new usr/src/cnd/ dtrace/ Makefile.com

R R R R

1380 Tue Jan 14 16:48:28 2014
new usr/src/cnd/ dtrace/ Makefile.com
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the ternms of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing pernissions
11 # and limtations under the License.

12 #

13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOCLARI S. LI CENSE.
15 # |f applicable, add the follow ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

22 #

23 # Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.

24 # Use is subject to license terns.

25 #

27 PROG = dtrace

28 OBJS = dtrace.o

29 SRCS = $(OBIS: % 0=../%c)

31 include ../../Makefile.cmd

32 include ../../Mkefile.ctf

33 #endif /* | codereview */

35 CFLAGS += $(CCVERBOSE)

36 CFLAGS64 += $(CCVERBOSE)

37 LDLIBS += -ldtrace -lproc -lctf -lelf
39 FI LEMODE = 0555

41 CLEANFI LES += $(OBJS)

43 . KEEP_STATE:

45 all: $(PROG

47 $(PROG: $(0BIS)

48 $(LINK. c) -0 $@$(0BIS) $(LDLIBS)
49 $(POST_PROCESS) ; $(STRI P_STABS)
51 cl ean:

52 -$(RVM $(CLEANFI LES)

54 lint: |int_SRCS
56 %o: ../%c

new usr/src/cnd/ dtrace/ Makefile.com
57 $(COWPI LE. c) $<
58 $(POST_PROCESS_O)
59 #endif /* | codereview */

61 include ../../Mkefile.targ

new usr/src/cnd/ dtrace/ dtrace. c

R R R R

46449 Tue Jan 14 16:48:28 2014
new usr/src/cnd/ dtrace/ dtrace. c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governing pernissions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */
22 |*

23 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
24 * Use is subject to |license terns.

25 =/

26 /*

27 * Copyright (c) 2012 by Del phix. Al rights reserved.

28 * Copyright (c) 2013, Joyent, Inc. Al rights reserved.

29 #endit /* | codereview */

30 */

32 #include <sys/types. h>
33 #include <sys/stat.h>
34 #include <sys/wait.h>

36 #include <dtrace. h>
37 #include <stdlib.h>
38 #include <stdarg. h>
39 #include <stdio. h>

40 #include <strings. h>
41 #incl ude <unistd. h>
42 #include <limts. h>
43 #include <fcntl. h>

44 #incl ude <errno. h>

45 #incl ude <signal.h>
46 #include <al |l oca. h>
47 #include <libgen. h>
48 #include <libproc. h>

50 typedef struct dtrace_cnd {

51 void (*dc_func)(struct dtrace_cmd *); /* function to conpile arg

52 dtrace_probespec_t dc_spec; /* probe specifier context

53 char *dc_arg; /* argurment from nmain argv

54 const char *dc_naneg; /* name for error nessages

55 const char *dc_desc; /* desc for error nessages

56 dtrace_prog_t *dc_prog; /* program conpiled fromarg */

*/
*/
*/
*/
*/

new usr/src/cnd/ dtrace/ dtrace. c

57 char dc_ofil e[PATH_MAX] ; /* derived output file name */
58 } dtrace_cnd_t;

60 #defi ne DMODE_VERS 0 /* display version information and exit (-V) */
61 #defi ne DMODE_EXEC 1 /* conpile programfor enabling (-a/e/E) */
62 #defi ne DMODE_ANON 2 /* conpile program for anonynous tracing (-A) */
63 #define DMODE_LI NK 3 /* conpile programfor linking with ELF (-G */
64 #define DMODE_LI ST 4 /* conpile programand |ist probes (-1) */

65 #defi ne DMODE_HEADER 5 /* conpile program for headergen (-h) */

67 #define E_SUCCESS 0

68 #define E_ERROR 1

69 #define E_USAGE 2

71 static const char DTRACE OPTSTR[] =

72 "3:6:aAb: Bc: CD:ef : FGhHi : 1: 1 L: mn: o: p: P: gs: SU: vVwx: X: Z";

74 static char **g_argv;

75 static int g_argc;

76 static char **g_objv;

77 static int g_objc;

78 static dtrace_cnd_t *g_cndy;

79 static int g_cndc;

80 static struct ps_prochandle **g_psv;

81 static int g_psc;

82 static int g_pslive;

83 static char *g_pnaneg;

84 static int g_quiet;

85 static int g_flow ndent;

86 static int g_intr;

87 static int g_inpatient;

88 static int g_newine;

89 static int g_total;

90 static int g_cflags;

91 static int g_oflags;

92 static int g_verbose;

93 static int g_exec = 1;

94 static int g_npde = DMODE_EXEC;

95 static int g_status = E_SUCCESS;

96 static int g_grabanon = O;

97 static const char *g_ofile = NULL;

98 static FILE *g_ofp = stdout;

99 static dtrace_hdl _t *g_dtp;

100 static char *g_etcfile = "/etc/systent;

101 static const char *g_etchbegin = "* vvvv Added by DTrace";

102 static const char *g_etcend = "* ~AAN Added by DTrace”;

104 static const char *g_etc[] = {

105 "*",

106 "* The follow ng forcel oad directives were added by dtrace(1M to allow for",
107 "* tracing during boot. |If these directives are renoved, the systemwll",
108 "* continue to function, but tracing will not occur during boot as desired.",
109 "* To renove these directives (and this block comment) autonatically, run",
110 "* \"dtrace -A\" wi thout additional arguments. See the \"Anonynous Tracing\"",
111 "* chapter of the Solaris Dynamic Tracing Quide for details.",

112 "*",

113 NULL };

115 static int

116 usage(Fl LE *fp)

117 {

118 static const char predact[] = "[[predicate] action]";

120 (void) fprintf(fp, "Usage: % [-32|-64] [-aACeFGhH qSvWwZ] "

121 "[-b bufsz] [-c cnd] [-D nane[=def]]\n\t[-1 path] [-L path]

122 "[-o0 output] [-p pid] [-s script] [-U nane]\n\t"

new usr/src/cnd/ dtrace/ dtrace. c

123 "[-x opt[=val]] [- Xa|c|s|t]\n\n

124 "\t[-P provider %]\

125 "\t[-m[provider:] rmdule %]\ n"

126 "\t[-f [[provider:] nodule:] func ¥%]\n"

127 "\t[-n [[[provider:] nodule:] func:] nane %]\n"

128 "\t[-i probe-id %] [args ...]\n\n", g_pnane,

129 predact, predact, predact, predact, predact);

131 (void) fprintf(fp, "\tpredicate -> '/’ D-expression '/’'\n");

132 (void) fprintf(fp, "\t action ->'{' D-statenents '}'\n");

134 (void) fprintf(fp, "\n"

135 "\'t-32 generate 32-bit D progranms and ELF files\n"

136 "\t-64 generate 64-bit D progranms and ELF files\n\n"

137 "\t-a claimanonynous tracing state\n"

138 "\t-A generate driver.conf(4) directives for anonynous tracing\n"
139 "\t-b set trace buffer size\n"

140 "\t-c run specified conmand and exit upon its conpl etion\n"

141 "\t-C run cpp(1l) preprocessor on script files\n"

142 "\t-D define synbol when invoking preprocessor\n"

143 "\t-e exit after conpiling request but prior to enabling probes\n"
144 "\t-f enable or list probes matching the speC|f| ed function name\n"
145 "\t-F coal esce trace output by function\n"

146 "\t-G generate an ELF file containing enbedded dtrace programn"
147 “\t-h generate a header file with definitions for statlc pr obes\ n"
148 "\t-H print included files when invoking preprocessor\n"

149 "\t-i enable or list probes matching the specified probe id\n"
150 "\t-1 add include directory to preprocessor search path\n"

151 "\t-1 list probes matching specified criteria\n"

152 "\t-L add library directory to library search path\n"

153 "\t-m enable or list probes matching the specified nodul e narme\n"
154 "\t-n enable or list probes matching the specified probe nane\n"
155 "\t-o set output file\n"

156 "\t-p grab specified process-1D and cache its synbol tables\n"
157 "\t-P enable or list probes matching the specified provider name\n"
158 "\t-q set quiet node (only output explicitly traced data)\n"

159 "\t-s enable or |list probes according to the specified D script\n"
160 "\t-S print D conpiler internediate code\n"

161 "\t-U undefine synbol when invoking preprocessor\n"

162 "\t-v set verbose node (report stability attributes, argunments)\n"
163 "\t-V report DIrace APl version\n"

164 "\t-w pernit destructive actions\n"

165 "\t-x enable or nodify conpiler and tracing options\n"

166 "\t-X specify 1SO C conformance settings for preprocessor\n"

167 "\t-Z permt probe descriptions that match zero probes\n");

169 return (E_USAGE);

170 }

172 static void

173 verror(const char *fnt, va_list ap)

174 {

175 int error = errno;

177 (void) fprintf(stderr, "%: ", g_pnane);

178 (void) vfprintf(stderr, fnmt, ap);

180 if (fmt[strlen(fnt) 1] !'='"\n")

181 (void) fprintf(stderr, ": %\n", strerror(error));

182 }

new usr/src/cnd/ dtrace/ dtrace. c

184 /* PRI NTFLI KE1*/

185 static void

186 fatal (const char *fnt, ...)
187 {

188 va_list ap;

190 va_start(ap, fnt);

191 verror(fnt, ap);

192 va_end(ap);

194 exi t (E_ERROR) ;

195 }

197 /* PRI NTFLI KE1*/

198 static void

199 dfatal (const char *fnt, ...)

200 {

201 va_list ap;

203 va_start(ap, fnt);

205 (void) fprintf (st derr, "9%: ", g_pnane);

206 if (fmt 1= NUL

207 (voi d) vfprlntf(stderr, fnt, ap);

209 va_end(ap);

211 if (fmt != NULL && fnt[strlen(fnt) - 1] !="\n") {
212 (void) fprintf(stderr, ": %\n",

213 dtrace_errnsg(g_dtp, dtrace_errno(g_dtp)));
214 } else if (fnmt == NULL) {

215 (void) fprintf(stderr, "%\n",

216 dtrace_errnmsg(g_dtp, dtrace_errno(g_dtp)));
217 }

219 /*

220 * Cose the DIrace handle to ensure that any controlled processes are
221 * correctly restored and conti nued.

222 */

223 dtrace_cl ose(g_dtp);

225 exi t (E_ERROR) ;

226 }

228 /*PRI NTFLI KE1*/

229 static void

230 error(const char *fnt, ...)

231 {

232 va_list ap;

234 va_start(ap, fnt);

235 verror(fmt, ap);

236 va_end(ap) ;

237 }

239 /*PRI NTFLI KE1*/

240 static void

241 notice(const char *fmt, ...)

242 {

243 va_list ap;

245 if (g_quiet)

246 return; /* -qgq or quiet pragnma suppresses notice()s */
248 va_start(ap, fnt);

249 verror(fnt, ap);

250 va_end(ap) ;

251 }

253 /*PRI NTFLI KE1*/
254 static void

new usr/src/cnd/ dtrace/ dtrace. c

255 oprintf(const char *fmt, ...)

256

257 va_list ap;

258 int n;

260 if (g_ofp == NULL)

261 return;

263 va_start(ap, fnt);

264 n = vfprintf(g_ ofp, fm, ap);

265 va_end(ap) ;

267 if (n<0) {

268 if (errno != EINTR) {

269 fatal ("failed to wite to %",

270 g ofile ? g ofile : "<stdout>");
271

272 clearerr(g_ofp);

273 1

274 }

276 static char **

277 make_argv(char *s)

278 {

279 const char *ws = "\f\n\r\t\v ";

280 char **argv = nmal | oc(si zeof (char *) * (strlen(s) / 2 + 1));
281 int argc = 0;

282 char *p = s;

284 if (argv == NULL)

285 return (NULL);

287 (p = strtok(s, ws); p != NULL; p = strtok(NULL, ws))
288 argv[argc++] = p;

290 if (argc ==

291 argv[argc++] = s;

293 argv[argc] = NULL;

294 return (argv);

295 }

297 static void

298 dof _prune(const char *fnane)

299 {

300 struct stat sbuf;

301 size_t sz, i, j, mark, len;

302 char *buf;

303 int msg =0, fd;

305 if ((fd = open(fname O RDONLY)) == -1) {

306

307 * This is okay only if the file doesn't exist at all.
308 */

309 if (errno != ENCENT)

310 fatal ("failed to open %", fnane);
311 return;

312 }

314 if (fstat(fd &sbuf) == -1)

315 fatal ("failed to fstat %", fnane);

317 if ((buf = malloc((sz = sbuf.st_size) + 1)) == NULL)
318 fatal ("failed to allocate nenory for %", fnanme);
320 if (read(fd, buf, sz) != sz)

new usr/src/cnd/ dtrace/ dtrace. c

321

323
324

326
327

329

331
332
333

335
336
337
338
339

341
342
343
344

346
347
348
349
350
351
352

354
355
356
357
358

360
361
362
363
364

366
367

369
370
371
372

374
375
376

378
379

381
382
383
384
385

}

fatal ("failed to read %", fnane);

buf[sz] ="'\0";
(void) close(fd);

if ((fd = open(fname, O WRONLY | O TRUNC)) == -1)
fatal ("failed to open % for witing", fnanme);

len = strlen("dof-data-");

for (mark =0, i =0; i <sz; i++) {

if (strncnp(&uf[i], "dof-data-", len) != 0)
conti nue;

/*

* This is only a match if it’s in the Oth colum.

*

if (i '=0 & buf[i - 1] !'="\n")
cont i nue;

if (meg++ ==

{
error("cl eaned up ol d anonynous "
"enabling in %\n", fnane);

}
/*
* W have a match. First wite out our data up until now.
*
if (i '= mark) {
if (wite(fd, &buf[mark], i - mark) !'=1i - mark)
fatal ("failed to wite to %", fnane);
}
/*
* Now scan forward until we scan past a new ine.
*
/
for (j =1i; j <sz & buf[j] !'="\n"; j++)
conti nue;
/*

* Reset our mark.
*

if ((mark =j + 1) >= sz)
br

i =j;

}
if (mark < sz) {
if (wite(fd, &uf[mark], sz - mark) != sz - mark)
fatal ("failed to wite to %", fnanme);
}
(void) close(fd);
free(buf);

static void
et csyst em prune(voi d)
380 {

struct stat sbuf;

size_t sz;

char *buf, *start, *end;

int fd;

char *fnane = g_etcfile, *tnpnane;

new usr/src/cnd/ dtrace/ dtrace. c

387 if ((fd =open(fname O_RDONLY)) ==—1)

388 fatal ("failed to open %", fnane);

390 if (fstat(fd &sbuf) == -1)

391 fatal ("failed to fstat %", fnane);

393 if ((buf = malloc((sz = sbuf.st_size) + 1)) == NULL)

394 fatal ("failed to allocate menory for %", fnane);

396 if (read(fd, buf, sz) != sz)

397 fatal ("failed to read %", fnane);

399 buf[sz] ='\0

400 (voi d) cI ose(f d)

402 if ((start = strstr(buf, g_etcbegin)) == NULL)

403 goto out;

405 if (strlen(buf) !'=sz) {

406 fatal ("enbedded nul byte in %; manual repair of % "
407 "required\n", fnane, fnane);

408 }

410 if (strstr(start + 1, g_etcbegin) != NULL) {

411 fatal ("multiple start sentinels in %,; manual repair of %
412 "required\n", fnanme, fnane);

413 }

415 if ((end = strstr(buf, g_etcend)) == NULL)

416 fatal ("m ssing end sentinel in %; manual repair of % "
417 "requi red\n", fnane, fnane);

418 1

420 if (start > end)

421 fatal ("end sentinel preceeds start sentinel in %; manual
422 "repair of % required\n", fnane, fnane);

423 }

425 end += strlen(g_etcend) + 1;

426 bcopy(end, start, strlen(end) + 1);

428 trmpnane = alloca(sz = strlen(fnane) + 80);

429 (void) snprintf(tnmpname, sz, "%.dtrace. %", fnane, getpid());
431 if ((fd = open(tnpnane,

432 O WRONLY | O CREAT | O _EXCL, sbuf.st_node)) == -1)

433 fatal ("failed to create %", tnpnane);

435 if (wite(fd, buf, strlien(buf)) < strlen(buf)) {

436 (voi d) unlink(tnpnane);

437 fatal ("failed to Writeto %", tnpnane);

438 }

440 (void) close(fd);

442 if (chown(tnpnanme, sbuf.st_uid, sbuf.st_gid) != 0) {

443 (voi d) unlink(tnpnane);

444 fatal ("failed to chowmn(2) % to uid %, gid %", tnpnane,
445 (int)sbuf.st_uid, (int)sbuf.st_gid);

446 }

448 if (rename(tnpnane, fname) == -

449 fatal ("renane of % to % failed", tnpname, fnane);
451 error("cleaned up forceload directives in %\n", fnane);

452 out:

new usr/src/cnd/ dtrace/ dtrace. c

453 free(buf);
454 }

456 static void
457 et csystem add(voi d)

458 {

459 const char *nods[20];

460 int nnods, |ine;

462 if ((g_ofp = fopen(g_ofile = g_etcfile, "a")) == NULL)
463 fatal ("failed to open output file "% ", g_ofile);
465 oprintf("%\n", g_etcbegin);

467 for (line = 0; g_etc[line] !'= NULL; |ine++)

468 oprintf("%\n", g_etc[line]);

470 nnmods = dtrace_provi der _nodul es(g_dtp, nods,

471 sizeof (nods) / sizeof (char *) - 1);

473 if (nmods >= sizeof (nods) / sizeof (char *))

474 fatal ("unexpectedly | arge nunber of nodules!");
476 nods[nnods++] = "dtrace";

478 for (line = 0; line < nnods; |ine++)

479 oprintf("forceload: drv/%\n", nods[line]);
481 oprintf("%\n", g_etcend);

483 if (fclose(g_ofp) == EOF)

484 fatal ("failed to close output file "% ", g_ofile);
486 error("added forceload directives to %\n", g_ofile);
487 }

489 static void

490 print_probe_info(const dtrace_probeinfo_t *p)

491 {

492 char buf[BUFSI Z] ;

493 char *user;

494 #endi f /* coderevi ew */

495 i nt i;

497 oprintf("\n\tProbe Description Attributes\n");

499 oprintf("\t\tldentifier Names: %\n"

500 dtrace_stability_nane(p->dtp_ attr. dtat _nane));
501 oprintf("\t\tData Semantics: %8\ n"

502 dtrace_stability_name(p->dtp_ attr dtat _data));
503 oprintf("\t\tDependency O ass: %s\n"

504 dtrace_cl ass_nane(p->dtp_attr. dt at _class));

506 oprintf("\n\tArgunent Attributes\n");

508 oprintf("\t\tldentifier Nanes: %\n"

509 dtrace_stability_nane(p->dtp_ arga dtat _nane));
510 oprlntf("\t\tData Senanti cs: %8\ n"

511 dtrace_stability_name(p->dtp_ar ga. dtat _data));
512 oprintf("\t\tDependency C ass: 9%\n",

513 dtrace_cl ass_nane(p->dtp_arga.dtat_cl ass));

515 oprintf("\n\tArgunent Types\n");

517 for (i =0; i < p->dtp_argc; i++)

L {
518 if (p->dtp_argv[i].dtt_flags & DTT_FL_USER)

new usr/src/cnd/ dtrace/ dtrace. c

519 user = "userland ";
520 el se
521 user = "";
522 #endif /* | codereview */
523 if (ctf_type_nane(p->dtp_argv[i].dtt_ctfp,
524 p->dtp_argv[i].dtt_type, buf, sizeof (buf)) == NULL)
525 (void) stricpy(buf, "(unknown)", sizeof (buf));
526 oprintf("\t\targs[%l]: %%\n", i, user, buf);
28 oprintf("\t\targs[%]: %\n", i, buf);
527 }
529 if (p->dtp_argc == 0)
530 oprintf("\t\tNone\n");
532 oprintf("\n");
533 }

____unchanged_portion_onitted_

new usr/src/cnd/ dtrace/test/tst/common/ Makefile

R R R R

5512 Tue Jan 14 16:48:29 2014
new usr/src/cnd/ dtrace/test/tst/comon/ Makefile
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the ternms of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing pernissions
11 # and limtations under the License.

12 #

13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOCLARI S. LI CENSE.
15 # |f applicable, add the follow ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

22 #

23 # Copyright 2008 Sun Mcrosystens, Inc. Al rights reserved.

24 # Use is subject to |license terns.

25 #

27 #

28 # Copyright (c) 2012 by Del phix. Al rights reserved.

29 # Copyright (c) 2013, Joyent, Inc. Al rights reserved.

30 #

32 #

33 # WARNING Do not include Makefile.ctf here. That will cause tests to
34 # break.

29 # Copyright (c) 2012, Joyent, Inc. Al rights reserved.

35 #

37 include $(SRC)/Makefile. master
38 include ../ Mkefile.com

40 SNOOPDI R = $(SRC)/ cnd/ cmd-i net/ usr. sbi n/ snoop
41 SNOOPOBJS = nfs4_xdr.o

42 SNOOPSRCS = ${ SNOOPOBJS: % 0=% c}

43 CLOBBERFI LES += nf s/ $(SNOOPOBJS)

45 RPCSVCDI R = $(SRC)/ head/ rpcsvce

46 RPCSVCOBJS = nfs_prot.o

47 RPCSVCSRCS = ${ RPCSVCOBJS: %0=%}

48 CLOBBERFI LES += nf s/ $(RPCSVCOBJS) $(RPCSVCDI R)/ $(RPCSVCSRCS)
49 CLOBBERFI LES += usdt/forker.h usdt/|azyprobe.h

51 fasttrap/tst.fasttrap.exe := LDLIBS += -l dtrace
52 fasttrap/tst.stack.exe := LDLIBS += -ldtrace

54 sysevent/tst.post.exe := LDLIBS += -|sysevent
55 sysevent/tst.post_chan.exe := LDLIBS += -|sysevent

new usr/src/cnd/ dtrace/test/tst/comon/ Makefile 2

ust ack/tst. bi gstack. exe : = COPTFLAG += -xOL

59 GCC = $(ONBLD_TOOLS)/ bi n/ $(MACH) / cw - _gcc
61 nfs/%o: $(SNOOPDIR)/ % c
62 $(COWPILE. c) -0 $@$< - | $(SNOOPDI R)
63 $(POST_PROCESS_O)
64 nfs/tst.call.exe: nfs/tst.call.o nfs/$(SNOOPOBJS)
65 $(LINK. c) -0 $@nfs/tst.call.o nfs/$(SNOOPOBIS) $(LDLIBS) -Insl
66 $(POST_PROCESS) ; $(STRI P_STABS)
67 $(RPCSVCDIR)/ % c: $(RPCSVCDI R)/ % x
68 $(RPCGEN) -Cc $< > $@
69 nfs/$(RPCSVCOBJS): $(RPCSVCDI R)/ $(RPCSVCSRCS)
70 $(COWPI LE. ¢) -0 $@ $(RPCSVCDI R) / $(RPCSVCSRCS)
71 $(POST_PROCESS_O)
72 nfs/tst.call3.exe: nfs/tst.call3.0 nfs/$(RPCSVCOBJS)
73 $(LINK. c) -0 $@nfs/tst.call3.0 nfs/$(RPCSVCOBIS) \
74 $(LDLIBS) -Insl -lrpcsve
75 $(POST_PROCESS) ; $(STRI P_STABS)
77 pid/tst.gcc.exe: pid/tst.gcc.c
78 $(GCC) -0 pid/tst.gcc.exe pid/tst.gcc.c $(LDFLAGS)
79 $(POST_PROCESS) ; $(STRI P_STABS)
81 json/tst.usdt.o: json/usdt.h
83 json/usdt.h: json/usdt.d
84 $(DTRACE) -h -s json/usdt.d -o json/usdt.h
86 json/usdt.o: json/usdt.d json/tst.usdt.o
87 $(COWPILE.d) -0 json/usdt.o -s json/usdt.d json/tst.usdt.o
89 json/tst.usdt.exe: json/tst.usdt.o json/usdt.o
90 $(LINK.c) -0 json/tst.usdt.exe json/tst.usdt.o json/usdt.o $(LDLIBS)
91 $(POST_PROCESS) ; $(STRI P_STABS)
93 #
94 # Tests that use the next three progranms rely on the binaries having
95 # valid CTF data.
96 #
97 uctf/tst.aouttype. exe: uctf/tst.aouttype.c
98 $(COWPI LE. c) $(CTF_FLAGS) -0 uctf/tst.aouttype.o uctf/tst.aouttype.c
99 $(CTFCONVERT) -i -L VERSION uctf/tst.aouttype.o
100 $(LINK.c) -0 uctf/tst.aouttype.exe uctf/tst.aouttype.o $(LDLIBS)
101 $(CTFMERGE) -L VERSION -0 $@uctf/tst.aouttype.o
102 $(POST_PROCESS) ; $(STRI P_STABS)
104 uctf/tst.chasestrings.exe: uctf/tst.chasestrings.c
105 $(COWPI LE. c) $(CTF_FLAGS) -0 uctf/tst.chasestrings.o uctf/tst.chasestrin
106 $(CTFCONVERT) -i -L VERSION uctf/tst.chasestrings.o
107 $(LINK.c) -0 uctf/tst.chasestrings.exe uctf/tst.chasestrings.o $(LDLIBS)
108 $(CTFMERGE) -L VERSION -0 $@uctf/tst.chasestrings.o
109 $(POST_PROCESS) ; $(STRI P_STABS)
111 uctf/tst.printtype.exe: uctf/tst.printtype.c
112 $(COWPI LE. c) $(CTF_FLAGS) -0 uctf/tst.printtype.o uctf/tst.printtype.c
113 $(CTFCONVERT) -i -L VERSION uctf/tst.printtype.o
114 $(LINK.c) -0 uctf/tst.printtype.exe uctf/tst.printtype.o $(LDLIBS)
115 $(CTFMERGE) -L VERSION -0 $@uctf/tst.printtype.o
116 $(POST_PROCESS) ; $(STRI P_STABS)
118 #
119 # This program shoul d never have any ctf data in it.
120 #
121 uctf/tst.libtype. exe:

new usr/src/cnd/ dtrace/test/tst/common/ Makefile

122 $(LINK. c) -0 uctf/tst.libtype.exe uctf/tst.libtype.c $(LDLIBS)
123 $(POST_PROCESS) ; $(STRI P_STABS)

125 #endif /* | codereview */
126 usdt/tst.args.exe: usdt/tst.args.o usdt/args.o

127 $(LINK. c) -0 usdt/tst.args.exe usdt/tst.args.o usdt/args.o $(LDLIBS)
128 $(POST_PROCESS) ; $(STRI P_STABS)

130 usdt/args.o: usdt/args.d usdt/tst.args.o

131 $(COWPILE. d) -0 usdt/args.o -s usdt/args.d usdt/tst.args.o

133 usdt/tst.argmap. exe: usdt/tst.argmap.o usdt/argmap. o

134 $(LINK. c) -0 usdt/tst.argnap.exe \

135 usdt/tst.argmap. o usdt/argmap. o $(LDLI BS)

136 $(POST_PROCESS) ; $(STRI P_STABS)

138 usdt/argmap. o: usdt/argmap.d usdt/tst.argnmap.o

139 $(COWPI LE. d) -0 usdt/argnmap.o -s usdt/argmap.d usdt/tst.argmap.o
141 usdt/tst.forker.exe: usdt/tst.forker.o usdt/forker.o

142 $(LINK. c) -o usdt/tst.forker.exe \

143 usdt/tst.forker.o usdt/forker.o $(LDLIBS)

144 $(POST_PROCESS) ; $(STRI P_STABS)

146 usdt/forker.o: usdt/forker.d usdt/tst.forker.o
147 $(COWPILE. d) -0 usdt/forker.o -s usdt/forker.d usdt/tst.forker.o

149 usdt/tst.forker.o: usdt/forker.h
151 usdt/forker.h: usdt/forker.d

152 $(DTRACE) -h -s usdt/forker.d -o usdt/forker.h

154 usdt/tst.| azyprobe. exe: usdt/tst.l|azyprobe.o usdt/|azyprobe.o
155 $(LINK. c) -0 usdt/tst.lazyprobe.exe \

156 usdt/tst. |l azyprobe. o usdt/| azyprobe. o $(LDLI BS)
157 $(POST_PROCESS) ; $(STRI P_STABS)

159 usdt/ | azyprobe. o: usdt/|azyprobe.d usdt/tst.|azyprobe.o

160 $(COWPI LE. d) -xlazyl oad -o usdt/|azyprobe.o \

161 -s usdt/l azyprobe.d usdt/tst.|azyprobe.o

163 usdt/tst.|lazyprobe. o: usdt/|azyprobe.h

165 usdt/| azyprobe. h: usdt/| azyprobe.d
166 $(DTRACE) -h -s usdt/lazyprobe.d -0 usdt/|azyprobe.h

168 SUBDI RS = j ava_api
169 include ../../Makefile.subdirs

new usr/src/cnd/ dtrace/test/tst/common/ pid/tst.provregexl. ksh

R R R R

1662 Tue Jan 14 16:48:29 2014
new usr/src/cnd/ dtrace/test/tst/common/ pid/tst.provregexl. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!/bin/ksh -p

2 #

3 # CDDL HEADER START

4 #

5 # The contents of this file are subject to the terms of the

6 # Common Devel oprent and Distribution License (the "License").

7 # You may not use this file except in conpliance with the License.
8 #

9 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
10 # or http://ww. opensol aris.org/os/licensing.

11 # See the License for the specific |anguage governing pernissions
12 # and limtations under the License.

13 #

14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 # |f applicable, add the follow ng bel ow this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [nane of copyright owner]
19 #

20 # CDDL HEADER END

21 #

23 #

24 # Copyright 2008 Sun M crosystens, Inc. Al rights reserved.

25 # Use is subject to license terns.

26 #

28 #

29 # This test verifies that specifying a glob in a pid provider nane
30 # (e.g., p*d$target) works.

31 #

33 if [$#!=11]; then

34 echo expected one argunent: '<'dtrace-path’ >

35 exit 2

36 fi

38 dtrace=$1
39 DIR=${TMPDIR -/ tnp}/dt est . $$

41 nkdir $DIR

42 cd $DIR

44 cat > Makefile <<EOF

45 all: main

47 main: nain.o

48 gcc -nB2 -0 main nain.o
48 gcc -0 main main.o

50 main.o: nain.c

51 gcc -nB2 -c nmain.c

51 gcc -c main.c

52 ECF

54 cat > mmin.c <<EOF

new usr/src/cnd/ dtrace/test/tst/common/ pid/tst.provregexl. ksh

55 voi d
56 go(void)
57 {

58 }

__unchanged_portion_omtted_

new usr/src/cnd/ dtrace/test/tst/common/ pi d/tst.provregex2. ksh

R R R R

2286 Tue Jan 14 16:48:30 2014
new usr/src/cnd/ dtrace/test/tst/common/ pid/tst.provregex2. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!/bin/ksh -p

2 #

3 # CDDL HEADER START

4 #

5 # The contents of this file are subject to the terms of the

6 # Common Devel oprent and Distribution License (the "License").

7 # You may not use this file except in conpliance with the License.
8 #

9 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
10 # or http://ww. opensol aris.org/os/licensing.

11 # See the License for the specific |anguage governing pernissions
12 # and limtations under the License.

13 #

14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 # |f applicable, add the follow ng bel ow this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [nane of copyright owner]
19 #

20 # CDDL HEADER END

21 #

23 #

24 # Copyright 2008 Sun M crosystens, Inc. Al rights reserved.

25 # Use is subject to license terns.

26 #

28 #

29 # This test verifies that probes will be picked up after a dl open(30)
30 # when the pid provider is specified as a glob (e.g., p*d$target.)
31 #

33 if [$#!=11]; then

34 echo expected one argunent: '<'dtrace-path’ >

35 exit 2

36 fi

38 dtrace=$1
39 DIR=${TMPDIR -/ tnp}/dt est . $$

41 nkdir $DIR

42 cd $DIR

44 cat > Makefile <<EOF

45 all: main altlib.so

47 main: nain.o

48 gcc -nB2 -0 main nain.o
48 gcc -0 main main.o

50 main.o: nain.c

51 gcc -nB2 -c nmain.c

51 gcc -c main.c

53 altlib.so: altlib.o
54 gcc -nB2 -shared -0 altlib.so altlib.o -lc

new usr/src/cnd/ dtrace/test/tst/common/ pid/tst.provregex2. ksh

54 gcc -shared -o altlib.so altlib.o -lc
56 altlib.o: altlib.c

57 gcc -nB2 -fPIC -c altlib.c

57 gcc -c altlib.c

58 EOF

60 cat > altlib.c <<ECF

61 void

62 go(void)

63 {

64

}
__unchanged_portion_omtted_

new usr/src/cnd/ dtrace/test/tst/comon/ pid/tst.provregex3. ksh

R R R R

1932 Tue Jan 14 16:48: 30 2014
new usr/src/cnd/ dtrace/test/tst/common/ pid/tst.provregex3. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!/bin/ksh -p

2 #

3 # CDDL HEADER START

4 #

5 # The contents of this file are subject to the terms of the

6 # Common Devel oprent and Distribution License (the "License").

7 # You may not use this file except in conpliance with the License.
8 #

9 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
10 # or http://ww. opensol aris.org/os/licensing.

11 # See the License for the specific |anguage governing pernissions
12 # and limtations under the License.

13 #

14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 # |f applicable, add the follow ng bel ow this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [nane of copyright owner]
19 #

20 # CDDL HEADER END

21 #

23 #

24 # Copyright 2008 Sun M crosystens, Inc. Al rights reserved.

25 # Use is subject to license terns.

26 #

28 #

29 # This test verifies that a regex in the provider name will match
30 # USDT probes as well as pid probes (e.g., p*d$target matches both
31 # pid$target and pyram d$target.)

32 #

34 if [$#!=11]; then

35 echo expected one argunent: '<'dtrace-path’ >

36 exit

37 fi

39 dtrace=$1
40 DI R=${ TMPDI R -/t np}/ dt est . $$

42 nkdir $DIR
43 cd $DIR

45 cat > Makefile <<EOF
46 all: main

48 main: main.o prov.o

49 gcc -nB2 -0 main nain.o prov.o
49 gcc -0 nmain nein.o prov.o

51 nmin.o: nmain.c prov.h

52 gcc -nB2 -c main.c

52 gcc -c nain.c

54 prov.h: prov.d

new usr/src/cnd/ dtrace/test/tst/comon/ pid/tst.provregex3. ksh

55 $dtrace -h -s prov.d

57 prov.o: prov.d main.o

58 $dtrace -G -32 -s prov.d nain.o
59 ECF

61 cat > prov.d <<ECF

62 provider pyramd {
63 probe entry();
64 }

__hnchanged_port ion_omtted_

new usr/src/cnd/ dtrace/test/tst/comon/ pid/tst.provregex4. ksh

R R R R

2780 Tue Jan 14 16:48:31 2014
new usr/src/cnd/ dtrace/test/tst/common/ pid/tst.provregex4. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!/bin/ksh -p

2 #

3 # CDDL HEADER START

4 #

5 # The contents of this file are subject to the terms of the

6 # Common Devel oprent and Distribution License (the "License").

7 # You may not use this file except in conpliance with the License.

8 #

9 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
10 # or http://ww. opensol aris.org/os/licensing.

11 # See the License for the specific |anguage governing pernissions

12 # and limtations under the License.

13 #

14 # When distributing Covered Code, include this CDDL HEADER in each

15 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 # |f applicable, add the follow ng bel ow this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [nane of copyright owner]

19 #

20 # CDDL HEADER END

21 #

23 #

24 # Copyright 2008 Sun M crosystens, Inc. Al rights reserved.

25 # Use is subject to license terns.

26 #

28 #

29 # This test verifies that USDT probes will be picked up after a dl open(3C)
30 # when a regex in the provider nane matches both USDT probes and pid probes
31 # (e.g., p*d$target matches both pi d$target and pyram d$target.)

32 #

34 if [$#!=11]; then

35 echo expected one argunent: '<'dtrace-path’ >

36 exit

37 fi

39 dtrace=$1
40 DI R=${ TMPDI R -/t np}/ dt est . $$

42 nkdir $DIR
43 cd $DIR

45 cat > Makefile <<EOF
46 all: main altlib.so

48 main: main.o provnain.o
i
i

49 gcc -nB2 -0 main nmain.o provnain.o
49 gcc -0 nmain nein.o provnain.o

51 nmin.o: nmain.c prov.h

52 gcc -nB2 -c main.c

52 gcc -c nain.c

54 prov.h: prov.d

new usr/src/cnd/ dtrace/test/tst/common/ pid/tst.provregex4. ksh

55 $dtrace -h -s prov.d

57 provmain.o: prov.d main.o

58 $dtrace -G -32 -0 provnain.o -s prov.d main.o
60 altlib.so: altlib.o provalt.o

61 gcc -nB2 -shared -0 altlib.so altlib.o provalt.o -lc
61 gcc -shared -o altlib.so altlib.o provalt.o -lc
63 altlib.o: altlib.c prov.h

64 gcc -nB2 -c altlib.c

64 gcc -c altlib.c

66 provalt.o: prov.d altlib.o

67 $dtrace -G -32 -0 provalt.o -s prov.d altlib.o
68 ECF

70 cat > prov.d <<ECF
71 provider pyramd {
72 probe entry();

_hnchanged_port ion_omtted_

new usr/src/cnd/ dtrace/test/tst/comon/printal/tst.|argeusersymksh

R R R R

2111 Tue Jan 14 16:48:31 2014
new usr/src/cnd/ dtrace/test/tst/comon/printal/tst.|argeusersym ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

___unchanged_portion_onitted_
1 EOF

53 gcc -nB2 -0 test test.c
53 gcc -0 test test.c
54 if [$? -ne 0]; then

55 print -u2 "failed to conpile test.c"
56 exit 1

57 fi

59 script()

60 {

61 $dtrace -c ./test -qs /dev/stdin <<ECF
62 profile:::profile-1001hz

63 /pid == \$target/

64 {

65 @argl] = count();

66 }

68 tick-1s

69 /n++ > 10/

70 {

71 printa("%A %@\n", @;

72 exit(0);

73

74 EOF

75 }

__unchanged_portion_omtted_

new usr/src/cnd/ dtrace/test/tst/comon/uctf/err.invalidpid.d

R R R R

536 Tue Jan 14 16:48:31 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/err.invalidpid.d
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEREEREEEERERERERESRESRESRESESESESE]

1/*

* This file and its contents are supplied under the terns of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunmos.org/license/ CDDL.

=
QOONOUIAWN
* Ok Ok ok H R F O

13 * Copyright (c) 2013 Joyent, Inc. Al rights reserved.
*
/

16 #pragma D option quiet

18 BEG N

19 {

20 trace((pidfoo‘int)0);
21

22 #endif /* 1 codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/err.invalidpid2.d

R R R R

537 Tue Jan 14 16:48:32 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/err.invalidpid2.d
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEREEREEEERERERERESRESRESRESESESESE]

1/*

* This file and its contents are supplied under the terns of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunmos.org/license/ CDDL.

=
QOONOUIAWN
* Ok Ok ok H R F O

13 * Copyright (c) 2013 Joyent, Inc. Al rights reserved.
*
/

16 #pragma D option quiet

18 BEG N

19 {

20 trace((pid8foo‘int)0);
21

22 #endif /* 1 codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/err.invalidpid3.d

R R R R

534 Tue Jan 14 16:48:32 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/err.invalidpid3.d
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEREEREEEERERERERESRESRESRESESESESE]

1/*

* This file and its contents are supplied under the terns of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunmos.org/license/ CDDL.

=
QOONOUIAWN
* Ok Ok ok H R F O

13 * Copyright (c) 2013 Joyent, Inc. Al rights reserved.
*
/

16 #pragma D option quiet

18 BEG N

19 {

20 trace((pid0‘int)0);
21

22 #endif /* 1 codereview */

new usr/src/cnd/ dtrace/test/tst/common/uctf/err.invalidtype.ksh

R R R R

841 Tue Jan 14 16:48:32 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/err.invalidtype.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!' [usr/bin/ksh

2 #

3 #

4 # This file and its contents are supplied under the terms of the

5 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terns of version
7 # 1.0 of the CDDL.

8 #

9 # A full copy of the text of the CDDL shoul d have acconpanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://ww.illunps.org/license/ CDDL.

12 #

14 #

15 # Copyright (c) 2013 Joyent, Inc. Al rights reserved.

16 #

18 #

19 # Wiile it’s hard to be conpletely certain that a type of the nane we want
20 # doesn’'t exist, we're going to try to pick a name which is rather unique.
21 #

23 if [$#!=11]; then

24 echo expected one argunent: ’'<'dtrace-path >

25 exit 2

26 fi

28 dtrace=$1
29 t="season_8_nount ai n_of _madness_t"

30 pi d=$$
32 rc='$dtrace -n "BEG N{ trace(pid$pid $t)0); }"*
34 exit $rc

35 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/err.invalidtype2. ksh

R R R R

903 Tue Jan 14 16:48:32 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/err.invalidtype2. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!' [usr/bin/ksh

2 #

3 #

4 # This file and its contents are supplied under the terms of the

5 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terns of version
7 # 1.0 of the CDDL.

8 #

9 # A full copy of the text of the CDDL shoul d have acconpanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://ww.illunps.org/license/ CDDL.

12 #

14 #

15 # Copyright (c) 2013 Joyent, Inc. Al rights reserved.

16 #

18 #

19 # Wiile it’s hard to be conpletely certain that a type of the nane we want
20 # doesn’'t exist, we're going to try to pick a name which is rather
21 # unique. This time we're also going to use the pid$target alias.
22 #

24 if [$#!=11]; then

25 echo expected one argunent: '<'dtrace-path’ >

26 exit 2

27 fi

29 dtrace=$1
30 t="season_8_nount ai n_of _nmadness_t"
31 pi d=$$

33 rc='$dtrace -n "BEG N{ trace(pid $t)0); }"° -p $pid

35 exit $rc
36 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/common/uctf/err.user64node. ksh

R R R R

2049 Tue Jan 14 16:48:32 2014

new usr/src/cnd/ dtrace/test/tst/comon/uctf/err.user64node. ksh

4474
4475
4476
4479
4480

DTrace Userland CTF Support

DTrace userland Keyword

DTrace tests should be better citizens
pi d provider types

dof erul ation m ssing checks

Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

#! [usr/bin/ksh

if [$# !=11; then
echo expected one argunent: ' < dtrace-path >
exit 2

fi

dtrace=$1
t="zelda_info_t"
exe="tst.chasestrings. exe"

el fdump "./$exe" | grep -q '.SUNWctf’

if [[$2 -ne 0]]; then
echo "CTF does not exist in $exe, that’'s a bug" >&
exit 1

fi

./ $exe &
pi d=$!

$dtrace -64 -qgs /dev/stdin <<ECF
typedef struct info {

char *zi _gamenane;
int zi _ndungeons;
char *zi _villain;
int zi _haszel da;
} info_t;
pi d$pi d: : has_princess:entry
gnext ==

this->t = (userland info_t *)argO0;
printf("game: %, dungeon: %l, villain: %, zelda: %\ n",
stringof (this->t->zi _ganenane), this->t->zi _ndungeons,

#

#

This file and its contents are supplied under the terms of the

Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the terms of version
1.0 of the CDDL.

#

A full copy of the text of the CDDL shoul d have acconpanied this

source. A copy of the CDDL is also available via the Internet at

http://ww.illunps.org/license/ CDDL.

#

#

Copyright (c) 2013 Joyent, Inc. Al rights reserved.

#

#

This test is purposefully using a 64-bit DIrace and thus 64-bit types
when conmpared with a 32-bit process. This test uses the userland

keyword and so the inplicit copyin should access illegal nenory and
thus exit.

#

new usr/src/cnd/ dtrace/test/tst/comon/uctf/err.user64node. ksh

57
58
59

stringof (this->t->zi_villain), this->t->zi_haszel da);
next = 1;
}
pi d$pi d: : has_dungeons: entry
/next == 1/
{
this->t = (userland info_t *)argO;
printf("game: %, dungeon: %, villain: %, zelda: %\n",
stringof (this->t->zi _ganenane), this->t->zi_ndungeons,
stringof (this->t->zi _villain), this->t->zi_haszelda);
next = 2;
}
pi d$pi d: : has_villain:entry
/next == 2/
this->t = (userland info_t *)argO0;
printf("game: %, dungeon: %l, villain: %, zelda: %\n",
stringof (this->t->zi_ganenanme), this->t->zi _ndungeons,
stringof (this->t->zi_villain), this->t->zi_haszelda);
exit(0);
}
ERROR
{
exit(1);
}
EOF
rc=%$?
kill -9 $pid
exit $rc
#endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.aouttype.c

R R R R

990 Tue Jan 14 16:48:33 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.aouttype.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1/*

2 * This file and its contents are supplied under the terns of the

3 * Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terns of version
5 * 1.0 of the CDDL.

6 *

7 * Afull copy of the text of the CDDL shoul d have acconpanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illunos.org/license/ CDDL.

10 */

12 /*

13 * Copyright 2013 (c) Joyent, Inc. Al rights reserved.

14 */

16 /*

17 * This test tries to make sure that we have CTF data for a type that only this
18 * binary woul d reasonably have. In this case, the
19 * season_7_lisa_the_vegetarian_t.

*/

21 #include <unistd. h>
23 typedef struct season_7_lisa_the_vegetarian {

24 int fr_sal ad;
25 } season_7_lisa_the_vegetarian_t;

27 int

28 sl eeper(season_7_lisa_the_vegetarian_t *Ip)
29

30 for (;;) {

31 sl eep(l p->fr_sal ad);

32 }

33 / * NOTREACHED* /

34 return (0);

35 }

37 int

38 mai n(voi d)

39 {

40 season_7_lisa_the_vegetarian_t |;
41 |.fr_salad = 100;

43 sl eeper (&) ;

45 return (0);

46

}
47 #endif /* 1 codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.aouttype. ksh

R R R R

917 Tue Jan 14 16:48:33 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.aouttype. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!' [usr/bin/ksh

2 #

3 #

4 # This file and its contents are supplied under the terms of the

5 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terns of version
7 # 1.0 of the CDDL.

8 #

9 # A full copy of the text of the CDDL shoul d have acconpanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://ww.illunps.org/license/ CDDL.

12 #

14 #

15 # Copyright (c) 2013 Joyent, Inc. Al rights reserved.

16 #

18 #

19 # Lookup a type that is inside a.out.

20 #

22 if [$#!=11]; then

23 echo expected one argunent: ’'< dtrace-path >

24 exit

25 fi

27 dtrace=$1
28 t="season_7_lisa_the_vegetrian_t *
29 exe="tst.aouttype. exe"

31 el fdump "./$exe" | grep -q ’'.SUNWctf’
32 if [[$? -ne 0]]; then

33 echo "CTF does not exist in $exe, that's a bug" >&
34 exit 1

35 fi

37 ./$exe &

38 pi d=$!

40 rc='$dtrace -n "BEG N{ trace((pid$pid\‘$t)0); exit(0); }"*
42 kill -9 $pid

44 exit $rc
45 #endif /* ! codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.chasestrings.c 1

R R R R

1600 Tue Jan 14 16:48: 33 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.chasestrings.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1/*

2 * This file and its contents are supplied under the terns of the

3 * Common Devel opnent and Distribution License ("CDDL"), version 1.0.

4 * You may only use this file in accordance with the terns of version

5 * 1.0 of the CDDL.

6 *

7 * Afull copy of the text of the CDDL shoul d have acconpanied this

8 * source. A copy of the CDDL is also available via the Internet at

9 * http://www.illunos.org/license/ CDDL.

10 */

12 /*

13 * Copyright 2013 (c) Joyent, Inc. Al rights reserved.

14 */

16 /*

17 * This test takes data fromthe current binary which is basically running in a
18 * |oop between two functions and our goal is to have two unique types that they
19 * contain which we can print.

20 */

22 #include <unistd. h>

24 typedef struct zelda_info {

25 char *zi _ganmenaneg;
26 int zi _ndungeons;
27 char *zi _villain;
28 int zi _haszel da;

29 } zelda_info_t;

31 static int
32 has_princess(zelda_info_t *z)

34 return (z->zi_haszel da);
35 }

37 static int
38 has_dungeons(zel da_info_t *z)
{

40 return (z->zi _ndungeons != 0);
41 }

43 static const char *
44 has_villain(zelda_info_t *z)

45

46 return (z->zi_villain);
47 }

49 int

50 mai n(void)

51 {

52 zel da_i nfo_t oot;

53 zelda_info_t |a;

54 zel da_info_t Ittp;

56 oot.zi _ganenane = "Ccarina of Tine";

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.chasestrings.c

57 oot . zi _ndungeons = 10;

58 oot.zi_villain = "Ganondorf";

59 oot. zi _haszelda = 1;

61 | a. zi _ganename = "Link’s Awakeni ng";
62 |l a. zi _ndungeons = 9;

63 la.zi_villain = "N ghtnare";

64 | a.zi _haszel da = 0;

66 Ittp.zi _gamename = "A Link to the Past";
67 Ittp.zi _ndungeons = 12;

68 Ittp.zi_villain = "Ganon";

69 Ittp.zi _haszelda = 1;

71 for (;3) {

72 (voi d) has_princess(&oot);
73 (voi d) has_dungeons(& a);

74 (void) has_villain(&ttp);
75 sleep(1);

76 }

78 return (0);

79

80 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.chasestrings. ksh

R R R R

1946 Tue Jan 14 16:48: 34 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.chasestrings. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!' [usr/bin/ksh

2 #

3 #

4 # This file and its contents are supplied under the terms of the

5 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terns of version
7 # 1.0 of the CDDL.

8 #

9 # A full copy of the text of the CDDL shoul d have acconpanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://ww.illunps.org/license/ CDDL.

12 #

14 #

15 # Copyright (c) 2013 Joyent, Inc. Al rights reserved.

16 #

18 #

19 # This test is checking that we can read nenbers and that pointers inside
20 # menbers point to valid data that is intelligible, eg. strings.

21 #

23 if [$#!=11]; then

24 echo expected one argunent: ’'<'dtrace-path >

25 exit 2

26 fi

28 dtrace=%$1
29 t=" zel da_info_t"
30 exe="tst.chasestrings. exe"

32 elfdunp "./$exe" | grep -q '.SUNWctf’
33 if [[$? -ne 0]]; then

34 echo "CTF does not exist in $exe, that's a bug" >&2
35 exit 1

36 fi

38 ./$exe &

39 pi d=$!

41 $dtrace -qs /dev/stdin <<EOF
42 pid$pid::has_princess:entry
/

43 [next ==

44 {

45 this->t = (pid$pid\‘$t *)(copyin(arg0, sizeof (pl d$pi d\ $t)))

46 printf(" game %, dungeon: %, villain: %, zelda: %\ n"

47 copyi nst r((w ntptr_t)this->t->zi _ganmenane), this->t- >zi _ndungeons,
48 copyinstr((uintptr_t)this->t->zi_villain), this->t->zi_haszelda);
49 next = 1,

50 }

52 pi d$pi d: : has_dungeons: entry

53 /next == 1/

54 {

55 this->t = (pid$pid\‘$t *)(copyin(arg0, sizeof (pid$pid ‘$t)));
56 printf("game: %, dungeon: %, villain: %, zelda: %\ n",

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.chasestrings. ksh

57 copyi nstr((uintptr_t)this->t->zi _ganenane), this->t->zi _ndungeons,
58 copyinstr((uintptr_t)this->t->zi_villain), this->t->zi haszelda);
59 next = 2;

60 }

62 pid$pid::has_villain:entry
63 /next == 2/

64 {

65 this->t = (pid$pid\‘$t *)(copyi n(argO si zeof (pl d$p| d\ $t)))

66 printf("game: %, dungeon: %l, villain: %, zel

67 copyli nst r((w ntptr_t)this->t->zi _ganenane), th| s >t -57i _ndungeons,
68 copyinstr((uintptr_t)this->t->zi_villain), this->t->zi_haszel da);
69 exit(0);

70 }

71 EOF

72 rc=%?

74 kill -9 $pid

76 exit $rc

77 #endif /* ! codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.chasestrings. ksh. out

R R R R

195 Tue Jan 14 16:48:34 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.chasestrings. ksh. out
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEREEREEEERERERERESRESRESRESESESESE]
1 gane: Ccarina of Tinme, dungeon: 10, villain: Ganondorf, zelda: 1
2 gane: Link’s Awakeni ng, dungeon: 9, villain: N ghtmare, zelda: 0
3 gane: A Link to the Past, dungeon: 12, villain: Ganon, zelda: 1

5 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.libtype.c

R R R R

648 Tue Jan 14 16:48: 34 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.libtype.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1/*

2 * This file and its contents are supplied under the terns of the

3 * Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terns of version
5 * 1.0 of the CDDL.

6 *

7 * Afull copy of the text of the CDDL shoul d have acconpanied this

8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illunos.org/license/ CDDL.

10 */

12 /*

13 * Copyright 2013 (c) Joyent, Inc. Al rights reserved.
*
/

16 /*

17 * We're linked against |ibc which has types, though we do not.
*

19 #incl ude <unistd. h>

21 int
22 main(void)

24 for (;;) {
25 sl eep(1000) ;

}
27 / * NOTREACHED* /
28 return (0);

}
30 #endif /* 1 codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.libtype.ksh

R R R R

986 Tue Jan 14 16:48: 34 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.libtype.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!' [usr/bin/ksh

2 #

3 #

4 # This file and its contents are supplied under the terms of the

5 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terns of version
7 # 1.0 of the CDDL.

8 #

9 # A full copy of the text of the CDDL shoul d have acconpanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://ww.illunps.org/license/ CDDL.

12 #

14 #

15 # Copyright (c) 2013 Joyent, Inc. Al rights reserved.

16 #

18 #

19 # Here we want to neke sure that the programin question does not have ctf data
20 # in its a.out; however, we can get types out of a linked Iibc.

21 #

23 if [$#!=11]; then

24 echo expected one argunent: ’'<'dtrace-path >

25 exit 2

26 fi

28 dtrace=$1
29 t="int"
30 exe="tst.libtype.exe"

32 elfdunp "./$exe" | grep -q '.SUNWctf’
33 if [[$? -eq 0]]; then

34 echo "CTF exists in $exe, that’'s a bug" >&2

35 exit 1

36 fi

38 ./$exe &

39 pi d=$!

41 rc='$dtrace -n "BEG N{ trace((pid$pid\‘$t)0); exit(0); }"*
43 kill -9 $pid

45 exit $rc

46 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.linkmap. ksh

R R R R

848 Tue Jan 14 16:48: 34 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.linkmap. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!' [usr/bin/ksh

2 #

3 #

4 # This file and its contents are supplied under the terms of the

5 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terns of version
7 # 1.0 of the CDDL.

8 #

9 # A full copy of the text of the CDDL shoul d have acconpanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://ww.illunps.org/license/ CDDL.

12 #

14 #

15 # Copyright (c) 2013 Joyent, Inc. Al rights reserved.

16 #

18 #

19 # We should be able to see both strstr fromlibc and fromld on an
20 # alternate |inkmap.

21 #

23 if [$#!=11]; then

24 echo expected one argunent: ’'<'dtrace-path >

25 exit 2

26 fi

28 dtrace=$1
30 $dtrace -q -p $$ -s /dev/stdin <<EOF
31 pid\$target: LML\ ‘1d.so.1:strstr:entry,
32 pid\$target:libc.so.1l:strstr:entry

{

34 exit (0);

37 BEGA N

39 exit (0);
}

41 ECF

42 rc=%$?

44 exit $rc
45 #endif /* ! codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.pidprint.ksh

R R R R

1192 Tue Jan 14 16:48:35 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.pidprint.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!' [usr/bin/ksh

2 #

3 #

4 # This file and its contents are supplied under the terms of the

5 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terns of version
7 # 1.0 of the CDDL.

8 #

9 # A full copy of the text of the CDDL shoul d have acconpanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://ww.illunps.org/license/ CDDL.

12 #

14 #

15 # Copyright (c) 2013 Joyent, Inc. Al rights reserved.

16 #

18 #

19 # Use print() on userland CTF types and verify we get the data we expect.
20 #

22 if [$#!=11]; then

23 echo expected one argunent: ’'< dtrace-path >

24 exit

25 fi

27 dtrace=$1
28 t="final _fantasy_info_t"
29 exe="tst.printtype.exe"

31 el fdump "./$exe" | grep -q ’'.SUNWctf’
32 if [[$? -ne 0]]; then

33 echo "CTF does not exist in $exe, that's a bug" >&
34 exit 1

35 fi

37 ./$exe &

38 pi d=$!

40 $dtrace -qs /dev/stdin <<EOF
41 pid$pid::ff_getganeid:entry
/

42 [next ==

43 {

44 print(*args[0]);
45 printf("\n");
46 next = 1;

47 }

49 pid$pid::ff_getpartysize:entry
50 /next == 1/

51

52 print(*args[0]);
53 printf("\n");
54 next = 2;

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.pidprint.ksh

57 pid$pid::ff_getsummons:entry
58 /next == 2/

67 kill -9 $pid

69 exit $rc
70 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/common/uctf/tst.pidprinttarg.ksh

R R R R

1277 Tue Jan 14 16:48:35 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.pidprinttarg.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!' [usr/bin/ksh

2 #

3 #

4 # This file and its contents are supplied under the terms of the

5 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terns of version
7 # 1.0 of the CDDL.

8 #

9 # A full copy of the text of the CDDL shoul d have acconpanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://ww.illunps.org/license/ CDDL.

12 #

14 #

15 # Copyright (c) 2013 Joyent, Inc. Al rights reserved.

16 #

18 #

19 # Use print() on userland CTF types and verify we get the data we
20 # expect. This tinme, use $target to make sure that path works correctly.
21 #

23 if [$#!=11]; then

24 echo expected one argunent: ’'<'dtrace-path >

25 exit 2

26 fi

28 dtrace=$1
29 t="final _fantasy_info_t"
30 exe="tst.printtype.exe"

32 elfdunp "./$exe" | grep -q '.SUNWctf’
33 if [[$? -ne 0]]; then

34 echo "CTF does not exist in $exe, that's a bug" >&2
35 exit 1

36 fi

38 ./$exe &

39 pi d=$!

41 $dtrace -p $pid -gs /dev/stdin <<EOF
42 pid\$target::ff_getganeid:entry
0/

43 /[next ==

44 {

45 print(*args[0]);
46 printf("\n");
47 next = 1;

48 }

50 pid\$target::ff_getpartysize:entry
51 /next == 1/

52 {

53 print(*args[0]);
54 printf("\n");
55 next = 2;

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.pidprinttarg.ksh

58 pid\$target::ff_getsummons:entry
59 /next == 2/

68 kill -9 $pid

70 exit $rc
71 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.printtype.c 1

R R R R

1415 Tue Jan 14 16:48: 35 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.printtype.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1/*

2 * This file and its contents are supplied under the terns of the

3 * Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terns of version
5 * 1.0 of the CDDL.

6 *

7 * Afull copy of the text of the CDDL shoul d have acconpanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illunos.org/license/ CDDL.

10 */

12 /*

13 * Copyright 2013 (c) Joyent, Inc. Al rights reserved.

14 */

16 /*

on various functions to nake sure that we

17 * The point of this is to use print()
that we purposefully are making sure that

18 * can print basic structures. Note
19 * there are no pointers here.

*/
21 #include <unistd. h>

23 typedef struct final_fantasy_info {

24 int ff_ganeid;
25 int ff_partysize;
26 int ff_hassummons;

27 } final _fantasy_info_t;

29 static int
30 ff_getganeid(final _fantasy_info_t *f)
{

32 return (0);
33}

35 static int
36 ff_getpartysize(final _fantasy_info_t *f)
{

38 return (0);
39 }

41 static int
42 ff_getsumons(final _fantasy_info_t *f)
{

43

44 return (0);

45 }

47 int

48 mai n(voi d)

49 {

50 final _fantasy_info_t ffiii, ffx, ffi;
52 ffi.ff_gameid = 1;

53 ffi.ff_partysize = 4;

54 ffi.ff_hassunmons = 0;

56 ffiii.ff_ganmeid = 6;

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.printtype.c

57 ffiii.ff_partysize = 4;

58 ffiii.ff_hassummons = 1;

60 ffx.ff_gameid = 10;

61 ffx.ff_partysize = 3;

62 ffx.ff_hassummons = 1;

64 for (;;) {

65 ff_getganmei d(&fi);
66 ff_getpartysize(&f fx);
67 ff_getsummons(& fiii);
68 sl eep(l);

69 }

70 / * NOTREACHED* /

71 return (0);

72}
73 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.printtype.ksh

R R R R

1324 Tue Jan 14 16:48:35 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.printtype.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!' [usr/bin/ksh

2 #

3 #

4 # This file and its contents are supplied under the terms of the

5 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terns of version
7 # 1.0 of the CDDL.

8 #

9 # A full copy of the text of the CDDL shoul d have acconpanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://ww.illunps.org/license/ CDDL.

12 #

14 #

15 # Copyright (c) 2013 Joyent, Inc. Al rights reserved.

16 #

18 #

19 # Use print() on userland CTF types and verify we get the data we expect.
20 #

22 if [$#!=11]; then

23 echo expected one argunent: ’'< dtrace-path >

24 exit

25 fi

27 dtrace=$1
28 t="final _fantasy_info_t"
29 exe="tst.printtype.exe"

31 el fdump "./$exe" | grep -q ’'.SUNWctf’
32 if [[$? -ne 0]]; then

33 echo "CTF does not exist in $exe, that's a bug" >&
34 exit 1

35 fi

37 ./$exe &

38 pi d=$!

40 $dtrace -qs /dev/stdin <<EOF
41 pid$pid::ff_getganeid:entry
/

42 [next ==

43 {

44 print(*(pid$pid\‘$t *)(copyin(arg0, sizeof (pid$pid\‘$t))));
45 printf("\n");

46 next = 1;

47 }

49 pid$pid::ff_getpartysize:entry

50 /next == 1/

51

52 print(*(pi d$pid\‘$t *)(copyin(arg0, sizeof (pid$pid\‘$t))));
53 printf("\n");

54 next = 2;

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.printtype.ksh

57 pid$pid::ff_getsummons:entry
58 /next == 2/

i 5$pi d\‘ $t *)(copyin(arg0, sizeof (pid$pid\‘$t))));
n");

67 kill -9 $pid

69 exit $rc
70 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.printtype.ksh. out

R R R R

311 Tue Jan 14 16:48:36 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.printtype.ksh. out
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 final _fantasy_info_t {

2 int ff_ganmeid = Ox1

3 int ff_partysize = 0x4
4 int ff_hassummons = 0
51}

6 final _fantasy_info_t {

7 int ff_ganeid = Oxa

8 int ff_partysize = 0x3
9 int ff_hassummons = Ox1
10 }

11 final _fantasy_info_t {

12 int ff_ganmeid = Ox6

13 int ff_partysize = 0x4
14 int ff_hassummons = 0x1
15 }

17 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.printtypetarg.ksh

R R R R

1354 Tue Jan 14 16:48:36 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.printtypetarg.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!' [usr/bin/ksh

2 #

3 #

4 # This file and its contents are supplied under the terms of the

5 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terns of version
7 # 1.0 of the CDDL.

8 #

9 # A full copy of the text of the CDDL shoul d have acconpanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://ww.illunps.org/license/ CDDL.

12 #

14 #

15 # Copyright (c) 2013 Joyent, Inc. Al rights reserved.

16 #

18 #

19 # Use print() on userland CTF types and verify we get the data we
20 # expect. Use the pid' alias for $target.

21 #

23 if [$#!=11]; then

24 echo expected one argunent: ’'<'dtrace-path >

25 exit 2

26 fi

28 dtrace=$1
29 t="final _fantasy_info_t"
30 exe="tst.printtype.exe"

32 elfdunp "./$exe" | grep -q '.SUNWctf’
33 if [[$? -ne 0]]; then

34 echo "CTF does not exist in $exe, that's a bug" >&2
35 exit 1

36 fi

38 ./$exe &

39 pi d=$!

41 $dtrace -p $pid -gs /dev/stdin <<EOF
42 pid\$target::ff_getganeid:entry
0/

43 /[next ==

44 {

45 print(*(pid\‘$t *)(copyin(arg0, sizeof (pid\‘$t))));
46 printf("\n");

47 next = 1;

48 }

50 pid\$target::ff_getpartysize:entry

51 /next == 1/

52 {

53 print(*(pid\‘$t *)(copyin(arg0, sizeof (pid\‘$t))));
54 printf("\n");

55 next = 2;

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.printtypetarg.ksh
58 pid\$target::ff_getsummons:entry
59 /next == 2/
(pid\$t *)(copyin(arg0, sizeof (pid\‘$t))));
"\

68 kill -9 $pid

70 exit $rc
71 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/common/uctf/tst.userlandkey. ksh

R R R R

1882 Tue Jan 14 16:48:36 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.userlandkey. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!' [usr/bin/ksh

2 #

3 #

4 # This file and its contents are supplied under the terms of the

5 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terns of version
7 # 1.0 of the CDDL.

8 #

9 # A full copy of the text of the CDDL shoul d have acconpanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://ww.illunps.org/license/ CDDL.

12 #

14 #

15 # Copyright (c) 2013 Joyent, Inc. Al rights reserved.

16 #

18 #

19 # Sinple test that if we nanually use the userland keyword that it
20 # works.

21 #

23 if [$#!=11]; then

24 echo expected one argunent: ’'<'dtrace-path >

25 exit 2

26 fi

28 dtrace=$1
29 t="zelda_info_t"
30 exe="tst.chasestrings. exe"

32 elfdunp "./$exe" | grep -q '.SUNWctf’
33 if [[$? -ne 0]]; then

34 echo "CTF does not exist in $exe, that's a bug" >&2
35 exit 1

36 fi

38 ./$exe &

39 pi d=$!

41 $dtrace -32 -qgs /dev/stdin <<EOF
42 typedef struct info {

43 char *zi _ganmenane;
44 int zi _ndungeons;
45 char *zi_villain;
46 int zi _haszel da;
47 } info_t;

49 pid$pi d:: has_princess:entry
50 /next == 0/

51

52 this->t = (userland info_t *)argo0;

53 printf("game: %, dungeon: %, villain: %, zelda: %\n",
54 stringof (this->t->zi _ganenane), this->t->zi_ndungeons,
55 stringof (this->t->zi _villain), this->t->zi_haszelda);

56 next = 1;

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.userlandkey. ksh
57 }

59 pid$pi d: : has_dungeons: entry
60 /next == 1/

61

62 this->t = (userland info_t *)arg0;

63 printf("game: %, dungeon: %, villain: %, zelda: %\n",
64 stringof (this->t->zi _gamenane), this->t->zi_ndungeons,
65 stringof (this->t->zi_villain), this->t->zi_haszelda);
66 next = 2;

67 }

69 pid$pid::has_villain:entry
70 /next == 2/

71 {

72 this->t = (userland info_t *)argO;

73 printf("game: %, dungeon: %, villain: %, zelda: %\n",
74 stringof (this->t->zi _ganenane), this->t->zi_ndungeons,
75 stringof (this->t->zi _villain), this->t->zi_haszelda);
76 exit(0);

77 }

78 EOF

79 rc=%?

81 kill -9 $pid

83 exit $rc

84 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.userlandkey. ksh. out

R R R R

195 Tue Jan 14 16:48:36 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.userlandkey. ksh. out
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEREEREEEERERERERESRESRESRESESESESE]
1 gane: Ccarina of Tinme, dungeon: 10, villain: Ganondorf, zelda:
2 gane: Link’s Awakening, dungeon: 9, villain: N ghtmare, zelda:
3 gane: A Link to the Past, dungeon: 12, villain: Ganon, zelda: 1

5 #endif /* | codereview */

or

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.userstrings.ksh

R R R R

1665 Tue Jan 14 16:48: 36 2014

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.userstrings. ksh

4474
4475
4476
4479
4480

DTrace Userland CTF Support

DTrace userland Keyword

DTrace tests should be better citizens
pi d provider types

dof erul ation m ssing checks

Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

#! [usr/bin/ksh

This file and its contents are supplied under the terms of the
Conmmon Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the terns of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this

source. A copy of the CDDL is also available via the Internet at
http://ww.illunps.org/license/ CDDL.

Copyright (c) 2013 Joyent, Inc. Al rights reserved.

This test is checking that we can read nenbers and that pointers inside
nenbers point to valid data that is intelligible, eg. strings.

HHHFH HHHT HHHHHBHFHHHR

if [$#!=11; then
echo expected one argunent: ’'<'dtrace-path >
exit 2

fi

dtrace=$1
exe="t st.chasestrings. exe"

el fdump "./$exe" | grep -q '.SUNWctf’

if [[$2 -ne 0]]; then
echo "CTF does not exist in $exe, that's a bug" >&
exit 1

fi

.| $exe &
pi d=$!

$dtrace -gs /dev/stdin <<EOF
pi d$pi d: : has_princess:entry

/ next ==
printf("game: %, dungeon: %, villain: %, zelda: %\n",
stringof (args[0] ->zi _ganenane), args[O0]->zi _ndungeons,
stringof (args[0]->zi _villain), args[O0]->zi_haszel da);
next = 1;
}
pi d$pi d: : has_dungeons: entry
/next == 1/
{

printf("game: %, dungeon: %, villain: %, zelda: %\n",
stringof (args[0] ->zi _ganenane), args[O0]->zi_ndungeons,
stringof (args[0]->zi _villain), args[O0]->zi_haszel da);
next = 2;

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.userstrings. ksh
57 }

59 pid$pid::has_villain:entry
60 /next == 2/

62 printf("game: %, dungeon: %l, villain: %, zelda: %\n",
63 stringof (args[0] ->zi _ganenane), args[0]->zi _ndungeons,
64 stringof (args[0]->zi _villain), args[O0]->zi_haszelda);
65 exit(0);

}
67 EOF
68 rc=$?

70 kill -9 $pid

72 exit $rc
73 #endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.userstrings.ksh. out

R R R R

195 Tue Jan 14 16:48:37 2014
new usr/src/cnd/ dtrace/test/tst/comon/uctf/tst.userstrings.ksh. out
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEREEREEEERERERERESRESRESRESESESESE]
1 gane: Ccarina of Tinme, dungeon: 10, villain: Ganondorf, zelda:
2 gane: Link’s Awakening, dungeon: 9, villain: N ghtmare, zelda:
3 gane: A Link to the Past, dungeon: 12, villain: Ganon, zelda: 1

5 #endif /* | codereview */

or

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.corruptenv. ksh

R R R R

2119 Tue Jan 14 16:48:37 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.corruptenv. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

wi t hout inducing a crash does not crash solely due to drti.o’s use of
getenv(30).

1 #!'/usr/bin/ksh
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Devel oprent and Distribution License (the "License").
7 # You may not use this file except in conpliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
10 # or http://ww. opensol aris.org/os/licensing.
11 # See the License for the specific |anguage governing pernissions
12 # and limtations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 # |f applicable, add the follow ng bel ow this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [nane of copyright owner]
19 #
20 # CDDL HEADER END
21 #
23 #
24 # Copyright 2008 Sun M crosystens, Inc. Al rights reserved.
25 # Use is subject to license terns.
26 #
28 #
29 # This test verifies that a programthat corrupts its own environnment
#
#
#

34 PATH=/ usr/bin:/usr/sbin: $PATH
36 if (($#!=1)); then

37 print -u2 'expected one argunent: <dtrace-path>’
38 exit 2

39 fi

41 #

42 # jdtrace does not inplenent the -h option that is required to generate
43 # C header files.
#

45 if [["$1" == */jdtrace]]; then
exit O
47 fi

49 dtrace="$1"

50 startdir="$PWD"

51 dir=$(nktenp -td drti XXXXXX)

52 if (($?2 !'=0)); then

53 print -u2 'Could not create safe tenporary directory’
54 exit 2

55 fi

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.corruptenv. ksh
57 cd "$dir"

59 cat > Makefile <<EOF
60 all: nmin

62 main: main.o prov.o

63 gcc -nB2 -0 nain nain.o prov.o
63 gcc -0 NMein main.o prov.o

65 main.o: main.c prov.h

66 gcc -nB2 -c nmain.c

66 gcc -c nain.c

68 prov.h: prov.d

69 $dtrace -h -s prov.d

71 prov.o: prov.d main.o

72 $dtrace -G -32 -s prov.d main.o
73 EOF

75 cat > prov.d <<EOF
76 provider tester {
77 probe entry();

_ﬁnchanged_port ion_onmtted_

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.dlclosel. ksh

R R R R

2697 Tue Jan 14 16:48:37 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.dlcl osel. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!/bin/ksh -p

2 #

3 # CDDL HEADER START

4 #

5 # The contents of this file are subject to the terms of the

6 # Common Devel oprent and Distribution License (the "License").

7 # You may not use this file except in conpliance with the License.
8 #

9 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
10 # or http://ww. opensol aris.org/os/licensing.

11 # See the License for the specific |anguage governing pernissions
12 # and limtations under the License.

13 #

14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 # |f applicable, add the follow ng bel ow this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [nane of copyright owner]
19 #

20 # CDDL HEADER END

21 #

23 #

24 # Copyright 2007 Sun Mcrosystens, Inc. Al rights reserved.

25 # Use is subject to license terns.

26 #

28 #

29 # This test verifies that USDT providers are renoved when its associ ated
30 # load object is closed via dlclose(3dl).

31 #

33 if [$#!=11]; then

34 echo expected one argunent: '<'dtrace-path’ >

35 exit 2

36 fi

38 dtrace=$1
39 DI R=/var/tnp/dtest.$$

41 nkdir $DIR
42 cd $DIR

44 cat > Makefile <<EOF
45 all: main livelib.so deadlib.so

47 main: nmain.o prov.o

48 gcc -nB2 -0 main nain.o
48 gcc -0 main main.o

50 main.o: nain.c

51 gcc -nB2 -c nmain.c

51 gcc -c main.c

54 livelib.so: livelib.o prov.o

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.dlclosel. ksh

55 gcc -nB2 -shared -o livelib.so livelib.o prov.o -lc
55 gcc -shared -o livelib.so livelib.o prov.o -lc

57 livelib.o: livelib.c prov.h

58 gcc -nmB2 -fPIC -c livelib.c

58 gcc -c livelib.c

60 prov.o: livelib.o prov.d

61 $dtrace -G -s prov.d livelib.o

63 prov.h: prov.d
64 $dtrace -h -s prov.d

67 deadlib.so: deadlib.o

68 gcc -nB2 -shared -o deadlib.so deadlib.o -lc
68 gcc -shared -o deadlib.so deadlib.o -Ic

70 deadlib.o: deadlib.c

71 gcc -nmB2 -fPIC -c deadlib.c

71 gcc -c deadlib.c

73 cl ean:

74 rm-f main.o livelib.o prov.o prov.h deadlib.o
76 cl obber: clean

77 rm-f main livelib.so deadlib.so

78 EOF

80 cat > prov.d <<EOF
81 provider test_prov {
82 probe go();

_’unchanged_port ion_omtted_

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.dl cl ose2. ksh

R R R R

2887 Tue Jan 14 16:48:38 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.dl cl ose2. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!/bin/ksh -p

2 #

3 # CDDL HEADER START

4 #

5 # The contents of this file are subject to the terms of the

6 # Common Devel oprent and Distribution License (the "License").

7 # You may not use this file except in conpliance with the License.
8 #

9 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
10 # or http://ww. opensol aris.org/os/licensing.

11 # See the License for the specific |anguage governing pernissions
12 # and limtations under the License.

13 #

14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 # |f applicable, add the follow ng bel ow this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [nane of copyright owner]
19 #

20 # CDDL HEADER END

21 #

23 #

24 # Copyright 2006 Sun M crosystens, Inc. Al rights reserved.

25 # Use is subject to license terns.

26 #

28 if [$#!=11]; then

29 echo expected one argunent: '<'dtrace-path’ >

30 exit 2

31 fi

33 dtrace=$1
34 DI R=/var/tnp/dtest.$$

36 nkdir $DIR

37 cd $DIR

39 cat > Makefile <<EOF

40 all: main livelib.so deadlib.so

42 main: main.o prov.o

43 gcc -nB2 -0 nmin nain.o

43 gcc -0 main main.o

45 main.o: nain.c

46 gcc -nB2 -c nain.c

46 gcc -c main.c

49 livelib.so: livelib.o prov.o

50 gcc -nB2 -shared -o livelib.so livelib.o prov.o -lc
50 gcc -shared -o livelib.so livelib.o prov.o -lc
52 livelib.o: livelib.c prov.h

53 gcc -nB2 -fPIC -c livelib.c

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.dl cl ose2. ksh
53 gcc -c livelib.c

55 prov.o: livelib.o prov.d
56 $dtrace -G -s prov.d livelib.o

58 prov.h: prov.d
59 $dtrace -h -s prov.d

62 deadlib.so: deadlib.o

63 gcc -nB2 -shared -o deadlib.so deadlib.o -lc
63 gcc -shared -o deadlib.so deadlib.o -lc

65 deadlib.o: deadlib.c

66 gcc -nB2 -fPIC -c deadlib.c

66 gcc -c deadlib.c

68 cl ean:

69 rm-f main.o livelib.o prov.o prov.h deadlib.o
71 cl obber: clean

72 rm-f main livelib.so deadlib.so

73 EOF

75 cat > prov.d <<EOF
76 provider test_prov {
77 probe go();

_hnchanged_port ion_onmtted_

new usr/src/cnd/ dtrace/test/tst/common/usdt/tst.dl cl ose3. ksh

R R R R

2752 Tue Jan 14 16:48:38 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.dl cl ose3. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 #!/bin/ksh -p

2 #

3 # CDDL HEADER START

4 #

5 # The contents of this file are subject to the terms of the

6 # Common Devel oprent and Distribution License (the "License").

7 # You may not use this file except in conpliance with the License.
8 #

9 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
10 # or http://ww. opensol aris.org/os/licensing.

11 # See the License for the specific |anguage governing pernissions
12 # and limtations under the License.

13 #

14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 # |f applicable, add the follow ng bel ow this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [nane of copyright owner]
19 #

20 # CDDL HEADER END

21 #

23 #

24 # Copyright 2007 Sun Mcrosystens, Inc. Al rights reserved.

25 # Use is subject to license terns.

26 #

28 #

29 # This test verifies that performng a dlclose(3dl) on a library doesn't
30 # cause existing pid provider probes to becone invalid.

31 #

33 if [$#!=11]; then

34 echo expected one argunent: '<'dtrace-path’ >

35 exit 2

36 fi

38 dtrace=$1
39 DI R=/var/tnp/dtest.$$

41 nkdir $DIR
42 cd $DIR

44 cat > Makefile <<EOF
45 all: main livelib.so deadlib.so

47 main: nmain.o prov.o

48 gcc -nB2 -0 main nain.o
48 gcc -0 main main.o

50 main.o: nain.c

51 gcc -nB2 -c nmain.c

51 gcc -c main.c

54 livelib.so: livelib.o prov.o

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.dl cl ose3. ksh

55 gcc -nB2 -shared -o livelib.so livelib.o prov.o -lc
55 gcc -shared -o livelib.so livelib.o prov.o -lc

57 livelib.o: livelib.c prov.h

58 gcc -nmB2 -fPIC -c livelib.c

58 gcc -c livelib.c

60 prov.o: livelib.o prov.d

61 $dtrace -G -s prov.d livelib.o

63 prov.h: prov.d
64 $dtrace -h -s prov.d

67 deadlib.so: deadlib.o

68 gcc -nB2 -shared -o deadlib.so deadlib.o -lc
68 gcc -shared -o deadlib.so deadlib.o -Ic

70 deadlib.o: deadlib.c

71 gcc -nmB2 -fPIC -c deadlib.c

71 gcc -c deadlib.c

73 cl ean:

74 rm-f main.o livelib.o prov.o prov.h deadlib.o
76 cl obber: clean

77 rm-f main livelib.so deadlib.so

78 EOF

80 cat > prov.d <<EOF
81 provider test_prov {
82 probe go();

_’unchanged_port ion_omtted_

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.elimnate. ksh

R R R R

2066 Tue Jan 14 16:48:39 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.elin nate.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

___unchanged_portion_onitted_
2 ECF

74 gcc -nB2 -c test.c
74 gcc -c test.c
75 if [$? -ne 0]; then

76 print -u2 "failed to conpile test.c"
77 exit 1
78 fi

79 $dtrace -G -32 -s prov.d test.o
80 if [$2 -ne 0]; then

81 print -u2 "failed to create DOF"
82 exit 1
83 fi

84 gcc -nB2 -0 test test.o prov.o
84 gcc -0 test test.o prov.o
85 if [$? -ne 0]; then

86 print -u2 "failed to link final executable"
87 exit 1
88 fi

90 nmtest.o | grep \$dtrace > /dev/null
91 if [$? -ne 0]; then

92 print -u2 "no tenporary synbols in the object file"
93 exit 1
94 fi

96 nmtest | grep \$dtrace > /dev/null
97 if [$? -eq 0]; then

98 print -u2 "failed to elimnate tenporary synbols"
99 exit 1

100 fi

102 ¢

d/
103 /usr/bin/rm-rf $DR
105 exit O

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.enabl ed. ksh

R R R R

1848 Tue Jan 14 16:48:39 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.enabl ed. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

___unchanged_portion_onitted_
1 EOF

63 gcc -nB2 -c test.c
63 gcc -c test.c
64 if [$?2 -ne 0]; then

65 print -u2 "failed to conpile test.c"
66 exit 1
67 fi

68 $dtrace -G -32 -s prov.d test.o
69 if [$2 -ne 0]; then

70 print -u2 "failed to create DOF"
71 exit 1
72 fi

73 gcc -nB2 -0 test test.o prov.o

73 gcc -0 test test.o prov.o

74 if [$? -ne 0]; then

75 print -u2 "failed to link final executable"
76 exit 1

77 fi

79 script()

81 $dtrace -c ./test -qs /dev/stdin <<ECF
82 test_prov\$target:::
{

84 printf("%: %:%\n", probenod, probefunc,

__unchanged_portion_onitted_

probenane) ;

new usr/src/cnd/ dtrace/test/tst/comon/ usdt/tst.enabl ed2. ksh

R R R R

2133 Tue Jan 14 16:48:40 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst. enabl ed2. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

___unchanged_portion_onitted_
7 EOF

79 gcc -nB2 -c test.c
79 gcc -c test.c
80 if [$? -ne 0]; then

81 print -u2 "failed to conpile test.c"
82 exit 1
83 fi

84 $dtrace -G -32 -s prov.d test.o
85 if [$?2 -ne 0]; then

86 print -u2 "failed to create DOF"
87 exit 1
88 fi

90 gcc -nB2 -0 test test.o prov.o

89 gcc -0 test test.o prov.o

91 if [$? -ne 0]; then

92 print -u2 "failed to link final executable"
93 exit

94 fi

96 script()
{
98 ./test

100 $dtrace -c ./test -qgs /dev/stdin <<EOF
101 test_prov\$target:::
102 {
103
104 EOF
105 }
__unchanged_portion_onitted_

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.entryreturn. ksh

R R R R

2314 Tue Jan 14 16:48:40 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.entryreturn. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

___unchanged_portion_onitted_
0 ECF

72 gcc -nB2 -c test.c
72 gcc -c test.c
73 1f [$? -ne 0]; then

74 print -u2 "failed to conpile test.c"
75 exit 1
76 fi

77 $dtrace -G -32 -s prov.d test.o
78 if [$? -ne 0]; then

79 print -u2 "failed to create DOF"
80 exit 1
81 fi

82 gcc -nB2 -0 test test.o prov.o
82 gcc -0 test test.o prov.o
83 if [$? -ne 0]; then

84 print -u2 "failed to link final executable"
85 exit 1

86 fi

88 script()

89 {

90 $dtrace -wgZFs /dev/stdin <<EOF
91 BEG N

92 {

93 system("$DI R/test");
94 printf("\n");

95 }

97 test_prov*:::done

98 / progenyof (\ $pi d)/

99 {

100 exit(0);

101 }

103 test_prov*:::

104 / progenyof (\ $pi d)/

105 {

106 printf("\n");

107

108 EOF

109 }

__unchanged_portion_omtted_

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.fork. ksh

R R R R

1970 Tue Jan 14 16:48:41 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.fork. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

___unchanged_portion_onitted_
1 EOF

73 gcc -nB2 -c test.c
73 gcc -c test.c
74 if [$? -ne 0]; then

75 print -u2 "failed to conpile test.c"
76 exit 1
77 fi

78 $dtrace -G -32 -s prov.d test.o
79 if [$? -ne 0]; then

80 print -u2 "failed to create DOF"
81 exit 1
82 fi

83 gcc -nB2 -0 test test.o prov.o
83 gcc -0 test test.o prov.o
84 if [$? -ne 0]; then

85 print -u2 "failed to link final executable"
86 exit 1

87 fi

89 script() {

90 $dtrace -c ./test -Zgs /dev/stdin <<ECF

91 test_prov*:::

92

93 printf("%:%: %\n", probenod, probefunc,
94

95 ECF

96

}
__unchanged_portion_onitted_

probenane) ;

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst. header. ksh

R R R R

1786 Tue Jan 14 16:48:41 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst. header. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

___unchanged_portion_onitted_
5 ECF

67 gcc -nB2 -c test.c
67 gcc -c test.c
68 if [$?2 -ne 0]; then

69 print -u2 "failed to conpile test.c"
70 exit 1
71 fi

72 $dtrace -G -32 -s prov.d test.o
73 if [$? -ne 0]; then

74 print -u2 "failed to create DOF"
75 exit 1
76 fi

77 gcc -nB2 -0 test test.o prov.o
77 gcc -0 test test.o prov.o
78 if [$? -ne 0]; then

79 print -u2 "failed to link final executable"
80 exit 1

81 fi

83

cd /
84 /usr/bin/rm-rf $D R

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.linkpriv.ksh

R R R R

1981 Tue Jan 14 16:48:41 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.linkpriv.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

___unchanged_portion_onitted_
2 ECF

64 gcc -nB2 -c test.c
64 gcc -c test.c
65 if [$?2 -ne 0]; then

66 print -u2 "failed to conpile test.c"
67 exit 1
68 fi

69 $dtrace -G -32 -s prov.d test.o
70 if [$? -ne 0]; then

71 print -u2 "failed to create DOF"
72 exit 1
73 fi

74 gcc -nB2 -0 test test.o prov.o
74 gcc -0 test test.o prov.o
75 if [$? -ne 0]; then

76 print -u2 "failed to link final executable"
77 exit 1

78 fi

80

cd /
81 /usr/bin/rm-rf $D R

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.linkunpriv.ksh

R R R R

2002 Tue Jan 14 16:48:42 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.linkunpriv.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

____unchanged_portion_onitted_
4 EOF

66 gcc -nB2 -c test.c
66 gcc -c test.c
67 if [$?2 -ne 0]; then

68 print -u2 "failed to conpile test.c"
69 exit 1
70 fi

71 $dtrace -G -32 -s prov.d test.o
72 if [$? -ne 0]; then

73 print -u2 "failed to create DOF"
74 exit 1
75 fi

76 gcc -nB2 -0 test test.o prov.o
76 gcc -0 test test.o prov.o
77 if [$? -ne 0]; then

78 print -u2 "failed to link final executable"
79 exit 1

80 fi

82

cd /
83 /usr/bin/rm-rf $D R

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.multiple.ksh

R R R R

1892 Tue Jan 14 16:48:42 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.nultiple.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

___unchanged_portion_onitted_
5 ECF

67 gcc -nB2 -c test.c
67 gcc -c test.c
68 if [$?2 -ne 0]; then

69 print -u2 "failed to conpile test.c"
70 exit 1
71 fi

72 $dtrace -G -32 -s prov.d test.o
73 if [$? -ne 0]; then

74 print -u2 "failed to create DOF"
75 exit 1
76 fi

77 gcc -nB2 -0 test test.o prov.o
77 gcc -0 test test.o prov.o
78 if [$? -ne 0]; then

79 print -u2 "failed to link final executable"
80 exit 1

81 fi

83 script() {

84 $dtrace -c ./test -gs /dev/stdin <<EOF

85 test_prov\$target:::

86 {

87 printf("%:%: %\n", probenod, probefunc,
88

89 ECF

90

}
__unchanged_portion_onitted_

probenane) ;

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.nultiprov.ksh

R R R R

2005 Tue Jan 14 16:48:43 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.nultiprov.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

____unchanged_portion_onitted_

65 EOF
67 gcc -nB2 -c $oogle.c
67 cc -c $oogle.c
69 if [$?2 -ne 0]; then
70 print -u2 "failed to conpile $oogle.c"
71 exit 1
72 fi
74 $dtrace -G -32 -s $oogle.d $oogle.o -0 $oogle.d.o
76 if [$?2 -ne 0]; then
77 print -u2 "failed to process $oogle.d"
78 exit 1
79 fi
81 obj s="$obj s $oogl e. 0 $oogl e. d. 0"
82 echo $oogle' ();” >> test.c
83 echo $oogl e’ $target:::{@probefunc] = count()}’ >> test.
84 done

86 echo "}" >> test.c
88 echo 'END{printa("% 10s %@\\n", @} >> test.d

90 gcc -nB2 -0 test test.c $objs
90 cc -0 test test.c $objs

92 if [$?2 -ne 0]; then

93 print -u2 "failed to conpile test.c"
94 exit 1
95 fi

97 $dtrace -s ./test.d -Zc ./test
99 if [$? -ne 0]; then

100 print -u2 "failed to execute test"
101 exit 1

102 fi

104 cd /

105 /usr/bin/rm-rf $DR
106 exit O

d

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.noprobes. ksh

R R R R

1294 Tue Jan 14 16:48: 44 2014
new usr/src/cnd/ dtrace/test/tst/comon/ usdt/tst.noprobes. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

__unchanged_portion_onitted_
7 ECOF

49 gcc -nB2 -c test.c
49 cc -c test.c
50 $dtrace -G -32 -s doogle.d test.o -o doogle.d.o

52 if [$? -eq 0]; then

53 print -u2 "dtrace succeeded despite having no probe sites"
54 exit 1

55 fi

57 cd /

58 /usr/bin/rm-rf $D R
59 exit 0

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.noreap. ksh

R R R R

2322 Tue Jan 14 16:48: 44 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.noreap. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

___unchanged_portion_onitted_
2 ECF

54 gcc -nB2 -c test.c
54 gcc -c test.c
55 if [$? -ne 0]; then

56 print -u2 "failed to conpile test.c"
57 exit 1
58 fi

59 $dtrace -G -32 -s prov.d test.o
60 if [$? -ne 0]; then

61 print -u2 "failed to create DOF"
62 exit 1
63 fi

65 gcc -nB2 -0 test test.o prov.o
64 gcc -0 test test.o prov.o
66 if [$2 -ne 0]; then

67 print -u2 "failed to link final executable"
68 exit

69 fi

71 script()

72 {

73 $dtrace -Zwgs /dev/stdin <<EOF

75 BEG N

76 {

77 spec = specul ation();

78 specul at e(spec);

79 printf("this is speculative!\n");
80 }

82 test_prov*:::

83 {

84 probeid = id;

85 }

87 tick-1sec

88 / probeid == 0/

89 {

90 printf("launching test\n");

91 system("./test");

92 }

94 tick-1sec

95 / probeid !'= 0/

96 {

97 printf("attenpting re-enabling\n");
98 systen("dtrace -e -x errtags -i %",
99 attenpt s++;
100 }
102 i ck-1sec

t
103 /attenpts > 10/
{

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst

105 exit(0);
106

107 EOF

108 }

__unchanged_portion_omtted_

. nor eap. ksh

new usr/src/cnd/ dtrace/test/tst/common/usdt/tst.noreapring.

R R R R

2405 Tue Jan 14 16:48:45 2014

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.noreapring.

4474 DTrace Userland CTF Support

4475 DTrace userland Keyword

4476 DTrace tests should be better citizens
4479 pid provider types

4480 dof enul ation m ssing checks

Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

___unchanged_portion_onitted_
2 ECF

54 gcc -nB2 -c test.c
54 gcc -c test.c
55 if [$? -ne 0]; then

56 print -u2 "failed to conpile test.c"
57 exit 1
58 fi

59 $dtrace -G -32 -s prov.d test.o
60 if [$? -ne 0]; then

61 print -u2 "failed to create DOF"
62 exit 1
63 fi

65 gcc -nB2 -0 test test.o prov.o

64 gcc -0 test test.o prov.o

66 if [$? -ne 0]; then

67 print -u2 "failed to link final executable"
68 exit

69 fi

71 script()
{

73 $dtrace -Zwgs /dev/stdin <<EOF
74 test_prov*:::
{

76 probeid = id;
77 }

79 tick-1sec
80 / probeid == 0/
{

82 printf("launching test\n");
83 system("./test");
84 }

86 tick-1lsec
87 / probeid !'= 0/
{

89 printf("attenpting re-enabling\n");
90 systen("dtrace -e -x errtags -i %",
91 at t enpt s++;

92 }

i ck-1sec
attenpts > 10/

t
/
96 {
exit(0);
}

__unchanged_portion_omtted_

ksh

ksh

probei d);

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.onlyenabl ed. ksh

R R R R

1679 Tue Jan 14 16:48: 45 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.onl yenabl ed. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

___unchanged_portion_onitted_
2 ECF

64 gcc -nB2 -c test.c
64 gcc -c test.c
65 if [$?2 -ne 0]; then

66 print -u2 "failed to conpile test.c"
67 exit 1
68 fi

69 $dtrace -G -32 -s prov.d test.o
70 if [$? -ne 0]; then

71 print -u2 "failed to create DOF"
72 exit 1
73 fi

74 gcc -nB2 -0 test test.o prov.o
74 gcc -0 test test.o prov.o
75 if [$? -ne 0]; then

76 print -u2 "failed to link final executable"
77 exit 1

78 fi

80

cd /
81 /usr/bin/rm-rf $D R

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.reap. ksh

R R R R

2224 Tue Jan 14 16:48: 46 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.reap. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

___unchanged_portion_onitted_
2 ECF

54 gcc -nB2 -c test.c
54 gcc -c test.c
55 if [$? -ne 0]; then

56 print -u2 "failed to conpile test.c"
57 exit 1
58 fi

59 $dtrace -G -32 -s prov.d test.o
60 if [$? -ne 0]; then

61 print -u2 "failed to create DOF"
62 exit 1
63 fi

65 gcc -nB2 -0 test test.o prov.o

64 gcc -0 test test.o prov.o

66 if [$? -ne 0]; then

67 print -u2 "failed to link final executable"
68 exit

69 fi

71 script()
{

73 $dtrace -Zwgs /dev/stdin <<EOF
74 test_prov*:::
{

76 probeid = id;
77 }

79 tick-1sec
80 / probeid == 0/
{

82 printf("launching test\n");
83 system("./test");
84 }

86 tick-1lsec
87 / probeid !'= 0/
{

89 printf("attenpting re-enabling\n");

90 systen("dtrace -e -x errtags -i %", probeid);
91 at t enpt s++;

92 }

i ck-1sec
attenpts > 10/

t
/
96 {
exit(0);
}

__unchanged_portion_omtted_

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.reeval.ksh

R R R R

1772 Tue Jan 14 16:48: 46 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.reeval . ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

___unchanged_portion_onitted_
2 ECF

54 gcc -nB2 -c test.c
54 gcc -c test.c
55 if [$? -ne 0]; then

56 print -u2 "failed to conpile test.c"
57 exit 1
58 fi

59 $dtrace -G -32 -s prov.d test.o
60 if [$? -ne 0]; then

61 print -u2 "failed to create DOF"
62 exit 1
63 fi

64 gcc -nB2 -0 test test.o prov.o
64 gcc -0 test test.o prov.o
65 if [$? -ne 0]; then

66 print -u2 "failed to link final executable"
67 exit 1

68 fi

70 script()

71 {

72 $dtrace -wZs /dev/stdin <<EOF
73 BEG N

74 {

75 system("$DI R/test");
76 }

78 test_prov*:::

79 {

80 seen = 1;

81 }

83 proc:::exit

84 / progenyof (\ $pi d) && execname == "test"/
85 {

86 exit(seen ? 0 : 2);
87

88 ECF

89

}
__unchanged_portion_ontted_

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.static.ksh

R R R R

1889 Tue Jan 14 16:48: 47 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.static.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

____unchanged_portion_onitted_
3 ECF

65 gcc -nB2 -c test.c
65 gcc -c test.c
66 if [$?2 -ne 0]; then

67 print -u2 "failed to conpile test.c"
68 exit 1
69 fi

70 $dtrace -G -32 -s prov.d test.o
71 if [$? -ne 0]; then

72 print -u2 "failed to create DOF"
73 exit 1
74 fi

75 gcc -nB2 -0 test test.o prov.o

75 gcc -0 test test.o prov.o

76 if [$? -ne 0]; then

77 print -u2 "failed to link final executable"
78 exit 1

79 fi

81 script()

83 $dtrace -c ./test -qs /dev/stdin <<ECF
84 test_prov\$target:::
{

86 printf("%: %:%\n", probenod, probefunc,

88 EOF

}
__unchanged_portion_onitted_

probenane) ;

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.static2. ksh

R R R R

2239 Tue Jan 14 16:48: 47 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.static2. ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

___unchanged_portion_onitted_
7 ECOF

69 gcc -nB2 -c test.c
69 gcc -c test.c
70 if [$? -ne 0]; then

71 print -u2 "failed to conpile test.c"
72 exit 1
73 fi

74 $dtrace -G -32 -s prov.d test.o
75 if [$? -ne 0]; then

76 print -u2 "failed to create initial DOF"
77 exit 1
78 fi

79 rm-f prov.o
80 $dtrace -G -32 -s prov.d test.o
8l if [$2 -ne 0]; then

82 print -u2 "failed to create final DOF"
83 exit 1
84 fi

85 gcc -nB2 -0 test test.o prov.o

85 gcc -0 test test.o prov.o

86 If [$? -ne 0]; then

87 print -u2 "failed to link final executable"
88 exit 1

89 fi

91 script()

93 $dtrace -c ./test -qs /dev/stdin <<EOF
94 test_prov\$target:::
{

96 printf("%:%: %\n", probenod, probefunc,

98 ECF

__unchanged_portion_onitted_

probenane) ;

new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst.user.ksh

R R R R

1864 Tue Jan 14 16:48: 47 2014
new usr/src/cnd/ dtrace/test/tst/comon/usdt/tst. user.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

___unchanged_portion_onitted_
2 ECF

64 gcc -nB2 -c test.c
64 gcc -c test.c
65 if [$?2 -ne 0]; then

66 print -u2 "failed to conpile test.c"
67 exit 1
68 fi

69 $dtrace -G -32 -s prov.d test.o
70 if [$? -ne 0]; then

71 print -u2 "failed to create DOF"
72 exit 1
73 fi

74 gcc -nB2 -0 test test.o prov.o
74 gcc -0 test test.o prov.o
75 if [$? -ne 0]; then

76 print -u2 "failed to link final executable"

77 exit 1

78 fi

80 script() {

81 $dtrace -c 'ppriv -e -s A=basic ./test’ -Zgs /dev/stdin <<EOF
82 test_prov\$target:::

83 {

84 printf("%:%: %\n", probenod, probefunc, probenane);
85 }

86 ECF

87 }

__unchanged_portion_onitted_

new usr/src/cnd/ dtrace/test/tst/sparc/usdt/tst.tailcall.ksh

R R R R

2322 Tue Jan 14 16:48: 48 2014
new usr/src/cnd/ dtrace/test/tst/sparc/usdt/tst.tailcall.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

___unchanged_portion_onitted_
6 ECF

78 /usr/ccs/bin/as -xregsynFno -P -D ASM -0 test.o test.s
79 if [$? -ne 0]; then

80 print -u2 "failed to conpile test.s"
81 exit 1
82 fi

84 $dtrace -G -32 -s prov.d test.o
85 if [$?2 -ne 0]; then

86 print -u2 "failed to create DOF"
87 exit 1
88 fi

90 gcc -nB2 -0 test test.o prov.o
90 gcc -0 test test.o prov.o
91 if [$? -ne 0]; then

92 print -u2 "failed to link final executable"
93 exit
94 fi

96 $dtrace -c ./test -s /dev/stdin <<ECF
97 test\$target:::fire
98 /arg0 == 9 && argl == 19 && arg2 == 2006/

99 {

100 printf("%l/ %/ %", arg0, argl, arg2);
101 exit(0);

102 }

__unchanged_portion_onitted_

new usr/src/ comon/ctf/ctf_open.c 1

R R R R

29102 Tue Jan 14 16:48:49 2014
new usr/src/ common/ctf/ctf_open.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEREEREEEERERERERESRESRESRESESESESE]
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License, Version 1.0 only
(the "License"). You nay not use this file except in conpliance
with the License.

*

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governing perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

NRERRRRRRRRE
COONOUITAWNROW©O~NOUTSWN

CDDL HEADER END
/

24 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
25 * Use is subject to license terns.
26 */
27 | *
28 * Copyright (c) 2013, Joyent, Inc. Al rights reserved.
28 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.
*
/

31 #include <ctf_inpl.h>
32 #include <sys/man. h>
33 #include <sys/znod. h>

35 static const ctf_dmodel _t _libctf_nodels[] = {

36 { "ILP32™, CTF_MODEL ILP32, 4, 1, 2, 4, 4},
37 { "LP64", CTF_MODEL LP64, 8, 1, 2, 4, 8},
38 { NULL, O, O, O, O, O, 0}

39 };

__unchanged_portion_omtted_

790 /*

791 * Dupliate a ctf_file_t and its underlying section infornmation into a new

792 * container. This works by copying the three ctf_sect_t's of the original

793 * container if they exist and passing those into ctf_bufopen. To copy those, we
794 * mmap anonynous nenory with ctf_data_alloc and bcopy the data across. It’s not
795 * the cheapest thing, but it’s what we’ve got.

796 */

797 ctf _file_t *

798 ctf_dup(ctf_file_t *ofp)

799 {

800 ctf_file_t *fp;

801 ctf_sect_t ctfsect, synsect, strsect;

802 ctf_sect_t *ctp, *synp, *strp;

803 voi d *cbuf, *symbuf, *strbuf;

new usr/src/ common/ctf/ctf_open.c

804 int err;

806 cbuf = synbuf = strbuf = NULL;

807 /*

808 * The ctfsect isn't allowed to not exist, but the synbol and string
809 * section might not. We only need to copy the data of the section,
810 * the name, as ctf_bufopen will take care of that.

811 */

812 bcopy(&ofp >ctf_data, &ctfsect, sizeof (ctf_sect_t));
813 cbuf "= ctf_data_all oc(ctfsect. cts _si ze);

814 if (cbuf == NULL) {

815 (void) ctf_set_errno(ofp, ECTF_MVAP);

816 return (NULL);

817 }

819 bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size);

820 ctf_data_protect(cbuf, ctfsect.cts_size);

821 ctfsect.cts_data = cbuf;

822 ctfsect.cts_offset = O;

823 ctp = &ctfsect;

825 if (ofp->ctf_syntab.cts_data != NULL) {

826 bcopy(&of p->ctf_syntab, &synsect, sizeof (ctf_sect_t));
827 synmbuf = ctf_data_all oc(synsect.cts_size);

828 if (symbuf == NULL)

829 (void) ctf_set_errno(ofp, ECTF_MVAP);

830 goto err;

831 }

832 bcopy(synsect.cts_data, symbuf, synsect.cts_size);
833 ctf_data_protect(synmbuf, synsect.cts_size);

834 synsect.cts_data = synbuf;

835 synsect.cts_offset = 0;

836 synp = &synsect;

837 } else {

838 synp = NULL;

839 1

841 if (ofp->ctf_strtab.cts_data != NULL) {

842 bcopy(&of p->ctf_strtab, &strsect, sizeof (ctf_sect_t));
843 strbuf = ctf_data_alloc(strsect.cts_size);

844 if (strbuf == NULL)

845 (void) ctf_set_errno(ofp, ECTF_MVAP);

846 goto err;

847 }

848 bcopy(strsect.cts_data, strbuf, strsect.cts_size);
849 ctf_data_protect(strbuf, strsect.cts_size);

850 strsect.cts_data = strbuf;

851 strsect.cts_offset = O;

852 strp = &strsect;

853 } else {

854 strp = NULL;

855 }

857 fp = ctf_bufopen(ctp, synp, strp, &err);

858 if (fp == NULL)

859 (void) ctf_set_errno(ofp, err);

860 goto err;

861 }

863 fp->ctf_flags | = LCTF_MVAP;

865 return (fp);

867 err:

868 ctf_data_free(cbuf, ctfsect.cts_size);

869 if (synbuf != NULL)

not

new usr/src/ common/ctf/ctf_open.c

Not e

be greater

*/

*));

870 ctf_data_free(synbuf, symsect.cts_size);

871 if (strbuf T= NULL)

872 ctf_data_free(strbuf, strsect.cts_size);

873 return (NULL);

874 }

876 /*

877 #endif /* ! codereview */

878 * Close the specified CTF container and free associated data structures.
879 * that ctf_close() is a reference counted operation: if the specified file is
880 * the parent of other active containers, its reference count wll

881 * than one and it will be freed | ater when no active children exist.
882 */

883 void

884 ctf_close(ctf_file_t *fp)

885 {

886 ctf_dtdef t *dtd, *ntd;

888 if (fp == NULL)

889 return; /* allow ctf_close(NULL) to sinplify caller code
891 ctf_dprintf("ctf_close(%) refcnt=%a\n", (void *)fp, fp->ctf_refcnt);
893 if (fp->ctf_refcnt > 1) {

894 fp->ctf_refcnt--;

895 return;

896 }

898 if (fp->ctf_parent != NULL)

899 ctf_cl ose(fp->ctf_parent);

901 I*

902 * Note, to work properly with reference counting on the dynam c
903 * section, we nust delete the list in reverse.

904 */

905 for (dtd = ctf_list_prev(&fp- >ctf _dtdefs); dtd != NULL; dtd = ntd) {
906 ntd = ctf_Iist_prev(dtd

907 ctf_dtd_del ete(fp, dtd);

908 }

910 ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t
912 if (fp->ctf_flags & LCTF_MVAP) {

913 if (fp->ctf_data.cts_data != NULL)

914 ctf_sect _rmunmap(& p->ctf_data);

915 if (fp->ctf_syntab.cts_data != NULL)

916 ctf_sect _nmunmap(&f p->ctf_syntab);

917 if (fp->ctf_strtab.cts _data != NULL)

918 ctf_sect _rmunmap(&f p->ctf_strtab);

919 }

921 if (fp->ctf_data.cts_name != _CTF_NULLSTR &&

922 fp->ctf_data.cts_name != NULL) {

923 ctf_free((char *)fp->ctf_data.cts_nane,

924 strlen(fp->ctf_data.cts_nanme) + 1);

925 }

927 if (fp->ctf_syntab.cts_name != _CTF_NULLSTR &&

928 fp->ctf_syntab. cts_name != NULL)

929 ctf_free((char *)fp->ctf_syntab.cts_nane,

930 strlen(fp->ctf_syntab.cts_nane) + 1);

931 }

933 if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&

934 fp->ctf_strtab.cts_name != NULL) {

935 ctf_free((char *)fp->ctf_strtab.cts_nane,

new usr/src/ common/ctf/ctf_open.c

936 strlen(fp->ctf_strtab.cts_nanme) + 1);

937 1

939 if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
940 ctf_data_free((void *)fp->ctf_base, fp->ctf_size);

942 if (fp->ctf_sxlate !'= NULL)

943 ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyns);
945 if (fp->ctf_txlate !'= NULL) {

946 ctf_free(fp->ctf_txlate,

947 sizeof (uint_t) * (fp->ctf_typemax + 1));

948 }

950 if (fp->ctf_ptrtab != NULL)

951 ctf_free(fp->ctf_ptrtab,

952 si zeof (ushort_t) * (fp->ctf_typemax + 1));

953 }

955 ctf_hash_destroy(&f p->ctf_structs);

956 ctf_hash_destroy(& p->ctf_unions);

957 ctf_hash_destroy(& p->ctf_enuns);

958 ctf_hash_destroy(& p->ctf_nanes);

960 ctf_free(fp, sizeof (ctf_file_t));

961 }

963 /*

964 * Return the CTF handle for the parent CTF container, if one exists.

965 * Otherwise return NULL to indicate this container has no inported parent.
966 */

967 ctf_file_t *

968 ctf_parent _file(ctf_file_t *fp)

969 {

970 return (fp->ctf_parent);

971 }

973 [*

974 * Return the nane of the parent CTF container, if one exists. Oherwse
975 * return NULL to indicate this container is a root container.

976 */

977 const char *

978 ctf_parent _name(ctf_file_t *fp)

979 {

980 return (fp->ctf_parnane);

981 }

983 /*

984 * Inport the types fromthe specified parent container by storing a pointer
985 * to it in ctf_parent and increnenting its reference count. Only one parent
986 * is allowed: if a parent already exists, it is replaced by the new parent.
987 */

988 int

989 ctf_inport(ctf_file_t *fp, ctf_file_t *pfp)

990 {

991 if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
992 return (ctf_set_errno(fp, EINVAL));

994 if (pfp != NULL && pfp->ctf_dnodel != fp->ctf_dnodel)

995 return (ctf_set_errno(fp, ECTF_DMODEL));

997 if (fp->ctf_parent != NULL)

998 ctf_cl ose(fp->ctf_parent);

1000 if (pfp !'= NULL) {

1001 fp->ctf_flags | = LCTF_CHI LD;

new usr/src/ common/ctf/ctf_open.c

1002 pf p->ctf_refcnt ++
1003 }

1005 fp->ctf_parent = pfp
1006 return (0);
1007 }

1009 /*

1010 * Set the data nodel constant for the CTF container
1011 */

1012 int

1013 ctf_setnodel (ctf_file_t *fp, int nodel)

1014 {

1015 const ctf_dnodel _t *dp

1017 for (dp = _libctf_nodels; dp->ctd_name != NULL; dp++)
1018 if (dp->ctd_code == nodel) {

1019 fp->ctf_dnodel = dp

1020 return (0);

1021

1022 }

1024 return (ctf_set_errno(fp, EINVAL))
1025 }

-

1027 /*

1028 * Return the data nodel constant for the CTF contai ner
1029 */

1030 int

1031 ctf_getmodel (ctf_file_t *fp)

1032 {

1033 return (fp->ctf_dnodel ->ctd_code)

1034 }

1036 voi d

1037 ctf_setspecific(ctf_file_t *fp, void *data)
1038 {

1039 fp->ctf_specific = data

1040 }

1042 void *

1043 ctf_getspecific(ctf_file_t *fp)
1044 {

1045 return (fp->ctf_specific)
1046 }

new usr/src/ comon/ctf/ctf_types.c

R R R R

23428 Tue Jan 14 16:48:49 2014
new usr/src/common/ctf/ctf_types.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEREEREEEERERERERESRESRESRESESESESE]
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License, Version 1.0 only
(the "License"). You nay not use this file except in conpliance
with the License.

*

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governing perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

NRERRRRRRRRE
COONOUITAWNROW©O~NOUTSWN

CDDL HEADER END

24 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
25 * Use is subject to license termns.

26 */

28 #pragma i dent " %Y U % %Y SM "

28 #include <ctf_inpl.h>

30 ssize_t

31 ctf_get_ctt_size(const ctf_file_t *fp, const ctf_type_t *tp, ssize_t *sizep,
32 ssize_t *increnentp)

33

34 ssize_t size, increnent;

36 if (fp->ctf ver5|on>CTF VERSI ON_1 &&
37 tp->ctt_size == CTF_ LSl ZE_SENT) {

38 size = CTF_TYPE_LSI ZE(tp);

39 i ncrement = sizeof (ctf_type_t);
40 } else {

41 size = tp->ctt_size;

42 increment = sizeof (ctf_stype_t);
43 }

45 if (sizep)

46 *sizep = size;

a7 if (increnentp)

48 *increnmentp = increnent;

50 return (size);

51

__unchanged_portion_onitted_

196 /*

new usr/src/ comon/ctf/ctf_types.c

197 * Lookup the given type ID and print a string nanme for it into buf. Return
198 * the actual nunber of bytes (not including \0) needed to fornmat the nane.
199 */

200 static ssize

201 ctf_type_dgl name(ctf file_t *fp, ctf_id_t type, char *buf, size_t len,

202 const char *gnane)

202 ssize_t

203 ctf_type_l nane(ctf_file_t *fp, ctf_id_t type, char *buf, size_t len)

203 {

204 ctf_decl _t cd;

205 ctf_decl _node_t *cdp;

206 ctf_decl _prec_t prec, Ip, rp;

207 int ptr, arr;

208 uint_t k;

210 if (fp == NULL && type == CTF_ERR)

211 return (-1); /* sinplify caller code by pernitting CTF_ERR */
213 ctf_decl _init(&cd, buf, len);

214 ctf_decl _push(&cd, fp, type);

216 if (cd.cd_err !'=0)

217 ctf_decl _fini(&cd);

218 return (ctf_set_errno(fp, cd.cd_err));

219 }

221 /*

222 * |f the type graph’s order conflicts with |exical precedence order
223 * for pointers or arrays, then we need to surround the declarations at
224 * the corresponding | exical precedence with parentheses. This can
225 * result in either a parenthesized pointer (*) as inint (*)() or
226 *int (*)[], or in a parenthesized pointer and array as in int (*[])().
227 */

228 ptr = cd.cd_order[CTF_PREC PO NTER] > CTF_PREC_PO NTER;

229 arr = cd.cd_order[CTF_PREC ARRAY] > CTF_PREC ARRAY;

231 rp = arr ? CTF_PREC_ARRAY : ptr ? CTF_PREC PO NTER : -1;

232 Ip = ptr ? CTF_PREC_PO NTER : arr ? CTF_PREC ARRAY : -1;

234 k = CTF_K_PO NTER; /* avoid | eadi ng whitespace (see below) */

236 for (prec = CTF_PREC BASE; prec < CTF_PREC MAX; prec++) {

237 for (cdp = ctf_list_next(&cd. cd_nodes[prec]);

238 cdp !'= NULL; cdp = ctf_list_next(cdp)) {

240 ctf_file_t *rfp = fp;

241 const ctf_type_t *tp =

242 ctf_l ookup_by_| |d(& cdp->cd_type);

243 const char *name = ctf_ ptr(rfp, tp->ctt_nane);
245 i f (k'-CTFKPON‘I’ &k!=CTF_K_ARRAY)

246 ctf_decl _sprintf(&cd, " ");

248 if (Ip==prec) {

249 ctf_decl _sprintf(&d, "(");

250 Ip =

251 }

253 switch (cdp->cd_kind) {

254 case CTF_K_|I NTECER:

255 case CTF_K_FLOAT:

256 case CTF_K_TYPEDEF:

257 if (gnane != NULL)

258 ctf_decl _sprintf(&d, "%'", gnane);

259 #endif /* | codereview */
260 ctf_decl _sprintf(&d, "%", nane);

new usr/src/ comon/ctf/ctf_types.c

261 br eak;

262 case CTF_K_PO NTER:

263 ctf_decl _sprintf(&cd, "*");

264 br eak;

265 case CTF_K_ARRAY:

266 ctf_decl _sprintf(&cd, "[%]", cdp->cd_n);
267 br eak;

268 case CTF_K_FUNCTI ON:

269 ctf_decl _sprintf(&d, "()");

270 br eak;

271 case CTF_K_STRUCT:

272 case CTF_K_FORWARD:

273 ctf_decl _sprintf(&d, "struct ");

274 if (gname != NULL)

275 ctf_decl _sprl ntf(&d, "%"'", gnane);
276 ctf_decl _sprintf(&d, "%", nane);

258 ctf_decl _sprintf(&cd, "struct %", nane);
277 break;

278 case CTF_K_UNI ON:

279 ctf_decl _sprintf(&d, "union ");

280 if (gnane != NULL)

281 ctf_decl _sprintf(&d, "%'", qgnane);
282 ctf_decl _sprintf(&d, "%", nane);

261 ctf_decl _sprintf(&d, "union %", nane);
283 br eak;

284 case CTF_K_ENUM

285 ctf_decl _sprintf(&cd, "enum");

286 if (gname != NULL)

287 ctf_decl _sprintf(&cd, "%'", qgnane);
288 ctf_decl _sprintf(&cd, "%", nane);

264 ctf_decl _sprintf(&cd, "enum %", nane);
289 break;

290 case CTF_K_VOLATILE:

291 ctf_decl _sprintf(&cd, "volatile");

292 br eak;

293 case CTF_K_CONST:

294 ctf_decl _sprintf(&d, "const");

295 br eak;

296 case CTF_K_RESTRI CT:

297 ctf_decl _sprintf(&cd, "restrict");

298 br eak;

299 }

301 k = cdp->cd_ki nd;

302 }

304 if (rp == prec)

305 ctf_decl _sprintf(&cd, ")");

306 }

308 if (cd.cd_len >= |en)

309 (void) ctf_set_errno(fp, ECTF_NAMELEN);

311 ctf_decl _fini(&cd);

312 return (cd.cd_len);

313 }

315 ssize_t

316 ctf_type_l nane(ctf_file_t *fp, ctf_id_t type, char *buf, size_t len)

317 {

318 return (ctf_type_qgl name(fp, type, buf, len, NULL));

319 }

321 #endif /* ! codereview */

322 /*

323 * Lookup the given type ID and print a string name for it into buf. |[If buf

new usr/src/ common/ctf/ctf_types.c

324 * is too small, return NULL: the ECTF_NAMELEN error is set on '’ us.
325 */

326 char *

327 ctf_type_nane(ctf_file_t *fp, ctf_id_t type, char *buf, size_t

328 {

329 ssize_t rv = ctf_type_ql nane(fp, type, buf, len, NULL);

330 return (rv >= 0 & rv < len ? buf : NULL);

331 }

333 char *

334 ctf_type_qgnanme(ctf_file_t *fp, ctf_id_t type, char *buf, size_t

335 const char *qgnane)

336 {

337 ssize_t rv = ctf_type_ql nane(fp, type, buf, len, gnane);

291 ssize_t rv = ctf_type_|I nane(fp, type, buf, len);

338 return (rv >= 0 & rv < len ? buf : NULL);

339 }

342 #endif /* | codereview */

343 [*

344 * Resolve the type down to a base type node, and then return the size

345 * of the type storage in bytes.

346 */

347 ssize_t

348 ctf_type_size(ctf_file_t *fp, ctf_id_t type)

349 {

350 const ctf_type_t *tp;

351 ssize_t size;

352 ctf_arinfo_t ar;

354 if ((type = ctf_type_resolve(fp, type)) == CTF_ERR)

355 return (-1); /* errno is set for us */

357 if ((tp = ctf_lookup_by_ id(& p, type)) == NULL)

358 return (-1); /* errno is set for us */

360 switch (LCTF_I NFO KIND(fp, tp->ctt_info)) {

361 case CTF_K_PO NTER:

362 return (fp->ctf_dnodel ->ctd_pointer);

364 case CTF_K_FUNCTI ON:

365 return (0); /* function size is only known by syntab */
367 case CTF_K_ENUM

368 return (fp->ctf_dnodel ->ctd_int);

370 case CTF_K_ARRAY:

371 /*

372 * Array size is not directly returned by stabs data. |nstead,
373 * it defines the el ement type and requires the user to perform
374 * the nultiplication. |If ctf_get_ctt_size() returns zero, the
375 * current version of ctfconvert does not conpute nenber sizes
376 * and we conpute the size here on its behal f.

377 */

378 if ((size = ctf_get_ctt_size(fp, tp, NULL, NULL)) > 0)

379 return (size);

381 if (ctf_array_info(fp, type, &r) == CTF_ERR ||

382 (size = ctf_type_size(fp, ar.ctr_contents)) == CTF_ERR)
383 return (-1); /* errno is set for us */

385 return (size * ar.ctr_nel ens);

387 defaul t:

388 return (ctf_get_ctt_size(fp, tp, NULL, NULL));

new usr/src/ comon/ctf/ctf_types.c

389
390

392
393
394
395
396
397
398
399
400

402
403

405
406

408
409
410
411

413
414
415
416

418
419
420
421
422
423

425
426

428
429

431
432
433
434
435
436
437
438
439
440
441
442
443
444

446
447

449
450

452
453
454

}
}

/*
* Resol ve the type down to a base type node,
* needed for the type storage in bytes.
*
/

and then return the alignnment

ssi ze_t
ctf_type_align(ctf_file_t *fp, ctf_id_t type)
{

const ctf_type_t *tp;
ctf_arinfo_t r;

if ((type = ctf_type_resolve(fp, type)) == CTF_ERR)
return (-1); /* errno is set for us */

if ((tp = ctf_lookup_by_ id(& p, type)) == NULL)
return (-1); /* errno is set for us */

switch (LCTF_I NFO KIND(fp, tp->ctt_info)) {
case CTF_K_PO NTER
case CTF_K_FUNCTI ON:

return (fp->ctf_dnodel ->ctd_pointer);

case CTF_K_ARRAY:
if (ctf_array_info(fp, type, &) == CIF_ERR)
return (-1); /* errno is set for us */
return (ctf_type_align(fp, r.ctr_contents));

case CTF_K_STRUCT:
case CTF_K_UNI ON:
uint_t n = LCTF_I NFO_ VLEN(fp, tp->ctt_info);
ssize_t size, increnent;
size_t align = 0
const void *vnp;

(void) ctf_get_ctt_size(fp, tp, &size,
vip = (uchar_t *)tp + increnent;

& ncrenent);

i f (LCTF I NFO_KI ND(f p,
= MN(n, 1);

tp->ctt_info) == CTF_K_STRUCT)
/* only use flrst menber for structs */

if (fp->ctf_version == CTF_VERSION_1 ||
size < CTF_LSTRUCT THRESH) {
const ctf_nenber_t *nmp = vnp;
for (; n!=0; n--, nmp++) {
ssize_t am= ctf_type_align(fp, nmp->ctmtype);
align = MAX(align, am;

} else {
const ctf_|lmenmber_t *Inp =
for (; n!=0; n--, Imp++) {
ssize_t am= ctf_type_align(fp, | np->ctlmtype);
) align = MAX(align, am;
}

return (align);

}

case CTF_K_ENUM
return (fp->ctf_dnodel ->ctd_int);

defaul t:
return (ctf_get_ctt_size(fp, tp, NULL, NULL));
}

new usr/src/common/ctf/ctf_types.c

455 }

457 | *

458 * Return the kind (CTF_K * constant) for the specified type ID.

459 */

460 int

461 ctf_type_kind(ctf_file_t *fp, ctf_id_t type)

462 {

463 const ctf_type_t *tp;

465 if ((tp = ctf_l ookup_by_id(& p, type)) == NULL)

466 return (CTF_ERR); /* errno is set for us */

468 return (LCTF_I NFO KIND(fp, tp->ctt_info));

469 }

471 [*

472 * |f the type is one that directly references another type (such as PO NTER),
473 * then return the 1D of the type to which it refers.

474 x|

475 ctf_id_t

476 ctf_type_reference(ctf_file_t *fp, ctf_id_t type)

477 {

478 ctf_file_t *ofp = fp;

479 const ctf_type_t *tp;

481 if ((tp = ctf_l ookup_by_id(& p, type)) == NULL)

482 return (CTF_ERR); /* errno is set for us */

484 switch (LCTF_I NFO | KIND(fp| tp->ctt_info)) {

485 case CTF_K PO NTER

486 case CTF_K_TYPEDEF:

487 case CTF_K_VOLATILE:

488 case CTF_K_CONST:

489 case CTF_K RESTRICT:

490 return (tp->ctt_type);

491 defaul t:

492 return (ctf_set_errno(of p, ECTF_NOTREF));

493 }

494 }

496 [*

497 * Find a pointer to type by |ooking in fp->ctf_ptrtab. If we can't find a
498 * pointer to the given type, see if we can conpute a pointer to the type
499 * resulting fromresolving the type down to its base type and use that
500 * instead. This helps with cases where the CTF data includes "struct foo *"
501 * but not "foo_t *" and the user accesses "foo_t *" in the debugger.
502 */

503 ctf_id_t

504 ctf_type_pointer(ctf_file_t *fp, ctf_id_t type)

505 {

506 ctf _file_t *ofp = fp;

507 ctf_id_t ntype;

509 if (ctf_lookup_by_id(& p, type) == NULL)

510 return (CTF_ERR); /* errno is set for us */

512 if ((ntype = fp->ctf_ptrtab[CTF_TYPE_TO_ | NDEX(type)]) != 0)

513 return (CTF_I NDEX_TO TYPE(ntype, (fp->ctf_flags & LCTF_CHILD)));
515 if ((type = ctf_type_resolve(fp, type)) == CITF_ERR)

516 return (ctf_set_errno(ofp, ECTF NOTYPE))

518 if (ctf_lookup_by_id(& p, type) == NULL)

519 return (ctf_set_errno(ofp, ECTF_NOTYPE));

new usr/src/ comon/ctf/ctf_types.c

521 if ((ntype fp->ctf_ptrtab[CTF_TYPE_TO | NDEX(type)]) !=0
522 return (CTF_INDEX_TO TYPE(ntype, (fp->ct

524 return (ctf_set_errno(ofp, ECTF_NOTYPE));

525 }

527 | *

528 * Return the encoding for the specified | NTEGER or FLOAT.

529 */

530 int

531 ctf_type_encoding(ctf_file_t *fp, ctf_id_t type, ctf_encoding_t *ep)
532 {

533 ctf_file_t *ofp = fp;

534 const ctf_type_t *tp;

535 ssize_t increnent;

536 uint_t data;

538 if ((tp = ctf_l ookup_by_id(& p, type)) == NULL)

539 return (CTF_ERR); /* errno is set for us */

541 (void) ctf_get_ctt_size(fp, tp, NULL, & ncrenent);

543 switch (LCTF_I NFO KIND(fp, tp->ctt_info)) {

544 case CTF_K_|I NTEGER:

545 data = *(const uint_t *)((U| ntptr t)tp + increnment);
546 ep->cte_format = CTF_| ENCCODI NG(dat a) ;

547 ep->cte_of fset = CTF_ INT _OFFSET(dat a) ;

548 ep->cte_bits = CTF_I NT_BITS(dat a) ;

549 br eak;

550 case CTF_K_FLOAT:

551 data = *(const uint_t *)((uintptr_t)tp + increnent);
552 ep->cte_format = CTF_FP_ENCODI NG dat a) ;

553 ep- >cte_offset = CTF_FP_OFFSET(dat a) ;

554 ep->cte_bits = CTF_FP_BI TS(data);

555 br eak;

556 defaul t:

557 return (ctf_set_errno(of p, ECTF_NOTI NTFP));

558 }

560 return (0);

561 }

563 int

564 ctf_type_cnp(ctf_file_t *Ifp, ctf_id_t Itype, ctf_file_t *rfp, ctf_id_t rtype)
565 {

566 int rval;

568 if (Itype<rtype)

569 rval

570 else if (Itype > rtype)

571 rval = 1;

572 el se

573 rval = 0;

575 if (Ifp ==rfp)

576 return (rval);

578 i f (CTF_TYPE | SPARENT(|type) && |fp->ctf_parent != NULL)
579 Ifp = I fp->ctf_parent;

581 if (CTF_TYPE_|I SPARENT(rtype) && rfp->ctf_parent != NULL)
582 rfp = rfp->ctf_parent;

584 if (Ifp <rfp)

585 return (-1);

)
f_flags & LCTF_CHILD)));

new usr/src/ comon/ctf/ctf_types.c

587
588

590
591

-

L= T SR

593
594
595
596
597
598
599
600
601
602 {
603

604

605

606

o -

608
609

611
612

614
615

617
618
619
620
621
622

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648 }

650 /*

/
t
f_

if (Ifp > rfp)
return (1);

return (rval);

Return a bool ean value indicating if two types are conpatible integers or

fl oati ng- poi nter val ues.

This function returns true if the two types are

the sane, or if they have the same ASCI| nane and encodi ng properties.

Thi s

type
ctf

function could be extended to test for conpatibility for other Kkinds.

_conp t(ctf file_t *Ifp, ctf_id_t Itype,
_file *rfp, ctf_id_t rtype)

const ctf_type_t *lItp, *rtp;
ctf_encoding_t le, re;
ctf_arinfo_t la, ra;

uint_t |kind, rkind;

if (ctf_type_cmp(lfp, Itype, rfp, rtype) == 0)
return (1);

ype = ctf_type_resolve(lfp, ltype);
ind = ctf_type_kind(lfp, ltype);

rtype = ctf_type_resolve(rfp, rtype);

rkind = ctf_type_kind(rfp, rtype);

if (Ikind !'=rkind ||
(Itp = ctf _lookup_by_id(& fp, Itype)) == NULL ||
(rtp = ctf_| ookup_by_id(&fp, rtype)) == NULL ||
strcnp(ctf _strptr(lfp, I'tp->ctt_nane),
ctf_strptr(rfp, rtp->ctt_nane)) != 0)

return (0);

switch (Ikind) {
case CTF_K_| NTECER:
case CTF_K_FLOAT:
return (ctf_type_encoding(lfp, Itype, & e) == 0 &&
ctf_type_encoding(rfp, rtype, &e) == &&
bcmp(& e, & e, sizeof (ctf_encoding_t)) == 0);
case CTF_K_ PO NTER:
return (ctf_type_conpat(lfp, ctf_type_reference(lfp, Itype),
rfp, ctf_type_reference(rfp, rtype)));
case CTF_K_ARRAY:
return (ctf_array_info(lfp, Itype, &Ja) = 0 &&
ctf_array_ mfo(rfp, rtype, &ra) == &&
la.ctr_nelems == ra.ctr_nelens && ctf_type_conpat (
Ifp, la.ctr_contents, rfp, ra.ctr_contents) &&
ctf_type_conpat(lfp, la.ctr_index, rfp, ra.ctr_index));
case CTF_K_STRUCT:
case CTF_K_UNI ON:
return (ctf_type_size(lfp, Itype) == ctf_type_size(rfp, rtype));
case CTF_K_ENUM
case CTF_K_FORWARD:
return (1);
defaul t:
return (0);

/* no other checks required for these type kinds */

/* shoul d not get here since we did a resolve */

651 * Return the type and offset for a given nenber of a STRUCT or UNI ON.

652 *

/

new usr/src/ comon/ctf/ctf_types.c

653 int

654 ctf_menber _info(ctf_file_t *fp, ctf_id_t type, const char *nane,

655 ctf_menbinfo_t *mp)

656 {

657 ctf _file_t *ofp = fp;

658 const ctf_type_t *tp;

659 ssize_t size, increnent;

660 uint_t kind, n;

662 if ((type = ctf_type_resolve(fp, type)) == CTF_ERR)

663 return (CTF_ERR); /* errno is set for us */

665 if ((tp = ctf_|l ookup_by_id(& p, type)) == NULL)

666 return (CTF_ERR); /* errno is set for us */

668 (void) ctf_get_ctt_size(fp, tp, &size, & ncrenent);

669 kind = LCTF_I NFO_KIND(fp, tp->ctt_info);

671 if (kind !'= CTF_K STRUCT && kind !'= CTF_K_UNI ON)

672 return (ctf_set_errno(ofp, ECTF_NOTSQU));

674 if (fp->ctf_version == CTF_VERSION_1 || size < CTF_LSTRUCT_THRESH) {
675 const ctf_menber_t *np = (const ctf_nenber_t *)

676 ((uintptr_t)tp + increnent);

678 for (n = LCTF_INFO VLEN(fp, tp->ctt_info); n!=0; n--, np++) {
679 if (stremp(ctf_strptr(fp, np->ctmnane), nane) == 0) {
680 m p->ctmtype = np->ctmtype;

681 m p->ctm of f set = np->ctm of fset;

682 return (0);

683 }

684

685 } else {

686 const ctf_lmenber_t *Inp = (const ctf_| menber_t *)

687 ((uintptr_t)tp + increnent);

689 for (n = LCTF_INFO VLEN(fp, tp->ctt_info); n!=0; n--, Inp+t+) {
690 if (strcnp(ctf_strptr(fp, |nmp->ctl mnane), nane) == 0) {
691 mp->ctmtype = | nmp->ctl mtype;

692 m p->ctm of fset = (ul ong_t) CTF_LMEM OFFSET(| np) ;
693 return (0);

694 }

695 }

696 1

698 return (ctf_set_errno(of p, ECTF_NOVEMBNAM);

699 }

701 /*

702 * Return the array type, index, and size information for the specified ARRAY.
703 */

704 int

705 ctf_array_info(ctf_file_t *fp, ctf_id_t type, ctf_arinfo_t *arp)

706 {

707 ctf_file_t *ofp = fp;

708 const ctf_type_t *tp;

709 const ctf_array_t *ap;

710 ssize_t increnent;

712 if ((tp = ctf_l ookup_by_ id(& p, type)) == NULL)

713 return (CTF_ERR); /* errno is set for us */

715 if (LCTF_INFO KIND(fp, tp->ctt_info) != CTF_K_ARRAY)

716 return (ctf_set_errno(of p, ECTF_NOTARRAY));

718 (void) ctf_get_ctt_size(fp, tp, NULL, & ncrenent);

new usr/src/common/ctf/ctf_types.c

720 ap = (const ctf_array_t *)((uintptr_t)tp + increment);
721 arp->ctr_contents = ap->cta_contents;

722 arp->ctr_index = ap->cta_index;

723 arp->ctr_nel ems = ap->cta_nel ens;

725 return (0);

726 }

728 | *

729 * Convert the specified value to the correspondi ng enum nenber nane, if a
730 * matching name can be found. Oherwi se NULL is returned.
731 */

732 const char *

733 ctf_enumnanme(ctf_file_t *fp, ctf_id_t type, int value)

734 {

735 ctf_file_t *ofp = fp;

736 const ctf_type_t *tp;

737 const ctf_enumt *ep;

738 ssize_t increnent;

739 uint_t n;

741 if ((type = ctf_type_resolve(fp, type)) == CTF_ERR)
742 return (NULL); /* errno is set for us */

744 if ((tp = ctf_|l ookup_by_id(& p, type)) == NULL)

745 return (NULL); /* errno is set for us */

747 if (LCTF_INFO KIND(fp, tp->ctt_info) !'= CTF_K ENUM {
748 (void) ctf_set_errno(ofp, ECTF_NOTENUM ;

749 return (NULL);

750 1

752 (void) ctf_get_ctt_size(fp, tp, NULL, & ncrenent);
754 ep = (const ctf_enumt *)((uintptr_t)tp + increnment);
756 for (n = LCTF_INFO VLEN(fp, tp->ctt_info); n !=0; n--, ep++) {
757 if (ep->cte_value == val ue)

758 return (ctf_strptr(fp, ep->cte_nane));
759 }

761 (void) ctf_set_errno(ofp, ECTF_NOCENUWNAM ;

762 return (NULL);

763 }

765 | *

766 * Convert the specified enumtag nane to the corresponding value, if a
767 * matching name can be found. Oherwise CTF_ERR is returned.
768 */

769 int

770 ctf_enumval ue(ctf_file_t *fp, ctf_id_t type, const char *name, int *valp)
771 {

772 ctf_file_t *ofp = fp;

773 const ctf_type_t *tp;

774 const ctf_enumt *ep;

775 ssize_t size, increnent;

776 uint_t n;

778 if ((type = ctf_type_resolve(fp, type)) == CTF_ERR)
779 return (CTF_ERR); /* errno is set for us */
781 if ((tp = ctf_|l ookup_by_id(& p, type)) == NULL)

782 return (CTF_ERR); /* errno is set for us */
784 if (LCTF_INFO KIND(fp, tp->ctt_info) != CTF_K ENUM {

10

new usr/src/ comon/ctf/ctf_types.c 11

785
786
787

799

801
802
803

805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820

822
823

825
826

828
829

831

833
834

836

838
839
840

842
843
844
845
846
847

849
850

{

L N
-~

S
C

(void) ctf_set_errno(ofp, ECTF_NOTENUM ;
return (CTF_ERR);
}

(void) ctf_get_ctt_size(fp, tp, &size, & ncrenent);
ep = (const ctf_enumt *)((uintptr_t)tp + increment);
for (n = LCTF_INFO VLEN(fp, tp->ctt_info); n !=0; n--, ep++) {
if (strenp(ctf_strptr(fp, ep->cte_nane), nane) == 0) {
if (valp !'= NULL)

*val p = ep->cte_val ue;
return (0);

}

(void) ctf_set_errno(ofp, ECTF_NOENUMNAM ;
return (CTF_ERR);

Recursively visit the menbers of any type. This function is used as the
engine for ctf_type_visit, below W resolve the input type, recursively
invoke ourself for each type nenber if the type is a struct or union, and
then invoke the callback function on the current type. |f any callback
returns non-zero, we abort and percolate the error code back up to the top.

tic int
_type_rvisit(ctf_file_t *fp, ctf_id_t type, ctf_visit_f *func, void *arg,
const char *name, ulong_t offset, int depth)

ctf_id_t otype = type;
const ctf_type_t *tp;
ssize_t size, increnent;
uint_t kind, n;

int rc;

if ((type = ctf_type_resolve(fp, type)) == CITF_ERR)
return (CTF_ERR); /* errno Is set for us */

if ((tp = ctf_l ookup_by_ id(& p, type)) == NULL)
return (CTF_ERR); /* errno is set for us */

if ((rc = func(name, otype, offset, depth, arg)) != 0)
return (rc);

kind = LCTF_I NFO_KIND(fp, tp->ctt_info);

if (kind !'= CTF_K_STRUCT && kind != CTF_K_UNI ON)
return (0);

(void) ctf_get_ctt_size(fp, tp, &size, & ncrenent);

if (fp->ctf_version == CTF_VERSION_1 || size < CTF_LSTRUCT_THRESH) {
const ctf_nenber_t *np = (const ctf_nenber_t *)
((uintptr_t)tp + Increnent);

for (n = LCTF_INFO_ VLEN(fp, tp->ctt_info); n!=0; n--, np++) {
if ((rc = ctf_type_rvisit(fp, np->ctmtype,
func, arg, ctf_strptr(fp, np->ctmnane),
of fset + np->ctmoffset, depth + 1)) != 0)
return (rc);

}

} else {
const ctf_lmenber_t *Inp = (const ctf_I nenber_t *)

new usr/src/ comon/ctf/ctf_types.c 12
851 ((uintptr_t)tp + increnent);

853 for (n = LCTF_I NFO VLEN(fp, tp->ctt_info); n!=0; n--, |lnmp++) {
854 if ((rc = ctf_type_rvisit(fp, |nmp->ctlmtype,

855 func, arg, ctf_strptr(fp, |np->ctlmnane),

856 of fset + (ul ong_t)CTF_LMEM OFFSET(I np),

857 depth + 1)) 1= 0)

858 return (rc);

859 }

860 }

862 return (0);

863 }

865 /*

866 * Recursively visit the nenbers of any type. W pass the nanme, nenber
867 * type, and offset of each menber to the specified callback function.

