
302 ACPI_STATUS
303 AcpiOsReleaseObject (
304 ACPI_CACHE_T *Cache,
305 void *Object);
306 #endif

309 /*
310 * Interrupt handlers
311 */
312 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsInstallInterruptHandler
313 ACPI_STATUS
314 AcpiOsInstallInterruptHandler (
315 UINT32 InterruptNumber,
316 ACPI_OSD_HANDLER ServiceRoutine,
317 void *Context);
318 #endif

320 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsRemoveInterruptHandler
321 ACPI_STATUS
322 AcpiOsRemoveInterruptHandler (
323 UINT32 InterruptNumber,

new/usr/src/common/acpica/include/acpiosxf.h 6

324 ACPI_OSD_HANDLER ServiceRoutine);
325 #endif

328 /*
329 * Threads and Scheduling
330 */
331 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsGetThreadId
332 ACPI_THREAD_ID
333 AcpiOsGetThreadId (
334 void);
335 #endif

337 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsExecute
338 ACPI_STATUS
339 AcpiOsExecute (
340 ACPI_EXECUTE_TYPE Type,
341 ACPI_OSD_EXEC_CALLBACK Function,
342 void *Context);
343 #endif

345 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsWaitEventsComplete
346 void
347 AcpiOsWaitEventsComplete (
348 void);
349 #endif

351 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsSleep
352 void
353 AcpiOsSleep (
354 UINT64 Milliseconds);
355 #endif

357 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsStall
358 void
359 AcpiOsStall (
360 UINT32 Microseconds);
361 #endif

364 /*
365 * Platform and hardware-independent I/O interfaces
366 */
367 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsReadPort
368 ACPI_STATUS
369 AcpiOsReadPort (
370 ACPI_IO_ADDRESS Address,
371 UINT32 *Value,
372 UINT32 Width);
373 #endif

375 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsWritePort
376 ACPI_STATUS
377 AcpiOsWritePort (
378 ACPI_IO_ADDRESS Address,
379 UINT32 Value,
380 UINT32 Width);
381 #endif

384 /*
385 * Platform and hardware-independent physical memory interfaces
386 */
387 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsReadMemory
388 ACPI_STATUS
389 AcpiOsReadMemory (

new/usr/src/common/acpica/include/acpiosxf.h 7

390 ACPI_PHYSICAL_ADDRESS Address,
391 UINT64 *Value,
392 UINT32 Width);
393 #endif

395 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsWriteMemory
396 ACPI_STATUS
397 AcpiOsWriteMemory (
398 ACPI_PHYSICAL_ADDRESS Address,
399 UINT64 Value,
400 UINT32 Width);
401 #endif

404 /*
405 * Platform and hardware-independent PCI configuration space access
406 * Note: Can’t use "Register" as a parameter, changed to "Reg" --
407 * certain compilers complain.
408 */
409 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsReadPciConfiguration
410 ACPI_STATUS
411 AcpiOsReadPciConfiguration (
412 ACPI_PCI_ID *PciId,
413 UINT32 Reg,
414 UINT64 *Value,
415 UINT32 Width);
416 #endif

418 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsWritePciConfiguration
419 ACPI_STATUS
420 AcpiOsWritePciConfiguration (
421 ACPI_PCI_ID *PciId,
422 UINT32 Reg,
423 UINT64 Value,
424 UINT32 Width);
425 #endif

428 /*
429 * Miscellaneous
430 */
431 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsReadable
432 BOOLEAN
433 AcpiOsReadable (
434 void *Pointer,
435 ACPI_SIZE Length);
436 #endif

438 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsWritable
439 BOOLEAN
440 AcpiOsWritable (
441 void *Pointer,
442 ACPI_SIZE Length);
443 #endif

445 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsGetTimer
446 UINT64
447 AcpiOsGetTimer (
448 void);
449 #endif

451 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsSignal
452 ACPI_STATUS
453 AcpiOsSignal (
454 UINT32 Function,
455 void *Info);

new/usr/src/common/acpica/include/acpiosxf.h 8

456 #endif

459 /*
460 * Debug print routines
461 */
462 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsPrintf
463 void ACPI_INTERNAL_VAR_XFACE
464 AcpiOsPrintf (
465 const char *Format,
466 ...);
467 #endif

469 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsVprintf
470 void
471 AcpiOsVprintf (
472 const char *Format,
473 va_list Args);
474 #endif

476 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsRedirectOutput
477 void
478 AcpiOsRedirectOutput (
479 void *Destination);
480 #endif

483 /*
484 * Debug input
485 */
486 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsGetLine
487 ACPI_STATUS
488 AcpiOsGetLine (
489 char *Buffer,
490 UINT32 BufferLength,
491 UINT32 *BytesRead);
492 #endif

495 /*
496 * Obtain ACPI table(s)
497 */
498 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsGetTableByName
499 ACPI_STATUS
500 AcpiOsGetTableByName (
501 char *Signature,
502 UINT32 Instance,
503 ACPI_TABLE_HEADER **Table,
504 ACPI_PHYSICAL_ADDRESS *Address);
505 #endif

507 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsGetTableByIndex
508 ACPI_STATUS
509 AcpiOsGetTableByIndex (
510 UINT32 Index,
511 ACPI_TABLE_HEADER **Table,
512 UINT32 *Instance,
513 ACPI_PHYSICAL_ADDRESS *Address);
514 #endif

516 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsGetTableByAddress
517 ACPI_STATUS
518 AcpiOsGetTableByAddress (
519 ACPI_PHYSICAL_ADDRESS Address,
520 ACPI_TABLE_HEADER **Table);
521 #endif

new/usr/src/common/acpica/include/acpiosxf.h 9

524 /*
525 * Directory manipulation
526 */
527 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsOpenDirectory
528 void *
529 AcpiOsOpenDirectory (
530 char *Pathname,
531 char *WildcardSpec,
532 char RequestedFileType);
533 #endif

535 /* RequesteFileType values */

537 #define REQUEST_FILE_ONLY 0
538 #define REQUEST_DIR_ONLY 1

541 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsGetNextFilename
542 char *
543 AcpiOsGetNextFilename (
544 void *DirHandle);
545 #endif

547 #ifndef ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsCloseDirectory
548 void
549 AcpiOsCloseDirectory (
550 void *DirHandle);
551 #endif

554 #endif /* __ACPIOSXF_H__ */

new/usr/src/common/acpica/include/acpixf.h 1

**
 20189 Thu Dec 26 13:49:53 2013
new/usr/src/common/acpica/include/acpixf.h
update to acpica-unix2-20131218
update to acpica-unix2-20131115
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acpixf.h - External interfaces to the ACPI subsystem
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #ifndef __ACXFACE_H__
46 #define __ACXFACE_H__

48 /* Current ACPICA subsystem version in YYYYMMDD format */

50 #define ACPI_CA_VERSION 0x20131218

52 #include "acconfig.h"
53 #include "actypes.h"
54 #include "actbl.h"
55 #include "acbuffer.h"

57 /*

new/usr/src/common/acpica/include/acpixf.h 2

58 * Globals that are publically available
59 */
60 extern UINT32 AcpiCurrentGpeCount;
61 extern ACPI_TABLE_FADT AcpiGbl_FADT;
62 extern BOOLEAN AcpiGbl_SystemAwakeAndRunning;
63 extern BOOLEAN AcpiGbl_ReducedHardware; /* ACPI 5.0 */
64 extern UINT8 AcpiGbl_OsiData;

66 /* Runtime configuration of debug print levels */

68 extern UINT32 AcpiDbgLevel;
69 extern UINT32 AcpiDbgLayer;

71 /* ACPICA runtime options */

73 extern UINT8 AcpiGbl_AllMethodsSerialized;
74 extern UINT8 AcpiGbl_CopyDsdtLocally;
75 extern UINT8 AcpiGbl_CreateOsiMethod;
76 extern UINT8 AcpiGbl_DisableAutoRepair;
77 extern UINT8 AcpiGbl_DisableSsdtTableLoad;
78 extern UINT8 AcpiGbl_DoNotUseXsdt;
79 extern UINT8 AcpiGbl_EnableAmlDebugObject;
80 extern UINT8 AcpiGbl_EnableInterpreterSlack;
81 extern UINT32 AcpiGbl_TraceFlags;
82 extern ACPI_NAME AcpiGbl_TraceMethodName;
83 extern UINT8 AcpiGbl_TruncateIoAddresses;
84 extern UINT8 AcpiGbl_Use32BitFadtAddresses;
85 extern UINT8 AcpiGbl_UseDefaultRegisterWidths;

88 /*
89 * Hardware-reduced prototypes. All interfaces that use these macros will
90 * be configured out of the ACPICA build if the ACPI_REDUCED_HARDWARE flag
91 * is set to TRUE.
92 */
93 #if (!ACPI_REDUCED_HARDWARE)
94 #define ACPI_HW_DEPENDENT_RETURN_STATUS(Prototype) \
95 Prototype;

97 #define ACPI_HW_DEPENDENT_RETURN_OK(Prototype) \
98 Prototype;

100 #define ACPI_HW_DEPENDENT_RETURN_VOID(Prototype) \
101 Prototype;

103 #else
104 #define ACPI_HW_DEPENDENT_RETURN_STATUS(Prototype) \
105 static ACPI_INLINE Prototype {return(AE_NOT_CONFIGURED);}

107 #define ACPI_HW_DEPENDENT_RETURN_OK(Prototype) \
108 static ACPI_INLINE Prototype {return(AE_OK);}

110 #define ACPI_HW_DEPENDENT_RETURN_VOID(Prototype) \
111 static ACPI_INLINE Prototype {return;}

113 #endif /* !ACPI_REDUCED_HARDWARE */

116 /*
117 * Initialization
118 */
119 ACPI_STATUS
120 AcpiInitializeTables (
121 ACPI_TABLE_DESC *InitialStorage,
122 UINT32 InitialTableCount,
123 BOOLEAN AllowResize);

new/usr/src/common/acpica/include/acpixf.h 3

125 ACPI_STATUS
126 AcpiInitializeSubsystem (
127 void);

129 ACPI_STATUS
130 AcpiEnableSubsystem (
131 UINT32 Flags);

133 ACPI_STATUS
134 AcpiInitializeObjects (
135 UINT32 Flags);

137 ACPI_STATUS
138 AcpiTerminate (
139 void);

142 /*
143 * Miscellaneous global interfaces
144 */
145 ACPI_HW_DEPENDENT_RETURN_STATUS (
146 ACPI_STATUS
147 AcpiEnable (
148 void))

150 ACPI_HW_DEPENDENT_RETURN_STATUS (
151 ACPI_STATUS
152 AcpiDisable (
153 void))

155 ACPI_STATUS
156 AcpiSubsystemStatus (
157 void);

159 ACPI_STATUS
160 AcpiGetSystemInfo (
161 ACPI_BUFFER *RetBuffer);

163 ACPI_STATUS
164 AcpiGetStatistics (
165 ACPI_STATISTICS *Stats);

167 const char *
168 AcpiFormatException (
169 ACPI_STATUS Exception);

171 ACPI_STATUS
172 AcpiPurgeCachedObjects (
173 void);

175 ACPI_STATUS
176 AcpiInstallInterface (
177 ACPI_STRING InterfaceName);

179 ACPI_STATUS
180 AcpiRemoveInterface (
181 ACPI_STRING InterfaceName);

183 ACPI_STATUS
184 AcpiUpdateInterfaces (
185 UINT8 Action);

187 UINT32
188 AcpiCheckAddressRange (
189 ACPI_ADR_SPACE_TYPE SpaceId,

new/usr/src/common/acpica/include/acpixf.h 4

190 ACPI_PHYSICAL_ADDRESS Address,
191 ACPI_SIZE Length,
192 BOOLEAN Warn);

194 ACPI_STATUS
195 AcpiDecodePldBuffer (
196 UINT8 *InBuffer,
197 ACPI_SIZE Length,
198 ACPI_PLD_INFO **ReturnBuffer);

201 /*
202 * ACPI table load/unload interfaces
203 */
204 ACPI_STATUS
205 AcpiLoadTable (
206 ACPI_TABLE_HEADER *Table);

208 ACPI_STATUS
209 AcpiUnloadParentTable (
210 ACPI_HANDLE Object);

212 ACPI_STATUS
213 AcpiLoadTables (
214 void);

217 /*
218 * ACPI table manipulation interfaces
219 */
220 ACPI_STATUS
221 AcpiReallocateRootTable (
222 void);

224 ACPI_STATUS
225 AcpiFindRootPointer (
226 ACPI_SIZE *RsdpAddress);

228 ACPI_STATUS
229 AcpiGetTableHeader (
230 ACPI_STRING Signature,
231 UINT32 Instance,
232 ACPI_TABLE_HEADER *OutTableHeader);

234 ACPI_STATUS
235 AcpiGetTable (
236 ACPI_STRING Signature,
237 UINT32 Instance,
238 ACPI_TABLE_HEADER **OutTable);

240 ACPI_STATUS
241 AcpiGetTableByIndex (
242 UINT32 TableIndex,
243 ACPI_TABLE_HEADER **OutTable);

245 ACPI_STATUS
246 AcpiInstallTableHandler (
247 ACPI_TABLE_HANDLER Handler,
248 void *Context);

250 ACPI_STATUS
251 AcpiRemoveTableHandler (
252 ACPI_TABLE_HANDLER Handler);

255 /*

new/usr/src/common/acpica/include/acpixf.h 5

256 * Namespace and name interfaces
257 */
258 ACPI_STATUS
259 AcpiWalkNamespace (
260 ACPI_OBJECT_TYPE Type,
261 ACPI_HANDLE StartObject,
262 UINT32 MaxDepth,
263 ACPI_WALK_CALLBACK DescendingCallback,
264 ACPI_WALK_CALLBACK AscendingCallback,
265 void *Context,
266 void **ReturnValue);

268 ACPI_STATUS
269 AcpiGetDevices (
270 char *HID,
271 ACPI_WALK_CALLBACK UserFunction,
272 void *Context,
273 void **ReturnValue);

275 ACPI_STATUS
276 AcpiGetName (
277 ACPI_HANDLE Object,
278 UINT32 NameType,
279 ACPI_BUFFER *RetPathPtr);

281 ACPI_STATUS
282 AcpiGetHandle (
283 ACPI_HANDLE Parent,
284 ACPI_STRING Pathname,
285 ACPI_HANDLE *RetHandle);

287 ACPI_STATUS
288 AcpiAttachData (
289 ACPI_HANDLE Object,
290 ACPI_OBJECT_HANDLER Handler,
291 void *Data);

293 ACPI_STATUS
294 AcpiDetachData (
295 ACPI_HANDLE Object,
296 ACPI_OBJECT_HANDLER Handler);

298 ACPI_STATUS
299 AcpiGetData (
300 ACPI_HANDLE Object,
301 ACPI_OBJECT_HANDLER Handler,
302 void **Data);

304 ACPI_STATUS
305 AcpiDebugTrace (
306 char *Name,
307 UINT32 DebugLevel,
308 UINT32 DebugLayer,
309 UINT32 Flags);

312 /*
313 * Object manipulation and enumeration
314 */
315 ACPI_STATUS
316 AcpiEvaluateObject (
317 ACPI_HANDLE Object,
318 ACPI_STRING Pathname,
319 ACPI_OBJECT_LIST *ParameterObjects,
320 ACPI_BUFFER *ReturnObjectBuffer);

new/usr/src/common/acpica/include/acpixf.h 6

322 ACPI_STATUS
323 AcpiEvaluateObjectTyped (
324 ACPI_HANDLE Object,
325 ACPI_STRING Pathname,
326 ACPI_OBJECT_LIST *ExternalParams,
327 ACPI_BUFFER *ReturnBuffer,
328 ACPI_OBJECT_TYPE ReturnType);

330 ACPI_STATUS
331 AcpiGetObjectInfo (
332 ACPI_HANDLE Object,
333 ACPI_DEVICE_INFO **ReturnBuffer);

335 ACPI_STATUS
336 AcpiInstallMethod (
337 UINT8 *Buffer);

339 ACPI_STATUS
340 AcpiGetNextObject (
341 ACPI_OBJECT_TYPE Type,
342 ACPI_HANDLE Parent,
343 ACPI_HANDLE Child,
344 ACPI_HANDLE *OutHandle);

346 ACPI_STATUS
347 AcpiGetType (
348 ACPI_HANDLE Object,
349 ACPI_OBJECT_TYPE *OutType);

351 ACPI_STATUS
352 AcpiGetParent (
353 ACPI_HANDLE Object,
354 ACPI_HANDLE *OutHandle);

357 /*
358 * Handler interfaces
359 */
360 ACPI_STATUS
361 AcpiInstallInitializationHandler (
362 ACPI_INIT_HANDLER Handler,
363 UINT32 Function);

365 ACPI_HW_DEPENDENT_RETURN_STATUS (
366 ACPI_STATUS
367 AcpiInstallSciHandler (
368 ACPI_SCI_HANDLER Address,
369 void *Context))

371 ACPI_HW_DEPENDENT_RETURN_STATUS (
372 ACPI_STATUS
373 AcpiRemoveSciHandler (
374 ACPI_SCI_HANDLER Address))

376 ACPI_HW_DEPENDENT_RETURN_STATUS (
377 ACPI_STATUS
378 AcpiInstallGlobalEventHandler (
379 ACPI_GBL_EVENT_HANDLER Handler,
380 void *Context))

382 ACPI_HW_DEPENDENT_RETURN_STATUS (
383 ACPI_STATUS
384 AcpiInstallFixedEventHandler (
385 UINT32 AcpiEvent,
386 ACPI_EVENT_HANDLER Handler,
387 void *Context))

new/usr/src/common/acpica/include/acpixf.h 7

389 ACPI_HW_DEPENDENT_RETURN_STATUS (
390 ACPI_STATUS
391 AcpiRemoveFixedEventHandler (
392 UINT32 AcpiEvent,
393 ACPI_EVENT_HANDLER Handler))

395 ACPI_HW_DEPENDENT_RETURN_STATUS (
396 ACPI_STATUS
397 AcpiInstallGpeHandler (
398 ACPI_HANDLE GpeDevice,
399 UINT32 GpeNumber,
400 UINT32 Type,
401 ACPI_GPE_HANDLER Address,
402 void *Context))

404 ACPI_HW_DEPENDENT_RETURN_STATUS (
405 ACPI_STATUS
406 AcpiRemoveGpeHandler (
407 ACPI_HANDLE GpeDevice,
408 UINT32 GpeNumber,
409 ACPI_GPE_HANDLER Address))

411 ACPI_STATUS
412 AcpiInstallNotifyHandler (
413 ACPI_HANDLE Device,
414 UINT32 HandlerType,
415 ACPI_NOTIFY_HANDLER Handler,
416 void *Context);

418 ACPI_STATUS
419 AcpiRemoveNotifyHandler (
420 ACPI_HANDLE Device,
421 UINT32 HandlerType,
422 ACPI_NOTIFY_HANDLER Handler);

424 ACPI_STATUS
425 AcpiInstallAddressSpaceHandler (
426 ACPI_HANDLE Device,
427 ACPI_ADR_SPACE_TYPE SpaceId,
428 ACPI_ADR_SPACE_HANDLER Handler,
429 ACPI_ADR_SPACE_SETUP Setup,
430 void *Context);

432 ACPI_STATUS
433 AcpiRemoveAddressSpaceHandler (
434 ACPI_HANDLE Device,
435 ACPI_ADR_SPACE_TYPE SpaceId,
436 ACPI_ADR_SPACE_HANDLER Handler);

438 ACPI_STATUS
439 AcpiInstallExceptionHandler (
440 ACPI_EXCEPTION_HANDLER Handler);

442 ACPI_STATUS
443 AcpiInstallInterfaceHandler (
444 ACPI_INTERFACE_HANDLER Handler);

447 /*
448 * Global Lock interfaces
449 */
450 ACPI_HW_DEPENDENT_RETURN_STATUS (
451 ACPI_STATUS
452 AcpiAcquireGlobalLock (
453 UINT16 Timeout,

new/usr/src/common/acpica/include/acpixf.h 8

454 UINT32 *Handle))

456 ACPI_HW_DEPENDENT_RETURN_STATUS (
457 ACPI_STATUS
458 AcpiReleaseGlobalLock (
459 UINT32 Handle))

462 /*
463 * Interfaces to AML mutex objects
464 */
465 ACPI_STATUS
466 AcpiAcquireMutex (
467 ACPI_HANDLE Handle,
468 ACPI_STRING Pathname,
469 UINT16 Timeout);

471 ACPI_STATUS
472 AcpiReleaseMutex (
473 ACPI_HANDLE Handle,
474 ACPI_STRING Pathname);

477 /*
478 * Fixed Event interfaces
479 */
480 ACPI_HW_DEPENDENT_RETURN_STATUS (
481 ACPI_STATUS
482 AcpiEnableEvent (
483 UINT32 Event,
484 UINT32 Flags))

486 ACPI_HW_DEPENDENT_RETURN_STATUS (
487 ACPI_STATUS
488 AcpiDisableEvent (
489 UINT32 Event,
490 UINT32 Flags))

492 ACPI_HW_DEPENDENT_RETURN_STATUS (
493 ACPI_STATUS
494 AcpiClearEvent (
495 UINT32 Event))

497 ACPI_HW_DEPENDENT_RETURN_STATUS (
498 ACPI_STATUS
499 AcpiGetEventStatus (
500 UINT32 Event,
501 ACPI_EVENT_STATUS *EventStatus))

504 /*
505 * General Purpose Event (GPE) Interfaces
506 */
507 ACPI_HW_DEPENDENT_RETURN_STATUS (
508 ACPI_STATUS
509 AcpiUpdateAllGpes (
510 void))

512 ACPI_HW_DEPENDENT_RETURN_STATUS (
513 ACPI_STATUS
514 AcpiEnableGpe (
515 ACPI_HANDLE GpeDevice,
516 UINT32 GpeNumber))

518 ACPI_HW_DEPENDENT_RETURN_STATUS (
519 ACPI_STATUS

new/usr/src/common/acpica/include/acpixf.h 9

520 AcpiDisableGpe (
521 ACPI_HANDLE GpeDevice,
522 UINT32 GpeNumber))

524 ACPI_HW_DEPENDENT_RETURN_STATUS (
525 ACPI_STATUS
526 AcpiClearGpe (
527 ACPI_HANDLE GpeDevice,
528 UINT32 GpeNumber))

530 ACPI_HW_DEPENDENT_RETURN_STATUS (
531 ACPI_STATUS
532 AcpiSetGpe (
533 ACPI_HANDLE GpeDevice,
534 UINT32 GpeNumber,
535 UINT8 Action))

537 ACPI_HW_DEPENDENT_RETURN_STATUS (
538 ACPI_STATUS
539 AcpiFinishGpe (
540 ACPI_HANDLE GpeDevice,
541 UINT32 GpeNumber))

543 ACPI_HW_DEPENDENT_RETURN_STATUS (
544 ACPI_STATUS
545 AcpiSetupGpeForWake (
546 ACPI_HANDLE ParentDevice,
547 ACPI_HANDLE GpeDevice,
548 UINT32 GpeNumber))

550 ACPI_HW_DEPENDENT_RETURN_STATUS (
551 ACPI_STATUS
552 AcpiSetGpeWakeMask (
553 ACPI_HANDLE GpeDevice,
554 UINT32 GpeNumber,
555 UINT8 Action))

557 ACPI_HW_DEPENDENT_RETURN_STATUS (
558 ACPI_STATUS
559 AcpiGetGpeStatus (
560 ACPI_HANDLE GpeDevice,
561 UINT32 GpeNumber,
562 ACPI_EVENT_STATUS *EventStatus))

564 ACPI_HW_DEPENDENT_RETURN_STATUS (
565 ACPI_STATUS
566 AcpiDisableAllGpes (
567 void))

569 ACPI_HW_DEPENDENT_RETURN_STATUS (
570 ACPI_STATUS
571 AcpiEnableAllRuntimeGpes (
572 void))

574 ACPI_HW_DEPENDENT_RETURN_STATUS (
575 ACPI_STATUS
576 AcpiGetGpeDevice (
577 UINT32 GpeIndex,
578 ACPI_HANDLE *GpeDevice))

580 ACPI_HW_DEPENDENT_RETURN_STATUS (
581 ACPI_STATUS
582 AcpiInstallGpeBlock (
583 ACPI_HANDLE GpeDevice,
584 ACPI_GENERIC_ADDRESS *GpeBlockAddress,
585 UINT32 RegisterCount,

new/usr/src/common/acpica/include/acpixf.h 10

586 UINT32 InterruptNumber))

588 ACPI_HW_DEPENDENT_RETURN_STATUS (
589 ACPI_STATUS
590 AcpiRemoveGpeBlock (
591 ACPI_HANDLE GpeDevice))

594 /*
595 * Resource interfaces
596 */
597 typedef
598 ACPI_STATUS (*ACPI_WALK_RESOURCE_CALLBACK) (
599 ACPI_RESOURCE *Resource,
600 void *Context);

602 ACPI_STATUS
603 AcpiGetVendorResource (
604 ACPI_HANDLE Device,
605 char *Name,
606 ACPI_VENDOR_UUID *Uuid,
607 ACPI_BUFFER *RetBuffer);

609 ACPI_STATUS
610 AcpiGetCurrentResources (
611 ACPI_HANDLE Device,
612 ACPI_BUFFER *RetBuffer);

614 ACPI_STATUS
615 AcpiGetPossibleResources (
616 ACPI_HANDLE Device,
617 ACPI_BUFFER *RetBuffer);

619 ACPI_STATUS
620 AcpiGetEventResources (
621 ACPI_HANDLE DeviceHandle,
622 ACPI_BUFFER *RetBuffer);

624 ACPI_STATUS
625 AcpiWalkResourceBuffer (
626 ACPI_BUFFER *Buffer,
627 ACPI_WALK_RESOURCE_CALLBACK UserFunction,
628 void *Context);

630 ACPI_STATUS
631 AcpiWalkResources (
632 ACPI_HANDLE Device,
633 char *Name,
634 ACPI_WALK_RESOURCE_CALLBACK UserFunction,
635 void *Context);

637 ACPI_STATUS
638 AcpiSetCurrentResources (
639 ACPI_HANDLE Device,
640 ACPI_BUFFER *InBuffer);

642 ACPI_STATUS
643 AcpiGetIrqRoutingTable (
644 ACPI_HANDLE Device,
645 ACPI_BUFFER *RetBuffer);

647 ACPI_STATUS
648 AcpiResourceToAddress64 (
649 ACPI_RESOURCE *Resource,
650 ACPI_RESOURCE_ADDRESS64 *Out);

new/usr/src/common/acpica/include/acpixf.h 11

652 ACPI_STATUS
653 AcpiBufferToResource (
654 UINT8 *AmlBuffer,
655 UINT16 AmlBufferLength,
656 ACPI_RESOURCE **ResourcePtr);

659 /*
660 * Hardware (ACPI device) interfaces
661 */
662 ACPI_STATUS
663 AcpiReset (
664 void);

666 ACPI_STATUS
667 AcpiRead (
668 UINT64 *Value,
669 ACPI_GENERIC_ADDRESS *Reg);

671 ACPI_STATUS
672 AcpiWrite (
673 UINT64 Value,
674 ACPI_GENERIC_ADDRESS *Reg);

676 ACPI_HW_DEPENDENT_RETURN_STATUS (
677 ACPI_STATUS
678 AcpiReadBitRegister (
679 UINT32 RegisterId,
680 UINT32 *ReturnValue))

682 ACPI_HW_DEPENDENT_RETURN_STATUS (
683 ACPI_STATUS
684 AcpiWriteBitRegister (
685 UINT32 RegisterId,
686 UINT32 Value))

689 /*
690 * Sleep/Wake interfaces
691 */
692 ACPI_STATUS
693 AcpiGetSleepTypeData (
694 UINT8 SleepState,
695 UINT8 *Slp_TypA,
696 UINT8 *Slp_TypB);

698 ACPI_STATUS
699 AcpiEnterSleepStatePrep (
700 UINT8 SleepState);

702 ACPI_STATUS
703 AcpiEnterSleepState (
704 UINT8 SleepState);

706 ACPI_HW_DEPENDENT_RETURN_STATUS (
707 ACPI_STATUS
708 AcpiEnterSleepStateS4bios (
709 void))

711 ACPI_STATUS
712 AcpiLeaveSleepStatePrep (
713 UINT8 SleepState);

715 ACPI_STATUS
716 AcpiLeaveSleepState (
717 UINT8 SleepState);

new/usr/src/common/acpica/include/acpixf.h 12

719 ACPI_HW_DEPENDENT_RETURN_STATUS (
720 ACPI_STATUS
721 AcpiSetFirmwareWakingVector (
722 UINT32 PhysicalAddress))

724 #if ACPI_MACHINE_WIDTH == 64
725 ACPI_HW_DEPENDENT_RETURN_STATUS (
726 ACPI_STATUS
727 AcpiSetFirmwareWakingVector64 (
728 UINT64 PhysicalAddress))
729 #endif

732 /*
733 * ACPI Timer interfaces
734 */
735 ACPI_HW_DEPENDENT_RETURN_STATUS (
736 ACPI_STATUS
737 AcpiGetTimerResolution (
738 UINT32 *Resolution))

740 ACPI_HW_DEPENDENT_RETURN_STATUS (
741 ACPI_STATUS
742 AcpiGetTimer (
743 UINT32 *Ticks))

745 ACPI_HW_DEPENDENT_RETURN_STATUS (
746 ACPI_STATUS
747 AcpiGetTimerDuration (
748 UINT32 StartTicks,
749 UINT32 EndTicks,
750 UINT32 *TimeElapsed))

753 /*
754 * Error/Warning output
755 */
756 ACPI_PRINTF_LIKE(3)
757 void ACPI_INTERNAL_VAR_XFACE
758 AcpiError (
759 const char *ModuleName,
760 UINT32 LineNumber,
761 const char *Format,
762 ...);

764 ACPI_PRINTF_LIKE(4)
765 void ACPI_INTERNAL_VAR_XFACE
766 AcpiException (
767 const char *ModuleName,
768 UINT32 LineNumber,
769 ACPI_STATUS Status,
770 const char *Format,
771 ...);

773 ACPI_PRINTF_LIKE(3)
774 void ACPI_INTERNAL_VAR_XFACE
775 AcpiWarning (
776 const char *ModuleName,
777 UINT32 LineNumber,
778 const char *Format,
779 ...);

781 ACPI_PRINTF_LIKE(3)
782 void ACPI_INTERNAL_VAR_XFACE
783 AcpiInfo (

new/usr/src/common/acpica/include/acpixf.h 13

784 const char *ModuleName,
785 UINT32 LineNumber,
786 const char *Format,
787 ...);

789 ACPI_PRINTF_LIKE(3)
790 void ACPI_INTERNAL_VAR_XFACE
791 AcpiBiosError (
792 const char *ModuleName,
793 UINT32 LineNumber,
794 const char *Format,
795 ...);

797 ACPI_PRINTF_LIKE(3)
798 void ACPI_INTERNAL_VAR_XFACE
799 AcpiBiosWarning (
800 const char *ModuleName,
801 UINT32 LineNumber,
802 const char *Format,
803 ...);

806 /*
807 * Debug output
808 */
809 #ifdef ACPI_DEBUG_OUTPUT

811 ACPI_PRINTF_LIKE(6)
812 void ACPI_INTERNAL_VAR_XFACE
813 AcpiDebugPrint (
814 UINT32 RequestedDebugLevel,
815 UINT32 LineNumber,
816 const char *FunctionName,
817 const char *ModuleName,
818 UINT32 ComponentId,
819 const char *Format,
820 ...);

822 ACPI_PRINTF_LIKE(6)
823 void ACPI_INTERNAL_VAR_XFACE
824 AcpiDebugPrintRaw (
825 UINT32 RequestedDebugLevel,
826 UINT32 LineNumber,
827 const char *FunctionName,
828 const char *ModuleName,
829 UINT32 ComponentId,
830 const char *Format,
831 ...);
832 #endif

834 #endif /* __ACXFACE_H__ */

new/usr/src/common/acpica/include/acpredef.h 1

**
 42485 Thu Dec 26 13:49:54 2013
new/usr/src/common/acpica/include/acpredef.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acpredef - Information table for ACPI predefined methods and objects
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACPREDEF_H__
45 #define __ACPREDEF_H__

48 /**
49 *
50 * Return Package types
51 *
52 * 1) PTYPE1 packages do not contain sub-packages.
53 *
54 * ACPI_PTYPE1_FIXED: Fixed-length length, 1 or 2 object types:
55 * object type
56 * count
57 * object type
58 * count
59 *
60 * ACPI_PTYPE1_VAR: Variable-length length. Zero-length package is allowed:

new/usr/src/common/acpica/include/acpredef.h 2

61 * object type (Int/Buf/Ref)
62 *
63 * ACPI_PTYPE1_OPTION: Package has some required and some optional elements
64 * (Used for _PRW)
65 *
66 *
67 * 2) PTYPE2 packages contain a Variable-length number of sub-packages. Each
68 * of the different types describe the contents of each of the sub-packages.
69 *
70 * ACPI_PTYPE2: Each subpackage contains 1 or 2 object types. Zero-length
71 * parent package is allowed:
72 * object type
73 * count
74 * object type
75 * count
76 * (Used for _ALR,_MLS,_PSS,_TRT,_TSS)
77 *
78 * ACPI_PTYPE2_COUNT: Each subpackage has a count as first element.
79 * Zero-length parent package is allowed:
80 * object type
81 * (Used for _CSD,_PSD,_TSD)
82 *
83 * ACPI_PTYPE2_PKG_COUNT: Count of subpackages at start, 1 or 2 object types:
84 * object type
85 * count
86 * object type
87 * count
88 * (Used for _CST)
89 *
90 * ACPI_PTYPE2_FIXED: Each subpackage is of Fixed-length. Zero-length
91 * parent package is allowed.
92 * (Used for _PRT)
93 *
94 * ACPI_PTYPE2_MIN: Each subpackage has a Variable-length but minimum length.
95 * Zero-length parent package is allowed:
96 * (Used for _HPX)
97 *
98 * ACPI_PTYPE2_REV_FIXED: Revision at start, each subpackage is Fixed-length
99 * (Used for _ART, _FPS)
100 *
101 * ACPI_PTYPE2_FIX_VAR: Each subpackage consists of some fixed-length elements
102 * followed by an optional element. Zero-length parent package is allowed.
103 * object type
104 * count
105 * object type
106 * count = 0 (optional)
107 * (Used for _DLM)
108 *
109 ***/

111 enum AcpiReturnPackageTypes
112 {
113 ACPI_PTYPE1_FIXED = 1,
114 ACPI_PTYPE1_VAR = 2,
115 ACPI_PTYPE1_OPTION = 3,
116 ACPI_PTYPE2 = 4,
117 ACPI_PTYPE2_COUNT = 5,
118 ACPI_PTYPE2_PKG_COUNT = 6,
119 ACPI_PTYPE2_FIXED = 7,
120 ACPI_PTYPE2_MIN = 8,
121 ACPI_PTYPE2_REV_FIXED = 9,
122 ACPI_PTYPE2_FIX_VAR = 10
123 };

126 /* Support macros for users of the predefined info table */

new/usr/src/common/acpica/include/acpredef.h 3

128 #define METHOD_PREDEF_ARGS_MAX 4
129 #define METHOD_ARG_BIT_WIDTH 3
130 #define METHOD_ARG_MASK 0x0007
131 #define ARG_COUNT_IS_MINIMUM 0x8000
132 #define METHOD_MAX_ARG_TYPE ACPI_TYPE_PACKAGE

134 #define METHOD_GET_ARG_COUNT(ArgList) ((ArgList) & METHOD_ARG_MASK)
135 #define METHOD_GET_NEXT_TYPE(ArgList) (((ArgList) >>= METHOD_ARG_BIT_WIDTH) &

137 /* Macros used to build the predefined info table */

139 #define METHOD_0ARGS 0
140 #define METHOD_1ARGS(a1) (1 | (a1 << 3))
141 #define METHOD_2ARGS(a1,a2) (2 | (a1 << 3) | (a2 << 6))
142 #define METHOD_3ARGS(a1,a2,a3) (3 | (a1 << 3) | (a2 << 6) | (a3 << 9))
143 #define METHOD_4ARGS(a1,a2,a3,a4) (4 | (a1 << 3) | (a2 << 6) | (a3 << 9) |

145 #define METHOD_RETURNS(type) (type)
146 #define METHOD_NO_RETURN_VALUE 0

148 #define PACKAGE_INFO(a,b,c,d,e,f) {{{(a),(b),(c),(d)}, ((((UINT16)(f)) <<

151 /* Support macros for the resource descriptor info table */

153 #define WIDTH_1 0x0001
154 #define WIDTH_2 0x0002
155 #define WIDTH_3 0x0004
156 #define WIDTH_8 0x0008
157 #define WIDTH_16 0x0010
158 #define WIDTH_32 0x0020
159 #define WIDTH_64 0x0040
160 #define VARIABLE_DATA 0x0080
161 #define NUM_RESOURCE_WIDTHS 8

163 #define WIDTH_ADDRESS WIDTH_16 | WIDTH_32 | WIDTH_64

166 #ifdef ACPI_CREATE_PREDEFINED_TABLE
167 /**
168 *
169 * Predefined method/object information table.
170 *
171 * These are the names that can actually be evaluated via AcpiEvaluateObject.
172 * Not present in this table are the following:
173 *
174 * 1) Predefined/Reserved names that are never evaluated via
175 * AcpiEvaluateObject:
176 * _Lxx and _Exx GPE methods
177 * _Qxx EC methods
178 * _T_x compiler temporary variables
179 * _Wxx wake events
180 *
181 * 2) Predefined names that never actually exist within the AML code:
182 * Predefined resource descriptor field names
183 *
184 * 3) Predefined names that are implemented within ACPICA:
185 * _OSI
186 *
187 * The main entries in the table each contain the following items:
188 *
189 * Name - The ACPI reserved name
190 * ArgumentList - Contains (in 16 bits), the number of required
191 * arguments to the method (3 bits), and a 3-bit type
192 * field for each argument (up to 4 arguments). The

new/usr/src/common/acpica/include/acpredef.h 4

193 * METHOD_?ARGS macros generate the correct packed data.
194 * ExpectedBtypes - Allowed type(s) for the return value.
195 * 0 means that no return value is expected.
196 *
197 * For methods that return packages, the next entry in the table contains
198 * information about the expected structure of the package. This information
199 * is saved here (rather than in a separate table) in order to minimize the
200 * overall size of the stored data.
201 *
202 * Note: The additional braces are intended to promote portability.
203 *
204 * Note2: Table is used by the kernel-resident subsystem, the iASL compiler,
205 * and the AcpiHelp utility.
206 *
207 * TBD: _PRT - currently ignore reversed entries. Attempt to fix in nsrepair.
208 * Possibly fixing package elements like _BIF, etc.
209 *
210 ***/

212 const ACPI_PREDEFINED_INFO AcpiGbl_PredefinedMethods[] =
213 {
214 {{"_AC0", METHOD_0ARGS,
215 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

217 {{"_AC1", METHOD_0ARGS,
218 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

220 {{"_AC2", METHOD_0ARGS,
221 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

223 {{"_AC3", METHOD_0ARGS,
224 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

226 {{"_AC4", METHOD_0ARGS,
227 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

229 {{"_AC5", METHOD_0ARGS,
230 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

232 {{"_AC6", METHOD_0ARGS,
233 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

235 {{"_AC7", METHOD_0ARGS,
236 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

238 {{"_AC8", METHOD_0ARGS,
239 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

241 {{"_AC9", METHOD_0ARGS,
242 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

244 {{"_ADR", METHOD_0ARGS,
245 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

247 {{"_AEI", METHOD_0ARGS,
248 METHOD_RETURNS (ACPI_RTYPE_BUFFER)}},

250 {{"_AL0", METHOD_0ARGS,
251 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
252 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

254 {{"_AL1", METHOD_0ARGS,
255 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
256 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

258 {{"_AL2", METHOD_0ARGS,

new/usr/src/common/acpica/include/acpredef.h 5

259 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
260 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

262 {{"_AL3", METHOD_0ARGS,
263 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
264 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

266 {{"_AL4", METHOD_0ARGS,
267 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
268 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

270 {{"_AL5", METHOD_0ARGS,
271 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
272 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

274 {{"_AL6", METHOD_0ARGS,
275 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
276 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

278 {{"_AL7", METHOD_0ARGS,
279 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
280 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

282 {{"_AL8", METHOD_0ARGS,
283 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
284 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

286 {{"_AL9", METHOD_0ARGS,
287 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
288 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

290 {{"_ALC", METHOD_0ARGS,
291 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

293 {{"_ALI", METHOD_0ARGS,
294 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

296 {{"_ALP", METHOD_0ARGS,
297 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

299 {{"_ALR", METHOD_0ARGS,
300 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs)
301 PACKAGE_INFO (ACPI_PTYPE2, ACPI_RTYPE_INTEGER, 2,0,0,0),

303 {{"_ALT", METHOD_0ARGS,
304 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

306 {{"_ART", METHOD_0ARGS,
307 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (1 Int
308 PACKAGE_INFO (ACPI_PTYPE2_REV_FIXED, ACPI_RTYPE_REFERENCE, 2

310 {{"_BBN", METHOD_0ARGS,
311 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

313 {{"_BCL", METHOD_0ARGS,
314 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Ints)
315 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 0,0,0,0),

317 {{"_BCM", METHOD_1ARGS (ACPI_TYPE_INTEGER),
318 METHOD_NO_RETURN_VALUE}},

320 {{"_BCT", METHOD_1ARGS (ACPI_TYPE_INTEGER),
321 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

323 {{"_BDN", METHOD_0ARGS,
324 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

new/usr/src/common/acpica/include/acpredef.h 6

326 {{"_BFS", METHOD_1ARGS (ACPI_TYPE_INTEGER),
327 METHOD_NO_RETURN_VALUE}},

329 {{"_BIF", METHOD_0ARGS,
330 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (9 Int),(
331 PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 9, ACPI

333 {{"_BIX", METHOD_0ARGS,
334 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (16 Int),
335 PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 16, ACP

337 {{"_BLT", METHOD_3ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_IN
338 METHOD_NO_RETURN_VALUE}},

340 {{"_BMA", METHOD_1ARGS (ACPI_TYPE_INTEGER),
341 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

343 {{"_BMC", METHOD_1ARGS (ACPI_TYPE_INTEGER),
344 METHOD_NO_RETURN_VALUE}},

346 {{"_BMD", METHOD_0ARGS,
347 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (5 Int) *
348 PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 5,0,0,0

350 {{"_BMS", METHOD_1ARGS (ACPI_TYPE_INTEGER),
351 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

353 {{"_BQC", METHOD_0ARGS,
354 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

356 {{"_BST", METHOD_0ARGS,
357 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (4 Int) *
358 PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 4,0,0,0

360 {{"_BTM", METHOD_1ARGS (ACPI_TYPE_INTEGER),
361 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

363 {{"_BTP", METHOD_1ARGS (ACPI_TYPE_INTEGER),
364 METHOD_NO_RETURN_VALUE}},

366 {{"_CBA", METHOD_0ARGS,
367 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, /* See PCI firmware spec

369 {{"_CDM", METHOD_0ARGS,
370 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

372 {{"_CID", METHOD_0ARGS,
373 METHOD_RETURNS (ACPI_RTYPE_INTEGER | ACPI_RTYPE_STRING | ACPI_RT
374 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER | ACPI_RTY

376 {{"_CLS", METHOD_0ARGS,
377 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (3 Int) *
378 PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 3,0,0,0

380 {{"_CPC", METHOD_0ARGS,
381 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Ints/
382 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER | ACPI_RTY

384 {{"_CRS", METHOD_0ARGS,
385 METHOD_RETURNS (ACPI_RTYPE_BUFFER)}},

387 {{"_CRT", METHOD_0ARGS,
388 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

390 {{"_CSD", METHOD_0ARGS,

new/usr/src/common/acpica/include/acpredef.h 7

391 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (1 Int
392 PACKAGE_INFO (ACPI_PTYPE2_COUNT, ACPI_RTYPE_INTEGER, 0,0,0,0

394 {{"_CST", METHOD_0ARGS,
395 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (1 Int
396 PACKAGE_INFO (ACPI_PTYPE2_PKG_COUNT,ACPI_RTYPE_BUFFER, 1, AC

398 {{"_CWS", METHOD_1ARGS (ACPI_TYPE_INTEGER),
399 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

401 {{"_DCK", METHOD_1ARGS (ACPI_TYPE_INTEGER),
402 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

404 {{"_DCS", METHOD_0ARGS,
405 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

407 {{"_DDC", METHOD_1ARGS (ACPI_TYPE_INTEGER),
408 METHOD_RETURNS (ACPI_RTYPE_INTEGER | ACPI_RTYPE_BUFFER)}},

410 {{"_DDN", METHOD_0ARGS,
411 METHOD_RETURNS (ACPI_RTYPE_STRING)}},

413 {{"_DEP", METHOD_0ARGS,
414 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
415 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

417 {{"_DGS", METHOD_0ARGS,
418 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

420 {{"_DIS", METHOD_0ARGS,
421 METHOD_NO_RETURN_VALUE}},

423 {{"_DLM", METHOD_0ARGS,
424 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs)
425 PACKAGE_INFO (ACPI_PTYPE2_FIX_VAR, ACPI_RTYPE_REFERENCE, 1,

427 {{"_DMA", METHOD_0ARGS,
428 METHOD_RETURNS (ACPI_RTYPE_BUFFER)}},

430 {{"_DOD", METHOD_0ARGS,
431 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Ints)
432 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 0,0,0,0),

434 {{"_DOS", METHOD_1ARGS (ACPI_TYPE_INTEGER),
435 METHOD_NO_RETURN_VALUE}},

437 {{"_DSM", METHOD_4ARGS (ACPI_TYPE_BUFFER, ACPI_TYPE_INTEGER, ACPI_TYPE_INT
438 METHOD_RETURNS (ACPI_RTYPE_ALL)}}, /* Must return a value, but i

440 {{"_DSS", METHOD_1ARGS (ACPI_TYPE_INTEGER),
441 METHOD_NO_RETURN_VALUE}},

443 {{"_DSW", METHOD_3ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_IN
444 METHOD_NO_RETURN_VALUE}},

446 {{"_DTI", METHOD_1ARGS (ACPI_TYPE_INTEGER),
447 METHOD_NO_RETURN_VALUE}},

449 {{"_EC_", METHOD_0ARGS,
450 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

452 {{"_EDL", METHOD_0ARGS,
453 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
454 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

456 {{"_EJ0", METHOD_1ARGS (ACPI_TYPE_INTEGER),

new/usr/src/common/acpica/include/acpredef.h 8

457 METHOD_NO_RETURN_VALUE}},

459 {{"_EJ1", METHOD_1ARGS (ACPI_TYPE_INTEGER),
460 METHOD_NO_RETURN_VALUE}},

462 {{"_EJ2", METHOD_1ARGS (ACPI_TYPE_INTEGER),
463 METHOD_NO_RETURN_VALUE}},

465 {{"_EJ3", METHOD_1ARGS (ACPI_TYPE_INTEGER),
466 METHOD_NO_RETURN_VALUE}},

468 {{"_EJ4", METHOD_1ARGS (ACPI_TYPE_INTEGER),
469 METHOD_NO_RETURN_VALUE}},

471 {{"_EJD", METHOD_0ARGS,
472 METHOD_RETURNS (ACPI_RTYPE_STRING)}},

474 {{"_ERR", METHOD_3ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_STRING, ACPI_TYPE_INT
475 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, /* Internal use only, use

477 {{"_EVT", METHOD_1ARGS (ACPI_TYPE_INTEGER),
478 METHOD_NO_RETURN_VALUE}},

480 {{"_FDE", METHOD_0ARGS,
481 METHOD_RETURNS (ACPI_RTYPE_BUFFER)}},

483 {{"_FDI", METHOD_0ARGS,
484 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (16 Int)
485 PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 16,0,0,

487 {{"_FDM", METHOD_1ARGS (ACPI_TYPE_INTEGER),
488 METHOD_NO_RETURN_VALUE}},

490 {{"_FIF", METHOD_0ARGS,
491 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (4 Int) *
492 PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 4,0,0,0

494 {{"_FIX", METHOD_0ARGS,
495 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Ints)
496 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 0,0,0,0),

498 {{"_FPS", METHOD_0ARGS,
499 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (1 Int
500 PACKAGE_INFO (ACPI_PTYPE2_REV_FIXED,ACPI_RTYPE_INTEGER, 5, 0

502 {{"_FSL", METHOD_1ARGS (ACPI_TYPE_INTEGER),
503 METHOD_NO_RETURN_VALUE}},

505 {{"_FST", METHOD_0ARGS,
506 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (3 Int) *
507 PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 3,0,0,0

509 {{"_GAI", METHOD_0ARGS,
510 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

512 {{"_GCP", METHOD_0ARGS,
513 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

515 {{"_GHL", METHOD_0ARGS,
516 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

518 {{"_GLK", METHOD_0ARGS,
519 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

521 {{"_GPD", METHOD_0ARGS,
522 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

new/usr/src/common/acpica/include/acpredef.h 9

524 {{"_GPE", METHOD_0ARGS,
525 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, /* _GPE method, not _GPE

527 {{"_GRT", METHOD_0ARGS,
528 METHOD_RETURNS (ACPI_RTYPE_BUFFER)}},

530 {{"_GSB", METHOD_0ARGS,
531 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

533 {{"_GTF", METHOD_0ARGS,
534 METHOD_RETURNS (ACPI_RTYPE_BUFFER)}},

536 {{"_GTM", METHOD_0ARGS,
537 METHOD_RETURNS (ACPI_RTYPE_BUFFER)}},

539 {{"_GTS", METHOD_1ARGS (ACPI_TYPE_INTEGER),
540 METHOD_NO_RETURN_VALUE}},

542 {{"_GWS", METHOD_1ARGS (ACPI_TYPE_INTEGER),
543 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

545 {{"_HID", METHOD_0ARGS,
546 METHOD_RETURNS (ACPI_RTYPE_INTEGER | ACPI_RTYPE_STRING)}},

548 {{"_HOT", METHOD_0ARGS,
549 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

551 {{"_HPP", METHOD_0ARGS,
552 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (4 Int) *
553 PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 4,0,0,0

555 /*
556 * For _HPX, a single package is returned, containing a variable-length numb
557 * of sub-packages. Each sub-package contains a PCI record setting.
558 * There are several different type of record settings, of different
559 * lengths, but all elements of all settings are Integers.
560 */
561 {{"_HPX", METHOD_0ARGS,
562 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs)
563 PACKAGE_INFO (ACPI_PTYPE2_MIN, ACPI_RTYPE_INTEGER, 5,0,0,0),

565 {{"_HRV", METHOD_0ARGS,
566 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

568 {{"_IFT", METHOD_0ARGS,
569 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, /* See IPMI spec */

571 {{"_INI", METHOD_0ARGS,
572 METHOD_NO_RETURN_VALUE}},

574 {{"_IRC", METHOD_0ARGS,
575 METHOD_NO_RETURN_VALUE}},

577 {{"_LCK", METHOD_1ARGS (ACPI_TYPE_INTEGER),
578 METHOD_NO_RETURN_VALUE}},

580 {{"_LID", METHOD_0ARGS,
581 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

583 {{"_MAT", METHOD_0ARGS,
584 METHOD_RETURNS (ACPI_RTYPE_BUFFER)}},

586 {{"_MBM", METHOD_0ARGS,
587 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (8 Int) *
588 PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 8,0,0,0

new/usr/src/common/acpica/include/acpredef.h 10

590 {{"_MLS", METHOD_0ARGS,
591 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs)
592 PACKAGE_INFO (ACPI_PTYPE2, ACPI_RTYPE_STRING, 1, ACPI_RTYPE_

594 {{"_MSG", METHOD_1ARGS (ACPI_TYPE_INTEGER),
595 METHOD_NO_RETURN_VALUE}},

597 {{"_MSM", METHOD_4ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_IN
598 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

600 {{"_NTT", METHOD_0ARGS,
601 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

603 {{"_OFF", METHOD_0ARGS,
604 METHOD_NO_RETURN_VALUE}},

606 {{"_ON_", METHOD_0ARGS,
607 METHOD_NO_RETURN_VALUE}},

609 {{"_OS_", METHOD_0ARGS,
610 METHOD_RETURNS (ACPI_RTYPE_STRING)}},

612 {{"_OSC", METHOD_4ARGS (ACPI_TYPE_BUFFER, ACPI_TYPE_INTEGER, ACPI_TYPE_INT
613 METHOD_RETURNS (ACPI_RTYPE_BUFFER)}},

615 {{"_OST", METHOD_3ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_BU
616 METHOD_NO_RETURN_VALUE}},

618 {{"_PAI", METHOD_1ARGS (ACPI_TYPE_INTEGER),
619 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

621 {{"_PCL", METHOD_0ARGS,
622 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
623 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

625 {{"_PCT", METHOD_0ARGS,
626 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (2 Buf) *
627 PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_BUFFER, 2,0,0,0)

629 {{"_PDC", METHOD_1ARGS (ACPI_TYPE_BUFFER),
630 METHOD_NO_RETURN_VALUE}},

632 {{"_PDL", METHOD_0ARGS,
633 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

635 {{"_PIC", METHOD_1ARGS (ACPI_TYPE_INTEGER),
636 METHOD_NO_RETURN_VALUE}},

638 {{"_PIF", METHOD_0ARGS,
639 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (3 Int),(
640 PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 3, ACPI

642 {{"_PLD", METHOD_0ARGS,
643 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Bufs)
644 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_BUFFER, 0,0,0,0),

646 {{"_PMC", METHOD_0ARGS,
647 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (11 Int),
648 PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 11, ACP

650 {{"_PMD", METHOD_0ARGS,
651 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
652 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

654 {{"_PMM", METHOD_0ARGS,

new/usr/src/common/acpica/include/acpredef.h 11

655 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

657 {{"_PPC", METHOD_0ARGS,
658 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

660 {{"_PPE", METHOD_0ARGS,
661 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, /* See dig64 spec */

663 {{"_PR0", METHOD_0ARGS,
664 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
665 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

667 {{"_PR1", METHOD_0ARGS,
668 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
669 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

671 {{"_PR2", METHOD_0ARGS,
672 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
673 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

675 {{"_PR3", METHOD_0ARGS,
676 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
677 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

679 {{"_PRE", METHOD_0ARGS,
680 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
681 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

683 {{"_PRL", METHOD_0ARGS,
684 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
685 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

687 {{"_PRS", METHOD_0ARGS,
688 METHOD_RETURNS (ACPI_RTYPE_BUFFER)}},

690 /*
691 * For _PRT, many BIOSs reverse the 3rd and 4th Package elements (Source
692 * and SourceIndex). This bug is so prevalent that there is code in the
693 * ACPICA Resource Manager to detect this and switch them back. For now,
694 * do not allow and issue a warning. To allow this and eliminate the
695 * warning, add the ACPI_RTYPE_REFERENCE type to the 4th element (index 3)
696 * in the statement below.
697 */
698 {{"_PRT", METHOD_0ARGS,
699 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs)
700 PACKAGE_INFO (ACPI_PTYPE2_FIXED, 4, ACPI_RTYPE_INTEGER, ACPI
701 ACPI_RTYPE_INTEGER | ACPI_RTYPE_REFERENCE, ACP

703 {{"_PRW", METHOD_0ARGS,
704 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs)
705 PACKAGE_INFO (ACPI_PTYPE1_OPTION, 2, ACPI_RTYPE_INTEGER | AC
706 ACPI_RTYPE_INTEGER, ACPI_RTYPE_REFERENCE, 0),

708 {{"_PS0", METHOD_0ARGS,
709 METHOD_NO_RETURN_VALUE}},

711 {{"_PS1", METHOD_0ARGS,
712 METHOD_NO_RETURN_VALUE}},

714 {{"_PS2", METHOD_0ARGS,
715 METHOD_NO_RETURN_VALUE}},

717 {{"_PS3", METHOD_0ARGS,
718 METHOD_NO_RETURN_VALUE}},

720 {{"_PSC", METHOD_0ARGS,

new/usr/src/common/acpica/include/acpredef.h 12

721 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

723 {{"_PSD", METHOD_0ARGS,
724 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs)
725 PACKAGE_INFO (ACPI_PTYPE2_COUNT, ACPI_RTYPE_INTEGER, 0,0,0,0

727 {{"_PSE", METHOD_1ARGS (ACPI_TYPE_INTEGER),
728 METHOD_NO_RETURN_VALUE}},

730 {{"_PSL", METHOD_0ARGS,
731 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
732 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

734 {{"_PSR", METHOD_0ARGS,
735 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

737 {{"_PSS", METHOD_0ARGS,
738 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs)
739 PACKAGE_INFO (ACPI_PTYPE2, ACPI_RTYPE_INTEGER, 6,0,0,0),

741 {{"_PSV", METHOD_0ARGS,
742 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

744 {{"_PSW", METHOD_1ARGS (ACPI_TYPE_INTEGER),
745 METHOD_NO_RETURN_VALUE}},

747 {{"_PTC", METHOD_0ARGS,
748 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (2 Buf) *
749 PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_BUFFER, 2,0,0,0)

751 {{"_PTP", METHOD_2ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER),
752 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

754 {{"_PTS", METHOD_1ARGS (ACPI_TYPE_INTEGER),
755 METHOD_NO_RETURN_VALUE}},

757 {{"_PUR", METHOD_0ARGS,
758 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (2 Int) *
759 PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 2,0,0,0

761 {{"_PXM", METHOD_0ARGS,
762 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

764 {{"_REG", METHOD_2ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER),
765 METHOD_NO_RETURN_VALUE}},

767 {{"_REV", METHOD_0ARGS,
768 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

770 {{"_RMV", METHOD_0ARGS,
771 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

773 {{"_ROM", METHOD_2ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER),
774 METHOD_RETURNS (ACPI_RTYPE_BUFFER)}},

776 {{"_RTV", METHOD_0ARGS,
777 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

779 /*
780 * For _S0_ through _S5_, the ACPI spec defines a return Package
781 * containing 1 Integer, but most DSDTs have it wrong - 2,3, or 4 integers.
782 * Allow this by making the objects "Variable-length length", but all elemen
783 * must be Integers.
784 */
785 {{"_S0_", METHOD_0ARGS,
786 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (1 Int) *

new/usr/src/common/acpica/include/acpredef.h 13

787 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 1,0,0,0),

789 {{"_S1_", METHOD_0ARGS,
790 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (1 Int) *
791 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 1,0,0,0),

793 {{"_S2_", METHOD_0ARGS,
794 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (1 Int) *
795 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 1,0,0,0),

797 {{"_S3_", METHOD_0ARGS,
798 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (1 Int) *
799 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 1,0,0,0),

801 {{"_S4_", METHOD_0ARGS,
802 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (1 Int) *
803 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 1,0,0,0),

805 {{"_S5_", METHOD_0ARGS,
806 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (1 Int) *
807 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 1,0,0,0),

809 {{"_S1D", METHOD_0ARGS,
810 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

812 {{"_S2D", METHOD_0ARGS,
813 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

815 {{"_S3D", METHOD_0ARGS,
816 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

818 {{"_S4D", METHOD_0ARGS,
819 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

821 {{"_S0W", METHOD_0ARGS,
822 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

824 {{"_S1W", METHOD_0ARGS,
825 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

827 {{"_S2W", METHOD_0ARGS,
828 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

830 {{"_S3W", METHOD_0ARGS,
831 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

833 {{"_S4W", METHOD_0ARGS,
834 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

836 {{"_SBS", METHOD_0ARGS,
837 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

839 {{"_SCP", METHOD_1ARGS (ACPI_TYPE_INTEGER) | ARG_COUNT_IS_MINIMUM,
840 METHOD_NO_RETURN_VALUE}}, /* Acpi 1.0 allowed 1 integer arg. A

842 {{"_SDD", METHOD_1ARGS (ACPI_TYPE_BUFFER),
843 METHOD_NO_RETURN_VALUE}},

845 {{"_SEG", METHOD_0ARGS,
846 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

848 {{"_SHL", METHOD_1ARGS (ACPI_TYPE_INTEGER),
849 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

851 {{"_SLI", METHOD_0ARGS,
852 METHOD_RETURNS (ACPI_RTYPE_BUFFER)}},

new/usr/src/common/acpica/include/acpredef.h 14

854 {{"_SPD", METHOD_1ARGS (ACPI_TYPE_INTEGER),
855 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

857 {{"_SRS", METHOD_1ARGS (ACPI_TYPE_BUFFER),
858 METHOD_NO_RETURN_VALUE}},

860 {{"_SRT", METHOD_1ARGS (ACPI_TYPE_BUFFER),
861 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

863 {{"_SRV", METHOD_0ARGS,
864 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, /* See IPMI spec */

866 {{"_SST", METHOD_1ARGS (ACPI_TYPE_INTEGER),
867 METHOD_NO_RETURN_VALUE}},

869 {{"_STA", METHOD_0ARGS,
870 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

872 {{"_STM", METHOD_3ARGS (ACPI_TYPE_BUFFER, ACPI_TYPE_BUFFER, ACPI_TYPE_BUFF
873 METHOD_NO_RETURN_VALUE}},

875 {{"_STP", METHOD_2ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER),
876 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

878 {{"_STR", METHOD_0ARGS,
879 METHOD_RETURNS (ACPI_RTYPE_BUFFER)}},

881 {{"_STV", METHOD_2ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER),
882 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

884 {{"_SUB", METHOD_0ARGS,
885 METHOD_RETURNS (ACPI_RTYPE_STRING)}},

887 {{"_SUN", METHOD_0ARGS,
888 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

890 {{"_SWS", METHOD_0ARGS,
891 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

893 {{"_TC1", METHOD_0ARGS,
894 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

896 {{"_TC2", METHOD_0ARGS,
897 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

899 {{"_TDL", METHOD_0ARGS,
900 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

902 {{"_TIP", METHOD_1ARGS (ACPI_TYPE_INTEGER),
903 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

905 {{"_TIV", METHOD_1ARGS (ACPI_TYPE_INTEGER),
906 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

908 {{"_TMP", METHOD_0ARGS,
909 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

911 {{"_TPC", METHOD_0ARGS,
912 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

914 {{"_TPT", METHOD_1ARGS (ACPI_TYPE_INTEGER),
915 METHOD_NO_RETURN_VALUE}},

917 {{"_TRT", METHOD_0ARGS,
918 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs)

new/usr/src/common/acpica/include/acpredef.h 15

919 PACKAGE_INFO (ACPI_PTYPE2, ACPI_RTYPE_REFERENCE, 2, ACPI_RTY

921 {{"_TSD", METHOD_0ARGS,
922 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs)
923 PACKAGE_INFO (ACPI_PTYPE2_COUNT,ACPI_RTYPE_INTEGER, 5,0,0,0)

925 {{"_TSP", METHOD_0ARGS,
926 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

928 {{"_TSS", METHOD_0ARGS,
929 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs)
930 PACKAGE_INFO (ACPI_PTYPE2, ACPI_RTYPE_INTEGER, 5,0,0,0),

932 {{"_TST", METHOD_0ARGS,
933 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

935 {{"_TTS", METHOD_1ARGS (ACPI_TYPE_INTEGER),
936 METHOD_NO_RETURN_VALUE}},

938 {{"_TZD", METHOD_0ARGS,
939 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)
940 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0

942 {{"_TZM", METHOD_0ARGS,
943 METHOD_RETURNS (ACPI_RTYPE_REFERENCE)}},

945 {{"_TZP", METHOD_0ARGS,
946 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

948 {{"_UID", METHOD_0ARGS,
949 METHOD_RETURNS (ACPI_RTYPE_INTEGER | ACPI_RTYPE_STRING)}},

951 {{"_UPC", METHOD_0ARGS,
952 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (4 Int) *
953 PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 4,0,0,0

955 {{"_UPD", METHOD_0ARGS,
956 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

958 {{"_UPP", METHOD_0ARGS,
959 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

961 {{"_VPO", METHOD_0ARGS,
962 METHOD_RETURNS (ACPI_RTYPE_INTEGER)}},

964 /* Acpi 1.0 defined _WAK with no return value. Later, it was changed to retu

966 {{"_WAK", METHOD_1ARGS (ACPI_TYPE_INTEGER),
967 METHOD_RETURNS (ACPI_RTYPE_NONE | ACPI_RTYPE_INTEGER | ACPI_RTYP
968 PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 2,0,0,0

970 /* _WDG/_WED are MS extensions defined by "Windows Instrumentation" */

972 {{"_WDG", METHOD_0ARGS,
973 METHOD_RETURNS (ACPI_RTYPE_BUFFER)}},

975 {{"_WED", METHOD_1ARGS (ACPI_TYPE_INTEGER),
976 METHOD_RETURNS (ACPI_RTYPE_INTEGER | ACPI_RTYPE_STRING | ACPI_RT

978 PACKAGE_INFO (0,0,0,0,0,0) /* Table terminator */
979 };
980 #else
981 extern const ACPI_PREDEFINED_INFO AcpiGbl_PredefinedMethods[];
982 #endif

new/usr/src/common/acpica/include/acpredef.h 16

985 #if (defined ACPI_CREATE_RESOURCE_TABLE && defined ACPI_APPLICATION)
986 /**
987 *
988 * Predefined names for use in Resource Descriptors. These names do not
989 * appear in the global Predefined Name table (since these names never
990 * appear in actual AML byte code, only in the original ASL)
991 *
992 * Note: Used by iASL compiler and AcpiHelp utility only.
993 *
994 ***/

996 const ACPI_PREDEFINED_INFO AcpiGbl_ResourceNames[] =
997 {
998 {{"_ADR", WIDTH_16 | WIDTH_64, 0}},
999 {{"_ALN", WIDTH_8 | WIDTH_16 | WIDTH_32, 0}},

1000 {{"_ASI", WIDTH_8, 0}},
1001 {{"_ASZ", WIDTH_8, 0}},
1002 {{"_ATT", WIDTH_64, 0}},
1003 {{"_BAS", WIDTH_16 | WIDTH_32, 0}},
1004 {{"_BM_", WIDTH_1, 0}},
1005 {{"_DBT", WIDTH_16, 0}}, /* Acpi 5.0 */
1006 {{"_DEC", WIDTH_1, 0}},
1007 {{"_DMA", WIDTH_8, 0}},
1008 {{"_DPL", WIDTH_1, 0}}, /* Acpi 5.0 */
1009 {{"_DRS", WIDTH_16, 0}}, /* Acpi 5.0 */
1010 {{"_END", WIDTH_1, 0}}, /* Acpi 5.0 */
1011 {{"_FLC", WIDTH_2, 0}}, /* Acpi 5.0 */
1012 {{"_GRA", WIDTH_ADDRESS, 0}},
1013 {{"_HE_", WIDTH_1, 0}},
1014 {{"_INT", WIDTH_16 | WIDTH_32, 0}},
1015 {{"_IOR", WIDTH_2, 0}}, /* Acpi 5.0 */
1016 {{"_LEN", WIDTH_8 | WIDTH_ADDRESS, 0}},
1017 {{"_LIN", WIDTH_8, 0}}, /* Acpi 5.0 */
1018 {{"_LL_", WIDTH_1, 0}},
1019 {{"_MAF", WIDTH_1, 0}},
1020 {{"_MAX", WIDTH_ADDRESS, 0}},
1021 {{"_MEM", WIDTH_2, 0}},
1022 {{"_MIF", WIDTH_1, 0}},
1023 {{"_MIN", WIDTH_ADDRESS, 0}},
1024 {{"_MOD", WIDTH_1, 0}}, /* Acpi 5.0 */
1025 {{"_MTP", WIDTH_2, 0}},
1026 {{"_PAR", WIDTH_8, 0}}, /* Acpi 5.0 */
1027 {{"_PHA", WIDTH_1, 0}}, /* Acpi 5.0 */
1028 {{"_PIN", WIDTH_16, 0}}, /* Acpi 5.0 */
1029 {{"_PPI", WIDTH_8, 0}}, /* Acpi 5.0 */
1030 {{"_POL", WIDTH_1 | WIDTH_2, 0}}, /* Acpi 5.0 */
1031 {{"_RBO", WIDTH_8, 0}},
1032 {{"_RBW", WIDTH_8, 0}},
1033 {{"_RNG", WIDTH_1, 0}},
1034 {{"_RT_", WIDTH_8, 0}}, /* Acpi 3.0 */
1035 {{"_RW_", WIDTH_1, 0}},
1036 {{"_RXL", WIDTH_16, 0}}, /* Acpi 5.0 */
1037 {{"_SHR", WIDTH_2, 0}},
1038 {{"_SIZ", WIDTH_2, 0}},
1039 {{"_SLV", WIDTH_1, 0}}, /* Acpi 5.0 */
1040 {{"_SPE", WIDTH_32, 0}}, /* Acpi 5.0 */
1041 {{"_STB", WIDTH_2, 0}}, /* Acpi 5.0 */
1042 {{"_TRA", WIDTH_ADDRESS, 0}},
1043 {{"_TRS", WIDTH_1, 0}},
1044 {{"_TSF", WIDTH_8, 0}}, /* Acpi 3.0 */
1045 {{"_TTP", WIDTH_1, 0}},
1046 {{"_TXL", WIDTH_16, 0}}, /* Acpi 5.0 */
1047 {{"_TYP", WIDTH_2 | WIDTH_16, 0}},
1048 {{"_VEN", VARIABLE_DATA, 0}}, /* Acpi 5.0 */
1049 PACKAGE_INFO (0,0,0,0,0,0) /* Table terminator */
1050 };

new/usr/src/common/acpica/include/acpredef.h 17

1052 static const ACPI_PREDEFINED_INFO AcpiGbl_ScopeNames[] = {
1053 {{"_GPE", 0, 0}},
1054 {{"_PR_", 0, 0}},
1055 {{"_SB_", 0, 0}},
1056 {{"_SI_", 0, 0}},
1057 {{"_TZ_", 0, 0}},
1058 PACKAGE_INFO (0,0,0,0,0,0) /* Table terminator */
1059 };
1060 #else
1061 extern const ACPI_PREDEFINED_INFO AcpiGbl_ResourceNames[];
1062 #endif

1064 #endif

new/usr/src/common/acpica/include/acresrc.h 1

**
 12788 Thu Dec 26 13:49:54 2013
new/usr/src/common/acpica/include/acresrc.h
update to acpica-unix2-20131115
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acresrc.h - Resource Manager function prototypes
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACRESRC_H__
45 #define __ACRESRC_H__

47 /* Need the AML resource descriptor structs */

49 #include "amlresrc.h"

52 /*
53 * If possible, pack the following structures to byte alignment, since we
54 * don’t care about performance for debug output. Two cases where we cannot
55 * pack the structures:
56 *
57 * 1) Hardware does not support misaligned memory transfers
58 * 2) Compiler does not support pointers within packed structures

new/usr/src/common/acpica/include/acresrc.h 2

59 */
60 #if (!defined(ACPI_MISALIGNMENT_NOT_SUPPORTED) && !defined(ACPI_PACKED_POINTERS_
61 #pragma pack(1)
62 #endif

64 /*
65 * Individual entry for the resource conversion tables
66 */
67 typedef const struct acpi_rsconvert_info
68 {
69 UINT8 Opcode;
70 UINT8 ResourceOffset;
71 UINT8 AmlOffset;
72 UINT8 Value;

74 } ACPI_RSCONVERT_INFO;

76 /* Resource conversion opcodes */

78 typedef enum
79 {
80 ACPI_RSC_INITGET = 0,
81 ACPI_RSC_INITSET,
82 ACPI_RSC_FLAGINIT,
83 ACPI_RSC_1BITFLAG,
84 ACPI_RSC_2BITFLAG,
85 ACPI_RSC_3BITFLAG,
86 ACPI_RSC_ADDRESS,
87 ACPI_RSC_BITMASK,
88 ACPI_RSC_BITMASK16,
89 ACPI_RSC_COUNT,
90 ACPI_RSC_COUNT16,
91 ACPI_RSC_COUNT_GPIO_PIN,
92 ACPI_RSC_COUNT_GPIO_RES,
93 ACPI_RSC_COUNT_GPIO_VEN,
94 ACPI_RSC_COUNT_SERIAL_RES,
95 ACPI_RSC_COUNT_SERIAL_VEN,
96 ACPI_RSC_DATA8,
97 ACPI_RSC_EXIT_EQ,
98 ACPI_RSC_EXIT_LE,
99 ACPI_RSC_EXIT_NE,
100 ACPI_RSC_LENGTH,
101 ACPI_RSC_MOVE_GPIO_PIN,
102 ACPI_RSC_MOVE_GPIO_RES,
103 ACPI_RSC_MOVE_SERIAL_RES,
104 ACPI_RSC_MOVE_SERIAL_VEN,
105 ACPI_RSC_MOVE8,
106 ACPI_RSC_MOVE16,
107 ACPI_RSC_MOVE32,
108 ACPI_RSC_MOVE64,
109 ACPI_RSC_SET8,
110 ACPI_RSC_SOURCE,
111 ACPI_RSC_SOURCEX
78 #define ACPI_RSC_INITGET 0
79 #define ACPI_RSC_INITSET 1
80 #define ACPI_RSC_FLAGINIT 2
81 #define ACPI_RSC_1BITFLAG 3
82 #define ACPI_RSC_2BITFLAG 4
83 #define ACPI_RSC_COUNT 5
84 #define ACPI_RSC_COUNT16 6
85 #define ACPI_RSC_LENGTH 7
86 #define ACPI_RSC_MOVE8 8
87 #define ACPI_RSC_MOVE16 9
88 #define ACPI_RSC_MOVE32 10
89 #define ACPI_RSC_MOVE64 11
90 #define ACPI_RSC_SET8 12

new/usr/src/common/acpica/include/acresrc.h 3

91 #define ACPI_RSC_DATA8 13
92 #define ACPI_RSC_ADDRESS 14
93 #define ACPI_RSC_SOURCE 15
94 #define ACPI_RSC_SOURCEX 16
95 #define ACPI_RSC_BITMASK 17
96 #define ACPI_RSC_BITMASK16 18
97 #define ACPI_RSC_EXIT_NE 19
98 #define ACPI_RSC_EXIT_LE 20
99 #define ACPI_RSC_EXIT_EQ 21

113 } ACPI_RSCONVERT_OPCODES;

115 /* Resource Conversion sub-opcodes */

117 #define ACPI_RSC_COMPARE_AML_LENGTH 0
118 #define ACPI_RSC_COMPARE_VALUE 1

120 #define ACPI_RSC_TABLE_SIZE(d) (sizeof (d) / sizeof (ACPI_RSCONVERT_INF

122 #define ACPI_RS_OFFSET(f) (UINT8) ACPI_OFFSET (ACPI_RESOURCE,f)
123 #define AML_OFFSET(f) (UINT8) ACPI_OFFSET (AML_RESOURCE,f)

126 /*
127 * Individual entry for the resource dump tables
128 */
129 typedef const struct acpi_rsdump_info
130 {
131 UINT8 Opcode;
132 UINT8 Offset;
133 char *Name;
134 const char **Pointer;

136 } ACPI_RSDUMP_INFO;

138 /* Values for the Opcode field above */

140 typedef enum
141 {
142 ACPI_RSD_TITLE = 0,
143 ACPI_RSD_1BITFLAG,
144 ACPI_RSD_2BITFLAG,
145 ACPI_RSD_3BITFLAG,
146 ACPI_RSD_ADDRESS,
147 ACPI_RSD_DWORDLIST,
148 ACPI_RSD_LITERAL,
149 ACPI_RSD_LONGLIST,
150 ACPI_RSD_SHORTLIST,
151 ACPI_RSD_SHORTLISTX,
152 ACPI_RSD_SOURCE,
153 ACPI_RSD_STRING,
154 ACPI_RSD_UINT8,
155 ACPI_RSD_UINT16,
156 ACPI_RSD_UINT32,
157 ACPI_RSD_UINT64,
158 ACPI_RSD_WORDLIST
123 #define ACPI_RSD_TITLE 0
124 #define ACPI_RSD_LITERAL 1
125 #define ACPI_RSD_STRING 2
126 #define ACPI_RSD_UINT8 3
127 #define ACPI_RSD_UINT16 4
128 #define ACPI_RSD_UINT32 5
129 #define ACPI_RSD_UINT64 6
130 #define ACPI_RSD_1BITFLAG 7
131 #define ACPI_RSD_2BITFLAG 8
132 #define ACPI_RSD_SHORTLIST 9

new/usr/src/common/acpica/include/acresrc.h 4

133 #define ACPI_RSD_LONGLIST 10
134 #define ACPI_RSD_DWORDLIST 11
135 #define ACPI_RSD_ADDRESS 12
136 #define ACPI_RSD_SOURCE 13

160 } ACPI_RSDUMP_OPCODES;

162 /* restore default alignment */

164 #pragma pack()

167 /* Resource tables indexed by internal resource type */

169 extern const UINT8 AcpiGbl_AmlResourceSizes[];
170 extern const UINT8 AcpiGbl_AmlResourceSerialBusSizes[];
171 extern ACPI_RSCONVERT_INFO *AcpiGbl_SetResourceDispatch[];

173 /* Resource tables indexed by raw AML resource descriptor type */

175 extern const UINT8 AcpiGbl_ResourceStructSizes[];
176 extern const UINT8 AcpiGbl_ResourceStructSerialBusSizes[];
177 extern ACPI_RSCONVERT_INFO *AcpiGbl_GetResourceDispatch[];

179 extern ACPI_RSCONVERT_INFO *AcpiGbl_ConvertResourceSerialBusDispatch[];

181 typedef struct acpi_vendor_walk_info
182 {
183 ACPI_VENDOR_UUID *Uuid;
184 ACPI_BUFFER *Buffer;
185 ACPI_STATUS Status;

187 } ACPI_VENDOR_WALK_INFO;

190 /*
191 * rscreate
192 */
193 ACPI_STATUS
194 AcpiRsCreateResourceList (
195 ACPI_OPERAND_OBJECT *AmlBuffer,
196 ACPI_BUFFER *OutputBuffer);

198 ACPI_STATUS
199 AcpiRsCreateAmlResources (
200 ACPI_BUFFER *ResourceList,
173 ACPI_RESOURCE *LinkedListBuffer,
201 ACPI_BUFFER *OutputBuffer);

203 ACPI_STATUS
204 AcpiRsCreatePciRoutingTable (
205 ACPI_OPERAND_OBJECT *PackageObject,
206 ACPI_BUFFER *OutputBuffer);

209 /*
210 * rsutils
211 */
212 ACPI_STATUS
213 AcpiRsGetPrtMethodData (
214 ACPI_NAMESPACE_NODE *Node,
215 ACPI_BUFFER *RetBuffer);

217 ACPI_STATUS
218 AcpiRsGetCrsMethodData (
219 ACPI_NAMESPACE_NODE *Node,

new/usr/src/common/acpica/include/acresrc.h 5

220 ACPI_BUFFER *RetBuffer);

222 ACPI_STATUS
223 AcpiRsGetPrsMethodData (
224 ACPI_NAMESPACE_NODE *Node,
225 ACPI_BUFFER *RetBuffer);

227 ACPI_STATUS
228 AcpiRsGetMethodData (
229 ACPI_HANDLE Handle,
230 char *Path,
231 ACPI_BUFFER *RetBuffer);

233 ACPI_STATUS
234 AcpiRsSetSrsMethodData (
235 ACPI_NAMESPACE_NODE *Node,
236 ACPI_BUFFER *RetBuffer);

238 ACPI_STATUS
239 AcpiRsGetAeiMethodData (
240 ACPI_NAMESPACE_NODE *Node,
241 ACPI_BUFFER *RetBuffer);

243 /*
244 * rscalc
245 */
246 ACPI_STATUS
247 AcpiRsGetListLength (
248 UINT8 *AmlBuffer,
249 UINT32 AmlBufferLength,
250 ACPI_SIZE *SizeNeeded);

252 ACPI_STATUS
253 AcpiRsGetAmlLength (
254 ACPI_RESOURCE *ResourceList,
255 ACPI_SIZE ResourceListSize,
223 ACPI_RESOURCE *LinkedListBuffer,
256 ACPI_SIZE *SizeNeeded);

258 ACPI_STATUS
259 AcpiRsGetPciRoutingTableLength (
260 ACPI_OPERAND_OBJECT *PackageObject,
261 ACPI_SIZE *BufferSizeNeeded);

263 ACPI_STATUS
264 AcpiRsConvertAmlToResources (
265 UINT8 *Aml,
266 UINT32 Length,
267 UINT32 Offset,
268 UINT8 ResourceIndex,
269 void **Context);
237 void *Context);

271 ACPI_STATUS
272 AcpiRsConvertResourcesToAml (
273 ACPI_RESOURCE *Resource,
274 ACPI_SIZE AmlSizeNeeded,
275 UINT8 *OutputBuffer);

278 /*
279 * rsaddr
280 */
281 void
282 AcpiRsSetAddressCommon (
283 AML_RESOURCE *Aml,

new/usr/src/common/acpica/include/acresrc.h 6

284 ACPI_RESOURCE *Resource);

286 BOOLEAN
287 AcpiRsGetAddressCommon (
288 ACPI_RESOURCE *Resource,
289 AML_RESOURCE *Aml);

292 /*
293 * rsmisc
294 */
295 ACPI_STATUS
296 AcpiRsConvertAmlToResource (
297 ACPI_RESOURCE *Resource,
298 AML_RESOURCE *Aml,
299 ACPI_RSCONVERT_INFO *Info);

301 ACPI_STATUS
302 AcpiRsConvertResourceToAml (
303 ACPI_RESOURCE *Resource,
304 AML_RESOURCE *Aml,
305 ACPI_RSCONVERT_INFO *Info);

308 /*
309 * rsutils
310 */
311 void
312 AcpiRsMoveData (
313 void *Destination,
314 void *Source,
315 UINT16 ItemCount,
316 UINT8 MoveType);

318 UINT8
319 AcpiRsDecodeBitmask (
320 UINT16 Mask,
321 UINT8 *List);

323 UINT16
324 AcpiRsEncodeBitmask (
325 UINT8 *List,
326 UINT8 Count);

328 ACPI_RS_LENGTH
329 AcpiRsGetResourceSource (
330 ACPI_RS_LENGTH ResourceLength,
331 ACPI_RS_LENGTH MinimumLength,
332 ACPI_RESOURCE_SOURCE *ResourceSource,
333 AML_RESOURCE *Aml,
334 char *StringPtr);

336 ACPI_RSDESC_SIZE
337 AcpiRsSetResourceSource (
338 AML_RESOURCE *Aml,
339 ACPI_RS_LENGTH MinimumLength,
340 ACPI_RESOURCE_SOURCE *ResourceSource);

342 void
343 AcpiRsSetResourceHeader (
344 UINT8 DescriptorType,
345 ACPI_RSDESC_SIZE TotalLength,
346 AML_RESOURCE *Aml);

348 void
349 AcpiRsSetResourceLength (

new/usr/src/common/acpica/include/acresrc.h 7

350 ACPI_RSDESC_SIZE TotalLength,
351 AML_RESOURCE *Aml);

354 /*
355 * rsdump
356 */
357 void
358 AcpiRsDumpResourceList (
359 ACPI_RESOURCE *Resource);

361 void
362 AcpiRsDumpIrqList (
363 UINT8 *RouteTable);

366 /*
367 * Resource conversion tables
368 */
369 extern ACPI_RSCONVERT_INFO AcpiRsConvertDma[];
370 extern ACPI_RSCONVERT_INFO AcpiRsConvertEndDpf[];
371 extern ACPI_RSCONVERT_INFO AcpiRsConvertIo[];
372 extern ACPI_RSCONVERT_INFO AcpiRsConvertFixedIo[];
373 extern ACPI_RSCONVERT_INFO AcpiRsConvertEndTag[];
374 extern ACPI_RSCONVERT_INFO AcpiRsConvertMemory24[];
375 extern ACPI_RSCONVERT_INFO AcpiRsConvertGenericReg[];
376 extern ACPI_RSCONVERT_INFO AcpiRsConvertMemory32[];
377 extern ACPI_RSCONVERT_INFO AcpiRsConvertFixedMemory32[];
378 extern ACPI_RSCONVERT_INFO AcpiRsConvertAddress32[];
379 extern ACPI_RSCONVERT_INFO AcpiRsConvertAddress16[];
380 extern ACPI_RSCONVERT_INFO AcpiRsConvertExtIrq[];
381 extern ACPI_RSCONVERT_INFO AcpiRsConvertAddress64[];
382 extern ACPI_RSCONVERT_INFO AcpiRsConvertExtAddress64[];
383 extern ACPI_RSCONVERT_INFO AcpiRsConvertGpio[];
384 extern ACPI_RSCONVERT_INFO AcpiRsConvertFixedDma[];
385 extern ACPI_RSCONVERT_INFO AcpiRsConvertI2cSerialBus[];
386 extern ACPI_RSCONVERT_INFO AcpiRsConvertSpiSerialBus[];
387 extern ACPI_RSCONVERT_INFO AcpiRsConvertUartSerialBus[];

389 /* These resources require separate get/set tables */

391 extern ACPI_RSCONVERT_INFO AcpiRsGetIrq[];
392 extern ACPI_RSCONVERT_INFO AcpiRsGetStartDpf[];
393 extern ACPI_RSCONVERT_INFO AcpiRsGetVendorSmall[];
394 extern ACPI_RSCONVERT_INFO AcpiRsGetVendorLarge[];

396 extern ACPI_RSCONVERT_INFO AcpiRsSetIrq[];
397 extern ACPI_RSCONVERT_INFO AcpiRsSetStartDpf[];
398 extern ACPI_RSCONVERT_INFO AcpiRsSetVendor[];

401 #if defined(ACPI_DEBUG_OUTPUT) || defined(ACPI_DEBUGGER)
402 /*
403 * rsinfo
404 */
405 extern ACPI_RSDUMP_INFO *AcpiGbl_DumpResourceDispatch[];
406 extern ACPI_RSDUMP_INFO *AcpiGbl_DumpSerialBusDispatch[];

408 /*
409 * rsdumpinfo
371 * rsdump
410 */
411 extern ACPI_RSDUMP_INFO AcpiRsDumpIrq[];
412 extern ACPI_RSDUMP_INFO AcpiRsDumpPrt[];
413 extern ACPI_RSDUMP_INFO AcpiRsDumpDma[];
414 extern ACPI_RSDUMP_INFO AcpiRsDumpStartDpf[];

new/usr/src/common/acpica/include/acresrc.h 8

415 extern ACPI_RSDUMP_INFO AcpiRsDumpEndDpf[];
416 extern ACPI_RSDUMP_INFO AcpiRsDumpIo[];
417 extern ACPI_RSDUMP_INFO AcpiRsDumpIoFlags[];
418 extern ACPI_RSDUMP_INFO AcpiRsDumpFixedIo[];
419 extern ACPI_RSDUMP_INFO AcpiRsDumpVendor[];
420 extern ACPI_RSDUMP_INFO AcpiRsDumpEndTag[];
421 extern ACPI_RSDUMP_INFO AcpiRsDumpMemory24[];
422 extern ACPI_RSDUMP_INFO AcpiRsDumpMemory32[];
423 extern ACPI_RSDUMP_INFO AcpiRsDumpMemoryFlags[];
424 extern ACPI_RSDUMP_INFO AcpiRsDumpFixedMemory32[];
425 extern ACPI_RSDUMP_INFO AcpiRsDumpAddress16[];
426 extern ACPI_RSDUMP_INFO AcpiRsDumpAddress32[];
427 extern ACPI_RSDUMP_INFO AcpiRsDumpAddress64[];
428 extern ACPI_RSDUMP_INFO AcpiRsDumpExtAddress64[];
429 extern ACPI_RSDUMP_INFO AcpiRsDumpExtIrq[];
430 extern ACPI_RSDUMP_INFO AcpiRsDumpGenericReg[];
431 extern ACPI_RSDUMP_INFO AcpiRsDumpGpio[];
432 extern ACPI_RSDUMP_INFO AcpiRsDumpFixedDma[];
433 extern ACPI_RSDUMP_INFO AcpiRsDumpCommonSerialBus[];
434 extern ACPI_RSDUMP_INFO AcpiRsDumpI2cSerialBus[];
435 extern ACPI_RSDUMP_INFO AcpiRsDumpSpiSerialBus[];
436 extern ACPI_RSDUMP_INFO AcpiRsDumpUartSerialBus[];
437 extern ACPI_RSDUMP_INFO AcpiRsDumpGeneralFlags[];
438 #endif

440 #endif /* __ACRESRC_H__ */

new/usr/src/common/acpica/include/acrestyp.h 1

**
 23494 Thu Dec 26 13:49:54 2013
new/usr/src/common/acpica/include/acrestyp.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acrestyp.h - Defines, types, and structures for resource descriptors
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACRESTYP_H__
45 #define __ACRESTYP_H__

48 /*
49 * Definitions for Resource Attributes
50 */
51 typedef UINT16 ACPI_RS_LENGTH; /* Resource Length fi
52 typedef UINT32 ACPI_RSDESC_SIZE; /* Max Resource Descr

54 /*
55 * Memory Attributes
56 */
57 #define ACPI_READ_ONLY_MEMORY (UINT8) 0x00
58 #define ACPI_READ_WRITE_MEMORY (UINT8) 0x01

60 #define ACPI_NON_CACHEABLE_MEMORY (UINT8) 0x00

new/usr/src/common/acpica/include/acrestyp.h 2

61 #define ACPI_CACHABLE_MEMORY (UINT8) 0x01
62 #define ACPI_WRITE_COMBINING_MEMORY (UINT8) 0x02
63 #define ACPI_PREFETCHABLE_MEMORY (UINT8) 0x03

65 /*! [Begin] no source code translation */
66 /*
67 * IO Attributes
68 * The ISA IO ranges are: n000-n0FFh, n400-n4FFh, n800-n8FFh, nC00-nCFFh.
69 * The non-ISA IO ranges are: n100-n3FFh, n500-n7FFh, n900-nBFFh, nCD0-nFFFh.
70 */
71 /*! [End] no source code translation !*/

73 #define ACPI_NON_ISA_ONLY_RANGES (UINT8) 0x01
74 #define ACPI_ISA_ONLY_RANGES (UINT8) 0x02
75 #define ACPI_ENTIRE_RANGE (ACPI_NON_ISA_ONLY_RANGES | ACPI_ISA_ONL

77 /* Type of translation - 1=Sparse, 0=Dense */

79 #define ACPI_SPARSE_TRANSLATION (UINT8) 0x01

81 /*
82 * IO Port Descriptor Decode
83 */
84 #define ACPI_DECODE_10 (UINT8) 0x00 /* 10-bit IO address dec
85 #define ACPI_DECODE_16 (UINT8) 0x01 /* 16-bit IO address dec

87 /*
88 * Interrupt attributes - used in multiple descriptors
89 */

91 /* Triggering */

93 #define ACPI_LEVEL_SENSITIVE (UINT8) 0x00
94 #define ACPI_EDGE_SENSITIVE (UINT8) 0x01

96 /* Polarity */

98 #define ACPI_ACTIVE_HIGH (UINT8) 0x00
99 #define ACPI_ACTIVE_LOW (UINT8) 0x01
100 #define ACPI_ACTIVE_BOTH (UINT8) 0x02

102 /* Sharing */

104 #define ACPI_EXCLUSIVE (UINT8) 0x00
105 #define ACPI_SHARED (UINT8) 0x01

107 /* Wake */

109 #define ACPI_NOT_WAKE_CAPABLE (UINT8) 0x00
110 #define ACPI_WAKE_CAPABLE (UINT8) 0x01

112 /*
113 * DMA Attributes
114 */
115 #define ACPI_COMPATIBILITY (UINT8) 0x00
116 #define ACPI_TYPE_A (UINT8) 0x01
117 #define ACPI_TYPE_B (UINT8) 0x02
118 #define ACPI_TYPE_F (UINT8) 0x03

120 #define ACPI_NOT_BUS_MASTER (UINT8) 0x00
121 #define ACPI_BUS_MASTER (UINT8) 0x01

123 #define ACPI_TRANSFER_8 (UINT8) 0x00
124 #define ACPI_TRANSFER_8_16 (UINT8) 0x01
125 #define ACPI_TRANSFER_16 (UINT8) 0x02

new/usr/src/common/acpica/include/acrestyp.h 3

127 /*
128 * Start Dependent Functions Priority definitions
129 */
130 #define ACPI_GOOD_CONFIGURATION (UINT8) 0x00
131 #define ACPI_ACCEPTABLE_CONFIGURATION (UINT8) 0x01
132 #define ACPI_SUB_OPTIMAL_CONFIGURATION (UINT8) 0x02

134 /*
135 * 16, 32 and 64-bit Address Descriptor resource types
136 */
137 #define ACPI_MEMORY_RANGE (UINT8) 0x00
138 #define ACPI_IO_RANGE (UINT8) 0x01
139 #define ACPI_BUS_NUMBER_RANGE (UINT8) 0x02

141 #define ACPI_ADDRESS_NOT_FIXED (UINT8) 0x00
142 #define ACPI_ADDRESS_FIXED (UINT8) 0x01

144 #define ACPI_POS_DECODE (UINT8) 0x00
145 #define ACPI_SUB_DECODE (UINT8) 0x01

147 /* Producer/Consumer */

149 #define ACPI_PRODUCER (UINT8) 0x00
150 #define ACPI_CONSUMER (UINT8) 0x01

153 /*
154 * If possible, pack the following structures to byte alignment
155 */
156 #ifndef ACPI_MISALIGNMENT_NOT_SUPPORTED
157 #pragma pack(1)
158 #endif

160 /* UUID data structures for use in vendor-defined resource descriptors */

162 typedef struct acpi_uuid
163 {
164 UINT8 Data[ACPI_UUID_LENGTH];
165 } ACPI_UUID;

167 typedef struct acpi_vendor_uuid
168 {
169 UINT8 Subtype;
170 UINT8 Data[ACPI_UUID_LENGTH];

172 } ACPI_VENDOR_UUID;

174 /*
175 * Structures used to describe device resources
176 */
177 typedef struct acpi_resource_irq
178 {
179 UINT8 DescriptorLength;
180 UINT8 Triggering;
181 UINT8 Polarity;
182 UINT8 Sharable;
183 UINT8 WakeCapable;
184 UINT8 InterruptCount;
185 UINT8 Interrupts[1];

187 } ACPI_RESOURCE_IRQ;

189 typedef struct acpi_resource_dma
190 {
191 UINT8 Type;
192 UINT8 BusMaster;

new/usr/src/common/acpica/include/acrestyp.h 4

193 UINT8 Transfer;
194 UINT8 ChannelCount;
195 UINT8 Channels[1];

197 } ACPI_RESOURCE_DMA;

199 typedef struct acpi_resource_start_dependent
200 {
201 UINT8 DescriptorLength;
202 UINT8 CompatibilityPriority;
203 UINT8 PerformanceRobustness;

205 } ACPI_RESOURCE_START_DEPENDENT;

208 /*
209 * The END_DEPENDENT_FUNCTIONS_RESOURCE struct is not
210 * needed because it has no fields
211 */

214 typedef struct acpi_resource_io
215 {
216 UINT8 IoDecode;
217 UINT8 Alignment;
218 UINT8 AddressLength;
219 UINT16 Minimum;
220 UINT16 Maximum;

222 } ACPI_RESOURCE_IO;

224 typedef struct acpi_resource_fixed_io
225 {
226 UINT16 Address;
227 UINT8 AddressLength;

229 } ACPI_RESOURCE_FIXED_IO;

231 typedef struct acpi_resource_fixed_dma
232 {
233 UINT16 RequestLines;
234 UINT16 Channels;
235 UINT8 Width;

237 } ACPI_RESOURCE_FIXED_DMA;

239 /* Values for Width field above */

241 #define ACPI_DMA_WIDTH8 0
242 #define ACPI_DMA_WIDTH16 1
243 #define ACPI_DMA_WIDTH32 2
244 #define ACPI_DMA_WIDTH64 3
245 #define ACPI_DMA_WIDTH128 4
246 #define ACPI_DMA_WIDTH256 5

249 typedef struct acpi_resource_vendor
250 {
251 UINT16 ByteLength;
252 UINT8 ByteData[1];

254 } ACPI_RESOURCE_VENDOR;

256 /* Vendor resource with UUID info (introduced in ACPI 3.0) */

258 typedef struct acpi_resource_vendor_typed

new/usr/src/common/acpica/include/acrestyp.h 5

259 {
260 UINT16 ByteLength;
261 UINT8 UuidSubtype;
262 UINT8 Uuid[ACPI_UUID_LENGTH];
263 UINT8 ByteData[1];

265 } ACPI_RESOURCE_VENDOR_TYPED;

267 typedef struct acpi_resource_end_tag
268 {
269 UINT8 Checksum;

271 } ACPI_RESOURCE_END_TAG;

273 typedef struct acpi_resource_memory24
274 {
275 UINT8 WriteProtect;
276 UINT16 Minimum;
277 UINT16 Maximum;
278 UINT16 Alignment;
279 UINT16 AddressLength;

281 } ACPI_RESOURCE_MEMORY24;

283 typedef struct acpi_resource_memory32
284 {
285 UINT8 WriteProtect;
286 UINT32 Minimum;
287 UINT32 Maximum;
288 UINT32 Alignment;
289 UINT32 AddressLength;

291 } ACPI_RESOURCE_MEMORY32;

293 typedef struct acpi_resource_fixed_memory32
294 {
295 UINT8 WriteProtect;
296 UINT32 Address;
297 UINT32 AddressLength;

299 } ACPI_RESOURCE_FIXED_MEMORY32;

301 typedef struct acpi_memory_attribute
302 {
303 UINT8 WriteProtect;
304 UINT8 Caching;
305 UINT8 RangeType;
306 UINT8 Translation;

308 } ACPI_MEMORY_ATTRIBUTE;

310 typedef struct acpi_io_attribute
311 {
312 UINT8 RangeType;
313 UINT8 Translation;
314 UINT8 TranslationType;
315 UINT8 Reserved1;

317 } ACPI_IO_ATTRIBUTE;

319 typedef union acpi_resource_attribute
320 {
321 ACPI_MEMORY_ATTRIBUTE Mem;
322 ACPI_IO_ATTRIBUTE Io;

324 /* Used for the *WordSpace macros */

new/usr/src/common/acpica/include/acrestyp.h 6

326 UINT8 TypeSpecific;

328 } ACPI_RESOURCE_ATTRIBUTE;

330 typedef struct acpi_resource_source
331 {
332 UINT8 Index;
333 UINT16 StringLength;
334 char *StringPtr;

336 } ACPI_RESOURCE_SOURCE;

338 /* Fields common to all address descriptors, 16/32/64 bit */

340 #define ACPI_RESOURCE_ADDRESS_COMMON \
341 UINT8 ResourceType; \
342 UINT8 ProducerConsumer; \
343 UINT8 Decode; \
344 UINT8 MinAddressFixed; \
345 UINT8 MaxAddressFixed; \
346 ACPI_RESOURCE_ATTRIBUTE Info;

348 typedef struct acpi_resource_address
349 {
350 ACPI_RESOURCE_ADDRESS_COMMON

352 } ACPI_RESOURCE_ADDRESS;

354 typedef struct acpi_resource_address16
355 {
356 ACPI_RESOURCE_ADDRESS_COMMON
357 UINT16 Granularity;
358 UINT16 Minimum;
359 UINT16 Maximum;
360 UINT16 TranslationOffset;
361 UINT16 AddressLength;
362 ACPI_RESOURCE_SOURCE ResourceSource;

364 } ACPI_RESOURCE_ADDRESS16;

366 typedef struct acpi_resource_address32
367 {
368 ACPI_RESOURCE_ADDRESS_COMMON
369 UINT32 Granularity;
370 UINT32 Minimum;
371 UINT32 Maximum;
372 UINT32 TranslationOffset;
373 UINT32 AddressLength;
374 ACPI_RESOURCE_SOURCE ResourceSource;

376 } ACPI_RESOURCE_ADDRESS32;

378 typedef struct acpi_resource_address64
379 {
380 ACPI_RESOURCE_ADDRESS_COMMON
381 UINT64 Granularity;
382 UINT64 Minimum;
383 UINT64 Maximum;
384 UINT64 TranslationOffset;
385 UINT64 AddressLength;
386 ACPI_RESOURCE_SOURCE ResourceSource;

388 } ACPI_RESOURCE_ADDRESS64;

390 typedef struct acpi_resource_extended_address64

new/usr/src/common/acpica/include/acrestyp.h 7

391 {
392 ACPI_RESOURCE_ADDRESS_COMMON
393 UINT8 RevisionID;
394 UINT64 Granularity;
395 UINT64 Minimum;
396 UINT64 Maximum;
397 UINT64 TranslationOffset;
398 UINT64 AddressLength;
399 UINT64 TypeSpecific;

401 } ACPI_RESOURCE_EXTENDED_ADDRESS64;

403 typedef struct acpi_resource_extended_irq
404 {
405 UINT8 ProducerConsumer;
406 UINT8 Triggering;
407 UINT8 Polarity;
408 UINT8 Sharable;
409 UINT8 WakeCapable;
410 UINT8 InterruptCount;
411 ACPI_RESOURCE_SOURCE ResourceSource;
412 UINT32 Interrupts[1];

414 } ACPI_RESOURCE_EXTENDED_IRQ;

416 typedef struct acpi_resource_generic_register
417 {
418 UINT8 SpaceId;
419 UINT8 BitWidth;
420 UINT8 BitOffset;
421 UINT8 AccessSize;
422 UINT64 Address;

424 } ACPI_RESOURCE_GENERIC_REGISTER;

426 typedef struct acpi_resource_gpio
427 {
428 UINT8 RevisionId;
429 UINT8 ConnectionType;
430 UINT8 ProducerConsumer; /* For values, see Produ
431 UINT8 PinConfig;
432 UINT8 Sharable; /* For values, see Inter
433 UINT8 WakeCapable; /* For values, see Inter
434 UINT8 IoRestriction;
435 UINT8 Triggering; /* For values, see Inter
436 UINT8 Polarity; /* For values, see Inter
437 UINT16 DriveStrength;
438 UINT16 DebounceTimeout;
439 UINT16 PinTableLength;
440 UINT16 VendorLength;
441 ACPI_RESOURCE_SOURCE ResourceSource;
442 UINT16 *PinTable;
443 UINT8 *VendorData;

445 } ACPI_RESOURCE_GPIO;

447 /* Values for GPIO ConnectionType field above */

449 #define ACPI_RESOURCE_GPIO_TYPE_INT 0
450 #define ACPI_RESOURCE_GPIO_TYPE_IO 1

452 /* Values for PinConfig field above */

454 #define ACPI_PIN_CONFIG_DEFAULT 0
455 #define ACPI_PIN_CONFIG_PULLUP 1
456 #define ACPI_PIN_CONFIG_PULLDOWN 2

new/usr/src/common/acpica/include/acrestyp.h 8

457 #define ACPI_PIN_CONFIG_NOPULL 3

459 /* Values for IoRestriction field above */

461 #define ACPI_IO_RESTRICT_NONE 0
462 #define ACPI_IO_RESTRICT_INPUT 1
463 #define ACPI_IO_RESTRICT_OUTPUT 2
464 #define ACPI_IO_RESTRICT_NONE_PRESERVE 3

467 /* Common structure for I2C, SPI, and UART serial descriptors */

469 #define ACPI_RESOURCE_SERIAL_COMMON \
470 UINT8 RevisionId; \
471 UINT8 Type; \
472 UINT8 ProducerConsumer; /* For values, see Prod
473 UINT8 SlaveMode; \
474 UINT8 TypeRevisionId; \
475 UINT16 TypeDataLength; \
476 UINT16 VendorLength; \
477 ACPI_RESOURCE_SOURCE ResourceSource; \
478 UINT8 *VendorData;

480 typedef struct acpi_resource_common_serialbus
481 {
482 ACPI_RESOURCE_SERIAL_COMMON

484 } ACPI_RESOURCE_COMMON_SERIALBUS;

486 /* Values for the Type field above */

488 #define ACPI_RESOURCE_SERIAL_TYPE_I2C 1
489 #define ACPI_RESOURCE_SERIAL_TYPE_SPI 2
490 #define ACPI_RESOURCE_SERIAL_TYPE_UART 3

492 /* Values for SlaveMode field above */

494 #define ACPI_CONTROLLER_INITIATED 0
495 #define ACPI_DEVICE_INITIATED 1

498 typedef struct acpi_resource_i2c_serialbus
499 {
500 ACPI_RESOURCE_SERIAL_COMMON
501 UINT8 AccessMode;
502 UINT16 SlaveAddress;
503 UINT32 ConnectionSpeed;

505 } ACPI_RESOURCE_I2C_SERIALBUS;

507 /* Values for AccessMode field above */

509 #define ACPI_I2C_7BIT_MODE 0
510 #define ACPI_I2C_10BIT_MODE 1

513 typedef struct acpi_resource_spi_serialbus
514 {
515 ACPI_RESOURCE_SERIAL_COMMON
516 UINT8 WireMode;
517 UINT8 DevicePolarity;
518 UINT8 DataBitLength;
519 UINT8 ClockPhase;
520 UINT8 ClockPolarity;
521 UINT16 DeviceSelection;
522 UINT32 ConnectionSpeed;

new/usr/src/common/acpica/include/acrestyp.h 9

524 } ACPI_RESOURCE_SPI_SERIALBUS;

526 /* Values for WireMode field above */

528 #define ACPI_SPI_4WIRE_MODE 0
529 #define ACPI_SPI_3WIRE_MODE 1

531 /* Values for DevicePolarity field above */

533 #define ACPI_SPI_ACTIVE_LOW 0
534 #define ACPI_SPI_ACTIVE_HIGH 1

536 /* Values for ClockPhase field above */

538 #define ACPI_SPI_FIRST_PHASE 0
539 #define ACPI_SPI_SECOND_PHASE 1

541 /* Values for ClockPolarity field above */

543 #define ACPI_SPI_START_LOW 0
544 #define ACPI_SPI_START_HIGH 1

547 typedef struct acpi_resource_uart_serialbus
548 {
549 ACPI_RESOURCE_SERIAL_COMMON
550 UINT8 Endian;
551 UINT8 DataBits;
552 UINT8 StopBits;
553 UINT8 FlowControl;
554 UINT8 Parity;
555 UINT8 LinesEnabled;
556 UINT16 RxFifoSize;
557 UINT16 TxFifoSize;
558 UINT32 DefaultBaudRate;

560 } ACPI_RESOURCE_UART_SERIALBUS;

562 /* Values for Endian field above */

564 #define ACPI_UART_LITTLE_ENDIAN 0
565 #define ACPI_UART_BIG_ENDIAN 1

567 /* Values for DataBits field above */

569 #define ACPI_UART_5_DATA_BITS 0
570 #define ACPI_UART_6_DATA_BITS 1
571 #define ACPI_UART_7_DATA_BITS 2
572 #define ACPI_UART_8_DATA_BITS 3
573 #define ACPI_UART_9_DATA_BITS 4

575 /* Values for StopBits field above */

577 #define ACPI_UART_NO_STOP_BITS 0
578 #define ACPI_UART_1_STOP_BIT 1
579 #define ACPI_UART_1P5_STOP_BITS 2
580 #define ACPI_UART_2_STOP_BITS 3

582 /* Values for FlowControl field above */

584 #define ACPI_UART_FLOW_CONTROL_NONE 0
585 #define ACPI_UART_FLOW_CONTROL_HW 1
586 #define ACPI_UART_FLOW_CONTROL_XON_XOFF 2

588 /* Values for Parity field above */

new/usr/src/common/acpica/include/acrestyp.h 10

590 #define ACPI_UART_PARITY_NONE 0
591 #define ACPI_UART_PARITY_EVEN 1
592 #define ACPI_UART_PARITY_ODD 2
593 #define ACPI_UART_PARITY_MARK 3
594 #define ACPI_UART_PARITY_SPACE 4

596 /* Values for LinesEnabled bitfield above */

598 #define ACPI_UART_CARRIER_DETECT (1<<2)
599 #define ACPI_UART_RING_INDICATOR (1<<3)
600 #define ACPI_UART_DATA_SET_READY (1<<4)
601 #define ACPI_UART_DATA_TERMINAL_READY (1<<5)
602 #define ACPI_UART_CLEAR_TO_SEND (1<<6)
603 #define ACPI_UART_REQUEST_TO_SEND (1<<7)

606 /* ACPI_RESOURCE_TYPEs */

608 #define ACPI_RESOURCE_TYPE_IRQ 0
609 #define ACPI_RESOURCE_TYPE_DMA 1
610 #define ACPI_RESOURCE_TYPE_START_DEPENDENT 2
611 #define ACPI_RESOURCE_TYPE_END_DEPENDENT 3
612 #define ACPI_RESOURCE_TYPE_IO 4
613 #define ACPI_RESOURCE_TYPE_FIXED_IO 5
614 #define ACPI_RESOURCE_TYPE_VENDOR 6
615 #define ACPI_RESOURCE_TYPE_END_TAG 7
616 #define ACPI_RESOURCE_TYPE_MEMORY24 8
617 #define ACPI_RESOURCE_TYPE_MEMORY32 9
618 #define ACPI_RESOURCE_TYPE_FIXED_MEMORY32 10
619 #define ACPI_RESOURCE_TYPE_ADDRESS16 11
620 #define ACPI_RESOURCE_TYPE_ADDRESS32 12
621 #define ACPI_RESOURCE_TYPE_ADDRESS64 13
622 #define ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64 14 /* ACPI 3.0 */
623 #define ACPI_RESOURCE_TYPE_EXTENDED_IRQ 15
624 #define ACPI_RESOURCE_TYPE_GENERIC_REGISTER 16
625 #define ACPI_RESOURCE_TYPE_GPIO 17 /* ACPI 5.0 */
626 #define ACPI_RESOURCE_TYPE_FIXED_DMA 18 /* ACPI 5.0 */
627 #define ACPI_RESOURCE_TYPE_SERIAL_BUS 19 /* ACPI 5.0 */
628 #define ACPI_RESOURCE_TYPE_MAX 19

630 /* Master union for resource descriptors */

632 typedef union acpi_resource_data
633 {
634 ACPI_RESOURCE_IRQ Irq;
635 ACPI_RESOURCE_DMA Dma;
636 ACPI_RESOURCE_START_DEPENDENT StartDpf;
637 ACPI_RESOURCE_IO Io;
638 ACPI_RESOURCE_FIXED_IO FixedIo;
639 ACPI_RESOURCE_FIXED_DMA FixedDma;
640 ACPI_RESOURCE_VENDOR Vendor;
641 ACPI_RESOURCE_VENDOR_TYPED VendorTyped;
642 ACPI_RESOURCE_END_TAG EndTag;
643 ACPI_RESOURCE_MEMORY24 Memory24;
644 ACPI_RESOURCE_MEMORY32 Memory32;
645 ACPI_RESOURCE_FIXED_MEMORY32 FixedMemory32;
646 ACPI_RESOURCE_ADDRESS16 Address16;
647 ACPI_RESOURCE_ADDRESS32 Address32;
648 ACPI_RESOURCE_ADDRESS64 Address64;
649 ACPI_RESOURCE_EXTENDED_ADDRESS64 ExtAddress64;
650 ACPI_RESOURCE_EXTENDED_IRQ ExtendedIrq;
651 ACPI_RESOURCE_GENERIC_REGISTER GenericReg;
652 ACPI_RESOURCE_GPIO Gpio;
653 ACPI_RESOURCE_I2C_SERIALBUS I2cSerialBus;
654 ACPI_RESOURCE_SPI_SERIALBUS SpiSerialBus;

new/usr/src/common/acpica/include/acrestyp.h 11

655 ACPI_RESOURCE_UART_SERIALBUS UartSerialBus;
656 ACPI_RESOURCE_COMMON_SERIALBUS CommonSerialBus;

658 /* Common fields */

660 ACPI_RESOURCE_ADDRESS Address; /* Common 16/32/64 a

662 } ACPI_RESOURCE_DATA;

665 /* Common resource header */

667 typedef struct acpi_resource
668 {
669 UINT32 Type;
670 UINT32 Length;
671 ACPI_RESOURCE_DATA Data;

673 } ACPI_RESOURCE;

675 /* restore default alignment */

677 #pragma pack()

680 #define ACPI_RS_SIZE_NO_DATA 8 /* Id + Length fields */
681 #define ACPI_RS_SIZE_MIN (UINT32) ACPI_ROUND_UP_TO_NATIVE_WOR
682 #define ACPI_RS_SIZE(Type) (UINT32) (ACPI_RS_SIZE_NO_DATA + siz

684 /* Macro for walking resource templates with multiple descriptors */

686 #define ACPI_NEXT_RESOURCE(Res) \
687 ACPI_ADD_PTR (ACPI_RESOURCE, (Res), (Res)->Length)

690 typedef struct acpi_pci_routing_table
691 {
692 UINT32 Length;
693 UINT32 Pin;
694 UINT64 Address; /* here for 64-bit alignment
695 UINT32 SourceIndex;
696 char Source[4]; /* pad to 64 bits so sizeof(

698 } ACPI_PCI_ROUTING_TABLE;

700 #endif /* __ACRESTYP_H__ */

new/usr/src/common/acpica/include/acstruct.h 1

**
 11317 Thu Dec 26 13:49:55 2013
new/usr/src/common/acpica/include/acstruct.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acstruct.h - Internal structs
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACSTRUCT_H__
45 #define __ACSTRUCT_H__

47 /* acpisrc:StructDefs -- for acpisrc conversion */

49 /***
50 *
51 * Tree walking typedefs and structs
52 *
53 **/

56 /*
57 * Walk state - current state of a parse tree walk. Used for both a leisurely
58 * stroll through the tree (for whatever reason), and for control method
59 * execution.

new/usr/src/common/acpica/include/acstruct.h 2

60 */
61 #define ACPI_NEXT_OP_DOWNWARD 1
62 #define ACPI_NEXT_OP_UPWARD 2

64 /*
65 * Groups of definitions for WalkType used for different implementations of
66 * walkers (never simultaneously) - flags for interpreter:
67 */
68 #define ACPI_WALK_NON_METHOD 0
69 #define ACPI_WALK_METHOD 0x01
70 #define ACPI_WALK_METHOD_RESTART 0x02

72 /* Flags for iASL compiler only */

74 #define ACPI_WALK_CONST_REQUIRED 0x10
75 #define ACPI_WALK_CONST_OPTIONAL 0x20

78 typedef struct acpi_walk_state
79 {
80 struct acpi_walk_state *Next; /* Next WalkState in lis
81 UINT8 DescriptorType; /* To differentiate vari
82 UINT8 WalkType;
83 UINT16 Opcode; /* Current AML opcode */
84 UINT8 NextOpInfo; /* Info about NextOp */
85 UINT8 NumOperands; /* Stack pointer for Ope
86 UINT8 OperandIndex; /* Index into operand st
87 ACPI_OWNER_ID OwnerId; /* Owner of objects crea
88 BOOLEAN LastPredicate; /* Result of last predic
89 UINT8 CurrentResult;
90 UINT8 ReturnUsed;
91 UINT8 ScopeDepth;
92 UINT8 PassNumber; /* Parse pass during tab
93 UINT8 ResultSize; /* Total elements for th
94 UINT8 ResultCount; /* Current number of occ
95 UINT32 AmlOffset;
96 UINT32 ArgTypes;
97 UINT32 MethodBreakpoint; /* For single stepping *
98 UINT32 UserBreakpoint; /* User AML breakpoint *
99 UINT32 ParseFlags;

101 ACPI_PARSE_STATE ParserState; /* Current state of pars
102 UINT32 PrevArgTypes;
103 UINT32 ArgCount; /* push for fixed or var

105 struct acpi_namespace_node Arguments[ACPI_METHOD_NUM_ARGS]; /* C
106 struct acpi_namespace_node LocalVariables[ACPI_METHOD_NUM_LOCALS]; /* C
107 union acpi_operand_object *Operands[ACPI_OBJ_NUM_OPERANDS + 1]; /* O
108 union acpi_operand_object **Params;

110 UINT8 *AmlLastWhile;
111 union acpi_operand_object **CallerReturnDesc;
112 ACPI_GENERIC_STATE *ControlState; /* List of control state
113 struct acpi_namespace_node *DeferredNode; /* Used when executing d
114 union acpi_operand_object *ImplicitReturnObj;
115 struct acpi_namespace_node *MethodCallNode; /* Called method Node*/
116 ACPI_PARSE_OBJECT *MethodCallOp; /* MethodCall Op if runn
117 union acpi_operand_object *MethodDesc; /* Method descriptor if
118 struct acpi_namespace_node *MethodNode; /* Method node if runnin
119 ACPI_PARSE_OBJECT *Op; /* Current parser op */
120 const ACPI_OPCODE_INFO *OpInfo; /* Info on current opcod
121 ACPI_PARSE_OBJECT *Origin; /* Start of walk [Obsole
122 union acpi_operand_object *ResultObj;
123 ACPI_GENERIC_STATE *Results; /* Stack of accumulated
124 union acpi_operand_object *ReturnDesc; /* Return object, if any
125 ACPI_GENERIC_STATE *ScopeInfo; /* Stack of nested scope

new/usr/src/common/acpica/include/acstruct.h 3

126 ACPI_PARSE_OBJECT *PrevOp; /* Last op that was proc
127 ACPI_PARSE_OBJECT *NextOp; /* next op to be process
128 ACPI_THREAD_STATE *Thread;
129 ACPI_PARSE_DOWNWARDS DescendingCallback;
130 ACPI_PARSE_UPWARDS AscendingCallback;

132 } ACPI_WALK_STATE;
______unchanged_portion_omitted_

197 /*
198 * Structure used to pass object evaluation information and parameters.
198 * Structure used to pass object evaluation parameters.
199 * Purpose is to reduce CPU stack use.
200 */
201 typedef struct acpi_evaluate_info
202 {
203 /* The first 3 elements are passed by the caller to AcpiNsEvaluate */
203 ACPI_NAMESPACE_NODE *PrefixNode;
204 char *Pathname;
205 ACPI_OPERAND_OBJECT *ObjDesc;
206 ACPI_OPERAND_OBJECT **Parameters;
207 ACPI_NAMESPACE_NODE *ResolvedNode;
208 ACPI_OPERAND_OBJECT *ReturnObject;
209 UINT8 ParamCount;
210 UINT8 PassNumber;
211 UINT8 ReturnObjectType;
212 UINT8 Flags;

205 ACPI_NAMESPACE_NODE *PrefixNode; /* Input: starting node
206 char *RelativePathname; /* Input: path relative
207 ACPI_OPERAND_OBJECT **Parameters; /* Input: argument list

209 ACPI_NAMESPACE_NODE *Node; /* Resolved node (Prefix
210 ACPI_OPERAND_OBJECT *ObjDesc; /* Object attached to th
211 char *FullPathname; /* Full pathname of the

213 const ACPI_PREDEFINED_INFO *Predefined; /* Used if Node is a pre
214 ACPI_OPERAND_OBJECT *ReturnObject; /* Object returned from
215 union acpi_operand_object *ParentPackage; /* Used if return object

217 UINT32 ReturnFlags; /* Used for return value
218 UINT32 ReturnBtype; /* Bitmapped type of the
219 UINT16 ParamCount; /* Count of the input ar
220 UINT8 PassNumber; /* Parser pass number */
221 UINT8 ReturnObjectType; /* Object type of the re
222 UINT8 NodeFlags; /* Same as Node->Flags *
223 UINT8 Flags; /* General flags */

225 } ACPI_EVALUATE_INFO;

227 /* Values for Flags above */

229 #define ACPI_IGNORE_RETURN_VALUE 1

231 /* Defines for ReturnFlags field above */

233 #define ACPI_OBJECT_REPAIRED 1
234 #define ACPI_OBJECT_WRAPPED 2

237 /* Info used by AcpiNsInitializeDevices */

239 typedef struct acpi_device_walk_info
240 {
241 ACPI_TABLE_DESC *TableDesc;

new/usr/src/common/acpica/include/acstruct.h 4

242 ACPI_EVALUATE_INFO *EvaluateInfo;
243 UINT32 DeviceCount;
244 UINT32 Num_STA;
245 UINT32 Num_INI;

247 } ACPI_DEVICE_WALK_INFO;
______unchanged_portion_omitted_

new/usr/src/common/acpica/include/actables.h 1

**
 4978 Thu Dec 26 13:49:55 2013
new/usr/src/common/acpica/include/actables.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: actables.h - ACPI table management
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACTABLES_H__
45 #define __ACTABLES_H__

48 ACPI_STATUS
49 AcpiAllocateRootTable (
50 UINT32 InitialTableCount);

52 /*
53 * tbxfroot - Root pointer utilities
54 */
55 ACPI_STATUS
56 AcpiTbValidateRsdp (
57 ACPI_TABLE_RSDP *Rsdp);

59 UINT8 *

new/usr/src/common/acpica/include/actables.h 2

60 AcpiTbScanMemoryForRsdp (
61 UINT8 *StartAddress,
62 UINT32 Length);

65 /*
66 * tbfadt - FADT parse/convert/validate
67 */
68 void
69 AcpiTbParseFadt (
70 UINT32 TableIndex);

72 void
73 AcpiTbCreateLocalFadt (
74 ACPI_TABLE_HEADER *Table,
75 UINT32 Length);

78 /*
79 * tbfind - find ACPI table
80 */
81 ACPI_STATUS
82 AcpiTbFindTable (
83 char *Signature,
84 char *OemId,
85 char *OemTableId,
86 UINT32 *TableIndex);

89 /*
90 * tbinstal - Table removal and deletion
91 */
92 ACPI_STATUS
93 AcpiTbResizeRootTableList (
94 void);

96 ACPI_STATUS
97 AcpiTbVerifyTable (
98 ACPI_TABLE_DESC *TableDesc);

100 ACPI_TABLE_HEADER *
101 AcpiTbTableOverride (
102 ACPI_TABLE_HEADER *TableHeader,
103 ACPI_TABLE_DESC *TableDesc);

105 ACPI_STATUS
106 AcpiTbAddTable (
107 ACPI_TABLE_DESC *TableDesc,
108 UINT32 *TableIndex);

110 ACPI_STATUS
111 AcpiTbStoreTable (
112 ACPI_PHYSICAL_ADDRESS Address,
113 ACPI_TABLE_HEADER *Table,
114 UINT32 Length,
115 UINT8 Flags,
116 UINT32 *TableIndex);

118 void
119 AcpiTbDeleteTable (
120 ACPI_TABLE_DESC *TableDesc);

122 void
123 AcpiTbTerminate (
124 void);

new/usr/src/common/acpica/include/actables.h 3

126 ACPI_STATUS
127 AcpiTbDeleteNamespaceByOwner (
128 UINT32 TableIndex);

130 ACPI_STATUS
131 AcpiTbAllocateOwnerId (
132 UINT32 TableIndex);

134 ACPI_STATUS
135 AcpiTbReleaseOwnerId (
136 UINT32 TableIndex);

138 ACPI_STATUS
139 AcpiTbGetOwnerId (
140 UINT32 TableIndex,
141 ACPI_OWNER_ID *OwnerId);

143 BOOLEAN
144 AcpiTbIsTableLoaded (
145 UINT32 TableIndex);

147 void
148 AcpiTbSetTableLoadedFlag (
149 UINT32 TableIndex,
150 BOOLEAN IsLoaded);

153 /*
154 * tbutils - table manager utilities
155 */
156 ACPI_STATUS
157 AcpiTbInitializeFacs (
158 void);

160 BOOLEAN
161 AcpiTbTablesLoaded (
162 void);

164 void
165 AcpiTbPrintTableHeader(
166 ACPI_PHYSICAL_ADDRESS Address,
167 ACPI_TABLE_HEADER *Header);

169 UINT8
170 AcpiTbChecksum (
171 UINT8 *Buffer,
172 UINT32 Length);

174 ACPI_STATUS
175 AcpiTbVerifyChecksum (
176 ACPI_TABLE_HEADER *Table,
177 UINT32 Length);

179 void
180 AcpiTbCheckDsdtHeader (
181 void);

183 ACPI_TABLE_HEADER *
184 AcpiTbCopyDsdt (
185 UINT32 TableIndex);

187 void
188 AcpiTbInstallTable (
189 ACPI_PHYSICAL_ADDRESS Address,
190 char *Signature,
191 UINT32 TableIndex);

new/usr/src/common/acpica/include/actables.h 4

193 ACPI_STATUS
194 AcpiTbParseRootTable (
195 ACPI_PHYSICAL_ADDRESS RsdpAddress);

197 #endif /* __ACTABLES_H__ */

new/usr/src/common/acpica/include/actbl.h 1

**
 22475 Thu Dec 26 13:49:55 2013
new/usr/src/common/acpica/include/actbl.h
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: actbl.h - Basic ACPI Table Definitions
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACTBL_H__
45 #define __ACTBL_H__

48 /***
49 *
50 * Fundamental ACPI tables
51 *
52 * This file contains definitions for the ACPI tables that are directly consumed
53 * by ACPICA. All other tables are consumed by the OS-dependent ACPI-related
54 * device drivers and other OS support code.
55 *
56 * The RSDP and FACS do not use the common ACPI table header. All other ACPI
57 * tables use the header.
58 *

new/usr/src/common/acpica/include/actbl.h 2

59 **/

62 /*
63 * Values for description table header signatures for tables defined in this
64 * file. Useful because they make it more difficult to inadvertently type in
65 * the wrong signature.
66 */
67 #define ACPI_SIG_DSDT "DSDT" /* Differentiated System Description
68 #define ACPI_SIG_FADT "FACP" /* Fixed ACPI Description Table */
69 #define ACPI_SIG_FACS "FACS" /* Firmware ACPI Control Structure *
70 #define ACPI_SIG_PSDT "PSDT" /* Persistent System Description Tab
71 #define ACPI_SIG_RSDP "RSD PTR " /* Root System Description Pointer *
72 #define ACPI_SIG_RSDT "RSDT" /* Root System Description Table */
73 #define ACPI_SIG_XSDT "XSDT" /* Extended System Description Tabl
74 #define ACPI_SIG_SSDT "SSDT" /* Secondary System Description Tabl
75 #define ACPI_RSDP_NAME "RSDP" /* Short name for RSDP, not signatur

78 /*
79 * All tables and structures must be byte-packed to match the ACPI
80 * specification, since the tables are provided by the system BIOS
81 */
82 #pragma pack(1)

84 /*
85 * Note: C bitfields are not used for this reason:
86 *
87 * "Bitfields are great and easy to read, but unfortunately the C language
88 * does not specify the layout of bitfields in memory, which means they are
89 * essentially useless for dealing with packed data in on-disk formats or
90 * binary wire protocols." (Or ACPI tables and buffers.) "If you ask me,
91 * this decision was a design error in C. Ritchie could have picked an order
92 * and stuck with it." Norman Ramsey.
93 * See http://stackoverflow.com/a/1053662/41661
85 * Note about bitfields: The UINT8 type is used for bitfields in ACPI tables.
86 * This is the only type that is even remotely portable. Anything else is not
87 * portable, so do not use any other bitfield types.
94 */

97 /***
98 *
99 * Master ACPI Table Header. This common header is used by all ACPI tables
100 * except the RSDP and FACS.
101 *
102 **/

104 typedef struct acpi_table_header
105 {
106 char Signature[ACPI_NAME_SIZE]; /* ASCII table s
107 UINT32 Length; /* Length of tab
108 UINT8 Revision; /* ACPI Specific
102 UINT8 Revision; /* ACPI Specific
109 UINT8 Checksum; /* To make sum o
110 char OemId[ACPI_OEM_ID_SIZE]; /* ASCII OEM ide
111 char OemTableId[ACPI_OEM_TABLE_ID_SIZE]; /* ASCII OEM tab
112 UINT32 OemRevision; /* OEM revision
113 char AslCompilerId[ACPI_NAME_SIZE]; /* ASCII ASL com
114 UINT32 AslCompilerRevision; /* ASL compiler

116 } ACPI_TABLE_HEADER;

119 /***
120 *

new/usr/src/common/acpica/include/actbl.h 3

121 * GAS - Generic Address Structure (ACPI 2.0+)
122 *
123 * Note: Since this structure is used in the ACPI tables, it is byte aligned.
124 * If misaligned access is not supported by the hardware, accesses to the
118 * If misaliged access is not supported by the hardware, accesses to the
125 * 64-bit Address field must be performed with care.
126 *
127 **/

129 typedef struct acpi_generic_address
130 {
131 UINT8 SpaceId; /* Address space where struc
132 UINT8 BitWidth; /* Size in bits of given reg
133 UINT8 BitOffset; /* Bit offset within the reg
134 UINT8 AccessWidth; /* Minimum Access size (ACPI
135 UINT64 Address; /* 64-bit address of struct

137 } ACPI_GENERIC_ADDRESS;
______unchanged_portion_omitted_

206 #define ACPI_RSDT_ENTRY_SIZE (sizeof (UINT32))
207 #define ACPI_XSDT_ENTRY_SIZE (sizeof (UINT64))

210 /***
211 *
212 * FACS - Firmware ACPI Control Structure (FACS)
213 *
214 **/

216 typedef struct acpi_table_facs
217 {
218 char Signature[4]; /* ASCII table signature */
219 UINT32 Length; /* Length of structure, in b
220 UINT32 HardwareSignature; /* Hardware configuration si
221 UINT32 FirmwareWakingVector; /* 32-bit physical address o
222 UINT32 GlobalLock; /* Global Lock for shared ha
223 UINT32 Flags;
224 UINT64 XFirmwareWakingVector; /* 64-bit version of the Fir
225 UINT8 Version; /* Version of this table (AC
226 UINT8 Reserved[3]; /* Reserved, must be zero */
227 UINT32 OspmFlags; /* Flags to be set by OSPM (
228 UINT8 Reserved1[24]; /* Reserved, must be zero */

230 } ACPI_TABLE_FACS;

232 /* Masks for GlobalLock flag field above */

234 #define ACPI_GLOCK_PENDING (1) /* 00: Pending global lock o
235 #define ACPI_GLOCK_OWNED (1<<1) /* 01: Global lock is owned

237 /* Masks for Flags field above */

239 #define ACPI_FACS_S4_BIOS_PRESENT (1) /* 00: S4BIOS support is pre
240 #define ACPI_FACS_64BIT_WAKE (1<<1) /* 01: 64-bit wake vector su

242 /* Masks for OspmFlags field above */

244 #define ACPI_FACS_64BIT_ENVIRONMENT (1) /* 00: 64-bit wake environme

247 /***
248 *
249 * FADT - Fixed ACPI Description Table (Signature "FACP")
250 * Version 4
251 *

new/usr/src/common/acpica/include/actbl.h 4

252 **/

254 /* Fields common to all versions of the FADT */

256 typedef struct acpi_table_fadt
257 {
258 ACPI_TABLE_HEADER Header; /* Common ACPI table header */
259 UINT32 Facs; /* 32-bit physical address of FA
260 UINT32 Dsdt; /* 32-bit physical address of DS
261 UINT8 Model; /* System Interrupt Model (ACPI
262 UINT8 PreferredProfile; /* Conveys preferred power manag
263 UINT16 SciInterrupt; /* System vector of SCI interrup
264 UINT32 SmiCommand; /* 32-bit Port address of SMI co
265 UINT8 AcpiEnable; /* Value to write to SMI_CMD to
266 UINT8 AcpiDisable; /* Value to write to SMI_CMD to
267 UINT8 S4BiosRequest; /* Value to write to SMI_CMD to
256 UINT8 AcpiEnable; /* Value to write to smi_cmd to
257 UINT8 AcpiDisable; /* Value to write to smi_cmd to
258 UINT8 S4BiosRequest; /* Value to write to SMI CMD to
268 UINT8 PstateControl; /* Processor performance state c
269 UINT32 Pm1aEventBlock; /* 32-bit port address of Power
270 UINT32 Pm1bEventBlock; /* 32-bit port address of Power
271 UINT32 Pm1aControlBlock; /* 32-bit port address of Power
272 UINT32 Pm1bControlBlock; /* 32-bit port address of Power
273 UINT32 Pm2ControlBlock; /* 32-bit port address of Power
274 UINT32 PmTimerBlock; /* 32-bit port address of Power
275 UINT32 Gpe0Block; /* 32-bit port address of Genera
276 UINT32 Gpe1Block; /* 32-bit port address of Genera
260 UINT32 Pm1aEventBlock; /* 32-bit Port address of Power
261 UINT32 Pm1bEventBlock; /* 32-bit Port address of Power
262 UINT32 Pm1aControlBlock; /* 32-bit Port address of Power
263 UINT32 Pm1bControlBlock; /* 32-bit Port address of Power
264 UINT32 Pm2ControlBlock; /* 32-bit Port address of Power
265 UINT32 PmTimerBlock; /* 32-bit Port address of Power
266 UINT32 Gpe0Block; /* 32-bit Port address of Genera
267 UINT32 Gpe1Block; /* 32-bit Port address of Genera
277 UINT8 Pm1EventLength; /* Byte Length of ports at Pm1xE
278 UINT8 Pm1ControlLength; /* Byte Length of ports at Pm1xC
279 UINT8 Pm2ControlLength; /* Byte Length of ports at Pm2Co
280 UINT8 PmTimerLength; /* Byte Length of ports at PmTim
281 UINT8 Gpe0BlockLength; /* Byte Length of ports at Gpe0B
282 UINT8 Gpe1BlockLength; /* Byte Length of ports at Gpe1B
283 UINT8 Gpe1Base; /* Offset in GPE number space wh
284 UINT8 CstControl; /* Support for the _CST object a
275 UINT8 CstControl; /* Support for the _CST object a
285 UINT16 C2Latency; /* Worst case HW latency to ente
286 UINT16 C3Latency; /* Worst case HW latency to ente
287 UINT16 FlushSize; /* Processor memory cache line w
278 UINT16 FlushSize; /* Processor’s memory cache line
288 UINT16 FlushStride; /* Number of flush strides that
289 UINT8 DutyOffset; /* Processor duty cycle index in
280 UINT8 DutyOffset; /* Processor duty cycle index in
290 UINT8 DutyWidth; /* Processor duty cycle value bi
291 UINT8 DayAlarm; /* Index to day-of-month alarm i
292 UINT8 MonthAlarm; /* Index to month-of-year alarm
293 UINT8 Century; /* Index to century in RTC CMOS
294 UINT16 BootFlags; /* IA-PC Boot Architecture Flags
295 UINT8 Reserved; /* Reserved, must be zero */
296 UINT32 Flags; /* Miscellaneous flag bits (see
297 ACPI_GENERIC_ADDRESS ResetRegister; /* 64-bit address of the Reset r
298 UINT8 ResetValue; /* Value to write to the ResetRe
299 UINT8 Reserved4[3]; /* Reserved, must be zero */
300 UINT64 XFacs; /* 64-bit physical address of FA
301 UINT64 XDsdt; /* 64-bit physical address of DS
302 ACPI_GENERIC_ADDRESS XPm1aEventBlock; /* 64-bit Extended Power Mgt 1a
303 ACPI_GENERIC_ADDRESS XPm1bEventBlock; /* 64-bit Extended Power Mgt 1b

new/usr/src/common/acpica/include/actbl.h 5

304 ACPI_GENERIC_ADDRESS XPm1aControlBlock; /* 64-bit Extended Power Mgt 1a
305 ACPI_GENERIC_ADDRESS XPm1bControlBlock; /* 64-bit Extended Power Mgt 1b
306 ACPI_GENERIC_ADDRESS XPm2ControlBlock; /* 64-bit Extended Power Mgt 2 C
307 ACPI_GENERIC_ADDRESS XPmTimerBlock; /* 64-bit Extended Power Mgt Tim
308 ACPI_GENERIC_ADDRESS XGpe0Block; /* 64-bit Extended General Purpo
309 ACPI_GENERIC_ADDRESS XGpe1Block; /* 64-bit Extended General Purpo
310 ACPI_GENERIC_ADDRESS SleepControl; /* 64-bit Sleep Control register
311 ACPI_GENERIC_ADDRESS SleepStatus; /* 64-bit Sleep Status register

313 } ACPI_TABLE_FADT;

316 /* Masks for FADT Boot Architecture Flags (BootFlags) [Vx]=Introduced in this FA
305 /* Masks for FADT Boot Architecture Flags (BootFlags) */

318 #define ACPI_FADT_LEGACY_DEVICES (1) /* 00: [V2] System has LPC or IS
319 #define ACPI_FADT_8042 (1<<1) /* 01: [V3] System has an 8042 c
320 #define ACPI_FADT_NO_VGA (1<<2) /* 02: [V4] It is not safe to pr
321 #define ACPI_FADT_NO_MSI (1<<3) /* 03: [V4] Message Signaled Int
322 #define ACPI_FADT_NO_ASPM (1<<4) /* 04: [V4] PCIe ASPM control mu
323 #define ACPI_FADT_NO_CMOS_RTC (1<<5) /* 05: [V5] No CMOS real-time cl

325 /* Masks for FADT flags */

327 #define ACPI_FADT_WBINVD (1) /* 00: [V1] The WBINVD instructi
328 #define ACPI_FADT_WBINVD_FLUSH (1<<1) /* 01: [V1] WBINVD flushes but d
315 #define ACPI_FADT_WBINVD (1) /* 00: [V1] The wbinvd instructi
316 #define ACPI_FADT_WBINVD_FLUSH (1<<1) /* 01: [V1] wbinvd flushes but d
329 #define ACPI_FADT_C1_SUPPORTED (1<<2) /* 02: [V1] All processors suppo
330 #define ACPI_FADT_C2_MP_SUPPORTED (1<<3) /* 03: [V1] C2 state works on MP
331 #define ACPI_FADT_POWER_BUTTON (1<<4) /* 04: [V1] Power button is hand
332 #define ACPI_FADT_SLEEP_BUTTON (1<<5) /* 05: [V1] Sleep button is hand
333 #define ACPI_FADT_FIXED_RTC (1<<6) /* 06: [V1] RTC wakeup status is
321 #define ACPI_FADT_FIXED_RTC (1<<6) /* 06: [V1] RTC wakeup status no
334 #define ACPI_FADT_S4_RTC_WAKE (1<<7) /* 07: [V1] RTC alarm can wake s
335 #define ACPI_FADT_32BIT_TIMER (1<<8) /* 08: [V1] ACPI timer width is
336 #define ACPI_FADT_DOCKING_SUPPORTED (1<<9) /* 09: [V1] Docking supported */
337 #define ACPI_FADT_RESET_REGISTER (1<<10) /* 10: [V2] System reset via the
338 #define ACPI_FADT_SEALED_CASE (1<<11) /* 11: [V3] No internal expansio
339 #define ACPI_FADT_HEADLESS (1<<12) /* 12: [V3] No local video capab
340 #define ACPI_FADT_SLEEP_TYPE (1<<13) /* 13: [V3] Must execute native
341 #define ACPI_FADT_PCI_EXPRESS_WAKE (1<<14) /* 14: [V4] System supports PCIE
342 #define ACPI_FADT_PLATFORM_CLOCK (1<<15) /* 15: [V4] OSPM should use plat
343 #define ACPI_FADT_S4_RTC_VALID (1<<16) /* 16: [V4] Contents of RTC_STS
344 #define ACPI_FADT_REMOTE_POWER_ON (1<<17) /* 17: [V4] System is compatible
345 #define ACPI_FADT_APIC_CLUSTER (1<<18) /* 18: [V4] All local APICs must
346 #define ACPI_FADT_APIC_PHYSICAL (1<<19) /* 19: [V4] All local xAPICs mus
347 #define ACPI_FADT_HW_REDUCED (1<<20) /* 20: [V5] ACPI hardware is not
348 #define ACPI_FADT_LOW_POWER_S0 (1<<21) /* 21: [V5] S0 power savings are

351 /* Values for PreferredProfile (Preferred Power Management Profiles) */
337 /* Values for PreferredProfile (Prefered Power Management Profiles) */

353 enum AcpiPreferredPmProfiles
339 enum AcpiPreferedPmProfiles
354 {
355 PM_UNSPECIFIED = 0,
356 PM_DESKTOP = 1,
357 PM_MOBILE = 2,
358 PM_WORKSTATION = 3,
359 PM_ENTERPRISE_SERVER = 4,
360 PM_SOHO_SERVER = 5,
361 PM_APPLIANCE_PC = 6,
362 PM_PERFORMANCE_SERVER = 7,
363 PM_TABLET = 8

new/usr/src/common/acpica/include/actbl.h 6

347 PM_APPLIANCE_PC = 6
364 };

366 /* Values for SleepStatus and SleepControl registers (V5 FADT) */

368 #define ACPI_X_WAKE_STATUS 0x80
369 #define ACPI_X_SLEEP_TYPE_MASK 0x1C
370 #define ACPI_X_SLEEP_TYPE_POSITION 0x02
371 #define ACPI_X_SLEEP_ENABLE 0x20

374 /* Reset to default packing */

376 #pragma pack()

379 /*
380 * Internal table-related structures
381 */
382 typedef union acpi_name_union
383 {
384 UINT32 Integer;
385 char Ascii[4];

387 } ACPI_NAME_UNION;

390 /* Internal ACPI Table Descriptor. One per ACPI table. */

392 typedef struct acpi_table_desc
393 {
394 ACPI_PHYSICAL_ADDRESS Address;
395 ACPI_TABLE_HEADER *Pointer;
396 UINT32 Length; /* Length fixed at 32 bits (fixe
373 UINT32 Length; /* Length fixed at 32 bits */
397 ACPI_NAME_UNION Signature;
398 ACPI_OWNER_ID OwnerId;
399 UINT8 Flags;

401 } ACPI_TABLE_DESC;

403 /* Masks for Flags field above */

405 #define ACPI_TABLE_ORIGIN_UNKNOWN (0)
406 #define ACPI_TABLE_ORIGIN_MAPPED (1)
407 #define ACPI_TABLE_ORIGIN_ALLOCATED (2)
408 #define ACPI_TABLE_ORIGIN_OVERRIDE (4)
409 #define ACPI_TABLE_ORIGIN_MASK (7)
410 #define ACPI_TABLE_IS_LOADED (8)

413 /*
414 * Get the remaining ACPI tables
415 */
416 #include "actbl1.h"
417 #include "actbl2.h"
418 #include "actbl3.h"

420 /* Macros used to generate offsets to specific table fields */

422 #define ACPI_FADT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_FADT, f
398 #define ACPI_FADT_OFFSET(f) (UINT8) ACPI_OFFSET (ACPI_TABLE_FADT, f)

424 /*
425 * Sizes of the various flavors of FADT. We need to look closely
426 * at the FADT length because the version number essentially tells

new/usr/src/common/acpica/include/actbl.h 7

427 * us nothing because of many BIOS bugs where the version does not
428 * match the expected length. In other words, the length of the
429 * FADT is the bottom line as to what the version really is.
430 *
431 * For reference, the values below are as follows:
432 * FADT V1 size: 0x074
433 * FADT V2 size: 0x084
434 * FADT V3 size: 0x0F4
435 * FADT V4 size: 0x0F4
436 * FADT V5 size: 0x10C
408 * FADT V1 size: 0x74
409 * FADT V2 size: 0x84
410 * FADT V3+ size: 0xF4
437 */
438 #define ACPI_FADT_V1_SIZE (UINT32) (ACPI_FADT_OFFSET (Flags) + 4)
439 #define ACPI_FADT_V2_SIZE (UINT32) (ACPI_FADT_OFFSET (Reserved4[0]) + 3)
440 #define ACPI_FADT_V3_SIZE (UINT32) (ACPI_FADT_OFFSET (SleepControl))
441 #define ACPI_FADT_V5_SIZE (UINT32) (sizeof (ACPI_TABLE_FADT))
414 #define ACPI_FADT_V3_SIZE (UINT32) (sizeof (ACPI_TABLE_FADT))

443 #endif /* __ACTBL_H__ */

new/usr/src/common/acpica/include/actbl1.h 1

**
 36382 Thu Dec 26 13:49:56 2013
new/usr/src/common/acpica/include/actbl1.h
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: actbl1.h - Additional ACPI table definitions
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACTBL1_H__
45 #define __ACTBL1_H__

48 /***
49 *
50 * Additional ACPI Tables (1)
51 *
52 * These tables are not consumed directly by the ACPICA subsystem, but are
53 * included here to support device drivers and the AML disassembler.
54 *
55 * The tables in this file are fully defined within the ACPI specification.
56 *
57 **/

new/usr/src/common/acpica/include/actbl1.h 2

60 /*
61 * Values for description table header signatures for tables defined in this
62 * file. Useful because they make it more difficult to inadvertently type in
63 * the wrong signature.
64 */
65 #define ACPI_SIG_BERT "BERT" /* Boot Error Record Table */
66 #define ACPI_SIG_CPEP "CPEP" /* Corrected Platform Error Polling
67 #define ACPI_SIG_ECDT "ECDT" /* Embedded Controller Boot Resource
68 #define ACPI_SIG_EINJ "EINJ" /* Error Injection table */
69 #define ACPI_SIG_ERST "ERST" /* Error Record Serialization Table
70 #define ACPI_SIG_HEST "HEST" /* Hardware Error Source Table */
71 #define ACPI_SIG_MADT "APIC" /* Multiple APIC Description Table *
72 #define ACPI_SIG_MSCT "MSCT" /* Maximum System Characteristics Ta
73 #define ACPI_SIG_SBST "SBST" /* Smart Battery Specification Table
74 #define ACPI_SIG_SLIT "SLIT" /* System Locality Distance Informat
75 #define ACPI_SIG_SRAT "SRAT" /* System Resource Affinity Table */

78 /*
79 * All tables must be byte-packed to match the ACPI specification, since
80 * the tables are provided by the system BIOS.
81 */
82 #pragma pack(1)

84 /*
85 * Note: C bitfields are not used for this reason:
86 *
87 * "Bitfields are great and easy to read, but unfortunately the C language
88 * does not specify the layout of bitfields in memory, which means they are
89 * essentially useless for dealing with packed data in on-disk formats or
90 * binary wire protocols." (Or ACPI tables and buffers.) "If you ask me,
91 * this decision was a design error in C. Ritchie could have picked an order
92 * and stuck with it." Norman Ramsey.
93 * See http://stackoverflow.com/a/1053662/41661
85 * Note about bitfields: The UINT8 type is used for bitfields in ACPI tables.
86 * This is the only type that is even remotely portable. Anything else is not
87 * portable, so do not use any other bitfield types.
94 */

97 /***
98 *
99 * Common subtable headers
100 *
101 **/

103 /* Generic subtable header (used in MADT, SRAT, etc.) */

105 typedef struct acpi_subtable_header
106 {
107 UINT8 Type;
108 UINT8 Length;

110 } ACPI_SUBTABLE_HEADER;
______unchanged_portion_omitted_

128 /***
129 *
130 * BERT - Boot Error Record Table (ACPI 4.0)
131 * Version 1
132 *
133 **/

135 typedef struct acpi_table_bert

new/usr/src/common/acpica/include/actbl1.h 3

136 {
137 ACPI_TABLE_HEADER Header; /* Common ACPI table header */
138 UINT32 RegionLength; /* Length of the boot error regi
139 UINT64 Address; /* Physical address of the error
133 UINT64 Address; /* Physical addresss of the erro

141 } ACPI_TABLE_BERT;
______unchanged_portion_omitted_

253 /* Masks for Flags field above */

255 #define ACPI_EINJ_PRESERVE (1)

257 /* Values for Action field above */

259 enum AcpiEinjActions
260 {
261 ACPI_EINJ_BEGIN_OPERATION = 0,
262 ACPI_EINJ_GET_TRIGGER_TABLE = 1,
263 ACPI_EINJ_SET_ERROR_TYPE = 2,
264 ACPI_EINJ_GET_ERROR_TYPE = 3,
265 ACPI_EINJ_END_OPERATION = 4,
266 ACPI_EINJ_EXECUTE_OPERATION = 5,
267 ACPI_EINJ_CHECK_BUSY_STATUS = 6,
268 ACPI_EINJ_GET_COMMAND_STATUS = 7,
269 ACPI_EINJ_SET_ERROR_TYPE_WITH_ADDRESS = 8,
270 ACPI_EINJ_ACTION_RESERVED = 9, /* 9 and greater are reserv
263 ACPI_EINJ_ACTION_RESERVED = 8, /* 8 and greater are reserved */
271 ACPI_EINJ_TRIGGER_ERROR = 0xFF /* Except for this value */
272 };

274 /* Values for Instruction field above */

276 enum AcpiEinjInstructions
277 {
278 ACPI_EINJ_READ_REGISTER = 0,
279 ACPI_EINJ_READ_REGISTER_VALUE = 1,
280 ACPI_EINJ_WRITE_REGISTER = 2,
281 ACPI_EINJ_WRITE_REGISTER_VALUE = 3,
282 ACPI_EINJ_NOOP = 4,
283 ACPI_EINJ_FLUSH_CACHELINE = 5,
284 ACPI_EINJ_INSTRUCTION_RESERVED = 6 /* 6 and greater are reserved */
276 ACPI_EINJ_INSTRUCTION_RESERVED = 5 /* 5 and greater are reserved */
285 };

287 typedef struct acpi_einj_error_type_with_addr
288 {
289 UINT32 ErrorType;
290 UINT32 VendorStructOffset;
291 UINT32 Flags;
292 UINT32 ApicId;
293 UINT64 Address;
294 UINT64 Range;
295 UINT32 PcieId;

297 } ACPI_EINJ_ERROR_TYPE_WITH_ADDR;

299 typedef struct acpi_einj_vendor
300 {
301 UINT32 Length;
302 UINT32 PcieId;
303 UINT16 VendorId;
304 UINT16 DeviceId;
305 UINT8 RevisionId;
306 UINT8 Reserved[3];

new/usr/src/common/acpica/include/actbl1.h 4

308 } ACPI_EINJ_VENDOR;

311 /* EINJ Trigger Error Action Table */

313 typedef struct acpi_einj_trigger
314 {
315 UINT32 HeaderSize;
316 UINT32 Revision;
317 UINT32 TableSize;
318 UINT32 EntryCount;

320 } ACPI_EINJ_TRIGGER;
______unchanged_portion_omitted_

333 /* Error types returned from ACPI_EINJ_GET_ERROR_TYPE (bitfield) */

335 #define ACPI_EINJ_PROCESSOR_CORRECTABLE (1)
336 #define ACPI_EINJ_PROCESSOR_UNCORRECTABLE (1<<1)
337 #define ACPI_EINJ_PROCESSOR_FATAL (1<<2)
338 #define ACPI_EINJ_MEMORY_CORRECTABLE (1<<3)
339 #define ACPI_EINJ_MEMORY_UNCORRECTABLE (1<<4)
340 #define ACPI_EINJ_MEMORY_FATAL (1<<5)
341 #define ACPI_EINJ_PCIX_CORRECTABLE (1<<6)
342 #define ACPI_EINJ_PCIX_UNCORRECTABLE (1<<7)
343 #define ACPI_EINJ_PCIX_FATAL (1<<8)
344 #define ACPI_EINJ_PLATFORM_CORRECTABLE (1<<9)
345 #define ACPI_EINJ_PLATFORM_UNCORRECTABLE (1<<10)
346 #define ACPI_EINJ_PLATFORM_FATAL (1<<11)
347 #define ACPI_EINJ_VENDOR_DEFINED (1<<31)

350 /***
351 *
352 * ERST - Error Record Serialization Table (ACPI 4.0)
353 * Version 1
354 *
355 **/

357 typedef struct acpi_table_erst
358 {
359 ACPI_TABLE_HEADER Header; /* Common ACPI table header */
360 UINT32 HeaderLength;
361 UINT32 Reserved;
362 UINT32 Entries;

364 } ACPI_TABLE_ERST;
______unchanged_portion_omitted_

518 /* Common HEST sub-structure for PCI/AER structures below (6,7,8) */

520 typedef struct acpi_hest_aer_common
521 {
522 UINT16 Reserved1;
523 UINT8 Flags;
524 UINT8 Enabled;
525 UINT32 RecordsToPreallocate;
526 UINT32 MaxSectionsPerRecord;
527 UINT32 Bus; /* Bus and Segment numbers *
495 UINT32 Bus;
528 UINT16 Device;
529 UINT16 Function;
530 UINT16 DeviceControl;
531 UINT16 Reserved2;

new/usr/src/common/acpica/include/actbl1.h 5

532 UINT32 UncorrectableMask;
533 UINT32 UncorrectableSeverity;
534 UINT32 CorrectableMask;
535 UINT32 AdvancedCapabilities;

537 } ACPI_HEST_AER_COMMON;

539 /* Masks for HEST Flags fields */

541 #define ACPI_HEST_FIRMWARE_FIRST (1)
542 #define ACPI_HEST_GLOBAL (1<<1)

544 /*
545 * Macros to access the bus/segment numbers in Bus field above:
546 * Bus number is encoded in bits 7:0
547 * Segment number is encoded in bits 23:8
548 */
549 #define ACPI_HEST_BUS(Bus) ((Bus) & 0xFF)
550 #define ACPI_HEST_SEGMENT(Bus) (((Bus) >> 8) & 0xFFFF)

553 /* Hardware Error Notification */

555 typedef struct acpi_hest_notify
556 {
557 UINT8 Type;
558 UINT8 Length;
559 UINT16 ConfigWriteEnable;
560 UINT32 PollInterval;
561 UINT32 Vector;
562 UINT32 PollingThresholdValue;
563 UINT32 PollingThresholdWindow;
564 UINT32 ErrorThresholdValue;
565 UINT32 ErrorThresholdWindow;

567 } ACPI_HEST_NOTIFY;

569 /* Values for Notify Type field above */

571 enum AcpiHestNotifyTypes
572 {
573 ACPI_HEST_NOTIFY_POLLED = 0,
574 ACPI_HEST_NOTIFY_EXTERNAL = 1,
575 ACPI_HEST_NOTIFY_LOCAL = 2,
576 ACPI_HEST_NOTIFY_SCI = 3,
577 ACPI_HEST_NOTIFY_NMI = 4,
578 ACPI_HEST_NOTIFY_CMCI = 5, /* ACPI 5.0 */
579 ACPI_HEST_NOTIFY_MCE = 6, /* ACPI 5.0 */
580 ACPI_HEST_NOTIFY_RESERVED = 7 /* 7 and greater are reserved */
538 ACPI_HEST_NOTIFY_RESERVED = 5 /* 5 and greater are reserved */
581 };

______unchanged_portion_omitted_

751 /* Masks for Flags field above */

753 #define ACPI_MADT_PCAT_COMPAT (1) /* 00: System also has dual 8259

755 /* Values for PCATCompat flag */

757 #define ACPI_MADT_DUAL_PIC 0
758 #define ACPI_MADT_MULTIPLE_APIC 1

761 /* Values for MADT subtable type in ACPI_SUBTABLE_HEADER */

763 enum AcpiMadtType

new/usr/src/common/acpica/include/actbl1.h 6

764 {
765 ACPI_MADT_TYPE_LOCAL_APIC = 0,
766 ACPI_MADT_TYPE_IO_APIC = 1,
767 ACPI_MADT_TYPE_INTERRUPT_OVERRIDE = 2,
768 ACPI_MADT_TYPE_NMI_SOURCE = 3,
769 ACPI_MADT_TYPE_LOCAL_APIC_NMI = 4,
770 ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE = 5,
771 ACPI_MADT_TYPE_IO_SAPIC = 6,
772 ACPI_MADT_TYPE_LOCAL_SAPIC = 7,
773 ACPI_MADT_TYPE_INTERRUPT_SOURCE = 8,
774 ACPI_MADT_TYPE_LOCAL_X2APIC = 9,
775 ACPI_MADT_TYPE_LOCAL_X2APIC_NMI = 10,
776 ACPI_MADT_TYPE_GENERIC_INTERRUPT = 11,
777 ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR = 12,
778 ACPI_MADT_TYPE_RESERVED = 13 /* 13 and greater are reserved *
734 ACPI_MADT_TYPE_RESERVED = 11 /* 11 and greater are reserved *
779 };

______unchanged_portion_omitted_

933 /* 11: Generic Interrupt (ACPI 5.0) */

935 typedef struct acpi_madt_generic_interrupt
936 {
937 ACPI_SUBTABLE_HEADER Header;
938 UINT16 Reserved; /* Reserved - must be zero */
939 UINT32 GicId;
940 UINT32 Uid;
941 UINT32 Flags;
942 UINT32 ParkingVersion;
943 UINT32 PerformanceInterrupt;
944 UINT64 ParkedAddress;
945 UINT64 BaseAddress;

947 } ACPI_MADT_GENERIC_INTERRUPT;

950 /* 12: Generic Distributor (ACPI 5.0) */

952 typedef struct acpi_madt_generic_distributor
953 {
954 ACPI_SUBTABLE_HEADER Header;
955 UINT16 Reserved; /* Reserved - must be zero */
956 UINT32 GicId;
957 UINT64 BaseAddress;
958 UINT32 GlobalIrqBase;
959 UINT32 Reserved2; /* Reserved - must be zero */

961 } ACPI_MADT_GENERIC_DISTRIBUTOR;

964 /*
965 * Common flags fields for MADT subtables
966 */

968 /* MADT Local APIC flags (LapicFlags) and GIC flags */
893 /* MADT Local APIC flags (LapicFlags) */

970 #define ACPI_MADT_ENABLED (1) /* 00: Processor is usable if se

972 /* MADT MPS INTI flags (IntiFlags) */

974 #define ACPI_MADT_POLARITY_MASK (3) /* 00-01: Polarity of APIC I/O i
975 #define ACPI_MADT_TRIGGER_MASK (3<<2) /* 02-03: Trigger mode of APIC i

977 /* Values for MPS INTI flags */

new/usr/src/common/acpica/include/actbl1.h 7

979 #define ACPI_MADT_POLARITY_CONFORMS 0
980 #define ACPI_MADT_POLARITY_ACTIVE_HIGH 1
981 #define ACPI_MADT_POLARITY_RESERVED 2
982 #define ACPI_MADT_POLARITY_ACTIVE_LOW 3

984 #define ACPI_MADT_TRIGGER_CONFORMS (0)
985 #define ACPI_MADT_TRIGGER_EDGE (1<<2)
986 #define ACPI_MADT_TRIGGER_RESERVED (2<<2)
987 #define ACPI_MADT_TRIGGER_LEVEL (3<<2)

990 /***
991 *
992 * MSCT - Maximum System Characteristics Table (ACPI 4.0)
993 * Version 1
994 *
995 **/

997 typedef struct acpi_table_msct
998 {
999 ACPI_TABLE_HEADER Header; /* Common ACPI table header */

1000 UINT32 ProximityOffset; /* Location of proximity info st
1001 UINT32 MaxProximityDomains;/* Max number of proximity domai
1002 UINT32 MaxClockDomains; /* Max number of clock domains *
1003 UINT64 MaxAddress; /* Max physical address in syste

1005 } ACPI_TABLE_MSCT;
______unchanged_portion_omitted_

new/usr/src/common/acpica/include/actbl2.h 1

**
 43681 Thu Dec 26 13:49:57 2013
new/usr/src/common/acpica/include/actbl2.h
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: actbl2.h - ACPI Table Definitions (tables not in ACPI spec)
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACTBL2_H__
45 #define __ACTBL2_H__

48 /***
49 *
50 * Additional ACPI Tables (2)
51 *
52 * These tables are not consumed directly by the ACPICA subsystem, but are
53 * included here to support device drivers and the AML disassembler.
54 *
55 * The tables in this file are defined by third-party specifications, and are
56 * not defined directly by the ACPI specification itself.
57 *
58 **/

new/usr/src/common/acpica/include/actbl2.h 2

61 /*
62 * Values for description table header signatures for tables defined in this
63 * file. Useful because they make it more difficult to inadvertently type in
64 * the wrong signature.
65 */
66 #define ACPI_SIG_ASF "ASF!" /* Alert Standard Format table */
67 #define ACPI_SIG_BOOT "BOOT" /* Simple Boot Flag Table */
68 #define ACPI_SIG_CSRT "CSRT" /* Core System Resource Table */
69 #define ACPI_SIG_DBG2 "DBG2" /* Debug Port table type 2 */
70 #define ACPI_SIG_DBGP "DBGP" /* Debug Port table */
71 #define ACPI_SIG_DMAR "DMAR" /* DMA Remapping table */
72 #define ACPI_SIG_HPET "HPET" /* High Precision Event Timer table
73 #define ACPI_SIG_IBFT "IBFT" /* iSCSI Boot Firmware Table */
74 #define ACPI_SIG_IVRS "IVRS" /* I/O Virtualization Reporting Stru
75 #define ACPI_SIG_MCFG "MCFG" /* PCI Memory Mapped Configuration t
76 #define ACPI_SIG_MCHI "MCHI" /* Management Controller Host Interf
77 #define ACPI_SIG_MTMR "MTMR" /* MID Timer table */
78 #define ACPI_SIG_SLIC "SLIC" /* Software Licensing Description Ta
79 #define ACPI_SIG_SPCR "SPCR" /* Serial Port Console Redirection t
80 #define ACPI_SIG_SPMI "SPMI" /* Server Platform Management Interf
81 #define ACPI_SIG_TCPA "TCPA" /* Trusted Computing Platform Allian
82 #define ACPI_SIG_UEFI "UEFI" /* Uefi Boot Optimization Table */
83 #define ACPI_SIG_VRTC "VRTC" /* Virtual Real Time Clock Table */
84 #define ACPI_SIG_WAET "WAET" /* Windows ACPI Emulated devices Tab
85 #define ACPI_SIG_WDAT "WDAT" /* Watchdog Action Table */
86 #define ACPI_SIG_WDDT "WDDT" /* Watchdog Timer Description Table
87 #define ACPI_SIG_WDRT "WDRT" /* Watchdog Resource Table */

89 #ifdef ACPI_UNDEFINED_TABLES
90 /*
91 * These tables have been seen in the field, but no definition has been found
92 */
93 #define ACPI_SIG_ATKG "ATKG"
94 #define ACPI_SIG_GSCI "GSCI" /* GMCH SCI table */
95 #define ACPI_SIG_IEIT "IEIT"
96 #endif

98 /*
99 * All tables must be byte-packed to match the ACPI specification, since
100 * the tables are provided by the system BIOS.
101 */
102 #pragma pack(1)

104 /*
105 * Note: C bitfields are not used for this reason:
106 *
107 * "Bitfields are great and easy to read, but unfortunately the C language
108 * does not specify the layout of bitfields in memory, which means they are
109 * essentially useless for dealing with packed data in on-disk formats or
110 * binary wire protocols." (Or ACPI tables and buffers.) "If you ask me,
111 * this decision was a design error in C. Ritchie could have picked an order
112 * and stuck with it." Norman Ramsey.
113 * See http://stackoverflow.com/a/1053662/41661
101 * Note about bitfields: The UINT8 type is used for bitfields in ACPI tables.
102 * This is the only type that is even remotely portable. Anything else is not
103 * portable, so do not use any other bitfield types.
114 */

117 /***
118 *
119 * ASF - Alert Standard Format table (Signature "ASF!")
120 * Revision 0x10
121 *

new/usr/src/common/acpica/include/actbl2.h 3

122 * Conforms to the Alert Standard Format Specification V2.0, 23 April 2003
123 *
124 **/

126 typedef struct acpi_table_asf
127 {
128 ACPI_TABLE_HEADER Header; /* Common ACPI table header */

130 } ACPI_TABLE_ASF;
______unchanged_portion_omitted_

275 /***
276 *
277 * CSRT - Core System Resource Table
278 * Version 0
279 *
280 * Conforms to the "Core System Resource Table (CSRT)", November 14, 2011
281 *
282 **/

284 typedef struct acpi_table_csrt
285 {
286 ACPI_TABLE_HEADER Header; /* Common ACPI table header */

288 } ACPI_TABLE_CSRT;

291 /* Resource Group subtable */

293 typedef struct acpi_csrt_group
294 {
295 UINT32 Length;
296 UINT32 VendorId;
297 UINT32 SubvendorId;
298 UINT16 DeviceId;
299 UINT16 SubdeviceId;
300 UINT16 Revision;
301 UINT16 Reserved;
302 UINT32 SharedInfoLength;

304 /* Shared data immediately follows (Length = SharedInfoLength) */

306 } ACPI_CSRT_GROUP;

308 /* Shared Info subtable */

310 typedef struct acpi_csrt_shared_info
311 {
312 UINT16 MajorVersion;
313 UINT16 MinorVersion;
314 UINT32 MmioBaseLow;
315 UINT32 MmioBaseHigh;
316 UINT32 GsiInterrupt;
317 UINT8 InterruptPolarity;
318 UINT8 InterruptMode;
319 UINT8 NumChannels;
320 UINT8 DmaAddressWidth;
321 UINT16 BaseRequestLine;
322 UINT16 NumHandshakeSignals;
323 UINT32 MaxBlockSize;

325 /* Resource descriptors immediately follow (Length = Group Length - SharedIn

327 } ACPI_CSRT_SHARED_INFO;

new/usr/src/common/acpica/include/actbl2.h 4

329 /* Resource Descriptor subtable */

331 typedef struct acpi_csrt_descriptor
332 {
333 UINT32 Length;
334 UINT16 Type;
335 UINT16 Subtype;
336 UINT32 Uid;

338 /* Resource-specific information immediately follows */

340 } ACPI_CSRT_DESCRIPTOR;

343 /* Resource Types */

345 #define ACPI_CSRT_TYPE_INTERRUPT 0x0001
346 #define ACPI_CSRT_TYPE_TIMER 0x0002
347 #define ACPI_CSRT_TYPE_DMA 0x0003

349 /* Resource Subtypes */

351 #define ACPI_CSRT_XRUPT_LINE 0x0000
352 #define ACPI_CSRT_XRUPT_CONTROLLER 0x0001
353 #define ACPI_CSRT_TIMER 0x0000
354 #define ACPI_CSRT_DMA_CHANNEL 0x0000
355 #define ACPI_CSRT_DMA_CONTROLLER 0x0001

358 /***
359 *
360 * DBG2 - Debug Port Table 2
361 * Version 0 (Both main table and subtables)
362 *
363 * Conforms to "Microsoft Debug Port Table 2 (DBG2)", May 22 2012.
364 *
365 **/

367 typedef struct acpi_table_dbg2
368 {
369 ACPI_TABLE_HEADER Header; /* Common ACPI table header */
370 UINT32 InfoOffset;
371 UINT32 InfoCount;

373 } ACPI_TABLE_DBG2;

376 typedef struct acpi_dbg2_header
377 {
378 UINT32 InfoOffset;
379 UINT32 InfoCount;

381 } ACPI_DBG2_HEADER;

384 /* Debug Device Information Subtable */

386 typedef struct acpi_dbg2_device
387 {
388 UINT8 Revision;
389 UINT16 Length;
390 UINT8 RegisterCount; /* Number of BaseAddress registe
391 UINT16 NamepathLength;
392 UINT16 NamepathOffset;
393 UINT16 OemDataLength;
394 UINT16 OemDataOffset;

new/usr/src/common/acpica/include/actbl2.h 5

395 UINT16 PortType;
396 UINT16 PortSubtype;
397 UINT16 Reserved;
398 UINT16 BaseAddressOffset;
399 UINT16 AddressSizeOffset;
400 /*
401 * Data that follows:
402 * BaseAddress (required) - Each in 12-byte Generic Address Structure for
403 * AddressSize (required) - Array of UINT32 sizes corresponding to each B
404 * Namepath (required) - Null terminated string. Single dot if not sup
405 * OemData (optional) - Length is OemDataLength.
406 */
407 } ACPI_DBG2_DEVICE;

409 /* Types for PortType field above */

411 #define ACPI_DBG2_SERIAL_PORT 0x8000
412 #define ACPI_DBG2_1394_PORT 0x8001
413 #define ACPI_DBG2_USB_PORT 0x8002
414 #define ACPI_DBG2_NET_PORT 0x8003

416 /* Subtypes for PortSubtype field above */

418 #define ACPI_DBG2_16550_COMPATIBLE 0x0000
419 #define ACPI_DBG2_16550_SUBSET 0x0001

421 #define ACPI_DBG2_1394_STANDARD 0x0000

423 #define ACPI_DBG2_USB_XHCI 0x0000
424 #define ACPI_DBG2_USB_EHCI 0x0001

427 /***
428 *
429 * DBGP - Debug Port table
430 * Version 1
431 *
432 * Conforms to the "Debug Port Specification", Version 1.00, 2/9/2000
433 *
434 **/

436 typedef struct acpi_table_dbgp
437 {
438 ACPI_TABLE_HEADER Header; /* Common ACPI table header */
439 UINT8 Type; /* 0=full 16550, 1=subset of 165
440 UINT8 Reserved[3];
441 ACPI_GENERIC_ADDRESS DebugPort;

443 } ACPI_TABLE_DBGP;
______unchanged_portion_omitted_

994 /***
995 *
996 * MTMR - MID Timer Table
997 * Version 1
998 *
999 * Conforms to "Simple Firmware Interface Specification",
1000 * Draft 0.8.2, Oct 19, 2010
1001 * NOTE: The ACPI MTMR is equivalent to the SFI MTMR table.
1002 *
1003 **/

1005 typedef struct acpi_table_mtmr
1006 {
1007 ACPI_TABLE_HEADER Header; /* Common ACPI table header */

new/usr/src/common/acpica/include/actbl2.h 6

1009 } ACPI_TABLE_MTMR;

1011 /* MTMR entry */

1013 typedef struct acpi_mtmr_entry
1014 {
1015 ACPI_GENERIC_ADDRESS PhysicalAddress;
1016 UINT32 Frequency;
1017 UINT32 Irq;

1019 } ACPI_MTMR_ENTRY;

1022 /***
1023 *
1024 * SLIC - Software Licensing Description Table
1025 * Version 1
1026 *
1027 * Conforms to "OEM Activation 2.0 for Windows Vista Operating Systems",
1028 * Copyright 2006
1029 *
1030 **/

1032 /* Basic SLIC table is only the common ACPI header */

1034 typedef struct acpi_table_slic
1035 {
1036 ACPI_TABLE_HEADER Header; /* Common ACPI table header */

1038 } ACPI_TABLE_SLIC;
______unchanged_portion_omitted_

1221 /***
1222 *
1223 * VRTC - Virtual Real Time Clock Table
1224 * Version 1
1225 *
1226 * Conforms to "Simple Firmware Interface Specification",
1227 * Draft 0.8.2, Oct 19, 2010
1228 * NOTE: The ACPI VRTC is equivalent to The SFI MRTC table.
1229 *
1230 **/

1232 typedef struct acpi_table_vrtc
1233 {
1234 ACPI_TABLE_HEADER Header; /* Common ACPI table header */

1236 } ACPI_TABLE_VRTC;

1238 /* VRTC entry */

1240 typedef struct acpi_vrtc_entry
1241 {
1242 ACPI_GENERIC_ADDRESS PhysicalAddress;
1243 UINT32 Irq;

1245 } ACPI_VRTC_ENTRY;

1248 /***
1249 *
1250 * WAET - Windows ACPI Emulated devices Table
1251 * Version 1
1252 *

new/usr/src/common/acpica/include/actbl2.h 7

1253 * Conforms to "Windows ACPI Emulated Devices Table", version 1.0, April 6, 2009
1254 *
1255 **/

1257 typedef struct acpi_table_waet
1258 {
1259 ACPI_TABLE_HEADER Header; /* Common ACPI table header */
1260 UINT32 Flags;

1262 } ACPI_TABLE_WAET;
______unchanged_portion_omitted_

1419 /* Reset to default packing */

1421 #pragma pack()

1423 #endif /* __ACTBL2_H__ */

new/usr/src/common/acpica/include/actbl3.h 1

**
 20829 Thu Dec 26 13:49:57 2013
new/usr/src/common/acpica/include/actbl3.h
update to acpica-unix2-20131218
acpica-unix2-20130823
**

1 /**
2 *
3 * Name: actbl3.h - ACPI Table Definitions
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACTBL3_H__
45 #define __ACTBL3_H__

48 /***
49 *
50 * Additional ACPI Tables (3)
51 *
52 * These tables are not consumed directly by the ACPICA subsystem, but are
53 * included here to support device drivers and the AML disassembler.
54 *
55 * The tables in this file are fully defined within the ACPI specification.
56 *
57 **/

60 /*

new/usr/src/common/acpica/include/actbl3.h 2

61 * Values for description table header signatures for tables defined in this
62 * file. Useful because they make it more difficult to inadvertently type in
63 * the wrong signature.
64 */
65 #define ACPI_SIG_BGRT "BGRT" /* Boot Graphics Resource Table */
66 #define ACPI_SIG_DRTM "DRTM" /* Dynamic Root of Trust for Measure
67 #define ACPI_SIG_FPDT "FPDT" /* Firmware Performance Data Table *
68 #define ACPI_SIG_GTDT "GTDT" /* Generic Timer Description Table *
69 #define ACPI_SIG_MPST "MPST" /* Memory Power State Table */
70 #define ACPI_SIG_PCCT "PCCT" /* Platform Communications Channel T
71 #define ACPI_SIG_PMTT "PMTT" /* Platform Memory Topology Table */
72 #define ACPI_SIG_RASF "RASF" /* RAS Feature table */
73 #define ACPI_SIG_TPM2 "TPM2" /* Trusted Platform Module 2.0 H/W i

75 #define ACPI_SIG_S3PT "S3PT" /* S3 Performance (sub)Table */
76 #define ACPI_SIG_PCCS "PCC" /* PCC Shared Memory Region */

78 /* Reserved table signatures */

80 #define ACPI_SIG_MATR "MATR" /* Memory Address Translation Table
81 #define ACPI_SIG_MSDM "MSDM" /* Microsoft Data Management Table *
82 #define ACPI_SIG_WPBT "WPBT" /* Windows Platform Binary Table */

84 /*
85 * All tables must be byte-packed to match the ACPI specification, since
86 * the tables are provided by the system BIOS.
87 */
88 #pragma pack(1)

90 /*
91 * Note: C bitfields are not used for this reason:
92 *
93 * "Bitfields are great and easy to read, but unfortunately the C language
94 * does not specify the layout of bitfields in memory, which means they are
95 * essentially useless for dealing with packed data in on-disk formats or
96 * binary wire protocols." (Or ACPI tables and buffers.) "If you ask me,
97 * this decision was a design error in C. Ritchie could have picked an order
98 * and stuck with it." Norman Ramsey.
99 * See http://stackoverflow.com/a/1053662/41661
100 */

103 /***
104 *
105 * BGRT - Boot Graphics Resource Table (ACPI 5.0)
106 * Version 1
107 *
108 **/

110 typedef struct acpi_table_bgrt
111 {
112 ACPI_TABLE_HEADER Header; /* Common ACPI table header */
113 UINT16 Version;
114 UINT8 Status;
115 UINT8 ImageType;
116 UINT64 ImageAddress;
117 UINT32 ImageOffsetX;
118 UINT32 ImageOffsetY;

120 } ACPI_TABLE_BGRT;

