
new/usr/src/cmd/dtrace/Makefile.com 1

**
 1380 Tue Jan 14 16:48:28 2014
new/usr/src/cmd/dtrace/Makefile.com
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 PROG = dtrace
28 OBJS = dtrace.o
29 SRCS = $(OBJS:%.o=../%.c)

31 include ../../Makefile.cmd
32 include ../../Makefile.ctf
33 #endif /* ! codereview */

35 CFLAGS += $(CCVERBOSE)
36 CFLAGS64 += $(CCVERBOSE)
37 LDLIBS += -ldtrace -lproc -lctf -lelf

39 FILEMODE = 0555

41 CLEANFILES += $(OBJS)

43 .KEEP_STATE:

45 all: $(PROG)

47 $(PROG): $(OBJS)
48 $(LINK.c) -o $@ $(OBJS) $(LDLIBS)
49 $(POST_PROCESS) ; $(STRIP_STABS)

51 clean:
52 -$(RM) $(CLEANFILES)

54 lint: lint_SRCS

56 %.o: ../%.c

new/usr/src/cmd/dtrace/Makefile.com 2

57 $(COMPILE.c) $<
58 $(POST_PROCESS_O)
59 #endif /* ! codereview */

61 include ../../Makefile.targ

new/usr/src/cmd/dtrace/dtrace.c 1

**
 46449 Tue Jan 14 16:48:28 2014
new/usr/src/cmd/dtrace/dtrace.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
29 #endif /* ! codereview */
30 */

32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <sys/wait.h>

36 #include <dtrace.h>
37 #include <stdlib.h>
38 #include <stdarg.h>
39 #include <stdio.h>
40 #include <strings.h>
41 #include <unistd.h>
42 #include <limits.h>
43 #include <fcntl.h>
44 #include <errno.h>
45 #include <signal.h>
46 #include <alloca.h>
47 #include <libgen.h>
48 #include <libproc.h>

50 typedef struct dtrace_cmd {
51 void (*dc_func)(struct dtrace_cmd *); /* function to compile arg */
52 dtrace_probespec_t dc_spec; /* probe specifier context */
53 char *dc_arg; /* argument from main argv */
54 const char *dc_name; /* name for error messages */
55 const char *dc_desc; /* desc for error messages */
56 dtrace_prog_t *dc_prog; /* program compiled from arg */

new/usr/src/cmd/dtrace/dtrace.c 2

57 char dc_ofile[PATH_MAX]; /* derived output file name */
58 } dtrace_cmd_t;

60 #define DMODE_VERS 0 /* display version information and exit (-V) */
61 #define DMODE_EXEC 1 /* compile program for enabling (-a/e/E) */
62 #define DMODE_ANON 2 /* compile program for anonymous tracing (-A) */
63 #define DMODE_LINK 3 /* compile program for linking with ELF (-G) */
64 #define DMODE_LIST 4 /* compile program and list probes (-l) */
65 #define DMODE_HEADER 5 /* compile program for headergen (-h) */

67 #define E_SUCCESS 0
68 #define E_ERROR 1
69 #define E_USAGE 2

71 static const char DTRACE_OPTSTR[] =
72 "3:6:aAb:Bc:CD:ef:FGhHi:I:lL:m:n:o:p:P:qs:SU:vVwx:X:Z";

74 static char **g_argv;
75 static int g_argc;
76 static char **g_objv;
77 static int g_objc;
78 static dtrace_cmd_t *g_cmdv;
79 static int g_cmdc;
80 static struct ps_prochandle **g_psv;
81 static int g_psc;
82 static int g_pslive;
83 static char *g_pname;
84 static int g_quiet;
85 static int g_flowindent;
86 static int g_intr;
87 static int g_impatient;
88 static int g_newline;
89 static int g_total;
90 static int g_cflags;
91 static int g_oflags;
92 static int g_verbose;
93 static int g_exec = 1;
94 static int g_mode = DMODE_EXEC;
95 static int g_status = E_SUCCESS;
96 static int g_grabanon = 0;
97 static const char *g_ofile = NULL;
98 static FILE *g_ofp = stdout;
99 static dtrace_hdl_t *g_dtp;
100 static char *g_etcfile = "/etc/system";
101 static const char *g_etcbegin = "* vvvv Added by DTrace";
102 static const char *g_etcend = "* ^^^^ Added by DTrace";

104 static const char *g_etc[] = {
105 "*",
106 "* The following forceload directives were added by dtrace(1M) to allow for",
107 "* tracing during boot. If these directives are removed, the system will",
108 "* continue to function, but tracing will not occur during boot as desired.",
109 "* To remove these directives (and this block comment) automatically, run",
110 "* \"dtrace -A\" without additional arguments. See the \"Anonymous Tracing\"",
111 "* chapter of the Solaris Dynamic Tracing Guide for details.",
112 "*",
113 NULL };

115 static int
116 usage(FILE *fp)
117 {
118 static const char predact[] = "[[predicate] action]";

120 (void) fprintf(fp, "Usage: %s [-32|-64] [-aACeFGhHlqSvVwZ] "
121 "[-b bufsz] [-c cmd] [-D name[=def]]\n\t[-I path] [-L path] "
122 "[-o output] [-p pid] [-s script] [-U name]\n\t"

new/usr/src/cmd/dtrace/dtrace.c 3

123 "[-x opt[=val]] [-X a|c|s|t]\n\n"
124 "\t[-P provider %s]\n"
125 "\t[-m [provider:] module %s]\n"
126 "\t[-f [[provider:] module:] func %s]\n"
127 "\t[-n [[[provider:] module:] func:] name %s]\n"
128 "\t[-i probe-id %s] [args ...]\n\n", g_pname,
129 predact, predact, predact, predact, predact);

131 (void) fprintf(fp, "\tpredicate -> ’/’ D-expression ’/’\n");
132 (void) fprintf(fp, "\t action -> ’{’ D-statements ’}’\n");

134 (void) fprintf(fp, "\n"
135 "\t-32 generate 32-bit D programs and ELF files\n"
136 "\t-64 generate 64-bit D programs and ELF files\n\n"
137 "\t-a claim anonymous tracing state\n"
138 "\t-A generate driver.conf(4) directives for anonymous tracing\n"
139 "\t-b set trace buffer size\n"
140 "\t-c run specified command and exit upon its completion\n"
141 "\t-C run cpp(1) preprocessor on script files\n"
142 "\t-D define symbol when invoking preprocessor\n"
143 "\t-e exit after compiling request but prior to enabling probes\n"
144 "\t-f enable or list probes matching the specified function name\n"
145 "\t-F coalesce trace output by function\n"
146 "\t-G generate an ELF file containing embedded dtrace program\n"
147 "\t-h generate a header file with definitions for static probes\n"
148 "\t-H print included files when invoking preprocessor\n"
149 "\t-i enable or list probes matching the specified probe id\n"
150 "\t-I add include directory to preprocessor search path\n"
151 "\t-l list probes matching specified criteria\n"
152 "\t-L add library directory to library search path\n"
153 "\t-m enable or list probes matching the specified module name\n"
154 "\t-n enable or list probes matching the specified probe name\n"
155 "\t-o set output file\n"
156 "\t-p grab specified process-ID and cache its symbol tables\n"
157 "\t-P enable or list probes matching the specified provider name\n"
158 "\t-q set quiet mode (only output explicitly traced data)\n"
159 "\t-s enable or list probes according to the specified D script\n"
160 "\t-S print D compiler intermediate code\n"
161 "\t-U undefine symbol when invoking preprocessor\n"
162 "\t-v set verbose mode (report stability attributes, arguments)\n"
163 "\t-V report DTrace API version\n"
164 "\t-w permit destructive actions\n"
165 "\t-x enable or modify compiler and tracing options\n"
166 "\t-X specify ISO C conformance settings for preprocessor\n"
167 "\t-Z permit probe descriptions that match zero probes\n");

169 return (E_USAGE);
170 }

172 static void
173 verror(const char *fmt, va_list ap)
174 {
175 int error = errno;

177 (void) fprintf(stderr, "%s: ", g_pname);
178 (void) vfprintf(stderr, fmt, ap);

180 if (fmt[strlen(fmt) - 1] != ’\n’)
181 (void) fprintf(stderr, ": %s\n", strerror(error));
182 }

184 /*PRINTFLIKE1*/
185 static void
186 fatal(const char *fmt, ...)
187 {
188 va_list ap;

new/usr/src/cmd/dtrace/dtrace.c 4

190 va_start(ap, fmt);
191 verror(fmt, ap);
192 va_end(ap);

194 exit(E_ERROR);
195 }

197 /*PRINTFLIKE1*/
198 static void
199 dfatal(const char *fmt, ...)
200 {
201 va_list ap;

203 va_start(ap, fmt);

205 (void) fprintf(stderr, "%s: ", g_pname);
206 if (fmt != NULL)
207 (void) vfprintf(stderr, fmt, ap);

209 va_end(ap);

211 if (fmt != NULL && fmt[strlen(fmt) - 1] != ’\n’) {
212 (void) fprintf(stderr, ": %s\n",
213 dtrace_errmsg(g_dtp, dtrace_errno(g_dtp)));
214 } else if (fmt == NULL) {
215 (void) fprintf(stderr, "%s\n",
216 dtrace_errmsg(g_dtp, dtrace_errno(g_dtp)));
217 }

219 /*
220 * Close the DTrace handle to ensure that any controlled processes are
221 * correctly restored and continued.
222 */
223 dtrace_close(g_dtp);

225 exit(E_ERROR);
226 }

228 /*PRINTFLIKE1*/
229 static void
230 error(const char *fmt, ...)
231 {
232 va_list ap;

234 va_start(ap, fmt);
235 verror(fmt, ap);
236 va_end(ap);
237 }

239 /*PRINTFLIKE1*/
240 static void
241 notice(const char *fmt, ...)
242 {
243 va_list ap;

245 if (g_quiet)
246 return; /* -q or quiet pragma suppresses notice()s */

248 va_start(ap, fmt);
249 verror(fmt, ap);
250 va_end(ap);
251 }

253 /*PRINTFLIKE1*/
254 static void

new/usr/src/cmd/dtrace/dtrace.c 5

255 oprintf(const char *fmt, ...)
256 {
257 va_list ap;
258 int n;

260 if (g_ofp == NULL)
261 return;

263 va_start(ap, fmt);
264 n = vfprintf(g_ofp, fmt, ap);
265 va_end(ap);

267 if (n < 0) {
268 if (errno != EINTR) {
269 fatal("failed to write to %s",
270 g_ofile ? g_ofile : "<stdout>");
271 }
272 clearerr(g_ofp);
273 }
274 }

276 static char **
277 make_argv(char *s)
278 {
279 const char *ws = "\f\n\r\t\v ";
280 char **argv = malloc(sizeof (char *) * (strlen(s) / 2 + 1));
281 int argc = 0;
282 char *p = s;

284 if (argv == NULL)
285 return (NULL);

287 for (p = strtok(s, ws); p != NULL; p = strtok(NULL, ws))
288 argv[argc++] = p;

290 if (argc == 0)
291 argv[argc++] = s;

293 argv[argc] = NULL;
294 return (argv);
295 }

297 static void
298 dof_prune(const char *fname)
299 {
300 struct stat sbuf;
301 size_t sz, i, j, mark, len;
302 char *buf;
303 int msg = 0, fd;

305 if ((fd = open(fname, O_RDONLY)) == -1) {
306 /*
307 * This is okay only if the file doesn’t exist at all.
308 */
309 if (errno != ENOENT)
310 fatal("failed to open %s", fname);
311 return;
312 }

314 if (fstat(fd, &sbuf) == -1)
315 fatal("failed to fstat %s", fname);

317 if ((buf = malloc((sz = sbuf.st_size) + 1)) == NULL)
318 fatal("failed to allocate memory for %s", fname);

320 if (read(fd, buf, sz) != sz)

new/usr/src/cmd/dtrace/dtrace.c 6

321 fatal("failed to read %s", fname);

323 buf[sz] = ’\0’;
324 (void) close(fd);

326 if ((fd = open(fname, O_WRONLY | O_TRUNC)) == -1)
327 fatal("failed to open %s for writing", fname);

329 len = strlen("dof-data-");

331 for (mark = 0, i = 0; i < sz; i++) {
332 if (strncmp(&buf[i], "dof-data-", len) != 0)
333 continue;

335 /*
336 * This is only a match if it’s in the 0th column.
337 */
338 if (i != 0 && buf[i - 1] != ’\n’)
339 continue;

341 if (msg++ == 0) {
342 error("cleaned up old anonymous "
343 "enabling in %s\n", fname);
344 }

346 /*
347 * We have a match. First write out our data up until now.
348 */
349 if (i != mark) {
350 if (write(fd, &buf[mark], i - mark) != i - mark)
351 fatal("failed to write to %s", fname);
352 }

354 /*
355 * Now scan forward until we scan past a newline.
356 */
357 for (j = i; j < sz && buf[j] != ’\n’; j++)
358 continue;

360 /*
361 * Reset our mark.
362 */
363 if ((mark = j + 1) >= sz)
364 break;

366 i = j;
367 }

369 if (mark < sz) {
370 if (write(fd, &buf[mark], sz - mark) != sz - mark)
371 fatal("failed to write to %s", fname);
372 }

374 (void) close(fd);
375 free(buf);
376 }

378 static void
379 etcsystem_prune(void)
380 {
381 struct stat sbuf;
382 size_t sz;
383 char *buf, *start, *end;
384 int fd;
385 char *fname = g_etcfile, *tmpname;

new/usr/src/cmd/dtrace/dtrace.c 7

387 if ((fd = open(fname, O_RDONLY)) == -1)
388 fatal("failed to open %s", fname);

390 if (fstat(fd, &sbuf) == -1)
391 fatal("failed to fstat %s", fname);

393 if ((buf = malloc((sz = sbuf.st_size) + 1)) == NULL)
394 fatal("failed to allocate memory for %s", fname);

396 if (read(fd, buf, sz) != sz)
397 fatal("failed to read %s", fname);

399 buf[sz] = ’\0’;
400 (void) close(fd);

402 if ((start = strstr(buf, g_etcbegin)) == NULL)
403 goto out;

405 if (strlen(buf) != sz) {
406 fatal("embedded nul byte in %s; manual repair of %s "
407 "required\n", fname, fname);
408 }

410 if (strstr(start + 1, g_etcbegin) != NULL) {
411 fatal("multiple start sentinels in %s; manual repair of %s "
412 "required\n", fname, fname);
413 }

415 if ((end = strstr(buf, g_etcend)) == NULL) {
416 fatal("missing end sentinel in %s; manual repair of %s "
417 "required\n", fname, fname);
418 }

420 if (start > end) {
421 fatal("end sentinel preceeds start sentinel in %s; manual "
422 "repair of %s required\n", fname, fname);
423 }

425 end += strlen(g_etcend) + 1;
426 bcopy(end, start, strlen(end) + 1);

428 tmpname = alloca(sz = strlen(fname) + 80);
429 (void) snprintf(tmpname, sz, "%s.dtrace.%d", fname, getpid());

431 if ((fd = open(tmpname,
432 O_WRONLY | O_CREAT | O_EXCL, sbuf.st_mode)) == -1)
433 fatal("failed to create %s", tmpname);

435 if (write(fd, buf, strlen(buf)) < strlen(buf)) {
436 (void) unlink(tmpname);
437 fatal("failed to write to %s", tmpname);
438 }

440 (void) close(fd);

442 if (chown(tmpname, sbuf.st_uid, sbuf.st_gid) != 0) {
443 (void) unlink(tmpname);
444 fatal("failed to chown(2) %s to uid %d, gid %d", tmpname,
445 (int)sbuf.st_uid, (int)sbuf.st_gid);
446 }

448 if (rename(tmpname, fname) == -1)
449 fatal("rename of %s to %s failed", tmpname, fname);

451 error("cleaned up forceload directives in %s\n", fname);
452 out:

new/usr/src/cmd/dtrace/dtrace.c 8

453 free(buf);
454 }

456 static void
457 etcsystem_add(void)
458 {
459 const char *mods[20];
460 int nmods, line;

462 if ((g_ofp = fopen(g_ofile = g_etcfile, "a")) == NULL)
463 fatal("failed to open output file ’%s’", g_ofile);

465 oprintf("%s\n", g_etcbegin);

467 for (line = 0; g_etc[line] != NULL; line++)
468 oprintf("%s\n", g_etc[line]);

470 nmods = dtrace_provider_modules(g_dtp, mods,
471 sizeof (mods) / sizeof (char *) - 1);

473 if (nmods >= sizeof (mods) / sizeof (char *))
474 fatal("unexpectedly large number of modules!");

476 mods[nmods++] = "dtrace";

478 for (line = 0; line < nmods; line++)
479 oprintf("forceload: drv/%s\n", mods[line]);

481 oprintf("%s\n", g_etcend);

483 if (fclose(g_ofp) == EOF)
484 fatal("failed to close output file ’%s’", g_ofile);

486 error("added forceload directives to %s\n", g_ofile);
487 }

489 static void
490 print_probe_info(const dtrace_probeinfo_t *p)
491 {
492 char buf[BUFSIZ];
493 char *user;
494 #endif /* ! codereview */
495 int i;

497 oprintf("\n\tProbe Description Attributes\n");

499 oprintf("\t\tIdentifier Names: %s\n",
500 dtrace_stability_name(p->dtp_attr.dtat_name));
501 oprintf("\t\tData Semantics: %s\n",
502 dtrace_stability_name(p->dtp_attr.dtat_data));
503 oprintf("\t\tDependency Class: %s\n",
504 dtrace_class_name(p->dtp_attr.dtat_class));

506 oprintf("\n\tArgument Attributes\n");

508 oprintf("\t\tIdentifier Names: %s\n",
509 dtrace_stability_name(p->dtp_arga.dtat_name));
510 oprintf("\t\tData Semantics: %s\n",
511 dtrace_stability_name(p->dtp_arga.dtat_data));
512 oprintf("\t\tDependency Class: %s\n",
513 dtrace_class_name(p->dtp_arga.dtat_class));

515 oprintf("\n\tArgument Types\n");

517 for (i = 0; i < p->dtp_argc; i++) {
518 if (p->dtp_argv[i].dtt_flags & DTT_FL_USER)

new/usr/src/cmd/dtrace/dtrace.c 9

519 user = "userland ";
520 else
521 user = "";
522 #endif /* ! codereview */
523 if (ctf_type_name(p->dtp_argv[i].dtt_ctfp,
524 p->dtp_argv[i].dtt_type, buf, sizeof (buf)) == NULL)
525 (void) strlcpy(buf, "(unknown)", sizeof (buf));
526 oprintf("\t\targs[%d]: %s%s\n", i, user, buf);
28 oprintf("\t\targs[%d]: %s\n", i, buf);
527 }

529 if (p->dtp_argc == 0)
530 oprintf("\t\tNone\n");

532 oprintf("\n");
533 }

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/Makefile 1

**
 5512 Tue Jan 14 16:48:29 2014
new/usr/src/cmd/dtrace/test/tst/common/Makefile
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 #
28 # Copyright (c) 2012 by Delphix. All rights reserved.
29 # Copyright (c) 2013, Joyent, Inc. All rights reserved.
30 #

32 #
33 # WARNING: Do not include Makefile.ctf here. That will cause tests to
34 # break.
29 # Copyright (c) 2012, Joyent, Inc. All rights reserved.
35 #

37 include $(SRC)/Makefile.master
38 include ../Makefile.com

40 SNOOPDIR = $(SRC)/cmd/cmd-inet/usr.sbin/snoop
41 SNOOPOBJS = nfs4_xdr.o
42 SNOOPSRCS = ${SNOOPOBJS:%.o=%.c}
43 CLOBBERFILES += nfs/$(SNOOPOBJS)

45 RPCSVCDIR = $(SRC)/head/rpcsvc
46 RPCSVCOBJS = nfs_prot.o
47 RPCSVCSRCS = ${RPCSVCOBJS:%o=%c}
48 CLOBBERFILES += nfs/$(RPCSVCOBJS) $(RPCSVCDIR)/$(RPCSVCSRCS)
49 CLOBBERFILES += usdt/forker.h usdt/lazyprobe.h

51 fasttrap/tst.fasttrap.exe := LDLIBS += -ldtrace
52 fasttrap/tst.stack.exe := LDLIBS += -ldtrace

54 sysevent/tst.post.exe := LDLIBS += -lsysevent
55 sysevent/tst.post_chan.exe := LDLIBS += -lsysevent

new/usr/src/cmd/dtrace/test/tst/common/Makefile 2

57 ustack/tst.bigstack.exe := COPTFLAG += -xO1

59 GCC = $(ONBLD_TOOLS)/bin/$(MACH)/cw -_gcc

61 nfs/%.o: $(SNOOPDIR)/%.c
62 $(COMPILE.c) -o $@ $< -I$(SNOOPDIR)
63 $(POST_PROCESS_O)
64 nfs/tst.call.exe: nfs/tst.call.o nfs/$(SNOOPOBJS)
65 $(LINK.c) -o $@ nfs/tst.call.o nfs/$(SNOOPOBJS) $(LDLIBS) -lnsl
66 $(POST_PROCESS) ; $(STRIP_STABS)
67 $(RPCSVCDIR)/%.c: $(RPCSVCDIR)/%.x
68 $(RPCGEN) -Cc $< > $@
69 nfs/$(RPCSVCOBJS): $(RPCSVCDIR)/$(RPCSVCSRCS)
70 $(COMPILE.c) -o $@ $(RPCSVCDIR)/$(RPCSVCSRCS)
71 $(POST_PROCESS_O)
72 nfs/tst.call3.exe: nfs/tst.call3.o nfs/$(RPCSVCOBJS)
73 $(LINK.c) -o $@ nfs/tst.call3.o nfs/$(RPCSVCOBJS) \
74 $(LDLIBS) -lnsl -lrpcsvc
75 $(POST_PROCESS) ; $(STRIP_STABS)

77 pid/tst.gcc.exe: pid/tst.gcc.c
78 $(GCC) -o pid/tst.gcc.exe pid/tst.gcc.c $(LDFLAGS)
79 $(POST_PROCESS) ; $(STRIP_STABS)

81 json/tst.usdt.o: json/usdt.h

83 json/usdt.h: json/usdt.d
84 $(DTRACE) -h -s json/usdt.d -o json/usdt.h

86 json/usdt.o: json/usdt.d json/tst.usdt.o
87 $(COMPILE.d) -o json/usdt.o -s json/usdt.d json/tst.usdt.o

89 json/tst.usdt.exe: json/tst.usdt.o json/usdt.o
90 $(LINK.c) -o json/tst.usdt.exe json/tst.usdt.o json/usdt.o $(LDLIBS)
91 $(POST_PROCESS) ; $(STRIP_STABS)

93 #
94 # Tests that use the next three programs rely on the binaries having
95 # valid CTF data.
96 #
97 uctf/tst.aouttype.exe: uctf/tst.aouttype.c
98 $(COMPILE.c) $(CTF_FLAGS) -o uctf/tst.aouttype.o uctf/tst.aouttype.c
99 $(CTFCONVERT) -i -L VERSION uctf/tst.aouttype.o
100 $(LINK.c) -o uctf/tst.aouttype.exe uctf/tst.aouttype.o $(LDLIBS)
101 $(CTFMERGE) -L VERSION -o $@ uctf/tst.aouttype.o
102 $(POST_PROCESS) ; $(STRIP_STABS)

104 uctf/tst.chasestrings.exe: uctf/tst.chasestrings.c
105 $(COMPILE.c) $(CTF_FLAGS) -o uctf/tst.chasestrings.o uctf/tst.chasestrin
106 $(CTFCONVERT) -i -L VERSION uctf/tst.chasestrings.o
107 $(LINK.c) -o uctf/tst.chasestrings.exe uctf/tst.chasestrings.o $(LDLIBS)
108 $(CTFMERGE) -L VERSION -o $@ uctf/tst.chasestrings.o
109 $(POST_PROCESS) ; $(STRIP_STABS)

111 uctf/tst.printtype.exe: uctf/tst.printtype.c
112 $(COMPILE.c) $(CTF_FLAGS) -o uctf/tst.printtype.o uctf/tst.printtype.c
113 $(CTFCONVERT) -i -L VERSION uctf/tst.printtype.o
114 $(LINK.c) -o uctf/tst.printtype.exe uctf/tst.printtype.o $(LDLIBS)
115 $(CTFMERGE) -L VERSION -o $@ uctf/tst.printtype.o
116 $(POST_PROCESS) ; $(STRIP_STABS)

118 #
119 # This program should never have any ctf data in it.
120 #
121 uctf/tst.libtype.exe:

new/usr/src/cmd/dtrace/test/tst/common/Makefile 3

122 $(LINK.c) -o uctf/tst.libtype.exe uctf/tst.libtype.c $(LDLIBS)
123 $(POST_PROCESS) ; $(STRIP_STABS)

125 #endif /* ! codereview */
126 usdt/tst.args.exe: usdt/tst.args.o usdt/args.o
127 $(LINK.c) -o usdt/tst.args.exe usdt/tst.args.o usdt/args.o $(LDLIBS)
128 $(POST_PROCESS) ; $(STRIP_STABS)

130 usdt/args.o: usdt/args.d usdt/tst.args.o
131 $(COMPILE.d) -o usdt/args.o -s usdt/args.d usdt/tst.args.o

133 usdt/tst.argmap.exe: usdt/tst.argmap.o usdt/argmap.o
134 $(LINK.c) -o usdt/tst.argmap.exe \
135 usdt/tst.argmap.o usdt/argmap.o $(LDLIBS)
136 $(POST_PROCESS) ; $(STRIP_STABS)

138 usdt/argmap.o: usdt/argmap.d usdt/tst.argmap.o
139 $(COMPILE.d) -o usdt/argmap.o -s usdt/argmap.d usdt/tst.argmap.o

141 usdt/tst.forker.exe: usdt/tst.forker.o usdt/forker.o
142 $(LINK.c) -o usdt/tst.forker.exe \
143 usdt/tst.forker.o usdt/forker.o $(LDLIBS)
144 $(POST_PROCESS) ; $(STRIP_STABS)

146 usdt/forker.o: usdt/forker.d usdt/tst.forker.o
147 $(COMPILE.d) -o usdt/forker.o -s usdt/forker.d usdt/tst.forker.o

149 usdt/tst.forker.o: usdt/forker.h

151 usdt/forker.h: usdt/forker.d
152 $(DTRACE) -h -s usdt/forker.d -o usdt/forker.h

154 usdt/tst.lazyprobe.exe: usdt/tst.lazyprobe.o usdt/lazyprobe.o
155 $(LINK.c) -o usdt/tst.lazyprobe.exe \
156 usdt/tst.lazyprobe.o usdt/lazyprobe.o $(LDLIBS)
157 $(POST_PROCESS) ; $(STRIP_STABS)

159 usdt/lazyprobe.o: usdt/lazyprobe.d usdt/tst.lazyprobe.o
160 $(COMPILE.d) -xlazyload -o usdt/lazyprobe.o \
161 -s usdt/lazyprobe.d usdt/tst.lazyprobe.o

163 usdt/tst.lazyprobe.o: usdt/lazyprobe.h

165 usdt/lazyprobe.h: usdt/lazyprobe.d
166 $(DTRACE) -h -s usdt/lazyprobe.d -o usdt/lazyprobe.h

168 SUBDIRS = java_api
169 include ../../Makefile.subdirs

new/usr/src/cmd/dtrace/test/tst/common/pid/tst.provregex1.ksh 1

**
 1662 Tue Jan 14 16:48:29 2014
new/usr/src/cmd/dtrace/test/tst/common/pid/tst.provregex1.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #!/bin/ksh -p
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #

23 #
24 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #

28 #
29 # This test verifies that specifying a glob in a pid provider name
30 # (e.g., p*d$target) works.
31 #

33 if [$# != 1]; then
34 echo expected one argument: ’<’dtrace-path’>’
35 exit 2
36 fi

38 dtrace=$1
39 DIR=${TMPDIR:-/tmp}/dtest.$$

41 mkdir $DIR
42 cd $DIR

44 cat > Makefile <<EOF
45 all: main

47 main: main.o
48 gcc -m32 -o main main.o
48 gcc -o main main.o

50 main.o: main.c
51 gcc -m32 -c main.c
51 gcc -c main.c
52 EOF

54 cat > main.c <<EOF

new/usr/src/cmd/dtrace/test/tst/common/pid/tst.provregex1.ksh 2

55 void
56 go(void)
57 {
58 }

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/pid/tst.provregex2.ksh 1

**
 2286 Tue Jan 14 16:48:30 2014
new/usr/src/cmd/dtrace/test/tst/common/pid/tst.provregex2.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #!/bin/ksh -p
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #

23 #
24 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #

28 #
29 # This test verifies that probes will be picked up after a dlopen(3C)
30 # when the pid provider is specified as a glob (e.g., p*d$target.)
31 #

33 if [$# != 1]; then
34 echo expected one argument: ’<’dtrace-path’>’
35 exit 2
36 fi

38 dtrace=$1
39 DIR=${TMPDIR:-/tmp}/dtest.$$

41 mkdir $DIR
42 cd $DIR

44 cat > Makefile <<EOF
45 all: main altlib.so

47 main: main.o
48 gcc -m32 -o main main.o
48 gcc -o main main.o

50 main.o: main.c
51 gcc -m32 -c main.c
51 gcc -c main.c

53 altlib.so: altlib.o
54 gcc -m32 -shared -o altlib.so altlib.o -lc

new/usr/src/cmd/dtrace/test/tst/common/pid/tst.provregex2.ksh 2

54 gcc -shared -o altlib.so altlib.o -lc

56 altlib.o: altlib.c
57 gcc -m32 -fPIC -c altlib.c
57 gcc -c altlib.c
58 EOF

60 cat > altlib.c <<EOF
61 void
62 go(void)
63 {
64 }

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/pid/tst.provregex3.ksh 1

**
 1932 Tue Jan 14 16:48:30 2014
new/usr/src/cmd/dtrace/test/tst/common/pid/tst.provregex3.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #!/bin/ksh -p
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #

23 #
24 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #

28 #
29 # This test verifies that a regex in the provider name will match
30 # USDT probes as well as pid probes (e.g., p*d$target matches both
31 # pid$target and pyramid$target.)
32 #

34 if [$# != 1]; then
35 echo expected one argument: ’<’dtrace-path’>’
36 exit 2
37 fi

39 dtrace=$1
40 DIR=${TMPDIR:-/tmp}/dtest.$$

42 mkdir $DIR
43 cd $DIR

45 cat > Makefile <<EOF
46 all: main

48 main: main.o prov.o
49 gcc -m32 -o main main.o prov.o
49 gcc -o main main.o prov.o

51 main.o: main.c prov.h
52 gcc -m32 -c main.c
52 gcc -c main.c

54 prov.h: prov.d

new/usr/src/cmd/dtrace/test/tst/common/pid/tst.provregex3.ksh 2

55 $dtrace -h -s prov.d

57 prov.o: prov.d main.o
58 $dtrace -G -32 -s prov.d main.o
59 EOF

61 cat > prov.d <<EOF
62 provider pyramid {
63 probe entry();
64 };

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/pid/tst.provregex4.ksh 1

**
 2780 Tue Jan 14 16:48:31 2014
new/usr/src/cmd/dtrace/test/tst/common/pid/tst.provregex4.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #!/bin/ksh -p
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #

23 #
24 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #

28 #
29 # This test verifies that USDT probes will be picked up after a dlopen(3C)
30 # when a regex in the provider name matches both USDT probes and pid probes
31 # (e.g., p*d$target matches both pid$target and pyramid$target.)
32 #

34 if [$# != 1]; then
35 echo expected one argument: ’<’dtrace-path’>’
36 exit 2
37 fi

39 dtrace=$1
40 DIR=${TMPDIR:-/tmp}/dtest.$$

42 mkdir $DIR
43 cd $DIR

45 cat > Makefile <<EOF
46 all: main altlib.so

48 main: main.o provmain.o
49 gcc -m32 -o main main.o provmain.o
49 gcc -o main main.o provmain.o

51 main.o: main.c prov.h
52 gcc -m32 -c main.c
52 gcc -c main.c

54 prov.h: prov.d

new/usr/src/cmd/dtrace/test/tst/common/pid/tst.provregex4.ksh 2

55 $dtrace -h -s prov.d

57 provmain.o: prov.d main.o
58 $dtrace -G -32 -o provmain.o -s prov.d main.o

60 altlib.so: altlib.o provalt.o
61 gcc -m32 -shared -o altlib.so altlib.o provalt.o -lc
61 gcc -shared -o altlib.so altlib.o provalt.o -lc

63 altlib.o: altlib.c prov.h
64 gcc -m32 -c altlib.c
64 gcc -c altlib.c

66 provalt.o: prov.d altlib.o
67 $dtrace -G -32 -o provalt.o -s prov.d altlib.o
68 EOF

70 cat > prov.d <<EOF
71 provider pyramid {
72 probe entry();
73 };

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/printa/tst.largeusersym.ksh 1

**
 2111 Tue Jan 14 16:48:31 2014
new/usr/src/cmd/dtrace/test/tst/common/printa/tst.largeusersym.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
51 EOF

53 gcc -m32 -o test test.c
53 gcc -o test test.c
54 if [$? -ne 0]; then
55 print -u2 "failed to compile test.c"
56 exit 1
57 fi

59 script()
60 {
61 $dtrace -c ./test -qs /dev/stdin <<EOF
62 profile:::profile-1001hz
63 /pid == \$target/
64 {
65 @[arg1] = count();
66 }

68 tick-1s
69 /n++ > 10/
70 {
71 printa("%A %@d\n", @);
72 exit(0);
73 }
74 EOF
75 }

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/uctf/err.invalidpid.d 1

**
 536 Tue Jan 14 16:48:31 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/err.invalidpid.d
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright (c) 2013 Joyent, Inc. All rights reserved.
14 */

16 #pragma D option quiet

18 BEGIN
19 {
20 trace((pidfoo‘int)0);
21 }
22 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/err.invalidpid2.d 1

**
 537 Tue Jan 14 16:48:32 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/err.invalidpid2.d
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright (c) 2013 Joyent, Inc. All rights reserved.
14 */

16 #pragma D option quiet

18 BEGIN
19 {
20 trace((pid8foo‘int)0);
21 }
22 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/err.invalidpid3.d 1

**
 534 Tue Jan 14 16:48:32 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/err.invalidpid3.d
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright (c) 2013 Joyent, Inc. All rights reserved.
14 */

16 #pragma D option quiet

18 BEGIN
19 {
20 trace((pid0‘int)0);
21 }
22 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/err.invalidtype.ksh 1

**
 841 Tue Jan 14 16:48:32 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/err.invalidtype.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #! /usr/bin/ksh
2 #
3 #
4 # This file and its contents are supplied under the terms of the
5 # Common Development and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terms of version
7 # 1.0 of the CDDL.
8 #
9 # A full copy of the text of the CDDL should have accompanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://www.illumos.org/license/CDDL.
12 #

14 #
15 # Copyright (c) 2013 Joyent, Inc. All rights reserved.
16 #

18 #
19 # While it’s hard to be completely certain that a type of the name we want
20 # doesn’t exist, we’re going to try to pick a name which is rather unique.
21 #

23 if [$# != 1]; then
24 echo expected one argument: ’<’dtrace-path’>’
25 exit 2
26 fi

28 dtrace=$1
29 t="season_8_mountain_of_madness_t"
30 pid=$$

32 rc=‘$dtrace -n "BEGIN{ trace(pid$pid‘$t)0); }"‘

34 exit $rc
35 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/err.invalidtype2.ksh 1

**
 903 Tue Jan 14 16:48:32 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/err.invalidtype2.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #! /usr/bin/ksh
2 #
3 #
4 # This file and its contents are supplied under the terms of the
5 # Common Development and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terms of version
7 # 1.0 of the CDDL.
8 #
9 # A full copy of the text of the CDDL should have accompanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://www.illumos.org/license/CDDL.
12 #

14 #
15 # Copyright (c) 2013 Joyent, Inc. All rights reserved.
16 #

18 #
19 # While it’s hard to be completely certain that a type of the name we want
20 # doesn’t exist, we’re going to try to pick a name which is rather
21 # unique. This time we’re also going to use the pid$target alias.
22 #

24 if [$# != 1]; then
25 echo expected one argument: ’<’dtrace-path’>’
26 exit 2
27 fi

29 dtrace=$1
30 t="season_8_mountain_of_madness_t"
31 pid=$$

33 rc=‘$dtrace -n "BEGIN{ trace(pid‘$t)0); }"‘ -p $pid

35 exit $rc
36 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/err.user64mode.ksh 1

**
 2049 Tue Jan 14 16:48:32 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/err.user64mode.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #! /usr/bin/ksh
2 #
3 #
4 # This file and its contents are supplied under the terms of the
5 # Common Development and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terms of version
7 # 1.0 of the CDDL.
8 #
9 # A full copy of the text of the CDDL should have accompanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://www.illumos.org/license/CDDL.
12 #

14 #
15 # Copyright (c) 2013 Joyent, Inc. All rights reserved.
16 #

18 #
19 # This test is purposefully using a 64-bit DTrace and thus 64-bit types
20 # when compared with a 32-bit process. This test uses the userland
21 # keyword and so the implicit copyin should access illegal memory and
22 # thus exit.
23 #

25 if [$# != 1]; then
26 echo expected one argument: ’<’dtrace-path’>’
27 exit 2
28 fi

30 dtrace=$1
31 t="zelda_info_t"
32 exe="tst.chasestrings.exe"

34 elfdump "./$exe" | grep -q ’.SUNW_ctf’
35 if [[$? -ne 0]]; then
36 echo "CTF does not exist in $exe, that’s a bug" >&2
37 exit 1
38 fi

40 ./$exe &
41 pid=$!

43 $dtrace -64 -qs /dev/stdin <<EOF
44 typedef struct info {
45 char *zi_gamename;
46 int zi_ndungeons;
47 char *zi_villain;
48 int zi_haszelda;
49 } info_t;

51 pid$pid::has_princess:entry
52 /next == 0/
53 {
54 this->t = (userland info_t *)arg0;
55 printf("game: %s, dungeon: %d, villain: %s, zelda: %d\n",
56 stringof(this->t->zi_gamename), this->t->zi_ndungeons,

new/usr/src/cmd/dtrace/test/tst/common/uctf/err.user64mode.ksh 2

57 stringof(this->t->zi_villain), this->t->zi_haszelda);
58 next = 1;
59 }

61 pid$pid::has_dungeons:entry
62 /next == 1/
63 {
64 this->t = (userland info_t *)arg0;
65 printf("game: %s, dungeon: %d, villain: %s, zelda: %d\n",
66 stringof(this->t->zi_gamename), this->t->zi_ndungeons,
67 stringof(this->t->zi_villain), this->t->zi_haszelda);
68 next = 2;
69 }

71 pid$pid::has_villain:entry
72 /next == 2/
73 {
74 this->t = (userland info_t *)arg0;
75 printf("game: %s, dungeon: %d, villain: %s, zelda: %d\n",
76 stringof(this->t->zi_gamename), this->t->zi_ndungeons,
77 stringof(this->t->zi_villain), this->t->zi_haszelda);
78 exit(0);
79 }

81 ERROR
82 {
83 exit(1);
84 }
85 EOF
86 rc=$?

88 kill -9 $pid

90 exit $rc
91 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.aouttype.c 1

**
 990 Tue Jan 14 16:48:33 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.aouttype.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright 2013 (c) Joyent, Inc. All rights reserved.
14 */

16 /*
17 * This test tries to make sure that we have CTF data for a type that only this
18 * binary would reasonably have. In this case, the
19 * season_7_lisa_the_vegetarian_t.
20 */
21 #include <unistd.h>

23 typedef struct season_7_lisa_the_vegetarian {
24 int fr_salad;
25 } season_7_lisa_the_vegetarian_t;

27 int
28 sleeper(season_7_lisa_the_vegetarian_t *lp)
29 {
30 for (;;) {
31 sleep(lp->fr_salad);
32 }
33 /*NOTREACHED*/
34 return (0);
35 }

37 int
38 main(void)
39 {
40 season_7_lisa_the_vegetarian_t l;
41 l.fr_salad = 100;

43 sleeper(&l);

45 return (0);
46 }
47 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.aouttype.ksh 1

**
 917 Tue Jan 14 16:48:33 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.aouttype.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #! /usr/bin/ksh
2 #
3 #
4 # This file and its contents are supplied under the terms of the
5 # Common Development and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terms of version
7 # 1.0 of the CDDL.
8 #
9 # A full copy of the text of the CDDL should have accompanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://www.illumos.org/license/CDDL.
12 #

14 #
15 # Copyright (c) 2013 Joyent, Inc. All rights reserved.
16 #

18 #
19 # Lookup a type that is inside a.out.
20 #

22 if [$# != 1]; then
23 echo expected one argument: ’<’dtrace-path’>’
24 exit 2
25 fi

27 dtrace=$1
28 t="season_7_lisa_the_vegetrian_t *"
29 exe="tst.aouttype.exe"

31 elfdump "./$exe" | grep -q ’.SUNW_ctf’
32 if [[$? -ne 0]]; then
33 echo "CTF does not exist in $exe, that’s a bug" >&2
34 exit 1
35 fi

37 ./$exe &
38 pid=$!