868 */

869 int

870 ctf_type_visit(ctf_file_t *fp, ctf_id_t type, ctf_visit_f *func, void *arg)
871 {

872 return (ctf_type_rvisit(fp, type, func, arg, "", 0, 0));

873 }

new usr/src/lib/libctf/comon/ mapfile-vers 1
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
2634 Tue Jan 14 16:48:50 2014
new usr/src/lib/libctf/comon/ mapfile-vers
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.conm>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEREEREEEERERERERESRESRESRESESESESE]
1#
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the ternms of the
5 # Common Devel opnent and Distribution License (the "License").
6 # You may not use this file except in conpliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.
10 # See the License for the specific |anguage governing pernissions
11 # and limtations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOCLARI S. LI CENSE.
15 # |f applicable, add the follow ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2006, 2010, Oracle and/or its affiliates. Al rights reserved.
23 #
25 #
26 # Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 #
29 #
30 #endif /* | codereview */
31 # MAPFI LE HEADER START
32 #
33 # WARNING STOP NOW DO NOT MODI FY THI'S FI LE.
34 # (bject versioning nust conply with the rules detailed in
35 #
36 # usr/src/li b/ README. mapfil es
37 #
38 # You should not be nmaking nodifications here until you’ve read the nost current
39 # copy of that file. If you need hel p, contact a gatekeeper for guidance.
40 #
41 # MAPFI LE HEADER END
42 #

44 $nmepfile_version 2

46 # There really should be only one SUNWrivate version.
47 # Don’t add any nore. Add new private synbols to SUNWrivate_ 1.2

49 SYMBOL_VERSI ON SUNWrivate_1.2 {

50 gl obal :

51 ctf_add_array;

52 ctf_add_const;

53 ctf_add_enum

54 ctf_add_enunerator;
55 ctf_add_fl oat;

56 ctf_add_forward;

new usr/src/l

86 } SUNWr

ib/libctf/comon/ mapfile-vers

ctf_add_function;
ctf_add_i nteger;
ctf_add_nenber;
ctf_add_pointer;
ctf_add_restrict;
ctf_add_struct;
ctf_add_type;
ctf_add_typedef;
ctf_add_union;
ctf_add_vol atil e;
ctf_create;
ctf_del ete_type;
ctf_discard;
ctf_dup;

* | codereview */
ctf_enum val ue;
ctf_l abel _i nfo;
ctf_|label _iter;
ctf_Il abel _t opnost ;
ctf_nenber_info;
ctf_parent_file;
ctf_parent _naneg;
ctf_set_array;
ctf_type_align;
ctf_type_cnp;
ctf_type_conpat;
ctf_type_pointer;
ctf_update;
ctf_wite;
ivate_1.1;

88 SYMBOL_VERSI ON SUNWprivate 1.1 {

89 gl ob

114
115 #endif /
116
117
118
119
120
121

al :
ctf_array_info;
ctf _buf open;
ctf_cl ose;
ctf_enum.iter;
ctf_enum nane;
ctf_errmsg;
ctf_errno;
ctf_fdopen;
ctf_func_args;
ctf_func_info;
ctf_get nodel ;
ctf_getspecific;
ctf_inport;

ctf_|l ookup_by_nane;
ctf_l ookup_by_synbol ;
ctf_nenber_iter;
ctf_open;
ctf_setnodel ;
ctf_setspecific;
ctf_type_encoding;
ctf_type_iter;
ctf_type_kind;
ctf_type_l nane;
ctf_type_naneg;
ctf_type_gnane;

* | codereview */
ctf_type_reference;
ctf_type_resol ve;
ctf_type_size;
ctf_type_visit;
ctf_version;
_l'ibctf_debug;

122 | ocal :

new usr/src/lib/libctf/comon/ mapfile-vers

123 *;
124 };

new usr/src/lib/libdtrace/ common/dt_as.c 1

R R R R

13814 Tue Jan 14 16:48:50 2014
new usr/src/lib/libdtrace/ common/dt_as.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEREEREEEERERERERESRESRESRESESESESE]
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License, Version 1.0 only
(the "License"). You nay not use this file except in conpliance
with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://wwm. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

I T T

NRERRRRRRRRE
COONOUITAWNROW©O~NOUTSWN

* CDDL HEADER END
21 */
22 | *
23 * Copyright 2005 Sun Mcrosystems, Inc. Al rights reserved.
24 * Use is subject to license terns.
25 */
26 /*
27 * Copyright (c) 2013 by Del phix. Al rights reserved.
28 * Copyright (c) 2013 Joyent, Inc. Al rights reserved.
*
/

27 #pragma ident " Y90 A % %E% SM "

31 #include <sys/types. h>
32 #include <strings. h>
33 #include <stdlib.h>

34 #include <assert.h>

36 #include <dt_inpl.h>
37 #include <dt_parser. h>
38 #include <dt_as. h>

40 void

41 dt _irlist_create(dt_irlist_t *dlp)

42

43 bzero(dl p, sizeof (dt_irlist_t));
44 dl p->dl _| abel = 1,

45 }

__unchanged_portion_omtted_

90 /* ARGSUSED*/

91 static int

92 dt_copyvar (dt _i dhash_t *dhp, dt_ident_t *idp, void *data)
93 {

94 dt _pcb_t *pcb = data;
95 dtrace_difv_t *dvp;
96 ssize_t stroff;

new usr/src/lib/libdtrace/ common/dt_as.c

97 dt _node_t dn;

99 if (!(idp->di _flags & (DT_IDFLG DIFR | DT_I DFLG DI FW))
100 return (0); /* omt variable fromvartab */
102 dvp = &pcb->pcb_di f o->dt do_vart ab[pcb- >pcb_asvi dx++] ;
103 stroff = dt_strtab_insert(pcb->pcb_strtab, idp->di_nane);
105 if (stroff == -1L)

106 | ongj nmp(pch- >pcb_1 nmpbuf, EDT_NOVEM ;

107 if (stroff > DI F_STROF

108 | ongj np(pch- >pch mpbuf, EDT_STR2BI G);

110 dvp->dtdv_nane = (uint_t)stroff;

111 dvp->dtdv_id = idp->di_id;

112 dvp->dtdv_flags = O;

114 dvp->dtdv_kind = (i dp >di _ki nd == DT_| DENT_ARRAY) ?
115 DI FV_KI ND_ ARRAY DI FV_KI ND_SCALAR;

117 if (idp->di_flags & DT_| DFLG_LOCAL)

118 dvp->dt dv_scope = DI FV_SCOPE_LOCAL;

119 else if (idp->di _flags & DT_IDFLG TLS)

120 dvp->dt dv_scope = DI FV_SCOPE_THREAD,

121 el se

122 dvp->dt dv_scope = DI FV_SCOPE_GLOBAL;

124 if (idp->di_flags & DT_I DFLG DI FR)

125 dvp->dtdv_fl ags |— DI FV_F_REF;

126 if (idp->di _flags & DT_I DFLG DI FW

127 dvp->dtdv_flags | = DI FV_F_MOD;

129 bzero(&dn, sizeof (dn));

130 dt _node_type_assi gn(&dn, idp->di_ctfp, idp->di_type, B _FALSE);
128 dt _node_t ype_assi gn(&dn, idp->di_ctfp, idp->di_type);
131 dt _node_di ftype(pcb->pcb_hdl, &dn, &dvp->dtdv_type);
133 idp->di _flags & ~(DT_IDFLG DIFR | DT_I DFLG DI FW;
134 return (0);

135 }

__unchanged_portion_onitted_

new usr/src/lib/libdtrace/ common/dt_cc.c

R R R R

70859 Tue Jan 14 16:48:51 2014
new usr/src/lib/libdtrace/ common/dt_cc.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1/*

2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */
22 | *
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. Al rights reserved.
24 * Copyright (c) 2013, Joyent Inc. Al rights reserved.
24 * Copyright (c) 2011, Joyent Inc. All rights reserved.
25 * Copyright (c) 2012 by Del phix. Al rights reserved.
26 */
28 /*
29 * DTrace D Language Conpil er
30 *
31 * The code in this source file inplenments the nain engine for the D | anguage
32 * conpiler. The driver routine for the conpiler is dt_conpile(), below The
33 * conpiler operates on either stdio FILEs or in-menory strings as its input
34 * and can produce either dtrace_prog_t structures froma D programor a single
35 * dtrace_difo_t structure froma D expression. Miltiple entry points are
36 * provided as wappers around dt_conpile() for the various input/output pairs.
37 * The conpiler itself is inplenented across the follow ng source files:
38 *
39 * dt_lex.l - lex scanner
40 * dt_grammar.y - yacc granmar
41 * dt_parser.c - parse tree creation and semantic checking
42 * dt_decl.c - declaration stack processing
43 * dt_xlator.c - Dtranslator |ookup and creation
44 * dt_ident.c - identifier and synbol table routines
45 * dt_pragna.c - #pragna processing and D pragmas
46 * dt_printf.c - Dprintf() and printa() argument checking and processing
47 * dt_cc.c - conpiler driver and dtrace_prog_t construction
48 * dt_cg.c - DI F code generator
49 * dt_as.c - DIF assenbler
50 * dt_dof.c - dtrace_prog_t -> DOF conversion
51 *
52 * Several other source files provide collections of utility routines used by
53 * these najor files. The conpiler itself is inplemented in nultiple passes:
*
*

(1) The input programis scanned and parsed by dt_lex.| and dt_grammar.y

new usr
*
*
*
*
*
*
*
*
*
*
*
*
*
69 *
*
*
*
*
*
*
*
*
*
*
*
*
*
*

85 #i
86 #i
87 #i

89 #i
90 #i
91 #i
92 #i
93 #i
94 #i
95 #i
96 #i
97 #i
98 #i
99 #i
100 #i
101 #i
102 #i
103 #i
104 #i
105 #i
106 #i
107 #i
108 #i

110 st
111
112 };

662 st
663 dt
664 {
665

/'src/lib/libdtrace/ common/dt_cc.c 2

and parse tree nodes are constructed using the routines in dt_parser.c.
Thi s node construction pass is described further in dt_parser.c.

(2) The parse tree is "cooked" by assigning each clause a context (see the
routine dt_setcontext(), below) based on its probe description and then
recursively descending the tree perform ng semantic checking. The cook
routines are also inplenented in dt_parser.c and described there.

(3) For actions that are DI F expression statenents, the DI F code generator
and assenbl er are invoked to create a finished DIFO for the statenent.

(4) The dtrace_prog_t data structures for the program clauses and actions
are built, containing pointers to any DIFOs created in step (3).

(5) The caller invokes a routine in dt_dof.c to convert the finished program
into DOF format for use in anonynous tracing or enabling in the kernel.

In the inplementation, steps 2-4 are intertwined in that they are performed
in order for each clause as part of a loop that executes over the clauses.

The D conpiler currently inplenents nearly no optimization. The conpiler
inmplements integer constant folding as part of pass (1), and a set of very
sinpl e peephol e optim zations as part of pass (3). As with any C conpiler,
a large nunber of optinizations are possible on both the internediate data
structures and the generated DI F code. These possibilities should be
investigated in the context of whether they will have any substantive effect
on the overall DTrace probe effect before they are undertaken.

-~

ncl ude <sys/types. h>
ncl ude <sys/wait.h>
ncl ude <sys/sysmacros. h>

ncl ude <assert. h>

ncl ude <strings. h>
ncl ude <signal . h>

ncl ude <uni std. h>

ncl ude <stdlib. h>

ncl ude <stdio. h>

ncl ude <errno. h>

ncl ude <ucontext.h>
nclude <limts. h>

ncl ude <ctype. h>

ncl ude <dirent. h>

ncl ude <dt_nodul e. h>
ncl ude <dt_program h>
ncl ude <dt_provider. h>
ncl ude <dt_printf.h>
ncl ude <dt_pid. h>

ncl ude <dt_granmar. h>
ncl ude <dt_ident.h>
ncl ude <dt_string. h>
ncl ude <dt_inpl. h>

atic const dtrace_diftype_t dt_void_rtype = {
DI F_TYPE CTF, CTF_K_INTEGER 0, 0,

__unchanged_portion_omtted_

atic void
_action_trace(dtrace_hdl _t *dtp, dt_node_t *dnp, dtrace_stntdesc_t *sdp)

int ctflib;

667 #endif /* | codereview */

668

dtrace_actdesc_t *ap = dt_stnt_action(dtp, sdp);

new usr/src/lib/libdtrace/ common/dt_cc.c 3
669 bool ean_t istrace = (dnp->dn_ident->di _id == DT_ACT_TRACE) ;

670 const char *act = istrace ? "trace" : "print";

672 if (dt_node_is_void(dnp->dn_args)) {

673 dnerror(dnp >dn_args, Istrace ? D_TRACE VO D : D_PRI NT_VA D,
674 "%() may not be applied to a void expression\n", act);
675 }

677 if (dt_node_resol ve(dnp->dn_args, DT_I DENT_XLPTR) != NULL)

678 dnerror(dnp >dn_args, Istrace ? D TRACE DYN : D_PRI NT_DVYN,

679 "%() may not be applied to a translat ed poi nter\n", act);
680 }

682 if (dnp->dn_args->dn_ki nd == DT_NODE_AGQH ({

683 dnerror (dnp->dn_args, istrace ? D TRACE_AGG : D PRI NT_AGG

684 "% () may not be applied to an aggregation%)\n", act,

685 istrace ? "" : - did you nean printa()?");

686 }

688 dt _cg(yypcb, dnp->dn_args);

690 /*

691 * The print() action behaves identically to trace(), except that it
692 * stores the CTF type of the argunent (if present) within the DOF for
693 * the DIFEXPR action. To do this, we set the 'dtsd_strdata’ to point
694 * to the fully-qualified CTF type ID for the result of the DIF

695 * action. W use the ID instead of the name to handl es conpl ex types
696 * like arrays and function pointers that can’t be resol ved by

697 * ctf_type_lookup(). This is later processed by dtrace_dof _create()
698 * and turned into a reference into the string table so that we can
699 * get the type information when we process the data after the fact. In
700 * the case where we are referring to userland CTF data, we al so need to
701 * to identify which ctf container in question we care about and encode
702 * that within the nane.

665 * get the type information when we process the data after the fact.
703 *

704 if (dnp->dn_ident->di _id == DI_ACT_PRINT) {

705 dt _node_t *dret;

706 size_t n;

707 dt _nodul e_t *dnp;

709 dret = yypcbh->pcb_dret;

710 dnmp = dt_nodul e_| ookup_by_ctf(dtp, dret->dn_ctfp);

712 if (dnp->dmpid != 0) {

713 ctflib = dt_nodul e _getlibid(dtp, dnp, dret->dn_ctfp);
714 assert(ctfllb >= ;

715 n = snpri ntf(NULL O "% %' %", dnp->dm nane,

716 ctflib, dret->dn_type) + 1;

717 } else {

718 n = snprintf(NULL, 0, "% %", dnp->dm nane,

719 dret->dn_type) + 1;

720 }

675 n = snprintf(NULL, 0, "% %", dnp->dm nane, dret->dn_type) + 1;
721 sdp->dtsd_strdata = dt _all oc(dtp, n);

722 if (sdp->dtsd_strdata == NULL)

723 | ongj mp(yypcb->pcb_j npbuf, EDT_NOMVEM ;

724 if (dnmp->dmpid = 0) {

725 (void) snprintf(sdp->dtsd_strdata, n, "% %l %",

726 dnmp- >dm nane, ctflib, dret->dn_type);

727 } else {

728 (void) snprintf(sdp->dtsd_strdata, n, "%"' %",

729 dnmp->dm nane, dret->dn_type);

730 }

679 (void) snprintf(sdp->dtsd_strdata, n, "%'%", dnp->dm nane,
680 dret->dn_type);

new usr/src/lib/libdtrace/ common/dt_cc.c

731 1

733 ap->dtad_difo = dt_as(yypch);

734 ap->dt ad_ki nd = DTRACEACT_DI FEXPR;
735 }

__unchanged_portion_onitted_

new usr/src/lib/libdtrace/ common/dt_decl.c

R R R R

31338 Tue Jan 14 16:48:51 2014
new usr/src/lib/libdtrace/ conmmon/dt_decl.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governi ng perm ssions
11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 =

19 * CDDL HEADER END
20 */
22 | *

23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. Al rights reserved.
24 * Copyright (c) 2013 by Del phix. Al rights reserved.
25 * Copyright (c) 2013 Joyent, Inc. Al rights reserved.
24 * Copyright (c) 2012 by Del phix. Al rights reserved.
*
/

28 #include <strings. h>
29 #include <stdlib. h>
30 #include <limts.h>
31 #include <alloca. h>
32 #include <assert. h>

34 #include <dt_decl.h>
35 #include <dt_parser. h>
36 #i nclude <dt_nodul e. h>
37 #include <dt_inpl.h>

39 static dt_decl _t *
40 dt _decl _check(dt_decl _t *ddp)

41 {

42 i f (ddp->dd_ki nd == CTF_K_UNKNOVW)

43 return (ddp); /* nothing to check if the type is not yet set */
45 if (ddp->dd_name != NULL && strcnp(ddp->dd_nane, "char") == 0 &&

46 (ddp->dd_attr & (DT_DA SHORT | DT_DA LONG | DT_DA LONGLONG))) {

47 xyerror (D _DECL_CHARATTR, "invalid type declaration: short and "
48 "long may not be used with char type\n");

49 }

51 if (ddp->dd_nanme != NULL && strcnp(ddp->dd_nane, "void"') == 0 &&

52 (ddp->dd_attr & (DT_DA SHORT | DT_DA LONG | DT_DA _LONGLONG |

53 (DT_DA STGNED | DT_DA UNSI GNED))))

54 xyerror (D _DECL_VO DATTR, "invalid type declaration: attributes "

55 "may not be used with void typein");

new usr/src/lib/libdtrace/ comon/dt_decl.c
56 }
58 if (ddp->dd_kind != CTF_K_| NTEGER &&
59 (ddp->dd_attr & (DT_DA SIGNED | DT_DA UNSIGNED))) {
60 xyerror (D _DECL_SIGNINT, "invalid type declaration: signed and "
61 "unsigned may only be used with integer type\n");
62 }
64 if (ddp->dd_kind != CTF_K_| NTEGER && ddp->dd_kind ! = CTF_K FLOAT &&
65 (ddp->dd_attr & (DT_DA_LONG | DT_DA LONGLONG))) {
66 xyerror (D _DECL_LONG NT, "invalid type declaration: long and "
67 "long long may only be used with integer or "
68 "floating-point type\n");
69 }
71 return (ddp);
72
__unchanged_portion_onitted_
689 void
690 dt_decl _enunerator(char *s, dt_node_t *dnp)
691 {
692 dt _scope_t *dsp = yypcb->pcb_dst ack. ds_next;
693 dtrace_hdl _t *dtp = yypcb->pcb_hdl;
695 dt _i dnode_t *i np;
696 dt _ident_t *idp;
697 char *nane;
698 int value;
700 name = strdupa(s);
701 free(s);
703 if (dsp == NULL)
704 | ongj mp(yypchb->pcb_j npbuf, EDT_NOSCOPE) ;
706 assert (dsp->ds_decl ->dd_ki nd == CTF_K_ENUM) ;
707 val ue = dsp->ds_enunval + 1; /* default is previous value plus one */
709 if (strchr(name, '*’) !'= NULL)
710 xyerror (D _DECL_SCOPE, "D scoping operator may not be used in "
711 "an enunerator name (%)\n", nanme);
712 }
714 /*
715 * |f the enunerator is being assigned a value, cook and check the node
716 * and then free it after we get the value. W also pernit references
717 * to identifiers which are previously defined enunerators in the type.
718 *
719 if (dnp !'= NULL)
720 if (dnp->dn_kind !'= DT_NODE_| DENT || ctf_enum val ue(
721 dsp->ds_ctfp, dsp->ds_type, dnp->dn_string, &alue) != 0) {
722 dnp = dt_node_cook(dnp, DT_| DFLG REF);
724 if (dnp->dn_kind != DT_NGODE_| NT)
725 xyerror (D _DECL_ENCONST, "enunerator '%’ nust
726 "be assigned to an integral constant
727 "expression\n", name);
728 }
730 if ((intmax_t)dnp->dn_value > I NT_MAX ||
731 (intmax_t)dnp->dn_value < INT_MN) {
732 xyerror (D _DECL_ENOFLOWN "enunerator ' %’ val ue
733 "overflows I NT_MAX (%)\n", nane, |NT_MAX);
734 }

new usr/src/lib/libdtrace/ common/dt_decl.c

736 val ue = (int)dnp->dn_val ue;

737 }

738 dt _node_free(dnp);

739 }

741 if (ctf_add_enunerator(dsp->ds_ctfp, dsp->ds_type,

742 nane, value) == CTF_ERR || ctf_update(dsp->ds_ctfp) == CTF_ERR) {
743 xyerror (D_UNKNOAWN, “"failed to define enumerator '9%’': %\n",
744 name, ctf_errnsg(ctf_errno(dsp->ds_ctfp)));

745 }

747 dsp->ds_enunval = value; /* save npbst recent value */

749 /*

750 * |f the enunerator nane matches an identifier in the gl obal scope,
751 * flag this as an error. W only do this for "D' enunerators to
752 * prevent "C' header file enunmerators fromconflicting with the ever-
753 * growing list of D built-in global variables and inlines. If a"C
754 * enunerator conflicts with a global identifier, we add the enunerator
755 * but do not insert a corresponding inline (i.e. the D variable wins).
756 */

757 if (dt_idstack_| ookup(&yypcb— >pcb_gl obal s, nane) != NULL) {

758 if (dsp->ds_ctfp == dtp->dt_ddefs->dmctfp) {

759 xyerror(D DECL | DRED,

760 "identifier redeclared: %\n", nane);

761 } else

762 return;

763 }

765 dt _dprintf("add gl obal enunmerator % = %\ n", nane, value);

767 idp = dt_idhash_insert(dtp->dt_gl obals, nane, DT_| DENT_ENUM

768 DT_IDFLG I NLI NE | DT_| DFLG_REF, O, dtrace defattr, O,

769 &dt _i dops_i nline, NULL, dtp- >dt gen)

771 if (idp == NULL)

772 | ongj np(yypcb->pcb_j npbuf, EDT_NOVEM ;

774 yyintprefix = 0;

775 yyintsuffix[0] = '\0";

776 yyi ntdeci mal = 0;

778 dnp = dt_node_i nt(val ue);

779 dt _node_t ype_assi gn(dnp, dsp->ds_ctfp, dsp->ds_type, B FALSE);

778 dt _node_t ype_assi gn(dnp, dsp->ds_ctfp, dsp->ds_type);

781 if ((inp = malloc(sizeof (dt_idnode_t))) == NULL)

782 | ongj np(yypchb->pcb_j npbuf, EDT_NOVEM ;

784 /*

785 * Renpve the INT node fromthe node allocation list and store it in
786 * din_list and din_root so it persists with and is freed by the ident.
787 */

788 assert (yypcb->pcb_list == dnp);

789 yypch->pcb_list = dnp->dn_Iink;

790 dnp->dn_l i nk = NULL;

792 bzero(inp, sizeof (dt_idnode_t));

793 inp->din_list = dnp;

794 i np->di n_root = dnp;

796 idp->di _iarg = inp;

797 idp->di _ctfp = dsp->ds_ctfp;

798 i dp->di _type = dsp->ds_type;

799 }

new usr/src/lib/libdtrace/ common/dt_decl.c

801 /*

802 * Look up the type corresponding to the specified decl stack. The scoping of
803 * the underlying type nanes is handled by dt_type_l ookup(). W build up the
804 * nane fromthe specified string and prefixes and then | ookup the type. |If
805 * we fail, an errnsg is saved and the caller nust abort with EDT_COWI LER
806 */

807 int

ggg ?t_decl_type(dt_decl_t *ddp, dtrace_typeinfo_t *tip)

810 dtrace_hdl _t *dtp = yypcb->pcb_hdl;

812 dt _nmodul e_t *dnp;

813 ctf_arinfo_t r;

814 ctf_id_t type;

816 char n[DT_TYPE_NAMELEN ;

817 uint_t flag;

818 char *nane;

819 int rv;

821 tip->dtt_flags = 0;

823 #endif /* | codereview */

824 /*

825 * Based on our current #i nclude depth and decl stack depth, determ ne
826 * which dynam ¢ CTF nodul e and scope to use when addi ng any new types.
827 */

828 dmp = yypcb->pcb_idepth ? dtp->dt_cdefs : dtp->dt_ddefs;

829 flag = yypch->pcb_dstack. ds_next ? CTF_ADD_NONROOT : CTF_ADD_ROCT;

831 if (ddp->dd_attr & DT_DA USER)

832 tip->dtt_flags = DIT_FL_USER;

834 #endi f /* | codereview */

835

836 * If we have already cached a CTF type for this decl, then we just
837 * return the type information for the cached type.

838 */

839 if (ddp->dd_ctfp != NULL &&

840 (dnmp = dt_nodul e_| ookup_by_ctf(dtp, ddp->dd_ctfp)) != NULL) {

841 tip->dtt_object = dnp->dm nane;

842 tip->dtt_ctfp = ddp->dd_ctfp;

843 tip->dtt_type = ddp->dd_type;

844 return (0);

845 }

847 /*

848 * Currently CTF treats all function pointers identically. W cache a
849 * representative ID of kind CTF_K FUNCTION and just return that type.
850 * |f we want to support full function declarations, dd_next refers to
851 * the decl aration of the function return type, and the paraneter |ist
852 * shoul d be parsed and hung off a new pointer inside of this decl.
853 *

854 if (ddp->dd_kind == CTF_K_FUNCTI ON) {

855 tip->dtt_object = dtp->dt_ddefs->dm nane;

856 tip->dtt_ctfp = DT FUNC_CTFP(dt p) ;

857 tip->dtt _type = DT_FUNC TYPE(dtp);

858 return (0);

859 }

861 /*

862 * |f the decl is a pointer, resolve the rest of the stack by calling
863 * dt_decl _type() recursively and then conpute a pointer to the result.
864 * Simlar to the code above, we return a cached 1d for function ptrs.
865 *

866 if (ddp->dd_kind == CTF_K_POI NTER) {

new usr/src/lib/libdtrace/ common/dt_decl.c

867
868
869
870
871
872

874
875
876
877
878
879

881
882

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

922
923

925
926
927
928
929
930
931

if (ddp->dd_next->dd_ki nd = CTF_K_FUNCTI ON) {
tip->dtt_object = dtp >dt _ddef s- >dm nane;
tip->dtt_ctfp = DT_FPTR CTFP(dtp);
tip->dtt_type = DT_FPTR_TYPE(dtp);
return (0);

if ((rv = dt_decl _type(ddp->dd next tip)) == 0 &&
(rv = dt_type_poi nter(tlp)) =0
xywar n(D_UNKNOW, cannot find type: %*: %\n",
dt _type_nane(tip->dtt_ctfp, tip->dtt_type,
) n, sizeof (n)), ctf_errmsg(dtp->dt_ctferr));

return (rv);

If the decl is an array, we nust find the base type and then call

dt _decl _type() recursively and then build an array of the result.
The C and D nul ti-dinmensional array syntax requires that consecutive
array decl arations be processed fromright-to-left (i.e. top-down
fromthe perspective of the declaration stack). For exanple, an
array declaration such as int x[3][5] is stored on the stack as:
(bottom) NULL <- (INT "int") <- (ARR[3]) <- (ARR[5]) (top)
but neans that x is declared to be an array of 3 objects each of
which is an array of 5 integers, or in CTF representation:

type T1:(content=int, nelems=5) type T2:(content=T1, nelens=3)

For nore details, refer to K&R[5.7] and 1SO C 6.5.2.1. Rather than
overconplicate the inplenmentation of dt_decl_type(), we push array
decl arations down into the stack in dt_decl _array(), above, so that
by the time dt_decl _type() is called, the decl stack |ooks Iike:

(bottom) NULL <- (INT "int") (ARR[5]) <- (ARR[3]) (top)

which pernmits a straightforward recursive descent of the decl stack
to build the corresponding CTF type tree in the appropriate order.

(ddp->dd_kind == CTF_K_ARRAY) {
/ *

* |f the array decl has a paraneter |list associated with it,
*/this is an associative array declaration: return <DYN>.
*
if (ddp->dd_node != NULL &&
ddp- >dd_node- >dn_ki nd == DT_NODE_TYPE) ({
tip->dtt_object = dtp->dt_ddefs->dm nane;
tip->dtt_ctfp = DT_DYN CTFP(dtp);
tip->dtt_type = DT_DYN _TYPE(dtp);
return (0);

}

if ((rv = dt_decl _type(ddp->dd_next, tip)) != 0)
return (rv);

If the array base type is not defined in the target
container or its parent, copy the type to the target
container and reset dtt_ctfp and dtt_type to the copy.

* ok % k%

if (tip->dtt_ctf

I= dnp->dmctfp &&
tip->dtt_ctf =

ctf_parent _file(dnp->dmctfp)) {

new usr/src/lib/libdtrace/ common/dt_decl.c

933
934
935

937
938
939
940
941
942
943

945
946
947
948
949
950
951
952

954
955
956

958
959
960
961
962
963

965
966

968
969
970
971
972
973

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998

tip->dtt_type = ctf_add_type(dnp->dmctfp,
tip->dtt ctfp tip->dtt_type);
tip->dtt_ctfp = dnp->dmctfp;

if (tip->dtt_type == CTF_ERR ||
ctf_update(tip->dtt ctfp) == CTF_ERR) {
xywar n(D_UNKNOWN, "failed to copy type: %\n",
ctf_errmsg(ctf_errno(tip->dtt_ctfp)));
return (-1);

}

/*

* The array index type is irrelevant in C and D. just set it
* to "long" for all array types that we create on-the-fly.

*

/
r.ctr_contents = tip->dtt_type;
r.ctr_index = ctf _l ookup_by_| nane(tlp >dtt_ctfp, "long");
r.ctr_nelems = ddp->dd_node ?

(ui nt t)ddp >dd_node->dn_val ue : 0;

tip->dtt_object = dnp->dm nane;
tip->dtt_ctfp = drrp >dm ct f p;
tip->dtt_type = ctf_add_array(dnmp->dmctfp, CTF_ADD ROOT, &r);

if (tip->dtt_type == CTF_ERR ||
ctf_update(tip->dtt ctfp) == CTF_ERR)
xywar n(D_UNKNOVN, falled to create array type: %\n",
ctf errn’sg(ctf _errno(tip->dtt_ctfp)));
return (-1);

}

return (0);
}
/*
* Allocate space for the type name and enough space for the maxi num
* additional text ("unsigned long long \0" requires 20 nore bytes).
*
/
name = all oca(ddp >dd_nanme ? strlen(ddp->dd_nane) + 20 : 20);
name[0] = '\0

switch (ddp->dd_kind) {
case CTF_K_I NTEGER:
case CTF K_FLOAT:
if (ddp->dd_attr & DT_DA Sl GNED)
(void) strcat(name, "signed ");
if (ddp->dd_attr & DT_DA UNSI GNED)
(void) strcat(name, "unsigned ");
if (ddp->dd_attr & DT_DA_SHCRT)
(void) strcat(name, "short ");
if (ddp->dd_attr & DT_DA_LONG
(voi d) strcat(narre "long ");
if (ddp->dd_attr & DT_DA CNGLO\IG)
(void) st rcat(nane "long | ong ;
if (ddp->dd_attr == 0 && ddp >dd_nanme == NULL)
(void) strcat(nane, "int");

br eak;
case CTF_K_STRUCT:
(v0| d) strcpy(name, "struct ");
reak;

case CTF_K_UNI ON:

(void) strcpy(nanme, "union ");
br eak;

case CTF_K_ENUM
(void) strcpy(name, "enum");

new usr/src/lib/libdtrace/ common/dt_decl.c

999 br eak;

1000 case CTF_K_TYPEDEF:

1001 br eak;

1002 defaul t:

1003 xywarn(D UNKNOMWN, "internal error -- "

1004 "bad decl kind %\n", ddp->dd_kind);

1005 return (-1);

1006 }

1008 /*

1009 * Add dd_nane unl ess a short, long, or long long is explicitly
1010 */suffixed by int. W use the C/ CTF canonical names for integers.
1011 *

1012 if (ddp->dd_name != NULL && (ddp->dd_kind != CTF_K_I NTEGER | |

1013 (ddp->dd_attr & (DT_DA SHORT | DT_DA LONG | DT_DA LONGLONG)) == 0))
1014 (void) strcat(name, ddp->dd_nane);

1016 /*

1017 * Lookup the type. If we find it, we’'re done. Otherwise create a
1018 * forward tag for the type if it is a struct, union, or enum |If
1019 * we can’t find it and we can’'t create a tag, return failure.
1020 */

1021 if ((rv = dt_type_l ookup(nanme, tip)) == 0)

1022 return (rv);

1024 switch (ddp->dd_kind) {

1025 case CTF_K_STRUCT:

1026 case CTF_K_UNI ON:

1027 case CTF_K_ENUM

1028 type = ctf_add_forward(dnp->dmctfp, flag,

1029 ddp->dd_nane, ddp->dd_ki nd);

1030 br eak;

1031 defaul t:

1032 xywar n(D_UNKNOWN, “failed to resolve type %: %\n", nane,
1033 dtrace_errnmsg(dtp, dtrace_errno(dtp)));

1034 return (rv);

1035 }

1037 if (type == CTF_ERR || ctf_update(dnp->dmctfp) == CTF_ERR) {
1038 xywar n(D_UNKNOWN, "failed to add forward tag for %: %\n",
1039 nane, ctf_errnmsg(ctf_errno(dnp->dmctfp)));

1040 return (-1);

1041 }

1043 ddp->dd_ctfp = dnp->dm ct fp;

1044 ddp->dd_type = type;

1046 tip->dtt_object = dnp->dm nane;

1047 tip->dtt_ctfp = dnp->dmctfp;

1048 tip->dtt_type = type;

1050 return (0);

1051 }

1053 voi d

1054 dt_scope_create(dt_scope_t *dsp)

1055 {

1056 dsp->ds_decl = NULL

1057 dsp->ds_next = NULL;

1058 dsp->ds_i dent = NULL;

1059 dsp->ds_ctfp = NULL;

1060 dsp->ds_type = CTF ERR;

1061 dsp->ds_cl ass = DT_DC DEFAULT;

1062 dsp- >ds enunval = -1;

1063 }

new usr/src/lib/libdtrace/ common/dt_decl.c

1065 voi d

1066 dt_scope_destroy(dt_scope_t *dsp)

1067 {

1068 dt _scope_t *nsp;

1070 for (; dsp != NULL; dsp = nsp) {

1071 dt _decl _free(dsp->ds_decl);

1072 free(dsp >ds_i dent);

1073 nsp = dsp->ds_next;

1074 if (dsp !'= &ypch- >pcb dst ack)

1075 free(dsp);

1076 }

1077 }

1079 void

1080 dt_scope_push(ctf_file_t *ctfp, ctf_id_t type)

1081 {

1082 dt _scope_t *rsp = &ypch->pcb_dst ack;

1083 dt _scope_t *dsp = null oc(sizeof (dt_scope_t));
1085 if (dsp == NULL)

1086 | ongj np(yypcb->pcb_j npbuf, EDT_NOVEM ;
1088 dsp->ds_decl = rsp->ds_decl;

1089 dsp->ds_next = rsp->ds_next;

1090 dsp->ds_i dent = rsp->ds_ident;

1091 dsp->ds_ctfp = tfp,

1092 dsp->ds_type = type

1093 dsp->ds_cl ass = rsp >ds_cl ass;

1094 dsp->ds enunval = rsp->ds enurrval;

1096 dt _scope_create(rsp);

1097 rsp->ds_next = dsp;

1098 }

1100 dt_decl _t *

1101 dt_scope_pop(voi d)

1102 {

1103 dt _scope_t *rsp = &ypch->pcb_dst ack;

1104 dt _scope_t *dsp = rsp->ds_next;

1106 if (dsp == NULL)

1107 | ongj np(yypcb->pcb_j npbuf, EDT_NOSCOPE) ;
1109 if (dsp->ds_ctfp != NULL && ctf_update(dsp->ds_ctfp) == CTF_ERR) {
1110 xyerror (D _UNKNOAWN, “"failed to update type defl nitions: %\n",
1111 ctf_errmsg(ctf_errno(dsp->ds_ctfp)));
1112 1

1114 dt _decl _free(rsp->ds_decl);

1115 free(rsp->ds_ident);

1117 rsp->ds_decl = dsp->ds_decl;

1118 rsp->ds_next = dsp >ds_next;

1119 rsp->ds_i dent dsp- >ds |dent

1120 rsp->ds_ctfp = dsp >ds_ct f p;

1121 rsp->ds_type = dsp->ds_type;

1122 rsp->ds_class = dsp->ds_cl ass;

1123 rsp->ds_enunval = dsp->ds_enunval ;

1125 free(dsp);

1126 return (rsp->ds_decl);

1127 }

new usr/src/lib/libdtrace/ conmon/dt_decl.h

R R R R

4559 Tue Jan 14 16:48:52 2014
new usr/src/lib/libdtrace/ common/dt_decl.h
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEREEREEEERERERERESRESRESRESESESESE]
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License, Version 1.0 only
(the "License"). You nay not use this file except in conpliance
with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://wwm. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

NRERRRRRRRRE
COONOUITAWNROW©O~NOUTSWN

CDDL HEADER END

Copyri ght 2005 Sun Mcrosystens, Inc. Al rights reserved.

*
*
*
*
*
*
*
*
*
*
*
* When distributing Covered Code, include this CDDL HEADER i n each
*
*
*
*
*
*
*
*
*
* Use is subject to |icense terns.

*

27 * Copyright (c) 2013 by Del phix. Al rights reserved.
28 * Copyright (c) 2013 Joyent, Inc. Al rights reserved.
*
/

30 #endif /* 1 codereview */

32 #ifndef _DT_DECL_H
33 #define _DT_DECL_H

26 #pragma ident " 9% U % %Y SM "

35 #include <sys/types. h>

36 #include <libctf.h>

37 #include <dtrace. h>

38 #include <stdio. h>

40 #ifdef __cplusplus

41 extern "C' {

42 #endi f

44 struct dt_node; /* forward decl aration of dt_node_t */

46 typedef struct dt_decl {

a7 ushort_t dd_kind; /* declaration kind (CTF_K_* kind) *

48 ushort_t dd_attr; /* attributes (DT_DA * flags) */

49 ctf _file_t *dd ctfp, /* CTF container for decl’s type */
50 ctf_id t dd_type; /* CTF identifier for decl’'s type */
51 char *dd_nane; /* string nanme of this decl (or NULL)
52 struct dt_node *dd_node; /* node for array size or parmlist */
53 struct dt_decl *dd_next; /* next declaration in list */

54 } dt_decl _t;

new usr/src/lib/libdtrace/ common/dt_decl.h

103

105
106

108
109
110
111
112

114
115

117
118

#defi ne DT_DA_SI GNED 0x0001 /* signed integer value */
#def i ne DT_DA_UNSI GNED 0x0002 /* unsigned integer value */
#defi ne DT_DA SHORT 0x0004 /* short integer value */
#defi ne DT_DA _LONG 0x0008 /* long integer or double */
#define DT_DA LONGLONG 0x0010 /* long long integer value */
#def i ne DT_DA_CONST 0x0020 /* qualify type as const */
#define DT_DA _RESTRICT 0x0040 /* qualify type as restrict */
#define DT_DA VOLATILE 0x0080 /* qualify type as volatile */
#define DT_DA_PAREN 0x0100 /* parenthesis tag */
#defi ne DT_DA USER 0x0200 /* user-land type specifier */
#endif /* | codereview */
typedef enum dt _dcl ass {
DT_DC _DEFAULT, /* no storage class specified */
DT_DC_AUTOQ, /* automatic storage */
DT_DC_REQ STER, /* register storage */
DT_DC_STATI C, /* static storage */
DT_DC_EXTERN, /* extern storage */
DT_DC_TYPEDEF, /* type definition */
DT_DC_SELF, /* thread-1ocal storage */
DT_DC TH' S /* clause-local storage */
} dt _dclass_t;
typedef struct dt_scope {
dt _decl *ds_decl ; /* pointer to top of decl stack */
struct dt_scope *ds _next; /* pointer to next scope */
char *ds_ident; /* identifier for this scope (if any) */
ctf_file_t *ds_ctfp; /* CTF container for this scope */
ctf_id_t ds_type; /* CTF id of enclosing type */
dt _dclass_t ds_cl ass; /* declaration class for this scope */
int ds_enunval ; /* nost recent enunerator value */
} dt_scope_t;
extern dt_decl _t *dt_decl _alloc(ushort_t, char *);
extern void dt_decl free(dt_decl t *);
extern void dt_decl reset(void);
extern dt_decl _t *dt_decl _push(dt _decl _t *);
extern dt_decl _t *dt_decl _pop(void);
extern dt_decl _t *dt_decl _pop_paran{char **);
extern dt_decl _t *dt_decl _top(void);
extern dt_decl _t *dt_decl _i dent (char *);
extern void dt_decl class(dt_dclass_t);
#defi ne DT_DP_VARARGS 0x1 /* permt varargs in prototype */
#define DI_DP_DYNAM C 0x2 /* permt dynamc type in prototype */
#define DT_DP_VA D 0x4 /* permit void type in prototype */
#defi ne DT_DP_ANON 0x8 /* permt anonynobus paraneters */
extern int dt_decl prototype(struct dt_node *, struct dt_node *,
const char *, uint_
extern dt_decl _t *dt_decl _spec(ushort_t, char *);
extern dt_decl _t *dt_decl _attr(ushort_t)
extern dt_decl _t *dt_decl _array(struct dt_node *);
extern dt_decl _t *dt_decl _func(dt_decl _t *, struct dt_node *);
extern dt_decl _t *dt_decl _ptr(void);
extern dt_decl _t *dt_decl _sou(uint_t, char *);
extern void dt_decl nenber(struct dt_node *);
extern dt_decl _t *dt_decl _enun{char *);
extern void dt_decl _enunerator(char *, struct dt_node *);
extern int dt_decl _type(dt_decl _t *, dtrace_typeinfo_t *);

new usr/src/lib/libdtrace/ conmon/dt_decl.h

122 extern void dt_scope_create(dt_scope_t *);
123 extern void dt_scope_destroy(dt_scope_t *);

124 extern void dt_scope_push(ctf_file_t *, ctf_id_t);
125 extern dt_decl _t *dt_scope_pop(void);

127 #ifdef _ cplusplus

128 }

129 #endif

131 #endif /* _DT_DECL_H */

new usr/src/lib/libdtrace/ cormon/dt_dis.c

R R R R

15006 Tue Jan 14 16:48:52 2014
new usr/src/lib/libdtrace/ comon/dt_dis.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License, Version 1.0 only

6 * (the "License"). You may not use this file except in conpliance
7 * with the License.

8 *

9 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
10 * or http://ww opensol aris.org/os/licensing.

11 * See the License for the specific |anguage governing perm ssions
12 * and limtations under the License.

13 =

14 * \WWen distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 * |f applicable, add the followi ng below this CODL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [nane of copyright owner]
19 =

20 * CDDL HEADER END

21 */

23 /*

24 * Copyright 2005 Sun M crosystens, Inc. Al rights reserved.

25 * Use is subject to license termns.

26 */

28 /*

29 * Copyright (c) 2013 by Del phix. Al rights reserved.

30 * Copyright (c) 2013 Joyent, Inc. All rights reserved.
29 * Copyright (c) 2012 by Del phix. Al rights reserved.
*/

33 #include <strings. h>
34 #include <stdio. h>

36 #include <dt_inpl.
37 #include <dt_ident. h>

39 /* ARGSUSED*/

40 static void

41 dt _dis_l og(const dtrace_difo_t *dp, const char *nanme, dif_instr_t in, FILE *fp)
{

43 (void) fprintf(fp, "%4s %6 %, 9% %, 9% %", nane,
44 DI F_INSTR_R1(in), DIF_INSTR R2(in), DIF_INSTR RD(in));
45

__unchanged_portion_onitted_

253 static char *
254 dt_dis_typestr(const dtrace_diftype_t *t, char *buf, size_t |len)

255 {

256 char kind[16], ckind[16];
258 switch (t->dtdt_| k| nd) {
259 case DI F_TYPE_CTF

260 (voi d) st rcpy(kl nd, "D type");

new usr/src/lib/libdtrace/ cormon/dt_dis.c

261 br eak;

262 case DI F_TYPE_STRI NG

263 (voi d) strcpy(kind, "string");

264 br eak;

265 defaul t:

266 (void) snprintf(kind, sizeof (kind), "Ox%", t->dtdt_kind);
267 }

269 switch (t—>dt dt _ckind) {

270 case CTF_K_UNKNOWN:

271 (voi d) strcpy(ckind, "unknown");

272 br eak

273 case CTF_K | NTEGER

274 (void) strcpy(ckind, "integer");

275 br eak;

276 case CTF_K FLOAT:

277 (voi d) strcpy(ckind, "float");

278 br eak

279 case CTF_K_ POl NTER:

280 (voi d) strcpy(ckind, "pointer");

281 br eak

282 case CTF_K_ARRAY:

283 (voi d) strcpy(ckind, "array");

284 br eak;

285 case CTF_K_FUNCTI ON:

286 (void) strcpy(ckind, "function");

287 br eak;

288 case CTF_K STRUCT:

289 (v0| d) strcpy(ckind, "struct");

290 bre

291 case CTF_K UNI ON:

292 (v0| d) strcpy(ckind, "union");

293 bre

294 case CTF_K_ ENUM

295 (void) strcpy(ckind, "enuni);

296 break;

297 case CTF_K_FORWARD:

298 (void) strcpy(ckind, "forward");

299 break;

300 case CTF_K_TYPEDEF:

301 (void) strcpy(ckind, "typedef");

302 br eak;

303 case CTF_K_ VOLATI LE:

304 (void) strcpy(ckind, "volatile");

305 br eak;

306 case CTF_K_CONST:

307 (void) strcpy(ckind, "const");

308 break;

309 case CTF_K_RESTRI CT:

310 (void) strcpy(ckind, "restrict");

311 break;

312 defaul t:

313 (void) snprintf(ckind, sizeof (ckind), "Ox¥%", t->dtdt_ckind);
314 }

316 if (t->dtdt _flags & (DI F_TF_BYREF | DI F_TF_BYUREF))
317 (void) snprintf(buf, len, "% (%) by %ref (size %u)",
318 kind, ckind, (t->dtdt_flags & DIF_TF_BYUREF) ? "user " : "",
319 (ul ong_t)t->dtdt_size);

315 if (t->dtdt _flags & DI F_TF_BYREF)

316 (void) snprintf(buf, len, "% (%) by ref (size %u)",
317 ki nd, ckind, (uI ong_t)t->dt dt _si ze);
320 } else {

321 (voi d) snprintf(buf, len, "% (%) (size %u)",
322 ki nd, ckind, (uI ong_| t)t >dt dt _si ze);
323 }

new usr/src/lib/libdtrace/ cormon/dt_dis.c

325 return (buf);
326 }
____unchanged_portion_onitted_

new usr/src/lib/libdtrace/ common/dt_error.c

R R R R

7980 Tue Jan 14 16:48:53 2014

new usr/src/lib/libdtrace/ common/dt_error.c
4474 DTrace Userland CTF Support

4475 DTrace userland Keyword

4476 DTrace tests should be better citizens

4479 pid provider types
4480 dof enul ation m ssing checks

Revi ewed by: Bryan Cantrill

<bryan@ oyent . con»

LR R R

__unchanged_portion_onmtted

EDT_VERSI ON,

EDT_VERSI NVAL,
EDT_VERSUNDEF,
EDT_ VERSREDUCED

"Client requested version newer than library" },
"Version is not properly formatted or is too Iarge"
Requested version iIs not supported by conpiler” },

EDT_CTF, "Unexpected libctf error" },

EDT_COWPI LER, "Error in D program conpilation" },

EDT_NOTUPREG, "Insufficient tuple registers to generate code" },
EDT_NOVEM "Mermory allocation failure" },

EDT_INT2BI G "Integer constant table linmt exceeded" },
EDT_STR2BI G "String constant table limt exceeded" },
EDT_NOMVOD, "Unknown nodul e nane" },

EDT_NOPROV, "Unknown provider nane" },

EDT_NOPROBE, "No probe matches descri ption" },

EDT_NGOSYM " Unknown synbol nane"

EDT_NOSYMADDR, "No synbol corresponds to address" },

EDT_NOTYPE, "Unknown type nane" },

EDT_NOVAR, "Unknown vari abl e nane" },

EDT_NOAGG, "Unknown aggregation nane" },

EDT_BADSCOPE, "I nproper use of scoping operator in type nanme" },
EDT_BADSPEC, "Q/erspeci fied probe description" },

EDT_BADSPCV, "Undefined macro vari abl e in probe description" },
EDT_BADI D, "Unknown probe identifier"

EDT_NOTLOADED, "Module is no |onger | oaded" },

EDT_NOCTF, "Modul e does not contain any CTF data" },
EDT_DATAMODEL, "Moddul e and program data nodel s do not match" },
EDT_DI FVERS, "Library uses newer DI F versi on than kernel" },
EDT_BADAGG "Unknown aggregating action" },

EDT_FI O "Error occurred while reading frominput strean },
EDT_DI FI NVAL, "DIF program content is invalid" },

EDT_DI FSI ZE, "DIF program exceeds nmaxi mum program si ze" },
EDT_DI FFAULT, "DI F program contains invalid pointer" },
EDT_BADPROBE, "Invalid probe specification" },

EDT_BADPGLOB, "Probe description has too many gl obbi ng characters"
EDT_NOSCOPE, "Declaration scope stack underflow' },

EDT_NODECL, "Decl aration stack underflow' },

EDT_DM SMATCH, "Data record |ist does not natch statenent" 1},
EDT_DOFFSET, "Data record offset exceeds buffer boundary" 1,
EDT_DALI GN, "Data record has |nappropr| ate alignnent" },
EDT_BADOPTNAME, "lInvalid option name" },

EDT_BADOPTVAL, “lnvalid value for specified option" },
EDT_BADOPTCTX, "Option cannot be used fromwithin a D prograni },

EDT_CPPFORK, "Failed to fork preprocessor” },

EDT_CPPEXEC, "Failed to exec preprocessor" },

EDT_CPPENT, "Preprocessor not found" },

EDT_CPPERR, "Preprocessor failed to process input prograni },
EDT_SYMOFLON "Synbol table identifier space exhausted" },
EDT_ACTI VE, Operatl on illegal when tracing is active" },
EDT_DESTRUCTI VE "Destructive actions not allowed" },
EDT_NOANON, "No anonynous tracing state"

EDT_| SANON, "Can’t clai manonynous state and enabl e probes" },
EDT_ENDTOOBI G "END enabl i ngs exceed size of principal buffer" },
EDT_NOCONV, "Failed to load type for printf conversion" },
EDT_BADCONV, "lInconplete printf conversion" },

EDT_BADERROR, "lnvalid library ERROR action" },
EDT_ERRABORT, "Abort due to error" },

"Requested version conflicts with earlier setting”

b
b

b

new usr/src/lib/libdtrace/ common/dt_error.c

115 };
__unchanged_portion_onitted_

EDT_DROPABORT, "Abort due to drop" },

EDT_DI RABORT, "Abort explicitly directed" },
EDT_BADRVAL, "lInvalid return val ue from cal | back" 1.
EDT_BADNORMAL, "Invalid nornalization”
EDT_BUFTOOSMALL, "Enabling exceeds size of buffer” 1,
EDT_BADTRUNC, "lInvalid truncation" },
EDT_BUSY, "DTrace cannot be used when kernel
EDT_ACCESS, "DTrace requires additional privileges" },
EDT_NCENT, " DTr ace device not available on systent },
EDT_BRI CKED, Abort due to systemic unresponsi veness" 1,
EDT_HARDW RE, "Failed to |oad | anguage definitions" },
EDT_ELFVERSI ON, "Ii bel f
EDT_NOBUFFERED, "Attenpt to buffer output without handler" },
EDT_UNSTABLE, " Descri ption matched an unstabl e set of probes”
EDT_BADSETOPT, "lInvalid setopt() library action" },
EDT_BADSTACKPC, "Invalid stack program counter size"
EDT_BADAGGVAR, "Invalid aggregation variable identifi er” },
EDT_OVERSI ON, "Client requested deprecated version of
EDT_ENABLI NG ERR, "Failed to enable probe" }

EDT_NOPROBES, "No probe sites found for decl ared provi der" },
EDT_CANTLOAD, "Failed to | oad nodul e"
EDT_NOPROBES, "No probe sites found for decl ared provi der" }

library"”

debugger is active"

is out-of-date with respect to |ibdtrace"

b

b

b

H

new usr/src/lib/libdtrace/ common/dt_gramar.y 1 new usr/src/lib/libdtrace/ conmon/dt_gramar.y
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 55 %oken DT TG< LT DT TO(LE DT TG< G‘I’ DT TO(E DT TO< LSH DT TO< RSH
22377 Tue Jan 14 16:48:53 2014 56 % oken DT_TOK_ADD DT_TOK SUB DT_TOK MJUL DT_TOK DIV DT_TOK_MD
new usr/src/lib/libdtrace/ conmon/dt_grammar.y 57 % oken DT_TOK_LNEG DT_TCOK BNEG DT_TOK_ADDADD DT_TOK_SUBSUB
4474 DTrace Userland CTF Support 58 % oken DT_TOK_PREINC DT_TOK_POSTI NC DT_TOK_PREDEC DT_TOK_POSTDEC
4475 DTrace userland Keyword 59 9% oken DT_TOK | POS DT_TOK | NEG DT_TOK DEREF DT_TOK_ADDROCF
4476 DTrace tests should be better citizens 60 % oken DT_TOK_OFFSETCF DT_TOK_SI ZEOF DT_TOK_STRI NGOF DT_TOK_XLATE
4479 pid provider types 61 % oken DT_TOK_LPAR DT_TOK_RPAR DT_TOK_LBRAC DT_TOK_RBRAC DT_TOK_PTR DT_TOK_DOT
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con> 63 % oken <l _str> DT_TOK_STRI NG
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEREEREEEERERERERESRESRESRESESESESE] 64 %oken <| Stl’> DT TO(IDENT
1 % 65 % oken <l _str> DT_TOK_PSPEC
2 /* 66 % oken <I_str> DI_TOK _AGG
3 * CDDL HEADER START 67 % oken <|_str> DI_TOK _TNAME
4 * 68 % oken <l _int> DT_TOK_INT
5 * The contents of this file are subject to the terms of the
6 * Common Devel opment and Distribution License, Version 1.0 only 70 % oken DT_KEY_AUTO
7 * (the "License"). You may not use this file except in conpliance 71 % oken DT_KEY_BREAK
8 * with the License. 72 % oken DT_KEY_CASE
9 * 73 % oken DT_KEY_CHAR
10 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE 74 % oken DT_KEY_CONST
11 * or http://ww. opensol aris.org/os/licensing. 75 % oken DT_KEY_CONTI NUE
12 * See the License for the specific |anguage governi ng perm ssions 76 % oken DT_KEY_COUNTER
13 * and limtations under the License. 77 % oken DT_KEY_DEFAULT
14 = 78 % oken DT_KEY_DO
15 * Wen distributing Covered Code, include this CDDL HEADER i n each 79 % oken DT_KEY_DOUBLE
16 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 % oken DT_KEY_ELSE
17 * If applicable, add the followi ng below this CDDL HEADER, wth the 81 % oken DT_KEY_ENUM
18 * fields enclosed by brackets "[]" replaced with your own identifying 82 % oken DT_KEY_EXTERN
19 * information: Portions Copyright [yyyy] [nane of copyright owner] 83 9% oken DT_KEY_FLOAT
20 * 84 % oken DT_KEY_FOR
21 * CDDL HEADER END 85 % oken DT_KEY_GOTO
22 * 86 % oken DT_KEY_IF
23 * Copyright 2006 Sun Mcrosystems, Inc. Al rights reserved. 87 % oken DT_KEY_| MPORT
24 * Use is subject to license terns. 88 % oken DT_KEY_I NLI NE
25 */ 89 % oken DT_KEY_INT
26 /* 90 % oken DT_KEY_LONG
27 * Copyright (c) 2013 by Del phix. Al rights reserved. 91 % oken DT_KEY_PROBE
28 * Copyright (c) 2013, Joyent, Inc. Al rights reserved. 92 % oken DT_KEY_PROVI DER
29 */ 93 % oken DT_KEY_REQ STER
94 % oken DT_KEY_RESTRI CT
27 #pragma i dent " %L N % %% SM " 95 % oken DT_KEY_RETURN
96 % oken DT_KEY_SELF
31 #include <dt_inpl.h> 97 % oken DT_KEY_SHORT
98 % oken DT_KEY_SI GNED
33 #define OPl(op, c) dt _node_opl(op, c) 99 % oken DT_KEY_STATIC
34 #define OP2(op, |, r) dt _node_op2(op, I, r) 100 % oken DT_KEY_STRI NG
35 #define OP3(x, y, 2z) dt _node_op3(x, y, z) 101 % oken DT_KEY_STRUCT
36 #define LINK(I, r) dt _node_l I nk(Il, r) 102 % oken DT_KEY_SW TCH
37 #define DUP(s) strdup(s) 103 % oken DT_KEY_TH S
104 % oken DT_KEY_TYPEDEF
39 % 105 % oken DT_KEY_UNI ON
106 % oken DT_KEY_UNSI GNED
41 %nion { 107 % oken DT_KEY_USERLAND
42 dt _node_t *I| _node; 108 #endif /* ! codereview */
43 dt _decl _t *I _decl; 109 % oken DT_KEY_VO D
44 char *| _str; 110 % oken DT_KEY_VOLATI LE
45 uintmax_t | _int; 111 % oken DT_KEY_WH LE
46 int |_tok; 112 %oken DT_KEY_XLATOR
47 }
114 % oken DT _TOK_EPRED
49 % oken DT_TOK_COMVA DT_TOK_ELLIPSI S 115 % oken DT_CTX DEXPR
50 % oken DT_TOK_ASGN DT_TOK_ADD_EQ DT_TOK_SUB_EQ DT_TOK_MJL_EQ 116 % oken DT_CTX DPROG
51 % oken DT_TOK_DIV_EQ DT_TOK_MOD EQ DT_TOK_AND EQ DT_TOK_XOR EQ DT_TOK_OR _EQ 117 % oken DT_CTX DTYPE
52 % oken DT_TOK_LSH EQ DT_TOK_RSH EQ DT_TOK_QUESTI ON DT_TOK_COLON 118 % oken DT_TOK EOF 0
53 % oken DT_TOK LOR DT_TOK_LXOR DT_TOK_LAND
54 % oken DT_TOK BOR DT_TOK_XOR DT_TOK _BAND DT_TOK_EQU DT_TOK_NEQ 120 %eft DT_TOK_COWVA

new usr/src/lib/libdtrace/ common/dt_gramar.y

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

141
142
143

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

164
165
166
167
168
169
170
171
172
173
174
175

177
178
179

181
182
183
184

% i ght

%eft
% eft
% eft
% eft
%eft
% eft
% eft
% eft
%eft
%eft
% eft
% ef t
% i ght

% i ght
% eft

% ype
% ype
% ype

% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype

% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype

% ype
% ype
% ype

% ype
% ype
% ype
% ype

% ype

DT_TOK_ASGN DT_TOK_ADD EQ DT_TOK_SUB_EQ DT_TOK_MJL EQDT TOK_DI V_EQ

DT_TOK_MOD_EQ DT_TOK_AND_ EQ DT_TOK_XOR EQ DT_TOK_OR
DT_TOK_RSH_EQ

DT_TOK_QUESTI'ON DT_TOK_COLON

DT_TOK_LOR

DT_TOK_LXOR

DT_TOK_LAND

DT_TOK_BOR

DT_TOK_XOR

DT_TOK_BAND

DT_TOK_EQU DT_TOK_NEQ

DT_TOK_LT DT_TOK LE DT_TOK GT DT_TOK GE

DT_TOK_LSH DT_TOK_RSH

DT_TOK_ADD DT_TOK_SUB

DT_TOK_MJL DT_TOK_DI V DT_TOK_MOD

DT_TOK_LNEG DT_TOK_BNEG DT_TOK_ADDADD DT_TOK_SUBSUB
DT_TOK_| POS DT_TOK_| NEG

 EQ DT_TOK_LSH_EQ

DT_TOK_DEREF DT_TOK_ADDROF DT_TOK_SI ZEOF DT_TOK_STRI NGOF DT_TOK_XLATE
DT_TOK_LPAR DT_TOK_RPAR DT_TOK_LBRAC DT_TOK_RBRAC DT_TOK_PTR DT_TOK_DOT

<l _node> d_expressi on

<l _node> d_program

<l _node> d_type

<l _node> transl ation_unit

<l _node> ext ernal _decl aration
<l _node> inline_definition

<l _node> transl ator_definition
<l _node> transl at or _nenber _|i st
<l _node> transl at or _nenber

<l _node> provi der_definition
<l _node> provi der _probe_li st

<l _node> provi der _probe

<l _node> probe_definition

<l _node> probe_specifiers

<l _node> probe_specifier_list
<l _node> probe_specifier

<l _node> statement _| i st

<l _node> st at ement

<l _node> decl aration

<l _node> init_declarator_list
<l _node> init_declarator

<l _decl > type_specifier

<| _decl > type_qualifier

<l _decl > struct _or_uni on_specifier
<| _decl > specifier_qualifier_list
<l _decl > enum speci fier

<| _decl > decl ar at or

<l _decl > di rect _decl arat or

<| _decl > poi nt er

<l _decl > type_qualifier_Ilist

<| _decl > type_nane

<| _decl > abstract_decl ar at or

<l _decl > di rect _abstract_decl arat or
<l _node> paraneter_type_list

<l _node> paraneter_| i st

<l _node> par anet er _decl aration
<l _node> array

<l _node> array_paraneters

<l _node> function

<l _node> function_paraneters

<l _node> expr essi on

new usr/src/lib/libdtrace/ common/dt_gramar.y

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

207
208
209

211

213
214
215
216

218
219
220

222
223
224

226
227
228

230
231
232
233

235
236
237
238
239
240
241

243
244
245
246
247
248
249
250
251
252

%ype <l _node> assi gnment _expr essi on

% ype <l _node> condi ti onal _expression
% ype <l _node> const ant _expr essi on
%ype <l _node> | ogi cal _or _expression

% ype <l _node> | ogi cal _xor_expressi on
% ype <l _node> | ogi cal _and_expr essi on
% ype <l _node> i ncl usi ve_or _expressi on
% ype <l _node> excl usi ve_or _expression
% ype <l _node> and_expr essi on

% ype <l _node> equal i ty_expression

% ype <l _node> rel ati onal _expression

% ype <l _node> shi ft_expression

% ype <l _node> addi ti ve_expression

% ype <l _node> mul tiplicative_expression
% ype <l _node> cast _expression

% ype <l _node> unary_expr essi on

%ype <l _node> post fi x_expression

% ype <l _node> pri mary_expressi on

% ype <l _node> ar gunment _expression_li st
Y%ype <l _tok> assi gnment _oper at or

% ype <l _t ok> unary_oper at or

% ype <l _t ok> struct_or_uni on

9o

dtrace_program d_expression DI_TOK EOF { return (dt_node_root ($1));

$1))
| d_program DT_TOK_ECF { return (dt_node_root($1)); }
| d_type DT_TOK_ECF { return (dt_node_root($1)); }

d_expressi on: DT_CTX _DEXPR { $$ = NULL; }

| DT_CTX_DEXPR expression { $$ = $2; }
d_program DT_CTX _DPROG { $$ = dt_node_progran{ NULL); }

| DT_CTX _DPROG translation_unit { $$ = dt_node_progran($2); }
d_type: DT_CTX_DTYPE { $$ = NULL; }

| DT_CTX_DTYPE type_nane { $$ = (dt_node_t *)$2; }
transl ation_unit:

external _decl aration
| translation_unit external _declaration { $$ = LINK($1, $2); }

ext ernal _decl arati on:
inline_definition
| transl ator_definition
| provi der _definition
| probe_definition
| decl aration

inline_definition:
DT_KEY_I NLI NE decl arati on_specifiers decl arator
{ dt_scope_push(NULL, CTF_ERR); } DT_TOK_ASGN
assi gnment _expression ';’
/*

* W push a new decl aration scope before shifting the
* assignment _expression in order to preserve ds_class
* and ds_ident for use in dt_node_inline(). Once the
* entire inline_definition rule is matched, pop the

* scope and construct the inline using the saved decl.

new usr/src/lib/libdtrace/ common/dt_gramar.y

253
254
255
256
257

259
260
261
262
263
264
265
266
267
268

270
271
272
273

275
276
277
278
279

281
282
283
284
285
286
287
288

290
291
292
293

295
296
297
298
299
300
301
302
303

305
306
307
308
309
310
311
312
313
314
315
316
317
318

*/
dt _scope_| pop();
$$ = dt _node_| inli ne($6) ;

transl ator_definition:
DT_KEY_XLATOR type_name DT_TOK LT type_name
DT_TOK_| DENT DT_TOK GT '{’ translator_menber list "}’ ';' {
$$ = dt_node_xl ator ($2, $4, $5, $8);

}
DT_KEY_XLATOR type_nanme DT_TOK_| LT type nane
DT_TOK_| DENT DT_TOK_GT ' {’
$$ = dt_node_xl ator ($2, $4, $5, NULL) ;

transl at or _nenber _|i st:
transl at or _nenber

| transl ator_nenber_list translator_nenber { $$ = LI NK($1, $2); }

transl at or _nenber:
DT_TOK_| DENT DT_TOK_ASGN assi gnnment _expression ';’ {
$$ = dt _node_nenber (NULL, $1, $3);
}

provi der _definition:
DT_KEY_PROVI DER DT_TOK_I DENT '{’' provider_probe_list "} ';" {
$$ = dt _node_provi der ($2, $4);

}

DTKEYPROJIDERDTTO(IDENT’{’ 1o A
$$ = dt _node_provi der ($2, NULL)

}

provi der _probe_list:
provi der _probe
| provi der _probe_list provider_probe { $$ =

LINK($1, $2); }

provi der _probe:
DT_KEY_ PRCBE DT_TOK_ | DENT function DT_TOK COLON function ';’ {
$$ = dt _node_probe($2, 2, $3, $5);

}
DT_KEY_ PRGBE DT_TOK_I DENT function ';" {

$$ = dt _node_probe($2, 1, $3, NULL) ;
}

probe_definition:
probe_specifiers {
/*

* If the input streamis a file, do not pernmt a probe
* specification without / <pred>/ or { <act>} after
* it. This can only occur If the next token is ECF or
* an anbi guous predicate was slurped up as a comment.
* W cannot performthis check if input() is a string
* because dtrace(1lM [-fmmP] al so use the conpiler and
*/thi ngs |ike dtrace -n BEG N have to be accepted.

*

if (yypcb->pcb_fileptr I= NULL) {
dnerror($l D _SYNTAX, "expected predicate and/"
"or actions follow ng probe description\n");

new usr/src/lib/libdtrace/ common/dt_gramar.y

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

335
336
337

339
340
341
342
343
344

346
347
348
349

351
352
353

355
356
357

359
360
361
362
363
364

366
367
368
369
370
371
372
373
374

376
377
378
379
380
381
382
383
384

}

$$ = dt_node_cl ause($1, NULL, NULL);
| probe_specifiers '{’ statement_list '}’ {

$$ = dt_node_cl ause($1, NULL, $3);

}
| probe_specifiers DI_TOK DIV expr essi on DT_TOK_EPRED {
dnerror($3 D _SYNTAX, "expected actions { } following "
"probe description and predicate\n");

}
pr obe _specifiers DT_TOK DIV expressi on DT_TOK_EPRED
"' statement _list "}’
$$ = dt_node_cl ause($1 $3, $6);

probe_specifiers:

probe_specifier_list { yybegi n(YYS_EXPR); $$ = $1; }
probe_specifier_list:

probe_specifier

| probe_specifier_list DI_TOK _COMVA probe_specifier {
$$ = LINK($1, $3);
}

probe_specifier:
DT_TOK_PSPEC { $$
| DI_TOK_INT { $%

dt _node_pdesc_by_nanme($1); }
dt _node_pdesc_by_i d($1); }

statement _list: statement { $$ = $1; }
| statenment _list ';’' statenment { $$ = LINK($1, $3); }
st atement : /* enpty */ { $$ = NULL;

}
| expression { $$ = dt node _statement ($1); }
ar gument _expression_list:
assi gnment _expressi on
| ar gunment _expressi on_| i st DT_TOK_COMVA assi gnnment _expression {
$$ = LINK($1, $3);
}

pri mary_expression:

DT_TOK_I DENT { $$ = dt_node_i dent ($1); }
| DT_TOK_AGG { $$ = dt_node_i dent ($1); }
| DT_TOK_INT { $$ = dt_node_i nt ($1);
| DT_TOK_STRING { $$ = dt_node_stri ng($1) }
| DT_KEY_SELF { $$ = dt_node_i dent (DUP(" sel "));
| DT_KEY_TH S { $$ = dt_node_i dent (DUP("this")); }
| DT_TOK_LPAR expression DT_TOK_RPAR { $$ = $2; }

post fi x_expression:
pri mary_expression
| post fi x_expressi on
DT_TOK_LBRAC ar gunent _expressi on_| i st DI_TOK_RBRAC {
$$ = OP2(DT_TOK_LBRAC, $1, $3);

}

post fi x_ expr ession DT_TOK_LPAR DT_TOK_RPAR {
$$ = dt_node_func($1, NULL);

}

new usr/src/lib/libdtrace/ common/dt_gramar.y 7 new usr/src/lib/libdtrace/ common/dt_gramar.y
385 | post fi x_expressi on 451 cast _expression
386 DT_TOK_LPAR ar gunent _expressi on_| i st DT_TOK_RPAR { 452 | mul tiplicative_expression DI_TOK_MJL cast_expression {
387 $$ = dt_node_func($1, $3); 453 $$ = OP2(DT_TOK_MUL, $1, $3);
388 } 454 }
389 | post fi x_ expr. ession DT_TOK_DOT DT_TOK_I DENT { 455 | mul tiplicative_expression DI_TOK DIV cast_expression {
390 $$ = OP2(DT_TOK_DOT, $1, dt_node_ident($3)); 456 $$ = OP2(DT_TOK DIV, $1, $3);
391 } 457 }
392 | postfix expreSS| on DT_TOK DOT DT_TOK_TNAME { 458 | mul tiplicative_expression DI_TOK_MOD cast_expression {
393 $$ = OP2(DT_TOK_DOT, $1, dt_node_i dent ($3)); 459 $$ = OP2(DT_TOK_MOD, $1, $3);
394 } 460 }
395 | post fi x_expressi on DT_TOK_PTR DT_TOK_| DENT { 461 ;
396 $$ = OP2(DT_TOK_PTR, $1, dt_node_ident($3));
397 } 463 addi tive_expression:
398 | post fi x_expressi on DT_TOK_PTR DT_TOK_TNAME { 464 mul tiplicative_expression
399 $$ = OP2(DT_TOK_PTR, $1, dt_node_i dent ($3)); 465 | addi t1ve_expression DI_TOK_ADD mul tiplicative_expression {
400 } 466 $$ = OP2(DT_TOK_ADD, $1, $3);
401 | post fi x_expressi on DT_TOK_ADDADD { 467 }
402 $$ = OP1(DT_TOK_POSTINC, $1); 468 | addi tive_expression DIT_TOK _SUB nul tiplicative_expression {
403 } 469 $$ = OP2(DT_TOK SUB, $1, $3);
404 | post fi x_i expr ession DT_TOK_SUBSUB { 470 }
405 $$ = OP1(DT_TOK_POSTDEC, $1); 471 ;
406 }
407 | DT_TOK_OFFSETOF DT_TOK_LPAR type nanme DT_TOK_COWA 473 shift_expression:
408 DT_TOK_| DENT DT_TCOK_RPAR 474 addi ti ve_expression
409 $$ = dt_node_of fset 0f($3 $5) ; 475 | shift_expression DT_TOK LSH additive_expression {
410 } 476 $$ = OP2(DT_TOK_LSH, $1, $3);
411 DT_TOK_OFFSETOF DT_TOK_LPAR type name DT_TOK_COMVA 477 }
412 DT_TOK_TNAME DT_TCOK_RPAR 478 | shift expressu on DT_TOK_RSH addi tive_expression {
413 $$ = dt_node_of fset 0f($3 $5) ; 479 $$ = OP2(DT_TOK_RSH, $1, $3);
414 } 480 }
415 DT_TOK_XLATE DT_TOK_LT type_name DT_TOK_GT 481 ;
416 DT_TOK_LPAR expressi on DT_TOK_RPAR {
417 $$ = OP2(DT_TOK_XLATE, dt_node_type($3), $6); 483 rel ational _expression:
418 } 484 shift_expression
419 ; 485 | rel ational _expression DI_TOK LT shift_expression {

486 $$ = OP2(DT_TOK LT, $1, $3);
421 unary_expression: 487
422 post fi x_expressi on 488 | rel ati onal _expressi on DT_TOK _GT shift_expression {
423 | DT_TOK_ADDADD unary_expression { $$ = OP1(DT_TOK_PREINC, $2); } 489 $$ = OP2(DT_TOK_GT, $1, $3);
424 | DT_TOK_SUBSUB unary_expression { $$ = OP1(DI_TOK PREDEC, $2); } 490 }
425 | unary_operator cast _expression { $$ = oPL($1, $2); } 491 | rel ati onal _expr ession DT_TOK _LE shift_expression {
426 | DT_TOK_SI ZEOF unary_expression { $$ = OP1(DT_TOK Sl ZECF, $2); } 492 $$ = OP2(DT_TOK_LE, $1, $3);
427 | DT_TOK_SI ZEOF DT_TCK_LPAR type name DT_TOK_RPAR { 493 }
428 $$ = OP1(DT_TOK_SI ZECF, dt_node_t ype($3)); 494 | rel ational _expr ession DT_TOK _CE shift_expression {
429 } 495 $$ = OP2(DT_TOK_GE, $1, $3);
430 | DT_TOK_STRI NGOF unary_expressi on { 496 }
431 $$ = OP1(DT_TOK_STRI NGOF, $2); 497 2
432 }
433 ; 499 equal i ty_expression:

500 rel ati onal _expression
435 unary_operator: DIT_TOK BAND { $$ = DT_TOK_ADDROCF; } 501 | equal ity_ expreSS| on DT_TOK_EQU rel ati onal _expression {
436 | DT_TOK_MJL { $$ = DT_TOK DEREF; } 502 $$ = OP2(DT_TOK_EQU, $1, $3);
437 | DT_TOK_ADD { $$ = DT_TOK | PCS; } 503 }
438 | DI_TOK SUB { $$ = DT_TOK I NEG } 504 | equal i ty_expression DI_TOK_NEQ rel ati onal _expression {
439 | DT_TOK BNEG { $$ = DI_TOK BNEG } 505 $$ = OP2(DT_TOK_NEQ $1, $3);
440 | DI_TOK_LNEG { $$ = DT_TOK_LNEG } 506 }
441 ; 507 ;
443 cast _expression: 509 and_expr essi on:
444 unary_expressi on 510 equal i ty_expressi on
445 | DT_TOK_LPAR type_nane DT_TOK RPAR cast_expression { 511 | and_expressi on DT_TOK_BAND equal i ty_expression {
446 $$ = OP2(DT_TOK_LPAR dt_node type($2), $4); 512 $$ = OP2(DT_TOK_BAND, $1, $3);
447 } 513 }
448 ; 514 ;
450 nul tiplicative_expression: 516 excl usi ve_or _expression:

new usr/src/lib/libdtrace/ common/dt_gramar.y

517
518
519
520
521

523
524
525
526
527
528

530
531

532
533
534
535

537
538
539
540
541
542

544
545
546
547
548
549

551
552

554
555
556
557
558

560
561
562
563
564
565

567
568
569
570
571
572
5173
574
5145,
576
577
578
579

581
582

and_expr essi on
| excl usi ve_or _expressi on DI_TOK_XOR and_expression {
$$ = OP2(DT_TOK_XOR, $I, $3);
}

i ncl usi ve_or _expr essi on:
excl usi ve_or _expressi on
| i nclusive_or_expression DT_TOK_BOR excl usi ve_or_expression {
$$ = OP2(DT_TOK_BOR, $1, $3);

) }
| ogi cal _and_expressi on:
i ncl usi ve_or _expression
| | ogi cal _and_expr essi on DT_TOK_LAND i ncl usi ve_or _expressi on {
“$$ = OP2(DT_TOK_LAND, $1, $3);
}
| ogi cal _xor_expression:
| ogi cal _and_expr essi on
| | ogi cal _xor_expression DI_TOK _LXOR | ogi cal _and_expression {
T$$ = OP2(DT_TOK LXOR, $1, $3);
}
| ogi cal _or_expression:
| ogi cal _xor _expression
| | ogi cal _or _expressi on DT_TOK_LOR | ogi cal _xor _expression {

T$$ = OP2(DT_TOK LOR, $1, $3);

}

,

const ant _expressi on: conditional

_expression

condi ti onal _expression:
| ogi cal

| | ogi cal
condi tional

_or_expression
or _expressi on DT_TOK_QUESTI ON expressi on DT_TOK_COLON
_expression { $$ = OP3($1, $3, $5);

assi gnment _expr essi on:
condi tional _expression
| unary_expressi on assi gnnment _oper ator assi gnnent
) $$ = OP2(%$2, $1, $3);

_expression {

assi gnment _oper at or :
DT_TOK_ASGN $$
DT_TOK_MJL_EQ { $%
DT_TOK DI V_EQ { $%
DT_TOK_MOD_EQ { $%
DT_TOK_ADD EQ { $$
DT_TOK_SUB EQ { $%

|
|
|
|
| DT_TOK_LSH EQ { $$
|
|
|
[

DT_TOK_ASGN; }
DT_TOK_MUL_EQ
DT_TOK_DI V_EQ
DT_TOK_NMOD_EQ
DT_TOK_ADD_EQ
DT_TOK_SUB_EQ
DT_TOK_LSH_EQ
DT_TOK_RSH_EQ
DT_TOK_AND_EQ
DT_TOK_XOR_EQ
DT_TOK_OR EQ }

DT_TOK_RSH EQ { $$
DT_TOK_AND EQ { $$
DT_TOK_XOR EQ { $$
DT_TOK_OR_EQ $$

e e e e T V)

expressi on: assi gnment _expr essi on
| expressi on DT_TOK_COWVA assi gnrment _expr essi on {

new usr/src/lib/libdtrace/ common/dt_gramar.y

583
584
585

587
588
589
590
591
592
593
594
595
596
597

599
600
601
602
603
604
605
606

608
609
610
611
612
613
614
615

617
618
619
620
621
622
623

625
626
627
628
629

631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

decl arati on:

decl aration

$$ =

declaratio
$

decl arati on_speci fiers init_declarator

dt
yy
dt
yy
}
_specifiers:
d_storage

n_specifiers
decl free(dt
begi n(YYS_CL

aecl
begi n(YYS_CL

cl ass_specifier

free(dt de;:l

OP2(DT_TOK_COMMA, $1, $3);

$ = dt_node_decl ();
decl

_pop());

_list ;0 {

_pop());

d_storage_cl ass_specifier declaration_specifiers
type_specifier
type_specifier declaration_specifiers
type_qualifier
type_qualifier declaration_specifiers

par anet er _decl arati on_specifiers:

,

storage_cl

ass_specifier

storage_cl ass_speci fier declaration_specifiers
type_specifier
type_specifier declaration_specifiers
type_qualifier
type_qualifier declaration_specifiers

storage_cl ass_specifier:

DT_KEY_AUTO { dt_decl

DT_KEY_REG STER { dt _decl

DT_KEY_STATI C { dt_decl
DT_KEY_EXTERN { dt_decl

DT_KEY_TYPEDEF { dt_decl

d_storage_cl ass_specifier:

type_specifier:

#endi f /* |
|

storage_cl
DT_KEY_SEL
DT_KEY_THI

DT_KEY_VO

DT_KEY_CHAR { $$
DT_KEY_SHORT { $$ =
DT_KEY_INT { $$ =

DT_KEY_LONG { $$ = dt_
DT_KEY FLOAT { $$ =
DT_KEY_DOUBLE { $$ = dt_

DT_KEY_SI GNED { $$ = dt _|

ass_specifier
F { dt_decl
S { dt_decl

D{ $$

dt _decl

DT_KEY_UNSI GNED { $$ = dt

d = dt_ r(
DT_KEY_USERLAND { $$ = dt _decl _attr(

coderevi ew */

DT_KEY_STRI NG {
$$ = dt_decl

}
DT_TOK_TNAME { $$ =
_uni on_speci fier

struct_or

enum speci fier

dt _decl
dt _decl
dt _decl

decl il
dt _decl_spec(CTF
decl
decl

dt _decl

cl ass(DT_DC_AUTO);

}
cl ass(DT_DC_ REG STER); }

_class(DT_DC STATICO); }
“cl ass(DT_DC_EXTERN) ;
_class(DT

DC_TYPEDEF); }

_class(DT_DC_SELF); }
“class(DT_DC_THI S); }

_attr(
decl _attr

DA_SI GNED) ; }
" DA _UNSI GNED) ;
“DA_USER) ;

I
94 9.

_spec(CTF_K_TYPEDEF, $1);

DUP("void"));
DUP("char"));

_spec(CTF_K_| NTEGER,

_spec(CTF_K_| NTEGER,

_attr(T_DA_ SHORT) ;

_spec(CTF_K_I NTEGER DUP("int")); }
attr (DT DA L

_FLOAT, DUP("float"));
spec(CTF K FLOAT, DUP(" doubl e“))
DT

}

_spec(CTF_K_TYPEDEF, DUP("string"));

}

}
}

}

10

}

new usr/src/lib/libdtrace/ common/dt_gramar.y

650
651
652
653

655
656
657
658
659
660
661

663
664
665
666
667

669
670
671
672

674
675
676
677

679
680
681
682
683
684

686
687
688
689
690
691

693
694
695
696
697

699
700
701
702
703
704

706
707
708
709

711
712
713
714

type_qualifier: DI_KEY _CONST { $$ = dt_decl _attr(DT_DA CONST); }
| DT_KEY_RESTRI CT { $$ = dt_decl attr(DT_DA RESTRI CT); }
{ $$ = dt_decl _attr(DT_DA_VOLATILE); }

| DT_KEY_VOLATI LE

{

}
}

struct _or_uni on_specifier:
struct _or_union_definition struct_declaration_list '}’
$$ = dt _scope_pop();
| struct_or_union DT_TOK | DENT { $$ = dt_decl _spec($1, $2);
| struct _or _uni on DT_TOK_TNAME { $$ = dt_decl _spec($1, $2);
struct _or_uni on_definition:
struct _or_union ' {’ { dt_decl _sou($1, NULL); }
| struct _or_union DT_TOK_I DENT ' {' { dt_decl sou($1 $2);
| struct _or_union DT_TOK_TNAME ' {' { dt_decl _sou($1, $2);
struct _or_uni on:
DT_KEY_STRUCT { $$ = CTF K_STRUCT; }
| DT_KEY_UNION { $$ = K _ONION;, }
struct _declaration_|ist:

struct _decl aration
| struct _declaration_Iist

struct_decl arati on

init_declarator_list:
init_declarator
| init_declarator_list DT_TOK_COWMVA init_declarator {
$$ = LINK($1, $3);
) }
init_declarator:
decl ar at or {
$$ = dt _node_decl ();
dt _decl _reset();
}
struct _decl arati on:
specifier_qualifier_list struct_declarator_list ";’ {
dt _decl _free(dt_decl _pop());

}

specifier_qualifier_list:
type_specifier
type_specifier

| specifier_qualifier_list { $$ =
| type_qualifier
|

$2; }

type_qualifier specifier_qualifier_list { $$ = $2; }

struct _declarator_|ist:
struct _decl arat or
| struct _decl arat or _|

list DT_TOK_COWA struct_decl arator

struct _decl arator:
decl arator { dt_decl _nmenber (NULL); }
| DT_TOK_COLON const ant _expr essi on { dt _decl _nmenber ($2) ;

| decl arat or DT_TOK_COLON const ant _expr essi on {

}

}
}

11

new usr/src/lib/libdtrace/ common/dt_gramar.y

715
716
717

719
720
721
722
723

725
726
727
728
729

731
732
733
734

736
737
738
739
740

742
743
744

746
747
748
749
750
751

753
754

756
757
758
759
760

762
763
764
765

767
768
769
770
771
772
773

775
776
777
778
779

enum speci fier:

enum definition enumerator_list '}’
| DT_KEY_ENUM DT_TOK_| DENT { $$ = dt _decl
| DT_KEY_ENUM DT_TOK_TNAME { $$ = dt_decl _spec(CTF_K_ENUM $2);
enum defi ni tion:
DT_KEY_ENUM ' {" { dt_decl enun’(NULL); }
| DT_KEY_ENUM DT_TOK_| DENT "{* { dt_decl _enum($2); }
| DT_KEY_ENUM DT_TOK_TNAME ' {' { dt _decl _enum($2); }
enunerator_list:
enuner at or
| enunerator_|ist DI_TOK_COWA enuner at or
enumner at or: DT_TOK_| DENT { dt_decl _enunerator($1, NULL); }
| DT_TOK_| DENT DT_TOK_ASGN expr essi on {
dt _decl _enunerat or ($1, $3);
}
decl arator: di rect _decl arat or
| poi nter direct_decl arator
direct _decl arator:
DT_TOK_I DENT { $$ = dt decl _ident($1); }
| | paren decl arat or DT_TOK_RPAR { $$ = $2; }
| di rect_decl arat or array{ dt _decl _array($2); }
| direct _declarator function { dt_decl _func($1, $2); }
| paren: DT_TOK_LPAR { dt_decl _top()->dd_attr |= DT_DA PAREN, }
poi nter: DT_TOK MUL { $$ = dt_decl _ptr(); }
| DT_TOK_MUL type_qualifier_list { $$ = dt_decl _ptr(); }
| DT_TOK_MJUL pointer { $$ = dt_decl _ptr(); }
| DT_TOK_MJUL type_qualifier_list pointer { $$ = dt_decl _ptr();
type_qualifier_list:

paraneter _type_|

par anet er

_list:

dt _decl _nmenber ($3) ;

type_qualifier
type_qualifier_list type_qualifier { $$ = $2; }

ist:

paraneter _|i st

DT_TOK_ELLIPSIS { $$ = dt_node_vatype(); }

parameter | ist DI_TOK COVVA DT_TOK ELLI SRS {
$$ = LINK($1, dt_node_vatype());

}

_decl aration
“list DT_TOK_COWA paraneter _decl aration {
LI NK($1, $3);

par anet er
par anmet er

$$ =
}

{ $$ = dt_scope_pop();

}

_spec(CTF_K_ENUM $2);

}

12

}
}

new usr/src/lib/libdtrace/ common/dt_gramar.y

781 paraneter_decl aration:
8

782 par anet er _decl arati on_specifiers {

783 $$ = dt _node_t ype(NULL);

784 }

785 | par anet er _decl arati on_specifiers declarator {
786 $$ = dt _node_type(NULL);

787

788 | par anmet er _decl arati on_specifiers abstract_declarator {
789 $$ = dt _node_type(NULL);

790 }

791 ;

793 type_nane: specifier_qualifier_list {

794 $$ = dt _decl _pop();

795

796 | specifier_qualifier_list abstract_declarator {
797 $$ = dt _decl _pop();

798 }

799 ;

801 abstract_decl arator:

802 poi nt er

803 | di rect _abstract _decl arat or

804 | poi nter direct_abstract_decl arator

805 ;

807 direct_abstract_decl arator:

808 | paren abstract _declarator DT_TOK RPAR { $$ = $2; }

809 | direct_abstract_declarator array { dt_decl _array($2); }

810 | array { dt_decl_array($1); $$ = NULL; }

811 | di rect _abstract_declarator function { dt_decl _func($1, $2);
|

812 function { dt_decl func(NULL, $1); }
813

815 array: DT_TOK _LBRAC { dt_scope_push(NULL, CTF_ERR); }
816 array_paraneters DT_TOK_RBRAC {
817 dt _scope_pop();

818 $$ = $3;

819 }

820 ;

822 array_paraneters:

823 /* enpty */ { $$ = NULL; }
824 | const ant _expr essi on { $$ = 31, }
825 | paraneter _type_li st { $$ = $1; }
826 ;

828 function: DT_TOK_LPAR { dt_scope_push(NULL, CTF_ERR); }
829 function_paraneters DT_TOK_RPAR {
830 dt _scope_pop();

831 $$ = $3;

832 }

833 ;

835 function_paraneters:

836 /* empty */ { $$ = NULL; }
837 | paraneter_type_list { $$ = $1;

838 ;

840 9%

}

13

new usr/src/lib/libdtrace/ common/dt_ident.c

R R R R

26807 Tue Jan 14 16:48:54 2014
new usr/src/lib/libdtrace/ common/dt_ident.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governing pernissions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */
22 |*

23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.

24 * Copyright (c) 2013 by Del phix. Al rights reserved.
25 * Copyright (c) 2013 Joyent, Inc. Al rights reserved.
26 #endif /* | codereview */

*

/

29 #include <sys/sysnmacros. h>
30 #include <strings. h>

31 #include <stdlib.h>

32 #include <alloca. h>

33 #include <assert. h>

34 #include <errno. h>

35 #include <ctype. h>

36 #include <sys/procfs_isa.h>
37 #include <limts.h>

39 #include <dt_ident.h>

40 #incl ude <dt_parser. h>
41 #incl ude <dt_provider. h>
42 #include <dt_strtab. h>
43 #include <dt_inpl.h>

45 /

print an appropriate conpiler error nessage and abort the conpile.
50 */

51 static void

52 dt_i dcook_si gn(dt_node_t *dnp, dt_ident_t *idp,

53 int argc, dt_node_t *args, const char *prefix, const char *suffix)
54 {
55 dt _idsig_t *isp = idp->di_data;

56 int i, conpat, mismatch, arglimt, iskey;

*

* Common code for cooking an identifier that uses a typed signature list (we
47 * use this for associative arrays and functions). |[If the argunent |ist

* of the sane length and types, then return the return type. O herw se

*

new usr/src/lib/libdtrace/ common/dt_ident.c

58
59

char ni[DT_TYPE_NAMVELEN] ;
char n2[DT_TYPE_NAMVELEN] ;

i skey = idp->di _kind == DT_I DENT_ARRAY || idp->di kind == DT_| DENT_AGG,

if (isp->di s_varargs >= 0)
msmatch = argc < isp->dis_varargs;

glimt = isp->dis_varargs;
} else |f (|sp >di s_optargs >= 0)
m smatch = (argc < isp->dis_optargs || argc > isp->dis_argc);
arglimt = argc;
} else {
m smatch = argc ! = isp->dis_argc;
arglimt = isp->dis_argc;
}

if (msmatch) {
xyerror (D _PROTO LEN, "%%% prototype m smatch: %l %%"
"passed, %% expected\n" prefix, idp->di_| nare, suf fix,
argc, iskey ? "key" : arg , argc == 1 ’) tTh g
isp->dis_optargs >= 0 ? "at |east '
isp->dis_optargs >= 0 ? isp->dis optargs carglimt);

}
for (i =0; i <arglimt; i++ args = args->dn_list) {
if (isp->dis args[l].dn_ctfp I'= NULL)
| conpat dt _node_i s_argconpat (& sp->dis_args[i], args);
el se
conpat = 1; /* "@ matches any type */
if (!conpat) {
xyerror (D_PROTO_ARG,
"0/60/60/5 % #% is inconpatible with "
"prototype:\n\tprototype: 9%\n\t%s: %\n",
prefix, 1dp->di_nane, suffix,
i skey ? "key" : "argunent", i + 1,
dt _node_t ype_nane(& sp->dis_args[i], ni,
si zeof (nl)),
i skey ? "key" : "argunent'
) dt _node_t ype_nane(ar gs, n2 sizeof (n2)));
}

dt _node_t ype_assi gn(dnp, idp->di _ctfp, idp->di_type, B FALSE);
dt _node_type_assi gn(dnp, idp->di_ctfp, idp->di_type);

* Cook an associative array identifier. |If this is the first tine we are
* cooking this array, create its signature based on the argunent |ist.

* Otherw se validate the argunent |ist against the existing signature.

*/

static void
_idcook_assc(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args)

if (idp->di _data == NULL) {
dt _idsig_t *isp = idp->di _data = malloc(sizeof (dt_idsig_t));
char n[DT_TYPE_NAMELEN;
int i;

if (isp == NULL)
| ongj mp(yypcb->pcb_j npbuf, EDT_NOVEM ;

e
-1

i sp->di s_varargs
i sp->di s_optargs

new usr/src/lib/libdtrace/ common/dt_ident.c

122
123
124

126
127
128
129
130
131

133
134
135
136
137
138
139
140
141
142
143

145
146
147
148
149
150
151

153
154
155

157
158

160
83

162
163
164
165
166

168
169
170
171
172
173
174

}
!

entifier,
i_iarg.

} else {

a functi

static void

dt

175 {

176
177
178
179
180
181

183
184

if (idp-

isp->dis_argc = argc;
isp->dis_args = NULL,;
i sp->dis_auxinfo = 0,

if (argc !'= 0 && (isp->dis args = cal l oc(argc,
sizeof (dt_node_t))) == NULL) {
i dp->di _data = NULL;
free(isp);
| ongj mp(yypcb->pcb_j npbuf, EDT_NOVEM ;

If this ident is an aggregation, it will remain as is. |If
this ident is an associative array, it will be reassigned
based on the result type of the first assignment statenent.

LB N
-

if (!(idp->di_flags & DT_|I DFLG DECL))
idp->di _ctfp DT_DYN_CTFP(yypcb->pcb_hdl);
e

i dp->di _typ = DT_DYN_TYPE(yypcb->pcb_hdl) ;

for (i =0; i <argc; i++, args = args->dn_|ist

{
if (dt_node_is_dynam c(ar gs) || dt_node_is_voi d(args)) {

xyerror(D_KEY_TYPE, "% expression may not be
'used as % index: key #%\n"
dt _node_type_nane(args, n, si zeof (n)),
) dt i dki nd_name(i dp->di _kind), i + 1);

dt _node_t ype_propagat e(args, & sp->dis_args[i]);
) isp->dis_args[i].dn_list = & sp->dis_args[i + 1];

if (argc !'=0)
isp->dis_args[argc - 1].dn_list = NULL;

dt _node_t ype_assi gn(dnp, idp->di_ctfp, idp->di_type, B _FALSE);
dt _node_t ype_assi gn(dnp, idp->di_ctfp, idp->di_type);

dt _i dcook_si gn(dnp, idp, argc, args,
idp->di _kind == DT_IDENT_AGG ? "@ : "", "[1");
on call. |If thisis the first tine we are cooking this

create its type signature based on predefined prototype stored

We then validate the argunent |ist against this signature.

_idcook_func(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args)

>di _data == NULL) {

dtrace_hdl _t *dtp = yypch->pcb_hdl;
dtrace_typeinfo_t dtt;

dt_idsig_t *|sp

char *s *pl, *p2;

int i =0;

assert(idp->di _iarg != NULL);
s = strdupa(idp->di _iarg);

if ((p2 = strrchr(s, ')")) !'= NULL)

If this identifier has not been explicitly declared earlier,
set the identifier’'s base type to be our special type <DYN>.

new usr/src/lib/libdtrace/ common/dt_ident.c

187

189
190

192
193
194
195

197
198
199
200
201
202

204
205

207
208
209
210
211
212
213

215
216
217
218
219

221
222
223
224
225
226

228
229
230
231
232

234
235
236
237
238
239
240

242
243
244
245
246
247
248
249
250
251
252

if

if

p2 = '\0"; / nmark end of paraneter list string */
((pl = strchr(s, "(’)) != NULL)
pl++ = '\0'; / mark end of return type string */

(pl == NULL || p2 == NULL) {
xyerror (D_UNKNOMWN, "internal error: malformed entry "

"for built-in function %\n", idp->di_nane);

}
for (p2 = p1; p2'—’\0" p2++) {

if (llsspace(p2)) {

break

}
}
for (p2 = strchr(p2, ’,’); p2++ !'= NULL; i++)

p2 = strchr(p2, ',");
/*
* W first allocate a new ident signature structure with the
* appropriate nunber of argunent entries, and then | ook up
* the return type and store its CTF data in di _ctfp/type.
*

/

if

if

}

if

}
if

}

- =

I U

sp->di s_varargs
sp->di s_opt ar gs
sp->dis_argc = i;
sp->dis_args = NULL
sp->di s_auxinfo = 0,

((isp = idp->di _data = mal | oc(sizeof (dt_idsig_t))) == NULL)
| ongj mp(yypch- >pcb_j npbuf, EDT_NOMVEM ;

-1,

(i '=0 && (isp->dis _args = cal l oc(i,
sizeof (dt_node_t))) == NULL) {
i dp->di _data = NULL;
free(isp);
| ongj mp(yypch- >pcb_j npbuf, EDT_NOMVEM ;

(dt _type_Il ookup(s, &dtt) == -1) {
xyerror (D_UNKNOWN, fal led to resolve type of % (%):"
" O%\n", idp->di_nane, s,
dtrace_errnsg(dtp, dtrace _errno(dtp)));
(i dp->di _ki nd == DT_| DENT_AGGFUNC) {
i dp->di _ctfp = DT_DYN_CTFP(dtp);
i dp->di _type = DT_DYN_TYPE(dtp);
el se {
idp->di _ctfp = dtt.dtt_ctfp;
idp->di _type = dtt.dtt_type;
For each comma-delimted paranmeter in the prototype string,
we | ook up the corresponding type and store its CIF data in
the corresponding location in dis_args[]. W also recognize
the special type string "@ to indicate that the specified
paranmeter may be a D expression of *any* type (represented
as a dis_args[] element with ctfp = NULL, type == CTF_ERR).
If a varargs " " is present, we record the argunment index
in dis_varargs for the benefit of dt_idcook_sign(), above.
If the type of an argument is enclosed in square brackets

(e.g. "[int]"), the argunment is considered optional: the

new usr/src/lib/libdtrace/ common/dt_ident.c

253
254
255
256
257
258
259
260

262
263
264
265

267
268
269
270
271
272
273

275
276
277
278
279
280

282
283

285
286
287
288
289
290
291

293
294
295
296
297

299
300
223
301
302

304
305

307
308
309
310
311
312
313

315
316

argunment may be absent, but if it is present,

*
* the specified type. Note that varargs may not
*
*

it must be of
optional,

optional argunents nmay not follow varargs, and non-optional

argunents nmay not follow optional argunents.
*

for (i =0; i <isp->dis_argc; i++ pl = p2) {
while (isspace(*pl))

pl++; /* skip |eading whitespace */

if ((p2 = strchr(pl, ',’)) == NULL)
p2 = pl + strlen(pl);

el se
*p2++ = '\ 0" ;

if (strenp(pl, "@) == 0 || strcnp(pl,
isp->dis_args[i].dn_ctfp NULL;
isp->dis_args[i].dn_type
if (*pl ==".")
i sp->di s_varargs
continue;

if (*pl =="'[" && pi[strien(pl) - 1] ==
if (isp->dis_varargs != -1)

") ==0) {

CTF_ERR;

1) A

xyerror (D _UNKNOMAN, "optional arg#%l "
"may not follow variable arg#%\n",
i + 1, isp->dis_varargs + 1);

}

if (isp->dis_optargs == -1)
isp->dis_optargs = 1i;

pl[strlen(pl) - 1] = '\0";
pl++;

} else if (isp->dis_optargs != -1

{
xyerror (D_UNKNOWN, "required arg#%l may not

"foll ow optional arg#%l\n",
isp->dis_optargs + 1);

}
if (dt_type_l ookup(pl, &dtt) == -1)

{
xyerror (D_UNKNOW, "failed to resolve type of
"U%s arg#%l (%): %\n", idp->di_nane, i + 1,

+ 1

pl, dtrace_errnmsg(dtp, dtrace_errno(dtp)));

}
dt _node_t ype_assi gn(& sp->dis_args[i],

dtt.dtt_ctfp, dtt.dtt_type, B _FALSE);

dtt.dtt_ctfp, dtt.dtt_type);

}
dt _i dcook_si gn(dnp, idp, argc, args, "", "()");

/*

* Cook a reference to the dynamically typed args[] array. W verify that the
* reference is using a single integer constant, and then construct a new ident
* representing the appropriate type or translation specifically for this node.
*/

static void
dt _i dcook_args(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *ap)
314 {

dtrace_hdl _t *dtp = yypcb->pcb_hdl;
dt _probe_t *prp = yypcb->pcb_probe;

new usr/src/lib/libdtrace/ common/dt_ident.c

dt_
dt”
dt”

318
319
320

322
323

325
326
327
328
329

331
332
333
334
335
336

338
339
340
341

343
344
345
346
347
348

350
351
352
353
354

356
357
358
359
360
361
362
363
364

366
367
368
369

371
372
373
374

376
377
378
379
380

382
383

cha
cha

if

R

*/
xnp
nnp

if

}
if

}
if

node_t tag, *nnp, *xnp;
xl ator _t *dxp;
ident_t *xidp;

r nl[DT_TYPE_NAMELEN ;
r n2[DT_TYPE_NAMELEN ;
(argc = 1)
xyerror (D _PROTO LEN, "%[] prototype mi smatch: % arg%"
"passed, 1 expected\n", Idp->di_nane, argc,
argc == 1?" " : "s");

(ap->dn_ki nd ! = DT_NODE_I| NT)
xyerror (D _PROTO ARG, "%[] argunent #1 is inconpatible with "
"prototype:\n\tprototype: %\n\t argunent: %\n",
i dp->di _nane, "iInteger constant"”,
dt _type_nanme(ap->dn_ctfp, ap->dn_type, nl, sizeof (nl)));

(yypcb->pcb_pdesc == NULL) {
xyerror (D_ARGS_NONE, "%[] may not be referenced outside "
"of a probe clause\n", idp->di_nane);

(prp == NULL) {
xyerror(D_ARGS_MILTI,
"o%[] may not be referenced because probe description % "
"mat ches an unstabl e set of probes\n", idp->di_nane,
dtrace_desc2str (yypch->pcb_pdesc, nl, sizeof (nl)));

(ap->dn_val ue >= prp->pr_argc) {
xyerror (D _ARGS_IDX, "index %1d is out of range for % %[]\n",
(1 ongl ong_t) ap->dn_val ue, dtrace_desc2str(yypcb->pcb_pdesc,
nl, sizeof (nl)), idp->di_nane);

Look up the native and translated argument types for the probe.
If no translation is needed, these will be the sane underlying node.
If translation is needed, | ook up the appropriate translator. Once
we have the appropriate node, create a new dt_ident_t for this node,
assign it the appropriate attributes, and set the type of 'dnp’.

= prp->pr_xargv[ap- >dn_val ue] ;
= prp->pr_nargv[prp->pr_mappi ng[ap- >dn_val ue]];
(xnp->dn_type == CTF_ERR) {
xyerror (D ARGS_TYPE, "failed to resolve translated type for
"%s[%1d]\n", idp->di_nanme, (longlong_t)ap->dn_val ue);

(nnp->dn_type == CTF_ERR) {
xyerror (D _ARGS_TYPE, "failed to resolve native type for
"U%s[%1d]\n", idp->di_nane, (longlong_t)ap->dn_value);

(dt p->dt _x| at empde == DT_XL_STATI C && (
nnp == xnp || dt_node_is_argconpat(nnp, xnp))) {
dnp->dn_i dent = dt_i dent _create(idp->di _nane, idp->di_kind,
idp->di _flags | DT_I DFLG_ORPHAN, idp->di_id, idp->di_attr,
i dp->di _vers, 1dp->di_ops, idp->di_iarg, idp->di_gen);

if (dnp->dn_i dent == NULL)
| ongj mp(yypcb- >pcb_j npbuf, EDT_NOMVEM ;

new usr/src/lib/libdtrace/ common/dt_ident.c 7 new usr/src/lib/libdtrace/ common/dt_ident.c
448 dt _type_nane(ap->dn_ctfp, ap->dn_type, n, sizeof (n)));
385 dt _node_t ype_assi gn(dnp, 449 }
386 prp->pr_argv[ap->dn_val ue].dtt_ctfp,
387 prp->pr_argv[ap->dn_val ue] . dtt _type, 451 if ((ap->dn_flags & DT_NF_SI GNED) && (int64_t)ap->dn_value < 0) {
388 prp->pr_argv[ap->dn_val ue] . dtt _fl ags & DTT_FL_USER ? 452 xyerror (D_REGS_IDX, "index %Id is out of range for array %\n",
389 B TRUE : B _FALSE); 453 (longlong_t) ap->dn_val ue, idp->di_nane);
310 prp->pr_ar gv[ap- >dn_val ue] . dtt _t ype); 454 }
391 } else if ((dxp = dt_xlator_| ookup(dtp, 456 if (dt_type_l ookup("uint64 t" &dtt) == -1) {
392 nnp, xnp, DT_XLATE_FUZZY)) !'= NULL || (457 xyerror (D_UNKNOW, "failed to resol ve type of %: %\n",
393 dxp = dt_xl ator_| ookup(dtp, dt_probe_tag(prp, ap->dn_value, &tag), 458 i dp->di _nanme, dtrace_errnsg(dtp, dtrace_errno(dtp)));
394 xnp, DT_XLATE EXACT | DT_XLATE_EXTERN)) != NULL) { 459 }
396 xidp = dt _xl ator_ident (dxp, xnp->dn_ctfp, xnp->dn_type); 461 idp->di _ctfp = dtt.dtt_ctfp;
462 idp->di _type = dtt.dtt_type;
398 dnp->dn_i dent = dt_i dent _create(idp->di _nane, xidp->di _kind,
399 xidp->di _flags | DT_IDFLG ORPHAN, idp->di _id, idp->di_attr, 464 dt _node_type_assi gn(dnp, idp->di_ctfp, idp->di_type, B _FALSE);
400 i dp->di _vers, idp->di _ops, idp->di_iarg, it dp— >di _gen); 384 dt _node_t ype_assi gn(dnp, idp->di_ctfp, idp->di_type);
465 }
402 if (dnp->dn_ident == NULL)
403 | ongj mp(yypchb->pcb_j npbuf, EDT_NOMVEM ; 467 | * ARGSUSED*/
468 static void
405 if (dt_xlator_dynam c(dxp)) 469 dt _i dcook_type(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args)
406 dxp->dx_arg = (int)ap->dn_val ue; 470 {
471 if (idp->di_type == CTF ERR) {
408 1= 472 dtrace_hdl _t *dtp = yypcb->pcb_hdl;
409 * Propagate rel evant nenbers fromthe translator’s internal 473 dtrace_typeinfo_t dtt;
410 * dt_ident_t. This code nmust be kept in sync with the state
411 * that is initialized for idents in dt_xlator_create(). 475 if (dt_type_l ookup(idp->di_iarg, &dtt) == -1) {
412 */ 476 xyerror(D UNKNOWN,
413 dnp- >dn_i dent - >di _data = xi dp->di _dat a; 477 “failed to resolve type % for identifier %: %\n",
414 dnp->dn_i dent->di _ctfp = xi dp->di _ctfp; 478 (const char *)idp->di_iarg, idp->di_nane,
415 dnp->dn_i dent - >di _type = xi dp->di _type; 479) dtrace_errmsg(dtp, dtrace_errno(dtp)));
480
417 dt _node_t ype_assi gn(dnp, DT_DYN _CTFP(dtp), DT_DYN TYPE(dtp),
418 B_FALSE) ; 482 idp->di _ctfp = dtt.dtt_ctfp;
338 dt _node_t ype_assi gn(dnp, DT_DYN CTFP(dtp), DT_DYN TYPE(dtp)); 483) idp->di _type = dtt.dtt_type;
484
420 } else {
421 xyerror(D ARGS XLAT(R "translator for %[%Id] from% to % " 486 dt _node_t ype_assi gn(dnp, idp->di_ctfp, idp->di_type, B FALSE);
422 "is not defined\n", idp->di_nane, (longlong_t)ap->dn_val ue, 406 dt _node_t ype_assi gn(dnp, idp->di_ctfp, idp->di_type);
423 dt_node_type_nar’re(nnp, nl, sizeof (nl)), 487 }
424 dt _node_t ype_nanme(xnp, n2, sizeof (n2)));
425 } 489 /* ARGSUSED*/
490 static void
427 assert (dnp->dn_i dent->di _flags & DT_| DFLG ORPHAN); 491 dt _i dcook_t haw(dt _node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args)
428 assert (dnp->dn_ident->di _id == idp->di _id); 492 {
429 } 493 if (idp->di _ctfp !'= NULL && idp->di _type != CTF_ERR)
494 dt _node_t ype_assi gn(dnp, idp->di_ctfp, |dp >di _type, B_FALSE);
431 static void 414 dt _node_t ype_assi gn(dnp, idp->di _ctfp, idp->di_type);
432 dt _i dcook_regs(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *ap) 495 }
433 { __unchanged_portion_onitted_
434 dtrace_typeinfo_t dtt;
435 dtrace_hdl _t *dtp = yypcb >pcb_hdl ;
436 char n[DT_TYPE_NAMELEN ;
438 if (argc !'=1)
439 xyerror(D PROTO LEN, "%[] prototype m smatch: %l arg%"
440 "passed, 1 expected\n", idp->di_nane,
441 argc, argc == 1?" " : "s");
442 1
444 if (ap->dn_kind != DT_NODE_| NT)
445 xyerror(D PROTO ARG, "%[] argument #1 is inconpatible with "
446 "prototype:\n\tprototype: ¥%s\n\t argument: 9%\n",
447 i dp->di _nanme, "integer constant",

new usr/src/lib/libdtrace/ common/dt _i

mpl . h

R R R R

30764 Tue Jan 14 16:48:54 2014
new usr/src/lib/libdtrace/ comon/dt _i

4474
4475
4476
4479
4480

Revi ewed by: Bryan Cantrill

DTrace Userland CTF Support
DTrace userland Keyword

DTrace tests shoul d be better ci
pi d provider types

dof erul ation m ssing checks

mpl . h

tizens

<bryan@ oyent . con»

LR R R

107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

143
144
145

147
148
149
150

152
153
154
155
156
157
158
159
160

__unchanged_portion_onitted_

_nodul e {

typedef struct dt
dt “dmlist;

list_t

char dm_ narre[DTRACE MODNANVELEN] ;

char dm fil e[MAXPATHLEN ;

/* list forward/back pointers */
/* string nane of nodule */
/< file path of nmodule (if any) */

struct dt_nodul e *dm_next /* pointer to next nodule in hash chain */
const dt_nodops_t *dm_ops; /* pointer to data nodel’s ops vector */
Elf *dmelf; /* libelf handle for nodul e object */
objfs_info_t dm.info; /* object filesystemprivate info */
ctf_sect_t dmsyntab; /* synbol table for nodule */

ctf_sect_t dmstrtab; /* string table for nodule */

ctf_sect_t dmctdata; /* CTF data for nodule */

ctf_file_t *dmctfp; /* CTF container handle */

ui nt _t *dm synbuckets; /* synbol table hash buckets (chain indices)
dt_symt *dmsyncthains; /* symbol table hash chains buffer */

voi d *dm asnap; /* synbol pointers sorted by value */

uint _t dmsynfree; /* index of next free hash el ement */

ui nt _t dm.nsynbuckets; /* nunber of elenents in bucket array */

ui nt _t dm.nsynel ens; /* nunber of elenents in hash table */
uint_t dm.asrsv; /* actual reserved size of dmasmap */
uint_t dmaslen; /* nunber of entries in dmasmap */

uint_t dmfl ags; /* modul e flags (see below */

int dm nodid; /* modi nfo(1M nodule identifier */
CEl f _Addr dm text_va; /* virtual address of text section */

GEl f _Xword dm text_size;
GEl f _Addr dm dat a_va;
CEl f _Xword dm dat a_si ze;
CEl f _Addr dm bss_va;
GEl f _Xword dm bss_si ze;
dt _i dhash_t *dm extern;
pid_t dmpid;
uint_t dmnctflibs;
ctf_file_t **dm.li bctfp;
char **dm.|i bct fn;
#endif /* | codereview */
} dt_nodul e_t;

#def i ne DT_DM LOADED Ox1
#defi ne DT_DM KERNEL 0x2
#def i ne DT DM PRI MARY 0x4
typedef struct dt_provnod {
char *dp_nane;

struct dt
} dt _provnod_t;

typedef struct dt_ahashent

_provnod *dp_next;

/* size in bytes of text section */
/* virtual address of data section */
/* size in bytes of data section */
/* virtual address of BSS */

/* size in bytes of BSS */

/* external synmbol definitions */

/* pid for this nodule */

/* nunber of ctf children libraries */
/* process library ctf pointers */

/* nanes of process ctf containers */

/* nodul e synbol and type data is | oaded */
/* modul e is associated with a kernel object */
/* module is a krtld primary kernel object */

/* nane of provider nodule */
/* next nodule */

struct dt_ahashent *dtahe_prev; /* prev on hash chain */
struct dt_ahashent *dtahe_next; /* next on hash chain */
struct dt_ahashent *dtahe_prevall; /* prev on list of all */
struct dt_ahashent *dtahe_nextall; /* next on list of all */
ui nt 64_t dtahe_hashval ; /* hash val ue */

size_t dtahe_si ze; /* size of data */
dtrace_aggdata_t dt ahe dat a; /* data */

voi d (*dtahe aggregate)(lnt64t *,int6é4_t *,

size_t); /* function */

161

163
164
165
166
167

169

new usr/src/lib/libdtrace/ comon/dt_inpl.h 2

} dt_ahashent _t;

typedef struct dt_ahash {
dt _ahashent _t **dt ah_hash; /* hash table */
dt _ahashent _t *dtah_al | ; /* list of all elenents */
size_t dt ah_si ze; /* size of hash table */

} dt _ahash_t;

typedef struct dt_aggregate {

170
171
172
173
174
175
176
177

179
180
181
182
183
184

186
187
188
189

191
192
193
194
195
196
197
198
199
200

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

dtrace_bufdesc_t dtat_buf; /* buf aggregation snapshot */
int dtat_flags; /* aggregate flags */
processorid_t dtat_ncpus; /* nunber of CPUs in aggregate */
processorid_t *dtat_cpus; /* CPUs in aggregate */
processorid_t dtat_ncpu; /* size of dtat_cpus array */
processorid_t dtat_maxcpu; /* maxi mum nunber of CPUs */
dt _ahash_t dtat_hash; /* aggregate hash table */
} dt_aggregate_t;
typedef struct dt_print_aggdata {
dtrace_hdl _t *dtpa_dtp; /* pointer to libdtrace handl e */
dtrace_aggvari d_t dtpa_id; /* aggregation variable of interest */
FI LE *dt pa_fp; /* file pointer */
int dtpa_allunprint; /* print only unprinted aggregations */
} dt_print_aggdata_t;
typedef struct dt dlrpa {
dt _list_t dir_list; /* linked-list forward/back pointers */
char *dir_path; /* directory pathnane */

} dt_dirpath_t;

typedef struct dt_|ib_depend {
dt _list_t dtld_deplist; /* linked-list forward/back pointers */
char *dtld_library; /* library name */
char *dtld_libpath; /* library pathnane */
uint_t dtld_finish; /* conpletion tine in tsort for lib */
uint_t dtld_start; /* starting tine in tsort for lib */
uint_t dtld_l oaded, /* boolean: is this library |oaded */
dt_|list_t dtld_dependencies; /* linked-1ist of |ib dependencies */
dt _list_t dtld_dependents; /* linked-list of Iib dependents */

} dt_lib_depend_t;

typedef uint32_t dt_version_t; /* encoded version (see bel ow)

struct dtrace_hdl
const dtrace_vector_t *dt_vector; /* library vector, if vectored open */
void *dt_varg; /* vector argunment, if vectored open */
dtrace_conf_t dt_conf; [/* DIrace driver configuration profile */
char dt_errnsg[BUFSI Z]; /* buffer for formatted syntax error msgs */
const char *dt_errtag; /* tag used with last call to dt_set_errmsg() */
dt _pcb_t *dt_pch; /* pointer to current parsing control block */
ul ong_t dt_gen; /* conpil er generation nunber */
dt _list_t dt_prograns; /* linked |ist of dtrace_prog_t's */
dt_list_t dt_xlators; /* linked list of dt_xlator_t’s */
struct dt_xlator **dt_xlatormap; /* dt_xlator_t's indexed by dx_id */
id_t dt_xlatorid; /* next dt_xlator_t id to assign */
dt _ident _t *dt_externs; /* linked I'ist of external synbol identifiers */
dt _i dhash_t *dt_macros; /* hash table of macro variable identifiers */
dt _i dhash_t *dt _aggs; /* hash table of aggregation identifiers */
dt _idhash_t *dt_globals; /* hash table of global identifiers */
dt _idhash_t *dt_tls; /* hash table of thread-local identifiers */
dt _list_t dt_nodlist; /* linked list of dt_mpdule_t's */
dt _nmodul e_t **dt_nods; /* hash table of dt_nodule_t's */
uint _t dt_nodbuckets; /* nunber of nodul e hash buckets */
uint_t dt_nnods; /* nunber of nodules in hash and list */
dt _provnod_t *dt_provnod; /* linked |ist of provider nodules */
dt _nodul e_t *dt _exec; /* pointer to executable nodule */

new usr/src/lib/libdtrace/ common/dt_inpl.h 3

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

dt _nodul e_t *dt_rtld; /
dt _nmodul e_t *dt_cdefs; [/
dt _nmodul e_t *dt_ddefs; /

/

dt _list_t
struct dt
uint_t dt
uint_t dt

“nprovs;

* pointer to run-tinme |inker nodule */
* pointer to C dynam c type nodule */
* pointer to D dynami c type nodule */
*

dt _provlist; linked list of dt_provider_t’'s */

_provider **dt_provs; /* hash table of dt_provider_t's */

provbuckets; /* nunber of provider hash buckets */

/* nunber of providers in hash and list */

dt _proc_hash_t *dt_procs; /* hash table of grabbed process handles */

char **dt

dt _intdesc_t dt_ints[6];

ctf_id t

size_t dt

/* additional environnent variables */

/* cached integer type descriptions */

dt _type_func; [/* cached CTF identifier for function type */

dt _type_fptr; [/* cached CTF identifier for function pointer */
dt _type_str; /* cached CTF identifier for string type */
/*
/

proc_env;

dt _type_dyn; cached CTF identifier for <DYN> type */

dt _type_stack; /* cached CTF identifier for stack type */

dt _type_symaddr; /* cached CTF identifier for _symaddr type */
dt _type_ usyrraddr /* cached CTF ident. for _usymaddr type */
_maxpr obe; /* max enabl ed probe ID */

dtrace_eprobedesc_t **dt_edesc; /* enabl ed probe descriptions */

dtrace_probedesc_t **dt_pdesc; /* probe descriptions for enabled prbs */
size_t dt_naxagg; /* max aggregation ID */

dtrace_aggdesc_t **dt _aggdesc; /* aggregati on descriptions */

int dt_maxformat; /* max format I D */

void **dt _formats; /* pointer to format array */

int dt_nmaxstrdata; /* max strdata I D */

char **dt_strdat a; /* pointer to strdata array */

dt _aggregate_t dt_aggregate; /* aggregate */

dt _pq_t *dt_buf

struct dt

dt _version_t dt_vnax;

dtrace_at
char *dt
char **dt

int dt_cpp_argc;
int dt_cpp_args;

char *dt
dt _list_t
uint_t dt
uint_t dt
uint_t dt
uint_t dt

q; * CPU- specific data queue */
_pfdict *dt_pfdict; /* dictionary of printf conversions */

/* optional ceiling on program APl binding */
tribute_t dt_amin; /* optional floor on programattributes */

_cpp_pat h; /* pathnane of cpp(1l) to invoke if needed */
_cpp_argy; /* argument vector for exec’ing cpp(1l) */
/* count of initialized cpp(1) argunments */
/* size of dt_cpp_argv[] array */
I d_pat h; /* pathnanme of 1d(1) to invoke if needed */
dt _lib_path; /* linked-list formng library search path */
_l azyl oad; /* bool ean: set via -xlazyload */
_dropt ags; /* bool ean: set via -xdroptags */
_active; /* bool ean: set once tracing is active */
_st opped; /* bool ean: set once tracing is stopped */

processorid_t dt_beganon; /* CPU that executed BEG N probe (if any)
processorid_t dt_endedon; /* CPU that executed END probe (if any) */

uint_t dt
uint_t dt
uint_t dt
uint_t dt
uint_t dt
uint_t dt
uint_t dt
uint_t dt
uint_t dt
ui nt 64_t

int dt_version;

int dt_cdefs_fd;
int dt_ddefs_fd;

i
i

i

| —
int dt_ft
i

i

i

i

_of |l ags; /* dtrace open-tinme options (see dtrace.h) */
_cflags; /* dtrace conpile-tinme options (see dtrace.h) */
_dfl ags; /* dtrace link-time options (see dtrace.h) */
_pr cnode; /* dtrace process create node (see dt_proc.h)
_li nknode; /* dtrace synbol |inking node (see below) */
_linktype; /* dtrace link output file type (see below) */
_xl at enpde; /* dtrace translator |inking node (see bel ow) */

st dcnode; /* dtrace stdc conpatibility node (see bel ow) */

“treedunp; /* dtrace tree debug bitmap (see bel ow) */

dt _opti ons[DTRACEOPT_MAX]; /* dtrace run-tine options */
/* library version requested by client */

file descriptor for C CTF debuggi ng cache */
file descriptor for D CTF debuggi ng cache */

int dt_ctferr; /* error resulting fromlast CTF failure */
int dt_errno; * error resulting fromlast failed operation */
int dt_fd; * file descriptor for dtrace pseudo-device */
fd; * file descriptor for fasttrap pseudo-device */

int dt_fterr; * saved errno fromfailed open of dt_ftfd */

*

*

*

int dt_st

dtrace_handle_err_f *dt_errhdlr; /* error handler,

voi d *dt

~—————

dout _fd; file descriptor for saved stdout */
if any */

errarg; /* error handl er argument */

dtrace_prog t *dt_errprog; /* error handler program if any */

dtrace_handl e_drop_f *dt _drophdlir; /* drop handler,

if any */

new usr/src/lib/libdtrace/ common/dt_inpl.h 4

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

322
323
324
325
326

328
329
330
331
332
333
334
335

337
338
339
340
341
342

344
345
346
347
348
349

351
352
353
354
355
356
357
358

voi d *dt _droparg; /* drop handl er argunent */
dtrace_handl e_proc_f *dt_prochdlr; /* proc handler, if any */
voi d *dt _procarg; /* proc handl er argunent */
dtrace_handl e_setopt _f *dt_setopthdlr; /* setopt handler, if any */
voi d *dt _setoptarg; /* setopt handl er argument */
dtrace_status_t dt_status[2]; /* status cache */
int dt_statusgen; /* current status generation */
hrtime_t dt_laststatus; /* |last status */
hrtime_t dt_lastswitch; /* last switch of buffer data */
hrtime_t dt_| astagg; /* last snapshot of aggregation data */
char *dt_sprintf_buf; /* buffer for dtrace_sprintf() */
int dt_sprintf_buflen; /* length of dtrace_sprintf() buffer */
const char *dt_filetag; /* default filetag for dt_set_errnsg() *
char *dt_buffered_buf; /* buffer for buffered output */
size_t dt buffered_offs; /* current offset into buffered buffer */
size_t dt_buffered_size; /* size of buffered buffer */
dtrace_handl e_buffered_f *dt_bufhdlr; /* buffered handler, if any */
voi d *dt_bufarg; /* buffered handl er argument */
dt _dof _t dt_dof; /* DOF generation buffers (see dt _dof.c) */
struct utsnane dt_uts; /* unanme(2) information for system*/
dt_list_t dt_lib_dep; /* scratch linked-1ist of |ib dependencies */
dt list_t dt_lib_dep_sorted; /* dependency sorted library Iist */
dtrace_flowkind_t dt_flow /* flow kind */
const char *dt_prefix; /* recommended flow prefix */
int dt_indent; /* recomended flow I ndent */
dtrace_epid_t dt_| ast_epid; /* nost recently consunmed EPID */
uint64_t dt_|ast_timestanp; /* nost recently consuned tinestanp */
e
/*
* Values for the user arg of the ECB.
*
/
#defi ne DT_ECB_DEFAULT 0
#defi ne DT_ECB_ERROR 1
/*
* Values for the dt_I|inknode property, which is used by the assenbl er when
* processing external symbol references. User can set using -xlink=<node>.
*
#def| ne DT_LINK KERNEL O kernel syms static, user syms dynamic */

/*
#define DT_LI NK_PRI MARY 1 /* primary kernel synms static, others dynamic */
#define DT_LI NK_DYNAM C 2 /* all synbols dynamic */

/*

#define DT_LINK_STATIC 3 all synbols static */
/*
* Values for the dt_linktype property, which is used by dtrace_program./|ink()
* to determine the type of output file that is desired by the client.
*/
#define DT_LTYP_ELF 0 /* produce ELF containing DOF */
#defi ne DT_LTYP_DOF 1 /* produce stand-al one DOF */
/*
* Values for the dt_x|atenpde property, which is used to determ ne whether
* references to dynamc translators are permitted. Set using -xlate=<node>.
*/
#define DT_XL_STATIC 0 /* require xlators to be statically defined */
#define DT_XL_DYNAMC 1 /* produce references to dynamc translators */
/*
* Values for the dt_stdcnpde property, which is used by the conpil er when
* running cpp to deternine the presence and setting of the _ STDC _ macro.
*/
#def i ne DT_STDC XA /* 1SO C + K&R C conpat wo IS __STDC =0 */

#define DI_STDC XC
#define DI_STDC XS
#define DT_STDC_XT

/* Strict 1SOC __SIDC _=1 */
/* K&R C. __STDC ~ not defined */
/* 1SO C + K&R C conpat with 1SO __STDC__=0 */

WN RO

new usr/src/lib/libdtrace/ conmon/dt

360
361
362
363
364
365

367
368
369
370
371
372
373
374

376
377

379
380

382
383

385
386

388
389

391
392

394
395

397
398
399
400
401
402
403
404

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

/

*
*
*
*
*

| f
th
/

Macro to test whether a given pass bit
the bit for pass 'p’

Cinmpl.h

is set

in the dt_treedunp bit-vector.

I's set, the D conpiler displays the parse tree for
e programby printing it to stderr at the end of conpiler pass 'p’.
p) ((dtp)->dt _treedunp & (1 << ((p) -

#def i ne DT_TREEDUMP_PASS(dt p,

/

Macros for accessi ng the cached CTF container and type ID for the commopn

and <DYN>, which we need to use frequently in the D
The DT INT * macro relies upon
_dtrace_ints_* tables in dt

*/
#def i
#def i

#def i
#def i

#def i
#def i

#def i
#def i

#def i
#def i

#def i
#def i

#def i
#def i

#def i
#def i

/

*

* Actions and subroutines are both DT_NODE _FUNC nodes;
* an action for a subroutine (or vice versa),

* constants and the DI F_SUBR *

* starting the DI_ACT_* constants at

*/
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

*
*
* types '
* conpiler.
*

ne
ne

ne
ne

ne
ne

ne
ne

ne
ne

ne
ne

ne
ne

ne
ne

ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

"int", "string",

DT_| NT_CTFP(dt p)
DT_| NT_TYPE(dt p)

DT_FUNC_CTFP(dt
DT_FUNC_TYPE(

p)
dt p)
DT_FPTR_CTFP(dt p)
DT_FPTR_TYPE(dt p)
DT_STR_CTFP(dt p)
DT_STR_TYPE(dt p)
p)

DT_DYN_CTFP(dt
DT_DYN_TYPE(dt p)

DT_STACK_CTFP(dt p)
DT_STACK_TYPE(dt p)

DT_SYMADDR_CTFP(dt p)
DT_SYMADDR_TYPE(dt p)

DT_USYMADDR_CTFP(dt p)
DT_USYMADDR_TYPE(dt p)

DT_ACT_BASE
DT_ACT{n)

DT_ACT_PRI NTF
DT_ACT_TRACE
DT_ACT_TRACEMEM
DT_ACT_STACK
DT_ACT_STOP
DT_ACT_BREAKPO NT
DT_ACT_PANI C
DT_ACT_SPECULATE
DT_ACT_COMM T
DT_ACT_DI SCARD
DT_ACT_CHI LL
DT_ACT_EXI T
DT_ACT_USTACK
DT_ACT_PRI NTA
DT_ACT_RAI SE
DT_ACT_CLEAR
DT_ACT_NORMALI ZE
DT_ACT_DENCRMAL| ZE
DT_ACT_TRUNC

"int" being at index 0 in the
_open.c; the others are also set up there.
- >dt
- >dt

_ints[0].
_ints[0].

did_ctfp)
di d_type)

->dt _ddef s->dm ctfp)
->dt _type_func)

- >dt _ddefs->dm ctfp)
->dt _type_fptr)

->dt _ddef s->dm ct fp)
->dt _type_str)

->dt _type_dyn)

- >dt _ddefs->dm ctfp)
->dt _type_stack)

- >dt _ddefs->dm ctfp)
->dt _type_synaddr)

->dt _ddef s->dm ct f p)

)
)
)
)
)
)
)
)
g ->dt _ddef s->dm ct fp)
)
)
)
)
)
) - >dt _t ype_usynaddr)

((dtp
((dtp
((dtp
((dtp
((dtp
((dtp
((dtp
((dtp
((dtp
((dtp
((dtp
((dtp
((dtp
((dtp
((dtp
((dtp

to avoi d conf usi ng
we assure that the DI_ACT_*
constants occupy non-overl appi ng ranges by
DI F_SUBR MAX + 1.

DI F_SUBR MAX + 1
(DT_ACT_BASE + (n))

DT_ACT(0) /* printf() action */
DT_ACT(1) /* trace() action */
DT_ACT(2) /* tracemen() action */
DT_ACT(3) /* stack() action */
DT_ACT(4) /* stop() action */
DT_ACT(5) /* breakpoint() action */
DT_ACT(6) /* panic() action */
DT_ACT(7) /* specul ate() action */
DT_ACT(8) /* commit() action */
DT_ACT(9) /* discard() action */
DT_ACT(10) [* chill() action */
DT_ACT(11) /* exit() action */
DT_ACT(12) /* ustack() action */
DT_ACT(13) /* printa() action */
DT_ACT(14) /* raise() action */
DT_ACT(15) /* clear() action */
DT_ACT(16) /* normalize() action */
DT_ACT(17) /* denornmalize() action */
DT_ACT(18) /* trunc() action */

1))

new usr/src/lib/libdtrace/ common/dt

425
426
427
428
429
430
431
432
433
434
435

437
438
439
440
441
442

444

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/*

* Senti nel

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

DT_ACT_SYSTEM
DT_ACT_JSTACK
DT_ACT_FTRUNCATE
DT_ACT_FRECPEN
DT_ACT_SYM
DT_ACT_MOD
DT_ACT_USYM
DT_ACT_UMOD
DT_ACT_UADDR
DT_ACT_SETCPT
DT_ACT_PRI NT

to tell

never is.