123 /***
124 *
125 * DRTM - Dynamic Root of Trust for Measurement table
126 *

new/usr/src/common/acpica/include/actbl3.h 3

127 **/

129 typedef struct acpi_table_drtm
130 {
131 ACPI_TABLE_HEADER Header; /* Common ACPI table header */
132 UINT64 EntryBaseAddress;
133 UINT64 EntryLength;
134 UINT32 EntryAddress32;
135 UINT64 EntryAddress64;
136 UINT64 ExitAddress;
137 UINT64 LogAreaAddress;
138 UINT32 LogAreaLength;
139 UINT64 ArchDependentAddress;
140 UINT32 Flags;

142 } ACPI_TABLE_DRTM;

144 /* 1) Validated Tables List */

146 typedef struct acpi_drtm_vtl_list
147 {
148 UINT32 ValidatedTableListCount;

150 } ACPI_DRTM_VTL_LIST;

152 /* 2) Resources List */

154 typedef struct acpi_drtm_resource_list
155 {
156 UINT32 ResourceListCount;

158 } ACPI_DRTM_RESOURCE_LIST;

160 /* 3) Platform-specific Identifiers List */

162 typedef struct acpi_drtm_id_list
163 {
164 UINT32 IdListCount;

166 } ACPI_DRTM_ID_LIST;

169 /***
170 *
171 * FPDT - Firmware Performance Data Table (ACPI 5.0)
172 * Version 1
173 *
174 **/

176 typedef struct acpi_table_fpdt
177 {
178 ACPI_TABLE_HEADER Header; /* Common ACPI table header */

180 } ACPI_TABLE_FPDT;

183 /* FPDT subtable header */

185 typedef struct acpi_fpdt_header
186 {
187 UINT16 Type;
188 UINT8 Length;
189 UINT8 Revision;

191 } ACPI_FPDT_HEADER;

new/usr/src/common/acpica/include/actbl3.h 4

193 /* Values for Type field above */

195 enum AcpiFpdtType
196 {
197 ACPI_FPDT_TYPE_BOOT = 0,
198 ACPI_FPDT_TYPE_S3PERF = 1
199 };

202 /*
203 * FPDT subtables
204 */

206 /* 0: Firmware Basic Boot Performance Record */

208 typedef struct acpi_fpdt_boot
209 {
210 ACPI_FPDT_HEADER Header;
211 UINT8 Reserved[4];
212 UINT64 ResetEnd;
213 UINT64 LoadStart;
214 UINT64 StartupStart;
215 UINT64 ExitServicesEntry;
216 UINT64 ExitServicesExit;

218 } ACPI_FPDT_BOOT;

221 /* 1: S3 Performance Table Pointer Record */

223 typedef struct acpi_fpdt_s3pt_ptr
224 {
225 ACPI_FPDT_HEADER Header;
226 UINT8 Reserved[4];
227 UINT64 Address;

229 } ACPI_FPDT_S3PT_PTR;

232 /*
233 * S3PT - S3 Performance Table. This table is pointed to by the
234 * FPDT S3 Pointer Record above.
235 */
236 typedef struct acpi_table_s3pt
237 {
238 UINT8 Signature[4]; /* "S3PT" */
239 UINT32 Length;

241 } ACPI_TABLE_S3PT;

244 /*
245 * S3PT Subtables
246 */
247 typedef struct acpi_s3pt_header
248 {
249 UINT16 Type;
250 UINT8 Length;
251 UINT8 Revision;

253 } ACPI_S3PT_HEADER;

255 /* Values for Type field above */

257 enum AcpiS3ptType
258 {

new/usr/src/common/acpica/include/actbl3.h 5

259 ACPI_S3PT_TYPE_RESUME = 0,
260 ACPI_S3PT_TYPE_SUSPEND = 1
261 };

263 typedef struct acpi_s3pt_resume
264 {
265 ACPI_S3PT_HEADER Header;
266 UINT32 ResumeCount;
267 UINT64 FullResume;
268 UINT64 AverageResume;

270 } ACPI_S3PT_RESUME;

272 typedef struct acpi_s3pt_suspend
273 {
274 ACPI_S3PT_HEADER Header;
275 UINT64 SuspendStart;
276 UINT64 SuspendEnd;

278 } ACPI_S3PT_SUSPEND;

281 /***
282 *
283 * GTDT - Generic Timer Description Table (ACPI 5.0)
284 * Version 1
285 *
286 **/

288 typedef struct acpi_table_gtdt
289 {
290 ACPI_TABLE_HEADER Header; /* Common ACPI table header */
291 UINT64 Address;
292 UINT32 Flags;
293 UINT32 SecurePl1Interrupt;
294 UINT32 SecurePl1Flags;
295 UINT32 NonSecurePl1Interrupt;
296 UINT32 NonSecurePl1Flags;
297 UINT32 VirtualTimerInterrupt;
298 UINT32 VirtualTimerFlags;
299 UINT32 NonSecurePl2Interrupt;
300 UINT32 NonSecurePl2Flags;

302 } ACPI_TABLE_GTDT;

304 /* Values for Flags field above */

306 #define ACPI_GTDT_MAPPED_BLOCK_PRESENT 1

308 /* Values for all "TimerFlags" fields above */

310 #define ACPI_GTDT_INTERRUPT_MODE 1
311 #define ACPI_GTDT_INTERRUPT_POLARITY 2

314 /***
315 *
316 * MPST - Memory Power State Table (ACPI 5.0)
317 * Version 1
318 *
319 **/

321 #define ACPI_MPST_CHANNEL_INFO \
322 UINT8 ChannelId; \
323 UINT8 Reserved1[3]; \
324 UINT16 PowerNodeCount; \

new/usr/src/common/acpica/include/actbl3.h 6

325 UINT16 Reserved2;

327 /* Main table */

329 typedef struct acpi_table_mpst
330 {
331 ACPI_TABLE_HEADER Header; /* Common ACPI table header */
332 ACPI_MPST_CHANNEL_INFO /* Platform Communication Channe

334 } ACPI_TABLE_MPST;

337 /* Memory Platform Communication Channel Info */

339 typedef struct acpi_mpst_channel
340 {
341 ACPI_MPST_CHANNEL_INFO /* Platform Communication Channe

343 } ACPI_MPST_CHANNEL;

346 /* Memory Power Node Structure */

348 typedef struct acpi_mpst_power_node
349 {
350 UINT8 Flags;
351 UINT8 Reserved1;
352 UINT16 NodeId;
353 UINT32 Length;
354 UINT64 RangeAddress;
355 UINT64 RangeLength;
356 UINT32 NumPowerStates;
357 UINT32 NumPhysicalComponents;

359 } ACPI_MPST_POWER_NODE;

361 /* Values for Flags field above */

363 #define ACPI_MPST_ENABLED 1
364 #define ACPI_MPST_POWER_MANAGED 2
365 #define ACPI_MPST_HOT_PLUG_CAPABLE 4

368 /* Memory Power State Structure (follows POWER_NODE above) */

370 typedef struct acpi_mpst_power_state
371 {
372 UINT8 PowerState;
373 UINT8 InfoIndex;

375 } ACPI_MPST_POWER_STATE;

378 /* Physical Component ID Structure (follows POWER_STATE above) */

380 typedef struct acpi_mpst_component
381 {
382 UINT16 ComponentId;

384 } ACPI_MPST_COMPONENT;

387 /* Memory Power State Characteristics Structure (follows all POWER_NODEs) */

389 typedef struct acpi_mpst_data_hdr
390 {

new/usr/src/common/acpica/include/actbl3.h 7

391 UINT16 CharacteristicsCount;
392 UINT16 Reserved;

394 } ACPI_MPST_DATA_HDR;

396 typedef struct acpi_mpst_power_data
397 {
398 UINT8 StructureId;
399 UINT8 Flags;
400 UINT16 Reserved1;
401 UINT32 AveragePower;
402 UINT32 PowerSaving;
403 UINT64 ExitLatency;
404 UINT64 Reserved2;

406 } ACPI_MPST_POWER_DATA;

408 /* Values for Flags field above */

410 #define ACPI_MPST_PRESERVE 1
411 #define ACPI_MPST_AUTOENTRY 2
412 #define ACPI_MPST_AUTOEXIT 4

415 /* Shared Memory Region (not part of an ACPI table) */

417 typedef struct acpi_mpst_shared
418 {
419 UINT32 Signature;
420 UINT16 PccCommand;
421 UINT16 PccStatus;
422 UINT32 CommandRegister;
423 UINT32 StatusRegister;
424 UINT32 PowerStateId;
425 UINT32 PowerNodeId;
426 UINT64 EnergyConsumed;
427 UINT64 AveragePower;

429 } ACPI_MPST_SHARED;

432 /***
433 *
434 * PCCT - Platform Communications Channel Table (ACPI 5.0)
435 * Version 1
436 *
437 **/

439 typedef struct acpi_table_pcct
440 {
441 ACPI_TABLE_HEADER Header; /* Common ACPI table header */
442 UINT32 Flags;
443 UINT64 Reserved;

445 } ACPI_TABLE_PCCT;

447 /* Values for Flags field above */

449 #define ACPI_PCCT_DOORBELL 1

451 /* Values for subtable type in ACPI_SUBTABLE_HEADER */

453 enum AcpiPcctType
454 {
455 ACPI_PCCT_TYPE_GENERIC_SUBSPACE = 0,
456 ACPI_PCCT_TYPE_RESERVED = 1 /* 1 and greater are reserved */

new/usr/src/common/acpica/include/actbl3.h 8

457 };

459 /*
460 * PCCT Subtables, correspond to Type in ACPI_SUBTABLE_HEADER
461 */

463 /* 0: Generic Communications Subspace */

465 typedef struct acpi_pcct_subspace
466 {
467 ACPI_SUBTABLE_HEADER Header;
468 UINT8 Reserved[6];
469 UINT64 BaseAddress;
470 UINT64 Length;
471 ACPI_GENERIC_ADDRESS DoorbellRegister;
472 UINT64 PreserveMask;
473 UINT64 WriteMask;
474 UINT32 Latency;
475 UINT32 MaxAccessRate;
476 UINT16 MinTurnaroundTime;

478 } ACPI_PCCT_SUBSPACE;

481 /*
482 * PCC memory structures (not part of the ACPI table)
483 */

485 /* Shared Memory Region */

487 typedef struct acpi_pcct_shared_memory
488 {
489 UINT32 Signature;
490 UINT16 Command;
491 UINT16 Status;

493 } ACPI_PCCT_SHARED_MEMORY;

496 /***
497 *
498 * PMTT - Platform Memory Topology Table (ACPI 5.0)
499 * Version 1
500 *
501 **/

503 typedef struct acpi_table_pmtt
504 {
505 ACPI_TABLE_HEADER Header; /* Common ACPI table header */
506 UINT32 Reserved;

508 } ACPI_TABLE_PMTT;

511 /* Common header for PMTT subtables that follow main table */

513 typedef struct acpi_pmtt_header
514 {
515 UINT8 Type;
516 UINT8 Reserved1;
517 UINT16 Length;
518 UINT16 Flags;
519 UINT16 Reserved2;

521 } ACPI_PMTT_HEADER;

new/usr/src/common/acpica/include/actbl3.h 9

523 /* Values for Type field above */

525 #define ACPI_PMTT_TYPE_SOCKET 0
526 #define ACPI_PMTT_TYPE_CONTROLLER 1
527 #define ACPI_PMTT_TYPE_DIMM 2
528 #define ACPI_PMTT_TYPE_RESERVED 3 /* 0x03-0xFF are reserved */

530 /* Values for Flags field above */

532 #define ACPI_PMTT_TOP_LEVEL 0x0001
533 #define ACPI_PMTT_PHYSICAL 0x0002
534 #define ACPI_PMTT_MEMORY_TYPE 0x000C

537 /*
538 * PMTT subtables, correspond to Type in acpi_pmtt_header
539 */

542 /* 0: Socket Structure */

544 typedef struct acpi_pmtt_socket
545 {
546 ACPI_PMTT_HEADER Header;
547 UINT16 SocketId;
548 UINT16 Reserved;

550 } ACPI_PMTT_SOCKET;

553 /* 1: Memory Controller subtable */

555 typedef struct acpi_pmtt_controller
556 {
557 ACPI_PMTT_HEADER Header;
558 UINT32 ReadLatency;
559 UINT32 WriteLatency;
560 UINT32 ReadBandwidth;
561 UINT32 WriteBandwidth;
562 UINT16 AccessWidth;
563 UINT16 Alignment;
564 UINT16 Reserved;
565 UINT16 DomainCount;

567 } ACPI_PMTT_CONTROLLER;

569 /* 1a: Proximity Domain substructure */

571 typedef struct acpi_pmtt_domain
572 {
573 UINT32 ProximityDomain;

575 } ACPI_PMTT_DOMAIN;

578 /* 2: Physical Component Identifier (DIMM) */

580 typedef struct acpi_pmtt_physical_component
581 {
582 ACPI_PMTT_HEADER Header;
583 UINT16 ComponentId;
584 UINT16 Reserved;
585 UINT32 MemorySize;
586 UINT32 BiosHandle;

588 } ACPI_PMTT_PHYSICAL_COMPONENT;

new/usr/src/common/acpica/include/actbl3.h 10

591 /***
592 *
593 * RASF - RAS Feature Table (ACPI 5.0)
594 * Version 1
595 *
596 **/

598 typedef struct acpi_table_rasf
599 {
600 ACPI_TABLE_HEADER Header; /* Common ACPI table header */
601 UINT8 ChannelId[12];

603 } ACPI_TABLE_RASF;

605 /* RASF Platform Communication Channel Shared Memory Region */

607 typedef struct acpi_rasf_shared_memory
608 {
609 UINT32 Signature;
610 UINT16 Command;
611 UINT16 Status;
612 UINT16 Version;
613 UINT8 Capabilities[16];
614 UINT8 SetCapabilities[16];
615 UINT16 NumParameterBlocks;
616 UINT32 SetCapabilitiesStatus;

618 } ACPI_RASF_SHARED_MEMORY;

620 /* RASF Parameter Block Structure Header */

622 typedef struct acpi_rasf_parameter_block
623 {
624 UINT16 Type;
625 UINT16 Version;
626 UINT16 Length;

628 } ACPI_RASF_PARAMETER_BLOCK;

630 /* RASF Parameter Block Structure for PATROL_SCRUB */

632 typedef struct acpi_rasf_patrol_scrub_parameter
633 {
634 ACPI_RASF_PARAMETER_BLOCK Header;
635 UINT16 PatrolScrubCommand;
636 UINT64 RequestedAddressRange[2];
637 UINT64 ActualAddressRange[2];
638 UINT16 Flags;
639 UINT8 RequestedSpeed;

641 } ACPI_RASF_PATROL_SCRUB_PARAMETER;

643 /* Masks for Flags and Speed fields above */

645 #define ACPI_RASF_SCRUBBER_RUNNING 1
646 #define ACPI_RASF_SPEED (7<<1)
647 #define ACPI_RASF_SPEED_SLOW (0<<1)
648 #define ACPI_RASF_SPEED_MEDIUM (4<<1)
649 #define ACPI_RASF_SPEED_FAST (7<<1)

651 /* Channel Commands */

653 enum AcpiRasfCommands
654 {

new/usr/src/common/acpica/include/actbl3.h 11

655 ACPI_RASF_EXECUTE_RASF_COMMAND = 1
656 };

658 /* Platform RAS Capabilities */

660 enum AcpiRasfCapabiliities
661 {
662 ACPI_HW_PATROL_SCRUB_SUPPORTED = 0,
663 ACPI_SW_PATROL_SCRUB_EXPOSED = 1
664 };

666 /* Patrol Scrub Commands */

668 enum AcpiRasfPatrolScrubCommands
669 {
670 ACPI_RASF_GET_PATROL_PARAMETERS = 1,
671 ACPI_RASF_START_PATROL_SCRUBBER = 2,
672 ACPI_RASF_STOP_PATROL_SCRUBBER = 3
673 };

675 /* Channel Command flags */

677 #define ACPI_RASF_GENERATE_SCI (1<<15)

679 /* Status values */

681 enum AcpiRasfStatus
682 {
683 ACPI_RASF_SUCCESS = 0,
684 ACPI_RASF_NOT_VALID = 1,
685 ACPI_RASF_NOT_SUPPORTED = 2,
686 ACPI_RASF_BUSY = 3,
687 ACPI_RASF_FAILED = 4,
688 ACPI_RASF_ABORTED = 5,
689 ACPI_RASF_INVALID_DATA = 6
690 };

692 /* Status flags */

694 #define ACPI_RASF_COMMAND_COMPLETE (1)
695 #define ACPI_RASF_SCI_DOORBELL (1<<1)
696 #define ACPI_RASF_ERROR (1<<2)
697 #define ACPI_RASF_STATUS (0x1F<<3)

700 /***
701 *
702 * TPM2 - Trusted Platform Module (TPM) 2.0 Hardware Interface Table
703 * Version 3
704 *
705 * Conforms to "TPM 2.0 Hardware Interface Table (TPM2)" 29 November 2011
706 *
707 **/

709 typedef struct acpi_table_tpm2
710 {
711 ACPI_TABLE_HEADER Header; /* Common ACPI table header */
712 UINT32 Flags;
713 UINT64 ControlAddress;
714 UINT32 StartMethod;

716 } ACPI_TABLE_TPM2;

718 /* Control area structure (not part of table, pointed to by ControlAddress) */

720 typedef struct acpi_tpm2_control

new/usr/src/common/acpica/include/actbl3.h 12

721 {
722 UINT32 Reserved;
723 UINT32 Error;
724 UINT32 Cancel;
725 UINT32 Start;
726 UINT64 InterruptControl;
727 UINT32 CommandSize;
728 UINT64 CommandAddress;
729 UINT32 ResponseSize;
730 UINT64 ResponseAddress;

732 } ACPI_TPM2_CONTROL;

735 /* Reset to default packing */

737 #pragma pack()

739 #endif /* __ACTBL3_H__ */

new/usr/src/common/acpica/include/actypes.h 1

**
 45240 Thu Dec 26 13:49:57 2013
new/usr/src/common/acpica/include/actypes.h
update to acpica-unix2-20131218
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: actypes.h - Common data types for the entire ACPI subsystem
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACTYPES_H__
45 #define __ACTYPES_H__

47 /* acpisrc:StructDefs -- for acpisrc conversion */

49 /*
50 * ACPI_MACHINE_WIDTH must be specified in an OS- or compiler-dependent header
51 * and must be either 32 or 64. 16-bit ACPICA is no longer supported, as of
52 * 12/2006.
53 */
54 #ifndef ACPI_MACHINE_WIDTH
55 #error ACPI_MACHINE_WIDTH not defined
56 #endif

new/usr/src/common/acpica/include/actypes.h 2

58 /*! [Begin] no source code translation */

60 /*
61 * Data type ranges
62 * Note: These macros are designed to be compiler independent as well as
63 * working around problems that some 32-bit compilers have with 64-bit
64 * constants.
65 */
66 #define ACPI_UINT8_MAX (UINT8) (~((UINT8) 0)) /* 0xFF
67 #define ACPI_UINT16_MAX (UINT16)(~((UINT16) 0)) /* 0xFFFF
68 #define ACPI_UINT32_MAX (UINT32)(~((UINT32) 0)) /* 0xFFFFFFFF
69 #define ACPI_UINT64_MAX (UINT64)(~((UINT64) 0)) /* 0xFFFFFFFFFFF
70 #define ACPI_ASCII_MAX 0x7F

73 /*
74 * Architecture-specific ACPICA Subsystem Data Types
75 *
76 * The goal of these types is to provide source code portability across
77 * 16-bit, 32-bit, and 64-bit targets.
78 *
79 * 1) The following types are of fixed size for all targets (16/32/64):
80 *
81 * BOOLEAN Logical boolean
82 *
83 * UINT8 8-bit (1 byte) unsigned value
84 * UINT16 16-bit (2 byte) unsigned value
85 * UINT32 32-bit (4 byte) unsigned value
86 * UINT64 64-bit (8 byte) unsigned value
87 *
88 * INT16 16-bit (2 byte) signed value
89 * INT32 32-bit (4 byte) signed value
90 * INT64 64-bit (8 byte) signed value
91 *
92 * COMPILER_DEPENDENT_UINT64/INT64 - These types are defined in the
93 * compiler-dependent header(s) and were introduced because there is no common
94 * 64-bit integer type across the various compilation models, as shown in
95 * the table below.
96 *
97 * Datatype LP64 ILP64 LLP64 ILP32 LP32 16bit
98 * char 8 8 8 8 8 8
99 * short 16 16 16 16 16 16
100 * _int32 32
101 * int 32 64 32 32 16 16
102 * long 64 64 32 32 32 32
103 * long long 64 64
104 * pointer 64 64 64 32 32 32
105 *
106 * Note: ILP64 and LP32 are currently not supported.
107 *
108 *
109 * 2) These types represent the native word size of the target mode of the
110 * processor, and may be 16-bit, 32-bit, or 64-bit as required. They are
111 * usually used for memory allocation, efficient loop counters, and array
112 * indexes. The types are similar to the size_t type in the C library and are
113 * required because there is no C type that consistently represents the native
114 * data width. ACPI_SIZE is needed because there is no guarantee that a
115 * kernel-level C library is present.
116 *
117 * ACPI_SIZE 16/32/64-bit unsigned value
118 * ACPI_NATIVE_INT 16/32/64-bit signed value
119 */

121 /***
122 *
123 * Common types for all compilers, all targets

new/usr/src/common/acpica/include/actypes.h 3

124 *
125 **/

127 typedef unsigned char BOOLEAN;
128 typedef unsigned char UINT8;
129 typedef unsigned short UINT16;
130 typedef COMPILER_DEPENDENT_UINT64 UINT64;
131 typedef COMPILER_DEPENDENT_INT64 INT64;

133 /*! [End] no source code translation !*/

135 /*
136 * Value returned by AcpiOsGetThreadId. There is no standard "thread_id"
137 * across operating systems or even the various UNIX systems. Since ACPICA
138 * only needs the thread ID as a unique thread identifier, we use a UINT64
139 * as the only common data type - it will accommodate any type of pointer or
140 * any type of integer. It is up to the host-dependent OSL to cast the
141 * native thread ID type to a UINT64 (in AcpiOsGetThreadId).
142 */
143 #define ACPI_THREAD_ID UINT64

146 /***
147 *
148 * Types specific to 64-bit targets
149 *
150 **/

152 #if ACPI_MACHINE_WIDTH == 64

154 /*! [Begin] no source code translation (keep the typedefs as-is) */

156 typedef unsigned int UINT32;
157 typedef int INT32;

159 /*! [End] no source code translation !*/

162 typedef INT64 ACPI_NATIVE_INT;
163 typedef UINT64 ACPI_SIZE;
164 typedef UINT64 ACPI_IO_ADDRESS;
165 typedef UINT64 ACPI_PHYSICAL_ADDRESS;

167 #define ACPI_MAX_PTR ACPI_UINT64_MAX
168 #define ACPI_SIZE_MAX ACPI_UINT64_MAX
169 #define ACPI_USE_NATIVE_DIVIDE /* Has native 64-bit integer support */

171 /*
172 * In the case of the Itanium Processor Family (IPF), the hardware does not
173 * support misaligned memory transfers. Set the MISALIGNMENT_NOT_SUPPORTED flag
174 * to indicate that special precautions must be taken to avoid alignment faults.
175 * (IA64 or ia64 is currently used by existing compilers to indicate IPF.)
176 *
177 * Note: EM64T and other X86-64 processors support misaligned transfers,
178 * so there is no need to define this flag.
179 */
180 #if defined (__IA64__) || defined (__ia64__)
181 #define ACPI_MISALIGNMENT_NOT_SUPPORTED
182 #endif

185 /***
186 *
187 * Types specific to 32-bit targets
188 *
189 **/

new/usr/src/common/acpica/include/actypes.h 4

191 #elif ACPI_MACHINE_WIDTH == 32

193 /*! [Begin] no source code translation (keep the typedefs as-is) */

195 typedef unsigned int UINT32;
196 typedef int INT32;

198 /*! [End] no source code translation !*/

201 typedef INT32 ACPI_NATIVE_INT;
202 typedef UINT32 ACPI_SIZE;
203 typedef UINT32 ACPI_IO_ADDRESS;
204 typedef UINT32 ACPI_PHYSICAL_ADDRESS;

206 #define ACPI_MAX_PTR ACPI_UINT32_MAX
207 #define ACPI_SIZE_MAX ACPI_UINT32_MAX

209 #else

211 /* ACPI_MACHINE_WIDTH must be either 64 or 32 */

213 #error unknown ACPI_MACHINE_WIDTH
214 #endif

217 /***
218 *
219 * OS-dependent types
220 *
221 * If the defaults below are not appropriate for the host system, they can
222 * be defined in the OS-specific header, and this will take precedence.
223 *
224 **/

226 /* Flags for AcpiOsAcquireLock/AcpiOsReleaseLock */

228 #ifndef ACPI_CPU_FLAGS
229 #define ACPI_CPU_FLAGS ACPI_SIZE
230 #endif

232 /* Object returned from AcpiOsCreateCache */

234 #ifndef ACPI_CACHE_T
235 #ifdef ACPI_USE_LOCAL_CACHE
236 #define ACPI_CACHE_T ACPI_MEMORY_LIST
237 #else
238 #define ACPI_CACHE_T void *
239 #endif
240 #endif

242 /*
243 * Synchronization objects - Mutexes, Semaphores, and SpinLocks
244 */
245 #if (ACPI_MUTEX_TYPE == ACPI_BINARY_SEMAPHORE)
246 /*
247 * These macros are used if the host OS does not support a mutex object.
248 * Map the OSL Mutex interfaces to binary semaphores.
249 */
250 #define ACPI_MUTEX ACPI_SEMAPHORE
251 #define AcpiOsCreateMutex(OutHandle) AcpiOsCreateSemaphore (1, 1, OutHandle)
252 #define AcpiOsDeleteMutex(Handle) (void) AcpiOsDeleteSemaphore (Handle)
253 #define AcpiOsAcquireMutex(Handle,Time) AcpiOsWaitSemaphore (Handle, 1, Time)
254 #define AcpiOsReleaseMutex(Handle) (void) AcpiOsSignalSemaphore (Handle, 1)
255 #endif

new/usr/src/common/acpica/include/actypes.h 5

257 /* Configurable types for synchronization objects */

259 #ifndef ACPI_SPINLOCK
260 #define ACPI_SPINLOCK void *
261 #endif

263 #ifndef ACPI_SEMAPHORE
264 #define ACPI_SEMAPHORE void *
265 #endif

267 #ifndef ACPI_MUTEX
268 #define ACPI_MUTEX void *
269 #endif

272 /***
273 *
274 * Compiler-dependent types
275 *
276 * If the defaults below are not appropriate for the host compiler, they can
277 * be defined in the compiler-specific header, and this will take precedence.
278 *
279 **/

281 /* Use C99 uintptr_t for pointer casting if available, "void *" otherwise */

283 #ifndef ACPI_UINTPTR_T
284 #define ACPI_UINTPTR_T void *
285 #endif

287 /*
288 * ACPI_PRINTF_LIKE is used to tag functions as "printf-like" because
289 * some compilers can catch printf format string problems
290 */
291 #ifndef ACPI_PRINTF_LIKE
292 #define ACPI_PRINTF_LIKE(c)
293 #endif

295 /*
296 * Some compilers complain about unused variables. Sometimes we don’t want to
297 * use all the variables (for example, _AcpiModuleName). This allows us
298 * to tell the compiler in a per-variable manner that a variable
298 * to to tell the compiler in a per-variable manner that a variable
299 * is unused
300 */
301 #ifndef ACPI_UNUSED_VAR
302 #define ACPI_UNUSED_VAR
303 #endif

305 /*
306 * All ACPICA external functions that are available to the rest of the kernel
307 * are tagged with thes macros which can be defined as appropriate for the host.
308 *
309 * Notes:
310 * ACPI_EXPORT_SYMBOL_INIT is used for initialization and termination
311 * interfaces that may need special processing.
312 * ACPI_EXPORT_SYMBOL is used for all other public external functions.
306 * All ACPICA functions that are available to the rest of the kernel are
307 * tagged with this macro which can be defined as appropriate for the host.
313 */
314 #ifndef ACPI_EXPORT_SYMBOL_INIT
315 #define ACPI_EXPORT_SYMBOL_INIT(Symbol)
316 #endif

318 #ifndef ACPI_EXPORT_SYMBOL

new/usr/src/common/acpica/include/actypes.h 6

319 #define ACPI_EXPORT_SYMBOL(Symbol)
320 #endif

322 /*
323 * Compiler/Clibrary-dependent debug initialization. Used for ACPICA
324 * utilities only.
325 */
326 #ifndef ACPI_DEBUG_INITIALIZE
327 #define ACPI_DEBUG_INITIALIZE()
328 #endif

331 /***
332 *
333 * Configuration
334 *
335 **/

337 #ifdef ACPI_DBG_TRACK_ALLOCATIONS
338 /*
339 * Memory allocation tracking (used by AcpiExec to detect memory leaks)
340 */
341 #define ACPI_MEM_PARAMETERS _COMPONENT, _AcpiModuleName, __LINE__
342 #define ACPI_ALLOCATE(a) AcpiUtAllocateAndTrack ((ACPI_SIZE) (a),
343 #define ACPI_ALLOCATE_ZEROED(a) AcpiUtAllocateZeroedAndTrack ((ACPI_SIZE
344 #define ACPI_FREE(a) AcpiUtFreeAndTrack (a, ACPI_MEM_PARAMETE
345 #define ACPI_MEM_TRACKING(a) a

347 #else
348 /*
349 * Normal memory allocation directly via the OS services layer
350 */
351 #define ACPI_ALLOCATE(a) AcpiOsAllocate ((ACPI_SIZE) (a))
352 #define ACPI_ALLOCATE_ZEROED(a) AcpiOsAllocateZeroed ((ACPI_SIZE) (a))
353 #define ACPI_FREE(a) AcpiOsFree (a)
354 #define ACPI_MEM_TRACKING(a)

356 #endif /* ACPI_DBG_TRACK_ALLOCATIONS */

359 /**
360 *
361 * ACPI Specification constants (Do not change unless the specification changes)
362 *
363 ***/

365 /* Number of distinct FADT-based GPE register blocks (GPE0 and GPE1) */

367 #define ACPI_MAX_GPE_BLOCKS 2

369 /* Default ACPI register widths */

371 #define ACPI_GPE_REGISTER_WIDTH 8
372 #define ACPI_PM1_REGISTER_WIDTH 16
373 #define ACPI_PM2_REGISTER_WIDTH 8
374 #define ACPI_PM_TIMER_WIDTH 32
375 #define ACPI_RESET_REGISTER_WIDTH 8

377 /* Names within the namespace are 4 bytes long */

379 #define ACPI_NAME_SIZE 4
380 #define ACPI_PATH_SEGMENT_LENGTH 5 /* 4 chars for name + 1 char
381 #define ACPI_PATH_SEPARATOR ’.’

383 /* Sizes for ACPI table headers */

new/usr/src/common/acpica/include/actypes.h 7

385 #define ACPI_OEM_ID_SIZE 6
386 #define ACPI_OEM_TABLE_ID_SIZE 8

388 /* ACPI/PNP hardware IDs */

390 #define PCI_ROOT_HID_STRING "PNP0A03"
391 #define PCI_EXPRESS_ROOT_HID_STRING "PNP0A08"

393 /* PM Timer ticks per second (HZ) */

395 #define ACPI_PM_TIMER_FREQUENCY 3579545
349 #define PM_TIMER_FREQUENCY 3579545

398 /***
399 *
400 * Independent types
401 *
402 **/

404 /* Logical defines and NULL */

406 #ifdef FALSE
407 #undef FALSE
408 #endif
409 #define FALSE (1 == 0)

411 #ifdef TRUE
412 #undef TRUE
413 #endif
414 #define TRUE (1 == 1)

416 #ifndef NULL
417 #define NULL (void *) 0
418 #endif

421 /*
422 * Miscellaneous types
423 */
424 typedef UINT32 ACPI_STATUS; /* All ACPI Exceptions *
425 typedef UINT32 ACPI_NAME; /* 4-byte ACPI name */
426 typedef char * ACPI_STRING; /* Null terminated ASCII
427 typedef void * ACPI_HANDLE; /* Actually a ptr to a N

430 /* Time constants for timer calculations */

432 #define ACPI_MSEC_PER_SEC 1000L

434 #define ACPI_USEC_PER_MSEC 1000L
435 #define ACPI_USEC_PER_SEC 1000000L

437 #define ACPI_100NSEC_PER_USEC 10L
438 #define ACPI_100NSEC_PER_MSEC 10000L
439 #define ACPI_100NSEC_PER_SEC 10000000L

441 #define ACPI_NSEC_PER_USEC 1000L
442 #define ACPI_NSEC_PER_MSEC 1000000L
443 #define ACPI_NSEC_PER_SEC 1000000000L

446 /* Owner IDs are used to track namespace nodes for selective deletion */

448 typedef UINT8 ACPI_OWNER_ID;
449 #define ACPI_OWNER_ID_MAX 0xFF

new/usr/src/common/acpica/include/actypes.h 8

452 #define ACPI_INTEGER_BIT_SIZE 64
453 #define ACPI_MAX_DECIMAL_DIGITS 20 /* 2^64 = 18,446,744,073,709,551,616
454 #define ACPI_MAX64_DECIMAL_DIGITS 20
455 #define ACPI_MAX32_DECIMAL_DIGITS 10
456 #define ACPI_MAX16_DECIMAL_DIGITS 5
457 #define ACPI_MAX8_DECIMAL_DIGITS 3

459 /*
460 * Constants with special meanings
461 */
462 #define ACPI_ROOT_OBJECT ACPI_ADD_PTR (ACPI_HANDLE, NULL, ACPI_MA
463 #define ACPI_WAIT_FOREVER 0xFFFF /* UINT16, as per ACPI spec */
464 #define ACPI_DO_NOT_WAIT 0

466 /*
467 * Obsolete: Acpi integer width. In ACPI version 1 (1996), integers are 32 bits.
468 * In ACPI version 2 (2000) and later, integers are 64 bits. Note that this
469 * pertains to the ACPI integer type only, not to other integers used in the
470 * implementation of the ACPICA subsystem.
471 *
472 * 01/2010: This type is obsolete and has been removed from the entire ACPICA
473 * code base. It remains here for compatibility with device drivers that use
474 * the type. However, it will be removed in the future.
475 */
476 typedef UINT64 ACPI_INTEGER;
477 #define ACPI_INTEGER_MAX ACPI_UINT64_MAX

480 /***
481 *
482 * Commonly used macros
483 *
484 **/

486 /* Data manipulation */

488 #define ACPI_LOBYTE(Integer) ((UINT8) (UINT16)(Integer))
489 #define ACPI_HIBYTE(Integer) ((UINT8) (((UINT16)(Integer)) >> 8))
490 #define ACPI_LOWORD(Integer) ((UINT16) (UINT32)(Integer))
491 #define ACPI_HIWORD(Integer) ((UINT16)(((UINT32)(Integer)) >> 16))
492 #define ACPI_LODWORD(Integer64) ((UINT32) (UINT64)(Integer64))
493 #define ACPI_HIDWORD(Integer64) ((UINT32)(((UINT64)(Integer64)) >> 32))

495 #define ACPI_SET_BIT(target,bit) ((target) |= (bit))
496 #define ACPI_CLEAR_BIT(target,bit) ((target) &= ~(bit))
497 #define ACPI_MIN(a,b) (((a)<(b))?(a):(b))
498 #define ACPI_MAX(a,b) (((a)>(b))?(a):(b))

500 /* Size calculation */

502 #define ACPI_ARRAY_LENGTH(x) (sizeof(x) / sizeof((x)[0]))

504 /* Pointer manipulation */

506 #define ACPI_CAST_PTR(t, p) ((t *) (ACPI_UINTPTR_T) (p))
507 #define ACPI_CAST_INDIRECT_PTR(t, p) ((t **) (ACPI_UINTPTR_T) (p))
508 #define ACPI_ADD_PTR(t, a, b) ACPI_CAST_PTR (t, (ACPI_CAST_PTR (UINT8,
509 #define ACPI_PTR_DIFF(a, b) (ACPI_SIZE) (ACPI_CAST_PTR (UINT8, (a))

511 /* Pointer/Integer type conversions */

513 #define ACPI_TO_POINTER(i) ACPI_ADD_PTR (void, (void *) NULL,(ACPI_
514 #define ACPI_TO_INTEGER(p) ACPI_PTR_DIFF (p, (void *) NULL)
515 #define ACPI_OFFSET(d, f) (ACPI_SIZE) ACPI_PTR_DIFF (&(((d *)0)->f

new/usr/src/common/acpica/include/actypes.h 9

516 #define ACPI_PHYSADDR_TO_PTR(i) ACPI_TO_POINTER(i)
517 #define ACPI_PTR_TO_PHYSADDR(i) ACPI_TO_INTEGER(i)

519 /* Optimizations for 4-character (32-bit) ACPI_NAME manipulation */

521 #ifndef ACPI_MISALIGNMENT_NOT_SUPPORTED
522 #define ACPI_COMPARE_NAME(a,b) (*ACPI_CAST_PTR (UINT32, (a)) == *ACPI_C
523 #define ACPI_MOVE_NAME(dest,src) (*ACPI_CAST_PTR (UINT32, (dest)) = *ACPI
524 #else
525 #define ACPI_COMPARE_NAME(a,b) (!ACPI_STRNCMP (ACPI_CAST_PTR (char, (a)
526 #define ACPI_MOVE_NAME(dest,src) (ACPI_STRNCPY (ACPI_CAST_PTR (char, (des
527 #endif

529 /* Support for the special RSDP signature (8 characters) */

531 #define ACPI_VALIDATE_RSDP_SIG(a) (!ACPI_STRNCMP (ACPI_CAST_PTR (char, (a)
532 #define ACPI_MAKE_RSDP_SIG(dest) (ACPI_MEMCPY (ACPI_CAST_PTR (char, (dest

535 /***
536 *
537 * Miscellaneous constants
538 *
539 **/

541 /*
542 * Initialization sequence
543 */
544 #define ACPI_FULL_INITIALIZATION 0x00
545 #define ACPI_NO_ADDRESS_SPACE_INIT 0x01
546 #define ACPI_NO_HARDWARE_INIT 0x02
547 #define ACPI_NO_EVENT_INIT 0x04
548 #define ACPI_NO_HANDLER_INIT 0x08
549 #define ACPI_NO_ACPI_ENABLE 0x10
550 #define ACPI_NO_DEVICE_INIT 0x20
551 #define ACPI_NO_OBJECT_INIT 0x40

553 /*
554 * Initialization state
555 */
556 #define ACPI_SUBSYSTEM_INITIALIZE 0x01
557 #define ACPI_INITIALIZED_OK 0x02

559 /*
560 * Power state values
561 */
562 #define ACPI_STATE_UNKNOWN (UINT8) 0xFF

564 #define ACPI_STATE_S0 (UINT8) 0
565 #define ACPI_STATE_S1 (UINT8) 1
566 #define ACPI_STATE_S2 (UINT8) 2
567 #define ACPI_STATE_S3 (UINT8) 3
568 #define ACPI_STATE_S4 (UINT8) 4
569 #define ACPI_STATE_S5 (UINT8) 5
570 #define ACPI_S_STATES_MAX ACPI_STATE_S5
571 #define ACPI_S_STATE_COUNT 6

573 #define ACPI_STATE_D0 (UINT8) 0
574 #define ACPI_STATE_D1 (UINT8) 1
575 #define ACPI_STATE_D2 (UINT8) 2
576 #define ACPI_STATE_D3 (UINT8) 3
577 #define ACPI_D_STATES_MAX ACPI_STATE_D3
578 #define ACPI_D_STATE_COUNT 4

580 #define ACPI_STATE_C0 (UINT8) 0
581 #define ACPI_STATE_C1 (UINT8) 1

new/usr/src/common/acpica/include/actypes.h 10

582 #define ACPI_STATE_C2 (UINT8) 2
583 #define ACPI_STATE_C3 (UINT8) 3
584 #define ACPI_C_STATES_MAX ACPI_STATE_C3
585 #define ACPI_C_STATE_COUNT 4

587 /*
588 * Sleep type invalid value
589 */
590 #define ACPI_SLEEP_TYPE_MAX 0x7
591 #define ACPI_SLEEP_TYPE_INVALID 0xFF

593 /*
594 * Standard notify values
595 */
596 #define ACPI_NOTIFY_BUS_CHECK (UINT8) 0x00
597 #define ACPI_NOTIFY_DEVICE_CHECK (UINT8) 0x01
598 #define ACPI_NOTIFY_DEVICE_WAKE (UINT8) 0x02
599 #define ACPI_NOTIFY_EJECT_REQUEST (UINT8) 0x03
600 #define ACPI_NOTIFY_DEVICE_CHECK_LIGHT (UINT8) 0x04
601 #define ACPI_NOTIFY_FREQUENCY_MISMATCH (UINT8) 0x05
602 #define ACPI_NOTIFY_BUS_MODE_MISMATCH (UINT8) 0x06
603 #define ACPI_NOTIFY_POWER_FAULT (UINT8) 0x07
604 #define ACPI_NOTIFY_CAPABILITIES_CHECK (UINT8) 0x08
605 #define ACPI_NOTIFY_DEVICE_PLD_CHECK (UINT8) 0x09
606 #define ACPI_NOTIFY_RESERVED (UINT8) 0x0A
607 #define ACPI_NOTIFY_LOCALITY_UPDATE (UINT8) 0x0B
608 #define ACPI_NOTIFY_SHUTDOWN_REQUEST (UINT8) 0x0C

610 #define ACPI_NOTIFY_MAX 0x0C
538 #define ACPI_NOTIFY_MAX 0x0B

612 /*
613 * Types associated with ACPI names and objects. The first group of
614 * values (up to ACPI_TYPE_EXTERNAL_MAX) correspond to the definition
615 * of the ACPI ObjectType() operator (See the ACPI Spec). Therefore,
616 * only add to the first group if the spec changes.
617 *
618 * NOTE: Types must be kept in sync with the global AcpiNsProperties
619 * and AcpiNsTypeNames arrays.
620 */
621 typedef UINT32 ACPI_OBJECT_TYPE;

623 #define ACPI_TYPE_ANY 0x00
624 #define ACPI_TYPE_INTEGER 0x01 /* Byte/Word/Dword/Zero/One/Ones *
625 #define ACPI_TYPE_STRING 0x02
626 #define ACPI_TYPE_BUFFER 0x03
627 #define ACPI_TYPE_PACKAGE 0x04 /* ByteConst, multiple DataTerm/Co
628 #define ACPI_TYPE_FIELD_UNIT 0x05
629 #define ACPI_TYPE_DEVICE 0x06 /* Name, multiple Node */
630 #define ACPI_TYPE_EVENT 0x07
631 #define ACPI_TYPE_METHOD 0x08 /* Name, ByteConst, multiple Code
632 #define ACPI_TYPE_MUTEX 0x09
633 #define ACPI_TYPE_REGION 0x0A
634 #define ACPI_TYPE_POWER 0x0B /* Name,ByteConst,WordConst,multi
635 #define ACPI_TYPE_PROCESSOR 0x0C /* Name,ByteConst,DWordConst,ByteC
636 #define ACPI_TYPE_THERMAL 0x0D /* Name, multiple Node */
637 #define ACPI_TYPE_BUFFER_FIELD 0x0E
638 #define ACPI_TYPE_DDB_HANDLE 0x0F
639 #define ACPI_TYPE_DEBUG_OBJECT 0x10

641 #define ACPI_TYPE_EXTERNAL_MAX 0x10

643 /*
644 * These are object types that do not map directly to the ACPI
645 * ObjectType() operator. They are used for various internal purposes only.
646 * If new predefined ACPI_TYPEs are added (via the ACPI specification), these

new/usr/src/common/acpica/include/actypes.h 11

647 * internal types must move upwards. (There is code that depends on these
648 * values being contiguous with the external types above.)
649 */
650 #define ACPI_TYPE_LOCAL_REGION_FIELD 0x11
651 #define ACPI_TYPE_LOCAL_BANK_FIELD 0x12
652 #define ACPI_TYPE_LOCAL_INDEX_FIELD 0x13
653 #define ACPI_TYPE_LOCAL_REFERENCE 0x14 /* Arg#, Local#, Name, Debug, RefO
654 #define ACPI_TYPE_LOCAL_ALIAS 0x15
655 #define ACPI_TYPE_LOCAL_METHOD_ALIAS 0x16
656 #define ACPI_TYPE_LOCAL_NOTIFY 0x17
657 #define ACPI_TYPE_LOCAL_ADDRESS_HANDLER 0x18
658 #define ACPI_TYPE_LOCAL_RESOURCE 0x19
659 #define ACPI_TYPE_LOCAL_RESOURCE_FIELD 0x1A
660 #define ACPI_TYPE_LOCAL_SCOPE 0x1B /* 1 Name, multiple ObjectList Nod

662 #define ACPI_TYPE_NS_NODE_MAX 0x1B /* Last typecode used within a NS

664 /*
665 * These are special object types that never appear in
666 * a Namespace node, only in an object of ACPI_OPERAND_OBJECT
594 * a Namespace node, only in an ACPI_OPERAND_OBJECT
667 */
668 #define ACPI_TYPE_LOCAL_EXTRA 0x1C
669 #define ACPI_TYPE_LOCAL_DATA 0x1D

671 #define ACPI_TYPE_LOCAL_MAX 0x1D

673 /* All types above here are invalid */

675 #define ACPI_TYPE_INVALID 0x1E
676 #define ACPI_TYPE_NOT_FOUND 0xFF

678 #define ACPI_NUM_NS_TYPES (ACPI_TYPE_INVALID + 1)

681 /*
682 * All I/O
683 */
684 #define ACPI_READ 0
685 #define ACPI_WRITE 1
686 #define ACPI_IO_MASK 1

688 /*
689 * Event Types: Fixed & General Purpose
690 */
691 typedef UINT32 ACPI_EVENT_TYPE;

693 /*
694 * Fixed events
695 */
696 #define ACPI_EVENT_PMTIMER 0
697 #define ACPI_EVENT_GLOBAL 1
698 #define ACPI_EVENT_POWER_BUTTON 2
699 #define ACPI_EVENT_SLEEP_BUTTON 3
700 #define ACPI_EVENT_RTC 4
701 #define ACPI_EVENT_MAX 4
702 #define ACPI_NUM_FIXED_EVENTS ACPI_EVENT_MAX + 1

704 /*
705 * Event Status - Per event
706 * -------------
707 * The encoding of ACPI_EVENT_STATUS is illustrated below.
708 * Note that a set bit (1) indicates the property is TRUE
709 * (e.g. if bit 0 is set then the event is enabled).
710 * +-------------+-+-+-+
711 * | Bits 31:3 |2|1|0|

new/usr/src/common/acpica/include/actypes.h 12

712 * +-------------+-+-+-+
713 * | | | |
714 * | | | +- Enabled?
715 * | | +--- Enabled for wake?
716 * | +----- Set?
717 * +----------- <Reserved>
718 */
719 typedef UINT32 ACPI_EVENT_STATUS;

721 #define ACPI_EVENT_FLAG_DISABLED (ACPI_EVENT_STATUS) 0x00
722 #define ACPI_EVENT_FLAG_ENABLED (ACPI_EVENT_STATUS) 0x01
723 #define ACPI_EVENT_FLAG_WAKE_ENABLED (ACPI_EVENT_STATUS) 0x02
724 #define ACPI_EVENT_FLAG_SET (ACPI_EVENT_STATUS) 0x04

654 /*
655 * General Purpose Events (GPE)
656 */
657 #define ACPI_GPE_INVALID 0xFF
658 #define ACPI_GPE_MAX 0xFF
659 #define ACPI_NUM_GPE 256

726 /* Actions for AcpiSetGpe, AcpiGpeWakeup, AcpiHwLowSetGpe */

728 #define ACPI_GPE_ENABLE 0
729 #define ACPI_GPE_DISABLE 1
730 #define ACPI_GPE_CONDITIONAL_ENABLE 2

732 /*
733 * GPE info flags - Per GPE
734 * +-------+-+-+---+
735 * | 7:4 |3|2|1:0|
736 * +-------+-+-+---+
737 * | | | |
738 * | | | +-- Type of dispatch:to method, handler, notify, or none
739 * | | +----- Interrupt type: edge or level triggered
740 * | +------- Is a Wake GPE
741 * +------------ <Reserved>
742 */
743 #define ACPI_GPE_DISPATCH_NONE (UINT8) 0x00
744 #define ACPI_GPE_DISPATCH_METHOD (UINT8) 0x01
745 #define ACPI_GPE_DISPATCH_HANDLER (UINT8) 0x02
746 #define ACPI_GPE_DISPATCH_NOTIFY (UINT8) 0x03
747 #define ACPI_GPE_DISPATCH_MASK (UINT8) 0x03

749 #define ACPI_GPE_LEVEL_TRIGGERED (UINT8) 0x04
750 #define ACPI_GPE_EDGE_TRIGGERED (UINT8) 0x00
751 #define ACPI_GPE_XRUPT_TYPE_MASK (UINT8) 0x04

753 #define ACPI_GPE_CAN_WAKE (UINT8) 0x08

755 /*
756 * Flags for GPE and Lock interfaces
757 */
758 #define ACPI_NOT_ISR 0x1
759 #define ACPI_ISR 0x0

762 /* Notify types */

764 #define ACPI_SYSTEM_NOTIFY 0x1
765 #define ACPI_DEVICE_NOTIFY 0x2
766 #define ACPI_ALL_NOTIFY (ACPI_SYSTEM_NOTIFY | ACPI_DEVICE_NOTIFY
767 #define ACPI_MAX_NOTIFY_HANDLER_TYPE 0x3
768 #define ACPI_NUM_NOTIFY_TYPES 2

770 #define ACPI_MAX_SYS_NOTIFY 0x7F

new/usr/src/common/acpica/include/actypes.h 13

771 #define ACPI_MAX_DEVICE_SPECIFIC_NOTIFY 0xBF
704 #define ACPI_MAX_SYS_NOTIFY 0x7f

773 #define ACPI_SYSTEM_HANDLER_LIST 0 /* Used as index, must be SYSTEM_NOTIF
774 #define ACPI_DEVICE_HANDLER_LIST 1 /* Used as index, must be DEVICE_NOTIF

777 /* Address Space (Operation Region) Types */

779 typedef UINT8 ACPI_ADR_SPACE_TYPE;

781 #define ACPI_ADR_SPACE_SYSTEM_MEMORY (ACPI_ADR_SPACE_TYPE) 0
782 #define ACPI_ADR_SPACE_SYSTEM_IO (ACPI_ADR_SPACE_TYPE) 1
783 #define ACPI_ADR_SPACE_PCI_CONFIG (ACPI_ADR_SPACE_TYPE) 2
784 #define ACPI_ADR_SPACE_EC (ACPI_ADR_SPACE_TYPE) 3
785 #define ACPI_ADR_SPACE_SMBUS (ACPI_ADR_SPACE_TYPE) 4
786 #define ACPI_ADR_SPACE_CMOS (ACPI_ADR_SPACE_TYPE) 5
787 #define ACPI_ADR_SPACE_PCI_BAR_TARGET (ACPI_ADR_SPACE_TYPE) 6
788 #define ACPI_ADR_SPACE_IPMI (ACPI_ADR_SPACE_TYPE) 7
789 #define ACPI_ADR_SPACE_GPIO (ACPI_ADR_SPACE_TYPE) 8
790 #define ACPI_ADR_SPACE_GSBUS (ACPI_ADR_SPACE_TYPE) 9
791 #define ACPI_ADR_SPACE_PLATFORM_COMM (ACPI_ADR_SPACE_TYPE) 10

793 #define ACPI_NUM_PREDEFINED_REGIONS 11
720 #define ACPI_NUM_PREDEFINED_REGIONS 8

795 /*
796 * Special Address Spaces
797 *
798 * Note: A Data Table region is a special type of operation region
799 * that has its own AML opcode. However, internally, the AML
800 * interpreter simply creates an operation region with an an address
801 * space type of ACPI_ADR_SPACE_DATA_TABLE.
802 */
803 #define ACPI_ADR_SPACE_DATA_TABLE (ACPI_ADR_SPACE_TYPE) 0x7E /* Internal t
804 #define ACPI_ADR_SPACE_FIXED_HARDWARE (ACPI_ADR_SPACE_TYPE) 0x7F

806 /* Values for _REG connection code */

808 #define ACPI_REG_DISCONNECT 0
809 #define ACPI_REG_CONNECT 1

811 /*
812 * BitRegister IDs
813 *
814 * These values are intended to be used by the hardware interfaces
815 * and are mapped to individual bitfields defined within the ACPI
816 * registers. See the AcpiGbl_BitRegisterInfo global table in utglobal.c
817 * for this mapping.
818 */

820 /* PM1 Status register */

822 #define ACPI_BITREG_TIMER_STATUS 0x00
823 #define ACPI_BITREG_BUS_MASTER_STATUS 0x01
824 #define ACPI_BITREG_GLOBAL_LOCK_STATUS 0x02
825 #define ACPI_BITREG_POWER_BUTTON_STATUS 0x03
826 #define ACPI_BITREG_SLEEP_BUTTON_STATUS 0x04
827 #define ACPI_BITREG_RT_CLOCK_STATUS 0x05
828 #define ACPI_BITREG_WAKE_STATUS 0x06
829 #define ACPI_BITREG_PCIEXP_WAKE_STATUS 0x07

831 /* PM1 Enable register */

833 #define ACPI_BITREG_TIMER_ENABLE 0x08
834 #define ACPI_BITREG_GLOBAL_LOCK_ENABLE 0x09

new/usr/src/common/acpica/include/actypes.h 14

835 #define ACPI_BITREG_POWER_BUTTON_ENABLE 0x0A
836 #define ACPI_BITREG_SLEEP_BUTTON_ENABLE 0x0B
837 #define ACPI_BITREG_RT_CLOCK_ENABLE 0x0C
838 #define ACPI_BITREG_PCIEXP_WAKE_DISABLE 0x0D

840 /* PM1 Control register */

842 #define ACPI_BITREG_SCI_ENABLE 0x0E
843 #define ACPI_BITREG_BUS_MASTER_RLD 0x0F
844 #define ACPI_BITREG_GLOBAL_LOCK_RELEASE 0x10
845 #define ACPI_BITREG_SLEEP_TYPE 0x11
846 #define ACPI_BITREG_SLEEP_ENABLE 0x12

848 /* PM2 Control register */

850 #define ACPI_BITREG_ARB_DISABLE 0x13

852 #define ACPI_BITREG_MAX 0x13
853 #define ACPI_NUM_BITREG ACPI_BITREG_MAX + 1

856 /* Status register values. A 1 clears a status bit. 0 = no effect */

858 #define ACPI_CLEAR_STATUS 1

860 /* Enable and Control register values */

862 #define ACPI_ENABLE_EVENT 1
863 #define ACPI_DISABLE_EVENT 0

866 /* Sleep function dispatch */

868 typedef ACPI_STATUS (*ACPI_SLEEP_FUNCTION) (
869 UINT8 SleepState);

871 typedef struct acpi_sleep_functions
872 {
873 ACPI_SLEEP_FUNCTION LegacyFunction;
874 ACPI_SLEEP_FUNCTION ExtendedFunction;

876 } ACPI_SLEEP_FUNCTIONS;

879 /*
880 * External ACPI object definition
881 */

883 /*
884 * Note: Type == ACPI_TYPE_ANY (0) is used to indicate a NULL package element
885 * or an unresolved named reference.
886 */
887 typedef union acpi_object
888 {
889 ACPI_OBJECT_TYPE Type; /* See definition of AcpiNsType for
890 struct
891 {
892 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_INTEGER */
893 UINT64 Value; /* The actual number */
894 } Integer;

896 struct
897 {
898 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_STRING */
899 UINT32 Length; /* # of bytes in string, exc
900 char *Pointer; /* points to the string valu

new/usr/src/common/acpica/include/actypes.h 15

901 } String;

903 struct
904 {
905 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_BUFFER */
906 UINT32 Length; /* # of bytes in buffer */
907 UINT8 *Pointer; /* points to the buffer */
908 } Buffer;

910 struct
911 {
912 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_PACKAGE */
913 UINT32 Count; /* # of elements in package
914 union acpi_object *Elements; /* Pointer to an array of AC
915 } Package;

917 struct
918 {
919 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_LOCAL_REFERENCE
920 ACPI_OBJECT_TYPE ActualType; /* Type associated with the
921 ACPI_HANDLE Handle; /* object reference */
922 } Reference;

924 struct
925 {
926 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_PROCESSOR */
927 UINT32 ProcId;
928 ACPI_IO_ADDRESS PblkAddress;
929 UINT32 PblkLength;
930 } Processor;

932 struct
933 {
934 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_POWER */
935 UINT32 SystemLevel;
936 UINT32 ResourceOrder;
937 } PowerResource;

939 } ACPI_OBJECT;
______unchanged_portion_omitted_

953 /*
954 * Miscellaneous common Data Structures used by the interfaces
955 */
956 #define ACPI_NO_BUFFER 0
957 #define ACPI_ALLOCATE_BUFFER (ACPI_SIZE) (-1) /* Let ACPICA allocate b
958 #define ACPI_ALLOCATE_LOCAL_BUFFER (ACPI_SIZE) (-2) /* For internal use only
871 #define ACPI_ALLOCATE_BUFFER (ACPI_SIZE) (-1)
872 #define ACPI_ALLOCATE_LOCAL_BUFFER (ACPI_SIZE) (-2)

960 typedef struct acpi_buffer
961 {
962 ACPI_SIZE Length; /* Length in bytes of the bu
963 void *Pointer; /* pointer to buffer */

965 } ACPI_BUFFER;
______unchanged_portion_omitted_

1026 /* Table Event Types */

1028 #define ACPI_TABLE_EVENT_LOAD 0x0
1029 #define ACPI_TABLE_EVENT_UNLOAD 0x1
1030 #define ACPI_NUM_TABLE_EVENTS 2

new/usr/src/common/acpica/include/actypes.h 16

1033 /*
1034 * Types specific to the OS service interfaces
1035 */
1036 typedef UINT32
1037 (ACPI_SYSTEM_XFACE *ACPI_OSD_HANDLER) (
1038 void *Context);

1040 typedef void
1041 (ACPI_SYSTEM_XFACE *ACPI_OSD_EXEC_CALLBACK) (
1042 void *Context);

1044 /*
1045 * Various handlers and callback procedures
1046 */
1047 typedef
1048 UINT32 (*ACPI_SCI_HANDLER) (
1049 void *Context);

1051 typedef
1052 void (*ACPI_GBL_EVENT_HANDLER) (
1053 UINT32 EventType,
1054 ACPI_HANDLE Device,
1055 UINT32 EventNumber,
1056 void *Context);

1058 #define ACPI_EVENT_TYPE_GPE 0
1059 #define ACPI_EVENT_TYPE_FIXED 1

1061 typedef
1062 UINT32 (*ACPI_EVENT_HANDLER) (
1063 void *Context);

1065 typedef
1066 UINT32 (*ACPI_GPE_HANDLER) (
1067 ACPI_HANDLE GpeDevice,
1068 UINT32 GpeNumber,
1069 void *Context);

1071 typedef
1072 void (*ACPI_NOTIFY_HANDLER) (
1073 ACPI_HANDLE Device,
1074 UINT32 Value,
1075 void *Context);

1077 typedef
1078 void (*ACPI_OBJECT_HANDLER) (
1079 ACPI_HANDLE Object,
1080 void *Data);

1082 typedef
1083 ACPI_STATUS (*ACPI_INIT_HANDLER) (
1084 ACPI_HANDLE Object,
1085 UINT32 Function);

1087 #define ACPI_INIT_DEVICE_INI 1

1089 typedef
1090 ACPI_STATUS (*ACPI_EXCEPTION_HANDLER) (
1091 ACPI_STATUS AmlStatus,
1092 ACPI_NAME Name,
1093 UINT16 Opcode,
1094 UINT32 AmlOffset,
1095 void *Context);

1097 /* Table Event handler (Load, LoadTable, etc.) and types */

new/usr/src/common/acpica/include/actypes.h 17

1099 typedef
1100 ACPI_STATUS (*ACPI_TABLE_HANDLER) (
1101 UINT32 Event,
1102 void *Table,
1103 void *Context);

1105 #define ACPI_TABLE_LOAD 0x0
1106 #define ACPI_TABLE_UNLOAD 0x1
1107 #define ACPI_NUM_TABLE_EVENTS 2

1110 /* Address Spaces (For Operation Regions) */

1112 typedef
1113 ACPI_STATUS (*ACPI_ADR_SPACE_HANDLER) (
1114 UINT32 Function,
1115 ACPI_PHYSICAL_ADDRESS Address,
1116 UINT32 BitWidth,
1117 UINT64 *Value,
1118 void *HandlerContext,
1119 void *RegionContext);

1121 #define ACPI_DEFAULT_HANDLER NULL

1123 /* Special Context data for GenericSerialBus/GeneralPurposeIo (ACPI 5.0) */

1125 typedef struct acpi_connection_info
1126 {
1127 UINT8 *Connection;
1128 UINT16 Length;
1129 UINT8 AccessLength;

1131 } ACPI_CONNECTION_INFO;

1134 typedef
1135 ACPI_STATUS (*ACPI_ADR_SPACE_SETUP) (
1136 ACPI_HANDLE RegionHandle,
1137 UINT32 Function,
1138 void *HandlerContext,
1139 void **RegionContext);

1141 #define ACPI_REGION_ACTIVATE 0
1142 #define ACPI_REGION_DEACTIVATE 1

1144 typedef
1145 ACPI_STATUS (*ACPI_WALK_CALLBACK) (
1146 ACPI_HANDLE Object,
1147 UINT32 NestingLevel,
1148 void *Context,
1149 void **ReturnValue);

1151 typedef
1152 UINT32 (*ACPI_INTERFACE_HANDLER) (
1153 ACPI_STRING InterfaceName,
1154 UINT32 Supported);

1157 /* Interrupt handler return values */

1159 #define ACPI_INTERRUPT_NOT_HANDLED 0x00
1160 #define ACPI_INTERRUPT_HANDLED 0x01

1162 /* GPE handler return values */

new/usr/src/common/acpica/include/actypes.h 18

1164 #define ACPI_REENABLE_GPE 0x80

1167 /* Length of 32-bit EISAID values when converted back to a string */

1169 #define ACPI_EISAID_STRING_SIZE 8 /* Includes null terminator */

1171 /* Length of UUID (string) values */

1173 #define ACPI_UUID_LENGTH 16

1176 /* Structures used for device/processor HID, UID, CID, and SUB */
1075 /* Structures used for device/processor HID, UID, CID */

1178 typedef struct acpi_pnp_device_id
1077 typedef struct acpi_device_id
1179 {
1180 UINT32 Length; /* Length of string + nu
1181 char *String;

1183 } ACPI_PNP_DEVICE_ID;
1082 } ACPI_DEVICE_ID;

1185 typedef struct acpi_pnp_device_id_list
1084 typedef struct acpi_device_id_list
1186 {
1187 UINT32 Count; /* Number of IDs in Ids
1188 UINT32 ListSize; /* Size of list, includi
1189 ACPI_PNP_DEVICE_ID Ids[1]; /* ID array */
1088 ACPI_DEVICE_ID Ids[1]; /* ID array */

1191 } ACPI_PNP_DEVICE_ID_LIST;
1090 } ACPI_DEVICE_ID_LIST;

1193 /*
1194 * Structure returned from AcpiGetObjectInfo.
1195 * Optimized for both 32- and 64-bit builds
1196 */
1197 typedef struct acpi_device_info
1198 {
1199 UINT32 InfoSize; /* Size of info, includi
1200 UINT32 Name; /* ACPI object Name */
1201 ACPI_OBJECT_TYPE Type; /* ACPI object Type */
1202 UINT8 ParamCount; /* If a method, required
1203 UINT8 Valid; /* Indicates which optio
1204 UINT8 Flags; /* Miscellaneous info */
1205 UINT8 HighestDstates[4]; /* _SxD values: 0xFF ind
1206 UINT8 LowestDstates[5]; /* _SxW values: 0xFF ind
1207 UINT32 CurrentStatus; /* _STA value */
1208 UINT64 Address; /* _ADR value */
1209 ACPI_PNP_DEVICE_ID HardwareId; /* _HID value */
1210 ACPI_PNP_DEVICE_ID UniqueId; /* _UID value */
1211 ACPI_PNP_DEVICE_ID SubsystemId; /* _SUB value */
1212 ACPI_PNP_DEVICE_ID_LIST CompatibleIdList; /* _CID list <must be la
1108 ACPI_DEVICE_ID HardwareId; /* _HID value */
1109 ACPI_DEVICE_ID UniqueId; /* _UID value */
1110 ACPI_DEVICE_ID_LIST CompatibleIdList; /* _CID list <must be la

1214 } ACPI_DEVICE_INFO;

1216 /* Values for Flags field above (AcpiGetObjectInfo) */

1218 #define ACPI_PCI_ROOT_BRIDGE 0x01

1220 /* Flags for Valid field above (AcpiGetObjectInfo) */

new/usr/src/common/acpica/include/actypes.h 19

1222 #define ACPI_VALID_STA 0x01
1223 #define ACPI_VALID_ADR 0x02
1224 #define ACPI_VALID_HID 0x04
1225 #define ACPI_VALID_UID 0x08
1226 #define ACPI_VALID_SUB 0x10
1227 #define ACPI_VALID_CID 0x20
1228 #define ACPI_VALID_SXDS 0x40
1229 #define ACPI_VALID_SXWS 0x80
1124 #define ACPI_VALID_CID 0x10
1125 #define ACPI_VALID_SXDS 0x20
1126 #define ACPI_VALID_SXWS 0x40

1231 /* Flags for _STA return value (CurrentStatus above) */
1128 /* Flags for _STA method */

1233 #define ACPI_STA_DEVICE_PRESENT 0x01
1234 #define ACPI_STA_DEVICE_ENABLED 0x02
1235 #define ACPI_STA_DEVICE_UI 0x04
1236 #define ACPI_STA_DEVICE_FUNCTIONING 0x08
1237 #define ACPI_STA_DEVICE_OK 0x08 /* Synonym */
1238 #define ACPI_STA_BATTERY_PRESENT 0x10

1241 /* Context structs for address space handlers */

1243 typedef struct acpi_pci_id
1244 {
1245 UINT16 Segment;
1246 UINT16 Bus;
1247 UINT16 Device;
1248 UINT16 Function;

1250 } ACPI_PCI_ID;
______unchanged_portion_omitted_

1263 /*
1264 * ACPI_MEMORY_LIST is used only if the ACPICA local cache is enabled
1265 */
1266 typedef struct acpi_memory_list
1267 {
1268 char *ListName;
1269 void *ListHead;
1270 UINT16 ObjectSize;
1271 UINT16 MaxDepth;
1272 UINT16 CurrentDepth;
1170 UINT16 LinkOffset;

1274 #ifdef ACPI_DBG_TRACK_ALLOCATIONS

1276 /* Statistics for debug memory tracking only */

1278 UINT32 TotalAllocated;
1279 UINT32 TotalFreed;
1280 UINT32 MaxOccupied;
1281 UINT32 TotalSize;
1282 UINT32 CurrentTotalSize;
1283 UINT32 Requests;
1284 UINT32 Hits;
1285 #endif

1287 } ACPI_MEMORY_LIST;

1290 /* Definitions of _OSI support */

new/usr/src/common/acpica/include/actypes.h 20

1292 #define ACPI_VENDOR_STRINGS 0x01
1293 #define ACPI_FEATURE_STRINGS 0x02
1294 #define ACPI_ENABLE_INTERFACES 0x00
1295 #define ACPI_DISABLE_INTERFACES 0x04

1297 #define ACPI_DISABLE_ALL_VENDOR_STRINGS (ACPI_DISABLE_INTERFACES | ACPI_VEND
1298 #define ACPI_DISABLE_ALL_FEATURE_STRINGS (ACPI_DISABLE_INTERFACES | ACPI_FEAT
1299 #define ACPI_DISABLE_ALL_STRINGS (ACPI_DISABLE_INTERFACES | ACPI_VEND
1300 #define ACPI_ENABLE_ALL_VENDOR_STRINGS (ACPI_ENABLE_INTERFACES | ACPI_VENDO
1301 #define ACPI_ENABLE_ALL_FEATURE_STRINGS (ACPI_ENABLE_INTERFACES | ACPI_FEATU
1302 #define ACPI_ENABLE_ALL_STRINGS (ACPI_ENABLE_INTERFACES | ACPI_VENDO

1304 #define ACPI_OSI_WIN_2000 0x01
1305 #define ACPI_OSI_WIN_XP 0x02
1306 #define ACPI_OSI_WIN_XP_SP1 0x03
1307 #define ACPI_OSI_WINSRV_2003 0x04
1308 #define ACPI_OSI_WIN_XP_SP2 0x05
1309 #define ACPI_OSI_WINSRV_2003_SP1 0x06
1310 #define ACPI_OSI_WIN_VISTA 0x07
1311 #define ACPI_OSI_WINSRV_2008 0x08
1312 #define ACPI_OSI_WIN_VISTA_SP1 0x09
1313 #define ACPI_OSI_WIN_VISTA_SP2 0x0A
1314 #define ACPI_OSI_WIN_7 0x0B
1315 #define ACPI_OSI_WIN_8 0x0C

1318 #endif /* __ACTYPES_H__ */

new/usr/src/common/acpica/include/acutils.h 1

**
 27274 Thu Dec 26 13:49:58 2013
new/usr/src/common/acpica/include/acutils.h
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acutils.h -- prototypes for the common (subsystem-wide) procedures
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef _ACUTILS_H
45 #define _ACUTILS_H

48 extern const UINT8 AcpiGbl_ResourceAmlSizes[];
49 extern const UINT8 AcpiGbl_ResourceAmlSerialBusSizes[];

51 /* Strings used by the disassembler and debugger resource dump routines */

53 #if defined(ACPI_DISASSEMBLER) || defined (ACPI_DEBUGGER)

55 extern const char *AcpiGbl_BmDecode[];
56 extern const char *AcpiGbl_ConfigDecode[];
57 extern const char *AcpiGbl_ConsumeDecode[];
58 extern const char *AcpiGbl_DecDecode[];

new/usr/src/common/acpica/include/acutils.h 2

59 extern const char *AcpiGbl_HeDecode[];
60 extern const char *AcpiGbl_IoDecode[];
61 extern const char *AcpiGbl_LlDecode[];
62 extern const char *AcpiGbl_MaxDecode[];
63 extern const char *AcpiGbl_MemDecode[];
64 extern const char *AcpiGbl_MinDecode[];
65 extern const char *AcpiGbl_MtpDecode[];
66 extern const char *AcpiGbl_RngDecode[];
67 extern const char *AcpiGbl_RwDecode[];
68 extern const char *AcpiGbl_ShrDecode[];
69 extern const char *AcpiGbl_SizDecode[];
70 extern const char *AcpiGbl_TrsDecode[];
71 extern const char *AcpiGbl_TtpDecode[];
72 extern const char *AcpiGbl_TypDecode[];
73 extern const char *AcpiGbl_PpcDecode[];
74 extern const char *AcpiGbl_IorDecode[];
75 extern const char *AcpiGbl_DtsDecode[];
76 extern const char *AcpiGbl_CtDecode[];
77 extern const char *AcpiGbl_SbtDecode[];
78 extern const char *AcpiGbl_AmDecode[];
79 extern const char *AcpiGbl_SmDecode[];
80 extern const char *AcpiGbl_WmDecode[];
81 extern const char *AcpiGbl_CphDecode[];
82 extern const char *AcpiGbl_CpoDecode[];
83 extern const char *AcpiGbl_DpDecode[];
84 extern const char *AcpiGbl_EdDecode[];
85 extern const char *AcpiGbl_BpbDecode[];
86 extern const char *AcpiGbl_SbDecode[];
87 extern const char *AcpiGbl_FcDecode[];
88 extern const char *AcpiGbl_PtDecode[];
89 #endif

91 /*
92 * For the iASL compiler case, the output is redirected to stderr so that
93 * any of the various ACPI errors and warnings do not appear in the output
94 * files, for either the compiler or disassembler portions of the tool.
95 */
96 #ifdef ACPI_ASL_COMPILER

98 #include <stdio.h>
99 extern FILE *AcpiGbl_OutputFile;

101 #define ACPI_MSG_REDIRECT_BEGIN \
102 FILE *OutputFile = AcpiGbl_OutputFile; \
103 AcpiOsRedirectOutput (stderr);

105 #define ACPI_MSG_REDIRECT_END \
106 AcpiOsRedirectOutput (OutputFile);

108 #else
109 /*
110 * non-iASL case - no redirection, nothing to do
111 */
112 #define ACPI_MSG_REDIRECT_BEGIN
113 #define ACPI_MSG_REDIRECT_END
114 #endif

116 /*
117 * Common error message prefixes
118 */
119 #define ACPI_MSG_ERROR "ACPI Error: "
120 #define ACPI_MSG_EXCEPTION "ACPI Exception: "
121 #define ACPI_MSG_WARNING "ACPI Warning: "
122 #define ACPI_MSG_INFO "ACPI: "

124 #define ACPI_MSG_BIOS_ERROR "ACPI BIOS Error (bug): "

new/usr/src/common/acpica/include/acutils.h 3

125 #define ACPI_MSG_BIOS_WARNING "ACPI BIOS Warning (bug): "

127 /*
128 * Common message suffix
129 */
130 #define ACPI_MSG_SUFFIX \
131 AcpiOsPrintf (" (%8.8X/%s-%u)\n", ACPI_CA_VERSION, ModuleName, LineNumber)

134 /* Types for Resource descriptor entries */

136 #define ACPI_INVALID_RESOURCE 0
137 #define ACPI_FIXED_LENGTH 1
138 #define ACPI_VARIABLE_LENGTH 2
139 #define ACPI_SMALL_VARIABLE_LENGTH 3

141 typedef
142 ACPI_STATUS (*ACPI_WALK_AML_CALLBACK) (
143 UINT8 *Aml,
144 UINT32 Length,
145 UINT32 Offset,
146 UINT8 ResourceIndex,
147 void **Context);
87 void *Context);

149 typedef
150 ACPI_STATUS (*ACPI_PKG_CALLBACK) (
151 UINT8 ObjectType,
152 ACPI_OPERAND_OBJECT *SourceObject,
153 ACPI_GENERIC_STATE *State,
154 void *Context);

156 typedef struct acpi_pkg_info
157 {
158 UINT8 *FreeSpace;
159 ACPI_SIZE Length;
160 UINT32 ObjectSpace;
161 UINT32 NumPackages;

163 } ACPI_PKG_INFO;

165 /* Object reference counts */

167 #define REF_INCREMENT (UINT16) 0
168 #define REF_DECREMENT (UINT16) 1
107 #define REF_FORCE_DELETE (UINT16) 2

170 /* AcpiUtDumpBuffer */

172 #define DB_BYTE_DISPLAY 1
173 #define DB_WORD_DISPLAY 2
174 #define DB_DWORD_DISPLAY 4
175 #define DB_QWORD_DISPLAY 8

177 /*
178 * utglobal - Global data structures and procedures
179 */
180 ACPI_STATUS
181 AcpiUtInitGlobals (
182 void);

184 #if defined(ACPI_DEBUG_OUTPUT) || defined(ACPI_DEBUGGER)

186 char *
187 AcpiUtGetMutexName (

new/usr/src/common/acpica/include/acutils.h 4

188 UINT32 MutexId);

190 const char *
191 AcpiUtGetNotifyName (
192 UINT32 NotifyValue);

194 #endif

196 char *
197 AcpiUtGetTypeName (
198 ACPI_OBJECT_TYPE Type);

200 char *
201 AcpiUtGetNodeName (
202 void *Object);

204 char *
205 AcpiUtGetDescriptorName (
206 void *Object);

208 const char *
209 AcpiUtGetReferenceName (
210 ACPI_OPERAND_OBJECT *Object);

212 char *
213 AcpiUtGetObjectTypeName (
214 ACPI_OPERAND_OBJECT *ObjDesc);

216 char *
217 AcpiUtGetRegionName (
218 UINT8 SpaceId);

220 char *
221 AcpiUtGetEventName (
222 UINT32 EventId);

224 char
225 AcpiUtHexToAsciiChar (
226 UINT64 Integer,
227 UINT32 Position);

229 BOOLEAN
230 AcpiUtValidObjectType (
231 ACPI_OBJECT_TYPE Type);

234 /*
235 * utinit - miscellaneous initialization and shutdown
236 */
237 ACPI_STATUS
238 AcpiUtHardwareInitialize (
239 void);

241 void
242 AcpiUtSubsystemShutdown (
243 void);

246 /*
247 * utclib - Local implementations of C library functions
248 */
249 #ifndef ACPI_USE_SYSTEM_CLIBRARY

251 ACPI_SIZE
252 AcpiUtStrlen (
253 const char *String);

new/usr/src/common/acpica/include/acutils.h 5

255 char *
256 AcpiUtStrcpy (
257 char *DstString,
258 const char *SrcString);

260 char *
261 AcpiUtStrncpy (
262 char *DstString,
263 const char *SrcString,
264 ACPI_SIZE Count);

266 int
267 AcpiUtMemcmp (
268 const char *Buffer1,
269 const char *Buffer2,
270 ACPI_SIZE Count);

272 int
273 AcpiUtStrncmp (
274 const char *String1,
275 const char *String2,
276 ACPI_SIZE Count);

278 int
279 AcpiUtStrcmp (
280 const char *String1,
281 const char *String2);

283 char *
284 AcpiUtStrcat (
285 char *DstString,
286 const char *SrcString);

288 char *
289 AcpiUtStrncat (
290 char *DstString,
291 const char *SrcString,
292 ACPI_SIZE Count);

294 UINT32
295 AcpiUtStrtoul (
296 const char *String,
297 char **Terminator,
298 UINT32 Base);

300 char *
301 AcpiUtStrstr (
302 char *String1,
303 char *String2);

305 void *
306 AcpiUtMemcpy (
307 void *Dest,
308 const void *Src,
309 ACPI_SIZE Count);

311 void *
312 AcpiUtMemset (
313 void *Dest,
314 UINT8 Value,
315 ACPI_SIZE Count);

317 int
318 AcpiUtToUpper (
319 int c);

new/usr/src/common/acpica/include/acutils.h 6

321 int
322 AcpiUtToLower (
323 int c);

325 extern const UINT8 _acpi_ctype[];

327 #define _ACPI_XA 0x00 /* extra alphabetic - not supported */
328 #define _ACPI_XS 0x40 /* extra space */
329 #define _ACPI_BB 0x00 /* BEL, BS, etc. - not supported */
330 #define _ACPI_CN 0x20 /* CR, FF, HT, NL, VT */
331 #define _ACPI_DI 0x04 /* ’0’-’9’ */
332 #define _ACPI_LO 0x02 /* ’a’-’z’ */
333 #define _ACPI_PU 0x10 /* punctuation */
334 #define _ACPI_SP 0x08 /* space */
335 #define _ACPI_UP 0x01 /* ’A’-’Z’ */
336 #define _ACPI_XD 0x80 /* ’0’-’9’, ’A’-’F’, ’a’-’f’ */

338 #define ACPI_IS_DIGIT(c) (_acpi_ctype[(unsigned char)(c)] & (_ACPI_DI))
339 #define ACPI_IS_SPACE(c) (_acpi_ctype[(unsigned char)(c)] & (_ACPI_SP))
340 #define ACPI_IS_XDIGIT(c) (_acpi_ctype[(unsigned char)(c)] & (_ACPI_XD))
341 #define ACPI_IS_UPPER(c) (_acpi_ctype[(unsigned char)(c)] & (_ACPI_UP))
342 #define ACPI_IS_LOWER(c) (_acpi_ctype[(unsigned char)(c)] & (_ACPI_LO))
343 #define ACPI_IS_PRINT(c) (_acpi_ctype[(unsigned char)(c)] & (_ACPI_LO | _ACPI_U
344 #define ACPI_IS_ALPHA(c) (_acpi_ctype[(unsigned char)(c)] & (_ACPI_LO | _ACPI_U

346 #endif /* !ACPI_USE_SYSTEM_CLIBRARY */

348 #define ACPI_IS_ASCII(c) ((c) < 0x80)

351 /*
352 * utcopy - Object construction and conversion interfaces
353 */
354 ACPI_STATUS
355 AcpiUtBuildSimpleObject(
356 ACPI_OPERAND_OBJECT *Obj,
357 ACPI_OBJECT *UserObj,
358 UINT8 *DataSpace,
359 UINT32 *BufferSpaceUsed);

361 ACPI_STATUS
362 AcpiUtBuildPackageObject (
363 ACPI_OPERAND_OBJECT *Obj,
364 UINT8 *Buffer,
365 UINT32 *SpaceUsed);

367 ACPI_STATUS
368 AcpiUtCopyIobjectToEobject (
369 ACPI_OPERAND_OBJECT *Obj,
370 ACPI_BUFFER *RetBuffer);

372 ACPI_STATUS
373 AcpiUtCopyEobjectToIobject (
374 ACPI_OBJECT *Obj,
375 ACPI_OPERAND_OBJECT **InternalObj);

377 ACPI_STATUS
378 AcpiUtCopyISimpleToIsimple (
379 ACPI_OPERAND_OBJECT *SourceObj,
380 ACPI_OPERAND_OBJECT *DestObj);

382 ACPI_STATUS
383 AcpiUtCopyIobjectToIobject (
384 ACPI_OPERAND_OBJECT *SourceDesc,
385 ACPI_OPERAND_OBJECT **DestDesc,

new/usr/src/common/acpica/include/acutils.h 7

386 ACPI_WALK_STATE *WalkState);

389 /*
390 * utcreate - Object creation
391 */
392 ACPI_STATUS
393 AcpiUtUpdateObjectReference (
394 ACPI_OPERAND_OBJECT *Object,
395 UINT16 Action);

398 /*
399 * utdebug - Debug interfaces
400 */
401 void
402 AcpiUtInitStackPtrTrace (
403 void);

405 void
406 AcpiUtTrackStackPtr (
407 void);

409 void
410 AcpiUtTrace (
411 UINT32 LineNumber,
412 const char *FunctionName,
413 const char *ModuleName,
414 UINT32 ComponentId);

416 void
417 AcpiUtTracePtr (
418 UINT32 LineNumber,
419 const char *FunctionName,
420 const char *ModuleName,
421 UINT32 ComponentId,
422 void *Pointer);

424 void
425 AcpiUtTraceU32 (
426 UINT32 LineNumber,
427 const char *FunctionName,
428 const char *ModuleName,
429 UINT32 ComponentId,
430 UINT32 Integer);

432 void
433 AcpiUtTraceStr (
434 UINT32 LineNumber,
435 const char *FunctionName,
436 const char *ModuleName,
437 UINT32 ComponentId,
438 char *String);

440 void
441 AcpiUtExit (
442 UINT32 LineNumber,
443 const char *FunctionName,
444 const char *ModuleName,
445 UINT32 ComponentId);

447 void
448 AcpiUtStatusExit (
449 UINT32 LineNumber,
450 const char *FunctionName,
451 const char *ModuleName,

new/usr/src/common/acpica/include/acutils.h 8

452 UINT32 ComponentId,
453 ACPI_STATUS Status);

455 void
456 AcpiUtValueExit (
457 UINT32 LineNumber,
458 const char *FunctionName,
459 const char *ModuleName,
460 UINT32 ComponentId,
461 UINT64 Value);

463 void
464 AcpiUtPtrExit (
465 UINT32 LineNumber,
466 const char *FunctionName,
467 const char *ModuleName,
468 UINT32 ComponentId,
469 UINT8 *Ptr);

471 void
472 AcpiUtDebugDumpBuffer (
412 AcpiUtDumpBuffer (
473 UINT8 *Buffer,
474 UINT32 Count,
475 UINT32 Display,
476 UINT32 ComponentId);
416 UINT32 componentId);

478 void
479 AcpiUtDumpBuffer (
419 AcpiUtDumpBuffer2 (
480 UINT8 *Buffer,
481 UINT32 Count,
482 UINT32 Display,
483 UINT32 Offset);
422 UINT32 Display);

485 void
486 AcpiUtReportError (
487 char *ModuleName,
488 UINT32 LineNumber);

490 void
491 AcpiUtReportInfo (
492 char *ModuleName,
493 UINT32 LineNumber);

495 void
496 AcpiUtReportWarning (
497 char *ModuleName,
498 UINT32 LineNumber);

500 /*
501 * utdelete - Object deletion and reference counts
502 */
503 void
504 AcpiUtAddReference (
505 ACPI_OPERAND_OBJECT *Object);

507 void
508 AcpiUtRemoveReference (
509 ACPI_OPERAND_OBJECT *Object);

511 void
512 AcpiUtDeleteInternalPackageObject (
513 ACPI_OPERAND_OBJECT *Object);

new/usr/src/common/acpica/include/acutils.h 9

515 void
516 AcpiUtDeleteInternalSimpleObject (
517 ACPI_OPERAND_OBJECT *Object);

519 void
520 AcpiUtDeleteInternalObjectList (
521 ACPI_OPERAND_OBJECT **ObjList);

524 /*
525 * uteval - object evaluation
526 */
527 ACPI_STATUS
528 AcpiUtEvaluateObject (
529 ACPI_NAMESPACE_NODE *PrefixNode,
530 char *Path,
531 UINT32 ExpectedReturnBtypes,
532 ACPI_OPERAND_OBJECT **ReturnDesc);

534 ACPI_STATUS
535 AcpiUtEvaluateNumericObject (
536 char *ObjectName,
537 ACPI_NAMESPACE_NODE *DeviceNode,
538 UINT64 *Value);

540 ACPI_STATUS
541 AcpiUtExecute_STA (
542 ACPI_NAMESPACE_NODE *DeviceNode,
543 UINT32 *StatusFlags);

545 ACPI_STATUS
546 AcpiUtExecutePowerMethods (
547 ACPI_NAMESPACE_NODE *DeviceNode,
548 const char **MethodNames,
549 UINT8 MethodCount,
550 UINT8 *OutValues);

553 /*
554 * utids - device ID support
555 */
556 ACPI_STATUS
557 AcpiUtExecute_HID (
558 ACPI_NAMESPACE_NODE *DeviceNode,
559 ACPI_PNP_DEVICE_ID **ReturnId);
498 ACPI_DEVICE_ID **ReturnId);

561 ACPI_STATUS
562 AcpiUtExecute_UID (
563 ACPI_NAMESPACE_NODE *DeviceNode,
564 ACPI_PNP_DEVICE_ID **ReturnId);
503 ACPI_DEVICE_ID **ReturnId);

566 ACPI_STATUS
567 AcpiUtExecute_SUB (
568 ACPI_NAMESPACE_NODE *DeviceNode,
569 ACPI_PNP_DEVICE_ID **ReturnId);

571 ACPI_STATUS
572 AcpiUtExecute_CID (
573 ACPI_NAMESPACE_NODE *DeviceNode,
574 ACPI_PNP_DEVICE_ID_LIST **ReturnCidList);
508 ACPI_DEVICE_ID_LIST **ReturnCidList);

new/usr/src/common/acpica/include/acutils.h 10

577 /*
578 * utlock - reader/writer locks
579 */
580 ACPI_STATUS
581 AcpiUtCreateRwLock (
582 ACPI_RW_LOCK *Lock);

584 void
585 AcpiUtDeleteRwLock (
586 ACPI_RW_LOCK *Lock);

588 ACPI_STATUS
589 AcpiUtAcquireReadLock (
590 ACPI_RW_LOCK *Lock);

592 ACPI_STATUS
593 AcpiUtReleaseReadLock (
594 ACPI_RW_LOCK *Lock);

596 ACPI_STATUS
597 AcpiUtAcquireWriteLock (
598 ACPI_RW_LOCK *Lock);

600 void
601 AcpiUtReleaseWriteLock (
602 ACPI_RW_LOCK *Lock);

605 /*
606 * utobject - internal object create/delete/cache routines
607 */
608 ACPI_OPERAND_OBJECT *
609 AcpiUtCreateInternalObjectDbg (
610 const char *ModuleName,
611 UINT32 LineNumber,
612 UINT32 ComponentId,
613 ACPI_OBJECT_TYPE Type);

615 void *
616 AcpiUtAllocateObjectDescDbg (
617 const char *ModuleName,
618 UINT32 LineNumber,
619 UINT32 ComponentId);

621 #define AcpiUtCreateInternalObject(t) AcpiUtCreateInternalObjectDbg (_AcpiModu
622 #define AcpiUtAllocateObjectDesc() AcpiUtAllocateObjectDescDbg (_AcpiModule

624 void
625 AcpiUtDeleteObjectDesc (
626 ACPI_OPERAND_OBJECT *Object);

628 BOOLEAN
629 AcpiUtValidInternalObject (
630 void *Object);

632 ACPI_OPERAND_OBJECT *
633 AcpiUtCreatePackageObject (
634 UINT32 Count);

636 ACPI_OPERAND_OBJECT *
637 AcpiUtCreateIntegerObject (
638 UINT64 Value);

640 ACPI_OPERAND_OBJECT *
641 AcpiUtCreateBufferObject (
642 ACPI_SIZE BufferSize);

new/usr/src/common/acpica/include/acutils.h 11

644 ACPI_OPERAND_OBJECT *
645 AcpiUtCreateStringObject (
646 ACPI_SIZE StringSize);

648 ACPI_STATUS
649 AcpiUtGetObjectSize(
650 ACPI_OPERAND_OBJECT *Obj,
651 ACPI_SIZE *ObjLength);

654 /*
655 * utosi - Support for the _OSI predefined control method
656 */
657 ACPI_STATUS
658 AcpiUtInitializeInterfaces (
659 void);

661 ACPI_STATUS
595 void
662 AcpiUtInterfaceTerminate (
663 void);

665 ACPI_STATUS
666 AcpiUtInstallInterface (
667 ACPI_STRING InterfaceName);

669 ACPI_STATUS
670 AcpiUtRemoveInterface (
671 ACPI_STRING InterfaceName);

673 ACPI_STATUS
674 AcpiUtUpdateInterfaces (
675 UINT8 Action);

677 ACPI_INTERFACE_INFO *
678 AcpiUtGetInterface (
679 ACPI_STRING InterfaceName);

681 ACPI_STATUS
682 AcpiUtOsiImplementation (
683 ACPI_WALK_STATE *WalkState);

686 /*
687 * utpredef - support for predefined names
688 */
689 const ACPI_PREDEFINED_INFO *
690 AcpiUtGetNextPredefinedMethod (
691 const ACPI_PREDEFINED_INFO *ThisName);

693 const ACPI_PREDEFINED_INFO *
694 AcpiUtMatchPredefinedMethod (
695 char *Name);

697 const ACPI_PREDEFINED_INFO *
698 AcpiUtMatchResourceName (
699 char *Name);

701 void
702 AcpiUtDisplayPredefinedMethod (
703 char *Buffer,
704 const ACPI_PREDEFINED_INFO *ThisName,
705 BOOLEAN MultiLine);

707 void

new/usr/src/common/acpica/include/acutils.h 12

708 AcpiUtGetExpectedReturnTypes (
709 char *Buffer,
710 UINT32 ExpectedBtypes);

712 UINT32
713 AcpiUtGetResourceBitWidth (
714 char *Buffer,
715 UINT16 Types);

718 /*
719 * utstate - Generic state creation/cache routines
720 */
721 void
722 AcpiUtPushGenericState (
723 ACPI_GENERIC_STATE **ListHead,
724 ACPI_GENERIC_STATE *State);

726 ACPI_GENERIC_STATE *
727 AcpiUtPopGenericState (
728 ACPI_GENERIC_STATE **ListHead);

731 ACPI_GENERIC_STATE *
732 AcpiUtCreateGenericState (
733 void);

735 ACPI_THREAD_STATE *
736 AcpiUtCreateThreadState (
737 void);

739 ACPI_GENERIC_STATE *
740 AcpiUtCreateUpdateState (
741 ACPI_OPERAND_OBJECT *Object,
742 UINT16 Action);

744 ACPI_GENERIC_STATE *
745 AcpiUtCreatePkgState (
746 void *InternalObject,
747 void *ExternalObject,
748 UINT16 Index);

750 ACPI_STATUS
751 AcpiUtCreateUpdateStateAndPush (
752 ACPI_OPERAND_OBJECT *Object,
753 UINT16 Action,
754 ACPI_GENERIC_STATE **StateList);

756 ACPI_STATUS
757 AcpiUtCreatePkgStateAndPush (
758 void *InternalObject,
759 void *ExternalObject,
760 UINT16 Index,
761 ACPI_GENERIC_STATE **StateList);

763 ACPI_GENERIC_STATE *
764 AcpiUtCreateControlState (
765 void);

767 void
768 AcpiUtDeleteGenericState (
769 ACPI_GENERIC_STATE *State);

772 /*
773 * utmath

new/usr/src/common/acpica/include/acutils.h 13

774 */
775 ACPI_STATUS
776 AcpiUtDivide (
777 UINT64 InDividend,
778 UINT64 InDivisor,
779 UINT64 *OutQuotient,
780 UINT64 *OutRemainder);

782 ACPI_STATUS
783 AcpiUtShortDivide (
784 UINT64 InDividend,
785 UINT32 Divisor,
786 UINT64 *OutQuotient,
787 UINT32 *OutRemainder);

790 /*
791 * utmisc
792 */
793 const ACPI_EXCEPTION_INFO *
690 const char *
794 AcpiUtValidateException (
795 ACPI_STATUS Status);

797 BOOLEAN
798 AcpiUtIsPciRootBridge (
799 char *Id);

801 BOOLEAN
802 AcpiUtIsAmlTable (
803 ACPI_TABLE_HEADER *Table);

805 ACPI_STATUS
703 AcpiUtAllocateOwnerId (
704 ACPI_OWNER_ID *OwnerId);

706 void
707 AcpiUtReleaseOwnerId (
708 ACPI_OWNER_ID *OwnerId);

710 ACPI_STATUS
806 AcpiUtWalkPackageTree (
807 ACPI_OPERAND_OBJECT *SourceObject,
808 void *TargetObject,
809 ACPI_PKG_CALLBACK WalkCallback,
810 void *Context);

717 void
718 AcpiUtStrupr (
719 char *SrcString);

721 void
722 AcpiUtStrlwr (
723 char *SrcString);

725 void
726 AcpiUtPrintString (
727 char *String,
728 UINT8 MaxLength);

730 BOOLEAN
731 AcpiUtValidAcpiName (
732 UINT32 Name);

734 void
735 AcpiUtRepairName (

new/usr/src/common/acpica/include/acutils.h 14

736 char *Name);

738 BOOLEAN
739 AcpiUtValidAcpiChar (
740 char Character,
741 UINT32 Position);

743 ACPI_STATUS
744 AcpiUtStrtoul64 (
745 char *String,
746 UINT32 Base,
747 UINT64 *RetInteger);

813 /* Values for Base above (16=Hex, 10=Decimal) */

815 #define ACPI_ANY_BASE 0

817 UINT32
818 AcpiUtDwordByteSwap (
819 UINT32 Value);

821 void
822 AcpiUtSetIntegerWidth (
823 UINT8 Revision);

825 #ifdef ACPI_DEBUG_OUTPUT
826 void
827 AcpiUtDisplayInitPathname (
828 UINT8 Type,
829 ACPI_NAMESPACE_NODE *ObjHandle,
830 char *Path);
831 #endif

834 /*
835 * utownerid - Support for Table/Method Owner IDs
836 */
837 ACPI_STATUS
838 AcpiUtAllocateOwnerId (
839 ACPI_OWNER_ID *OwnerId);

841 void
842 AcpiUtReleaseOwnerId (
843 ACPI_OWNER_ID *OwnerId);

846 /*
847 * utresrc
848 */
849 ACPI_STATUS
850 AcpiUtWalkAmlResources (
851 ACPI_WALK_STATE *WalkState,
852 UINT8 *Aml,
853 ACPI_SIZE AmlLength,
854 ACPI_WALK_AML_CALLBACK UserFunction,
855 void **Context);
778 void *Context);

857 ACPI_STATUS
858 AcpiUtValidateResource (
859 ACPI_WALK_STATE *WalkState,
860 void *Aml,
861 UINT8 *ReturnIndex);

863 UINT32
864 AcpiUtGetDescriptorLength (

new/usr/src/common/acpica/include/acutils.h 15

865 void *Aml);

867 UINT16
868 AcpiUtGetResourceLength (
869 void *Aml);

871 UINT8
872 AcpiUtGetResourceHeaderLength (
873 void *Aml);

875 UINT8
876 AcpiUtGetResourceType (
877 void *Aml);

879 ACPI_STATUS
880 AcpiUtGetResourceEndTag (
881 ACPI_OPERAND_OBJECT *ObjDesc,
882 UINT8 **EndTag);

885 /*
886 * utstring - String and character utilities
887 */
888 void
889 AcpiUtStrupr (
890 char *SrcString);

892 void
893 AcpiUtStrlwr (
894 char *SrcString);

896 int
897 AcpiUtStricmp (
898 char *String1,
899 char *String2);

901 ACPI_STATUS
902 AcpiUtStrtoul64 (
903 char *String,
904 UINT32 Base,
905 UINT64 *RetInteger);

907 void
908 AcpiUtPrintString (
909 char *String,
910 UINT16 MaxLength);

912 void
913 UtConvertBackslashes (
914 char *Pathname);

916 BOOLEAN
917 AcpiUtValidAcpiName (
918 char *Name);

920 BOOLEAN
921 AcpiUtValidAcpiChar (
922 char Character,
923 UINT32 Position);

925 void
926 AcpiUtRepairName (
927 char *Name);

929 #if defined (ACPI_DEBUGGER) || defined (ACPI_APPLICATION)
930 BOOLEAN

new/usr/src/common/acpica/include/acutils.h 16

931 AcpiUtSafeStrcpy (
932 char *Dest,
933 ACPI_SIZE DestSize,
934 char *Source);

936 BOOLEAN
937 AcpiUtSafeStrcat (
938 char *Dest,
939 ACPI_SIZE DestSize,
940 char *Source);

942 BOOLEAN
943 AcpiUtSafeStrncat (
944 char *Dest,
945 ACPI_SIZE DestSize,
946 char *Source,
947 ACPI_SIZE MaxTransferLength);
948 #endif

951 /*
952 * utmutex - mutex support
953 */
954 ACPI_STATUS
955 AcpiUtMutexInitialize (
956 void);

958 void
959 AcpiUtMutexTerminate (
960 void);

962 ACPI_STATUS
963 AcpiUtAcquireMutex (
964 ACPI_MUTEX_HANDLE MutexId);

966 ACPI_STATUS
967 AcpiUtReleaseMutex (
968 ACPI_MUTEX_HANDLE MutexId);

971 /*
972 * utalloc - memory allocation and object caching
973 */
974 ACPI_STATUS
975 AcpiUtCreateCaches (
976 void);

978 ACPI_STATUS
979 AcpiUtDeleteCaches (
980 void);

982 ACPI_STATUS
983 AcpiUtValidateBuffer (
984 ACPI_BUFFER *Buffer);

986 ACPI_STATUS
987 AcpiUtInitializeBuffer (
988 ACPI_BUFFER *Buffer,
989 ACPI_SIZE RequiredLength);

847 void *
848 AcpiUtAllocate (
849 ACPI_SIZE Size,
850 UINT32 Component,
851 const char *Module,
852 UINT32 Line);

new/usr/src/common/acpica/include/acutils.h 17

854 void *
855 AcpiUtAllocateZeroed (
856 ACPI_SIZE Size,
857 UINT32 Component,
858 const char *Module,
859 UINT32 Line);

991 #ifdef ACPI_DBG_TRACK_ALLOCATIONS
992 void *
993 AcpiUtAllocateAndTrack (
994 ACPI_SIZE Size,
995 UINT32 Component,
996 const char *Module,
997 UINT32 Line);

999 void *
1000 AcpiUtAllocateZeroedAndTrack (
1001 ACPI_SIZE Size,
1002 UINT32 Component,
1003 const char *Module,
1004 UINT32 Line);

1006 void
1007 AcpiUtFreeAndTrack (
1008 void *Address,
1009 UINT32 Component,
1010 const char *Module,
1011 UINT32 Line);

1013 void
1014 AcpiUtDumpAllocationInfo (
1015 void);

1017 void
1018 AcpiUtDumpAllocations (
1019 UINT32 Component,
1020 const char *Module);

1022 ACPI_STATUS
1023 AcpiUtCreateList (
1024 char *ListName,
1025 UINT16 ObjectSize,
1026 ACPI_MEMORY_LIST **ReturnCache);

1028 #endif /* ACPI_DBG_TRACK_ALLOCATIONS */

1030 /*
1031 * utaddress - address range check
1032 */
1033 ACPI_STATUS
1034 AcpiUtAddAddressRange (
1035 ACPI_ADR_SPACE_TYPE SpaceId,
1036 ACPI_PHYSICAL_ADDRESS Address,
1037 UINT32 Length,
1038 ACPI_NAMESPACE_NODE *RegionNode);

1040 void
1041 AcpiUtRemoveAddressRange (
1042 ACPI_ADR_SPACE_TYPE SpaceId,
1043 ACPI_NAMESPACE_NODE *RegionNode);

1045 UINT32
1046 AcpiUtCheckAddressRange (
1047 ACPI_ADR_SPACE_TYPE SpaceId,
1048 ACPI_PHYSICAL_ADDRESS Address,

new/usr/src/common/acpica/include/acutils.h 18

1049 UINT32 Length,
1050 BOOLEAN Warn);

1052 void
1053 AcpiUtDeleteAddressLists (
1054 void);

1056 /*
1057 * utxferror - various error/warning output functions
1058 */
1059 void ACPI_INTERNAL_VAR_XFACE
1060 AcpiUtPredefinedWarning (
1061 const char *ModuleName,
1062 UINT32 LineNumber,
1063 char *Pathname,
1064 UINT8 NodeFlags,
1065 const char *Format,
1066 ...);

1068 void ACPI_INTERNAL_VAR_XFACE
1069 AcpiUtPredefinedInfo (
1070 const char *ModuleName,
1071 UINT32 LineNumber,
1072 char *Pathname,
1073 UINT8 NodeFlags,
1074 const char *Format,
1075 ...);

1077 void ACPI_INTERNAL_VAR_XFACE
1078 AcpiUtPredefinedBiosError (
1079 const char *ModuleName,
1080 UINT32 LineNumber,
1081 char *Pathname,
1082 UINT8 NodeFlags,
1083 const char *Format,
1084 ...);

1086 void
1087 AcpiUtNamespaceError (
1088 const char *ModuleName,
1089 UINT32 LineNumber,
1090 const char *InternalName,
1091 ACPI_STATUS LookupStatus);

1093 void
1094 AcpiUtMethodError (
1095 const char *ModuleName,
1096 UINT32 LineNumber,
1097 const char *Message,
1098 ACPI_NAMESPACE_NODE *Node,
1099 const char *Path,
1100 ACPI_STATUS LookupStatus);

1102 #endif /* _ACUTILS_H */

new/usr/src/common/acpica/include/amlcode.h 1

**
 19946 Thu Dec 26 13:49:59 2013
new/usr/src/common/acpica/include/amlcode.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: amlcode.h - Definitions for AML, as included in "definition blocks"
4 * Declarations and definitions contained herein are derived
5 * directly from the ACPI specification.
6 *
7 ***/

9 /*
10 * Copyright (C) 2000 - 2013, Intel Corp.
10 * Copyright (C) 2000 - 2011, Intel Corp.
11 * All rights reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions, and the following disclaimer,
18 * without modification.
19 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
20 * substantially similar to the "NO WARRANTY" disclaimer below
21 * ("Disclaimer") and any redistribution must be conditioned upon
22 * including a substantially similar Disclaimer requirement for further
23 * binary redistribution.
24 * 3. Neither the names of the above-listed copyright holders nor the names
25 * of any contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * Alternatively, this software may be distributed under the terms of the
29 * GNU General Public License ("GPL") version 2 as published by the Free
30 * Software Foundation.
31 *
32 * NO WARRANTY
33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
42 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
43 * POSSIBILITY OF SUCH DAMAGES.
44 */

46 #ifndef __AMLCODE_H__
47 #define __AMLCODE_H__

49 /* primary opcodes */

51 #define AML_NULL_CHAR (UINT16) 0x00

53 #define AML_ZERO_OP (UINT16) 0x00
54 #define AML_ONE_OP (UINT16) 0x01
55 #define AML_UNASSIGNED (UINT16) 0x02
56 #define AML_ALIAS_OP (UINT16) 0x06
57 #define AML_NAME_OP (UINT16) 0x08
58 #define AML_BYTE_OP (UINT16) 0x0a
59 #define AML_WORD_OP (UINT16) 0x0b

new/usr/src/common/acpica/include/amlcode.h 2

60 #define AML_DWORD_OP (UINT16) 0x0c
61 #define AML_STRING_OP (UINT16) 0x0d
62 #define AML_QWORD_OP (UINT16) 0x0e /* ACPI 2.0 */
63 #define AML_SCOPE_OP (UINT16) 0x10
64 #define AML_BUFFER_OP (UINT16) 0x11
65 #define AML_PACKAGE_OP (UINT16) 0x12
66 #define AML_VAR_PACKAGE_OP (UINT16) 0x13 /* ACPI 2.0 */
67 #define AML_METHOD_OP (UINT16) 0x14
68 #define AML_DUAL_NAME_PREFIX (UINT16) 0x2e
69 #define AML_MULTI_NAME_PREFIX_OP (UINT16) 0x2f
70 #define AML_NAME_CHAR_SUBSEQ (UINT16) 0x30
71 #define AML_NAME_CHAR_FIRST (UINT16) 0x41
72 #define AML_EXTENDED_OP_PREFIX (UINT16) 0x5b
73 #define AML_ROOT_PREFIX (UINT16) 0x5c
74 #define AML_PARENT_PREFIX (UINT16) 0x5e
75 #define AML_LOCAL_OP (UINT16) 0x60
76 #define AML_LOCAL0 (UINT16) 0x60
77 #define AML_LOCAL1 (UINT16) 0x61
78 #define AML_LOCAL2 (UINT16) 0x62
79 #define AML_LOCAL3 (UINT16) 0x63
80 #define AML_LOCAL4 (UINT16) 0x64
81 #define AML_LOCAL5 (UINT16) 0x65
82 #define AML_LOCAL6 (UINT16) 0x66
83 #define AML_LOCAL7 (UINT16) 0x67
84 #define AML_ARG_OP (UINT16) 0x68
85 #define AML_ARG0 (UINT16) 0x68
86 #define AML_ARG1 (UINT16) 0x69
87 #define AML_ARG2 (UINT16) 0x6a
88 #define AML_ARG3 (UINT16) 0x6b
89 #define AML_ARG4 (UINT16) 0x6c
90 #define AML_ARG5 (UINT16) 0x6d
91 #define AML_ARG6 (UINT16) 0x6e
92 #define AML_STORE_OP (UINT16) 0x70
93 #define AML_REF_OF_OP (UINT16) 0x71
94 #define AML_ADD_OP (UINT16) 0x72
95 #define AML_CONCAT_OP (UINT16) 0x73
96 #define AML_SUBTRACT_OP (UINT16) 0x74
97 #define AML_INCREMENT_OP (UINT16) 0x75
98 #define AML_DECREMENT_OP (UINT16) 0x76
99 #define AML_MULTIPLY_OP (UINT16) 0x77
100 #define AML_DIVIDE_OP (UINT16) 0x78
101 #define AML_SHIFT_LEFT_OP (UINT16) 0x79
102 #define AML_SHIFT_RIGHT_OP (UINT16) 0x7a
103 #define AML_BIT_AND_OP (UINT16) 0x7b
104 #define AML_BIT_NAND_OP (UINT16) 0x7c
105 #define AML_BIT_OR_OP (UINT16) 0x7d
106 #define AML_BIT_NOR_OP (UINT16) 0x7e
107 #define AML_BIT_XOR_OP (UINT16) 0x7f
108 #define AML_BIT_NOT_OP (UINT16) 0x80
109 #define AML_FIND_SET_LEFT_BIT_OP (UINT16) 0x81
110 #define AML_FIND_SET_RIGHT_BIT_OP (UINT16) 0x82
111 #define AML_DEREF_OF_OP (UINT16) 0x83
112 #define AML_CONCAT_RES_OP (UINT16) 0x84 /* ACPI 2.0 */
113 #define AML_MOD_OP (UINT16) 0x85 /* ACPI 2.0 */
114 #define AML_NOTIFY_OP (UINT16) 0x86
115 #define AML_SIZE_OF_OP (UINT16) 0x87
116 #define AML_INDEX_OP (UINT16) 0x88
117 #define AML_MATCH_OP (UINT16) 0x89
118 #define AML_CREATE_DWORD_FIELD_OP (UINT16) 0x8a
119 #define AML_CREATE_WORD_FIELD_OP (UINT16) 0x8b
120 #define AML_CREATE_BYTE_FIELD_OP (UINT16) 0x8c
121 #define AML_CREATE_BIT_FIELD_OP (UINT16) 0x8d
122 #define AML_TYPE_OP (UINT16) 0x8e
123 #define AML_CREATE_QWORD_FIELD_OP (UINT16) 0x8f /* ACPI 2.0 */
124 #define AML_LAND_OP (UINT16) 0x90
125 #define AML_LOR_OP (UINT16) 0x91

new/usr/src/common/acpica/include/amlcode.h 3

126 #define AML_LNOT_OP (UINT16) 0x92
127 #define AML_LEQUAL_OP (UINT16) 0x93
128 #define AML_LGREATER_OP (UINT16) 0x94
129 #define AML_LLESS_OP (UINT16) 0x95
130 #define AML_TO_BUFFER_OP (UINT16) 0x96 /* ACPI 2.0 */
131 #define AML_TO_DECSTRING_OP (UINT16) 0x97 /* ACPI 2.0 */
132 #define AML_TO_HEXSTRING_OP (UINT16) 0x98 /* ACPI 2.0 */
133 #define AML_TO_INTEGER_OP (UINT16) 0x99 /* ACPI 2.0 */
134 #define AML_TO_STRING_OP (UINT16) 0x9c /* ACPI 2.0 */
135 #define AML_COPY_OP (UINT16) 0x9d /* ACPI 2.0 */
136 #define AML_MID_OP (UINT16) 0x9e /* ACPI 2.0 */
137 #define AML_CONTINUE_OP (UINT16) 0x9f /* ACPI 2.0 */
138 #define AML_IF_OP (UINT16) 0xa0
139 #define AML_ELSE_OP (UINT16) 0xa1
140 #define AML_WHILE_OP (UINT16) 0xa2
141 #define AML_NOOP_OP (UINT16) 0xa3
142 #define AML_RETURN_OP (UINT16) 0xa4
143 #define AML_BREAK_OP (UINT16) 0xa5
144 #define AML_BREAK_POINT_OP (UINT16) 0xcc
145 #define AML_ONES_OP (UINT16) 0xff

147 /* prefixed opcodes */

149 #define AML_EXTENDED_OPCODE (UINT16) 0x5b00 /* prefix for 2-byte opc

151 #define AML_MUTEX_OP (UINT16) 0x5b01
152 #define AML_EVENT_OP (UINT16) 0x5b02
153 #define AML_SHIFT_RIGHT_BIT_OP (UINT16) 0x5b10
154 #define AML_SHIFT_LEFT_BIT_OP (UINT16) 0x5b11
155 #define AML_COND_REF_OF_OP (UINT16) 0x5b12
156 #define AML_CREATE_FIELD_OP (UINT16) 0x5b13
157 #define AML_LOAD_TABLE_OP (UINT16) 0x5b1f /* ACPI 2.0 */
158 #define AML_LOAD_OP (UINT16) 0x5b20
159 #define AML_STALL_OP (UINT16) 0x5b21
160 #define AML_SLEEP_OP (UINT16) 0x5b22
161 #define AML_ACQUIRE_OP (UINT16) 0x5b23
162 #define AML_SIGNAL_OP (UINT16) 0x5b24
163 #define AML_WAIT_OP (UINT16) 0x5b25
164 #define AML_RESET_OP (UINT16) 0x5b26
165 #define AML_RELEASE_OP (UINT16) 0x5b27
166 #define AML_FROM_BCD_OP (UINT16) 0x5b28
167 #define AML_TO_BCD_OP (UINT16) 0x5b29
168 #define AML_UNLOAD_OP (UINT16) 0x5b2a
169 #define AML_REVISION_OP (UINT16) 0x5b30
170 #define AML_DEBUG_OP (UINT16) 0x5b31
171 #define AML_FATAL_OP (UINT16) 0x5b32
172 #define AML_TIMER_OP (UINT16) 0x5b33 /* ACPI 3.0 */
173 #define AML_REGION_OP (UINT16) 0x5b80
174 #define AML_FIELD_OP (UINT16) 0x5b81
175 #define AML_DEVICE_OP (UINT16) 0x5b82
176 #define AML_PROCESSOR_OP (UINT16) 0x5b83
177 #define AML_POWER_RES_OP (UINT16) 0x5b84
178 #define AML_THERMAL_ZONE_OP (UINT16) 0x5b85
179 #define AML_INDEX_FIELD_OP (UINT16) 0x5b86
180 #define AML_BANK_FIELD_OP (UINT16) 0x5b87
181 #define AML_DATA_REGION_OP (UINT16) 0x5b88 /* ACPI 2.0 */

184 /*
185 * Combination opcodes (actually two one-byte opcodes)
186 * Used by the disassembler and iASL compiler
187 */
188 #define AML_LGREATEREQUAL_OP (UINT16) 0x9295
189 #define AML_LLESSEQUAL_OP (UINT16) 0x9294
190 #define AML_LNOTEQUAL_OP (UINT16) 0x9293

new/usr/src/common/acpica/include/amlcode.h 4

193 /*
194 * Opcodes for "Field" operators
195 */
196 #define AML_FIELD_OFFSET_OP (UINT8) 0x00
197 #define AML_FIELD_ACCESS_OP (UINT8) 0x01
198 #define AML_FIELD_CONNECTION_OP (UINT8) 0x02 /* ACPI 5.0 */
199 #define AML_FIELD_EXT_ACCESS_OP (UINT8) 0x03 /* ACPI 5.0 */

202 /*
203 * Internal opcodes
204 * Use only "Unknown" AML opcodes, don’t attempt to use
205 * any valid ACPI ASCII values (A-Z, 0-9, ’-’)
206 */
207 #define AML_INT_NAMEPATH_OP (UINT16) 0x002d
208 #define AML_INT_NAMEDFIELD_OP (UINT16) 0x0030
209 #define AML_INT_RESERVEDFIELD_OP (UINT16) 0x0031
210 #define AML_INT_ACCESSFIELD_OP (UINT16) 0x0032
211 #define AML_INT_BYTELIST_OP (UINT16) 0x0033
212 #define AML_INT_STATICSTRING_OP (UINT16) 0x0034
213 #define AML_INT_METHODCALL_OP (UINT16) 0x0035
214 #define AML_INT_RETURN_VALUE_OP (UINT16) 0x0036
215 #define AML_INT_EVAL_SUBTREE_OP (UINT16) 0x0037
216 #define AML_INT_CONNECTION_OP (UINT16) 0x0038
217 #define AML_INT_EXTACCESSFIELD_OP (UINT16) 0x0039

219 #define ARG_NONE 0x0

221 /*
222 * Argument types for the AML Parser
223 * Each field in the ArgTypes UINT32 is 5 bits, allowing for a maximum of 6 argu
224 * There can be up to 31 unique argument types
225 * Zero is reserved as end-of-list indicator
226 */
227 #define ARGP_BYTEDATA 0x01
228 #define ARGP_BYTELIST 0x02
229 #define ARGP_CHARLIST 0x03
230 #define ARGP_DATAOBJ 0x04
231 #define ARGP_DATAOBJLIST 0x05
232 #define ARGP_DWORDDATA 0x06
233 #define ARGP_FIELDLIST 0x07
234 #define ARGP_NAME 0x08
235 #define ARGP_NAMESTRING 0x09
236 #define ARGP_OBJLIST 0x0A
237 #define ARGP_PKGLENGTH 0x0B
238 #define ARGP_SUPERNAME 0x0C
239 #define ARGP_TARGET 0x0D
240 #define ARGP_TERMARG 0x0E
241 #define ARGP_TERMLIST 0x0F
242 #define ARGP_WORDDATA 0x10
243 #define ARGP_QWORDDATA 0x11
244 #define ARGP_SIMPLENAME 0x12

246 /*
247 * Resolved argument types for the AML Interpreter
248 * Each field in the ArgTypes UINT32 is 5 bits, allowing for a maximum of 6 argu
249 * There can be up to 31 unique argument types (0 is end-of-arg-list indicator)
250 *
251 * Note1: These values are completely independent from the ACPI_TYPEs
252 * i.e., ARGI_INTEGER != ACPI_TYPE_INTEGER
253 *
254 * Note2: If and when 5 bits becomes insufficient, it would probably be best
255 * to convert to a 6-byte array of argument types, allowing 8 bits per argument.
256 */

new/usr/src/common/acpica/include/amlcode.h 5

258 /* Single, simple types */

260 #define ARGI_ANYTYPE 0x01 /* Don’t care */
261 #define ARGI_PACKAGE 0x02
262 #define ARGI_EVENT 0x03
263 #define ARGI_MUTEX 0x04
264 #define ARGI_DDBHANDLE 0x05

266 /* Interchangeable types (via implicit conversion) */

268 #define ARGI_INTEGER 0x06
269 #define ARGI_STRING 0x07
270 #define ARGI_BUFFER 0x08
271 #define ARGI_BUFFER_OR_STRING 0x09 /* Used by MID op only */
272 #define ARGI_COMPUTEDATA 0x0A /* Buffer, String, or Integer */

274 /* Reference objects */

276 #define ARGI_INTEGER_REF 0x0B
277 #define ARGI_OBJECT_REF 0x0C
278 #define ARGI_DEVICE_REF 0x0D
279 #define ARGI_REFERENCE 0x0E
280 #define ARGI_TARGETREF 0x0F /* Target, subject to implicit conve
281 #define ARGI_FIXED_TARGET 0x10 /* Target, no implicit conversion */
282 #define ARGI_SIMPLE_TARGET 0x11 /* Name, Local, Arg -- no implicit c

284 /* Multiple/complex types */

286 #define ARGI_DATAOBJECT 0x12 /* Buffer, String, package or refere
287 #define ARGI_COMPLEXOBJ 0x13 /* Buffer, String, or package (Used
288 #define ARGI_REF_OR_STRING 0x14 /* Reference or String (Used by DERE
289 #define ARGI_REGION_OR_BUFFER 0x15 /* Used by LOAD op only */
290 #define ARGI_DATAREFOBJ 0x16

292 /* Note: types above can expand to 0x1F maximum */

294 #define ARGI_INVALID_OPCODE 0xFFFFFFFF

297 /*
298 * hash offsets
299 */
300 #define AML_EXTOP_HASH_OFFSET 22
301 #define AML_LNOT_HASH_OFFSET 19

304 /*
305 * opcode groups and types
306 */
307 #define OPGRP_NAMED 0x01
308 #define OPGRP_FIELD 0x02
309 #define OPGRP_BYTELIST 0x04

312 /*
313 * Opcode information
314 */

316 /* Opcode flags */

318 #define AML_LOGICAL 0x0001
319 #define AML_LOGICAL_NUMERIC 0x0002
320 #define AML_MATH 0x0004
321 #define AML_CREATE 0x0008
322 #define AML_FIELD 0x0010

new/usr/src/common/acpica/include/amlcode.h 6

323 #define AML_DEFER 0x0020
324 #define AML_NAMED 0x0040
325 #define AML_NSNODE 0x0080
326 #define AML_NSOPCODE 0x0100
327 #define AML_NSOBJECT 0x0200
328 #define AML_HAS_RETVAL 0x0400
329 #define AML_HAS_TARGET 0x0800
330 #define AML_HAS_ARGS 0x1000
331 #define AML_CONSTANT 0x2000
332 #define AML_NO_OPERAND_RESOLVE 0x4000

334 /* Convenient flag groupings */

336 #define AML_FLAGS_EXEC_0A_0T_1R AML_HAS_RETV
337 #define AML_FLAGS_EXEC_1A_0T_0R AML_HAS_ARGS
338 #define AML_FLAGS_EXEC_1A_0T_1R AML_HAS_ARGS | AML_HAS_RETV
339 #define AML_FLAGS_EXEC_1A_1T_0R AML_HAS_ARGS | AML_HAS_TARGET
340 #define AML_FLAGS_EXEC_1A_1T_1R AML_HAS_ARGS | AML_HAS_TARGET | AML_HAS_RETV
341 #define AML_FLAGS_EXEC_2A_0T_0R AML_HAS_ARGS
342 #define AML_FLAGS_EXEC_2A_0T_1R AML_HAS_ARGS | AML_HAS_RETV
343 #define AML_FLAGS_EXEC_2A_1T_1R AML_HAS_ARGS | AML_HAS_TARGET | AML_HAS_RETV
344 #define AML_FLAGS_EXEC_2A_2T_1R AML_HAS_ARGS | AML_HAS_TARGET | AML_HAS_RETV
345 #define AML_FLAGS_EXEC_3A_0T_0R AML_HAS_ARGS
346 #define AML_FLAGS_EXEC_3A_1T_1R AML_HAS_ARGS | AML_HAS_TARGET | AML_HAS_RETV
347 #define AML_FLAGS_EXEC_6A_0T_1R AML_HAS_ARGS | AML_HAS_RETV

350 /*
351 * The opcode Type is used in a dispatch table, do not change
352 * without updating the table.
353 */
354 #define AML_TYPE_EXEC_0A_0T_1R 0x00
355 #define AML_TYPE_EXEC_1A_0T_0R 0x01 /* Monadic1 */
356 #define AML_TYPE_EXEC_1A_0T_1R 0x02 /* Monadic2 */
357 #define AML_TYPE_EXEC_1A_1T_0R 0x03
358 #define AML_TYPE_EXEC_1A_1T_1R 0x04 /* Monadic2R */
359 #define AML_TYPE_EXEC_2A_0T_0R 0x05 /* Dyadic1 */
360 #define AML_TYPE_EXEC_2A_0T_1R 0x06 /* Dyadic2 */
361 #define AML_TYPE_EXEC_2A_1T_1R 0x07 /* Dyadic2R */
362 #define AML_TYPE_EXEC_2A_2T_1R 0x08
363 #define AML_TYPE_EXEC_3A_0T_0R 0x09
364 #define AML_TYPE_EXEC_3A_1T_1R 0x0A
365 #define AML_TYPE_EXEC_6A_0T_1R 0x0B
366 /* End of types used in dispatch table */

368 #define AML_TYPE_LITERAL 0x0B
369 #define AML_TYPE_CONSTANT 0x0C
370 #define AML_TYPE_METHOD_ARGUMENT 0x0D
371 #define AML_TYPE_LOCAL_VARIABLE 0x0E
372 #define AML_TYPE_DATA_TERM 0x0F

374 /* Generic for an op that returns a value */

376 #define AML_TYPE_METHOD_CALL 0x10

378 /* Misc */

380 #define AML_TYPE_CREATE_FIELD 0x11
381 #define AML_TYPE_CREATE_OBJECT 0x12
382 #define AML_TYPE_CONTROL 0x13
383 #define AML_TYPE_NAMED_NO_OBJ 0x14
384 #define AML_TYPE_NAMED_FIELD 0x15
385 #define AML_TYPE_NAMED_SIMPLE 0x16
386 #define AML_TYPE_NAMED_COMPLEX 0x17
387 #define AML_TYPE_RETURN 0x18

new/usr/src/common/acpica/include/amlcode.h 7

389 #define AML_TYPE_UNDEFINED 0x19
390 #define AML_TYPE_BOGUS 0x1A

392 /* AML Package Length encodings */

394 #define ACPI_AML_PACKAGE_TYPE1 0x40
395 #define ACPI_AML_PACKAGE_TYPE2 0x4000
396 #define ACPI_AML_PACKAGE_TYPE3 0x400000
397 #define ACPI_AML_PACKAGE_TYPE4 0x40000000

399 /*
400 * Opcode classes
401 */
402 #define AML_CLASS_EXECUTE 0x00
403 #define AML_CLASS_CREATE 0x01
404 #define AML_CLASS_ARGUMENT 0x02
405 #define AML_CLASS_NAMED_OBJECT 0x03
406 #define AML_CLASS_CONTROL 0x04
407 #define AML_CLASS_ASCII 0x05
408 #define AML_CLASS_PREFIX 0x06
409 #define AML_CLASS_INTERNAL 0x07
410 #define AML_CLASS_RETURN_VALUE 0x08
411 #define AML_CLASS_METHOD_CALL 0x09
412 #define AML_CLASS_UNKNOWN 0x0A

415 /* Comparison operation codes for MatchOp operator */

417 typedef enum
418 {
419 MATCH_MTR = 0,
420 MATCH_MEQ = 1,
421 MATCH_MLE = 2,
422 MATCH_MLT = 3,
423 MATCH_MGE = 4,
424 MATCH_MGT = 5

426 } AML_MATCH_OPERATOR;
______unchanged_portion_omitted_

484 /*
485 * Field Access Attributes.
486 * This byte is extracted from the AML via the
487 * AccessAs keyword
488 */
489 typedef enum
490 {
491 AML_FIELD_ATTRIB_QUICK = 0x02,
492 AML_FIELD_ATTRIB_SEND_RCV = 0x04,
493 AML_FIELD_ATTRIB_BYTE = 0x06,
494 AML_FIELD_ATTRIB_WORD = 0x08,
495 AML_FIELD_ATTRIB_BLOCK = 0x0A,
496 AML_FIELD_ATTRIB_MULTIBYTE = 0x0B,
497 AML_FIELD_ATTRIB_WORD_CALL = 0x0C,
498 AML_FIELD_ATTRIB_BLOCK_CALL = 0x0D,
499 AML_FIELD_ATTRIB_RAW_BYTES = 0x0E,
500 AML_FIELD_ATTRIB_RAW_PROCESS = 0x0F
481 AML_FIELD_ATTRIB_SMB_QUICK = 0x02,
482 AML_FIELD_ATTRIB_SMB_SEND_RCV = 0x04,
483 AML_FIELD_ATTRIB_SMB_BYTE = 0x06,
484 AML_FIELD_ATTRIB_SMB_WORD = 0x08,
485 AML_FIELD_ATTRIB_SMB_BLOCK = 0x0A,
486 AML_FIELD_ATTRIB_SMB_WORD_CALL = 0x0C,
487 AML_FIELD_ATTRIB_SMB_BLOCK_CALL = 0x0D

new/usr/src/common/acpica/include/amlcode.h 8

502 } AML_ACCESS_ATTRIBUTE;
______unchanged_portion_omitted_

new/usr/src/common/acpica/include/amlresrc.h 1

**
 19141 Thu Dec 26 13:49:59 2013
new/usr/src/common/acpica/include/amlresrc.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: amlresrc.h - AML resource descriptors
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 /* acpisrc:StructDefs -- for acpisrc conversion */

46 #ifndef __AMLRESRC_H
47 #define __AMLRESRC_H

50 /*
51 * Resource descriptor tags, as defined in the ACPI specification.
52 * Used to symbolically reference fields within a descriptor.
53 */
54 #define ACPI_RESTAG_ADDRESS "_ADR"
55 #define ACPI_RESTAG_ALIGNMENT "_ALN"
56 #define ACPI_RESTAG_ADDRESSSPACE "_ASI"
57 #define ACPI_RESTAG_ACCESSSIZE "_ASZ"
58 #define ACPI_RESTAG_TYPESPECIFICATTRIBUTES "_ATT"
59 #define ACPI_RESTAG_BASEADDRESS "_BAS"
60 #define ACPI_RESTAG_BUSMASTER "_BM_" /* Master(1), Slave(0) *

new/usr/src/common/acpica/include/amlresrc.h 2

61 #define ACPI_RESTAG_DEBOUNCETIME "_DBT"
62 #define ACPI_RESTAG_DECODE "_DEC"
63 #define ACPI_RESTAG_DEVICEPOLARITY "_DPL"
64 #define ACPI_RESTAG_DMA "_DMA"
65 #define ACPI_RESTAG_DMATYPE "_TYP" /* Compatible(0), A(1),
66 #define ACPI_RESTAG_DRIVESTRENGTH "_DRS"
67 #define ACPI_RESTAG_ENDIANNESS "_END"
68 #define ACPI_RESTAG_FLOWCONTROL "_FLC"
69 #define ACPI_RESTAG_GRANULARITY "_GRA"
70 #define ACPI_RESTAG_INTERRUPT "_INT"
71 #define ACPI_RESTAG_INTERRUPTLEVEL "_LL_" /* ActiveLo(1), ActiveHi
72 #define ACPI_RESTAG_INTERRUPTSHARE "_SHR" /* Shareable(1), NoShare
73 #define ACPI_RESTAG_INTERRUPTTYPE "_HE_" /* Edge(1), Level(0) */
74 #define ACPI_RESTAG_IORESTRICTION "_IOR"
75 #define ACPI_RESTAG_LENGTH "_LEN"
76 #define ACPI_RESTAG_LINE "_LIN"
77 #define ACPI_RESTAG_MEMATTRIBUTES "_MTP" /* Memory(0), Reserved(1
78 #define ACPI_RESTAG_MEMTYPE "_MEM" /* NonCache(0), Cacheabl
79 #define ACPI_RESTAG_MAXADDR "_MAX"
80 #define ACPI_RESTAG_MINADDR "_MIN"
81 #define ACPI_RESTAG_MAXTYPE "_MAF"
82 #define ACPI_RESTAG_MINTYPE "_MIF"
83 #define ACPI_RESTAG_MODE "_MOD"
84 #define ACPI_RESTAG_PARITY "_PAR"
85 #define ACPI_RESTAG_PHASE "_PHA"
86 #define ACPI_RESTAG_PIN "_PIN"
87 #define ACPI_RESTAG_PINCONFIG "_PPI"
88 #define ACPI_RESTAG_POLARITY "_POL"
89 #define ACPI_RESTAG_REGISTERBITOFFSET "_RBO"
90 #define ACPI_RESTAG_REGISTERBITWIDTH "_RBW"
91 #define ACPI_RESTAG_RANGETYPE "_RNG"
92 #define ACPI_RESTAG_READWRITETYPE "_RW_" /* ReadOnly(0), Writeabl
93 #define ACPI_RESTAG_LENGTH_RX "_RXL"
94 #define ACPI_RESTAG_LENGTH_TX "_TXL"
95 #define ACPI_RESTAG_SLAVEMODE "_SLV"
96 #define ACPI_RESTAG_SPEED "_SPE"
97 #define ACPI_RESTAG_STOPBITS "_STB"
98 #define ACPI_RESTAG_TRANSLATION "_TRA"
99 #define ACPI_RESTAG_TRANSTYPE "_TRS" /* Sparse(1), Dense(0) *
100 #define ACPI_RESTAG_TYPE "_TTP" /* Translation(1), Stati
101 #define ACPI_RESTAG_XFERTYPE "_SIZ" /* 8(0), 8And16(1), 16(2
102 #define ACPI_RESTAG_VENDORDATA "_VEN"

105 /* Default sizes for "small" resource descriptors */

107 #define ASL_RDESC_IRQ_SIZE 0x02
108 #define ASL_RDESC_DMA_SIZE 0x02
109 #define ASL_RDESC_ST_DEPEND_SIZE 0x00
110 #define ASL_RDESC_END_DEPEND_SIZE 0x00
111 #define ASL_RDESC_IO_SIZE 0x07
112 #define ASL_RDESC_FIXED_IO_SIZE 0x03
113 #define ASL_RDESC_FIXED_DMA_SIZE 0x05
114 #define ASL_RDESC_END_TAG_SIZE 0x01

117 typedef struct asl_resource_node
118 {
119 UINT32 BufferLength;
120 void *Buffer;
121 struct asl_resource_node *Next;

123 } ASL_RESOURCE_NODE;

126 /* Macros used to generate AML resource length fields */

new/usr/src/common/acpica/include/amlresrc.h 3

128 #define ACPI_AML_SIZE_LARGE(r) (sizeof (r) - sizeof (AML_RESOURCE_LARGE_HEA
129 #define ACPI_AML_SIZE_SMALL(r) (sizeof (r) - sizeof (AML_RESOURCE_SMALL_HEA

131 /*
132 * Resource descriptors defined in the ACPI specification.
133 *
134 * Packing/alignment must be BYTE because these descriptors
135 * are used to overlay the raw AML byte stream.
136 */
137 #pragma pack(1)

139 /*
140 * SMALL descriptors
141 */
142 #define AML_RESOURCE_SMALL_HEADER_COMMON \
143 UINT8 DescriptorType;

145 typedef struct aml_resource_small_header
146 {
147 AML_RESOURCE_SMALL_HEADER_COMMON

149 } AML_RESOURCE_SMALL_HEADER;

152 typedef struct aml_resource_irq
153 {
154 AML_RESOURCE_SMALL_HEADER_COMMON
155 UINT16 IrqMask;
156 UINT8 Flags;

158 } AML_RESOURCE_IRQ;

161 typedef struct aml_resource_irq_noflags
162 {
163 AML_RESOURCE_SMALL_HEADER_COMMON
164 UINT16 IrqMask;

166 } AML_RESOURCE_IRQ_NOFLAGS;

169 typedef struct aml_resource_dma
170 {
171 AML_RESOURCE_SMALL_HEADER_COMMON
172 UINT8 DmaChannelMask;
173 UINT8 Flags;

175 } AML_RESOURCE_DMA;

178 typedef struct aml_resource_start_dependent
179 {
180 AML_RESOURCE_SMALL_HEADER_COMMON
181 UINT8 Flags;

183 } AML_RESOURCE_START_DEPENDENT;

186 typedef struct aml_resource_start_dependent_noprio
187 {
188 AML_RESOURCE_SMALL_HEADER_COMMON

190 } AML_RESOURCE_START_DEPENDENT_NOPRIO;

new/usr/src/common/acpica/include/amlresrc.h 4

193 typedef struct aml_resource_end_dependent
194 {
195 AML_RESOURCE_SMALL_HEADER_COMMON

197 } AML_RESOURCE_END_DEPENDENT;

200 typedef struct aml_resource_io
201 {
202 AML_RESOURCE_SMALL_HEADER_COMMON
203 UINT8 Flags;
204 UINT16 Minimum;
205 UINT16 Maximum;
206 UINT8 Alignment;
207 UINT8 AddressLength;

209 } AML_RESOURCE_IO;

212 typedef struct aml_resource_fixed_io
213 {
214 AML_RESOURCE_SMALL_HEADER_COMMON
215 UINT16 Address;
216 UINT8 AddressLength;

218 } AML_RESOURCE_FIXED_IO;

221 typedef struct aml_resource_vendor_small
222 {
223 AML_RESOURCE_SMALL_HEADER_COMMON

225 } AML_RESOURCE_VENDOR_SMALL;

228 typedef struct aml_resource_end_tag
229 {
230 AML_RESOURCE_SMALL_HEADER_COMMON
231 UINT8 Checksum;

233 } AML_RESOURCE_END_TAG;

236 typedef struct aml_resource_fixed_dma
237 {
238 AML_RESOURCE_SMALL_HEADER_COMMON
239 UINT16 RequestLines;
240 UINT16 Channels;
241 UINT8 Width;

243 } AML_RESOURCE_FIXED_DMA;

246 /*
247 * LARGE descriptors
248 */
249 #define AML_RESOURCE_LARGE_HEADER_COMMON \
250 UINT8 DescriptorType;\
251 UINT16 ResourceLength;

253 typedef struct aml_resource_large_header
254 {
255 AML_RESOURCE_LARGE_HEADER_COMMON

257 } AML_RESOURCE_LARGE_HEADER;

new/usr/src/common/acpica/include/amlresrc.h 5

260 /* General Flags for address space resource descriptors */

262 #define ACPI_RESOURCE_FLAG_DEC 2
263 #define ACPI_RESOURCE_FLAG_MIF 4
264 #define ACPI_RESOURCE_FLAG_MAF 8

266 typedef struct aml_resource_memory24
267 {
268 AML_RESOURCE_LARGE_HEADER_COMMON
269 UINT8 Flags;
270 UINT16 Minimum;
271 UINT16 Maximum;
272 UINT16 Alignment;
273 UINT16 AddressLength;

275 } AML_RESOURCE_MEMORY24;

278 typedef struct aml_resource_vendor_large
279 {
280 AML_RESOURCE_LARGE_HEADER_COMMON

282 } AML_RESOURCE_VENDOR_LARGE;

285 typedef struct aml_resource_memory32
286 {
287 AML_RESOURCE_LARGE_HEADER_COMMON
288 UINT8 Flags;
289 UINT32 Minimum;
290 UINT32 Maximum;
291 UINT32 Alignment;
292 UINT32 AddressLength;

294 } AML_RESOURCE_MEMORY32;

297 typedef struct aml_resource_fixed_memory32
298 {
299 AML_RESOURCE_LARGE_HEADER_COMMON
300 UINT8 Flags;
301 UINT32 Address;
302 UINT32 AddressLength;

304 } AML_RESOURCE_FIXED_MEMORY32;

307 #define AML_RESOURCE_ADDRESS_COMMON \
308 UINT8 ResourceType; \
309 UINT8 Flags; \
310 UINT8 SpecificFlags;

313 typedef struct aml_resource_address
314 {
315 AML_RESOURCE_LARGE_HEADER_COMMON
316 AML_RESOURCE_ADDRESS_COMMON

318 } AML_RESOURCE_ADDRESS;

321 typedef struct aml_resource_extended_address64
322 {
323 AML_RESOURCE_LARGE_HEADER_COMMON
324 AML_RESOURCE_ADDRESS_COMMON

new/usr/src/common/acpica/include/amlresrc.h 6

325 UINT8 RevisionID;
326 UINT8 Reserved;
327 UINT64 Granularity;
328 UINT64 Minimum;
329 UINT64 Maximum;
330 UINT64 TranslationOffset;
331 UINT64 AddressLength;
332 UINT64 TypeSpecific;

334 } AML_RESOURCE_EXTENDED_ADDRESS64;

336 #define AML_RESOURCE_EXTENDED_ADDRESS_REVISION 1 /* ACPI 3.0 */

339 typedef struct aml_resource_address64
340 {
341 AML_RESOURCE_LARGE_HEADER_COMMON
342 AML_RESOURCE_ADDRESS_COMMON
343 UINT64 Granularity;
344 UINT64 Minimum;
345 UINT64 Maximum;
346 UINT64 TranslationOffset;
347 UINT64 AddressLength;

349 } AML_RESOURCE_ADDRESS64;

352 typedef struct aml_resource_address32
353 {
354 AML_RESOURCE_LARGE_HEADER_COMMON
355 AML_RESOURCE_ADDRESS_COMMON
356 UINT32 Granularity;
357 UINT32 Minimum;
358 UINT32 Maximum;
359 UINT32 TranslationOffset;
360 UINT32 AddressLength;

362 } AML_RESOURCE_ADDRESS32;

365 typedef struct aml_resource_address16
366 {
367 AML_RESOURCE_LARGE_HEADER_COMMON
368 AML_RESOURCE_ADDRESS_COMMON
369 UINT16 Granularity;
370 UINT16 Minimum;
371 UINT16 Maximum;
372 UINT16 TranslationOffset;
373 UINT16 AddressLength;

375 } AML_RESOURCE_ADDRESS16;

378 typedef struct aml_resource_extended_irq
379 {
380 AML_RESOURCE_LARGE_HEADER_COMMON
381 UINT8 Flags;
382 UINT8 InterruptCount;
383 UINT32 Interrupts[1];
384 /* ResSourceIndex, ResSource optional fields follow */

386 } AML_RESOURCE_EXTENDED_IRQ;

389 typedef struct aml_resource_generic_register
390 {

new/usr/src/common/acpica/include/amlresrc.h 7

391 AML_RESOURCE_LARGE_HEADER_COMMON
392 UINT8 AddressSpaceId;
393 UINT8 BitWidth;
394 UINT8 BitOffset;
395 UINT8 AccessSize; /* ACPI 3.0, was previously Rese
396 UINT64 Address;

398 } AML_RESOURCE_GENERIC_REGISTER;

401 /* Common descriptor for GpioInt and GpioIo (ACPI 5.0) */

403 typedef struct aml_resource_gpio
404 {
405 AML_RESOURCE_LARGE_HEADER_COMMON
406 UINT8 RevisionId;
407 UINT8 ConnectionType;
408 UINT16 Flags;
409 UINT16 IntFlags;
410 UINT8 PinConfig;
411 UINT16 DriveStrength;
412 UINT16 DebounceTimeout;
413 UINT16 PinTableOffset;
414 UINT8 ResSourceIndex;
415 UINT16 ResSourceOffset;
416 UINT16 VendorOffset;
417 UINT16 VendorLength;
418 /*
419 * Optional fields follow immediately:
420 * 1) PIN list (Words)
421 * 2) Resource Source String
422 * 3) Vendor Data bytes
423 */

425 } AML_RESOURCE_GPIO;

427 #define AML_RESOURCE_GPIO_REVISION 1 /* ACPI 5.0 */

429 /* Values for ConnectionType above */

431 #define AML_RESOURCE_GPIO_TYPE_INT 0
432 #define AML_RESOURCE_GPIO_TYPE_IO 1
433 #define AML_RESOURCE_MAX_GPIOTYPE 1

436 /* Common preamble for all serial descriptors (ACPI 5.0) */

438 #define AML_RESOURCE_SERIAL_COMMON \
439 UINT8 RevisionId; \
440 UINT8 ResSourceIndex; \
441 UINT8 Type; \
442 UINT8 Flags; \
443 UINT16 TypeSpecificFlags; \
444 UINT8 TypeRevisionId; \
445 UINT16 TypeDataLength; \

447 /* Values for the type field above */

449 #define AML_RESOURCE_I2C_SERIALBUSTYPE 1
450 #define AML_RESOURCE_SPI_SERIALBUSTYPE 2
451 #define AML_RESOURCE_UART_SERIALBUSTYPE 3
452 #define AML_RESOURCE_MAX_SERIALBUSTYPE 3
453 #define AML_RESOURCE_VENDOR_SERIALBUSTYPE 192 /* Vendor defined is 0xC0-0x

455 typedef struct aml_resource_common_serialbus
456 {

new/usr/src/common/acpica/include/amlresrc.h 8

457 AML_RESOURCE_LARGE_HEADER_COMMON
458 AML_RESOURCE_SERIAL_COMMON

460 } AML_RESOURCE_COMMON_SERIALBUS;

462 typedef struct aml_resource_i2c_serialbus
463 {
464 AML_RESOURCE_LARGE_HEADER_COMMON
465 AML_RESOURCE_SERIAL_COMMON
466 UINT32 ConnectionSpeed;
467 UINT16 SlaveAddress;
468 /*
469 * Optional fields follow immediately:
470 * 1) Vendor Data bytes
471 * 2) Resource Source String
472 */

474 } AML_RESOURCE_I2C_SERIALBUS;

476 #define AML_RESOURCE_I2C_REVISION 1 /* ACPI 5.0 */
477 #define AML_RESOURCE_I2C_TYPE_REVISION 1 /* ACPI 5.0 */
478 #define AML_RESOURCE_I2C_MIN_DATA_LEN 6

480 typedef struct aml_resource_spi_serialbus
481 {
482 AML_RESOURCE_LARGE_HEADER_COMMON
483 AML_RESOURCE_SERIAL_COMMON
484 UINT32 ConnectionSpeed;
485 UINT8 DataBitLength;
486 UINT8 ClockPhase;
487 UINT8 ClockPolarity;
488 UINT16 DeviceSelection;
489 /*
490 * Optional fields follow immediately:
491 * 1) Vendor Data bytes
492 * 2) Resource Source String
493 */

495 } AML_RESOURCE_SPI_SERIALBUS;

497 #define AML_RESOURCE_SPI_REVISION 1 /* ACPI 5.0 */
498 #define AML_RESOURCE_SPI_TYPE_REVISION 1 /* ACPI 5.0 */
499 #define AML_RESOURCE_SPI_MIN_DATA_LEN 9

502 typedef struct aml_resource_uart_serialbus
503 {
504 AML_RESOURCE_LARGE_HEADER_COMMON
505 AML_RESOURCE_SERIAL_COMMON
506 UINT32 DefaultBaudRate;
507 UINT16 RxFifoSize;
508 UINT16 TxFifoSize;
509 UINT8 Parity;
510 UINT8 LinesEnabled;
511 /*
512 * Optional fields follow immediately:
513 * 1) Vendor Data bytes
514 * 2) Resource Source String
515 */

517 } AML_RESOURCE_UART_SERIALBUS;

519 #define AML_RESOURCE_UART_REVISION 1 /* ACPI 5.0 */
520 #define AML_RESOURCE_UART_TYPE_REVISION 1 /* ACPI 5.0 */
521 #define AML_RESOURCE_UART_MIN_DATA_LEN 10

new/usr/src/common/acpica/include/amlresrc.h 9

524 /* restore default alignment */

526 #pragma pack()

528 /* Union of all resource descriptors, so we can allocate the worst case */

530 typedef union aml_resource
531 {
532 /* Descriptor headers */

534 UINT8 DescriptorType;
535 AML_RESOURCE_SMALL_HEADER SmallHeader;
536 AML_RESOURCE_LARGE_HEADER LargeHeader;

538 /* Small resource descriptors */

540 AML_RESOURCE_IRQ Irq;
541 AML_RESOURCE_DMA Dma;
542 AML_RESOURCE_START_DEPENDENT StartDpf;
543 AML_RESOURCE_END_DEPENDENT EndDpf;
544 AML_RESOURCE_IO Io;
545 AML_RESOURCE_FIXED_IO FixedIo;
546 AML_RESOURCE_FIXED_DMA FixedDma;
547 AML_RESOURCE_VENDOR_SMALL VendorSmall;
548 AML_RESOURCE_END_TAG EndTag;

550 /* Large resource descriptors */

552 AML_RESOURCE_MEMORY24 Memory24;
553 AML_RESOURCE_GENERIC_REGISTER GenericReg;
554 AML_RESOURCE_VENDOR_LARGE VendorLarge;
555 AML_RESOURCE_MEMORY32 Memory32;
556 AML_RESOURCE_FIXED_MEMORY32 FixedMemory32;
557 AML_RESOURCE_ADDRESS16 Address16;
558 AML_RESOURCE_ADDRESS32 Address32;
559 AML_RESOURCE_ADDRESS64 Address64;
560 AML_RESOURCE_EXTENDED_ADDRESS64 ExtAddress64;
561 AML_RESOURCE_EXTENDED_IRQ ExtendedIrq;
562 AML_RESOURCE_GPIO Gpio;
563 AML_RESOURCE_I2C_SERIALBUS I2cSerialBus;
564 AML_RESOURCE_SPI_SERIALBUS SpiSerialBus;
565 AML_RESOURCE_UART_SERIALBUS UartSerialBus;
566 AML_RESOURCE_COMMON_SERIALBUS CommonSerialBus;

568 /* Utility overlays */

570 AML_RESOURCE_ADDRESS Address;
571 UINT32 DwordItem;
572 UINT16 WordItem;
573 UINT8 ByteItem;

575 } AML_RESOURCE;

577 #endif

new/usr/src/common/acpica/include/platform/accygwin.h 1

**
 3547 Thu Dec 26 13:49:59 2013
new/usr/src/common/acpica/include/platform/accygwin.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: accygwin.h - OS specific defines, etc. for cygwin environment
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACCYGWIN_H__
45 #define __ACCYGWIN_H__

47 /*
48 * ACPICA configuration
49 */
50 #define ACPI_USE_SYSTEM_CLIBRARY
51 #define ACPI_USE_DO_WHILE_0
52 #define ACPI_FLUSH_CPU_CACHE()

54 /*
55 * This is needed since sem_timedwait does not appear to work properly
56 * on cygwin (always hangs forever).
57 */
58 #define ACPI_USE_ALTERNATE_TIMEOUT

new/usr/src/common/acpica/include/platform/accygwin.h 2

61 #include <stdarg.h>
62 #include <string.h>
63 #include <stdlib.h>
64 #include <ctype.h>
65 #include <unistd.h>

67 #if defined(__ia64__) || defined(__x86_64__)
68 #define ACPI_MACHINE_WIDTH 64
69 #define COMPILER_DEPENDENT_INT64 long
70 #define COMPILER_DEPENDENT_UINT64 unsigned long
71 #else
72 #define ACPI_MACHINE_WIDTH 32
73 #define COMPILER_DEPENDENT_INT64 long long
74 #define COMPILER_DEPENDENT_UINT64 unsigned long long
75 #define ACPI_USE_NATIVE_DIVIDE
76 #endif

78 #ifndef __cdecl
79 #define __cdecl
80 #endif

82 #define ACPI_ACQUIRE_GLOBAL_LOCK(GLptr, Acq) if (GLptr) Acq=1; else Acq=0;
83 #define ACPI_RELEASE_GLOBAL_LOCK(GLptr, Pending) Pending = 1

85 /* On Cygwin, pthread_t is a pointer */

87 #define ACPI_CAST_PTHREAD_T(pthread) ((ACPI_THREAD_ID) ACPI_TO_INTEGER (pthread)

89 /* Cygwin uses GCC */

91 #include "acgcc.h"

94 /*
95 * The vsnprintf function is defined by c99, but cygwin/gcc does not
96 * enable this prototype when the -ansi flag is set. Also related to
97 * __STRICT_ANSI__. So, we just declare the prototype here.
98 */
99 int
100 vsnprintf (char *s, size_t n, const char *format, va_list ap);

102 #endif /* __ACCYGWIN_H__ */

new/usr/src/common/acpica/include/platform/acefi.h 1

**
 2836 Thu Dec 26 13:50:00 2013
new/usr/src/common/acpica/include/platform/acefi.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acefi.h - OS specific defines, etc.
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACEFI_H__
45 #define __ACEFI_H__

47 #include <efi.h>
48 #include <efistdarg.h>
49 #include <efilib.h>

52 /* _int64 works for both IA32 and IA64 */

54 #define COMPILER_DEPENDENT_INT64 __int64
55 #define COMPILER_DEPENDENT_UINT64 unsigned __int64

57 /*
58 * Calling conventions:
59 *

new/usr/src/common/acpica/include/platform/acefi.h 2

60 * ACPI_SYSTEM_XFACE - Interfaces to host OS (handlers, threads)
61 * ACPI_EXTERNAL_XFACE - External ACPI interfaces
62 * ACPI_INTERNAL_XFACE - Internal ACPI interfaces
63 * ACPI_INTERNAL_VAR_XFACE - Internal variable-parameter list interfaces
64 */
65 #define ACPI_SYSTEM_XFACE
66 #define ACPI_EXTERNAL_XFACE
67 #define ACPI_INTERNAL_XFACE
68 #define ACPI_INTERNAL_VAR_XFACE

70 /* warn C4142: redefinition of type */

72 #pragma warning(disable:4142)

75 #endif /* __ACEFI_H__ */

new/usr/src/common/acpica/include/platform/acenv.h 1

**
 12451 Thu Dec 26 13:50:00 2013
new/usr/src/common/acpica/include/platform/acenv.h
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acenv.h - Host and compiler configuration
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACENV_H__
45 #define __ACENV_H__

47 /*
48 * Environment configuration. The purpose of this file is to interface ACPICA
49 * to the local environment. This includes compiler-specific, OS-specific,
50 * and machine-specific configuration.
51 */

53 /* Types for ACPI_MUTEX_TYPE */

55 #define ACPI_BINARY_SEMAPHORE 0
56 #define ACPI_OSL_MUTEX 1

58 /* Types for DEBUGGER_THREADING */

new/usr/src/common/acpica/include/platform/acenv.h 2

60 #define DEBUGGER_SINGLE_THREADED 0
61 #define DEBUGGER_MULTI_THREADED 1

64 /**
65 *
66 * Configuration for ACPI tools and utilities
67 *
68 ***/

70 /* iASL configuration */

72 #ifdef ACPI_ASL_COMPILER
73 #define ACPI_APPLICATION
74 #define ACPI_DISASSEMBLER
75 #define ACPI_DEBUG_OUTPUT
76 #define ACPI_CONSTANT_EVAL_ONLY
77 #define ACPI_LARGE_NAMESPACE_NODE
78 #define ACPI_DATA_TABLE_DISASSEMBLY
79 #define ACPI_SINGLE_THREADED
80 #endif

82 /* AcpiExec configuration. Multithreaded with full AML debugger */
82 /* AcpiExec and AcpiBin configuration */

84 #ifdef ACPI_EXEC_APP
85 #define ACPI_APPLICATION
86 #define ACPI_FULL_DEBUG
87 #define ACPI_MUTEX_DEBUG
88 #define ACPI_DBG_TRACK_ALLOCATIONS
89 #endif

91 /* AcpiNames configuration. Single threaded with debugger output enabled. */

93 #ifdef ACPI_NAMES_APP
94 #define ACPI_DEBUGGER
91 #ifdef ACPI_BIN_APP
95 #define ACPI_APPLICATION
96 #define ACPI_SINGLE_THREADED
97 #endif

99 /*
100 * AcpiBin/AcpiDump/AcpiSrc/AcpiXtract/Example configuration. All single
101 * threaded, with no debug output.
102 */
103 #if (defined ACPI_BIN_APP) || \
104 (defined ACPI_DUMP_APP) || \
105 (defined ACPI_SRC_APP) || \
106 (defined ACPI_XTRACT_APP) || \
107 (defined ACPI_EXAMPLE_APP)
108 #define ACPI_APPLICATION
109 #define ACPI_SINGLE_THREADED
110 #endif

112 #ifdef ACPI_HELP_APP
113 #define ACPI_APPLICATION
114 #define ACPI_SINGLE_THREADED
115 #define ACPI_NO_ERROR_MESSAGES
116 #endif

118 /* Linkable ACPICA library */

120 #ifdef ACPI_LIBRARY
121 #define ACPI_USE_LOCAL_CACHE
122 #endif

new/usr/src/common/acpica/include/platform/acenv.h 3

124 /* Common for all ACPICA applications */

126 #ifdef ACPI_APPLICATION
127 #define ACPI_USE_SYSTEM_CLIBRARY
128 #define ACPI_USE_LOCAL_CACHE
129 #endif

131 /* Common debug support */

133 #ifdef ACPI_FULL_DEBUG
134 #define ACPI_DEBUGGER
135 #define ACPI_DEBUG_OUTPUT
136 #define ACPI_DISASSEMBLER
137 #endif

140 /*! [Begin] no source code translation */

142 /**
143 *
144 * Host configuration files. The compiler configuration files are included
145 * by the host files.
146 *
147 ***/

149 #if defined(_LINUX) || defined(__linux__)
150 #include "aclinux.h"

152 #elif defined(_APPLE) || defined(__APPLE__)
153 #include "acmacosx.h"

155 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
156 #include "acfreebsd.h"

158 #elif defined(__NetBSD__)
159 #include "acnetbsd.h"

161 #elif defined(__sun)
162 #include "acsolaris.h"

164 #elif defined(MODESTO)
165 #include "acmodesto.h"

167 #elif defined(NETWARE)
168 #include "acnetware.h"

170 #elif defined(_CYGWIN)
171 #include "accygwin.h"

173 #elif defined(WIN32)
174 #include "acwin.h"

176 #elif defined(WIN64)
177 #include "acwin64.h"

179 #elif defined(_WRS_LIB_BUILD)
180 #include "acvxworks.h"

182 #elif defined(__OS2__)
183 #include "acos2.h"

185 #elif defined(_AED_EFI)
186 #include "acefi.h"

188 #elif defined(__HAIKU__)

new/usr/src/common/acpica/include/platform/acenv.h 4

189 #include "achaiku.h"

191 #else

193 /* Unknown environment */

195 #error Unknown target environment
196 #endif

198 /*! [End] no source code translation !*/

201 /**
202 *
203 * Setup defaults for the required symbols that were not defined in one of
204 * the host/compiler files above.
205 *
206 ***/

208 /* 64-bit data types */

210 #ifndef COMPILER_DEPENDENT_INT64
211 #define COMPILER_DEPENDENT_INT64 long long
212 #endif

214 #ifndef COMPILER_DEPENDENT_UINT64
215 #define COMPILER_DEPENDENT_UINT64 unsigned long long
216 #endif

218 /* Type of mutex supported by host. Default is binary semaphores. */

220 #ifndef ACPI_MUTEX_TYPE
221 #define ACPI_MUTEX_TYPE ACPI_BINARY_SEMAPHORE
222 #endif

224 /* Global Lock acquire/release */

226 #ifndef ACPI_ACQUIRE_GLOBAL_LOCK
227 #define ACPI_ACQUIRE_GLOBAL_LOCK(GLptr, Acquired) Acquired = 1
228 #endif

230 #ifndef ACPI_RELEASE_GLOBAL_LOCK
231 #define ACPI_RELEASE_GLOBAL_LOCK(GLptr, Pending) Pending = 0
232 #endif

234 /* Flush CPU cache - used when going to sleep. Wbinvd or similar. */

236 #ifndef ACPI_FLUSH_CPU_CACHE
237 #define ACPI_FLUSH_CPU_CACHE()
238 #endif

240 /* "inline" keywords - configurable since inline is not standardized */

242 #ifndef ACPI_INLINE
243 #define ACPI_INLINE
244 #endif

246 /*
247 * Configurable calling conventions:
248 *
249 * ACPI_SYSTEM_XFACE - Interfaces to host OS (handlers, threads)
250 * ACPI_EXTERNAL_XFACE - External ACPI interfaces
251 * ACPI_INTERNAL_XFACE - Internal ACPI interfaces
252 * ACPI_INTERNAL_VAR_XFACE - Internal variable-parameter list interfaces
253 */
254 #ifndef ACPI_SYSTEM_XFACE

new/usr/src/common/acpica/include/platform/acenv.h 5

255 #define ACPI_SYSTEM_XFACE
256 #endif

258 #ifndef ACPI_EXTERNAL_XFACE
259 #define ACPI_EXTERNAL_XFACE
260 #endif

262 #ifndef ACPI_INTERNAL_XFACE
263 #define ACPI_INTERNAL_XFACE
264 #endif

266 #ifndef ACPI_INTERNAL_VAR_XFACE
267 #define ACPI_INTERNAL_VAR_XFACE
268 #endif

270 /*
271 * Debugger threading model
272 * Use single threaded if the entire subsystem is contained in an application
273 * Use multiple threaded when the subsystem is running in the kernel.
274 *
275 * By default the model is single threaded if ACPI_APPLICATION is set,
276 * multi-threaded if ACPI_APPLICATION is not set.
277 */
278 #ifndef DEBUGGER_THREADING
279 #ifdef ACPI_APPLICATION
280 #define DEBUGGER_THREADING DEBUGGER_SINGLE_THREADED

282 #else
283 #define DEBUGGER_THREADING DEBUGGER_MULTI_THREADED
284 #endif
285 #endif /* !DEBUGGER_THREADING */

288 /**
289 *
290 * C library configuration
291 *
292 ***/

294 /*
295 * ACPI_USE_SYSTEM_CLIBRARY - Define this if linking to an actual C library.
296 * Otherwise, local versions of string/memory functions will be used.
297 * ACPI_USE_STANDARD_HEADERS - Define this if linking to a C library and
298 * the standard header files may be used.
299 *
300 * The ACPICA subsystem only uses low level C library functions that do not call
301 * operating system services and may therefore be inlined in the code.
302 *
303 * It may be necessary to tailor these include files to the target
304 * generation environment.
305 */
306 #ifdef ACPI_USE_SYSTEM_CLIBRARY

308 /* Use the standard C library headers. We want to keep these to a minimum. */
280 /* Use the standard C library headers. We want to keep these to a minimum */

310 #ifdef ACPI_USE_STANDARD_HEADERS

312 /* Use the standard headers from the standard locations */

314 #include <stdarg.h>
315 #include <stdlib.h>
316 #include <string.h>
317 #include <ctype.h>

319 #endif /* ACPI_USE_STANDARD_HEADERS */

new/usr/src/common/acpica/include/platform/acenv.h 6

321 /* We will be linking to the standard Clib functions */

323 #define ACPI_STRSTR(s1,s2) strstr((s1), (s2))
324 #define ACPI_STRCHR(s1,c) strchr((s1), (c))
325 #define ACPI_STRLEN(s) (ACPI_SIZE) strlen((s))
326 #define ACPI_STRCPY(d,s) (void) strcpy((d), (s))
327 #define ACPI_STRNCPY(d,s,n) (void) strncpy((d), (s), (ACPI_SIZE)(n))
328 #define ACPI_STRNCMP(d,s,n) strncmp((d), (s), (ACPI_SIZE)(n))
329 #define ACPI_STRCMP(d,s) strcmp((d), (s))
330 #define ACPI_STRCAT(d,s) (void) strcat((d), (s))
331 #define ACPI_STRNCAT(d,s,n) strncat((d), (s), (ACPI_SIZE)(n))
332 #define ACPI_STRTOUL(d,s,n) strtoul((d), (s), (ACPI_SIZE)(n))
333 #define ACPI_MEMCMP(s1,s2,n) memcmp((const char *)(s1), (const char *)(s2), (
334 #define ACPI_MEMCPY(d,s,n) (void) memcpy((d), (s), (ACPI_SIZE)(n))
335 #define ACPI_MEMSET(d,s,n) (void) memset((d), (s), (ACPI_SIZE)(n))
336 #define ACPI_TOUPPER(i) toupper((int) (i))
337 #define ACPI_TOLOWER(i) tolower((int) (i))
338 #define ACPI_IS_XDIGIT(i) isxdigit((int) (i))
339 #define ACPI_IS_DIGIT(i) isdigit((int) (i))
340 #define ACPI_IS_SPACE(i) isspace((int) (i))
341 #define ACPI_IS_UPPER(i) isupper((int) (i))
342 #define ACPI_IS_PRINT(i) isprint((int) (i))
343 #define ACPI_IS_ALPHA(i) isalpha((int) (i))

345 #else

347 /**
348 *
349 * Not using native C library, use local implementations
350 *
351 ***/

353 /*
354 * Use local definitions of C library macros and functions. These function
355 * implementations may not be as efficient as an inline or assembly code
356 * implementation provided by a native C library, but they are functionally
357 * equivalent.
358 */
359 #ifndef va_arg

361 #ifndef _VALIST
362 #define _VALIST
363 typedef char *va_list;
364 #endif /* _VALIST */

366 /* Storage alignment properties */

368 #define _AUPBND (sizeof (ACPI_NATIVE_INT) - 1)
369 #define _ADNBND (sizeof (ACPI_NATIVE_INT) - 1)

371 /* Variable argument list macro definitions */

373 #define _Bnd(X, bnd) (((sizeof (X)) + (bnd)) & (~(bnd)))
374 #define va_arg(ap, T) (*(T *)(((ap) += (_Bnd (T, _AUPBND))) - (_Bnd (T
375 #define va_end(ap) (ap = (va_list) NULL)
347 #define va_end(ap) (void) 0
376 #define va_start(ap, A) (void) ((ap) = (((char *) &(A)) + (_Bnd (A,_AUPB

378 #endif /* va_arg */

380 /* Use the local (ACPICA) definitions of the clib functions */

382 #define ACPI_STRSTR(s1,s2) AcpiUtStrstr ((s1), (s2))
383 #define ACPI_STRCHR(s1,c) AcpiUtStrchr ((s1), (c))
384 #define ACPI_STRLEN(s) (ACPI_SIZE) AcpiUtStrlen ((s))

new/usr/src/common/acpica/include/platform/acenv.h 7

385 #define ACPI_STRCPY(d,s) (void) AcpiUtStrcpy ((d), (s))
386 #define ACPI_STRNCPY(d,s,n) (void) AcpiUtStrncpy ((d), (s), (ACPI_SIZE)(n))
387 #define ACPI_STRNCMP(d,s,n) AcpiUtStrncmp ((d), (s), (ACPI_SIZE)(n))
388 #define ACPI_STRCMP(d,s) AcpiUtStrcmp ((d), (s))
389 #define ACPI_STRCAT(d,s) (void) AcpiUtStrcat ((d), (s))
390 #define ACPI_STRNCAT(d,s,n) AcpiUtStrncat ((d), (s), (ACPI_SIZE)(n))
391 #define ACPI_STRTOUL(d,s,n) AcpiUtStrtoul ((d), (s), (ACPI_SIZE)(n))
392 #define ACPI_MEMCMP(s1,s2,n) AcpiUtMemcmp((const char *)(s1), (const char *)(
393 #define ACPI_MEMCPY(d,s,n) (void) AcpiUtMemcpy ((d), (s), (ACPI_SIZE)(n))
394 #define ACPI_MEMSET(d,v,n) (void) AcpiUtMemset ((d), (v), (ACPI_SIZE)(n))
395 #define ACPI_TOUPPER(c) AcpiUtToUpper ((int) (c))
396 #define ACPI_TOLOWER(c) AcpiUtToLower ((int) (c))

398 #endif /* ACPI_USE_SYSTEM_CLIBRARY */

400 #ifndef ACPI_FILE
401 #ifdef ACPI_APPLICATION
402 #include <stdio.h>
403 #define ACPI_FILE FILE *
404 #else
405 #define ACPI_FILE void *
406 #endif /* ACPI_APPLICATION */
407 #endif /* ACPI_FILE */

409 #endif /* __ACENV_H__ */

new/usr/src/common/acpica/include/platform/acfreebsd.h 1

**
 3487 Thu Dec 26 13:50:00 2013
new/usr/src/common/acpica/include/platform/acfreebsd.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acfreebsd.h - OS specific defines, etc.
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACFREEBSD_H__
45 #define __ACFREEBSD_H__

48 /* FreeBSD uses GCC */

50 #include "acgcc.h"
51 #include <sys/types.h>
52 #include <machine/acpica_machdep.h>

53 #ifdef __LP64__
54 #define ACPI_MACHINE_WIDTH 64
55 #else
56 #define ACPI_MACHINE_WIDTH 32
57 #endif

new/usr/src/common/acpica/include/platform/acfreebsd.h 2

59 #define COMPILER_DEPENDENT_INT64 int64_t
60 #define COMPILER_DEPENDENT_UINT64 uint64_t

62 #define ACPI_UINTPTR_T uintptr_t

64 #define ACPI_USE_DO_WHILE_0
65 #define ACPI_USE_LOCAL_CACHE
66 #define ACPI_USE_NATIVE_DIVIDE
67 #define ACPI_USE_SYSTEM_CLIBRARY

69 #ifdef _KERNEL

71 #include <sys/ctype.h>
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/libkern.h>
75 #include <machine/acpica_machdep.h>
76 #include <machine/stdarg.h>

78 #include "opt_acpi.h"

80 #define ACPI_MUTEX_TYPE ACPI_OSL_MUTEX

82 #ifdef ACPI_DEBUG
83 #define ACPI_DEBUG_OUTPUT /* for backward compatibility */
84 #define ACPI_DISASSEMBLER
85 #endif

87 #ifdef ACPI_DEBUG_OUTPUT
88 #include "opt_ddb.h"
89 #ifdef DDB
90 #define ACPI_DEBUGGER
91 #endif /* DDB */
92 #endif /* ACPI_DEBUG_OUTPUT */

94 #ifdef DEBUGGER_THREADING
95 #undef DEBUGGER_THREADING
96 #endif /* DEBUGGER_THREADING */

98 #define DEBUGGER_THREADING 0 /* integrated with DDB */

100 #else /* _KERNEL */

102 #if __STDC_HOSTED__
103 #include <ctype.h>
104 #endif

106 #define ACPI_CAST_PTHREAD_T(pthread) ((ACPI_THREAD_ID) ACPI_TO_INTEGER (pthre

108 #define ACPI_USE_STANDARD_HEADERS

110 #define ACPI_FLUSH_CPU_CACHE()
111 #define __cdecl

113 #endif /* _KERNEL */

115 #endif /* __ACFREEBSD_H__ */

new/usr/src/common/acpica/include/platform/acgcc.h 1

**
 2843 Thu Dec 26 13:50:01 2013
new/usr/src/common/acpica/include/platform/acgcc.h
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acgcc.h - GCC specific defines, etc.
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACGCC_H__
45 #define __ACGCC_H__

47 #define ACPI_INLINE __inline__

49 /* Function name is used for debug output. Non-ANSI, compiler-dependent */

51 #define ACPI_GET_FUNCTION_NAME __func__
51 #define ACPI_GET_FUNCTION_NAME __FUNCTION__

53 /*
54 * This macro is used to tag functions as "printf-like" because
55 * some compilers (like GCC) can catch printf format string problems.
56 */
57 #define ACPI_PRINTF_LIKE(c) __attribute__ ((__format__ (__printf__, c, c+1)))

new/usr/src/common/acpica/include/platform/acgcc.h 2

59 /*
60 * Some compilers complain about unused variables. Sometimes we don’t want to
61 * use all the variables (for example, _AcpiModuleName). This allows us
62 * to tell the compiler warning in a per-variable manner that a variable
62 * to to tell the compiler warning in a per-variable manner that a variable
63 * is unused.
64 */
65 #define ACPI_UNUSED_VAR __attribute__ ((unused))

67 #endif /* __ACGCC_H__ */

new/usr/src/common/acpica/include/platform/achaiku.h 1

**
 3764 Thu Dec 26 13:50:01 2013
new/usr/src/common/acpica/include/platform/achaiku.h
acpica-unix2-20130823
**

1 /**
2 *
3 * Name: achaiku.h - OS specific defines, etc. for Haiku (www.haiku-os.org)
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACHAIKU_H__
45 #define __ACHAIKU_H__

47 #include "acgcc.h"
48 #include <KernelExport.h>

50 struct mutex;

53 /* Host-dependent types and defines for user- and kernel-space ACPICA */

55 #define ACPI_USE_SYSTEM_CLIBRARY
56 #define ACPI_USE_STANDARD_HEADERS

58 #define ACPI_MUTEX_TYPE ACPI_OSL_MUTEX
59 #define ACPI_MUTEX struct mutex *

61 #define ACPI_USE_NATIVE_DIVIDE

new/usr/src/common/acpica/include/platform/achaiku.h 2

63 // #define ACPI_THREAD_ID thread_id
64 #define ACPI_SEMAPHORE sem_id
65 #define ACPI_SPINLOCK spinlock *
66 #define ACPI_CPU_FLAGS cpu_status

68 #define COMPILER_DEPENDENT_INT64 int64
69 #define COMPILER_DEPENDENT_UINT64 uint64

72 #ifdef B_HAIKU_64_BIT
73 #define ACPI_MACHINE_WIDTH 64
74 #else
75 #define ACPI_MACHINE_WIDTH 32
76 #endif

79 #ifdef _KERNEL_MODE
80 /* Host-dependent types and defines for in-kernel ACPICA */

82 /* ACPICA cache implementation is adequate. */
83 #define ACPI_USE_LOCAL_CACHE

85 #define ACPI_FLUSH_CPU_CACHE() __asm __volatile("wbinvd");

87 /* Based on FreeBSD’s due to lack of documentation */
88 extern int AcpiOsAcquireGlobalLock(uint32 *lock);
89 extern int AcpiOsReleaseGlobalLock(uint32 *lock);

91 #define ACPI_ACQUIRE_GLOBAL_LOCK(GLptr, Acq) do { \
92 (Acq) = AcpiOsAcquireGlobalLock(&((GLptr)->GlobalLock)); \
93 } while (0)

95 #define ACPI_RELEASE_GLOBAL_LOCK(GLptr, Acq) do { \
96 (Acq) = AcpiOsReleaseGlobalLock(&((GLptr)->GlobalLock)); \
97 } while (0)

99 #else /* _KERNEL_MODE */
100 /* Host-dependent types and defines for user-space ACPICA */

102 #error "We only support kernel mode ACPI atm."