40 rc=‘$dtrace -n "BEGIN{ trace((pid$pid\‘$t)0); exit(0); }"‘

42 kill -9 $pid

44 exit $rc
45 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.chasestrings.c 1

**
 1600 Tue Jan 14 16:48:33 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.chasestrings.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright 2013 (c) Joyent, Inc. All rights reserved.
14 */

16 /*
17 * This test takes data from the current binary which is basically running in a
18 * loop between two functions and our goal is to have two unique types that they
19 * contain which we can print.
20 */

22 #include <unistd.h>

24 typedef struct zelda_info {
25 char *zi_gamename;
26 int zi_ndungeons;
27 char *zi_villain;
28 int zi_haszelda;
29 } zelda_info_t;

31 static int
32 has_princess(zelda_info_t *z)
33 {
34 return (z->zi_haszelda);
35 }

37 static int
38 has_dungeons(zelda_info_t *z)
39 {
40 return (z->zi_ndungeons != 0);
41 }

43 static const char *
44 has_villain(zelda_info_t *z)
45 {
46 return (z->zi_villain);
47 }

49 int
50 main(void)
51 {
52 zelda_info_t oot;
53 zelda_info_t la;
54 zelda_info_t lttp;

56 oot.zi_gamename = "Ocarina of Time";

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.chasestrings.c 2

57 oot.zi_ndungeons = 10;
58 oot.zi_villain = "Ganondorf";
59 oot.zi_haszelda = 1;

61 la.zi_gamename = "Link’s Awakening";
62 la.zi_ndungeons = 9;
63 la.zi_villain = "Nightmare";
64 la.zi_haszelda = 0;

66 lttp.zi_gamename = "A Link to the Past";
67 lttp.zi_ndungeons = 12;
68 lttp.zi_villain = "Ganon";
69 lttp.zi_haszelda = 1;

71 for (;;) {
72 (void) has_princess(&oot);
73 (void) has_dungeons(&la);
74 (void) has_villain(<tp);
75 sleep(1);
76 }

78 return (0);
79 }
80 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.chasestrings.ksh 1

**
 1946 Tue Jan 14 16:48:34 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.chasestrings.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #! /usr/bin/ksh
2 #
3 #
4 # This file and its contents are supplied under the terms of the
5 # Common Development and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terms of version
7 # 1.0 of the CDDL.
8 #
9 # A full copy of the text of the CDDL should have accompanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://www.illumos.org/license/CDDL.
12 #

14 #
15 # Copyright (c) 2013 Joyent, Inc. All rights reserved.
16 #

18 #
19 # This test is checking that we can read members and that pointers inside
20 # members point to valid data that is intelligible, eg. strings.
21 #

23 if [$# != 1]; then
24 echo expected one argument: ’<’dtrace-path’>’
25 exit 2
26 fi

28 dtrace=$1
29 t="zelda_info_t"
30 exe="tst.chasestrings.exe"

32 elfdump "./$exe" | grep -q ’.SUNW_ctf’
33 if [[$? -ne 0]]; then
34 echo "CTF does not exist in $exe, that’s a bug" >&2
35 exit 1
36 fi

38 ./$exe &
39 pid=$!

41 $dtrace -qs /dev/stdin <<EOF
42 pid$pid::has_princess:entry
43 /next == 0/
44 {
45 this->t = (pid$pid\‘$t *)(copyin(arg0, sizeof (pid$pid\‘$t)));
46 printf("game: %s, dungeon: %d, villain: %s, zelda: %d\n",
47 copyinstr((uintptr_t)this->t->zi_gamename), this->t->zi_ndungeons,
48 copyinstr((uintptr_t)this->t->zi_villain), this->t->zi_haszelda);
49 next = 1;
50 }

52 pid$pid::has_dungeons:entry
53 /next == 1/
54 {
55 this->t = (pid$pid\‘$t *)(copyin(arg0, sizeof (pid$pid\‘$t)));
56 printf("game: %s, dungeon: %d, villain: %s, zelda: %d\n",

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.chasestrings.ksh 2

57 copyinstr((uintptr_t)this->t->zi_gamename), this->t->zi_ndungeons,
58 copyinstr((uintptr_t)this->t->zi_villain), this->t->zi_haszelda);
59 next = 2;
60 }

62 pid$pid::has_villain:entry
63 /next == 2/
64 {
65 this->t = (pid$pid\‘$t *)(copyin(arg0, sizeof (pid$pid\‘$t)));
66 printf("game: %s, dungeon: %d, villain: %s, zelda: %d\n",
67 copyinstr((uintptr_t)this->t->zi_gamename), this->t->zi_ndungeons,
68 copyinstr((uintptr_t)this->t->zi_villain), this->t->zi_haszelda);
69 exit(0);
70 }
71 EOF
72 rc=$?

74 kill -9 $pid

76 exit $rc
77 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.chasestrings.ksh.out 1

**
 195 Tue Jan 14 16:48:34 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.chasestrings.ksh.out
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 game: Ocarina of Time, dungeon: 10, villain: Ganondorf, zelda: 1
2 game: Link’s Awakening, dungeon: 9, villain: Nightmare, zelda: 0
3 game: A Link to the Past, dungeon: 12, villain: Ganon, zelda: 1

5 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.libtype.c 1

**
 648 Tue Jan 14 16:48:34 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.libtype.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright 2013 (c) Joyent, Inc. All rights reserved.
14 */

16 /*
17 * We’re linked against libc which has types, though we do not.
18 */
19 #include <unistd.h>

21 int
22 main(void)
23 {
24 for (;;) {
25 sleep(1000);
26 }
27 /*NOTREACHED*/
28 return (0);
29 }
30 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.libtype.ksh 1

**
 986 Tue Jan 14 16:48:34 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.libtype.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #! /usr/bin/ksh
2 #
3 #
4 # This file and its contents are supplied under the terms of the
5 # Common Development and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terms of version
7 # 1.0 of the CDDL.
8 #
9 # A full copy of the text of the CDDL should have accompanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://www.illumos.org/license/CDDL.
12 #

14 #
15 # Copyright (c) 2013 Joyent, Inc. All rights reserved.
16 #

18 #
19 # Here we want to make sure that the program in question does not have ctf data
20 # in its a.out; however, we can get types out of a linked libc.
21 #

23 if [$# != 1]; then
24 echo expected one argument: ’<’dtrace-path’>’
25 exit 2
26 fi

28 dtrace=$1
29 t="int"
30 exe="tst.libtype.exe"

32 elfdump "./$exe" | grep -q ’.SUNW_ctf’
33 if [[$? -eq 0]]; then
34 echo "CTF exists in $exe, that’s a bug" >&2
35 exit 1
36 fi

38 ./$exe &
39 pid=$!

41 rc=‘$dtrace -n "BEGIN{ trace((pid$pid\‘$t)0); exit(0); }"‘

43 kill -9 $pid

45 exit $rc
46 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.linkmap.ksh 1

**
 848 Tue Jan 14 16:48:34 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.linkmap.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #! /usr/bin/ksh
2 #
3 #
4 # This file and its contents are supplied under the terms of the
5 # Common Development and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terms of version
7 # 1.0 of the CDDL.
8 #
9 # A full copy of the text of the CDDL should have accompanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://www.illumos.org/license/CDDL.
12 #

14 #
15 # Copyright (c) 2013 Joyent, Inc. All rights reserved.
16 #

18 #
19 # We should be able to see both strstr from libc and from ld on an
20 # alternate linkmap.
21 #

23 if [$# != 1]; then
24 echo expected one argument: ’<’dtrace-path’>’
25 exit 2
26 fi

28 dtrace=$1

30 $dtrace -q -p $$ -s /dev/stdin <<EOF
31 pid\$target:LM1\‘ld.so.1:strstr:entry,
32 pid\$target:libc.so.1:strstr:entry
33 {
34 exit (0);
35 }

37 BEGIN
38 {
39 exit (0);
40 }
41 EOF
42 rc=$?

44 exit $rc
45 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.pidprint.ksh 1

**
 1192 Tue Jan 14 16:48:35 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.pidprint.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #! /usr/bin/ksh
2 #
3 #
4 # This file and its contents are supplied under the terms of the
5 # Common Development and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terms of version
7 # 1.0 of the CDDL.
8 #
9 # A full copy of the text of the CDDL should have accompanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://www.illumos.org/license/CDDL.
12 #

14 #
15 # Copyright (c) 2013 Joyent, Inc. All rights reserved.
16 #

18 #
19 # Use print() on userland CTF types and verify we get the data we expect.
20 #

22 if [$# != 1]; then
23 echo expected one argument: ’<’dtrace-path’>’
24 exit 2
25 fi

27 dtrace=$1
28 t="final_fantasy_info_t"
29 exe="tst.printtype.exe"

31 elfdump "./$exe" | grep -q ’.SUNW_ctf’
32 if [[$? -ne 0]]; then
33 echo "CTF does not exist in $exe, that’s a bug" >&2
34 exit 1
35 fi

37 ./$exe &
38 pid=$!

40 $dtrace -qs /dev/stdin <<EOF
41 pid$pid::ff_getgameid:entry
42 /next == 0/
43 {
44 print(*args[0]);
45 printf("\n");
46 next = 1;
47 }

49 pid$pid::ff_getpartysize:entry
50 /next == 1/
51 {
52 print(*args[0]);
53 printf("\n");
54 next = 2;
55 }

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.pidprint.ksh 2

57 pid$pid::ff_getsummons:entry
58 /next == 2/
59 {
60 print(*args[0]);
61 printf("\n");
62 exit(0);
63 }
64 EOF
65 rc=$?

67 kill -9 $pid

69 exit $rc
70 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.pidprinttarg.ksh 1

**
 1277 Tue Jan 14 16:48:35 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.pidprinttarg.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #! /usr/bin/ksh
2 #
3 #
4 # This file and its contents are supplied under the terms of the
5 # Common Development and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terms of version
7 # 1.0 of the CDDL.
8 #
9 # A full copy of the text of the CDDL should have accompanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://www.illumos.org/license/CDDL.
12 #

14 #
15 # Copyright (c) 2013 Joyent, Inc. All rights reserved.
16 #

18 #
19 # Use print() on userland CTF types and verify we get the data we
20 # expect. This time, use $target to make sure that path works correctly.
21 #

23 if [$# != 1]; then
24 echo expected one argument: ’<’dtrace-path’>’
25 exit 2
26 fi

28 dtrace=$1
29 t="final_fantasy_info_t"
30 exe="tst.printtype.exe"

32 elfdump "./$exe" | grep -q ’.SUNW_ctf’
33 if [[$? -ne 0]]; then
34 echo "CTF does not exist in $exe, that’s a bug" >&2
35 exit 1
36 fi

38 ./$exe &
39 pid=$!

41 $dtrace -p $pid -qs /dev/stdin <<EOF
42 pid\$target::ff_getgameid:entry
43 /next == 0/
44 {
45 print(*args[0]);
46 printf("\n");
47 next = 1;
48 }

50 pid\$target::ff_getpartysize:entry
51 /next == 1/
52 {
53 print(*args[0]);
54 printf("\n");
55 next = 2;
56 }

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.pidprinttarg.ksh 2

58 pid\$target::ff_getsummons:entry
59 /next == 2/
60 {
61 print(*args[0]);
62 printf("\n");
63 exit(0);
64 }
65 EOF
66 rc=$?

68 kill -9 $pid

70 exit $rc
71 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.printtype.c 1

**
 1415 Tue Jan 14 16:48:35 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.printtype.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright 2013 (c) Joyent, Inc. All rights reserved.
14 */

16 /*
17 * The point of this is to use print() on various functions to make sure that we
18 * can print basic structures. Note that we purposefully are making sure that
19 * there are no pointers here.
20 */
21 #include <unistd.h>

23 typedef struct final_fantasy_info {
24 int ff_gameid;
25 int ff_partysize;
26 int ff_hassummons;
27 } final_fantasy_info_t;

29 static int
30 ff_getgameid(final_fantasy_info_t *f)
31 {
32 return (0);
33 }

35 static int
36 ff_getpartysize(final_fantasy_info_t *f)
37 {
38 return (0);
39 }

41 static int
42 ff_getsummons(final_fantasy_info_t *f)
43 {
44 return (0);
45 }

47 int
48 main(void)
49 {
50 final_fantasy_info_t ffiii, ffx, ffi;

52 ffi.ff_gameid = 1;
53 ffi.ff_partysize = 4;
54 ffi.ff_hassummons = 0;

56 ffiii.ff_gameid = 6;

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.printtype.c 2

57 ffiii.ff_partysize = 4;
58 ffiii.ff_hassummons = 1;

60 ffx.ff_gameid = 10;
61 ffx.ff_partysize = 3;
62 ffx.ff_hassummons = 1;

64 for (;;) {
65 ff_getgameid(&ffi);
66 ff_getpartysize(&ffx);
67 ff_getsummons(&ffiii);
68 sleep(1);
69 }
70 /*NOTREACHED*/
71 return (0);
72 }
73 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.printtype.ksh 1

**
 1324 Tue Jan 14 16:48:35 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.printtype.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #! /usr/bin/ksh
2 #
3 #
4 # This file and its contents are supplied under the terms of the
5 # Common Development and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terms of version
7 # 1.0 of the CDDL.
8 #
9 # A full copy of the text of the CDDL should have accompanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://www.illumos.org/license/CDDL.
12 #

14 #
15 # Copyright (c) 2013 Joyent, Inc. All rights reserved.
16 #

18 #
19 # Use print() on userland CTF types and verify we get the data we expect.
20 #

22 if [$# != 1]; then
23 echo expected one argument: ’<’dtrace-path’>’
24 exit 2
25 fi

27 dtrace=$1
28 t="final_fantasy_info_t"
29 exe="tst.printtype.exe"

31 elfdump "./$exe" | grep -q ’.SUNW_ctf’
32 if [[$? -ne 0]]; then
33 echo "CTF does not exist in $exe, that’s a bug" >&2
34 exit 1
35 fi

37 ./$exe &
38 pid=$!

40 $dtrace -qs /dev/stdin <<EOF
41 pid$pid::ff_getgameid:entry
42 /next == 0/
43 {
44 print(*(pid$pid\‘$t *)(copyin(arg0, sizeof (pid$pid\‘$t))));
45 printf("\n");
46 next = 1;
47 }

49 pid$pid::ff_getpartysize:entry
50 /next == 1/
51 {
52 print(*(pid$pid\‘$t *)(copyin(arg0, sizeof (pid$pid\‘$t))));
53 printf("\n");
54 next = 2;
55 }

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.printtype.ksh 2

57 pid$pid::ff_getsummons:entry
58 /next == 2/
59 {
60 print(*(pid$pid\‘$t *)(copyin(arg0, sizeof (pid$pid\‘$t))));
61 printf("\n");
62 exit(0);
63 }
64 EOF
65 rc=$?

67 kill -9 $pid

69 exit $rc
70 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.printtype.ksh.out 1

**
 311 Tue Jan 14 16:48:36 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.printtype.ksh.out
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 final_fantasy_info_t {
2 int ff_gameid = 0x1
3 int ff_partysize = 0x4
4 int ff_hassummons = 0
5 }
6 final_fantasy_info_t {
7 int ff_gameid = 0xa
8 int ff_partysize = 0x3
9 int ff_hassummons = 0x1
10 }
11 final_fantasy_info_t {
12 int ff_gameid = 0x6
13 int ff_partysize = 0x4
14 int ff_hassummons = 0x1
15 }

17 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.printtypetarg.ksh 1

**
 1354 Tue Jan 14 16:48:36 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.printtypetarg.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #! /usr/bin/ksh
2 #
3 #
4 # This file and its contents are supplied under the terms of the
5 # Common Development and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terms of version
7 # 1.0 of the CDDL.
8 #
9 # A full copy of the text of the CDDL should have accompanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://www.illumos.org/license/CDDL.
12 #

14 #
15 # Copyright (c) 2013 Joyent, Inc. All rights reserved.
16 #

18 #
19 # Use print() on userland CTF types and verify we get the data we
20 # expect. Use the pid‘ alias for $target.
21 #

23 if [$# != 1]; then
24 echo expected one argument: ’<’dtrace-path’>’
25 exit 2
26 fi

28 dtrace=$1
29 t="final_fantasy_info_t"
30 exe="tst.printtype.exe"

32 elfdump "./$exe" | grep -q ’.SUNW_ctf’
33 if [[$? -ne 0]]; then
34 echo "CTF does not exist in $exe, that’s a bug" >&2
35 exit 1
36 fi

38 ./$exe &
39 pid=$!

41 $dtrace -p $pid -qs /dev/stdin <<EOF
42 pid\$target::ff_getgameid:entry
43 /next == 0/
44 {
45 print(*(pid\‘$t *)(copyin(arg0, sizeof (pid\‘$t))));
46 printf("\n");
47 next = 1;
48 }

50 pid\$target::ff_getpartysize:entry
51 /next == 1/
52 {
53 print(*(pid\‘$t *)(copyin(arg0, sizeof (pid\‘$t))));
54 printf("\n");
55 next = 2;
56 }

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.printtypetarg.ksh 2

58 pid\$target::ff_getsummons:entry
59 /next == 2/
60 {
61 print(*(pid\‘$t *)(copyin(arg0, sizeof (pid\‘$t))));
62 printf("\n");
63 exit(0);
64 }
65 EOF
66 rc=$?

68 kill -9 $pid

70 exit $rc
71 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.userlandkey.ksh 1

**
 1882 Tue Jan 14 16:48:36 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.userlandkey.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #! /usr/bin/ksh
2 #
3 #
4 # This file and its contents are supplied under the terms of the
5 # Common Development and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terms of version
7 # 1.0 of the CDDL.
8 #
9 # A full copy of the text of the CDDL should have accompanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://www.illumos.org/license/CDDL.
12 #

14 #
15 # Copyright (c) 2013 Joyent, Inc. All rights reserved.
16 #

18 #
19 # Simple test that if we manually use the userland keyword that it
20 # works.
21 #

23 if [$# != 1]; then
24 echo expected one argument: ’<’dtrace-path’>’
25 exit 2
26 fi

28 dtrace=$1
29 t="zelda_info_t"
30 exe="tst.chasestrings.exe"

32 elfdump "./$exe" | grep -q ’.SUNW_ctf’
33 if [[$? -ne 0]]; then
34 echo "CTF does not exist in $exe, that’s a bug" >&2
35 exit 1
36 fi

38 ./$exe &
39 pid=$!

41 $dtrace -32 -qs /dev/stdin <<EOF
42 typedef struct info {
43 char *zi_gamename;
44 int zi_ndungeons;
45 char *zi_villain;
46 int zi_haszelda;
47 } info_t;

49 pid$pid::has_princess:entry
50 /next == 0/
51 {
52 this->t = (userland info_t *)arg0;
53 printf("game: %s, dungeon: %d, villain: %s, zelda: %d\n",
54 stringof(this->t->zi_gamename), this->t->zi_ndungeons,
55 stringof(this->t->zi_villain), this->t->zi_haszelda);
56 next = 1;

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.userlandkey.ksh 2

57 }

59 pid$pid::has_dungeons:entry
60 /next == 1/
61 {
62 this->t = (userland info_t *)arg0;
63 printf("game: %s, dungeon: %d, villain: %s, zelda: %d\n",
64 stringof(this->t->zi_gamename), this->t->zi_ndungeons,
65 stringof(this->t->zi_villain), this->t->zi_haszelda);
66 next = 2;
67 }

69 pid$pid::has_villain:entry
70 /next == 2/
71 {
72 this->t = (userland info_t *)arg0;
73 printf("game: %s, dungeon: %d, villain: %s, zelda: %d\n",
74 stringof(this->t->zi_gamename), this->t->zi_ndungeons,
75 stringof(this->t->zi_villain), this->t->zi_haszelda);
76 exit(0);
77 }
78 EOF
79 rc=$?

81 kill -9 $pid

83 exit $rc
84 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.userlandkey.ksh.out 1

**
 195 Tue Jan 14 16:48:36 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.userlandkey.ksh.out
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 game: Ocarina of Time, dungeon: 10, villain: Ganondorf, zelda: 1
2 game: Link’s Awakening, dungeon: 9, villain: Nightmare, zelda: 0
3 game: A Link to the Past, dungeon: 12, villain: Ganon, zelda: 1

5 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.userstrings.ksh 1

**
 1665 Tue Jan 14 16:48:36 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.userstrings.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #! /usr/bin/ksh
2 #
3 #
4 # This file and its contents are supplied under the terms of the
5 # Common Development and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terms of version
7 # 1.0 of the CDDL.
8 #
9 # A full copy of the text of the CDDL should have accompanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://www.illumos.org/license/CDDL.
12 #

14 #
15 # Copyright (c) 2013 Joyent, Inc. All rights reserved.
16 #

18 #
19 # This test is checking that we can read members and that pointers inside
20 # members point to valid data that is intelligible, eg. strings.
21 #

23 if [$# != 1]; then
24 echo expected one argument: ’<’dtrace-path’>’
25 exit 2
26 fi

28 dtrace=$1
29 exe="tst.chasestrings.exe"

31 elfdump "./$exe" | grep -q ’.SUNW_ctf’
32 if [[$? -ne 0]]; then
33 echo "CTF does not exist in $exe, that’s a bug" >&2
34 exit 1
35 fi

37 ./$exe &
38 pid=$!

40 $dtrace -qs /dev/stdin <<EOF
41 pid$pid::has_princess:entry
42 /next == 0/
43 {
44 printf("game: %s, dungeon: %d, villain: %s, zelda: %d\n",
45 stringof(args[0]->zi_gamename), args[0]->zi_ndungeons,
46 stringof(args[0]->zi_villain), args[0]->zi_haszelda);
47 next = 1;
48 }

50 pid$pid::has_dungeons:entry
51 /next == 1/
52 {
53 printf("game: %s, dungeon: %d, villain: %s, zelda: %d\n",
54 stringof(args[0]->zi_gamename), args[0]->zi_ndungeons,
55 stringof(args[0]->zi_villain), args[0]->zi_haszelda);
56 next = 2;

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.userstrings.ksh 2

57 }

59 pid$pid::has_villain:entry
60 /next == 2/
61 {
62 printf("game: %s, dungeon: %d, villain: %s, zelda: %d\n",
63 stringof(args[0]->zi_gamename), args[0]->zi_ndungeons,
64 stringof(args[0]->zi_villain), args[0]->zi_haszelda);
65 exit(0);
66 }
67 EOF
68 rc=$?

70 kill -9 $pid

72 exit $rc
73 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.userstrings.ksh.out 1

**
 195 Tue Jan 14 16:48:37 2014
new/usr/src/cmd/dtrace/test/tst/common/uctf/tst.userstrings.ksh.out
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 game: Ocarina of Time, dungeon: 10, villain: Ganondorf, zelda: 1
2 game: Link’s Awakening, dungeon: 9, villain: Nightmare, zelda: 0
3 game: A Link to the Past, dungeon: 12, villain: Ganon, zelda: 1

5 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.corruptenv.ksh 1

**
 2119 Tue Jan 14 16:48:37 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.corruptenv.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #!/usr/bin/ksh
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #

23 #
24 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #

28 #
29 # This test verifies that a program that corrupts its own environment
30 # without inducing a crash does not crash solely due to drti.o’s use of
31 # getenv(3C).
32 #

34 PATH=/usr/bin:/usr/sbin:$PATH

36 if (($# != 1)); then
37 print -u2 ’expected one argument: <dtrace-path>’
38 exit 2
39 fi

41 #
42 # jdtrace does not implement the -h option that is required to generate
43 # C header files.
44 #
45 if [["$1" == */jdtrace]]; then
46 exit 0
47 fi

49 dtrace="$1"
50 startdir="$PWD"
51 dir=$(mktemp -td drtiXXXXXX)
52 if (($? != 0)); then
53 print -u2 ’Could not create safe temporary directory’
54 exit 2
55 fi

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.corruptenv.ksh 2

57 cd "$dir"

59 cat > Makefile <<EOF
60 all: main

62 main: main.o prov.o
63 gcc -m32 -o main main.o prov.o
63 gcc -o main main.o prov.o

65 main.o: main.c prov.h
66 gcc -m32 -c main.c
66 gcc -c main.c

68 prov.h: prov.d
69 $dtrace -h -s prov.d

71 prov.o: prov.d main.o
72 $dtrace -G -32 -s prov.d main.o
73 EOF

75 cat > prov.d <<EOF
76 provider tester {
77 probe entry();
78 };

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.dlclose1.ksh 1

**
 2697 Tue Jan 14 16:48:37 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.dlclose1.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #!/bin/ksh -p
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #

23 #
24 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #

28 #
29 # This test verifies that USDT providers are removed when its associated
30 # load object is closed via dlclose(3dl).
31 #

33 if [$# != 1]; then
34 echo expected one argument: ’<’dtrace-path’>’
35 exit 2
36 fi

38 dtrace=$1
39 DIR=/var/tmp/dtest.$$

41 mkdir $DIR
42 cd $DIR

44 cat > Makefile <<EOF
45 all: main livelib.so deadlib.so

47 main: main.o prov.o
48 gcc -m32 -o main main.o
48 gcc -o main main.o

50 main.o: main.c
51 gcc -m32 -c main.c
51 gcc -c main.c

54 livelib.so: livelib.o prov.o

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.dlclose1.ksh 2

55 gcc -m32 -shared -o livelib.so livelib.o prov.o -lc
55 gcc -shared -o livelib.so livelib.o prov.o -lc

57 livelib.o: livelib.c prov.h
58 gcc -m32 -fPIC -c livelib.c
58 gcc -c livelib.c

60 prov.o: livelib.o prov.d
61 $dtrace -G -s prov.d livelib.o

63 prov.h: prov.d
64 $dtrace -h -s prov.d

67 deadlib.so: deadlib.o
68 gcc -m32 -shared -o deadlib.so deadlib.o -lc
68 gcc -shared -o deadlib.so deadlib.o -lc

70 deadlib.o: deadlib.c
71 gcc -m32 -fPIC -c deadlib.c
71 gcc -c deadlib.c

73 clean:
74 rm -f main.o livelib.o prov.o prov.h deadlib.o

76 clobber: clean
77 rm -f main livelib.so deadlib.so
78 EOF

80 cat > prov.d <<EOF
81 provider test_prov {
82 probe go();
83 };

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.dlclose2.ksh 1

**
 2887 Tue Jan 14 16:48:38 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.dlclose2.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #!/bin/ksh -p
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #

23 #
24 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #

28 if [$# != 1]; then
29 echo expected one argument: ’<’dtrace-path’>’
30 exit 2
31 fi

33 dtrace=$1
34 DIR=/var/tmp/dtest.$$

36 mkdir $DIR
37 cd $DIR

39 cat > Makefile <<EOF
40 all: main livelib.so deadlib.so

42 main: main.o prov.o
43 gcc -m32 -o main main.o
43 gcc -o main main.o

45 main.o: main.c
46 gcc -m32 -c main.c
46 gcc -c main.c

49 livelib.so: livelib.o prov.o
50 gcc -m32 -shared -o livelib.so livelib.o prov.o -lc
50 gcc -shared -o livelib.so livelib.o prov.o -lc

52 livelib.o: livelib.c prov.h
53 gcc -m32 -fPIC -c livelib.c

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.dlclose2.ksh 2

53 gcc -c livelib.c

55 prov.o: livelib.o prov.d
56 $dtrace -G -s prov.d livelib.o

58 prov.h: prov.d
59 $dtrace -h -s prov.d

62 deadlib.so: deadlib.o
63 gcc -m32 -shared -o deadlib.so deadlib.o -lc
63 gcc -shared -o deadlib.so deadlib.o -lc

65 deadlib.o: deadlib.c
66 gcc -m32 -fPIC -c deadlib.c
66 gcc -c deadlib.c

68 clean:
69 rm -f main.o livelib.o prov.o prov.h deadlib.o

71 clobber: clean
72 rm -f main livelib.so deadlib.so
73 EOF

75 cat > prov.d <<EOF
76 provider test_prov {
77 probe go();
78 };

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.dlclose3.ksh 1

**
 2752 Tue Jan 14 16:48:38 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.dlclose3.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #!/bin/ksh -p
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #

23 #
24 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #

28 #
29 # This test verifies that performing a dlclose(3dl) on a library doesn’t
30 # cause existing pid provider probes to become invalid.
31 #

33 if [$# != 1]; then
34 echo expected one argument: ’<’dtrace-path’>’
35 exit 2
36 fi

38 dtrace=$1
39 DIR=/var/tmp/dtest.$$

41 mkdir $DIR
42 cd $DIR

44 cat > Makefile <<EOF
45 all: main livelib.so deadlib.so

47 main: main.o prov.o
48 gcc -m32 -o main main.o
48 gcc -o main main.o

50 main.o: main.c
51 gcc -m32 -c main.c
51 gcc -c main.c

54 livelib.so: livelib.o prov.o

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.dlclose3.ksh 2

55 gcc -m32 -shared -o livelib.so livelib.o prov.o -lc
55 gcc -shared -o livelib.so livelib.o prov.o -lc

57 livelib.o: livelib.c prov.h
58 gcc -m32 -fPIC -c livelib.c
58 gcc -c livelib.c

60 prov.o: livelib.o prov.d
61 $dtrace -G -s prov.d livelib.o

63 prov.h: prov.d
64 $dtrace -h -s prov.d

67 deadlib.so: deadlib.o
68 gcc -m32 -shared -o deadlib.so deadlib.o -lc
68 gcc -shared -o deadlib.so deadlib.o -lc

70 deadlib.o: deadlib.c
71 gcc -m32 -fPIC -c deadlib.c
71 gcc -c deadlib.c

73 clean:
74 rm -f main.o livelib.o prov.o prov.h deadlib.o

76 clobber: clean
77 rm -f main livelib.so deadlib.so
78 EOF

80 cat > prov.d <<EOF
81 provider test_prov {
82 probe go();
83 };

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.eliminate.ksh 1

**
 2066 Tue Jan 14 16:48:39 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.eliminate.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
72 EOF

74 gcc -m32 -c test.c
74 gcc -c test.c
75 if [$? -ne 0]; then
76 print -u2 "failed to compile test.c"
77 exit 1
78 fi
79 $dtrace -G -32 -s prov.d test.o
80 if [$? -ne 0]; then
81 print -u2 "failed to create DOF"
82 exit 1
83 fi
84 gcc -m32 -o test test.o prov.o
84 gcc -o test test.o prov.o
85 if [$? -ne 0]; then
86 print -u2 "failed to link final executable"
87 exit 1
88 fi

90 nm test.o | grep \$dtrace > /dev/null
91 if [$? -ne 0]; then
92 print -u2 "no temporary symbols in the object file"
93 exit 1
94 fi

96 nm test | grep \$dtrace > /dev/null
97 if [$? -eq 0]; then
98 print -u2 "failed to eliminate temporary symbols"
99 exit 1
100 fi

102 cd /
103 /usr/bin/rm -rf $DIR

105 exit 0

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.enabled.ksh 1

**
 1848 Tue Jan 14 16:48:39 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.enabled.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
61 EOF

63 gcc -m32 -c test.c
63 gcc -c test.c
64 if [$? -ne 0]; then
65 print -u2 "failed to compile test.c"
66 exit 1
67 fi
68 $dtrace -G -32 -s prov.d test.o
69 if [$? -ne 0]; then
70 print -u2 "failed to create DOF"
71 exit 1
72 fi
73 gcc -m32 -o test test.o prov.o
73 gcc -o test test.o prov.o
74 if [$? -ne 0]; then
75 print -u2 "failed to link final executable"
76 exit 1
77 fi

79 script()
80 {
81 $dtrace -c ./test -qs /dev/stdin <<EOF
82 test_prov\$target:::
83 {
84 printf("%s:%s:%s\n", probemod, probefunc, probename);
85 }
86 EOF
87 }

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.enabled2.ksh 1

**
 2133 Tue Jan 14 16:48:40 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.enabled2.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
77 EOF

79 gcc -m32 -c test.c
79 gcc -c test.c
80 if [$? -ne 0]; then
81 print -u2 "failed to compile test.c"
82 exit 1
83 fi
84 $dtrace -G -32 -s prov.d test.o
85 if [$? -ne 0]; then
86 print -u2 "failed to create DOF"
87 exit 1
88 fi

90 gcc -m32 -o test test.o prov.o
89 gcc -o test test.o prov.o
91 if [$? -ne 0]; then
92 print -u2 "failed to link final executable"
93 exit 1
94 fi

96 script()
97 {
98 ./test

100 $dtrace -c ./test -qs /dev/stdin <<EOF
101 test_prov\$target:::
102 {
103 }
104 EOF
105 }

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.entryreturn.ksh 1

**
 2314 Tue Jan 14 16:48:40 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.entryreturn.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
70 EOF

72 gcc -m32 -c test.c
72 gcc -c test.c
73 if [$? -ne 0]; then
74 print -u2 "failed to compile test.c"
75 exit 1
76 fi
77 $dtrace -G -32 -s prov.d test.o
78 if [$? -ne 0]; then
79 print -u2 "failed to create DOF"
80 exit 1
81 fi
82 gcc -m32 -o test test.o prov.o
82 gcc -o test test.o prov.o
83 if [$? -ne 0]; then
84 print -u2 "failed to link final executable"
85 exit 1
86 fi

88 script()
89 {
90 $dtrace -wqZFs /dev/stdin <<EOF
91 BEGIN
92 {
93 system("$DIR/test");
94 printf("\n");
95 }

97 test_prov*:::done
98 /progenyof(\$pid)/
99 {
100 exit(0);
101 }

103 test_prov*:::
104 /progenyof(\$pid)/
105 {
106 printf("\n");
107 }
108 EOF
109 }

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.fork.ksh 1

**
 1970 Tue Jan 14 16:48:41 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.fork.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
71 EOF

73 gcc -m32 -c test.c
73 gcc -c test.c
74 if [$? -ne 0]; then
75 print -u2 "failed to compile test.c"
76 exit 1
77 fi
78 $dtrace -G -32 -s prov.d test.o
79 if [$? -ne 0]; then
80 print -u2 "failed to create DOF"
81 exit 1
82 fi
83 gcc -m32 -o test test.o prov.o
83 gcc -o test test.o prov.o
84 if [$? -ne 0]; then
85 print -u2 "failed to link final executable"
86 exit 1
87 fi

89 script() {
90 $dtrace -c ./test -Zqs /dev/stdin <<EOF
91 test_prov*:::
92 {
93 printf("%s:%s:%s\n", probemod, probefunc, probename);
94 }
95 EOF
96 }

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.header.ksh 1

**
 1786 Tue Jan 14 16:48:41 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.header.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
65 EOF

67 gcc -m32 -c test.c
67 gcc -c test.c
68 if [$? -ne 0]; then
69 print -u2 "failed to compile test.c"
70 exit 1
71 fi
72 $dtrace -G -32 -s prov.d test.o
73 if [$? -ne 0]; then
74 print -u2 "failed to create DOF"
75 exit 1
76 fi
77 gcc -m32 -o test test.o prov.o
77 gcc -o test test.o prov.o
78 if [$? -ne 0]; then
79 print -u2 "failed to link final executable"
80 exit 1
81 fi

83 cd /
84 /usr/bin/rm -rf $DIR

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.linkpriv.ksh 1

**
 1981 Tue Jan 14 16:48:41 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.linkpriv.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
62 EOF

64 gcc -m32 -c test.c
64 gcc -c test.c
65 if [$? -ne 0]; then
66 print -u2 "failed to compile test.c"
67 exit 1
68 fi
69 $dtrace -G -32 -s prov.d test.o
70 if [$? -ne 0]; then
71 print -u2 "failed to create DOF"
72 exit 1
73 fi
74 gcc -m32 -o test test.o prov.o
74 gcc -o test test.o prov.o
75 if [$? -ne 0]; then
76 print -u2 "failed to link final executable"
77 exit 1
78 fi

80 cd /
81 /usr/bin/rm -rf $DIR

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.linkunpriv.ksh 1

**
 2002 Tue Jan 14 16:48:42 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.linkunpriv.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
64 EOF

66 gcc -m32 -c test.c
66 gcc -c test.c
67 if [$? -ne 0]; then
68 print -u2 "failed to compile test.c"
69 exit 1
70 fi
71 $dtrace -G -32 -s prov.d test.o
72 if [$? -ne 0]; then
73 print -u2 "failed to create DOF"
74 exit 1
75 fi
76 gcc -m32 -o test test.o prov.o
76 gcc -o test test.o prov.o
77 if [$? -ne 0]; then
78 print -u2 "failed to link final executable"
79 exit 1
80 fi

82 cd /
83 /usr/bin/rm -rf $DIR

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.multiple.ksh 1

**
 1892 Tue Jan 14 16:48:42 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.multiple.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
65 EOF

67 gcc -m32 -c test.c
67 gcc -c test.c
68 if [$? -ne 0]; then
69 print -u2 "failed to compile test.c"
70 exit 1
71 fi
72 $dtrace -G -32 -s prov.d test.o
73 if [$? -ne 0]; then
74 print -u2 "failed to create DOF"
75 exit 1
76 fi
77 gcc -m32 -o test test.o prov.o
77 gcc -o test test.o prov.o
78 if [$? -ne 0]; then
79 print -u2 "failed to link final executable"
80 exit 1
81 fi

83 script() {
84 $dtrace -c ./test -qs /dev/stdin <<EOF
85 test_prov\$target:::
86 {
87 printf("%s:%s:%s\n", probemod, probefunc, probename);
88 }
89 EOF
90 }

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.multiprov.ksh 1

**
 2005 Tue Jan 14 16:48:43 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.multiprov.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
65 EOF

67 gcc -m32 -c $oogle.c
67 cc -c $oogle.c

69 if [$? -ne 0]; then
70 print -u2 "failed to compile $oogle.c"
71 exit 1
72 fi

74 $dtrace -G -32 -s $oogle.d $oogle.o -o $oogle.d.o

76 if [$? -ne 0]; then
77 print -u2 "failed to process $oogle.d"
78 exit 1
79 fi

81 objs="$objs $oogle.o $oogle.d.o"
82 echo $oogle’();’ >> test.c
83 echo $oogle’$target:::{@[probefunc] = count()}’ >> test.d
84 done

86 echo "}" >> test.c

88 echo ’END{printa("%-10s %@d\\n", @)}’ >> test.d

90 gcc -m32 -o test test.c $objs
90 cc -o test test.c $objs

92 if [$? -ne 0]; then
93 print -u2 "failed to compile test.c"
94 exit 1
95 fi

97 $dtrace -s ./test.d -Zc ./test

99 if [$? -ne 0]; then
100 print -u2 "failed to execute test"
101 exit 1
102 fi

104 cd /
105 /usr/bin/rm -rf $DIR
106 exit 0

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.noprobes.ksh 1

**
 1294 Tue Jan 14 16:48:44 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.noprobes.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
47 EOF

49 gcc -m32 -c test.c
49 cc -c test.c
50 $dtrace -G -32 -s doogle.d test.o -o doogle.d.o

52 if [$? -eq 0]; then
53 print -u2 "dtrace succeeded despite having no probe sites"
54 exit 1
55 fi

57 cd /
58 /usr/bin/rm -rf $DIR
59 exit 0

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.noreap.ksh 1

**
 2322 Tue Jan 14 16:48:44 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.noreap.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
52 EOF

54 gcc -m32 -c test.c
54 gcc -c test.c
55 if [$? -ne 0]; then
56 print -u2 "failed to compile test.c"
57 exit 1
58 fi
59 $dtrace -G -32 -s prov.d test.o
60 if [$? -ne 0]; then
61 print -u2 "failed to create DOF"
62 exit 1
63 fi

65 gcc -m32 -o test test.o prov.o
64 gcc -o test test.o prov.o
66 if [$? -ne 0]; then
67 print -u2 "failed to link final executable"
68 exit 1
69 fi

71 script()
72 {
73 $dtrace -Zwqs /dev/stdin <<EOF

75 BEGIN
76 {
77 spec = speculation();
78 speculate(spec);
79 printf("this is speculative!\n");
80 }

82 test_prov*:::
83 {
84 probeid = id;
85 }

87 tick-1sec
88 /probeid == 0/
89 {
90 printf("launching test\n");
91 system("./test");
92 }

94 tick-1sec
95 /probeid != 0/
96 {
97 printf("attempting re-enabling\n");
98 system("dtrace -e -x errtags -i %d", probeid);
99 attempts++;
100 }

102 tick-1sec
103 /attempts > 10/
104 {

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.noreap.ksh 2

105 exit(0);
106 }
107 EOF
108 }

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.noreapring.ksh 1

**
 2405 Tue Jan 14 16:48:45 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.noreapring.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
52 EOF

54 gcc -m32 -c test.c
54 gcc -c test.c
55 if [$? -ne 0]; then
56 print -u2 "failed to compile test.c"
57 exit 1
58 fi
59 $dtrace -G -32 -s prov.d test.o
60 if [$? -ne 0]; then
61 print -u2 "failed to create DOF"
62 exit 1
63 fi

65 gcc -m32 -o test test.o prov.o
64 gcc -o test test.o prov.o
66 if [$? -ne 0]; then
67 print -u2 "failed to link final executable"
68 exit 1
69 fi

71 script()
72 {
73 $dtrace -Zwqs /dev/stdin <<EOF
74 test_prov*:::
75 {
76 probeid = id;
77 }

79 tick-1sec
80 /probeid == 0/
81 {
82 printf("launching test\n");
83 system("./test");
84 }

86 tick-1sec
87 /probeid != 0/
88 {
89 printf("attempting re-enabling\n");
90 system("dtrace -e -x errtags -i %d", probeid);
91 attempts++;
92 }

94 tick-1sec
95 /attempts > 10/
96 {
97 exit(0);
98 }
99 EOF
100 }

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.onlyenabled.ksh 1

**
 1679 Tue Jan 14 16:48:45 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.onlyenabled.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
62 EOF

64 gcc -m32 -c test.c
64 gcc -c test.c
65 if [$? -ne 0]; then
66 print -u2 "failed to compile test.c"
67 exit 1
68 fi
69 $dtrace -G -32 -s prov.d test.o
70 if [$? -ne 0]; then
71 print -u2 "failed to create DOF"
72 exit 1
73 fi
74 gcc -m32 -o test test.o prov.o
74 gcc -o test test.o prov.o
75 if [$? -ne 0]; then
76 print -u2 "failed to link final executable"
77 exit 1
78 fi

80 cd /
81 /usr/bin/rm -rf $DIR

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.reap.ksh 1

**
 2224 Tue Jan 14 16:48:46 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.reap.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
52 EOF

54 gcc -m32 -c test.c
54 gcc -c test.c
55 if [$? -ne 0]; then
56 print -u2 "failed to compile test.c"
57 exit 1
58 fi
59 $dtrace -G -32 -s prov.d test.o
60 if [$? -ne 0]; then
61 print -u2 "failed to create DOF"
62 exit 1
63 fi