#def i ne DT_FREOPEN_RESTORE

#def i ne EDT_BASE

enum

{

1000

EDT_VERS| ON = EDT_BASE,

EDT_VERSI NVAL,
EDT_VERSUNDEF,
EDT_VERSREDUCED,
EDT_CTF,
EDT_COVPI LER,
EDT_NOTUPREG,
EDT_NOVEM
EDT_| NT2BI G,
EDT_STR2BI G,
EDT_NOMOD,
EDT_NGPROV,
EDT_NOPROBE,
EDT_NCSYM
EDT_NOSYMADDR,
EDT_NOTYPE,
EDT_NOVAR,
EDT_NOAGG,
EDT_BADSCOPE,
EDT_BADSPEC,
EDT_BADSPCV,
EDT_BADI D,
EDT_NOTLOADED,
EDT_NOCTF,
EDT_DATAMODEL,
EDT_DI FVERS,
EDT_BADAGG,
EDT_FI O,
EDT_DI FI NVAL,
EDT_DI FSI ZE,
EDT_DI FFAULT,
EDT_BADPROBE,
EDT_BADPGLOB,
EDT_NCSCOPE,
EDT_NCDECL,
EDT_DM SMATCH,
EDT_DOFFSET,
EDT_DALI GN,
EDT_BADCPTNANE,
EDT_BADOPTVAL,
EDT_BADOPTCTX,
EDT_CPPFORK,
EDT_CPPEXEC,
EDT_CPPENT,

freopen() to restore the saved stdout.
* be ever valid for opening for wite access via freopen(3C),
* course,
*

_inpl.h 6
DT_ACT(19) /* system() action */
DT_ACT(20) /* jstack() action */
DT_ACT(21) /* ftruncate() action */
DT_ACT(22) /* freopen() action */
DT_ACT(23) /* sym()/func() actions */
DT_ACT(24) /* nod() action */

DT_ACT(25) /* usyn()/ufunc() actions */
DT_ACT(26) /* unpd() action */
DT_ACT(27) /* uaddr () action */

DT_ACT(28) /* setopt() action */
DT_ACT(29) /* print() action */

Thi s nust not
whi ch of

base value for libdtrace errnos */

client is requesting unsupported version */
version string is invalid or overflows */
requested APl version is not defined */
requested APl version has been reduced */
libctf called failed (dt_ctferr has nore) */
error in D program conpilation */

tuple register allocation failure */

nenory all ocation failure */

integer limt exceeded */

string limt exceeded */

unknown nodul e name */

unknown provi der nane */

unknown probe nanme */

unknown synbol nane */

no synbol corresponds to address */

unknown type nane */

unknown vari abl e name */

unknown aggregation nanme */

i mproper use of type nane scoping operator */
overspeci fi ed probe description *

bad macro variable in probe description */
invalid probe identifier */

nodul e is not currently |oaded */

nodul e does not contain any CTF data */
nodul e and program data nodels don't match */
l'i brary has newer DIF version than driver */
unr ecogni zed aggregati ng action */

filei/o error */

invalid DI F program */

invalid DIF size */

failed to copyin D F program */

bad probe description */

bad probe description gl obbing pattern */
decl arati on scope stack underflow */

decl aration stack underflow */

record |ist does not natch statenment */
record data offset error */

record data alignment error */

invalid dtrace_setopt option name */
invalid dtrace_setopt option value */
invalid dtrace_setopt option context */
failed to fork preprocessor */

failed to exec preprocessor */

preprocessor not found */

new usr/src/lib/libdtrace/ common/dt _i npl

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
136
523 };

EDT_CPPERR,
EDT_SYMOFLOW
EDT_ACTI VE,
EDT_DESTRUCTI VE,
EDT_NOANON,
EDT_| SANON,
EDT_ENDTOOBI G,
EDT_NOCONV,
EDT_BADCONV,
EDT_BADERRCR,
EDT_ERRABORT,
EDT_DROPABORT,
EDT_DI RABORT,
EDT_BADRVAL,
EDT_BADNORNAL,
EDT_BUFTOOSMALL,
EDT_BADTRUNC,
EDT_BUSY,
EDT_ACCESS,
EDT_NOENT,
EDT_BRI CKED,
EDT_HARDW RE,
EDT_ELFVERSI ON,
EDT_NOBUFFERED,
EDT_UNSTABLE,
EDT_BADSETCPT,
EDT_BADSTACKPC,
EDT_BADAGGVAR,
EDT_OVERSI ON,
EDT_ENABLI NG ERR,
EDT_NCPROBES,
EDT_CANTLOAD
EDT_NCPROBES

____unchanged_portion_onitted_

B e

* ok ok R ok Rk ok k ok % b % Ok 3k ok ko ok ok ok ok ok ok ok kb k ok F b F o

h 7

unknown preprocessor error */

external synbol table overflow */

operation illegal when tracing is active */
destructive actions not allowed */

no anonynous tracing state */

can’t claimanon state and enabl e probes */
END enabl i ngs exceed size of prncpl buffer */
failed to |oad type for printf conversion */
i nconpl ete printf conversion */

invalid |library ERROR action */

abort due to error */

abort due to drop */

abort explicitly directed */

invalid return value from call back */
invalid normalization */

enabl i ng exceeds size of buffer */

invalid truncation */

devi ce busy (active kernel debugger) */
insufficient privileges to use DIrace */
dtrace device not available */

abort due to system c unresponsiveness */
failed to load hard-wired definitions */
libelf is out-of-date w.r.t |ibdtrace */
attenpt to buffer output without handler */
description matched unstabl e set of probes */
invalid setopt library action */

invalid stack program counter size */
invalid aggregation variable identifier */
client is requesting deprecated version */
failed to enabl e probe *

no probes sites for declared provider */
failed to load a nodule */

no probes sites for declared provider */

new usr/src/lib/libdtrace/ common/dt_|ex.|

R R R R

23175 Tue Jan 14 16:48:55 2014
new usr/src/lib/libdtrace/ comon/dt_Iex.|
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1 %

2 /*

3 * CDDL HEADER START

4 *

5 * The contents of this file are subject to the terms of the

6 * Common Devel opnent and Distribution License (the "License")

7 * You may not use this file except in conpliance with the License.

8 *

9 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
10 * or http://ww opensol aris.org/os/licensing.

11 * See the License for the specific |anguage governing perm ssions

12 * and limtations under the License.

13 =

14 * \WWen distributing Covered Code, include this CDDL HEADER in each

15 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 * |f applicable, add the followi ng below this CODL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [nane of copyright owner]

19 =

20 * CDDL HEADER END

21 =/

23 | *

24 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. Al rights reserved.
25 =/
26 /*

27 * Copyright (c) 2013 by Del phix. Al rights reserved.
28 * Copyright (c) 2013, Joyent, Inc. Al rights reserved.
*
/

30 #endif /* 1 codereview */

32 #include <string.h>
33 #include <stdlib. h>
34 #include <stdio.h>
35 #include <assert.h>
36 #include <ctype. h>
37 #include <errno. h>

39 #include <dt_inpl.h>

40 #i ncl ude <dt_grammar. h>
41 #incl ude <dt_parser. h>
42 #include <dt_string. h>

a4 |+

45 * W need to undefine lex's input and unput macros so that references to these

46 * call the functions provided at the end of this source file.
*/

48 #undef i nput
49 #undef unput

51 static int id_or_type(const char *);
52 static int input(void);
53 static void unput(int);

55 [*

56 * We first define a set of |abeled states for use in the D lexer and then a

new usr/src/lib/libdtrace/ common/dt_|ex.|

121

* set of regular expressions to sinplify things below. The |exer states are:
*

* SO - D program cl ause and expression |exing

* S1 - D comments (i.e. skip everything until end of comment)

* S2 - D program outer scope (probe specifiers and decl arations)

* S3 - Dcontrol line parsing (i.e. after "# is seen but before \n)

* S4 - Dcontrol line scan (locate control directives only and invoke S3)
*/

%

% 1500 /* maxi mum nodes */

% 4900 /* maxi mum posi tions */

% 3700 /* maxi mum posi tions */

% 600 /* maximum states */

% 3000 /* maximumtransitions */

#endif /* | codereview */

% SO S1 S2 S3 S4

RGX_AGG "@[a-zA-Z_][0-9a-zA-Z
RGX_PSPEC [-$:a-zA-Z_. ’7*\\\[\]'][$ 0-9a-zA-Z_. 2*\\\[\]!]*
RGX_ALTI DENT [a-zA-Z][0-9a-zA-Z | *
RGX_LM D LM 0- 9a-f A- F] +*
RGX_NDD_IDENI’ [a-zA-Z '][0-9a-z. A-Z '] *
#endif /* | codereview */
RGX_| DENT [a-zA-Z "]1[0-9a-zA-Z ']*
RGX_|I NT ([0-9] +] O[xX] [0-9A-Fa-f]+)[u ?[IL]?[IL]'>
RGX_FP ([0-9]+("."?)[0-9]*|"."[0-9]+) ((el E) ("+"[-)?[0-9] +) ?2[fFIL]?
RGX_W8 [VfAnir\t\v]
RGX_STR ([A"\N\NAN] NN A"\] [\
RGX_CHR ([Nl [N [~ \n] [\) *
RGX_| NTERP ALVFVEN Y | *#l %
RGX_CTL AVENENY [*#
%0
A
/*
* W insert a special prologue into yylex() itself: if the pcb contains a
* context token, we return that prior to running the nornal lexer. This
* allows libdtrace to force yacc into one of our three parsing contexts: D
* expression (DT_CTX _DEXPR), D program (DT_CTX DPROG) or D type (DT_CTX_DTYPE).
* Once the token is returned, we clear it so this only happens once.
*
if (yypcb->pchb_token !'= 0)
int tok = yypcb->pcb_token;
yypcb->pcb_t oken = 0;
return (tok);
}
%
<S0>aut o return (DT_KEY_AUTO);
<S0>br eak return (DT_KEY. BREAK)
<SO0>case return (DT_KEY_CASE);
<S0>char return (DT_KEY_CHAR);
<SO0>const return (DT_KEY CCNST)
<S0>conti nue return (DT_KEY_CONTI NUE);
<SO0>count er return (DT_KEY_COUNTER);
<S0>def aul t return (DT_KEY_DEFAULT);
<S0>do return (DT_KEY_DO);
<S0>doubl e return (DT_KEY D(lJBLE)
<S0>el se return (DT_KEY_ELSE);
<S0>enum return (DT_KEY_ENUM ;
<SO>ext ern return (DT_KEY EXTERN)

new usr/src/lib/libdtrace/ common/dt_|ex.| 3 new usr/src/lib/libdtrace/ common/dt_Iex.|

122 <S0>f | oat return (DT_KEY_FLQOAT); 188 char *v = "";

123 <S0>f or return (DT_KEY_FOR);

124 <S0>got o return (DT_KEY_GOTO); 190 /*

125 <S0>i f return (DT_KEY_IF); 191 * A macro argunment reference substitutes the text of

126 <S0>i nport return (DT_KEY_| MPORT); 192 * an argunent in place of the current token. Wen we

127 <S0>inline return (DT_KEY_I NLI NE); 193 * see $$<d> we fetch the saved string from pcb_sargv

128 <S0>i nt return (DT_KEY_INT); 194 * (or use the default argunent if the option has been

129 <S0>l ong return (DT_KEY_LONG ; 195 * set and the argunent hasn’t been specified) and

130 <S0>of f set of return (DT_TOK_OFFSETOF); 196 * return a token corresponding to this string.

131 <S0>probe return (DT_KEY_PROBE); 197 */

132 <S0>provi der return (DT_KEY_PROVI DER); 198 if (i <0 || (i >= yypcb->pcbh_sargc &&

133 <S0>regi ster return (DT_KEY_REG STER); 199 ! (yypcb->pcb_cfl ags & DTRACE _C DEFARG)))

134 <SO>restrict return (DT_KEY_RESTRICT); 200 xyerror(D MACRO _UNDEF, "necro argunment % is "

135 <S0>return return (DT_KEY_RETURN) ; 201 "not defined\n", yytext);

136 <SO0>sel f return (DT_KEY_SELF); 202 }

137 <S0>short return (DT_KEY Sl—mT)

138 <S0>si gned return (DT_KEY_SI GNED) 204 if (i < yypcbh->pcb_sargc) {

139 <S0>si zeof return (DT_TOK_ S| ZECF) ; 205 v = yypcb->pcb_sargv[i]; /* get val from pcb */

140 <SO>static return (DT_KEY_STATIC); 206 yypcb->pcb_sflagv[i] | = DT_I DFLG REF;

141 <SO>string return (DT_KEY_STRI NG ; 207 }

142 <S0>stri ngof return (DT_TOK_STRI NGCF)

143 <S0>struct return (DT_KEY_STRUCT) ; 209 if ((yylval.l_str = strdup(v)) == NULL)

144 <S0>swi tch return (DT_KEY_SW TCH); 210 I ongj mp(yypchb- >pcb_j npbuf, EDT_NOMVEM ;

145 <S0>t hi s return (DT_KEY_THI S);

146 <SO>translator return (DT_KEY_ XLATO?) 212 (void) stresc2chr(yylval.l_str);

147 <S0>t ypedef return (DT_KEY TYPEDEF) 213 return (DT_TOK_STRI NG ;

148 <S0>uni on return (DT_KEY_UNI ON); 214 }

149 <S0>unsi gned return (DT_KEY_UNSI GNED)

150 <SO0>user | and return (DT KEY_USERLAND) ; 216 <S0>"$"[0-9]+ {

151 #endif /* ! codereview * 217 int i = atoi (yyt ext + 1);

152 <SO0>voi d return (DT KEY_VA D) ; 218 char *p, *v = "0";

153 <SO>vol atile return (DT_KEY_ VOLATI LE);

154 <SO>whi | e return (DT_KEY_WHI LE); 220 /*

155 <S0>xl| at e return (DT_TOK_XLATE); 221 * A macro argunent reference substitutes the text of
222 * one identifier or integer pattern for another. Wen

157 <S2>aut o yybegi n(YYS_EXPR) ; return (DT_KEY_AUTO; } 223 * we see $<d> we fetch the saved string from pcb_sargv

158 <S2>char yybegi n(YYS_EXPR) ; return (DT_KEY_CHAR); } 224 * (or use the default argument if the option has been

159 <S2>const yybegi n(YYS_EXPR) ; return (DT_KEY CO\IST) } 225 * set and the argunent hasn’t been specified) and

160 <S2>count er yybegi n(YYS_DEFI NE); return (DT_KEY COJNTER) } 226 * return a token corresponding to this string.

161 <S2>doubl e yybegi n(YYS_EXPR) ; return (DT_KEY_DOUBLE); } 227 *

162 <S2>enum yybegi n(YYS_EXPR) ; return (DT_KEY_ENUM ; } 228 f (i <0]]| (i >= yypch->pcb_sargc &&

163 <S2>extern yybegi n(YYS_EXPR) ; return (DT_KEY EXTERN) } 229 ! (yypcb->pcb_cflags & DTRACE_C DEFARG))) {

164 <S2>f| oat yybegi n(YYS_EXPR) ; return (DT_KEY_FLQAT); } 230 xyerror(D MACRO UNDEF, "macro argument % is "

165 <S2>i nport yybegi n(YYS_EXPR) ; return (DT_KEY INPCRT) } 231 "not defined\n", yytext);

166 <S2>inline yybegi n(YYS_DEFI NE) return (DT_KEY_INLINE); } 232 }

167 <S2>i nt yybegi n(YYS_EXPR) ; return (DT_KEY_INT); }

168 <S2>| ong yybegi n(YYS_EXPR) ; return (DT_KEY LO\IG) } 234 if (i < yypcbh->pcb_sargc) {

169 <S2>provi der yybegi n(YYS_DEFI NE) return (DT_KEY_PROVI DER) } 235 v = yypcb->pcb_sargv[i]; /* get val frompcb */

170 <S2>regi ster yybegi n(YYS_EXPR) ; return (DT_KEY_REQ STER); } 236 yypcb->pcb_sflagv[i] |= DT_I DFLG REF;

171 <S2>restrict yybegi n(YYS_EXPR) ; return (DT_KEY_RESTRICT); } 237 }

172 <S2>sel f yybegi n(YYS_EXPR) ; return (DT_KEY_SELF); }

173 <S2>short yybegi n(YYS_EXPR) ; return (DT_KEY SHO?T) } 239 /*

174 <S2>si gned yybegi n(YYS_EXPR) ; return (DT_KEY_SI GNED) 1 240 * |f the macro text is not a valid integer or ident,

175 <S2>static yybegi n(YYS_EXPR) ; return (DT_KEY_STATIC); } 241 * then we treat it as a string. The string may be

176 <S2>string yybegi n(YYS_EXPR) ; return (DT_KEY_STRING ; } 242 * optionally enclosed in quotes, which we strip.

177 <S2>struct yybegi n(YYS_EXPR) ; return (DT_KEY_STRUCT); } 243 */

178 <S2>t hi s yybegi n(YYS_EXPR) ; return (DT_KEY_TH S); } 244 if (strbadidnunm(v)) {

179 <S2>transl at or yybegi n(YYS_DEFI NE) return (DT_KEY_ XLATO?) } 245 size_t len = strlen(v);

180 <S2>typedef yybegi n(YYS_EXPR) ; return (DT_KEY TYPEDEF) }

181 <S2>uni on yybegi n(YYS_EXPR) ; return (DT_KEY_UNI ON); } 247 if (len!=1&& *v =="'"" & v[len - 1] ==""")

182 <S2>unsi gned yybegi n(YYS_EXPR) ; return (DT_KEY_UNSI GNED) } 248 yylval .l _str = strndup(v + 1, len - 2);

183 <S2>voi d yybegi n(YYS_EXPR) ; return (DT_KEY_VOD); } 249 el se

184 <S2>vol atile yybegi n(YYS_EXPR) ; return (DT_KEY_ VOLATI LE); } 250 yylval .| _str = strndup(v, |en);

186 <S0>"$$"[0-9]+ { 252 if (yylval.l_str == NULL)

187 int i = atoi (yytext + 2); 253 | ongj np(yypcb->pcb_j npbuf, EDT_NOVEM ;

new usr/src/lib/libdtrace/ common/dt_|ex.| 5 new usr/src/lib/libdtrace/ common/dt_Iex.|
320 * type id_t (refer to dtrace_update() for details).
255 (void) stresc2chr(yylval.l_str); 321 */
256 return (DT_TOK_STRING ; 322 yylval .l _int = (intmax_t)(int)idp->di_id;
257 } 323 yyintprefix = 0;
324 yyintsuffix[0] = "'\0";
259 I * 325 yyi ntdeci mal = 1,
260 * |f the macro text is not a string an begins with a
261 * digit or a +/- sign, process it as an integer token. 327 return (DT_TOK_I NT);
262 */ 328 }
263 if (isdigit(v[O]) || v[O] =="-" || v[O] =="+") {
264 if (isdigit(v[0])) 330 <S0>{ RGX_| DENT}
265 yyintprefix = 0; 331 <S0>{ RGX_MOD_| DENT} { RGX_| DENT} |
266 el se 332 <S0>{ RGX_MOD_| DENT} {
267 yyintprefix = *v++ 28 <SO0>{ RGX_| DENT} {
333 return (id_or_type(yytext));
269 errno = 0; 334 }
270 yylval .l _int = strtoull (v, &, 0);
271 (void) strncpy(yyintsuffix, p, 336 <S0>{ RGX_AGG {
272 si zeof (yyintsuffix)); 337 if ((yylval.l_str = strdup(yytext)) == NULL)
273 yyintdecimal = *v 1= "'0"; 338 I ongj np(yypcb->pcb_j npbuf, EDT_NOMVEM ;
339 return (DT_TOK_AGG) ;
275 if (errno == ERANGE) { 340 }
276 xyerror (D_MACRO OFLOWN "nmcro argunent"”
277 " % constant % results in integer" 342 <S0>" @ {
278 " overflown", yytext, v); 343 if ((yylval.l_str = strdup("@")) == NULL)
279 } 344 I ongj mp(yypcb->pcb_j npbuf, EDT_NOVEM ;
345 return (DT_TOK_AGG) ;
281 return (DT_TOK_INT); 346 }
282 }
348 <S0>{ RGX_| NT} |
284 return (id_or_type(v)); 349 <S2>{ RGX_I| NT} |
285 } 350 <S3>{RGX_INT} {
351 char *p;
287 <S0>"$$"{ RGX_I DENT} {
288 dt_ident_t *idp = dt_i dhash_I ookup(353 errno = O;
289 yypcb->pcb_hdl - >dt _macros, yytext + 2); 354 yylval .l _int = strtoul |l (yytext, &p, 0);
355 yyintprefix = 0;
291 char s[16]; /* enough for U NT_MAX + \0 */ 356 (void) strncpy(yyintsuffix, p, sizeof (yyintsuffix));
357 yyintdeci mal = yytext[0] !="0";
293 if (idp == NULL) {
294 xyerror (D_MACRO UNDEF, "nmacro variable % " 359 if (errno == ERANGE) {
295 "is not defined\n", yytext); 360 xyerror (D_I NT_OFLOW "constant % results in "
296 } 361 "integer overflown", yytext);
362 }
298 /*
299 * For the nonent, all current nacro variables are of 364 if (*p!="\0 && strchr("uUL", *p) == NULL) {
300 * type id_t (refer to dtrace_update() for details). 365 xyerror(D_INT_DIA@ T, “"constant % contains "
301 */ 366 "invalid digit %\n", yytext, *p);
302 (void) snprintf(s, sizeof (s), "%", idp->di_id); 367 }
303 if ((yylval.l_str = strdup(s)) == NULL)
304 | ongj mp(yypcb- >pcb_j npbuf, EDT_NOVEM ; 369 if ((YYSTATE) != S3)
370 return (DT_TOK_I NT);
306 return (DT_TOK_STRI NG ;
307 } 372 yypragme = dt _node_| i nk(yypragns,
373 dt _node_int(yylval.l_int));
309 <S0>"$"{ RGX_I DENT} { 374 }
310 dt _ident _t *idp = dt_i dhash_I ookup(
311 yypcb->pcb_hdl - >dt _nacros, yytext + 1); 376 <SO0>{ RGX_FP} yyerror("floating-point constants are not permtted\n");
313 if (idp == NULL) { 378 <S0>\"{RGX_STR} $ |
314 xyerror (D_MACRO UNDEF, "nmacro variable % " 379 <S3>\"{RGX_STR}$ xyerror (D_STR_NL, "new ine encountered in string literal");
315 "is not defined\n", yytext);
316 } 381 <S0>\"{RGX_STR}\" |
382 <S3>\"{RGX_STR}\" {
318 /* 383 /*
319 * For the nonent, all current nmacro variables are of 384 * Quoted string -- convert C escape sequences and

new usr/src/lib/libdtrace/ common/dt_|ex.|

385
386
387

389
390

392
393
394

396
397
398

400

402
403
404

406
407
408
409
410
411

413
414
415
416
417
418
419

421
422
423
424
425
426
427
428
429
430
431
432
433
434

436
437
438
439
440

442
443

445
446
447
448
449
450

<S0>' { RGX_CHR} $ xyerror(D_CHR_NL,

<S0>' { RGX_CHR}’

#i f def

#el se

#endi f

<S0>"/**
<s2>"/*"

<S0>{ RGX_I NTERP}
<S2>{ RGX_| NTERP}

<S0>{ RGX_CTL}
<S2>{ RGX_CTL}
<S4>{ RGX_CTL}

}

{

|
|
{

_LI TTLE_ENDI AN

* return the string as a token.
*/
yylval .| _str = strndup(yytext + 1, yyleng - 2);

if (yylval.l_str == NULL)
| ongj np(yypcb->pcb_j npbuf,

d) stresc2chr(yylval .l _str);
(YYSTATE) != S3)
return (DT_TOK_STRI NG ;

EDT_NOMEM ;

(o
if

i
(

yypragma = dt _node Ilnk(yypra m,
dt _node_string(yyl val . str))

"new i ne encountered in character constant");

char *s, *p, *q;
si ze_t nbytes;

/*

* Character constant -- convert C escape sequences and
* return the character as an integer i medi ate val ue.
*

if (yyleng == 2)
xyerror (D_CHR_NULL,

s = yytext + 1;
yytext[yyleng - 1] =\0;
nbytes = strechchr(s)
yylval .l _int = 0,

yyi ntprefix = 0;

yyi ntsufflx[O] ='\0";

yyi ntdeci mal = 1,

if (nbytes > sizeof (yylval.l_int)) {
xyerror (D _CHR_OFLOW "character constant is "
"too long");

p = ((char *)&ylval.l_int) + nbytes - 1;

for (q = s; nbytes != 0; nbytes--)
p-- = gt
bcopy(s, ((char *)&ylval.l_int) +

sizeof (yylval.l_int) - nbytes, nbytes);

return (DT_TOK_I NT);

yypch->pcb_cstate = (YYSTATE);
BEG N(S1);
/* discard any #! lines */

assert (yypragma == NULL);
yypcb->pcb_cstate = (YYSTATE);
BEG N(S3);

"enpty character constant");

new usr/src/lib/libdtrace/ common/dt_|ex.|

451

453
454

456
457

459
460
461
462
463
464
465
466
467
468
469
470
471

473
474
475
476
477
478
479
480
481
482
483
484

486
487
488

490
491
492
493

495
496
497
498
499

501
502
503
504

506
507
508
509
510

512
513
514
515
516

<S4>.
<S4>"\ n"

<S0>"/"

<S0>" ("

<S0>") "

<SO>"["

<s0>"]"

<S0>" { "
<25 {"

}

/* discard */
/* discard */

int c, tok;
/*
* The use of "/" as the predicate delimter and as the
* integer division symbol requires special |ookahead
* to avoid a shift/reduce conflict in the D granmmar.
* We | ook ahead to the next non- whi t espace character.
* If we encounter EOF, ";", "{", or "/", then this "/"
* closes the predicate and we return DT_TOK_EPRED.
* |f we encounter anything else, it's DI_TOK DI V.
*/
while ((c = input()) !'=0) {
if (strchr("\f\in\r\t\v ", c¢) == NULL)
br eak;
}
if (¢c==0|] c==":"]] c="{1]]c=="71"){
if (yypcb- >pcb par ens 1= 0)
yyerror("closing) expected in "
"predicate before /\n");
}
if (yypcb->pcb_brackets = 0) {
yyerror("closing] expected in "
"predicate before /\n");
}
tok = DT_TOK_EPRED,
} else
tok = DT_TOK DIV,
unput (c);

return (tok);

yypch->pcb_par ens++;
return (DT_TOK_LPAR);

if (--yypcb->pcb_parens < 0)
yyerror("extra) in input streamn");
return (DT_TOK_RPAR);

yypcb->pcb_bracket s++;
return (DT_TOK_LBRAC);

if (--yypcbh->pcb_brackets < 0)
yyerror("extra] in input streamn");
return (DT_TOK_RBRAC);

yypcb->pcb_braces++;
return ("{);

new usr/src/lib/libdtrace/ common/dt_|ex.|

518
519
520
521
522

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

568
569
570

572
573
574
575
576
577
578
579
580
581
582

<S0>"}"

<s0>" |
prosei
prosys
<S0>" 84"

<S0>" >>"
<S0>" +"
<S0>"-"
<SO>"*"
<S0>"%
<SO0>"~"
<So>"1"
<S0>"?"
<SO0>":"
<Sso>"."
<S0>"->"
<S0>" ="
<S0>" +="
<SO>"-="
<S0>" * ="
<S0>"/ ="
<S0>" %="
<S0>" &="
<S0>"A="
<S0>"| ="
<S0>" <<="
<S0>" >>="
<S0>" ++"
<S0>"--"
<So>"..."
<Sso>", "
<So>"; "

<S0>{ RGX_W}

<S0>"\\"\n
<S0>.

<S1>" [*"
PRI
<S1>. |\n

{

if (--yypcb->pcb_braces < 0)

yyerror("extra } in input streamin");

return ("}");
}
return (DT_TOK_BOR);
return (DT_TOK_XOR);
return (DT_TOK_BAND);
return (DT_TOK_LAND);
return (DT_TOK_LXOR);
return (DT_TOK_LOR);
return (DT_TOK_EQ);
return (DT_TOK_NEQ ;
return (DT_TOK_LT);
return (DT_TOK_LE);
return (DT_TOK_QT);
return (DT_TOK_GE);
return (DT_TOK_LSH);
return (DT_TOK_RSH);
return (DT_TOK_ADD);
return (DT_TOK_SUB);
return (DT_TOK_MJL);
return (DT_TOK_MID);
return (DT_TOK_BNEG) ;
return (DT_TOK_LNEQG);
return (DT_TOK_QUESTION);
return (DT_TOK _COLQON);
return (DT_TOK _DOT) ;
return (DT_TOK_PTR);
return (DT_TOK_ASQN);
return (DT_TOK_ADD_EQ ;
return (DT_TOK_SUB_EQ
return (DT_TOK_MIL_EQ;
return (DT_TOK_DIV_EQ;
return (DT_TOK_MOD_EQ);
return (DT_TOK_AND_EQ
return (DT_TOK_XOR_EQ);
return (DT_TOK_OR EQ;
return (DT_TOK_LSH EQ;
return (DT_TOK_RSH EQ ;
return (DT_TOK_ADDADD);
return (DT_TOK_SUBSUB);
return (DT_TOK_ELLIPSI S)

return (DT_TOK_COMA) ;
return (';7);
/* discard */
; I * discard */
yyerror("syntax error near \"%\"\n", yytext[O0]);
yyerror("/* encountered inside a comment\n");

BEG N(yypch- >pcb_cstate);
; /* discard */

<S2>{ RGX_PSPEC} {

S2 has an anbiguity because RGX_PSPEC i ncl udes ' *’
as a glob character and '*' also can be DI_TOK STAR
Since | ex always matches the | ongest token, this
rule can be matched by an input string like "int*",
whi ch coul d begin a global variable declaration such
as "int*x;" or could begin a RGX_PSPEC wi th gl obbi ng
such as "int* { trace(tinestanp); }" If C_PSPEC is
not set, we nust resolve the anbiguity in favor of
the type and perform | exer pushback if the fragment

* Ok kR kR Ok Ok ¥ %

new usr/src/lib/libdtrace/ comon/dt_Iex.| 10
583 * before '*’ or entire fragnment matches a type nane.
584 * |f C_PSPEC is set, we always return a PSPEC token.
585 * If CPSPEC is off, the user can avoid anbiguity by
586 * including a ':’ delimter in the specifier, which
587 * they shoul d be doing anyway to specify the provider.
588 */

589 if (!(yypcb->pcb_cflags & DTRACE C PSPEC) &&

590 strchr(yytext, ':7) == NULL) {

592 char *p = strchr(yytext, "*');

593 char *q = yytext + yyleng - 1;

595 if (p!= NULL & p > yytext)

596 *p ='\0"; /* prune yytext */

598 if (dt_type_l ookup(yytext, NULL) ==

599 yylval .| _str = strdup(yytext);

601 if (yylval.l_str == NULL) {

602 I ongj mp(yypcb- >pcb_j npbuf,
603 EDT_NOVEM) ;

604 }

606 if (p!=NULL & p > yytext) {
607 for (*p ="*"; q >=p; Qg--)
608 unput (*q);

609 }

611 yybegi n(YYS_EXPR) ;

612 return (DT_TOK_TNAME);

613 }

615 if (p!= NUL & p > yytext)

616 *p = '*'; |* restore yytext */
617 }

619 if ((yylval.l_str = strdup(yytext)) == NULL)

620 | ongj mp(yypchb- >pcb_j npbuf, EDT_NOVEM ;

622 return (DT_TOK PSPEC);

623 }

625 <S2>"/" return (DT_TOK_DIV);

626 <S2>"," return (DT_TOK_COWMA) ;

628 <S2>{ RGX_W&} ; /* discard */

629 <S2>. yyerror("syntax error near \"%\"\n", yytext[O0]);

631 <S3>\n {

632 dt _pragma(yypragng) ;

633 yypragma = NULL;

634 BEG N(yypch- >pcb_cstate);

635

637 <S3>[\f\t\v]+ /* discard */

639 <S3>[Mfinlt\v "]+ {

640 dt _node_t *dnp;

642 if ((yylval.l_str = strdup(yytext)) == NULL)

643 I ongj mp(yypchb->pcb_j npbuf, EDT_NOMVEM ;

645 /*

646 * W want to call dt_node_ident() here, but we can't
647 * because it will expand inlined identifiers, which we
648 * don't want to do from #pragma context in order to

new usr/src/lib/libdtrace/ comon/dt_Iex.| 11

649 * support pragmas that apply to the ident itself. W
650 * call dt_node_string() and then reset dn_op instead.
651 */

652 dnp = dt_node_string(yylval.l_str);

653 dnp->dn_ki nd = DT_NCDE_| DENT. ;

654 dnp->dn_op = DT_TOK_| DENT;

655 yypragma = dt_node Imk(yypragn‘a, dnp);

656 }

658 <S3>. yyerror("syntax error near \"%\"\n", yytext[O0]);

660 986

662 /*

663 * yybegin provides a wapper for use from C code around the | ex BEG N() macro.
664 * W use two nmmin states for |exing because probe descriptions use a syntax
665 * that is inconpatible with the normal D tokens (e.g. nanes can contain "-").
666 * yybegin also handles the job of switching between two |ists of dt_nodes
667 * as we allocate persistent definitions, Iike inlines, and transi ent nodes
668 */that will be freed once we are done parsing the current programfile.

669 *

670 void

671 yybegi n(yystate_t state)

672 {

673 #ifdef YYDEBUG

674 yydebug = _dtrace_debug;

675 #endi f

676 if (yypcb >pcb yystate == state)

677 turn; /* nothing to do if we're in the state already */
679 if (yypcbh->pcb_yystate == YYS_DEFINE) {

680 yypcbh->pcb_li st = yypcb->pcb_hol d;

681 yypch->pcb_hol d = NULL;

682 }

684 switch (state) {

685 case YYS_CLAUSE:

686 BEG N(S2);

687 break;

688 case YYS_DEFI NE:

689 assert (yypcb->pcb_hol d == NULL);

690 yypcb->pcb_hol d = yypch->pcb_list;

691 yypcb->pcb_list = NULL;

692 [* FALLTHRU*/

693 case YYS_EXPR

694 BEG N(SO) ;

695 br eak;

696 case YYS_DONE:

697 br eak;

698 case YYS_CONTROL:

699 BEG N(S4)

700 break;

701 defaul t:

702) xyerror (D_UNKNOWN, "internal error -- bad yystate %\n", state);
703

705 yypch->pcb_yystate = state;

706 }

__unchanged_portion_omtted_

new usr/src/lib/libdtrace/ common/dt_nodul e.c

R R R R

41593 Tue Jan 14 16:48:55 2014
new usr/src/lib/libdtrace/ common/dt_nodul e. c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens

4479 pi

d provider types

4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

kok ok ok ok kK

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governing pernissions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 =

19 * CDDL HEADER END

20 */

22 |*

23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. Al rights reserved.
24 */

25 [*

26 * Copyright (c) 2013, Joyent, Inc. Al rights reserved.

27 x|

LR R AR T R

28 #endif /* ! codereview */

30 #i
31 #i
32 #i
33 #i
34 #i
35 #i
36 #i

38 #i
39 #i
40 #i
41 #i
42 #i
43 #i
44 #i
45 #i
46 #i

48 #i
49 #i
50 #i

52 st
54 st

55 dt
56 {

ncl ude <sys/types. h>

ncl ude <sys/nodctl . h>
ncl ude <sys/ kobj . h>

ncl ude <sys/ kobj _i npl . h>
ncl ude <sys/sysmacros. h>
ncl ude <sys/elf.h>

ncl ude <sys/task. h>

ncl ude <uni std. h>
ncl ude <project. h>
ncl ude <strings. h>
ncl ude <stdlib. h>
ncl ude <libel f.h>
nclude <limts. h>
ncl ude <assert. h>
ncl ude <errno. h>

ncl ude <dirent.h>

ncl ude <dt_strtab. h>
ncl ude <dt_nodul e. h>
ncl ude <dt_inpl. h>

atic const char *dt_nodul e_strtab; /* active strtab for gsort callbacks */
atic void
_modul e_synhash_i nsert (dt _nodul e_t *dnp, const char *nane, uint_t id)

new usr/src/lib/libdtrace/ comon/dt_nodul e.c

57
58

dt_symt *dsp = &np->dm synthai ns[dnp->dm synfree];
h;

uint_t

assert (dnp->dm synfree < dnp->dm nsynel ens + 1);

dsp— >ds_symd = id;

dt

_strtab _hash(name, NULL) % dnp->dm_

dsp >ds_next dnmp- >dm synbuckets[h]
dnp- >dm_ synbuckets[h] = dnp- >dm_syn"free++;

68 static uint
69 dt_nodul e sym ni t32(dt _nodul e_t *dnp)

70

{
71 #if STT_NUM!= (STT_TLS + 1)

72 #error "STT_NUM has grown. update dt_nodul e_symn

73 #endi f

const

El f32_Sym *sym = dnp- >dm synt ab. cts

nsynbuckets;

it32()"

_data;

const char *base = dnp->dm strtab. cts_dat a;

si ze_t
uint _t
uint _t

(i

}

Ss_si ze dnmp->dm strtab. cts_si ze;
i, n= dnp >dm nsymel ens;
asrsv = 0;

=0; i <n; i++, sym+) {
const char *nane = base + sym >st
uchar _t type = ELF32_ST_TYPE(sym

if (type >= STT_NUM || type == ST
continue; /* skip section

if (sym>st_pane == || sym >st
continue; /* skip null or

if (sym>st_value != 0 &&
(ELF32_ST_BI ND(sym >st _i nf 0)
asrsv++ /* reserve space

nane;

>st_info);

T_SECTI ON)
s and unknown types */

_name >= ss_si ze)
invalid names */

1= STB LOCAL || sym >st
in the address map */

dt _nodul e_symhash_i nsert (dnp, nane, i);

return (asrsv);

101 static uint
102 dt_nodul e sym ni t 64(dt _nodul e_t *dnp)

103

105 #error
106 #endi f

108
109
110
111
112

114
115
116

118
119

121
122

const
const
size_t
ui nt _t
uint_t

(i

{
104 #if STT_NUM!= (STT_TLS + 1)
"STT_NUM has grown. update dt_nodul e_symin

El f 64_Sym *sym = dnp- >dm synt ab. cts_|

char *base = dnp->dm strtab. cts_dat
ss_size = dnp->dm strtab. cts_size;
i, n= dnp >dm nsynel ens;

asrsv = 0;

=0; i < n; i++ sym++){
const char *name = base + sym >st
uchar_t type = ELF64_ST_TYPE(sym

if (type >= STT_NUM || type == ST
continue; /* skip section

if (sym>st_name == 0 || sym >st_|
continue; /* skip null or

it64()"

dat a;
a;

nane;
>st_info);

T_SECTI ON)
s and unknown types */

name >= ss_si ze)
invalid names */

_size))

new usr/src/lib/libdtrace/ common/dt_nodul e.c

>st_size))

124 if (sym>st_value != 0 &&

125 (ELF64_ST_BIND(sym >st _info) != STB_LOCAL || sym
126 asrsv++; /* reserve space in the address map *
128 dt _nodul e_synmhash_i nsert (dnp, nane, i);

129 }

131 return (asrsv);

132 }

134 /*

135 * Sort conparison function for 32-bit synbol address-to-nanme | ookups.
136 * synmbols by value. |f values are equal, we prefer the synbol that
137 * non-zero sized, typed, not weak, or lexically first,

138 */

139 static int

140 dt _nodul e_syntonmp32(const void *Ip, const void *rp)

141 {

142 El f32_Sym *lhs = *((El f32_Sym **)Ip);

143 El f32_Sym *rhs = *((El f32_Sym **)rp);

145 if (lhs->st_value != rhs->st_val ue)

146 return (I hs->st_value > rhs->st_value ? 1 : -1);

148 if ((Ihs->st_size == 0) != (rhs- >st S|ze == 0))

149 return (lhs->st_size == 0 271 -1);

151 if ((ELF32_ST_TYPE(| hs->st_info) == STT_NOTYPE) !=

152 (ELF32_ST_TYPE(rhs->st _i nfo) == STT_NOTYPE))

153 return (ELF32_ST_TYPE(I hs- >st _info) == STT_NOTYPE ? 1 :
155 i f ((ELF32_ST_BINDX(| hs->st_info) == STB WEAK) !=

156 (ELF32_ST_BI ND(r hs->st _i nfo) == STB_WEAK))

157 return (ELF32_ST_BIND(| hs->st_info) == STB WEAK ? 1 :
159 return (strcnp(dt_nodul e_strtab + | hs->st_naneg,

160 dt _nodul e_strtab + rhs->st_nane));

161 }

163 /*

164 * Sort conparison function for 64-bit synbol address-to-nanme | ookups.

165 * synmbols by value. |f values are equal, we prefer the synbol that
166 * non-zero sized, typed, not weak, or lexically first,
167 */

168 static int

169 dt_nodul e_syntonp64(const void *|p, const void *rp)

170 {

171 El f64_Sym *l hs = *((El f64_Sym **)Ip);

172 El f64_Sym*rhs = *((El f64_Sym **)rp);

174 if (lhs->st_value != rhs->st_val ue)

175 return (I hs->st_value > rhs->st_value ? 1 : -1);

177 if ((lhs->st_size == 0) '-(rhs >st S|ze == 0))

178 return (Ihs >st _size == 1 -1);

180 if ((ELF64_ST_TYPE(|hs->st_info) == STT_NOTYPE) !=

181 (ELF64_ST_TYPE(r hs->st _i nfo) == STT_NOTYPE))

182 return (ELF64_ST_TYPE(I hs- >st _info) == STT_NOTYPE ? 1 :
184 if ((ELF64_ST_BI ND(| hs->st fo) == STB WEAK) !=

185 (ELF64_ST_BI ND(r hs- >st _j nf o) == STB_WEAK))

186 return (ELF64_ST_BIND(| hs- >st _info) == STB_ VVEAK ? 1 :

188 return (strcnp(dt_nodul e_strtab + | hs->st_naneg,

W sort
is

in that order.

=13

=) §

W sort
is

in that order.

=)

=) §

new usr/src/lib/libdtrace/ common/dt_nodul e.c

189 dt _nodul e_strtab + rhs->st_nane));
190 }

192 static void
193 dt_nodul e_synsort 32(dt_nodul e_t *dnp)

194 {

195 El f32_Sym *syntab = (Elf32_Sym *)dnp->dm synt ab. ct s_dat a;

196 El f32_Sym **synpp = (EI f32_Sym **) dnp- >dm asnap;

197 const dt symt *dsp = dnp->dm synthains + 1;

198 uint_t i, n = dnp->dmsynfree;

200 for (i =1; i < n; i++ dsp++) {

201 El f 32 Sym sym = syntab + dsp->ds_symi d;

202 if (sym>st_value I= 0 &&

203 (ELF32_ST_BIND(sym >st_info) != STB LOCAL || sym >st
204 *synpp++ = sym

205 }

207 dnmp->dm aslen = (uint_t)(synpp - (El f32_Sym **)dnp->dm asnap) ;
208 assert (dnp->dm asl en <= dnp->dm asrsv);

210 dt _nodul e_strtab = dnp->dm strtab. cts_dat a;

211 gsort (dmp->dm asmap, dnp->dm asl en,

212 si zeof (EIf32_Sym*), dt_nodul e_syntonp32);

213 dt _nmodul e_strtab = NULL;

214 }

216 static void
217 dt_nodul e_synsort 64(dt_nodul e_t *dnp)

218 {

219 El f64_Sym *syntab = (El f64_Sym *)dnp->dm synt ab. ct s_dat a;

220 El f 64_Sym **synpp = (EI f 64_Sym **) dnp- >dm asnap;

221 const dt_symt *dsp = dnp->dm synthains + 1;

222 uint_t i, n = dnp->dmsynfree;

224 for (i =1; i < n; i++ dsp++

225 El f 64 S\/m sym = syntab + dsp->ds_symi d;

226 if (sym>st_value =0 &&

227 (ELF64_ST_BIND(sym >st_info) != STB_LOCAL || sym >st
228 *synpp++ = sym

229 }

231 dnmp->dm aslen = (uint_t)(synpp - (El f64_Sym **)dnp->dm asmap) ;
232 assert (dnp->dm asl en <= dnp->dm asrsv);

234 dt _nodul e_strtab = dnp->dm strtab. cts_dat a;

235 gsort (dnmp->dm asnap, dnp->dm asl en,

236 sizeof (EIf64_Sym *), dt_nodul e_syntonp64);

237 dt _nmodul e_strtab = NULL;

238 }

240 static CElf_Sym*

241 dt _nodul e_syngel f32(const Elf32_Sym *src, GElf_Sym *dst)

242 {

243 if (dst !'= NULL)

244 dst->st_name = src->st_nane;
245 dst->st_info = src->st_info;
246 dst->st_other = src->st_other;
247 dst->st _shndx = src->st_shndx;
248 dst->st_val ue = src->st_val ue;
249 dst->st_size = src->st_size;
250 }

252 return (dst);

253 }

_size))

_size))

new usr/src/lib/libdtrace/ common/dt_nodul e.c

255 static CGElf_Sym*
256 dt_nodul e_syngel f 64(const El f64_Sym *src, GElf_Sym *dst)
257 {

258 if (dst !'= NULL)

259 bcopy(src, dst, sizeof (GEIf_Sym);
261 return (dst);

262 }

264 static CElf_Sym*
265 dt_nodul e_symane32(dt _nodul e_t *dnp, const char *nane,

266 CGEl f _Sym *synp, uint_t *idp)

267 {

268 const Elf32_Sym * sym ab = dnp->dm synt ab. cts_dat a;

269 const char *strtab dnp->dm strtab. cts_data;

271 const Elf32_Sym *sym

272 const dt_symt *dsp;

273 uint_t i, h;

275 if (dmp->dm nsynel ens == 0)

276 return (NULL);

278 h = dt_strtab_hash(name, NULL) % dnp->dm nsynbuckets;
280 for (i = dnmp->dm synbuckets[h]; i !=0; i = dsp->ds_next) {
281 dsp = &dnp->dm syncthains[i];

282 sym = syntab + dsp->ds_symi d;

284 if (strcnp(nane, strtab + sym>st_name) == 0) {
285 if (idp !'= NULL)

286 *idp = dsp->ds_symid;

287 return (dt_nodul e_syngel f 32(sym synp));
288 }

289 }

291 return (NULL);

292 }

294 static CElf_Sym*
295 dt_nodul e_symane64(dt _nodul e_t *dnp, const char *nane,

296 GEl f _Sym *synp, uint_t *idp)

297 {

298 const Elf64_Sym * sym ab = dnp->dm synt ab. cts_dat a;

299 const char *strtab = dnp->dmstrtab.cts_data;

301 const Elf64_Sym *sym

302 const dt_symt *dsp;

303 uint_t i, h;

305 if (dmp->dm nsynel ens == 0)

306 return (NULL);

308 h = dt_strtab_hash(nanme, NULL) % dnp->dm nsynbuckets;
310 for (i dnp >dm synbuckets[h]; i != 0; i = dsp->ds_next) {
311 dsp = &dnp->dm synthai ns[il;

312 sym = syntab + dsp->ds symd

314 if (strcnp(nane strtab + sym >st_nane) == 0) {
315 it (idp != NULL)

316 *idp = dsp->ds_symid;

317 return (dt_nodul e_syngel f 64(sym synp));
318 }

319 1

new usr/src/lib/libdtrace/ common/dt_nodul e.c

321 return (NULL);
322 }

324 static CElIf_Sym*
325 dt _modul e_symaddr 32(dt _nodul e_t *dnp, CElf_Addr addr,

326 GEl f _Sym *synp, uint_t *idp)

327 {

328 const Elf32_Sym **asmap = (const Elf32_Sym **)dnp->dm asnap;
329 const Elf32_Sym *syntab = dnp->dm synt ab. cts_dat a;
330 const Elf32_Sym *sym

332 uint_t i, md, lo =0, hi = dnp->dmaslen - 1;

333 El f 32_Addr v;

335 if (dnp->dm aslen == 0)

336 return (NULL);

338 V\,hile(hi-lo>1){

339 id = (lo + hi) [/ 2;

340 |f (addr >= asmap[md] >st _val ue)

341 lo m d;

342 el se

343 hi = mad;

344 }

346 i = addr < asmap[hi]->st_value ? lo : hi;

347 sym = asmap[i];

348 v = sym >st_val ue;

350 /*

351 * If the previous entry has the same val ue, inprove our choice. The
352 * order of equal -valued synbols is determ ned by the conparison func.
353 *

354 while (i-- !'= 0 &% asmap[i]->st_value == v)

355 sym = asmap[i];

357 if (addr - sym >st_value < MAX(sym >st_size, 1)) {
358 if (idp !'= NULL)

359 *idp = (uint_t)(sym- syntab);

360 return (dt_nodul e_syngel f32(sym synp));
361 }

363 return (NULL);

364 }

366 static CElIf_Sym*
367 dt_nodul e_symaddr 64(dt_nodul e_t *dnp, GElf_Addr addr,
368 CEl f _Sym *synp, uint_t *idp)

{

370 const Elf64_Sym **asmap = (const Elf64_Sym **)dnp->dm asnap;
371 const Elf64_Sym *syntab = dnp->dm synt ab. cts_dat a;
372 const Elf64_Sym *sym

374 uint_t i, md, lo =0, hi = dnp->dmaslen - 1;
375 El f 64_Addr v;

377 if (dnp->dm aslen == 0)

378 return (NULL);

380 while (hi - 1o > 1) {

381 md=(lo+ hi) / 2;

382 if (addr >= asmap[m d] - >st _val ue)

383 lo = md;

384 el se

385 hi = md;

386 }

new usr/src/lib/libdtrace/ common/dt_nodul e.c

388 i = addr < asmap[hi]->st_value ? lo : hi;

389 sym = asmap[i];

390 v = sym >st_val ue;

392 /*

393 * |f the previous entry has the same val ue, inprove our choice. The
394 * order of equal-valued synbols is determ ned by the conparison func.
395 *

396 while (i-- !'= 0 & asmap[i]->st_value == v)

397 sym = asmap[i];

399 if (addr - sym>st_value < MAX(sym >st_size, 1)) {

400 if (1dp !'= NULL)

401 *idp = (uint_t)(sym- syntab);

402 return (dt_nodul e_syngel f 64(sym synp));

403 }

405 return (NULL);

406 }

408 static const dt_npdops_t dt_nodops_32 = {

409 dt _nodul e_symi ni t 32,

410 dt _nodul e_synsort 32,

411 dt _nodul e_symane32,

412 dt _nodul e_synmaddr 32

413 };

415 static const dt_nodops_t dt_nodops_64 = {

416 dt _nodul e_symi ni t 64,

417 dt _nodul e_synsort 64,

418 dt _nodul e_symane64,

419 dt _nodul e_synmaddr 64

420 };

422 dt _nmodul e_t *

423 dt _nodul e_create(dtrace_hdl _t *dtp, const char *name)

424 {

425 I ong pid;

426 char *eptr;

427 dt _ident _t *idp;

428 #endif /* | codereview */

429 uint_t h = dt_strtab_hash(name, NULL) % dtp->dt_nodbuckets;
430 dt _nmodul e_t *dnp;

432 (dnp = dtp->dt_nods[h]; dnmp != NULL; dnp = dnp->dm next) {
433 if (strcnp(dnmp->dm nane, nane) == 0)

434 return (dnp);

435 }

437 if ((dnmp = malloc(sizeof (dt_nodule_t))) == NULL)

438 return (NULL); /* caller nust handle allocation failure */
440 bzero(dnp, sizeof (dt_nodule_t));

441 (void) strlcpy(dnp->dm nanme, nane, sizeof (dnmp->dm nane));
442 dt _|'i st _append(&t p->dt _nodl i st, dnp);

443 dnmp- >dm next = dt p->dt _nods[h];

444 dt p->dt _nmods[h] = dnp;

445 dt p- >dt _nnods++;

447 if (dtp->dt_conf.dtc_ctfnodel == CTF_MODEL_LP64)

448 dnp- >dm ops = &dt _nodops_64;

449 el se

450 dnmp- >dm ops = &dt _nodops_32;

452 /*

new usr/src/lib/libdtrace/ common/dt_nodul e.c

453 * Modul es for userland processes are special. They always refer to a
454 * specific process and have a copy of their CIF data froma specific
455 * instant in time. Any dt_nodule_t that begins with 'pid is a nodule
456 * for a specific process, nuch |ike how any probe description that
457 * begins with 'pid is special. pidl23 refers to process 123. A nodul e
458 * that is just 'pid refers specifically to pid$target. This is

459 * generally done as D does not currently allow for nacros to be

460 * eval uated when working with types.

461 *

462 f (strncnp(dnp—>dm_name, "pid", 3) == 0) {

463 errno = 0;

464 if (dnp- >dm nane[3] =="'\0")

465 idp = dt _i dhash_| ookup(dt p- >dt macros, “target");

466 if (idp T= NULL & idp->di _id T= 0)

467 dnp->dm pid = idp->di_id;

468 } else {

469 pid = strtol (dnp->dm name + 3, &eptr, 10);

470 if (errno == 0 & *eptr == '\0")

471 dnp->dm pid = (pid_t)pid;

472 el se

473 dt _dprintf("encountered nalforned pid "

474 "modul e: %\ n", dnp->dm nane);

475 }

476 }

478 #endif /* | codereview */

479 return (dmp);

480 }

482 dt _nmodul e_t *

483 dt _nodul e_| ookup_by name(dtrace_hdl _t *dtp, const char *nane)

484 {

485 uint_t h = dt_strtab_hash(nane, NULL) % dtp->dt_nodbuckets;

486 dt _nodul e_t *dnp;

488 for (dnp = dtp->dt_nods[h]; dnp != NULL; dnp = dnp->dm next) {

489 if (strcnp(dnp- >dm nane, nane) == 0)

490 return (dnp);

491 }

493 return (NULL);

494 }

496 /* ARGSUSED*/

497 dt _nodul e_t *

498 ?t_nndul e_| ookup_by_ctf(dtrace_hdl _t *dtp, ctf_file_t *ctfp)

499

500 return (ctfp ? ctf_getspecific(ctfp) : NULL);

501 }

503 static int

504 dt_nodul e_| oad_sect (dtrace_hdl _t *dtp, dt_nodule_t *dnp, ctf_sect_t *ctsp)
505 {

506 const char *s;

507 size_t shstrs;

508 GEl f _Shdr sh;

509 Elf Data *dp:

510 El f_Scn *sp;

512 if (elf_getshdrstrndx(dnmp->dmelf, &shstrs) == -1)

513 return (dt_set_errno(dtp, EDT_NOTLOADED)):;

515 (sp = NULL; (sp = elf_nextscn(dnmp->dmelf, sp)) != NULL;) {

516 if (gelf_getshdr(sp, &h) == NULL || sh.sh_type == SHT_NULL ||
517 (s = elf_strptr(dnp->dmel f, shstrs, sh.sh_nane)) == NULL)
518 continue; /* skip any nal forned sections */

new usr/src/lib/libdtrace/ common/dt_nodul e.c

520 if (sh.sh_type == ctsp->cts_type &&

521 sh. sh_entsi ze == ctsp->cts_entsize &&

522 strcnp(s, ctsp->cts_nane))

523 break; /* section matches specification */

524 }

526 /*

527 * |f the section isn't found, return success but |eave cts_data set
528 * to NULL and cts_size set to zero for our caller.

529 */

530 if (sp == NULL || (dp = elf_getdata(sp, NULL)) == NULL)

531 return (0);

533 ctsp->cts_data = dp->d_buf;

534 ctsp->cts_size = dp->d_size;

536 dt _dprintf("loaded % [%] (% u bytes)\n",

537 dnp- >dm nane, ctsp->cts_nane, (ulong_t)ctsp->cts_size);

539 return (0);

540 }

542 typedef struct dt_nodule_cb_arg {

543 struct ps_prochandl e *dpa_proc;

544 dtrace_hdl _t *dpa_dtp;

545 dt _nmodul e_t *dpa_dnp;

546 uint_t dpa_count;

547 } dt_nodule_cb_arg_t;

549 /* ARGSUSED */

550 static int

551 ?t_m)dul e_l oad_proc_count(void *arg, const prmap_t *prmap, const char *obj)
552

553 ctf _file_t *fp;

554 dt _nodul e_cb_arg_t *dcp = arg;

556 /* Try to grab a ctf container if it exists */

557 fp = Pnane_to_ctf(dcp->dpa_proc, obj);

558 if (fp !'= NULL)

559 dcp- >dpa_count ++;

560 return (0);

561 }

563 /* ARGSUSED */

564 static int

565 dt_nodul e_| oad_proc_build(void *arg, const prmap_t *prmap, const char *obj)
566 {

567 ctf_file_t *fp;

568 char buf [MAXPATHLEN], *p;

569 dt _nodul e_ cb _arg_t *dcp = arg;

570 int count dcp- >dpa_count ;

571 Lmd_t Im d

573 fp = Pname_to_ctf (dcp->dpa_proc, obj);

574 if (fp == NULL)

575 return (0);

576 fp = ctf_dup(fp);

577 if (fp == NULL)

578 return (0);

579 dcp >dpa_dnmp->dm | i bctfp[count] = fp;

580 /*

581 * While it'd be nice to sinply use objname here, because of our prior
582 * actions we’'ll always get a resolved object name to its on disk file.
583 * Like the pid provider, we need to tell a bit of a lie here. The type
584 * that the user thinks of is in ternms of the libraries they requested,

new usr/src/lib/libdtrace/ common/dt_nodul e.c 10
585 * eg. libc.so.1, they don't care about the fact that it’'s

586 * |ibc_hwcap. so. 1.

587 */

588 (voi d) Pobj nane(dcp- >dpa_| proc, prmap- >pr _vaddr, buf, sizeof (buf));
589 if ((p-strrchr(buf /7)) == NULL)

590 p = buf

591 el se

592 p++;

594 /*

595 * |f for sone reason we can't find a link map id for this nodule, which
596 * would be really quite weird. We instead just say the link map id is
597 * zero.

598 *

599 if (Plmd(dcp->dpa_proc, prmap->pr_vaddr, & nid) != 0)

600 Imd = 0;

602 if (ImMd == 0)

603 dcp- >dpa_dnp->dm | i bctfn[count] = strdup(p);

604 el se

605 (voi d) asprl ntf(&dcp >dpa dnp->dm | i bctfn[count],

606 g p

607 if (dcp->dpa_ drrp >dm i bctfn[count] == NULL)

608 return (1);

609 ctf_setspecific(fp, dcp->dpa_dnp);

610 dcp- >dpa_count ++;

611 return (0);

612 }

614 /*

615 * We've been asked to |oad data that bel ongs to another process. As such we're
616 * going to pgrab it at this instant, |oad everything that we m ght ever care
617 * about, and then drive on. The reason for this is that the process that we're
618 * interested in mght be changing. As long as we have grabbed it, then this
619 * can’t be a problemfor us.

620 *

621 * For now, we're actually going to punt on nobst things and just try to get CTF
622 * data, nothing else. Basically this is only useful as a source of type

623 * information, we can't go and do the stacktrace |ookups, etc.

624 */

625 static int

626 dt_nodul e_| oad_proc(dtrace_hdl _t *dtp, dt_nodul e_t *dnp)

627 {

628 struct ps_prochandl e *p;

629 dt _nmodul e_cb_arg_t arg;

631 /*

632 * Note that on success we do not release this hold. W must hold this
633 * for our life tine.

634 */

635 p = dt_proc_grab(dtp, dnp->dmpid, 0, PGRAB_RDONLY | PGRAB_FORCE);

636 if (p == NULL) {

637 dt _dprintf("failed to grab pid: %\n", (int)dnmp->dm pid);

638) return (dt_set_errno(dtp, EDT_ CANTLOAD))) ;

639

640 dt _proc_| ock(dtp, p);

642 arg.dpa_proc = p;

643 arg.dpa_dtp = dtp;

644 arg. dpa_dnp = dnp;

645 arg. dpa_count = O;

646 if (Pobject_iter_resolved(p, dt_nodul e_|oad_proc_count, &arg) != 0) {
647 dt _dprintf("failed to iterate objects\n");

648 dt _proc_rel ease(dtp, p);

649 return (dt_set errno(dtp, EDT_CANTLQAD)) ;

650 }

new usr/src/lib/libdtrace/ common/dt_nodul e.c

652
653
654
655
656
657

659
660
661
662
663
664
665

667
668
669
670
671
672
673
674

676

678
679
680
681
682
683
684
685
686
687

689
690
691

693
694

696
697
698

700
701

703
704

706
707
708
709
710
711
712
713

715
716

}

if (arg.dpa_count == 0) {

dt _dprintf("no ctf data present\n");

dt _proc_unl ock(dtp, p);

dt _proc_rel ease(dtp)

return (dt_set errno(dtp, EDT_CANTLQAD)) ;
}

dmp->dm | i bctfp = mall oc(sizeof (ctf_file_t *) * arg.dpa_count);

if (dnmp->dm.libctfp == NULL) {
dt _proc_unl ock(dtp, p);
dt _proc_rel ease(dtp)
return (dt_set errno(dtp, EDT_NOMVEM)) ;

}
bzero(dnmp->dm |ibctfp, sizeof (ctf_file_t *) * arg.dpa_count);
dmp->dm | i bctfn = mal |l oc(sizeof (char *) * arg.dpa_count);
if (dnmp->dm.libctfn == NULL) {

free(dnmp->dm|ibctfp);

dt _proc_unl ock(dtp, p)

dt _proc_rel ease(dtp p)

return (dt_set errno(dtp, EDT_NOVEM)) ;
}
bzero(dnmp->dm libctfn, sizeof (char *) * arg.dpa_count);
dmp->dm nctflibs = arg. dpa_count;

arg. dpa_count = O;

if (Pobject_iter_resolved(p, dt_npdul e_|load_proc_build, &rg) != 0) {

dt _proc_unl ock(dtp, p);

dt _nodul e_unl oad(dtp, dnp);

dt _proc_rel ease(dtp, p);

return (dt_set errno(dtp, EDT_CANTLOAD));

assert(arg. dpa_count == dnp->dmnctflibs);

dt _dprintf("loaded %d ctf nodules for pid %\ n", arg.dpa_count,
(i nt)dnp->dm pid);

dt _proc_unl ock(dtp, p);

dt _proc_rel ease(dtp, p);

dmp->dm fl ags | = DI_DM LOADED,

return (0);

#endif /* | codereview */

int
dt

_modul e_l oad(dtrace_hdl _t *dtp, dt_nodule_t *dnp)

if (dmp->dm flags & DT_DM LOADED)
return (0); /* nodule is already |oaded */

if (dmp->dmpid != 0)
return (dt_nodul e_| oad_proc(dtp, dnp));

#endi f /* | codereview */

dnp- >dm ct dat a. ct s_nane ".SUNWctf";
dnmp->dm ctdata. cts_type SHT_PROGBI TS;
dnp->dm ctdata.cts_flags = 0;
dnmp->dm ct dat a. ct s_dat a NULL;

dnp- >dm ct dat a. ct s_si ze 0;

dnmp- >dm ct dat a. ct s_ent si ze = 0;

dnp->dm ctdata.cts_offset = 0;

dnmp- >dm synt ab. ct s_nane
dnp- >dm synt ab. cts_t ype

".syntab";
SHT_SYMIAB;

11

new usr/src/lib/libdtrace/ common/dt_nodul e.c

717
718
719
720
721
722

724
725
726
727
728
729
730

732
733
734
735
736
737
738
739
740
741
742
743

745
746
747
748
749
750
751
752

754
755

757
758

760
761
762
763

765
766

768
769
770
771
772
773

775
776

778
779
780
781

dnp- >dm synt ab.
dnp- >dm synt ab.
dnp- >dm synt ab.
dnmp- >dm synt ab.

si zeof (Elf64_Sym

dnp- >dm _synt ab

dmp->dm strtab.
dnmp->dm strtab.
dnmp- >dm st rt ab.
dnp->dm st rt ab.
dnp- >dm st rt ab.
dnmp->dm strtab.
dnmp->dm st rt ab.

| *

* Attenpt to |oad the nodul e’s CTF section,
* string table section.

cts_flags = O;
cts_data = NULL;
cts_size = 0;

cts_entsize = dnp->dm ops == &dt _nodops_64 ?
si zeof (Elf32_ Syn")
0;

.cts_offset =

cts_name = ".strtab";
cts_type = SHT_STRTAB;
cts_flags = 0;
cts_data = NULL;
cts_size = 0;

cts_entsize = 0;
cts_offset = 0;

* this will result in a successful

* W will then fail

*/

if (dt_nodul e_| oad_sect(dtp, dnp, &dnp->dm ctdat a)
dt _nodul e_| oad_sect (dt p, dnp,
dt _nodul e_| oad_sect (dt p, dnp,

dt _nodul e_unl oad(dtp, dnp);

return

* ok ok ok ¥

use el enent
&/

(-1); /* dt_errno is set for

Al l ocate the hash chains and hash buckets for synbol
This is relatively sinple since the synbol
and is known in advance.

dnmp- >dm nsynel ens =

dnp->dm synt ab. cts_si ze / dnp->dm synt ab. cts_entsi ze;

dnmp- >dm nsynbuckets = _dtrace_strbuckets;
dnmp->dm synfree = 1,

dnp- >dm synbuckets = nal | oc(si zeof (uint_t)
dnmp->dm synthai ns = mal | oc(si zeof (dt_symt) * dnp->dmnsynelens + 1);

if (dnp->dm synbuckets == NULL || dnp->dm synthains == NULL) {
dt ;

nodul e_unl oad(dt p,

return

}

bzer o(dnp- >dm synbucket s,
bzer o(dnp- >dm synthai ns,

/*

* Iterate over the synbol

np) .
(dt _set_errno(dtp, EDT_NOVEM);

* allocate the address map, fill it

*/
dnp- >dm asr sv

dt _dprintf("hashed % [%] (% synbols)\n",
dnp- >dm _nane, dnp->dm synt ab.cts_name, dnp->dm synfree -

if ((dnp->dm asmap = mal |l oc(sizeof (void *)

= dnp- >dm ops- >do_sym ni t (dnp);

dt _nodul e_unl oad(dtp, d

return

) ;
(dt _set_errno(dtp, EDT_NOVEM);

tabl e section,
contai n CTF data:
| oad_sect but data of size zero.
i as shown bel ow.

Not e that nodul es may not
if dt_nodul e_getctf()

&dnp- >dm synt ab)
&dnp- >dm st rt ab)

table is of fixed size
We allocate one extra el ement since we
indices instead of pointers and zero is our sentinel.

/* first free elenent is index 1 */

* dnp- >dm_nsynbucket s) ;

sizeof (uint_t) * dnp->dm nsynbuckets);

sizeof (dt_symt) * dnp->dmnsynelens + 1);

table data buffer and insert
* pane into the name hash if the nane and type are valid.

* dnp->dm asrsv))

12

== NULL) {

new usr/src/lib/libdtrace/ conmon/dt_nodul e. c 13 new usr/src/lib/libdtrace/ conmon/dt_nodul e. c
783 dnp- >dm ops- >do_synsort (dnp); 849 goto err;
850 }
785 dt _dprintf("sorted % [%] (% synbols)\n",
786 dnmp- >dm nane, dnp->dm syntab. cts_nanme, dnp->dm asl en); 852 if (ctf_inport(dnp->dmctfp, pfp) == CTF_ERR) {
853 dtp->dt_ctferr = ctf errno(dnp >dm ctfp);
788 dnmp->dm f |l ags | = DT_DM LQOADED, 854 (void) dt_set errno(dtp, EDT_CTF);
789 return (0); 855 goto err;
790 } 856 }
857 }
792 int
793 dt _nodul e_hasctf(dtrace_hdl _t *dtp, dt_nodule_t *dnp) 859 dt _dprintf("l oaded CTF container for % (%)\n",
794 { 860 dnp->dm nane, (void *)dnp->dmctfp);
795 if (dnmp->dmpid != 0 & dnp->dmnctflibs > 0)
796 return (1); 862 return (dnmp->dmctfp);
797 return (dt_nodul e_getctf(dtp, dnp) != NULL);
798 } 864 err:
865 ctf_cl ose(dnp->dmctfp);
800 #endif /* | codereview */ 866 dnp->dm ctfp = NULL;
801 ctf_file_t * 867 return (NULL);
802 ?t nmodul e_getctf(dtrace_hdl _t *dtp, dt_nodule_t *dnp) 868 }
803
804 const char *parent; 870 /* ARGSUSED*/
805 dt _nmodul e_t *pnp; 871 void
806 ctf_file_t *pfp; 872 dt_nodul e_unl oad(dtrace_hdl _t *dtp, dt_nodule_t *dnp)
807 int nodel; 873 {
874 int i;
809 if (dnmp->dmctfp !'= NULL || dt_nodul e_|l oad(dtp, dnp) != 0)
810 return (dnmp->dmctfp); 876 #endif /* | codereview */
877 ctf_cl ose(dnp- >dm ctfp)
812 if (dnmp->dm ops == &dt _nodops_64) 878 dnp->dmctfp =
813 nodel CTF_MODEL_LP64%;
814 el se 880 if (dnp- >dm i bctfp I'= NULL) {
815 nodel = CTF_MODEL_| LP32; 881 r (i =0; i <dmp->dmnctflibs; i++) {
882 ctf_close(dnmp->dmlibctfp[i]);
817 /* 883 free(dnp->dmlibctfn[i]);
818 * |If the data nodel of the npbdul e does not match our program data 884 }
819 * model, then do not permit CTF fromthis nodule to be opened and 885 free(dnp->dm.libctfp);
820 * returned to the conmpiler. |f we support mxed data nodels in the 886 free(dnp->dm.|ibctfn);
821 * future for conbined kernel/user tracing, this can be renoved. 887 dnmp->dm | i bctfp = NULL;
822 * 888 dnmp->dm nctflibs = 0;
823 if (dtp->dt_conf.dtc_ctfnodel != nodel) { 889 }
824 (void) dt_set_errno(dtp, EDT_DATAMODEL);
825 return (NULL); 891 #endif /* | codereview */
826 } 892 bzer o(&np->dm ct data, sizeof (ctf_sect_t));
893 bzer o(&dnp- >dm synt ab, sizeof (ctf_sect_t));
828 if (dmp->dm ctdata.cts_size == 0) { 894 bzer o(&np- >dm strtab, sizeof (ctf_sect_t));
829 (void) dt_set_errno(dtp, EDT_NOCTF);
830 return (NULL); 896 if (dnmp->dm synbuckets !'= NULL) {
831 } 897 free(dnp->dm synbucket s) ;
898 dnp- >dm synbuckets = NULL;
833 dmp->dm ctfp = ctf_buf open(&JInp->dm ct dat a, 899
834 &dnp- >dm synt ab, &dnp->dm strtab, &dtp->dt_ctferr);
901 if (dmp->dmsynthains != NULL) {
836 if (dmp->dmctfp == NULL) { 902 free(dnp->dm synchai ns);
837 (void) dt_set_errno(dtp, EDT_CTF); 903 dnp->dm synthai ns = NULL;
838 return (NULL); 904
839 1
906 if (dmp->dm.asmap ! = NULL) {
841 (void) ctf_setnodel (dnp->dmctfp, nodel); 907 free(dnp->dm asmap) ;
842 ctf_setspecific(dnp->dmctfp, dnp); 908 dnmp- >dm asmap = NULL;
909 1
844 if ((parent = ctf_parent_name(dnp->dmctfp)) != NULL)
845 if ((pmp = dt_nodul e_create(dtp, parent)) == NULL || 911 dnmp->dm synfree = O;
846 (pfp = dt_nodul e_getctf(dtp, pnp)) == NULL) { 912 dnmp- >dm _nsynbuckets = O;
847 if (pmp == NULL) 913 dnmp- >dm nsynel ens = O;
848 (void) dt_set_errno(dtp, EDT_NOMVEM ; 914 dnmp- >dm asrsv = 0;

new usr/src/lib/libdtrace/ common/dt_nodul e.c

915 dnmp->dm aslen = 0

917 dnmp->dm text _va = NULL;

918 dnp->dnLtext_size =0

919 dnmp->dm data_va = NULL

920 dnp- >dm dat a_si ze = 0;

921 dnp->dm bss_va = NULL;

922 dnp- >dm bss_size = 0

924 if (dnmp->dm.extern != NULL)

925 dt _i dhash_dest r oy(dnp- >dm ext er n)

926 dnp->dm extern = NULL;

927

929 (void) elf_end(dnmp->dmelf);

930 drmp->dm el f = NULL;

932 dnmp->dm pid = O;

934 #endif /* | codereview */

935 dnp- >dm fl ags & ~DT_DM LOADED,

936 }

938 void

939 dt_nodul e_destroy(dtrace_hdl _t *dtp, dt_nodule_t *dnp)

940 {

941 uint_t h = dt_strtab_hash(dnp->dm nane, NULL) % dt p->dt_nodbuckets
942 dt _nodul e_t **dnpp = &dt p->dt_nods][h]

944 dt _|ist_del et e(&dtp->dt_nodlist, dnp)

945 assert (dt p->dt _nnods != 0)

946 dt p- >dt _nnods- - ;

948 /*

949 * Now renove this nodule fromits hash chain. W expect to al ways
950 * find the nodule on its hash chain, so in this |oop we assert that
951 * we don’t run off the end of the |ist

952 */

953 while (*dnpp != dmp) {

954 dmpp = &((*dnpp) - >dm next);

955 assert (*dmpp != NULL);

956 }

958 *dnpp = dnp->dm next

960 dt _nodul e_unl oad(dtp, dnp)

961 free(dnp);

962 }

964 /*

965 * Insert a new external synmbol reference into the specified nodule. The new
966 * synbol will be nmarked as undefined and is assigned a synbol index beyond
967 * any existing cached synbols fromthis nodule. W use the ident’s di_data
968 * field to store a pointer to a copy of the dtrace_symnfo_t for this synbol
969 */

970 dt_ident _t *

971 dt _nodul e_extern(dtrace_hdl _t *dtp, dt_nodul e_t *dnp

972 const char *name, const dtrace_typeinfo_t *tip)

973 {

974 dtrace_synminfo_t *sip

975 dt _ident_t *idp

976 uint_t id;

978 if (dnp—>dn1extern == NULL && (dnp->dm extern = dt_idhash_create(
979 "extern”, NULL, dnp->dm nsynelens, Ul NT nmoo) == NULL) {

980 (v0|d) dt _set _errno(dtp, EDT_NOVEM ;

15

new usr/src/lib/libdtrace/ common/dt

981 return (NULL)

982 1

984 if (dt_idhash_nextid(dnp->dmextern, & d) == -1) {
985 (voi d) dt_set_errno(dtp, EDT SYNCFLCNV

986 return (NOLL);

987 }

989 if ((sip = malloc(sizeof (dtrace_sym nfo_ t))) == NULL) {
990 (void) dt_set_errno(dtp, EDT_NOVEM

991 return (NOLL);

992 }

994 idp = dt_idhash_insert(dnp->dm extern, nane, DT_| DENT_SYMBOL, 0, id
995 _dtrace_symattr, 0, &dt_idops_ thaw NULL dt p- >dt _gen) ;
997 if (idp == NULL) {

998 (void) dt_set_errno(dtp, EDT_NOVEM ;

999 free(sip)

1000 return (NULL)

1001 }

1003 si p->dts_obj ect = dnp->dm nane

1004 si p->dts_nane = idp->di _nane

1005 sip->dts_id = idp->di_id;

1007 idp->di _data = sip

1008 idp->di _ctfp = tip->dtt_ctfp

1009 idp->di _type = tip->dtt_type

1011 return (idp)

1012 }

1014 const char *

1015 dt_nodul e_nodel name(dt _nodul e_t *dnp)

1016 {

1017 if (dnp->dm ops == &dt nndops 64)

1018 return ("64-bit");

1019 el se

1020 return ("32-bit")

1021 }

1023 /* ARGSUSED */

1024 int

1025 dt _nodul e_getlibid(dtrace_hdl _t *dtp, dt_nodule_t *dnp, const ctf_file_t *fp)
1026 {

1027 int i;

1029 for (i =0; i < dnp- >dn1nctfl|bs i++) {

1030 if (dnp->dmlibctfp[i] == fp)

1031 return (i)

1032 }

1034 return (-1);

1035 }

1037 /* ARGSUSED */

1038 ctf_file_t *

1039 dt _nodul e_getctflib(dtrace_hdl _t *dtp, dt_nodule_t *dnp, const char *name)
1040 {

1041 int i

1043 (i =0; i <dmp->dmnctflibs; i++) {

1044 if (strcrmp(dnp- >dn1||bctfn[|] nanme) == 0)
1045 return (dnmp->dmlibctfp[i]);

1046 }

_nodul e. c

16

new usr/src/lib/libdtrace/ common/dt_nodul e.c

1048
1049

1051

1053
1054
1055
1056
1057
1058
1059
1060
1061

1063
1064
1065
1066
1067
1068

1070
1071

1073
1074
1075
1076
1077
1078

1080
1081
1082
1083
1084
1085
1086
1087
1088

1090
1091
1092
1093
1094
1095
1096

1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111

}

#endi f
1052 /*
* Update our nodul e cache by adding an entry for the specified nodule 'nane’.
/V% create the dt_nmpdul e_t and popul ate it using /systenfobject/<nane>/.

return (NULL);

/* ! codereview */

static void

dt

{

_modul e_updat e(dtrace_hdl _t *dtp, const char *nane)

char fname[MAXPATHLEN] ;
struct stat64 st;
int fd, err, bits;

dt _nodul e_t *dnp;
const char *s;
size_t shstrs;
CEl f _Shdr sh;

El f _Data *dp;

El f_Scn *sp;

(void) snprintf(fname, sizeof (fnane),
"o/ ¥%s/ obj ect”, OBJFS_ROOT, nane);

if ((fd = open(fname, O RDONLY)) == -1 || fstat64(fd, &st) == -1 ||
(dnp = dt_nodul e_create(dtp, nane)) == NULL)

dt _dprintf("failed to open %: %\n", fname, strerror(errno));

(void) close(fd);
return;

*

* Since the nodul e can unload out fromunder us (and /systen object
* will return ENCENT), tell libelf to cook the entire file now and
* then close the underlying file descriptor inmediately. If this

* succeeds, we know that we can continue safely using dnp->dmelf.

*/

dnp- >dm elf = el f_begi (, ELF_C READ, NULL);

err = elf_cntl (dnp->dm el f, ELF_C_FDREAD);

(void) close(fd);

if (dnmp->dmelf == NULL || err == -1 ||
el f getshdrstrndx(dnp >dm el f, &shstrs) == -1) {
dt _dprintf("failed to | oad 9%: %\ n",
fname, elf errmsg(elf _errno()));
dt _nodul e_destroy(dtp, dnp);
return;

}

switch (gelf getcl ass(dmp->dmel f)) {
case ELFCLASS3
dnp- >dm_ops
bits = 32;
br eak;
case ELFCLASS64
dnp- >dm ops
bits = 64;
br eak;
defaul t:
dt _dprintf("failed to | oad %: unknown ELF cl ass\n", fnane);
dt _nodul e_destroy(dtp, dmp);
return;

&dt _nodops_32;

= &dt _nodops_64;

new usr/src/lib/libdtrace/ common/dt_nodul e.c

1113
1114
1115
1116
1117
1118
1119
1120

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140

1142
1143

1145
1146

1148
1149
1150 }

1152 /*

/*
* Iterate over the section headers |ocating various sections of
* interest and use their attributes to flesh out the dt_nodul e_t.

r (sp = NULL; (sp = el f_nextscn(dnp->dmelf, sp)) != NULL) {
if (gelf getshdr(sp, &sh) == NULL || sh. sh _type == SHT_NULL ||
(s = elf_strptr(dnp->dmelf, shstrs, sh.sh_name)) == NULL)
continue; /* skip any mal for med’ sections */

if (strenp(s, ".text") == 0)
dnmp- >dm t ext _si ze = sh. sh_si ze;
dnp- >dm t ext _va = sh. sh_addr;
} else |f (strcmp(s, ".data") =
dnmp- >dm dat a_si ze = sh. sh si ze;
dnp- >dm dat a_ va = sh. sh_addr;
} else if (strcenp(s, ".bss") == 0) {
dnp->dm bss_si ze = sh. sh_si ze;
dnp- >dm_bss_va = sh. sh_addr;
} else if (strcnp(s, info") == 0 &&
(dp = el f_getdat a(sp NULL)) 1= NULL) {
bcopy(dp >d_buf, &dnp->dm.info,
M N(sh. sh size, sizeof (dn"p >dm|nf0)))
} else if (strcenp(s, fllename) ==
(dp = el f_get data(sp NULL)) !'= NULL) {
(voi d) strlcpy(dnp->dmfile
dp->d_buf, sizeof (dnp- >dmf||e))

}

dmp->dm flags | = DM _KERNEL;
dnp->dm nodid = ()OBJFS MODI D(st . st_i no);

if (dmp->dm.info.objfs_info_primry)
dnp->dm fl ags | = DT_DM PRI MARY;

dt _dprintf("opened %d-bit nodule % (%) [%]\n",
bits, dnp->dm nane, dnp->dmfile, dnp->dm modi d);

1153 * Unload all the | oaded nodul es and then refresh the nobdul e cache with the
1154 * latest list of |oaded nodul es and their address ranges.

1155 */
1156 void

1157 dtrace_update(dtrace_hdl _t *dtp)

1158 {
1159
1160

1162
1163
1164

1166
1167
1168
1169
1170
1171
1172

1174
1175
1176
1177

dt _nodul e_t *dnp;
DIR *dirp;

(dnp = dt _|ist_next (&dtp->dt_nodlist);
dnp !'= NULL; dmp = dt_Iist_next(dnmp))
dt _nodul e_unl oad(dtp, dnp);

/*

* Open /systenfobject and attenpt to create a |ibdtrace nodul e for
* each kernel nodule that is |oaded on the current system

*/

if (!(dtp->dt_oflags & DTRACE_O NOSYS) &&
(dirp = opendi r(OBJFS_ROOT)) != NULL) {
struct dirent *dp;

while ((dp = readdir(dirp)) |—NULL) {
if (dp->d_nane[0] !=
dt _nodul e update(dtp, dp->d_nane) ;

new usr/src/lib/libdtrace/ common/dt_nodul e.c 19

1179
1180

1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

1198
1199
1200
1201
1202
1203
1204
1205
1206
1207

1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

1223
1224
1225
1226
1227

1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244

) (void) closedir(dirp);

/*

* Look up all the macro identifiers and set di_id to the | atest val ue.
* This code collaborates with dt_lex.l on the use of di _id. W wll
* need to inplenent something fancier if we need to support non-ints.

*/
dt _i dhash_| ookup(dt p- >dt _macr os, egl d")->di _id = getegid();
dt _i dhash_| ookup(dt p->dt _macros, "euid")->di _id = geteuid();
dt _i dhash_| ookup(dt p->dt _nacros, "gid")->di _i getgid();
dt _i dhash_| ookup(dt p->dt _macros, "pid")->di i
dt _i dhash_| ookup(dt p- >dt _macros, " pgi d") ->di

get pgi d’(0);
();

i
i

d =

d = getpid();
_id

“id

i

id

|

dt _i dhash_| ookup(dt p- >dt _nacr os, pp| d") - >di = get ppi d

dt _i dhash_| ookup(dt p->dt _macros, "projid")- >d id get projid();

dt _i dhash_| ookup(dt p->dt _macros, "sid")->di = getsid(0);

dt _i dhash_| ookup(dt p- >dt _macr os, "taskl d") - >d _id = gettaskl d();

dt _i dhash_| ookup(dt p->dt _nacros, "uid")->di _ = getuid();

/*
* Cache the pointers to the nodul es representing the base executable
* and the run-time linker in the dtrace client handle. Note that on
* x86 krtld is folded into unix, so if we don't find it, use unix
*/i nst ead.
*

dt p- >dt _exec = dt _nodul e_| ookup_by_nanme(dtp, "genunix");
dtp->dt _rtld = dt_nodul e_| ookup_by nanme(dtp, "krtld");
if (dtp->dt_rtld == NULL)

dt p- >dt rtI d = dt_nodul e_| ookup_by_name(dtp, "unix");

*
* If this is the first time we are initializing the nodule list,

* renpve the nodule for genunix fromthe nodule list and then nove it
* to the front of the nodule list. W do this so that type and synbol
* queries encounter genunix and thereby optinize for the comon case

* in dtrace_|l ookup_by_nane() and dtrace_l ookup_by_type(), bel ow

*

if

(dtp->dt_exec != NULL &&

dt p->dt _cdefs == NULL && dt p->dt_ddefs == NULL) {
dt _Tist_del et e(&t p->dt _nodl ist, dtp->dt_exec);
dt _li st _prepend(&dt p->dt _nodl i st dt p- >dt _exec) ;

static dt_nodule_t *
_nodul e_from obj ect (dtrace_hdl _t *dtp, const char *object)

int err = EDT_NOMVOD;
dt _nodul e_t *dnp;

switch ((uintptr_t)object) {
case (uint ptr _t) DTRACE_OBJ_EXEC:
dnmp = dt p- >dt _exec;
br eak;
case (uintptr_t)DIRACE OBJ_RTLD:
dnmp = dtp->dt_rtld;
br eak;
case (uintptr_t)DTRACE _OBJ_CDEFS:
dnp = dt p->dt_cdefs;
br eak;
case (uint ptr _t) DTRACE_OBJ_DDEFS:
= dt p->dt _ddefs;
br eak;
defaul t:
dnmp = dt_nodul e_create(dtp, object);
err = EDT_NOVEM

new usr/src/lib/libdtrace/ comon/dt_nodul e.c

1245

1247
1248

1250
1251

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

1266
1267

1269
1270
1271
1272
1273

1275
1276
1277

1279
1280
1281
1282
1283

1285
1286
1287

1289
1290

1292
1293
1294

1296
1297

1299
1300
1301
1302
1303
1304
1305
1306
1307

1309
1310

}
/*

}

if (dnmp == NULL)
(void) dt_set_errno(dtp, err);

return (dmp);

* Exported interface to | ook up a synmbol by name. W return the CElf_Sym and
* conpl ete synbol information for the matching synbol.
*/

int

dtrace_| ookup_by_nane(dtrace_hdl _t *dtp, const char *object, const char *nane,

{

CEl f _Sym *synp, dtrace_syminfo_t *sip)

dt _nodul e_t *dnp;
dt _i dent _t *idp;
uint_t n, id;
GEl f Sym sym

uint_t mask
uint_t bits

0; /* mask of dt_nodule flags to nmatch */
0; /* flag bits that nust be present */

if (object != DTRACE_OBJ_EVERY &&
obj ect !'= DTRACE_OBJ_KMXDS &&
obj ect != DTRACE_OBJ_UMODS)
if ((dnp = dt_nodul e_from obj ect (dtp, object)) == NULL)
return (-1); /* dt_errno is set for us */

if (dt_nodul e_l oad(dtp, dnp) == -1)
return (-1); /* dt_errno is set for us */
n = 1;

} else {
if (object == DTRACE_OBJ_KMODS)
mask = bits = DT_DM KERNEL;
else if (object == DTRACE_OBJ_UMODS)
mask = DT_DM KERNEL;

dnmp = dt_list_next(&dtp->dt_nodlist);
= dt p- >dt _nnods;
}

if (symp == NULL)
synmp = &sym

for (; n>0; n--, dnp = dt_list_next(dnp)) {
if ((dnp >dmf|ags & mask) != bits)
continue; /* failed to nmatch required attributes */

if (dt_nodul e_| oad(dtp, dnp) == -1)
continue; /* failed to | oad synbol table */

if (dnmp->dm ops->do_symane(dnp, nane, synp, & d) != NULL) {
if (sip != NULL) {
si p->dt s_obj ect = dnp->dm nane;
si p->dts_name = (const char *)
dmp->dm strtab. cts_data + synp->st_naneg;
sip->dts_id = id;

) %eturn(o);

if (dnp->dmextern != NULL &&
(idp = dt_i dhash_I| ookup(dnp->dm extern, nane)) != NULL) {

new usr/src/lib/libdtrace/ conmon/dt

_nodul e. c

1311 if (synp !'= &sym

1312 synp->st_nane = (uintptr_t)idp->di_nane;
1313 synp->st _info =

1314 GELF_ST INFO(STB_GLOBAL, STT_NOTYPE);
1315 synp->st_other = 0;

1316 synp->st _shndx = SHN_UNDEF;

1317 synp->st _val ue = 0;

1318 synp->st_size =

1319 ctf_type_size(idp->di_ctfp, idp->di_type);
1320 }

1322 if (sip!= NULL) {

1323 si p->dt s_obj ect = dnp- >dm nane;

1324 si p->dts_nane = idp->di _naneg;

1325 sip->dts_id = idp->di_id

1326 }

1328 return (0);

1329 }

1330 }

1332 return (dt_set_errno(dtp, EDT_NOSYM);

1333 }

1335 /*

1336 * Exported interface to | ook up a synbol by address. W return the GElf_Sym
1337 * and conpl ete synbol information for the matching synbol .

1338 */

1339 int

1340 dtrace_| ookup_by_addr (dtrace_hdl _t *dtp, GElf_Addr addr,

1341 CEl f _Sym *synp, dtrace_symi nfo_t *sip)

1342 {

1343 dt _nodul e_t *dnp;

1344 uint_t id;

1345 const dtrace_vector_t *v = dtp->dt_vector;

1347 if (v != NULL)

1348 return (v->dtv_| ookup_by_addr (dtp->dt_varg, addr, synp, sip));
1350 for (drrp dt _list_next(&dtp->dt_nodlist); dnp != NULL;

1351 = dt_Tist_next(dnp)) {

1352 |f (addr - dnp->dmtext_va < dnp->dmtext_size ||

1353 addr - dnp->dm data_va < dnp->dm data_size ||

1354 addr - dnp->dm bss_va < dnp->dm bss_si ze)

1355] br eak;

1356 }

1358 if (dnp == NULL)

1359 return (dt_set_errno(dtp, EDT_NOSYMADDR));

1361 if (dt_nodul e_|l oad(dtp, dmp) == -1)

1362 return (-1); /* dt_errno is set for us */

1364 if (symp != NULL) {

1365 if (dnmp->dm ops->do_synmaddr (dnp, addr, synp, & d) == NULL)
1366 return (dt_set_errno(dtp, EDT_NOSYMADDR));

1367 1

1369 if (sip!= NULL)

1370 si p->dt s_obj ect = dnp->dm nane;

1372 if (symp !'= NULL) {

1373 si p->dts_nanme = (const char *)

1374 dnp->dm strtab cts_data + synp->st_naneg;
1375 sip->dts_id = id;

1376 } else {

21

new usr/src/lib/libdtrace/ common/dt

1377
1378
1379
1380

1382
1383

1385
1386
1387
1388
1389
1390
1391
1392
1393

25
1394
1395
1396
1397

1399
1400

1402
1403
1404
1405
1406

1408
1409
1410
1411

1412
1413
1414
1415
1416

1418
1419
1420
1421

1423
1424

1426
1427
1428

1430
1431
1432
1433
1434
1435

51
1436
1437
1438
1439

_nodul e. c

si p->dts_nane = NULL;
sip->dts_id = 0;

}
}
return (0);
}
i nt
dtrace_| ookup_by_type(dtrace_hdl _t *dtp, const char *object, const char *nane,

dtrace_typeinfo_t *tip)

{

dtrace_typei nfo _toti;

dt _nodul e_t dnp;

int found = 0O;

ctf_id_t id;

uint_t n, i;

uint_t n;

int justone;

ctf_file_t *fp;

char *buf, *p, *q;
#endi f /* | codereview */

uint_t mask = 0; /* mask of dt_nodule flags to match */
uint_t bits = 0; /* flag bits that nust be present */

if (object !'= DTRACE_OBJ_EVERY &&
obj ect != DTRACE_OBJ_KMXDS &%
obj ect != DTRACE_OBJ_UMMDS) {

if ((dnp = dt nDduIefromobJect(dtp,

obj ect)) == NULL)

return (-1); /* dt _errno is set for us */

if (dt_nodul e_|l oad(dtp, dnmp) == -1)
return (-1); /* dt_errno is set for us */
n=1;
justone = 1;
} else {
if (object == DTRACE_CBJ_KM:DS)
mask = blts = DT_DM KERNEL,;

else if (object
mask = DT_DM KERNEL;

== DTRACE OBJ_UMODS)

dnp = dt_list_next (&dtp->dt
= dt p- >dt _nnods;
justone = 0;

_nodlist);

}
if (tip == NULL)
tip = &i;
for (; n>0; n--, dnp = dt_list_next(dnp)) {
if ((dnmp- >dmf|ags & mask) != bits)
continue; /* failed to nmatch required attributes */
/*
* |f we can’t |l oad the CTF container, continue on to the next
* nodule. If our search was scoped to only one npbdul e then
* return imediately |eaving dt_errno unnodified.
*
/
if (dt_nodul e_hasctf(dtp, dnp) == 0) {
if (dt_nodul e_getctf(dtp, dnp) == NULL) {

if (justone)
return (-1);
cont i nue;

22

new usr/src/lib/libdtrace/ conmon/dt

1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473

63
1474
1475

65
1476
1477
1478

68
69
1479

1481
1482
1483

1485
1486

1488
1489

1491
1492
1493

_nodul e. c

"tip’ and keep goi ng
underlying structure

* ok kb % ok

if (dnp->dmpid == 0) {
id ctf Iookup
fp dnp- >dm ct f
} else {

if ((p

Look up the type in the nodul e’s CTF contai ner.
match 1s a forward declaration tag,

= strchr(nane,
b

23

If our
save this choice in
in the hope that we will |ocate the
definition. Oherw se just return.

by_name(dnp->dm ctf p,
P

nane) ;

"ty 1= NULL) {

uf = strdup(nane);

if (buf

p = strchr(buf, ' 7);
i f

((d

f dt
i

—+T T
ey 1]

p

p =
O

fp == NULL ||
+ 1)) == CIF_ERR)

== NULL)

return (dt_set_errno(dtp,

StUy) 1= NULL)

EDT_NOVEM)) ;

strchr(p + 1

_modul e_getctflib(dtp, dnp, buf);
(id = ctf_l ookup_by_nane(fp,

id = CTF_ERR

free(buf);

} else {
for (i

C

F_ERR) {
f_I ookup_by_
->dtt_obj ect

——
— =
=
D.

——) ”
-

—~
UU'?'U o

V

Q

=3

—

O

—_

—

©

P

->dtt ctfp;
->dtt_type =

g

CTF_K_

if (ctf_type_kind(dnmp->dmctfp,
dmp- >dm ct f p,

(ctf_type_ki nd(fp,
FORWARD)

< dnp->dm nctflibs;

np->dm | ibctfp[i];
tf_| ookup by_| name(f p,
| CTE)

i++) {
. name) ;
br

name(dnp >dm ctfp,
dnp >dm nane;

nane)) != CTF_ERR) {

dnp >dm ctfp;
id;

ctf_type_resolve(fp, id)) !=

ctf_type_resol ve(

id)) !I'= CTF_K_FORWARD)

return (0);

found++;

}

if (found == 0)
return (dt_set

return (0);
}

int
dtrace_synbol _type(dtrace_hdl _t *dtp,
const dtrace_sym nfo_t *sip, dtrace

1494 {

1495

1497
1498
1499
1500

dt _nmodul e_t *dnp;
tip->dtt_object = NULL;
tip->dtt_ctfp = NULL;
tip->dtt_type = CTF_ ERR
tip->dtt_flags = 0;

_errno(dtp,

EDT_NOTYPE)) ;

const GElf_Sym *synp,
_typeinfo_t

*tip)

new usr/src/lib/libdtrace/ common/dt

1501 #endif /* | codereview */

1503 if ((dnmp = dt_nodul e_| ookup_by_nane(dtp, sip->dts_object)) == NULL)
1504 return (dt_set_errno(dtp, EDT_NOVOD));

1506 if (synp->st_shndx == SHN _UNDEF && dnp->dmextern != NULL) {
1507 dt _ident_t *idp =

1508 dt _i dhash_| ookup(dnp->dm extern, sip->dts_nane);
1510 if (idp == NULL)

1511 return (dt_set_errno(dtp, EDT_NOSYM);
1513 tip->dtt_ctfp = idp->di_ctfp;

1514 tip->dtt_type = idp->di_type;

1516 } else |f (GELF ST_TYPE(synp->st_info) != STT_FUNC) {
1517 (dt _modul e_getctf(dtp, dnp) == NULL)

1518 return (-1); /* errno is set for us */
1520 tip->dtt_ctfp = dnp->dm ct

1521 tip->dtt_type = ctf Iookup by synbol (dnp->dm ctfp, sip->dts_id);
1523 if (tip->dtt_type == CTF_ERR) {

1524 dtp->dt_ctferr = ctf_errno(tip->dtt_ctfp);
1525 return (dt_set_errno(dtp, EDT_CTF));

1526 }

1528 } else {

1529 ip->dtt_ctfp = DI_FPTR CTFP(dtp);

1530 i p->dtt_type = DT_FPTR_TYPE(dtp);

1531 }

1533 tip->dtt_object = dnp->dm nane;

1534 return (0);

1535 }

1537 static dtrace_objinfo_t *

1538 dt_nodul e_i nfo(const dt_nodul e_t *dnp, dtrace_objinfo_t *dto)
1539 {

1540 dt o- >dt o_nane = dnp- >dm _nane;

1541 dto->dto_file = dnp->dmfile;

1542 dto->dto_id = drrp >dm nodi d;

1543 dto->dto_flags = O;

1545 if (dnp->dmflags & DT_DM KERNEL)

1546 dto->dto_flags | = DTRACE OBJ_F_KERNEL;

1547 if (dnp->dmflags & DT_DM PRI MARY)

1548 dto->dto_flags | = DTRACE_OBJ_F_PRI MARY;

1550 dto->dto_text _va = dnp->dm text_va;

1551 dt o->dt o_t ext _si ze = dnp->dm text_size;

1552 dt o->dt o_data_va = dnp >dm dat a_va;

1553 dt o->dt o_dat a_si ze = dnp->dm dat a_si ze;

1554 dt o->dt o_bss_va = dnp->dm bss_va;

1555 dt o->dt 0_bss_si ze = dnp- >dm_bss_si ze;

1557 return (dto);

1558 }

1560 i nt

1561 dtrace_object_iter(dtrace_hdl _t *dtp, dtrace_obj_f *func, void *data)
1562 {

1563 const dt_nodul e_t *dnp = dt_list_next(&dtp->dt_nodlist);
1564 dtrace_objinfo_t dto;

1565 int rv;

_nodul e. c 24

new usr/src/lib/libdtrace/ common/dt_nodul e.c 25

1567 for (; dmp !'= NULL; dnmp = dt_list_next(dnp)) {
1568 if ((rv = (*func)(dtp, dt_nodul e_i nfo(dnp, &dto), data)) != 0)
1569 return (rv);

1570 }

1572 return (0);
1573 }

1575 int
1576 dtrace_obj ect _info(dtrace_hdl _t *dtp, const char *object, dtrace_objinfo_t *dto)
1577 {

1578 dt _nodul e_t *dnp

1580 if (object == DTRACE_OBJ_EVERY || object == DTRACE_OBJ_KMODS |
1581 obj ect == DTRACE_OBJ_UMODS || dto == NULL)

1582 return (dt_set_errno(dtp, EINVAL))

1584 if ((dnmp = dt_nodul e_from obj ect(dtp, object)) == NULL)

1585 return (-1); /* dt_errno is set for us */

1587 if (dt_nodul e_| oad(dtp, dmp) == -1)

1588 return (-1); /* dt_errno is set for us */

1590 (void) dt_nodul e_i nfo(dnp, dto)

1591 return (0);

1592 }

new usr/src/lib/libdtrace/ conmon/dt_nodul e. h

R R R R

2049 Tue Jan 14 16:48:56 2014

new usr/src/lib/libdtrace/ conmmon/dt_nodul e. h

4474
4475
4476
4479
4480

DTrace Userland CTF Support

DTrace userland Keyword

DTrace tests should be better citizens
pi d provider types

dof erul ation m ssing checks

Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License, Version 1.0 only
(the "License"). You nay not use this file except in conpliance
with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://wwm. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

Copyri ght 2004 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terms.

*

/*/

* Copyright (c) 2013, Joyent, Inc. Al rights reserved.

*/

#endif /* | codereview */

#i fndef _DT_MODULE_H
#def i ne _DT_MODULE_H

#pragna i dent " VYW % % %E% SM "

#i ncl ude <dt _inpl.h>

#i fdef _ cplusplus
extern "C' {
#endi f

extern dt_nodul e_t *dt_nodul e_create(dtrace_hdl _t *, const char *);
extern int dt_nodul e_l oad(dtrace_hdl _t *, dt_nodule_t *);

extern void dt_nodul e_unl oad(dtrace_hdl _t *, dt_nodule_t *)
extern void dt_nodul e_destroy(dtrace_hdl _t *, dt_nodule_t *

)

extern dt_nodul e_t *dt_nodul e_| ookup_by_nane(dtrace_hdl _t *, const char *);
extern dt_nodul e_t *dt_nodul e_| ookup_by_ctf(dtrace_hdl _t *, ctf_file_t *);

extern int dt_nodul e_hasctf(dtrace_hdl _t *, dt_nodule_t *);

#endi f /* | codereview */

extern ctf_file_t *dt_nodul e_getctf(dtrace_hdl

extern dt_ident_t *dt_npdul e_extern(dtrace_hdl
const char *, const dtrace_typeinfo_t *);

*, dt_nodule_t *);

t
_t *, dt_nodule_t *,

extern const char *dt_nodul e_nodel nane(dt _nodule_t *);

new usr/src/lib/libdtrace/ conmon/dt_nodul e. h

extern int dt_nodul e_getlibid(dtrace_hdl_t *, dt_nodule_t *,
const ctf_file_t *);

extern ctf_file_t *dt_nodul e_getctflib(dtrace_hdl _t *, dt_nodule_t *,
const char *);

#endif /* | codereview */

#i fdef __ cplusplus

}

#endi f

#endif /* _DT_MODULE H */

new usr/src/lib/libdtrace/ conmon/dt_open.c

R R R R

54253 Tue Jan 14 16:48:56 2014
new usr/src/lib/libdtrace/ conmon/dt_open.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.

10 * See the License for the specific | anguage governi ng perm ssions
11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 =

19 * CDDL HEADER END
20 */
22 | *

23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. Al rights reserved.

24 * Copyright (c) 2013, Joyent, Inc. Al rights reserved.
24 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.
25 * Copyright (c) 2012 by Del phix. Al rights reserved.

*

/

28 #include <sys/types. h>

29 #include <sys/nodctl.h>

30 #include <sys/system nfo.h>
31 #include <sys/resource. h>

33 #include <libelf.h>
34 #include <strings.h>
35 #include <alloca. h>
36 #include <linits.h>
37 #include <unistd. h>
38 #include <stdlib.h>
39 #include <stdio. h>

40 #include <fcntl. h>

41 #include <errno. h>

42 #include <assert.h>

44 #define _PGOSI X_PTHREAD_SEMANTI CS
45 #include <dirent. h>
46 #undef _PQOSI X_PTHREAD_SEMANTI CS

48 #include <dt_inpl.h>

49 #i ncl ude <dt_program h>
50 #i ncl ude <dt_nodul e. h>
51 #include <dt_printf.h>
52 #include <dt_string. h>
53 #i nclude <dt_provider.h>

55 /*

new usr/src/lib/libdtrace/ conmon/dt_open.c

* Stability and versioning definitions. These #defines are used in the tables
* of identifiers belowto fill in the attribute and version fields associated
* with each identifier. The DI_ATTR * macros are a convenience to pernit nore
* conci se declarations of conmon attributes such as Stabl e/ Stabl e/ Cormon. The
* DT_VERS * macros declare the encoded integer values of all versions used so
* far. DI_VERS_LATEST nust correspond to the |atest version value anong all

* versions exported by the D conpiler. DT_VERS STRING must be an ASCI| string
* that contains DT_VERS LATEST within it along with any suffixes (e.g. Bet a) .

* You must update DT_VERS_LATEST and DT_VERS STRI NG when addi ng a new version,
* and then add the new version to the _dtrace_versions[] array declared bel ow.
* Refer to the Solaris Dynanic Tracing Guide Stability and Versioning chapters
* respectively for an explanation of these Dirace features and their val ues.

*

* NOTE: Although the DTrace versioning scheme supports the |abeling and

* introduction of inconpatible changes (e.g. dropping an interface in a
* maj or rel ease), the libdtrace code does not currently support this.

* Al versions are assunmed to strictly inherit fromone another. If

* we ever need to provide divergent interfaces, this will need work.

*

/
#defi ne DIT_ATTR STABCWN { DTRACE_STABI LI TY_STABLE, \

DTRACE_STABI LI TY_STABLE, DTRACE_CLASS_COWON }
#define DI_ATTR EVOLCWN { DTRACE_STABI LI TY_EVOLVI NG \
DTRACE_STABI LI TY_EVOLVI NG DTRACE_CLASS_COMMON \

}
/*

* The version nunber should be increased for every customer visible rel ease

* of DTrace. The nmmjor nunber should be increnmented when a fundanental

* change has been nade that would affect all consuners, and would reflect

* sweepi ng changes to DIrace or the D | anguage. The m nor nunber shoul d be

* increnented when a change is introduced that could break scripts that had

* previously worked; for exanple, adding a new built-in variable could break
* a script which was already using that identifier. The micro nunber shoul d

* be changed when introducing functionality changes or major bug fixes that

* do not affect backward conpatibility -- this is nerely to make capabilities
* easily determned fromthe version nunber. M nor bugs do not require any

* nodification to the version nunber.

*

/
#define DI_VERS 1 _0 DT_VERS|I ON_NUMBER(1, 0, 0)
#define DT_VERS_1_1 DT_VERSI ON_NUMBER(1, 1, 0)
#define DT_VERS_1_2 DT_VERSI ON_NUMBER(1, 2, 0)
#define DT_VERS 1 2 1 DT_VERSI ON_NUMBER(1, 2, 1)
#define DI_VERS 1 2 2 DT_VERS|I ON_NUMBER(1, 2, 2)
#define DT_VERS_1_3 DT_VERSI ON_NUMBER(1, 3, 0)
#define DT_VERS_1_4 DT_VERS| ON_NUMBER(1, 4, 0)
#define DT_VERS 1 4 1 DT_VERSI ON_NUMBER(1, 4, 1)
#define DI_VERS 1 5 DT_VERS|I ON_NUMBER(1, 5, 0)
#define DT_VERS_1_6 DT_VERSI ON_NUMBER(1, 6, 0)
#define DT_VERS_1_6_1 DT_VERS| ON_NUMBER(1, 6, 1)
#define DT_VERS 1 6_2 DT_VERSI ON_NUMBER(1, 6, 2)
#define DT_VERS 1 6 3 DT_VERSI ON_NUMBER(1, 6, 3)
#define DI_VERS_1_7 DT_VERSI ON_NUMBER(1, 7, 0)
#define DI_VERS_1_7_1 DT_VERSI ON_NUMBER(1, 7, 1)
#define DT_VERS_1_8 DT_VERS| ON_NUMBER(1, 8, 0)
#define DI_VERS 1_8 1 DT_VERSI ON_NUMBER(1, 8, 1)
#define DI_VERS 1_9 DT_VERSI ON_NUMBER(1, 9, 0)
#define DT_VERS_1_9 1 DT_VERSI ON_NUMBER(1, 9, 1)

#define DI_VERS 1_10
#define DI_VERS 1_11
#define DI_VERS 1_12

DT_VERS| ON_NUMBER(1, 10, 0)
DT_VERS| ON_NUMBER(1, 11, 0)
DT_VERS| ON_NUMBER(1, 12, 0)

#endif /* T codereview */

#define DT_VERS LATEST DT_VERS 1_11
#define DI_VERS_STRING "Sun D 1.12"
#define DI_VERS _STRING "Sun D 1.11"

new usr/src/lib/libdtrace/ conmon/dt_open.c

121 const dt_version_t _dtrace_versions[] = {

122 DT_VERS_1_0, /* D APl 1.0.0 (PSARC 2001/466) Solaris 10 FCS */
123 DT_VERS 1 1, /* DAPI 1.1.0 Solaris Express 6/05 */

124 DT_VERS_1_2, /* DAPI 1.2.0 Solaris 10 Update 1 */

125 DT_VERS 1_2_1, /* DAPlI 1.2.1 Solaris Express 4/06 */

126 DT _VERS 1 2°2, /* DAPI 1.2.2 Solaris Express 6/06 */

127 DT_VERS_1_3, /* D APl 1.3 Solaris Express 10/06 */

128 DT_VERS_1_4, /* D APl 1.4 Solaris Express 2/07 */

129 DT_VERS 1_4_1, /* DAPlI 1.4.1 Solaris Express 4/07 */

130 DT_VERS 1_5, /* D APl 1.5 Solaris Express 7/07 */

131 DT_VERS_1_6, /* D APl 1.6 */

132 DIT_VERS 1 6_1, /* DAPl 1.6.1 */

133 DI_VERS 1_6_2, /* DAPl 1.6.2 */

134 DT _VERS 1 6 3, /* DAPl 1.6.3 */

135 DT_VERS_1_7, /* DAPI 1.7 */

136 DI _VERS 1 7.1, /* DAPI 1.7.1 */

137 DT_VERS 1_8, /* D APl 1.8 */

138 DI _VERS 1 8 1, /* DAPl 1.8.1 */

139 DT_VERS_1_9, /* D APl 1.9 */

140 DI_VERS 1" 9 1, /* DAPl 1.9.1 */

141 DT_VERS_1_10, /* D APl 1.10 */

142 DT_VERS 1_11, /* D APl 1.11 */

143 DT_VERS_1_12, /* D APl 1.12 */

144 #endif /* 1 codereview */

145 0

146 };

148 /

149 Tabl e of global identifiers. This is used to populate the global identifier
150 hash when a new dtrace client open occurs. For nore info see dt_ident.h.
151 The gl obal identifiers that represent functions use the dt_idops_func ops
152 and specify the private data pointer as a prototype string which is parsed

*
*
*
*
*
153 *
154 *
155 *
156 *
157 *
158 *
159 *
160 *
161 st
162 {
163
164 {
165
166 {
167
168 {
169
170 {
171
172 {
173
174 {
175
176 {
177
178 {
179
180 {
181
182 {
183
184 {
185
186 {

/
atic const dt
"alloca",

"argo",
"argl",
"arg2",
"arg3",
"arg4",
"arg5",
"arg6",
"arg7",
"arg8",
"arg9",

"args"

when the identifier
C function prototypes except that the special
wi |l dcard to represent
The standard " "
par anet er
A paraneter enclosed in square brackets (e.g.

is first encountered. These prototypes | ook |ike ANSI
synmbol "@ can be used as a
a single paranmeter of any type (i.e. any dt_node_t).
notation can al so be used to represent varargs. An e

list is taken to nean void (that is,
"[int]"™) denotes an optional

ar gunent .

avg",

_ident_t _dtrace_globals[] = {
DT_I DENT_FUNC, 0, DI'F_SUBR ALLOCA, DT_ATTR _STABCWN, DT_VERS_1_0,
&dt _i dops_func, "void *(size t)" },
DT_1 DENT SC‘ALAR 0, DI F_VAR _AR®D,
&dt T dops_type, "int 64 t"),
DT_| DENT_SCALAR, 0, DI F_VAR ARGL,
&dt _idops_type, "int64_t" },
DT_| DENT_SCALAR,
&dt _Tdops_type, "int64_t" }
DT_| DENT_SCALAR, i
&dt _i dops_type, "int64_t"
DT_| DENT_SCALAR,
&dt _Tdops_type, "int64_t" }
DT_| DENT_SCALAR,
&dt _i dops_type, "int64_t" },
DT_| DENT_SCALAR,
&dt _i dops_type, "int64_t" }
DT_| DENT_SCALAR,
&dt _i dops_type, "int64_t" },
DT_| DENT_SCALAR,
&dt _i dops_type, "int64_t" },
DT_| DENT_SCALAR,
&t _idops_type, "int64_t" },
DT_| DENT_ARRAY, 0, DI F_VAR ARGS,
&dt _iTdops_args, NULL 1,
DT_| DENT_AGGFUNC, 0, DTRACEAGG AVG DT_ATTR STABCWN, DT_VERS_1_0,

DT_ATTR_STABCWN, DT_VERS 1_0,

DT_ATTR_STABCMN, DT_VERS 1_0,
DT_ATTR_STABCWN, DT_VERS 1_0,
DT_ATTR_STABCMN, DT_VERS 1_0,
DT_ATTR_STABCWN, DT_VERS 1_0,
DT_ATTR STABCWN, DT _VERS 1 0,
DT_ATTR_STABCWN, DT_VERS 1_0,
DT_ATTR STABCWN, DT _VERS 1 0,
DT_ATTR_STABCMN, DT_VERS 1_0,
DT_ATTR_STABCWN, DT_VERS 1 0,

DT_ATTR_STABCWN, DT_VERS_1_0,

/ npty
no argunents are permtted).

new usr/src/lib/libdtrace/ conmon/dt_open.c

187

188 {
189
190
191
192 {
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210 {
211
212
213
214
215
216
217
218
219 {
220

221

222

223 {
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249 {
250

251

252 {

~— o~

-~

e e e e e e e e e)

&dt _i dops_func, "void(@" },

"basenane”, DT_| DENT_ FUNC 0, DI F_SUBR_BASENAME, DT_ATTR STABCWN, DT_VERS 1_0,
&dt |dops func, stnng(const char *)" },

"bcopy", DT_I DENT_| FUNC 0, DI F_SUBR | B(IPY DT_ATTR_STABCWN, DT_VERS 1_0,
&dt |dops func, "void(void *, void *, size t)"

"breakpoi nt", DT_I| DENT_ACTFUNC, 0, DT_ACT_BREAKPO NT,
DT_ATTR STABCWN, DT_VERS_1 0
&dt _i dops_func, "void()"

"cal ler", DT_I DENT_ SCALAR 0, D F VAR _CALLER, DT_ATTR _STABCMN, DT_VERS_1_0,
&dt _idops_type, "uintptr_t"

"chill", DT_I DENT ACTFUNC 0, DT, ACT CHI LL, DT_ATTR STABCW\, DT_VERS_ 1_0,
&dt _i dops_func, "voi d(| nt)"

"cl eanpath", DT_| IDENT FUNC, 0, DIF_ SUBR CLEANPATH, DT_ATTR_STABCM\,
DT VERS 1_0, &dt idops_func, "string(const char *)"

"clear", DT_| DENT ACTFUNC 0, DT_ ACT _CLEAR, DT_ATTR_ STABCNN DT_VERS_1_0,
&dt _idops_func, "void(. "

"commit", DT_I DENT_ ACTFUNC 0, DT ACT COMW T, DT_ATTR _STABCMN, DT_VERS_1_0,
&dt _idops_func, "void(int)" },

"copyi n", DT_I DENT FUNC 0, DI F_SUBR_COPYI N, DT_ATTR STABCWN, DT_VERS 1_0,
&dt |dops func, "voi d *(uintptr_t, size t)" },

"copyinstr", DT_| IDENT FUNC, 0, DIF_ SUBR COPYI NSTR,
DT ATTR STABCWN, DT_VERS 1 0,
&dt _i dops_f unc, strlng(umtptr t, [size_t])" },

"copyinto", DT_IDENT_FUNC, 0, DI F_ SUBR (IPYI NTO, DT_ATTR_STABCW\,
DT_ VERS 1.0, &dt_idops_func, "void(uintptr_t, size_t, void *)"

"copyout™, DT_| DENT FUNC 0, DIF_ SUBR COPYQUT, DT_, ATTR STABCIVN DT_ VERS 1.0,

&dt | |dops func, "voi d(v0|d “*, uintptr_t, size t)" },
"copyoutstr", DT_ IDENT FUNC, 0, DI F_SUBR_ OGDY(JJTSTR
DT _ ATTR STABCWN, DT_VERS_1_0,

&dt i dops_func, "void(char *, uintptr_t, size t)"
"count", DT_I DENT AGGFUNC 0, DTRACEAGG COJNT DT_ATTR_ STABCI\/N DT_VERS_1_0,
&dt _i dops_func, "voi d()
"curthread", DT_ IDENT SCALAR, O, "D F_VAR_CURTHREAD,
DTRACE_STABI LTTY_STABLE, DTRACE STABI LI TY_PRI VATE,
DTRACE_CLASS COVMJ\I }, DT_VERS 1_0,
&dt |dops _type, "genunix‘kthread_t *" },
"ddi _pat hname", DT_I DENT_FUNC, 0, DI F_SUBR DDl _PATHNAME,

DT_ATTR | EVO_CNN DT_VERS_1_0,

&dt_ldops func, "string(void *, int64_t)" },

"denormal i ze", DT_| | DENT ACTFUNC, 0, DT_ACT_! DEN(RMALI ZE, DT_ATTR_STABCWN,
DT VERS 1_0, &dt_idops_func, "void(. },

"di rname™, DT_| DENT_| FUNC, 0, DIF_ SUBR DI RNAME, DT_ATTR_STABCWN, DT_VERS 1_0,
&dt | _idops_func, "string(const char *)" },

"di scard", DT_I DENT ACTFUNC 0, DT ACT_DI SCARD, DT_ATTR_STABCWN, DT_VERS 1_0,
&dt i dops_func, "void(int T,

"epi d", DT_|DENT_ SCALAR 0, DIF_VAR EPID, DT_ATTR STABCWN, DT_VERS_ 1_0,
&t _idops_type, "uint_t" ¥,

"errno", DT_I DENT SCALAR 0, DI F_VAR ERRNO, DT_ATTR STABCMWN, DT _VERS 1 0,
&dt |dops type, "int"

"execnane”, DT_| DENT_SCALAR, 0, DI F_VAR_EXECNAME,
DT_. ATTR STABCMN, DT_VERS 1_0, &dt_idops_type, "string" },

"exit", DT_I DENT ACTFUNC 0, DT_ACT_EXIT, DT_ATTR STABCWN, DT VERS 1 0,
&dt_l dops_func, "voi d(| nt)" },

"freopen", DT_| DENT ACTFUNC 0, DT_ ACT FREGPEN, DT ATTR_STABCMWN,
DT VERS 1 1, &dt_idops_ func "void(@ ..

“ftruncate", DT_I DENT_ACTFUNC, O, DT ACT FTRUNCATE DT ATTR_STABCMW\,
DT VERS 1_0, &dt_idops_ func "void()" },

"func", DT_I DENT_ ACTFUNC 0, DT ACT _SYM DT_ATTR_STABCW\,
DT VERS 1.2, &dt |dops func, "_symaddr(uintptr_t)" },

"getmajor”, DT_TDENT_FUNC, 0, DI F_SUBR GETMAJCR,
DT_ATTR EVOLCWN, DT VERS 1.0,
&dt _i dops_func, "genuni x" maj or _t (genuni x‘ dev_t)" },

"getmnor", DT_I DENT_FUNC, 0, DI F_SUBR _GETM NOR,
DT_ATTR_EVOLCWN, DT_VERS 1_0,
&dt _i dops_func, "genuni x" ninor_t (genunix‘ dev_t)" },

"htonl", DT_I DENT FUNC, 0, DI F_SUBR_HTONL, DT_ATTR_EVOLCWN, DT_VERS_ 1_3,

new usr/src/lib/libdtrace/ conmon/dt_open.c

253 &dt _i dops_func, "uint32_t(uint32_t)" },

254 { "htonl|", DT_I DENT FUNC 0, DIF_SUBR HTONLL, DT_ATTR EVOLCWN, DT_VERS 1_3,
255 &dt _idops_func, "uint64_t(uint64_t)" }

256 { "htons", DT_I DENT_| FUNC 0, DI F_SUBR HTONS, DT_ATTR _EVOLCW, DT_VERS 1_3,
257 &dt i dops_func, "uint16_t(uint16_t)"

258 { "getf", DT_| DENT FLNC 0, DI F_SUBR GETF, DT_ A'I'I'R STABCMN, DT_VERS_1_10,
259 adt _idops_func, f|Iet T*(int)" },

260 { "gid", DT_IDENT_SCALAR, 0, DIF_VAR G D, DT_ATTR STABCWN, DT_VERS_1 0,
261 &dt i dops_type, "gi dt"

262 { "id", DT_TDENT_SCALAR, 0, DIF_ VAR I D, DT_ATTR _STABCWN, DT_VERS 1_0,

263 &dt _i dops_type, "uint_t" },

264 { "index", DT_I DENT FUNC 0, DI F_SUBR | NDEX, DT_ATTR_STABCW, DT VERS_1_1,
265 &dt |dops func, |nt(const char *, const char *, [int

266 { "inet_ntoa", DT_IDENT_FUNC, 0, DI F_ SUBR I NET_NTOA, DT_ATTR STABCNN

267 DT VERS 1°5, &dt_idops_ func "string(ipaddr_t *)" },

268 { "inet_ntoa6", DT_ | DENT FUNC, O, Di F SUBR_INET_NTCOAG6, DT_ATTR_STABCMWN,
269 DT VERS_1_5, &dt i dops_func "string(in6_addr_t *)"

270 { "inet_ntop", DT_IDENT_FUNC, 0, DI F_ SUBR | NET_NTOP, DT_. ATTR STABCNN

271 DT VERS 1°5, &dt_idops_ func "string(int, void * },

272 { "ipl", DT_IDENT_ SCALAR 0, DIF_ VAR | PL, DT_ ATTR STABCWN, DT_VERS 1_0,
273 &dt i dops_type, "uint_t"

274 { "json", DT_IDENT FUNC, 0, DIF SUBR JSON, DT_ATTR STABCWN, DT_VERS 1_11,
275 &dt i dops_func, strlng(const char * “const char *)" },

276 { "jstack", DT_I DENT ACTFUNC 0, DT_ACT_JSTACK, DT_ATTR STABCWN, DT_VERS 1_0,
277 &dt _idops_func, "stack(. "

278 { "lltostr", DT_| DENT FUNC o, DI F SUBR LLTOSTR, DT_ATTR _STABCWN, DT_VERS_1_0,
279 &dt | |dopsfunc strlng(lnt64t [int])" },

280 { "llquantize", DT_|I DENT_AGGFUNC, O, DTRACEAC{S 5> LLQUANTI ZE, DT_ATTR_STABCW\,
281 DT_ VERS 1_7, &dt_idops_func,

282 "v0|d(@ |nt32t int32_t, |nt32t int32_t, ...)" },

283 { "lquantize", DT_| DENT . AGGFUNC 0 DTRACEAGG LQJANTI ZE

284 DT_ATTR STABCWN, DT_VERS 1 0,

285 &dt _i dops_func, "void(@ int 32 _t, int32_t "},

286 { "nmax", DT_| DENT AGG3UNC, 0, DTRACEAGG._ MAX, DT_ ATTR STABOWN, DT_VERS_1_0,
287 &dt _i dops_func, "voi d(@ },

288 { "mn", DT_I DENT_. AGGFUNC 0, DTRACEAGG M N, DT_ATTR_STABCWN, DT_VERS_1_0,
289 &dt ~i dops_func, "voi d(},

290 { "nod", DT_| DENT_, ACTFUNC, O, DT_ACT_MOD, DT_ATTR_STABCW,

291 DT VERS 12, &dt idops_func, "_symaddr(uintptr_t)" },

292 { "msgdsize", DT IDENT FUNC, 0, DI F_SUBR MSGDSI ZE,

293 DT_ATTR STABCMWN, DT VERS 1_0,

294 &dt _idops_func, "size_t(mblk_t *)" },

295 { "msgsize", DT_IDENT_FUNC, 0, DI F_SUBR MSGSI ZE,

296 DT_ATTR_. STABCWN, DT VERS_l_O,

297 &dt _i dops_func, "size t(mblk_t *)"

298 { "mutex_owned", DT_| DENT_FUNC, 0, DIF_SUBR_ NUTEX OWNED,

299 Dr ATTR EVOLCWN, DT_VERS 1 _ 0,

300 &dt’ |dops_func "int(genuni x‘ knutex_t *)" },

301 { "mutex_owner", DT_IDENT_FUNC, 0, DI F_SUBR_MJTEX_OANER,

302 DT_ ATTR EVOLCW, DT_VERS 1_0,

303 &dt i dops_func, "genuni x"kthread_t *(genunix‘knutex_t *)" },

304 { "nmutex_type_adaptive", DT_IDENT_FUNC, 0, DI F_SUBR MJTEX_ TYPE_ADAPTI VE,
305 DT_ATTR EVC]_CNN DT_VERS 1 0,

306 &dt _i dops_ func "int(genuni x‘ kmutex_t *)"

307 { "nutex_type_spin" DT_| DENT_FUNC, 0, DI F_SUBR_ MJTEX TYPE_SPI N,

308 DT_ATTR EVO_CI\/N DT_VERS_1 0,

309 &dt _i dops_func, "int(genunix‘knutex_t *)" },

310 { "ntohl", DT_I DENT FUNC 0, DIF_SUBR NTOHL, DT_ATTR EVOLCMN, DT_VERS_1_3,
311 &dt _i dops_func, "uint32_t(uint32_t)"

312 { "ntohl ", DT_I DENT FUNC 0, DI F_SUBR _NTOHLL, DT ATTR_EVOLCWN, DT_VERS 1_3,
313 &dt _i dops_func, "uint64_t(uint64_t)" }

314 { "ntohs", DT_I DENT FUNC 0, DI F_SUBR_NTCHS, DT_ATTR EVOLCWN, DT_VERS 1_3,
315 &dt_l dops_func, "uint16_t(uint16_t)" },

316 { "normalize", DT_I DENT_ACTFUNC, O, DT ACT_NORMALI ZE, DT_ATTR_STABCWN,

317 DT VERS 1-0, &dt_idops_ func "voi d(.

D",
318 { "panic", DT_I DENT_ACTFUNC, 0, DT_ ACT PANI C DT_ATTR_STABCWN, DT_VERS 1_0,

new usr/src/lib/libdtrace/ conmon/dt_open.c

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341 {
342
343
344 {
345
346 {
347

{

{

e e e e e T e e e

348
349
350
351
352
353 {
354
355
356 {
357
358
359
360
361
362
363
364
365
366 {
367
368
369 {
370
371 {
372
373
374 {
375
376 {
377
378 {
{
{

~—~ m -

379
380
381
382
383
384 {

&dt _i dops_func, "void()"

1
"pid", DT_I DENT SCALAR 0, DI F_VAR PI D, DT_ATTR_STABCM\, DT_VERS_1_0,

&dt "i dops_type, " pi d

L
"ppid", DT_I DENT_SCALAR, 0, DIF_VAR PPID, DT_ATTR STABCWN, DT_VERS 1 0,

&t _idops_type, "pid_t"

"print", DT_I DENT ACTFUNC "o, DT ACT_PRI NT, DT_ATTR STABCWN, DT_VERS 1_9,

&dt _i dops_func, "voi d(@

I
"printa", DT_I DENT ACTFUI\C 0, DT_ACT_PRI NTA, DT_ATTR _STABCWMN, DT_VERS 1 _0,

&dt _idops_func, "void @ T

(
"printf", DT_I DENT ACTFUI\C 0, DT ACT_PRI NTF, DT_ATTR STABCMN, DT_VERS 1 0,

&dt |dops func, "voi d(@ DR
" probefunc", DT_ IDENT SCALAR, O, Dl F_VAR PROBEFUNC,

DT_. ATTR STABCWN, DT_VERS_1 0, &dt_idops_type, "string" },
"probennd”, DT | DENT_SCALAR, 0, DI F_VAR PROBEMD,

DT_ATTR STABCMN, DT_VERS 1_0, &dt i dops_type, "string" },
" probenane”, DT_| DENT_SCALAR, O, Dl F_VAR PROBENANME,

DT_. ATTR STABCWN, DT_VERS_1 0, &dt_idops_type, "string" },
"probeprov", DT_I| DENT_SCALAR, 0, DI F_VAR PROBEPROV,

DT_ATTR STABCWN, DT_VERS 1 0, &dt idops_type, "string" },
"progenyof ", DT_I DENT_FUNC, 0, DI F_SUBR_PROGENYCF,

DT _ ATTR STABCWN, DT_VERS 1 _0,

&dt _idops_func, "int(pid_t)" },
"quanti ze", DT_I DENT_AGGFUNC, 0, DTRACEAGG QUANTI ZE,

DT_ATTR STABCMWN, DT_VERS 1_0,

&dt _i dops_func, "void(@ .