104 #endif /* _KERNEL_MODE */
105 #endif /* __ACHAIKU_H__ */

new/usr/src/common/acpica/include/platform/acintel.h 1

**
 3196 Thu Dec 26 13:50:01 2013
new/usr/src/common/acpica/include/platform/acintel.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acintel.h - VC specific defines, etc.
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACINTEL_H__
45 #define __ACINTEL_H__

47 /* Configuration specific to Intel 64-bit C compiler */

49 #define COMPILER_DEPENDENT_INT64 __int64
50 #define COMPILER_DEPENDENT_UINT64 unsigned __int64
51 #define ACPI_INLINE __inline

53 /*
54 * Calling conventions:
55 *
56 * ACPI_SYSTEM_XFACE - Interfaces to host OS (handlers, threads)
57 * ACPI_EXTERNAL_XFACE - External ACPI interfaces
58 * ACPI_INTERNAL_XFACE - Internal ACPI interfaces
59 * ACPI_INTERNAL_VAR_XFACE - Internal variable-parameter list interfaces

new/usr/src/common/acpica/include/platform/acintel.h 2

60 */
61 #define ACPI_SYSTEM_XFACE
62 #define ACPI_EXTERNAL_XFACE
63 #define ACPI_INTERNAL_XFACE
64 #define ACPI_INTERNAL_VAR_XFACE

66 /* remark 981 - operands evaluated in no particular order */
67 #pragma warning(disable:981)

69 /* warn C4100: unreferenced formal parameter */
70 #pragma warning(disable:4100)

72 /* warn C4127: conditional expression is constant */
73 #pragma warning(disable:4127)

75 /* warn C4706: assignment within conditional expression */
76 #pragma warning(disable:4706)

78 /* warn C4214: bit field types other than int */
79 #pragma warning(disable:4214)

82 #endif /* __ACINTEL_H__ */

new/usr/src/common/acpica/include/platform/aclinux.h 1

**
 7957 Thu Dec 26 13:50:02 2013
new/usr/src/common/acpica/include/platform/aclinux.h
update to acpica-unix2-20131218
update to acpica-unix2-20131115
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: aclinux.h - OS specific defines, etc. for Linux
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACLINUX_H__
45 #define __ACLINUX_H__

47 /* Common (in-kernel/user-space) ACPICA configuration */

49 #define ACPI_USE_SYSTEM_CLIBRARY
50 #define ACPI_USE_DO_WHILE_0
51 #define ACPI_MUTEX_TYPE ACPI_BINARY_SEMAPHORE

54 #ifdef __KERNEL__

56 #include <linux/string.h>
57 #include <linux/kernel.h>

new/usr/src/common/acpica/include/platform/aclinux.h 2

58 #include <linux/ctype.h>
59 #include <linux/sched.h>
60 #include <linux/atomic.h>
61 #include <linux/math64.h>
62 #include <linux/slab.h>
63 #include <linux/spinlock_types.h>
64 #ifdef EXPORT_ACPI_INTERFACES
65 #include <linux/export.h>
66 #endif
67 #include <asm/acpi.h>

69 /* Host-dependent types and defines for in-kernel ACPICA */

71 #define ACPI_MACHINE_WIDTH BITS_PER_LONG
72 #define ACPI_EXPORT_SYMBOL(symbol) EXPORT_SYMBOL(symbol);
73 #define strtoul simple_strtoul

75 #define ACPI_CACHE_T struct kmem_cache
76 #define ACPI_SPINLOCK spinlock_t *
77 #define ACPI_CPU_FLAGS unsigned long

79 #else /* !__KERNEL__ */

81 #include <stdarg.h>
82 #include <string.h>
83 #include <stdlib.h>
84 #include <ctype.h>
85 #include <unistd.h>

87 /* Host-dependent types and defines for user-space ACPICA */

89 #define ACPI_FLUSH_CPU_CACHE()
90 #define ACPI_CAST_PTHREAD_T(Pthread) ((ACPI_THREAD_ID) (Pthread))

92 #if defined(__ia64__) || defined(__x86_64__) || defined(__aarch64__)
93 #define ACPI_MACHINE_WIDTH 64
94 #define COMPILER_DEPENDENT_INT64 long
95 #define COMPILER_DEPENDENT_UINT64 unsigned long
96 #else
97 #define ACPI_MACHINE_WIDTH 32
98 #define COMPILER_DEPENDENT_INT64 long long
99 #define COMPILER_DEPENDENT_UINT64 unsigned long long
100 #define ACPI_USE_NATIVE_DIVIDE
101 #endif

103 #ifndef __cdecl
104 #define __cdecl
105 #endif

107 #endif /* __KERNEL__ */

109 /* Linux uses GCC */

111 #include "acgcc.h"

114 #ifdef __KERNEL__

116 /*
117 * FIXME: Inclusion of actypes.h
118 * Linux kernel need this before defining inline OSL interfaces as
119 * actypes.h need to be included to find ACPICA type definitions.
120 * Since from ACPICA’s perspective, the actypes.h should be included after
121 * acenv.h (aclinux.h), this leads to a inclusion mis-ordering issue.
122 */
123 #include <acpi/actypes.h>

new/usr/src/common/acpica/include/platform/aclinux.h 3

125 /*
126 * Overrides for in-kernel ACPICA
127 */
128 ACPI_STATUS __init AcpiOsInitialize (
129 void);
130 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsInitialize

132 ACPI_STATUS AcpiOsTerminate (
133 void);
134 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsTerminate

136 /*
137 * Memory allocation/deallocation
138 */

140 /*
141 * The irqs_disabled() check is for resume from RAM.
142 * Interrupts are off during resume, just like they are for boot.
143 * However, boot has (system_state != SYSTEM_RUNNING)
144 * to quiet __might_sleep() in kmalloc() and resume does not.
145 */
146 static inline void *
147 AcpiOsAllocate (
148 ACPI_SIZE Size)
149 {
150 return kmalloc (Size, irqs_disabled () ? GFP_ATOMIC : GFP_KERNEL);
151 }
152 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsAllocate

154 /* Use native linux version of AcpiOsAllocateZeroed */

156 static inline void *
157 AcpiOsAllocateZeroed (
158 ACPI_SIZE Size)
159 {
160 return kzalloc (Size, irqs_disabled () ? GFP_ATOMIC : GFP_KERNEL);
161 }
162 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsAllocateZeroed
163 #define USE_NATIVE_ALLOCATE_ZEROED

165 static inline void
166 AcpiOsFree (
167 void *Memory)
168 {
169 kfree (Memory);
170 }
171 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsFree

173 static inline void *
174 AcpiOsAcquireObject (
175 ACPI_CACHE_T *Cache)
176 {
177 return kmem_cache_zalloc (Cache,
178 irqs_disabled () ? GFP_ATOMIC : GFP_KERNEL);
179 }
180 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsAcquireObject

182 static inline ACPI_THREAD_ID
183 AcpiOsGetThreadId (
184 void)
185 {
186 return (ACPI_THREAD_ID) (unsigned long) current;
187 }
188 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsGetThreadId

new/usr/src/common/acpica/include/platform/aclinux.h 4

190 #ifndef CONFIG_PREEMPT

192 /*
193 * Used within ACPICA to show where it is safe to preempt execution
194 * when CONFIG_PREEMPT=n
195 */
196 #define ACPI_PREEMPTION_POINT() \
197 do { \
198 if (!irqs_disabled()) \
199 cond_resched(); \
200 } while (0)

202 #endif

204 /*
205 * When lockdep is enabled, the spin_lock_init() macro stringifies it’s
206 * argument and uses that as a name for the lock in debugging.
207 * By executing spin_lock_init() in a macro the key changes from "lock" for
208 * all locks to the name of the argument of acpi_os_create_lock(), which
209 * prevents lockdep from reporting false positives for ACPICA locks.
210 */
211 #define AcpiOsCreateLock(__Handle) \
212 ({ \
213 spinlock_t *Lock = ACPI_ALLOCATE(sizeof(*Lock)); \
214 if (Lock) { \
215 *(__Handle) = Lock; \
216 spin_lock_init(*(__Handle)); \
217 } \
218 Lock ? AE_OK : AE_NO_MEMORY; \
219 })
220 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsCreateLock

222 void __iomem *
223 AcpiOsMapMemory (
224 ACPI_PHYSICAL_ADDRESS Where,
225 ACPI_SIZE Length);
226 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsMapMemory

228 void
229 AcpiOsUnmapMemory (
230 void __iomem *LogicalAddress,
231 ACPI_SIZE Size);
232 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsUnmapMemory

234 /*
235 * OSL interfaces used by debugger/disassembler
236 */
237 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsReadable
238 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsWritable

240 /*
241 * OSL interfaces used by utilities
242 */
243 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsRedirectOutput
244 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsGetLine
245 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsGetTableByName
246 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsGetTableByIndex
247 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsGetTableByAddress
248 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsOpenDirectory
249 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsGetNextFilename
250 #define ACPI_USE_ALTERNATE_PROTOTYPE_AcpiOsCloseDirectory

252 /*
253 * OSL interfaces added by Linux
254 */
255 void

new/usr/src/common/acpica/include/platform/aclinux.h 5

256 EarlyAcpiOsUnmapMemory (
257 void __iomem *Virt,
258 ACPI_SIZE Size);

260 ACPI_STATUS
261 AcpiOsHotplugExecute (
262 ACPI_OSD_EXEC_CALLBACK Function,
263 void *Context);

265 #endif /* __KERNEL__ */

267 #endif /* __ACLINUX_H__ */

new/usr/src/common/acpica/include/platform/acmacosx.h 1

**
 2399 Thu Dec 26 13:50:02 2013
new/usr/src/common/acpica/include/platform/acmacosx.h
acpica-unix2-20130823
**

1 /**
2 *
3 * Name: acmacosx.h - OS specific defines, etc. for Mac OS X
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACMACOSX_H__
45 #define __ACMACOSX_H__

47 #include "aclinux.h"

49 #ifdef __APPLE__
50 #define sem_destroy sem_close
51 #define ACPI_USE_ALTERNATE_TIMEOUT
52 #endif /* __APPLE__ */

54 #ifdef __clang__
55 #pragma clang diagnostic ignored "-Wformat-nonliteral"
56 #endif

58 #endif /* __ACMACOSX_H__ */

new/usr/src/common/acpica/include/platform/acmsvc.h 1

**
 5413 Thu Dec 26 13:50:02 2013
new/usr/src/common/acpica/include/platform/acmsvc.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acmsvc.h - VC specific defines, etc.
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACMSVC_H__
45 #define __ACMSVC_H__

48 /*
49 * Map low I/O functions for MS. This allows us to disable MS language
50 * extensions for maximum portability.
51 */
52 #define open _open
53 #define read _read
54 #define write _write
55 #define close _close
56 #define stat _stat
57 #define fstat _fstat
58 #define mkdir _mkdir
59 #define strlwr _strlwr

new/usr/src/common/acpica/include/platform/acmsvc.h 2

60 #define O_RDONLY _O_RDONLY
61 #define O_BINARY _O_BINARY
62 #define O_CREAT _O_CREAT
63 #define O_WRONLY _O_WRONLY
64 #define O_TRUNC _O_TRUNC
65 #define S_IREAD _S_IREAD
66 #define S_IWRITE _S_IWRITE
67 #define S_IFDIR _S_IFDIR

69 /* Eliminate warnings for "old" (non-secure) versions of clib functions */

71 #ifndef _CRT_SECURE_NO_WARNINGS
72 #define _CRT_SECURE_NO_WARNINGS
73 #endif

75 /* Eliminate warnings for POSIX clib function names (open, write, etc.) */

77 #ifndef _CRT_NONSTDC_NO_DEPRECATE
78 #define _CRT_NONSTDC_NO_DEPRECATE
79 #endif

81 #define COMPILER_DEPENDENT_INT64 __int64
82 #define COMPILER_DEPENDENT_UINT64 unsigned __int64
83 #define ACPI_INLINE __inline

85 /*
86 * Calling conventions:
87 *
88 * ACPI_SYSTEM_XFACE - Interfaces to host OS (handlers, threads)
89 * ACPI_EXTERNAL_XFACE - External ACPI interfaces
90 * ACPI_INTERNAL_XFACE - Internal ACPI interfaces
91 * ACPI_INTERNAL_VAR_XFACE - Internal variable-parameter list interfaces
92 */
93 #define ACPI_SYSTEM_XFACE __cdecl
94 #define ACPI_EXTERNAL_XFACE
95 #define ACPI_INTERNAL_XFACE
96 #define ACPI_INTERNAL_VAR_XFACE __cdecl

98 #ifndef _LINT
99 /*
100 * Math helper functions
101 */
102 #define ACPI_DIV_64_BY_32(n_hi, n_lo, d32, q32, r32) \
103 { \
104 __asm mov edx, n_hi \
105 __asm mov eax, n_lo \
106 __asm div d32 \
107 __asm mov q32, eax \
108 __asm mov r32, edx \
109 }

______unchanged_portion_omitted_
131 #endif

133 /* warn C4100: unreferenced formal parameter */
134 #pragma warning(disable:4100)

136 /* warn C4127: conditional expression is constant */
137 #pragma warning(disable:4127)

139 /* warn C4706: assignment within conditional expression */
140 #pragma warning(disable:4706)

142 /* warn C4131: uses old-style declarator (iASL compiler only) */
143 #pragma warning(disable:4131)

145 #if _MSC_VER > 1200 /* Versions above VC++ 6 */

new/usr/src/common/acpica/include/platform/acmsvc.h 3

146 #pragma warning(disable : 4295) /* needed for acpredef.h array */
147 #endif

150 /* Debug support. Must be last in this file, do not move. */

152 #ifdef _DEBUG
153 #include <crtdbg.h>

155 /*
156 * Debugging memory corruption issues with windows:
157 * Add #include <crtdbg.h> to accommon.h if necessary.
158 * Add _ASSERTE(_CrtCheckMemory()); where needed to test memory integrity.
159 * This can quickly localize the memory corruption.
160 */
161 #define ACPI_DEBUG_INITIALIZE() \
162 _CrtSetDbgFlag (_CRTDBG_CHECK_ALWAYS_DF | \
163 _CRTDBG_ALLOC_MEM_DF | _CRTDBG_CHECK_CRT_DF | \
164 _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG))
165 #endif

167 #endif /* __ACMSVC_H__ */

new/usr/src/common/acpica/include/platform/acnetbsd.h 1

**
 3518 Thu Dec 26 13:50:03 2013
new/usr/src/common/acpica/include/platform/acnetbsd.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acnetbsd.h - OS specific defines, etc.
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACNETBSD_H__
45 #define __ACNETBSD_H__

47 /* NetBSD uses GCC */

49 #include "acgcc.h"

51 #ifdef _LP64
52 #define ACPI_MACHINE_WIDTH 64
53 #else
54 #define ACPI_MACHINE_WIDTH 32
55 #endif

57 #define COMPILER_DEPENDENT_INT64 int64_t
58 #define COMPILER_DEPENDENT_UINT64 uint64_t

new/usr/src/common/acpica/include/platform/acnetbsd.h 2

60 #ifdef _KERNEL
61 #include "opt_acpi.h" /* collect build-time options here */

63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <machine/stdarg.h>
66 #include <machine/acpi_func.h>

68 #define asm __asm

70 #define ACPI_USE_NATIVE_DIVIDE

72 #define ACPI_SYSTEM_XFACE
73 #define ACPI_EXTERNAL_XFACE
74 #define ACPI_INTERNAL_XFACE
75 #define ACPI_INTERNAL_VAR_XFACE

77 #ifdef ACPI_DEBUG
78 #define ACPI_DEBUG_OUTPUT
79 #define ACPI_DBG_TRACK_ALLOCATIONS
80 #ifdef DEBUGGER_THREADING
81 #undef DEBUGGER_THREADING
82 #endif /* DEBUGGER_THREADING */
83 #define DEBUGGER_THREADING 0 /* integrated with DDB */
84 #include "opt_ddb.h"
85 #ifdef DDB
86 #define ACPI_DISASSEMBLER
87 #define ACPI_DEBUGGER
88 #endif /* DDB */
89 #endif /* ACPI_DEBUG */

91 static __inline int
92 isprint(int ch)
93 {
94 return(isspace(ch) || isascii(ch));
95 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/include/platform/acos2.h 1

**
 3565 Thu Dec 26 13:50:03 2013
new/usr/src/common/acpica/include/platform/acos2.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acos2.h - OS/2 specific defines, etc.
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACOS2_H__
45 #define __ACOS2_H__
46 #define INCL_LONGLONG
47 #include <os2.h>

50 #define ACPI_MACHINE_WIDTH 32

52 #define COMPILER_DEPENDENT_INT64 long long
53 #define COMPILER_DEPENDENT_UINT64 unsigned long long
54 #define ACPI_USE_NATIVE_DIVIDE

56 #define ACPI_SYSTEM_XFACE APIENTRY
57 #define ACPI_EXTERNAL_XFACE APIENTRY
58 #define ACPI_INTERNAL_XFACE APIENTRY
59 #define ACPI_INTERNAL_VAR_XFACE APIENTRY

new/usr/src/common/acpica/include/platform/acos2.h 2

61 /*
62 * Some compilers complain about unused variables. Sometimes we don’t want to
63 * use all the variables (most specifically for _THIS_MODULE). This allow us
64 * to to tell the compiler warning in a per-variable manner that a variable
65 * is unused.
66 */
67 #define ACPI_UNUSED_VAR

69 #define ACPI_USE_STANDARD_HEADERS
70 #include <io.h>

72 #define ACPI_FLUSH_CPU_CACHE() Wbinvd()
73 void Wbinvd(void);

75 #define ACPI_ACQUIRE_GLOBAL_LOCK(GLptr, Acq) Acq = OSPMAcquireGlobalLock(G
76 #define ACPI_RELEASE_GLOBAL_LOCK(GLptr, Pnd) Pnd = OSPMReleaseGlobalLock(G
77 unsigned short OSPMAcquireGlobalLock (void *);
78 unsigned short OSPMReleaseGlobalLock (void *);

80 #define ACPI_SHIFT_RIGHT_64(n_hi, n_lo) \
81 { \
82 unsigned long long val = 0LL; \
83 val = n_lo | (((unsigned long long)h_hi) << 32); \
84 __llrotr (val,1); \
85 n_hi = (unsigned long)((val >> 32) & 0xffffffff); \
86 n_lo = (unsigned long)(val & 0xffffffff); \
87 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/include/platform/acsolaris.h 1

**
 2832 Thu Dec 26 13:50:03 2013
new/usr/src/common/acpica/include/platform/acsolaris.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 */

28 #ifndef _ACSOLARIS_H_
29 #define _ACSOLARIS_H_

31 #ifdef __cplusplus
32 extern "C" {
33 #endif

35 #ifdef _KERNEL
36 #include <sys/types.h>
37 #include <sys/sunddi.h>
38 #include <sys/varargs.h>
39 #include <sys/cpu.h>
40 #include <sys/thread.h>
41 #else
42 #include <ctype.h>
43 #include <stdarg.h>
44 #include <stdlib.h>
45 #include <string.h>
46 #include <unistd.h>
47 #endif

49 #ifdef __GNUC__
50 #include "acgcc.h"
51 #else
52 /* Function name used for debug output. */
53 #define ACPI_GET_FUNCTION_NAME __func__
54 #define ACPI_UNUSED_VAR
55 #endif

57 uint32_t __acpi_acquire_global_lock(void *);
58 uint32_t __acpi_release_global_lock(void *);
59 void __acpi_wbinvd(void);

new/usr/src/common/acpica/include/platform/acsolaris.h 2

61 #ifdef _ILP32
62 #define ACPI_MACHINE_WIDTH 32
63 #elif defined(_LP64)
64 #define ACPI_MACHINE_WIDTH 64
65 #endif

67 #define COMPILER_DEPENDENT_INT64 int64_t
68 #define COMPILER_DEPENDENT_UINT64 uint64_t

70 #define ACPI_CAST_PTHREAD_T(pthread) ((ACPI_THREAD_ID) (pthread))

72 #define ACPI_PRINTF_LIKE_FUNC

59 #define ACPI_UNUSED_VAR
74 #define ACPI_USE_NATIVE_DIVIDE
75 #define ACPI_FLUSH_CPU_CACHE() (__acpi_wbinvd())

77 #ifdef DEBUG
78 #define ACPI_DEBUG_OUTPUT
79 #define ACPI_DISASSEMBLER
80 #endif

82 #define ACPI_PACKED_POINTERS_NOT_SUPPORTED

84 /*
85 * Calling conventions:
86 *
87 * ACPI_SYSTEM_XFACE - Interfaces to host OS (handlers, threads)
88 * ACPI_EXTERNAL_XFACE - External ACPI interfaces
89 * ACPI_INTERNAL_XFACE - Internal ACPI interfaces
90 * ACPI_INTERNAL_VAR_XFACE - Internal variable-parameter list interfaces
91 */
92 #define ACPI_SYSTEM_XFACE
93 #define ACPI_EXTERNAL_XFACE
94 #define ACPI_INTERNAL_XFACE
95 #define ACPI_INTERNAL_VAR_XFACE

97 #define ACPI_ASM_MACROS
98 #define BREAKPOINT3
99 #define ACPI_DISABLE_IRQS() cli()
100 #define ACPI_ENABLE_IRQS() sti()
101 #define ACPI_ACQUIRE_GLOBAL_LOCK(Facs, Acq) \
102 ((Acq) = __acpi_acquire_global_lock(Facs))

104 #define ACPI_RELEASE_GLOBAL_LOCK(Facs, Acq) \
105 ((Acq) = __acpi_release_global_lock(Facs))

107 #ifdef __cplusplus
108 }

______unchanged_portion_omitted_

new/usr/src/common/acpica/include/platform/acwin.h 1

**
 5683 Thu Dec 26 13:50:04 2013
new/usr/src/common/acpica/include/platform/acwin.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acwin.h - OS specific defines, etc.
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACWIN_H__
45 #define __ACWIN_H__

47 /*! [Begin] no source code translation (Keep the include) */

49 /* Windows uses VC */
50 #ifdef _MSC_VER
51 #include "acmsvc.h"
52 #endif
53 /*! [End] no source code translation !*/

55 #define ACPI_MACHINE_WIDTH 32

57 #define ACPI_USE_STANDARD_HEADERS

59 #ifdef ACPI_DEFINE_ALTERNATE_TYPES

new/usr/src/common/acpica/include/platform/acwin.h 2

60 /*
61 * Types used only in (Linux) translated source, defined here to enable
62 * cross-platform compilation (i.e., generate the Linux code on Windows,
63 * for test purposes only)
64 */
65 typedef int s32;
66 typedef unsigned char u8;
67 typedef unsigned short u16;
68 typedef unsigned int u32;
69 typedef COMPILER_DEPENDENT_UINT64 u64;
70 #endif

73 /*
74 * Handle platform- and compiler-specific assembly language differences.
75 *
76 * Notes:
77 * 1) Interrupt 3 is used to break into a debugger
78 * 2) Interrupts are turned off during ACPI register setup
79 */

81 /*! [Begin] no source code translation */

83 #ifdef ACPI_APPLICATION
84 #define ACPI_FLUSH_CPU_CACHE()
85 #else
86 #define ACPI_FLUSH_CPU_CACHE() __asm {WBINVD}
87 #endif

89 #ifdef _DEBUG
90 #define ACPI_SIMPLE_RETURN_MACROS
91 #endif

93 /*! [End] no source code translation !*/

95 /*
96 * Global Lock acquire/release code
97 *
98 * Note: Handles case where the FACS pointer is null
99 */
100 #define ACPI_ACQUIRE_GLOBAL_LOCK(FacsPtr, Acq) __asm \
101 { \
102 __asm mov eax, 0xFF \
103 __asm mov ecx, FacsPtr \
104 __asm or ecx, ecx \
105 __asm jz exit_acq \
106 __asm lea ecx, [ecx].GlobalLock \
107 \
108 __asm acq10: \
109 __asm mov eax, [ecx] \
110 __asm mov edx, eax \
111 __asm and edx, 0xFFFFFFFE \
112 __asm bts edx, 1 \
113 __asm adc edx, 0 \
114 __asm lock cmpxchg dword ptr [ecx], edx \
115 __asm jnz acq10 \
116 \
117 __asm cmp dl, 3 \
118 __asm sbb eax, eax \
119 \
120 __asm exit_acq: \
121 __asm mov Acq, al \
122 }

______unchanged_portion_omitted_

146 #endif /* __ACWIN_H__ */

new/usr/src/common/acpica/include/platform/acwin64.h 1

**
 3121 Thu Dec 26 13:50:04 2013
new/usr/src/common/acpica/include/platform/acwin64.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Name: acwin64.h - OS specific defines, etc.
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
8 * Copyright (C) 2000 - 2011, Intel Corp.
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACWIN64_H__
45 #define __ACWIN64_H__

47 /*! [Begin] no source code translation (Keep the include) */

49 #include "acintel.h"
50 /*! [End] no source code translation !*/

52 #define ACPI_MACHINE_WIDTH 64

54 #define ACPI_USE_STANDARD_HEADERS

56 /*
57 * Handle platform- and compiler-specific assembly language differences.
58 *
59 * Notes:

new/usr/src/common/acpica/include/platform/acwin64.h 2

60 * 1) Interrupt 3 is used to break into a debugger
61 * 2) Interrupts are turned off during ACPI register setup
62 */

64 /*! [Begin] no source code translation */

66 #define ACPI_FLUSH_CPU_CACHE()

68 /*
69 * For Acpi applications, we don’t want to try to access the global lock
70 */
71 #ifdef ACPI_APPLICATION
72 #define ACPI_ACQUIRE_GLOBAL_LOCK(GLptr, Acq) if (AcpiGbl_GlobalLockPresent
73 #define ACPI_RELEASE_GLOBAL_LOCK(GLptr, Pnd) if (AcpiGbl_GlobalLockPresent
74 #else

76 #define ACPI_ACQUIRE_GLOBAL_LOCK(GLptr, Acq)

78 #define ACPI_RELEASE_GLOBAL_LOCK(GLptr, Pnd)

80 #endif

82 /*! [End] no source code translation !*/

84 #endif /* __ACWIN_H__ */

new/usr/src/common/acpica/os_specific/service_layers/osfreebsdtbl.c 1

**
 24958 Thu Dec 26 13:50:05 2013
new/usr/src/common/acpica/os_specific/service_layers/osfreebsdtbl.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: osfreebsdtbl - FreeBSD OSL for obtaining ACPI tables
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpidump.h"

46 #include <kenv.h>
47 #include <unistd.h>
48 #include <sys/param.h>
49 #include <sys/sysctl.h>

52 #define _COMPONENT ACPI_OS_SERVICES
53 ACPI_MODULE_NAME ("osfreebsdtbl")

56 /* Local prototypes */

58 static ACPI_STATUS
59 OslTableInitialize (
60 void);

new/usr/src/common/acpica/os_specific/service_layers/osfreebsdtbl.c 2

62 static ACPI_STATUS
63 OslMapTable (
64 ACPI_SIZE Address,
65 char *Signature,
66 ACPI_TABLE_HEADER **Table);

68 static ACPI_STATUS
69 OslAddTablesToList (
70 void);

72 static ACPI_STATUS
73 OslGetTableViaRoot (
74 char *Signature,
75 UINT32 Instance,
76 ACPI_TABLE_HEADER **Table,
77 ACPI_PHYSICAL_ADDRESS *Address);

80 /* Hints for RSDP */

82 #define SYSTEM_KENV "hint.acpi.0.rsdp"
83 #define SYSTEM_SYSCTL "machdep.acpi_root"

85 /* Initialization flags */

87 UINT8 Gbl_TableListInitialized = FALSE;
88 UINT8 Gbl_MainTableObtained = FALSE;

90 /* Local copies of main ACPI tables */

92 ACPI_TABLE_RSDP Gbl_Rsdp;
93 ACPI_TABLE_FADT *Gbl_Fadt;
94 ACPI_TABLE_RSDT *Gbl_Rsdt;
95 ACPI_TABLE_XSDT *Gbl_Xsdt;

97 /* Fadt address */

99 ACPI_PHYSICAL_ADDRESS Gbl_FadtAddress;

101 /* Revision of RSD PTR */

103 UINT8 Gbl_Revision;

105 /* List of information about obtained ACPI tables */

107 typedef struct table_info
108 {
109 struct table_info *Next;
110 char Signature[4];
111 UINT32 Instance;
112 ACPI_PHYSICAL_ADDRESS Address;

114 } OSL_TABLE_INFO;

116 OSL_TABLE_INFO *Gbl_TableListHead = NULL;

119 /**
120 *
121 * FUNCTION: AcpiOsGetTableByAddress
122 *
123 * PARAMETERS: Address - Physical address of the ACPI table
124 * Table - Where a pointer to the table is returned
125 *
126 * RETURN: Status; Table buffer is returned if AE_OK.
127 * AE_NOT_FOUND: A valid table was not found at the address

new/usr/src/common/acpica/os_specific/service_layers/osfreebsdtbl.c 3

128 *
129 * DESCRIPTION: Get an ACPI table via a physical memory address.
130 *
131 ***/

133 ACPI_STATUS
134 AcpiOsGetTableByAddress (
135 ACPI_PHYSICAL_ADDRESS Address,
136 ACPI_TABLE_HEADER **Table)
137 {
138 ACPI_TABLE_HEADER *MappedTable;
139 ACPI_TABLE_HEADER *LocalTable;
140 ACPI_STATUS Status;

143 /* Validate the input physical address to avoid program crash */

145 if (Address < ACPI_HI_RSDP_WINDOW_BASE)
146 {
147 fprintf (stderr, "Invalid table address: 0x%8.8X%8.8X\n",
148 ACPI_FORMAT_UINT64 (Address));
149 return (AE_BAD_ADDRESS);
150 }

152 /* Map the table and validate it */

154 Status = OslMapTable (Address, NULL, &MappedTable);
155 if (ACPI_FAILURE (Status))
156 {
157 return (Status);
158 }

160 /* Copy table to local buffer and return it */

162 LocalTable = calloc (1, MappedTable->Length);
163 if (!LocalTable)
164 {
165 AcpiOsUnmapMemory (MappedTable, MappedTable->Length);
166 return (AE_NO_MEMORY);
167 }

169 ACPI_MEMCPY (LocalTable, MappedTable, MappedTable->Length);
170 AcpiOsUnmapMemory (MappedTable, MappedTable->Length);

172 *Table = LocalTable;
173 return (AE_OK);
174 }

177 /**
178 *
179 * FUNCTION: AcpiOsGetTableByName
180 *
181 * PARAMETERS: Signature - ACPI Signature for desired table. Must be
182 * a null terminated 4-character string.
183 * Instance - Multiple table support for SSDT/UEFI (0...n)
184 * Must be 0 for other tables.
185 * Table - Where a pointer to the table is returned
186 * Address - Where the table physical address is returned
187 *
188 * RETURN: Status; Table buffer and physical address returned if AE_OK.
189 * AE_LIMIT: Instance is beyond valid limit
190 * AE_NOT_FOUND: A table with the signature was not found
191 *
192 * NOTE: Assumes the input signature is uppercase.
193 *

new/usr/src/common/acpica/os_specific/service_layers/osfreebsdtbl.c 4

194 ***/

196 ACPI_STATUS
197 AcpiOsGetTableByName (
198 char *Signature,
199 UINT32 Instance,
200 ACPI_TABLE_HEADER **Table,
201 ACPI_PHYSICAL_ADDRESS *Address)
202 {
203 ACPI_STATUS Status;

206 /* Instance is only valid for SSDT/UEFI tables */

208 if (Instance &&
209 !ACPI_COMPARE_NAME (Signature, ACPI_SIG_SSDT) &&
210 !ACPI_COMPARE_NAME (Signature, ACPI_SIG_UEFI))
211 {
212 return (AE_LIMIT);
213 }

215 /* Initialize main tables */

217 Status = OslTableInitialize ();
218 if (ACPI_FAILURE (Status))
219 {
220 return (Status);
221 }

223 /*
224 * If one of the main ACPI tables was requested (RSDT/XSDT/FADT),
225 * simply return it immediately.
226 */
227 if (ACPI_COMPARE_NAME (Signature, ACPI_SIG_XSDT))
228 {
229 if (!Gbl_Revision)
230 {
231 return (AE_NOT_FOUND);
232 }

234 *Address = Gbl_Rsdp.XsdtPhysicalAddress;
235 *Table = (ACPI_TABLE_HEADER *) Gbl_Xsdt;
236 return (AE_OK);
237 }

239 if (ACPI_COMPARE_NAME (Signature, ACPI_SIG_RSDT))
240 {
241 if (!Gbl_Rsdp.RsdtPhysicalAddress)
242 {
243 return (AE_NOT_FOUND);
244 }

246 *Address = Gbl_Rsdp.RsdtPhysicalAddress;
247 *Table = (ACPI_TABLE_HEADER *) Gbl_Rsdt;
248 return (AE_OK);
249 }

251 if (ACPI_COMPARE_NAME (Signature, ACPI_SIG_FADT))
252 {
253 *Address = Gbl_FadtAddress;
254 *Table = (ACPI_TABLE_HEADER *) Gbl_Fadt;
255 return (AE_OK);
256 }

258 /* Not a main ACPI table, attempt to extract it from the RSDT/XSDT */

new/usr/src/common/acpica/os_specific/service_layers/osfreebsdtbl.c 5

260 Status = OslGetTableViaRoot (Signature, Instance, Table, Address);
261 if (ACPI_FAILURE (Status))
262 {
263 return (Status);
264 }

266 return (AE_OK);
267 }

270 /**
271 *
272 * FUNCTION: AcpiOsGetTableByIndex
273 *
274 * PARAMETERS: Index - Which table to get
275 * Table - Where a pointer to the table is returned
276 * Instance - Where a pointer to the table instance no. is
277 * returned
278 * Address - Where the table physical address is returned
279 *
280 * RETURN: Status; Table buffer and physical address returned if AE_OK.
281 * AE_LIMIT: Index is beyond valid limit
282 *
283 * DESCRIPTION: Get an ACPI table via an index value (0 through n). Returns
284 * AE_LIMIT when an invalid index is reached. Index is not
285 * necessarily an index into the RSDT/XSDT.
286 *
287 ***/

289 ACPI_STATUS
290 AcpiOsGetTableByIndex (
291 UINT32 Index,
292 ACPI_TABLE_HEADER **Table,
293 UINT32 *Instance,
294 ACPI_PHYSICAL_ADDRESS *Address)
295 {
296 OSL_TABLE_INFO *Info;
297 ACPI_STATUS Status;
298 UINT32 i;

301 /* Initialize main tables */

303 Status = OslTableInitialize ();
304 if (ACPI_FAILURE (Status))
305 {
306 return (Status);
307 }

309 /* Add all tables to list */

311 Status = OslAddTablesToList ();
312 if (ACPI_FAILURE (Status))
313 {
314 return (Status);
315 }

317 /* Validate Index */

319 if (Index >= Gbl_TableListHead->Instance)
320 {
321 return (AE_LIMIT);
322 }

324 /* Point to the table list entry specified by the Index argument */

new/usr/src/common/acpica/os_specific/service_layers/osfreebsdtbl.c 6

326 Info = Gbl_TableListHead;
327 for (i = 0; i <= Index; i++)
328 {
329 Info = Info->Next;
330 }

332 /* Now we can just get the table via the address or name */

334 if (Info->Address)
335 {
336 Status = AcpiOsGetTableByAddress (Info->Address, Table);
337 if (ACPI_SUCCESS (Status))
338 {
339 *Address = Info->Address;
340 }
341 }
342 else
343 {
344 Status = AcpiOsGetTableByName (Info->Signature, Info->Instance,
345 Table, Address);
346 }

348 if (ACPI_SUCCESS (Status))
349 {
350 *Instance = Info->Instance;
351 }
352 return (Status);
353 }

356 /**
357 *
358 * FUNCTION: OslTableInitialize
359 *
360 * PARAMETERS: None
361 *
362 * RETURN: Status
363 *
364 * DESCRIPTION: Initialize ACPI table data. Get and store main ACPI tables to
365 * local variables. Main ACPI tables include RSDP, FADT, RSDT,
366 * and/or XSDT.
367 *
368 ***/

370 static ACPI_STATUS
371 OslTableInitialize (
372 void)
373 {
374 char Buffer[32];
375 ACPI_TABLE_HEADER *MappedTable;
376 UINT8 *TableAddress;
377 UINT8 *RsdpAddress;
378 ACPI_PHYSICAL_ADDRESS RsdpBase;
379 ACPI_SIZE RsdpSize;
380 ACPI_STATUS Status;
381 u_long Address = 0;
382 size_t Length = sizeof (Address);

385 /* Get main ACPI tables from memory on first invocation of this function */

387 if (Gbl_MainTableObtained)
388 {
389 return (AE_OK);
390 }

new/usr/src/common/acpica/os_specific/service_layers/osfreebsdtbl.c 7

392 /* Attempt to use kenv or sysctl to find RSD PTR record. */

394 if (Gbl_RsdpBase)
395 {
396 Address = Gbl_RsdpBase;
397 }
398 else if (kenv (KENV_GET, SYSTEM_KENV, Buffer, sizeof (Buffer)) > 0)
399 {
400 Address = ACPI_STRTOUL (Buffer, NULL, 0);
401 }
402 if (!Address)
403 {
404 if (sysctlbyname (SYSTEM_SYSCTL, &Address, &Length, NULL, 0) != 0)
405 {
406 Address = 0;
407 }
408 }
409 if (Address)
410 {
411 RsdpBase = Address;
412 RsdpSize = sizeof (Gbl_Rsdp);
413 }
414 else
415 {
416 RsdpBase = ACPI_HI_RSDP_WINDOW_BASE;
417 RsdpSize = ACPI_HI_RSDP_WINDOW_SIZE;
418 }

420 /* Get RSDP from memory */

422 RsdpAddress = AcpiOsMapMemory (RsdpBase, RsdpSize);
423 if (!RsdpAddress)
424 {
425 return (AE_BAD_ADDRESS);
426 }

428 /* Search low memory for the RSDP */

430 TableAddress = AcpiTbScanMemoryForRsdp (RsdpAddress, RsdpSize);
431 if (!TableAddress)
432 {
433 AcpiOsUnmapMemory (RsdpAddress, RsdpSize);
434 return (AE_ERROR);
435 }

437 ACPI_MEMCPY (&Gbl_Rsdp, TableAddress, sizeof (Gbl_Rsdp));
438 AcpiOsUnmapMemory (RsdpAddress, RsdpSize);

440 /* Get XSDT from memory */

442 if (Gbl_Rsdp.Revision)
443 {
444 Status = OslMapTable (Gbl_Rsdp.XsdtPhysicalAddress,
445 ACPI_SIG_XSDT, &MappedTable);
446 if (ACPI_FAILURE (Status))
447 {
448 return (Status);
449 }

451 Gbl_Revision = 2;
452 Gbl_Xsdt = calloc (1, MappedTable->Length);
453 if (!Gbl_Xsdt)
454 {
455 fprintf (stderr,
456 "XSDT: Could not allocate buffer for table of length %X\n",
457 MappedTable->Length);

new/usr/src/common/acpica/os_specific/service_layers/osfreebsdtbl.c 8

458 AcpiOsUnmapMemory (MappedTable, MappedTable->Length);
459 return (AE_NO_MEMORY);
460 }

462 ACPI_MEMCPY (Gbl_Xsdt, MappedTable, MappedTable->Length);
463 AcpiOsUnmapMemory (MappedTable, MappedTable->Length);
464 }

466 /* Get RSDT from memory */

468 if (Gbl_Rsdp.RsdtPhysicalAddress)
469 {
470 Status = OslMapTable (Gbl_Rsdp.RsdtPhysicalAddress,
471 ACPI_SIG_RSDT, &MappedTable);
472 if (ACPI_FAILURE (Status))
473 {
474 return (Status);
475 }

477 Gbl_Rsdt = calloc (1, MappedTable->Length);
478 if (!Gbl_Rsdt)
479 {
480 fprintf (stderr,
481 "RSDT: Could not allocate buffer for table of length %X\n",
482 MappedTable->Length);
483 AcpiOsUnmapMemory (MappedTable, MappedTable->Length);
484 return (AE_NO_MEMORY);
485 }

487 ACPI_MEMCPY (Gbl_Rsdt, MappedTable, MappedTable->Length);
488 AcpiOsUnmapMemory (MappedTable, MappedTable->Length);
489 }

491 /* Get FADT from memory */

493 if (Gbl_Revision)
494 {
495 Gbl_FadtAddress = Gbl_Xsdt->TableOffsetEntry[0];
496 }
497 else
498 {
499 Gbl_FadtAddress = Gbl_Rsdt->TableOffsetEntry[0];
500 }

502 if (!Gbl_FadtAddress)
503 {
504 fprintf(stderr, "FADT: Table could not be found\n");
505 return (AE_ERROR);
506 }

508 Status = OslMapTable (Gbl_FadtAddress, ACPI_SIG_FADT, &MappedTable);
509 if (ACPI_FAILURE (Status))
510 {
511 return (Status);
512 }

514 Gbl_Fadt = calloc (1, MappedTable->Length);
515 if (!Gbl_Fadt)
516 {
517 fprintf (stderr,
518 "FADT: Could not allocate buffer for table of length %X\n",
519 MappedTable->Length);
520 AcpiOsUnmapMemory (MappedTable, MappedTable->Length);
521 return (AE_NO_MEMORY);
522 }

new/usr/src/common/acpica/os_specific/service_layers/osfreebsdtbl.c 9

524 ACPI_MEMCPY (Gbl_Fadt, MappedTable, MappedTable->Length);
525 AcpiOsUnmapMemory (MappedTable, MappedTable->Length);
526 Gbl_MainTableObtained = TRUE;
527 return (AE_OK);
528 }

531 /**
532 *
533 * FUNCTION: OslGetTableViaRoot
534 *
535 * PARAMETERS: Signature - ACPI Signature for common table. Must be
536 * a null terminated 4-character string.
537 * Instance - Multiple table support for SSDT/UEFI (0...n)
538 * Must be 0 for other tables.
539 * Table - Where a pointer to the table is returned
540 * Address - Where the table physical address is returned
541 *
542 * RETURN: Status; Table buffer and physical address returned if AE_OK.
543 * AE_LIMIT: Instance is beyond valid limit
544 * AE_NOT_FOUND: A table with the signature was not found
545 *
546 * DESCRIPTION: Get an ACPI table via the root table (RSDT/XSDT)
547 *
548 * NOTE: Assumes the input signature is uppercase.
549 *
550 ***/

552 static ACPI_STATUS
553 OslGetTableViaRoot (
554 char *Signature,
555 UINT32 Instance,
556 ACPI_TABLE_HEADER **Table,
557 ACPI_PHYSICAL_ADDRESS *Address)
558 {
559 ACPI_TABLE_HEADER *LocalTable = NULL;
560 ACPI_TABLE_HEADER *MappedTable = NULL;
561 UINT8 NumberOfTables;
562 UINT32 CurrentInstance = 0;
563 ACPI_PHYSICAL_ADDRESS TableAddress = 0;
564 ACPI_STATUS Status;
565 UINT32 i;

568 /* DSDT and FACS address must be extracted from the FADT */

570 if (ACPI_COMPARE_NAME (Signature, ACPI_SIG_DSDT) ||
571 ACPI_COMPARE_NAME (Signature, ACPI_SIG_FACS))
572 {
573 /*
574 * Get the appropriate address, either 32-bit or 64-bit. Be very
575 * careful about the FADT length and validate table addresses.
576 * Note: The 64-bit addresses have priority.
577 */
578 if (ACPI_COMPARE_NAME (Signature, ACPI_SIG_DSDT))
579 {
580 if ((Gbl_Fadt->Header.Length >= MIN_FADT_FOR_XDSDT) &&
581 Gbl_Fadt->XDsdt)
582 {
583 TableAddress = (ACPI_PHYSICAL_ADDRESS) Gbl_Fadt->XDsdt;
584 }
585 else if ((Gbl_Fadt->Header.Length >= MIN_FADT_FOR_DSDT) &&
586 Gbl_Fadt->Dsdt)
587 {
588 TableAddress = (ACPI_PHYSICAL_ADDRESS) Gbl_Fadt->Dsdt;
589 }

new/usr/src/common/acpica/os_specific/service_layers/osfreebsdtbl.c 10

590 }
591 else /* FACS */
592 {
593 if ((Gbl_Fadt->Header.Length >= MIN_FADT_FOR_XFACS) &&
594 Gbl_Fadt->XFacs)
595 {
596 TableAddress = (ACPI_PHYSICAL_ADDRESS) Gbl_Fadt->XFacs;
597 }
598 else if ((Gbl_Fadt->Header.Length >= MIN_FADT_FOR_FACS) &&
599 Gbl_Fadt->Facs)
600 {
601 TableAddress = (ACPI_PHYSICAL_ADDRESS) Gbl_Fadt->Facs;
602 }
603 }
604 }
605 else /* Case for a normal ACPI table */
606 {
607 if (Gbl_Revision)
608 {
609 NumberOfTables =
610 (Gbl_Xsdt->Header.Length - sizeof (Gbl_Xsdt->Header))
611 / sizeof (Gbl_Xsdt->TableOffsetEntry[0]);
612 }
613 else /* Use RSDT if XSDT is not available */
614 {
615 NumberOfTables =
616 (Gbl_Rsdt->Header.Length - sizeof (Gbl_Rsdt->Header))
617 / sizeof (Gbl_Rsdt->TableOffsetEntry[0]);
618 }

620 /* Search RSDT/XSDT for the requested table */

622 for (i = 0; i < NumberOfTables; i++)
623 {
624 if (Gbl_Revision)
625 {
626 TableAddress = Gbl_Xsdt->TableOffsetEntry[i];
627 }
628 else
629 {
630 TableAddress = Gbl_Rsdt->TableOffsetEntry[i];
631 }

633 MappedTable = AcpiOsMapMemory (TableAddress, sizeof (*MappedTable));
634 if (!MappedTable)
635 {
636 return (AE_BAD_ADDRESS);
637 }

639 /* Does this table match the requested signature? */

641 if (ACPI_COMPARE_NAME (MappedTable->Signature, Signature))
642 {

644 /* Match table instance (for SSDT/UEFI tables) */

646 if (CurrentInstance == Instance)
647 {
648 AcpiOsUnmapMemory (MappedTable, sizeof (*MappedTable));
649 break;
650 }

652 CurrentInstance++;
653 }

655 AcpiOsUnmapMemory (MappedTable, MappedTable->Length);

new/usr/src/common/acpica/os_specific/service_layers/osfreebsdtbl.c 11

656 TableAddress = 0;
657 }
658 }

660 if (!TableAddress)
661 {
662 if (CurrentInstance)
663 {
664 return (AE_LIMIT);
665 }
666 return (AE_NOT_FOUND);
667 }

669 /* Now we can get the requested table */

671 Status = OslMapTable (TableAddress, Signature, &MappedTable);
672 if (ACPI_FAILURE (Status))
673 {
674 return (Status);
675 }

677 /* Copy table to local buffer and return it */

679 LocalTable = calloc (1, MappedTable->Length);
680 if (!LocalTable)
681 {
682 AcpiOsUnmapMemory (MappedTable, MappedTable->Length);
683 return (AE_NO_MEMORY);
684 }

686 ACPI_MEMCPY (LocalTable, MappedTable, MappedTable->Length);
687 AcpiOsUnmapMemory (MappedTable, MappedTable->Length);
688 *Table = LocalTable;
689 *Address = TableAddress;
690 return (AE_OK);
691 }

694 /**
695 *
696 * FUNCTION: OslAddTablesToList
697 *
698 * PARAMETERS: None
699 *
700 * RETURN: Status; Table list is initialized if AE_OK.
701 *
702 * DESCRIPTION: Add ACPI tables to the table list.
703 *
704 ***/

706 static ACPI_STATUS
707 OslAddTablesToList(
708 void)
709 {
710 ACPI_PHYSICAL_ADDRESS TableAddress;
711 OSL_TABLE_INFO *Info = NULL;
712 OSL_TABLE_INFO *NewInfo;
713 ACPI_TABLE_HEADER *Table;
714 UINT8 Instance;
715 UINT8 NumberOfTables;
716 int i;

719 /* Initialize the table list on first invocation */

721 if (Gbl_TableListInitialized)

new/usr/src/common/acpica/os_specific/service_layers/osfreebsdtbl.c 12

722 {
723 return (AE_OK);
724 }

726 /* Add mandatory tables to global table list first */

728 for (i = 0; i < 4; i++)
729 {
730 NewInfo = calloc (1, sizeof (*NewInfo));
731 if (!NewInfo)
732 {
733 return (AE_NO_MEMORY);
734 }

736 switch (i) {
737 case 0:

739 Gbl_TableListHead = Info = NewInfo;
740 continue;

742 case 1:

744 ACPI_MOVE_NAME (NewInfo->Signature,
745 Gbl_Revision ? ACPI_SIG_XSDT : ACPI_SIG_RSDT);
746 break;

748 case 2:

750 ACPI_MOVE_NAME (NewInfo->Signature, ACPI_SIG_FACS);
751 break;

753 default:

755 ACPI_MOVE_NAME (NewInfo->Signature, ACPI_SIG_DSDT);

757 }

759 Info->Next = NewInfo;
760 Info = NewInfo;
761 Gbl_TableListHead->Instance++;
762 }

764 /* Add normal tables from RSDT/XSDT to global list */

766 if (Gbl_Revision)
767 {
768 NumberOfTables =
769 (Gbl_Xsdt->Header.Length - sizeof (Gbl_Xsdt->Header))
770 / sizeof (Gbl_Xsdt->TableOffsetEntry[0]);
771 }
772 else
773 {
774 NumberOfTables =
775 (Gbl_Rsdt->Header.Length - sizeof (Gbl_Rsdt->Header))
776 / sizeof (Gbl_Rsdt->TableOffsetEntry[0]);
777 }

779 for (i = 0; i < NumberOfTables; i++)
780 {
781 if (Gbl_Revision)
782 {
783 TableAddress = Gbl_Xsdt->TableOffsetEntry[i];
784 }
785 else
786 {
787 TableAddress = Gbl_Rsdt->TableOffsetEntry[i];

new/usr/src/common/acpica/os_specific/service_layers/osfreebsdtbl.c 13

788 }

790 Table = AcpiOsMapMemory (TableAddress, sizeof (*Table));
791 if (!Table)
792 {
793 return (AE_BAD_ADDRESS);
794 }

796 Instance = 0;
797 NewInfo = Gbl_TableListHead;
798 while (NewInfo->Next != NULL)
799 {
800 NewInfo = NewInfo->Next;
801 if (ACPI_COMPARE_NAME (Table->Signature, NewInfo->Signature))
802 {
803 Instance++;
804 }
805 }

807 NewInfo = calloc (1, sizeof (*NewInfo));
808 if (!NewInfo)
809 {
810 AcpiOsUnmapMemory (Table, sizeof (*Table));
811 return (AE_NO_MEMORY);
812 }

814 ACPI_MOVE_NAME (NewInfo->Signature, Table->Signature);

816 AcpiOsUnmapMemory (Table, sizeof (*Table));

818 NewInfo->Instance = Instance;
819 NewInfo->Address = TableAddress;
820 Info->Next = NewInfo;
821 Info = NewInfo;
822 Gbl_TableListHead->Instance++;
823 }

825 Gbl_TableListInitialized = TRUE;
826 return (AE_OK);
827 }

830 /**
831 *
832 * FUNCTION: OslMapTable
833 *
834 * PARAMETERS: Address - Address of the table in memory
835 * Signature - Optional ACPI Signature for desired table.
836 * Null terminated 4-character string.
837 * Table - Where a pointer to the mapped table is
838 * returned
839 *
840 * RETURN: Status; Mapped table is returned if AE_OK.
841 *
842 * DESCRIPTION: Map entire ACPI table into caller’s address space. Also
843 * validates the table and checksum.
844 *
845 ***/

847 static ACPI_STATUS
848 OslMapTable (
849 ACPI_SIZE Address,
850 char *Signature,
851 ACPI_TABLE_HEADER **Table)
852 {
853 ACPI_TABLE_HEADER *MappedTable;

new/usr/src/common/acpica/os_specific/service_layers/osfreebsdtbl.c 14

854 UINT32 Length;

857 /* Map the header so we can get the table length */

859 MappedTable = AcpiOsMapMemory (Address, sizeof (*MappedTable));
860 if (!MappedTable)
861 {
862 return (AE_BAD_ADDRESS);
863 }

865 /* Check if table is valid */

867 if (!ApIsValidHeader (MappedTable))
868 {
869 AcpiOsUnmapMemory (MappedTable, sizeof (*MappedTable));
870 return (AE_BAD_HEADER);
871 }

873 /* If specified, signature must match */

875 if (Signature &&
876 !ACPI_COMPARE_NAME (Signature, MappedTable->Signature))
877 {
878 AcpiOsUnmapMemory (MappedTable, sizeof (*MappedTable));
879 return (AE_NOT_EXIST);
880 }

882 /* Map the entire table */

884 Length = MappedTable->Length;
885 AcpiOsUnmapMemory (MappedTable, sizeof (*MappedTable));

887 MappedTable = AcpiOsMapMemory (Address, Length);
888 if (!MappedTable)
889 {
890 return (AE_BAD_ADDRESS);
891 }

893 (void) ApIsValidChecksum (MappedTable);

895 *Table = MappedTable;

897 return (AE_OK);
898 }

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 1

**
 39197 Thu Dec 26 13:50:05 2013
new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: oslinuxtbl - Linux OSL for obtaining ACPI tables
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpidump.h"

47 #define _COMPONENT ACPI_OS_SERVICES
48 ACPI_MODULE_NAME ("oslinuxtbl")

51 #ifndef PATH_MAX
52 #define PATH_MAX 256
53 #endif

56 /* List of information about obtained ACPI tables */

58 typedef struct table_info
59 {
60 struct table_info *Next;
61 UINT32 Instance;

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 2

62 char Signature[ACPI_NAME_SIZE];

64 } OSL_TABLE_INFO;

66 /* Local prototypes */

68 static ACPI_STATUS
69 OslTableInitialize (
70 void);

72 static ACPI_STATUS
73 OslTableNameFromFile (
74 char *Filename,
75 char *Signature,
76 UINT32 *Instance);

78 static ACPI_STATUS
79 OslAddTableToList (
80 char *Signature,
81 UINT32 Instance);

83 static ACPI_STATUS
84 OslReadTableFromFile (
85 char *Filename,
86 ACPI_SIZE FileOffset,
87 char *Signature,
88 ACPI_TABLE_HEADER **Table);

90 static ACPI_STATUS
91 OslMapTable (
92 ACPI_SIZE Address,
93 char *Signature,
94 ACPI_TABLE_HEADER **Table);

96 static void
97 OslUnmapTable (
98 ACPI_TABLE_HEADER *Table);

100 static ACPI_PHYSICAL_ADDRESS
101 OslFindRsdpViaEfi (
102 void);

104 static ACPI_STATUS
105 OslLoadRsdp (
106 void);

108 static ACPI_STATUS
109 OslListCustomizedTables (
110 char *Directory);

112 static ACPI_STATUS
113 OslGetCustomizedTable (
114 char *Pathname,
115 char *Signature,
116 UINT32 Instance,
117 ACPI_TABLE_HEADER **Table,
118 ACPI_PHYSICAL_ADDRESS *Address);

120 static ACPI_STATUS
121 OslListBiosTables (
122 void);

124 static ACPI_STATUS
125 OslGetBiosTable (
126 char *Signature,
127 UINT32 Instance,

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 3

128 ACPI_TABLE_HEADER **Table,
129 ACPI_PHYSICAL_ADDRESS *Address);

131 static ACPI_STATUS
132 OslGetLastStatus (
133 ACPI_STATUS DefaultStatus);

136 /* File locations */

138 #define DYNAMIC_TABLE_DIR "/sys/firmware/acpi/tables/dynamic"
139 #define STATIC_TABLE_DIR "/sys/firmware/acpi/tables"
140 #define EFI_SYSTAB "/sys/firmware/efi/systab"

142 /* Should we get dynamically loaded SSDTs from DYNAMIC_TABLE_DIR? */

144 UINT8 Gbl_DumpDynamicTables = TRUE;

146 /* Initialization flags */

148 UINT8 Gbl_TableListInitialized = FALSE;

150 /* Local copies of main ACPI tables */

152 ACPI_TABLE_RSDP Gbl_Rsdp;
153 ACPI_TABLE_FADT *Gbl_Fadt = NULL;
154 ACPI_TABLE_RSDT *Gbl_Rsdt = NULL;
155 ACPI_TABLE_XSDT *Gbl_Xsdt = NULL;

157 /* Table addresses */

159 ACPI_PHYSICAL_ADDRESS Gbl_FadtAddress = 0;
160 ACPI_PHYSICAL_ADDRESS Gbl_RsdpAddress = 0;

162 /* Revision of RSD PTR */

164 UINT8 Gbl_Revision = 0;

166 OSL_TABLE_INFO *Gbl_TableListHead = NULL;
167 UINT32 Gbl_TableCount = 0;

170 /**
171 *
172 * FUNCTION: OslGetLastStatus
173 *
174 * PARAMETERS: DefaultStatus - Default error status to return
175 *
176 * RETURN: Status; Converted from errno.
177 *
178 * DESCRIPTION: Get last errno and conver it to ACPI_STATUS.
179 *
180 ***/

182 static ACPI_STATUS
183 OslGetLastStatus (
184 ACPI_STATUS DefaultStatus)
185 {

187 switch (errno)
188 {
189 case EACCES:
190 case EPERM:

192 return (AE_ACCESS);

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 4

194 case ENOENT:

196 return (AE_NOT_FOUND);

198 case ENOMEM:

200 return (AE_NO_MEMORY);

202 default:

204 return (DefaultStatus);
205 }
206 }

209 /**
210 *
211 * FUNCTION: AcpiOsGetTableByAddress
212 *
213 * PARAMETERS: Address - Physical address of the ACPI table
214 * Table - Where a pointer to the table is returned
215 *
216 * RETURN: Status; Table buffer is returned if AE_OK.
217 * AE_NOT_FOUND: A valid table was not found at the address
218 *
219 * DESCRIPTION: Get an ACPI table via a physical memory address.
220 *
221 ***/

223 ACPI_STATUS
224 AcpiOsGetTableByAddress (
225 ACPI_PHYSICAL_ADDRESS Address,
226 ACPI_TABLE_HEADER **Table)
227 {
228 UINT32 TableLength;
229 ACPI_TABLE_HEADER *MappedTable;
230 ACPI_TABLE_HEADER *LocalTable = NULL;
231 ACPI_STATUS Status = AE_OK;

234 /* Get main ACPI tables from memory on first invocation of this function */

236 Status = OslTableInitialize ();
237 if (ACPI_FAILURE (Status))
238 {
239 return (Status);
240 }

242 /* Map the table and validate it */

244 Status = OslMapTable (Address, NULL, &MappedTable);
245 if (ACPI_FAILURE (Status))
246 {
247 return (Status);
248 }

250 /* Copy table to local buffer and return it */

252 TableLength = ApGetTableLength (MappedTable);
253 if (TableLength == 0)
254 {
255 Status = AE_BAD_HEADER;
256 goto ErrorExit;
257 }

259 LocalTable = calloc (1, TableLength);

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 5

260 if (!LocalTable)
261 {
262 Status = AE_NO_MEMORY;
263 goto ErrorExit;
264 }

266 ACPI_MEMCPY (LocalTable, MappedTable, TableLength);

268 ErrorExit:
269 OslUnmapTable (MappedTable);
270 *Table = LocalTable;
271 return (AE_OK);
272 }

275 /**
276 *
277 * FUNCTION: AcpiOsGetTableByName
278 *
279 * PARAMETERS: Signature - ACPI Signature for desired table. Must be
280 * a null terminated 4-character string.
281 * Instance - Multiple table support for SSDT/UEFI (0...n)
282 * Must be 0 for other tables.
283 * Table - Where a pointer to the table is returned
284 * Address - Where the table physical address is returned
285 *
286 * RETURN: Status; Table buffer and physical address returned if AE_OK.
287 * AE_LIMIT: Instance is beyond valid limit
288 * AE_NOT_FOUND: A table with the signature was not found
289 *
290 * NOTE: Assumes the input signature is uppercase.
291 *
292 ***/

294 ACPI_STATUS
295 AcpiOsGetTableByName (
296 char *Signature,
297 UINT32 Instance,
298 ACPI_TABLE_HEADER **Table,
299 ACPI_PHYSICAL_ADDRESS *Address)
300 {
301 ACPI_STATUS Status;

304 /* Get main ACPI tables from memory on first invocation of this function */

306 Status = OslTableInitialize ();
307 if (ACPI_FAILURE (Status))
308 {
309 return (Status);
310 }

312 /* Not a main ACPI table, attempt to extract it from the RSDT/XSDT */

314 if (!Gbl_DumpCustomizedTables)
315 {
316 /* Attempt to get the table from the memory */

318 Status = OslGetBiosTable (Signature, Instance, Table, Address);
319 }
320 else
321 {
322 /* Attempt to get the table from the static directory */

324 Status = OslGetCustomizedTable (STATIC_TABLE_DIR, Signature,
325 Instance, Table, Address);

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 6

326 }

328 if (ACPI_FAILURE (Status) && Status == AE_LIMIT)
329 {
330 if (Gbl_DumpDynamicTables)
331 {
332 /* Attempt to get a dynamic table */

334 Status = OslGetCustomizedTable (DYNAMIC_TABLE_DIR, Signature,
335 Instance, Table, Address);
336 }
337 }

339 return (Status);
340 }

343 /**
344 *
345 * FUNCTION: OslAddTableToList
346 *
347 * PARAMETERS: Signature - Table signature
348 * Instance - Table instance
349 *
350 * RETURN: Status; Successfully added if AE_OK.
351 * AE_NO_MEMORY: Memory allocation error
352 *
353 * DESCRIPTION: Insert a table structure into OSL table list.
354 *
355 ***/

357 static ACPI_STATUS
358 OslAddTableToList (
359 char *Signature,
360 UINT32 Instance)
361 {
362 OSL_TABLE_INFO *NewInfo;
363 OSL_TABLE_INFO *Next;
364 UINT32 NextInstance = 0;
365 BOOLEAN Found = FALSE;

368 NewInfo = calloc (1, sizeof (OSL_TABLE_INFO));
369 if (!NewInfo)
370 {
371 return (AE_NO_MEMORY);
372 }

374 ACPI_MOVE_NAME (NewInfo->Signature, Signature);

376 if (!Gbl_TableListHead)
377 {
378 Gbl_TableListHead = NewInfo;
379 }
380 else
381 {
382 Next = Gbl_TableListHead;
383 while (1)
384 {
385 if (ACPI_COMPARE_NAME (Next->Signature, Signature))
386 {
387 if (Next->Instance == Instance)
388 {
389 Found = TRUE;
390 }
391 if (Next->Instance >= NextInstance)

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 7

392 {
393 NextInstance = Next->Instance + 1;
394 }
395 }

397 if (!Next->Next)
398 {
399 break;
400 }
401 Next = Next->Next;
402 }
403 Next->Next = NewInfo;
404 }

406 if (Found)
407 {
408 if (Instance)
409 {
410 fprintf (stderr,
411 "%4.4s: Warning unmatched table instance %d, expected %d\n",
412 Signature, Instance, NextInstance);
413 }
414 Instance = NextInstance;
415 }

417 NewInfo->Instance = Instance;
418 Gbl_TableCount++;

420 return (AE_OK);
421 }

424 /**
425 *
426 * FUNCTION: AcpiOsGetTableByIndex
427 *
428 * PARAMETERS: Index - Which table to get
429 * Table - Where a pointer to the table is returned
430 * Instance - Where a pointer to the table instance no. is
431 * returned
432 * Address - Where the table physical address is returned
433 *
434 * RETURN: Status; Table buffer and physical address returned if AE_OK.
435 * AE_LIMIT: Index is beyond valid limit
436 *
437 * DESCRIPTION: Get an ACPI table via an index value (0 through n). Returns
438 * AE_LIMIT when an invalid index is reached. Index is not
439 * necessarily an index into the RSDT/XSDT.
440 *
441 ***/

443 ACPI_STATUS
444 AcpiOsGetTableByIndex (
445 UINT32 Index,
446 ACPI_TABLE_HEADER **Table,
447 UINT32 *Instance,
448 ACPI_PHYSICAL_ADDRESS *Address)
449 {
450 OSL_TABLE_INFO *Info;
451 ACPI_STATUS Status;
452 UINT32 i;

455 /* Get main ACPI tables from memory on first invocation of this function */

457 Status = OslTableInitialize ();

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 8

458 if (ACPI_FAILURE (Status))
459 {
460 return (Status);
461 }

463 /* Validate Index */

465 if (Index >= Gbl_TableCount)
466 {
467 return (AE_LIMIT);
468 }

470 /* Point to the table list entry specified by the Index argument */

472 Info = Gbl_TableListHead;
473 for (i = 0; i < Index; i++)
474 {
475 Info = Info->Next;
476 }

478 /* Now we can just get the table via the signature */

480 Status = AcpiOsGetTableByName (Info->Signature, Info->Instance,
481 Table, Address);

483 if (ACPI_SUCCESS (Status))
484 {
485 *Instance = Info->Instance;
486 }
487 return (Status);
488 }

491 /**
492 *
493 * FUNCTION: OslFindRsdpViaEfi
494 *
495 * PARAMETERS: None
496 *
497 * RETURN: RSDP address if found
498 *
499 * DESCRIPTION: Find RSDP address via EFI.
500 *
501 ***/

503 static ACPI_PHYSICAL_ADDRESS
504 OslFindRsdpViaEfi (
505 void)
506 {
507 FILE *File;
508 char Buffer[80];
509 unsigned long Address = 0;

512 File = fopen (EFI_SYSTAB, "r");
513 if (File)
514 {
515 while (fgets (Buffer, 80, File))
516 {
517 if (sscanf (Buffer, "ACPI20=0x%lx", &Address) == 1)
518 {
519 break;
520 }
521 }
522 fclose (File);
523 }

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 9

525 return ((ACPI_PHYSICAL_ADDRESS) (Address));
526 }

529 /**
530 *
531 * FUNCTION: OslLoadRsdp
532 *
533 * PARAMETERS: None
534 *
535 * RETURN: Status
536 *
537 * DESCRIPTION: Scan and load RSDP.
538 *
539 ***/

541 static ACPI_STATUS
542 OslLoadRsdp (
543 void)
544 {
545 ACPI_TABLE_HEADER *MappedTable;
546 UINT8 *RsdpAddress;
547 ACPI_PHYSICAL_ADDRESS RsdpBase;
548 ACPI_SIZE RsdpSize;

551 /* Get RSDP from memory */

553 RsdpSize = sizeof (ACPI_TABLE_RSDP);
554 if (Gbl_RsdpBase)
555 {
556 RsdpBase = Gbl_RsdpBase;
557 }
558 else
559 {
560 RsdpBase = OslFindRsdpViaEfi ();
561 }

563 if (!RsdpBase)
564 {
565 RsdpBase = ACPI_HI_RSDP_WINDOW_BASE;
566 RsdpSize = ACPI_HI_RSDP_WINDOW_SIZE;
567 }

569 RsdpAddress = AcpiOsMapMemory (RsdpBase, RsdpSize);
570 if (!RsdpAddress)
571 {
572 return (OslGetLastStatus (AE_BAD_ADDRESS));
573 }

575 /* Search low memory for the RSDP */

577 MappedTable = ACPI_CAST_PTR (ACPI_TABLE_HEADER,
578 AcpiTbScanMemoryForRsdp (RsdpAddress, RsdpSize));
579 if (!MappedTable)
580 {
581 AcpiOsUnmapMemory (RsdpAddress, RsdpSize);
582 return (AE_NOT_FOUND);
583 }

585 Gbl_RsdpAddress = RsdpBase + (ACPI_CAST8 (MappedTable) - RsdpAddress);

587 ACPI_MEMCPY (&Gbl_Rsdp, MappedTable, sizeof (ACPI_TABLE_RSDP));
588 AcpiOsUnmapMemory (RsdpAddress, RsdpSize);

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 10

590 return (AE_OK);
591 }

594 /**
595 *
596 * FUNCTION: OslTableInitialize
597 *
598 * PARAMETERS: None
599 *
600 * RETURN: Status
601 *
602 * DESCRIPTION: Initialize ACPI table data. Get and store main ACPI tables to
603 * local variables. Main ACPI tables include RSDT, FADT, RSDT,
604 * and/or XSDT.
605 *
606 ***/

608 static ACPI_STATUS
609 OslTableInitialize (
610 void)
611 {
612 ACPI_STATUS Status;
613 ACPI_PHYSICAL_ADDRESS Address;

616 if (Gbl_TableListInitialized)
617 {
618 return (AE_OK);
619 }

621 /* Get RSDP from memory */

623 Status = OslLoadRsdp ();
624 if (ACPI_FAILURE (Status))
625 {
626 return (Status);
627 }

629 /* Get XSDT from memory */

631 if (Gbl_Rsdp.Revision)
632 {
633 if (Gbl_Xsdt)
634 {
635 free (Gbl_Xsdt);
636 Gbl_Xsdt = NULL;
637 }

639 Gbl_Revision = 2;
640 Status = OslGetBiosTable (ACPI_SIG_XSDT, 0,
641 ACPI_CAST_PTR (ACPI_TABLE_HEADER *, &Gbl_Xsdt), &Address);
642 if (ACPI_FAILURE (Status))
643 {
644 return (Status);
645 }
646 }

648 /* Get RSDT from memory */

650 if (Gbl_Rsdp.RsdtPhysicalAddress)
651 {
652 if (Gbl_Rsdt)
653 {
654 free (Gbl_Rsdt);
655 Gbl_Rsdt = NULL;

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 11

656 }

658 Status = OslGetBiosTable (ACPI_SIG_RSDT, 0,
659 ACPI_CAST_PTR (ACPI_TABLE_HEADER *, &Gbl_Rsdt), &Address);
660 if (ACPI_FAILURE (Status))
661 {
662 return (Status);
663 }
664 }

666 /* Get FADT from memory */

668 if (Gbl_Fadt)
669 {
670 free (Gbl_Fadt);
671 Gbl_Fadt = NULL;
672 }

674 Status = OslGetBiosTable (ACPI_SIG_FADT, 0,
675 ACPI_CAST_PTR (ACPI_TABLE_HEADER *, &Gbl_Fadt), &Gbl_FadtAddress);
676 if (ACPI_FAILURE (Status))
677 {
678 return (Status);
679 }

681 if (!Gbl_DumpCustomizedTables)
682 {
683 /* Add mandatory tables to global table list first */

685 Status = OslAddTableToList (AP_DUMP_SIG_RSDP, 0);
686 if (ACPI_FAILURE (Status))
687 {
688 return (Status);
689 }

691 Status = OslAddTableToList (ACPI_SIG_RSDT, 0);
692 if (ACPI_FAILURE (Status))
693 {
694 return (Status);
695 }

697 if (Gbl_Revision == 2)
698 {
699 Status = OslAddTableToList (ACPI_SIG_XSDT, 0);
700 if (ACPI_FAILURE (Status))
701 {
702 return (Status);
703 }
704 }

706 Status = OslAddTableToList (ACPI_SIG_DSDT, 0);
707 if (ACPI_FAILURE (Status))
708 {
709 return (Status);
710 }

712 Status = OslAddTableToList (ACPI_SIG_FACS, 0);
713 if (ACPI_FAILURE (Status))
714 {
715 return (Status);
716 }

718 /* Add all tables found in the memory */

720 Status = OslListBiosTables ();
721 if (ACPI_FAILURE (Status))

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 12

722 {
723 return (Status);
724 }
725 }
726 else
727 {
728 /* Add all tables found in the static directory */

730 Status = OslListCustomizedTables (STATIC_TABLE_DIR);
731 if (ACPI_FAILURE (Status))
732 {
733 return (Status);
734 }
735 }

737 if (Gbl_DumpDynamicTables)
738 {
739 /* Add all dynamically loaded tables in the dynamic directory */

741 Status = OslListCustomizedTables (DYNAMIC_TABLE_DIR);
742 if (ACPI_FAILURE (Status))
743 {
744 return (Status);
745 }
746 }

748 Gbl_TableListInitialized = TRUE;
749 return (AE_OK);
750 }

753 /**
754 *
755 * FUNCTION: OslListBiosTables
756 *
757 * PARAMETERS: None
758 *
759 * RETURN: Status; Table list is initialized if AE_OK.
760 *
761 * DESCRIPTION: Add ACPI tables to the table list from memory.
762 *
763 * NOTE: This works on Linux as table customization does not modify the
764 * addresses stored in RSDP/RSDT/XSDT/FADT.
765 *
766 ***/

768 static ACPI_STATUS
769 OslListBiosTables (
770 void)
771 {
772 ACPI_TABLE_HEADER *MappedTable = NULL;
773 UINT8 *TableData;
774 UINT8 NumberOfTables;
775 UINT8 ItemSize;
776 ACPI_PHYSICAL_ADDRESS TableAddress = 0;
777 ACPI_STATUS Status = AE_OK;
778 UINT32 i;

781 if (Gbl_Revision)
782 {
783 ItemSize = sizeof (UINT64);
784 TableData = ACPI_CAST8 (Gbl_Xsdt) + sizeof (ACPI_TABLE_HEADER);
785 NumberOfTables =
786 (UINT8) ((Gbl_Xsdt->Header.Length - sizeof (ACPI_TABLE_HEADER))
787 / ItemSize);

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 13

788 }
789 else /* Use RSDT if XSDT is not available */
790 {
791 ItemSize = sizeof (UINT32);
792 TableData = ACPI_CAST8 (Gbl_Rsdt) + sizeof (ACPI_TABLE_HEADER);
793 NumberOfTables =
794 (UINT8) ((Gbl_Rsdt->Header.Length - sizeof (ACPI_TABLE_HEADER))
795 / ItemSize);
796 }

798 /* Search RSDT/XSDT for the requested table */

800 for (i = 0; i < NumberOfTables; ++i, TableData += ItemSize)
801 {
802 if (Gbl_Revision)
803 {
804 TableAddress =
805 (ACPI_PHYSICAL_ADDRESS) (*ACPI_CAST64 (TableData));
806 }
807 else
808 {
809 TableAddress =
810 (ACPI_PHYSICAL_ADDRESS) (*ACPI_CAST32 (TableData));
811 }

813 Status = OslMapTable (TableAddress, NULL, &MappedTable);
814 if (ACPI_FAILURE (Status))
815 {
816 return (Status);
817 }

819 OslAddTableToList (MappedTable->Signature, 0);
820 OslUnmapTable (MappedTable);
821 }

823 return (AE_OK);
824 }

827 /**
828 *
829 * FUNCTION: OslGetBiosTable
830 *
831 * PARAMETERS: Signature - ACPI Signature for common table. Must be
832 * a null terminated 4-character string.
833 * Instance - Multiple table support for SSDT/UEFI (0...n)
834 * Must be 0 for other tables.
835 * Table - Where a pointer to the table is returned
836 * Address - Where the table physical address is returned
837 *
838 * RETURN: Status; Table buffer and physical address returned if AE_OK.
839 * AE_LIMIT: Instance is beyond valid limit
840 * AE_NOT_FOUND: A table with the signature was not found
841 *
842 * DESCRIPTION: Get a BIOS provided ACPI table
843 *
844 * NOTE: Assumes the input signature is uppercase.
845 *
846 ***/

848 static ACPI_STATUS
849 OslGetBiosTable (
850 char *Signature,
851 UINT32 Instance,
852 ACPI_TABLE_HEADER **Table,
853 ACPI_PHYSICAL_ADDRESS *Address)

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 14

854 {
855 ACPI_TABLE_HEADER *LocalTable = NULL;
856 ACPI_TABLE_HEADER *MappedTable = NULL;
857 UINT8 *TableData;
858 UINT8 NumberOfTables;
859 UINT8 ItemSize;
860 UINT32 CurrentInstance = 0;
861 ACPI_PHYSICAL_ADDRESS TableAddress = 0;
862 UINT32 TableLength = 0;
863 ACPI_STATUS Status = AE_OK;
864 UINT32 i;

867 /* Handle special tables whose addresses are not in RSDT/XSDT */

869 if (ACPI_COMPARE_NAME (Signature, AP_DUMP_SIG_RSDP) ||
870 ACPI_COMPARE_NAME (Signature, ACPI_SIG_RSDT) ||
871 ACPI_COMPARE_NAME (Signature, ACPI_SIG_XSDT) ||
872 ACPI_COMPARE_NAME (Signature, ACPI_SIG_DSDT) ||
873 ACPI_COMPARE_NAME (Signature, ACPI_SIG_FACS))
874 {
875 /*
876 * Get the appropriate address, either 32-bit or 64-bit. Be very
877 * careful about the FADT length and validate table addresses.
878 * Note: The 64-bit addresses have priority.
879 */
880 if (ACPI_COMPARE_NAME (Signature, ACPI_SIG_DSDT))
881 {
882 if ((Gbl_Fadt->Header.Length >= MIN_FADT_FOR_XDSDT) &&
883 Gbl_Fadt->XDsdt)
884 {
885 TableAddress = (ACPI_PHYSICAL_ADDRESS) Gbl_Fadt->XDsdt;
886 }
887 else if ((Gbl_Fadt->Header.Length >= MIN_FADT_FOR_DSDT) &&
888 Gbl_Fadt->Dsdt)
889 {
890 TableAddress = (ACPI_PHYSICAL_ADDRESS) Gbl_Fadt->Dsdt;
891 }
892 }
893 else if (ACPI_COMPARE_NAME (Signature, ACPI_SIG_FACS))
894 {
895 if ((Gbl_Fadt->Header.Length >= MIN_FADT_FOR_XFACS) &&
896 Gbl_Fadt->XFacs)
897 {
898 TableAddress = (ACPI_PHYSICAL_ADDRESS) Gbl_Fadt->XFacs;
899 }
900 else if ((Gbl_Fadt->Header.Length >= MIN_FADT_FOR_FACS) &&
901 Gbl_Fadt->Facs)
902 {
903 TableAddress = (ACPI_PHYSICAL_ADDRESS) Gbl_Fadt->Facs;
904 }
905 }
906 else if (ACPI_COMPARE_NAME (Signature, ACPI_SIG_XSDT))
907 {
908 if (!Gbl_Revision)
909 {
910 return (AE_BAD_SIGNATURE);
911 }
912 TableAddress = (ACPI_PHYSICAL_ADDRESS) Gbl_Rsdp.XsdtPhysicalAddress;
913 }
914 else if (ACPI_COMPARE_NAME (Signature, ACPI_SIG_RSDT))
915 {
916 TableAddress = (ACPI_PHYSICAL_ADDRESS) Gbl_Rsdp.RsdtPhysicalAddress;
917 }
918 else
919 {

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 15

920 TableAddress = (ACPI_PHYSICAL_ADDRESS) Gbl_RsdpAddress;
921 Signature = ACPI_SIG_RSDP;
922 }

924 /* Now we can get the requested special table */

926 Status = OslMapTable (TableAddress, Signature, &MappedTable);
927 if (ACPI_FAILURE (Status))
928 {
929 return (Status);
930 }

932 TableLength = ApGetTableLength (MappedTable);
933 }
934 else /* Case for a normal ACPI table */
935 {
936 if (Gbl_Revision)
937 {
938 ItemSize = sizeof (UINT64);
939 TableData = ACPI_CAST8 (Gbl_Xsdt) + sizeof (ACPI_TABLE_HEADER);
940 NumberOfTables =
941 (UINT8) ((Gbl_Xsdt->Header.Length - sizeof (ACPI_TABLE_HEADER))
942 / ItemSize);
943 }
944 else /* Use RSDT if XSDT is not available */
945 {
946 ItemSize = sizeof (UINT32);
947 TableData = ACPI_CAST8 (Gbl_Rsdt) + sizeof (ACPI_TABLE_HEADER);
948 NumberOfTables =
949 (UINT8) ((Gbl_Rsdt->Header.Length - sizeof (ACPI_TABLE_HEADER))
950 / ItemSize);
951 }

953 /* Search RSDT/XSDT for the requested table */

955 for (i = 0; i < NumberOfTables; ++i, TableData += ItemSize)
956 {
957 if (Gbl_Revision)
958 {
959 TableAddress =
960 (ACPI_PHYSICAL_ADDRESS) (*ACPI_CAST64 (TableData));
961 }
962 else
963 {
964 TableAddress =
965 (ACPI_PHYSICAL_ADDRESS) (*ACPI_CAST32 (TableData));
966 }

968 Status = OslMapTable (TableAddress, NULL, &MappedTable);
969 if (ACPI_FAILURE (Status))
970 {
971 return (Status);
972 }
973 TableLength = MappedTable->Length;

975 /* Does this table match the requested signature? */

977 if (!ACPI_COMPARE_NAME (MappedTable->Signature, Signature))
978 {
979 OslUnmapTable (MappedTable);
980 MappedTable = NULL;
981 continue;
982 }

984 /* Match table instance (for SSDT/UEFI tables) */

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 16

986 if (CurrentInstance != Instance)
987 {
988 OslUnmapTable (MappedTable);
989 MappedTable = NULL;
990 CurrentInstance++;
991 continue;
992 }

994 break;
995 }
996 }

998 if (!MappedTable)
999 {

1000 return (AE_LIMIT);
1001 }

1003 if (TableLength == 0)
1004 {
1005 Status = AE_BAD_HEADER;
1006 goto ErrorExit;
1007 }

1009 /* Copy table to local buffer and return it */

1011 LocalTable = calloc (1, TableLength);
1012 if (!LocalTable)
1013 {
1014 Status = AE_NO_MEMORY;
1015 goto ErrorExit;
1016 }

1018 ACPI_MEMCPY (LocalTable, MappedTable, TableLength);
1019 *Address = TableAddress;
1020 *Table = LocalTable;

1022 ErrorExit:
1023 OslUnmapTable (MappedTable);
1024 return (AE_OK);
1025 }

1028 /**
1029 *
1030 * FUNCTION: OslListCustomizedTables
1031 *
1032 * PARAMETERS: Directory - Directory that contains the tables
1033 *
1034 * RETURN: Status; Table list is initialized if AE_OK.
1035 *
1036 * DESCRIPTION: Add ACPI tables to the table list from a directory.
1037 *
1038 ***/

1040 static ACPI_STATUS
1041 OslListCustomizedTables (
1042 char *Directory)
1043 {
1044 void *TableDir;
1045 UINT32 Instance;
1046 char TempName[ACPI_NAME_SIZE];
1047 char *Filename;
1048 ACPI_STATUS Status = AE_OK;

1051 /* Open the requested directory */

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 17

1053 TableDir = AcpiOsOpenDirectory (Directory, "*", REQUEST_FILE_ONLY);
1054 if (!TableDir)
1055 {
1056 return (OslGetLastStatus (AE_NOT_FOUND));
1057 }

1059 /* Examine all entries in this directory */

1061 while ((Filename = AcpiOsGetNextFilename (TableDir)))
1062 {
1063 /* Extract table name and instance number */

1065 Status = OslTableNameFromFile (Filename, TempName, &Instance);

1067 /* Ignore meaningless files */

1069 if (ACPI_FAILURE (Status))
1070 {
1071 continue;
1072 }

1074 /* Add new info node to global table list */

1076 Status = OslAddTableToList (TempName, Instance);
1077 if (ACPI_FAILURE (Status))
1078 {
1079 break;
1080 }
1081 }

1083 AcpiOsCloseDirectory (TableDir);
1084 return (Status);
1085 }

1088 /**
1089 *
1090 * FUNCTION: OslMapTable
1091 *
1092 * PARAMETERS: Address - Address of the table in memory
1093 * Signature - Optional ACPI Signature for desired table.
1094 * Null terminated 4-character string.
1095 * Table - Where a pointer to the mapped table is
1096 * returned
1097 *
1098 * RETURN: Status; Mapped table is returned if AE_OK.
1099 * AE_NOT_FOUND: A valid table was not found at the address
1100 *
1101 * DESCRIPTION: Map entire ACPI table into caller’s address space.
1102 *
1103 ***/

1105 static ACPI_STATUS
1106 OslMapTable (
1107 ACPI_SIZE Address,
1108 char *Signature,
1109 ACPI_TABLE_HEADER **Table)
1110 {
1111 ACPI_TABLE_HEADER *MappedTable;
1112 UINT32 Length;

1115 if (!Address)
1116 {
1117 return (AE_BAD_ADDRESS);

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 18

1118 }

1120 /*
1121 * Map the header so we can get the table length.
1122 * Use sizeof (ACPI_TABLE_HEADER) as:
1123 * 1. it is bigger than 24 to include RSDP->Length
1124 * 2. it is smaller than sizeof (ACPI_TABLE_RSDP)
1125 */
1126 MappedTable = AcpiOsMapMemory (Address, sizeof (ACPI_TABLE_HEADER));
1127 if (!MappedTable)
1128 {
1129 fprintf (stderr, "Could not map table header at 0x%8.8X%8.8X\n",
1130 ACPI_FORMAT_UINT64 (Address));
1131 return (OslGetLastStatus (AE_BAD_ADDRESS));
1132 }

1134 /* If specified, signature must match */

1136 if (Signature &&
1137 !ACPI_COMPARE_NAME (Signature, MappedTable->Signature))
1138 {
1139 AcpiOsUnmapMemory (MappedTable, sizeof (ACPI_TABLE_HEADER));
1140 return (AE_BAD_SIGNATURE);
1141 }

1143 /* Map the entire table */

1145 Length = ApGetTableLength (MappedTable);
1146 AcpiOsUnmapMemory (MappedTable, sizeof (ACPI_TABLE_HEADER));
1147 if (Length == 0)
1148 {
1149 return (AE_BAD_HEADER);
1150 }

1152 MappedTable = AcpiOsMapMemory (Address, Length);
1153 if (!MappedTable)
1154 {
1155 fprintf (stderr, "Could not map table at 0x%8.8X%8.8X length %8.8X\n",
1156 ACPI_FORMAT_UINT64 (Address), Length);
1157 return (OslGetLastStatus (AE_INVALID_TABLE_LENGTH));
1158 }

1160 (void) ApIsValidChecksum (MappedTable);

1162 *Table = MappedTable;
1163 return (AE_OK);
1164 }

1167 /**
1168 *
1169 * FUNCTION: OslUnmapTable
1170 *
1171 * PARAMETERS: Table - A pointer to the mapped table
1172 *
1173 * RETURN: None
1174 *
1175 * DESCRIPTION: Unmap entire ACPI table.
1176 *
1177 ***/

1179 static void
1180 OslUnmapTable (
1181 ACPI_TABLE_HEADER *Table)
1182 {
1183 if (Table)

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 19

1184 {
1185 AcpiOsUnmapMemory (Table, ApGetTableLength (Table));
1186 }
1187 }

1190 /**
1191 *
1192 * FUNCTION: OslTableNameFromFile
1193 *
1194 * PARAMETERS: Filename - File that contains the desired table
1195 * Signature - Pointer to 4-character buffer to store
1196 * extracted table signature.
1197 * Instance - Pointer to integer to store extracted
1198 * table instance number.
1199 *
1200 * RETURN: Status; Table name is extracted if AE_OK.
1201 *
1202 * DESCRIPTION: Extract table signature and instance number from a table file
1203 * name.
1204 *
1205 ***/

1207 static ACPI_STATUS
1208 OslTableNameFromFile (
1209 char *Filename,
1210 char *Signature,
1211 UINT32 *Instance)
1212 {

1214 /* Ignore meaningless files */

1216 if (strlen (Filename) < ACPI_NAME_SIZE)
1217 {
1218 return (AE_BAD_SIGNATURE);
1219 }

1221 /* Extract instance number */

1223 if (isdigit ((int) Filename[ACPI_NAME_SIZE]))
1224 {
1225 sscanf (&Filename[ACPI_NAME_SIZE], "%d", Instance);
1226 }
1227 else if (strlen (Filename) != ACPI_NAME_SIZE)
1228 {
1229 return (AE_BAD_SIGNATURE);
1230 }
1231 else
1232 {
1233 *Instance = 0;
1234 }

1236 /* Extract signature */

1238 ACPI_MOVE_NAME (Signature, Filename);
1239 return (AE_OK);
1240 }

1243 /**
1244 *
1245 * FUNCTION: OslReadTableFromFile
1246 *
1247 * PARAMETERS: Filename - File that contains the desired table
1248 * FileOffset - Offset of the table in file
1249 * Signature - Optional ACPI Signature for desired table.

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 20

1250 * A null terminated 4-character string.
1251 * Table - Where a pointer to the table is returned
1252 *
1253 * RETURN: Status; Table buffer is returned if AE_OK.
1254 *
1255 * DESCRIPTION: Read a ACPI table from a file.
1256 *
1257 ***/

1259 static ACPI_STATUS
1260 OslReadTableFromFile (
1261 char *Filename,
1262 ACPI_SIZE FileOffset,
1263 char *Signature,
1264 ACPI_TABLE_HEADER **Table)
1265 {
1266 FILE *TableFile;
1267 ACPI_TABLE_HEADER Header;
1268 ACPI_TABLE_HEADER *LocalTable = NULL;
1269 UINT32 TableLength;
1270 INT32 Count;
1271 UINT32 Total = 0;
1272 ACPI_STATUS Status = AE_OK;

1275 /* Open the file */

1277 TableFile = fopen (Filename, "rb");
1278 if (TableFile == NULL)
1279 {
1280 fprintf (stderr, "Could not open table file: %s\n", Filename);
1281 return (OslGetLastStatus (AE_NOT_FOUND));
1282 }

1284 fseek (TableFile, FileOffset, SEEK_SET);

1286 /* Read the Table header to get the table length */

1288 Count = fread (&Header, 1, sizeof (ACPI_TABLE_HEADER), TableFile);
1289 if (Count != sizeof (ACPI_TABLE_HEADER))
1290 {
1291 fprintf (stderr, "Could not read table header: %s\n", Filename);
1292 Status = AE_BAD_HEADER;
1293 goto ErrorExit;
1294 }

1296 /* If signature is specified, it must match the table */

1298 if (Signature &&
1299 !ACPI_COMPARE_NAME (Signature, Header.Signature))
1300 {
1301 fprintf (stderr, "Incorrect signature: Expecting %4.4s, found %4.4s\n",
1302 Signature, Header.Signature);
1303 Status = AE_BAD_SIGNATURE;
1304 goto ErrorExit;
1305 }

1307 TableLength = ApGetTableLength (&Header);
1308 if (TableLength == 0)
1309 {
1310 Status = AE_BAD_HEADER;
1311 goto ErrorExit;
1312 }

1314 /* Read the entire table into a local buffer */

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 21

1316 LocalTable = calloc (1, TableLength);
1317 if (!LocalTable)
1318 {
1319 fprintf (stderr,
1320 "%4.4s: Could not allocate buffer for table of length %X\n",
1321 Header.Signature, TableLength);
1322 Status = AE_NO_MEMORY;
1323 goto ErrorExit;
1324 }

1326 fseek (TableFile, FileOffset, SEEK_SET);

1328 while (!feof (TableFile) && Total < TableLength)
1329 {
1330 Count = fread (LocalTable, 1, TableLength-Total, TableFile);
1331 if (Count < 0)
1332 {
1333 fprintf (stderr, "%4.4s: Could not read table content\n",
1334 Header.Signature);
1335 Status = AE_INVALID_TABLE_LENGTH;
1336 goto ErrorExit;
1337 }

1339 Total += Count;
1340 }

1342 /* Validate checksum */

1344 (void) ApIsValidChecksum (LocalTable);

1346 ErrorExit:
1347 fclose (TableFile);
1348 *Table = LocalTable;
1349 return (Status);
1350 }

1353 /**
1354 *
1355 * FUNCTION: OslGetCustomizedTable
1356 *
1357 * PARAMETERS: Pathname - Directory to find Linux customized table
1358 * Signature - ACPI Signature for desired table. Must be
1359 * a null terminated 4-character string.
1360 * Instance - Multiple table support for SSDT/UEFI (0...n)
1361 * Must be 0 for other tables.
1362 * Table - Where a pointer to the table is returned
1363 * Address - Where the table physical address is returned
1364 *
1365 * RETURN: Status; Table buffer is returned if AE_OK.
1366 * AE_LIMIT: Instance is beyond valid limit
1367 * AE_NOT_FOUND: A table with the signature was not found
1368 *
1369 * DESCRIPTION: Get an OS customized table.
1370 *
1371 ***/

1373 static ACPI_STATUS
1374 OslGetCustomizedTable (
1375 char *Pathname,
1376 char *Signature,
1377 UINT32 Instance,
1378 ACPI_TABLE_HEADER **Table,
1379 ACPI_PHYSICAL_ADDRESS *Address)
1380 {
1381 void *TableDir;

new/usr/src/common/acpica/os_specific/service_layers/oslinuxtbl.c 22

1382 UINT32 CurrentInstance = 0;
1383 char TempName[ACPI_NAME_SIZE];
1384 char TableFilename[PATH_MAX];
1385 char *Filename;
1386 ACPI_STATUS Status;

1389 /* Open the directory for customized tables */

1391 TableDir = AcpiOsOpenDirectory (Pathname, "*", REQUEST_FILE_ONLY);
1392 if (!TableDir)
1393 {
1394 return (OslGetLastStatus (AE_NOT_FOUND));
1395 }

1397 /* Attempt to find the table in the directory */

1399 while ((Filename = AcpiOsGetNextFilename (TableDir)))
1400 {
1401 /* Ignore meaningless files */

1403 if (!ACPI_COMPARE_NAME (Filename, Signature))
1404 {
1405 continue;
1406 }

1408 /* Extract table name and instance number */

1410 Status = OslTableNameFromFile (Filename, TempName, &CurrentInstance);

1412 /* Ignore meaningless files */

1414 if (ACPI_FAILURE (Status) || CurrentInstance != Instance)
1415 {
1416 continue;
1417 }

1419 /* Create the table pathname */

1421 if (Instance != 0)
1422 {
1423 sprintf (TableFilename, "%s/%4.4s%d", Pathname, TempName, Instance);
1424 }
1425 else
1426 {
1427 sprintf (TableFilename, "%s/%4.4s", Pathname, TempName);
1428 }
1429 break;
1430 }

1432 AcpiOsCloseDirectory (TableDir);

1434 if (!Filename)
1435 {
1436 return (AE_LIMIT);
1437 }

1439 /* There is no physical address saved for customized tables, use zero */

1441 *Address = 0;
1442 Status = OslReadTableFromFile (TableFilename, 0, NULL, Table);

1444 return (Status);
1445 }

new/usr/src/common/acpica/os_specific/service_layers/osunixdir.c 1

**
 7065 Thu Dec 26 13:50:05 2013
new/usr/src/common/acpica/os_specific/service_layers/osunixdir.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: osunixdir - Unix directory access interfaces
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include <acpi.h>

46 #include <stdio.h>
47 #include <stdlib.h>
48 #include <string.h>
49 #include <dirent.h>
50 #include <fnmatch.h>
51 #include <ctype.h>
52 #include <sys/stat.h>

54 /*
55 * Allocated structure returned from OsOpenDirectory
56 */
57 typedef struct ExternalFindInfo
58 {
59 char *DirPathname;

new/usr/src/common/acpica/os_specific/service_layers/osunixdir.c 2

60 DIR *DirPtr;
61 char temp_buffer[256];
62 char *WildcardSpec;
63 char RequestedFileType;

65 } EXTERNAL_FIND_INFO;

68 /***
69 *
70 * FUNCTION: AcpiOsOpenDirectory
71 *
72 * PARAMETERS: DirPathname - Full pathname to the directory
73 * WildcardSpec - string of the form "*.c", etc.
74 *
75 * RETURN: A directory "handle" to be used in subsequent search operations.
76 * NULL returned on failure.
77 *
78 * DESCRIPTION: Open a directory in preparation for a wildcard search
79 *
80 **/

82 void *
83 AcpiOsOpenDirectory (
84 char *DirPathname,
85 char *WildcardSpec,
86 char RequestedFileType)
87 {
88 EXTERNAL_FIND_INFO *ExternalInfo;
89 DIR *dir;

92 /* Allocate the info struct that will be returned to the caller */

94 ExternalInfo = calloc (1, sizeof (EXTERNAL_FIND_INFO));
95 if (!ExternalInfo)
96 {
97 return (NULL);
98 }

100 /* Get the directory stream */

102 dir = opendir (DirPathname);
103 if (!dir)
104 {
105 fprintf (stderr, "Cannot open directory - %s\n", DirPathname);
106 free (ExternalInfo);
107 return (NULL);
108 }

110 /* Save the info in the return structure */

112 ExternalInfo->WildcardSpec = WildcardSpec;
113 ExternalInfo->RequestedFileType = RequestedFileType;
114 ExternalInfo->DirPathname = DirPathname;
115 ExternalInfo->DirPtr = dir;
116 return (ExternalInfo);
117 }

120 /***
121 *
122 * FUNCTION: AcpiOsGetNextFilename
123 *
124 * PARAMETERS: DirHandle - Created via AcpiOsOpenDirectory
125 *

new/usr/src/common/acpica/os_specific/service_layers/osunixdir.c 3

126 * RETURN: Next filename matched. NULL if no more matches.
127 *
128 * DESCRIPTION: Get the next file in the directory that matches the wildcard
129 * specification.
130 *
131 **/

133 char *
134 AcpiOsGetNextFilename (
135 void *DirHandle)
136 {
137 EXTERNAL_FIND_INFO *ExternalInfo = DirHandle;
138 struct dirent *dir_entry;
139 char *temp_str;
140 int str_len;
141 struct stat temp_stat;
142 int err;

145 while ((dir_entry = readdir (ExternalInfo->DirPtr)))
146 {
147 if (!fnmatch (ExternalInfo->WildcardSpec, dir_entry->d_name, 0))
148 {
149 if (dir_entry->d_name[0] == ’.’)
150 {
151 continue;
152 }

154 str_len = strlen (dir_entry->d_name) +
155 strlen (ExternalInfo->DirPathname) + 2;

157 temp_str = calloc (str_len, 1);
158 if (!temp_str)
159 {
160 fprintf (stderr,
161 "Could not allocate buffer for temporary string\n");
162 return (NULL);
163 }

165 strcpy (temp_str, ExternalInfo->DirPathname);
166 strcat (temp_str, "/");
167 strcat (temp_str, dir_entry->d_name);

169 err = stat (temp_str, &temp_stat);
170 if (err == -1)
171 {
172 fprintf (stderr,
173 "Cannot stat file (should not happen) - %s\n",
174 temp_str);
175 free (temp_str);
176 return (NULL);
177 }

179 free (temp_str);

181 if ((S_ISDIR (temp_stat.st_mode)
182 && (ExternalInfo->RequestedFileType == REQUEST_DIR_ONLY))
183 ||
184 ((!S_ISDIR (temp_stat.st_mode)
185 && ExternalInfo->RequestedFileType == REQUEST_FILE_ONLY)))
186 {
187 /* copy to a temp buffer because dir_entry struct is on the stac

189 strcpy (ExternalInfo->temp_buffer, dir_entry->d_name);
190 return (ExternalInfo->temp_buffer);
191 }

new/usr/src/common/acpica/os_specific/service_layers/osunixdir.c 4

192 }
193 }

195 return (NULL);
196 }

199 /***
200 *
201 * FUNCTION: AcpiOsCloseDirectory
202 *
203 * PARAMETERS: DirHandle - Created via AcpiOsOpenDirectory
204 *
205 * RETURN: None.
206 *
207 * DESCRIPTION: Close the open directory and cleanup.
208 *
209 **/

211 void
212 AcpiOsCloseDirectory (
213 void *DirHandle)
214 {
215 EXTERNAL_FIND_INFO *ExternalInfo = DirHandle;

218 /* Close the directory and free allocations */

220 closedir (ExternalInfo->DirPtr);
221 free (DirHandle);
222 }

new/usr/src/common/acpica/os_specific/service_layers/osunixmap.c 1

**
 5179 Thu Dec 26 13:50:05 2013
new/usr/src/common/acpica/os_specific/service_layers/osunixmap.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: osunixmap - Unix OSL for file mappings
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpidump.h"
45 #include <unistd.h>
46 #include <sys/mman.h>
47 #ifdef _FreeBSD
48 #include <sys/param.h>
49 #endif

51 #define _COMPONENT ACPI_OS_SERVICES
52 ACPI_MODULE_NAME ("osunixmap")

55 #ifndef O_BINARY
56 #define O_BINARY 0
57 #endif

59 #ifdef _FreeBSD
60 #define MMAP_FLAGS MAP_SHARED
61 #else

new/usr/src/common/acpica/os_specific/service_layers/osunixmap.c 2

62 #define MMAP_FLAGS MAP_PRIVATE
63 #endif

65 #define SYSTEM_MEMORY "/dev/mem"

68 /***
69 *
70 * FUNCTION: AcpiOsGetPageSize
71 *
72 * PARAMETERS: None
73 *
74 * RETURN: Page size of the platform.
75 *
76 * DESCRIPTION: Obtain page size of the platform.
77 *
78 **/

80 static ACPI_SIZE
81 AcpiOsGetPageSize (
82 void)
83 {

85 #ifdef PAGE_SIZE
86 return PAGE_SIZE;
87 #else
88 return sysconf (_SC_PAGESIZE);
89 #endif
90 }

93 /**
94 *
95 * FUNCTION: AcpiOsMapMemory
96 *
97 * PARAMETERS: Where - Physical address of memory to be mapped
98 * Length - How much memory to map
99 *
100 * RETURN: Pointer to mapped memory. Null on error.
101 *
102 * DESCRIPTION: Map physical memory into local address space.
103 *
104 ***/

106 void *
107 AcpiOsMapMemory (
108 ACPI_PHYSICAL_ADDRESS Where,
109 ACPI_SIZE Length)
110 {
111 UINT8 *MappedMemory;
112 ACPI_PHYSICAL_ADDRESS Offset;
113 ACPI_SIZE PageSize;
114 int fd;

117 fd = open (SYSTEM_MEMORY, O_RDONLY | O_BINARY);
118 if (fd < 0)
119 {
120 fprintf (stderr, "Cannot open %s\n", SYSTEM_MEMORY);
121 return (NULL);
122 }

124 /* Align the offset to use mmap */

126 PageSize = AcpiOsGetPageSize ();
127 Offset = Where % PageSize;

new/usr/src/common/acpica/os_specific/service_layers/osunixmap.c 3

129 /* Map the table header to get the length of the full table */

131 MappedMemory = mmap (NULL, (Length + Offset), PROT_READ, MMAP_FLAGS,
132 fd, (Where - Offset));
133 if (MappedMemory == MAP_FAILED)
134 {
135 fprintf (stderr, "Cannot map %s\n", SYSTEM_MEMORY);
136 close (fd);
137 return (NULL);
138 }

140 close (fd);
141 return (ACPI_CAST8 (MappedMemory + Offset));
142 }

145 /**
146 *
147 * FUNCTION: AcpiOsUnmapMemory
148 *
149 * PARAMETERS: Where - Logical address of memory to be unmapped
150 * Length - How much memory to unmap
151 *
152 * RETURN: None.
153 *
154 * DESCRIPTION: Delete a previously created mapping. Where and Length must
155 * correspond to a previous mapping exactly.
156 *
157 ***/

159 void
160 AcpiOsUnmapMemory (
161 void *Where,
162 ACPI_SIZE Length)
163 {
164 ACPI_PHYSICAL_ADDRESS Offset;
165 ACPI_SIZE PageSize;

168 PageSize = AcpiOsGetPageSize ();
169 Offset = (ACPI_PHYSICAL_ADDRESS) Where % PageSize;
170 munmap ((UINT8 *) Where - Offset, (Length + Offset));
171 }

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 1

**
 35731 Thu Dec 26 13:50:06 2013
new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c
update to acpica-unix2-20131218
update to acpica-unix2-20131115
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: osunixxf - UNIX OSL interfaces
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 /*
46 * These interfaces are required in order to compile the ASL compiler and the
47 * various ACPICA tools under Linux or other Unix-like system.
48 */
49 #include "acpi.h"
50 #include "accommon.h"
51 #include "amlcode.h"
52 #include "acparser.h"
53 #include "acdebug.h"

55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <stdarg.h>

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 2

58 #include <unistd.h>
59 #include <sys/time.h>
60 #include <semaphore.h>
61 #include <pthread.h>
62 #include <errno.h>

64 #define _COMPONENT ACPI_OS_SERVICES
65 ACPI_MODULE_NAME ("osunixxf")

68 FILE *AcpiGbl_OutputFile;
69 BOOLEAN AcpiGbl_DebugTimeout = FALSE;

72 /* Upcalls to AcpiExec */

74 ACPI_PHYSICAL_ADDRESS
75 AeLocalGetRootPointer (
76 void);

78 void
79 AeTableOverride (
80 ACPI_TABLE_HEADER *ExistingTable,
81 ACPI_TABLE_HEADER **NewTable);

83 typedef void* (*PTHREAD_CALLBACK) (void *);

85 /* Buffer used by AcpiOsVprintf */

87 #define ACPI_VPRINTF_BUFFER_SIZE 512
88 #define _ASCII_NEWLINE ’\n’

90 /* Terminal support for AcpiExec only */

92 #ifdef ACPI_EXEC_APP
93 #include <termios.h>

95 struct termios OriginalTermAttributes;

97 ACPI_STATUS
98 AcpiUtReadLine (
99 char *Buffer,
100 UINT32 BufferLength,
101 UINT32 *BytesRead);

103 static void
104 OsEnterLineEditMode (
105 void);

107 static void
108 OsExitLineEditMode (
109 void);

112 /**
113 *
114 * FUNCTION: OsEnterLineEditMode, OsExitLineEditMode
115 *
116 * PARAMETERS: None
117 *
118 * RETURN: None
119 *
120 * DESCRIPTION: Enter/Exit the raw character input mode for the terminal.
121 *
122 * Interactive line-editing support for the AML debugger. Used with the
123 * common/acgetline module.

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 3

124 *
125 * readline() is not used because of non-portability. It is not available
126 * on all systems, and if it is, often the package must be manually installed.
127 *
128 * Therefore, we use the POSIX tcgetattr/tcsetattr and do the minimal line
129 * editing that we need in AcpiOsGetLine.
130 *
131 * If the POSIX tcgetattr/tcsetattr interfaces are unavailable, these
132 * calls will also work:
133 * For OsEnterLineEditMode: system ("stty cbreak -echo")
134 * For OsExitLineEditMode: system ("stty cooked echo")
135 *
136 ***/

138 static void
139 OsEnterLineEditMode (
140 void)
141 {
142 struct termios LocalTermAttributes;

145 /* Get and keep the original attributes */

147 if (tcgetattr (STDIN_FILENO, &OriginalTermAttributes))
148 {
149 fprintf (stderr, "Could not get/set terminal attributes!\n");
150 return;
151 }

153 /* Set the new attributes to enable raw character input */

155 memcpy (&LocalTermAttributes, &OriginalTermAttributes,
156 sizeof (struct termios));

158 LocalTermAttributes.c_lflag &= ~(ICANON | ECHO);
159 LocalTermAttributes.c_cc[VMIN] = 1;
160 LocalTermAttributes.c_cc[VTIME] = 0;

162 tcsetattr (STDIN_FILENO, TCSANOW, &LocalTermAttributes);
163 }

165 static void
166 OsExitLineEditMode (
167 void)
168 {
169 /* Set terminal attributes back to the original values */

171 tcsetattr (STDIN_FILENO, TCSANOW, &OriginalTermAttributes);
172 }

175 #else

177 /* These functions are not needed for other ACPICA utilities */

179 #define OsEnterLineEditMode()
180 #define OsExitLineEditMode()
181 #endif

184 /**
185 *
186 * FUNCTION: AcpiOsInitialize, AcpiOsTerminate
187 *
188 * PARAMETERS: None
189 *

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 4

190 * RETURN: Status
191 *
192 * DESCRIPTION: Initialize and terminate this module.
193 *
194 ***/

196 ACPI_STATUS
197 AcpiOsInitialize (
198 void)
199 {

201 AcpiGbl_OutputFile = stdout;

203 OsEnterLineEditMode ();
204 return (AE_OK);
205 }

207 ACPI_STATUS
208 AcpiOsTerminate (
209 void)
210 {

212 OsExitLineEditMode ();
213 return (AE_OK);
214 }

217 /**
218 *
219 * FUNCTION: AcpiOsGetRootPointer
220 *
221 * PARAMETERS: None
222 *
223 * RETURN: RSDP physical address
224 *
225 * DESCRIPTION: Gets the ACPI root pointer (RSDP)
226 *
227 ***/

229 ACPI_PHYSICAL_ADDRESS
230 AcpiOsGetRootPointer (
231 void)
232 {

234 return (AeLocalGetRootPointer ());
235 }

238 /**
239 *
240 * FUNCTION: AcpiOsPredefinedOverride
241 *
242 * PARAMETERS: InitVal - Initial value of the predefined object
243 * NewVal - The new value for the object
244 *
245 * RETURN: Status, pointer to value. Null pointer returned if not
246 * overriding.
247 *
248 * DESCRIPTION: Allow the OS to override predefined names
249 *
250 ***/

252 ACPI_STATUS
253 AcpiOsPredefinedOverride (
254 const ACPI_PREDEFINED_NAMES *InitVal,
255 ACPI_STRING *NewVal)

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 5

256 {

258 if (!InitVal || !NewVal)
259 {
260 return (AE_BAD_PARAMETER);
261 }

263 *NewVal = NULL;
264 return (AE_OK);
265 }

268 /**
269 *
270 * FUNCTION: AcpiOsTableOverride
271 *
272 * PARAMETERS: ExistingTable - Header of current table (probably
273 * firmware)
274 * NewTable - Where an entire new table is returned.
275 *
276 * RETURN: Status, pointer to new table. Null pointer returned if no
277 * table is available to override
278 *
279 * DESCRIPTION: Return a different version of a table if one is available
280 *
281 ***/

283 ACPI_STATUS
284 AcpiOsTableOverride (
285 ACPI_TABLE_HEADER *ExistingTable,
286 ACPI_TABLE_HEADER **NewTable)
287 {

289 if (!ExistingTable || !NewTable)
290 {
291 return (AE_BAD_PARAMETER);
292 }

294 *NewTable = NULL;

296 #ifdef ACPI_EXEC_APP

298 AeTableOverride (ExistingTable, NewTable);
299 return (AE_OK);
300 #else

302 return (AE_NO_ACPI_TABLES);
303 #endif
304 }

307 /**
308 *
309 * FUNCTION: AcpiOsPhysicalTableOverride
310 *
311 * PARAMETERS: ExistingTable - Header of current table (probably firmware
312 * NewAddress - Where new table address is returned
313 * (Physical address)
314 * NewTableLength - Where new table length is returned
315 *
316 * RETURN: Status, address/length of new table. Null pointer returned
317 * if no table is available to override.
318 *
319 * DESCRIPTION: Returns AE_SUPPORT, function not used in user space.
320 *
321 ***/

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 6

323 ACPI_STATUS
324 AcpiOsPhysicalTableOverride (
325 ACPI_TABLE_HEADER *ExistingTable,
326 ACPI_PHYSICAL_ADDRESS *NewAddress,
327 UINT32 *NewTableLength)
328 {

330 return (AE_SUPPORT);
331 }

334 /**
335 *
336 * FUNCTION: AcpiOsRedirectOutput
337 *
338 * PARAMETERS: Destination - An open file handle/pointer
339 *
340 * RETURN: None
341 *
342 * DESCRIPTION: Causes redirect of AcpiOsPrintf and AcpiOsVprintf
343 *
344 ***/

346 void
347 AcpiOsRedirectOutput (
348 void *Destination)
349 {

351 AcpiGbl_OutputFile = Destination;
352 }

355 /**
356 *
357 * FUNCTION: AcpiOsPrintf
358 *
359 * PARAMETERS: fmt, ... - Standard printf format
360 *
361 * RETURN: None
362 *
363 * DESCRIPTION: Formatted output. Note: very similar to AcpiOsVprintf
364 * (performance), changes should be tracked in both functions.
365 *
366 ***/

368 void ACPI_INTERNAL_VAR_XFACE
369 AcpiOsPrintf (
370 const char *Fmt,
371 ...)
372 {
373 va_list Args;
374 UINT8 Flags;

377 Flags = AcpiGbl_DbOutputFlags;
378 if (Flags & ACPI_DB_REDIRECTABLE_OUTPUT)
379 {
380 /* Output is directable to either a file (if open) or the console */

382 if (AcpiGbl_DebugFile)
383 {
384 /* Output file is open, send the output there */

386 va_start (Args, Fmt);
387 vfprintf (AcpiGbl_DebugFile, Fmt, Args);

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 7

388 va_end (Args);
389 }
390 else
391 {
392 /* No redirection, send output to console (once only!) */

394 Flags |= ACPI_DB_CONSOLE_OUTPUT;
395 }
396 }

398 if (Flags & ACPI_DB_CONSOLE_OUTPUT)
399 {
400 va_start (Args, Fmt);
401 vfprintf (AcpiGbl_OutputFile, Fmt, Args);
402 va_end (Args);
403 }
404 }

407 /**
408 *
409 * FUNCTION: AcpiOsVprintf
410 *
411 * PARAMETERS: fmt - Standard printf format
412 * args - Argument list
413 *
414 * RETURN: None
415 *
416 * DESCRIPTION: Formatted output with argument list pointer. Note: very
417 * similar to AcpiOsPrintf, changes should be tracked in both
418 * functions.
419 *
420 ***/

422 void
423 AcpiOsVprintf (
424 const char *Fmt,
425 va_list Args)
426 {
427 UINT8 Flags;
428 char Buffer[ACPI_VPRINTF_BUFFER_SIZE];

431 /*
432 * We build the output string in a local buffer because we may be
433 * outputting the buffer twice. Using vfprintf is problematic because
434 * some implementations modify the args pointer/structure during
435 * execution. Thus, we use the local buffer for portability.
436 *
437 * Note: Since this module is intended for use by the various ACPICA
438 * utilities/applications, we can safely declare the buffer on the stack.
439 * Also, This function is used for relatively small error messages only.
440 */
441 vsnprintf (Buffer, ACPI_VPRINTF_BUFFER_SIZE, Fmt, Args);

443 Flags = AcpiGbl_DbOutputFlags;
444 if (Flags & ACPI_DB_REDIRECTABLE_OUTPUT)
445 {
446 /* Output is directable to either a file (if open) or the console */

448 if (AcpiGbl_DebugFile)
449 {
450 /* Output file is open, send the output there */

452 fputs (Buffer, AcpiGbl_DebugFile);
453 }

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 8

454 else
455 {
456 /* No redirection, send output to console (once only!) */

458 Flags |= ACPI_DB_CONSOLE_OUTPUT;
459 }
460 }

462 if (Flags & ACPI_DB_CONSOLE_OUTPUT)
463 {
464 fputs (Buffer, AcpiGbl_OutputFile);
465 }
466 }

469 #ifndef ACPI_EXEC_APP
470 /**
471 *
472 * FUNCTION: AcpiOsGetLine
473 *
474 * PARAMETERS: Buffer - Where to return the command line
475 * BufferLength - Maximum length of Buffer
476 * BytesRead - Where the actual byte count is returned
477 *
478 * RETURN: Status and actual bytes read
479 *
480 * DESCRIPTION: Get the next input line from the terminal. NOTE: For the
481 * AcpiExec utility, we use the acgetline module instead to
482 * provide line-editing and history support.
483 *
484 ***/

486 ACPI_STATUS
487 AcpiOsGetLine (
488 char *Buffer,
489 UINT32 BufferLength,
490 UINT32 *BytesRead)
491 {
492 int InputChar;
493 UINT32 EndOfLine;

496 /* Standard AcpiOsGetLine for all utilities except AcpiExec */

498 for (EndOfLine = 0; ; EndOfLine++)
499 {
500 if (EndOfLine >= BufferLength)
501 {
502 return (AE_BUFFER_OVERFLOW);
503 }

505 if ((InputChar = getchar ()) == EOF)
506 {
507 return (AE_ERROR);
508 }

510 if (!InputChar || InputChar == _ASCII_NEWLINE)
511 {
512 break;
513 }

515 Buffer[EndOfLine] = (char) InputChar;
516 }

518 /* Null terminate the buffer */

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 9

520 Buffer[EndOfLine] = 0;

522 /* Return the number of bytes in the string */

524 if (BytesRead)
525 {
526 *BytesRead = EndOfLine;
527 }

529 return (AE_OK);
530 }
531 #endif

534 /**
535 *
536 * FUNCTION: AcpiOsMapMemory
537 *
538 * PARAMETERS: where - Physical address of memory to be mapped
539 * length - How much memory to map
540 *
541 * RETURN: Pointer to mapped memory. Null on error.
542 *
543 * DESCRIPTION: Map physical memory into caller’s address space
544 *
545 ***/

547 void *
548 AcpiOsMapMemory (
549 ACPI_PHYSICAL_ADDRESS where,
550 ACPI_SIZE length)
551 {

553 return (ACPI_TO_POINTER ((ACPI_SIZE) where));
554 }

557 /**
558 *
559 * FUNCTION: AcpiOsUnmapMemory
560 *
561 * PARAMETERS: where - Logical address of memory to be unmapped
562 * length - How much memory to unmap
563 *
564 * RETURN: None.
565 *
566 * DESCRIPTION: Delete a previously created mapping. Where and Length must
567 * correspond to a previous mapping exactly.
568 *
569 ***/

571 void
572 AcpiOsUnmapMemory (
573 void *where,
574 ACPI_SIZE length)
575 {

577 return;
578 }

581 /**
582 *
583 * FUNCTION: AcpiOsAllocate
584 *
585 * PARAMETERS: Size - Amount to allocate, in bytes

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 10

586 *
587 * RETURN: Pointer to the new allocation. Null on error.
588 *
589 * DESCRIPTION: Allocate memory. Algorithm is dependent on the OS.
590 *
591 ***/

593 void *
594 AcpiOsAllocate (
595 ACPI_SIZE size)
596 {
597 void *Mem;

600 Mem = (void *) malloc ((size_t) size);
601 return (Mem);
602 }

605 /**
606 *
607 * FUNCTION: AcpiOsFree
608 *
609 * PARAMETERS: mem - Pointer to previously allocated memory
610 *
611 * RETURN: None.
612 *
613 * DESCRIPTION: Free memory allocated via AcpiOsAllocate
614 *
615 ***/

617 void
618 AcpiOsFree (
619 void *mem)
620 {

622 free (mem);
623 }

626 #ifdef ACPI_SINGLE_THREADED
627 /**
628 *
629 * FUNCTION: Semaphore stub functions
630 *
631 * DESCRIPTION: Stub functions used for single-thread applications that do
632 * not require semaphore synchronization. Full implementations
633 * of these functions appear after the stubs.
634 *
635 ***/

637 ACPI_STATUS
638 AcpiOsCreateSemaphore (
639 UINT32 MaxUnits,
640 UINT32 InitialUnits,
641 ACPI_HANDLE *OutHandle)
642 {
643 *OutHandle = (ACPI_HANDLE) 1;
644 return (AE_OK);
645 }

647 ACPI_STATUS
648 AcpiOsDeleteSemaphore (
649 ACPI_HANDLE Handle)
650 {
651 return (AE_OK);

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 11

652 }

654 ACPI_STATUS
655 AcpiOsWaitSemaphore (
656 ACPI_HANDLE Handle,
657 UINT32 Units,
658 UINT16 Timeout)
659 {
660 return (AE_OK);
661 }

663 ACPI_STATUS
664 AcpiOsSignalSemaphore (
665 ACPI_HANDLE Handle,
666 UINT32 Units)
667 {
668 return (AE_OK);
669 }

671 #else
672 /**
673 *
674 * FUNCTION: AcpiOsCreateSemaphore
675 *
676 * PARAMETERS: InitialUnits - Units to be assigned to the new semaphore
677 * OutHandle - Where a handle will be returned
678 *
679 * RETURN: Status
680 *
681 * DESCRIPTION: Create an OS semaphore
682 *
683 ***/

685 ACPI_STATUS
686 AcpiOsCreateSemaphore (
687 UINT32 MaxUnits,
688 UINT32 InitialUnits,
689 ACPI_HANDLE *OutHandle)
690 {
691 sem_t *Sem;

694 if (!OutHandle)
695 {
696 return (AE_BAD_PARAMETER);
697 }

699 #ifdef __APPLE__
700 {
701 char *SemaphoreName = tmpnam (NULL);

703 Sem = sem_open (SemaphoreName, O_EXCL|O_CREAT, 0755, InitialUnits);
704 if (!Sem)
705 {
706 return (AE_NO_MEMORY);
707 }
708 sem_unlink (SemaphoreName); /* This just deletes the name */
709 }

711 #else
712 Sem = AcpiOsAllocate (sizeof (sem_t));
713 if (!Sem)
714 {
715 return (AE_NO_MEMORY);
716 }

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 12

718 if (sem_init (Sem, 0, InitialUnits) == -1)
719 {
720 AcpiOsFree (Sem);
721 return (AE_BAD_PARAMETER);
722 }
723 #endif

725 *OutHandle = (ACPI_HANDLE) Sem;
726 return (AE_OK);
727 }

730 /**
731 *
732 * FUNCTION: AcpiOsDeleteSemaphore
733 *
734 * PARAMETERS: Handle - Handle returned by AcpiOsCreateSemaphore
735 *
736 * RETURN: Status
737 *
738 * DESCRIPTION: Delete an OS semaphore
739 *
740 ***/

742 ACPI_STATUS
743 AcpiOsDeleteSemaphore (
744 ACPI_HANDLE Handle)
745 {
746 sem_t *Sem = (sem_t *) Handle;

749 if (!Sem)
750 {
751 return (AE_BAD_PARAMETER);
752 }

754 if (sem_destroy (Sem) == -1)
755 {
756 return (AE_BAD_PARAMETER);
757 }

759 return (AE_OK);
760 }

763 /**
764 *
765 * FUNCTION: AcpiOsWaitSemaphore
766 *
767 * PARAMETERS: Handle - Handle returned by AcpiOsCreateSemaphore
768 * Units - How many units to wait for
769 * MsecTimeout - How long to wait (milliseconds)
770 *
771 * RETURN: Status
772 *
773 * DESCRIPTION: Wait for units
774 *
775 ***/

777 ACPI_STATUS
778 AcpiOsWaitSemaphore (
779 ACPI_HANDLE Handle,
780 UINT32 Units,
781 UINT16 MsecTimeout)
782 {
783 ACPI_STATUS Status = AE_OK;

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 13

784 sem_t *Sem = (sem_t *) Handle;
785 #ifndef ACPI_USE_ALTERNATE_TIMEOUT
786 struct timespec Time;
787 int RetVal;
788 #endif

791 if (!Sem)
792 {
793 return (AE_BAD_PARAMETER);
794 }

796 switch (MsecTimeout)
797 {
798 /*
799 * No Wait:
800 * --------
801 * A zero timeout value indicates that we shouldn’t wait - just
802 * acquire the semaphore if available otherwise return AE_TIME
803 * (a.k.a. ’would block’).
804 */
805 case 0:

807 if (sem_trywait(Sem) == -1)
808 {
809 Status = (AE_TIME);
810 }
811 break;

813 /* Wait Indefinitely */

815 case ACPI_WAIT_FOREVER:

817 if (sem_wait (Sem))
818 {
819 Status = (AE_TIME);
820 }
821 break;

823 /* Wait with MsecTimeout */

825 default:

827 #ifdef ACPI_USE_ALTERNATE_TIMEOUT
828 /*
829 * Alternate timeout mechanism for environments where
830 * sem_timedwait is not available or does not work properly.
831 */
832 while (MsecTimeout)
833 {
834 if (sem_trywait (Sem) == 0)
835 {
836 /* Got the semaphore */
837 return (AE_OK);
838 }

840 if (MsecTimeout >= 10)
841 {
842 MsecTimeout -= 10;
843 usleep (10 * ACPI_USEC_PER_MSEC); /* ten milliseconds */
844 }
845 else
846 {
847 MsecTimeout--;
848 usleep (ACPI_USEC_PER_MSEC); /* one millisecond */
849 }

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 14

850 }
851 Status = (AE_TIME);
852 #else
853 /*
854 * The interface to sem_timedwait is an absolute time, so we need to
855 * get the current time, then add in the millisecond Timeout value.
856 */
857 if (clock_gettime (CLOCK_REALTIME, &Time) == -1)
858 {
859 perror ("clock_gettime");
860 return (AE_TIME);
861 }

863 Time.tv_sec += (MsecTimeout / ACPI_MSEC_PER_SEC);
864 Time.tv_nsec += ((MsecTimeout % ACPI_MSEC_PER_SEC) * ACPI_NSEC_PER_MSEC)

866 /* Handle nanosecond overflow (field must be less than one second) */

868 if (Time.tv_nsec >= ACPI_NSEC_PER_SEC)
869 {
870 Time.tv_sec += (Time.tv_nsec / ACPI_NSEC_PER_SEC);
871 Time.tv_nsec = (Time.tv_nsec % ACPI_NSEC_PER_SEC);
872 }

874 while (((RetVal = sem_timedwait (Sem, &Time)) == -1) && (errno == EINTR)
875 {
876 continue;
877 }

879 if (RetVal != 0)
880 {
881 if (errno != ETIMEDOUT)
882 {
883 perror ("sem_timedwait");
884 }
885 Status = (AE_TIME);
886 }
887 #endif
888 break;
889 }

891 return (Status);
892 }

895 /**
896 *
897 * FUNCTION: AcpiOsSignalSemaphore
898 *
899 * PARAMETERS: Handle - Handle returned by AcpiOsCreateSemaphore
900 * Units - Number of units to send
901 *
902 * RETURN: Status
903 *
904 * DESCRIPTION: Send units
905 *
906 ***/

908 ACPI_STATUS
909 AcpiOsSignalSemaphore (
910 ACPI_HANDLE Handle,
911 UINT32 Units)
912 {
913 sem_t *Sem = (sem_t *)Handle;

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 15

916 if (!Sem)
917 {
918 return (AE_BAD_PARAMETER);
919 }

921 if (sem_post (Sem) == -1)
922 {
923 return (AE_LIMIT);
924 }

926 return (AE_OK);
927 }

929 #endif /* ACPI_SINGLE_THREADED */

932 /**
933 *
934 * FUNCTION: Spinlock interfaces
935 *
936 * DESCRIPTION: Map these interfaces to semaphore interfaces
937 *
938 ***/

940 ACPI_STATUS
941 AcpiOsCreateLock (
942 ACPI_SPINLOCK *OutHandle)
943 {

945 return (AcpiOsCreateSemaphore (1, 1, OutHandle));
946 }

949 void
950 AcpiOsDeleteLock (
951 ACPI_SPINLOCK Handle)
952 {
953 AcpiOsDeleteSemaphore (Handle);
954 }

957 ACPI_CPU_FLAGS
958 AcpiOsAcquireLock (
959 ACPI_HANDLE Handle)
960 {
961 AcpiOsWaitSemaphore (Handle, 1, 0xFFFF);
962 return (0);
963 }

966 void
967 AcpiOsReleaseLock (
968 ACPI_SPINLOCK Handle,
969 ACPI_CPU_FLAGS Flags)
970 {
971 AcpiOsSignalSemaphore (Handle, 1);
972 }

975 /**
976 *
977 * FUNCTION: AcpiOsInstallInterruptHandler
978 *
979 * PARAMETERS: InterruptNumber - Level handler should respond to.
980 * Isr - Address of the ACPI interrupt handler
981 * ExceptPtr - Where status is returned

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 16

982 *
983 * RETURN: Handle to the newly installed handler.
984 *
985 * DESCRIPTION: Install an interrupt handler. Used to install the ACPI
986 * OS-independent handler.
987 *
988 ***/

990 UINT32
991 AcpiOsInstallInterruptHandler (
992 UINT32 InterruptNumber,
993 ACPI_OSD_HANDLER ServiceRoutine,
994 void *Context)
995 {

997 return (AE_OK);
998 }

1001 /**
1002 *
1003 * FUNCTION: AcpiOsRemoveInterruptHandler
1004 *
1005 * PARAMETERS: Handle - Returned when handler was installed
1006 *
1007 * RETURN: Status
1008 *
1009 * DESCRIPTION: Uninstalls an interrupt handler.
1010 *
1011 ***/

1013 ACPI_STATUS
1014 AcpiOsRemoveInterruptHandler (
1015 UINT32 InterruptNumber,
1016 ACPI_OSD_HANDLER ServiceRoutine)
1017 {

1019 return (AE_OK);
1020 }

1023 /**
1024 *
1025 * FUNCTION: AcpiOsStall
1026 *
1027 * PARAMETERS: microseconds - Time to sleep
1028 *
1029 * RETURN: Blocks until sleep is completed.
1030 *
1031 * DESCRIPTION: Sleep at microsecond granularity
1032 *
1033 ***/

1035 void
1036 AcpiOsStall (
1037 UINT32 microseconds)
1038 {

1040 if (microseconds)
1041 {
1042 usleep (microseconds);
1043 }
1044 }

1047 /**

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 17

1048 *
1049 * FUNCTION: AcpiOsSleep
1050 *
1051 * PARAMETERS: milliseconds - Time to sleep
1052 *
1053 * RETURN: Blocks until sleep is completed.
1054 *
1055 * DESCRIPTION: Sleep at millisecond granularity
1056 *
1057 ***/

1059 void
1060 AcpiOsSleep (
1061 UINT64 milliseconds)
1062 {

1064 /* Sleep for whole seconds */

1066 sleep (milliseconds / ACPI_MSEC_PER_SEC);

1068 /*
1069 * Sleep for remaining microseconds.
1070 * Arg to usleep() is in usecs and must be less than 1,000,000 (1 second).
1071 */
1072 usleep ((milliseconds % ACPI_MSEC_PER_SEC) * ACPI_USEC_PER_MSEC);
1073 }

1076 /**
1077 *
1078 * FUNCTION: AcpiOsGetTimer
1079 *
1080 * PARAMETERS: None
1081 *
1082 * RETURN: Current time in 100 nanosecond units
1083 *
1084 * DESCRIPTION: Get the current system time
1085 *
1086 ***/

1088 UINT64
1089 AcpiOsGetTimer (
1090 void)
1091 {
1092 struct timeval time;

1095 /* This timer has sufficient resolution for user-space application code */

1097 gettimeofday (&time, NULL);

1099 /* (Seconds * 10^7 = 100ns(10^-7)) + (Microseconds(10^-6) * 10^1 = 100ns) */

1101 return (((UINT64) time.tv_sec * ACPI_100NSEC_PER_SEC) +
1102 ((UINT64) time.tv_usec * ACPI_100NSEC_PER_USEC));
1103 }

1106 /**
1107 *
1108 * FUNCTION: AcpiOsReadPciConfiguration
1109 *
1110 * PARAMETERS: PciId - Seg/Bus/Dev
1111 * Register - Device Register
1112 * Value - Buffer where value is placed
1113 * Width - Number of bits

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 18

1114 *
1115 * RETURN: Status
1116 *
1117 * DESCRIPTION: Read data from PCI configuration space
1118 *
1119 ***/

1121 ACPI_STATUS
1122 AcpiOsReadPciConfiguration (
1123 ACPI_PCI_ID *PciId,
1124 UINT32 Register,
1125 UINT64 *Value,
1126 UINT32 Width)
1127 {

1129 *Value = 0;
1130 return (AE_OK);
1131 }

1134 /**
1135 *
1136 * FUNCTION: AcpiOsWritePciConfiguration
1137 *
1138 * PARAMETERS: PciId - Seg/Bus/Dev
1139 * Register - Device Register
1140 * Value - Value to be written
1141 * Width - Number of bits
1142 *
1143 * RETURN: Status.
1144 *
1145 * DESCRIPTION: Write data to PCI configuration space
1146 *
1147 ***/

1149 ACPI_STATUS
1150 AcpiOsWritePciConfiguration (
1151 ACPI_PCI_ID *PciId,
1152 UINT32 Register,
1153 UINT64 Value,
1154 UINT32 Width)
1155 {

1157 return (AE_OK);
1158 }

1161 /**
1162 *
1163 * FUNCTION: AcpiOsReadPort
1164 *
1165 * PARAMETERS: Address - Address of I/O port/register to read
1166 * Value - Where value is placed
1167 * Width - Number of bits
1168 *
1169 * RETURN: Value read from port
1170 *
1171 * DESCRIPTION: Read data from an I/O port or register
1172 *
1173 ***/

1175 ACPI_STATUS
1176 AcpiOsReadPort (
1177 ACPI_IO_ADDRESS Address,
1178 UINT32 *Value,
1179 UINT32 Width)

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 19

1180 {

1182 switch (Width)
1183 {
1184 case 8:

1186 *Value = 0xFF;
1187 break;

1189 case 16:

1191 *Value = 0xFFFF;
1192 break;

1194 case 32:

1196 *Value = 0xFFFFFFFF;
1197 break;

1199 default:

1201 return (AE_BAD_PARAMETER);
1202 }

1204 return (AE_OK);
1205 }

1208 /**
1209 *
1210 * FUNCTION: AcpiOsWritePort
1211 *
1212 * PARAMETERS: Address - Address of I/O port/register to write
1213 * Value - Value to write
1214 * Width - Number of bits
1215 *
1216 * RETURN: None
1217 *
1218 * DESCRIPTION: Write data to an I/O port or register
1219 *
1220 ***/

1222 ACPI_STATUS
1223 AcpiOsWritePort (
1224 ACPI_IO_ADDRESS Address,
1225 UINT32 Value,
1226 UINT32 Width)
1227 {

1229 return (AE_OK);
1230 }

1233 /**
1234 *
1235 * FUNCTION: AcpiOsReadMemory
1236 *
1237 * PARAMETERS: Address - Physical Memory Address to read
1238 * Value - Where value is placed
1239 * Width - Number of bits (8,16,32, or 64)
1240 *
1241 * RETURN: Value read from physical memory address. Always returned
1242 * as a 64-bit integer, regardless of the read width.
1243 *
1244 * DESCRIPTION: Read data from a physical memory address
1245 *

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 20

1246 ***/

1248 ACPI_STATUS
1249 AcpiOsReadMemory (
1250 ACPI_PHYSICAL_ADDRESS Address,
1251 UINT64 *Value,
1252 UINT32 Width)
1253 {

1255 switch (Width)
1256 {
1257 case 8:
1258 case 16:
1259 case 32:
1260 case 64:

1262 *Value = 0;
1263 break;

1265 default:

1267 return (AE_BAD_PARAMETER);
1268 }
1269 return (AE_OK);
1270 }

1273 /**
1274 *
1275 * FUNCTION: AcpiOsWriteMemory
1276 *
1277 * PARAMETERS: Address - Physical Memory Address to write
1278 * Value - Value to write
1279 * Width - Number of bits (8,16,32, or 64)
1280 *
1281 * RETURN: None
1282 *
1283 * DESCRIPTION: Write data to a physical memory address
1284 *
1285 ***/

1287 ACPI_STATUS
1288 AcpiOsWriteMemory (
1289 ACPI_PHYSICAL_ADDRESS Address,
1290 UINT64 Value,
1291 UINT32 Width)
1292 {

1294 return (AE_OK);
1295 }

1298 /**
1299 *
1300 * FUNCTION: AcpiOsReadable
1301 *
1302 * PARAMETERS: Pointer - Area to be verified
1303 * Length - Size of area
1304 *
1305 * RETURN: TRUE if readable for entire length
1306 *
1307 * DESCRIPTION: Verify that a pointer is valid for reading
1308 *
1309 ***/

1311 BOOLEAN

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 21

1312 AcpiOsReadable (
1313 void *Pointer,
1314 ACPI_SIZE Length)
1315 {

1317 return (TRUE);
1318 }

1321 /**
1322 *
1323 * FUNCTION: AcpiOsWritable
1324 *
1325 * PARAMETERS: Pointer - Area to be verified
1326 * Length - Size of area
1327 *
1328 * RETURN: TRUE if writable for entire length
1329 *
1330 * DESCRIPTION: Verify that a pointer is valid for writing
1331 *
1332 ***/

1334 BOOLEAN
1335 AcpiOsWritable (
1336 void *Pointer,
1337 ACPI_SIZE Length)
1338 {

1340 return (TRUE);
1341 }

1344 /**
1345 *
1346 * FUNCTION: AcpiOsSignal
1347 *
1348 * PARAMETERS: Function - ACPI CA signal function code
1349 * Info - Pointer to function-dependent structure
1350 *
1351 * RETURN: Status
1352 *
1353 * DESCRIPTION: Miscellaneous functions. Example implementation only.
1354 *
1355 ***/

1357 ACPI_STATUS
1358 AcpiOsSignal (
1359 UINT32 Function,
1360 void *Info)
1361 {

1363 switch (Function)
1364 {
1365 case ACPI_SIGNAL_FATAL:

1367 break;

1369 case ACPI_SIGNAL_BREAKPOINT:

1371 break;

1373 default:

1375 break;
1376 }

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 22

1378 return (AE_OK);
1379 }

1381 /* Optional multi-thread support */

1383 #ifndef ACPI_SINGLE_THREADED
1384 /**
1385 *
1386 * FUNCTION: AcpiOsGetThreadId
1387 *
1388 * PARAMETERS: None
1389 *
1390 * RETURN: Id of the running thread
1391 *
1392 * DESCRIPTION: Get the ID of the current (running) thread
1393 *
1394 ***/

1396 ACPI_THREAD_ID
1397 AcpiOsGetThreadId (
1398 void)
1399 {
1400 pthread_t thread;

1403 thread = pthread_self();
1404 return (ACPI_CAST_PTHREAD_T (thread));
1405 }

1408 /**
1409 *
1410 * FUNCTION: AcpiOsExecute
1411 *
1412 * PARAMETERS: Type - Type of execution
1413 * Function - Address of the function to execute
1414 * Context - Passed as a parameter to the function
1415 *
1416 * RETURN: Status.
1417 *
1418 * DESCRIPTION: Execute a new thread
1419 *
1420 ***/

1422 ACPI_STATUS
1423 AcpiOsExecute (
1424 ACPI_EXECUTE_TYPE Type,
1425 ACPI_OSD_EXEC_CALLBACK Function,
1426 void *Context)
1427 {
1428 pthread_t thread;
1429 int ret;

1432 ret = pthread_create (&thread, NULL, (PTHREAD_CALLBACK) Function, Context);
1433 if (ret)
1434 {
1435 AcpiOsPrintf("Create thread failed");
1436 }
1437 return (0);
1438 }

1440 #endif /* ACPI_SINGLE_THREADED */

1443 /**

new/usr/src/common/acpica/os_specific/service_layers/osunixxf.c 23

1444 *
1445 * FUNCTION: AcpiOsWaitEventsComplete
1446 *
1447 * PARAMETERS: None
1448 *
1449 * RETURN: None
1450 *
1451 * DESCRIPTION: Wait for all asynchronous events to complete. This
1452 * implementation does nothing.
1453 *
1454 ***/

1456 void
1457 AcpiOsWaitEventsComplete (
1458 void)
1459 {
1460 return;
1461 }

new/usr/src/common/acpica/os_specific/service_layers/oswindir.c 1

**
 7547 Thu Dec 26 13:50:06 2013
new/usr/src/common/acpica/os_specific/service_layers/oswindir.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: oswindir - Windows directory access interfaces
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include <acpi.h>

46 #include <stdio.h>
47 #include <stdlib.h>
48 #include <string.h>
49 #include <io.h>

51 typedef struct ExternalFindInfo
52 {
53 struct _finddata_t DosInfo;
54 char *FullWildcardSpec;
55 long FindHandle;
56 char State;
57 char RequestedFileType;

59 } EXTERNAL_FIND_INFO;

new/usr/src/common/acpica/os_specific/service_layers/oswindir.c 2

62 /***
63 *
64 * FUNCTION: AcpiOsOpenDirectory
65 *
66 * PARAMETERS: DirPathname - Full pathname to the directory
67 * WildcardSpec - string of the form "*.c", etc.
68 * RequestedFileType - Either a directory or normal file
69 *
70 * RETURN: A directory "handle" to be used in subsequent search operations.
71 * NULL returned on failure.
72 *
73 * DESCRIPTION: Open a directory in preparation for a wildcard search
74 *
75 **/

77 void *
78 AcpiOsOpenDirectory (
79 char *DirPathname,
80 char *WildcardSpec,
81 char RequestedFileType)
82 {
83 long FindHandle;
84 char *FullWildcardSpec;
85 EXTERNAL_FIND_INFO *SearchInfo;

88 /* No directory path means "use current directory" - use a dot */

90 if (!DirPathname || strlen (DirPathname) == 0)
91 {
92 DirPathname = ".";
93 }

95 /* Allocate the info struct that will be returned to the caller */

97 SearchInfo = calloc (sizeof (EXTERNAL_FIND_INFO), 1);
98 if (!SearchInfo)
99 {
100 return (NULL);
101 }

103 /* Allocate space for the full wildcard path */

105 FullWildcardSpec = calloc (strlen (DirPathname) + strlen (WildcardSpec) + 2,
106 if (!FullWildcardSpec)
107 {
108 printf ("Could not allocate buffer for wildcard pathname\n");
109 return (NULL);
110 }

112 /* Create the full wildcard path */

114 strcpy (FullWildcardSpec, DirPathname);
115 strcat (FullWildcardSpec, "/");
116 strcat (FullWildcardSpec, WildcardSpec);

118 /* Initialize the find functions, get first match */

120 FindHandle = _findfirst (FullWildcardSpec, &SearchInfo->DosInfo);
121 if (FindHandle == -1)
122 {
123 /* Failure means that no match was found */

125 free (FullWildcardSpec);
126 free (SearchInfo);

new/usr/src/common/acpica/os_specific/service_layers/oswindir.c 3

127 return (NULL);
128 }

130 /* Save the info in the return structure */

132 SearchInfo->RequestedFileType = RequestedFileType;
133 SearchInfo->FullWildcardSpec = FullWildcardSpec;
134 SearchInfo->FindHandle = FindHandle;
135 SearchInfo->State = 0;
136 return (SearchInfo);
137 }

140 /***
141 *
142 * FUNCTION: AcpiOsGetNextFilename
143 *
144 * PARAMETERS: DirHandle - Created via AcpiOsOpenDirectory
145 *
146 * RETURN: Next filename matched. NULL if no more matches.
147 *
148 * DESCRIPTION: Get the next file in the directory that matches the wildcard
149 * specification.
150 *
151 **/

153 char *
154 AcpiOsGetNextFilename (
155 void *DirHandle)
156 {
157 EXTERNAL_FIND_INFO *SearchInfo = DirHandle;
158 int Status;
159 char FileTypeNotMatched = 1;

162 /*
163 * Loop while we have matched files but not found any files of
164 * the requested type.
165 */
166 while (FileTypeNotMatched)
167 {
168 /* On the first call, we already have the first match */

170 if (SearchInfo->State == 0)
171 {
172 /* No longer the first match */

174 SearchInfo->State = 1;
175 }
176 else
177 {
178 /* Get the next match */

180 Status = _findnext (SearchInfo->FindHandle, &SearchInfo->DosInfo);
181 if (Status != 0)
182 {
183 return (NULL);
184 }
185 }

187 /*
188 * Found a match, now check to make sure that the file type
189 * matches the requested file type (directory or normal file)
190 *
191 * NOTE: use of the attrib field saves us from doing a very
192 * expensive stat() on the file!

new/usr/src/common/acpica/os_specific/service_layers/oswindir.c 4

193 */
194 switch (SearchInfo->RequestedFileType)
195 {
196 case REQUEST_FILE_ONLY:

198 /* Anything other than A_SUBDIR is OK */

200 if (!(SearchInfo->DosInfo.attrib & _A_SUBDIR))
201 {
202 FileTypeNotMatched = 0;
203 }
204 break;

206 case REQUEST_DIR_ONLY:

208 /* Must have A_SUBDIR bit set */

210 if (SearchInfo->DosInfo.attrib & _A_SUBDIR)
211 {
212 FileTypeNotMatched = 0;
213 }
214 break;

216 default:

218 return (NULL);
219 }
220 }

222 return (SearchInfo->DosInfo.name);
223 }

226 /***
227 *
228 * FUNCTION: AcpiOsCloseDirectory
229 *
230 * PARAMETERS: DirHandle - Created via AcpiOsOpenDirectory
231 *
232 * RETURN: None
233 *
234 * DESCRIPTION: Close the open directory and cleanup.
235 *
236 **/

238 void
239 AcpiOsCloseDirectory (
240 void *DirHandle)
241 {
242 EXTERNAL_FIND_INFO *SearchInfo = DirHandle;

245 /* Close the directory and free allocations */

247 _findclose (SearchInfo->FindHandle);
248 free (SearchInfo->FullWildcardSpec);
249 free (DirHandle);
250 }

new/usr/src/common/acpica/os_specific/service_layers/oswintbl.c 1

**
 12518 Thu Dec 26 13:50:06 2013
new/usr/src/common/acpica/os_specific/service_layers/oswintbl.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: oswintbl - Windows OSL for obtaining ACPI tables
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "acutils.h"
47 #include <stdio.h>

49 #ifdef WIN32
50 #pragma warning(disable:4115) /* warning C4115: (caused by rpcasync.h) */
51 #include <windows.h>

53 #elif WIN64
54 #include <windowsx.h>
55 #endif

57 #define _COMPONENT ACPI_OS_SERVICES
58 ACPI_MODULE_NAME ("oswintbl")

new/usr/src/common/acpica/os_specific/service_layers/oswintbl.c 2

60 /* Local prototypes */

62 static char *
63 WindowsFormatException (
64 LONG WinStatus);

66 /* Globals */

68 #define LOCAL_BUFFER_SIZE 64

70 static char KeyBuffer[LOCAL_BUFFER_SIZE];
71 static char ErrorBuffer[LOCAL_BUFFER_SIZE];

73 /*
74 * Tables supported in the Windows registry. SSDTs are not placed into
75 * the registry, a limitation.
76 */
77 static char *SupportedTables[] =
78 {
79 "DSDT",
80 "RSDT",
81 "FACS",
82 "FACP"
83 };

85 /* Max index for table above */

87 #define ACPI_OS_MAX_TABLE_INDEX 3

90 /**
91 *
92 * FUNCTION: WindowsFormatException
93 *
94 * PARAMETERS: WinStatus - Status from a Windows system call
95 *
96 * RETURN: Formatted (ascii) exception code. Front-end to Windows
97 * FormatMessage interface.
98 *
99 * DESCRIPTION: Decode a windows exception
100 *
101 ***/

103 static char *
104 WindowsFormatException (
105 LONG WinStatus)
106 {

108 ErrorBuffer[0] = 0;
109 FormatMessage (FORMAT_MESSAGE_FROM_SYSTEM, NULL, WinStatus, 0,
110 ErrorBuffer, LOCAL_BUFFER_SIZE, NULL);

112 return (ErrorBuffer);
113 }

116 /**
117 *
118 * FUNCTION: AcpiOsGetTableByAddress
119 *
120 * PARAMETERS: Address - Physical address of the ACPI table
121 * Table - Where a pointer to the table is returned
122 *
123 * RETURN: Status; Table buffer is returned if AE_OK.
124 * AE_NOT_FOUND: A valid table was not found at the address
125 *

new/usr/src/common/acpica/os_specific/service_layers/oswintbl.c 3

126 * DESCRIPTION: Get an ACPI table via a physical memory address.
127 *
128 * NOTE: Cannot be implemented without a Windows device driver.
129 *
130 ***/

132 ACPI_STATUS
133 AcpiOsGetTableByAddress (
134 ACPI_PHYSICAL_ADDRESS Address,
135 ACPI_TABLE_HEADER **Table)
136 {

138 fprintf (stderr, "Get table by address is not supported on Windows\n");
139 return (AE_SUPPORT);
140 }

143 /**
144 *
145 * FUNCTION: AcpiOsGetTableByIndex
146 *
147 * PARAMETERS: Index - Which table to get
148 * Table - Where a pointer to the table is returned
149 * Instance - Where a pointer to the table instance no. is
150 * returned
151 * Address - Where the table physical address is returned
152 *
153 * RETURN: Status; Table buffer and physical address returned if AE_OK.
154 * AE_LIMIT: Index is beyond valid limit
155 *
156 * DESCRIPTION: Get an ACPI table via an index value (0 through n). Returns
157 * AE_LIMIT when an invalid index is reached. Index is not
158 * necessarily an index into the RSDT/XSDT.
159 * Table is obtained from the Windows registry.
160 *
161 * NOTE: Cannot get the physical address from the windows registry;
162 * zero is returned instead.
163 *
164 ***/

166 ACPI_STATUS
167 AcpiOsGetTableByIndex (
168 UINT32 Index,
169 ACPI_TABLE_HEADER **Table,
170 UINT32 *Instance,
171 ACPI_PHYSICAL_ADDRESS *Address)
172 {
173 ACPI_STATUS Status;

176 if (Index > ACPI_OS_MAX_TABLE_INDEX)
177 {
178 return (AE_LIMIT);
179 }

181 Status = AcpiOsGetTableByName (SupportedTables[Index], 0, Table, Address);
182 return (Status);
183 }

186 /**
187 *
188 * FUNCTION: AcpiOsGetTableByName
189 *
190 * PARAMETERS: Signature - ACPI Signature for desired table. Must be
191 * a null terminated 4-character string.

new/usr/src/common/acpica/os_specific/service_layers/oswintbl.c 4

192 * Instance - For SSDTs (0...n). Use 0 otherwise.
193 * Table - Where a pointer to the table is returned
194 * Address - Where the table physical address is returned
195 *
196 * RETURN: Status; Table buffer and physical address returned if AE_OK.
197 * AE_LIMIT: Instance is beyond valid limit
198 * AE_NOT_FOUND: A table with the signature was not found
199 *
200 * DESCRIPTION: Get an ACPI table via a table signature (4 ASCII characters).
201 * Returns AE_LIMIT when an invalid instance is reached.
202 * Table is obtained from the Windows registry.
203 *
204 * NOTE: Assumes the input signature is uppercase.
205 * Cannot get the physical address from the windows registry;
206 * zero is returned instead.
207 *
208 ***/

210 ACPI_STATUS
211 AcpiOsGetTableByName (
212 char *Signature,
213 UINT32 Instance,
214 ACPI_TABLE_HEADER **Table,
215 ACPI_PHYSICAL_ADDRESS *Address)
216 {
217 HKEY Handle = NULL;
218 LONG WinStatus;
219 ULONG Type;
220 ULONG NameSize;
221 ULONG DataSize;
222 HKEY SubKey;
223 ULONG i;
224 ACPI_TABLE_HEADER *ReturnTable;

227 /*
228 * Windows has no SSDTs in the registry, so multiple instances are
229 * not supported.
230 */
231 if (Instance > 0)
232 {
233 return (AE_LIMIT);
234 }

236 /* Get a handle to the table key */

238 while (1)
239 {
240 ACPI_STRCPY (KeyBuffer, "HARDWARE\\ACPI\\");
241 if (AcpiUtSafeStrcat (KeyBuffer, sizeof (KeyBuffer), Signature))
242 {
243 return (AE_BUFFER_OVERFLOW);
244 }

246 WinStatus = RegOpenKeyEx (HKEY_LOCAL_MACHINE, KeyBuffer,
247 0L, KEY_READ, &Handle);

249 if (WinStatus != ERROR_SUCCESS)
250 {
251 /*
252 * Somewhere along the way, MS changed the registry entry for
253 * the FADT from
254 * HARDWARE/ACPI/FACP to
255 * HARDWARE/ACPI/FADT.
256 *
257 * This code allows for both.

new/usr/src/common/acpica/os_specific/service_layers/oswintbl.c 5

258 */
259 if (ACPI_COMPARE_NAME (Signature, "FACP"))
260 {
261 Signature = "FADT";
262 }
263 else if (ACPI_COMPARE_NAME (Signature, "XSDT"))
264 {
265 Signature = "RSDT";
266 }
267 else
268 {
269 fprintf (stderr,
270 "Could not find %s in registry at %s: %s (WinStatus=0x%X)\n"
271 Signature, KeyBuffer, WindowsFormatException (WinStatus), Wi
272 return (AE_NOT_FOUND);
273 }
274 }
275 else
276 {
277 break;
278 }
279 }

281 /* Actual data for the table is down a couple levels */

283 for (i = 0; ;)
284 {
285 WinStatus = RegEnumKey (Handle, i, KeyBuffer, sizeof (KeyBuffer));
286 i++;
287 if (WinStatus == ERROR_NO_MORE_ITEMS)
288 {
289 break;
290 }

292 WinStatus = RegOpenKey (Handle, KeyBuffer, &SubKey);
293 if (WinStatus != ERROR_SUCCESS)
294 {
295 fprintf (stderr, "Could not open %s entry: %s\n",
296 Signature, WindowsFormatException (WinStatus));
297 return (AE_ERROR);
298 }

300 RegCloseKey (Handle);
301 Handle = SubKey;
302 i = 0;
303 }

305 /* Find the (binary) table entry */

307 for (i = 0; ; i++)
308 {
309 NameSize = sizeof (KeyBuffer);
310 WinStatus = RegEnumValue (Handle, i, KeyBuffer, &NameSize, NULL,
311 &Type, NULL, 0);
312 if (WinStatus != ERROR_SUCCESS)
313 {
314 fprintf (stderr, "Could not get %s registry entry: %s\n",
315 Signature, WindowsFormatException (WinStatus));
316 return (AE_ERROR);
317 }

319 if (Type == REG_BINARY)
320 {
321 break;
322 }
323 }

new/usr/src/common/acpica/os_specific/service_layers/oswintbl.c 6

325 /* Get the size of the table */

327 WinStatus = RegQueryValueEx (Handle, KeyBuffer, NULL, NULL,
328 NULL, &DataSize);
329 if (WinStatus != ERROR_SUCCESS)
330 {
331 fprintf (stderr, "Could not read the %s table size: %s\n",
332 Signature, WindowsFormatException (WinStatus));
333 return (AE_ERROR);
334 }

336 /* Allocate a new buffer for the table */

338 ReturnTable = malloc (DataSize);
339 if (!ReturnTable)
340 {
341 goto Cleanup;
342 }

344 /* Get the actual table from the registry */

346 WinStatus = RegQueryValueEx (Handle, KeyBuffer, NULL, NULL,
347 (UCHAR *) ReturnTable, &DataSize);
348 if (WinStatus != ERROR_SUCCESS)
349 {
350 fprintf (stderr, "Could not read %s data: %s\n",
351 Signature, WindowsFormatException (WinStatus));
352 free (ReturnTable);
353 return (AE_ERROR);
354 }

356 Cleanup:
357 RegCloseKey (Handle);

359 *Table = ReturnTable;
360 *Address = 0;
361 return (AE_OK);
362 }

365 /* These are here for acpidump only, so we don’t need to link oswinxf */

367 #ifdef ACPI_DUMP_APP
368 /**
369 *
370 * FUNCTION: AcpiOsMapMemory
371 *
372 * PARAMETERS: Where - Physical address of memory to be mapped
373 * Length - How much memory to map
374 *
375 * RETURN: Pointer to mapped memory. Null on error.
376 *
377 * DESCRIPTION: Map physical memory into caller’s address space
378 *
379 ***/

381 void *
382 AcpiOsMapMemory (
383 ACPI_PHYSICAL_ADDRESS Where,
384 ACPI_SIZE Length)
385 {

387 return (ACPI_TO_POINTER ((ACPI_SIZE) Where));
388 }

new/usr/src/common/acpica/os_specific/service_layers/oswintbl.c 7

391 /**
392 *
393 * FUNCTION: AcpiOsUnmapMemory
394 *
395 * PARAMETERS: Where - Logical address of memory to be unmapped
396 * Length - How much memory to unmap
397 *
398 * RETURN: None.
399 *
400 * DESCRIPTION: Delete a previously created mapping. Where and Length must
401 * correspond to a previous mapping exactly.
402 *
403 ***/

405 void
406 AcpiOsUnmapMemory (
407 void *Where,
408 ACPI_SIZE Length)
409 {

411 return;
412 }
413 #endif

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 1

**
 37033 Thu Dec 26 13:50:06 2013
new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c
update to acpica-unix2-20131218
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: oswinxf - Windows OSL
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"

47 #ifdef WIN32
48 #pragma warning(disable:4115) /* warning C4115: named type definition in paren

50 #include <windows.h>
51 #include <winbase.h>

53 #elif WIN64
54 #include <windowsx.h>
55 #endif

57 #include <stdio.h>
58 #include <stdlib.h>

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 2

59 #include <stdarg.h>
60 #include <process.h>
61 #include <time.h>

63 #define _COMPONENT ACPI_OS_SERVICES
64 ACPI_MODULE_NAME ("oswinxf")

67 FILE *AcpiGbl_OutputFile;
68 UINT64 TimerFrequency;
69 char TableName[ACPI_NAME_SIZE + 1];

71 #define ACPI_OS_DEBUG_TIMEOUT 30000 /* 30 seconds */

74 /* Upcalls to AcpiExec application */

76 ACPI_PHYSICAL_ADDRESS
77 AeLocalGetRootPointer (
78 void);

80 void
81 AeTableOverride (
82 ACPI_TABLE_HEADER *ExistingTable,
83 ACPI_TABLE_HEADER **NewTable);

85 /*
86 * Real semaphores are only used for a multi-threaded application
87 */
88 #ifndef ACPI_SINGLE_THREADED

90 /* Semaphore information structure */

92 typedef struct acpi_os_semaphore_info
93 {
94 UINT16 MaxUnits;
95 UINT16 CurrentUnits;
96 void *OsHandle;

98 } ACPI_OS_SEMAPHORE_INFO;

100 /* Need enough semaphores to run the large aslts suite */

102 #define ACPI_OS_MAX_SEMAPHORES 256

104 ACPI_OS_SEMAPHORE_INFO AcpiGbl_Semaphores[ACPI_OS_MAX_SEMAPHORES];

106 #endif /* ACPI_SINGLE_THREADED */

108 BOOLEAN AcpiGbl_DebugTimeout = FALSE;

110 /**
111 *
112 * FUNCTION: AcpiOsTerminate
113 *
114 * PARAMETERS: None
115 *
116 * RETURN: Status
117 *
118 * DESCRIPTION: Nothing to do for windows
119 *
120 ***/

122 ACPI_STATUS
123 AcpiOsTerminate (
124 void)

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 3

125 {
126 return (AE_OK);
127 }

130 /**
131 *
132 * FUNCTION: AcpiOsInitialize
133 *
134 * PARAMETERS: None
135 *
136 * RETURN: Status
137 *
138 * DESCRIPTION: Init this OSL
139 *
140 ***/

142 ACPI_STATUS
143 AcpiOsInitialize (
144 void)
145 {
146 LARGE_INTEGER LocalTimerFrequency;

149 #ifndef ACPI_SINGLE_THREADED
150 /* Clear the semaphore info array */

152 memset (AcpiGbl_Semaphores, 0x00, sizeof (AcpiGbl_Semaphores));
153 #endif

155 AcpiGbl_OutputFile = stdout;

157 /* Get the timer frequency for use in AcpiOsGetTimer */

159 TimerFrequency = 0;
160 if (QueryPerformanceFrequency (&LocalTimerFrequency))
161 {
162 /* Frequency is in ticks per second */

164 TimerFrequency = LocalTimerFrequency.QuadPart;
165 }

167 return (AE_OK);
168 }

171 /**
172 *
173 * FUNCTION: AcpiOsGetRootPointer
174 *
175 * PARAMETERS: None
176 *
177 * RETURN: RSDP physical address
178 *
179 * DESCRIPTION: Gets the root pointer (RSDP)
180 *
181 ***/

183 ACPI_PHYSICAL_ADDRESS
184 AcpiOsGetRootPointer (
185 void)
186 {

188 return (AeLocalGetRootPointer ());
189 }

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 4

192 /**
193 *
194 * FUNCTION: AcpiOsPredefinedOverride
195 *
196 * PARAMETERS: InitVal - Initial value of the predefined object
197 * NewVal - The new value for the object
198 *
199 * RETURN: Status, pointer to value. Null pointer returned if not
200 * overriding.
201 *
202 * DESCRIPTION: Allow the OS to override predefined names
203 *
204 ***/

206 ACPI_STATUS
207 AcpiOsPredefinedOverride (
208 const ACPI_PREDEFINED_NAMES *InitVal,
209 ACPI_STRING *NewVal)
210 {

212 if (!InitVal || !NewVal)
213 {
214 return (AE_BAD_PARAMETER);
215 }

217 *NewVal = NULL;
218 return (AE_OK);
219 }

222 /**
223 *
224 * FUNCTION: AcpiOsTableOverride
225 *
226 * PARAMETERS: ExistingTable - Header of current table (probably firmware
227 * NewTable - Where an entire new table is returned.
228 *
229 * RETURN: Status, pointer to new table. Null pointer returned if no
230 * table is available to override
231 *
232 * DESCRIPTION: Return a different version of a table if one is available
233 *
234 ***/

236 ACPI_STATUS
237 AcpiOsTableOverride (
238 ACPI_TABLE_HEADER *ExistingTable,
239 ACPI_TABLE_HEADER **NewTable)
240 {
241 #ifdef ACPI_ASL_COMPILER
242 ACPI_STATUS Status;
243 ACPI_PHYSICAL_ADDRESS Address;
244 #endif

246 if (!ExistingTable || !NewTable)
247 {
248 return (AE_BAD_PARAMETER);
249 }

251 *NewTable = NULL;

254 #ifdef ACPI_EXEC_APP

256 /* Call back up to AcpiExec */

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 5

258 AeTableOverride (ExistingTable, NewTable);
259 #endif

262 #ifdef ACPI_ASL_COMPILER

264 /* Attempt to get the table from the registry */

266 /* Construct a null-terminated string from table signature */

268 ACPI_MOVE_NAME (TableName, ExistingTable->Signature);
269 TableName[ACPI_NAME_SIZE] = 0;

271 Status = AcpiOsGetTableByName (TableName, 0, NewTable, &Address);
272 if (ACPI_SUCCESS (Status))
273 {
274 AcpiOsPrintf ("Table [%s] obtained from registry, %u bytes\n",
275 TableName, (*NewTable)->Length);
276 }
277 else
278 {
279 AcpiOsPrintf ("Could not read table %s from registry (%s)\n",
280 TableName, AcpiFormatException (Status));
281 }
282 #endif

284 return (AE_OK);
285 }

288 /**
289 *
290 * FUNCTION: AcpiOsPhysicalTableOverride
291 *
292 * PARAMETERS: ExistingTable - Header of current table (probably firmware
293 * NewAddress - Where new table address is returned
294 * (Physical address)
295 * NewTableLength - Where new table length is returned
296 *
297 * RETURN: Status, address/length of new table. Null pointer returned
298 * if no table is available to override.
299 *
300 * DESCRIPTION: Returns AE_SUPPORT, function not used in user space.
301 *
302 ***/

304 ACPI_STATUS
305 AcpiOsPhysicalTableOverride (
306 ACPI_TABLE_HEADER *ExistingTable,
307 ACPI_PHYSICAL_ADDRESS *NewAddress,
308 UINT32 *NewTableLength)
309 {

311 return (AE_SUPPORT);
312 }

315 /**
316 *
317 * FUNCTION: AcpiOsGetTimer
318 *
319 * PARAMETERS: None
320 *
321 * RETURN: Current ticks in 100-nanosecond units
322 *

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 6

323 * DESCRIPTION: Get the value of a system timer
324 *
325 **/

327 UINT64
328 AcpiOsGetTimer (
329 void)
330 {
331 LARGE_INTEGER Timer;

334 /* Attempt to use hi-granularity timer first */

336 if (TimerFrequency &&
337 QueryPerformanceCounter (&Timer))
338 {
339 /* Convert to 100 nanosecond ticks */

341 return ((UINT64) ((Timer.QuadPart * (UINT64) ACPI_100NSEC_PER_SEC) /
342 TimerFrequency));
343 }

345 /* Fall back to the lo-granularity timer */

347 else
348 {
349 /* Convert milliseconds to 100 nanosecond ticks */

351 return ((UINT64) GetTickCount() * ACPI_100NSEC_PER_MSEC);
352 }
353 }

356 /**
357 *
358 * FUNCTION: AcpiOsReadable
359 *
360 * PARAMETERS: Pointer - Area to be verified
361 * Length - Size of area
362 *
363 * RETURN: TRUE if readable for entire length
364 *
365 * DESCRIPTION: Verify that a pointer is valid for reading
366 *
367 ***/

369 BOOLEAN
370 AcpiOsReadable (
371 void *Pointer,
372 ACPI_SIZE Length)
373 {

375 return ((BOOLEAN) !IsBadReadPtr (Pointer, Length));
376 }

379 /**
380 *
381 * FUNCTION: AcpiOsWritable
382 *
383 * PARAMETERS: Pointer - Area to be verified
384 * Length - Size of area
385 *
386 * RETURN: TRUE if writable for entire length
387 *
388 * DESCRIPTION: Verify that a pointer is valid for writing

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 7

389 *
390 ***/

392 BOOLEAN
393 AcpiOsWritable (
394 void *Pointer,
395 ACPI_SIZE Length)
396 {

398 return ((BOOLEAN) !IsBadWritePtr (Pointer, Length));
399 }

402 /**
403 *
404 * FUNCTION: AcpiOsRedirectOutput
405 *
406 * PARAMETERS: Destination - An open file handle/pointer
407 *
408 * RETURN: None
409 *
410 * DESCRIPTION: Causes redirect of AcpiOsPrintf and AcpiOsVprintf
411 *
412 ***/

414 void
415 AcpiOsRedirectOutput (
416 void *Destination)
417 {

419 AcpiGbl_OutputFile = Destination;
420 }

423 /**
424 *
425 * FUNCTION: AcpiOsPrintf
426 *
427 * PARAMETERS: Fmt, ... - Standard printf format
428 *
429 * RETURN: None
430 *
431 * DESCRIPTION: Formatted output
432 *
433 ***/

435 void ACPI_INTERNAL_VAR_XFACE
436 AcpiOsPrintf (
437 const char *Fmt,
438 ...)
439 {
440 va_list Args;
441 UINT8 Flags;

444 Flags = AcpiGbl_DbOutputFlags;
445 if (Flags & ACPI_DB_REDIRECTABLE_OUTPUT)
446 {
447 /* Output is directable to either a file (if open) or the console */

449 if (AcpiGbl_DebugFile)
450 {
451 /* Output file is open, send the output there */

453 va_start (Args, Fmt);
454 vfprintf (AcpiGbl_DebugFile, Fmt, Args);

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 8

455 va_end (Args);
456 }
457 else
458 {
459 /* No redirection, send output to console (once only!) */

461 Flags |= ACPI_DB_CONSOLE_OUTPUT;
462 }
463 }

465 if (Flags & ACPI_DB_CONSOLE_OUTPUT)
466 {
467 va_start (Args, Fmt);
468 vfprintf (AcpiGbl_OutputFile, Fmt, Args);
469 va_end (Args);
470 }

472 return;
473 }

476 /**
477 *
478 * FUNCTION: AcpiOsVprintf
479 *
480 * PARAMETERS: Fmt - Standard printf format
481 * Args - Argument list
482 *
483 * RETURN: None
484 *
485 * DESCRIPTION: Formatted output with argument list pointer
486 *
487 ***/

489 void
490 AcpiOsVprintf (
491 const char *Fmt,
492 va_list Args)
493 {
494 INT32 Count = 0;
495 UINT8 Flags;

498 Flags = AcpiGbl_DbOutputFlags;
499 if (Flags & ACPI_DB_REDIRECTABLE_OUTPUT)
500 {
501 /* Output is directable to either a file (if open) or the console */

503 if (AcpiGbl_DebugFile)
504 {
505 /* Output file is open, send the output there */

507 Count = vfprintf (AcpiGbl_DebugFile, Fmt, Args);
508 }
509 else
510 {
511 /* No redirection, send output to console (once only!) */

513 Flags |= ACPI_DB_CONSOLE_OUTPUT;
514 }
515 }

517 if (Flags & ACPI_DB_CONSOLE_OUTPUT)
518 {
519 Count = vfprintf (AcpiGbl_OutputFile, Fmt, Args);
520 }

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 9

522 return;
523 }

526 /**
527 *
528 * FUNCTION: AcpiOsGetLine
529 *
530 * PARAMETERS: Buffer - Where to return the command line
531 * BufferLength - Maximum length of Buffer
532 * BytesRead - Where the actual byte count is returned
533 *
534 * RETURN: Status and actual bytes read
535 *
536 * DESCRIPTION: Formatted input with argument list pointer
537 *
538 ***/

540 ACPI_STATUS
541 AcpiOsGetLine (
542 char *Buffer,
543 UINT32 BufferLength,
544 UINT32 *BytesRead)
545 {
546 int Temp;
547 UINT32 i;

550 for (i = 0; ; i++)
551 {
552 if (i >= BufferLength)
553 {
554 return (AE_BUFFER_OVERFLOW);
555 }

557 if ((Temp = getchar ()) == EOF)
558 {
559 return (AE_ERROR);
560 }

562 if (!Temp || Temp == ’\n’)
563 {
564 break;
565 }

567 Buffer [i] = (char) Temp;
568 }

570 /* Null terminate the buffer */

572 Buffer [i] = 0;

574 /* Return the number of bytes in the string */

576 if (BytesRead)
577 {
578 *BytesRead = i;
579 }
580 return (AE_OK);
581 }

584 /**
585 *
586 * FUNCTION: AcpiOsMapMemory

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 10

587 *
588 * PARAMETERS: Where - Physical address of memory to be mapped
589 * Length - How much memory to map
590 *
591 * RETURN: Pointer to mapped memory. Null on error.
592 *
593 * DESCRIPTION: Map physical memory into caller’s address space
594 *
595 ***/

597 void *
598 AcpiOsMapMemory (
599 ACPI_PHYSICAL_ADDRESS Where,
600 ACPI_SIZE Length)
601 {

603 return (ACPI_TO_POINTER ((ACPI_SIZE) Where));
604 }

607 /**
608 *
609 * FUNCTION: AcpiOsUnmapMemory
610 *
611 * PARAMETERS: Where - Logical address of memory to be unmapped
612 * Length - How much memory to unmap
613 *
614 * RETURN: None.
615 *
616 * DESCRIPTION: Delete a previously created mapping. Where and Length must
617 * correspond to a previous mapping exactly.
618 *
619 ***/

621 void
622 AcpiOsUnmapMemory (
623 void *Where,
624 ACPI_SIZE Length)
625 {

627 return;
628 }

631 /**
632 *
633 * FUNCTION: AcpiOsAllocate
634 *
635 * PARAMETERS: Size - Amount to allocate, in bytes
636 *
637 * RETURN: Pointer to the new allocation. Null on error.
638 *
639 * DESCRIPTION: Allocate memory. Algorithm is dependent on the OS.
640 *
641 ***/

643 void *
644 AcpiOsAllocate (
645 ACPI_SIZE Size)
646 {
647 void *Mem;

650 Mem = (void *) malloc ((size_t) Size);

652 return (Mem);

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 11

653 }

656 /**
657 *
658 * FUNCTION: AcpiOsFree
659 *
660 * PARAMETERS: Mem - Pointer to previously allocated memory
661 *
662 * RETURN: None.
663 *
664 * DESCRIPTION: Free memory allocated via AcpiOsAllocate
665 *
666 ***/

668 void
669 AcpiOsFree (
670 void *Mem)
671 {

673 free (Mem);
674 }

677 #ifdef ACPI_SINGLE_THREADED
678 /**
679 *
680 * FUNCTION: Semaphore stub functions
681 *
682 * DESCRIPTION: Stub functions used for single-thread applications that do
683 * not require semaphore synchronization. Full implementations
684 * of these functions appear after the stubs.
685 *
686 ***/

688 ACPI_STATUS
689 AcpiOsCreateSemaphore (
690 UINT32 MaxUnits,
691 UINT32 InitialUnits,
692 ACPI_HANDLE *OutHandle)
693 {
694 *OutHandle = (ACPI_HANDLE) 1;
695 return (AE_OK);
696 }

698 ACPI_STATUS
699 AcpiOsDeleteSemaphore (
700 ACPI_HANDLE Handle)
701 {
702 return (AE_OK);
703 }

705 ACPI_STATUS
706 AcpiOsWaitSemaphore (
707 ACPI_HANDLE Handle,
708 UINT32 Units,
709 UINT16 Timeout)
710 {
711 return (AE_OK);
712 }

714 ACPI_STATUS
715 AcpiOsSignalSemaphore (
716 ACPI_HANDLE Handle,
717 UINT32 Units)
718 {

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 12

719 return (AE_OK);
720 }

722 #else
723 /**
724 *
725 * FUNCTION: AcpiOsCreateSemaphore
726 *
727 * PARAMETERS: MaxUnits - Maximum units that can be sent
728 * InitialUnits - Units to be assigned to the new semaphore
729 * OutHandle - Where a handle will be returned
730 *
731 * RETURN: Status
732 *
733 * DESCRIPTION: Create an OS semaphore
734 *
735 ***/

737 ACPI_STATUS
738 AcpiOsCreateSemaphore (
739 UINT32 MaxUnits,
740 UINT32 InitialUnits,
741 ACPI_SEMAPHORE *OutHandle)
742 {
743 void *Mutex;
744 UINT32 i;

746 ACPI_FUNCTION_NAME (OsCreateSemaphore);

749 if (MaxUnits == ACPI_UINT32_MAX)
750 {
751 MaxUnits = 255;
752 }

754 if (InitialUnits == ACPI_UINT32_MAX)
755 {
756 InitialUnits = MaxUnits;
757 }

759 if (InitialUnits > MaxUnits)
760 {
761 return (AE_BAD_PARAMETER);
762 }

764 /* Find an empty slot */

766 for (i = 0; i < ACPI_OS_MAX_SEMAPHORES; i++)
767 {
768 if (!AcpiGbl_Semaphores[i].OsHandle)
769 {
770 break;
771 }
772 }
773 if (i >= ACPI_OS_MAX_SEMAPHORES)
774 {
775 ACPI_EXCEPTION ((AE_INFO, AE_LIMIT,
776 "Reached max semaphores (%u), could not create", ACPI_OS_MAX_SEMAPHO
777 return (AE_LIMIT);
778 }

780 /* Create an OS semaphore */

782 Mutex = CreateSemaphore (NULL, InitialUnits, MaxUnits, NULL);
783 if (!Mutex)
784 {

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 13

785 ACPI_ERROR ((AE_INFO, "Could not create semaphore"));
786 return (AE_NO_MEMORY);
787 }

789 AcpiGbl_Semaphores[i].MaxUnits = (UINT16) MaxUnits;
790 AcpiGbl_Semaphores[i].CurrentUnits = (UINT16) InitialUnits;
791 AcpiGbl_Semaphores[i].OsHandle = Mutex;

793 ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Handle=%u, Max=%u, Current=%u, OsHandle=%
794 i, MaxUnits, InitialUnits, Mutex));

796 *OutHandle = (void *) i;
797 return (AE_OK);
798 }

801 /**
802 *
803 * FUNCTION: AcpiOsDeleteSemaphore
804 *
805 * PARAMETERS: Handle - Handle returned by AcpiOsCreateSemaphore
806 *
807 * RETURN: Status
808 *
809 * DESCRIPTION: Delete an OS semaphore
810 *
811 ***/

813 ACPI_STATUS
814 AcpiOsDeleteSemaphore (
815 ACPI_SEMAPHORE Handle)
816 {
817 UINT32 Index = (UINT32) Handle;

820 if ((Index >= ACPI_OS_MAX_SEMAPHORES) ||
821 !AcpiGbl_Semaphores[Index].OsHandle)
822 {
823 return (AE_BAD_PARAMETER);
824 }

826 CloseHandle (AcpiGbl_Semaphores[Index].OsHandle);
827 AcpiGbl_Semaphores[Index].OsHandle = NULL;
828 return (AE_OK);
829 }

832 /**
833 *
834 * FUNCTION: AcpiOsWaitSemaphore
835 *
836 * PARAMETERS: Handle - Handle returned by AcpiOsCreateSemaphore
837 * Units - How many units to wait for
838 * Timeout - How long to wait
839 *
840 * RETURN: Status
841 *
842 * DESCRIPTION: Wait for units
843 *
844 ***/

846 ACPI_STATUS
847 AcpiOsWaitSemaphore (
848 ACPI_SEMAPHORE Handle,
849 UINT32 Units,
850 UINT16 Timeout)

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 14

851 {
852 UINT32 Index = (UINT32) Handle;
853 UINT32 WaitStatus;
854 UINT32 OsTimeout = Timeout;

857 ACPI_FUNCTION_ENTRY ();

860 if ((Index >= ACPI_OS_MAX_SEMAPHORES) ||
861 !AcpiGbl_Semaphores[Index].OsHandle)
862 {
863 return (AE_BAD_PARAMETER);
864 }

866 if (Units > 1)
867 {
868 printf ("WaitSemaphore: Attempt to receive %u units\n", Units);
869 return (AE_NOT_IMPLEMENTED);
870 }

872 if (Timeout == ACPI_WAIT_FOREVER)
873 {
874 OsTimeout = INFINITE;
875 if (AcpiGbl_DebugTimeout)
876 {
877 /* The debug timeout will prevent hang conditions */

879 OsTimeout = ACPI_OS_DEBUG_TIMEOUT;
880 }
881 }
882 else
883 {
884 /* Add 10ms to account for clock tick granularity */

886 OsTimeout += 10;
887 }

889 WaitStatus = WaitForSingleObject (AcpiGbl_Semaphores[Index].OsHandle, OsTime
890 if (WaitStatus == WAIT_TIMEOUT)
891 {
892 if (AcpiGbl_DebugTimeout)
893 {
894 ACPI_EXCEPTION ((AE_INFO, AE_TIME,
895 "Debug timeout on semaphore 0x%04X (%ums)\n",
896 Index, ACPI_OS_DEBUG_TIMEOUT));
897 }
898 return (AE_TIME);
899 }

901 if (AcpiGbl_Semaphores[Index].CurrentUnits == 0)
902 {
903 ACPI_ERROR ((AE_INFO, "%s - No unit received. Timeout 0x%X, OS_Status 0x
904 AcpiUtGetMutexName (Index), Timeout, WaitStatus));

906 return (AE_OK);
907 }

909 AcpiGbl_Semaphores[Index].CurrentUnits--;
910 return (AE_OK);
911 }

914 /**
915 *
916 * FUNCTION: AcpiOsSignalSemaphore

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 15

917 *
918 * PARAMETERS: Handle - Handle returned by AcpiOsCreateSemaphore
919 * Units - Number of units to send
920 *
921 * RETURN: Status
922 *
923 * DESCRIPTION: Send units
924 *
925 ***/