65 gcc -m32 -o test test.o prov.o
64 gcc -o test test.o prov.o
66 if [$? -ne 0]; then
67 print -u2 "failed to link final executable"
68 exit 1
69 fi

71 script()
72 {
73 $dtrace -Zwqs /dev/stdin <<EOF
74 test_prov*:::
75 {
76 probeid = id;
77 }

79 tick-1sec
80 /probeid == 0/
81 {
82 printf("launching test\n");
83 system("./test");
84 }

86 tick-1sec
87 /probeid != 0/
88 {
89 printf("attempting re-enabling\n");
90 system("dtrace -e -x errtags -i %d", probeid);
91 attempts++;
92 }

94 tick-1sec
95 /attempts > 10/
96 {
97 exit(0);
98 }
99 EOF
100 }

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.reeval.ksh 1

**
 1772 Tue Jan 14 16:48:46 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.reeval.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
52 EOF

54 gcc -m32 -c test.c
54 gcc -c test.c
55 if [$? -ne 0]; then
56 print -u2 "failed to compile test.c"
57 exit 1
58 fi
59 $dtrace -G -32 -s prov.d test.o
60 if [$? -ne 0]; then
61 print -u2 "failed to create DOF"
62 exit 1
63 fi
64 gcc -m32 -o test test.o prov.o
64 gcc -o test test.o prov.o
65 if [$? -ne 0]; then
66 print -u2 "failed to link final executable"
67 exit 1
68 fi

70 script()
71 {
72 $dtrace -wZs /dev/stdin <<EOF
73 BEGIN
74 {
75 system("$DIR/test");
76 }

78 test_prov*:::
79 {
80 seen = 1;
81 }

83 proc:::exit
84 /progenyof(\$pid) && execname == "test"/
85 {
86 exit(seen ? 0 : 2);
87 }
88 EOF
89 }

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.static.ksh 1

**
 1889 Tue Jan 14 16:48:47 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.static.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
63 EOF

65 gcc -m32 -c test.c
65 gcc -c test.c
66 if [$? -ne 0]; then
67 print -u2 "failed to compile test.c"
68 exit 1
69 fi
70 $dtrace -G -32 -s prov.d test.o
71 if [$? -ne 0]; then
72 print -u2 "failed to create DOF"
73 exit 1
74 fi
75 gcc -m32 -o test test.o prov.o
75 gcc -o test test.o prov.o
76 if [$? -ne 0]; then
77 print -u2 "failed to link final executable"
78 exit 1
79 fi

81 script()
82 {
83 $dtrace -c ./test -qs /dev/stdin <<EOF
84 test_prov\$target:::
85 {
86 printf("%s:%s:%s\n", probemod, probefunc, probename);
87 }
88 EOF
89 }

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.static2.ksh 1

**
 2239 Tue Jan 14 16:48:47 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.static2.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
67 EOF

69 gcc -m32 -c test.c
69 gcc -c test.c
70 if [$? -ne 0]; then
71 print -u2 "failed to compile test.c"
72 exit 1
73 fi
74 $dtrace -G -32 -s prov.d test.o
75 if [$? -ne 0]; then
76 print -u2 "failed to create initial DOF"
77 exit 1
78 fi
79 rm -f prov.o
80 $dtrace -G -32 -s prov.d test.o
81 if [$? -ne 0]; then
82 print -u2 "failed to create final DOF"
83 exit 1
84 fi
85 gcc -m32 -o test test.o prov.o
85 gcc -o test test.o prov.o
86 if [$? -ne 0]; then
87 print -u2 "failed to link final executable"
88 exit 1
89 fi

91 script()
92 {
93 $dtrace -c ./test -qs /dev/stdin <<EOF
94 test_prov\$target:::
95 {
96 printf("%s:%s:%s\n", probemod, probefunc, probename);
97 }
98 EOF
99 }

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.user.ksh 1

**
 1864 Tue Jan 14 16:48:47 2014
new/usr/src/cmd/dtrace/test/tst/common/usdt/tst.user.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
62 EOF

64 gcc -m32 -c test.c
64 gcc -c test.c
65 if [$? -ne 0]; then
66 print -u2 "failed to compile test.c"
67 exit 1
68 fi
69 $dtrace -G -32 -s prov.d test.o
70 if [$? -ne 0]; then
71 print -u2 "failed to create DOF"
72 exit 1
73 fi
74 gcc -m32 -o test test.o prov.o
74 gcc -o test test.o prov.o
75 if [$? -ne 0]; then
76 print -u2 "failed to link final executable"
77 exit 1
78 fi

80 script() {
81 $dtrace -c ’ppriv -e -s A=basic ./test’ -Zqs /dev/stdin <<EOF
82 test_prov\$target:::
83 {
84 printf("%s:%s:%s\n", probemod, probefunc, probename);
85 }
86 EOF
87 }

______unchanged_portion_omitted_

new/usr/src/cmd/dtrace/test/tst/sparc/usdt/tst.tailcall.ksh 1

**
 2322 Tue Jan 14 16:48:48 2014
new/usr/src/cmd/dtrace/test/tst/sparc/usdt/tst.tailcall.ksh
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
76 EOF

78 /usr/ccs/bin/as -xregsym=no -P -D_ASM -o test.o test.s
79 if [$? -ne 0]; then
80 print -u2 "failed to compile test.s"
81 exit 1
82 fi

84 $dtrace -G -32 -s prov.d test.o
85 if [$? -ne 0]; then
86 print -u2 "failed to create DOF"
87 exit 1
88 fi

90 gcc -m32 -o test test.o prov.o
90 gcc -o test test.o prov.o
91 if [$? -ne 0]; then
92 print -u2 "failed to link final executable"
93 exit 1
94 fi

96 $dtrace -c ./test -s /dev/stdin <<EOF
97 test\$target:::fire
98 /arg0 == 9 && arg1 == 19 && arg2 == 2006/
99 {
100 printf("%d/%d/%d", arg0, arg1, arg2);
101 exit(0);
102 }

______unchanged_portion_omitted_

new/usr/src/common/ctf/ctf_open.c 1

**
 29102 Tue Jan 14 16:48:49 2014
new/usr/src/common/ctf/ctf_open.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */

23 /*
24 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */
27 /*
28 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
29 */

31 #include <ctf_impl.h>
32 #include <sys/mman.h>
33 #include <sys/zmod.h>

35 static const ctf_dmodel_t _libctf_models[] = {
36 { "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 },
37 { "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 },
38 { NULL, 0, 0, 0, 0, 0, 0 }
39 };

______unchanged_portion_omitted_

790 /*
791 * Dupliate a ctf_file_t and its underlying section information into a new
792 * container. This works by copying the three ctf_sect_t’s of the original
793 * container if they exist and passing those into ctf_bufopen. To copy those, we
794 * mmap anonymous memory with ctf_data_alloc and bcopy the data across. It’s not
795 * the cheapest thing, but it’s what we’ve got.
796 */
797 ctf_file_t *
798 ctf_dup(ctf_file_t *ofp)
799 {
800 ctf_file_t *fp;
801 ctf_sect_t ctfsect, symsect, strsect;
802 ctf_sect_t *ctp, *symp, *strp;
803 void *cbuf, *symbuf, *strbuf;

new/usr/src/common/ctf/ctf_open.c 2

804 int err;

806 cbuf = symbuf = strbuf = NULL;
807 /*
808 * The ctfsect isn’t allowed to not exist, but the symbol and string
809 * section might not. We only need to copy the data of the section, not
810 * the name, as ctf_bufopen will take care of that.
811 */
812 bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t));
813 cbuf = ctf_data_alloc(ctfsect.cts_size);
814 if (cbuf == NULL) {
815 (void) ctf_set_errno(ofp, ECTF_MMAP);
816 return (NULL);
817 }

819 bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size);
820 ctf_data_protect(cbuf, ctfsect.cts_size);
821 ctfsect.cts_data = cbuf;
822 ctfsect.cts_offset = 0;
823 ctp = &ctfsect;

825 if (ofp->ctf_symtab.cts_data != NULL) {
826 bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t));
827 symbuf = ctf_data_alloc(symsect.cts_size);
828 if (symbuf == NULL) {
829 (void) ctf_set_errno(ofp, ECTF_MMAP);
830 goto err;
831 }
832 bcopy(symsect.cts_data, symbuf, symsect.cts_size);
833 ctf_data_protect(symbuf, symsect.cts_size);
834 symsect.cts_data = symbuf;
835 symsect.cts_offset = 0;
836 symp = &symsect;
837 } else {
838 symp = NULL;
839 }

841 if (ofp->ctf_strtab.cts_data != NULL) {
842 bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t));
843 strbuf = ctf_data_alloc(strsect.cts_size);
844 if (strbuf == NULL) {
845 (void) ctf_set_errno(ofp, ECTF_MMAP);
846 goto err;
847 }
848 bcopy(strsect.cts_data, strbuf, strsect.cts_size);
849 ctf_data_protect(strbuf, strsect.cts_size);
850 strsect.cts_data = strbuf;
851 strsect.cts_offset = 0;
852 strp = &strsect;
853 } else {
854 strp = NULL;
855 }

857 fp = ctf_bufopen(ctp, symp, strp, &err);
858 if (fp == NULL) {
859 (void) ctf_set_errno(ofp, err);
860 goto err;
861 }

863 fp->ctf_flags |= LCTF_MMAP;

865 return (fp);

867 err:
868 ctf_data_free(cbuf, ctfsect.cts_size);
869 if (symbuf != NULL)

new/usr/src/common/ctf/ctf_open.c 3

870 ctf_data_free(symbuf, symsect.cts_size);
871 if (strbuf != NULL)
872 ctf_data_free(strbuf, strsect.cts_size);
873 return (NULL);
874 }

876 /*
877 #endif /* ! codereview */
878 * Close the specified CTF container and free associated data structures. Note
879 * that ctf_close() is a reference counted operation: if the specified file is
880 * the parent of other active containers, its reference count will be greater
881 * than one and it will be freed later when no active children exist.
882 */
883 void
884 ctf_close(ctf_file_t *fp)
885 {
886 ctf_dtdef_t *dtd, *ntd;

888 if (fp == NULL)
889 return; /* allow ctf_close(NULL) to simplify caller code */

891 ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt);

893 if (fp->ctf_refcnt > 1) {
894 fp->ctf_refcnt--;
895 return;
896 }

898 if (fp->ctf_parent != NULL)
899 ctf_close(fp->ctf_parent);

901 /*
902 * Note, to work properly with reference counting on the dynamic
903 * section, we must delete the list in reverse.
904 */
905 for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
906 ntd = ctf_list_prev(dtd);
907 ctf_dtd_delete(fp, dtd);
908 }

910 ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *));

912 if (fp->ctf_flags & LCTF_MMAP) {
913 if (fp->ctf_data.cts_data != NULL)
914 ctf_sect_munmap(&fp->ctf_data);
915 if (fp->ctf_symtab.cts_data != NULL)
916 ctf_sect_munmap(&fp->ctf_symtab);
917 if (fp->ctf_strtab.cts_data != NULL)
918 ctf_sect_munmap(&fp->ctf_strtab);
919 }

921 if (fp->ctf_data.cts_name != _CTF_NULLSTR &&
922 fp->ctf_data.cts_name != NULL) {
923 ctf_free((char *)fp->ctf_data.cts_name,
924 strlen(fp->ctf_data.cts_name) + 1);
925 }

927 if (fp->ctf_symtab.cts_name != _CTF_NULLSTR &&
928 fp->ctf_symtab.cts_name != NULL) {
929 ctf_free((char *)fp->ctf_symtab.cts_name,
930 strlen(fp->ctf_symtab.cts_name) + 1);
931 }

933 if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&
934 fp->ctf_strtab.cts_name != NULL) {
935 ctf_free((char *)fp->ctf_strtab.cts_name,

new/usr/src/common/ctf/ctf_open.c 4

936 strlen(fp->ctf_strtab.cts_name) + 1);
937 }

939 if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
940 ctf_data_free((void *)fp->ctf_base, fp->ctf_size);

942 if (fp->ctf_sxlate != NULL)
943 ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms);

945 if (fp->ctf_txlate != NULL) {
946 ctf_free(fp->ctf_txlate,
947 sizeof (uint_t) * (fp->ctf_typemax + 1));
948 }

950 if (fp->ctf_ptrtab != NULL) {
951 ctf_free(fp->ctf_ptrtab,
952 sizeof (ushort_t) * (fp->ctf_typemax + 1));
953 }

955 ctf_hash_destroy(&fp->ctf_structs);
956 ctf_hash_destroy(&fp->ctf_unions);
957 ctf_hash_destroy(&fp->ctf_enums);
958 ctf_hash_destroy(&fp->ctf_names);

960 ctf_free(fp, sizeof (ctf_file_t));
961 }

963 /*
964 * Return the CTF handle for the parent CTF container, if one exists.
965 * Otherwise return NULL to indicate this container has no imported parent.
966 */
967 ctf_file_t *
968 ctf_parent_file(ctf_file_t *fp)
969 {
970 return (fp->ctf_parent);
971 }

973 /*
974 * Return the name of the parent CTF container, if one exists. Otherwise
975 * return NULL to indicate this container is a root container.
976 */
977 const char *
978 ctf_parent_name(ctf_file_t *fp)
979 {
980 return (fp->ctf_parname);
981 }

983 /*
984 * Import the types from the specified parent container by storing a pointer
985 * to it in ctf_parent and incrementing its reference count. Only one parent
986 * is allowed: if a parent already exists, it is replaced by the new parent.
987 */
988 int
989 ctf_import(ctf_file_t *fp, ctf_file_t *pfp)
990 {
991 if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
992 return (ctf_set_errno(fp, EINVAL));

994 if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
995 return (ctf_set_errno(fp, ECTF_DMODEL));

997 if (fp->ctf_parent != NULL)
998 ctf_close(fp->ctf_parent);

1000 if (pfp != NULL) {
1001 fp->ctf_flags |= LCTF_CHILD;

new/usr/src/common/ctf/ctf_open.c 5

1002 pfp->ctf_refcnt++;
1003 }

1005 fp->ctf_parent = pfp;
1006 return (0);
1007 }

1009 /*
1010 * Set the data model constant for the CTF container.
1011 */
1012 int
1013 ctf_setmodel(ctf_file_t *fp, int model)
1014 {
1015 const ctf_dmodel_t *dp;

1017 for (dp = _libctf_models; dp->ctd_name != NULL; dp++) {
1018 if (dp->ctd_code == model) {
1019 fp->ctf_dmodel = dp;
1020 return (0);
1021 }
1022 }

1024 return (ctf_set_errno(fp, EINVAL));
1025 }

1027 /*
1028 * Return the data model constant for the CTF container.
1029 */
1030 int
1031 ctf_getmodel(ctf_file_t *fp)
1032 {
1033 return (fp->ctf_dmodel->ctd_code);
1034 }

1036 void
1037 ctf_setspecific(ctf_file_t *fp, void *data)
1038 {
1039 fp->ctf_specific = data;
1040 }

1042 void *
1043 ctf_getspecific(ctf_file_t *fp)
1044 {
1045 return (fp->ctf_specific);
1046 }

new/usr/src/common/ctf/ctf_types.c 1

**
 23428 Tue Jan 14 16:48:49 2014
new/usr/src/common/ctf/ctf_types.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */

23 /*
24 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */

28 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <ctf_impl.h>

30 ssize_t
31 ctf_get_ctt_size(const ctf_file_t *fp, const ctf_type_t *tp, ssize_t *sizep,
32 ssize_t *incrementp)
33 {
34 ssize_t size, increment;

36 if (fp->ctf_version > CTF_VERSION_1 &&
37 tp->ctt_size == CTF_LSIZE_SENT) {
38 size = CTF_TYPE_LSIZE(tp);
39 increment = sizeof (ctf_type_t);
40 } else {
41 size = tp->ctt_size;
42 increment = sizeof (ctf_stype_t);
43 }

45 if (sizep)
46 *sizep = size;
47 if (incrementp)
48 *incrementp = increment;

50 return (size);
51 }

______unchanged_portion_omitted_

196 /*

new/usr/src/common/ctf/ctf_types.c 2

197 * Lookup the given type ID and print a string name for it into buf. Return
198 * the actual number of bytes (not including \0) needed to format the name.
199 */
200 static ssize_t
201 ctf_type_qlname(ctf_file_t *fp, ctf_id_t type, char *buf, size_t len,
202 const char *qname)
202 ssize_t
203 ctf_type_lname(ctf_file_t *fp, ctf_id_t type, char *buf, size_t len)
203 {
204 ctf_decl_t cd;
205 ctf_decl_node_t *cdp;
206 ctf_decl_prec_t prec, lp, rp;
207 int ptr, arr;
208 uint_t k;

210 if (fp == NULL && type == CTF_ERR)
211 return (-1); /* simplify caller code by permitting CTF_ERR */

213 ctf_decl_init(&cd, buf, len);
214 ctf_decl_push(&cd, fp, type);

216 if (cd.cd_err != 0) {
217 ctf_decl_fini(&cd);
218 return (ctf_set_errno(fp, cd.cd_err));
219 }

221 /*
222 * If the type graph’s order conflicts with lexical precedence order
223 * for pointers or arrays, then we need to surround the declarations at
224 * the corresponding lexical precedence with parentheses. This can
225 * result in either a parenthesized pointer (*) as in int (*)() or
226 * int (*)[], or in a parenthesized pointer and array as in int (*[])().
227 */
228 ptr = cd.cd_order[CTF_PREC_POINTER] > CTF_PREC_POINTER;
229 arr = cd.cd_order[CTF_PREC_ARRAY] > CTF_PREC_ARRAY;

231 rp = arr ? CTF_PREC_ARRAY : ptr ? CTF_PREC_POINTER : -1;
232 lp = ptr ? CTF_PREC_POINTER : arr ? CTF_PREC_ARRAY : -1;

234 k = CTF_K_POINTER; /* avoid leading whitespace (see below) */

236 for (prec = CTF_PREC_BASE; prec < CTF_PREC_MAX; prec++) {
237 for (cdp = ctf_list_next(&cd.cd_nodes[prec]);
238 cdp != NULL; cdp = ctf_list_next(cdp)) {

240 ctf_file_t *rfp = fp;
241 const ctf_type_t *tp =
242 ctf_lookup_by_id(&rfp, cdp->cd_type);
243 const char *name = ctf_strptr(rfp, tp->ctt_name);

245 if (k != CTF_K_POINTER && k != CTF_K_ARRAY)
246 ctf_decl_sprintf(&cd, " ");

248 if (lp == prec) {
249 ctf_decl_sprintf(&cd, "(");
250 lp = -1;
251 }

253 switch (cdp->cd_kind) {
254 case CTF_K_INTEGER:
255 case CTF_K_FLOAT:
256 case CTF_K_TYPEDEF:
257 if (qname != NULL)
258 ctf_decl_sprintf(&cd, "%s‘", qname);
259 #endif /* ! codereview */
260 ctf_decl_sprintf(&cd, "%s", name);

new/usr/src/common/ctf/ctf_types.c 3

261 break;
262 case CTF_K_POINTER:
263 ctf_decl_sprintf(&cd, "*");
264 break;
265 case CTF_K_ARRAY:
266 ctf_decl_sprintf(&cd, "[%u]", cdp->cd_n);
267 break;
268 case CTF_K_FUNCTION:
269 ctf_decl_sprintf(&cd, "()");
270 break;
271 case CTF_K_STRUCT:
272 case CTF_K_FORWARD:
273 ctf_decl_sprintf(&cd, "struct ");
274 if (qname != NULL)
275 ctf_decl_sprintf(&cd, "%s‘", qname);
276 ctf_decl_sprintf(&cd, "%s", name);
258 ctf_decl_sprintf(&cd, "struct %s", name);
277 break;
278 case CTF_K_UNION:
279 ctf_decl_sprintf(&cd, "union ");
280 if (qname != NULL)
281 ctf_decl_sprintf(&cd, "%s‘", qname);
282 ctf_decl_sprintf(&cd, "%s", name);
261 ctf_decl_sprintf(&cd, "union %s", name);
283 break;
284 case CTF_K_ENUM:
285 ctf_decl_sprintf(&cd, "enum ");
286 if (qname != NULL)
287 ctf_decl_sprintf(&cd, "%s‘", qname);
288 ctf_decl_sprintf(&cd, "%s", name);
264 ctf_decl_sprintf(&cd, "enum %s", name);
289 break;
290 case CTF_K_VOLATILE:
291 ctf_decl_sprintf(&cd, "volatile");
292 break;
293 case CTF_K_CONST:
294 ctf_decl_sprintf(&cd, "const");
295 break;
296 case CTF_K_RESTRICT:
297 ctf_decl_sprintf(&cd, "restrict");
298 break;
299 }

301 k = cdp->cd_kind;
302 }

304 if (rp == prec)
305 ctf_decl_sprintf(&cd, ")");
306 }

308 if (cd.cd_len >= len)
309 (void) ctf_set_errno(fp, ECTF_NAMELEN);

311 ctf_decl_fini(&cd);
312 return (cd.cd_len);
313 }

315 ssize_t
316 ctf_type_lname(ctf_file_t *fp, ctf_id_t type, char *buf, size_t len)
317 {
318 return (ctf_type_qlname(fp, type, buf, len, NULL));
319 }

321 #endif /* ! codereview */
322 /*
323 * Lookup the given type ID and print a string name for it into buf. If buf

new/usr/src/common/ctf/ctf_types.c 4

324 * is too small, return NULL: the ECTF_NAMELEN error is set on ’fp’ for us.
325 */
326 char *
327 ctf_type_name(ctf_file_t *fp, ctf_id_t type, char *buf, size_t len)
328 {
329 ssize_t rv = ctf_type_qlname(fp, type, buf, len, NULL);
330 return (rv >= 0 && rv < len ? buf : NULL);
331 }

333 char *
334 ctf_type_qname(ctf_file_t *fp, ctf_id_t type, char *buf, size_t len,
335 const char *qname)
336 {
337 ssize_t rv = ctf_type_qlname(fp, type, buf, len, qname);
291 ssize_t rv = ctf_type_lname(fp, type, buf, len);
338 return (rv >= 0 && rv < len ? buf : NULL);
339 }

342 #endif /* ! codereview */
343 /*
344 * Resolve the type down to a base type node, and then return the size
345 * of the type storage in bytes.
346 */
347 ssize_t
348 ctf_type_size(ctf_file_t *fp, ctf_id_t type)
349 {
350 const ctf_type_t *tp;
351 ssize_t size;
352 ctf_arinfo_t ar;

354 if ((type = ctf_type_resolve(fp, type)) == CTF_ERR)
355 return (-1); /* errno is set for us */

357 if ((tp = ctf_lookup_by_id(&fp, type)) == NULL)
358 return (-1); /* errno is set for us */

360 switch (LCTF_INFO_KIND(fp, tp->ctt_info)) {
361 case CTF_K_POINTER:
362 return (fp->ctf_dmodel->ctd_pointer);

364 case CTF_K_FUNCTION:
365 return (0); /* function size is only known by symtab */

367 case CTF_K_ENUM:
368 return (fp->ctf_dmodel->ctd_int);

370 case CTF_K_ARRAY:
371 /*
372 * Array size is not directly returned by stabs data. Instead,
373 * it defines the element type and requires the user to perform
374 * the multiplication. If ctf_get_ctt_size() returns zero, the
375 * current version of ctfconvert does not compute member sizes
376 * and we compute the size here on its behalf.
377 */
378 if ((size = ctf_get_ctt_size(fp, tp, NULL, NULL)) > 0)
379 return (size);

381 if (ctf_array_info(fp, type, &ar) == CTF_ERR ||
382 (size = ctf_type_size(fp, ar.ctr_contents)) == CTF_ERR)
383 return (-1); /* errno is set for us */

385 return (size * ar.ctr_nelems);

387 default:
388 return (ctf_get_ctt_size(fp, tp, NULL, NULL));

new/usr/src/common/ctf/ctf_types.c 5

389 }
390 }

392 /*
393 * Resolve the type down to a base type node, and then return the alignment
394 * needed for the type storage in bytes.
395 */
396 ssize_t
397 ctf_type_align(ctf_file_t *fp, ctf_id_t type)
398 {
399 const ctf_type_t *tp;
400 ctf_arinfo_t r;

402 if ((type = ctf_type_resolve(fp, type)) == CTF_ERR)
403 return (-1); /* errno is set for us */

405 if ((tp = ctf_lookup_by_id(&fp, type)) == NULL)
406 return (-1); /* errno is set for us */

408 switch (LCTF_INFO_KIND(fp, tp->ctt_info)) {
409 case CTF_K_POINTER:
410 case CTF_K_FUNCTION:
411 return (fp->ctf_dmodel->ctd_pointer);

413 case CTF_K_ARRAY:
414 if (ctf_array_info(fp, type, &r) == CTF_ERR)
415 return (-1); /* errno is set for us */
416 return (ctf_type_align(fp, r.ctr_contents));

418 case CTF_K_STRUCT:
419 case CTF_K_UNION: {
420 uint_t n = LCTF_INFO_VLEN(fp, tp->ctt_info);
421 ssize_t size, increment;
422 size_t align = 0;
423 const void *vmp;

425 (void) ctf_get_ctt_size(fp, tp, &size, &increment);
426 vmp = (uchar_t *)tp + increment;

428 if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_STRUCT)
429 n = MIN(n, 1); /* only use first member for structs */

431 if (fp->ctf_version == CTF_VERSION_1 ||
432 size < CTF_LSTRUCT_THRESH) {
433 const ctf_member_t *mp = vmp;
434 for (; n != 0; n--, mp++) {
435 ssize_t am = ctf_type_align(fp, mp->ctm_type);
436 align = MAX(align, am);
437 }
438 } else {
439 const ctf_lmember_t *lmp = vmp;
440 for (; n != 0; n--, lmp++) {
441 ssize_t am = ctf_type_align(fp, lmp->ctlm_type);
442 align = MAX(align, am);
443 }
444 }

446 return (align);
447 }

449 case CTF_K_ENUM:
450 return (fp->ctf_dmodel->ctd_int);

452 default:
453 return (ctf_get_ctt_size(fp, tp, NULL, NULL));
454 }

new/usr/src/common/ctf/ctf_types.c 6

455 }

457 /*
458 * Return the kind (CTF_K_* constant) for the specified type ID.
459 */
460 int
461 ctf_type_kind(ctf_file_t *fp, ctf_id_t type)
462 {
463 const ctf_type_t *tp;

465 if ((tp = ctf_lookup_by_id(&fp, type)) == NULL)
466 return (CTF_ERR); /* errno is set for us */

468 return (LCTF_INFO_KIND(fp, tp->ctt_info));
469 }

471 /*
472 * If the type is one that directly references another type (such as POINTER),
473 * then return the ID of the type to which it refers.
474 */
475 ctf_id_t
476 ctf_type_reference(ctf_file_t *fp, ctf_id_t type)
477 {
478 ctf_file_t *ofp = fp;
479 const ctf_type_t *tp;

481 if ((tp = ctf_lookup_by_id(&fp, type)) == NULL)
482 return (CTF_ERR); /* errno is set for us */

484 switch (LCTF_INFO_KIND(fp, tp->ctt_info)) {
485 case CTF_K_POINTER:
486 case CTF_K_TYPEDEF:
487 case CTF_K_VOLATILE:
488 case CTF_K_CONST:
489 case CTF_K_RESTRICT:
490 return (tp->ctt_type);
491 default:
492 return (ctf_set_errno(ofp, ECTF_NOTREF));
493 }
494 }

496 /*
497 * Find a pointer to type by looking in fp->ctf_ptrtab. If we can’t find a
498 * pointer to the given type, see if we can compute a pointer to the type
499 * resulting from resolving the type down to its base type and use that
500 * instead. This helps with cases where the CTF data includes "struct foo *"
501 * but not "foo_t *" and the user accesses "foo_t *" in the debugger.
502 */
503 ctf_id_t
504 ctf_type_pointer(ctf_file_t *fp, ctf_id_t type)
505 {
506 ctf_file_t *ofp = fp;
507 ctf_id_t ntype;

509 if (ctf_lookup_by_id(&fp, type) == NULL)
510 return (CTF_ERR); /* errno is set for us */

512 if ((ntype = fp->ctf_ptrtab[CTF_TYPE_TO_INDEX(type)]) != 0)
513 return (CTF_INDEX_TO_TYPE(ntype, (fp->ctf_flags & LCTF_CHILD)));

515 if ((type = ctf_type_resolve(fp, type)) == CTF_ERR)
516 return (ctf_set_errno(ofp, ECTF_NOTYPE));

518 if (ctf_lookup_by_id(&fp, type) == NULL)
519 return (ctf_set_errno(ofp, ECTF_NOTYPE));

new/usr/src/common/ctf/ctf_types.c 7

521 if ((ntype = fp->ctf_ptrtab[CTF_TYPE_TO_INDEX(type)]) != 0)
522 return (CTF_INDEX_TO_TYPE(ntype, (fp->ctf_flags & LCTF_CHILD)));

524 return (ctf_set_errno(ofp, ECTF_NOTYPE));
525 }

527 /*
528 * Return the encoding for the specified INTEGER or FLOAT.
529 */
530 int
531 ctf_type_encoding(ctf_file_t *fp, ctf_id_t type, ctf_encoding_t *ep)
532 {
533 ctf_file_t *ofp = fp;
534 const ctf_type_t *tp;
535 ssize_t increment;
536 uint_t data;

538 if ((tp = ctf_lookup_by_id(&fp, type)) == NULL)
539 return (CTF_ERR); /* errno is set for us */

541 (void) ctf_get_ctt_size(fp, tp, NULL, &increment);

543 switch (LCTF_INFO_KIND(fp, tp->ctt_info)) {
544 case CTF_K_INTEGER:
545 data = *(const uint_t *)((uintptr_t)tp + increment);
546 ep->cte_format = CTF_INT_ENCODING(data);
547 ep->cte_offset = CTF_INT_OFFSET(data);
548 ep->cte_bits = CTF_INT_BITS(data);
549 break;
550 case CTF_K_FLOAT:
551 data = *(const uint_t *)((uintptr_t)tp + increment);
552 ep->cte_format = CTF_FP_ENCODING(data);
553 ep->cte_offset = CTF_FP_OFFSET(data);
554 ep->cte_bits = CTF_FP_BITS(data);
555 break;
556 default:
557 return (ctf_set_errno(ofp, ECTF_NOTINTFP));
558 }

560 return (0);
561 }

563 int
564 ctf_type_cmp(ctf_file_t *lfp, ctf_id_t ltype, ctf_file_t *rfp, ctf_id_t rtype)
565 {
566 int rval;

568 if (ltype < rtype)
569 rval = -1;
570 else if (ltype > rtype)
571 rval = 1;
572 else
573 rval = 0;

575 if (lfp == rfp)
576 return (rval);

578 if (CTF_TYPE_ISPARENT(ltype) && lfp->ctf_parent != NULL)
579 lfp = lfp->ctf_parent;

581 if (CTF_TYPE_ISPARENT(rtype) && rfp->ctf_parent != NULL)
582 rfp = rfp->ctf_parent;

584 if (lfp < rfp)
585 return (-1);

new/usr/src/common/ctf/ctf_types.c 8

587 if (lfp > rfp)
588 return (1);

590 return (rval);
591 }

593 /*
594 * Return a boolean value indicating if two types are compatible integers or
595 * floating-pointer values. This function returns true if the two types are
596 * the same, or if they have the same ASCII name and encoding properties.
597 * This function could be extended to test for compatibility for other kinds.
598 */
599 int
600 ctf_type_compat(ctf_file_t *lfp, ctf_id_t ltype,
601 ctf_file_t *rfp, ctf_id_t rtype)
602 {
603 const ctf_type_t *ltp, *rtp;
604 ctf_encoding_t le, re;
605 ctf_arinfo_t la, ra;
606 uint_t lkind, rkind;

608 if (ctf_type_cmp(lfp, ltype, rfp, rtype) == 0)
609 return (1);

611 ltype = ctf_type_resolve(lfp, ltype);
612 lkind = ctf_type_kind(lfp, ltype);

614 rtype = ctf_type_resolve(rfp, rtype);
615 rkind = ctf_type_kind(rfp, rtype);

617 if (lkind != rkind ||
618 (ltp = ctf_lookup_by_id(&lfp, ltype)) == NULL ||
619 (rtp = ctf_lookup_by_id(&rfp, rtype)) == NULL ||
620 strcmp(ctf_strptr(lfp, ltp->ctt_name),
621 ctf_strptr(rfp, rtp->ctt_name)) != 0)
622 return (0);

624 switch (lkind) {
625 case CTF_K_INTEGER:
626 case CTF_K_FLOAT:
627 return (ctf_type_encoding(lfp, ltype, &le) == 0 &&
628 ctf_type_encoding(rfp, rtype, &re) == 0 &&
629 bcmp(&le, &re, sizeof (ctf_encoding_t)) == 0);
630 case CTF_K_POINTER:
631 return (ctf_type_compat(lfp, ctf_type_reference(lfp, ltype),
632 rfp, ctf_type_reference(rfp, rtype)));
633 case CTF_K_ARRAY:
634 return (ctf_array_info(lfp, ltype, &la) == 0 &&
635 ctf_array_info(rfp, rtype, &ra) == 0 &&
636 la.ctr_nelems == ra.ctr_nelems && ctf_type_compat(
637 lfp, la.ctr_contents, rfp, ra.ctr_contents) &&
638 ctf_type_compat(lfp, la.ctr_index, rfp, ra.ctr_index));
639 case CTF_K_STRUCT:
640 case CTF_K_UNION:
641 return (ctf_type_size(lfp, ltype) == ctf_type_size(rfp, rtype));
642 case CTF_K_ENUM:
643 case CTF_K_FORWARD:
644 return (1); /* no other checks required for these type kinds */
645 default:
646 return (0); /* should not get here since we did a resolve */
647 }
648 }

650 /*
651 * Return the type and offset for a given member of a STRUCT or UNION.
652 */

new/usr/src/common/ctf/ctf_types.c 9

653 int
654 ctf_member_info(ctf_file_t *fp, ctf_id_t type, const char *name,
655 ctf_membinfo_t *mip)
656 {
657 ctf_file_t *ofp = fp;
658 const ctf_type_t *tp;
659 ssize_t size, increment;
660 uint_t kind, n;

662 if ((type = ctf_type_resolve(fp, type)) == CTF_ERR)
663 return (CTF_ERR); /* errno is set for us */

665 if ((tp = ctf_lookup_by_id(&fp, type)) == NULL)
666 return (CTF_ERR); /* errno is set for us */

668 (void) ctf_get_ctt_size(fp, tp, &size, &increment);
669 kind = LCTF_INFO_KIND(fp, tp->ctt_info);

671 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
672 return (ctf_set_errno(ofp, ECTF_NOTSOU));

674 if (fp->ctf_version == CTF_VERSION_1 || size < CTF_LSTRUCT_THRESH) {
675 const ctf_member_t *mp = (const ctf_member_t *)
676 ((uintptr_t)tp + increment);

678 for (n = LCTF_INFO_VLEN(fp, tp->ctt_info); n != 0; n--, mp++) {
679 if (strcmp(ctf_strptr(fp, mp->ctm_name), name) == 0) {
680 mip->ctm_type = mp->ctm_type;
681 mip->ctm_offset = mp->ctm_offset;
682 return (0);
683 }
684 }
685 } else {
686 const ctf_lmember_t *lmp = (const ctf_lmember_t *)
687 ((uintptr_t)tp + increment);

689 for (n = LCTF_INFO_VLEN(fp, tp->ctt_info); n != 0; n--, lmp++) {
690 if (strcmp(ctf_strptr(fp, lmp->ctlm_name), name) == 0) {
691 mip->ctm_type = lmp->ctlm_type;
692 mip->ctm_offset = (ulong_t)CTF_LMEM_OFFSET(lmp);
693 return (0);
694 }
695 }
696 }

698 return (ctf_set_errno(ofp, ECTF_NOMEMBNAM));
699 }

701 /*
702 * Return the array type, index, and size information for the specified ARRAY.
703 */
704 int
705 ctf_array_info(ctf_file_t *fp, ctf_id_t type, ctf_arinfo_t *arp)
706 {
707 ctf_file_t *ofp = fp;
708 const ctf_type_t *tp;
709 const ctf_array_t *ap;
710 ssize_t increment;

712 if ((tp = ctf_lookup_by_id(&fp, type)) == NULL)
713 return (CTF_ERR); /* errno is set for us */

715 if (LCTF_INFO_KIND(fp, tp->ctt_info) != CTF_K_ARRAY)
716 return (ctf_set_errno(ofp, ECTF_NOTARRAY));

718 (void) ctf_get_ctt_size(fp, tp, NULL, &increment);

new/usr/src/common/ctf/ctf_types.c 10

720 ap = (const ctf_array_t *)((uintptr_t)tp + increment);
721 arp->ctr_contents = ap->cta_contents;
722 arp->ctr_index = ap->cta_index;
723 arp->ctr_nelems = ap->cta_nelems;

725 return (0);
726 }

728 /*
729 * Convert the specified value to the corresponding enum member name, if a
730 * matching name can be found. Otherwise NULL is returned.
731 */
732 const char *
733 ctf_enum_name(ctf_file_t *fp, ctf_id_t type, int value)
734 {
735 ctf_file_t *ofp = fp;
736 const ctf_type_t *tp;
737 const ctf_enum_t *ep;
738 ssize_t increment;
739 uint_t n;

741 if ((type = ctf_type_resolve(fp, type)) == CTF_ERR)
742 return (NULL); /* errno is set for us */

744 if ((tp = ctf_lookup_by_id(&fp, type)) == NULL)
745 return (NULL); /* errno is set for us */

747 if (LCTF_INFO_KIND(fp, tp->ctt_info) != CTF_K_ENUM) {
748 (void) ctf_set_errno(ofp, ECTF_NOTENUM);
749 return (NULL);
750 }

752 (void) ctf_get_ctt_size(fp, tp, NULL, &increment);

754 ep = (const ctf_enum_t *)((uintptr_t)tp + increment);

756 for (n = LCTF_INFO_VLEN(fp, tp->ctt_info); n != 0; n--, ep++) {
757 if (ep->cte_value == value)
758 return (ctf_strptr(fp, ep->cte_name));
759 }

761 (void) ctf_set_errno(ofp, ECTF_NOENUMNAM);
762 return (NULL);
763 }

765 /*
766 * Convert the specified enum tag name to the corresponding value, if a
767 * matching name can be found. Otherwise CTF_ERR is returned.
768 */
769 int
770 ctf_enum_value(ctf_file_t *fp, ctf_id_t type, const char *name, int *valp)
771 {
772 ctf_file_t *ofp = fp;
773 const ctf_type_t *tp;
774 const ctf_enum_t *ep;
775 ssize_t size, increment;
776 uint_t n;

778 if ((type = ctf_type_resolve(fp, type)) == CTF_ERR)
779 return (CTF_ERR); /* errno is set for us */

781 if ((tp = ctf_lookup_by_id(&fp, type)) == NULL)
782 return (CTF_ERR); /* errno is set for us */

784 if (LCTF_INFO_KIND(fp, tp->ctt_info) != CTF_K_ENUM) {

new/usr/src/common/ctf/ctf_types.c 11

785 (void) ctf_set_errno(ofp, ECTF_NOTENUM);
786 return (CTF_ERR);
787 }

789 (void) ctf_get_ctt_size(fp, tp, &size, &increment);

791 ep = (const ctf_enum_t *)((uintptr_t)tp + increment);

793 for (n = LCTF_INFO_VLEN(fp, tp->ctt_info); n != 0; n--, ep++) {
794 if (strcmp(ctf_strptr(fp, ep->cte_name), name) == 0) {
795 if (valp != NULL)
796 *valp = ep->cte_value;
797 return (0);
798 }
799 }

801 (void) ctf_set_errno(ofp, ECTF_NOENUMNAM);
802 return (CTF_ERR);
803 }

805 /*
806 * Recursively visit the members of any type. This function is used as the
807 * engine for ctf_type_visit, below. We resolve the input type, recursively
808 * invoke ourself for each type member if the type is a struct or union, and
809 * then invoke the callback function on the current type. If any callback
810 * returns non-zero, we abort and percolate the error code back up to the top.
811 */
812 static int
813 ctf_type_rvisit(ctf_file_t *fp, ctf_id_t type, ctf_visit_f *func, void *arg,
814 const char *name, ulong_t offset, int depth)
815 {
816 ctf_id_t otype = type;
817 const ctf_type_t *tp;
818 ssize_t size, increment;
819 uint_t kind, n;
820 int rc;

822 if ((type = ctf_type_resolve(fp, type)) == CTF_ERR)
823 return (CTF_ERR); /* errno is set for us */

825 if ((tp = ctf_lookup_by_id(&fp, type)) == NULL)
826 return (CTF_ERR); /* errno is set for us */

828 if ((rc = func(name, otype, offset, depth, arg)) != 0)
829 return (rc);

831 kind = LCTF_INFO_KIND(fp, tp->ctt_info);

833 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
834 return (0);

836 (void) ctf_get_ctt_size(fp, tp, &size, &increment);

838 if (fp->ctf_version == CTF_VERSION_1 || size < CTF_LSTRUCT_THRESH) {
839 const ctf_member_t *mp = (const ctf_member_t *)
840 ((uintptr_t)tp + increment);

842 for (n = LCTF_INFO_VLEN(fp, tp->ctt_info); n != 0; n--, mp++) {
843 if ((rc = ctf_type_rvisit(fp, mp->ctm_type,
844 func, arg, ctf_strptr(fp, mp->ctm_name),
845 offset + mp->ctm_offset, depth + 1)) != 0)
846 return (rc);
847 }

849 } else {
850 const ctf_lmember_t *lmp = (const ctf_lmember_t *)

new/usr/src/common/ctf/ctf_types.c 12

851 ((uintptr_t)tp + increment);