1
“raise", DT_|DENT ACTFUNC 0, DT ACT RAI SE, DT_ATTR STABCWN, DT_VERS_1_0,

&dt _i dops_func, "voi d(| nt)"

},
"rand", DT_| DENT FLNC O DI F_SUBR_RAND, DT_ATTR STABCWN, DT_VERS 1_0,

&dt _idops_func, "int()" },

“rindex", DT_I DENT FUNC, 0, DI F_SUBR_RI NDEX, DT_ATTR STABCWN, DT_VERS 1 1,

&dt_l dops_func, "int(const char *, const char *, [int])" },

"rw_iswiter", DT_I DENT FUNC, 0, DI F_SUBR_RW.I SWRI TER,

DT_ATTR_EVOLCMW, DT ERS_ 1 0,

&dt’ |dops func, "int(genunix‘krw ock_t *)"
"rw_read_hel d", DT_| DENT_FUNC, 0, DI F_SUBR_ RVVREAD HELD,

DT_ATTR EVC]_CNN DT_VERS 1 0,

&dt _i dops_func, "int(genunix‘krw ock_t *)"
"rwwite_held", DT_| IDENT FUNC, 0, DI F_SUBR RWVRI TE HELD,

DT_ATTR EVQCI\/N DT_VERS 1 0,

&dt _i dops_func, "int(genunix'krw ock_t *)" },

"sel f", DT_I DENT_ PTR 0 0, DT_ATTR STABCWN, DT_VERS 1_0,

&t _idops_type, "voi d" 1,
"setopt”, DT_|I DENT_ACTFUNC, 0, DT_ ACT SETOPT, DT_ATTR_STABCMW\,

DT VERS 1 2, &dt i dops_| func "voi d(const char *, [const char *])" },
"specul ate", DT_| IDENT ACTFUNC, 0, DT_ACT_SPECULATE,

DT _ ATTR STABCWN, DT_VERS_1_0,

&dt i dops func, "void(int)” }
"specul ation", DT_I DENT FUNC, 0, DI F_SUBR_SPECULATI ON,

DT_ATTR. STABCWN, DT_VERS 1_0,

&dt _i dops_func, "int()"

"stack", DT_| DENT ACTFUNC 0, DT ACT_STACK, DT_ATTR _STABCWN, DT_VERS_1_0,

&dt |dops func, "stack(...)" },

"stackdepth”, DT I DENT SCALAR, 0 Dl F_VAR_STACKDEPTH,
DT_ATTR STABCWN, DT_VERS_ 1 _0,
&dt _i dops_type, "uint32_t

"stddev", DT_|I DENT_AGGFUNC, 0, DTRACEAGG STDDEV, DT_ATTR _STABCW,

DT VERS 1_6, &dt i dops_| func "voi d(

Q"
"stop", DT_I DENT ACTFUI\C 0, DT_ACT STOP, DT_ ATTR STABCWN, DT_VERS_1_0,

&t _idops_func, "voi d() 1,

"strchr", DT_I DENT FUNC 0, DI F_SUBR STRCHR, DT ATTR STABCMN, DT_VERS 1_1,

&dt _i dops_func, strlng(const char *, char

"strlen", DT_I DENT FUNC 0, DI F_SUBR_ STRLEN DT _. ATTR STABCWN, DT_VERS_1_0,

&dt _idops_func, "size_t(const char *)"

"strjoin", DT_|DENT FUI\C 0, DI F_SUBR _STRJA N, DT ATTR_STABCWN, DT_VERS_1_0,

&dt | |dops func, strlng(const char *, const char *)"

"strrchr", DT_I DENT_ FUI\C 0, DI F_SUBR _STRRCHR, DT_ATTR_ STABCIVN DT_VERS_1_1,

new usr/src/lib/libdtrace/ conmon/dt_open.c

385 &dt _i dops_func, "string(const char *, char)" },

386 { "strstr", DT_I DENT FUNC 0, DI F_SUBR _STRSTR, DT_ATTR STABCWN, DT_VERS 1_1,
387 &dt _i dops_func, strlng(const char *, const char *)" },

388 { "strtok", DT_I DENT_| FUNC 0, DI F_SUBR _STRTOK, DT_ATTR STABCWN, DT_VERS 1_1,
389 &dt_l dops_f unc, strlng(const char *, const char *)"

390 { "strtoll", DT_I DENT FUNC 0, DI F_SUBR STRTOLL, DT_ATTR_ STABCI\/N DT_VERS_ 1_11,
391 &dt _i dops_func, "int 64 _t(const char * [| nt])" },

392 { "substr", DT_I DENT FUNC 0, DI F_SUBR_ SUBSTR DT_ATTR STABCNN DT_VERS 1_1,
393 &dt _idops_func, "string(const char *, int, [int

394 { "suni, DT_I| DENT_. AGG:UNC 0, DTRACEAGG SUM DT._ A'I'I'R STABCNN DT_VERS_1_0,
395 &dt "i dops_func, "voi d(@ },

396 { "syni, DT_I DENT_ ACTFUNC 0, DT_ACT_SYM DT_ATTR _STABCW,

397 DT_VERS 1_2, &dt |dops func, "_symaddr(uintptr_t)" },

398 { "systent, DT_TDENT ACTFUNC 0, DT_ACT_SYSTEM DT_ATTR STABCW, DT_VERS 1_0,
399 &dt _idops_func, "void(@ BERE

400 { "this", DT_I DENT_ PTR 0 0, DT_ ATTR STABCMN, DT_VERS 1_0,

401 &t _idops_type, "voi d" 1,

402 { "tid", DT_| DENT SCALAR 0, DIF_VAR TID, DT_ATTR STABCWN, DT_VERS_1_0,

403 &dt "i dops_type, "id_t" },

404 { "timestanp", DT_| DENT_SCALAR, 0, DI F_VAR TI MESTAMP,

405 DT_ATTR _STABCWN, DT_VERS_1_0,

406 &dt _idops_type, "uint64_t"

407 { "tolower", DT_| DENT FUNC 0, DF SUBR TC]_Q/\ER DT_ATTR_STABCWN, DT_VERS_1_8,
408 &dt _idops_func, strlng(const char * },

409 { “"toupper", DT_| DENT_| FUNC 0, DI F_SUBR TOUPPER, DT_ATTR STABCWN, DT_VERS 1_8,
410 &dt | _idops_func, strlng(const char *)"

411 { "trace", DT_| DENT ACTFUNC 0, DT_ACT_TRACE, DT ATTR_STABCWN, DT_VERS_1_0,
412 &dt _i dops_func, "voi d(@ T,

413 { "tracenent, DT_I DENT_ACTFUNC, 0, DT_ACT_TRACEMEM

414 DT_ATTR_STABCWN, DT_VERS_1_0,

415 &dt _i dops_func, "void(@ size_t, ...)" },

416 { "trunc", DT_I DENT_ ACTFUNC 0, DT_ACT_ TRUNC DT ATTR_STABCMW\,

417 DT VERS_1_0, &dt_idops_func, "void(..

418 { "uaddr", DT_| DENT_ACTFUNC, 0, DT ACT UADDR, DT ATTR STABCW,

419 DT_VERS_1_2 &dt _i dops_func, "_usymaddr(uintptr_t)" },

420 { "ucaller", DT_|DENT_SCALAR, 0, D F VAR_UCALLER, DT_ATTR_STABCMW\,

421 DT_ VERS 1 2, &t _idops_type, "uint64 t"

422 { "ufunc", DT_|I DENT_ACTFUNC, 0, DT_ACT_USYM DT_ ATTR STABCMW,

423 DT VERS 1 2, &dt_idops_func, "_usymaddr(uintptr_t)" },

424 { "uid", DT_|DENT_ SCALAR 0, DI F VAR U D, DT_ATTR_STABCWN, DT_VERS_ 1_0,

425 &dt _i dops_type, "ui d_t T,

426 { "unod", DT_|I DENT_ACTFUNC, 0, DT_ACT_UMOD, DT_ATTR _STABCW\,

427 DT VERS 1 2, &dt_idops_func, ™ usymaddr(uintptr_t)" },

428 { "uregs", DT_IDENT_ARRAY, 0, DIF_ VAR UREGS, DT_ATTR STABCWN, DT_VERS 1_0,
429 &dt _idops_regs, NULL },

430 { "ustack", DT_I DENT_ ACTFUNC, 0, DT_ACT_USTACK, DT_ATTR STABCWN, DT_VERS_1_0,
431 &dt |dops func, "stack(. 1,

432 { "ustackdepth", DT_ IDENT SCALAR O DI F_VAR_USTACKDEPTH,

433 DT_ATTR STABCW, DT_VERS 1 2,

434 &dt _i dops_type, "uint32_t" },

435 { "usyni', DT_| DENT_ACTFUNC, 0, DT_ACT_USYM DT_ATTR STABCW,

436 DT_VERS 1 2, &dt_idops_func, " _usymaddr(uintptr_t)" },

437 { "vnregs", DT IDENT ARRAY, 0, DI F_ VAR VMREGS, DT_ATTR _STABCWN, DT_VERS 1_7,
438 &dt |dops regs, NULL },

439 { "vtimestanp", DT_| DENT_SCALAR 0, DI F_VAR VTl MESTAWP,

440 DT ATTR STABCWN, DT_VERS_1_0,

441 &dt |dops type, "uint64_t"

442 { "wal | timestanp", DT_| DENT_SCALAR, O DI F_VAR WALLTI MESTAWP,

443 DT_ATTR_STABGW, DT_VERS_1_0,

444 &dt _i dops_type, "int64_t" T,

445 { "zonename™, DT_IDENT_SCALAR, 0, DI F_VAR ZONENAME,

446 DT_ATTR_STABCNN DT_VERS_l_O “&dt i dops_type, "string" },

447 { NULL, O, O, O, { O, O, O}, O, NULL, NULL }

448 1},

450 /[*

new usr/src/lib/libdtrace/ conmon/dt_open.c

451 * Tables of ILP32 intrinsic integer and floating-point type tenplates to use
452 * to popul ate the dynamc "C' CTF type container.
453 */

454 st atl c const dt_intrinsic_t _dtrace_intrinsics_32[] = {
455 { "void", { CTF_INT_SIGNED, O, 0 }, CTF_K_ INTEGER },
456 { "signed”, { CTF_INT_SIGNED, 0, 32 }, CTF_K_|INTEGER },
457 un5|gned , { 0, 0, 32}, CIF_K INTEGER },
458 "char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_|INTEGER }
459 { "short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_| NTECER },
460 { "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K INTEGER },
461 { "long", { CTF_INT_SIGNED, 0, 32}, CTF_K INTEGER },
462 { "long long", [CTF_INT_SIGNED, 0, 64 }, CTF K | NTEGER }
463 { "signed char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_ I NTEGER }
464 { "signed short", { CTF_INT_SIGNED, 0, 16 }, CTF_K INTEGER },
465 { "signed int", { CTF_INT _STGNED, 0, 32}, CTF K |INTEGER},
466 { "signed long", { CTF_INT_SIGNED, 0, 32}, CTF_K_ INTEGER },
467 "signed | ong Iong", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
468 "unsi gned char", { CTF_I NT_CHAR, O, 1 |
0 |

469 "unsi gned short "

.
470 "unsigned int", { 0, 0, 32}, - K
471 { "unsigned long", { 0, 0, 32 }, CTF_K_INTEGER },
472 un5|gned | ong Iong , { 0, 0, 64}, CITF_K_INTECER },
473 { " Bool", { CTF_INT BOO., 0, 8 }, CTF K INTEGER },
474 "float", { CTF_FP_SINGLE, 0, 32 }, CTF_K FLQAT },
475 { "double", { CTF_FP_DOUBLE, 0, 64 }, CTF_K FLOAT },
476 { "long double", { CTF_FP_LDOUBLE, 0, 1287}, CTF_K FLOAT },
477 "fI oat inagi nary", { CTF_FP_ IMAGRY 0, 32 }, CTF_K FLOAT
478 { "doubl e imaginary", { CTF FP_DIMAGRY, 0, 64 }, CTF K FLOAT },
479 { "long doubl e |mag| nary { CTF_FP_LDI MAGRY, 0, 128}, CTF_K FLOAT },

480 { "float conplex", { CTF_FP_CPLX, 0, 64 }, CTF_K_FLOAT },

481 "doubl e conpl ex' { CTF FP_DCPLX, 0, 128 }, CIF_K FLOAT },

482 { "long doubl e corrpl ex", [CTF_FP_ LDCPLX 0, 256 }, CTF_K FLOAT },
483 { NULL, { 0, 0, O}, 0}

484 };

486 [*

487 * Tables of LP64 intrinsic integer and floating-point type tenplates to use
488 * to popul ate the dynamc "C' CTF type container.
489 */

490 static const dt nsic_t _dtrace_intrinsics_64[] = {
|

i
491 "voi d", { CTF_INT_SIGNED, 0, 0 }, CTF_K_INTEGER },
492 { "signed", { CTF_INT_SIGNED, 0, 32 }, CTF_K_|INTEGER },
493 unS|gned , { 0, 0, 32}, CITF_K_ INTEGER },
494 { "char™, { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_|INTEGER },
" SIGNED, 0, 16 }, CTF_K_ I NTEGER },

495 { "short", { CTF_INT
496 { "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K |INTEGER },
497 { "long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
498 "long long", { CT NT_S|
499 "si gned char",
500 { "signed short", { CTF
501 { "signed int", { CTF_I
o}

INT_SIGNED | CTF_INT_CHAR, O, 8 }, CTF_K_INTEGER },

| CTF_K_| NTEGER },

NT_SIGNED, 0, 32 }, CTF_K | NTEGER },

502 "si gned | ong", : GNED, 0, 64 }, CTF_K_INTECER },

503 "signed long | { - INT_SIGNED, 0, 64 }, CTF_K_|INTEGER },

504 { "unsigned char", { CTF_INT_CHAR 0, 8 }, CITF }INTC-E },
0

505 { "unsigned short " , {0, 0, 16}, CIF_K INTEGER },
506 "unsigned int", { 0, 0, 32}, CTF_K |INTEGER },

507 "unsi gned long", { O, O, 64 }, CTF_K_ INTEGER },

508 { "unsigned long long", { O, 0, 64 }, CTF_K INTEGER },

509 { "_Bool", { CTF_INT_BOO., 0, 8
510 { "float", { CTF_FP_SINGLE, 0, 32 }, CTF_K FLOAT },

511 { "doubl e", { CTF_FP_DOUBLE, 0, 64 } CTF_K_FLQOAT },

512 { "l ong double", { CTF_FP_ LDClJBLE 0, 128 }, CTF_K FLOAT },

513 "float irmginary", { CTF_FP_I MAGRY, 0, 32 }, CTF_K_FLOAT },

514 “doubl e imaginary", { CTF FP_DI MAGRY, 0, 64 }, CTF_K FLOAT },

515 "l ong doubl e |rmg| nary { CTF_FP_LDI NAG?Y 0, 128 }, CTF_K FLQAT },
516 { "float conplex", { CTF_ FP CPLX, 0, 64 }, CIF_K FLOAT },

new usr/src/lib/libdtrace/ conmon/dt_open.c

517 { "doubl e conpl ex", { CTF_FP_DCPLX, 0, 128 }, CTF_K FLOAT },

518 { "long doubl e conplex", { CTF_FP_LDCPLX, 0, 256 }, CTF_K FLOAT },
519 { NULL, { 0, 0O, O}, 0}

520 };

522 | *

523 * Tables of ILP32 typedefs to use to populate the dynamc "D' CTF container.
524 * These aliases ensure that D definitions can use typical <sys/types.h> nanes.
525 */

526 static const dt_typedef_t _dtrace_typedefs_32[] = {

527 { "char", "int8_t" },

528 { "short", "intl16_t" },

529 { "int", "int32_t" },

530 "long long", "int64_t" },

531 "int", "intptr_t" },

532 "int", "ssize_t" },

533 { "unsigned char", "uint8_t" },
534 "unsi gned short", "uintl6_t" },
535 "unsi gned", "uint32_t" },

536 "unsi gned |l ong long", "uint64_t" },
537 "unsi gned char", "uchar_t" },
538 "unsi gned short", "ushort_t" },

539 "unsi gned", "uint_t" },
540 { "unsigned long", "ulong_t" },
541 { "unsigned long long", "u_longlong_t" },

542 "int", "ptrdiff_t" },

543 "unsi gned”, "uint ptr t" o},
544 "unsi gned "size_t" },
545 { "long", "id_t" },

546 { "long", "pid_t" },

547 NULL NULL }

548 };

550 /*

551 * Tables of LP64 typedefs to use to populate the dynam c "D' CTF contai ner.
552 * These aliases ensure that D definitions can use typical <sys/types.h> nanes.
553 */

554 static const dt_typedef_t _dtrace_typedefs_64[] = {

555 { “char", "int8_t" },

556 "short", "int1l6_t" },

557 { "int", "int32_t" },

558 { "long", "int64_t" },

559 "long", "intptr_t" },

560 "l ong", "ssize_t" },

561 "unsi gned char", "uint8_t" },
562 "unsi gned short "uint16_t" },
563 "unsi gned", "ui nt 32_t" },

564 "unsi gned long", "uint64_t" },
565 "unsi gned char" "uchar t" o},
566 { "unsigned short™, "ushort _t"),
567 "unsi gned", "uint_t"

568 "unsi gned | ong", "ul ong_ t" o},

569 { "unsigned long long", "u Iongl ong_t" },
570 "Iong", "ptrdiff_t" },

571 { "unsigned long", "uintptr_t" },

572 un5|gned Iong , "size_t" },
573 "int", "id_t" },

574 int", "p|dt" B

575 NULL, NULL }

576 };

578 [*

579 * Tables of ILP32 integer type tenplates used to popul ate the dtp->dt_ints[]
580 * cache when a new dtrace client open occurs.
581 */

582 static const dt_intdesc_t _dtrace_ints_32[] = {

Val ues are set by dtrace_open().

new usr/src/lib/libdtrace/ common/dt_open.c 10
583 { "int", NULL, CTF ERR Ox7fffffffuULL },

584 { ' un5|gned int", NULL, CTF_ERR, OxffffffffULL },

585 { "long", NULL, CTF ERR OXT7fffffffuULL },

586 { "unsigned Iong NULL, CTF_ERR, OxffffffffULL },

587 { "long | ong", NULL, CTF_ERR, Ox7fffffffffffffffULL },

588 { "unsigned long long", NULL, CTF_ERR, OxffffffffffffffffULL }

589 };

591 /

592 * Tables of LP64 integer type tenplates used to populate the dtp->dt_ints[]
593 * cache when a new dtrace client open occurs. Values are set by dtrace_open().
594 */

595 statl c const dt_intdesc_t _dtrace_ints_64[] = {

596 { "int", NULL, CTF_ERR, Ox7fffffffuULL J,

597 { ' unS|gned int", NULL, CTF_ERR, OxffffffffULL },

598 { "long", NULL, CTF ERR OX7fffffffffffffffuULL },

599 { "unsigned Iong NULL, CTF_ERR, OxffffffffffffffffULL },

600 { "long | ong", NULL, CTF_ERR, Ox7fffffffffffffffuULL },

601 { "unsigned long long", NULL, CTF_ERR, OxffffffffffffffffULL }

602 };

604 /*

605 * Table of macro variable tenplates used to populate the macro identifier hash
606 */Wnen a new dtrace client open occurs. Values are set by dtrace_update().
607 *

608 static const dt_ident_t _dtrace_macros[] = {

609 "egid", DT_IDENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 },

610 "eui d", DT_|IDENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 },

611 { "gid", DT_IDENT_SCALAR 0, 0, DT_ATTR STABCW, DT_VERS 1 0 },

612 { "pid", DT_IDENT_SCALAR 0, 0, DT_ATTR STABCW, DT_VERS 1 0 },

613 "pgid", DT_IDENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT _VERS 1 0 },

614 " ppi d", DT_| DENT_SCALAR, 0, 0, DT_ATTR STABCMN, DT_VERS 1 0 },

615 rojid", DT_IDENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 },

616 { "sid", DT | DENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT _VERS 1 0 },

617 "taskid", DT_| DENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT _VERS 1 0 },

618 "tar get' DT_| DENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 },

619 "uid", DT_I DENT_SCALAR, 0, O, DT ATTR_STABCWN, DT_VERS 1 0 },

620 { NULL, O, O, O, { O, O, O }, 0}

621 };

623 /[*

624 * Hard-wired definition string to be conpiled and cached every tinme a new
625 * DTrace library handle is initialized. This string should only be used to
626 * contain definitions that shoul d be present regardl ess of DTRACE O NOLI BS.
627 */

628 static const char _dtrace_hardwire[] = "\

629 inline long NULL = 0; \n\

630 #pragma D binding \"1.0\" NULL\nN\

631 ";

633 /*

634 * Default DTrace configuration to use when opening |ibdtrace DTRACE_O NODEV.
635 * |If DTRACE_O NODEV is not set, we |oad the configuration fromthe kernel.
636 * The use of CTF_MODEL_NATIVE is nore subtle than it might appear: we are
637 * relying on the fact that when running dtrace(1M, isaexec wll invoke the
638 * binary with the sane bitness as the kernel, which is what we want by default
639 * when generating our DIF. The user can override the choice using oflags.
640 */

641 static const dtrace_conf_t _dtrace_conf = {

642 DI F_VERSI ON, /* dtc_difversion */

643 DI F_DI R_NREGS, /* dtc_difintregs */

644 DI F_DTR_NREGS, /* dtc_diftupregs */

645 CTF_MODEL_NATI VE /* dtc_ctfrodel */

646 };

648 const dtrace_attribute_t _dtrace_maxattr = {

new usr/src/lib/libdtrace/ common/dt_open.c 11

649
650
651
652

654
655
656
657
658

660
661
662
663
664

666
667
668
669
670

672
673
674
675
676

678
679
680
681
682
683
684

686
687

689
690

692
693
694
695
696
697
698
699

701
702
703

705
706
707
708
709

711
712
713

DTRACE_STABI LI TY_MAX,
DTRACE_STABI LI TY_MAX,

DTRACE_CLASS_MAX

B

const dtrace_attribute_t _dtrace_defattr = {
DTRACE_STABI LI TY_STABLE,
DTRACE_STABI LI TY_STABLE,
DTRACE_CLASS_COMVON

b

const dtrace_attribute_t _dtrace_symattr = {
DTRACE_STABI LI TY_PRI VATE,
DTRACE_STABI LI TY_PRI VATE,
DTRACE_CLASS_UNKNOWN

e

const dtrace_attribute_t _dtrace_typattr = {
DTRACE_STABI LI TY_PRI VATE,
DTRACE_STABI LI TY_PRI VATE,
DTRACE_CLASS_UNKNOWN

I

const dtrace_attribute_t _dtrace_prvattr = {
DTRACE_STABI LI TY_PRI VATE,
DTRACE_STABI LI TY_PRI VATE,
DTRACE_CLASS_UNKNOWN

e

const dtrace_pattr_t _dtrace
{ DTRACE_STABI LI TY_UNSTABLE,
{ DTRACE_STABI LI TY_UNSTABLE,
{ DTRACE_STABI LI TY_UNSTABLE,
{ DTRACE_STABI LI TY_UNSTABLE,
{

DTRACE_STABI LI TY_UNSTABLE,

be

const char *_dtrace_defcpp =
const char *_dtrace_defld =
const char *_dtrace_libdir =
const char *_dtrace_provdir
int _dtrace_strbuckets = 211;
int _dtrace_intbuckets = 256;
uint_t _dtrace_strsize = 256;
uint_t _dtrace_stkindent =1
uint_t _dtrace_pi dbuckets

uint_t _dtrace_ pldlrul|m— 8;
_dtrace_bufsize = 512;

int _dtrace_argmax = 32

int _dtrace_debug = 0;

const char *const _dtrace_ve

int

typedef struct dt_fdlist {
int *df _fds;
uint_t df_ents;
uint_t df_size;

} dt_fdlist_t;

#pragme init(_dtrace_init)
voi d
_dtrace_init(void)

714

_prvdesc = {

DTRACE_STABI LI TY_UNSTABLE,
DTRACE_STABI LI TY_UNSTABLE,
DTRACE_STABI LI TY_UNSTABLE,
DTRACE_STABI LI TY_UNSTABLE,

DTRACE_CLASS COMVON
DTRACE_CLASS_COVWON

DTRACE_CLASS_COVMON

= 64;

_dtrace_rdvers = RD_VERSI ON,

Jio
DTRACE_CLASS_COMVON ?
I8

DTRACE_STABI LI TY_UNSTABLE, DTRACE_CLASS_COMMVON

“lusr/ccs/li
"/ usr/ccs/ bi

ib/cpp";
n/1d";

1) to invoke */

/* default cpp(
d(1) to invoke */

/* default

"/usr/lib/dtrace"; /* default library directory */
= "/dev/dtrace/ provider"; /* provider directory */

def aul t
def aul t
def aul t
def aul t
def aul t
def aul t
def aul t
def aul t

nunber of hash buckets (prime) */
nunber of integer buckets (Pof2) */
size of string intrinsic type */

whi t espace i ndent for stack/ustack */
nunber of pid hash buckets */

nunber of pid handles to cache */

dt _buf _create() size */

maxi mum nunber of probe argunents */

4;

* ok kb k ok F

—~———————

/* debug nessages enabled (off) */
rsion = DT_VERS_STRING /* APl version string */
/* rtld_db feature version */

/* array of provider driver file descriptors */
/* nunber of valid elenments in df_fds[] */
/* size of df_fds[] */

new usr/src/lib/libdtrace/ conmon/dt_open.c

715 _dtrace_debug = getenv("DTRACE DEBUG') != NULL;

717 for (; _dtrace_rdvers > 0; _dtrace_rdvers--) {

718 if (rd_init(_dtrace_rdvers) == RD K)

719 br eak;

720 }

721 }

723 static dtrace_hdl _t *

724 set_open_errno(dtrace_hdl _t *dtp, int *errp, int err)

725 {

726 if (dtp !'= NULL)

727 dtrace_cl ose(dtp);

728 if (errp !'= NULL)

729 *errp = err;

730 return (NULL);

731 }

733 static void

734 dt_provnod_open(dt _provnod_t **provnod, dt_fdlist_t *dfp)

735

736 dt _provnod_t *prov;

737 char pat h[PATH IVAX]

738 struct dirent *dp, *ep;

739 DR *dirp;

740 int fd;

742 if ((dirp = opendir(_dtrace_provdir)) == NULL)

743 return; /* failed to open directory; just skip it */
745 ep = alloca(sizeof (struct dirent) + PATH MAX + 1);

746 bzero(ep, sizeof (struct dirent) + PATH MAX + 1);

748 while (readdir_r(dirp, ep, &dp) == 0 && dp != NULL) {

749 if (dp->d_nane[0] ==)

750 cont i nue; /* sklp "." and ".." */

752 if (dfp->df _ents == df p->df_size) {

753 uint_t size = df p->df_size ? dfp->df _size * 2 : 16;
754 int *fds = reall oc(df p->df _fds, size * sizeof (|nt))
756 if (fds == NULL)

757 break; /* skip the rest of this directory */
759 df p->df _fds = fds;

760 df p->df _si ze = size;

761 }

763 (void) snprintf(path, sizeof (path), "%/ %",

764 _dtrace_provdir, dp->d_nane);

766 if ((fd = open(path, O RDONLY)) == -1)

767 continue; /* failed to open driver; just skip it */
769 if (((prov = malloc(sizeof (dt_provnod_t))) == NULL) ||
770 (prov->dp_nanme = mal |l oc(strlen(dp->d_nane) + 1)) == NULL)
771 free(prov);

772 (void) close(fd);

773 br eak;

774 }

776 (void) strcpy(prov->dp_nane, dp->d_nane);

777 prov->dp_next = *provnod;

778 *provnod = prov;

780 dt _dprintf("opened provider %\n", dp->d_nane);

12

new usr/src/lib/libdtrace/ conmon/dt_open.c

781 df p- >df _f ds[df p->df _ents++] = fd;
782 1

784 (void) closedir(dirp);

785 }

787 static void

788 dt _provnod_destroy(dt_provnod_t **provnod)

789 {

790 dt _provnod_t *next, *current;

792 for (current = *provnod; current != NULL;
793 next = current->dp_next;

794 free(current->dp_nane);

795 free(current);

796 }

798 *provmod = NULL;

799 }

801 static const char *

802 dt_get_sysinfo(int cnd, char *buf, size_t |en)
803 {

804 ssize_t rv = sysinfo(cnd, buf, len);
805 char *p = buf;

807 if (rv <0]| rv >1len)

808 (void) snprintf(buf, len, "9%",
810 while ((p = strchr(p, '.")) !'= NULL)
811 *pt+ =7

813 return (buf);

814 }

816 static dtrace_hdl _t *

817 dt_vopen(int version, int flags, int *errp,
818 const dtrace_vector_t *vector, void *arg)
819 {

820 dtrace_hdl _t *dtp = NULL;

821 int dtfd = - ftfd = -1, fterr = 0;
822 dtrace_prog_t *pgp;

823 dt _nmodul e_t *dnp;

824 dt provm)d t *provnod = NULL;

825 int i, err;

826 struct rlinit rl;

828 const dt_intrinsic_t *dinp;

829 const dt_typedef _t *dtyp;

830 const dt_ident_t *idp;

832 dtrace_typeinfo_t dtt;

833 ctf_funcinfo_t ctc;

834 ctf_arinfo_t ctr;

836 dt _fdlist_t df = { NULL, O, O };

838 char isadef[32], utsdef[32];

839 char s1[64], s2[64];

841 if (version <= 0)

842 return (set_open_errno(dtp, errp,
844 if (version > DTRACE_VERSI ON)

845 return (set_open_errno(dtp, errp,

current = next) {
"Unknown") ;

El NVAL)) ;

EDT_VERSI ON)) ;

13

14

new usr/src/lib/libdtrace/ conmon/dt_open.c

847 if (version < DTRACE_VERSION) {

848 /*

849 * Currently, increasing the library version nunmber is used to
850 * denote a binary inconpatible change. That is, a consumer
851 * of the library cannot run on a version of the library with
852 * a hi gher DTRACE_VERSI ON nunber than the consuner conpiled
853 * against. Once the library APl has been committed to,

854 * backwards binary conpatibility will be required; at t hat
855 * time, this check should change to return EDT_OVERSI ON only
856 * if the specified version nunber is |less than the version
857 * nunber at the time of interface commitnent.

858 */

859 return (set_open_errno(dtp, errp, EDI_OVERSIQN));

860 }

862 if (flags & ~DTRACE_O MASK)

863 return (set_open_errno(dtp, errp, EINVAL));

865 if ((flags & DTRACE O LP64) && (flags & DTRACE O | LP32))

866 return (set_open_errno(dtp, errp, EINVAL));

868 if (vector == NULL && arg != NULL)

869 return (set_open_errno(dtp, errp, EINVAL));

871 if (elf_version(EV_CURRENT) == EV_NONE)

872 return (set_open_errno(dtp, errp, EDT_ELFVERSI ON));

874 if (vector !'= NULL || (flags & DTRACE_O NODEV))

875 goto alloc; /* do not attenpt to open dtrace device */

877 /*

878 * Before we get going, crank our limt on file descriptors up to the
879 * hard limt. This is to allowfor the fact that |ibproc keeps file
880 * descriptors to objects open for the lifetine of the proc handle;
881 * without raising our hard limt, we would have an acceptably smal |
882 * bound on the nunber of processes that we could concurrently

883 * instrument with the pid provider.

884 */

885 if (getrlimt(RLIMT_NOFILE, &l) == 0) {

886 rl.rlimecur = rl.rlimnax;

887 (v0|d) setrlimt(RLIMT_NCFILE, &rl);

888 }

890 /*

891 * CGet the device path of each of the providers. W hold them open
892 * in the df.df _fds list until we open the DTrace driver itself,

893 * allowing us to see all of the probes provided on this system

894 * we have the DTrace driver open, we can safely close all the providers
895 * now that they have registered with the franework

896 */

897 dt _provnod_open(&provnod, &df);

899 dtfd = open("/dev/dtrace/dtrace", O RDWR);

900 err = errno; /* save errno from opem ng dtfd */

902 ftfd = open(/ dev/ dtrace/ provi der/fasttrap", O RDWR);

903 fterr = ftfd == -1 ? errno : 0; /* save errnofromopenftfd &

905 while (df.df_ents-- = 0)

906 (void) close(df.df_fds[df.df_ents]);

908 free(df.df_fds);

910 /*

911 * |f we failed to open the dtrace device, fail dtrace_open().

912 * We convert sone kernel errnos to customlibdtrace errnos to

new usr/src/lib/libdtrace/ conmon/dt_open.c

913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929

931
932

934
935
936

938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967

969
970
971
972
973

975
976

al |l oc:

* inprove the resulting nessage fromthe usual strerror().
S

if (dtfd == -1) {
dt provnDd destroy(&provnod);
switch (err) {

case ENOCENT:
err = EDT_NOENT;
br eak;
case EBUSY:
err = EDT_BUSY;
break;
case EACCES:
err = EDT_ACCESS;
br eak;
}
) return (set_open_errno(dtp, errp, err));
(void) fentl(F_SETFD, FD CLOEXEC);
(void) fentl(F_SETFD, FD_CLOEXEC);
if ((dtp = malloc(sizeof (dtrace_hdl_t))) == NULL)
return (set_open_errno(dtp, errp, EDI_NOVEM);
bzero(dtp, sizeof (dtrace_hdl _t));
dt p->dt _of l ags = fl ags;
dt p- >dt _prcnode = DT_PROC_STOP_PREI NI T;
dt p->dt _| i nknrode = DT_LI NK_KERNEL;
dt p->dt _l i nktype = DT_LTYP_ELF;
dt p- >dt _x| at enrode = DT_XL_STATI C,

dt p- >dt _st dcnode = DT_STDC XA,
dt p->dt _versi on = version;
dtp->dt_fd = dtfd;
dtp->dt_ftfd = ftfd;

dtp->dt _fterr = fte

dt p->dt _cdefs_fd =

dt p->dt _ddefs_fd =

dt p->dt _stdout_fd = -1;
dt p- >dt _nodbucket s

r;
1
1;

atrace_strbucket S;

dt p->dt _nods = cal | ac(_dt p- >dt _nodbuckets, sizeof (dt_nodule_t *));

dt p- >dt _provbuckets = _dtrace_strbuckets;
dt p->dt _provs = cal | oc(dtp->dt _provbuckets,
dt _proc_| |n|t(dt p);

dt p->dt _vmax = DT VERS LATEST;

si zeof (dt_provider_t

dt p->dt _cpp_path = r dup(_dtrace_def cpp) ;
dt p->dt _cpp_argv = nmal | oc(si zeof (char *));
dt p->dt _cpp_argc = 1

dt p->dt _cpp_args = 1;

dt p->dt _| d_path = strdup(_dtrace_defld);

dt p- >dt _provnod = provnod;

dt p- >dt _vector = vector;

dt p->dt _varg = arg;

dt _dof _init(dtp);

(voi d) uname(&dt p->dt _uts);

if (dtp->dt_mpds == NULL || dtp->dt_provs == NULL ||
dt p->dt _procs == NULL || dtp->dt_proc_env == NULL ||
dt p->dt _|l d_path == NULL || dtp->dt_cpp_path == NULL ||
dt p->dt _cpp_argv == NULL)
return (set_open_errno(dtp,

(i =0; i il
dt p- >dt _options[i]

errp, EDT_NOVEM);

< DTRACECPT_MAX; i ++
= DTRACEOPT_UNSET;

dt p->dt _cpp_argv[0] = (char *)strbasenane(dtp->dt_cpp_path);

*))s

15

new usr/src/lib/libdtrace/ common/dt_open.c 16
980 (void) snprintf(isadef, sizeof (isadef), "-D_SUNWD %",

981 (uint_t)(sizeof (void *) * NBBY));

983 (void) snprintf(utsdef, sizeof (utsdef), "-D_%_%",

984 dt _get _sysi nfo(SI _SYSNAME, sl1, sizeof (sl1)),

985 dt _get _sysi nfo(SI _RELEASE, s2, sizeof (s2)));

987 if (dt_cpp_add_arg(dtp, "-D sun") == NULL ||

988 dt _cpp_add_arg(dtp, "-D__unix") == NULL ||

989 dt _cpp_add_arg(dtp, "-D_SVR4") == NULL ||

990 dt _cpp_add_arg(dtp, "-D _SUNWD=1") == NULL ||

991 dt _cpp_add_arg(dtp, isadef) == NULL ||

992 dt _cpp_add_arg(dtp, utsdef) == NULL)

993 return (set_open_errno(dtp, errp, EDT_NOVEM);

995 if (flags & DTRACE_O_

996 bcopy(& dtrace_conf, &dtp->dt_conf, sizeof (_dtrace_conf));
997 else if (dt_ioctl(dtp, ~DTRACEI OC CONF,” &dtp >dt _conf) != 0)

998 return (set_open_errno(dip, errp, errno));

1000 if (flags & DTRACE_O LP64)

1001 dt p- >dt _ conf dtc_ctfnodel = CTF_MODEL_LP64;

1002 else if (flags & DTRACE_O | LP32)

1003 dt p- >dt _conf.dtc_ctfnodel = CTF_MODEL_I LP32;

1005 #ifdef __sparc

1006 /*

1007 * On SPARC systens, __sparc is always defined for <sys/isa_defs.h>
1008 * and __sparcv9 is defined if we are doing a 64-bit conpile.

1009 */

1010 if (dt_cpp_add_arg(dtp, "-D__sparc") == NULL)

1011 return (set_open_errno(dtp, errp, EDI_NOVEM);

1013 if (dtp->dt_conf.dtc ctfrmdel == CTF_ IVCDEL LP64 &&

1014 dt _cpp_add_arg(dtp, "-D__sparcv9™) == NULL)

1015 return (set_open_errno(dtp, errp, EDT_NOVEM);

1016 #endif

1018 #ifdef __x86

1019 /*

1020 * On x86 systems, __i386 is defined for <sys/isa_defs.h> for 32-bit
1021 * conpiles and __and64 is defined for 64-bit conpiles. Unlike SPARC,
1022 * they are defined exclusive of one another (see PSARC 2004/ 619).
1023 *

1024 if (dtp->dt_conf.dtc_ctfnodel == CTF_MODEL_LP64) {

1025 if (dt_cpp_add_arg(dtp, "-D__and64") == NULL)

1026 return (set_open_errno(dtp, errp, EDT_NOVEM);

1027 } else {

1028 if (dt_cpp_add_arg(dtp, "-D__i386") == NULL)

1029 return (set_open_errno(dtp, errp, EDT_NOMVEM));

1030

1031 #endi f

1033 if (dtp->dt_conf.dtc_difversion < DI F_VERSI ON)

1034 return (set_open_errno(dtp, errp, EDT_DI FVERS));

1036 i f (dtp->dt_conf.dtc_ctfnodel == CTF_MODEL_| LP32)

1037 bcopy(_dtrace_ints_32, dtp->dt_ints, sizeof (_dtrace_ints_32));
1038 el se

1039 bcopy(_dtrace_i nts_64, dtp->dt_ints, sizeof (_dtrace_ints_64));
1041 dt p->dt _macros = dt_i dhash create(macr 0" NULL, 0, U NT_MAX);

1042 dt p->dt _aggs = dt_i dhash_create(" aggregatl on", NULL,

1043 DTRACE_AGGVARI DNONE + 1, Ul NT_MAX);

new usr/src/lib/libdtrace/ common/dt_open.c 17

1045
1046

1048
1049

1051
1052
1053

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066

1068
1069
1070
1071
1072

1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084

1086
1087
1088
1089
1090
1091

1093
1094

1096
1097

1099
1100

1102
1103

1105
1106
1107
1108
1109
1110

dt p->dt _gl obal s = dt_i dhash_create("global", _dtrace_globals,
Dl F_VAR_ CWHER UBASE, DI F_VAR OTHER MNO

dtp->dt_tls = dt_idhash_create("thread | ocal", NULL,
Dl F_VAR OTHER_UBASE, DI F_VAR OTHER MAX);

if (dtp->dt_macros == NULL || dtp->dt_aggs == NULL ||
dt p->dt _globals == NULL || dtp->dt_tls == NULL)
return (set_open_errno(dtp, errp, EDI_NOVEM);

/*
* Popul ate the dt_nacros identifier hash table by hand: we can’'t use
* the dt_idhash_popul ate() mechani sm because we’re not yet conpiling
* and dtrace_update() needs to imediately reference these idents.
*
/
for (idp = _dtrace_macros; idp->di_name != NULL; idp++) {
if (dt_idhash |nsert(dtp >dt _macros, idp->di _nane,

i dp->di _kind, idp->di_flags, |dp >di _id, idp->di_attr,

i dp->di _vers, idp->di _ops ? idp->di_ops : &dt_idops_ thaw

idp->di _iarg, 0) == NULL)

return (set_open_errno(dtp, errp, EDT_NOMVEM));

}
/*
* Update the nodule |ist using /systeniobject and |oad the val ues for
* the macro variable definitions according to the current process.
*
/
dtrace_updat e(dtp);
/*
* Select the intrinsics and typedefs we want based on the data nodel.
* The intrinsics are under "C'. The typedefs are added under "D'.
*

if (dtp->dt_conf.dtc_ctfnodel == CTF_MODEL_I LP32) {
dinp = _dtrace_intrinsics_32;
yp = _dtrace_typedefs_ 32;
} else {
dinp = _dtrace_intrinsics_64;
dtyp = _dtrace_typedefs_64;
}
/*

* Create a dynamic CTF container under the "C' scope for intrinsic
* types and types defined in ANSI-C header files that are included.
*/

if ((dnmp = dtp->dt_cdefs = dt_nodul e_create(dtp, "C')) == NULL)
return (set_open_errno(dtp, errp, EDT_NOVEM);

if ((dnmp->dmctfp = ctf_create(&Jtp->dt_ctferr)) == NULL)
return (set_open_errno(dtp, errp, EDT_CTF));

dt _dprintf("created CTF container for % (%)\n",
dnp->dm nane, (void *)dnp->dmctfp);

(void) ctf_setnodel (dnp->dmctfp, dtp->dt_conf.dtc_ctfnodel);
ctf_setspecific(dnp->dmctfp, dnp);

dmp->dm flags = DT_DM LOADED; /* fake up |oaded bit */
dmp->dm nodid = -1; /* no nodule ID */

/*

* Fill the dynamic "C' CTF container with all of the intrinsic

* integer and floating-point types appropriate for this data nodel.
*

for (; dinp->din_nane != NULL di np++) {
if (dinp->din_kind == CTF_K_I NTEGER) {

new usr/src/lib/libdtrace/ conmon/dt_open.c

1111
1112
1113
1114
1115
1116

1118
1119
1120
1121
1122
1123
1124

1126
1127
1128
1129
1130

1132
1133
1134
1135
1136
1137

1139
1140

1142
1143

1145
1146
1147
1148
1149

1151
1152
1153
1154
1155
1156
1157

1159
1160

1162
1163

1165
1166

1168
1169

1171
1172
1173
1174
1175

err = ctf_add_i nteger (dnp->dmctfp, CTF_ADD ROOT,
di np->di n_nane, &di np->di n_data);
} else {
err ctf_add_fl oat (dnp->dm ctfp, CTF_ADD_ROOCT,

o

i np->di n_nare, &di np->di n_data);
}
if (err == F_ERR) {
dt_dprintf(“"failed to add % to C container: %\n",
di np->di n_nane, ctf_errnmsg(
ctf_errno(dnp- >dm 1¢ctfp)));
) return (set_open_errno(dtp, errp, EDT_CTF));

}

if (ctf_update(dnp- >dmctfp) 1= 0)
dt _dprintf("failed to update C container: %\n",
ctf_errmsg(ctf_errno(dnp->dmctfp)));
return (set_open_errno(dtp, errp, EDT CTF))
}

/*

* Add intrinsic pointer types that are needed to initialize printf
* format dictionary types (see table in dt_printf.c).

*

(void) ctf_add_pointer(dnmp->dmctfp, CTF_ADD_ROOT,
ctf_Il ookup_by_nane(dnp->dmctfp, "void"));

(void) ctf_add_pointer(dnmp->dmctfp, CTF_ADD_ROOT,
ctf_l ookup_by_name(dnp->dmctfp, "char"));

(void) ctf_add_pointer(dnp->dmctfp, CTF_ADD ROOT,
ctf_| ookup_by_nane(dnmp->dmctfp, "int"));

if (ctf_update(dnmp->dmctfp) != 0)
dt _dprintf("failed to update C container: %\n",
ctf_errmsg(ctf_errno(dnp->dmctfp)));
return (set_open_errno(dtp, errp, EDI_CTF));
}

/*
* Create a dynamic CTF container under the "D' scope for types that

18

* are defined by the D programitself or on-the-fly by the D conpiler.

* The "D' CTF container is a child of the "C' CTF contai ner.
*

/
if ((dnmp = dtp->dt_ddefs = dt_nodul e_create(dtp, "D')) == NULL)
return (set_open_errno(dtp, errp, EDT_NOVEM);

if ((dnmp->dmctfp = ctf_create(&Jtp->dt_ctferr)) == NULL)
return (set_open_errno(dtp, errp, EDT_CTF));

dt _dprintf("created CTF container for % (%)\n",
dnp->dm nane, (void *)dnp->dmctfp);

(void) ctf_setnodel (dnp->dmctfp, dtp->dt_conf.dtc_ctfnodel);
ctf_setspecific(dnp->dmctfp, dnp);

dmp->dm flags = DT_DM LOADED; /* fake up |oaded bit */
dmp->dm nodid = -1; /* no nodule ID */

if (ctf_inport(dnp->dmctfp, dtp->dt_cdefs->dmctfp) == CTF_ERR) {
dt _dprintf("failed to inport D parent container: %\n",
ctf_errmsg(ctf_errno(dnp->dmctfp)));
return (set_open_errno(dtp, errp, EDT CTF))

new usr/src/lib/libdtrace/ conmon/dt_open.c 19 new usr/src/lib/libdtrace/ conmon/dt_open.c 20
1177 * 1243 dt _dprintf("failed update D container: %\n",
1178 * Fill the dynamic "D' CTF container with all of the built-in typedefs 1244 ctf_errmsg(ctf_errno(dnp->dmctfp)));
1179 * that we need to use for our D variable and function definitions. 1245 return (set_open_errno(dtp, errp, EDT CTF))
1180 * This ensures that basic inttypes.h nanes are al ways available to us. 1246 }
1181 *
1182 for (; dtyp->dty_src != NULL; dtyp++) { 1248 /*
1183 if (ctf_add typedef(drrp >dm ctfp, CTF_ADD_ROOT, 1249 * Initialize the integer description table used to convert integer
1184 dtyp->dty_dst, ctf _l ookup_by_nane(dnmp->dm ctfp, 1250 * constants to the appropriate types. Refer to the coments above
1185 dtyp->dty_. src)) == CTF_ERR) { 1251 * dt_node_int() for a conplete description of howthis table is used.
1186 dt dprl ntf("failed to add typedef % % to D" 1252 */
1187 ‘container: %", dtyp->dty_src, dtyp->dty_dst, 1253 for (i =0; i < sizeof (dtp->dt_ints) / sizeof (dtp->dt_ints[0]); i++) {
1188 ctf_errmsg(ctf errno(dnp >dm ctfp))) 1254 if (dtrace_|l ookup_by_type(dtp, DTRACE_OBJ_EVERY,
1189 return (set_open_errno(dtp, errp, EDT CTF)); 1255 dtp->dt_ints[i].did_nane, &Jtt) != 0)
1190 } 1256 dt _dprintf("failed to | ookup integer type %: %\n",
1191 } 1257 dt p->dt _ints[i].did_nang,
1258 dtrace_errnsg(dtp, dtrace_errno(dtp)));
1193 /* 1259 return (set_open_errno(dtp, errp, dtp->dt_errno));
1194 * Insert a CTF I D corresponding to a pointer to a type of kind 1260 }
1195 * CTF_K_FUNCTION we can use in the conpiler for function pointers. 1261 dtp->dt _ints[i].did_ctfp = dtt.dtt_ctfp;
1196 * CTF treats all function pointers as "int (*)()" so we only need one. 1262 dtp->dt _ints[i].did_type = dtt.dtt_type;
1197 */ 1263 }
1198 ctc.ctc_return = ctf_I ookup_by_nane(dnp->dmctfp, "int");
1199 ctc.ctc_arge = O 1265 I*
1200 ctc.ctc_flags = 0; 1266 * Now that we’ve created the "C' and "D' containers, nove themto the
1267 * start of the nodule list so that these types and synbols are found
1202 dt p- >dt type func = ctf_add_function(dnp->dmctfp, 1268 * first (for stability) when iterating through the nodule Ilist.
1203 ADD_ROOT, &ctc, NULL); 1269 */
1270 dt _|ist_del ete(&dtp->dt_nodlist, dtp->dt_ddefs);
1205 dt p- >dt type fptr = ctf_add_pointer(dnp->dmctfp, 1271 dt _| i st _prepend(&dt p->dt _nodl i st, dtp->dt_ddef s)
1206 ADD_ROOT, dtp->dt_type_func);
1273 dt _list_del et e(&dt p->dt _nodl i st, dt p->dt_cdefs);
1208 I* 1274 dt _li st _prepend(&dtp->dt _nodlist, dtp->dt_cdef s)
1209 * W& also insert CTF definitions for the special Dintrinsic types
1210 * string and <DYN> into the D container. The string type is added 1276 if (dt_pfdict_create(dtp) == -1)
1211 * as a typedef of char[n]. The <DYN> type is an alias for void. 1277 return (set_open_errno(dtp, errp, dtp->dt_errno));
1212 * W conpare types to these special CTF ids throughout the conpiler.
1213 */ 1279 /*
1214 ctr.ctr_contents = ctf_| ookup_by_nane(dmp->dmctfp, "char"); 1280 * |f we are opening |ibdtrace DTRACE_O NODEV enabl e C_ZDEFS by defaul t
1215 ctr.ctr_index = ctf_I ookup_by_nane(dnp->dmctfp, “long"); 1281 * because without /dev/dtrace open, we will not be able to | oad the
1216 ctr.ctr_nelens = _dtrace_strsize; 1282 * nanes and attributes of any providers or probes fromthe kernel.
1283 */
1218 dt p->dt _type_str = ctf_add_typedef (dnp->dmctfp, CTF_ADD ROOT, 1284 if (flags & DTRACE_O NCDEV)
1219 "string", ctf_add_array(dnp->dmctfp, CTF_ADD ROOT, &ctr)); 1285 dt p->dt _cflags | = DTRACE_C ZDEFS;
1221 dt p- >dt _type_dyn = ctf_add_t ypedef (dnp->dm ctfp, CTF_ADD ROOT, 1287 /*
1222 <DYN>", “ctf_l ookup_by_name(dnp->dm ctfp, "void")); 1288 * Load hard-wired inlines into the definition cache by calling the
1289 * conpiler on the raw definition string defined above.
1224 dt p- >dt type stack = ctf_add_typedef (dnp->dm ctfp, CTF_ADD_ROOCT, 1290 */
1225 "stack", ctf_l ookup_by_name(dnmp->dmctfp, "void")); 1291 if ((pgp = dtrace_program strconpile(dtp, _dtrace_hardwire,
1292 DTRACE_PROBESPEC_NONE, DTRACE_C EMPTY, 0, NULL)) == NULL) {
1227 dt p->dt _type_symaddr = ctf_add_typedef (dnmp->dm ctfp, CTF_ADD_ROOT, 1293 dt _dprintf("failed to |oad hard-w red definitions: %\n",
1228 " _symaddr", ctf_I ookup_by_nane(dnp->dmctfp, "void")); 1294 dtrace_errnmsg(dtp, dtrace_errno(dtp)));
1295 return (set_open_errno(dtp, errp, EDI_HARDWRE));
1230 dt p->dt _type_usynaddr = ctf_add_typedef (dnp->dmctfp, CTF_ADD ROCT, 1296 }
1231 " _usymaddr", ctf_| ookup_by_nane(dnmp->dmctfp, "void"));
1298 dt _program destroy(dtp, pgp);
1233 if (dtp->dt_type_func == CTF_ERR || dtp->dt_type_ fptr == CTF_ERR ||
1234 dt p->dt _type_str == CTF ERR || dtp->dt_type_dyn == CTF_ERR || 1300 /*
1235 dt p->dt _type_stack == CTF_ERR || dtp->dt_type_symaddr == CTF_ERR || 1301 * Set up the default DTrace library path. Once set, the next call to
1236 dt p->dt _t ype_ usyrraddr == CTF_ERR) { 1302 * dt _conpile() will conpile all the libraries. W intentionally defer
1237 dt _dprintf("failed to add intrinsic to D container: %\n", 1303 * library processing to i nprove overhead for clients that don’t ever
1238 ctf_errmsg(ctf_errno(dnp->dmctfp))); 1304 * conpile, and to provide better error reporting (because the full
1239 return (set_open_errno(dtp, errp, EDT_CTF)); 1305 * reporting of conpiler errors requires dtrace_open() to succeed).
1240 } 1306 */
1307 if (dtrace_setopt(dtp, "libdir", _dtrace_libdir) != 0)
1242 if (ctf_update(dnmp->dmctfp) !'= 0) { 1308 return (set_open_errno(dtp, errp, dtp->dt_errno));

new usr/src/lib/libdtrace/ common/dt_open.c 21

1310 return (dtp);
1311 }

1313 dtrace_hdl _t *

1314 dtrace_open(int version, int flags, int *errp)

1315 {

1316) return (dt_vopen(version, flags, errp, NULL, NULL));
1317

1319 dtrace_hdl _t *
1320 dtrace_vopen(int version, int flags, int *errp,

1321 const dtrace_vector_t *vector, void *arg)

1322 {

1323 return (dt_vopen(version, flags, errp, vector, arg));
1324 }

1326 void

1327 dtrace_cl ose(dtrace_hdl _t *dtp)

1328 {

1329 dt_ident_t *idp, *ndp;

1330 dt _nmodul e_t *dnp;

1331 dt _provider_t *pvp;

1332 dtrace_prog_t *pgp;

1333 dt _xlator_t *dxp;

1334 dt _dirpath_t *dirp;

1335 int i;

1337 if (dtp->dt_procs != NULL)

1338 dt _proc_fini(dtp);

1340 whi | e ((pgp dt _list_next(&dtp->dt_prograns)) != NULL)
1341 _program destroy(dtp, pgp);

1343 while ((dxp = dt_list_next(&dtp->dt_xlators)) != NULL)
1344 dt _xl ator_destroy(dtp, dxp);

1346 dt _free(dtp, dtp->dt_xlatormap);

1348 for (idp = dtp >dt _externs; idp != NULL; idp = ndp) {
1349 ndp = idp->di _next;

1350 dt _i dent _destroy(idp);

1351 }

1353 if (dtp->dt_macros != NULL)

1354 dt _i dhash_dest roy(dt p- >dt _macros);

1355 if (dtp->dt_aggs != NULL)

1356 dt _i dhash_dest roy(dt p->dt _aggs);

1357 if (dtp->dt_globals != NULL)

1358 dt _i dhash_dest roy(dt p- >dt _gl obal s);

1359 if (dtp->dt_tls !'= NULL)

1360 dt _i dhash_destroy(dtp->dt_tls);

1362 while ((dmp = dt_list_next(&dtp->dt_nodlist)) != NULL)
1363 dt _nodul e_destroy(dtp, dmp);

1365 while ((pvp = dt_list_next(&dtp->dt_provlist)) !'= NULL)
1366 dt _provider_destroy(dtp, pvp);

1368 if (dtp->dt_fd I= -1)

1369 (void) close(dtp->dt_fd);

1370 if (dtp->dt_ftfd I= -1

1371 (void) close(dtp->dt_ftfd);

1372 if (dtp->dt_cdefs_fd != -1

1373 (void) close(dtp->dt_cdefs_fd);

1374 if (dtp->dt_ddefs fd != -1)

new usr/src/lib/libdtrace/ conmon/dt_open.c

= NULL) {

= prov->dp_next,

1375 (void) cl ose(dt p- >dt _ddefs_fd);
1376 if (dtp->dt_stdout_fd != -1

1377 (void) close(dtp- >dt _stdout _fd);
1379 dt _epi d_destroy(dtp);

1380 dt _aggi d_destroy(dtp);

1381 dt _format _destroy(dtp);

1382 dt _strdata_destroy(dtp);

1383 dt _buf f ered_destroy(dtp);

1384 dt _aggr egat e_dest roy(dtp);

1385 dt _pfdict_destroy(dtp);

1386 dt _provnod_dest r oy(&t p- >dt _pr ovrod) ;
1387 dt dof _fini(dtp);

1389 for (i =1; i < dtp->dt_cpp_argc; i++)
1390 free(dtp->dt_cpp_argv[i]);

1392 while ((dirp = dt_|ist_next(&dtp->dt path))
1393 dt _list_del et e(&dt p- >dt I|b pa dirp);
1394 free(dirp->dir_path);

1395 free(dirp);

1396 }

1398 free(dtp->dt_cpp_argv);

1399 free(dtp->dt_cpp_path);

1400 free(dtp->dt_I d_path);

1402 free(dtp->dt_nods);

1403 free(dtp->dt_provs);

1404 free(dtp);

1405 }

1407 int

1408 dtrace_provi der_nodul es(dtrace_hdl _t *dtp, const char **npds, int nnods)
1409 {

1410 dt _pr ovm)d _t *prov;

1411 int i =0;

1413 for (prov = dtp->dt_provnod; prov != NULL; prov
1414 if (| < nnods)

1415 nods[i] = prov->dp_naneg;
1416 }

1418 return (i);

1419 }

1421 int

1422 dtrace_ctlfd(dtrace_hdl _t *dtp)

1423 {

1424 return (dtp->dt_fd);

1425 }

i ++)

22

{

new usr/src/lib/libdtrace/ conmon/dt_parser.c

R R R R

142714 Tue Jan 14 16:48:57 2014
new usr/src/lib/libdtrace/ conmmon/dt_parser.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword

4476 DTrace tests should be better

citizens

4479 pid provider types
4480 dof enul ation m ssing checks

Revi ewed by: Bryan Cantrill

<bryan@ oyent . con»

LR R R

1/*

NRERRRRRRRRE
COONOUITAWNROW©O~NOUTSWN

*

I T I

* ok Ok ok Ok Ok

® Ok ok R E ok ok ok S ok R b 3k O Sk Ok ok b R Ok 3k b ok ko % 3k

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the |icense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyri ght
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)

(c) 2003, 2010, Oracle and/or its affiliates. Al
2013, Joyent Inc. Al rights reserved.

2013 by Del phix. Al rights reserved.

2011, Joyent Inc. Al rights reserved.

2012 by Del phix. Al rights reserved.

rights reserved.

DTrace D Language Parser

The D Parser is a |l ex/yacc parser consisting of the lexer dt_lex.l, the
parsing grammar dt_grammar.y, and this file, dt_parser.c, which handles
the construction of the parse tree nodes and their syntactic validation.
The parse tree is constructed of dt_node_t structures (see <dt_parser.h>)
that are built in two passes: (1) the "create" pass, where the parse tree
nodes are allocated by calls fromthe grammar to dt_node_*() subroutines,
and (2) the "cook" pass, where nodes are coal esced, assigned D types, and
val i dated according to the syntactic rules of the |anguage.

Al'l node allocations are performed using dt_node_alloc(). Al node frees
during the parsing phase are perforned by dt_node_free(), which frees node-
internal state but does not actually free the nodes. Al final node frees
are done as part of the end of dt_conpile() or as part of destroying
persistent identifiers or translators which have enbedded nodes.

The dt _node_* routines that inplement pass (1) may all ocate new nodes. The
dt _cook_* routines that inplenent pass (2) may *not* allocate new nodes.
They nmay free existing nodes using dt_node_free(), but they may not actually
deal | ocate any dt_node_t's. Currently dt_cook_op2() is an exception to this
rule: see the coments therein for how this issue is resol ved.

The dt _cook_* routines are responsible for (at mininmum setting the final
node type (dn_ctfp/dn_type) and attributes (dn_attr). |f dn_ctfp/dn_type
are set manually (i.e. not by one of the type assignment functions), then

new usr/src/lib/libdtrace/ conmon/dt_parser.c

114

116
117
118
119

I T i A

#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i

#i
#i
#i
#i
#i
#i

dt
dt

char yyintprefix;
char yyintsuffix[4];
120 int yyintdeci mal;

the DT_NF_COCOKED flag nust be set manually on the node.

The cooki ng pass can be applied to the same parse tree nore than once (used
in the case of a comma-separated |ist of probe descriptions). As such, the
cook routines nust not performany parse tree transfornmati ons which woul d
be invalid if the tree were subsequently cooked using a different context.

The dn_ctfp and dn_type fields formthe type of the node. This tuple can
take on the follow ng set of values, which formour type invariants:

1. dn_ctfp = NULL, dn_type = CTF_ERR

In this state, the node has unknown type and is not yet cooked. The
DT_NF_COOKED flag is not yet set on the node.
2. dn_ctfp = DI_DYN CTFP(dtp), dn_type = DT_DYN_TYPE(dt p)
In this state, the node is a dynamic D type. This neans that generic
operations are not valid on this node and only code that knows how to
exam ne the inner details of the node can operate on it. A <DYN> node
nust have dn_ident set to point to an identifier describing the object
and its type. The DI_NF_REF flag is set for all nodes of type <DYN>.
At present, the D conpiler uses the <DYN> type for:

- associative arrays that do not yet have a value type defined
- translated data (i.e. the result of the xlate operator)
- aggregations
3. dn_ctfp = DI_STR CTFP(dtp), dn_type = DT_STR_TYPE(dtp)
In this state, the node is of type D string. The string type is really
a char[0] typedef, but requires special handling throughout the conpiler.

4. dn_ctfp !'= NULL, dn_type = any other type ID

In this state, the node is of some known D/ CTF type. The normal libctf
APl's can be used to | earn nore about the type name or structure. Wen
the type is assigned, the DT_NF_SI GNED, DT_NF_REF, and DT_NF_BI TFI ELD
flags cache the corresponding attributes of the underlying CTF type.

/

ncl ude <sys/param h>
ncl ude <sys/sysmacros. h>
nclude <limts.h>
ncl ude <setjnp. h>
nclude <strings. h>
ncl ude <assert. h>
ncl ude <all oca. h>
ncl ude <stdlib. h>
ncl ude <stdarg. h>
ncl ude <stdio. h>

ncl ude <errno. h>

ncl ude <ctype. h>

ncl ude <dt_inpl . h>

ncl ude <dt_granmar. h>
ncl ude <dt_nodul e. h>
ncl ude <dt_provider. h>
ncl ude <dt_string. h>
ncl ude <dt_as. h>

_pcb_t
_node_t

/* current control block for parser */

/* lex token list for control lines */

/* int token macro prefix (+/-) */

/* int token suffix string [uUT[IlL] */

/* O=oct al / hex) */

*yypcb;
*yypragne;

int token format flag (1=deci nal,

new usr/src/lib/libdtrace/ conmon/dt_parser.c 3 new usr/src/lib/libdtrace/ conmon/dt_parser.c 4
187 }

122 static const char * 188 }

123 opstr(int op)

124 { 190 int

125 svmtch (op) { 191 dt_type_l ookup(const char *s, dtrace_typeinfo_t *tip)

126 case OK_COWA: return (","); 192 {

127 case DT TCK ELLI PSI S: return (") 193 static const char dellmters[] =" vt\n\r\v\fre

128 case DT_TOK_ASGN: return (; 194 dtrace_hdl _t *dtp = yypcb->pcb_hdl;

129 case DT_TOK_ADD EQ return (); 195 const char *p, *qg, *r, *end, *obj;

130 case DT_TOK_SUB_EQ return ("); 195 const char *p, *q, *end *obj ;

131 case DI_TOK_MIL_EQ return ("*=");

132 case DI_TOK_DIV_EQ return ("/="); 197 for (p=s, end =s + strlen(s); *p!="\0; p=q) {

133 case DT_TOK_MOD _EQ return ("%"); 198 whil e (isspace(*p))

134 case DT_TOK_AND EQ return ("&"); 199 p++; /* skip | eading whitespace prior to token */

135 case DI_TOK_XOR_EQ return ("~=");

136 case DI_TOK_OR EQ return ("|="); 201 if (p==end || (q =strpbrk(p + 1, delimters)) == NULL)

137 case DT_TOK_LSH EQ return ("<<="); 202 break; /* enpty string or single token remaining */

138 case DI_TOK_RSH EQ return (">>=");

139 case DT_TOK_QUESTI ON: return ("?"); 204 if (*q=="'")

140 case DT_TOK_COLON: return (":"); 205 char *object = alloca((size_t)(q p) + 1);

141 case DT_TOK _LOR return (! 206 char *type = alloca((size_t)(end - s) + 1);

142 case DT_TOK_LXOR return (;

143 case DT_TOK_LAND: return (") 208 /*

144 case DT_TOK_BOR: return (; 209 * Copy fromthe start of the token (p) to the location

145 case DI_TOK_XOR return (210 * backquote (q) to extract the nul-term nated object.

146 case DT_TOK_BAND: return (211 */

147 case DT_TOK_EQU: return (; 212 bcopy(p, object, (size_t)(q - p));

148 case DI_TOK_NEQ return (; 213 object[(size_t)(q - p)] ='\0";

149 case DI_TOKLT: return (;

150 case DT_TOK_LE: return (; 215 /*

151 case DT_TOK_GT: return (">"); 216 * Copy the original string up to the start of this

152 case DT_TOK_CGE: return (">="); 217 * token (p) into type, and then concatenate everything

153 case DT_TOK_LSH: return ("<<"); 218 * after g. This is the type nane w thout the object.

154 case DT_TOK_RSH: return (">>"); 219 */

155 case DT_TOK_ADD: return ("+"); 220 bcopy(s, type, (size_t)(p - s));

156 case DT_TOK_SUB: return ("-"); 221 bcopy(q + 1, type + (size_t)(p - s), strlen(q + 1) + 1);

157 case DT_TOK_MJL: return ("*");

158 case DT_TOK DI V: return ("/"); 223 /*

159 case DT_TOK_MOD: return ("%); 224 * There nmay be at npst three delinmeters. The second

160 case DT_TOK_LNEG return ("!'"); 225 * delineter is usually used to distinguish the type

161 case DT_TOK_BNEG return ("~"); 226 * within a given nodul e, however, there could be a |ink

162 case DT_TOK_ADDADD: return ("++") 227 * map id on the scene in which case that delineter

163 case DT_TOK_PREI NC: return ("++"); 228 * would be the third. We deternine presence of the Imd

164 case DT_TOK_POSTI NC: return ("++"); 229 * if it rouglhly neets the fromLM 0-9]

165 case DT_TOK_SUBSUB: return ("--"); 230 *

166 case DT_TOK_PREDEC: return ("--"); 231 f ((r =strchr(g + 1, "*’)) !'= NULL &&

167 case DT_TOK_POSTDEC: return ("--"); 232 ((r = strchr(r + 1, "*7)) = NULL)) {

168 case DT_TOK_| PCs: return ("+"); 233 if (strchr(r + 1, **") I'= NULL)

169 case DT_TOK_|I NEG return ("-"); 234 return (dt_set_errno(dtp,

170 case DT_TOK_DEREF: return ("*"); 235 EDT_BADSCOPE)) ;

171 case DT_TOK_ADDROF: return("&')' 236 if (q[1] '='L || q[2] '="M)

172 case DT_TOK_OFFSETOF: return ("offsetof"); 237 return (dt_set_errno(dtp,

173 case DT_TOK_SI ZEOF: return ("sizeof"); 238 EDT_BADSCOPE)) ;

174 case DT_TOK_STRI NGOF: return ("stringof ") 239 }

175 case DT_TOK_XLATE: return ("xlate"); 223 if (strchr(g + 1, "*’) !'= NULL)

176 case DT_TOK_LPAR return ("("); 224 return (dt_set_errno(dtp, EDT_BADSCOPE));

177 case DT_TOK_RPAR: return (")");

178 case DT_TOK_LBRAC return ("["); 241 return (dtrace_| ookup_by_type(dtp, object, type, tip));

179 case DT_TOK_RBRAC: return ("]1"); 242 }

180 case DT_TOK_PTR return ("->"); 243 }

181 case DT_TOK_DOT: return (".");

182 case DT_TOK_STRI NG return ("<string>"); 245 if (yypcb- >pcb idepth !'= 0)

183 case DT_TOK_| DENT: return ("<ident>"); 246 obj = DTRACE_OBJ_CDEFS;

184 case DT_TOK_TNAME: return ("<type>"); 247 el se

185 case DT_TOK_I NT: return ("<int>"); 248 obj = DTRACE_OBJ_EVERY;

186 defaul t: return ("<?>");

new usr/src/lib/libdtrace/ conmon/dt_parser.c

250 return (dtrace_| ookup_by_type(dtp, obj, s, tip));

251 }

253 [*

254 * \When we parse type expressions or parse an expression with unary "&",
255 * need to find a type that is a pointer to a previously known type.

256 * Unfortunately CTF is limted to a per-container view, so ctf_type_pointer()
257 * alone does not suffice for our needs. W provide a nore intelligent w apper
258 * for the conpiler that attenpts to conpute a pointer to either the given type
259 * or its base (that is, we try both "foo_t *" and "struct foo *"), and al so
260 * to potentially construct the required type on-the-fly.

261 */

262 int

263 dt_type_pointer(dtrace_typeinfo_t *tip)

264 {

265 dtrace_hdl _t *dtp = yypcb->pcb_hdl;

266 ctf_file_t *ctfp = tip->dtt_ctfp;

267 ctf_id t type = tip->dtt_type;

268 ctf_id_t base = ctf_type_resolve(ctfp, type);

269 uint_t bflags = tip->dtt_flags;

270 #endif /* | codereview */

272 dt _nmodul e_t *dnp;

273 ctf_id_t ptr;

275 if ((ptr = ctf_type_pointer(ctfp, type)) != CTF_ERR ||

276 (ptr = ctf_type_pointer(ctfp, base)) != CIF_ERR) {

277 tip->dtt_type = ptr;

278 return (0);

279 }

281 if (yypcbh- >pcb idepth !'= 0)

282 dnp = dt p->dt_cdefs;

283 el se

284 dnp = dt p- >dt _ddef s;

286 if (ctfp != dnp->dmctfp & ctfp != ctf_parent _fil e(dnp->dmctfp) &&
287 (type = ctf_add_type(dnp->dmctfp, ctfp, type)) == CTF_ERR) {
288 dtp->dt_ctferr = ctf_errno(dnp->dmctfp);

289 return (dt_set_errno(dtp, EDT_CTF));

290 }

292 ptr = ctf_add_pointer(dnmp->dmctfp, CTF_ADD ROOT, type);

294 if (ptr == CTF_ERR || ctf_update(dnp->dmctfp) == CTF_ERR) {

295 dtp->dt_ctferr = ctf_errno(dnp->dmctfp);

296 return (dt_set_errno(dtp, EDT_CTF));

297 1

299 tip->dtt_object = dnp->dm nane;

300 tip->dtt_ctfp = dnp->dmctfp;

301 tip->dtt_type = ptr;

302 tip->dtt_flags = bflags;

303 #endif /* | codereview */

305 return (0);

306 }

308 const char *

309 dt_type_nanme(ctf_file_t *ctfp, ctf_id_t type, char *buf, size_t |en)

310 {

311 dtrace_hdl _t *dtp = yypcb->pcb_hdl ;

313 if (ctfp == DT_FPTR CTFP(dtp) && type == DT_FPTR TYPE(dtp))

314 (void) snprintf(buf, Ilen, funct| on pointer'

315 else if (ctfp == DI_FUNC CTFP(dtp) && type == DT_| FUNC > TYPE(dt p))

new usr/src/lib/libdtrace/ conmon/dt_parser.c

316
317
318
319
320
321
322

324
325

327
328
329
330
331
332
333

335
336

338
339

341
342

344
345

347
348
349

351
352

354
355
356
357

359
360
361
362

364
365
366
367

369
370
371
372

374
375
376
377
378
379
380
381

}

/*

* Performthe "usual arithmetic conversions" to deternine which of the two
* input operand types should be pronpted and used as a result type. The

* rules for this are described in 1SOC6.3.1.8] and K&R A6.5].

*/

(void) snprintf(buf, len, "function");
else if (ctfp == DI_DYN CTFP(dt p) && type == DT_DYN_TYPE(dtp))
(voi d) snpr| intf(buf, len, "dynamc variable™);
else if (ctfp == NULL)
(void) snprintf(buf, Ien, "<none>"
else if (ctf_type_nane(ctfp, type, buf, Ien) == NULL)
(void) snprintf(buf, len, " unknown")

return (buf);

static void
dt _type_pronote(dt_node_t *Ip, dt_node_t *rp, ctf_file_t **ofp, ctf_id_t *otype)
334 {

ctf_file_t *pr:Ip >dn_ct f p;
ctf_id_t Itype = | p->dn_type;

ctf _file_t *rfp = rp->dn_ctfp;
ctf_id_t rtype = rp->dn_type;

ctf_id_t Ibase = ctf_type_resolve(lfp, ltype);
uint_t lkind = ctf_type_kind(lfp, |base);

ctf_id_t rbase = ctf_type_resolve(rfp, rtype);
uint_t rkind = ctf_type_kind(rfp, rbase);

dtrace_hdl _t *dtp = yypcb->pcb_hdl ;
ctf_encoding_t le, re;
uint_t Irank, rrank;

assert (I kind == CTF_K_INTEGER || |kind == CTF_K_ENUM ;
assert(rkind == CTF_K_INTEGER || rkind == CTF_K_ENUM ;

if (Ikind == CTF_K_ENUM {
[fp = DT_INT_CTFP(dtp):
Itype = Thase = DI_I NT_TYPE(dtp);

if (rkind == CTF_K_ENUM {
rfp = DT_INT CTFP(dt p);
rtype = rbase = DI_I NT_TYPE(dtp);

if (ctf_type_encoding(lfp, |base, &Je) == CTF_ERR) {
yypcb->pcb_hdl - >dt ctferr = ctf _errno(lfp);
i ongj np(yypcb->pcb_j npbuf, EDT_CTF);

if (ctf_type_encoding(rfp, rbase, &e) == CTF_ERR) {
yypcb->pcb_hdl ->dt _ctferr = ctf_errno(rfp);
| ongj np(yypchb- >pcb_j npbuf, EDT_CTF);

* Conpute an integer rank based on the size and unsigned status.
* If rank is identical, pick the "larger" of the equival ent types

* which we define as having a |larger base ctf_id_t. |If rank is
* different, pick the type with the greater rank.
*
/
I rank le.cte_bits + ((le.cte_format & CTF_I NT_SIGNED) == 0);

rrank re.cte_bits + ((re.cte_format & CTF_INT_SI GNED) == 0);

new usr/src/lib/libdtrace/ conmon/dt_parser.c

383 if (lrank == rrank) {
384 if (Ibase - rbase < 0)
385 goto return_rtype;
386 el se
387 goto return_|type;
388 } else if (lrank > rrank) {
389 goto return_|l type;
390 } else
391 goto return_rtype;
393 return_| type:
394 *ofp = | fp;
395 *otype = |l type;
396 return;
398 return_rtype:
399 *ofp = rfp;
400 *otype = rtype;
401 }
403 void
404 dt _node_pronote(dt_node_t *Ip, dt_node_t *rp, dt_node_t *dnp)
405 {
406 dt _type_pronote(lp, rp, &np->dn_ctfp, &dnp->dn_type);
407 dt _node_t ype_assi gn(dnp, dnp->dn_ctfp, dnp->dn_type, B _FALSE);
254 dt _node_t ype_assi gn(dnp, dnp->dn_ctfp, dnp->dn_type);
408 dt _node_attr_assign(dnp, dt_attr_mn(lp->dn_attr, rp->dn_attr));
409 }
__unchanged_portion_omtted_
675 void
676 dt_node_type_assign(dt_node_t *dnp, ctf_file_t *fp, ctf_id_t type,
677 bool ean_t user)
523 dt_node_t ype_assi gn(dt_node_t *dnp, ctf_file_t *fp, ctf_id_t type)
678 {
679 ctf_id_t base = ctf_type_resolve(fp, type);
680 uint_t kind = ctf_type_kind(fp, base);
681 ctf_encoding_t e;
683 dnp->dn_fl ags &=
684 ~(DT_NF_SIGNED | DT_NF_REF | DT_NF_BI TFI ELD | DT_NF_USERLAND) ;
686 if (kind == CTF_K_I NTEGER && ctf_type_encodi ng(fp, base, &) == 0) {
687 size_t size = e.cte_bits / NBBY;
689 if (size >8 || (e.cte_bits %NBBY) !=0 || (size & (size -
690 dnp->dn_flags |= DT_NF_BI TFI ELD;
692 if (e.cte_format & CTF_| NT_SI GNED)
693 dnp->dn_fl ags | = DT_NF_SI GNED,
694 }
696 if (kind == CTF_K_FLOAT && ctf_type_encodi ng(fp, base, &) == 0) {
697 if (e.cte_bits / NBBY > sizeof (uint64_t))
698 dnp->dn_fl ags | = DT_NF_REF;
699 }
701 if (kind == CTF_K_STRUCT || kind == CTF_K_UNION ||
702 kind == CTF_K_FORWARD | |
703 kind == CTF_K_ARRAY || kind == CTF_K_FUNCTI ON)
704 dnp->dn_flags | = DT NF REF;
705 else if (yypch T= NULL && fp == DT_DYN CTFP(yypch->pcb_hdl) &&
706 type == DT_DYN_TYPE(yypcb->pcb_hdl))
707 dnp->dn_flags |= DI_NF_REF;

1))

new usr/src/lib/libdtrace/ conmon/dt_parser.c

709 if (user)

710 dnp->dn_fl ags | = DT_NF_USERLAND;

712 #endif /* | codereview */

713 dnp->dn_fl ags | = DT_NF_COOKED,

714 dnp->dn_ctfp = fp;

715 dnp->dn_type = type;

716 }

718 void

%g ?t_node_type_propagate(const dt_node_t *src, dt_node_t *dst)

721 assert(src->dn_fl ags & DT_NF_COCOKED) ;

722 dst->dn_flags = src->dn_fl ags & ~DT_NF_LVALUE;

723 dst->dn_ctfp = src->dn_ctfp;

724 dst->dn_type = src->dn_type;

725 }

727 const char *

728 dt_node_t ype_nane(const dt_node_t *dnp, char *buf, size_t |en)

729

730 if (dt_node_is_dynam c(dnp) && dnp->dn_ident != NULL) {

731 (voi d) snprintf(buf, Ien, "%"

732 dt _i dki nd_name(dt _i dent_resol ve(dnp->dn_i dent)->di _ki nd));
733 return (buf);

734 }

736 if (dnp->dn_fl ags & DT_NF_USERLAND)

737 size_t n = snprlntf(buf len, "userland ");

738 len =len >n?len - 0;

739 (void) dt_type_ nane(dnp >dn _ctfp, dnp->dn_type, buf + n, len);
740 return (buf);

741 }

743 return (dt_type_name(dnp->dn_ctfp, dnp->dn_type, buf, len));

744 }

746 size_t

;3; ?t_node_type_size(const dt _node_t *dnp)

749 ctf_id_t base;

750 dtrace_hdl _t *dtp = yypcb->pcb_hdl;

751 #endif /* | codereview */

753 if (dnp->dn_kind == DT_NODE_STRI NG

754 return (strlen(dnp >dn_string) + 1);

756 if (dt_node_i s_dynam c(dnp) && dnp->dn_ident != NULL)

757 return (dt_ident_size(dnp->dn_ident));

759 base = ctf_type_resol ve(dnp->dn_ctfp, dnp->dn_type);

761 if (ctf_type_kind(dnp->dn_ctfp, base) == CTF_K_FORWARD)

762 return (0);

764 /*

765 * Here we have a 32-bit user pointer that is being used with a 64-bit
766 * kernel. Wen we're using it and its tagged as a userland reference --
767 * then we need to keep it as a 32-bit pointer. However, if we are
768 * referring to it as a kernel address, eg. being used after a copyi n()
769 * then we need to nake sure that we actually return the kernel’s size
770 * of a pointer, 8 bytes.

771 */

772 if (ctf_type_kind(dnp->dn_ctfp, base) == CTF_K_PO NTER &&

773 ctf_get nodel (dnp->dn_ctfp) == CTF_MODEL _TLP32 &&

774 I (dnp->dn_flags & DT_NF_USERLAND) &&

new usr/src/lib/libdtrace/ conmon/dt_parser.c 9 new usr/src/lib/libdtrace/ conmon/dt_parser.c
775 dt p->dt _conf. dtc_ctfnodel == CTF_MODEL_LP64) 841 {
776 return (8); 842 ctf _file_t *fp = dnp->dn_ctfp;
843 ctf_encoding_t e;
778 #endif /* | codereview */ 844 ctf_id_t type;
779 return (ctf_type_size(dnp->dn_ctfp, dnp->dn_type)); 845 ui nt_t ki nd;
780 }
847 assert (dnp->dn_flags & DT_NF_COCKED) ;
782 | *
783 * Determine if the specified parse tree node references an identifier of the 849 type = ctf_type_resol ve(fp, dnp->dn_type);
784 * specified kind, and if so return a pointer to it; otherw se return NULL. 850 kind = ctf_type_kind(fp, type);
785 * This function resol ves the identifier itself, fol I owi ng through any inlines.
786 */ 852 if (kind == CTF_K_I NTEGER &&
787 dt_ident_t * 853 ctf_type_encoding(fp, type, &) == 0 && IS VO D(e))
788 dt_node_resol ve(const dt_node_t *dnp, uint_t idkind) 854 return (0); /* void Integer */
789 {
790 dt _ident_t *idp; 856) return (kind == CTF_K_INTEGER || kind == CTF_K_ENUM ;
857
792 switch (dnp->dn_| k| nd) {
793 case DT_NODE_VAR 859 int
794 case DT_NODE_SYM 860 dt_node_i s_fl oat (const dt_node_t *dnp)
795 case DT_NODE_FUNC: 861 {
796 case DT_NCDE_AGG 862 ctf _file_t *fp = dnp->dn_ctfp;
797 case DT_NODE_I NLI NE: 863 ctf_encoding_t e;
798 case DT_NODE_PROBE: 864 ctf_id_t type;
799 idp = dt_ident_resol ve(dnp->dn_i dent); 865 ui nt _t ki nd;
800 return (idp->di _kind == idkind ? idp : NULL);
801 } 867 assert (dnp->dn_fl ags & DT_NF_COOKED) ;
803 if (dt_ node i s_dynam c(dnp)) { 869 type = ctf_type_resol ve(fp, dnp->dn_type);
804 idp = dt_ident_resol ve(dnp->dn_i dent); 870 kind = ctf_type_kind(fp, type);
805 return (idp->di _kind == idkind ? idp : NULL);
806 } 872 return (kind == CTF_K_FLOAT &&
873 ctf_type_ encod| ng(dnp->dn_ctfp, type, &) == 0 && (
808 return (NULL); 874 e.cte_format == CTF_FP_SINGLE || e.cte_format == CTF_FP_DOUBLE | |
809 } 875 e.cte_format == CTF_FP_LDOUBLE));
876 }
811 size_t
812 dt_node_si zeof (const dt_node_t *dnp) 878 int
813 { 879 dt_node_i s_scal ar(const dt_node_t *dnp)
814 dtrace_sym nfo_t *sip; 880 {
815 CEl f _Sym sym 881 ctf _file_t *fp = dnp->dn_ctfp;
816 dtrace_hdl _t *dtp = yypcb->pcb_hdl; 882 ctf_encoding_t e;
883 ctf_id_t type;
818 /* 884 uint_t kind;
819 * The size of the node as used for the sizeof() operator depends on
820 * the kind of the node. If the node is a SYM the size is obtained 886 assert (dnp->dn_flags & DT_NF_COCKED) ;
821 * fromthe synbol table; if it is not a SYM the size is determ ned
822 * fromthe node’s type. This is slightly different fromC s sizeof () 888 type = ctf_type_resol ve(fp, dnp->dn_type);
823 * operator in that (for exanple) when applied to a function, sizeof() 889 kind = ctf_type_kind(fp, type);
824 * wll evaluate to the length of the function rather than the size of
825 * the function type. 891 if (kind == CTF_K_I NTECER &&
826 * 892 ctf_type_encodi ng(fp, type, &) == 0 && 1S VO D(e))
827 f (dnp->dn_kind != DT_NODE_SYM 893 return (0); /* void cannot be used as a scalar */
828 return (dt_node_type_size(dnp));
895 return (kind == CTF_K I NTEGER || kind == CTF_K_ENUM | |
830 sip = dnp->dn_i dent - >di _dat a; 896 ki nd == CTF_K_PO NTER);
897 }
832 if (dtrace_| ookup_by_name(dtp, sip->dts_object,
833 si p->dts_nanme, &ym NULL) == -1) 899 int
834 return (0); 900 dt_node_is_arith(const dt_node_t *dnp)
901 {
836 return (sym st_size); 902 ctf _file_t *fp = dnp->dn_ctfp;
837 } 903 ctf_encoding_t e;
904 ctf_id_t type;
839 int 905 uint_t kind;
840 dt_node_i s_i nteger(const dt_node_t *dnp)

new usr/src/lib/libdtrace/ conmon/dt_parser.c

11

0);

907 assert (dnp->dn_fl ags & DT_NF_COOKED) ;

909 type = ctf_type_resol ve(fp, dnp->dn_type);

910 kind = ctf_type_kind(fp, type);

912 if (kind == CTF_K_| NTEGER)

913 return (ctf_type_encoding(fp, type, &) == 0 && !'1S_ VO D(e));
914 el se

915 return (kind == CTF_K_ENUM ;

916 }

918 int

919 dt_node_i s_vfptr(const dt_node_t *dnp)

920 {

921 ctf _file_t *fp = dnp->dn_ctfp;

922 ctf_encoding_t e;

923 ctf_id_t type;

924 uint_t kind;

926 assert (dnp->dn_flags & DT_NF_COCKED) ;

928 type = ctf_type_resol ve(fp, dnp->dn_type);

929 if (ctf_type_kind(fp, type) I—CTFKPO|NTER)

930 return (0); /* type is not a pointer */

932 type = ctf_type_resol ve(fp, ctf_type_reference(fp, type));
933 kind = ctf_type_kind(fp, type);

935 return (kind == CTF_K_FUNCTION || (kind == CTF_K_| NTEGER &&
936 ctf_type_ encodl ng(fp, type, &) == 0 && IS VO De)));
937 }

939 int

940 dt_node_i s_dynami c(const dt_node_t *dnp)

941 {

942 if (dnp->dn_kind == DT_NODE_ VAR &&

943 (dnp->dn_ident->di _flags & DT_IDFLG INLINE)) {

944 const dt_idnode_t *inp = dnp->dn_ident->di _iarg;
945 return (inp->din_root ? dt_node_is_dynani c(inp->din_root)
946 }

948 return (dnp->dn_ctfp == DT_DYN _CTFP(yypcb->pcb_hdl) &&
949 dnp->dn_type == DT DYN_TYPE(yypcb->pcb_hdl));

950 }

952 int

953 dt_node_i s_string(const dt_node_t *dnp)

954 {

955 return (dnp->dn_ctfp == DT_STR CTFP(yypcb->pcb_hdl) &&
956 dnp->dn_type == DT STR_TYPE(yypchb->pcb_hdl));

957 }

959 int

960 dt_node_i s_stack(const dt_node_t *dnp)

961 {

962 return (dnp->dn ctfp == DT_STACK_CTFP(yypch- >pcb hdl) &&
963 dnp->dn_t ype == DT_STACK_TYPE(yypcb->pcb_hdl));

964 }

966 int

967 dt_node_i s_symaddr (const dt_node_t *dnp)

968 {

969 return (dnp->dn ctfp = DT_SYMADDR _CTFP(yypch->pcb_hdl) &&
970 dnp->dn_type == DT SYMADDR _TYPE(yypch->pcb_hdl));

971 }

new usr/src/lib/libdtrace/ conmon/dt_parser.c

973 int

974 dt_node_i s_usymaddr (const dt _node_t *dnp)

975 {

976 return (dnp->dn ctfp = DT_USYMADDR_CTFP(yypcb->pcb_hdl) &&
977 dnp->dn_type == DT USYMADDR_TYPE(yypchb->pcb_hdl)) ;

978 }

980 int

981 dt_node_i s_strconpat (const dt_node_t *dnp)

982 {

983 ctf _file_t *fp = dnp->dn_ctfp;

984 ctf_encoding_t e;

985 ctf_arinfo_t r;

986 ctf_id_t base;

987 uint_t kind;

989 assert (dnp->dn_flags & DT_NF_COCOKED) ;

991 base = ctf_type_resol ve(fp, dnp->dn_type);

992 kind = ctf_type_kind(fp, base);

994 if (kind == CTF_K_PO NTER &&

995 (base = ctf_type_reference(fp, base)) != CTF_ERR &&
996 (base = ctf_type_resol ve(fp, base)) 1= CTF_ERR &&

997 ctf_type_encodi ng(fp, base, &) == 0 && | S_ _CHAR(€e))

998 return (1); /* pronmote char pointer to string */
1000 if (kind == CTF_K_ARRAY && ctf_array_info(fp, base, &) == 0 &&
1001 (base = ctf_type_resolve(fp, r.ctr_contents)) != CTF_ERR &&
1002 ctf_type_encodi ng(fp, base, &) == 0 & & IS _CHAR(e))
1003 return (1); /* pronote char array to string */

1005 return (0);

1006 }

1008 i nt

1009 dt_node_i s_pointer(const dt_node_t *dnp)

1010 {

1011 ctf _file_t *fp = dnp->dn_ctfp;

1012 uint_t kind;

1014 assert (dnp->dn_fl ags & DT_NF_COCKED) ;

1016 if (dt_node_is_string(dnp))

1017 return (0); /* string are pass-by-ref but act like structs */
1019 kind = ctf type ki nd(fp, ctf_type_resolve(fp, dnp->dn_type));
1020 return (kind == CTF_K (]NTER|| ki nd == CTF_K_ARRAY) ;

1021 }

1023 int

1024 dt_node_i s_voi d(const dt_node_t *dnp)

1025 {

1026 ctf_file_t *fp = dnp->dn_ctfp;

1027 ctf_encoding_t e;

1028 ctf_id_t type;

1030 if (dt_node_is_dynani c(dnp))

1031 return (0); /* <DYN> is an alias for void but not the sane */
1033 if (dt_node_is_stack(dnp))

1034 return (0);

1036 if (dt_node_is_symaddr(dnp) || dt_node_is_usynmaddr (dnp))
1037 return (0);

12

new usr/src/lib/libdtrace/ common/dt_parser.c 13

1039

1041
1042
1043

1045
1046
1047

}

i nt

dt _node_|
ctf_

1048 {

1049
1050

1052
1053

1055
1056
1057
1058

1060
1061

1063
1064

1066
1067

1069
1070

1072
1073

1075
1076

1078
1079
1080

1082
1083
1084
1085
1086
1087
1088
1089

1091
1092
1093
1094
1095
1096
1097
1098

1100
1101
1102

1104

type = ctf_type_resol ve(fp, dnp->dn_type);

return (ctf_type_kind(fp, type) == CTF K_I NTEGER &&
ctf_type_encodi ng(fp, type, &) == 0 & IS VO D(e));

i s_ptrconpat (const dt_node_t *lp, const dt_node_t *rp,
fiTe_t **fpp, ctf_id t *tp)

ctf _file_t *Ifp = I p->dn_ctfp;

ctf_file_t *rfp = rp->dn_ctfp;

ctf_id_t | base = CTF_ERR, rbase = CTF_ERR

ctf_id_t Iref = CTF_ERR, rref = CTF_ERR

int lp_is_void, rp_is_void,
uint_t |kind, rkind;
ctf_encoding_t e;
ctf_arinfo_t r;

Ip_is_int, rp_is_int, conpat;

assert (| p->dn_fl ags & DT_NF_COOKED) ;
assert (rp->dn_flags & DT_NF_COOKED) ;

if (dt_node_is dynamc(lp) || dt_node_is_dynami c(rp))

return (0); /* fail if either node is a dynamc variable */
Ip_is_int = dt_node_is_integer(lp);
rp_is_int = dt_node_is_integer(rp);
if (Ip_is_int & rp_is_int)
return (0); /* fail if both nodes are integers */
if (Ip_is_int & (Il p->dn_kind !'= DT_NODE_INT || |p->dn_value != 0))
return (0); /* fail if Ipis an integer that isn’t 0 constant */
if (rp_is_int & (rp->dn_kind != DT_NODE_INT || rp->dn_value != 0))
return (0); /* fail if rpis an integer that isn't 0 constant */

if ((Ip_is_int == 0 & rp_is_int == 0) && (
(I p->dn_flags & DT_NF_USE RLAND) A (rp->dn_flags & DT_NF_USERLAND)))
return (0); /* fail if only one pointer is a userland address */

Resol ve the left-hand and right-hand types to their base type, and
then resolve the referenced type as well (assum ng the base type
is CTF_K_PO NTER or CTF_K_ARRAY). Oherwise [Ir]ref = CTF_ERR

if (Mlp_is_int) {
| base = ctf_type_resolve(lfp, |p->dn_type);
| ki nd ctf_type_kind(lfp, |base);

* ok ok ok

if (Ikind == CTF_K_PO NTER) {
Iref = ctf_type_resolve(lfp,
ctf_type_ reference(lfp | base));
} else if (Ikind == CTF_K_ARRAY &&
ctf_array_info(lfp, |base, &) == 0) {
Iref = ctf_type_resol ve(pr, r.ctr_contents);

}

}

if (!rp_is_int) {
rbase = ctf_type_resolve(rfp, rp->dn_type);
rkind = ctf_type_kind(rfp, rbase);

if (rkind == CTF_K_POINTER) {

new usr/src/lib/libdtrace/ comon/dt_parser.c 14
1105 rref = ctf_type_resolve(rfp,

1106 ctf_type_reference(rfp, rbase));

1107 } else if (rkind == CTF_K_ARRAY &&

1108 ctf_array_info(rfp, rbase, &) == 0) {

1109 rref = ctf_type_resolve(rfp, r.ctr_contents);

1110 }

1111 1

1113 /*

1114 * W know that one or the other type may still be a zero-val ued
1115 * integer constant. To sinplify the code bel ow, set the integer
1116 * type variables equal to the non-integer types and proceed.

1117 *

1118 if (Ip_is_int) {

1119 | base = rbase;

1120 I kind = rkind;

1121 Iref =rref;

1122 Ifp =rfp;

1123 } else if (rp_is_int) {

1124 rbase = | base;

1125 rki nd = | ki nd;

1126 rref Ir ef;

1127 rfp = 1fp;

1128 }

1130 Ip_is_void = ctf_type_encoding(lfp, Iref, &e) 0 & IS VA D(e);
1131 rp_is_void = ctf_type_encoding(rfp, rref, &) == 0 & IS VO D(e);
1133 /*

1134 * The types are conpatible if both are pointers to the sanme type, or
1135 * if either pointer is a void pointer. |If they are conpatible, set
1136 * tp to point to the nore specific pointer type and return it.

1137 *

1138 conpat = (I kind == CTF_K_PO NTER || |kind == CTF_K_ARRAY) &&

1139 (rkind == CTFKPONTER|| rkind == CTF_K_ARRAY) &&

1140 (Ip_is v0|d || rp_is_void || ctf_type_conpat(lfp, Iref, rfp, rref));
1142 if (compat) {

1143 if (fpp !'= NULL)

1144 *fpp = rp_is_void ? Ifp : rfp;

1145 if (tp !'= NULL)

1146 *tp = rp_is_void ? | base : rbase;

1147 }

1149 return (conpat);

1150 }

1152 /*

1153 * The rules for checking argunent types agai nst paraneter types are described
1154 * in the ANSI-C spec (see K&R[A7.3.2] and K& A7.17]). We use the sane rule
1155 * set to determ ne whether associative array argunents match the prototype.
1156 *

1157 int

1158 dt_node_i s_argconpat (const dt_node_t *|p, const dt_node_t *rp)

1159 {

1160 ctf _file_t *Ifp = I p->dn_ctfp;

1161 ctf _file_t *rfp = rp->dn_ctfp;

1163 assert (| p->dn_flags & DT_NF_COOKED);

1164 assert (rp->dn_flags & DT_NF_COOKED) ;

1166 if (dt_node_is_integer(lp) & dt_node_is_integer(r))

1167 return (1); /* integer types are conpatible */

1169 if (dt_node_is_strconpat(lp) && dt_node_is_strconpat(rp))

1170 return (1); /* string types are conpatible */

new usr/src/lib/libdtrace/ common/dt_parser.c 15

1172 if (dt_node_is_stack(lp) && dt_node_is_stack(rp))

1173 return (1); /* stack types are conpatible */

1175 if (dt_node_is_symaddr(lp) && dt_node_is_symaddr(rp))

1176 return (1); /* symaddr types are conpatible */

1178 if (dt_node_is_usymaddr(lp) && dt_node_is_usymaddr(rp))

1179 return (1); /* usymaddr types are conpatible */

1181 switch (ctf_type_kind(lfp, ctf_type_resolve(lfp, |Ip->dn_type))) {
1182 case CTF_K_FUNCTI ON:

1183 case CTF_K_STRUCT:

1184 case CTF_K_UNI ON:

1185 return (ctf_type_conpat(lfp, |p->dn_type, rfp, rp->dn_type));
1186 defaul t:

1187 return (dt_node_is_ptrconpat (I p, rp, NULL, NULL));

1188 }

1189 }

1191 /*

1192 * We provi de dt_node_i s_posconst() as a conveni ence routine for callers who
1193 * wish to verify that an argunent is a positive non-zero integer constant.
1194 */

1195 int

1196 dt_node_i s_posconst (const dt_node_t *dnp)

1197 {

1198 return (dnp->dn_ki nd == DT_NODE_| NT && dnp->dn_value = 0 && (

1199 (dnp->dn_flags & DT NF_SIGNED) == 0 || (int64_t)dnp->dn_value > 0));
1200 }

1202 int

1203 dt_node_i s_actfunc(const dt_node_t *dnp)

1204 {

1205 return (dnp->dn_kind == DT_| NODE FUNC &&

1206 dnp->dn_i dent - >di _ki nd == DT_| DENT_ACTFUNC) ;

1207 }

1209 /*

1210 * The original rules for integer constant typing are described in K&JA2.5.1].
1211 * However, since we support long long, we instead use the rules from|SO C99
1212 * clause 6.4.4.1 since that i s where long longs are formally described. The
1213 * rules require us to know whet her the constant was specified in deciml or
1214 * in octal or hex, which we do by |ooking at our lexer’'s ’yyintdecimal’ flag.
1215 * The type of an integer constant is the first of the corresponding list in
1216 * which its value can be represented:

1217 *

1218 * unsuffixed decimal: int, long, long |ong

1219 * unsuffixed oct/ hex: int, unsigned int, long, unsigned |ong,

1220 * long | ong, unsigned long | ong

1221 * suffix [uU]: unsi gned int, unsigned | ong, unsigned |ong |ong

1222 * suffix [IL] decimal: long, long |ong

1223 * suffix [IL] oct/hex: 1long, unsigned long, long |ong, unsigned long |ong
1224 * suffix [uU[LI]: unsi gned | ong, unsigned |ong Iong

1225 * suffix II/LL decimal: |ong |ong

1226 * suffix Il1/LL oct/hex: long long, unsigned |Iong |ong

1227 * suffix [uU[IlIl/LL]: unsi gned | ong | ong

1228 *

1229 * Gven that our |exer has already validated the suffixes by regexp matching,
1230 * there is an obvious way to concisely encode these rules: construct an array
1231 * of the types in the order int, unsigned int, |long, unsigned |long, |ong |Iong,
1232 * unsigned long long. Conpute an integer array starting index based on the
1233 * suffix (e.g. none =0, u =1, ull =5), and conpute an increnent based on
1234 * the specifier (dec/oct/hex) and suffix (u). Then iterate fromthe starting
1235 * index to the end, advancing using the increnent, and searching until we
1236 * find a limt that matches or we run out of choices (overflow). To nmake it

new usr/src/lib/libdtrace/ conmon/dt_parser.c

1237 * even faster, we preconpute the table of type information in dtrace_open().
1238 */

1239 dt_node_t *

1240 dt_node_i nt (ui nt max_t val ue)

1241 {

1242 dt _node_t *dnp = dt _node_al | oc(DT_NODE_| NT) ;

1243 dtrace_hdl _t *dtp = yypcb->pcb_hdl;

1245 int n
i

(yyintdecimal | (yyintsuffix[0] =="u")) + 1;
1246 i nt 0;

’

1248 const char *p;
1249 char c;

1251 dnp->dn_op = DT_TOK_I| NT;
1252 dnp->dn_val ue = val ue;

1255 if (c == |
1256 i += 1;
1257 elseif (c="L || c="1")
1258 i +=2;

1259 1

1254 for (p = yylntsufflx, (c = *p) !
U || ’

1261 for (; i < sizeof (dtp->dt_ints) / sizeof (dtp->dt_ints[0]); i +=n) {
1262 if (value <= dtp->dt _ints[i].did_limt) {

1263 dt _node_t ype_assi gn(dnp,

1264 dtp->dt_ints[i].did_ctfp,

1265 dtp->dt _ints[i].did_| type B _FALSE);

555 dtp->dt_ints[i].did_type);

1267 /*

1268 * |f a prefix character is present in nacro text, add
1269 * in the correspondi ng operator node (see dt_lex.l).
1270 */

1271 SW tch (yy| ntprefix) {

1272 case '+

1273 return (dt _node_op1(DT_TOK | PCS, dnp));

1274 case '-':

1275 return (dt _node_op1(DT_TOK_I NEG dnp));

1276 defaul t:

1277 return (dnp);

1278 }

1279 }

1280 }

1282 xyerror (D_I NT_OFLOW "integer constant 0x% | x cannot be represented "
1283 "in any built-in integral type\n", (u_longlong_t)value);

1284 / * NOTREACHED* /

1285 return (NULL); /* keep gcc happy */

1286 }

1288 dt_node_t *
1289 dt _node_string(char *string)

1290 {

1291 dtrace_hdl _t *dtp = yypcb->pcb_hdl;

1292 dt _node_t *dnp;

1294 if (string == NULL)

1295 | ongj np(yypchb->pcb_j npbuf, EDT_NOVEM ;

1297 dnp = dt _node_al | oc(DT_NODE_STRI NG) ;

1298 dnp- >dn_op = DT_TOK_STRI NG

1299 dnp->dn_string = string;

1300 dt _node_type_assi gn(dnp, DT_STR CTFP(dtp), DT_STR TYPE(dtp), B _FALSE);
590 dt _node_t ype_assi gn(dnp, DT_STR CTFP(dtp), DT_STR TYPE(dtp));

new usr/src/lib/libdtrace/ common/dt_parser.c 17

1302
1303 }

return (dnp);

__unchanged_portion_omtted_

1344 /
1345
1346
1347
1348

*

* Create an enpty node of type corresponding to the given declaration.
* Explicit references to user types (C or D) are assigned the default
* stability; references to other types are _dtrace_typattr (Private).

*/

1349 dt_node_t *
1350 dt _node_type(dt_decl _t *ddp)

1351 {
1352
1353
1354
1355
1356

1358
1359
1360
1361
1362
1363

1365
1366

1368
1369
1370
1371

1373
1374
1375

1377
666

1379
1380
1381
1382
1383

1385
1386 }

dtrace_hdl _t *dtp = yypcb->pcb_hdl;
dtrace_typeinfo_t dtt;

dt _node_t *dnp;

char *name = NULL;

int err;

/*
* If "ddp’ is NULL, we get a decl by popping the decl stack. This
* formof dt_node_type() is used by paranmeter rules in dt_gramar.y.
*/
if (ddp == NULL)

ddp = dt_decl _pop_par an{ &ane);

err = dt_decl _type(ddp, &dtt);
dt _decl _free(ddp);

if (err 1=0) {

free(nane);

I ongj mp(yypchb->pcb_j npbuf, EDT_COWPI LER);
}

dnp = dt_node_al | oc(DT_NODE_TYPE) ;
dnp->dn_op = DT_TOK_| DENT;
dnp->dn_string = nane;

dt _node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type, dtt.dtt_flags);
dt _node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type);

if (dtt.dtt_ctfp == dtp->dt_cdefs->dmctfp ||
dtt.dtt_ctfp == dt p->dt_ddefs->dm ctfp)
dt _node_attr_assi gn(dnp, _dtrace_defattr);
el se
dt _node_attr_assign(dnp, _dtrace_typattr);

return (dnp);

__unchanged_portion_omtted_

1405 /
1406
1407
1408
1409
1410
1411

*
* |Instantiate a decl using the contents of the current declaration stack. As
* we do not currently permt decls to be initialized, this function currently
* returns NULL and no parse node is created. Wen this function is called,
* the topnost scope’s ds_ident pointer will be set to NULL (indicating no
* init_declarator rule was matched) or will point to the identifier to use.
*
/

1412 dt_node_t *
1413 dt_node_decl (voi d)

1414 {
1415
1416
1417
1418

dtrace_hdl _t *dtp = yypcb->pcb_hdl;
dt _scope_t *dsp = &ypcbh->pcb_dst ack;
dt _dclass_t class = dsp->ds_cl ass;

dt _decl _t *ddp = dt _decl _top();

new usr/src/lib/libdtrace/ comon/dt_parser.c 18
1420 dt _nodul e_t *dnp;

1421 dtrace_typeinfo_t dtt;

1422 ctf_id_t type;

1424 char ni1[DT_TYPE_NAMELEN] ;

1425 char n2[DT_TYPE_NAMELEN] ;

1427 if (dt_decl _type(ddp, &dtt) != 0)

1428 | ongj mp(yypchb- >pcb_j npbuf, EDT_COWPI LER);

1430 /*

1431 * |f we have no declaration identifier, then this is either a spurious
1432 * declaration of an intrinsic type (e.g. "extern int;") or declaration
1433 * or redeclaration of a struct, union, or enumtype or tag.

1434 */

1435 if (dsp->ds_ident == NULL) {

1436 if (ddp- >dd k|nd|—CTFKSTRUCT &&

1437 ddp- >dd_kind != CTF K UNI ON && ddp- >dd_ki nd ! = CTF_K_ENUM
1438 xyerror (D _DECL_USELESS, "usel ess declaration\n™);

1440 dt dpl’l ntf("type % added as id %d\n", dt_type_name(

1441 ddp->dd_ctfp, ddp->dd_type, ni, si zeof (nl)), ddp->dd_type);
1443 return (NULL);

1444 }

1446 if (strchr(dsp->ds_ident, "‘) = NULL) {

1447 xyerror(D DECL _ SOGDE "D scoping operator may not be used in "
1448 "a decl aration name (%)\n", dsp->ds_ident);

1449 }

1451 /*

1452 * |f we are nested inside of a Cinclude file, add the declaration to
1453 * the C definition nodule; otherwi se use the D definition nodule.
1454 */

1455 if (yypcb- >pcb idepth = 0)

1456 dnp dt p- >dt _cdefs;

1457 el se

1458 dnp = dt p->dt _ddefs;

1460 /*

1461 * |f we see a global or static declaration of a function prototype,
1462 * treat this as equivalent to a D extern declaration.

1463 */

1464 if (ctf_type_kind(dtt.dtt_ctfp, dtt.dtt_type) == CTF_K_FUNCTI ON &&
1465 (class == DT_DC_DEFAULT || class == DI_DC_STATI C))

1466 class = DT_DC_EXTERN;

1468 switch (class) {

1469 case DT_DC AUTO

1470 case DT_DC_REG STER

1471 case DT_DC_STATIC.

1472 xyerror(D_DECL_BADCLASS, "specified storage class not

1473 "appropriate in D\n");

1474 | * NOTREACHED* /

1476 case DT_DC EXTERN: {

1477 dtrace_typeinfo_t ott;

1478 dtrace_syminfo_t dts;

1479 GEl f _Sym sym

1481 int exists = dtrace_| ookup_by_nane(dtp,

1482 dnp->dm nane, dsp->ds_ident, &ym &dts)

1484 if (exists & (dtrace_synbol _type(dtp, &ym &dts, &ott) !=0 ||
1485 ctf_type_cnp(dtt.dtt_ctfp, dtt.dtt_type,

new usr/src/lib/libdtrace/ common/dt_parser.c 19

1486 ott.dtt_ctfp, ott. dtt type) 1=0)) {

1487 xyerror(D DECL_| DRED, "identifier redeclared: %' %\n"
1488 "\t current: %\n\tprevious: %\n",

1489 dnmp->dm nane, dsp->ds_i dent

1490 dt _type_ nane(dtt dtt_ctfp, dtt.dtt_type,

1491 nl, sizeof (nl)),

1492 dt _type_narre(ott .dtt_ctfp, ott.dtt_type,

1493 n2, sizeof (n2)));

1494 } else if (!exists && dt_nodul e_extern(dtp, dnp,

1495 dsp->ds_i dent, &dtt) == NULL) {

1496 xyer ror (D_UNKNOWN,

1497 "failed to extern %: %\n", dsp->ds_ident,

1498 dtrace_errnsg(dtp, dtrace_errno(dtp)));

1499 } else {

1500 dt _dprintf("extern %' % type=<¥%>\n",

1501 dnmp- >dm nane, dsp->ds_i dent

1502 dt _type_ name(dtt dtt_ctfp, dtt.dtt_type,

1503 nl, sizeof (nl)));

1504 }

1505 br eak;

1506 }

1508 case DT_DC TYPEDEF:

1509 if (dt_idstack_|l ookup(&ypch->pcb_gl obal s, dsp->ds_ident))
1510 xyerror (D DECL_I DRED, "global variable identifier "
1511 "redecl ared: %\n", dsp->ds_ident);

1512 }

1514 if (ctf_lookup_by_| nama(dnp >dm 1ctfp,

1515 dsp->ds_ident) != RR) {

1516 xyerror(D DECL I DRED

1517 "typedef redeclared: %\n", dsp->ds_ident);

1518 }

1520 /*

1521 * |f the source type for the typedef is not defined in the
1522 * target container or its parent, copy the type to the target
1523 * container and reset dtt_ctfp and dtt _type to the copy.
1524 */

1525 if (dtt.dtt_ctfp !'= dnp->dmctfp &

1526 dtt.dtt_ctfp != ctf_parent f||e(dnp >dmctfp)) {

1528 dtt.dtt_type = ctf_add_type(dnp->dm ctfp,

1529 dtt.dtt_ctfp, dtt.dtt_type);

1530 dtt.dtt_ctfp = dnp->dmctfp;

1532 if (dtt.dtt_type == CTF_ERR ||

1533 ctf_update(dtt.dtt ctfp) == CTF_ERR) {

1534 xyerror (D_UNKNOW, "failed to copy typedef % "
1535 "source type: %\n", dsp->ds_ident,

1536 ctf_errnsg(ctf_errno(dtt.dtt_ctfp)));
1537 }

1538 }

1540 type = ctf _add_t ypedef (dnp->dm ct f p,

1541 CTF_ADD_ROOT, dsp->ds_ident, dtt.dtt_type);

1543 if (type == CTF_ERR || ctf_update(dnp->dmctfp) == CTF_ERR) {
1544 xyerror (D_UNKNOW, “"failed to typedef %: %\n",

1545 dsp->ds_ident, ctf_errnsg(ctf_errno(dnp->dmctfp)));
1546 }

1548 dt _dprintf("typedef % added as id %d\n", dsp->ds_ident, type);
1549 br eak;

1551 defaul t: {

new usr/src/lib/libdtrace/ comon/dt_parser.c 20
1552 ctf_encoding_t cte;

1553 dt _i dhash_t *dhp;

1554 dt _ident_t *idp;

1555 dt _node_t idn;

1556 int assc, idkind;

1557 uint_t id, kind;

1558 ushort_t idflags;

1560 switch (class) {

1561 case DT_DC TH S:

1562 dhp = yypcb->pcb_I ocal s;

1563 idfl ags = DT_| DFLG LOCAL;

1564 idp = dt _i dhash_| ookup(dhp, dsp->ds_ident);

1565 break;

1566 case DT_DC SELF:

1567 dhp = dtp >dt _tls;

1568 idfl ags = DT_T DFLG TLS;

1569 idp = dt _i dhash_| ookup(dhp, dsp->ds_ident);

1570 break;

1571 defaul t:

1572 dhp = dt p->dt_gl obal s;

1573 idfl ags = 0;

1574 idp = dt_idstack_l ookup(

1575 &yypch->pch_gl obal s, dsp->ds_i dent);

1576 br eak;

1577 }

1579 if (ddp->dd_kind == CTF_K_ARRAY && ddp->dd_node == NULL) {
1580 xyerror(D DECL ARRNULL,

1581 "array declaration requires array dinmension or "
1582 "tupl e signature: %\n", dsp->ds_ident);

1583 }

1585 if (idp !'= NULL && idp->di_gen == 0) {

1586 xyerror(D DECL_I DRED, "built-in identifier "

1587 "‘redecl ared: %\n", idp->di _nane);

1588 }

1590 if (dtrace_l ookup_by_: type(dtp, DTRACE_OBJ_CDEFS,

1591 dsp->ds_i dent, NULL) == 0 ||

1592 dtrace Iookup by_type(dtp, DTRACE_OBJ_DDEFS,

1593 dsp->ds_i dent, NULL) == 0)

1594 xyerror(D DECL_| DRED, "typedef identifier "

1595 "redecl ared: %s\n", dsp->ds_ident);

1596 }

1598 /*

1599 * Cache sone attributes of the decl to make the rest of this
1600 * code sinpler: if the decl is an array which is subscripted
1601 * by a type rather than an integer, then it’s an associative
1602 * array (assc). W then expect to match either DT_I DENT_ARRAY
1603 * for associative arrays or DT_|I DENT_SCALAR for anything el se.
1604 */

1605 assc = ddp->dd_ki nd == CTF_K_ARRAY &&

1606 ddp- >dd_node- >dn_ki nd == DT_NODE_TYPE;

1608 idkind = assc ? DT_I DENT_ARRAY : DT _| DENT_SCALAR;

1610 /*

1611 * Create a fake dt_node_t on the stack so we can determne the
1612 * type of any matching identifier by assigning to this node.
1613 * |f the pre-existing ident has its di _type set, propagate
1614 * the type by hand so as not to trigger a prototype check for
1615 * arrays (yet); otherwi se we use dt_ident_cook() on the ident
1616 * to ensure it is fully initialized before looking at it.

1617 */

new usr/src/lib/libdtrace/ conmon/dt_parser.c

1618

1620
1621
1622

910
1623
1624

1626
1627
1628
1629
1630
1631

1633
1634
1635

1637
1638
1639
1640
1641
1642
1643
1644
1645
1646

1648
1649
1650
1651

1653
1654

1656
1657

1659
1660
1661

1663
1664
1665
1666
1667
1668
1669
1670
1671
1672

1674
1675
1676
1677
1678
1679
1680
1681
1682

bzero(& dn, sizeof (dt_node_t));

if (idp !'= NULL && idp->di_type != CTF_ERR)
dt node type assign(& dn, idp->di_ctfp, idp->di_type,
B_F

dt _node type assi gn(& dn, idp->di_ctfp, idp->di_type);

else if (idp != NULL)
(voi d) dt_ident_cook(& dn, idp, NULL);

if (assc) {
if (class == DT_DC TH' S)
xyerror (D _DECL_LOCASSC, "associative arrays "
"may not be declared as |ocal variables:"
" %\ n", dsp->ds_ident);
}

if (dt_ decl _type(ddp->dd_next, &dtt) != 0)
| ongj np(yypch->pcb_j npbuf EDT_COWPI LER) ;
}

if (idp !'= NULL && (idp->di_kind !'=idkind ||
ctf_type_cnp(dtt.dit_ctfp, dtt.dtt_type,
idn.dn_ctfp, idn.dn_type) !'= 0))
xyerror (D _DECL_|I DRED, "identifier redeclared: %\n"

"\t current: % %\n\tprevious: % %\n",
dsp->ds_i dent, dt_i dki nd_nane(i dki nd),
dt _type_| name(dtt dtt_ctfp,
dtt.dtt_type, nl, sizeof (nl1)),
dt _i dki nd_nare(i dp- >di _ki nd),
dt _node_type_nane(& dn, n2, sizeof (n2)));

} elseif (idp !'= NULL && assc) {
const dt_idsig_t *isp = idp->di_data;
dt _node_t *dnp = ddp->dd_node;
int argc = 0;

for (; dnp !'= NULL; dnp = dnp->dn_list, argc++) {
const dt_node_t *pnp = & sp->dis_args[argc];

if (argc >= isp->dis_argc)
continue; /* tuple length msmatch */

if (ctf_type_cnp(dnp->dn_ctfp, dnp->dn_type,
pnp->dn_ctfp, pnp->dn_type) == 0
conti nue;

xyerror(D DECL_| DRED,

identifier redeclared: %\n"

"\t current: %, key #% of type %\n"

"\tprevious: %, key #% of type %\n",

dsp->ds_i dent,

dt _i dki nd nama(l dkind), argc + 1,

dt _node_t ype_nane(dnp, ni, si zeof (nl)),

dt _i dki nd_name(i dp- >di _Ki nd) argc + 1,

dt _node_t ype_nane(pnp, n2, si zeof (n2)));
}

if (isp->dis_argc != argc) {
xyerror(D DECL_| DRED,
identifier redeclared: %\n"
"\t current: % of %, tuple length %\ n"

"\tprevious: % of %, tuple length %\ n",

dsp->ds_i dent, dt_idki nd_nane(i dki nd),
dt _type_nane(dtt.dtt_ctfp, dtt.dtt_type,
nl, sizeof (nl)), argc,

dt _i dki nd_nane(1 dp->di _ki nd)

new usr/src/lib/libdtrace/ conmon/dt_parser.c

1683
1684
1685

1687
1688
1689

1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710

1712
1713
1714
1715
1716

1718
1719
1720

1722
1723
1724
1725

1727
1728

1730

1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745

1747

dt _node_type_nanme(& dn, n2, sizeof (n2)),
isp->dis_argc);

}

} elseif (idp == NULL) {
type = ctf_type_resolve(dtt.dtt_ctfp, dtt.dtt_type);
kind = ctf_type_kind(dtt.dtt_ctfp, type);

switch (kind)
case CTF_K_|I NTECER:
if (ctf_type_encodi ng(dt t.dtt_ctfp, type,
&cte) == 0 && 1S VO D(cte)) {
xyerror(D DECL_VO DOBJ, "cannot have "
"void object: 9%\n", dsp->ds_ident);

}
bre
case CTF_K STRUCT
case CTF_K_UNI ON:
if (ctf_type_size(dtt.dtt_ctfp, type) !=0)
break; /* proceed to declaring */
/* FALLTHRU*/
case CTF_K_FORWARD:
xyerror (D _DECL_| NCOVPLETE,
"inconplete struct/union/enum %: %\n",
dt _type_nane(dtt.dtt_ctfp, dtt.dtt_type,
nl, sizeof (nl)), dsp->ds_ident);

| * NOTREACHED* /
}
if (dt_idhash_nextid(dhp, & d) == -1) {
xyerror(D I D OFLOW "cannot create %: limt
"on nunber of % variabl es exceeded\n",
dsp->ds_i dent, dt_i dhash_nane(dhp));
}

dt _dprintf("declare % % variable %, id=%\n",
dt _i dhash_name(dhp), dt_i dki nd_nane(i dki nd)
dsp->ds_i dent, id);

idp = dt_idhash_insert(dhp, dsp->ds_ident, idkind,
idflags | DT_I DFLG WRI TE | DT_I DFLG | DECL id,
dtrace_defattr, 0, assc ? &dt_i dops_assc :
&dt _i dops_t haw, NULL, dtp->dt_gen);

if (idp == NULL)
| ongj rrp(yypcb >pcb_j npbuf, EDT_NOVEM ;

dt _ident _type_assign(idp, dtt.dtt_ctfp, dtt.dtt_type);

/
If we are declaring an associative array, use our
fake parse node to cook the new assoc identifier.
This will force the ident code to instantiate the
array type signature corresponding to the list of
types pointed to by ddp->dd_node. W also reset

the identifier’s attributes based upon the result.

R
-~

if (assc) {
idp->di _attr =

dt _ident_cook(& dn, idp, &ddp->dd_node);

} /* end of switch */

22

new usr/src/lib/libdtrace/ conmon/dt_parser.c 23 new usr/src/lib/libdtrace/ conmon/dt_parser.c 24
1749 free(dsp->ds_ident); 1849 /*
1750 dsp->ds_i dent = NULL 1850 * If we’'re negating an unsigned integer, zero out any
1851 * extra top bits to truncate the value to the size of
1752 return (NULL); 1852 * the effective type determ ned by dt_node_int().
1753 } 1853 */
__unchanged_portion_onitted_ 1854 cp->dn_val ue = -cp->dn_val ue;
1855 if (!(cp->dn_flags & DT_NF SIGNED)) {
1791 /* 1856 cp->dn_val ue & ~OULL >>
1792 * The offsetof () function is special because it takes a type name as an 1857 (64 - dt_node_type_size(cp) * NBBY);
1793 * argunment. It does not actually construct its own node; after |ooking up the 1858 }
1794 * structure or union offset, we just return an integer node with the offset. 1859 [* FALLTHRU*/
1795 */ 1860 case DT_TOK_I PCs:
1796 dt_node_t * 1861 return (cp);
1797 dt _node_of f set of (dt _decl _t *ddp, char *s) 1862 case DT_TOK_BNEG
1798 { 1863 cp->dn_val ue = ~cp->dn_val ue;
1799 dtrace_typeinfo_t dtt; 1864 return (cp);
1800 dt _node_t dn; 1865 case DT_TOK _LNEG
1801 char *nane; 1866 cp->dn_val ue = !cp->dn_val ue;
1802 int err; 1867 return (cp);
1868 }
1804 ctf_menbinfo_t ctm 1869 }
1805 ctf_id_t type;
1806 uint_t kind; 1871 /*
1872 * If sizeof is appl ied to a type_nanme or string constant, we can
1808 nane = strdupa(s); 1873 * transform’cp’ into an integer constant in the node construction
1809 free(s); 1874 * pass so that it can then be used for arithnetic in this pass.
1875 */
1811 err = dt_decl _type(ddp, &dtt); 1876 if (op == DT_TOK_SI ZECF &&
1812 dt _decl _free(ddp); 1877 (cp- >dn ki nd == DT_NODE_STRING || cp->dn_kind == DT_NODE_TYPE)) {
1878 dtrace_hdl _t *dtp = yypch- >pcb_hdl ;
1814 if (err 1= 0) 1879 size_t size dt _node_type_si ze(cp)
1815 I ongj nmp(yypchb->pcb_j npbuf, EDT_COWPI LER);
1881 if (size == 0) {
1817 type = ctf_type_resolve(dtt.dtt_ctfp, dtt.dtt_type); 1882 xyerror(D_SI ZEOF_TYPE, "cannot apply sizeof to an "
1818 kind = ctf_type_kind(dtt.dtt_ctfp, type); 1883 "operand of unknown size\n");
1884 }
1820 if (kind !'= CTF_K_STRUCT && kind !'= CTF_K_UNION) {
1821 xyerror (D _OFFSETOF_TYPE, 1886 dt _node_t ype_assi gn(cp, dtp->dt_ddefs->dmctfp,
1822 "of f setof operand nust be a struct or union type\n"); 1887 ctf_l ookup_by_nane(dt p->dt _ddefs->dmctfp, "size_t"),
1823 1 1888 B FALSE);
1175 ctf_l ookup_by_nane(dt p->dt _ddefs->dmctfp, "size_t"));
1825 if (ctf_nenber_info(dtt.dtt_ctfp, type, nane, &tm == CTF_ERR) {
1826 xyerror (D_UNKNOWN, "failed to determne offset of %: %\n", 1890 cp->dn_ki nd = DT_NCDE_I NT;
1827 nane, ctf_errmsg(ctf_errno(dtt.dtt_ctfp))); 1891 cp->dn_op = DT TOK_I NT;
1828 } 1892 cp->dn_val ue = size;
1830 bzero(&dn, sizeof (dn)); 1894 return (cp);
1831 dt _node_type_assign(&n, dtt.dtt_ctfp, ctmctmtype, B FALSE); 1895 }
1119 dt _node_type_assign(&n, dtt.dtt_ctfp, ctmctmtype);
1897 dnp = dt_node_al | oc(DT_NCDE_OP1);
1833 if (dn.dn_flags & DT_NF_BI TFI ELD) { 1898 assert (op <= USHRT_MAX);
1834 xyerror (D_OFFSETOF_BI TFI ELD, 1899 dnp->dn_op = (ushort t)op
1835) "cannot take offset of a bit-field: %\n", nane); 1900 dnp->dn_child = cp;
1836
1902 return (dnp);
1838 return (dt_node_int(ctmctmoffset / NBBY)); 1903 }
1839 } __unchanged_portion_onitted_
1841 dt_node_t * 1937 dt_node_t *
1842 dt _node_opl(int op, dt_node_t *cp) 1938 dt_node_op2(int op, dt_node_t *lp, dt_node_t *rp)
1843 { 1939 {
1844 dt _node_t *dnp; 1940 dtrace_hdl _t *dtp = yypcb->pcb_hdl;
1941 dt _node_t *dnp;
1846 if (cp->dn_kind == DT_NODE_I NT) {
1847 switch (op) { 1943 /*
1848 case DT_TOK | NEG 1944 * First we check for operations that are illegal -- nanely those that

new usr/src/lib/libdtrace/ conmon/dt_parser.c 25 new usr/src/lib/libdtrace/ conmon/dt_parser.c 26
1945 * mght result in integer division by zero, and abort if one is found. 2006 dt _node_t ype_assi gn(dnp,
1946 */ 2007 DT_TNT_CTFP(dtp), DT_INT_TYPE(dtp), B FALSE);
1947 if (rp->dn_kind == DT_NODE_INT && rp->dn_val ue == 0 && 1294 DT_I NT_CTFP(dt p), DT_I NT_TYPE(dtp));
1948 (op == DT_TOK_MOD || op == DT_TOK_DIV || 2008 br eak;
1949 op == DT TOK_MD_EQ | | op == DT_TOK DI V_EQ) 2009 case DT_TOK LE:
1950 xyerror (D D V_ZERO, "expression contains division by zero\n"); 2010 “dt_node_pronote(lp, rp, dnp);
2011 i f (dnp->dn_flags & DI _NF_S| GNED)
1952 /* 2012 dnp->dn_val ue = (intmax_t)l <= (intmax_t)r;
1953 * |f both children are i nmedi ate val ues, we can just performinline 2013 el se
1954 * calculation and return a new i nmedi ate node with the result. 2014 dnp->dn_value =1 <=r;
1955 */ 2015 dt _node_t ype_assi gn(dnp,
1956 if (I p->dn_kind == DT_NODE_I NT && rp->dn_kind == DT_NODE_INT) { 2016 DT_TNT_CTFP(dtp), DT_INT_TYPE(dtp), B FALSE);
1957 ui nt max_t I = Ip >dn_val ue; 1303 DT_I NT_CTFP(dtp), DT_I NT_TYPE(dtp));
1958 uintmax_t r = rp->dn_val ue; 2017 br eak;
2018 case DT_TOK GT:
1960 dnp = dt_node_int(0); /* allocate new integer node for result */ 2019 “dt_node_promote(lp, rp, dnp);
2020 i f (dnp- >dn flags & DT_NF_SI GNED)
1962 switch (op) { 2021 dnp->dn_value = (intmax_t)l > (intmax_t)r;
1963 case DT_TOK_LOR 2022 el se
1964 dnp->dn_value =1 || r; 2023 dnp->dn_value =1 >r;
1965 dt _node_t ype_assi gn(dnp, 2024 dt _node_t ype_assi gn(dnp,
1966 DT_TNT_CTFP(dtp), DT_INT_TYPE(dtp), B FALSE); 2025 DT_TNT_CTFP(dtp), DT_INT_TYPE(dtp), B FALSE);
1253 DT_I NT_CTFP(dtp), DT_INT_TYPE(dtp)); 1312 DT_I NT_CTFP(dtp), DT_INT_TYPE(dtp));
1967 br eak; 2026 br eak;
1968 case DT_TO<_LXCR: 2027 case DT_TOK_ GE
1969 dnp->dn_value = (I '=0) ~ (r !'=0); 2028 dt _node_pronote(lp, rp, dnp);
1970 dt _node_t ype_assi gn(dnp, 2029 i f (dnp->dn_flags & DT_NF IGNED)
1971 DT_TNT_CTFP(dtp), DT_I NT_TYPE(dtp), B FALSE); 2030 dnp->dn_value = (intmax_t)| >= (intmax_t)r;
1258 DT_I NT_CTFP(dtp), DT_INT_TYPE(dtp)); 2031 el se
1972 br eak; 2032 dnp->dn_value =1 >=r;
1973 case DT_TOK_LAND: 2033 dt _node_t ype_assi gn(dnp,
1974 dnp->dn_value = | &&r; 2034 DT_TNT_CTFP(dt p), DT_I NT_TYPE(dtp), B_FALSE);
1975 dt _node_t ype_assi gn(dnp, 1321 DT_| NT_CTFP(dt p), DT_I NT_TYPE(dtp));
1976 DT_I NT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE); 2035 br eak;
1263 DT_I NT_CTFP(dt p), DT_INT_TYPE(dtp)); 2036 case DT_TOK_LSH:
1977 br eak; 2037 “dnp->dn_val ue = |
1978 case DT_TCK_B(P: 2038 dt _node_t ype_| propagat e(l p, dnp);
1979 dnp->dn_value =1 | r; 2039 dt _node_attr_assign(rp,
1980 dt _node_pronote(lp, rp, dnp); 2040 dt _attr_min(lp->dn_attr, rp->dn_attr));
1981 break; 2041 break;
1982 case DT_TOK_XOR: 2042 case DT_TOK_RSH:
1983 dnp->dn_value =1 ~ r; 2043 dnp->dn_value =1 >> r;
1984 dt _node_pronote(lp, rp, dnp); 2044 dt _node_t ype_propagat e(l p, dnp);
1985 br eak; 2045 dt _node_attr_assign(rp,
1986 case DT_TOK | BAND: 2046 dt_attr_mn(lp->dn_attr, rp->dn_attr));
1987 “dnp->dn_value = | &r; 2047 br eak;
1988 dt _node_pronote(lp, rp, dnp); 2048 case DT_TOK_ADD:
1989 break; 2049 “dnp->dn_value = | + r;
1990 case DT_TOK_EQU: 2050 dt _node_promote(lp, rp, dnp);
1991 dnp->dn_value = | ==r; 2051 br eak;
1992 dt _node_t ype_assi gn(dnp, 2052 case DT_TOK_. SUB:
1993 DT_I NT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE); 2053 “dnp->dn_val ue = | r;
1280 DT_I NT_CTFP(dtp), DT_INT_TYPE(dtp)); 2054 dt node _pronot e(| p, rp, dnp);
1994 br eak; 2055 br eak
1995 case DT_TOK_NEQ 2056 case DT_TOK | MUL:
1996 dnp->dn_value =1 !=r; 2057 “dnp->dn_value = | * r;
1997 dt _node_t ype_assi gn(dnp, 2058 dt _node_pronote(lp, rp, dnp);
1998 DT_TNT_CTFP(dtp), DT_INT_TYPE(dtp), B FALSE); 2059 br eak;
1285 DT_I NT_CTFP(dtp), DT_INT_TYPE(dtp)); 2060 case DT_TOK D V:
1999 br eak; 2061 dt _node_pronmote(lp, rp, dnp);
2000 case DT_TOK_LT: 2062 if (dnp->dn_flags & DT_NF_SI G\IED)
2001 “dt_node_promote(lp, rp, dnp); 2063 dnp->dn_value = (intmax_t)|l / (intmax_t)r;
2002 i f (dnp->dn_flags & DT_NF_SI GNED) 2064 el se
2003 dnp->dn_value = (intmax_t)l < (intmax_t)r; 2065 dnp->dn_value =1 [/ r;
2004 el se 2066 break;
2005 dnp->dn_value =1 <r; 2067 case DT_TOK_MID:

new usr/src/lib/libdtrace/ common/dt_parser.c 27

2068 dt _node_pronote(lp, rp, dnp);

2069 i f (dnp->dn_flags & DT _NF_S| GNED)

2070 dnp->dn_val ue = (intmax_t)l % (intmax_t)r;
2071 el se

2072 dnp->dn_value =1 %r;

2073 break;

2074 defaul t:

2075 dt node free(dnp)

2076 dnp = NULL;

2077 }

2079 if (dnp !'= NULL) {

2080 dt _node_free(lp);

2081 dt _node_free(rp);

2082 return (dnp);

2083 }

2084 }

2086 if (op == DT_TOK _LPAR && rp->dn_kind == DT_NODE_I NT &&

2087 dt _node_is_integer(lp)) {

2088 dt _cast(lp, rp);

2089 dt _node_type_propagate(lp, rp);

2090 dt “node_attr_assign(rp, dt_attr_min(lp->dn_attr, rp->dn_attr));
2091 dt _node_free(lp);

2093 return (rp);

2094 }

2096 /*

2097 * |f no imediate optimnizations are available, create an new OP2 node
2098 * and glue the left and right children into place and return.
2099

2100 dnp = dt _node_al | oc(DT_NODE_OP2) ;

2101 assert (op <= USHRT_MAX);

2102 dnp->dn_op = (ushort t)op

2103 dnp->dn_l ef t I p;

2104 dnp->dn_right = rp;

2106 return (dnp);

2107 }

__unchanged_portion_onitted_

2217 dt _node_t *
2218 dt _node_i nli ne(dt_node_t *expr)

2219 {

2220 dtrace_hdl _t *dtp = yypcb->pcb_hdl;

2221 dt _scope_t *dsp = &ypcb->pcb_dst ack;

2222 dt _decl _t *ddp = dt _decl _top();

2224 char n[DT_TYPE_NAMELEN] ;

2225 dtrace_typeinfo_t dtt;

2227 dt _ident_t *idp, *rdp;

2228 dt _i dnode_t *inp;

2229 dt _node_t *dnp;

2231 if (dt_decl _type(ddp, &dtt) != 0)

2232 | ongj mp(yypcb->pcb_j npbuf, EDT_COWPI LER);
2234 if (dsp->ds_class != DT_DC DEFAULT) {

2235 xyerror(D DECL_BADCLASS, "specified storage class not
2236 "appropriate for i niine declaration\ n");
2237 }

2239 if (dsp->ds_ident == NULL)

2240 xyerror (D _DECL_USELESS, "inline declaration requires a name\n");

new usr/src/lib/libdtrace/ conmon/dt_parser.c

2242 if ((idp = dt_idstack_| ookup(

2243 &ypcb->pcb_gl obal s, dsp- >ds _ident)) != NULL)

2244 xyerror(D DECL_| DRED, "identifier redefined: %\n\t current: "
2245 "inline definition\n\tprevious: % %\n",

2246 i dp->di _nane, dt_idki nd_nane(idp->di _kind),

2247 (idp->di flags & DT_IDFLG INLINE) ? Tinline" : "");

2248 }

2250 /*

2251 * |If we are declaring an inlined array, verify that we have a tuple
2252 * signature, and then reconpute 'dtt’ as the array’s val ue type.
2253 *

2254 if (ddp->dd_kind == CTF_K_ARRAY) {

2255 if (ddp->dd_node == NULL)

2256 xyerror (D _DECL_ARRNULL, "inline declaration requires "
2257 "array tuple signature: %\n", dsp->ds_ident);
2258 }

2260 if (ddp->dd_node->dn kind != DT_NCDE TYPE) {

2261 xyerror (D _DECL_ARRNULL, "inline declaration cannot be "
2262 "of scalar array type: %\n", dsp->ds_ident);
2263 }

2265 if (dt_decl_type(ddp->dd_next, &dtt) != 0)

2266 | ongj np(yypch->pcb_j erbuf EDT_COWPI LER) ;

2267 }

2269 /*

2270 * |If the inline identifier is not defined, then create it with the
2271 * orphan flag set. W do not insert the identifier into dt_globals
2272 * until we have successfully cooked the right-hand expression, bel ow
2273 */

2274 dnp = dt_node_al | oc(DT_NODE_I NLI NE) ;

2275 dt _node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type, B FALSE);

1562 dt _node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type);

2276 dt _node_attr_assign(dnp, _dtrace_defattr);

2278 if (dt_node_is_void(dnp)) {

2279 xyerror(D DECL_VO DOBJ,

2280 "cannot declare void inline: %\n", dsp->ds_ident);

2281 }

2283 if (ctf_type_kind(dnp->dn_ctfp, ctf_type_resol ve(

2284 dnp->dn_ctfp, dnp->dn_type)) == CTF_K _FORWARD) {

2285 xyerror(D DECL_| NCOVPLETE,

2286 ‘i nconpl ete struct/union/enum %: %\n",

2287 dt _node_t ype_name(dnp, n, sizeof (n)), dsp->ds_ident);
2288 }

2290 if ((inp = malloc(sizeof (dt_idnode_t))) == NULL)

2291 | ongj nmp(yypchb->pcb_j npbuf, EDT_NOVEM ;

2293 bzero(inp, sizeof (dt_idnode_t));

2295 idp = dnp->dn |dent = dt_i dent _creat e(dsp->ds_i dent,

2296 ddp->dd_kind == CTF_K_ARRAY ? DT_| DENT_ARRAY : DT | DENT_SCALAR,
2297 DT_IDFLG I NLINE | DT_ITDFLG REF | DT_I DFLG DECL | DT_I DFLG ORPHAN, O,
2298 _dtrace_defattr, 0, &dt_idops_inline, inp, dtp->dt_gen);

2300 if (idp == NULL) {

2301 free(inp);

2302 | ongj mp(yypchb- >pcb_j npbuf, EDT_NOVEM ;

2303 }

2305 /*

28

new usr/src/lib/libdtrace/ conmon/dt_parser.c 29 new usr/src/lib/libdtrace/ conmon/dt_parser.c 30
2306 * If we're inlining an associative array, create a private identifier 2372 * the identifier to fully initialize it: if we're declaring an inline
2307 * hash containing the naned paraneters and store it in inp->din_hash. 2373 * associative array this will construct a type signature from’ddp’.
2308 * W then push this hash on to the top of the pcb_global s stack. 2374 */
2309 * 2375 if (dt_node_is_dynam c(expr))
2310 if (ddp->dd_kind = CTF K_ARRAY) { 2376 rdp = dt_ident resol ve(expr->dn_i dent);
2311 dt _i dnode t *pi np; 2377 else if (expr >dn_ki nd == DT_NODE_VAR | expr- >dn ki nd == DT_NODE_SYM
2312 dt i dent _t *pidp; 2378 rdp = expr->dn_i dent;
2313 dt _node_t *pnp, 2379 el se
2314 uint_t i = 2380 rdp = NULL;
2316 for (pnp = ddp->dd_node; pnp != NULL; pnp = pnp->dn_list) 2382 if (rdp !'= NULL) {
2317 i++; /* count up paraneters for din_argv[] */ 2383 idp->di _flags |= (rdp->di _flags &
2384 (DT_IDFLGWRI TE | DT_IDFLG USER | DT_IDFLG PRIM);
2319 i np->din_hash = dt_idhash_create("inline args", NULL, 0, 0); 2385 }
2320 inp->din_argv = calloc(i, sizeof (dt_ident_t *));
2387 idp->di _attr = dt_attr_min(_dtrace_defattr, expr->dn_attr);
2322 if (inp->din_hash == NULL || inp->din_argv == NULL) 2388 dt _ident_type_assign(idp, dtt.dtt_ctfp, dtt.dtt_type);
2323 | ongj n"p(yypcb >pcb_j npbuf, EDT_NOMVEM ; 2389 (void) dt_ident_cook(dnp, idp, &ddp->dd_node);
2325 /* 2391 /*
2326 * Create an identifier for each paraneter as a scalar inline, 2392 * Store the parse tree nodes for 'expr’ inside of idp->di_data ("inp’)
2327 * and store it in din_hash and in position in din_argv[]. The 2393 * so that they will be preserved with this identifier. Then pop the
2328 * parameter identifiers also use dt_idops_inline, but we |eave 2394 * inline declaration fromthe declaration stack and restore the | exer.
2329 * the dt_idnode_t argument ’pinp’ zeroed. This Wil be filled 2395 *
2330 * in by the code generation pass with references to the args. 2396 inp->din_list = yypch->pcb_list;
2331 */ 2397 i np->di n_root = expr;
2332 for (i = 0, pnp = ddp->dd_node;
2333 pnp !'= NULL; pnp = pnp->dn_list, i++) { 2399 dt _decl ee(dt _decl _pop());
2400 yybegi n(S_CLAUSE) ;
2335 if (pnp->dn_string == NULL)
2336 continue; /* ignore anonynous paraneters */ 2402 I*
2403 * Finally, insert the inline identifier into dt_globals to make it
2338 if ((pinp = malloc(sizeof (dt_idnode_t))) == NULL) 2404 * visible, and then cook 'dnp’ to check its type against 'expr’
2339 | ongj np(yypch->pcb_j npbuf, EDT_ M 2405 */
2406 dt _i dhash_xi nsert (dt p->dt _gl obal s, idp);
2341 pi dp = dt_i dhash_insert (i np->di n_hash, pnp->dn_string, 2407 return (dt_node_cook(dnp, DT_I DFLG REF));
2342 DT_| DENT_SCALAR, DT_| DFLG DECL | DT | DFLG TNLI NE, 0, 2408 }
2343 _dtrace_defattr, 0, &dt_idops_inline,
2344 pi np, dtp->dt _gen) 2410 dt _node_t *
2411 dt _node_nenber (dt _decl _t *ddp, char *name, dt_node_t *expr)
2346 if (pidp == NULL) { 2412 {
2347 free(pinp); 2413 dtrace_typeinfo_t dtt;
2348 I ongj mp(yypchb->pcb_j npbuf, EDT_NOMVEM ; 2414 dt _node_t *dnp;
2349 } 2415 int err;
2351 inp->din_argv[i] = pidp; 2417 if (ddp !'= NULL) {
2352 bzero(pinp, sizeof (dt_idnode_t)); 2418 err = dt_decl _type(ddp, &dtt);
2353 dt _i dent _type_assi gn(pi dp, pnp->dn_ctfp, pnp->dn_type); 2419 dt _decl _free(ddp);
2354 }
2421 if (err 1= 0)
2356 dt _i dst ack_push(&ypcb->pcb_gl obal s, inp->din_hash); 2422 | ong] mp(yypchb->pcb_j npbuf, EDT_COWI LER);
2357 } 2423 }
2359 /* 2425 dnp = dt_node_al | oc(DT_NCDE_MEMBER) ;
2360 * Unli ke nmpbst constructors, we need to explicitly cook the right-hand 2426 dnp->dn_nenbnane = nane;
2361 * side of the inline definition imediately to prevent recursion. |If 2427 dnp- >dn_nenbexpr = expr;
2362 * the right-hand side uses the inline itself, the cook will fail.
2363 */ 2429 if (ddp !'= NULL)
2364 expr = dt_node_cook(expr, DT_|DFLG REF); 2430 dt _node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type,
2431 dtt.dtt_flags);
2366 if (ddp->dd_ki nd == CTF_K_ARRAY) 1717 dt _node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type);
2367 dt _idst ack _pop(&ypch->pcb_gl obal s, inp->din_hash);
2433 return (dnp);
2369 /* 2434 }
2370 * Set the type, attributes, and flags for the inline. |If the right-
2371 * hand expression has an identifier, propagate its flags. Then cook 2436 dt_node_t *

new usr/src/lib/libdtrace/ conmon/dt_parser.c 31 new usr/src/lib/libdtrace/ conmon/dt_parser.c 32
2437 dt _node_xl ator (dt_decl _t *ddp, dt_decl_t *sdp, char *nanme, dt_node_t *nenbers)
2438 { 2619 /*
2439 dtrace_hdl _t *dtp = yypcb->pcb_hdl; 2620 * This function provides the underlying i npl ementati on of cooking an
2440 dtrace_typeinfo_t src, dst; 2621 * identifier given its node, a hash of dynamic identifiers, an identifier
2441 dt _node_t sn, dn; 2622 * kind, and a bool ean flag indicating whether we are allowed to instantiate
2442 dt “xl ator _t *dxp 2623 * a newidentifier if the string is not found. This function is either
2443 dt _node_t ~*dnp; 2624 * called fromdt_cook_ident(), below, or directly by the various cooking
2444 int edst, esrc; 2625 * routines that are allowed to instantiate identifiers (e.g. op2 TOK ASQN).
2445 ui nt _t ki nd; 2626 */
2627 static void
2447 char nl[DT_TYPE_NAMELEN] ; 2628 dt _xcook_i dent (dt _node_t *dnp, dt_idhash_t *dhp, uint_t idkind, int create)
2448 char n2[DT_TYPE_NAMELEN] ; 2629 {
2630 dtrace_hdl _t *dtp = yypcb->pcb_hdl
2450 edst = dt_decl _type(ddp, &dst); 2631 const char *snane = dt_i dhash nane(dhp)
2451 dt _decl _free(ddp); 2632 int uref = 0;
2453 esrc = dt_decl _type(sdp, &src); 2634 dtrace_attribute_t attr = _dtrace_defattr;
2454 dt _decl _free(sdp); 2635 dt _ident_t *idp;
2636 dtrace_sym nfo_t dts;
2456 if (edst '=0 || esrc !=0) { 2637 GEl f _Sym sym
2457 free(nane);
2458 | ongj mp(yypchb->pcb_j npbuf, EDT_COWI LER); 2639 const char *scope, *nark;
2459 } 2640 uchar _t dnki nd;
2641 char *nane;
2461 bzero(&sn, sizeof (sn));
2462 dt _node_type_assign(&sn, src.dtt_ctfp, src.dtt_type, B _FALSE); 2643 /*
1748 dt _node_type_assign(&sn, src.dtt_ctfp, src.dtt_type); 2644 * Look for scoping marks in the identifier. |If one is found, set our
2645 * scope to either DTRACE_OBJ_KMODS or UMODS or to the first part of
2464 bzero(&dn, sizeof (dn)); 2646 * the string that specifies the scope u5| ng an explicit nodul e nane.
2465 dt _node_type_assign(&dn, dst.dtt_ctfp, dst.dtt_type, B _FALSE); 2647 * |f two marks in a row are found, set 'uref’ (user synbol reference).
1751 dt _node_type_assi gn(&dn, dst.dtt_ctfp, dst.dtt_type); 2648 * Otherwi se we set scope to DTRACE_OBJ EXEC, indicating that normal
2649 * scope is desired and we shoul d search the specified idhash.
2467 if (dt_xlator_lookup(dtp, &sn, &dn, DT_XLATE_EXACT) != NULL) { 2650 */
2468 xyerror(D XLATE_REDECL, 2651 if ((nane = strrchr(dnp->dn_string, '“')) != NULL) {
2469 "translator from% to % has al ready been decl ared\n" 2652 if (name > dnp->dn_string & nanme[-1] ==
2470 dt _node_t ype_nane(&sn, nl, sizeof (nl)), 2653 ur ef ++;
2471 dt _node_t ype_nane(&dn, n2, si zeof (n2))); 2654 nanef[- 1] ='\0";
2472 } 2655 }
2474 kind = ctf_type_kind(dst.dtt_ctfp, 2657 if (name == dnp->dn_string + uref)
2475 ctf_type_resolve(dst.dtt_ctfp, dst.dtt_type)); 2658 | scope = uref ? DTRACE_OBJ_UMODS : DTRACE_OBJ_KMODS;
2659 el se
2477 if (kind == CTF_K_FORWARD) { 2660 scope = dnp->dn_string;
2478 xyerror (D_XLATE_SQU, "inconplete struct/union/enum %\ n"
2479 dt _type_nane(dst.dtt_ctfp, dst.dtt_type, nl, sizeof (nl))); 2662 *nanme++ = '\0"; /* |eave nane pointing after scoping mark */
2480 } 2663 dnki nd = DT_NODE_VAR;
2482 if (kind !'= CTF_K STRUCT && kind !'= CTF_K UNION) { 2665 } else if (idkind == DT_|I DENT_AGG) {
2483 xyerror(D XLATE_SQU, 2666 scope = DTRACE_OBJ_EXEC,
2484 "translator output type nust be a struct or union\n"); 2667 nane = dnp->dn_string + 1;
2485 } 2668 dnki nd = DT_NODE_AGG
2669 } else {
2487 dxp = dt _xlator_create(dtp, &src, &dst, nanme, nenbers, yypch->pcb_list); 2670 scope = DTRACE_OBJ_EXEC,
2488 yybegi n(YYS_CLAUSE) ; 2671 nane = dnp->dn_string;
2489 free(nane); 2672 dnki nd = DT_NODE_VAR,
2673 }
2491 if (dxp == NULL)
2492 | ongj rrp(yypcb >pcb_j npbuf, EDT_NOMVEM ; 2675 /*
2676 * |f create is set to false, and we fail our idhash | ookup, preset
2494 dnp = dt _node_al | oc(DT_NODE_XLATOR) ; 2677 * the errno code to EDT_NOVAR for our final error message bel ow
2495 dnp->dn_xl ator = dxp; 2678 * If we end up calling dtrace_| ookup_by _name(), it will reset the
2496 dnp- >dn_nenbers = nenbers; 2679 */errno appropriately and that error will be reported instead.
2680 *
2498 return (dt_node_cook(dnp, DT_I DFLG REF)); 2681 (void) dt_set errno(dt P, EDT_NO\/AR);
2499 } 2682 mark = uref ? ;
__unchanged_portion_onitted_

new usr/src/lib/libdtrace/ common/dt_parser.c 33

2684 if (scope == DTRACE_OBJ_EXEC && (

2685 (dhp !'= dtp >dt _gl obal s &&

2686 (idp = dt_i dhash_| ookup(dhp, name)) != NULL) ||

2687 (dhp == dtp->dt_gl obal s &&

2688 (idp = dt _idstack_| ookup(&yypch->pcb_gl obals, nane)) != NULL))) {
2689 /*

2690 * Check that we are referencing the ident in the manner that
2691 * matches its type if this is a global |ookup. In the TLS or
2692 * |ocal case, we don’t know how the ident will be used until
2693 * the time operator -> is seen; nore parsing is needed.