927 ACPI_STATUS
928 AcpiOsSignalSemaphore (
929 ACPI_SEMAPHORE Handle,
930 UINT32 Units)
931 {
932 UINT32 Index = (UINT32) Handle;

935 ACPI_FUNCTION_ENTRY ();

938 if (Index >= ACPI_OS_MAX_SEMAPHORES)
939 {
940 printf ("SignalSemaphore: Index/Handle out of range: %2.2X\n", Index);
941 return (AE_BAD_PARAMETER);
942 }

944 if (!AcpiGbl_Semaphores[Index].OsHandle)
945 {
946 printf ("SignalSemaphore: Null OS handle, Index %2.2X\n", Index);
947 return (AE_BAD_PARAMETER);
948 }

950 if (Units > 1)
951 {
952 printf ("SignalSemaphore: Attempt to signal %u units, Index %2.2X\n", Un
953 return (AE_NOT_IMPLEMENTED);
954 }

956 if ((AcpiGbl_Semaphores[Index].CurrentUnits + 1) >
957 AcpiGbl_Semaphores[Index].MaxUnits)
958 {
959 ACPI_ERROR ((AE_INFO,
960 "Oversignalled semaphore[%u]! Current %u Max %u",
961 Index, AcpiGbl_Semaphores[Index].CurrentUnits,
962 AcpiGbl_Semaphores[Index].MaxUnits));

964 return (AE_LIMIT);
965 }

967 AcpiGbl_Semaphores[Index].CurrentUnits++;
968 ReleaseSemaphore (AcpiGbl_Semaphores[Index].OsHandle, Units, NULL);

970 return (AE_OK);
971 }

973 #endif /* ACPI_SINGLE_THREADED */

976 /**
977 *
978 * FUNCTION: Spinlock interfaces
979 *
980 * DESCRIPTION: Map these interfaces to semaphore interfaces
981 *
982 ***/

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 16

984 ACPI_STATUS
985 AcpiOsCreateLock (
986 ACPI_SPINLOCK *OutHandle)
987 {
988 return (AcpiOsCreateSemaphore (1, 1, OutHandle));
989 }

991 void
992 AcpiOsDeleteLock (
993 ACPI_SPINLOCK Handle)
994 {
995 AcpiOsDeleteSemaphore (Handle);
996 }

998 ACPI_CPU_FLAGS
999 AcpiOsAcquireLock (

1000 ACPI_SPINLOCK Handle)
1001 {
1002 AcpiOsWaitSemaphore (Handle, 1, 0xFFFF);
1003 return (0);
1004 }

1006 void
1007 AcpiOsReleaseLock (
1008 ACPI_SPINLOCK Handle,
1009 ACPI_CPU_FLAGS Flags)
1010 {
1011 AcpiOsSignalSemaphore (Handle, 1);
1012 }

1015 #if ACPI_FUTURE_IMPLEMENTATION

1017 /* Mutex interfaces, just implement with a semaphore */

1019 ACPI_STATUS
1020 AcpiOsCreateMutex (
1021 ACPI_MUTEX *OutHandle)
1022 {
1023 return (AcpiOsCreateSemaphore (1, 1, OutHandle));
1024 }

1026 void
1027 AcpiOsDeleteMutex (
1028 ACPI_MUTEX Handle)
1029 {
1030 AcpiOsDeleteSemaphore (Handle);
1031 }

1033 ACPI_STATUS
1034 AcpiOsAcquireMutex (
1035 ACPI_MUTEX Handle,
1036 UINT16 Timeout)
1037 {
1038 AcpiOsWaitSemaphore (Handle, 1, Timeout);
1039 return (0);
1040 }

1042 void
1043 AcpiOsReleaseMutex (
1044 ACPI_MUTEX Handle)
1045 {
1046 AcpiOsSignalSemaphore (Handle, 1);
1047 }
1048 #endif

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 17

1051 /**
1052 *
1053 * FUNCTION: AcpiOsInstallInterruptHandler
1054 *
1055 * PARAMETERS: InterruptNumber - Level handler should respond to.
1056 * ServiceRoutine - Address of the ACPI interrupt handler
1057 * Context - User context
1058 *
1059 * RETURN: Handle to the newly installed handler.
1060 *
1061 * DESCRIPTION: Install an interrupt handler. Used to install the ACPI
1062 * OS-independent handler.
1063 *
1064 ***/

1066 UINT32
1067 AcpiOsInstallInterruptHandler (
1068 UINT32 InterruptNumber,
1069 ACPI_OSD_HANDLER ServiceRoutine,
1070 void *Context)
1071 {

1073 return (AE_OK);
1074 }

1077 /**
1078 *
1079 * FUNCTION: AcpiOsRemoveInterruptHandler
1080 *
1081 * PARAMETERS: Handle - Returned when handler was installed
1082 *
1083 * RETURN: Status
1084 *
1085 * DESCRIPTION: Uninstalls an interrupt handler.
1086 *
1087 ***/

1089 ACPI_STATUS
1090 AcpiOsRemoveInterruptHandler (
1091 UINT32 InterruptNumber,
1092 ACPI_OSD_HANDLER ServiceRoutine)
1093 {

1095 return (AE_OK);
1096 }

1099 /**
1100 *
1101 * FUNCTION: AcpiOsStall
1102 *
1103 * PARAMETERS: Microseconds - Time to stall
1104 *
1105 * RETURN: None. Blocks until stall is completed.
1106 *
1107 * DESCRIPTION: Sleep at microsecond granularity
1108 *
1109 ***/

1111 void
1112 AcpiOsStall (
1113 UINT32 Microseconds)
1114 {

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 18

1116 Sleep ((Microseconds / ACPI_USEC_PER_MSEC) + 1);
1117 return;
1118 }

1121 /**
1122 *
1123 * FUNCTION: AcpiOsSleep
1124 *
1125 * PARAMETERS: Milliseconds - Time to sleep
1126 *
1127 * RETURN: None. Blocks until sleep is completed.
1128 *
1129 * DESCRIPTION: Sleep at millisecond granularity
1130 *
1131 ***/

1133 void
1134 AcpiOsSleep (
1135 UINT64 Milliseconds)
1136 {

1138 /* Add 10ms to account for clock tick granularity */

1140 Sleep (((unsigned long) Milliseconds) + 10);
1141 return;
1142 }

1145 /**
1146 *
1147 * FUNCTION: AcpiOsReadPciConfiguration
1148 *
1149 * PARAMETERS: PciId - Seg/Bus/Dev
1150 * Register - Device Register
1151 * Value - Buffer where value is placed
1152 * Width - Number of bits
1153 *
1154 * RETURN: Status
1155 *
1156 * DESCRIPTION: Read data from PCI configuration space
1157 *
1158 ***/

1160 ACPI_STATUS
1161 AcpiOsReadPciConfiguration (
1162 ACPI_PCI_ID *PciId,
1163 UINT32 Register,
1164 UINT64 *Value,
1165 UINT32 Width)
1166 {

1168 *Value = 0;
1169 return (AE_OK);
1170 }

1173 /**
1174 *
1175 * FUNCTION: AcpiOsWritePciConfiguration
1176 *
1177 * PARAMETERS: PciId - Seg/Bus/Dev
1178 * Register - Device Register
1179 * Value - Value to be written
1180 * Width - Number of bits

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 19

1181 *
1182 * RETURN: Status
1183 *
1184 * DESCRIPTION: Write data to PCI configuration space
1185 *
1186 ***/

1188 ACPI_STATUS
1189 AcpiOsWritePciConfiguration (
1190 ACPI_PCI_ID *PciId,
1191 UINT32 Register,
1192 UINT64 Value,
1193 UINT32 Width)
1194 {

1196 return (AE_OK);
1197 }

1200 /**
1201 *
1202 * FUNCTION: AcpiOsReadPort
1203 *
1204 * PARAMETERS: Address - Address of I/O port/register to read
1205 * Value - Where value is placed
1206 * Width - Number of bits
1207 *
1208 * RETURN: Value read from port
1209 *
1210 * DESCRIPTION: Read data from an I/O port or register
1211 *
1212 ***/

1214 ACPI_STATUS
1215 AcpiOsReadPort (
1216 ACPI_IO_ADDRESS Address,
1217 UINT32 *Value,
1218 UINT32 Width)
1219 {
1220 ACPI_FUNCTION_NAME (OsReadPort);

1223 switch (Width)
1224 {
1225 case 8:

1227 *Value = 0xFF;
1228 break;

1230 case 16:

1232 *Value = 0xFFFF;
1233 break;

1235 case 32:

1237 *Value = 0xFFFFFFFF;
1238 break;

1240 default:

1242 ACPI_ERROR ((AE_INFO, "Bad width parameter: %X", Width));
1243 return (AE_BAD_PARAMETER);
1244 }

1246 return (AE_OK);

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 20

1247 }

1250 /**
1251 *
1252 * FUNCTION: AcpiOsWritePort
1253 *
1254 * PARAMETERS: Address - Address of I/O port/register to write
1255 * Value - Value to write
1256 * Width - Number of bits
1257 *
1258 * RETURN: None
1259 *
1260 * DESCRIPTION: Write data to an I/O port or register
1261 *
1262 ***/

1264 ACPI_STATUS
1265 AcpiOsWritePort (
1266 ACPI_IO_ADDRESS Address,
1267 UINT32 Value,
1268 UINT32 Width)
1269 {
1270 ACPI_FUNCTION_NAME (OsWritePort);

1273 if ((Width == 8) || (Width == 16) || (Width == 32))
1274 {
1275 return (AE_OK);
1276 }

1278 ACPI_ERROR ((AE_INFO, "Bad width parameter: %X", Width));
1279 return (AE_BAD_PARAMETER);
1280 }

1283 /**
1284 *
1285 * FUNCTION: AcpiOsReadMemory
1286 *
1287 * PARAMETERS: Address - Physical Memory Address to read
1288 * Value - Where value is placed
1289 * Width - Number of bits (8,16,32, or 64)
1290 *
1291 * RETURN: Value read from physical memory address. Always returned
1292 * as a 64-bit integer, regardless of the read width.
1293 *
1294 * DESCRIPTION: Read data from a physical memory address
1295 *
1296 ***/

1298 ACPI_STATUS
1299 AcpiOsReadMemory (
1300 ACPI_PHYSICAL_ADDRESS Address,
1301 UINT64 *Value,
1302 UINT32 Width)
1303 {

1305 switch (Width)
1306 {
1307 case 8:
1308 case 16:
1309 case 32:
1310 case 64:

1312 *Value = 0;

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 21

1313 break;

1315 default:

1317 return (AE_BAD_PARAMETER);
1318 break;
1319 }

1321 return (AE_OK);
1322 }

1325 /**
1326 *
1327 * FUNCTION: AcpiOsWriteMemory
1328 *
1329 * PARAMETERS: Address - Physical Memory Address to write
1330 * Value - Value to write
1331 * Width - Number of bits (8,16,32, or 64)
1332 *
1333 * RETURN: None
1334 *
1335 * DESCRIPTION: Write data to a physical memory address
1336 *
1337 ***/

1339 ACPI_STATUS
1340 AcpiOsWriteMemory (
1341 ACPI_PHYSICAL_ADDRESS Address,
1342 UINT64 Value,
1343 UINT32 Width)
1344 {

1346 return (AE_OK);
1347 }

1350 /**
1351 *
1352 * FUNCTION: AcpiOsSignal
1353 *
1354 * PARAMETERS: Function - ACPI CA signal function code
1355 * Info - Pointer to function-dependent structure
1356 *
1357 * RETURN: Status
1358 *
1359 * DESCRIPTION: Miscellaneous functions. Example implementation only.
1360 *
1361 ***/

1363 ACPI_STATUS
1364 AcpiOsSignal (
1365 UINT32 Function,
1366 void *Info)
1367 {

1369 switch (Function)
1370 {
1371 case ACPI_SIGNAL_FATAL:

1373 break;

1375 case ACPI_SIGNAL_BREAKPOINT:

1377 break;

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 22

1379 default:

1381 break;
1382 }

1384 return (AE_OK);
1385 }

1388 /**
1389 *
1390 * FUNCTION: Local cache interfaces
1391 *
1392 * DESCRIPTION: Implements cache interfaces via malloc/free for testing
1393 * purposes only.
1394 *
1395 ***/

1397 #ifndef ACPI_USE_LOCAL_CACHE

1399 ACPI_STATUS
1400 AcpiOsCreateCache (
1401 char *CacheName,
1402 UINT16 ObjectSize,
1403 UINT16 MaxDepth,
1404 ACPI_CACHE_T **ReturnCache)
1405 {
1406 ACPI_MEMORY_LIST *NewCache;

1409 NewCache = malloc (sizeof (ACPI_MEMORY_LIST));
1410 if (!NewCache)
1411 {
1412 return (AE_NO_MEMORY);
1413 }

1415 memset (NewCache, 0, sizeof (ACPI_MEMORY_LIST));
1416 NewCache->ListName = CacheName;
1417 NewCache->ObjectSize = ObjectSize;
1418 NewCache->MaxDepth = MaxDepth;

1420 *ReturnCache = (ACPI_CACHE_T) NewCache;
1421 return (AE_OK);
1422 }

1424 ACPI_STATUS
1425 AcpiOsDeleteCache (
1426 ACPI_CACHE_T *Cache)
1427 {
1428 free (Cache);
1429 return (AE_OK);
1430 }

1432 ACPI_STATUS
1433 AcpiOsPurgeCache (
1434 ACPI_CACHE_T *Cache)
1435 {
1436 return (AE_OK);
1437 }

1439 void *
1440 AcpiOsAcquireObject (
1441 ACPI_CACHE_T *Cache)
1442 {
1443 void *NewObject;

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 23

1445 NewObject = malloc (((ACPI_MEMORY_LIST *) Cache)->ObjectSize);
1446 memset (NewObject, 0, ((ACPI_MEMORY_LIST *) Cache)->ObjectSize);

1448 return (NewObject);
1449 }

1451 ACPI_STATUS
1452 AcpiOsReleaseObject (
1453 ACPI_CACHE_T *Cache,
1454 void *Object)
1455 {
1456 free (Object);
1457 return (AE_OK);
1458 }

1460 #endif /* ACPI_USE_LOCAL_CACHE */

1463 /* Optional multi-thread support */

1465 #ifndef ACPI_SINGLE_THREADED
1466 /**
1467 *
1468 * FUNCTION: AcpiOsGetThreadId
1469 *
1470 * PARAMETERS: None
1471 *
1472 * RETURN: Id of the running thread
1473 *
1474 * DESCRIPTION: Get the Id of the current (running) thread
1475 *
1476 ***/

1478 ACPI_THREAD_ID
1479 AcpiOsGetThreadId (
1480 void)
1481 {
1482 DWORD ThreadId;

1484 /* Ensure ID is never 0 */

1486 ThreadId = GetCurrentThreadId ();
1487 return ((ACPI_THREAD_ID) (ThreadId + 1));
1488 }

1491 /**
1492 *
1493 * FUNCTION: AcpiOsExecute
1494 *
1495 * PARAMETERS: Type - Type of execution
1496 * Function - Address of the function to execute
1497 * Context - Passed as a parameter to the function
1498 *
1499 * RETURN: Status
1500 *
1501 * DESCRIPTION: Execute a new thread
1502 *
1503 ***/

1505 ACPI_STATUS
1506 AcpiOsExecute (
1507 ACPI_EXECUTE_TYPE Type,
1508 ACPI_OSD_EXEC_CALLBACK Function,
1509 void *Context)
1510 {

new/usr/src/common/acpica/os_specific/service_layers/oswinxf.c 24

1512 _beginthread (Function, (unsigned) 0, Context);
1513 return (0);
1514 }

1516 #endif /* ACPI_SINGLE_THREADED */

1519 /**
1520 *
1521 * FUNCTION: AcpiOsWaitEventsComplete
1522 *
1523 * PARAMETERS: None
1524 *
1525 * RETURN: None
1526 *
1527 * DESCRIPTION: Wait for all asynchronous events to complete. This
1528 * implementation does nothing.
1529 *
1530 ***/

1532 void
1533 AcpiOsWaitEventsComplete (
1534 void)
1535 {
1536 return;
1537 }

new/usr/src/common/acpica/tools/acpibin/abcompare.c 1

**
 21798 Thu Dec 26 13:50:07 2013
new/usr/src/common/acpica/tools/acpibin/abcompare.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: abcompare - compare AML files
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpibin.h"

47 FILE *File1;
48 FILE *File2;
49 ACPI_TABLE_HEADER Header1;
50 ACPI_TABLE_HEADER Header2;

52 #define BUFFER_SIZE 256
53 char Buffer[BUFFER_SIZE];

56 /* Local prototypes */

58 static BOOLEAN
59 AbValidateHeader (
60 ACPI_TABLE_HEADER *Header);

new/usr/src/common/acpica/tools/acpibin/abcompare.c 2

62 static UINT8
63 AcpiTbSumTable (
64 void *Buffer,
65 UINT32 Length);

67 static char *
68 AbGetFile (
69 char *Filename,
70 UINT32 *FileSize);

72 static UINT32
73 AbGetFileSize (
74 FILE *File);

76 static void
77 AbPrintHeaderInfo (
78 ACPI_TABLE_HEADER *Header);

80 static void
81 AbPrintHeadersInfo (
82 ACPI_TABLE_HEADER *Header,
83 ACPI_TABLE_HEADER *Header2);

85 ACPI_PHYSICAL_ADDRESS
86 AeLocalGetRootPointer (
87 void);

90 /***
91 *
92 * FUNCTION: UtHexCharToValue
93 *
94 * PARAMETERS: HexChar - Hex character in Ascii
95 *
96 * RETURN: The binary value of the hex character
97 *
98 * DESCRIPTION: Perform ascii-to-hex translation
99 *
100 **/

102 static UINT8
103 UtHexCharToValue (
104 int HexChar,
105 UINT8 *OutBinary)
106 {

108 if (HexChar >= 0x30 && HexChar <= 0x39)
109 {
110 *OutBinary = (UINT8) (HexChar - 0x30);
111 return (1);
112 }

114 else if (HexChar >= 0x41 && HexChar <= 0x46)
115 {
116 *OutBinary = (UINT8) (HexChar - 0x37);
117 return (1);
118 }

120 else if (HexChar >= 0x61 && HexChar <= 0x66)
121 {
122 *OutBinary = (UINT8) (HexChar - 0x57);
123 return (1);
124 }
125 return (0);
126 }

new/usr/src/common/acpica/tools/acpibin/abcompare.c 3

128 static UINT8
129 AbHexByteToBinary (
130 char *HexString,
131 char *OutBinary)
132 {
133 UINT8 Local1;
134 UINT8 Local2;

137 if (!UtHexCharToValue (HexString[0], &Local1))
138 {
139 return (0);
140 }
141 if (!UtHexCharToValue (HexString[1], &Local2))
142 {
143 return (0);
144 }

146 *OutBinary = (UINT8) ((Local1 << 4) | Local2);
147 return (2);

149 }

152 /**
153 *
154 * FUNCTION: AbValidateHeader
155 *
156 * DESCRIPTION: Check for valid ACPI table header
157 *
158 **/

160 static BOOLEAN
161 AbValidateHeader (
162 ACPI_TABLE_HEADER *Header)
163 {

165 if (!AcpiUtValidAcpiName (Header->Signature))
166 {
167 printf ("Header signature is invalid\n");
168 return (FALSE);
169 }

171 return (TRUE);
172 }

175 /***
176 *
177 * FUNCTION: AcpiTbSumTable
178 *
179 * PARAMETERS: Buffer - Buffer to checksum
180 * Length - Size of the buffer
181 *
182 * RETURNS 8 bit checksum of buffer
183 *
184 * DESCRIPTION: Computes an 8 bit checksum of the buffer(length) and returns it.
185 *
186 **/

188 static UINT8
189 AcpiTbSumTable (
190 void *Buffer,
191 UINT32 Length)
192 {
193 const UINT8 *limit;

new/usr/src/common/acpica/tools/acpibin/abcompare.c 4

194 const UINT8 *rover;
195 UINT8 sum = 0;

198 if (Buffer && Length)
199 {
200 /* Buffer and Length are valid */

202 limit = (UINT8 *) Buffer + Length;

204 for (rover = Buffer; rover < limit; rover++)
205 {
206 sum = (UINT8) (sum + *rover);
207 }
208 }
209 return (sum);
210 }

213 /***
214 *
215 * FUNCTION: AbPrintHeaderInfo
216 *
217 * PARAMETERS: Header - An ACPI table header
218 *
219 * RETURNS None.
220 *
221 * DESCRIPTION: Format and display header contents.
222 *
223 **/

225 static void
226 AbPrintHeaderInfo (
227 ACPI_TABLE_HEADER *Header)
228 {

230 /* Display header information */

232 printf ("Signature : %4.4s\n", Header->Signature);
233 printf ("Length : %8.8X\n", Header->Length);
234 printf ("Revision : %2.2X\n", Header->Revision);
235 printf ("Checksum : %2.2X\n", Header->Checksum);
236 printf ("OEM ID : %6.6s\n", Header->OemId);
237 printf ("OEM Table ID : %8.8s\n", Header->OemTableId);
238 printf ("OEM Revision : %8.8X\n", Header->OemRevision);
239 printf ("ASL Compiler ID : %4.4s\n", Header->AslCompilerId);
240 printf ("Compiler Revision : %8.8X\n", Header->AslCompilerRevision);
241 printf ("\n");
242 }

244 static void
245 AbPrintHeadersInfo (
246 ACPI_TABLE_HEADER *Header,
247 ACPI_TABLE_HEADER *Header2)
248 {

250 /* Display header information for both headers */

252 printf ("Signature %8.4s : %4.4s\n", Header->Signature, Header2-
253 printf ("Length %8.8X : %8.8X\n", Header->Length, Header2->Le
254 printf ("Revision %8.2X : %2.2X\n", Header->Revision, Header2->
255 printf ("Checksum %8.2X : %2.2X\n", Header->Checksum, Header2->
256 printf ("OEM ID %8.6s : %6.6s\n", Header->OemId, Header2->Oem
257 printf ("OEM Table ID %8.8s : %8.8s\n", Header->OemTableId, Header2
258 printf ("OEM Revision %8.8X : %8.8X\n", Header->OemRevision, Header
259 printf ("ASL Compiler ID %8.4s : %4.4s\n", Header->AslCompilerId, Head

new/usr/src/common/acpica/tools/acpibin/abcompare.c 5

260 printf ("Compiler Revision %8.8X : %8.8X\n", Header->AslCompilerRevision
261 printf ("\n");
262 }

265 /**
266 *
267 * FUNCTION: AbDisplayHeader
268 *
269 * DESCRIPTION: Display an ACPI table header
270 *
271 **/

273 void
274 AbDisplayHeader (
275 char *File1Path)
276 {
277 UINT32 Actual;

280 File1 = fopen (File1Path, "rb");
281 if (!File1)
282 {
283 printf ("Could not open file %s\n", File1Path);
284 return;
285 }

287 Actual = fread (&Header1, 1, sizeof (ACPI_TABLE_HEADER), File1);
288 if (Actual != sizeof (ACPI_TABLE_HEADER))
289 {
290 printf ("File %s does not contain an ACPI table header\n", File1Path);
291 return;
292 }

294 if (!AbValidateHeader (&Header1))
295 {
296 return;
297 }

299 AbPrintHeaderInfo (&Header1);
300 }

303 /**
304 *
305 * FUNCTION: AbComputeChecksum
306 *
307 * DESCRIPTION: Compute proper checksum for an ACPI table
308 *
309 **/

311 void
312 AbComputeChecksum (
313 char *File1Path)
314 {
315 UINT32 Actual;
316 ACPI_TABLE_HEADER *Table;
317 UINT8 Checksum;

320 File1 = fopen (File1Path, "rb");
321 if (!File1)
322 {
323 printf ("Could not open file %s\n", File1Path);
324 return;
325 }

new/usr/src/common/acpica/tools/acpibin/abcompare.c 6

327 Actual = fread (&Header1, 1, sizeof (ACPI_TABLE_HEADER), File1);
328 if (Actual < sizeof (ACPI_TABLE_HEADER))
329 {
330 printf ("File %s does not contain an ACPI table header\n", File1Path);
331 return;
332 }

334 if (!AbValidateHeader (&Header1))
335 {
336 return;
337 }

339 if (!Gbl_TerseMode)
340 {
341 AbPrintHeaderInfo (&Header1);
342 }

344 /* Allocate a buffer to hold the entire table */

346 Table = AcpiOsAllocate (Header1.Length);
347 if (!Table)
348 {
349 printf ("could not allocate\n");
350 return;
351 }

353 /* Read the entire table, including header */

355 fseek (File1, 0, SEEK_SET);
356 Actual = fread (Table, 1, Header1.Length, File1);
357 if (Actual != Header1.Length)
358 {
359 printf ("could not read table, length %u\n", Header1.Length);
360 return;
361 }

363 /* Compute the checksum for the table */

365 Table->Checksum = 0;

367 Checksum = (UINT8) (0 - AcpiTbSumTable (Table, Table->Length));
368 printf ("Computed checksum: 0x%X\n\n", Checksum);

370 if (Header1.Checksum == Checksum)
371 {
372 printf ("Checksum ok in AML file, not updating\n");
373 return;
374 }

376 /* Open the target file for writing, to update checksum */

378 fclose (File1);
379 File1 = fopen (File1Path, "r+b");
380 if (!File1)
381 {
382 printf ("Could not open file %s for writing\n", File1Path);
383 return;
384 }

386 /* Set the checksum, write the new header */

388 Header1.Checksum = Checksum;

390 Actual = fwrite (&Header1, 1, sizeof (ACPI_TABLE_HEADER), File1);
391 if (Actual != sizeof (ACPI_TABLE_HEADER))

new/usr/src/common/acpica/tools/acpibin/abcompare.c 7

392 {
393 printf ("Could not write updated table header\n");
394 return;
395 }

397 printf ("Wrote new checksum\n");
398 return;
399 }

402 /**
403 *
404 * FUNCTION: AbCompareAmlFiles
405 *
406 * DESCRIPTION: Compare two AML files
407 *
408 **/

410 int
411 AbCompareAmlFiles (
412 char *File1Path,
413 char *File2Path)
414 {
415 UINT32 Actual1;
416 UINT32 Actual2;
417 UINT32 Offset;
418 UINT8 Char1;
419 UINT8 Char2;
420 UINT8 Mismatches = 0;
421 BOOLEAN HeaderMismatch = FALSE;

424 File1 = fopen (File1Path, "rb");
425 if (!File1)
426 {
427 printf ("Could not open file %s\n", File1Path);
428 return (-1);
429 }

431 File2 = fopen (File2Path, "rb");
432 if (!File2)
433 {
434 printf ("Could not open file %s\n", File2Path);
435 return (-1);
436 }

438 /* Read the ACPI header from each file */

440 Actual1 = fread (&Header1, 1, sizeof (ACPI_TABLE_HEADER), File1);
441 if (Actual1 != sizeof (ACPI_TABLE_HEADER))
442 {
443 printf ("File %s does not contain an ACPI table header\n", File1Path);
444 return (-1);
445 }

447 Actual2 = fread (&Header2, 1, sizeof (ACPI_TABLE_HEADER), File2);
448 if (Actual2 != sizeof (ACPI_TABLE_HEADER))
449 {
450 printf ("File %s does not contain an ACPI table header\n", File2Path);
451 return (-1);
452 }

454 if ((!AbValidateHeader (&Header1)) ||
455 (!AbValidateHeader (&Header2)))
456 {
457 return (-1);

new/usr/src/common/acpica/tools/acpibin/abcompare.c 8

458 }

460 /* Table signatures must match */

462 if (*((UINT32 *) Header1.Signature) != *((UINT32 *) Header2.Signature))
463 {
464 printf ("Table signatures do not match\n");
465 return (-1);
466 }

468 if (!Gbl_TerseMode)
469 {
470 /* Display header information */

472 AbPrintHeadersInfo (&Header1, &Header2);
473 }

475 if (memcmp (&Header1, &Header2, sizeof (ACPI_TABLE_HEADER)))
476 {
477 printf ("Headers do not match exactly\n");
478 HeaderMismatch = TRUE;
479 }

481 /* Do the byte-by-byte compare */

483 Actual1 = fread (&Char1, 1, 1, File1);
484 Actual2 = fread (&Char2, 1, 1, File2);
485 Offset = sizeof (ACPI_TABLE_HEADER);

487 while ((Actual1 == 1) && (Actual2 == 1))
488 {
489 if (Char1 != Char2)
490 {
491 printf ("Error - Byte mismatch at offset %8.8X: 0x%2.2X 0x%2.2X\n",
492 Offset, Char1, Char2);
493 Mismatches++;
494 if (Mismatches > 100)
495 {
496 printf ("100 Mismatches: Too many mismatches\n");
497 return (-1);
498 }
499 }

501 Offset++;
502 Actual1 = fread (&Char1, 1, 1, File1);
503 Actual2 = fread (&Char2, 1, 1, File2);
504 }

506 if (Actual1)
507 {
508 printf ("Error - file %s is longer than file %s\n", File1Path, File2Path
509 Mismatches++;
510 }
511 else if (Actual2)
512 {
513 printf ("Error - file %s is shorter than file %s\n", File1Path, File2Pat
514 Mismatches++;
515 }
516 else if (!Mismatches)
517 {
518 if (HeaderMismatch)
519 {
520 printf ("Files compare exactly after header\n");
521 }
522 else
523 {

new/usr/src/common/acpica/tools/acpibin/abcompare.c 9

524 printf ("Files compare exactly\n");
525 }
526 }

528 printf ("%u Mismatches found\n", Mismatches);
529 return (0);
530 }

533 /**
534 *
535 * FUNCTION: AbGetFileSize
536 *
537 * DESCRIPTION: Get the size of an open file
538 *
539 **/

541 static UINT32
542 AbGetFileSize (
543 FILE *File)
544 {
545 UINT32 FileSize;
546 long Offset;

549 Offset = ftell (File);

551 if (fseek (File, 0, SEEK_END))
552 {
553 return (0);
554 }

556 FileSize = (UINT32) ftell (File);

558 /* Restore file pointer */

560 if (fseek (File, Offset, SEEK_SET))
561 {
562 return (0);
563 }

565 return (FileSize);
566 }

569 /**
570 *
571 * FUNCTION: AbGetFile
572 *
573 * DESCRIPTION: Open a file and read it entirely into a new buffer
574 *
575 **/

577 static char *
578 AbGetFile (
579 char *Filename,
580 UINT32 *FileSize)
581 {
582 FILE *File;
583 UINT32 Size;
584 char *Buffer = NULL;
585 size_t Actual;

588 /* Binary mode does not alter CR/LF pairs */

new/usr/src/common/acpica/tools/acpibin/abcompare.c 10

590 File = fopen (Filename, "rb");
591 if (!File)
592 {
593 printf ("Could not open file %s\n", Filename);
594 return (NULL);
595 }

597 /* Need file size to allocate a buffer */

599 Size = AbGetFileSize (File);
600 if (!Size)
601 {
602 printf ("Could not get file size (seek) for %s\n", Filename);
603 goto ErrorExit;
604 }

606 /* Allocate a buffer for the entire file */

608 Buffer = calloc (Size, 1);
609 if (!Buffer)
610 {
611 printf ("Could not allocate buffer of size %u\n", Size);
612 goto ErrorExit;
613 }

615 /* Read the entire file */

617 Actual = fread (Buffer, 1, Size, File);
618 if (Actual != Size)
619 {
620 printf ("Could not read the input file %s\n", Filename);
621 free (Buffer);
622 Buffer = NULL;
623 goto ErrorExit;
624 }

626 *FileSize = Size;

628 ErrorExit:
629 fclose (File);
630 return (Buffer);
631 }

634 /**
635 *
636 * FUNCTION: AbDumpAmlFile
637 *
638 * DESCRIPTION: Dump a binary AML file to a text file
639 *
640 **/

642 int
643 AbDumpAmlFile (
644 char *File1Path,
645 char *File2Path)
646 {
647 char *FileBuffer;
648 FILE *FileOutHandle;
649 UINT32 FileSize = 0;

652 /* Get the entire AML file, validate header */

654 FileBuffer = AbGetFile (File1Path, &FileSize);
655 if (!FileBuffer)

new/usr/src/common/acpica/tools/acpibin/abcompare.c 11

656 {
657 return (-1);
658 }

660 printf ("Input file: %s contains %u (0x%X) bytes\n",
661 File1Path, FileSize, FileSize);

663 FileOutHandle = fopen (File2Path, "wb");
664 if (!FileOutHandle)
665 {
666 printf ("Could not open file %s\n", File2Path);
667 return (-1);
668 }

670 if (!AbValidateHeader ((ACPI_TABLE_HEADER *) FileBuffer))
671 {
672 return (-1);
673 }

675 /* Convert binary AML to text, using common dump buffer routine */

677 AcpiGbl_DebugFile = FileOutHandle;
678 AcpiGbl_DbOutputFlags = ACPI_DB_REDIRECTABLE_OUTPUT;

680 AcpiOsPrintf ("%4.4s @ 0x%8.8X\n",
681 ((ACPI_TABLE_HEADER *) FileBuffer)->Signature, 0);

683 AcpiUtDumpBuffer ((UINT8 *) FileBuffer, FileSize, DB_BYTE_DISPLAY, 0);

685 /* Summary for the output file */

687 FileSize = AbGetFileSize (FileOutHandle);
688 printf ("Output file: %s contains %u (0x%X) bytes\n\n",
689 File2Path, FileSize, FileSize);

691 return (0);
692 }

695 /**
696 *
697 * FUNCTION: AbExtractAmlFile
698 *
699 * DESCRIPTION: Extract a binary AML file from a text file (as produced by the
700 * DumpAmlFile procedure or the "acpidump" table utility.
701 *
702 **/

704 int
705 AbExtractAmlFile (
706 char *TableSig,
707 char *File1Path,
708 char *File2Path)
709 {
710 char *Table;
711 char Value;
712 UINT32 i;
713 FILE *FileHandle;
714 FILE *FileOutHandle;
715 UINT32 Count = 0;
716 int Scanned;

719 /* Open in/out files. input is in text mode, output is in binary mode */

721 FileHandle = fopen (File1Path, "rt");

new/usr/src/common/acpica/tools/acpibin/abcompare.c 12

722 if (!FileHandle)
723 {
724 printf ("Could not open file %s\n", File1Path);
725 return (-1);
726 }

728 FileOutHandle = fopen (File2Path, "w+b");
729 if (!FileOutHandle)
730 {
731 printf ("Could not open file %s\n", File2Path);
732 return (-1);
733 }

735 /* Force input table sig to uppercase */

737 AcpiUtStrupr (TableSig);

740 /* TBD: examine input for ASCII */

743 /* We have an ascii file, grab one line at a time */

745 while (fgets (Buffer, BUFFER_SIZE, FileHandle))
746 {
747 /* The 4-char ACPI signature appears at the beginning of a line */

749 if (ACPI_COMPARE_NAME (Buffer, TableSig))
750 {
751 printf ("Found table [%4.4s]\n", TableSig);

753 /*
754 * Eat all lines in the table, of the form:
755 * <offset>: <16 bytes of hex data, separated by spaces> <ASCII re
756 *
757 * Example:
758 *
759 * 02C0: 5F 53 42 5F 4C 4E 4B 44 00 12 13 04 0C FF FF 08 _SB_LNKD
760 *
761 */
762 while (fgets (Buffer, BUFFER_SIZE, FileHandle))
763 {
764 /* Get past the offset, terminated by a colon */

766 Table = strchr (Buffer, ’:’);
767 if (!Table)
768 {
769 /* No colon, all done */
770 goto Exit;
771 }

773 Table += 2; /* Eat the colon + space */

775 for (i = 0; i < 16; i++)
776 {
777 Scanned = AbHexByteToBinary (Table, &Value);
778 if (!Scanned)
779 {
780 goto Exit;
781 }

783 Table += 3; /* Go past this hex byte and space */

785 /* Write the converted (binary) byte */

787 if (fwrite (&Value, 1, 1, FileOutHandle) != 1)

new/usr/src/common/acpica/tools/acpibin/abcompare.c 13

788 {
789 printf ("Error writing byte %u to output file: %s\n",
790 Count, File2Path);
791 goto Exit;
792 }
793 Count++;
794 }
795 }

797 /* No more lines, EOF, all done */

799 goto Exit;
800 }
801 }

803 /* Searched entire file, no match to table signature */

805 printf ("Could not match table signature\n");
806 fclose (FileHandle);
807 return (-1);

809 Exit:
810 printf ("%u (0x%X) bytes written to %s\n", Count, Count, File2Path);
811 fclose (FileHandle);
812 fclose (FileOutHandle);
813 return (0);
814 }

817 /**
818 *
819 * FUNCTION: Stubs
820 *
821 * DESCRIPTION: For linkage
822 *
823 **/

825 ACPI_PHYSICAL_ADDRESS
826 AeLocalGetRootPointer (
827 void)
828 {
829 return (AE_OK);
830 }

832 ACPI_THREAD_ID
833 AcpiOsGetThreadId (
834 void)
835 {
836 return (0xFFFF);
837 }

839 ACPI_STATUS
840 AcpiOsExecute (
841 ACPI_EXECUTE_TYPE Type,
842 ACPI_OSD_EXEC_CALLBACK Function,
843 void *Context)
844 {
845 return (AE_SUPPORT);
846 }

new/usr/src/common/acpica/tools/acpibin/abmain.c 1

**
 5650 Thu Dec 26 13:50:07 2013
new/usr/src/common/acpica/tools/acpibin/abmain.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: abmain - Main module for the acpi binary utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #define _DECLARE_GLOBALS
46 #include "acpibin.h"
47 #include "acapps.h"

49 /* Local prototypes */

51 static void
52 AbDisplayUsage (
53 UINT8 OptionCount);

56 #define AB_UTILITY_NAME "ACPI Binary Table Dump Utility"
57 #define AB_SUPPORTED_OPTIONS "c:d:e:h:s:tv"

60 /**
61 *

new/usr/src/common/acpica/tools/acpibin/abmain.c 2

62 * FUNCTION: AbDisplayUsage
63 *
64 * DESCRIPTION: Usage message
65 *
66 **/

68 static void
69 AbDisplayUsage (
70 UINT8 OptionCount)
71 {

73 if (OptionCount)
74 {
75 printf ("Option requires %u arguments\n\n", OptionCount);
76 }

78 ACPI_USAGE_HEADER ("acpibin [options]");

80 ACPI_OPTION ("-c <File1><File2>", "Compare two binary AML files");
81 ACPI_OPTION ("-d <In><Out>", "Dump AML binary to text file");
82 ACPI_OPTION ("-e <Sig><In><Out>", "Extract binary AML table from AcpiD
83 ACPI_OPTION ("-h <File>", "Display table header for binary AML
84 ACPI_OPTION ("-s <File>", "Update checksum for binary AML file
85 ACPI_OPTION ("-t", "Terse mode");
86 ACPI_OPTION ("-v", "Display version information");
87 }

90 /**
91 *
92 * FUNCTION: main
93 *
94 * DESCRIPTION: C main function
95 *
96 **/

98 int ACPI_SYSTEM_XFACE
99 main (
100 int argc,
101 char *argv[])
102 {
103 int j;
104 int Status = AE_OK;

107 ACPI_DEBUG_INITIALIZE (); /* For debug version only */

109 AcpiGbl_DebugFile = NULL;
110 AcpiGbl_DbOutputFlags = DB_CONSOLE_OUTPUT;

112 AcpiOsInitialize ();
113 printf (ACPI_COMMON_SIGNON (AB_UTILITY_NAME));

115 if (argc < 2)
116 {
117 AbDisplayUsage (0);
118 return (0);
119 }

121 /* Command line options */

123 while ((j = AcpiGetopt (argc, argv, AB_SUPPORTED_OPTIONS)) != EOF) switch(j)
124 {
125 case ’c’: /* Compare Files */

127 if (argc < 4)

new/usr/src/common/acpica/tools/acpibin/abmain.c 3

128 {
129 AbDisplayUsage (2);
130 return (-1);
131 }

133 Status = AbCompareAmlFiles (AcpiGbl_Optarg, argv[AcpiGbl_Optind]);
134 break;

136 case ’d’: /* Dump AML file */

138 if (argc < 4)
139 {
140 AbDisplayUsage (2);
141 return (-1);
142 }

144 Status = AbDumpAmlFile (AcpiGbl_Optarg, argv[AcpiGbl_Optind]);
145 break;

147 case ’e’: /* Extract AML text file */

149 if (argc < 5)
150 {
151 AbDisplayUsage (3);
152 return (-1);
153 }

155 Status = AbExtractAmlFile (AcpiGbl_Optarg, argv[AcpiGbl_Optind],
156 argv[AcpiGbl_Optind+1]);
157 break;

159 case ’h’: /* Display ACPI table header */

161 if (argc < 3)
162 {
163 AbDisplayUsage (1);
164 return (-1);
165 }

167 AbDisplayHeader (AcpiGbl_Optarg);
168 return (0);

170 case ’s’: /* Compute/update checksum */

172 if (argc < 3)
173 {
174 AbDisplayUsage (1);
175 return (-1);
176 }

178 AbComputeChecksum (AcpiGbl_Optarg);
179 return (0);

181 case ’t’: /* Enable terse mode */

183 Gbl_TerseMode = TRUE;
184 break;

186 case ’v’: /* -v: (Version): signon already emitted, just exit */

188 return (0);

190 default:

192 AbDisplayUsage (0);
193 return (-1);

new/usr/src/common/acpica/tools/acpibin/abmain.c 4

194 }

196 return (Status);
197 }

new/usr/src/common/acpica/tools/acpibin/acpibin.h 1

**
 3116 Thu Dec 26 13:50:07 2013
new/usr/src/common/acpica/tools/acpibin/acpibin.h
update to acpica-unix2-20131218
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: acpibinh - Include file for AcpiBin utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"

47 #include <stdio.h>
48 #include <fcntl.h>
49 #include <errno.h>

51 #define DB_CONSOLE_OUTPUT 0x02
52 #define ACPI_DB_REDIRECTABLE_OUTPUT 0x01

54 /*
55 * Global variables. Defined in main.c only, externed in all other files
56 */
57 #ifdef _DECLARE_GLOBALS
58 #define EXTERN
59 #define INIT_GLOBAL(a,b) a=b
60 #else

new/usr/src/common/acpica/tools/acpibin/acpibin.h 2

61 #define EXTERN extern
62 #define INIT_GLOBAL(a,b) a
63 #endif

66 /* Globals */

68 EXTERN BOOLEAN INIT_GLOBAL (Gbl_TerseMode, FALSE);

71 /* Prototypes */

73 int
74 AbCompareAmlFiles (
75 char *File1Path,
76 char *File2Path);

78 int
79 AbExtractAmlFile (
80 char *TableSig,
81 char *File1Path,
82 char *File2Path);

84 int
85 AbDumpAmlFile (
86 char *File1Path,
87 char *File2Path);

89 void
90 AbComputeChecksum (
91 char *File1Path);

93 void
94 AbDisplayHeader (
95 char *File1Path);

new/usr/src/common/acpica/tools/acpidump/acpidump.h 1

**
 5094 Thu Dec 26 13:50:07 2013
new/usr/src/common/acpica/tools/acpidump/acpidump.h
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: acpidump.h - Include file for AcpiDump utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "actables.h"

48 #include <stdio.h>
49 #include <fcntl.h>
50 #include <errno.h>
51 #include <sys/stat.h>

53 /*
54 * Global variables. Defined in main.c only, externed in all other files
55 */
56 #ifdef _DECLARE_GLOBALS
57 #define EXTERN
58 #define INIT_GLOBAL(a,b) a=b
59 #else
60 #define EXTERN extern
61 #define INIT_GLOBAL(a,b) a

new/usr/src/common/acpica/tools/acpidump/acpidump.h 2

62 #endif

65 /* Globals */

67 EXTERN BOOLEAN INIT_GLOBAL (Gbl_SummaryMode, FALSE);
68 EXTERN BOOLEAN INIT_GLOBAL (Gbl_VerboseMode, FALSE);
69 EXTERN BOOLEAN INIT_GLOBAL (Gbl_BinaryMode, FALSE);
70 EXTERN BOOLEAN INIT_GLOBAL (Gbl_DumpCustomizedTables, FALSE);
71 EXTERN FILE INIT_GLOBAL (*Gbl_OutputFile, NULL);
72 EXTERN char INIT_GLOBAL (*Gbl_OutputFilename, NULL);
73 EXTERN UINT64 INIT_GLOBAL (Gbl_RsdpBase, 0);

75 /* Globals required for use with ACPICA modules */

77 #ifdef _DECLARE_GLOBALS
78 UINT8 AcpiGbl_EnableInterpreterSlack = FALSE;
79 UINT8 AcpiGbl_IntegerByteWidth = 8;
80 UINT32 AcpiDbgLevel = 0;
81 UINT32 AcpiDbgLayer = 0;
82 #endif

84 /* Action table used to defer requested options */

86 typedef struct ap_dump_action
87 {
88 char *Argument;
89 UINT32 ToBeDone;

91 } AP_DUMP_ACTION;

93 /* Local RSDP signature (Not the same as the actual signature which is "RSD PTR

95 #define AP_DUMP_SIG_RSDP "RSDP"

97 #define AP_MAX_ACTIONS 32

99 #define AP_DUMP_ALL_TABLES 0
100 #define AP_DUMP_TABLE_BY_ADDRESS 1
101 #define AP_DUMP_TABLE_BY_NAME 2
102 #define AP_DUMP_TABLE_BY_FILE 3

104 #define AP_MAX_ACPI_FILES 256 /* Prevent infinite loops */

106 /* Minimum FADT sizes for various table addresses */

108 #define MIN_FADT_FOR_DSDT (ACPI_FADT_OFFSET (Dsdt) + sizeof (UINT32))
109 #define MIN_FADT_FOR_FACS (ACPI_FADT_OFFSET (Facs) + sizeof (UINT32))
110 #define MIN_FADT_FOR_XDSDT (ACPI_FADT_OFFSET (XDsdt) + sizeof (UINT64))
111 #define MIN_FADT_FOR_XFACS (ACPI_FADT_OFFSET (XFacs) + sizeof (UINT64))

114 /*
115 * apdump - Table get/dump routines
116 */
117 int
118 ApDumpTableFromFile (
119 char *Pathname);

121 int
122 ApDumpTableByName (
123 char *Signature);

125 int
126 ApDumpTableByAddress (
127 char *AsciiAddress);

new/usr/src/common/acpica/tools/acpidump/acpidump.h 3

129 int
130 ApDumpAllTables (
131 void);

133 BOOLEAN
134 ApIsValidHeader (
135 ACPI_TABLE_HEADER *Table);

137 BOOLEAN
138 ApIsValidChecksum (
139 ACPI_TABLE_HEADER *Table);

141 UINT32
142 ApGetTableLength (
143 ACPI_TABLE_HEADER *Table);

146 /*
147 * apfiles - File I/O utilities
148 */
149 UINT32
150 ApGetFileSize (
151 FILE *File);

153 int
154 ApOpenOutputFile (
155 char *Pathname);

157 int
158 ApWriteToBinaryFile (
159 ACPI_TABLE_HEADER *Table,
160 UINT32 Instance);

162 ACPI_TABLE_HEADER *
163 ApGetTableFromFile (
164 char *Pathname,
165 UINT32 *FileSize);

new/usr/src/common/acpica/tools/acpidump/apdump.c 1

**
 13994 Thu Dec 26 13:50:07 2013
new/usr/src/common/acpica/tools/acpidump/apdump.c
update to acpica-unix2-20130927
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: apdump - Dump routines for ACPI tables (acpidump)
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpidump.h"

47 /* Local prototypes */

49 static int
50 ApDumpTableBuffer (
51 ACPI_TABLE_HEADER *Table,
52 UINT32 Instance,
53 ACPI_PHYSICAL_ADDRESS Address);

56 /**
57 *
58 * FUNCTION: ApIsValidHeader
59 *
60 * PARAMETERS: Table - Pointer to table to be validated

new/usr/src/common/acpica/tools/acpidump/apdump.c 2

61 *
62 * RETURN: TRUE if the header appears to be valid. FALSE otherwise
63 *
64 * DESCRIPTION: Check for a valid ACPI table header
65 *
66 **/

68 BOOLEAN
69 ApIsValidHeader (
70 ACPI_TABLE_HEADER *Table)
71 {
72 if (!ACPI_VALIDATE_RSDP_SIG (Table->Signature))
73 {
74 /* Make sure signature is all ASCII and a valid ACPI name */

76 if (!AcpiUtValidAcpiName (Table->Signature))
77 {
78 fprintf (stderr, "Table signature (0x%8.8X) is invalid\n",
79 *(UINT32 *) Table->Signature);
80 return (FALSE);
81 }

83 /* Check for minimum table length */

85 if (Table->Length < sizeof (ACPI_TABLE_HEADER))
86 {
87 fprintf (stderr, "Table length (0x%8.8X) is invalid\n",
88 Table->Length);
89 return (FALSE);
90 }
91 }

93 return (TRUE);
94 }

97 /**
98 *
99 * FUNCTION: ApIsValidChecksum
100 *
101 * PARAMETERS: Table - Pointer to table to be validated
102 *
103 * RETURN: TRUE if the checksum appears to be valid. FALSE otherwise
104 *
105 * DESCRIPTION: Check for a valid ACPI table checksum
106 *
107 **/

109 BOOLEAN
110 ApIsValidChecksum (
111 ACPI_TABLE_HEADER *Table)
112 {
113 ACPI_STATUS Status;
114 ACPI_TABLE_RSDP *Rsdp;

117 if (ACPI_VALIDATE_RSDP_SIG (Table->Signature))
118 {
119 /*
120 * Checksum for RSDP.
121 * Note: Other checksums are computed during the table dump.
122 */

124 Rsdp = ACPI_CAST_PTR (ACPI_TABLE_RSDP, Table);
125 Status = AcpiTbValidateRsdp (Rsdp);
126 }

new/usr/src/common/acpica/tools/acpidump/apdump.c 3

127 else
128 {
129 Status = AcpiTbVerifyChecksum (Table, Table->Length);
130 }

132 if (ACPI_FAILURE (Status))
133 {
134 fprintf (stderr, "%4.4s: Warning: wrong checksum\n",
135 Table->Signature);
136 }

138 return (AE_OK);
139 }

142 /**
143 *
144 * FUNCTION: ApGetTableLength
145 *
146 * PARAMETERS: Table - Pointer to the table
147 *
148 * RETURN: Table length
149 *
150 * DESCRIPTION: Obtain table length according to table signature
151 *
152 **/

154 UINT32
155 ApGetTableLength (
156 ACPI_TABLE_HEADER *Table)
157 {
158 ACPI_TABLE_RSDP *Rsdp;

161 /* Check if table is valid */

163 if (!ApIsValidHeader (Table))
164 {
165 return (0);
166 }

168 if (ACPI_VALIDATE_RSDP_SIG (Table->Signature))
169 {
170 Rsdp = ACPI_CAST_PTR (ACPI_TABLE_RSDP, Table);
171 return (Rsdp->Length);
172 }
173 else
174 {
175 return (Table->Length);
176 }
177 }

180 /**
181 *
182 * FUNCTION: ApDumpTableBuffer
183 *
184 * PARAMETERS: Table - ACPI table to be dumped
185 * Instance - ACPI table instance no. to be dumped
186 * Address - Physical address of the table
187 *
188 * RETURN: None
189 *
190 * DESCRIPTION: Dump an ACPI table in standard ASCII hex format, with a
191 * header that is compatible with the AcpiXtract utility.
192 *

new/usr/src/common/acpica/tools/acpidump/apdump.c 4

193 **/

195 static int
196 ApDumpTableBuffer (
197 ACPI_TABLE_HEADER *Table,
198 UINT32 Instance,
199 ACPI_PHYSICAL_ADDRESS Address)
200 {
201 UINT32 TableLength;

204 TableLength = ApGetTableLength (Table);

206 /* Print only the header if requested */

208 if (Gbl_SummaryMode)
209 {
210 AcpiTbPrintTableHeader (Address, Table);
211 return (0);
212 }

214 /* Dump to binary file if requested */

216 if (Gbl_BinaryMode)
217 {
218 return (ApWriteToBinaryFile (Table, Instance));
219 }

221 /*
222 * Dump the table with header for use with acpixtract utility
223 * Note: simplest to just always emit a 64-bit address. AcpiXtract
224 * utility can handle this.
225 */
226 printf ("%4.4s @ 0x%8.8X%8.8X\n", Table->Signature,
227 ACPI_FORMAT_UINT64 (Address));

229 AcpiUtDumpBuffer (ACPI_CAST_PTR (UINT8, Table), TableLength,
230 DB_BYTE_DISPLAY, 0);
231 printf ("\n");
232 return (0);
233 }

236 /**
237 *
238 * FUNCTION: ApDumpAllTables
239 *
240 * PARAMETERS: None
241 *
242 * RETURN: Status
243 *
244 * DESCRIPTION: Get all tables from the RSDT/XSDT (or at least all of the
245 * tables that we can possibly get).
246 *
247 **/

249 int
250 ApDumpAllTables (
251 void)
252 {
253 ACPI_TABLE_HEADER *Table;
254 UINT32 Instance = 0;
255 ACPI_PHYSICAL_ADDRESS Address;
256 ACPI_STATUS Status;
257 UINT32 i;

new/usr/src/common/acpica/tools/acpidump/apdump.c 5

260 /* Get and dump all available ACPI tables */

262 for (i = 0; i < AP_MAX_ACPI_FILES; i++)
263 {
264 Status = AcpiOsGetTableByIndex (i, &Table, &Instance, &Address);
265 if (ACPI_FAILURE (Status))
266 {
267 /* AE_LIMIT means that no more tables are available */

269 if (Status == AE_LIMIT)
270 {
271 return (0);
272 }
273 else if (i == 0)
274 {
275 fprintf (stderr, "Could not get ACPI tables, %s\n",
276 AcpiFormatException (Status));
277 return (-1);
278 }
279 else
280 {
281 fprintf (stderr, "Could not get ACPI table at index %u, %s\n",
282 i, AcpiFormatException (Status));
283 continue;
284 }
285 }

287 if (ApDumpTableBuffer (Table, Instance, Address))
288 {
289 return (-1);
290 }
291 free (Table);
292 }

294 /* Something seriously bad happened if the loop terminates here */

296 return (-1);
297 }

300 /**
301 *
302 * FUNCTION: ApDumpTableByAddress
303 *
304 * PARAMETERS: AsciiAddress - Address for requested ACPI table
305 *
306 * RETURN: Status
307 *
308 * DESCRIPTION: Get an ACPI table via a physical address and dump it.
309 *
310 **/

312 int
313 ApDumpTableByAddress (
314 char *AsciiAddress)
315 {
316 ACPI_PHYSICAL_ADDRESS Address;
317 ACPI_TABLE_HEADER *Table;
318 ACPI_STATUS Status;
319 int TableStatus;
320 UINT64 LongAddress;

323 /* Convert argument to an integer physical address */

new/usr/src/common/acpica/tools/acpidump/apdump.c 6

325 Status = AcpiUtStrtoul64 (AsciiAddress, 0, &LongAddress);
326 if (ACPI_FAILURE (Status))
327 {
328 fprintf (stderr, "%s: Could not convert to a physical address\n",
329 AsciiAddress);
330 return (-1);
331 }

333 Address = (ACPI_PHYSICAL_ADDRESS) LongAddress;
334 Status = AcpiOsGetTableByAddress (Address, &Table);
335 if (ACPI_FAILURE (Status))
336 {
337 fprintf (stderr, "Could not get table at 0x%8.8X%8.8X, %s\n",
338 ACPI_FORMAT_UINT64 (Address),
339 AcpiFormatException (Status));
340 return (-1);
341 }

343 TableStatus = ApDumpTableBuffer (Table, 0, Address);
344 free (Table);
345 return (TableStatus);
346 }

349 /**
350 *
351 * FUNCTION: ApDumpTableByName
352 *
353 * PARAMETERS: Signature - Requested ACPI table signature
354 *
355 * RETURN: Status
356 *
357 * DESCRIPTION: Get an ACPI table via a signature and dump it. Handles
358 * multiple tables with the same signature (SSDTs).
359 *
360 **/

362 int
363 ApDumpTableByName (
364 char *Signature)
365 {
366 char LocalSignature [ACPI_NAME_SIZE + 1];
367 UINT32 Instance;
368 ACPI_TABLE_HEADER *Table;
369 ACPI_PHYSICAL_ADDRESS Address;
370 ACPI_STATUS Status;

373 if (strlen (Signature) != ACPI_NAME_SIZE)
374 {
375 fprintf (stderr,
376 "Invalid table signature [%s]: must be exactly 4 characters\n",
377 Signature);
378 return (-1);
379 }

381 /* Table signatures are expected to be uppercase */

383 strcpy (LocalSignature, Signature);
384 AcpiUtStrupr (LocalSignature);

386 /* To be friendly, handle tables whose signatures do not match the name */

388 if (ACPI_COMPARE_NAME (LocalSignature, AP_DUMP_SIG_RSDP))
389 {
390 strcpy (LocalSignature, AP_DUMP_SIG_RSDP);

new/usr/src/common/acpica/tools/acpidump/apdump.c 7

391 }
392 else if (ACPI_COMPARE_NAME (LocalSignature, "FADT"))
393 {
394 strcpy (LocalSignature, ACPI_SIG_FADT);
395 }
396 else if (ACPI_COMPARE_NAME (LocalSignature, "MADT"))
397 {
398 strcpy (LocalSignature, ACPI_SIG_MADT);
399 }

401 /* Dump all instances of this signature (to handle multiple SSDTs) */

403 for (Instance = 0; Instance < AP_MAX_ACPI_FILES; Instance++)
404 {
405 Status = AcpiOsGetTableByName (LocalSignature, Instance,
406 &Table, &Address);
407 if (ACPI_FAILURE (Status))
408 {
409 /* AE_LIMIT means that no more tables are available */

411 if (Status == AE_LIMIT)
412 {
413 return (0);
414 }

416 fprintf (stderr,
417 "Could not get ACPI table with signature [%s], %s\n",
418 LocalSignature, AcpiFormatException (Status));
419 return (-1);
420 }

422 if (ApDumpTableBuffer (Table, Instance, Address))
423 {
424 return (-1);
425 }
426 free (Table);
427 }

429 /* Something seriously bad happened if the loop terminates here */

431 return (-1);
432 }

435 /**
436 *
437 * FUNCTION: ApDumpTableFromFile
438 *
439 * PARAMETERS: Pathname - File containing the binary ACPI table
440 *
441 * RETURN: Status
442 *
443 * DESCRIPTION: Dump an ACPI table from a binary file
444 *
445 **/

447 int
448 ApDumpTableFromFile (
449 char *Pathname)
450 {
451 ACPI_TABLE_HEADER *Table;
452 UINT32 FileSize = 0;
453 int TableStatus;

456 /* Get the entire ACPI table from the file */

new/usr/src/common/acpica/tools/acpidump/apdump.c 8

458 Table = ApGetTableFromFile (Pathname, &FileSize);
459 if (!Table)
460 {
461 return (-1);
462 }

464 /* File must be at least as long as the table length */

466 if (Table->Length > FileSize)
467 {
468 fprintf (stderr,
469 "Table length (0x%X) is too large for input file (0x%X) %s\n",
470 Table->Length, FileSize, Pathname);
471 return (-1);
472 }

474 if (Gbl_VerboseMode)
475 {
476 fprintf (stderr,
477 "Input file: %s contains table [%4.4s], 0x%X (%u) bytes\n",
478 Pathname, Table->Signature, FileSize, FileSize);
479 }

481 TableStatus = ApDumpTableBuffer (Table, 0, 0);
482 free (Table);
483 return (TableStatus);
484 }

487 /**
488 *
489 * FUNCTION: AcpiOs* print functions
490 *
491 * DESCRIPTION: Used for linkage with ACPICA modules
492 *
493 **/

495 void ACPI_INTERNAL_VAR_XFACE
496 AcpiOsPrintf (
497 const char *Fmt,
498 ...)
499 {
500 va_list Args;

502 va_start (Args, Fmt);
503 vfprintf (stdout, Fmt, Args);
504 va_end (Args);
505 }

507 void
508 AcpiOsVprintf (
509 const char *Fmt,
510 va_list Args)
511 {
512 vfprintf (stdout, Fmt, Args);
513 }

new/usr/src/common/acpica/tools/acpidump/apfiles.c 1

**
 8018 Thu Dec 26 13:50:08 2013
new/usr/src/common/acpica/tools/acpidump/apfiles.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: apfiles - File-related functions for acpidump utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpidump.h"
45 #include "acapps.h"

48 /**
49 *
50 * FUNCTION: ApOpenOutputFile
51 *
52 * PARAMETERS: Pathname - Output filename
53 *
54 * RETURN: Open file handle
55 *
56 * DESCRIPTION: Open a text output file for acpidump. Checks if file already
57 * exists.
58 *
59 **/

61 int

new/usr/src/common/acpica/tools/acpidump/apfiles.c 2

62 ApOpenOutputFile (
63 char *Pathname)
64 {
65 struct stat StatInfo;
66 FILE *File;

69 /* If file exists, prompt for overwrite */

71 if (!stat (Pathname, &StatInfo))
72 {
73 fprintf (stderr, "Target path already exists, overwrite? [y|n] ");

75 if (getchar () != ’y’)
76 {
77 return (-1);
78 }
79 }

81 /* Point stdout to the file */

83 File = freopen (Pathname, "w", stdout);
84 if (!File)
85 {
86 perror ("Could not open output file");
87 return (-1);
88 }

90 /* Save the file and path */

92 Gbl_OutputFile = File;
93 Gbl_OutputFilename = Pathname;
94 return (0);
95 }

98 /**
99 *
100 * FUNCTION: ApWriteToBinaryFile
101 *
102 * PARAMETERS: Table - ACPI table to be written
103 * Instance - ACPI table instance no. to be written
104 *
105 * RETURN: Status
106 *
107 * DESCRIPTION: Write an ACPI table to a binary file. Builds the output
108 * filename from the table signature.
109 *
110 **/

112 int
113 ApWriteToBinaryFile (
114 ACPI_TABLE_HEADER *Table,
115 UINT32 Instance)
116 {
117 char Filename[ACPI_NAME_SIZE + 16];
118 char InstanceStr [16];
119 FILE *File;
120 size_t Actual;
121 UINT32 TableLength;

124 /* Obtain table length */

126 TableLength = ApGetTableLength (Table);

new/usr/src/common/acpica/tools/acpidump/apfiles.c 3

128 /* Construct lower-case filename from the table local signature */

130 if (ACPI_VALIDATE_RSDP_SIG (Table->Signature))
131 {
132 ACPI_MOVE_NAME (Filename, AP_DUMP_SIG_RSDP);
133 }
134 else
135 {
136 ACPI_MOVE_NAME (Filename, Table->Signature);
137 }
138 Filename[0] = (char) ACPI_TOLOWER (Filename[0]);
139 Filename[1] = (char) ACPI_TOLOWER (Filename[1]);
140 Filename[2] = (char) ACPI_TOLOWER (Filename[2]);
141 Filename[3] = (char) ACPI_TOLOWER (Filename[3]);
142 Filename[ACPI_NAME_SIZE] = 0;

144 /* Handle multiple SSDTs - create different filenames for each */

146 if (Instance > 0)
147 {
148 sprintf (InstanceStr, "%u", Instance);
149 strcat (Filename, InstanceStr);
150 }

152 strcat (Filename, ACPI_TABLE_FILE_SUFFIX);

154 if (Gbl_VerboseMode)
155 {
156 fprintf (stderr,
157 "Writing [%4.4s] to binary file: %s 0x%X (%u) bytes\n",
158 Table->Signature, Filename, Table->Length, Table->Length);
159 }

161 /* Open the file and dump the entire table in binary mode */

163 File = fopen (Filename, "wb");
164 if (!File)
165 {
166 perror ("Could not open output file");
167 return (-1);
168 }

170 Actual = fwrite (Table, 1, TableLength, File);
171 if (Actual != TableLength)
172 {
173 perror ("Error writing binary output file");
174 fclose (File);
175 return (-1);
176 }

178 fclose (File);
179 return (0);
180 }

183 /**
184 *
185 * FUNCTION: ApGetTableFromFile
186 *
187 * PARAMETERS: Pathname - File containing the binary ACPI table
188 * OutFileSize - Where the file size is returned
189 *
190 * RETURN: Buffer containing the ACPI table. NULL on error.
191 *
192 * DESCRIPTION: Open a file and read it entirely into a new buffer
193 *

new/usr/src/common/acpica/tools/acpidump/apfiles.c 4

194 **/

196 ACPI_TABLE_HEADER *
197 ApGetTableFromFile (
198 char *Pathname,
199 UINT32 *OutFileSize)
200 {
201 ACPI_TABLE_HEADER *Buffer = NULL;
202 FILE *File;
203 UINT32 FileSize;
204 size_t Actual;

207 /* Must use binary mode */

209 File = fopen (Pathname, "rb");
210 if (!File)
211 {
212 perror ("Could not open input file");
213 return (NULL);
214 }

216 /* Need file size to allocate a buffer */

218 FileSize = ApGetFileSize (File);
219 if (!FileSize)
220 {
221 fprintf (stderr,
222 "Could not get input file size: %s\n", Pathname);
223 goto Cleanup;
224 }

226 /* Allocate a buffer for the entire file */

228 Buffer = calloc (1, FileSize);
229 if (!Buffer)
230 {
231 fprintf (stderr,
232 "Could not allocate file buffer of size: %u\n", FileSize);
233 goto Cleanup;
234 }

236 /* Read the entire file */

238 Actual = fread (Buffer, 1, FileSize, File);
239 if (Actual != FileSize)
240 {
241 fprintf (stderr,
242 "Could not read input file: %s\n", Pathname);
243 free (Buffer);
244 Buffer = NULL;
245 goto Cleanup;
246 }

248 *OutFileSize = FileSize;

250 Cleanup:
251 fclose (File);
252 return (Buffer);
253 }

256 /**
257 *
258 * FUNCTION: ApGetFileSize
259 *

new/usr/src/common/acpica/tools/acpidump/apfiles.c 5

260 * PARAMETERS: File - Open file descriptor
261 *
262 * RETURN: File size in bytes
263 *
264 * DESCRIPTION: Get the size of an open file
265 *
266 **/

268 UINT32
269 ApGetFileSize (
270 FILE *File)
271 {
272 UINT32 FileSize;
273 long Offset;

276 Offset = ftell (File);
277 if (fseek (File, 0, SEEK_END))
278 {
279 return (0);
280 }

282 /* Get size and restore file pointer */

284 FileSize = (UINT32) ftell (File);
285 if (fseek (File, Offset, SEEK_SET))
286 {
287 return (0);
288 }

290 return (FileSize);
291 }

new/usr/src/common/acpica/tools/acpidump/apmain.c 1

**
 10358 Thu Dec 26 13:50:08 2013
new/usr/src/common/acpica/tools/acpidump/apmain.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: apmain - Main module for the acpidump utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define _DECLARE_GLOBALS
45 #include "acpidump.h"
46 #include "acapps.h"

49 /*
50 * acpidump - A portable utility for obtaining system ACPI tables and dumping
51 * them in an ASCII hex format suitable for binary extraction via acpixtract.
52 *
53 * Obtaining the system ACPI tables is an OS-specific operation.
54 *
55 * This utility can be ported to any host operating system by providing a
56 * module containing system-specific versions of these interfaces:
57 *
58 * AcpiOsGetTableByAddress
59 * AcpiOsGetTableByIndex
60 * AcpiOsGetTableByName
61 *

new/usr/src/common/acpica/tools/acpidump/apmain.c 2

62 * See the ACPICA Reference Guide for the exact definitions of these
63 * interfaces. Also, see these ACPICA source code modules for example
64 * implementations:
65 *
66 * source/os_specific/service_layers/oswintbl.c
67 * source/os_specific/service_layers/oslinuxtbl.c
68 */

71 /* Local prototypes */

73 static void
74 ApDisplayUsage (
75 void);

77 static int
78 ApDoOptions (
79 int argc,
80 char **argv);

82 static void
83 ApInsertAction (
84 char *Argument,
85 UINT32 ToBeDone);

88 /* Table for deferred actions from command line options */

90 AP_DUMP_ACTION ActionTable [AP_MAX_ACTIONS];
91 UINT32 CurrentAction = 0;

94 #define AP_UTILITY_NAME "ACPI Binary Table Dump Utility"
95 #define AP_SUPPORTED_OPTIONS "?a:bcf:hn:o:r:svz"

98 /**
99 *
100 * FUNCTION: ApDisplayUsage
101 *
102 * DESCRIPTION: Usage message for the AcpiDump utility
103 *
104 **/

106 static void
107 ApDisplayUsage (
108 void)
109 {

111 ACPI_USAGE_HEADER ("acpidump [options]");

113 ACPI_OPTION ("-b", "Dump tables to binary files");
114 ACPI_OPTION ("-c", "Dump customized tables");
115 ACPI_OPTION ("-h -?", "This help message");
116 ACPI_OPTION ("-o <File>", "Redirect output to file");
117 ACPI_OPTION ("-r <Address>", "Dump tables from specified RSDP");
118 ACPI_OPTION ("-s", "Print table summaries only");
119 ACPI_OPTION ("-v", "Display version information");
120 ACPI_OPTION ("-z", "Verbose mode");

122 printf ("\nTable Options:\n");

124 ACPI_OPTION ("-a <Address>", "Get table via a physical address");
125 ACPI_OPTION ("-f <BinaryFile>", "Get table via a binary file");
126 ACPI_OPTION ("-n <Signature>", "Get table via a name/signature");

new/usr/src/common/acpica/tools/acpidump/apmain.c 3

128 printf (
129 "\n"
130 "Invocation without parameters dumps all available tables\n"
131 "Multiple mixed instances of -a, -f, and -n are supported\n\n");
132 }

135 /**
136 *
137 * FUNCTION: ApInsertAction
138 *
139 * PARAMETERS: Argument - Pointer to the argument for this action
140 * ToBeDone - What to do to process this action
141 *
142 * RETURN: None. Exits program if action table becomes full.
143 *
144 * DESCRIPTION: Add an action item to the action table
145 *
146 **/

148 static void
149 ApInsertAction (
150 char *Argument,
151 UINT32 ToBeDone)
152 {

154 /* Insert action and check for table overflow */

156 ActionTable [CurrentAction].Argument = Argument;
157 ActionTable [CurrentAction].ToBeDone = ToBeDone;

159 CurrentAction++;
160 if (CurrentAction > AP_MAX_ACTIONS)
161 {
162 fprintf (stderr, "Too many table options (max %u)\n", AP_MAX_ACTIONS);
163 exit (-1);
164 }
165 }

168 /**
169 *
170 * FUNCTION: ApDoOptions
171 *
172 * PARAMETERS: argc/argv - Standard argc/argv
173 *
174 * RETURN: Status
175 *
176 * DESCRIPTION: Command line option processing. The main actions for getting
177 * and dumping tables are deferred via the action table.
178 *
179 ***/

181 static int
182 ApDoOptions (
183 int argc,
184 char **argv)
185 {
186 int j;
187 ACPI_STATUS Status;

190 /* Command line options */

192 while ((j = AcpiGetopt (argc, argv, AP_SUPPORTED_OPTIONS)) != EOF) switch (j
193 {

new/usr/src/common/acpica/tools/acpidump/apmain.c 4

194 /*
195 * Global options
196 */
197 case ’b’: /* Dump all input tables to binary files */

199 Gbl_BinaryMode = TRUE;
200 continue;

202 case ’c’: /* Dump customized tables */

204 Gbl_DumpCustomizedTables = TRUE;
205 continue;

207 case ’h’:
208 case ’?’:

210 ApDisplayUsage ();
211 exit (0);

213 case ’o’: /* Redirect output to a single file */

215 if (ApOpenOutputFile (AcpiGbl_Optarg))
216 {
217 exit (-1);
218 }
219 continue;

221 case ’r’: /* Dump tables from specified RSDP */

223 Status = AcpiUtStrtoul64 (AcpiGbl_Optarg, 0, &Gbl_RsdpBase);
224 if (ACPI_FAILURE (Status))
225 {
226 fprintf (stderr, "%s: Could not convert to a physical address\n",
227 AcpiGbl_Optarg);
228 exit (-1);
229 }
230 continue;

232 case ’s’: /* Print table summaries only */

234 Gbl_SummaryMode = TRUE;
235 continue;

237 case ’v’: /* Revision/version */

239 printf (ACPI_COMMON_SIGNON (AP_UTILITY_NAME));
240 exit (0);

242 case ’z’: /* Verbose mode */

244 Gbl_VerboseMode = TRUE;
245 fprintf (stderr, ACPI_COMMON_SIGNON (AP_UTILITY_NAME));
246 continue;

248 /*
249 * Table options
250 */
251 case ’a’: /* Get table by physical address */

253 ApInsertAction (AcpiGbl_Optarg, AP_DUMP_TABLE_BY_ADDRESS);
254 break;

256 case ’f’: /* Get table from a file */

258 ApInsertAction (AcpiGbl_Optarg, AP_DUMP_TABLE_BY_FILE);
259 break;

new/usr/src/common/acpica/tools/acpidump/apmain.c 5

261 case ’n’: /* Get table by input name (signature) */

263 ApInsertAction (AcpiGbl_Optarg, AP_DUMP_TABLE_BY_NAME);
264 break;

266 default:

268 ApDisplayUsage ();
269 exit (-1);
270 }

272 /* If there are no actions, this means "get/dump all tables" */

274 if (CurrentAction == 0)
275 {
276 ApInsertAction (NULL, AP_DUMP_ALL_TABLES);
277 }

279 return (0);
280 }

283 /**
284 *
285 * FUNCTION: main
286 *
287 * PARAMETERS: argc/argv - Standard argc/argv
288 *
289 * RETURN: Status
290 *
291 * DESCRIPTION: C main function for acpidump utility
292 *
293 **/

295 int ACPI_SYSTEM_XFACE
296 main (
297 int argc,
298 char *argv[])
299 {
300 int Status = 0;
301 AP_DUMP_ACTION *Action;
302 UINT32 FileSize;
303 UINT32 i;

306 ACPI_DEBUG_INITIALIZE (); /* For debug version only */

308 /* Process command line options */

310 if (ApDoOptions (argc, argv))
311 {
312 return (-1);
313 }

315 /* Get/dump ACPI table(s) as requested */

317 for (i = 0; i < CurrentAction; i++)
318 {
319 Action = &ActionTable[i];
320 switch (Action->ToBeDone)
321 {
322 case AP_DUMP_ALL_TABLES:

324 Status = ApDumpAllTables ();
325 break;

new/usr/src/common/acpica/tools/acpidump/apmain.c 6

327 case AP_DUMP_TABLE_BY_ADDRESS:

329 Status = ApDumpTableByAddress (Action->Argument);
330 break;

332 case AP_DUMP_TABLE_BY_NAME:

334 Status = ApDumpTableByName (Action->Argument);
335 break;

337 case AP_DUMP_TABLE_BY_FILE:

339 Status = ApDumpTableFromFile (Action->Argument);
340 break;

342 default:

344 fprintf (stderr, "Internal error, invalid action: 0x%X\n",
345 Action->ToBeDone);
346 return (-1);
347 }

349 if (Status)
350 {
351 return (Status);
352 }
353 }

355 if (Gbl_OutputFile)
356 {
357 if (Gbl_VerboseMode)
358 {
359 /* Summary for the output file */

361 FileSize = ApGetFileSize (Gbl_OutputFile);
362 fprintf (stderr, "Output file %s contains 0x%X (%u) bytes\n\n",
363 Gbl_OutputFilename, FileSize, FileSize);
364 }

366 fclose (Gbl_OutputFile);
367 }

369 return (Status);
370 }

new/usr/src/common/acpica/tools/acpiexec/aecommon.h 1

**
 5432 Thu Dec 26 13:50:08 2013
new/usr/src/common/acpica/tools/acpiexec/aecommon.h
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aecommon - common include for the AcpiExec utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef _AECOMMON
45 #define _AECOMMON

47 #ifdef _MSC_VER /* disable some level-4 warnings */
48 #pragma warning(disable:4100) /* warning C4100: unreferenced formal parameter
49 #endif

51 #include "acpi.h"
52 #include "accommon.h"
53 #include "acparser.h"
54 #include "amlcode.h"
55 #include "acnamesp.h"
56 #include "acdebug.h"
57 #include "actables.h"
58 #include "acinterp.h"
59 #include "acapps.h"

new/usr/src/common/acpica/tools/acpiexec/aecommon.h 2

61 #include <stdio.h>
62 #include <stdlib.h>
63 #include <string.h>
64 #include <signal.h>

66 extern BOOLEAN AcpiGbl_IgnoreErrors;
67 extern UINT8 AcpiGbl_RegionFillValue;
68 extern UINT8 AcpiGbl_UseHwReducedFadt;
69 extern BOOLEAN AcpiGbl_DisplayRegionAccess;
70 extern BOOLEAN AcpiGbl_DoInterfaceTests;

72 /* Check for unexpected exceptions */

74 #define AE_CHECK_STATUS(Name, Status, Expected) \
75 if (Status != Expected) \
76 { \
77 AcpiOsPrintf ("Unexpected %s from %s (%s-%d)\n", \
78 AcpiFormatException (Status), #Name, _AcpiModuleName, __LINE__); \
79 }

81 /* Check for unexpected non-AE_OK errors */

83 #define AE_CHECK_OK(Name, Status) AE_CHECK_STATUS (Name, Status, AE_OK);

85 typedef struct ae_table_desc
86 {
87 ACPI_TABLE_HEADER *Table;
88 struct ae_table_desc *Next;

90 } AE_TABLE_DESC;

92 /*
93 * Debug Regions
94 */
95 typedef struct ae_region
96 {
97 ACPI_PHYSICAL_ADDRESS Address;
98 UINT32 Length;
99 void *Buffer;
100 void *NextRegion;
101 UINT8 SpaceId;

103 } AE_REGION;

105 typedef struct ae_debug_regions
106 {
107 UINT32 NumberOfRegions;
108 AE_REGION *RegionList;

110 } AE_DEBUG_REGIONS;

113 #define TEST_OUTPUT_LEVEL(lvl) if ((lvl) & OutputLevel)

115 #define OSD_PRINT(lvl,fp) TEST_OUTPUT_LEVEL(lvl) {\
116 AcpiOsPrintf PARAM_LIST(fp);}

118 void ACPI_SYSTEM_XFACE
119 AeCtrlCHandler (
120 int Sig);

122 ACPI_STATUS
123 AeBuildLocalTables (
124 UINT32 TableCount,
125 AE_TABLE_DESC *TableList);

new/usr/src/common/acpica/tools/acpiexec/aecommon.h 3

127 ACPI_STATUS
128 AeInstallTables (
129 void);

131 void
132 AeDumpNamespace (
133 void);

135 void
136 AeDumpObject (
137 char *MethodName,
138 ACPI_BUFFER *ReturnObj);

140 void
141 AeDumpBuffer (
142 UINT32 Address);

144 void
145 AeExecute (
146 char *Name);

148 void
149 AeSetScope (
150 char *Name);

152 void
153 AeCloseDebugFile (
154 void);

156 void
157 AeOpenDebugFile (
158 char *Name);

160 ACPI_STATUS
161 AeDisplayAllMethods (
162 UINT32 DisplayCount);

164 ACPI_STATUS
165 AeInstallEarlyHandlers (
166 void);

168 ACPI_STATUS
169 AeInstallLateHandlers (
170 void);

172 void
173 AeMiscellaneousTests (
174 void);

176 ACPI_STATUS
177 AeRegionHandler (
178 UINT32 Function,
179 ACPI_PHYSICAL_ADDRESS Address,
180 UINT32 BitWidth,
181 UINT64 *Value,
182 void *HandlerContext,
183 void *RegionContext);

185 UINT32
186 AeGpeHandler (
187 ACPI_HANDLE GpeDevice,
188 UINT32 GpeNumber,
189 void *Context);

191 void

new/usr/src/common/acpica/tools/acpiexec/aecommon.h 4

192 AeGlobalEventHandler (
193 UINT32 Type,
194 ACPI_HANDLE GpeDevice,
195 UINT32 EventNumber,
196 void *Context);

198 #endif /* _AECOMMON */

new/usr/src/common/acpica/tools/acpiexec/aeexec.c 1

**
 22310 Thu Dec 26 13:50:08 2013
new/usr/src/common/acpica/tools/acpiexec/aeexec.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aeexec - Support routines for AcpiExec utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aecommon.h"

46 #define _COMPONENT ACPI_TOOLS
47 ACPI_MODULE_NAME ("aeexec")

49 /* Local prototypes */

51 static ACPI_STATUS
52 AeSetupConfiguration (
53 void *RegionAddr);

55 static void
56 AeTestBufferArgument (
57 void);

59 static void

new/usr/src/common/acpica/tools/acpiexec/aeexec.c 2

60 AeTestPackageArgument (
61 void);

63 static ACPI_STATUS
64 AeGetDevices (
65 ACPI_HANDLE ObjHandle,
66 UINT32 NestingLevel,
67 void *Context,
68 void **ReturnValue);

70 static ACPI_STATUS
71 ExecuteOSI (
72 char *OsiString,
73 UINT32 ExpectedResult);

75 static void
76 AeMutexInterfaces (
77 void);

79 static void
80 AeHardwareInterfaces (
81 void);

83 static void
84 AeGenericRegisters (
85 void);

87 #if (!ACPI_REDUCED_HARDWARE)
88 static void
89 AfInstallGpeBlock (
90 void);
91 #endif /* !ACPI_REDUCED_HARDWARE */

93 extern unsigned char Ssdt2Code[];
94 extern unsigned char Ssdt3Code[];
95 extern unsigned char Ssdt4Code[];

98 /**
99 *
100 * FUNCTION: AeSetupConfiguration
101 *
102 * PARAMETERS: RegionAddr - Address for an ACPI table to be loaded
103 * dynamically. Test purposes only.
104 *
105 * RETURN: Status
106 *
107 * DESCRIPTION: Call AML _CFG configuration control method
108 *
109 ***/

111 static ACPI_STATUS
112 AeSetupConfiguration (
113 void *RegionAddr)
114 {
115 ACPI_OBJECT_LIST ArgList;
116 ACPI_OBJECT Arg[3];

119 /*
120 * Invoke _CFG method if present
121 */
122 ArgList.Count = 1;
123 ArgList.Pointer = Arg;

125 Arg[0].Type = ACPI_TYPE_INTEGER;

new/usr/src/common/acpica/tools/acpiexec/aeexec.c 3

126 Arg[0].Integer.Value = ACPI_TO_INTEGER (RegionAddr);

128 (void) AcpiEvaluateObject (NULL, "_CFG", &ArgList, NULL);
129 return (AE_OK);
130 }

133 #if (!ACPI_REDUCED_HARDWARE)
134 /**
135 *
136 * FUNCTION: AfInstallGpeBlock
137 *
138 * PARAMETERS: None
139 *
140 * RETURN: None
141 *
142 * DESCRIPTION: Test GPE block device initialization. Requires test ASL with
143 * A \GPE2 device.
144 *
145 ***/

147 static void
148 AfInstallGpeBlock (
149 void)
150 {
151 ACPI_STATUS Status;
152 ACPI_HANDLE Handle;
153 ACPI_HANDLE Handle2 = NULL;
154 ACPI_HANDLE Handle3 = NULL;
155 ACPI_GENERIC_ADDRESS BlockAddress;
156 ACPI_HANDLE GpeDevice;

159 Status = AcpiGetHandle (NULL, "_GPE", &Handle);
160 if (ACPI_FAILURE (Status))
161 {
162 return;
163 }

165 ACPI_MEMSET (&BlockAddress, 0, sizeof (ACPI_GENERIC_ADDRESS));
166 BlockAddress.SpaceId = ACPI_ADR_SPACE_SYSTEM_MEMORY;
167 BlockAddress.Address = 0x76540000;

169 Status = AcpiGetHandle (NULL, "\\GPE2", &Handle2);
170 if (ACPI_SUCCESS (Status))
171 {
172 Status = AcpiInstallGpeBlock (Handle2, &BlockAddress, 7, 8);
173 AE_CHECK_OK (AcpiInstallGpeBlock, Status);

175 Status = AcpiInstallGpeHandler (Handle2, 8,
176 ACPI_GPE_LEVEL_TRIGGERED, AeGpeHandler, NULL);
177 AE_CHECK_OK (AcpiInstallGpeHandler, Status);

179 Status = AcpiEnableGpe (Handle2, 8);
180 AE_CHECK_OK (AcpiEnableGpe, Status);

182 Status = AcpiGetGpeDevice (0x30, &GpeDevice);
183 AE_CHECK_OK (AcpiGetGpeDevice, Status);

185 Status = AcpiGetGpeDevice (0x42, &GpeDevice);
186 AE_CHECK_OK (AcpiGetGpeDevice, Status);

188 Status = AcpiGetGpeDevice (AcpiCurrentGpeCount-1, &GpeDevice);
189 AE_CHECK_OK (AcpiGetGpeDevice, Status);

191 Status = AcpiGetGpeDevice (AcpiCurrentGpeCount, &GpeDevice);

new/usr/src/common/acpica/tools/acpiexec/aeexec.c 4

192 AE_CHECK_STATUS (AcpiGetGpeDevice, Status, AE_NOT_EXIST);

194 Status = AcpiRemoveGpeHandler (Handle2, 8, AeGpeHandler);
195 AE_CHECK_OK (AcpiRemoveGpeHandler, Status);
196 }

198 Status = AcpiGetHandle (NULL, "\\GPE3", &Handle3);
199 if (ACPI_SUCCESS (Status))
200 {
201 Status = AcpiInstallGpeBlock (Handle3, &BlockAddress, 8, 11);
202 AE_CHECK_OK (AcpiInstallGpeBlock, Status);
203 }
204 }
205 #endif /* !ACPI_REDUCED_HARDWARE */

208 /* Test using a Buffer object as a method argument */

210 static void
211 AeTestBufferArgument (
212 void)
213 {
214 ACPI_OBJECT_LIST Params;
215 ACPI_OBJECT BufArg;
216 UINT8 Buffer[] = {
217 0,0,0,0,
218 4,0,0,0,
219 1,2,3,4};

222 BufArg.Type = ACPI_TYPE_BUFFER;
223 BufArg.Buffer.Length = 12;
224 BufArg.Buffer.Pointer = Buffer;

226 Params.Count = 1;
227 Params.Pointer = &BufArg;

229 (void) AcpiEvaluateObject (NULL, "\\BUF", &Params, NULL);
230 }

233 static ACPI_OBJECT PkgArg;
234 static ACPI_OBJECT PkgElements[5];
235 static ACPI_OBJECT Pkg2Elements[5];
236 static ACPI_OBJECT_LIST Params;

239 /*
240 * Test using a Package object as an method argument
241 */
242 static void
243 AeTestPackageArgument (
244 void)
245 {

247 /* Main package */

249 PkgArg.Type = ACPI_TYPE_PACKAGE;
250 PkgArg.Package.Count = 4;
251 PkgArg.Package.Elements = PkgElements;

253 /* Main package elements */

255 PkgElements[0].Type = ACPI_TYPE_INTEGER;
256 PkgElements[0].Integer.Value = 0x22228888;

new/usr/src/common/acpica/tools/acpiexec/aeexec.c 5

258 PkgElements[1].Type = ACPI_TYPE_STRING;
259 PkgElements[1].String.Length = sizeof ("Top-level package");
260 PkgElements[1].String.Pointer = "Top-level package";

262 PkgElements[2].Type = ACPI_TYPE_BUFFER;
263 PkgElements[2].Buffer.Length = sizeof ("XXXX");
264 PkgElements[2].Buffer.Pointer = (UINT8 *) "XXXX";

266 PkgElements[3].Type = ACPI_TYPE_PACKAGE;
267 PkgElements[3].Package.Count = 2;
268 PkgElements[3].Package.Elements = Pkg2Elements;

270 /* Sub-package elements */

272 Pkg2Elements[0].Type = ACPI_TYPE_INTEGER;
273 Pkg2Elements[0].Integer.Value = 0xAAAABBBB;

275 Pkg2Elements[1].Type = ACPI_TYPE_STRING;
276 Pkg2Elements[1].String.Length = sizeof ("Nested Package");
277 Pkg2Elements[1].String.Pointer = "Nested Package";

279 /* Parameter object */

281 Params.Count = 1;
282 Params.Pointer = &PkgArg;

284 (void) AcpiEvaluateObject (NULL, "_PKG", &Params, NULL);
285 }

288 static ACPI_STATUS
289 AeGetDevices (
290 ACPI_HANDLE ObjHandle,
291 UINT32 NestingLevel,
292 void *Context,
293 void **ReturnValue)
294 {

296 return (AE_OK);
297 }

300 /**
301 *
302 * FUNCTION: ExecuteOSI
303 *
304 * PARAMETERS: OsiString - String passed to _OSI method
305 * ExpectedResult - 0 (FALSE) or 0xFFFFFFFF (TRUE)
306 *
307 * RETURN: Status
308 *
309 * DESCRIPTION: Execute the internally implemented (in ACPICA) _OSI method.
310 *
311 ***/

313 static ACPI_STATUS
314 ExecuteOSI (
315 char *OsiString,
316 UINT32 ExpectedResult)
317 {
318 ACPI_STATUS Status;
319 ACPI_OBJECT_LIST ArgList;
320 ACPI_OBJECT Arg[1];
321 ACPI_BUFFER ReturnValue;
322 ACPI_OBJECT *Obj;

new/usr/src/common/acpica/tools/acpiexec/aeexec.c 6

325 /* Setup input argument */

327 ArgList.Count = 1;
328 ArgList.Pointer = Arg;

330 Arg[0].Type = ACPI_TYPE_STRING;
331 Arg[0].String.Pointer = OsiString;
332 Arg[0].String.Length = strlen (Arg[0].String.Pointer);

334 /* Ask ACPICA to allocate space for the return object */

336 ReturnValue.Length = ACPI_ALLOCATE_BUFFER;

338 Status = AcpiEvaluateObject (NULL, "_OSI", &ArgList, &ReturnValue);

340 if (ACPI_FAILURE (Status))
341 {
342 AcpiOsPrintf ("Could not execute _OSI method, %s\n",
343 AcpiFormatException (Status));
344 return (Status);
345 }

347 Status = AE_ERROR;

349 if (ReturnValue.Length < sizeof (ACPI_OBJECT))
350 {
351 AcpiOsPrintf ("Return value from _OSI method too small, %.8X\n",
352 ReturnValue.Length);
353 goto ErrorExit;
354 }

356 Obj = ReturnValue.Pointer;
357 if (Obj->Type != ACPI_TYPE_INTEGER)
358 {
359 AcpiOsPrintf ("Invalid return type from _OSI method, %.2X\n", Obj->Type)
360 goto ErrorExit;
361 }

363 if (Obj->Integer.Value != ExpectedResult)
364 {
365 AcpiOsPrintf ("Invalid return value from _OSI, expected %.8X found %.8X\
366 ExpectedResult, (UINT32) Obj->Integer.Value);
367 goto ErrorExit;
368 }

370 Status = AE_OK;

372 /* Reset the OSI data */

374 AcpiGbl_OsiData = 0;

376 ErrorExit:

378 /* Free a buffer created via ACPI_ALLOCATE_BUFFER */

380 AcpiOsFree (ReturnValue.Pointer);

382 return (Status);
383 }

386 /**
387 *
388 * FUNCTION: AeGenericRegisters
389 *

new/usr/src/common/acpica/tools/acpiexec/aeexec.c 7

390 * DESCRIPTION: Call the AcpiRead/Write interfaces.
391 *
392 ***/

394 static ACPI_GENERIC_ADDRESS GenericRegister;

396 static void
397 AeGenericRegisters (
398 void)
399 {
400 ACPI_STATUS Status;
401 UINT64 Value;

404 GenericRegister.Address = 0x1234;
405 GenericRegister.BitWidth = 64;
406 GenericRegister.BitOffset = 0;
407 GenericRegister.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;

409 Status = AcpiRead (&Value, &GenericRegister);
410 AE_CHECK_OK (AcpiRead, Status);

412 Status = AcpiWrite (Value, &GenericRegister);
413 AE_CHECK_OK (AcpiWrite, Status);

415 GenericRegister.Address = 0x12345678;
416 GenericRegister.BitOffset = 0;
417 GenericRegister.SpaceId = ACPI_ADR_SPACE_SYSTEM_MEMORY;

419 Status = AcpiRead (&Value, &GenericRegister);
420 AE_CHECK_OK (AcpiRead, Status);

422 Status = AcpiWrite (Value, &GenericRegister);
423 AE_CHECK_OK (AcpiWrite, Status);
424 }

427 /**
428 *
429 * FUNCTION: AeMutexInterfaces
430 *
431 * DESCRIPTION: Exercise the AML mutex access interfaces
432 *
433 ***/

435 static void
436 AeMutexInterfaces (
437 void)
438 {
439 ACPI_STATUS Status;
440 ACPI_HANDLE MutexHandle;

443 /* Get a handle to an AML mutex */

445 Status = AcpiGetHandle (NULL, "\\MTX1", &MutexHandle);
446 if (Status == AE_NOT_FOUND)
447 {
448 return;
449 }

451 AE_CHECK_OK (AcpiGetHandle, Status);
452 if (ACPI_FAILURE (Status))
453 {
454 return;
455 }

new/usr/src/common/acpica/tools/acpiexec/aeexec.c 8

457 /* Acquire the mutex */

459 Status = AcpiAcquireMutex (NULL, "\\MTX1", 0xFFFF);
460 AE_CHECK_OK (AcpiAcquireMutex, Status);
461 if (ACPI_FAILURE (Status))
462 {
463 return;
464 }

466 /* Release mutex with different parameters */

468 Status = AcpiReleaseMutex (MutexHandle, NULL);
469 AE_CHECK_OK (AcpiReleaseMutex, Status);
470 }

473 /**
474 *
475 * FUNCTION: AeHardwareInterfaces
476 *
477 * DESCRIPTION: Call various hardware support interfaces
478 *
479 ***/

481 static void
482 AeHardwareInterfaces (
483 void)
484 {
485 #if (!ACPI_REDUCED_HARDWARE)

487 ACPI_STATUS Status;
488 UINT32 Value;

491 /* If Hardware Reduced flag is set, we are all done */

493 if (AcpiGbl_ReducedHardware)
494 {
495 return;
496 }

498 Status = AcpiWriteBitRegister (ACPI_BITREG_WAKE_STATUS, 1);
499 AE_CHECK_OK (AcpiWriteBitRegister, Status);

501 Status = AcpiWriteBitRegister (ACPI_BITREG_GLOBAL_LOCK_ENABLE, 1);
502 AE_CHECK_OK (AcpiWriteBitRegister, Status);

504 Status = AcpiWriteBitRegister (ACPI_BITREG_SLEEP_ENABLE, 1);
505 AE_CHECK_OK (AcpiWriteBitRegister, Status);

507 Status = AcpiWriteBitRegister (ACPI_BITREG_ARB_DISABLE, 1);
508 AE_CHECK_OK (AcpiWriteBitRegister, Status);

511 Status = AcpiReadBitRegister (ACPI_BITREG_WAKE_STATUS, &Value);
512 AE_CHECK_OK (AcpiReadBitRegister, Status);

514 Status = AcpiReadBitRegister (ACPI_BITREG_GLOBAL_LOCK_ENABLE, &Value);
515 AE_CHECK_OK (AcpiReadBitRegister, Status);

517 Status = AcpiReadBitRegister (ACPI_BITREG_SLEEP_ENABLE, &Value);
518 AE_CHECK_OK (AcpiReadBitRegister, Status);

520 Status = AcpiReadBitRegister (ACPI_BITREG_ARB_DISABLE, &Value);
521 AE_CHECK_OK (AcpiReadBitRegister, Status);

new/usr/src/common/acpica/tools/acpiexec/aeexec.c 9

523 #endif /* !ACPI_REDUCED_HARDWARE */
524 }

527 /**
528 *
529 * FUNCTION: AeMiscellaneousTests
530 *
531 * DESCRIPTION: Various ACPICA validation tests.
532 *
533 ***/

535 void
536 AeMiscellaneousTests (
537 void)
538 {
539 ACPI_BUFFER ReturnBuf;
540 char Buffer[32];
541 ACPI_STATUS Status;
542 ACPI_STATISTICS Stats;
543 ACPI_HANDLE Handle;

545 #if (!ACPI_REDUCED_HARDWARE)
546 ACPI_VENDOR_UUID Uuid = {0, {ACPI_INIT_UUID (0,0,0,0,0,0,0,0,0,0,0)}}
547 UINT32 LockHandle1;
548 UINT32 LockHandle2;
549 #endif /* !ACPI_REDUCED_HARDWARE */

552 Status = AcpiGetHandle (NULL, "\\", &Handle);
553 AE_CHECK_OK (AcpiGetHandle, Status);

555 if (AcpiGbl_DoInterfaceTests)
556 {
557 /*
558 * Tests for AcpiLoadTable and AcpiUnloadParentTable
559 */

561 /* Attempt unload of DSDT, should fail */

563 Status = AcpiGetHandle (NULL, "_SB_", &Handle);
564 AE_CHECK_OK (AcpiGetHandle, Status);

566 Status = AcpiUnloadParentTable (Handle);
567 AE_CHECK_STATUS (AcpiUnloadParentTable, Status, AE_TYPE);

569 /* Load and unload SSDT4 */

571 Status = AcpiLoadTable ((ACPI_TABLE_HEADER *) Ssdt4Code);
572 AE_CHECK_OK (AcpiLoadTable, Status);

574 Status = AcpiGetHandle (NULL, "_T96", &Handle);
575 AE_CHECK_OK (AcpiGetHandle, Status);

577 Status = AcpiUnloadParentTable (Handle);
578 AE_CHECK_OK (AcpiUnloadParentTable, Status);

580 /* Re-load SSDT4 */

582 Status = AcpiLoadTable ((ACPI_TABLE_HEADER *) Ssdt4Code);
583 AE_CHECK_OK (AcpiLoadTable, Status);

585 /* Unload and re-load SSDT2 (SSDT2 is in the XSDT) */

587 Status = AcpiGetHandle (NULL, "_T99", &Handle);

new/usr/src/common/acpica/tools/acpiexec/aeexec.c 10

588 AE_CHECK_OK (AcpiGetHandle, Status);

590 Status = AcpiUnloadParentTable (Handle);
591 AE_CHECK_OK (AcpiUnloadParentTable, Status);

593 Status = AcpiLoadTable ((ACPI_TABLE_HEADER *) Ssdt2Code);
594 AE_CHECK_OK (AcpiLoadTable, Status);

596 /* Load OEM9 table (causes table override) */

598 Status = AcpiLoadTable ((ACPI_TABLE_HEADER *) Ssdt3Code);
599 AE_CHECK_OK (AcpiLoadTable, Status);
600 }

602 AeHardwareInterfaces ();
603 AeGenericRegisters ();
604 AeSetupConfiguration (Ssdt3Code);

606 AeTestBufferArgument();
607 AeTestPackageArgument ();
608 AeMutexInterfaces ();

610 /* Test _OSI install/remove */

612 Status = AcpiInstallInterface ("");
613 AE_CHECK_STATUS (AcpiInstallInterface, Status, AE_BAD_PARAMETER);

615 Status = AcpiInstallInterface ("TestString");
616 AE_CHECK_OK (AcpiInstallInterface, Status);

618 Status = AcpiInstallInterface ("TestString");
619 AE_CHECK_STATUS (AcpiInstallInterface, Status, AE_ALREADY_EXISTS);

621 Status = AcpiRemoveInterface ("Windows 2006");
622 AE_CHECK_OK (AcpiRemoveInterface, Status);

624 Status = AcpiRemoveInterface ("TestString");
625 AE_CHECK_OK (AcpiRemoveInterface, Status);

627 Status = AcpiRemoveInterface ("XXXXXX");
628 AE_CHECK_STATUS (AcpiRemoveInterface, Status, AE_NOT_EXIST);

630 Status = AcpiInstallInterface ("AnotherTestString");
631 AE_CHECK_OK (AcpiInstallInterface, Status);

633 /* Test _OSI execution */

635 Status = ExecuteOSI ("Extended Address Space Descriptor", 0xFFFFFFFF);
636 AE_CHECK_OK (ExecuteOSI, Status);

638 Status = ExecuteOSI ("Windows 2001", 0xFFFFFFFF);
639 AE_CHECK_OK (ExecuteOSI, Status);

641 Status = ExecuteOSI ("MichiganTerminalSystem", 0);
642 AE_CHECK_OK (ExecuteOSI, Status);

645 ReturnBuf.Length = 32;
646 ReturnBuf.Pointer = Buffer;

648 Status = AcpiGetName (ACPI_ROOT_OBJECT, ACPI_FULL_PATHNAME, &ReturnBuf);
649 AE_CHECK_OK (AcpiGetName, Status);

651 /* Get Devices */

653 Status = AcpiGetDevices (NULL, AeGetDevices, NULL, NULL);

new/usr/src/common/acpica/tools/acpiexec/aeexec.c 11

654 AE_CHECK_OK (AcpiGetDevices, Status);

656 Status = AcpiGetStatistics (&Stats);
657 AE_CHECK_OK (AcpiGetStatistics, Status);

660 #if (!ACPI_REDUCED_HARDWARE)

662 Status = AcpiInstallGlobalEventHandler (AeGlobalEventHandler, NULL);
663 AE_CHECK_OK (AcpiInstallGlobalEventHandler, Status);

665 /* If Hardware Reduced flag is set, we are all done */

667 if (AcpiGbl_ReducedHardware)
668 {
669 return;
670 }

672 Status = AcpiEnableEvent (ACPI_EVENT_GLOBAL, 0);
673 AE_CHECK_OK (AcpiEnableEvent, Status);

675 /*
676 * GPEs: Handlers, enable/disable, etc.
677 */
678 Status = AcpiInstallGpeHandler (NULL, 0, ACPI_GPE_LEVEL_TRIGGERED, AeGpeHand
679 AE_CHECK_OK (AcpiInstallGpeHandler, Status);

681 Status = AcpiEnableGpe (NULL, 0);
682 AE_CHECK_OK (AcpiEnableGpe, Status);

684 Status = AcpiRemoveGpeHandler (NULL, 0, AeGpeHandler);
685 AE_CHECK_OK (AcpiRemoveGpeHandler, Status);

687 Status = AcpiInstallGpeHandler (NULL, 0, ACPI_GPE_LEVEL_TRIGGERED, AeGpeHand
688 AE_CHECK_OK (AcpiInstallGpeHandler, Status);

690 Status = AcpiEnableGpe (NULL, 0);
691 AE_CHECK_OK (AcpiEnableGpe, Status);

693 Status = AcpiSetGpe (NULL, 0, ACPI_GPE_DISABLE);
694 AE_CHECK_OK (AcpiSetGpe, Status);

696 Status = AcpiSetGpe (NULL, 0, ACPI_GPE_ENABLE);
697 AE_CHECK_OK (AcpiSetGpe, Status);

700 Status = AcpiInstallGpeHandler (NULL, 1, ACPI_GPE_EDGE_TRIGGERED, AeGpeHandl
701 AE_CHECK_OK (AcpiInstallGpeHandler, Status);

703 Status = AcpiEnableGpe (NULL, 1);
704 AE_CHECK_OK (AcpiEnableGpe, Status);

707 Status = AcpiInstallGpeHandler (NULL, 2, ACPI_GPE_LEVEL_TRIGGERED, AeGpeHand
708 AE_CHECK_OK (AcpiInstallGpeHandler, Status);

710 Status = AcpiEnableGpe (NULL, 2);
711 AE_CHECK_OK (AcpiEnableGpe, Status);

714 Status = AcpiInstallGpeHandler (NULL, 3, ACPI_GPE_EDGE_TRIGGERED, AeGpeHandl
715 AE_CHECK_OK (AcpiInstallGpeHandler, Status);

717 Status = AcpiInstallGpeHandler (NULL, 4, ACPI_GPE_LEVEL_TRIGGERED, AeGpeHand
718 AE_CHECK_OK (AcpiInstallGpeHandler, Status);

new/usr/src/common/acpica/tools/acpiexec/aeexec.c 12

720 Status = AcpiInstallGpeHandler (NULL, 5, ACPI_GPE_EDGE_TRIGGERED, AeGpeHandl
721 AE_CHECK_OK (AcpiInstallGpeHandler, Status);

723 Status = AcpiGetHandle (NULL, "_SB", &Handle);
724 AE_CHECK_OK (AcpiGetHandle, Status);

726 Status = AcpiSetupGpeForWake (Handle, NULL, 5);
727 AE_CHECK_OK (AcpiSetupGpeForWake, Status);

729 Status = AcpiSetGpeWakeMask (NULL, 5, ACPI_GPE_ENABLE);
730 AE_CHECK_OK (AcpiSetGpeWakeMask, Status);

732 Status = AcpiSetupGpeForWake (Handle, NULL, 6);
733 AE_CHECK_OK (AcpiSetupGpeForWake, Status);

735 Status = AcpiSetupGpeForWake (ACPI_ROOT_OBJECT, NULL, 6);
736 AE_CHECK_OK (AcpiSetupGpeForWake, Status);

738 Status = AcpiSetupGpeForWake (Handle, NULL, 9);
739 AE_CHECK_OK (AcpiSetupGpeForWake, Status);

741 Status = AcpiInstallGpeHandler (NULL, 0x19, ACPI_GPE_LEVEL_TRIGGERED, AeGpeH
742 AE_CHECK_OK (AcpiInstallGpeHandler, Status);

744 Status = AcpiEnableGpe (NULL, 0x19);
745 AE_CHECK_OK (AcpiEnableGpe, Status);

748 Status = AcpiInstallGpeHandler (NULL, 0x62, ACPI_GPE_LEVEL_TRIGGERED, AeGpeH
749 AE_CHECK_OK (AcpiInstallGpeHandler, Status);

751 Status = AcpiEnableGpe (NULL, 0x62);
752 AE_CHECK_OK (AcpiEnableGpe, Status);

754 Status = AcpiDisableGpe (NULL, 0x62);
755 AE_CHECK_OK (AcpiDisableGpe, Status);

757 AfInstallGpeBlock ();

759 /* Here is where the GPEs are actually "enabled" */

761 Status = AcpiUpdateAllGpes ();
762 AE_CHECK_OK (AcpiUpdateAllGpes, Status);

764 Status = AcpiGetHandle (NULL, "RSRC", &Handle);
765 if (ACPI_SUCCESS (Status))
766 {
767 ReturnBuf.Length = ACPI_ALLOCATE_BUFFER;

769 Status = AcpiGetVendorResource (Handle, "_CRS", &Uuid, &ReturnBuf);
770 if (ACPI_SUCCESS (Status))
771 {
772 AcpiOsFree (ReturnBuf.Pointer);
773 }
774 }

776 /* Test global lock */

778 Status = AcpiAcquireGlobalLock (0xFFFF, &LockHandle1);
779 AE_CHECK_OK (AcpiAcquireGlobalLock, Status);

781 Status = AcpiAcquireGlobalLock (0x5, &LockHandle2);
782 AE_CHECK_OK (AcpiAcquireGlobalLock, Status);

784 Status = AcpiReleaseGlobalLock (LockHandle1);
785 AE_CHECK_OK (AcpiReleaseGlobalLock, Status);

new/usr/src/common/acpica/tools/acpiexec/aeexec.c 13

787 Status = AcpiReleaseGlobalLock (LockHandle2);
788 AE_CHECK_OK (AcpiReleaseGlobalLock, Status);

790 #endif /* !ACPI_REDUCED_HARDWARE */
791 }

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 1

**
 44726 Thu Dec 26 13:50:08 2013
new/usr/src/common/acpica/tools/acpiexec/aehandlers.c
update to acpica-unix2-20131218
update to acpica-unix2-20131115
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aehandlers - Various handlers for acpiexec
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aecommon.h"

46 #define _COMPONENT ACPI_TOOLS
47 ACPI_MODULE_NAME ("aehandlers")

49 /* Local prototypes */

51 static void
52 AeNotifyHandler1 (
53 ACPI_HANDLE Device,
54 UINT32 Value,
55 void *Context);

57 static void

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 2

58 AeNotifyHandler2 (
59 ACPI_HANDLE Device,
60 UINT32 Value,
61 void *Context);

63 static void
64 AeCommonNotifyHandler (
65 ACPI_HANDLE Device,
66 UINT32 Value,
67 UINT32 HandlerId);

69 static void
70 AeDeviceNotifyHandler (
71 ACPI_HANDLE Device,
72 UINT32 Value,
73 void *Context);

75 static ACPI_STATUS
76 AeExceptionHandler (
77 ACPI_STATUS AmlStatus,
78 ACPI_NAME Name,
79 UINT16 Opcode,
80 UINT32 AmlOffset,
81 void *Context);

83 static ACPI_STATUS
84 AeTableHandler (
85 UINT32 Event,
86 void *Table,
87 void *Context);

89 static ACPI_STATUS
90 AeRegionInit (
91 ACPI_HANDLE RegionHandle,
92 UINT32 Function,
93 void *HandlerContext,
94 void **RegionContext);

96 static void
97 AeAttachedDataHandler (
98 ACPI_HANDLE Object,
99 void *Data);

101 static void
102 AeAttachedDataHandler2 (
103 ACPI_HANDLE Object,
104 void *Data);

106 static UINT32
107 AeInterfaceHandler (
108 ACPI_STRING InterfaceName,
109 UINT32 Supported);

111 static ACPI_STATUS
112 AeInstallEcHandler (
113 ACPI_HANDLE ObjHandle,
114 UINT32 Level,
115 void *Context,
116 void **ReturnValue);

118 static ACPI_STATUS
119 AeInstallPciHandler (
120 ACPI_HANDLE ObjHandle,
121 UINT32 Level,
122 void *Context,
123 void **ReturnValue);

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 3

125 static ACPI_STATUS
126 AeInstallDeviceHandlers (
127 void);

129 #if (!ACPI_REDUCED_HARDWARE)
130 static UINT32
131 AeEventHandler (
132 void *Context);

134 static UINT32
135 AeSciHandler (
136 void *Context);

138 static char *TableEvents[] =
139 {
140 "LOAD",
141 "UNLOAD",
142 "UNKNOWN"
143 };
144 #endif /* !ACPI_REDUCED_HARDWARE */

147 static UINT32 SigintCount = 0;
148 static AE_DEBUG_REGIONS AeRegions;
149 BOOLEAN AcpiGbl_DisplayRegionAccess = FALSE;

151 /*
152 * We will override some of the default region handlers, especially the
153 * SystemMemory handler, which must be implemented locally. Do not override
154 * the PCI_Config handler since we would like to exercise the default handler
155 * code. These handlers are installed "early" - before any _REG methods
156 * are executed - since they are special in the sense that the ACPI spec
157 * declares that they must "always be available". Cannot override the
158 * DataTable region handler either -- needed for test execution.
159 */
160 static ACPI_ADR_SPACE_TYPE DefaultSpaceIdList[] =
161 {
162 ACPI_ADR_SPACE_SYSTEM_MEMORY,
163 ACPI_ADR_SPACE_SYSTEM_IO
164 };

166 /*
167 * We will install handlers for some of the various address space IDs.
168 * Test one user-defined address space (used by aslts).
169 */
170 #define ACPI_ADR_SPACE_USER_DEFINED1 0x80
171 #define ACPI_ADR_SPACE_USER_DEFINED2 0xE4

173 static ACPI_ADR_SPACE_TYPE SpaceIdList[] =
174 {
175 ACPI_ADR_SPACE_SMBUS,
176 ACPI_ADR_SPACE_CMOS,
177 ACPI_ADR_SPACE_PCI_BAR_TARGET,
178 ACPI_ADR_SPACE_IPMI,
179 ACPI_ADR_SPACE_GPIO,
180 ACPI_ADR_SPACE_GSBUS,
181 ACPI_ADR_SPACE_FIXED_HARDWARE,
182 ACPI_ADR_SPACE_USER_DEFINED1,
183 ACPI_ADR_SPACE_USER_DEFINED2
184 };

186 static ACPI_CONNECTION_INFO AeMyContext;

189 /**

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 4

190 *
191 * FUNCTION: AeCtrlCHandler
192 *
193 * PARAMETERS: Sig
194 *
195 * RETURN: none
196 *
197 * DESCRIPTION: Control-C handler. Abort running control method if any.
198 *
199 ***/

201 void ACPI_SYSTEM_XFACE
202 AeCtrlCHandler (
203 int Sig)
204 {

206 signal (SIGINT, SIG_IGN);
207 SigintCount++;

209 AcpiOsPrintf ("Caught a ctrl-c (#%u)\n\n", SigintCount);

211 if (AcpiGbl_MethodExecuting)
212 {
213 AcpiGbl_AbortMethod = TRUE;
214 signal (SIGINT, AeCtrlCHandler);

216 if (SigintCount < 10)
217 {
218 return;
219 }
220 }

222 (void) AcpiOsTerminate ();
223 exit (0);
224 }

227 /**
228 *
229 * FUNCTION: AeNotifyHandler(s)
230 *
231 * PARAMETERS: Standard notify handler parameters
232 *
233 * RETURN: Status
234 *
235 * DESCRIPTION: Notify handlers for AcpiExec utility. Used by the ASL
236 * test suite(s) to communicate errors and other information to
237 * this utility via the Notify() operator. Tests notify handling
238 * and multiple notify handler support.
239 *
240 ***/

242 static void
243 AeNotifyHandler1 (
244 ACPI_HANDLE Device,
245 UINT32 Value,
246 void *Context)
247 {
248 AeCommonNotifyHandler (Device, Value, 1);
249 }

251 static void
252 AeNotifyHandler2 (
253 ACPI_HANDLE Device,
254 UINT32 Value,
255 void *Context)

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 5

256 {
257 AeCommonNotifyHandler (Device, Value, 2);
258 }

260 static void
261 AeCommonNotifyHandler (
262 ACPI_HANDLE Device,
263 UINT32 Value,
264 UINT32 HandlerId)
265 {
266 char *Type;

269 Type = "Device";
270 if (Value <= ACPI_MAX_SYS_NOTIFY)
271 {
272 Type = "System";
273 }

275 switch (Value)
276 {
277 #if 0
278 case 0:

280 printf ("[AcpiExec] Method Error 0x%X: Results not equal\n", Value);
281 if (AcpiGbl_DebugFile)
282 {
283 AcpiOsPrintf ("[AcpiExec] Method Error: Results not equal\n");
284 }
285 break;

287 case 1:

289 printf ("[AcpiExec] Method Error: Incorrect numeric result\n");
290 if (AcpiGbl_DebugFile)
291 {
292 AcpiOsPrintf ("[AcpiExec] Method Error: Incorrect numeric result\n")
293 }
294 break;

296 case 2:

298 printf ("[AcpiExec] Method Error: An operand was overwritten\n");
299 if (AcpiGbl_DebugFile)
300 {
301 AcpiOsPrintf ("[AcpiExec] Method Error: An operand was overwritten\n
302 }
303 break;

305 #endif

307 default:

309 printf ("[AcpiExec] Handler %u: Received a %s Notify on [%4.4s] %p Value
310 HandlerId, Type, AcpiUtGetNodeName (Device), Device, Value,
311 AcpiUtGetNotifyName (Value));
312 if (AcpiGbl_DebugFile)
313 {
314 AcpiOsPrintf ("[AcpiExec] Handler %u: Received a %s notify, Value 0x
315 HandlerId, Type, Value);
316 }

318 (void) AcpiEvaluateObject (Device, "_NOT", NULL, NULL);
319 break;
320 }
321 }

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 6

324 /**
325 *
326 * FUNCTION: AeSystemNotifyHandler
327 *
328 * PARAMETERS: Standard notify handler parameters
329 *
330 * RETURN: Status
331 *
332 * DESCRIPTION: System notify handler for AcpiExec utility. Used by the ASL
333 * test suite(s) to communicate errors and other information to
334 * this utility via the Notify() operator.
335 *
336 ***/

338 static void
339 AeSystemNotifyHandler (
340 ACPI_HANDLE Device,
341 UINT32 Value,
342 void *Context)
343 {

345 printf ("[AcpiExec] Global: Received a System Notify on [%4.4s] %p Value
346 AcpiUtGetNodeName (Device), Device, Value,
347 AcpiUtGetNotifyName (Value));
348 if (AcpiGbl_DebugFile)
349 {
350 AcpiOsPrintf ("[AcpiExec] Global: Received a System Notify, Value 0x%
351 }

353 (void) AcpiEvaluateObject (Device, "_NOT", NULL, NULL);
354 }

357 /**
358 *
359 * FUNCTION: AeDeviceNotifyHandler
360 *
361 * PARAMETERS: Standard notify handler parameters
362 *
363 * RETURN: Status
364 *
365 * DESCRIPTION: Device notify handler for AcpiExec utility. Used by the ASL
366 * test suite(s) to communicate errors and other information to
367 * this utility via the Notify() operator.
368 *
369 ***/

371 static void
372 AeDeviceNotifyHandler (
373 ACPI_HANDLE Device,
374 UINT32 Value,
375 void *Context)
376 {

378 printf ("[AcpiExec] Global: Received a Device Notify on [%4.4s] %p Value
379 AcpiUtGetNodeName (Device), Device, Value,
380 AcpiUtGetNotifyName (Value));
381 if (AcpiGbl_DebugFile)
382 {
383 AcpiOsPrintf ("[AcpiExec] Global: Received a Device Notify, Value 0x%
384 }

386 (void) AcpiEvaluateObject (Device, "_NOT", NULL, NULL);
387 }

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 7

390 /**
391 *
392 * FUNCTION: AeExceptionHandler
393 *
394 * PARAMETERS: Standard exception handler parameters
395 *
396 * RETURN: Status
397 *
398 * DESCRIPTION: System exception handler for AcpiExec utility.
399 *
400 ***/

402 static ACPI_STATUS
403 AeExceptionHandler (
404 ACPI_STATUS AmlStatus,
405 ACPI_NAME Name,
406 UINT16 Opcode,
407 UINT32 AmlOffset,
408 void *Context)
409 {
410 ACPI_STATUS NewAmlStatus = AmlStatus;
411 ACPI_STATUS Status;
412 ACPI_BUFFER ReturnObj;
413 ACPI_OBJECT_LIST ArgList;
414 ACPI_OBJECT Arg[3];
415 const char *Exception;

418 Exception = AcpiFormatException (AmlStatus);
419 AcpiOsPrintf ("[AcpiExec] Exception %s during execution ", Exception);
420 if (Name)
421 {
422 AcpiOsPrintf ("of method [%4.4s]", (char *) &Name);
423 }
424 else
425 {
426 AcpiOsPrintf ("at module level (table load)");
427 }
428 AcpiOsPrintf (" Opcode [%s] @%X\n", AcpiPsGetOpcodeName (Opcode), AmlOffset)

430 /*
431 * Invoke the _ERR method if present
432 *
433 * Setup parameter object
434 */
435 ArgList.Count = 3;
436 ArgList.Pointer = Arg;

438 Arg[0].Type = ACPI_TYPE_INTEGER;
439 Arg[0].Integer.Value = AmlStatus;

441 Arg[1].Type = ACPI_TYPE_STRING;
442 Arg[1].String.Pointer = ACPI_CAST_PTR (char, Exception);
443 Arg[1].String.Length = ACPI_STRLEN (Exception);

445 Arg[2].Type = ACPI_TYPE_INTEGER;
446 Arg[2].Integer.Value = AcpiOsGetThreadId();

448 /* Setup return buffer */

450 ReturnObj.Pointer = NULL;
451 ReturnObj.Length = ACPI_ALLOCATE_BUFFER;

453 Status = AcpiEvaluateObject (NULL, "_ERR", &ArgList, &ReturnObj);

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 8

454 if (ACPI_SUCCESS (Status))
455 {
456 if (ReturnObj.Pointer)
457 {
458 /* Override original status */

460 NewAmlStatus = (ACPI_STATUS)
461 ((ACPI_OBJECT *) ReturnObj.Pointer)->Integer.Value;

463 /* Free a buffer created via ACPI_ALLOCATE_BUFFER */

465 AcpiOsFree (ReturnObj.Pointer);
466 }
467 }
468 else if (Status != AE_NOT_FOUND)
469 {
470 AcpiOsPrintf ("[AcpiExec] Could not execute _ERR method, %s\n",
471 AcpiFormatException (Status));
472 }

474 /* Global override */

476 if (AcpiGbl_IgnoreErrors)
477 {
478 NewAmlStatus = AE_OK;
479 }

481 if (NewAmlStatus != AmlStatus)
482 {
483 AcpiOsPrintf ("[AcpiExec] Exception override, new status %s\n",
484 AcpiFormatException (NewAmlStatus));
485 }

487 return (NewAmlStatus);
488 }

491 /**
492 *
493 * FUNCTION: AeTableHandler
494 *
495 * PARAMETERS: Table handler
496 *
497 * RETURN: Status
498 *
499 * DESCRIPTION: System table handler for AcpiExec utility.
500 *
501 ***/

503 static ACPI_STATUS
504 AeTableHandler (
505 UINT32 Event,
506 void *Table,
507 void *Context)
508 {
509 #if (!ACPI_REDUCED_HARDWARE)
510 ACPI_STATUS Status;
511 #endif /* !ACPI_REDUCED_HARDWARE */

514 if (Event > ACPI_NUM_TABLE_EVENTS)
515 {
516 Event = ACPI_NUM_TABLE_EVENTS;
517 }

519 #if (!ACPI_REDUCED_HARDWARE)

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 9

520 /* Enable any GPEs associated with newly-loaded GPE methods */

522 Status = AcpiUpdateAllGpes ();
523 AE_CHECK_OK (AcpiUpdateAllGpes, Status);

525 printf ("[AcpiExec] Table Event %s, [%4.4s] %p\n",
526 TableEvents[Event], ((ACPI_TABLE_HEADER *) Table)->Signature, Table);
527 #endif /* !ACPI_REDUCED_HARDWARE */

529 return (AE_OK);
530 }

533 /**
534 *
535 * FUNCTION: AeGpeHandler
536 *
537 * DESCRIPTION: Common GPE handler for acpiexec
538 *
539 ***/

541 UINT32
542 AeGpeHandler (
543 ACPI_HANDLE GpeDevice,
544 UINT32 GpeNumber,
545 void *Context)
546 {
547 ACPI_NAMESPACE_NODE *DeviceNode = (ACPI_NAMESPACE_NODE *) GpeDevice;

550 AcpiOsPrintf ("[AcpiExec] GPE Handler received GPE%02X (GPE block %4.4s)\n",
551 GpeNumber, GpeDevice ? DeviceNode->Name.Ascii : "FADT");

553 return (ACPI_REENABLE_GPE);
554 }

557 /**
558 *
559 * FUNCTION: AeGlobalEventHandler
560 *
561 * DESCRIPTION: Global GPE/Fixed event handler
562 *
563 ***/

565 void
566 AeGlobalEventHandler (
567 UINT32 Type,
568 ACPI_HANDLE Device,
569 UINT32 EventNumber,
570 void *Context)
571 {
572 char *TypeName;

575 switch (Type)
576 {
577 case ACPI_EVENT_TYPE_GPE:

579 TypeName = "GPE";
580 break;

582 case ACPI_EVENT_TYPE_FIXED:

584 TypeName = "FixedEvent";
585 break;

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 10

587 default:

589 TypeName = "UNKNOWN";
590 break;
591 }

593 AcpiOsPrintf ("[AcpiExec] Global Event Handler received: Type %s Number %.2X
594 TypeName, EventNumber, Device);
595 }

598 /**
599 *
600 * FUNCTION: AeAttachedDataHandler
601 *
602 * DESCRIPTION: Handler for deletion of nodes with attached data (attached via
603 * AcpiAttachData)
604 *
605 ***/

607 static void
608 AeAttachedDataHandler (
609 ACPI_HANDLE Object,
610 void *Data)
611 {
612 ACPI_NAMESPACE_NODE *Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Data);

615 AcpiOsPrintf ("Received an attached data deletion (1) on %4.4s\n",
616 Node->Name.Ascii);
617 }

620 /**
621 *
622 * FUNCTION: AeAttachedDataHandler2
623 *
624 * DESCRIPTION: Handler for deletion of nodes with attached data (attached via
625 * AcpiAttachData)
626 *
627 ***/

629 static void
630 AeAttachedDataHandler2 (
631 ACPI_HANDLE Object,
632 void *Data)
633 {
634 ACPI_NAMESPACE_NODE *Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Data);

637 AcpiOsPrintf ("Received an attached data deletion (2) on %4.4s\n",
638 Node->Name.Ascii);
639 }

642 /**
643 *
644 * FUNCTION: AeInterfaceHandler
645 *
646 * DESCRIPTION: Handler for _OSI invocations
647 *
648 ***/

650 static UINT32
651 AeInterfaceHandler (

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 11

652 ACPI_STRING InterfaceName,
653 UINT32 Supported)
654 {
655 ACPI_FUNCTION_NAME (AeInterfaceHandler);

658 ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
659 "Received _OSI (\"%s\"), is %ssupported\n",
660 InterfaceName, Supported == 0 ? "not " : ""));

662 return (Supported);
663 }

666 #if (!ACPI_REDUCED_HARDWARE)
667 /**
668 *
669 * FUNCTION: AeEventHandler, AeSciHandler
670 *
671 * DESCRIPTION: Handler for Fixed Events and SCIs
672 *
673 ***/

675 static UINT32
676 AeEventHandler (
677 void *Context)
678 {
679 return (0);
680 }

682 static UINT32
683 AeSciHandler (
684 void *Context)
685 {

687 AcpiOsPrintf ("[AcpiExec] Received an SCI at handler\n");
688 return (0);
689 }

691 #endif /* !ACPI_REDUCED_HARDWARE */

694 /**
695 *
696 * FUNCTION: AeRegionInit
697 *
698 * PARAMETERS: None
699 *
700 * RETURN: Status
701 *
702 * DESCRIPTION: Opregion init function.
703 *
704 ***/

706 static ACPI_STATUS
707 AeRegionInit (
708 ACPI_HANDLE RegionHandle,
709 UINT32 Function,
710 void *HandlerContext,
711 void **RegionContext)
712 {

714 if (Function == ACPI_REGION_DEACTIVATE)
715 {
716 *RegionContext = NULL;
717 }

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 12

718 else
719 {
720 *RegionContext = RegionHandle;
721 }

723 return (AE_OK);
724 }

727 /***
728 *
729 * FUNCTION: AeInstallSciHandler
730 *
731 * PARAMETERS: None
732 *
733 * RETURN: Status
734 *
735 * DESCRIPTION: Install handler for SCIs. Exercise the code by doing an
736 * install/remove/install.
737 *
738 **/

740 static ACPI_STATUS
741 AeInstallSciHandler (
742 void)
743 {
744 ACPI_STATUS Status;

747 Status = AcpiInstallSciHandler (AeSciHandler, &AeMyContext);
748 if (ACPI_FAILURE (Status))
749 {
750 ACPI_EXCEPTION ((AE_INFO, Status,
751 "Could not install an SCI handler (1)"));
752 }

754 Status = AcpiRemoveSciHandler (AeSciHandler);
755 if (ACPI_FAILURE (Status))
756 {
757 ACPI_EXCEPTION ((AE_INFO, Status,
758 "Could not remove an SCI handler"));
759 }

761 Status = AcpiInstallSciHandler (AeSciHandler, &AeMyContext);
762 if (ACPI_FAILURE (Status))
763 {
764 ACPI_EXCEPTION ((AE_INFO, Status,
765 "Could not install an SCI handler (2)"));
766 }

768 return (Status);
769 }

772 /***
773 *
774 * FUNCTION: AeInstallDeviceHandlers, AeInstallEcHandler,
775 * AeInstallPciHandler
776 *
777 * PARAMETERS: ACPI_WALK_NAMESPACE callback
778 *
779 * RETURN: Status
780 *
781 * DESCRIPTION: Walk entire namespace, install a handler for every EC
782 * and PCI device found.
783 *

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 13

784 **/

786 static ACPI_STATUS
787 AeInstallEcHandler (
788 ACPI_HANDLE ObjHandle,
789 UINT32 Level,
790 void *Context,
791 void **ReturnValue)
792 {
793 ACPI_STATUS Status;

796 /* Install the handler for this EC device */

798 Status = AcpiInstallAddressSpaceHandler (ObjHandle, ACPI_ADR_SPACE_EC,
799 AeRegionHandler, AeRegionInit, &AeMyContext);
800 if (ACPI_FAILURE (Status))
801 {
802 ACPI_EXCEPTION ((AE_INFO, Status,
803 "Could not install an OpRegion handler for EC device (%p)",
804 ObjHandle));
805 }

807 return (Status);
808 }

810 static ACPI_STATUS
811 AeInstallPciHandler (
812 ACPI_HANDLE ObjHandle,
813 UINT32 Level,
814 void *Context,
815 void **ReturnValue)
816 {
817 ACPI_STATUS Status;

820 /* Install memory and I/O handlers for the PCI device */

822 Status = AcpiInstallAddressSpaceHandler (ObjHandle, ACPI_ADR_SPACE_SYSTEM_IO
823 AeRegionHandler, AeRegionInit, &AeMyContext);
824 if (ACPI_FAILURE (Status))
825 {
826 ACPI_EXCEPTION ((AE_INFO, Status,
827 "Could not install an OpRegion handler for PCI device (%p)",
828 ObjHandle));
829 }

831 Status = AcpiInstallAddressSpaceHandler (ObjHandle, ACPI_ADR_SPACE_SYSTEM_ME
832 AeRegionHandler, AeRegionInit, &AeMyContext);
833 if (ACPI_FAILURE (Status))
834 {
835 ACPI_EXCEPTION ((AE_INFO, Status,
836 "Could not install an OpRegion handler for PCI device (%p)",
837 ObjHandle));
838 }

840 return (AE_CTRL_TERMINATE);
841 }

843 static ACPI_STATUS
844 AeInstallDeviceHandlers (
845 void)
846 {

848 /* Find all Embedded Controller devices */

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 14

850 AcpiGetDevices ("PNP0C09", AeInstallEcHandler, NULL, NULL);

852 /* Install a PCI handler */

854 AcpiGetDevices ("PNP0A08", AeInstallPciHandler, NULL, NULL);
855 return (AE_OK);
856 }

859 /**
860 *
861 * FUNCTION: AeInstallLateHandlers
862 *
863 * PARAMETERS: None
864 *
865 * RETURN: Status
866 *
867 * DESCRIPTION: Install handlers for the AcpiExec utility.
868 *
869 ***/

871 ACPI_STATUS
872 AeInstallLateHandlers (
873 void)
874 {
875 ACPI_STATUS Status;
876 UINT32 i;

879 #if (!ACPI_REDUCED_HARDWARE)
880 if (!AcpiGbl_ReducedHardware)
881 {
882 /* Install a user SCI handler */

884 Status = AeInstallSciHandler ();
885 AE_CHECK_OK (AeInstallSciHandler, Status);

887 /* Install some fixed event handlers */

889 Status = AcpiInstallFixedEventHandler (ACPI_EVENT_GLOBAL, AeEventHandler
890 AE_CHECK_OK (AcpiInstallFixedEventHandler, Status);

892 Status = AcpiInstallFixedEventHandler (ACPI_EVENT_RTC, AeEventHandler, N
893 AE_CHECK_OK (AcpiInstallFixedEventHandler, Status);
894 }
895 #endif /* !ACPI_REDUCED_HARDWARE */

897 AeMyContext.Connection = NULL;
898 AeMyContext.AccessLength = 0xA5;

900 /*
901 * We will install a handler for each EC device, directly under the EC
902 * device definition. This is unlike the other handlers which we install
903 * at the root node. Also install memory and I/O handlers at any PCI
904 * devices.
905 */
906 AeInstallDeviceHandlers ();

908 /*
909 * Install handlers for some of the "device driver" address spaces
910 * such as SMBus, etc.
911 */
912 for (i = 0; i < ACPI_ARRAY_LENGTH (SpaceIdList); i++)
913 {
914 /* Install handler at the root object */

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 15

916 Status = AcpiInstallAddressSpaceHandler (ACPI_ROOT_OBJECT,
917 SpaceIdList[i], AeRegionHandler,
918 AeRegionInit, &AeMyContext);
919 if (ACPI_FAILURE (Status))
920 {
921 ACPI_EXCEPTION ((AE_INFO, Status,
922 "Could not install an OpRegion handler for %s space(%u)",
923 AcpiUtGetRegionName((UINT8) SpaceIdList[i]), SpaceIdList[i]));
924 return (Status);
925 }
926 }

928 return (AE_OK);
929 }

932 /**
933 *
934 * FUNCTION: AeInstallEarlyHandlers
935 *
936 * PARAMETERS: None
937 *
938 * RETURN: Status
939 *
940 * DESCRIPTION: Install handlers for the AcpiExec utility.
941 *
942 * Notes: Don’t install handler for PCI_Config, we want to use the
943 * default handler to exercise that code.
944 *
945 ***/

947 ACPI_STATUS
948 AeInstallEarlyHandlers (
949 void)
950 {
951 ACPI_STATUS Status;
952 UINT32 i;
953 ACPI_HANDLE Handle;

956 ACPI_FUNCTION_ENTRY ();

959 Status = AcpiInstallInterfaceHandler (AeInterfaceHandler);
960 if (ACPI_FAILURE (Status))
961 {
962 printf ("Could not install interface handler, %s\n",
963 AcpiFormatException (Status));
964 }

966 Status = AcpiInstallTableHandler (AeTableHandler, NULL);
967 if (ACPI_FAILURE (Status))
968 {
969 printf ("Could not install table handler, %s\n",
970 AcpiFormatException (Status));
971 }

973 Status = AcpiInstallExceptionHandler (AeExceptionHandler);
974 if (ACPI_FAILURE (Status))
975 {
976 printf ("Could not install exception handler, %s\n",
977 AcpiFormatException (Status));
978 }

980 /* Install global notify handlers */

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 16

982 Status = AcpiInstallNotifyHandler (ACPI_ROOT_OBJECT, ACPI_SYSTEM_NOTIFY,
983 AeSystemNotifyHandler, NULL);
984 if (ACPI_FAILURE (Status))
985 {
986 printf ("Could not install a global system notify handler, %s\n",
987 AcpiFormatException (Status));
988 }

990 Status = AcpiInstallNotifyHandler (ACPI_ROOT_OBJECT, ACPI_DEVICE_NOTIFY,
991 AeDeviceNotifyHandler, NULL);
992 if (ACPI_FAILURE (Status))
993 {
994 printf ("Could not install a global notify handler, %s\n",
995 AcpiFormatException (Status));
996 }

998 Status = AcpiGetHandle (NULL, "_SB", &Handle);
999 if (ACPI_SUCCESS (Status))

1000 {
1001 Status = AcpiInstallNotifyHandler (Handle, ACPI_SYSTEM_NOTIFY,
1002 AeNotifyHandler1, NULL);
1003 if (ACPI_FAILURE (Status))
1004 {
1005 printf ("Could not install a notify handler, %s\n",
1006 AcpiFormatException (Status));
1007 }

1009 Status = AcpiRemoveNotifyHandler (Handle, ACPI_SYSTEM_NOTIFY,
1010 AeNotifyHandler1);
1011 if (ACPI_FAILURE (Status))
1012 {
1013 printf ("Could not remove a notify handler, %s\n",
1014 AcpiFormatException (Status));
1015 }

1017 Status = AcpiInstallNotifyHandler (Handle, ACPI_ALL_NOTIFY,
1018 AeNotifyHandler1, NULL);
1019 AE_CHECK_OK (AcpiInstallNotifyHandler, Status);

1021 Status = AcpiRemoveNotifyHandler (Handle, ACPI_ALL_NOTIFY,
1022 AeNotifyHandler1);
1023 AE_CHECK_OK (AcpiRemoveNotifyHandler, Status);

1025 #if 0
1026 Status = AcpiInstallNotifyHandler (Handle, ACPI_ALL_NOTIFY,
1027 AeNotifyHandler1, NULL);
1028 if (ACPI_FAILURE (Status))
1029 {
1030 printf ("Could not install a notify handler, %s\n",
1031 AcpiFormatException (Status));
1032 }
1033 #endif

1035 /* Install two handlers for _SB_ */

1037 Status = AcpiInstallNotifyHandler (Handle, ACPI_SYSTEM_NOTIFY,
1038 AeNotifyHandler1, ACPI_CAST_PTR (void, 0x01234567));

1040 Status = AcpiInstallNotifyHandler (Handle, ACPI_SYSTEM_NOTIFY,
1041 AeNotifyHandler2, ACPI_CAST_PTR (void, 0x89ABCDEF));

1043 /* Attempt duplicate handler installation, should fail */

1045 Status = AcpiInstallNotifyHandler (Handle, ACPI_SYSTEM_NOTIFY,
1046 AeNotifyHandler1, ACPI_CAST_PTR (void, 0x77777777));

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 17

1048 Status = AcpiAttachData (Handle, AeAttachedDataHandler, Handle);
1049 AE_CHECK_OK (AcpiAttachData, Status);

1051 Status = AcpiDetachData (Handle, AeAttachedDataHandler);
1052 AE_CHECK_OK (AcpiDetachData, Status);

1054 Status = AcpiAttachData (Handle, AeAttachedDataHandler, Handle);
1055 AE_CHECK_OK (AcpiAttachData, Status);

1057 /* Test support for multiple attaches */

1059 Status = AcpiAttachData (Handle, AeAttachedDataHandler2, Handle);
1060 AE_CHECK_OK (AcpiAttachData, Status);
1061 }
1062 else
1063 {
1064 printf ("No _SB_ found, %s\n", AcpiFormatException (Status));
1065 }

1068 Status = AcpiGetHandle (NULL, "_TZ.TZ1", &Handle);
1069 if (ACPI_SUCCESS (Status))
1070 {
1071 Status = AcpiInstallNotifyHandler (Handle, ACPI_ALL_NOTIFY,
1072 AeNotifyHandler1, ACPI_CAST_PTR (void, 0x01234567));

1074 Status = AcpiInstallNotifyHandler (Handle, ACPI_ALL_NOTIFY,
1075 AeNotifyHandler2, ACPI_CAST_PTR (void, 0x89ABCDEF));

1077 Status = AcpiRemoveNotifyHandler (Handle, ACPI_ALL_NOTIFY,
1078 AeNotifyHandler1);
1079 Status = AcpiRemoveNotifyHandler (Handle, ACPI_ALL_NOTIFY,
1080 AeNotifyHandler2);

1082 Status = AcpiInstallNotifyHandler (Handle, ACPI_ALL_NOTIFY,
1083 AeNotifyHandler2, ACPI_CAST_PTR (void, 0x89ABCDEF));

1085 Status = AcpiInstallNotifyHandler (Handle, ACPI_ALL_NOTIFY,
1086 AeNotifyHandler1, ACPI_CAST_PTR (void, 0x01234567));
1087 }

1089 Status = AcpiGetHandle (NULL, "_PR.CPU0", &Handle);
1090 if (ACPI_SUCCESS (Status))
1091 {
1092 Status = AcpiInstallNotifyHandler (Handle, ACPI_ALL_NOTIFY,
1093 AeNotifyHandler1, ACPI_CAST_PTR (void, 0x01234567));

1095 Status = AcpiInstallNotifyHandler (Handle, ACPI_SYSTEM_NOTIFY,
1096 AeNotifyHandler2, ACPI_CAST_PTR (void, 0x89ABCDEF));
1097 }

1099 /*
1100 * Install handlers that will override the default handlers for some of
1101 * the space IDs.
1102 */
1103 for (i = 0; i < ACPI_ARRAY_LENGTH (DefaultSpaceIdList); i++)
1104 {
1105 /* Install handler at the root object */

1107 Status = AcpiInstallAddressSpaceHandler (ACPI_ROOT_OBJECT,
1108 DefaultSpaceIdList[i], AeRegionHandler,
1109 AeRegionInit, &AeMyContext);
1110 if (ACPI_FAILURE (Status))
1111 {
1112 ACPI_EXCEPTION ((AE_INFO, Status,
1113 "Could not install a default OpRegion handler for %s space(%u)",

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 18

1114 AcpiUtGetRegionName ((UINT8) DefaultSpaceIdList[i]),
1115 DefaultSpaceIdList[i]));
1116 return (Status);
1117 }
1118 }

1120 /*
1121 * Initialize the global Region Handler space
1122 * MCW 3/23/00
1123 */
1124 AeRegions.NumberOfRegions = 0;
1125 AeRegions.RegionList = NULL;
1126 return (Status);
1127 }

1130 /**
1131 *
1132 * FUNCTION: AeRegionHandler
1133 *
1134 * PARAMETERS: Standard region handler parameters
1135 *
1136 * RETURN: Status
1137 *
1138 * DESCRIPTION: Test handler - Handles some dummy regions via memory that can
1139 * be manipulated in Ring 3. Simulates actual reads and writes.
1140 *
1141 ***/

1143 ACPI_STATUS
1144 AeRegionHandler (
1145 UINT32 Function,
1146 ACPI_PHYSICAL_ADDRESS Address,
1147 UINT32 BitWidth,
1148 UINT64 *Value,
1149 void *HandlerContext,
1150 void *RegionContext)
1151 {

1153 ACPI_OPERAND_OBJECT *RegionObject = ACPI_CAST_PTR (ACPI_OPERAND_OBJECT,
1154 UINT8 *Buffer = ACPI_CAST_PTR (UINT8, Value);
1155 ACPI_PHYSICAL_ADDRESS BaseAddress;
1156 ACPI_SIZE Length;
1157 BOOLEAN BufferExists;
1158 AE_REGION *RegionElement;
1159 void *BufferValue;
1160 ACPI_STATUS Status;
1161 UINT32 ByteWidth;
1162 UINT32 i;
1163 UINT8 SpaceId;
1164 ACPI_CONNECTION_INFO *MyContext;
1165 UINT32 Value1;
1166 UINT32 Value2;
1167 ACPI_RESOURCE *Resource;

1170 ACPI_FUNCTION_NAME (AeRegionHandler);

1172 /*
1173 * If the object is not a region, simply return
1174 */
1175 if (RegionObject->Region.Type != ACPI_TYPE_REGION)
1176 {
1177 return (AE_OK);
1178 }

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 19

1180 /* Check that we actually got back our context parameter */

1182 if (HandlerContext != &AeMyContext)
1183 {
1184 printf ("Region handler received incorrect context %p, should be %p\n",
1185 HandlerContext, &AeMyContext);
1186 }

1188 MyContext = ACPI_CAST_PTR (ACPI_CONNECTION_INFO, HandlerContext);

1190 /*
1191 * Find the region’s address space and length before searching
1192 * the linked list.
1193 */
1194 BaseAddress = RegionObject->Region.Address;
1195 Length = (ACPI_SIZE) RegionObject->Region.Length;
1196 SpaceId = RegionObject->Region.SpaceId;

1198 ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION, "Operation Region request on %s at 0x%X
1199 AcpiUtGetRegionName (RegionObject->Region.SpaceId),
1200 (UINT32) Address));

1202 /*
1203 * Region support can be disabled with the -do option.
1204 * We use this to support dynamically loaded tables where we pass a valid
1205 * address to the AML.
1206 */
1207 if (AcpiGbl_DbOpt_NoRegionSupport)
1208 {
1209 BufferValue = ACPI_TO_POINTER (Address);
1210 ByteWidth = (BitWidth / 8);

1212 if (BitWidth % 8)
1213 {
1214 ByteWidth += 1;
1215 }
1216 goto DoFunction;
1217 }

1219 switch (SpaceId)
1220 {
1221 case ACPI_ADR_SPACE_SYSTEM_IO:
1222 /*
1223 * For I/O space, exercise the port validation
1224 * Note: ReadPort currently always returns all ones, length=BitLength
1225 */
1226 switch (Function & ACPI_IO_MASK)
1227 {
1228 case ACPI_READ:

1230 if (BitWidth == 64)
1231 {
1232 /* Split the 64-bit request into two 32-bit requests */

1234 Status = AcpiHwReadPort (Address, &Value1, 32);
1235 AE_CHECK_OK (AcpiHwReadPort, Status);
1236 Status = AcpiHwReadPort (Address+4, &Value2, 32);
1237 AE_CHECK_OK (AcpiHwReadPort, Status);

1239 *Value = Value1 | ((UINT64) Value2 << 32);
1240 }
1241 else
1242 {
1243 Status = AcpiHwReadPort (Address, &Value1, BitWidth);
1244 AE_CHECK_OK (AcpiHwReadPort, Status);
1245 *Value = (UINT64) Value1;

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 20

1246 }
1247 break;

1249 case ACPI_WRITE:

1251 if (BitWidth == 64)
1252 {
1253 /* Split the 64-bit request into two 32-bit requests */

1255 Status = AcpiHwWritePort (Address, ACPI_LODWORD (*Value), 32);
1256 AE_CHECK_OK (AcpiHwWritePort, Status);
1257 Status = AcpiHwWritePort (Address+4, ACPI_HIDWORD (*Value), 32);
1258 AE_CHECK_OK (AcpiHwWritePort, Status);
1259 }
1260 else
1261 {
1262 Status = AcpiHwWritePort (Address, (UINT32) *Value, BitWidth);
1263 AE_CHECK_OK (AcpiHwWritePort, Status);
1264 }
1265 break;

1267 default:

1269 Status = AE_BAD_PARAMETER;
1270 break;
1271 }

1273 if (ACPI_FAILURE (Status))
1274 {
1275 return (Status);
1276 }

1278 /* Now go ahead and simulate the hardware */
1279 break;

1281 /*
1282 * SMBus and GenericSerialBus support the various bidirectional
1283 * protocols.
1284 */
1285 case ACPI_ADR_SPACE_SMBUS:
1286 case ACPI_ADR_SPACE_GSBUS: /* ACPI 5.0 */

1288 Length = 0;

1290 switch (Function & ACPI_IO_MASK)
1291 {
1292 case ACPI_READ:

1294 switch (Function >> 16)
1295 {
1296 case AML_FIELD_ATTRIB_QUICK:
1297 case AML_FIELD_ATTRIB_SEND_RCV:
1298 case AML_FIELD_ATTRIB_BYTE:

1300 Length = 1;
1301 break;

1303 case AML_FIELD_ATTRIB_WORD:
1304 case AML_FIELD_ATTRIB_WORD_CALL:

1306 Length = 2;
1307 break;

1309 case AML_FIELD_ATTRIB_BLOCK:
1310 case AML_FIELD_ATTRIB_BLOCK_CALL:

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 21

1312 Length = 32;
1313 break;

1315 case AML_FIELD_ATTRIB_MULTIBYTE:
1316 case AML_FIELD_ATTRIB_RAW_BYTES:
1317 case AML_FIELD_ATTRIB_RAW_PROCESS:

1319 /* (-2) for status/length */
1320 Length = MyContext->AccessLength - 2;
1321 break;

1323 default:

1325 break;
1326 }
1327 break;

1329 case ACPI_WRITE:

1331 switch (Function >> 16)
1332 {
1333 case AML_FIELD_ATTRIB_QUICK:
1334 case AML_FIELD_ATTRIB_SEND_RCV:
1335 case AML_FIELD_ATTRIB_BYTE:
1336 case AML_FIELD_ATTRIB_WORD:
1337 case AML_FIELD_ATTRIB_BLOCK:

1339 Length = 0;
1340 break;

1342 case AML_FIELD_ATTRIB_WORD_CALL:
1343 Length = 2;
1344 break;

1346 case AML_FIELD_ATTRIB_BLOCK_CALL:
1347 Length = 32;
1348 break;

1350 case AML_FIELD_ATTRIB_MULTIBYTE:
1351 case AML_FIELD_ATTRIB_RAW_BYTES:
1352 case AML_FIELD_ATTRIB_RAW_PROCESS:

1354 /* (-2) for status/length */
1355 Length = MyContext->AccessLength - 2;
1356 break;

1358 default:

1360 break;
1361 }
1362 break;

1364 default:

1366 break;
1367 }

1369 if (AcpiGbl_DisplayRegionAccess)
1370 {
1371 AcpiOsPrintf ("AcpiExec: %s "
1372 "%s: Attr %X Addr %.4X BaseAddr %.4X Len %.2X Width %X BufLen %X
1373 AcpiUtGetRegionName (SpaceId),
1374 (Function & ACPI_IO_MASK) ? "Write" : "Read ",
1375 (UINT32) (Function >> 16),
1376 (UINT32) Address, (UINT32) BaseAddress,
1377 Length, BitWidth, Buffer[1]);

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 22

1379 /* GenericSerialBus has a Connection() parameter */

1381 if (SpaceId == ACPI_ADR_SPACE_GSBUS)
1382 {
1383 Status = AcpiBufferToResource (MyContext->Connection,
1384 MyContext->Length, &Resource);

1386 AcpiOsPrintf (" [AccLen %.2X Conn %p]",
1387 MyContext->AccessLength, MyContext->Connection);
1388 }
1389 AcpiOsPrintf ("\n");
1390 }

1392 /* Setup the return buffer. Note: ASLTS depends on these fill values */

1394 for (i = 0; i < Length; i++)
1395 {
1396 Buffer[i+2] = (UINT8) (0xA0 + i);
1397 }

1399 Buffer[0] = 0x7A;
1400 Buffer[1] = (UINT8) Length;
1401 return (AE_OK);

1404 case ACPI_ADR_SPACE_IPMI: /* ACPI 4.0 */

1406 if (AcpiGbl_DisplayRegionAccess)
1407 {
1408 AcpiOsPrintf ("AcpiExec: IPMI "
1409 "%s: Attr %X Addr %.4X BaseAddr %.4X Len %.2X Width %X BufLen %X
1410 (Function & ACPI_IO_MASK) ? "Write" : "Read ",
1411 (UINT32) (Function >> 16), (UINT32) Address, (UINT32) BaseAddres
1412 Length, BitWidth, Buffer[1]);
1413 }

1415 /*
1416 * Regardless of a READ or WRITE, this handler is passed a 66-byte
1417 * buffer in which to return the IPMI status/length/data.
1418 *
1419 * Return some example data to show use of the bidirectional buffer
1420 */
1421 Buffer[0] = 0; /* Status byte */
1422 Buffer[1] = 64; /* Return buffer data length */
1423 Buffer[2] = 0; /* Completion code */
1424 Buffer[3] = 0; /* Reserved */

1426 /*
1427 * Fill the 66-byte buffer with the return data.
1428 * Note: ASLTS depends on these fill values.
1429 */
1430 for (i = 4; i < 66; i++)
1431 {
1432 Buffer[i] = (UINT8) (i);
1433 }
1434 return (AE_OK);

1436 default:
1437 break;
1438 }

1440 /*
1441 * Search through the linked list for this region’s buffer
1442 */
1443 BufferExists = FALSE;

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 23

1444 RegionElement = AeRegions.RegionList;

1446 if (AeRegions.NumberOfRegions)
1447 {
1448 while (!BufferExists && RegionElement)
1449 {
1450 if (RegionElement->Address == BaseAddress &&
1451 RegionElement->Length == Length &&
1452 RegionElement->SpaceId == SpaceId)
1453 {
1454 BufferExists = TRUE;
1455 }
1456 else
1457 {
1458 RegionElement = RegionElement->NextRegion;
1459 }
1460 }
1461 }

1463 /*
1464 * If the Region buffer does not exist, create it now
1465 */
1466 if (!BufferExists)
1467 {
1468 /*
1469 * Do the memory allocations first
1470 */
1471 RegionElement = AcpiOsAllocate (sizeof (AE_REGION));
1472 if (!RegionElement)
1473 {
1474 return (AE_NO_MEMORY);
1475 }

1477 RegionElement->Buffer = AcpiOsAllocate (Length);
1478 if (!RegionElement->Buffer)
1479 {
1480 AcpiOsFree (RegionElement);
1481 return (AE_NO_MEMORY);
1482 }

1484 /* Initialize the region with the default fill value */

1486 ACPI_MEMSET (RegionElement->Buffer, AcpiGbl_RegionFillValue, Length);

1488 RegionElement->Address = BaseAddress;
1489 RegionElement->Length = Length;
1490 RegionElement->SpaceId = SpaceId;
1491 RegionElement->NextRegion = NULL;

1493 /*
1494 * Increment the number of regions and put this one
1495 * at the head of the list as it will probably get accessed
1496 * more often anyway.
1497 */
1498 AeRegions.NumberOfRegions += 1;

1500 if (AeRegions.RegionList)
1501 {
1502 RegionElement->NextRegion = AeRegions.RegionList;
1503 }

1505 AeRegions.RegionList = RegionElement;
1506 }

1508 /*
1509 * Calculate the size of the memory copy

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 24

1510 */
1511 ByteWidth = (BitWidth / 8);

1513 if (BitWidth % 8)
1514 {
1515 ByteWidth += 1;
1516 }

1518 /*
1519 * The buffer exists and is pointed to by RegionElement.
1520 * We now need to verify the request is valid and perform the operation.
1521 *
1522 * NOTE: RegionElement->Length is in bytes, therefore it we compare against
1523 * ByteWidth (see above)
1524 */
1525 if (((UINT64) Address + ByteWidth) >
1526 ((UINT64)(RegionElement->Address) + RegionElement->Length))
1527 {
1528 ACPI_WARNING ((AE_INFO,
1529 "Request on [%4.4s] is beyond region limit Req-0x%X+0x%X, Base=0x%X,
1530 (RegionObject->Region.Node)->Name.Ascii, (UINT32) Address,
1531 ByteWidth, (UINT32)(RegionElement->Address),
1532 RegionElement->Length));

1534 return (AE_AML_REGION_LIMIT);
1535 }

1537 /*
1538 * Get BufferValue to point to the "address" in the buffer
1539 */
1540 BufferValue = ((UINT8 *) RegionElement->Buffer +
1541 ((UINT64) Address - (UINT64) RegionElement->Address));

1543 DoFunction:
1544 /*
1545 * Perform a read or write to the buffer space
1546 */
1547 switch (Function)
1548 {
1549 case ACPI_READ:
1550 /*
1551 * Set the pointer Value to whatever is in the buffer
1552 */
1553 ACPI_MEMCPY (Value, BufferValue, ByteWidth);
1554 break;

1556 case ACPI_WRITE:
1557 /*
1558 * Write the contents of Value to the buffer
1559 */
1560 ACPI_MEMCPY (BufferValue, Value, ByteWidth);
1561 break;

1563 default:

1565 return (AE_BAD_PARAMETER);
1566 }

1568 if (AcpiGbl_DisplayRegionAccess)
1569 {
1570 switch (SpaceId)
1571 {
1572 case ACPI_ADR_SPACE_SYSTEM_MEMORY:

1574 AcpiOsPrintf ("AcpiExec: SystemMemory "
1575 "%s: Val %.8X Addr %.4X Width %X [REGION: BaseAddr %.4X Len %.2X

new/usr/src/common/acpica/tools/acpiexec/aehandlers.c 25

1576 (Function & ACPI_IO_MASK) ? "Write" : "Read ",
1577 (UINT32) *Value, (UINT32) Address, BitWidth, (UINT32) BaseAddres
1578 break;

1580 case ACPI_ADR_SPACE_GPIO: /* ACPI 5.0 */

1582 /* This space is required to always be ByteAcc */

1584 Status = AcpiBufferToResource (MyContext->Connection,
1585 MyContext->Length, &Resource);

1587 AcpiOsPrintf ("AcpiExec: GeneralPurposeIo "
1588 "%s: Val %.8X Addr %.4X BaseAddr %.4X Len %.2X Width %X AccLen %
1589 (Function & ACPI_IO_MASK) ? "Write" : "Read ", (UINT32) *Value,
1590 (UINT32) Address, (UINT32) BaseAddress, Length, BitWidth,
1591 MyContext->AccessLength, MyContext->Connection);
1592 break;

1594 default:

1596 break;
1597 }
1598 }

1600 return (AE_OK);
1601 }

new/usr/src/common/acpica/tools/acpiexec/aemain.c 1

**
 16170 Thu Dec 26 13:50:09 2013
new/usr/src/common/acpica/tools/acpiexec/aemain.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aemain - Main routine for the AcpiExec utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aecommon.h"

46 #define _COMPONENT ACPI_TOOLS
47 ACPI_MODULE_NAME ("aemain")

50 /*
51 * Main routine for the ACPI user-space execution utility.
52 *
53 * Portability note: The utility depends upon the host for command-line
54 * wildcard support - it is not implemented locally. For example:
55 *
56 * Linux/Unix systems: Shell expands wildcards automatically.
57 *
58 * Windows: The setargv.obj module must be linked in to automatically
59 * expand wildcards.

new/usr/src/common/acpica/tools/acpiexec/aemain.c 2

60 */

62 extern BOOLEAN AcpiGbl_DebugTimeout;

64 /* Local prototypes */

66 static int
67 AeDoOptions (
68 int argc,
69 char **argv);

71 static ACPI_STATUS
72 AcpiDbRunBatchMode (
73 void);

76 #define AE_BUFFER_SIZE 1024
77 #define ASL_MAX_FILES 256

79 /* Execution modes */

81 #define AE_MODE_COMMAND_LOOP 0 /* Normal command execution loop */
82 #define AE_MODE_BATCH_MULTIPLE 1 /* -b option to execute a command line *
83 #define AE_MODE_BATCH_SINGLE 2 /* -m option to execute a single control

86 /* Globals */

88 UINT8 AcpiGbl_RegionFillValue = 0;
89 BOOLEAN AcpiGbl_IgnoreErrors = FALSE;
90 BOOLEAN AcpiGbl_DbOpt_NoRegionSupport = FALSE;
91 UINT8 AcpiGbl_UseHwReducedFadt = FALSE;
92 BOOLEAN AcpiGbl_DoInterfaceTests = FALSE;
93 static UINT8 AcpiGbl_ExecutionMode = AE_MODE_COMMAND_LOOP;
94 static char BatchBuffer[AE_BUFFER_SIZE]; /* Batch command buf
95 static AE_TABLE_DESC *AeTableListHead = NULL;

97 #define ACPIEXEC_NAME "AML Execution/Debug Utility"
98 #define AE_SUPPORTED_OPTIONS "?b:d:e:f:ghm^orv^:x:"

101 /**
102 *
103 * FUNCTION: usage
104 *
105 * PARAMETERS: None
106 *
107 * RETURN: None
108 *
109 * DESCRIPTION: Print a usage message
110 *
111 ***/

113 static void
114 usage (
115 void)
116 {

118 ACPI_USAGE_HEADER ("acpiexec [options] AMLfile1 AMLfile2 ...");

120 ACPI_OPTION ("-b \"CommandLine\"", "Batch mode command line execution (cmd1
121 ACPI_OPTION ("-h -?", "Display this help message");
122 ACPI_OPTION ("-m [Method]", "Batch mode method execution. Default=MA
123 printf ("\n");

125 ACPI_OPTION ("-da", "Disable method abort on error");

new/usr/src/common/acpica/tools/acpiexec/aemain.c 3

126 ACPI_OPTION ("-di", "Disable execution of STA/INI methods du
127 ACPI_OPTION ("-do", "Disable Operation Region address simula
128 ACPI_OPTION ("-dr", "Disable repair of method return values"
129 ACPI_OPTION ("-dt", "Disable allocation tracking (performanc
130 printf ("\n");

132 ACPI_OPTION ("-ef", "Enable display of final memory statisti
133 ACPI_OPTION ("-ei", "Enable additional tests for ACPICA inte
134 ACPI_OPTION ("-em", "Enable Interpreter Serialized Mode");
135 ACPI_OPTION ("-es", "Enable Interpreter Slack Mode");
136 ACPI_OPTION ("-et", "Enable debug semaphore timeout");
137 printf ("\n");

139 ACPI_OPTION ("-f <Value>", "Operation Region initialization fill va
140 ACPI_OPTION ("-r", "Use hardware-reduced FADT V5");
141 ACPI_OPTION ("-v", "Display version information");
142 ACPI_OPTION ("-vi", "Verbose initialization output");
143 ACPI_OPTION ("-vr", "Verbose region handler output");
144 ACPI_OPTION ("-x <DebugLevel>", "Debug output level");
145 }

148 /**
149 *
150 * FUNCTION: AeDoOptions
151 *
152 * PARAMETERS: argc/argv - Standard argc/argv
153 *
154 * RETURN: Status
155 *
156 * DESCRIPTION: Command line option processing
157 *
158 ***/

160 static int
161 AeDoOptions (
162 int argc,
163 char **argv)
164 {
165 int j;

168 while ((j = AcpiGetopt (argc, argv, AE_SUPPORTED_OPTIONS)) != EOF) switch (j
169 {
170 case ’b’:

172 if (strlen (AcpiGbl_Optarg) > (AE_BUFFER_SIZE -1))
173 {
174 printf ("**** The length of command line (%u) exceeded maximum (%u)\
175 (UINT32) strlen (AcpiGbl_Optarg), (AE_BUFFER_SIZE -1));
176 return (-1);
177 }
178 AcpiGbl_ExecutionMode = AE_MODE_BATCH_MULTIPLE;
179 strcpy (BatchBuffer, AcpiGbl_Optarg);
180 break;

182 case ’d’:

184 switch (AcpiGbl_Optarg[0])
185 {
186 case ’a’:

188 AcpiGbl_IgnoreErrors = TRUE;
189 break;

191 case ’i’:

new/usr/src/common/acpica/tools/acpiexec/aemain.c 4

193 AcpiGbl_DbOpt_ini_methods = FALSE;
194 break;

196 case ’o’:

198 AcpiGbl_DbOpt_NoRegionSupport = TRUE;
199 break;

201 case ’r’:

203 AcpiGbl_DisableAutoRepair = TRUE;
204 break;

206 case ’t’:

208 #ifdef ACPI_DBG_TRACK_ALLOCATIONS
209 AcpiGbl_DisableMemTracking = TRUE;
210 #endif
211 break;

213 default:

215 printf ("Unknown option: -d%s\n", AcpiGbl_Optarg);
216 return (-1);
217 }
218 break;

220 case ’e’:

222 switch (AcpiGbl_Optarg[0])
223 {
224 case ’f’:

226 #ifdef ACPI_DBG_TRACK_ALLOCATIONS
227 AcpiGbl_DisplayFinalMemStats = TRUE;
228 #endif
229 break;

231 case ’i’:

233 AcpiGbl_DoInterfaceTests = TRUE;
234 break;

236 case ’m’:

238 AcpiGbl_AllMethodsSerialized = TRUE;
239 printf ("Enabling AML Interpreter serialized mode\n");
240 break;

242 case ’s’:

244 AcpiGbl_EnableInterpreterSlack = TRUE;
245 printf ("Enabling AML Interpreter slack mode\n");
246 break;

248 case ’t’:

250 AcpiGbl_DebugTimeout = TRUE;
251 break;

253 default:

255 printf ("Unknown option: -e%s\n", AcpiGbl_Optarg);
256 return (-1);
257 }

new/usr/src/common/acpica/tools/acpiexec/aemain.c 5

258 break;

260 case ’f’:

262 AcpiGbl_RegionFillValue = (UINT8) strtoul (AcpiGbl_Optarg, NULL, 0);
263 break;

265 case ’g’:

267 AcpiGbl_DbOpt_tables = TRUE;
268 AcpiGbl_DbFilename = NULL;
269 break;

271 case ’h’:
272 case ’?’:

274 usage();
275 return (0);

277 case ’m’:

279 AcpiGbl_ExecutionMode = AE_MODE_BATCH_SINGLE;
280 switch (AcpiGbl_Optarg[0])
281 {
282 case ’^’:

284 strcpy (BatchBuffer, "MAIN");
285 break;

287 default:

289 strcpy (BatchBuffer, AcpiGbl_Optarg);
290 break;
291 }
292 break;

294 case ’o’:

296 AcpiGbl_DbOpt_disasm = TRUE;
297 AcpiGbl_DbOpt_stats = TRUE;
298 break;

300 case ’r’:

302 AcpiGbl_UseHwReducedFadt = TRUE;
303 printf ("Using ACPI 5.0 Hardware Reduced Mode via version 5 FADT\n");
304 break;

306 case ’v’:

308 switch (AcpiGbl_Optarg[0])
309 {
310 case ’^’: /* -v: (Version): signon already emitted, just exit */

312 exit (0);

314 case ’i’:

316 AcpiDbgLevel |= ACPI_LV_INIT_NAMES;
317 break;

319 case ’r’:

321 AcpiGbl_DisplayRegionAccess = TRUE;
322 break;

new/usr/src/common/acpica/tools/acpiexec/aemain.c 6

324 default:

326 printf ("Unknown option: -v%s\n", AcpiGbl_Optarg);
327 return (-1);
328 }
329 break;

331 case ’x’:

333 AcpiDbgLevel = strtoul (AcpiGbl_Optarg, NULL, 0);
334 AcpiGbl_DbConsoleDebugLevel = AcpiDbgLevel;
335 printf ("Debug Level: 0x%8.8X\n", AcpiDbgLevel);
336 break;

338 default:

340 usage();
341 return (-1);
342 }

344 return (0);
345 }

348 /**
349 *
350 * FUNCTION: main
351 *
352 * PARAMETERS: argc, argv
353 *
354 * RETURN: Status
355 *
356 * DESCRIPTION: Main routine for AcpiExec utility
357 *
358 ***/

360 int ACPI_SYSTEM_XFACE
361 main (
362 int argc,
363 char **argv)
364 {
365 ACPI_STATUS Status;
366 UINT32 InitFlags;
367 ACPI_TABLE_HEADER *Table = NULL;
368 UINT32 TableCount;
369 AE_TABLE_DESC *TableDesc;

372 ACPI_DEBUG_INITIALIZE (); /* For debug version only */

374 printf (ACPI_COMMON_SIGNON (ACPIEXEC_NAME));
375 if (argc < 2)
376 {
377 usage ();
378 return (0);
379 }

381 signal (SIGINT, AeCtrlCHandler);

383 /* Init globals */

385 AcpiDbgLevel = ACPI_NORMAL_DEFAULT;
386 AcpiDbgLayer = 0xFFFFFFFF;

388 /* Init ACPI and start debugger thread */

new/usr/src/common/acpica/tools/acpiexec/aemain.c 7

390 Status = AcpiInitializeSubsystem ();
391 AE_CHECK_OK (AcpiInitializeSubsystem, Status);
392 if (ACPI_FAILURE (Status))
393 {
394 goto ErrorExit;
395 }

397 /* Get the command line options */

399 if (AeDoOptions (argc, argv))
400 {
401 goto ErrorExit;
402 }

404 /* The remaining arguments are filenames for ACPI tables */

406 if (!argv[AcpiGbl_Optind])
407 {
408 goto EnterDebugger;
409 }

411 AcpiGbl_DbOpt_tables = TRUE;
412 TableCount = 0;

414 /* Get each of the ACPI table files on the command line */

416 while (argv[AcpiGbl_Optind])
417 {
418 /* Get one entire table */

420 Status = AcpiDbReadTableFromFile (argv[AcpiGbl_Optind], &Table);
421 if (ACPI_FAILURE (Status))
422 {
423 printf ("**** Could not get table from file %s, %s\n",
424 argv[AcpiGbl_Optind], AcpiFormatException (Status));
425 goto ErrorExit;
426 }

428 /* Ignore non-AML tables, we can’t use them. Except for an FADT */

430 if (!ACPI_COMPARE_NAME (Table->Signature, ACPI_SIG_FADT) &&
431 !AcpiUtIsAmlTable (Table))
432 {
433 ACPI_INFO ((AE_INFO,
434 "Table [%4.4s] is not an AML table, ignoring",
435 Table->Signature));
436 AcpiOsFree (Table);
437 }
438 else
439 {
440 /* Allocate and link a table descriptor */

442 TableDesc = AcpiOsAllocate (sizeof (AE_TABLE_DESC));
443 TableDesc->Table = Table;
444 TableDesc->Next = AeTableListHead;
445 AeTableListHead = TableDesc;

447 TableCount++;
448 }

450 AcpiGbl_Optind++;
451 }

453 /* Build a local RSDT with all tables and let ACPICA process the RSDT */

455 Status = AeBuildLocalTables (TableCount, AeTableListHead);

new/usr/src/common/acpica/tools/acpiexec/aemain.c 8

456 if (ACPI_FAILURE (Status))
457 {
458 goto ErrorExit;
459 }

461 Status = AeInstallTables ();
462 if (ACPI_FAILURE (Status))
463 {
464 printf ("**** Could not load ACPI tables, %s\n",
465 AcpiFormatException (Status));
466 goto EnterDebugger;
467 }

469 /*
470 * Install most of the handlers.
471 * Override some default region handlers, especially SystemMemory
472 */
473 Status = AeInstallEarlyHandlers ();
474 if (ACPI_FAILURE (Status))
475 {
476 goto EnterDebugger;
477 }

479 /* Setup initialization flags for ACPICA */

481 InitFlags = (ACPI_NO_HANDLER_INIT | ACPI_NO_ACPI_ENABLE);
482 if (!AcpiGbl_DbOpt_ini_methods)
483 {
484 InitFlags |= (ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT);
485 }

487 /*
488 * Main initialization for ACPICA subsystem
489 * TBD: Need a way to call this after the ACPI table "LOAD" command
490 */
491 Status = AcpiEnableSubsystem (InitFlags);
492 if (ACPI_FAILURE (Status))
493 {
494 printf ("**** Could not EnableSubsystem, %s\n",
495 AcpiFormatException (Status));
496 goto EnterDebugger;
497 }

499 /*
500 * Install handlers for "device driver" space IDs (EC,SMBus, etc.)
501 * and fixed event handlers
502 */
503 AeInstallLateHandlers ();

505 /* Finish the ACPICA initialization */

507 Status = AcpiInitializeObjects (InitFlags);
508 if (ACPI_FAILURE (Status))
509 {
510 printf ("**** Could not InitializeObjects, %s\n",
511 AcpiFormatException (Status));
512 goto EnterDebugger;
513 }

515 AeMiscellaneousTests ();

518 EnterDebugger:

520 /* Exit if error above and we are in one of the batch modes */

new/usr/src/common/acpica/tools/acpiexec/aemain.c 9

522 if (ACPI_FAILURE (Status) && (AcpiGbl_ExecutionMode > 0))
523 {
524 goto ErrorExit;
525 }

527 /* Run a batch command or enter the command loop */

529 switch (AcpiGbl_ExecutionMode)
530 {
531 default:
532 case AE_MODE_COMMAND_LOOP:

534 AcpiDbUserCommands (ACPI_DEBUGGER_COMMAND_PROMPT, NULL);
535 break;

537 case AE_MODE_BATCH_MULTIPLE:

539 AcpiDbRunBatchMode ();
540 break;

542 case AE_MODE_BATCH_SINGLE:

544 AcpiDbExecute (BatchBuffer, NULL, NULL, EX_NO_SINGLE_STEP);
545 Status = AcpiTerminate ();
546 break;
547 }

549 return (0);

552 ErrorExit:

554 (void) AcpiOsTerminate ();
555 return (-1);
556 }

559 /**
560 *
561 * FUNCTION: AcpiDbRunBatchMode
562 *
563 * PARAMETERS: BatchCommandLine - A semicolon separated list of commands
564 * to be executed.
565 * Use only commas to separate elements of
566 * particular command.
567 * RETURN: Status
568 *
569 * DESCRIPTION: For each command of list separated by ’;’ prepare the command
570 * buffer and pass it to AcpiDbCommandDispatch.
571 *
572 ***/

574 static ACPI_STATUS
575 AcpiDbRunBatchMode (
576 void)
577 {
578 ACPI_STATUS Status;
579 char *Ptr = BatchBuffer;
580 char *Cmd = Ptr;
581 UINT8 Run = 0;

584 AcpiGbl_MethodExecuting = FALSE;
585 AcpiGbl_StepToNextCall = FALSE;

587 while (*Ptr)

new/usr/src/common/acpica/tools/acpiexec/aemain.c 10

588 {
589 if (*Ptr == ’,’)
590 {
591 /* Convert commas to spaces */
592 *Ptr = ’ ’;
593 }
594 else if (*Ptr == ’;’)
595 {
596 *Ptr = ’\0’;
597 Run = 1;
598 }

600 Ptr++;

602 if (Run || (*Ptr == ’\0’))
603 {
604 (void) AcpiDbCommandDispatch (Cmd, NULL, NULL);
605 Run = 0;
606 Cmd = Ptr;
607 }
608 }

610 Status = AcpiTerminate ();
611 return (Status);
612 }

new/usr/src/common/acpica/tools/acpiexec/aetables.c 1

**
 15669 Thu Dec 26 13:50:09 2013
new/usr/src/common/acpica/tools/acpiexec/aetables.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aetables - ACPI table setup/install for acpiexec utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "aecommon.h"
45 #include "aetables.h"

47 #define _COMPONENT ACPI_TOOLS
48 ACPI_MODULE_NAME ("aetables")

50 /* Local prototypes */

52 void
53 AeTableOverride (
54 ACPI_TABLE_HEADER *ExistingTable,
55 ACPI_TABLE_HEADER **NewTable);

57 ACPI_PHYSICAL_ADDRESS
58 AeLocalGetRootPointer (
59 void);

new/usr/src/common/acpica/tools/acpiexec/aetables.c 2

61 /* User table (DSDT) */

63 static ACPI_TABLE_HEADER *DsdtToInstallOverride;

65 /* Non-AML tables that are constructed locally and installed */

67 static ACPI_TABLE_RSDP LocalRSDP;
68 static ACPI_TABLE_FACS LocalFACS;
69 static ACPI_TABLE_HEADER LocalTEST;
70 static ACPI_TABLE_HEADER LocalBADTABLE;

72 /*
73 * We need a local FADT so that the hardware subcomponent will function,
74 * even though the underlying OSD HW access functions don’t do anything.
75 */
76 static ACPI_TABLE_FADT LocalFADT;

78 /*
79 * Use XSDT so that both 32- and 64-bit versions of this utility will
80 * function automatically.
81 */
82 static ACPI_TABLE_XSDT *LocalXSDT;

84 #define BASE_XSDT_TABLES 10
85 #define BASE_XSDT_SIZE (sizeof (ACPI_TABLE_XSDT) + \
86 ((BASE_XSDT_TABLES -1) * sizeof (UINT64)))

88 #define ACPI_MAX_INIT_TABLES (32)
89 static ACPI_TABLE_DESC Tables[ACPI_MAX_INIT_TABLES];

92 /**
93 *
94 * FUNCTION: AeTableOverride
95 *
96 * DESCRIPTION: Local implementation of AcpiOsTableOverride.
97 * Exercise the override mechanism
98 *
99 ***/

101 void
102 AeTableOverride (
103 ACPI_TABLE_HEADER *ExistingTable,
104 ACPI_TABLE_HEADER **NewTable)
105 {

107 /* This code exercises the table override mechanism in the core */

109 if (ACPI_COMPARE_NAME (ExistingTable->Signature, ACPI_SIG_DSDT))
110 {
111 *NewTable = DsdtToInstallOverride;
112 }