853 for (n = LCTF_INFO_VLEN(fp, tp->ctt_info); n != 0; n--, lmp++) {
854 if ((rc = ctf_type_rvisit(fp, lmp->ctlm_type,
855 func, arg, ctf_strptr(fp, lmp->ctlm_name),
856 offset + (ulong_t)CTF_LMEM_OFFSET(lmp),
857 depth + 1)) != 0)
858 return (rc);
859 }
860 }

862 return (0);
863 }

865 /*
866 * Recursively visit the members of any type. We pass the name, member
867 * type, and offset of each member to the specified callback function.
868 */
869 int
870 ctf_type_visit(ctf_file_t *fp, ctf_id_t type, ctf_visit_f *func, void *arg)
871 {
872 return (ctf_type_rvisit(fp, type, func, arg, "", 0, 0));
873 }

new/usr/src/lib/libctf/common/mapfile-vers 1

**
 2634 Tue Jan 14 16:48:50 2014
new/usr/src/lib/libctf/common/mapfile-vers
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
23 #

25 #
26 # Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 #

29 #
30 #endif /* ! codereview */
31 # MAPFILE HEADER START
32 #
33 # WARNING: STOP NOW. DO NOT MODIFY THIS FILE.
34 # Object versioning must comply with the rules detailed in
35 #
36 # usr/src/lib/README.mapfiles
37 #
38 # You should not be making modifications here until you’ve read the most current
39 # copy of that file. If you need help, contact a gatekeeper for guidance.
40 #
41 # MAPFILE HEADER END
42 #

44 $mapfile_version 2

46 # There really should be only one SUNWprivate version.
47 # Don’t add any more. Add new private symbols to SUNWprivate_1.2

49 SYMBOL_VERSION SUNWprivate_1.2 {
50 global:
51 ctf_add_array;
52 ctf_add_const;
53 ctf_add_enum;
54 ctf_add_enumerator;
55 ctf_add_float;
56 ctf_add_forward;

new/usr/src/lib/libctf/common/mapfile-vers 2

57 ctf_add_function;
58 ctf_add_integer;
59 ctf_add_member;
60 ctf_add_pointer;
61 ctf_add_restrict;
62 ctf_add_struct;
63 ctf_add_type;
64 ctf_add_typedef;
65 ctf_add_union;
66 ctf_add_volatile;
67 ctf_create;
68 ctf_delete_type;
69 ctf_discard;
70 ctf_dup;
71 #endif /* ! codereview */
72 ctf_enum_value;
73 ctf_label_info;
74 ctf_label_iter;
75 ctf_label_topmost;
76 ctf_member_info;
77 ctf_parent_file;
78 ctf_parent_name;
79 ctf_set_array;
80 ctf_type_align;
81 ctf_type_cmp;
82 ctf_type_compat;
83 ctf_type_pointer;
84 ctf_update;
85 ctf_write;
86 } SUNWprivate_1.1;

88 SYMBOL_VERSION SUNWprivate_1.1 {
89 global:
90 ctf_array_info;
91 ctf_bufopen;
92 ctf_close;
93 ctf_enum_iter;
94 ctf_enum_name;
95 ctf_errmsg;
96 ctf_errno;
97 ctf_fdopen;
98 ctf_func_args;
99 ctf_func_info;
100 ctf_getmodel;
101 ctf_getspecific;
102 ctf_import;
103 ctf_lookup_by_name;
104 ctf_lookup_by_symbol;
105 ctf_member_iter;
106 ctf_open;
107 ctf_setmodel;
108 ctf_setspecific;
109 ctf_type_encoding;
110 ctf_type_iter;
111 ctf_type_kind;
112 ctf_type_lname;
113 ctf_type_name;
114 ctf_type_qname;
115 #endif /* ! codereview */
116 ctf_type_reference;
117 ctf_type_resolve;
118 ctf_type_size;
119 ctf_type_visit;
120 ctf_version;
121 _libctf_debug;
122 local:

new/usr/src/lib/libctf/common/mapfile-vers 3

123 *;
124 };

new/usr/src/lib/libdtrace/common/dt_as.c 1

**
 13814 Tue Jan 14 16:48:50 2014
new/usr/src/lib/libdtrace/common/dt_as.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright (c) 2013 by Delphix. All rights reserved.
28 * Copyright (c) 2013 Joyent, Inc. All rights reserved.
29 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

31 #include <sys/types.h>
32 #include <strings.h>
33 #include <stdlib.h>
34 #include <assert.h>

36 #include <dt_impl.h>
37 #include <dt_parser.h>
38 #include <dt_as.h>

40 void
41 dt_irlist_create(dt_irlist_t *dlp)
42 {
43 bzero(dlp, sizeof (dt_irlist_t));
44 dlp->dl_label = 1;
45 }

______unchanged_portion_omitted_

90 /*ARGSUSED*/
91 static int
92 dt_copyvar(dt_idhash_t *dhp, dt_ident_t *idp, void *data)
93 {
94 dt_pcb_t *pcb = data;
95 dtrace_difv_t *dvp;
96 ssize_t stroff;

new/usr/src/lib/libdtrace/common/dt_as.c 2

97 dt_node_t dn;

99 if (!(idp->di_flags & (DT_IDFLG_DIFR | DT_IDFLG_DIFW)))
100 return (0); /* omit variable from vartab */

102 dvp = &pcb->pcb_difo->dtdo_vartab[pcb->pcb_asvidx++];
103 stroff = dt_strtab_insert(pcb->pcb_strtab, idp->di_name);

105 if (stroff == -1L)
106 longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
107 if (stroff > DIF_STROFF_MAX)
108 longjmp(pcb->pcb_jmpbuf, EDT_STR2BIG);

110 dvp->dtdv_name = (uint_t)stroff;
111 dvp->dtdv_id = idp->di_id;
112 dvp->dtdv_flags = 0;

114 dvp->dtdv_kind = (idp->di_kind == DT_IDENT_ARRAY) ?
115 DIFV_KIND_ARRAY : DIFV_KIND_SCALAR;

117 if (idp->di_flags & DT_IDFLG_LOCAL)
118 dvp->dtdv_scope = DIFV_SCOPE_LOCAL;
119 else if (idp->di_flags & DT_IDFLG_TLS)
120 dvp->dtdv_scope = DIFV_SCOPE_THREAD;
121 else
122 dvp->dtdv_scope = DIFV_SCOPE_GLOBAL;

124 if (idp->di_flags & DT_IDFLG_DIFR)
125 dvp->dtdv_flags |= DIFV_F_REF;
126 if (idp->di_flags & DT_IDFLG_DIFW)
127 dvp->dtdv_flags |= DIFV_F_MOD;

129 bzero(&dn, sizeof (dn));
130 dt_node_type_assign(&dn, idp->di_ctfp, idp->di_type, B_FALSE);
128 dt_node_type_assign(&dn, idp->di_ctfp, idp->di_type);
131 dt_node_diftype(pcb->pcb_hdl, &dn, &dvp->dtdv_type);

133 idp->di_flags &= ~(DT_IDFLG_DIFR | DT_IDFLG_DIFW);
134 return (0);
135 }

______unchanged_portion_omitted_

new/usr/src/lib/libdtrace/common/dt_cc.c 1

**
 70859 Tue Jan 14 16:48:51 2014
new/usr/src/lib/libdtrace/common/dt_cc.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, Joyent Inc. All rights reserved.
24 * Copyright (c) 2011, Joyent Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 */

28 /*
29 * DTrace D Language Compiler
30 *
31 * The code in this source file implements the main engine for the D language
32 * compiler. The driver routine for the compiler is dt_compile(), below. The
33 * compiler operates on either stdio FILEs or in-memory strings as its input
34 * and can produce either dtrace_prog_t structures from a D program or a single
35 * dtrace_difo_t structure from a D expression. Multiple entry points are
36 * provided as wrappers around dt_compile() for the various input/output pairs.
37 * The compiler itself is implemented across the following source files:
38 *
39 * dt_lex.l - lex scanner
40 * dt_grammar.y - yacc grammar
41 * dt_parser.c - parse tree creation and semantic checking
42 * dt_decl.c - declaration stack processing
43 * dt_xlator.c - D translator lookup and creation
44 * dt_ident.c - identifier and symbol table routines
45 * dt_pragma.c - #pragma processing and D pragmas
46 * dt_printf.c - D printf() and printa() argument checking and processing
47 * dt_cc.c - compiler driver and dtrace_prog_t construction
48 * dt_cg.c - DIF code generator
49 * dt_as.c - DIF assembler
50 * dt_dof.c - dtrace_prog_t -> DOF conversion
51 *
52 * Several other source files provide collections of utility routines used by
53 * these major files. The compiler itself is implemented in multiple passes:
54 *
55 * (1) The input program is scanned and parsed by dt_lex.l and dt_grammar.y

new/usr/src/lib/libdtrace/common/dt_cc.c 2

56 * and parse tree nodes are constructed using the routines in dt_parser.c.
57 * This node construction pass is described further in dt_parser.c.
58 *
59 * (2) The parse tree is "cooked" by assigning each clause a context (see the
60 * routine dt_setcontext(), below) based on its probe description and then
61 * recursively descending the tree performing semantic checking. The cook
62 * routines are also implemented in dt_parser.c and described there.
63 *
64 * (3) For actions that are DIF expression statements, the DIF code generator
65 * and assembler are invoked to create a finished DIFO for the statement.
66 *
67 * (4) The dtrace_prog_t data structures for the program clauses and actions
68 * are built, containing pointers to any DIFOs created in step (3).
69 *
70 * (5) The caller invokes a routine in dt_dof.c to convert the finished program
71 * into DOF format for use in anonymous tracing or enabling in the kernel.
72 *
73 * In the implementation, steps 2-4 are intertwined in that they are performed
74 * in order for each clause as part of a loop that executes over the clauses.
75 *
76 * The D compiler currently implements nearly no optimization. The compiler
77 * implements integer constant folding as part of pass (1), and a set of very
78 * simple peephole optimizations as part of pass (3). As with any C compiler,
79 * a large number of optimizations are possible on both the intermediate data
80 * structures and the generated DIF code. These possibilities should be
81 * investigated in the context of whether they will have any substantive effect
82 * on the overall DTrace probe effect before they are undertaken.
83 */

85 #include <sys/types.h>
86 #include <sys/wait.h>
87 #include <sys/sysmacros.h>

89 #include <assert.h>
90 #include <strings.h>
91 #include <signal.h>
92 #include <unistd.h>
93 #include <stdlib.h>
94 #include <stdio.h>
95 #include <errno.h>
96 #include <ucontext.h>
97 #include <limits.h>
98 #include <ctype.h>
99 #include <dirent.h>
100 #include <dt_module.h>
101 #include <dt_program.h>
102 #include <dt_provider.h>
103 #include <dt_printf.h>
104 #include <dt_pid.h>
105 #include <dt_grammar.h>
106 #include <dt_ident.h>
107 #include <dt_string.h>
108 #include <dt_impl.h>

110 static const dtrace_diftype_t dt_void_rtype = {
111 DIF_TYPE_CTF, CTF_K_INTEGER, 0, 0, 0
112 };

______unchanged_portion_omitted_

662 static void
663 dt_action_trace(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp)
664 {
665 int ctflib;

667 #endif /* ! codereview */
668 dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp);

new/usr/src/lib/libdtrace/common/dt_cc.c 3

669 boolean_t istrace = (dnp->dn_ident->di_id == DT_ACT_TRACE);
670 const char *act = istrace ? "trace" : "print";

672 if (dt_node_is_void(dnp->dn_args)) {
673 dnerror(dnp->dn_args, istrace ? D_TRACE_VOID : D_PRINT_VOID,
674 "%s() may not be applied to a void expression\n", act);
675 }

677 if (dt_node_resolve(dnp->dn_args, DT_IDENT_XLPTR) != NULL) {
678 dnerror(dnp->dn_args, istrace ? D_TRACE_DYN : D_PRINT_DYN,
679 "%s() may not be applied to a translated pointer\n", act);
680 }

682 if (dnp->dn_args->dn_kind == DT_NODE_AGG) {
683 dnerror(dnp->dn_args, istrace ? D_TRACE_AGG : D_PRINT_AGG,
684 "%s() may not be applied to an aggregation%s\n", act,
685 istrace ? "" : " -- did you mean printa()?");
686 }

688 dt_cg(yypcb, dnp->dn_args);

690 /*
691 * The print() action behaves identically to trace(), except that it
692 * stores the CTF type of the argument (if present) within the DOF for
693 * the DIFEXPR action. To do this, we set the ’dtsd_strdata’ to point
694 * to the fully-qualified CTF type ID for the result of the DIF
695 * action. We use the ID instead of the name to handles complex types
696 * like arrays and function pointers that can’t be resolved by
697 * ctf_type_lookup(). This is later processed by dtrace_dof_create()
698 * and turned into a reference into the string table so that we can
699 * get the type information when we process the data after the fact. In
700 * the case where we are referring to userland CTF data, we also need to
701 * to identify which ctf container in question we care about and encode
702 * that within the name.
665 * get the type information when we process the data after the fact.
703 */
704 if (dnp->dn_ident->di_id == DT_ACT_PRINT) {
705 dt_node_t *dret;
706 size_t n;
707 dt_module_t *dmp;

709 dret = yypcb->pcb_dret;
710 dmp = dt_module_lookup_by_ctf(dtp, dret->dn_ctfp);

712 if (dmp->dm_pid != 0) {
713 ctflib = dt_module_getlibid(dtp, dmp, dret->dn_ctfp);
714 assert(ctflib >= 0);
715 n = snprintf(NULL, 0, "%s‘%d‘%d", dmp->dm_name,
716 ctflib, dret->dn_type) + 1;
717 } else {
718 n = snprintf(NULL, 0, "%s‘%d", dmp->dm_name,
719 dret->dn_type) + 1;
720 }
675 n = snprintf(NULL, 0, "%s‘%d", dmp->dm_name, dret->dn_type) + 1;
721 sdp->dtsd_strdata = dt_alloc(dtp, n);
722 if (sdp->dtsd_strdata == NULL)
723 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
724 if (dmp->dm_pid != 0) {
725 (void) snprintf(sdp->dtsd_strdata, n, "%s‘%d‘%d",
726 dmp->dm_name, ctflib, dret->dn_type);
727 } else {
728 (void) snprintf(sdp->dtsd_strdata, n, "%s‘%d",
729 dmp->dm_name, dret->dn_type);
730 }
679 (void) snprintf(sdp->dtsd_strdata, n, "%s‘%d", dmp->dm_name,
680 dret->dn_type);

new/usr/src/lib/libdtrace/common/dt_cc.c 4

731 }

733 ap->dtad_difo = dt_as(yypcb);
734 ap->dtad_kind = DTRACEACT_DIFEXPR;
735 }

______unchanged_portion_omitted_

new/usr/src/lib/libdtrace/common/dt_decl.c 1

**
 31338 Tue Jan 14 16:48:51 2014
new/usr/src/lib/libdtrace/common/dt_decl.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2013 Joyent, Inc. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
26 */

28 #include <strings.h>
29 #include <stdlib.h>
30 #include <limits.h>
31 #include <alloca.h>
32 #include <assert.h>

34 #include <dt_decl.h>
35 #include <dt_parser.h>
36 #include <dt_module.h>
37 #include <dt_impl.h>

39 static dt_decl_t *
40 dt_decl_check(dt_decl_t *ddp)
41 {
42 if (ddp->dd_kind == CTF_K_UNKNOWN)
43 return (ddp); /* nothing to check if the type is not yet set */

45 if (ddp->dd_name != NULL && strcmp(ddp->dd_name, "char") == 0 &&
46 (ddp->dd_attr & (DT_DA_SHORT | DT_DA_LONG | DT_DA_LONGLONG))) {
47 xyerror(D_DECL_CHARATTR, "invalid type declaration: short and "
48 "long may not be used with char type\n");
49 }

51 if (ddp->dd_name != NULL && strcmp(ddp->dd_name, "void") == 0 &&
52 (ddp->dd_attr & (DT_DA_SHORT | DT_DA_LONG | DT_DA_LONGLONG |
53 (DT_DA_SIGNED | DT_DA_UNSIGNED)))) {
54 xyerror(D_DECL_VOIDATTR, "invalid type declaration: attributes "
55 "may not be used with void type\n");

new/usr/src/lib/libdtrace/common/dt_decl.c 2

56 }

58 if (ddp->dd_kind != CTF_K_INTEGER &&
59 (ddp->dd_attr & (DT_DA_SIGNED | DT_DA_UNSIGNED))) {
60 xyerror(D_DECL_SIGNINT, "invalid type declaration: signed and "
61 "unsigned may only be used with integer type\n");
62 }

64 if (ddp->dd_kind != CTF_K_INTEGER && ddp->dd_kind != CTF_K_FLOAT &&
65 (ddp->dd_attr & (DT_DA_LONG | DT_DA_LONGLONG))) {
66 xyerror(D_DECL_LONGINT, "invalid type declaration: long and "
67 "long long may only be used with integer or "
68 "floating-point type\n");
69 }

71 return (ddp);
72 }

______unchanged_portion_omitted_

689 void
690 dt_decl_enumerator(char *s, dt_node_t *dnp)
691 {
692 dt_scope_t *dsp = yypcb->pcb_dstack.ds_next;
693 dtrace_hdl_t *dtp = yypcb->pcb_hdl;

695 dt_idnode_t *inp;
696 dt_ident_t *idp;
697 char *name;
698 int value;

700 name = strdupa(s);
701 free(s);

703 if (dsp == NULL)
704 longjmp(yypcb->pcb_jmpbuf, EDT_NOSCOPE);

706 assert(dsp->ds_decl->dd_kind == CTF_K_ENUM);
707 value = dsp->ds_enumval + 1; /* default is previous value plus one */

709 if (strchr(name, ’‘’) != NULL) {
710 xyerror(D_DECL_SCOPE, "D scoping operator may not be used in "
711 "an enumerator name (%s)\n", name);
712 }

714 /*
715 * If the enumerator is being assigned a value, cook and check the node
716 * and then free it after we get the value. We also permit references
717 * to identifiers which are previously defined enumerators in the type.
718 */
719 if (dnp != NULL) {
720 if (dnp->dn_kind != DT_NODE_IDENT || ctf_enum_value(
721 dsp->ds_ctfp, dsp->ds_type, dnp->dn_string, &value) != 0) {
722 dnp = dt_node_cook(dnp, DT_IDFLG_REF);

724 if (dnp->dn_kind != DT_NODE_INT) {
725 xyerror(D_DECL_ENCONST, "enumerator ’%s’ must "
726 "be assigned to an integral constant "
727 "expression\n", name);
728 }

730 if ((intmax_t)dnp->dn_value > INT_MAX ||
731 (intmax_t)dnp->dn_value < INT_MIN) {
732 xyerror(D_DECL_ENOFLOW, "enumerator ’%s’ value "
733 "overflows INT_MAX (%d)\n", name, INT_MAX);
734 }

new/usr/src/lib/libdtrace/common/dt_decl.c 3

736 value = (int)dnp->dn_value;
737 }
738 dt_node_free(dnp);
739 }

741 if (ctf_add_enumerator(dsp->ds_ctfp, dsp->ds_type,
742 name, value) == CTF_ERR || ctf_update(dsp->ds_ctfp) == CTF_ERR) {
743 xyerror(D_UNKNOWN, "failed to define enumerator ’%s’: %s\n",
744 name, ctf_errmsg(ctf_errno(dsp->ds_ctfp)));
745 }

747 dsp->ds_enumval = value; /* save most recent value */

749 /*
750 * If the enumerator name matches an identifier in the global scope,
751 * flag this as an error. We only do this for "D" enumerators to
752 * prevent "C" header file enumerators from conflicting with the ever-
753 * growing list of D built-in global variables and inlines. If a "C"
754 * enumerator conflicts with a global identifier, we add the enumerator
755 * but do not insert a corresponding inline (i.e. the D variable wins).
756 */
757 if (dt_idstack_lookup(&yypcb->pcb_globals, name) != NULL) {
758 if (dsp->ds_ctfp == dtp->dt_ddefs->dm_ctfp) {
759 xyerror(D_DECL_IDRED,
760 "identifier redeclared: %s\n", name);
761 } else
762 return;
763 }

765 dt_dprintf("add global enumerator %s = %d\n", name, value);

767 idp = dt_idhash_insert(dtp->dt_globals, name, DT_IDENT_ENUM,
768 DT_IDFLG_INLINE | DT_IDFLG_REF, 0, _dtrace_defattr, 0,
769 &dt_idops_inline, NULL, dtp->dt_gen);

771 if (idp == NULL)
772 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

774 yyintprefix = 0;
775 yyintsuffix[0] = ’\0’;
776 yyintdecimal = 0;

778 dnp = dt_node_int(value);
779 dt_node_type_assign(dnp, dsp->ds_ctfp, dsp->ds_type, B_FALSE);
778 dt_node_type_assign(dnp, dsp->ds_ctfp, dsp->ds_type);

781 if ((inp = malloc(sizeof (dt_idnode_t))) == NULL)
782 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

784 /*
785 * Remove the INT node from the node allocation list and store it in
786 * din_list and din_root so it persists with and is freed by the ident.
787 */
788 assert(yypcb->pcb_list == dnp);
789 yypcb->pcb_list = dnp->dn_link;
790 dnp->dn_link = NULL;

792 bzero(inp, sizeof (dt_idnode_t));
793 inp->din_list = dnp;
794 inp->din_root = dnp;

796 idp->di_iarg = inp;
797 idp->di_ctfp = dsp->ds_ctfp;
798 idp->di_type = dsp->ds_type;
799 }

new/usr/src/lib/libdtrace/common/dt_decl.c 4

801 /*
802 * Look up the type corresponding to the specified decl stack. The scoping of
803 * the underlying type names is handled by dt_type_lookup(). We build up the
804 * name from the specified string and prefixes and then lookup the type. If
805 * we fail, an errmsg is saved and the caller must abort with EDT_COMPILER.
806 */
807 int
808 dt_decl_type(dt_decl_t *ddp, dtrace_typeinfo_t *tip)
809 {
810 dtrace_hdl_t *dtp = yypcb->pcb_hdl;

812 dt_module_t *dmp;
813 ctf_arinfo_t r;
814 ctf_id_t type;

816 char n[DT_TYPE_NAMELEN];
817 uint_t flag;
818 char *name;
819 int rv;

821 tip->dtt_flags = 0;

823 #endif /* ! codereview */
824 /*
825 * Based on our current #include depth and decl stack depth, determine
826 * which dynamic CTF module and scope to use when adding any new types.
827 */
828 dmp = yypcb->pcb_idepth ? dtp->dt_cdefs : dtp->dt_ddefs;
829 flag = yypcb->pcb_dstack.ds_next ? CTF_ADD_NONROOT : CTF_ADD_ROOT;

831 if (ddp->dd_attr & DT_DA_USER)
832 tip->dtt_flags = DTT_FL_USER;

834 #endif /* ! codereview */
835 /*
836 * If we have already cached a CTF type for this decl, then we just
837 * return the type information for the cached type.
838 */
839 if (ddp->dd_ctfp != NULL &&
840 (dmp = dt_module_lookup_by_ctf(dtp, ddp->dd_ctfp)) != NULL) {
841 tip->dtt_object = dmp->dm_name;
842 tip->dtt_ctfp = ddp->dd_ctfp;
843 tip->dtt_type = ddp->dd_type;
844 return (0);
845 }

847 /*
848 * Currently CTF treats all function pointers identically. We cache a
849 * representative ID of kind CTF_K_FUNCTION and just return that type.
850 * If we want to support full function declarations, dd_next refers to
851 * the declaration of the function return type, and the parameter list
852 * should be parsed and hung off a new pointer inside of this decl.
853 */
854 if (ddp->dd_kind == CTF_K_FUNCTION) {
855 tip->dtt_object = dtp->dt_ddefs->dm_name;
856 tip->dtt_ctfp = DT_FUNC_CTFP(dtp);
857 tip->dtt_type = DT_FUNC_TYPE(dtp);
858 return (0);
859 }

861 /*
862 * If the decl is a pointer, resolve the rest of the stack by calling
863 * dt_decl_type() recursively and then compute a pointer to the result.
864 * Similar to the code above, we return a cached id for function ptrs.
865 */
866 if (ddp->dd_kind == CTF_K_POINTER) {

new/usr/src/lib/libdtrace/common/dt_decl.c 5

867 if (ddp->dd_next->dd_kind == CTF_K_FUNCTION) {
868 tip->dtt_object = dtp->dt_ddefs->dm_name;
869 tip->dtt_ctfp = DT_FPTR_CTFP(dtp);
870 tip->dtt_type = DT_FPTR_TYPE(dtp);
871 return (0);
872 }

874 if ((rv = dt_decl_type(ddp->dd_next, tip)) == 0 &&
875 (rv = dt_type_pointer(tip)) != 0) {
876 xywarn(D_UNKNOWN, "cannot find type: %s*: %s\n",
877 dt_type_name(tip->dtt_ctfp, tip->dtt_type,
878 n, sizeof (n)), ctf_errmsg(dtp->dt_ctferr));
879 }

881 return (rv);
882 }

884 /*
885 * If the decl is an array, we must find the base type and then call
886 * dt_decl_type() recursively and then build an array of the result.
887 * The C and D multi-dimensional array syntax requires that consecutive
888 * array declarations be processed from right-to-left (i.e. top-down
889 * from the perspective of the declaration stack). For example, an
890 * array declaration such as int x[3][5] is stored on the stack as:
891 *
892 * (bottom) NULL <- (INT "int") <- (ARR [3]) <- (ARR [5]) (top)
893 *
894 * but means that x is declared to be an array of 3 objects each of
895 * which is an array of 5 integers, or in CTF representation:
896 *
897 * type T1:(content=int, nelems=5) type T2:(content=T1, nelems=3)
898 *
899 * For more details, refer to K&R[5.7] and ISO C 6.5.2.1. Rather than
900 * overcomplicate the implementation of dt_decl_type(), we push array
901 * declarations down into the stack in dt_decl_array(), above, so that
902 * by the time dt_decl_type() is called, the decl stack looks like:
903 *
904 * (bottom) NULL <- (INT "int") <- (ARR [5]) <- (ARR [3]) (top)
905 *
906 * which permits a straightforward recursive descent of the decl stack
907 * to build the corresponding CTF type tree in the appropriate order.
908 */
909 if (ddp->dd_kind == CTF_K_ARRAY) {
910 /*
911 * If the array decl has a parameter list associated with it,
912 * this is an associative array declaration: return <DYN>.
913 */
914 if (ddp->dd_node != NULL &&
915 ddp->dd_node->dn_kind == DT_NODE_TYPE) {
916 tip->dtt_object = dtp->dt_ddefs->dm_name;
917 tip->dtt_ctfp = DT_DYN_CTFP(dtp);
918 tip->dtt_type = DT_DYN_TYPE(dtp);
919 return (0);
920 }

922 if ((rv = dt_decl_type(ddp->dd_next, tip)) != 0)
923 return (rv);

925 /*
926 * If the array base type is not defined in the target
927 * container or its parent, copy the type to the target
928 * container and reset dtt_ctfp and dtt_type to the copy.
929 */
930 if (tip->dtt_ctfp != dmp->dm_ctfp &&
931 tip->dtt_ctfp != ctf_parent_file(dmp->dm_ctfp)) {

new/usr/src/lib/libdtrace/common/dt_decl.c 6

933 tip->dtt_type = ctf_add_type(dmp->dm_ctfp,
934 tip->dtt_ctfp, tip->dtt_type);
935 tip->dtt_ctfp = dmp->dm_ctfp;

937 if (tip->dtt_type == CTF_ERR ||
938 ctf_update(tip->dtt_ctfp) == CTF_ERR) {
939 xywarn(D_UNKNOWN, "failed to copy type: %s\n",
940 ctf_errmsg(ctf_errno(tip->dtt_ctfp)));
941 return (-1);
942 }
943 }

945 /*
946 * The array index type is irrelevant in C and D: just set it
947 * to "long" for all array types that we create on-the-fly.
948 */
949 r.ctr_contents = tip->dtt_type;
950 r.ctr_index = ctf_lookup_by_name(tip->dtt_ctfp, "long");
951 r.ctr_nelems = ddp->dd_node ?
952 (uint_t)ddp->dd_node->dn_value : 0;

954 tip->dtt_object = dmp->dm_name;
955 tip->dtt_ctfp = dmp->dm_ctfp;
956 tip->dtt_type = ctf_add_array(dmp->dm_ctfp, CTF_ADD_ROOT, &r);

958 if (tip->dtt_type == CTF_ERR ||
959 ctf_update(tip->dtt_ctfp) == CTF_ERR) {
960 xywarn(D_UNKNOWN, "failed to create array type: %s\n",
961 ctf_errmsg(ctf_errno(tip->dtt_ctfp)));
962 return (-1);
963 }

965 return (0);
966 }

968 /*
969 * Allocate space for the type name and enough space for the maximum
970 * additional text ("unsigned long long \0" requires 20 more bytes).
971 */
972 name = alloca(ddp->dd_name ? strlen(ddp->dd_name) + 20 : 20);
973 name[0] = ’\0’;

975 switch (ddp->dd_kind) {
976 case CTF_K_INTEGER:
977 case CTF_K_FLOAT:
978 if (ddp->dd_attr & DT_DA_SIGNED)
979 (void) strcat(name, "signed ");
980 if (ddp->dd_attr & DT_DA_UNSIGNED)
981 (void) strcat(name, "unsigned ");
982 if (ddp->dd_attr & DT_DA_SHORT)
983 (void) strcat(name, "short ");
984 if (ddp->dd_attr & DT_DA_LONG)
985 (void) strcat(name, "long ");
986 if (ddp->dd_attr & DT_DA_LONGLONG)
987 (void) strcat(name, "long long ");
988 if (ddp->dd_attr == 0 && ddp->dd_name == NULL)
989 (void) strcat(name, "int");
990 break;
991 case CTF_K_STRUCT:
992 (void) strcpy(name, "struct ");
993 break;
994 case CTF_K_UNION:
995 (void) strcpy(name, "union ");
996 break;
997 case CTF_K_ENUM:
998 (void) strcpy(name, "enum ");

new/usr/src/lib/libdtrace/common/dt_decl.c 7

999 break;
1000 case CTF_K_TYPEDEF:
1001 break;
1002 default:
1003 xywarn(D_UNKNOWN, "internal error -- "
1004 "bad decl kind %u\n", ddp->dd_kind);
1005 return (-1);
1006 }

1008 /*
1009 * Add dd_name unless a short, long, or long long is explicitly
1010 * suffixed by int. We use the C/CTF canonical names for integers.
1011 */
1012 if (ddp->dd_name != NULL && (ddp->dd_kind != CTF_K_INTEGER ||
1013 (ddp->dd_attr & (DT_DA_SHORT | DT_DA_LONG | DT_DA_LONGLONG)) == 0))
1014 (void) strcat(name, ddp->dd_name);

1016 /*
1017 * Lookup the type. If we find it, we’re done. Otherwise create a
1018 * forward tag for the type if it is a struct, union, or enum. If
1019 * we can’t find it and we can’t create a tag, return failure.
1020 */
1021 if ((rv = dt_type_lookup(name, tip)) == 0)
1022 return (rv);

1024 switch (ddp->dd_kind) {
1025 case CTF_K_STRUCT:
1026 case CTF_K_UNION:
1027 case CTF_K_ENUM:
1028 type = ctf_add_forward(dmp->dm_ctfp, flag,
1029 ddp->dd_name, ddp->dd_kind);
1030 break;
1031 default:
1032 xywarn(D_UNKNOWN, "failed to resolve type %s: %s\n", name,
1033 dtrace_errmsg(dtp, dtrace_errno(dtp)));
1034 return (rv);
1035 }

1037 if (type == CTF_ERR || ctf_update(dmp->dm_ctfp) == CTF_ERR) {
1038 xywarn(D_UNKNOWN, "failed to add forward tag for %s: %s\n",
1039 name, ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1040 return (-1);
1041 }

1043 ddp->dd_ctfp = dmp->dm_ctfp;
1044 ddp->dd_type = type;

1046 tip->dtt_object = dmp->dm_name;
1047 tip->dtt_ctfp = dmp->dm_ctfp;
1048 tip->dtt_type = type;

1050 return (0);
1051 }

1053 void
1054 dt_scope_create(dt_scope_t *dsp)
1055 {
1056 dsp->ds_decl = NULL;
1057 dsp->ds_next = NULL;
1058 dsp->ds_ident = NULL;
1059 dsp->ds_ctfp = NULL;
1060 dsp->ds_type = CTF_ERR;
1061 dsp->ds_class = DT_DC_DEFAULT;
1062 dsp->ds_enumval = -1;
1063 }

new/usr/src/lib/libdtrace/common/dt_decl.c 8

1065 void
1066 dt_scope_destroy(dt_scope_t *dsp)
1067 {
1068 dt_scope_t *nsp;

1070 for (; dsp != NULL; dsp = nsp) {
1071 dt_decl_free(dsp->ds_decl);
1072 free(dsp->ds_ident);
1073 nsp = dsp->ds_next;
1074 if (dsp != &yypcb->pcb_dstack)
1075 free(dsp);
1076 }
1077 }

1079 void
1080 dt_scope_push(ctf_file_t *ctfp, ctf_id_t type)
1081 {
1082 dt_scope_t *rsp = &yypcb->pcb_dstack;
1083 dt_scope_t *dsp = malloc(sizeof (dt_scope_t));

1085 if (dsp == NULL)
1086 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

1088 dsp->ds_decl = rsp->ds_decl;
1089 dsp->ds_next = rsp->ds_next;
1090 dsp->ds_ident = rsp->ds_ident;
1091 dsp->ds_ctfp = ctfp;
1092 dsp->ds_type = type;
1093 dsp->ds_class = rsp->ds_class;
1094 dsp->ds_enumval = rsp->ds_enumval;

1096 dt_scope_create(rsp);
1097 rsp->ds_next = dsp;
1098 }

1100 dt_decl_t *
1101 dt_scope_pop(void)
1102 {
1103 dt_scope_t *rsp = &yypcb->pcb_dstack;
1104 dt_scope_t *dsp = rsp->ds_next;

1106 if (dsp == NULL)
1107 longjmp(yypcb->pcb_jmpbuf, EDT_NOSCOPE);

1109 if (dsp->ds_ctfp != NULL && ctf_update(dsp->ds_ctfp) == CTF_ERR) {
1110 xyerror(D_UNKNOWN, "failed to update type definitions: %s\n",
1111 ctf_errmsg(ctf_errno(dsp->ds_ctfp)));
1112 }

1114 dt_decl_free(rsp->ds_decl);
1115 free(rsp->ds_ident);

1117 rsp->ds_decl = dsp->ds_decl;
1118 rsp->ds_next = dsp->ds_next;
1119 rsp->ds_ident = dsp->ds_ident;
1120 rsp->ds_ctfp = dsp->ds_ctfp;
1121 rsp->ds_type = dsp->ds_type;
1122 rsp->ds_class = dsp->ds_class;
1123 rsp->ds_enumval = dsp->ds_enumval;

1125 free(dsp);
1126 return (rsp->ds_decl);
1127 }

new/usr/src/lib/libdtrace/common/dt_decl.h 1

**
 4559 Tue Jan 14 16:48:52 2014
new/usr/src/lib/libdtrace/common/dt_decl.h
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright (c) 2013 by Delphix. All rights reserved.
28 * Copyright (c) 2013 Joyent, Inc. All rights reserved.
29 */
30 #endif /* ! codereview */

32 #ifndef _DT_DECL_H
33 #define _DT_DECL_H

26 #pragma ident "%Z%%M% %I% %E% SMI"

35 #include <sys/types.h>
36 #include <libctf.h>
37 #include <dtrace.h>
38 #include <stdio.h>

40 #ifdef __cplusplus
41 extern "C" {
42 #endif

44 struct dt_node; /* forward declaration of dt_node_t */

46 typedef struct dt_decl {
47 ushort_t dd_kind; /* declaration kind (CTF_K_* kind) */
48 ushort_t dd_attr; /* attributes (DT_DA_* flags) */
49 ctf_file_t *dd_ctfp; /* CTF container for decl’s type */
50 ctf_id_t dd_type; /* CTF identifier for decl’s type */
51 char *dd_name; /* string name of this decl (or NULL) */
52 struct dt_node *dd_node; /* node for array size or parm list */
53 struct dt_decl *dd_next; /* next declaration in list */
54 } dt_decl_t;

new/usr/src/lib/libdtrace/common/dt_decl.h 2

56 #define DT_DA_SIGNED 0x0001 /* signed integer value */
57 #define DT_DA_UNSIGNED 0x0002 /* unsigned integer value */
58 #define DT_DA_SHORT 0x0004 /* short integer value */
59 #define DT_DA_LONG 0x0008 /* long integer or double */
60 #define DT_DA_LONGLONG 0x0010 /* long long integer value */
61 #define DT_DA_CONST 0x0020 /* qualify type as const */
62 #define DT_DA_RESTRICT 0x0040 /* qualify type as restrict */
63 #define DT_DA_VOLATILE 0x0080 /* qualify type as volatile */
64 #define DT_DA_PAREN 0x0100 /* parenthesis tag */
65 #define DT_DA_USER 0x0200 /* user-land type specifier */
66 #endif /* ! codereview */

68 typedef enum dt_dclass {
69 DT_DC_DEFAULT, /* no storage class specified */
70 DT_DC_AUTO, /* automatic storage */
71 DT_DC_REGISTER, /* register storage */
72 DT_DC_STATIC, /* static storage */
73 DT_DC_EXTERN, /* extern storage */
74 DT_DC_TYPEDEF, /* type definition */
75 DT_DC_SELF, /* thread-local storage */
76 DT_DC_THIS /* clause-local storage */
77 } dt_dclass_t;

79 typedef struct dt_scope {
80 dt_decl_t *ds_decl; /* pointer to top of decl stack */
81 struct dt_scope *ds_next; /* pointer to next scope */
82 char *ds_ident; /* identifier for this scope (if any) */
83 ctf_file_t *ds_ctfp; /* CTF container for this scope */
84 ctf_id_t ds_type; /* CTF id of enclosing type */
85 dt_dclass_t ds_class; /* declaration class for this scope */
86 int ds_enumval; /* most recent enumerator value */
87 } dt_scope_t;

89 extern dt_decl_t *dt_decl_alloc(ushort_t, char *);
90 extern void dt_decl_free(dt_decl_t *);
91 extern void dt_decl_reset(void);
92 extern dt_decl_t *dt_decl_push(dt_decl_t *);
93 extern dt_decl_t *dt_decl_pop(void);
94 extern dt_decl_t *dt_decl_pop_param(char **);
95 extern dt_decl_t *dt_decl_top(void);

97 extern dt_decl_t *dt_decl_ident(char *);
98 extern void dt_decl_class(dt_dclass_t);

100 #define DT_DP_VARARGS 0x1 /* permit varargs in prototype */
101 #define DT_DP_DYNAMIC 0x2 /* permit dynamic type in prototype */
102 #define DT_DP_VOID 0x4 /* permit void type in prototype */
103 #define DT_DP_ANON 0x8 /* permit anonymous parameters */

105 extern int dt_decl_prototype(struct dt_node *, struct dt_node *,
106 const char *, uint_t);

108 extern dt_decl_t *dt_decl_spec(ushort_t, char *);
109 extern dt_decl_t *dt_decl_attr(ushort_t);
110 extern dt_decl_t *dt_decl_array(struct dt_node *);
111 extern dt_decl_t *dt_decl_func(dt_decl_t *, struct dt_node *);
112 extern dt_decl_t *dt_decl_ptr(void);

114 extern dt_decl_t *dt_decl_sou(uint_t, char *);
115 extern void dt_decl_member(struct dt_node *);

117 extern dt_decl_t *dt_decl_enum(char *);
118 extern void dt_decl_enumerator(char *, struct dt_node *);

120 extern int dt_decl_type(dt_decl_t *, dtrace_typeinfo_t *);

new/usr/src/lib/libdtrace/common/dt_decl.h 3

122 extern void dt_scope_create(dt_scope_t *);
123 extern void dt_scope_destroy(dt_scope_t *);
124 extern void dt_scope_push(ctf_file_t *, ctf_id_t);
125 extern dt_decl_t *dt_scope_pop(void);

127 #ifdef __cplusplus
128 }
129 #endif

131 #endif /* _DT_DECL_H */

new/usr/src/lib/libdtrace/common/dt_dis.c 1

**
 15006 Tue Jan 14 16:48:52 2014
new/usr/src/lib/libdtrace/common/dt_dis.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */

23 /*
24 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */

28 /*
29 * Copyright (c) 2013 by Delphix. All rights reserved.
30 * Copyright (c) 2013 Joyent, Inc. All rights reserved.
29 * Copyright (c) 2012 by Delphix. All rights reserved.
31 */

33 #include <strings.h>
34 #include <stdio.h>

36 #include <dt_impl.h>
37 #include <dt_ident.h>

39 /*ARGSUSED*/
40 static void
41 dt_dis_log(const dtrace_difo_t *dp, const char *name, dif_instr_t in, FILE *fp)
42 {
43 (void) fprintf(fp, "%-4s %%r%u, %%r%u, %%r%u", name,
44 DIF_INSTR_R1(in), DIF_INSTR_R2(in), DIF_INSTR_RD(in));
45 }

______unchanged_portion_omitted_

253 static char *
254 dt_dis_typestr(const dtrace_diftype_t *t, char *buf, size_t len)
255 {
256 char kind[16], ckind[16];

258 switch (t->dtdt_kind) {
259 case DIF_TYPE_CTF:
260 (void) strcpy(kind, "D type");

new/usr/src/lib/libdtrace/common/dt_dis.c 2

261 break;
262 case DIF_TYPE_STRING:
263 (void) strcpy(kind, "string");
264 break;
265 default:
266 (void) snprintf(kind, sizeof (kind), "0x%x", t->dtdt_kind);
267 }