2694 */

2695 if (idp->di_kind !=idkind & dhp == dtp->dt_gl obals) {

2696 xyerror(D_| DENT_BADREF "% '%’ nmay not be referenced "
2697 "as %\ n", dt_idkind_nane(idp->di_kind),

2698 i dp->di narre “dt _i dki nd_name(i dki nd));

2699 }

2701 /*

2702 * Arrays and aggregations are not cooked individually. They
2703 * have dynami c types and nust be referenced using operator [].
2704 * This is handled explicitly by the code for DT_TOK_LBRAC.
2705 */

2706 if (idp->di_kind !'= DT_I DENT_ARRAY &&

2707 i dp- >di k| nd !'= DT_I DENT_AGG)

2708 attr = dt_ident_cook(dnp, idp, NULL);

2709 el se {

2710 dt _node_t ype_assi gn(dnp,

2711 DT_DYN_CTFP(dt p), DT_DYN TYPE(dtp), B_FALSE);

1997 DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp));

2712 attr = idp->di_attr;

2713 }

2715 free(dnp->dn_string);

2716 dnp->dn_stri ng = NULL

2717 dnp->dn_ki nd = dnkl nd

2718 dnp->dn_i dent = idp;

2719 dnp->dn_flags | = DT_NF_LVALUE;

2721 if (idp->di _flags & DT_I DFLG WRI TE)

2722 dnp->dn_flags [= DT_NF_WRI TABLE;

2724 dt _node_attr_assign(dnp, attr);

2726 } else if (dhp == dtp->dt_gl obals & scope ! = DTRACE_OBJ_EXEC &&

2727 dtrace_l ookup by _name(dtp, scope, name, &ym &dis) == 0) {

2729 dt_nodul e_t *np = dt _nodul e_| ookup_by_nane(dtp, dts.dts_object);
2730 int unod = (np->dm flags & DT_DM KERNEL) == 0,

2731 static const char *const kunames[] = { ' "ker nel " , "user" };
2733 dtrace_typeinfo_t dtt;

2734 dtrace_syminfo_t *sip;

2736 if (uref ~ unod) {

2737 xyerror(D SYM BADREF, "% nodule ' %’ synbol "%’ my "
2738 "not be referenced as a % synbol\n", kunanmes[unod],
2739 dts. dts_object, dts.dts_naneg, kunarres[uref]);

2740 }

2742 if (dtrace_synbol _type(dtp, &ym &dts, &dtt) != 0) {

2743 /*

2744 * For now, we special -case EDT_DATAMODEL to clarify
2745 * that mxed data nodels are not currently supported.
2746 *

2747 if (dtp->dt_errno == EDT_DATAMODEL)

2748 xyerror (D _SYM MODEL, "cannot use % synbol "

new usr/src/lib/libdtrace/ conmon/dt_parser.c

2749 "%%% in a % D programn",

2750 dt _nodul e_nodel nane(np),

2751 dt's. dts_object, mark, dts.dts_nane,
2752 dt _nodul e_ model nama(dtp >dt ddefs))
2753 }

2755 xyer ror (D_SYM NOTYPES,

2756 "no synbolic type information is available for "
2757 "Us¥%%: Y¥%\n", dts.dts_object, mark, dts.dts_nane,
2758 dtrace_errnsg(dtp, dtrace errno(dt p)))
2759 }

2761 idp = dt_ident_create(nanme, DT_I DENT_SYMBOL, 0, O,

2762 _dtrace_symattr, 0, &dt_idops_thaw, NULL, dtp->dt_gen);
2764 if (idp == NULL)

2765 I ongj np(yypcb >pcb_j npbuf, EDT_NOVEM) ;

2767 if (np->dmflags & DT_DM PRI MARY)

2768 i dp->di _flags | = DT_I DFLG PRI M

2770 i dp->di _next = dtp->dt_externs;

2771 dt p->dt _externs = idp;

2773 if ((sip = malloc(sizeof (dtrace_syminfo_t))) == NULL)
2774 | ongj mp(yypchb->pcb_j npbuf, EDT_NOMVEM ;

2776 bcopy(&dts, si p, si zeof (dtrace_syminfo_t));

2777 idp->di _data = sip;

2778 idp—>di_ctfp=dtt dtt_ctfp;

2779 idp->di _type = dtt.dtt_type;

2781 free(dnp->dn_string);

2782 dnp->dn_stri ng = NULL

2783 dnp->dn_ki nd = DT NCDE . SYM

2784 dnp->dn_i dent = idp;

2785 dnp->dn_flags | = DI_NF_LVALUE;

2787 dt _node_type_assi gn(dnp, dtt.dtt_ctfp, dtt.dtt_type,
2788 dtt.dtt_flags);

2073 dt _node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type);
2789 dt _node_attr_assign(dnp, _dtrace_synmattr);

2791 if (uref) {

2792 i dp->di _flags |= DT_I DFLG USER

2793 dnp->dn_flags | = DT_NF_USERLAND;

2794 }

2796 } else if (scope == DTRACE_OBJ_EXEC && create == B_TRUE) {
2797 uint_t flags = DT_IDFLG WRI TE;

2798 uint_t id;

2800 if (dt_idhash_nextid(dhp, & d) == -1) {

2801 xyerror(D_| D_OFLOW "cannot create %: limt on nunber
2802 "of Y% variabl es exceeded\n", name, snane);
2803 }

2805 if (dhp == yypcb->pcb_| ocal s)

2806 flags |— DT_I DFLG_LOCAL;

2807 else if (dhp dt p->dt _tTs)

2808 | ags |— DT_I DFLG_TLS;

2810 dt _dprintf("create % % variable %, id=%\n",

2811 snane, dt_i dki nd_name(i dkind), nane, id);

2813 if (idkind == DT_IDENT_ARRAY || idkind == DT_I DENT_AGO) {

34

new usr/src/lib/libdtrace/ common/dt_parser.c 35

2814
2815
2816
2817
2818
2819
2820
2821

2823
2824

2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2121
2837
2838

2840
2841
2842
2843
2844

2846

2848
2849
2850
2851
2852
2853
2854
2855
2856 }

idp = dt_idhash_i nsert(dhp, nane,
idkind, flags, id, _dtrace_defattr, O,
&dt _i dops_assc, NULL, dtp->dt_gen);

} else {
idp = dt_idhash_i nsert(dhp, nane,
idkind, flags, id, _dtrace_defattr, O,
&dt |dops t haw, NULL dt p->dt _gen);
}

if (idp == NULL)
| ongj mp(yypcb- >pcb_j npbuf, EDT_NOMVEM ;

Arrays and aggregations are not cooked individually. They
have dynam ¢ types and nust be referenced using operator [].
This is handled explicitly by the code for DT_TOK LBRAC.

* ok ok k%

if (idp->di _kind !'= DT_I DENT_ARRAY &&
i dp->di _ki nd != DT_| DENT_AGG)
attr = dt_ident_cook(dnp, idp, NULL);

el se {
dt _node_t ype_assi gn(dnp,
DT_DYN_CTFP(dtp), DT_DYN TYPE(dtp), B_FALSE)
DT_DYN_CTFP(dt p), DT_DYN _TYPE(dt p))
) attr = idp->di_attr;

free(dnp->dn_string);

dnp->dn_stri ng = NULL;

dnp->dn_ki nd = dnki nd;

dnp->dn_i dent = idp;

dnp->dn_flags | = DT_NF_LVALUE | DT_NF_WRI TABLE

dt _node_attr_assign(dnp, attr);

} else if (scope != DTRACE _OBJ_EXEC) {
xyerror (D_| DENT_UNDEF, “"failed to resolve %%%: %\n",
dnp->dn_string, mark, nane,
dtrace_errnmsg(dtp, dtr ace_errno(dtp)));
} else {
xyerror(D_| DENT_UNDEF, "failed to resolve %: %\n",
dnp->dn_string, dtrace_errnsg(dtp, dtrace_errno(dtp)));
}

__unchanged_portion_onitted_

2904 static dt_node_t *

2905 dt
2906 {
2907
2908

2910
2911
2912

2914
2915
2916
2917

2919
2920
2921
2922
2923

_cook_opl(dt_node_t *dnp, uint_t idflags)

dtrace_hdl _t *dtp = yypcb->pcb_hdl;
dt _node_t *cp = dnp->dn_child;

char n[DT_TYPE_NAMELEN ;
dtrace_typeinfo_t dtt;
dt _ident_t *idp;

ctf_encoding_t e;
ctf_arinfo_t r;
ctf_id_t type, base;
uint_t kind;

if (dnp->dn_op == DT_TOK_PREINC || dnp->dn_op == DT_TOK_PGSTI NC |
dnp->dn_op == DT_TOK_PREDEC || dnp->dn_op == DT_TOK_PGOSTDEC)
idfTags = DT_IDFLG REF | DT_I DFLG MOD;
el se
idflags = DT_| DFLG_REF;

new usr/src/lib/libdtrace/ conmon/dt_parser.c

2925
2926
2927
2928
2929
2930

2932

2934
2935
2936

2938
2939
2940
2224
2941

2943
2944

2946
2947
2948
2949
2950
2951
2952
2953

2955
2956
2957
2958
2241
2959
2960

2962
2963

2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976

2978
2979
2261
2980
2981

2983
2984
2985
2986

/*

* W allow the unary ++ and -- operators to instantiate new scal ar
* variables if applied to an identifier; otherw se just cook as usual .

*

if (cp->dn_kind == DT_NCDE_I DENT && (idflags & DT_| DFLG MOD))

dt _xcook |dent(cp dt p- >dt _gl obal s, DT_I DENT_SCALAR, B_TRUE);

cp = dnp->dn_child = dt_node_cook(cp, 0); /* don't set idflags yet */

if (cp->dn_kind == DT_NODE_VAR && dt _ident _unref(cp->dn_ident)) {

}

if(dt type | ookup("int64_t", &dtt) != 0)
xyerror (D_TYPE_ERR, "failed to | ookup int64_t\n");

dt _ident _type_assign(cp->dn_ident, dtt.dtt_ctfp, dtt.dtt_type);

dt _node_type_assign(cp, dtt.dtt_ctfp, dtt.dtt_type,
dtt.dtt_flags);

dt _node_type_assign(cp, dtt.dtt_ctfp, dtt.dtt_type);

if (cp->dn_kind == DT_NCDE_VAR

._VAR)
cp->dn_ |dent—>d| _flags | = idflags;

switch (dnp->dn op) {
case DT_TOK_DEREF:
A

* |f the deref operator is applied to a translated pointer,

* we set our output type to the output of the translation.

*

if ((idp = dt_node_resol ve(cp, DT_IDENT_XLPTR)) != NULL) {
dt_xlator_t *dxp = idp->di_data;

dnp->dn_i dent = &dxp->dx_soui d;
dt _node_t ype_assi gn(dnp,
dnp->dn_i dent - >di _ctfp, dnp->dn_ident->di _type,
cp->dn_flags & DI_NF_USERLAND) ;
b Enp >dn_i dent->di _ctfp, dnp- >dn i dent->di _type);
r eak;

}

type = ctf_type_resol ve(cp->dn_ctfp, cp->dn_type);
kind = ctf_type_kind(cp->dn_ctfp, type);

if (kind == CTF_K_ARRAY) {
if (ctf_array_info(cp->dn_ctfp, type, &) !=0) {
dtp->dt _ctferr = ctf_errno(cp->dn_ctfp);
I ongj mp(yypchb->pcb_j npbuf, EDT_CTF);
} else
type = r.ctr_contents;
} else if (kind == CTF_K_PO NTER) {
type = ctf_type_reference(cp->dn_ctfp, type);
} else {
xyerror (D_DEREF_NONPTR,
"cannot dereference non-pointer type\n");

}

dt _node_t ype_assi gn(dnp, cp->dn_ctfp, type,
cp->dn_flags & DT_NF_USERLAND) ;

dt _node_t ype_assi gn(dnp, cp->dn_ctfp, type);

base = ctf_type_resol ve(cp->dn_ctfp, type);

kind = ctf_type_kind(cp->dn_ctfp, base);

if (kind == CTF_K_I NTEGER && ctf _type_encodi ng(cp->dn_ctfp,
base, &) == 0 && IS VO D(e)) {
xyerror(D DEREF_VOQ D,
"cannot dereference pointer to void\n");

new usr/src/lib/libdtrace/ common/dt_parser.c 37

2987

2989
2990
2991
2992

2994
2995

2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007

3009
3010
3011
3012

3014
3015
3016
3017
3018
3019
3020
3021

3023
3024
3025
3026
3027
3028
3029

3031
3032
3033
3034
3035
3036
3037
2318
3038

3040
3041
3042
3043
3044

3046
3047
3048
3049

3051

case
case

case

case

case

}

if (kind == CTF_K_FUNCTION) {
xyerror(D DEREF_FUNC,
"cannot dereference pointer to function\n");

}

if (kind !'= CTF_K_ARRAY || dt_node_is_string(dnp))
dnp->dn_flags | = DT_NF_LVALUE, /* see K&R[A7.4.3] */

If we propagated the |-value bit and the child operand was
a witable D variable or a binary operation of the form
a + b where ais witable, then propagate the witable bit.
This is necessary to perm’t assignnents to scal ar arrays,
which are converted to expressions of the form*(a + i).

* Ok ok k% k%

if ((cp->dn_flags & DT_NF_WRI TABLE) ||
(cp->dn_kind == DT_NCDE_OP2 && cp->dn_op == DT_TOK_ADD &&
(cp->dn_l eft->dn_fTags & DT_NF WRITABLE)))
dnp->dn_fl ags | = DT_NF_WRI TABLE;

if ((cp->dn_flags & DT_NF_USERLAND) &&
(kind == CTF_K_PO NTER || (dnp->dn_flags & DT_NF_REF)))
dnp->dn_flags | = DT_NF_USERLAND;

br eak;
DT_TOK_| PCS:
DT_TOK | NEG
if (!dt_node_is_arith(cp)) {
xyerror (D _OP_ARI TH, "operator % requires an operand "
"of arithmetic type\n", opstr(dnp->dn_op));
}
dt _node_t ype_propagate(cp, dnp); /* see K&R[A7.4.4-6] */
br eak;
DT_TOK_BNEG
Tif (!'dt_node_is |nteger(cp)) {
xyerror(D OP_I NT, "operator % requires an operand of
"integral type\ n", opstr(dnp->dn_op));
}
dt _node_t ype_propagate(cp, dnp); /* see K&R[A7.4.4-6] */
br eak;
DT_TOK_LNEG
“if (!'dt_node_is_scal ar(cp)) {
xyerror (D_OP_SCALAR, "operator % requires an operand "
"of scalar type\n", opstr(dnp->dn_op));
}
dt _node type assi gn(dnp, DT_INT_CTFP(dtp), DT_I NT_TYPE(dtp),
B_FALSI
dt _node type_a35| gn(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp));
break;
DT_TOK_ADDROF:

“if (cp->dn_kind == DT_NODE_VAR || cp->dn_kind == DT_NODE_AGQ ({
xyerror(D ADDROF_VAR,
"cannot take address of dynamc variable\n");

}

if (dt_node_is_dynam c(cp)) {
xyerror(D ADDROF_VAR,
"cannot take address of dynanic object\n");

}
if (I(cp->dn_flags & DT_NF_LVALUE)) {

new usr/src/lib/libdtrace/ conmon/dt_parser.c

3052
3053
3054

3056
3057
3058
3059

3061
3062
3063

3065
3066
3067
3068

3070
3071
2351

2353
2354
3072

3074
3075
3076
3077
3078

3080
3081
3082
3083

3085
3086
3087
2369
3088

3090
3091
3092
3093
3094
3095
3096
3097
3098
2379
3099

3101
3102
3103
3104
3105
3106
3107
3108

3110
3111

case

case

case
case
case
case

xyerror(D ADDROF_LVAL, /* see K&R[A7.4.2] */
"unaccept abl e operand for unary & operator\n");

}

if (cp->dn_flags & DT_NF_BI TFI ELD) {
xyerror (D_ADDROF_BI TFl ELD,
"cannot take address of bit-field\in");

}

dtt.dtt_obj ect
dtt.dtt_ctfp =
dtt.dtt_type =

= NULL;
cp->dn_ctfp;
cp->dn_type;

if (dt_type_pointer(&tt) == -1) {
xyerror (D_TYPE_ERR, "cannot find type for \"&": %*\n",
dt _node_t ype_nane(cp, n, sizeof (n)));

}

dt _node_type_assi gn(dnp, dtt.dtt_ctfp, dtt.dtt_type,
cp->dn_fTags & DT_NF_USERLAND) ;
dt _node_t ype_assi gn(dnp, dtt.dtt ctfp, dtt.dtt_type);

if (cp->dn_flags & DT_NF_USERLAND)
dnp->dn_flags | = DT_NF_USERLAND;
br eak;

DT_TOK_SI ZECF:
if (cp->dn_flags & DT_NF_BI TFI ELD) {
xyerror (D_SI ZEOF_BI TFI ELD,
"cannot apply sizeof to a bit-field\n");

}

if (dt_node_sizeof (cp) == 0) {
xyerror (D_SI ZEOF_TYPE, "cannot apply sizeof to an
"operand of unknown size\n");

}

dt _node_t ype_assi gn(dnp, dtp->dt_ddefs->dmctfp,
ctf_l ookup_by_nane(dt p->dt _ddefs->dmctfp, "size_t"),

B FALSE);
ctf_l ookup_by_nane(dt p->dt _ddefs->dmctfp, "size_t"));
br eak;

DT_TOK_STRI NGOF:
if (!dt_node_is_scalar(cp) && !dt_node_is_pointer(cp) &&
I'dt _node_i s_strconpat (cp)) {
xyerror(D STRI NGOF_TYPE,
"cannot apply stri ngof to a value of type %\n"
dt _node_type_nane(cp, n, sizeof (n)));

}

dt _node_t ype_assi gn(dnp, DT_STR _CTFP(dtp), DT_STR TYPE(dtp),
cp->dn_fTags & DT_NF_USERLAND) ;

dt _node_t ype_assi gn(dnp, DT_STR CTFP(dtp), DT_STR TYPE(dtp));

break;

DT_TOK_PREI NC:
DT_TOK_PGSTI NC:
DT_TOK_PREDEC:
DT_TOK_POSTDEC:
if (dt_node_is_scalar(cp) == 0) {
xyerror (D _OP_SCALAR, "operator % requires operand of
) "scal ar type\n", opstr(dnp->dn_op));

if (dt_node_is vfpt (cp)) {
xyerror (D _OP_VFPTR, "operator % requires an operand "

new usr/src/lib/libdtrace/ common/dt_parser.c 39

3112
3113

3115
3116
3117
3118

3120
3121
3122
3123

3125
3126

3128
3129
3130

3132
3133
3134 }

defaul t:

}

"of known size\n", opstr(dnp->dn_op));

}

if (!(cp->dn_flags & DT_NF_LVALUE)) {
xyerror (D _OP_LVAL, "operator % requires nodifiable
"l val ue as an operand\n", opstr(dnp->dn_op));

}

if (!(cp->dn_flags & DT_NF_ V\RI TABLE)) {
xyerror (D _OP_WRITE, "operator % can only be applied "
"to a witable variable\n", opstr(dnp->dn_op));

}

dt _node_type_propagate(cp, dnp); /* see K&R[A7.4.1] */
br eak;

xyerror (D_UNKNOWN, "invalid unary op %\n", opstr(dnp->dn_op));

dt _node_attr_assign(dnp, cp->dn_attr);
return (dnp);

__unchanged_portion_onitted_

3161 static dt_node_t

3162 dt
3163 {
3164
3165
3166
3167

3169
3170
3171
3172
3173

3175
3176

3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188

3190
3191
3192
3193
3194
3195
3196
3197
3198
3199

3201

*

_cook_op2(dt _node_t *dnp, uint_t idflags)

dtrace_hdl _t *dtp = yypcb->pcb_hdl;
dt _node_t *Ip = dnp->dn_|left;
dt _node_t *rp = dnp->dn_ri ght;

int op

= dnp->dn_op;

ctf_nmenbinfo_t m
ctf _file_t *ctfp;
ctf_id_t type;

int kind,

val , uref;

dt _ident_t *idp;

char ni1[DT_TYPE_NAMELEN] ;
char n2[DT_TYPE_NAMELEN ;

/*

* The expression E1[E2] is identical by definition to *((El)+(E2)) so

* we convert "[" to "+" and glue on "*" at the end (see K&R[A7.3.1])

* unless the left-hand side is an untyped D scal ar, associative array,
* or aggregation. In these cases, we proceed to case DIT_TOK_LBRAC and
* handl e associ ative array and aggregation references there.

*

if (op

= DI_TOK_LBRAC) {

if (Ip->dn_kind == DT_NODE_| DENT) {
dt _i dhash_t *dhp;
uint _t idkind;

|f(|p>dnop = DT_TOK_AGOH {
hp = dtp >dt _aggs;
|dp = dt_i dhash_l ookup(dhp, |p->dn_string + 1);
i dki nd = DT_I DENT_AGG,

} else {
dhp = dt p->dt_gl obal s;
idp = dt_idstack Iookup(
&yypcb >pcb_gl obal s, | p->dn_string);
i dki nd = DT_| DENT_ARRAY;
}

if (idp == NULL || dt_ident_unref(idp))

new usr/src/lib/libdtrace/ conmon/dt_parser.c

3202
3203
3204
3205
3206

3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224

3226
3227
3228
3229
3230
3231

3233
3234
3235
3236

3238
3239

3241
3242
3243
3244

3246
3247
3248
3249

3251
3252
3253

3255
3256
3257

3259
3260
3261
3262

3264
3265

3267

dt _xcook_i dent (1 p, dhp, idkind, B_TRUE);
el se
dt _xcook_i dent (1 p, dhp, idp->di_kind, B_FALSE);
} else
I'p = dnp->dn_|l eft = dt_node_cook(lp, 0);

/*

* Switch op to '+ for *(El + E2) array node in these cases:

* (a) Ip is a DT_I DENT_ARRAY vari abl e that has al ready been

* referenced using [] notation (dn_args != NULL).

* (b) Ip is a non-ARRAY variable that has already been given
* a type by assignnent or declaration (!dt_ident_unref())
* (c) Ip is neither a variable nor an aggregation

*

if (Ip->dn_kind == DT_NODE_VAR) {
i f (1 p->dn_ident->di _kind == DT_I DENT_ARRAY) {
if (Ip->dn_args != NULL)
op = DT_TOK_ADD;
} else if (!dt_ident_unref(Tp->dn_ident))
op = DT_TOK_ADD;
} elseif (Ip >dn k| nd ! = DT_NCDE_AGQH
op = DT_TOK_ADD;
}

switch (op)

case DT_TOK_BAND:

case DI_TOK_XOR

case DI_TOK_BOR
“Ip = dnp->dn_l eft = dt_node_cook(lp, DT_I DFLG REF);
rp = dnp->dn_right = dt_node_cook(rp, DT_I DFLG REF)

if (!dt_node_is_integer(lp) || !dt_node_is_integer(rp)) {
xyerror(D_OP_I NT, operat or % requires operands of
"integral type\n", opstr(op));

}

dt _node_promote(lp, rp, dnp); /* see K&R[A7.11-13] */
br eak;

case DT_TOK_LSH:

case DT_TOK_RSH:
“I'p = dnp->dn_l eft = dt_node_cook(lp, DT_I DFLG REF);
rp = dnp->dn_right = dt_node_cook(rp, DT_I DFLG REF)

if (!dt_node_is_integer(lp) || !dt_node_is_integer(rp)) {
xyerror (D _OP_I NT, "operator % requires operands of
"integral type\n", opstr(op));

}

dt _node_type_propagate(lp, dnp); /* see K&R[A7.8] */
dt _node_attr_assign(dnp, dt_attr_mn(lp->dn_attr, rp->dn_attr));
br eak;

case DT_TOK_MOD:
“I'p = dnp->dn_left = dt_node_cook(lp, DT_I DFLG REF);
rp dnp->dn_right = dt_node_cook(rp, DT_I DFLG REF)

if (!dt_node_is_integer(lp) || !dt_node_is_integer(rp)) {
xyerror(D OP_I NT, "operator % requires operands of
"integral type\n", opstr(op));

}

dt _node_promote(lp, rp, dnp); /* see K&R[A7.6] */
br eak;

case DT_TOK_MJL:

40

new usr/src/lib/libdtrace/ common/dt_parser.c 41

3268 case DT_TOK DI V:

3269 I p = dnp->dn_l eft = dt_node_cook(I|p, DT_|DFLG REF);

3270 rp = dnp->dn_right = dt_node_cook(rp, DT_|IDFLG REF)

3272 if ('dt_node_is_arith(lp) || !dt_node_is_arith(rp)) {

3273 xyerror(D OP_ARI TH, operat or % requires operands of
3274 "arithmetic ype\ n", opstr(op));

3275 }

3277 dt _node_promote(lp, rp, dnp); /* see K&R[A7.6] */

3278 br eak;

3280 case DT_TOK_LAND:

3281 case DT_TOK LXOR:

3282 case DT_ TCK_LCR

3283 I p = dnp->dn_l eft = dt_node_cook(lp, DT_I DFLG REF);

3284 rp = dnp->dn_right = dt_node_cook(rp, DT_I DFLG REF)

3286 if (!dt_node_is_scalar(lp) || !'dt_node_is_scalar(rp)) {

3287 xyerror(D OP_SCALAR, operat or % requires operands "
3288 "of scalar type\n", opstr(op));

3289 }

3291 dt _node_t ype_assi gn(dnp, DT_I NT_CTFP(dtp), DT_I NT_TYPE(dtp),
3292 B_FALSE) ;

2572 dt _node_t ype_assi gn(dnp, DT_I NT_CTFP(dtp), DT_INT_TYPE(dtp));
3293 dt “node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr));
3294 br eak;

3296 case DT_TOK_LT:

3297 case DT_TOK_LE:

3298 case DT_TOK GT:

3299 case DT_TOK_GE:

3300 case DT_TOK_EQU:

3301 case DI_TOK_NEQ

3302 I

3303 * The D conparison operators provide the ability to transform
3304 * a right-hand identifier into a correspondi ng enumtag val ue
3305 * if the left-hand side is an enumtype. To do this, we cook
3306 * the left-hand side, and then see if the right-hand side is
3307 * an unscoped identifier defined in the enum |f so, we
3308 * convert into an integer constant node with the tag’'s val ue.
3309 */

3310 p = dnp->dn_l eft = dt_node_cook(lp, DT_IDFLG REF);

3312 kind = ctf_type_kind(lp->dn_ctfp,

3313 ctf_type_resol ve(l p->dn_ctfp, |p->dn_type));

3315 if (kind == CTF_K_ENUM && rp- >dn klnd == DT_NODE_| DENT &&
3316 strchr(rp->dn_string, '*") NULL && ctf_enum val ue(
3317 | p->dn_ctfp, Tp->dn_type, rp >dn _string, &al) == 0) {
3319 if ((idp = dt_idstack_|l ookup(&ypch->pcb_gl obal s,
3320 rp->dn_string)) != NULL) {

3321 xyerror(D | DENT_AMBI G,

3322 "anbi guous use of operator %: % is "
3323 "both a % enumtag and a gl obal %\n",
3324 opstr(op), rp->dn_string,

3325 dt _node_type_nanme(lp, nl, sizeof (nl)),
3326 dt _i dki nd_nane(i dp->di _kind));

3327 }

3329 free(rp->dn_string);

3330 rp->dn_string = NULL;

3331 rp->dn klnd—DTN(]DEINT

3332 rp->dn_flags | = DT_NF_COOKED;

new usr/src/lib/libdtrace/ common/dt_parser.c 42
3333 rp->dn_op = DT_TOK_ | NT;

3334 rp->dn_val ue = (intmax_t)val;

3336 dt _node_type_assign(rp, |p->dn_ctfp, |p->dn_type,

3337 B_FALSE) ;

2616 dt _node_type_assign(rp, |p->dn_ctfp, |p->dn_type);

3338 dt _node_attr_assign(rp, _dtrace_symattr);

3339 }

3341 rp = dnp->dn_right = dt_node_cook(rp, DT_|DFLG REF);

3343 /*

3344 * The rules for type checking for the relational operators are
3345 * described in the ANSI-C spec (see K& A7.9-10]). W perform
3346 * the various tests in order fromleast to nbst expensive. W
3347 * also allow derived strings to be conpared as a first-class
3348 * type (resulting in a strcnp(3C)-style conparison), and we
3349 * slightly relax the A7.9 rules to pernit void pointer

3350 * conparisons as in A7.10. CQur users won't be confused by
3351 * this since they understand pointers are just nunbers, and
3352 * relaxing this constraint sinplifies the inplenmentation.

3353 */

3354 f (ctf_type_conpat (Il p->dn_ctfp, |p->dn_type,

3355 rp->dn_ctfp, rp->dn_type))

3356 [*EMPTY*/ ;

3357 else if (dt_node_is_integer(lp) & dt_node_is_integer(rp))

3358 [* EMPTY*/ ;

3359 else if (dt_node_is_strconpat(lp) & dt_node_is_strconpat(rp) &&
3360 (dt _node_is_string(lp) || dt_node_is_string(rp)))

3361 T/ *EMPTY*/ ;

3362 else if (dt _node_l s_ptrconpat (I p, rp, NULL, NULL) == 0) {

3363 xyerror (D _OP_I NCOWAT, "operands have "

3364 "inconpatible types: \"o%\" % \"%\"\n",

3365 dt _node_type_nane(lp, nl, sizeof (nl)), opstr(op),
3366 dt _node_type_nane(rp, n2, sizeof (n2)));

3367 }

3369 dt _node_t ype_assi gn(dnp, DT_I NT_CTFP(dtp), DT_I NT_TYPE(dtp),
3370 B_FALSE) ;

2648 dt _node_t ype_assi gn(dnp, DT_I NT_CTFP(dtp), DT_INT_TYPE(dtp));
3371 dt _node_attr_assign(dnp, dt_attr_mn(lp->dn_attr, rp->dn_attr));
3372 br eak;

3374 case DT_TOK_ADD:

3375 case DT_TOK_SUB: {

3376 /*

3377 * The rules for type checking for the additive operators are
3378 * described in the ANSI-C spec (see K& A7.7]). Pointers and
3379 * integers may be manipul ated according to specific rules. In
3380 * these cases D permits strings to be treated as pointers.
3381 */

3382 int Ip_is_ptr, Ip_is_int, rp_is_ptr, rp_is_int;

3384 Ip = dnp->dn_l eft = dt_node_cook(lp, DT_| DFLG REF);

3385 rp = dnp->dn_right = dt_node_cook(rp, DT_I DFLG REF)

3387 Ip_is_ptr = dt_node_is_string(lp) ||

3388 (dt _node_i s_pointer(lp) & !dt_node_is_vfptr(lp));

3389 Ip_is_int = dt_node_is_integer(lp);

3391 rp_is_ptr = dt_node_is_string(rp) ||

3392 (dt _node_is_pointer(rp) & !'dt_node_is_vfptr(rp));

3393 rp_is_int = dt_node_is_integer(rp);

3395 if (Ip_is_int & rp_is_int) {

3396 dt _type_promote(lp, rp, &ctfp, &ype);

new usr/src/lib/libdtrace/ common/dt_parser.c 43
3397 uref = 0;

3398 }elself(lpls ptr & rp_is_int) {

3399 ctfp = | p->dn ctfp,

3400 type = | p->dn_type;

3401 uref = Ip->dn_fl ags & DT_NF_USERLAND;

3402 } elseif (Ip_is_int & rp_is_ptr & op == DI_TOK_ADD) {
3403 ctfp = rp->dn_ctfp;

3404 type = rp->dn_type;

3405 uref = rp->dn_flags & DT_NF_USERLAND;

3406 } else if (Ip_is_| ptr & rp_is_ptr & op == DI_TOK_SUB &&
3407 dt _node_i s_ptrconpat (I p, rp, NULL NULL)) {

3408 ctfp = dtp->dt_ddefs->dmctfp

3409 type = ctf_l ookup_by_ nanE(ctfp, "ptrdiff_t");
3410 uref = 0;

3411 } else {

3412 xyerror(D OP_| NCOVPAT, "operands have inconpatible "
3413 "types: \"os\" % \"%s\"\n",

3414 dt _node_type_nane(lp, ni, si zeof (nl)), opstr(op),
3415 dt _node_t ype_nane(rp, n2, sizeof (n2)));
3416 }

3418 dt _node_type_assi gn(dnp, ctfp, type, B_FALSE);

2696 dt _node_type_assi gn(dnp, ctfp, type);

3419 dt _node_attr_assign(dnp, dt_attr_mn(lp->dn_attr, rp->dn_attr));
3421 if (uref)

3422 dnp->dn_flags | = DT_NF_USERLAND;

3423 br eak;

3424 }

3426 case DT_TOK_OR EQ

3427 case DI_TOK_XOR_EQ

3428 case DT_TOK_AND EQ

3429 case DT_TOK_LSH EQ

3430 case DI_TOK_RSH EQ

3431 case DI_TOK_MOD_EQ

3432 “if (1 p->dn_kind == DT_NCDE_| DENT) {

3433 dt _xcook |dent(| p, dtp->dt_gl obals,

3434 DT_| DENT_SCALAR, B_TRUE);

3435 }

3437 Ip = dnp->dn_left =

3438 dt _node_cook(| p, DT_IDFLG REF | DT_| DFLG MD);

3440 rp = dnp->dn_right =

3441 dt _node_cook(rp, DT_IDFLG REF | DT_| DFLG MOD);

3443 if (!dt_node_is_integer(l p) || 'dt_node_is_integer(rp)) {
3444 xyerror(D_OP_I NT, operator % requires operands of
3445 "integral type\n", opstr(op));

3446

3447 got 0 asgn_comon;

3449 case DT_TOK_MIL_EQ

3450 case DT_TOK_ DI V_EQ

3451 Tif (I p->dn_kind == DT_NODE_I DENT) {

3452 dt xcook |dent(l p, dtp >dt _gl obal s,

3453 DT_I DENT_SCALAR, B_TRUE);

3454 }

3456 Ip = dnp->dn_left =

3457 dt _node_cook(l p, DT_IDFLG REF | DT_|I DFLG_MD);

3459 rp = dnp->dn_right =

3460 dt _node_cook(rp, DT_IDFLG REF | DT_I DFLG MD);

new usr/src/lib/libdtrace/ comon/dt_parser.c 44

3462
3463
3464
3465
3466

3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483

3485
3486

3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499

3501
3502
3503
3504
3505
3506

3508
3509
3510
3511
3512
3513
3514
3515
3516

3518
3519
3520
3521
3522
3523
3524
3525
3526
3527

case DT_

if (!dt_node_is_arith(Ip) || 'dt_node_is_arith(rp)) {
xyerror (D _OP_ARI TH, "operator % requires operands of
"arithmetic type\n", opstr(op));

got o asgn_comon;

TOK_ASGN:
/*
* If the left-hand side is an identifier, attenpt to resolve
* it as either an aggregation or scalar variable. W pass
* B TRUE to dt_xcook_ident to indicate that a new variable can
* be created if no matching variable exists in the nanespace.
|f (1 p->dn_ki nd == DT_NODE_I DENT) {

if (I p->dn_op == DT_TOK_AGH

dt _xcook_i dent (Tp, dtp->dt_aggs,
DT_I DENT_AGG, B_TRUE);
} else {
dt _xcook_i dent (1 p, dtp->dt_globals,
DT_| DENT_SCALAR, B TRUE);

}
}
Ip = dnp->dn_left = dt_node_cook(Ip, 0); /* don't set nod yet */
rp = dnp->dn_right = dt_node_cook(rp, DT_|DFLG REF);
/*
* |f the left-hand side is an aggregation, verify that we are
* aSSI gning it the result of an aggregating function. Once
* we've done so, hide the func node in the aggregation and
* return the aggregation itself up to the parse tree parent.
* This transformation is legal since the assigned function
*

cannot change identity across disjoint cooking passes and
* the argunent |ist subtree is retained for |ater cooking.
*/

if (Ip->dn_kind == DT_NODE A(IB) {
const char *anane = | p->dn_i dent->di _nane;
dt _ident_t *oid = | p->dn_ident->di _iarg;

if (rp->dn_kind !'= DT_NODE_FUNC | |
rp->dn_i dent - >di _kind T= DT_I DENT_AGGFUNO) {
xyerror (D_AGG FUNC,
"@® must be assigned the result of
"an aggregating function\n", anane);

}

if (oid!= NULL & oid != rp->dn_ident) {
xyerror (D_AGG REDEF,
"aggregation redefined: @s\n\t
"current: @s = %()\n\tprevious: @s = "

"%() : line %\ n", aname, anane,
rp->dn_i dent - >di _nanme, anane, oid->di _naneg,
| p->dn_i dent - >di _| i neno) ;

} else if (oid == NULL)
| p->dn_i dent - >di _iarg = rp->dn_i dent;

Do not allow nultiple aggregation assignnents in a
single statenent, e.g. (@ = count()) = count();

We produce a nessage as if the result of aggregating
function does not propagate DT_NF_LVALUE.

B
-~

if (lp->dn_aggfun != NULL)
xyerror(D OP_LVAL, "operator = requires "
"modi i abl e | val ue as an operand\n");

new usr/src/lib/libdtrace/ common/dt_parser.c 45

3529
3530

3532
3533

3535
3536

3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550

3552
3553
3554
3555
3556
3557
3558
3559
2837
3560

3562
3563
3564
3565
3566

3568
3569

3571
3572
3573
3574
3575
3576
3577
3578

3580
3581
3582
3583
3584
3585
3586

3588
3589
3590

3592

| p->dn_aggfun = rp;
I p = dt_node_cook(lp, DT_IDFLG MXD);

dnp->dn_|l eft = dnp->dn_right = NULL;
dt _node free(dnp),

return (1p);
}
/*
* |f the right-hand side is a dynanmic variable that is the
:loutput of a translator, our result is the translated type.

if ((idp = dt_node_resolve(rp, DT_IDENT_XLSQU)) != NULL) {

ctfp = idp->di_ctfp;

type = idp->di_type;

uref = idp->di_flags & DT_I DFLG_USER;
} else {

ctfp = rp->dn ctfp,

type = rp->dn_type;

uref = rp->dn_fl ags & DT_NF_USERLAND;

}

*

* |f the left-hand side of an assignnent statenment is a virgin
* variable created by this conpilation pass, reset the type of
* this variable to the type of the right-hand side.

|f (I p->dn_ki nd == DT_NODE_VAR &&
dt _ident _unref (I p->dn_ident)) {
dt _node_type_assign(lp, ctfp, type, B _FALSE);
dt _node_type_assign(lp, ctfp, type
dt _i dent _type_assi gn(l p->dn_i dent, ctfp, type);

if (uref) {
| p->dn_flags | = DT_NF_USERLAND;
| p->dn_i dent->di _flags | = DT_| DFLG_USER;

}

if (Ip->dn_kind == DT_NODE_VAR)
| p->dn_i dent->di _flags | = DT_I DFLG_MOD,

*

* The rules for type checking for the assignnent operators are
* described in the ANSI-C spec (see K& A7.17]). We share

* most of this code with the argunent |ist checking code.

*

if (!dt_node_is_string(lp)) {
kind = ctf_type_kind(lp->dn_ctfp,
ctf_type_resol ve(l p->dn_ctfp, |p->dn_type));

if (kind == CTF_K_ARRAY || kind == CTF_K_FUNCTION) {
xyerror (D _OP_ARRFUN, "operator % may not be
"applied to operand of type \"%\"\n",
opstr(op),
dt _node_type_nanme(lp, nl, sizeof (nl)));

}
if (idp !'= NULL && idp->di_kind == DT_I DENT_XLSOU &&
ctf_type_conpat (I p->dn_ctfp, |p->dn_type, ctfp, type))
got o asgn_common;

if (dt_node_is_argconpat(lp, rp))

new usr/src/lib/libdtrace/ comon/dt_parser.c 46
3593 got 0 asgn_conmon;

3595 xyerror (D_OP_| NCOVPAT,

3596 "operands have inconpatible types: \"%\" % \"%\"\n",
3597 dt _node_type_nane(l p, nl, sizeof (nl)) opstr(op),

3598 dt _node_type_nanme(rp, n2, sizeof (n2)))

3599 / * NOTREACHED* /

3601 case DT_TOK_ADD EQ

3602 case DT_TOK_SUB_EQ

3603 Tif (I p->dn_kind == DT_NODE_I DENT) {

3604 dt _xcook_i dent (I p, dtp->dt_globals,

3605 DT_I DENT_SCALAR, B_TRUE);

3606 }

3608 Ip = dnp->dn_left =

3609 dt _node_cook(| p, DT_|IDFLG REF | DT_| DFLG_MD);

3611 rp = dnp->dn_right =

3612 dt _node_cook(rp, DT_IDFLG REF | DT_|I DFLG_MD);

3614 if (dt_node_is_string(lp) || dt_node_is strlng(rp)) {

3615 xyerror(D OP_| NCOWPAT, oper ands have

3616 "inconpatible types: \"9%\" % \"%\"\n"

3617 dt _node_type_nane(lp, nl, sizeof (nl)), opstr(op)
3618 dt _node_type_nane(rp, n2, sizeof (n2)))

3619 }

3621 *

3622 * The rules for type checking for the assignnent operators are
3623 * described in the ANSI-C spec (see K& A7.17]). To these
3624 * rules we add that only witable D nodes can be nodified.
3625 *

3626 if (dt_node_is_integer(lp) == 0 ||

3627 dt _node_is_integer(rp) == 0) {

3628 if (!dt_node_is_poi nter(l p) || dt_node_is_vfptr(lp)) {
3629 xyerror(D OP_VFPTR,

3630 ‘operator % requires left-hand scalar "
3631 "operand of known size\n", opstr(op));
3632 } else if (dt_node_is_integer(rp) == 0 &&

3633 dt _node_is_ptrconpat (I p, rp, NULL, NULL) == 0) {
3634 xyerror(D_(P_I NCOWPAT, "operands have "

3635 "inconpatible types: \"9%\" 9% \"%\"\n",
3636 dt _node_type_nane(l p, nl, sizeof (nl)),
3637 opstr(op),

3638 dt _node_type_nanme(rp, n2, sizeof (n2)));
3639 }

3640

3641 asgn_conmon:

3642 dt _assi gn_comon(dnp);

3643 br eak;

3645 case DI_TOK PTR:

3646 /*

3647 * |f the left-hand side of operator -> is the nane "self",
3648 * then we pernit a TLS variable to be created or referenced.
3649 */

3650 if (Ip->dn_kind == DT_NODE_| DENT &&

3651 strcenp(l p->dn_string, "self") == 0) {

3652 if (rp->dn klndl-DTNODEVAR)

3653 dt _xcook_i dent (rp, dtp >dt _tls,

3654 DT_| DENT_SCALAR, B _TRUE);

3655 }

3657 if (idflags !'= 0)

3658 rp = dt_node_cook(rp, idflags);

new usr/src/lib/libdtrace/ common/dt_parser.c 47

3660 dnp->dn_right = dnp->dn_left; /* avoid freeing rp */
3661 dt _node_free(dnp);

3662 return (rp);

3663 }

3665 /*

3666 * If the left-hand side of operator ->is the name "this"
3667 * then we permt a |local variable to be created or ref er enced.
3668 */

3669 if (1p->dn_kind == DT_NODE_| DENT &&

3670 stremp(l p->dn_string, "this") == 0)

3671 if (rp->dn_kind != DT_NODE_VAR) {

3672 dt _xcook_i dent (rp, yypcbh->pcb_| ocal s,

3673 DT_| DENT_SCALAR, B _TRUE);

3674 }

3676 if (idflags != 0)

3677 rp = dt_node_cook(rp, idflags);

3679 dnp->dn_right = dnp->dn_left; /* avoid freeing rp */
3680 dt _node free(dnp)

3681 return (rp);

3682 }

3684 [* FALLTHRU* /

3686 case DT_TOK DOT:

3687 “I'p = dnp->dn_l eft = dt_node_cook(lp, DT_I DFLG REF);

3689 if (rp->dn klnd'—DTNCDEIDENT) {

3690 xyerror(D OP_| DENT, operat or % nust be followed by "
3691 "an i dentifier\n” opstr(op));

3692 }

3694 if ((idp = dt_node_resolve(lp, DT_IDENT_XLSQOU)) != NULL ||
3695 (idp = dt_node_resol ve(lp, DI_IDENT_XLPTR)) != NULL) {
3696 /*

3697 * If the left-hand side is a translated struct or ptr,
3698 * the type of the left is the translation output type.
3699 *

3700 dt_xlator_t *dxp = idp->di_data;

3702 if (dt_xlator_menber(dxp, rp->dn_string) == NULL) {
3703 xyerror(D XLATE_NOCONV,

3704 "transl ator does not define conversion "
3705 "for menber: %\n", rp->dn_string);

3706 }

3708 ctfp = idp->di_ctfp;

3709 type = ctf_type_resol ve(ctfp, idp- >d| _type);

3710 uref = idp->di_flags & DT_I DFLG USER;

3711 } else {

3712 ctfp = | p->dn_ctfp;

3713 type = ctf_type_resolve(ctfp, |p->dn_type);

3714 uref = | p->dn_flags & DT_NF_USERLAND;

3715 }

3717 kind = ctf_type_kind(ctfp, type);

3719 if (op == DT_TOK_PTR)

3720 if (k|nd|—CTFKPONTER)

3721 xyerror(D OP_PTR, "operator 9% nust be "
3722 "applied to a pointer\n", opstr(op));
3723

}
3724 type = ctf_type_reference(ctfp, type);

new usr/src/lib/libdtrace/ common/dt_parser.c 48
3725 type = ctf_type_resol ve(ctfp, type);

3726 kind = ctf_type_kind(ctfp, type);

3727 }

3729 I*

3730 * If we follow a reference to a forward declaration tag,

3731 * search the entire type space for the actual definition.

3732 */

3733 whil e (kind == CTF_K_FORWARD) {

3734 char *tag = ctf_type_nane(ctfp, type, nl, sizeof (nl));
3735 dtrace_typeinfo_t dtt;

3737 if (tag !'= NULL && dt _type_| ookup(tag, &dtt) == 0 &&
3738 (dtt.dtt_ctfp !'=ctfp || dtt.dtt_type != type)) {
3739 ctfp = dtt.dtt_ctfp;

3740 type = ctf_type_resolve(ctfp, dtt.dtt_type);
3741 kind = ctf_type_kind(ctfp, type);

3742 } else {

3743 xyerror (D_OP_I NCOWPLETE

3744 "operator % cannot be applied to a "

3745 "forward declaration: no % definition "
3746 "is available\n", opstr(op), tag);

3747 }

3748 }

3750 if (kind !'= CTF_K_STRUCT && kind !'= CTF_K_UNION) {

3751 if (op == DT_TOK_PTR) {

3752 xyerror(D OP_SQU, "operator -> cannot be "
3753 "applied to pointer to type \"%\"; nust "
3754 "be applied to a struct or union p0| nter\n",
3755 ctf_type_nane(ctfp, type, nl, sizeof (nl)));
3756 } else {

3757 xyerror (D OP_SQU, "operator % cannot be "
3758 "applied to type \"%\"; nust be applied "
3759 “to a struct or union\n", opstr(op),

3760 ctf_type_nane(ctfp, type, nl, si zeof (nl)));
3761 }

3762 }

3764 if (ctf_menber_info(ctfp, type, rp->dn_string, &) == CTF_ERR) {
3765 xyerror (D _TYPE_MEMBER,

3766 "% is not a nmenber of ¥%\n", rp->dn_string,

3767 ctf_type_nane(ctfp, type, nl, sizeof (nl)));

3768 }

3770 type = ctf_type_resolve(ctfp, mctmtype);

3771 kind = ctf_type_kind(ctfp, type);

3773 dt _node_t ype_assi gn(dnp, ctfp, mctmtype, B _FALSE);

3051 dt _node_type_assign(dnp, ctfp, mctmtype);

3774 dt _node_attr_assign(dnp, |p->dn_attr);

3776 if (op == DT_TOK_PTR && (kind != CTF_K_ARRAY | |

3777 dt _node_i s_string(dnp)))

3778 dnp->dn_flags | = DI_NF_LVALUE; /* see K&R[A7.3.3] */
3780 if (op == DT_TOK_DOT && (Il p->dn_flags & DT_NF_LVALUE) &&

3781 (k|ndl—CTFKARRAY|| dt _node_i s_string(dnp)))

3782 dnp->dn_flags | = DI_NF_LVALUE, /* see K&R[A7.3.3] */
3784 if (Ip->dn_flags & DT_NF_WR TABLE)

3785 dnp->dn_fl ags | = DT_NF_WRI TABLE;

3787 if (uref & & (kind == CTF_K_PO NTER ||

3788 (dnp->dn_f 1 ags & DT_NF_REF)))

3789 dnp->dn_flags | = DT_NF_USERLAND;

new usr/src/lib/libdtrace/ conmon/dt_parser.c 49 new usr/src/lib/libdtrace/ conmon/dt_parser.c 50
3790 br eak; 3856 * where dn_args for the VAR node is the right-hand 'rp’ tree,
3857 * as shown in the parse tree diagram bel ow
3792 case DT_TCK_LBRAC: { 3858 *
3793 /* 3859 * / /
3794 * |f op is DI_TOK _LBRAC, we know from the special -case code at 3860 * [OP2 "["]=dnp [VAR]=dnp
3795 * the top that Ip is either a D variable or an aggregation. 3861 * / \ = |
3796 */ 3862 * / \ +- dn_args -> [???]=rp
3797 dt _node_t *Inp; 3863 *[VAR]=lp [???]=rp
3864 *
3799 /* 3865 * Since the final dt_node_cook(dnp) can fail using |longjnm we
3800 * |f the left-hand side is an aggregation, just set dn_aggtup 3866 * must performthe transformations as a group first by over-
3801 * to the right-hand side and return the cooked aggregation. 3867 * witing 'dnp’ to becone the VAR node, so that the parse tree
3802 * This transformation is | egal since we are just collapsing 3868 * is guaranteed to be in a consistent state if the cook fails.
3803 * nodes to sinplify later processing, and the entire aggtup 3869 */
3804 * parse subtree is retained for subsequent cooking passes. 3870 assert (| p->dn_ki nd == DT_NODE_VAR) ;
3805 */ 3871 assert (I p->dn_args == NULL);
3806 if (Ip->dn_kind == DI_NODE_AGH {
3807 i f (1 p->dn_aggtup T= NULL) { 3873 I np = dnp->dn_l i nk;
3808 xyerror(D_AGG MDIM "inproper attenpt to " 3874 bcopy(Il p, dnp, si zeof (dt_node_t));
3809 "reference @s as a nulti-dinensional " 3875 dnp->dn_| i nk I np;
3810 "array\n", |p->dn_i dent->di _nane);
3811 } 3877 dnp->dn_args = rp;
3878 dnp->dn_list = NULL;
3813 | p->dn_aggtup =
3814 I p = dt_node cook(l p, 0); 3880 dt _node_free(lp);
3881 return (dt_ node cook(dnp, idflags));
3816 dnp->dn_l eft = dnp->dn_right = NULL; 3882 }
3817 dt _node_free(dnp);
3884 case DT_TOK_XLATE:
3819 return (Ip); 3885 dt _xlator_t *dxp;
3820 }
3887 assert(l p->dn_ki nd == DT_NODE_TYPE) ;
3822 assert (I p->dn_kind == DT_NODE_VAR); 3888 rp = dnp->dn_right = dt node cook(rp, DT_I| DFLG_REF) ;
3823 idp = | p->dn_ident; 3889 dxp = dt_xlator_l ookup(dtp, rp, |p, DT_XLATE FUZZY);
3825 I+ 3891 if (dxp == NULL) {
3826 * |f the left-hand side is a non-global scalar that hasn't yet 3892 xyerror (D_XLATE_NONE,
3827 * been referenced or nodified, it was just created by self-> 3893 "cannot translate from\"%\" to \"%\"\n",
3828 * or this-> and we can convert it fromscalar to assoc array. 3894 dt _node_type_nane(rp, nl, sizeof (nl)),
3829 */ 3895 dt _node_type_nane(l p, n2, sizeof (n2)));
3830 if (idp->di_kind == DT_|I DENT_SCALAR && dt _i dent _unref (idp) && 3896 }
3831 (idp->di _flags & (DT_IDFLG LOCAL | DT_IDFLG TLS)) != 0) {
3898 dnp->dn_i dent = dt_xl ator_ident(dxp, |p->dn_ctfp, |p->dn_type);
3833 if (idp->di _flags & DT_IDFLG LOCAL) { 3899 dt _node_ type assi gn(dnp, DT_DYN_CTFP(dtp), DT_DYN TYPE(dtp),
3834 xyerror (D_ARR_LOCAL, 3900 B _FALSE) ;
3835 "l ocal variables may not be used as " 3177 dt _node_t ype_assi gn(dnp, DT_DYN _CTFP(dtp), DT_DYN TYPE(dtp));
3836 "associative arrays: %\n", idp->di_nane); 3901 dt _node_attr_assi gn(dnp,
3837 } 3902 dt_attr_mn(rp->dn_attr, dnp->dn_ident->di _attr));
3903 br eak;
3839 dt _dprintf("nmorph variable % (id %) fromscalar to " 3904 }
3840 "array\n", idp->di_nanme, idp->di_id);
3906 case DT_TOK_LPAR
3842 dt _i dent _nor ph(i dp, DT_| DENT_ARRAY, 3907 ctf_id_t Itype, rtype;
3843) &dt _i dops_assc, NULL); 3908 uint _t 1kind, rkind;
3844
3910 assert (| p->dn_ki nd == DT_NODE_TYPE) ;
3846 if (idp->di_kind !'= DT_I DENT_ARRAY) { 3911 rp = dnp->dn_right = dt_node cook(rp, DT_I DFLG_REF) ;
3847 xyerror(D | DENT_BADREF, "% ' %’ may not be referenced "
3848 "as 9%&\n", dt_idki ndfname(i dp->di _ki nd), 3913 Itype = ctf_type_resol ve(l p->dn_ctfp, |p->dn_type);
3849 i dp->di _name, ~dt _i dki nd_nane(DT_I DENT_ARRAY)) ; 3914 I kind = ctf_type_kind(lp->dn_ctfp, Itype);
3850 }
3916 rtype = ctf_type_resolve(rp->dn_ctfp, rp->dn_type);
3852 /* 3917 rkind = ctf_type_kind(rp->dn_ctfp, rtype);
3853 * Now that we’ve confirned our |eft-hand side is a DT_NODE_VAR
3854 * of idkind DT_I DENT_ARRAY, we need to splice the [node from 3919 /*
3855 * the parse tree and | eave a cooked DT_NODE_VAR in its place 3920 * The rules for casting are |oosely explained in K&R[A7. 5]

new usr/src/lib/libdtrace/ common/dt_parser.c 51

3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944

3946
3947

3949
3950
3951
3952
3953
3954

3956
3957

3959
3960
3961

3963
3964
3965
3966

3968
3969
3970
3971

3973
3974
3975

3977
3978
3979

3981
3982
3983
3984
3985
3986

}

* and K&R[A6]. Basically, we can cast to the sane type or
* same base type, between any kind of scalar values, from
* arrays to pointers, and we can cast anything to void.

* To these rules D adds casts fromscalars to strings.

*

if (ctf_type_conpat (Il p->dn_ctfp,
rp->dn_ctfp, rp->dn_type))
[*EMPTY*/ ;
else if (dt_node_is_scalar(lp) &&
(dt _node_is_scalar(rp) || rkind == CTF_K_FUNCTI ON))

| p->dn_t ype,

/*EI\/PTY*/;
else if (dt_node_is_void(lp))
[*ENPTY*T;
else if (lkind == CTF_K_PO NTER && dt _node_i s_poi nter(rp))
[*EMPTY*/ ;
else if (dt_node_is_string(lp) && (dt_node_is_scalar(rp) ||
dt _node_is_pointer(rp) || dt_node_is_strconpat(rp)))
[*EMPTY*/ ;
el se {
xyerror(D CAST_I NVAL,
"invalid cast expressi on: \"%\" to \"u%\"\n",
dt _node_type_nane(rp, nl, sizeof (nl)),
dt _node_type_nane(l p, n2, sizeof (n2)));
}

dt _node_t ype_propagat e(l p,
dt _node_attr_assi gn(dnp,

dnp); /* see K&R[A7.5] */
dt_attr_mn(lp->dn_attr, rp->dn_attr));

*

* |f it’s a pointer then should be able to (attenpt to)
* assign to it.

|f (I kind == CTF_K_PO NTER)
dnp->dn_flags | = DT_NF_WRI TABLE;

break;

case DT_TOK_COWVA:

defaul t:

}
/

S

Conpl ete the conversion of El[E2]
at the top of our switch() above (see K&R[A7.3.1]).
parsed as an argument_expression_|ist by dt_grammar.y,
end up with a comma-separated |ist inside of a non-associative
array reference.

I'p = dnp->dn_Il eft
= dnp->dn_ri ght

= dt _node_cook(I p,
= dt _node_cook(rp,

DT_I DFLG_REF) ;
DT_I DFLG REF)

if (dt_node_is_dynam c(Ip) || dt_node_is dynam c(rp)) {
xyerror(D OP_DYN, "operator % operan s "
"cannot be of dynamic type\n", opstr(op));

}

if (dt_node_is_actfunc(lp) || dt_node_is_actfunc(rp)) {
xyerror (D_OP_ACT, "operator % operands "
"cannot be actions\n", opstr(op));

}

dt _node_t ype_propagat e(rp,
dt _node_attr_assi gn(dnp,
br eak;

dnp);
dt_attr_mn(lp->dn_attr,

/* see K&R[A7.18] */
rp->dn_attr));

xyerror (D_UNKNOMW, "invalid binary op %\n", opstr(op));

to *((El)+(E2)) that we started
Since E2 is
we can

We check for this and report an appropriate error.

new usr/src/lib/libdtrace/ conmon/dt_parser.c

3987 */

3988 if (dnp->dn_op == DT_TOK_LBRAC && op == DT_TOK_ADD) {

3989 dt _node_t *pnp;

3991 if (rp->dn_list !'= NULL) {

3992 xyerror (D_ARR_BADREF,

3993 "cannot access % as an associative array\n",
3994 dt _node_nane(lp, nl, sizeof (nl)));

3995 }

3997 dnp->dn_op = DT_TOK_ADD;

3998 pnp = dt_node_opl(DT_TOK_DEREF, dnp);

4000 /*

4001 * Cook call backs are not typically pernmitted to allocate nodes.
4002 * When we do, we nust insert themin the mddle of an existing
4003 * allocation |list rather than having them appended to the pcb
4004 * |ist because the sub-expression may be part of a definition.
4005 */

4006 assert (yypch- >pcb list == pnp);

4007 yypcb->pcb_li st = pnp->dn_|ink;

4009 pnp->dn_l i nk = dnp->dn_I i nk;

4010 dnp->dn_l i nk = pnp;

4012 return (dt_node_cook(pnp, DT_IDFLG REF));

4013 }

4015 return (dnp);

4016 }

4018 /* ARGSUSED*/

4019 static dt_node_t *

4020 dt _cook_op3(dt_node_t *dnp, uint_t idflags)

4021 {

4022 dt _node_t *lp, *rp;

4023 ctf _file_t *ctfp;

4024 ctf_id_t type;

4026 dnp >dn_expr = dt_node_cook(dnp->dn_expr, DT_I DFLG REF);

4027 = dnp->dn_left = dt node_cook(dnp->dn_l eft, DT_ TDFLG 5 REF) ;

4028 rp = dnp->dn_right = dt_node_cook(dnp->dn_ri ght DT_I DFLG REF)
4030 if (!dt_node_is_scal ar(dnp->dn_expr)) {

4031 xyerror (D_OP_SCALAR,

4032 "operator ?: expression nust be of scalar type\n");
4033 }

4035 if (dt_node_is_dynamc(lp) || dt_node_is_dynamic(rp)) {

4036 xyerror (D _OP_DYN,

4037 "operator ?: operands cannot be of dynamc type\n");
4038 }

4040 /*

4041 * The rules for type checking for the ternary operator are conplex and
4042 * are described in the ANSI-C spec (see K&R[A7.16]). We inplenent
4043 * the various tests in order fromleast to nost expensive.

4044 */

4045 if (ctf_type_conpat(lp->dn_ctfp, |p->dn_type,

4046 rp->dn_ctfp, rp->dn_type)) {

4047 ctfp = I p->dn_ctfp;

4048 type = | p->dn_type;

4049 } else |f (dt node_is_integer(lp) & dt_node_is_integer(rp)) {
4050 _type_ pronnte(lp rp, &tfp, & ype);

4051 } else |f (dt _node_i s_strconpat (I p) && dt node_i s _strconpat(rp) &&
4052 (dt _node_is_string(lp) || dt_node_is_string(rp))) {

52

new usr/src/lib/libdtrace/ conmon/dt_parser.c

4053
4054
4055
4056
4057
4058

4060
4061
4062
4063

4065
3342
4066
4067

4069
4070 }

ctfp = DI_STR CTFP(yypcbh->pcb_hdl);
type = DT_STR TYPE(yypcb->pcb_hdl);
} else if (dt_node_is_ptrconpat(lp, rp, &tfp, & ype) == 0) {
xyerror (D_OP_I NCOVPAT,
"operator ?: operands nust have conpatible types\n");

}
if (dt_node_is actfunc(lp) || dt_node_is actfunc(rp)) {
xyerror(D OP_ACT, "action cannot be "
'used in a conditional context\n");
}

dt _node_type_assign(dnp, ctfp, type, B_FALSE);

dt _node_t ype_assi gn(dnp, ctfp, type);

dt _node_attr_assign(dnp, dt_attr_m n(dnp->dn_expr->dn_attr,
dt_attr_mn(lp->dn_attr, rp->dn_attr)));

return (dnp);

__unchanged_portion_onitted_

4081 /
4082
4083
4084
4085
4086
4087 /

*

* If dn_aggfun is set, this node is a collapsed aggregation assignnment (see
* the special case code for DT TOK_ASGN i n dt _cook_op2() above), in which
* case we cook both the tuple and the function call. [If dn aggfun is NULL,
* this node is just a reference to the aggregation’s type and attributes.
*

/
* ARGSUSED* /

4088 static dt_node_t *
4089 dt_cook_aggregation(dt_node_t *dnp, uint_t idflags)

4090 {
4091

4093
4094
4095
4096
4097
4098
4099
3375
4100
4101

4103
4104 }

dtrace_hdl _t *dtp = yypcb->pcb_hdl;
if (dnp->dn_aggfun != NULL) {
dnp- >dn_aggf un = dt _node_cook(dnp->dn_aggfun, DT_| DFLG REF);
dt _node_attr_assi gn(dnp, dt_i dent_cook(dnp,
dnp->dn_i dent, &dnp->dn_aggtup));
} else {
dt _node_t ype_assi gn(dnp, DT_DYN_CTFP(dtp),
B FALSE);
dt _node_t ype_assi gn(dnp, DT_DYN_CTFP(dtp),
dt _node_attr_assi gn(dnp, dnp->dn_ident->di _attr)

DT_DYN_TYPE(dt p),

}
return (dnp);
__unchanged_portion_onitted_
* ARGSUSED* /

4270 /

4271 static dt_node_t *
4272 dt _cook_xl ator(dt_node_t *dnp, uint_t idflags)

4273 {
4274
4275
4276

4278
4279

4281
4282

4284
4285
4286
4287

dtrace_hdl _t *dtp = yypcb->pcb_hdl;
dt_xlator_t *dxp = dnp->dn_xlator;
dt _node_t *mmp;

char nl[DT_TYPE_NAMVELEN ;
char n2[DT_TYPE_NANELEN] ;

dtrace_attribute_t attr = _dtrace_maxattr;
ctf_menbinfo_t ctm

/*
* Before cooking each translator menber, we push a reference to the
* hash containing translator-local identifiers on to pcb_globals to

* tenporarily interpose these identifiers in front of other globals.

DT_DYN_TYPE(dtp));

new usr/src/lib/libdtrace/ conmon/dt_parser.c

4288 */
4289 dt _i dst ack_push(&ypcb->pcb_gl obal s, dxp->dx_| ocal s);
4291 r (mp = dnp->dn_nenbers; mp != NULL; mp = mp->dn_list) {
4292 if (ctf_nember |nfo(dxp >dx_dst_ctfp, dxp->dx_dst_type,
4293 mp- >dn_nenbnanme, &ctm) == CTF_ERR) {
4294 xyerror (D_XLATE_I\/EI\/B,
4295 "transl ator menber % is not a nember of %\n",
4296 mp- >dn_nenbnane, ctf_type_nanme(dxp->dx_dst ctfp,
4297 dxp->dx_dst _type, nil, sizeof (nl)));
4298 }
4300 (voi d) dt_node_cook(mp, DT_I DFLG REF);
4301 dt _node_t ype_assi gn(mmp, dxp->dx_dst_ctfp, ctmctmtype,
4302 B_FALSE) ;
3577 dt _node_t ype_assi gn(mmp, dxp->dx_dst_ctfp, ctmctmtype);
4303 attr = dt_attr_min(attr, mp->dn_attr);
4305 if (dt_node_is_argconpat (mp, mmp->dn_nenbexpr) == 0) {
4306 xyerror(D XLATE_I NCOWPAT,
4307 “translator member % definition uses "
4308 "inconpatible types: \"9\" = \"9%\"\n",
4309 mp- >dn_nenbnane,
4310 dt _node_t ype_ name(rmp, nl, sizeof (nl)),
4311 dt _node_t ype_nanme(rmp- >dn_nenbexpr,
4312 n2, sizeof (n2)));
4313 }
4314 }
4316 dt _i dst ack_pop(&yypch- >pcb_gl obal s, dxp->dx_I| ocal s);
4318 dxp->dx_souid.di _attr = attr;
4319 dxp->dx_ptrid.di _attr = attr;
4321 dt _node_t ype_assi gn(dnp, DT_DYN CTFP(dtp), DT_DYN TYPE(dtp), B_FALSE);
3596 dt _node_t ype_assi gn(dnp, DT_DYN CTFP(dtp), DT_DYN TYPE(dtp));
4322 dt _node_attr_assign(dnp, _dtrace_defattr);
4324 return (dnp);
4325 }
__unchanged_portion_onitted_
4596 /*
4597 * Conpute the DOF dtrace_diftype_t representation of a node’s type. This is
4598 * called froma variety of places in the library so it cannot assume yypcb
4599 * is valid: any references to handl e-specific data nust be made through 'dtp’.
4600 */
4601 void
4602 ?t_node_diftype(dtrace_hdl_t *dtp, const dt_node_t *dnp, dtrace_diftype_t *tp)
4603
4604 if (dnp->dn_ctfp == DI_STR CTFP(dtp) &&
4605 dnp->dn_type == DT_STR_TYPE(dtp)) {
4606 t p- >dt dt _kind = DI F_TYPE_STRI NG
4607 t p->dt dt _cki nd = CTF_K_UNKNOM;
4608 } else {
4609 tp->dtdt_kind = D| F_TYPE_CTF;
4610 tp->dtdt_ckind = ctf_type_ ki nd(dnp >dn_ctfp,
4611 ctf_type_resol ve(dnp->dn_ctfp, dnp->dn_type));
4612 }
4614 tp->dtdt_flags = (dnp->dn_flags & DT_NF_REF) ?
4615 (dnp->dn _flags & DT_NF_USERLAND) ~? DI F_TF_BYUREF :
4616 DI F_TF_BYREF : O0;
3889 tp->dtdt_flags = (dnp >dn_flags & DT_NF_REF) ? DI F_TF_BYREF : O;
4617 tp->dtdt_pad = 0;
4618 tp->dtdt_size = ctf_type_size(dnp->dn_ctfp, dnp->dn_type);

new usr/src/lib/libdtrace/ conmon/dt_parser.c

4619 }
____unchanged_portion_onitted_

55

new usr/src/lib/libdtrace/ conmon/dt_parser.h

R R R R

11453 Tue Jan 14 16:48:57 2014
new usr/src/lib/libdtrace/ conmon/dt_parser.h

4474
4475
4476
4479
4480

Revi ewed by: Bryan Cantrill

DTrace Userland CTF Support

DTrace userland Keyword

DTrace tests should be better citizens

pi d provider types

dof erul ation m ssing checks

<bryan@ oyent . con»

LR R R

1

NRERRRRRRRRE
COONOUITAWNROW©O~NOUTSWN

/ *
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the |icense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

-~

B I A

21/

22 Copyright 2007 Sun Mcrosystens, Inc. Al rights reserved.
23 Use is subject to license terms.

24 */

25 /

26 * Copyright (c) 2013 by Del phix. Al rights reserved.

27 */Copyright (c) 2013 Joyent, Inc. Al rights reserved.

28 *

#endif /* | codereview */

#i fndef _DT_PARSER H
#def i ne _DT_PARSER_H

new usr/src/lib/libdtrace/ conmon/dt_parser.h

25 #pragnma

34 #include
35 #incl ude

37 #include
38 #incl ude
39 #include

41 #i f def
42 extern
43 #endi f

45 #incl ude
46 #i ncl ude
47 #incl ude
48 #incl ude
49 #incl ude

51 typedef

i dent " %Y % Y%
<sys/types. h>
<sys/dtrace. h>

<libctf.h>
<stdarg. h>
<stdio. h>

__cplusplus
C {

<dt _errtags. h>
<dt _i dent. h>
<dt _decl . h>
<dt _xl ator. h>
<dt_list.h>

struct dt_node {
ctf_file_t *dn_ctfp;
ctf_id_t dn_type;
uchar _t dn_ki nd;

%% SM "

/*
/*
| *

CTF type container for
CTF type reference for
node ki nd (DT_NODE *,

node’ s type */
node’ s type */
defined bel ow) */

55 uchar _t dn_f1l ags; /* node flags (DT_NF_*, defined bel ow) */

56 ushort_t dn_op; /* operator (DT_TOK *, defined by lex) */

57 int dn_line; /* line nunber for error nessages */

58 int dn_reg; /* register allocated by cg */

59 dtrace_attribute_t dn_attr; /* node stability attributes */

61 /*

62 * D conpiler nodes, as is the usual style, contain a union of the
63 * different sub-elenents required by the various kinds of nodes.

64 * These sub-el enents are accessed using the macros defined bel ow.

65 */

66 uni on {

67 struct {

68 ui nt max_t _val ue; /* integer value */

69 char *_string; /* string value */

70 } _const;

72 struct {

73 dt _ident_t *_ident; /* identifier reference */

74 struct dt_node *_links[3]; /* child node pointers */
75 } _nodes;

77 struct {

78 struct dt_node *_descs; /* list of descriptions */
79 struct dt_node *_pred; /* predicate expression */
80 struct dt_node *_acts; /* action statenment list */
81 dt _i dhash_t *_l ocal s; /* local variable hash */

82 dtrace_attribute_t _attr; /* context attributes */
83 } _clause;

85 struct {

86 char *_spec; /* specifier string (if any) */
87 dtrace_probedesc_t *_desc; /* final probe description */
88 } _pdesc;

90 struct {

91 char *_nane; /* string nane of nenber */
92 struct dt_node *_expr; /* expression node pointer */
93 dt_xlator_t *_xlator; /* transl ator reference */
94 uint_t _id; /* menber identifier */

95 } _nenber;

97 struct {

98 dt_xlator_t *_xlator; /* transl ator reference */
99 struct dt_node *_xnenb; /* individual xlator menber */
100 struct dt_node *_nenbs; /* list of nenber nodes */
101 } _xlator;

103 struct {

104 char *_naneg; /* string nane of provider */
105 struct dt_provider *_pvp; /* provider references */
106 struct dt_node *_probes; /* list of probe nodes */
107 int _redecl; /* provider redeclared */

108 } _provider;

109 } dn_u;

111 struct dt_node *dn_list; /* parse tree list link */

112 struct dt_node *dn_link; /* allocation list link */

113 } dt_node_t;

115 #define dn_val ue

116 #define dn_string

117 #define dn_ident
118 #define dn_args
119 #define dn_child

120 #define dn_left

dn_u. _const. _val ue /* DT_NODE_I NT */

dn_u. _const._string /* STRING | DENT, TYPE */

dn_u. _nodes. _i dent /* VAR, SYM FUN, AGG, | NL, PROBE */
dn_u. _nodes. _| i nks[0] /* DT_NODE_VAR, FUNC */

dn_u. _nodes. _l i nks[0] /* DT_NODE_OP1 */

dn_u. _nodes. _l i nks[0] /* DT_NODE_OP2, OP3 */

new usr/src/lib/libdtrace/ conmon/dt_parser.h

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

167
168
169
170
171
172
173

177
178
179
180
181
182
183
184
185
186

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne

ne

int dt

int dt
int dt

int dt
int dt

dn_ri ght
dn_expr
dn_aggf un
dn_aggt up
dn_pdescs
dn_pred
dn_acts
dn_| ocal s
dn_ctxattr
dn_spec
dn_desc
dn_nmenbnane
dn_nenbexpr
dn_menbx| at or
dn_nenbi d
dn_xI at or
dn_xmenber
dn_nenbers
dn_provnane
dn_provi der
dn_provred
dn_pr obes

DT_NCDE_FREE
DT_NCDE_| NT
DT_NCDE_STRI NG
DT_NCDE_| DENT
DT_NCDE_VAR
DT_NCDE_SYM
DT_NCDE_TYPE
DT_NCDE_FUNC
DT_NCDE_OP1
DT_NCDE_OP2
DT_NCDE_OP3
DT_NCDE_DEXPR
DT_NCDE_DFUNC
DT_NCDE_AGG
DT_NCDE_PDESC
DT_NCDE_CLAUSE
DT_NCODE_| NLI NE
DT_NODE_MEMBER
DT_NODE_XLATOR
DT_NCDE_PROBE

dn_u.
dn_u.
dn_u.
dn_u.
dn_u.
dn_u.
dn_u.
dn_u.
dn_u.
dn_u.
dn_u.
dn_u.
dn_u.
dn_u.
dn_u.
dn_u.
dn_u.
dn_u.

dn_u.
dn_u.
dn_u.

dn_u.

OCO~NOUDWNEFO

19

DT_NODE_PROVI DER 20

DT_NODE_PROG

DT_NF_SI GNED
DT_NF_COOKED
DT_NF_REF
DT_NF_LVALUE
DT_NF_VRI TABLE
DT_NF_BI TFI ELD
DT_NF_USERLAND

21

0x01
0x02
0x04
0x08
0x10
0x20
0x40

DT_TYPE_NAMELEN 128

nt dt

nt dt

synbo

¥k ok ok ok ok % ok ok ok ok ok k% ok kb * ok ¥

B e e N

dat a
dat a
pass
node
node
node
dat a

* Ok ok ok ok ok F

~—————

i
i
b
i
i
i
i

s
s
y
s
s
s
s

_nodes. _links[1]
“nodes. _| i nks[2]
“nodes. _| i nks[0]
“nodes. _l i nks[1]
_clause. _descs
_clause. _pred
_clause. _acts
_clause. _locals
_clause. _attr
_pdesc. _spec
_pdesc. _desc
_nenber. _nane
_nmenber . _expr
_menber. _xl ator
_menber. _id
_xlator. _xlator
_xlator._xmenb
_xl ator._menbs
_provi der._nane
_provider._pvp
_provider._redecl
_provider._probes

DT_NODE_OP2, OP3 */

DT_NODE_OP3, DEXPR */

DT_NODE_AGG */
DT_NODE_AGG */
DT_NODE_CLAUSE
DT_NODE_CLAUSE
DT_NODE_CLAUSE
DT_NODE_CLAUSE
DT_NODE_CLAUSE

*/
*/
*/
*/
*/

DT_NODE_PDESC */
DT_NODE_PDESC */

DT_NODE_MEMBER
DT_NODE_MEMBER
DT_NODE_MEMBER
DT_NODE_MEMBER
DT_NODE_XLATCR
DT_NODE_XLATCR
DT_NODE_XLATCR

*/
*/
*/
*/
*/
*/
*/

DT_NODE_PROVI DER
DT_NODE_PROVI DER
DT_NODE_PROVI DER
DT_NODE_PROVI DER

reference */

a signed quantity (el se unsigned)

type reference or formal
function call
unary oper at or
bi nary operator */
ternary operator
D expression action */
D function action */
aggregation */
probe description */
clause definition */
inline definition */
nenber definition */
transl ator
probe definition */

provi der definition */
programtranslation unit */

*/
*/

*/

definition */

unused node (waiting to be freed)
integer value *
string value */
identifier */

variabl e reference */

a known type (else still

reference (array,
an | -value according to ANSI -
writable (can be nodified) */
an integer

bitfield */

a userland address */

struct,

*/
*/
*/
*/

*/

paraneter */

cooki ng)
uni on)

/* reasonabl e size for ctf_type_nane()

node_t

node_t

node_i s_i nteger (const dt_node_t *);
int dt_node_is_float(const dt_node_t *)|

“node_i s_scal ar (const dt
“node_is_arith(const dt_node_t *),

“node_is_vfptr(const dt_node_t *);

int dt_node_i s_dynam c(const dt_node_t *);
“node_i s_stack(const dt_node_t *);
“node_i s_symmddr (const dt_node_t *
“node_i s_usymaddr (const dt
int dt_node_is_string(const dt_node_t

5

new usr/src/lib/libdtrace/ conmon/dt_parser.h

187
188
189
190
191
192
193
194

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

218
219

221
222

224
225
226

228
229
222
230
231
232

234
235
236

238
239
240
241
242

244
245

247
248
249

extern
extern
extern
extern

extern
extern
extern

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

extern
extern

extern
extern

extern
extern
extern

extern
extern
extern
extern
extern
extern

extern
extern
extern

extern

extern

struct
struct

int dt
int dt
int dt
int dt

ctf_file_t ,

int dt
int dt
int dt

dt _node_t
dt _node_t
dt _node_t
dt _node_t
dt _node_t
dt _node_t
dt _node_t
dt _node_t
dt _node_t
dt _node_t
dt _node_t
dt _node_t
dt _node_t
dt _node_t
dt _node_t
dt _node_t
dt _node_t
dt _node_t
dt _node_t
dt _node_t
dt _node_t

dt _node_t
dt _node_t

dt _node_t

“node_i s_posconst (const dt
_node_i s_actfunc(const dt_node_t *);

node_i s_strconpat (const

:node_i s_poi nter(const dt_node_t *);

_node_i s_voi d(const dt_node_t *);
“node_i s ptrcorrpat(const dt _node_t *,
T ctf_id_t
node_is argconpat(const dt_node_t *,
_node_t *);

*dt _node_i nt (ui ntmax_t);
*dt _node_string(char *);
*dt _node_i dent (char *);

*dt _node_type(dt_decl _t *);
*dt _node_vat ype(voi d);

*dt _node_decl (void);
*dt_node_func(dt_node_t *, _
*dt _node_of f set of (dt _decl _t *,
*dt _node_opl(int, dt_node_t *);
*dt _node_op2(int, dt_node_t *, dt
*dt _node_op3(dt_ node_t *,
*dt _node_st at ement (dt _node_t *);
*dt _node_pdesc_by_nane(char *);
*dt _node_pdesc_by_i d(ui nt max t)
*dt _node_cl ause(dt_node_t *, dt
*dt _node_i nl i ne(dt _node_t *
*dt _node_nenber (dt _decl _t *,
*dt _node_xl ator (dt _decl _t *
*dt _node_probe(char *, int,
*dt _node_provi der (char *,
*dt _node_progran(dt_node_t *);

*dt _node_l i nk(dt _node_t *, dt
*dt _node_cook(dt _node_t *, uint_t

*dt _node_xal | oc(dtrace_hdl _t *,

voi d dt _node_free(dt_node_t *);

dtrace_attribute_t dt
dt_node_list_free(dt_node_t
dt “node_l i nk_free(dt_node_t

voi d
voi d

voi d
voi d
voi d
voi d

size_t

dt _ident _t

size_t

voi d dt _node_pr onot e(dt

voi d dt _node_di ftype(dtrace_hdl

const dt_node_t *,
extern void dt_node_printr(dt_node_t *,
extern const char *dt_node_name(const

int dt

dtrace_typei nfo;
dt _pch;

dt _node_attr_assign(dt_node_t *,
dt _node_t ype_assi gn(dt _node_t *,
dt _node_t ype_assi gn(dt _node_t *,
dt _node_t ype_propagat e(const dt_node_t
const char *dt_node_type_nane(const dt_node_t *
dt_node_t *);

node_| i st _cook(dt
**)5
**)s

dtrac
ctf_fi
ctf _fi

dt _node_t ype_si ze(const

*dt _node_resol ve(const dt_node_t
dt _node_si zeof (const dt_node_t *);
_node_t *, dt_node_t

to*,
dtrace_diftype_t *);
FILE *,
dt_node_t *,
_node_root (dt _node_t *);

/* see <dtrace. h> */
/* see <dt_inpl.h> */

#define 1S _CHAR(e) \

(((e).

(CTF_I NT_CHAR |

cte_format & (
CTF_I NT

CTF_| NTCHARl
~SI GNED)

#define 1S VO D(e) \

dt _node_t *);

const dt_node_t

const dt

dt _node_t
char *)

*

)

_node_t *);
dt _node_t

“dt_node_t

)

*
’

char *,
dt _decl
dt _node_t
dt node_t *);

_node_t
int);

_node_t

*

int);

_node_t

*, dt

_node_t

*

dt _node_t *);
* char *,
*, dt_node_t *);

_t

*

*

u

)

*,ouint_t);

int_t);

dt _node_t *);

char

CTF_I NT_SI GNED))
&& (e).cte_bits == NBBY)

*, size_t);

*
,

*)s

)

_node_t

dt _node_t

*)s

*);

bool ean_t);

new usr/src/lib/libdtrace/ conmon/dt_parser.h

252 ((e).cte_offset == 0 & (e).cte_bits == 0)

254 extern int dt_type_l ookup(const char *, struct dtrace_typeinfo *);

255 extern int dt_type_pointer(struct dtrace_typeinfo *);

256 extern const char *dt_type_name(ctf_file_t *, ctf_id_t, char *, size_t);

258 typedef enum {

259 YYS_CLAUSE, /* lex/yacc state for finding programclauses */

260 YYS_DEFI NE, /* lex/yacc state for parsing persistent definitions */
261 YYS_EXPR, /* lex/yacc state for parsing D expressions */

262 YYS_DONE, /* lex/yacc state for indicating parse tree is done */
263 YYS_CONTROL /* lex/yacc state for parsing control lines */

264 } yystate_t;
__unchanged_portion_onitted_

new usr/src/lib/libdtrace/ common/dt_pid.c

R R R R

24082 Tue Jan 14 16:48:58 2014
new usr/src/lib/libdtrace/ comon/dt_pid.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governing pernissions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */
22 |*

23 * Copyright 2010 Sun Mcrosystens, Inc. Al rights reserved.
24 * Use is subject to |license terns.
25 =/
26 [*
27 */Copyright (c) 2013, Joyent, Inc. Al rights reserved.
*

29 #endif /* | codereview */

31 #include <assert.h>

32 #include <strings.h>

33 #include <stdlib. h>

34 #include <stdio.h>

35 #include <errno. h>

36 #include <ctype. h>

37 #include <alloca. h>

38 #include <libgen. h>

39 #include <stddef.h>

40 #i ncl ude <sys/sysmacros. h>
41 #endif /* ! codereview */

43 #include <dt_inpl.h>

44 #include <dt_program h>
45 #incl ude <dt_pid. h>

46 #include <dt_string. h>
47 #incl ude <dt_nodul e. h>
48 #endif /* | codereview */

50 typedef struct dt_pid_probe {

51 dtrace_hdl _t *dpp_dtp;

52 dt _pcb_t *dpp_pch;

53 dt_proc_t *dpp_dpr;

54 struct ps_prochandl e *dpp_pr;
55 const char *dpp_nod;

56 char *dpp_func;

new usr/src/lib/libdtrace/ common/dt_pid.c

57 const char *dpp_nane;

58 const char *dpp_obj;

59 uintptr_t dpp_pc;

60 size_t dpp_size;

61 Lmid_t dpp_I nid;

62 uint _t dpp_nmat ches;

63 uint64_t dpp_stret[4];

64 GEl f _Sym dpp_| ast;

65 uint _t dpp_l ast _t aken;

66 } dt_pid_probe_t;

68 /*

69 * Conpose the Imd and object name into the canonical representation. W
70 * omt the Imd for the default link nmap for convenience.

71

72 static void

73 dt_pi d_objnane(char *buf, size_t len, Lmd_t Imd, const char *obj)
74 {

75 if (Imid == LMID BASE)

76 (void) strncpy(buf, obj, len);

77 el se

78 (void) snprintf(buf, len, "LMAX %", Inmid, obj);
79 }

81 static int

82 dt _pid_error(dtrace_hdl _t *dtp, dt_pcb_t *pcb, dt_proc_t *dpr,

83 fasttrap_probe_spec_t *ftp, dt_errtag_t tag, const char *fnt, ...)
84 {

85 va_list ap;

86 int len;

88 if (ftp !'= NULL)

89 dt _free(dtp, ftp);

91 va_start(ap, fnt);

92 if (pcb == NULL)

93 assert (dpr != NULL);

94 len = vsnprintf(dpr->dpr_errnsg, sizeof (dpr->dpr_errnsg),
95 fnt, ap);

96 assert(len >= 2);

97 if (dpr->dpr_errnsg[len - 2] == "'\n")

98 dpr->dpr_errmsg[len - 2] ='\0";

99 } else {

100 dt _set_errnsg(dtp, dt_errtag(tag), pcb->pcb_region,
101) pcb->pcb_filetag, pcb->pcb_fileptr ? yylineno : 0, fnt,
102

103 va_end(ap);

105 return (1);

106 }

108 static int

109 ?t_pi d_per_sym(dt _pi d_probe_t *pp, const GElf_Sym *synp, const char *func)
110

111 dtrace_hdl _t *dtp = pp->dpp_dtp;

112 dt _pcb_t *pcb = pp->dpp_pcb;

113 dt _proc_t *dpr = pp->dpp_dpr;

114 fasttrap_probe_spec_t *ftp;

115 uint64_t off;

116 char *end;

117 uint_t nmatches = 0;

118 ul ong_t sz;

119 int glob, err;

120 int isdash = strcnp("-", func) == 0;

121 pid_t pid;

ap);

new usr/src/lib/libdtrace/ common/dt_pid.c

123

125
126

128
129

131
132
133
134

136
137

139
140

142
143
144
145
146
147
148
149

151
152

154
155
156
157
158
159
160

162
163

165
166
167
168
169
170
171

173
174
175
176
177

179
180

182
183
184
185
186
187

pid = Pstatus(pp->dpp_pr)->pr_pid;

dt _dprintf("creating probe pid¥: %: ¥%: %\n",
func, pp->dpp_nane);

sz = sizeof (fasttrap_probe_spec_t) + (isdash ? 4 :
(synp->st_size - 1) * sizeof (ftp->ftps_offs[0]));

if ((ftp = dt aIIoc(dtp, sz)) == NULL) {
dprintf("proc_per_sym dt_alloc(%u) failed\n", sz);
return (1); /* errno is set for us */

}

ftp->ftps_pid = pid;
(void) strncpy(ftp->ftps_func, func, sizeof (ftp->ftps_func));

(int)pid, pp->dpp_obj

)

dt _pi d_obj name(ftp->ftps_nod, sizeof (ftp->ftps_nod), pp->dpp_|lmd,

pp->dpp_obj) ;

if (!isdash & gmatch("return", pp->dpp_nanme)) {
if (dt_pid_create return _probe(pp->dpp_pr, dtp, ftp, synp,
pp->dpp_stret) < 0) {
return (dt_pid_error(dtp, pcb, dpr, ftp,

D PROC CREATEFAIL, "failed to create return pr
"for '%’: %", func,
dtrace_errnsg(dtp, dtrace_errno(dtp))));

}

nmat ches++;

}
if (!isdash & gmatch("entry", pp->dpp_nane))

{
if (dt_pid_create_entry_probe(pp->dpp_pr, dtp, ftp, synp) < 0) {

return (dt _pid_ error(dtp pch, dpr ftp,
D_PROC_ CREATEFAIL "falled to create entry pro
"for "%’ : Us" func,
) dtrace_errm;g(dtp, dtrace_errno(dtp))));

nmat ches++;

}

gl ob = strisgl ob(pp->dpp_nane);

if (!glob & nmatches ==
off = strtoull(pp- >dpp_nane, &end, 16);
if (*end I'="\0") {

obe "

be "

return (dt_pid_error(dtp, pcb, dpr, ftp, D_PROC_NAME,

"o’ is an invalid probe nanme", pp->dpp_nane)

}
if (off >= synp->st_size)

)

{
return (dt_pid_error(dtp, pcb, dpr, ftp, D PROC OFF,

"of fset Ox% | x outside of function %’ ",
(u_longlong_t)off, func));
}

err = dt_pid_create_of fset_probe(pp->dpp_pr, pp->dpp_dtp,
synp, off);

if (err == DT_PROC_ERR) {
return (dt_pid_error(dtp, pcb, dpr, ftp,
D _PROC CREATEFAI L, "failed to create probe at
"Tos+0x% | x’: 9", func, (u_longlong t)off,
dtrace_errmsg(dtp, dtrace_errno(dtp))));

ftp,

new usr/src/lib/libdtrace/ common/dt_pid.c

189 if (err == DT_PROC_ALIQN) {

190 return (dt_pid_error(dtp, pcb, dpr, ftp, D_PROC_ALIGN,
191 "offset 0x%I|x is not aligned on an instruction",
192 (u_longlong_t)off));

193 }

195 nmat ches++;

197 } else if (glob&&llsdash) {

198 if _pid_create_gl ob_of f set _probes(pp->dpp_pr,

199 pp >dpp_dtp, ftp, symp, pp->dpp_nane) < 0) {

200 return (dt_pid_error(dtp, pcb, dpr, ftp,

201 D_PROC_CREATEFAI L,

202 "failed to create offset probes in’'%’': %", func,
203 dtrace_errnsg(dtp, dtrace_errno(dtp))));

204 }

206 nmat ches++;

207 1

209 pp- >dpp_nnat ches += nnat ches;

211 dt _free(dtp, ftp);

213 return (0);

214 }

216 static int

217 dt_pid_symfilt(void *arg, const CElf_Sym *synp, const char *func)

218 {

219 dt _pi d_probe_t *pp = arg;

221 if (synp->st_shndx == SHN_UNDEF)

222 return (0);

224 if (symp->st_size == 0) {

225 dt_dprintf("st_size of % is zero\n", func);

226 return (0);

227 }

229 if (pp->dpp_l ast_taken ==

230 synp->st_val ue ! = pp->dpp_| ast.st_val ue ||

231 synp->st _size ! = pp->dpp_| ast.st_size) {

232 /*

233 * Due to 4524008, _init and _fini may have a bl oated st_size.
234 * \Wile this bug has been fixed for a while, old binaries
235 * may exist that still exhibit this problem As a result, we
236 * don’t match _init and _fini though we allow users to

237 * specify themexplicitly.

238 */

239 f (strenp(func, "_init") == 0 || strcap(func, "_fini") == 0)
240 return (0);

242 if ((pp->dpp_l ast_taken = gmatch(func, pp->dpp_func)) = 0) {
243 pp- >dpp_| ast = *synp;

244 return (dt_pid_per_sym(pp, synmp, func));

245 }

246 }

248 return (0);

249 }

251 static int

252 dt_pi d_per_nod(void *arg, const prmap_t *pnp, const char *obj)

253 {

254 dt _pid_probe_t *pp = arg;

new usr/src/lib/libdtrace/ common/dt_pid.c

255
256
257
258

260
261

263

265
266
267
268

270
271
272
273
274

276
277
278
279
280

282
283
284
285
286

288
289
290
291
292

294
295
296

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

dtrace_hdl _t *dtp =

dt
dt

pp- >dpp_dt p;
pcb_t *pcb = pp->dpp_pch;

“proc_t *dpr = pp->dpp_dpr;

GEl f _Sym sym

if

(void) Pl md(pp->dpp_pr,

if

(obj == NULL)
return (0);

pnp- >pr _vaddr, &pp->dpp_|l md);

((pp->dpp_obj = strrchr(obj, /")) == NULL)
pp->dpp_obj = obj ;

el se
pp- >dpp_obj ++;
if (Pxl ookup by nane(pp- >dpp_pr, pp->dpp_lmd, obj, ".stretl", &sym
NULL) ==
pp- >dpp_stret[0] = sym st _val ue;
el se

if

0;

pp- >dpp_stret[0]

(Pxl ookup_| by name(pp- >dpp_pr, pp->dpp_lmd, obj,
NULL) ==
pp- >dpp_stret[l] = sym st _val ue;

".stret2", &sym

el se

if

pp->dpp_stret[1] = 0;

(PxI o;)kup by_name(pp- >dpp_pr, pp->dpp_|l md, obj,
NULL) ==
pp- >dpp_stret[2] = sym st _val ue;

".stret4", &ym

el se
pp->dpp_stret[2] = O;
if (Pxlookup_ by name(pp- >dpp_pr, pp->dpp_lmd, obj, ".stret8", &ym
NULL) ==
pp- >dpp_stret[3] = sym st _val ue;
el se
pp- >dpp_stret[3] = 0;
dt _dprintf("% stret %WIx %Ix %Ix %1x\n", obj

* ok ok ok

if

(u_l ongl ong_i) pp->dpp_stret[1

(u_l ongl ong_t) pp->dpp_stret[0], 1P
(u_l ongl ong_t) pp->dpp_stret[3]);

(u_l ongl ong_t) pp->dpp_stret[2],

I f pp->dpp_func contains any gl obbing neta-characters, we need
to iterate over the synbol table and conpare each function name
agai nst the pattern.

(!st ri/ sgl ob(pp->dpp_func)) {

If we fail to | ookup the synbol, try interpreting the
function as the special "-" function that Indicates that the
probe nane should be interpreted as a absol ute virtual
address. If that fails and we were matching a specific
function in a specific nodule, report the error, otherw se
just fail silently in the hopes that sone other object will
contain the desired synbol .

* ok kR % ok X Ok X

if (Pxl ookup_by_name(pp->dpp_pr, pp->dpp_|Imd, obj,
pp- >dpp_func, &sym NULL) !'= 0)
if (stremp("-", pp- >dpp func) == 0) {
sym st _nane = 0;
symst_info =
GELF_ST_ I NFQ(STB_LOCAL, STT_FUNC);
sym st _ot her ;
sym st _val ue

’

0;

new usr/src/lib/libdtrace/ common/dt_pid.c

321 sym st _si ze = Pst at us(pp- >dpp pr) >pr _dnodel
322 PR_MODEL_|LP32 ? -1U :

324 } else if (!strisglob(pp->dpp_nod)) {

325 return (dt_pid_error(dtp, pcb, dpr, NULL,
326 D PROC_FUNC,

327 “failed to | ookup %’ in nodule "%’ ",
328 pp->dpp_func, pp->dpp_nod));

329 } else {

330 return (0);

331 }

332 }

334 /*

335 * Only match defined functions of non-zero size.

336 *

337 if (GELF_ST_TYPE(symst_info) != STT_FUNC ||

338 sym st _shndx == SHN_UNDEF || sym st_size == 0)

339 return (0);

341 /*

342 * W don’t instrunent PLTs -- they're dynanmically rewitten,
343 * and, so, inherently dicey to instrunent.

344 *

345 if (Ppltdest(pp->dpp_pr, symst_value) != NULL)

346 return (0);

348 (voi d) Pl ookup_by_addr (pp->dpp_pr, sym st_val ue, pp->dpp_func,
349 DTRACE_FUNCNAMELEN, &sym);

351 return (dt_pid_per_sym(pp, &ym pp->dpp_func));

352 } else {

353 ui nt _t nnatches = pp->dpp_nnat ches;

355 if (Psynbol _iter_by_addr(pp->dpp_pr, obj, PR _SYMIAB,

356 BIND_ANY | TYPE_FUNC, dt_pid_symfilt, pp) == 1)

357 return (1);

359 if (nmatches == pp->dpp_nmatches) {

360 /*

361 * |f we didn’t match anything in the PR_ SYMIAB, try
362 * the PR_DYNSYM

363 */

364 if (Psynbol _iter_by_addr (pp->dpp_pr, obj, PR DYNSYM
365 BI ND_ANY | TYPE_FUNC, dt_pid symfll , pp) == 1)
366 return (1);

367 }

368 }

370 return (0);

371 }

373 static int

374 dt_pid_nod_filt(void *arg, const prmap_t *pnp, const char *obj)

375 {

376 char name[DTRACE_MODNAMELEN ;

377 dt _pid_probe_t *pp = arg;

379 if ((pp—>dpp obj —strrchr(obj, */7)) == NULL)

380 pp- >dpp_obj = obj;

381 el se

382 pp- >dpp_obj ++;

384 if (gmatch(pp->dpp_ obJ, pp- >dpp_nod))

385 return (dt_pi d_per_nod(pp, pnp, obj));

6

new usr/src/lib/libdtrace/ common/dt_pid.c

obj);

387 (void) Pl md(pp->dpp_pr, pnp->pr_vaddr, &pp->dpp_| md);
389 dt _pi d_obj nane(nane, sizeof (nane), pp->dpp_|lnid, pp->dpp_obj);
391 if (gmatch(nane, pp->dpp_nod))

392 return (dt_pi d_per_nod(pp, pnp, obj));

394 return (0);

395 }

397 static const prmap_t *

398 dt_pid_fix_nod(dtrace_probedesc_t *pdp, struct ps_prochandl e *P)
399 {

400 char n{ MAXPATHLEN] ;

401 Lmid t Imid = PR LMD EVERY;

402 const char *obj;

403 const prmap_t *pnp;

405 /*

406 * Pick apart the link map fromthe library nane.

407 *

408 if (strchr(pdp->dtpd_nod, '*’) !'= NULL) {

409 char *end;

411 if (strncnp(pdp->dtpd_nod, "LM, 2) !'=0 ||
412 i sdi gi t (pdp->dt pd_nod[2]))

413 return (NULL);

415 Imd = strtoul (&dp->dt pd_nod[2], &end, 16);
417 obj = end + 1;

419 if (*end I'= """ || strchr(obj, "*’) !'= NULL)
420 return (NULL);

422 } else {

423 obj = pdp->dt pd_nod;

424 }

426 if ((pmp = Plmd_to_map(P, Imd, obj)) == NULL)

427 return (NULL);

429 (voi d) Pobjname(P, pnp->pr_vaddr, m sizeof (m);

430 if ((obj = strrchr(m ’/’)) == NULL)

431 obj = &njo0];

432 el se

433 obj ++;

435 (void) Plnmid(P, pnp->pr_vaddr, & md)

436 dt _pi d_obj narme(pdp- >dt pd_nod, si zeof (pdp >dt pd_nod), |md,
438 return (pnp);

439 }

442 static int

443 dt _pi d_create_pid_probes(dtrace_probedesc_t *pdp, dtrace_hdl _t *dtp,
444 dt_pcb_t *pcb, dt_proc_t *dpr)

445 {

446 dt _pid_| probe t pp;

447 int ret = 0;

449 pp. dpp_dtp = dtp

450 pp. dpp_ dpr = dpr;

451 pp. dpp_pr = dpr- >dpr _proc;

452 pp. dpp_pcb = pcb;

new usr/src/lib/libdtrace/ common/dt_pid.c

454 I*

455 * W can only trace dynanically-1inked executabl es (since we’ve
456 */ hi dden some magic in Id.so.1 as well as libc.so.1).

457 *

458 if (Pname_to_map(pp.dpp_pr, PR_OBJ_LDSO == NULL)

459 return (dt_pid_error(dtp, pcb, dpr, NULL, D PROC _DYN,
460 "process % is not a dynam cally-1inked executable",
461 &pdp- >dt pd_provider[3]));

462 }

464 pp. dpp_nod = pdp->dtpd_nod[0] != '\0" ? pdp->dtpd_nod : "*";

465 pp. dpp_func = pdp->dtpd_func[0] != ’\O’ ? pdp->dtpd_func : "*";
466 pp. dpp_nane = pdp->dtpd_nanme[0] != '\0" ? pdp->dtpd_nane : "*";
467 pp. dpp_| ast _t aken = 0;

469 if (strenp(pp.dpp_func, "-") == 0) {

470 const prmap_t *aout, *pnp;

472 if (pdp->dtpd_ nDd[O] =="'\0") {

473 pp. dpp_nmod = pdp- >dt pd_nod;

474 (voi d) “strcpy(pdp->dt pd_ m)d "a.out");

475 } else if (strisglob(pp.dpp_nod)

476 (aout = Pname_to_map(pp.dpp_pr, "a.out")) == NULL ||
477 (pnp = Pnane_to_nap(pp. dpp_pr, pp.dpp_ nDd)) == NULL ||
478 aout - >pr_vaddr T= pnp- >pr_vadd) {

479 return (dt_pid_error(dtp, pch, dpr, NULL, D PRCC LI B,
480 "only the a.out nodule is valid with the "
481 "-" function"));

482 }

484 if (strisglob(pp.dpp_nane)) {

485 return (dt _pid_error(dtp, pcb, dpr, NULL, D _PROC _NAME,
486 "only individual addresses may be specified "
487 "with the -’ function"));

488 }

489 }

491 /*

492 * | f pp.dpp_nod contains any gl obbing nmeta-characters, we need
493 * to iterate over each nodul e and conpare its nanme against the
494 * pattern. An enpty nodule nane is treated as '*’

495 */

496 if (stri sgl ob(pp. dpp_nod)) {

497 ret = Pobject_iter(pp.dpp_pr, dt_pid_nod_filt, &pp);

498 } else {

499 const prmap_t *pnp;

500 char *obj;

502 /*

503 * |f we can't find a matching nodule, don't sweat it -- either
504 * we'll fail the enabling because the probes don’t exist or
505 */we’ Il wait for that nodule to cone al ong.

506 *

507 if ((pmp = dt_pid_fix_nod(pdp, pp.dpp_| pr)) I'= NULL) {
508 if ((obj = strchr(pdp >dt pd_nod ")) == NULL)
509 obj = pdp->dtpd_nod;

510 el se

511 obj ++;

513 ret = dt_pid_per_nod(&p, pnp, obj);

514 }

515 }

517 return (ret);

518 }

new usr/src/lib/libdtrace/ common/dt_pid.c

520 static int

521 dt_pi d_usdt _mappi ng(void *data, const prmap_t *pnp, const char *onane)

522 {

523 struct ps_prochandle *P = dat a;

524 CEl f _Sym sym

525 prsym nfo_t sip;

526 dof _hel per_t dh;

527 GEl f _Hal f e_type;

528 const char *mmane;

529 const char *synms[] = { "__ SUNWdof", "__ SUNWdof" };

530 int i, fd =-1;

532 /*

533 * The synbol __ SUNWdof is for |azy-loaded DOF sections,
534 * _ SUNWdof is for actively-loaded DOF sections. W try t
535 * in both types of DOF section since the process may not y
536 * run the code to instantiate these providers.

537 */

538 for (i =0; i <2; i++) {

539 if (leookup by nanme(P, PR LM D _EVERY, onane, syns[i
540 &sip) '=0) {

541 conti nue;

542 }

544 if ((mane = strrchr(oname, '/')) == NULL)

545 mane = onane;

546 el se

547 maire++;

549 dt _dprintf("lookup of % succeeded for %\n", syns|
551 if (Pread(P, &e_type, sizeof (e_type), pnp->pr_vadd
552 of fsetof (El f64_Ehdr, e_type)) != sizeof (e_type
553 dt _dprintf(" read of ELF header fail ed");
554 cont i nue;

558 }

557 dh. dof hp_dof = sym st _val ue;

558 dh. dof hp_addr = (e_type == ET_EXEC) ? 0 : pnp->pr_v
560 dt _pi d_obj nanme(dh. dof hp_nod, sizeof (dh.dofhp_nod),
561 sip.prs_l md, mane);

563 if (fd == -1 &&

564 (fd = pr_open(P, "/dev/dtrace/helper", O RDWR,
565 dt _dprintf("pr_open of hel per device failed:
566 strerror(errno));

567 return (-1); /* errno is set for us */

568 }

570 if (pr_ioctl (P, fd, DTRACEH OC_ADDDOCF, &dh, si zeof
571 dt dpnntf(DOF was rej ect ed for %\n", dh.
572 }

574 if (fd !'=-1)

575 (void) pr_close(P, fd);

577 return (0);

578 }

580 static int

581 dt_pid_create_usdt_probes(dtrace_probedesc_t *pdp, dtrace_hdl _t *dt
582 dt _pcb_t *pcb, dt_proc_t *dpr)
583 {

584 struct ps_prochandl e *P = dpr->dpr_proc;

and
o force
et have

I, &ym

i], mane);

r +

))

addr ;

0)) <0) {

%\ n",

(dh)) < 0)
dof hp_nod) ;

P,

new usr/src/lib/libdtrace/ common/dt_pid.c

10

585 int ret = 0;

587 assert (MUTEX_HELD(&dpr - >dpr _| ock)) ;

589 (voi d) Pupdate_nmaps(P);

590 if (Pobject |ter(P dt _pi d_usdt _nmapping, P) !'= 0) {

591 ret = -1;

592 (voi d) dt_pi d_error(dtp, pcb, dpr, NULL, D PROC USDT,
593 "failed to instantiate probes for pid %: %",
594 (int)Pstatus(P)->pr_pid, strerror(errno));

595 1

597 /*

598 * Put the nobdule nanme in its canonical form

599 */

600 (void) dt_pid_fix_nod(pdp, P);

602 return (ret);

603 }

605 static pid_t

606 dt_pid_get pid(dtrace_probedesc_t *pdp, dtrace_hdl _t *dtp, dt_pcb_t *pch,

607 dt _proc_t *dpr)

608 {

609 pid_t pid;

610 char *c, *last = NULL, *end;

612 for (c = &pdp->dtpd_provider[0]; *c !="\0"; c++) {

613 if (lisdigit(*c))

614 last = c;

615 }

617 if (last == NULL || (*(++last) == '\0')) {

618 (void) dt_pid_ error(dtp, pcb dpr, NULL, D_PROC_BADPROV,
619 "o’ Is not a valid provider", pdp->dtpd_provider);
620 return (-1);

621 }

623 errno = 0;

624 pid = strtol (last, &end, 10);

626 if (errno!=0]| end ==last || end[0] !="'\0" || pid <= 0) {
627 (void) dt_pid_error(dtp, pcb, dpr, NULL, D _PROC _BADPI D,
628 "' o' does not contain a valid pid', pdp->dtpd_provider);
629 return (-1);

630 }

632 return (pid);

633 }

635 int

636 dt_pi d_create_probes(dtrace_probedesc_t *pdp, dtrace_hdl _t *dtp, dt_pcb_t *pch)
637 {

638 char provnane[DTRACE_PROVNAVELEN] ;

639 struct ps_prochandle *P;

640 dt _proc_t *dpr;

641 pid_t pid;

642 int err = 0;

644 assert(pcb !'= NULL);

646 if ((pid = dt_pid_get_pid(pdp, dtp, pcb, NULL)) == -1)

647 return (-1);

649 if (dtp->dt_ftfd == -1) {

650 if (dtp->dt_fterr == ENCENT) {

new usr/src/lib/libdtrace/ cormon/dt_pid.c 11

651
652
653
654
655
656
657

659
660

662

664
665
666
667
668
669
670

672
673
674

676
677
678
679
680
681
682

684
685
686

688
689
690
691
692
693
694
695
696

698
699
700

702
703
704
705

707
708
709

711
712 }

714 int
715 dt
716 {

_pid_create_probes_nodul e(dtrace_hdl _t

(v0|d) dt _pid_error(dtp,
"pid provider is not

pcb, NULL, NULL, D_PROC_NCDEV,
installed on this systent);
} else {
(voi d) dt _pid_error(dtp, pcb, NULL, NULL, D_PROC_NCDEV,
"pid provider is not available: %",
strerror(dtp->dt_fterr));

}
return (-1);
}
(void) snprintf(provnanme, sizeof (provnane), "pid¥", (int)pid);
if (gmatch(provname, pdp->dtpd_provider) != 0) {
if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE,

0)) == NULL)

(void) dt_pid_error(dtp, pcb, NULL, NULL, D_PROC_GRAB,

"failed to grab process %", (int)pid);
return (-1);
}
dpr = dt_proc_| ookup(dtp, P, 0);
assert(dpr I'= NULL);
(voi d) pthread_nut ex_I ock(&pr - >dpr _I ock) ;
dt _pi d_create_pid_probes(pdp, dtp, pcb, dpr)) == 0) {

if ((err =
/*

* Alert other retained enablings which may match
* against the newly created probes.

*/

(voi d) dt

_ioctl (dtp, DTRACEI OC ENABLE, NULL)

}

(voi d) pthread_nutex_unl ock(&dpr->dpr_| ock);
dt _proc_rel ease(dtp, P);
}

/*
* | f
*/
if (strcnp(provname, pdp->dtpd_provider) != 0)
if ((P=dt_proc_grab(dtp, pid, O, 1)) == NULL) {
(void) dt_pid_error(dtp, pcb, NULL, NULL, D _PROC_GRAB,

it’s not strictly a pid provider, we might nmatch a USDT provider.

"failed to grab process %", (int)pid);
return (-1);
}
dpr = dt_proc_l ookup(dtp, P, 0);
assert(dpr 1= NULL);
(voi d) pthread_nut ex_I ock(&pr - >dpr _| ock) ;
if (!dpr->dpr_usdt)
err = dt_pid_ create usdt _probes(pdp, dtp, pcb, dpr);
dpr - >dpr usdt = B_TRUE;
(voi d) pthread_nut ex_unl ock(&pr - >dpr _I ock) ;

) dt _proc_rel ease(dtp, P);

return (err ? -1 : 0);

*dtp, dt_proc_t *dpr)

717
718
719
720
721
722

724
725

727
728

730
731

733
734
735
736

738
740

742
743
744

746
747
748
749
750
751
752
753
754

756
757
758
759
760
761
762

764
765

767
768
769
770
771
772
773
774
775
776
777
778
779
780
781

new usr/src/lib/libdtrace/ common/dt_pid.c
dtrace_prog_t *pgp;
dt_stm _t *stp;
dtrace_probedesc_t *pdp, pd;
pid_t pid;
int ret =0, found = B_FALSE;
char provnane[DTRACE_PROVNAMELEN ;
(void) snprintf(provname, sizeof (provnane), "pido%d",
(1 nt)dpr->dpr_pid);
for (pgp = dt_list_next(&dtp->dt_progranms); pgp != NULL;
pgp = dt_list_next(pgp)) {
for (stp = dt_list_next(&gp->dp_stnts); stp != NULL;
stp = dt_list_next(stp)) {
pdp = &stp->ds_desc- >dt sd_ecbdesc- >dt ed_pr obe;
pid = dt_pid_get_pid(pdp, dtp, NULL, dpr);
if (pid !'= dpr->dpr_pid)
conti nue;
found = B_TRUE;
pd = *pdp
if (gmatch(provnane pdp->dt pd_provider) !'= 0 &&
_pid_create_pid_probes(&pd, dtp, NULL, dpr) !=
ret = 1;
/*
* If it’s not strictly a pid provider, we mght matc
* a USDT provider.
*
/
if (strcrrp(provnane, pdp->dtpd_provider) != 0 &&
_pid_create_usdt_probes(&ppd, dtp, NULL, dpr) !=
ret = 1;
}
}
if (found) {
/*
* G ve Dfrace a shot to the ribs to get it to check
* out the newy created probes.
*
/
(void) dt_ioctl(dtp, DTRACEI OC ENABLE, NULL)
}
return (ret);
}
/*
* |ibdtrace has a backroomdeal with us to ask us for type information on
* behal f of pid provider probes when fasttrap doesn’t return any type
* information. Instead we'll |ook up the nodule and see if there is type
* information available. However, if there is no type information available
* to a lack of CTF data, then we want to make sure that DTrace still carries
* in face of that. As such we don't have a neaningful exit code about failur
* W emt information about why we failed to the dtrace debug | og so soneone
* can figure it out by asking nicely for DTRACE_DEBUG
*
/
voi d
dt _pi d_get _types(dtrace_hdl _t *dtp, const dtrace_probedesc_t *pdp,
dtrace_argdesc_t *adp, int *nargs)
{
dt _nodul e_t *dnp;
ctf_file_t *fp;

782

12

0)

h

0)

due
on
e.

new usr/src/lib/libdtrace/ cormon/dt_pid.c 13
783 ctf_funcinfo_t f;

784 ctf_id_t argv[32];

785 CEl f _Sym sym

786 prsymnfo_t si;

787 struct ps_pr ochandl e *p;

788 int i, args;

789 char buf [DTRACE_ARGTYPELEN ;

790 const char *nptr;

791 char *eptr;

792 int ret = 0;

793 int argc = sizeof (argv) / sizeof (ctf_id_t);

794 Lmd_t Imd;

796 /* Set up a potential outcome */

797 args = *nargs;

798 *nargs = 0;

800 /*

801 * |f we don’t have an entry or return probe then we can just stop right
802 * now as we don’t have argunents for offset probes.

803

804 |f (strcnp(pdp->dt pd_nane, "entry") !'= 0 &&

805 strcnp(pdp->dt pd_nane, "return") != 0)

806 return;

808 dnmp = dt_nodul e_create(dtp, pdp->dtpd_provider);

809 if (dmp == NULL)

810 dt _dprintf("failed to find nodule for %\n",

811 pdp- >dt pd_pr ovi der) ;

812 return;

813 }

814 if (dt_nodul e_l oad(dtp, dnp) != 0) {

815 dt dprlntf("falledtoload nodul e for %\n"

816 pdp- >dt pd_pr ovi der) ;

817 return;

818 1

820 /*

821 * W may be working with a nmobdul e that doesn’t have ctf. If that's the
822 * case then we just return now and nove on with life.

823

824 fp = dt _nodul e_getctflib(dtp, dnp, pdp->dtpd_nod);

825 if (fp == NULL) {

826 dt _dprintf("no ctf container for 9%\n",

827 pdp- >dt pd_nod) ;

828 return;

829 }

830 p = dt proc grab(dtp, dnp->dm pid, 0, PGRAB_RDONLY | PGRAB_FORCE);
831 if (p == NULL) {

832 dt dprlntf("failedto grab pid\in");

833 return;

834 }

835 dt _proc_l ock(dtp, p);

837 /*

838 * Check to see if the D nodule has a link map | D and separate that out
839 * for properly interrogating |ibproc.

840 */

841 if ((mptr = strchr(pdp->dtpd_nod, "’)) I'= NULL) {

842 if (strl en(pdp >dt pd m)d) < 3)

843 dt _dprintf("found wei rd nmodnane with |inkmap,
844 "aborting: %\n", pdp->dtpd_nod);

845 goto out;

846 }

847 if (pdp->dtpd_nod[O] !="'L" || pdp->dtpd._| rmd[l] 1="M) {

848 dt _dprintf("mssing leading 'LM,

new usr/src/lib/libdtrace/ common/dt_pid.c

aborting: %\n",

%s\ n",

pdp- >dt pd_nod) ;

% in %' %\n",

pdp- >dt pd_nod) ;

provi der,

we only care that
is no ctf
an int is.

DTRACE_ARGTYPELEN,

DTRACE_ARGTYPELEN,

adp->dtargd_native +

== CTF_ERR)

849 "aborting: %\n", pdp->dtpd_nod);
850 goto out;

851 }

852 errno = 0;

853 Im'dzstrtol(pdp >dt pd_nmod + 2, &eptr, 16);
854 if (errno == RANGE|| eptr !'=nptr) {

855 dt _dprintf("failed to parse out |md,
856 pdp- >dt pd_nod) ;

857 goto out;

858

859 nmpt r ++;

860 } else {

861 nmptr = pdp->dt pd_nod;

862 Imd = 0;

863 1

865 if (Pxlookup_by_ narre(p, Imd, nptr, pdp->dtpd_func,
866 &sym &si) !'= {

867 dt dpr|ntf(failed to find function % in %'
868 pdp- >dt pd_f unc, pdp->dtpd_provider,

869 goto out;

870

871 if (ctf_func_info(fp, si.prs_id, &) == CTF_ERR) {
872 dt _dprintf("failed to get ctf infornation for
873 pdp->dt pd_f unc, pdp->dt pd_provi der,

874 goto out;

875 }

877 (voi d) snpri ntf(buf si zeof (buf), "% %", pdp->dtpd_|
878 pdp- >dt pd_nod) ;

880 if (strcrrp(pdp >dt pd nane, "return") == 0) {

881 if (args <

882 goto out;

884 bzero(adp, sizeof (dtrace argdesc_t));

885 adp- >dt argd_ndx = O;

886 adp->dtargd_i d = pdp->dtpd_i d;

887 adp- >dt ar gd_mappi ng = adp- >dt ar gd_ndx;

888 /*

889 * We explicitly leave out the library here,
890 * it is sonme int. We are assunming that there
891 * container in here that is |ying about what
892 */

893 (void) snprintf(adp->dtargd_native,

894 "user %' %", pdp->dtpd_provider, "int");
895 adp++;

896 bzero(adp, sizeof (dtrace argdesc_t));

897 adp- >dt argd_ndx = 1;

898 adp->dtargd_i d = pdp->dtpd_i d;

899 adp- >dt ar gd_nmappi ng = adp- >dt ar gd_ndx;

900 ret = snpri ntf(adp >dt argd_nati ve,

901 "userland "

902 (voi d) ctf_type_qnar're(fp, f.ctc_return,

903 ret, DTRACE_ARGIYPELEN - ret, buf);

904 *nargs = 2;

905 } else {

906 if (ctf_func_args(fp, si.prs_id, argc, argv)
907 goto out;

909 *nargs = M N(args, f.ctc_argc);

910 for (i =0; i < *nargs; i++ adp++) {

911 bzero(adp, sizeof (dtrace argdesc_t));
912 adp- >dt ar gd_| ndx =1;

913 adp->dtargd_id = pdp >dt pd_i d;

914 adp- >dt ar gd_nappi ng = adp->dt ar gd_ndx;

14

new usr/src/lib/libdtrace/ cormon/dt_pid.c 15

915 ret = snprintf(adp->dtargd_native, DTRACE_ARGTYPELEN,
916 "userland ");

917 (void) ctf_type_qname(fp, argv[i], adp->dtargd_native +
918 ret, DTRACE_ARGIYPELEN - ret, buf);

919 }

920 }

921 out:

922 dt _proc_unl ock(dtp, p);

923 dt _proc_rel ease(dtp, p);

924 }

925 #endif /* | codereview */

new usr/src/lib/libdtrace/ common/dt_pid.h

R R R R

2080 Tue Jan 14 16:48:59 2014
new usr/src/lib/libdtrace/ common/dt_pid.h
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEREEREEEERERERERESRESRESRESESESESE]
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License, Version 1.0 only
(the "License"). You nay not use this file except in conpliance
with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://wwm. opensol aris.org/os/licensing.
See the License for the specific |anguage governing perm ssions

new usr/src/lib/libdtrace/ common/dt_pid. h
56 extern int dt_pid_create_offset_probe(struct ps_prochandle *, dtrace_hdl _t *
57 fasttrap_probe_spec_t *, const GEIf_Sym*, ulong_t);

59 extern int dt_pid_create_glob_of fset_probes(struct ps_prochandle *,
60 dtrace_hdl _t *, fasttrap_probe_spec_t *, const GEIf_Sym™*, const char *);

62 extern void dt_pid_get_types(dtrace_hdl _t *, const dtrace_probedesc_t *,
t *);

63 dtrace_argdesc_t *, in

65 #endif /* | codereview */
66 #ifdef _ cplusplus

}
68 #endi f
70 #endif /* _DT_PIDH */

When distributing Covered Code,
file and include the License fil

fields enclosed by brackets "[]"

include this CDDL HEADER i n each
e at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the

replaced with your own identifying

information: Portions Copyright [yyyy] [nane of copyright owner]

NRERRRRRRRRE
COONOUITAWNROW©O~NOUTSWN

*

*

*

*

*

*

*

*

*

* and limtations under the License.
*

*

*

*

*

*

*

* CDDL HEADER END
*

24 * Copyright 2006 Sun M crosystens, Inc. Al rights reserved.
25 * Use is subject to license termns.

26 */
27 |*
28 * Copyright (c) 2013, Joyent, Inc. Al rights reserved.
29 */

30 #endif /* 1 codereview */

32 #ifndef _DT_PID H
33 #define _DT_PID H

27 #pragma ident " Y90 A % %E% SM "

35 #include <libproc. h>
36 #include <sys/fasttrap. h>
37 #include <dt_inpl.h>

39 #ifdef _ cplusplus
40 extern "C' {
41 #endi f

43 #define DT_PROC ERR (-1)
44 #define DI_PROC ALIGN (-2)

46 extern int dt_pid_create_probes(dtrace_probedesc_t *, dtrace_hdl _t *,
a7 dt _pcb_t *pcb);
48 extern Int dt_pid_create_probes_nodul e(dtrace_hdl _t *, dt_proc_t *);

50 extern int dt_pid_create_entry_probe(struct ps_prochandle *, dtrace_hdl _t *,
51 fasttrap_probe_spec_t *, const GElf_Sym*);

53 extern int dt_pid_create_return_probe(struct ps_prochandle *, dtrace_hdl _t *,
54 fasttrap_probe_spec_t *, const GEIf_Sym?*, uint64_t *);

new usr/src/lib/libdtrace/ comon/dt_print.c

R R R R

19075 Tue Jan 14 16:48:59 2014
new usr/src/lib/libdtrace/ comon/dt_print.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

__unchanged_portion_onitted_

640 /*

641 * Main print function invoked by dt_consune_cpu().

642 */

643 int

644 dtrace_print(dtrace_hdl _t *dtp, FILE *fp, const char *typenane,

645 caddr _t addr, size_t len)

646 {

647 const char *s;

648 char *object;

649 dt _printarg_t pa;

650 ctf_id_t id;

651 dt _nodul e_t *dnp;

652 ctf_file_t *ctfp;

653 int libid;

654 #endif /* ! codereview */

656 /*

657 * Split the fully-qualified type ID (nodule‘id). This should
658 * always be the format, but if for some reason we don’t find the
659 * expected value, return 0 to fall back to the generic trace()
660 * behavior. In the case of userland CTF nodules this will actually be
661 * of the format (nodule‘lib‘id). This is due to the fact that those
662 * nodul es have nultiple CTF containers which ‘lib* identifies.
652 * behavi or.

663 *

664 for (s = typename; *s !='\0" && *s !='"'"; s++)

665 |

667 if (*s!=""")

668 return (0);

670 object = alloca(s - typenane + 1);

671 bcopy(typenane, object, s - typenane);

672 object[s - typenane] = '\0";

673 dnmp = dt m)dul e_| ookup_by_| nane(dtp, obj ect);

674 if (dnp == NULL)

675 return (0);

677 if (dnp->dmpid != 0) {

678 libid = atoi (s + 1);

679 s = strchr(s + 1, "*");

680 if (s == NULL || libid > dnp->dmnctflibs)

681 return (0);

682 ctfp = dnp->dm.|i betfp[libid];

683 } else {

684 ctfp = dt_nodul e_getctf(dtp, dnp);

685 }

687 #endif /* | codereview */

688 id = atoi(s + 1);

690 /*

691 * Try to get the CTF kind for this id. |f something has gone horribly

692 * wong and we can’'t resolve the ID, bail out and let trace() do the

new usr/src/lib/libdtrace/ common/dt_print.c

693 * wor k.

694 */

695 if (ctfp == NULL || ctf_type_kind(ctfp, id) == CTF_ERR)

663 dnmp = dt nDduI e_| ookup_by_nane(dtp, object);

664 if (drrp = NULL || ctf_type_kind(dt_nodul e_getctf(dtp, dmp),
665 d) == CTF_ERR) {

696 return (0);

667 }

698 /* setup the print structure and kick off the nmain print routine */
699 pa.pa_dtp = dtp;

700 pa. pa_addr = addr;

701 pa.pa_ctfp = ctfp;

672 pa.pa_ctfp = dt_nodul e_getctf(dtp, dnp);

702 pa. pa_nest = 0;

703 pa. pa_depth = 0;

704 pa.pa_file = fp;

705 (v0| d) ctf_type_visit(pa.pa_ctfp, id, dt_print_nenber, &pa);
707 dt _print_trailing_braces(&pa, 0);

709 return (len);

710 }

__unchanged_portion_onitted_

new usr/src/lib/libdtrace/ common/dt_printf.c

R R R R

53312 Tue Jan 14 16:49:00 2014
new usr/src/lib/libdtrace/comon/dt_printf.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.

10 * See the License for the specific | anguage governi ng perm ssions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 =

19 * CDDL HEADER END

20 */

22 | *

23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. Al rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. Al rights reserved.

25 * Copyright (c) 2013 by Del phix. Al rights reserved.

24 * Copyright (c) 2011, Joyent, Inc. Al rights reserved.

25 */Copyright (c) 2012 by Del phix. Al rights reserved.

26 *

28 #include <sys/sysnacros. h>
29 #include <strings.h>

30 #include <stdlib.h>

31 #include <alloca. h>

32 #include <assert. h>

33 #include <ctype. h>

34 #include <errno. h>

35 #include <linits.h>

36 #include <sys/socket. h>
37 #include <netdb. h>

38 #include <netinet/in.h>
39 #include <arpalinet.h>

40 #i ncl ude <arpal/ naneser. h>

42 #include <dt_printf.h>
43 #include <dt_string. h>
44 #include <dt _inpl. h>
46 /| * ARGSUSED*/
47 static int
48 pfcheck_addr (dt _pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
50 return (dt_node_is_pointer(dnp) || dt_node_is_integer(dnp));
__unchanged_portion_onitted_

1017 void

new usr/src/lib/libdtrace/ comon/dt_printf.c

1018 dt_printf_validate(dt_pfargv_t *pfv, uint_t flags,

1019 dt _ident_t *idp, int foff, dtrace_actkind_t kind, dt_node_t *dnp)

1020 {

1021 dt_pfargd_t *pfd = pfv->pfv_argy;

1022 const char *func = i|dp->di _nang;

1024 char n[DT_TYPE_NAMELEN] ;

1025 dtrace_typeinfo_t dtt;

1026 const char *aggtype;

1027 dt _node_t aggnode;

1028 int i, |,

1030 if (pfv->pfv_format[0] == "\0") {

1031 xyerror (D_PR NTF_FMI_EMPTY,

1032 "U%() format string is enpty\n", func);

1033 }

1035 pfv->pfv_flags = flags;

1037 *

1038 * W fake up a parse node representing the type that can be used with
1039 * an aggregation result conversion, which -- for all but count() --
1040 * is a signed quantity.