114 /* This code tests override of dynamically loaded tables */

116 else if (ACPI_COMPARE_NAME (ExistingTable->Signature, "OEM9"))
117 {
118 *NewTable = ACPI_CAST_PTR (ACPI_TABLE_HEADER, Ssdt3Code);
119 }
120 }

123 /**
124 *
125 * FUNCTION: AeBuildLocalTables

new/usr/src/common/acpica/tools/acpiexec/aetables.c 3

126 *
127 * PARAMETERS: TableCount - Number of tables on the command line
128 * TableList - List of actual tables from files
129 *
130 * RETURN: Status
131 *
132 * DESCRIPTION: Build a complete ACPI table chain, with a local RSDP, XSDT,
133 * FADT, and several other test tables.
134 *
135 ***/

137 ACPI_STATUS
138 AeBuildLocalTables (
139 UINT32 TableCount,
140 AE_TABLE_DESC *TableList)
141 {
142 ACPI_PHYSICAL_ADDRESS DsdtAddress = 0;
143 UINT32 XsdtSize;
144 AE_TABLE_DESC *NextTable;
145 UINT32 NextIndex;
146 ACPI_TABLE_FADT *ExternalFadt = NULL;

149 /*
150 * Update the table count. For DSDT, it is not put into the XSDT. For
151 * FADT, this is already accounted for since we usually install a
152 * local FADT.
153 */
154 NextTable = TableList;
155 while (NextTable)
156 {
157 if (ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_DSDT) ||
158 ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_FADT))
159 {
160 TableCount--;
161 }
162 NextTable = NextTable->Next;
163 }

165 XsdtSize = BASE_XSDT_SIZE + (TableCount * sizeof (UINT64));

167 /* Build an XSDT */

169 LocalXSDT = AcpiOsAllocate (XsdtSize);
170 if (!LocalXSDT)
171 {
172 return (AE_NO_MEMORY);
173 }

175 ACPI_MEMSET (LocalXSDT, 0, XsdtSize);
176 ACPI_MOVE_NAME (LocalXSDT->Header.Signature, ACPI_SIG_XSDT);
177 LocalXSDT->Header.Length = XsdtSize;
178 LocalXSDT->Header.Revision = 1;

180 LocalXSDT->TableOffsetEntry[0] = ACPI_PTR_TO_PHYSADDR (&LocalTEST);
181 LocalXSDT->TableOffsetEntry[1] = ACPI_PTR_TO_PHYSADDR (&LocalBADTABLE);
182 LocalXSDT->TableOffsetEntry[2] = ACPI_PTR_TO_PHYSADDR (&LocalFADT);

184 /* Install two SSDTs to test multiple table support */

186 LocalXSDT->TableOffsetEntry[3] = ACPI_PTR_TO_PHYSADDR (&Ssdt1Code);
187 LocalXSDT->TableOffsetEntry[4] = ACPI_PTR_TO_PHYSADDR (&Ssdt2Code);

189 /* Install the OEM1 table to test LoadTable */

191 LocalXSDT->TableOffsetEntry[5] = ACPI_PTR_TO_PHYSADDR (&Oem1Code);

new/usr/src/common/acpica/tools/acpiexec/aetables.c 4

193 /* Install the OEMx table to test LoadTable */

195 LocalXSDT->TableOffsetEntry[6] = ACPI_PTR_TO_PHYSADDR (&OemxCode);

197 /* Install the ECDT table to test _REG */

199 LocalXSDT->TableOffsetEntry[7] = ACPI_PTR_TO_PHYSADDR (&EcdtCode);

201 /* Install two UEFIs to test multiple table support */

203 LocalXSDT->TableOffsetEntry[8] = ACPI_PTR_TO_PHYSADDR (&Uefi1Code);
204 LocalXSDT->TableOffsetEntry[9] = ACPI_PTR_TO_PHYSADDR (&Uefi2Code);

206 /*
207 * Install the user tables. The DSDT must be installed in the FADT.
208 * All other tables are installed directly into the XSDT.
209 */
210 NextIndex = BASE_XSDT_TABLES;
211 NextTable = TableList;
212 while (NextTable)
213 {
214 /*
215 * Incoming DSDT or FADT are special cases. All other tables are
216 * just immediately installed into the XSDT.
217 */
218 if (ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_DSDT))
219 {
220 if (DsdtAddress)
221 {
222 printf ("Already found a DSDT, only one allowed\n");
223 return (AE_ALREADY_EXISTS);
224 }

226 /* The incoming user table is a DSDT */

228 DsdtAddress = ACPI_PTR_TO_PHYSADDR (&DsdtCode);
229 DsdtToInstallOverride = NextTable->Table;
230 }
231 else if (ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_FADT))
232 {
233 ExternalFadt = ACPI_CAST_PTR (ACPI_TABLE_FADT, NextTable->Table);
234 LocalXSDT->TableOffsetEntry[2] = ACPI_PTR_TO_PHYSADDR (NextTable->Ta
235 }
236 else
237 {
238 /* Install the table in the XSDT */

240 LocalXSDT->TableOffsetEntry[NextIndex] = ACPI_PTR_TO_PHYSADDR (NextT
241 NextIndex++;
242 }

244 NextTable = NextTable->Next;
245 }

247 /* Build an RSDP */

249 ACPI_MEMSET (&LocalRSDP, 0, sizeof (ACPI_TABLE_RSDP));
250 ACPI_MAKE_RSDP_SIG (LocalRSDP.Signature);
251 ACPI_MEMCPY (LocalRSDP.OemId, "I_TEST", 6);
252 LocalRSDP.Revision = 2;
253 LocalRSDP.XsdtPhysicalAddress = ACPI_PTR_TO_PHYSADDR (LocalXSDT);
254 LocalRSDP.Length = sizeof (ACPI_TABLE_XSDT);

256 /* Set checksums for both XSDT and RSDP */

new/usr/src/common/acpica/tools/acpiexec/aetables.c 5

258 LocalXSDT->Header.Checksum = (UINT8) -AcpiTbChecksum (
259 (void *) LocalXSDT, LocalXSDT->Header.Length);
260 LocalRSDP.Checksum = (UINT8) -AcpiTbChecksum (
261 (void *) &LocalRSDP, ACPI_RSDP_CHECKSUM_LENGTH);

263 if (!DsdtAddress)
264 {
265 /* Use the local DSDT because incoming table(s) are all SSDT(s) */

267 DsdtAddress = ACPI_PTR_TO_PHYSADDR (LocalDsdtCode);
268 DsdtToInstallOverride = ACPI_CAST_PTR (ACPI_TABLE_HEADER, LocalDsdtCode)
269 }

271 if (ExternalFadt)
272 {
273 /*
274 * Use the external FADT, but we must update the DSDT/FACS addresses
275 * as well as the checksum
276 */
277 ExternalFadt->Dsdt = DsdtAddress;
278 if (!AcpiGbl_ReducedHardware)
279 {
280 ExternalFadt->Facs = ACPI_PTR_TO_PHYSADDR (&LocalFACS);
281 }

283 if (ExternalFadt->Header.Length > ACPI_PTR_DIFF (&ExternalFadt->XDsdt, E
284 {
285 ExternalFadt->XDsdt = DsdtAddress;

287 if (!AcpiGbl_ReducedHardware)
288 {
289 ExternalFadt->XFacs = ACPI_PTR_TO_PHYSADDR (&LocalFACS);
290 }
291 }

293 /* Complete the FADT with the checksum */

295 ExternalFadt->Header.Checksum = 0;
296 ExternalFadt->Header.Checksum = (UINT8) -AcpiTbChecksum (
297 (void *) ExternalFadt, ExternalFadt->Header.Length);
298 }
299 else if (AcpiGbl_UseHwReducedFadt)
300 {
301 ACPI_MEMCPY (&LocalFADT, HwReducedFadtCode, sizeof (ACPI_TABLE_FADT));
302 LocalFADT.Dsdt = DsdtAddress;
303 LocalFADT.XDsdt = DsdtAddress;

305 LocalFADT.Header.Checksum = 0;
306 LocalFADT.Header.Checksum = (UINT8) -AcpiTbChecksum (
307 (void *) &LocalFADT, LocalFADT.Header.Length);
308 }
309 else
310 {
311 /*
312 * Build a local FADT so we can test the hardware/event init
313 */
314 ACPI_MEMSET (&LocalFADT, 0, sizeof (ACPI_TABLE_FADT));
315 ACPI_MOVE_NAME (LocalFADT.Header.Signature, ACPI_SIG_FADT);

317 /* Setup FADT header and DSDT/FACS addresses */

319 LocalFADT.Dsdt = 0;
320 LocalFADT.Facs = 0;

322 LocalFADT.XDsdt = DsdtAddress;
323 LocalFADT.XFacs = ACPI_PTR_TO_PHYSADDR (&LocalFACS);

new/usr/src/common/acpica/tools/acpiexec/aetables.c 6

325 LocalFADT.Header.Revision = 3;
326 LocalFADT.Header.Length = sizeof (ACPI_TABLE_FADT);

328 /* Miscellaneous FADT fields */

330 LocalFADT.Gpe0BlockLength = 16;
331 LocalFADT.Gpe0Block = 0x00001234;

333 LocalFADT.Gpe1BlockLength = 6;
334 LocalFADT.Gpe1Block = 0x00005678;
335 LocalFADT.Gpe1Base = 96;

337 LocalFADT.Pm1EventLength = 4;
338 LocalFADT.Pm1aEventBlock = 0x00001aaa;
339 LocalFADT.Pm1bEventBlock = 0x00001bbb;

341 LocalFADT.Pm1ControlLength = 2;
342 LocalFADT.Pm1aControlBlock = 0xB0;

344 LocalFADT.PmTimerLength = 4;
345 LocalFADT.PmTimerBlock = 0xA0;

347 LocalFADT.Pm2ControlBlock = 0xC0;
348 LocalFADT.Pm2ControlLength = 1;

350 /* Setup one example X-64 field */

352 LocalFADT.XPm1bEventBlock.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
353 LocalFADT.XPm1bEventBlock.Address = LocalFADT.Pm1bEventBlock;
354 LocalFADT.XPm1bEventBlock.BitWidth = (UINT8) ACPI_MUL_8 (LocalFADT.Pm1Ev

356 /* Complete the FADT with the checksum */

358 LocalFADT.Header.Checksum = 0;
359 LocalFADT.Header.Checksum = (UINT8) -AcpiTbChecksum (
360 (void *) &LocalFADT, LocalFADT.Header.Length);
361 }

363 /* Build a FACS */

365 ACPI_MEMSET (&LocalFACS, 0, sizeof (ACPI_TABLE_FACS));
366 ACPI_MOVE_NAME (LocalFACS.Signature, ACPI_SIG_FACS);

368 LocalFACS.Length = sizeof (ACPI_TABLE_FACS);
369 LocalFACS.GlobalLock = 0x11AA0011;

371 /*
372 * Build a fake table [TEST] so that we make sure that the
373 * ACPICA core ignores it
374 */
375 ACPI_MEMSET (&LocalTEST, 0, sizeof (ACPI_TABLE_HEADER));
376 ACPI_MOVE_NAME (LocalTEST.Signature, "TEST");

378 LocalTEST.Revision = 1;
379 LocalTEST.Length = sizeof (ACPI_TABLE_HEADER);
380 LocalTEST.Checksum = (UINT8) -AcpiTbChecksum (
381 (void *) &LocalTEST, LocalTEST.Length);

383 /*
384 * Build a fake table with a bad signature [BAD!] so that we make
385 * sure that the ACPICA core ignores it
386 */
387 ACPI_MEMSET (&LocalBADTABLE, 0, sizeof (ACPI_TABLE_HEADER));
388 ACPI_MOVE_NAME (LocalBADTABLE.Signature, "BAD!");

new/usr/src/common/acpica/tools/acpiexec/aetables.c 7

390 LocalBADTABLE.Revision = 1;
391 LocalBADTABLE.Length = sizeof (ACPI_TABLE_HEADER);
392 LocalBADTABLE.Checksum = (UINT8) -AcpiTbChecksum (
393 (void *) &LocalBADTABLE, LocalBADTABLE.Length);

395 return (AE_OK);
396 }

399 /**
400 *
401 * FUNCTION: AeInstallTables
402 *
403 * PARAMETERS: None
404 *
405 * RETURN: Status
406 *
407 * DESCRIPTION: Install the various ACPI tables
408 *
409 ***/

411 ACPI_STATUS
412 AeInstallTables (
413 void)
414 {
415 ACPI_STATUS Status;
416 ACPI_TABLE_HEADER Header;
417 ACPI_TABLE_HEADER *Table;

420 Status = AcpiInitializeTables (Tables, ACPI_MAX_INIT_TABLES, TRUE);
421 AE_CHECK_OK (AcpiInitializeTables, Status);

423 Status = AcpiReallocateRootTable ();
424 AE_CHECK_OK (AcpiReallocateRootTable, Status);

426 Status = AcpiLoadTables ();
427 AE_CHECK_OK (AcpiLoadTables, Status);

429 /*
430 * Test run-time control method installation. Do it twice to test code
431 * for an existing name.
432 */
433 Status = AcpiInstallMethod (MethodCode);
434 if (ACPI_FAILURE (Status))
435 {
436 AcpiOsPrintf ("%s, Could not install method\n",
437 AcpiFormatException (Status));
438 }

440 Status = AcpiInstallMethod (MethodCode);
441 if (ACPI_FAILURE (Status))
442 {
443 AcpiOsPrintf ("%s, Could not install method\n",
444 AcpiFormatException (Status));
445 }

447 /* Test multiple table/UEFI support. First, get the headers */

449 Status = AcpiGetTableHeader (ACPI_SIG_UEFI, 1, &Header);
450 AE_CHECK_OK (AcpiGetTableHeader, Status);

452 Status = AcpiGetTableHeader (ACPI_SIG_UEFI, 2, &Header);
453 AE_CHECK_OK (AcpiGetTableHeader, Status);

455 Status = AcpiGetTableHeader (ACPI_SIG_UEFI, 3, &Header);

new/usr/src/common/acpica/tools/acpiexec/aetables.c 8

456 AE_CHECK_STATUS (AcpiGetTableHeader, Status, AE_NOT_FOUND);

458 /* Now get the actual tables */

460 Status = AcpiGetTable (ACPI_SIG_UEFI, 1, &Table);
461 AE_CHECK_OK (AcpiGetTable, Status);

463 Status = AcpiGetTable (ACPI_SIG_UEFI, 2, &Table);
464 AE_CHECK_OK (AcpiGetTable, Status);

466 Status = AcpiGetTable (ACPI_SIG_UEFI, 3, &Table);
467 AE_CHECK_STATUS (AcpiGetTable, Status, AE_NOT_FOUND);

469 return (AE_OK);
470 }

473 /**
474 *
475 * FUNCTION: AeLocalGetRootPointer
476 *
477 * PARAMETERS: Flags - not used
478 * Address - Where the root pointer is returned
479 *
480 * RETURN: Status
481 *
482 * DESCRIPTION: Return a local RSDP, used to dynamically load tables via the
483 * standard ACPI mechanism.
484 *
485 ***/

487 ACPI_PHYSICAL_ADDRESS
488 AeLocalGetRootPointer (
489 void)
490 {

492 return ((ACPI_PHYSICAL_ADDRESS) &LocalRSDP);
493 }

new/usr/src/common/acpica/tools/acpiexec/aetables.h 1

**
 22354 Thu Dec 26 13:50:09 2013
new/usr/src/common/acpica/tools/acpiexec/aetables.h
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: aetables.h - Precompiled AML ACPI tables for acpiexec
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __AETABLES_H__
45 #define __AETABLES_H__

48 /*
49 * Miscellaneous pre-compiled AML ACPI tables to be installed
50 */

52 /* Default DSDT. This will be replaced with the input DSDT */

54 static unsigned char DsdtCode[] =
55 {
56 0x44,0x53,0x44,0x54,0x24,0x00,0x00,0x00, /* 00000000 "DSDT$..." */
57 0x02,0x6F,0x49,0x6E,0x74,0x65,0x6C,0x00, /* 00000008 ".oIntel." */
58 0x4E,0x75,0x6C,0x6C,0x44,0x53,0x44,0x54, /* 00000010 "NullDSDT" */
59 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */

new/usr/src/common/acpica/tools/acpiexec/aetables.h 2

60 0x04,0x12,0x08,0x20,
61 };

63 static unsigned char LocalDsdtCode[] =
64 {
65 0x44,0x53,0x44,0x54,0x24,0x00,0x00,0x00, /* 00000000 "DSDT$..." */
66 0x02,0x2C,0x49,0x6E,0x74,0x65,0x6C,0x00, /* 00000008 ".,Intel." */
67 0x4C,0x6F,0x63,0x61,0x6C,0x00,0x00,0x00, /* 00000010 "Local..." */
68 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
69 0x30,0x07,0x09,0x20,
70 };

72 /* Several example SSDTs */

74 /* SSDT1 is used by ASLTS; if changed here, must also be changed in dtregions.as

76 static unsigned char Ssdt1Code[] = /* Has method _T98 */
77 {
78 0x53,0x53,0x44,0x54,0x3E,0x00,0x00,0x00, /* 00000000 "SSDT>..." */
79 0x02,0x08,0x49,0x6E,0x74,0x65,0x6C,0x00, /* 00000008 "..Intel." */
80 0x73,0x73,0x64,0x74,0x31,0x00,0x00,0x00, /* 00000010 "ssdt1..." */
81 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
82 0x20,0x06,0x12,0x20,0x14,0x19,0x5F,0x54, /* 00000020 "_T" */
83 0x39,0x38,0x01,0x70,0x0D,0x53,0x53,0x44, /* 00000028 "98.p.SSD" */
84 0x54,0x31,0x20,0x2D,0x20,0x5F,0x54,0x39, /* 00000030 "T1 - _T9" */
85 0x38,0x00,0x5B,0x31,0xA4,0x00 /* 00000038 "8.[1.." */
86 };

88 unsigned char Ssdt2Code[] = /* Has method _T99 */
89 {
90 0x53,0x53,0x44,0x54,0x3E,0x00,0x00,0x00, /* 00000000 "SSDT>..." */
91 0x02,0xFE,0x49,0x6E,0x74,0x65,0x6C,0x00, /* 00000008 "..Intel." */
92 0x73,0x73,0x64,0x74,0x32,0x00,0x00,0x00, /* 00000010 "ssdt2..." */
93 0x02,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
94 0x20,0x06,0x12,0x20,0x14,0x19,0x5F,0x54, /* 00000020 "_T" */
95 0x39,0x39,0x06,0x70,0x0D,0x53,0x53,0x44, /* 00000028 "99.p.SSD" */
96 0x54,0x32,0x20,0x2D,0x20,0x5F,0x54,0x39, /* 00000030 "T2 - _T9" */
97 0x39,0x00,0x5B,0x31,0xA4,0x00 /* 00000038 "9.[1.." */
98 };

100 unsigned char Ssdt3Code[] = /* OEM9: Has method _T97 */
101 {
102 0x4F,0x45,0x4D,0x39,0x30,0x00,0x00,0x00, /* 00000000 "OEM10..." */
103 0x01,0xDD,0x49,0x6E,0x74,0x65,0x6C,0x00, /* 00000008 "..Intel." */
104 0x4D,0x61,0x6E,0x79,0x00,0x00,0x00,0x00, /* 00000010 "Many...." */
105 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
106 0x24,0x04,0x03,0x20,0x14,0x0B,0x5F,0x54, /* 00000020 "$.. .._T" */
107 0x39,0x37,0x00,0x70,0x0A,0x04,0x60,0xA4, /* 00000028 "97.p..‘." */
108 };

110 unsigned char Ssdt4Code[] = /* Has method _T96 */
111 {
112 0x53,0x53,0x44,0x54,0x2D,0x00,0x00,0x00, /* 00000000 "SSDT-..." */
113 0x02,0x2B,0x49,0x6E,0x74,0x65,0x6C,0x00, /* 00000008 ".+Intel." */
114 0x73,0x73,0x64,0x74,0x34,0x00,0x00,0x00, /* 00000010 "ssdt4..." */
115 0x04,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
116 0x20,0x06,0x12,0x20,0x14,0x08,0x5F,0x54, /* 00000020 "_T" */
117 0x39,0x36,0x05,0xA4,0x00 /* 00000028 "96..." */
118 };

120 /* "Hardware-Reduced" ACPI 5.0 FADT (No FACS, no ACPI hardware) */

122 unsigned char HwReducedFadtCode[] =
123 {
124 0x46,0x41,0x43,0x50,0x0C,0x01,0x00,0x00, /* 00000000 "FACP...." */
125 0x05,0x8C,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */

new/usr/src/common/acpica/tools/acpiexec/aetables.h 3

126 0x41,0x43,0x50,0x49,0x35,0x30,0x20,0x20, /* 00000010 "ACPI50 " */
127 0x00,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
128 0x13,0x04,0x11,0x20,0x00,0x00,0x00,0x00, /* 00000020 "..." */
129 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
130 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000030 "........" */
131 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
132 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000040 "........" */
133 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000048 "........" */
134 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000050 "........" */
135 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000058 "........" */
136 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000060 "........" */
137 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000068 "........" */
138 0x00,0x00,0x78,0x00,0x01,0x08,0x00,0x01, /* 00000070 "..x....." */
139 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000078 "........" */
140 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000080 "........" */
141 0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 00000088 "........" */
142 0x00,0x00,0x00,0x00,0x01,0x20,0x00,0x02, /* 00000090 "..... .." */
143 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000098 "........" */
144 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000A0 "........" */
145 0x00,0x00,0x00,0x00,0x01,0x10,0x00,0x02, /* 000000A8 "........" */
146 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000B0 "........" */
147 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000B8 "........" */
148 0x00,0x00,0x00,0x00,0x01,0x08,0x00,0x00, /* 000000C0 "........" */
149 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000C8 "........" */
150 0x01,0x20,0x00,0x03,0x00,0x00,0x00,0x00, /* 000000D0 "." */
151 0x00,0x00,0x00,0x00,0x01,0x80,0x00,0x01, /* 000000D8 "........" */
152 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000E0 "........" */
153 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000E8 "........" */
154 0x00,0x00,0x00,0x00,0x01,0x08,0x00,0x01, /* 000000F0 "........" */
155 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000F8 "........" */
156 0x01,0x08,0x00,0x01,0x01,0x00,0x00,0x00, /* 00000100 "........" */
157 0x00,0x00,0x00,0x00 /* 00000108 "........" */
158 };

160 /* Example OEM table */

162 static unsigned char Oem1Code[] =
163 {
164 0x4F,0x45,0x4D,0x31,0x38,0x00,0x00,0x00, /* 00000000 "OEM18..." */
165 0x01,0x4B,0x49,0x6E,0x74,0x65,0x6C,0x00, /* 00000008 ".KIntel." */
166 0x4D,0x61,0x6E,0x79,0x00,0x00,0x00,0x00, /* 00000010 "Many...." */
167 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
168 0x18,0x09,0x03,0x20,0x08,0x5F,0x58,0x54, /* 00000020 "... ._XT" */
169 0x32,0x0A,0x04,0x14,0x0C,0x5F,0x58,0x54, /* 00000028 "2...._XT" */
170 0x31,0x00,0x70,0x01,0x5F,0x58,0x54,0x32, /* 00000030 "1.p._XT2" */
171 };

173 /* ASL source for this table is at the end of this file */

175 static unsigned char OemxCode[] =
176 {
177 0x4F,0x45,0x4D,0x58,0xB0,0x00,0x00,0x00, /* 00000000 "OEMX...." */
178 0x02,0x54,0x4D,0x79,0x4F,0x45,0x4D,0x00, /* 00000008 ".TMyOEM." */
179 0x54,0x65,0x73,0x74,0x00,0x00,0x00,0x00, /* 00000010 "Test...." */
180 0x32,0x04,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "2...INTL" */
181 0x31,0x03,0x10,0x20,0x14,0x1D,0x5F,0x49, /* 00000020 "1.. .._I" */
182 0x4E,0x49,0x00,0x70,0x0D,0x54,0x61,0x62, /* 00000028 "NI.p.Tab" */
183 0x6C,0x65,0x20,0x4F,0x45,0x4D,0x58,0x20, /* 00000030 "le OEMX " */
184 0x72,0x75,0x6E,0x6E,0x69,0x6E,0x67,0x00, /* 00000038 "running." */
185 0x5B,0x31,0x10,0x22,0x5C,0x5F,0x47,0x50, /* 00000040 "[1."_GP" */
186 0x45,0x14,0x06,0x5F,0x45,0x30,0x37,0x00, /* 00000048 "E.._E07." */
187 0x14,0x06,0x5F,0x45,0x32,0x32,0x00,0x14, /* 00000050 ".._E22.." */
188 0x06,0x5F,0x4C,0x33,0x31,0x00,0x14,0x06, /* 00000058 "._L31..." */
189 0x5F,0x4C,0x36,0x36,0x00,0x5B,0x82,0x10, /* 00000060 "_L66.[.." */
190 0x4F,0x45,0x4D,0x31,0x08,0x5F,0x50,0x52, /* 00000068 "OEM1._PR" */
191 0x57,0x12,0x05,0x02,0x0A,0x07,0x00,0x5B, /* 00000070 "W......[" */

new/usr/src/common/acpica/tools/acpiexec/aetables.h 4

192 0x82,0x10,0x4F,0x45,0x4D,0x32,0x08,0x5F, /* 00000078 "..OEM2._" */
193 0x50,0x52,0x57,0x12,0x05,0x02,0x0A,0x66, /* 00000080 "PRW....f" */
194 0x00,0x10,0x26,0x5C,0x47,0x50,0x45,0x32, /* 00000088 "..&\GPE2" */
195 0x14,0x06,0x5F,0x4C,0x30,0x31,0x00,0x14, /* 00000090 ".._L01.." */
196 0x06,0x5F,0x45,0x30,0x37,0x00,0x08,0x5F, /* 00000098 "._E07.._" */
197 0x50,0x52,0x57,0x12,0x0C,0x02,0x12,0x08, /* 000000A0 "PRW....." */
198 0x02,0x5C,0x47,0x50,0x45,0x32,0x01,0x00 /* 000000A8 ".\GPE2.." */
199 };

201 /* Example ECDT */

203 unsigned char EcdtCode[] =
204 {
205 0x45,0x43,0x44,0x54,0x4E,0x00,0x00,0x00, /* 00000000 "ECDTN..." */
206 0x01,0x94,0x20,0x49,0x6E,0x74,0x65,0x6C, /* 00000008 ".. Intel" */
207 0x54,0x65,0x6D,0x70,0x6C,0x61,0x74,0x65, /* 00000010 "Template" */
208 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
209 0x16,0x03,0x11,0x20,0x01,0x08,0x00,0x00, /* 00000020 "..." */
210 0x66,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "f......." */
211 0x01,0x08,0x00,0x00,0x62,0x00,0x00,0x00, /* 00000030 "....b..." */
212 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
213 0x09,0x5C,0x5F,0x53,0x42,0x2E,0x50,0x43, /* 00000040 "._SB.PC" */
214 0x49,0x30,0x2E,0x45,0x43,0x00 /* 00000048 "I0.EC." */
215 };

217 /* Test for multiple UEFI tables */

219 unsigned char Uefi1Code[] =
220 {
221 0x55,0x45,0x46,0x49,0x36,0x00,0x00,0x00, /* 00000000 "UEFI6..." */
222 0x01,0x6E,0x20,0x49,0x6E,0x74,0x65,0x6C, /* 00000008 ".n Intel" */
223 0x20,0x20,0x20,0x55,0x45,0x46,0x49,0x31, /* 00000010 " UEFI1" */
224 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
225 0x23,0x08,0x13,0x20,0x06,0x07,0x08,0x09, /* 00000020 "#.." */
226 0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B, /* 00000028 "........" */
227 0x0C,0x0D,0x0E,0x0F,0x36,0x00 /* 00000030 "....6." */
228 };

230 unsigned char Uefi2Code[] =
231 {
232 0x55,0x45,0x46,0x49,0xAA,0x00,0x00,0x00, /* 00000000 "UEFI...." */
233 0x01,0xE0,0x20,0x49,0x6E,0x74,0x65,0x6C, /* 00000008 ".. Intel" */
234 0x20,0x20,0x20,0x55,0x45,0x46,0x49,0x32, /* 00000010 " UEFI2" */
235 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
236 0x23,0x08,0x13,0x20,0x67,0x45,0x23,0x01, /* 00000020 "#.. gE#." */
237 0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B, /* 00000028 "........" */
238 0x0C,0x0D,0x0E,0x0F,0x36,0x00,0x04,0x19, /* 00000030 "....6..." */
239 0x00,0x56,0x34,0xF2,0x04,0x03,0x02,0x01, /* 00000038 ".V4....." */
240 0x77,0x66,0x55,0x44,0x33,0x22,0x11,0x1E, /* 00000040 "wfUD3".." */
241 0x1C,0x1F,0x14,0x10,0x0C,0x08,0x04,0xAB, /* 00000048 "........" */
242 0x54,0x68,0x69,0x73,0x20,0x69,0x73,0x20, /* 00000050 "This is " */
243 0x61,0x20,0x73,0x74,0x72,0x69,0x6E,0x67, /* 00000058 "a string" */
244 0x00,0x5C,0x50,0x43,0x49,0x30,0x5C,0x41, /* 00000060 ".\PCI0\A" */
245 0x42,0x43,0x44,0x00,0x36,0x00,0x55,0x00, /* 00000068 "BCD.6.U." */
246 0x6E,0x00,0x69,0x00,0x63,0x00,0x6F,0x00, /* 00000070 "n.i.c.o." */
247 0x64,0x00,0x65,0x00,0x20,0x00,0x53,0x00, /* 00000078 "d.e. .S." */
248 0x74,0x00,0x72,0x00,0x69,0x00,0x6E,0x00, /* 00000080 "t.r.i.n." */
249 0x67,0x00,0x00,0x00,0x58,0x5B,0x00,0x00, /* 00000088 "g...X[.." */
250 0x00,0x00,0x00,0x00,0x41,0x42,0x43,0x44, /* 00000090 "....ABCD" */
251 0x45,0x00,0x00,0x01,0x02,0x03,0x04,0x05, /* 00000098 "E......." */
252 0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D, /* 000000A0 "........" */
253 0x0E,0x0F /* 000000A8 ".." */
254 };

257 /*

new/usr/src/common/acpica/tools/acpiexec/aetables.h 5

258 * Example installable control method
259 *
260 * DefinitionBlock ("", "DSDT", 2, "Intel", "MTHDTEST", 0x20090512)
261 * {
262 * Method (_SI_._T97, 1, Serialized)
263 * {
264 * Store ("Example installed method", Debug)
265 * Store (Arg0, Debug)
266 * Return ()
267 * }
268 * }
269 *
270 * Compiled byte code below.
271 */
272 static unsigned char MethodCode[] =
273 {
274 0x44,0x53,0x44,0x54,0x53,0x00,0x00,0x00, /* 00000000 "DSDTS..." */
275 0x02,0xF9,0x49,0x6E,0x74,0x65,0x6C,0x00, /* 00000008 "..Intel." */
276 0x4D,0x54,0x48,0x44,0x54,0x45,0x53,0x54, /* 00000010 "MTHDTEST" */
277 0x12,0x05,0x09,0x20,0x49,0x4E,0x54,0x4C, /* 00000018 "... INTL" */
278 0x22,0x04,0x09,0x20,0x14,0x2E,0x2E,0x5F, /* 00000020 "".. ..._" */
279 0x54,0x49,0x5F,0x5F,0x54,0x39,0x37,0x09, /* 00000028 "SI__T97." */
280 0x70,0x0D,0x45,0x78,0x61,0x6D,0x70,0x6C, /* 00000030 "p.Exampl" */
281 0x65,0x20,0x69,0x6E,0x73,0x74,0x61,0x6C, /* 00000038 "e instal" */
282 0x6C,0x65,0x64,0x20,0x6D,0x65,0x74,0x68, /* 00000040 "led meth" */
283 0x6F,0x64,0x00,0x5B,0x31,0x70,0x68,0x5B, /* 00000048 "od.[1ph[" */
284 0x31,0xA4,0x00,
285 };

288 #if 0
289 /**
290 *
291 * DESCRIPTION: ASL tables that are used in RSDT/XSDT, also used to test
292 * Load/LoadTable operators.
293 *
294 ***/

296 DefinitionBlock ("", "OEMX", 2, "MyOEM", "Test", 0x00000432)
297 {
298 External (GPE2, DeviceObj)

300 Method (_INI)
301 {
302 Store ("Table OEMX running", Debug)
303 }

305 Scope (_GPE)
306 {
307 Method (_E07) {}
308 Method (_E22) {}
309 Method (_L31) {}
310 Method (_L66) {}
311 }

313 Device (OEM1)
314 {
315 Name (_PRW, Package(){7,0})
316 }
317 Device (OEM2)
318 {
319 Name (_PRW, Package(){0x66,0})
320 }

322 Scope (\GPE2)
323 {

new/usr/src/common/acpica/tools/acpiexec/aetables.h 6

324 Method (_L01) {}
325 Method (_E07) {}

327 Name (_PRW, Package() {Package() {\GPE2, 1}, 0})
328 }
329 }

331 /* Parent gr.asl file */

333 DefinitionBlock ("", "DSDT", 2, "Intel", "Many", 0x00000001)
334 {
335 Name (BUF1, Buffer()
336 {
337 0x4F,0x45,0x4D,0x58,0xB0,0x00,0x00,0x00, /* 00000000 "OEMX...." */
338 0x02,0x54,0x4D,0x79,0x4F,0x45,0x4D,0x00, /* 00000008 ".TMyOEM." */
339 0x54,0x65,0x73,0x74,0x00,0x00,0x00,0x00, /* 00000010 "Test...." */
340 0x32,0x04,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "2...INTL" */
341 0x31,0x03,0x10,0x20,0x14,0x1D,0x5F,0x49, /* 00000020 "1.. .._I" */
342 0x4E,0x49,0x00,0x70,0x0D,0x54,0x61,0x62, /* 00000028 "NI.p.Tab" */
343 0x6C,0x65,0x20,0x4F,0x45,0x4D,0x58,0x20, /* 00000030 "le OEMX " */
344 0x72,0x75,0x6E,0x6E,0x69,0x6E,0x67,0x00, /* 00000038 "running." */
345 0x5B,0x31,0x10,0x22,0x5C,0x5F,0x47,0x50, /* 00000040 "[1."_GP" */
346 0x45,0x14,0x06,0x5F,0x45,0x30,0x37,0x00, /* 00000048 "E.._E07." */
347 0x14,0x06,0x5F,0x45,0x32,0x32,0x00,0x14, /* 00000050 ".._E22.." */
348 0x06,0x5F,0x4C,0x33,0x31,0x00,0x14,0x06, /* 00000058 "._L31..." */
349 0x5F,0x4C,0x36,0x36,0x00,0x5B,0x82,0x10, /* 00000060 "_L66.[.." */
350 0x4F,0x45,0x4D,0x31,0x08,0x5F,0x50,0x52, /* 00000068 "OEM1._PR" */
351 0x57,0x12,0x05,0x02,0x0A,0x07,0x00,0x5B, /* 00000070 "W......[" */
352 0x82,0x10,0x4F,0x45,0x4D,0x32,0x08,0x5F, /* 00000078 "..OEM2._" */
353 0x50,0x52,0x57,0x12,0x05,0x02,0x0A,0x66, /* 00000080 "PRW....f" */
354 0x00,0x10,0x26,0x5C,0x47,0x50,0x45,0x32, /* 00000088 "..&\GPE2" */
355 0x14,0x06,0x5F,0x4C,0x30,0x31,0x00,0x14, /* 00000090 ".._L01.." */
356 0x06,0x5F,0x45,0x30,0x37,0x00,0x08,0x5F, /* 00000098 "._E07.._" */
357 0x50,0x52,0x57,0x12,0x0C,0x02,0x12,0x08, /* 000000A0 "PRW....." */
358 0x02,0x5C,0x47,0x50,0x45,0x32,0x01,0x00 /* 000000A8 ".\GPE2.." */
359 })

361 Name (HNDL, 0)
362 Method (LD)
363 {
364 Load (BUF1, HNDL)
365 Store ("Load operator, handle:", Debug)
366 Store (HNDL, Debug)
367 }

369 Method (MAIN, 0, NotSerialized)
370 {
371 Store ("Loading OEMX table", Debug)
372 Store (LoadTable ("OEMX", "MyOEM", "Test"), Debug)
373 }

375 Scope (_GPE)
376 {
377 Method (_L08) {}
378 Method (_E08) {}
379 Method (_L0B) {}
380 }

382 Device (DEV0)
383 {
384 Name (_PRW, Package() {0x11, 0})
385 }

387 Device (\GPE2)
388 {
389 Method (_L00) {}

new/usr/src/common/acpica/tools/acpiexec/aetables.h 7

390 }
391 }

393 /* SSDT1 */

395 DefinitionBlock ("ssdt1.aml", "SSDT", 2, "Intel", "ssdt1", 0x00000001)
396 {
397 Method (_T98, 1, NotSerialized)
398 {
399 Store ("SSDT1 - _T98", Debug)
400 Return (Zero)
401 }
402 }

404 /* SSDT2 */

406 DefinitionBlock ("ssdt2.aml", "SSDT", 2, "Intel", "ssdt2", 0x00000002)
407 {
408 Method (_T99, 6, NotSerialized)
409 {
410 Store ("SSDT2 - _T99", Debug)
411 Return (Zero)
412 }
413 }

415 /* SSDT4 */

417 DefinitionBlock ("ssdt4.aml", "SSDT", 2, "Intel", "ssdt4", 0x00000004)
418 {
419 Method (_T96, 5, NotSerialized)
420 {
421 Return (Zero)
422 }
423 }

425 /* Example ECDT */

427 [000h 0000 4] Signature : "ECDT" /* Embedded Controller
428 [004h 0004 4] Table Length : 0000004E
429 [008h 0008 1] Revision : 01
430 [009h 0009 1] Checksum : 14
431 [00Ah 0010 6] Oem ID : " Intel"
432 [010h 0016 8] Oem Table ID : "Template"
433 [018h 0024 4] Oem Revision : 00000001
434 [01Ch 0028 4] Asl Compiler ID : "INTL"
435 [020h 0032 4] Asl Compiler Revision : 20110316

438 [024h 0036 12] Command/Status Register : <Generic Address Structure>
439 [024h 0036 1] Space ID : 01 (SystemIO)
440 [025h 0037 1] Bit Width : 08
441 [026h 0038 1] Bit Offset : 00
442 [027h 0039 1] Encoded Access Width : 00 (Undefined/Legacy)
443 [028h 0040 8] Address : 0000000000000066

445 [030h 0048 12] Data Register : <Generic Address Structure>
446 [030h 0048 1] Space ID : 01 (SystemIO)
447 [031h 0049 1] Bit Width : 08
448 [032h 0050 1] Bit Offset : 00
449 [033h 0051 1] Encoded Access Width : 00 (Undefined/Legacy)
450 [034h 0052 8] Address : 0000000000000062

452 [03Ch 0060 4] UID : 00000000
453 [040h 0064 1] GPE Number : 09
454 [041h 0065 13] Namepath : "_SB.PCI0.EC"

new/usr/src/common/acpica/tools/acpiexec/aetables.h 8

457 /* Test multiple UEFI support */

459 [0004] Signature : "UEFI" [UEFI Boot Optimization Ta
460 [0004] Table Length : 00000036
461 [0001] Revision : 01
462 [0001] Checksum : 9B
463 [0006] Oem ID : " Intel"
464 [0008] Oem Table ID : " UEFI1"
465 [0004] Oem Revision : 00000001
466 [0004] Asl Compiler ID : "INTL"
467 [0004] Asl Compiler Revision : 20100528

469 [0016] UUID Identifier : 09080706-0504-0706-0809-0A0B0C0D0E0F
470 [0002] Data Offset : 0000

473 [004] Signature : "UEFI" /* UEFI Boot Optimization T
474 [004] Table Length : 00000036
475 [001] Revision : 01
476 [001] Checksum : 9B
477 [006] Oem ID : " Intel"
478 [008] Oem Table ID : " UEFI2"
479 [004] Oem Revision : 00000001
480 [004] Asl Compiler ID : "INTL"
481 [004] Asl Compiler Revision : 20100528

483 [016] UUID Identifier : 01234567-0504-0706-0809-0A0B0C0D0E0F
484 [002] Data Offset : 0000

486 Label : StartRecord
487 UINT8 : 4
488 UINT16 : $EndRecord - $StartRecord /* Should
489 UINT24 : 123456 | F00000
490 UINT32 : 01020304
491 UINT56 : 11223344556677
492 UINT64 : 0102030405060708 * 4 - 200 / 100 | F0
493 Label : EndRecord

495 UINT8 : AB
496 String : "This is a string"
497 DevicePath : "\PCI0\ABCD"
498 UINT16 : $StartRecord
499 Unicode : "Unicode String"
500 UINT64 : $EndRecord * 128

502 Buffer : 41 42 43 44 45
503 String : ""
504 GUID : 03020100-0504-0706-0809-0A0B0C0D0E0F
505 #endif

507 #endif /* __AETABLES_H__ */

new/usr/src/common/acpica/tools/acpihelp/acpihelp.h 1

**
 4277 Thu Dec 26 13:50:09 2013
new/usr/src/common/acpica/tools/acpihelp/acpihelp.h
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: acpihelp.h - Include file for AcpiHelp utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef __ACPIHELP_H
45 #define __ACPIHELP_H

48 #include "acpi.h"
49 #include "accommon.h"
50 #include "acapps.h"

52 #include <stdio.h>
53 #include <sys/stat.h>
54 #include <sys/types.h>
55 #include <fcntl.h>
56 #include <ctype.h>
57 #include <string.h>
58 #ifdef WIN32
59 #include <io.h>
60 #include <direct.h>
61 #endif

new/usr/src/common/acpica/tools/acpihelp/acpihelp.h 2

62 #include <errno.h>

65 #define AH_DECODE_DEFAULT 0
66 #define AH_DECODE_ASL 1
67 #define AH_DECODE_ASL_KEYWORD 2
68 #define AH_DECODE_PREDEFINED_NAME 3
69 #define AH_DECODE_AML 4
70 #define AH_DECODE_AML_OPCODE 5
71 #define AH_DISPLAY_DEVICE_IDS 6
72 #define AH_DECODE_EXCEPTION 7

74 #define AH_MAX_ASL_LINE_LENGTH 70
75 #define AH_MAX_AML_LINE_LENGTH 100

78 typedef struct ah_aml_opcode
79 {
80 UINT16 OpcodeRangeStart;
81 UINT16 OpcodeRangeEnd;
82 char *OpcodeString;
83 char *OpcodeName;
84 char *Type;
85 char *FixedArguments;
86 char *VariableArguments;
87 char *Grammar;

89 } AH_AML_OPCODE;

91 typedef struct ah_asl_operator
92 {
93 char *Name;
94 char *Syntax;
95 char *Description;

97 } AH_ASL_OPERATOR;

99 typedef struct ah_asl_keyword
100 {
101 char *Name;
102 char *Description;
103 char *KeywordList;

105 } AH_ASL_KEYWORD;

107 typedef struct ah_device_id
108 {
109 char *Name;
110 char *Description;

112 } AH_DEVICE_ID;

115 extern const AH_AML_OPCODE AmlOpcodeInfo[];
116 extern const AH_ASL_OPERATOR AslOperatorInfo[];
117 extern const AH_ASL_KEYWORD AslKeywordInfo[];
118 extern BOOLEAN AhDisplayAll;

120 void
121 AhStrupr (
122 char *SrcString);

124 void
125 AhFindAmlOpcode (
126 char *Name);

new/usr/src/common/acpica/tools/acpihelp/acpihelp.h 3

128 void
129 AhDecodeAmlOpcode (
130 char *Name);

132 void
133 AhDecodeException (
134 char *Name);

136 void
137 AhFindPredefinedNames (
138 char *Name);

140 void
141 AhFindAslOperators (
142 char *Name);

144 void
145 AhFindAslKeywords (
146 char *Name);

148 void
149 AhDisplayDeviceIds (
150 void);

152 #endif /* __ACPIHELP_H */

new/usr/src/common/acpica/tools/acpihelp/ahamlops.c 1

**
 34670 Thu Dec 26 13:50:10 2013
new/usr/src/common/acpica/tools/acpihelp/ahamlops.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: ahamlops - Table of all known AML opcodes
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpihelp.h"

46 /*
47 * AML opcodes with related syntax and grammar information.
48 * This table was extracted from the ACPI specification.
49 */
50 const AH_AML_OPCODE AmlOpcodeInfo[] =
51 {
52 {0x00, 0x00, "0x00", "ZeroOp", "DataObject",
53 NULL},
54 {0x01, 0x01, "0x01", "OneOp", "DataObject",
55 NULL},
56 {0x02, 0x05, "0x02-0x05", NULL, NULL,
57 NULL},
58 {0x06, 0x06, "0x06", "AliasOp", "TermObject",
59 "DefAlias := Ali
60 {0x07, 0x07, "0x07", NULL, NULL,
61 NULL},

new/usr/src/common/acpica/tools/acpihelp/ahamlops.c 2

62 {0x08, 0x08, "0x08", "NameOp", "TermObject",
63 "DefName := Name
64 {0x09, 0x09, "0x09", NULL, NULL,
65 NULL},
66 {0x0A, 0x0A, "0x0A", "BytePrefix", "DataObject",
67 "ByteConst := By
68 {0x0B, 0x0B, "0x0B", "WordPrefix", "DataObject",
69 "WordConst := Wo
70 {0x0C, 0x0C, "0x0C", "DWordPrefix", "DataObject",
71 "DWordConst := D
72 {0x0D, 0x0D, "0x0D", "StringPrefix", "DataObject",
73 "String := Strin
74 {0x0E, 0x0E, "0x0E", "QWordPrefix", "DataObject",
75 "QWordConst := Q
76 {0x0F, 0x0F, "0x0F", NULL, NULL,
77 NULL},
78 {0x10, 0x10, "0x10", "ScopeOp", "TermObject",
79 "DefScope := Sco
80 {0x11, 0x11, "0x11", "BufferOp", "TermObject",
81 "DefBuffer := Bu
82 {0x12, 0x12, "0x12", "PackageOp", "TermObject",
83 "DefPackage := P
84 {0x13, 0x13, "0x13", "VarPackageOp", "TermObject",
85 "DefVarPackage :
86 {0x14, 0x14, "0x14", "MethodOp", "TermObject",
87 "DefMethod := Me
88 {0x15, 0x2D, "0x15-0x2D", NULL, NULL,
89 NULL},
90 {0x2E, 0x2E, "0x2E", "DualNamePrefix", "NameObject",
91 "DualNamePath :=
92 {0x2F, 0x2F, "0x2F", "MultiNamePrefix", "NameObject",
93 "MultiNamePath :
94 {0x30, 0x39, "0x30-0x39", "DigitChar", "NameObject",
95 NULL},
96 {0x3A, 0x40, "0x3A-0x40", NULL, NULL,
97 NULL},
98 {0x41, 0x5A, "0x41-0x5A", "NameChar", "NameObject",
99 NULL},
100 {0x5B, 0x5B, "0x5B", "ExtOpPrefix", "DataObject",
101 NULL},
102 {0x5B00, 0x5B00, "0x5B00", NULL, NULL,
103 NULL},
104 {0x5B01, 0x5B01, "0x5B01", "MutexOp", "TermObject",
105 "DefMutex := Mut
106 {0x5B02, 0x5B02, "0x5B02", "EventOp", "TermObject",
107 "DefEvent := Eve
108 {0x5B12, 0x5B12, "0x5B12", "CondRefOfOp", "TermObject",
109 "DefCondRefOf :=
110 {0x5B13, 0x5B13, "0x5B13", "CreateFieldOp", "TermObject",
111 "DefCreateField
112 {0x5B1F, 0x5B1F, "0x5B1F", "LoadTableOp", "TermObject",
113 "DefLoadTable :=
114 {0x5B20, 0x5B20, "0x5B20", "LoadOp", "TermObject",
115 "DefLoad := Load
116 {0x5B21, 0x5B21, "0x5B21", "StallOp", "TermObject",
117 "DefStall := Sta
118 {0x5B22, 0x5B22, "0x5B22", "SleepOp", "TermObject",
119 "DefSleep := Sle
120 {0x5B23, 0x5B23, "0x5B23", "AcquireOp", "TermObject",
121 "DefAcquire := A
122 {0x5B24, 0x5B24, "0x5B24", "SignalOp", "TermObject",
123 "DefSignal := Si
124 {0x5B25, 0x5B25, "0x5B25", "WaitOp", "TermObject",
125 "DefWait := Wait
126 {0x5B26, 0x5B26, "0x5B26", "ResetOp", "TermObject",
127 "DefReset := Res

new/usr/src/common/acpica/tools/acpihelp/ahamlops.c 3

128 {0x5B27, 0x5B27, "0x5B27", "ReleaseOp", "TermObject",
129 "DefRelease := R
130 {0x5B28, 0x5B28, "0x5B28", "FromBCDOp", "TermObject",
131 "DefFromBCD := F
132 {0x5B29, 0x5B29, "0x5B29", "ToBCD", "TermObject",
133 "DefToBCD := ToB
134 {0x5B2A, 0x5B2A, "0x5B2A", "UnloadOp", "TermObject",
135 "DefUnload := Un
136 {0x5B30, 0x5B30, "0x5B30", "RevisionOp", "DataObject",
137 NULL},
138 {0x5B31, 0x5B31, "0x5B31", "DebugOp", "DebugObject",
139 NULL},
140 {0x5B32, 0x5B32, "0x5B32", "FatalOp", "TermObject",
141 "DefFatal := Fat
142 {0x5B33, 0x5B33, "0x5B33", "TimerOp", "TermObject",
143 "DefTimer := Tim
144 {0x5B80, 0x5B80, "0x5B80", "OpRegionOp", "TermObject",
145 "DefOpRegion :=
146 {0x5B81, 0x5B81, "0x5B81", "FieldOp", "TermObject",
147 "DefField := Fie
148 {0x5B82, 0x5B82, "0x5B82", "DeviceOp", "TermObject",
149 "DefDevice := De
150 {0x5B83, 0x5B83, "0x5B83", "ProcessorOp", "TermObject",
151 "DefProcessor :=
152 {0x5B84, 0x5B84, "0x5B84", "PowerResOp", "TermObject",
153 "DefPowerRes :=
154 {0x5B85, 0x5B85, "0x5B85", "ThermalZoneOp", "TermObject",
155 "DefThermalZone
156 {0x5B86, 0x5B86, "0x5B86", "IndexFieldOp", "TermObject",
157 "DefIndexField :
158 {0x5B87, 0x5B87, "0x5B87", "BankFieldOp", "TermObject",
159 "DefBankField :=
160 {0x5B88, 0x5B88, "0x5B88", "DataRegionOp", "TermObject",
161 "DefDataRegion :
162 {0x5B89, 0x5BFF, "0x5B89-0x5BFF", NULL, NULL,
163 NULL},
164 {0x5C, 0x5C, "0x5C", "RootChar", "NameObject",
165 NULL},
166 {0x5D, 0x5D, "0x5D", NULL, NULL,
167 NULL},
168 {0x5E, 0x5E, "0x5E", "ParentPrefixChar", "NameObject",
169 NULL},
170 {0x5F, 0x5F, "0x5F", "NameChar", "NameObject",
171 NULL},
172 {0x60, 0x60, "0x60", "Local0Op", "LocalObject",
173 NULL},
174 {0x61, 0x61, "0x61", "Local1Op", "LocalObject",
175 NULL},
176 {0x62, 0x62, "0x62", "Local2Op", "LocalObject",
177 NULL},
178 {0x63, 0x63, "0x63", "Local3Op", "LocalObject",
179 NULL},
180 {0x64, 0x64, "0x64", "Local4Op", "LocalObject",
181 NULL},
182 {0x65, 0x65, "0x65", "Local5Op", "LocalObject",
183 NULL},
184 {0x66, 0x66, "0x66", "Local6Op", "LocalObject",
185 NULL},
186 {0x67, 0x67, "0x67", "Local7Op", "LocalObject",
187 NULL},
188 {0x68, 0x68, "0x68", "Arg0Op", "ArgObject",
189 NULL},
190 {0x69, 0x69, "0x69", "Arg1Op", "ArgObject",
191 NULL},
192 {0x6A, 0x6A, "0x6A", "Arg2Op", "ArgObject",
193 NULL},

new/usr/src/common/acpica/tools/acpihelp/ahamlops.c 4

194 {0x6B, 0x6B, "0x6B", "Arg3Op", "ArgObject",
195 NULL},
196 {0x6C, 0x6C, "0x6C", "Arg4Op", "ArgObject",
197 NULL},
198 {0x6D, 0x6D, "0x6D", "Arg5Op", "ArgObject",
199 NULL},
200 {0x6E, 0x6E, "0x6E", "Arg6Op", "ArgObject",
201 NULL},
202 {0x6F, 0x6F, "0x6F", NULL, NULL,
203 NULL},
204 {0x70, 0x70, "0x70", "StoreOp", "TermObject",
205 "DefStore := Sto
206 {0x71, 0x71, "0x71", "RefOfOp", "TermObject",
207 "DefRefOf := Ref
208 {0x72, 0x72, "0x72", "AddOp", "TermObject",
209 "DefAdd := AddOp
210 {0x73, 0x73, "0x73", "ConcatOp", "TermObject",
211 "DefConcat := Co
212 {0x74, 0x74, "0x74", "SubtractOp", "TermObject",
213 "DefSubtract :=
214 {0x75, 0x75, "0x75", "IncrementOp", "TermObject",
215 "DefIncrement :=
216 {0x76, 0x76, "0x76", "DecrementOp", "TermObject",
217 "DefDecrement :=
218 {0x77, 0x77, "0x77", "MultiplyOp", "TermObject",
219 "DefMultiply :=
220 {0x78, 0x78, "0x78", "DivideOp", "TermObject",
221 "DefDivide := Di
222 {0x79, 0x79, "0x79", "ShiftLeftOp", "TermObject",
223 "DefShiftLeft :=
224 {0x7A, 0x7A, "0x7A", "ShiftRightOp", "TermObject",
225 "DefShiftRight :
226 {0x7B, 0x7B, "0x7B", "AndOp", "TermObject",
227 "DefAnd := AndOp
228 {0x7C, 0x7C, "0x7C", "NandOp", "TermObject",
229 "DefNAnd := Nand
230 {0x7D, 0x7D, "0x7D", "OrOp", "TermObject",
231 "DefOr := OrOp O
232 {0x7E, 0x7E, "0x7E", "NorOp", "TermObject",
233 "DefNOr := NorOp
234 {0x7F, 0x7F, "0x7F", "XorOp", "TermObject",
235 "DefXOr := XorOp
236 {0x80, 0x80, "0x80", "NotOp", "TermObject",
237 "DefNot := NotOp
238 {0x81, 0x81, "0x81", "FindSetLeftBitOp", "TermObject",
239 "DefFindSetLeftB
240 {0x82, 0x82, "0x82", "FindSetRightBitOp", "TermObject",
241 "DefFindSetRight
242 {0x83, 0x83, "0x83", "DerefOfOp", "TermObject",
243 "DefDerefOf := D
244 {0x84, 0x84, "0x84", "ConcatResOp", "TermObject",
245 "DefConcatRes :=
246 {0x85, 0x85, "0x85", "ModOp", "TermObject",
247 "DefMod := ModOp
248 {0x86, 0x86, "0x86", "NotifyOp", "TermObject",
249 "DefNotify := No
250 {0x87, 0x87, "0x87", "SizeOfOp", "TermObject",
251 "DefSizeOf := Si
252 {0x88, 0x88, "0x88", "IndexOp", "TermObject",
253 "DefIndex := Ind
254 {0x89, 0x89, "0x89", "MatchOp", "TermObject",
255 "DefMatch := Mat
256 {0x8A, 0x8A, "0x8A", "CreateDWordFieldOp", "TermObject",
257 "DefCreateDWordF
258 {0x8B, 0x8B, "0x8B", "CreateWordFieldOp", "TermObject",
259 "DefCreateWordFi

new/usr/src/common/acpica/tools/acpihelp/ahamlops.c 5

260 {0x8C, 0x8C, "0x8C", "CreateByteFieldOp", "TermObject",
261 "DefCreateByteFi
262 {0x8D, 0x8D, "0x8D", "CreateBitFieldOp", "TermObject",
263 "DefCreateBitFie
264 {0x8E, 0x8E, "0x8E", "ObjectTypeOp", "TermObject",
265 "DefObjectType :
266 {0x8F, 0x8F, "0x8F", "CreateQWordFieldOp", "TermObject",
267 "DefCreateQWordF
268 {0x90, 0x90, "0x90", "LAndOp", "TermObject",
269 "DefLAnd := Land
270 {0x91, 0x91, "0x91", "LOrOp", "TermObject",
271 "DefLOr := LorOp
272 {0x92, 0x92, "0x92", "LNotOp", "TermObject",
273 "DefLNot := Lnot
274 {0x9293, 0x9293, "0x9293", "LNotEqualOp", "TermObject",
275 "DefLNotEqual :=
276 {0x9294, 0x9294, "0x9294", "LLessEqualOp", "TermObject",
277 "DefLLessEqual :
278 {0x9295, 0x9295, "0x9295", "LGreaterEqualOp", "TermObject",
279 "DefLGreaterEqua
280 {0x93, 0x93, "0x93", "LEqualOp", "TermObject",
281 "DefLEqual := Le
282 {0x94, 0x94, "0x94", "LGreaterOp", "TermObject",
283 "DefLGreater :=
284 {0x95, 0x95, "0x95", "LLessOp", "TermObject",
285 "DefLLess := Lle
286 {0x96, 0x96, "0x96", "ToBufferOp", "TermObject",
287 "DefToBuffer :=
288 {0x97, 0x97, "0x97", "ToDecimalStringOp", "TermObject",
289 "DefToDecimalStr
290 {0x98, 0x98, "0x98", "ToHexStringOp", "TermObject",
291 "DefToHexString
292 {0x99, 0x99, "0x99", "ToIntegerOp", "TermObject",
293 "DefToInteger :=
294 {0x9A, 0x9B, "0x9A-0x9B", NULL, NULL,
295 NULL},
296 {0x9C, 0x9C, "0x9C", "ToStringOp", "TermObject",
297 "DefToString :=
298 {0x9D, 0x9D, "0x9D", "CopyObjectOp", "TermObject",
299 "DefCopyObject :
300 {0x9E, 0x9E, "0x9E", "MidOp", "TermObject",
301 "DefMid := MidOp
302 {0x9F, 0x9F, "0x9F", "ContinueOp", "TermObject",
303 "DefContinue :=
304 {0xA0, 0xA0, "0xA0", "IfOp", "TermObject",
305 "DefIfElse := If
306 {0xA1, 0xA1, "0xA1", "ElseOp", "TermObject",
307 "DefElse := Noth
308 {0xA2, 0xA2, "0xA2", "WhileOp", "TermObject",
309 "DefWhile := Whi
310 {0xA3, 0xA3, "0xA3", "NoopOp", "TermObject",
311 "DefNoop := Noop
312 {0xA4, 0xA4, "0xA4", "ReturnOp", "TermObject",
313 "DefReturn := Re
314 {0xA5, 0xA5, "0xA5", "BreakOp", "TermObject",
315 "DefBreak := Bre
316 {0xA6, 0xCB, "0xA6-0xCB", NULL, NULL,
317 NULL},
318 {0xCC, 0xCC, "0xCC", "BreakPointOp", "TermObject",
319 "DefBreakPoint :
320 {0xCD, 0xFE, "0xCD-0xFE", NULL, NULL,
321 NULL},
322 {0xFF, 0xFF, "0xFF", "OnesOp", "DataObject",
323 NULL},
324 {0, 0, NULL, NULL, NULL, NULL, NULL, NULL}
325 };

new/usr/src/common/acpica/tools/acpihelp/ahamlops.c 6

new/usr/src/common/acpica/tools/acpihelp/ahaslkey.c 1

**
 7842 Thu Dec 26 13:50:10 2013
new/usr/src/common/acpica/tools/acpihelp/ahaslkey.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: ahaslkey - Table of all known ASL non-operator keywords
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpihelp.h"

46 /*
47 * ASL Keyword types and associated actual keywords.
48 * This table was extracted from the ACPI specification.
49 */
50 const AH_ASL_KEYWORD AslKeywordInfo[] =
51 {
52 {"AccessAttribKeyword", "Serial Bus Attributes (with legacy SMBus aliases)",
53 ":= AttribQuick (SMBusQuick) | AttribSendReceive (SMBusSendReceive) | "
54 "AttribByte (SMBusByte) | AttribWord (SMBusWord) | "
55 "AttribBlock (SMBusBlock) | AttribProcessCall (SMBusProcessCall) | "
56 "AttribBlockProcessCall (SMBusProcessCall)"},
57 {"AccessTypeKeyword", "Field Access Types",
58 ":= AnyAcc | ByteAcc | WordAcc | DWordAcc | QWordAcc | BufferAcc"},
59 {"AddressingModeKeyword", "Mode - Resource Descriptors",
60 ":= AddressingMode7Bit | AddressingMode10Bit"},
61 {"AddressKeyword", "ACPI memory range types",

new/usr/src/common/acpica/tools/acpihelp/ahaslkey.c 2

62 ":= AddressRangeMemory | AddressRangeReserved | "
63 "AddressRangeNVS | AddressRangeACPI"},
64 {"AddressSpaceKeyword", "Operation Region Address Space Types",
65 ":= RegionSpaceKeyword | FFixedHW"},
66 {"BusMasterKeyword", "DMA Bus Mastering",
67 ":= BusMaster | NotBusMaster"},
68 {"ByteLengthKeyword", "Bits per Byte - Resource Descriptors",
69 ":= DataBitsFive | DataBitsSix | DataBitsSeven | DataBitsEight | DataBit
70 {"ClockPhaseKeyword", "Resource Descriptors",
71 ":= ClockPhaseFirst | ClockPhaseSecond"},
72 {"ClockPolarityKeyword", "Resource Descriptors",
73 ":= ClockPolarityLow | ClockPolarityHigh"},
74 {"DecodeKeyword", "Type of Memory Decoding - Resource Descriptors",
75 ":= SubDecode | PosDecode"},
76 {"DmaTypeKeyword", "DMA Types - DMA Resource Descriptor",
77 ":= Compatibility | TypeA | TypeB | TypeF"},
78 {"EndianKeyword", "Endian type - Resource Descriptor",
79 ":= BigEndian | LittleEndian"},
80 {"ExtendedAttribKeyword", "Extended Bus Attributes",
81 ":= AttribBytes (AccessLength) | AttribRawBytes (AccessLength) | "
82 "AttribRawProcessBytes (AccessLength)"},
83 {"FlowControlKeyword", "Resource Descriptor",
84 ":= FlowControlNone | FlowControlXon | FlowControlHardware"},
85 {"InterruptLevelKeyword", "Interrupt Active Types",
86 ":= ActiveHigh | ActiveLow | ActiveBoth"},
87 {"InterruptTypeKeyword", "Interrupt Types",
88 ":= Edge | Level"},
89 {"IoDecodeKeyword", "I/O Decoding - IO Resource Descriptor",
90 ":= Decode16 | Decode10"},
91 {"IoRestrictionKeyword", "I/O Restriction - GPIO Resource Descriptors",
92 ":= IoRestrictionNone | IoRestrictionInputOnly | "
93 "IoRestrictionOutputOnly | IoRestrictionNoneAndPreserve"},
94 {"LockRuleKeyword", "Global Lock use for Field Operator",
95 ":= Lock | NoLock"},
96 {"MatchOpKeyword", "Types for Match Operator",
97 ":= MTR | MEQ | MLE | MLT | MGE | MGT"},
98 {"MaxKeyword", "Max Range Type - Resource Descriptors",
99 ":= MaxFixed | MaxNotFixed"},
100 {"MemTypeKeyword", "Memory Types - Resource Descriptors",
101 ":= Cacheable | WriteCombining | Prefetchable | NonCacheable"},
102 {"MinKeyword", "Min Range Type - Resource Descriptors",
103 ":= MinFixed | MinNotFixed"},
104 {"ObjectTypeKeyword", "ACPI Object Types",
105 ":= UnknownObj | IntObj | StrObj | BuffObj | PkgObj | FieldUnitObj | "
106 "DeviceObj | EventObj | MethodObj | MutexObj | OpRegionObj | PowerResObj
107 "ProcessorObj | ThermalZoneObj | BuffFieldObj | DDBHandleObj"},
108 {"ParityKeyword", "Resource Descriptors",
109 ":= ParityTypeNone | ParityTypeSpace | ParityTypeMark | "
110 "ParityTypeOdd | ParityTypeEven"},
111 {"PinConfigKeyword", "Pin Configuration - GPIO Resource Descriptors",
112 ":= PullDefault | PullUp | PullDown | PullNone"},
113 {"PolarityKeyword", "Resource Descriptors",
114 ":= PolarityHigh | PolarityLow"},
115 {"RangeTypeKeyword", "I/O Range Types - Resource Descriptors",
116 ":= ISAOnlyRanges | NonISAOnlyRanges | EntireRange"},
117 {"ReadWriteKeyword", "Memory Access Types - Resource Descriptors",
118 ":= ReadWrite | ReadOnly"},
119 {"RegionSpaceKeyword", "Operation Region Address Space Types",
120 ":= UserDefRegionSpace | SystemIO | SystemMemory | PCI_Config | "
121 "EmbeddedControl | SMBus | SystemCMOS | PciBarTarget | IPMI | "
122 "GeneralPurposeIo, GenericSerialBus"},
123 {"ResourceTypeKeyword", "Resource Usage - Resource Descriptors",
124 ":= ResourceConsumer | ResourceProducer"},
125 {"SerializeRuleKeyword", "Control Method Serialization",
126 ":= Serialized | NotSerialized"},
127 {"ShareTypeKeyword", "Interrupt Sharing - Resource Descriptors",

new/usr/src/common/acpica/tools/acpihelp/ahaslkey.c 3

128 ":= Shared | Exclusive | SharedAndWake | ExclusiveAndWake"},
129 {"SlaveModeKeyword", "Resource Descriptors",
130 ":= ControllerInitiated | DeviceInitiated"},
131 {"StopBitsKeyword", "Resource Descriptors",
132 ":= StopBitsZero | StopBitsOne | StopBitsOnePlusHalf | StopBitsTwo"},
133 {"TransferWidthKeyword", "DMA Widths - Fixed DMA Resource Descriptor",
134 ":= Width8bit | Width16bit | Width32bit | Width64bit | "
135 "Width128bit | Width256bit"},
136 {"TranslationKeyword", "Translation Density Types - Resource Descriptors",
137 ":= SparseTranslation | DenseTranslation"},
138 {"TypeKeyword", "Translation Types - Resource Descriptors",
139 ":= TypeTranslation | TypeStatic"},
140 {"UpdateRuleKeyword", "Field Update Rules",
141 ":= Preserve | WriteAsOnes | WriteAsZeros"},
142 {"UserDefRegionSpace", "User defined address spaces",
143 ":= IntegerData => 0x80 - 0xFF"},
144 {"WireModeKeyword", "SPI Wire Mode - Resource Descriptors",
145 ":= ThreeWireMode | FourWireMode"},
146 {"XferTypeKeyword", "DMA Transfer Types",
147 ":= Transfer8 | Transfer16 | Transfer8_16"},
148 {NULL, NULL, NULL}
149 };

new/usr/src/common/acpica/tools/acpihelp/ahaslops.c 1

**
 28994 Thu Dec 26 13:50:10 2013
new/usr/src/common/acpica/tools/acpihelp/ahaslops.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: ahaslops - Table of all known ASL operators
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpihelp.h"

46 /*
47 * ASL operators with syntax (directly from ACPI specification).
48 * Note: All tokens require a space separator.
49 * Long lines are automatically split during output.
50 */
51 const AH_ASL_OPERATOR AslOperatorInfo[] =
52 {
53 {"AccessAs", "(AccessType, AccessAttribKeyword | "
54 "ExtendedAttribKeyword (AccessLength))",
55 "ChangeFieldUnitAccess"},
56 {"Acquire", "(SyncObject, TimeoutValue) => Boolean",
57 "Acquire a mutex"},
58 {"Add", "(Addend1, Addend2, Result) => Integer",
59 "Integer Add"},
60 {"Alias", "(SourceObject, AliasObject)",
61 "Define a name alias"},

new/usr/src/common/acpica/tools/acpihelp/ahaslops.c 2

62 {"And", "(Source1, Source2, Result) => Integer",
63 "Integer Bitwise And"},
64 {"Arg", "Arg0 - Arg6",
65 "Method argument data objects"},
66 {"BankField", "(RegionName, BankName, BankValue, "
67 "AccessTypeKeyword, LockRuleKeyword, "
68 "UpdateRuleKeyword) {FieldUnitList}",
69 "Declare fields in a banked configuration object
70 {"Break", "No parameters",
71 "Continue following the innermost enclosing Whil
72 {"BreakPoint", "No parameters",
73 "Used for debugging, stops execution in the debu
74 {"Buffer", "(BufferSize) {String or ByteList} => Buffer",
75 "Declare Buffer object"},
76 {"Case", "(Value) {TermList}",
77 "Expression for conditional execution"},
78 {"Concatenate", "(Source1, Source2, Result) => ComputationalData
79 "Concatenate two strings, integers or buffers"},
80 {"ConcatenateResTemplate", "(Source1, Source2, Result) => Buffer",
81 "Concatenate two resource templates"},
82 {"CondRefOf", "(Source, Result) => Boolean",
83 "Conditional reference to an object"},
84 {"Connection", "(ResourceMacro)",
85 "Associate connection with FieldUnits within a F
86 {"Continue", "No parameters",
87 "Continue innermost enclosing While loop"},
88 {"CopyObject", "(Source, Destination) => DataRefObject",
89 "Copy and existing object"},
90 {"CreateBitField", "(SourceBuffer, BitIndex, BitFieldName)",
91 "Declare a bit field object of a buffer object"}
92 {"CreateByteField", "(SourceBuffer, ByteIndex, ByteFieldName)",
93 "Declare a byte field object of a buffer object"
94 {"CreateDWordField", "(SourceBuffer, ByteIndex, DWordFieldName)",
95 "Declare a DWord field object of a buffer object
96 {"CreateField", "(SourceBuffer, BitIndex, NumBits, FieldName)",
97 "Declare an arbitrary length bit field of a buff
98 {"CreateQWordField", "(SourceBuffer, ByteIndex, QWordFieldName)",
99 "Declare a QWord field object of a buffer object
100 {"CreateWordField", "(SourceBuffer, ByteIndex, WordFieldName)",
101 "Declare a Word field object of a buffer object"
102 {"DataTableRegion", "(RegionName, SignatureString, OemIDString, OemT
103 "Declare a Data Table Region"},
104 {"Debug", "No parameters",
105 "Debugger output"},
106 {"Decrement", "(Minuend) => Integer",
107 "Decrement an Integer"},
108 {"Default", "{TermList}",
109 "Default execution path in Switch()"},
110 {"DefinitionBlock", "(AmlFileName, TableSignature, ComplianceRevisio
111 "OemId, TableId, OemRevision) {TermList}",
112 "Declare a Definition Block"},
113 {"DerefOf", "(Source) => Object",
114 "Dereference an object reference"},
115 {"Device", "(DeviceName) {ObjectList}",
116 "Declare a bus/device object"},
117 {"Divide", "(Dividend, Divisor, Remainder, Result) => Integ
118 "Integer Divide"},
119 {"DMA", "(DmaTypeKeyword, BusMasterKeyword, XferTypeKeyw
120 "DescriptorName) {DmaChannelList} => Buffer",
121 "DMA Resource Descriptor macro"},
122 {"DWordIO", "(ResourceTypeKeyword, MinKeyword, MaxKeyword, "
123 "DecodeKeyword, RangeTypeKeyword, AddressGranula
124 "AddressMinimum, AddressMaximum, AddressTranslat
125 "RangeLength, ResourceSourceIndex, "
126 "ResourceSource, DescriptorName, TypeKeyword, Tr
127 "DWord IO Resource Descriptor macro"},

new/usr/src/common/acpica/tools/acpihelp/ahaslops.c 3

128 {"DWordMemory", "(ResourceTypeKeyword, DecodeKeyword, MinKeyword
129 "MaxKeyword, MemTypeKeyword, ReadWriteKeyword, "
130 "AddressGranularity, AddressMinimum, AddressMaxi
131 "RangeLength, ResourceSourceIndex, ResourceSourc
132 "TypeKeyword)",
133 "DWord Memory Resource Descriptor macro"},
134 {"DWordSpace", "(ResourceType, ResourceTypeKeyword, DecodeKeywo
135 "MinKeyword, MaxKeyword, TypeSpecificFlags, "
136 "AddressGranularity, AddressMinimum, AddressMaxi
137 "AddressTranslation, RangeLength, "
138 "ResourceSourceIndex, ResourceSource, Descriptor
139 "DWord Space Resource Descriptor macro"},
140 {"EISAID", "(EisaIdString) => DWordConst",
141 "EISA ID String to Integer conversion macro"},
142 {"Else", "{TermList}",
143 "Alternate conditional execution"},
144 {"ElseIf", "(Predicate)",
145 "Conditional execution"},
146 {"EndDependentFn", "() => Buffer",
147 "End Dependent Function Resource Descriptor macr
148 {"Event", "(EventName)",
149 "Declare an event synchronization object"},
150 {"ExtendedIO", "(ResourceTypeKeyword, MinKeyword, MaxKeyword, "
151 "DecodeKeyword, RangeTypeKeyword, AddressGranula
152 "AddressMinimum, AddressMaximum, AddressTranslat
153 "TypeSpecificAttributes, DescriptorName, TypeKey
154 "Extended IO Resource Descriptor macro"},
155 {"ExtendedMemory", "(ResourceTypeKeyword, DecodeKeyword, MinKeyword
156 "MaxKeyword, MemTypeKeyword, ReadWriteKeyword, "
157 "AddressGranularity, AddressMinimum, AddressMaxi
158 "RangeLength, TypeSpecificAttributes, Descriptor
159 "AddressKeyword, TypeKeyword)",
160 "Extended Memory Resource Descriptor macro"},
161 {"ExtendedSpace", "(ResourceType, ResourceTypeKeyword, DecodeKeywo
162 "MinKeyword, MaxKeyword, TypeSpecificFlags, "
163 "AddressGranularity, AddressMinimum, AddressMaxi
164 "RangeLength, TypeSpecificAttributes, Descriptor
165 "Extended Space Resource Descriptor macro"},
166 {"External", "(ObjectName, ObjectTypeKeyword, ReturnType, Par
167 "Declare external objects"},
168 {"Fatal", "(Type, Code, Arg)",
169 "Fatal error check"},
170 {"Field", "(RegionName, AccessTypeKeyword, LockRuleKeyword
171 "UpdateRuleKeyword) {FieldUnitList}",
172 "Declare fields of an operation region object"},
173 {"FindSetLeftBit", "(Source, Result) => Integer",
174 "Index of first least significant bit set"},
175 {"FindSetRightBit", "(Source, Result) => Integer",
176 "Index of first most significant bit set"},
177 {"FixedDMA", "(DmaRequestLine, Channel, TransferWidthKeyword,
178 "Fixed DMA Resource Descriptor macro"},
179 {"FixedIO", "(AddressBase, RangeLength, DescriptorName) => B
180 "Fixed I/O Resource Descriptor macro"},
181 {"FromBCD", "(BCDValue, Result) => Integer",
182 "Convert from BCD to numeric"},
183 {"Function", "(FunctionName, ReturnType, ParameterTypes) {Ter
184 "Declare control method"},
185 {"GpioInt", "(InterruptTypeKeyword, InterruptLevelKeyword, "
186 "ShareTypeKeyword, PinConfigKeyword, "
187 "DebounceTimeout, ResourceSource, "
188 "ResourceSourceIndex, ResourceTypeKeyword, Descr
189 "RawDataBuffer() {VendorData}) {Pin}",
190 "GPIO Interrupt Connection Resource Descriptor M
191 {"GpioIo", "(ShareTypeKeyword, PinConfigKeyword, DebounceTi
192 "IoRestrictionKeyword, ResourceSource, "
193 "ResourceSourceIndex, ResourceTypeKeyword, Descr

new/usr/src/common/acpica/tools/acpihelp/ahaslops.c 4

194 "RawDataBuffer() {VendorData}) {PinList}",
195 "GPIO I/O Connection Resource Descriptor Macro"}
196 {"I2cSerialBus", "(SlaveAddress, SlaveModeKeyword, ConnectionSpee
197 "AddressingModeKeyword, ResourceSource, "
198 "ResourceSourceIndex, ResourceTypeKeyword, Descr
199 "RawDataBuffer() {VendorData})",
200 "I2C Serial Bus Connection Resource Descriptor M
201 {"If", "(Predicate) {TermList}",
202 "Conditional execution"},
203 {"Include", "(FilePathName)",
204 "Include another ASL file"},
205 {"Increment", "(Addend) => Integer",
206 "Increment a Integer"},
207 {"Index", "(Source, Index, Destination) => ObjectReference
208 "Indexed Reference to member object"},
209 {"IndexField", "(IndexName, DataName, AccessTypeKeyword, LockRu
210 "UpdateRuleKeyword) {FieldUnitList}",
211 "Declare Index/Data Fields"},
212 {"Interrupt", "(ResourceTypeKeyword, InterruptTypeKeyword, Int
213 "ShareTypeKeyword, ResourceSourceIndex, "
214 "ResourceSource, DescriptorName) {InterruptList}
215 "Interrupt Resource Descriptor macro"},
216 {"IO", "(IoDecodeKeyword, AddressMin, AddressMax, Addre
217 "RangeLength, DescriptorName) => Buffer",
218 "IO Resource Descriptor macro"},
219 {"IRQ", "(InterruptTypeKeyword, InterruptLevelKeyword, S
220 "DescriptorName) {InterruptList} => Buffer",
221 "Interrupt Resource Descriptor macro"},
222 {"IRQNoFlags", "(DescriptorName) {InterruptList} => Buffer",
223 "Short Interrupt Resource Descriptor macro"},
224 {"LAnd", "(Source1, Source2) => Boolean",
225 "Logical And"},
226 {"LEqual", "(Source1, Source2) => Boolean",
227 "Logical Equal"},
228 {"LGreater", "(Source1, Source2) => Boolean",
229 "Logical Greater"},
230 {"LGreaterEqual", "(Source1, Source2) => Boolean",
231 "Logical Not less"},
232 {"LLess", "(Source1, Source2) => Boolean",
233 "Logical Less"},
234 {"LLessEqual", "(Source1, Source2) => Boolean",
235 "Logical Not greater"},
236 {"LNot", "(Source) => Boolean",
237 "Logical Not"},
238 {"LNotEqual", "(Source1, Source2) => Boolean",
239 "Logical Not equal"},
240 {"Load", "(Object, DDBHandle)",
241 "Load differentiating definition block"},
242 {"LoadTable", "(SignatureString, OemIdString, OemTableIdString
243 "ParameterPathString, ParameterData) => DDBHandl
244 "Load Table from RSDT/XSDT"},
245 {"Local", "Local0 - Local7",
246 "Method local data objects"},
247 {"LOr", "(Source1, Source2) => Boolean",
248 "Logical Or"},
249 {"Match", "(SearchPackage, MatchOpKeyword, MatchObject1, M
250 "MatchObject2, StartIndex) => Ones | Integer",
251 "Search for match in package array"},
252 {"Memory24", "(ReadWriteKeyword, AddressMinimum, AddressMaxim
253 "RangeLength, DescriptorName)",
254 "Memory Resource Descriptor macro"},
255 {"Memory32", "(ReadWriteKeyword, AddressMinimum, AddressMaxim
256 "RangeLength, DescriptorName)",
257 "Memory Resource Descriptor macro"},
258 {"Memory32Fixed", "(ReadWriteKeyword, AddressBase, RangeLength, De
259 "Memory Resource Descriptor macro"},

new/usr/src/common/acpica/tools/acpihelp/ahaslops.c 5

260 {"Method", "(MethodName, NumArgs, SerializeRuleKeyword, "
261 "SyncLevel, ReturnType, ParameterTypes) "
262 "{TermList}",
263 "Declare a control method"},
264 {"Mid", "(Source, Index, Length, Result) => Buffer or St
265 "Return a portion of buffer or string"},
266 {"Mod", "(Dividend, Divisor, Result) => Integer",
267 "Integer Modulo"},
268 {"Multiply", "(Multiplicand, Multiplier, Result) => Integer",
269 "Integer Multiply"},
270 {"Mutex", "(MutexName, SyncLevel)",
271 "Declare a mutex synchronization object"},
272 {"Name", "(ObjectName, Object)",
273 "Declare a Named object"},
274 {"NAnd", "(Source1, Source2, Result) => Integer",
275 "Integer Bitwise Nand"},
276 {"NoOp", "No parameters",
277 "No operation"},
278 {"NOr", "(Source1, Source2, Result) => Integer",
279 "Integer Bitwise Nor"},
280 {"Not", "(Source, Result) => Integer",
281 "Integer Bitwise Not"},
282 {"Notify", "(Object, NotificationValue)",
283 "Notify Object of event"},
284 {"ObjectType", "(Object) => Integer",
285 "Type of object"},
286 {"Offset", "(ByteOffset)",
287 "Change Current Field Unit Offset"},
288 {"One", "=> Integer",
289 "Constant One Object (1)"},
290 {"Ones", "=> Integer",
291 "Constant Ones Object (0xFFFFFFFF or 0xFFFFFFFFF
292 {"OperationRegion", "(RegionName, RegionSpaceKeyword, Offset, Length
293 "Declare an operational region"},
294 {"Or", "(Source1, Source2, Result) => Integer",
295 "Integer Bitwise Or"},
296 {"Package", "(NumElements) {PackageList} => Package",
297 "Declare a package object"},
298 {"PowerResource", "(ResourceName, SystemLevel, ResourceOrder) {Obj
299 "Declare a power resource object"},
300 {"Processor", "(ProcessorName, ProcessorID, PBlockAddress, Pbl
301 "Declare a processor package"},
302 {"QWordIO", "(ResourceTypeKeyword, MinKeyword, MaxKeyword, D
303 "RangeTypeKeyword, AddressGranularity, "
304 "AddressMinimum, AddressMaximum, AddressTranslat
305 "ResourceSourceIndex, ResourceSource, Descriptor
306 "TranslationKeyword)",
307 "QWord IO Resource Descriptor macro"},
308 {"QWordMemory", "(ResourceTypeKeyword, DecodeKeyword, MinKeyword
309 "MemTypeKeyword, ReadWriteKeyword, "
310 "AddressGranularity, AddressMinimum, AddressMaxi
311 "RangeLength, ResourceSourceIndex, ResourceSourc
312 "DescriptorName, AddressKeyword, "
313 "TypeKeyword)",
314 "QWord Memory Resource Descriptor macro"},
315 {"QWordSpace", "(ResourceType, ResourceTypeKeyword, DecodeKeywo
316 "MinKeyword, MaxKeyword, TypeSpecificFlags, "
317 "AddressGranularity, AddressMinimum, AddressMaxi
318 "RangeLength, ResourceSourceIndex, ResourceSourc
319 "Qword Space Resource Descriptor macro"},
320 {"RawDataBuffer", "(BufferSize) {ByteList} => RawDataBuffer",
321 "Create a raw data buffer (does not use Buffer A
322 {"RefOf", "(Object) => ObjectReference",
323 "Create Reference to an object"},
324 {"Register", "(AddressSpaceKeyword, RegisterBitWidth, "
325 "RegisterBitOffset, RegisterAddress, "

new/usr/src/common/acpica/tools/acpihelp/ahaslops.c 6

326 "AccessSize, DescriptorName)",
327 "Generic register Resource Descriptor macro"},
328 {"Release", "(SyncObject)",
329 "Release a synchronization object"},
330 {"Reset", "(SyncObject)",
331 "Reset a synchronization object"},
332 {"ResourceTemplate", "() {ResourceMacroList} => Buffer",
333 "Resource to buffer conversion macro"},
334 {"Return", "None | () | (ReturnArg)",
335 "Return from method execution"},
336 {"Revision", "=> Integer",
337 "Constant revision object"},
338 {"Scope", "(Location) {ObjectList}",
339 "Open named scope "},
340 {"ShiftLeft", "(Source, ShiftCount, Result) => Integer",
341 "Integer shift value left"},
342 {"ShiftRight", "(Source, ShiftCount, Result) => Integer",
343 "Integer shift value right"},
344 {"Signal", "(SyncObject)",
345 "Signal a synchronization object"},
346 {"SizeOf", "(ObjectName) => Integer",
347 "Get the size of a buffer}, string}, or package"
348 {"Sleep", "(Milliseconds)",
349 "Sleep n milliseconds (yields the processor)"},
350 {"SpiSerialBus", "(DeviceSelection, PolarityKeyword, WireModeKeyw
351 "DataBitLength, SlaveModeKeyword, "
352 "ConnectionSpeed, ClockPolarityKeyword, ClockPha
353 "ResourceSource, ResourceSourceIndex, "
354 "ResourceTypeKeyword, DescriptorName, RawDataBuf
355 "SPI Serial Bus Connection Resource Descriptor M
356 {"Stall", "(Microseconds)",
357 "Delay n microseconds (does not yield the proces
358 {"StartDependentFn", "(CompatibilityPriority, PerformancePriority) {R
359 "Start Dependent Function Resource Descriptor ma
360 {"StartDependentFnNoPri", "() {ResourceList}",
361 "Start Dependent Function Resource Descriptor ma
362 {"Store", "(Source, Destination) => DataRefObject",
363 "Store object"},
364 {"Subtract", "(Minuend, Subtrahend, Result) => Integer",
365 "Integer Subtract"},
366 {"Switch", "(Expression) {CaseTermList}",
367 "Select code to execute based on expression valu
368 {"ThermalZone", "(ThermalZoneName) {ObjectList}",
369 "Declare a thermal zone package"},
370 {"Timer", "=> Integer",
371 "Get 64-bit timer value"},
372 {"ToBCD", "(Value, Result) => Integer",
373 "Convert Integer to BCD"},
374 {"ToBuffer", "(Data, Result) => Buffer",
375 "Convert data type to buffer"},
376 {"ToDecimalString", "(Data, Result) => String",
377 "Convert data type to decimal string"},
378 {"ToHexString", "(Data, Result) => String",
379 "Convert data type to hexadecimal string"},
380 {"ToInteger", "(Data, Result) => Integer",
381 "Convert data type to integer"},
382 {"ToString", "(Source, Length, Result) => String",
383 "Copy ASCII string from buffer"},
384 {"ToUUID", "(AsciiString) => Buffer",
385 "Convert Ascii string to UUID"},
386 {"UartSerialBus", "(ConnectionSpeed, ByteLengthKeyword, StopBitsKe
387 "LinesInUse, EndianKeyword, ParityKeyword, "
388 "FlowControlKeyword, ReceiveBufferSize, Transmit
389 "ResourceSourceIndex, ResourceTypeKeyword, Descr
390 "RawDataBuffer() {VendorData})",
391 "UART Serial Bus Connection Resource Descriptor

new/usr/src/common/acpica/tools/acpihelp/ahaslops.c 7

392 {"Unicode", "(String) => Buffer",
393 "String to Unicode conversion macro"},
394 {"Unload", "(Handle)",
395 "Unload definition block"},
396 {"VendorLong", "(DescriptorName) {VendorByteList}",
397 "Vendor Resource Descriptor"},
398 {"VendorShort", "(DescriptorName) {VendorByteList}",
399 "Vendor Resource Descriptor"},
400 {"Wait", "(SyncObject, TimeoutValue) => Boolean",
401 "Wait on an Event"},
402 {"While", "(Predicate) {TermList}",
403 "Conditional loop"},
404 {"WordBusNumber", "(ResourceTypeKeyword, MinKeyword, MaxKeyword, D
405 "AddressGranularity, AddressMinimum, "
406 "AddressMaximum, AddressTranslation, RangeLength
407 "ResourceSource, DescriptorName)",
408 "Word Bus number Resource Descriptor macro"},
409 {"WordIO", "(ResourceTypeKeyword, MinKeyword, MaxKeyword, D
410 "RangeTypeKeyword, AddressGranularity, "
411 "AddressMinimum, AddressMaximum, AddressTranslat
412 "ResourceSourceIndex, ResourceSource, Descriptor
413 "TranslationKeyword)",
414 "Word IO Resource Descriptor macro"},
415 {"WordSpace", "(ResourceType, ResourceTypeKeyword, DecodeKeywo
416 "MaxKeyword, TypeSpecificFlags, "
417 "AddressGranularity, AddressMinimum, AddressMaxi
418 "RangeLength, ResourceSourceIndex, ResourceSourc
419 "Word Space Resource Descriptor macro"},
420 {"XOr", "(Source1, Source2, Result) => Integer",
421 "Integer Bitwise Xor"},
422 {"Zero", "=> Integer",
423 "Constant Zero object (0)"},
424 {NULL, NULL, NULL}
425 };

new/usr/src/common/acpica/tools/acpihelp/ahdecode.c 1

**
 23886 Thu Dec 26 13:50:10 2013
new/usr/src/common/acpica/tools/acpihelp/ahdecode.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: ahdecode - Operator/Opcode decoding for acpihelp utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define ACPI_CREATE_PREDEFINED_TABLE
45 #define ACPI_CREATE_RESOURCE_TABLE

47 #include "acpihelp.h"
48 #include "acpredef.h"

51 /* Device IDs defined in the ACPI specification */

53 static const AH_DEVICE_ID AhDeviceIds[] =
54 {
55 {"PNP0A05", "Generic Container Device"},
56 {"PNP0A06", "Generic Container Device"},
57 {"PNP0C08", "ACPI core hardware"},
58 {"PNP0C09", "Embedded Controller Device"},
59 {"PNP0C0A", "Control Method Battery"},
60 {"PNP0C0B", "Fan"},
61 {"PNP0C0C", "Power Button Device"},

new/usr/src/common/acpica/tools/acpihelp/ahdecode.c 2

62 {"PNP0C0D", "Lid Device"},
63 {"PNP0C0E", "Sleep Button Device"},
64 {"PNP0C0F", "PCI Interrupt Link Device"},
65 {"PNP0C80", "Memory Device"},

67 {"ACPI0001", "SMBus 1.0 Host Controller"},
68 {"ACPI0002", "Smart Battery Subsystem"},
69 {"ACPI0003", "Power Source Device"},
70 {"ACPI0004", "Module Device"},
71 {"ACPI0005", "SMBus 2.0 Host Controller"},
72 {"ACPI0006", "GPE Block Device"},
73 {"ACPI0007", "Processor Device"},
74 {"ACPI0008", "Ambient Light Sensor Device"},
75 {"ACPI0009", "I/O xAPIC Device"},
76 {"ACPI000A", "I/O APIC Device"},
77 {"ACPI000B", "I/O SAPIC Device"},
78 {"ACPI000C", "Processor Aggregator Device"},
79 {"ACPI000D", "Power Meter Device"},
80 {"ACPI000E", "Time/Alarm Device"},
81 {"ACPI000F", "User Presence Detection Device"},

83 {NULL, NULL}
84 };

86 #define AH_DISPLAY_EXCEPTION(Status, Name) \
87 printf ("%.4X: %s\n", Status, Name)

89 #define AH_DISPLAY_EXCEPTION_TEXT(Status, Exception) \
90 printf ("%.4X: %-28s (%s)\n", Status, Exception->Name, Exception->Descriptio

92 #define BUFFER_LENGTH 128
93 #define LINE_BUFFER_LENGTH 512

95 static char Gbl_Buffer[BUFFER_LENGTH];
96 static char Gbl_LineBuffer[LINE_BUFFER_LENGTH];

98 /* Local prototypes */

100 static BOOLEAN
101 AhDisplayPredefinedName (
102 char *Name,
103 UINT32 Length);

105 static void
106 AhDisplayPredefinedInfo (
107 char *Name);

109 static void
110 AhDisplayResourceName (
111 const ACPI_PREDEFINED_INFO *ThisName);

113 static void
114 AhDisplayAmlOpcode (
115 const AH_AML_OPCODE *Op);

117 static void
118 AhDisplayAslOperator (
119 const AH_ASL_OPERATOR *Op);

121 static void
122 AhDisplayOperatorKeywords (
123 const AH_ASL_OPERATOR *Op);

125 static void
126 AhDisplayAslKeyword (
127 const AH_ASL_KEYWORD *Op);

new/usr/src/common/acpica/tools/acpihelp/ahdecode.c 3

129 static void
130 AhPrintOneField (
131 UINT32 Indent,
132 UINT32 CurrentPosition,
133 UINT32 MaxPosition,
134 const char *Field);

137 /***
138 *
139 * FUNCTION: AhFindPredefinedNames (entry point for predefined name search)
140 *
141 * PARAMETERS: NamePrefix - Name or prefix to find. Must start with
142 * an underscore. NULL means "find all"
143 *
144 * RETURN: None
145 *
146 * DESCRIPTION: Find and display all ACPI predefined names that match the
147 * input name or prefix. Includes the required number of arguments
148 * and the expected return type, if any.
149 *
150 **/

152 void
153 AhFindPredefinedNames (
154 char *NamePrefix)
155 {
156 UINT32 Length;
157 BOOLEAN Found;
158 char Name[9];

161 if (!NamePrefix)
162 {
163 Found = AhDisplayPredefinedName (Name, 0);
164 return;
165 }

167 /* Contruct a local name or name prefix */

169 AhStrupr (NamePrefix);
170 if (*NamePrefix == ’_’)
171 {
172 NamePrefix++;
173 }

175 Name[0] = ’_’;
176 strncpy (&Name[1], NamePrefix, 7);

178 Length = strlen (Name);
179 if (Length > 4)
180 {
181 printf ("%.8s: Predefined name must be 4 characters maximum\n", Name);
182 return;
183 }

185 Found = AhDisplayPredefinedName (Name, Length);
186 if (!Found)
187 {
188 printf ("%s, no matching predefined names\n", Name);
189 }
190 }

193 /***

new/usr/src/common/acpica/tools/acpihelp/ahdecode.c 4

194 *
195 * FUNCTION: AhDisplayPredefinedName
196 *
197 * PARAMETERS: Name - Name or name prefix
198 *
199 * RETURN: TRUE if any names matched, FALSE otherwise
200 *
201 * DESCRIPTION: Display information about ACPI predefined names that match
202 * the input name or name prefix.
203 *
204 **/

206 static BOOLEAN
207 AhDisplayPredefinedName (
208 char *Name,
209 UINT32 Length)
210 {
211 const AH_PREDEFINED_NAME *Info;
212 BOOLEAN Found = FALSE;
213 BOOLEAN Matched;
214 UINT32 i;

217 /* Find/display all names that match the input name prefix */

219 for (Info = AslPredefinedInfo; Info->Name; Info++)
220 {
221 if (!Name)
222 {
223 Found = TRUE;
224 printf ("%s: <%s>\n", Info->Name, Info->Description);
225 printf ("%*s%s\n", 6, " ", Info->Action);

227 AhDisplayPredefinedInfo (Info->Name);
228 continue;
229 }

231 Matched = TRUE;
232 for (i = 0; i < Length; i++)
233 {
234 if (Info->Name[i] != Name[i])
235 {
236 Matched = FALSE;
237 break;
238 }
239 }

241 if (Matched)
242 {
243 Found = TRUE;
244 printf ("%s: <%s>\n", Info->Name, Info->Description);
245 printf ("%*s%s\n", 6, " ", Info->Action);

247 AhDisplayPredefinedInfo (Info->Name);
248 }
249 }

251 return (Found);
252 }

255 /***
256 *
257 * FUNCTION: AhDisplayPredefinedInfo
258 *
259 * PARAMETERS: Name - Exact 4-character ACPI name.

new/usr/src/common/acpica/tools/acpihelp/ahdecode.c 5

260 *
261 * RETURN: None
262 *
263 * DESCRIPTION: Find the name in the main ACPICA predefined info table and
264 * display the # of arguments and the return value type.
265 *
266 * Note: Resource Descriptor field names do not appear in this
267 * table -- thus, nothing will be displayed for them.
268 *
269 **/

271 static void
272 AhDisplayPredefinedInfo (
273 char *Name)
274 {
275 const ACPI_PREDEFINED_INFO *ThisName;

278 /* NOTE: we check both tables always because there are some dupes */

280 /* Check against the predefine methods first */

282 ThisName = AcpiUtMatchPredefinedMethod (Name);
283 if (ThisName)
284 {
285 AcpiUtDisplayPredefinedMethod (Gbl_Buffer, ThisName, TRUE);
286 }

288 /* Check against the predefined resource descriptor names */

290 ThisName = AcpiUtMatchResourceName (Name);
291 if (ThisName)
292 {
293 AhDisplayResourceName (ThisName);
294 }
295 }

298 /***
299 *
300 * FUNCTION: AhDisplayResourceName
301 *
302 * PARAMETERS: ThisName - Entry in the predefined method/name table
303 *
304 * RETURN: None
305 *
306 * DESCRIPTION: Display information about a resource descriptor name.
307 *
308 **/

310 static void
311 AhDisplayResourceName (
312 const ACPI_PREDEFINED_INFO *ThisName)
313 {
314 UINT32 NumTypes;

317 NumTypes = AcpiUtGetResourceBitWidth (Gbl_Buffer,
318 ThisName->Info.ArgumentList);

320 printf (" %4.4s resource descriptor field is %s bits wide%s\n",
321 ThisName->Info.Name,
322 Gbl_Buffer,
323 (NumTypes > 1) ? " (depending on descriptor type)" : "");
324 }

new/usr/src/common/acpica/tools/acpihelp/ahdecode.c 6

327 /***
328 *
329 * FUNCTION: AhFindAmlOpcode (entry point for AML opcode name search)
330 *
331 * PARAMETERS: Name - Name or prefix for an AML opcode.
332 * NULL means "find all"
333 *
334 * RETURN: None
335 *
336 * DESCRIPTION: Find all AML opcodes that match the input Name or name
337 * prefix.
338 *
339 **/

341 void
342 AhFindAmlOpcode (
343 char *Name)
344 {
345 const AH_AML_OPCODE *Op;
346 BOOLEAN Found = FALSE;

349 AhStrupr (Name);

351 /* Find/display all opcode names that match the input name prefix */

353 for (Op = AmlOpcodeInfo; Op->OpcodeString; Op++)
354 {
355 if (!Op->OpcodeName) /* Unused opcodes */
356 {
357 continue;
358 }

360 if (!Name)
361 {
362 AhDisplayAmlOpcode (Op);
363 Found = TRUE;
364 continue;
365 }

367 /* Upper case the opcode name before substring compare */

369 strcpy (Gbl_Buffer, Op->OpcodeName);
370 AhStrupr (Gbl_Buffer);

372 if (strstr (Gbl_Buffer, Name) == Gbl_Buffer)
373 {
374 AhDisplayAmlOpcode (Op);
375 Found = TRUE;
376 }
377 }

379 if (!Found)
380 {
381 printf ("%s, no matching AML operators\n", Name);
382 }
383 }

386 /***
387 *
388 * FUNCTION: AhDecodeAmlOpcode (entry point for AML opcode search)
389 *
390 * PARAMETERS: OpcodeString - String version of AML opcode
391 *

new/usr/src/common/acpica/tools/acpihelp/ahdecode.c 7

392 * RETURN: None
393 *
394 * DESCRIPTION: Display information about the input AML opcode
395 *
396 **/

398 void
399 AhDecodeAmlOpcode (
400 char *OpcodeString)
401 {
402 const AH_AML_OPCODE *Op;
403 UINT32 Opcode;
404 UINT8 Prefix;

407 if (!OpcodeString)
408 {
409 AhFindAmlOpcode (NULL);
410 return;
411 }

413 Opcode = ACPI_STRTOUL (OpcodeString, NULL, 16);
414 if (Opcode > ACPI_UINT16_MAX)
415 {
416 printf ("Invalid opcode (more than 16 bits)\n");
417 return;
418 }

420 /* Only valid opcode extension is 0x5B */

422 Prefix = (Opcode & 0x0000FF00) >> 8;
423 if (Prefix && (Prefix != 0x5B))
424 {
425 printf ("Invalid opcode (invalid extension prefix 0x%X)\n",
426 Prefix);
427 return;
428 }

430 /* Find/Display the opcode. May fall within an opcode range */

432 for (Op = AmlOpcodeInfo; Op->OpcodeString; Op++)
433 {
434 if ((Opcode >= Op->OpcodeRangeStart) &&
435 (Opcode <= Op->OpcodeRangeEnd))
436 {
437 AhDisplayAmlOpcode (Op);
438 }
439 }
440 }

443 /***
444 *
445 * FUNCTION: AhDisplayAmlOpcode
446 *
447 * PARAMETERS: Op - An opcode info struct
448 *
449 * RETURN: None
450 *
451 * DESCRIPTION: Display the contents of an AML opcode information struct
452 *
453 **/

455 static void
456 AhDisplayAmlOpcode (
457 const AH_AML_OPCODE *Op)

new/usr/src/common/acpica/tools/acpihelp/ahdecode.c 8

458 {

460 if (!Op->OpcodeName)
461 {
462 printf ("%18s: Opcode=%-9s\n", "Reserved opcode", Op->OpcodeString);
463 return;
464 }

466 /* Opcode name and value(s) */

468 printf ("%18s: Opcode=%-9s Type (%s)",
469 Op->OpcodeName, Op->OpcodeString, Op->Type);

471 /* Optional fixed/static arguments */

473 if (Op->FixedArguments)
474 {
475 printf (" FixedArgs (");
476 AhPrintOneField (37, 36 + 7 + strlen (Op->Type) + 12,
477 AH_MAX_AML_LINE_LENGTH, Op->FixedArguments);
478 printf (")");
479 }

481 /* Optional variable-length argument list */

483 if (Op->VariableArguments)
484 {
485 if (Op->FixedArguments)
486 {
487 printf ("\n%*s", 36, " ");
488 }
489 printf (" VariableArgs (");
490 AhPrintOneField (37, 15, AH_MAX_AML_LINE_LENGTH, Op->VariableArguments);
491 printf (")");
492 }
493 printf ("\n");

495 /* Grammar specification */

497 if (Op->Grammar)
498 {
499 AhPrintOneField (37, 0, AH_MAX_AML_LINE_LENGTH, Op->Grammar);
500 printf ("\n");
501 }
502 }

505 /***
506 *
507 * FUNCTION: AhFindAslKeywords (entry point for ASL keyword search)
508 *
509 * PARAMETERS: Name - Name or prefix for an ASL keyword.
510 * NULL means "find all"
511 *
512 * RETURN: None
513 *
514 * DESCRIPTION: Find all ASL keywords that match the input Name or name
515 * prefix.
516 *
517 **/

519 void
520 AhFindAslKeywords (
521 char *Name)
522 {
523 const AH_ASL_KEYWORD *Keyword;

new/usr/src/common/acpica/tools/acpihelp/ahdecode.c 9

524 BOOLEAN Found = FALSE;

527 AhStrupr (Name);

529 for (Keyword = AslKeywordInfo; Keyword->Name; Keyword++)
530 {
531 if (!Name)
532 {
533 AhDisplayAslKeyword (Keyword);
534 Found = TRUE;
535 continue;
536 }

538 /* Upper case the operator name before substring compare */

540 strcpy (Gbl_Buffer, Keyword->Name);
541 AhStrupr (Gbl_Buffer);

543 if (strstr (Gbl_Buffer, Name) == Gbl_Buffer)
544 {
545 AhDisplayAslKeyword (Keyword);
546 Found = TRUE;
547 }
548 }

550 if (!Found)
551 {
552 printf ("%s, no matching ASL keywords\n", Name);
553 }
554 }

557 /***
558 *
559 * FUNCTION: AhDisplayAslKeyword
560 *
561 * PARAMETERS: Op - Pointer to ASL keyword with syntax info
562 *
563 * RETURN: None
564 *
565 * DESCRIPTION: Format and display syntax info for an ASL keyword. Splits
566 * long lines appropriately for reading.
567 *
568 **/

570 static void
571 AhDisplayAslKeyword (
572 const AH_ASL_KEYWORD *Op)
573 {

575 /* ASL keyword name and description */

577 printf ("%22s: %s\n", Op->Name, Op->Description);
578 if (!Op->KeywordList)
579 {
580 return;
581 }

583 /* List of actual keywords */

585 AhPrintOneField (24, 0, AH_MAX_ASL_LINE_LENGTH, Op->KeywordList);
586 printf ("\n");
587 }

new/usr/src/common/acpica/tools/acpihelp/ahdecode.c 10

590 /***
591 *
592 * FUNCTION: AhFindAslOperators (entry point for ASL operator search)
593 *
594 * PARAMETERS: Name - Name or prefix for an ASL operator.
595 * NULL means "find all"
596 *
597 * RETURN: None
598 *
599 * DESCRIPTION: Find all ASL operators that match the input Name or name
600 * prefix.
601 *
602 **/

604 void
605 AhFindAslOperators (
606 char *Name)
607 {
608 const AH_ASL_OPERATOR *Operator;
609 BOOLEAN Found = FALSE;

612 AhStrupr (Name);

614 /* Find/display all names that match the input name prefix */

616 for (Operator = AslOperatorInfo; Operator->Name; Operator++)
617 {
618 if (!Name)
619 {
620 AhDisplayAslOperator (Operator);
621 Found = TRUE;
622 continue;
623 }

625 /* Upper case the operator name before substring compare */

627 strcpy (Gbl_Buffer, Operator->Name);
628 AhStrupr (Gbl_Buffer);

630 if (strstr (Gbl_Buffer, Name) == Gbl_Buffer)
631 {
632 AhDisplayAslOperator (Operator);
633 Found = TRUE;
634 }
635 }

637 if (!Found)
638 {
639 printf ("%s, no matching ASL operators\n", Name);
640 }
641 }

644 /***
645 *
646 * FUNCTION: AhDisplayAslOperator
647 *
648 * PARAMETERS: Op - Pointer to ASL operator with syntax info
649 *
650 * RETURN: None
651 *
652 * DESCRIPTION: Format and display syntax info for an ASL operator. Splits
653 * long lines appropriately for reading.
654 *
655 **/

new/usr/src/common/acpica/tools/acpihelp/ahdecode.c 11

657 static void
658 AhDisplayAslOperator (
659 const AH_ASL_OPERATOR *Op)
660 {

662 /* ASL operator name and description */

664 printf ("%16s: %s\n", Op->Name, Op->Description);
665 if (!Op->Syntax)
666 {
667 return;
668 }

670 /* Syntax for the operator */

672 AhPrintOneField (18, 0, AH_MAX_ASL_LINE_LENGTH, Op->Syntax);
673 printf ("\n");

675 AhDisplayOperatorKeywords (Op);
676 printf ("\n");
677 }

680 /***
681 *
682 * FUNCTION: AhDisplayOperatorKeywords
683 *
684 * PARAMETERS: Op - Pointer to ASL keyword with syntax info
685 *
686 * RETURN: None
687 *
688 * DESCRIPTION: Display any/all keywords that are associated with the ASL
689 * operator.
690 *
691 **/

693 static void
694 AhDisplayOperatorKeywords (
695 const AH_ASL_OPERATOR *Op)
696 {
697 char *Token;
698 char *Separators = "(){}, ";
699 BOOLEAN FirstKeyword = TRUE;

702 if (!Op || !Op->Syntax)
703 {
704 return;
705 }

707 /*
708 * Find all parameters that have the word "keyword" within, and then
709 * display the info about that keyword
710 */
711 strcpy (Gbl_LineBuffer, Op->Syntax);
712 Token = strtok (Gbl_LineBuffer, Separators);
713 while (Token)
714 {
715 if (strstr (Token, "Keyword"))
716 {
717 if (FirstKeyword)
718 {
719 printf ("\n");
720 FirstKeyword = FALSE;
721 }

new/usr/src/common/acpica/tools/acpihelp/ahdecode.c 12

723 /* Found a keyword, display keyword information */

725 AhFindAslKeywords (Token);
726 }

728 Token = strtok (NULL, Separators);
729 }
730 }

733 /***
734 *
735 * FUNCTION: AhPrintOneField
736 *
737 * PARAMETERS: Indent - Indent length for new line(s)
738 * CurrentPosition - Position on current line
739 * MaxPosition - Max allowed line length
740 * Field - Data to output
741 *
742 * RETURN: Line position after field is written
743 *
744 * DESCRIPTION: Split long lines appropriately for ease of reading.
745 *
746 **/

748 static void
749 AhPrintOneField (
750 UINT32 Indent,
751 UINT32 CurrentPosition,
752 UINT32 MaxPosition,
753 const char *Field)
754 {
755 UINT32 Position;
756 UINT32 TokenLength;
757 const char *This;
758 const char *Next;
759 const char *Last;

762 This = Field;
763 Position = CurrentPosition;

765 if (Position == 0)
766 {
767 printf ("%*s", (int) Indent, " ");
768 Position = Indent;
769 }

771 Last = This + strlen (This);
772 while ((Next = strpbrk (This, " ")))
773 {
774 TokenLength = Next - This;
775 Position += TokenLength;

777 /* Split long lines */

779 if (Position > MaxPosition)
780 {
781 printf ("\n%*s", (int) Indent, " ");
782 Position = TokenLength;
783 }

785 printf ("%.*s ", (int) TokenLength, This);
786 This = Next + 1;
787 }

new/usr/src/common/acpica/tools/acpihelp/ahdecode.c 13

789 /* Handle last token on the input line */

791 TokenLength = Last - This;
792 if (TokenLength > 0)
793 {
794 Position += TokenLength;
795 if (Position > MaxPosition)
796 {
797 printf ("\n%*s", (int) Indent, " ");
798 }
799 printf ("%s", This);
800 }
801 }

804 /***
805 *
806 * FUNCTION: AhDisplayDeviceIds
807 *
808 * PARAMETERS: None
809 *
810 * RETURN: None
811 *
812 * DESCRIPTION: Display all PNP* and ACPI* device IDs defined in the ACPI spec.
813 *
814 **/

816 void
817 AhDisplayDeviceIds (
818 void)
819 {
820 const AH_DEVICE_ID *DeviceId = AhDeviceIds;

823 printf ("ACPI and PNP Device IDs defined in the ACPI specification:\n\n");
824 while (DeviceId->Name)
825 {
826 printf ("%8s %s\n", DeviceId->Name, DeviceId->Description);
827 DeviceId++;
828 }
829 }

832 /***
833 *
834 * FUNCTION: AhDecodeException
835 *
836 * PARAMETERS: HexString - ACPI status string from command line, in
837 * hex. If null, display all exceptions.
838 *
839 * RETURN: None
840 *
841 * DESCRIPTION: Decode and display an ACPI_STATUS exception code.
842 *
843 **/

845 void
846 AhDecodeException (
847 char *HexString)
848 {
849 const ACPI_EXCEPTION_INFO *ExceptionInfo;
850 UINT32 Status;
851 UINT32 i;

new/usr/src/common/acpica/tools/acpihelp/ahdecode.c 14

854 /*
855 * A null input string means to decode and display all known
856 * exception codes.
857 */
858 if (!HexString)
859 {
860 printf ("All defined ACPICA exception codes:\n\n");
861 AH_DISPLAY_EXCEPTION (0, "AE_OK (No error occurre

863 /* Display codes in each block of exception types */

865 for (i = 1; (i & AE_CODE_MASK) <= AE_CODE_MAX; i += 0x1000)
866 {
867 Status = i;
868 do
869 {
870 ExceptionInfo = AcpiUtValidateException ((ACPI_STATUS) Status);
871 if (ExceptionInfo)
872 {
873 AH_DISPLAY_EXCEPTION_TEXT (Status, ExceptionInfo);
874 }
875 Status++;

877 } while (ExceptionInfo);
878 }
879 return;
880 }

882 /* Decode a single user-supplied exception code */

884 Status = ACPI_STRTOUL (HexString, NULL, 16);
885 if (!Status)
886 {
887 printf ("%s: Invalid hexadecimal exception code value\n", HexString);
888 return;
889 }

891 if (Status > ACPI_UINT16_MAX)
892 {
893 AH_DISPLAY_EXCEPTION (Status, "Invalid exception code (more than 16 bits
894 return;
895 }

897 ExceptionInfo = AcpiUtValidateException ((ACPI_STATUS) Status);
898 if (!ExceptionInfo)
899 {
900 AH_DISPLAY_EXCEPTION (Status, "Unknown exception code");
901 return;
902 }

904 AH_DISPLAY_EXCEPTION_TEXT (Status, ExceptionInfo);
905 }

new/usr/src/common/acpica/tools/acpihelp/ahmain.c 1

**
 7002 Thu Dec 26 13:50:10 2013
new/usr/src/common/acpica/tools/acpihelp/ahmain.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: ahmain - Main module for the acpi help utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpihelp.h"

47 /* Local prototypes */

49 static void
50 AhDisplayUsage (
51 void);

53 #define AH_UTILITY_NAME "ACPI Help Utility"
54 #define AH_SUPPORTED_OPTIONS "ehikmopsv"

57 /**
58 *
59 * FUNCTION: AhDisplayUsage
60 *
61 * DESCRIPTION: Usage message

new/usr/src/common/acpica/tools/acpihelp/ahmain.c 2

62 *
63 **/

65 static void
66 AhDisplayUsage (
67 void)
68 {

70 ACPI_USAGE_HEADER ("acpihelp <options> [NamePrefix | HexValue]");
71 ACPI_OPTION ("-h", "Display help");
72 ACPI_OPTION ("-v", "Display version information");

74 printf ("\nACPI Names and Symbols:\n");
75 ACPI_OPTION ("-k [NamePrefix]", "Find/Display ASL non-operator keywo
76 ACPI_OPTION ("-m [NamePrefix]", "Find/Display AML opcode name(s)");
77 ACPI_OPTION ("-p [NamePrefix]", "Find/Display ASL predefined method
78 ACPI_OPTION ("-s [NamePrefix]", "Find/Display ASL operator name(s)")

80 printf ("\nACPI Values:\n");
81 ACPI_OPTION ("-e [HexValue]", "Decode ACPICA exception code");
82 ACPI_OPTION ("-i", "Display known ACPI Device IDs (_HID
83 ACPI_OPTION ("-o [HexValue]", "Decode hex AML opcode");

85 printf ("\nNamePrefix/HexValue not specified means \"Display All\"\n");
86 printf ("\nDefault search with NamePrefix and no options:\n");
87 printf (" Find ASL operator names - if NamePrefix does not start with und
88 printf (" Find ASL predefined method names - if NamePrefix starts with un
89 }

92 /**
93 *
94 * FUNCTION: main
95 *
96 * DESCRIPTION: C main function for AcpiHelp utility.
97 *
98 **/

100 int ACPI_SYSTEM_XFACE
101 main (
102 int argc,
103 char *argv[])
104 {
105 char *Name;
106 UINT32 DecodeType;
107 int j;

110 ACPI_DEBUG_INITIALIZE (); /* For debug version only */
111 printf (ACPI_COMMON_SIGNON (AH_UTILITY_NAME));
112 DecodeType = AH_DECODE_DEFAULT;

114 if (argc < 2)
115 {
116 AhDisplayUsage ();
117 return (0);
118 }

120 /* Command line options */

122 while ((j = AcpiGetopt (argc, argv, AH_SUPPORTED_OPTIONS)) != EOF) switch (j
123 {
124 case ’e’:

126 DecodeType = AH_DECODE_EXCEPTION;
127 break;

new/usr/src/common/acpica/tools/acpihelp/ahmain.c 3

129 case ’i’:

131 DecodeType = AH_DISPLAY_DEVICE_IDS;
132 break;

134 case ’k’:

136 DecodeType = AH_DECODE_ASL_KEYWORD;
137 break;

139 case ’m’:

141 DecodeType = AH_DECODE_AML;
142 break;

144 case ’o’:

146 DecodeType = AH_DECODE_AML_OPCODE;
147 break;

149 case ’p’:

151 DecodeType = AH_DECODE_PREDEFINED_NAME;
152 break;

154 case ’s’:

156 DecodeType = AH_DECODE_ASL;
157 break;

159 case ’v’: /* -v: (Version): signon already emitted, just exit */

161 return (0);

163 case ’h’:
164 default:

166 AhDisplayUsage ();
167 return (-1);
168 }

170 /* Missing (null) name means "display all" */

172 Name = argv[AcpiGbl_Optind];

174 switch (DecodeType)
175 {
176 case AH_DECODE_AML:

178 AhFindAmlOpcode (Name);
179 break;

181 case AH_DECODE_AML_OPCODE:

183 AhDecodeAmlOpcode (Name);
184 break;

186 case AH_DECODE_PREDEFINED_NAME:

188 AhFindPredefinedNames (Name);
189 break;

191 case AH_DECODE_ASL:

193 AhFindAslOperators (Name);

new/usr/src/common/acpica/tools/acpihelp/ahmain.c 4

194 break;

196 case AH_DECODE_ASL_KEYWORD:

198 AhFindAslKeywords (Name);
199 break;

201 case AH_DISPLAY_DEVICE_IDS:

203 AhDisplayDeviceIds ();
204 break;

206 case AH_DECODE_EXCEPTION:

208 AhDecodeException (Name);
209 break;

211 default:

213 if (!Name)
214 {
215 AhFindAslOperators (Name);
216 break;
217 }

219 if (*Name == ’_’)
220 {
221 AhFindPredefinedNames (Name);
222 }
223 else
224 {
225 AhFindAslOperators (Name);
226 }
227 break;
228 }

230 return (0);
231 }

234 /***
235 *
236 * FUNCTION: AhStrupr (strupr)
237 *
238 * PARAMETERS: SrcString - The source string to convert
239 *
240 * RETURN: None
241 *
242 * DESCRIPTION: Convert string to uppercase
243 *
244 * NOTE: This is not a POSIX function, so it appears here, not in utclib.c
245 *
246 **/

248 void
249 AhStrupr (
250 char *SrcString)
251 {
252 char *String;

255 if (!SrcString)
256 {
257 return;
258 }

new/usr/src/common/acpica/tools/acpihelp/ahmain.c 5

260 /* Walk entire string, uppercasing the letters */

262 for (String = SrcString; *String; String++)
263 {
264 *String = (char) toupper ((int) *String);
265 }

267 return;
268 }

new/usr/src/common/acpica/tools/acpinames/acpinames.h 1

**
 2317 Thu Dec 26 13:50:11 2013
new/usr/src/common/acpica/tools/acpinames/acpinames.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: acpinames.h - Common include for AcpiNames utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef _ACPINAMES_H
45 #define _ACPINAMES_H

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acapps.h"
50 #include "../acpiexec/aecommon.h"

52 #include <stdio.h>

54 #define ACPI_MAX_INIT_TABLES (32)

56 #endif

new/usr/src/common/acpica/tools/acpinames/anmain.c 1

**
 8211 Thu Dec 26 13:50:11 2013
new/usr/src/common/acpica/tools/acpinames/anmain.c
update to acpica-unix2-20131218
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: anmain - Main routine for the AcpiNames utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpinames.h"

46 #define _COMPONENT ACPI_TOOLS
47 ACPI_MODULE_NAME ("anmain")

50 extern ACPI_TABLE_DESC Tables[];

52 static AE_TABLE_DESC *AeTableListHead = NULL;

55 #define AN_UTILITY_NAME "ACPI Namespace Dump Utility"
56 #define AN_SUPPORTED_OPTIONS "?hv"

59 /**

new/usr/src/common/acpica/tools/acpinames/anmain.c 2

60 *
61 * FUNCTION: usage
62 *
63 * PARAMETERS: None
64 *
65 * RETURN: None
66 *
67 * DESCRIPTION: Print a usage message
68 *
69 ***/

71 static void
72 usage (
73 void)
74 {

76 ACPI_USAGE_HEADER ("AcpiNames [options] AMLfile");
77 ACPI_OPTION ("-?", "Display this message");
78 ACPI_OPTION ("-v", "Display version information");
79 }

82 /**
83 *
84 * FUNCTION: NsDumpEntireNamespace
85 *
86 * PARAMETERS: AmlFilename - Filename for DSDT or SSDT AML table
87 *
88 * RETURN: Status (pass/fail)
89 *
90 * DESCRIPTION: Build an ACPI namespace for the input AML table, and dump the
91 * formatted namespace contents.
92 *
93 ***/

95 static int
96 NsDumpEntireNamespace (
97 char *AmlFilename)
98 {
99 ACPI_STATUS Status;
100 ACPI_TABLE_HEADER *Table = NULL;
101 UINT32 TableCount = 0;
102 AE_TABLE_DESC *TableDesc;
103 ACPI_HANDLE Handle;

106 /* Open the binary AML file and read the entire table */

108 Status = AcpiDbReadTableFromFile (AmlFilename, &Table);
109 if (ACPI_FAILURE (Status))
110 {
111 printf ("**** Could not get input table %s, %s\n", AmlFilename,
112 AcpiFormatException (Status));
113 return (-1);
114 }

116 /* Table must be a DSDT. SSDTs are not currently supported */

118 if (!ACPI_COMPARE_NAME (Table->Signature, ACPI_SIG_DSDT))
119 {
120 printf ("**** Input table signature is [%4.4s], must be [DSDT]\n",
121 Table->Signature);
122 return (-1);
123 }

125 /*

new/usr/src/common/acpica/tools/acpinames/anmain.c 3

126 * Allocate and link a table descriptor (allows for future expansion to
127 * multiple input files)
128 */
129 TableDesc = AcpiOsAllocate (sizeof (AE_TABLE_DESC));
130 TableDesc->Table = Table;
131 TableDesc->Next = AeTableListHead;
132 AeTableListHead = TableDesc;

134 TableCount++;

136 /*
137 * Build a local XSDT with all tables. Normally, here is where the
138 * RSDP search is performed to find the ACPI tables
139 */
140 Status = AeBuildLocalTables (TableCount, AeTableListHead);
141 if (ACPI_FAILURE (Status))
142 {
143 return (-1);
144 }

146 /* Initialize table manager, get XSDT */

148 Status = AcpiInitializeTables (Tables, ACPI_MAX_INIT_TABLES, TRUE);
149 if (ACPI_FAILURE (Status))
150 {
151 printf ("**** Could not initialize ACPI table manager, %s\n",
152 AcpiFormatException (Status));
153 return (-1);
154 }

156 /* Reallocate root table to dynamic memory */

158 Status = AcpiReallocateRootTable ();
159 if (ACPI_FAILURE (Status))
160 {
161 printf ("**** Could not reallocate root table, %s\n",
162 AcpiFormatException (Status));
163 return (-1);
164 }

166 /* Load the ACPI namespace */

168 Status = AcpiLoadTables ();
169 if (ACPI_FAILURE (Status))
170 {
171 printf ("**** Could not load ACPI tables, %s\n",
172 AcpiFormatException (Status));
173 return (-1);
174 }

176 /*
177 * Enable ACPICA. These calls don’t do much for this
178 * utility, since we only dump the namespace. There is no
179 * hardware or event manager code underneath.
180 */
181 Status = AcpiEnableSubsystem (
182 ACPI_NO_ACPI_ENABLE |
183 ACPI_NO_ADDRESS_SPACE_INIT |
184 ACPI_NO_EVENT_INIT |
185 ACPI_NO_HANDLER_INIT);
186 if (ACPI_FAILURE (Status))
187 {
188 printf ("**** Could not EnableSubsystem, %s\n",
189 AcpiFormatException (Status));
190 return (-1);
191 }

new/usr/src/common/acpica/tools/acpinames/anmain.c 4

193 Status = AcpiInitializeObjects (
194 ACPI_NO_ADDRESS_SPACE_INIT |
195 ACPI_NO_DEVICE_INIT |
196 ACPI_NO_EVENT_INIT);
197 if (ACPI_FAILURE (Status))
198 {
199 printf ("**** Could not InitializeObjects, %s\n",
200 AcpiFormatException (Status));
201 return (-1);
202 }

204 /*
205 * Perform a namespace walk to dump the contents
206 */
207 AcpiOsPrintf ("\nACPI Namespace:\n");

209 AcpiNsDumpObjects (ACPI_TYPE_ANY, ACPI_DISPLAY_SUMMARY, ACPI_UINT32_MAX,
210 ACPI_OWNER_ID_MAX, AcpiGbl_RootNode);

213 /* Example: get a handle to the _GPE scope */

215 Status = AcpiGetHandle (NULL, "_GPE", &Handle);
216 AE_CHECK_OK (AcpiGetHandle, Status);

218 return (0);
219 }

222 /**
223 *
224 * FUNCTION: main
225 *
226 * PARAMETERS: argc, argv
227 *
228 * RETURN: Status (pass/fail)
229 *
230 * DESCRIPTION: Main routine for NsDump utility
231 *
232 ***/

234 int ACPI_SYSTEM_XFACE
235 main (
236 int argc,
237 char **argv)
238 {
239 ACPI_STATUS Status;
240 int j;

243 ACPI_DEBUG_INITIALIZE (); /* For debug version only */
244 printf (ACPI_COMMON_SIGNON (AN_UTILITY_NAME));

246 if (argc < 2)
247 {
248 usage ();
249 return (0);
250 }

252 /* Init globals and ACPICA */

254 AcpiDbgLevel = ACPI_NORMAL_DEFAULT | ACPI_LV_TABLES;
255 AcpiDbgLayer = 0xFFFFFFFF;

257 Status = AcpiInitializeSubsystem ();

new/usr/src/common/acpica/tools/acpinames/anmain.c 5

258 AE_CHECK_OK (AcpiInitializeSubsystem, Status);

260 /* Get the command line options */

262 while ((j = AcpiGetopt (argc, argv, AN_SUPPORTED_OPTIONS)) != EOF) switch(j)
263 {
264 case ’v’: /* -v: (Version): signon already emitted, just exit */

266 return (0);

268 case ’?’:
269 case ’h’:
270 default:

272 usage();
273 return (0);
274 }

276 /*
277 * The next argument is the filename for the DSDT or SSDT.
278 * Open the file, build namespace and dump it.
279 */
280 return (NsDumpEntireNamespace (argv[AcpiGbl_Optind]));
281 }

new/usr/src/common/acpica/tools/acpinames/anstubs.c 1

**
 8820 Thu Dec 26 13:50:11 2013
new/usr/src/common/acpica/tools/acpinames/anstubs.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: anstubs - Stub routines for the AcpiNames utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpinames.h"

46 #include <acutils.h>
47 #include <acevents.h>
48 #include <acdispat.h>

50 #define _COMPONENT ACPI_TOOLS
51 ACPI_MODULE_NAME ("anstubs")

54 /**
55 *
56 * DESCRIPTION: Stubs used to facilitate linkage of the NsDump utility.
57 *
58 ***/

new/usr/src/common/acpica/tools/acpinames/anstubs.c 2

61 /* Utilities */

63 void
64 AcpiUtSubsystemShutdown (
65 void)
66 {
67 }

69 ACPI_STATUS
70 AcpiUtExecute_STA (
71 ACPI_NAMESPACE_NODE *DeviceNode,
72 UINT32 *StatusFlags)
73 {
74 return (AE_NOT_IMPLEMENTED);
75 }

77 ACPI_STATUS
78 AcpiUtExecute_HID (
79 ACPI_NAMESPACE_NODE *DeviceNode,
80 ACPI_PNP_DEVICE_ID **ReturnId)
81 {
82 return (AE_NOT_IMPLEMENTED);
83 }

85 ACPI_STATUS
86 AcpiUtExecute_CID (
87 ACPI_NAMESPACE_NODE *DeviceNode,
88 ACPI_PNP_DEVICE_ID_LIST **ReturnCidList)
89 {
90 return (AE_NOT_IMPLEMENTED);
91 }

93 ACPI_STATUS
94 AcpiUtExecute_UID (
95 ACPI_NAMESPACE_NODE *DeviceNode,
96 ACPI_PNP_DEVICE_ID **ReturnId)
97 {
98 return (AE_NOT_IMPLEMENTED);
99 }

101 ACPI_STATUS
102 AcpiUtExecute_SUB (
103 ACPI_NAMESPACE_NODE *DeviceNode,
104 ACPI_PNP_DEVICE_ID **ReturnId)
105 {
106 return (AE_NOT_IMPLEMENTED);
107 }

109 ACPI_STATUS
110 AcpiUtExecutePowerMethods (
111 ACPI_NAMESPACE_NODE *DeviceNode,
112 const char **MethodNames,
113 UINT8 MethodCount,
114 UINT8 *OutValues)
115 {
116 return (AE_NOT_IMPLEMENTED);
117 }

119 ACPI_STATUS
120 AcpiUtEvaluateNumericObject (
121 char *ObjectName,
122 ACPI_NAMESPACE_NODE *DeviceNode,
123 UINT64 *Value)
124 {
125 return (AE_NOT_IMPLEMENTED);
126 }

new/usr/src/common/acpica/tools/acpinames/anstubs.c 3

128 ACPI_STATUS
129 AcpiUtCopyIobjectToEobject (
130 ACPI_OPERAND_OBJECT *Obj,
131 ACPI_BUFFER *RetBuffer)
132 {
133 return (AE_NOT_IMPLEMENTED);
134 }

136 ACPI_STATUS
137 AcpiUtCopyEobjectToIobject (
138 ACPI_OBJECT *Obj,
139 ACPI_OPERAND_OBJECT **InternalObj)
140 {
141 return (AE_NOT_IMPLEMENTED);
142 }

144 ACPI_STATUS
145 AcpiUtCopyIobjectToIobject (
146 ACPI_OPERAND_OBJECT *SourceDesc,
147 ACPI_OPERAND_OBJECT **DestDesc,
148 ACPI_WALK_STATE *WalkState)
149 {
150 return (AE_NOT_IMPLEMENTED);
151 }

154 /* Hardware manager */

156 UINT32
157 AcpiHwGetMode (
158 void)
159 {
160 return (0);
161 }

164 /* Event manager */

166 ACPI_STATUS
167 AcpiEvInstallXruptHandlers (
168 void)
169 {
170 return (AE_OK);
171 }

173 ACPI_STATUS
174 AcpiEvInitializeEvents (
175 void)
176 {
177 return (AE_OK);
178 }

180 ACPI_STATUS
181 AcpiEvInstallRegionHandlers (
182 void)
183 {
184 return (AE_OK);
185 }

187 ACPI_STATUS
188 AcpiEvInitializeOpRegions (
189 void)
190 {
191 return (AE_OK);
192 }

new/usr/src/common/acpica/tools/acpinames/anstubs.c 4

194 ACPI_STATUS
195 AcpiEvInitializeRegion (
196 ACPI_OPERAND_OBJECT *RegionObj,
197 BOOLEAN AcpiNsLocked)
198 {
199 return (AE_OK);
200 }

202 #if (!ACPI_REDUCED_HARDWARE)
203 ACPI_STATUS
204 AcpiEvDeleteGpeBlock (
205 ACPI_GPE_BLOCK_INFO *GpeBlock)
206 {
207 return (AE_OK);
208 }

210 ACPI_STATUS
211 AcpiEnable (
212 void)
213 {
214 return (AE_OK);
215 }
216 #endif /* !ACPI_REDUCED_HARDWARE */

219 /* AML Interpreter */

221 void
222 AcpiExUnlinkMutex (
223 ACPI_OPERAND_OBJECT *ObjDesc)
224 {
225 }

227 void
228 AcpiExReleaseAllMutexes (
229 ACPI_THREAD_STATE *Thread)
230 {
231 }

233 ACPI_STATUS
234 AcpiExReadDataFromField (
235 ACPI_WALK_STATE *WalkState,
236 ACPI_OPERAND_OBJECT *ObjDesc,
237 ACPI_OPERAND_OBJECT **RetBufferDesc)
238 {
239 return (AE_NOT_IMPLEMENTED);
240 }

242 ACPI_STATUS
243 AcpiExWriteDataToField (
244 ACPI_OPERAND_OBJECT *SourceDesc,
245 ACPI_OPERAND_OBJECT *ObjDesc,
246 ACPI_OPERAND_OBJECT **ResultDesc)
247 {
248 return (AE_NOT_IMPLEMENTED);
249 }

251 ACPI_STATUS
252 AcpiExPrepFieldValue (
253 ACPI_CREATE_FIELD_INFO *Info)
254 {
255 return (AE_OK);
256 }

258 ACPI_STATUS

new/usr/src/common/acpica/tools/acpinames/anstubs.c 5

259 AcpiExAcquireMutexObject (
260 UINT16 Timeout,
261 ACPI_OPERAND_OBJECT *ObjDesc,
262 ACPI_THREAD_ID ThreadId)
263 {
264 return (AE_OK);
265 }

267 ACPI_STATUS
268 AcpiExReleaseMutexObject (
269 ACPI_OPERAND_OBJECT *ObjDesc)
270 {
271 return (AE_OK);
272 }

274 ACPI_STATUS
275 AcpiExStoreObjectToNode (
276 ACPI_OPERAND_OBJECT *SourceDesc,
277 ACPI_NAMESPACE_NODE *Node,
278 ACPI_WALK_STATE *WalkState,
279 UINT8 ImplicitConversion)
280 {
281 return (AE_NOT_IMPLEMENTED);
282 }

285 /* Namespace manager */

287 ACPI_STATUS
288 AcpiNsEvaluate (
289 ACPI_EVALUATE_INFO *Info)
290 {
291 return (AE_NOT_IMPLEMENTED);
292 }

294 void
295 AcpiNsExecModuleCodeList (
296 void)
297 {
298 }

301 /* Dispatcher */

303 ACPI_STATUS
304 AcpiDsInitializeObjects (
305 UINT32 TableIndex,
306 ACPI_NAMESPACE_NODE *StartNode)
307 {
308 return (AE_OK);
309 }

311 ACPI_STATUS
312 AcpiDsCallControlMethod (
313 ACPI_THREAD_STATE *Thread,
314 ACPI_WALK_STATE *WalkState,
315 ACPI_PARSE_OBJECT *Op)
316 {
317 return (AE_NOT_IMPLEMENTED);
318 }

320 ACPI_STATUS
321 AcpiDsRestartControlMethod (
322 ACPI_WALK_STATE *WalkState,
323 ACPI_OPERAND_OBJECT *ReturnDesc)
324 {

new/usr/src/common/acpica/tools/acpinames/anstubs.c 6

325 return (AE_NOT_IMPLEMENTED);
326 }

328 void
329 AcpiDsTerminateControlMethod (
330 ACPI_OPERAND_OBJECT *MethodDesc,
331 ACPI_WALK_STATE *WalkState)
332 {
333 }

335 ACPI_STATUS
336 AcpiDsMethodError (
337 ACPI_STATUS Status,
338 ACPI_WALK_STATE *WalkState)
339 {
340 return (AE_NOT_IMPLEMENTED);
341 }

343 ACPI_STATUS
344 AcpiDsBeginMethodExecution (
345 ACPI_NAMESPACE_NODE *MethodNode,
346 ACPI_OPERAND_OBJECT *ObjDesc,
347 ACPI_WALK_STATE *WalkState)
348 {
349 return (AE_NOT_IMPLEMENTED);
350 }

352 ACPI_STATUS
353 AcpiDsGetPredicateValue (
354 ACPI_WALK_STATE *WalkState,
355 ACPI_OPERAND_OBJECT *ResultObj)
356 {
357 return (AE_NOT_IMPLEMENTED);
358 }

360 ACPI_STATUS
361 AcpiDsGetBufferFieldArguments (
362 ACPI_OPERAND_OBJECT *ObjDesc)
363 {
364 return (AE_OK);
365 }

367 ACPI_STATUS
368 AcpiDsGetBankFieldArguments (
369 ACPI_OPERAND_OBJECT *ObjDesc)
370 {
371 return (AE_OK);
372 }

374 ACPI_STATUS
375 AcpiDsGetRegionArguments (
376 ACPI_OPERAND_OBJECT *RgnDesc)
377 {
378 return (AE_OK);
379 }

381 ACPI_STATUS
382 AcpiDsGetBufferArguments (
383 ACPI_OPERAND_OBJECT *ObjDesc)
384 {
385 return (AE_OK);
386 }

388 ACPI_STATUS
389 AcpiDsGetPackageArguments (
390 ACPI_OPERAND_OBJECT *ObjDesc)

new/usr/src/common/acpica/tools/acpinames/anstubs.c 7

391 {
392 return (AE_OK);
393 }

395 ACPI_STATUS
396 AcpiDsExecBeginOp (
397 ACPI_WALK_STATE *WalkState,
398 ACPI_PARSE_OBJECT **OutOp)
399 {
400 return (AE_NOT_IMPLEMENTED);
401 }

403 ACPI_STATUS
404 AcpiDsExecEndOp (
405 ACPI_WALK_STATE *State)
406 {
407 return (AE_NOT_IMPLEMENTED);
408 }

411 /* AML Debugger */

413 void
414 AcpiDbDisplayArgumentObject (
415 ACPI_OPERAND_OBJECT *ObjDesc,
416 ACPI_WALK_STATE *WalkState)
417 {
418 }

420 ACPI_STATUS
421 AcpiDbInitialize (
422 void)
423 {
424 return (AE_OK);
425 }

427 void
428 AcpiDbTerminate (
429 void)
430 {
431 }

433 /* OSL interfaces */

435 ACPI_THREAD_ID
436 AcpiOsGetThreadId (
437 void)
438 {
439 return (0xFFFF);
440 }

442 ACPI_STATUS
443 AcpiOsExecute (
444 ACPI_EXECUTE_TYPE Type,
445 ACPI_OSD_EXEC_CALLBACK Function,
446 void *Context)
447 {
448 return (AE_SUPPORT);
449 }

new/usr/src/common/acpica/tools/acpinames/antables.c 1

**
 9903 Thu Dec 26 13:50:11 2013
new/usr/src/common/acpica/tools/acpinames/antables.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: antables - ACPI table setup/install for AcpiNames utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpinames.h"

46 #define _COMPONENT ACPI_TOOLS
47 ACPI_MODULE_NAME ("antables")

49 /* Local prototypes */

51 ACPI_PHYSICAL_ADDRESS
52 AeLocalGetRootPointer (
53 void);

55 /* Non-AML tables that are constructed locally and installed */

57 static ACPI_TABLE_RSDP LocalRSDP;
58 static ACPI_TABLE_FACS LocalFACS;

60 /*

new/usr/src/common/acpica/tools/acpinames/antables.c 2

61 * We need a local FADT so that the hardware subcomponent will function,
62 * even though the underlying OSD HW access functions don’t do anything.
63 */
64 static ACPI_TABLE_FADT LocalFADT;

66 /*
67 * Use XSDT so that both 32- and 64-bit versions of this utility will
68 * function automatically.
69 */
70 static ACPI_TABLE_XSDT *LocalXSDT;

72 #define BASE_XSDT_TABLES 1
73 #define BASE_XSDT_SIZE (sizeof (ACPI_TABLE_XSDT) + \
74 ((BASE_XSDT_TABLES -1) * sizeof (UINT64)))

76 ACPI_TABLE_DESC Tables[ACPI_MAX_INIT_TABLES];

79 /**
80 *
81 * FUNCTION: AeBuildLocalTables
82 *
83 * PARAMETERS: TableCount - Number of tables on the command line
84 * TableList - List of actual tables from files
85 *
86 * RETURN: Status
87 *
88 * DESCRIPTION: Build a complete ACPI table chain, with a local RSDP, XSDT,
89 * FADT, FACS, and the input DSDT/SSDT.
90 *
91 ***/

93 ACPI_STATUS
94 AeBuildLocalTables (
95 UINT32 TableCount,
96 AE_TABLE_DESC *TableList)
97 {
98 ACPI_PHYSICAL_ADDRESS DsdtAddress = 0;
99 UINT32 XsdtSize;
100 AE_TABLE_DESC *NextTable;
101 UINT32 NextIndex;
102 ACPI_TABLE_FADT *ExternalFadt = NULL;

105 /*
106 * Update the table count. For DSDT, it is not put into the XSDT. For
107 * FADT, this is already accounted for since we usually install a
108 * local FADT.
109 */
110 NextTable = TableList;
111 while (NextTable)
112 {
113 if (ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_DSDT) ||
114 ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_FADT))
115 {
116 TableCount--;
117 }
118 NextTable = NextTable->Next;
119 }

121 XsdtSize = BASE_XSDT_SIZE + (TableCount * sizeof (UINT64));

123 /* Build an XSDT */

125 LocalXSDT = AcpiOsAllocate (XsdtSize);
126 if (!LocalXSDT)

new/usr/src/common/acpica/tools/acpinames/antables.c 3

127 {
128 return (AE_NO_MEMORY);
129 }

131 ACPI_MEMSET (LocalXSDT, 0, XsdtSize);
132 ACPI_MOVE_NAME (LocalXSDT->Header.Signature, ACPI_SIG_XSDT);
133 LocalXSDT->Header.Length = XsdtSize;
134 LocalXSDT->Header.Revision = 1;

136 LocalXSDT->TableOffsetEntry[0] = ACPI_PTR_TO_PHYSADDR (&LocalFADT);

138 /*
139 * Install the user tables. The DSDT must be installed in the FADT.
140 * All other tables are installed directly into the XSDT.
141 */
142 NextIndex = BASE_XSDT_TABLES;
143 NextTable = TableList;
144 while (NextTable)
145 {
146 /*
147 * Incoming DSDT or FADT are special cases. All other tables are
148 * just immediately installed into the XSDT.
149 */
150 if (ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_DSDT))
151 {
152 if (DsdtAddress)
153 {
154 printf ("Already found a DSDT, only one allowed\n");
155 return (AE_ALREADY_EXISTS);
156 }

158 /* The incoming user table is a DSDT */

160 DsdtAddress = ACPI_PTR_TO_PHYSADDR (NextTable->Table);
161 }
162 else if (ACPI_COMPARE_NAME (NextTable->Table->Signature, ACPI_SIG_FADT))
163 {
164 ExternalFadt = ACPI_CAST_PTR (ACPI_TABLE_FADT, NextTable->Table);
165 LocalXSDT->TableOffsetEntry[2] = ACPI_PTR_TO_PHYSADDR (NextTable->Ta
166 }
167 else
168 {
169 /* Install the table in the XSDT */

171 LocalXSDT->TableOffsetEntry[NextIndex] = ACPI_PTR_TO_PHYSADDR (NextT
172 NextIndex++;
173 }

175 NextTable = NextTable->Next;
176 }

178 /* Build an RSDP */

180 ACPI_MEMSET (&LocalRSDP, 0, sizeof (ACPI_TABLE_RSDP));
181 ACPI_MAKE_RSDP_SIG (LocalRSDP.Signature);
182 ACPI_MEMCPY (LocalRSDP.OemId, "I_TEST", 6);
183 LocalRSDP.Revision = 2;
184 LocalRSDP.XsdtPhysicalAddress = ACPI_PTR_TO_PHYSADDR (LocalXSDT);
185 LocalRSDP.Length = sizeof (ACPI_TABLE_XSDT);

187 /* Set checksums for both XSDT and RSDP */

189 LocalXSDT->Header.Checksum = (UINT8) -AcpiTbChecksum (
190 (void *) LocalXSDT, LocalXSDT->Header.Length);
191 LocalRSDP.Checksum = (UINT8) -AcpiTbChecksum (
192 (void *) &LocalRSDP, ACPI_RSDP_CHECKSUM_LENGTH);

new/usr/src/common/acpica/tools/acpinames/antables.c 4

194 if (!DsdtAddress)
195 {
196 return (AE_SUPPORT);
197 }

199 if (ExternalFadt)
200 {
201 /*
202 * Use the external FADT, but we must update the DSDT/FACS addresses
203 * as well as the checksum
204 */
205 ExternalFadt->Dsdt = DsdtAddress;
206 ExternalFadt->Facs = ACPI_PTR_TO_PHYSADDR (&LocalFACS);

208 if (ExternalFadt->Header.Length > ACPI_PTR_DIFF (&ExternalFadt->XDsdt, E
209 {
210 ExternalFadt->XDsdt = DsdtAddress;
211 ExternalFadt->XFacs = ACPI_PTR_TO_PHYSADDR (&LocalFACS);
212 }
213 /* Complete the FADT with the checksum */

215 ExternalFadt->Header.Checksum = 0;
216 ExternalFadt->Header.Checksum = (UINT8) -AcpiTbChecksum (
217 (void *) ExternalFadt, ExternalFadt->Header.Length);
218 }
219 else
220 {
221 /*
222 * Build a local FADT so we can test the hardware/event init
223 */
224 ACPI_MEMSET (&LocalFADT, 0, sizeof (ACPI_TABLE_FADT));
225 ACPI_MOVE_NAME (LocalFADT.Header.Signature, ACPI_SIG_FADT);

227 /* Setup FADT header and DSDT/FACS addresses */

229 LocalFADT.Dsdt = 0;
230 LocalFADT.Facs = 0;

232 LocalFADT.XDsdt = DsdtAddress;
233 LocalFADT.XFacs = ACPI_PTR_TO_PHYSADDR (&LocalFACS);

235 LocalFADT.Header.Revision = 3;
236 LocalFADT.Header.Length = sizeof (ACPI_TABLE_FADT);

238 /* Miscellaneous FADT fields */

240 LocalFADT.Gpe0BlockLength = 16;
241 LocalFADT.Gpe0Block = 0x00001234;

243 LocalFADT.Gpe1BlockLength = 6;
244 LocalFADT.Gpe1Block = 0x00005678;
245 LocalFADT.Gpe1Base = 96;

247 LocalFADT.Pm1EventLength = 4;
248 LocalFADT.Pm1aEventBlock = 0x00001aaa;
249 LocalFADT.Pm1bEventBlock = 0x00001bbb;

251 LocalFADT.Pm1ControlLength = 2;
252 LocalFADT.Pm1aControlBlock = 0xB0;

254 LocalFADT.PmTimerLength = 4;
255 LocalFADT.PmTimerBlock = 0xA0;

257 LocalFADT.Pm2ControlBlock = 0xC0;
258 LocalFADT.Pm2ControlLength = 1;

new/usr/src/common/acpica/tools/acpinames/antables.c 5

260 /* Setup one example X-64 field */

262 LocalFADT.XPm1bEventBlock.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
263 LocalFADT.XPm1bEventBlock.Address = LocalFADT.Pm1bEventBlock;
264 LocalFADT.XPm1bEventBlock.BitWidth = (UINT8) ACPI_MUL_8 (LocalFADT.Pm1Ev

266 /* Complete the FADT with the checksum */

268 LocalFADT.Header.Checksum = 0;
269 LocalFADT.Header.Checksum = (UINT8) -AcpiTbChecksum (
270 (void *) &LocalFADT, LocalFADT.Header.Length);
271 }

273 /* Build a FACS */

275 ACPI_MEMSET (&LocalFACS, 0, sizeof (ACPI_TABLE_FACS));
276 ACPI_MOVE_NAME (LocalFACS.Signature, ACPI_SIG_FACS);

278 LocalFACS.Length = sizeof (ACPI_TABLE_FACS);
279 LocalFACS.GlobalLock = 0x11AA0011;

281 return (AE_OK);
282 }

285 /**
286 *
287 * FUNCTION: AeLocalGetRootPointer
288 *
289 * PARAMETERS: None
290 *
291 * RETURN: Address of the RSDP
292 *
293 * DESCRIPTION: Return a local RSDP, used to dynamically load tables via the
294 * standard ACPI mechanism.
295 *
296 ***/

298 ACPI_PHYSICAL_ADDRESS
299 AeLocalGetRootPointer (
300 void)
301 {

303 return ((ACPI_PHYSICAL_ADDRESS) &LocalRSDP);
304 }

new/usr/src/common/acpica/tools/acpisrc/acpisrc.h 1

**
 12438 Thu Dec 26 13:50:11 2013
new/usr/src/common/acpica/tools/acpisrc/acpisrc.h
update to acpica-unix2-20130927
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: acpisrc.h - Include file for AcpiSrc utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"

47 #include <stdio.h>
48 #include <sys/stat.h>
49 #include <errno.h>

51 /* mkdir support */

53 #ifdef WIN32
54 #include <direct.h>
55 #else
56 #define mkdir(x) mkdir(x, 0770)
57 #endif

60 /* Constants */

new/usr/src/common/acpica/tools/acpisrc/acpisrc.h 2

62 #define LINES_IN_LEGAL_HEADER 105 /* See above */
63 #define LEGAL_HEADER_SIGNATURE " * 2.1. This is your license from I
64 #define LINES_IN_LINUX_HEADER 34
65 #define LINUX_HEADER_SIGNATURE " * THIS SOFTWARE IS PROVIDED BY THE
66 #define LINES_IN_ASL_HEADER 29 /* Header as output from disassem

68 #define ASRC_MAX_FILE_SIZE (1024 * 100)

70 #define FILE_TYPE_SOURCE 1
71 #define FILE_TYPE_HEADER 2
72 #define FILE_TYPE_DIRECTORY 3

74 #define CVT_COUNT_TABS 0x00000001
75 #define CVT_COUNT_NON_ANSI_COMMENTS 0x00000002
76 #define CVT_TRIM_LINES 0x00000004
77 #define CVT_CHECK_BRACES 0x00000008
78 #define CVT_COUNT_LINES 0x00000010
79 #define CVT_BRACES_ON_SAME_LINE 0x00000020
80 #define CVT_MIXED_CASE_TO_UNDERSCORES 0x00000040
81 #define CVT_LOWER_CASE_IDENTIFIERS 0x00000080
82 #define CVT_REMOVE_DEBUG_MACROS 0x00000100
83 #define CVT_TRIM_WHITESPACE 0x00000200 /* Should be after all l
84 #define CVT_REMOVE_EMPTY_BLOCKS 0x00000400 /* Should be after trimm
85 #define CVT_REDUCE_TYPEDEFS 0x00000800
86 #define CVT_COUNT_SHORTMULTILINE_COMMENTS 0x00001000
87 #define CVT_SPACES_TO_TABS4 0x40000000 /* Tab conversion should
88 #define CVT_SPACES_TO_TABS8 0x80000000 /* Tab conversion should

90 #define FLG_DEFAULT_FLAGS 0x00000000
91 #define FLG_NO_CARRIAGE_RETURNS 0x00000001
92 #define FLG_NO_FILE_OUTPUT 0x00000002
93 #define FLG_LOWERCASE_DIRNAMES 0x00000004

95 #define AS_START_IGNORE "/*!"
96 #define AS_STOP_IGNORE "!*/"

99 /* Globals */

101 extern UINT32 Gbl_Files;
102 extern UINT32 Gbl_MissingBraces;
103 extern UINT32 Gbl_Tabs;
104 extern UINT32 Gbl_NonAnsiComments;
105 extern UINT32 Gbl_SourceLines;
106 extern UINT32 Gbl_WhiteLines;
107 extern UINT32 Gbl_CommentLines;
108 extern UINT32 Gbl_LongLines;
109 extern UINT32 Gbl_TotalLines;
110 extern UINT32 Gbl_HeaderSize;
111 extern UINT32 Gbl_HeaderLines;
112 extern struct stat Gbl_StatBuf;
113 extern char *Gbl_FileBuffer;
114 extern UINT32 Gbl_TotalSize;
115 extern UINT32 Gbl_FileSize;
116 extern UINT32 Gbl_FileType;
117 extern BOOLEAN Gbl_VerboseMode;
118 extern BOOLEAN Gbl_QuietMode;
119 extern BOOLEAN Gbl_BatchMode;
120 extern BOOLEAN Gbl_MadeChanges;
121 extern BOOLEAN Gbl_Overwrite;
122 extern BOOLEAN Gbl_WidenDeclarations;
123 extern BOOLEAN Gbl_IgnoreLoneLineFeeds;
124 extern BOOLEAN Gbl_HasLoneLineFeeds;
125 extern BOOLEAN Gbl_Cleanup;
126 extern BOOLEAN Gbl_IgnoreTranslationEscapes;

new/usr/src/common/acpica/tools/acpisrc/acpisrc.h 3

127 extern void *Gbl_StructDefs;

129 #define PARAM_LIST(pl) pl
130 #define TERSE_PRINT(a) if (!Gbl_VerboseMode) printf PARAM_LIST(a)
131 #define VERBOSE_PRINT(a) if (Gbl_VerboseMode) printf PARAM_LIST(a)

133 #define REPLACE_WHOLE_WORD 0x00
134 #define REPLACE_SUBSTRINGS 0x01
135 #define REPLACE_MASK 0x01

137 #define EXTRA_INDENT_C 0x02

140 /* Conversion table structs */

142 typedef struct acpi_string_table
143 {
144 char *Target;
145 char *Replacement;
146 UINT8 Type;

148 } ACPI_STRING_TABLE;

151 typedef struct acpi_typed_identifier_table
152 {
153 char *Identifier;
154 UINT8 Type;

156 } ACPI_TYPED_IDENTIFIER_TABLE;

158 #define SRC_TYPE_SIMPLE 0
159 #define SRC_TYPE_STRUCT 1
160 #define SRC_TYPE_UNION 2

163 typedef struct acpi_identifier_table
164 {
165 char *Identifier;

167 } ACPI_IDENTIFIER_TABLE;

169 typedef struct acpi_conversion_table
170 {
171 char *NewHeader;
172 UINT32 Flags;

174 ACPI_TYPED_IDENTIFIER_TABLE *LowerCaseTable;

176 ACPI_STRING_TABLE *SourceStringTable;
177 ACPI_IDENTIFIER_TABLE *SourceLineTable;
178 ACPI_IDENTIFIER_TABLE *SourceConditionalTable;
179 ACPI_IDENTIFIER_TABLE *SourceMacroTable;
180 ACPI_TYPED_IDENTIFIER_TABLE *SourceStructTable;
181 ACPI_IDENTIFIER_TABLE *SourceSpecialMacroTable;
182 UINT32 SourceFunctions;

184 ACPI_STRING_TABLE *HeaderStringTable;
185 ACPI_IDENTIFIER_TABLE *HeaderLineTable;
186 ACPI_IDENTIFIER_TABLE *HeaderConditionalTable;
187 ACPI_IDENTIFIER_TABLE *HeaderMacroTable;
188 ACPI_TYPED_IDENTIFIER_TABLE *HeaderStructTable;
189 ACPI_IDENTIFIER_TABLE *HeaderSpecialMacroTable;
190 UINT32 HeaderFunctions;

192 } ACPI_CONVERSION_TABLE;

new/usr/src/common/acpica/tools/acpisrc/acpisrc.h 4

195 /* Conversion tables */

197 extern ACPI_CONVERSION_TABLE LinuxConversionTable;
198 extern ACPI_CONVERSION_TABLE CleanupConversionTable;
199 extern ACPI_CONVERSION_TABLE StatsConversionTable;
200 extern ACPI_CONVERSION_TABLE CustomConversionTable;
201 extern ACPI_CONVERSION_TABLE LicenseConversionTable;
202 extern ACPI_CONVERSION_TABLE IndentConversionTable;

205 /* Prototypes */

207 char *
208 AsSkipUntilChar (
209 char *Buffer,
210 char Target);

212 char *
213 AsSkipPastChar (
214 char *Buffer,
215 char Target);

217 char *
218 AsReplaceData (
219 char *Buffer,
220 UINT32 LengthToRemove,
221 char *BufferToAdd,
222 UINT32 LengthToAdd);

224 int
225 AsReplaceString (
226 char *Target,
227 char *Replacement,
228 UINT8 Type,
229 char *Buffer);

231 int
232 AsLowerCaseString (
233 char *Target,
234 char *Buffer);

236 void
237 AsRemoveLine (
238 char *Buffer,
239 char *Keyword);

241 void
242 AsRemoveMacro (
243 char *Buffer,
244 char *Keyword);

246 void
247 AsCheckForBraces (
248 char *Buffer,
249 char *Filename);

251 void
252 AsTrimLines (
253 char *Buffer,
254 char *Filename);

256 void
257 AsMixedCaseToUnderscores (
258 char *Buffer,

new/usr/src/common/acpica/tools/acpisrc/acpisrc.h 5

259 char *Filename);

261 void
262 AsCountTabs (
263 char *Buffer,
264 char *Filename);

266 void
267 AsBracesOnSameLine (
268 char *Buffer);

270 void
271 AsLowerCaseIdentifiers (
272 char *Buffer);

274 void
275 AsReduceTypedefs (
276 char *Buffer,
277 char *Keyword);

279 void
280 AsRemoveDebugMacros (
281 char *Buffer);

283 void
284 AsRemoveEmptyBlocks (
285 char *Buffer,
286 char *Filename);

288 void
289 AsCleanupSpecialMacro (
290 char *Buffer,
291 char *Keyword);

293 void
294 AsCountSourceLines (
295 char *Buffer,
296 char *Filename);

298 void
299 AsCountNonAnsiComments (
300 char *Buffer,
301 char *Filename);

303 void
304 AsTrimWhitespace (
305 char *Buffer);

307 void
308 AsTabify4 (
309 char *Buffer);

311 void
312 AsTabify8 (
313 char *Buffer);

315 void
316 AsRemoveConditionalCompile (
317 char *Buffer,
318 char *Keyword);

320 ACPI_NATIVE_INT
321 AsProcessTree (
322 ACPI_CONVERSION_TABLE *ConversionTable,
323 char *SourcePath,
324 char *TargetPath);

new/usr/src/common/acpica/tools/acpisrc/acpisrc.h 6

326 int
327 AsGetFile (
328 char *FileName,
329 char **FileBuffer,
330 UINT32 *FileSize);

332 int
333 AsPutFile (
334 char *Pathname,
335 char *FileBuffer,
336 UINT32 SystemFlags);

338 void
339 AsReplaceHeader (
340 char *Buffer,
341 char *NewHeader);

343 void
344 AsConvertFile (
345 ACPI_CONVERSION_TABLE *ConversionTable,
346 char *FileBuffer,
347 char *Filename,
348 ACPI_NATIVE_INT FileType);

350 ACPI_NATIVE_INT
351 AsProcessOneFile (
352 ACPI_CONVERSION_TABLE *ConversionTable,
353 char *SourcePath,
354 char *TargetPath,
355 int MaxPathLength,
356 char *Filename,
357 ACPI_NATIVE_INT FileType);

359 ACPI_NATIVE_INT
360 AsCheckForDirectory (
361 char *SourceDirPath,
362 char *TargetDirPath,
363 char *Filename,
364 char **SourcePath,
365 char **TargetPath);

367 void
368 AsRemoveExtraLines (
369 char *FileBuffer,
370 char *Filename);

372 void
373 AsRemoveSpacesAfterPeriod (
374 char *FileBuffer,
375 char *Filename);

377 BOOLEAN
378 AsMatchExactWord (
379 char *Word,
380 UINT32 WordLength);

382 void
383 AsPrint (
384 char *Message,
385 UINT32 Count,
386 char *Filename);

388 void
389 AsInsertPrefix (
390 char *Buffer,

new/usr/src/common/acpica/tools/acpisrc/acpisrc.h 7

391 char *Keyword,
392 UINT8 Type);

394 char *
395 AsInsertData (
396 char *Buffer,
397 char *BufferToAdd,
398 UINT32 LengthToAdd);

400 char *
401 AsRemoveData (
402 char *StartPointer,
403 char *EndPointer);

405 void
406 AsInsertCarriageReturns (
407 char *Buffer);

409 void
410 AsConvertToLineFeeds (
411 char *Buffer);

413 void
414 AsStrlwr (
415 char *SrcString);

new/usr/src/common/acpica/tools/acpisrc/ascase.c 1

**
 18586 Thu Dec 26 13:50:12 2013
new/usr/src/common/acpica/tools/acpisrc/ascase.c
update to acpica-unix2-20130927
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: ascase - Source conversion - lower/upper case utilities
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpisrc.h"

46 /* Local prototypes */

48 void
49 AsUppercaseTokens (
50 char *Buffer,
51 char *PrefixString);

54 /**
55 *
56 * FUNCTION: AsLowerCaseString
57 *
58 * DESCRIPTION: LowerCase all instances of a target string with a replacement
59 * string. Returns count of the strings replaced.
60 *

new/usr/src/common/acpica/tools/acpisrc/ascase.c 2

61 **/

63 int
64 AsLowerCaseString (
65 char *Target,
66 char *Buffer)
67 {
68 char *SubString1;
69 char *SubString2;
70 char *SubBuffer;
71 int TargetLength;
72 int LowerCaseCount = 0;
73 int i;

76 TargetLength = strlen (Target);

78 SubBuffer = Buffer;
79 SubString1 = Buffer;

81 while (SubString1)
82 {
83 /* Find the target string */

85 SubString1 = strstr (SubBuffer, Target);
86 if (!SubString1)
87 {
88 return (LowerCaseCount);
89 }

91 /*
92 * Check for translation escape string -- means to ignore
93 * blocks of code while replacing
94 */
95 if (Gbl_IgnoreTranslationEscapes)
96 {
97 SubString2 = NULL;
98 }
99 else
100 {
101 SubString2 = strstr (SubBuffer, AS_START_IGNORE);
102 }

104 if ((SubString2) &&
105 (SubString2 < SubString1))
106 {
107 /* Find end of the escape block starting at "Substring2" */

109 SubString2 = strstr (SubString2, AS_STOP_IGNORE);
110 if (!SubString2)
111 {
112 /* Didn’t find terminator */

114 return (LowerCaseCount);
115 }

117 /* Move buffer to end of escape block and continue */

119 SubBuffer = SubString2;
120 }

122 /* Do the actual replace if the target was found */

124 else
125 {
126 if (!AsMatchExactWord (SubString1, TargetLength))

new/usr/src/common/acpica/tools/acpisrc/ascase.c 3

127 {
128 SubBuffer = SubString1 + 1;
129 continue;
130 }

132 for (i = 0; i < TargetLength; i++)
133 {
134 SubString1[i] = (char) tolower ((int) SubString1[i]);
135 }

137 SubBuffer = SubString1 + TargetLength;

139 if ((Gbl_WidenDeclarations) && (!Gbl_StructDefs))
140 {
141 if ((SubBuffer[0] == ’ ’) && (SubBuffer[1] == ’ ’))
142 {
143 AsInsertData (SubBuffer, " ", 8);
144 }
145 }

147 LowerCaseCount++;
148 }
149 }

151 return (LowerCaseCount);
152 }

155 /**
156 *
157 * FUNCTION: AsMixedCaseToUnderscores
158 *
159 * DESCRIPTION: Converts mixed case identifiers to underscored identifiers.
160 * for example,
161 *
162 * ThisUsefullyNamedIdentifier becomes:
163 *
164 * this_usefully_named_identifier
165 *
166 **/

168 void
169 AsMixedCaseToUnderscores (
170 char *Buffer,
171 char *Filename)
172 {
173 UINT32 Length;
174 char *SubBuffer = Buffer;
175 char *TokenEnd;
176 char *TokenStart = NULL;
177 char *SubString;
178 UINT32 LineNumber = 1;
179 UINT32 Count;

182 /*
183 * Examine the entire buffer (contains the entire file)
184 * We are only interested in these tokens:
185 * Escape sequences - ignore entire sequence
186 * Single-quoted constants - ignore
187 * Quoted strings - ignore entire string
188 * Translation escape - starts with /,*,!
189 * Decimal and hex numeric constants - ignore entire token
190 * Entire uppercase token - ignore, it is a macro or define
191 * Starts with underscore, then a lowercase or digit: convert
192 */

new/usr/src/common/acpica/tools/acpisrc/ascase.c 4

193 while (*SubBuffer)
194 {
195 if (*SubBuffer == ’\n’)
196 {
197 LineNumber++;
198 SubBuffer++;
199 continue;
200 }

202 /* Ignore standard escape sequences (\n, \r, etc.) Not Hex or Octal esc

204 if (*SubBuffer == ’\\’)
205 {
206 SubBuffer += 2;
207 continue;
208 }

210 /* Ignore single-quoted characters */

212 if (*SubBuffer == ’\’’)
213 {
214 SubBuffer += 3;
215 continue;
216 }

218 /* Ignore standard double-quoted strings */

220 if (*SubBuffer == ’"’)
221 {
222 SubBuffer++;
223 Count = 0;
224 while (*SubBuffer != ’"’)
225 {
226 Count++;
227 if ((!*SubBuffer) ||
228 (Count > 8192))
229 {
230 printf ("Found an unterminated quoted string!, line %u: %s\n
231 LineNumber, Filename);
232 return;
233 }

235 /* Handle escape sequences */

237 if (*SubBuffer == ’\\’)
238 {
239 SubBuffer++;
240 }

242 SubBuffer++;
243 }
244 SubBuffer++;
245 continue;
246 }

248 /*
249 * Check for translation escape string. It means to ignore
250 * blocks of code during this code conversion.
251 */
252 if ((SubBuffer[0] == ’/’) &&
253 (SubBuffer[1] == ’*’) &&
254 (SubBuffer[2] == ’!’))
255 {
256 SubBuffer = strstr (SubBuffer, "!*/");
257 if (!SubBuffer)
258 {

new/usr/src/common/acpica/tools/acpisrc/ascase.c 5

259 printf ("Found an unterminated translation escape!, line %u: %s\
260 LineNumber, Filename);
261 return;
262 }
263 continue;
264 }

266 /* Ignore anything that starts with a number (0-9) */

268 if (isdigit ((int) *SubBuffer))
269 {
270 /* Ignore hex constants */

272 if ((SubBuffer[0] == ’0’) &&
273 ((SubBuffer[1] == ’x’) || (SubBuffer[1] == ’X’)))
274 {
275 SubBuffer += 2;
276 }

278 /* Skip over all digits, both decimal and hex */

280 while (isxdigit ((int) *SubBuffer))
281 {
282 SubBuffer++;
283 }
284 TokenStart = NULL;
285 continue;
286 }

288 /*
289 * Check for fully upper case identifiers. These are usually macros
290 * or defines. Allow decimal digits and embedded underscores.
291 */
292 if (isupper ((int) *SubBuffer))
293 {
294 SubString = SubBuffer + 1;
295 while ((isupper ((int) *SubString)) ||
296 (isdigit ((int) *SubString)) ||
297 (*SubString == ’_’))
298 {
299 SubString++;
300 }

302 /*
303 * For the next character, anything other than a lower case
304 * means that the identifier has terminated, and contains
305 * exclusively Uppers/Digits/Underscores. Ignore the entire
306 * identifier.
307 */
308 if (!islower ((int) *SubString))
309 {
310 SubBuffer = SubString + 1;
311 continue;
312 }
313 }

315 /*
316 * These forms may indicate an identifier that can be converted:
317 * <UpperCase><LowerCase> (Ax)
318 * <UpperCase><Number> (An)
319 */
320 if (isupper ((int) SubBuffer[0]) &&
321 ((islower ((int) SubBuffer[1])) || isdigit ((int) SubBuffer[1])))
322 {
323 TokenStart = SubBuffer;
324 SubBuffer++;

new/usr/src/common/acpica/tools/acpisrc/ascase.c 6

326 while (1)
327 {
328 /* Walk over the lower case letters and decimal digits */

330 while (islower ((int) *SubBuffer) ||
331 isdigit ((int) *SubBuffer))
332 {
333 SubBuffer++;
334 }

336 /* Check for end of line or end of token */

338 if (*SubBuffer == ’\n’)
339 {
340 LineNumber++;
341 break;
342 }

344 if (*SubBuffer == ’ ’)
345 {
346 /* Check for form "Axx - " in a parameter header description

348 while (*SubBuffer == ’ ’)
349 {
350 SubBuffer++;
351 }

353 SubBuffer--;
354 if ((SubBuffer[1] == ’-’) &&
355 (SubBuffer[2] == ’ ’))
356 {
357 if (TokenStart)
358 {
359 *TokenStart = (char) tolower ((int) *TokenStart);
360 }
361 }
362 break;
363 }

365 /*
366 * Ignore these combinations:
367 * <Letter><Digit><UpperCase>
368 * <Digit><Digit><UpperCase>
369 * <Underscore><Digit><UpperCase>
370 */
371 if (isdigit ((int) *SubBuffer))
372 {
373 if (isalnum ((int) *(SubBuffer-1)) ||
374 *(SubBuffer-1) == ’_’)
375 {
376 break;
377 }
378 }

380 /* Ignore token if next character is not uppercase or digit */

382 if (!isupper ((int) *SubBuffer) &&
383 !isdigit ((int) *SubBuffer))
384 {
385 break;
386 }

388 /*
389 * Form <UpperCase><LowerCaseLetters><UpperCase> (AxxB):
390 * Convert leading character of the token to lower case

new/usr/src/common/acpica/tools/acpisrc/ascase.c 7

391 */
392 if (TokenStart)
393 {
394 *TokenStart = (char) tolower ((int) *TokenStart);
395 TokenStart = NULL;
396 }

398 /* Find the end of this identifier (token) */

400 TokenEnd = SubBuffer - 1;
401 while ((isalnum ((int) *TokenEnd)) ||
402 (*TokenEnd == ’_’))
403 {
404 TokenEnd++;
405 }

407 SubString = TokenEnd;
408 Length = 0;

410 while (*SubString != ’\n’)
411 {
412 /*
413 * If we have at least two trailing spaces, we can get rid o
414 * one to make up for the newly inserted underscore. This wi
415 * help preserve the alignment of the text
416 */
417 if ((SubString[0] == ’ ’) &&
418 (SubString[1] == ’ ’))
419 {
420 Length = SubString - SubBuffer - 1;
421 break;
422 }

424 SubString++;
425 }

427 if (!Length)
428 {
429 Length = strlen (&SubBuffer[0]);
430 }

432 /*
433 * Within this identifier, convert this pair of letters that
434 * matches the form:
435 *
436 * <LowerCase><UpperCase>
437 * to
438 * <LowerCase><Underscore><LowerCase>
439 */
440 Gbl_MadeChanges = TRUE;

442 /* Insert the underscore */

444 memmove (&SubBuffer[1], &SubBuffer[0], Length + 1);
445 SubBuffer[0] = ’_’;

447 /*
448 * If we have <UpperCase><UpperCase>, leave them as-is
449 * Enables transforms like:
450 * LocalFADT -> local_FADT
451 */
452 if (isupper ((int) SubBuffer[2]))
453 {
454 SubBuffer += 1;
455 break;
456 }

new/usr/src/common/acpica/tools/acpisrc/ascase.c 8

458 /* Lower case the original upper case letter */

460 SubBuffer[1] = (char) tolower ((int) SubBuffer[1]);
461 SubBuffer += 2;
462 }
463 }

465 SubBuffer++;
466 }
467 }

470 /**
471 *
472 * FUNCTION: AsLowerCaseIdentifiers
473 *
474 * DESCRIPTION: Converts mixed case identifiers to lower case. Leaves comments,
475 * quoted strings, and all-upper-case macros alone.
476 *
477 **/

479 void
480 AsLowerCaseIdentifiers (
481 char *Buffer)
482 {
483 char *SubBuffer = Buffer;

486 while (*SubBuffer)
487 {
488 /*
489 * Check for translation escape string -- means to ignore
490 * blocks of code while replacing
491 */
492 if ((SubBuffer[0] == ’/’) &&
493 (SubBuffer[1] == ’*’) &&
494 (SubBuffer[2] == ’!’))
495 {
496 SubBuffer = strstr (SubBuffer, "!*/");
497 if (!SubBuffer)
498 {
499 return;
500 }
501 }

503 /* Ignore comments */

505 if ((SubBuffer[0] == ’/’) &&
506 (SubBuffer[1] == ’*’))
507 {
508 SubBuffer = strstr (SubBuffer, "*/");
509 if (!SubBuffer)
510 {
511 return;
512 }

514 SubBuffer += 2;
515 }

517 /* Ignore quoted strings */

519 if ((SubBuffer[0] == ’\"’) && (SubBuffer[1] != ’\’’))
520 {
521 SubBuffer++;

new/usr/src/common/acpica/tools/acpisrc/ascase.c 9

523 /* Find the closing quote */

525 while (SubBuffer[0])
526 {
527 /* Ignore escaped quote characters */

529 if (SubBuffer[0] == ’\\’)
530 {
531 SubBuffer++;
532 }
533 else if (SubBuffer[0] == ’\"’)
534 {
535 SubBuffer++;
536 break;
537 }
538 SubBuffer++;
539 }
540 }

542 if (!SubBuffer[0])
543 {
544 return;
545 }

547 /*
548 * Only lower case if we have an upper followed by a lower
549 * This leaves the all-uppercase things (macros, etc.) intact
550 */
551 if ((isupper ((int) SubBuffer[0])) &&
552 (islower ((int) SubBuffer[1])))
553 {
554 Gbl_MadeChanges = TRUE;
555 *SubBuffer = (char) tolower ((int) *SubBuffer);
556 }

558 SubBuffer++;
559 }
560 }

563 /**
564 *
565 * FUNCTION: AsUppercaseTokens
566 *
567 * DESCRIPTION: Force to uppercase all tokens that begin with the prefix string.
568 * used to convert mixed-case macros and constants to uppercase.
569 *
570 **/

572 void
573 AsUppercaseTokens (
574 char *Buffer,
575 char *PrefixString)
576 {
577 char *SubBuffer;
578 char *TokenEnd;
579 char *SubString;
580 int i;
581 UINT32 Length;

584 SubBuffer = Buffer;

586 while (SubBuffer)
587 {
588 SubBuffer = strstr (SubBuffer, PrefixString);

new/usr/src/common/acpica/tools/acpisrc/ascase.c 10

589 if (SubBuffer)
590 {
591 TokenEnd = SubBuffer;
592 while ((isalnum ((int) *TokenEnd)) || (*TokenEnd == ’_’))
593 {
594 TokenEnd++;
595 }

597 for (i = 0; i < (TokenEnd - SubBuffer); i++)
598 {
599 if ((islower ((int) SubBuffer[i])) &&
600 (isupper ((int) SubBuffer[i+1])))
601 {

603 SubString = TokenEnd;
604 Length = 0;

606 while (*SubString != ’\n’)
607 {
608 if ((SubString[0] == ’ ’) &&
609 (SubString[1] == ’ ’))
610 {
611 Length = SubString - &SubBuffer[i] - 2;
612 break;
613 }

615 SubString++;
616 }

618 if (!Length)
619 {
620 Length = strlen (&SubBuffer[i+1]);
621 }

623 memmove (&SubBuffer[i+2], &SubBuffer[i+1], (Length+1));
624 SubBuffer[i+1] = ’_’;
625 i +=2;
626 TokenEnd++;
627 }
628 }

630 for (i = 0; i < (TokenEnd - SubBuffer); i++)
631 {
632 SubBuffer[i] = (char) toupper ((int) SubBuffer[i]);
633 }

635 SubBuffer = TokenEnd;
636 }
637 }
638 }

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 1

**
 39065 Thu Dec 26 13:50:12 2013
new/usr/src/common/acpica/tools/acpisrc/asconvrt.c
update to acpica-unix2-20130927
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: asconvrt - Source conversion code
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpisrc.h"

46 /* Local prototypes */

48 char *
49 AsCheckAndSkipLiterals (
50 char *Buffer,
51 UINT32 *TotalLines);

53 UINT32
54 AsCountLines (
55 char *Buffer,
56 char *Filename);

58 /* Opening signature of the Intel legal header */

60 char *HeaderBegin = "/***

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 2

63 /**
64 *
65 * FUNCTION: AsRemoveExtraLines
66 *
67 * DESCRIPTION: Remove all extra lines at the start and end of the file.
68 *
69 **/