269 switch (t->dtdt_ckind) {
270 case CTF_K_UNKNOWN:
271 (void) strcpy(ckind, "unknown");
272 break;
273 case CTF_K_INTEGER:
274 (void) strcpy(ckind, "integer");
275 break;
276 case CTF_K_FLOAT:
277 (void) strcpy(ckind, "float");
278 break;
279 case CTF_K_POINTER:
280 (void) strcpy(ckind, "pointer");
281 break;
282 case CTF_K_ARRAY:
283 (void) strcpy(ckind, "array");
284 break;
285 case CTF_K_FUNCTION:
286 (void) strcpy(ckind, "function");
287 break;
288 case CTF_K_STRUCT:
289 (void) strcpy(ckind, "struct");
290 break;
291 case CTF_K_UNION:
292 (void) strcpy(ckind, "union");
293 break;
294 case CTF_K_ENUM:
295 (void) strcpy(ckind, "enum");
296 break;
297 case CTF_K_FORWARD:
298 (void) strcpy(ckind, "forward");
299 break;
300 case CTF_K_TYPEDEF:
301 (void) strcpy(ckind, "typedef");
302 break;
303 case CTF_K_VOLATILE:
304 (void) strcpy(ckind, "volatile");
305 break;
306 case CTF_K_CONST:
307 (void) strcpy(ckind, "const");
308 break;
309 case CTF_K_RESTRICT:
310 (void) strcpy(ckind, "restrict");
311 break;
312 default:
313 (void) snprintf(ckind, sizeof (ckind), "0x%x", t->dtdt_ckind);
314 }

316 if (t->dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF)) {
317 (void) snprintf(buf, len, "%s (%s) by %sref (size %lu)",
318 kind, ckind, (t->dtdt_flags & DIF_TF_BYUREF) ? "user " : "",
319 (ulong_t)t->dtdt_size);
315 if (t->dtdt_flags & DIF_TF_BYREF) {
316 (void) snprintf(buf, len, "%s (%s) by ref (size %lu)",
317 kind, ckind, (ulong_t)t->dtdt_size);
320 } else {
321 (void) snprintf(buf, len, "%s (%s) (size %lu)",
322 kind, ckind, (ulong_t)t->dtdt_size);
323 }

new/usr/src/lib/libdtrace/common/dt_dis.c 3

325 return (buf);
326 }

______unchanged_portion_omitted_

new/usr/src/lib/libdtrace/common/dt_error.c 1

**
 7980 Tue Jan 14 16:48:53 2014
new/usr/src/lib/libdtrace/common/dt_error.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_
39 { EDT_VERSION, "Client requested version newer than library" },
40 { EDT_VERSINVAL, "Version is not properly formatted or is too large" },
41 { EDT_VERSUNDEF, "Requested version is not supported by compiler" },
42 { EDT_VERSREDUCED, "Requested version conflicts with earlier setting" },
43 { EDT_CTF, "Unexpected libctf error" },
44 { EDT_COMPILER, "Error in D program compilation" },
45 { EDT_NOTUPREG, "Insufficient tuple registers to generate code" },
46 { EDT_NOMEM, "Memory allocation failure" },
47 { EDT_INT2BIG, "Integer constant table limit exceeded" },
48 { EDT_STR2BIG, "String constant table limit exceeded" },
49 { EDT_NOMOD, "Unknown module name" },
50 { EDT_NOPROV, "Unknown provider name" },
51 { EDT_NOPROBE, "No probe matches description" },
52 { EDT_NOSYM, "Unknown symbol name" },
53 { EDT_NOSYMADDR, "No symbol corresponds to address" },
54 { EDT_NOTYPE, "Unknown type name" },
55 { EDT_NOVAR, "Unknown variable name" },
56 { EDT_NOAGG, "Unknown aggregation name" },
57 { EDT_BADSCOPE, "Improper use of scoping operator in type name" },
58 { EDT_BADSPEC, "Overspecified probe description" },
59 { EDT_BADSPCV, "Undefined macro variable in probe description" },
60 { EDT_BADID, "Unknown probe identifier" },
61 { EDT_NOTLOADED, "Module is no longer loaded" },
62 { EDT_NOCTF, "Module does not contain any CTF data" },
63 { EDT_DATAMODEL, "Module and program data models do not match" },
64 { EDT_DIFVERS, "Library uses newer DIF version than kernel" },
65 { EDT_BADAGG, "Unknown aggregating action" },
66 { EDT_FIO, "Error occurred while reading from input stream" },
67 { EDT_DIFINVAL, "DIF program content is invalid" },
68 { EDT_DIFSIZE, "DIF program exceeds maximum program size" },
69 { EDT_DIFFAULT, "DIF program contains invalid pointer" },
70 { EDT_BADPROBE, "Invalid probe specification" },
71 { EDT_BADPGLOB, "Probe description has too many globbing characters" },
72 { EDT_NOSCOPE, "Declaration scope stack underflow" },
73 { EDT_NODECL, "Declaration stack underflow" },
74 { EDT_DMISMATCH, "Data record list does not match statement" },
75 { EDT_DOFFSET, "Data record offset exceeds buffer boundary" },
76 { EDT_DALIGN, "Data record has inappropriate alignment" },
77 { EDT_BADOPTNAME, "Invalid option name" },
78 { EDT_BADOPTVAL, "Invalid value for specified option" },
79 { EDT_BADOPTCTX, "Option cannot be used from within a D program" },
80 { EDT_CPPFORK, "Failed to fork preprocessor" },
81 { EDT_CPPEXEC, "Failed to exec preprocessor" },
82 { EDT_CPPENT, "Preprocessor not found" },
83 { EDT_CPPERR, "Preprocessor failed to process input program" },
84 { EDT_SYMOFLOW, "Symbol table identifier space exhausted" },
85 { EDT_ACTIVE, "Operation illegal when tracing is active" },
86 { EDT_DESTRUCTIVE, "Destructive actions not allowed" },
87 { EDT_NOANON, "No anonymous tracing state" },
88 { EDT_ISANON, "Can’t claim anonymous state and enable probes" },
89 { EDT_ENDTOOBIG, "END enablings exceed size of principal buffer" },
90 { EDT_NOCONV, "Failed to load type for printf conversion" },
91 { EDT_BADCONV, "Incomplete printf conversion" },
92 { EDT_BADERROR, "Invalid library ERROR action" },
93 { EDT_ERRABORT, "Abort due to error" },

new/usr/src/lib/libdtrace/common/dt_error.c 2

94 { EDT_DROPABORT, "Abort due to drop" },
95 { EDT_DIRABORT, "Abort explicitly directed" },
96 { EDT_BADRVAL, "Invalid return value from callback" },
97 { EDT_BADNORMAL, "Invalid normalization" },
98 { EDT_BUFTOOSMALL, "Enabling exceeds size of buffer" },
99 { EDT_BADTRUNC, "Invalid truncation" },
100 { EDT_BUSY, "DTrace cannot be used when kernel debugger is active" },
101 { EDT_ACCESS, "DTrace requires additional privileges" },
102 { EDT_NOENT, "DTrace device not available on system" },
103 { EDT_BRICKED, "Abort due to systemic unresponsiveness" },
104 { EDT_HARDWIRE, "Failed to load language definitions" },
105 { EDT_ELFVERSION, "libelf is out-of-date with respect to libdtrace" },
106 { EDT_NOBUFFERED, "Attempt to buffer output without handler" },
107 { EDT_UNSTABLE, "Description matched an unstable set of probes" },
108 { EDT_BADSETOPT, "Invalid setopt() library action" },
109 { EDT_BADSTACKPC, "Invalid stack program counter size" },
110 { EDT_BADAGGVAR, "Invalid aggregation variable identifier" },
111 { EDT_OVERSION, "Client requested deprecated version of library" },
112 { EDT_ENABLING_ERR, "Failed to enable probe" },
113 { EDT_NOPROBES, "No probe sites found for declared provider" },
114 { EDT_CANTLOAD, "Failed to load module" },
113 { EDT_NOPROBES, "No probe sites found for declared provider" }
115 };

______unchanged_portion_omitted_

new/usr/src/lib/libdtrace/common/dt_grammar.y 1

**
 22377 Tue Jan 14 16:48:53 2014
new/usr/src/lib/libdtrace/common/dt_grammar.y
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 %{
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License, Version 1.0 only
7 * (the "License"). You may not use this file except in compliance
8 * with the License.
9 *

10 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
11 * or http://www.opensolaris.org/os/licensing.
12 * See the License for the specific language governing permissions
13 * and limitations under the License.
14 *
15 * When distributing Covered Code, include this CDDL HEADER in each
16 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
17 * If applicable, add the following below this CDDL HEADER, with the
18 * fields enclosed by brackets "[]" replaced with your own identifying
19 * information: Portions Copyright [yyyy] [name of copyright owner]
20 *
21 * CDDL HEADER END
22 *
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright (c) 2013 by Delphix. All rights reserved.
28 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
29 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

31 #include <dt_impl.h>

33 #define OP1(op, c) dt_node_op1(op, c)
34 #define OP2(op, l, r) dt_node_op2(op, l, r)
35 #define OP3(x, y, z) dt_node_op3(x, y, z)
36 #define LINK(l, r) dt_node_link(l, r)
37 #define DUP(s) strdup(s)

39 %}

41 %union {
42 dt_node_t *l_node;
43 dt_decl_t *l_decl;
44 char *l_str;
45 uintmax_t l_int;
46 int l_tok;
47 }

49 %token DT_TOK_COMMA DT_TOK_ELLIPSIS
50 %token DT_TOK_ASGN DT_TOK_ADD_EQ DT_TOK_SUB_EQ DT_TOK_MUL_EQ
51 %token DT_TOK_DIV_EQ DT_TOK_MOD_EQ DT_TOK_AND_EQ DT_TOK_XOR_EQ DT_TOK_OR_EQ
52 %token DT_TOK_LSH_EQ DT_TOK_RSH_EQ DT_TOK_QUESTION DT_TOK_COLON
53 %token DT_TOK_LOR DT_TOK_LXOR DT_TOK_LAND
54 %token DT_TOK_BOR DT_TOK_XOR DT_TOK_BAND DT_TOK_EQU DT_TOK_NEQ

new/usr/src/lib/libdtrace/common/dt_grammar.y 2

55 %token DT_TOK_LT DT_TOK_LE DT_TOK_GT DT_TOK_GE DT_TOK_LSH DT_TOK_RSH
56 %token DT_TOK_ADD DT_TOK_SUB DT_TOK_MUL DT_TOK_DIV DT_TOK_MOD
57 %token DT_TOK_LNEG DT_TOK_BNEG DT_TOK_ADDADD DT_TOK_SUBSUB
58 %token DT_TOK_PREINC DT_TOK_POSTINC DT_TOK_PREDEC DT_TOK_POSTDEC
59 %token DT_TOK_IPOS DT_TOK_INEG DT_TOK_DEREF DT_TOK_ADDROF
60 %token DT_TOK_OFFSETOF DT_TOK_SIZEOF DT_TOK_STRINGOF DT_TOK_XLATE
61 %token DT_TOK_LPAR DT_TOK_RPAR DT_TOK_LBRAC DT_TOK_RBRAC DT_TOK_PTR DT_TOK_DOT

63 %token <l_str> DT_TOK_STRING
64 %token <l_str> DT_TOK_IDENT
65 %token <l_str> DT_TOK_PSPEC
66 %token <l_str> DT_TOK_AGG
67 %token <l_str> DT_TOK_TNAME
68 %token <l_int> DT_TOK_INT

70 %token DT_KEY_AUTO
71 %token DT_KEY_BREAK
72 %token DT_KEY_CASE
73 %token DT_KEY_CHAR
74 %token DT_KEY_CONST
75 %token DT_KEY_CONTINUE
76 %token DT_KEY_COUNTER
77 %token DT_KEY_DEFAULT
78 %token DT_KEY_DO
79 %token DT_KEY_DOUBLE
80 %token DT_KEY_ELSE
81 %token DT_KEY_ENUM
82 %token DT_KEY_EXTERN
83 %token DT_KEY_FLOAT
84 %token DT_KEY_FOR
85 %token DT_KEY_GOTO
86 %token DT_KEY_IF
87 %token DT_KEY_IMPORT
88 %token DT_KEY_INLINE
89 %token DT_KEY_INT
90 %token DT_KEY_LONG
91 %token DT_KEY_PROBE
92 %token DT_KEY_PROVIDER
93 %token DT_KEY_REGISTER
94 %token DT_KEY_RESTRICT
95 %token DT_KEY_RETURN
96 %token DT_KEY_SELF
97 %token DT_KEY_SHORT
98 %token DT_KEY_SIGNED
99 %token DT_KEY_STATIC
100 %token DT_KEY_STRING
101 %token DT_KEY_STRUCT
102 %token DT_KEY_SWITCH
103 %token DT_KEY_THIS
104 %token DT_KEY_TYPEDEF
105 %token DT_KEY_UNION
106 %token DT_KEY_UNSIGNED
107 %token DT_KEY_USERLAND
108 #endif /* ! codereview */
109 %token DT_KEY_VOID
110 %token DT_KEY_VOLATILE
111 %token DT_KEY_WHILE
112 %token DT_KEY_XLATOR

114 %token DT_TOK_EPRED
115 %token DT_CTX_DEXPR
116 %token DT_CTX_DPROG
117 %token DT_CTX_DTYPE
118 %token DT_TOK_EOF 0

120 %left DT_TOK_COMMA

new/usr/src/lib/libdtrace/common/dt_grammar.y 3

121 %right DT_TOK_ASGN DT_TOK_ADD_EQ DT_TOK_SUB_EQ DT_TOK_MUL_EQ DT_TOK_DIV_EQ
122 DT_TOK_MOD_EQ DT_TOK_AND_EQ DT_TOK_XOR_EQ DT_TOK_OR_EQ DT_TOK_LSH_EQ
123 DT_TOK_RSH_EQ
124 %left DT_TOK_QUESTION DT_TOK_COLON
125 %left DT_TOK_LOR
126 %left DT_TOK_LXOR
127 %left DT_TOK_LAND
128 %left DT_TOK_BOR
129 %left DT_TOK_XOR
130 %left DT_TOK_BAND
131 %left DT_TOK_EQU DT_TOK_NEQ
132 %left DT_TOK_LT DT_TOK_LE DT_TOK_GT DT_TOK_GE
133 %left DT_TOK_LSH DT_TOK_RSH
134 %left DT_TOK_ADD DT_TOK_SUB
135 %left DT_TOK_MUL DT_TOK_DIV DT_TOK_MOD
136 %right DT_TOK_LNEG DT_TOK_BNEG DT_TOK_ADDADD DT_TOK_SUBSUB
137 DT_TOK_IPOS DT_TOK_INEG
138 %right DT_TOK_DEREF DT_TOK_ADDROF DT_TOK_SIZEOF DT_TOK_STRINGOF DT_TOK_XLATE
139 %left DT_TOK_LPAR DT_TOK_RPAR DT_TOK_LBRAC DT_TOK_RBRAC DT_TOK_PTR DT_TOK_DOT

141 %type <l_node> d_expression
142 %type <l_node> d_program
143 %type <l_node> d_type

145 %type <l_node> translation_unit
146 %type <l_node> external_declaration
147 %type <l_node> inline_definition
148 %type <l_node> translator_definition
149 %type <l_node> translator_member_list
150 %type <l_node> translator_member
151 %type <l_node> provider_definition
152 %type <l_node> provider_probe_list
153 %type <l_node> provider_probe
154 %type <l_node> probe_definition
155 %type <l_node> probe_specifiers
156 %type <l_node> probe_specifier_list
157 %type <l_node> probe_specifier
158 %type <l_node> statement_list
159 %type <l_node> statement
160 %type <l_node> declaration
161 %type <l_node> init_declarator_list
162 %type <l_node> init_declarator

164 %type <l_decl> type_specifier
165 %type <l_decl> type_qualifier
166 %type <l_decl> struct_or_union_specifier
167 %type <l_decl> specifier_qualifier_list
168 %type <l_decl> enum_specifier
169 %type <l_decl> declarator
170 %type <l_decl> direct_declarator
171 %type <l_decl> pointer
172 %type <l_decl> type_qualifier_list
173 %type <l_decl> type_name
174 %type <l_decl> abstract_declarator
175 %type <l_decl> direct_abstract_declarator

177 %type <l_node> parameter_type_list
178 %type <l_node> parameter_list
179 %type <l_node> parameter_declaration

181 %type <l_node> array
182 %type <l_node> array_parameters
183 %type <l_node> function
184 %type <l_node> function_parameters

186 %type <l_node> expression

new/usr/src/lib/libdtrace/common/dt_grammar.y 4

187 %type <l_node> assignment_expression
188 %type <l_node> conditional_expression
189 %type <l_node> constant_expression
190 %type <l_node> logical_or_expression
191 %type <l_node> logical_xor_expression
192 %type <l_node> logical_and_expression
193 %type <l_node> inclusive_or_expression
194 %type <l_node> exclusive_or_expression
195 %type <l_node> and_expression
196 %type <l_node> equality_expression
197 %type <l_node> relational_expression
198 %type <l_node> shift_expression
199 %type <l_node> additive_expression
200 %type <l_node> multiplicative_expression
201 %type <l_node> cast_expression
202 %type <l_node> unary_expression
203 %type <l_node> postfix_expression
204 %type <l_node> primary_expression
205 %type <l_node> argument_expression_list

207 %type <l_tok> assignment_operator
208 %type <l_tok> unary_operator
209 %type <l_tok> struct_or_union

211 %%

213 dtrace_program: d_expression DT_TOK_EOF { return (dt_node_root($1)); }
214 | d_program DT_TOK_EOF { return (dt_node_root($1)); }
215 | d_type DT_TOK_EOF { return (dt_node_root($1)); }
216 ;

218 d_expression: DT_CTX_DEXPR { $$ = NULL; }
219 | DT_CTX_DEXPR expression { $$ = $2; }
220 ;

222 d_program: DT_CTX_DPROG { $$ = dt_node_program(NULL); }
223 | DT_CTX_DPROG translation_unit { $$ = dt_node_program($2); }
224 ;

226 d_type: DT_CTX_DTYPE { $$ = NULL; }
227 | DT_CTX_DTYPE type_name { $$ = (dt_node_t *)$2; }
228 ;

230 translation_unit:
231 external_declaration
232 | translation_unit external_declaration { $$ = LINK($1, $2); }
233 ;

235 external_declaration:
236 inline_definition
237 | translator_definition
238 | provider_definition
239 | probe_definition
240 | declaration
241 ;

243 inline_definition:
244 DT_KEY_INLINE declaration_specifiers declarator
245 { dt_scope_push(NULL, CTF_ERR); } DT_TOK_ASGN
246 assignment_expression ’;’ {
247 /*
248 * We push a new declaration scope before shifting the
249 * assignment_expression in order to preserve ds_class
250 * and ds_ident for use in dt_node_inline(). Once the
251 * entire inline_definition rule is matched, pop the
252 * scope and construct the inline using the saved decl.

new/usr/src/lib/libdtrace/common/dt_grammar.y 5

253 */
254 dt_scope_pop();
255 $$ = dt_node_inline($6);
256 }
257 ;

259 translator_definition:
260 DT_KEY_XLATOR type_name DT_TOK_LT type_name
261 DT_TOK_IDENT DT_TOK_GT ’{’ translator_member_list ’}’ ’;’ {
262 $$ = dt_node_xlator($2, $4, $5, $8);
263 }
264 | DT_KEY_XLATOR type_name DT_TOK_LT type_name
265 DT_TOK_IDENT DT_TOK_GT ’{’ ’}’ ’;’ {
266 $$ = dt_node_xlator($2, $4, $5, NULL);
267 }
268 ;

270 translator_member_list:
271 translator_member
272 | translator_member_list translator_member { $$ = LINK($1,$2); }
273 ;

275 translator_member:
276 DT_TOK_IDENT DT_TOK_ASGN assignment_expression ’;’ {
277 $$ = dt_node_member(NULL, $1, $3);
278 }
279 ;

281 provider_definition:
282 DT_KEY_PROVIDER DT_TOK_IDENT ’{’ provider_probe_list ’}’ ’;’ {
283 $$ = dt_node_provider($2, $4);
284 }
285 | DT_KEY_PROVIDER DT_TOK_IDENT ’{’ ’}’ ’;’ {
286 $$ = dt_node_provider($2, NULL);
287 }
288 ;

290 provider_probe_list:
291 provider_probe
292 | provider_probe_list provider_probe { $$ = LINK($1, $2); }
293 ;

295 provider_probe:
296 DT_KEY_PROBE DT_TOK_IDENT function DT_TOK_COLON function ’;’ {
297 $$ = dt_node_probe($2, 2, $3, $5);
298 }
299 | DT_KEY_PROBE DT_TOK_IDENT function ’;’ {
300 $$ = dt_node_probe($2, 1, $3, NULL);
301 }
302 ;
303

305 probe_definition:
306 probe_specifiers {
307 /*
308 * If the input stream is a file, do not permit a probe
309 * specification without / <pred> / or { <act> } after
310 * it. This can only occur if the next token is EOF or
311 * an ambiguous predicate was slurped up as a comment.
312 * We cannot perform this check if input() is a string
313 * because dtrace(1M) [-fmnP] also use the compiler and
314 * things like dtrace -n BEGIN have to be accepted.
315 */
316 if (yypcb->pcb_fileptr != NULL) {
317 dnerror($1, D_SYNTAX, "expected predicate and/"
318 "or actions following probe description\n");

new/usr/src/lib/libdtrace/common/dt_grammar.y 6

319 }
320 $$ = dt_node_clause($1, NULL, NULL);
321 }
322 | probe_specifiers ’{’ statement_list ’}’ {
323 $$ = dt_node_clause($1, NULL, $3);
324 }
325 | probe_specifiers DT_TOK_DIV expression DT_TOK_EPRED {
326 dnerror($3, D_SYNTAX, "expected actions { } following "
327 "probe description and predicate\n");
328 }
329 | probe_specifiers DT_TOK_DIV expression DT_TOK_EPRED
330 ’{’ statement_list ’}’ {
331 $$ = dt_node_clause($1, $3, $6);
332 }
333 ;

335 probe_specifiers:
336 probe_specifier_list { yybegin(YYS_EXPR); $$ = $1; }
337 ;

339 probe_specifier_list:
340 probe_specifier
341 | probe_specifier_list DT_TOK_COMMA probe_specifier {
342 $$ = LINK($1, $3);
343 }
344 ;

346 probe_specifier:
347 DT_TOK_PSPEC { $$ = dt_node_pdesc_by_name($1); }
348 | DT_TOK_INT { $$ = dt_node_pdesc_by_id($1); }
349 ;

351 statement_list: statement { $$ = $1; }
352 | statement_list ’;’ statement { $$ = LINK($1, $3); }
353 ;

355 statement: /* empty */ { $$ = NULL; }
356 | expression { $$ = dt_node_statement($1); }
357 ;

359 argument_expression_list:
360 assignment_expression
361 | argument_expression_list DT_TOK_COMMA assignment_expression {
362 $$ = LINK($1, $3);
363 }
364 ;

366 primary_expression:
367 DT_TOK_IDENT { $$ = dt_node_ident($1); }
368 | DT_TOK_AGG { $$ = dt_node_ident($1); }
369 | DT_TOK_INT { $$ = dt_node_int($1); }
370 | DT_TOK_STRING { $$ = dt_node_string($1); }
371 | DT_KEY_SELF { $$ = dt_node_ident(DUP("self")); }
372 | DT_KEY_THIS { $$ = dt_node_ident(DUP("this")); }
373 | DT_TOK_LPAR expression DT_TOK_RPAR { $$ = $2; }
374 ;

376 postfix_expression:
377 primary_expression
378 | postfix_expression
379 DT_TOK_LBRAC argument_expression_list DT_TOK_RBRAC {
380 $$ = OP2(DT_TOK_LBRAC, $1, $3);
381 }
382 | postfix_expression DT_TOK_LPAR DT_TOK_RPAR {
383 $$ = dt_node_func($1, NULL);
384 }

new/usr/src/lib/libdtrace/common/dt_grammar.y 7

385 | postfix_expression
386 DT_TOK_LPAR argument_expression_list DT_TOK_RPAR {
387 $$ = dt_node_func($1, $3);
388 }
389 | postfix_expression DT_TOK_DOT DT_TOK_IDENT {
390 $$ = OP2(DT_TOK_DOT, $1, dt_node_ident($3));
391 }
392 | postfix_expression DT_TOK_DOT DT_TOK_TNAME {
393 $$ = OP2(DT_TOK_DOT, $1, dt_node_ident($3));
394 }
395 | postfix_expression DT_TOK_PTR DT_TOK_IDENT {
396 $$ = OP2(DT_TOK_PTR, $1, dt_node_ident($3));
397 }
398 | postfix_expression DT_TOK_PTR DT_TOK_TNAME {
399 $$ = OP2(DT_TOK_PTR, $1, dt_node_ident($3));
400 }
401 | postfix_expression DT_TOK_ADDADD {
402 $$ = OP1(DT_TOK_POSTINC, $1);
403 }
404 | postfix_expression DT_TOK_SUBSUB {
405 $$ = OP1(DT_TOK_POSTDEC, $1);
406 }
407 | DT_TOK_OFFSETOF DT_TOK_LPAR type_name DT_TOK_COMMA
408 DT_TOK_IDENT DT_TOK_RPAR {
409 $$ = dt_node_offsetof($3, $5);
410 }
411 | DT_TOK_OFFSETOF DT_TOK_LPAR type_name DT_TOK_COMMA
412 DT_TOK_TNAME DT_TOK_RPAR {
413 $$ = dt_node_offsetof($3, $5);
414 }
415 | DT_TOK_XLATE DT_TOK_LT type_name DT_TOK_GT
416 DT_TOK_LPAR expression DT_TOK_RPAR {
417 $$ = OP2(DT_TOK_XLATE, dt_node_type($3), $6);
418 }
419 ;

421 unary_expression:
422 postfix_expression
423 | DT_TOK_ADDADD unary_expression { $$ = OP1(DT_TOK_PREINC, $2); }
424 | DT_TOK_SUBSUB unary_expression { $$ = OP1(DT_TOK_PREDEC, $2); }
425 | unary_operator cast_expression { $$ = OP1($1, $2); }
426 | DT_TOK_SIZEOF unary_expression { $$ = OP1(DT_TOK_SIZEOF, $2); }
427 | DT_TOK_SIZEOF DT_TOK_LPAR type_name DT_TOK_RPAR {
428 $$ = OP1(DT_TOK_SIZEOF, dt_node_type($3));
429 }
430 | DT_TOK_STRINGOF unary_expression {
431 $$ = OP1(DT_TOK_STRINGOF, $2);
432 }
433 ;

435 unary_operator: DT_TOK_BAND { $$ = DT_TOK_ADDROF; }
436 | DT_TOK_MUL { $$ = DT_TOK_DEREF; }
437 | DT_TOK_ADD { $$ = DT_TOK_IPOS; }
438 | DT_TOK_SUB { $$ = DT_TOK_INEG; }
439 | DT_TOK_BNEG { $$ = DT_TOK_BNEG; }
440 | DT_TOK_LNEG { $$ = DT_TOK_LNEG; }
441 ;

443 cast_expression:
444 unary_expression
445 | DT_TOK_LPAR type_name DT_TOK_RPAR cast_expression {
446 $$ = OP2(DT_TOK_LPAR, dt_node_type($2), $4);
447 }
448 ;

450 multiplicative_expression:

new/usr/src/lib/libdtrace/common/dt_grammar.y 8

451 cast_expression
452 | multiplicative_expression DT_TOK_MUL cast_expression {
453 $$ = OP2(DT_TOK_MUL, $1, $3);
454 }
455 | multiplicative_expression DT_TOK_DIV cast_expression {
456 $$ = OP2(DT_TOK_DIV, $1, $3);
457 }
458 | multiplicative_expression DT_TOK_MOD cast_expression {
459 $$ = OP2(DT_TOK_MOD, $1, $3);
460 }
461 ;

463 additive_expression:
464 multiplicative_expression
465 | additive_expression DT_TOK_ADD multiplicative_expression {
466 $$ = OP2(DT_TOK_ADD, $1, $3);
467 }
468 | additive_expression DT_TOK_SUB multiplicative_expression {
469 $$ = OP2(DT_TOK_SUB, $1, $3);
470 }
471 ;

473 shift_expression:
474 additive_expression
475 | shift_expression DT_TOK_LSH additive_expression {
476 $$ = OP2(DT_TOK_LSH, $1, $3);
477 }
478 | shift_expression DT_TOK_RSH additive_expression {
479 $$ = OP2(DT_TOK_RSH, $1, $3);
480 }
481 ;

483 relational_expression:
484 shift_expression
485 | relational_expression DT_TOK_LT shift_expression {
486 $$ = OP2(DT_TOK_LT, $1, $3);
487 }
488 | relational_expression DT_TOK_GT shift_expression {
489 $$ = OP2(DT_TOK_GT, $1, $3);
490 }
491 | relational_expression DT_TOK_LE shift_expression {
492 $$ = OP2(DT_TOK_LE, $1, $3);
493 }
494 | relational_expression DT_TOK_GE shift_expression {
495 $$ = OP2(DT_TOK_GE, $1, $3);
496 }
497 ;

499 equality_expression:
500 relational_expression
501 | equality_expression DT_TOK_EQU relational_expression {
502 $$ = OP2(DT_TOK_EQU, $1, $3);
503 }
504 | equality_expression DT_TOK_NEQ relational_expression {
505 $$ = OP2(DT_TOK_NEQ, $1, $3);
506 }
507 ;

509 and_expression:
510 equality_expression
511 | and_expression DT_TOK_BAND equality_expression {
512 $$ = OP2(DT_TOK_BAND, $1, $3);
513 }
514 ;

516 exclusive_or_expression:

new/usr/src/lib/libdtrace/common/dt_grammar.y 9

517 and_expression
518 | exclusive_or_expression DT_TOK_XOR and_expression {
519 $$ = OP2(DT_TOK_XOR, $1, $3);
520 }
521 ;

523 inclusive_or_expression:
524 exclusive_or_expression
525 | inclusive_or_expression DT_TOK_BOR exclusive_or_expression {
526 $$ = OP2(DT_TOK_BOR, $1, $3);
527 }
528 ;

530 logical_and_expression:
531 inclusive_or_expression
532 | logical_and_expression DT_TOK_LAND inclusive_or_expression {
533 $$ = OP2(DT_TOK_LAND, $1, $3);
534 }
535 ;

537 logical_xor_expression:
538 logical_and_expression
539 | logical_xor_expression DT_TOK_LXOR logical_and_expression {
540 $$ = OP2(DT_TOK_LXOR, $1, $3);
541 }
542 ;

544 logical_or_expression:
545 logical_xor_expression
546 | logical_or_expression DT_TOK_LOR logical_xor_expression {
547 $$ = OP2(DT_TOK_LOR, $1, $3);
548 }
549 ;

551 constant_expression: conditional_expression
552 ;

554 conditional_expression:
555 logical_or_expression
556 | logical_or_expression DT_TOK_QUESTION expression DT_TOK_COLON
557 conditional_expression { $$ = OP3($1, $3, $5); }
558 ;

560 assignment_expression:
561 conditional_expression
562 | unary_expression assignment_operator assignment_expression {
563 $$ = OP2($2, $1, $3);
564 }
565 ;

567 assignment_operator:
568 DT_TOK_ASGN { $$ = DT_TOK_ASGN; }
569 | DT_TOK_MUL_EQ { $$ = DT_TOK_MUL_EQ; }
570 | DT_TOK_DIV_EQ { $$ = DT_TOK_DIV_EQ; }
571 | DT_TOK_MOD_EQ { $$ = DT_TOK_MOD_EQ; }
572 | DT_TOK_ADD_EQ { $$ = DT_TOK_ADD_EQ; }
573 | DT_TOK_SUB_EQ { $$ = DT_TOK_SUB_EQ; }
574 | DT_TOK_LSH_EQ { $$ = DT_TOK_LSH_EQ; }
575 | DT_TOK_RSH_EQ { $$ = DT_TOK_RSH_EQ; }
576 | DT_TOK_AND_EQ { $$ = DT_TOK_AND_EQ; }
577 | DT_TOK_XOR_EQ { $$ = DT_TOK_XOR_EQ; }
578 | DT_TOK_OR_EQ { $$ = DT_TOK_OR_EQ; }
579 ;

581 expression: assignment_expression
582 | expression DT_TOK_COMMA assignment_expression {

new/usr/src/lib/libdtrace/common/dt_grammar.y 10

583 $$ = OP2(DT_TOK_COMMA, $1, $3);
584 }
585 ;

587 declaration: declaration_specifiers ’;’ {
588 $$ = dt_node_decl();
589 dt_decl_free(dt_decl_pop());
590 yybegin(YYS_CLAUSE);
591 }
592 | declaration_specifiers init_declarator_list ’;’ {
593 $$ = $2;
594 dt_decl_free(dt_decl_pop());
595 yybegin(YYS_CLAUSE);
596 }
597 ;

599 declaration_specifiers:
600 d_storage_class_specifier
601 | d_storage_class_specifier declaration_specifiers
602 | type_specifier
603 | type_specifier declaration_specifiers
604 | type_qualifier
605 | type_qualifier declaration_specifiers
606 ;

608 parameter_declaration_specifiers:
609 storage_class_specifier
610 | storage_class_specifier declaration_specifiers
611 | type_specifier
612 | type_specifier declaration_specifiers
613 | type_qualifier
614 | type_qualifier declaration_specifiers
615 ;

617 storage_class_specifier:
618 DT_KEY_AUTO { dt_decl_class(DT_DC_AUTO); }
619 | DT_KEY_REGISTER { dt_decl_class(DT_DC_REGISTER); }
620 | DT_KEY_STATIC { dt_decl_class(DT_DC_STATIC); }
621 | DT_KEY_EXTERN { dt_decl_class(DT_DC_EXTERN); }
622 | DT_KEY_TYPEDEF { dt_decl_class(DT_DC_TYPEDEF); }
623 ;

625 d_storage_class_specifier:
626 storage_class_specifier
627 | DT_KEY_SELF { dt_decl_class(DT_DC_SELF); }
628 | DT_KEY_THIS { dt_decl_class(DT_DC_THIS); }
629 ;

631 type_specifier: DT_KEY_VOID { $$ = dt_decl_spec(CTF_K_INTEGER, DUP("void")); }
632 | DT_KEY_CHAR { $$ = dt_decl_spec(CTF_K_INTEGER, DUP("char")); }
633 | DT_KEY_SHORT { $$ = dt_decl_attr(DT_DA_SHORT); }
634 | DT_KEY_INT { $$ = dt_decl_spec(CTF_K_INTEGER, DUP("int")); }
635 | DT_KEY_LONG { $$ = dt_decl_attr(DT_DA_LONG); }
636 | DT_KEY_FLOAT { $$ = dt_decl_spec(CTF_K_FLOAT, DUP("float")); }
637 | DT_KEY_DOUBLE { $$ = dt_decl_spec(CTF_K_FLOAT, DUP("double")); }
638 | DT_KEY_SIGNED { $$ = dt_decl_attr(DT_DA_SIGNED); }
639 | DT_KEY_UNSIGNED { $$ = dt_decl_attr(DT_DA_UNSIGNED); }
640 | DT_KEY_USERLAND { $$ = dt_decl_attr(DT_DA_USER); }
641 #endif /* ! codereview */
642 | DT_KEY_STRING {
643 $$ = dt_decl_spec(CTF_K_TYPEDEF, DUP("string"));
644 }
645 | DT_TOK_TNAME { $$ = dt_decl_spec(CTF_K_TYPEDEF, $1); }
646 | struct_or_union_specifier
647 | enum_specifier
648 ;

new/usr/src/lib/libdtrace/common/dt_grammar.y 11

650 type_qualifier: DT_KEY_CONST { $$ = dt_decl_attr(DT_DA_CONST); }
651 | DT_KEY_RESTRICT { $$ = dt_decl_attr(DT_DA_RESTRICT); }
652 | DT_KEY_VOLATILE { $$ = dt_decl_attr(DT_DA_VOLATILE); }
653 ;

655 struct_or_union_specifier:
656 struct_or_union_definition struct_declaration_list ’}’ {
657 $$ = dt_scope_pop();
658 }
659 | struct_or_union DT_TOK_IDENT { $$ = dt_decl_spec($1, $2); }
660 | struct_or_union DT_TOK_TNAME { $$ = dt_decl_spec($1, $2); }
661 ;

663 struct_or_union_definition:
664 struct_or_union ’{’ { dt_decl_sou($1, NULL); }
665 | struct_or_union DT_TOK_IDENT ’{’ { dt_decl_sou($1, $2); }
666 | struct_or_union DT_TOK_TNAME ’{’ { dt_decl_sou($1, $2); }
667 ;

669 struct_or_union:
670 DT_KEY_STRUCT { $$ = CTF_K_STRUCT; }
671 | DT_KEY_UNION { $$ = CTF_K_UNION; }
672 ;

674 struct_declaration_list:
675 struct_declaration
676 | struct_declaration_list struct_declaration
677 ;

679 init_declarator_list:
680 init_declarator
681 | init_declarator_list DT_TOK_COMMA init_declarator {
682 $$ = LINK($1, $3);
683 }
684 ;

686 init_declarator:
687 declarator {
688 $$ = dt_node_decl();
689 dt_decl_reset();
690 }
691 ;

693 struct_declaration:
694 specifier_qualifier_list struct_declarator_list ’;’ {
695 dt_decl_free(dt_decl_pop());
696 }
697 ;

699 specifier_qualifier_list:
700 type_specifier
701 | type_specifier specifier_qualifier_list { $$ = $2; }
702 | type_qualifier
703 | type_qualifier specifier_qualifier_list { $$ = $2; }
704 ;

706 struct_declarator_list:
707 struct_declarator
708 | struct_declarator_list DT_TOK_COMMA struct_declarator
709 ;

711 struct_declarator:
712 declarator { dt_decl_member(NULL); }
713 | DT_TOK_COLON constant_expression { dt_decl_member($2); }
714 | declarator DT_TOK_COLON constant_expression {

new/usr/src/lib/libdtrace/common/dt_grammar.y 12

715 dt_decl_member($3);
716 }
717 ;

719 enum_specifier:
720 enum_definition enumerator_list ’}’ { $$ = dt_scope_pop(); }
721 | DT_KEY_ENUM DT_TOK_IDENT { $$ = dt_decl_spec(CTF_K_ENUM, $2); }
722 | DT_KEY_ENUM DT_TOK_TNAME { $$ = dt_decl_spec(CTF_K_ENUM, $2); }
723 ;

725 enum_definition:
726 DT_KEY_ENUM ’{’ { dt_decl_enum(NULL); }
727 | DT_KEY_ENUM DT_TOK_IDENT ’{’ { dt_decl_enum($2); }
728 | DT_KEY_ENUM DT_TOK_TNAME ’{’ { dt_decl_enum($2); }
729 ;

731 enumerator_list:
732 enumerator
733 | enumerator_list DT_TOK_COMMA enumerator
734 ;

736 enumerator: DT_TOK_IDENT { dt_decl_enumerator($1, NULL); }
737 | DT_TOK_IDENT DT_TOK_ASGN expression {
738 dt_decl_enumerator($1, $3);
739 }
740 ;

742 declarator: direct_declarator
743 | pointer direct_declarator
744 ;

746 direct_declarator:
747 DT_TOK_IDENT { $$ = dt_decl_ident($1); }
748 | lparen declarator DT_TOK_RPAR { $$ = $2; }
749 | direct_declarator array { dt_decl_array($2); }
750 | direct_declarator function { dt_decl_func($1, $2); }
751 ;

753 lparen: DT_TOK_LPAR { dt_decl_top()->dd_attr |= DT_DA_PAREN; }
754 ;

756 pointer: DT_TOK_MUL { $$ = dt_decl_ptr(); }
757 | DT_TOK_MUL type_qualifier_list { $$ = dt_decl_ptr(); }
758 | DT_TOK_MUL pointer { $$ = dt_decl_ptr(); }
759 | DT_TOK_MUL type_qualifier_list pointer { $$ = dt_decl_ptr(); }
760 ;

762 type_qualifier_list:
763 type_qualifier
764 | type_qualifier_list type_qualifier { $$ = $2; }
765 ;

767 parameter_type_list:
768 parameter_list
769 | DT_TOK_ELLIPSIS { $$ = dt_node_vatype(); }
770 | parameter_list DT_TOK_COMMA DT_TOK_ELLIPSIS {
771 $$ = LINK($1, dt_node_vatype());
772 }
773 ;

775 parameter_list: parameter_declaration
776 | parameter_list DT_TOK_COMMA parameter_declaration {
777 $$ = LINK($1, $3);
778 }
779 ;

new/usr/src/lib/libdtrace/common/dt_grammar.y 13

781 parameter_declaration:
782 parameter_declaration_specifiers {
783 $$ = dt_node_type(NULL);
784 }
785 | parameter_declaration_specifiers declarator {
786 $$ = dt_node_type(NULL);
787 }
788 | parameter_declaration_specifiers abstract_declarator {
789 $$ = dt_node_type(NULL);
790 }
791 ;

793 type_name: specifier_qualifier_list {
794 $$ = dt_decl_pop();
795 }
796 | specifier_qualifier_list abstract_declarator {
797 $$ = dt_decl_pop();
798 }
799 ;

801 abstract_declarator:
802 pointer
803 | direct_abstract_declarator
804 | pointer direct_abstract_declarator
805 ;

807 direct_abstract_declarator:
808 lparen abstract_declarator DT_TOK_RPAR { $$ = $2; }
809 | direct_abstract_declarator array { dt_decl_array($2); }
810 | array { dt_decl_array($1); $$ = NULL; }
811 | direct_abstract_declarator function { dt_decl_func($1, $2); }
812 | function { dt_decl_func(NULL, $1); }
813 ;