1041 *

1042 f (kind != DTRACEAGG_COUNT)

1043 aggtype = "int64_t";

1044 el se

1045 aggtype = "uint64_t";

1047 if (dt_type_l ookup(aggtype, &dtt) != 0)

1048 xyerror (D _TYPE_ERR, "failed to | ookup agg type %\n", aggtype);
1050 bzer o(&aggnode, sizeof (aggnode));

1051 dt _node_t ype_assi gn(&ggnode, dtt.dtt_ctfp, dtt.dtt_type, B_FALSE);
1051 dt _node_t ype_assi gn(&ggnode, dtt.dtt_ctfp, dtt.dtt_type);

1053 for (i =0, j =0; i < pfv->pfv_argc; i ++, pfd = pfd->pfd_next) {
1054 const dt_pfconv_t *pfc = pfd->pfd_conv;

1055 const char *dyns[2];

1056 int dync = 0;

1058 char vnane[64] ;

1059 dt _node_t *vnp;

1061 if (pfc == NULL)

1062 continue; /* no checking if argd is just a prefix */
1064 if (pfc->pfc_print == &fprint_pct) {

1065 (void) strcat(pfd->pfd_fnt, pfc->pfc_ofnt);

1066 conti nue;

1067 }

1069 it (pfd->pfd flags & DT_PFCONV_DYNPREC)

1070 dyns[dync++] = ™

1071 if (pfd->pfd_flags & DT_ PFCO\N DYNW DTH)

1072 dyns[dync++] = "*";

1074 for (; dync !'= 0; dync--) {

1075 if (dnp == NULL)

1076 xyerror(D PRI NTF_DYN_PROTO,

1077 "Us() prototype " mi smat ch: conversion "
1078 "#9%d (9986) is missing a corresponding "
1079 "\"os\" argument\n", func, i + 1,

1080 pfc->pfc_nanme, dyns[dync - 1]);

1081 }

new usr/src/lib/libdtrace/ common/dt_printf.c

1083 if (dt_node_is_integer(dnp) == 0) {
1084 xyerror (D_PRI NTF_DYN TYPE
1085 "Us() argument #%l is inconpatible "
1086 "wi th conversion #% prototype:\n"
1087 "\'tconversion: %6 % %\n"
1088 "\t prototype: int\n\t argunent: %\n",
1089 func, j + foff + 1, i + 1,
1090 dyns[dync - 1], pfc >pf c_nane,
1091 dt_node_type_nane(dnp, n, sizeof (n)));
1092 }
1094 dnp = dnp->dn_list;
1095 j
1096 }
1098 /*
1099 * |f this conversion is consunming the aggregati on data, set
1100 * the val ue node pointer (vnp) to a fake node based on the
1101 * aggregating function result type. Oherw se assign vnp to
1102 * the next parse node in the argument list, if there is one.
1103 */

if

1104 (pfd->pfd_flags & DT_PFCONV_AGG {

1105 if (T(flags & DT_PRI NTF_AGGREGATI ON)) {

1106 xyerror (D_PRI NTF_AGG_COWV,

1107 " 0/H/@conver5| on requires an aggregatl on"
1108 " and is not for use with %()\n", func);
1109 }

1110 (void) strlcpy(vnanme, "aggregating action”,

1111 si zeof (vnane));

1112 vnp = &aggnode;

1113 } else if (dnp == NULL)

1114 xyerror (D _PRI NTF_ARG PROTO,

1115 "s() prot otype “mi smatch: conversion #%l (996
1116 ") I's mssing a corresponding val ue argunent\n",
1117 func, i + 1, pfc->pfc_nane);

1118 } else {

1119 (voi d) snprintf(vname, sizeof (vnane),

1120 argumant #og", j + foff + 1);

1121 vnp = dnp;

1122 dnp = dnp >dn_list;

1123 j++

1124 }

1126 /*

1127 * Fill in the proposed final format string by prepending any
1128 * size-related prefixes to the pfconv's format string. The
1129 * pfc_check() function bel ow may optionally nodify the format
1130 * as part of validating the type of the input argunent.
1131 *

1132 if (pfc->pfc_print == &fprint_sint ||

1133 pf c->pfc_print &fprint_uint ||

1134 pfc->pfc_print == &pfprint_ —di nt) {

1135 if (dt_ node type size(vnp) == sizeof (uint64_t))
1136 (void) strcpy(pfd->pfd_fmt, "I1");

1137 } else if (pfc->pfc_print == &pfprlnt _fp) {

1138 if (dt_node_type_size(vnp) == sizeof (long double))
1139 (void) strcpy(pfd->pfd_fmt, "L");

1140 }

1142 (void) strcat(pfd->pfd_fnmt, pfc->pfc_ofnt);

1144 /*

1145 * Validate the format conversion against the val ue node type.
1146 * |f the conversion is good, create the descriptor format
1147 * string by concatenating together any required printf(3C)
1148 * size prefixes with the conversion's native format string.

new usr/src/lib/libdtrace/ common/dt_printf.c

1149 */

1150 if (pfc->pfc_check(pfv, pfd, vnp) == 0) {

1151 xyerror (D_PRI NTF_ARG TYPE

1152 "U%() % is inconpatible with "

1153 "conversion #% prototype:\n\tconversion: %@s\n"
1154 "\t prototype: %\n\t argunent: %\n", func,
1155 vnane, i + 1, pfc->pfc_name, pfc->pfc_tstr,
1156 dt _node_t ype_name(vnp, n, sizeof (n)));

1157 }

1158 1

1160 if ((flags & DT_PRI NTF_EXACTLEN) && dnp != NULL) {

1161 xyerror (D_PR NTF_ARG _EXTRA,

1162 "%() prototype mismatch: only % argunents "

1163 "required by this format string\n", func, j);

1164 }

1165 }

__unchanged_portion_onitted_

new usr/src/lib/libdtrace/ common/dt_provider.c

R R R R

23597 Tue Jan 14 16:49:00 2014
new usr/src/lib/libdtrace/ common/dt_provider.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governing pernissions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */
22 |*

23 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
24 * Use is subject to |license terns.
25 =/
26 [*
27 */Copyright (c) 2013, Joyent, Inc. Al rights reserved.
*

27 #pragne ident " %Y % Y% %EY% SM "
30 #include <sys/types. h>

31 #include <sys/sysnmacros. h>

33 #include <assert.h>
34 #include <limts.h>
35 #include <strings. h>
36 #include <stdlib. h>
37 #include <alloca. h>
38 #include <unistd. h>
39 #include <errno. h>

41 #incl ude <dt_provider. h>
42 #incl ude <dt_nodul e. h>
43 #include <dt_string. h>
44 #include <dt _list.h>

45 #incl ude <dt_pid. h>

46 #include <dtrace. h>

47 #endif /* | codereview */

49 static dt_provider_t *
50 dt _provider_insert(dtrace_hdl _t *dtp, dt_provider_t *pvp, uint_t h)

52 dt _|i st _append(&t p->dt _provlist, pvp);
54 pvp- >pv_next = dtp->dt_provs[h];

new usr/src/lib/libdtrace/ common/dt_provider.c

55
56

105

107
108
109
110
111

113
114
115
116
117

119
120

}

dt _provi
dt _provi

}

dt _provi
dt _provi
{

dt p->dt _provs[h] = pvp;
dt p- >dt _nprovs++;

return (pvp);

der_t *

der _l ookup(dtrace_hdl _t *dtp, const char *name)

uint_t h = dt_strtab_hash(name, NULL)

dtrace_provi derdesc_t desc;
dt _provider_t *pvp;

for (pvp = dtp->dt_provs[h]; pvp != NULL; pvp = pvp-
if (strcnp(pvp->pv_desc.dtvd_nane, nane) ==

return (pvp);

\0) {

}

if (strisglob(nane) || name[0] == "
(void) dt_set_errno(dtp, EDT_NOPROV);
return (NULL);

}

bzero(&desc, sizeof (desc));

(void) strlcpy(desc.dtvd_nane, nane, DTRACE_PROVNAMELEN);

if (dt_ioctl(dtp, DTRACEI OC_PROVI DER, &desc) == -1)

. {
(void) dt_set_errno(dtp, errno == ESRCH ? EDT_NOPROV :

return (NULL);
}

if ((pvp = dt_provider_create(dtp,
return (NULL); /* dt_errno

bcopy(&desc, &pvp->pv_desc, sizeof

pvp- >pv_flags | = DT_PROVI DER_| MPL;
return (pvp);

der_t *

nanme)) == NULL)
is set for us */

(desc));

der _create(dtrace_hdl _t *dtp, const char *name)

dt _provider_t *pvp;

if ((pvp = dt_zalloc(dtp, sizeof (dt_provider_t)))

return (NULL);

(void) strlcpy(pvp->pv_desc. dtvd_nane, 1|
pvp- >pv_probes = dt_i dhash_creat e(pvp->pv_desc. dtvd_nane, NULL, 0, 0);

pvp- >pv_gen = dtp->dt_gen;
pvp- >pv_hdl dt p;

if (pvp->pv_probes == NULL) {
dt _free(dtp, pvp);

(void) dt_set_errno(dtp, EDT_NOVEM ;

return (NULL);
}

pvp- >pv_desc. dtvd_attr. dtpa_provider = _dtrace_prvattr;

pvp->pv_desc. dtvd_attr.dtpa_md = _

pvp->pv_desc. dtvd_attr. dt pa_func
pvp- >pv_desc. dtvd_at tr. dt pa_nane
pvp->pv_desc. dtvd_attr. dt pa_args

return (dt_provider_insert(dtp, pv

dtrace_prvattr;

_dtrace_prvattr;
_dtrace_prvattr;
_dtrace_prvattr;

P,

dt _strtab_hash(name, NULL) % dtp->dt_provbuckets));

% dt p- >dt _pr ovbucket s;

>pv_next) {
0)

== NULL)

nane, DTRACE_PROVNAMELEN) ;

new usr/src/lib/libdtrace/ common/dt_provider.c

121 }

123 void

124 dt_provider_destroy(dtrace_hdl _t *dtp, dt_provider_t *pvp)
125 {

126 dt _provider_t **pp;

127 uint_t h;

129 assert (pvp->pv_hdl == dtp);

131 h = dt_strtab_hash(pvp->pv_desc. dt vd_nane, NULL) % dt p->dt _provbuckets;
132 = &dt p->dt _provs[h];

134 while (*pp !'= NULL && *pp != pvp)

135 pp = &(*pp)->pv_next;

137 assert(*pp !'= NULL && *pp == pvp);

138 *pp = pvp->pv_next;

140 dt _list_del et e(&t p->dt_provlist, pvp);

141 dt p- >dt _nprovs--;

143 if (pvp->pv_probes != NULL)

144 dt _i dhash_dest r oy(pvp- >pv_pr obes);

146 dt _node_l i nk_f ree(&vp- >pv_nodes);

147 dt _free(dtp, pvp->pv_xrefs);

148 dt_free(dtp, pvp);

149 }

151 int

152 dt_provi der_xref(dtrace_hdl _t *dtp, dt_provider_t *pvp, id_t
153

154 size_t ol dsize = BT_SI ZEOFMAP(pvp- >pv_Xr max) ;

155 size_t newsize = BT_SI ZEOFMAP(dt p- >dt _xl at ori d);
157 assert(id >= 0 & id < dtp->dt_xlatorid);

159 if (newsize > ol dsize)

160 ulong_t *xrefs = dt_zalloc(dtp, newsize);
162 if (xrefs == NULL)

163 return (-1);

165 bcopy(pvp- >pv_xrefs, xrefs, oldsize);

166 dt _free(dtp, pvp->pv_xrefs);

168 pvp->pv_xrefs = xrefs;

169 pvp->pv_xrmax = dtp->dt_xlatorid;

170 }

172 BT_SET(pvp->pv_xrefs, id);

173 return (0);

174 }

176 static uint8_t

177 dt _probe_argmap(dt_node_t *xnp, dt_node_t *nnp)

178 {

179 uint8 t i;

181 for (i = 0; nnp !'= NULL; i++) {

182 if (nnp->dn_string != NULL &&

183 strcnp(nnp->dn_string, xnp->dn_string)
184 break;

185 el se

186 nnp = nnp->dn_|ist;

i d)

== 0)

new usr/src/lib/libdtrace/ common/dt_provider.c

187 }

189 return (i);

190 }

192 static dt_node_t *

193 dt_probe_all oc_args(dt_provider_t *pvp, int argc)

194 {

195 dt _node_t *args = NULL, *pnp = NULL, *dnp;

196 int i;

198 for (i =0; i < argce; i++, pnp =) {

199 if ((dnp = dt node _xal | oc(pvp >pv_hdl, DT_NODE_TYPE)) == NULL)
200 return (NULL);

202 dnp->dn_l i nk = pvp->pv_nodes;

203 pvp- >pv_ nodes = dnp;

205 if (args == NULL)

206 args = dnp;

207 el se

208 pnp->dn_list = dnp;

209 1

211 return (args);

212 }

214 static size_t

215 dt_probe_keyl en(const dtrace_probedesc_t *pdp)

216 {

217 return (strlen(pdp->dtpd_nod) + 1 +

218 strlen(pdp->dtpd_func) + 1 + strlen(pdp->dtpd_nane) + 1);
219 }

221 static char *

222 dt_probe_key(const dtrace_probedesc_t *pdp, char *s)

223 {

224 (void) snprintf(s, INT_MAX, "%:%: %",

225 pdp- >dt pd_nod, pdp->dtpd_func, pdp->dtpd_nane);

226 return (s);

227 }

229 [*

230 * If a probe was discovered fromthe kernel, ask dtrace(7D) for a description
231 * of each of its argunents, including native and transl ated types.
232 */

233 statlc dt _probe_t *

234 dt_probe_di scover (dt_provider_t *pvp, const dtrace_probedesc_t *pdp)
235 {

236 dtrace_hdl _t *dtp = pvp->pv_hdl;

237 char *name = dt_probe_key(pdp, alloca(dt_probe_keyl en(pdp)));
239 dt _node_t *xargs, *nargs;

240 dt_ident_t *idp;

241 dt _probe_t *prp;

243 dtrace_typeinfo_t dtt;

244 int i, nc, xc;

246 int adc = _dtrace_argmax;

247 dtrace_argdesc_t *adv = alloca(sizeof (dtrace_argdesc_t) * adc);
248 dtrace_argdesc_t *adp = adyv;

250 assert (strcnp(pvp->pv_desc. dtvd_nane, pdp->dtpd_provider) == 0);
251 assert (pdp->dtpd_id ! = DTRACE IDNCNB

new usr/src/lib/libdtrace/ common/dt_provider.c

253
254

256
257
258
259

261
262
263
264

266
267

269
270

272
273

275
276
277
278
279
280
281
282
283
284
285
286
287
288

290
291
292
293
294
295
296
297

299
300

302
303
304

306
307
308
309

311
312
313
314
315

317

dt _dprintf("discovering probe %: % id=%\n",
pvp->pv_desc. dt vd_nane, nane, pdp->dtpd_id);

(nc = -1, i =0; i < adc; i++, adp++) {
bzero(adp, sizeof (dtrace argdesc_t));
adp->dtargd_ndx = i;
adp->dtargd_id = pdp >dt pd_i d;

if (dt_ioctl(dtp, DTRACEI OC_PROBEARG adp) != 0) {
(void) dt_set_errno(dtp, errno);
return (NULL);

}

if (adp->dtargd_ndx == DTRACE_ARGNONE)
break; /* all argunment descs have been retrieved */

nc = MAX(nc, adp->dtargd_mapping);

}

Xc = i;

nc++;

/*

* The pid provider believes in giving the kernel a break. No reason to
* give the kernel all the ctf containers that we’re keeping oursel ves
* just to get it back fromit. So if we're comng froma pid provider
* probe and the kernel gave us no argunent information we’'ll get sone
* here. If for sone crazy reason the kernel knows about our userland
* types then we just ignore this.

*/

if (xc == 0 & nc == 0 &&
strncnp(pvp->pv_desc. dtvd_nane, "pid", 3) == 0) {

nc = adc;
dt _pi d_get _types(dtp, pdp, adv, &nc);
XC = nc;

}

/*

/* 1 codereview */

* Now that we have di scovered the nunber of native and transl ated

* argunents fromthe argunment descriptions, allocate a new probe ident
* and corresponding dt_probe_t and hash it into the provider.

*/
xar gs
nar gs

= dt_probe_al |l oc_args(pvp, xc);

= dt_probe_al |l oc_args(pvp, nc);

if ((xc !'= 0 & xargs == NULL) || (nc !'= 0 & nargs == NULL))
return (NULL); /* dt_errno is set for us */

idp = dt_ident_create(nanme, DT_| DENT_PROBE,
DT_I DFLG ORPHAN, pdp->dtpd_id, _dtrace_defattr, O,
&dt _i dops_probe, NULL, dtp- >dt _gen);

if (idp == NULL)
(void) dt_set_errno(dtp, EDT_NOVEM ;
return (NULL);

}
if ((prp = dt_probe_create(dtp, idp, 2,
nargs, nc, xargs, xc)) == NULL) {
dt _i dent _destroy(idp);
) return (NULL);

dt _probe_decl are(pvp, prp);

new usr/src/lib/libdtrace/ common/dt_provider.c

319
320
321
322
323
324
325
326
327
328
329
330

332
333
334
335
336
337
338

44
339

341
342
343
344
345
346
347
348
349
350

352
353
354
355
356
357

63
358

360
361
362

364
365 }

/*

* Once our new dt_probe_t is fully constructed, iterate over the
* cached argunent descriptions and assign types to prp->pr_nargv[]
* and prp->pr_xargv[] and assign mappings to prp->pr_mapping[].

*/

for (adp = adv, i = 0; i < xc; i++ adp++) {
if (dtrace_type_strconpil e(dtp,
adp->dtargd_native, &tt) != 0) {
dt _dprintf("failed to resolve input type %
"for %:% arg #%l: 9%\n", adp->dtargd_native,
pvp- >pv_desc. dtvd_nane, nane, i + 1,
dtrace_errnsg(dtp, dtrace_errno(dtp)));

dtt.dtt_object = NULL;
dtt.dtt_ctfp = NULL;
dtt.dtt_type = CTF_ERR;
} else {
dt _node_t ype_assi gn(pr p- >pr _nar gv[adp- >dt ar gd_mappi ng] ,
dtt.dtt_ctfp, dtt.dtt_type,
dtt.dtt_flags & DIT_FL_USER ? B_TRUE : B_FALSE);
dtt.dtt_ctfp, dtt.dtt_type);
}

if (dtt.dtt_type != CTF_ERR && (adp->dtargd_xlate[0] == "\0" ||
strcnp(adp->dtargd_native, adp->dtargd_xlate) == 0)) {
dt _node_t ype_| propagate(prp— >pr _nar gv|[
adp- >dt ar gd_nappi ng], prp->pr_xargv[i]);
} else if (dtrace_type_strconpile(dtp,
adp->dtargd_xl ate, &dtt) != 0)
dt_dprintf("failed to resol ve output type %
"for %:% arg #%: %\n", adp- >dt argd xl ate,
pvp- >pv_desc. dt vd_nane, narre i
dtrace_errmsg(dtp, dtrace errno(dtp)))

dtt.dtt_object = NULL
dtt.dtt_ctfp
dtt.dtt_type
} else {
dt _node_t ype_assi gn(prp->pr_xargv[il],
dtt.dtt_ctfp, dtt.dtt_type, B_FALSE);
dtt.dtt_ctfp, dtt.dtt_type);

Inu
l'I'I
m
T
2

}
prp->pr_mappi ng[i] = adp->dtargd_mappi ng;
) prp->pr_argv[i] = dtt;

return (prp);

__unchanged_portion_omtted_

621 /*

622 * Lookup the dynamic translator type tag for the specified probe argunent and
623 * assign the type to the specified node. |f the type is not yet defined, add
624 * it to the "D' npodul e's type container as a typedef for an unknown type.

625 */

626 dt

node_t *

627 dt_probe_tag(dt_probe_t *prp, uint_t argn, dt_node_t *dnp)

628 {
629
630
631
632

634
635

dtrace_hdl _t *dtp = prp->pr_pvp->pv_hdl;
dtrace_typeinfo_t dtt;

size_t len;

char *tag;

len = snprintf(NULL, O, "__dtrace_%__ %_arg%",
pr p- >pr_pvp- >pv_| desc. dtvd_nane, prp->pr_nane, argn);

new usr/src/lib/libdtrace/ common/dt_provider.c

637 tag = alloca(len + 1);

639 (void) snprintf(tag, len + 1, "__dtrace %___ % _arg",

640 pr p- >pr _pvp- >pv_desc. dt vd_nane, prp->pr_nane, argn);

642 if (dtrace_l ookup_by_ type(dtp, DTRACE_OBJ_DDEFS, tag, &dtt) != 0) {
643 dtt.dtt_object = DTRACE_OBJ_DDEFS;

644 dtt.dtt_ctfp = DT_DYN CTFP(dtp);

645 dtt.dtt_type = ctf_add typedef(DT DYN_CTFP(dt p),

646 CTF_ADD ROOT, tag, DT_DYN TYPE(dtp));

648 if (dtt.dtt_type == CTF_ERR ||

649 ctf_update(dtt.dtt ctfp) == CTF_ERR) {

650 xyerror (D_UNKNOWN, "cannot define type %: %\n",
651 tag, ctf_errrrsg(ctf_errno(dtt.dtt_ctfp)));
652 }

653 }

655 bzero(dnp, sizeof (dt_node_t));

656 dnp->dn_ki nd = DT_NODE_TYPE;

658 dt _node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type, B FALSE);
364 dt _node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type);

659 dt _node_attr_assign(dnp, _dtrace_defattr);

661 return (dnp);

662 }

__unchanged_portion_omtted_

new usr/src/lib/libdtrace/ common/dt_xlator.c 1

R R R R

11557 Tue Jan 14 16:49:01 2014
new usr/src/lib/libdtrace/ common/dt_xlator.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEREEREEEERERERERESRESRESRESESESESE]
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License, Version 1.0 only
(the "License"). You nay not use this file except in conpliance
with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://wwm. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

NRERRRRRRRRE
COONOUITAWNROW©O~NOUTSWN

CDDL HEADER END

-~

Copyright 2005 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terms.

I I T

/

27 * Copyright (c) 2013 by Del phix. Al rights reserved.
28 * Copyright (c) 2013 Joyent, Inc. Al rights reserved.
*
/

27 #pragma ident " Y90 A % %E% SM "

31 #include <strings. h>
32 #include <assert. h>

34 #include <dt_xlator.h>
35 #include <dt_parser. h>
36 #include <dt_grammar. h>
37 #include <dt_nodul e. h>
38 #include <dt_inpl.h>

40 /*

41 * Create a nenber node corresponding to one of the output nmenbers of a dynanmic
42 * translator. W set the nenber’s dn_nenbexpr to a DT_NODE_XLATOR node t hat
43 * has dn_op set to DT_TOK XLATE and refers back to the translator itself. The
44 * code generator will then use this as the indicator for dynam c translation.

45 */

46 | * ARGSUSED*/

47 static int

48 dt _xl ator _creat e_nenber (const char *name, ctf_id_t type, ulong_t off, void *arg)

50 dt_xlator_t *dxp = arg;

51 dtrace_hdl _t *dtp = dxp->dx_hdl;

52 dt _node_t *enp, *mmp;

54 if ((enp = dt_node_xall oc(dtp, DT_NODE_XLATOR)) == NULL)

new usr/src/lib/libdtrace/ common/dt_xlator.c

55 return (dt_set_errno(dtp, EDT_NOVEM);
57 enp->dn_l i nk = dxp->dx_nodes;
58 dxp->dx_nodes = enp;
60 if ((mp = dt_node_xal |l oc(dtp, DT_NODE_MEMBER)) == NULL)
61 return (dt_set_errno(dtp, EDT_NOVEM);
63 mp- >dn_| i nk = dxp- >dx_nodes;
64 dxp->dx_nodes = mmp;
66 /*
67 * For the nenber expression, we use a DT_NODE_XLATOR/ TOK_XLATE whose
68 * xlator refers back to the translator and whose dn_xmenber refers to
69 * the current nenber. These refs will be used by dt_cg.c and dt_as.c.
70 */
71 enp->dn_op = DT_TOK_XLATE;
72 enp->dn_xl ator = dxp;
73 enp- >dn_xnenber = mmp;
74 dt _node_t ype_assi gn(enp, dxp->dx_dst_ctfp, type, B FALSE);
72 dt _node_t ype_assi gn(enp, dxp->dx_dst_ctfp, type);
76 I*
77 * For the nenber itself, we use a DI_NODE MEMBER as usual with the
78 * appropriate name, output type, and nenber expression set to 'enp’.
79 */
80 if (dxp->dx_menbers !'= NULL)
81 assert (enp->dn_| i nk->dn_ki nd == DT_NCDE_MEMBER) ;
82 enp->dn_| i nk->dn_l i st = mp;
83 } else
84 dxp- >dx_nenbers = mp;
86 mp- >dn_nenbnane = strdup(nane);
87 mp- >dn_menbexpr = enp;
88 dt _node_t ype_assi gn(mp, dxp->dx_dst_ctfp, type, B FALSE);
86 dt _node_t ype_assi gn(mp, dxp->dx_dst_ctfp, type);
90 if (mp->dn_nmenbname == NULL)
91 return (dt_set_errno(dtp, EDT_NOVEM);
93 return (0);
94 }
__unchanged_portion_onitted_
257 dt_xlator_t *
258 dt _xl ator_| ookup(dtrace_hdl _t *dtp, dt_node_t *src, dt_node_t *dst, int flags)
259 {
260 tf_file *src_ctfp = src->dn_ctfp;
261 tf_id_t src _type = src->dn_type;
262 f ~“id_t src_base = ctf_type_resolve(src_ctfp, src_type);
264 ctf_file_t *dst_ctfp = dst->dn_ctfp;
265 ctf_id_t dst_type = dst->dn_type;
266 ctf_id_t dst_base = ctf_type_resol ve(dst_ctfp, dst_type);
267 uint_t dst_kind = ctf_type_kind(dst_ctfp, dst_base);
269 int ptr = dst_kind == CTF_K_PO NTER;
270 dtrace_typei nfo t src _dtt, dst_dtt;
271 dt _node_t xn = { 0
272 dt _xlator_t *dxp = NULL
274 if (src_base == CTF_ERR || dst_base == CTF_ERR)
275 return (NULL); /* fail if these are unresol vabl e types */
277 I*

278 * Transl ators are always defined using a struct or union type, so i

—

new usr/src/lib/libdtrace/ conmon/dt_xlator.c

279
280
281
282
283
284
285
286

288
289

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

309
310

312
313
314
315
316
317
318
319

321
322
323
324
321
325
326
327
328

330
331
332

334
335
336

338
339
340
341
342
343

out :

* we are attenpting to translate to type "T *", we internally | ook
* for atranslation to type "T" by follow ng the pointer reference.
*/

if (ptr) {

dst _type = ctf_type_reference(dst_ctfp, dst_type);

dst_base = ctf_type_resol ve(dst_ctfp, dst_type);

dst_kind = ctf_type_kind(dst_ctfp, dst_base);
}
if (dst_kind !'= CTF_K_UNI ON && dst_kind != CTF_K_STRUCT)

return (NULL); /* fail if the output isn't a struct or union */
/*
* In order to find a matching translator, we iterate over the set of
* available translators in three passes. First, we |look for a
* translation fromthe exact source type to the resol ved destination.
* Second, we look for a translation fromthe resolved source type to
* the resolved destination. Third, we look for a translation froma
* conpati bl e source type (using the same rules as paraneter fornals)
* to the resolved destination. If all passes fail, return NULL.
*/

_next (&dt p->dt _xl ators); dxp != NULL;

for (dxp = dt_Ii
dxp = dt_li t _next (dxp)) {
if (ctf_type_conpat (dxp- >dx _src_ctfp, dxp->dx_src_type,
src_ctfp, src_type) &&
ctf_type_conpat (dxp->dx_dst_ctfp, dxp->dx_dst_base,
dst_ctfp, dst_base))
goto out;

}

if (flags & DT_XLATE_EXACT)
goto out; /* skip remaining passes if exact match required */

(dxp = dt _|ist_next(&dtp->dt_xlators); dxp != NULL;
dxp = dt_list_next(dxp)) {
if (ctf_type_conpat (dxp->dx_src_ctfp, dxp->dx_src_base,
src_ctfp, src_type) &&
ctf_type_conpat (dxp->dx_dst_ctfp, dxp->dx_dst_base,
dst_ctfp, dst_base))
goto out;

}

for (dxp = dt_list_next(&dtp->dt_xlators); dxp != NULL;
dxp = dt _list_next(dxp)) {

dt _node_t ype_assi gn(&n, dxp->dx_src_ctfp, dxp->dx_src_type,
B_FALSE) ;

dt _node_t ype_assi gn(&xn, dxp->dx_src_ctfp, dxp->dx_src_type);

if (ctf_type_conpat (dxp->dx_dst ctfp dxp- >dx_dst _base,
dst _ctfp, dst_base) & dt_node_is_argconpat (src, &xn))

goto out;

if (ptr &% dxp !'= NULL && dxp->dx_ptrid.di _type == CTF_ERR)
return (NULL); /* no translation available to pointer type */

if (dxp != NULL || !(flags & DT_XLATE EXTERN) ||
dt p- >dt _x| at emode == DT_XL_STATI C)
return (dxp); /* we succeeded or not allowed to extern */
/*

* |f we get here, then we didn't find an existing translator, but the
* caller and x|l atenpde permit us to create an extern to a dynam c one.
*/

src_dtt.dtt_object = dt_nodul e_| ookup_by_ctf(dtp, src_ctfp)->dm nane;
src_dtt.dtt_ctfp = src_ctfp;

new usr/src/lib/libdtrace/ common/dt_xlator.c

344
346
347
348

350

351 }
__unchanged_portion_omtted_

src_dtt.dtt_type = src_type;
dst _dtt.dtt_object = dt_nodul e_| ookup_by_ctf(dtp, dst_ctfp)->dm nane;
dst_dtt.dtt_ctfp = dst_ctfp;
dst _dtt.dtt_type = dst_type;

return (dt_xlator_create(dtp, &src_dtt, &dIst_dtt, NULL, NULL, NULL));

new usr/src/lib/libdtrace/ common/dtrace. h 1

R R R R

23420 Tue Jan 14 16:49:01 2014
new usr/src/lib/libdtrace/ cormon/dtrace. h
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governi ng perm ssions
11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 =

19 * CDDL HEADER END
20 */
22 | *

23 * Copyright 2007 Sun Mcrosystems, Inc. Al rights reserved.
24 * Use is subject to license terns.
25 =/

27 | *
28 * Copyright (c) 2013 by Del phix. Al rights reserved.
29 * Copyright (c) 2013, Joyent, Inc. Al rights reserved.
28 * Copyright (c) 2011, Joyent, Inc. Al rights reserved.
*
/

32 #ifndef _DTRACE_H
33 #define _DTRACE H

35 #include <sys/dtrace. h>
36 #include <stdarg. h>

37 #include <stdio.h>

38 #include <gel f. h>

40 #ifdef __cplusplus

41 extern "C' {

42 #endi f

44 | *

45 * DTrace Dynamic Tracing Software: Library Interfaces

46 *

47 * Note: The contents of this file are private to the inplenentation of the

48 * Solaris system and DTrace subsystem and are subject to change at any tine

49 * without notice. Applications and drivers using these interfaces will fail

50 * to run on future releases. These interfaces should not be used for any

51 * purpose except those expressly outlined in dtrace(7D) and |ibdtrace(3LIB).

52 * Please refer to the "Solaris Dynam ¢ Tracing Cuide" for nore information.
*

/

55 #define DTRACE_VERSION 3 /* library ABI interface version */

new usr/src/lib/libdtrace/ common/dtrace. h

57 struct ps_prochandl e;
58 typedef struct dtrace_hdl dtrace_hdl

_t;

59 typedef struct dtrace_prog dtrace_prog_t;
60 typedef struct dtrace_vector dtrace_vector_t;

61 typedef struct dtrace_aggdata dtrace_
63 #define DTRACE_O NCDEV 0x01
64 #define DTRACE_O NOSYS 0x02
65 #define DTRACE_O LP64 0x04
66 #define DTRACE_O | LP32 0x08
67 #define DTRACE_O MASK 0x0f

69 extern dtrace_hdl _t *dtrace_open(int,
70 extern dtrace_hdl _t *dtrace_vopen(int,
71 const dtrace_vector_t *, void *);

73 extern int dtrace_go(dtrace_hdl _t *);
74 extern int dtrace_stop(dtrace_hdl _t
75 extern void dtrace_sl eep(dtrace_hdl _
76 extern void dtrace_cl ose(dtrace_hdl _

78 extern int dtrace_errno(dtrace_hdl _t

aggdata_t;

/* do not open dtrace(7D) device */

/* do not |oad /systeniobject nodul es */
/* force D conpiler to be LP64 */

/* force D conpiler to be ILP32 */

/* mask of valid flags to dtrace_open */

int, int *);
int, int *,

),
*)s
*);

*

79 extern const char *dtrace errmsg(dtraceyhdl t *, int);
80 extern const char *dtrace_faultstr(dtrace_hdl _t *, |nt);
81 extern const char *dtrace_subrstr(dtrace_hdl _t *, int);

83 extern int dtrace_setopt(dtrace_hdl _
84 extern int dtrace_getopt(dtrace_hdl _

86 extern void dtrace_update(dtrace_hdl
87 extern int dtrace_ctlfd(dtrace_hdl _t

89 /
DTrace Program I nterface

*
*
*
92 * Dlrace prograns can be created by
*
*
*
*

*, const char *, const char *);
*, const char *, dtrace_optval _t *);

_t*)s
*)s

conpiling ASCII text files containing

D programs or by conpiling in-memory C strings that specify a D program

94 Once created, callers can exanine the list of program statenments and

95 enabl e the probes and actions described by these statenents.

96 */

98 typedef struct dtrace_proginfo {

99 dtrace_attribute_t dpi_descattr; /* mninmum probedesc attributes */

100 dtrace_attribute_t dpi_stntattr; /* mininmumstatenment attributes */

101 uint _t dpi_aggregates; /* nunber of aggregates specified in program*/
102 uint_t dpi_recgens; /* nunber of record generating probes in prog */
103 uint_t dpi_matches; /* nunber of probes matched by program */

104 ui nt _t dpi_specul ations; /* nunber of specul ations specified in prog */

105 } dtrace_proginfo_t;
__unchanged_portion_omtted_

485 extern int dtrace_|l ookup_by_name(dtrace_hdl _t *, const char *, const char *,

486 GElf_Sym*, dtrace_symnfo_t *);

488 extern int dtrace_|l ookup_by_addr(dtrace_hdl _t *, CElf_Addr addr,

489 CEl f_Sym*, dtrace_symnfo_t *);

491 typedef struct dtrace_typeinfo {
492 const char *dtt_object;

493 ctf_file_t *dtt_ctfp;
494 ctf_id_t dtt_type;
495 uint_t dtt_fTags;

496 #endif /* | codereview */
497 } dtrace_typeinfo_t;

obj ect containing type */
CTF contai ner handle */
CTF type identifier */
Msc. flags */

—~———
N

new usr/src/lib/libdtrace/ common/dtrace. h

499

501
502
503

505
506

508
509

511
512

514
515
516
517
518
519
520
521
522
523
524
525
526

528

530
531

533
534

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

552
553
554
555
556
5514
558
559
560
561

563
564

#defi ne DTT_FL_USER 0x1 /* user type */

#endif /* | codereview */

extern int dtrace_| ookup_by_type(dtrace_hdl _t *,
dtrace_typeinfo_t *);

const char *, const char *,

extern int dtrace_synbol _type(dtrace_hdl _t *, const GElf_Sym*,
const dtrace_symnfo_t *, dtrace_typeinfo_t *);

extern int dtrace_type_strconpil e(dtrace_hdl _t *,
const char *, dtrace_typeinfo_t *);

extern int dtrace_type_fconpile(dtrace_hdl _t *,

FILE *, dtrace_typeinfo_t *);

DTrace Probe Interface

Library clients can use these functions to iterate over the set of avail able

probe definitions and inquire as to their attributes. The probe iteration
interfaces report probes that are declared as well as those fromdtrace(7D).

* ok kR % b %
-~

typedef struct dtrace_probeinfo {
dtrace_attribute_t dtp_attr;
dtrace_attribute_t dtp_arga;
const dtrace_typeinfo_t *dtp_argv;
int dtp_argc;

} dtrace_probeinfo_t;

name attributes */
arg attributes */
arg types */
arg count */

—~———
* ok Ok ok

typedef int dtrace_probe_f(dtrace_hdl _t *, const dtrace_probedesc_t *, void *);

extern int dtrace_probe_iter(dtrace_hdl _t *,
const dtrace_probedesc_t *pdp, dtrace_probe_f *, void *);
extern int dtrace_probe_info(dtrace_hdl _t *,
const dtrace_probedesc_t *, dtrace_probeinfo_t *);
/
DTrace Vector Interface

*

*

*

* The DTrace library normally speaks directly to dtrace(7D). However,

* this comunication may be vectored el sewhere. Consunmers who wish to

* performa vectored open nmust fill in the vector, and use the dtrace_vopen()

* entry point to obtain a library handle.

*

/

struct dtrace_vector

int (*dtv_ioctl)(void *, int, void *);

int (*dtv_l ookup_by_addr)(void *, GCElf_Addr, GElf_Sym*,
dtrace_sym nfo_t *);

int (*dtv_status)(void *,

long (*dtv_sysconf)(void *,

processorid_t);
int);

e
/

Dfrace Uility Functions

convert between string and integer probe descriptions and the
dtrace_probedesc_t representation,
stability attributes.
*/
extern int dtrace_addr2str(dtrace_hdl _t *,
extern int dtrace_uaddr2str(dtrace_hdl _t *,

*
*
*
* Library clients can use these functions to convert addresses strings, to
*
*
*

and to performsimlar conversions on

uint64_t, char *,
pid_t, uint64_t,

int);
char *, int);
extern int dtrace_xstr2desc(dtrace_hdl _t *, dtrace_probespec_t,

const char *, int, char *const [], dtrace_probedesc_t *);

new usr/src/lib/libdtrace/ common/dtrace. h

566
567

569
571
573
Br®

577
578

580
581

583

585
586

588
589
590

592

extern int dtrace_str2desc(dtrace_hdl

_t *, dtrace_probespec_t,
const char *, dtrace_probedesc_t *);

extern int dtrace_i d2desc(dtrace_hdl _t *, dtrace_id_t,

#def i ne DTRACE_DESC2STR_MAX 1024
extern char *dtrace_desc2str(const dtrace_probedesc_t *, char *,
#def i ne DTRACE_ATTR2STR_MAX 64

extern char *dtrace_attr2str(dtrace_attribute_t, char *, size_t);
extern int dtrace_str2attr(const char *, dtrace_attribute_t *);

extern const char *dtrace_stability_nane(dtrace_stability t);
extern const char *dtrace_cl ass_nane(dtrace_class_t);
extern int dtrace_provider_nodul es(dtrace_hdl _t *, const char **,

extern const char *const _dtrace_version;
extern int _dtrace_debug;

#i fdef __ cplusplus
#endi f
#endi f /* _DTRACE_H */

dtrace_probedesc_t *);
/* mn buf size for dtrace_desc2str()
size_t);

/* mn buf size for dtrace_attr2str()

int);

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

R R R R

122351 Tue Jan 14 16:49:01 2014
new usr/ src/ pkg/ mani f est s/ system dtrace-tests. nf
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

HHEHHF HHHFHHHHFHBHHFHHEHT RS

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perni ssions

and limtations under the License.

When di stributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved.

Copyright (c) 2012 by Del phix. Al rights reserved.

set name=pkg. fnri val ue=pkg:/system dtrace/tests@(PKGVERS)

set nanme=pkg. description val ue="DTrace Test Suite Internal Distribution"

set name=pkg.sumary val ue="DIrace Test Suite"
set name=info.classification\

val ue=or g. opensol ari s. cat egory. 2008: Devel opnent / Syst em

set nanme=vari ant. arch val ue=$(ARCH)

pat h=opt/ SUNWIt rt group=sys

pat h=opt / SUNWt rt/ bi n

pat h=opt / SUNWit r t / bi n/ $(ARCH32)
pat h=opt / SUNWt r t / bi n/ $(ARCH64)

pat h=opt/ SUNWItrt/1ib/java
pat h=opt/ SUNWt rt/t st
pat h=opt / SUNWIt rt/ t st/ $(ARCH)

r
r
r
r

ir path=opt/SUNWItrt/lib
r
r
r

ir path=opt/SUNWIitrt/tst/$(ARCH)/array

$(i 386_ONLY)dir path=opt/SUNWItrt/tst /$(ARCH)/funcs

di

r path=opt/SUNWtrt/tst/$(ARCH) /pid

$(sparc ONLY) di r pat h= 0pt/SUMMtrt/tst/$(ARC|—|)/usdt

r path=opt/SUNWtrt/tst/$(ARCH)/ ust ack
pat h=opt/ SUNWIt rt/t st/ conmmon
pat h=opt/ SUNWIt rt / t st/ common/ aggs
pat h=opt/ SUNWitrt/tst/common/arithnetic
pat h=opt/ SUNWitrt/tst/common/ arrays
pat h=opt/ SUNWIt rt/t st/ common/ assocs

pat h=opt/ SUNWIt rt/t st/ conmmon/bitfields
pat h=opt/ SUNWit rt/t st/ comon/ buf f eri ng
pat h=opt/ SUNWIt rt/t st/ comron/ bui | ti nvar
pat h=opt/ SUNWIt rt/t st/ comon/ cg

pat h=opt/ SUNWt rt/t st/ comron/ cl auses

r
r
r
r
r
ir path=opt/SUNWItrt/tst/comon/begin
r
r
r
r
r

new usr/ src/ pkg/ mani f est s/ system dtrace-tests. nf

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

pat h=opt/ SUNWit rt/t st/ common/ cpc

pat h=opt/ SUNWIt rt/t st/ comron/ decl s

pat h=opt/ SUNWit rt/t st/ common/ dr ops

pat h=opt/ SUNWitrt/tst/common/ dtracelti |
pat h=opt/ SUNWit rt/t st/ common/ end

pat h=opt/ SUNWIt rt/t st/ comron/ enum

pat h=opt/ SUNWIt rt/t st/ comron/ env

pat h=opt/ SUNWit rt/t st/ comon/ error

pat h=opt/ SUNWit rt/t st/ common/ exi t

pat h=opt/ SUNWIt rt/t st/ comron/ f bt pr ovi der
pat h=opt/ SUNWIt rt/t st/ comron/ f uncs

pat h=opt/ SUNWIt rt/t st/ comron/ gr ammar

pat h=opt/ SUNWit rt/t st/ common/ i ncl ude
pat h=opt/ SUNWIt rt/t st/ comon/inline

pat h=opt/ SUNWIt rt/t st/ comon/io

pat h=opt/ SUNWIt rt/t st/ comon/ip

pat h=opt/ SUNWit rt/t st/ common/j ava_api
pat h=opt/ SUNWIt rt/t st/ comon/ | son

pat h=opt/ SUNWIt rt/t st/ comron/ | exer

pat h=opt/ SUNWIt rt/tst/comon/ | | quanti ze
pat h=opt/ SUNWit rt/t st/ comon/ ndb

pat h=opt/ SUNWItrt/t st/ comron/ m b

pat h=opt/ SUNWIt rt/t st/ comon/ mi sc

pat h=opt/ SUNWit rt/t st/ comon/ nul ti aggs
pat h=opt/ SUNWitrt/tst/common/ nfs

pat h=opt/ SUNWit rt/ t st/ common/ of f set of
pat h=opt/ SUNWIt rt/t st/ comron/ operators
pat h=opt/ SUNWitrt/t st/ common/ pi d

pat h=opt/ SUNWit rt/t st/ common/ pl ockst at
pat h=opt/ SUNWit rt/t st/ common/ poi nters
pat h=opt/ SUNWIt rt/t st/ comron/ pr agna

pat h=opt/ SUNWIt rt/ t st/ common/ pr edi cat es
pat h=opt/ SUNWit rt/ t st/ common/ pr epr ocessor
pat h=opt/ SUNWit rt/t st/ common/ print

pat h=opt/ SUNWIt rt/t st/ comon/ printa

pat h=opt/ SUNWIt rt/t st/ comon/ printf

pat h=opt/ SUNWIt rt/t st/ conmmon/ privs

pat h=opt/ SUNWit rt/t st/ common/ pr obes

pat h=opt/ SUNWIt rt/t st/ common/ pr oc

pat h=opt/ SUNWItrt/t st/ comron/profil e-n
pat h=opt/ SUNWIt rt/t st/ common/ provi ders
pat h=opt/ SUNWitrt/tst/common/rai se

pat h=opt/ SUNWItrt/t st/ comron/rates

pat h=opt/ SUNWIt rt/t st/ comon/ saf ety

pat h=opt/ SUNWIt rt/t st/ comron/scal ars
pat h=opt/ SUNWitrt/t st/ common/ sched

pat h=opt/ SUNWIt rt/t st/ comron/ scri pting
pat h=opt / SUNWIt rt/t st/ comon/ sdt

pat h=opt/ SUNWIt rt/t st/ common/ si zeof

pat h=opt/ SUNWit rt/t st/ common/ specul ati on
pat h=opt/ SUNWitrt/tst/common/stability
pat h=opt/ SUNWIt rt/t st/ comron/ st ack

pat h=opt/ SUNWIt rt/t st/ common/ st ackdept h
pat h=opt/ SUNWit rt/t st/ common/ st op

pat h=opt/ SUNWitrt/tst/common/strlen

pat h=opt/ SUNWItrt/t st/ comron/strtoll

pat h=opt/ SUNWIt rt/t st/ common/ st ruct

pat h=opt/ SUNWit rt/t st/ common/ syscal |

pat h=opt/ SUNWit rt/t st/ common/ sysevent
pat h=opt/ SUNWIt rt/t st/ comon/tick-n

pat h=opt/ SUNWItrt/t st/ conmmon/trace

pat h=opt/ SUNWIt rt/t st/ comron/tracenmem
pat h=opt/ SUNWitrt/tst/common/transl ators
pat h=opt/ SUNWIt rt/t st/ comron/ t ypedef

pat h=opt/ SUNWIt rt/t st/ comron/ t ypes

pat h=opt/ SUNWt rt/t st/ common/ uct f

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

#endif /* | codereview */
dir path=opt/SUNWItrt/tst/comon/uni on
di r path=opt/SUNWItrt/tst/comon/ usdt
di r path=opt/SUNWItrt/tst/common/ ustack
di r path=opt/SUNWItrt/tst/common/vars
dir path=opt/SUNWItrt/tst/comon/version
$(i 386_ONLY)dir pat h=opt/SUNWItrt/tst/i86xpv
$(i386_ONLY)dir pat h=opt/SUNWAtrt/tst/i86xpv/xdt
pat h=opt / SUNWIt r t / READMVE node=0444
pat h=opt / SUNWit r t / bi n/ $(ARCH32) / chkar gs npde=0555
pat h=opt / SUNWt r t / bi n/ $(ARCH64) / chkar gs npde=0555
pat h=opt / SUNWAt r t / bi n/ baddof npde=0555
pat h=opt / SUNWAt r t / bi n/ badi oct| npde=0555
pat h=opt / SUNWAt r t / bi n/ chkar gs npde=0555
pat h=opt / SUNWt rt / bi n/ dstyl e node=0555
pat h=opt / SUNWAt r t / bi n/ dt est npde=0555
pat h=opt/ SUNWdt rt/ bi n/ dt f ai | ures npbde=0555
pat h=opt / SUNWt r t / bi n/ excepti on. | st npde=0444
pat h=opt / SUNWAt rt / bi n/ j dt race npde=0555
pat h=opt/ SUNWItrt/lib/javaljdtrace.jar
pat h=opt/ SUNWit rt/t st/ $(ARCH) /arrays/tst.uregsarray.d node=0444
386_ONLY)file path=opt/SUNWItrt/tst/$(ARCH)/funcs/tst.badcopyin.d node=0444
(i 386_ONLY)file path=opt/SUNWitrt/tst/$(ARCH)/funcs/tst.badcopyinstr.d \
node=0444
$(i 386dCNLY) file path=opt/SUNWItrt/tst/$(ARCH)/funcs/tst.badcopyout.d \
node=0444
$(i386_ONLY)file path=opt/SUNWitrt/tst/$(ARCH)/funcs/tst.badcopyoutstr.d \
node=0444
$(sparc_ONLY)file \
pat h=opt / SUNWit rt/t st/ $(ARCH)/ pi d/ err. D _PROC_ALI GN. mi sal i gned. d npde=0444
$(sparc_ONLY)file \
pat h=opt / SUNWIt rt/t st/ $(ARCH)/ pi d/ err. D_PROC_ALI GN. ni sal i gned. exe \

ODODODODDDDDDMDMDD

fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
$(i
$

node=0555
$(i386_ONLY)file path=opt/SUNWItrt/tst/$(ARCH)/pid/tst.badinstr.d node=0444
$(i386_ONLY)file path=opt/SUNWItrt/tst/$(ARCH)/pid/tst.badinstr.exe npbde=0555
$(sparc_ONLY)file path=opt/SUNWItrt/tst/$(ARCH)/pid/tst.br.d node=0444
$(sparc_ONLY)file path=opt/SUNWItrt/tst/$(ARCH)/pid/tst.br.d.out node=0444
$(sparc_ONLY)file path=opt/SUNWitrt/tst/$(ARCH)/pid/tst.br.exe nmode=0555

| e pat h=opt/SUNWitrt/tst/$(ARCH)/pid/tst.branch.d node=0444
ile path=opt/SUNWItrt/tst/$(ARCH)/pid/tst.branch. exe node=0555
ile path=opt/SUNWItrt/tst/$(ARCH)/ pi d/tst.enbedded. d node=0444
ile path=opt/SUNWItrt/tst/$(ARCH)/pid/tst.enbedded. exe nbde=0555
i 386_ONLY)file path=opt/SUNWitrt/tst/$(ARCH)/pid/tst.ret.d node=0444
i 386_ONLY)file path=opt/SUNWAtrt/tst/$(ARCH)/pid/tst.ret.exe npbde=0555
i 386_ONLY)file path=opt/SUNWItrt/tst/$(ARCH)/pid/tst.retlist.exe nbde=0555
i 386_ONLY)file path=opt/SUNWitrt/tst/$(ARCH)/pid/tst.retlist.ksh node=0444
sparc_ONLY)file path=opt/SUNWitrt/tst/$(ARCH)/usdt/tst.tailcall.ksh \
node=0444

pat h=opt/ SUNWAtrt/t st/ $(ARCH) / ust ack/ t st. annot at ed. d nbde=0444

pat h=opt/ SUNWt rt/t st/ $(ARCH) / ust ack/ t st. annot at ed. d. out node=0444

pat h=opt / SUNWAt rt/t st/ $(ARCH) / ust ack/ t st. annot at ed. exe nbde=0555

pat h=opt/ SUNWit rt/t st/ $(ARCH) / ust ack/ t st. ci rcstack.d node=0444

pat h=opt / SUNWtrt/t st ; iEARCH)/ ustack/tst.circstack. exe nbde=0555

1$(

SLHRBHEH T

pat h=opt/ SUNWtrt/t st ARCH) / ust ack/ t st . hel per.d npode=0444

pat h=opt / SUNWtrt/t st ARCH) / ust ack/ t st. hel per.d. out npde=0444

pat h=opt / SUNWAt rt/t st/ $(ARCH) / ust ack/ t st. hel per. exe nbde=0555
arc_ONLY)file path=opt/SUNWItrt/tst/$(ARCH)/ustack/tst.trapstat.ksh \
node=0444

EeNCECHONONONONON)

pat h=opt/ SUNWAt rt/t st/ cormon/ aggs/ err .
pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ err .
pat h=opt/ SUNWIt rt/t st/ cormon/ aggs/ err .
pat h=opt/ SUNWdtrt/t st/ common/ aggs/ err.
pat h=opt / SUNWAt rt/t st/ cormon/ aggs/ err .
pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ err .
pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ err .

—h —h —h —h —h —h —h —h
D®D®D®DDDMDD

pat h=opt/ SUNWdtrt/t st/ comon/ aggs/ err. D_AGG FUNC. bad. d npode=0444

D_AGG MDI M bad. d node=0444

D AGG NULL. bad. d node=0444

D AGG REDEF. r edef.d node=0444

D _AGG_SCALAR. avgt oof ew. d node=0444
D_AGG_SCALAR maxnoar g. d node=0444
D_AGG_SCALAR. ni nt oof ew. d node=0444
D_AGG _SCALAR quanti zet oof ew. d \

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220 f
221 f
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

node=0444

file path=opt/SUNWitrt/tst/conmon/ aggs/err.

node=0444
pat h=opt/ SUNWdtrt/t st/ common/ aggs/ err.
pat h=opt/ SUNWdtrt/t st/ common/ aggs/ err.
pat h=opt / SUNWAt rt/t st/ cormon/ aggs/ err .
pat h=opt/ SUNWAtrt/t st/ common/ aggs/ err.
pat h=opt/ SUNWdtrt/t st/ conmmon/ aggs/ err.
pat h=opt/ SUNWdtrt/t st/ common/ aggs/ err.
pat h=opt/ SUNWAt rt/t st/ cormon/ aggs/ err .
pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ err .
pat h=opt/ SUNWIt rt/t st/ cormon/ aggs/ err .
pat h=opt/ SUNWdtrt/t st/ common/ aggs/ err.
pat h=opt / SUNWAt rt/ t st/ cormon/ aggs/ err .
pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ err .

node=0444
file path=opt/SUNWItrt/tst/common/aggs/err.

node=0444
file path=opt/SUNWItrt/tst/conmon/ aggs/err.
file path=opt/SUNWitrt/tst/common/ aggs/err.
file path=opt/SUNWItrt/tst/common/aggs/err.
file
file

—h —h —h —h —h —h —h —h —h —h —h —h
ODODOD®D®D®D®D®DDDD

pat h=opt/ SUNWAt rt/t st/ cormon/ aggs/ err .
pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ err .
node=0444
e pat h=opt/SUNWItrt/tst/common/ aggs/err.
e pat h=opt/SUNWItrt/tst/common/ aggs/err.
e path=opt/SUNWItrt/tst/comon/ aggs/err.
e path=opt/SUNWItrt/tst/comon/ aggs/err.
node=0444

fil
fil
fil
fil

file path=opt/SUNWItrt/tst/common/aggs/err.

node=0444
pat h=opt / SUNWAt rt/t st/ cormon/ aggs/ err .
pat h=opt/ SUNWtrt/t st/ common/ aggs/ err.
node=0444
file path=opt/SUNWitrt/tst/conmon/ aggs/err.
file path=opt/SUNWItrt/tst/conmon/ aggs/err.
;i : e pat h=opt/SUNWItrt/tst/common/aggs/err.
ile
file

ile
ile

pat h=opt/ SUNWdtrt/t st/ common/ aggs/ err.

pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ err .

node=0444

file path=opt/SUNWitrt/tst/common/ aggs/err.
file path=opt/SUNWItrt/tst/common/aggs/err.
file path=opt/SUNWitrt/tst/conmon/ aggs/err.

node=0444

file path=opt/SUNWitrt/tst/common/ aggs/err.

node=0444

file path=opt/SUNWItrt/tst/common/aggs/err.

node=0444

file path=opt/SUNWitrt/tst/common/ aggs/err.
file path=opt/SUNWItrt/tst/common/aggs/err.
file path=opt/SUNWItrt/tst/common/aggs/err.
file path=opt/SUNWItrt/tst/conmon/ aggs/err.
file path=opt/SUNWitrt/tst/common/ aggs/err.

node=0444

file path=opt/SUNWItrt/tst/common/aggs/err.

node=0444
fil
fil

node=0444
file path=opt/SUNWitrt/tst/conmon/ aggs/err.
file path=opt/SUNWitrt/tst/conmon/ aggs/err.
file path=opt/SUNWitrt/tst/conmon/ aggs/err.
file path=opt/SUNWItrt/tst/common/aggs/err.
file path=opt/SUNWitrt/tst/conmon/ aggs/err.
file
file

pat h=opt / SUNWAt rt/t st/ cormon/ aggs/ err .
pat h=opt / SUNWIt rt/t st/ cormon/ aggs/ t st .

e path=opt/SUNWAtrt/tst/comon/ aggs/err.
e pat h=opt/SUNWItrt/tst/common/ aggs/err.

D AGG SCALAR. st ddevt oof ew. d \

D_AGG_SCALAR. sunt oof ew. d nbde=0444
D _CLEAR AGGARG bad. d node=0444
D_CLEAR PROTO. bad. d node=0444
D_FUNC_| DENT. bad. d node=0444
FUNC_UNDEF. badaggf unc. d nbde=0444
| DENT_UNDEF. badexpr.d node=0444
| DENT_UNDEF. badkey3. d node=0444
| DENT_UNDEF. noef f ect . d nmode=0444
KEY_TYPE. badkeyl. d node=0444
KEY_TYPE. badkey2. d node=0444

) KEY_TYPE. badkey4. d npde=0444

) LQUANT_BASETYPE. | gbad1. d \

) LQUANT_BASETYPE. | gshort.d \

) LQUANT_BASEVAL. bad. d npode=0444

) LQUANT_LI MTYPE. | gbadl. d nbde=0444
) LQUANT_LI WAL. bad. d node=0444

) LQUANT_MATCHBASE. d npode=0444

) LQUANT_MATCHBASE. order. d \

) LQUANT_MATCHLI M d npde=0444
) LQUANT_MATCHLI M or der. d npde=0444
QUANT_VATCHSTEP. d npde=0444
D_LQUANT_M SMATCH. | gbadarg. d \

U U U U U U U U U U UIUIUIUIUIUIUI

f_l_l_ f_l_l_

D_LQUANT_STEPLARGE. | gt oof ew. d \

D LQUANT_STEPSMALL. bad. d npde=0444
D_LQUANT_STEPTYPE. | gbadi nc. d \

D _LQUANT_STEPVAL. bad. d node=0444
D_NORMALT ZE_AGGARG. bad. d node=0444
D_NORMALI ZE_PROTO. bad. d node=0444
D _NORMALI ZE_SCALAR. bad. d node=0444
D PROTO ARG | quanti zet oof ew. d \

D PROTO_LEN. avgnoar g. d node=0444
D PROTO_LEN. avgt oomany. d node=0444
D PROTO_LEN. count t oomany. d \

D PROTO_LEN. | quanti zenoarg.d \
D PROTO_LEN. | quanti zet oomany. d \

D PROTO_LEN. maxnoar g. d node=0444

D PROTO_LEN. maxt oomany. d node=0444
D PROTO_LEN. mi nnoarg.d node=0444

D PROTO _LEN. m nt oomany. d node=0444
D PROTO_LEN. quanti zenoarg.d \

D PROTO_LEN. quanti zet oomany. d \

D PROTO _LEN. st ddevnoar g. d node=0444
D PROTO_LEN. st ddevt oonany. d \

D PROTO _LEN. summoar g. d node=0444
D_PROTO_LEN. sunt oonany. d node=0444
D_TRUNC_AGGARG bad. d node=0444
D_TRUNC_PROTO. badmany. d node=0444
D_TRUNC_PROTO. badnone. d node=0444
D TRUNC_SCALAR. bad. d node=0444

al | quant. d node=0444

new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf 5 new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf
255 file path=opt/SUNWItrt/tst/common/aggs/tst.allquant.d.out node=0444 321 file path=opt/SUNWItrt/tst/common/ aggs/tst.negtrunc.d node=0444
256 file path=opt/SUNWItrt/tst/comon/ aggs/tst.avg.d node=0444 322 file path=opt/SUNWItrt/tst/common/ aggs/tst.negtrunc. d. out node=0444
257 file path=opt/SUNWItrt/tst/comon/aggs/tst.avg.d. out node=0444 323 file path=opt/SUNWItrt/tst/comon/ aggs/tst.negtruncquant.d node=0444
258 file path=opt/SUNWItrt/tst/comon/aggs/tst.avg_neg.d node=0444 324 file path=opt/SUNWItrt/tst/common/aggs/tst.negtruncquant.d. out npde=0444
259 file path=opt/SUNWItrt/tst/common/aggs/tst.avg_neg.d. out npde=0444 325 file path=opt/SUNWItrt/tst/common/aggs/tst.normalize.d node=0444
260 file path=opt/SUNWItrt/tst/comon/ aggs/tst.clear.d node=0444 326 file path=opt/SUNWItrt/tst/comon/ aggs/tst.normalize.d. out node=0444
261 file path=opt/SUNWItrt/tst/comon/aggs/tst.clear.d.out nbde=0444 327 file path=opt/SUNWItrt/tst/comon/ aggs/tst.order.d node=0444
262 file path=opt/SUNWItrt/tst/common/aggs/tst.clearavg.d node=0444 328 file path=opt/SUNWItrt/tst/comon/aggs/tst.order.d.out node=0444
263 file path=opt/SUNWItrt/tst/common/aggs/tst.clearavg. d. out node=0444 329 file path=opt/SUNWItrt/tst/common/aggs/tst.quantize.d node=0444
264 file path=opt/SUNWItrt/tst/comon/ aggs/tst.clearavg2.d node=0444 330 file path=opt/SUNWItrt/tst/common/ aggs/tst.quantize. d. out node=0444
265 file path=opt/SUNWItrt/tst/comon/ aggs/tst.cl earavg2. d. out node=0444 331 file path=opt/SUNWItrt/tst/comon/ aggs/tst.quant many.d node=0444
266 file path=opt/SUNWItrt/tst/common/aggs/tst.cleardenormalize.d node=0444 332 file path=opt/SUNWItrt/tst/comon/aggs/tst.quant many. d. out node=0444
267 file path=opt/SUNWItrt/tst/common/aggs/tst.cleardenormalize.d. out node=0444 333 file path=opt/SUNWItrt/tst/common/aggs/tst.quantround.d npbde=0444
268 file path=opt/SUNWItrt/tst/common/ aggs/tst.clearlquantize.d node=0444 334 file path=opt/SUNWItrt/tst/common/aggs/tst. quantround. d. out node=0444
269 file path=opt/SUNWItrt/tst/common/aggs/tst.clearlquantize.d. out node=0444 335 file path=opt/SUNWItrt/tst/comon/ aggs/tst.quantzero.d node=0444
270 file path=opt/SUNWItrt/tst/common/aggs/tst.clearnormalize.d node=0444 336 file path=opt/SUNWItrt/tst/comon/ aggs/tst.quantzero. d. out node=0444
271 file path=opt/SUNWItrt/tst/common/aggs/tst.clearnornalize.d. out node=0444 337 file path=opt/SUNWItrt/tst/common/aggs/tst.signature.d node=0444
272 file path=opt/SUNWItrt/tst/comon/ aggs/tst.cl earstddev.d node=0444 338 file path=opt/SUNWItrt/tst/common/ aggs/tst. si gnedkeys. d node=0444
273 file path=opt/SUNWItrt/tst/comon/ aggs/tst.cl earstddev. d. out node=0444 339 file path=opt/SUNWItrt/tst/common/ aggs/tst. si gnedkeys. d. out node=0444
274 file path=opt/SUNWItrt/tst/comon/aggs/tst.count.d nbde=0444 340 file path=opt/SUNWItrt/tst/common/ aggs/tst.signedkeyspos.d node=0444
275 file path=opt/SUNWItrt/tst/common/aggs/tst.count.d.out node=0444 341 file path=opt/SUNWItrt/tst/common/ aggs/tst.signedkeyspos. d. out npde=0444
276 file path=opt/SUNWItrt/tst/common/ aggs/tst.count?2.d node=0444 342 file path=opt/SUNWItrt/tst/common/ aggs/tst.sizedkeys.d node=0444
277 file path=opt/SUNWItrt/tst/common/ aggs/tst.count?2.d. out node=0444 343 file path=opt/SUNWItrt/tst/common/ aggs/tst.sizedkeys. d. out node=0444
278 file path=opt/SUNWItrt/tst/comon/aggs/tst.count3.d node=0444 344 file path=opt/SUNWItrt/tst/comon/aggs/tst.stddev.d node=0444
279 file path=opt/SUNWItrt/tst/common/aggs/tst.denormalize.d node=0444 345 file path=opt/SUNWItrt/tst/common/aggs/tst.stddev. d. out nbde=0444
280 file path=opt/SUNWItrt/tst/common/ aggs/tst.denormalize.d. out node=0444 346 file path=opt/SUNWItrt/tst/common/ aggs/tst.subr.d npde=0444
281 file path=opt/SUNWItrt/tst/comon/ aggs/tst.denormalizeonly.d node=0444 347 file path=opt/SUNWItrt/tst/comon/ aggs/tst.sumd node=0444
282 file path=opt/SUNWItrt/tst/comon/aggs/tst.denormalizeonly.d.out node=0444 348 file path=opt/SUNWItrt/tst/comon/aggs/tst.sum d. out node=0444
283 file path=opt/SUNWItrt/tst/common/aggs/tst.fntnormalize.d node=0444 349 file path=opt/SUNWItrt/tst/common/aggs/tst.trunc.d node=0444
284 file path=opt/SUNWItrt/tst/comon/aggs/tst.fntnormalize.d. out node=0444 350 file path=opt/SUNWItrt/tst/common/aggs/tst.trunc.d.out npde=0444
285 file path=opt/SUNWItrt/tst/comon/ aggs/tst.forns.d node=0444 351 file path=opt/SUNWItrt/tst/common/aggs/tst.trunc0.d node=0444
286 file path=opt/SUNWItrt/tst/comon/aggs/tst.forns.d. out node=0444 352 file path=opt/SUNWItrt/tst/comon/aggs/tst.truncO.d. out node=0444
287 file path=opt/SUNWItrt/tst/comon/aggs/tst.goodkey.d node=0444 353 file path=opt/SUNWItrt/tst/comon/aggs/tst.truncquant.d npbde=0444
288 file path=opt/SUNWItrt/tst/common/ aggs/tst.keysort.d node=0444 354 file path=opt/SUNWItrt/tst/common/aggs/tst.truncquant.d.out node=0444
289 file path=opt/SUNWItrt/tst/common/ aggs/tst. keysort.d. out node=0444 355 file path=opt/SUNWItrt/tst/common/ aggs/tst.val sortkeypos.d node=0444
290 file path=opt/SUNWItrt/tst/comon/aggs/tst.|quantize.d node=0444 356 file path=opt/SUNWItrt/tst/common/ aggs/tst.val sortkeypos. d. out node=0444
291 file path=opt/SUNWItrt/tst/comon/aggs/tst.|quantize.d. out node=0444 357 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D D V_ZERO di vby0.d node=0444
292 file path=opt/SUNWItrt/tst/common/aggs/tst.|quantnornal.d node=0444 358 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D D V_ZERO divby0_1.d \
293 file path=opt/SUNWItrt/tst/common/ aggs/tst. | quantnormal.d. out node=0444 359 nmode=0444
294 file path=opt/SUNWItrt/tst/comon/aggs/tst.|quantrange.d node=0444 360 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D D V_ZERO divby0_2.d \
295 file path=opt/SUNWItrt/tst/comon/aggs/tst.|quantrange. d. out node=0444 361 node=0444
296 file path=opt/SUNWItrt/tst/common/aggs/tst.|quantround.d npode=0444 362 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D D V_ZERO nodby0.d npde=0444
297 file path=opt/SUNWItrt/tst/comon/ aggs/tst.| quantround. d. out node=0444 363 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D SYNTAX addm n.d node=0444
298 file path=opt/SUNWItrt/tst/common/ aggs/tst.|quantzero.d node=0444 364 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D SYNTAX di vm n.d node=0444
299 file path=opt/SUNWItrt/tst/common/aggs/tst.|quantzero.d. out node=0444 365 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D SYNTAX nmul add. d node=0444
300 file path=opt/SUNWItrt/tst/common/aggs/tst.max.d npbde=0444 366 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D SYNTAX nul div.d node=0444
301 file path=opt/SUNWItrt/tst/common/aggs/tst. max. d. out node=0444 367 file path=opt/SUNWItrt/tst/comon/arithnetic/tst.basics.d node=0444
302 file path=opt/SUNWItrt/tst/comon/ aggs/tst.max_neg.d node=0444 368 file path=opt/SUNWItrt/tst/common/arithnetic/tst.basics.d. out node=0444
303 file path=opt/SUNWItrt/tst/comon/aggs/tst. max_neg. d. out node=0444 369 file path=opt/SUNWItrt/tst/comon/arithnetic/tst.conpcast.d node=0444
304 file path=opt/SUNWItrt/tst/common/aggs/tst.m n.d node=0444 370 file path=opt/SUNWItrt/tst/comon/arithnetic/tst.conpcast.d.out node=0444
305 file path=opt/SUNWItrt/tst/comon/aggs/tst.m n.d.out node=0444 371 file path=opt/SUNWItrt/tst/comon/arithnetic/tst.conpnarrowassign.d node=0444
306 file path=opt/SUNWItrt/tst/comon/aggs/tst.m n_neg.d node=0444 372 file path=opt/SUNWItrt/tst/common/arithmetic/tst.conpnarrowassign.d.out \
307 file path=opt/SUNWItrt/tst/comon/aggs/tst.m n_neg.d. out node=0444 373 node=0444
308 file path=opt/SUNWItrt/tst/comon/aggs/tst. multiaggsl.d nbde=0444 374 file path=opt/SUNWItrt/tst/comon/arithnetic/tst.execcast.d node=0444
309 file path=opt/SUNWItrt/tst/comon/aggs/tst. multiaggs2.d npde=0444 375 file path=opt/SUNWItrt/tst/comon/arithnetic/tst.execcast.d.out node=0444
310 file path=opt/SUNWItrt/tst/common/aggs/tst. multiaggs2.d. out node=0444 376 file path=opt/SUNWItrt/tst/comon/arrays/err.D ARR BADREF. bad. d node=0444
311 file path=opt/SUNWItrt/tst/common/aggs/tst. mltiaggs3.d node=0444 377 file path=opt/SUNWItrt/tst/comon/arrays/err.D DECL_ARRBI G t oobi g. d node=0444
312 file path=opt/SUNWItrt/tst/comon/aggs/tst. multiaggs3.d.out node=0444 378 file path=opt/SUNWItrt/tst/comon/arrays/err. D DECL_ARRNULL. bad.d npde=0444
313 file path=opt/SUNWItrt/tst/common/aggs/tst. multinornalize.d node=0444 379 file path=opt/SUNWItrt/tst/comon/arrays/err. D DECL_ARRSUB. bad. d node=0444
314 file path=opt/SUNWItrt/tst/common/aggs/tst. multinormalize.d. out node=0444 380 file path=opt/SUNWItrt/tst/common/arrays/err.D DECL_PROTO TYPE. badtuple.d \
315 file path=opt/SUNWItrt/tst/comon/ aggs/tst.negl quant.d node=0444 381 node=0444
316 file path=opt/SUNWItrt/tst/comon/aggs/tst.negl quant.d. out node=0444 382 file path=opt/SUNWItrt/tst/comon/arrays/err.D_ | DENT_UNDEF. badur eg. d node=0444
317 file path=opt/SUNWItrt/tst/common/ aggs/tst.negorder.d node=0444 383 file path=opt/SUNWItrt/tst/comon/arrays/tst.basicl.d node=0444
318 file path=opt/SUNWItrt/tst/common/ aggs/tst. negorder. d. out node=0444 384 file path=opt/SUNWItrt/tst/common/arrays/tst.basic2.d node=0444
319 file path=opt/SUNWItrt/tst/common/aggs/tst.negquant.d node=0444 385 file path=opt/SUNWItrt/tst/common/arrays/tst.basic3.d node=0444
320 file path=opt/SUNWItrt/tst/common/ aggs/tst.negquant. d. out node=0444 386 file path=opt/SUNWItrt/tst/common/arrays/tst.basic4.d node=0444

new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf 7 new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf
387 file path=opt/SUNWItrt/tst/common/arrays/tst.basic5.d node=0444 453 file path=opt/SUNWItrt/tst/comon/ buffering/tst.sw tchl.d node=0444
388 file path=opt/SUNWItrt/tst/common/arrays/tst.basi c6.d node=0444 454 file pat h=opt/SUNWitrt/tst/comon/buffering/tst.sw tchl.d.out npde=0444
389 file path=opt/SUNWItrt/tst/comon/arrays/tst.uregsarray.d node=0444 455 file path=opt/SUNWitrt/tst/comon/ builtinvar/err. D_XLATE_NOCONV. cpuusage.d \
390 file path=opt/SUNWItrt/tst/common/assocs/err.D_OP_| NCOWAT. dupgt ype. d \ 456 node=0444
391 node=0444 457 file path=opt/SUNWItrt/tst/comon/ builtinvar/err.D_XLATE_NOCONV. ni ce.d \
392 file path=opt/SUNWItrt/tst/common/assocs/ err.D _OP_| NCOWPAT. dupttype. d \ 458 node=0444
393 node=0444 459 file path=opt/SUNWitrt/tst/comon/ builtinvar/err.D_XLATE_NOCONV. priority.d \
394 file path=opt/SUNWItrt/tst/comon/assocs/err.D _OP_| NCOWPAT. t hi s. d node=0444 460 node=0444
395 file path=opt/SUNWItrt/tst/common/ assocs/ err. D _PROTO ARG badsi g. d node=0444 461 file path=opt/SUNWitrt/tst/comon/ builtinvar/err.D_XLATE_NOCONV. prsize.d \
396 file path=opt/SUNWItrt/tst/conmon/ assocs/err. D _PROTO LEN. t oof ew. d node=0444 462 node=0444
397 file path=opt/SUNWItrt/tst/conmon/ assocs/ err. D _PROTO LEN. toomany. d node=0444 463 file path=opt/SUNWItrt/tst/comon/builtinvar/err.D XLATE_NOCONV.rssize.d \
398 file path=opt/SUNWItrt/tst/conmon/ assocs/ err. D _SYNTAX. errassign.d node=0444 464 node=0444
399 file path=opt/SUNWItrt/tst/comon/assocs/err.tupoflow d node=0444 465 file path=opt/SUNWItrt/tst/comon/ builtinvar/tst.arg0.d node=0444
400 file path=opt/SUNWitrt/tst/common/assocs/tst.cpyarray.d node=0444 466 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.argOcl ause.d node=0444
401 file path=opt/SUNWItrt/tst/comon/ assocs/tst.diffprofile.d node=0444 467 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.argl.d node=0444
402 file path=opt/SUNWItrt/tst/comon/assocs/tst.initialize.d node=0444 468 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.arglto8.d node=0444
403 file path=opt/SUNWitrt/tst/common/assocs/tst.invalidref.d npbde=0444 469 file path=opt/SUNWitrt/tst/comon/ builtinvar/tst.arglto8clause.d npbde=0444
404 file path=opt/SUNWitrt/tst/common/assocs/tst.m sc.d node=0444 470 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.caller.d node=0444
405 file pat h=opt/SUNWitrt/tst/common/ assocs/tst.orthogonality.d node=0444 471 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.callerl.d node=0444
406 file path=opt/SUNWItrt/tst/comon/assocs/tst.this.d node=0444 472 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.epid.d node=0444
407 file path=opt/SUNWitrt/tst/common/ assocs/tst.val assign. d. out node=0444 473 file path=opt/SUNWitrt/tst/comon/ builtinvar/tst.epidl.d node=0444
408 file pat h=opt/SUNWitrt/tst/common/ begin/err. D _PDESC ZERO. begi n. d node=0444 474 file pat h=opt/SUNWitrt/tst/common/builtinvar/tst.errno.d node=0444
409 file path=opt/SUNWAtrt/tst/comon/begin/err.D PDESC ZERO.tick.d node=0444 475 file pat h=opt/SUNWitrt/tst/comon/builtinvar/tst.errnol.d node=0444
410 file path=opt/SUNWItrt/tst/comon/ begin/tst.begin.d node=0444 476 file path=opt/SUNWAtrt/tst/comon/ builtinvar/tst.execnanme.d node=0444
411 file path=opt/SUNWitrt/tst/comon/ begi n/tst.begin.d. out node=0444 477 file path=opt/SUNWtrt/tst/comon/builtinvar/tst.hpriority.d node=0444
412 file path=opt/SUNWitrt/tst/common/ begin/tst.mltibegin. d nde=0444 478 file path=opt/SUNWItrt/tst/comon/ builtinvar/tst.id.d node=0444
413 file path=opt/SUNWitrt/tst/common/ begin/tst. multibegin.d.out node=0444 479 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.idl.d node=0444
414 file \ 480 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.ipl.d node=0444
415 pat h=opt/ SUNWitrt/tst/common/ bitfiel ds/err. D_ADDROF_BI TFI ELD. Bi t f i el dAddr ess 481 file path=opt/SUNWitrt/tst/comon/ builtinvar/tst.ipll.d node=0444
416 node=0444 482 file path=opt/SUNWItrt/tst/comon/ builtinvar/tst.|wpsinfo.d node=0444
417 file path=opt/SUNWitrt/tst/comon/bitfields/err.D _DECL_BFCONST. NegBitField.d \ 483 file pat h=opt/SUNWitrt/tst/comon/ builtinvar/tst.|wsinfol.d node=0444
418 node=0444 484 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.pid.d node=0444
419 file path=opt/SUNWitrt/tst/comon/ bitfields/err.D DECL_BFCONST. ZeroBitField.d \ 485 file path=opt/SUNWitrt/tst/comon/ builtinvar/tst.pidl.d node=0444
420 node=0444 486 file path=opt/SUNWItrt/tst/comon/ builtinvar/tst.psinfo.d nbde=0444
421 file path=opt/SUNWitrt/tst/comon/bitfields/err.D _DECL_BFSI ZE. ExceedBaseType. d \ 487 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.psinfol.d node=0444
422 node=0444 488 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.tid.d node=0444
423 file path=opt/SUNWitrt/tst/common/bitfields/err.D DECL_BFSI ZE. Gr eat er Than64.d \ 489 file path=opt/SUNWItrt/tst/common/builtinvar/tst.tidl.d node=0444
424 node=0444 490 file path=opt/SUNWItrt/tst/comon/ builtinvar/tst.timestanp.d node=0444
425 file path=opt/SUNWitrt/tst/common/bitfields/err.D DECL_BFTYPE. badtype.d \ 491 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.vtinmestanp.d node=0444
426 node=0444 492 file path=opt/SUNWItrt/tst/common/cg/err. D NOREG noreg.d node=0444
427 file path=opt/SUNWitrt/tst/comon/bitfields/err.D OFFSETOF_BI TFI ELD.d \ 493 file path=opt/SUNWtrt/tst/comon/cg/err.baddi f.d node=0444
428 node=0444 494 file path=opt/SUNWitrt/tst/common/clauses/ err. D | DENT_UNDEF. aggf un. d node=0444
429 file \ 495 file pat h=opt/SUNWitrt/tst/common/cl auses/ err. D_| DENT_UNDEF. aggt up. d node=0444
430 pat h=opt/ SUNWItrt/t st/ comron/ bitfiel ds/err.D_SI ZEOF_BI TFI ELD. Si zeof Bitfi el d. 496 file path=opt/SUNWIitrt/tst/comon/cl auses/err.D_| DENT_UNDEF. arrtup. d node=0444
431 node=0444 497 file path=opt/SUNWItrt/tst/comon/cl auses/ err.D_| DENT_UNDEF. body. d node=0444
432 file path=opt/SUNWitrt/tst/comon/ bitfields/tst.BitFieldPronotion.d node=0444 498 file path=opt/SUNWItrt/tst/comon/ cl auses/ err.D_| DENT_UNDEF. bot h. d node=0444
433 file path=opt/SUNWitrt/tst/comon/ bitfields/tst.SizeofBitField. d node=0444 499 file path=opt/SUNWItrt/tst/comon/cl auses/ err.D_| DENT_UNDEF. pred. d node=0444
434 file path=opt/SUNWitrt/tst/comon/buffering/err.end.d node=0444 500 file path=opt/SUNWItrt/tst/comon/cl auses/tst.nopred.d node=0444
435 file path=opt/SUNWitrt/tst/comon/ buffering/err.resizel.d node=0444 501 file path=opt/SUNWItrt/tst/comon/cl auses/tst.pred.d node=0444
436 file path=opt/SUNWitrt/tst/comon/ buffering/err.resize2.d node=0444 502 file path=opt/SUNWItrt/tst/comon/cl auses/tst.predfirst.d node=0444
437 file path=opt/SUNWItrt/tst/comon/ buffering/err.resize3.d node=0444 503 file path=opt/SUNWItrt/tst/comon/cl auses/tst.predl ast.d npde=0444
438 file path=opt/SUNWitrt/tst/comon/buffering/err.zerobuf.d node=0444 504 file path=opt/SUNWItrt/tst/common/cpc/err.D PDESC ZERO. | owf r equency. d \
439 file path=opt/SUNWItrt/tst/comon/buffering/tst.alignring.d node=0444 505 node=0444
440 file path=opt/SUNWitrt/tst/comon/ buffering/tst.cputine.ksh node=0444 506 file path=opt/SUNWItrt/tst/comon/cpc/err.D PDESC ZERO. mal f or medoverflow. d \
441 file path=opt/SUNWItrt/tst/comon/ buffering/tst.dynvarsize.d node=0444 507 node=0444
442 file path=opt/SUNWitrt/tst/comon/buffering/tst.filll.d node=0444 508 file path=opt/SUNWItrt/tst/common/cpc/err.D PDESC ZERO nonexi stentevent.d \
443 file path=opt/SUNWitrt/tst/comon/buffering/tst.fill1l.d.out node=0444 509 node=0444
444 file path=opt/SUNWitrt/tst/comon/ buffering/tst.resizel.d node=0444 510 file path=opt/SUNWItrt/tst/comon/cpc/err.cpcvscpustatpartl. ksh node=0444
445 file path=opt/SUNWItrt/tst/comon/ buffering/tst.resize2.d node=0444 511 file path=opt/SUNWItrt/tst/common/cpc/err.cpcvscpustatpart2. ksh node=0444
446 file path=opt/SUNWitrt/tst/comon/buffering/tst.resize3.d node=0444 512 file path=opt/SUNWItrt/tst/common/cpc/err.cputrackfailtostart.ksh node=0444
447 file path=opt/SUNWItrt/tst/comon/buffering/tst.ringl.d node=0444 513 file path=opt/SUNWItrt/tst/comon/cpc/err.cputracktern nates. ksh node=0444
448 fil e pat h=opt/SUNWItrt/tst/comon/buffering/tst.ring2.d node=0444 514 file path=opt/SUNWItrt/tst/comon/cpc/err.toomanyenablings.d node=0444
449 file path=opt/SUNWItrt/tst/comon/ buffering/tst.ring2.d.out node=0444 515 file path=opt/SUNWItrt/tst/comon/cpc/tst.allcpus. ksh node=0444
450 file pat h=opt/SUNWitrt/tst/comon/buffering/tst.ring3.d node=0444 516 file path=opt/SUNWItrt/tst/comon/cpc/tst.genericevent.d node=0444
451 file pat h=opt/SUNWitrt/tst/comon/buffering/tst.ring3.d.out node=0444 517 file path=opt/SUNWItrt/tst/common/cpc/tst.platfornmevent. ksh node=0444
452 file pat h=opt/SUNWitrt/tst/comon/buffering/tst.smallring.d node=0444 518 file path=opt/SUNWItrt/tst/comon/decl s/err.D DECL_LOCASSC. NonLocal Assoc. d \

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552,
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
Brs
576
577
578
579
580
581
582
583
584

node=0444
file path=opt/SUNWitrt/tst/comon/decls/err.
node=0444

D DECL_LONG NT. LongStruct.d \

file path=opt/SUNWItrt/tst/comon/decl s/ err. D DECL_PARMCLASS. BadSt or ageC ass.d \

node=0444
file path=opt/SUNWitrt/tst/common/decls/err.
node=0444

D_DECL_PROTO NAME. Voi dNarre. d \

file path=opt/SUNWItrt/tst/comon/decls/err.D DECL_PROTO TYPE. Dyn.d npde=0444
file path=opt/SUNWItrt/tst/common/decls/err.D DECL_PROTO VARARGS. Var LenArgs.d \

node=0444
file path=opt/SUNWitrt/tst/comon/decls/err.
node=0444

D_DECL_PROTO VO D. NonSol eVoi d. d \

file path=opt/SUNWItrt/tst/common/decls/err.D DECL_SI GNI NT. Unsi gnedStruct.d \

node=0444
file path=opt/SUNWitrt/tst/comon/decls/err.
node=0444
pat h=opt/ SUNWdtrt/t st/ common/ decl s/ tst.
pat h=opt/ SUNWAt rt/t st/ common/ decl s/ tst.
pat h=opt/ SUNWIt rt/t st/ comon/ decl s/t st.
pat h=opt/ SUNWIt rt/t st/ common/ decl s/t st.
pat h=opt/ SUNWdtrt/t st/ common/ decl s/ tst.
pat h=opt/ SUNWAt rt/ t st/ common/ dr ops/ dr p.
pat h=opt / SUNWAt rt/ t st/ common/ dr ops/ dr p.
pat h=opt/ SUNWdtrt/t st/ cormmon/ dr ops/ dr p.
pat h=opt/ SUNWdtrt/t st/ conmmon/ dr ops/ dr p.
pat h=opt/ SUNWt rt/t st/ common/ dr ops/ dr p.
node=0444
pat h=opt/ SUNWtrt/t st/ conmmon/ dr ops/ dr p.
pat h=opt/ SUNWdt rt/ t st/ common/ dr ops/ dr p.
pat h=opt/ SUNWdt rt/ t st/ common/ dr ops/ dr p.
node=0444
file\

©ODO®D®D®D®D®D®DDD

D_DECL_VO DATTR. Shor t Voi dDecl .

d\

arrays.d node=0444

basi cs. d node=0444

funcs. d node=0444

poi nters. d node=0444

var ar gsfuncs. d node=0444
DTRACEDROP_AGGREGATI ON. d node=0444
DTRACEDROP_DBLERROR. d npode=0444
DTRACEDROP_DYNAM C. d node=0444
DTRACEDROP_PRI NCI PAL. d npde=0444
DTRACEDRCP_PRI NCI PAL. end. d \

DTRACEDROP_SPEC. d npde=0444
DTRACEDROP_SPECUNAVAI L. d node=0444
DTRACEDROP_STKSTROVERFLOW d \

pat h=opt/ SUNWitrt/tst/common/ dtraceltil/err. D PDESC ZEROQ. | nval i dDescri ptionl

node=0444
pat h=opt / SUNWIt rt/t st/ common/ dtracelt i
pat h=opt / SUNWIt rt/t st/ comon/ dtracelt i
pat h=opt / SUNWIt rt/t st/ common/ dtracelt i

pat h=opt / SUNWAt rt/t st/ common/ dtracelt i

pat h=opt / SUNWIt rt/t st/ common/ dtracelt i

pat h=opt / SUNWIt rt/t st/ common/ dtraceUti

pat h=opt/ SUNWdtrt/t st/ comon/ dtracelti
node=0444

—h —h —h —h —h —h —h —h
®®D®Dd®D®DDMD D

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.
node=0444

file\

I/tst.
I/tst.
I/tst.
pat h=opt/ SUNWdtrt/t st/ comon/dtraceUtil/tst.
I/tst.
I/tst.
I/tst.
I/tst.

AddSear chPat h. d. ksh nbde=0444
Buf si zeG ga. d. ksh node=0444
Buf si zeKi | 0. d. ksh npde=0444
Buf si zeMega. d. ksh npde=0444
Buf si zeTer a. d. ksh node=0444
Dat aMbdel 32. d. ksh node=0444
Dat aMbdel 64. d. ksh npbde=0444
Def i neNameW t hCPP. d. ksh \

Def i neNaneW t hCPP. d. ksh. out \
Destruct Wt hFunction. d. ksh \

pat h=opt/ SUNWIt rt/t st/ comron/ dtraceltil/tst.Destruct WthFuncti on. d. ksh. out \

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.
node=0444

file\

Destruct Wthl D. d. ksh \
Destruct Wt hl D. d. ksh. out \
Destruct Wt hMbdul e. d. ksh \
Dest ruct Wt hMbdul e. d. ksh. out \
Destruct Wt hNare. d. ksh \
Destruct Wt hNane. d. ksh. out \

Destruct Wt hProvi der.d. ksh \

pat h=opt/ SUNWIt rt/t st/ comron/ dtraceltil/tst.Destruct Wt hProvider.d. ksh. out \

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUltil/tst.

node=0444

file path=opt/SUNWtrt/tst/comon/dtraceltil/tst.

node=0444
file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.
node=0444
file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.
file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.
file path=opt/SUNWitrt/tst/common/dtraceltil/tst.
node=0444
file path=opt/SUNWitrt/tst/common/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444
pat h=opt/ SUNWIt rt/t st/ comon/dtraceltil/ts
pat h= opt/SUNWJtrt/tst/cormDn/dtraceUtlI/t
pat h=opt/ SUNWIt rt/t st/ comron/dtraceUtil/t
pat h=opt / SUNWIt rt/t st/ comon/dtraceUtil/t
node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

nmode=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWtrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWIitrt/tst/comon/dtraceltil/tst.

nmode=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

10

Destruct Wt hout Wd. ksh \

ELFGener ati onCut. d. ksh \

ELFGener ati onWthO d. ksh \

Exit St atusl. d. ksh npde=0444
Exi t St at us2. d. ksh npbde=0444
Ext r aneousPr obel ds. d. ksh \

I nval i dFuncNanel.

I nval i dFuncNane2.

.Invalidldl.d. ksh
.I'nvalidld2.d.ksh
.Invalidld3.d. ksh
. I nval i dMbdul el. d.

I nval i dvbdul e2. d.
I nval i dvbdul e3. d.
I nval i dvbdul e4. d.
I nval i dProbel dent
I nval i dProvi der 1.
I nval i dProvi der 2.
I nval i dProvi der 3.

I nval i dProvi der 4.

I nval i dTraceFuncl.
I nval i dTraceFunc2.
I nval i dTraceFunc3.
I nval i dTr aceFunc4.
I nval i dTr aceFunc5.
I nval i dTr aceFuncé.
I nval i dTraceFunc?.
I nval i dTr aceFunc8.

I nval i dTr aceFunc9.

I nval i dTracel D1.

I nval i dTr acel D2.

I nval i dTr acel D4.
I nval i dTracel D5.

I nval i dTr acel D6.

d
d
I nval i dTracel D3. d.
d
d
d

d. ksh \

d. ksh \

node=0444
node=0444
node=0444

ksh \
ksh \
ksh \
ksh \

ifier.

d. ksh
d. ksh
d. ksh
d. ksh
. ks
. ks
. ks
. ks

d

d

d

d

d. ks
d. ks
d. ks
d. ks
d. ks
. ksh
. ksh
ksh
. ksh
. ksh

. ksh

h
h
h
h
h
h
h
h
h
\
\

d. ksh \

—

—

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716

file path=opt/SUNWIitrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

nmode=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.
node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.
node=0444

file path=opt/SUNWtrt/tst/comon/dtraceltil/tst.
node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.
node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444
e pat h=opt/SUNWItrt/tst/comon/dtraceltil
e path=opt/SUNWItrt/tst/comon/dtraceltil
e path=opt/SUNWItrt/tst/comon/dtraceltil
e pat h=opt/SUNWItrt/tst/comon/dtraceltil
node=0444

file path=opt/SUNWitrt/tst/common/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

I nval i dTracel D7. d. ksh

I nval i dTr aceModul el. d.

I nval i dTr aceMbdul e2.
I nval i dTr aceMobdul e3.
I nval i dTr aceMbdul e4.

I nval i dTr aceMbdul e6.
I nval i dTr aceMbdul e7.
I nval i dTr aceMbdul e8.
I nval i dTr aceNanel.
I nval i dTr aceNane2.
I nval i dTr aceNane3.

I nval i dTr aceNane4.

d
d
d
d
I nval i dTr aceNane5. d.
I nval i dTr aceName6. d
I nval i dTraceNane7. d
I nval i dTraceNane8. d

d

I nval i dTr aceNanme9.

I nval i dTraceProvi der 1.
I nval i dTraceProvi der 2.
I nval i dTraceProvi der 3.
I nval i dTraceProvi der 4.

I nval i dTr aceProvi der 5.

d
d
d
I nval i dTr aceMbdul e5. d.
d
d
d

11
\
ksh \

.ksh \
.ksh \
.ksh \

ksh \

.ksh \
.ksh \
.ksh \
.ksh \
.ksh \
.ksh \
.ksh \
ksh \
.ksh \
.ksh \
.ksh \
.ksh \

d. ksh \
d. ksh \
d. ksh \
d. ksh \
d

.ksh \

Mul ti pl el nval i dProbel d. d. ksh \

Pr epr ocessor St at enent .

UnDef i neNameW t hCPP. d.

d. ksh \

. Qui et Mode. d. ksh npode=0444
. Qui et Mode. d. ksh. out
. Test Conpi | e. d. ksh npde=0444
. Test Conpi | e. d. ksh. out

node=0444

\
ksh \

Zer oFunct i onProbes. d. ksh \

Zer oFunct i onProbes. d. ksh. out \

Zer oMbdul eProbes. d. ksh \

Zer oMbdul eProbes. d. ksh. out \

Zer oNanePr obes. d. ksh \

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 12

node=0444

file path=opt/SUNWitrt/tst/common/dtraceltil/tst.ZeroNaneProbes. d. ksh. out \
node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.ZeroProbeldentfier.d. ksh\
node=0444

file path=opt/SUNWitrt/tst/common/dtraceltil/tst.ZeroProbesWthoutZ. d. ksh \
node=0444

file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst. ZeroProvi derProbes. d. ksh \
node=0444

file path=opt/SUNWitrt/tst/comon/dtraceltil/tst.ZeroProviderProbes.d. ksh. out \
node=0444

file path=opt/SUNWItrt/tst/comon/end/ err.D_ | DENT_UNDEF. ti nespent.d npde=0444

file path=opt/SUNWAtrt/tst/comon/end/tst.end.d node=0444

file path=opt/SUNWitrt/tst/comon/end/tst.endw t houtbegi n.d node=0444

file path=opt/SUNWitrt/tst/comon/end/tst. multibegi nend.d node=0444

file path=opt/SUNWitrt/tst/comon/end/tst.multiend.d node=0444

file path=opt/SUNWItrt/tst/comon/enunl err. D DECL_| DRED. EnunSaneNane. d \
node=0444

file path=opt/SUNWitrt/tst/comon/ enuni err. D UNKNOM. Repeat | dentifiers.d \
node=0444

file path=opt/SUNWItrt/tst/comon/enunl tst. EnunEquality.d node=0444

file path=opt/SUNWitrt/tst/common/ enunitst.EnunSaneVal ue. d node=0444

file path=opt/SUNWitrt/tst/common/ enunitst.EnunVal Assi gn. d node=0444

file path=opt/SUNWitrt/tst/comon/env/err.D_PRAGVA OPTSET. setfronscript.d \
node=0444

file path=opt/SUNWItrt/tst/comon/env/err.D PRAGVA OPTSET. unsetfronscript.d \

743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

node=0444
pat h=opt/ SUNWdt rt/t st/ comon/ env/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ env/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ env/ t st
pat h=opt / SUNWIt rt/t st/ comon/ env/tst.
pat h=opt / SUNWIt rt/t st/ comon/ env/tst.
pat h=opt/ SUNWdtrt/t st/ common/ env/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ env/tst.
pat h=opt/ SUNWAt rt/t st/ comon/ env/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ env/tst.
pat h=opt/ SUNWdt rt/t st/ comon/ env/tst.

I d_nol a

unset en
unset en
unset en
unset en

pat h=opt/ SUNWdtrt/tst/comon/error/tst.error
pat h=opt/ SUNWItrt/tst/comon/exit/err.
pat h=opt / SUNWIt rt/t st/ comon/exit/err.exitar

—h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h
OODODODDPDDDDDDDDDDMDMDMD

node=0444
pat h=opt / SUNWAt rt/ t st/ common/ f bt provi der/t st .
pat h=opt / SUNWdt rt/t st/ conmon/ f bt provi der/tst.
pat h=opt/ SUNWdtrt/t st/ common/ f bt provi der/tst.

node=0444
pat h=opt / SUNWAt rt/ t st/ common/ f bt provi der/t st .
at h=opt / SUNWIt rt/t st/ common/ f bt provi der/tst.

node=0444

file path=opt/SUNWitrt/tst/comon/funcs/err.

file path=opt/SUNWitrt/tst/comon/funcs/err.
node=0444

file path=opt/SUNWItrt/tst/comon/funcs/err.
node=0444

file path=opt/SUNWitrt/tst/comon/funcs/err.
file path=opt/SUNWItrt/tst/comon/funcs/err.

.setenvl.
setenvl.
set env2.
setenv2.

pat h=opt / SUNWIt rt/t st/ comon/ exit/tst. basicl.
pat h=opt/ SUNWdtrt/t st/ common/ f bt provi der/err.

P

pat h=opt/ SUNWdtrt/t st/ conmmon/ f bt provi der/tst.
pat h=opt/ SUNWdtrt/t st/ common/ f bt provi der/tst.
pat h=opt / SUNWAt rt/t st/ common/ f bt provi der/t st .
pat h=opt / SUNWAt rt/t st/ common/ f bt provi der/ t st .
pat h=opt / SUNWit rt/ t st/ common/ f uncs/ err. D_FUNC_UNDEF. pr ogenyof bad1. d \

zyl oad. ksh npde=0444

ksh node=0444

ksh. out node=0444
ksh node=0444

ksh. out node=0444
vl. ksh node=0444

v1l. ksh. out npde=0444
v2. ksh node=0444

v2. ksh. out node=0444

d npde=0444
end. d node=0444

gl.d node=0444
d npde=0444

basi c. d nnde=0444

I d_nol azyl oad. ksh. out npde=0444

pat h=opt/ SUNWdtrt/t st/ comon/ error/tst. DTRACEFLT_BADADDR d npde=0444
pat h=opt/ SUNWAt rt/t st/ comon/error/tst. DTRACEFLT_DI VZERO. d node=0444
pat h=opt/ SUNWIt rt/t st/ comon/error/tst. DTRACEFLT_UNKNOMW. d node=0444
pat h=opt/ SUNWdt rt/t st/ comon/error/tst.error.

D PROTO_LEN. noar g. d node=0444

D PDESC ZERO. notreturn.d \

functionentry.d node=0444

functionreturnval ue.

d\

ioctlargs.d nbde=0444

of fset.d node=0444

return.d node=0444
return0O.d node=0444
tailcall.

d node=0444

of f set zero. d node=0444

D OP_VFPTR badop. d node=0444
D PROTO ARG chi |l | badarg.d \

D _PROTO_ARG copyout badarg.d \

D _PROTO ARG nobadarg. d nmode=0444
D_PROTO ARG r ai sebadarg. d \

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848

node=0444

file path=opt/SUNWitrt/tst/comon/funcs/err.D _PROTO ARG tol ower.d npde=0444
file path=opt/SUNWAtrt/tst/comon/funcs/err.D_PROTO ARG toupper.d mode=0444
file

pat h=opt/ SUNWdtrt/t st/ comon/ funcs/err.
node=0444

file path=opt/SUNWitrt/tst/comon/funcs/err.

nmode=0444

file path=opt/SUNWItrt/tst/comon/funcs/err.

node=0444

file path=opt/SUNWitrt/tst/comon/funcs/err.

node=0444

file path=opt/SUNWitrt/tst/common/funcs/err.

node=0444

file path=opt/SUNWitrt/tst/comon/funcs/err.

node=0444

file path=opt/SUNWitrt/tst/common/funcs/err.

node=0444

file path=opt/SUNWitrt/tst/comon/funcs/err.

node=0444

€

e pat h=opt/SUNWItrt/tst/comon/funcs/err.

e path=opt/SUNWItrt/tst/common/funcs/err.

e path=opt/SUNWItrt/tst/comon/funcs/err.

e path=opt/SUNWItrt/tst/comon/funcs/err.

e pat h=opt/SUNWItrt/tst/comon/funcs/err.
node=0444

file path=opt/SUNWitrt/tst/comon/funcs/err.

node=0444
file path=opt/SUNWItrt/tst/comon/funcs/err.
file path=opt/SUNWItrt/tst/comon/funcs/err.
file path=opt/SUNWitrt/tst/comon/funcs/err.
node=0444
file path=opt/SUNWItrt/tst/comon/funcs/err.
file path=opt/SUNWItrt/tst/comon/funcs/err.
node=0444

pat h=opt/ SUNWdt rt/t st/ comon/ funcs/err.

D_PROTO _LEN,

D_PROTO_LEN.
D_PROTO_LEN.
D_PROTO_LEN.
D_PROTO LEN.
D_PROTO_LEN.
D_PROTO_LEN.
D_PROTO_LEN.
D_PROTO LEN.
D_PROTO_LEN.
D_PROTO_LEN.
D_PROTO_LEN.
D_PROTO_LEN.
D_PROTO_LEN.
D_PROTO_LEN.

D_PROTO_LEN.

D_PROTO_LEN.
D _PROTO_LEN.

D_PROTO_LEN.
D_PROTO_LEN.

al | ocanoarg.d \

badbr eakpoint.d \
chilltoofew. d \
chilltoonmany.d \
copyout strbadarg.d \
copyoutstrtoofew. d \
copyoutt oof ew. d \
copyoutt oonmany. d \

not oof ew. d node=0444
not oomany. d node=0444
nt abadar g. d node=0444
nt at oof ew. d npde=0444
nt at oomany. d node=0444
pani cbadarg. d \
progenyof bad2. d \

st opbadar g. d node=0444
tol ower.d node=0444

t ol owertoonany.d \

t oupper . d node=0444
t ouppert oonany. d \

file path=opt/SUNWitrt/tst/comon/funcs/err.D_STRI NGOF_TYPE. badstri ngof.d \

node=0444

—h —h
DOODODDDDODDDDDDDDODODDDD®DD®D®MD®D®DDDD

pat h=opt/ SUNWIt rt/t st/ comon/ funcs/err.
pat h=opt/ SUNWdt rt/t st/ comon/ funcs/err.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/err.
pat h=opt/ SUNWdt rt/t st/ common/ funcs/err.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/err.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/err.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/err.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/err.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/err.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/err.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/err.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/err.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/err.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/err.
pat h=opt/ SUNWdtrt/t st/ common/ funcs/err.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/err.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/err.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWdtrt/t st/ common/ funcs/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWdt rt/t st/ comon/ f uncs/ t st.

badal | oca. d

pat h=opt/ SUNWdtrt/t st/ comon/ funcs/ err. D VAR_UNDEF. badvar. d npde=0444
pat h=opt/ SUNWIt rt/t st/ common/ funcs/err.

nmode=0444

badal | oca2. d node=0444
badbcopy. d nbde=0444

badbcopyl. d npbde=0444
badbcopy2. d node=0444
badbcopy3. d node=0444
badbcopy4. d node=0444
badbcopy5. d nbde=0444
badbcopy6. d nbde=0444
badchill.d node=0444

chi | | badarg.

ksh node=0444

copyout . d node=0444

copyout badaddr . ksh node=0444
copyout st rbadaddr . ksh node=0444
i net _nt oa6badaddr. d npde=0444
i net _nt oabadaddr.d node=0444
i net _nt opbadaddr. d npde=0444
i net _nt opbadar g. d node=0444
badf r eopen. ksh node=0444
basenane. d node=0444
basenane. d. out node=0444
bcopy. d node=0444

chill.
cl eanpath. d

cl eanpat h. d.

ksh node=0444

node=0444
out node=0444

copyi n. d node=0444
copyi nto. d node=0444
ddi _pat hnanme. d node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914

DDODODODDDDDDDDDDDDDDDDDODDDDDDDPDDDDODODODDDDODDDDDDMD®MDMDMDMDMDMD

OODODDDDDDDDDMDMDD

pat h=opt/ SUNWdtrt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/tst.

pat h=opt/ SUNWdtrt/t st/ comon/ funcs/tst.

pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWdt rt/t st/ comon/ funcs/ tst.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt / SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWdt rt/t st/ comon/ f uncs/ t st.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWAt rt/t st/ common/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/ tst.
pat h=opt/ SUNWdtrt/t st/ common/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ common/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWtrt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWAt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt / SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ f uncs/ t st.
pat h=opt/ SUNWdtrt/t st/ comon/ funcs/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ funcs/tst.
pat h=opt / SUNWdt rt / t st/ common/ gr anmar / er
pat h=opt / SUNWdt rt / t st/ common/ gr anmar / er
pat h=opt/ SUNWdtrt/t st/ comon/ grammar/ts
pat h=opt / SUNWAt rt/t st/ common/ granmar/ts
pat h=opt / SUNWAt rt/t st/ comon/ i ncl ude/ts
pat h=opt/ SUNWItrt/t st/ comon/inlinel/err.
pat h=opt/ SUNWdtrt/tst/comon/inline/err.
pat h=opt/ SUNWdtrt/tst/comon/inline/err.
pat h=opt/ SUNWItrt/tst/comon/inlinel/err.
pat h=opt/ SUNWdtrt/tst/comon/inline/err.
pat h=opt/ SUNWdtrt/tst/comon/inline/err.

node=0444
pat h=opt/ SUNWIt rt/t st/ comon/inline/tst.
pat h=opt/ SUNWIt rt/t st/ comon/inline/tst.
pat h=opt/ SUNWdtrt/t st/ common/inline/tst.
pat h=opt/ SUNWdtrt/tst/comon/inline/tst.
pat h=opt / SUNWItrt/t st/ comon/inline/tst.
pat h=opt/ SUNWIt rt/t st/ comon/inline/tst.
pat h=opt/ SUNWdtrt/t st/ comon/io/ tst.fds.
pat h=opt/ SUNWdtrt/tst/comon/io/ tst.fds.
pat h=opt/ SUNWItrt/tst/comon/io/tst.fds.

pat h=opt / SUNWIt rt/t st/ common/ i p/ get . i pv
pat h=opt/ SUNWIt rt/t st/ common/ i p/ get.i pv
pat h=opt/ SUNWdtrt/t st/ comon/ip/tst.ipv
pat h=opt / SUNWAt rt/t st/ comon/ip/tst.ipv
pat h=opt / SUNWAtrt/t st/ comon/ip/tst.ipv
pat h=opt/ SUNWItrt/tst/comon/ip/tst.ipv

14

defaul t.d node=0444
freopen. ksh node=0444
ftruncate. ksh node=0444
ftruncate. ksh. out node=0444
hton. d node=0444

ndex. d node=0444

ndex. d. out node=0444

net _ntoa.d node=0444

net _ntoa.d. out node=0444
net _nt oa6. d node=0444

net _nt oa6. d. out node=0444
net _ntop.d node=0444

net _ntop. d. out node=0444
I1tostr.d node=0444
Il1tostr.d.out node=0444

| | tostrbase.d node=0444

I I tostrbase. d. out node=0444
mut ex_owned. d node=0444

mut ex_owner . d node=0444

mut ex_t ype_adapti ve. d node=0444
progenyof . d npbde=0444

rand. d node=0444

strchr.d node=0444
strchr. d. out node=0444
strjoin.d node=0444
strjoin.d. out node=0444
strstr.d node=0444
strstr.d. out node=0444
strtok.d node=0444
strtok. d. out node=0444
strtok_nul |l .d node=0444
substr.d node=0444
substr. d. out node=0444
substrm nate. d npde=0444
substrm nate. d. out node=0444
system d node=0444
system d. out node=0444

tol ower.d npde=0444

t oupper .d npde=0444

r.D ADDROF_LVAL. d npde=0444
r.D EMPTY. enpty. d node=0444
t.clauses.d node=0444
t.stnts.d node=0444
t.includefirst.ksh node=0444
D DECL_| DRED. r edef 1. d node=0444
D DECL_I| DRED. r edef 2. d node=0444
D

DENT_UNDEF. recur. d node=0444
D_OP_| NCOVPAT. baddef 1. d node=0444
D_OP_| NCOVPAT. baddef 2. d node=0444
D_OP_| NCOVPAT. badxl ate. d \

I nl'i neDat aAssi gn. d node=0444
I nli neExpr essi on. d node=0444
I'nlineKinds.d node=0444

I nli neKi nds. d. out npde=0444
I nl'i neTypedef.d node=0444
InlineWitabl eAssi gn. d node=0444
d nobde=0444

d. out node=0444

exe node=0555

4renot e. pl npde=0555
6renot e. pl nmode=0555

4| ocal i cnp. ksh npde=0444

4| ocal i cnp. ksh. out npde=0444
4l ocal t cp. ksh nbde=0444

4l ocal t cp. ksh. out nbde=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

pat h=opt/ SUNWIt rt/t st/ comon/ip/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ip/tst.
pat h=opt/ SUNWdtrt/t st/ common/ip/tst.
pat h=opt / SUNWAtrt/t st/ comon/ip/tst.
pat h=opt/ SUNWdtrt/tst/comon/ip/tst.

pat h=opt/ SUNWdtrt/t st/ common/
pat h=opt / SUNWdt rt/t st/ comron/
pat h=opt / SUNWdt rt/ t st/ comon/
pat h=opt / SUNWdt rt/ t st/ comon/
pat h=opt/ SUNWdtrt/t st/ conmmon/
pat h=opt / SUNWdt rt/t st/ comron/
pat h=opt / SUNWdt rt/t st/ comron/
pat h=opt/ SUNWdtrt/t st/ conmmon/
pat h=opt/ SUNWdtrt/t st/ common/
pat h=opt/ SUNWtrt/ t st/ common/
pat h=opt / SUNWIt rt/t st/ comron/
pat h=opt/ SUNWdtrt/t st/ conmmon/
pat h=opt/ SUNWdtrt/t st/ common/
pat h=opt/ SUNWtrt/t st/ common/
node=0444
pat h=opt / SUNWIt rt/t st/ comron/
pat h=opt/ SUNWdtrt/t st/ conmmon/
pat h=opt/ SUNWtrt/t st/ common/
pat h=opt / SUNWdt rt/t st/ comron/
pat h=opt / SUNWdt rt/t st/ comron/
node=0444
pat h=opt/ SUNWtrt/t st/ common/
pat h=opt / SUNWdt rt/t st/ comron/
pat h=opt / SUNWdt rt/ t st/ comon/
pat h=opt / SUNWdt rt/ t st/ comon/
pat h=opt/ SUNWtrt/t st/ conmmon/
node=0444
pat h=opt / SUNWdt rt/t st/ comon/
pat h=opt / SUNWdt rt/ t st/ comon/
pat h=opt/ SUNWdtrt/t st/ common/
pat h=opt/ SUNWtrt/t st/ common/
pat h=opt / SUNWdt rt/t st/ comon/
pat h=opt/ SUNWdtrt/t st/ conmmon/
pat h=opt/ SUNWdtrt/t st/ common/
pat h=opt/ SUNWt rt/ t st/ conmmon/
pat h=opt / SUNWdt rt/ t st/ comron/
pat h=opt/ SUNWdtrt/t st/ conmmon/
pat h=opt/ SUNWdtrt/t st/ conmmon/
pat h=opt/ SUNWtrt/ t st/ common/
pat h=opt / SUNWIt rt/t st/ comon/
pat h=opt / SUNWIt rt/t st/ comon/

OCDODODODDODDDDODDDDDODODDDODODDDD®D®MD®MD®MD®MD®DDDD

—h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h
OCDODODODDODDDDDDDDDMDDMD

nmode=0444

—h —h —h —h —h —h

pat h=opt/ SUNWtrt/t st/ comon/ip/tst.
pat h=opt / SUNWItrt/t st/ comon/ip/tst.

pat h=opt/ SUNWdtrt/t st/ comon/ip/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ip/tst.
pat h=opt / SUNWIt rt/t st/ comon/ip/tst.
pat h=opt / SUNWIt rt/t st/ comon/ip/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ip/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ip/tst.
pat h=opt / SUNWAt rt/t st/ comon/ip/tst.
pat h=opt / SUNWItrt/t st/ comon/ip/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ip/tst.
ava_api/test.jar
ava_api /tst.
ava_api /tst.
ava_api /tst.
ava_api/tst.
ava_api /tst.
ava_api /tst.
ava_api /tst.
ava_api/tst.
ava_api/tst.
ava_api /tst.
ava_api /tst.
ava_api/tst.
ava_api/tst.

ava_api /tst.
ava_api /tst.
ava_api/tst.
ava_api /tst.
ava_api /tst.

ava_api/tst.
ava_api /tst.
ava_api /tst.
ava_api /tst.
ava_api/tst.

ava_api /tst.
ava_api /tst.
ava_api/tst.
ava_api/tst.
ava_api /tst.
ava_api /tst.
son/tst.
son/tst.
son/tst.
son/tst.
son/tst.
son/tst.
son/tst.
exer/err.D CHR NL. char.
pat h=opt / SUNWit rt/t st/ common/ | exer/err. D_CHR_NULL. char. d node=0444
pat h=opt / SUN\Wt rt/t st/ common/ |l exer/err.D_INT_DIG T.InvalidDigit.d \

i pv4l ocal udp. ksh node=0444

i pv4l ocal udp. ksh. out node=0444

i pv4r enot ei cnp. ksh nbde=0444

i pv4r enot ei cnp. ksh. out node=0444
i pv4r enot et cp. ksh node=0444

i pv4r enot et cp. ksh. out node=0444
i pv4r enot eudp. ksh node=0444

i pv4r enot eudp. ksh. out npde=0444
i pvél ocal i cnp. ksh node=0444

i pv6l ocal i cnp. ksh. out node=0444
i pv6renot ei cnp. ksh node=0444

i pvér enot ei cnp. ksh. out node=0444
| ocal t cpst at e. ksh npde=0444

| ocal t cpst at e. ksh. out node=0444
renot et cpst at e. ksh node=0444
renot et cpst at e. ksh. out node=0444

Abort. ksh npode=0444

Abort . ksh. out node=0444

Bean. ksh node=0444

Bean. ksh. out npde=0444

Cl ose. ksh node=0444

Cl ose. ksh. out node=0444
Drop. ksh nbde=0444

Dr op. ksh. out node=0444

Enabl e. ksh npbde=0444

Enabl e. ksh. out npde=0444
Funct i onLookup. exe nbde=0555
Functi onLookup. ksh npde=0444
Functi onLookup. ksh. out \

Get Aggr egat e. ksh node=0444
MaxConsurer s. ksh nmode=0444
MaxConsuner s. ksh. out node=0444
Mul ti AggPri nt a. ksh node=0444
Ml ti AggPri nt a. ksh. out \

Pr obeDat a. exe nbde=0555
ProbeDat a. ksh node=0444
ProbeDat a. ksh. out node=0444
ProbeDescri pti on. ksh node=0444
ProbeDescri ption. ksh. out \

St at eMachi ne. ksh node=0444
St at eMachi ne. ksh. out npde=0444
St opLock. ksh nbde=0444

St opLock. ksh. out node=0444
printa.d node=0444
printa.d.out npbde=0444
general .d node=0444
general . d. out node=0444
strsize.d node=0444
strsize.d. out nbde=0444

usdt. d npde=0444

usdt . d. out node=0444

usdt . exe node=0555

d node=0444

pat h=opt/ SUNWItrt/t st/ comon/ | exer/err.D | NT_OFLOWN Bi gl nt.d node=0444
pat h=opt/ SUNWIt rt/t st/ comon/ | exer/err.
pat h=opt / SUNWdt rt/t st/ conmon/ | exer/ err. D_SYNTAX. br acel.
pat h=opt/ SUNWAt rt/t st/ comon/ | exer/err. D_SYNTAX. brace2.
pat h=opt / SUNWAt rt /t st/ common/ | exer/ err. D_SYNTAX. br ack1l.
pat h=opt/ SUNWdt rt/t st/ comon/ | exer/err.

D STR NL. string.d node=0444
d npde=0444
d node=0444
d node=0444

D_SYNTAX. br ack2. d node=0444

15

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007 f
1008 f
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046

file path=opt/SUNWIitrt/tst/comon/|exer/err.
file path=opt/SUNWitrt/tst/comon/|exer/err.
file path=opt/SUNWItrt/tst/comon/|exer/err.
gi:e pat h=opt/ SUNWdtrt/t st/ comon/ | exer/err.
ile

node=0444

file\

pat h=opt/ SUNWdtrt/t st/ comon/ | exer/tst.

16

D_SYNTAX. br ack3. d nbde=0444
D_SYNTAX. parenl. d node=0444
D_SYNTAX. paren2. d node=0444
D_SYNTAX. par en3. d node=0444
D_MACRO _OFLOW Par | nt Ovf | ow. d. ksh \

pat h=opt/ SUNWitrt/tst/common/ || quanti ze/ err. D_LLQUANT_FACTOREVEN. nodi vi de. d

node=0444
file\

pat h=opt/ SUNWItrt/t st/ comron/ || quanti ze/err.

node=0444

D _LLQUANT_FACTOREVEN. not f act or. d

file path=opt/SUNWItrt/tst/comon/| | quantize/err.D LLQUANT_FACTORMATCH.d \

node=0444

file path=opt/SUNWitrt/tst/comon/l| quantize/err.D LLQUANT_FACTORNSTEPS. d \

node=0444

file path=opt/SUNWIitrt/tst/comon/| | quantize/err.D LLQUANT_FACTORSMALL.d \

node=0444

file path=opt/SUNWitrt/tst/common/lIl quantize/err.D LLQUANT_FACTORTYPE.d \

node=0444

file path=opt/SUNWItrt/tst/comon/| | quantize/err.D LLQUANT_FACTORVAL.d \

node=0444

file path=opt/SUNWitrt/tst/comon/ || quantize/err.D _LLQUANT_H GHVATCH.d \

node=0444

file path=opt/SUNWItrt/tst/comon/| | quantize/err.D LLQUANT_HI GHTYPE. d \

node=0444

ile path=opt/SUNWItrt/tst/comon/l | quantize/err.D LLQUANT_H GHVAL. d npode=0444
ile path=opt/SUNWItrt/tst/comon/ |l quantize/err.D LLQUANT_LOWATCH. d \

node=0444
file
file
file

node=0444

pat h=opt/ SUNWdtrt/t st/ comon/ | | quanti ze/ err. D_LLQUANT_LOMYPE. d node=0444
pat h=opt / SUNWit rt/t st/ comon/ | | quantize/err. D LLQUANT_LOWAL. d node=0444
pat h=opt / SUNWit rt/t st/ comon/ | | quanti ze/err. D_LLQUANT_MAGRANGE. d \

file path=opt/SUNWItrt/tst/comon/| | quantize/err.D LLQUANT_MAGTOOBI G d \

node=0444

file path=opt/SUNWitrt/tst/common/lI| quantize/err.D LLQUANT_NSTEPVATCH. d \

node=0444

file path=opt/SUNWItrt/tst/comon/| | quantize/err.D LLQUANT_NSTEPTYPE. d \

node=0444

file path=opt/SUNWitrt/tst/comon/lI| quantize/err.D LLQUANT_NSTEPVAL.d \

node=0444

pat h=opt/ SUNWdtrt/t st/ common/ ndb/ t st .
pat h=opt/ SUNWdtrt/tst/comon/ m b/ tst.i
pat h=opt/ SUNWIt rt/t st/ comon/ m b/tst.t
pat h=opt/ SUNWIt rt/t st/ common/ m b/ tst.
pat h=opt/ SUNWIt rt/t st/ common/ m sc/err.
pat h=opt/ SUNWdtrt/t st/ comon/ m sc/tst.
pat h=opt / SUNWAt rt/t st/ comon/ mi sc/ tst.
pat h=opt/ SUNWAt rt/t st/ comon/ m sc/tst.
pat h=opt / SUNWIt rt/t st/ common/ m sc/ t st.

OODODDDDODODDDDODDDDDDMDMD®MD®MDMDMDMDD

pat h=opt/ SUNWdtrt/t st/ comon/ | | quantize/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ | | quanti ze/tst.
pat h=opt / SUNWIt rt/t st/ comon/ | | quanti ze/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ | | quanti ze/tst.
pat h=opt/ SUNWdtrt/tst/comon/ | | quanti ze/tst.
pat h=opt/ SUNWdtrt/tst/comon/ | | quantize/tst.
pat h=opt/ SUNWItrt/tst/comon/ || quanti ze/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ || quanti ze/tst.
pat h=opt/ SUNWdtrt/tst/comon/ | | quantize/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ | | quantize/tst.
pat h=opt / SUNWItrt/tst/comon/ | | quanti ze/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ || quanti ze/tst.
pat h=opt/ SUNWdtrt/t st/ common/ | | quantize/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ | | quanti ze/tst.
pat h=opt/ SUNWItrt/tst/comon/ | | quanti ze/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ || quanti ze/tst.

bases. d npde=0444
bases. d. out node=0444
basi c. d node=0444
basi c. d. out node=0444
negor der. d node=0444
negor der. d. out node=0444
negval ue. d node=0444

negval ue. d. out node=0444
normal . d node=0444
nor mal . d. out node=0444
range. d node=0444
range. d. out node=0444
steps. d node=0444
steps. d. out node=0444
trunc.d node=0444
trunc. d. out node=0444
dtracedcnd. ksh npde=0444

cnp. ksh npbde=0444
cp. ksh node=0444

udp. ksh node=0444

D PRAGVA_OPTSET. d node=0444
badopt . d node=0444

bool opt. d npde=0444

bool opt . d. out node=0444
dynopt . d node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 17

1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

1079 file path=o

1080

S e i e e i e T e i) £ e i)) e e e e e e e) i e = = = =]

OCODODDOPDODODDDDDDDDODODDDODDDDDDDMDMDMDMDMDMDD

pat h=opt/ SUNWdtrt/t st/ comon/ m sc/tst.
pat h=opt / SUNWAt rt/t st/ comon/ m sc/tst.
pat h=opt/ SUNWAt rt/t st/ comon/ m sc/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ m sc/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ m sc/tst.
pat h=opt / SUNWAt rt/t st/ comon/ m sc/ tst.
pat h=opt/ SUNWdtrt/t st/ comon/ m sc/tst.
pat h=opt/ SUNWdtrt/t st/ common/ m sc/tst.

dynopt . d. out node=0444
enabl erace. ksh node=0444
hasl am d node=0444

i ncl ude. ksh node=0444
macr ogl ob. ksh npde=0444
macr ogl ob. ksh. out node=0444
roch. d node=0444
schrock. ksh node=0444

pat h=opt/ SUNWdtrt/t st/ common/ nul ti aggs/ err. D_PRI NTA_AGGKEY. d npde=0444
pat h=opt / SUNWAt rt/t st/ common/ nul ti aggs/ err. D_PRI NTA_AGGPROTO. d node=0444

pat h=opt / SUNWAt rt/t st/ comon/ nul ti aggs/tst.
pat h=opt / SUNWdt rt/t st/ comon/ nul ti aggs/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ nul ti aggs/tst.
pat h=opt / SUNWAt rt/t st/ comon/ nul ti aggs/tst.
pat h=opt / SUNWAt rt/t st/ common/ nul ti aggs/tst.
pat h=opt / SUNWdt rt/t st/ comon/ nul ti aggs/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ nul ti aggs/tst.
pat h=opt / SUNWAt rt/t st/ comon/ nul ti aggs/tst.
pat h=opt / SUNWAt rt/t st/ comon/ nul ti aggs/tst.
pat h=opt / SUNWdt rt/t st/ comon/ nul ti aggs/tst.
pat h=opt/ SUNWdtrt/t st/ common/ nul ti aggs/tst.
pat h=opt/ SUNWdt rt/t st/ comon/ nul ti aggs/tst.
pat h=opt / SUNWAt rt/t st/ comon/ nul ti aggs/tst.
pat h=opt/ SUNWdtrt/t st/ common/ nul tiaggs/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ nul ti aggs/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ nul ti aggs/tst.

pat h=opt / SUNWIt rt/t st/ comon/ nfs/tst.
pat h=opt / SUNWdt rt/t st/ comon/ nfs/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ nfs/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ nfs/tst.

many. d node=0444
many. d. out node=0444
sane. d node=0444
sane. d. out node=0444
sort.d node=0444
sort.d. out node=0444
sort pos.d node=0444
sort pos. d. out node=0444
tupl econpat . d nbde=0444
tupl econpat . d. out node=0444
zero. d node=0444
zero. d. out node=0444
zer02.d node=0444
zero2. d. out node=0444
zer03. d npde=0444
zer03. d. out node=0444
call.d node=0444

cal | . exe nbde=0555

cal | 3. d npde=0444

cal | 3. exe npde=0555

pat h=opt / SUNWAt rt/t st/ cormon/ of f set of / err. D_OFFSETOF_BI TFI ELD. bitfiel d. d \

node=0444

node=0444

pt/ SUNWIt rt/t st/ comon/ of f set of / err. D_OFFSETOF_TYPE. badt ype. d \
4

1081 file path=opt/SUNWItrt/tst/comon/ of fsetof/err. D OFFSETOF_TYPE. not sou. d \

1082

node=0444

1083 file path=opt/SUNWItrt/tst/comon/ of f setof/err. D UNKNOM. O f set of NULL. d \

1084

DOOODODODDDDODDDODODDDDODDDD®D®D®MD®MD®MD®MDCDDD

node=0444

pat h=opt / SUNWAt rt/t st/ common/ of f setof /err.
pat h=opt / SUNWAt rt/t st/ cormon/ of f set of / t st .
pat h=opt / SUNWIt rt/t st/ cormon/ of f set of / t st .
pat h=opt/ SUNWtrt/t st/ comon/ of f setof / t st .
pat h=opt / SUNWAt rt/t st/ cormon/ of f set of / t st .
pat h=opt / SUNWAt rt/t st/ common/ of f set of / t st .
pat h=opt / SUNWIt rt/t st/ cormon/ of f set of / t st .
pat h=opt/ SUNWdtrt/t st/ comon/ of f set of / t st .