71 void
72 AsRemoveExtraLines (
73 char *FileBuffer,
74 char *Filename)
75 {
76 char *FileEnd;
77 int Length;

80 /* Remove any extra lines at the start of the file */

82 while (*FileBuffer == ’\n’)
83 {
84 printf ("Removing extra line at start of file: %s\n", Filename);
85 AsRemoveData (FileBuffer, FileBuffer + 1);
86 }

88 /* Remove any extra lines at the end of the file */

90 Length = strlen (FileBuffer);
91 FileEnd = FileBuffer + (Length - 2);

93 while (*FileEnd == ’\n’)
94 {
95 printf ("Removing extra line at end of file: %s\n", Filename);
96 AsRemoveData (FileEnd, FileEnd + 1);
97 FileEnd--;
98 }
99 }

102 /**
103 *
104 * FUNCTION: AsRemoveSpacesAfterPeriod
105 *
106 * DESCRIPTION: Remove an extra space after a period.
107 *
108 **/

110 void
111 AsRemoveSpacesAfterPeriod (
112 char *FileBuffer,
113 char *Filename)
114 {
115 int ReplaceCount = 0;
116 char *Possible;

119 Possible = FileBuffer;
120 while (Possible)
121 {
122 Possible = strstr (Possible, ". ");
123 if (Possible)
124 {
125 if ((*(Possible -1) == ’.’) ||
126 (*(Possible -1) == ’\"’) ||

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 3

127 (*(Possible -1) == ’\n’))
128 {
129 Possible += 3;
130 continue;
131 }

133 Possible = AsReplaceData (Possible, 3, ". ", 2);
134 ReplaceCount++;
135 }
136 }

138 if (ReplaceCount)
139 {
140 printf ("Removed %d extra blanks after a period: %s\n",
141 ReplaceCount, Filename);
142 }
143 }

146 /**
147 *
148 * FUNCTION: AsMatchExactWord
149 *
150 * DESCRIPTION: Check previous and next characters for whitespace
151 *
152 **/

154 BOOLEAN
155 AsMatchExactWord (
156 char *Word,
157 UINT32 WordLength)
158 {
159 char NextChar;
160 char PrevChar;

163 NextChar = Word[WordLength];
164 PrevChar = * (Word -1);

166 if (isalnum ((int) NextChar) ||
167 (NextChar == ’_’) ||
168 isalnum ((int) PrevChar) ||
169 (PrevChar == ’_’))
170 {
171 return (FALSE);
172 }

174 return (TRUE);
175 }

178 /**
179 *
180 * FUNCTION: AsPrint
181 *
182 * DESCRIPTION: Common formatted print
183 *
184 **/

186 void
187 AsPrint (
188 char *Message,
189 UINT32 Count,
190 char *Filename)
191 {

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 4

193 if (Gbl_QuietMode)
194 {
195 return;
196 }

198 printf ("-- %4u %28.28s : %s\n", Count, Message, Filename);
199 }

202 /**
203 *
204 * FUNCTION: AsCheckAndSkipLiterals
205 *
206 * DESCRIPTION: Generic routine to skip comments and quoted string literals.
207 * Keeps a line count.
208 *
209 **/

211 char *
212 AsCheckAndSkipLiterals (
213 char *Buffer,
214 UINT32 *TotalLines)
215 {
216 UINT32 NewLines = 0;
217 char *SubBuffer = Buffer;
218 char *LiteralEnd;

221 /* Ignore comments */

223 if ((SubBuffer[0] == ’/’) &&
224 (SubBuffer[1] == ’*’))
225 {
226 LiteralEnd = strstr (SubBuffer, "*/");
227 SubBuffer += 2; /* Get past comment opening */

229 if (!LiteralEnd)
230 {
231 return (SubBuffer);
232 }

234 while (SubBuffer < LiteralEnd)
235 {
236 if (*SubBuffer == ’\n’)
237 {
238 NewLines++;
239 }

241 SubBuffer++;
242 }

244 SubBuffer += 2; /* Get past comment close */
245 }

247 /* Ignore quoted strings */

249 else if (*SubBuffer == ’\"’)
250 {
251 SubBuffer++;
252 LiteralEnd = AsSkipPastChar (SubBuffer, ’\"’);
253 if (!LiteralEnd)
254 {
255 return (SubBuffer);
256 }
257 }

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 5

259 if (TotalLines)
260 {
261 (*TotalLines) += NewLines;
262 }
263 return (SubBuffer);
264 }

267 /**
268 *
269 * FUNCTION: AsAsCheckForBraces
270 *
271 * DESCRIPTION: Check for an open brace after each if statement
272 *
273 **/

275 void
276 AsCheckForBraces (
277 char *Buffer,
278 char *Filename)
279 {
280 char *SubBuffer = Buffer;
281 char *NextBrace;
282 char *NextSemicolon;
283 char *NextIf;
284 UINT32 TotalLines = 1;

287 while (*SubBuffer)
288 {

290 SubBuffer = AsCheckAndSkipLiterals (SubBuffer, &TotalLines);

292 if (*SubBuffer == ’\n’)
293 {
294 TotalLines++;
295 }
296 else if (!(strncmp (" if", SubBuffer, 3)))
297 {
298 SubBuffer += 2;
299 NextBrace = strstr (SubBuffer, "{");
300 NextSemicolon = strstr (SubBuffer, ";");
301 NextIf = strstr (SubBuffer, " if");

303 if ((!NextBrace) ||
304 (NextSemicolon && (NextBrace > NextSemicolon)) ||
305 (NextIf && (NextBrace > NextIf)))
306 {
307 Gbl_MissingBraces++;

309 if (!Gbl_QuietMode)
310 {
311 printf ("Missing braces for <if>, line %u: %s\n", TotalLines
312 }
313 }
314 }
315 else if (!(strncmp (" else if", SubBuffer, 8)))
316 {
317 SubBuffer += 7;
318 NextBrace = strstr (SubBuffer, "{");
319 NextSemicolon = strstr (SubBuffer, ";");
320 NextIf = strstr (SubBuffer, " if");

322 if ((!NextBrace) ||
323 (NextSemicolon && (NextBrace > NextSemicolon)) ||
324 (NextIf && (NextBrace > NextIf)))

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 6

325 {
326 Gbl_MissingBraces++;

328 if (!Gbl_QuietMode)
329 {
330 printf ("Missing braces for <if>, line %u: %s\n", TotalLines
331 }
332 }
333 }
334 else if (!(strncmp (" else", SubBuffer, 5)))
335 {
336 SubBuffer += 4;
337 NextBrace = strstr (SubBuffer, "{");
338 NextSemicolon = strstr (SubBuffer, ";");
339 NextIf = strstr (SubBuffer, " if");

341 if ((!NextBrace) ||
342 (NextSemicolon && (NextBrace > NextSemicolon)) ||
343 (NextIf && (NextBrace > NextIf)))
344 {
345 Gbl_MissingBraces++;

347 if (!Gbl_QuietMode)
348 {
349 printf ("Missing braces for <else>, line %u: %s\n", TotalLin
350 }
351 }
352 }

354 SubBuffer++;
355 }
356 }

359 /**
360 *
361 * FUNCTION: AsTrimLines
362 *
363 * DESCRIPTION: Remove extra blanks from the end of source lines. Does not
364 * check for tabs.
365 *
366 **/

368 void
369 AsTrimLines (
370 char *Buffer,
371 char *Filename)
372 {
373 char *SubBuffer = Buffer;
374 char *StartWhiteSpace = NULL;
375 UINT32 SpaceCount = 0;

378 while (*SubBuffer)
379 {
380 while (*SubBuffer != ’\n’)
381 {
382 if (!*SubBuffer)
383 {
384 goto Exit;
385 }

387 if (*SubBuffer == ’ ’)
388 {
389 if (!StartWhiteSpace)
390 {

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 7

391 StartWhiteSpace = SubBuffer;
392 }
393 }
394 else
395 {
396 StartWhiteSpace = NULL;
397 }

399 SubBuffer++;
400 }

402 if (StartWhiteSpace)
403 {
404 SpaceCount += (SubBuffer - StartWhiteSpace);

406 /* Remove the spaces */

408 SubBuffer = AsRemoveData (StartWhiteSpace, SubBuffer);
409 StartWhiteSpace = NULL;
410 }

412 SubBuffer++;
413 }

416 Exit:
417 if (SpaceCount)
418 {
419 Gbl_MadeChanges = TRUE;
420 AsPrint ("Extraneous spaces removed", SpaceCount, Filename);
421 }
422 }

425 /**
426 *
427 * FUNCTION: AsTrimWhitespace
428 *
429 * DESCRIPTION: Remove "excess" blank lines - any more than 2 blank lines.
430 * this can happen during the translation when lines are removed.
431 *
432 **/

434 void
435 AsTrimWhitespace (
436 char *Buffer)
437 {
438 int ReplaceCount = 1;

441 while (ReplaceCount)
442 {
443 ReplaceCount = AsReplaceString ("\n\n\n\n", "\n\n\n", REPLACE_SUBSTRINGS
444 }
445 }

448 /**
449 *
450 * FUNCTION: AsReplaceHeader
451 *
452 * DESCRIPTION: Replace the default Intel legal header with a new header
453 *
454 **/

456 void

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 8

457 AsReplaceHeader (
458 char *Buffer,
459 char *NewHeader)
460 {
461 char *SubBuffer;
462 char *TokenEnd;

465 /* Find the original header */

467 SubBuffer = strstr (Buffer, HeaderBegin);
468 if (!SubBuffer)
469 {
470 return;
471 }

473 /* Find the end of the original header */

475 TokenEnd = strstr (SubBuffer, "*/");
476 TokenEnd = AsSkipPastChar (TokenEnd, ’\n’);

478 /* Delete old header, insert new one */

480 AsReplaceData (SubBuffer, TokenEnd - SubBuffer, NewHeader, strlen (NewHeader
481 }

484 /**
485 *
486 * FUNCTION: AsReplaceString
487 *
488 * DESCRIPTION: Replace all instances of a target string with a replacement
489 * string. Returns count of the strings replaced.
490 *
491 **/

493 int
494 AsReplaceString (
495 char *Target,
496 char *Replacement,
497 UINT8 Type,
498 char *Buffer)
499 {
500 char *SubString1;
501 char *SubString2;
502 char *SubBuffer;
503 int TargetLength;
504 int ReplacementLength;
505 int ReplaceCount = 0;

508 TargetLength = strlen (Target);
509 ReplacementLength = strlen (Replacement);

511 SubBuffer = Buffer;
512 SubString1 = Buffer;

514 while (SubString1)
515 {
516 /* Find the target string */

518 SubString1 = strstr (SubBuffer, Target);
519 if (!SubString1)
520 {
521 return (ReplaceCount);
522 }

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 9

524 /*
525 * Check for translation escape string -- means to ignore
526 * blocks of code while replacing
527 */
528 if (Gbl_IgnoreTranslationEscapes)
529 {
530 SubString2 = NULL;
531 }
532 else
533 {
534 SubString2 = strstr (SubBuffer, AS_START_IGNORE);
535 }

537 if ((SubString2) &&
538 (SubString2 < SubString1))
539 {
540 /* Find end of the escape block starting at "Substring2" */

542 SubString2 = strstr (SubString2, AS_STOP_IGNORE);
543 if (!SubString2)
544 {
545 /* Didn’t find terminator */

547 return (ReplaceCount);
548 }

550 /* Move buffer to end of escape block and continue */

552 SubBuffer = SubString2;
553 }

555 /* Do the actual replace if the target was found */

557 else
558 {
559 if ((Type & REPLACE_MASK) == REPLACE_WHOLE_WORD)
560 {
561 if (!AsMatchExactWord (SubString1, TargetLength))
562 {
563 SubBuffer = SubString1 + 1;
564 continue;
565 }
566 }

568 SubBuffer = AsReplaceData (SubString1, TargetLength, Replacement, Re

570 if ((Type & EXTRA_INDENT_C) &&
571 (!Gbl_StructDefs))
572 {
573 SubBuffer = AsInsertData (SubBuffer, " ", 8);
574 }

576 ReplaceCount++;
577 }
578 }

580 return (ReplaceCount);
581 }

584 /**
585 *
586 * FUNCTION: AsConvertToLineFeeds
587 *
588 * DESCRIPTION:

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 10

589 *
590 **/

592 void
593 AsConvertToLineFeeds (
594 char *Buffer)
595 {
596 char *SubString;
597 char *SubBuffer;

600 SubBuffer = Buffer;
601 SubString = Buffer;

603 while (SubString)
604 {
605 /* Find the target string */

607 SubString = strstr (SubBuffer, "\r\n");
608 if (!SubString)
609 {
610 return;
611 }

613 SubBuffer = AsReplaceData (SubString, 1, NULL, 0);
614 }
615 return;
616 }

619 /**
620 *
621 * FUNCTION: AsInsertCarriageReturns
622 *
623 * DESCRIPTION:
624 *
625 **/

627 void
628 AsInsertCarriageReturns (
629 char *Buffer)
630 {
631 char *SubString;
632 char *SubBuffer;

635 SubBuffer = Buffer;
636 SubString = Buffer;

638 while (SubString)
639 {
640 /* Find the target string */

642 SubString = strstr (SubBuffer, "\n");
643 if (!SubString)
644 {
645 return;
646 }

648 SubBuffer = AsInsertData (SubString, "\r", 1);
649 SubBuffer += 1;
650 }
651 return;
652 }

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 11

655 /**
656 *
657 * FUNCTION: AsBracesOnSameLine
658 *
659 * DESCRIPTION: Move opening braces up to the same line as an if, for, else,
660 * or while statement (leave function opening brace on separate
661 * line).
662 *
663 **/

665 void
666 AsBracesOnSameLine (
667 char *Buffer)
668 {
669 char *SubBuffer = Buffer;
670 char *Beginning;
671 char *StartOfThisLine;
672 char *Next;
673 BOOLEAN BlockBegin = TRUE;

676 while (*SubBuffer)
677 {
678 /* Ignore comments */

680 if ((SubBuffer[0] == ’/’) &&
681 (SubBuffer[1] == ’*’))
682 {
683 SubBuffer = strstr (SubBuffer, "*/");
684 if (!SubBuffer)
685 {
686 return;
687 }

689 SubBuffer += 2;
690 continue;
691 }

693 /* Ignore quoted strings */

695 if (*SubBuffer == ’\"’)
696 {
697 SubBuffer++;
698 SubBuffer = AsSkipPastChar (SubBuffer, ’\"’);
699 if (!SubBuffer)
700 {
701 return;
702 }
703 }

705 if (!strncmp ("\n}", SubBuffer, 2))
706 {
707 /*
708 * A newline followed by a closing brace closes a function
709 * or struct or initializer block
710 */
711 BlockBegin = TRUE;
712 }

714 /*
715 * Move every standalone brace up to the previous line
716 * Check for digit will ignore initializer lists surrounded by braces.
717 * This will work until we we need more complex detection.
718 */
719 if ((*SubBuffer == ’{’) && !isdigit ((int) SubBuffer[1]))
720 {

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 12

721 if (BlockBegin)
722 {
723 BlockBegin = FALSE;
724 }
725 else
726 {
727 /*
728 * Backup to previous non-whitespace
729 */
730 Beginning = SubBuffer - 1;
731 while ((*Beginning == ’ ’) ||
732 (*Beginning == ’\n’))
733 {
734 Beginning--;
735 }

737 StartOfThisLine = Beginning;
738 while (*StartOfThisLine != ’\n’)
739 {
740 StartOfThisLine--;
741 }

743 /*
744 * Move the brace up to the previous line, UNLESS:
745 *
746 * 1) There is a conditional compile on the line (starts with ’#
747 * 2) Previous line ends with an ’=’ (Start of initializer block
748 * 3) Previous line ends with a comma (part of an init list)
749 * 4) Previous line ends with a backslash (part of a macro)
750 */
751 if ((StartOfThisLine[1] != ’#’) &&
752 (*Beginning != ’\\’) &&
753 (*Beginning != ’/’) &&
754 (*Beginning != ’{’) &&
755 (*Beginning != ’=’) &&
756 (*Beginning != ’,’))
757 {
758 Beginning++;
759 SubBuffer++;

761 Gbl_MadeChanges = TRUE;

763 #ifdef ADD_EXTRA_WHITESPACE
764 AsReplaceData (Beginning, SubBuffer - Beginning, " {\n", 3);
765 #else
766 /* Find non-whitespace start of next line */

768 Next = SubBuffer + 1;
769 while ((*Next == ’ ’) ||
770 (*Next == ’\t’))
771 {
772 Next++;
773 }

775 /* Find non-whitespace start of this line */

777 StartOfThisLine++;
778 while ((*StartOfThisLine == ’ ’) ||
779 (*StartOfThisLine == ’\t’))
780 {
781 StartOfThisLine++;
782 }

784 /*
785 * Must be a single-line comment to need more whitespace
786 * Even then, we don’t need more if the previous statement

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 13

787 * is an "else".
788 */
789 if ((Next[0] == ’/’) &&
790 (Next[1] == ’*’) &&
791 (Next[2] != ’\n’) &&

793 (!strncmp (StartOfThisLine, "else if", 7) ||
794 !strncmp (StartOfThisLine, "else while", 10) ||
795 strncmp (StartOfThisLine, "else", 4)))
796 {
797 AsReplaceData (Beginning, SubBuffer - Beginning, " {\n",
798 }
799 else
800 {
801 AsReplaceData (Beginning, SubBuffer - Beginning, " {", 2
802 }
803 #endif
804 }
805 }
806 }

808 SubBuffer++;
809 }
810 }

813 /**
814 *
815 * FUNCTION: AsTabify4
816 *
817 * DESCRIPTION: Convert the text to tabbed text. Alignment of text is
818 * preserved.
819 *
820 **/

822 void
823 AsTabify4 (
824 char *Buffer)
825 {
826 char *SubBuffer = Buffer;
827 char *NewSubBuffer;
828 UINT32 SpaceCount = 0;
829 UINT32 Column = 0;

832 while (*SubBuffer)
833 {
834 if (*SubBuffer == ’\n’)
835 {
836 Column = 0;
837 }
838 else
839 {
840 Column++;
841 }

843 /* Ignore comments */

845 if ((SubBuffer[0] == ’/’) &&
846 (SubBuffer[1] == ’*’))
847 {
848 SubBuffer = strstr (SubBuffer, "*/");
849 if (!SubBuffer)
850 {
851 return;
852 }

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 14

854 SubBuffer += 2;
855 continue;
856 }

858 /* Ignore quoted strings */

860 if (*SubBuffer == ’\"’)
861 {
862 SubBuffer++;
863 SubBuffer = AsSkipPastChar (SubBuffer, ’\"’);
864 if (!SubBuffer)
865 {
866 return;
867 }
868 SpaceCount = 0;
869 }

871 if (*SubBuffer == ’ ’)
872 {
873 SpaceCount++;

875 if (SpaceCount >= 4)
876 {
877 SpaceCount = 0;

879 NewSubBuffer = (SubBuffer + 1) - 4;
880 *NewSubBuffer = ’\t’;
881 NewSubBuffer++;

883 /* Remove the spaces */

885 SubBuffer = AsRemoveData (NewSubBuffer, SubBuffer + 1);
886 }

888 if ((Column % 4) == 0)
889 {
890 SpaceCount = 0;
891 }
892 }
893 else
894 {
895 SpaceCount = 0;
896 }

898 SubBuffer++;
899 }
900 }

903 /**
904 *
905 * FUNCTION: AsTabify8
906 *
907 * DESCRIPTION: Convert the text to tabbed text. Alignment of text is
908 * preserved.
909 *
910 **/

912 void
913 AsTabify8 (
914 char *Buffer)
915 {
916 char *SubBuffer = Buffer;
917 char *NewSubBuffer;
918 char *CommentEnd = NULL;

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 15

919 UINT32 SpaceCount = 0;
920 UINT32 Column = 0;
921 UINT32 TabCount = 0;
922 UINT32 LastLineTabCount = 0;
923 UINT32 LastLineColumnStart = 0;
924 UINT32 ThisColumnStart = 0;
925 UINT32 ThisTabCount = 0;
926 char *FirstNonBlank = NULL;

929 while (*SubBuffer)
930 {
931 if (*SubBuffer == ’\n’)
932 {
933 /* This is a standalone blank line */

935 FirstNonBlank = NULL;
936 Column = 0;
937 SpaceCount = 0;
938 TabCount = 0;
939 SubBuffer++;
940 continue;
941 }

943 if (!FirstNonBlank)
944 {
945 /* Find the first non-blank character on this line */

947 FirstNonBlank = SubBuffer;
948 while (*FirstNonBlank == ’ ’)
949 {
950 FirstNonBlank++;
951 }

953 /*
954 * This mechanism limits the difference in tab counts from
955 * line to line. It helps avoid the situation where a second
956 * continuation line (which was indented correctly for tabs=4) would
957 * get indented off the screen if we just blindly converted to tabs.
958 */
959 ThisColumnStart = FirstNonBlank - SubBuffer;

961 if (LastLineTabCount == 0)
962 {
963 ThisTabCount = 0;
964 }
965 else if (ThisColumnStart == LastLineColumnStart)
966 {
967 ThisTabCount = LastLineTabCount -1;
968 }
969 else
970 {
971 ThisTabCount = LastLineTabCount + 1;
972 }
973 }

975 Column++;

977 /* Check if we are in a comment */

979 if ((SubBuffer[0] == ’*’) &&
980 (SubBuffer[1] == ’/’))
981 {
982 SpaceCount = 0;
983 SubBuffer += 2;

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 16

985 if (*SubBuffer == ’\n’)
986 {
987 if (TabCount > 0)
988 {
989 LastLineTabCount = TabCount;
990 TabCount = 0;
991 }
992 FirstNonBlank = NULL;
993 LastLineColumnStart = ThisColumnStart;
994 SubBuffer++;
995 }

997 continue;
998 }

1000 /* Check for comment open */

1002 if ((SubBuffer[0] == ’/’) &&
1003 (SubBuffer[1] == ’*’))
1004 {
1005 /* Find the end of the comment, it must exist */

1007 CommentEnd = strstr (SubBuffer, "*/");
1008 if (!CommentEnd)
1009 {
1010 return;
1011 }

1013 /* Toss the rest of this line or single-line comment */

1015 while ((SubBuffer < CommentEnd) &&
1016 (*SubBuffer != ’\n’))
1017 {
1018 SubBuffer++;
1019 }

1021 if (*SubBuffer == ’\n’)
1022 {
1023 if (TabCount > 0)
1024 {
1025 LastLineTabCount = TabCount;
1026 TabCount = 0;
1027 }
1028 FirstNonBlank = NULL;
1029 LastLineColumnStart = ThisColumnStart;
1030 }

1032 SpaceCount = 0;
1033 continue;
1034 }

1036 /* Ignore quoted strings */

1038 if ((!CommentEnd) && (*SubBuffer == ’\"’))
1039 {
1040 SubBuffer++;
1041 SubBuffer = AsSkipPastChar (SubBuffer, ’\"’);
1042 if (!SubBuffer)
1043 {
1044 return;
1045 }
1046 SpaceCount = 0;
1047 }

1049 if (*SubBuffer != ’ ’)
1050 {

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 17

1051 /* Not a space, skip to end of line */

1053 SubBuffer = AsSkipUntilChar (SubBuffer, ’\n’);
1054 if (!SubBuffer)
1055 {
1056 return;
1057 }
1058 if (TabCount > 0)
1059 {
1060 LastLineTabCount = TabCount;
1061 TabCount = 0;
1062 }

1064 FirstNonBlank = NULL;
1065 LastLineColumnStart = ThisColumnStart;
1066 Column = 0;
1067 SpaceCount = 0;
1068 }
1069 else
1070 {
1071 /* Another space */

1073 SpaceCount++;

1075 if (SpaceCount >= 4)
1076 {
1077 /* Replace this group of spaces with a tab character */

1079 SpaceCount = 0;

1081 NewSubBuffer = SubBuffer - 3;

1083 if (TabCount <= ThisTabCount ? (ThisTabCount +1) : 0)
1084 {
1085 *NewSubBuffer = ’\t’;
1086 NewSubBuffer++;
1087 SubBuffer++;
1088 TabCount++;
1089 }

1091 /* Remove the spaces */

1093 SubBuffer = AsRemoveData (NewSubBuffer, SubBuffer);
1094 continue;
1095 }
1096 }

1098 SubBuffer++;
1099 }
1100 }

1103 /**
1104 *
1105 * FUNCTION: AsCountLines
1106 *
1107 * DESCRIPTION: Count the number of lines in the input buffer. Also count
1108 * the number of long lines (lines longer than 80 chars).
1109 *
1110 **/

1112 UINT32
1113 AsCountLines (
1114 char *Buffer,
1115 char *Filename)
1116 {

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 18

1117 char *SubBuffer = Buffer;
1118 char *EndOfLine;
1119 UINT32 LineCount = 0;
1120 UINT32 LongLineCount = 0;

1123 while (*SubBuffer)
1124 {
1125 EndOfLine = AsSkipUntilChar (SubBuffer, ’\n’);
1126 if (!EndOfLine)
1127 {
1128 Gbl_TotalLines += LineCount;
1129 return (LineCount);
1130 }

1132 if ((EndOfLine - SubBuffer) > 80)
1133 {
1134 LongLineCount++;
1135 VERBOSE_PRINT (("long: %.80s\n", SubBuffer));
1136 }

1138 LineCount++;
1139 SubBuffer = EndOfLine + 1;
1140 }

1142 if (LongLineCount)
1143 {
1144 VERBOSE_PRINT (("%u Lines longer than 80 found in %s\n", LongLineCount,
1145 Gbl_LongLines += LongLineCount;
1146 }

1148 Gbl_TotalLines += LineCount;
1149 return (LineCount);
1150 }

1153 /**
1154 *
1155 * FUNCTION: AsCountTabs
1156 *
1157 * DESCRIPTION: Simply count the number of tabs in the input file buffer
1158 *
1159 **/

1161 void
1162 AsCountTabs (
1163 char *Buffer,
1164 char *Filename)
1165 {
1166 UINT32 i;
1167 UINT32 TabCount = 0;

1170 for (i = 0; Buffer[i]; i++)
1171 {
1172 if (Buffer[i] == ’\t’)
1173 {
1174 TabCount++;
1175 }
1176 }

1178 if (TabCount)
1179 {
1180 AsPrint ("Tabs found", TabCount, Filename);
1181 Gbl_Tabs += TabCount;
1182 }

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 19

1184 AsCountLines (Buffer, Filename);
1185 }

1188 /**
1189 *
1190 * FUNCTION: AsCountNonAnsiComments
1191 *
1192 * DESCRIPTION: Count the number of "//" comments. This type of comment is
1193 * non-ANSI C.
1194 *
1195 **/

1197 void
1198 AsCountNonAnsiComments (
1199 char *Buffer,
1200 char *Filename)
1201 {
1202 char *SubBuffer = Buffer;
1203 UINT32 CommentCount = 0;

1206 while (SubBuffer)
1207 {
1208 SubBuffer = strstr (SubBuffer, "//");
1209 if (SubBuffer)
1210 {
1211 CommentCount++;
1212 SubBuffer += 2;
1213 }
1214 }

1216 if (CommentCount)
1217 {
1218 AsPrint ("Non-ANSI Comments found", CommentCount, Filename);
1219 Gbl_NonAnsiComments += CommentCount;
1220 }
1221 }

1224 /**
1225 *
1226 * FUNCTION: AsCountSourceLines
1227 *
1228 * DESCRIPTION: Count the number of C source lines. Defined by 1) not a
1229 * comment, and 2) not a blank line.
1230 *
1231 **/

1233 void
1234 AsCountSourceLines (
1235 char *Buffer,
1236 char *Filename)
1237 {
1238 char *SubBuffer = Buffer;
1239 UINT32 LineCount = 0;
1240 UINT32 WhiteCount = 0;
1241 UINT32 CommentCount = 0;

1244 while (*SubBuffer)
1245 {
1246 /* Detect comments (// comments are not used, non-ansii) */

1248 if ((SubBuffer[0] == ’/’) &&

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 20

1249 (SubBuffer[1] == ’*’))
1250 {
1251 SubBuffer += 2;

1253 /* First line of multi-line comment is often just whitespace */

1255 if (SubBuffer[0] == ’\n’)
1256 {
1257 WhiteCount++;
1258 SubBuffer++;
1259 }
1260 else
1261 {
1262 CommentCount++;
1263 }

1265 /* Find end of comment */

1267 while (SubBuffer[0] && SubBuffer[1] &&
1268 !(((SubBuffer[0] == ’*’) &&
1269 (SubBuffer[1] == ’/’))))
1270 {
1271 if (SubBuffer[0] == ’\n’)
1272 {
1273 CommentCount++;
1274 }

1276 SubBuffer++;
1277 }
1278 }

1280 /* A linefeed followed by a non-linefeed is a valid source line */

1282 else if ((SubBuffer[0] == ’\n’) &&
1283 (SubBuffer[1] != ’\n’))
1284 {
1285 LineCount++;
1286 }

1288 /* Two back-to-back linefeeds indicate a whitespace line */

1290 else if ((SubBuffer[0] == ’\n’) &&
1291 (SubBuffer[1] == ’\n’))
1292 {
1293 WhiteCount++;
1294 }

1296 SubBuffer++;
1297 }

1299 /* Adjust comment count for legal header */

1301 if (Gbl_HeaderSize < CommentCount)
1302 {
1303 CommentCount -= Gbl_HeaderSize;
1304 Gbl_HeaderLines += Gbl_HeaderSize;
1305 }

1307 Gbl_SourceLines += LineCount;
1308 Gbl_WhiteLines += WhiteCount;
1309 Gbl_CommentLines += CommentCount;

1311 VERBOSE_PRINT (("%u Comment %u White %u Code %u Lines in %s\n",
1312 CommentCount, WhiteCount, LineCount, LineCount+WhiteCount+Commen
1313 }

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 21

1316 /**
1317 *
1318 * FUNCTION: AsInsertPrefix
1319 *
1320 * DESCRIPTION: Insert struct or union prefixes
1321 *
1322 **/

1324 void
1325 AsInsertPrefix (
1326 char *Buffer,
1327 char *Keyword,
1328 UINT8 Type)
1329 {
1330 char *SubString;
1331 char *SubBuffer;
1332 char *EndKeyword;
1333 int InsertLength;
1334 char *InsertString;
1335 int TrailingSpaces;
1336 char LowerKeyword[128];
1337 int KeywordLength;

1340 switch (Type)
1341 {
1342 case SRC_TYPE_STRUCT:

1344 InsertString = "struct ";
1345 break;

1347 case SRC_TYPE_UNION:

1349 InsertString = "union ";
1350 break;

1352 default:

1354 return;
1355 }

1357 strcpy (LowerKeyword, Keyword);
1358 AsStrlwr (LowerKeyword);

1360 SubBuffer = Buffer;
1361 SubString = Buffer;
1362 InsertLength = strlen (InsertString);
1363 KeywordLength = strlen (Keyword);

1366 while (SubString)
1367 {
1368 /* Find an instance of the keyword */

1370 SubString = strstr (SubBuffer, LowerKeyword);
1371 if (!SubString)
1372 {
1373 return;
1374 }

1376 SubBuffer = SubString;

1378 /* Must be standalone word, not a substring */

1380 if (AsMatchExactWord (SubString, KeywordLength))

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 22

1381 {
1382 /* Make sure the keyword isn’t already prefixed with the insert */

1384 if (!strncmp (SubString - InsertLength, InsertString, InsertLength))
1385 {
1386 /* Add spaces if not already at the end-of-line */

1388 if (*(SubBuffer + KeywordLength) != ’\n’)
1389 {
1390 /* Already present, add spaces after to align structure memb

1392 #if 0
1393 /* ONLY FOR C FILES */
1394 AsInsertData (SubBuffer + KeywordLength, " ", 8);
1395 #endif
1396 }
1397 goto Next;
1398 }

1400 /* Make sure the keyword isn’t at the end of a struct/union */
1401 /* Note: This code depends on a single space after the brace */

1403 if (*(SubString - 2) == ’}’)
1404 {
1405 goto Next;
1406 }

1408 /* Prefix the keyword with the insert string */

1410 Gbl_MadeChanges = TRUE;

1412 /* Is there room for insertion */

1414 EndKeyword = SubString + strlen (LowerKeyword);

1416 TrailingSpaces = 0;
1417 while (EndKeyword[TrailingSpaces] == ’ ’)
1418 {
1419 TrailingSpaces++;
1420 }

1422 /*
1423 * Use "if (TrailingSpaces > 1)" if we want to ignore casts
1424 */
1425 SubBuffer = SubString + InsertLength;

1427 if (TrailingSpaces > InsertLength)
1428 {
1429 /* Insert the keyword */

1431 memmove (SubBuffer, SubString, KeywordLength);

1433 /* Insert the keyword */

1435 memmove (SubString, InsertString, InsertLength);
1436 }
1437 else
1438 {
1439 AsInsertData (SubString, InsertString, InsertLength);
1440 }
1441 }

1443 Next:
1444 SubBuffer += KeywordLength;
1445 }
1446 }

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 23

1448 #ifdef ACPI_FUTURE_IMPLEMENTATION
1449 /**
1450 *
1451 * FUNCTION: AsTrimComments
1452 *
1453 * DESCRIPTION: Finds 3-line comments with only a single line of text
1454 *
1455 **/

1457 void
1458 AsTrimComments (
1459 char *Buffer,
1460 char *Filename)
1461 {
1462 char *SubBuffer = Buffer;
1463 char *Ptr1;
1464 char *Ptr2;
1465 UINT32 LineCount;
1466 UINT32 ShortCommentCount = 0;

1469 while (1)
1470 {
1471 /* Find comment open, within procedure level */

1473 SubBuffer = strstr (SubBuffer, " /*");
1474 if (!SubBuffer)
1475 {
1476 goto Exit;
1477 }

1479 /* Find comment terminator */

1481 Ptr1 = strstr (SubBuffer, "*/");
1482 if (!Ptr1)
1483 {
1484 goto Exit;
1485 }

1487 /* Find next EOL (from original buffer) */

1489 Ptr2 = strstr (SubBuffer, "\n");
1490 if (!Ptr2)
1491 {
1492 goto Exit;
1493 }

1495 /* Ignore one-line comments */

1497 if (Ptr1 < Ptr2)
1498 {
1499 /* Normal comment, ignore and continue; */

1501 SubBuffer = Ptr2;
1502 continue;
1503 }

1505 /* Examine multi-line comment */

1507 LineCount = 1;
1508 while (Ptr1 > Ptr2)
1509 {
1510 /* Find next EOL */

1512 Ptr2++;

new/usr/src/common/acpica/tools/acpisrc/asconvrt.c 24

1513 Ptr2 = strstr (Ptr2, "\n");
1514 if (!Ptr2)
1515 {
1516 goto Exit;
1517 }

1519 LineCount++;
1520 }

1522 SubBuffer = Ptr1;

1524 if (LineCount <= 3)
1525 {
1526 ShortCommentCount++;
1527 }
1528 }

1531 Exit:

1533 if (ShortCommentCount)
1534 {
1535 AsPrint ("Short Comments found", ShortCommentCount, Filename);
1536 }
1537 }
1538 #endif

new/usr/src/common/acpica/tools/acpisrc/asfile.c 1

**
 22379 Thu Dec 26 13:50:12 2013
new/usr/src/common/acpica/tools/acpisrc/asfile.c
update to acpica-unix2-20130927
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: asfile - Main module for the acpi source processor utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpisrc.h"

46 /* Local prototypes */

48 void
49 AsDoWildcard (
50 ACPI_CONVERSION_TABLE *ConversionTable,
51 char *SourcePath,
52 char *TargetPath,
53 int MaxPathLength,
54 int FileType,
55 char *WildcardSpec);

57 BOOLEAN
58 AsDetectLoneLineFeeds (
59 char *Filename,
60 char *Buffer);

new/usr/src/common/acpica/tools/acpisrc/asfile.c 2

62 static ACPI_INLINE int
63 AsMaxInt (int a, int b)
64 {
65 return (a > b ? a : b);
66 }

69 /**
70 *
71 * FUNCTION: AsDoWildcard
72 *
73 * DESCRIPTION: Process files via wildcards
74 *
75 **/

77 void
78 AsDoWildcard (
79 ACPI_CONVERSION_TABLE *ConversionTable,
80 char *SourcePath,
81 char *TargetPath,
82 int MaxPathLength,
83 int FileType,
84 char *WildcardSpec)
85 {
86 void *DirInfo;
87 char *Filename;
88 char *SourceDirPath;
89 char *TargetDirPath;
90 char RequestedFileType;

93 if (FileType == FILE_TYPE_DIRECTORY)
94 {
95 RequestedFileType = REQUEST_DIR_ONLY;
96 }
97 else
98 {
99 RequestedFileType = REQUEST_FILE_ONLY;
100 }

102 VERBOSE_PRINT (("Checking for %s source files in directory \"%s\"\n",
103 WildcardSpec, SourcePath));

105 /* Open the directory for wildcard search */

107 DirInfo = AcpiOsOpenDirectory (SourcePath, WildcardSpec, RequestedFileType);
108 if (DirInfo)
109 {
110 /*
111 * Get all of the files that match both the
112 * wildcard and the requested file type
113 */
114 while ((Filename = AcpiOsGetNextFilename (DirInfo)))
115 {
116 /* Looking for directory files, must check file type */

118 switch (RequestedFileType)
119 {
120 case REQUEST_DIR_ONLY:

122 /* If we actually have a dir, process the subtree */

124 if (!AsCheckForDirectory (SourcePath, TargetPath, Filename,
125 &SourceDirPath, &TargetDirPath))
126 {

new/usr/src/common/acpica/tools/acpisrc/asfile.c 3

127 VERBOSE_PRINT (("Subdirectory: %s\n", Filename));

129 AsProcessTree (ConversionTable, SourceDirPath, TargetDirPath
130 free (SourceDirPath);
131 free (TargetDirPath);
132 }
133 break;

135 case REQUEST_FILE_ONLY:

137 /* Otherwise, this is a file, not a directory */

139 VERBOSE_PRINT (("File: %s\n", Filename));

141 AsProcessOneFile (ConversionTable, SourcePath, TargetPath,
142 MaxPathLength, Filename, FileType);
143 break;

145 default:

147 break;
148 }
149 }

151 /* Cleanup */

153 AcpiOsCloseDirectory (DirInfo);
154 }
155 }

158 /**
159 *
160 * FUNCTION: AsProcessTree
161 *
162 * DESCRIPTION: Process the directory tree. Files with the extension ".C" and
163 * ".H" are processed as the tree is traversed.
164 *
165 **/

167 ACPI_NATIVE_INT
168 AsProcessTree (
169 ACPI_CONVERSION_TABLE *ConversionTable,
170 char *SourcePath,
171 char *TargetPath)
172 {
173 int MaxPathLength;

176 MaxPathLength = AsMaxInt (strlen (SourcePath), strlen (TargetPath));

178 if (!(ConversionTable->Flags & FLG_NO_FILE_OUTPUT))
179 {
180 if (ConversionTable->Flags & FLG_LOWERCASE_DIRNAMES)
181 {
182 AsStrlwr (TargetPath);
183 }

185 VERBOSE_PRINT (("Creating Directory \"%s\"\n", TargetPath));
186 if (mkdir (TargetPath))
187 {
188 if (errno != EEXIST)
189 {
190 printf ("Could not create target directory\n");
191 return (-1);
192 }

new/usr/src/common/acpica/tools/acpisrc/asfile.c 4

193 }
194 }

196 /* Do the C source files */

198 AsDoWildcard (ConversionTable, SourcePath, TargetPath, MaxPathLength,
199 FILE_TYPE_SOURCE, "*.c");

201 /* Do the C header files */

203 AsDoWildcard (ConversionTable, SourcePath, TargetPath, MaxPathLength,
204 FILE_TYPE_HEADER, "*.h");

206 /* Do the Lex file(s) */

208 AsDoWildcard (ConversionTable, SourcePath, TargetPath, MaxPathLength,
209 FILE_TYPE_SOURCE, "*.l");

211 /* Do the yacc file(s) */

213 AsDoWildcard (ConversionTable, SourcePath, TargetPath, MaxPathLength,
214 FILE_TYPE_SOURCE, "*.y");

216 /* Do any ASL files */

218 AsDoWildcard (ConversionTable, SourcePath, TargetPath, MaxPathLength,
219 FILE_TYPE_HEADER, "*.asl");

221 /* Do any subdirectories */

223 AsDoWildcard (ConversionTable, SourcePath, TargetPath, MaxPathLength,
224 FILE_TYPE_DIRECTORY, "*");

226 return (0);
227 }

230 /**
231 *
232 * FUNCTION: AsDetectLoneLineFeeds
233 *
234 * DESCRIPTION: Find LF without CR.
235 *
236 **/

238 BOOLEAN
239 AsDetectLoneLineFeeds (
240 char *Filename,
241 char *Buffer)
242 {
243 UINT32 i = 1;
244 UINT32 LfCount = 0;
245 UINT32 LineCount = 0;

248 if (!Buffer[0])
249 {
250 return (FALSE);
251 }

253 while (Buffer[i])
254 {
255 if (Buffer[i] == 0x0A)
256 {
257 if (Buffer[i-1] != 0x0D)
258 {

new/usr/src/common/acpica/tools/acpisrc/asfile.c 5

259 LfCount++;
260 }
261 LineCount++;
262 }
263 i++;
264 }

266 if (LfCount)
267 {
268 if (LineCount == LfCount)
269 {
270 if (!Gbl_IgnoreLoneLineFeeds)
271 {
272 printf ("%s: ****File has UNIX format**** (LF only, not CR/LF) %
273 Filename, LfCount);
274 }
275 }
276 else
277 {
278 printf ("%s: %u lone linefeeds in file\n", Filename, LfCount);
279 }
280 return (TRUE);
281 }

283 return (FALSE);
284 }

287 /**
288 *
289 * FUNCTION: AsConvertFile
290 *
291 * DESCRIPTION: Perform the requested transforms on the file buffer (as
292 * determined by the ConversionTable and the FileType).
293 *
294 **/

296 void
297 AsConvertFile (
298 ACPI_CONVERSION_TABLE *ConversionTable,
299 char *FileBuffer,
300 char *Filename,
301 ACPI_NATIVE_INT FileType)
302 {
303 UINT32 i;
304 UINT32 Functions;
305 ACPI_STRING_TABLE *StringTable;
306 ACPI_IDENTIFIER_TABLE *ConditionalTable;
307 ACPI_IDENTIFIER_TABLE *LineTable;
308 ACPI_IDENTIFIER_TABLE *MacroTable;
309 ACPI_TYPED_IDENTIFIER_TABLE *StructTable;
310 ACPI_IDENTIFIER_TABLE *SpecialMacroTable;

313 switch (FileType)
314 {
315 case FILE_TYPE_SOURCE:

317 Functions = ConversionTable->SourceFunctions;
318 StringTable = ConversionTable->SourceStringTable;
319 LineTable = ConversionTable->SourceLineTable;
320 ConditionalTable = ConversionTable->SourceConditionalTable;
321 MacroTable = ConversionTable->SourceMacroTable;
322 StructTable = ConversionTable->SourceStructTable;
323 SpecialMacroTable = ConversionTable->SourceSpecialMacroTable;
324 break;

new/usr/src/common/acpica/tools/acpisrc/asfile.c 6

326 case FILE_TYPE_HEADER:

328 Functions = ConversionTable->HeaderFunctions;
329 StringTable = ConversionTable->HeaderStringTable;
330 LineTable = ConversionTable->HeaderLineTable;
331 ConditionalTable = ConversionTable->HeaderConditionalTable;
332 MacroTable = ConversionTable->HeaderMacroTable;
333 StructTable = ConversionTable->HeaderStructTable;
334 SpecialMacroTable = ConversionTable->HeaderSpecialMacroTable;
335 break;

337 default:

339 printf ("Unknown file type, cannot process\n");
340 return;
341 }

344 Gbl_StructDefs = strstr (FileBuffer, "/* acpisrc:StructDefs");
345 Gbl_Files++;
346 VERBOSE_PRINT (("Processing %u bytes\n",
347 (unsigned int) strlen (FileBuffer)));

349 if (Gbl_Cleanup)
350 {
351 AsRemoveExtraLines (FileBuffer, Filename);
352 AsRemoveSpacesAfterPeriod (FileBuffer, Filename);
353 }

355 if (ConversionTable->LowerCaseTable)
356 {
357 for (i = 0; ConversionTable->LowerCaseTable[i].Identifier; i++)
358 {
359 AsLowerCaseString (ConversionTable->LowerCaseTable[i].Identifier,
360 FileBuffer);
361 }
362 }

364 /* Process all the string replacements */

366 if (StringTable)
367 {
368 for (i = 0; StringTable[i].Target; i++)
369 {
370 AsReplaceString (StringTable[i].Target, StringTable[i].Replacement,
371 StringTable[i].Type, FileBuffer);
372 }
373 }

375 if (LineTable)
376 {
377 for (i = 0; LineTable[i].Identifier; i++)
378 {
379 AsRemoveLine (FileBuffer, LineTable[i].Identifier);
380 }
381 }

383 if (ConditionalTable)
384 {
385 for (i = 0; ConditionalTable[i].Identifier; i++)
386 {
387 AsRemoveConditionalCompile (FileBuffer, ConditionalTable[i].Identifi
388 }
389 }

new/usr/src/common/acpica/tools/acpisrc/asfile.c 7

391 if (MacroTable)
392 {
393 for (i = 0; MacroTable[i].Identifier; i++)
394 {
395 AsRemoveMacro (FileBuffer, MacroTable[i].Identifier);
396 }
397 }

399 if (StructTable)
400 {
401 for (i = 0; StructTable[i].Identifier; i++)
402 {
403 AsInsertPrefix (FileBuffer, StructTable[i].Identifier, StructTable[i
404 }
405 }

407 if (SpecialMacroTable)
408 {
409 for (i = 0; SpecialMacroTable[i].Identifier; i++)
410 {
411 AsCleanupSpecialMacro (FileBuffer, SpecialMacroTable[i].Identifier);
412 }
413 }

415 /* Process the function table */

417 for (i = 0; i < 32; i++)
418 {
419 /* Decode the function bitmap */

421 switch ((1 << i) & Functions)
422 {
423 case 0:

425 /* This function not configured */
426 break;

428 case CVT_COUNT_TABS:

430 AsCountTabs (FileBuffer, Filename);
431 break;

433 case CVT_COUNT_NON_ANSI_COMMENTS:

435 AsCountNonAnsiComments (FileBuffer, Filename);
436 break;

438 case CVT_CHECK_BRACES:

440 AsCheckForBraces (FileBuffer, Filename);
441 break;

443 case CVT_TRIM_LINES:

445 AsTrimLines (FileBuffer, Filename);
446 break;

448 case CVT_COUNT_LINES:

450 AsCountSourceLines (FileBuffer, Filename);
451 break;

453 case CVT_BRACES_ON_SAME_LINE:

455 AsBracesOnSameLine (FileBuffer);
456 break;

new/usr/src/common/acpica/tools/acpisrc/asfile.c 8

458 case CVT_MIXED_CASE_TO_UNDERSCORES:

460 AsMixedCaseToUnderscores (FileBuffer, Filename);
461 break;

463 case CVT_LOWER_CASE_IDENTIFIERS:

465 AsLowerCaseIdentifiers (FileBuffer);
466 break;

468 case CVT_REMOVE_DEBUG_MACROS:

470 AsRemoveDebugMacros (FileBuffer);
471 break;

473 case CVT_TRIM_WHITESPACE:

475 AsTrimWhitespace (FileBuffer);
476 break;

478 case CVT_REMOVE_EMPTY_BLOCKS:

480 AsRemoveEmptyBlocks (FileBuffer, Filename);
481 break;

483 case CVT_REDUCE_TYPEDEFS:

485 AsReduceTypedefs (FileBuffer, "typedef union");
486 AsReduceTypedefs (FileBuffer, "typedef struct");
487 break;

489 case CVT_SPACES_TO_TABS4:

491 AsTabify4 (FileBuffer);
492 break;

494 case CVT_SPACES_TO_TABS8:

496 AsTabify8 (FileBuffer);
497 break;

499 case CVT_COUNT_SHORTMULTILINE_COMMENTS:

501 #ifdef ACPI_FUTURE_IMPLEMENTATION
502 AsTrimComments (FileBuffer, Filename);
503 #endif
504 break;

506 default:

508 printf ("Unknown conversion subfunction opcode\n");
509 break;
510 }
511 }

513 if (ConversionTable->NewHeader)
514 {
515 AsReplaceHeader (FileBuffer, ConversionTable->NewHeader);
516 }
517 }

520 /**
521 *
522 * FUNCTION: AsProcessOneFile

new/usr/src/common/acpica/tools/acpisrc/asfile.c 9

523 *
524 * DESCRIPTION: Process one source file. The file is opened, read entirely
525 * into a buffer, converted, then written to a new file.
526 *
527 **/

529 ACPI_NATIVE_INT
530 AsProcessOneFile (
531 ACPI_CONVERSION_TABLE *ConversionTable,
532 char *SourcePath,
533 char *TargetPath,
534 int MaxPathLength,
535 char *Filename,
536 ACPI_NATIVE_INT FileType)
537 {
538 char *Pathname;
539 char *OutPathname = NULL;

542 /* Allocate a file pathname buffer for both source and target */

544 Pathname = calloc (MaxPathLength + strlen (Filename) + 2, 1);
545 if (!Pathname)
546 {
547 printf ("Could not allocate buffer for file pathnames\n");
548 return (-1);
549 }

551 Gbl_FileType = FileType;

553 /* Generate the source pathname and read the file */

555 if (SourcePath)
556 {
557 strcpy (Pathname, SourcePath);
558 strcat (Pathname, "/");
559 }

561 strcat (Pathname, Filename);

563 if (AsGetFile (Pathname, &Gbl_FileBuffer, &Gbl_FileSize))
564 {
565 return (-1);
566 }

568 Gbl_HeaderSize = 0;
569 if (strstr (Filename, ".asl"))
570 {
571 Gbl_HeaderSize = LINES_IN_ASL_HEADER; /* Lines in default ASL header */
572 }
573 else if (strstr (Gbl_FileBuffer, LEGAL_HEADER_SIGNATURE))
574 {
575 Gbl_HeaderSize = LINES_IN_LEGAL_HEADER; /* Normal C file and H header */
576 }
577 else if (strstr (Gbl_FileBuffer, LINUX_HEADER_SIGNATURE))
578 {
579 Gbl_HeaderSize = LINES_IN_LINUX_HEADER; /* Linuxized C file and H header
580 }

582 /* Process the file in the buffer */

584 Gbl_MadeChanges = FALSE;
585 if (!Gbl_IgnoreLoneLineFeeds && Gbl_HasLoneLineFeeds)
586 {
587 /*
588 * All lone LFs will be converted to CR/LF

new/usr/src/common/acpica/tools/acpisrc/asfile.c 10

589 * (when file is written, Windows version only)
590 */
591 printf ("Converting lone linefeeds\n");
592 Gbl_MadeChanges = TRUE;
593 }

595 AsConvertFile (ConversionTable, Gbl_FileBuffer, Pathname, FileType);

597 if (!(ConversionTable->Flags & FLG_NO_FILE_OUTPUT))
598 {
599 if (!(Gbl_Overwrite && !Gbl_MadeChanges))
600 {
601 /* Generate the target pathname and write the file */

603 OutPathname = calloc (MaxPathLength + strlen (Filename) + 2 + strlen
604 if (!OutPathname)
605 {
606 printf ("Could not allocate buffer for file pathnames\n");
607 return (-1);
608 }

610 strcpy (OutPathname, TargetPath);
611 if (SourcePath)
612 {
613 strcat (OutPathname, "/");
614 strcat (OutPathname, Filename);
615 }

617 AsPutFile (OutPathname, Gbl_FileBuffer, ConversionTable->Flags);
618 }
619 }

621 free (Gbl_FileBuffer);
622 free (Pathname);
623 if (OutPathname)
624 {
625 free (OutPathname);
626 }

628 return (0);
629 }

632 /**
633 *
634 * FUNCTION: AsCheckForDirectory
635 *
636 * DESCRIPTION: Check if the current file is a valid directory. If not,
637 * construct the full pathname for the source and target paths.
638 * Checks for the dot and dot-dot files (they are ignored)
639 *
640 **/

642 ACPI_NATIVE_INT
643 AsCheckForDirectory (
644 char *SourceDirPath,
645 char *TargetDirPath,
646 char *Filename,
647 char **SourcePath,
648 char **TargetPath)
649 {
650 char *SrcPath;
651 char *TgtPath;

654 if (!(strcmp (Filename, ".")) ||

new/usr/src/common/acpica/tools/acpisrc/asfile.c 11

655 !(strcmp (Filename, "..")))
656 {
657 return (-1);
658 }

660 SrcPath = calloc (strlen (SourceDirPath) + strlen (Filename) + 2, 1);
661 if (!SrcPath)
662 {
663 printf ("Could not allocate buffer for directory source pathname\n");
664 return (-1);
665 }

667 TgtPath = calloc (strlen (TargetDirPath) + strlen (Filename) + 2, 1);
668 if (!TgtPath)
669 {
670 printf ("Could not allocate buffer for directory target pathname\n");
671 free (SrcPath);
672 return (-1);
673 }

675 strcpy (SrcPath, SourceDirPath);
676 strcat (SrcPath, "/");
677 strcat (SrcPath, Filename);

679 strcpy (TgtPath, TargetDirPath);
680 strcat (TgtPath, "/");
681 strcat (TgtPath, Filename);

683 *SourcePath = SrcPath;
684 *TargetPath = TgtPath;
685 return (0);
686 }

689 /**
690 *
691 * FUNCTION: AsGetFile
692 *
693 * DESCRIPTION: Open a file and read it entirely into a an allocated buffer
694 *
695 **/

697 int
698 AsGetFile (
699 char *Filename,
700 char **FileBuffer,
701 UINT32 *FileSize)
702 {
703 FILE *File;
704 UINT32 Size;
705 char *Buffer;
706 int Seek1;
707 int Seek2;
708 size_t Actual;

711 /* Binary mode leaves CR/LF pairs */

713 File = fopen (Filename, "rb");
714 if (!File)
715 {
716 printf ("Could not open file %s\n", Filename);
717 return (-1);
718 }

720 /* Need file size to allocate a buffer */

new/usr/src/common/acpica/tools/acpisrc/asfile.c 12

722 Seek1 = fseek (File, 0L, SEEK_END);
723 Size = ftell (File);
724 Seek2 = fseek (File, 0L, SEEK_SET);

726 if (Seek1 || Seek2 || (Size == -1))
727 {
728 printf ("Could not get file size for %s\n", Filename);
729 goto ErrorExit;
730 }

732 /*
733 * Create a buffer for the entire file
734 * Add plenty extra buffer to accommodate string replacements
735 */
736 Gbl_TotalSize += Size;

738 Buffer = calloc (Size * 2, 1);
739 if (!Buffer)
740 {
741 printf ("Could not allocate buffer of size %u\n", Size * 2);
742 goto ErrorExit;
743 }

745 /* Read the entire file */

747 Actual = fread (Buffer, 1, Size, File);
748 if (Actual != Size)
749 {
750 printf ("Could not read the input file %s (%u bytes)\n",
751 Filename, Size);
752 goto ErrorExit;
753 }

755 Buffer [Size] = 0; /* Null terminate the buffer */
756 fclose (File);

758 /* Check for unix contamination */

760 Gbl_HasLoneLineFeeds = AsDetectLoneLineFeeds (Filename, Buffer);

762 /*
763 * Convert all CR/LF pairs to LF only. We do this locally so that
764 * this code is portable across operating systems.
765 */
766 AsConvertToLineFeeds (Buffer);

768 *FileBuffer = Buffer;
769 *FileSize = Size;
770 return (0);

773 ErrorExit:

775 fclose (File);
776 return (-1);
777 }

780 /**
781 *
782 * FUNCTION: AsPutFile
783 *
784 * DESCRIPTION: Create a new output file and write the entire contents of the
785 * buffer to the new file. Buffer must be a zero terminated string
786 *

new/usr/src/common/acpica/tools/acpisrc/asfile.c 13

787 **/

789 int
790 AsPutFile (
791 char *Pathname,
792 char *FileBuffer,
793 UINT32 SystemFlags)
794 {
795 FILE *File;
796 UINT32 FileSize;
797 size_t Actual;
798 int Status = 0;

801 /* Create the target file */

803 if (!(SystemFlags & FLG_NO_CARRIAGE_RETURNS))
804 {
805 /* Put back the CR before each LF */

807 AsInsertCarriageReturns (FileBuffer);
808 }

810 File = fopen (Pathname, "w+b");
811 if (!File)
812 {
813 perror ("Could not create destination file");
814 printf ("Could not create destination file \"%s\"\n", Pathname);
815 return (-1);
816 }

818 /* Write the buffer to the file */

820 FileSize = strlen (FileBuffer);
821 Actual = fwrite (FileBuffer, 1, FileSize, File);
822 if (Actual != FileSize)
823 {
824 printf ("Error writing output file \"%s\"\n", Pathname);
825 Status = -1;
826 }

828 fclose (File);
829 return (Status);
830 }

new/usr/src/common/acpica/tools/acpisrc/asmain.c 1

**
 13386 Thu Dec 26 13:50:12 2013
new/usr/src/common/acpica/tools/acpisrc/asmain.c
update to acpica-unix2-20130927
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: asmain - Main module for the acpi source processor utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpisrc.h"
46 #include "acapps.h"

48 /* Local prototypes */

50 int
51 AsStricmp (
52 char *String1,
53 char *String2);

55 int
56 AsExaminePaths (
57 ACPI_CONVERSION_TABLE *ConversionTable,
58 char *Source,
59 char *Target,
60 UINT32 *SourceFileType);

new/usr/src/common/acpica/tools/acpisrc/asmain.c 2

62 void
63 AsDisplayStats (
64 void);

66 void
67 AsDisplayUsage (
68 void);

70 /* Globals */

72 UINT32 Gbl_Tabs = 0;
73 UINT32 Gbl_MissingBraces = 0;
74 UINT32 Gbl_NonAnsiComments = 0;
75 UINT32 Gbl_Files = 0;
76 UINT32 Gbl_WhiteLines = 0;
77 UINT32 Gbl_CommentLines = 0;
78 UINT32 Gbl_SourceLines = 0;
79 UINT32 Gbl_LongLines = 0;
80 UINT32 Gbl_TotalLines = 0;
81 UINT32 Gbl_TotalSize = 0;
82 UINT32 Gbl_HeaderLines = 0;
83 UINT32 Gbl_HeaderSize = 0;
84 void *Gbl_StructDefs = NULL;

86 struct stat Gbl_StatBuf;
87 char *Gbl_FileBuffer;
88 UINT32 Gbl_FileSize;
89 UINT32 Gbl_FileType;
90 BOOLEAN Gbl_VerboseMode = FALSE;
91 BOOLEAN Gbl_QuietMode = FALSE;
92 BOOLEAN Gbl_BatchMode = FALSE;
93 BOOLEAN Gbl_DebugStatementsMode = FALSE;
94 BOOLEAN Gbl_MadeChanges = FALSE;
95 BOOLEAN Gbl_Overwrite = FALSE;
96 BOOLEAN Gbl_WidenDeclarations = FALSE;
97 BOOLEAN Gbl_IgnoreLoneLineFeeds = FALSE;
98 BOOLEAN Gbl_HasLoneLineFeeds = FALSE;
99 BOOLEAN Gbl_Cleanup = FALSE;
100 BOOLEAN Gbl_IgnoreTranslationEscapes = FALSE;

102 #define AS_UTILITY_NAME "ACPI Source Code Conversion Utility"
103 #define AS_SUPPORTED_OPTIONS "cdhilqsuv^y"

106 /**
107 *
108 * FUNCTION: AsStricmp
109 *
110 * DESCRIPTION: Implementation of the non-ANSI stricmp function (compare
111 * strings with no case sensitivity)
112 *
113 **/

115 int
116 AsStricmp (
117 char *String1,
118 char *String2)
119 {
120 int c1;
121 int c2;

124 do
125 {
126 c1 = tolower ((int) *String1);

new/usr/src/common/acpica/tools/acpisrc/asmain.c 3

127 c2 = tolower ((int) *String2);

129 String1++;
130 String2++;
131 }
132 while ((c1 == c2) && (c1));

134 return (c1 - c2);
135 }

138 /**
139 *
140 * FUNCTION: AsExaminePaths
141 *
142 * DESCRIPTION: Source and Target pathname verification and handling
143 *
144 **/

146 int
147 AsExaminePaths (
148 ACPI_CONVERSION_TABLE *ConversionTable,
149 char *Source,
150 char *Target,
151 UINT32 *SourceFileType)
152 {
153 int Status;
154 int Response;

157 Status = stat (Source, &Gbl_StatBuf);
158 if (Status)
159 {
160 printf ("Source path \"%s\" does not exist\n", Source);
161 return (-1);
162 }

164 /* Return the filetype -- file or a directory */

166 *SourceFileType = 0;
167 if (Gbl_StatBuf.st_mode & S_IFDIR)
168 {
169 *SourceFileType = S_IFDIR;
170 }

172 /*
173 * If we are in no-output mode or in batch mode, we are done
174 */
175 if ((ConversionTable->Flags & FLG_NO_FILE_OUTPUT) ||
176 (Gbl_BatchMode))
177 {
178 return (0);
179 }

181 if (!AsStricmp (Source, Target))
182 {
183 printf ("Target path is the same as the source path, overwrite?\n");
184 Response = getchar ();

186 /* Check response */

188 if (Response != ’y’)
189 {
190 return (-1);
191 }

new/usr/src/common/acpica/tools/acpisrc/asmain.c 4

193 Gbl_Overwrite = TRUE;
194 }
195 else
196 {
197 Status = stat (Target, &Gbl_StatBuf);
198 if (!Status)
199 {
200 printf ("Target path already exists, overwrite?\n");
201 Response = getchar ();

203 /* Check response */

205 if (Response != ’y’)
206 {
207 return (-1);
208 }
209 }
210 }

212 return (0);
213 }

216 /**
217 *
218 * FUNCTION: AsDisplayStats
219 *
220 * DESCRIPTION: Display global statistics gathered during translation
221 *
222 **/

224 void
225 AsDisplayStats (
226 void)
227 {

229 if (Gbl_QuietMode)
230 {
231 return;
232 }

234 printf ("\nAcpiSrc statistics:\n\n");
235 printf ("%8u Files processed\n", Gbl_Files);

237 if (!Gbl_Files)
238 {
239 return;
240 }

242 printf ("%8u Total bytes (%.1fK/file)\n",
243 Gbl_TotalSize, ((double) Gbl_TotalSize/Gbl_Files)/1024);
244 printf ("%8u Tabs found\n", Gbl_Tabs);
245 printf ("%8u Missing if/else braces\n", Gbl_MissingBraces);
246 printf ("%8u Non-ANSI comments found\n", Gbl_NonAnsiComments);
247 printf ("%8u Total Lines\n", Gbl_TotalLines);
248 printf ("%8u Lines of code\n", Gbl_SourceLines);
249 printf ("%8u Lines of non-comment whitespace\n", Gbl_WhiteLines);
250 printf ("%8u Lines of comments\n", Gbl_CommentLines);
251 printf ("%8u Long lines found\n", Gbl_LongLines);

253 if (Gbl_WhiteLines > 0)
254 {
255 printf ("%8.1f Ratio of code to whitespace\n",
256 ((float) Gbl_SourceLines / (float) Gbl_WhiteLines));
257 }

new/usr/src/common/acpica/tools/acpisrc/asmain.c 5

259 if ((Gbl_CommentLines + Gbl_NonAnsiComments) > 0)
260 {
261 printf ("%8.1f Ratio of code to comments\n",
262 ((float) Gbl_SourceLines / (float) (Gbl_CommentLines + Gbl_NonAnsiCo
263 }

265 if (!Gbl_TotalLines)
266 {
267 return;
268 }

270 printf (" %u%% code, %u%% comments, %u%% whitespace, %u%% headers\n"
271 (Gbl_SourceLines * 100) / Gbl_TotalLines,
272 (Gbl_CommentLines * 100) / Gbl_TotalLines,
273 (Gbl_WhiteLines * 100) / Gbl_TotalLines,
274 (Gbl_HeaderLines * 100) / Gbl_TotalLines);
275 return;
276 }

279 /**
280 *
281 * FUNCTION: AsDisplayUsage
282 *
283 * DESCRIPTION: Usage message
284 *
285 **/

287 void
288 AsDisplayUsage (
289 void)
290 {

292 ACPI_USAGE_HEADER ("acpisrc [-c|l|u] [-dsvy] <SourceDir> <DestinationDir>");

294 ACPI_OPTION ("-c", "Generate cleaned version of the source");
295 ACPI_OPTION ("-h", "Insert dual-license header into all modules");
296 ACPI_OPTION ("-i", "Cleanup macro indentation");
297 ACPI_OPTION ("-l", "Generate Linux version of the source");
298 ACPI_OPTION ("-u", "Generate Custom source translation");

300 printf ("\n");
301 ACPI_OPTION ("-d", "Leave debug statements in code");
302 ACPI_OPTION ("-s", "Generate source statistics only");
303 ACPI_OPTION ("-v", "Display version information");
304 ACPI_OPTION ("-vb", "Verbose mode");
305 ACPI_OPTION ("-y", "Suppress file overwrite prompts");
306 }

309 /**
310 *
311 * FUNCTION: main
312 *
313 * DESCRIPTION: C main function
314 *
315 **/

317 int ACPI_SYSTEM_XFACE
318 main (
319 int argc,
320 char *argv[])
321 {
322 int j;
323 ACPI_CONVERSION_TABLE *ConversionTable = NULL;
324 char *SourcePath;

new/usr/src/common/acpica/tools/acpisrc/asmain.c 6

325 char *TargetPath;
326 UINT32 FileType;

329 ACPI_DEBUG_INITIALIZE (); /* For debug version only */
330 printf (ACPI_COMMON_SIGNON (AS_UTILITY_NAME));

332 if (argc < 2)
333 {
334 AsDisplayUsage ();
335 return (0);
336 }

338 /* Command line options */

340 while ((j = AcpiGetopt (argc, argv, AS_SUPPORTED_OPTIONS)) != EOF) switch(j)
341 {
342 case ’l’:

344 /* Linux code generation */

346 printf ("Creating Linux source code\n");
347 ConversionTable = &LinuxConversionTable;
348 Gbl_WidenDeclarations = TRUE;
349 Gbl_IgnoreLoneLineFeeds = TRUE;
350 break;

352 case ’c’:

354 /* Cleanup code */

356 printf ("Code cleanup\n");
357 ConversionTable = &CleanupConversionTable;
358 Gbl_Cleanup = TRUE;
359 break;

361 case ’h’:

363 /* Inject Dual-license header */

365 printf ("Inserting Dual-license header to all modules\n");
366 ConversionTable = &LicenseConversionTable;
367 break;

369 case ’i’:

371 /* Cleanup wrong indent result */

373 printf ("Cleaning up macro indentation\n");
374 ConversionTable = &IndentConversionTable;
375 Gbl_IgnoreLoneLineFeeds = TRUE;
376 Gbl_IgnoreTranslationEscapes = TRUE;
377 break;

379 case ’s’:

381 /* Statistics only */

383 break;

385 case ’u’:

387 /* custom conversion */

389 printf ("Custom source translation\n");
390 ConversionTable = &CustomConversionTable;

new/usr/src/common/acpica/tools/acpisrc/asmain.c 7

391 break;

393 case ’v’:

395 switch (AcpiGbl_Optarg[0])
396 {
397 case ’^’: /* -v: (Version): signon already emitted, just exit */

399 exit (0);

401 case ’b’:

403 /* Verbose mode */

405 Gbl_VerboseMode = TRUE;
406 break;

408 default:

410 printf ("Unknown option: -v%s\n", AcpiGbl_Optarg);
411 return (-1);
412 }

414 break;

416 case ’y’:

418 /* Batch mode */

420 Gbl_BatchMode = TRUE;
421 break;

423 case ’d’:

425 /* Leave debug statements in */

427 Gbl_DebugStatementsMode = TRUE;
428 break;

430 case ’q’:

432 /* Quiet mode */

434 Gbl_QuietMode = TRUE;
435 break;

437 default:

439 AsDisplayUsage ();
440 return (-1);
441 }

444 SourcePath = argv[AcpiGbl_Optind];
445 if (!SourcePath)
446 {
447 printf ("Missing source path\n");
448 AsDisplayUsage ();
449 return (-1);
450 }

452 TargetPath = argv[AcpiGbl_Optind+1];

454 if (!ConversionTable)
455 {
456 /* Just generate statistics. Ignore target path */

new/usr/src/common/acpica/tools/acpisrc/asmain.c 8

458 TargetPath = SourcePath;

460 printf ("Source code statistics only\n");
461 ConversionTable = &StatsConversionTable;
462 }
463 else if (!TargetPath)
464 {
465 TargetPath = SourcePath;
466 }

468 if (Gbl_DebugStatementsMode)
469 {
470 ConversionTable->SourceFunctions &= ~CVT_REMOVE_DEBUG_MACROS;
471 }

473 /* Check source and target paths and files */

475 if (AsExaminePaths (ConversionTable, SourcePath, TargetPath, &FileType))
476 {
477 return (-1);
478 }

480 /* Source/target can be either directories or a files */

482 if (FileType == S_IFDIR)
483 {
484 /* Process the directory tree */

486 AsProcessTree (ConversionTable, SourcePath, TargetPath);
487 }
488 else
489 {
490 /* Process a single file */

492 /* Differentiate between source and header files */

494 if (strstr (SourcePath, ".h"))
495 {
496 AsProcessOneFile (ConversionTable, NULL, TargetPath, 0, SourcePath,
497 }
498 else
499 {
500 AsProcessOneFile (ConversionTable, NULL, TargetPath, 0, SourcePath,
501 }
502 }

504 /* Always display final summary and stats */

506 AsDisplayStats ();

508 return (0);
509 }

new/usr/src/common/acpica/tools/acpisrc/asremove.c 1

**
 19063 Thu Dec 26 13:50:12 2013
new/usr/src/common/acpica/tools/acpisrc/asremove.c
update to acpica-unix2-20131218
update to acpica-unix2-20130927
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: asremove - Source conversion - removal functions
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpisrc.h"

46 /* Local prototypes */

48 void
49 AsRemoveStatement (
50 char *Buffer,
51 char *Keyword,
52 UINT32 Type);

55 /**
56 *
57 * FUNCTION: AsRemoveStatement
58 *
59 * DESCRIPTION: Remove all statements that contain the given keyword.

new/usr/src/common/acpica/tools/acpisrc/asremove.c 2

60 * Limitations: Removes text from the start of the line that
61 * contains the keyword to the next semicolon. Currently
62 * doesn’t ignore comments.
63 *
64 **/

66 void
67 AsRemoveStatement (
68 char *Buffer,
69 char *Keyword,
70 UINT32 Type)
71 {
72 char *SubString;
73 char *SubBuffer;
74 int KeywordLength;

77 KeywordLength = strlen (Keyword);
78 SubBuffer = Buffer;
79 SubString = Buffer;

82 while (SubString)
83 {
84 SubString = strstr (SubBuffer, Keyword);

86 if (SubString)
87 {
88 SubBuffer = SubString;

90 if ((Type == REPLACE_WHOLE_WORD) &&
91 (!AsMatchExactWord (SubString, KeywordLength)))
92 {
93 SubBuffer++;
94 continue;
95 }

97 /* Find start of this line */

99 while (*SubString != ’\n’)
100 {
101 SubString--;
102 }
103 SubString++;

105 /* Find end of this statement */

107 SubBuffer = AsSkipPastChar (SubBuffer, ’;’);
108 if (!SubBuffer)
109 {
110 return;
111 }

113 /* Find end of this line */

115 SubBuffer = AsSkipPastChar (SubBuffer, ’\n’);
116 if (!SubBuffer)
117 {
118 return;
119 }

121 /* If next line is blank, remove it too */

123 if (*SubBuffer == ’\n’)
124 {
125 SubBuffer++;

new/usr/src/common/acpica/tools/acpisrc/asremove.c 3

126 }

128 /* Remove the lines */

130 SubBuffer = AsRemoveData (SubString, SubBuffer);
131 }
132 }
133 }

136 /**
137 *
138 * FUNCTION: AsRemoveConditionalCompile
139 *
140 * DESCRIPTION: Remove a "#ifdef" statement, and all text that it encompasses.
141 * Limitations: cannot handle nested ifdefs.
142 *
143 **/

145 void
146 AsRemoveConditionalCompile (
147 char *Buffer,
148 char *Keyword)
149 {
150 char *SubString;
151 char *SubBuffer;
152 char *IfPtr;
153 char *EndifPtr;
154 char *ElsePtr;
155 char *Comment;
156 int KeywordLength;

159 KeywordLength = strlen (Keyword);
160 SubBuffer = Buffer;
161 SubString = Buffer;

164 while (SubString)
165 {
166 SubBuffer = strstr (SubString, Keyword);
167 if (!SubBuffer)
168 {
169 return;
170 }

172 /*
173 * Check for translation escape string -- means to ignore
174 * blocks of code while replacing
175 */
176 if (Gbl_IgnoreTranslationEscapes)
177 {
178 Comment = NULL;
179 }
180 else
181 {
182 Comment = strstr (SubString, AS_START_IGNORE);
183 }

185 if ((Comment) &&
186 (Comment < SubBuffer))
187 {
188 SubString = strstr (Comment, AS_STOP_IGNORE);
189 if (!SubString)
190 {
191 return;

new/usr/src/common/acpica/tools/acpisrc/asremove.c 4

192 }

194 SubString += 3;
195 continue;
196 }

198 /* Check for ordinary comment */

200 Comment = strstr (SubString, "/*");

202 if ((Comment) &&
203 (Comment < SubBuffer))
204 {
205 SubString = strstr (Comment, "*/");
206 if (!SubString)
207 {
208 return;
209 }

211 SubString += 2;
212 continue;
213 }

215 SubString = SubBuffer;
216 if (!AsMatchExactWord (SubString, KeywordLength))
217 {
218 SubString++;
219 continue;
220 }

222 /* Find start of this line */

224 while (*SubString != ’\n’ && (SubString > Buffer))
225 {
226 SubString--;
227 }
228 SubString++;

230 /* Find the "#ifxxxx" */

232 IfPtr = strstr (SubString, "#if");
233 if (!IfPtr)
234 {
235 return;
236 }

238 if (IfPtr > SubBuffer)
239 {
240 /* Not the right #if */

242 SubString = SubBuffer + strlen (Keyword);
243 continue;
244 }

246 /* Find closing #endif or #else */

248 EndifPtr = strstr (SubBuffer, "#endif");
249 if (!EndifPtr)
250 {
251 /* There has to be an #endif */

253 return;
254 }

256 ElsePtr = strstr (SubBuffer, "#else");
257 if ((ElsePtr) &&

new/usr/src/common/acpica/tools/acpisrc/asremove.c 5

258 (EndifPtr > ElsePtr))
259 {
260 /* This #ifdef contains an #else clause */
261 /* Find end of this line */

263 SubBuffer = AsSkipPastChar (ElsePtr, ’\n’);
264 if (!SubBuffer)
265 {
266 return;
267 }

269 /* Remove the #ifdef #else code */

271 AsRemoveData (SubString, SubBuffer);

273 /* Next, we will remove the #endif statement */

275 EndifPtr = strstr (SubString, "#endif");
276 if (!EndifPtr)
277 {
278 /* There has to be an #endif */

280 return;
281 }

283 SubString = EndifPtr;
284 }

286 /* Remove the ... #endif part */
287 /* Find end of this line */

289 SubBuffer = AsSkipPastChar (EndifPtr, ’\n’);
290 if (!SubBuffer)
291 {
292 return;
293 }

295 /* Remove the lines */

297 SubBuffer = AsRemoveData (SubString, SubBuffer);
298 }
299 }

302 /**
303 *
304 * FUNCTION: AsRemoveMacro
305 *
306 * DESCRIPTION: Remove every line that contains the keyword. Does not
307 * skip comments.
308 *
309 **/

311 void
312 AsRemoveMacro (
313 char *Buffer,
314 char *Keyword)
315 {
316 char *SubString;
317 char *SubBuffer;
318 int NestLevel;

321 SubBuffer = Buffer;
322 SubString = Buffer;

new/usr/src/common/acpica/tools/acpisrc/asremove.c 6

325 while (SubString)
326 {
327 SubString = strstr (SubBuffer, Keyword);

329 if (SubString)
330 {
331 SubBuffer = SubString;

333 /* Find start of the macro parameters */

335 while (*SubString != ’(’)
336 {
337 SubString++;
338 }
339 SubString++;

341 /* Remove the macro name and opening paren */

343 SubString = AsRemoveData (SubBuffer, SubString);

345 NestLevel = 1;
346 while (*SubString)
347 {
348 if (*SubString == ’(’)
349 {
350 NestLevel++;
351 }
352 else if (*SubString == ’)’)
353 {
354 NestLevel--;
355 }

357 SubString++;

359 if (NestLevel == 0)
360 {
361 break;
362 }
363 }

365 /* Remove the closing paren */

367 SubBuffer = AsRemoveData (SubString-1, SubString);
368 }
369 }
370 }

373 /**
374 *
375 * FUNCTION: AsRemoveLine
376 *
377 * DESCRIPTION: Remove every line that contains the keyword. Does not
378 * skip comments.
379 *
380 **/

382 void
383 AsRemoveLine (
384 char *Buffer,
385 char *Keyword)
386 {
387 char *SubString;
388 char *SubBuffer;

new/usr/src/common/acpica/tools/acpisrc/asremove.c 7

391 SubBuffer = Buffer;
392 SubString = Buffer;

395 while (SubString)
396 {
397 SubString = strstr (SubBuffer, Keyword);

399 if (SubString)
400 {
401 SubBuffer = SubString;

403 /* Find start of this line */

405 while (*SubString != ’\n’)
406 {
407 SubString--;
408 }
409 SubString++;

411 /* Find end of this line */

413 SubBuffer = AsSkipPastChar (SubBuffer, ’\n’);
414 if (!SubBuffer)
415 {
416 return;
417 }

419 /* Remove the line */

421 SubBuffer = AsRemoveData (SubString, SubBuffer);
422 }
423 }
424 }

427 /**
428 *
429 * FUNCTION: AsReduceTypedefs
430 *
431 * DESCRIPTION: Eliminate certain typedefs
432 *
433 **/

435 void
436 AsReduceTypedefs (
437 char *Buffer,
438 char *Keyword)
439 {
440 char *SubString;
441 char *SubBuffer;
442 int NestLevel;

445 SubBuffer = Buffer;
446 SubString = Buffer;

449 while (SubString)
450 {
451 SubString = strstr (SubBuffer, Keyword);

453 if (SubString)
454 {
455 /* Remove the typedef itself */

new/usr/src/common/acpica/tools/acpisrc/asremove.c 8

457 SubBuffer = SubString + strlen ("typedef") + 1;
458 SubBuffer = AsRemoveData (SubString, SubBuffer);

460 /* Find the opening brace of the struct or union */

462 while (*SubString != ’{’)
463 {
464 SubString++;
465 }
466 SubString++;

468 /* Find the closing brace. Handles nested braces */

470 NestLevel = 1;
471 while (*SubString)
472 {
473 if (*SubString == ’{’)
474 {
475 NestLevel++;
476 }
477 else if (*SubString == ’}’)
478 {
479 NestLevel--;
480 }

482 SubString++;

484 if (NestLevel == 0)
485 {
486 break;
487 }
488 }

490 /* Remove an extra line feed if present */

492 if (!strncmp (SubString - 3, "\n\n", 2))
493 {
494 *(SubString -2) = ’}’;
495 SubString--;
496 }

498 /* Find the end of the typedef name */

500 SubBuffer = AsSkipUntilChar (SubString, ’;’);

502 /* And remove the typedef name */

504 SubBuffer = AsRemoveData (SubString, SubBuffer);
505 }
506 }
507 }

510 /**
511 *
512 * FUNCTION: AsRemoveEmptyBlocks
513 *
514 * DESCRIPTION: Remove any C blocks (e.g., if {}) that contain no code. This
515 * can happen as a result of removing lines such as DEBUG_PRINT.
516 *
517 **/

519 void
520 AsRemoveEmptyBlocks (
521 char *Buffer,

new/usr/src/common/acpica/tools/acpisrc/asremove.c 9

522 char *Filename)
523 {
524 char *SubBuffer;
525 char *BlockStart;
526 BOOLEAN EmptyBlock = TRUE;
527 BOOLEAN AnotherPassRequired = TRUE;
528 UINT32 BlockCount = 0;

531 while (AnotherPassRequired)
532 {
533 SubBuffer = Buffer;
534 AnotherPassRequired = FALSE;

536 while (*SubBuffer)
537 {
538 if (*SubBuffer == ’{’)
539 {
540 BlockStart = SubBuffer;
541 EmptyBlock = TRUE;

543 SubBuffer++;
544 while (*SubBuffer != ’}’)
545 {
546 if ((*SubBuffer != ’ ’) &&
547 (*SubBuffer != ’\n’))
548 {
549 EmptyBlock = FALSE;
550 break;
551 }
552 SubBuffer++;
553 }

555 if (EmptyBlock)
556 {
557 /* Find start of the first line of the block */

559 while (*BlockStart != ’\n’)
560 {
561 BlockStart--;
562 }

564 /* Find end of the last line of the block */

566 SubBuffer = AsSkipUntilChar (SubBuffer, ’\n’);
567 if (!SubBuffer)
568 {
569 break;
570 }

572 /* Remove the block */

574 SubBuffer = AsRemoveData (BlockStart, SubBuffer);
575 BlockCount++;
576 AnotherPassRequired = TRUE;
577 continue;
578 }
579 }

581 SubBuffer++;
582 }
583 }

585 if (BlockCount)
586 {
587 Gbl_MadeChanges = TRUE;

new/usr/src/common/acpica/tools/acpisrc/asremove.c 10

588 AsPrint ("Code blocks deleted", BlockCount, Filename);
589 }
590 }

593 /**
594 *
595 * FUNCTION: AsRemoveDebugMacros
596 *
597 * DESCRIPTION: Remove all "Debug" macros -- macros that produce debug output.
598 *
599 **/

601 void
602 AsRemoveDebugMacros (
603 char *Buffer)
604 {
605 AsRemoveConditionalCompile (Buffer, "ACPI_DEBUG_OUTPUT");

607 AsRemoveStatement (Buffer, "ACPI_DEBUG_PRINT", REPLACE_WHOLE_WORD);
608 AsRemoveStatement (Buffer, "ACPI_DEBUG_PRINT_RAW", REPLACE_WHOLE_WORD);
609 AsRemoveStatement (Buffer, "DEBUG_EXEC", REPLACE_WHOLE_WORD);
610 AsRemoveStatement (Buffer, "FUNCTION_ENTRY", REPLACE_WHOLE_WORD);
611 AsRemoveStatement (Buffer, "PROC_NAME", REPLACE_WHOLE_WORD);
612 AsRemoveStatement (Buffer, "FUNCTION_TRACE", REPLACE_SUBSTRINGS);
613 AsRemoveStatement (Buffer, "DUMP_", REPLACE_SUBSTRINGS);

615 AsReplaceString ("return_VOID", "return", REPLACE_WHOLE_WORD, Buffer
616 AsReplaceString ("return_PTR", "return", REPLACE_WHOLE_WORD, Buffer
617 AsReplaceString ("return_ACPI_STATUS", "return", REPLACE_WHOLE_WORD, Buffer
618 AsReplaceString ("return_acpi_status", "return", REPLACE_WHOLE_WORD, Buffer
619 AsReplaceString ("return_VALUE", "return", REPLACE_WHOLE_WORD, Buffer
620 }

623 /**
624 *
625 * FUNCTION: AsCleanupSpecialMacro
626 *
627 * DESCRIPTION: For special macro invocations (invoked without ";" at the end
628 * of the lines), do the following:
629 * 1. Remove spaces appended by indent at the beginning of lines.
630 * 2. Add an empty line between two special macro invocations.
631 *
632 **/

634 void
635 AsCleanupSpecialMacro (
636 char *Buffer,
637 char *Keyword)
638 {
639 char *SubString;
640 char *SubBuffer;
641 char *CommentEnd;
642 int NewLine;
643 int NestLevel;

646 SubBuffer = Buffer;
647 SubString = Buffer;

649 while (SubString)
650 {
651 SubString = strstr (SubBuffer, Keyword);

653 if (SubString)

new/usr/src/common/acpica/tools/acpisrc/asremove.c 11

654 {
655 /* Find start of the macro parameters */

657 while (*SubString != ’(’)
658 {
659 SubString++;
660 }
661 SubString++;

663 NestLevel = 1;
664 while (*SubString)
665 {
666 if (*SubString == ’(’)
667 {
668 NestLevel++;
669 }
670 else if (*SubString == ’)’)
671 {
672 NestLevel--;
673 }

675 SubString++;

677 if (NestLevel == 0)
678 {
679 break;
680 }
681 }

683 SkipLine:

685 /* Find end of the line */

687 NewLine = FALSE;
688 while (!NewLine && *SubString)
689 {
690 if (*SubString == ’\n’ && *(SubString - 1) != ’\\’)
691 {
692 NewLine = TRUE;
693 }
694 SubString++;
695 }

697 /* Find end of the line */

699 if (*SubString == ’#’ || *SubString == ’\n’)
700 {
701 goto SkipLine;
702 }

704 SubBuffer = SubString;

706 /* Find start of the non-space */

708 while (*SubString == ’ ’)
709 {
710 SubString++;
711 }

713 /* Find end of the line */

715 if (*SubString == ’#’ || *SubString == ’\n’)
716 {
717 goto SkipLine;
718 }

new/usr/src/common/acpica/tools/acpisrc/asremove.c 12

720 /* Find end of the line */

722 if (*SubString == ’/’ || *SubString == ’*’)
723 {
724 CommentEnd = strstr (SubString, "*/");
725 if (CommentEnd)
726 {
727 SubString = CommentEnd + 2;
728 goto SkipLine;
729 }
730 }

732 SubString = AsRemoveData (SubBuffer, SubString);
733 }
734 }
735 }

new/usr/src/common/acpica/tools/acpisrc/astable.c 1

**
 46557 Thu Dec 26 13:50:13 2013
new/usr/src/common/acpica/tools/acpisrc/astable.c
update to acpica-unix2-20130927
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: astable - Tables used for source conversion
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

45 #include "acpisrc.h"
46 #include "acapps.h"

49 /**
50 *
51 * Standard/Common translation tables
52 *
53 **/

56 ACPI_STRING_TABLE StandardDataTypes[] = {

58 /* Declarations first */

60 {"UINT32 ", "unsigned int", REPLACE_SUBSTRINGS},

new/usr/src/common/acpica/tools/acpisrc/astable.c 2

61 {"UINT16 ", "unsigned short", REPLACE_SUBSTRINGS},
62 {"UINT8 ", "unsigned char", REPLACE_SUBSTRINGS},
63 {"BOOLEAN ", "unsigned char", REPLACE_SUBSTRINGS},

65 /* Now do embedded typecasts */

67 {"UINT32", "unsigned int", REPLACE_SUBSTRINGS},
68 {"UINT16", "unsigned short", REPLACE_SUBSTRINGS},
69 {"UINT8", "unsigned char", REPLACE_SUBSTRINGS},
70 {"BOOLEAN", "unsigned char", REPLACE_SUBSTRINGS},

72 {"INT32 ", "int ", REPLACE_SUBSTRINGS},
73 {"INT32", "int", REPLACE_SUBSTRINGS},
74 {"INT16", "short", REPLACE_SUBSTRINGS},
75 {"INT8", "char", REPLACE_SUBSTRINGS},

77 /* Put back anything we broke (such as anything with _INT32_ in it) */

79 {"_int_", "_INT32_", REPLACE_SUBSTRINGS},
80 {"_unsigned int_", "_UINT32_", REPLACE_SUBSTRINGS},
81 {NULL, NULL, 0}
82 };

85 /**
86 *
87 * Linux-specific translation tables
88 *
89 **/

91 char DualLicenseHeader[] =
92 "/*\n"
93 " * Copyright (C) 2000 - 2013, Intel Corp.\n"
94 " * All rights reserved.\n"
95 " *\n"
96 " * Redistribution and use in source and binary forms, with or without\n"
97 " * modification, are permitted provided that the following conditions\n"
98 " * are met:\n"
99 " * 1. Redistributions of source code must retain the above copyright\n"
100 " * notice, this list of conditions, and the following disclaimer,\n"
101 " * without modification.\n"
102 " * 2. Redistributions in binary form must reproduce at minimum a disclaimer\n"
103 " * substantially similar to the \"NO WARRANTY\" disclaimer below\n"
104 " * (\"Disclaimer\") and any redistribution must be conditioned upon\n"
105 " * including a substantially similar Disclaimer requirement for further\n"
106 " * binary redistribution.\n"
107 " * 3. Neither the names of the above-listed copyright holders nor the names\n"
108 " * of any contributors may be used to endorse or promote products derived\n"
109 " * from this software without specific prior written permission.\n"
110 " *\n"
111 " * Alternatively, this software may be distributed under the terms of the\n"
112 " * GNU General Public License (\"GPL\") version 2 as published by the Free\n"
113 " * Software Foundation.\n"
114 " *\n"
115 " * NO WARRANTY\n"
116 " * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS\n"
117 " * \"AS IS\" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT\n"
118 " * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR\n"
119 " * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT\n"
120 " * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL\n
121 " * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS\n"
122 " * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)\n"
123 " * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,\n"
124 " * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING\n"
125 " * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE\n"
126 " * POSSIBILITY OF SUCH DAMAGES.\n"

new/usr/src/common/acpica/tools/acpisrc/astable.c 3

127 " */\n";

129 ACPI_STRING_TABLE LinuxDataTypes[] = {

131 /*
132 * Extra space is added after the type so there is room to add "struct", "union"
133 * etc. when the existing struct typedefs are eliminated.
134 */

136 /* Declarations first - ACPI types and standard C types */

138 {"INT64 ", "s64 ", REPLACE_WHOLE_WORD | EXTRA_I
139 {"UINT64 ", "u64 ", REPLACE_WHOLE_WORD | EXTRA_I
140 {"UINT32 ", "u32 ", REPLACE_WHOLE_WORD | EXTRA_I
141 {"INT32 ", "s32 ", REPLACE_WHOLE_WORD | EXTRA_I
142 {"UINT16 ", "u16 ", REPLACE_WHOLE_WORD | EXTRA_I
143 {"INT16 ", "s16 ", REPLACE_WHOLE_WORD | EXTRA_I
144 {"UINT8 ", "u8 ", REPLACE_WHOLE_WORD | EXTRA_I
145 {"BOOLEAN ", "u8 ", REPLACE_WHOLE_WORD | EXTRA_I
146 {"char ", "char ", REPLACE_WHOLE_WORD | EXTRA_I
147 {"void ", "void ", REPLACE_WHOLE_WORD | EXTRA_I
148 {"char * ", "char * ", REPLACE_WHOLE_WORD | EXTRA_I
149 {"void * ", "void * ", REPLACE_WHOLE_WORD | EXTRA_I
150 {"int ", "int ", REPLACE_WHOLE_WORD | EXTRA_I
151 {"FILE ", "FILE ", REPLACE_WHOLE_WORD | EXTRA_I
152 {"size_t ", "size_t ", REPLACE_WHOLE_WORD | EXTRA_I

154 /* Now do embedded typecasts */

156 {"UINT64", "u64", REPLACE_WHOLE_WORD},
157 {"UINT32", "u32", REPLACE_WHOLE_WORD},
158 {"UINT16", "u16", REPLACE_WHOLE_WORD},
159 {"UINT8", "u8", REPLACE_WHOLE_WORD},
160 {"BOOLEAN", "u8", REPLACE_WHOLE_WORD},

162 {"INT64 ", "s64 ", REPLACE_WHOLE_WORD},
163 {"INT64", "s64", REPLACE_WHOLE_WORD},
164 {"INT32 ", "s32 ", REPLACE_WHOLE_WORD},
165 {"INT32", "s32", REPLACE_WHOLE_WORD},
166 {"INT16 ", "s16 ", REPLACE_WHOLE_WORD},
167 {"INT8 ", "s8 ", REPLACE_WHOLE_WORD},
168 {"INT16", "s16", REPLACE_WHOLE_WORD},
169 {"INT8", "s8", REPLACE_WHOLE_WORD},

171 {NULL, NULL, 0}
172 };

174 ACPI_TYPED_IDENTIFIER_TABLE AcpiIdentifiers[] = {

176 {"ACPI_ADDRESS_RANGE", SRC_TYPE_STRUCT},
177 {"ACPI_ADR_SPACE_HANDLER", SRC_TYPE_SIMPLE},
178 {"ACPI_ADR_SPACE_SETUP", SRC_TYPE_SIMPLE},
179 {"ACPI_ADR_SPACE_TYPE", SRC_TYPE_SIMPLE},
180 {"ACPI_AML_OPERANDS", SRC_TYPE_UNION},
181 {"ACPI_BIT_REGISTER_INFO", SRC_TYPE_STRUCT},
182 {"ACPI_BUFFER", SRC_TYPE_STRUCT},
183 {"ACPI_BUS_ATTRIBUTE", SRC_TYPE_STRUCT},
184 {"ACPI_CACHE_T", SRC_TYPE_SIMPLE},
185 {"ACPI_CMTABLE_HANDLER", SRC_TYPE_SIMPLE},
186 {"ACPI_COMMON_FACS", SRC_TYPE_STRUCT},
187 {"ACPI_COMMON_STATE", SRC_TYPE_STRUCT},
188 {"ACPI_COMMON_DESCRIPTOR", SRC_TYPE_STRUCT},
189 {"ACPI_COMPATIBLE_ID", SRC_TYPE_STRUCT},
190 {"ACPI_CONNECTION_INFO", SRC_TYPE_STRUCT},
191 {"ACPI_CONTROL_STATE", SRC_TYPE_STRUCT},
192 {"ACPI_CONVERSION_TABLE", SRC_TYPE_STRUCT},

new/usr/src/common/acpica/tools/acpisrc/astable.c 4

193 {"ACPI_CPU_FLAGS", SRC_TYPE_SIMPLE},
194 {"ACPI_CREATE_FIELD_INFO", SRC_TYPE_STRUCT},
195 {"ACPI_DB_ARGUMENT_INFO", SRC_TYPE_STRUCT},
196 {"ACPI_DB_COMMAND_HELP", SRC_TYPE_STRUCT},
197 {"ACPI_DB_COMMAND_INFO", SRC_TYPE_STRUCT},
198 {"ACPI_DB_EXECUTE_WALK", SRC_TYPE_STRUCT},
199 {"ACPI_DB_METHOD_INFO", SRC_TYPE_STRUCT},
200 {"ACPI_DEBUG_MEM_BLOCK", SRC_TYPE_STRUCT},
201 {"ACPI_DEBUG_MEM_HEADER", SRC_TYPE_STRUCT},
202 {"ACPI_DEBUG_PRINT_INFO", SRC_TYPE_STRUCT},
203 {"ACPI_DESCRIPTOR", SRC_TYPE_UNION},
204 {"ACPI_DEVICE_INFO", SRC_TYPE_STRUCT},
205 {"ACPI_DEVICE_WALK_INFO", SRC_TYPE_STRUCT},
206 {"ACPI_DMTABLE_DATA", SRC_TYPE_STRUCT},
207 {"ACPI_DMTABLE_INFO", SRC_TYPE_STRUCT},
208 {"ACPI_DMTABLE_HANDLER", SRC_TYPE_SIMPLE},
209 {"ACPI_EVALUATE_INFO", SRC_TYPE_STRUCT},
210 {"ACPI_EVENT_HANDLER", SRC_TYPE_SIMPLE},
211 {"ACPI_EVENT_STATUS", SRC_TYPE_SIMPLE},
212 {"ACPI_EVENT_TYPE", SRC_TYPE_SIMPLE},
213 {"ACPI_EXCEPTION_HANDLER", SRC_TYPE_SIMPLE},
214 {"ACPI_EXCEPTION_INFO", SRC_TYPE_STRUCT},
215 {"ACPI_EXDUMP_INFO", SRC_TYPE_STRUCT},
216 {"ACPI_EXECUTE_OP", SRC_TYPE_SIMPLE},
217 {"ACPI_EXECUTE_TYPE", SRC_TYPE_SIMPLE},
218 {"ACPI_EXTERNAL_LIST", SRC_TYPE_STRUCT},
219 {"ACPI_EXTERNAL_FILE", SRC_TYPE_STRUCT},
220 {"ACPI_FADT_INFO", SRC_TYPE_STRUCT},
221 {"ACPI_FADT_PM_INFO", SRC_TYPE_STRUCT},
222 {"ACPI_FIELD_INFO", SRC_TYPE_STRUCT},
223 {"ACPI_FIND_CONTEXT", SRC_TYPE_STRUCT},
224 {"ACPI_FIXED_EVENT_HANDLER", SRC_TYPE_STRUCT},
225 {"ACPI_FIXED_EVENT_INFO", SRC_TYPE_STRUCT},
226 {"ACPI_GBL_EVENT_HANDLER", SRC_TYPE_SIMPLE},
227 {"ACPI_GENERIC_ADDRESS", SRC_TYPE_STRUCT},
228 {"ACPI_GENERIC_STATE", SRC_TYPE_UNION},
229 {"ACPI_GET_DEVICES_INFO", SRC_TYPE_STRUCT},
230 {"ACPI_GLOBAL_NOTIFY_HANDLER", SRC_TYPE_STRUCT},
231 {"ACPI_GPE_BLOCK_INFO", SRC_TYPE_STRUCT},
232 {"ACPI_GPE_CALLBACK", SRC_TYPE_SIMPLE},
233 {"ACPI_GPE_DEVICE_INFO", SRC_TYPE_STRUCT},
234 {"ACPI_GPE_EVENT_INFO", SRC_TYPE_STRUCT},
235 {"ACPI_GPE_HANDLER", SRC_TYPE_SIMPLE},
236 {"ACPI_GPE_HANDLER_INFO", SRC_TYPE_STRUCT},
237 {"ACPI_GPE_INDEX_INFO", SRC_TYPE_STRUCT},
238 {"ACPI_GPE_NOTIFY_INFO", SRC_TYPE_STRUCT},
239 {"ACPI_GPE_REGISTER_INFO", SRC_TYPE_STRUCT},
240 {"ACPI_GPE_WALK_INFO", SRC_TYPE_STRUCT},
241 {"ACPI_GPE_XRUPT_INFO", SRC_TYPE_STRUCT},
242 {"ACPI_HANDLE", SRC_TYPE_SIMPLE},
243 {"ACPI_HANDLER_INFO", SRC_TYPE_STRUCT},
244 {"ACPI_INIT_HANDLER", SRC_TYPE_SIMPLE},
245 {"ACPI_INTERFACE_HANDLER", SRC_TYPE_SIMPLE},
246 {"ACPI_IDENTIFIER_TABLE", SRC_TYPE_STRUCT},
247 {"ACPI_INIT_WALK_INFO", SRC_TYPE_STRUCT},
248 {"ACPI_INTEGER", SRC_TYPE_SIMPLE},
249 {"ACPI_INTEGER_OVERLAY", SRC_TYPE_STRUCT},
250 {"ACPI_INTEGRITY_INFO", SRC_TYPE_STRUCT},
251 {"ACPI_INTERFACE_INFO", SRC_TYPE_STRUCT},
252 {"ACPI_INTERNAL_METHOD", SRC_TYPE_SIMPLE},
253 {"ACPI_INTERPRETER_MODE", SRC_TYPE_SIMPLE},
254 {"ACPI_IO_ADDRESS", SRC_TYPE_SIMPLE},
255 {"ACPI_IO_ATTRIBUTE", SRC_TYPE_STRUCT},
256 {"ACPI_MEM_SPACE_CONTEXT", SRC_TYPE_STRUCT},
257 {"ACPI_MEMORY_ATTRIBUTE", SRC_TYPE_STRUCT},
258 {"ACPI_MEMORY_LIST", SRC_TYPE_STRUCT},

new/usr/src/common/acpica/tools/acpisrc/astable.c 5

259 {"ACPI_MTMR_ENTRY", SRC_TYPE_STRUCT},
260 {"ACPI_MUTEX", SRC_TYPE_SIMPLE},
261 {"ACPI_MUTEX_HANDLE", SRC_TYPE_SIMPLE},
262 {"ACPI_MUTEX_INFO", SRC_TYPE_STRUCT},
263 {"ACPI_NAME", SRC_TYPE_SIMPLE},
264 {"ACPI_NAME_INFO", SRC_TYPE_STRUCT},
265 {"ACPI_NAME_UNION", SRC_TYPE_UNION},
266 {"ACPI_NAMESPACE_NODE", SRC_TYPE_STRUCT},
267 {"ACPI_NAMESTRING_INFO", SRC_TYPE_STRUCT},
268 {"ACPI_NATIVE_INT", SRC_TYPE_SIMPLE},
269 {"ACPI_NATIVE_UINT", SRC_TYPE_SIMPLE},
270 {"ACPI_NOTIFY_HANDLER", SRC_TYPE_SIMPLE},
271 {"ACPI_NOTIFY_INFO", SRC_TYPE_STRUCT},
272 {"ACPI_NS_SEARCH_DATA", SRC_TYPE_STRUCT},
273 {"ACPI_OBJ_INFO_HEADER", SRC_TYPE_STRUCT},
274 {"ACPI_OBJECT", SRC_TYPE_UNION},
275 {"ACPI_OBJECT_ADDR_HANDLER", SRC_TYPE_STRUCT},
276 {"ACPI_OBJECT_BANK_FIELD", SRC_TYPE_STRUCT},
277 {"ACPI_OBJECT_BUFFER", SRC_TYPE_STRUCT},
278 {"ACPI_OBJECT_BUFFER_FIELD", SRC_TYPE_STRUCT},
279 {"ACPI_OBJECT_CACHE_LIST", SRC_TYPE_STRUCT},
280 {"ACPI_OBJECT_COMMON", SRC_TYPE_STRUCT},
281 {"ACPI_OBJECT_CONVERTER", SRC_TYPE_SIMPLE},
282 {"ACPI_OBJECT_DATA", SRC_TYPE_STRUCT},
283 {"ACPI_OBJECT_DEVICE", SRC_TYPE_STRUCT},
284 {"ACPI_OBJECT_EVENT", SRC_TYPE_STRUCT},
285 {"ACPI_OBJECT_EXTRA", SRC_TYPE_STRUCT},
286 {"ACPI_OBJECT_FIELD_COMMON", SRC_TYPE_STRUCT},
287 {"ACPI_OBJECT_HANDLER", SRC_TYPE_SIMPLE},
288 {"ACPI_OBJECT_INDEX_FIELD", SRC_TYPE_STRUCT},
289 {"ACPI_OBJECT_INTEGER", SRC_TYPE_STRUCT},
290 {"ACPI_OBJECT_LIST", SRC_TYPE_STRUCT},
291 {"ACPI_OBJECT_METHOD", SRC_TYPE_STRUCT},
292 {"ACPI_OBJECT_MUTEX", SRC_TYPE_STRUCT},
293 {"ACPI_OBJECT_NOTIFY_COMMON", SRC_TYPE_STRUCT},
294 {"ACPI_OBJECT_NOTIFY_HANDLER", SRC_TYPE_STRUCT},
295 {"ACPI_OBJECT_PACKAGE", SRC_TYPE_STRUCT},
296 {"ACPI_OBJECT_POWER_RESOURCE", SRC_TYPE_STRUCT},
297 {"ACPI_OBJECT_PROCESSOR", SRC_TYPE_STRUCT},
298 {"ACPI_OBJECT_REFERENCE", SRC_TYPE_STRUCT},
299 {"ACPI_OBJECT_REGION", SRC_TYPE_STRUCT},
300 {"ACPI_OBJECT_REGION_FIELD", SRC_TYPE_STRUCT},
301 {"ACPI_OBJECT_STRING", SRC_TYPE_STRUCT},
302 {"ACPI_OBJECT_THERMAL_ZONE", SRC_TYPE_STRUCT},
303 {"ACPI_OBJECT_TYPE", SRC_TYPE_SIMPLE},
304 {"ACPI_OBJECT_TYPE8", SRC_TYPE_SIMPLE},
305 {"ACPI_OP_WALK_INFO", SRC_TYPE_STRUCT},
306 {"ACPI_OPCODE_INFO", SRC_TYPE_STRUCT},
307 {"ACPI_OPERAND_OBJECT", SRC_TYPE_UNION},
308 {"ACPI_OSD_HANDLER", SRC_TYPE_SIMPLE},
309 {"ACPI_OSD_EXEC_CALLBACK", SRC_TYPE_SIMPLE},
310 {"ACPI_OWNER_ID", SRC_TYPE_SIMPLE},
311 {"ACPI_PACKAGE_INFO", SRC_TYPE_STRUCT},
312 {"ACPI_PACKAGE_INFO2", SRC_TYPE_STRUCT},
313 {"ACPI_PACKAGE_INFO3", SRC_TYPE_STRUCT},
314 {"ACPI_PARSE_DOWNWARDS", SRC_TYPE_SIMPLE},
315 {"ACPI_PARSE_OBJ_ASL", SRC_TYPE_STRUCT},
316 {"ACPI_PARSE_OBJ_COMMON", SRC_TYPE_STRUCT},
317 {"ACPI_PARSE_OBJ_NAMED", SRC_TYPE_STRUCT},
318 {"ACPI_PARSE_OBJECT", SRC_TYPE_UNION},
319 {"ACPI_PARSE_STATE", SRC_TYPE_STRUCT},
320 {"ACPI_PARSE_UPWARDS", SRC_TYPE_SIMPLE},
321 {"ACPI_PARSE_VALUE", SRC_TYPE_UNION},
322 {"ACPI_PCI_DEVICE", SRC_TYPE_STRUCT},
323 {"ACPI_PCI_ID", SRC_TYPE_STRUCT},
324 {"ACPI_PCI_ROUTING_TABLE", SRC_TYPE_STRUCT},

new/usr/src/common/acpica/tools/acpisrc/astable.c 6

325 {"ACPI_PHYSICAL_ADDRESS", SRC_TYPE_SIMPLE},
326 {"ACPI_PKG_CALLBACK", SRC_TYPE_SIMPLE},
327 {"ACPI_PKG_INFO", SRC_TYPE_STRUCT},
328 {"ACPI_PKG_STATE", SRC_TYPE_STRUCT},
329 {"ACPI_PMTT_HEADER", SRC_TYPE_STRUCT},
330 {"ACPI_PNP_DEVICE_ID", SRC_TYPE_STRUCT},
331 {"ACPI_PNP_DEVICE_ID_LIST", SRC_TYPE_STRUCT},
332 {"ACPI_POINTER", SRC_TYPE_STRUCT},
333 {"ACPI_POINTERS", SRC_TYPE_UNION},
334 {"ACPI_PORT_INFO", SRC_TYPE_STRUCT},
335 {"ACPI_PREDEFINED_DATA", SRC_TYPE_STRUCT},
336 {"ACPI_PREDEFINED_INFO", SRC_TYPE_UNION},
337 {"ACPI_PREDEFINED_NAMES", SRC_TYPE_STRUCT},
338 {"ACPI_PSCOPE_STATE", SRC_TYPE_STRUCT},
339 {"ACPI_RASF_PARAMETER_BLOCK", SRC_TYPE_STRUCT},
340 {"ACPI_RASF_PATROL_SCRUB_PARAMETER", SRC_TYPE_STRUCT},
341 {"ACPI_RASF_SHARED_MEMORY", SRC_TYPE_STRUCT},
342 {"ACPI_REPAIR_FUNCTION", SRC_TYPE_SIMPLE},
343 {"ACPI_REPAIR_INFO", SRC_TYPE_STRUCT},
344 {"ACPI_RESOURCE", SRC_TYPE_STRUCT},
345 {"ACPI_RESOURCE_HANDLER", SRC_TYPE_SIMPLE},
346 {"ACPI_RESOURCE_ADDRESS", SRC_TYPE_STRUCT},
347 {"ACPI_RESOURCE_ADDRESS16", SRC_TYPE_STRUCT},
348 {"ACPI_RESOURCE_ADDRESS32", SRC_TYPE_STRUCT},
349 {"ACPI_RESOURCE_ADDRESS64", SRC_TYPE_STRUCT},
350 {"ACPI_RESOURCE_COMMON_SERIALBUS", SRC_TYPE_STRUCT},
351 {"ACPI_RESOURCE_EXTENDED_ADDRESS64", SRC_TYPE_STRUCT},
352 {"ACPI_RESOURCE_ATTRIBUTE", SRC_TYPE_UNION},
353 {"ACPI_RESOURCE_DATA", SRC_TYPE_UNION},
354 {"ACPI_RESOURCE_DMA", SRC_TYPE_STRUCT},
355 {"ACPI_RESOURCE_END_TAG", SRC_TYPE_STRUCT},
356 {"ACPI_RESOURCE_EXTENDED_IRQ", SRC_TYPE_STRUCT},
357 {"ACPI_RESOURCE_FIXED_DMA", SRC_TYPE_STRUCT},
358 {"ACPI_RESOURCE_FIXED_IO", SRC_TYPE_STRUCT},
359 {"ACPI_RESOURCE_FIXED_MEMORY32", SRC_TYPE_STRUCT},
360 {"ACPI_RESOURCE_GENERIC_REGISTER", SRC_TYPE_STRUCT},
361 {"ACPI_RESOURCE_GPIO", SRC_TYPE_STRUCT},
362 {"ACPI_RESOURCE_I2C_SERIALBUS", SRC_TYPE_STRUCT},
363 {"ACPI_RESOURCE_INFO", SRC_TYPE_STRUCT},
364 {"ACPI_RESOURCE_IO", SRC_TYPE_STRUCT},
365 {"ACPI_RESOURCE_IRQ", SRC_TYPE_STRUCT},
366 {"ACPI_RESOURCE_MEMORY24", SRC_TYPE_STRUCT},
367 {"ACPI_RESOURCE_MEMORY32", SRC_TYPE_STRUCT},
368 {"ACPI_RESOURCE_SOURCE", SRC_TYPE_STRUCT},
369 {"ACPI_RESOURCE_SPI_SERIALBUS", SRC_TYPE_STRUCT},
370 {"ACPI_RESOURCE_START_DEPENDENT", SRC_TYPE_STRUCT},
371 {"ACPI_RESOURCE_TAG", SRC_TYPE_STRUCT},
372 {"ACPI_RESOURCE_TYPE", SRC_TYPE_SIMPLE},
373 {"ACPI_RESOURCE_UART_SERIALBUS", SRC_TYPE_STRUCT},
374 {"ACPI_RESOURCE_VENDOR", SRC_TYPE_STRUCT},
375 {"ACPI_RESOURCE_VENDOR_TYPED", SRC_TYPE_STRUCT},
376 {"ACPI_RESULT_VALUES", SRC_TYPE_STRUCT},
377 {"ACPI_ROUND_UP_TO_32_BIT", SRC_TYPE_SIMPLE},
378 {"ACPI_RSCONVERT_INFO", SRC_TYPE_STRUCT},
379 {"ACPI_RSDUMP_INFO", SRC_TYPE_STRUCT},
380 {"ACPI_RW_LOCK", SRC_TYPE_STRUCT},
381 {"ACPI_S3PT_HEADER", SRC_TYPE_STRUCT},
382 {"ACPI_SCI_HANDLER", SRC_TYPE_SIMPLE},
383 {"ACPI_SCI_HANDLER_INFO", SRC_TYPE_STRUCT},
384 {"ACPI_SCOPE_STATE", SRC_TYPE_STRUCT},
385 {"ACPI_SEMAPHORE", SRC_TYPE_SIMPLE},
386 {"ACPI_SIGNAL_FATAL_INFO", SRC_TYPE_STRUCT},
387 {"ACPI_SIMPLE_REPAIR_INFO", SRC_TYPE_STRUCT},
388 {"ACPI_SIZE", SRC_TYPE_SIMPLE},
389 {"ACPI_SLEEP_FUNCTION", SRC_TYPE_SIMPLE},
390 {"ACPI_SLEEP_FUNCTIONS", SRC_TYPE_STRUCT},

new/usr/src/common/acpica/tools/acpisrc/astable.c 7

391 {"ACPI_SPINLOCK", SRC_TYPE_SIMPLE},
392 {"ACPI_STATISTICS", SRC_TYPE_STRUCT},
393 {"ACPI_STATUS", SRC_TYPE_SIMPLE},
394 {"ACPI_STRING", SRC_TYPE_SIMPLE},
395 {"ACPI_STRING_TABLE", SRC_TYPE_STRUCT},
396 {"ACPI_SUBTABLE_HEADER", SRC_TYPE_STRUCT},
397 {"ACPI_SYSTEM_INFO", SRC_TYPE_STRUCT},
398 {"ACPI_TABLE_DESC", SRC_TYPE_STRUCT},
399 {"ACPI_TABLE_HANDLER", SRC_TYPE_SIMPLE},
400 {"ACPI_TABLE_HEADER", SRC_TYPE_STRUCT},
401 {"ACPI_TABLE_INFO", SRC_TYPE_STRUCT},
402 {"ACPI_TABLE_LIST", SRC_TYPE_STRUCT},
403 {"ACPI_TABLE_MTMR", SRC_TYPE_STRUCT},
404 {"ACPI_TABLE_SUPPORT", SRC_TYPE_STRUCT},
405 {"ACPI_TABLE_TYPE", SRC_TYPE_SIMPLE},
406 {"ACPI_TABLE_VRTC", SRC_TYPE_STRUCT},
407 {"ACPI_TAG_INFO", SRC_TYPE_STRUCT},
408 {"ACPI_THREAD_ID", SRC_TYPE_SIMPLE},
409 {"ACPI_THREAD_STATE", SRC_TYPE_STRUCT},
410 {"ACPI_TYPED_IDENTIFIER_TABLE", SRC_TYPE_STRUCT},
411 {"ACPI_UINTPTR_T", SRC_TYPE_SIMPLE},
412 {"ACPI_UPDATE_STATE", SRC_TYPE_STRUCT},
413 {"ACPI_UUID", SRC_TYPE_STRUCT},
414 {"ACPI_VENDOR_UUID", SRC_TYPE_STRUCT},
415 {"ACPI_VENDOR_WALK_INFO", SRC_TYPE_STRUCT},
416 {"ACPI_VRTC_ENTRY", SRC_TYPE_STRUCT},
417 {"ACPI_WALK_AML_CALLBACK", SRC_TYPE_SIMPLE},
418 {"ACPI_WALK_CALLBACK", SRC_TYPE_SIMPLE},
419 {"ACPI_WALK_RESOURCE_CALLBACK", SRC_TYPE_SIMPLE},
420 {"ACPI_WALK_INFO", SRC_TYPE_STRUCT},
421 {"ACPI_WALK_STATE", SRC_TYPE_STRUCT},
422 {"ACPI_WHEA_HEADER", SRC_TYPE_STRUCT},

424 /* Buffers related to predefined ACPI names (_PLD, etc.) */

426 {"ACPI_FDE_INFO", SRC_TYPE_STRUCT},
427 {"ACPI_GRT_INFO", SRC_TYPE_STRUCT},
428 {"ACPI_GTM_INFO", SRC_TYPE_STRUCT},
429 {"ACPI_PLD_INFO", SRC_TYPE_STRUCT},

431 /* Resources */

433 {"ACPI_RS_LENGTH", SRC_TYPE_SIMPLE},
434 {"ACPI_RSDESC_SIZE", SRC_TYPE_SIMPLE},

436 {"AML_RESOURCE", SRC_TYPE_UNION},
437 {"AML_RESOURCE_ADDRESS", SRC_TYPE_STRUCT},
438 {"AML_RESOURCE_ADDRESS16", SRC_TYPE_STRUCT},
439 {"AML_RESOURCE_ADDRESS32", SRC_TYPE_STRUCT},
440 {"AML_RESOURCE_ADDRESS64", SRC_TYPE_STRUCT},
441 {"AML_RESOURCE_COMMON_SERIALBUS", SRC_TYPE_STRUCT},
442 {"AML_RESOURCE_DMA", SRC_TYPE_STRUCT},
443 {"AML_RESOURCE_END_DEPENDENT", SRC_TYPE_STRUCT},
444 {"AML_RESOURCE_END_TAG", SRC_TYPE_STRUCT},
445 {"AML_RESOURCE_EXTENDED_ADDRESS64", SRC_TYPE_STRUCT},
446 {"AML_RESOURCE_EXTENDED_IRQ", SRC_TYPE_STRUCT},
447 {"AML_RESOURCE_FIXED_DMA", SRC_TYPE_STRUCT},
448 {"AML_RESOURCE_FIXED_IO", SRC_TYPE_STRUCT},
449 {"AML_RESOURCE_FIXED_MEMORY32", SRC_TYPE_STRUCT},
450 {"AML_RESOURCE_GENERIC_REGISTER", SRC_TYPE_STRUCT},
451 {"AML_RESOURCE_GPIO", SRC_TYPE_STRUCT},
452 {"AML_RESOURCE_IO", SRC_TYPE_STRUCT},
453 {"AML_RESOURCE_I2C_SERIALBUS", SRC_TYPE_STRUCT},
454 {"AML_RESOURCE_IRQ", SRC_TYPE_STRUCT},
455 {"AML_RESOURCE_IRQ_NOFLAGS", SRC_TYPE_STRUCT},
456 {"AML_RESOURCE_LARGE_HEADER", SRC_TYPE_STRUCT},

new/usr/src/common/acpica/tools/acpisrc/astable.c 8

457 {"AML_RESOURCE_MEMORY24", SRC_TYPE_STRUCT},
458 {"AML_RESOURCE_MEMORY32", SRC_TYPE_STRUCT},
459 {"AML_RESOURCE_SMALL_HEADER", SRC_TYPE_STRUCT},
460 {"AML_RESOURCE_SPI_SERIALBUS", SRC_TYPE_STRUCT},
461 {"AML_RESOURCE_START_DEPENDENT", SRC_TYPE_STRUCT},
462 {"AML_RESOURCE_START_DEPENDENT_NOPRIO", SRC_TYPE_STRUCT},
463 {"AML_RESOURCE_UART_SERIALBUS", SRC_TYPE_STRUCT},
464 {"AML_RESOURCE_VENDOR_LARGE", SRC_TYPE_STRUCT},
465 {"AML_RESOURCE_VENDOR_SMALL", SRC_TYPE_STRUCT},

467 {"APIC_HEADER", SRC_TYPE_STRUCT},
468 {"AE_DEBUG_REGIONS", SRC_TYPE_STRUCT},
469 {"AE_REGION", SRC_TYPE_STRUCT},
470 {"AE_TABLE_DESC", SRC_TYPE_STRUCT},
471 {"ASL_ANALYSIS_WALK_INFO", SRC_TYPE_STRUCT},
472 {"ASL_ERROR_MSG", SRC_TYPE_STRUCT},
473 {"ASL_EVENT_INFO", SRC_TYPE_STRUCT},
474 {"ASL_FILE_INFO", SRC_TYPE_STRUCT},
475 {"ASL_FILE_STATUS", SRC_TYPE_STRUCT},
476 {"ASL_INCLUDE_DIR", SRC_TYPE_STRUCT},
477 {"ASL_LISTING_NODE", SRC_TYPE_STRUCT},
478 {"ASL_MAPPING_ENTRY", SRC_TYPE_STRUCT},
479 {"ASL_METHOD_INFO", SRC_TYPE_STRUCT},
480 {"ASL_RESERVED_INFO", SRC_TYPE_STRUCT},
481 {"ASL_RESOURCE_NODE", SRC_TYPE_STRUCT},
482 {"ASL_WALK_CALLBACK", SRC_TYPE_SIMPLE},
483 {"UINT64_OVERLAY", SRC_TYPE_UNION},
484 {"UINT64_STRUCT", SRC_TYPE_STRUCT},

486 /*
487 * Acpi table definition names.
488 */
489 {"ACPI_TABLE_ASF", SRC_TYPE_STRUCT},
490 {"ACPI_TABLE_BERT", SRC_TYPE_STRUCT},
491 {"ACPI_TABLE_BGRT", SRC_TYPE_STRUCT},
492 {"ACPI_TABLE_BOOT", SRC_TYPE_STRUCT},
493 {"ACPI_TABLE_CPEP", SRC_TYPE_STRUCT},
494 {"ACPI_TABLE_CSRT", SRC_TYPE_STRUCT},
495 {"ACPI_TABLE_DBG2", SRC_TYPE_STRUCT},
496 {"ACPI_TABLE_DBGP", SRC_TYPE_STRUCT},
497 {"ACPI_TABLE_DMAR", SRC_TYPE_STRUCT},
498 {"ACPI_TABLE_DRTM", SRC_TYPE_STRUCT},
499 {"ACPI_TABLE_ECDT", SRC_TYPE_STRUCT},
500 {"ACPI_TABLE_EINJ", SRC_TYPE_STRUCT},
501 {"ACPI_TABLE_ERST", SRC_TYPE_STRUCT},
502 {"ACPI_TABLE_FACS", SRC_TYPE_STRUCT},
503 {"ACPI_TABLE_FADT", SRC_TYPE_STRUCT},
504 {"ACPI_TABLE_FPDT", SRC_TYPE_STRUCT},
505 {"ACPI_TABLE_HEST", SRC_TYPE_STRUCT},
506 {"ACPI_TABLE_HPET", SRC_TYPE_STRUCT},
507 {"ACPI_TABLE_IBFT", SRC_TYPE_STRUCT},
508 {"ACPI_TABLE_IVRS", SRC_TYPE_STRUCT},
509 {"ACPI_TABLE_MADT", SRC_TYPE_STRUCT},
510 {"ACPI_TABLE_MCFG", SRC_TYPE_STRUCT},
511 {"ACPI_TABLE_MCHI", SRC_TYPE_STRUCT},
512 {"ACPI_TABLE_MPST", SRC_TYPE_STRUCT},
513 {"ACPI_TABLE_MSCT", SRC_TYPE_STRUCT},
514 {"ACPI_TABLE_PCCT", SRC_TYPE_STRUCT},
515 {"ACPI_TABLE_RSDP", SRC_TYPE_STRUCT},
516 {"ACPI_TABLE_RSDT", SRC_TYPE_STRUCT},
517 {"ACPI_TABLE_MCHI", SRC_TYPE_STRUCT},
518 {"ACPI_TABLE_S3PT", SRC_TYPE_STRUCT},
519 {"ACPI_TABLE_SBST", SRC_TYPE_STRUCT},
520 {"ACPI_TABLE_SLIC", SRC_TYPE_STRUCT},
521 {"ACPI_TABLE_SLIT", SRC_TYPE_STRUCT},
522 {"ACPI_TABLE_SPCR", SRC_TYPE_STRUCT},

new/usr/src/common/acpica/tools/acpisrc/astable.c 9

523 {"ACPI_TABLE_SPMI", SRC_TYPE_STRUCT},
524 {"ACPI_TABLE_SRAT", SRC_TYPE_STRUCT},
525 {"ACPI_TABLE_TCPA", SRC_TYPE_STRUCT},
526 {"ACPI_TABLE_TPM2", SRC_TYPE_STRUCT},
527 {"ACPI_TABLE_UEFI", SRC_TYPE_STRUCT},
528 {"ACPI_TABLE_WAET", SRC_TYPE_STRUCT},
529 {"ACPI_TABLE_WDAT", SRC_TYPE_STRUCT},
530 {"ACPI_TABLE_WDDT", SRC_TYPE_STRUCT},
531 {"ACPI_TABLE_WDRT", SRC_TYPE_STRUCT},
532 {"ACPI_TABLE_XSDT", SRC_TYPE_STRUCT},

534 {"ACPI_ASF_ADDRESS", SRC_TYPE_STRUCT},
535 {"ACPI_ASF_ALERT", SRC_TYPE_STRUCT},
536 {"ACPI_ASF_ALERT_DATA", SRC_TYPE_STRUCT},
537 {"ACPI_ASF_CONTROL_DATA", SRC_TYPE_STRUCT},
538 {"ACPI_ASF_HEADER", SRC_TYPE_STRUCT},
539 {"ACPI_ASF_INFO", SRC_TYPE_STRUCT},
540 {"ACPI_ASF_REMOTE", SRC_TYPE_STRUCT},
541 {"ACPI_ASF_RMCP", SRC_TYPE_STRUCT},
542 {"ACPI_BERT_REGION", SRC_TYPE_STRUCT},
543 {"ACPI_CPEP_POLLING", SRC_TYPE_STRUCT},
544 {"ACPI_CSRT_GROUP", SRC_TYPE_STRUCT},
545 {"ACPI_CSRT_DESCRIPTOR", SRC_TYPE_STRUCT},
546 {"ACPI_CSRT_SHARED_INFO", SRC_TYPE_STRUCT},
547 {"ACPI_DBG2_DEVICE", SRC_TYPE_STRUCT},
548 {"ACPI_DMAR_HEADER", SRC_TYPE_STRUCT},
549 {"ACPI_DMAR_DEVICE_SCOPE", SRC_TYPE_STRUCT},
550 {"ACPI_DMAR_ATSR", SRC_TYPE_STRUCT},
551 {"ACPI_DMAR_RHSA", SRC_TYPE_STRUCT},
552 {"ACPI_DMAR_HARDWARE_UNIT", SRC_TYPE_STRUCT},
553 {"ACPI_DMAR_RESERVED_MEMORY", SRC_TYPE_STRUCT},
554 {"ACPI_EINJ_ENTRY", SRC_TYPE_STRUCT},
555 {"ACPI_EINJ_TRIGGER", SRC_TYPE_STRUCT},
556 {"ACPI_FPDT_HEADER", SRC_TYPE_STRUCT},
557 {"ACPI_FPDT_BOOT", SRC_TYPE_STRUCT},
558 {"ACPI_FPDT_S3PT_PTR", SRC_TYPE_STRUCT},
559 {"ACPI_ERST_ENTRY", SRC_TYPE_STRUCT},
560 {"ACPI_ERST_INFO", SRC_TYPE_STRUCT},
561 {"ACPI_HEST_AER_COMMON", SRC_TYPE_STRUCT},
562 {"ACPI_HEST_HEADER", SRC_TYPE_STRUCT},
563 {"ACPI_HEST_NOTIFY", SRC_TYPE_STRUCT},
564 {"ACPI_HEST_IA_ERROR_BANK", SRC_TYPE_STRUCT},
565 {"ACPI_HEST_IA_MACHINE_CHECK", SRC_TYPE_STRUCT},
566 {"ACPI_HEST_IA_CORRECTED", SRC_TYPE_STRUCT},
567 {"ACPI_HEST_IA_NMI", SRC_TYPE_STRUCT},
568 {"ACPI_HEST_AER_ROOT", SRC_TYPE_STRUCT},
569 {"ACPI_HEST_AER", SRC_TYPE_STRUCT},
570 {"ACPI_HEST_AER_BRIDGE", SRC_TYPE_STRUCT},
571 {"ACPI_HEST_GENERIC", SRC_TYPE_STRUCT},
572 {"ACPI_HEST_GENERIC_STATUS", SRC_TYPE_STRUCT},
573 {"ACPI_HEST_GENERIC_DATA", SRC_TYPE_STRUCT},
574 {"ACPI_IBFT_HEADER", SRC_TYPE_STRUCT},
575 {"ACPI_IBFT_CONTROL", SRC_TYPE_STRUCT},
576 {"ACPI_IBFT_INITIATOR", SRC_TYPE_STRUCT},
577 {"ACPI_IBFT_NIC", SRC_TYPE_STRUCT},
578 {"ACPI_IBFT_TARGET", SRC_TYPE_STRUCT},
579 {"ACPI_IVRS_HEADER", SRC_TYPE_STRUCT},
580 {"ACPI_IVRS_HARDWARE", SRC_TYPE_STRUCT},
581 {"ACPI_IVRS_DE_HEADER", SRC_TYPE_STRUCT},
582 {"ACPI_IVRS_DEVICE4", SRC_TYPE_STRUCT},
583 {"ACPI_IVRS_DEVICE8A", SRC_TYPE_STRUCT},
584 {"ACPI_IVRS_DEVICE8B", SRC_TYPE_STRUCT},
585 {"ACPI_IVRS_DEVICE8C", SRC_TYPE_STRUCT},
586 {"ACPI_IVRS_MEMORY", SRC_TYPE_STRUCT},
587 {"ACPI_MADT_ADDRESS_OVERRIDE", SRC_TYPE_STRUCT},
588 {"ACPI_MADT_HEADER", SRC_TYPE_STRUCT},

new/usr/src/common/acpica/tools/acpisrc/astable.c 10

589 {"ACPI_MADT_IO_APIC", SRC_TYPE_STRUCT},
590 {"ACPI_MADT_IO_SAPIC", SRC_TYPE_STRUCT},
591 {"ACPI_MADT_LOCAL_APIC", SRC_TYPE_STRUCT},
592 {"ACPI_MADT_LOCAL_APIC_NMI", SRC_TYPE_STRUCT},
593 {"ACPI_MADT_LOCAL_APIC_OVERRIDE", SRC_TYPE_STRUCT},
594 {"ACPI_MADT_LOCAL_SAPIC", SRC_TYPE_STRUCT},
595 {"ACPI_MADT_LOCAL_X2APIC", SRC_TYPE_STRUCT},
596 {"ACPI_MADT_LOCAL_X2APIC_NMI", SRC_TYPE_STRUCT},
597 {"ACPI_MADT_GENERIC_DISTRIBUTOR", SRC_TYPE_STRUCT},
598 {"ACPI_MADT_GENERIC_INTERRUPT", SRC_TYPE_STRUCT},
599 {"ACPI_MADT_INTERRUPT_OVERRIDE", SRC_TYPE_STRUCT},
600 {"ACPI_MADT_INTERRUPT_SOURCE", SRC_TYPE_STRUCT},
601 {"ACPI_MADT_NMI_SOURCE", SRC_TYPE_STRUCT},
602 {"ACPI_MADT_PROCESSOR_APIC", SRC_TYPE_STRUCT},
603 {"ACPI_MPST_COMPONENT", SRC_TYPE_STRUCT},
604 {"ACPI_MPST_DATA_HDR", SRC_TYPE_STRUCT},
605 {"ACPI_MPST_POWER_DATA", SRC_TYPE_STRUCT},
606 {"ACPI_MPST_POWER_NODE", SRC_TYPE_STRUCT},
607 {"ACPI_MPST_POWER_STATE", SRC_TYPE_STRUCT},
608 {"ACPI_MCFG_ALLOCATION", SRC_TYPE_STRUCT},
609 {"ACPI_MSCT_PROXIMITY", SRC_TYPE_STRUCT},
610 {"ACPI_PCCT_SUBSPACE", SRC_TYPE_STRUCT},
611 {"ACPI_RSDP_COMMON", SRC_TYPE_STRUCT},
612 {"ACPI_RSDP_EXTENSION", SRC_TYPE_STRUCT},
613 {"ACPI_S3PT_RESUME", SRC_TYPE_STRUCT},
614 {"ACPI_S3PT_SUSPEND", SRC_TYPE_STRUCT},
615 {"ACPI_SLIC_HEADER", SRC_TYPE_STRUCT},
616 {"ACPI_SLIC_KEY", SRC_TYPE_STRUCT},
617 {"ACPI_SLIC_MARKER", SRC_TYPE_STRUCT},
618 {"ACPI_SRAT_CPU_AFFINITY", SRC_TYPE_STRUCT},
619 {"ACPI_SRAT_HEADER", SRC_TYPE_STRUCT},
620 {"ACPI_SRAT_MEM_AFFINITY", SRC_TYPE_STRUCT},
621 {"ACPI_SRAT_X2APIC_CPU_AFFINITY", SRC_TYPE_STRUCT},
622 {"ACPI_TPM2_CONTROL", SRC_TYPE_STRUCT},
623 {"ACPI_WDAT_ENTRY", SRC_TYPE_STRUCT},

625 /* Data Table compiler */

627 {"DT_FIELD", SRC_TYPE_STRUCT},
628 {"DT_SUBTABLE", SRC_TYPE_STRUCT},
629 {"DT_WALK_CALLBACK", SRC_TYPE_SIMPLE},

631 /* iASL preprocessor */

633 {"PR_DEFINE_INFO", SRC_TYPE_STRUCT},
634 {"PR_DIRECTIVE_INFO", SRC_TYPE_STRUCT},
635 {"PR_FILE_NODE", SRC_TYPE_STRUCT},
636 {"PR_LINE_MAPPING", SRC_TYPE_STRUCT},
637 {"PR_MACRO_ARG", SRC_TYPE_STRUCT},
638 {"PR_OPERATOR_INFO", SRC_TYPE_STRUCT},

640 /* AcpiHelp utility */

642 {"AH_AML_OPCODE", SRC_TYPE_STRUCT},
643 {"AH_ASL_OPERATOR", SRC_TYPE_STRUCT},
644 {"AH_ASL_KEYWORD", SRC_TYPE_STRUCT},
645 {"AH_PREDEFINED_NAME", SRC_TYPE_STRUCT},

647 /* AcpiXtract utility */

649 {"AX_TABLE_INFO", SRC_TYPE_STRUCT},

651 {NULL, 0}
652 };

new/usr/src/common/acpica/tools/acpisrc/astable.c 11

655 ACPI_IDENTIFIER_TABLE LinuxAddStruct[] = {
656 {"acpi_namespace_node"},
657 {"acpi_parse_object"},
658 {"acpi_table_desc"},
659 {"acpi_walk_state"},
660 {NULL}
661 };

664 ACPI_IDENTIFIER_TABLE LinuxEliminateMacros[] = {

666 {"ACPI_GET_ADDRESS"},
667 {"ACPI_VALID_ADDRESS"},
668 {NULL}
669 };

672 ACPI_IDENTIFIER_TABLE LinuxEliminateLines_C[] = {

674 {"#define __"},
675 {NULL}
676 };

679 ACPI_IDENTIFIER_TABLE LinuxEliminateLines_H[] = {

681 {NULL}
682 };

685 ACPI_IDENTIFIER_TABLE LinuxConditionalIdentifiers[] = {

687 /* {"ACPI_USE_STANDARD_HEADERS"}, */
688 {"WIN32"},
689 {"_MSC_VER"},
690 {NULL}
691 };

694 ACPI_STRING_TABLE LinuxSpecialStrings[] = {

696 /* Include file paths */

698 {"\"acpi.h\"", "<acpi/acpi.h>", REPLACE_WHOLE_WO
699 {"\"acpiosxf.h\"", "<acpi/acpiosxf.h>", REPLACE_WHOLE_WO
700 {"\"acpixf.h\"", "<acpi/acpixf.h>", REPLACE_WHOLE_WO
701 {"\"acbuffer.h\"", "<acpi/acbuffer.h>", REPLACE_WHOLE_WO
702 {"\"acconfig.h\"", "<acpi/acconfig.h>", REPLACE_WHOLE_WO
703 {"\"acexcep.h\"", "<acpi/acexcep.h>", REPLACE_WHOLE_WO
704 {"\"acnames.h\"", "<acpi/acnames.h>", REPLACE_WHOLE_WO
705 {"\"acoutput.h\"", "<acpi/acoutput.h>", REPLACE_WHOLE_WO
706 {"\"acrestyp.h\"", "<acpi/acrestyp.h>", REPLACE_WHOLE_WO
707 {"\"actbl.h\"", "<acpi/actbl.h>", REPLACE_WHOLE_WO
708 {"\"actbl1.h\"", "<acpi/actbl1.h>", REPLACE_WHOLE_WO
709 {"\"actbl2.h\"", "<acpi/actbl2.h>", REPLACE_WHOLE_WO
710 {"\"actbl3.h\"", "<acpi/actbl3.h>", REPLACE_WHOLE_WO
711 {"\"actypes.h\"", "<acpi/actypes.h>", REPLACE_WHOLE_WO
712 {"\"platform/acenv.h\"", "<acpi/platform/acenv.h>", REPLACE_WHOLE_WO
713 {"\"acgcc.h\"", "<acpi/platform/acgcc.h>", REPLACE_WHOLE_WO
714 {"\"aclinux.h\"", "<acpi/platform/aclinux.h>", REPLACE_WHOLE_WO

716 {NULL, NULL, 0}
717 };

720 ACPI_IDENTIFIER_TABLE LinuxSpecialMacros[] = {

new/usr/src/common/acpica/tools/acpisrc/astable.c 12

722 {"ACPI_EXPORT_SYMBOL"},
723 {"ACPI_EXPORT_SYMBOL_INIT"},
724 {"ACPI_HW_DEPENDENT_RETURN_OK"},
725 {"ACPI_HW_DEPENDENT_RETURN_STATUS"},
726 {"ACPI_HW_DEPENDENT_RETURN_VOID"},
727 {NULL}
728 };

731 ACPI_CONVERSION_TABLE LinuxConversionTable = {

733 DualLicenseHeader,
734 FLG_NO_CARRIAGE_RETURNS | FLG_LOWERCASE_DIRNAMES,

736 AcpiIdentifiers,

738 /* C source files */

740 LinuxDataTypes,
741 LinuxEliminateLines_C,
742 NULL,
743 LinuxEliminateMacros,
744 AcpiIdentifiers,
745 NULL,
746 (CVT_COUNT_TABS | CVT_COUNT_NON_ANSI_COMMENTS | CVT_COUNT_LINES |
747 CVT_CHECK_BRACES | CVT_TRIM_LINES | CVT_BRACES_ON_SAME_LINE |
748 CVT_MIXED_CASE_TO_UNDERSCORES | CVT_LOWER_CASE_IDENTIFIERS |
749 CVT_REMOVE_DEBUG_MACROS | CVT_TRIM_WHITESPACE |
750 CVT_REMOVE_EMPTY_BLOCKS | CVT_SPACES_TO_TABS8),

752 /* C header files */

754 LinuxDataTypes,
755 LinuxEliminateLines_H,
756 LinuxConditionalIdentifiers,
757 NULL,
758 AcpiIdentifiers,
759 NULL,
760 (CVT_COUNT_TABS | CVT_COUNT_NON_ANSI_COMMENTS | CVT_COUNT_LINES |
761 CVT_TRIM_LINES | CVT_MIXED_CASE_TO_UNDERSCORES |
762 CVT_LOWER_CASE_IDENTIFIERS | CVT_TRIM_WHITESPACE |
763 CVT_REMOVE_EMPTY_BLOCKS| CVT_REDUCE_TYPEDEFS | CVT_SPACES_TO_TABS8),
764 };

767 /**
768 *
769 * Code cleanup translation tables
770 *
771 **/

773 ACPI_CONVERSION_TABLE CleanupConversionTable = {

775 NULL,
776 FLG_DEFAULT_FLAGS,
777 NULL,
778 /* C source files */

780 NULL,
781 NULL,
782 NULL,
783 NULL,
784 NULL,
785 NULL,
786 (CVT_COUNT_TABS | CVT_COUNT_NON_ANSI_COMMENTS | CVT_COUNT_LINES |

new/usr/src/common/acpica/tools/acpisrc/astable.c 13

787 CVT_CHECK_BRACES | CVT_TRIM_LINES | CVT_TRIM_WHITESPACE),

789 /* C header files */

791 NULL,
792 NULL,
793 NULL,
794 NULL,
795 NULL,
796 NULL,
797 (CVT_COUNT_TABS | CVT_COUNT_NON_ANSI_COMMENTS | CVT_COUNT_LINES |
798 CVT_TRIM_LINES | CVT_TRIM_WHITESPACE),
799 };

802 ACPI_CONVERSION_TABLE StatsConversionTable = {

804 NULL,
805 FLG_NO_FILE_OUTPUT,
806 NULL,

808 /* C source files */

810 NULL,
811 NULL,
812 NULL,
813 NULL,
814 NULL,
815 NULL,
816 (CVT_COUNT_TABS | CVT_COUNT_NON_ANSI_COMMENTS | CVT_COUNT_LINES |
817 CVT_COUNT_SHORTMULTILINE_COMMENTS),

819 /* C header files */

821 NULL,
822 NULL,
823 NULL,
824 NULL,
825 NULL,
826 NULL,
827 (CVT_COUNT_TABS | CVT_COUNT_NON_ANSI_COMMENTS | CVT_COUNT_LINES |
828 CVT_COUNT_SHORTMULTILINE_COMMENTS),
829 };

832 /**
833 *
834 * Dual License injection translation table
835 *
836 **/

838 ACPI_CONVERSION_TABLE LicenseConversionTable = {

840 DualLicenseHeader,
841 FLG_DEFAULT_FLAGS,
842 NULL,

844 /* C source files */

846 NULL,
847 NULL,
848 NULL,
849 NULL,
850 NULL,
851 NULL,
852 (CVT_COUNT_TABS | CVT_COUNT_NON_ANSI_COMMENTS | CVT_COUNT_LINES |

new/usr/src/common/acpica/tools/acpisrc/astable.c 14

853 CVT_COUNT_SHORTMULTILINE_COMMENTS),

855 /* C header files */

857 NULL,
858 NULL,
859 NULL,
860 NULL,
861 NULL,
862 NULL,
863 (CVT_COUNT_TABS | CVT_COUNT_NON_ANSI_COMMENTS | CVT_COUNT_LINES |
864 CVT_COUNT_SHORTMULTILINE_COMMENTS),
865 };

868 /**
869 *
870 * Customizable translation tables
871 *
872 **/

874 ACPI_STRING_TABLE CustomReplacements[] = {

877 {"(c) 1999 - 2012", "(c) 1999 - 2013", REPLACE_WHOLE_WORD}, /* M
878 {"(c) 2006 - 2012", "(c) 2006 - 2013", REPLACE_WHOLE_WORD}, /* T

880 #if 0
881 {"SUPPORT, ASSISTANCE", "SUPPORT, ASSISTANCE", REPLACE_WHOLE_WORD}, /* F

883 {"(ACPI_INTEGER)", "(UINT64)", REPLACE_WHOLE_WORD},
884 {"ACPI_INTEGER ", "UINT64 ", REPLACE_WHOLE_WORD},
885 {"ACPI_INTEGER", "UINT64", REPLACE_WHOLE_WORD},
886 {"ACPI_INTEGER_MAX", "ACPI_UINT64_MAX", REPLACE_WHOLE_WORD},
887 {"#include \"acpi.h\"", "#include \"acpi.h\"\n#include \"accommon.h\"", R
888 {"AcpiTbSumTable", "AcpiTbSumTable", REPLACE_WHOLE_WORD},
889 {"ACPI_SIG_BOOT", "ACPI_SIG_BOOT", REPLACE_WHOLE_WORD},
890 {"ACPI_SIG_DBGP", "ACPI_SIG_DBGP", REPLACE_WHOLE_WORD},
891 {"ACPI_SIG_DSDT", "ACPI_SIG_DSDT", REPLACE_WHOLE_WORD},
892 {"ACPI_SIG_ECDT", "ACPI_SIG_ECDT", REPLACE_WHOLE_WORD},
893 {"ACPI_SIG_FACS", "ACPI_SIG_FACS", REPLACE_WHOLE_WORD},
894 {"ACPI_SIG_FADT", "ACPI_SIG_FADT", REPLACE_WHOLE_WORD},
895 {"ACPI_SIG_HPET", "ACPI_SIG_HPET", REPLACE_WHOLE_WORD},
896 {"ACPI_SIG_MADT", "ACPI_SIG_MADT", REPLACE_WHOLE_WORD},
897 {"ACPI_SIG_MCFG", "ACPI_SIG_MCFG", REPLACE_WHOLE_WORD},
898 {"ACPI_SIG_PSDT", "ACPI_SIG_PSDT", REPLACE_WHOLE_WORD},
899 {"ACPI_NAME_RSDP", "ACPI_NAME_RSDP", REPLACE_WHOLE_WORD},
900 {"ACPI_SIG_RSDP", "ACPI_SIG_RSDP", REPLACE_WHOLE_WORD},
901 {"ACPI_SIG_RSDT", "ACPI_SIG_RSDT", REPLACE_WHOLE_WORD},
902 {"ACPI_SIG_SBST", "ACPI_SIG_SBST", REPLACE_WHOLE_WORD},
903 {"ACPI_SIG_SLIT", "ACPI_SIG_SLIT", REPLACE_WHOLE_WORD},
904 {"ACPI_SIG_SPCR", "ACPI_SIG_SPCR", REPLACE_WHOLE_WORD},
905 {"ACPI_SIG_SPIC", "ACPI_SIG_SPIC", REPLACE_WHOLE_WORD},
906 {"ACPI_SIG_SPMI", "ACPI_SIG_SPMI", REPLACE_WHOLE_WORD},
907 {"ACPI_SIG_SRAT", "ACPI_SIG_SRAT", REPLACE_WHOLE_WORD},
908 {"ACPI_SIG_SSDT", "ACPI_SIG_SSDT", REPLACE_WHOLE_WORD},
909 {"ACPI_SIG_TCPA", "ACPI_SIG_TCPA", REPLACE_WHOLE_WORD},
910 {"ACPI_SIG_WDRT", "ACPI_SIG_WDRT", REPLACE_WHOLE_WORD},
911 {"ACPI_SIG_XSDT", "ACPI_SIG_XSDT", REPLACE_WHOLE_WORD},

913 {"ACPI_ALLOCATE_ZEROED", "ACPI_ALLOCATE_ZEROED", REPLACE_WHOLE_WORD},
914 {"ACPI_ALLOCATE", "ACPI_ALLOCATE", REPLACE_WHOLE_WORD},
915 {"ACPI_FREE", "ACPI_FREE", REPLACE_WHOLE_WORD},

917 "ACPI_NATIVE_UINT", "ACPI_NATIVE_UINT", REPLACE_WHOLE_WORD,
918 "ACPI_NATIVE_UINT *", "ACPI_NATIVE_UINT *", REPLACE_WHOLE_WORD,

new/usr/src/common/acpica/tools/acpisrc/astable.c 15

919 "ACPI_NATIVE_UINT", "ACPI_NATIVE_UINT", REPLACE_WHOLE_WORD,
920 "ACPI_NATIVE_INT", "ACPI_NATIVE_INT", REPLACE_WHOLE_WORD,
921 "ACPI_NATIVE_INT *", "ACPI_NATIVE_INT *", REPLACE_WHOLE_WORD,
922 "ACPI_NATIVE_INT", "ACPI_NATIVE_INT", REPLACE_WHOLE_WORD,
923 #endif

925 {NULL, NULL, 0}
926 };

929 ACPI_CONVERSION_TABLE CustomConversionTable = {

931 NULL,
932 FLG_DEFAULT_FLAGS,
933 NULL,

935 /* C source files */

937 CustomReplacements,
938 LinuxEliminateLines_H,
939 NULL,
940 NULL,
941 NULL,
942 NULL,
943 (CVT_COUNT_TABS | CVT_COUNT_NON_ANSI_COMMENTS | CVT_COUNT_LINES |
944 CVT_TRIM_LINES | CVT_TRIM_WHITESPACE),

946 /* C header files */

948 CustomReplacements,
949 LinuxEliminateLines_H,
950 NULL,
951 NULL,
952 NULL,
953 NULL,
954 (CVT_COUNT_TABS | CVT_COUNT_NON_ANSI_COMMENTS | CVT_COUNT_LINES |
955 CVT_TRIM_LINES | CVT_TRIM_WHITESPACE),
956 };

959 /**
960 *
961 * Indentation result fixup table
962 *
963 **/

965 ACPI_CONVERSION_TABLE IndentConversionTable = {

967 NULL,
968 FLG_NO_CARRIAGE_RETURNS,

970 NULL,

972 /* C source files */

974 LinuxSpecialStrings,
975 NULL,
976 NULL,
977 NULL,
978 NULL,
979 LinuxSpecialMacros,
980 (CVT_COUNT_TABS | CVT_COUNT_NON_ANSI_COMMENTS | CVT_COUNT_LINES |
981 CVT_TRIM_LINES | CVT_TRIM_WHITESPACE),

983 /* C header files */

new/usr/src/common/acpica/tools/acpisrc/astable.c 16

985 LinuxSpecialStrings,
986 NULL,
987 NULL,
988 NULL,
989 NULL,
990 LinuxSpecialMacros,
991 (CVT_COUNT_TABS | CVT_COUNT_NON_ANSI_COMMENTS | CVT_COUNT_LINES |
992 CVT_TRIM_LINES | CVT_TRIM_WHITESPACE),
993 };

new/usr/src/common/acpica/tools/acpisrc/asutils.c 1

**
 7817 Thu Dec 26 13:50:13 2013
new/usr/src/common/acpica/tools/acpisrc/asutils.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: asutils - common utilities
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpisrc.h"

47 /***
48 *
49 * FUNCTION: AsStrlwr (strlwr)
50 *
51 * PARAMETERS: SrcString - The source string to convert
52 *
53 * RETURN: None
54 *
55 * DESCRIPTION: Convert string to lowercase
56 *
57 * NOTE: This is not a POSIX function, so it appears here so that we don’t have
58 * header file issues with the various hosts/compilers/clibs.
59 *
60 **/

new/usr/src/common/acpica/tools/acpisrc/asutils.c 2

62 void
63 AsStrlwr (
64 char *SrcString)
65 {
66 char *String;

69 /* Walk entire string, lowercasing the letters */

71 if (SrcString)
72 {
73 for (String = SrcString; *String; String++)
74 {
75 *String = (char) ACPI_TOLOWER (*String);
76 }
77 }
78 }

81 /**
82 *
83 * FUNCTION: AsSkipUntilChar
84 *
85 * DESCRIPTION: Find the next instance of the input character
86 *
87 **/

89 char *
90 AsSkipUntilChar (
91 char *Buffer,
92 char Target)
93 {

95 while (*Buffer != Target)
96 {
97 if (!*Buffer)
98 {
99 return (NULL);
100 }

102 Buffer++;
103 }

105 return (Buffer);
106 }

109 /**
110 *
111 * FUNCTION: AsSkipPastChar
112 *
113 * DESCRIPTION: Find the next instance of the input character, return a buffer
114 * pointer to this character+1.
115 *
116 **/

118 char *
119 AsSkipPastChar (
120 char *Buffer,
121 char Target)
122 {

124 while (*Buffer != Target)
125 {
126 if (!*Buffer)
127 {

new/usr/src/common/acpica/tools/acpisrc/asutils.c 3

128 return (NULL);
129 }

131 Buffer++;
132 }

134 Buffer++;

136 return (Buffer);
137 }

140 /**
141 *
142 * FUNCTION: AsReplaceData
143 *
144 * DESCRIPTION: This function inserts and removes data from the file buffer.
145 * if more data is inserted than is removed, the data in the buffer
146 * is moved to make room. If less data is inserted than is removed,
147 * the remaining data is moved to close the hole.
148 *
149 **/

151 char *
152 AsReplaceData (
153 char *Buffer,
154 UINT32 LengthToRemove,
155 char *BufferToAdd,
156 UINT32 LengthToAdd)
157 {
158 UINT32 BufferLength;

161 /*
162 * Buffer is a string, so the length must include the terminating zero
163 */
164 BufferLength = strlen (Buffer) + 1;

166 if (LengthToRemove != LengthToAdd)
167 {
168 /*
169 * Move some of the existing data
170 * 1) If adding more bytes than removing, make room for the new data
171 * 2) if removing more bytes than adding, delete the extra space
172 */
173 if (LengthToRemove > 0)
174 {
175 Gbl_MadeChanges = TRUE;
176 memmove ((Buffer + LengthToAdd), (Buffer + LengthToRemove), (BufferL
177 }
178 }

180 /*
181 * Now we can move in the new data
182 */
183 if (LengthToAdd > 0)
184 {
185 Gbl_MadeChanges = TRUE;
186 memmove (Buffer, BufferToAdd, LengthToAdd);
187 }

189 return (Buffer + LengthToAdd);
190 }

193 /**

new/usr/src/common/acpica/tools/acpisrc/asutils.c 4

194 *
195 * FUNCTION: AsInsertData
196 *
197 * DESCRIPTION: This function inserts and removes data from the file buffer.
198 * if more data is inserted than is removed, the data in the buffer
199 * is moved to make room. If less data is inserted than is removed,
200 * the remaining data is moved to close the hole.
201 *
202 **/

204 char *
205 AsInsertData (
206 char *Buffer,
207 char *BufferToAdd,
208 UINT32 LengthToAdd)
209 {
210 UINT32 BufferLength;

213 if (LengthToAdd > 0)
214 {
215 /*
216 * Buffer is a string, so the length must include the terminating zero
217 */
218 BufferLength = strlen (Buffer) + 1;

220 /*
221 * Move some of the existing data
222 * 1) If adding more bytes than removing, make room for the new data
223 * 2) if removing more bytes than adding, delete the extra space
224 */
225 Gbl_MadeChanges = TRUE;
226 memmove ((Buffer + LengthToAdd), Buffer, BufferLength);

228 /*
229 * Now we can move in the new data
230 */
231 memmove (Buffer, BufferToAdd, LengthToAdd);
232 }

234 return (Buffer + LengthToAdd);
235 }

238 /**
239 *
240 * FUNCTION: AsRemoveData
241 *
242 * DESCRIPTION: This function inserts and removes data from the file buffer.
243 * if more data is inserted than is removed, the data in the buffer
244 * is moved to make room. If less data is inserted than is removed,
245 * the remaining data is moved to close the hole.
246 *
247 **/

249 char *
250 AsRemoveData (
251 char *StartPointer,
252 char *EndPointer)
253 {
254 UINT32 BufferLength;

257 /*
258 * Buffer is a string, so the length must include the terminating zero
259 */

new/usr/src/common/acpica/tools/acpisrc/asutils.c 5

260 BufferLength = strlen (EndPointer) + 1;

262 Gbl_MadeChanges = TRUE;
263 memmove (StartPointer, EndPointer, BufferLength);

265 return (StartPointer);
266 }

new/usr/src/common/acpica/tools/acpixtract/acpixtract.c 1

**
 21590 Thu Dec 26 13:50:13 2013
new/usr/src/common/acpica/tools/acpixtract/acpixtract.c
update to acpica-unix2-20130927
acpica-unix2-20130823
PANKOVs restructure
**

1 /**
2 *
3 * Module Name: acpixtract - convert ascii ACPI tables to binary
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "acapps.h"

48 #include <stdio.h>
49 #include <stdlib.h>
50 #include <string.h>
51 #include <ctype.h>

53 /* Local prototypes */

55 static void
56 AxStrlwr (
57 char *String);

59 static void

new/usr/src/common/acpica/tools/acpixtract/acpixtract.c 2

60 AxCheckAscii (
61 char *Name,
62 int Count);

64 static void
65 AxNormalizeSignature (
66 char *Signature);

68 static unsigned int
69 AxGetNextInstance (
70 char *InputPathname,
71 char *Signature);

73 static size_t
74 AxGetTableHeader (
75 FILE *InputFile,
76 unsigned char *OutputData);

78 static unsigned int
79 AxCountTableInstances (
80 char *InputPathname,
81 char *Signature);

83 int
84 AxExtractTables (
85 char *InputPathname,
86 char *Signature,
87 unsigned int MinimumInstances);

89 int
90 AxListTables (
91 char *InputPathname);

93 static size_t
94 AxConvertLine (
95 char *InputLine,
96 unsigned char *OutputData);

98 static int
99 AxIsEmptyLine (
100 char *Buffer);

102 typedef struct AxTableInfo
103 {
104 UINT32 Signature;
105 unsigned int Instances;
106 unsigned int NextInstance;
107 struct AxTableInfo *Next;

109 } AX_TABLE_INFO;

111 /* Extraction states */

113 #define AX_STATE_FIND_HEADER 0
114 #define AX_STATE_EXTRACT_DATA 1

116 /* Miscellaneous constants */

118 #define AX_LINE_BUFFER_SIZE 256
119 #define AX_MIN_TABLE_NAME_LENGTH 6 /* strlen ("DSDT @") */

122 static AX_TABLE_INFO *AxTableListHead = NULL;
123 static char Filename[16];
124 static unsigned char Data[16];
125 static char LineBuffer[AX_LINE_BUFFER_SIZE];

new/usr/src/common/acpica/tools/acpixtract/acpixtract.c 3

126 static char HeaderBuffer[AX_LINE_BUFFER_SIZE];
127 static char InstanceBuffer[AX_LINE_BUFFER_SIZE];

130 /***
131 *
132 * FUNCTION: AxStrlwr
133 *
134 * PARAMETERS: String - Ascii string
135 *
136 * RETURN: None
137 *
138 * DESCRIPTION: String lowercase function.
139 *
140 **/

142 static void
143 AxStrlwr (
144 char *String)
145 {

147 while (*String)
148 {
149 *String = (char) tolower ((int) *String);
150 String++;
151 }
152 }

155 /***
156 *
157 * FUNCTION: AxCheckAscii
158 *
159 * PARAMETERS: Name - Ascii string, at least as long as Count
160 * Count - Number of characters to check
161 *
162 * RETURN: None
163 *
164 * DESCRIPTION: Ensure that the requested number of characters are printable
165 * Ascii characters. Sets non-printable and null chars to <space>.
166 *
167 **/

169 static void
170 AxCheckAscii (
171 char *Name,
172 int Count)
173 {
174 int i;

177 for (i = 0; i < Count; i++)
178 {
179 if (!Name[i] || !isprint ((int) Name[i]))
180 {
181 Name[i] = ’ ’;
182 }
183 }
184 }

187 /**
188 *
189 * FUNCTION: AxIsEmptyLine
190 *
191 * PARAMETERS: Buffer - Line from input file

new/usr/src/common/acpica/tools/acpixtract/acpixtract.c 4

192 *
193 * RETURN: TRUE if line is empty (zero or more blanks only)
194 *
195 * DESCRIPTION: Determine if an input line is empty.
196 *
197 **/

199 static int
200 AxIsEmptyLine (
201 char *Buffer)
202 {

204 /* Skip all spaces */

206 while (*Buffer == ’ ’)
207 {
208 Buffer++;
209 }

211 /* If end-of-line, this line is empty */

213 if (*Buffer == ’\n’)
214 {
215 return (1);
216 }

218 return (0);
219 }

222 /***
223 *
224 * FUNCTION: AxNormalizeSignature
225 *
226 * PARAMETERS: Name - Ascii string containing an ACPI signature
227 *
228 * RETURN: None
229 *
230 * DESCRIPTION: Change "RSD PTR" to "RSDP"
231 *
232 **/

234 static void
235 AxNormalizeSignature (
236 char *Signature)
237 {

239 if (!strncmp (Signature, "RSD ", 4))
240 {
241 Signature[3] = ’P’;
242 }
243 }

246 /**
247 *
248 * FUNCTION: AxConvertLine
249 *
250 * PARAMETERS: InputLine - One line from the input acpidump file
251 * OutputData - Where the converted data is returned
252 *
253 * RETURN: The number of bytes actually converted
254 *
255 * DESCRIPTION: Convert one line of ascii text binary (up to 16 bytes)
256 *
257 **/

new/usr/src/common/acpica/tools/acpixtract/acpixtract.c 5

259 static size_t
260 AxConvertLine (
261 char *InputLine,
262 unsigned char *OutputData)
263 {
264 char *End;
265 int BytesConverted;
266 int Converted[16];
267 int i;

270 /* Terminate the input line at the end of the actual data (for sscanf) */

272 End = strstr (InputLine + 2, " ");
273 if (!End)
274 {
275 return (0); /* Don’t understand the format */
276 }
277 *End = 0;

279 /*
280 * Convert one line of table data, of the form:
281 * <offset>: <up to 16 bytes of hex data> <ASCII representation> <newline>
282 *
283 * Example:
284 * 02C0: 5F 53 42 5F 4C 4E 4B 44 00 12 13 04 0C FF FF 08 _SB_LNKD........
285 */
286 BytesConverted = sscanf (InputLine,
287 "%*s %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x",
288 &Converted[0], &Converted[1], &Converted[2], &Converted[3],
289 &Converted[4], &Converted[5], &Converted[6], &Converted[7],
290 &Converted[8], &Converted[9], &Converted[10], &Converted[11],
291 &Converted[12], &Converted[13], &Converted[14], &Converted[15]);

293 /* Pack converted data into a byte array */

295 for (i = 0; i < BytesConverted; i++)
296 {
297 OutputData[i] = (unsigned char) Converted[i];
298 }

300 return ((size_t) BytesConverted);
301 }

304 /**
305 *
306 * FUNCTION: AxGetTableHeader
307 *
308 * PARAMETERS: InputFile - Handle for the input acpidump file
309 * OutputData - Where the table header is returned
310 *
311 * RETURN: The actual number of bytes converted
312 *
313 * DESCRIPTION: Extract and convert an ACPI table header
314 *
315 **/

317 static size_t
318 AxGetTableHeader (
319 FILE *InputFile,
320 unsigned char *OutputData)
321 {
322 size_t BytesConverted;
323 size_t TotalConverted = 0;

new/usr/src/common/acpica/tools/acpixtract/acpixtract.c 6

324 int i;

327 /* Get the full 36 byte ACPI table header, requires 3 input text lines */

329 for (i = 0; i < 3; i++)
330 {
331 if (!fgets (HeaderBuffer, AX_LINE_BUFFER_SIZE, InputFile))
332 {
333 return (TotalConverted);
334 }

336 BytesConverted = AxConvertLine (HeaderBuffer, OutputData);
337 TotalConverted += BytesConverted;
338 OutputData += 16;

340 if (BytesConverted != 16)
341 {
342 return (TotalConverted);
343 }
344 }

346 return (TotalConverted);
347 }

350 /**
351 *
352 * FUNCTION: AxCountTableInstances
353 *
354 * PARAMETERS: InputPathname - Filename for acpidump file
355 * Signature - Requested signature to count
356 *
357 * RETURN: The number of instances of the signature
358 *
359 * DESCRIPTION: Count the instances of tables with the given signature within
360 * the input acpidump file.
361 *
362 **/

364 static unsigned int
365 AxCountTableInstances (
366 char *InputPathname,
367 char *Signature)
368 {
369 FILE *InputFile;
370 unsigned int Instances = 0;

373 InputFile = fopen (InputPathname, "rt");
374 if (!InputFile)
375 {
376 printf ("Could not open file %s\n", InputPathname);
377 return (0);
378 }

380 /* Count the number of instances of this signature */

382 while (fgets (InstanceBuffer, AX_LINE_BUFFER_SIZE, InputFile))
383 {
384 /* Ignore empty lines and lines that start with a space */

386 if (AxIsEmptyLine (InstanceBuffer) ||
387 (InstanceBuffer[0] == ’ ’))
388 {
389 continue;

new/usr/src/common/acpica/tools/acpixtract/acpixtract.c 7

390 }

392 AxNormalizeSignature (InstanceBuffer);
393 if (ACPI_COMPARE_NAME (InstanceBuffer, Signature))
394 {
395 Instances++;
396 }
397 }

399 fclose (InputFile);
400 return (Instances);
401 }

404 /**
405 *
406 * FUNCTION: AxGetNextInstance
407 *
408 * PARAMETERS: InputPathname - Filename for acpidump file
409 * Signature - Requested ACPI signature
410 *
411 * RETURN: The next instance number for this signature. Zero if this
412 * is the first instance of this signature.
413 *
414 * DESCRIPTION: Get the next instance number of the specified table. If this
415 * is the first instance of the table, create a new instance
416 * block. Note: only SSDT and PSDT tables can have multiple
417 * instances.
418 *
419 **/

421 static unsigned int
422 AxGetNextInstance (
423 char *InputPathname,
424 char *Signature)
425 {
426 AX_TABLE_INFO *Info;

429 Info = AxTableListHead;
430 while (Info)
431 {
432 if (*(UINT32 *) Signature == Info->Signature)
433 {
434 break;
435 }

437 Info = Info->Next;
438 }

440 if (!Info)
441 {
442 /* Signature not found, create new table info block */

444 Info = malloc (sizeof (AX_TABLE_INFO));
445 if (!Info)
446 {
447 printf ("Could not allocate memory\n");
448 exit (0);
449 }

451 Info->Signature = *(UINT32 *) Signature;
452 Info->Instances = AxCountTableInstances (InputPathname, Signature);
453 Info->NextInstance = 1;
454 Info->Next = AxTableListHead;
455 AxTableListHead = Info;

new/usr/src/common/acpica/tools/acpixtract/acpixtract.c 8

456 }

458 if (Info->Instances > 1)
459 {
460 return (Info->NextInstance++);
461 }

463 return (0);
464 }

467 /**
468 *
469 * FUNCTION: AxExtractTables
470 *
471 * PARAMETERS: InputPathname - Filename for acpidump file
472 * Signature - Requested ACPI signature to extract.
473 * NULL means extract ALL tables.
474 * MinimumInstances - Min instances that are acceptable
475 *
476 * RETURN: Status
477 *
478 * DESCRIPTION: Convert text ACPI tables to binary
479 *
480 **/

482 int
483 AxExtractTables (
484 char *InputPathname,
485 char *Signature,
486 unsigned int MinimumInstances)
487 {
488 FILE *InputFile;
489 FILE *OutputFile = NULL;
490 size_t BytesWritten;
491 size_t TotalBytesWritten = 0;
492 size_t BytesConverted;
493 unsigned int State = AX_STATE_FIND_HEADER;
494 unsigned int FoundTable = 0;
495 unsigned int Instances = 0;
496 unsigned int ThisInstance;
497 char ThisSignature[4];
498 int Status = 0;

501 /* Open input in text mode, output is in binary mode */

503 InputFile = fopen (InputPathname, "rt");
504 if (!InputFile)
505 {
506 printf ("Could not open file %s\n", InputPathname);
507 return (-1);
508 }

510 if (Signature)
511 {
512 /* Are there enough instances of the table to continue? */

514 AxNormalizeSignature (Signature);

516 Instances = AxCountTableInstances (InputPathname, Signature);
517 if (Instances < MinimumInstances)
518 {
519 printf ("Table %s was not found in %s\n", Signature, InputPathname);
520 Status = -1;
521 goto CleanupAndExit;

new/usr/src/common/acpica/tools/acpixtract/acpixtract.c 9

522 }

524 if (Instances == 0)
525 {
526 goto CleanupAndExit;
527 }
528 }

530 /* Convert all instances of the table to binary */

532 while (fgets (LineBuffer, AX_LINE_BUFFER_SIZE, InputFile))
533 {
534 switch (State)
535 {
536 case AX_STATE_FIND_HEADER:

538 /* Ignore lines that are too short to be header lines */

540 if (strlen (LineBuffer) < AX_MIN_TABLE_NAME_LENGTH)
541 {
542 continue;
543 }

545 /* Ignore empty lines and lines that start with a space */

547 if (AxIsEmptyLine (LineBuffer) ||
548 (LineBuffer[0] == ’ ’))
549 {
550 continue;
551 }

553 /*
554 * Ignore lines that are not of the form <sig> @ <addr>.
555 * Examples of lines that must be supported:
556 *
557 * DSDT @ 0x737e4000
558 * XSDT @ 0x737f2fff
559 * RSD PTR @ 0xf6cd0
560 * SSDT @ (nil)
561 */
562 if (!strstr (LineBuffer, " @ "))
563 {
564 continue;
565 }

567 AxNormalizeSignature (LineBuffer);
568 ACPI_MOVE_NAME (ThisSignature, LineBuffer);

570 if (Signature)
571 {
572 /* Ignore signatures that don’t match */

574 if (!ACPI_COMPARE_NAME (ThisSignature, Signature))
575 {
576 continue;
577 }
578 }

580 /*
581 * Get the instance number for this signature. Only the
582 * SSDT and PSDT tables can have multiple instances.
583 */
584 ThisInstance = AxGetNextInstance (InputPathname, ThisSignature);

586 /* Build an output filename and create/open the output file */

new/usr/src/common/acpica/tools/acpixtract/acpixtract.c 10

588 if (ThisInstance > 0)
589 {
590 sprintf (Filename, "%4.4s%u.dat", ThisSignature, ThisInstance);
591 }
592 else
593 {
594 sprintf (Filename, "%4.4s.dat", ThisSignature);
595 }

597 AxStrlwr (Filename);
598 OutputFile = fopen (Filename, "w+b");
599 if (!OutputFile)
600 {
601 printf ("Could not open file %s\n", Filename);
602 Status = -1;
603 goto CleanupAndExit;
604 }

606 State = AX_STATE_EXTRACT_DATA;
607 TotalBytesWritten = 0;
608 FoundTable = 1;
609 continue;

611 case AX_STATE_EXTRACT_DATA:

613 /* Empty line or non-data line terminates the data */

615 if (AxIsEmptyLine (LineBuffer) ||
616 (LineBuffer[0] != ’ ’))
617 {
618 fclose (OutputFile);
619 OutputFile = NULL;
620 State = AX_STATE_FIND_HEADER;

622 printf ("Acpi table [%4.4s] - %u bytes written to %s\n",
623 ThisSignature, (unsigned int) TotalBytesWritten, Filename);
624 continue;
625 }

627 /* Convert the ascii data (one line of text) to binary */

629 BytesConverted = AxConvertLine (LineBuffer, Data);

631 /* Write the binary data */

633 BytesWritten = fwrite (Data, 1, BytesConverted, OutputFile);
634 if (BytesWritten != BytesConverted)
635 {
636 printf ("Error when writing file %s\n", Filename);
637 fclose (OutputFile);
638 OutputFile = NULL;
639 Status = -1;
640 goto CleanupAndExit;
641 }

643 TotalBytesWritten += BytesConverted;
644 continue;

646 default:

648 Status = -1;
649 goto CleanupAndExit;
650 }
651 }

653 if (!FoundTable)

new/usr/src/common/acpica/tools/acpixtract/acpixtract.c 11

654 {
655 printf ("Table %s was not found in %s\n", Signature, InputPathname);
656 }

659 CleanupAndExit:

661 if (OutputFile)
662 {
663 fclose (OutputFile);
664 if (State == AX_STATE_EXTRACT_DATA)
665 {
666 /* Received an EOF while extracting data */

668 printf ("Acpi table [%4.4s] - %u bytes written to %s\n",
669 ThisSignature, (unsigned int) TotalBytesWritten, Filename);
670 }
671 }

673 fclose (InputFile);
674 return (Status);
675 }

678 /**
679 *
680 * FUNCTION: AxListTables
681 *
682 * PARAMETERS: InputPathname - Filename for acpidump file
683 *
684 * RETURN: Status
685 *
686 * DESCRIPTION: Display info for all ACPI tables found in input. Does not
687 * perform an actual extraction of the tables.
688 *
689 **/

691 int
692 AxListTables (
693 char *InputPathname)
694 {
695 FILE *InputFile;
696 size_t HeaderSize;
697 unsigned char Header[48];
698 int TableCount = 0;
699 ACPI_TABLE_HEADER *TableHeader = (ACPI_TABLE_HEADER *) (void *) Header

702 /* Open input in text mode, output is in binary mode */

704 InputFile = fopen (InputPathname, "rt");
705 if (!InputFile)
706 {
707 printf ("Could not open file %s\n", InputPathname);
708 return (-1);
709 }

711 /* Dump the headers for all tables found in the input file */

713 printf ("\nSignature Length Revision OemId OemTableId"
714 " OemRevision CompilerId CompilerRevision\n\n");

716 while (fgets (LineBuffer, AX_LINE_BUFFER_SIZE, InputFile))
717 {
718 /* Ignore empty lines and lines that start with a space */

new/usr/src/common/acpica/tools/acpixtract/acpixtract.c 12

720 if (AxIsEmptyLine (LineBuffer) ||
721 (LineBuffer[0] == ’ ’))
722 {
723 continue;
724 }

726 /* Get the 36 byte header and display the fields */

728 HeaderSize = AxGetTableHeader (InputFile, Header);
729 if (HeaderSize < 16)
730 {
731 continue;
732 }

734 /* RSDP has an oddball signature and header */

736 if (!strncmp (TableHeader->Signature, "RSD PTR ", 8))
737 {
738 AxCheckAscii ((char *) &Header[9], 6);
739 printf ("%7.4s \"%6.6s\"\n", "RSDP", &Heade
740 TableCount++;
741 continue;
742 }

744 /* Minimum size for table with standard header */

746 if (HeaderSize < sizeof (ACPI_TABLE_HEADER))
747 {
748 continue;
749 }

751 /* Signature and Table length */

753 TableCount++;
754 printf ("%7.4s 0x%8.8X", TableHeader->Signature, TableHeader->Length);

756 /* FACS has only signature and length */

758 if (ACPI_COMPARE_NAME (TableHeader->Signature, "FACS"))
759 {
760 printf ("\n");
761 continue;
762 }

764 /* OEM IDs and Compiler IDs */

766 AxCheckAscii (TableHeader->OemId, 6);
767 AxCheckAscii (TableHeader->OemTableId, 8);
768 AxCheckAscii (TableHeader->AslCompilerId, 4);

770 printf (" 0x%2.2X \"%6.6s\" \"%8.8s\" 0x%8.8X \"%4.4s\"
771 TableHeader->Revision, TableHeader->OemId,
772 TableHeader->OemTableId, TableHeader->OemRevision,
773 TableHeader->AslCompilerId, TableHeader->AslCompilerRevision);
774 }

776 printf ("\nFound %u ACPI tables\n", TableCount);
777 fclose (InputFile);
778 return (0);
779 }

new/usr/src/common/acpica/tools/acpixtract/axmain.c 1

**
 5867 Thu Dec 26 13:50:13 2013
new/usr/src/common/acpica/tools/acpixtract/axmain.c
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: axmain - main module for acpixtract utility
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "acpi.h"
45 #include "accommon.h"
46 #include "acapps.h"
47 #include <stdio.h>

50 static void
51 DisplayUsage (
52 void);

54 int
55 AxExtractTables (
56 char *InputPathname,
57 char *Signature,
58 unsigned int MinimumInstances);

60 int
61 AxListTables (

new/usr/src/common/acpica/tools/acpixtract/axmain.c 2

62 char *InputPathname);

65 /* Options */

67 #define AX_EXTRACT_ALL 0
68 #define AX_LIST_ALL 1
69 #define AX_EXTRACT_SIGNATURE 2
70 #define AX_EXTRACT_AML_TABLES 3

72 static int AxAction = AX_EXTRACT_AML_TABLES; /* DSDT & SSDTs */

74 #define AX_OPTIONAL_TABLES 0
75 #define AX_REQUIRED_TABLE 1

77 #define AX_UTILITY_NAME "ACPI Binary Table Extraction Utility"
78 #define AX_SUPPORTED_OPTIONS "ahls:v"

81 /**
82 *
83 * FUNCTION: DisplayUsage
84 *
85 * DESCRIPTION: Usage message
86 *
87 **/

89 static void
90 DisplayUsage (
91 void)
92 {

94 ACPI_USAGE_HEADER ("acpixtract [option] <InputFile>");

96 ACPI_OPTION ("-a", "Extract all tables, not just DSDT/SSDT"
97 ACPI_OPTION ("-l", "List table summaries, do not extract");
98 ACPI_OPTION ("-s <signature>", "Extract all tables with <signature>");
99 ACPI_OPTION ("-v", "Display version information");