815 array: DT_TOK_LBRAC { dt_scope_push(NULL, CTF_ERR); }
816 array_parameters DT_TOK_RBRAC {
817 dt_scope_pop();
818 $$ = $3;
819 }
820 ;

822 array_parameters:
823 /* empty */ { $$ = NULL; }
824 | constant_expression { $$ = $1; }
825 | parameter_type_list { $$ = $1; }
826 ;

828 function: DT_TOK_LPAR { dt_scope_push(NULL, CTF_ERR); }
829 function_parameters DT_TOK_RPAR {
830 dt_scope_pop();
831 $$ = $3;
832 }
833 ;

835 function_parameters:
836 /* empty */ { $$ = NULL; }
837 | parameter_type_list { $$ = $1; }
838 ;

840 %%

new/usr/src/lib/libdtrace/common/dt_ident.c 1

**
 26807 Tue Jan 14 16:48:54 2014
new/usr/src/lib/libdtrace/common/dt_ident.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2013 Joyent, Inc. All rights reserved.
26 #endif /* ! codereview */
27 */

29 #include <sys/sysmacros.h>
30 #include <strings.h>
31 #include <stdlib.h>
32 #include <alloca.h>
33 #include <assert.h>
34 #include <errno.h>
35 #include <ctype.h>
36 #include <sys/procfs_isa.h>
37 #include <limits.h>

39 #include <dt_ident.h>
40 #include <dt_parser.h>
41 #include <dt_provider.h>
42 #include <dt_strtab.h>
43 #include <dt_impl.h>

45 /*
46 * Common code for cooking an identifier that uses a typed signature list (we
47 * use this for associative arrays and functions). If the argument list is
48 * of the same length and types, then return the return type. Otherwise
49 * print an appropriate compiler error message and abort the compile.
50 */
51 static void
52 dt_idcook_sign(dt_node_t *dnp, dt_ident_t *idp,
53 int argc, dt_node_t *args, const char *prefix, const char *suffix)
54 {
55 dt_idsig_t *isp = idp->di_data;
56 int i, compat, mismatch, arglimit, iskey;

new/usr/src/lib/libdtrace/common/dt_ident.c 2

58 char n1[DT_TYPE_NAMELEN];
59 char n2[DT_TYPE_NAMELEN];

61 iskey = idp->di_kind == DT_IDENT_ARRAY || idp->di_kind == DT_IDENT_AGG;

63 if (isp->dis_varargs >= 0) {
64 mismatch = argc < isp->dis_varargs;
65 arglimit = isp->dis_varargs;
66 } else if (isp->dis_optargs >= 0) {
67 mismatch = (argc < isp->dis_optargs || argc > isp->dis_argc);
68 arglimit = argc;
69 } else {
70 mismatch = argc != isp->dis_argc;
71 arglimit = isp->dis_argc;
72 }

74 if (mismatch) {
75 xyerror(D_PROTO_LEN, "%s%s%s prototype mismatch: %d %s%s"
76 "passed, %s%d expected\n", prefix, idp->di_name, suffix,
77 argc, iskey ? "key" : "arg", argc == 1 ? " " : "s ",
78 isp->dis_optargs >= 0 ? "at least " : "",
79 isp->dis_optargs >= 0 ? isp->dis_optargs : arglimit);
80 }

82 for (i = 0; i < arglimit; i++, args = args->dn_list) {
83 if (isp->dis_args[i].dn_ctfp != NULL)
84 compat = dt_node_is_argcompat(&isp->dis_args[i], args);
85 else
86 compat = 1; /* "@" matches any type */

88 if (!compat) {
89 xyerror(D_PROTO_ARG,
90 "%s%s%s %s #%d is incompatible with "
91 "prototype:\n\tprototype: %s\n\t%9s: %s\n",
92 prefix, idp->di_name, suffix,
93 iskey ? "key" : "argument", i + 1,
94 dt_node_type_name(&isp->dis_args[i], n1,
95 sizeof (n1)),
96 iskey ? "key" : "argument",
97 dt_node_type_name(args, n2, sizeof (n2)));
98 }
99 }

101 dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type, B_FALSE);
24 dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type);
102 }

104 /*
105 * Cook an associative array identifier. If this is the first time we are
106 * cooking this array, create its signature based on the argument list.
107 * Otherwise validate the argument list against the existing signature.
108 */
109 static void
110 dt_idcook_assc(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args)
111 {
112 if (idp->di_data == NULL) {
113 dt_idsig_t *isp = idp->di_data = malloc(sizeof (dt_idsig_t));
114 char n[DT_TYPE_NAMELEN];
115 int i;

117 if (isp == NULL)
118 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

120 isp->dis_varargs = -1;
121 isp->dis_optargs = -1;

new/usr/src/lib/libdtrace/common/dt_ident.c 3

122 isp->dis_argc = argc;
123 isp->dis_args = NULL;
124 isp->dis_auxinfo = 0;

126 if (argc != 0 && (isp->dis_args = calloc(argc,
127 sizeof (dt_node_t))) == NULL) {
128 idp->di_data = NULL;
129 free(isp);
130 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
131 }

133 /*
134 * If this identifier has not been explicitly declared earlier,
135 * set the identifier’s base type to be our special type <DYN>.
136 * If this ident is an aggregation, it will remain as is. If
137 * this ident is an associative array, it will be reassigned
138 * based on the result type of the first assignment statement.
139 */
140 if (!(idp->di_flags & DT_IDFLG_DECL)) {
141 idp->di_ctfp = DT_DYN_CTFP(yypcb->pcb_hdl);
142 idp->di_type = DT_DYN_TYPE(yypcb->pcb_hdl);
143 }

145 for (i = 0; i < argc; i++, args = args->dn_list) {
146 if (dt_node_is_dynamic(args) || dt_node_is_void(args)) {
147 xyerror(D_KEY_TYPE, "%s expression may not be "
148 "used as %s index: key #%d\n",
149 dt_node_type_name(args, n, sizeof (n)),
150 dt_idkind_name(idp->di_kind), i + 1);
151 }

153 dt_node_type_propagate(args, &isp->dis_args[i]);
154 isp->dis_args[i].dn_list = &isp->dis_args[i + 1];
155 }

157 if (argc != 0)
158 isp->dis_args[argc - 1].dn_list = NULL;

160 dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type, B_FALSE);
83 dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type);

162 } else {
163 dt_idcook_sign(dnp, idp, argc, args,
164 idp->di_kind == DT_IDENT_AGG ? "@" : "", "[]");
165 }
166 }

168 /*
169 * Cook a function call. If this is the first time we are cooking this
170 * identifier, create its type signature based on predefined prototype stored
171 * in di_iarg. We then validate the argument list against this signature.
172 */
173 static void
174 dt_idcook_func(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args)
175 {
176 if (idp->di_data == NULL) {
177 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
178 dtrace_typeinfo_t dtt;
179 dt_idsig_t *isp;
180 char *s, *p1, *p2;
181 int i = 0;

183 assert(idp->di_iarg != NULL);
184 s = strdupa(idp->di_iarg);

186 if ((p2 = strrchr(s, ’)’)) != NULL)

new/usr/src/lib/libdtrace/common/dt_ident.c 4

187 *p2 = ’\0’; /* mark end of parameter list string */

189 if ((p1 = strchr(s, ’(’)) != NULL)
190 *p1++ = ’\0’; /* mark end of return type string */

192 if (p1 == NULL || p2 == NULL) {
193 xyerror(D_UNKNOWN, "internal error: malformed entry "
194 "for built-in function %s\n", idp->di_name);
195 }

197 for (p2 = p1; *p2 != ’\0’; p2++) {
198 if (!isspace(*p2)) {
199 i++;
200 break;
201 }
202 }

204 for (p2 = strchr(p2, ’,’); p2++ != NULL; i++)
205 p2 = strchr(p2, ’,’);

207 /*
208 * We first allocate a new ident signature structure with the
209 * appropriate number of argument entries, and then look up
210 * the return type and store its CTF data in di_ctfp/type.
211 */
212 if ((isp = idp->di_data = malloc(sizeof (dt_idsig_t))) == NULL)
213 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

215 isp->dis_varargs = -1;
216 isp->dis_optargs = -1;
217 isp->dis_argc = i;
218 isp->dis_args = NULL;
219 isp->dis_auxinfo = 0;

221 if (i != 0 && (isp->dis_args = calloc(i,
222 sizeof (dt_node_t))) == NULL) {
223 idp->di_data = NULL;
224 free(isp);
225 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
226 }

228 if (dt_type_lookup(s, &dtt) == -1) {
229 xyerror(D_UNKNOWN, "failed to resolve type of %s (%s):"
230 " %s\n", idp->di_name, s,
231 dtrace_errmsg(dtp, dtrace_errno(dtp)));
232 }

234 if (idp->di_kind == DT_IDENT_AGGFUNC) {
235 idp->di_ctfp = DT_DYN_CTFP(dtp);
236 idp->di_type = DT_DYN_TYPE(dtp);
237 } else {
238 idp->di_ctfp = dtt.dtt_ctfp;
239 idp->di_type = dtt.dtt_type;
240 }

242 /*
243 * For each comma-delimited parameter in the prototype string,
244 * we look up the corresponding type and store its CTF data in
245 * the corresponding location in dis_args[]. We also recognize
246 * the special type string "@" to indicate that the specified
247 * parameter may be a D expression of *any* type (represented
248 * as a dis_args[] element with ctfp = NULL, type == CTF_ERR).
249 * If a varargs "..." is present, we record the argument index
250 * in dis_varargs for the benefit of dt_idcook_sign(), above.
251 * If the type of an argument is enclosed in square brackets
252 * (e.g. "[int]"), the argument is considered optional: the

new/usr/src/lib/libdtrace/common/dt_ident.c 5

253 * argument may be absent, but if it is present, it must be of
254 * the specified type. Note that varargs may not optional,
255 * optional arguments may not follow varargs, and non-optional
256 * arguments may not follow optional arguments.
257 */
258 for (i = 0; i < isp->dis_argc; i++, p1 = p2) {
259 while (isspace(*p1))
260 p1++; /* skip leading whitespace */

262 if ((p2 = strchr(p1, ’,’)) == NULL)
263 p2 = p1 + strlen(p1);
264 else
265 *p2++ = ’\0’;

267 if (strcmp(p1, "@") == 0 || strcmp(p1, "...") == 0) {
268 isp->dis_args[i].dn_ctfp = NULL;
269 isp->dis_args[i].dn_type = CTF_ERR;
270 if (*p1 == ’.’)
271 isp->dis_varargs = i;
272 continue;
273 }

275 if (*p1 == ’[’ && p1[strlen(p1) - 1] == ’]’) {
276 if (isp->dis_varargs != -1) {
277 xyerror(D_UNKNOWN, "optional arg#%d "
278 "may not follow variable arg#%d\n",
279 i + 1, isp->dis_varargs + 1);
280 }

282 if (isp->dis_optargs == -1)
283 isp->dis_optargs = i;

285 p1[strlen(p1) - 1] = ’\0’;
286 p1++;
287 } else if (isp->dis_optargs != -1) {
288 xyerror(D_UNKNOWN, "required arg#%d may not "
289 "follow optional arg#%d\n", i + 1,
290 isp->dis_optargs + 1);
291 }

293 if (dt_type_lookup(p1, &dtt) == -1) {
294 xyerror(D_UNKNOWN, "failed to resolve type of "
295 "%s arg#%d (%s): %s\n", idp->di_name, i + 1,
296 p1, dtrace_errmsg(dtp, dtrace_errno(dtp)));
297 }

299 dt_node_type_assign(&isp->dis_args[i],
300 dtt.dtt_ctfp, dtt.dtt_type, B_FALSE);
223 dtt.dtt_ctfp, dtt.dtt_type);
301 }
302 }

304 dt_idcook_sign(dnp, idp, argc, args, "", "()");
305 }

307 /*
308 * Cook a reference to the dynamically typed args[] array. We verify that the
309 * reference is using a single integer constant, and then construct a new ident
310 * representing the appropriate type or translation specifically for this node.
311 */
312 static void
313 dt_idcook_args(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *ap)
314 {
315 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
316 dt_probe_t *prp = yypcb->pcb_probe;

new/usr/src/lib/libdtrace/common/dt_ident.c 6

318 dt_node_t tag, *nnp, *xnp;
319 dt_xlator_t *dxp;
320 dt_ident_t *xidp;

322 char n1[DT_TYPE_NAMELEN];
323 char n2[DT_TYPE_NAMELEN];

325 if (argc != 1) {
326 xyerror(D_PROTO_LEN, "%s[] prototype mismatch: %d arg%s"
327 "passed, 1 expected\n", idp->di_name, argc,
328 argc == 1 ? " " : "s ");
329 }

331 if (ap->dn_kind != DT_NODE_INT) {
332 xyerror(D_PROTO_ARG, "%s[] argument #1 is incompatible with "
333 "prototype:\n\tprototype: %s\n\t argument: %s\n",
334 idp->di_name, "integer constant",
335 dt_type_name(ap->dn_ctfp, ap->dn_type, n1, sizeof (n1)));
336 }

338 if (yypcb->pcb_pdesc == NULL) {
339 xyerror(D_ARGS_NONE, "%s[] may not be referenced outside "
340 "of a probe clause\n", idp->di_name);
341 }

343 if (prp == NULL) {
344 xyerror(D_ARGS_MULTI,
345 "%s[] may not be referenced because probe description %s "
346 "matches an unstable set of probes\n", idp->di_name,
347 dtrace_desc2str(yypcb->pcb_pdesc, n1, sizeof (n1)));
348 }

350 if (ap->dn_value >= prp->pr_argc) {
351 xyerror(D_ARGS_IDX, "index %lld is out of range for %s %s[]\n",
352 (longlong_t)ap->dn_value, dtrace_desc2str(yypcb->pcb_pdesc,
353 n1, sizeof (n1)), idp->di_name);
354 }

356 /*
357 * Look up the native and translated argument types for the probe.
358 * If no translation is needed, these will be the same underlying node.
359 * If translation is needed, look up the appropriate translator. Once
360 * we have the appropriate node, create a new dt_ident_t for this node,
361 * assign it the appropriate attributes, and set the type of ’dnp’.
362 */
363 xnp = prp->pr_xargv[ap->dn_value];
364 nnp = prp->pr_nargv[prp->pr_mapping[ap->dn_value]];

366 if (xnp->dn_type == CTF_ERR) {
367 xyerror(D_ARGS_TYPE, "failed to resolve translated type for "
368 "%s[%lld]\n", idp->di_name, (longlong_t)ap->dn_value);
369 }

371 if (nnp->dn_type == CTF_ERR) {
372 xyerror(D_ARGS_TYPE, "failed to resolve native type for "
373 "%s[%lld]\n", idp->di_name, (longlong_t)ap->dn_value);
374 }

376 if (dtp->dt_xlatemode == DT_XL_STATIC && (
377 nnp == xnp || dt_node_is_argcompat(nnp, xnp))) {
378 dnp->dn_ident = dt_ident_create(idp->di_name, idp->di_kind,
379 idp->di_flags | DT_IDFLG_ORPHAN, idp->di_id, idp->di_attr,
380 idp->di_vers, idp->di_ops, idp->di_iarg, idp->di_gen);

382 if (dnp->dn_ident == NULL)
383 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

new/usr/src/lib/libdtrace/common/dt_ident.c 7

385 dt_node_type_assign(dnp,
386 prp->pr_argv[ap->dn_value].dtt_ctfp,
387 prp->pr_argv[ap->dn_value].dtt_type,
388 prp->pr_argv[ap->dn_value].dtt_flags & DTT_FL_USER ?
389 B_TRUE : B_FALSE);
310 prp->pr_argv[ap->dn_value].dtt_type);

391 } else if ((dxp = dt_xlator_lookup(dtp,
392 nnp, xnp, DT_XLATE_FUZZY)) != NULL || (
393 dxp = dt_xlator_lookup(dtp, dt_probe_tag(prp, ap->dn_value, &tag),
394 xnp, DT_XLATE_EXACT | DT_XLATE_EXTERN)) != NULL) {

396 xidp = dt_xlator_ident(dxp, xnp->dn_ctfp, xnp->dn_type);

398 dnp->dn_ident = dt_ident_create(idp->di_name, xidp->di_kind,
399 xidp->di_flags | DT_IDFLG_ORPHAN, idp->di_id, idp->di_attr,
400 idp->di_vers, idp->di_ops, idp->di_iarg, idp->di_gen);

402 if (dnp->dn_ident == NULL)
403 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

405 if (dt_xlator_dynamic(dxp))
406 dxp->dx_arg = (int)ap->dn_value;

408 /*
409 * Propagate relevant members from the translator’s internal
410 * dt_ident_t. This code must be kept in sync with the state
411 * that is initialized for idents in dt_xlator_create().
412 */
413 dnp->dn_ident->di_data = xidp->di_data;
414 dnp->dn_ident->di_ctfp = xidp->di_ctfp;
415 dnp->dn_ident->di_type = xidp->di_type;

417 dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp),
418 B_FALSE);
338 dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp));

420 } else {
421 xyerror(D_ARGS_XLATOR, "translator for %s[%lld] from %s to %s "
422 "is not defined\n", idp->di_name, (longlong_t)ap->dn_value,
423 dt_node_type_name(nnp, n1, sizeof (n1)),
424 dt_node_type_name(xnp, n2, sizeof (n2)));
425 }

427 assert(dnp->dn_ident->di_flags & DT_IDFLG_ORPHAN);
428 assert(dnp->dn_ident->di_id == idp->di_id);
429 }

431 static void
432 dt_idcook_regs(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *ap)
433 {
434 dtrace_typeinfo_t dtt;
435 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
436 char n[DT_TYPE_NAMELEN];

438 if (argc != 1) {
439 xyerror(D_PROTO_LEN, "%s[] prototype mismatch: %d arg%s"
440 "passed, 1 expected\n", idp->di_name,
441 argc, argc == 1 ? " " : "s ");
442 }

444 if (ap->dn_kind != DT_NODE_INT) {
445 xyerror(D_PROTO_ARG, "%s[] argument #1 is incompatible with "
446 "prototype:\n\tprototype: %s\n\t argument: %s\n",
447 idp->di_name, "integer constant",

new/usr/src/lib/libdtrace/common/dt_ident.c 8

448 dt_type_name(ap->dn_ctfp, ap->dn_type, n, sizeof (n)));
449 }

451 if ((ap->dn_flags & DT_NF_SIGNED) && (int64_t)ap->dn_value < 0) {
452 xyerror(D_REGS_IDX, "index %lld is out of range for array %s\n",
453 (longlong_t)ap->dn_value, idp->di_name);
454 }

456 if (dt_type_lookup("uint64_t", &dtt) == -1) {
457 xyerror(D_UNKNOWN, "failed to resolve type of %s: %s\n",
458 idp->di_name, dtrace_errmsg(dtp, dtrace_errno(dtp)));
459 }

461 idp->di_ctfp = dtt.dtt_ctfp;
462 idp->di_type = dtt.dtt_type;

464 dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type, B_FALSE);
384 dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type);
465 }

467 /*ARGSUSED*/
468 static void
469 dt_idcook_type(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args)
470 {
471 if (idp->di_type == CTF_ERR) {
472 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
473 dtrace_typeinfo_t dtt;

475 if (dt_type_lookup(idp->di_iarg, &dtt) == -1) {
476 xyerror(D_UNKNOWN,
477 "failed to resolve type %s for identifier %s: %s\n",
478 (const char *)idp->di_iarg, idp->di_name,
479 dtrace_errmsg(dtp, dtrace_errno(dtp)));
480 }

482 idp->di_ctfp = dtt.dtt_ctfp;
483 idp->di_type = dtt.dtt_type;
484 }

486 dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type, B_FALSE);
406 dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type);
487 }

489 /*ARGSUSED*/
490 static void
491 dt_idcook_thaw(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args)
492 {
493 if (idp->di_ctfp != NULL && idp->di_type != CTF_ERR)
494 dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type, B_FALSE);
414 dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type);
495 }

______unchanged_portion_omitted_

new/usr/src/lib/libdtrace/common/dt_impl.h 1

**
 30764 Tue Jan 14 16:48:54 2014
new/usr/src/lib/libdtrace/common/dt_impl.h
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_

107 typedef struct dt_module {
108 dt_list_t dm_list; /* list forward/back pointers */
109 char dm_name[DTRACE_MODNAMELEN]; /* string name of module */
110 char dm_file[MAXPATHLEN]; /* file path of module (if any) */
111 struct dt_module *dm_next; /* pointer to next module in hash chain */
112 const dt_modops_t *dm_ops; /* pointer to data model’s ops vector */
113 Elf *dm_elf; /* libelf handle for module object */
114 objfs_info_t dm_info; /* object filesystem private info */
115 ctf_sect_t dm_symtab; /* symbol table for module */
116 ctf_sect_t dm_strtab; /* string table for module */
117 ctf_sect_t dm_ctdata; /* CTF data for module */
118 ctf_file_t *dm_ctfp; /* CTF container handle */
119 uint_t *dm_symbuckets; /* symbol table hash buckets (chain indices) */
120 dt_sym_t *dm_symchains; /* symbol table hash chains buffer */
121 void *dm_asmap; /* symbol pointers sorted by value */
122 uint_t dm_symfree; /* index of next free hash element */
123 uint_t dm_nsymbuckets; /* number of elements in bucket array */
124 uint_t dm_nsymelems; /* number of elements in hash table */
125 uint_t dm_asrsv; /* actual reserved size of dm_asmap */
126 uint_t dm_aslen; /* number of entries in dm_asmap */
127 uint_t dm_flags; /* module flags (see below) */
128 int dm_modid; /* modinfo(1M) module identifier */
129 GElf_Addr dm_text_va; /* virtual address of text section */
130 GElf_Xword dm_text_size; /* size in bytes of text section */
131 GElf_Addr dm_data_va; /* virtual address of data section */
132 GElf_Xword dm_data_size; /* size in bytes of data section */
133 GElf_Addr dm_bss_va; /* virtual address of BSS */
134 GElf_Xword dm_bss_size; /* size in bytes of BSS */
135 dt_idhash_t *dm_extern; /* external symbol definitions */
136 pid_t dm_pid; /* pid for this module */
137 uint_t dm_nctflibs; /* number of ctf children libraries */
138 ctf_file_t **dm_libctfp; /* process library ctf pointers */
139 char **dm_libctfn; /* names of process ctf containers */
140 #endif /* ! codereview */
141 } dt_module_t;

143 #define DT_DM_LOADED 0x1 /* module symbol and type data is loaded */
144 #define DT_DM_KERNEL 0x2 /* module is associated with a kernel object */
145 #define DT_DM_PRIMARY 0x4 /* module is a krtld primary kernel object */

147 typedef struct dt_provmod {
148 char *dp_name; /* name of provider module */
149 struct dt_provmod *dp_next; /* next module */
150 } dt_provmod_t;

152 typedef struct dt_ahashent {
153 struct dt_ahashent *dtahe_prev; /* prev on hash chain */
154 struct dt_ahashent *dtahe_next; /* next on hash chain */
155 struct dt_ahashent *dtahe_prevall; /* prev on list of all */
156 struct dt_ahashent *dtahe_nextall; /* next on list of all */
157 uint64_t dtahe_hashval; /* hash value */
158 size_t dtahe_size; /* size of data */
159 dtrace_aggdata_t dtahe_data; /* data */
160 void (*dtahe_aggregate)(int64_t *, int64_t *, size_t); /* function */

new/usr/src/lib/libdtrace/common/dt_impl.h 2

161 } dt_ahashent_t;

163 typedef struct dt_ahash {
164 dt_ahashent_t **dtah_hash; /* hash table */
165 dt_ahashent_t *dtah_all; /* list of all elements */
166 size_t dtah_size; /* size of hash table */
167 } dt_ahash_t;

169 typedef struct dt_aggregate {
170 dtrace_bufdesc_t dtat_buf; /* buf aggregation snapshot */
171 int dtat_flags; /* aggregate flags */
172 processorid_t dtat_ncpus; /* number of CPUs in aggregate */
173 processorid_t *dtat_cpus; /* CPUs in aggregate */
174 processorid_t dtat_ncpu; /* size of dtat_cpus array */
175 processorid_t dtat_maxcpu; /* maximum number of CPUs */
176 dt_ahash_t dtat_hash; /* aggregate hash table */
177 } dt_aggregate_t;

179 typedef struct dt_print_aggdata {
180 dtrace_hdl_t *dtpa_dtp; /* pointer to libdtrace handle */
181 dtrace_aggvarid_t dtpa_id; /* aggregation variable of interest */
182 FILE *dtpa_fp; /* file pointer */
183 int dtpa_allunprint; /* print only unprinted aggregations */
184 } dt_print_aggdata_t;

186 typedef struct dt_dirpath {
187 dt_list_t dir_list; /* linked-list forward/back pointers */
188 char *dir_path; /* directory pathname */
189 } dt_dirpath_t;

191 typedef struct dt_lib_depend {
192 dt_list_t dtld_deplist; /* linked-list forward/back pointers */
193 char *dtld_library; /* library name */
194 char *dtld_libpath; /* library pathname */
195 uint_t dtld_finish; /* completion time in tsort for lib */
196 uint_t dtld_start; /* starting time in tsort for lib */
197 uint_t dtld_loaded; /* boolean: is this library loaded */
198 dt_list_t dtld_dependencies; /* linked-list of lib dependencies */
199 dt_list_t dtld_dependents; /* linked-list of lib dependents */
200 } dt_lib_depend_t;

202 typedef uint32_t dt_version_t; /* encoded version (see below) */

204 struct dtrace_hdl {
205 const dtrace_vector_t *dt_vector; /* library vector, if vectored open */
206 void *dt_varg; /* vector argument, if vectored open */
207 dtrace_conf_t dt_conf; /* DTrace driver configuration profile */
208 char dt_errmsg[BUFSIZ]; /* buffer for formatted syntax error msgs */
209 const char *dt_errtag; /* tag used with last call to dt_set_errmsg() */
210 dt_pcb_t *dt_pcb; /* pointer to current parsing control block */
211 ulong_t dt_gen; /* compiler generation number */
212 dt_list_t dt_programs; /* linked list of dtrace_prog_t’s */
213 dt_list_t dt_xlators; /* linked list of dt_xlator_t’s */
214 struct dt_xlator **dt_xlatormap; /* dt_xlator_t’s indexed by dx_id */
215 id_t dt_xlatorid; /* next dt_xlator_t id to assign */
216 dt_ident_t *dt_externs; /* linked list of external symbol identifiers */
217 dt_idhash_t *dt_macros; /* hash table of macro variable identifiers */
218 dt_idhash_t *dt_aggs; /* hash table of aggregation identifiers */
219 dt_idhash_t *dt_globals; /* hash table of global identifiers */
220 dt_idhash_t *dt_tls; /* hash table of thread-local identifiers */
221 dt_list_t dt_modlist; /* linked list of dt_module_t’s */
222 dt_module_t **dt_mods; /* hash table of dt_module_t’s */
223 uint_t dt_modbuckets; /* number of module hash buckets */
224 uint_t dt_nmods; /* number of modules in hash and list */
225 dt_provmod_t *dt_provmod; /* linked list of provider modules */
226 dt_module_t *dt_exec; /* pointer to executable module */

new/usr/src/lib/libdtrace/common/dt_impl.h 3

227 dt_module_t *dt_rtld; /* pointer to run-time linker module */
228 dt_module_t *dt_cdefs; /* pointer to C dynamic type module */
229 dt_module_t *dt_ddefs; /* pointer to D dynamic type module */
230 dt_list_t dt_provlist; /* linked list of dt_provider_t’s */
231 struct dt_provider **dt_provs; /* hash table of dt_provider_t’s */
232 uint_t dt_provbuckets; /* number of provider hash buckets */
233 uint_t dt_nprovs; /* number of providers in hash and list */
234 dt_proc_hash_t *dt_procs; /* hash table of grabbed process handles */
235 char **dt_proc_env; /* additional environment variables */
236 dt_intdesc_t dt_ints[6]; /* cached integer type descriptions */
237 ctf_id_t dt_type_func; /* cached CTF identifier for function type */
238 ctf_id_t dt_type_fptr; /* cached CTF identifier for function pointer */
239 ctf_id_t dt_type_str; /* cached CTF identifier for string type */
240 ctf_id_t dt_type_dyn; /* cached CTF identifier for <DYN> type */
241 ctf_id_t dt_type_stack; /* cached CTF identifier for stack type */
242 ctf_id_t dt_type_symaddr; /* cached CTF identifier for _symaddr type */
243 ctf_id_t dt_type_usymaddr; /* cached CTF ident. for _usymaddr type */
244 size_t dt_maxprobe; /* max enabled probe ID */
245 dtrace_eprobedesc_t **dt_edesc; /* enabled probe descriptions */
246 dtrace_probedesc_t **dt_pdesc; /* probe descriptions for enabled prbs */
247 size_t dt_maxagg; /* max aggregation ID */
248 dtrace_aggdesc_t **dt_aggdesc; /* aggregation descriptions */
249 int dt_maxformat; /* max format ID */
250 void **dt_formats; /* pointer to format array */
251 int dt_maxstrdata; /* max strdata ID */
252 char **dt_strdata; /* pointer to strdata array */
253 dt_aggregate_t dt_aggregate; /* aggregate */
254 dt_pq_t *dt_bufq; /* CPU-specific data queue */
255 struct dt_pfdict *dt_pfdict; /* dictionary of printf conversions */
256 dt_version_t dt_vmax; /* optional ceiling on program API binding */
257 dtrace_attribute_t dt_amin; /* optional floor on program attributes */
258 char *dt_cpp_path; /* pathname of cpp(1) to invoke if needed */
259 char **dt_cpp_argv; /* argument vector for exec’ing cpp(1) */
260 int dt_cpp_argc; /* count of initialized cpp(1) arguments */
261 int dt_cpp_args; /* size of dt_cpp_argv[] array */
262 char *dt_ld_path; /* pathname of ld(1) to invoke if needed */
263 dt_list_t dt_lib_path; /* linked-list forming library search path */
264 uint_t dt_lazyload; /* boolean: set via -xlazyload */
265 uint_t dt_droptags; /* boolean: set via -xdroptags */
266 uint_t dt_active; /* boolean: set once tracing is active */
267 uint_t dt_stopped; /* boolean: set once tracing is stopped */
268 processorid_t dt_beganon; /* CPU that executed BEGIN probe (if any) */
269 processorid_t dt_endedon; /* CPU that executed END probe (if any) */
270 uint_t dt_oflags; /* dtrace open-time options (see dtrace.h) */
271 uint_t dt_cflags; /* dtrace compile-time options (see dtrace.h) */
272 uint_t dt_dflags; /* dtrace link-time options (see dtrace.h) */
273 uint_t dt_prcmode; /* dtrace process create mode (see dt_proc.h) */
274 uint_t dt_linkmode; /* dtrace symbol linking mode (see below) */
275 uint_t dt_linktype; /* dtrace link output file type (see below) */
276 uint_t dt_xlatemode; /* dtrace translator linking mode (see below) */
277 uint_t dt_stdcmode; /* dtrace stdc compatibility mode (see below) */
278 uint_t dt_treedump; /* dtrace tree debug bitmap (see below) */
279 uint64_t dt_options[DTRACEOPT_MAX]; /* dtrace run-time options */
280 int dt_version; /* library version requested by client */
281 int dt_ctferr; /* error resulting from last CTF failure */
282 int dt_errno; /* error resulting from last failed operation */
283 int dt_fd; /* file descriptor for dtrace pseudo-device */
284 int dt_ftfd; /* file descriptor for fasttrap pseudo-device */
285 int dt_fterr; /* saved errno from failed open of dt_ftfd */
286 int dt_cdefs_fd; /* file descriptor for C CTF debugging cache */
287 int dt_ddefs_fd; /* file descriptor for D CTF debugging cache */
288 int dt_stdout_fd; /* file descriptor for saved stdout */
289 dtrace_handle_err_f *dt_errhdlr; /* error handler, if any */
290 void *dt_errarg; /* error handler argument */
291 dtrace_prog_t *dt_errprog; /* error handler program, if any */
292 dtrace_handle_drop_f *dt_drophdlr; /* drop handler, if any */

new/usr/src/lib/libdtrace/common/dt_impl.h 4

293 void *dt_droparg; /* drop handler argument */
294 dtrace_handle_proc_f *dt_prochdlr; /* proc handler, if any */
295 void *dt_procarg; /* proc handler argument */
296 dtrace_handle_setopt_f *dt_setopthdlr; /* setopt handler, if any */
297 void *dt_setoptarg; /* setopt handler argument */
298 dtrace_status_t dt_status[2]; /* status cache */
299 int dt_statusgen; /* current status generation */
300 hrtime_t dt_laststatus; /* last status */
301 hrtime_t dt_lastswitch; /* last switch of buffer data */
302 hrtime_t dt_lastagg; /* last snapshot of aggregation data */
303 char *dt_sprintf_buf; /* buffer for dtrace_sprintf() */
304 int dt_sprintf_buflen; /* length of dtrace_sprintf() buffer */
305 const char *dt_filetag; /* default filetag for dt_set_errmsg() */
306 char *dt_buffered_buf; /* buffer for buffered output */
307 size_t dt_buffered_offs; /* current offset into buffered buffer */
308 size_t dt_buffered_size; /* size of buffered buffer */
309 dtrace_handle_buffered_f *dt_bufhdlr; /* buffered handler, if any */
310 void *dt_bufarg; /* buffered handler argument */
311 dt_dof_t dt_dof; /* DOF generation buffers (see dt_dof.c) */
312 struct utsname dt_uts; /* uname(2) information for system */
313 dt_list_t dt_lib_dep; /* scratch linked-list of lib dependencies */
314 dt_list_t dt_lib_dep_sorted; /* dependency sorted library list */
315 dtrace_flowkind_t dt_flow; /* flow kind */
316 const char *dt_prefix; /* recommended flow prefix */
317 int dt_indent; /* recommended flow indent */
318 dtrace_epid_t dt_last_epid; /* most recently consumed EPID */
319 uint64_t dt_last_timestamp; /* most recently consumed timestamp */
320 };

322 /*
323 * Values for the user arg of the ECB.
324 */
325 #define DT_ECB_DEFAULT 0
326 #define DT_ECB_ERROR 1

328 /*
329 * Values for the dt_linkmode property, which is used by the assembler when
330 * processing external symbol references. User can set using -xlink=<mode>.
331 */
332 #define DT_LINK_KERNEL 0 /* kernel syms static, user syms dynamic */
333 #define DT_LINK_PRIMARY 1 /* primary kernel syms static, others dynamic */
334 #define DT_LINK_DYNAMIC 2 /* all symbols dynamic */
335 #define DT_LINK_STATIC 3 /* all symbols static */

337 /*
338 * Values for the dt_linktype property, which is used by dtrace_program_link()
339 * to determine the type of output file that is desired by the client.
340 */
341 #define DT_LTYP_ELF 0 /* produce ELF containing DOF */
342 #define DT_LTYP_DOF 1 /* produce stand-alone DOF */

344 /*
345 * Values for the dt_xlatemode property, which is used to determine whether
346 * references to dynamic translators are permitted. Set using -xlate=<mode>.
347 */
348 #define DT_XL_STATIC 0 /* require xlators to be statically defined */
349 #define DT_XL_DYNAMIC 1 /* produce references to dynamic translators */

351 /*
352 * Values for the dt_stdcmode property, which is used by the compiler when
353 * running cpp to determine the presence and setting of the __STDC__ macro.
354 */
355 #define DT_STDC_XA 0 /* ISO C + K&R C compat w/o ISO: __STDC__=0 */
356 #define DT_STDC_XC 1 /* Strict ISO C: __STDC__=1 */
357 #define DT_STDC_XS 2 /* K&R C: __STDC__ not defined */
358 #define DT_STDC_XT 3 /* ISO C + K&R C compat with ISO: __STDC__=0 */

new/usr/src/lib/libdtrace/common/dt_impl.h 5

360 /*
361 * Macro to test whether a given pass bit is set in the dt_treedump bit-vector.
362 * If the bit for pass ’p’ is set, the D compiler displays the parse tree for
363 * the program by printing it to stderr at the end of compiler pass ’p’.
364 */
365 #define DT_TREEDUMP_PASS(dtp, p) ((dtp)->dt_treedump & (1 << ((p) - 1)))

367 /*
368 * Macros for accessing the cached CTF container and type ID for the common
369 * types "int", "string", and <DYN>, which we need to use frequently in the D
370 * compiler. The DT_INT_* macro relies upon "int" being at index 0 in the
371 * _dtrace_ints_* tables in dt_open.c; the others are also set up there.
372 */
373 #define DT_INT_CTFP(dtp) ((dtp)->dt_ints[0].did_ctfp)
374 #define DT_INT_TYPE(dtp) ((dtp)->dt_ints[0].did_type)

376 #define DT_FUNC_CTFP(dtp) ((dtp)->dt_ddefs->dm_ctfp)
377 #define DT_FUNC_TYPE(dtp) ((dtp)->dt_type_func)

379 #define DT_FPTR_CTFP(dtp) ((dtp)->dt_ddefs->dm_ctfp)
380 #define DT_FPTR_TYPE(dtp) ((dtp)->dt_type_fptr)

382 #define DT_STR_CTFP(dtp) ((dtp)->dt_ddefs->dm_ctfp)
383 #define DT_STR_TYPE(dtp) ((dtp)->dt_type_str)

385 #define DT_DYN_CTFP(dtp) ((dtp)->dt_ddefs->dm_ctfp)
386 #define DT_DYN_TYPE(dtp) ((dtp)->dt_type_dyn)

388 #define DT_STACK_CTFP(dtp) ((dtp)->dt_ddefs->dm_ctfp)
389 #define DT_STACK_TYPE(dtp) ((dtp)->dt_type_stack)

391 #define DT_SYMADDR_CTFP(dtp) ((dtp)->dt_ddefs->dm_ctfp)
392 #define DT_SYMADDR_TYPE(dtp) ((dtp)->dt_type_symaddr)

394 #define DT_USYMADDR_CTFP(dtp) ((dtp)->dt_ddefs->dm_ctfp)
395 #define DT_USYMADDR_TYPE(dtp) ((dtp)->dt_type_usymaddr)

397 /*
398 * Actions and subroutines are both DT_NODE_FUNC nodes; to avoid confusing
399 * an action for a subroutine (or vice versa), we assure that the DT_ACT_*
400 * constants and the DIF_SUBR_* constants occupy non-overlapping ranges by
401 * starting the DT_ACT_* constants at DIF_SUBR_MAX + 1.
402 */
403 #define DT_ACT_BASE DIF_SUBR_MAX + 1
404 #define DT_ACT(n) (DT_ACT_BASE + (n))

406 #define DT_ACT_PRINTF DT_ACT(0) /* printf() action */
407 #define DT_ACT_TRACE DT_ACT(1) /* trace() action */
408 #define DT_ACT_TRACEMEM DT_ACT(2) /* tracemem() action */
409 #define DT_ACT_STACK DT_ACT(3) /* stack() action */
410 #define DT_ACT_STOP DT_ACT(4) /* stop() action */
411 #define DT_ACT_BREAKPOINT DT_ACT(5) /* breakpoint() action */
412 #define DT_ACT_PANIC DT_ACT(6) /* panic() action */
413 #define DT_ACT_SPECULATE DT_ACT(7) /* speculate() action */
414 #define DT_ACT_COMMIT DT_ACT(8) /* commit() action */
415 #define DT_ACT_DISCARD DT_ACT(9) /* discard() action */
416 #define DT_ACT_CHILL DT_ACT(10) /* chill() action */
417 #define DT_ACT_EXIT DT_ACT(11) /* exit() action */
418 #define DT_ACT_USTACK DT_ACT(12) /* ustack() action */
419 #define DT_ACT_PRINTA DT_ACT(13) /* printa() action */
420 #define DT_ACT_RAISE DT_ACT(14) /* raise() action */
421 #define DT_ACT_CLEAR DT_ACT(15) /* clear() action */
422 #define DT_ACT_NORMALIZE DT_ACT(16) /* normalize() action */
423 #define DT_ACT_DENORMALIZE DT_ACT(17) /* denormalize() action */
424 #define DT_ACT_TRUNC DT_ACT(18) /* trunc() action */

new/usr/src/lib/libdtrace/common/dt_impl.h 6

425 #define DT_ACT_SYSTEM DT_ACT(19) /* system() action */
426 #define DT_ACT_JSTACK DT_ACT(20) /* jstack() action */
427 #define DT_ACT_FTRUNCATE DT_ACT(21) /* ftruncate() action */
428 #define DT_ACT_FREOPEN DT_ACT(22) /* freopen() action */
429 #define DT_ACT_SYM DT_ACT(23) /* sym()/func() actions */
430 #define DT_ACT_MOD DT_ACT(24) /* mod() action */
431 #define DT_ACT_USYM DT_ACT(25) /* usym()/ufunc() actions */
432 #define DT_ACT_UMOD DT_ACT(26) /* umod() action */
433 #define DT_ACT_UADDR DT_ACT(27) /* uaddr() action */
434 #define DT_ACT_SETOPT DT_ACT(28) /* setopt() action */
435 #define DT_ACT_PRINT DT_ACT(29) /* print() action */

437 /*
438 * Sentinel to tell freopen() to restore the saved stdout. This must not
439 * be ever valid for opening for write access via freopen(3C), which of
440 * course, "." never is.
441 */
442 #define DT_FREOPEN_RESTORE "."