D_UNKNOWN. badmenb. d node=0444
O fsetof Ali as. d node=0444

O fsetof Arith.d node=0444

O f set of Uni on. d node=0444
struct.d node=0444

struct.d. out node=0444

uni on. d node=0444

uni on. d. out node=0444

pat h=opt/ SUNWdtrt/t st/ common/ operators/tst.ternary.d node=0444

pat h=opt / SUNWAt rt / t st/ conmon/ oper at or
pat h=opt/ SUNWIt rt/t st/ comon/pid/err.
pat h=opt/ SUNWdtrt/t st/ common/ pid/err.
pat h=opt/ SUNWdtrt/t st/ comon/ pid/err.
pat h=opt / SUNWAt rt/t st/ comon/ pid/err.
pat h=opt/ SUNWdt rt/t st/ comon/pid/err.
pat h=opt/ SUNWdtrt/t st/ conmmon/ pid/err.
pat h=opt/ SUNWtrt/t st/ comon/ pid/err.
pat h=opt / SUNWIt rt/t st/ comon/ pid/err.
pat h=opt/ SUNWIt rt/t st/ comon/pid/err.
pat h=opt/ SUNWdtrt/t st/ cormmon/ pid/err.
pat h=opt/ SUNWdtrt/t st/ comon/ pid/err.
pat h=opt / SUNWAt rt/t st/ comon/ pid/err.
pat h=opt/ SUNWIt rt/t st/ comon/ pid/err.
pat h=opt/ SUNWdt rt/t st/ comon/pid/err.
pat h=opt/ SUNWdtrt/t st/ common/ pid/err.
pat h=opt / SUNWAt rt/t st/ common/ pid/err.
pat h=opt / SUNWdt rt/t st/ comon/ pid/err.
pat h=opt/ SUNWdt rt/t st/ comon/pid/err.

s/tst.ternary.d. out node=0444

D _PDESC ZERO. badl i b. d node=0444

D _PDESC_ZERO. badl i b. exe npbde=0555
D _PDESC_ZERO. badprocl.d npbde=0444
D _PROC_BADPI D. badpr oc2. d node=0444
D_PROC_CREATEFAI L. many. d node=0444
D _PROC_CREATEFAI L. many. exe node=0555
PROC_FUNC. badf unc. d npde=0444
ROC_FUNC. badf unc. exe npbde=0555
ROC LI B. | i bdash. d node=0444
RCC_LI B. | i bdash. exe nbde=0555
ROC_NAME. al | dash. d nbde=0444
ROC_NAME. al | dash. exe npbde=0555
ROC_NAME. badnane. d node=0444
ROC_NAME. badnane. exe node=0555
ROC_NAME. gl obdash. d node=0444

) PROC_NAME. gl obdash. exe npode=0555
) PROC_OFF. t oobi g. d nbde=0444

) PROC_OFF. t oobi g. exe nbde=0555

SlEE=EE

UIUIUIUIU

O
UUUUUUUUUTUDT

O

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178

pat h=opt/ SUNWt rt/t st/ common/ pi d/ t st
pat h=opt / SUNWIt rt/t st/ common/ pi d/ t st
pat h=opt / SUNWIt rt/t st/ cormon/ pi d/ t st
pat h=opt / SUNWIt rt/t st/ cormon/ pi d/ t st

pat h=opt / SUNWIt rt/t st/ cormon/ pi d/ t st
pat h=opt / SUNWIt rt/t st/ common/ pi d/ t st
pat h=opt/ SUNWdtrt/t st/ common/ pi d/ t st
pat h=opt/ SUNWIt rt/t st/ common/ pi d/ t st
pat h=opt / SUNWIt rt/t st/ cormon/ pi d/ t st
pat h=opt / SUNWIt rt/t st/ cormon/ pi d/ t st

pat h=opt/ SUNWtrt/t st/ comon/ pi d/ tst.
pat h=opt / SUNWdt rt/t st/ comon/ pi d/ t st.
pat h=opt/ SUNWdt rt/t st/ comon/ pi d/ t st.
pat h=opt/ SUNWdtrt/t st/ common/ pi d/ tst.
pat h=opt/ SUNWtrt/t st/ comon/ pi d/ tst.
pat h=opt / SUNWIt rt/t st/ comon/ pi d/ t st.
pat h=opt / SUNWAtrt/t st/ common/ pi d/ tst.
pat h=opt/ SUNWdtrt/t st/ conmmon/ pi d/ tst.
.float.d node=0444
.fl oat. exe npde=0555
.fork.d npode=0444

. fork. exe nbde=0555
pat h=opt/ SUNWdtrt/t st/ common/ pi d/ tst.
pat h=opt / SUNWAt rt/t st/ comon/ pi d/ t st.
pat h=opt / SUNWIt rt/t st/ comon/ pi d/ t st.
pat h=opt / SUNWdt rt/t st/ comon/ pi d/ t st.
pat h=opt/ SUNWdtrt/t st/ common/ pi d/ tst.
pat h=opt / SUNWAt rt/t st/ comon/ pi d/ t st.
pat h=opt / SUNWIt rt/t st/ comon/ pi d/ t st.
pat h=opt/ SUNWdt rt/t st/ comon/ pi d/ t st.
pat h=opt/ SUNWdtrt/t st/ conmmon/ pi d/ tst.
pat h=opt/ SUNWdt rt/t st/ common/ pi d/ tst.
pat h=opt / SUNWAt rt/t st/ comon/ pi d/ t st.
pat h=opt/ SUNWdt rt/t st/ comon/ pi d/ t st.
pat h=opt/ SUNWdtrt/t st/ common/ pi d/ tst.
pat h=opt/ SUNWtrt/t st/ comon/ pi d/ tst.
pat h=opt / SUNWIt rt/t st/ comon/ pi d/ t st.
pat h=opt/ SUNWdt rt/t st/ comon/ pi d/ t st.
pat h=opt/ SUNWdtrt/t st/ common/ pi d/ tst.
pat h=opt/ SUNWtrt/t st/ comon/ pi d/ t st.
pat h=opt / SUNWIt rt/t st/ comon/ pi d/ t st.
pat h=opt / SUNWIt rt/t st/ comon/ pi d/ t st.
pat h=opt/ SUNWdtrt/t st/ conmmon/ pi d/ tst.
pat h=opt/ SUNWtrt/t st/ comon/ pi d/ tst.
pat h=opt / SUNWdt rt/t st/ comon/ pi d/ t st.
.vfork.d npde=0444
.vfork. exe npde=0555
.weakl. d node=0444

addpr obes. ksh npbde=0444
argsl.d node=0444

argsl. exe node=0555
coverage.d node=0444

cover age. exe npde=0555
enpt yst ack. d node=0444
enpt yst ack. d. out node=0444
enpt yst ack. exe npde=0555

gcc. d node=0444

gcc. exe node=0555

kil I onerror. ksh node=0444
mai n. ksh node=0444
manypi ds. ksh node=0444

newpr obes. ksh node=0444
newpr obes. ksh. out node=0444
probenod. ksh node=0444
provregexl. ksh node=0444
provregex2. ksh node=0444
provregex2. ksh. out node=0444
provregex3. ksh node=0444
provregex3. ksh. out node=0444
provregex4. ksh node=0444
provr egex4. ksh. out node=0444
retl.d node=0444

ret1l. exe mbde=0555

ret2.d node=0444

ret 2. exe node=0555

ut f 8pr obef unc. ksh node=0444
ut f 8pr obef unc. ksh. out npde=0444
ut f 8pr obenod. ksh node=0444
ut f 8pr obenod. ksh. out node=0444

.weakl. exe npde=0555

.weak2. d npde=0444

.weak2. exe npbde=0555

pat h=opt/ SUNWdtrt/t st/ comon/ pl ockstat/tst.avail abl e. d node=0444
pat h=opt / SUNWAt rt/ t st/ cormon/ pl ockst at/t st. avai | abl e. exe nbde=0555
pat h=opt / SUNWAt rt/t st/ common/ pl ockstat/tst.|ibmap.d node=0444

pat h=opt / SUNWIt rt/t st/ common/ pl ockstat/tst.|i bmap. exe nbde=0555
pat h=opt/ SUNWdtrt/t st/ common/ poi nters/err. BadAl i gn. d nbode=0444

18

ODODODDODDDDDDDDDDDDDDODDDDDODDDDODDDDODDDPDDDDDDDDDDDMDMDMD

pat h=opt / SUNWt rt/ t st/ common/ poi
node=0444
file path=opt/SUNWItrt/tst/common/ poi
node=0444
pat h=opt/ SUNWt rt/ t st/ common/ poi
pat h=opt / SUNWAt rt/ t st/ cormon/ poi
node=0444
file path=opt/SUNWItrt/tst/comon/ poi
node=0444
file path=opt/SUNWitrt/tst/conmon/ poi
node=0444
file\

file
file

nters/err.D_ADDROF_VAR ArrayVar.d \
nters/err. D_ADDROF_VAR DynamicVar.d \

nters/err. D_ADDROF_VAR agg.d npode=0444
nters/err. D DEREF_NONPTR. noptr.d \

nters/err. D_DEREF_VO D. Voi dPoi nter Deref.d \
nters/err.D OP_ARRFUN. ArrayAssi gnment . d \

pat h=opt/ SUNWit rt/t st/ comon/ poi nters/ err. D_OP_| NCOWPAT. Voi dPoi nterArith.d \

node=0444
file path=opt/SUNWitrt/tst/common/ poi

node=0444
file path=opt/SUNWItrt/tst/common/ poi

node=0444
pat h=opt / SUNWAt rt/ t st/ conrmon/ poi

file
file path=opt/SUNWitrt/tst/common/ poi

nters/err.D OP_LVAL. AddressChange. d \
nters/err. D _OP_PTR NonPoi nt er Access. d \

nters/err.D _OP_PTR badpoi nter.d node=0444
nters/err.D_OP_SOU. BadPoi nter Access. d \

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244

node=0444

DOODDDDODODDDODDDDDDDD®MD®MD®MDMDMDMDCMDDD

node=0444
p
p
p
p
nmode=0444
p
p
p
p
p

node=0444

—h —h —h —h —h —h —h —h
D®D®Dd®DDDMDD

node=0444

pat h=opt/ SUNWAt rt/t st/ common/ poi nters/err.D_
pat h=opt/ SUNWdtrt/t st/ common/ poi nters/err. | nval i dAddressl. d nbde=0444
pat h=opt/ SUNWdtrt/t st/ common/ poi nters/err.In

pat h=opt/ SUNWdtrt/t st/ common/ poi nters/err.
pat h=opt / SUNWAt rt/t st/ cormon/ poi nters/err.
pat h=opt/ SUNWAtrt/t st/ common/ poi nters/err.
pat h=opt/ SUNWdtrt/t st/ common/ poi nters/tst.
pat h=opt/ SUNWdtrt/t st/ conmmon/ poi nters/tst.
pat h=opt / SUNWAt rt/t st/ cormon/ poi nters/tst.
pat h=opt / SUNWAt rt/t st/ cormon/ poi nters/tst.
pat h=opt/ SUNWdt rt/ t st/ cormon/ poi nters/ tst.
pat h=opt/ SUNWdtrt/t st/ common/ poi nters/tst.
pat h=opt / SUNWAt rt/ t st/ cormon/ poi nters/tst.
pat h=opt / SUNWAt rt/t st/ cormon/ poi nters/tst.
pat h=opt/ SUNWdt rt/t st/ cormon/ poi nters/tst.
pat h=opt/ SUNWdtrt/t st/ common/ poi nters/tst.
pat h=opt / SUNWAt rt/ t st/ cormon/ poi nters/tst.
pat h=opt / SUNWAt rt/t st/ cormon/ poi nters/tst.
pat h=opt / SUNWdt rt/t st/ cormon/ poi nters/ tst.
pat h=opt/ SUNWdtrt/t st/ common/ poi nters/tst.
pat h=opt / SUNWAt rt/t st/ cormon/ poi nters/tst.
pat h=opt / SUNWAt rt/t st/ cormon/ poi nters/tst.
pat h=opt/ SUNWdtrt/t st/ conmmon/ pragna/ err.
pat h=opt/ SUNWdtrt/t st/ common/ pragma/ err.
pat h=opt/ SUNWdtrt/t st/ conmmon/ pragma/ err.
pat h=opt / SUNWAt rt/t st/ cormon/ pragna/ err .
pat h=opt/ SUNWtrt/t st/ conmmon/ pragma/ err.

pat h=opt/ SUNWtrt/t st/ common/ pragma/ err.
at h=opt / SUNWAt rt/ t st/ cormon/ pragna/ err .
at h=opt / SUNWdt rt/t st/ cormon/ pragna/ t st .
at h=opt / SUNWIt rt/t st/ common/ pragma/ tst.
at h=opt / SUNWIt rt/t st/ conmon/ pragma/tst.

at h=opt / SUNWAt rt/t st/ cormon/ pragna/ t st .
at h=opt / SUNWdt rt/ t st/ conrmon/ pr agna/ t st .
at h=opt / SUNWIt rt/t st/ conmon/ pragma/tst.
at h=opt / SUNWAt rt/ t st/ cormon/ pragna/ t st .
at h=opt / SUNWAt rt/ t st/ comrmon/ pr edi cat es/ err.

pat h=opt/ SUNWdtrt/t st/ common/ predi cates/err.
pat h=opt / SUNWAt rt/ t st/ cormon/ pr edi cat es/ err.
pat h=opt / SUNWAt rt/t st/ cormon/ pr edi cat es/ t st .
pat h=opt / SUNWIt rt/t st/ cormon/ pr edi cat es/ t st .
pat h=opt/ SUNWdtrt/t st/ common/ predi cates/tst.
pat h=opt/ SUNWt rt/t st/ common/ predi cates/tst.
pat h=opt / SUNWAt rt/ t st/ cormon/ pr edi cat es/t st. co
pat h=opt/ SUNWAt rt/t st/ conmmon/ preprocessor/ err. D_| DENT_UNDEF. af t er probe. d \

19

D_OP_SQU. badpoi nter.d node=0444

val i dAddr ess2. d npde=0444

I nval i dAddr ess3. d npde=0444

I nval i dAddr ess4. d node=0444

I nval i dAddr ess5. d node=0444
ArrayPoi nterl.d node=0444
ArrayPoi nter2.d npde=0444
ArrayPoi nter3.d npde=0444

Q obal Var. d node=0444
IntegerArithneticl.d node=0444
Poi nterArithneticl.d node=0444
Poi nterArithmetic2.d node=0444
Poi nterArithnetic3.d node=0444
Poi nt er Assi gnnent . d node=0444
Val i dPoi nterl.d npde=0444

Val i dPoi nter2. d node=0444

Voi dCast . d npode=0444
assigncast 1. d node=0444

assi gncast 2. d node=0444

basi cl. d node=0444

basi c2. d node=0444

D PRAGERR d npde=0444
D_PRAGVA_DEPEND. mai n. d node=0444
D _PRAGVA | NVAL. d node=0444

D _PRAGVA_MALFORM d npde=0444
D_PRAGVA_UNUSED. UnusedPr agnae. d \

circlibdep. ksh nbde=0444
inval idlibdep. ksh node=0444
I'i bchai n. ksh nbde=0444

|'i bdep. ksh node=0444

|'i bdepful I yconnect ed. ksh \

i bdepsepdi r. ksh node=0444

t enpor al . ksh node=0444

t enpor al 2. ksh node=0444

tenporal 3. d node=0444

D PRED _SCALAR. NonScal arPred. d \

D _SYNTAX. i nval i d. d node=0444
D_SYNTAX. operr.d node=0444
ar gsnot cached. d node=0444
basi cs.d node=0444

basi cs. d. out npde=0444

conpl ex. d node=0444

nmpl ex. d. out node=0444

file path=opt/SUNWItrt/tst/common/ preprocessor/err.D PRAGCTL_I NVAL. t abdefine.d \

node=0444

file path=opt/SUNWItrt/tst/comon/ preprocessor/err. D _SYNTAX. wi t hout pound. d \

node=0444

file path=opt/SUNWItrt/tst/common/ preprocessor/err.
file path=opt/SUNWitrt/tst/conmmon/ preprocessor/err.

node=0444

—h —h —h —h —h —h —h —h —h
DD®D®DDDDDD

pat h=opt/ SUNWdt rt/t st/ conmmon/ pr eprocessor/err.
pat h=opt/ SUNWdtrt/t st/ common/ pr eprocessor/err.
pat h=opt / SUNWAt rt/t st/ cormon/ pr epr ocessor/err.
pat h=opt / SUNWAt rt/ t st/ cormon/ pr epr ocessor/err.
pat h=opt / SUNWdt rt/ t st/ conmon/ pr epr ocessor/ t st.
pat h=opt/ SUNWdt rt/t st/ common/ pr epr ocessor/tst.
pat h=opt / SUNWAt rt/ t st/ cormon/ pr epr ocessor/t st.
pat h=opt / SUNWAt rt/t st/ cormon/ pr epr ocessor/t st.
pat h=opt/ SUNWdt rt/t st/ conmon/ pr epr ocessor/t st.

definconp.d node=0444
i fdefel senotendif.d \

i fdefinconp.d nbde=0444

i fdef notendi f.d node=0444
i nconpel se. d node=0444
mul el se. d node=0444

i fdef.d node=0444

i fdef.d. out node=0444

i fndef.d node=0444

i fndef. d. out node=0444

i fnotdef.d node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310

node=0444

—h —h —h —h —h —h —h —h —h
®D®D®D®D®DCDMDD

node=0444

D®D®D®DDDMDD

node=0444

pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt/ SUNWtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ conmmon/ pri
pat h=opt/ SUNWtrt/t st/ comon/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ comon/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ comon/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ conmmon/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
node=0444
file path=opt/SUNWitrt/tst/common/ pri
node=0444
file path=opt/SUNWItrt/tst/comon/pri
node=0444
file path=opt/SUNWitrt/tst/common/ pri
file path=opt/SUNWItrt/tst/comon/pri
node=0444
file path=opt/SUNWItrt/tst/common/pri
node=0444
file path=opt/SUNWItrt/tst/comon/pri
node=0444
pat h=opt / SUNWIt rt/t st/ comon/ pri
pat h=opt / SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWdtrt/t st/ conmmon/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ comon/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri

—h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h
OCODODODODPDDDDDDDDDMDMD D

—h —h —h —h —h —h —h —h —h —h —h
DODOD®DDD®DDDMDD

pat h=opt/ SUNWt rt/t st/ common/ pr epr ocessor/tst.
pat h=opt / SUNWAt rt/ t st/ cormon/ pr epr ocessor/t st.
pat h=opt/ SUNWtrt/t st/ conmmon/ pr eprocessor/tst.
pat h=opt/ SUNWdt rt/t st/ conmmon/ pr epr ocessor/tst.
pat h=opt/ SUNWdt rt/t st/ common/ pr epr ocessor/tst.

pat h=opt/ SUNWAt rt/t st/ common/ pr epr ocessor/tst.
pat h=opt/ SUNWdtrt/t st/ conmmon/ pr epr ocessor/tst.
pat h=opt/ SUNWt rt/t st/ common/ pr epr ocessor/tst.
pat h=opt / SUNWAt rt/t st/ cormon/ pr epr ocessor/t st.
pat h=opt / SUNWAt rt/t st/ cormon/ pr epr ocessor/t st.
pat h=opt / SUNWdt rt/t st/ conmon/ pr epr ocessor/t st.
pat h=opt/ SUNWdt rt/t st/ common/ pr epr ocessor/tst.
pat h=opt / SUNWAt rt/t st/ cormon/ pr epr ocessor/t st.
pat h=opt / SUNWAt rt/t st/ cormon/ pr epr ocessor/t st.

pat h=opt/ SUNWt rt/t st/ conmmon/ pr epr ocessor/tst.
pat h=opt / SUNWAt rt/ t st/ conmon/ pr epr ocessor/t st.
pat h=opt / SUNWAt rt/t st/ cormon/ pr epr ocessor/t st.
pat h=opt / SUNWdt rt/ t st/ conmon/ pr epr ocessor/t st.
pat h=opt/ SUNWdt rt/t st/ conmmon/ pr epr ocessor/tst.
pat h=opt / SUNWAt rt/ t st/ conmon/ pr epr ocessor/t st.
pat h=opt / SUNWAt rt/ t st/ cormon/ pr epr ocessor/t st.
pat h=opt / SUNWdt rt/t st/ cormon/ pr epr ocessor/t st.

pat h=opt/ SUNWt rt/t st/ common/ pr epr ocessor/tst.

nt/err.
nt/err.
nt/err.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.

ntalerr.
nta/err.
ntalerr.

nta/err.
ntalerr.

nta/err.
nta/err.

nta/tst.
nta/tst.
ntaltst.
ntaltst.
nta/tst.
nta/tst.
ntaltst.
ntaltst.
nta/tst.
nta/tst.
ntaltst.

20

i fnotdef.d. out npde=0444

| ogi cal and. d node=0444

| ogi cal and. d. out node=0444
| ogi cal andor. d npde=0444

| ogi cal andor. d. out \

| ogi cal or.d npde=0444

| ogi cal or. d. out npde=0444
nul and. d nmbde=0444

mul and. d. out npde=0444
mul or. d npde=0444

mul or. d. out node=0444
precondi . d node=0444
precondi . d. out node=0444
predi catedecl are.d \

preexp.d node=0444
preexp. d. out node=0444
preexpel se. d node=0444
preexpel se. d. out node=0444
preexpi f.d node=0444
preexpi f.d. out node=0444
preexpi fel se. d node=0444
preexpifel se.d.out \

Wi t hi nprobe. d node=0444
D PRI NT_AGG bad. d npde=0444
D_PRI NT_VO D. bad. d node=0444
D _PROTO _LEN. bad. d nbde=0444
array.d node=0444

array. d. out node=0444
bitfield. d nde=0444
bitfield.d out node=0444
dyn. d node=0444

enum d node=0444

enum d. out node=0444
primtive.d node=0444
primtive.d. out node=0444
struct.d node=0444

struct.d. out node=0444

x| ate. d node=0444

x|l ate. d. out node=0444

D_PRI NTA_AGGARG. badagg. d \

D_PRI NTA AGGARG. badfrnt.d \
d\

D_PRI NTA_PROTO. bad. d node=0444
D_PRI NTF_ARG TYPE. j stack.d \

D_PRI NTA_AGGARG badval .

D_PRI NTF_ARG TYPE. stack. d \
D_PRI NTF_ARG TYPE. ust ack.d \

basi cs. d node=0444

basi cs. d. out node=0444
def.d node=0444

def . d. out npde=0444
dynwi dt h. d node=0444
dynwi dt h. d. out npde=0444
fmt.d node=0444

fmt.d. out npde=0444

| ar geuser sym ksh node=0444
many. d node=0444

manyval . d node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

pat h=opt / SUNWtrt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWdtrt/t st/ conmmon/ pri
pat h=opt/ SUNWdtrt/t st/ conmmon/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWtrt/t st/ common/ pri
node=0444

file path=opt/SUNWItrt/tst/comon/pri

node=0444

file path=opt/SUNWitrt/tst/common/pri

node=0444

file path=opt/SUNWItrt/tst/comon/pri

node=0444

file path=opt/SUNWItrt/tst/common/pri

node=0444

file path=opt/SUNWItrt/tst/comon/pri

node=0444

file path=opt/SUNWItrt/tst/common/pri

node=0444

file path=opt/SUNWItrt/tst/comon/pri

nmode=0444

file path=opt/SUNWItrt/tst/common/pri

node=0444

file path=opt/SUNWItrt/tst/comon/pri

node=0444

file path=opt/SUNWItrt/tst/common/pri

0 e o i o) S e) e e e i e e e e) £ e i e e e e) e e e i e e e i = = = =

DDODDDDDODDDDODDDDODDDDDDDDPDDDDDDDDDDDDMDDD

node=0444
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt/ SUNWtrt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ conmmon/ pri
pat h=opt/ SUNWtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ comon/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt/ SUNWtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt / SUNWtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWdtrt/t st/ conmmon/ pri
pat h=opt/ SUNWtrt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ conmmon/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ common/ pri

ntaltst.
nta/tst.
nta/tst.
ntaltst.
ntaltst.
nta/tst.
ntf/err.

ntf/err

ntf/err.

ntf/err

ntf/err.

ntf/err

ntf/err.

ntf/err

ntf/err.

ntf/err

manyval . d. out npde=0444

stack. d npde=0444

tupl e.d node=0444

tupl e. d. out node=0444

wal | ti mest anp. ksh npde=0444

wal | ti mest anp. ksh. out node=0444
D_PRI NTF_AGG_CONV. aggfnt . d \

. D_PRI NTF_ARG_EXTRA. t oomany. d \
D PRI NTF_ARG EXTRA wi dths. d \

. D_PRI NTF_ARG _FMT. badfnt.d \

D PRI NTF_ARG PROTO. noval ue. d \
. D_PRI NTF_ARG TYPE. aggarg.d \

D PRI NTF_ARG TYPE. recursive.d \
. D_PRI NTF_DYN_PROTO. noprec.d \

D PRI NTF_DYN_PROTO. nowi dt h. d \
. D_PRI NTF_DYN_TYPE. badprec. d \

. D_PRI NTF_DYN_TYPE. badwi dt h. d \

. D_PROTO _LEN. t oof ew. d nbde=0444
. D_SYNTAX. badconvl. d node=0444
. D_SYNTAX. badconv2. d node=0444
. D_SYNTAX. badconv3. d node=0444
. basi cs. d npde=0444

. basi cs. d. out npde=0444
.flags.d node=0444
.flags. d. out node=0444
.hello.d npde=0444

. hell 0. d. out npde=0444

.ints.d node=0444

.ints.d.out node=0444

.precs.d node=0444
.precs.d. out node=0444
.print-f.d node=0444
.print-f.d. out node=0444
.printT. ksh nbde=0444
.printT. ksh. out node=0444
.printY.ksh node=0444
.printY.ksh. out node=0444
.printcont.d npde=0444
.printcont.d. out node=0444
.printeE. d node=0444
.printeE. d. out node=0444
.printgG d npde=0444
.printgG d. out node=0444

.rawf nt.d node=0444
.rawfnt.d. out node=0444
.signs.d node=0444
.signs.d.out npde=0444

.str.d npode=0444

.str.d.out node=0444

.symd node=0444

.sym d. out node=0444

.uints.d node=0444
.uints.d. out node=0444

.wi dths.d node=0444

.wi dths.d. out node=0444

21

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442

—h —h —h —h —h —h —h —h —h —h —h —h —h —h —h
OCODODOD®D®D®D®D®DDDDMD D

node=0444

ODODODODODDDDDODDDDDODDDDODDDDDMDMDMDMDMDMDMDMDD

node=0444
file path=opt/SUNWitrt/tst/comon/profile-n/err.
file

node=0444
file path=opt/SUNWitrt/tst/comon/profile-n/err.

pat h=opt/ SUNWdtrt/t st/ conmmon/ probes/err.
pat h=opt / SUNWAt rt / t st/ conrmon/ pr obes/ err. D_SYNTAX. assi gn. d node=0444
pat h=opt / SUNWAt rt/ t st/ cormon/ pr obes/ err. D_SYNTAX. decl are. d node=0444
pat h=opt / SUNWIt rt/ t st/ cormon/ pr obes/ err. D_SYNTAX. decl arei n. d node=0444
pat h=opt/ SUNWdtrt/t st/ common/ probes/ err. D _SYNTAX. | braces. d node=0444
pat h=opt / SUNWAt rt/ t st/ cormon/ pr obes/ err. D_SYNTAX. pr obespec. d node=0444
pat h=opt / SUNWAt rt/t st/ cormon/ pr obes/ err. D_SYNTAX. r br aces. d node=0444
pat h=opt/ SUNWdt rt/t st/ conmmon/ probes/ err. D_SYNTAX recdec. d node=0444
pat h=opt/ SUNWdtrt/t st/ conmmon/ probes/ tst.
pat h=opt/ SUNWt rt/t st/ common/ pr obes/tst.
pat h=opt / SUNWAt rt/t st/ cormon/ pr obes/ t st .
pat h=opt/ SUNWAt rt/t st/ cormon/ pr obes/ t st .
pat h=opt/ SUNWdtrt/t st/ common/ probes/ tst.
pat h=opt/ SUNWdtrt/t st/ common/ probes/ tst.
pat h=opt / SUNWAt rt/t st/ cormon/ pr obes/ t st .
pat h=opt / SUNWAt rt/t st/ cormon/ pr obes/ t st .
pat h=opt/ SUNWdtrt/t st/ conmmon/ probes/ tst.
pat h=opt/ SUNWdt rt/t st/ common/ probes/ tst.
pat h=opt / SUNWAt rt/t st/ common/ proc/tst.
pat h=opt / SUNWAt rt/t st/ comon/ proc/tst.
pat h=opt/ SUNWdt rt/t st/ common/ proc/t st .
pat h=opt/ SUNWdtrt/t st/ common/ proc/tst.
pat h=opt / SUNWAt rt/t st/ common/ proc/tst.
pat h=opt / SUNWAt rt/t st/ cormon/ proc/t st .
pat h=opt/ SUNWdt rt/t st/ common/ proc/t st .
pat h=opt/ SUNWdtrt/t st/ common/ proc/tst.
pat h=opt / SUNWAt rt/t st/ common/ proc/tst.
pat h=opt / SUNWAt rt/t st/ common/ proc/tst.
pat h=opt / SUNWAt rt/t st/ cormon/ proc/t st .
pat h=opt/ SUNWdtrt/t st/ common/ proc/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ profile-n/err. D PDESC ZERO profile.d \

pat h=opt/ SUNWdtrt/t st/ comon/ printf/tst.w dthsl.d node=0444

pat h=opt/ SUNWItrt/tst/comon/printf/tst.w.d node=0444

pat h=opt/ SUNWdtrt/t st/ comon/ printf/tst.wp.d. out node=0444

pat h=opt/ SUNWdtrt/t st/ common/ privs/tst.fds. ksh node=0444

pat h=opt/ SUNWdtrt/t st/ comon/ privs/tst.func_access. ksh node=0444
pat h=opt / SUNWAt rt/t st/ comon/ privs/tst.getf.ksh node=0444

pat h=opt/ SUNWtrt/t st/ comon/ privs/tst.noprivdrop. ksh node=0444

pat h=opt/ SUNWdt rt/t st/ common/ privs/tst.noprivrestrict.ksh node=0444
pat h=opt/ SUNWdtrt/t st/ comon/ privs/tst.op_access. ksh nbde=0444

pat h=opt / SUNWAt rt/t st/ comon/ privs/tst.procpriv. ksh node=0444

pat h=opt/ SUNWIt rt/t st/ comon/ privs/tst.providers. ksh node=0444

pat h=opt/ SUNWAt rt/t st/ comon/ privs/tst.tick.ksh node=0444

pat h=opt/ SUNWdtrt/t st/ comon/ privs/tst.unpriv_funcs. ksh node=0444
pat h=opt / SUNWAt rt/t st/ cormon/ pr obes/ err.D_ 5
pat h=opt / SUNWIt rt/ t st/ cormon/ pr obes/ err. D_PDESC_ZERO. probestar.d \

basi cl.d node=0444
check. d npbde=0444

decl are. d node=0444

decl areafter. d npbde=0444
enpt ypr obe. d node=0444
pragma. d node=0444
pragmaaftertab. d node=0444
pragnai nsi de. d node=0444
pragmaout si de. d node=0444
probestar.d node=0444
create. ksh node=0444

di scard. ksh node=0444

exec. ksh npde=0444
execfail . ENCENT. ksh node=0444
execfail.ksh node=0444

exi tcore. ksh node=0444
exitexit.ksh node=0444
exitkilled. ksh nbde=0444

si gnal . ksh node=0444

sigwai t.d node=0444

si gwai t . exe nmode=0555
startexit.ksh node=0444

file path=opt/SUNWitrt/tst/comon/profile-n/err.D PDESC ZEROoneusec.d \

node=0444
file path=opt/SUNWItrt/tst/comon/profile-n/tst.
file path=opt/SUNWitrt/tst/comon/profile-n/tst.
file path=opt/SUNWitrt/tst/comon/profile-n/tst.
file path=opt/SUNWItrt/tst/comon/profile-n/tst.
file path=opt/SUNWItrt/tst/comon/profile-n/tst.
file path=opt/SUNWitrt/tst/comon/profile-n/tst.
file path=opt/SUNWitrt/tst/comon/profile-n/tst.
file path=opt/SUNWitrt/tst/common/profile-n/tst.
file path=opt/SUNWItrt/tst/comon/profile-n/tst.
file path=opt/SUNWitrt/tst/comon/profile-n/tst.
file path=opt/SUNWitrt/tst/comon/profile-n/tst.
file path=opt/SUNWitrt/tst/common/profile-n/tst.

argtest.d node=0444
argtest.d. out node=0444
basi c. d node=0444
basi c. d. out npbde=0444
func. ksh node=0444

nod. ksh node=0444
profilehz.d node=0444
profilehz. d. out node=0444
profilens.d nbde=0444
profilemns. d. out node=0444
profilemsec.d node=0444
profil ensec. d. out node=0444

D _PDESC_ZERO. pr obeqt n. d node=0444

D PDESC ZERO. ti ckstar.d node=0444

D _PDESC_ZEROonens. d npde=0444
pat h=opt/ SUNWtrt/t st/ common/ profil e-n/err. D _PDESC_ZEROonensec. d \

D PDESC_ZEROoneus. d node=0444

new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf 23 new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf

1443 file path=opt/SUNWItrt/tst/common/profile-n/tst.profilenhz.d npode=0444 1509 file path=opt/SUNWItrt/tst/common/safety/tst.caller.d npbde=0444

1444 file path=opt/SUNWItrt/tst/comon/profile-n/tst.profilenhz.d. out node=0444 1510 file path=opt/SUNWItrt/tst/comon/safety/tst.cleanpath.d node=0444

1445 file path=opt/SUNWItrt/tst/comon/profile-n/tst.profilens.d nbde=0444 1511 file path=opt/SUNWItrt/tst/comon/safety/tst.copyin.d nbde=0444

1446 file path=opt/SUNWItrt/tst/common/profile-n/tst.profilens.d.out node=0444 1512 file path=opt/SUNWItrt/tst/common/safety/tst.copyin2.d node=0444

1447 file path=opt/SUNWItrt/tst/common/profile-n/tst.profilensec.d node=0444 1513 file path=opt/SUNWItrt/tst/common/safety/tst.ddi _pathnane.d npbde=0444
1448 file path=opt/SUNWItrt/tst/comon/profile-n/tst.profilensec.d.out node=0444 1514 file path=opt/SUNWItrt/tst/comon/safety/tst.dirnanme.d node=0444

1449 file path=opt/SUNWItrt/tst/common/profile-n/tst.profiles.d node=0444 1515 file path=opt/SUNWItrt/tst/common/safety/tst.errno.d node=0444

1450 file path=opt/SUNWItrt/tst/common/profile-n/tst.profiles.d.out node=0444 1516 file path=opt/SUNWItrt/tst/common/safety/tst.execnanme.d node=0444

1451 file path=opt/SUNWItrt/tst/common/profile-n/tst.profilesec.d npde=0444 1517 file path=opt/SUNWItrt/tst/common/safety/tst.gid.d node=0444

1452 file path=opt/SUNWItrt/tst/comon/profile-n/tst.profilesec.d.out node=0444 1518 file path=opt/SUNWItrt/tst/comon/safety/tst.hton.d node=0444

1453 file path=opt/SUNWItrt/tst/comon/profile-n/tst.profileus.d nbde=0444 1519 file path=opt/SUNWItrt/tst/comon/safety/tst.index.d node=0444

1454 file path=opt/SUNWItrt/tst/comon/profile-n/tst.profileus.d.out nde=0444 1520 file path=opt/SUNWItrt/tst/comon/safety/tst.nsgdsize.d node=0444

1455 file path=opt/SUNWItrt/tst/common/profile-n/tst.profileusec.d node=0444 1521 file path=opt/SUNWItrt/tst/common/safety/tst.nsgsize.d node=0444

1456 file path=opt/SUNWItrt/tst/comon/profile-n/tst.profileusec.d.out node=0444 1522 file path=opt/SUNWItrt/tst/comon/safety/tst.null.d node=0444

1457 file path=opt/SUNWItrt/tst/comon/profile-n/tst.symksh node=0444 1523 file path=opt/SUNWItrt/tst/comon/safety/tst.pid.d node=0444

1458 file path=opt/SUNWItrt/tst/comon/profile-n/tst.ufunc.ksh node=0444 1524 file path=opt/SUNWItrt/tst/comon/safety/tst.ppid. d node=0444

1459 file path=opt/SUNWItrt/tst/common/ profile-n/tst.ufuncsort.exe node=0555 1525 file path=opt/SUNWItrt/tst/common/safety/tst.progenyof.d node=0444

1460 file path=opt/SUNWItrt/tst/comon/profile-n/tst.ufuncsort.ksh node=0444 1526 file path=opt/SUNWItrt/tst/comon/safety/tst.random d npode=0444

1461 file path=opt/SUNWItrt/tst/comon/profile-n/tst.ufuncsort.ksh. out node=0444 1527 file path=opt/SUNWItrt/tst/comon/safety/tst.rw d node=0444

1462 file path=opt/SUNWItrt/tst/common/profile-n/tst.unod. ksh node=0444 1528 file path=opt/SUNWItrt/tst/common/safety/tst.shortstr.d node=0444

1463 file path=opt/SUNWItrt/tst/common/ profile-n/tst.usymksh node=0444 1529 file path=opt/SUNWItrt/tst/conmmon/safety/tst.stack.d node=0444

1464 file path=opt/SUNWItrt/tst/comon/ providers/err.D PDESC | NVAL. wr ongdec4. d \ 1530 file path=opt/SUNWItrt/tst/comon/safety/tst.stackdepth.d node=0444
1465 node=0444 1531 file path=opt/SUNWItrt/tst/comon/safety/tst.stddev.d node=0444

1466 file path=opt/SUNWItrt/tst/common/ providers/err. D PDESC ZERO nonprofile.d \ 1532 file path=opt/SUNWItrt/tst/common/safety/tst.strchr.d npbde=0444

1467 node=0444 1533 file path=opt/SUNWItrt/tst/conmmon/safety/tst.strjoin.d node=0444

1468 file path=opt/ SUNWItrt/tst/common/ providers/err.D PDESC ZERO w ongdecl.d \ 1534 file path=opt/SUNWItrt/tst/common/safety/tst.strstr.d npde=0444

1469 node=0444 1535 file path=opt/SUNWItrt/tst/comon/safety/tst.strtok.d node=0444

1470 file path=opt/ SUNWItrt/tst/common/ providers/err. D PDESC ZERO w ongdec2.d \ 1536 file path=opt/SUNWItrt/tst/common/safety/tst.substr.d npbde=0444

1471 node=0444 1537 file path=opt/SUNWItrt/tst/common/safety/tst.ucaller.d node=0444

1472 file path=opt/ SUNWItrt/tst/common/ providers/err.D PDESC ZERO w ongdec3.d \ 1538 file path=opt/SUNWItrt/tst/common/safety/tst.uid.d node=0444

1473 node=0444 1539 file path=opt/SUNWItrt/tst/comon/safety/tst.unalign.d node=0444

1474 file path=opt/SUNWItrt/tst/comon/ providers/tst.basics.d node=0444 1540 file path=opt/SUNWItrt/tst/comon/safety/tst.uregs.d node=0444

1475 file path=opt/ SUNWItrt/tst/common/ provi ders/tst. basics.d.out npde=0444 1541 file path=opt/SUNWItrt/tst/common/safety/tst.ustack.d npbde=0444

1476 file path=opt/ SUNWItrt/tst/common/ providers/tst. beginexit.d npbde=0444 1542 file path=opt/SUNWItrt/tst/common/safety/tst.ustackdepth.d node=0444
1477 file path=opt/SUNWItrt/tst/comon/ providers/tst.begi nprof.d nbde=0444 1543 file path=opt/SUNWItrt/tst/comon/safety/tst.vahol e.d node=0444

1478 file path=opt/SUNWItrt/tst/comon/ providers/tst.beginprof.d. out nbde=0444 1544 file path=opt/SUNWItrt/tst/comon/safety/tst.violentdeath. ksh nbde=0444
1479 file path=opt/SUNWItrt/tst/comon/providers/tst.probattrs.d nbde=0444 1545 file path=opt/SUNWItrt/tst/comon/safety/tst.zonenane.d node=0444

1480 file path=opt/SUNWItrt/tst/conmon/ providers/tst.probattrs.d. out node=0444 1546 file path=opt/SUNWItrt/tst/common/scal ars/err.D ARR LOCAL.thisarray.d \
1481 file path=opt/SUNWItrt/tst/comon/ providers/tst.probefunc.d node=0444 1547 nmode=0444

1482 file path=opt/SUNWItrt/tst/comon/ providers/tst.probefunc.d. out node=0444 1548 file path=opt/SUNWItrt/tst/comon/scal ars/err.D DECL_CLASS. sel fthis.d \
1483 file path=opt/SUNWItrt/tst/comon/ providers/tst.probennd.d node=0444 1549 node=0444

1484 file path=opt/ SUNWItrt/tst/conmon/ providers/tst.probenod. d. out node=0444 1550 file path=opt/SUNWItrt/tst/common/scal ars/err.D DECL_CLASS.thisself.d \
1485 file path=opt/SUNWItrt/tst/comon/ providers/tst.probenane.d node=0444 1551 nmode=0444

1486 file path=opt/SUNWItrt/tst/comon/ providers/tst.probenane. d. out node=0444 1552 file path=opt/SUNWItrt/tst/comon/scal ars/err.D DECL_| DRED. errval .d node=0444
1487 file path=opt/ SUNWItrt/tst/comon/ providers/tst.probprov.d node=0444 1553 file pat h=opt/SUNWitrt/tst/comon/scal ars/err. D _OP_| NCOWAT. dec. err.d \
1488 file path=opt/SUNWItrt/tst/conmon/ providers/tst.probprov.d.out node=0444 1554 node=0444

1489 file path=opt/SUNWItrt/tst/common/ providers/tst. profend.d node=0444 1555 file path=opt/SUNWItrt/tst/common/scal ars/err.D _OP_I NCOVPAT. dupgt ype.d \
1490 file path=opt/SUNWItrt/tst/comon/ providers/tst.profend.d. out node=0444 1556 node=0444

1491 file path=opt/SUNWItrt/tst/comon/ providers/tst.profexit.d node=0444 1557 file path=opt/SUNWItrt/tst/comon/scal ars/err.D_OP_| NCOWPAT. dupl type. d \
1492 file path=opt/SUNWItrt/tst/conmon/ providers/tst.profexit.d.out node=0444 1558 node=0444

1493 file path=opt/SUNWItrt/tst/common/ providers/tst.trace.d node=0444 1559 file path=opt/SUNWItrt/tst/common/scal ars/err.D _OP_I NCOVPAT. dupt type.d \
1494 file path=opt/SUNWItrt/tst/comon/providers/tst.trace.d.out nbde=0444 1560 node=0444

1495 file path=opt/SUNWItrt/tst/common/ providers/tst.twoprof.d npde=0444 1561 file path=opt/SUNWItrt/tst/common/scal ars/err.D SYNTAX decl are.d npde=0444
1496 file path=opt/SUNWItrt/tst/common/ providers/tst.twoprof.d.out node=0444 1562 file path=opt/SUNWItrt/tst/common/scal ars/tst.basicvar.d node=0444

1497 file path=opt/SUNWItrt/tst/common/raise/tst.raisel.d node=0444 1563 file path=opt/SUNWItrt/tst/common/scal ars/tst.basicvar.d. out npde=0444
1498 file path=opt/SUNWItrt/tst/comon/raise/tst.raisel. exe node=0555 1564 file path=opt/SUNWItrt/tst/comon/scal ars/tst.|ocal var.d node=0444
1499 file path=opt/SUNWItrt/tst/comon/raise/tst.raise2.d node=0444 1565 file path=opt/SUNWItrt/tst/comon/scal ars/tst.m sc.d node=0444

1500 file path=opt/SUNWItrt/tst/common/raise/tst.raise2. exe node=0555 1566 file path=opt/SUNWItrt/tst/common/scal ars/tst.self.d node=0444

1501 file path=opt/SUNWItrt/tst/common/raise/tst.raise3.d node=0444 1567 file path=opt/SUNWItrt/tst/common/scal ars/tst.selfarray.d node=0444
1502 file path=opt/SUNWItrt/tst/comon/raise/tst.raise3. exe node=0555 1568 file path=opt/SUNWItrt/tst/comon/scal ars/tst.selfarray2.d node=0444
1503 file path=opt/SUNWItrt/tst/comon/rates/tst.aggrate.d node=0444 1569 file path=opt/SUNWItrt/tst/comon/scal ars/tst.selfthis.d nbde=0444
1504 file path=opt/SUNWItrt/tst/comon/rates/tst.aggrate.d. out nbde=0444 1570 file path=opt/SUNWItrt/tst/comon/scal ars/tst.this.d nbde=0444

1505 file path=opt/SUNWItrt/tst/common/rates/tst.statusrate.d node=0444 1571 file path=opt/SUNWItrt/tst/common/scal ars/tst.thisself.d node=0444

1506 file path=opt/SUNWItrt/tst/comon/rates/tst.sw tchrate.d node=0444 1572 file path=opt/SUNWItrt/tst/comon/sched/tst.enqueue.d node=0444

1507 file path=opt/SUNWItrt/tst/comon/rates/tst.sw tchrate.d. out node=0444 1573 file path=opt/SUNWItrt/tst/comon/sched/tst.oncpu.d node=0444

1508 file path=opt/SUNWItrt/tst/comon/safety/tst.basenane.d node=0444 1574 file path=opt/SUNWItrt/tst/comon/sched/tst.stackdepth.d node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 25

1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595]
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640

file path=opt/SUNWItrt/tst/comon/scripti
node=0444
pat h=opt / SUNWIt rt/t st/ comon/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
node=0444
e path=opt/SUNWAtrt/tst/comon/scripti
e path=opt/SUNWItrt/tst/comon/ scripti
e pat h=opt/SUNWItrt/tst/comon/scripti
e pat h=opt/SUNWItrt/tst/comon/scripti
e pat h=opt/SUNWAtrt/tst/comon/ scripti
node=0444
pat h=opt/ SUNWIt rt/t st/ common/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
pat h=opt / SUNWAt rt/t st/ common/ scri pti
pat h=opt / SUNWIt rt/t st/ common/ scri pti
pat h=opt / SUNWIt rt/t st/ common/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
pat h=opt / SUNWAt rt/t st/ common/ scri pti
pat h=opt / SUNWIt rt/t st/ common/ scri pti
pat h=opt / SUNWIt rt/t st/ common/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
pat h=opt / SUNWAt rt/t st/ common/ scri pti
pat h=opt / SUNWAt rt/t st/ comon/ scri pti
pat h=opt / SUNWIt rt/t st/ common/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
pat h=opt / SUNWAt rt/t st/ comon/ scri pti
pat h=opt / SUNWIt rt/t st/ comon/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
pat h=opt / SUNWAt rt/t st/ common/ scri pti
pat h=opt / SUNWIt rt/t st/ common/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
pat h=opt/ SUNWdtrt/t st/ common/ scri pti
pat h=opt / SUNWAt rt/t st/ common/ scri pti
pat h=opt / SUNWIt rt/t st/ comon/ scri pti

@ @

OCODODODDODDDDDDODDDODODDDDDDMD®MD®MDMDMDMDMDD

node=0444

zeof /err.

ng/ err. D_MACRO UNDEF. i nval idargs.d \

ng/err.D OP_LVAL.rdonly.d npbde=0444
ng/ err. D _OP_WRI TE. usepi dmacro. d \

ng/ err. D_SYNTAX. concat. d node=0444
ng/ err. D_SYNTAX. desc. d npode=0444

ng/ err. D_SYNTAX. i nval . d node=0444
ng/ err. D_SYNTAX. pi d. d node=0444

ng/ tst. D_MACRO _UNUSED. over f| ow. ksh \

ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/tst.
ng/ tst.
ng/tst.
ng/tst.
ng/tst.
ng/ tst.
ng/tst.
ng/tst.
ng/tst.

arg0. d node=0444
argunent s. ksh node=0444
assi gn. d node=0444
basi c. d node=0444
egi d. d node=0444
egi d. ksh npde=0444
eui d. d node=0444
eui d. ksh node=0444
gi d. d node=0444

gi d. ksh nbde=0444
pgi d. d node=0444

pi d.d node=0444
ppi d. d node=0444
ppi d. ksh node=0444
projid.d node=0444
projid. ksh node=0444
qui te.d node=0444
sid.d node=0444

si d. ksh nbde=0444
stringmacro. ksh node=0444
taski d.d node=0444
taski d. ksh npde=0444
trace.d node=0444

ui d. d node=0444

ui d. ksh node=0444

pat h=opt/ SUNWIt rt/t st/ comon/ sdt/t st.sdtargs.d node=0444
pat h=opt/ SUNWdtrt/t st/ comon/ sdt/tst. sdtargs. exe node=0555
pat h=opt / SUNWAt rt/t st/ cormon/ si zeof / err. D_| DENT_BADREF. Si zeof Assoc. d \

file path=opt/SUNWitrt/tst/commmon/si
node=0444
file path=opt/SUNWitrt/tst/common/si
node=0444
file path=opt/SUNWitrt/tst/common/si
file path=opt/SUNWItrt/tst/comon/si
node=0444
pat h=opt / SUNWIt rt/ t st/ comon/ si
pat h=opt/ SUNWdtrt/t st/ common/ si
pat h=opt/ SUNWdtrt/t st/ common/ si
pat h=opt/ SUNWtrt/t st/ common/ si
pat h=opt / SUNWIt rt/ t st/ comon/ si
pat h=opt/ SUNWitrt/t st/ conmmon/ si
pat h=opt/ SUNWdtrt/t st/ common/ si
pat h=opt/ SUNWdtrt/t st/ common/ si
pat h=opt / SUNWIt rt/ t st/ common/ si
pat h=opt / SUNWIt rt/ t st/ comon/ si

—h —h —h —h —h —h —h —h —h —h —h
DODOD®D®D®D®DDDDMD

node=0444

zeof /err.

zeof /err.
zeof /err.

zeof /tst.
zeof / tst.
zeof /tst.
zeof /tst.
zeof /tst.
zeof / tst.
zeof / tst.
zeof /tst.
zeof /tst.
zeof / tst.

D_I DENT_UNDEF. UnknownSynbol . d \
D_SI ZEOF_TYPE. badstruct.d \

D_SI ZEOF_TYPE. d node=0444
D_SYNTAX. Si zeof BadType. d \

Si zeof Array. d node=0444

Si zeof Dat aTypes. d node=0444

Si zeof Expr essi on. d node=0444
Si zeof NULL. d npde=0444

Si zeof StrConst. d node=0444

Si zeof Str Const . d. out npde=0444
Si zeof Stringl.d node=0444

Si zeof Stringl. d. out npbde=0444
Si zeof String2. d node=0444

Si zeof String2. d. out node=0444

pat h=opt/ SUNWdtrt/t st/ common/ specul ati on/ err. Buf Si zeVari ati onsl.d \

file path=opt/SUNWitrt/tst/common/ specul ation/err.BufSizeVariations2.d \

node=0444
file\

pat h=opt/ SUNWit rt/t st/ common/ specul ati on/ err. D_ACT_SPEC. Specul at eW t hBr eakPo

node=0444
file\

pat h=opt/ SUNWt rt/t st/ common/ specul ati on/ err. D_ACT_SPEC. Specul ateWthChill.d

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 26
1641 node=0444

1642 file \

1643 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_ACT_SPEC. Specul at eW t hCopyQut
1644 node=0444

1645 file \

1646 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_ACT_SPEC. Specul at eW t hCopyQut
1647 node=0444

1648 file \

1649 pat h=opt/ SUNWit rt/t st/ common/ specul ati on/ err. D_ACT_SPEC. Specul at eW t hPani c. d
1650 node=0444

1651 file \

1652 pat h=opt/ SUNWt rt/t st/ common/ specul ati on/ err. D_ACT_SPEC. Specul at eW t hRai se. d
1653 node=0444

1654 file \

1655 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D _ACT_SPEC. Specul at eWt hSt op. d
1656 node=0444

1657 file path=opt/SUNWItrt/tst/common/specul ation/err. D _AGG COM AggAftCommit.d \
1658 node=0444

1659 file \

1660 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_AGG SPEC. Specul at eWt hAvg. d \
1661 node=0444

1662 file \

1663 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_AGG SPEC. Specul at eW t hCount . d
1664 node=0444

1665 file \

1666 pat h=opt/ SUNWit rt/t st/ common/ specul ati on/ err. D_AGG_SPEC. Specul at eW t hLquant .
1667 node=0444

1668 file \

1669 pat h=opt/ SUNWit rt/t st/ common/ specul ati on/ err. D_AGG_SPEC. Specul at eWt hMax.d \
1670 node=0444

1671 file \

1672 pat h=opt/ SUNWIt rt/t st/ comon/ specul ati on/ err. D_AGG SPEC. Specul ateWthM n.d \
1673 node=0444

1674 file \

1675 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_AGG SPEC. Specul at eWt hQuant . d
1676 node=0444

1677 file \

1678 pat h=opt/ SUNWit rt/t st/ common/ specul ati on/ err. D_AGG _SPEC. Specul at eW t hSt ddev.
1679 node=0444

1680 file \

1681 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_AGG SPEC. Specul ateWthSumd \
1682 node=0444

1683 file \

1684 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_COVMM COW Conmmi t Aft Conmit.d \
1685 node=0444

1686 file path=opt/SUNWItrt/tst/conmon/ specul ation/err.D_COMW COW Di sjointConmit.d \
1687 node=0444

1688 file \

1689 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_COVM DREC. Comni t Af t Dat aRec. d
1690 node=0444

1691 file \

1692 pat h=opt / SUNWt rt/t st/ comron/ specul ati on/ err. D_DREC COWM Dat aRecAft Conmi t. d
1693 node=0444

1694 file \

1695 pat h=opt/ SUNWit rt/t st/ common/ specul ati on/err. D DREC COW ExitAfterCommit.d \
1696 node=0444

1697 file path=opt/SUNWItrt/tst/comon/specul ation/err.D EXI T_SPEC. Exit Aft Spec.d \
1698 node=0444

1699 file path=opt/SUNWItrt/tst/common/ specul ation/err.D_PRAGVA_MALFORM NspecExpr.d \
1700 node=0444

1701 file \

1702 pat h=opt/ SUNWt rt/t st/ comron/ specul ati on/ err. D_PRAGVA OPTSET. HugeNspecVal ue.
1703 node=0444

1704 file \

1705 pat h=opt/ SUNWIt rt/t st/ common/ specul ati on/ err. D_PRAGVA_OPTSET. | nval i dSpecSi ze
1706 node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772

file\

27

pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_PRAGVA_OPTSET. NegSpecSi ze. d \

node=0444
file path=opt/SUNWItrt/tst/comon/specul ati
node=0444
file path=opt/SUNWItrt/tst/conmon/specul ati
node=0444
file path=opt/SUNWItrt/tst/comon/specul ati
node=0444
file path=opt/SUNWitrt/tst/conmon/specul ati
node=0444
pat h=opt / SUNWIt rt/ t st/ cormon/ specul at i
pat h=opt/ SUNWdtrt/t st/ comon/ specul ati
pat h=opt / SUNWAt rt/t st/ cormon/ specul at i
pat h=opt / SUNWIt rt/ t st/ cormon/ specul at i
node=0444
file path=opt/SUNWItrt/tst/comon/specul ati
node=0444
file path=opt/SUNWItrt/tst/common/specul ati
node=0444
file path=opt/SUNWItrt/tst/comon/specul ati
file path=opt/SUNWitrt/tst/conmon/ specul ati
node=0444
file path=opt/SUNWItrt/tst/comon/specul ati
file path=opt/SUNWItrt/tst/comon/specul ati
node=0444
file path=opt/SUNWItrt/tst/conmmon/specul ati
node=0444
pat h=opt/ SUNWdtrt/t st/ common/ specul ati
pat h=opt/ SUNWtrt/t st/ common/ specul at i
pat h=opt / SUNWAt rt/ t st/ cormon/ specul at i
pat h=opt / SUNWAt rt/ t st/ cormon/ specul at i
node=0444
file path=opt/SUNWItrt/tst/comon/specul ati
node=0444
file path=opt/SUNWItrt/tst/common/specul ati
node=0444
file path=opt/SUNWItrt/tst/comon/specul ati
node=0444
file path=opt/SUNWItrt/tst/common/specul ati
node=0444
file path=opt/SUNWItrt/tst/common/specul ati
node=0444
e path=opt/SUNWItrt/tst/comon/ specul ati
e pat h=opt/ SUNWItrt/t st/ comon/ specul ati
node=0444
pat h=opt/ SUNWtrt/t st/ common/ specul ati
pat h=opt / SUNWIt rt/ t st/ cormon/ specul at i
pat h=opt / SUNWIt rt/ t st/ cormon/ specul at i
pat h=opt/ SUNWdtrt/t st/ common/ specul at i
P

fil
fil

file
file
file
file
file

node=0444

OODODODDDDDDDDDDD

on/err.
on/err.
on/err.
on/err.
on/err.
on/err.

on/err.
on/err.

on/err

on/tst.

on/tst.
on/tst.

on/tst.
on/tst.

on/tst.
on/tst.
on/tst.
on/tst.
on/tst.

on/tst.

on/ tst

on/tst.

on/ tst

on/tst.

on/tst.
on/tst.

on/tst.
on/tst.
on/tst.
on/tst.
at h=opt / SUNWIt rt/t st/ common/stability/err.D ATTR MN.MnAttributes.d \

D_PROTO_LEN. SpecNol d. d \
D_SPEC_COWM SpecAft Conmit.d \
D _SPEC DREC. SpecAft Dat aRec.d \
D _SPEC_SPEC. SpecAft Spec. d \
Negat i veBuf Si ze. d node=0444
Negat i veNspec. d node=0444

Negat i veSpecSi ze. d node=0444
SpecSi zeVari ationsl.d \

. SpecSi zeVari ations2.d \

Comm t AfterDi scard.d \

Conmi t Wt hZero. d node=0444
Dat aRecAftDi scard. d \

Di scardAft Commit. d npde=0444
Di scar dAf t Dat aRec. d \

Di scardAftDi scard. d \

Di scardW t hZero. d node=0444
Exi t Aft Di scard. d node=0444
NoSpecBuf f er. d node=0444
SpecSi zeVari ationsl.d \

SpecSi zeVariations2.d \

. SpecSi zeVari ations3.d \

Specul at eW t hRandom d \

. Specul ati onConmit.d \

Specul ationDi scard. d \

Specul ati onl D. d node=0444
Specul ati onWthZero.d \

TwoSpecBuf fers. d node=0444
negconm t. d node=0444
negspec. d node=0444

zerosi ze.d node=0444

pat h=opt/ SUNWdtrt/t st/ common/ st ack/ err. D_STACK_PROTQ bad. d nbde=0444
pat h=opt / SUNWdt rt/ t st/ conmon/ st ack/ err. D_STACK_SI ZE. d node=0444

pat h=opt / SUNWdt rt/ t st/ conmon/ st ack/ err. D_USTACK_FRAMES. bad. d npde=0444
pat h=opt / SUNWAt rt / t st/ cormon/ st ack/ err . D_USTACK_PROTQO. bad. d node=0444
pat h=opt / SUNWAt rt / t st/ cormon/ st ack/ err. D_USTACK_STRSI ZE. bad. d node=0444
pat h=opt / SUNWdt rt/t st/ conmon/ st ack/ t st . def aul t . d node=0444

pat h=opt/ SUNWdtrt/t st/ comon/ st ackdept h/ t st.
pat h=opt / SUNWAt rt/t st/ common/ stop/tst.stopl.d node=0444

pat h=opt / SUNWIt rt/t st/ comon/ st op/t st.stopl. exe nbde=0555
pat h=opt/ SUNWIt rt/t st/ comon/ st op/t st.stop2.d node=0444

pat h=opt/ SUNWdtrt/t st/ common/ st op/ t st. st op2. exe npde=0555
pat h=opt/ SUNWItrt/tst/comon/strlen/tst.strlenl.d node=0444
pat h=opt/ SUNWItrt/tst/comon/strtoll/err.
pat h=opt/ SUNWAt rt/tst/comon/strtoll/err.

defaul t.d npde=0444

BaseToolLar ge. d node=0444
BaseTooSnal | .

d npde=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838

file path=opt/SUNWItrt/tst/comon/strtoll/tst.strtoll.d npde=0444

file path=opt/SUNWitrt/tst/comon/strtoll/tst.strtoll.d.out node=0444

file path=opt/SUNWItrt/tst/comon/struct/err. D ADDROF_VAR StructPointer.d \
node=0444

file path=opt/SUNWItrt/tst/comon/struct/err.D DECL_COMVBO. StructW thoutCol on.d \
node=0444

file\
pat h=opt/ SUNWitrt/tst/common/struct/err. D DECL_COMBO. Struct Wt hout Col onl.d \
node=0444

file path=opt/SUNWitrt/tst/comon/struct/err.D _DECL_I NCOWLETE. circul ar.d \

node=0444

file path=opt/SUNWitrt/tst/common/struct/err.

node=0444

file path=opt/SUNWitrt/tst/common/struct/err.

node=0444

file path=opt/SUNWitrt/tst/common/struct/err.

node=0444

file path=opt/SUNWitrt/tst/conmmon/struct/err.

node=0444
file path=opt/SUNWitrt/tst/common/struct/err.
file path=opt/SUNWItrt/tst/comon/struct/err.
node=0444

pat h=opt / SUNWIt rt/t st/ common/ sysevent/t
pat h=opt/ SUNWIt rt/t st/ comon/ sysevent/t
pat h=opt/ SUNWdtrt/t st/ common/ sysevent/t
pat h=opt/ SUNWitrt/t st/ comon/ sysevent/t

pat h=opt/ SUNWdtrt/tst/comon/tick-n/err.
pat h=opt / SUNWItrt/tst/comon/tick-n/err.

pat h=opt/ SUNWdtrt/t st/ comon/tick-n/tst.
pat h=opt/ SUNWdtrt/tst/comon/tick-n/tst.
pat h=opt/ SUNWdtrt/tst/common/tick-n/tst.
pat h=opt / SUNWItrt/tst/comon/tick-n/tst.
pat h=opt/ SUNWitrt/t st/ comon/tick-n/tst.
pat h=opt/ SUNWdtrt/t st/ comon/tick-n/tst.
pat h=opt/ SUNWdtrt/tst/comon/tick-n/tst.
pat h=opt / SUNWIt rt/tst/comon/tick-n/tst.
pat h=opt/ SUNWItrt/t st/ comon/trace/err.

pat h=opt/ SUNWdtrt/tst/common/tracel/err.
pat h=opt/ SUNWdtrt/tst/comon/tracel/err.
pat h=opt/ SUNWIt rt/t st/ comon/trace/tst.
pat h=opt/ SUNWItrt/t st/ comon/trace/tst.
pat h=opt/ SUNWIt rt/t st/ comon/trace/tst.
pat h=opt/ SUNWdtrt/tst/comon/trace/tst.
pat h=opt/ SUNWItrt/t st/ comon/trace/tst.

DOODDDDDDDDDDDDDODDDDDDDDDDDDPDDDDDDDDDDDDMDMDMDMDMD

pat h=opt / SUNWAt rt/t st/ comon/struct/tst.
pat h=opt/ SUNWIt rt/t st/ comon/struct/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ struct/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ struct/tst.
pat h=opt / SUNWIt rt/t st/ comon/struct/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ syscal | /tst. args. d npde=0444

pat h=opt/ SUNWdtrt/t st/ common/ syscal | / tst. args. exe nbde=0555
pat h=opt/ SUNWdtrt/t st/ comon/ syscal | / t st. openret. ksh nbde=0444

pat h=opt / SUNWItrt/tst/comon/tick-n/err.
pat h=opt/ SUNWItrt/tst/comon/tick-n/err.
pat h=opt/ SUNWItrt/tst/comon/tick-n/err.

pat h=opt / SUNWItrt/t st/ comon/tick-n/tst.
pat h=opt/ SUNWIt rt/tst/comon/tick-n/tst.
pat h=opt/ SUNWdtrt/tst/comon/tick-n/tst.
pat h=opt / SUNWIt rt/t st/ comon/tick-n/tst.
pat h=opt / SUNWItrt/t st/ comon/tick-n/tst.
pat h=opt/ SUNWItrt/t st/ comon/tick-n/tst.
pat h=opt/ SUNWdtrt/tst/comon/tick-n/tst.
pat h=opt/ SUNWdtrt/tst/common/tick-n/tst.
pat h=opt / SUNWItrt/tst/comon/tick-n/tst.

d\
D _DECL_| NCOVPLETE. order2.d \

D_DECL_| NCOMPLETE. or der .

D_DECL_I NCOWPLETE. recursive. d \
D_DECL_I NCOWPLETE. si npl e. d \

D_DECL_VQO DOBJ. baddec. d nbde=0444

D _PROTO_ARG DupSt ruct Assoc. d \

Struct Assoc. d node=0444
Struct Dat aTypes. d node=0444
Structlnside.d node=0444

cl ausel ocal . d npde=0444

cl ausel ocal . d. out npde=0444

st. post.d node=0444

st. post. exe node=0555

st. post_chan. d npde=0444

st . post _chan. exe node=0555

D PDESC ZERO. tick.d node=0444
D PDESC ZEROonens. d node=0444
D _PDESC_ZEROonensec. d node=0444
D _PDESC_ZEROoneus. d npode=0444
D PDESC_ZEROoneusec. d node=0444
0. d node=0444
node=0444

.out npde=0444

.d node=0444

.d.out npbde=0444
node=0444

.out npde=0444

.d node=0444

.d. out node=0444

i cks.d npde=0444

i cks. d. out node=0444

i cksec.d node=0444

i cksec. d. out node=0444

i ckus. d node=0444

i ckus. d. out npde=0444

i ckusec. d node=0444

i ckusec. d. out node=0444

D _PROTO LEN. bad. d npde=0444

D TRACE_AGG bad. d nbde=0444

D TRACE_VO D. bad. d npde=0444
dyn. d node=0444

m sc.d nbde=0444

gstring.d node=0444
gstring. d. out nbde=0444
string.d node=0444

pat h=opt / SUNWIt rt/t st/ comon/tracenen err. D PROTO ARG badsi ze. d node=0444
pat h=opt/ SUNWItrt/t st/ comon/tracenem err.

D_PROTO_LEN. t oof ew. d npde=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 29

1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904

file path=opt/SUNWItrt/tst/comon/tracenmen err. D_TRACEMEM ADDR. badaddr.d \
node=0444
file path=opt/SUNWitrt/tst/comon/tracenmen err. D_TRACEMEM ARGS. d node=0444
file path=opt/SUNWAtrt/tst/comon/tracenmen err. D TRACEMEM DYNSI ZE. d node=0444
file path=opt/SUNWAtrt/tst/comon/tracenment err. D TRACEMEM Sl ZE. negsi ze. d \
node=0444
file path=opt/SUNWItrt/tst/comon/tracenmeni err. D_TRACEMEM S| ZE. zerosi ze. d \
node=0444
pat h=opt/ SUNWdtrt/t st/ comon/tracenent t st.dynsi ze. d node=0444
pat h=opt/ SUNWIt rt/t st/ common/traceneni tst.dynsi ze. d. out node=0444
pat h=opt/ SUNWIt rt/t st/ comon/tracenenm t st.rootvp.d nbde=0444
pat h=opt/ SUNWIt rt/t st/ comon/tracenenm tst.snall si ze.d node=0444
pat h=opt/ SUNWdtrt/t st/ comon/tracenent tst.smal | si ze. d. out node=0444
\

pat h=opt/ SUNWIt rt/t st/ comron/transl ators/err. D_DECL_TYPERED. BadTr ansDecl . d \

. m\:)de:0444

ile
pat h=opt/ SUNWIt rt/t st/ comron/transl ators/err. D_OP_| NCOWLETE. NonExi st ent | npu
node=0444

file path=opt/SUNWItrt/tst/comon/translators/err. D SYNTAX. BadTransDecl 1.d \
node=0444

file path=opt/SUNWitrt/tst/comon/transl ators/err.D_SYNTAX. BadTransDecl 3.d \
node=0444

file path=opt/SUNWItrt/tst/comon/translators/err. D SYNTAX. BadTransDecl 4.d \
node=0444

file\
pat h=opt/ SUNWIt rt/t st/ comron/transl ators/ err. D_TYPE_MEMBER. NonExi st ent | nput 2
node=0444

file\
pat h=opt/ SUNWit rt/tst/common/transl ators/err. D _XLATE | NCOWPAT. Badl nput Typel.
node=0444

file\
pagh=opt/ SUNWItrt/tst/common/transl ators/err. D XLATE_MEMB. NonExi st ent Qut put 2
node=0444

file path=opt/SUNWitrt/tst/comon/transl ators/err. D _XLATE_NONE. BadTr ansDecl 6. d \
node=0444

file\
pat h=opt/ SUNWitrt/tst/common/transl ators/err. D XLATE REDECL. Repeat Tr ansDecl .
node=0444

file path=opt/SUNWitrt/tst/common/transl ators/err.D XLATE SOU. BadTr ansDecl 8.d \
node=0444

file path=opt/SUNWItrt/tst/comon/translators/err.D XLATE_SQU. BadTranslint.d \
node=0444

file\
pat h=opt/ SUNWIt rt/t st/ comron/transl ators/err. D_XLATE_SOU. NonExi st ent Qut put 1.
node=0444

file path=opt/SUNWItrt/tst/comon/translators/tst.Crcul arTransDecl.d \
node=0444

file path=opt/SUNWItrt/tst/comon/translators/tst.EnmptyTransDecl.d node=0444

file path=opt/SUNWItrt/tst/comon/translators/tst. ForwardTag. d node=0444

file path=opt/SUNWItrt/tst/comon/translators/tst.|nputAliasTrans.d node=0444

file path=opt/SUNWitrt/tst/comon/translators/tst.|nputlntTrans.d node=0444

file path=opt/SUNWitrt/tst/common/translators/tst.QutputAiasTrans.d node=0444

file path=opt/SUNWItrt/tst/comon/translators/tst. Partial Dereferencing.d \
node=0444

file path=opt/SUNWitrt/tst/comon/translators/tst. Partial QutputTransDefn.d \
node=0444

file path=opt/SUNWItrt/tst/comon/transl ators/tst.ProcMdel Trans.d node=0444

file path=opt/SUNWItrt/tst/comon/transl ators/tst. RepeatDeclaration.d \
node=0444

file path=opt/SUNWitrt/tst/comon/transl ators/tst. SinultaneousTranslators.d \
node=0444

file path=opt/SUNWItrt/tst/comon/translators/tst. StructureAssignnent.d \
node=0444

file path=opt/SUNWitrt/tst/comon/transl ators/tst. Test TransStabilityl. ksh \
node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1905
1906
1907
1908
1909
1910
1911 f
1912 f
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970

OODOD®D®D®D®D®DDDMDMD D DODOD®DDDDDDDD

ODODODDDDDDDDDDD

node=0444
node=0444
m)de—0444

30

file path=opt/SUNWItrt/tst/comon/transl ators/tst. Test TransStabilityl. ksh. out \
file path=opt/SUNWItrt/tst/comon/transl ators/tst. Test TransStability2. ksh \
file path=opt/SUNWItrt/tst/comon/transl ators/tst. Test TransStability2. ksh.out \

e path=opt/SUNWItrt/tst/comon/transl ators/tst. TransNonPoi nter.d nmpde=0444
e pat h=opt/SUNWItrt/tst/comon/transl ators/tst. TransQut put Poi nter.d \

node=0444

pat h=opt / SUNWIt rt/t st/ comon/transl ators/tst. TransPoi nter.d node=0444

pat h=opt/ SUNWIt rt/t st/ comon/transl ators/tst. Transl ateSel f.d node=0444
pat h=opt/ SUNWIt rt/t st/ common/transl ators/tst. Uni onl nput Trans. d node=0444
pat h=opt/ SUNWdtrt/t st/ comon/transl ators/tst. Uni onQut put Trans. d node=0444
pat h=opt / SUNWIt rt/t st/ common/ t ypedef/err. D _DECL_| DRED. DupTypeDef.d \

node=0444
node=0444
node=0444

file path=opt/SUNWitrt/tst/common/typedef/err.D_SYNTAX. BadExi stingTypedef.d \
file path=opt/SUNWitrt/tst/comon/typedef/err.D_SYNTAX. Typedef|nC ause.d \

pat h=opt / SUNWIt rt/t st/ common/ t ypedef/t st . Chai nTypedef.d node=0444
at h=opt / SUNWIt rt/t st/ common/t ypedef/tst. Typedef Dat aAssi gn. d node=0444

at h=opt / SUNWAt rt/t st/ common/ t ypes/err.

P

P

pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWdtrt/t st/ comon/types/err.
pat h=opt/ SUNWdtrt/t st/ comon/types/err.
pat h=opt/ SUNWtrt/t st/ comon/types/err.

node=0444
pat h=opt/ SUNWdtrt/t st/ comon/types/err.
pat h=opt/ SUNWdtrt/t st/ comon/types/err.
pat h=opt/ SUNWdtrt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWdtrt/t st/ common/types/err.
pat h=opt/ SUNWdtrt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
node=0444

pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWdt rt/t st/ comon/types/err.
pat h=opt/ SUNWdtrt/t st/ common/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.

pat h=opt/ SUNWdtrt/t st/ comon/types/err.
pat h=opt/ SUNWtrt/t st/ comon/types/err.

pat h=opt/ SUNWIt rt/t st/ comon/types/err.

pat h=opt/ SUNWdtrt/t st/ common/types/err.

pat h=opt/ SUNWdtrt/t st/ comon/types/err.

pat h=opt/ SUNWdtrt/t st/ comon/types/err.

pat h=opt / SUNWIt rt/t st/ comon/types/err.
node=0444

pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ common/types/tst.
pat h=opt/ SUNWdtrt/t st/ common/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWdt rt/t st/ comon/types/tst.

D CAST_| NVAL. badcast . d node=0444
D CG DYN. Resul t DynType. d node=0444
D CHR OFLOW char const . d node=0444
D DECL_BADCLASS. bad. d node=0444
D _DECL_CHARATTR. badt ype3.d \

) DECL_COMBO. badt ype4. d node=0444
CL_COMBO. badt ype5. d node=0444
CL_ENCONST. badeval . d node=0444
CL_ENOFLOW enof | ow. d node=0444
CL_ENOFLOW enuf | ow. d node=0444
CL_SCOPE. scopeop. d node=0444
CL_USELESS. baddec. d node=0444
> ACT. badcond. d node=0444

ARI TH. badoper and. d node=0444

| NCOVPAT. badassi gn. d \

> | NT. badbi t op. d nbde=0444

| NT. badshi ft.d node=0444

" SCALAR. badcond. d node=0444
" SCALAR. badi ncop. d node=0444
" SCALAR. badl ogop. d node=0444
D _PROTO _LEN. badcondl. d node=0444
D_SYNTAX. badenum d node=0444
D_SYNTAX. badi d. d node=0444

D _SYNTAX. badstruct.d node=0444
D_UNKNOWN. badt ypel. d node=0444
D_UNKNOMN. badt ype2. d npde=0444
D_UNKNOMN. dupenum d node=0444
D_UNKNOM. dupstruct . d node=0444
D_XLATE_REDECL. Resul t DynType. d \

UUUUU UUUUUUUUUU
‘8%‘8%% %%QHHHH%H

assi gnops. d node=0444
badshi ft ops. d node=0444
basi cs. d node=0444
basi cs. d. out npde=0444
bi t ops. d npde=0444
charconstants.d node=0444
conpl ex. d node=0444
condexpr.d node=0444
const.d npde=0444
constants.d node=0444
conv. d node=0444

enum d node=0444

inti ncop.d node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036

pat h=opt/ SUNWdtrt/t st/ comon/types/tst
pat h=opt / SUNWIt rt/t st/ comon/t ypes/t st

pat h=opt/ SUNWIt rt/t st/ comon/ uctf/err.
pat h=opt/ SUNWdtrt/t st/ comon/ uctf/err.
pat h=opt / SUNWAt rt/t st/ comon/ uctf/err.
pat h=opt/ SUNWIt rt/t st/ comon/ uctf/err.
pat h=opt/ SUNWIt rt/t st/ comon/ uctf/err.
pat h=opt/ SUNWdtrt/t st/ comon/ uctf/err.
pat h=opt / SUNWAt rt/t st/ comon/uctf/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ uctf/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ uctf/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ uctf/tst.
pat h=opt/ SUNWAt rt/t st/ comon/ uctf/tst.
pat h=opt / SUNWAt rt/t st/ comon/ uctf/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ uctf/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ uctf/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ uctf/tst.
pat h=opt / SUNWItrt/t st/ comon/ uctf/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ uctf/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ uctf/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ uctf/tst.
pat h=opt / SUNWAt rt/t st/ comon/ uctf/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ uctf/tst.
pat h=opt/ SUNWdtrt/t st/ common/ uctf/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ uctf/tst.
pat h=opt/ SUNWAtrt/t st/ comon/ uctf/tst.
if /* 1 codereview */
pat h=opt / SUNWdt rt/ t st/ conmon/ uni on/ err
node=0444

DPODDDDDODDDDODDDDODODDDDDDDPDDDDDDDDDDDMDMD D

—_ S ——_—_—_—— e — —

f
f
f
f
f
f
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
#e
fi

file path=opt/SUNWitrt/tst/common/union/err.D_DECL_COMBO. Uni onW t hout Col on. d \

node=0444

pat h=opt/ SUNWdtrt/t st/ common/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ common/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.

.intops.d nobde=0444
.inttypes.d node=0444
ptrincop.d node=0444
ptrops.d node=0444

rel enum d node=0444

rel string.d node=0444

shi ftops.d node=0444
stringconstants.d node=0444
struct.d nmpde=0444
typedef.d npde=0444
unaryop. d node=0444
nval 1 dpi d. d nbde=0444
nval i dpi d2. d npde=0444
nval i dpi d3. d node=0444

nval i dt ype. ksh node=0444

i nval i dt ype2. ksh node=0444
user 64node. ksh node=0444
aout t ype. exe node=0555
aout t ype. ksh node=0444
chasestrings. exe node=0555
chasestrings. ksh node=0444
chasestrings. ksh. out node=0444
i bt ype. exe node=0555

i bt ype. ksh node=0444

I'i nkmap. ksh node=0444

pi dprint. ksh npbde=0444
pidprinttarg. ksh node=0444
printtype. exe node=0555
printtype. ksh node=0444
printtype. ksh. out node=0444
printtypetarg. ksh node=0444
user | andkey. ksh node=0444
user | andkey. ksh. out node=0444
userstrings. ksh node=0444
userstrings. ksh. out node=0444

. D_ADDROF_VAR. Uni onPoi nter. d \

31

file path=opt/SUNWItrt/tst/comon/union/err.D DECL_COMBO. Uni onWt hout Col onl.d \

node=0444

file path=opt/SUNWitrt/tst/common/union/err.D_DECL_I NCOWLETE. circular.d \

node=0444
file path=opt/SUNWItrt/tst/comon/union/err
node=0444

file path=opt/SUNWItrt/tst/common/union/err.D DECL_| NCOWPLETE. recursive.d \

node=0444
file path=opt/SUNWItrt/tst/comon/union/err

node=0444
file path=opt/SUNWItrt/tst/comon/union/err

node=0444
pat h=opt / SUNWIt rt/ t st/ cormon/ uni on/ t st
pat h=opt/ SUNWdt rt/t st/ conmmon/ uni on/ t st
pat h=opt/ SUNWt rt/t st/ common/ uni on/ t st
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st .
pat h=opt / SUNWIt rt/t st/ comon/ usdt/t st .
pat h=opt/ SUNWdtrt/t st/ common/ usdt/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt/ SUNWAt rt/t st/ comon/ usdt/tst.
pat h=opt/ SUNWAt rt/t st/ comon/ usdt/t st .
pat h=opt/ SUNWIt rt/t st/ common/ usdt/t st.
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/tst.
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st .
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st .
pat h=opt / SUNWIt rt/t st/ common/ usdt/t st.

OODODODDDDDDDDDDD

. D_DECL_I NCOWPLETE. order.d \

. D_DECL_| NCOVPLETE. si npl e. d \
. D_PROTO_ARG. DupUni onAssoc. d \

. Uni onAssoc. d node=0444

. Uni onDat aTypes. d npde=0444
. Uni onl nsi de. d node=0444
andpi d. ksh node=0444
argmap. d node=0444

argnap. exe node=0555
args. d node=0444

ar gs. exe node=0555
badguess. ksh node=0444
corruptenv. ksh node=0444
dl cl osel. ksh node=0444

dl cl osel. ksh. out npde=0444
dl cl ose2. ksh node=0444

dl cl ose2. ksh. out node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100

WODDDDDDDDDDDDODDDDDDDDODDDDDODDDODDDDDDDDODDDDDDDMD®MDMDMDMDMDD

i 386_ONLY) f
i 386_ONLY) f

$(i 386_ONLY) f
node=0444
| egacy pkg=SUNWItrt category=internal \
desc="DTrace Test Suite Internal

pat h=opt/ SUNWdt rt/t st/ comon/ usdt/t st
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st
pat h=opt / SUNWIt rt/t st/ comon/ usdt/t st
pat h=opt/ SUNWdtrt/t st/ common/ usdt/t st
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/t st
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st
pat h=opt/ SUNWAtrt/t st/ common/ usdt/t st
pat h=opt/ SUNWdtrt/t st/ common/ usdt/t st
pat h=opt/ SUNWtrt/t st/ comon/ usdt/t st
pat h=opt / SUNWAt rt/t st/ comon/ usdt/ t st
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st
pat h=opt / SUNWdt rt/t st/ common/ usdt/ t st
pat h=opt/ SUNWdtrt/t st/ common/ usdt/t st
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st
pat h=opt / SUNWdt rt/t st/ comon/ usdt/t st
pat h=opt / SUNWdt rt/t st/ common/ usdt/ t st
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/t st
pat h=opt / SUNWAt rt/t st/ comon/ usdt/ t st
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st
pat h=opt / SUNWdt rt/t st/ common/ usdt/ t st
pat h=opt/ SUNWdtrt/t st/ common/ usdt/t st
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st
pat h=opt/ SUNWdt rt/t st/ comon/ usdt/t st
pat h=opt/ SUNWdtrt/t st/ common/ usdt/t st
pat h=opt / SUNWdt rt/t st/ comon/ usdt/t st
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st
pat h=opt / SUNWIt rt/t st/ comon/ usdt/t st
pat h=opt/ SUNWdtrt/t st/ common/ usdt/t st
pat h=opt/ SUNWdtrt/t st/ common/ usdt/t st
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st
pat h=opt/ SUNWdtrt/t st/ common/ usdt/t st
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/t st
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st
pat h=opt / SUNWAt rt/t st/ comon/ usdt/t st
pat h=opt / SUNWdt rt/t st/ common/ usdt/ t st
pat h=opt/ SUNWdtrt/t st/ comon/ usdt/t st
pat h=opt / SUNWAt rt / t st/ common/ ust ack/ t st
pat h=opt / SUNWIt rt/ t st/ comon/ ust ack/ t st
pat h=opt / SUNWdt rt / t st/ common/ ust ack/ t st
pat h=opt/ SUNWdt rt/t st/ common/ ust ack/ t st
pat h=opt / SUNWAt rt / t st/ common/ ust ack/ t st
pat h=opt / SUNWAt rt/t st/ comon/ var s/ t st
pat h=opt / SUNWdt rt/t st/ comon/ var s/t st
pat h=opt/ SUNWdtrt/t st/ common/ var s/t st
pat h=opt / SUNWtrt/t st/ common/ var s/t st
pat h=opt / SUNWIt rt/t st/ comon/ var s/ t st
pat h=opt / SUNWdt rt/t st/ comon/ var s/ t st
pat h=opt/ SUNWdtrt/t st/ common/ var s/t st
pat h=opt/ SUNWdtrt/t st/ comon/ version/tst. 1. 0.d npde=0444
86_ONLY)file path=opt/SUNWItrt/tst/i86xpv/xdt/tst

il e path=opt/SUNWItrt/tst/i86xpv/xdt/tst

il e path=opt/SUNWItrt/tst/i86xpv/xdt/tst
i 386_ONLY)file path=opt/SUNWItrt/tst/i86xpv/xdt/tst

ile path=opt/SUNWItrt/tst/i86xpv/xdt/tst

32

dl cl ose3. ksh node=0444

el i mi nate. ksh node=0444
enabl ed. ksh node=0444
enabl ed. ksh. out npde=0444
enabl ed2. ksh node=0444
enabl ed2. ksh. out npde=0444
entryreturn. ksh node=0444
entryreturn. ksh. out node=0444
fork. ksh node=0444

fork. ksh. out npde=0444
forker.exe nbde=0555
forker.ksh node=0444
guess32. ksh node=0444
guess64. ksh node=0444
header . ksh node=0444

i ncl ude. ksh nbde=0444

| azypr obe. exe npde=0555

| azyprobel. ksh node=0444
| azyprobe2. ksh node=0444
I'i nkpriv. ksh nbde=0444

I'i nkunpriv. ksh node=0444
mul tipl e. ksh node=0444
mul tipl e. ksh. out node=0444
mul ti prov. ksh npde=0444
mul ti prov. ksh. out node=0444
nodtrace. ksh node=0444
nopr obes. ksh node=0444
nor eap. ksh node=0444

nor eapri ng. ksh node=0444
onl yenabl ed. ksh npde=0444
reap. ksh node=0444
reeval . ksh node=0444
static. ksh node=0444
static. ksh. out npbde=0444
static2. ksh node=0444
static2. ksh. out node=0444
user . ksh node=0444
user . ksh. out node=0444

bi gst ack. d node=0444

bi gst ack. exe npde=0555
dept h. ksh npode=0444
spi n. exe nbde=0555
spi n. ksh node=0444

gi d. d node=0444

nul | assi gn. d node=0444
ppi d. d npde=0444
ucal | er. ksh node=0444
ucal | er. ksh. out node=0444
ui d. d nbde=0444

wal | ti nestanp. d node=0444

basi c. ksh nbde=0444
hvnenabl e. ksh npde=0444
nenenabl e. ksh npode=0444
schedar gs. ksh node=0444
schedenabl e. ksh \

Di stribution" \

hot | i ne="Contact the DTrace discussion foruni nane="DIrace Test Suite"

l'icense cr_Sun |icense=cr_Sun
license Iic_CDDL license=lic_CDDL
depend fnri=runtine/java type=require

depend fnri=runtine/javal/runtine64 type=require

new usr/src/uts/comon/ dtrace/ dtrace. c

R R R R

437125 Tue Jan 14 16:49:02 2014
new usr/src/uts/comon/dtrace/ dtrace. c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

__unchanged_portion_onitted_

5501 /*

5502 * Enul ate the execution of DIrace IR instructions specified by the given
5503 * DIF object. This function is deliberately void of assertions as all of
5504 * the necessary checks are handled by a call to dtrace_difo_validate().
5505 */

5506 static uint64_t

5507 dtrace_dif_enul ate(dtrace_difo_t *difo, dtrace_nstate_t *nstate,

5508 dtrace_vstate_t *vstate, dtrace_state_t *state)

5509 {

5510 const dif_instr_t *text = difo->dtdo_buf;

5511 const uint_t textlen = difo->dtdo_len;

5512 const char *strtab = difo->dtdo_strtab;

5513 const uint64_t *inttab = difo->dtdo_inttab;

5515 uint64_t rval = 0;

5516 dtrace_statvar_t *svar;

5517 dtrace_dstate_t *dstate = &state->dtvs_dynvars;

5518 dtrace_difv_t *v;

5519 volatilTe uint16_t *flags = &pu_core[CPU->cpu_i d]. cpuc_dtrace_fl ags;
5520 volatile uintptr_t *illval = &pu_core[CPU->cpu_id].cpuc_dtrace_illval;
5522 dtrace_key_t tu egs[DI F_DTR NREGS + 2]; /* +2 for thread and id */
5523 uint64_t regs[Dl F_DI R_NREGS];

5524 uint64_t *tnp;

5526 uint8 t cccn=0, cc_cz =0, cc.v=0, cc_c=0;

5527 int64_t cc_r;

5528 uint_t pc =0, id, opc;

5529 uint8_t ttop = 0;

5530 dif _instr_t instr;

5531 uint_t rl, r2, rd;

5533 /*

5534 * We stash the current DIF object into the nmachine state: we need it
5535 * for subsequent access checking.

5536 */

5537 mstate->dtns_difo = difo;

5539 regs[Dl F_REG R0] = 0; /* %0 is fixed at zero */

5541 while (pc < textlen && ! (*flags & CPU_DTRACE_FAULT)) {

5542 opc = pc;

5544 instr = text[pc++];

5545 ri = DIF_INSTR RL(instr);

5546 r2 = DIF_INSTR_R2(instr);

5547 rd = DIF_INSTR_RD(instr);

5549 switch (DIF_INSTR OP(instr)) {

5550 case DIF_OP_OR

5551 regs[rd] = regs[rl] | regs[r2];

5552 br eak;

5553 case DIF_OP_XOR:

5554 regs[rd] = regs[r1] ~ regs[r2];

new usr/src/uts/comon/ dtrace/ dtrace. c

5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582

5584
5585
5586
5587
5588
5589
5590
5591

5593
5594
5595
5596
5597
5598
5599
5600
5601

5603
5604
5605
5606
5607
5608
5609
5610

5612
5613
5614
5615
5616
5617
5618
5619
5620

case

case

case

case

case

case

case

case

case

case

case

case

br eak;
case DI F_OP_AND:
regs[rd] = regs[rl] & regs[r2];

br eak;
DI F_OP_SLL:
regs[rd] = regs[rl] << regs[r2];
br eak;
DI F_OP_SRL:
regs[rd] = regs[rl] >> regs[r2];
br eak;
DI F_OP SUB
regs[rd] =regs[rl] - regs[r2];
br eak;
DI F_OP_ADD:
regs[rd] = regs[rl] + regs[r2];
br eak;
DI F_OP_MJL:
regs[rd] = regs[rl] * regs[r2];
break;
DI F_OP_SDI V:
if (regs[r2] == 0) {
regs[rd] = O;
*flags | = CPU DTRACE_DI VZERQ,
} else {
regs[rd] = (int64_| t)regs[rl] /
(int64_t)regs[r2];
}
br eak;
DI F_OP_UDV:
if (regs[r2] == 0) {
regs[rd] = 0;
*flags | = CPU DTRACE_DI VZERQ,
} else {
regs[rd] = regs[rl] / regs[r2];
br eak;
DI F_OP_SREM
if (regs[r2] == 0) {
regs[rd] = 0;
*flags | = CPU_DTRACE_DI VZERQ
} else {
regs[rd] = (int64_t)regs[rl] %
(int64_t)regs[r2];
break;
Dl F_OP_UREM
if (regs[r2] == 0) {
regs[rd] = 0;
*fl ags |_ CPU_DTRACE_DI VZERO,
} else {
regs[rd] = regs[rl] %regs[r2];
break;
DI F_OP_NOT:
regs[rd] = ~regs[r1];
break;
DI F_OP_MOV:
regs[rd] = regs[ri];
br eak;
DI F_OP_CWP:
cc_r regs[rl] - regs[r2];

cc_r < 0;

new usr/src/uts/comon/ dtrace/ dtrace. c

5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

cc_z
cc_v
cc_c
br eak;

cc_r ==

0
regs[rl] < regs[r2];

pc = DI F_I NSTR_LABEL(i nstr);
break;
DI F_OP_BNE:
if (cc_z == 0)
pc = DI F_INSTR_LABEL(instr);
break;
DI F_OP_BG
if ((cc_z | (cc n ~ cc_v)) == 0)
pc | NSTR LABEL(I nstr);
break;
DI F_OP_BGU:
if ((cc_c | cc _z) == 0)
pc = DI F_I NSTR_LABEL(instr);
break;
DI F_OP_BGE:
if ((cc_n ~ cc_v) == 0)
pc = DIF_I NSTR _ LABEL(instr);

if (cc_c ==0)
pc = DI F_I NSTR_LABEL(i nstr);
break;
DI F_OP_BL:
if (cc_n ™ cc

pc
break;
DIF_OP BLU:
if (cc_c)
pc = DI F_I NSTR_LABEL(i nstr);

_V)
Dl F_I NSTR_LABEL(i nstr);

break;
DI F_OP BLE:
if (cc_z | (cc

pc
br eak;
D F_OP BLEU
if (cc_c | cc_z)
= DI F_I NSTR_LABEL(instr);

v))
NSTR _ LABEL(instr);

B:
if (!dtrace_canl oad(regs[r1], 1, nstate, vstate))
br eak;
| * FALLTHROUGH* /
DI F_OP_LDSB:
regs[rd] = (int8_t)dtrace_l oad8(regs[r1]);
br eak;
DI F_OP_RLDSH:
if (!dtrace_canl oad(regs[rl], 2, nstate, vstate))
break;
/ * FALLTHROUGH* /
DI F_OP_LDSH:
regs[rd] = (intl6_t)dtrace_|l oadl6(regs[r1]);
br eak;
DI F_CP_RLDSW

new usr/src/uts/comon/ dtrace/ dtrace. c

5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752

#endi f

#endi f

#endi f

#endi f

#endi f

#endi f

#endi f

#endi f

/| *

/| *

/| *

/| *

/| *

| *

| *

| *

if (!dtrace_canload(regs[rl], 4, nstate, vstate))
br eak;
[* FALLTHROUGH* /
case DI F_OP_LDSW
regs[rd] = (int32_t)dtrace_|l oad32(regs[r1]);
br eak;
case DIF_OP RLDUB:
if (!dtrace_canload(regs[rl], 1, nstate, vstate))
br eak;
[* FALLTHROUGH* /
case DI F_OP_LDUB:
regs[rd] = dtrace_l oad8(regs[r1]);
br eak;
case DI F_OP_RLDUH:
if (!dtrace_canload(regs[rl], 2, nmstate, vstate))
br eak;
/ * FALLTHROUGH* /
case DI F_OP_LDUH:
regs[rd] = dtrace_|l oad16(regs[r1]);
br eak;
case DI F_(P_RLDUW
if (!dtrace_canl oad(regs[rl], 4, nstate, vstate))
br eak;
[* FALLTHROUGH* /
case DI F_OP_LDUW
regs[rd] = dtrace_|l oad32(regs[r1]);
br eak;
case DIF_OP_| RLDX
if (!dtrace_canload(regs[r1], 8, nstate, vstate))
br eak;
/*FALLTHRJX}#/
case DIF_OP_LDX:
reger d] = dtrace_| oad64(regs[ri]);

case DI F_OP_ULDSB:
DTRACE_CPUFLAG SET(CPU DTRACE_NOFAULT) ;
coderevi ew */
regs[rd] = (int8_t)
dtrace_fuword8((void *)(uintptr_t)regs[rl]);
DTRACE_CPUFLAG CLEAR(CPU_DTRACE_NOFAULT) ;
coderevi ew */
br eak;
case DI F_OP_ULDSH:
DTRACE_CPUFLAG SET(CPU_DTRACE_NOFAULT) ;
coderevi ew */
regs[rd] = (intl6_t)
dtrace _fuwordl6((void *)(uintptr_t)regs[ri]);
DTRACE_CPUFLAG CLEAR(CPU_DTRACE_NOFAULT) ;
coderevi ew */
br eak;
case DI F_OP_ULDSW
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;
coderevi ew */
regs[rd] = (int32_t)
dtrace _fuword32((void *)(uintptr t)regs[rl])
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT) ;
coder evi ew */
br eak;
case DI F_OP_ULDUB:
DTRACE_CPUFLAG SET(CPU_DTRACE_NOFAULT) ;
coderevi ew */
regs[rd] =
dtrace_fuword8((void *)(uintptr_t)regs[ri]);
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT)
coderevi ew */
br eak;

new usr/src/uts/comon/ dtrace/ dtrace. c

5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793

5795
5796
5797
5798
5799
5800

5802

5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814

5816
5817

#endi f

#endi f

#endi f

#endi f

#endi f

#endi f

| *

| *

| *

| *

| *

/*

case DI F_OP_ULDUH:
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;
coderevi ew */
regs[rd] =
dtrace_f uwor d16((voi d *) (uint ptr t)regs[rl])
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOF
coderevi ew */
br eak;
case DI F_OP_ULDUW
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;
coderevi ew */
regs[rd] =
dtrace_f uword32((void *)(uint ptr t)regs[rl])
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOF
coderevi ew */
br eak;
case DIF_OP_| ULDX:
DTRACE CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;
coder evi ew */
regs[rd] =
dtrace_f uwor d64((voi d *) (uint ptr t)regs[rl])
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOF
coder evi ew */
br eak;
case DI F_OP_RET:
rval = regs[rd];
pc = textlen;
br eak;
case DI F_OP_NOP:
br eak;
case DI F_OP_SETX:
regs[rd] = inttab[DI F_I NSTR I NTEGER(i nstr)];
br eak;
case DI F_OP_SETS:
regs[rd] = (uint64_t)(uintptr_t)
(strtab + DIF_INSTR_STRING(iI nstr));
br eak;
case DIF_OP_SCWwP: {
size_t sz = state->dts_options[DTRACEOPT_STRSI ZE] ;
uintptr_t sl = regs[ri];
uintptr_t s2 regs[r2];

if (sl != NULL &&
ldtrace_ strcanl oad(sl, sz, nstate, vstate))
bre
if (s2!= NULL &&
Idtrace_strcanl oad(s2, sz, nstate, vstate))

br eak;
cc_r = dtrace_strncnp((char *)sl, (char *)s2, sz);
cc_n = cc_r < 0;
cc_z = cc_r == 0;
cc_v = cc_c = 0;
br eak;

}
case DI F_OP_LDGA:
regs[rd] = dtrace_dif_variabl e(nstate, state,
ri, regs[rZ]);
br eak;
case DIF_OP_ LDCS
id = DI F_INSTR_VAR(instr);

if (id >= DI F_VAR OTHER UBASE) {
uintptr_t a;

new usr/src/uts/comon/ dtrace/ dtrace. c

5819
5820
5821
5822

5824
5825
5826
5827

5829

5831
5832
5833
5834
5835
5836
5837
5838
5839
5840

5842
5843

5845
5846

5848
5849

5851
5852

5854
5855
5856

5858
5859

5861
5862

5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874

5876
5877
5878
5879

5881
5882

5884

id-= D F_VAR OTHER UBASE;

svar = vstate->dtvs gl obal s[id];
ASSERT(svar != NULL);

v = &svar->dtsv_var;

if (!(v->dtdv_type.dtdt_flags & DI F_TF_BYREF)) {
regs[rd] = svar->dtsv_data;
br eak;

}
a = (uintptr_t)svar->dtsv_dat a;
if (*(uint8_t *)a == U NT8_MAX) {
/*
* |f the Oth byte is set to U NT8_MAX
* then this is to be treated as a
* reference to a NULL variable.
*/
regs[rd] = NULL;

} else {
regs[rd] = a + sizeof (uint64_t);
}

br eak;

}

regs[rd] = dtrace_dif_variable(nstate, state, id, 0);
br eak;

case DI F_OP_STGS:

id = DIF_INSTR VAR(instr);

ASSERT(i d >= DI F_VAR OTHER UBASE) ;
id-= D F_VAR OTHER UBASE;

svar = vstate->dtvs_gl obal s[id];
ASSERT(svar != NULL);
v = &svar->dtsv_var;

if (v->dtdv_type. dtdt _flags & D F_TF_BYREF) {
uintptr_t a = (uintptr_t)svar->dtsv_data;

ASSERT(a != NULL);
ASSERT(svar - >dtsv_si ze ! = 0);

if (regs[rd] == NULL)
*(uint8_t *)a = Ul NT8_MAX;
br eak;
} else {
*(uint8_t *)a = 0;
a += sizeof (uint64_t);

}
if (!dtrace_vcanl oad(
(void *)(uintptr_t)regs[rd], &v->dtdv_type,
netate, vstate))
br eak;

dtrace_vcopy((void *)(uintptr_t)regs[rd],
(void *)a, &->dtdv_type);

br eak;
}
svar->dtsv_data = regs[rd];
break;

case DI F_OP_LDTA:

new usr/src/uts/comon/ dtrace/ dtrace. c

5885
5886
5887
5888
5889
5890
5891

5893
5894

5896
5897
5898
5899
5900
5901
5902

5904

5906
5907

5909
5910
5911

5913
5914
5915

5917
5918
5919

5921
5922
5923
5924
5925
5926
5927
5928
5929
5930

5932
5933

5935
5936
5937
5938

5940
5941

5943
5944
5945

5947
5948
5949
5950

/*

* There are no DIrace built-in thread-1ocal arrays at
* present. This opcode is saved for future work.

*/

*flags | = CPU_DTRACE_I LLOP;
regs[rd] = 0;
br eak;

case DIF_OP_LDLS:

id = DIF_INSTR VAR(instr);
if (id < DIF_VAR OTHER UBASE) {
/ *

* For now, this has no neaning.
*/

regs[rd] = 0;

br eak;

}
id -= DI F_VAR OTHER UBASE;

ASSERT(id < vstate->dtvs_nl ocal s);
ASSERT(vst ate->dtvs_|l ocal s ! = NULL);

svar = vstate->dtvs_local s[id];
ASSERT(svar != NULL);
v = &svar->dtsv_var;

if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF) {
uintptr_t a = (uintptr_t)svar->dtsv_data;
size_t sz = v->dtdv_type. dtdt_size;

sz += sizeof (uint64_t);
ASSERT(svar - >dt sv_si ze == NCPU * sz);
a += CPU->cpu_id * sz;

if (*(ui?ES_t *)a == U NT8_MAX) {

* If the Oth byte is set to U NT8_MAX
* then this is to be treated as a

* reference to a NULL vari able.

*/

regs[rd] = NULL;
} else {

regs[rd] = a + sizeof (uint64_t);
}

br eak;

}

ASSERT(svar - >dt sv_si ze == NCPU * sizeof (uint64_t));
tnp = (ui nt64 t *)(uintptr_t)svar->dtsv_data;
regs[rd] = tnp[CPU->cpu_id];

br eak;

case DI F_OP_STLS:

Td = DIF_I NSTR_VAR(instr);

ASSERT(id >= DI F_VAR OTHER UBASE) ;
id -= DI F_VAR OTHER UBASE;
ASSERT(i d < vstate->dtvs_| nl ocal s);

ASSERT(vstate->dtvs_l ocals !'= NULL);
svar = vstate->dtvs_| ocal s[id];
ASSERT(svar != NULL);

v = &svar->dtsv_var;

new usr/src/uts/comon/ dtrace/ dtrace. c

5952
5953
5954

5956
5957
5958

5960
5961
5962
5963
5964
5965
5966

5968
5969
5970
5971

5973
5974
5975
5976

5978
5979
5980
5981

5983
5984
5985

5987
5988
5989
5990

5992
5993
5994
5995
5996

5998
5999
6000

6002
6003
6004
6005

6007
6008
6009
6010
6011

6013
6014

6016

if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF) {
uintptr_t a = (uintptr_t)svar->dtsv_data;
size_t sz = v->dtdv_type.dtdt_size;

sz += sizeof (uint64_t);
ASSERT(svar - >dt sv_si ze == NCPU * sz);
a += CPU->cpu_id * sz;

if (regs[rd] == NULL)
*(uint8_t *)a = U NT8_MAX;
br eak;
} else {
*(uint8_t *)a = 0;
a += sizeof (ui nt 64 _t);

}

if (!dtrace_vcanl oad(
(void *)(uintptr_t)regs[rd], &v->dtdv_type,
nstate, vstate))
br eak;

dtrace_vcopy((void *)(uintptr_t)regs[rd],
(void *)a, &->dtdv_type);
br eak;

}

ASSERT(svar >dt sv_size == NCPU * sizeof (uint64_t));
tmp = (uint64_t *)(ui ntptr _t)svar->dtsv_data;

tmp[CPU->cpu_id] = regs[rd];

br eak;

case DI F_OP_LDTS:

}

dtrace_dynvar _t *dvar;
dtrace_key_t *key;

id = DIF_INSTR_VAR(instr);
ASSERT(id >= DIF_VAR_ OTHER _UBASE) ;
|d -= DI F_VAR_OTHER UBASE;

v = &state->dtvs tlocals[|d]

key = &tupregs[Dl F_DTR_NREGS] ;

key[0] . dttk_val ue (ui nt64_t)id;
key[0].dttk_size =

DTRACE_TLS THRKEY(key[1] . dttk_val ue);
key[1] . dttk_size = O;

dvar = dtrace_dynvar(dstate, 2, key,
si zeof (uTnt64_t), DTRACE DYNVAR NOALLCC,
nstate, vstate);

if (dvar == NULL) {
regs[rd] = 0;
br eak;

}

if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF)

regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
} else {

regs[rd] = *((uint64_t *)dvar->dtdv_data);
}

br eak;

case DIF_OP_STTS: {

new usr/src/uts/comon/dtrace/ dtrace. c 9 new usr/src/uts/comon/dtrace/ dtrace.c 10
6017 dtrace_dynvar_t *dvar; 6083 * a non-zero size value in the "pushtr"”
6018 dtrace_key_t *key; 6084 */
6085 tupregs[ttop].dttk_size =
6020 id =D F_INSTR VAR(instr); 6086 dtrace_strlen((char *)(ul ntptr_t)regs[rd],
6021 ASSERT(id >= DIF_VAR OTHER _UBASE) ; 6087 regs[r2] ? regs[r2]
6022 id -= DI F_VAR OTHER UBASE; 6088 dtrace_strsize_def aul t) + 1;
6089 } else {
6024 key = &tupregs[Dl F_DTR_NREGS] ; 6090 tupregs[ttop].dttk_size = regs[r2];
6025 key[0] .dttk_value = (uint64_t)id; 6091 }
6026 key[0].dttk_size = O;
6027 DTRACE_TLS THRKEY(key[1] . dttk_val ue); 6093 tupregs[ttop++].dttk_value = regs[rd];
6028 key[l] _dttk_size = 0; 6094 br eak;
6029 v = &vstate->dtvs tI ocal s[id];
6096 case DI F_OP_PUSHTV:
6031 dvar = dtrace_dynvar(dstate, 2, key, 6097 if (ttop == DIF_DTR_NREGS) {
6032 v->dtdv_type. dtdt _size > sizeof (uint64_t) ? 6098 *flags | = CPU_DTRACE_TUPOFLOW
6033 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6099 br eak;
6034 regs[rd] ? DTRACE_DYNVAR ALLCC : 6100 }
6035 DTRACE_DYNVAR DEALLCC, nstate, vstate);
6102 tupregs[ttop].dttk_value = regs[rd];
6037 /* 6103 tupregs[ttop++].dttk_size = 0;
6038 * Gven that we're storing to thread-1ocal data, 6104 break;
6039 * we need to flush our predicate cache.
6040 */ 6106 case DI F_OP_POPTS:
6041 curthread->t _predcache = NULL; 6107 if (ttop !=0)
6108 ttop--;
6043 if (dvar == NULL) 6109 br eak;
6044 br eak;
6111 case DI F_OP_FLUSHTS:
6046 if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF) { 6112 ttop = 0O;
6047 if (!dtrace_vcanl oad(6113 br eak;
6048 (void *)(uintptr_t)regs[rd],
6049 &->dtdv_type, nstate, vstate)) 6115 case DI F_OP_LDGAA:
6050 br eak; 6116 case DI F_OP_LDTAA: {
6117 dtrace_dynvar_t *dvar;
6052 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6118 dtrace_key_t *key = tupregs;
6053 dvar->dtdv_data, &v->dtdv_type); 6119 uint_t nkeys = ttop;
6054 } else {
6055 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6121 id = DIF_INSTR_VAR(i nstr);
6056 } 6122 ASSERT(id >= DIF_VAR_ OTHER _UBASE) ;
6123 id -= DI F_VAR OTHER UBASE;
6058 br eak;
6059 } 6125 key[nkeys] . dttk_value = (uint64_t)id;
6126 key[nkeys++] . dttk_si ze = 0;
6061 case DI F_OP_SRA:
6062 regs[rd] = (int64_t)regs[rl] >> regs[r2]; 6128 if (DIF_INSTR OP(instr) == DI F_OP_LDTAA) {
6063 br eak; 6129 DTRACE_TLS_THRKEY(key|[nkeys] .dttk_val ue);
6130 key[nkeys++] dttk_size = 0;
6065 case DIF_OP_CALL: 6131 \Y &vst at e->dt vs_t | ocal S[I d];
6066 dtrace_di f _subr (DI F_I NSTR_SUBR(i nstr), rd, 6132 } else {
6067 regs, tupregs, ttop, nstate, state); 6133 v = &vstate->dtvs_global s[id]->dtsv_var;
6068 break; 6134 }
6070 case DI F_OP_PUSHTR: 6136 dvar = dtrace_dynvar (dstate, nkeys, key,
6071 if (ttop == DI F_DTR_NREGS) { 6137 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6072 *flags | = CPU_DTRACE_TUPOFLOW 6138 v->dtdv_t ype. dtdt_size : sizeof (uint64_t),
6073 br eak; 6139 DTRACE_DYNVAR _NOALLOC, nstate, vstate);
6074 }
6141 if (dvar == NULL) {
6076 if (rl == DIF_TYPE_STRING { 6142 regs[rd] = 0;
6077 /* 6143 br eak;
6078 * |f this is a string type and the size is 0, 6144 }
6079 * we'll use the systemw de default string
6080 * size. Note that we are _not_ | ooking at 6146 if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF) {
6081 * the val ue of the DTRACEOPT_STRSI ZE opti on; 6147 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6082 * had this been set, we woul d expect to have 6148 } else {

new usr/src/uts/comon/ dtrace/ dtrace. c 11

6149
6150

6152
6153

6155
6156
6157
6158
6159

6161
6162
6163

6165
6166

6168
6169
6170
6171
6172
6173
6174

6176
6177
6178
6179
6180

6182
6183

6185
6186
6187
6188
6189

6191
6192
6193
6194
6195

6197
6198

6200
6201
6202

6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214

regs[rd] = *((uint64_t *)dvar->dtdv_data);
}

br eak;

}

case DI F_OP_STGAA:

case DI F_OP_STTAA
dtrace_dynvar _t *dvar;
dtrace_key_t *key = tupregs;
uint_t nkeys = ttop;

id = D F_INSTR VAR(instr);
ASSERT(i d >= DIF_VAR_ OTHER _UBASE) ;
id -= DI F_VAR OTHER UBASE;

key[nkeys].dttk_value = (uint64_t)id;
key[nkeys++] . dttk_size = 0;

if (DIF_INSTR OP(instr) == DI F_OP_STTAA) {
DTRACE_TLS THRKEY(key[nkeys] . dttk_val ue);
key[nkeys++] dttk_size = 0;
v = &state->dtvs_tlocal s[id];

} else {

) v = &vstate->dtvs_gl obal s[id]->dtsv_var;

dvar = dtrace_dynvar (dstate, nkeys, key,
v>dtdvtype dtdt _size > sizeof (uinté64_t) ?
v->dtdv_type.dtdt_size : sizeof (uint64_t)
regs[rd] ? DTRACE_DYNVAR ALLCC :
DTRACE_DYNVAR DEALLCC, nstate, vstate);

if (dvar == NULL)
br eak;

if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF) {
if (!dtrace_vcanl oad(
(void *)(uintptr_t)regs[rd], &v->dtdv_type,
nmstate, vstate))
br eak;

dtrace_vcopy((void *)(uintptr_t)regs[rd],
dvar - >dtdv_data, &v->dtdv_type);
} else {
) *((uint64_t *)dvar->dtdv_data) = regs[rd];

br eak;

}

case DI F_OP_ALLCCS:
uintptr_t ptr = P2ROUNDUP(nst at e- >dt ms_scratch_ptr, 8);
size_t size = ptr - nmstate->dtns_scratch_ptr + regs[ri];

/
Roundi ng up the user allocation size could have
overfl owed | arge, bogus allocations (like -1ULL) to
0.

N

*
/
if (size <regs[rl] ||
| DTRACE_| NSCRATCH(nst ate, size)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH) ;
regs[rd] = NULL;
br eak;

new usr/src/uts/comon/dtrace/ dtrace.c 12
6216 dtrace_bzero((void *) nstate->dtns_scratch_ptr, size);
6217 nst at e- >dt ms_scratch_ptr += si ze;

6218 regs[rd] = ptr;

6219 br eak

6220 }

6222 case DI F_OP_CCOPYS:

6223 if (!dtrace_canstore(regs[rd], regs[r2],

6224 nmstate, vstate))

6225 *flags | = CPU DTRACE_BADADDR,

6226 *illval = regs[rd];

6227 br eak;

6228 }

6230 if (!dtrace_canload(regs[rl], regs[r2], nstate, vstate))
6231 br eak;

6233 dtrace bcopy((void *)(uintptr_t)regs[ri],

6234 (void *)(uintptr_t)regs[rd], (size t)regs[r2]);
6235 br eak;

6237 case DI F _OP_STB:

6238 if (!dtrace_canstore(regs[rd], 1, nstate, vstate)) {
6239 *flags | = CPU_DTRACE_BADADDR;

6240 *illval = regs[rd];

6241 br eak;

6242 }

6243 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[ril];
6244 br eak;

6246 case DI F_OP_STH:

6247 if (!dtrace_canstore(regs[rd], 2, nstate, vstate)) {
6248 *flags | = CPU_DTRACE_ BADADDR;

6249 *illval = regs[rd];

6250 br eak;

6251 }

6252 if (regs[rd] & 1)

6253 *flags | = CPU_DTRACE_BADALI GN;

6254 *illval = regs[rd];

6255 br eak;

6256 }

6257 *((uint1l6_t *)(uintptr_t)regs[rd]) = (uintl6_t)regs[ri];
6258 br eak;

6260 case DI F_OP_STW

6261 if (!dtrace_canstore(regs[rd], 4, nstate, vstate)) {
6262 *flags | = CPU DTRACE BADADDR,

6263 *illval = regs[rd];

6264 br eak;

6265

6266 if (regs[rd] & 3) {

6267 |— CPU_DTRACE_BADALI G\,

6268 *|IIvaI = regs[rd];

6269 br eak;

6270 }

6271 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[ri];
6272 br eak;

6274 case DIF_OP_STX

6275 if (!dtrace_canstore(regs[rd], 8, nstate, vstate)) {
6276 *flags | = CPU_DTRACE_| BADADDR;

6277 *illval = regs[rd];

6278 br eak;

6279 }

6280 if (regs[rd] & 7) {

new usr/src/uts/comon/ dtrace/ dtrace. c 13

6281
6282
6283
6284
6285
6286
6287
6288

6290
6291

6293
6294

6296
6297

6299
6300

6302
6303
6304
6305
6306
6307
6308
6309

6311
6312

6314
6315
6316
6317

6319
6320
6321
6322
6323
6324
6325
6326
6327

6329
6330
6331

6333
6334
6335

6337
6338
6339

6341
6342

6344
6345

}

*flags | = CPU_DTRACE_BADALI G\,
*illval = regs[rd];
br eak;

—

*((uint64_t *)(uintptr_t)regs[rd]) = regs[ri];
br eak;

}

if (!(*flags & CPU_DTRACE FAULT))
return (rval);

nstate->dtnms_fltoffs = opc * sizeof (dif_instr_t);
nmst at e- >dt ms_pr esent | = DTRACE_MSTATE_FLTOFFS;

return (0);

static void
dtrace_acti on_breakpoi nt (dtrace_ecb_t *ecbh)
6301 {

dtrace_probe_t *probe = ecb->dte_probe;
dtrace_provider_t *prov = probe->dtpr_provider;
char c[DTRACE_FULLNAMELEN + 80], *str;

char *msg = "dtrace: breakpoint action at probe
char *ecbnsg = " (ecb ";

uintptr_t mask = (Oxf << (sizeof (uintptr_t) * NBBY / 4));
uintptr_t val = (uintptr_t)ech;

int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;

if (dtrace_destructive_disallow)
return;

/*

* It’'s inpossible to be taking action on the NULL probe.
*/

ASSERT(probe != NULL)

/*
* This is a poor man's (destitute man’s?) sprintf(): we want to
* print the provider nane, nodul e nane, function nane and name of
* the probe, along with the hex address of the ECB with the breakpoint
* action -- all of which we nmust place in the character buffer by
* hand.
*/
while (*msg !'="\0")
c[i++] = *nmeg++
for (str = prov->dtpv_nane; *str !="'\0"; str++)
cl[i++] = *str;
cli++] =":";
for (str = probe->dtpr_nod; *str !='\0"; str++)
cl[i++] = *str;
cl[i++] =":";
for (str = probe->dtpr_func; *str !="'\0"; str++)
cl[i++] = *str;
cl[i++] =":";
for (str = probe->dtpr_nanme; *str !='\0"; str++)
c[i++] = *str;
while (*ecbnsg !'= "\0")
c[i++] = *echnmsg++;

new usr/src/uts/comon/ dtrace/ dtrace. c 14
6347 while (shift >= 0) {

6348 mask = (uintptr_t)Oxf << shift;

6350 if (val >= ((uintptr_t)1 << shift))

6351 c[i++] = "0123456789abcdef"[(val & nmask) >> shift];
6352 shift -= 4;

6353 }

6355 cl[i++] =)',

6356 c[i] ="\0";

6358 debug_enter(c);

6359 }

6361 static void
6362 dtrace_action_panic(dtrace_ecbh_t *ech)

6363 {
6364

6366
6367
6368
6369

6371
6372

6374
6375

6377
6378

6380
6381
6382
6383
6384
6385
6386
6387
6388 }

dtrace_probe_t *probe = ecb->dte_probe;

/*

* |t's inpossible to be taking action on the NULL probe.
*

/

ASSERT(probe != NULL);

if (dtrace_destructive_disallow)
return;

if (dtrace_panicked != NULL)
return;

if (dtrace_casptr(&dtrace_pani cked, NULL, curthread) != NULL)
return;

/*

* W won the right to panic. (We want to be sure that only one
* thread calls panic() fromdtrace_probe(), and that panic() is
* called exactly once.)

*/

dtrace_pani c("dtrace: panic action at probe %:%:%:% (ecb %)",
pr obe- >dt pr _provi der - >dt pv_nane, probe->dtpr_nod,
probe->dt pr_func, probe->dtpr_nane, (void *)ech);

6390 static void
6391 dtrace_action_raise(uint64_t sig)

6392 {
6393
6394

6396
6397
6398
6399

6401
6402
6403
6404
6405
6406

6408
6409
6410 }

if (dtrace_destructive_disallow)

return;
if (sig>= NsSIQ ({
DTRACE_CPUFLAG_SET(CPU_DTRACE_| LLOP) ;
return;
}
/*
* raise() has a queue depth of 1 -- we ignore all subsequent
* invocations of the raise() action.
*/

if (curthread->t_dtrace_sig == 0)
curthread->t_dtrace_sig = (uint8_t)sig;

curthread->t_sig_check = 1;
aston(curthread);

6412 static void

new usr/src/uts/comon/dtrace/ dtrace. c 15 new usr/src/uts/comon/dtrace/ dtrace.c
6413 dtrace_action_stop(void) 6479 uintptr_t old = nstate->dtns_scratch_ptr, saved;
6414 { 6480 uintl6_t *flags = &cpu_core[CPU->cpu_i d].cpuc_dtrace_fl ags;
6415 if (dtrace_destructive_disallow) 6481 char *sym
6416 return;
6483 /*
6418 if (!curthread->t_dtrace_stop) { 6484 * Should be taking a faster path if string space has not been
6419 curthread->t_dtrace_stop = 1; 6485 * all ocat ed.
6420 curthread->t_sig_check = 1; 6486 “f
6421 aston(curthread); 6487 ASSERT(strsize != 0);
6422 }
6423 } 6489 I*
6490 * W will first allocate sone tenporary space for the frame pointers.
6425 static void 6491 */
6426 dtrace_action_chill (dtrace_nstate_t *mstate, hrtime_t val) 6492 fps = (uint64_t *)P2ROUNDUP(st at e- >dt ms_scratch_ptr, 8);
6427 { 6493 size = (uintptr_t)fps - nstate->dtns_scratch_ptr +
6428 hrtime_t now, 6494 (nframes * sizeof (uint64_t));
6429 volatile uint1l6_t *flags;
6430 cpu_t *cpu = CPU, 6496 if (!DTRACE_|I NSCRATCH(nst ate, size)) {
6497 /*
6432 if (dtrace_destructive_disallow) 6498 * Not enough room for our frane pointers -- need to indicate
6433 return; 6499 * that we ran out of scratch space.
6500 */
6435 flags = (volatile uintl16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_fl ags; 6501 DTRACE_CPUFLAG_SET(CPU_DTRACE_NGOSCRATCH) ;
6502 return;
6437 now = dtrace_gethrtine(); 6503 }
6439 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 6505 nst at e- >dt ms_scratch_ptr += size;
6440 /* 6506 saved = nstate->dtns_scratch_ptr;
6441 * We need to advance the mark to the current tine.
6442 */ 6508 /*
6443 cpu->cpu_dtrace_chill mark = now, 6509 * Now get a stack with both program counters and frame pointers.
6444 cpu->cpu_dtrace_chilled = 0; 6510 */
6445 } 6511 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;
6512 dtrace_get uf pstack(buf, fps, nframes + 1);
6447 /[* 6513 DTRACE_CPUFLAG CLEAR(CPU_DTRACE_NOFAULT) ;
6448 * Now check to see if the requested chill time would take us over
6449 * the maxi mum anpunt of tine allowed in the chill interval. (O 6515 7%
6450 * worse, if the calculation itself induces overflow) 6516 * |f that faulted, we're cooked.
6451 */ 6517 */
6452 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_nmax || 6518 if (*flags & CPU_DTRACE_FAULT)
6453 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 6519 goto out;
6454 *flags | = CPU_DTRACE_| LLOP;
6455 return; 6521 s
6456 } 6522 * Now we want to wal k up the stack, calling the USTACK hel per. For
6523 * each iteration, we restore the scratch pointer.
6458 while (dtrace_gethrtime() - now < val) 6524 */
6459 conti nue; 6525 for (i =0; i < nfranes; i++)
6526 met at e- >dt ms_scratch_ptr = saved;
6461 /*
6462 * Normally, we assure that the value of the variable "tinestamp" does 6528 if (offs >= strsize)
6463 * not change within an ECB. The presence of chill() represents an 6529 br eak;
6464 * exception to this rule, however.
6465 */ 6531 sym = (char *)(uintptr_t)dtrace_hel per(
6466 nst at e- >dt ms_present &= ~DTRACE_MSTATE_TI MESTAMP; 6532 DTRACE_HELPER_ACTI ON_USTACK,
6467 cpu->cpu_dtrace_chilled += val; 6533 nstate, state, pcs[i], fps[i]);
6468 }
6535 /*
6470 static void 6536 * |f we faulted while running the helper, we're going to
6471 dtrace_action_ustack(dtrace_nstate_t *nstate, dtrace_state_t *state, 6537 * clear the fault and null out the corresponding string.
6472 uint64_t *buf, uint64_t arg) 6538 */
6473 { 6539 if (*flags & CPU DTRACE FAULT) {
6474 int nframes = DTRACE_USTACK_NFRAMES(arg); 6540 *flags & ~CPU _DTRACE_FAULT;
6475 int strsize = DTRACE_USTACK_STRSI ZE(ar g) ; 6541 stroffs++] ='\0";
6476 uint64_t *pcs = &uf[1], *fps; 6542 conti nue;
6477 char *str = (char *)&pcs[nfranes]; 6543 }
6478 int size, offs =0, i, j;

new usr/src/uts/comon/ dtrace/ dtrace. c

6545 if (sym== NULL) {

6546 strloffs++] = '\0";

6547 conti nue;

6548 }

6550 DTRACE_CPUFLAG SET(CPU_DTRACE_NOFAULT) ;

6552 /*

6553 * Now copy in the string that the hel per returned to us.
6554 */

6555 for (j =0; offs + | < strsize; j++) {

6556 if ((str[offs +j] =synfj]) =="'\0")

6557 br eak;

6558 }

6560 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT) ;

6562 offs +=j + 1;

6563 1

6565 if (offs >= strsize) {

6566 /*

6567 * If we didn't have roomfor all of the strings, we don't
6568 * abort processing -- this needn't be a fatal error -- but we
6569 * still want to increment a counter (dts_stkstroverflows) to
6570 * allow this condition to be warned about. (If this is from
6571 * a jstack() action, it is easily tuned via jstackstrsize.)
6572 *

6573 dtrace_error(&state->dts_stkstroverflows);

6574

6576 while (offs < strsize)

6577 strioffs++] ='\0";

6579 out:

6580 nmst at e- >dt ms_scratch_ptr = ol d;

6581 }

6583 static void

6584 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,

6585 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6586 {

6587 volatile uint16_t *fl ags;

6588 uint64_t val = *valp;

6589 size_t valoffs = *val of f sp;

6591 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_fl ags;
6592 ASSERT(dt ki nd == DI F_TF_BYREF || dtkind == DI F_TF_BYUREF);

6594 /*

6595 * |f this is a string, we're going to only load until we find the zero
6596 * byte -- after which we'll store zero bytes.

6597 *

6598 if (dp->dtdo rtype dtdt _kind == DI F_TYPE_STRI NG ({

6599 char ¢ =’'\0 + 1;

6600 size_t s;

6602 for (s = 0; s < size; s++)

6603 if (c!="\0 && dtkind == DI F_TF_BYREF) {

6604 c = dtrace_| oad8(val ++);

6605 } elseif (cl—'\O‘ && dtkind == DI F_TF_BYUREF) {
6606 DTRACE CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;

6607 c = dtrace_fuword8((void *)(uintptr t)val ++);
6608 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT) ;

6609 if (*fTags & CPU DTRACE FAULT)

6610

br eak;

new usr/src/uts/comon/ dtrace/ dtrace. c

6611
6613

6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629

6631
6632
6633
6634

6636
6637
6638

6640
6641
6642
6643
6644
6645
6646
6647

}
DTRACE_STORE(ui nt8_t, tomax, val offs++, c);
if (c =='\0 && intuple)
br eak;
}
} else {
uint8_t c;
whil e (val offs < end) {
if (dtkind == DI F_TF_BYREF) {
c = dt race_l oad8(val ++);
} else if (dtkind == DI F_TF_BYUREF) {
DTRACE CPUFLAG SI:_l'(CPU_DTRACE_NOFAULT) ;
¢ = dtrace_fuword8((void *)(uintptr t)val ++);
DTRACE_CPUFLAG CLEAR(CPU_DTRACE_NOFAULT) ;
if o (*fl ags & CPU_DTRACE_FAULT)
br eak;
}
DTRACE_STORE(ui nt8_t, tomax,
val of fs++, c);
}
}
*valp = val;
*val of fsp = val of fs;
}
#endif /* ! codereview */
/*
* If you're looking for the epicenter of DTrace, you just found it. This
* is the function called by the provider to fire a probe -- fromwhich all
* subsequent probe-context DTrace activity enanates.
*
/
voi d
dtrace probe(dtrace idt id, uintptr_t argO, uintptr_t argl,

6648 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)

6649 {

6650 processorid_t cpuid;

6651 dtrace_i cooki e_t cooki e;

6652 dtrace_probe_t *probe;

6653 dtrace_nstate_t nstate;

6654 dtrace_ecb_t *ecb;

6655 dtrace_action_t *act;

6656 intptr_t offs;

6657 size_t size;

6658 int vtinme, onintr;

6659 volatile uint16_t *flags;

6660 hrtime_t now, end;

6662 /*

6663 * Kick out inmediately if this CPUis still being born (in which case
6664 * curthread will be set to -1) or the current thread can't allow
6665 * probes in its current context.

6666 *

6667 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6668 return;

6670 cooki e = dtrace_i nterrupt _di sabl e();

6671 probe = dtrace probes[ld - 1]

6672 cpuid = CPU->cpu_i d;

6673 onintr = CPU_ON_I NTR(CPU) ;

6675 CPU- >cpu_dtrace_probes++;

new usr/src/uts/comon/ dtrace/ dtrace. c

6677
6678
6679
6680
6681
6682
6683
6684
6685

6687
6688
6689
6690
6691
6692
6693

6695
6696

6698
6699

6701
6702
6703
6704
6705
6706
6707
6708

6710

6712
6713
6714
6715
6716
6717
6718
6719
6720
6721

6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737

6739
6740
6741

#i f def
#el se

#endi f

if (lonintr &% probe->dtpr_predcache ! = DTRACE_CACHElI DNONE &&
probe->dt pr _predcache == curt hread->t _predcache) {
/*

* We have hit in the predicate cache; we know that
* this predicate would evaluate to be fal se.
)

dtrace_i nterrupt_enabl e(cooki e);
return;

}
if (panic_quiesce) {
/*
* We don’t trace anything if we’'re panicking.
*/

dtrace_i nterrupt_enabl e(cooki e);

return;
}
now = dtrace_gethrtinme();
vtine = dtrace_vtine_references != 0;

if (vtime & curthread->t_dtrace_start)
curthread->t_dtrace_vtinme += now - curthread->t_dtrace_start;

nstate. dtns_di fo = NULL;
nst at e. dt ns_probe = probe;

mstate. dt ms_strtok = NULL;
nmstate. dtnms_arg[0] = argoO;
nstate.dtns_arg[1l] = argl;
nstate.dtns_arg[2] = arg2;
mstate. dtnms_arg[3] = arg3;
nmstate. dtms_arg[4] = arg4;

flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_fl ags;

for (ecb = probe->dtpr_ech; ecb !'= NULL; ecb = ecb->dte_next) {
dtrace_predicate_t *pred = ech->dte_predicate;
dtrace_state_t *state = ech->dte_state;
dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
dtrace_buffer_t *aggbuf &st at e- >dt s_aggbuf f er [cpui d] ;
dtrace_vstate_t *vstate &st at e- >dt s_vst at e;
dtrace_provider_t *prov probe- >dt pr _provi der;
uint64_t tracenmensize = O;
int conmtted = O;
caddr _t tomax;

/

Alittle subtlety with the follow ng (seem ngly innocuous)
declaration of the automatic 'val’: by looking at the
code, you might think that it could be declared in the
action processing |oop, below (That is, it's only used in
the action processing |loop.) However, it nmust be decl ared
out of that scope because in the case of DI F expression
argunents to aggregating actions, one iteration of the
action loop will use the last iteration’s value.

/

* ok % ok ok Ok kb F ok

lint

uint64_t val = 0;
uint64_t val;
net at e. dt ns_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;

nmet at e. dt ms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PRCC;
metate. dt ms_getf = NULL;

19

new usr/src/uts/comon/ dtrace/ dtrace. c

6743

6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755

6757
6758
6759
6760
6761
6762
6763

6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778

6780
6781

6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796

6798
6799
6800
6801

6803
6804
6805

6807
6808

20
*flags & ~CPU_DTRACE_ERROR;
if (prov == dtrace_provider) {

/*

* |f dtrace itself is the provider of this probe,
* we're only going to continue processing the ECB if
* arg0 (the dtrace_state_t) is equal to the ECB s
* creating state. (This prevents disjoint consuners
* from seei ng one another’s mnetaprobes.)
*

/

if (arg0 !'= (uint64_t)(uintptr_t)state)
conti nue;

}
if (state->dts_activity != DTRACE_ACTI VI TY_ACTI VE) {
/*

* W're not currently active. |If our provider isn't
* the dtrace pseudo provider, we're not interested.
*/
if (prov != dtrace_provider)

continue;

Now we nust further check if we are in the BEG N
probe. If we are, we will only continue processing
if we're still in WARMJP -- if one BEG N enabling
has invoked the exit() action, we don't want to
eval uat e subsequent BEGQ N enabl i ngs.

* Ok ok k% *

if (probe->dtpr_id == dtrace_probei d_begin &&
state->dts_activity != DTRACE_ACTI VI TY_WARMUP) {
ASSERT(state->dts_activity ==
DTRACE_ACTI VI TY_DRAI NI NG ;

continue;
}
}
if (ecb->dte_cond && !dtrace_priv_probe(state, &nmstate, ech))
cont i nue;

if (now - state->dts_alive > dtrace_deadman_tineout) {
/

* W seemto be dead. Unless we (a) have kernel
* destructive perm ssions (b) have explicitly enabl ed
* destructive actions and (c) destructive actions have
* not been disabled, we're going to transition into
* the KILLED state, fromwhich no further processing
* on this state will be perforned.
*
if (!dtrace_priv_kernel _destructive(state) ||
I'state->dts_cred. dcr_destructive ||
dtrace_destructive_di sal | ow)
void *activity = &state->dts_activity;
dtrace_activity_t current;
do {
current = state->dts_activity;
} while (dtrace_cas32(activity, current,
DTRACE_ACTI VI TY_KI LLED) != current)

cont i nue;

}

if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
ecb->dte_al i gnment, state, &nmstate)) < 0)

new usr/src/uts/comon/ dtrace/ dtrace. c

6809

6811
6812

6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825

6827
6828

6830
6831

6833
6834
6835

6837

6839
6840

6842
6843
6844
6845
6846
6847
6848

6850
6851
6852

6854
6855
6856
6857
6858

6860
6861

6863
6864
6865

6867
6869
6870
6871

6873
6874

conti nue;

tomax = buf->dtb_t onax;
ASSERT(t omax ! = NULL);

if (ech->dte_size != 0)

}

dtrace_rechdr_t dtrh;

if (!(nstate.dtnms_present & DTRACE_MSTATE_TI MESTAWP)) {
metate.dtms_tinestanp = dtrace_gethrtime();
mst at e. dt ms_present | = DTRACE_MSTATE_TI IVESTANP,

}
ASSERT3U(ecbh->dte_si ze, >=, sizeof (dtrace_rechdr_t));
dtrh.dtrh_epid = ecb- >dt e epld
DTRACE_RECORD_STORE_TI MESTAMP(&dt r h,
mst at e. dt ms_t i mest anp) ;
*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;

metate. dt ms_epi d = ecb->dte_epi d;
nst at e. dt ns_present | = DTRACE_MSTATE_EPI D,

if (state->dts_cred. dcr_visible & DTRACE_CRV_KERNEL)

mst at e. dt ms_access | = DTRACE_ACCESS KERNEL;

if (pr edd' = NULL)

}

for (act

act

{
trace_difo_t *dp = pred->dtp_difo;
int rval;

rval = dtrace_dif_enul ate(dp, &rstate, vstate, state);

if ('(*flags & CPU DTRACE_ERROR) && !rval)
dtrace_cachei d_t cid = probe->dtpr_predcache;

if (cid ! = DTRACE_CACHEI DNONE && !onintr) {
/*
* Update the predicate cache...
*
/

ASSERT(ci d == pred->dtp_cacheid);
curthread->t_predcache = cid;

}

conti nue;

= ech->dte_action; !(*flags & CPU DTRACE ERROR) &&
I'= NULL; act = act->dta_next) {

size_t val offs;

dtrace_difo_t *dp;

dtrace_recdesc_t *rec = &act->dta_rec;

size = rec->dtrd_si ze;
valof fs = offs + rec->dtrd_of fset;

i f (DTRACEACT_ ISAGG(act >dta kind)) {
uint64_t v Oxbad
dtrace_aggr egat i on_t *agg;

agg = (dtrace_aggregation_t *)act;

if ((dp act->dta_difo) !'= NULL)
= dtrace_di f _enul at e(dp,

&nstate, vstate, state);

Vv

if (*flags & CPU DTRACE ERROR)
continue;

21

new usr/src/uts/comon/dtrace/ dtrace.c 22
6876 /*

6877 * Note that we al ways pass the expression
6878 * value fromthe previous iteration of the
6879 * action loop. This value will only be used
6880 * if there is an expression argunment to the
6881 * aggregating action, denoted by the

6882 * dtag_hasarg field.

6883 */

6884 dtrace_aggr egat e(agg, buf,

6885 of fs, aggbuf, v, val);

6886 conti nue;

6887 }

6889 switch (act->dta_kind) {

6890 case DTRACEACT_STOP:

6891 if (dtrace_priv_proc_destructive(state,

6892 &nrstate))

6893 dtrace_action_stop();

6894 continue;

6896 case DTRACEACT_BREAKPO NT:

6897 if (dtrace_priv_kernel _destructive(state))
6898 dtrace_acti on_breakpoi nt (ech);

6899 continue;

6901 case DTRACEACT_PANI C:

6902 if (dtrace_priv_kernel _destructive(state))
6903 dtrace_acti on_pani c(ecbh);

6904 conti nue;

6906 case DTRACEACT_STACK:

6907 if (!dtrace_priv_kernel (state))

6908 conti nue;

6910 dtrace_get pcstack((pc_t *)(tomax + val offs),
6911 size |/ sizeof (pc_t), probe- >dtpr afranes,
6912 DTRACE_ANCHORED(pr obe) ? NULL :

6913 (uint32_t *)arg0);

6915 conti nue;

6917 case DTRACEACT_JSTACK:

6918 case DTRACEACT_USTACK:

6919 if (!dtrace_priv_proc(state, &nmstate))

6920 conti nue;

6922 l*

6923 * See coment in DI F_VAR PID.

6924 *

6925 i f (DTRACE_ANCHORED(nst at e. dt ns_pr obe) &&
6926 CPU_ON_I NTR(CPU)) {

6927 int depth = DTRACE_USTACK_ NFRAVES(
6928 rec->dtrd_arg) + 1;

6930 dtrace_bzero((void *)(tomax + valoffs),
6931 DTRACE_USTACK_STRSI ZE(rec->dtrd_arg)
6932 + depth * sizeof (uint64_t));
6934 conti nue;

6935 }

6937 i f (DTRACE_USTACK_STRSI ZE(rec->dtrd_arg) != 0 &&
6938 curproc->p_dtrace_hel pers != NULL) {

6939 /*

6940 * This is the slow path -- we have

new usr/src/uts/comon/ dtrace/ dtrace. c

6941
6942
6943
6944
6945
6946
6947
6948
6949
6950

6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963

6965
6966
6967

6969
6970
6971
6972
6973
6974

6976
6977
6978

6980
6981

6983

6985
6986

6988
6989
6990

6992
6993
6994

6996
6997
6998
6999

7001
7002
7003

7005
7006

* allocated string space, and we're
* getting the stack of a process that
* has helpers. Call into a separate
*/routi ne to performthis processing.
*

dtrace_acti on_ustack(&nrstate, state,
(uint64_t *)(tomax + val offs)
rec->dtrd_arg);
conti nue;
}
/'k
* Clear the string space, since there's no
* helper to do it for us.
*/
if

(DTRACE_USTACK_STRSI ZE(rec->dtrd_arg) != 0) {

int depth = DTRACE_USTACK_NFRAMES(
rec->dtr d_ar a);

size_t strsize = DTRACE USTACK_STRSI ZE(
rec->dtrd _arg

uint64_t *buf = (UI nté4_t *)(tomax +
val of fs);

voi d *strspace = &buf[depth + 1];

dtrace_bzero(strspace,
depth, strsize));
}

DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;
dtrace_getupcstack((uint64_t *)

(tomax + val offs),

DTRACE_USTACK NFRANES(rec >dtrd_arg) + 1);
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT) ;
continue;

defaul t:
br eak;
}

dp = act->dta_difo;
ASSERT(dp != NULL)

val = dtrace_dif_enul ate(dp, &rstate, vstate, state);

if (*flags & CPU_DTRACE_ERROR)
conti nue;

switch (act->dta_kind) {
case DTRACEACT_SPECULATE: {
dtrace_rechdr _t *dtrh;

ASSERT(buf == &state->dts_buffer[cpuid]);
buf = dtrace_specul ati on_buffer(state,
cpuid, val);

if (buf == NULL) {
Iags | = CPU_DTRACE DRCP;
contlnue

}

of fs = dtrace_buffer_reserve(buf,
ecb- >dt e_needed, ecbh->dte_alignnent,
state, NULL);

if (offs <0) {
*flags | = CPU_DTRACE_DROP;

23

new usr/src/uts/comon/ dtrace/ dtrace. c

7007
7008

7010
7011

7013
7014

7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029

7031
7032
7033
7034

7036
7037
7038
7039
7040

7042
7043

7045
7046
7047
7048
7049
7050
7051
7052
7053

7055
7056
7057

7059
7060
7061
7062
7063
7064
7065
7066

7068
7069
7070

7072

}

case

case

case

case

case
case
case
case
case
case
case

case

case

conti nue;

}

tomax = buf->dtb_t omax;
ASSERT(tomax != NULL);

if (ecb->dte_size == 0)
conti nue;

ASSERT3U(ecb- >dt e_si ze, >=,
sizeof (dtrace_rechdr_t));

dtrh = ((void *)(tomax + offs));

dtrh->dtrh_epi d = ech->dte_epid;

Wien the speculation is conmitted, all of
the records in the specul ative buf fer will
have their tinestanps set to the conmt
tine. Until then, 1t is set to a sentinel
* val ue, for debugabi lity.

*

/

DTRACE_RECORD_STORE_TI MESTAMP(dt rh, Ul NT64_MAX) ;
conti nue;

R

DTRACEACT_CHI LL
if (dtrace_priv_kernel _destructive(state))
dtrace_action_chill (&state, val);
conti nue;

DTRACEACT_RAI SE
if (dtrace_priv_proc_destructive(state,
&nrst ate))
dtrace_action_raise(val);
continue;

DTRACEACT_COMM T:
ASSERT(! commi t t ed) ;

/*
* W need to commt our buffer state.
*

if (ech->dte_size)

buf->dtb_of fset = offs + ecb->dte_size;
buf = &state->dts_buffer[cpuid];
dtrace_specul ati on_commi t (state, cpuid, val);
committed = 1;
conti nue;

DTRACEACT_DI SCARD:
dtrace_specul ati on_di scard(state, cpuid, val);
continue;

DTRACEACT_DI FEXPR:
DTRACEACT _LI| BACT!
DTRACEACT_PRI NTF
DTRACEACT_PRI NTA:
DTRACEACT_SYSTEM
DTRACEACT _FRECPEN
DTRACEACT_TRACEMEM
br eak;

DTRACEACT_TRACEMEM DYNSI ZE:
tracenensi ze = val;
br eak;

DTRACEACT_SYM

new usr/src/uts/comon/ dtrace/ dtrace. c 25

7073
7074
7075
7076

7078
7079
7080
7081

7083
7084

7086
7087
7088
7089

7091
7092

7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111

7113
7114

7116
7117

7119
7120
7121
7122
7123

7125
7126

7128
7129
7130

7132
7133
5722
7134

7136
7137

case DTRACEACT_MOD:

if (!dtrace_priv_kernel (state))
conti nue;
br eak;

case DTRACEACT_USYM
case DTRACEACT_UMOD:
case DTRACEACT_UADDR:

}

il {
struct pid *pid = curthread->t_procp->p_pidp;

if (!dtrace_priv_proc(state, &nmstate))
conti nue;

DTRACE_STORE(ui nt 64_t, tomax,

valof fs, (uint64 t)pld >p|d id);
DTRACE STCRE(w nt64_t, tomax,

val of fs + sizeof (U| nté4_t), val);

cont i nue;

case DTRACEACT_EXIT: {

For the exit action, we are going to attenpt
to atomically set our activity to be
draining. If this fails (either because
anot her CPU has beat us to the exit action,
or because our current activity is sonething
ot her than ACTIVE or WARMUP), we will
continue. This assures that the exit action
can be successfully recorded at npbst once
when we’'re in the ACTIVE state. |If we're
encountering the exit() action while in
COOLDOMN, however, we want to honor the new
status code. (W know that we're the only
thread in COOLDOMW, so there is no race.)