101 printf ("\nExtract binary ACPI tables from text acpidump output\n");
102 printf ("Default invocation extracts the DSDT and all SSDTs\n");
103 }

106 /**
107 *
108 * FUNCTION: main
109 *
110 * DESCRIPTION: C main function
111 *
112 **/

114 int
115 main (
116 int argc,
117 char *argv[])
118 {
119 char *Filename;
120 int Status;
121 int j;

124 ACPI_DEBUG_INITIALIZE (); /* For debug version only */
125 printf (ACPI_COMMON_SIGNON (AX_UTILITY_NAME));

127 if (argc < 2)

new/usr/src/common/acpica/tools/acpixtract/axmain.c 3

128 {
129 DisplayUsage ();
130 return (0);
131 }

133 /* Command line options */

135 while ((j = AcpiGetopt (argc, argv, AX_SUPPORTED_OPTIONS)) != EOF) switch (j
136 {
137 case ’a’:

139 AxAction = AX_EXTRACT_ALL; /* Extract all tables found */
140 break;

142 case ’l’:

144 AxAction = AX_LIST_ALL; /* List tables only, do not extract
145 break;

147 case ’s’:

149 AxAction = AX_EXTRACT_SIGNATURE; /* Extract only tables with this sig
150 break;

152 case ’v’: /* -v: (Version): signon already emitted, just exit */

154 return (0);

156 case ’h’:
157 default:

159 DisplayUsage ();
160 return (0);
161 }

163 /* Input filename is always required */

165 Filename = argv[AcpiGbl_Optind];
166 if (!Filename)
167 {
168 printf ("Missing required input filename\n");
169 return (-1);
170 }

172 /* Perform requested action */

174 switch (AxAction)
175 {
176 case AX_EXTRACT_ALL:

178 Status = AxExtractTables (Filename, NULL, AX_OPTIONAL_TABLES);
179 break;

181 case AX_LIST_ALL:

183 Status = AxListTables (Filename);
184 break;

186 case AX_EXTRACT_SIGNATURE:

188 Status = AxExtractTables (Filename, AcpiGbl_Optarg, AX_REQUIRED_TABLE);
189 break;

191 default:
192 /*
193 * Default output is the DSDT and all SSDTs. One DSDT is required,

new/usr/src/common/acpica/tools/acpixtract/axmain.c 4

194 * any SSDTs are optional.
195 */
196 Status = AxExtractTables (Filename, "DSDT", AX_REQUIRED_TABLE);
197 if (Status)
198 {
199 return (Status);
200 }

202 Status = AxExtractTables (Filename, "SSDT", AX_OPTIONAL_TABLES);
203 break;
204 }

206 return (Status);
207 }

new/usr/src/common/acpica/tools/examples/examples.c 1

**
 13245 Thu Dec 26 13:50:13 2013
new/usr/src/common/acpica/tools/examples/examples.c
update to acpica-unix2-20131218
acpica-unix2-20130823
**

1 /**
2 *
3 * Module Name: examples - Example ACPICA initialization and execution code
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXAMPLES_C__
45 #include "examples.h"

47 #define _COMPONENT ACPI_EXAMPLE
48 ACPI_MODULE_NAME ("examples")

51 /**
52 *
53 * ACPICA Example Code
54 *
55 * This module contains examples of how the host OS should interface to the
56 * ACPICA subsystem.
57 *
58 * 1) How to use the platform/acenv.h file and how to set configuration
59 * options.
60 *

new/usr/src/common/acpica/tools/examples/examples.c 2

61 * 2) main - using the debug output mechanism and the error/warning output
62 * macros.
63 *
64 * 3) Two examples of the ACPICA initialization sequence. The first is a
65 * initialization with no "early" ACPI table access. The second shows
66 * how to use ACPICA to obtain the tables very early during kernel
67 * initialization, even before dynamic memory is available.
68 *
69 * 4) How to invoke a control method, including argument setup and how to
70 * access the return value.
71 *
72 ***/

75 /* Local Prototypes */

77 static ACPI_STATUS
78 InitializeFullAcpica (void);

80 static ACPI_STATUS
81 InstallHandlers (void);

83 static void
84 NotifyHandler (
85 ACPI_HANDLE Device,
86 UINT32 Value,
87 void *Context);

89 static void
90 ExecuteMAIN (void);

92 static void
93 ExecuteOSI (void);

95 ACPI_STATUS
96 InitializeAcpiTables (
97 void);

99 ACPI_STATUS
100 InitializeAcpi (
101 void);

104 /**
105 *
106 * FUNCTION: main
107 *
108 * PARAMETERS: argc, argv
109 *
110 * RETURN: Status
111 *
112 * DESCRIPTION: Main routine. Shows the use of the various output macros, as
113 * well as the use of the debug layer/level globals.
114 *
115 ***/

117 int ACPI_SYSTEM_XFACE
118 main (
119 int argc,
120 char **argv)
121 {

123 ACPI_DEBUG_INITIALIZE (); /* For debug version only */

125 printf (ACPI_COMMON_SIGNON ("ACPI Example Code"));

new/usr/src/common/acpica/tools/examples/examples.c 3

127 /* Initialize the local ACPI tables (RSDP/RSDT/XSDT/FADT/DSDT/FACS) */

129 ExInitializeAcpiTables ();

131 /* Initialize the ACPICA subsystem */

133 InitializeFullAcpica ();

135 /* Example warning and error output */

137 ACPI_INFO ((AE_INFO, "Example ACPICA info message"));
138 ACPI_WARNING ((AE_INFO, "Example ACPICA warning message"));
139 ACPI_ERROR ((AE_INFO, "Example ACPICA error message"));
140 ACPI_EXCEPTION ((AE_INFO, AE_AML_OPERAND_TYPE, "Example ACPICA exception m

142 ExecuteOSI ();
143 ExecuteMAIN ();
144 return (0);
145 }

148 /**
149 *
150 * Example ACPICA initialization code. This shows a full initialization with
151 * no early ACPI table access.
152 *
153 ***/

155 static ACPI_STATUS
156 InitializeFullAcpica (void)
157 {
158 ACPI_STATUS Status;

161 /* Initialize the ACPICA subsystem */

163 Status = AcpiInitializeSubsystem ();
164 if (ACPI_FAILURE (Status))
165 {
166 ACPI_EXCEPTION ((AE_INFO, Status, "While initializing ACPICA"));
167 return (Status);
168 }

170 /* Initialize the ACPICA Table Manager and get all ACPI tables */

172 ACPI_INFO ((AE_INFO, "Loading ACPI tables"));

174 Status = AcpiInitializeTables (NULL, 16, FALSE);
175 if (ACPI_FAILURE (Status))
176 {
177 ACPI_EXCEPTION ((AE_INFO, Status, "While initializing Table Manager"));
178 return (Status);
179 }

181 /* Create the ACPI namespace from ACPI tables */

183 Status = AcpiLoadTables ();
184 if (ACPI_FAILURE (Status))
185 {
186 ACPI_EXCEPTION ((AE_INFO, Status, "While loading ACPI tables"));
187 return (Status);
188 }

190 /* Install local handlers */

192 Status = InstallHandlers ();

new/usr/src/common/acpica/tools/examples/examples.c 4

193 if (ACPI_FAILURE (Status))
194 {
195 ACPI_EXCEPTION ((AE_INFO, Status, "While installing handlers"));
196 return (Status);
197 }

199 /* Initialize the ACPI hardware */

201 Status = AcpiEnableSubsystem (ACPI_FULL_INITIALIZATION);
202 if (ACPI_FAILURE (Status))
203 {
204 ACPI_EXCEPTION ((AE_INFO, Status, "While enabling ACPICA"));
205 return (Status);
206 }

208 /* Complete the ACPI namespace object initialization */

210 Status = AcpiInitializeObjects (ACPI_FULL_INITIALIZATION);
211 if (ACPI_FAILURE (Status))
212 {
213 ACPI_EXCEPTION ((AE_INFO, Status, "While initializing ACPICA objects"));
214 return (Status);
215 }

217 return (AE_OK);
218 }

221 /**
222 *
223 * Example ACPICA initialization code with early ACPI table access. This shows
224 * an initialization that requires early access to ACPI tables (before
225 * kernel dynamic memory is available)
226 *
227 ***/

229 /*
230 * The purpose of this static table array is to avoid the use of kernel
231 * dynamic memory which may not be available during early ACPI table
232 * access.
233 */
234 #define ACPI_MAX_INIT_TABLES 16
235 static ACPI_TABLE_DESC TableArray[ACPI_MAX_INIT_TABLES];

238 /*
239 * This function would be called early in kernel initialization. After this
240 * is called, all ACPI tables are available to the host.
241 */
242 ACPI_STATUS
243 InitializeAcpiTables (
244 void)
245 {
246 ACPI_STATUS Status;

249 /* Initialize the ACPICA Table Manager and get all ACPI tables */

251 Status = AcpiInitializeTables (TableArray, ACPI_MAX_INIT_TABLES, TRUE);
252 return (Status);
253 }

256 /*
257 * This function would be called after the kernel is initialized and
258 * dynamic/virtual memory is available. It completes the initialization of

new/usr/src/common/acpica/tools/examples/examples.c 5

259 * the ACPICA subsystem.
260 */
261 ACPI_STATUS
262 InitializeAcpi (
263 void)
264 {
265 ACPI_STATUS Status;

268 /* Initialize the ACPICA subsystem */

270 Status = AcpiInitializeSubsystem ();
271 if (ACPI_FAILURE (Status))
272 {
273 return (Status);
274 }

276 /* Copy the root table list to dynamic memory */

278 Status = AcpiReallocateRootTable ();
279 if (ACPI_FAILURE (Status))
280 {
281 return (Status);
282 }

284 /* Create the ACPI namespace from ACPI tables */

286 Status = AcpiLoadTables ();
287 if (ACPI_FAILURE (Status))
288 {
289 return (Status);
290 }

292 /* Install local handlers */

294 Status = InstallHandlers ();
295 if (ACPI_FAILURE (Status))
296 {
297 ACPI_EXCEPTION ((AE_INFO, Status, "While installing handlers"));
298 return (Status);
299 }

301 /* Initialize the ACPI hardware */

303 Status = AcpiEnableSubsystem (ACPI_FULL_INITIALIZATION);
304 if (ACPI_FAILURE (Status))
305 {
306 return (Status);
307 }

309 /* Complete the ACPI namespace object initialization */

311 Status = AcpiInitializeObjects (ACPI_FULL_INITIALIZATION);
312 if (ACPI_FAILURE (Status))
313 {
314 return (Status);
315 }

317 return (AE_OK);
318 }

321 /**
322 *
323 * Example ACPICA handler and handler installation
324 *

new/usr/src/common/acpica/tools/examples/examples.c 6

325 ***/

327 static void
328 NotifyHandler (
329 ACPI_HANDLE Device,
330 UINT32 Value,
331 void *Context)
332 {

334 ACPI_INFO ((AE_INFO, "Received a notify 0x%X", Value));
335 }

338 static ACPI_STATUS
339 InstallHandlers (void)
340 {
341 ACPI_STATUS Status;

344 /* Install global notify handler */

346 Status = AcpiInstallNotifyHandler (ACPI_ROOT_OBJECT, ACPI_SYSTEM_NOTIFY,
347 NotifyHandler, NULL);
348 if (ACPI_FAILURE (Status))
349 {
350 ACPI_EXCEPTION ((AE_INFO, Status, "While installing Notify handler"));
351 return (Status);
352 }

354 return (AE_OK);
355 }

358 /**
359 *
360 * Examples of control method execution.
361 *
362 * _OSI is a predefined method that is implemented internally within ACPICA.
363 *
364 * Shows the following elements:
365 *
366 * 1) How to setup a control method argument and argument list
367 * 2) How to setup the return value object
368 * 3) How to invoke AcpiEvaluateObject
369 * 4) How to check the returned ACPI_STATUS
370 * 5) How to analyze the return value
371 *
372 ***/

374 static void
375 ExecuteOSI (void)
376 {
377 ACPI_STATUS Status;
378 ACPI_OBJECT_LIST ArgList;
379 ACPI_OBJECT Arg[1];
380 ACPI_BUFFER ReturnValue;
381 ACPI_OBJECT *Object;

384 ACPI_INFO ((AE_INFO, "Executing _OSI reserved method"));

386 /* Setup input argument */

388 ArgList.Count = 1;
389 ArgList.Pointer = Arg;

new/usr/src/common/acpica/tools/examples/examples.c 7

391 Arg[0].Type = ACPI_TYPE_STRING;
392 Arg[0].String.Pointer = "Windows 2001";
393 Arg[0].String.Length = strlen (Arg[0].String.Pointer);

395 /* Ask ACPICA to allocate space for the return object */

397 ReturnValue.Length = ACPI_ALLOCATE_BUFFER;

399 Status = AcpiEvaluateObject (NULL, "_OSI", &ArgList, &ReturnValue);
400 if (ACPI_FAILURE (Status))
401 {
402 ACPI_EXCEPTION ((AE_INFO, Status, "While executing _OSI"));
403 return;
404 }

406 /* Ensure that the return object is large enough */

408 if (ReturnValue.Length < sizeof (ACPI_OBJECT))
409 {
410 AcpiOsPrintf ("Return value from _OSI method too small, %.8X\n",
411 ReturnValue.Length);
412 goto ErrorExit;
413 }

415 /* Expect an integer return value from execution of _OSI */

417 Object = ReturnValue.Pointer;
418 if (Object->Type != ACPI_TYPE_INTEGER)
419 {
420 AcpiOsPrintf ("Invalid return type from _OSI, %.2X\n", Object->Type);
421 }

423 ACPI_INFO ((AE_INFO, "_OSI returned 0x%8.8X", (UINT32) Object->Integer.Value

426 ErrorExit:

428 /* Free a buffer created via ACPI_ALLOCATE_BUFFER */

430 AcpiOsFree (ReturnValue.Pointer);
431 }

434 /**
435 *
436 * Execute an actual control method in the DSDT (MAIN)
437 *
438 ***/

440 static void
441 ExecuteMAIN (void)
442 {
443 ACPI_STATUS Status;
444 ACPI_OBJECT_LIST ArgList;
445 ACPI_OBJECT Arg[1];
446 ACPI_BUFFER ReturnValue;
447 ACPI_OBJECT *Object;

450 ACPI_INFO ((AE_INFO, "Executing MAIN method"));

452 /* Setup input argument */

454 ArgList.Count = 1;
455 ArgList.Pointer = Arg;

new/usr/src/common/acpica/tools/examples/examples.c 8

457 Arg[0].Type = ACPI_TYPE_STRING;
458 Arg[0].String.Pointer = "Method [MAIN] is executing";
459 Arg[0].String.Length = strlen (Arg[0].String.Pointer);

461 /* Ask ACPICA to allocate space for the return object */

463 ReturnValue.Length = ACPI_ALLOCATE_BUFFER;

465 Status = AcpiEvaluateObject (NULL, "\\MAIN", &ArgList, &ReturnValue);
466 if (ACPI_FAILURE (Status))
467 {
468 ACPI_EXCEPTION ((AE_INFO, Status, "While executing MAIN"));
469 return;
470 }

472 if (ReturnValue.Pointer)
473 {
474 /* Obtain and validate the returned ACPI_OBJECT */

476 Object = ReturnValue.Pointer;
477 if (Object->Type == ACPI_TYPE_STRING)
478 {
479 AcpiOsPrintf ("Method [MAIN] returned: \"%s\"\n", Object->String.Poi
480 }

482 ACPI_FREE (ReturnValue.Pointer);
483 }
484 }

new/usr/src/common/acpica/tools/examples/examples.h 1

**
 2318 Thu Dec 26 13:50:14 2013
new/usr/src/common/acpica/tools/examples/examples.h
update to acpica-unix2-20131218
**

1 /**
2 *
3 * Module Name: examples.h - Common include for Examples program
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #ifndef _EXAMPLES_H
45 #define _EXAMPLES_H

47 #include "acpi.h"
48 #include "accommon.h"
49 #include "acapps.h"
50 #include "../acpiexec/aecommon.h"

52 #include <stdio.h>

55 void
56 ExInitializeAcpiTables (
57 void);

59 #endif

new/usr/src/common/acpica/tools/examples/exstubs.c 1

**
 7187 Thu Dec 26 13:50:14 2013
new/usr/src/common/acpica/tools/examples/exstubs.c
update to acpica-unix2-20131218
**

1 /**
2 *
3 * Module Name: exstubs - Stub routines for the Example program
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #include "examples.h"

46 #include <acutils.h>
47 #include <acevents.h>
48 #include <acdispat.h>

50 #define _COMPONENT ACPI_EXAMPLE
51 ACPI_MODULE_NAME ("exstubs")

54 /**
55 *
56 * DESCRIPTION: Stubs used to facilitate linkage of the example program
57 *
58 ***/

61 /* Utilities */

new/usr/src/common/acpica/tools/examples/exstubs.c 2

63 void
64 AcpiUtSubsystemShutdown (
65 void)
66 {
67 }

69 ACPI_STATUS
70 AcpiUtExecute_STA (
71 ACPI_NAMESPACE_NODE *DeviceNode,
72 UINT32 *StatusFlags)
73 {
74 return (AE_NOT_IMPLEMENTED);
75 }

77 ACPI_STATUS
78 AcpiUtExecute_HID (
79 ACPI_NAMESPACE_NODE *DeviceNode,
80 ACPI_PNP_DEVICE_ID **ReturnId)
81 {
82 return (AE_NOT_IMPLEMENTED);
83 }

85 ACPI_STATUS
86 AcpiUtExecute_CID (
87 ACPI_NAMESPACE_NODE *DeviceNode,
88 ACPI_PNP_DEVICE_ID_LIST **ReturnCidList)
89 {
90 return (AE_NOT_IMPLEMENTED);
91 }

93 ACPI_STATUS
94 AcpiUtExecute_UID (
95 ACPI_NAMESPACE_NODE *DeviceNode,
96 ACPI_PNP_DEVICE_ID **ReturnId)
97 {
98 return (AE_NOT_IMPLEMENTED);
99 }

101 ACPI_STATUS
102 AcpiUtExecute_SUB (
103 ACPI_NAMESPACE_NODE *DeviceNode,
104 ACPI_PNP_DEVICE_ID **ReturnId)
105 {
106 return (AE_NOT_IMPLEMENTED);
107 }

109 ACPI_STATUS
110 AcpiUtExecutePowerMethods (
111 ACPI_NAMESPACE_NODE *DeviceNode,
112 const char **MethodNames,
113 UINT8 MethodCount,
114 UINT8 *OutValues)
115 {
116 return (AE_NOT_IMPLEMENTED);
117 }

119 ACPI_STATUS
120 AcpiUtEvaluateNumericObject (
121 char *ObjectName,
122 ACPI_NAMESPACE_NODE *DeviceNode,
123 UINT64 *Value)
124 {
125 return (AE_NOT_IMPLEMENTED);
126 }

new/usr/src/common/acpica/tools/examples/exstubs.c 3

128 ACPI_STATUS
129 AcpiUtGetResourceEndTag (
130 ACPI_OPERAND_OBJECT *ObjDesc,
131 UINT8 **EndTag)
132 {
133 return (AE_OK);
134 }

137 /* Hardware manager */

139 UINT32
140 AcpiHwGetMode (
141 void)
142 {
143 return (0);
144 }

146 ACPI_STATUS
147 AcpiHwReadPort (
148 ACPI_IO_ADDRESS Address,
149 UINT32 *Value,
150 UINT32 Width)
151 {
152 return (AE_OK);
153 }

155 ACPI_STATUS
156 AcpiHwWritePort (
157 ACPI_IO_ADDRESS Address,
158 UINT32 Value,
159 UINT32 Width)
160 {
161 return (AE_OK);
162 }

165 /* Event manager */

167 ACPI_STATUS
168 AcpiInstallNotifyHandler (
169 ACPI_HANDLE Device,
170 UINT32 HandlerType,
171 ACPI_NOTIFY_HANDLER Handler,
172 void *Context)
173 {
174 return (AE_OK);
175 }

177 ACPI_STATUS
178 AcpiEvInstallXruptHandlers (
179 void)
180 {
181 return (AE_OK);
182 }

184 ACPI_STATUS
185 AcpiEvInitializeEvents (
186 void)
187 {
188 return (AE_OK);
189 }

191 ACPI_STATUS
192 AcpiEvInstallRegionHandlers (
193 void)

new/usr/src/common/acpica/tools/examples/exstubs.c 4

194 {
195 return (AE_OK);
196 }

198 ACPI_STATUS
199 AcpiEvInitializeOpRegions (
200 void)
201 {
202 return (AE_OK);
203 }

205 ACPI_STATUS
206 AcpiEvInitializeRegion (
207 ACPI_OPERAND_OBJECT *RegionObj,
208 BOOLEAN AcpiNsLocked)
209 {
210 return (AE_OK);
211 }

213 #if (!ACPI_REDUCED_HARDWARE)
214 ACPI_STATUS
215 AcpiEvDeleteGpeBlock (
216 ACPI_GPE_BLOCK_INFO *GpeBlock)
217 {
218 return (AE_OK);
219 }

221 ACPI_STATUS
222 AcpiEnable (
223 void)
224 {
225 return (AE_OK);
226 }
227 #endif /* !ACPI_REDUCED_HARDWARE */

229 void
230 AcpiEvUpdateGpes (
231 ACPI_OWNER_ID TableOwnerId)
232 {
233 }

235 ACPI_STATUS
236 AcpiEvAddressSpaceDispatch (
237 ACPI_OPERAND_OBJECT *RegionObj,
238 ACPI_OPERAND_OBJECT *FieldObj,
239 UINT32 Function,
240 UINT32 RegionOffset,
241 UINT32 BitWidth,
242 UINT64 *Value)
243 {
244 return (AE_OK);
245 }

247 ACPI_STATUS
248 AcpiEvAcquireGlobalLock (
249 UINT16 Timeout)
250 {
251 return (AE_OK);
252 }

254 ACPI_STATUS
255 AcpiEvReleaseGlobalLock (
256 void)
257 {
258 return (AE_OK);
259 }

new/usr/src/common/acpica/tools/examples/exstubs.c 5

261 ACPI_STATUS
262 AcpiEvQueueNotifyRequest (
263 ACPI_NAMESPACE_NODE *Node,
264 UINT32 NotifyValue)
265 {
266 return (AE_OK);
267 }

269 BOOLEAN
270 AcpiEvIsNotifyObject (
271 ACPI_NAMESPACE_NODE *Node)
272 {
273 return (TRUE);
274 }

277 /* Namespace manager */

279 ACPI_STATUS
280 AcpiNsCheckReturnValue (
281 ACPI_NAMESPACE_NODE *Node,
282 ACPI_EVALUATE_INFO *Info,
283 UINT32 UserParamCount,
284 ACPI_STATUS ReturnStatus,
285 ACPI_OPERAND_OBJECT **ReturnObjectPtr)
286 {
287 return (AE_OK);
288 }

290 void
291 AcpiNsCheckArgumentTypes (
292 ACPI_EVALUATE_INFO *Info)
293 {
294 return;
295 }

297 void
298 AcpiNsCheckArgumentCount (
299 char *Pathname,
300 ACPI_NAMESPACE_NODE *Node,
301 UINT32 UserParamCount,
302 const ACPI_PREDEFINED_INFO *Predefined)
303 {
304 return;
305 }

307 void
308 AcpiNsCheckAcpiCompliance (
309 char *Pathname,
310 ACPI_NAMESPACE_NODE *Node,
311 const ACPI_PREDEFINED_INFO *Predefined)
312 {
313 return;
314 }

316 const ACPI_PREDEFINED_INFO *
317 AcpiUtMatchPredefinedMethod (
318 char *Name)
319 {
320 return (NULL);
321 }

323 /* OSL interfaces */

325 ACPI_THREAD_ID

new/usr/src/common/acpica/tools/examples/exstubs.c 6

326 AcpiOsGetThreadId (
327 void)
328 {
329 return (1);
330 }

332 ACPI_STATUS
333 AcpiOsExecute (
334 ACPI_EXECUTE_TYPE Type,
335 ACPI_OSD_EXEC_CALLBACK Function,
336 void *Context)
337 {
338 return (AE_SUPPORT);
339 }

new/usr/src/common/acpica/tools/examples/extables.c 1

**
 21052 Thu Dec 26 13:50:14 2013
new/usr/src/common/acpica/tools/examples/extables.c
update to acpica-unix2-20131218
**

1 /**
2 *
3 * Module Name: extables - ACPI tables for Example program
4 *
5 ***/

7 /*
8 * Copyright (C) 2000 - 2013, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */

44 #define __EXTABLES_C__

46 #include "examples.h"
47 #include "actables.h"

49 #define _COMPONENT ACPI_EXAMPLE
50 ACPI_MODULE_NAME ("extables")

52 ACPI_PHYSICAL_ADDRESS
53 AeLocalGetRootPointer (
54 void);

57 /**
58 *
59 * ACPICA Example tables and table setup
60 *
61 * This module contains the ACPI tables used for the example program. The

new/usr/src/common/acpica/tools/examples/extables.c 2

62 * original source code for the tables appears at the end of the module.
63 *
64 ***/

67 /* These tables will be modified at runtime */

69 unsigned char RsdpCode[] =
70 {
71 0x52,0x53,0x44,0x20,0x50,0x54,0x52,0x20, /* 00000000 "RSD PTR " */
72 0x43,0x49,0x4E,0x54,0x45,0x4C,0x20,0x02, /* 00000008 "CINTEL ." */
73 0x00,0x00,0x00,0x00,0x24,0x00,0x00,0x00, /* 00000010 "....$..." */
74 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000018 "........" */
75 0xDC,0x00,0x00,0x00 /* 00000020 "...." */
76 };

78 unsigned char RsdtCode[] =
79 {
80 0x52,0x53,0x44,0x54,0x28,0x00,0x00,0x00, /* 00000000 "RSDT(..." */
81 0x01,0x10,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
82 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
83 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
84 0x15,0x11,0x13,0x20,0x01,0x00,0x00,0x00 /* 00000020 "..." */
85 };

87 unsigned char XsdtCode[] =
88 {
89 0x58,0x53,0x44,0x54,0x2C,0x00,0x00,0x00, /* 00000000 "XSDT,..." */
90 0x01,0x06,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 "..INTEL " */
91 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
92 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
93 0x15,0x11,0x13,0x20,0x01,0x00,0x00,0x00, /* 00000020 "..." */
94 0x00,0x00,0x00,0x00 /* 00000028 "...." */
95 };

97 unsigned char FadtCode[] =
98 {
99 0x46,0x41,0x43,0x50,0x0C,0x01,0x00,0x00, /* 00000000 "FACP...." */
100 0x05,0x64,0x49,0x4E,0x54,0x45,0x4C,0x20, /* 00000008 ".dINTEL " */
101 0x54,0x45,0x4D,0x50,0x4C,0x41,0x54,0x45, /* 00000010 "TEMPLATE" */
102 0x00,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
103 0x15,0x11,0x13,0x20,0x01,0x00,0x00,0x00, /* 00000020 "..." */
104 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
105 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000030 "........" */
106 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000038 "........" */
107 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000040 "........" */
108 0x01,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 00000048 "........" */
109 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000050 "........" */
110 0x04,0x02,0x01,0x04,0x08,0x00,0x00,0x00, /* 00000058 "........" */
111 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000060 "........" */
112 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000068 "........" */
113 0x00,0x00,0x00,0x00,0x01,0x08,0x00,0x01, /* 00000070 "........" */
114 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000078 "........" */
115 0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 00000080 "........" */
116 0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00, /* 00000088 "........" */
117 0x00,0x00,0x00,0x00,0x01,0x20,0x00,0x02, /* 00000090 "..... .." */
118 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000098 "........" */
119 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000A0 "........" */
120 0x00,0x00,0x00,0x00,0x01,0x10,0x00,0x02, /* 000000A8 "........" */
121 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000B0 "........" */
122 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000B8 "........" */
123 0x00,0x00,0x00,0x00,0x01,0x08,0x00,0x00, /* 000000C0 "........" */
124 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000C8 "........" */
125 0x01,0x20,0x00,0x03,0x01,0x00,0x00,0x00, /* 000000D0 "." */
126 0x00,0x00,0x00,0x00,0x01,0x40,0x00,0x01, /* 000000D8 ".....@.." */
127 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000E0 "........" */

new/usr/src/common/acpica/tools/examples/extables.c 3

128 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000E8 "........" */
129 0x00,0x00,0x00,0x00,0x01,0x08,0x00,0x01, /* 000000F0 "........" */
130 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 000000F8 "........" */
131 0x01,0x08,0x00,0x01,0x00,0x00,0x00,0x00, /* 00000100 "........" */
132 0x00,0x00,0x00,0x00 /* 00000108 "...." */
133 };

135 /* Fixed tables */

137 static unsigned char FacsCode[] =
138 {
139 0x46,0x41,0x43,0x53,0x40,0x00,0x00,0x00, /* 00000000 "FACS@..." */
140 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000008 "........" */
141 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000010 "........" */
142 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000018 "........" */
143 0x02,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000020 "........" */
144 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000028 "........" */
145 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 00000030 "........" */
146 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /* 00000038 "........" */
147 };

149 static unsigned char DsdtCode[] =
150 {
151 0x44,0x53,0x44,0x54,0x67,0x00,0x00,0x00, /* 00000000 "DSDTg..." */
152 0x02,0x97,0x49,0x6E,0x74,0x65,0x6C,0x00, /* 00000008 "..Intel." */
153 0x54,0x65,0x6D,0x70,0x6C,0x61,0x74,0x65, /* 00000010 "Template" */
154 0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018 "....INTL" */
155 0x15,0x11,0x13,0x20,0x14,0x42,0x04,0x4D, /* 00000020 "... .B.M" */
156 0x41,0x49,0x4E,0x01,0x70,0x73,0x0D,0x4D, /* 00000028 "AIN.ps.M" */
157 0x61,0x69,0x6E,0x2F,0x41,0x72,0x67,0x30, /* 00000030 "ain/Arg0" */
158 0x3A,0x20,0x00,0x68,0x00,0x5B,0x31,0xA4, /* 00000038 ": .h.[1." */
159 0x0D,0x4D,0x61,0x69,0x6E,0x20,0x73,0x75, /* 00000040 ".Main su" */
160 0x63,0x63,0x65,0x73,0x73,0x66,0x75,0x6C, /* 00000048 "ccessful" */
161 0x6C,0x79,0x20,0x63,0x6F,0x6D,0x70,0x6C, /* 00000050 "ly compl" */
162 0x65,0x74,0x65,0x64,0x20,0x65,0x78,0x65, /* 00000058 "eted exe" */
163 0x63,0x75,0x74,0x69,0x6F,0x6E,0x00 /* 00000060 "cution." */
164 };

167 /* Useful pointers */

169 ACPI_TABLE_RSDP *Rsdp = ACPI_CAST_PTR (ACPI_TABLE_RSDP, RsdpCode);
170 ACPI_TABLE_RSDT *Rsdt = ACPI_CAST_PTR (ACPI_TABLE_RSDT, RsdtCode);
171 ACPI_TABLE_XSDT *Xsdt = ACPI_CAST_PTR (ACPI_TABLE_XSDT, XsdtCode);
172 ACPI_TABLE_FADT *Fadt = ACPI_CAST_PTR (ACPI_TABLE_FADT, FadtCode);

175 /**
176 *
177 * Build the various required ACPI tables:
178 *
179 * 1) Setup RSDP to point to the RSDT and XSDT
180 * 2) Setup RSDT/XSDT to point to the FADT
181 * 3) Setup FADT to point to the DSDT and FACS
182 * 4) Update checksums for all modified tables
183 *
184 ***/

186 void
187 ExInitializeAcpiTables (
188 void)
189 {

191 /* Setup RSDP */

193 Rsdp->RsdtPhysicalAddress = (UINT32) ACPI_TO_INTEGER (RsdtCode);

new/usr/src/common/acpica/tools/examples/extables.c 4

194 Rsdp->XsdtPhysicalAddress = (UINT64) ACPI_TO_INTEGER (XsdtCode);

196 /* RSDT and XSDT */

198 Rsdt->TableOffsetEntry[0] = (UINT32) ACPI_TO_INTEGER (FadtCode);
199 Xsdt->TableOffsetEntry[0] = (UINT64) ACPI_TO_INTEGER (FadtCode);

201 /* FADT */

203 Fadt->Facs = 0;
204 Fadt->Dsdt = 0;
205 Fadt->XFacs = (UINT64) ACPI_TO_INTEGER (FacsCode);
206 Fadt->XDsdt = (UINT64) ACPI_TO_INTEGER (DsdtCode);

208 /* Set new checksums for the modified tables */

210 Rsdp->Checksum = 0;
211 Rsdp->Checksum = (UINT8) -AcpiTbChecksum (
212 (void *) RsdpCode, ACPI_RSDP_CHECKSUM_LENGTH);

214 Rsdt->Header.Checksum = 0;
215 Rsdt->Header.Checksum = (UINT8) -AcpiTbChecksum (
216 (void *) Rsdt, Rsdt->Header.Length);

218 Xsdt->Header.Checksum = 0;
219 Xsdt->Header.Checksum = (UINT8) -AcpiTbChecksum (
220 (void *) Xsdt, Xsdt->Header.Length);

222 Fadt->Header.Checksum = 0;
223 Fadt->Header.Checksum = (UINT8) -AcpiTbChecksum (
224 (void *) Fadt, Fadt->Header.Length);
225 }

228 /**
229 *
230 * OSL support - return the address of the RSDP
231 *
232 ***/

234 ACPI_PHYSICAL_ADDRESS
235 AeLocalGetRootPointer (
236 void)
237 {

239 return ((ACPI_PHYSICAL_ADDRESS) RsdpCode);
240 }

243 #ifdef DO_NOT_COMPILE_ACPI_TABLE_CODE
244 /**
245 *
246 * ACPICA Example table source code
247 *
248 * This is the original source code for the tables above
249 *
250 ***/

252 /* RSDP */

254 [0008] Signature : "RSD PTR "
255 [0001] Checksum : 43
256 [0006] Oem ID : "INTEL "
257 [0001] Revision : 02
258 [0004] RSDT Address : 00000000
259 [0004] Length : 00000024

new/usr/src/common/acpica/tools/examples/extables.c 5

260 [0008] XSDT Address : 0000000000000000
261 [0001] Extended Checksum : DC
262 [0003] Reserved : 000000

265 /* RSDT */

267 [0004] Signature : "RSDT" [Root System Description T
268 [0004] Table Length : 00000044
269 [0001] Revision : 01
270 [0001] Checksum : B1
271 [0006] Oem ID : "INTEL "
272 [0008] Oem Table ID : "TEMPLATE"
273 [0004] Oem Revision : 00000001
274 [0004] Asl Compiler ID : "INTL"
275 [0004] Asl Compiler Revision : 20100528

277 [0004] ACPI Table Address 0 : 00000001

280 /* XSDT */

282 [0004] Signature : "XSDT" [Extended System Descripti
283 [0004] Table Length : 00000064
284 [0001] Revision : 01
285 [0001] Checksum : 8B
286 [0006] Oem ID : "INTEL "
287 [0008] Oem Table ID : "TEMPLATE"
288 [0004] Oem Revision : 00000001
289 [0004] Asl Compiler ID : "INTL"
290 [0004] Asl Compiler Revision : 20100528

292 [0008] ACPI Table Address 0 : 0000000000000001

295 /* FADT */

297 [0004] Signature : "FACP" [Fixed ACPI Description Ta
298 [0004] Table Length : 0000010C
299 [0001] Revision : 05
300 [0001] Checksum : 18
301 [0006] Oem ID : "INTEL "
302 [0008] Oem Table ID : "TEMPLATE"
303 [0004] Oem Revision : 00000000
304 [0004] Asl Compiler ID : "INTL"
305 [0004] Asl Compiler Revision : 20111123

307 [0004] FACS Address : 00000001
308 [0004] DSDT Address : 00000001
309 [0001] Model : 00
310 [0001] PM Profile : 00 [Unspecified]
311 [0002] SCI Interrupt : 0000
312 [0004] SMI Command Port : 00000000
313 [0001] ACPI Enable Value : 00
314 [0001] ACPI Disable Value : 00
315 [0001] S4BIOS Command : 00
316 [0001] P-State Control : 00
317 [0004] PM1A Event Block Address : 00000001
318 [0004] PM1B Event Block Address : 00000000
319 [0004] PM1A Control Block Address : 00000001
320 [0004] PM1B Control Block Address : 00000000
321 [0004] PM2 Control Block Address : 00000001
322 [0004] PM Timer Block Address : 00000001
323 [0004] GPE0 Block Address : 00000001
324 [0004] GPE1 Block Address : 00000000
325 [0001] PM1 Event Block Length : 04

new/usr/src/common/acpica/tools/examples/extables.c 6

326 [0001] PM1 Control Block Length : 02
327 [0001] PM2 Control Block Length : 01
328 [0001] PM Timer Block Length : 04
329 [0001] GPE0 Block Length : 08
330 [0001] GPE1 Block Length : 00
331 [0001] GPE1 Base Offset : 00
332 [0001] _CST Support : 00
333 [0002] C2 Latency : 0000
334 [0002] C3 Latency : 0000
335 [0002] CPU Cache Size : 0000
336 [0002] Cache Flush Stride : 0000
337 [0001] Duty Cycle Offset : 00
338 [0001] Duty Cycle Width : 00
339 [0001] RTC Day Alarm Index : 00
340 [0001] RTC Month Alarm Index : 00
341 [0001] RTC Century Index : 00
342 [0002] Boot Flags (decoded below) : 0000
343 Legacy Devices Supported (V2) : 0
344 8042 Present on ports 60/64 (V2) : 0
345 VGA Not Present (V4) : 0
346 MSI Not Supported (V4) : 0
347 PCIe ASPM Not Supported (V4) : 0
348 CMOS RTC Not Present (V5) : 0
349 [0001] Reserved : 00
350 [0004] Flags (decoded below) : 00000000
351 WBINVD instruction is operational (V1) : 0
352 WBINVD flushes all caches (V1) : 0
353 All CPUs support C1 (V1) : 0
354 C2 works on MP system (V1) : 0
355 Control Method Power Button (V1) : 0
356 Control Method Sleep Button (V1) : 0
357 RTC wake not in fixed reg space (V1) : 0
358 RTC can wake system from S4 (V1) : 0
359 32-bit PM Timer (V1) : 0
360 Docking Supported (V1) : 0
361 Reset Register Supported (V2) : 0
362 Sealed Case (V3) : 0
363 Headless - No Video (V3) : 0
364 Use native instr after SLP_TYPx (V3) : 0
365 PCIEXP_WAK Bits Supported (V4) : 0
366 Use Platform Timer (V4) : 0
367 RTC_STS valid on S4 wake (V4) : 0
368 Remote Power-on capable (V4) : 0
369 Use APIC Cluster Model (V4) : 0
370 Use APIC Physical Destination Mode (V4) : 0
371 Hardware Reduced (V5) : 0
372 Low Power S0 Idle (V5) : 0

374 [0012] Reset Register : [Generic Address Structure]
375 [0001] Space ID : 01 [SystemIO]
376 [0001] Bit Width : 08
377 [0001] Bit Offset : 00
378 [0001] Encoded Access Width : 01 [Byte Access:8]
379 [0008] Address : 0000000000000001

381 [0001] Value to cause reset : 00
382 [0003] Reserved : 000000
383 [0008] FACS Address : 0000000000000001
384 [0008] DSDT Address : 0000000000000001
385 [0012] PM1A Event Block : [Generic Address Structure]
386 [0001] Space ID : 01 [SystemIO]
387 [0001] Bit Width : 20
388 [0001] Bit Offset : 00
389 [0001] Encoded Access Width : 02 [Word Access:16]
390 [0008] Address : 0000000000000001

new/usr/src/common/acpica/tools/examples/extables.c 7

392 [0012] PM1B Event Block : [Generic Address Structure]
393 [0001] Space ID : 01 [SystemIO]
394 [0001] Bit Width : 00
395 [0001] Bit Offset : 00
396 [0001] Encoded Access Width : 00 [Undefined/Legacy]
397 [0008] Address : 0000000000000000

399 [0012] PM1A Control Block : [Generic Address Structure]
400 [0001] Space ID : 01 [SystemIO]
401 [0001] Bit Width : 10
402 [0001] Bit Offset : 00
403 [0001] Encoded Access Width : 02 [Word Access:16]
404 [0008] Address : 0000000000000001

406 [0012] PM1B Control Block : [Generic Address Structure]
407 [0001] Space ID : 01 [SystemIO]
408 [0001] Bit Width : 00
409 [0001] Bit Offset : 00
410 [0001] Encoded Access Width : 00 [Undefined/Legacy]
411 [0008] Address : 0000000000000000

413 [0012] PM2 Control Block : [Generic Address Structure]
414 [0001] Space ID : 01 [SystemIO]
415 [0001] Bit Width : 08
416 [0001] Bit Offset : 00
417 [0001] Encoded Access Width : 00 [Undefined/Legacy]
418 [0008] Address : 0000000000000001

420 [0012] PM Timer Block : [Generic Address Structure]
421 [0001] Space ID : 01 [SystemIO]
422 [0001] Bit Width : 20
423 [0001] Bit Offset : 00
424 [0001] Encoded Access Width : 03 [DWord Access:32]
425 [0008] Address : 0000000000000001

427 [0012] GPE0 Block : [Generic Address Structure]
428 [0001] Space ID : 01 [SystemIO]
429 [0001] Bit Width : 40
430 [0001] Bit Offset : 00
431 [0001] Encoded Access Width : 01 [Byte Access:8]
432 [0008] Address : 0000000000000001

434 [0012] GPE1 Block : [Generic Address Structure]
435 [0001] Space ID : 01 [SystemIO]
436 [0001] Bit Width : 00
437 [0001] Bit Offset : 00
438 [0001] Encoded Access Width : 00 [Undefined/Legacy]
439 [0008] Address : 0000000000000000

442 [0012] Sleep Control Register : [Generic Address Structure]
443 [0001] Space ID : 01 [SystemIO]
444 [0001] Bit Width : 08
445 [0001] Bit Offset : 00
446 [0001] Encoded Access Width : 01 [Byte Access:8]
447 [0008] Address : 0000000000000000

449 [0012] Sleep Status Register : [Generic Address Structure]
450 [0001] Space ID : 01 [SystemIO]
451 [0001] Bit Width : 08
452 [0001] Bit Offset : 00
453 [0001] Encoded Access Width : 01 [Byte Access:8]
454 [0008] Address : 0000000000000000

457 /* FACS */

new/usr/src/common/acpica/tools/examples/extables.c 8

459 [0004] Signature : "FACS"
460 [0004] Length : 00000040
461 [0004] Hardware Signature : 00000000
462 [0004] 32 Firmware Waking Vector : 00000000
463 [0004] Global Lock : 00000000
464 [0004] Flags (decoded below) : 00000000
465 S4BIOS Support Present : 0
466 64-bit Wake Supported (V2) : 0
467 [0008] 64 Firmware Waking Vector : 0000000000000000
468 [0001] Version : 02
469 [0003] Reserved : 000000
470 [0004] OspmFlags (decoded below) : 00000000
471 64-bit Wake Env Required (V2) : 0

474 /* DSDT - ASL code */

476 DefinitionBlock ("dsdt.aml", "DSDT", 2, "Intel", "Template", 0x00000001)
477 {
478 Method (MAIN, 1, NotSerialized)
479 {
480 Store (Concatenate ("Main/Arg0: ", Arg0), Debug)
481 Return ("Main successfully completed execution")
482 }
483 }
484 #endif

new/usr/src/pkg/manifests/diagnostic-acpitools.mf 1

**
 1032 Thu Dec 26 13:50:14 2013
new/usr/src/pkg/manifests/diagnostic-acpitools.mf
PANKOVs restructure
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.
10 #

12 #
13 # Copyright 2013 Nexenta Systems, Inc. All rights reserved.
14 #

16 set name=pkg.fmri value=pkg:/diagnostic/acpitools@$(PKGVERS)
17 set name=pkg.description value=acpitools
18 set name=pkg.summary value=acpitools
19 set name=info.classification \
20 value="org.opensolaris.category.2008:Applications/System Utilities"
21 set name=variant.arch value=$(ARCH)
22 dir path=usr group=sys
23 dir path=usr/bin
24 file path=usr/bin/acpiexec mode=0555
25 file path=usr/bin/acpixtract mode=0555
26 file path=usr/bin/iasl mode=0555
27 license lic_CDDL license=lic_CDDL
28 license usr/src/common/acpica/THIRDPARTYLICENSE \
29 license=usr/src/common/acpica/THIRDPARTYLICENSE

new/usr/src/pkg/manifests/system-kernel.mf 1

**
 45175 Thu Dec 26 13:50:15 2013
new/usr/src/pkg/manifests/system-kernel.mf
acpica-unix2-20130823
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 #
27 # The default for payload-bearing actions in this package is to appear in the
28 # global zone only. See the include file for greater detail, as well as
29 # information about overriding the defaults.
30 #
31 <include global_zone_only_component>
32 <include system-kernel.man1m.inc>
33 <include system-kernel.man2.inc>
34 <include system-kernel.man4.inc>
35 <include system-kernel.man5.inc>
36 <include system-kernel.man7.inc>
37 <include system-kernel.man7d.inc>
38 <include system-kernel.man7fs.inc>
39 <include system-kernel.man7m.inc>
40 <include system-kernel.man7p.inc>
41 <include system-kernel.man9.inc>
42 <include system-kernel.man9e.inc>
43 <include system-kernel.man9f.inc>
44 <include system-kernel.man9p.inc>
45 <include system-kernel.man9s.inc>
46 set name=pkg.fmri value=pkg:/system/kernel@$(PKGVERS)
47 set name=pkg.description \
48 value="core kernel software for a specific instruction-set architecture"
49 set name=pkg.summary value="Core Solaris Kernel"
50 set name=info.classification value=org.opensolaris.category.2008:System/Core
51 set name=variant.arch value=$(ARCH)
52 dir path=boot group=sys
53 $(i386_ONLY)dir path=boot/acpi group=sys
54 $(i386_ONLY)dir path=boot/acpi/tables group=sys
55 dir path=boot/solaris group=sys
56 dir path=boot/solaris/bin group=sys
57 dir path=etc group=sys
58 dir path=etc/crypto group=sys
59 dir path=etc/sock2path.d group=sys
60 dir path=kernel group=sys
61 $(i386_ONLY)dir path=kernel/$(ARCH64) group=sys

new/usr/src/pkg/manifests/system-kernel.mf 2

62 dir path=kernel/crypto group=sys
63 dir path=kernel/crypto/$(ARCH64) group=sys
64 dir path=kernel/dacf group=sys
65 dir path=kernel/dacf/$(ARCH64) group=sys
66 dir path=kernel/drv group=sys
67 dir path=kernel/drv/$(ARCH64) group=sys
68 dir path=kernel/exec group=sys
69 dir path=kernel/exec/$(ARCH64) group=sys
70 dir path=kernel/fs group=sys
71 dir path=kernel/fs/$(ARCH64) group=sys
72 dir path=kernel/ipp group=sys
73 dir path=kernel/ipp/$(ARCH64) group=sys
74 dir path=kernel/kiconv group=sys
75 dir path=kernel/kiconv/$(ARCH64) group=sys
76 dir path=kernel/mac group=sys
77 dir path=kernel/mac/$(ARCH64) group=sys
78 dir path=kernel/misc group=sys
79 dir path=kernel/misc/$(ARCH64) group=sys
80 dir path=kernel/misc/scsi_vhci group=sys
81 dir path=kernel/misc/scsi_vhci/$(ARCH64) group=sys
82 dir path=kernel/sched group=sys
83 dir path=kernel/sched/$(ARCH64) group=sys
84 dir path=kernel/socketmod group=sys
85 dir path=kernel/socketmod/$(ARCH64) group=sys
86 dir path=kernel/strmod group=sys
87 dir path=kernel/strmod/$(ARCH64) group=sys
88 dir path=kernel/sys group=sys
89 dir path=kernel/sys/$(ARCH64) group=sys
90 dir path=lib
91 dir path=lib/svc
92 dir path=lib/svc/manifest group=sys
93 dir path=lib/svc/manifest/system group=sys
94 dir path=lib/svc/method
95 dir path=usr/share/man
96 dir path=usr/share/man/man1m
97 dir path=usr/share/man/man2
98 dir path=usr/share/man/man3
99 dir path=usr/share/man/man4
100 dir path=usr/share/man/man5
101 dir path=usr/share/man/man7d
102 dir path=usr/share/man/man7fs
103 dir path=usr/share/man/man7m
104 dir path=usr/share/man/man7p
105 dir path=usr/share/man/man9
106 dir path=usr/share/man/man9e
107 dir path=usr/share/man/man9f
108 dir path=usr/share/man/man9p
109 dir path=usr/share/man/man9s
110 $(i386_ONLY)driver name=acpi_drv perms="* 0666 root sys"
111 driver name=aggr perms="* 0666 root sys"
112 driver name=arp perms="arp 0666 root sys"
113 driver name=bl perms="* 0666 root sys"
114 driver name=bridge clone_perms="bridge 0666 root sys" \
115 policy="read_priv_set=net_rawaccess write_priv_set=net_rawaccess"
116 $(sparc_ONLY)driver name=bscbus alias=SUNW,bscbus
117 $(i386_ONLY)driver name=bscbus alias=SVI0101
118 $(sparc_ONLY)driver name=bscv alias=SUNW,bscv perms="* 0644 root sys"
119 $(i386_ONLY)driver name=bscv
120 driver name=clone
121 driver name=cn perms="* 0620 root tty"
122 driver name=conskbd perms="kbd 0666 root sys"
123 driver name=consms perms="mouse 0666 root sys"
124 driver name=cpuid perms="self 0644 root sys"
125 $(i386_ONLY)driver name=cpunex alias=cpus
126 driver name=crypto perms="crypto 0666 root sys"
127 driver name=cryptoadm perms="cryptoadm 0644 root sys"

new/usr/src/pkg/manifests/system-kernel.mf 3

128 $(sparc_ONLY)driver name=dad alias=ide-disk perms="* 0640 root sys"
129 driver name=devinfo perms="devinfo 0640 root sys" \
130 perms="devinfo,ro 0444 root sys"
131 driver name=dld perms="* 0666 root sys"
132 driver name=dlpistub perms="* 0666 root sys"
133 $(sparc_ONLY)driver name=i8042 alias=8042
134 $(i386_ONLY)driver name=i8042
135 driver name=icmp perms="icmp 0666 root sys" \
136 policy="read_priv_set=net_icmpaccess write_priv_set=net_icmpaccess"
137 driver name=icmp6 perms="icmp6 0666 root sys" \
138 policy="read_priv_set=net_icmpaccess write_priv_set=net_icmpaccess"
139 $(i386_ONLY)driver name=intel_nb5000 \
140 alias=pci8086,25c0 \
141 alias=pci8086,25d0 \
142 alias=pci8086,25d4 \
143 alias=pci8086,25d8 \
144 alias=pci8086,3600 \
145 alias=pci8086,4000 \
146 alias=pci8086,4001 \
147 alias=pci8086,4003 \
148 alias=pci8086,65c0
149 $(i386_ONLY)driver name=intel_nhm \
150 alias=pci8086,3423 \
151 alias=pci8086,372a
152 $(i386_ONLY)driver name=intel_nhmex alias=pci8086,3438
153 driver name=ip perms="ip 0666 root sys" \
154 policy="read_priv_set=net_rawaccess write_priv_set=net_rawaccess"
155 driver name=ip6 perms="ip6 0666 root sys" \
156 policy="read_priv_set=net_rawaccess write_priv_set=net_rawaccess"
157 driver name=ipnet perms="lo0 0666 root sys" \
158 policy="read_priv_set=net_observability write_priv_set=net_observability"
159 driver name=ippctl
160 driver name=ipsecah perms="ipsecah 0666 root sys" \
161 policy="read_priv_set=sys_ip_config write_priv_set=sys_ip_config"
162 driver name=ipsecesp perms="ipsecesp 0666 root sys" \
163 policy="read_priv_set=sys_ip_config write_priv_set=sys_ip_config"
164 driver name=iptun
165 driver name=iwscn
166 driver name=kb8042 alias=pnpPNP,303
167 driver name=keysock perms="keysock 0666 root sys" \
168 policy="read_priv_set=sys_ip_config write_priv_set=sys_ip_config"
169 driver name=kmdb
170 driver name=kssl perms="* 0666 root sys"
171 driver name=llc1 clone_perms="llc1 0666 root sys"
172 driver name=lofi perms="* 0600 root sys" perms="ctl 0644 root sys"
173 driver name=log perms="conslog 0666 root sys" perms="log 0640 root sys"
174 $(i386_ONLY)driver name=mc-amd \
175 alias=pci1022,1100 \
176 alias=pci1022,1101 \
177 alias=pci1022,1102
178 driver name=mm perms="allkmem 0600 root sys" perms="kmem 0640 root sys" \
179 perms="mem 0640 root sys" perms="null 0666 root sys" \
180 perms="zero 0666 root sys" \
181 policy="allkmem read_priv_set=all write_priv_set=all" \
182 policy="kmem read_priv_set=none write_priv_set=all" \
183 policy="mem read_priv_set=none write_priv_set=all"
184 driver name=mouse8042 alias=pnpPNP,f03
185 $(i386_ONLY)driver name=mpt class=scsi \
186 alias=pci1000,30 \
187 alias=pci1000,50 \
188 alias=pci1000,54 \
189 alias=pci1000,56 \
190 alias=pci1000,58 \
191 alias=pci1000,62 \
192 alias=pciex1000,56 \
193 alias=pciex1000,58 \

new/usr/src/pkg/manifests/system-kernel.mf 4

194 alias=pciex1000,62
195 driver name=nulldriver \
196 alias=scsa,nodev \
197 alias=scsa,probe
198 driver name=openeepr perms="openprom 0640 root sys" policy=write_priv_set=all
199 driver name=options
200 $(sparc_ONLY)driver name=pci_pci class=pci \
201 alias=pci1011,1 \
202 alias=pci1011,21 \
203 alias=pci1011,24 \
204 alias=pci1011,25 \
205 alias=pci1011,26 \
206 alias=pci1014,22 \
207 alias=pciclass,060400
208 $(i386_ONLY)driver name=pci_pci class=pci \
209 alias=pci1011,1 \
210 alias=pci1011,21 \
211 alias=pci1014,22 \
212 alias=pciclass,060400 \
213 alias=pciclass,060401
214 $(sparc_ONLY)driver name=pcieb \
215 alias=pciex108e,9010 \
216 alias=pciex108e,9020 \
217 alias=pciex10b5,8114 \
218 alias=pciex10b5,8516 \
219 alias=pciex10b5,8517 \
220 alias=pciex10b5,8518 \
221 alias=pciex10b5,8532 \
222 alias=pciex10b5,8533 \
223 alias=pciex10b5,8548 \
224 alias=pciexclass,060400
225 $(i386_ONLY)driver name=pcieb \
226 alias=pciexclass,060400 \
227 alias=pciexclass,060401
228 $(sparc_ONLY)driver name=pcieb_bcm alias=pciex1166,103
229 driver name=physmem perms="* 0600 root sys"
230 driver name=poll perms="* 0666 root sys"
231 $(sparc_ONLY)driver name=power alias=ali1535d+-power
232 $(i386_ONLY)driver name=power
233 driver name=pseudo alias=zconsnex
234 driver name=ptc perms="* 0666 root sys"
235 driver name=ptsl perms="* 0666 root sys"
236 $(sparc_ONLY)driver name=ramdisk alias=SUNW,ramdisk perms="* 0600 root sys" \
237 perms="ctl 0644 root sys"
238 $(i386_ONLY)driver name=ramdisk perms="* 0600 root sys" \
239 perms="ctl 0644 root sys"
240 driver name=random perms="* 0644 root sys" policy=write_priv_set=sys_devices
241 driver name=rts perms="rts 0666 root sys"
242 driver name=sad perms="admin 0666 root sys" perms="user 0666 root sys"
243 driver name=scsi_vhci class=scsi-self-identifying perms="* 0666 root sys" \
244 policy="devctl write_priv_set=sys_devices"
245 $(sparc_ONLY)driver name=sd perms="* 0640 root sys" \
246 alias=ide-cdrom \
247 alias=scsiclass,00 \
248 alias=scsiclass,05
249 $(i386_ONLY)driver name=sd perms="* 0640 root sys" \
250 alias=scsiclass,00 \
251 alias=scsiclass,05
252 driver name=sgen perms="* 0600 root sys" \
253 alias=scsa,08.bfcp \
254 alias=scsa,08.bvhci
255 driver name=simnet clone_perms="simnet 0666 root sys" perms="* 0666 root sys"
256 $(i386_ONLY)driver name=smbios perms="smbios 0444 root sys"
257 driver name=softmac
258 driver name=spdsock perms="spdsock 0666 root sys" \
259 policy="read_priv_set=sys_ip_config write_priv_set=sys_ip_config"

new/usr/src/pkg/manifests/system-kernel.mf 5

260 driver name=st alias=scsiclass,01 perms="* 0666 root sys"
261 driver name=sy perms="tty 0666 root tty"
262 driver name=sysevent perms="* 0600 root sys"
263 driver name=sysmsg perms="msglog 0600 root sys" perms="sysmsg 0600 root sys"
264 driver name=tcp perms="tcp 0666 root sys"
265 driver name=tcp6 perms="tcp6 0666 root sys"
266 driver name=tl perms="* 0666 root sys" clone_perms="ticlts 0666 root sys" \
267 clone_perms="ticots 0666 root sys" clone_perms="ticotsord 0666 root sys"
268 $(sparc_ONLY)driver name=ttymux alias=multiplexer
269 $(i386_ONLY)driver name=tzmon
270 $(sparc_ONLY)driver name=uata \
271 alias=pci1095,646 \
272 alias=pci1095,649 \
273 alias=pci1095,680 \
274 alias=pci10b9,5229 \
275 alias=pci10b9,5288 class=dada class=scsi
276 $(i386_ONLY)driver name=ucode perms="* 0644 root sys"
277 driver name=udp perms="udp 0666 root sys"
278 driver name=udp6 perms="udp6 0666 root sys"
279 $(i386_ONLY)driver name=vgatext \
280 alias=pciclass,000100 \
281 alias=pciclass,030000 \
282 alias=pciclass,030001 \
283 alias=pnpPNP,900
284 driver name=vnic clone_perms="vnic 0666 root sys" perms="* 0666 root sys"
285 driver name=wc perms="* 0600 root sys"
286 $(i386_ONLY)file path=boot/solaris/bin/create_diskmap group=sys mode=0555
287 file path=boot/solaris/bin/create_ramdisk group=sys mode=0555
288 file path=boot/solaris/bin/extract_boot_filelist group=sys mode=0555
289 $(i386_ONLY)file path=boot/solaris/bin/mbr group=sys mode=0555
290 $(i386_ONLY)file path=boot/solaris/bin/symdef group=sys mode=0555
291 $(i386_ONLY)file path=boot/solaris/bin/update_grub group=sys mode=0555
292 file path=boot/solaris/filelist.ramdisk group=sys
293 file path=boot/solaris/filelist.safe group=sys
294 file path=etc/crypto/kcf.conf group=sys \
295 original_name=SUNWckr:etc/crypto/kcf.conf preserve=true
296 $(i386_ONLY)file path=etc/mach group=sys original_name=SUNWos86r:etc/mach \
297 preserve=true
298 file path=etc/name_to_sysnum group=sys \
299 original_name=SUNWckr:etc/name_to_sysnum preserve=renameold
300 file path=etc/sock2path.d/system%2Fkernel group=sys
301 file path=etc/system group=sys original_name=SUNWckr:etc/system preserve=true
302 $(i386_ONLY)file path=kernel/$(ARCH64)/genunix group=sys mode=0755
303 file path=kernel/crypto/$(ARCH64)/aes group=sys mode=0755
304 file path=kernel/crypto/$(ARCH64)/arcfour group=sys mode=0755
305 file path=kernel/crypto/$(ARCH64)/blowfish group=sys mode=0755
306 file path=kernel/crypto/$(ARCH64)/des group=sys mode=0755
307 file path=kernel/crypto/$(ARCH64)/ecc group=sys mode=0755
308 file path=kernel/crypto/$(ARCH64)/md4 group=sys mode=0755
309 file path=kernel/crypto/$(ARCH64)/md5 group=sys mode=0755
310 file path=kernel/crypto/$(ARCH64)/rsa group=sys mode=0755
311 file path=kernel/crypto/$(ARCH64)/sha1 group=sys mode=0755
312 file path=kernel/crypto/$(ARCH64)/sha2 group=sys mode=0755
313 file path=kernel/crypto/$(ARCH64)/swrand group=sys mode=0755
314 $(i386_ONLY)file path=kernel/crypto/aes group=sys mode=0755
315 $(i386_ONLY)file path=kernel/crypto/arcfour group=sys mode=0755
316 $(i386_ONLY)file path=kernel/crypto/blowfish group=sys mode=0755
317 $(i386_ONLY)file path=kernel/crypto/des group=sys mode=0755
318 $(i386_ONLY)file path=kernel/crypto/ecc group=sys mode=0755
319 $(i386_ONLY)file path=kernel/crypto/md4 group=sys mode=0755
320 $(i386_ONLY)file path=kernel/crypto/md5 group=sys mode=0755
321 $(i386_ONLY)file path=kernel/crypto/rsa group=sys mode=0755
322 $(i386_ONLY)file path=kernel/crypto/sha1 group=sys mode=0755
323 $(i386_ONLY)file path=kernel/crypto/sha2 group=sys mode=0755
324 $(i386_ONLY)file path=kernel/crypto/swrand group=sys mode=0755
325 $(sparc_ONLY)file path=kernel/dacf/$(ARCH64)/consconfig_dacf group=sys \

new/usr/src/pkg/manifests/system-kernel.mf 6

326 mode=0755
327 file path=kernel/dacf/$(ARCH64)/net_dacf group=sys mode=0755
328 $(i386_ONLY)file path=kernel/dacf/net_dacf group=sys mode=0755
329 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/acpi_drv group=sys
330 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/acpi_toshiba group=sys
331 file path=kernel/drv/$(ARCH64)/aggr group=sys
332 file path=kernel/drv/$(ARCH64)/arp group=sys
333 file path=kernel/drv/$(ARCH64)/bl group=sys
334 file path=kernel/drv/$(ARCH64)/bridge group=sys
335 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/bscbus group=sys
336 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/bscv group=sys
337 file path=kernel/drv/$(ARCH64)/clone group=sys
338 file path=kernel/drv/$(ARCH64)/cn group=sys
339 file path=kernel/drv/$(ARCH64)/conskbd group=sys
340 file path=kernel/drv/$(ARCH64)/consms group=sys
341 file path=kernel/drv/$(ARCH64)/cpuid group=sys
342 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/cpunex group=sys
343 file path=kernel/drv/$(ARCH64)/crypto group=sys
344 file path=kernel/drv/$(ARCH64)/cryptoadm group=sys
345 $(sparc_ONLY)file path=kernel/drv/$(ARCH64)/dad group=sys
346 file path=kernel/drv/$(ARCH64)/devinfo group=sys
347 file path=kernel/drv/$(ARCH64)/dld group=sys
348 file path=kernel/drv/$(ARCH64)/dlpistub group=sys
349 file path=kernel/drv/$(ARCH64)/i8042 group=sys
350 file path=kernel/drv/$(ARCH64)/icmp group=sys
351 file path=kernel/drv/$(ARCH64)/icmp6 group=sys
352 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/intel_nb5000 group=sys
353 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/intel_nhm group=sys
354 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/intel_nhmex group=sys
355 file path=kernel/drv/$(ARCH64)/ip group=sys
356 file path=kernel/drv/$(ARCH64)/ip6 group=sys
357 file path=kernel/drv/$(ARCH64)/ipnet group=sys
358 file path=kernel/drv/$(ARCH64)/ippctl group=sys
359 file path=kernel/drv/$(ARCH64)/ipsecah group=sys
360 file path=kernel/drv/$(ARCH64)/ipsecesp group=sys
361 file path=kernel/drv/$(ARCH64)/iptun group=sys
362 file path=kernel/drv/$(ARCH64)/iwscn group=sys
363 file path=kernel/drv/$(ARCH64)/kb8042 group=sys
364 file path=kernel/drv/$(ARCH64)/keysock group=sys
365 file path=kernel/drv/$(ARCH64)/kmdb group=sys
366 file path=kernel/drv/$(ARCH64)/kssl group=sys
367 file path=kernel/drv/$(ARCH64)/llc1 group=sys
368 file path=kernel/drv/$(ARCH64)/lofi group=sys
369 file path=kernel/drv/$(ARCH64)/log group=sys
370 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/mc-amd group=sys
371 file path=kernel/drv/$(ARCH64)/mm group=sys
372 file path=kernel/drv/$(ARCH64)/mouse8042 group=sys
373 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/mpt group=sys
374 file path=kernel/drv/$(ARCH64)/nulldriver group=sys
375 file path=kernel/drv/$(ARCH64)/openeepr group=sys
376 file path=kernel/drv/$(ARCH64)/options group=sys
377 file path=kernel/drv/$(ARCH64)/pci_pci group=sys
378 file path=kernel/drv/$(ARCH64)/pcieb group=sys
379 $(sparc_ONLY)file path=kernel/drv/$(ARCH64)/pcieb_bcm group=sys
380 file path=kernel/drv/$(ARCH64)/physmem group=sys
381 file path=kernel/drv/$(ARCH64)/poll group=sys
382 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/power group=sys
383 file path=kernel/drv/$(ARCH64)/pseudo group=sys
384 file path=kernel/drv/$(ARCH64)/ptc group=sys
385 file path=kernel/drv/$(ARCH64)/ptsl group=sys
386 file path=kernel/drv/$(ARCH64)/ramdisk group=sys
387 file path=kernel/drv/$(ARCH64)/random group=sys
388 file path=kernel/drv/$(ARCH64)/rts group=sys
389 file path=kernel/drv/$(ARCH64)/sad group=sys
390 file path=kernel/drv/$(ARCH64)/scsi_vhci group=sys
391 file path=kernel/drv/$(ARCH64)/sd group=sys

new/usr/src/pkg/manifests/system-kernel.mf 7

392 file path=kernel/drv/$(ARCH64)/sgen group=sys
393 file path=kernel/drv/$(ARCH64)/simnet group=sys
394 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/smbios group=sys
395 file path=kernel/drv/$(ARCH64)/softmac group=sys
396 file path=kernel/drv/$(ARCH64)/spdsock group=sys
397 file path=kernel/drv/$(ARCH64)/st group=sys
398 file path=kernel/drv/$(ARCH64)/sy group=sys
399 file path=kernel/drv/$(ARCH64)/sysevent group=sys
400 file path=kernel/drv/$(ARCH64)/sysmsg group=sys
401 file path=kernel/drv/$(ARCH64)/tcp group=sys
402 file path=kernel/drv/$(ARCH64)/tcp6 group=sys
403 file path=kernel/drv/$(ARCH64)/tl group=sys
404 $(sparc_ONLY)file path=kernel/drv/$(ARCH64)/ttymux group=sys
405 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/tzmon group=sys
406 $(sparc_ONLY)file path=kernel/drv/$(ARCH64)/uata group=sys
407 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/ucode group=sys
408 file path=kernel/drv/$(ARCH64)/udp group=sys
409 file path=kernel/drv/$(ARCH64)/udp6 group=sys
410 $(i386_ONLY)file path=kernel/drv/$(ARCH64)/vgatext group=sys
411 file path=kernel/drv/$(ARCH64)/vnic group=sys
412 file path=kernel/drv/$(ARCH64)/wc group=sys
413 $(i386_ONLY)file path=kernel/drv/acpi_drv group=sys
414 $(i386_ONLY)file path=kernel/drv/acpi_drv.conf group=sys
415 $(i386_ONLY)file path=kernel/drv/acpi_toshiba group=sys
416 $(i386_ONLY)file path=kernel/drv/aggr group=sys
417 file path=kernel/drv/aggr.conf group=sys
418 $(i386_ONLY)file path=kernel/drv/arp group=sys
419 file path=kernel/drv/arp.conf group=sys
420 $(i386_ONLY)file path=kernel/drv/bl group=sys
421 file path=kernel/drv/bl.conf group=sys
422 $(i386_ONLY)file path=kernel/drv/bridge group=sys
423 file path=kernel/drv/bridge.conf group=sys
424 $(i386_ONLY)file path=kernel/drv/bscbus group=sys
425 $(i386_ONLY)file path=kernel/drv/bscbus.conf group=sys
426 $(i386_ONLY)file path=kernel/drv/bscv group=sys
427 $(i386_ONLY)file path=kernel/drv/bscv.conf group=sys
428 $(i386_ONLY)file path=kernel/drv/clone group=sys
429 file path=kernel/drv/clone.conf group=sys
430 $(i386_ONLY)file path=kernel/drv/cn group=sys
431 file path=kernel/drv/cn.conf group=sys
432 $(i386_ONLY)file path=kernel/drv/conskbd group=sys
433 file path=kernel/drv/conskbd.conf group=sys
434 $(i386_ONLY)file path=kernel/drv/consms group=sys
435 file path=kernel/drv/consms.conf group=sys
436 $(i386_ONLY)file path=kernel/drv/cpuid group=sys
437 file path=kernel/drv/cpuid.conf group=sys
438 $(i386_ONLY)file path=kernel/drv/cpunex group=sys
439 $(i386_ONLY)file path=kernel/drv/crypto group=sys
440 file path=kernel/drv/crypto.conf group=sys
441 $(i386_ONLY)file path=kernel/drv/cryptoadm group=sys
442 file path=kernel/drv/cryptoadm.conf group=sys
443 $(sparc_ONLY)file path=kernel/drv/dad.conf group=sys
444 $(i386_ONLY)file path=kernel/drv/devinfo group=sys
445 file path=kernel/drv/devinfo.conf group=sys
446 $(i386_ONLY)file path=kernel/drv/dld group=sys
447 file path=kernel/drv/dld.conf group=sys
448 $(i386_ONLY)file path=kernel/drv/dlpistub group=sys
449 file path=kernel/drv/dlpistub.conf group=sys
450 $(i386_ONLY)file path=kernel/drv/i8042 group=sys
451 $(i386_ONLY)file path=kernel/drv/icmp group=sys
452 file path=kernel/drv/icmp.conf group=sys
453 $(i386_ONLY)file path=kernel/drv/icmp6 group=sys
454 file path=kernel/drv/icmp6.conf group=sys
455 $(i386_ONLY)file path=kernel/drv/intel_nb5000 group=sys
456 $(i386_ONLY)file path=kernel/drv/intel_nb5000.conf group=sys
457 $(i386_ONLY)file path=kernel/drv/intel_nhm group=sys

new/usr/src/pkg/manifests/system-kernel.mf 8

458 $(i386_ONLY)file path=kernel/drv/intel_nhm.conf group=sys
459 $(i386_ONLY)file path=kernel/drv/intel_nhmex group=sys
460 $(i386_ONLY)file path=kernel/drv/intel_nhmex.conf group=sys
461 $(i386_ONLY)file path=kernel/drv/ip group=sys
462 file path=kernel/drv/ip.conf group=sys
463 $(i386_ONLY)file path=kernel/drv/ip6 group=sys
464 file path=kernel/drv/ip6.conf group=sys
465 $(i386_ONLY)file path=kernel/drv/ipnet group=sys
466 file path=kernel/drv/ipnet.conf group=sys
467 $(i386_ONLY)file path=kernel/drv/ippctl group=sys
468 file path=kernel/drv/ippctl.conf group=sys
469 $(i386_ONLY)file path=kernel/drv/ipsecah group=sys
470 file path=kernel/drv/ipsecah.conf group=sys
471 $(i386_ONLY)file path=kernel/drv/ipsecesp group=sys
472 file path=kernel/drv/ipsecesp.conf group=sys
473 $(i386_ONLY)file path=kernel/drv/iptun group=sys
474 file path=kernel/drv/iptun.conf group=sys
475 $(i386_ONLY)file path=kernel/drv/iwscn group=sys
476 file path=kernel/drv/iwscn.conf group=sys
477 $(i386_ONLY)file path=kernel/drv/kb8042 group=sys
478 $(i386_ONLY)file path=kernel/drv/keysock group=sys
479 file path=kernel/drv/keysock.conf group=sys
480 $(i386_ONLY)file path=kernel/drv/kmdb group=sys
481 file path=kernel/drv/kmdb.conf group=sys
482 $(i386_ONLY)file path=kernel/drv/kssl group=sys
483 file path=kernel/drv/kssl.conf group=sys
484 $(i386_ONLY)file path=kernel/drv/llc1 group=sys
485 file path=kernel/drv/llc1.conf group=sys
486 $(i386_ONLY)file path=kernel/drv/lofi group=sys
487 file path=kernel/drv/lofi.conf group=sys
488 $(i386_ONLY)file path=kernel/drv/log group=sys
489 file path=kernel/drv/log.conf group=sys \
490 original_name=SUNWckr:kernel/drv/log.conf preserve=true
491 $(i386_ONLY)file path=kernel/drv/mc-amd group=sys
492 $(i386_ONLY)file path=kernel/drv/mc-amd.conf group=sys
493 $(i386_ONLY)file path=kernel/drv/mm group=sys
494 file path=kernel/drv/mm.conf group=sys
495 $(i386_ONLY)file path=kernel/drv/mouse8042 group=sys
496 $(i386_ONLY)file path=kernel/drv/mpt group=sys
497 $(i386_ONLY)file path=kernel/drv/mpt.conf group=sys \
498 original_name=SUNWckr:kernel/drv/mpt.conf preserve=true
499 $(i386_ONLY)file path=kernel/drv/nulldriver group=sys
500 $(i386_ONLY)file path=kernel/drv/openeepr group=sys
501 file path=kernel/drv/openeepr.conf group=sys
502 $(i386_ONLY)file path=kernel/drv/options group=sys
503 file path=kernel/drv/options.conf group=sys
504 $(i386_ONLY)file path=kernel/drv/pci_pci group=sys
505 $(i386_ONLY)file path=kernel/drv/pcieb group=sys
506 file path=kernel/drv/pcieb.conf group=sys
507 $(i386_ONLY)file path=kernel/drv/physmem group=sys
508 file path=kernel/drv/physmem.conf group=sys
509 $(i386_ONLY)file path=kernel/drv/poll group=sys
510 file path=kernel/drv/poll.conf group=sys
511 $(i386_ONLY)file path=kernel/drv/power group=sys
512 $(i386_ONLY)file path=kernel/drv/power.conf group=sys
513 $(i386_ONLY)file path=kernel/drv/pseudo group=sys
514 file path=kernel/drv/pseudo.conf group=sys
515 $(i386_ONLY)file path=kernel/drv/ptc group=sys
516 file path=kernel/drv/ptc.conf group=sys
517 $(i386_ONLY)file path=kernel/drv/ptsl group=sys
518 file path=kernel/drv/ptsl.conf group=sys
519 $(i386_ONLY)file path=kernel/drv/ramdisk group=sys
520 file path=kernel/drv/ramdisk.conf group=sys
521 $(i386_ONLY)file path=kernel/drv/random group=sys
522 file path=kernel/drv/random.conf group=sys
523 $(i386_ONLY)file path=kernel/drv/rts group=sys

new/usr/src/pkg/manifests/system-kernel.mf 9

524 file path=kernel/drv/rts.conf group=sys
525 $(i386_ONLY)file path=kernel/drv/sad group=sys
526 file path=kernel/drv/sad.conf group=sys
527 $(i386_ONLY)file path=kernel/drv/scsi_vhci group=sys
528 file path=kernel/drv/scsi_vhci.conf group=sys \
529 original_name=SUNWckr:kernel/drv/scsi_vhci.conf preserve=true
530 $(i386_ONLY)file path=kernel/drv/sd group=sys
531 $(sparc_ONLY)file path=kernel/drv/sd.conf group=sys \
532 original_name=SUNWckr:kernel/drv/sd.conf preserve=true
533 $(i386_ONLY)file path=kernel/drv/sd.conf group=sys \
534 original_name=SUNWos86r:kernel/drv/sd.conf preserve=true
535 $(i386_ONLY)file path=kernel/drv/sgen group=sys
536 file path=kernel/drv/sgen.conf group=sys \
537 original_name=SUNWckr:kernel/drv/sgen.conf preserve=true
538 $(i386_ONLY)file path=kernel/drv/simnet group=sys
539 file path=kernel/drv/simnet.conf group=sys
540 $(i386_ONLY)file path=kernel/drv/smbios group=sys
541 $(i386_ONLY)file path=kernel/drv/smbios.conf group=sys
542 $(i386_ONLY)file path=kernel/drv/softmac group=sys
543 file path=kernel/drv/softmac.conf group=sys
544 $(i386_ONLY)file path=kernel/drv/spdsock group=sys
545 file path=kernel/drv/spdsock.conf group=sys
546 $(i386_ONLY)file path=kernel/drv/st group=sys
547 file path=kernel/drv/st.conf group=sys \
548 original_name=SUNWckr:kernel/drv/st.conf preserve=true
549 $(i386_ONLY)file path=kernel/drv/sy group=sys
550 file path=kernel/drv/sy.conf group=sys
551 $(i386_ONLY)file path=kernel/drv/sysevent group=sys
552 file path=kernel/drv/sysevent.conf group=sys
553 $(i386_ONLY)file path=kernel/drv/sysmsg group=sys
554 file path=kernel/drv/sysmsg.conf group=sys
555 $(i386_ONLY)file path=kernel/drv/tcp group=sys
556 file path=kernel/drv/tcp.conf group=sys
557 $(i386_ONLY)file path=kernel/drv/tcp6 group=sys
558 file path=kernel/drv/tcp6.conf group=sys
559 $(i386_ONLY)file path=kernel/drv/tl group=sys
560 file path=kernel/drv/tl.conf group=sys
561 $(i386_ONLY)file path=kernel/drv/tzmon group=sys
562 $(i386_ONLY)file path=kernel/drv/tzmon.conf group=sys
563 $(sparc_ONLY)file path=kernel/drv/uata.conf group=sys \
564 original_name=SUNWckr:kernel/drv/uata.conf preserve=true
565 $(i386_ONLY)file path=kernel/drv/ucode group=sys
566 $(i386_ONLY)file path=kernel/drv/ucode.conf group=sys
567 $(i386_ONLY)file path=kernel/drv/udp group=sys
568 file path=kernel/drv/udp.conf group=sys
569 $(i386_ONLY)file path=kernel/drv/udp6 group=sys
570 file path=kernel/drv/udp6.conf group=sys
571 $(i386_ONLY)file path=kernel/drv/vgatext group=sys
572 $(i386_ONLY)file path=kernel/drv/vnic group=sys
573 file path=kernel/drv/vnic.conf group=sys
574 $(i386_ONLY)file path=kernel/drv/wc group=sys
575 file path=kernel/drv/wc.conf group=sys
576 $(sparc_ONLY)file path=kernel/exec/$(ARCH64)/aoutexec group=sys mode=0755
577 file path=kernel/exec/$(ARCH64)/elfexec group=sys mode=0755
578 file path=kernel/exec/$(ARCH64)/intpexec group=sys mode=0755
579 $(i386_ONLY)file path=kernel/exec/elfexec group=sys mode=0755
580 $(i386_ONLY)file path=kernel/exec/intpexec group=sys mode=0755
581 file path=kernel/fs/$(ARCH64)/autofs group=sys mode=0755
582 file path=kernel/fs/$(ARCH64)/cachefs group=sys mode=0755
583 file path=kernel/fs/$(ARCH64)/ctfs group=sys mode=0755
584 file path=kernel/fs/$(ARCH64)/dcfs group=sys mode=0755
585 file path=kernel/fs/$(ARCH64)/dev group=sys mode=0755
586 file path=kernel/fs/$(ARCH64)/devfs group=sys mode=0755
587 file path=kernel/fs/$(ARCH64)/fifofs group=sys mode=0755
588 file path=kernel/fs/$(ARCH64)/hsfs group=sys mode=0755
589 file path=kernel/fs/$(ARCH64)/lofs group=sys mode=0755

new/usr/src/pkg/manifests/system-kernel.mf 10

590 file path=kernel/fs/$(ARCH64)/mntfs group=sys mode=0755
591 file path=kernel/fs/$(ARCH64)/namefs group=sys mode=0755
592 file path=kernel/fs/$(ARCH64)/objfs group=sys mode=0755
593 file path=kernel/fs/$(ARCH64)/procfs group=sys mode=0755
594 file path=kernel/fs/$(ARCH64)/sharefs group=sys mode=0755
595 file path=kernel/fs/$(ARCH64)/sockfs group=sys mode=0755
596 file path=kernel/fs/$(ARCH64)/specfs group=sys mode=0755
597 file path=kernel/fs/$(ARCH64)/tmpfs group=sys mode=0755
598 file path=kernel/fs/$(ARCH64)/ufs group=sys mode=0755
599 $(i386_ONLY)file path=kernel/fs/autofs group=sys mode=0755
600 $(i386_ONLY)file path=kernel/fs/cachefs group=sys mode=0755
601 $(i386_ONLY)file path=kernel/fs/ctfs group=sys mode=0755
602 $(i386_ONLY)file path=kernel/fs/dcfs group=sys mode=0755
603 $(i386_ONLY)file path=kernel/fs/dev group=sys mode=0755
604 $(i386_ONLY)file path=kernel/fs/devfs group=sys mode=0755
605 $(i386_ONLY)file path=kernel/fs/fifofs group=sys mode=0755
606 $(i386_ONLY)file path=kernel/fs/hsfs group=sys mode=0755
607 $(i386_ONLY)file path=kernel/fs/lofs group=sys mode=0755
608 $(i386_ONLY)file path=kernel/fs/mntfs group=sys mode=0755
609 $(i386_ONLY)file path=kernel/fs/namefs group=sys mode=0755
610 $(i386_ONLY)file path=kernel/fs/objfs group=sys mode=0755
611 $(i386_ONLY)file path=kernel/fs/procfs group=sys mode=0755
612 $(i386_ONLY)file path=kernel/fs/sharefs group=sys mode=0755
613 $(i386_ONLY)file path=kernel/fs/sockfs group=sys mode=0755
614 $(i386_ONLY)file path=kernel/fs/specfs group=sys mode=0755
615 $(i386_ONLY)file path=kernel/fs/tmpfs group=sys mode=0755
616 $(i386_ONLY)file path=kernel/fs/ufs group=sys mode=0755
617 $(i386_ONLY)file path=kernel/genunix group=sys mode=0755
618 file path=kernel/ipp/$(ARCH64)/ipgpc group=sys mode=0755
619 $(i386_ONLY)file path=kernel/ipp/ipgpc group=sys mode=0755
620 file path=kernel/kiconv/$(ARCH64)/kiconv_emea group=sys mode=0755
621 file path=kernel/kiconv/$(ARCH64)/kiconv_ja group=sys mode=0755
622 file path=kernel/kiconv/$(ARCH64)/kiconv_ko group=sys mode=0755
623 file path=kernel/kiconv/$(ARCH64)/kiconv_sc group=sys mode=0755
624 file path=kernel/kiconv/$(ARCH64)/kiconv_tc group=sys mode=0755
625 $(i386_ONLY)file path=kernel/kiconv/kiconv_emea group=sys mode=0755
626 $(i386_ONLY)file path=kernel/kiconv/kiconv_ja group=sys mode=0755
627 $(i386_ONLY)file path=kernel/kiconv/kiconv_ko group=sys mode=0755
628 $(i386_ONLY)file path=kernel/kiconv/kiconv_sc group=sys mode=0755
629 $(i386_ONLY)file path=kernel/kiconv/kiconv_tc group=sys mode=0755
630 file path=kernel/mac/$(ARCH64)/mac_6to4 group=sys mode=0755
631 file path=kernel/mac/$(ARCH64)/mac_ether group=sys mode=0755
632 file path=kernel/mac/$(ARCH64)/mac_ib group=sys mode=0755
633 file path=kernel/mac/$(ARCH64)/mac_ipv4 group=sys mode=0755
634 file path=kernel/mac/$(ARCH64)/mac_ipv6 group=sys mode=0755
635 file path=kernel/mac/$(ARCH64)/mac_wifi group=sys mode=0755
636 $(i386_ONLY)file path=kernel/mac/mac_6to4 group=sys mode=0755
637 $(i386_ONLY)file path=kernel/mac/mac_ether group=sys mode=0755
638 $(i386_ONLY)file path=kernel/mac/mac_ib group=sys mode=0755
639 $(i386_ONLY)file path=kernel/mac/mac_ipv4 group=sys mode=0755
640 $(i386_ONLY)file path=kernel/mac/mac_ipv6 group=sys mode=0755
641 $(i386_ONLY)file path=kernel/mac/mac_wifi group=sys mode=0755
642 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/acpica group=sys mode=0755
643 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/agpmaster group=sys mode=0755
644 file path=kernel/misc/$(ARCH64)/bignum group=sys mode=0755
645 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/bootdev group=sys mode=0755
646 file path=kernel/misc/$(ARCH64)/busra group=sys mode=0755
647 file path=kernel/misc/$(ARCH64)/cardbus group=sys mode=0755
648 file path=kernel/misc/$(ARCH64)/cmlb group=sys mode=0755
649 file path=kernel/misc/$(ARCH64)/consconfig group=sys mode=0755
650 file path=kernel/misc/$(ARCH64)/ctf group=sys mode=0755
651 $(sparc_ONLY)file path=kernel/misc/$(ARCH64)/dada group=sys mode=0755
652 file path=kernel/misc/$(ARCH64)/dls group=sys mode=0755
653 file path=kernel/misc/$(ARCH64)/fssnap_if group=sys mode=0755
654 file path=kernel/misc/$(ARCH64)/gld group=sys mode=0755
655 file path=kernel/misc/$(ARCH64)/hook group=sys mode=0755

new/usr/src/pkg/manifests/system-kernel.mf 11

656 file path=kernel/misc/$(ARCH64)/hpcsvc group=sys mode=0755
657 file path=kernel/misc/$(ARCH64)/idmap group=sys mode=0755
658 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/iommulib group=sys mode=0755
659 file path=kernel/misc/$(ARCH64)/ipc group=sys mode=0755
660 file path=kernel/misc/$(ARCH64)/kbtrans group=sys mode=0755
661 file path=kernel/misc/$(ARCH64)/kcf group=sys mode=0755
662 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/kmdbmod group=sys mode=0755
663 file path=kernel/misc/$(ARCH64)/ksocket group=sys mode=0755
664 file path=kernel/misc/$(ARCH64)/mac group=sys mode=0755
665 file path=kernel/misc/$(ARCH64)/mii group=sys mode=0755
666 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/net80211 group=sys mode=0755
667 file path=kernel/misc/$(ARCH64)/neti group=sys mode=0755
668 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/pci_autoconfig group=sys mode=0755
669 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/pcicfg group=sys mode=0755
670 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/pcie group=sys mode=0755
671 file path=kernel/misc/$(ARCH64)/pcihp group=sys mode=0755
672 file path=kernel/misc/$(ARCH64)/pcmcia group=sys mode=0755
673 file path=kernel/misc/$(ARCH64)/rpcsec group=sys mode=0755
674 $(i386_ONLY)file path=kernel/misc/$(ARCH64)/sata group=sys mode=0755
675 file path=kernel/misc/$(ARCH64)/scsi group=sys mode=0755
676 file path=kernel/misc/$(ARCH64)/strplumb group=sys mode=0755
677 $(sparc_ONLY)file path=kernel/misc/$(ARCH64)/swapgeneric group=sys mode=0755
678 file path=kernel/misc/$(ARCH64)/tem group=sys mode=0755
679 file path=kernel/misc/$(ARCH64)/tlimod group=sys mode=0755
680 $(i386_ONLY)file path=kernel/misc/acpica group=sys mode=0755
681 $(i386_ONLY)file path=kernel/misc/agpmaster group=sys mode=0755
682 $(i386_ONLY)file path=kernel/misc/bignum group=sys mode=0755
683 $(i386_ONLY)file path=kernel/misc/bootdev group=sys mode=0755
684 $(i386_ONLY)file path=kernel/misc/busra group=sys mode=0755
685 $(i386_ONLY)file path=kernel/misc/cardbus group=sys mode=0755
686 $(i386_ONLY)file path=kernel/misc/cmlb group=sys mode=0755
687 $(i386_ONLY)file path=kernel/misc/consconfig group=sys mode=0755
688 $(i386_ONLY)file path=kernel/misc/ctf group=sys mode=0755
689 $(i386_ONLY)file path=kernel/misc/dls group=sys mode=0755
690 $(i386_ONLY)file path=kernel/misc/fssnap_if group=sys mode=0755
691 $(i386_ONLY)file path=kernel/misc/gld group=sys mode=0755
692 $(i386_ONLY)file path=kernel/misc/hook group=sys mode=0755
693 $(i386_ONLY)file path=kernel/misc/hpcsvc group=sys mode=0755
694 $(i386_ONLY)file path=kernel/misc/idmap group=sys mode=0755
695 $(i386_ONLY)file path=kernel/misc/iommulib group=sys mode=0755
696 $(i386_ONLY)file path=kernel/misc/ipc group=sys mode=0755
697 $(i386_ONLY)file path=kernel/misc/kbtrans group=sys mode=0755
698 $(i386_ONLY)file path=kernel/misc/kcf group=sys mode=0755
699 $(i386_ONLY)file path=kernel/misc/kmdbmod group=sys mode=0755
700 $(i386_ONLY)file path=kernel/misc/ksocket group=sys mode=0755
701 $(i386_ONLY)file path=kernel/misc/mac group=sys mode=0755
702 $(i386_ONLY)file path=kernel/misc/mii group=sys mode=0755
703 $(i386_ONLY)file path=kernel/misc/net80211 group=sys mode=0755
704 $(i386_ONLY)file path=kernel/misc/neti group=sys mode=0755
705 $(i386_ONLY)file path=kernel/misc/pci_autoconfig group=sys mode=0755
706 $(i386_ONLY)file path=kernel/misc/pcicfg group=sys mode=0755
707 $(i386_ONLY)file path=kernel/misc/pcie group=sys mode=0755
708 $(i386_ONLY)file path=kernel/misc/pcihp group=sys mode=0755
709 $(i386_ONLY)file path=kernel/misc/pcmcia group=sys mode=0755
710 $(i386_ONLY)file path=kernel/misc/rpcsec group=sys mode=0755
711 $(i386_ONLY)file path=kernel/misc/sata group=sys mode=0755
712 $(i386_ONLY)file path=kernel/misc/scsi group=sys mode=0755
713 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_asym_emc group=sys \
714 mode=0755
715 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_asym_lsi group=sys \
716 mode=0755
717 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_asym_sun group=sys \
718 mode=0755
719 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_sym group=sys mode=0755
720 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_sym_emc group=sys \
721 mode=0755

new/usr/src/pkg/manifests/system-kernel.mf 12

722 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_sym_hds group=sys \
723 mode=0755
724 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_tape group=sys mode=0755
725 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_tpgs group=sys mode=0755
726 file path=kernel/misc/scsi_vhci/$(ARCH64)/scsi_vhci_f_tpgs_tape group=sys \
727 mode=0755
728 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_asym_emc group=sys \
729 mode=0755
730 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_asym_lsi group=sys \
731 mode=0755
732 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_asym_sun group=sys \
733 mode=0755
734 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_sym group=sys \
735 mode=0755
736 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_sym_emc group=sys \
737 mode=0755
738 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_sym_hds group=sys \
739 mode=0755
740 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_tape group=sys \
741 mode=0755
742 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_tpgs group=sys \
743 mode=0755
744 $(i386_ONLY)file path=kernel/misc/scsi_vhci/scsi_vhci_f_tpgs_tape group=sys \
745 mode=0755
746 $(i386_ONLY)file path=kernel/misc/strplumb group=sys mode=0755
747 $(i386_ONLY)file path=kernel/misc/tem group=sys mode=0755
748 $(i386_ONLY)file path=kernel/misc/tlimod group=sys mode=0755
749 file path=kernel/sched/$(ARCH64)/SDC group=sys mode=0755
750 file path=kernel/sched/$(ARCH64)/TS group=sys mode=0755
751 file path=kernel/sched/$(ARCH64)/TS_DPTBL group=sys mode=0755
752 $(i386_ONLY)file path=kernel/sched/SDC group=sys mode=0755
753 $(i386_ONLY)file path=kernel/sched/TS group=sys mode=0755
754 $(i386_ONLY)file path=kernel/sched/TS_DPTBL group=sys mode=0755
755 file path=kernel/socketmod/$(ARCH64)/ksslf group=sys mode=0755
756 file path=kernel/socketmod/$(ARCH64)/socksctp group=sys mode=0755
757 file path=kernel/socketmod/$(ARCH64)/trill group=sys mode=0755
758 $(i386_ONLY)file path=kernel/socketmod/ksslf group=sys mode=0755
759 $(i386_ONLY)file path=kernel/socketmod/socksctp group=sys mode=0755
760 $(i386_ONLY)file path=kernel/socketmod/trill group=sys mode=0755
761 file path=kernel/strmod/$(ARCH64)/bufmod group=sys mode=0755
762 file path=kernel/strmod/$(ARCH64)/connld group=sys mode=0755
763 file path=kernel/strmod/$(ARCH64)/dedump group=sys mode=0755
764 file path=kernel/strmod/$(ARCH64)/drcompat group=sys mode=0755
765 file path=kernel/strmod/$(ARCH64)/ldterm group=sys mode=0755
766 $(sparc_ONLY)file path=kernel/strmod/$(ARCH64)/ms group=sys mode=0755
767 file path=kernel/strmod/$(ARCH64)/pckt group=sys mode=0755
768 file path=kernel/strmod/$(ARCH64)/pfmod group=sys mode=0755
769 file path=kernel/strmod/$(ARCH64)/pipemod group=sys mode=0755
770 file path=kernel/strmod/$(ARCH64)/ptem group=sys mode=0755
771 file path=kernel/strmod/$(ARCH64)/redirmod group=sys mode=0755
772 file path=kernel/strmod/$(ARCH64)/rpcmod group=sys mode=0755
773 file path=kernel/strmod/$(ARCH64)/timod group=sys mode=0755
774 file path=kernel/strmod/$(ARCH64)/tirdwr group=sys mode=0755
775 file path=kernel/strmod/$(ARCH64)/ttcompat group=sys mode=0755
776 $(sparc_ONLY)file path=kernel/strmod/$(ARCH64)/vuid3ps2 group=sys mode=0755
777 $(i386_ONLY)file path=kernel/strmod/bufmod group=sys mode=0755
778 $(i386_ONLY)file path=kernel/strmod/connld group=sys mode=0755
779 $(i386_ONLY)file path=kernel/strmod/dedump group=sys mode=0755
780 $(i386_ONLY)file path=kernel/strmod/drcompat group=sys mode=0755
781 $(i386_ONLY)file path=kernel/strmod/ldterm group=sys mode=0755
782 $(i386_ONLY)file path=kernel/strmod/pckt group=sys mode=0755
783 $(i386_ONLY)file path=kernel/strmod/pfmod group=sys mode=0755
784 $(i386_ONLY)file path=kernel/strmod/pipemod group=sys mode=0755
785 $(i386_ONLY)file path=kernel/strmod/ptem group=sys mode=0755
786 $(i386_ONLY)file path=kernel/strmod/redirmod group=sys mode=0755
787 $(i386_ONLY)file path=kernel/strmod/rpcmod group=sys mode=0755

new/usr/src/pkg/manifests/system-kernel.mf 13

788 $(i386_ONLY)file path=kernel/strmod/timod group=sys mode=0755
789 $(i386_ONLY)file path=kernel/strmod/tirdwr group=sys mode=0755
790 $(i386_ONLY)file path=kernel/strmod/ttcompat group=sys mode=0755
791 file path=kernel/sys/$(ARCH64)/c2audit group=sys mode=0755
792 file path=kernel/sys/$(ARCH64)/doorfs group=sys mode=0755
793 file path=kernel/sys/$(ARCH64)/inst_sync group=sys mode=0755
794 file path=kernel/sys/$(ARCH64)/kaio group=sys mode=0755
795 file path=kernel/sys/$(ARCH64)/msgsys group=sys mode=0755
796 file path=kernel/sys/$(ARCH64)/pipe group=sys mode=0755
797 file path=kernel/sys/$(ARCH64)/portfs group=sys mode=0755
798 file path=kernel/sys/$(ARCH64)/pset group=sys mode=0755
799 file path=kernel/sys/$(ARCH64)/semsys group=sys mode=0755
800 file path=kernel/sys/$(ARCH64)/shmsys group=sys mode=0755
801 $(i386_ONLY)file path=kernel/sys/c2audit group=sys mode=0755
802 $(i386_ONLY)file path=kernel/sys/doorfs group=sys mode=0755
803 $(i386_ONLY)file path=kernel/sys/inst_sync group=sys mode=0755
804 $(i386_ONLY)file path=kernel/sys/kaio group=sys mode=0755
805 $(i386_ONLY)file path=kernel/sys/msgsys group=sys mode=0755
806 $(i386_ONLY)file path=kernel/sys/pipe group=sys mode=0755
807 $(i386_ONLY)file path=kernel/sys/portfs group=sys mode=0755
808 $(i386_ONLY)file path=kernel/sys/pset group=sys mode=0755
809 $(i386_ONLY)file path=kernel/sys/semsys group=sys mode=0755
810 $(i386_ONLY)file path=kernel/sys/shmsys group=sys mode=0755
811 file path=lib/svc/manifest/system/dumpadm.xml group=sys mode=0444
812 file path=lib/svc/manifest/system/intrd.xml group=sys mode=0444
813 file path=lib/svc/manifest/system/scheduler.xml group=sys mode=0444
814 file path=lib/svc/method/svc-dumpadm mode=0555
815 file path=lib/svc/method/svc-intrd mode=0555
816 file path=lib/svc/method/svc-scheduler mode=0555
817 $(sparc_ONLY)file path=usr/share/man/man1m/monitor.1m
818 $(sparc_ONLY)file path=usr/share/man/man1m/obpsym.1m
819 # On SPARC driver/bscv is Serverblade1 specific, and in system/kernel/platform
820 # We keep the manual page generic
821 $(sparc_ONLY)file path=usr/share/man/man7d/dad.7d
822 $(i386_ONLY)file path=usr/share/man/man7d/smbios.7d
823 # Sadly vuid mouse support is in different packages on different platforms
824 # While kstat(7D) is in SUNWcs, the structures are general
825 hardlink path=kernel/misc/$(ARCH64)/md5 \
826 target=../../../kernel/crypto/$(ARCH64)/md5
827 hardlink path=kernel/misc/$(ARCH64)/sha1 \
828 target=../../../kernel/crypto/$(ARCH64)/sha1
829 hardlink path=kernel/misc/$(ARCH64)/sha2 \
830 target=../../../kernel/crypto/$(ARCH64)/sha2
831 $(i386_ONLY)hardlink path=kernel/misc/md5 target=../../kernel/crypto/md5
832 $(i386_ONLY)hardlink path=kernel/misc/sha1 target=../../kernel/crypto/sha1
833 $(i386_ONLY)hardlink path=kernel/misc/sha2 target=../../kernel/crypto/sha2
834 hardlink path=kernel/socketmod/$(ARCH64)/icmp \
835 target=../../../kernel/drv/$(ARCH64)/icmp
836 hardlink path=kernel/socketmod/$(ARCH64)/rts \
837 target=../../../kernel/drv/$(ARCH64)/rts
838 hardlink path=kernel/socketmod/$(ARCH64)/tcp \
839 target=../../../kernel/drv/$(ARCH64)/tcp
840 hardlink path=kernel/socketmod/$(ARCH64)/udp \
841 target=../../../kernel/drv/$(ARCH64)/udp
842 $(i386_ONLY)hardlink path=kernel/socketmod/icmp target=../../kernel/drv/icmp
843 $(i386_ONLY)hardlink path=kernel/socketmod/rts target=../../kernel/drv/rts
844 $(i386_ONLY)hardlink path=kernel/socketmod/tcp target=../../kernel/drv/tcp
845 $(i386_ONLY)hardlink path=kernel/socketmod/udp target=../../kernel/drv/udp
846 hardlink path=kernel/strmod/$(ARCH64)/arp \
847 target=../../../kernel/drv/$(ARCH64)/arp
848 hardlink path=kernel/strmod/$(ARCH64)/icmp \
849 target=../../../kernel/drv/$(ARCH64)/icmp
850 hardlink path=kernel/strmod/$(ARCH64)/ip \
851 target=../../../kernel/drv/$(ARCH64)/ip
852 hardlink path=kernel/strmod/$(ARCH64)/ipsecah \
853 target=../../../kernel/drv/$(ARCH64)/ipsecah

new/usr/src/pkg/manifests/system-kernel.mf 14

854 hardlink path=kernel/strmod/$(ARCH64)/ipsecesp \
855 target=../../../kernel/drv/$(ARCH64)/ipsecesp
856 hardlink path=kernel/strmod/$(ARCH64)/keysock \
857 target=../../../kernel/drv/$(ARCH64)/keysock
858 hardlink path=kernel/strmod/$(ARCH64)/tcp \
859 target=../../../kernel/drv/$(ARCH64)/tcp
860 hardlink path=kernel/strmod/$(ARCH64)/udp \
861 target=../../../kernel/drv/$(ARCH64)/udp
862 $(i386_ONLY)hardlink path=kernel/strmod/arp target=../../kernel/drv/arp
863 $(i386_ONLY)hardlink path=kernel/strmod/icmp target=../../kernel/drv/icmp
864 $(i386_ONLY)hardlink path=kernel/strmod/ip target=../../kernel/drv/ip
865 $(i386_ONLY)hardlink path=kernel/strmod/ipsecah \
866 target=../../kernel/drv/ipsecah
867 $(i386_ONLY)hardlink path=kernel/strmod/ipsecesp \
868 target=../../kernel/drv/ipsecesp
869 $(i386_ONLY)hardlink path=kernel/strmod/keysock \
870 target=../../kernel/drv/keysock
871 $(i386_ONLY)hardlink path=kernel/strmod/tcp target=../../kernel/drv/tcp
872 $(i386_ONLY)hardlink path=kernel/strmod/udp target=../../kernel/drv/udp
873 hardlink path=kernel/sys/$(ARCH64)/autofs \
874 target=../../../kernel/fs/$(ARCH64)/autofs
875 hardlink path=kernel/sys/$(ARCH64)/rpcmod \
876 target=../../../kernel/strmod/$(ARCH64)/rpcmod
877 $(i386_ONLY)hardlink path=kernel/sys/autofs target=../../kernel/fs/autofs
878 $(i386_ONLY)hardlink path=kernel/sys/rpcmod target=../../kernel/strmod/rpcmod
879 legacy pkg=SUNWckr \
880 desc="core kernel software for a specific instruction-set architecture" \
881 name="Core Solaris Kernel (Root)"
882 license cr_Sun license=cr_Sun
883 license lic_CDDL license=lic_CDDL
884 license usr/src/cmd/mdb/common/libstand/THIRDPARTYLICENSE \
885 license=usr/src/cmd/mdb/common/libstand/THIRDPARTYLICENSE
886 $(i386_ONLY)license usr/src/common/acpica/THIRDPARTYLICENSE \
887 license=usr/src/common/acpica/THIRDPARTYLICENSE
888 license usr/src/common/bzip2/LICENSE license=usr/src/common/bzip2/LICENSE
889 license usr/src/common/crypto/THIRDPARTYLICENSE.cryptogams \
890 license=usr/src/common/crypto/THIRDPARTYLICENSE.cryptogams
891 $(i386_ONLY)license usr/src/common/crypto/aes/amd64/THIRDPARTYLICENSE.gladman \
892 license=usr/src/common/crypto/aes/amd64/THIRDPARTYLICENSE.gladman
893 $(i386_ONLY)license usr/src/common/crypto/aes/amd64/THIRDPARTYLICENSE.openssl \
894 license=usr/src/common/crypto/aes/amd64/THIRDPARTYLICENSE.openssl
895 license usr/src/common/crypto/ecc/THIRDPARTYLICENSE \
896 license=usr/src/common/crypto/ecc/THIRDPARTYLICENSE
897 $(i386_ONLY)license usr/src/common/crypto/md5/amd64/THIRDPARTYLICENSE \
898 license=usr/src/common/crypto/md5/amd64/THIRDPARTYLICENSE
899 license usr/src/common/mpi/THIRDPARTYLICENSE \
900 license=usr/src/common/mpi/THIRDPARTYLICENSE
901 license usr/src/uts/common/inet/ip/THIRDPARTYLICENSE.rts \
902 license=usr/src/uts/common/inet/ip/THIRDPARTYLICENSE.rts
903 license usr/src/uts/common/inet/tcp/THIRDPARTYLICENSE \
904 license=usr/src/uts/common/inet/tcp/THIRDPARTYLICENSE
905 license usr/src/uts/common/io/THIRDPARTYLICENSE.etheraddr \
906 license=usr/src/uts/common/io/THIRDPARTYLICENSE.etheraddr
907 license usr/src/uts/common/sys/THIRDPARTYLICENSE.icu \
908 license=usr/src/uts/common/sys/THIRDPARTYLICENSE.icu
909 license usr/src/uts/common/sys/THIRDPARTYLICENSE.unicode \
910 license=usr/src/uts/common/sys/THIRDPARTYLICENSE.unicode
909 $(i386_ONLY)license usr/src/uts/intel/io/acpica/THIRDPARTYLICENSE \
910 license=usr/src/uts/intel/io/acpica/THIRDPARTYLICENSE
911 $(i386_ONLY)link path=boot/solaris/bin/root_archive \
912 target=../../../usr/sbin/root_archive
913 link path=dev/dld target=../devices/pseudo/dld@0:ctl
914 link path=kernel/misc/$(ARCH64)/des \
915 target=../../../kernel/crypto/$(ARCH64)/des
916 $(i386_ONLY)link path=kernel/misc/des target=../../kernel/crypto/des

new/usr/src/tools/findunref/exception_list.open 1

**
 7434 Thu Dec 26 13:50:15 2013
new/usr/src/tools/findunref/exception_list.open
acpica-unix2-20130823
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 #
27 # open-tree exception list
28 #
29 # See README.exception_lists for details
30 #

32 #
33 # Ignore oddly-named text files scattered about -- someday these should be
34 # suffixed with .txt so we don’t have to list them.
35 #
36 ./usr/src/cmd/oawk/EXPLAIN
37 ./usr/src/cmd/vi/port/ex.news
38 ./usr/src/cmd/ssh/doc

40 #
41 # Ignore everything under trees that may be resynched from outside ON.
42 #
43 ./usr/src/cmd/perl
44 ./usr/src/cmd/sqlite
45 ./usr/src/lib/libsqlite
46 ./usr/src/cmd/tcpd
47 ./usr/src/common/openssl
48 ./usr/src/grub
49 ./usr/src/cmd/acpitools
50 ./usr/src/common/acpica
49 ./usr/src/uts/intel/sys/acpi

52 #
53 # Ignore ksh93/ast-related files that are only used to resync our build
54 # configuration with upstream.
55 #
56 ./usr/src/lib/libast/*/src/lib/libast/FEATURE
57 ./usr/src/lib/libast/*/src/lib/libast/ast_namval.h
58 ./usr/src/lib/libast/common/comp/conf.*
59 ./usr/src/lib/libast/common/features
60 ./usr/src/lib/libast/common/include/ast_windows.h

new/usr/src/tools/findunref/exception_list.open 2

61 ./usr/src/lib/libast/common/port/lc.tab
62 ./usr/src/lib/libast/common/port/lcgen.c
63 ./usr/src/lib/libcmd/*/src/lib/libcmd/FEATURE
64 ./usr/src/lib/libcmd/common/features
65 ./usr/src/lib/libdll/*/src/lib/libdll/FEATURE
66 ./usr/src/lib/libdll/common/features
67 ./usr/src/lib/libpp/*/pp.*
68 ./usr/src/lib/libpp/common/gentab.sh
69 ./usr/src/lib/libpp/common/ppsym.c
70 ./usr/src/lib/libpp/i386/ppdebug.h
71 ./usr/src/lib/libpp/sparc/ppdebug.h
72 ./usr/src/lib/libshell/*/src/cmd/ksh93/FEATURE
73 ./usr/src/lib/libshell/common/data/math.tab
74 ./usr/src/lib/libshell/common/features
75 ./usr/src/lib/libshell/misc/buildksh93.sh
76 ./usr/src/lib/libshell/misc/buildksh93.readme

78 #
79 # Ignore ksh93/ast-related "iffe" (if feature enabled) probe
80 #
81 ./usr/src/lib/libsum/common/features/sum

83 #
84 # Ignore ksh93/ast-related upstream source, currently superseded by
85 # a per-platform version of sum.h, since we use libmd.so.1 for some
86 # ciphers.
87 #
88 ./usr/src/lib/libsum/common/sum.h

90 #
91 # Ignore ksh93/ast-related test programs.
92 #
93 ./usr/src/cmd/ast/msgcc/msgcc.tst
94 ./usr/src/lib/libast/common/port/astmath.c

96 #
97 # Ignore ksh93/ast-related source components that are not currently
98 # used but may be useful later.
99 #
100 ./usr/src/lib/libcmd/common/cksum.c
101 ./usr/src/lib/libcmd/common/md5sum.c
102 ./usr/src/lib/libcmd/common/sum.c
103 ./usr/src/lib/libshell/common/bltins/mkservice.c
104 ./usr/src/lib/libshell/common/data/bash_pre_rc.sh
105 ./usr/src/lib/libshell/common/include/env.h
106 ./usr/src/lib/libshell/common/sh/bash.c
107 ./usr/src/lib/libshell/common/sh/env.c
108 ./usr/src/lib/libshell/common/sh/shcomp.c
109 ./usr/src/lib/libshell/common/sh/suid_exec.c

111 #
112 # Ignore any files built as part of the nightly program itself.
113 #
114 # ISUSED - let checkpaths know that the next entry is good.
115 ./usr/src/*.out
116 # ISUSED - let checkpaths know that the next entry is good.
117 ./usr/src/*.ref

119 #
120 # Ignore internal test directories and test programs.
121 #
122 */tests
123 */test
124 *Test.java
125 *_test.[ch]
126 ./usr/src/cmd/ldap/common/*test.c

new/usr/src/tools/findunref/exception_list.open 3

127 ./usr/src/cmd/logadm/tester
128 ./usr/src/cmd/print/printmgr/com/sun/admin/pm/client/helptools/extract
129 ./usr/src/cmd/print/printmgr/com/sun/admin/pm/server/pmtest
130 ./usr/src/cmd/sendmail/libsm/t-*.c
131 ./usr/src/cmd/sort/common/convert.c
132 ./usr/src/cmd/sort/common/invoke.c
133 ./usr/src/lib/crypt_modules/sha256/test.c
134 ./usr/src/lib/efcode/fcode_test
135 ./usr/src/lib/libkvm/common/test.c
136 ./usr/src/lib/libsaveargs/tests/

138 #
139 # Ignore debugging code.
140 #
141 ./usr/src/cmd/fs.d/pcfs/fsck/inject.c
142 ./usr/src/cmd/sort/common/statistics.c

144 #
145 # Ignore internal packages, scripts, and tools that are intentionally not
146 # built or used during a nightly.
147 #
148 ./usr/src/cmd/sgs/packages
149 ./usr/src/cmd/sgs/rtld.4.x
150 ./usr/src/prototypes
151 ./usr/src/cmd/pools/poold/com/sun/solaris/*/*/package.html
151 ./usr/src/uts/intel/io/acpica/cmp_ca.sh

153 #
154 # Ignore files that are only used by internal packages.
155 #
156 ./usr/src/cmd/sgs/*/*/*chk.msg

158 #
159 # Ignore files that get used during a EXPORT_SRC or CRYPT_SRC build only.
160 #
161 ./usr/src/lib/gss_mechs/mech_dh/backend/mapfile-vers
162 ./usr/src/lib/gss_mechs/mech_dh/dh1024/mapfile-vers
163 ./usr/src/lib/gss_mechs/mech_dh/dh192/mapfile-vers
164 ./usr/src/lib/gss_mechs/mech_dh/dh640/mapfile-vers

166 #
167 # Ignore Makefiles which are used by developers but not used by nightly
168 # itself. This is a questionable practice, since they tend to rot.
169 #
170 ./usr/src/cmd/syslogd/sparcv9/Makefile
171 ./usr/src/uts/sparc/uhci/Makefile
172 ./usr/src/lib/pam_modules/smb/amd64/Makefile
173 ./usr/src/lib/pam_modules/smb/sparcv9/Makefile
174 ./usr/src/cmd/isns/isnsd/xml_def/isnsmgmtSchema.xsd

176 #
177 # Ignore dtrace scripts only used by developers
178 #
179 ./usr/src/cmd/vscan/vscand/vscan.d

181 #
182 # Ignore sample source code.
183 #
184 ./usr/src/cmd/sendmail/libmilter/example.c
185 ./usr/src/lib/libdhcpsvc/modules/templates

187 #
188 # Ignore .xcl files that aren’t used because the program is statically linked.
189 #
190 ./usr/src/cmd/cmd-inet/sbin/dhcpagent/dhcpagent.xcl

new/usr/src/tools/findunref/exception_list.open 4

192 #
193 # Ignore sendmail files included for completeness’ sake, but which won’t
194 # be used until certain _FFR (for future release) #define’s go live.
195 #
196 ./usr/src/cmd/sendmail/src/statusd_shm.h

198 #
199 # Ignore files originally supplied by ISC (Internet Software Consortium)
200 # as part of a BIND release.
201 #
202 ./usr/src/lib/libresolv2/common/irs/getaddrinfo.c
203 ./usr/src/lib/libresolv2/common/irs/nis_p.h
204 ./usr/src/lib/libresolv2/common/resolv/res_mkupdate.h
205 ./usr/src/lib/libresolv2/include/err.h

207 #
208 # Ignore mont_mulf.c. It is used as a starting point for some hand optimized
209 # assembly files. We keep it around for future reference.
210 #
211 ./usr/src/common/bignum/mont_mulf.c

213 #
214 # Ignore the sparc Makefiles for x86-only drivers;
215 # they’re used to build warlock only.
216 #
217 ./usr/src/uts/sparc/sata/Makefile
218 ./usr/src/uts/sparc/si3124/Makefile
219 ./usr/src/uts/sparc/nv_sata/Makefile
220 ./usr/src/uts/sparc/ahci/Makefile

222 #
223 # Ignore uttrack.c. It is provided as part of the standard
224 # ACPI CA source code but provides optional resource tracking
225 # functionality which is not used.
226 #
227 ./usr/src/uts/intel/io/acpica/utilities/uttrack.c

229 #
223 # Ignore any files that get used during a gcc build only.
224 #
225 ./usr/src/cmd/sgs/rtld/common/mapfile-order-gcc

227 #
228 # The sharemgr command is built 32-bit only by default, but support
229 # for building 64-bit is latent in the Makefiles.
230 #
231 ./usr/src/cmd/dfs.cmds/sharemgr/amd64/Makefile
232 ./usr/src/cmd/dfs.cmds/sharemgr/sparcv9/Makefile

234 #
235 # Legitimately unreferenced license/copying files. Please include
236 # explanatory comments when adding items here.
237 #

239 #
240 # OPENSOLARIS.LICENSE needs to remain in usr/src as long as it is
241 # referenced in the CDDL headers.
242 #
243 ./usr/src/OPENSOLARIS.LICENSE

245 # Though "COPYING" is usually used as a filename for GPL, the license
246 # information for openssh is actually found in usr/src/cmd/ssh/doc/LICENSE.
247 # The COPYING.Ylonen file is merely additional information.
248 #
249 ./usr/src/cmd/ssh/doc/COPYING.Ylonen

new/usr/src/tools/findunref/exception_list.open 5

251 #
252 # This covers header files that are not delivered.
253 #
254 ./usr/src/uts/common/xen/public/COPYING

256 #
257 # ld tests which are not currently delivered
258 #
259 ./usr/src/cmd/sgs/test
260 ./usr/src/cmd/mdb/test

new/usr/src/uts/common/io/power.c 1

**
 32149 Thu Dec 26 13:50:15 2013
new/usr/src/uts/common/io/power.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright 2011 Joyent, Inc. All rights reserved.
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 */

28 /*
29 * Power Button Driver
30 *
31 * This driver handles interrupt generated by the power button on
32 * platforms with "power" device node which has "button" property.
33 * Currently, these platforms are:
34 *
35 * ACPI-enabled x86/x64 platforms
36 * Ultra-5_10, Ultra-80, Sun-Blade-100, Sun-Blade-150,
37 * Sun-Blade-1500, Sun-Blade-2500,
38 * Sun-Fire-V210, Sun-Fire-V240, Netra-240
39 *
40 * Only one instance is allowed to attach. In order to know when
41 * an application that has opened the device is going away, a new
42 * minor clone is created for each open(9E) request. There are
43 * allocations for creating minor clones between 1 and 255. The ioctl
44 * interface is defined by pbio(7I) and approved as part of
45 * PSARC/1999/393 case.
46 */

48 #include <sys/types.h>
49 #include <sys/conf.h>
50 #include <sys/ddi.h>
51 #include <sys/sunddi.h>
52 #include <sys/ddi_impldefs.h>
53 #include <sys/cmn_err.h>
54 #include <sys/errno.h>
55 #include <sys/modctl.h>
56 #include <sys/open.h>
57 #include <sys/stat.h>
58 #include <sys/poll.h>
59 #include <sys/pbio.h>
60 #include <sys/sysevent/eventdefs.h>
61 #include <sys/sysevent/pwrctl.h>

new/usr/src/uts/common/io/power.c 2

63 #if defined(__sparc)
64 #include <sys/machsystm.h>
65 #endif

67 #ifdef ACPI_POWER_BUTTON

69 #include <acpica/include/acpi.h>
69 #include <sys/acpi/acpi.h>
70 #include <sys/acpica.h>

72 #else

74 #include <sys/epic.h>
75 /*
76 * Some #defs that must be here as they differ for power.c
77 * and epic.c
78 */
79 #define EPIC_REGS_OFFSET 0x00
80 #define EPIC_REGS_LEN 0x82

83 /*
84 * This flag, which is set for platforms, that have EPIC processor
85 * to process power button interrupt, helps in executing platform
86 * specific code.
87 */
88 static char hasEPIC = B_FALSE;
89 #endif /* ACPI_POWER_BUTTON */

91 /*
92 * Maximum number of clone minors that is allowed. This value
93 * is defined relatively low to save memory.
94 */
95 #define POWER_MAX_CLONE 256

97 /*
98 * Minor number is instance << 8 + clone minor from range 1-255; clone 0
99 * is reserved for "original" minor.
100 */
101 #define POWER_MINOR_TO_CLONE(minor) ((minor) & (POWER_MAX_CLONE - 1))

103 /*
104 * Power Button Abort Delay
105 */
106 #define ABORT_INCREMENT_DELAY 10

108 /*
109 * FWARC 2005/687: power device compatible property
110 */
111 #define POWER_DEVICE_TYPE "power-device-type"

113 /*
114 * Driver global variables
115 */
116 static void *power_state;
117 static int power_inst = -1;

119 static hrtime_t power_button_debounce = NANOSEC/MILLISEC*10;
120 static hrtime_t power_button_abort_interval = 1.5 * NANOSEC;
121 static int power_button_abort_presses = 3;
122 static int power_button_abort_enable = 1;
123 static int power_button_enable = 1;

125 static int power_button_pressed = 0;
126 static int power_button_cancel = 0;

new/usr/src/uts/common/io/power.c 3

127 static int power_button_timeouts = 0;
128 static int timeout_cancel = 0;
129 static int additional_presses = 0;

131 /*
132 * Function prototypes
133 */
134 static int power_attach(dev_info_t *, ddi_attach_cmd_t);
135 static int power_detach(dev_info_t *, ddi_detach_cmd_t);
136 static int power_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
137 static int power_open(dev_t *, int, int, cred_t *);
138 static int power_close(dev_t, int, int, cred_t *);
139 static int power_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
140 static int power_chpoll(dev_t, short, int, short *, struct pollhead **);
141 #ifndef ACPI_POWER_BUTTON
142 static uint_t power_high_intr(caddr_t);
143 #endif
144 static uint_t power_soft_intr(caddr_t);
145 static uint_t power_issue_shutdown(caddr_t);
146 static void power_timeout(caddr_t);
147 static void power_log_message(void);

149 /*
150 * Structure used in the driver
151 */
152 struct power_soft_state {
153 dev_info_t *dip; /* device info pointer */
154 kmutex_t power_mutex; /* mutex lock */
155 kmutex_t power_intr_mutex; /* interrupt mutex lock */
156 ddi_iblock_cookie_t soft_iblock_cookie; /* holds interrupt cookie */
157 ddi_iblock_cookie_t high_iblock_cookie; /* holds interrupt cookie */
158 ddi_softintr_t softintr_id; /* soft interrupt id */
159 uchar_t clones[POWER_MAX_CLONE]; /* array of minor clones */
160 int monitor_on; /* clone monitoring the button event */
161 /* clone 0 indicates no one is */
162 /* monitoring the button event */
163 pollhead_t pollhd; /* poll head struct */
164 int events; /* bit map of occured events */
165 int shutdown_pending; /* system shutdown in progress */
166 #ifdef ACPI_POWER_BUTTON
167 boolean_t fixed_attached; /* true means fixed is attached */
168 boolean_t gpe_attached; /* true means GPE is attached */
169 ACPI_HANDLE button_obj; /* handle to device power button */
170 #else
171 ddi_acc_handle_t power_rhandle; /* power button register handle */
172 uint8_t *power_btn_reg; /* power button register address */
173 uint8_t power_btn_bit; /* power button register bit */
174 boolean_t power_regs_mapped; /* flag to tell if regs mapped */
175 boolean_t power_btn_ioctl; /* flag to specify ioctl request */
176 #endif
177 };

______unchanged_portion_omitted_

new/usr/src/uts/common/sys/hotkey_drv.h 1

**
 3541 Thu Dec 26 13:50:16 2013
new/usr/src/uts/common/sys/hotkey_drv.h
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ifndef _HOTKEY_DRV_H
28 #define _HOTKEY_DRV_H

30 #ifdef __cplusplus
31 extern "C" {
32 #endif

34 #include <sys/types.h>
35 #include <sys/conf.h>
36 #include <sys/stat.h>
37 #include <sys/note.h>
38 #include <sys/modctl.h>
39 #include <sys/ddi.h>
40 #include <sys/sunddi.h>
41 #include <acpica/include/acpi.h>
41 #include <sys/acpi/acpi.h>
42 #include <sys/acpica.h>
43 #include <sys/sysevent/eventdefs.h>
44 #include <sys/acpi_drv.h>

47 #define ID_LEN 9

49 struct acpi_drv_dev {
50 ACPI_HANDLE hdl;
51 char hid[ID_LEN]; /* ACPI HardwareId */
52 char uid[ID_LEN]; /* ACPI UniqueId */
53 ACPI_INTEGER adr; /* Bus device Id */
54 int valid; /* the device state is valid */

56 /*
57 * Unlike most other devices, when a battery is inserted or
58 * removed from the system, the device itself(the battery bay)
59 * is still considered to be present in the system.
60 *

new/usr/src/uts/common/sys/hotkey_drv.h 2

61 * Value:
62 * 0 -- Off-line
63 * 1 -- On-line
64 * -1 -- Unknown
65 */
66 int present;
67 enum acpi_drv_type type;
68 int index; /* device index */
69 int minor;
70 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/cpu/amd_opteron/ao_mca.c 1

**
 27764 Thu Dec 26 13:50:16 2013
new/usr/src/uts/i86pc/cpu/amd_opteron/ao_mca.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
24 */

26 #include <sys/types.h>
27 #include <sys/regset.h>
28 #include <sys/privregs.h>
29 #include <sys/pci_impl.h>
30 #include <sys/cpuvar.h>
31 #include <sys/x86_archext.h>
32 #include <sys/cmn_err.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/pghw.h>
36 #include <sys/cyclic.h>
37 #include <sys/sysevent.h>
38 #include <sys/smbios.h>
39 #include <sys/mca_x86.h>
40 #include <sys/mca_amd.h>
41 #include <sys/mc.h>
42 #include <sys/mc_amd.h>
43 #include <sys/psw.h>
44 #include <sys/ddi.h>
45 #include <sys/sunddi.h>
46 #include <sys/sdt.h>
47 #include <sys/fm/util.h>
48 #include <sys/fm/protocol.h>
49 #include <sys/fm/cpu/AMD.h>
50 #include <sys/fm/smb/fmsmb.h>
51 #include <acpica/include/acpi.h>
51 #include <sys/acpi/acpi.h>
52 #include <sys/acpi/acpi_pci.h>
52 #include <sys/acpica.h>
53 #include <sys/cpu_module.h>

55 #include "ao.h"
56 #include "ao_mca_disp.h"

58 #define AO_F_REVS_FG (X86_CHIPREV_AMD_F_REV_F | X86_CHIPREV_AMD_F_REV_G)

new/usr/src/uts/i86pc/cpu/amd_opteron/ao_mca.c 2

60 int ao_mca_smi_disable = 1; /* attempt to disable SMI polling */

62 extern int x86gentopo_legacy; /* x86 generic topology support */

64 struct ao_ctl_init {
65 uint32_t ctl_revmask; /* rev(s) to which this applies */
66 uint64_t ctl_bits; /* mca ctl reg bitmask to set */
67 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_container.c 1

**
 8962 Thu Dec 26 13:50:17 2013
new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_container.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2009-2010, Intel Corporation.
27 * All rights reserved.
28 */

30 /*
31 * There are three types of container objects defined in the ACPI Spec as below.
32 * PNP0A05: Generic Container Device
33 * A device whose settings are totally controlled by its ACPI resource
34 * information, and otherwise needs no device or bus-specific driver support.
35 * This was originally known as Generic ISA Bus Device.
36 * This ID should only be used for containers that do not produce resources
37 * for consumption by child devices. Any system resources claimed by a PNP0A05
38 * device’s _CRS object must be consumed by the container itself.
39 * PNP0A06: Generic Container Device
40 * This device behaves exactly the same as the PNP0A05 device.
41 * This was originally known as Extended I/O Bus.
42 * This ID should only be used for containers that do not produce resources
43 * for consumption by child devices. Any system resources claimed by a PNP0A06
44 * device’s _CRS object must be consumed by the container itself.
45 * ACPI0004: Module Device.
46 * This device is a container object that acts as a bus node in a namespace.
47 * A Module Device without any of the _CRS, _PRS and _SRS methods behaves
48 * the same way as the Generic Container Devices (PNP0A05 or PNP0A06).
49 * If the Module Device contains a _CRS method, only the resources
50 * described in the _CRS are available for consumption by its child devices.
51 * Also, the Module Device can support _PRS and _SRS methods if _CRS is
52 * supported.
53 */

55 #include <sys/types.h>
56 #include <sys/atomic.h>
57 #include <sys/note.h>
58 #include <sys/sunddi.h>
59 #include <sys/sunndi.h>
60 #include <acpica/include/acpi.h>
60 #include <sys/acpi/acpi.h>

new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_container.c 2

61 #include <sys/acpica.h>
62 #include <sys/acpidev.h>
63 #include <sys/acpidev_dr.h>
64 #include <sys/acpidev_impl.h>

66 static ACPI_STATUS acpidev_container_probe(acpidev_walk_info_t *infop);
67 static acpidev_filter_result_t acpidev_container_filter(
68 acpidev_walk_info_t *infop, char *devname, int maxlen);
69 static ACPI_STATUS acpidev_container_init(acpidev_walk_info_t *infop);
70 static acpidev_filter_result_t acpidev_container_filter_func(
71 acpidev_walk_info_t *infop, ACPI_HANDLE hdl, acpidev_filter_rule_t *rulep,
72 char *devname, int devnamelen);

74 /*
75 * Default class driver for ACPI container objects.
76 */
77 acpidev_class_t acpidev_class_container = {
78 0, /* adc_refcnt */
79 ACPIDEV_CLASS_REV1, /* adc_version */
80 ACPIDEV_CLASS_ID_CONTAINER, /* adc_class_id */
81 "ACPI Container", /* adc_class_name */
82 ACPIDEV_TYPE_CONTAINER, /* adc_dev_type */
83 NULL, /* adc_private */
84 NULL, /* adc_pre_probe */
85 NULL, /* adc_post_probe */
86 acpidev_container_probe, /* adc_probe */
87 acpidev_container_filter, /* adc_filter */
88 acpidev_container_init, /* adc_init */
89 NULL, /* adc_fini */
90 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_cpu.c 1

**
 21688 Thu Dec 26 13:50:17 2013
new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_cpu.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright (c) 2009-2010, Intel Corporation.
28 * All rights reserved.
29 */

31 /*
32 * [Support of X2APIC]
33 * According to the ACPI Spec, when using the X2APIC interrupt model, logical
34 * processors with APIC ID values of 255 and greater are required to have a
35 * Processor Device object and must convey the Processor’s APIC information to
36 * OSPM using the Processor Local X2APIC structure. Logical Processors with APIC
37 * ID values less than 255 must use the Processor Local XAPIC structure to
38 * convey their APIC information to OSPM.
39 */

41 #include <sys/types.h>
42 #include <sys/atomic.h>
43 #include <sys/bootconf.h>
44 #include <sys/cpuvar.h>
45 #include <sys/machsystm.h>
46 #include <sys/note.h>
47 #include <sys/psm_types.h>
48 #include <sys/x86_archext.h>
49 #include <sys/sunddi.h>
50 #include <sys/sunndi.h>
51 #include <acpica/include/acpi.h>
51 #include <sys/acpi/acpi.h>
52 #include <sys/acpica.h>
53 #include <sys/acpidev.h>
54 #include <sys/acpidev_impl.h>

56 struct acpidev_cpu_map_item {
57 uint32_t proc_id;
58 uint32_t apic_id;
59 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_device.c 1

**
 5107 Thu Dec 26 13:50:18 2013
new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_device.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2009-2010, Intel Corporation.
23 * All rights reserved.
24 */

26 #include <sys/types.h>
27 #include <sys/atomic.h>
28 #include <sys/sunddi.h>
29 #include <sys/sunndi.h>
30 #include <acpica/include/acpi.h>
30 #include <sys/acpi/acpi.h>
31 #include <sys/acpica.h>
32 #include <sys/acpidev.h>
33 #include <sys/acpidev_impl.h>

35 static ACPI_STATUS acpidev_device_probe(acpidev_walk_info_t *infop);
36 static acpidev_filter_result_t acpidev_device_filter(acpidev_walk_info_t *infop,
37 char *devname, int maxlen);
38 static ACPI_STATUS acpidev_device_init(acpidev_walk_info_t *infop);

40 static uint32_t acpidev_device_unitaddr = 0;

42 /*
43 * Default class driver for ACPI DEVICE objects.
44 * The default policy for DEVICE objects is to scan child objects without
45 * creating device nodes. But some special DEVICE objects will have device
46 * nodes created for them.
47 */
48 acpidev_class_t acpidev_class_device = {
49 0, /* adc_refcnt */
50 ACPIDEV_CLASS_REV1, /* adc_version */
51 ACPIDEV_CLASS_ID_DEVICE, /* adc_class_id */
52 "ACPI Device", /* adc_class_name */
53 ACPIDEV_TYPE_DEVICE, /* adc_dev_type */
54 NULL, /* adc_private */
55 NULL, /* adc_pre_probe */
56 NULL, /* adc_post_probe */
57 acpidev_device_probe, /* adc_probe */
58 acpidev_device_filter, /* adc_filter */
59 acpidev_device_init, /* adc_init */
60 NULL, /* adc_fini */

new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_device.c 2

61 };
______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_dr.c 1

**
 73056 Thu Dec 26 13:50:18 2013
new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_dr.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Intel Corporation.
24 * All rights reserved.
25 */

27 #include <sys/types.h>
28 #include <sys/atomic.h>
29 #include <sys/cmn_err.h>
30 #include <sys/cpuvar.h>
31 #include <sys/memlist.h>
32 #include <sys/memlist_impl.h>
33 #include <sys/note.h>
34 #include <sys/obpdefs.h>
35 #include <sys/synch.h>
36 #include <sys/sysmacros.h>
37 #include <sys/sunddi.h>
38 #include <sys/sunndi.h>
39 #include <sys/x86_archext.h>
40 #include <sys/machsystm.h>
41 #include <sys/memnode.h> /* for lgrp_plat_node_cnt */
42 #include <sys/psm_types.h>
43 #include <acpica/include/acpi.h>
43 #include <sys/acpi/acpi.h>
44 #include <sys/acpica.h>
45 #include <sys/acpidev.h>
46 #include <sys/acpidev_rsc.h>
47 #include <sys/acpidev_dr.h>
48 #include <sys/acpidev_impl.h>

50 struct acpidev_dr_set_prop_arg {
51 uint32_t level;
52 uint32_t bdnum;
53 uint32_t cpu_id;
54 uint32_t mem_id;
55 uint32_t io_id;
56 uint32_t mod_id;
57 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_drv.c 1

**
 35905 Thu Dec 26 13:50:19 2013
new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_drv.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2009-2010, Intel Corporation.
23 * All rights reserved.
24 */

26 /*
27 * Platform specific device enumerator for ACPI specific devices.
28 * "x86 system devices" refers to the suite of hardware components which are
29 * common to the x86 platform and play important roles in the system
30 * architecture but can’t be enumerated/discovered through industry-standard
31 * bus specifications. Examples of these x86 system devices include:
32 * * Logical processor/CPU
33 * * Memory device
34 * * Non-PCI discoverable IOMMU or DMA Remapping Engine
35 * * Non-PCI discoverable IOxAPIC
36 * * Non-PCI discoverable HPET (High Precision Event Timer)
37 * * ACPI defined devices, including power button, sleep button, battery etc.
38 *
39 * X86 system devices may be discovered through BIOS/Firmware interfaces, such
40 * as SMBIOS tables, MPS tables and ACPI tables since their discovery isn’t
41 * covered by any industry-standard bus specifications.
42 *
43 * In order to aid Solaris in flexibly managing x86 system devices,
44 * x86 system devices are placed into a specific firmware device
45 * subtree whose device path is ’/devices/fw’.
46 *
47 * This driver populates the firmware device subtree with ACPI-discoverable
48 * system devices if possible. To achieve that, the ACPI object
49 * namespace is abstracted as ACPI virtual buses which host system devices.
50 * Another nexus driver for the ACPI virtual bus will manage all devices
51 * connected to it.
52 *
53 * For more detailed information, please refer to PSARC/2009/104.
54 */

56 #include <sys/types.h>
57 #include <sys/bitmap.h>
58 #include <sys/cmn_err.h>
59 #include <sys/ddi_subrdefs.h>
60 #include <sys/errno.h>
61 #include <sys/modctl.h>

new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_drv.c 2

62 #include <sys/mutex.h>
63 #include <sys/note.h>
64 #include <sys/obpdefs.h>
65 #include <sys/sunddi.h>
66 #include <sys/sunndi.h>
67 #include <acpica/include/acpi.h>
67 #include <sys/acpi/acpi.h>
68 #include <sys/acpica.h>
69 #include <sys/acpidev.h>
70 #include <sys/acpidev_dr.h>
71 #include <sys/acpidev_impl.h>

73 /* Patchable through /etc/system */
74 int acpidev_options = 0;
75 int acpidev_debug = 0;

77 krwlock_t acpidev_class_lock;
78 acpidev_class_list_t *acpidev_class_list_root = NULL;
79 ulong_t acpidev_object_type_mask[BT_BITOUL(ACPI_TYPE_NS_NODE_MAX + 1)];

81 /* ACPI device autoconfig global status */
82 typedef enum acpidev_status {
83 ACPIDEV_STATUS_FAILED = -2, /* ACPI device autoconfig failed */
84 ACPIDEV_STATUS_DISABLED = -1, /* ACPI device autoconfig disabled */
85 ACPIDEV_STATUS_UNKNOWN = 0, /* initial status */
86 ACPIDEV_STATUS_INITIALIZED, /* ACPI device autoconfig initialized */
87 ACPIDEV_STATUS_FIRST_PASS, /* first probing finished */
88 ACPIDEV_STATUS_READY /* second probing finished */
89 } acpidev_status_t;

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_memory.c 1

**
 5203 Thu Dec 26 13:50:19 2013
new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_memory.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2009-2010, Intel Corporation.
23 * All rights reserved.
24 */

26 #include <sys/types.h>
27 #include <sys/atomic.h>
28 #include <sys/sunddi.h>
29 #include <sys/sunndi.h>
30 #include <acpica/include/acpi.h>
30 #include <sys/acpi/acpi.h>
31 #include <sys/acpica.h>
32 #include <sys/acpidev.h>
33 #include <sys/acpidev_rsc.h>
34 #include <sys/acpidev_dr.h>
35 #include <sys/acpidev_impl.h>

37 static ACPI_STATUS acpidev_memory_probe(acpidev_walk_info_t *infop);
38 static acpidev_filter_result_t acpidev_memory_filter(
39 acpidev_walk_info_t *infop, char *devname, int maxlen);
40 static ACPI_STATUS acpidev_memory_init(acpidev_walk_info_t *infop);

42 /*
43 * Default class driver for ACPI memory objects.
44 */
45 acpidev_class_t acpidev_class_memory = {
46 0, /* adc_refcnt */
47 ACPIDEV_CLASS_REV1, /* adc_version */
48 ACPIDEV_CLASS_ID_MEMORY, /* adc_class_id */
49 "ACPI memory", /* adc_class_name */
50 ACPIDEV_TYPE_MEMORY, /* adc_dev_type */
51 NULL, /* adc_private */
52 NULL, /* adc_pre_probe */
53 NULL, /* adc_post_probe */
54 acpidev_memory_probe, /* adc_probe */
55 acpidev_memory_filter, /* adc_filter */
56 acpidev_memory_init, /* adc_init */
57 NULL, /* adc_fini */
58 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_pci.c 1

**
 4851 Thu Dec 26 13:50:19 2013
new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_pci.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Intel Corporation.
24 * All rights reserved.
25 */

27 #include <sys/types.h>
28 #include <sys/atomic.h>
29 #include <sys/sunddi.h>
30 #include <sys/sunndi.h>
31 #include <acpica/include/acpi.h>
31 #include <sys/acpi/acpi.h>
32 #include <sys/acpica.h>
33 #include <sys/acpidev.h>
34 #include <sys/acpidev_rsc.h>
35 #include <sys/acpidev_dr.h>
36 #include <sys/acpidev_impl.h>

38 static ACPI_STATUS acpidev_pci_probe(acpidev_walk_info_t *infop);

40 /*
41 * Default class driver for PCI/PCIEX Host Bridge devices.
42 */
43 acpidev_class_t acpidev_class_pci = {
44 0, /* adc_refcnt */
45 ACPIDEV_CLASS_REV1, /* adc_version */
46 ACPIDEV_CLASS_ID_PCI, /* adc_class_id */
47 "PCI/PCIex Host Bridge", /* adc_class_name */
48 ACPIDEV_TYPE_PCI, /* adc_dev_type */
49 NULL, /* adc_private */
50 NULL, /* adc_pre_probe */
51 NULL, /* adc_post_probe */
52 acpidev_pci_probe, /* adc_probe */
53 NULL, /* adc_filter */
54 NULL, /* adc_init */
55 NULL, /* adc_fini */
56 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_resource.c 1

**
 30644 Thu Dec 26 13:50:20 2013
new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_resource.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2009-2010, Intel Corporation.
27 * All rights reserved.
28 */

30 #include <sys/types.h>
31 #include <sys/cmn_err.h>
32 #include <sys/sysmacros.h>
33 #include <sys/sunddi.h>
34 #include <sys/sunndi.h>
35 #include <acpica/include/acpi.h>
35 #include <sys/acpi/acpi.h>
36 #include <sys/acpica.h>
37 #include <sys/acpidev.h>
38 #include <sys/acpidev_rsc.h>
39 #include <sys/acpidev_impl.h>

41 #define ACPIDEV_RES_INIT_ITEMS 8
42 #define ACPIDEV_RES_INCR_ITEMS 8

44 /* Data structure to hold parsed resources during walking. */
45 struct acpidev_resource_handle {
46 boolean_t acpidev_consumer;
47 int acpidev_reg_count;
48 int acpidev_reg_max;
49 acpidev_phys_spec_t *acpidev_regp;
50 acpidev_phys_spec_t acpidev_regs[ACPIDEV_RES_INIT_ITEMS];
51 int acpidev_range_count;
52 int acpidev_range_max;
53 acpidev_ranges_t *acpidev_rangep;
54 acpidev_ranges_t acpidev_ranges[ACPIDEV_RES_INIT_ITEMS];
55 int acpidev_bus_count;
56 int acpidev_bus_max;
57 acpidev_bus_range_t *acpidev_busp;
58 acpidev_bus_range_t acpidev_buses[ACPIDEV_RES_INIT_ITEMS];
59 int acpidev_irq_count;
60 int acpidev_irqp[ACPIDEV_RES_IRQ_MAX];

new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_resource.c 2

61 int acpidev_dma_count;
62 int acpidev_dmap[ACPIDEV_RES_DMA_MAX];
63 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_scope.c 1

**
 5148 Thu Dec 26 13:50:20 2013
new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_scope.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2009-2010, Intel Corporation.
23 * All rights reserved.
24 */

26 #include <sys/types.h>
27 #include <sys/atomic.h>
28 #include <sys/sunddi.h>
29 #include <sys/sunndi.h>
30 #include <acpica/include/acpi.h>
30 #include <sys/acpi/acpi.h>
31 #include <sys/acpica.h>
32 #include <sys/acpidev.h>
33 #include <sys/acpidev_impl.h>

35 static ACPI_STATUS acpidev_scope_probe(acpidev_walk_info_t *infop);
36 static acpidev_filter_result_t acpidev_scope_filter(acpidev_walk_info_t *infop,
37 char *devname, int maxlen);
38 static ACPI_STATUS acpidev_scope_init(acpidev_walk_info_t *infop);

40 /*
41 * Default class driver for ACPI scope objects.
42 * This class driver is used to handle predefined ACPI SCOPE objects
43 * under the ACPI root object, such as _PR_, _SB_ and _TZ_ etc.
44 * The default policy for ACPI SCOPE objects is SKIP.
45 */
46 acpidev_class_t acpidev_class_scope = {
47 0, /* adc_refcnt */
48 ACPIDEV_CLASS_REV1, /* adc_version */
49 ACPIDEV_CLASS_ID_SCOPE, /* adc_class_id */
50 "ACPI Scope", /* adc_class_name */
51 ACPIDEV_TYPE_SCOPE, /* adc_dev_type */
52 NULL, /* adc_private */
53 NULL, /* adc_pre_probe */
54 NULL, /* adc_post_probe */
55 acpidev_scope_probe, /* adc_probe */
56 acpidev_scope_filter, /* adc_filter */
57 acpidev_scope_init, /* adc_init */
58 NULL, /* adc_fini */
59 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_util.c 1

**
 24027 Thu Dec 26 13:50:21 2013
new/usr/src/uts/i86pc/io/acpi/acpidev/acpidev_util.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright (c) 2009-2010, Intel Corporation.
28 * All rights reserved.
29 */

31 #include <sys/types.h>
32 #include <sys/cmn_err.h>
33 #include <sys/note.h>
34 #include <sys/sysmacros.h>
35 #include <sys/sunddi.h>
36 #include <sys/sunndi.h>
37 #include <acpica/include/acpi.h>
37 #include <sys/acpi/acpi.h>
38 #include <sys/acpica.h>
39 #include <sys/acpidev.h>
40 #include <sys/acpidev_impl.h>
41 #include <util/sscanf.h>

43 /* Data structures used to extract the numeric unit address from string _UID. */
44 static acpidev_pseudo_uid_head_t acpidev_uid_heads[ACPIDEV_CLASS_ID_MAX];
45 static char *acpidev_uid_formats[] = {
46 "%u",
47 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/acpi/acpinex/acpinex_event.c 1

**
 21526 Thu Dec 26 13:50:21 2013
new/usr/src/uts/i86pc/io/acpi/acpinex/acpinex_event.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2010, Intel Corporation.
25 * All rights reserved.
26 */

28 #include <sys/types.h>
29 #include <sys/atomic.h>
30 #include <sys/bitmap.h>
31 #include <sys/cmn_err.h>
32 #include <sys/note.h>
33 #include <sys/sunndi.h>
34 #include <sys/fastboot_impl.h>
35 #include <sys/sysevent.h>
36 #include <sys/sysevent/dr.h>
37 #include <sys/sysevent/eventdefs.h>
38 #include <acpica/include/acpi.h>
38 #include <sys/acpi/acpi.h>
39 #include <sys/acpica.h>
40 #include <sys/acpidev.h>
41 #include <sys/acpidev_dr.h>
42 #include <sys/acpinex.h>

44 int acpinex_event_support_remove = 0;

46 static volatile uint_t acpinex_dr_event_cnt = 0;
47 static ulong_t acpinex_object_type_mask[BT_BITOUL(ACPI_TYPE_NS_NODE_MAX + 1)];

49 /*
50 * Generate DR_REQ event to syseventd.
51 * Please refer to sys/sysevent/dr.h for message definition.
52 */
53 static int
54 acpinex_event_generate_event(dev_info_t *dip, ACPI_HANDLE hdl, int req,
55 int event, char *objname)
56 {
57 int rv = 0;
58 sysevent_id_t eid;
59 sysevent_value_t evnt_val;
60 sysevent_attr_list_t *evnt_attr_list = NULL;

new/usr/src/uts/i86pc/io/acpi/acpinex/acpinex_event.c 2

61 char *attach_pnt;
62 char event_type[32];

64 /* Add "attachment point" attribute. */
65 attach_pnt = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
66 if (ACPI_FAILURE(acpidev_dr_get_attachment_point(hdl,
67 attach_pnt, MAXPATHLEN))) {
68 cmn_err(CE_WARN,
69 "!acpinex: failed to generate AP name for %s.", objname);
70 kmem_free(attach_pnt, MAXPATHLEN);
71 return (-1);
72 }
73 ASSERT(attach_pnt[0] != ’\0’);
74 evnt_val.value_type = SE_DATA_TYPE_STRING;
75 evnt_val.value.sv_string = attach_pnt;
76 rv = sysevent_add_attr(&evnt_attr_list, DR_AP_ID, &evnt_val, KM_SLEEP);
77 if (rv != 0) {
78 cmn_err(CE_WARN,
79 "!acpinex: failed to add attr [%s] for %s event.",
80 DR_AP_ID, EC_DR);
81 kmem_free(attach_pnt, MAXPATHLEN);
82 return (rv);
83 }

85 /* Add "request type" attribute. */
86 evnt_val.value_type = SE_DATA_TYPE_STRING;
87 evnt_val.value.sv_string = SE_REQ2STR(req);
88 rv = sysevent_add_attr(&evnt_attr_list, DR_REQ_TYPE, &evnt_val,
89 KM_SLEEP);
90 if (rv != 0) {
91 cmn_err(CE_WARN,
92 "!acpinex: failed to add attr [%s] for %s event.",
93 DR_REQ_TYPE, EC_DR);
94 sysevent_free_attr(evnt_attr_list);
95 kmem_free(attach_pnt, MAXPATHLEN);
96 return (rv);
97 }

99 /* Add "acpi-event-type" attribute. */
100 switch (event) {
101 case ACPI_NOTIFY_BUS_CHECK:
102 (void) snprintf(event_type, sizeof (event_type),
103 ACPIDEV_EVENT_TYPE_BUS_CHECK);
104 break;
105 case ACPI_NOTIFY_DEVICE_CHECK:
106 (void) snprintf(event_type, sizeof (event_type),
107 ACPIDEV_EVENT_TYPE_DEVICE_CHECK);
108 break;
109 case ACPI_NOTIFY_DEVICE_CHECK_LIGHT:
110 (void) snprintf(event_type, sizeof (event_type),
111 ACPIDEV_EVENT_TYPE_DEVICE_CHECK_LIGHT);
112 break;
113 case ACPI_NOTIFY_EJECT_REQUEST:
114 (void) snprintf(event_type, sizeof (event_type),
115 ACPIDEV_EVENT_TYPE_EJECT_REQUEST);
116 break;
117 default:
118 cmn_err(CE_WARN,
119 "!acpinex: unknown ACPI event type %d.", event);
120 sysevent_free_attr(evnt_attr_list);
121 kmem_free(attach_pnt, MAXPATHLEN);
122 return (-1);
123 }
124 evnt_val.value_type = SE_DATA_TYPE_STRING;
125 evnt_val.value.sv_string = event_type;
126 rv = sysevent_add_attr(&evnt_attr_list, ACPIDEV_EVENT_TYPE_ATTR_NAME,

new/usr/src/uts/i86pc/io/acpi/acpinex/acpinex_event.c 3

127 &evnt_val, KM_SLEEP);
128 if (rv != 0) {
129 cmn_err(CE_WARN,
130 "!acpinex: failed to add attr [%s] for %s event.",
131 ACPIDEV_EVENT_TYPE_ATTR_NAME, EC_DR);
132 sysevent_free_attr(evnt_attr_list);
133 kmem_free(attach_pnt, MAXPATHLEN);
134 return (rv);
135 }

137 rv = ddi_log_sysevent(dip, DDI_VENDOR_SUNW, EC_DR, ESC_DR_REQ,
138 evnt_attr_list, &eid, KM_SLEEP);
139 if (rv != DDI_SUCCESS) {
140 cmn_err(CE_WARN,
141 "!acpinex: failed to log DR_REQ event for %s.", objname);
142 rv = -1;
143 }

145 nvlist_free(evnt_attr_list);
146 kmem_free(attach_pnt, MAXPATHLEN);

148 return (rv);
149 }

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/acpi/drmach_acpi/drmach_acpi.c 1

**
 66613 Thu Dec 26 13:50:22 2013
new/usr/src/uts/i86pc/io/acpi/drmach_acpi/drmach_acpi.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 */

30 #include <sys/types.h>
31 #include <sys/cmn_err.h>
32 #include <sys/conf.h>
33 #include <sys/debug.h>
34 #include <sys/errno.h>
35 #include <sys/note.h>
36 #include <sys/dditypes.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/sunndi.h>
40 #include <sys/ddi_impldefs.h>
41 #include <sys/ndi_impldefs.h>
42 #include <sys/varargs.h>
43 #include <sys/modctl.h>
44 #include <sys/kmem.h>
45 #include <sys/cpuvar.h>
46 #include <sys/cpupart.h>
47 #include <sys/mem_config.h>
48 #include <sys/mem_cage.h>
49 #include <sys/memnode.h>
50 #include <sys/callb.h>
51 #include <sys/ontrap.h>
52 #include <sys/obpdefs.h>
53 #include <sys/promif.h>
54 #include <sys/synch.h>
55 #include <sys/systm.h>
56 #include <sys/sysmacros.h>
57 #include <sys/archsystm.h>
58 #include <sys/machsystm.h>
59 #include <sys/x_call.h>
60 #include <sys/x86_archext.h>
61 #include <sys/fastboot_impl.h>

new/usr/src/uts/i86pc/io/acpi/drmach_acpi/drmach_acpi.c 2

62 #include <sys/sysevent.h>
63 #include <sys/sysevent/dr.h>
64 #include <sys/sysevent/eventdefs.h>
65 #include <acpica/include/acpi.h>
65 #include <sys/acpi/acpi.h>
66 #include <sys/acpica.h>
67 #include <sys/acpidev.h>
68 #include <sys/acpidev_rsc.h>
69 #include <sys/acpidev_dr.h>
70 #include <sys/dr.h>
71 #include <sys/dr_util.h>
72 #include <sys/drmach.h>
73 #include "drmach_acpi.h"

75 /* utility */
76 #define MBYTE (1048576ull)
77 #define _ptob64(p) ((uint64_t)(p) << PAGESHIFT)
78 #define _b64top(b) ((pgcnt_t)((b) >> PAGESHIFT))

80 static int drmach_init(void);
81 static void drmach_fini(void);
82 static int drmach_name2type_idx(char *);
83 static sbd_error_t *drmach_mem_update_lgrp(drmachid_t);

85 static void drmach_board_dispose(drmachid_t id);
86 static sbd_error_t *drmach_board_release(drmachid_t);
87 static sbd_error_t *drmach_board_status(drmachid_t, drmach_status_t *);

89 static void drmach_io_dispose(drmachid_t);
90 static sbd_error_t *drmach_io_release(drmachid_t);
91 static sbd_error_t *drmach_io_status(drmachid_t, drmach_status_t *);

93 static void drmach_cpu_dispose(drmachid_t);
94 static sbd_error_t *drmach_cpu_release(drmachid_t);
95 static sbd_error_t *drmach_cpu_status(drmachid_t, drmach_status_t *);

97 static void drmach_mem_dispose(drmachid_t);
98 static sbd_error_t *drmach_mem_release(drmachid_t);
99 static sbd_error_t *drmach_mem_status(drmachid_t, drmach_status_t *);

101 #ifdef DEBUG
102 int drmach_debug = 1; /* set to non-zero to enable debug messages */
103 #endif /* DEBUG */

105 drmach_domain_info_t drmach_domain;

107 static char *drmach_ie_fmt = "drmach_acpi.c %d";
108 static drmach_array_t *drmach_boards;

110 /* rwlock to protect drmach_boards. */
111 static krwlock_t drmach_boards_rwlock;

113 /* rwlock to block out CPR thread. */
114 static krwlock_t drmach_cpr_rwlock;

116 /* CPR callb id. */
117 static callb_id_t drmach_cpr_cid;

119 static struct {
120 const char *name;
121 const char *type;
122 sbd_error_t *(*new)(drmach_device_t *, drmachid_t *);
123 } drmach_name2type[] = {

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/acpi/drmach_acpi/drmach_acpi.h 1

**
 5136 Thu Dec 26 13:50:22 2013
new/usr/src/uts/i86pc/io/acpi/drmach_acpi/drmach_acpi.h
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 */

30 #ifndef _SYS_DRMACH_ACPI_H
31 #define _SYS_DRMACH_ACPI_H
32 #include <sys/types.h>
33 #include <sys/cmn_err.h>
34 #include <sys/param.h>
35 #include <sys/sunddi.h>
36 #include <acpica/include/acpi.h>
36 #include <sys/acpi/acpi.h>
37 #include <sys/acpica.h>
38 #include <sys/acpidev.h>
39 #include <sys/drmach.h>

41 #ifdef __cplusplus
42 extern "C" {
43 #endif

45 #ifdef _KERNEL

47 /* Use ACPI handle as DRMACH handle on x86 systems. */
48 #define DRMACH_HANDLE ACPI_HANDLE

50 /* Macros to deal with object type. */
51 #define DRMACH_OBJ(id) ((drmach_common_t *)id)

53 #define DRMACH_NULL_ID(id) ((id) == 0)

55 #define DRMACH_IS_BOARD_ID(id) \
56 ((id != 0) && (DRMACH_OBJ(id)->isa == (void *)drmach_board_new))

58 #define DRMACH_IS_CPU_ID(id) \
59 ((id != 0) && (DRMACH_OBJ(id)->isa == (void *)drmach_cpu_new))

new/usr/src/uts/i86pc/io/acpi/drmach_acpi/drmach_acpi.h 2

61 #define DRMACH_IS_MEM_ID(id) \
62 ((id != 0) && (DRMACH_OBJ(id)->isa == (void *)drmach_mem_new))

64 #define DRMACH_IS_IO_ID(id) \
65 ((id != 0) && (DRMACH_OBJ(id)->isa == (void *)drmach_io_new))

67 #define DRMACH_IS_DEVICE_ID(id) \
68 ((id != 0) && \
69 (DRMACH_OBJ(id)->isa == (void *)drmach_cpu_new || \
70 DRMACH_OBJ(id)->isa == (void *)drmach_mem_new || \
71 DRMACH_OBJ(id)->isa == (void *)drmach_io_new))

73 #define DRMACH_IS_ID(id) \
74 ((id != 0) && \
75 (DRMACH_OBJ(id)->isa == (void *)drmach_board_new || \
76 DRMACH_OBJ(id)->isa == (void *)drmach_cpu_new || \
77 DRMACH_OBJ(id)->isa == (void *)drmach_mem_new || \
78 DRMACH_OBJ(id)->isa == (void *)drmach_io_new))

80 #define DRMACH_INTERNAL_ERROR() \
81 drerr_new(1, EX86_INTERNAL, drmach_ie_fmt, __LINE__)

83 #ifdef DEBUG
84 extern int drmach_debug;

86 #define DRMACH_PR if (drmach_debug) printf
87 #else
88 #define DRMACH_PR _NOTE(CONSTANTCONDITION) if (0) printf
89 #endif /* DEBUG */

91 typedef struct {
92 struct drmach_node *node;
93 void *data;
94 void *func;
95 } drmach_node_walk_args_t;

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/amd_iommu/amd_iommu_acpi.h 1

**
 7428 Thu Dec 26 13:50:23 2013
new/usr/src/uts/i86pc/io/amd_iommu/amd_iommu_acpi.h
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 #ifndef _AMD_IOMMU_ACPI_H
26 #define _AMD_IOMMU_ACPI_H

28 #ifdef __cplusplus
29 extern "C" {
30 #endif

32 #include <sys/sunddi.h>
33 #include <acpica/include/acpi.h>
33 #include <sys/acpi/acpi.h>
34 #include <sys/acpica.h>
35 #include <sys/amd_iommu.h>
36 #include "amd_iommu_impl.h"

38 #ifdef _KERNEL

40 #define IVRS_SIG "IVRS"

42 /*
43 * IVINFO settings
44 */
45 #define AMD_IOMMU_ACPI_IVINFO_RSV1 (31 << 16 | 23)
46 #define AMD_IOMMU_ACPI_HT_ATSRSV (22 << 16 | 22)
47 #define AMD_IOMMU_ACPI_VA_SIZE (21 << 16 | 15)
48 #define AMD_IOMMU_ACPI_PA_SIZE (14 << 16 | 8)
49 #define AMD_IOMMU_ACPI_IVINFO_RSV2 (7 << 16 | 0)

51 /*
52 * IVHD Device entry len field
53 */
54 #define AMD_IOMMU_ACPI_DEVENTRY_LEN (7 << 16 | 6)

56 /*
57 * IVHD flag fields definition
58 */
59 #define AMD_IOMMU_ACPI_IVHD_FLAGS_RSV (7 << 16 | 5)
60 #define AMD_IOMMU_ACPI_IVHD_FLAGS_IOTLBSUP (4 << 16 | 4)

new/usr/src/uts/i86pc/io/amd_iommu/amd_iommu_acpi.h 2

61 #define AMD_IOMMU_ACPI_IVHD_FLAGS_ISOC (3 << 16 | 3)
62 #define AMD_IOMMU_ACPI_IVHD_FLAGS_RESPASSPW (2 << 16 | 2)
63 #define AMD_IOMMU_ACPI_IVHD_FLAGS_PASSPW (1 << 16 | 1)
64 #define AMD_IOMMU_ACPI_IVHD_FLAGS_HTTUNEN (0 << 16 | 0)

66 /*
67 * IVHD IOMMU info fields
68 */
69 #define AMD_IOMMU_ACPI_IOMMU_INFO_RSV1 (15 << 16 | 13)
70 #define AMD_IOMMU_ACPI_IOMMU_INFO_UNITID (12 << 16 | 8)
71 #define AMD_IOMMU_ACPI_IOMMU_INFO_RSV2 (7 << 16 | 5)
72 #define AMD_IOMMU_ACPI_IOMMU_INFO_MSINUM (4 << 16 | 0)

74 /*
75 * IVHD deventry data settings
76 */
77 #define AMD_IOMMU_ACPI_LINT1PASS (7 << 16 | 7)
78 #define AMD_IOMMU_ACPI_LINT0PASS (6 << 16 | 6)
79 #define AMD_IOMMU_ACPI_SYSMGT (5 << 16 | 4)
80 #define AMD_IOMMU_ACPI_DATRSV (3 << 16 | 3)
81 #define AMD_IOMMU_ACPI_NMIPASS (2 << 16 | 2)
82 #define AMD_IOMMU_ACPI_EXTINTPASS (1 << 16 | 1)
83 #define AMD_IOMMU_ACPI_INITPASS (0 << 16 | 0)

85 /*
86 * IVHD deventry extended data settings
87 */
88 #define AMD_IOMMU_ACPI_ATSDISABLED (31 << 16 | 31)
89 #define AMD_IOMMU_ACPI_EXTDATRSV (30 << 16 | 0)

91 /*
92 * IVMD flags fields settings
93 */
94 #define AMD_IOMMU_ACPI_IVMD_RSV (7 << 16 | 4)
95 #define AMD_IOMMU_ACPI_IVMD_EXCL_RANGE (3 << 16 | 3)
96 #define AMD_IOMMU_ACPI_IVMD_IW (2 << 16 | 2)
97 #define AMD_IOMMU_ACPI_IVMD_IR (1 << 16 | 1)
98 #define AMD_IOMMU_ACPI_IVMD_UNITY (0 << 16 | 0)

100 #define AMD_IOMMU_ACPI_INFO_HASH_SZ (256)

102 /*
103 * Deventry special device "variety"
104 */
105 #define AMD_IOMMU_ACPI_SPECIAL_APIC 0x1
106 #define AMD_IOMMU_ACPI_SPECIAL_HPET 0x2

108 typedef enum {
109 DEVENTRY_INVALID = 0,
110 DEVENTRY_ALL = 1,
111 DEVENTRY_SELECT,
112 DEVENTRY_RANGE,
113 DEVENTRY_RANGE_END,
114 DEVENTRY_ALIAS_SELECT,
115 DEVENTRY_ALIAS_RANGE,
116 DEVENTRY_EXTENDED_SELECT,
117 DEVENTRY_EXTENDED_RANGE,
118 DEVENTRY_SPECIAL_DEVICE
119 } ivhd_deventry_type_t;

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/amd_iommu/amd_iommu_page_tables.c 1

**
 45674 Thu Dec 26 13:50:23 2013
new/usr/src/uts/i86pc/io/amd_iommu/amd_iommu_page_tables.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
24 */

26 #include <sys/sunddi.h>
27 #include <sys/sunndi.h>
28 #include <acpica/include/acpi.h>
28 #include <sys/acpi/acpi.h>
29 #include <sys/acpica.h>
30 #include <sys/amd_iommu.h>
31 #include <sys/bootconf.h>
32 #include <sys/sysmacros.h>
33 #include <sys/ddidmareq.h>

35 #include "amd_iommu_impl.h"
36 #include "amd_iommu_acpi.h"
37 #include "amd_iommu_page_tables.h"

39 ddi_dma_attr_t amd_iommu_pgtable_dma_attr = {
40 DMA_ATTR_V0,
41 0U, /* dma_attr_addr_lo */
42 0xffffffffffffffffULL, /* dma_attr_addr_hi */
43 0xffffffffU, /* dma_attr_count_max */
44 (uint64_t)4096, /* dma_attr_align */
45 1, /* dma_attr_burstsizes */
46 64, /* dma_attr_minxfer */
47 0xffffffffU, /* dma_attr_maxxfer */
48 0xffffffffU, /* dma_attr_seg */
49 1, /* dma_attr_sgllen, variable */
50 64, /* dma_attr_granular */
51 0 /* dma_attr_flags */
52 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/apix/apix.c 1

**
 65839 Thu Dec 26 13:50:24 2013
new/usr/src/uts/i86pc/io/apix/apix.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /*
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 */
29 /*
30 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
31 */

33 /*
34 * To understand how the apix module interacts with the interrupt subsystem read
35 * the theory statement in uts/i86pc/os/intr.c.
36 */

38 /*
39 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
40 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
41 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
42 * PSMI 1.5 extensions are supported in Solaris Nevada.
43 * PSMI 1.6 extensions are supported in Solaris Nevada.
44 * PSMI 1.7 extensions are supported in Solaris Nevada.
45 */
46 #define PSMI_1_7

48 #include <sys/processor.h>
49 #include <sys/time.h>
50 #include <sys/psm.h>
51 #include <sys/smp_impldefs.h>
52 #include <sys/cram.h>
53 #include <acpica/include/acpi.h>
53 #include <sys/acpi/acpi.h>
54 #include <sys/acpica.h>
55 #include <sys/psm_common.h>
56 #include <sys/pit.h>
57 #include <sys/ddi.h>
58 #include <sys/sunddi.h>
59 #include <sys/ddi_impldefs.h>
60 #include <sys/pci.h>

new/usr/src/uts/i86pc/io/apix/apix.c 2

61 #include <sys/promif.h>
62 #include <sys/x86_archext.h>
63 #include <sys/cpc_impl.h>
64 #include <sys/uadmin.h>
65 #include <sys/panic.h>
66 #include <sys/debug.h>
67 #include <sys/archsystm.h>
68 #include <sys/trap.h>
69 #include <sys/machsystm.h>
70 #include <sys/sysmacros.h>
71 #include <sys/cpuvar.h>
72 #include <sys/rm_platter.h>
73 #include <sys/privregs.h>
74 #include <sys/note.h>
75 #include <sys/pci_intr_lib.h>
76 #include <sys/spl.h>
77 #include <sys/clock.h>
78 #include <sys/cyclic.h>
79 #include <sys/dditypes.h>
80 #include <sys/sunddi.h>
81 #include <sys/x_call.h>
82 #include <sys/reboot.h>
83 #include <sys/mach_intr.h>
84 #include <sys/apix.h>
85 #include <sys/apix_irm_impl.h>

87 static int apix_probe();
88 static void apix_init();
89 static void apix_picinit(void);
90 static int apix_intr_enter(int, int *);
91 static void apix_intr_exit(int, int);
92 static void apix_setspl(int);
93 static int apix_disable_intr(processorid_t);
94 static void apix_enable_intr(processorid_t);
95 static int apix_get_clkvect(int);
96 static int apix_get_ipivect(int, int);
97 static void apix_post_cyclic_setup(void *);
98 static int apix_post_cpu_start();
99 static int apix_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
100 psm_intr_op_t, int *);

102 /*
103 * Helper functions for apix_intr_ops()
104 */
105 static void apix_redistribute_compute(void);
106 static int apix_get_pending(apix_vector_t *);
107 static apix_vector_t *apix_get_req_vector(ddi_intr_handle_impl_t *, ushort_t);
108 static int apix_get_intr_info(ddi_intr_handle_impl_t *, apic_get_intr_t *);
109 static char *apix_get_apic_type(void);
110 static int apix_intx_get_pending(int);
111 static void apix_intx_set_mask(int irqno);
112 static void apix_intx_clear_mask(int irqno);
113 static int apix_intx_get_shared(int irqno);
114 static void apix_intx_set_shared(int irqno, int delta);
115 static apix_vector_t *apix_intx_xlate_vector(dev_info_t *, int,
116 struct intrspec *);
117 static int apix_intx_alloc_vector(dev_info_t *, int, struct intrspec *);

119 extern int apic_clkinit(int);

121 /* IRM initialization for APIX PSM module */
122 extern void apix_irm_init(void);

124 extern int irm_enable;

126 /*

new/usr/src/uts/i86pc/io/apix/apix.c 3

127 * Local static data
128 */
129 static struct psm_ops apix_ops = {
130 apix_probe,

132 apix_init,
133 apix_picinit,
134 apix_intr_enter,
135 apix_intr_exit,
136 apix_setspl,
137 apix_addspl,
138 apix_delspl,
139 apix_disable_intr,
140 apix_enable_intr,
141 NULL, /* psm_softlvl_to_irq */
142 NULL, /* psm_set_softintr */

144 apic_set_idlecpu,
145 apic_unset_idlecpu,

147 apic_clkinit,
148 apix_get_clkvect,
149 NULL, /* psm_hrtimeinit */
150 apic_gethrtime,

152 apic_get_next_processorid,
153 apic_cpu_start,
154 apix_post_cpu_start,
155 apic_shutdown,
156 apix_get_ipivect,
157 apic_send_ipi,

159 NULL, /* psm_translate_irq */
160 NULL, /* psm_notify_error */
161 NULL, /* psm_notify_func */
162 apic_timer_reprogram,
163 apic_timer_enable,
164 apic_timer_disable,
165 apix_post_cyclic_setup,
166 apic_preshutdown,
167 apix_intr_ops, /* Advanced DDI Interrupt framework */
168 apic_state, /* save, restore apic state for S3 */
169 apic_cpu_ops, /* CPU control interface. */
170 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/apix/apix_utils.c 1

**
 48694 Thu Dec 26 13:50:24 2013
new/usr/src/uts/i86pc/io/apix/apix_utils.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /*
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 */
29 /*
30 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
31 * Copyright 2013 Pluribus Networks, Inc.
32 */

34 #include <sys/processor.h>
35 #include <sys/time.h>
36 #include <sys/psm.h>
37 #include <sys/smp_impldefs.h>
38 #include <sys/cram.h>
39 #include <acpica/include/acpi.h>
39 #include <sys/acpi/acpi.h>
40 #include <sys/acpica.h>
41 #include <sys/psm_common.h>
42 #include <sys/pit.h>
43 #include <sys/ddi.h>
44 #include <sys/sunddi.h>
45 #include <sys/ddi_impldefs.h>
46 #include <sys/pci.h>
47 #include <sys/promif.h>
48 #include <sys/x86_archext.h>
49 #include <sys/cpc_impl.h>
50 #include <sys/uadmin.h>
51 #include <sys/panic.h>
52 #include <sys/debug.h>
53 #include <sys/archsystm.h>
54 #include <sys/trap.h>
55 #include <sys/machsystm.h>
56 #include <sys/sysmacros.h>
57 #include <sys/cpuvar.h>
58 #include <sys/rm_platter.h>
59 #include <sys/privregs.h>
60 #include <sys/note.h>

new/usr/src/uts/i86pc/io/apix/apix_utils.c 2

61 #include <sys/pci_intr_lib.h>
62 #include <sys/spl.h>
63 #include <sys/clock.h>
64 #include <sys/dditypes.h>
65 #include <sys/sunddi.h>
66 #include <sys/x_call.h>
67 #include <sys/reboot.h>
68 #include <sys/apix.h>

70 static int apix_get_avail_vector_oncpu(uint32_t, int, int);
71 static apix_vector_t *apix_init_vector(processorid_t, uchar_t);
72 static void apix_cleanup_vector(apix_vector_t *);
73 static void apix_insert_av(apix_vector_t *, void *, avfunc, caddr_t, caddr_t,
74 uint64_t *, int, dev_info_t *);
75 static void apix_remove_av(apix_vector_t *, struct autovec *);
76 static void apix_clear_dev_map(dev_info_t *, int, int);
77 static boolean_t apix_is_cpu_enabled(processorid_t);
78 static void apix_wait_till_seen(processorid_t, int);

80 #define GET_INTR_INUM(ihdlp) \
81 (((ihdlp) != NULL) ? ((ddi_intr_handle_impl_t *)(ihdlp))->ih_inum : 0)

83 apix_rebind_info_t apix_rebindinfo = {0, 0, 0, NULL, 0, NULL};

85 /*
86 * Allocate IPI
87 *
88 * Return vector number or 0 on error
89 */
90 uchar_t
91 apix_alloc_ipi(int ipl)
92 {
93 apix_vector_t *vecp;
94 uchar_t vector;
95 int cpun;
96 int nproc;

98 APIX_ENTER_CPU_LOCK(0);

100 vector = apix_get_avail_vector_oncpu(0, APIX_IPI_MIN, APIX_IPI_MAX);
101 if (vector == 0) {
102 APIX_LEAVE_CPU_LOCK(0);
103 cmn_err(CE_WARN, "apix: no available IPI\n");
104 apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
105 return (0);
106 }

108 nproc = max(apic_nproc, apic_max_nproc);
109 for (cpun = 0; cpun < nproc; cpun++) {
110 vecp = xv_vector(cpun, vector);
111 if (vecp == NULL) {
112 vecp = kmem_zalloc(sizeof (apix_vector_t), KM_NOSLEEP);
113 if (vecp == NULL) {
114 cmn_err(CE_WARN, "apix: No memory for ipi");
115 goto fail;
116 }
117 xv_vector(cpun, vector) = vecp;
118 }
119 vecp->v_state = APIX_STATE_ALLOCED;
120 vecp->v_type = APIX_TYPE_IPI;
121 vecp->v_cpuid = vecp->v_bound_cpuid = cpun;
122 vecp->v_vector = vector;
123 vecp->v_pri = ipl;
124 }
125 APIX_LEAVE_CPU_LOCK(0);
126 return (vector);

new/usr/src/uts/i86pc/io/apix/apix_utils.c 3

128 fail:
129 while (--cpun >= 0)
130 apix_cleanup_vector(xv_vector(cpun, vector));
131 APIX_LEAVE_CPU_LOCK(0);
132 return (0);
133 }

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/immu_dmar.c 1

**
 27729 Thu Dec 26 13:50:25 2013
new/usr/src/uts/i86pc/io/immu_dmar.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 /*
26 * Copyright (c) 2009, Intel Corporation.
27 * All rights reserved.
28 */

31 #include <sys/debug.h>
32 #include <sys/sysmacros.h>
33 #include <sys/types.h>
34 #include <sys/kmem.h>
35 #include <sys/sunddi.h>
36 #include <sys/list.h>
37 #include <sys/pci.h>
38 #include <sys/pci_cfgspace.h>
39 #include <sys/pci_impl.h>
40 #include <sys/sunndi.h>
41 #include <sys/ksynch.h>
42 #include <sys/cmn_err.h>
43 #include <sys/bootconf.h>
44 #include <sys/int_fmtio.h>
45 #include <sys/smbios.h>
46 #include <sys/apic.h>
47 #include <acpica/include/acpi.h>
47 #include <sys/acpi/acpi.h>
48 #include <sys/acpica.h>
49 #include <sys/immu.h>
50 #include <sys/smp_impldefs.h>

52 static void dmar_table_destroy(dmar_table_t *tbl);

54 /*
55 * internal global variables
56 */
57 static char *dmar_raw; /* raw DMAR ACPI table */
58 static dmar_table_t *dmar_table; /* converted form of DMAR table */

60 /*

new/usr/src/uts/i86pc/io/immu_dmar.c 2

61 * global variables exported outside this file
62 */
63 boolean_t dmar_print = B_FALSE;
64 kmutex_t ioapic_drhd_lock;
65 list_t ioapic_drhd_list;

67 /* ### */

69 /*
70 * helper functions to read the "raw" DMAR table
71 */

73 static uint8_t
74 get_uint8(char *cp)
75 {
76 uint8_t val = *((uint8_t *)cp);
77 return (val);
78 }

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/immu_dvma.c 1

**
 78638 Thu Dec 26 13:50:25 2013
new/usr/src/uts/i86pc/io/immu_dvma.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Portions Copyright (c) 2010, Oracle and/or its affiliates.
23 * All rights reserved.
24 */
25 /*
26 * Copyright (c) 2009, Intel Corporation.
27 * All rights reserved.
28 */
29 /*
30 * Copyright 2012 Garrett D’Amore <garrett@damore.org>. All rights reserved.
31 */

33 /*
34 * DVMA code
35 * This file contains Intel IOMMU code that deals with DVMA
36 * i.e. DMA remapping.
37 */