444 #define EDT_BASE 1000 /* base value for libdtrace errnos */

446 enum {
447 EDT_VERSION = EDT_BASE, /* client is requesting unsupported version */
448 EDT_VERSINVAL, /* version string is invalid or overflows */
449 EDT_VERSUNDEF, /* requested API version is not defined */
450 EDT_VERSREDUCED, /* requested API version has been reduced */
451 EDT_CTF, /* libctf called failed (dt_ctferr has more) */
452 EDT_COMPILER, /* error in D program compilation */
453 EDT_NOTUPREG, /* tuple register allocation failure */
454 EDT_NOMEM, /* memory allocation failure */
455 EDT_INT2BIG, /* integer limit exceeded */
456 EDT_STR2BIG, /* string limit exceeded */
457 EDT_NOMOD, /* unknown module name */
458 EDT_NOPROV, /* unknown provider name */
459 EDT_NOPROBE, /* unknown probe name */
460 EDT_NOSYM, /* unknown symbol name */
461 EDT_NOSYMADDR, /* no symbol corresponds to address */
462 EDT_NOTYPE, /* unknown type name */
463 EDT_NOVAR, /* unknown variable name */
464 EDT_NOAGG, /* unknown aggregation name */
465 EDT_BADSCOPE, /* improper use of type name scoping operator */
466 EDT_BADSPEC, /* overspecified probe description */
467 EDT_BADSPCV, /* bad macro variable in probe description */
468 EDT_BADID, /* invalid probe identifier */
469 EDT_NOTLOADED, /* module is not currently loaded */
470 EDT_NOCTF, /* module does not contain any CTF data */
471 EDT_DATAMODEL, /* module and program data models don’t match */
472 EDT_DIFVERS, /* library has newer DIF version than driver */
473 EDT_BADAGG, /* unrecognized aggregating action */
474 EDT_FIO, /* file i/o error */
475 EDT_DIFINVAL, /* invalid DIF program */
476 EDT_DIFSIZE, /* invalid DIF size */
477 EDT_DIFFAULT, /* failed to copyin DIF program */
478 EDT_BADPROBE, /* bad probe description */
479 EDT_BADPGLOB, /* bad probe description globbing pattern */
480 EDT_NOSCOPE, /* declaration scope stack underflow */
481 EDT_NODECL, /* declaration stack underflow */
482 EDT_DMISMATCH, /* record list does not match statement */
483 EDT_DOFFSET, /* record data offset error */
484 EDT_DALIGN, /* record data alignment error */
485 EDT_BADOPTNAME, /* invalid dtrace_setopt option name */
486 EDT_BADOPTVAL, /* invalid dtrace_setopt option value */
487 EDT_BADOPTCTX, /* invalid dtrace_setopt option context */
488 EDT_CPPFORK, /* failed to fork preprocessor */
489 EDT_CPPEXEC, /* failed to exec preprocessor */
490 EDT_CPPENT, /* preprocessor not found */

new/usr/src/lib/libdtrace/common/dt_impl.h 7

491 EDT_CPPERR, /* unknown preprocessor error */
492 EDT_SYMOFLOW, /* external symbol table overflow */
493 EDT_ACTIVE, /* operation illegal when tracing is active */
494 EDT_DESTRUCTIVE, /* destructive actions not allowed */
495 EDT_NOANON, /* no anonymous tracing state */
496 EDT_ISANON, /* can’t claim anon state and enable probes */
497 EDT_ENDTOOBIG, /* END enablings exceed size of prncpl buffer */
498 EDT_NOCONV, /* failed to load type for printf conversion */
499 EDT_BADCONV, /* incomplete printf conversion */
500 EDT_BADERROR, /* invalid library ERROR action */
501 EDT_ERRABORT, /* abort due to error */
502 EDT_DROPABORT, /* abort due to drop */
503 EDT_DIRABORT, /* abort explicitly directed */
504 EDT_BADRVAL, /* invalid return value from callback */
505 EDT_BADNORMAL, /* invalid normalization */
506 EDT_BUFTOOSMALL, /* enabling exceeds size of buffer */
507 EDT_BADTRUNC, /* invalid truncation */
508 EDT_BUSY, /* device busy (active kernel debugger) */
509 EDT_ACCESS, /* insufficient privileges to use DTrace */
510 EDT_NOENT, /* dtrace device not available */
511 EDT_BRICKED, /* abort due to systemic unresponsiveness */
512 EDT_HARDWIRE, /* failed to load hard-wired definitions */
513 EDT_ELFVERSION, /* libelf is out-of-date w.r.t libdtrace */
514 EDT_NOBUFFERED, /* attempt to buffer output without handler */
515 EDT_UNSTABLE, /* description matched unstable set of probes */
516 EDT_BADSETOPT, /* invalid setopt library action */
517 EDT_BADSTACKPC, /* invalid stack program counter size */
518 EDT_BADAGGVAR, /* invalid aggregation variable identifier */
519 EDT_OVERSION, /* client is requesting deprecated version */
520 EDT_ENABLING_ERR, /* failed to enable probe */
521 EDT_NOPROBES, /* no probes sites for declared provider */
522 EDT_CANTLOAD /* failed to load a module */
136 EDT_NOPROBES /* no probes sites for declared provider */
523 };

______unchanged_portion_omitted_

new/usr/src/lib/libdtrace/common/dt_lex.l 1

**
 23175 Tue Jan 14 16:48:55 2014
new/usr/src/lib/libdtrace/common/dt_lex.l
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 %{
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */

23 /*
24 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
25 */
26 /*
27 * Copyright (c) 2013 by Delphix. All rights reserved.
28 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
29 */
30 #endif /* ! codereview */

32 #include <string.h>
33 #include <stdlib.h>
34 #include <stdio.h>
35 #include <assert.h>
36 #include <ctype.h>
37 #include <errno.h>

39 #include <dt_impl.h>
40 #include <dt_grammar.h>
41 #include <dt_parser.h>
42 #include <dt_string.h>

44 /*
45 * We need to undefine lex’s input and unput macros so that references to these
46 * call the functions provided at the end of this source file.
47 */
48 #undef input
49 #undef unput

51 static int id_or_type(const char *);
52 static int input(void);
53 static void unput(int);

55 /*
56 * We first define a set of labeled states for use in the D lexer and then a

new/usr/src/lib/libdtrace/common/dt_lex.l 2

57 * set of regular expressions to simplify things below. The lexer states are:
58 *
59 * S0 - D program clause and expression lexing
60 * S1 - D comments (i.e. skip everything until end of comment)
61 * S2 - D program outer scope (probe specifiers and declarations)
62 * S3 - D control line parsing (i.e. after ^# is seen but before \n)
63 * S4 - D control line scan (locate control directives only and invoke S3)
64 */
65 %}

67 %e 1500 /* maximum nodes */
68 %p 4900 /* maximum positions */
26 %p 3700 /* maximum positions */
69 %n 600 /* maximum states */
70 %a 3000 /* maximum transitions */
71 #endif /* ! codereview */

73 %s S0 S1 S2 S3 S4

75 RGX_AGG "@"[a-zA-Z_][0-9a-zA-Z_]*
76 RGX_PSPEC [-$:a-zA-Z_.?*\\\[\]!][-$:0-9a-zA-Z_.‘?*\\\[\]!]*
77 RGX_ALTIDENT [a-zA-Z_][0-9a-zA-Z_]*
78 RGX_LMID LM[0-9a-fA-F]+‘
79 RGX_MOD_IDENT [a-zA-Z_‘][0-9a-z.A-Z_‘]*‘
80 #endif /* ! codereview */
81 RGX_IDENT [a-zA-Z_‘][0-9a-zA-Z_‘]*
82 RGX_INT ([0-9]+|0[xX][0-9A-Fa-f]+)[uU]?[lL]?[lL]?
83 RGX_FP ([0-9]+("."?)[0-9]*|"."[0-9]+)((e|E)("+"|-)?[0-9]+)?[fFlL]?
84 RGX_WS [\f\n\r\t\v]
85 RGX_STR ([^"\\\n]|\\[^"\n]|\\\")*
86 RGX_CHR ([^’\\\n]|\\[^’\n]|\\’)*
87 RGX_INTERP ^[\f\t\v]*#!.*
88 RGX_CTL ^[\f\t\v]*#

90 %%

92 %{

94 /*
95 * We insert a special prologue into yylex() itself: if the pcb contains a
96 * context token, we return that prior to running the normal lexer. This
97 * allows libdtrace to force yacc into one of our three parsing contexts: D
98 * expression (DT_CTX_DEXPR), D program (DT_CTX_DPROG) or D type (DT_CTX_DTYPE).
99 * Once the token is returned, we clear it so this only happens once.
100 */
101 if (yypcb->pcb_token != 0) {
102 int tok = yypcb->pcb_token;
103 yypcb->pcb_token = 0;
104 return (tok);
105 }

107 %}

109 <S0>auto return (DT_KEY_AUTO);
110 <S0>break return (DT_KEY_BREAK);
111 <S0>case return (DT_KEY_CASE);
112 <S0>char return (DT_KEY_CHAR);
113 <S0>const return (DT_KEY_CONST);
114 <S0>continue return (DT_KEY_CONTINUE);
115 <S0>counter return (DT_KEY_COUNTER);
116 <S0>default return (DT_KEY_DEFAULT);
117 <S0>do return (DT_KEY_DO);
118 <S0>double return (DT_KEY_DOUBLE);
119 <S0>else return (DT_KEY_ELSE);
120 <S0>enum return (DT_KEY_ENUM);
121 <S0>extern return (DT_KEY_EXTERN);

new/usr/src/lib/libdtrace/common/dt_lex.l 3

122 <S0>float return (DT_KEY_FLOAT);
123 <S0>for return (DT_KEY_FOR);
124 <S0>goto return (DT_KEY_GOTO);
125 <S0>if return (DT_KEY_IF);
126 <S0>import return (DT_KEY_IMPORT);
127 <S0>inline return (DT_KEY_INLINE);
128 <S0>int return (DT_KEY_INT);
129 <S0>long return (DT_KEY_LONG);
130 <S0>offsetof return (DT_TOK_OFFSETOF);
131 <S0>probe return (DT_KEY_PROBE);
132 <S0>provider return (DT_KEY_PROVIDER);
133 <S0>register return (DT_KEY_REGISTER);
134 <S0>restrict return (DT_KEY_RESTRICT);
135 <S0>return return (DT_KEY_RETURN);
136 <S0>self return (DT_KEY_SELF);
137 <S0>short return (DT_KEY_SHORT);
138 <S0>signed return (DT_KEY_SIGNED);
139 <S0>sizeof return (DT_TOK_SIZEOF);
140 <S0>static return (DT_KEY_STATIC);
141 <S0>string return (DT_KEY_STRING);
142 <S0>stringof return (DT_TOK_STRINGOF);
143 <S0>struct return (DT_KEY_STRUCT);
144 <S0>switch return (DT_KEY_SWITCH);
145 <S0>this return (DT_KEY_THIS);
146 <S0>translator return (DT_KEY_XLATOR);
147 <S0>typedef return (DT_KEY_TYPEDEF);
148 <S0>union return (DT_KEY_UNION);
149 <S0>unsigned return (DT_KEY_UNSIGNED);
150 <S0>userland return (DT_KEY_USERLAND);
151 #endif /* ! codereview */
152 <S0>void return (DT_KEY_VOID);
153 <S0>volatile return (DT_KEY_VOLATILE);
154 <S0>while return (DT_KEY_WHILE);
155 <S0>xlate return (DT_TOK_XLATE);

157 <S2>auto { yybegin(YYS_EXPR); return (DT_KEY_AUTO); }
158 <S2>char { yybegin(YYS_EXPR); return (DT_KEY_CHAR); }
159 <S2>const { yybegin(YYS_EXPR); return (DT_KEY_CONST); }
160 <S2>counter { yybegin(YYS_DEFINE); return (DT_KEY_COUNTER); }
161 <S2>double { yybegin(YYS_EXPR); return (DT_KEY_DOUBLE); }
162 <S2>enum { yybegin(YYS_EXPR); return (DT_KEY_ENUM); }
163 <S2>extern { yybegin(YYS_EXPR); return (DT_KEY_EXTERN); }
164 <S2>float { yybegin(YYS_EXPR); return (DT_KEY_FLOAT); }
165 <S2>import { yybegin(YYS_EXPR); return (DT_KEY_IMPORT); }
166 <S2>inline { yybegin(YYS_DEFINE); return (DT_KEY_INLINE); }
167 <S2>int { yybegin(YYS_EXPR); return (DT_KEY_INT); }
168 <S2>long { yybegin(YYS_EXPR); return (DT_KEY_LONG); }
169 <S2>provider { yybegin(YYS_DEFINE); return (DT_KEY_PROVIDER); }
170 <S2>register { yybegin(YYS_EXPR); return (DT_KEY_REGISTER); }
171 <S2>restrict { yybegin(YYS_EXPR); return (DT_KEY_RESTRICT); }
172 <S2>self { yybegin(YYS_EXPR); return (DT_KEY_SELF); }
173 <S2>short { yybegin(YYS_EXPR); return (DT_KEY_SHORT); }
174 <S2>signed { yybegin(YYS_EXPR); return (DT_KEY_SIGNED); }
175 <S2>static { yybegin(YYS_EXPR); return (DT_KEY_STATIC); }
176 <S2>string { yybegin(YYS_EXPR); return (DT_KEY_STRING); }
177 <S2>struct { yybegin(YYS_EXPR); return (DT_KEY_STRUCT); }
178 <S2>this { yybegin(YYS_EXPR); return (DT_KEY_THIS); }
179 <S2>translator { yybegin(YYS_DEFINE); return (DT_KEY_XLATOR); }
180 <S2>typedef { yybegin(YYS_EXPR); return (DT_KEY_TYPEDEF); }
181 <S2>union { yybegin(YYS_EXPR); return (DT_KEY_UNION); }
182 <S2>unsigned { yybegin(YYS_EXPR); return (DT_KEY_UNSIGNED); }
183 <S2>void { yybegin(YYS_EXPR); return (DT_KEY_VOID); }
184 <S2>volatile { yybegin(YYS_EXPR); return (DT_KEY_VOLATILE); }

186 <S0>"$$"[0-9]+ {
187 int i = atoi(yytext + 2);

new/usr/src/lib/libdtrace/common/dt_lex.l 4

188 char *v = "";

190 /*
191 * A macro argument reference substitutes the text of
192 * an argument in place of the current token. When we
193 * see $$<d> we fetch the saved string from pcb_sargv
194 * (or use the default argument if the option has been
195 * set and the argument hasn’t been specified) and
196 * return a token corresponding to this string.
197 */
198 if (i < 0 || (i >= yypcb->pcb_sargc &&
199 !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) {
200 xyerror(D_MACRO_UNDEF, "macro argument %s is "
201 "not defined\n", yytext);
202 }

204 if (i < yypcb->pcb_sargc) {
205 v = yypcb->pcb_sargv[i]; /* get val from pcb */
206 yypcb->pcb_sflagv[i] |= DT_IDFLG_REF;
207 }

209 if ((yylval.l_str = strdup(v)) == NULL)
210 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

212 (void) stresc2chr(yylval.l_str);
213 return (DT_TOK_STRING);
214 }

216 <S0>"$"[0-9]+ {
217 int i = atoi(yytext + 1);
218 char *p, *v = "0";

220 /*
221 * A macro argument reference substitutes the text of
222 * one identifier or integer pattern for another. When
223 * we see $<d> we fetch the saved string from pcb_sargv
224 * (or use the default argument if the option has been
225 * set and the argument hasn’t been specified) and
226 * return a token corresponding to this string.
227 */
228 if (i < 0 || (i >= yypcb->pcb_sargc &&
229 !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) {
230 xyerror(D_MACRO_UNDEF, "macro argument %s is "
231 "not defined\n", yytext);
232 }

234 if (i < yypcb->pcb_sargc) {
235 v = yypcb->pcb_sargv[i]; /* get val from pcb */
236 yypcb->pcb_sflagv[i] |= DT_IDFLG_REF;
237 }

239 /*
240 * If the macro text is not a valid integer or ident,
241 * then we treat it as a string. The string may be
242 * optionally enclosed in quotes, which we strip.
243 */
244 if (strbadidnum(v)) {
245 size_t len = strlen(v);

247 if (len != 1 && *v == ’"’ && v[len - 1] == ’"’)
248 yylval.l_str = strndup(v + 1, len - 2);
249 else
250 yylval.l_str = strndup(v, len);

252 if (yylval.l_str == NULL)
253 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

new/usr/src/lib/libdtrace/common/dt_lex.l 5

255 (void) stresc2chr(yylval.l_str);
256 return (DT_TOK_STRING);
257 }

259 /*
260 * If the macro text is not a string an begins with a
261 * digit or a +/- sign, process it as an integer token.
262 */
263 if (isdigit(v[0]) || v[0] == ’-’ || v[0] == ’+’) {
264 if (isdigit(v[0]))
265 yyintprefix = 0;
266 else
267 yyintprefix = *v++;

269 errno = 0;
270 yylval.l_int = strtoull(v, &p, 0);
271 (void) strncpy(yyintsuffix, p,
272 sizeof (yyintsuffix));
273 yyintdecimal = *v != ’0’;

275 if (errno == ERANGE) {
276 xyerror(D_MACRO_OFLOW, "macro argument"
277 " %s constant %s results in integer"
278 " overflow\n", yytext, v);
279 }

281 return (DT_TOK_INT);
282 }

284 return (id_or_type(v));
285 }

287 <S0>"$$"{RGX_IDENT} {
288 dt_ident_t *idp = dt_idhash_lookup(
289 yypcb->pcb_hdl->dt_macros, yytext + 2);

291 char s[16]; /* enough for UINT_MAX + \0 */

293 if (idp == NULL) {
294 xyerror(D_MACRO_UNDEF, "macro variable %s "
295 "is not defined\n", yytext);
296 }

298 /*
299 * For the moment, all current macro variables are of
300 * type id_t (refer to dtrace_update() for details).
301 */
302 (void) snprintf(s, sizeof (s), "%u", idp->di_id);
303 if ((yylval.l_str = strdup(s)) == NULL)
304 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

306 return (DT_TOK_STRING);
307 }

309 <S0>"$"{RGX_IDENT} {
310 dt_ident_t *idp = dt_idhash_lookup(
311 yypcb->pcb_hdl->dt_macros, yytext + 1);

313 if (idp == NULL) {
314 xyerror(D_MACRO_UNDEF, "macro variable %s "
315 "is not defined\n", yytext);
316 }

318 /*
319 * For the moment, all current macro variables are of

new/usr/src/lib/libdtrace/common/dt_lex.l 6

320 * type id_t (refer to dtrace_update() for details).
321 */
322 yylval.l_int = (intmax_t)(int)idp->di_id;
323 yyintprefix = 0;
324 yyintsuffix[0] = ’\0’;
325 yyintdecimal = 1;

327 return (DT_TOK_INT);
328 }

330 <S0>{RGX_IDENT} |
331 <S0>{RGX_MOD_IDENT}{RGX_IDENT} |
332 <S0>{RGX_MOD_IDENT} {
28 <S0>{RGX_IDENT} {
333 return (id_or_type(yytext));
334 }

336 <S0>{RGX_AGG} {
337 if ((yylval.l_str = strdup(yytext)) == NULL)
338 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
339 return (DT_TOK_AGG);
340 }

342 <S0>"@" {
343 if ((yylval.l_str = strdup("@_")) == NULL)
344 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
345 return (DT_TOK_AGG);
346 }

348 <S0>{RGX_INT} |
349 <S2>{RGX_INT} |
350 <S3>{RGX_INT} {
351 char *p;

353 errno = 0;
354 yylval.l_int = strtoull(yytext, &p, 0);
355 yyintprefix = 0;
356 (void) strncpy(yyintsuffix, p, sizeof (yyintsuffix));
357 yyintdecimal = yytext[0] != ’0’;

359 if (errno == ERANGE) {
360 xyerror(D_INT_OFLOW, "constant %s results in "
361 "integer overflow\n", yytext);
362 }

364 if (*p != ’\0’ && strchr("uUlL", *p) == NULL) {
365 xyerror(D_INT_DIGIT, "constant %s contains "
366 "invalid digit %c\n", yytext, *p);
367 }

369 if ((YYSTATE) != S3)
370 return (DT_TOK_INT);

372 yypragma = dt_node_link(yypragma,
373 dt_node_int(yylval.l_int));
374 }

376 <S0>{RGX_FP} yyerror("floating-point constants are not permitted\n");

378 <S0>\"{RGX_STR}$ |
379 <S3>\"{RGX_STR}$ xyerror(D_STR_NL, "newline encountered in string literal");

381 <S0>\"{RGX_STR}\" |
382 <S3>\"{RGX_STR}\" {
383 /*
384 * Quoted string -- convert C escape sequences and

new/usr/src/lib/libdtrace/common/dt_lex.l 7

385 * return the string as a token.
386 */
387 yylval.l_str = strndup(yytext + 1, yyleng - 2);

389 if (yylval.l_str == NULL)
390 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

392 (void) stresc2chr(yylval.l_str);
393 if ((YYSTATE) != S3)
394 return (DT_TOK_STRING);

396 yypragma = dt_node_link(yypragma,
397 dt_node_string(yylval.l_str));
398 }

400 <S0>’{RGX_CHR}$ xyerror(D_CHR_NL, "newline encountered in character constant");

402 <S0>’{RGX_CHR}’ {
403 char *s, *p, *q;
404 size_t nbytes;

406 /*
407 * Character constant -- convert C escape sequences and
408 * return the character as an integer immediate value.
409 */
410 if (yyleng == 2)
411 xyerror(D_CHR_NULL, "empty character constant");

413 s = yytext + 1;
414 yytext[yyleng - 1] = ’\0’;
415 nbytes = stresc2chr(s);
416 yylval.l_int = 0;
417 yyintprefix = 0;
418 yyintsuffix[0] = ’\0’;
419 yyintdecimal = 1;

421 if (nbytes > sizeof (yylval.l_int)) {
422 xyerror(D_CHR_OFLOW, "character constant is "
423 "too long");
424 }
425 #ifdef _LITTLE_ENDIAN
426 p = ((char *)&yylval.l_int) + nbytes - 1;
427 for (q = s; nbytes != 0; nbytes--)
428 *p-- = *q++;
429 #else
430 bcopy(s, ((char *)&yylval.l_int) +
431 sizeof (yylval.l_int) - nbytes, nbytes);
432 #endif
433 return (DT_TOK_INT);
434 }

436 <S0>"/*" |
437 <S2>"/*" {
438 yypcb->pcb_cstate = (YYSTATE);
439 BEGIN(S1);
440 }

442 <S0>{RGX_INTERP} |
443 <S2>{RGX_INTERP} ; /* discard any #! lines */

445 <S0>{RGX_CTL} |
446 <S2>{RGX_CTL} |
447 <S4>{RGX_CTL} {
448 assert(yypragma == NULL);
449 yypcb->pcb_cstate = (YYSTATE);
450 BEGIN(S3);

new/usr/src/lib/libdtrace/common/dt_lex.l 8

451 }

453 <S4>. ; /* discard */
454 <S4>"\n" ; /* discard */

456 <S0>"/" {
457 int c, tok;

459 /*
460 * The use of "/" as the predicate delimiter and as the
461 * integer division symbol requires special lookahead
462 * to avoid a shift/reduce conflict in the D grammar.
463 * We look ahead to the next non-whitespace character.
464 * If we encounter EOF, ";", "{", or "/", then this "/"
465 * closes the predicate and we return DT_TOK_EPRED.
466 * If we encounter anything else, it’s DT_TOK_DIV.
467 */
468 while ((c = input()) != 0) {
469 if (strchr("\f\n\r\t\v ", c) == NULL)
470 break;
471 }

473 if (c == 0 || c == ’;’ || c == ’{’ || c == ’/’) {
474 if (yypcb->pcb_parens != 0) {
475 yyerror("closing) expected in "
476 "predicate before /\n");
477 }
478 if (yypcb->pcb_brackets != 0) {
479 yyerror("closing] expected in "
480 "predicate before /\n");
481 }
482 tok = DT_TOK_EPRED;
483 } else
484 tok = DT_TOK_DIV;

486 unput(c);
487 return (tok);
488 }

490 <S0>"(" {
491 yypcb->pcb_parens++;
492 return (DT_TOK_LPAR);
493 }

495 <S0>")" {
496 if (--yypcb->pcb_parens < 0)
497 yyerror("extra) in input stream\n");
498 return (DT_TOK_RPAR);
499 }

501 <S0>"[" {
502 yypcb->pcb_brackets++;
503 return (DT_TOK_LBRAC);
504 }

506 <S0>"]" {
507 if (--yypcb->pcb_brackets < 0)
508 yyerror("extra] in input stream\n");
509 return (DT_TOK_RBRAC);
510 }

512 <S0>"{" |
513 <S2>"{" {
514 yypcb->pcb_braces++;
515 return (’{’);
516 }

new/usr/src/lib/libdtrace/common/dt_lex.l 9

518 <S0>"}" {
519 if (--yypcb->pcb_braces < 0)
520 yyerror("extra } in input stream\n");
521 return (’}’);
522 }

524 <S0>"|" return (DT_TOK_BOR);
525 <S0>"^" return (DT_TOK_XOR);
526 <S0>"&" return (DT_TOK_BAND);
527 <S0>"&&" return (DT_TOK_LAND);
528 <S0>"^^" return (DT_TOK_LXOR);
529 <S0>"||" return (DT_TOK_LOR);
530 <S0>"==" return (DT_TOK_EQU);
531 <S0>"!=" return (DT_TOK_NEQ);
532 <S0>"<" return (DT_TOK_LT);
533 <S0>"<=" return (DT_TOK_LE);
534 <S0>">" return (DT_TOK_GT);
535 <S0>">=" return (DT_TOK_GE);
536 <S0>"<<" return (DT_TOK_LSH);
537 <S0>">>" return (DT_TOK_RSH);
538 <S0>"+" return (DT_TOK_ADD);
539 <S0>"-" return (DT_TOK_SUB);
540 <S0>"*" return (DT_TOK_MUL);
541 <S0>"%" return (DT_TOK_MOD);
542 <S0>"~" return (DT_TOK_BNEG);
543 <S0>"!" return (DT_TOK_LNEG);
544 <S0>"?" return (DT_TOK_QUESTION);
545 <S0>":" return (DT_TOK_COLON);
546 <S0>"." return (DT_TOK_DOT);
547 <S0>"->" return (DT_TOK_PTR);
548 <S0>"=" return (DT_TOK_ASGN);
549 <S0>"+=" return (DT_TOK_ADD_EQ);
550 <S0>"-=" return (DT_TOK_SUB_EQ);
551 <S0>"*=" return (DT_TOK_MUL_EQ);
552 <S0>"/=" return (DT_TOK_DIV_EQ);
553 <S0>"%=" return (DT_TOK_MOD_EQ);
554 <S0>"&=" return (DT_TOK_AND_EQ);
555 <S0>"^=" return (DT_TOK_XOR_EQ);
556 <S0>"|=" return (DT_TOK_OR_EQ);
557 <S0>"<<=" return (DT_TOK_LSH_EQ);
558 <S0>">>=" return (DT_TOK_RSH_EQ);
559 <S0>"++" return (DT_TOK_ADDADD);
560 <S0>"--" return (DT_TOK_SUBSUB);
561 <S0>"..." return (DT_TOK_ELLIPSIS);
562 <S0>"," return (DT_TOK_COMMA);
563 <S0>";" return (’;’);
564 <S0>{RGX_WS} ; /* discard */
565 <S0>"\\"\n ; /* discard */
566 <S0>. yyerror("syntax error near \"%c\"\n", yytext[0]);

568 <S1>"/*" yyerror("/* encountered inside a comment\n");
569 <S1>"*/" BEGIN(yypcb->pcb_cstate);
570 <S1>.|\n ; /* discard */

572 <S2>{RGX_PSPEC} {
573 /*
574 * S2 has an ambiguity because RGX_PSPEC includes ’*’
575 * as a glob character and ’*’ also can be DT_TOK_STAR.
576 * Since lex always matches the longest token, this
577 * rule can be matched by an input string like "int*",
578 * which could begin a global variable declaration such
579 * as "int*x;" or could begin a RGX_PSPEC with globbing
580 * such as "int* { trace(timestamp); }". If C_PSPEC is
581 * not set, we must resolve the ambiguity in favor of
582 * the type and perform lexer pushback if the fragment

new/usr/src/lib/libdtrace/common/dt_lex.l 10

583 * before ’*’ or entire fragment matches a type name.
584 * If C_PSPEC is set, we always return a PSPEC token.
585 * If C_PSPEC is off, the user can avoid ambiguity by
586 * including a ’:’ delimiter in the specifier, which
587 * they should be doing anyway to specify the provider.
588 */
589 if (!(yypcb->pcb_cflags & DTRACE_C_PSPEC) &&
590 strchr(yytext, ’:’) == NULL) {

592 char *p = strchr(yytext, ’*’);
593 char *q = yytext + yyleng - 1;

595 if (p != NULL && p > yytext)
596 *p = ’\0’; /* prune yytext */

598 if (dt_type_lookup(yytext, NULL) == 0) {
599 yylval.l_str = strdup(yytext);

601 if (yylval.l_str == NULL) {
602 longjmp(yypcb->pcb_jmpbuf,
603 EDT_NOMEM);
604 }

606 if (p != NULL && p > yytext) {
607 for (*p = ’*’; q >= p; q--)
608 unput(*q);
609 }

611 yybegin(YYS_EXPR);
612 return (DT_TOK_TNAME);
613 }

615 if (p != NULL && p > yytext)
616 *p = ’*’; /* restore yytext */
617 }

619 if ((yylval.l_str = strdup(yytext)) == NULL)
620 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

622 return (DT_TOK_PSPEC);
623 }

625 <S2>"/" return (DT_TOK_DIV);
626 <S2>"," return (DT_TOK_COMMA);

628 <S2>{RGX_WS} ; /* discard */
629 <S2>. yyerror("syntax error near \"%c\"\n", yytext[0]);

631 <S3>\n {
632 dt_pragma(yypragma);
633 yypragma = NULL;
634 BEGIN(yypcb->pcb_cstate);
635 }

637 <S3>[\f\t\v]+ ; /* discard */

639 <S3>[^\f\n\t\v "]+ {
640 dt_node_t *dnp;

642 if ((yylval.l_str = strdup(yytext)) == NULL)
643 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

645 /*
646 * We want to call dt_node_ident() here, but we can’t
647 * because it will expand inlined identifiers, which we
648 * don’t want to do from #pragma context in order to

new/usr/src/lib/libdtrace/common/dt_lex.l 11

649 * support pragmas that apply to the ident itself. We
650 * call dt_node_string() and then reset dn_op instead.
651 */
652 dnp = dt_node_string(yylval.l_str);
653 dnp->dn_kind = DT_NODE_IDENT;
654 dnp->dn_op = DT_TOK_IDENT;
655 yypragma = dt_node_link(yypragma, dnp);
656 }

658 <S3>. yyerror("syntax error near \"%c\"\n", yytext[0]);

660 %%

662 /*
663 * yybegin provides a wrapper for use from C code around the lex BEGIN() macro.
664 * We use two main states for lexing because probe descriptions use a syntax
665 * that is incompatible with the normal D tokens (e.g. names can contain "-").
666 * yybegin also handles the job of switching between two lists of dt_nodes
667 * as we allocate persistent definitions, like inlines, and transient nodes
668 * that will be freed once we are done parsing the current program file.
669 */
670 void
671 yybegin(yystate_t state)
672 {
673 #ifdef YYDEBUG
674 yydebug = _dtrace_debug;
675 #endif
676 if (yypcb->pcb_yystate == state)
677 return; /* nothing to do if we’re in the state already */

679 if (yypcb->pcb_yystate == YYS_DEFINE) {
680 yypcb->pcb_list = yypcb->pcb_hold;
681 yypcb->pcb_hold = NULL;
682 }

684 switch (state) {
685 case YYS_CLAUSE:
686 BEGIN(S2);
687 break;
688 case YYS_DEFINE:
689 assert(yypcb->pcb_hold == NULL);
690 yypcb->pcb_hold = yypcb->pcb_list;
691 yypcb->pcb_list = NULL;
692 /*FALLTHRU*/
693 case YYS_EXPR:
694 BEGIN(S0);
695 break;
696 case YYS_DONE:
697 break;
698 case YYS_CONTROL:
699 BEGIN(S4);
700 break;
701 default:
702 xyerror(D_UNKNOWN, "internal error -- bad yystate %d\n", state);
703 }

705 yypcb->pcb_yystate = state;
706 }

______unchanged_portion_omitted_

new/usr/src/lib/libdtrace/common/dt_module.c 1

**
 41593 Tue Jan 14 16:48:55 2014
new/usr/src/lib/libdtrace/common/dt_module.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /*
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 */
28 #endif /* ! codereview */

30 #include <sys/types.h>
31 #include <sys/modctl.h>
32 #include <sys/kobj.h>
33 #include <sys/kobj_impl.h>
34 #include <sys/sysmacros.h>
35 #include <sys/elf.h>
36 #include <sys/task.h>

38 #include <unistd.h>
39 #include <project.h>
40 #include <strings.h>
41 #include <stdlib.h>
42 #include <libelf.h>
43 #include <limits.h>
44 #include <assert.h>
45 #include <errno.h>
46 #include <dirent.h>

48 #include <dt_strtab.h>
49 #include <dt_module.h>
50 #include <dt_impl.h>

52 static const char *dt_module_strtab; /* active strtab for qsort callbacks */

54 static void
55 dt_module_symhash_insert(dt_module_t *dmp, const char *name, uint_t id)
56 {

new/usr/src/lib/libdtrace/common/dt_module.c 2

57 dt_sym_t *dsp = &dmp->dm_symchains[dmp->dm_symfree];
58 uint_t h;

60 assert(dmp->dm_symfree < dmp->dm_nsymelems + 1);

62 dsp->ds_symid = id;
63 h = dt_strtab_hash(name, NULL) % dmp->dm_nsymbuckets;
64 dsp->ds_next = dmp->dm_symbuckets[h];
65 dmp->dm_symbuckets[h] = dmp->dm_symfree++;
66 }

68 static uint_t
69 dt_module_syminit32(dt_module_t *dmp)
70 {
71 #if STT_NUM != (STT_TLS + 1)
72 #error "STT_NUM has grown. update dt_module_syminit32()"
73 #endif

75 const Elf32_Sym *sym = dmp->dm_symtab.cts_data;
76 const char *base = dmp->dm_strtab.cts_data;
77 size_t ss_size = dmp->dm_strtab.cts_size;
78 uint_t i, n = dmp->dm_nsymelems;
79 uint_t asrsv = 0;

81 for (i = 0; i < n; i++, sym++) {
82 const char *name = base + sym->st_name;
83 uchar_t type = ELF32_ST_TYPE(sym->st_info);

85 if (type >= STT_NUM || type == STT_SECTION)
86 continue; /* skip sections and unknown types */

88 if (sym->st_name == 0 || sym->st_name >= ss_size)
89 continue; /* skip null or invalid names */

91 if (sym->st_value != 0 &&
92 (ELF32_ST_BIND(sym->st_info) != STB_LOCAL || sym->st_size))
93 asrsv++; /* reserve space in the address map */

95 dt_module_symhash_insert(dmp, name, i);
96 }

98 return (asrsv);
99 }

101 static uint_t
102 dt_module_syminit64(dt_module_t *dmp)
103 {
104 #if STT_NUM != (STT_TLS + 1)
105 #error "STT_NUM has grown. update dt_module_syminit64()"
106 #endif

108 const Elf64_Sym *sym = dmp->dm_symtab.cts_data;
109 const char *base = dmp->dm_strtab.cts_data;
110 size_t ss_size = dmp->dm_strtab.cts_size;
111 uint_t i, n = dmp->dm_nsymelems;
112 uint_t asrsv = 0;

114 for (i = 0; i < n; i++, sym++) {
115 const char *name = base + sym->st_name;
116 uchar_t type = ELF64_ST_TYPE(sym->st_info);

118 if (type >= STT_NUM || type == STT_SECTION)
119 continue; /* skip sections and unknown types */

121 if (sym->st_name == 0 || sym->st_name >= ss_size)
122 continue; /* skip null or invalid names */

new/usr/src/lib/libdtrace/common/dt_module.c 3

124 if (sym->st_value != 0 &&
125 (ELF64_ST_BIND(sym->st_info) != STB_LOCAL || sym->st_size))
126 asrsv++; /* reserve space in the address map */

128 dt_module_symhash_insert(dmp, name, i);
129 }

131 return (asrsv);
132 }

134 /*
135 * Sort comparison function for 32-bit symbol address-to-name lookups. We sort
136 * symbols by value. If values are equal, we prefer the symbol that is
137 * non-zero sized, typed, not weak, or lexically first, in that order.
138 */
139 static int
140 dt_module_symcomp32(const void *lp, const void *rp)
141 {
142 Elf32_Sym *lhs = *((Elf32_Sym **)lp);
143 Elf32_Sym *rhs = *((Elf32_Sym **)rp);

145 if (lhs->st_value != rhs->st_value)
146 return (lhs->st_value > rhs->st_value ? 1 : -1);

148 if ((lhs->st_size == 0) != (rhs->st_size == 0))
149 return (lhs->st_size == 0 ? 1 : -1);

151 if ((ELF32_ST_TYPE(lhs->st_info) == STT_NOTYPE) !=
152 (ELF32_ST_TYPE(rhs->st_info) == STT_NOTYPE))
153 return (ELF32_ST_TYPE(lhs->st_info) == STT_NOTYPE ? 1 : -1);

155 if ((ELF32_ST_BIND(lhs->st_info) == STB_WEAK) !=
156 (ELF32_ST_BIND(rhs->st_info) == STB_WEAK))
157 return (ELF32_ST_BIND(lhs->st_info) == STB_WEAK ? 1 : -1);

159 return (strcmp(dt_module_strtab + lhs->st_name,
160 dt_module_strtab + rhs->st_name));
161 }

163 /*
164 * Sort comparison function for 64-bit symbol address-to-name lookups. We sort
165 * symbols by value. If values are equal, we prefer the symbol that is
166 * non-zero sized, typed, not weak, or lexically first, in that order.
167 */
168 static int
169 dt_module_symcomp64(const void *lp, const void *rp)
170 {
171 Elf64_Sym *lhs = *((Elf64_Sym **)lp);
172 Elf64_Sym *rhs = *((Elf64_Sym **)rp);

174 if (lhs->st_value != rhs->st_value)
175 return (lhs->st_value > rhs->st_value ? 1 : -1);

177 if ((lhs->st_size == 0) != (rhs->st_size == 0))
178 return (lhs->st_size == 0 ? 1 : -1);

180 if ((ELF64_ST_TYPE(lhs->st_info) == STT_NOTYPE) !=
181 (ELF64_ST_TYPE(rhs->st_info) == STT_NOTYPE))
182 return (ELF64_ST_TYPE(lhs->st_info) == STT_NOTYPE ? 1 : -1);

184 if ((ELF64_ST_BIND(lhs->st_info) == STB_WEAK) !=
185 (ELF64_ST_BIND(rhs->st_info) == STB_WEAK))
186 return (ELF64_ST_BIND(lhs->st_info) == STB_WEAK ? 1 : -1);

188 return (strcmp(dt_module_strtab + lhs->st_name,

new/usr/src/lib/libdtrace/common/dt_module.c 4

189 dt_module_strtab + rhs->st_name));
190 }

192 static void
193 dt_module_symsort32(dt_module_t *dmp)
194 {
195 Elf32_Sym *symtab = (Elf32_Sym *)dmp->dm_symtab.cts_data;
196 Elf32_Sym **sympp = (Elf32_Sym **)dmp->dm_asmap;
197 const dt_sym_t *dsp = dmp->dm_symchains + 1;
198 uint_t i, n = dmp->dm_symfree;

200 for (i = 1; i < n; i++, dsp++) {
201 Elf32_Sym *sym = symtab + dsp->ds_symid;
202 if (sym->st_value != 0 &&
203 (ELF32_ST_BIND(sym->st_info) != STB_LOCAL || sym->st_size))
204 *sympp++ = sym;
205 }

207 dmp->dm_aslen = (uint_t)(sympp - (Elf32_Sym **)dmp->dm_asmap);
208 assert(dmp->dm_aslen <= dmp->dm_asrsv);

210 dt_module_strtab = dmp->dm_strtab.cts_data;
211 qsort(dmp->dm_asmap, dmp->dm_aslen,
212 sizeof (Elf32_Sym *), dt_module_symcomp32);
213 dt_module_strtab = NULL;
214 }

216 static void
217 dt_module_symsort64(dt_module_t *dmp)
218 {
219 Elf64_Sym *symtab = (Elf64_Sym *)dmp->dm_symtab.cts_data;
220 Elf64_Sym **sympp = (Elf64_Sym **)dmp->dm_asmap;
221 const dt_sym_t *dsp = dmp->dm_symchains + 1;
222 uint_t i, n = dmp->dm_symfree;

224 for (i = 1; i < n; i++, dsp++) {
225 Elf64_Sym *sym = symtab + dsp->ds_symid;
226 if (sym->st_value != 0 &&
227 (ELF64_ST_BIND(sym->st_info) != STB_LOCAL || sym->st_size))
228 *sympp++ = sym;
229 }

231 dmp->dm_aslen = (uint_t)(sympp - (Elf64_Sym **)dmp->dm_asmap);
232 assert(dmp->dm_aslen <= dmp->dm_asrsv);

234 dt_module_strtab = dmp->dm_strtab.cts_data;
235 qsort(dmp->dm_asmap, dmp->dm_aslen,
236 sizeof (Elf64_Sym *), dt_module_symcomp64);
237 dt_module_strtab = NULL;
238 }

240 static GElf_Sym *
241 dt_module_symgelf32(const Elf32_Sym *src, GElf_Sym *dst)
242 {
243 if (dst != NULL) {
244 dst->st_name = src->st_name;
245 dst->st_info = src->st_info;
246 dst->st_other = src->st_other;
247 dst->st_shndx = src->st_shndx;
248 dst->st_value = src->st_value;
249 dst->st_size = src->st_size;
250 }

252 return (dst);
253 }

new/usr/src/lib/libdtrace/common/dt_module.c 5

255 static GElf_Sym *
256 dt_module_symgelf64(const Elf64_Sym *src, GElf_Sym *dst)
257 {
258 if (dst != NULL)
259 bcopy(src, dst, sizeof (GElf_Sym));