* Ok % ok % ok % ok k ok k ok o *

*

void *activity = &state->dts_activity;
dtrace_activity_t current = state->dts_activity;

if (current == DTRACE_ACTI VI TY_COOLDOMN)
br eak;

if (current != DTRACE_ACTI VI TY_WARMUP)
current = DTRACE_ACTI VI TY_ACTI VE;

if (dtrace_cas32(activity, current,
DTRACE_ACTI VI TY_DRAINING) != current) {
*fTags | = CPU_DTRACE_DROP;

conti nue;
}
br eak;
}
defaul t:
ASSERT(0) ;
}
if (dp->dtdo_rtype.dtdt_flags & DI F_TF_BYREF ||
dp->dtdo_rtype.dtdt_flags & DI F_TF_BYUREF) {
if (dp->dtdo_rtype.dtdt_flags & DI F_TF BYREF) {
uintptr_t end = valoffs + size;

if (tracemensize != 0 &&
val of fs + tracenensi ze < end) {

new usr/src/uts/comon/dtrace/ dtrace.c 26
7138 end = val offs + tracenensi ze;

7139 tracenensi ze = 0;

7140 }

7142 if (dp >dtdo_rtype. dtdt_flags & DI F_TF_BYREF &&
7143 dtrace_vcanl oad((void *) (ui nt ptr_t)val,
5731 if (l dtrace_vcanl oad((void *)(uintptr_t)val,
7144 &dp->dtdo_rtype, &nstate, vstate))

7145 conti nue;

7147 dtrace_store_by_ref(dp, tonmax, size, &valoffs,
7148 &al, end, act->dta_intuple,

7149 dp->dtdo_rtype. dtdt_flags & DI F_TF_BYREF ?
7150 D F_TF_BYREF: DI F_TF_BYUREF);

5735 I*

5736 * |f this is a string, we're going to only
5737 * load until we find the zero byte -- after
5738 * which we’'ll store zero bytes.

5739 *

5740 if (dp->dtdo_rtype.dtdt_kind ==

5741 DI F_TYPE_STRI NG

5742 char ¢ ='\0" + 1;

5743 int intuple = act->dta_intuple;

5744 size_t s;

5746 for (s =0; s < S|ze s++) {

5747 if (c!="\0

5748 c = dtrace_|l oad8(val ++);
5750 DTRACE_STORE(ui nt8_t, tomax,
5751 val of fs++, c);

5753 if (c =='\0 && intuple)

5754 br eak;

5755 }

5757 conti nue;

5758 }

5760 while (valoffs < end)

5761 DTRACE_STORE(ui nt8_t, tomax, val of fs++,
5762 dtrace_| oad8(val ++));

5763 }

7151 conti nue;

7152 }

7154 switch (size) {

7155 case 0:

7156 br eak;

7158 case sizeof (uint8_t):

7159 DTRACE_STORE(ui nt8_t, tomax, valoffs, val);
7160 br eak;

7161 case si zeof (u| nt16_t):

7162 DTRACE_STORE(ui nt16_t, tomax, valoffs, val);
7163 br eak;

7164 case si zeof (ui nt32_t):

7165 DTRACE_STORE(ui nt32_t, tomax, valoffs, val);
7166 br eak;

7167 case sizeof (u| nt64_t):

7168 DTRACE_STORE(ui nt 64_t, tomax, valoffs, val);
7169 br eak;

7170 defaul t:

7171 I*

7172 * Any ot her size should have been returned by

new usr/src/uts/comon/dtrace/ dtrace. c 27 new usr/src/uts/comon/dtrace/ dtrace.c 28
7173 * reference, not by val ue.
7174 */ 7240 dtrace_i nterrupt _enabl e(cooki e);
7175 ASSERT(0) ; 7241 }
7176 br eak; __unchanged_portion_omtted_
7177 }
7178 } 8975 /*
8976 * Validate a DTrace DI F object by checking the IR instructions. The follow ng
7180 if (*flags & CPU_DTRACE_DROP) 8977 * rules are currently enforced by dtrace_difo_validate():
7181 conti nue; 8978 *
8979 * 1. Each instruction nust have a valid opcode
7183 if (*flags & CPU_DTRACE_FAULT) { 8980 * 2. Each register, string, variable, or subroutine reference nust be valid
7184 int ndx; 8981 * 3. No instruction can nodify register %0 (nust be zero)
7185 dtrace_action_t *err; 8982 * 4. Al instruction reserved bits nmust be set to zero
8983 * 5. The last instruction nmust be a "ret" instruction
7187 buf - >dt b_errors++; 8984 * 6. Al branch targets nust reference a valid instruction _after_ the branch
8985 */
7189 if (probe->dtpr_id == dtrace_probeid_error) { 8986 static int
7190 1* 8987 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
7191 * There’'s nothing we can do -- we had an 8988 cred_t *cr)
7192 * error on the error probe. W bunp an 8989 {
7193 * error counter to at |east indicate that 8990 int err =0, i;
7194 * this condition happened. 8991 int (* efunc)(w nt_t pc, const char *, ...) = dtrace_difo_err;
7195 */ 8992 int kcheckl oad;
7196 dtrace_error(&state->dts_dblerrors); 8993 uint_t pc;
7197 continue;
7198 } 8995 kcheckl oad = cr == NULL ||
8996 (vstate->dtvs_state->dts_cred. dcr_visi bl e & DTRACE_CRV_KERNEL) == 0;
7200 if (vtime) {
7201 /* 8998 dp- >dt do_destructive = 0;
7202 * Before recursing on dtrace_probe(), we
7203 * need to explicitly clear out our start 9000 for (pc = 0; pc < dp->dtdo_len & err == 0; pc++) {
7204 * tine to prevent it from being accunul ated 9001 dif_instr_t instr = dp->dtdo_buf[pc];
7205 * into t_dtrace_vtine.
7206 */ 9003 uint_t rl = DIF_INSTR R1(instr);
7207 curthread->t _dtrace_start = 0; 9004 uint_t r2 = DIF_INSTR_R2(instr);
7208 } 9005 uint_t rd = DIF_INSTR RD(i nstr);
9006 uint_t rs = DIF_INSTR RS(instr);
7210 /* 9007 uint_t label = DI F_I NSTR LABEL(I nstr);
7211 * Iterate over the actions to figure out which action 9008 uint_t v = DIF_I NSTR_VAR(instr);
7212 * we were processing when we experienced the error. 9009 uint_t subr = DI F_I NSTR_SUBR(i nstr)
7213 * Note that act points _past_ the faulting action; if 9010 uint_t type = DI F_I NSTR_TYPE(instr);
7214 * act is ecb->dte_action, the fault was in the 9011 uint_t op = DIF_INSTR OP(instr);
7215 * predicate, if it's ecb->dte_action->dta_next it's
7216 * In action #1, and so on. 9013 switch (op) {
7217 * 9014 case DIF_OP_OR
7218 for (err = ecb->dte_action, ndx = O; 9015 case DI F_OP_XOR
7219 err = act; err = err->dta_next, ndx++) 9016 case DI F_OP_AND:
7220 conti nue; 9017 case DIF_OP_SLL:
9018 case DIF_OP_SRL:
7222 dtrace_probe_error(state, ecbh->dte_epid, ndx, 9019 case DI F_OP_SRA:
7223 (nstate. dtms_present & DTRACE NBTATE FLTO:FS) ? 9020 case DI F_OP_SUB:
7224 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*fl ags), 9021 case DI F_OP_ADD:
7225 cpu_core[cpuid].cpuc_dtrace_illval); 9022 case DI F_OP_MJL:
9023 case DIF_OP_SDIV:
7227 conti nue; 9024 case DIF_OP_UDIV:
7228 } 9025 case DI F_OP_SREM
9026 case DI F_OP_UREM
7230 if (lconmmitted) 9027 case DI F_CP COPYS:
7231 buf - >dtb_offset = offs + ecb->dte_size; 9028 if (rl >= nregs)
7232 } 9029 err += efunc(pc, "invalid register %\n", ril);
9030 if (r2 >= nregs)
7234 end = dtrace_gethrtime(); 9031 err += efunc(pc, "invalid register %\n", r2);
7235 if (vtine) 9032 if (rd >= nregs)
7236 curthread->t_dtrace_start = end, 9033 err += efunc(pc, "invalid register %\n", rd);
9034 if (rd == 0)
7238 CPU- >cpu_dtrace_nsec += end - now, 9035 err += efunc(pc, "cannot wite to %0\n");

new usr/src/uts/comon/ dtrace/ dtrace. c

9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101

case
case
case

case
case

7\-

br eal

55

DI F_OP_|
DIF_OP_
DI F_OP_, ALLC[E

if (r1 >= nregs)

err += efunc(pc,

if (r21=0)

err += efunc(pc,

if (rd >= nregs)

err += efunc(pc,

if (rd == 0)

err += efunc(pc,

f (r1 >= nregs)

err += efunc(pc,

if (r21=0)

err += efunc(pc,

if (rd >= nregs)

err += efunc(pc,

if (rd ==
rr += efunc(pc,
if (kcheckl oad)

dp- >dt do_buf [pc]
DI F_OP_RLDSB -

393

mm
EEEEE
8822833

IOIT®

[vjvjvjvjvjvjv]
39393

M7 T T T

" RLDX:
(r1 >= nregs)

—

err += efunc(pc,

if (r2 1= 0)

err += efunc(pc,

if (rd >= nregs)

err += efunc(pc,

if (rd == 0)

err += efunc(pc,

br eak;

- OP_| ULDSB:

> ULDSH:
—ULDSW

UL DUB:

"~ ULDUH:

~ ULDUW
—ULDX:

(r1 >= nregs)

Di
Dl
Di
Di
Di
Di
D

"9%%%9%

err += efunc(pc,

if (r2 1= 0)

err += efunc(pc,

if (rd >= nregs)

err += efunc(pc,

if (rd == 0)

err += efunc(pc,

break;
DI F_OP_STB:
DI F_OP_STH:

29

“invalid register %\n", rl);
"non-zero reserved bits\n");
“invalid register %\n", rd);

"cannot wite to %0\n");

“invalid register %\n", rl);
"non-zero reserved bits\n");
"invalid register %\n", rd);
"cannot wite to %0\n");

= DI F_INSTR_LOAD(op +
DIF_OP_LDSB, ri, rd);

"invalid register %\n", rl);
"non-zero reserved bits\n");
"invalid register %\n", rd);

“cannot wite to %0\n");

"invalid register %\n", ri);
"non-zero reserved bits\n");
"invalid register %\n", rd);

"cannot wite to %0\n");

new usr/src/uts/comon/ dtrace/ dtrace. c

9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167

case
case

case
case

case

case

case
case
case

case

DI F_OP_STW
DI F_OP_STX:
if (r1 >= nregs)

err += efunc(pc,

if (r2 1= 0)

err += efunc(pc,

if (rd >= nregs)
if (rd ==

err += efunc(pc,

break;
DI F_
DI F_OP_ SOVP;
if (r1 >= nregs)

err += efunc(pc,

if (r2 >= nregs)

err += efunc(pc,

if (rd 1= 0)

err += efunc(pc,

br eak;
DI F_OP_TST:
if (rl1 >= nregs)

err += efunc(pc,

if (r2!=0]| rd !=0)

err += efunc(pc,

o
=
[
gg

Zm
m*

398989383939
ARED;

vjvjvjvjvivivivivlviv)
CEr
mc

MMM TTTTTTT

B
Bl
" BG
" B
"B
" B
" BL:
"B
"B
BLEU
|

—
—~

| abel) ;
i}f (1 abel <= pc)

err += efunc(pc,

| abel) ;

Tf (ri!l=01]] r21=0)

err += efunc(pc,

if (rd >= nregs)

err += efunc(pc,

err += efunc(pc,
0

:0 || r21'=0 ||
+= efunc(pc,

30

"invalid register %\n", ril);
"non-zero reserved bits\n");
"invalid register %\n", rd);

"cannot wite to 0 address\n");

"invalid register %\n", ri);
"invalid register %\n", r2);

"non-zero reserved bits\n");

"invalid register %\n", rl);

"non-zero reserved bits\n");

abel >= dp->dtdo_len) {

err += efunc(pc, "invalid branch target %\n",

"backward branch to %\n",

"non-zero reserved bits\n");

"“invalid register %\n", rd);

rd 1= 0)

"non-zero reserved bits\n");

it (DF INSTRINTEGER(lnstr) >= dp->dtdo_intlen) {

err += efunc(pc,

"invalid integer ref %\n",

DI F_I NSTR_| NTEGER(i nstr));

}
if (rd >= nregs)

err += efunc(pc,

if (rd == 0)

"invalid register %\n", rd);

new usr/src/uts/comon/dtrace/ dtrace. c 31 new usr/src/uts/comon/dtrace/ dtrace.c 32
9168 err += efunc(pc, "cannot wite to %0\n"); 9234 */

9169 br eak; 9235 if (vstate->dtvs_state != NULL)

9170 case DI F_OP_SETS: 9236 vstat e- >dtvs_st at e- >dt s_get f ++;

9171 if (DIF_INSTR_STRINGinstr) >= dp->dtdo_strlen) { 9237 }

9172 err += efunc(pc, "invalid string ref %w\n",

9173 DI F_I NSTR_STRI NG(i nstr)); 9239 br eak;

9174 } 9240 case DI F_OP_PUSHTR:

9175 if (rd >= nregs) 9241 if (type != DI F_TYPE STRING&&type = DI F_TYPE_CTF)
9176 err += efunc(pc, "invalid register %\n", rd); 9242 err += efunc(pc, "invalid ref type %\n", type);
9177 if (rd == 0) 9243 if (r2 >= nregs)

9178 err += efunc(pc, "cannot wite to %0\n"); 9244 err += efunc(pc, "invalid register %\n", r2);
9179 br eak; 9245 if (rs >= nregs)

9180 case DI F_OP_LDGA: 9246 err += efunc(pc, "invalid register %\n", rs);
9181 case DI F_OP_LDTA: 9247 br eak;

9182 if (r1 > DIF_VAR ARRAY MAX) 9248 case DI F_OP_PUSHTV:

9183 err += efunc(pc, "invalid array %\n", ril); 9249 if (type !'= DIF_TYPE CTF)

9184 if (r2 >= nregs) 9250 err += efunc(pc, "invalid val type %\n", type);
9185 err += efunc(pc, "invalid register %\n", r2); 9251 if (r2 >= nregs)

9186 if (rd >= nregs) 9252 err += efunc(pc, "invalid register %\n", r2);
9187 err += efunc(pc, "invalid register %\n", rd); 9253 if (rs >= nregs)

9188 if (rd == 0) 9254 err += efunc(pc, "invalid register %\n", rs);
9189 err += efunc(pc, "cannot wite to %0\n"); 9255 br eak;

9190 break; 9256 defaul t:

9191 case DI F_OP_LDGS: 9257 err += efunc(pc, "invalid opcode %u\n",

9192 case DIF_OP_LDTS: 9258 DI F_I NSTR_OP(instr));

9193 case DIF_OP_LDLS: 9259 }

9194 case DI F_OP_LDGAA: 9260 }

9195 case DI F CP LDTAA:

9196 f (v < DIF_ZVAR OTHER MN || v > DI F_VAR OTHER_MAX) 9262 if (dp >dtdo_len !'= 0 &&

9197 err += efunc(pc, "invalid variable %\n", v); 9263 F_I NSTR_OP(dp- >dt do_buf [dp->dtdo_len - 1]) != DIF_OP_RET) {
9198 if (rd >= nregs) 9264 err += efunc(dp >dtdo_len - 1,

9199 err += efunc(pc, "invalid register %\n", rd); 9265 "expected 'ret’ as last DIF instruction\n");

9200 if (rd == 0) 9266 }

9201 err += efunc(pc, "cannot wite to %0\n");

9202 br eak; 9268 if (!(dp->dtdo_rtype.dtdt_flags & (DI F_TF_BYREF | DI F_TF_BYUREF))) {
9203 case DI F_OP_STGS: 7882 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {

9204 case DI F_OP_STTS: 9269 /*

9205 case DIF_OP_STLS: 9270 * |f we're not returning by reference, the size nust be either
9206 case DI F_OP_STGAA: 9271 * 0 or the size of one of the base types.

9207 case DI F_OP_STTAA: 9272 */

9208 it (v < DIF_VAR OTHER UBASE || v > DIF_VAR OTHER NAX) 9273 switch (dp->dtdo_rtype. dtdt_size) {

9209 err += efunc(pc, "invalid variable %\n", v); 9274 case O:

9210 if (rs >= nregs) 9275 case sizeof (uint8_t):

9211 err += efunc(pc, "invalid register %\n", rd); 9276 case sizeof (uintl6_t):

9212 br eak; 9277 case sizeof (uint32_t):

9213 case DIF_OP_CALL: 9278 case sizeof (uint64_t):

9214 if (subr > DI F_SUBR_MAX) 9279 br eak;

9215 err += efunc(pc, "invalid subr %\n", subr);

9216 if (rd >= nregs) 9281 defaul t:

9217 err += efunc(pc, "invalid register %\n", rd); 9282 err += efunc(dp->dtdo_len - 1, "bad return size\n");
9218 if (rd == 0) 9283 }

9219 err += efunc(pc, "cannot wite to %0\n"); 9284 }

9221 if (subr == DI F_SUBR COPYQUT | | 9286 for (i =0; i < dp->dtdo_varlen &k err == 0; i++) {

9222 subr == DI F_SUBR_COPYQUTSTR) { 9287 dtrace_difv_t *v = &JIp->dtdo_vartab[i], *existing = NULL;
9223 dp >dt do_destructive = 1; 9288 dtrace_di ftype_t *vt, *et;

9224 } 9289 uint_tid, ndx;

9226 if (subr == DI F_SUBR GETF) { 9291 if (v->dtdv_scope != DI FV_SCOPE_GLOBAL &&

9227 I* 9292 v->dt dv_scope ! = DI FV_SCOPE_THREAD &&

9228 * |If we have a getf() we need to record that 9293 v->dt dv_scope ! = DI FV_SCOPE_LOCAL)

9229 * in our state. Note that our state can be 9294 err += efunc(i, "unrecognized variabl e scope %\ n",
9230 * NULL if this is a helper -- but in that 9295 v->dt dv_scope);

9231 * case, the call to getf() is itself illegal, 9296 br eak;

9232 * and will be caught (slightly later) when 9297 }

9233 * the hel per is validated.

new usr/src/uts/comon/dtrace/ dtrace. c 33 new usr/src/uts/comon/dtrace/ dtrace.c 34
9299 if (v->dtdv_kind !'= DI FV_KI ND_ARRAY &&
9300 v->dtdv_kind != DI FV_KI ND_SCALAR) { 9366 ASSERT(exi sting->dtdv_id == v->dtdv_id);
9301 err += efunc(i, "unrecognized variable type %\ n", 9367 ASSERT(exi sti ng->dt dv_scope == v->dtdv_scope);
9302 v->dt dv_ki nd) ;
9303 br eak; 9369 if (existing->dtdv_kind != v->dtdv_kind)
9304 } 9370 err += efunc(i, "% changed variable kind\n", id);
9306 if ((id = v->dtdv_id) > DI F_VAR ABLE_MAX) { 9372 et = &existing->dtdv_type;
9307 err += efunc(i, "%l exceeds variable id limt\n", id);
9308 br eak; 9374 if (vt->dtdt_flags != et->dtdt_flags) {
9309 } 9375 err += efunc(i, "% changed variable type flags\n", id);
9376 br eak;
9311 if (id < D F_VAR_OTHER_UBASE) 9377 }
9312 conti nue;
9379 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9314 /* 9380 err += efunc(i, "% changed variable type size\n", id);
9315 * For user-defined variables, we need to check that this 9381 br eak;
9316 * definition is identical to any previous definition that we 9382 }
9317 * encount er ed. 9383 }
9318 */
9319 ndx = id - DI F_VAR OTHER UBASE; 9385) return (err);
9386
9321 switch (v->dtdv_scope) { __unchanged_portion_omtted_
9322 case DI FV_SCOPE_GLOBAL:
9323 if (ndx < vstate->dtvs_nglobals) {
9324 dtrace_statvar_t *svar;
9326 if ((svar = vstate->dtvs_global s[ndx]) != NULL)
9327 existing = &svar->dtsv_var;
9328 }
9330 break;
9332 case DI FV_SCOPE_THREAD:
9333 if (ndx < vstate->dtvs_ntlocals)
9334 exi sting = &state->dtvs_tlocal s[ndx];
9335 br eak;
9337 case DI FV_SCOPE_LOCAL:
9338 if (ndx < vstate->dtvs_nlocals) {
9339 dtrace_statvar_t *svar;
9341 if ((svar = vstate->dtvs_|l ocal s[ndx]) != NULL)
9342 exi sting = &svar->dtsv_var;
9343 }
9345 break;
9346 }
9348 vt = &v->dtdv_type;
9350 if (vt->dtdt_flags & DI F_TF_BYREF) {
9351 if (vt->dtdt_size == 0) {
9352 err += efunc(i, "zero-sized variable\n");
9353 br eak;
9354 }
9356 if (v->dtdv_scope == DI FV_SCOPE_GLOBAL &&
9357 vt->dtdt_size > dtrace_gl obal _maxsi ze)
9358 err += efunc(i, "oversized by-ref global\n");
9359 break;
9360 }
9361 }
9363 if (existing == NULL || existing->dtdv_id == 0)
9364 conti nue;

new usr/src/uts/comon/sys/ctf_api.h

R R R R

9576 Tue Jan 14 16:49: 04 2014
new usr/src/uts/comon/sys/ctf_api.h
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEREEREEEERERERERESRESRESRESESESESE]
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License, Version 1.0 only
(the "License"). You nay not use this file except in conpliance
with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://wwm. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

NRERRRRRRRRE
COONOUITAWNROW©O~NOUTSWN

CDDL HEADER END

-~

Copyright 2005 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terms.

B I

/

27 * Copyright (c) 2013, Joyent, Inc. Al rights reserved.
27 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.
*
/

30 /*

31 * This header file defines the interfaces available fromthe CTF debugger

32 * library, libctf, and an equival ent kernel nodule. This APl can be used by
33 * a debugger to operate on data in the Conpact ANSI-C Type Format (CTF).

34 * This is NOT a public interface, although it may eventually become one in
35 * the fullness of tine after we gain nore experience with the interfaces.

36 *

37 * In the neantine, be aware that any programlinked with this APl in this
38 * release of Solaris is alnpst guaranteed to break in the next rel ease.

39 *

40 * In short, do not user this header file or the CTF routines for any purpose.
41 */

43 #ifndef _CTF APl _H
44 #define _CTF_API _H

46 #incl ude <sys/types. h>
47 #incl ude <sys/param h>
48 #include <sys/elf.h>
49 #include <sys/ctf.h>

51 #ifdef __cplusplus
52 extern "C' {

53 #endif

55 /[*

new usr/src/uts/comon/sys/ctf_api.h

60
61

63
64
65
66
67
68
6

76

110

112
113
114
115
116

118
119
120
121
122
123
124
125
126
127
128

130
131
132
133
134
135
136
137

139
140
141
142
143
144
145
146
147

149
150
151
152

* Clients can open one or nore CTF containers and obtain a pointer to an

* opaque ctf_file_t. Types are identified by an opaque ctf_id_t token.

* These opaque definitions allow libctf to evolve without breaking clients.
*/

typedef struct ctf_file ctf_file_t;

typedef long ctf_id_t;

/*
* | f the debugger needs to provide the CTF library with a set of raw buffers
* for use as the CTF data, synbol table, and string table, it can do so by
* filling in ctf_sect_t structures and passing themto ctf_bufopen()
*
/
typedef struct ctf_sect {
const char *cts_naneg; /* section name (if any) *
ulong_t cts_type; /* section type (ELF SHT_. val ue) */
ulong_t cts_flags; /* section flags (ELF SHF ... value) */
const void *cts_data; /* pointer to section data */
size_t cts_size; /* size of data in bytes */
size_t cts_entsize; /* size of each section entry (syntab only) */
of f64_t cts_offset; /* file offset of this section (if any) */

} ctf_sect_t;

__unchanged_portion_omtted_

#def i ne CTF_FUNC_VARARG 0x1 /* function arguments end with varargs */

/*
* Functions that return integer status or a ctf_id_t use the foll ow ng val ue
* to indicate failure. ctf_errno() can be used to obtain an error code.

*

#define CTF_ERR (-1L)

/*

* The CTF data nodel is inferred to be the caller’s data nodel or the data
* model of the given object, unless ctf_setnodel () is explicitly called.
*/

#define CTF_MODEL_I LP32 1 /* object data nodel is ILP32 */

#define CTF_MODEL_LP64 2 /* object data nodel is LP64 */

#ifdef _LP64

#def i ne” CTF_MODEL_NATI VE CTF_MODEL_LP64

#el se

#defi ne CTF_MODEL_NATI VE CTF_MODEL_| LP32

#endi f

/*

* Dynamic CTF containers can be created using ctf_create(). The ctf_add_*
* routines can be used to add new definitions to the dynami c container.

* New types are | abeled as root or non-root to determi ne whether they are
* visible at the top-level program scope when subsequently doing a | ookup.
*/

#def i ne CTF_ADD_NONROOT 0 /* type only visible in nested scope */

#def i ne CTF_ADD_ROOT 1 /* type visible at top-level scope */

/*

* These typedefs are used to define the signature for callback functions
* that can be used with the iteration and visit functions bel ow

*

/
typedef int ctf_visit_f(const char *, ctf_id_t, ulong_t, int, void *);
typedef int ctf_menber_f(const char *, ctf_id_t, ulong_t, void *);
typedef int ctf_enumf(const char *, int, void *);
typedef int ctf_type f(ctf_id_t, void *);
t ypedef t ctf_label _f(const char *, const ctf_Iblinfo_t *, void *);

extern ctf_file_t *ctf_bufopen(const ctf_sect_t *, const ctf_sect_t *,
const ctf_sect_t *, int *);

extern ctf_fiTe_t *ctf fdopen(lnt int *);

extern ctf_file_t *ctf_open(const char *, int *);

new usr/src/uts/comon/sys/ctf_api.h

153
154
155
156

158
159

161
162
163

165
166

168
169
170

172
173

175
176

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

194
195
196

198
199

201
202

204
205
206
207

209
210
211
212
213
214
215
216
217
218

extern ct
extern ct

#endi f
extern

extern
extern

extern
extern
extern

extern
extern

extern
extern
extern

extern
extern

extern ct
extern ct

extern
extern
extern
extern

f_file_t *ctf_create(int *);
f_file_t *ctf_dup(ctf_file_t *);
[* 1 codereview */
void ctf_close(ctf_file_t *);

ctf_file_t *ctf_parent_file(ctf_fil
const char *ctf_parent_nanme(ctf_fil

int ctf_inport(ctf_f
int ctf_setnodel (ctf
int ctf_getnodel (ctf

(2]
. —-
——

ile_t *
_file_t
file_t
void ctf_setspecific(ctf_file t *, void *);
void *ctf_getspecific(ctf_fil *);

int ctf_errno(ctf_file_t *);
const char *ctf_errmsg(int);
int ctf_version(int);

int ctf_func_info(ct *, ulong_t,

f_file_ ctf_funcinfo_t *);
int ctf_func_args(ctf _file_t *, ulong_t,

uint_t, ctf_id_t *);

ctf_l ookup_by_nane(ctf I *,

ctf_l ookup_by_synbol (ct I ot

const char *);

f
f_ ul ong_t);

Q.Q.

ctf_id_t ctf_type_resolve(c
SSIZe t ctf_type | Iname(ctf char *, size_t);
i size_t);
_f

size_t,

char *ctf_type_name(ctf_f

ctf

_fi I

Iet *

char *ctf)type _qnane(ctf_file
*

const char

#endi f
extern
extern
extern
extern
extern
extern
extern
extern
extern

extern

/* 1 codereview */
ssize_t ctf_type_size(ctf _fi
ssize_t ctf_type_align(ctf_
int ctf_type kind(ctf_file_
ctf t ctf_type_reference
ctf_id_ t ctf_type_pointer(
int ctf_type_encoding(c
int ctf_type_visit(ctf

ctf_type_cnp(ctf_fi

ctf t

id
d_
t
t =
int ct ile_| , _
int ctf_type conpat(ctf_file_t c

int ctf_nenber_info(ctf_file_t *, ctf_id_t, const char *,

ctf_menbinfo_t *)

extern int ctf_array info(ctf file t *, ctf_id_t, ctf_arinfo_t *);
extern const char *ctf_enumnnane(ctf_file_t *, ctf_id_t, int);
extern int ctf_enumvalue(ctf_file_t *, ctf_id_t, const char *, int *);
extern const char *ctf_l abel _topnost(ctf_file_t *);
extern int ctf_|label _info(ctf_file_t *, const char *, ctf_lblinfo_t *);
extern int ctf_menber_iter(ctf _file_t *, ctf_id_t, ctf_menber_f *, void *);
extern int ctf_enumiter(ctf_file_t *, ctf_id_t, ctf_enumf * void *);
extern int ctf_type_iter(ctf file_t *, ctf typef *, void *);
extern int ctf_label _iter(ctf_file_t *, ctf_label _f *, void *);
extern ctf_id_t ctf_add_array(ctf_file * uint_t, const ctf_arinfo_t *);
extern ctf_id_t ctf_add_const(ctf _file *,ouint_t, ctf_id_t);
extern ctf_id_t ctf_add_enun{ctf |Ieit *, uint_t, const char *);
extern ctf_id_ t ctf_add float(ctf _file_t *, uint_t,

const char *, const ctf_encoding t *);
extern ctf_id_t ctf_add forward(ctf file t *, uint_t, const char *, uint_t);
extern ctf_id_t ctf_add_function(ctf_file_t *, uint_t,

const ctf funcinfo t *, const ctf_ldt =g
extern ctf_id_t ctf_add_integer(ctf file t *, uint_t,

const char *, const ctf_encoding t *);

new usr/src/uts/comon/sys/ctf_api.h

219 extern ctf_id_t ctf_add_pointer(ctf_file_t *, uint_t, ctf_id_t);

220 extern ctf_id_t ctf_add _type(ctf_file t ¥, ctf _file_t *, ctf_id_t);

221 extern ctf_id_t ctf_add_typedef(ctf_file_t *, ui nt_t, const char *, ctf

222 extern ctf_id_t ctf_add_restrict(ctf file_t *, uint_t, ctf_id_t);

223 extern ctf_id_t ctf_add_struct(ctf_file_t *, uint_t, const “char *);

224 extern ctf_id_t ctf_add_union(ctf file t *, uint_t, const char *);

225 extern ctf_id_t ctf_add_volatile(ctf_file_t *, uint_t, ctf_id_t);

227 extern int ctf_add_enunerator(ctf file_t *, ctf_id_t, const char *, t);
228 extern int ctf_add_nenber(ctf_file * ctf_id_t, const char *, ctf_id_t

230 extern int ctf_set_array(ctf_file_t *, ctf_id_t, const ctf_arinfo_t *);
232 extern int ctf_delete_type(ctf_file_t *, ctf_id_t);

234 extern int ctf_update(ctf_file_t *);

235 extern int ctf_discard(ctf _file_t)

236 extern int ctf_wite(ctf_file_t *, |nt)

238 #ifdef _KERNEL

240 struct nodul e;

241 extern ctf_file_t *ctf_nodopen(struct nodule *, int *);
243 #endi f

245 #ifdef __cplusplus

246 }

247 #endi f

249 #endif /* _CTF_API_H */

_id_t);

1)

new usr/src/uts/comon/sys/dtrace. h 1

R R R R

102050 Tue Jan 14 16:49:04 2014
new usr/src/uts/comon/sys/dtrace. h
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof enul ation m ssing checks
Revi ewed by: Bryan Cantrill <bryan@ oyent.con>

LR R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governing pernissions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 =

19 * CDDL HEADER END
20 */
22 | *

23 * Copyright 2009 Sun Mcrosystems, Inc. Al rights reserved.
24 * Use is subject to license terns.
25 =/

27 | *

28 * Copyright (c) 2013, Joyent, Inc. Al rights reserved.

29 * Copyright (c) 2013 by Del phix. Al rights reserved.

28 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.

29 * Copyright (c) 2012 by Del phix. Al rights reserved.
*/

32 #ifndef _SYS DTRACE H

33 #define _SYS DTRACE H

35 #ifdef __cplusplus

36 extern "C' {

37 #endif

39 /*

40 * DTrace Dynamic Tracing Software: Kernel Interfaces

41 *

42 * Note: The contents of this file are private to the inplenentation of the
43 * Solaris system and DTrace subsystem and are subject to change at any tine
44 * without notice. Applications and drivers using these interfaces will fail
45 * to run on future releases. These interfaces should not be used for any
46 * purpose except those expressly outlined in dtrace(7D) and |ibdtrace(3LIB).
47 * Please refer to the "Solaris Dynam ¢ Tracing Cuide" for nore information.
48 */

50 #ifndef _ASM

52 #include <sys/types. h>
53 #include <sys/nodctl . h>
54 #include <sys/processor. h>

new usr/src/uts/comon/sys/dtrace. h

55 #incl ude <sys/systm h>

56 #include <sys/ctf_api.h>

57 #include <sys/cyclic. h>

58 #include <sys/int_limts.h>

60 /*

61 * DTrace Universal Constants and Typedefs
*/

62

63 #define DTRACE_CPUALL -1 [* all CPUs */

64 #define DTRACE_| DNONE 0 /* invalid probe identifier */

65 #defi ne DTRACE_EPI DNONE 0 /* invalid enabl ed probe identifier */
66 #defi ne DTRACE_AGGE DNONE 0 /* invalid aggregation identifier */
67 #defi ne DTRACE_AGGVARI DNONE 0 /* invalid aggregation variable ID */
68 #defi ne DTRACE_CACHEI DNONE 0 /* invalid predicate cache */

69 #defi ne DTRACE_PROVNONE 0 /* invalid provider identifier */

70 #defi ne DTRACE_METAPROVNONE 0 /* invalid neta-provider identifier */
71 #defi ne DTRACE_ARGNONE -1 /* invalid argunment index */

73 #defi ne DTRACE_PROVNAMELEN 64

74 #defi ne DTRACE_MODNAMELEN 64

75 #define DTRACE_FUNCNAMELEN 128

76 #define DTRACE_NAMELEN 64

77 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \

78 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)

79 #define DTRACE_ARGTYPELEN 128

81 typedef uint32_t dtrace_id_t;
82 typedef uint32_t dtrace_epid_t
83 typedef uint32_t dtrace_aggi d_
84 typedef int64_t dtrace_aggvarid_t;
85 typedef uint16_t dtrace_actkind_t;
86 typedef int64_t dtrace_optval _t;
87 typedef uint32_t dtrace_cacheid_t;

5T
d
d

89 typedef enum dtrace_probespec {

90 DTRACE_PROBESPEC_NONE = -1,

91 DTRACE_PROBESPEC_PROVI DER = 0,
92 DTRACE_PROBESPEC_MD,

93 DTRACE_PROBESPEC_FUNC,

DTRACE_ PRCBESPEC NANVE
95 } dtrace_pr obespec t;
__unchanged_portion_omtted_

353 #define DI F_TYPE CTF 0
354 #define DI F_TYPE_STRI NG 1
356 #define DI F_TF_BYREF 0x1
357 #define DI F_TF_BYUREF 0x2

358 #endif /* | codereview */

360 /*

—~———— — —
* ok ok k% ok ¥

probe identifier */

enabl ed probe identifier */
aggregation identifier */
aggregation variable identifier */
action kind */

option value */

predi cate cache identifier */

type is a CTF type */
type is a D string */

type is passed by reference */
user type is passed by reference */

361 * A DIrace Internediate Format variable record is used to describe each of the
362 * variables referenced by a given DIF object. It contains an integer variable
363 * identifier along with variable scope and properties, as shown below. The
364 * size of this structure nust be sizeof (int) aligned.

*

365

366 typedef struct dtrace_difv {

367 ui nt32_t dtdv_nane;

368 uint32_t dtdv_id;

369 uint8_t dtdv_kind;

370 uint8_t dtdv_scope;

371 uint16_t dtdv_fl ags;

372 dtrace_diftype_t dtdv_type;

373 } dtrace_difv_t;
375 #define DI FV_KI ND_ARRAY 0

* ok kb k%

—~——— — —

variabl e name index in dtdo_strtab */
variabl e reference identifier */

vari abl e kind (see below) */

vari abl e scope (see bel ow) */
variable flags (see bel ow) */

vari abl e type (see above) */

variable is an array of quantities */

new usr/src/uts/comon/sys/dtrace. h 3 new usr/src/uts/comon/sys/dtrace. h 4
376 #define DI FV_KI ND_SCALAR 1 /* variable is a scalar quantity */ 442 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTI VE || \
443 DTRACEACT_CLASS(x) == DTRACEACT KERNEL _DESTRUCTI VE)
378 #defi ne DI FV_SCOPE_GLOBAL 0 /* variabl e has gl obal scope */
379 #define DI FV_SCOPE_THREAD 1 /* variable has thread scope */ 445 #defi ne DTRACEACT_| SSPECULATI VE(x) \
380 #define DI FV_SCOPE_LOCAL 2 /* variable has |ocal scope */ 446 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATI VE)
382 #define DI FV_F_REF Ox1 /* variable is referenced by D FO */ 448 #define DTRACEACT_| SPRI NTFLI KE(x) \
383 #define DI FV_F_MD 0x2 /* variable is witten by DI FO */ 449 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
450 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREGCPEN)
385 /*
386 * DIrace Actions 452 | *
387 * 453 * DIrace Aggregating Actions
388 * The upper byte determnes the class of the action; the | ow bytes determni nes 454 =
389 * the specific action within that class. The classes of actions are as 455 * These are functions f(x) for which the following is true:
390 * follows: 456 *
391 * 457 * f(f(x_0) Uf(x_1) U... Uf(x_n)) =f(x 0Ux_1U... Ux_n)
392 * [no class] <= May record process- or kernel-related data 458 =
393 * DTRACEACT_PRCC <= Only records process-rel ated data 459 * where x_n is a set of arbitrary data. Aggregating actions are in their own
394 * DTRACEACT_PROC_DESTRUCTI VE <= Potentially destructive to processes 460 * DIirace action class, DITRACEACT_AGGREGATI ON. The macros provided here all ow
395 * DTRACEACT_KERNEL <= Only records kernel-rel ated data 461 * for easier processing of the aggregation argunment and data payload for a few
396 * DTRACEACT_KERNEL_DESTRUCTI VE <= Potentially destructive to the kernel 462 * aggregating actions (notably: quantize(), Iquantize(), and ustack())
397 * DTRACEACT_SPECULATI VE <= Specul ation-rel ated action 463 */
398 * DTRACEACT _AGGREGATI ON <= Aggregating action 464 #defi ne DTRACEACT_AGGREGATI ON 0x0700
399 */ 465 #defi ne DTRACEAGG_COUNT (DTRACEACT_AGGREGATI ON + 1)
400 #define DTRACEACT_NONE 0 /* no action */ 466 #defi ne DTRACEAGG_M N (DTRACEACT_AGGREGATI ON + 2)
401 #define DTRACEACT_DI FEXPR 1 /* action is DIF expression */ 467 #define DTRACEAGG MAX (DTRACEACT_AGGREGATI ON + 3)
402 #define DTRACEACT_EXI T 2 [* exit() action */ 468 #defi ne DTRACEAGG AVG (DTRACEACT_AGGREGATI ON + 4)
403 #defi ne DTRACEACT_PRI NTF 3 [* printf() action */ 469 #defi ne DTRACEAGG_SUM (DTRACEACT_AGGREGATI ON + 5)
404 #defi ne DTRACEACT_PRI NTA 4 /* printa() action */ 470 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATI ON + 6)
405 #define DTRACEACT_LI BACT 5 /* library-controlled action */ 471 #define DTRACEAGG QUANTI ZE (DTRACEACT_AGGREGATI ON + 7)
406 #defi ne DTRACEACT_TRACEVEM 6 /* tracenen() action */ 472 #defi ne DTRACEAGG _LQUANTI ZE (DTRACEACT_AGGREGATI ON + 8)
407 #define DTRACEACT_TRACEMEM DYNSI ZE 7 /* dynanic tracenen() size */ 473 #define DTRACEAGG LLQUANTI ZE (DTRACEACT_AGGREGATI ON + 9)
409 #defi ne DTRACEACT_PROC 0x0100 475 #defi ne DTRACEACT_| SAGH x) \
410 #define DTRACEACT USTACK (DTRACEACT_PRCC + 1) 476 (DTRACEACT _CLASS(Xx) == DTRACEACT AGGREGATI ON)
411 #defi ne DTRACEACT_JSTACK (DTRACEACT_PRCC + 2)
412 #defi ne DTRACEACT_USYM (DTRACEACT_PRCC + 3) 478 #defi ne DTRACE_QUANTI ZE_| NBUCKETS \
413 #def i ne DTRACEACT_UMOD (DTRACEACT_PRCC + 4) 479 (((sizeof (uint64_t) * NBBY) 1) * 2 +1)
414 #define DTRACEACT_UADDR (DTRACEACT_PRCC + 5)
481 #define DTRACE_QUANTI ZE_ZEROBUCKET ((sizeof (uint64 t) * NBBY) - 1)
416 #defi ne DTRACEACT_PROC_DESTRUCTI VE 0x0200
417 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTI VE + 1) 483 #defi ne DTRACE_QUANTI ZE_BUCKETVAL (buck) \
418 #define DTRACEACT_RAI SE (DTRACEACT_PROC_DESTRUCTI VE + 2) 484 (int64_t)((buck) < DTRACE_QUANTI ZE_ZEROBUCKET ? \
419 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTI VE + 3) 485 - (1LL << (DTRACE_QUANTI ZE_ZEROBUCKET - 1 - (buck))) \
420 #define DTRACEACT_FRECPEN (DTRACEACT_PROC_DESTRUCTI VE + 4) 486 (buck) == DTRACE_QUANTI ZE_ZEROBUCKET ? O : \
487 1LL << ((buck) DTRACE_QUANTI ZE_ZEROBUCKET - 1))
422 #defi ne DTRACEACT_PROC_CONTROL 0x0300
489 #defi ne DTRACE_LQUANTI ZE_STEPSH FT 48
424 #define DTRACEACT_KERNEL 0x0400 490 #define DTRACE_LQUANTI ZE_STEPMASK ((uint64_t)U NT16_MAX << 48)
425 #defi ne DTRACEACT_STACK (DTRACEACT_KERNEL + 1) 491 #define DTRACE_LQUANTI ZE_LEVELSHI FT 32
426 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2) 492 #define DTRACE_LQUANTI ZE_LEVELMASK ((uint64_t)UI NT16_MAX << 32)
427 #defi ne DTRACEACT_MOD (DTRACEACT_KERNEL + 3) 493 #define DTRACE_LQUANTI ZE_BASESHI FT 0
494 #define DTRACE_LQUANTI ZE_BASEMASK Ul NT32_MAX
429 #defi ne DTRACEACT_KERNEL_DESTRUCTI VE 0x0500
430 #defi ne DTRACEACT_BREAKPO NT (DTRACEACT_KERNEL_DESTRUCTI VE + 1) 496 #defi ne DTRACE_LQUANTI ZE_STEP(x) \
431 #define DTRACEACT_PANI C (DTRACEACT_KERNEL_DESTRUCTI VE + 2) 497 (uint16_t) (((x) & DTRACE_LQUANTI ZE_STEPMASK) >> \
432 #define DTRACEACT_CHI LL (DTRACEACT_KERNEL _DESTRUCTI VE + 3) 498 DTRACE_LQUANTI ZE_STEPSHI FT)
434 #defi ne DTRACEACT_SPECULATI VE 0x0600 500 #define DTRACE_LQUANTI ZE_LEVELS(x) \
435 #define DTRACEACT SPECULATE (DTRACEACT_SPECULATI VE + 1) 501 (uint16_t) (((x) & DTRACE LQUANTI ZE_LEVELMASK) >> \
436 #defi ne DTRACEACT_COW T (DTRACEACT_SPECULATI VE + 2) 502 DTRACE_LQUANTI ZE_LEVELSHI FT)
437 #defi ne DTRACEACT_DI SCARD (DTRACEACT_SPECULATI VE + 3)
504 #define DTRACE_LQUANTI ZE_BASE(x) \
439 #defi ne DTRACEACT_CLASS(x) ((x) & Oxffo00) 505 (| nt 32 _t)(((x) & DTRACE_LQUANTI ZE_BASEMASK) >> \
506 CE_LQUANTI ZE_BASESHI FT)
441 #defi ne DTRACEACT_| SDESTRUCTI VE(x) \

new usr/src/uts/comon/sys/dtrace. h

508
509
510
511
512
513
514
515

517
518
519

521
522
523

525
526
527

529
530
531

533
534
535
536

538
539
540
541
542
543
544
545
546

548
549
550
551
552
553
554
555
556
5517
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

#def i ne DTRACE_LLQUANTI ZE_FACTORSHI FT 48

#def i ne DTRACE_LLQUANTI ZE_FACTORMASK ((uint64_t) Ul NT16_MAX << 48)
#def i ne DTRACE_LLQUANTI ZE_LOWSHI FT 32

#def i ne DTRACE_LLQUANTI ZE_L OWASK ((ui nt 64_t) Ul NT16_MAX << 32)
#def i ne DTRACE_LLQUANTI ZE_HI GHSHI FT 16

#def i ne DTRACE_LLQUANTI ZE_HI GHVASK ((uint64_t) U NT16_MAX << 16)
#def i ne DTRACE_LLQUANTI ZE_NSTEPSHI FT 0

#def i ne DTRACE_LLQUANTI ZE_NSTEPMASK Ul NT16_MAX

#def i ne DTRACE_LLQUANTI ZE_FACTOR(x)

\
(uint16_t)(((x) & DTRACE LLQUANTI ZE_FACTORMASK) >> \
DTRACE_LLQUANTI ZE_FACTORSHI FT)

#def i ne DTRACE_LLQUANTI ZE_LOW(x)

\
(uint16_t)(((x) & DTRACE _LLQUANTI ZE_LOMASK) >> \
DTRACE_LLQUANTI ZE_LOWSHI FT)

#def i ne DTRACE_LLQUANTI ZE_HI GH(x)

\
(uint16_t)(((x) & DTRACE LLQUANTI ZE_H GHMASK) >> \
DTRACE_LLQUANTI ZE_HI GHSHI FT)

#def i ne DTRACE_LLQUANTI ZE_NSTEP(x)

\
(uint16_t)(((x) & DTRACE LLQUANTI ZE_NSTEPMASK) >> \
DTRACE_LLQUANTI ZE_NSTEPSHI FT)

#def i ne DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & Ul NT32_MAX)
#def i ne DTRACE_USTACK_STRSI ZE(x) (uint32_t) ((x) >> 32)
#def i ne DTRACE_USTACK_AI

RG(x \
((((uint64_t)(y)) << 32) | ((x) & U NT32_MAX))

#i f ndef _LP64

#i fndef _LI TTLE_ENDI AN

#dlefi ne DTRACE_PTR(type, nane) uint32_t name##pad; type *nane
#el se

#def i ne DTRACE_PTR(type, nane) type *nane; uint32_t nane##pad
#endi f

#el se

#defi ne DTRACE_PTR(type, nanme) type *nane

#endi f

/

® Ok ok ok E ok ok Ok 3k Ok R b Sk b 3k Ok R Ok Ok Ok ok % b ¥ b ¥

DTrace Cbject Format (DOF)

DTrace prograns can be persistently encoded in the DOF fornat so that they
may be enbedded in other prograns (for exanple, in an ELF file) or in the
dtrace driver configuration file for use in anonynous tracing. The DOF
format is versioned and extensible so that it can be revised and so that
internal data structures can be nodified or extended conpatibly. Al DOF
structures use fixed-size types, so the 32-bit and 64-bit representations
are identical and consuners can use either data nodel transparently.

The file layout is structured as follows:

docmeeeeaeaaas em e +eeen- B +
| dof _hdr _t | dof_sec_t[...] | | oadabl e | non-I oadabl e |
| (file header) | (section headers) | section data | section data |
T R +eeee- B +
| <-eeemieae- dof hdr. dofh_|l oadsz --------------- >| |
| <c-eemioe-- dof _hdr.dof h_fil @Sz --------semmmmomm o >|

The file header stores neta-data including a magi c nunber, data nodel for
the instrunentation, data encodi ng, and properties of the DIF code within.
The header describes its own size and the size of the section headers. By
convention, an array of section headers follows the file header, and then
the data for all |oadable sections and unl oadabl e sections. This pernits
consuner code to easily downl oad the headers and all |oadable data into the

new usr/src/uts/comon/sys/dtrace. h

574
5145]
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

601

603
604
605
606
607
608
609
610
611
612
613

615
616
617
618
619
620
621
622
623
624
625

627
628
629
630

632
633

635
636
637

639

DTrace driver in one contiguous chunk, omtting other extraneous sections.

The section headers describe the size, offset, alignnment, and section type
for each section. Sections are described using a set of #defines that tell
the consunmer what kind of data is expected. Sections can contain links to
ot her sections by storing a dof _secidx_t, an index into the section header
array, inside of the section data structures. The section header includes
an entry size so that sections with data arrays can grow their structures.

The DOF data itself can contain many snippets of DIF (i.e. >1 DI FGs), which
are represented thenselves as a collection of related DOF sections. This
pernmits us to change the set of sections associated with a DI FO over tine,
and al so permits us to encode DIFGCs that contain different sets of sections.
When a DOF section wants to refer to a DIFO, it stores the dof _secidx_t of a
section of type DOF_SECT_DI FOHDR. This section’s data is then an array of
dof _secidx_t’s which in turn denote the sections associated with this D FO

This | oose coupling of the file structure (header and sections) to the
structure of the DIrace programitself (ECB descriptions, action
descriptions, and DIFCs) permts activities such as rel ocati on processi ng
to occur in a single pass w thout having to understand D program structure.

Finally, strings are always stored in ELF-style string tables along with a
string table section index and string table offset. Therefore strings in
DOF are always arbitrary-1length and not bound to the current inplenentation.
/

%ok Sk ok R b Sk Ok Sk F Rk R Sk Sk % O ok Ok Ok %k ok 3k

#define DOF_I D_SI ZE 16 /* total size of dofh_ident[] in bytes */
typedef struct dof _hdr

uint8_ t dofh_ident[DOF_ID SIZE]; /* identification bytes (see bel ow) */
uint32_t dofh_flags; /* file attribute flags (if any) */
ui nt32_t dof h_hdrsi ze; /* size of file header in bytes */
ui nt32_t dof h_secsi ze; /* size of section header in bytes */
uint32_t dof h_secnum /* nunber of section headers */
uint 64_t dof h_secoff; /* file offset of section headers */
ui nt64_t dof h_| oadsz; /* file size of |oadable portion */
uint64_t dofh_filesz; /* file size of entire DOF file */
ui nt 64_t dof h_pad; /* reserved for future use */

} dof _hdr _t;

#def i ne DOF_| D_MAQGD 0 /* first byte of magic nunber */

#define DOF_| D_MAGL 1 /* second byte of magic nunber */

#define DOF_| D MAG2 2 /* third byte of magi c nunber */

#def i ne DOF_| D_MAG3 3 /* fourth byte of magic nunber */

#def i ne DOF_| D_MODEL 4 /* DOF data nodel (see below) */

#def i ne DOF_| D_ENCODI NG 5 /* DOF data encoding (see bel ow) */

#define DOF_ID_VERSION 6 /* DOF file format major version (see below) */

#define DOF_I D_DI FVERS 7 /* DIF instruction set version *

#define DOF_I D D FIREG 8 /* DIF integer registers used by conpiler */

#define DOF_I D D FTREG 9 /* DIF tuple registers used by conpiler */

#defi ne DOF_I D_PAD 10 /* start of padding bytes (all zeroes) */

#defi ne DOF_MAG_MAGD Ox7F /* DOF_ID_MAG 0-3] */

#defi ne DOF_MAG_MAGL 'D

#def i ne DOF_MAG_MAG2 e

#defi ne DOF_NMAG MAG3 =

#defi ne DOF_MAG STRING "\ 177DOF"

#def i ne DOF_MAG_STRLEN

#def i ne DOF_MODEL_NONE
#def i ne DOF_MODEL_| LP32
#def i ne DOF_MODEL_LP64

/* DOF_I D_MODEL */

N O

#ifdef _LP64

new usr/src/ uts/ comon/sys/dtrace.

640
641
642
643

645
646
647

649
650
651
652
653

655
656
657

659

661
662

664
665

667
668
669
670
671
672
673
674

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

704

#defi ne DOF_MODEL_NATI VE
#el se
#def i ne DOF_MODEL_NATI VE
#endi f

#def i ne DOF_ENCODE_NONE 0
#def i ne DOF_ENCODE_LSB 1
#def i ne DOF_ENCODE_MSB 2

#i fdef _BI G_ENDI AN
#def i ne DOF_ENCODE_NATI VE
#el se

#def i ne DOF_ENCODE_NATI VE
#endi f

#def i ne DOF_VERS| ON_1
#defi ne DOF_VERSI ON_2
#def i ne DOF_VERSI ON

N~

#define DOF_FL_VALID 0

typedef uint32_t dof_secidx_t;
typedef uint32_t dof _stridx_t;

#def i ne DOF_SECI DX_NONE (- 1U)
#def i ne DOF_STRI DX_NONE (- 1U)

t ypedef struct dof _sec {

dof s_type;
dofs_al i gn;
dofs_fl ags;

dof s_of f set;
dof s_si ze;
} dof _sec_t;

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i ne
#defi ne
#defi ne
#defi ne
#def i ne
#defi ne
#defi ne
#defi ne
#def i ne
#defi ne
#defi ne
#defi ne
#def i ne

DOF_SECT_NONE
DOF_SECT_COWMVENTS
DOF_SECT_SOURCE
DOF_SECT_ECBDESC
DOF_SECT_PROBEDESC
DOF_SECT_ACTDESC
DOF_SECT_DI FOHDR
DOF_SECT_DI F
DOF_SECT_STRTAB
DOF_SECT_VARTAB
DOF_SECT_RELTAB
DOF_SECT_TYPTAB
DOF_SECT_URELHDR
DOF_SECT_KRELHDR
DOF_SECT_OPTDESC
DOF_SECT_PROVI DER
DOF_SECT_PROBES
DOF_SECT_PRARGS
DOF_SECT_PROFFS
DOF_SECT_| NTTAB
DOF_SECT_UTSNAMVE
DOF_SECT_XLTAB
DOF_SECT_XLMENBERS
DOF_SECT_XLI MPORT
DOF_SECT_XLEXPORT
DOF_SECT_PREXPORT
DOF_SECT_PRENCFFS

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

#def i ne DOF_SECF_LOAD

DOF_VERSI ON_2

dof s_ent si ze;

DOF_NODEL_LP64
DOF_NMODEL_| LP32

/* DOF_I D_ENCODI NG */

DOF_ENCCDE_MSB
DOF_ENCCDE_LSB

/* DOF version 1: Solaris 10 FCS */

/* DOF version 2: Solaris Express 6/06 */
/* Latest DOF version */

/* mask of all valid dofh_flags bits */
/* section header table index type */
/* string table index type */

val ue for section indices */

/* null
/* val ue for string indices */

nul |

/* section type (see below */

/* section data nmenory alignment */

/* section flags (if any) */

/* size of section entry (if table) */
/* offset of section data within file */
/* size of section data in bytes */

0 /* null section */

1 /* conpiler coments */

2 /* D program source code */

3 /* dof _ecbdesc_t */

4 /* dof _probedesc_t */

5 /* dof _actdesc_t array */

6 /* dof _di fohdr_t (variable Iength) */

7 /* uint32_t array of byte code */

8 /* string table */

9 /* dtrace_difv_t array */

10 /* dof _rel odesc_t array */

11 /* dtrace_diftype_t array */

12 /* dof _relohdr_t (user relocations) */
13 /* dof _rel ohdr_t (kernel relocations)

14 /* dof _optdesc_t array */

15 /* dof _provider_t */

16 /* dof _probe_t array */

17 /* uint8_t array (probe arg mappings) */
18 /* uint32_t array (probe arg offsets) */
19 /* uint64_t array */

20 [* struct utsname */

21 [* dof xlref_t array */

22 /* dof _x| menber_t array */

23 /* dof _xlator_t */

24 /* dof xlator_t */

25 /* dof _secidx_t array (exported objs) */
26 /* uint32_t array (enabled offsets) */

1 /* section should be | oaded */

new usr/src/uts/comon/sys/dtrace. h

706
707
708
709
710
711
712
713
714
715
716
717
718

720
721
722
723
724
725
726

728
729
730
731
732
733
734
735

737
738
739
740
741
742
743
744

746
747
748
749

751
752
753
754
755

757
758
759
760
761
762

764
765

767
768
769
770
771

#def i ne DOF_SEC_| SLOADABLE(x)

(X) == DOF_SECT ECBDESC)

== DOF_SECT_ACTDESC)

== DOF_SECT_ DI F) || I(
|

== DOF_SECT_VARTAB)
DOF_SECT_TYPTAB)
DOF_SECT_KRELHDR)
== DOF_SECT_PROVI DER)
|
|

== DOF_SECT_PRARGS) | |
DOF_SECT_| NTTAB) ||
DOF_SECT_XLMEMBERS)
== DOF_SECT_XLI MPORT)

DOF_SECT_PREXPORT)

XXX XXX X XX XX

D
|
|

D T e e
e T e vy

typedef struct dof_echdesc {

dof _seci dx_t dof e_probes;
dof _seci dx_t dof e_pred;
dof _seci dx_t dofe_acti ons;
uint32_t dofe_pad;
uint64_t dof e_uarg;

} dof _ecbdesc_t;

typedef struct dof_probedesc {
dof _seci dx_t dof p_strtab;
dof _stridx_t dof p_provider;
dof _stridx_t dof p_nod;
dof _stridx_t dof p_func;
dof _stridx_t dof p_nane;
uint32_t dofp_id;

} dof _probedesc_t;

typedef struct dof_actdesc {
dof _seci dx_t dofa_difo;
dof “seci dx_t dofa_ strtab
uint32_t dof a_ki nd;
uint32_t dofa_nt upI e;
uint64_t dofa_arg;
uint64_t dofa_uarg;

} dof _actdesc_t;

typedef struct dof _difohdr {

dtrace_diftype_t dofd_rtype;
1]

dof _seci dx_t
} dof _difohdr_t;

dof d_I i nks[

typedef struct dof_rel ohdr {
dof _secidx_t dofr_strtab;
dof “seci dx_t dofr_rel sec;
dof “seci dx_t dofr_tgtsec;

} dof _rel ohdr _t;

typedef struct dof _rel odesc {
dof _stridx_t dofr_name;
uint32_t dofr_type;
uint64_t dofr_offset;
uint64_t dofr_data;

} dof _rel odesc_t;

#define DOF_RELO NONE O

#define DOF_RELO SETX 1

typedef struct dof_optdesc {
ui nt32_t dof o_opti on;
dof _seci dx_t dofo_strtab;
uint64_t dof o_val ue;

} dof _optdesc_t;

(
(

(
X

X)

X)

DOF_SECT_STRTAB) ||
x) == DOF_SECT RELTAB) ||

x) =

—~— —~——— ~——
* ok * ok

* ok

—_———

X) ==

EINE

EE

== DOF_SECT_PROBEDESC) | |
DOF SECT DI FOHDR) | |

DOF_SECT_URELHDR) | |

_DOF_SECT_CPTDESQ) |

== DOF_SECT_PROBES) |

DOF_SECT " PROFFS) ||
DOF_SECT_XLTAB) ||

DOF_SECT XLI MPCRT) | |

== DOF_SECT_XLEXPORT) ||
DOF_SECT_PRENCFFS))

e e

link to DOF_SECT_PROBEDESC */
link to DOF_SECT_DI FOHDR */

link to DOF_SECT_ACTDESC */
reserved for future use */
user-supplied library argunment */

link to DOF_SECT_STRTAB section */
provi der string */

nodul e string */

function string */

name string */

probe identifier (or zero) */

link to DOF_SECT_DI FOHDR */

link to DOF_SECT_STRTAB section */
action kind (DTRACEACT * constant) */
nunber of subsequent tuple actions */
ki nd- speci fic argument */

user - suppl i ed argunment */

return type for this fragment */
variable length array of indices */

-~ SECT_STRTAB for nanes */
-~ SECT_RELTAB for relos */
section we are relocating */

string nanme of relocation synbol */
relo type (DOF_RELO * constant) */
byte offset for relocation */

addi tional type-specific data */

enpty relocation entry */
rel ocate setx value */

option identifier */
string table, if string option */
option value or string index */

new usr/src/uts/comon/sys/dtrace. h 9 new usr/src/uts/comon/sys/dtrace. h 10
838 * references can reference strings using a byte offset. The variable table
773 typedef uint32_t dof _attr_t; /* encoded stability attributes */ 839 * is an array of dtrace_difv_t structures that describe the name and type of
840 * each variable and the id used in the DIF code. This structure is described
775 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8)) 841 * above in the DIF section of this header file. The DIFOis used at both
776 #define DOF_ATTR_NAME(a) (((a) >> 24) & Oxff) 842 * user-level (in the library) and in the kernel, but the structure is never
777 #define DOF_ATTR_DATA(a) (((a) >> 16) & Oxff) 843 * passed between the two: the DOF structures formthe only interface. As a
778 #define DOF_ATTR_CLASS(a) (((a) > 8) & Oxff) 844 * result, the definition can change dependi ng on the presence of _KERNEL.
845 */
780 typedef struct dof_provider { 846 typedef struct dtrace_difo {
781 dof _seci dx_t dof pv_strt ab; /* link to DOF_SECT_STRTAB section */ 847 dif_instr_t *dtdo_buf; /* instruction buffer */
782 dof _seci dx_t dof pv_probes; /* link to DOF_SECT_PROBES section */ 848 uint64_t *dtdo_i nttab /* integer table (optional) */
783 dof _seci dx_t dof pv_prargs; /* link to DOF_SECT_PRARGS section */ 849 char *dtdo_strtab; /* string table (optional) */
784 dof _seci dx_t dof pv_proffs; /* link to DOF_SECT_PROFFS section */ 850 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
785 dof _stridx_t dof pv_naneg; /* provider nane string */ 851 uint_t dtdo_l en; /* length of instruction buffer */
786 dof _attr_t dofpv_provattr; /* provider attributes */ 852 uint_t dtdo_intlen; /* length of integer table */
787 dof _attr_t dof pv_nodattr; /* nodul e attributes */ 853 uint_t dtdo_strlen; /* length of string table */
788 dof _attr_t dof pv_funcattr; /* function attributes */ 854 uint_t dtdo_varlen; /* length of variable table */
789 dof _attr_t dof pv_naneattr; /* nane attributes */ 855 dtrace_diftype_t dt do _rtype; /* return type */
790 dof _attr_t dofpv_argsattr; /* args attributes */ 856 uint_t dtdo_refcnt; /* owner reference count */
791 dof _seci dx_t dof pv_| prenoffs /* link to DOF_SECT_PRENOFFS section */ 857 uint _t dtdo_destructive; /* invokes destructive subroutines */
792 } dof _provider_t; 858 #ifndef _KERNEL
859 dof _rel odesc_t *dtdo_kreltab,; /* kernel relocations */
794 typedef struct dof _probe { 860 dof _rel odesc_t *dtdo_ureltab,; /* user relocations */
795 ui nt 64_t dof pr_addr; /* probe base address or offset */ 861 struct dt_node **dt do_xI ntab; /* translator references */
796 dof _stridx_t dof pr_func; /* probe function string */ 862 uint _t dtdo_krel en; /* length of krelo table */
797 dof _stridx_t dof pr_nane; /* probe nane string */ 863 uint _t dtdo_urel en; /* length of urelo table */
798 dof _stridx_t dof pr_nargyv; /* native argunent type strings */ 864 uint_t dtdo_xlm en; /* length of translator table */
799 dof _stridx_t dof pr_xargyv; /* transl ated argunent type strings */ 865 #endi f
800 ui nt32_t dof pr_argi dx; /* index of first argument mapping */ 866 } dtrace_difo_t;
801 ui nt32_t dof pr_of fi dx; /* index of first offset entry */
802 uint8_t dof pr_nargc; /* native argunent count */ 868 /*
803 uint8_t dof pr_xargc; /* transl ated argunent count */ 869 * DTrace Enabling Description Structures
804 uint16_t dof pr_noffs; /* nunber of offset entries for probe */ 870 *
805 ui nt 32_t dof pr_enof fi dx; /* index of first is-enabled offset */ 871 * \WWen DTrace is tracking the description of a DIrace enabling entity (probe,
806 uint16_t dof pr_nenoffs; /* nunber of is-enabled offsets */ 872 * predicate, action, ECB, record, etc.), it does so in a description
807 uint16_t dof pr_padi; /* reserved for future use */ 873 * structure. These structures all end in "desc", and are used at both
808 ui nt32_t dof pr_pad2; /* reserved for future use */ 874 * user-level and in the kernel -- but (with the exception of
809 } dof _probe_t; 875 * dtrace_probedesc_t) they are never passed between them Typically,
876 * user-level will use the description structures when assenbling an enabling.
811 typedef struct dof _xlator { 877 * It will then distill those description structures into a DOF obj ect (see
812 dof _seci dx_t dof x| _nmenbers; /* link to DOF_SECT_XLMEMBERS section */ 878 * above), and send it into the kernel. The kernel will again use the
813 dof “seci dx_t dof x| _strtab; /* link to DOF_SECT_STRTAB section */ 879 * description structures to create a description of the enabling as it reads
814 dof _stridx_t dof x| _argyv; /* input paraneter type strings */ 880 * the DOF. Wien the description is conplete, the enabling will be actually
815 uint32_t dof xI _argc; /* input paraneter list length */ 881 * created -- turning it into the structures that represent the enabling
816 dof _stridx_t dof x| _type; /* output type string nane */ 882 * instead of nerely describing it. Not surprisingly, the description
817 dof _attr_t dofxl_attr; /* output stability attributes */ 883 * structures bear a strong resenbl ance to the DOF structures that act as their
818 } dof xlator_t; 884 * conduit.
885 */
820 typedef struct dof _xI menber { 886 struct dtrace_predicate;
821 dof _seci dx_t dof xm di f o; /* menber link to DOF_SECT_DI FOHDR */
822 dof “stridx_t dof xm nane; /* menber nane */ 888 typedef struct dtrace_probedesc {
823 dtrace_diftype_t dof xm type; /* nmenber type */ 889 dtrace_id_t dtpdld /* probe identifier */
824 } dof _xIl menber _t; 890 char dt pd_provi der [DTRACE PRO\/I\IAIVELEN] /* probe provider nane */
891 char dt pd_nod[DTRACE_MODNAMELEI /* probe nodul e nane */
826 typedef struct dof_xlref { 892 char dt pd_f unc[DTRACE FUNCNAI\/ELENJ /* probe function name */
827 dof _seci dx_t dof xr_xl ator; /* link to DOF_SECT_XLATORS section */ 893 char dt pd_nanme[DTRACE_NAMELEN ; /* probe nane */
828 ui nt 32_t dof xr _nenber; /* index of referenced dof x| menmber */ 894 } dtrace_probedesc_t;
829 ui nt32_t dof xr_argn; /* index of argunment for DI F_OP_XLARG */
830 } dof _xlref_t; 896 typedef struct dtrace_repldesc {
897 dtrace_probedesc_t dtrpd_natch; /* probe descr. to match */
832 /* 898 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
833 * DTrace Internediate Format Object (DI FO 899 } dtrace_repldesc_t;
834 *
835 * ADIFOis used to store the conpiled DIF for a D expression, its return 901 typedef struct dtrace_preddesc {
836 * type, and its string and variable tables. The strlngtablelsasmgle 902 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
837 * buffer of character data into which sets instructions and variable 903 struct dtrace_predicate *dt pdd_predicate; /* pointer to predicate */

new usr/src/uts/comon/sys/dtrace. h 11
904 } dtrace_preddesc_t;

906 typedef struct dtrace_actdesc {

907 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
908 struct dtrace_actdesc *dtad_next; /* next action */

909 dtrace_act ki nd_t dtad_ki nd; /* kind of action */

910 uint 32"t dtad_ntuple; /* nunber in tuple */

911 uint64_t dtad_arg; /* action argunment */

912 uint64_t dtad_uarg; /* user argunent */

913 int dtad_refcnt; /* reference count */

914 } dtrace_actdesc_t;

916 typedef struct dtrace_ecbdesc {

917 dtrace_actdesc_t *dted_action; /* action description(s) */
918 dtrace_preddesc_t dted_pred,; /* predicate description */
919 dtrace_probedesc_t dted_probe; /* probe description */

920 uint64_t dted_uarg; /* library argunment */

921 int dted_refcnt; /* reference count */

922 } dtrace_echdesc_t;

924 | *

925 * DTrace Metadata Description Structures

926 *

927 * DIrace separates the trace data streamfromthe netadata stream The only
928 * metadata tokens placed in the data streamare the dtrace_rechdr_t (EPID +
929 * timestanp) or (in the case of aggregations) aggregation identifiers. To
930 * determine the structure of the data, DIrace consunmers pass the token to the
931 * kernel, and receive in return a correspondi ng description of the enabl ed
932 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
933 * dtrace_aggdesc structure). Both of these structures are expressed in terns
934 * of record descriptions (via the dtrace_recdesc structure) that describe the
935 * exact structure of the data. Sone record descriptions may al so contain a
936 * format identifier; this additional bit of netadata can be retrieved fromthe
937 * kernel, for which a format description is returned via the dtrace_fntdesc
938 * structure. Note that all four of these structures nmust be bitness-neutral
939 * to allow for a 32-bit DIrace consuner on a 64-bit kernel.

940 */

941 typedef struct dtrace_recdesc {

942 dtrace_actkind_t dtrd_action; /* kind of action */

943 uint32_t dtrd_size; /* size of record */

944 ui nt 32_t dtrd_offset; /* offset in ECB' s data */
945 uint16_t dtrd_alignment; /* required alignnment */

946 uintl6_t dtrd_format; /* format, if any */

947 uint64_t dtrd_arg; /* action argunent */

948 uint64_t dtrd_uarg; /* user argunent */

949 } dtrace_recdesc_t;

951 typedef struct dtrace_eprobedesc {

952 dtrace_epi d_t dtepd_epid; /* enabl ed probe 1D */

953 dtrace_id_t dtepd_probeid; /* probe ID */

954 ui nt64_t dtepd_uarg; /* library argunment */

955 uint32_t dtepd_size; /* total size */

956 int dtepd_nrecs; /* nunber of records */

957 dtrace_recdesc_t dtepd_rec[1]; /* records thensel ves */

958 } dtrace_eprobedesc_t;

960 typedef struct dtrace_aggdesc {

961 DTRACE_PTR(char, dtagd_nane); /* not filled in by kernel */
962 dtrace_aggvari d_t dtagd_vari d; /* not filled in by kernel */
963 int dtagd_fl ags; /* not filled in by kernel */
964 dtrace_aggid_t dtagd_id; /* aggregation ID */

965 dtrace_epid_t dtagd_epid; /* enabl ed probe 1D */

966 ui nt32_t dtagd_size; /* size in bytes */

967 int dtagd_nrecs; /* nunber of records */

968 uint32_t dtagd_| pad /* explicit padding */

969 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */

new usr/src/uts/comon/sys/dtrace. h

970 } dtrace_aggdesc_t;

12

972 typedef struct dtrace_fntdesc {

973 DTRACE_PTR(char, dtfd_string); /* format string */

974 int dtfd_l ength; /* length of format string */
975 uint16_t dtfd_format; /* format identifier */

976 } dtrace_fntdesc_t;

978 #defi ne DTRACE_SI ZEOF_EPROBEDESC(desc) \

979 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \

980 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) 0))

982 #defi ne DTRACE_SI ZEOF_AGGDESC(desc)

983 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \

984 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) 0))

986 /*

987 * DTrace Option Interface

988 *

989 * Run-time DIrace options are set and retrieved via DO-_SECT_OPTDESC secti ons
990 * in a DOF image. The dof optdesc structure contains an option identifier and
991 * an option value. The valid option identifiers are found bel ow, the mappi ng
992 * between option identifiers and option identifying strings is maintained at
993 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
994 * following are potentially valid option values: all positive integers, zero
995 * and negative one. Sone options (notably "bufpolicy" and "bufresize") take
996 * predefined tokens as their values; these are defined with

997 * DTRACECPT_{option}_{token}.

998 */

999 #defi ne DTRACEOPT_BUFSI ZE 0 /* buffer size */

1000 #define DTRACEOPT_BUFPCLI CY 1 /* buffer policy */

1001 #defi ne DTRACEOPT_DYNVARSI ZE 2 /* dynami c variable size */

1002 #defi ne DTRACEOPT_AGGSI ZE 3 /* aggregation size */

1003 #defi ne DTRACEOPT_SPECSI ZE 4 /* specul ation size */

1004 #defi ne DTRACEOPT_NSPEC 5 /* nunber of specul ations */

1005 #defi ne DTRACEOPT_STRSI ZE 6 /* string size */

1006 #defi ne DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */

1007 #defi ne DTRACEOPT_CPU 8 /* CPUto trace */

1008 #defi ne DTRACEOPT_BUFRESI ZE 9 /* buffer resizing policy */

1009 #defi ne DTRACEOPT_GRABANON 10 /* grab anonynous state, if any */
1010 #define DTRACEOPT_FLOW NDENT 11 /* indent function entry/return */
1011 #define DTRACEOPT_QUI ET 12 /* only output explicitly traced data */
1012 #defi ne DTRACEOPT_STACKFRAMES 13 /* nunber of stack franmes */

1013 #defi ne DTRACEOPT_USTACKFRAMES 14 /* nunber of user stack franes */

1014 #defi ne DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */

1015 #define DTRACEOPT_SW TCHRATE 16 /* buffer switching rate */

1016 #define DTRACEOPT_STATUSRATE 17 /* status rate */

1017 #defi ne DTRACEOPT_DESTRUCTI VE 18 /* destructive actions allowed */

1018 #define DTRACEOPT_STACKI NDENT 19 /* output indent for stack traces */
1019 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form*/
1020 #define DTRACEOPT_JSTACKFRAMES 21 /* nunber of jstack() frames */

1021 #defi ne DTRACEOPT_JSTACKSTRSI ZE 22 /* size of jstack() string table */
1022 #defi ne DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key *

1023 #defi ne DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */

1024 #defi ne DTRACEOPT_AGGSORTPCS 25 /* agg. position to sort on */

1025 #defi ne DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
1026 #defi ne DTRACEOPT_TEMPORAL 27 /* tenporally ordered output */

1027 #define DTRACEOPT_MAX 28 /* nunber of options */

1029 #defi ne DTRACEOPT_UNSET (dtrace_optval _t)-2 /* unset option */
1031 #define DTRACEOPT_BUFPOLI CY_RI NG 0 /* ring buffer */

1032 #defi ne DTRACEOPT_BUFPOLI CY_FI LL 1 /* fill buffer, then stop */
1033 #defi ne DTRACEOPT_BUFPCLI CY_SW TCH 2 /* switch buffers */

1035 #defi ne DTRACEOPT_BUFRESI ZE_AUTO 0 /* automatic resizing */

new usr/src/uts/comon/sys/dtrace. h

1036

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

1076
1077
1078

1080
1081
1082
1083

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

#def i ne DTRACEOPT_BUFRESI ZE_MANUAL 1 /* manual

/

resizing */

*
* DTrace Buffer Interface

*

* In order to get a snapshot of the principal or aggregation buffer,
* user-|evel passes a buffer description to the kernel
* structure. This describes which CPU user-level is interested in, and

* where user-|evel w shes the kernel to snapshot the buffer to (the

* dtbd_data field). The kernel uses the same structure to pass back sone
* information regarding the buffer: the size of data actually copied out,
* nunber of drops, the nunber of errors, the offset of the ol dest record,
* and the tinme of the snapshot.

*
*
*
*

If the buffer policy is a "swtch"
principal buffer has the additional effect of switching the active and
inactive buffers. Taking a snapshot of the aggregation buffer
* the additional effect of switching the active and inactive buffers.
*
/
typedef struct dtrace_bufdesc {
ui nt64_t dtbd_si ze;
uint32_t dthd_cpu;

policy, taking a snapshot of the

size of buffer */
CPU or DTRACE_CPUALL */

uint32_t dtbd_errors; nunber of errors */

ui nt 64_t dt bd_dr ops; of drops */
DTRACE_PTR(char, dtbd_data); data */

uint64_t dtbd_ol dest; of fset of ol dest record */

——— e — — —
L I
>
c
@
=

ui nt 64_t dtbdtlmastan'p, hrtime of

} dtrace_bufdesc_t;

snapshot */

/*

* Each record in the buffer (dtbd_data) begins with a header that includes
* the epid and a tinestanp. The timestanp is split into two 4-byte parts
* so that we do not require 8-byte alignnent.

*/

typedef struct dtrace_rechdr {
dtrace_epid_t dtrh_epid;
uint32_t dtrh_tinmestanp_hi;
uint32_t dtrh_tinmestanp_| o;
} dtrace_rechdr_t;

/* enabl ed probe id */
/* high bits of hrtime_t */
/* low bits of hrtime_t */

always has

13

with the dtrace_bufdesc

t he

#def i ne DTRACE_RECORD_LOAD_TI MESTAMP(dt r h) \
((dtrh)y->dtrh_timestanp_lo + \
((uint64_t)(dtrh)->dtrh_timestanmp_hi << 32))

#def i ne DTRACE_RECORD_STORE_TI MESTAMP(dtrh, hrtime) { \
(dtrh)->dtrh_timestanp_lo = (uint32_t)hrtine; \
(dtrh)->dtrh_timestanp_hi = hrtinme >> 32; \

}

/*

* DIrace Status
*
* The status of DIrace is relayed via the dtrace_status structure. This
* structure contains menbers to count drops other than the capacity drops
* available via the buffer interface (see above). This consists of dynamc
* drops (including capacity dynam c drops, rinsing drops and dirty drops), and
* specul ative drops (including capacity specul ative drops, drops due to busy
* specul ative buffers and drops due to unavail abl e specul ative buffers).
* Additionally, the status structure contains a field to indicate the nunmber
* of "fill"-policy buffers have been filled and a boolean field to indicate
* that exit() has been called. |If the dtst_exiting field is non-zero, no
* further data will be generated until tracing is stopped (at which tine any
* enablings of the END action will be processed); if user-level sees that
* this field is non-zero, tracing should be stopped as soon as possible.
*

/

typedef struct dtrace_status {

new usr/src/uts/comon/sys/dtrace. h 14
1102 ui nt64_t dtst_dyndrops; /* dynam c drops */

1103 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1104 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1105 ui nt64_t dtst_specdrops; /* specul ative drops */

1106 ui nt64_t dtst_specdrops_busy; /* spec drops due to busy */
1107 uint64_t dtst_specdrops_unavail ; /* spec drops due to unavail */
1108 uint64_t dtst_errors; /* total errors */

1109 uint64_t dtst_filled; /* nunber of filled bufs */
1110 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1111 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1112 char dtst_killed; /* non-zero if killed */

1113 char dtst_exiting; /* non-zero if exit() called */
1114 char dtst_pad[6]; /* pad out to 64-bit align */
1115 } dtrace_status_t;

1117 /*

1118 * Dlrace Configuration

1119 *

1120 * User-level may need to understand sone el enents of the kernel DTrace

1121 * configuration in order to generate correct DIF. This information is

1122 * conveyed via the dtrace_conf structure.

1123 */

1124 typedef struct dtrace_conf {

1125 uint _t dtc_difversion; /* supported DIF version */
1126 uint_t dtc_difintregs; /* # of DIF integer registers */
1127 uint _t dtc_diftupregs; /* # of DIF tuple registers */
1128 uint_t dtc_ctfnodel; /* CTF data nodel */

1129 uint _t dtc_pad[8]; /* reserved for future use */
1130 } dtrace_conf _t;

1132 /*

1133 * Dlrace Faults

1134 *

1135 * The constants bel ow DTRACEFLT_LI BRARY i ndicate probe processing faults;
1136 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe

1137 * postprocessing at user-level. Probe processing faults induce an ERROR
1138 * probe and are replicated in unistd.d to allow users’ ERROR probes to decode
1139 * the error condition using thse synbolic |abels.

1140 */

1141 #defi ne DTRACEFLT_UNKNOMN 0 /* Unknown fault */

1142 #defi ne DTRACEFLT_BADADDR 1 /* Bad address */

1143 #define DTRACEFLT_BADALI GN 2 /* Bad alignnent */

1144 #define DTRACEFLT_ILLOP 3 /* 11l egal operation */

1145 #defi ne DTRACEFLT_DI VZERO 4 /* Divide-by-zero */

1146 #define DTRACEFLT_NOSCRATCH 5 /* Qut of scratch space */
1147 #define DTRACEFLT_KPRI V 6 /* 1l1legal kernel access */
1148 #define DTRACEFLT_UPRI V 7 /* 11legal user access */

1149 #defi ne DTRACEFLT_TUPOFLOW 8 /* Tupl e stack overflow */
1150 #define DTRACEFLT_BADSTACK 9 /* Bad stack */

1152 #define DTRACEFLT_LI BRARY 1000 /* Library-level fault */

1154 /*

1155 * DTrace Argument Types

1156 *

1157 * Because it woul d waste both space and tine, argunent types do not reside
1158 * with the probe. In order to determ ne argunent types for args[X]

1159 * variables, the D conpiler queries for argument types on a probe-by-probe
1160 * basis. (This optimzes for the cormbn case that arguments are either not
1161 * used or used in an untyped fashion.) Typed argunents are specified with a
1162 * string of the type nanme in the dtragd_native nenber of the argunent

1163 * description structure. Typed argunents may be further translated to types
1164 * of greater stability; the provider indicates such a translated argunent by
1165 * filling in the dtargd_xlate nenber with the string of the translated type.
1166 * Finally, the provider may indicate which argunent val ue a given argunent
1167 * maps to by setting the dtargd_neppi ng nenber -- allow ng a single argunent

new usr/src/uts/comon/sys/dtrace. h 15

1168
1169
1170
1171
1172
1173
1174
1175
1176

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1189
1190
1191
1192
1193
1194
1195
1196
1197

1199
1200
1201
1202
1203
1204
1205

1207
1208
1209
1210
1211
1212

1214
1215
1216

1218
1219
1220
1221
1222

1224
1225
1226
1227
1228

1230
1231
1232
1233

*

to map to nultiple args[X] variables.
*
/

typedef struct dtrace_argdesc {

dtrace_id_t dtargd_id;
int dtargd_ndx;

/* probe identifier */
/*
int dtargd_mappi ng; /*
/*
/*

arg nunber (-1 iff none)
val ue nmapping *

native type nanme */
transl ated type nane */

char dtargd_native[DTRACE_ARGTYPELEN] ;
char dtargd_x| at e[DTRACE_ARGTYPELEN] ;

} dtrace_argdesc_t

/*

* DIrace Stability Attributes

*

* Each DTrace provider advertises the name and data stability of each of its
* probe description conponents, as well as its architectural dependencies.

* The D conpiler can query the provider attributes (dtrace_pattr_t below) in
* order to conpute the properties of an input programand report them

*

/
typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
typedef uint8_t dtrace_class_t; /* architectural dependency class */
#defi ne DTRACE_STABI LI TY_| NTERNAL 0 /* private to DIrace itself */
#def i ne DTRACE_STABI LI TY_PRI VATE 1 /* private to Sun (see docs) */
#def i ne DTRACE_STABI LI TY_OBSOLETE 2 /* schedul ed for renoval */
#def i ne DTRACE_STABI LI TY_EXTERNAL 3 /* not controlled by Sun */
#def i ne DTRACE_STABI LI TY_UNSTABLE 4 /* new or rapidly changing */
#def i ne DTRACE_STABI LI TY_EVOLVI NG 5 /* less rapidly changing */
#def i ne DTRACE_STABI LI TY_STABLE 6 /* mature interface from Sun */
#def i ne DTRACE_STABI LI TY_STANDARD 7 /* industry standard */
#def i ne DTRACE_STABI LI TY_MAX 7 /* maxi mumvalid stability */
#def i ne DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
#def i ne DTRACE_CLASS_CPU 1 /* CPU- nodul e-specific */
#def i ne DTRACE_CLASS_PLATFORM 2 /* platformspecific (uname -i) */
#def i ne DTRACE_CLASS_GROUP 8 /* har dwar e- gr oup- speci fic (uname -m */
#def i ne DTRACE_CLASS_| SA 4 /* | SA-specific (unane -p) */
#def i ne DTRACE_CLASS_COVWON 5 /* common to all systenms */
#def i ne DTRACE_CLASS_ MAX 5 /* maxi mum valid class */
#def i ne DTRACE_PRI V_NONE 0x0000
#def i ne DTRACE_PRI V_KERNEL 0x0001
#defi ne DTRACE_PRI V_USER 0x0002
#def i ne DTRACE_PRI V_PROC 0x0004
#def i ne DTRACE_PRI V_OWNER 0x0008
#def i ne DTRACE_PRI V_ZONEOMER 0x0010

#define DTRACE_ PRI V_ALL \

(DTRACE_PRI'V_KERNEL | DTRACE PRI V_USER | \
DTRACE_PRI V_PROC | DTRACE_PRIV_OMRER | DTRACE_PRI V_ZONEOWNER)

typedef struct dtrace_ppriv {
uint32_t dtpp_flags; /* privilege flags */
uid_t dtpp_uid; /* user 1D */
zonei d_t dt pp_zonei d; /* zone ID */

} dtrace_ppriv_t;

typedef struct dtrace_attribute {
dtrace_stability_t dtat_name; /* entity nane stability */
dtrace_stability_t dtat_data; /* entity data stability */
dtrace_cl ass_t dtat_cl ass; /* entity data dependency */

} dtrace_attribute_t;

typedef struct dtrace_pattr {

dtrace_attribute_t dtpa_provider;
dtrace_attribute_t dtpa_nod;
dtrace_attribute_t dtpafunc

provi der attributes */
modul e attributes */
function attributes */

—~—
* Ok *

new usr/src/uts/comon/sys/dtrace. h 16
1234 dtrace_attribute_t dtpa_nane; /* nanme attributes */

1235 dtrace_attribute_t dtpa_args; /* args[] attributes */
1236 } dtrace_pattr_t;

1238 typedef struct dtrace_provi derdesc {

1239 char dtvd_nanme[DTRACE_PROVNAMELEN ; /* provider nane */

1240 dtrace_pattr_t dtvd_attr; /* stability attributes */
1241 dtrace_ppriv_t dtvd_priv; /* privileges required */
1242 } dtrace_providerdesc_t;

1244 | *

1245 * Dlrace Pseudodevice Interface

1246 *

1247 * DTrace is controlled through ioctl(2)’s to the in-kernel dtrace:dtrace
1248 * pseudodevice driver. These ioctls conprise the user-kernel interface to
1249 * DTrace.

1250 */

1251 #defi ne DTRACEI OC ((’d << 24) | ("t << 16) | ('r’ << 8))
1252 #defi ne DTRACEI OC_PROVI DER (DTRACEI OC /* provider query */

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

#def i ne DTRACElI OC_PROBES
#def i ne DTRACElI OC_BUFSNAP
#def i ne DTRACEI OC_PROBENVATCH
#def i ne DTRACEI OC_ENABLE
#def i ne DTRACEI OC_AGGSNAP
#def i ne DTRACElI OC_EPROBE
#def i ne DTRACEI OC_PROBEARG
#def i ne DTRACEI OC_CONF
#def i ne DTRACEI OC_STATUS
#def i ne DTRACElI OC_GO
#def i ne DTRACElI OC_STCOP
#def i ne DTRACElI OC_AGGDESC
#def i ne DTRACEI OC_FORNVAT
#defi ne DTRACElI OC_DOFCGET
#def i ne DTRACElI OC_REPLI CATE

/

® Ok ok ok ok Rk O 3k O 3k Ok ok b R ok Rk Sk OF % b % Ok Ok % F %

1)
(DTRACEI OC | 2)
(DTRACEI CC | 4)
(DTRACEI CC | 5)
(DTRACEI CC | 6)
(DTRACEI OC | 7)
(DTRACEI CC | 8)
(DTRACEI CC | 9)

/* probe query */
/*
/*
/*
/*
/*
/*
(DTRACEI CC | 10) [
/*
/*
/*
/*
/*
/*
/*

snapshot buffer */
mat ch probes */
enabl e probes */
snapshot agg. */
get eprobe desc. */
get probe arg */
get config. */
get status */
start tracing */
stop tracing */
get agg. desc. */
get format str */
get DOF */
replicate enab */

(DTRACEI OC | 11)
(DTRACEI OC | 12)
(DTRACEI OC | 13)
(DTRACEI OC | 15)
(DTRACEI OC | 16)
(DTRACEI OC | 17)
(DTRACEI OC | 18)

DTrace Hel pers

In general, DTrace establishes probes in processes and takes actions on
processes W thout knowi ng their specific user-level structures. |Instead of
existing in the framework, process-specific know edge is contained by the
enabling D program -- which can apply process-specific know edge by nmeking
appropriate use of DTrace prinitives |ike copyin() and copyinstr() to
operate on user-level data. However, there may exist some specific probes
of particular semantic rel evance that the appl i cation devel oper may wish to
explicitly export. For exanple, an application nay wish to export a probe
at the point that it begins and ends certain well-defined transactions. In
addition to providing probes, prograns may wi sh to offer assistance for
certain actions. For exanple, in highly dynam c environnents (e.g., Java),
it may be difficult to obtain a stack trace in terms of neani ngful synbol
nanmes (the translation frominstruction addresses to correspondi ng synbol
nanes nmay only be possible in situ); these environments may wi sh to define
a series of actions to be applied in situ to obtain a neaningful stack
trace.

These two nechani sns -- user-level statically defined tracing and assisting
DTrace actions -- are provided via DIrace _helpers_. Helpers are specified
via DOF, but unlike enabling DOF, hel per DOF may contain definitions of
provi ders, probes and their argunments. |f a helper w shes to provide
action assistance, probe descriptions and corresponding D F actions may be
specified in the hel per DOF. For such hel per actions, however, the probe
description describes the specific helper: all DTrace hel pers have the
provi der name "dtrace" and the nodul e nane "hel per", and the name of the
hel per is contained in the function name (for exanple, the ustack() hel per
is named "ustack"). Any hel per-specific nane nay be contained in the nanme
(for exanple, if a helper were to have a constructor, it mght be naned

new usr/src/uts/comon/sys/dtrace. h

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346

1348
1349
1350
1351
1352

1354
1355
1356
1357
1358

1360

1362
1363
1364
1365

"dtrace: hel per: <hel per>:init"). Helper actions are only called when the
action that they are helping is taken. Helper actions may only return D F
expressions, and may only call the follow ng subroutines:

al l oca() <= Al'l ocates nenory out of the consuner’s scratch space
bcopy() <= Copi es nenory to scratch space
copyi n() <= Copi es nmenory fromuser-level into consuner’s scratch

<= Copies menory into a specific location in scratch

copyi nto()
(<= Copies a string into a specific location in scratch

copyi nstr()

Hel per actions may only access the followi ng built-in variables:

curthread <= Current kthread_t pointer
tid <= Current thread identifier
pid <= Current process identifier
ppi d <= Parent process identifier
ui d <= Current user ID

gid <= Current group ID

execnane <= Current executable nane
zonename <= Current zone name

Hel per actions may not mani pul ate or allocate dynamic variabl es, but they
may have cl ause-local and statically-allocated gl obal variables. The

hel per action variable state is specific to the hel per action -- variables
used by the hel per action may not be accessed outside of the hel per
action, and the hel per action may not access variables that |ike outside
of it. Helper actions may not |oad fromkernel nmenory at-large; they are
restricting to loading current user state (via copyin() and variants) and
scratch space. As with probe enablings, helper actions are executed in
programorder. The result of the helper action is the result of the |ast
executing hel per expression.

Hel pers -- conposed of elther provi ders/probes or probes/actions (or both)
-- are added by opening the "hel per" mnor node, and issuing an ioctl(2)
(DTRACEHI OC_ADDDCOF) that specifies the dof_hel per_t structure. This
encapsul ates the nanme and base address of the user-level library or

execut abl e publishing the hel pers and probes as well as the DOF that
contains the definitions of those hel pers and probes.

The DTRACEH OC_ADD and DTRACEHI OC_ REMOVE are left in place for |egacy
hel pers and shoul d no | onger be used. No other ioctls are valid on the
hel per m nor node.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

/

#def i ne DTRACEHI OC (Cd << 24) | ("t << 16) | ('h << 8))
#def i ne DTRACEHI OC_ADD (DTRACEHI OC | 1) /* add hel per */
#def i ne DTRACEH OC_REMOVE (DTRACEHI CC | 2) /* renove hel per */
#def i ne DTRACEH OC_ADDDOF (DTRACEHI CC | 3) /* add hel per DOF */

typedef struct dof _hel per {
char dof hp_nod[DTRACE_MODNAMELEN] ;
ui nt64_t dof hp_addr;
ui nt 64_t dof hp_dof ;

} dof _hel per_t;

executabl e or library name */
base address of object */
address of hel per DOF */

—_———
* ok

#def i ne DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
#def i ne DTRACEMNR_HELPER "hel per" /* node for hel pers */
#def i ne DTRACEMNRN_DTRACE 0 /* mnor for DIrace ops */
#def i ne DTRACEMNRN_HELPER 1 /* mnor for hel pers */
#def i ne DTRACEMNRN_CLONE 2 /* first clone mnor */

#i fdef _KERNEL

/*

* DTrace Provider API
*

* The followi ng functions are inplenmented by the Dirace framework and are

17

new usr/src/uts/comon/sys/dtrace. h 18
1366 * used to inplenent separate in-kernel DTrace providers. Common functions
1367 * are provided in uts/comon/os/dtrace.c. |SA-dependent subroutines are
1368 * defined in uts/<isa>/dtrace/dtrace_asms or uts/<isa>/dtrace/dtrace_isa.c.
1369 *

1370 * The provider APl has two halves: the APl that the providers consune from
1371 * DTrace, and the APl that providers nake avail able to DTrace.

1372 *

1373 * 1 Franmewor k-to- Provider API

1374 *

1375 * 1.1 Overview

1376 *

1377 * The Framework-to-Provider APl is represented by the dtrace_pops structure
1378 * that the provider passes to the framework when registering itself. This
1379 * structure consists of the follow ng nenbers:

1380 *

1381 * dt ps_provi de() <-- Provide all probes, all nodul es

1382 * dt ps_provi de_nodul e() <-- Provide all probes in specified nodul e

1383 * dt ps_enabl e() <-- Enabl e specified probe

1384 * dt ps_di sabl e() <-- Disabl e specified probe

1385 * dt ps_suspend() <-- Suspend specified probe

1386 * dt ps_resune() <-- Resune specified probe

1387 * dt ps_get ar gdesc() <-- Get the argunment description for args[X]

1388 * dt ps_get argval () <-- Get the value for an argX or args[X] variable
1389 * dt ps_node() <-- Return the node of the fired probe

1390 * dt ps_destroy() <-- Destroy all state associated with this probe
1391 *

1392 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)

1393 *

1394 * 1.2.1 Overview

1395 ~*

1396 * Called to indicate that the provider should provide all probes. [If the
1397 * specified description is non-NULL, dtps_provide() is being called because
1398 * no probe natched a specified probe -- if the provider has the ability to
1399 * create custom probes, it may wish to create a probe that matches the

1400 * speci fied description.

1401 *

1402 * 1.2.2 Argunents and notes

1403 *

1404 * The first argunent is the cookie as passed to dtrace_register(). The
1405 * second argunent is a pointer to a probe description that the provider may
1406 * wi sh to consider when creating custom probes. The provider is expected to
1407 * call back into the DTrace framework via dtrace_probe_create() to create
1408 * any necessary probes. dtps_provide() nay be called even if the provider
1409 * has made avail able all probes; the provider should check the return val ue
1410 * of dtrace_probe_create() to handle this case. Note that the provider need
1411 * not inplenent both dtps_provide() and dtps_provi de_nodul e(); see

1412 * "Argunments and Notes" for dtrace_register(), below

1413 *

1414 * 1.2.3 Return value

1415 *

1416 * None.

1417 *

1418 * 1.2.4 Caller’s context

1419 *

1420 * dtps_provide() is typically called fromopen() or ioctl() context, but may
1421 * be called fromother contexts as well. The DIrace framework is |ocked in
1422 * such a way that providers may not register or unregister. This nmeans that
1423 * the provider may not call any Dirace APl that affects its registration with
1424 * the framework, including dtrace_register(), dtrace_unregister(),

1425 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1426 * that the provider may (and indeed, is expected to) call probe-rel ated
1427 * DTrace routines, including dtrace_probe_create(), dtrace_probe_| ookup(),
1428 * and dtrace_probe_arg().

1429 *

1430 * 1.3 void dtps_provi de_nodul e(void *arg, struct nodctl *np)

1431 *

new usr/src/uts/comon/sys/dtrace. h 19

1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497

B I I T T T 2

1.3.1 Overview

Called to indicate that the provider should provide all
speci fi ed nodul e.

probes in the

1.3.2 Argunents and notes

The first argument is the cookie as passed to dtrace_register(). The
second argunent is a pointer to a nodctl structure that indicates the
nmodul e for which probes should be created.

1.3.3 Return val ue
None.
1.3.4 Caller’s context

dt ps_provi de_nodul e() may be called fromopen() or ioctl() context, but

may al so be called froma nodul e | oading context. nod_|lock is held, and
the Dirace franmework is |locked in such a way that providers nay not
register or unregister. This neans that the provider nay not call any
DTrace APl that affects its registration with the franmework, including
dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
dtrace_condense(). However, the context is such that the provider nmay (and
indeed, is expected to) call probe-related DTrace routines, including

dtrace_probe_create(), dtrace_probe_| ookup(), and dtrace_probe_arg(). Note
that the provider need not inplenment both dtps_provide() and
dt ps_provi de_nodul e(); see "Argunents and Notes" for dtrace_register(),
bel ow.
1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1.4.1 Overview
Call ed to enabl e the specified probe.
1.4.2 Argunents and notes
The first argunent is the cookie as passed to dtrace_register(). The
second argunent is the identifier of the probe to be enabled. The third

argunent is the probe argunent as passed to dtrace_probe_create().
dtps_enabl e() will be called when a probe transitions from not being

enabl ed at all to having one or nore ECB. The nunber of ECBs associ at ed
with the probe nay change without subsequent calls into the provider.

When the nunber of ECBs drops to zero, the provider will be explicitly
told to disable the probe via dtps_disable(). dtrace_probe() shoul d never
be called for a probe identifier that hasn't been explicitly enabled via
dt ps_enabl e() .

1.4.3 Return val ue

On success, -1 shoul d be

returned.

dt ps_enabl e() should return 0. On failure,

1.4.4 Caller’s context
The Dirace franework is |ocked in such a way that it may not be called
back into at all. «cpu_lock is held. nod_lock is not held and may not
be acquired.

1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1.5.1 Overview

Called to disable the specified probe.

new usr/src/uts/comon/sys/dtrace. h 20
1498 * 1.5.2 Argunents and notes

1499 *

1500 * The first argument is the cookie as passed to dtrace_register(). The
1501 * second argunent is the identifier of the probe to be disabled. The third
1502 * argunment I's the probe argunment as passed to dtrace_probe_create().

1503 * dtps_disable() wll be called when a probe transitions from bei ng enabl ed
1504 * to having zero ECBs. dtrace_probe() should never be called for a probe
1505 * identifier that has been explicitly enabled via dtps_disable().

1506 *

1507 * 1.5.3 Return val ue

1508 *

1509 * None.

1510 *

1511 * 1.5.4 Caller’s context

1512 *

1513 * The DTrace franmework is |ocked in such a way that it may not be called
1514 * back into at all. «cpu_lock is held. nod_lock is not held and may not
1515 * be acquired.

1516 *

1517 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)

1518 *

1519 * 1.6.1 Overview

1520 *

1521 * Call ed to suspend the specified enabled probe. This entry point is for
1522 * providers that nay need to suspend some or all of their probes when CPUs
1523 * are being powered on or when the boot nonitor is being entered for a
1524 * prol onged period of tinme.

1525 *

1526 * 1.6.2 Argunents and notes

1527 *

1528 * The first argunent is the cookie as passed to dtrace_register(). The
1529 * second argunment is the identifier of the probe to be suspended. The
1530 * third argunent is the probe argunent as passed to dtrace_probe_create().
1531 * dtps_suspend will only be called on an enabl ed probe. Providers that
1532 * provi de a dtps_suspend entry point will want to take roughly the action
1533 * that it takes for dtps_disable.

1534 *

1535 * 1.6.3 Return value

1536 *

1537 * None

1538 *

1539 * 1.6.4 Caller’s context

1540 *

1541 * Interrupts are disabled. The DTrace framework is in a state such that the
1542 * speci fi ed probe cannot be di sabl ed or destroyed for the duration of
1543 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1544 = little latitude; the provider is expected to do no nore than a store to
1545 * nmenory.

1546 *

1547 * 1.7 wvoid dtps_resune(void *arg, dtrace_id_t id, void *parg)

1548 *

1549 * 1.7.1 Overview

1550 *

1551 * Called to resune the specified enabled probe. This entry point is for
1552 * providers that nay need to resume sone or all of their probes after the
1553 * conpl etion of an event that induced a call to dtps_suspend().

1554 *

1555 * 1.7.2 Argunents and notes

1556 *

1557 * The first argunent is the cookie as passed to dtrace_register(). The
1558 * second argunment is the identifier of the probe to be resuned. The

1559 * third argunent is the probe argunent as passed to dtrace_probe_create().
1560 * dtps_resune will only be called on an enabl ed probe. Providers that
1561 * provide a dtps_resunme entry point will want to take roughly the action
1562 * that it takes for dtps_enable.

1563 *

new usr/src/uts/comon/sys/dtrace. h

1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

1.7.3 Return val ue
None.
1.7.4 Caller’s context

Interrupts are disabled. The DTrace franework is in a state such that the
speci fied probe cannot be di sabled or destroyed for the duration of
dtps_resune(). As interrupts are disabled, the provider is afforded
little latitude; the provider is expected to do no nore than a store to
nenory.

1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
dtrace_argdesc_t *desc)

1.8.1 Overview

Called to retrieve the argunent description for an args[X] variable.
1.8.2 Argunents and notes

The first argunent is the cookie as passed to dtrace_register(). The
second argunent is the identifier of the current probe. The third
argument is the probe argument as passed to dtrace_probe_create(). The
fourth argument is a pointer to the argument descrlptlon This
description is both an input and output parameter: it contains the
index of the desired argunent in the dtargd_ndx field, and expects

the other fields to be filled in upon return. |[If there is no argument
corresponding to the specified index, the dtargd_ndx field should be set
t o DTRACE_ARGNONE.

1.8.3 Return val ue

None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mappi ng
menbers of the dtrace_argdesc_t structure are all output val ues.

1.8.4 Caller’s context

dt ps_getargdesc() is called fromioctl () context. nmod_|l ock is held, and
the Dirace franework is |locked in such a way that providers nay not
register or unregister. This neans that the provider nmay not call any
Dirace APl that affects its registration with the franmework, including
dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
dtrace_condense().

1.9 uint64_t dtps_getargval (void *arg, dtrace_id_t id,
int argno, int afranes)

voi d *parg,

1.9.1 Overview

Called to retrieve a value for an argX or args[X] variable.
1.9.2 Argunents and notes

The first argunment is the cookie as passed to dtrace_register(). The
second argument is the identifier of the current probe. The third
argument is the probe argument as passed to dtrace_probe_create(). The
fourth argunent i1s the nunber of the argunent (the X in the exanple in
1.9.1). The fifth argument is the nunber of stack frames that were used
to get fromthe actual place in the code that fired the probe to
dtrace_probe() itself, the so-called artificial frames. This argunment may
be used to descend an appropriate nunber of franes to find the correct
values. If this entry point is left NULL, the dtrace_getarg() built-in
function is used.

1.9.3 Return val ue

21

new usr/src/uts/comon/sys/dtrace. h 22
1630 *

1631 * The val ue of the argunent.

1632 *

1633 * 1.9.4 Caller’s context

1634 *

1635 * This is called fromw thin dtrace_probe() nmeaning that interrupts

1636 * are disabled. No | ocks should be taken wthin this entry point.

1637 *

1638 * 1.10 int dtps_node(void *arg, dtrace_id_t id, void *parg)

1639 *

1640 * 1.10.1 Overview

1641 *

1642 * Called to determine the node of a fired probe.

1643 *

1644 * 1.10.2 Argunents and notes

1645 *

1646 * The first argument is the cookie as passed to dtrace_register(). The
1647 * second argument is the identifier of the current probe. The third

1648 * argunment is the probe argunent as passed to dtrace_probe_create(). This
1649 * entry point nmust not be left NULL for providers whose probes allow for
1650 * m xed node tracing, that is to say those unanchored probes that can fire
1651 * during kernel - or user-node execution.

1652 *

1653 * 1.10.3 Return value

1654 *

1655 * A bitwise OR that encapsul ates both the node (either DTRACE_MODE_KERNEL
1656 * or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1657 * is insufficient for that node (a conbination of DTRACE_MODE_NOPRI V_DRCP,
1658 * DTRACE_MODE_NOPRI V_RESTRI CT, and DTRACE_MODE_LI M TEDPRI'V_RESTRICT). |f
1659 * DTRACE_MODE_NOPRI V_DROP bit is set, insufficient privilege will result
1660 * in the probe firing being S|Iently|gnoredfor the enabling; if the
1661 * DTRACE_NODE_NOPRI V_RESTRICT bit is set, insufficient privilege will not
1662 * prevent probe processing for the enabling, but restrictions will be in
1663 * place that induce a UPRIV fault upon attenpt to exam ne probe argunents
1664 * or current process state. |f the DITRACE_MODE LI M TEDPRI V_RESTRI CT bi t
1665 * is set, simlar restrictions will be placed upon operation if the

1666 * privilege is sufficient to process the enabling, but does not otherw se
1667 * entitle the enabling to all zones. The DTRACE_MODE_NOPRI V_DROP and

1668 * DTRACE_MODE_NOPRI V_RESTRI CT are nutual |y exclusive (and one of these
1669 * two policies nust be specified), but either may be conbined (or not)
1670 * wi th DTRACE_MODE_LI M TEDPRI V_RESTRI CT.

1671 *

1672 * 1.10.4 Caller’'s context

1673 *

1674 * This is called fromw thin dtrace_probe() nmeaning that interrupts

1675 * are di sabled. No | ocks should be taken wthin this entry point.

1676 *

1677 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parQg)

1678 *

1679 * 1.11.1 Overview

1680 *

1681 * Called to destroy the specified probe.

1682 *

1683 * 1.11.2 Argunents and notes

1684 *

1685 * The first argunment is the cookie as passed to dtrace_register(). The
1686 * second argument is the identifier of the probe to be destroyed. The third
1687 * argurment iIs the probe argument as passed to dtrace_probe_create(). The
1688 * provider should free all state associated with the probe. The framework
1689 * guar antees that dtps_destroy() is only called for probes that have either
1690 * been di sabl ed via dtps_disable() or were never enabled via dtps_enable().
1691 * Once dtps_disabl e() has been called for a probe, no further call will be
1692 * made specifying the probe.

1693 *

1694 * 1.11.3 Return val ue

1695 *

new usr/src/uts/comon/sys/dtrace. h 23
1696 * None.

1697 *

1698 * 1.11.4 Caller’s context

1699 *

1700 * The DTrace framework is locked in such a way that it may not be called
1701 * back into at all. nod_lock is held. cpu_lock is not held, and may not be
1702 * acqui red.

1703 *

1704 *

1705 * 2 Provider-to-Framework API

1706 *

1707 * 2.1 Overview

1708 *

1709 * The Provi der-to-Framework APl provides the nechanismfor the provider to
1710 * register itself with the DIrace franework, to create probes, to | ookup
1711 * probes and (nost inportantly) to fire probes. The Provider-to-Franmework
1712 * consists of:

1713 *

1714 * dtrace_register() <-- Register a provider with the DTrace franmework
1715 * dtrace_unregi ster() <-- Renobve a provider’'s DIrace registration

1716 * dtrace_inval i date() <-- Invalidate the spem fied provider

1717 * dtrace_condense() <-- Renove a provider’s unenabl ed probes

1718 * dtrace_attached() <-- Indicates whether or not DIrace has attached
1719 * dtrace_probe_create() <-- Create a DTrace probe

1720 * dtrace_probe_l ookup() <-- Lookup a DTrace probe based on its nane

1721 * dtrace_probe_arg() <-- Return the probe argunment for a specific probe
1722 * dtrace_probe() <-- Fire the specified probe

1723 *

1724 * 2.2 int dtrace_register(const char *nane, const dtrace_pattr_t *pap,

1725 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1726 * dtrace_provider_id_t *i dp)

1727 *

1728 * 2.2.1 Overview

1729 *

1730 * dtrace_register() registers the calling provider with the DTrace

1731 * framework. It should generally be called by DTrace providers in their
1732 * attach(9E) entry point.

1733 *

1734 * 2.2.2 Argunments and Notes

1735 *

1736 * The first argunent is the nane of the provider. The second argunent is a
1737 * pointer to the stability attributes for the provider. The third argunent
1738 * Is the privilege flags for the provider, and nust be sone conbination of:
1739 *

1740 * DTRACE_PRI V_NONE <= Al users nay enabl e probes fromthis provider
1741 *

1742 * DTRACE_PRI V_PRCC <= Any user with privilege of PRI V_DTRACE PRCC may
1743 * enabl e probes fromthis provider

1744 *

1745 = DTRACE_PRI V_USER <= Any user with privilege of PRI V_DTRACE USER may
1746 * enabl e probes fromthis provider

1747 *

1748 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRI V_DTRACE_KERNEL
1749 * may enabl e probes fromthis provider

1750 *

1751 * DTRACE_PRI V_ONNER <= This flag places an additional constraint on
1752 * the privilege requirements above. These probes
1753 * require either (a) a user |ID natching the user
1754 * ID of the cred passed in the fourth argunent
1755 * or (b) the PRI V_PROC_OMER privil ege.

1756 *

1757 * DTRACE_PRI V_ZONEOMNER<= Thi s flag places an additional constraint on
1758 * the privilege requirenments above. These probes
1759 * require either (a) a zone ID natching the zone
1760 * ID of the cred passed in the fourth argunent
1761 * or (b) the PRIV_PROC ZONE privil ege.

new usr/src/uts/comon/sys/dtrace. h 24
1762 *

1763 * Note that these flags designate the _visibility_ of the probes, not

1764 * the conditions under which they may or may not fire.

1765 *

1766 * The fourth argunment is the credential that is associated with the

1767 * provider. This argunment should be NULL if the privilege flags don’'t

1768 * i ncl ude DTRACE_PRI V_OMER or DTRACE_PRI V_ZONEOMNER. | f non-NULL, the
1769 * framework stashes the uid and zoneid represented by this credenti al

1770 * for use at probe-tine, in inplicit predicates. These limt visibility
1771 * of the probes to users and/or zones which have sufficient privilege to
1772 * access them

1773 *

1774 * The fifth argunment is a DIrace provider operations vector, which provides
1775 * the inplenentation for the Framework-to-Provider API. (See Section 1,
1776 * above.) This nust be non-NULL, and each nenber nust be non-NULL. The
1777 * exceptions to this are (1) the dtps_provide() and dtps_provi de_nodul e()
1778 * menbers (if the provider so desires, _one_ of these nmenbers may be |eft
1779 * NULL -- denoting that the provider only inplenments the other) and (2)
1780 * the dt ps_suspend() and dtps_resunme() nenbers, which nust either both be
1781 * NULL or both be non-NULL.

1782 *

1783 * The sixth argunent is a cookie to be specified as the first argunment for
1784 * each function in the Franework-to-Provider API. This argument may have
1785 * any val ue.

1786 *

1787 * The final argument is a pointer to dtrace_provider_id_t. |If

1788 * dtrace_register() successfully conpletes, the provider identifier will be
1789 * stored in the nmenory pointed to be this argument. This argunent nust be
1790 * non- NULL.

1791 ~*

1792 * 2.2.3 Return val ue

1793 *

1794 ~* On success, dtrace_register() returns 0 and stores the new provider’'s
1795 * identifier into the menory pointed to by the idp argunent. On failure,
1796 * dtrace_register() returns an errno:

1797 *

1798 * El NVAL The argunents passed to dtrace_register() were sonehow invalid.
1799 * This may because a paraneter that nust be non-NULL was NULL,
1800 * because the name was invalid (either enpty or an illegal

1801 * provi der nanme) or because the attributes were invalid.

1802 *

1803 * No other failure code is returned.

1804 *

1805 * 2.2.4 Caller’s context

1806 *

1807 * dtrace_register() may induce calls to dtrace_provide(); the provider nust
1808 * hol d no | ocks across dtrace_register() that may al so be acquired by

1809 * dtrace_provide(). cpu_lock and nod_I ock nust not be held.

1810 *

1811 * 2.3 int dtrace_unregister(dtrace_provider_t id)

1812 *

1813 * 2.3.1 Overview

1814 *

1815 * Unregi sters the specified provider fromthe Dirace framework. [t should
1816 * general |y be called by Dfrace providers in their detach(9E) entry point.
1817 *

1818 * 2.3.2 Argunments and Notes

1819 *

1820 * The only argunment is the provider identifier, as returned froma

1821 * successful call to dtrace_register(). As a result of calling

1822 * dtrace_unregister(), the Dirace franmework will call back into the provider
1823 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
1824 * conpl etes, however, the DTrace franmework will no | onger nmeke calls through
1825 * the Framework-to-Provider APIl.

1826 *

1827 * 2.3.3 Return value

new usr/src/uts/comon/sys/dtrace. h

1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893

B I I T T T 2

On success, dtrace_unregister returns O.
returns an errno:

On failure, dtrace_unregister()

EBUSY There are currently processes that have the DIrace pseudodevi ce
open, or there exists an anonynous enabling that hasn’t yet

been cl ai nmed.

No other failure code is returned.

.3.4 Caller’s context

Because a call to dtrace_unregister() may induce calls through the
Framewor k-t o- Provi der APl, the caller may not hold any |ock across
dtrace_register() that is also acquired in any of the Framework-to-
Provi der APl functions. Additionally, nod_l ock may not be held.

.4 void dtrace_invalidate(dtrace_provider_id_t id)

.4.1 Overview

Inval i dates the specified provider. Al subsequent probe |ookups for the
specified provider will fail, but its probes will not be renoved.

.4.2 Argunents and note

The only argunent is the provider identifier, as returned froma
successful call to dtrace_register(). |In general, a provider’s probes
always renmin valid; dtrace_invalidate() is a mechanismfor invalidating
an entire provider, regardl ess of whether or not probes are enabl ed or
not. Note that dtrace invalidat e() will _not_ prevent already enabled
probes fromfiring -- it will merely prevent any new enablings of the
provi der’s probes.

.5 int dtrace_condense(dtrace_provider_id_t id)

.5.1 Overview

Renoves all the unenabl ed probes for the given provider. This function is
not unlike dtrace_unregister(), except that it doesn’'t renove the
provi der just as many of its associated probes as it can.

.5.2 Argunments and Notes

As with dtrace_unregister(), the sole argunent is the provider identifier
as returned froma successful call to dtrace_register(). As a result of
calling dtrace_condense(), the DTrace franework will call back into the
given provider’s dtps_destroy() entry point for each of the provider’'s
unenabl ed probes.

.5.3 Return value

Currently, dtrace_condense() always returns 0. However, consuners of this
function should check the return value as appropriate; its behavior my
change in the future.

.5.4 Caller’s context

As with dtrace_unregister(), the caller may not hold any |ock across
dtrace_condense() that is also acquired in the provider’s entry points.
Al so, nod_|l ock nay not be held.

.6 int dtrace_attached()

.6.1 Overview

25

new usr/src/uts/comon/sys/dtrace. h 26
1894 * I ndi cates whether or not DTrace has attached.

1895 *

1896 * 2.6.2 Argunments and Notes

1897 *

1898 * For nost providers, DIrace nmekes initial contact beyond registration.
1899 * That is, once a provider has registered with DIrace, it waits to hear
1900 * fromDIrace to create probes. However, sone provi ders may w sh to

1901 * proactively create probes w thout fi rst bei ng told by DTrace to do so.
1902 * If providers wish to do this, they nmust first call dtrace_attached() to
1903 * determine if Dirace itself has attached. |f dtrace_attached() returns O,
1904 * the provider nust not nake any other Provider-to-Framework APl call.
1905 *

1906 * 2.6.3 Return value

1907 *

1908 * dtrace_attached() returns 1 if DIrace has attached, 0 otherw se.

1909 *

1910 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *nod,

1911 * const char *func, const char *name, int afranmes, void *arg)

1912 *

1913 * 2.7.1 Overview

1914 *

1915 * Creates a probe with specified nodul e nane, function name, and nane.
1916 *

1917 * 2.7.2 Argunents and Notes

1918 *

1919 * The first argunment is the provider identifier, as returned froma

1920 * successful call to dtrace_register(). The second, third, and fourth
1921 * argurments are the nodul e nane, function nane, and probe nane,

1922 * respectively. O these, nodule nane and function name nay both be NULL
1923 * (in which case the probe is considered to be unanchored), or they may both
1924 * be non-NULL. The nanme nust be non-NULL, and nust point to a non-enpty
1925 * string.

1926 *

1927 * The fifth argument is the nunber of artificial stack franes that will be
1928 * found on the stack when dtrace_probe() is called for the new probe. These
1929 * artificial frames will be autonatically be pruned should the stack() or
1930 * stackdept h() functions be called as part of one of the probe’s ECBs. |If
1931 * the paranmeter doesn't add an artificial frane, this paraneter shoul d be
1932 * zero.

1933 *

1934 * The final argument is a probe argunent that will be passed back to the
1935 * provi der when a probe-specific operation is called. (e.g., via

1936 * dt ps_enabl e(), dtps_disable(), etc.)

1937 *

1938 * Note that it is up to the provider to be sure that the probe that it
1939 * creates does not already exist -- if the provider is unsure of the probe’s
1940 * exi stence, it should assure its absence wth dtrace_probe_| ookup() before
1941 * calling dtrace_probe_create().

1942 *

1943 * 2.7.3 Return value

1944 *

1945 * dtrace_probe_create() always succeeds, and always returns the identifier
1946 * of the new y-created probe.

1947 *

1948 * 2.7.4 Caller’s context

1949 *

1950 * Wil e dtrace_probe_create() is generally expected to be called from
1951 * dt ps_provide() and/or dtps_provide_nodule(), it nmay be called from other
1952 * non- DTrace contexts. Neither cpu_l ock nor rmdfl ock may be hel d.

1953 *

1954 * 2.8 dtrace_id_t dtrace_probe_| ookup(dtrace_provider_t id, const char *nod,
1955 * const char *func, const char *nane)

1956 *

1957 * 2.8.1 Overview

1958 *

1959 * Looks up a probe based on provdi der and one or nore of nodul e nane,

new usr/src/uts/comon/sys/dtrace. h

1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025

B I I T T T 2

.10 void dtrace_probe(dtrace_i d_t probe,

function nane and probe nane.

.8.2 Argurents and Notes

The first argunment is the provider identifier, as returned froma
successful call to dtrace_register(). The second, third, and fourth
argurments are the nodul e nane, function nane, and probe nane,
respectively. Any of these may be NULL; dtrace_probe_| ookup() will return
the identifier of the first probe that is provided by the specified

provi der and matches all of the non-NULL natching criteria.

dtrace_probe_| ookup() is generally used by a provider to be check the

exi stence of a probe before creating it with dtrace_probe_create().

.8.3 Return val ue

If the probe exists, returns its identifier.

return DTRACE_| DNONE.

If the probe does not exist,

.8.4 Caller’s context

Whi |l e dtrace_probe_| ookup() is generally expected to be called from
dt ps_provi de() and/or dtps_provide_nodule(), it may also be called from
ot her non-DTrace contexts. Neither cpu_l ock nor nod_|l ock may be hel d.

.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)

.9.1 Overview

Returns the probe argument associated with the specified probe.

.9.2 Argunents and Notes

The first argunent is the provider identifier, as returned froma
successful call to dtrace_register(). The second argunent is a probe
identifier, as returned from dtrace_probe_| ookup() or
dtrace_probe_create(). This is useful if a probe has nmultiple

provi der-specific conponents to it: the provider can create the probe
once with provider-specific state, and then add to the state by | ooking
up the probe based on probe identifier.

.9.3 Return val ue

Returns the argument associated with the specified probe. |If the
speci fi ed probe does not exist, or if the specified probe is not provided
by the specified provider, NULL is returned.

.9.4 Caller’s context

While dtrace_probe_arg() is generally expected to be called from
dt ps_provide() and/or dtps_provide_nodule(), it nay also be called from
ot her non-DTrace contexts. Neither cpu_lock nor nod_| ock may be held.

uintptr_t arg0, uintptr_t argl,

uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)

.10.1 Overview

The epicenter of DTrace:
argument s.

fires the specified probes with the specified

.10.2 Argunents and Notes

The first argunment is a probe identifier as returned by
dtrace_probe_create() or dtrace_probe_|l ookup(). The second through sixth
argunments are the values to which the D variables "arg0" through "arg4"
wi || be nmapped.

27

new usr/src/uts/comon/sys/dtrace. h

2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063

2065
2066
2067
2068
2069

2071

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084

2086
2087
2088
2089
2090
2091

dtrace_probe() should be called whenever the specified probe has fired --
however the provider defines it.

.10.3 Return val ue
None.
.10.4 Caller’s context

dtrace_probe() may be called in virtually any context: kernel, user,
interrupt, high-level interrupt, with arbitrary adaptive |ocks held, with
di spatcher |ocks held, with interrupts disabled, etc. The only I at i tude
that nust be afforded to Dirace is the ability to make calls w thi

itself (and to its in-kernel subroutines) and the ability to access
arbitrary (but mapped) nenory. On sone platforns, this constrains
context. For exanple, on U traSPARC, dtrace_probe() cannot be called
fromany context in which TL is greater than zero. dtrace_probe() may

al so not be called fromany routine which may be called by dtrace_probe()
-- which includes functions in the Dirace framework and some in-kernel
DTrace subroutines. Al such functions "dtrace_"; providers that
instrument the kernel arbitrarily should be sure to not instrument these

routines.

* Ok ok ok Sk ok O S Ok b Sk b 3k b ok Ok ok ok k% b ¥
-~

typedef struct dtrace_pops {
void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
voi d (*dtps provi de_nodul e) (void *arg, struct nodctl *np);
int (* dtps enabl e) (void *arg, dtrace_id_t id, void *parg);

voi d (*dtps_disabl e)(void *arg, dtrace_id_t id, void *parg);
voi d (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
void (*dtps_resune)(void *arg, dtrace_id_t id, void *parg);

voi d (*dtps_getargdesc)(void *arg, dtrace_id_t id,
dtrace_argdesc_t *desc);
uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id,
int argno, int afranes);
int (*dtps node) (void *arg, dtrace_id_t id, void *parg);
void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
} dtrace_pops_t;

void *parg,

voi d *parg,

#def i ne DTRACE_MODE_KERNEL 0x01
#def i ne DTRACE_MODE_USER 0x02
#def i ne DTRACE_MODE_NOPRI V_DROP 0x10
#def i ne DTRACE_MODE_NOPRI V_RESTRI CT 0x20
#def i ne DTRACE_MODE_LI M TEDPRI V_RESTRI CT 0x40
typedef uintptr_t dtrace_provider_id_t;

extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);

extern int dtrace_unregister(dtrace_| provider_id_t);

extern int dtrace_condense(dtrace_provider id_t);

extern void dtrace_i nval i dat e(dtrace_provider_id L&)s

extern dtrace_id_t dtrace_probe_| ookup(dtrace_provi der _id_t,
const char *, const char *);

extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t,
const char *, const char *, int, void *);

extern void *dtrace_probe arg(dtrace provi der _id_t, dtrace_id_t);

extern void dtrace_probe(dtrace_id_t, uintptr_t argO, uintptr_t argl,
uintptr_t arg2, uintptr_t arg3, ui ntptr_t arg4);

const char *,

const char *,

DTrace Meta Provi der API

The following functions are inplemented by the DTrace framework and are
used to inplenment neta providers. Meta providers plug into the Dirace
framework and are used to instantiate new providers on the fly. At

* Ok Ok ok k%

new usr/src/uts/comon/sys/dtrace. h

2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157

B I I T T T 2

present, there is only one type of neta provider and only one neta
provider may be registered with the DIrace framework at a tinme. The
sole neta provider type provides user-land static tracing facilities
by taking neta probe descriptions and addi ng a correspondi ng provider
into the DTrace franmework

1 Franewor k-t o- Provi der
1.1 Overview

The Franewor k-to-Provider APl is represented by the dtrace_nops structure
that the nmeta provider passes to the framework when registering itself as
a neta provider. This structure consists of the follow ng nenbers:

dt ms_cr eat e_probe() <-- Add a new probe to a created provider
dt ms_provi de_pi d() <-- Create a new provider for a given process
dt ms_r enove_pi d() <-- Renove a previously created provider

1.2 void dtns_create_probe(void *arg, void *parg,
dtrace_hel per _probedesc_t *probedesc);
1.2.1 Overview

Called by the DTrace franework to create a new probe in a provider
created by this neta provider.

1.2.2 Argunents and notes

The first argument
The second ar gunent
this is obtained fromthe return val ue of dtms_provide_pid().
argunment is the hel per probe description.

is the cookie as passed to dtrace_neta_register().
is the provider cookie for the associated provider;
The third

1.2.3 Return val ue
None

1.2.4 Caller’s context

dtms_create_probe() is called fromeither ioctl() or npdul e |oad context.
The DTrace framework is | ocked in such a way that neta providers may not
register or unregister. This neans that the nmeta provider cannot call
dtrace_neta_register() or dtrace_neta_unregister(). However, the context
such that the provider may (and is expected to) call provider-rel ated
DTrace provider APlIs including dtrace_probe_create().

1.3 void *dtns_provide_pid(void *arg,
pid_t pid)

1.3.1 Overview

dtrace_neta_provider_t *nprov,

Call ed by the DTrace framework to instantiate a new provi der given the
description of the provider and probes in the nprov argunment. The
meta provider should call dtrace_register() to insert the new provider
into the DTrace framework.

1.3.2 Argunents and notes

The first argument is the cookie as passed to dtrace_neta_register().
The second argunent is a pointer to a structure describing the new
hel per provider. The third argunent is the process identifier for
process associated with this new provider. Note that the name of the
provi der as passed to dtrace_register() should be the contatenation of
the dt npb_provnane nenber of the nprov argument and the processs
identifier as a string.

29

is

new usr/src/uts/comon/sys/dtrace. h

2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217

2219
2220
2221
2222

1.3.3 Return val ue
The cookie for the provider that the neta provider creates. This is
the same value that it passed to dtrace_register().
1.3.4 Caller’s context
dtns_provide_pid() is called fromeither ioctl() or nodule |oad context.
The Dirace framework is |ocked in such a way that neta providers may not
regi ster or unregister. This neans that the neta provider cannot call
dtrace_neta_register() or dtrace_neta_unregister(). However, the context
is such that the provider may -- and is expected to -- call
provider-rel ated DTrace provider APls including dtrace_register().

1.4 void dtnms_renove_pid(void *arg,
pid_t pid)

dtrace_neta_provider_t *nprov,

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* 1.4.1 Overview

*

* Cal l ed by the DIrace framework to renove a provider that had previously
* been instantiated via the dtns_provide_pid() entry point. The neta

* provi der need not renove the provider immedi ately, but this entry

* point indicates that the provider should be renbved as soon as possible
* using the dtrace_unregister() API.

*

* 1.4.2 Argunents and notes

*

* The first argunent is the cookie as passed to dtrace_neta_register().
* The second argunment is a pointer to a structure describing the hel per
*
*
*
*
*
*
*
*
*
*
*
*
*
*

provider. The third argument is the process identifier for process
associ ated with this new provider.

1.4.3 Return val ue
None

1.4.4 Caller’s context
dtms_renove_pid() is called fromeither ioctl () or exit() context.
The DTrace franework is |ocked in such a way that nmeta providers may not
register or unregister. This neans that the nmeta provider cannot call
dtrace_neta_register() or dtrace_neta_unregister(). However, the context
is such that the provider may -- and is expected to -- call
* provi der-rel ated DTrace provider APls including dtrace_unregister().
*
/
typedef struct dtrace_hel per_probedesc {
char *dt hpb_nod;
char *dt hpb_func;
char *dt hpb_nane;
uint64_t dthpb_| base
ui nt 32"t *dthpb_offs
uint32_t *dthpb_enoffs;
uint32_t dthpb_noffs;
ui nt32_t dthpb_ nenof f s;
uint8_t *dthpb_args;
uint8_t dthpb_xargc;
uint8_t dthpb_nargc;
char *dt hpb_xt ypes;
char *dt hpb_ntypes;
} dtrace_hel per _probedesc_t;

probe nodule */

probe function */

probe nane */

base address */

of fsets array */

is-enabl ed offsets array */
of fsets count */

i s-enabl ed of fsets count */
argunment mapping array */
transl ated argunent count */
native argunment count */
transl ated types strings */
native types strings */

— . — —
® ok Ok ko kO R % % 3k

typedef struct dtrace_hel per_provdesc {
char *dt hpv_provnane; /*
dtrace_pattr_t dthpv_pattr; /*
} dtrace_hel per _provdesc_t;

provi der name */
stability attributes */

30

new usr/src/uts/comon/sys/dtrace. h 31
2224 typedef struct dtrace_nops {

2225 voi d (*dtms create_probe)(void *, void *, dtrace_hel per_probedesc_t *);
2226 void *(*dtns_provide_pid)(void *, dtrace_hel per_provdesc_t *, pid_t);
2227 void (*dtms_renove_pid)(void *, dtrace_hel per_provdesc_t *, pid_t);
2228 } dtrace_nops_t;

2230 typedef uintptr_t dtrace_neta_provider_id_t;

2232 extern int dtrace_neta_regi ster(const char *, const dtrace_nops_t *, void *,
2233 dtrace_meta_provider_id_t *);

2234 extern int dtrace_neta_unregi st er(dtrace meta_provider_id_t);

2236 [*

2237 * DTrace Kernel Hooks

2238 *

2239 * The following functions are inplenmented by the base kernel and forma set of
2240 * hooks used by the DTrace framework. DTrace hooks are inplenmented in either
2241 * uts/common/os/dtrace_subr.c, an | SA-specific assenbly file, or in a

2242 * uts/<platfornr/os/dtrace_subr.c corresponding to each har dwar e platform
2243 */

2245 typedef enumdtrace_vtine_state {

2246 DTRACE_VTI ME_| NACTI VE = 0, /* No DTrace, no TNF */

2247 DTRACE_VTI ME_ACTI VE, /* DIrace virtual time, no TNF */
2248 DTRACE_VTI ME_| NACTI VE TNF, /* No DTrace, TNF active */

2249 DTRACE_VTI ME_ACTI VE_TNF /* DTrace virtual time _and_ TNF */
2250 } dtrace_vtine_state_t;

2252 extern dtrace_vtine_state_t dtrace_vtine_active;

2253 extern void dtrace_vtime_swi tch(kthread_t *next);

2254 extern void dtrace_vtine_enabl e_tnf(void);

2255 extern void dtrace_vtime_di sabl e_tnf (voi d)

2256 extern void dtrace_vtinme_enabl e(voi d);

2257 extern void dtrace_vtine_di sabl e(voi d)

2259 struct regs;

2261 extern int (*dtrace_pi d_probe_ptr)(struct regs *);

2262 extern int (*dtrace_return_probe_ptr)(struct regs *);

2263 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);

2264 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);

2265 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);

2266 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);

2268 typedef uintptr_t dtrace_icookie_t;

2269 typedef void (*dtrace_xcall_t)(void *);

2271 extern dtrace_icookie_t dtrace_interrupt_di sabl e(void);

2272 extern void dtrace_i nterrupt_enabl e(dtrace_i cookie_t);

2274 extern void dtrace_nmenbar _producer (void);

2275 extern void dtrace_nenbar_consuner (void);

2277 extern void (*dtrace_cpu_init)(processorid_t);

2278 extern void (*dtrace_nodl oad) (struct nodctl *);

2279 extern void (*dtrace_nodunl oad) (struct nodctl *);

2280 extern void (*dtrace hel pers_cl eanup) () ;

2281 extern void (*dtrace_hel pers_fork)(proc_t *parent, proc_t *child);

2282 extern void (*dtrace_cpustart_init)();

2283 extern void (*dtrace_cpustart_fini)();

2284 extern void (*dtrace_closef)();

2286 extern void (*dtrace_debugger_init)();

2287 extern void (*dtrace_debugger _fini)();

2288 extern dtrace_cacheid_t dtrace_predcache_id;

new usr/src/uts/comon/sys/dtrace. h

2290
2291
2292
2293
2294
2295

2297
2298

2300

2302
2303
2304
2305
2306

extern hrtinme_t dtrace gethrtl nme(void);

extern void dtrace _sync(void

extern void dtrace_toxic_r anges(v0| d (*)(uintptr_t, uintptr_]
extern void dtrace_xcal | (processorid_t, dtrace_xcall_t, void

extern void dtrace_vpanic(const char *, _ va_list);
extern void dtrace_panic(const char *, ...);
extern int dtrace_safe_defer_signal (void);

extern void dtrace_saf e_synchronous_signal (voi d);
extern int dtrace_mach_afranes(void);

#if defined(__i386) || defined(__and64)
extern int dtrace_instr_size(uchar_t *instr);

extern int dtrace_instr_size_ isa(uchar_t *, nodel t, int *);
extern void dtrace_i nvop_add(int (*)(uintptr_t, uint ptr_t *,
extern void dtrace_i nvop_remove(int (*)(uintptr_t, uintptr_t

2307 extern void dtrace_i nvop_call site(void);

2308 #endi f

2310 #ifdef __sparc

2311 extern int dtrace_bl ksuword32(uintptr_t, uint32_t *, int);
2312 extern void dtrace_getfsr(uint64_t *);

2313 #endi f

2315 #defi ne DTRACE_CPUFLAG | SSET(fl ag) \

2316 (cpu_core[CPU->cpu_i d] . cpuc_dtrace_flags & (flag))
2318 #define DTRACE_CPUFLAG SET(fl ag) \

2319 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2321 #define DTRACE CPUFLAG CLEAR(flag) \

2322 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & ~(flag))
2324 #endif /* _KERNEL */

2326 #endif [/* _ASM */

2328 #if defined(__i386) || defined(__anu64)

2330 #define DTRACE_I NVOP_PUSHL_EBP 1

2331 #define DTRACE_| NVOP_POPL_EBP 2

2332 #define DTRACE_| NVOP_LEAVE 3

2333 #defi ne DTRACE_| NVOP_NOP 4

2334 #define DTRACE_| NVOP_RET 5

2336 #endi f

2338 #ifdef __cplusplus

2339 }

2340 #endif

2342 #endif /* _SYS_DTRACE H */

)i
),

uintptr_t));

*
’

uintptr_t));

32