39 #include <sys/sysmacros.h>
40 #include <sys/pcie.h>
41 #include <sys/pci_cfgspace.h>
42 #include <vm/hat_i86.h>
43 #include <sys/memlist.h>
44 #include <acpica/include/acpi.h>
44 #include <sys/acpi/acpi.h>
45 #include <sys/acpica.h>
46 #include <sys/modhash.h>
47 #include <sys/immu.h>
48 #include <sys/x86_archext.h>
49 #include <sys/archsystm.h>

51 #undef TEST

53 /*
54 * Macros based on PCI spec
55 */
56 #define IMMU_PCI_REV2CLASS(r) ((r) >> 8) /* classcode from revid */
57 #define IMMU_PCI_CLASS2BASE(c) ((c) >> 16) /* baseclass from classcode */
58 #define IMMU_PCI_CLASS2SUB(c) (((c) >> 8) & 0xff); /* classcode */

60 #define IMMU_CONTIG_PADDR(d, p) \

new/usr/src/uts/i86pc/io/immu_dvma.c 2

61 ((d).dck_paddr && ((d).dck_paddr + IMMU_PAGESIZE) == (p))

63 typedef struct dvma_arg {
64 immu_t *dva_immu;
65 dev_info_t *dva_rdip;
66 dev_info_t *dva_ddip;
67 domain_t *dva_domain;
68 int dva_level;
69 immu_flags_t dva_flags;
70 list_t *dva_list;
71 int dva_error;
72 } dvma_arg_t;

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/mp_platform_common.c 1

**
 67080 Thu Dec 26 13:50:26 2013
new/usr/src/uts/i86pc/io/mp_platform_common.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24 /*
25 * Copyright (c) 2010, Intel Corporation.
26 * All rights reserved.
27 */

29 /*
30 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
31 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
32 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
33 * PSMI 1.5 extensions are supported in Solaris Nevada.
34 * PSMI 1.6 extensions are supported in Solaris Nevada.
35 * PSMI 1.7 extensions are supported in Solaris Nevada.
36 */
37 #define PSMI_1_7

39 #include <sys/processor.h>
40 #include <sys/time.h>
41 #include <sys/psm.h>
42 #include <sys/smp_impldefs.h>
43 #include <sys/cram.h>
44 #include <acpica/include/acpi.h>
44 #include <sys/acpi/acpi.h>
45 #include <sys/acpica.h>
46 #include <sys/psm_common.h>
47 #include <sys/apic.h>
48 #include <sys/apic_timer.h>
49 #include <sys/pit.h>
50 #include <sys/ddi.h>
51 #include <sys/sunddi.h>
52 #include <sys/ddi_impldefs.h>
53 #include <sys/pci.h>
54 #include <sys/promif.h>
55 #include <sys/x86_archext.h>
56 #include <sys/cpc_impl.h>
57 #include <sys/uadmin.h>
58 #include <sys/panic.h>
59 #include <sys/debug.h>
60 #include <sys/archsystm.h>

new/usr/src/uts/i86pc/io/mp_platform_common.c 2

61 #include <sys/trap.h>
62 #include <sys/machsystm.h>
63 #include <sys/cpuvar.h>
64 #include <sys/rm_platter.h>
65 #include <sys/privregs.h>
66 #include <sys/cyclic.h>
67 #include <sys/note.h>
68 #include <sys/pci_intr_lib.h>
69 #include <sys/sunndi.h>
70 #if !defined(__xpv)
71 #include <sys/hpet.h>
72 #include <sys/clock.h>
73 #endif

75 /*
76 * Local Function Prototypes
77 */
78 static int apic_handle_defconf();
79 static int apic_parse_mpct(caddr_t mpct, int bypass);
80 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size);
81 static int apic_checksum(caddr_t bptr, int len);
82 static int apic_find_bus_type(char *bus);
83 static int apic_find_bus(int busid);
84 static struct apic_io_intr *apic_find_io_intr(int irqno);
85 static int apic_find_free_irq(int start, int end);
86 struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
87 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp);
88 static void apic_free_apic_cpus(void);
89 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr);
90 static int apic_acpi_enter_apicmode(void);

92 int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
93 int child_ipin, struct apic_io_intr **intrp);
94 int apic_find_bus_id(int bustype);
95 int apic_find_intin(uchar_t ioapic, uchar_t intin);
96 void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);

98 int apic_debug_mps_id = 0; /* 1 - print MPS ID strings */

100 /* ACPI SCI interrupt configuration; -1 if SCI not used */
101 int apic_sci_vect = -1;
102 iflag_t apic_sci_flags;

104 #if !defined(__xpv)
105 /* ACPI HPET interrupt configuration; -1 if HPET not used */
106 int apic_hpet_vect = -1;
107 iflag_t apic_hpet_flags;
108 #endif

110 /*
111 * psm name pointer
112 */
113 char *psm_name;

115 /* ACPI support routines */
116 static int acpi_probe(char *);
117 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
118 int *pci_irqp, iflag_t *intr_flagp);

120 int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
121 int ipin, int *pci_irqp, iflag_t *intr_flagp);
122 uchar_t acpi_find_ioapic(int irq);
123 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2);

125 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
126 int apic_max_reps_clear_pending = 1000;

new/usr/src/uts/i86pc/io/mp_platform_common.c 3

128 int apic_intr_policy = INTR_ROUND_ROBIN;

130 int apic_next_bind_cpu = 1; /* For round robin assignment */
131 /* start with cpu 1 */

133 /*
134 * If enabled, the distribution works as follows:
135 * On every interrupt entry, the current ipl for the CPU is set in cpu_info
136 * and the irq corresponding to the ipl is also set in the aci_current array.
137 * interrupt exit and setspl (due to soft interrupts) will cause the current
138 * ipl to be be changed. This is cache friendly as these frequently used
139 * paths write into a per cpu structure.
140 *
141 * Sampling is done by checking the structures for all CPUs and incrementing
142 * the busy field of the irq (if any) executing on each CPU and the busy field
143 * of the corresponding CPU.
144 * In periodic mode this is done on every clock interrupt.
145 * In one-shot mode, this is done thru a cyclic with an interval of
146 * apic_redistribute_sample_interval (default 10 milli sec).
147 *
148 * Every apic_sample_factor_redistribution times we sample, we do computations
149 * to decide which interrupt needs to be migrated (see comments
150 * before apic_intr_redistribute().
151 */

153 /*
154 * Following 3 variables start as % and can be patched or set using an
155 * API to be defined in future. They will be scaled to
156 * sample_factor_redistribution which is in turn set to hertz+1 (in periodic
157 * mode), or 101 in one-shot mode to stagger it away from one sec processing
158 */

160 int apic_int_busy_mark = 60;
161 int apic_int_free_mark = 20;
162 int apic_diff_for_redistribution = 10;

164 /* sampling interval for interrupt redistribution for dynamic migration */
165 int apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */

167 /*
168 * number of times we sample before deciding to redistribute interrupts
169 * for dynamic migration
170 */
171 int apic_sample_factor_redistribution = 101;

173 int apic_redist_cpu_skip = 0;
174 int apic_num_imbalance = 0;
175 int apic_num_rebind = 0;

177 /*
178 * Maximum number of APIC CPUs in the system, -1 indicates that dynamic
179 * allocation of CPU ids is disabled.
180 */
181 int apic_max_nproc = -1;
182 int apic_nproc = 0;
183 size_t apic_cpus_size = 0;
184 int apic_defconf = 0;
185 int apic_irq_translate = 0;
186 int apic_spec_rev = 0;
187 int apic_imcrp = 0;

189 int apic_use_acpi = 1; /* 1 = use ACPI, 0 = don’t use ACPI */
190 int apic_use_acpi_madt_only = 0; /* 1=ONLY use MADT from ACPI */

192 /*

new/usr/src/uts/i86pc/io/mp_platform_common.c 4

193 * For interrupt link devices, if apic_unconditional_srs is set, an irq resource
194 * will be assigned (via _SRS). If it is not set, use the current
195 * irq setting (via _CRS), but only if that irq is in the set of possible
196 * irqs (returned by _PRS) for the device.
197 */
198 int apic_unconditional_srs = 1;

200 /*
201 * For interrupt link devices, if apic_prefer_crs is set when we are
202 * assigning an IRQ resource to a device, prefer the current IRQ setting
203 * over other possible irq settings under same conditions.
204 */

206 int apic_prefer_crs = 1;

208 uchar_t apic_io_id[MAX_IO_APIC];
209 volatile uint32_t *apicioadr[MAX_IO_APIC];
210 uchar_t apic_io_ver[MAX_IO_APIC];
211 uchar_t apic_io_vectbase[MAX_IO_APIC];
212 uchar_t apic_io_vectend[MAX_IO_APIC];
213 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1];
214 uint32_t apic_physaddr[MAX_IO_APIC];

216 boolean_t ioapic_mask_workaround[MAX_IO_APIC];

218 /*
219 * First available slot to be used as IRQ index into the apic_irq_table
220 * for those interrupts (like MSI/X) that don’t have a physical IRQ.
221 */
222 int apic_first_avail_irq = APIC_FIRST_FREE_IRQ;

224 /*
225 * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound
226 * and bound elements of cpus_info and the temp_cpu element of irq_struct
227 */
228 lock_t apic_ioapic_lock;

230 int apic_io_max = 0; /* no. of i/o apics enabled */

232 struct apic_io_intr *apic_io_intrp = NULL;
233 static struct apic_bus *apic_busp;

235 uchar_t apic_resv_vector[MAXIPL+1];

237 char apic_level_intr[APIC_MAX_VECTOR+1];

239 uint32_t eisa_level_intr_mask = 0;
240 /* At least MSB will be set if EISA bus */

242 int apic_pci_bus_total = 0;
243 uchar_t apic_single_pci_busid = 0;

245 /*
246 * airq_mutex protects additions to the apic_irq_table - the first
247 * pointer and any airq_nexts off of that one. It also protects
248 * apic_max_device_irq & apic_min_device_irq. It also guarantees
249 * that share_id is unique as new ids are generated only when new
250 * irq_t structs are linked in. Once linked in the structs are never
251 * deleted. temp_cpu & mps_intr_index field indicate if it is programmed
252 * or allocated. Note that there is a slight gap between allocating in
253 * apic_introp_xlate and programming in addspl.
254 */
255 kmutex_t airq_mutex;
256 apic_irq_t *apic_irq_table[APIC_MAX_VECTOR+1];
257 int apic_max_device_irq = 0;
258 int apic_min_device_irq = APIC_MAX_VECTOR;

new/usr/src/uts/i86pc/io/mp_platform_common.c 5

260 typedef struct prs_irq_list_ent {
261 int list_prio;
262 int32_t irq;
263 iflag_t intrflags;
264 acpi_prs_private_t prsprv;
265 struct prs_irq_list_ent *next;
266 } prs_irq_list_t;

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/mp_platform_misc.c 1

**
 63988 Thu Dec 26 13:50:26 2013
new/usr/src/uts/i86pc/io/mp_platform_misc.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24 /*
25 * Copyright (c) 2010, Intel Corporation.
26 * All rights reserved.
27 */

29 /*
30 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
31 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
32 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
33 * PSMI 1.5 extensions are supported in Solaris Nevada.
34 * PSMI 1.6 extensions are supported in Solaris Nevada.
35 * PSMI 1.7 extensions are supported in Solaris Nevada.
36 */
37 #define PSMI_1_7

39 #include <sys/processor.h>
40 #include <sys/time.h>
41 #include <sys/psm.h>
42 #include <sys/smp_impldefs.h>
43 #include <sys/inttypes.h>
44 #include <sys/cram.h>
45 #include <acpica/include/acpi.h>
45 #include <sys/acpi/acpi.h>
46 #include <sys/acpica.h>
47 #include <sys/psm_common.h>
48 #include <sys/apic.h>
49 #include <sys/apic_common.h>
50 #include <sys/pit.h>
51 #include <sys/ddi.h>
52 #include <sys/sunddi.h>
53 #include <sys/ddi_impldefs.h>
54 #include <sys/pci.h>
55 #include <sys/promif.h>
56 #include <sys/x86_archext.h>
57 #include <sys/cpc_impl.h>
58 #include <sys/uadmin.h>
59 #include <sys/panic.h>
60 #include <sys/debug.h>

new/usr/src/uts/i86pc/io/mp_platform_misc.c 2

61 #include <sys/archsystm.h>
62 #include <sys/trap.h>
63 #include <sys/machsystm.h>
64 #include <sys/cpuvar.h>
65 #include <sys/rm_platter.h>
66 #include <sys/privregs.h>
67 #include <sys/cyclic.h>
68 #include <sys/note.h>
69 #include <sys/pci_intr_lib.h>
70 #include <sys/sunndi.h>
71 #include <sys/hpet.h>
72 #include <sys/clock.h>

74 /*
75 * Part of mp_platfrom_common.c that’s used only by pcplusmp & xpv_psm
76 * but not apix.
77 * These functions may be moved to xpv_psm later when apix and pcplusmp
78 * are merged together
79 */

81 /*
82 * Local Function Prototypes
83 */
84 static void apic_mark_vector(uchar_t oldvector, uchar_t newvector);
85 static void apic_xlate_vector_free_timeout_handler(void *arg);
86 static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
87 int new_bind_cpu, int apicindex, int intin_no, int which_irq,
88 struct ioapic_reprogram_data *drep);
89 static int apic_setup_irq_table(dev_info_t *dip, int irqno,
90 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp,
91 int type);
92 static void apic_try_deferred_reprogram(int ipl, int vect);
93 static void delete_defer_repro_ent(int which_irq);
94 static void apic_ioapic_wait_pending_clear(int ioapicindex,
95 int intin_no);

97 extern int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
98 int ipin, int *pci_irqp, iflag_t *intr_flagp);
99 extern int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
100 int child_ipin, struct apic_io_intr **intrp);
101 extern uchar_t acpi_find_ioapic(int irq);
102 extern struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
103 extern int apic_find_bus_id(int bustype);
104 extern int apic_find_intin(uchar_t ioapic, uchar_t intin);
105 extern void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);

107 extern int apic_sci_vect;
108 extern iflag_t apic_sci_flags;
109 /* ACPI HPET interrupt configuration; -1 if HPET not used */
110 extern int apic_hpet_vect;
111 extern iflag_t apic_hpet_flags;
112 extern int apic_intr_policy;
113 extern char *psm_name;

115 /*
116 * number of bits per byte, from <sys/param.h>
117 */
118 #define UCHAR_MAX UINT8_MAX

120 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
121 extern int apic_max_reps_clear_pending;

123 /* The irq # is implicit in the array index: */
124 struct ioapic_reprogram_data apic_reprogram_info[APIC_MAX_VECTOR+1];
125 /*
126 * APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. ioapic_reprogram_info

new/usr/src/uts/i86pc/io/mp_platform_misc.c 3

127 * is indexed by IRQ number, NOT by vector number.
128 */

130 extern int apic_int_busy_mark;
131 extern int apic_int_free_mark;
132 extern int apic_diff_for_redistribution;
133 extern int apic_sample_factor_redistribution;
134 extern int apic_redist_cpu_skip;
135 extern int apic_num_imbalance;
136 extern int apic_num_rebind;

138 /* timeout for xlate_vector, mark_vector */
139 int apic_revector_timeout = 16 * 10000; /* 160 millisec */

141 extern int apic_defconf;
142 extern int apic_irq_translate;

144 extern int apic_use_acpi_madt_only; /* 1=ONLY use MADT from ACPI */

146 extern uchar_t apic_io_vectbase[MAX_IO_APIC];

148 extern boolean_t ioapic_mask_workaround[MAX_IO_APIC];

150 /*
151 * First available slot to be used as IRQ index into the apic_irq_table
152 * for those interrupts (like MSI/X) that don’t have a physical IRQ.
153 */
154 extern int apic_first_avail_irq;

156 /*
157 * apic_defer_reprogram_lock ensures that only one processor is handling
158 * deferred interrupt programming at *_intr_exit time.
159 */
160 static lock_t apic_defer_reprogram_lock;

162 /*
163 * The current number of deferred reprogrammings outstanding
164 */
165 uint_t apic_reprogram_outstanding = 0;

167 #ifdef DEBUG
168 /*
169 * Counters that keep track of deferred reprogramming stats
170 */
171 uint_t apic_intr_deferrals = 0;
172 uint_t apic_intr_deliver_timeouts = 0;
173 uint_t apic_last_ditch_reprogram_failures = 0;
174 uint_t apic_deferred_setup_failures = 0;
175 uint_t apic_defer_repro_total_retries = 0;
176 uint_t apic_defer_repro_successes = 0;
177 uint_t apic_deferred_spurious_enters = 0;
178 #endif

180 extern int apic_io_max;
181 extern struct apic_io_intr *apic_io_intrp;

183 uchar_t apic_vector_to_irq[APIC_MAX_VECTOR+1];

185 extern uint32_t eisa_level_intr_mask;
186 /* At least MSB will be set if EISA bus */

188 extern int apic_pci_bus_total;
189 extern uchar_t apic_single_pci_busid;

191 /*
192 * Following declarations are for revectoring; used when ISRs at different

new/usr/src/uts/i86pc/io/mp_platform_misc.c 4

193 * IPLs share an irq.
194 */
195 static lock_t apic_revector_lock;
196 int apic_revector_pending = 0;
197 static uchar_t *apic_oldvec_to_newvec;
198 static uchar_t *apic_newvec_to_oldvec;

200 /* ACPI Interrupt Source Override Structure ptr */
201 extern ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop;
202 extern int acpi_iso_cnt;

204 /*
205 * Auto-configuration routines
206 */

208 /*
209 * Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable
210 * are also set to NULL. vector->irq is set to a value which cannot map
211 * to a real irq to show that it is free.
212 */
213 void
214 apic_init_common(void)
215 {
216 int i, j, indx;
217 int *iptr;

219 /*
220 * Initialize apic_ipls from apic_vectortoipl. This array is
221 * used in apic_intr_enter to determine the IPL to use for the
222 * corresponding vector. On some systems, due to hardware errata
223 * and interrupt sharing, the IPL may not correspond to the IPL listed
224 * in apic_vectortoipl (see apic_addspl and apic_delspl).
225 */
226 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
227 indx = i * APIC_VECTOR_PER_IPL;

229 for (j = 0; j < APIC_VECTOR_PER_IPL; j++, indx++)
230 apic_ipls[indx] = apic_vectortoipl[i];
231 }

233 /* cpu 0 is always up (for now) */
234 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;

236 iptr = (int *)&apic_irq_table[0];
237 for (i = 0; i <= APIC_MAX_VECTOR; i++) {
238 apic_level_intr[i] = 0;
239 *iptr++ = NULL;
240 apic_vector_to_irq[i] = APIC_RESV_IRQ;

242 /* These *must* be initted to B_TRUE! */
243 apic_reprogram_info[i].done = B_TRUE;
244 apic_reprogram_info[i].irqp = NULL;
245 apic_reprogram_info[i].tries = 0;
246 apic_reprogram_info[i].bindcpu = 0;
247 }

249 /*
250 * Allocate a dummy irq table entry for the reserved entry.
251 * This takes care of the race between removing an irq and
252 * clock detecting a CPU in that irq during interrupt load
253 * sampling.
254 */
255 apic_irq_table[APIC_RESV_IRQ] =
256 kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);

258 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);

new/usr/src/uts/i86pc/io/mp_platform_misc.c 5

259 }
______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/pciex/npe_misc.c 1

**
 11718 Thu Dec 26 13:50:27 2013
new/usr/src/uts/i86pc/io/pciex/npe_misc.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2013 PALO, Richard. All rights reserved.
25 */

27 /*
28 * Library file that has miscellaneous support for npe(7d)
29 */

31 #include <sys/conf.h>
32 #include <sys/pci.h>
33 #include <sys/sunndi.h>
34 #include <acpica/include/acpi.h>
33 #include <sys/acpi/acpi.h>
34 #include <sys/acpi/acpi_pci.h>
35 #include <sys/acpica.h>
36 #include <sys/pci_cap.h>
37 #include <sys/pcie_impl.h>
38 #include <sys/x86_archext.h>
39 #include <io/pciex/pcie_nvidia.h>
40 #include <io/pciex/pcie_nb5000.h>
41 #include <sys/pci_cfgacc_x86.h>
42 #include <sys/cpuvar.h>

44 /*
45 * Prototype declaration
46 */
47 void npe_query_acpi_mcfg(dev_info_t *dip);
48 void npe_ck804_fix_aer_ptr(ddi_acc_handle_t cfg_hdl);
49 int npe_disable_empty_bridges_workaround(dev_info_t *child);
50 void npe_nvidia_error_workaround(ddi_acc_handle_t cfg_hdl);
51 void npe_intel_error_workaround(ddi_acc_handle_t cfg_hdl);
52 boolean_t npe_is_child_pci(dev_info_t *dip);
53 int npe_enable_htmsi(ddi_acc_handle_t cfg_hdl);
54 void npe_enable_htmsi_children(dev_info_t *dip);

56 int npe_enable_htmsi_flag = 1;

58 /*

new/usr/src/uts/i86pc/io/pciex/npe_misc.c 2

59 * Default ecfga base address
60 */
61 int64_t npe_default_ecfga_base = 0xE0000000;

63 extern uint32_t npe_aer_uce_mask;

65 /*
66 * Query the MCFG table using ACPI. If MCFG is found, setup the
67 * ’ecfg’ property accordingly. Otherwise, set the values
68 * to the default values.
69 */
70 void
71 npe_query_acpi_mcfg(dev_info_t *dip)
72 {
73 ACPI_TABLE_HEADER *mcfgp;
74 ACPI_MCFG_ALLOCATION *cfg_baap;
73 MCFG_TABLE *mcfgp;
74 CFG_BASE_ADDR_ALLOC *cfg_baap;
75 char *cfg_baa_endp;
76 int64_t ecfginfo[4];
77 int ecfg_found = 0;

79 /* Query the MCFG table using ACPI */
80 if (AcpiGetTable(ACPI_SIG_MCFG, 1, &mcfgp) == AE_OK) {
80 if (AcpiGetTable(ACPI_SIG_MCFG, 1,
81 (ACPI_TABLE_HEADER **)&mcfgp) == AE_OK) {

82 cfg_baap = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)mcfgp + 1);
83 cfg_baap = (CFG_BASE_ADDR_ALLOC *)mcfgp->CfgBaseAddrAllocList;
83 cfg_baa_endp = ((char *)mcfgp) + mcfgp->Length;

85 while ((char *)cfg_baap < cfg_baa_endp) {
86 if (cfg_baap->Address != (uint64_t)0 &&
87 cfg_baap->PciSegment == 0) {
87 if (cfg_baap->base_addr != (uint64_t)0 &&
88 cfg_baap->segment == 0) {
88 /*
89 * Set up the ’ecfg’ property to hold
90 * base_addr, segment, and first/last bus.
91 * We only do the first entry that maps
92 * segment 0; nonzero segments are not yet
93 * known, or handled. If they appear,
94 * we’ll need to figure out which bus node
95 * should have which entry by examining the
96 * ACPI _SEG method on each bus node.
97 */
98 ecfginfo[0] = cfg_baap->Address;
99 ecfginfo[1] = cfg_baap->PciSegment;
100 ecfginfo[2] = cfg_baap->StartBusNumber;
101 ecfginfo[3] = cfg_baap->EndBusNumber;
99 ecfginfo[0] = cfg_baap->base_addr;
100 ecfginfo[1] = cfg_baap->segment;
101 ecfginfo[2] = cfg_baap->start_bno;
102 ecfginfo[3] = cfg_baap->end_bno;
102 (void) ndi_prop_update_int64_array(
103 DDI_DEV_T_NONE, dip, "ecfg",
104 ecfginfo, 4);
105 ecfg_found = 1;
106 break;
107 }
108 cfg_baap++;
109 }
110 }
111 if (ecfg_found)
112 return;
113 /*

new/usr/src/uts/i86pc/io/pciex/npe_misc.c 3

114 * If MCFG is not found or ecfga_base is not found in MCFG table,
115 * set the property to the default values.
116 */
117 ecfginfo[0] = npe_default_ecfga_base;
118 ecfginfo[1] = 0; /* segment 0 */
119 ecfginfo[2] = 0; /* first bus 0 */
120 ecfginfo[3] = 0xff; /* last bus ff */
121 (void) ndi_prop_update_int64_array(DDI_DEV_T_NONE, dip,
122 "ecfg", ecfginfo, 4);
123 }

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/pcplusmp/apic.c 1

**
 36120 Thu Dec 26 13:50:27 2013
new/usr/src/uts/i86pc/io/pcplusmp/apic.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /*
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 */
29 /*
30 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
31 */

33 /*
34 * To understand how the pcplusmp module interacts with the interrupt subsystem
35 * read the theory statement in uts/i86pc/os/intr.c.
36 */

38 /*
39 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
40 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
41 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
42 * PSMI 1.5 extensions are supported in Solaris Nevada.
43 * PSMI 1.6 extensions are supported in Solaris Nevada.
44 * PSMI 1.7 extensions are supported in Solaris Nevada.
45 */
46 #define PSMI_1_7

48 #include <sys/processor.h>
49 #include <sys/time.h>
50 #include <sys/psm.h>
51 #include <sys/smp_impldefs.h>
52 #include <sys/cram.h>
53 #include <acpica/include/acpi.h>
53 #include <sys/acpi/acpi.h>
54 #include <sys/acpica.h>
55 #include <sys/psm_common.h>
56 #include <sys/apic.h>
57 #include <sys/pit.h>
58 #include <sys/ddi.h>
59 #include <sys/sunddi.h>
60 #include <sys/ddi_impldefs.h>

new/usr/src/uts/i86pc/io/pcplusmp/apic.c 2

61 #include <sys/pci.h>
62 #include <sys/promif.h>
63 #include <sys/x86_archext.h>
64 #include <sys/cpc_impl.h>
65 #include <sys/uadmin.h>
66 #include <sys/panic.h>
67 #include <sys/debug.h>
68 #include <sys/archsystm.h>
69 #include <sys/trap.h>
70 #include <sys/machsystm.h>
71 #include <sys/sysmacros.h>
72 #include <sys/cpuvar.h>
73 #include <sys/rm_platter.h>
74 #include <sys/privregs.h>
75 #include <sys/note.h>
76 #include <sys/pci_intr_lib.h>
77 #include <sys/spl.h>
78 #include <sys/clock.h>
79 #include <sys/cyclic.h>
80 #include <sys/dditypes.h>
81 #include <sys/sunddi.h>
82 #include <sys/x_call.h>
83 #include <sys/reboot.h>
84 #include <sys/hpet.h>
85 #include <sys/apic_common.h>
86 #include <sys/apic_timer.h>

88 /*
89 * Local Function Prototypes
90 */
91 static void apic_init_intr(void);

93 /*
94 * standard MP entries
95 */
96 static int apic_probe(void);
97 static int apic_getclkirq(int ipl);
98 static void apic_init(void);
99 static void apic_picinit(void);
100 static int apic_post_cpu_start(void);
101 static int apic_intr_enter(int ipl, int *vect);
102 static void apic_setspl(int ipl);
103 static void x2apic_setspl(int ipl);
104 static int apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
105 static int apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
106 static int apic_disable_intr(processorid_t cpun);
107 static void apic_enable_intr(processorid_t cpun);
108 static int apic_get_ipivect(int ipl, int type);
109 static void apic_post_cyclic_setup(void *arg);

111 /*
112 * The following vector assignments influence the value of ipltopri and
113 * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
114 * idle to 0 and IPL 0 to 0xf to differentiate idle in case
115 * we care to do so in future. Note some IPLs which are rarely used
116 * will share the vector ranges and heavily used IPLs (5 and 6) have
117 * a wide range.
118 *
119 * This array is used to initialize apic_ipls[] (in apic_init()).
120 *
121 * IPL Vector range. as passed to intr_enter
122 * 0 none.
123 * 1,2,3 0x20-0x2f 0x0-0xf
124 * 4 0x30-0x3f 0x10-0x1f
125 * 5 0x40-0x5f 0x20-0x3f
126 * 6 0x60-0x7f 0x40-0x5f

new/usr/src/uts/i86pc/io/pcplusmp/apic.c 3

127 * 7,8,9 0x80-0x8f 0x60-0x6f
128 * 10 0x90-0x9f 0x70-0x7f
129 * 11 0xa0-0xaf 0x80-0x8f
130 *
131 * 15 0xe0-0xef 0xc0-0xcf
132 * 15 0xf0-0xff 0xd0-0xdf
133 */
134 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
135 3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
136 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/pcplusmp/apic_common.c 1

**
 43963 Thu Dec 26 13:50:28 2013
new/usr/src/uts/i86pc/io/pcplusmp/apic_common.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /*
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 */

29 /*
30 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
31 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
32 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
33 * PSMI 1.5 extensions are supported in Solaris Nevada.
34 * PSMI 1.6 extensions are supported in Solaris Nevada.
35 * PSMI 1.7 extensions are supported in Solaris Nevada.
36 */
37 #define PSMI_1_7

39 #include <sys/processor.h>
40 #include <sys/time.h>
41 #include <sys/psm.h>
42 #include <sys/smp_impldefs.h>
43 #include <sys/cram.h>
44 #include <acpica/include/acpi.h>
44 #include <sys/acpi/acpi.h>
45 #include <sys/acpica.h>
46 #include <sys/psm_common.h>
47 #include <sys/apic.h>
48 #include <sys/pit.h>
49 #include <sys/ddi.h>
50 #include <sys/sunddi.h>
51 #include <sys/ddi_impldefs.h>
52 #include <sys/pci.h>
53 #include <sys/promif.h>
54 #include <sys/x86_archext.h>
55 #include <sys/cpc_impl.h>
56 #include <sys/uadmin.h>
57 #include <sys/panic.h>
58 #include <sys/debug.h>
59 #include <sys/archsystm.h>
60 #include <sys/trap.h>

new/usr/src/uts/i86pc/io/pcplusmp/apic_common.c 2

61 #include <sys/machsystm.h>
62 #include <sys/sysmacros.h>
63 #include <sys/cpuvar.h>
64 #include <sys/rm_platter.h>
65 #include <sys/privregs.h>
66 #include <sys/note.h>
67 #include <sys/pci_intr_lib.h>
68 #include <sys/spl.h>
69 #include <sys/clock.h>
70 #include <sys/dditypes.h>
71 #include <sys/sunddi.h>
72 #include <sys/x_call.h>
73 #include <sys/reboot.h>
74 #include <sys/hpet.h>
75 #include <sys/apic_common.h>
76 #include <sys/apic_timer.h>

78 static void apic_record_ioapic_rdt(void *intrmap_private,
79 ioapic_rdt_t *irdt);
80 static void apic_record_msi(void *intrmap_private, msi_regs_t *mregs);

82 /*
83 * Common routines between pcplusmp & apix (taken from apic.c).
84 */

86 int apic_clkinit(int);
87 hrtime_t apic_gethrtime(void);
88 void apic_send_ipi(int, int);
89 void apic_set_idlecpu(processorid_t);
90 void apic_unset_idlecpu(processorid_t);
91 void apic_shutdown(int, int);
92 void apic_preshutdown(int, int);
93 processorid_t apic_get_next_processorid(processorid_t);

95 hrtime_t apic_gettime();

97 enum apic_ioapic_method_type apix_mul_ioapic_method = APIC_MUL_IOAPIC_PCPLUSMP;

99 /* Now the ones for Dynamic Interrupt distribution */
100 int apic_enable_dynamic_migration = 0;

102 /* maximum loop count when sending Start IPIs. */
103 int apic_sipi_max_loop_count = 0x1000;

105 /*
106 * These variables are frequently accessed in apic_intr_enter(),
107 * apic_intr_exit and apic_setspl, so group them together
108 */
109 volatile uint32_t *apicadr = NULL; /* virtual addr of local APIC */
110 int apic_setspl_delay = 1; /* apic_setspl - delay enable */
111 int apic_clkvect;

113 /* vector at which error interrupts come in */
114 int apic_errvect;
115 int apic_enable_error_intr = 1;
116 int apic_error_display_delay = 100;

118 /* vector at which performance counter overflow interrupts come in */
119 int apic_cpcovf_vect;
120 int apic_enable_cpcovf_intr = 1;

122 /* vector at which CMCI interrupts come in */
123 int apic_cmci_vect;
124 extern int cmi_enable_cmci;
125 extern void cmi_cmci_trap(void);

new/usr/src/uts/i86pc/io/pcplusmp/apic_common.c 3

127 kmutex_t cmci_cpu_setup_lock; /* protects cmci_cpu_setup_registered */
128 int cmci_cpu_setup_registered;

130 /* number of CPUs in power-on transition state */
131 static int apic_poweron_cnt = 0;
132 lock_t apic_mode_switch_lock;

134 /*
135 * Patchable global variables.
136 */
137 int apic_forceload = 0;

139 int apic_coarse_hrtime = 1; /* 0 - use accurate slow gethrtime() */

141 int apic_flat_model = 0; /* 0 - clustered. 1 - flat */
142 int apic_panic_on_nmi = 0;
143 int apic_panic_on_apic_error = 0;

145 int apic_verbose = 0; /* 0x1ff */

147 #ifdef DEBUG
148 int apic_debug = 0;
149 int apic_restrict_vector = 0;

151 int apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE];
152 int apic_debug_msgbufindex = 0;

154 #endif /* DEBUG */

156 uint_t apic_nticks = 0;
157 uint_t apic_skipped_redistribute = 0;

159 uint_t last_count_read = 0;
160 lock_t apic_gethrtime_lock;
161 volatile int apic_hrtime_stamp = 0;
162 volatile hrtime_t apic_nsec_since_boot = 0;

164 static hrtime_t apic_last_hrtime = 0;
165 int apic_hrtime_error = 0;
166 int apic_remote_hrterr = 0;
167 int apic_num_nmis = 0;
168 int apic_apic_error = 0;
169 int apic_num_apic_errors = 0;
170 int apic_num_cksum_errors = 0;

172 int apic_error = 0;

174 static int apic_cmos_ssb_set = 0;

176 /* use to make sure only one cpu handles the nmi */
177 lock_t apic_nmi_lock;
178 /* use to make sure only one cpu handles the error interrupt */
179 lock_t apic_error_lock;

181 static struct {
182 uchar_t cntl;
183 uchar_t data;
184 } aspen_bmc[] = {

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/ppm/acpippm.c 1

**
 9947 Thu Dec 26 13:50:28 2013
new/usr/src/uts/i86pc/io/ppm/acpippm.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 * Copyright (c) 2011 Bayard G. Bell. All rights reserved.
26 */

28 #include <sys/types.h>
29 #include <sys/conf.h>
30 #include <sys/open.h>
31 #include <sys/modctl.h>
32 #include <sys/promif.h>
33 #include <sys/stat.h>
34 #include <sys/ddi_impldefs.h>
35 #include <sys/ddi.h>
36 #include <sys/sunddi.h>
37 #include <sys/epm.h>
38 #include <acpica/include/acpi.h>
38 #include <sys/acpi/acpi.h>
39 #include <sys/acpica.h>
40 #include <sys/psm_types.h>

42 /*
43 * ACPI Power Management Driver
44 *
45 * acpippm deals with those bits of ppm functionality that
46 * must be mediated by ACPI
47 *
48 * The routines in this driver is referenced by Platform
49 * Power Management driver of X86 workstation systems.
50 * acpippm driver is loaded because it is listed as a platform driver
51 * It is initially configured as a pseudo driver.
52 */
53 extern void pc_tod_set_rtc_offsets(ACPI_TABLE_FADT *);
54 extern int acpica_use_safe_delay;

56 /*
57 * Configuration Function prototypes and data structures
58 */
59 static int appm_attach(dev_info_t *, ddi_attach_cmd_t);
60 static int appm_detach(dev_info_t *, ddi_detach_cmd_t);

new/usr/src/uts/i86pc/io/ppm/acpippm.c 2

61 static int appm_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
62 static int appm_open(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
63 static int appm_close(dev_t dev, int flag, int otyp, cred_t *cred_p);
64 static int appm_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);

66 /*
67 * Configuration data structures
68 */
69 static struct cb_ops appm_cbops = {
70 appm_open, /* open */
71 appm_close, /* close */
72 nodev, /* strategy */
73 nodev, /* print */
74 nodev, /* dump */
75 nodev, /* read */
76 nodev, /* write */
77 appm_ioctl, /* ioctl */
78 nodev, /* devmap */
79 nodev, /* mmap */
80 nodev, /* segmap */
81 nochpoll, /* chpoll */
82 ddi_prop_op, /* prop_op */
83 NULL, /* stream */
84 D_MP | D_NEW, /* flag */
85 CB_REV, /* rev */
86 nodev, /* aread */
87 nodev, /* awrite */
88 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/ppm/acpisleep.c 1

**
 4338 Thu Dec 26 13:50:29 2013
new/usr/src/uts/i86pc/io/ppm/acpisleep.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #include <sys/types.h>
28 #include <sys/smp_impldefs.h>
29 #include <sys/promif.h>

31 #include <sys/kmem.h>
32 #include <sys/archsystm.h>
33 #include <sys/cpuvar.h>
34 #include <sys/pte.h>
35 #include <vm/seg_kmem.h>
36 #include <sys/epm.h>
37 #include <sys/cpr.h>
38 #include <sys/machsystm.h>
39 #include <sys/clock.h>

41 #include <sys/cpr_wakecode.h>
42 #include <acpica/include/acpi.h>
42 #include <sys/acpi/acpi.h>

44 #ifdef OLDPMCODE
45 #include "acpi.h"
46 #endif

48 #include <sys/x86_archext.h>
49 #include <sys/reboot.h>
50 #include <sys/cpu_module.h>
51 #include <sys/kdi.h>

53 /*
54 * S3 stuff
55 */

57 int acpi_rtc_wake = 0x0; /* wake in N seconds */

59 #if 0 /* debug */
60 static uint8_t branchbuf[64 * 1024]; /* for the HDT branch trace stuff */

new/usr/src/uts/i86pc/io/ppm/acpisleep.c 2

61 #endif /* debug */

63 extern int boothowto;

65 #define BOOTCPU 0 /* cpu 0 is always the boot cpu */

67 extern void kernel_wc_code(void);
68 extern tod_ops_t *tod_ops;
69 extern int flushes_require_xcalls;
70 extern int tsc_gethrtime_enable;

72 extern cpuset_t cpu_ready_set;
73 extern void *(*cpu_pause_func)(void *);

77 /*
78 * This is what we’ve all been waiting for!
79 */
80 int
81 acpi_enter_sleepstate(s3a_t *s3ap)
82 {
83 ACPI_PHYSICAL_ADDRESS wakephys = s3ap->s3a_wakephys;
84 caddr_t wakevirt = rm_platter_va;
85 /*LINTED*/
86 wakecode_t *wp = (wakecode_t *)wakevirt;
87 uint_t Sx = s3ap->s3a_state;

89 PT(PT_SWV);
90 /* Set waking vector */
91 if (AcpiSetFirmwareWakingVector(wakephys) != AE_OK) {
92 PT(PT_SWV_FAIL);
93 PMD(PMD_SX, ("Can’t SetFirmwareWakingVector(%lx)\n",
94 (long)wakephys))
95 goto insomnia;
96 }

98 PT(PT_EWE);
99 /* Enable wake events */
100 if (AcpiEnableEvent(ACPI_EVENT_POWER_BUTTON, 0) != AE_OK) {
101 PT(PT_EWE_FAIL);
102 PMD(PMD_SX, ("Can’t EnableEvent(POWER_BUTTON)\n"))
103 }
104 if (acpi_rtc_wake > 0) {
105 /* clear the RTC bit first */
106 (void) AcpiWriteBitRegister(ACPI_BITREG_RT_CLOCK_STATUS, 1);
107 PT(PT_RTCW);
108 if (AcpiEnableEvent(ACPI_EVENT_RTC, 0) != AE_OK) {
109 PT(PT_RTCW_FAIL);
110 PMD(PMD_SX, ("Can’t EnableEvent(RTC)\n"))
111 }

113 /*
114 * Set RTC to wake us in a wee while.
115 */
116 mutex_enter(&tod_lock);
117 PT(PT_TOD);
118 TODOP_SETWAKE(tod_ops, acpi_rtc_wake);
119 mutex_exit(&tod_lock);
120 }

122 /*
123 * Prepare for sleep ... could’ve done this earlier?
124 */
125 PT(PT_SXP);
126 PMD(PMD_SX, ("Calling AcpiEnterSleepStatePrep(%d) ...\n", Sx))

new/usr/src/uts/i86pc/io/ppm/acpisleep.c 3

127 if (AcpiEnterSleepStatePrep(Sx) != AE_OK) {
128 PMD(PMD_SX, ("... failed\n!"))
129 goto insomnia;
130 }

132 switch (s3ap->s3a_test_point) {
133 case DEVICE_SUSPEND_TO_RAM:
134 case FORCE_SUSPEND_TO_RAM:
135 case LOOP_BACK_PASS:
136 return (0);
137 case LOOP_BACK_FAIL:
138 return (1);
139 default:
140 ASSERT(s3ap->s3a_test_point == LOOP_BACK_NONE);
141 }

143 /*
144 * Tell the hardware to sleep.
145 */
146 PT(PT_SXE);
147 PMD(PMD_SX, ("Calling AcpiEnterSleepState(%d) ...\n", Sx))
148 if (AcpiEnterSleepState(Sx) != AE_OK) {
149 PT(PT_SXE_FAIL);
150 PMD(PMD_SX, ("... failed!\n"))
151 }

153 insomnia:
154 PT(PT_INSOM);
155 /* cleanup is done in the caller */
156 return (1);
157 }

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/psm/psm_common.c 1

**
 27091 Thu Dec 26 13:50:29 2013
new/usr/src/uts/i86pc/io/psm/psm_common.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2013 PALO, Richard. All rights reserved.
24 */

26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/cmn_err.h>
29 #include <sys/promif.h>
30 #include <acpica/include/acpi.h>
29 #include <sys/acpi/acpi.h>
31 #include <sys/acpica.h>
32 #include <sys/sunddi.h>
33 #include <sys/ddi.h>
34 #include <sys/ddi_impldefs.h>
35 #include <sys/pci.h>
36 #include <sys/debug.h>
37 #include <sys/psm_common.h>
38 #include <sys/sunndi.h>
39 #include <sys/ksynch.h>

41 /* Global configurables */

43 char *psm_module_name; /* used to store name of psm module */

45 /*
46 * acpi_irq_check_elcr: when set elcr will also be consulted for building
47 * the reserved irq list. When 0 (false), the existing state of the ELCR
48 * is ignored when selecting a vector during IRQ translation, and the ELCR
49 * is programmed to the proper setting for the type of bus (level-triggered
50 * for PCI, edge-triggered for non-PCI). When non-zero (true), vectors
51 * set to edge-mode will not be used when in PIC-mode. The default value
52 * is 0 (false). Note that ACPI’s SCI vector is always set to conform to
53 * ACPI-specification regardless of this.
54 *
55 */
56 int acpi_irq_check_elcr = 0;

58 int psm_verbose = 0;

new/usr/src/uts/i86pc/io/psm/psm_common.c 2

60 #define PSM_VERBOSE_IRQ(fmt) \
61 if (psm_verbose & PSM_VERBOSE_IRQ_FLAG) \
62 cmn_err fmt;

64 #define PSM_VERBOSE_POWEROFF(fmt) \
65 if (psm_verbose & PSM_VERBOSE_POWEROFF_FLAG || \
66 psm_verbose & PSM_VERBOSE_POWEROFF_PAUSE_FLAG) \
67 prom_printf fmt;

69 #define PSM_VERBOSE_POWEROFF_PAUSE(fmt) \
70 if (psm_verbose & PSM_VERBOSE_POWEROFF_FLAG || \
71 psm_verbose & PSM_VERBOSE_POWEROFF_PAUSE_FLAG) {\
72 prom_printf fmt; \
73 if (psm_verbose & PSM_VERBOSE_POWEROFF_PAUSE_FLAG) \
74 (void) goany(); \
75 }

78 /* Local storage */
79 static ACPI_HANDLE acpi_sbobj = NULL;
80 static kmutex_t acpi_irq_cache_mutex;

82 /*
83 * irq_cache_table is a list that serves a two-key cache. It is used
84 * as a pci busid/devid/ipin <-> irq cache and also as a acpi
85 * interrupt lnk <-> irq cache.
86 */
87 static irq_cache_t *irq_cache_table;

89 #define IRQ_CACHE_INITLEN 20
90 static int irq_cache_len = 0;
91 static int irq_cache_valid = 0;

93 static int acpi_get_gsiv(dev_info_t *dip, ACPI_HANDLE pciobj, int devno,
94 int ipin, int *pci_irqp, iflag_t *iflagp, acpi_psm_lnk_t *acpipsmlnkp);

96 static int acpi_eval_lnk(dev_info_t *dip, char *lnkname,
97 int *pci_irqp, iflag_t *intr_flagp, acpi_psm_lnk_t *acpipsmlnkp);

99 static int acpi_get_irq_lnk_cache_ent(ACPI_HANDLE lnkobj, int *pci_irqp,
100 iflag_t *intr_flagp);

102 extern int goany(void);

105 #define NEXT_PRT_ITEM(p) \
106 (void *)(((char *)(p)) + (p)->Length)

108 static int
109 acpi_get_gsiv(dev_info_t *dip, ACPI_HANDLE pciobj, int devno, int ipin,
110 int *pci_irqp, iflag_t *intr_flagp, acpi_psm_lnk_t *acpipsmlnkp)
111 {
112 ACPI_BUFFER rb;
113 ACPI_PCI_ROUTING_TABLE *prtp;
114 int status;
115 int dev_adr;

117 /*
118 * Get the IRQ routing table
119 */
120 rb.Pointer = NULL;
121 rb.Length = ACPI_ALLOCATE_BUFFER;
122 if (AcpiGetIrqRoutingTable(pciobj, &rb) != AE_OK) {
123 return (ACPI_PSM_FAILURE);
124 }

new/usr/src/uts/i86pc/io/psm/psm_common.c 3

126 status = ACPI_PSM_FAILURE;
127 dev_adr = (devno << 16 | 0xffff);
128 for (prtp = rb.Pointer; prtp->Length != 0; prtp = NEXT_PRT_ITEM(prtp)) {
129 /* look until a matching dev/pin is found */
130 if (dev_adr != prtp->Address || ipin != prtp->Pin)
131 continue;

133 /* NULL Source name means index is GSIV */
134 if (*prtp->Source == 0) {
135 intr_flagp->intr_el = INTR_EL_LEVEL;
136 intr_flagp->intr_po = INTR_PO_ACTIVE_LOW;
137 ASSERT(pci_irqp != NULL);
138 *pci_irqp = prtp->SourceIndex;
139 status = ACPI_PSM_SUCCESS;
140 } else
141 status = acpi_eval_lnk(dip, prtp->Source, pci_irqp,
142 intr_flagp, acpipsmlnkp);

144 break;

146 }

148 AcpiOsFree(rb.Pointer);
149 return (status);
150 }

______unchanged_portion_omitted_

449 /*
450 * Sets the irq resource of the lnk object to the requested irq value.
451 *
452 * Returns ACPI_PSM_SUCCESS on success, ACPI_PSM_FAILURE upon failure.
453 */
454 int
455 acpi_set_irq_resource(acpi_psm_lnk_t *acpipsmlnkp, int irq)
456 {
457 ACPI_BUFFER rsb;
458 ACPI_RESOURCE *resp;
459 ACPI_RESOURCE *srsp;
460 ACPI_HANDLE lnkobj;
461 int srs_len, status;

463 ASSERT(acpipsmlnkp != NULL);

465 lnkobj = acpipsmlnkp->lnkobj;

467 /*
468 * Fetch the possible resources for the link
469 */

471 rsb.Pointer = NULL;
472 rsb.Length = ACPI_ALLOCATE_BUFFER;
473 status = AcpiGetPossibleResources(lnkobj, &rsb);
474 if (status != AE_OK) {
475 cmn_err(CE_WARN, "!psm: set_irq: _PRS failed");
476 return (ACPI_PSM_FAILURE);
477 }

479 /*
480 * Find an IRQ resource descriptor to use as template
481 */
482 srsp = NULL;
483 for (resp = rsb.Pointer; resp->Type != ACPI_RESOURCE_TYPE_END_TAG;
484 resp = ACPI_NEXT_RESOURCE(resp)) {
485 if ((resp->Type == ACPI_RESOURCE_TYPE_IRQ) ||
486 (resp->Type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ)) {
487 ACPI_RESOURCE *endtag;

new/usr/src/uts/i86pc/io/psm/psm_common.c 4

488 /*
489 * Allocate enough room for this resource entry
490 * and one end tag following it
491 */
492 srs_len = resp->Length + ACPI_RS_SIZE_NO_DATA;
491 srs_len = resp->Length + sizeof (*endtag);
493 srsp = kmem_zalloc(srs_len, KM_SLEEP);
494 bcopy(resp, srsp, resp->Length);
495 endtag = ACPI_NEXT_RESOURCE(srsp);
496 endtag->Type = ACPI_RESOURCE_TYPE_END_TAG;
497 endtag->Length = ACPI_RS_SIZE_NO_DATA;
496 endtag->Length = 0;
498 break; /* drop out of the loop */
499 }
500 }

502 /*
503 * We’re done with the PRS values, toss ’em lest we forget
504 */
505 AcpiOsFree(rsb.Pointer);

507 if (srsp == NULL)
508 return (ACPI_PSM_FAILURE);

510 /*
511 * The Interrupts[] array is always at least one entry
512 * long; see the definition of ACPI_RESOURCE.
513 */
514 switch (srsp->Type) {
515 case ACPI_RESOURCE_TYPE_IRQ:
516 srsp->Data.Irq.InterruptCount = 1;
517 srsp->Data.Irq.Interrupts[0] = (uint8_t)irq;
518 break;
519 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
520 srsp->Data.ExtendedIrq.InterruptCount = 1;
521 srsp->Data.ExtendedIrq.Interrupts[0] = irq;
522 break;
523 }

525 rsb.Pointer = srsp;
526 rsb.Length = srs_len;
527 status = AcpiSetCurrentResources(lnkobj, &rsb);
528 kmem_free(srsp, srs_len);
529 if (status != AE_OK) {
530 cmn_err(CE_WARN, "!psm: set_irq: _SRS failed");
531 return (ACPI_PSM_FAILURE);
532 }

534 if (acpica_eval_int(lnkobj, "_STA", &status) == AE_OK) {
535 acpipsmlnkp->device_status = (uchar_t)status;
536 return (ACPI_PSM_SUCCESS);
537 } else
538 return (ACPI_PSM_FAILURE);
539 }

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/todpc_subr.c 1

**
 11730 Thu Dec 26 13:50:30 2013
new/usr/src/uts/i86pc/io/todpc_subr.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
23 */
24 /*
25 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
26 * Use is subject to license terms.
27 */

29 /* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
30 /* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
31 /* All Rights Reserved */

33 /* Copyright (c) 1987, 1988 Microsoft Corporation */
34 /* All Rights Reserved */

36 #include <sys/param.h>
37 #include <sys/time.h>
38 #include <sys/systm.h>

40 #include <sys/cpuvar.h>
41 #include <sys/clock.h>
42 #include <sys/debug.h>
43 #include <sys/rtc.h>
44 #include <sys/archsystm.h>
45 #include <sys/sysmacros.h>
46 #include <sys/lockstat.h>
47 #include <sys/stat.h>
48 #include <sys/sunddi.h>

50 #include <acpica/include/acpi.h>
50 #include <sys/acpi/acpi.h>
51 #include <sys/acpica.h>

53 static int todpc_rtcget(unsigned char *buf);
54 static void todpc_rtcput(unsigned char *buf);

56 #define CLOCK_RES 1000 /* 1 microsec in nanosecs */

58 int clock_res = CLOCK_RES;

60 /*

new/usr/src/uts/i86pc/io/todpc_subr.c 2

61 * The minimum sleep time till an alarm can be fired.
62 * This can be tuned in /etc/system, but if the value is too small,
63 * there is a danger that it will be missed if it takes too long to
64 * get from the set point to sleep. Or that it can fire quickly, and
65 * generate a power spike on the hardware. And small values are
66 * probably only usefull for test setups.
67 */
68 int clock_min_alarm = 4;

70 /*
71 * Machine-dependent clock routines.
72 */

74 extern long gmt_lag;

76 struct rtc_offset {
77 int8_t loaded;
78 uint8_t day_alrm;
79 uint8_t mon_alrm;
80 uint8_t century;
81 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/io/tzmon/tzmon.c 1

**
 17867 Thu Dec 26 13:50:30 2013
new/usr/src/uts/i86pc/io/tzmon/tzmon.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Solaris x86 ACPI ThermalZone Monitor
29 */

32 #include <sys/errno.h>
33 #include <sys/conf.h>
34 #include <sys/modctl.h>
35 #include <sys/open.h>
36 #include <sys/stat.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/ksynch.h>
40 #include <sys/uadmin.h>
41 #include <acpica/include/acpi.h>
41 #include <sys/acpi/acpi.h>
42 #include <sys/acpica.h>
43 #include <sys/sdt.h>

45 #include "tzmon.h"

48 #define TZMON_ENUM_TRIP_POINTS 1
49 #define TZMON_ENUM_DEV_LISTS 2
50 #define TZMON_ENUM_ALL (TZMON_ENUM_TRIP_POINTS | TZMON_ENUM_DEV_LISTS)

52 /*
53 * TZ_TASKQ_NAME_LEN is precisely the length of the string "AcpiThermalMonitor"
54 * plus a two-digit instance number plus a NULL. If the taskq name is changed
55 * (particularly if it is lengthened), then this value needs to change.
56 */
57 #define TZ_TASKQ_NAME_LEN 21

59 /*
60 * Kelvin to Celsius conversion

new/usr/src/uts/i86pc/io/tzmon/tzmon.c 2

61 * The formula for converting degrees Kelvin to degrees Celsius is
62 * C = K - 273.15 (we round to 273.2). The unit for thermal zone
63 * temperatures is tenths of a degree Kelvin. Use tenth of a degree
64 * to convert, then make a whole number out of it.
65 */
66 #define K_TO_C(temp) (((temp) - 2732) / 10)

69 /* cb_ops or dev_ops forward declarations */
70 static int tzmon_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd,
71 void *arg, void **result);
72 static int tzmon_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
73 static int tzmon_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);

75 /* other forward declarations */
76 static void tzmon_notify_zone(ACPI_HANDLE obj, UINT32 val, void *ctx);
77 static void tzmon_eval_int(ACPI_HANDLE obj, char *method, int *rv);
78 static thermal_zone_t *tzmon_alloc_zone();
79 static void tzmon_free_zone_list();
80 static void tzmon_discard_buffers(thermal_zone_t *tzp);
81 static void tzmon_enumerate_zone(ACPI_HANDLE obj, thermal_zone_t *tzp,
82 int enum_flag);
83 static ACPI_STATUS tzmon_zone_callback(ACPI_HANDLE obj, UINT32 nest,
84 void *ctx, void **rv);
85 static void tzmon_find_zones(void);
86 static void tzmon_monitor(void *ctx);
87 static void tzmon_set_power_device(ACPI_HANDLE dev, int on_off, char *tz_name);
88 static void tzmon_set_power(ACPI_BUFFER devlist, int on_off, char *tz_name);
89 static void tzmon_eval_zone(thermal_zone_t *tzp);
90 static void tzmon_do_shutdown(void);

92 extern void halt(char *);

94 static struct cb_ops tzmon_cb_ops = {
95 nodev, /* no open routine */
96 nodev, /* no close routine */
97 nodev, /* not a block driver */
98 nodev, /* no print routine */
99 nodev, /* no dump routine */
100 nodev, /* no read routine */
101 nodev, /* no write routine */
102 nodev, /* no ioctl routine */
103 nodev, /* no devmap routine */
104 nodev, /* no mmap routine */
105 nodev, /* no segmap routine */
106 nochpoll, /* no chpoll routine */
107 ddi_prop_op,
108 0, /* not a STREAMS driver */
109 D_NEW | D_MP, /* safe for multi-thread/multi-processor */
110 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/os/acpi_stubs.c 1

**
 1456 Thu Dec 26 13:50:30 2013
new/usr/src/uts/i86pc/os/acpi_stubs.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

26 #include <sys/types.h>

28 #include <acpica/include/acpi.h>
30 #include <sys/acpi/acpi.h>
29 #include <sys/acpica.h>

31 /*
32 * This file contains ACPI functions that are needed by the kernel before
33 * the ACPI module is loaded. Any functions or definitions need to be
34 * able to deal with the possibility that ACPI doesn’t get loaded, or
35 * doesn’t contain the required method.
36 */

38 int (*acpi_fp_setwake)();

40 /*
41 *
42 */
43 int
44 acpi_ddi_setwake(dev_info_t *dip, int level)
45 {
46 if (acpi_fp_setwake == NULL)
47 return (AE_ERROR);

49 return ((*acpi_fp_setwake)(dip, level));
50 }

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/os/cpr_impl.c 1

**
 27105 Thu Dec 26 13:50:31 2013
new/usr/src/uts/i86pc/os/cpr_impl.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 /*
26 * Platform specific implementation code
27 * Currently only suspend to RAM is supported (ACPI S3)
28 */

30 #define SUNDDI_IMPL

32 #include <sys/types.h>
33 #include <sys/promif.h>
34 #include <sys/prom_isa.h>
35 #include <sys/prom_plat.h>
36 #include <sys/cpuvar.h>
37 #include <sys/pte.h>
38 #include <vm/hat.h>
39 #include <vm/page.h>
40 #include <vm/as.h>
41 #include <sys/cpr.h>
42 #include <sys/kmem.h>
43 #include <sys/clock.h>
44 #include <sys/kmem.h>
45 #include <sys/panic.h>
46 #include <vm/seg_kmem.h>
47 #include <sys/cpu_module.h>
48 #include <sys/callb.h>
49 #include <sys/machsystm.h>
50 #include <sys/vmsystm.h>
51 #include <sys/systm.h>
52 #include <sys/archsystm.h>
53 #include <sys/stack.h>
54 #include <sys/fs/ufs_fs.h>
55 #include <sys/memlist.h>
56 #include <sys/bootconf.h>
57 #include <sys/thread.h>
58 #include <sys/x_call.h>
59 #include <sys/smp_impldefs.h>
60 #include <vm/vm_dep.h>
61 #include <sys/psm.h>

new/usr/src/uts/i86pc/os/cpr_impl.c 2

62 #include <sys/epm.h>
63 #include <sys/cpr_wakecode.h>
64 #include <sys/x86_archext.h>
65 #include <sys/reboot.h>
66 #include <acpica/include/acpi.h>
66 #include <sys/acpi/acpi.h>
67 #include <sys/acpica.h>
68 #include <sys/fp.h>
69 #include <sys/sysmacros.h>

71 #define AFMT "%lx"

73 extern int flushes_require_xcalls;
74 extern cpuset_t cpu_ready_set;

76 #if defined(__amd64)
77 extern void *wc_long_mode_64(void);
78 #endif /* __amd64 */
79 extern int tsc_gethrtime_enable;
80 extern void i_cpr_start_cpu(void);

82 ushort_t cpr_mach_type = CPR_MACHTYPE_X86;
83 void (*cpr_start_cpu_func)(void) = i_cpr_start_cpu;

85 static wc_cpu_t *wc_other_cpus = NULL;
86 static cpuset_t procset;

88 static void
89 init_real_mode_platter(int cpun, uint32_t offset, uint_t cr4, wc_desctbr_t gdt);

91 static int i_cpr_platform_alloc(psm_state_request_t *req);
92 static void i_cpr_platform_free(psm_state_request_t *req);
93 static int i_cpr_save_apic(psm_state_request_t *req);
94 static int i_cpr_restore_apic(psm_state_request_t *req);
95 static int wait_for_set(cpuset_t *set, int who);

97 static void i_cpr_save_stack(kthread_t *t, wc_cpu_t *wc_cpu);
98 void i_cpr_restore_stack(kthread_t *t, greg_t *save_stack);

100 #ifdef STACK_GROWTH_DOWN
101 #define CPR_GET_STACK_START(t) ((t)->t_stkbase)
102 #define CPR_GET_STACK_END(t) ((t)->t_stk)
103 #else
104 #define CPR_GET_STACK_START(t) ((t)->t_stk)
105 #define CPR_GET_STACK_END(t) ((t)->t_stkbase)
106 #endif /* STACK_GROWTH_DOWN */

108 /*
109 * restart paused slave cpus
110 */
111 void
112 i_cpr_machdep_setup(void)
113 {
114 if (ncpus > 1) {
115 CPR_DEBUG(CPR_DEBUG1, ("MP restarted...\n"));
116 mutex_enter(&cpu_lock);
117 start_cpus();
118 mutex_exit(&cpu_lock);
119 }
120 }

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/os/cpupm/cpu_idle.c 1

**
 26724 Thu Dec 26 13:50:31 2013
new/usr/src/uts/i86pc/os/cpupm/cpu_idle.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2009-2010, Intel Corporation.
27 * All rights reserved.
28 */

30 #include <sys/x86_archext.h>
31 #include <sys/machsystm.h>
32 #include <sys/x_call.h>
33 #include <sys/stat.h>
34 #include <acpica/include/acpi.h>
34 #include <sys/acpi/acpi.h>
35 #include <sys/acpica.h>
36 #include <sys/cpu_acpi.h>
37 #include <sys/cpu_idle.h>
38 #include <sys/cpupm.h>
39 #include <sys/cpu_event.h>
40 #include <sys/hpet.h>
41 #include <sys/archsystm.h>
42 #include <vm/hat_i86.h>
43 #include <sys/dtrace.h>
44 #include <sys/sdt.h>
45 #include <sys/callb.h>

47 #define CSTATE_USING_HPET 1
48 #define CSTATE_USING_LAT 2

50 #define CPU_IDLE_STOP_TIMEOUT 1000

52 extern void cpu_idle_adaptive(void);
53 extern uint32_t cpupm_next_cstate(cma_c_state_t *cs_data,
54 cpu_acpi_cstate_t *cstates, uint32_t cs_count, hrtime_t start);

56 static int cpu_idle_init(cpu_t *);
57 static void cpu_idle_fini(cpu_t *);
58 static void cpu_idle_stop(cpu_t *);
59 static boolean_t cpu_deep_idle_callb(void *arg, int code);
60 static boolean_t cpu_idle_cpr_callb(void *arg, int code);

new/usr/src/uts/i86pc/os/cpupm/cpu_idle.c 2

61 static void acpi_cpu_cstate(cpu_acpi_cstate_t *cstate);

63 static boolean_t cstate_use_timer(hrtime_t *lapic_expire, int timer);

65 /*
66 * the flag of always-running local APIC timer.
67 * the flag of HPET Timer use in deep cstate.
68 */
69 static boolean_t cpu_cstate_arat = B_FALSE;
70 static boolean_t cpu_cstate_hpet = B_FALSE;

72 /*
73 * Interfaces for modules implementing Intel’s deep c-state.
74 */
75 cpupm_state_ops_t cpu_idle_ops = {
76 "Generic ACPI C-state Support",
77 cpu_idle_init,
78 cpu_idle_fini,
79 NULL,
80 cpu_idle_stop
81 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/os/cpupm/cpupm_mach.c 1

**
 26818 Thu Dec 26 13:50:32 2013
new/usr/src/uts/i86pc/os/cpupm/cpupm_mach.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2009, Intel Corporation.
27 * All rights reserved.
28 */

30 #include <sys/cpu_pm.h>
31 #include <sys/x86_archext.h>
32 #include <sys/sdt.h>
33 #include <sys/spl.h>
34 #include <sys/machsystm.h>
35 #include <sys/archsystm.h>
36 #include <sys/hpet.h>
37 #include <acpica/include/acpi.h>
37 #include <sys/acpi/acpi.h>
38 #include <sys/acpica.h>
39 #include <sys/cpupm.h>
40 #include <sys/cpu_idle.h>
41 #include <sys/cpu_acpi.h>
42 #include <sys/cpupm_throttle.h>
43 #include <sys/dtrace.h>
44 #include <sys/note.h>

46 /*
47 * This callback is used to build the PPM CPU domains once
48 * a CPU device has been started. The callback is initialized
49 * by the PPM driver to point to a routine that will build the
50 * domains.
51 */
52 void (*cpupm_ppm_alloc_pstate_domains)(cpu_t *);

54 /*
55 * This callback is used to remove CPU from the PPM CPU domains
56 * when the cpu driver is detached. The callback is initialized
57 * by the PPM driver to point to a routine that will remove CPU
58 * from the domains.
59 */
60 void (*cpupm_ppm_free_pstate_domains)(cpu_t *);

new/usr/src/uts/i86pc/os/cpupm/cpupm_mach.c 2

62 /*
63 * This callback is used to redefine the topspeed for a CPU device.
64 * Since all CPUs in a domain should have identical properties, this
65 * callback is initialized by the PPM driver to point to a routine
66 * that will redefine the topspeed for all devices in a CPU domain.
67 * This callback is exercised whenever an ACPI _PPC change notification
68 * is received by the CPU driver.
69 */
70 void (*cpupm_redefine_topspeed)(void *);

72 /*
73 * This callback is used by the PPM driver to call into the CPU driver
74 * to find a CPU’s current topspeed (i.e., it’s current ACPI _PPC value).
75 */
76 void (*cpupm_set_topspeed_callb)(void *, int);

78 /*
79 * This callback is used by the PPM driver to call into the CPU driver
80 * to set a new topspeed for a CPU.
81 */
82 int (*cpupm_get_topspeed_callb)(void *);

84 static void cpupm_event_notify_handler(ACPI_HANDLE, UINT32, void *);
85 static void cpupm_free_notify_handlers(cpu_t *);
86 static void cpupm_power_manage_notifications(void *);

88 /*
89 * Until proven otherwise, all power states are manageable.
90 */
91 static uint32_t cpupm_enabled = CPUPM_ALL_STATES;

93 cpupm_state_domains_t *cpupm_pstate_domains = NULL;
94 cpupm_state_domains_t *cpupm_tstate_domains = NULL;
95 cpupm_state_domains_t *cpupm_cstate_domains = NULL;

97 /*
98 * c-state tunables
99 *
100 * cpupm_cs_sample_interval is the length of time we wait before
101 * recalculating c-state statistics. When a CPU goes idle it checks
102 * to see if it has been longer than cpupm_cs_sample_interval since it last
103 * caculated which C-state to go to.
104 *
105 * cpupm_cs_idle_cost_tunable is the ratio of time CPU spends executing + idle
106 * divided by time spent in the idle state transitions.
107 * A value of 10 means the CPU will not spend more than 1/10 of its time
108 * in idle latency. The worst case performance will be 90% of non Deep C-state
109 * kernel.
110 *
111 * cpupm_cs_idle_save_tunable is how long we must stay in a deeper C-state
112 * before it is worth going there. Expressed as a multiple of latency.
113 */
114 uint32_t cpupm_cs_sample_interval = 100*1000*1000; /* 100 milliseconds */
115 uint32_t cpupm_cs_idle_cost_tunable = 10; /* work time / latency cost */
116 uint32_t cpupm_cs_idle_save_tunable = 2; /* idle power savings */
117 uint16_t cpupm_C2_idle_pct_tunable = 70;
118 uint16_t cpupm_C3_idle_pct_tunable = 80;

120 #ifndef __xpv
121 extern boolean_t cpupm_intel_init(cpu_t *);
122 extern boolean_t cpupm_amd_init(cpu_t *);

124 typedef struct cpupm_vendor {
125 boolean_t (*cpuv_init)(cpu_t *);
126 } cpupm_vendor_t;

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/os/cpupm/pwrnow.c 1

**
 7735 Thu Dec 26 13:50:32 2013
new/usr/src/uts/i86pc/os/cpupm/pwrnow.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 #include <sys/x86_archext.h>
26 #include <sys/machsystm.h>
27 #include <sys/x_call.h>
28 #include <acpica/include/acpi.h>
28 #include <sys/acpi/acpi.h>
29 #include <sys/acpica.h>
30 #include <sys/pwrnow.h>
31 #include <sys/cpu_acpi.h>
32 #include <sys/cpupm.h>
33 #include <sys/dtrace.h>
34 #include <sys/sdt.h>

36 static int pwrnow_init(cpu_t *);
37 static void pwrnow_fini(cpu_t *);
38 static void pwrnow_power(cpuset_t, uint32_t);
39 static void pwrnow_stop(cpu_t *);

41 static boolean_t pwrnow_cpb_supported(void);

43 /*
44 * Interfaces for modules implementing AMD’s PowerNow!.
45 */
46 cpupm_state_ops_t pwrnow_ops = {
47 "PowerNow! Technology",
48 pwrnow_init,
49 pwrnow_fini,
50 pwrnow_power,
51 pwrnow_stop
52 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/os/cpupm/speedstep.c 1

**
 7884 Thu Dec 26 13:50:33 2013
new/usr/src/uts/i86pc/os/cpupm/speedstep.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24 /*
25 * Copyright (c) 2009, Intel Corporation.
26 * All Rights Reserved.
27 */

29 #include <sys/x86_archext.h>
30 #include <sys/machsystm.h>
31 #include <sys/archsystm.h>
32 #include <sys/x_call.h>
33 #include <acpica/include/acpi.h>
33 #include <sys/acpi/acpi.h>
34 #include <sys/acpica.h>
35 #include <sys/speedstep.h>
36 #include <sys/cpu_acpi.h>
37 #include <sys/cpupm.h>
38 #include <sys/dtrace.h>
39 #include <sys/sdt.h>

41 static int speedstep_init(cpu_t *);
42 static void speedstep_fini(cpu_t *);
43 static void speedstep_power(cpuset_t, uint32_t);
44 static void speedstep_stop(cpu_t *);
45 static boolean_t speedstep_turbo_supported(void);

47 /*
48 * Interfaces for modules implementing Intel’s Enhanced SpeedStep.
49 */
50 cpupm_state_ops_t speedstep_ops = {
51 "Enhanced SpeedStep Technology",
52 speedstep_init,
53 speedstep_fini,
54 speedstep_power,
55 speedstep_stop
56 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/os/cpupm/turbo.c 1

**
 5163 Thu Dec 26 13:50:33 2013
new/usr/src/uts/i86pc/os/cpupm/turbo.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24 /*
25 * Copyright (c) 2009, Intel Corporation.
26 * All Rights Reserved.
27 */

29 #include <sys/x86_archext.h>
30 #include <sys/machsystm.h>
31 #include <sys/archsystm.h>
32 #include <sys/x_call.h>
33 #include <acpica/include/acpi.h>
33 #include <sys/acpi/acpi.h>
34 #include <sys/acpica.h>
35 #include <sys/speedstep.h>
36 #include <sys/cpu_acpi.h>
37 #include <sys/cpupm.h>
38 #include <sys/dtrace.h>
39 #include <sys/sdt.h>

41 typedef struct turbo_kstat_s {
42 struct kstat_named turbo_supported; /* turbo flag */
43 struct kstat_named t_mcnt; /* IA32_MPERF_MSR */
44 struct kstat_named t_acnt; /* IA32_APERF_MSR */
45 } turbo_kstat_t;

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/sys/acpidev.h 1

**
 19844 Thu Dec 26 13:50:33 2013
new/usr/src/uts/i86pc/sys/acpidev.h
acpica-unix2-20130823
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2009-2010, Intel Corporation.
23 * All rights reserved.
24 */

26 #ifndef _SYS_ACPIDEV_H
27 #define _SYS_ACPIDEV_H
28 #include <sys/types.h>
29 #include <sys/obpdefs.h>
30 #include <sys/sunddi.h>
31 #ifdef _KERNEL
32 #include <acpica/include/acpi.h>
32 #include <sys/acpi/acpi.h>
33 #include <sys/acpica.h>
34 #endif

36 #ifdef __cplusplus
37 extern "C" {
38 #endif

40 /* Maximum recursion levels when enumerating objects in ACPI namespace. */
41 #define ACPIDEV_MAX_ENUM_LEVELS 32

43 /* Maximum length of device name for ACPI object. */
44 #define ACPIDEV_MAX_NAMELEN OBP_MAXDRVNAME

46 /* Pseudo ACPI device HID for ACPI root object. */
47 #define ACPIDEV_HID_ROOTNEX "SOLA0001"
48 /* Pseudo ACPI device HID for ACPI virtual bus. */
49 #define ACPIDEV_HID_VIRTNEX "SOLA0002"
50 #define ACPIDEV_HID_SCOPE "SOLA0003"
51 #define ACPIDEV_HID_PROCESSOR "SOLA0004"

53 /* ACPI device HIDs/CIDs defined by ACPI specification. */
54 #define ACPIDEV_HID_CONTAINER1 "PNP0A05"
55 #define ACPIDEV_HID_CONTAINER2 "PNP0A06"
56 #define ACPIDEV_HID_MODULE "ACPI0004"
57 #define ACPIDEV_HID_CPU "ACPI0007"
58 #define ACPIDEV_HID_PCI_HOSTBRIDGE "PNP0A03"
59 #define ACPIDEV_HID_PCIE_HOSTBRIDGE "PNP0A08"

new/usr/src/uts/i86pc/sys/acpidev.h 2

60 #define ACPIDEV_HID_PCIEX_HOSTBRIDGE "PNP0A08"
61 #define ACPIDEV_HID_MEMORY "PNP0C80"

63 /* Device names for ACPI objects. */
64 #define ACPIDEV_NODE_NAME_ROOT "fw"
65 #define ACPIDEV_NODE_NAME_ACPIDR "acpidr"
66 #define ACPIDEV_NODE_NAME_CONTAINER "container"
67 #define ACPIDEV_NODE_NAME_MODULE_SBD "sb"
68 #define ACPIDEV_NODE_NAME_MODULE_CPU "socket"
69 #define ACPIDEV_NODE_NAME_CPU "cpu"
70 #define ACPIDEV_NODE_NAME_PROCESSOR "cpus"
71 #define ACPIDEV_NODE_NAME_MEMORY "mem"
72 #define ACPIDEV_NODE_NAME_PCI "pci"

74 /* Device types for ACPI objects. */
75 #define ACPIDEV_TYPE_ROOTNEX "acpirootnex"
76 #define ACPIDEV_TYPE_VIRTNEX "acpivirtnex"
77 #define ACPIDEV_TYPE_SCOPE "acpiscope"
78 #define ACPIDEV_TYPE_DEVICE "acpidevice"
79 #define ACPIDEV_TYPE_CONTAINER "acpicontainer"
80 #define ACPIDEV_TYPE_CPU "acpicpu"
81 #define ACPIDEV_TYPE_MEMORY "acpimemory"
82 #define ACPIDEV_TYPE_PCI "pci"
83 #define ACPIDEV_TYPE_PCIEX "pciex"

85 /* Device property names for ACPI objects. */
86 #define ACPIDEV_PROP_NAME_UNIT_ADDR "unit-address"
87 #define ACPIDEV_PROP_NAME_ACPI_UID "acpi-uid"
88 #define ACPIDEV_PROP_NAME_PROCESSOR_ID "acpi-processor-id"
89 #define ACPIDEV_PROP_NAME_LOCALAPIC_ID "apic-id"
90 #define ACPIDEV_PROP_NAME_PROXIMITY_ID "proximity-id"

92 #define ACPIDEV_PROP_NAME_UID_FORMAT "acpidev-uid-format"

94 /* Miscellaneous strings. */
95 #define ACPIDEV_CMD_OST_PREFIX "acpi-update-status"
96 #define ACPIDEV_CMD_OST_INPROGRESS "acpi-update-status=inprogress"
97 #define ACPIDEV_CMD_OST_SUCCESS "acpi-update-status=success"
98 #define ACPIDEV_CMD_OST_FAILURE "acpi-update-status=failure"
99 #define ACPIDEV_CMD_OST_NOOP "acpi-update-status=noop"

101 #define ACPIDEV_EVENT_TYPE_ATTR_NAME "acpi-event-type"
102 #define ACPIDEV_EVENT_TYPE_BUS_CHECK "bus_check"
103 #define ACPIDEV_EVENT_TYPE_DEVICE_CHECK "device_check"
104 #define ACPIDEV_EVENT_TYPE_DEVICE_CHECK_LIGHT "device_check_light"
105 #define ACPIDEV_EVENT_TYPE_EJECT_REQUEST "eject_request"

107 /* ACPI device class Id. */
108 typedef enum acpidev_class_id {
109 ACPIDEV_CLASS_ID_INVALID = 0,
110 ACPIDEV_CLASS_ID_ROOTNEX = 1,
111 ACPIDEV_CLASS_ID_SCOPE = 2,
112 ACPIDEV_CLASS_ID_DEVICE = 3,
113 ACPIDEV_CLASS_ID_CONTAINER = 4,
114 ACPIDEV_CLASS_ID_CPU = 5,
115 ACPIDEV_CLASS_ID_MEMORY = 6,
116 ACPIDEV_CLASS_ID_PCI = 7,
117 ACPIDEV_CLASS_ID_PCIEX = 8,
118 ACPIDEV_CLASS_ID_MAX
119 } acpidev_class_id_t;

121 /* Flags for acpidev_options boot options. */
122 #define ACPIDEV_OUSER_NO_CPU 0x1
123 #define ACPIDEV_OUSER_NO_MEM 0x2
124 #define ACPIDEV_OUSER_NO_CONTAINER 0x4
125 #define ACPIDEV_OUSER_NO_PCI 0x8

new/usr/src/uts/i86pc/sys/acpidev.h 3

126 #define ACPIDEV_OUSER_NO_CACHE 0x10000

128 #ifdef _KERNEL

130 /* Common ACPI object names. */
131 #define ACPIDEV_OBJECT_NAME_SB METHOD_NAME__SB_
131 #define ACPIDEV_OBJECT_NAME_SB ACPI_NS_SYSTEM_BUS
132 #define ACPIDEV_OBJECT_NAME_PR "_PR_"

134 /* Common ACPI method names. */
135 #define ACPIDEV_METHOD_NAME_MAT "_MAT"
136 #define ACPIDEV_METHOD_NAME_EJ0 "_EJ0"
137 #define ACPIDEV_METHOD_NAME_EDL "_EDL"
138 #define ACPIDEV_METHOD_NAME_EJD "_EJD"
139 #define ACPIDEV_METHOD_NAME_OST "_OST"
140 #define ACPIDEV_METHOD_NAME_PXM "_PXM"
141 #define ACPIDEV_METHOD_NAME_SLI "_SLI"

143 /* Source event code for _OST. */
144 #define ACPI_OST_EVENT_EJECTING 0x103
145 #define ACPI_OST_EVENT_INSERTING 0x200

147 /* Status code for _OST. */
148 #define ACPI_OST_STA_SUCCESS 0x0

150 /* Non-specific failure. */
151 #define ACPI_OST_STA_FAILURE 0x1

153 /* Unrecognized Notify Code. */
154 #define ACPI_OST_STA_NOT_SUPPORT 0x2

156 /* Device ejection not supported by OSPM. */
157 #define ACPI_OST_STA_EJECT_NOT_SUPPORT 0x80

159 /* Device in use by application. */
160 #define ACPI_OST_STA_EJECT_IN_USE 0x81

162 /* Device Busy. */
163 #define ACPI_OST_STA_EJECT_BUSY 0x82

165 /* Ejection dependency is busy or not supported for ejection by OSPM. */
166 #define ACPI_OST_STA_EJECT_DEPENDENCY 0x83

168 /* Ejection is in progress (pending). */
169 #define ACPI_OST_STA_EJECT_IN_PROGRESS 0x84

171 /* Device insertion in progress (pending). */
172 #define ACPI_OST_STA_INSERT_IN_PROGRESS 0x80

174 /* Device driver load failure. */
175 #define ACPI_OST_STA_INSERT_DRIVER 0x81

177 /* Device insertion not supported by OSPM. */
178 #define ACPI_OST_STA_INSERT_NOT_SUPPORT 0x82

180 /*
181 * Insertion failure
182 * Resources Unavailable as described by the following bit encodings:
183 * Bit[3] Bus Numbers
184 * Bit[2] Interrupts
185 * Bit[1] I/O
186 * Bit[0] Memory
187 */
188 #define ACPI_OST_STA_INSERT_NO_RESOURCE 0x90
189 #define ACPI_OST_STA_INSERT_NO_BUS 0x8
190 #define ACPI_OST_STA_INSERT_NO_INTR 0x4

new/usr/src/uts/i86pc/sys/acpidev.h 4

191 #define ACPI_OST_STA_INSERT_NO_IO 0x2
192 #define ACPI_OST_STA_INSERT_NO_MEM 0x1

194 /*
195 * According to the ACPI specification, self latency (entry[n][n]) in the
196 * SLIT table should be 10.
197 */
198 #define ACPI_SLIT_SELF_LATENCY 10

200 /*
201 * The DR driver assigns a unique device id for each hot-added memory device.
202 * ACPI_MEMNODE_DEVID_BOOT is assigned to memory devices present at boot,
203 * which is distinguished from device ids assigned by the DR driver.
204 */
205 #define ACPI_MEMNODE_DEVID_BOOT UINT32_MAX

207 /* Forward declaration */
208 typedef struct acpidev_data_impl *acpidev_data_handle_t;
209 typedef struct acpidev_walk_info acpidev_walk_info_t;
210 typedef struct acpidev_filter_rule acpidev_filter_rule_t;
211 typedef struct acpidev_class acpidev_class_t;
212 typedef struct acpidev_class_list acpidev_class_list_t;

214 /* Type of ACPI device enumerating operation. */
215 typedef enum acpidev_op_type {
216 ACPIDEV_OP_BOOT_PROBE = 0, /* First pass probing at boot time. */
217 ACPIDEV_OP_BOOT_REPROBE, /* Second pass probing at boot time. */
218 ACPIDEV_OP_HOTPLUG_PROBE /* Probing for hotplug at runtime. */
219 } acpidev_op_type_t;

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/sys/acpidev_dr.h 1

**
 8327 Thu Dec 26 13:50:34 2013
new/usr/src/uts/i86pc/sys/acpidev_dr.h
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Intel Corporation.
24 * All rights reserved.
25 */
26 /*
27 * Interfaces to support System Board Dynamic Reconfiguration.
28 */

30 #ifndef _SYS_ACPIDEV_DR_H
31 #define _SYS_ACPIDEV_DR_H
32 #include <sys/types.h>
33 #include <sys/obpdefs.h>
34 #include <sys/cpuvar.h>
35 #include <sys/memlist.h>
36 #include <sys/sunddi.h>
37 #include <acpica/include/acpi.h>
37 #include <sys/acpi/acpi.h>
38 #include <sys/acpica.h>
39 #include <sys/acpidev.h>
40 #include <sys/acpidev_rsc.h>

42 #ifdef __cplusplus
43 extern "C" {
44 #endif

46 #ifdef _KERNEL

48 /* Maximum number of DR capable system boards supported. */
49 #define ACPIDEV_DR_MAX_BOARDS 0x40
50 #define ACPIDEV_DR_SEGS_PER_MEM_DEV 0x10
51 #define ACPIDEV_DR_MEMLISTS_PER_SEG 0x10
52 #define ACPIDEV_DR_MAX_MEMLIST_ENTRIES 0x10000

54 #define ACPIDEV_DR_PROP_PORTID "portid"
55 #define ACPIDEV_DR_PROP_BOARDNUM OBP_BOARDNUM
56 #define ACPIDEV_DR_PROP_DEVNAME OBP_NAME

58 /*
59 * Format strings for DR capable system boards.
60 * They will be used as attachment point names.

new/usr/src/uts/i86pc/sys/acpidev_dr.h 2

61 */
62 #define ACPIDEV_DR_CPU_BD_FMT "CPU%u"
63 #define ACPIDEV_DR_MEMORY_BD_FMT "MEM%u"
64 #define ACPIDEV_DR_IO_BD_FMT "IO%u"
65 #define ACPIDEV_DR_SYSTEM_BD_FMT "SB%u"

67 typedef enum {
68 ACPIDEV_INVALID_BOARD = 0,
69 ACPIDEV_CPU_BOARD,
70 ACPIDEV_MEMORY_BOARD,
71 ACPIDEV_IO_BOARD,
72 ACPIDEV_SYSTEM_BOARD
73 } acpidev_board_type_t;

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/sys/acpidev_impl.h 1

**
 4564 Thu Dec 26 13:50:34 2013
new/usr/src/uts/i86pc/sys/acpidev_impl.h
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2009-2010, Intel Corporation.
23 * All rights reserved.
24 */

26 #ifndef _SYS_ACPIDEV_IMPL_H
27 #define _SYS_ACPIDEV_IMPL_H
28 #include <sys/types.h>
29 #include <sys/cmn_err.h>
30 #include <sys/bitmap.h>
31 #include <sys/synch.h>
32 #include <sys/sunddi.h>
33 #include <acpica/include/acpi.h>
33 #include <sys/acpi/acpi.h>
34 #include <sys/acpica.h>
35 #include <sys/acpidev.h>
36 #include <sys/acpidev_dr.h>

38 #ifdef __cplusplus
39 extern "C" {
40 #endif

42 #ifdef _KERNEL

44 #define ACPIDEV_ARRAY_PARAM(a) (a), (sizeof (a) / sizeof ((a)[0]))

46 /* Debug support facilities. */
47 extern int acpidev_debug;
48 #define ACPIDEV_DEBUG(lvl, ...) if (acpidev_debug) cmn_err((lvl), __VA_ARGS__)

50 /* Data attached to an ACPI object to maintain device status information. */
51 struct acpidev_data_impl {
52 uint32_t aod_eflag; /* External flags */
53 uint32_t aod_iflag; /* Internal flags */
54 uint32_t aod_level;
55 int aod_status; /* Cached _STA value */
56 ACPI_HANDLE *aod_hdl;
57 dev_info_t *aod_dip;
58 acpidev_class_t *aod_class;
59 acpidev_class_list_t **aod_class_list;
60 acpidev_board_type_t aod_bdtype; /* Type of board. */

new/usr/src/uts/i86pc/sys/acpidev_impl.h 2

61 uint32_t aod_bdnum; /* Board # for DR. */
62 uint32_t aod_portid; /* Port id for DR. */
63 uint32_t aod_bdidx; /* Index # of AP */
64 volatile uint32_t aod_chidx; /* Index # of child */
65 uint32_t aod_memidx; /* Index # of memory */
66 acpidev_class_id_t aod_class_id; /* Dev type for DR. */
67 };

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/sys/acpidev_rsc.h 1

**
 7693 Thu Dec 26 13:50:35 2013
new/usr/src/uts/i86pc/sys/acpidev_rsc.h
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright (c) 2009, Intel Corporation.
28 * All rights reserved.
29 */

31 #ifndef _SYS_ACPIDEV_RSC_H
32 #define _SYS_ACPIDEV_RSC_H
33 #include <sys/types.h>
34 #include <sys/obpdefs.h>
35 #include <sys/sunddi.h>
36 #include <acpica/include/acpi.h>
36 #include <sys/acpi/acpi.h>
37 #include <sys/acpica.h>

39 #ifdef __cplusplus
40 extern "C" {
41 #endif

43 /* ACPI bus range structure. */
44 typedef struct acpidev_bus_range {
45 uint_t bus_start;
46 uint_t bus_end;
47 } acpidev_bus_range_t;

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/sys/cpu_acpi.h 1

**
 7156 Thu Dec 26 13:50:35 2013
new/usr/src/uts/i86pc/sys/cpu_acpi.h
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _CPU_ACPI_H
27 #define _CPU_ACPI_H

29 #include <sys/cpuvar.h>

31 #include <acpica/include/acpi.h>
32 #include <acpica/include/accommon.h>
33 #include <acpica/include/acresrc.h>
30 #include <sys/acpi/acpi.h>
31 #include <sys/acpi/accommon.h>
32 #include <sys/acpi/acresrc.h>
34 #include <sys/acpica.h>

36 #ifdef __cplusplus
37 extern "C" {
38 #endif

40 /*
41 * P-state related macros
42 */
43 #define CPU_ACPI_PPC(sp) sp->cs_ppc
44 #define CPU_ACPI_PSD(sp) sp->cs_psd
45 #define CPU_ACPI_PCT(sp) sp->cs_pct
46 #define CPU_ACPI_PCT_CTRL(sp) &sp->cs_pct[0]
47 #define CPU_ACPI_PCT_STATUS(sp) &sp->cs_pct[1]
48 #define CPU_ACPI_PSTATES(sp) sp->cs_pstates.ss_states
49 #define CPU_ACPI_PSTATES_COUNT(sp) sp->cs_pstates.ss_count

51 #define CPU_ACPI_FREQ(pstate) pstate->ps_freq
52 #define CPU_ACPI_PSTATE_TRANSLAT(pstate) pstate->ps_translat
53 #define CPU_ACPI_PSTATE_CTRL(pstate) pstate->ps_ctrl

55 /*
56 * T-state related macros
57 */
58 #define CPU_ACPI_TPC(sp) sp->cs_tpc

new/usr/src/uts/i86pc/sys/cpu_acpi.h 2

59 #define CPU_ACPI_TSD(sp) sp->cs_tsd
60 #define CPU_ACPI_PTC(sp) sp->cs_ptc
61 #define CPU_ACPI_PTC_CTRL(sp) &sp->cs_ptc[0]
62 #define CPU_ACPI_PTC_STATUS(sp) &sp->cs_ptc[1]
63 #define CPU_ACPI_TSTATES(sp) sp->cs_tstates.ss_states
64 #define CPU_ACPI_TSTATES_COUNT(sp) sp->cs_tstates.ss_count

66 #define CPU_ACPI_FREQPER(tstate) tstate->ts_freqper
67 #define CPU_ACPI_TSTATE_TRANSLAT(tstate) tstate->ts_translat
68 #define CPU_ACPI_TSTATE_CTRL(tstate) tstate->ts_ctrl
69 #define CPU_ACPI_TSTATE_STAT(tstate) tstate->ts_state

71 /*
72 * C-state realted macros
73 */
74 #define CPU_ACPI_CSD(sp) sp->cs_csd
75 #define CPU_ACPI_CSTATES(sp) sp->cs_cstates.ss_states
76 #define CPU_ACPI_CSTATES_COUNT(sp) sp->cs_cstates.ss_count

78 #define CPU_ACPI_NONE_CACHED 0x0000
79 #define CPU_ACPI_PCT_CACHED 0x0001
80 #define CPU_ACPI_PSS_CACHED 0x0002
81 #define CPU_ACPI_PSD_CACHED 0x0004
82 #define CPU_ACPI_PPC_CACHED 0x0008
83 #define CPU_ACPI_PTC_CACHED 0x0010
84 #define CPU_ACPI_TSS_CACHED 0x0020
85 #define CPU_ACPI_TSD_CACHED 0x0040
86 #define CPU_ACPI_TPC_CACHED 0x0080
87 #define CPU_ACPI_CST_CACHED 0x0100
88 #define CPU_ACPI_CSD_CACHED 0x0200

90 #define CPU_ACPI_IS_OBJ_CACHED(sp, obj) (sp->cpu_acpi_cached & obj)
91 #define CPU_ACPI_OBJ_IS_CACHED(sp, obj) (sp->cpu_acpi_cached |= obj)
92 #define CPU_ACPI_OBJ_IS_NOT_CACHED(sp, obj) (sp->cpu_acpi_cached &= ~obj)

94 #define CPU_ACPI_PSTATES_SIZE(cnt) (cnt * sizeof (cpu_acpi_pstate_t))
95 #define CPU_ACPI_PSS_CNT (sizeof (cpu_acpi_pstate_t) / sizeof (uint32_t))
96 #define CPU_ACPI_TSTATES_SIZE(cnt) (cnt * sizeof (cpu_acpi_tstate_t))
97 #define CPU_ACPI_TSS_CNT (sizeof (cpu_acpi_tstate_t) / sizeof (uint32_t))
98 #define CPU_ACPI_CSTATES_SIZE(cnt) (cnt * sizeof (cpu_acpi_cstate_t))
99 #define CPU_ACPI_CST_CNT (sizeof (cpu_acpi_cstate_t) / sizeof (uint32_t))
100 /*
101 * CPU Domain Coordination Types
102 */
103 #define CPU_ACPI_SW_ALL 0xfc
104 #define CPU_ACPI_SW_ANY 0xfd
105 #define CPU_ACPI_HW_ALL 0xfe

107 /*
108 * Container for ACPI processor state dependency information
109 */
110 typedef struct cpu_acpi_state_dependency
111 {
112 uint8_t sd_entries;
113 uint8_t sd_revision;
114 uint32_t sd_domain;
115 uint32_t sd_type;
116 uint32_t sd_num;
117 uint32_t sd_index;
118 } cpu_acpi_state_dependency_t;

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/sys/hpet_acpi.h 1

**
 9810 Thu Dec 26 13:50:35 2013
new/usr/src/uts/i86pc/sys/hpet_acpi.h
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 #ifndef _HPET_ACPI_H
26 #define _HPET_ACPI_H

28 #if defined(_KERNEL)
29 #include <acpica/include/acpi.h>
30 #include <acpica/include/actbl1.h>
29 #include <sys/acpi/acpi.h>
30 #include <sys/acpi/actbl1.h>
31 #include <sys/acpica.h>
32 #endif /* defined(_KERNEL) */

34 #ifdef __cplusplus
35 extern "C" {
36 #endif

38 /*
39 * Solaris uses an HPET Timer to generate interrupts for CPUs in Deep C-state
40 * with stalled LAPIC Timers. All CPUs use one HPET timer. The timer’s
41 * interrupt targets one CPU (via the I/O APIC). The one CPU that receives
42 * the HPET’s interrupt wakes up other CPUs as needed during the HPET Interrupt
43 * Service Routing. The HPET ISR uses poke_cpus to wake up other CPUs with an
44 * Inter Processor Interrupt.
45 *
46 * Please see the Intel Programmer’s guides. Interrupts are disabled before
47 * a CPU Halts into Deep C-state. (This allows CPU-hardware-specific cleanup
48 * before servicing interrupts.) When a Deep C-state CPU wakes up (due to
49 * an externally generated interrupt), it resume execution where it halted.
50 * The CPU returning from Deep C-state must enable interrupts before it will
51 * handle the pending interrupt that woke it from Deep C-state.
52 *
53 *
54 * HPET bits as defined in the Intel IA-PC HPET Specification Rev 1.0a.
55 *
56 * The physical address space layout of the memory mapped HPET looks like this:
57 *
58 * struct hpet {
59 * uint64_t gen_cap;

new/usr/src/uts/i86pc/sys/hpet_acpi.h 2

60 * uint64_t res1;
61 * uint64_t gen_config;
62 * uint64_t res2;
63 * uint64_t gen_inter_stat;
64 * uint64_t res3;
65 * uint64_t main_counter_value;
66 * uint64_t res4;
67 * stuct hpet_timer {
68 * uint64_t config_and_capability;
69 * uint64_t comparator_value;
70 * uint64_t FSB_interrupt_route;
71 * uint64_t reserved;
72 * } timers[32];
73 * }
74 *
75 * There are 32 possible timers in an hpet. Only the first 3 timers are
76 * required. The other 29 timers are optional.
77 *
78 * HPETs can have 64-bit or 32-bit timers. Timers/compare registers can
79 * be 64-bit or 32-bit and can be a mixture of both.
80 * The first two timers are not used. The HPET spec intends the first two
81 * timers to be used as "legacy replacement" for the PIT and RTC timers.
82 *
83 * Solaris uses the first available non-legacy replacement timer as a proxy
84 * timer for processor Local APIC Timers that stop in deep idle C-states.
85 */

87 /*
88 * We only use HPET table 1 on x86. Typical x86 systems only have 1 HPET.
89 * ACPI allows for multiple HPET tables to describe multiple HPETs.
90 */
91 #define HPET_TABLE_1 (1)

93 /*
94 * HPET Specification 1.0a defines the HPET to occupy 1024 bytes regardless of
95 * the number of counters (3 to 32) in this implementation.
96 */
97 #define HPET_SIZE (1024)

99 /*
100 * Offsets of hpet registers and macros to access them from HPET base address.
101 */
102 #define HPET_GEN_CAP_OFFSET (0)
103 #define HPET_GEN_CONFIG_OFFSET (0x10)
104 #define HPET_GEN_INTR_STAT_OFFSET (0x20)
105 #define HPET_MAIN_COUNTER_OFFSET (0xF0)
106 #define HPET_TIMER_N_CONF_OFFSET(n) (0x100 + (n * 0x20))
107 #define HPET_TIMER_N_COMP_OFFSET(n) (0x108 + (n * 0x20))

109 #define OFFSET_ADDR(a, o) (((uintptr_t)(a)) + (o))
110 #define HPET_GEN_CAP_ADDRESS(la) \
111 OFFSET_ADDR(la, HPET_GEN_CAP_OFFSET)
112 #define HPET_GEN_CONFIG_ADDRESS(la) \
113 OFFSET_ADDR(la, HPET_GEN_CONFIG_OFFSET)
114 #define HPET_GEN_INTR_STAT_ADDRESS(la) \
115 OFFSET_ADDR(la, HPET_GEN_INTR_STAT_OFFSET)
116 #define HPET_MAIN_COUNTER_ADDRESS(la) \
117 OFFSET_ADDR(la, HPET_MAIN_COUNTER_OFFSET)
118 #define HPET_TIMER_N_CONF_ADDRESS(la, n) \
119 OFFSET_ADDR(la, HPET_TIMER_N_CONF_OFFSET(n))
120 #define HPET_TIMER_N_COMP_ADDRESS(la, n) \
121 OFFSET_ADDR(la, HPET_TIMER_N_COMP_OFFSET(n))

123 /*
124 * HPET General Capabilities and ID Register
125 */

new/usr/src/uts/i86pc/sys/hpet_acpi.h 3

126 typedef struct hpet_gen_cap {
127 uint32_t counter_clk_period; /* period in femtoseconds */
128 uint32_t vendor_id :16; /* vendor */
129 uint32_t leg_route_cap :1; /* 1=LegacyReplacemnt support */
130 uint32_t res1 :1; /* reserved */
131 uint32_t count_size_cap :1; /* 0=32bit, 1=64bit wide */
132 uint32_t num_tim_cap :5; /* number of timers -1 */
133 uint32_t rev_id :8; /* revision number */
134 } hpet_gen_cap_t;

______unchanged_portion_omitted_

new/usr/src/uts/i86pc/sys/psm_common.h 1

**
 4042 Thu Dec 26 13:50:36 2013
new/usr/src/uts/i86pc/sys/psm_common.h
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 */

28 #ifndef _SYS_PSM_COMMON_H
29 #define _SYS_PSM_COMMON_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/cmn_err.h>

35 #include <acpica/include/acpi.h>
34 #include <sys/acpi/acpi.h>
36 #include <sys/acpica.h>

38 #include <sys/sunddi.h>
39 #include <sys/ddi.h>
40 #include <sys/ddi_impldefs.h>
41 #include <sys/pci.h>
42 #include <sys/debug.h>

44 #ifdef __cplusplus
45 extern "C" {
46 #endif

49 /* private data used in psm_common */
50 typedef struct acpi_prs_private {
51 uchar_t prs_irqflags;
52 uchar_t prs_type;
53 } acpi_prs_private_t;

______unchanged_portion_omitted_

new/usr/src/uts/i86xpv/io/psm/mp_platform_xpv.c 1

**
 62027 Thu Dec 26 13:50:36 2013
new/usr/src/uts/i86xpv/io/psm/mp_platform_xpv.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24 /*
25 * Copyright (c) 2010, Intel Corporation.
26 * All rights reserved.
27 */

29 /*
30 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
31 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
32 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
33 * PSMI 1.5 extensions are supported in Solaris Nevada.
34 * PSMI 1.6 extensions are supported in Solaris Nevada.
35 * PSMI 1.7 extensions are supported in Solaris Nevada.
36 */
37 #define PSMI_1_7

39 #include <sys/processor.h>
40 #include <sys/time.h>
41 #include <sys/psm.h>
42 #include <sys/smp_impldefs.h>
43 #include <sys/cram.h>
44 #include <acpica/include/acpi.h>
44 #include <sys/acpi/acpi.h>
45 #include <sys/acpica.h>
46 #include <sys/psm_common.h>
47 #include <sys/apic.h>
48 #include <sys/apic_common.h>
49 #include <sys/pit.h>
50 #include <sys/ddi.h>
51 #include <sys/sunddi.h>
52 #include <sys/ddi_impldefs.h>
53 #include <sys/pci.h>
54 #include <sys/promif.h>
55 #include <sys/x86_archext.h>
56 #include <sys/cpc_impl.h>
57 #include <sys/uadmin.h>
58 #include <sys/panic.h>
59 #include <sys/debug.h>
60 #include <sys/archsystm.h>

new/usr/src/uts/i86xpv/io/psm/mp_platform_xpv.c 2

61 #include <sys/trap.h>
62 #include <sys/machsystm.h>
63 #include <sys/cpuvar.h>
64 #include <sys/rm_platter.h>
65 #include <sys/privregs.h>
66 #include <sys/cyclic.h>
67 #include <sys/note.h>
68 #include <sys/pci_intr_lib.h>
69 #include <sys/sunndi.h>

72 /*
73 * Local Function Prototypes
74 */
75 static void apic_mark_vector(uchar_t oldvector, uchar_t newvector);
76 static void apic_xlate_vector_free_timeout_handler(void *arg);
77 static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
78 int new_bind_cpu, int apicindex, int intin_no, int which_irq,
79 struct ioapic_reprogram_data *drep);
80 static int apic_setup_irq_table(dev_info_t *dip, int irqno,
81 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp,
82 int type);
83 static void apic_try_deferred_reprogram(int ipl, int vect);
84 static void delete_defer_repro_ent(int which_irq);
85 static void apic_ioapic_wait_pending_clear(int ioapicindex,
86 int intin_no);

88 extern int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
89 int ipin, int *pci_irqp, iflag_t *intr_flagp);
90 extern int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
91 int child_ipin, struct apic_io_intr **intrp);
92 extern uchar_t acpi_find_ioapic(int irq);
93 extern struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
94 extern int apic_find_bus_id(int bustype);
95 extern int apic_find_intin(uchar_t ioapic, uchar_t intin);
96 extern void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);

98 extern int apic_sci_vect;
99 extern iflag_t apic_sci_flags;
100 extern int apic_intr_policy;
101 extern char *psm_name;

103 /*
104 * number of bits per byte, from <sys/param.h>
105 */
106 #define UCHAR_MAX ((1 << NBBY) - 1)

108 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
109 extern int apic_max_reps_clear_pending;

111 /* The irq # is implicit in the array index: */
112 struct ioapic_reprogram_data apic_reprogram_info[APIC_MAX_VECTOR+1];
113 /*
114 * APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. ioapic_reprogram_info
115 * is indexed by IRQ number, NOT by vector number.
116 */

118 extern int apic_int_busy_mark;
119 extern int apic_int_free_mark;
120 extern int apic_diff_for_redistribution;
121 extern int apic_sample_factor_redistribution;
122 extern int apic_redist_cpu_skip;
123 extern int apic_num_imbalance;
124 extern int apic_num_rebind;

126 /* timeout for xlate_vector, mark_vector */

new/usr/src/uts/i86xpv/io/psm/mp_platform_xpv.c 3

127 int apic_revector_timeout = 16 * 10000; /* 160 millisec */

129 extern int apic_defconf;
130 extern int apic_irq_translate;

132 extern int apic_use_acpi_madt_only; /* 1=ONLY use MADT from ACPI */

134 extern uchar_t apic_io_vectbase[MAX_IO_APIC];

136 extern boolean_t ioapic_mask_workaround[MAX_IO_APIC];

138 /*
139 * First available slot to be used as IRQ index into the apic_irq_table
140 * for those interrupts (like MSI/X) that don’t have a physical IRQ.
141 */
142 extern int apic_first_avail_irq;

144 /*
145 * apic_defer_reprogram_lock ensures that only one processor is handling
146 * deferred interrupt programming at *_intr_exit time.
147 */
148 static lock_t apic_defer_reprogram_lock;

150 /*
151 * The current number of deferred reprogrammings outstanding
152 */
153 uint_t apic_reprogram_outstanding = 0;

155 #ifdef DEBUG
156 /*
157 * Counters that keep track of deferred reprogramming stats
158 */
159 uint_t apic_intr_deferrals = 0;
160 uint_t apic_intr_deliver_timeouts = 0;
161 uint_t apic_last_ditch_reprogram_failures = 0;
162 uint_t apic_deferred_setup_failures = 0;
163 uint_t apic_defer_repro_total_retries = 0;
164 uint_t apic_defer_repro_successes = 0;
165 uint_t apic_deferred_spurious_enters = 0;
166 #endif

168 extern int apic_io_max;
169 extern struct apic_io_intr *apic_io_intrp;

171 uchar_t apic_vector_to_irq[APIC_MAX_VECTOR+1];

173 extern uint32_t eisa_level_intr_mask;
174 /* At least MSB will be set if EISA bus */

176 extern int apic_pci_bus_total;
177 extern uchar_t apic_single_pci_busid;

179 /*
180 * Following declarations are for revectoring; used when ISRs at different
181 * IPLs share an irq.
182 */
183 static lock_t apic_revector_lock;
184 int apic_revector_pending = 0;
185 static uchar_t *apic_oldvec_to_newvec;
186 static uchar_t *apic_newvec_to_oldvec;

188 /* ACPI Interrupt Source Override Structure ptr */
189 ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop;
190 extern int acpi_iso_cnt;

192 /*

new/usr/src/uts/i86xpv/io/psm/mp_platform_xpv.c 4

193 * Auto-configuration routines
194 */

196 /*
197 * Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable
198 * are also set to NULL. vector->irq is set to a value which cannot map
199 * to a real irq to show that it is free.
200 */
201 void
202 apic_init_common(void)
203 {
204 int i, j, indx;
205 int *iptr;

207 /*
208 * Initialize apic_ipls from apic_vectortoipl. This array is
209 * used in apic_intr_enter to determine the IPL to use for the
210 * corresponding vector. On some systems, due to hardware errata
211 * and interrupt sharing, the IPL may not correspond to the IPL listed
212 * in apic_vectortoipl (see apic_addspl and apic_delspl).
213 */
214 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
215 indx = i * APIC_VECTOR_PER_IPL;

217 for (j = 0; j < APIC_VECTOR_PER_IPL; j++, indx++)
218 apic_ipls[indx] = apic_vectortoipl[i];
219 }

221 /* cpu 0 is always up (for now) */
222 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;

224 iptr = (int *)&apic_irq_table[0];
225 for (i = 0; i <= APIC_MAX_VECTOR; i++) {
226 apic_level_intr[i] = 0;
227 *iptr++ = NULL;
228 apic_vector_to_irq[i] = APIC_RESV_IRQ;

230 /* These *must* be initted to B_TRUE! */
231 apic_reprogram_info[i].done = B_TRUE;
232 apic_reprogram_info[i].irqp = NULL;
233 apic_reprogram_info[i].tries = 0;
234 apic_reprogram_info[i].bindcpu = 0;
235 }

237 /*
238 * Allocate a dummy irq table entry for the reserved entry.
239 * This takes care of the race between removing an irq and
240 * clock detecting a CPU in that irq during interrupt load
241 * sampling.
242 */
243 apic_irq_table[APIC_RESV_IRQ] =
244 kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);

246 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);
247 }

______unchanged_portion_omitted_

new/usr/src/uts/intel/Makefile.files 1

**
 7388 Thu Dec 26 13:50:37 2013
new/usr/src/uts/intel/Makefile.files
acpica-unix2-20130823
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright (c) 2012, Joyent, Inc. All rights reserved.
25 # Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 #

28 #
29 # This Makefile defines all file modules and build rules for the
30 # directory uts/intel and its children. These are the source files which
31 # are specific to x86 processor architectures.
32 #

34 #
35 # Core (unix) objects
36 #
37 CORE_OBJS += \
38 arch_kdi.o \
39 copy.o \
40 copy_subr.o \
41 cpc_subr.o \
42 ddi_arch.o \
43 ddi_i86.o \
44 ddi_i86_asm.o \
45 desctbls.o \
46 desctbls_asm.o \
47 exception.o \
48 float.o \
49 fmsmb.o \
50 fpu.o \
51 i86_subr.o \
52 lock_prim.o \
53 ovbcopy.o \
54 polled_io.o \
55 sseblk.o \
56 sundep.o \
57 swtch.o \
58 sysi86.o

60 #

new/usr/src/uts/intel/Makefile.files 2

61 # 64-bit multiply/divide compiler helper routines
62 # used only for ia32
63 #

65 SPECIAL_OBJS_32 += \
66 muldiv.o

68 #
69 # Generic-unix Module
70 #
71 GENUNIX_OBJS += \
72 archdep.o \
73 getcontext.o \
74 install_utrap.o \
75 lwp_private.o \
76 prom_enter.o \
77 prom_exit.o \
78 prom_panic.o \
79 sendsig.o \
80 syscall.o

83 #
84 # PROM Routines
85 #
86 GENUNIX_OBJS += \
87 prom_env.o \
88 prom_emul.o \
89 prom_getchar.o \
90 prom_init.o \
91 prom_node.o \
92 prom_printf.o \
93 prom_prop.o \
94 prom_putchar.o \
95 prom_reboot.o \
96 prom_version.o

98 #
99 # file system modules
100 #
101 CORE_OBJS += \
102 prmachdep.o

104 #
105 # ZFS file system module
106 #
107 ZFS_OBJS += \
108 spa_boot.o

110 #
111 # Decompression code
112 #
113 CORE_OBJS += decompress.o

115 #
116 # Microcode utilities
117 #
118 CORE_OBJS += ucode_utils.o

120 #
121 # Driver modules
122 #
123 AGPGART_OBJS += agpgart.o agp_kstat.o
124 AGPTARGET_OBJS += agptarget.o
125 AMD64GART_OBJS += amd64_gart.o
126 ARCMSR_OBJS += arcmsr.o

new/usr/src/uts/intel/Makefile.files 3

127 ATA_OBJS += $(GHD_OBJS) ata_blacklist.o ata_common.o ata_disk.o \
128 ata_dma.o atapi.o atapi_fsm.o ata_debug.o \
129 sil3xxx.o
130 BSCBUS_OBJS += bscbus.o
131 BSCV_OBJS += bscv.o
132 CMDK_OBJS += cmdk.o
133 CMLB_OBJS += cmlb.o
134 CPUNEX_OBJS += cpunex.o
135 DADK_OBJS += dadk.o
136 DCOPY_OBJS += dcopy.o
137 DNET_OBJS += dnet.o dnet_mii.o
138 FD_OBJS += fd.o
139 GDA_OBJS += gda.o
140 GHD_OBJS += ghd.o ghd_debug.o ghd_dma.o ghd_queue.o ghd_scsa.o \
141 ghd_scsi.o ghd_timer.o ghd_waitq.o ghd_gcmd.o
142 I915_OBJS += i915_dma.o i915_drv.o i915_irq.o i915_mem.o \
143 i915_gem.o i915_gem_debug.o i915_gem_tiling.o
144 NSKERN_OBJS += nsc_asm.o
145 PCICFG_OBJS += pcicfg.o
146 PCI_PCINEXUS_OBJS += pci_pci.o
147 PCIEB_OBJS += pcieb_x86.o
148 PIT_BEEP_OBJS += pit_beep.o
149 POWER_OBJS += power.o
150 PCI_AUTOCONFIG_OBJS += pci_autoconfig.o pci_boot.o pcie_nvidia.o \
151 pci_memlist.o pci_resource.o
152 RADEON_OBJS += r300_cmdbuf.o radeon_cp.o radeon_drv.o \
153 radeon_state.o radeon_irq.o radeon_mem.o
154 SD_OBJS += sd.o sd_xbuf.o

156 HECI_OBJS += \
157 heci_init.o \
158 heci_intr.o \
159 heci_interface.o \
160 io_heci.o \
161 heci_main.o

163 STRATEGY_OBJS += strategy.o
164 UCODE_OBJS += ucode_drv.o
165 VGATEXT_OBJS += vgatext.o vgasubr.o

167 #
168 # Kernel linker
169 #
170 KRTLD_OBJS += \
171 bootrd.o \
172 ufsops.o \
173 hsfs.o \
174 doreloc.o \
175 kobj_boot.o \
176 kobj_convrelstr.o \
177 kobj_crt.o \
178 kobj_isa.o \
179 kobj_reloc.o

181 #
182 # ACPI CA module
181 # misc. modules
183 #

185 # native
186 ACPICA_OBJS += acpica.o acpica_ec.o acpi_enum.o master_ops.o osl.o \
187 osl_ml.o
188 # debugger
189 ACPICA_OBJS += dbcmds.o dbdisply.o dbexec.o dbfileio.o dbhistry.o \
190 dbinput.o dbmethod.o dbnames.o dbstats.o dbutils.o \
191 dbxface.o dbconvert.o

new/usr/src/uts/intel/Makefile.files 4

192 # disassembler
193 ACPICA_OBJS += dmbuffer.o dmnames.o dmobject.o dmopcode.o dmresrc.o \
194 dmresrcl.o dmresrcs.o dmutils.o dmwalk.o dmdeferred.o \
195 dmresrcl2.o
196 # dispatcher
197 ACPICA_OBJS += dsargs.o dscontrol.o dsfield.o dsinit.o dsmethod.o \
183 ACPICA_OBJS += dbcmds.o dbdisply.o \
184 dbexec.o dbfileio.o dbhistry.o dbinput.o dbstats.o \
185 dbutils.o dbxface.o evevent.o evgpe.o evgpeblk.o \
186 evmisc.o evregion.o evrgnini.o evsci.o evxface.o \
187 evxfevnt.o evxfregn.o hwacpi.o hwgpe.o hwregs.o \
188 hwsleep.o hwtimer.o dsfield.o dsinit.o dsmethod.o \
198 dsmthdat.o dsobject.o dsopcode.o dsutils.o dswexec.o \
199 dswload.o dswload2.o dswscope.o dswstate.o
200 # events
201 ACPICA_OBJS += evevent.o evglock.o evgpe.o evgpeblk.o evgpeinit.o \
202 evgpeutil.o evmisc.o evregion.o evrgnini.o evsci.o \
203 evxface.o evxfevnt.o evxfgpe.o evxfregn.o evhandler.o
204 # executer
205 ACPICA_OBJS += exconfig.o exconvrt.o excreate.o exdebug.o exdump.o \
206 exfield.o exfldio.o exmisc.o exmutex.o exnames.o \
207 exoparg1.o exoparg2.o exoparg3.o exoparg6.o exprep.o \
208 exregion.o exresnte.o exresolv.o exresop.o exstore.o \
209 exstoren.o exstorob.o exsystem.o exutils.o
210 # hardware
211 ACPICA_OBJS += hwacpi.o hwgpe.o hwpci.o hwregs.o hwsleep.o hwtimer.o \
212 hwvalid.o hwxface.o hwesleep.o hwxfsleep.o
213 # namespace
214 ACPICA_OBJS += nsaccess.o nsalloc.o nsdump.o nsdumpdv.o nseval.o \
215 nsinit.o nsload.o nsnames.o nsobject.o nsparse.o \
216 nspredef.o nsrepair.o nsrepair2.o nssearch.o nsutils.o \
217 nswalk.o nsxfeval.o nsxfname.o nsxfobj.o nsarguments.o \
218 nsconvert.o nsprepkg.o
219 # parser
220 ACPICA_OBJS += psargs.o psloop.o psopcode.o psparse.o psscope.o \
221 pstree.o psutils.o pswalk.o psxface.o psobject.o psopinfo.o
222 # resources
223 ACPICA_OBJS += rsaddr.o rscalc.o rscreate.o rsdump.o rsinfo.o rsio.o \
224 rsirq.o rslist.o rsmemory.o rsmisc.o rsutils.o \
225 rsxface.o rsdumpinfo.o rsserial.o
226 # tables
227 ACPICA_OBJS += tbfadt.o tbfind.o tbinstal.o tbutils.o tbxface.o \
228 tbxfroot.o tbprint.o tbxfload.o
229 # utilities
230 ACPICA_OBJS += utalloc.o utcache.o utclib.o utcopy.o utdebug.o \
231 utdecode.o utdelete.o uteval.o utglobal.o utids.o \
232 utinit.o utlock.o utmath.o utmisc.o utmutex.o \
233 utobject.o utosi.o utresrc.o utstate.o uttrack.o \
234 utxface.o utxferror.o utaddress.o utbuffer.o uterror.o \
235 utexcep.o utownerid.o utpredef.o utstring.o utxfinit.o \
236 utxfmutex.o
190 dswload.o dswscope.o dswstate.o exconfig.o exconvrt.o \
191 excreate.o exdump.o exfield.o exfldio.o exmisc.o \
192 exmutex.o exnames.o exoparg1.o exoparg2.o exoparg3.o \
193 exoparg6.o exprep.o exregion.o exresnte.o exresolv.o \
194 exresop.o exstore.o exstoren.o exstorob.o exsystem.o \
195 exutils.o psargs.o psopcode.o psparse.o psscope.o \
196 pstree.o psutils.o pswalk.o psxface.o nsaccess.o \
197 nsalloc.o nsdump.o nsdumpdv.o nseval.o nsinit.o \
198 nsload.o nsnames.o nsobject.o nsparse.o nssearch.o \
199 nsutils.o nswalk.o nsxfeval.o nsxfname.o nsxfobj.o \
200 rsaddr.o rscalc.o rscreate.o rsdump.o \
201 rsinfo.o rsio.o rsirq.o rslist.o rsmemory.o rsmisc.o \
202 rsutils.o rsxface.o tbfadt.o tbfind.o tbinstal.o \
203 tbutils.o tbxface.o tbxfroot.o \
204 utalloc.o utclib.o utcopy.o utdebug.o utdelete.o \

new/usr/src/uts/intel/Makefile.files 5

205 uteval.o utglobal.o utinit.o utmath.o utmisc.o \
206 utobject.o utresrc.o utxface.o acpica.o acpi_enum.o \
207 master_ops.o osl.o osl_ml.o acpica_ec.o utcache.o \
208 utmutex.o utstate.o dmbuffer.o dmnames.o dmobject.o \
209 dmopcode.o dmresrc.o dmresrcl.o dmresrcs.o dmutils.o \
210 dmwalk.o psloop.o nspredef.o hwxface.o hwvalid.o \
211 utlock.o utids.o nsrepair.o nsrepair2.o \
212 dbmethod.o dbnames.o dsargs.o dscontrol.o dswload2.o \
213 evglock.o evgpeinit.o evgpeutil.o evxfgpe.o exdebug.o \
214 hwpci.o utdecode.o utosi.o utxferror.o

238 #
239 # misc. modules
240 #

242 AGP_OBJS += agpmaster.o
243 FBT_OBJS += fbt.o
244 SDT_OBJS += sdt.o

246 #
247 # AMD8111 NIC driver module
248 #
249 AMD8111S_OBJS += amd8111s_main.o amd8111s_hw.o

251 #
252 # Pentium Performance Counter BackEnd module
253 #
254 P123_PCBE_OBJS = p123_pcbe.o

256 #
257 # Pentium 4 Performance Counter BackEnd module
258 #
259 P4_PCBE_OBJS = p4_pcbe.o

261 #
262 # AMD Opteron/Athlon64 Performance Counter BackEnd module
263 #
264 OPTERON_PCBE_OBJS = opteron_pcbe.o

266 #
267 # Intel Core Architecture Performance Counter BackEnd module
268 #
269 CORE_PCBE_OBJS = core_pcbe.o

271 #
272 # AMR module
273 #
274 AMR_OBJS = amr.o

276 #
277 # IPMI module
278 #
279 IPMI_OBJS += ipmi_main.o ipmi.o ipmi_kcs.o

281 #
282 # IOMMULIB module
283 #
284 IOMMULIB_OBJS = iommulib.o

286 #
287 # Brand modules
288 #
289 SN1_BRAND_OBJS = sn1_brand.o sn1_brand_asm.o
290 S10_BRAND_OBJS = s10_brand.o s10_brand_asm.o

292 #

new/usr/src/uts/intel/Makefile.files 6

293 # special files
294 #
295 MODSTUB_OBJ += \
296 modstubs.o

298 BOOTDEV_OBJS += \
299 bootdev.o

301 INC_PATH += -I$(UTSBASE)/intel

304 CPR_INTEL_OBJS += cpr_intel.o

306 #
307 # AMD family 0xf memory controller module
308 #
309 include $(SRC)/common/mc/mc-amd/Makefile.mcamd
310 MCAMD_OBJS += \
311 $(MCAMD_CMN_OBJS) \
312 mcamd_drv.o \
313 mcamd_dimmcfg.o \
314 mcamd_subr.o \
315 mcamd_pcicfg.o

317 #
318 # Intel Nehalem memory controller module
319 #
320 INTEL_NHM_OBJS += \
321 nhm_init.o \
322 mem_addr.o \
323 intel_nhmdrv.o \
324 nhm_pci_cfg.o \
325 dimm_topo.o \
326 intel_nhm.o

328 #
329 # Intel 5000/5100/5400/7300 chipset memory controller hub (MCH) module
330 #
331 INTEL_NB5000_OBJS += \
332 intel_nb5000.o \
333 intel_nbdrv.o \
334 dimm_addr.o \
335 nb_pci_cfg.o \
336 nb5000_init.o

new/usr/src/uts/intel/Makefile.rules 1

**
 13941 Thu Dec 26 13:50:37 2013
new/usr/src/uts/intel/Makefile.rules
acpica-unix2-20130823
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 # Copyright 2012 Joyent, Inc. All rights reserved.
26 # Copyright 2013 Nexenta Systems, Inc. All rights reserved.
27 #

29 #
30 # This Makefile defines all file modules and build rules for the
31 # directory uts/intel and its children. These are the source files which
32 # are specific to the intel processor.
33 #
34 # The following two-level ordering must be maintained in this file.
35 # Lines are sorted first in order of decreasing specificity based on
36 # the first directory component. That is, sun4u rules come before
37 # sparc rules come before common rules.
38 #
39 # Lines whose initial directory components are equal are sorted
40 # alphabetically by the remaining components.

42 #
43 # Need a way to distinguish between the ia32 and amd64 subdirs.
44 #
45 SUBARCH_DIR_32 = ia32
46 SUBARCH_DIR_64 = amd64
47 SUBARCH_DIR = $(SUBARCH_DIR_$(CLASS))

49 #
50 # Section 1a: C object build rules
51 #
52 $(OBJS_DIR)/%.o: $(SRC)/common/fs/%.c
53 $(COMPILE.c) -o $@ $<
54 $(CTFCONVERT_O)

56 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/power/%.c
57 $(COMPILE.c) -o $@ $<
58 $(CTFCONVERT_O)

60 $(OBJS_DIR)/%.o: $(SRC)/common/util/i386/%.s

new/usr/src/uts/intel/Makefile.rules 2

61 $(COMPILE.s) -o $@ $<

63 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/brand/sn1/%.s
64 $(COMPILE.s) -o $@ $<

66 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/brand/solaris10/%.s
67 $(COMPILE.s) -o $@ $<

69 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/dtrace/%.c
70 $(COMPILE.c) -o $@ $<
71 $(CTFCONVERT_O)

73 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/dtrace/%.s
74 $(COMPILE.s) -o $@ $<

76 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/fs/proc/%.c
77 $(COMPILE.c) -o $@ $<
78 $(CTFCONVERT_O)

80 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/ia32/ml/%.s
81 $(COMPILE.s) -o $@ $<

83 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/ia32/os/%.c
84 $(COMPILE.c) -o $@ $<
85 $(CTFCONVERT_O)

87 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/ia32/promif/%.c
88 $(COMPILE.c) -o $@ $<
89 $(CTFCONVERT_O)

91 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/ia32/syscall/%.c
92 $(COMPILE.c) -o $@ $<
93 $(CTFCONVERT_O)

95 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/%.c
96 $(COMPILE.c) -o $@ $<
97 $(CTFCONVERT_O)

99 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/acpica/%.c
100 $(COMPILE.c) -o $@ $<
101 $(CTFCONVERT_O)

103 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/acpica/%.s
104 $(COMPILE.s) -o $@ $<

106 $(OBJS_DIR)/%.o: $(SRC)/common/acpica/components/debugger/%.c
104 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/acpica/debugger/%.c
107 $(COMPILE.c) -o $@ $<
108 $(CTFCONVERT_O)

110 $(OBJS_DIR)/%.o: $(SRC)/common/acpica/components/disassembler/%.c
108 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/acpica/events/%.c
111 $(COMPILE.c) -o $@ $<
112 $(CTFCONVERT_O)

114 $(OBJS_DIR)/%.o: $(SRC)/common/acpica/components/dispatcher/%.c
112 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/acpica/hardware/%.c
115 $(COMPILE.c) -o $@ $<
116 $(CTFCONVERT_O)

118 $(OBJS_DIR)/%.o: $(SRC)/common/acpica/components/events/%.c
116 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/acpica/dispatcher/%.c
119 $(COMPILE.c) -o $@ $<
120 $(CTFCONVERT_O)

122 $(OBJS_DIR)/%.o: $(SRC)/common/acpica/components/executer/%.c

new/usr/src/uts/intel/Makefile.rules 3

120 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/acpica/executer/%.c
123 $(COMPILE.c) -o $@ $<
124 $(CTFCONVERT_O)

126 $(OBJS_DIR)/%.o: $(SRC)/common/acpica/components/hardware/%.c
124 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/acpica/parser/%.c
127 $(COMPILE.c) -o $@ $<
128 $(CTFCONVERT_O)

130 $(OBJS_DIR)/%.o: $(SRC)/common/acpica/components/namespace/%.c
128 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/acpica/namespace/%.c
131 $(COMPILE.c) -o $@ $<
132 $(CTFCONVERT_O)

134 $(OBJS_DIR)/%.o: $(SRC)/common/acpica/components/parser/%.c
132 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/acpica/resources/%.c
135 $(COMPILE.c) -o $@ $<
136 $(CTFCONVERT_O)

138 $(OBJS_DIR)/%.o: $(SRC)/common/acpica/components/resources/%.c
136 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/acpica/tables/%.c
139 $(COMPILE.c) -o $@ $<
140 $(CTFCONVERT_O)

142 $(OBJS_DIR)/%.o: $(SRC)/common/acpica/components/tables/%.c
140 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/acpica/utilities/%.c
143 $(COMPILE.c) -o $@ $<
144 $(CTFCONVERT_O)

146 $(OBJS_DIR)/%.o: $(SRC)/common/acpica/components/utilities/%.c
144 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/acpica/disassembler/%.c
147 $(COMPILE.c) -o $@ $<
148 $(CTFCONVERT_O)

150 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/agpgart/%.c
151 $(COMPILE.c) -o $@ $<
152 $(CTFCONVERT_O)

154 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/agpmaster/%.c
155 $(COMPILE.c) -o $@ $<
156 $(CTFCONVERT_O)

158 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/amd8111s/%.c
159 $(COMPILE.c) -o $@ $<
160 $(CTFCONVERT_O)

162 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/amr/%.c
163 $(COMPILE.c) -o $@ $<
164 $(CTFCONVERT_O)

166 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/drm/%.c
167 $(COMPILE.c) -o $@ $<
168 $(CTFCONVERT_O)

170 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/hotplug/pcicfg/%.c
171 $(COMPILE.c) -o $@ $<
172 $(CTFCONVERT_O)

174 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/ipmi/%.c
175 $(COMPILE.c) -o $@ $<
176 $(CTFCONVERT_O)

178 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/intel_nb5000/%.c
179 $(COMPILE.c) -o $@ $<
180 $(CTFCONVERT_O)

new/usr/src/uts/intel/Makefile.rules 4

182 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/intel_nhm/%.c
183 $(COMPILE.c) -o $@ $<
184 $(CTFCONVERT_O)

186 $(OBJS_DIR)/%.o: $(SRC)/common/mc/mc-amd/%.c
187 $(COMPILE.c) -o $@ $<
188 $(CTFCONVERT_O)

190 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/mc-amd/%.c
191 $(COMPILE.c) -o $@ $<
192 $(CTFCONVERT_O)

194 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/pci/%.c
195 $(COMPILE.c) -o $@ $<
196 $(CTFCONVERT_O)

198 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/pciex/%.c
199 $(COMPILE.c) -o $@ $<
200 $(CTFCONVERT_O)

202 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/dktp/controller/ata/%.c
203 $(COMPILE.c) -o $@ $<
204 $(CTFCONVERT_O)

206 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/dktp/dcdev/%.c
207 $(COMPILE.c) -o $@ $<
208 $(CTFCONVERT_O)

210 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/dktp/disk/%.c
211 $(COMPILE.c) -o $@ $<
212 $(CTFCONVERT_O)

214 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/dktp/drvobj/%.c
215 $(COMPILE.c) -o $@ $<
216 $(CTFCONVERT_O)

218 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/dktp/hba/ghd/%.c
219 $(COMPILE.c) -o $@ $<
220 $(CTFCONVERT_O)

222 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/dnet/%.c
223 $(COMPILE.c) -o $@ $<
224 $(CTFCONVERT_O)

226 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/scsi/adapters/arcmsr/%.c
227 $(COMPILE.c) -o $@ $<
228 $(CTFCONVERT_O)

230 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/scsi/targets/%.c
231 $(COMPILE.c) -o $@ $<
232 $(CTFCONVERT_O)

234 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/vgatext/%.c
235 $(COMPILE.c) -o $@ $<
236 $(CTFCONVERT_O)

238 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/io/heci/%.c
239 $(COMPILE.c) -o $@ $<
240 $(CTFCONVERT_O)

242 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/nskern/%.s
243 $(COMPILE.s) -o $@ $<

245 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/os/%.c
246 $(COMPILE.c) -o $@ $<
247 $(CTFCONVERT_O)

new/usr/src/uts/intel/Makefile.rules 5

249 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/pcbe/%.c
250 $(COMPILE.c) -o $@ $<
251 $(CTFCONVERT_O)

253 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/promif/%.c
254 $(COMPILE.c) -o $@ $<
255 $(CTFCONVERT_O)

257 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/syscall/%.c
258 $(COMPILE.c) -o $@ $<
259 $(CTFCONVERT_O)

261 $(OBJS_DIR)/%.o: $(UTSBASE)/common/os/%.c
262 $(COMPILE.c) -o $@ $<
263 $(CTFCONVERT_O)

265 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/kdi/%.c
266 $(COMPILE.c) -o $@ $<
267 $(CTFCONVERT_O)

269 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/kdi/%.s
270 $(COMPILE.s) -o $@ $<

272 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/kdi/$(SUBARCH_DIR)/%.s
273 $(COMPILE.s) -o $@ $<

275 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/zfs/%.c
276 $(COMPILE.c) -o $@ $<
277 $(CTFCONVERT_O)

279 #
280 # krtld compiled into unix
281 #

283 KRTLD_INC_PATH = -I$(UTSBASE)/common/krtld -I$(UTSBASE)/intel/sys
284 KRTLD_INC_PATH += -I$(UTSBASE)/intel/$(SUBARCH_DIR)/krtld

286 KRTLD_CPPFLAGS_32 = -DELF_TARGET_386
287 KRTLD_CPPFLAGS_64 = -DELF_TARGET_AMD64 -DMODDIR_SUFFIX=\"amd64\"
288 KRTLD_CPPFLAGS = $(KRTLD_CPPFLAGS_$(CLASS)) -D_KRTLD

290 $(OBJS_DIR)/%.o: $(UTSBASE)/common/krtld/%.c
291 $(COMPILE.c) $(KRTLD_INC_PATH) $(KRTLD_CPPFLAGS) -o $@ $<
292 $(CTFCONVERT_O)

294 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/$(SUBARCH_DIR)/krtld/%.c
295 $(COMPILE.c) $(KRTLD_INC_PATH) $(KRTLD_CPPFLAGS) -o $@ $<
296 $(CTFCONVERT_O)

298 #
299 # _DBOOT indicates that krtld is called from a dboot ELF section
300 #
301 $(OBJS_DIR)/kobj.o := CPPFLAGS += -D_DBOOT

303 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/$(SUBARCH_DIR)/krtld/%.s
304 $(COMPILE.s) $(KRTLD_INC_PATH) $(KRTLD_CPPFLAGS) -o $@ $<
305 $(CTFCONVERT_O)

307 $(OBJS_DIR)/%.o: $(SRC)/common/util/$(SUBARCH_DIR)/%.c
308 $(COMPILE.c) $(KRTLD_INC_PATH) $(KRTLD_CPPFLAGS) -o $@ $<
309 $(CTFCONVERT_O)

312 #
313 # Section 1b: Lint ‘object’ build rules.

new/usr/src/uts/intel/Makefile.rules 6

314 #
315 $(LINTS_DIR)/%.ln: $(SRC)/common/fs/%.c
316 @($(LHEAD) $(LINT.c) $< $(LTAIL))

318 $(LINTS_DIR)/%.ln: $(SRC)/common/util/i386/%.s
319 @($(LHEAD) $(LINT.s) $< $(LTAIL))

321 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/brand/sn1/%.s
322 @($(LHEAD) $(LINT.s) $< $(LTAIL))

324 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/brand/solaris10/%.s
325 @($(LHEAD) $(LINT.s) $< $(LTAIL))

327 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/dtrace/%.c
328 @($(LHEAD) $(LINT.c) $< $(LTAIL))

330 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/dtrace/%.s
331 @($(LHEAD) $(LINT.s) $< $(LTAIL))

333 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/zfs/%.c
334 @($(LHEAD) $(LINT.c) $< $(LTAIL))

336 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/fs/proc/%.c
337 @($(LHEAD) $(LINT.c) $< $(LTAIL))

339 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/ia32/ml/%.s
340 @($(LHEAD) $(LINT.s) $< $(LTAIL))

342 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/ia32/os/%.c
343 @($(LHEAD) $(LINT.c) $< $(LTAIL))

345 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/ia32/promif/%.c
346 @($(LHEAD) $(LINT.c) $< $(LTAIL))

348 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/ia32/syscall/%.c
349 @($(LHEAD) $(LINT.c) $< $(LTAIL))

351 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/%.c
352 @($(LHEAD) $(LINT.c) $< $(LTAIL))

354 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/acpica/%.s
355 @($(LHEAD) $(LINT.s) $< $(LTAIL))

357 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/acpica/%.c
358 @($(LHEAD) $(LINT.c) $< $(LTAIL))

360 $(LINTS_DIR)/%.ln: $(SRC)/common/acpica/components/debugger/%.c
358 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/acpica/debugger/%.c
361 @($(LHEAD) $(LINT.c) $< $(LTAIL))

363 $(LINTS_DIR)/%.ln: $(SRC)/common/acpica/components/events/%.c
361 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/acpica/events/%.c
364 @($(LHEAD) $(LINT.c) $< $(LTAIL))

366 $(LINTS_DIR)/%.ln: $(SRC)/common/acpica/components/hardware/%.c
364 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/acpica/hardware/%.c
367 @($(LHEAD) $(LINT.c) $< $(LTAIL))

369 $(LINTS_DIR)/%.ln: $(SRC)/common/acpica/components/dispatcher/%.c
367 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/acpica/dispatcher/%.c
370 @($(LHEAD) $(LINT.c) $< $(LTAIL))

372 $(LINTS_DIR)/%.ln: $(SRC)/common/acpica/components/executer/%.c
370 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/acpica/executer/%.c
373 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/intel/Makefile.rules 7

375 $(LINTS_DIR)/%.ln: $(SRC)/common/acpica/components/parser/%.c
373 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/acpica/parser/%.c
376 @($(LHEAD) $(LINT.c) $< $(LTAIL))

378 $(LINTS_DIR)/%.ln: $(SRC)/common/acpica/components/namespace/%.c
376 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/acpica/namespace/%.c
379 @($(LHEAD) $(LINT.c) $< $(LTAIL))

381 $(LINTS_DIR)/%.ln: $(SRC)/common/acpica/components/resources/%.c
379 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/acpica/resources/%.c
382 @($(LHEAD) $(LINT.c) $< $(LTAIL))

384 $(LINTS_DIR)/%.ln: $(SRC)/common/acpica/components/tables/%.c
382 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/acpica/tables/%.c
385 @($(LHEAD) $(LINT.c) $< $(LTAIL))

387 $(LINTS_DIR)/%.ln: $(SRC)/common/acpica/components/utilities/%.c
385 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/acpica/utilities/%.c
388 @($(LHEAD) $(LINT.c) $< $(LTAIL))

390 $(LINTS_DIR)/%.ln: $(SRC)/common/acpica/components/disassembler/%.c
388 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/acpica/disassembler/%.c
391 @($(LHEAD) $(LINT.c) $< $(LTAIL))

393 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/agpgart/%.c
394 @($(LHEAD) $(LINT.c) $< $(LTAIL))

396 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/agpmaster/%.c
397 @($(LHEAD) $(LINT.c) $< $(LTAIL))

399 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/amd8111s/%.c
400 @($(LHEAD) $(LINT.c) $< $(LTAIL))

402 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/amr/%.c
403 @($(LHEAD) $(LINT.c) $< $(LTAIL))

405 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/scsi/adapters/arcmsr/%.c
406 @($(LHEAD) $(LINT.c) $< $(LTAIL))

408 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/drm/%.c
409 @($(LHEAD) $(LINT.c) $< $(LTAIL))

411 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/hotplug/pcicfg/%.c
412 @($(LHEAD) $(LINT.c) $< $(LTAIL))

414 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/hotplug/pci/%.c
415 @($(LHEAD) $(LINT.c) $< $(LTAIL))

417 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/intel_nb5000/%.c
418 @($(LHEAD) $(LINT.c) $< $(LTAIL))

420 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/intel_nhm/%.c
421 @($(LHEAD) $(LINT.c) $< $(LTAIL))

423 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/ipmi/%.c
424 @($(LHEAD) $(LINT.c) $< $(LTAIL))

426 $(LINTS_DIR)/%.ln: $(SRC)/common/mc/mc-amd/%.c
427 @($(LHEAD) $(LINT.c) $< $(LTAIL))

429 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/mc-amd/%.c
430 @($(LHEAD) $(LINT.c) $< $(LTAIL))

432 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/pci/%.c
433 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/intel/Makefile.rules 8

435 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/pciex/%.c
436 @($(LHEAD) $(LINT.c) $< $(LTAIL))

438 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/dktp/controller/ata/%.c
439 @($(LHEAD) $(LINT.c) $< $(LTAIL))

441 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/dktp/dcdev/%.c
442 @($(LHEAD) $(LINT.c) $< $(LTAIL))

444 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/dktp/disk/%.c
445 @($(LHEAD) $(LINT.c) $< $(LTAIL))

447 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/dktp/drvobj/%.c
448 @($(LHEAD) $(LINT.c) $< $(LTAIL))

450 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/dktp/hba/ghd/%.c
451 @($(LHEAD) $(LINT.c) $< $(LTAIL))

453 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/dnet/%.c
454 @($(LHEAD) $(LINT.c) $< $(LTAIL))

456 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/scsi/targets/%.c
457 @($(LHEAD) $(LINT.c) $< $(LTAIL))

459 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/vgatext/%.c
460 @($(LHEAD) $(LINT.c) $< $(LTAIL))

462 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/io/heci/%.c
463 @($(LHEAD) $(LINT.c) $< $(LTAIL))

465 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/os/%.c
466 @($(LHEAD) $(LINT.c) $< $(LTAIL))

468 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/pcbe/%.c
469 @($(LHEAD) $(LINT.c) $< $(LTAIL))

471 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/promif/%.c
472 @($(LHEAD) $(LINT.c) $< $(LTAIL))

474 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/syscall/%.c
475 @($(LHEAD) $(LINT.c) $< $(LTAIL))

477 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/os/%.c
478 @($(LHEAD) $(LINT.c) $< $(LTAIL))

480 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/kdi/%.c
481 @($(LHEAD) $(LINT.c) $< $(LTAIL))

483 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/kdi/%.s
484 @($(LHEAD) $(LINT.s) $< $(LTAIL))

486 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/kdi/$(SUBARCH_DIR)/%.s
487 @($(LHEAD) $(LINT.s) $< $(LTAIL))

489 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/nskern/%.s
490 @($(LHEAD) $(LINT.s) $< $(LTAIL))

492 #
493 # krtld lints
494 #
495 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/krtld/%.c
496 @($(LHEAD) $(LINT.c) $(KRTLD_INC_PATH) $(KRTLD_CPPFLAGS) $< $(LTAIL))

498 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/$(SUBARCH_DIR)/krtld/%.c
499 @($(LHEAD) $(LINT.c) $(KRTLD_INC_PATH) $(KRTLD_CPPFLAGS) $< $(LTAIL))

new/usr/src/uts/intel/Makefile.rules 9

501 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/$(SUBARCH_DIR)/krtld/%.s
502 @($(LHEAD) $(LINT.s) $(KRTLD_INC_PATH) $(KRTLD_CPPFLAGS) $< $(LTAIL))

504 $(LINTS_DIR)/%.ln: $(SRC)/common/util/$(SUBARCH_DIR)/%.c
505 @($(LHEAD) $(LINT.c) $(KRTLD_INC_PATH) $(KRTLD_CPPFLAGS) $< $(LTAIL))

507 $(OBJS_DIR)/kobj.ln := CPPFLAGS += -D_DBOOT

new/usr/src/uts/intel/acpica/Makefile 1

**
 1595 Thu Dec 26 13:50:37 2013
new/usr/src/uts/intel/acpica/Makefile
PANKOVs restructure
**

1 #
2 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
3 # Use is subject to license terms.
4 #
5 #
6 # This makefile drives the production of the ACPI CA services
7 # kernel module.
8 #
9 # intel architecture dependent

10 #

12 #
13 # Path to the base of the uts directory tree (usually /usr/src/uts).
14 #
15 UTSBASE = ../..

17 #
18 # Define the module and object file sets.
19 #
20 MODULE = acpica
21 OBJECTS = $(ACPICA_OBJS:%=$(OBJS_DIR)/%)
22 LINTS = $(ACPICA_OBJS:%.o=$(LINTS_DIR)/%.ln)
23 ROOTMODULE = $(ROOT_MISC_DIR)/$(MODULE)
24 INC_PATH += -I$(UTSBASE)/intel/sys/acpi
25 INC_PATH += -I$(UTSBASE)/i86pc
26 INC_PATH += -I$(SRC)/common
27 INC_PATH += -I$(SRC)/common/acpica/include

29 #
30 # Include common rules.
31 #
32 include $(UTSBASE)/intel/Makefile.intel

34 #
35 # Define targets
36 #
37 ALL_TARGET = $(BINARY) $(CONFMOD)
38 LINT_TARGET = $(MODULE).lint
39 INSTALL_TARGET = $(BINARY) $(ROOTMODULE)

41 #
42 # Overrides.
43 #
44 DEBUG_DEFS += $(DEBUG_FLGS)

46 #
47 # lint pass one non-enforcement
48 #
49 CFLAGS += $(CCVERBOSE) -DACPI_USE_LOCAL_CACHE
48 CFLAGS += $(CCVERBOSE) -DPWRDMN -DACPI_USE_LOCAL_CACHE -DACPI_DEBUG_OUTPUT

51 #
52 # 3rd party code is not lint clean
53 #
53 CERRWARN += -erroff=E_STATEMENT_NOT_REACHED

54 LINTFLAGS += -errchk=%none
55 LINTFLAGS += -errhdr=%none
56 LINTFLAGS += -erroff=%all
57 LINTFLAGS += -errwarn=%none

new/usr/src/uts/intel/acpica/Makefile 2

59 CERRWARN += -_cc=-erroff=E_STATEMENT_NOT_REACHED

61 CERRWARN += -_gcc=-Wno-unused-variable
62 CERRWARN += -_gcc=-Wno-parentheses
63 CERRWARN += -_gcc=-Wno-uninitialized

65 #
66 # Default build targets.
67 #
68 .KEEP_STATE:

70 def: $(DEF_DEPS)

72 all: $(ALL_DEPS)

74 clean: $(CLEAN_DEPS)

76 clobber: $(CLOBBER_DEPS)

78 lint: $(LINT_DEPS)

80 modlintlib: $(MODLINTLIB_DEPS)

82 clean.lint: $(CLEAN_LINT_DEPS)

84 install: $(INSTALL_DEPS)

86 #
87 # Include common targets.
88 #
89 include $(UTSBASE)/intel/Makefile.targ

new/usr/src/uts/intel/io/acpica/acpi_enum.c 1

**
 28791 Thu Dec 26 13:50:38 2013
new/usr/src/uts/intel/io/acpica/acpi_enum.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
22 * Copyright (c) 2012 Gary Mills
23 *
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 * Copyright (c) 2012 Gary Mills
26 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
27 */

29 /*
30 * ACPI enumerator
31 */

33 #include <sys/ddi.h>
34 #include <sys/sunddi.h>
35 #include <sys/sunndi.h>
36 #include <sys/note.h>
36 #include <sys/acpi/acpi.h>
37 #include <sys/acpica.h>
37 #include <util/sscanf.h>

39 #include <acpica/include/acpi.h>
40 #include <sys/acpica.h>

42 static char keyboard_alias[] = "keyboard";
43 static char mouse_alias[] = "mouse";
44 #define ACPI_ENUM_DEBUG "acpi_enum_debug"
45 #define PARSE_RESOURCES_DEBUG 0x0001
46 #define MASTER_LOOKUP_DEBUG 0x0002
47 #define DEVICES_NOT_ENUMED 0x0004
48 #define PARSE_RES_IRQ 0x0008
49 #define PARSE_RES_DMA 0x0010
50 #define PARSE_RES_MEMORY 0x0020
51 #define PARSE_RES_IO 0x0040
52 #define PARSE_RES_ADDRESS 0x0080
53 #define ISA_DEVICE_ENUM 0x1000
54 #define PROCESS_CIDS 0x2000
55 static unsigned long acpi_enum_debug = 0x00;

57 static char USED_RESOURCES[] = "used-resources";

new/usr/src/uts/intel/io/acpica/acpi_enum.c 2

58 static dev_info_t *usedrdip = NULL;
59 static unsigned short used_interrupts = 0;
60 static unsigned short used_dmas = 0;
61 typedef struct used_io_mem {
62 unsigned int start_addr;
63 unsigned int length;
64 struct used_io_mem *next;
65 } used_io_mem_t;

______unchanged_portion_omitted_

new/usr/src/uts/intel/io/acpica/acpica.c 1

**
 22335 Thu Dec 26 13:50:38 2013
new/usr/src/uts/intel/io/acpica/acpica.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, Joyent, Inc. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 */

28 /*
29 * Copyright (c) 2009, Intel Corporation.
30 * All rights reserved.
31 */

33 /*
34 * x86 ACPI CA services
31 * Solaris x86 ACPI CA services
35 */

37 #include <sys/file.h>
38 #include <sys/errno.h>
39 #include <sys/conf.h>
40 #include <sys/modctl.h>
41 #include <sys/open.h>
42 #include <sys/stat.h>
43 #include <sys/spl.h>
44 #include <sys/ddi.h>
45 #include <sys/sunddi.h>
46 #include <sys/esunddi.h>
47 #include <sys/kstat.h>
48 #include <sys/x86_archext.h>

50 #include <acpica/include/acpi.h>
47 #include <sys/acpi/acpi.h>
51 #include <sys/acpica.h>
52 #include <sys/archsystm.h>

54 /*
55 *
56 */
57 static struct modlmisc modlmisc = {
58 &mod_miscops,

new/usr/src/uts/intel/io/acpica/acpica.c 2

59 "ACPI interpreter",
60 };

______unchanged_portion_omitted_

327 /*
328 * Process acpi-user-options property if present
329 */
330 static void
331 acpica_process_user_options()
332 {
333 static int processed = 0;
334 int acpi_user_options;
335 char *acpi_prop;

337 /*
338 * return if acpi-user-options has already been processed
339 */
340 if (processed)
341 return;
342 else
343 processed = 1;

345 /* converts acpi-user-options from type string to int, if any */
346 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
347 DDI_PROP_DONTPASS, "acpi-user-options", &acpi_prop) ==
348 DDI_PROP_SUCCESS) {
349 long data;
350 int ret;
351 ret = ddi_strtol(acpi_prop, NULL, 0, &data);
352 if (ret == 0) {
353 e_ddi_prop_remove(DDI_DEV_T_NONE, ddi_root_node(),
354 "acpi-user-options");
355 e_ddi_prop_update_int(DDI_DEV_T_NONE, ddi_root_node(),
356 "acpi-user-options", data);
357 }
358 ddi_prop_free(acpi_prop);
359 }

361 /*
362 * fetch the optional options property
363 */
364 acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(),
365 DDI_PROP_DONTPASS, "acpi-user-options", 0);

367 /*
368 * Note that ’off’ has precedence over ’on’
369 * Also note - all cases of ACPI_OUSER_MASK
370 * provided here, no default: case is present
371 */
372 switch (acpi_user_options & ACPI_OUSER_MASK) {
373 case ACPI_OUSER_DFLT:
374 acpica_enable = acpica_check_bios_date(1999, 1, 1);
375 break;
376 case ACPI_OUSER_ON:
377 acpica_enable = TRUE;
378 break;
379 case ACPI_OUSER_OFF:
380 case ACPI_OUSER_OFF | ACPI_OUSER_ON:
381 acpica_enable = FALSE;
382 break;
383 }

385 acpi_init_level = ACPI_FULL_INITIALIZATION;

387 /*

new/usr/src/uts/intel/io/acpica/acpica.c 3

388 * special test here; may be generalized in the
389 * future - test for a machines that are known to
390 * work only in legacy mode, and set OUSER_LEGACY if
391 * we’re on one
392 */
393 if (acpica_metro_old_bios())
394 acpi_user_options |= ACPI_OUSER_LEGACY;

396 /*
397 * If legacy mode is specified, set initialization
398 * options to avoid entering ACPI mode and hooking SCI
399 * - basically try to act like legacy acpi_intp
400 */
401 if ((acpi_user_options & ACPI_OUSER_LEGACY) != 0)
402 acpi_init_level |= (ACPI_NO_ACPI_ENABLE | ACPI_NO_HANDLER_INIT);

404 /*
405 * modify default ACPI CA debug output level for non-DEBUG builds
406 * (to avoid BIOS debug chatter in /var/adm/messages)
407 */
408 if (acpica_muzzle_debug_output) {
409 AcpiDbgLayer = 0;
405 if (acpica_muzzle_debug_output)
410 AcpiDbgLevel = 0;
411 }
412 }

______unchanged_portion_omitted_

new/usr/src/uts/intel/io/acpica/acpica_ec.c 1

**
 16042 Thu Dec 26 13:50:39 2013
new/usr/src/uts/intel/io/acpica/acpica_ec.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 * Copyright 2011 Joyent, Inc. All rights reserved.
26 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
27 */

29 /*
30 * x86 ACPI CA Embedded Controller operation region handler
28 * Solaris x86 ACPI CA Embedded Controller operation region handler
31 */

33 #include <sys/file.h>
34 #include <sys/errno.h>
35 #include <sys/conf.h>
36 #include <sys/modctl.h>
37 #include <sys/open.h>
38 #include <sys/stat.h>
39 #include <sys/ddi.h>
40 #include <sys/sunddi.h>
41 #include <sys/note.h>
42 #include <sys/atomic.h>

44 #include <acpica/include/acpi.h>
42 #include <sys/acpi/acpi.h>
45 #include <sys/acpica.h>

47 /*
48 * EC status bits
49 * Low to high
50 * Output buffer full?
51 * Input buffer full?
52 * <reserved>
53 * Data register is command byte?
54 * Burst mode enabled?
55 * SCI event?
56 * SMI event?
57 * <reserved>
58 */

new/usr/src/uts/intel/io/acpica/acpica_ec.c 2

59 #define EC_OBF (0x01)
60 #define EC_IBF (0x02)
61 #define EC_DRC (0x08)
62 #define EC_BME (0x10)
63 #define EC_SCI (0x20)
64 #define EC_SMI (0x40)

66 /*
67 * EC commands
68 */
69 #define EC_RD (0x80)
70 #define EC_WR (0x81)
71 #define EC_BE (0x82)
72 #define EC_BD (0x83)
73 #define EC_QR (0x84)

75 #define IO_PORT_DES (0x47)

77 /*
78 * EC softstate
79 */
80 static struct ec_softstate {
81 uint8_t ec_ok; /* != 0 if we have ec_base, ec_sc */
82 uint16_t ec_base; /* base of EC I/O port - data */
83 uint16_t ec_sc; /* EC status/command */
84 ACPI_HANDLE ec_dev_hdl; /* EC device handle */
85 ACPI_HANDLE ec_gpe_hdl; /* GPE info */
86 ACPI_INTEGER ec_gpe_bit;
87 kmutex_t ec_mutex; /* serialize access to EC */
88 } ec;

______unchanged_portion_omitted_

new/usr/src/uts/intel/io/acpica/master_ops.c 1

**
 8653 Thu Dec 26 13:50:41 2013
new/usr/src/uts/intel/io/acpica/master_ops.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25 */

27 #include <sys/kobj.h>
28 #include <sys/kobj_lex.h>
29 #include <sys/ddi.h>
30 #include <sys/sunddi.h>
31 #include <sys/sunndi.h>

33 #include <acpica/include/acpi.h>
30 #include <sys/acpi/acpi.h>
34 #include <sys/acpica.h>

36 #define masterfile "/boot/solaris/devicedb/master"

38 /*
39 * Internal definitions
40 */

42 typedef enum {
43 MF_UNEXPECTED = -1,
44 MF_IDENT,
45 MF_STRING,
46 MF_EOF,
47 MF_NEWLINE,
48 MF_EQUALS,
49 MF_BIT_OR
50 } mftoken_t;

______unchanged_portion_omitted_

new/usr/src/uts/intel/io/acpica/osl.c 1

**
 51515 Thu Dec 26 13:50:42 2013
new/usr/src/uts/intel/io/acpica/osl.c
acpica-unix2-20130823
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 * Copyright 2012 Joyent, Inc. All rights reserved.
26 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
27 * Copyright 2013 PALO, Richard. All rights reserved.
25 * Copyright 2011 Joyent, Inc. All rights reserved.
28 */

30 /*
31 * Copyright (c) 2009-2010, Intel Corporation.
32 * All rights reserved.
33 */

35 /*
36 * x86 ACPI CA OSL
32 * ACPI CA OSL for Solaris x86
37 */

39 #include <sys/types.h>
40 #include <sys/kmem.h>
41 #include <sys/psm.h>
42 #include <sys/pci_cfgspace.h>
43 #include <sys/apic.h>
44 #include <sys/ddi.h>
45 #include <sys/sunddi.h>
46 #include <sys/sunndi.h>
47 #include <sys/pci.h>
48 #include <sys/kobj.h>
49 #include <sys/taskq.h>
50 #include <sys/strlog.h>
51 #include <sys/x86_archext.h>
52 #include <sys/note.h>
53 #include <sys/promif.h>

55 #include <acpica/include/accommon.h>
51 #include <sys/acpi/accommon.h>
56 #include <sys/acpica.h>

new/usr/src/uts/intel/io/acpica/osl.c 2

58 #define MAX_DAT_FILE_SIZE (64*1024)

60 /* local functions */
61 static int CompressEisaID(char *np);

63 static void scan_d2a_subtree(dev_info_t *dip, ACPI_HANDLE acpiobj, int bus);
64 static int acpica_query_bbn_problem(void);
65 static int acpica_find_pcibus(int busno, ACPI_HANDLE *rh);
66 static int acpica_eval_hid(ACPI_HANDLE dev, char *method, int *rint);
67 static ACPI_STATUS acpica_set_devinfo(ACPI_HANDLE, dev_info_t *);
68 static ACPI_STATUS acpica_unset_devinfo(ACPI_HANDLE);
69 static void acpica_devinfo_handler(ACPI_HANDLE, void *);

71 /*
72 * Event queue vars
73 */
74 int acpica_eventq_init = 0;
75 ddi_taskq_t *osl_eventq[OSL_EC_BURST_HANDLER+1];

77 /*
78 * Priorities relative to minclsyspri that each taskq
79 * run at; OSL_NOTIFY_HANDLER needs to run at a higher
80 * priority than OSL_GPE_HANDLER. There’s an implicit
81 * assumption that no priority here results in exceeding
82 * maxclsyspri.
83 * Note: these initializations need to match the order of
84 * ACPI_EXECUTE_TYPE.
85 */
86 int osl_eventq_pri_delta[OSL_EC_BURST_HANDLER+1] = {
87 0, /* OSL_GLOBAL_LOCK_HANDLER */
88 2, /* OSL_NOTIFY_HANDLER */
89 0, /* OSL_GPE_HANDLER */
90 0, /* OSL_DEBUGGER_THREAD */
91 0, /* OSL_EC_POLL_HANDLER */
92 0 /* OSL_EC_BURST_HANDLER */
93 };

______unchanged_portion_omitted_

322 ACPI_STATUS
323 AcpiOsPhysicalTableOverride(ACPI_TABLE_HEADER *ExistingTable,
324 ACPI_PHYSICAL_ADDRESS *NewAddress, UINT32 *NewTableLength)
325 {
326 return (AE_SUPPORT);
327 }

329 /*
330 * ACPI semaphore implementation
331 */
332 typedef struct {
333 kmutex_t mutex;
334 kcondvar_t cv;
335 uint32_t available;
336 uint32_t initial;
337 uint32_t maximum;
338 } acpi_sema_t;

______unchanged_portion_omitted_

756 void
757 AcpiOsWaitEventsComplete (void)
758 {
759 if (acpica_eventq_init) {
760 int i;
761 /*
762 * blocks until all events initiated by AcpiOsExecute have compl
763 */
764 for (i = OSL_GLOBAL_LOCK_HANDLER; i <= OSL_EC_BURST_HANDLER; i++

new/usr/src/uts/intel/io/acpica/osl.c 3

765 if (osl_eventq[i])
766 ddi_taskq_wait(osl_eventq[i]);
767 }
768 }
769 return;
770 }

772 void
773 AcpiOsSleep(ACPI_INTEGER Milliseconds)
774 {
775 /*
776 * During kernel startup, before the first tick interrupt
777 * has taken place, we can’t call delay; very late in
778 * kernel shutdown or suspend/resume, clock interrupts
779 * are blocked, so delay doesn’t work then either.
780 * So we busy wait if lbolt == 0 (kernel startup)
781 * or if acpica_use_safe_delay has been set to a
782 * non-zero value.
783 */
784 if ((ddi_get_lbolt() == 0) || acpica_use_safe_delay)
785 drv_usecwait(Milliseconds * 1000);
786 else
787 delay(drv_usectohz(Milliseconds * 1000));
788 }

______unchanged_portion_omitted_

902 /*
903 *
904 */

906 #define OSL_RW(ptr, val, type, rw) \
907 { if (rw) *((type *)(ptr)) = *((type *) val); \
908 else *((type *) val) = *((type *)(ptr)); }

911 static void
912 osl_rw_memory(ACPI_PHYSICAL_ADDRESS Address, UINT64 *Value,
886 osl_rw_memory(ACPI_PHYSICAL_ADDRESS Address, UINT32 *Value,
913 UINT32 Width, int write)
914 {
915 size_t maplen = Width / 8;
916 caddr_t ptr;

918 ptr = psm_map_new((paddr_t)Address, maplen,
919 PSM_PROT_WRITE | PSM_PROT_READ);

921 switch (maplen) {
922 case 1:
923 OSL_RW(ptr, Value, uint8_t, write);
924 break;
925 case 2:
926 OSL_RW(ptr, Value, uint16_t, write);
927 break;
928 case 4:
929 OSL_RW(ptr, Value, uint32_t, write);
930 break;
931 case 8:
932 OSL_RW(ptr, Value, uint64_t, write);
933 break;
934 default:
935 cmn_err(CE_WARN, "!osl_rw_memory: invalid size %d",
936 Width);
937 break;
938 }

new/usr/src/uts/intel/io/acpica/osl.c 4

940 psm_unmap(ptr, maplen);
941 }

943 ACPI_STATUS
944 AcpiOsReadMemory(ACPI_PHYSICAL_ADDRESS Address,
945 UINT64 *Value, UINT32 Width)
916 UINT32 *Value, UINT32 Width)
946 {
947 osl_rw_memory(Address, Value, Width, 0);
948 return (AE_OK);
949 }

951 ACPI_STATUS
952 AcpiOsWriteMemory(ACPI_PHYSICAL_ADDRESS Address,
953 UINT64 Value, UINT32 Width)
924 UINT32 Value, UINT32 Width)
954 {
955 osl_rw_memory(Address, &Value, Width, 1);
956 return (AE_OK);
957 }

______unchanged_portion_omitted_

new/usr/src/uts/intel/io/pci/pci_boot.c 1

**
 96795 Thu Dec 26 13:50:44 2013
new/usr/src/uts/intel/io/pci/pci_boot.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 #include <sys/types.h>
26 #include <sys/stat.h>
27 #include <sys/sysmacros.h>
28 #include <sys/sunndi.h>
29 #include <sys/pci.h>
30 #include <sys/pci_impl.h>
31 #include <sys/pcie_impl.h>
32 #include <sys/memlist.h>
33 #include <sys/bootconf.h>
34 #include <io/pci/mps_table.h>
35 #include <sys/pci_cfgacc.h>
36 #include <sys/pci_cfgspace.h>
37 #include <sys/pci_cfgspace_impl.h>
38 #include <sys/psw.h>
39 #include "../../../../common/pci/pci_strings.h"
40 #include <sys/apic.h>
41 #include <io/pciex/pcie_nvidia.h>
42 #include <sys/hotplug/pci/pciehpc_acpi.h>
43 #include <acpica/include/acpi.h>
43 #include <sys/acpi/acpi.h>
44 #include <sys/acpica.h>
45 #include <sys/iommulib.h>
46 #include <sys/devcache.h>
47 #include <sys/pci_cfgacc_x86.h>

49 #define pci_getb (*pci_getb_func)
50 #define pci_getw (*pci_getw_func)
51 #define pci_getl (*pci_getl_func)
52 #define pci_putb (*pci_putb_func)
53 #define pci_putw (*pci_putw_func)
54 #define pci_putl (*pci_putl_func)
55 #define dcmn_err if (pci_boot_debug) cmn_err

57 #define CONFIG_INFO 0
58 #define CONFIG_UPDATE 1
59 #define CONFIG_NEW 2
60 #define CONFIG_FIX 3

new/usr/src/uts/intel/io/pci/pci_boot.c 2

61 #define COMPAT_BUFSIZE 512

63 #define PPB_IO_ALIGNMENT 0x1000 /* 4K aligned */
64 #define PPB_MEM_ALIGNMENT 0x100000 /* 1M aligned */
65 /* round down to nearest power of two */
66 #define P2LE(align) \
67 { \
68 int i = 0; \
69 while (align >>= 1) \
70 i ++; \
71 align = 1 << i; \
72 } \

74 /* for is_vga and list_is_vga_only */

76 enum io_mem {
77 IO,
78 MEM
79 };

______unchanged_portion_omitted_

new/usr/src/uts/intel/io/pci/pci_resource.c 1

**
 16007 Thu Dec 26 13:50:45 2013
new/usr/src/uts/intel/io/pci/pci_resource.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 *
25 * pci_resource.c -- routines to retrieve available bus resources from
26 * the MP Spec. Table and Hotplug Resource Table
27 */

29 #include <sys/types.h>
30 #include <sys/memlist.h>
31 #include <sys/pci_impl.h>
32 #include <sys/systm.h>
33 #include <sys/cmn_err.h>
34 #include <acpica/include/acpi.h>
34 #include <sys/acpi/acpi.h>
35 #include <sys/acpica.h>
36 #include "mps_table.h"
37 #include "pcihrt.h"

39 extern int pci_boot_debug;
40 extern int pci_bios_maxbus;
41 #define dprintf if (pci_boot_debug) printf

43 static int tbl_init = 0;
44 static uchar_t *mps_extp = NULL;
45 static uchar_t *mps_ext_endp = NULL;
46 static struct php_entry *hrt_hpep;
47 static int hrt_entry_cnt = 0;
48 static int acpi_cb_cnt = 0;

50 static void mps_probe(void);
51 static void acpi_pci_probe(void);
52 static int mps_find_bus_res(int, int, struct memlist **);
53 static void hrt_probe(void);
54 static int hrt_find_bus_res(int, int, struct memlist **);
55 static int acpi_find_bus_res(int, int, struct memlist **);
56 static uchar_t *find_sig(uchar_t *cp, int len, char *sig);
57 static int checksum(unsigned char *cp, int len);
58 static ACPI_STATUS acpi_wr_cb(ACPI_RESOURCE *rp, void *context);
59 void bus_res_fini(void);
60 static void acpi_trim_bus_ranges(void);

new/usr/src/uts/intel/io/pci/pci_resource.c 2

62 struct memlist *acpi_io_res[256];
63 struct memlist *acpi_mem_res[256];
64 struct memlist *acpi_pmem_res[256];
65 struct memlist *acpi_bus_res[256];

67 /*
68 * -1 = attempt ACPI resource discovery
69 * 0 = don’t attempt ACPI resource discovery
70 * 1 = ACPI resource discovery successful
71 */
72 volatile int acpi_resource_discovery = -1;

74 struct memlist *
75 find_bus_res(int bus, int type)
76 {
77 struct memlist *res = NULL;

79 if (tbl_init == 0) {
80 tbl_init = 1;
81 acpi_pci_probe();
82 hrt_probe();
83 mps_probe();
84 }

86 if (acpi_find_bus_res(bus, type, &res) > 0)
87 return (res);

89 if (hrt_find_bus_res(bus, type, &res) > 0)
90 return (res);

92 (void) mps_find_bus_res(bus, type, &res);
93 return (res);
94 }

______unchanged_portion_omitted_

new/usr/src/uts/intel/io/pciex/pcie_acpi.c 1

**
 7920 Thu Dec 26 13:50:45 2013
new/usr/src/uts/intel/io/pciex/pcie_acpi.c
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 #include <sys/sysmacros.h>
26 #include <sys/types.h>
27 #include <sys/kmem.h>
28 #include <sys/ddi.h>
29 #include <sys/sunddi.h>
30 #include <sys/sunndi.h>
31 #include <sys/promif.h>
32 #include <sys/pcie.h>
33 #include <sys/pci_cap.h>
34 #include <sys/pcie_impl.h>
35 #include <sys/pcie_acpi.h>
36 #include <acpica/include/acpi.h>
36 #include <sys/acpi/acpi.h>
37 #include <sys/acpica.h>

39 ACPI_STATUS pcie_acpi_eval_osc(dev_info_t *dip, ACPI_HANDLE osc_hdl,
40 uint32_t *osc_flags);
41 static ACPI_STATUS pcie_acpi_find_osc(ACPI_HANDLE busobj,
42 ACPI_HANDLE *osc_hdlp);

44 #ifdef DEBUG
45 static void pcie_dump_acpi_obj(ACPI_HANDLE pcibus_obj);
46 static ACPI_STATUS pcie_walk_obj_namespace(ACPI_HANDLE hdl, uint32_t nl,
47 void *context, void **ret);
48 static ACPI_STATUS pcie_print_acpi_name(ACPI_HANDLE hdl, uint32_t nl,
49 void *context, void **ret);
50 #endif /* DEBUG */

52 int
53 pcie_acpi_osc(dev_info_t *dip, uint32_t *osc_flags)
54 {
55 ACPI_HANDLE pcibus_obj;
56 int status = AE_ERROR;
57 ACPI_HANDLE osc_hdl;
58 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
59 pcie_x86_priv_t *osc_p = (pcie_x86_priv_t *)bus_p->bus_plat_private;

new/usr/src/uts/intel/io/pciex/pcie_acpi.c 2

61 /* Mark this so we know _OSC has been called for this device */
62 osc_p->bus_osc = B_TRUE;

64 /*
65 * (1) Find the ACPI device node for this bus node.
66 */
67 status = acpica_get_handle(dip, &pcibus_obj);
68 if (status != AE_OK) {
69 PCIE_DBG("No ACPI device found (dip %p)\n", (void *)dip);
70 return (DDI_FAILURE);
71 }

73 /*
74 * (2) Check if _OSC method is present.
75 */
76 if (pcie_acpi_find_osc(pcibus_obj, &osc_hdl) != AE_OK) {
77 /* no _OSC method present */
78 PCIE_DBG("no _OSC method present for dip %p\n",
79 (void *)dip);
80 return (DDI_FAILURE);
81 }

83 /*
84 * (3) _OSC method exists; evaluate _OSC.
85 */
86 if (pcie_acpi_eval_osc(dip, osc_hdl, osc_flags) != AE_OK) {
87 PCIE_DBG("Failed to evaluate _OSC method for dip 0x%p\n",
88 (void *)dip);
89 return (DDI_FAILURE);
90 }

92 osc_p->bus_osc_hp = (*osc_flags & OSC_CONTROL_PCIE_NAT_HP) ?
93 B_TRUE : B_FALSE;
94 osc_p->bus_osc_aer = (*osc_flags & OSC_CONTROL_PCIE_ADV_ERR) ?
95 B_TRUE : B_FALSE;

97 #ifdef DEBUG
98 if (pcie_debug_flags > 1)
99 pcie_dump_acpi_obj(pcibus_obj);
100 #endif /* DEBUG */

102 return (DDI_SUCCESS);
103 }

______unchanged_portion_omitted_

new/usr/src/uts/intel/pci_autoconfig/Makefile 1

**
 2322 Thu Dec 26 13:50:46 2013
new/usr/src/uts/intel/pci_autoconfig/Makefile
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # uts/intel/pci_autoconfig/Makefile
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # This makefile drives the production of the PCI autoconfiguration
27 # kernel module.
28 #
29 # intel platform dependent
30 #

32 #
33 # Path to the base of the uts directory tree (usually /usr/src/uts).
34 #
35 UTSBASE = ../..

37 #
38 # Define the module and object file sets.
39 #
40 MODULE = pci_autoconfig
41 OBJECTS = $(PCI_AUTOCONFIG_OBJS:%=$(OBJS_DIR)/%)
42 LINTS = $(PCI_AUTOCONFIG_OBJS:%.o=$(LINTS_DIR)/%.ln)
43 ROOTMODULE = $(ROOT_MISC_DIR)/$(MODULE)
44 INC_PATH += -I$(UTSBASE)/i86pc
45 INC_PATH += -I$(SRC)/common

47 #
48 # Include common rules.
49 #
50 include $(UTSBASE)/intel/Makefile.intel

52 #
53 # Define targets
54 #
55 ALL_TARGET = $(BINARY)
56 LINT_TARGET = $(MODULE).lint
57 INSTALL_TARGET = $(BINARY) $(ROOTMODULE)

59 #
60 # Depends on acpica ACPI CA interpreter and PCI-E framework
61 #

new/usr/src/uts/intel/pci_autoconfig/Makefile 2

62 LDFLAGS += -dy -Nmisc/acpica -Nmisc/pcie

64 #
65 # For now, disable these lint checks; maintainers should endeavor
66 # to investigate and remove these for maximum lint coverage.
67 # Please do not carry these forward to new Makefiles.
68 #
69 LINTTAGS += -erroff=E_BAD_PTR_CAST_ALIGN
70 LINTTAGS += -erroff=E_ASSIGN_NARROW_CONV

72 CERRWARN += -_gcc=-Wno-parentheses

74 #
75 # Default build targets.
76 #
77 .KEEP_STATE:

79 def: $(DEF_DEPS)

81 all: $(ALL_DEPS)

83 clean: $(CLEAN_DEPS)

85 clobber: $(CLOBBER_DEPS)

87 lint: $(LINT_DEPS)

89 modlintlib: $(MODLINTLIB_DEPS)

91 clean.lint: $(CLEAN_LINT_DEPS)

93 install: $(INSTALL_DEPS)

95 #
96 # Include common targets.
97 #
98 include $(UTSBASE)/intel/Makefile.targ

new/usr/src/uts/intel/power/Makefile 1

**
 2365 Thu Dec 26 13:50:46 2013
new/usr/src/uts/intel/power/Makefile
PANKOVs restructure
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # uts/intel/power/Makefile
23 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 #
28 # This makefile drives the production of the power driver
29 #
30 # intel architecture dependent
31 #

33 #
34 # Path to the base of the uts directory tree (usually /usr/src/uts).
35 #
36 UTSBASE = ../..

38 #
39 # Define the module and object file sets.
40 #
41 MODULE = power
42 OBJECTS = $(POWER_OBJS:%=$(OBJS_DIR)/%)
43 LINTS = $(POWER_OBJS:%.o=$(LINTS_DIR)/%.ln)
44 ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE)
45 CONF_SRCDIR = $(UTSBASE)/common/io
46 INC_PATH += -I$(SRC)/common

48 #
49 # Include common rules.
50 #
51 include $(UTSBASE)/intel/Makefile.intel

53 #
54 # Define targets
55 #
56 ALL_TARGET = $(BINARY) $(CONFMOD)
57 LINT_TARGET = $(MODULE).lint
58 INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOT_CONFFILE)

60 #
61 # lint pass one enforcement

new/usr/src/uts/intel/power/Makefile 2

62 #
63 CFLAGS += $(CCVERBOSE)

65 #
66 # ACPI power button
67 #
68 CFLAGS += -DACPI_POWER_BUTTON
69 LINTFLAGS += -DACPI_POWER_BUTTON

71 LDFLAGS += -dy -N misc/acpica

73 #
74 # For now, disable these lint checks; maintainers should endeavor
75 # to investigate and remove these for maximum lint coverage.
76 # Please do not carry these forward to new Makefiles.
77 #
78 LINTTAGS += -erroff=E_BAD_PTR_CAST_ALIGN
79 LINTTAGS += -erroff=E_STATIC_UNUSED

81 CERRWARN += -_gcc=-Wno-unused-variable

83 #
84 # Default build targets.
85 #
86 .KEEP_STATE:

88 def: $(DEF_DEPS)

90 all: $(ALL_DEPS)

92 clean: $(CLEAN_DEPS)

94 clobber: $(CLOBBER_DEPS)

96 lint: $(LINT_DEPS)

98 modlintlib: $(MODLINTLIB_DEPS)

100 clean.lint: $(CLEAN_LINT_DEPS)

102 install: $(INSTALL_DEPS)

104 #
105 # Include common targets.
106 #
107 include $(UTSBASE)/intel/Makefile.targ

new/usr/src/uts/intel/sys/hotplug/pci/pciehpc_acpi.h 1

**
 2492 Thu Dec 26 13:50:48 2013
new/usr/src/uts/intel/sys/hotplug/pci/pciehpc_acpi.h
PANKOVs restructure
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ifndef _PCIEHPC_ACPI_H
28 #define _PCIEHPC_ACPI_H

30 #ifdef __cplusplus
31 extern "C" {
32 #endif

34 #include <acpica/include/acpi.h>
34 #include <sys/acpi/acpi.h>
35 #include <sys/acpica.h>
36 #include <sys/hotplug/pci/pcie_hp.h>
37 #include <sys/hotplug/pci/pciehpc.h>

39 /* soft state data structure for ACPI hot plug mode */
40 typedef struct pciehpc_acpi {
41 /* handle for the ACPI device for the bus node with HPC */
42 ACPI_HANDLE bus_obj;

44 /* handle for the ACPI device for the slot (dev#0,func#0) */
45 ACPI_HANDLE slot_dev_obj;

47 /* ACPI control methods present on the bus node */
48 uint16_t bus_methods;

50 /* ACPI control methods on the slot device functions */
51 uint16_t slot_methods;
52 } pciehpc_acpi_t;

______unchanged_portion_omitted_