261 return (dst);
262 }

264 static GElf_Sym *
265 dt_module_symname32(dt_module_t *dmp, const char *name,
266 GElf_Sym *symp, uint_t *idp)
267 {
268 const Elf32_Sym *symtab = dmp->dm_symtab.cts_data;
269 const char *strtab = dmp->dm_strtab.cts_data;

271 const Elf32_Sym *sym;
272 const dt_sym_t *dsp;
273 uint_t i, h;

275 if (dmp->dm_nsymelems == 0)
276 return (NULL);

278 h = dt_strtab_hash(name, NULL) % dmp->dm_nsymbuckets;

280 for (i = dmp->dm_symbuckets[h]; i != 0; i = dsp->ds_next) {
281 dsp = &dmp->dm_symchains[i];
282 sym = symtab + dsp->ds_symid;

284 if (strcmp(name, strtab + sym->st_name) == 0) {
285 if (idp != NULL)
286 *idp = dsp->ds_symid;
287 return (dt_module_symgelf32(sym, symp));
288 }
289 }

291 return (NULL);
292 }

294 static GElf_Sym *
295 dt_module_symname64(dt_module_t *dmp, const char *name,
296 GElf_Sym *symp, uint_t *idp)
297 {
298 const Elf64_Sym *symtab = dmp->dm_symtab.cts_data;
299 const char *strtab = dmp->dm_strtab.cts_data;

301 const Elf64_Sym *sym;
302 const dt_sym_t *dsp;
303 uint_t i, h;

305 if (dmp->dm_nsymelems == 0)
306 return (NULL);

308 h = dt_strtab_hash(name, NULL) % dmp->dm_nsymbuckets;

310 for (i = dmp->dm_symbuckets[h]; i != 0; i = dsp->ds_next) {
311 dsp = &dmp->dm_symchains[i];
312 sym = symtab + dsp->ds_symid;

314 if (strcmp(name, strtab + sym->st_name) == 0) {
315 if (idp != NULL)
316 *idp = dsp->ds_symid;
317 return (dt_module_symgelf64(sym, symp));
318 }
319 }

new/usr/src/lib/libdtrace/common/dt_module.c 6

321 return (NULL);
322 }

324 static GElf_Sym *
325 dt_module_symaddr32(dt_module_t *dmp, GElf_Addr addr,
326 GElf_Sym *symp, uint_t *idp)
327 {
328 const Elf32_Sym **asmap = (const Elf32_Sym **)dmp->dm_asmap;
329 const Elf32_Sym *symtab = dmp->dm_symtab.cts_data;
330 const Elf32_Sym *sym;

332 uint_t i, mid, lo = 0, hi = dmp->dm_aslen - 1;
333 Elf32_Addr v;

335 if (dmp->dm_aslen == 0)
336 return (NULL);

338 while (hi - lo > 1) {
339 mid = (lo + hi) / 2;
340 if (addr >= asmap[mid]->st_value)
341 lo = mid;
342 else
343 hi = mid;
344 }

346 i = addr < asmap[hi]->st_value ? lo : hi;
347 sym = asmap[i];
348 v = sym->st_value;

350 /*
351 * If the previous entry has the same value, improve our choice. The
352 * order of equal-valued symbols is determined by the comparison func.
353 */
354 while (i-- != 0 && asmap[i]->st_value == v)
355 sym = asmap[i];

357 if (addr - sym->st_value < MAX(sym->st_size, 1)) {
358 if (idp != NULL)
359 *idp = (uint_t)(sym - symtab);
360 return (dt_module_symgelf32(sym, symp));
361 }

363 return (NULL);
364 }

366 static GElf_Sym *
367 dt_module_symaddr64(dt_module_t *dmp, GElf_Addr addr,
368 GElf_Sym *symp, uint_t *idp)
369 {
370 const Elf64_Sym **asmap = (const Elf64_Sym **)dmp->dm_asmap;
371 const Elf64_Sym *symtab = dmp->dm_symtab.cts_data;
372 const Elf64_Sym *sym;

374 uint_t i, mid, lo = 0, hi = dmp->dm_aslen - 1;
375 Elf64_Addr v;

377 if (dmp->dm_aslen == 0)
378 return (NULL);

380 while (hi - lo > 1) {
381 mid = (lo + hi) / 2;
382 if (addr >= asmap[mid]->st_value)
383 lo = mid;
384 else
385 hi = mid;
386 }

new/usr/src/lib/libdtrace/common/dt_module.c 7

388 i = addr < asmap[hi]->st_value ? lo : hi;
389 sym = asmap[i];
390 v = sym->st_value;

392 /*
393 * If the previous entry has the same value, improve our choice. The
394 * order of equal-valued symbols is determined by the comparison func.
395 */
396 while (i-- != 0 && asmap[i]->st_value == v)
397 sym = asmap[i];

399 if (addr - sym->st_value < MAX(sym->st_size, 1)) {
400 if (idp != NULL)
401 *idp = (uint_t)(sym - symtab);
402 return (dt_module_symgelf64(sym, symp));
403 }

405 return (NULL);
406 }

408 static const dt_modops_t dt_modops_32 = {
409 dt_module_syminit32,
410 dt_module_symsort32,
411 dt_module_symname32,
412 dt_module_symaddr32
413 };

415 static const dt_modops_t dt_modops_64 = {
416 dt_module_syminit64,
417 dt_module_symsort64,
418 dt_module_symname64,
419 dt_module_symaddr64
420 };

422 dt_module_t *
423 dt_module_create(dtrace_hdl_t *dtp, const char *name)
424 {
425 long pid;
426 char *eptr;
427 dt_ident_t *idp;
428 #endif /* ! codereview */
429 uint_t h = dt_strtab_hash(name, NULL) % dtp->dt_modbuckets;
430 dt_module_t *dmp;

432 for (dmp = dtp->dt_mods[h]; dmp != NULL; dmp = dmp->dm_next) {
433 if (strcmp(dmp->dm_name, name) == 0)
434 return (dmp);
435 }

437 if ((dmp = malloc(sizeof (dt_module_t))) == NULL)
438 return (NULL); /* caller must handle allocation failure */

440 bzero(dmp, sizeof (dt_module_t));
441 (void) strlcpy(dmp->dm_name, name, sizeof (dmp->dm_name));
442 dt_list_append(&dtp->dt_modlist, dmp);
443 dmp->dm_next = dtp->dt_mods[h];
444 dtp->dt_mods[h] = dmp;
445 dtp->dt_nmods++;

447 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64)
448 dmp->dm_ops = &dt_modops_64;
449 else
450 dmp->dm_ops = &dt_modops_32;

452 /*

new/usr/src/lib/libdtrace/common/dt_module.c 8

453 * Modules for userland processes are special. They always refer to a
454 * specific process and have a copy of their CTF data from a specific
455 * instant in time. Any dt_module_t that begins with ’pid’ is a module
456 * for a specific process, much like how any probe description that
457 * begins with ’pid’ is special. pid123 refers to process 123. A module
458 * that is just ’pid’ refers specifically to pid$target. This is
459 * generally done as D does not currently allow for macros to be
460 * evaluated when working with types.
461 */
462 if (strncmp(dmp->dm_name, "pid", 3) == 0) {
463 errno = 0;
464 if (dmp->dm_name[3] == ’\0’) {
465 idp = dt_idhash_lookup(dtp->dt_macros, "target");
466 if (idp != NULL && idp->di_id != 0)
467 dmp->dm_pid = idp->di_id;
468 } else {
469 pid = strtol(dmp->dm_name + 3, &eptr, 10);
470 if (errno == 0 && *eptr == ’\0’)
471 dmp->dm_pid = (pid_t)pid;
472 else
473 dt_dprintf("encountered malformed pid "
474 "module: %s\n", dmp->dm_name);
475 }
476 }

478 #endif /* ! codereview */
479 return (dmp);
480 }

482 dt_module_t *
483 dt_module_lookup_by_name(dtrace_hdl_t *dtp, const char *name)
484 {
485 uint_t h = dt_strtab_hash(name, NULL) % dtp->dt_modbuckets;
486 dt_module_t *dmp;

488 for (dmp = dtp->dt_mods[h]; dmp != NULL; dmp = dmp->dm_next) {
489 if (strcmp(dmp->dm_name, name) == 0)
490 return (dmp);
491 }

493 return (NULL);
494 }

496 /*ARGSUSED*/
497 dt_module_t *
498 dt_module_lookup_by_ctf(dtrace_hdl_t *dtp, ctf_file_t *ctfp)
499 {
500 return (ctfp ? ctf_getspecific(ctfp) : NULL);
501 }

503 static int
504 dt_module_load_sect(dtrace_hdl_t *dtp, dt_module_t *dmp, ctf_sect_t *ctsp)
505 {
506 const char *s;
507 size_t shstrs;
508 GElf_Shdr sh;
509 Elf_Data *dp;
510 Elf_Scn *sp;

512 if (elf_getshdrstrndx(dmp->dm_elf, &shstrs) == -1)
513 return (dt_set_errno(dtp, EDT_NOTLOADED));

515 for (sp = NULL; (sp = elf_nextscn(dmp->dm_elf, sp)) != NULL;) {
516 if (gelf_getshdr(sp, &sh) == NULL || sh.sh_type == SHT_NULL ||
517 (s = elf_strptr(dmp->dm_elf, shstrs, sh.sh_name)) == NULL)
518 continue; /* skip any malformed sections */

new/usr/src/lib/libdtrace/common/dt_module.c 9

520 if (sh.sh_type == ctsp->cts_type &&
521 sh.sh_entsize == ctsp->cts_entsize &&
522 strcmp(s, ctsp->cts_name) == 0)
523 break; /* section matches specification */
524 }

526 /*
527 * If the section isn’t found, return success but leave cts_data set
528 * to NULL and cts_size set to zero for our caller.
529 */
530 if (sp == NULL || (dp = elf_getdata(sp, NULL)) == NULL)
531 return (0);

533 ctsp->cts_data = dp->d_buf;
534 ctsp->cts_size = dp->d_size;

536 dt_dprintf("loaded %s [%s] (%lu bytes)\n",
537 dmp->dm_name, ctsp->cts_name, (ulong_t)ctsp->cts_size);

539 return (0);
540 }

542 typedef struct dt_module_cb_arg {
543 struct ps_prochandle *dpa_proc;
544 dtrace_hdl_t *dpa_dtp;
545 dt_module_t *dpa_dmp;
546 uint_t dpa_count;
547 } dt_module_cb_arg_t;

549 /* ARGSUSED */
550 static int
551 dt_module_load_proc_count(void *arg, const prmap_t *prmap, const char *obj)
552 {
553 ctf_file_t *fp;
554 dt_module_cb_arg_t *dcp = arg;

556 /* Try to grab a ctf container if it exists */
557 fp = Pname_to_ctf(dcp->dpa_proc, obj);
558 if (fp != NULL)
559 dcp->dpa_count++;
560 return (0);
561 }

563 /* ARGSUSED */
564 static int
565 dt_module_load_proc_build(void *arg, const prmap_t *prmap, const char *obj)
566 {
567 ctf_file_t *fp;
568 char buf[MAXPATHLEN], *p;
569 dt_module_cb_arg_t *dcp = arg;
570 int count = dcp->dpa_count;
571 Lmid_t lmid;

573 fp = Pname_to_ctf(dcp->dpa_proc, obj);
574 if (fp == NULL)
575 return (0);
576 fp = ctf_dup(fp);
577 if (fp == NULL)
578 return (0);
579 dcp->dpa_dmp->dm_libctfp[count] = fp;
580 /*
581 * While it’d be nice to simply use objname here, because of our prior
582 * actions we’ll always get a resolved object name to its on disk file.
583 * Like the pid provider, we need to tell a bit of a lie here. The type
584 * that the user thinks of is in terms of the libraries they requested,

new/usr/src/lib/libdtrace/common/dt_module.c 10

585 * eg. libc.so.1, they don’t care about the fact that it’s
586 * libc_hwcap.so.1.
587 */
588 (void) Pobjname(dcp->dpa_proc, prmap->pr_vaddr, buf, sizeof (buf));
589 if ((p = strrchr(buf, ’/’)) == NULL)
590 p = buf;
591 else
592 p++;

594 /*
595 * If for some reason we can’t find a link map id for this module, which
596 * would be really quite weird. We instead just say the link map id is
597 * zero.
598 */
599 if (Plmid(dcp->dpa_proc, prmap->pr_vaddr, &lmid) != 0)
600 lmid = 0;

602 if (lmid == 0)
603 dcp->dpa_dmp->dm_libctfn[count] = strdup(p);
604 else
605 (void) asprintf(&dcp->dpa_dmp->dm_libctfn[count],
606 "LM%lx‘%s", lmid, p);
607 if (dcp->dpa_dmp->dm_libctfn[count] == NULL)
608 return (1);
609 ctf_setspecific(fp, dcp->dpa_dmp);
610 dcp->dpa_count++;
611 return (0);
612 }

614 /*
615 * We’ve been asked to load data that belongs to another process. As such we’re
616 * going to pgrab it at this instant, load everything that we might ever care
617 * about, and then drive on. The reason for this is that the process that we’re
618 * interested in might be changing. As long as we have grabbed it, then this
619 * can’t be a problem for us.
620 *
621 * For now, we’re actually going to punt on most things and just try to get CTF
622 * data, nothing else. Basically this is only useful as a source of type
623 * information, we can’t go and do the stacktrace lookups, etc.
624 */
625 static int
626 dt_module_load_proc(dtrace_hdl_t *dtp, dt_module_t *dmp)
627 {
628 struct ps_prochandle *p;
629 dt_module_cb_arg_t arg;

631 /*
632 * Note that on success we do not release this hold. We must hold this
633 * for our life time.
634 */
635 p = dt_proc_grab(dtp, dmp->dm_pid, 0, PGRAB_RDONLY | PGRAB_FORCE);
636 if (p == NULL) {
637 dt_dprintf("failed to grab pid: %d\n", (int)dmp->dm_pid);
638 return (dt_set_errno(dtp, EDT_CANTLOAD));
639 }
640 dt_proc_lock(dtp, p);

642 arg.dpa_proc = p;
643 arg.dpa_dtp = dtp;
644 arg.dpa_dmp = dmp;
645 arg.dpa_count = 0;
646 if (Pobject_iter_resolved(p, dt_module_load_proc_count, &arg) != 0) {
647 dt_dprintf("failed to iterate objects\n");
648 dt_proc_release(dtp, p);
649 return (dt_set_errno(dtp, EDT_CANTLOAD));
650 }

new/usr/src/lib/libdtrace/common/dt_module.c 11

652 if (arg.dpa_count == 0) {
653 dt_dprintf("no ctf data present\n");
654 dt_proc_unlock(dtp, p);
655 dt_proc_release(dtp, p);
656 return (dt_set_errno(dtp, EDT_CANTLOAD));
657 }

659 dmp->dm_libctfp = malloc(sizeof (ctf_file_t *) * arg.dpa_count);
660 if (dmp->dm_libctfp == NULL) {
661 dt_proc_unlock(dtp, p);
662 dt_proc_release(dtp, p);
663 return (dt_set_errno(dtp, EDT_NOMEM));
664 }
665 bzero(dmp->dm_libctfp, sizeof (ctf_file_t *) * arg.dpa_count);

667 dmp->dm_libctfn = malloc(sizeof (char *) * arg.dpa_count);
668 if (dmp->dm_libctfn == NULL) {
669 free(dmp->dm_libctfp);
670 dt_proc_unlock(dtp, p);
671 dt_proc_release(dtp, p);
672 return (dt_set_errno(dtp, EDT_NOMEM));
673 }
674 bzero(dmp->dm_libctfn, sizeof (char *) * arg.dpa_count);

676 dmp->dm_nctflibs = arg.dpa_count;

678 arg.dpa_count = 0;
679 if (Pobject_iter_resolved(p, dt_module_load_proc_build, &arg) != 0) {
680 dt_proc_unlock(dtp, p);
681 dt_module_unload(dtp, dmp);
682 dt_proc_release(dtp, p);
683 return (dt_set_errno(dtp, EDT_CANTLOAD));
684 }
685 assert(arg.dpa_count == dmp->dm_nctflibs);
686 dt_dprintf("loaded %d ctf modules for pid %d\n", arg.dpa_count,
687 (int)dmp->dm_pid);

689 dt_proc_unlock(dtp, p);
690 dt_proc_release(dtp, p);
691 dmp->dm_flags |= DT_DM_LOADED;

693 return (0);
694 }

696 #endif /* ! codereview */
697 int
698 dt_module_load(dtrace_hdl_t *dtp, dt_module_t *dmp)
699 {
700 if (dmp->dm_flags & DT_DM_LOADED)
701 return (0); /* module is already loaded */

703 if (dmp->dm_pid != 0)
704 return (dt_module_load_proc(dtp, dmp));

706 #endif /* ! codereview */
707 dmp->dm_ctdata.cts_name = ".SUNW_ctf";
708 dmp->dm_ctdata.cts_type = SHT_PROGBITS;
709 dmp->dm_ctdata.cts_flags = 0;
710 dmp->dm_ctdata.cts_data = NULL;
711 dmp->dm_ctdata.cts_size = 0;
712 dmp->dm_ctdata.cts_entsize = 0;
713 dmp->dm_ctdata.cts_offset = 0;

715 dmp->dm_symtab.cts_name = ".symtab";
716 dmp->dm_symtab.cts_type = SHT_SYMTAB;

new/usr/src/lib/libdtrace/common/dt_module.c 12

717 dmp->dm_symtab.cts_flags = 0;
718 dmp->dm_symtab.cts_data = NULL;
719 dmp->dm_symtab.cts_size = 0;
720 dmp->dm_symtab.cts_entsize = dmp->dm_ops == &dt_modops_64 ?
721 sizeof (Elf64_Sym) : sizeof (Elf32_Sym);
722 dmp->dm_symtab.cts_offset = 0;

724 dmp->dm_strtab.cts_name = ".strtab";
725 dmp->dm_strtab.cts_type = SHT_STRTAB;
726 dmp->dm_strtab.cts_flags = 0;
727 dmp->dm_strtab.cts_data = NULL;
728 dmp->dm_strtab.cts_size = 0;
729 dmp->dm_strtab.cts_entsize = 0;
730 dmp->dm_strtab.cts_offset = 0;

732 /*
733 * Attempt to load the module’s CTF section, symbol table section, and
734 * string table section. Note that modules may not contain CTF data:
735 * this will result in a successful load_sect but data of size zero.
736 * We will then fail if dt_module_getctf() is called, as shown below.
737 */
738 if (dt_module_load_sect(dtp, dmp, &dmp->dm_ctdata) == -1 ||
739 dt_module_load_sect(dtp, dmp, &dmp->dm_symtab) == -1 ||
740 dt_module_load_sect(dtp, dmp, &dmp->dm_strtab) == -1) {
741 dt_module_unload(dtp, dmp);
742 return (-1); /* dt_errno is set for us */
743 }

745 /*
746 * Allocate the hash chains and hash buckets for symbol name lookup.
747 * This is relatively simple since the symbol table is of fixed size
748 * and is known in advance. We allocate one extra element since we
749 * use element indices instead of pointers and zero is our sentinel.
750 */
751 dmp->dm_nsymelems =
752 dmp->dm_symtab.cts_size / dmp->dm_symtab.cts_entsize;

754 dmp->dm_nsymbuckets = _dtrace_strbuckets;
755 dmp->dm_symfree = 1; /* first free element is index 1 */

757 dmp->dm_symbuckets = malloc(sizeof (uint_t) * dmp->dm_nsymbuckets);
758 dmp->dm_symchains = malloc(sizeof (dt_sym_t) * dmp->dm_nsymelems + 1);

760 if (dmp->dm_symbuckets == NULL || dmp->dm_symchains == NULL) {
761 dt_module_unload(dtp, dmp);
762 return (dt_set_errno(dtp, EDT_NOMEM));
763 }

765 bzero(dmp->dm_symbuckets, sizeof (uint_t) * dmp->dm_nsymbuckets);
766 bzero(dmp->dm_symchains, sizeof (dt_sym_t) * dmp->dm_nsymelems + 1);

768 /*
769 * Iterate over the symbol table data buffer and insert each symbol
770 * name into the name hash if the name and type are valid. Then
771 * allocate the address map, fill it in, and sort it.
772 */
773 dmp->dm_asrsv = dmp->dm_ops->do_syminit(dmp);

775 dt_dprintf("hashed %s [%s] (%u symbols)\n",
776 dmp->dm_name, dmp->dm_symtab.cts_name, dmp->dm_symfree - 1);

778 if ((dmp->dm_asmap = malloc(sizeof (void *) * dmp->dm_asrsv)) == NULL) {
779 dt_module_unload(dtp, dmp);
780 return (dt_set_errno(dtp, EDT_NOMEM));
781 }

new/usr/src/lib/libdtrace/common/dt_module.c 13

783 dmp->dm_ops->do_symsort(dmp);

785 dt_dprintf("sorted %s [%s] (%u symbols)\n",
786 dmp->dm_name, dmp->dm_symtab.cts_name, dmp->dm_aslen);

788 dmp->dm_flags |= DT_DM_LOADED;
789 return (0);
790 }

792 int
793 dt_module_hasctf(dtrace_hdl_t *dtp, dt_module_t *dmp)
794 {
795 if (dmp->dm_pid != 0 && dmp->dm_nctflibs > 0)
796 return (1);
797 return (dt_module_getctf(dtp, dmp) != NULL);
798 }

800 #endif /* ! codereview */
801 ctf_file_t *
802 dt_module_getctf(dtrace_hdl_t *dtp, dt_module_t *dmp)
803 {
804 const char *parent;
805 dt_module_t *pmp;
806 ctf_file_t *pfp;
807 int model;

809 if (dmp->dm_ctfp != NULL || dt_module_load(dtp, dmp) != 0)
810 return (dmp->dm_ctfp);

812 if (dmp->dm_ops == &dt_modops_64)
813 model = CTF_MODEL_LP64;
814 else
815 model = CTF_MODEL_ILP32;

817 /*
818 * If the data model of the module does not match our program data
819 * model, then do not permit CTF from this module to be opened and
820 * returned to the compiler. If we support mixed data models in the
821 * future for combined kernel/user tracing, this can be removed.
822 */
823 if (dtp->dt_conf.dtc_ctfmodel != model) {
824 (void) dt_set_errno(dtp, EDT_DATAMODEL);
825 return (NULL);
826 }

828 if (dmp->dm_ctdata.cts_size == 0) {
829 (void) dt_set_errno(dtp, EDT_NOCTF);
830 return (NULL);
831 }

833 dmp->dm_ctfp = ctf_bufopen(&dmp->dm_ctdata,
834 &dmp->dm_symtab, &dmp->dm_strtab, &dtp->dt_ctferr);

836 if (dmp->dm_ctfp == NULL) {
837 (void) dt_set_errno(dtp, EDT_CTF);
838 return (NULL);
839 }

841 (void) ctf_setmodel(dmp->dm_ctfp, model);
842 ctf_setspecific(dmp->dm_ctfp, dmp);

844 if ((parent = ctf_parent_name(dmp->dm_ctfp)) != NULL) {
845 if ((pmp = dt_module_create(dtp, parent)) == NULL ||
846 (pfp = dt_module_getctf(dtp, pmp)) == NULL) {
847 if (pmp == NULL)
848 (void) dt_set_errno(dtp, EDT_NOMEM);

new/usr/src/lib/libdtrace/common/dt_module.c 14

849 goto err;
850 }

852 if (ctf_import(dmp->dm_ctfp, pfp) == CTF_ERR) {
853 dtp->dt_ctferr = ctf_errno(dmp->dm_ctfp);
854 (void) dt_set_errno(dtp, EDT_CTF);
855 goto err;
856 }
857 }

859 dt_dprintf("loaded CTF container for %s (%p)\n",
860 dmp->dm_name, (void *)dmp->dm_ctfp);

862 return (dmp->dm_ctfp);

864 err:
865 ctf_close(dmp->dm_ctfp);
866 dmp->dm_ctfp = NULL;
867 return (NULL);
868 }

870 /*ARGSUSED*/
871 void
872 dt_module_unload(dtrace_hdl_t *dtp, dt_module_t *dmp)
873 {
874 int i;

876 #endif /* ! codereview */
877 ctf_close(dmp->dm_ctfp);
878 dmp->dm_ctfp = NULL;

880 if (dmp->dm_libctfp != NULL) {
881 for (i = 0; i < dmp->dm_nctflibs; i++) {
882 ctf_close(dmp->dm_libctfp[i]);
883 free(dmp->dm_libctfn[i]);
884 }
885 free(dmp->dm_libctfp);
886 free(dmp->dm_libctfn);
887 dmp->dm_libctfp = NULL;
888 dmp->dm_nctflibs = 0;
889 }

891 #endif /* ! codereview */
892 bzero(&dmp->dm_ctdata, sizeof (ctf_sect_t));
893 bzero(&dmp->dm_symtab, sizeof (ctf_sect_t));
894 bzero(&dmp->dm_strtab, sizeof (ctf_sect_t));

896 if (dmp->dm_symbuckets != NULL) {
897 free(dmp->dm_symbuckets);
898 dmp->dm_symbuckets = NULL;
899 }

901 if (dmp->dm_symchains != NULL) {
902 free(dmp->dm_symchains);
903 dmp->dm_symchains = NULL;
904 }

906 if (dmp->dm_asmap != NULL) {
907 free(dmp->dm_asmap);
908 dmp->dm_asmap = NULL;
909 }

911 dmp->dm_symfree = 0;
912 dmp->dm_nsymbuckets = 0;
913 dmp->dm_nsymelems = 0;
914 dmp->dm_asrsv = 0;

new/usr/src/lib/libdtrace/common/dt_module.c 15

915 dmp->dm_aslen = 0;

917 dmp->dm_text_va = NULL;
918 dmp->dm_text_size = 0;
919 dmp->dm_data_va = NULL;
920 dmp->dm_data_size = 0;
921 dmp->dm_bss_va = NULL;
922 dmp->dm_bss_size = 0;

924 if (dmp->dm_extern != NULL) {
925 dt_idhash_destroy(dmp->dm_extern);
926 dmp->dm_extern = NULL;
927 }

929 (void) elf_end(dmp->dm_elf);
930 dmp->dm_elf = NULL;

932 dmp->dm_pid = 0;

934 #endif /* ! codereview */
935 dmp->dm_flags &= ~DT_DM_LOADED;
936 }

938 void
939 dt_module_destroy(dtrace_hdl_t *dtp, dt_module_t *dmp)
940 {
941 uint_t h = dt_strtab_hash(dmp->dm_name, NULL) % dtp->dt_modbuckets;
942 dt_module_t **dmpp = &dtp->dt_mods[h];

944 dt_list_delete(&dtp->dt_modlist, dmp);
945 assert(dtp->dt_nmods != 0);
946 dtp->dt_nmods--;

948 /*
949 * Now remove this module from its hash chain. We expect to always
950 * find the module on its hash chain, so in this loop we assert that
951 * we don’t run off the end of the list.
952 */
953 while (*dmpp != dmp) {
954 dmpp = &((*dmpp)->dm_next);
955 assert(*dmpp != NULL);
956 }

958 *dmpp = dmp->dm_next;

960 dt_module_unload(dtp, dmp);
961 free(dmp);
962 }

964 /*
965 * Insert a new external symbol reference into the specified module. The new
966 * symbol will be marked as undefined and is assigned a symbol index beyond
967 * any existing cached symbols from this module. We use the ident’s di_data
968 * field to store a pointer to a copy of the dtrace_syminfo_t for this symbol.
969 */
970 dt_ident_t *
971 dt_module_extern(dtrace_hdl_t *dtp, dt_module_t *dmp,
972 const char *name, const dtrace_typeinfo_t *tip)
973 {
974 dtrace_syminfo_t *sip;
975 dt_ident_t *idp;
976 uint_t id;

978 if (dmp->dm_extern == NULL && (dmp->dm_extern = dt_idhash_create(
979 "extern", NULL, dmp->dm_nsymelems, UINT_MAX)) == NULL) {
980 (void) dt_set_errno(dtp, EDT_NOMEM);

new/usr/src/lib/libdtrace/common/dt_module.c 16

981 return (NULL);
982 }

984 if (dt_idhash_nextid(dmp->dm_extern, &id) == -1) {
985 (void) dt_set_errno(dtp, EDT_SYMOFLOW);
986 return (NULL);
987 }

989 if ((sip = malloc(sizeof (dtrace_syminfo_t))) == NULL) {
990 (void) dt_set_errno(dtp, EDT_NOMEM);
991 return (NULL);
992 }

994 idp = dt_idhash_insert(dmp->dm_extern, name, DT_IDENT_SYMBOL, 0, id,
995 _dtrace_symattr, 0, &dt_idops_thaw, NULL, dtp->dt_gen);

997 if (idp == NULL) {
998 (void) dt_set_errno(dtp, EDT_NOMEM);
999 free(sip);

1000 return (NULL);
1001 }

1003 sip->dts_object = dmp->dm_name;
1004 sip->dts_name = idp->di_name;
1005 sip->dts_id = idp->di_id;

1007 idp->di_data = sip;
1008 idp->di_ctfp = tip->dtt_ctfp;
1009 idp->di_type = tip->dtt_type;

1011 return (idp);
1012 }

1014 const char *
1015 dt_module_modelname(dt_module_t *dmp)
1016 {
1017 if (dmp->dm_ops == &dt_modops_64)
1018 return ("64-bit");
1019 else
1020 return ("32-bit");
1021 }

1023 /* ARGSUSED */
1024 int
1025 dt_module_getlibid(dtrace_hdl_t *dtp, dt_module_t *dmp, const ctf_file_t *fp)
1026 {
1027 int i;

1029 for (i = 0; i < dmp->dm_nctflibs; i++) {
1030 if (dmp->dm_libctfp[i] == fp)
1031 return (i);
1032 }

1034 return (-1);
1035 }

1037 /* ARGSUSED */
1038 ctf_file_t *
1039 dt_module_getctflib(dtrace_hdl_t *dtp, dt_module_t *dmp, const char *name)
1040 {
1041 int i;

1043 for (i = 0; i < dmp->dm_nctflibs; i++) {
1044 if (strcmp(dmp->dm_libctfn[i], name) == 0)
1045 return (dmp->dm_libctfp[i]);
1046 }

new/usr/src/lib/libdtrace/common/dt_module.c 17

1048 return (NULL);
1049 }

1051 #endif /* ! codereview */
1052 /*
1053 * Update our module cache by adding an entry for the specified module ’name’.
1054 * We create the dt_module_t and populate it using /system/object/<name>/.
1055 */
1056 static void
1057 dt_module_update(dtrace_hdl_t *dtp, const char *name)
1058 {
1059 char fname[MAXPATHLEN];
1060 struct stat64 st;
1061 int fd, err, bits;

1063 dt_module_t *dmp;
1064 const char *s;
1065 size_t shstrs;
1066 GElf_Shdr sh;
1067 Elf_Data *dp;
1068 Elf_Scn *sp;

1070 (void) snprintf(fname, sizeof (fname),
1071 "%s/%s/object", OBJFS_ROOT, name);

1073 if ((fd = open(fname, O_RDONLY)) == -1 || fstat64(fd, &st) == -1 ||
1074 (dmp = dt_module_create(dtp, name)) == NULL) {
1075 dt_dprintf("failed to open %s: %s\n", fname, strerror(errno));
1076 (void) close(fd);
1077 return;
1078 }

1080 /*
1081 * Since the module can unload out from under us (and /system/object
1082 * will return ENOENT), tell libelf to cook the entire file now and
1083 * then close the underlying file descriptor immediately. If this
1084 * succeeds, we know that we can continue safely using dmp->dm_elf.
1085 */
1086 dmp->dm_elf = elf_begin(fd, ELF_C_READ, NULL);
1087 err = elf_cntl(dmp->dm_elf, ELF_C_FDREAD);
1088 (void) close(fd);

1090 if (dmp->dm_elf == NULL || err == -1 ||
1091 elf_getshdrstrndx(dmp->dm_elf, &shstrs) == -1) {
1092 dt_dprintf("failed to load %s: %s\n",
1093 fname, elf_errmsg(elf_errno()));
1094 dt_module_destroy(dtp, dmp);
1095 return;
1096 }

1098 switch (gelf_getclass(dmp->dm_elf)) {
1099 case ELFCLASS32:
1100 dmp->dm_ops = &dt_modops_32;
1101 bits = 32;
1102 break;
1103 case ELFCLASS64:
1104 dmp->dm_ops = &dt_modops_64;
1105 bits = 64;
1106 break;
1107 default:
1108 dt_dprintf("failed to load %s: unknown ELF class\n", fname);
1109 dt_module_destroy(dtp, dmp);
1110 return;
1111 }

new/usr/src/lib/libdtrace/common/dt_module.c 18

1113 /*
1114 * Iterate over the section headers locating various sections of
1115 * interest and use their attributes to flesh out the dt_module_t.
1116 */
1117 for (sp = NULL; (sp = elf_nextscn(dmp->dm_elf, sp)) != NULL;) {
1118 if (gelf_getshdr(sp, &sh) == NULL || sh.sh_type == SHT_NULL ||
1119 (s = elf_strptr(dmp->dm_elf, shstrs, sh.sh_name)) == NULL)
1120 continue; /* skip any malformed sections */

1122 if (strcmp(s, ".text") == 0) {
1123 dmp->dm_text_size = sh.sh_size;
1124 dmp->dm_text_va = sh.sh_addr;
1125 } else if (strcmp(s, ".data") == 0) {
1126 dmp->dm_data_size = sh.sh_size;
1127 dmp->dm_data_va = sh.sh_addr;
1128 } else if (strcmp(s, ".bss") == 0) {
1129 dmp->dm_bss_size = sh.sh_size;
1130 dmp->dm_bss_va = sh.sh_addr;
1131 } else if (strcmp(s, ".info") == 0 &&
1132 (dp = elf_getdata(sp, NULL)) != NULL) {
1133 bcopy(dp->d_buf, &dmp->dm_info,
1134 MIN(sh.sh_size, sizeof (dmp->dm_info)));
1135 } else if (strcmp(s, ".filename") == 0 &&
1136 (dp = elf_getdata(sp, NULL)) != NULL) {
1137 (void) strlcpy(dmp->dm_file,
1138 dp->d_buf, sizeof (dmp->dm_file));
1139 }
1140 }

1142 dmp->dm_flags |= DT_DM_KERNEL;
1143 dmp->dm_modid = (int)OBJFS_MODID(st.st_ino);

1145 if (dmp->dm_info.objfs_info_primary)
1146 dmp->dm_flags |= DT_DM_PRIMARY;

1148 dt_dprintf("opened %d-bit module %s (%s) [%d]\n",
1149 bits, dmp->dm_name, dmp->dm_file, dmp->dm_modid);
1150 }

1152 /*
1153 * Unload all the loaded modules and then refresh the module cache with the
1154 * latest list of loaded modules and their address ranges.
1155 */
1156 void
1157 dtrace_update(dtrace_hdl_t *dtp)
1158 {
1159 dt_module_t *dmp;
1160 DIR *dirp;

1162 for (dmp = dt_list_next(&dtp->dt_modlist);
1163 dmp != NULL; dmp = dt_list_next(dmp))
1164 dt_module_unload(dtp, dmp);

1166 /*
1167 * Open /system/object and attempt to create a libdtrace module for
1168 * each kernel module that is loaded on the current system.
1169 */
1170 if (!(dtp->dt_oflags & DTRACE_O_NOSYS) &&
1171 (dirp = opendir(OBJFS_ROOT)) != NULL) {
1172 struct dirent *dp;

1174 while ((dp = readdir(dirp)) != NULL) {
1175 if (dp->d_name[0] != ’.’)
1176 dt_module_update(dtp, dp->d_name);
1177 }

new/usr/src/lib/libdtrace/common/dt_module.c 19

1179 (void) closedir(dirp);
1180 }

1182 /*
1183 * Look up all the macro identifiers and set di_id to the latest value.
1184 * This code collaborates with dt_lex.l on the use of di_id. We will
1185 * need to implement something fancier if we need to support non-ints.
1186 */
1187 dt_idhash_lookup(dtp->dt_macros, "egid")->di_id = getegid();
1188 dt_idhash_lookup(dtp->dt_macros, "euid")->di_id = geteuid();
1189 dt_idhash_lookup(dtp->dt_macros, "gid")->di_id = getgid();
1190 dt_idhash_lookup(dtp->dt_macros, "pid")->di_id = getpid();
1191 dt_idhash_lookup(dtp->dt_macros, "pgid")->di_id = getpgid(0);
1192 dt_idhash_lookup(dtp->dt_macros, "ppid")->di_id = getppid();
1193 dt_idhash_lookup(dtp->dt_macros, "projid")->di_id = getprojid();
1194 dt_idhash_lookup(dtp->dt_macros, "sid")->di_id = getsid(0);
1195 dt_idhash_lookup(dtp->dt_macros, "taskid")->di_id = gettaskid();
1196 dt_idhash_lookup(dtp->dt_macros, "uid")->di_id = getuid();

1198 /*
1199 * Cache the pointers to the modules representing the base executable
1200 * and the run-time linker in the dtrace client handle. Note that on
1201 * x86 krtld is folded into unix, so if we don’t find it, use unix
1202 * instead.
1203 */
1204 dtp->dt_exec = dt_module_lookup_by_name(dtp, "genunix");
1205 dtp->dt_rtld = dt_module_lookup_by_name(dtp, "krtld");
1206 if (dtp->dt_rtld == NULL)
1207 dtp->dt_rtld = dt_module_lookup_by_name(dtp, "unix");

1209 /*
1210 * If this is the first time we are initializing the module list,
1211 * remove the module for genunix from the module list and then move it
1212 * to the front of the module list. We do this so that type and symbol
1213 * queries encounter genunix and thereby optimize for the common case
1214 * in dtrace_lookup_by_name() and dtrace_lookup_by_type(), below.
1215 */
1216 if (dtp->dt_exec != NULL &&
1217 dtp->dt_cdefs == NULL && dtp->dt_ddefs == NULL) {
1218 dt_list_delete(&dtp->dt_modlist, dtp->dt_exec);
1219 dt_list_prepend(&dtp->dt_modlist, dtp->dt_exec);
1220 }
1221 }

1223 static dt_module_t *
1224 dt_module_from_object(dtrace_hdl_t *dtp, const char *object)
1225 {
1226 int err = EDT_NOMOD;
1227 dt_module_t *dmp;

1229 switch ((uintptr_t)object) {
1230 case (uintptr_t)DTRACE_OBJ_EXEC:
1231 dmp = dtp->dt_exec;
1232 break;
1233 case (uintptr_t)DTRACE_OBJ_RTLD:
1234 dmp = dtp->dt_rtld;
1235 break;
1236 case (uintptr_t)DTRACE_OBJ_CDEFS:
1237 dmp = dtp->dt_cdefs;
1238 break;
1239 case (uintptr_t)DTRACE_OBJ_DDEFS:
1240 dmp = dtp->dt_ddefs;
1241 break;
1242 default:
1243 dmp = dt_module_create(dtp, object);
1244 err = EDT_NOMEM;

new/usr/src/lib/libdtrace/common/dt_module.c 20

1245 }

1247 if (dmp == NULL)
1248 (void) dt_set_errno(dtp, err);

1250 return (dmp);
1251 }

1253 /*
1254 * Exported interface to look up a symbol by name. We return the GElf_Sym and
1255 * complete symbol information for the matching symbol.
1256 */
1257 int
1258 dtrace_lookup_by_name(dtrace_hdl_t *dtp, const char *object, const char *name,
1259 GElf_Sym *symp, dtrace_syminfo_t *sip)
1260 {
1261 dt_module_t *dmp;
1262 dt_ident_t *idp;
1263 uint_t n, id;
1264 GElf_Sym sym;

1266 uint_t mask = 0; /* mask of dt_module flags to match */
1267 uint_t bits = 0; /* flag bits that must be present */

1269 if (object != DTRACE_OBJ_EVERY &&
1270 object != DTRACE_OBJ_KMODS &&
1271 object != DTRACE_OBJ_UMODS) {
1272 if ((dmp = dt_module_from_object(dtp, object)) == NULL)
1273 return (-1); /* dt_errno is set for us */

1275 if (dt_module_load(dtp, dmp) == -1)
1276 return (-1); /* dt_errno is set for us */
1277 n = 1;

1279 } else {
1280 if (object == DTRACE_OBJ_KMODS)
1281 mask = bits = DT_DM_KERNEL;
1282 else if (object == DTRACE_OBJ_UMODS)
1283 mask = DT_DM_KERNEL;

1285 dmp = dt_list_next(&dtp->dt_modlist);
1286 n = dtp->dt_nmods;
1287 }

1289 if (symp == NULL)
1290 symp = &sym;

1292 for (; n > 0; n--, dmp = dt_list_next(dmp)) {
1293 if ((dmp->dm_flags & mask) != bits)
1294 continue; /* failed to match required attributes */

1296 if (dt_module_load(dtp, dmp) == -1)
1297 continue; /* failed to load symbol table */

1299 if (dmp->dm_ops->do_symname(dmp, name, symp, &id) != NULL) {
1300 if (sip != NULL) {
1301 sip->dts_object = dmp->dm_name;
1302 sip->dts_name = (const char *)
1303 dmp->dm_strtab.cts_data + symp->st_name;
1304 sip->dts_id = id;
1305 }
1306 return (0);
1307 }

1309 if (dmp->dm_extern != NULL &&
1310 (idp = dt_idhash_lookup(dmp->dm_extern, name)) != NULL) {

new/usr/src/lib/libdtrace/common/dt_module.c 21

1311 if (symp != &sym) {
1312 symp->st_name = (uintptr_t)idp->di_name;
1313 symp->st_info =
1314 GELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
1315 symp->st_other = 0;
1316 symp->st_shndx = SHN_UNDEF;
1317 symp->st_value = 0;
1318 symp->st_size =
1319 ctf_type_size(idp->di_ctfp, idp->di_type);
1320 }

1322 if (sip != NULL) {
1323 sip->dts_object = dmp->dm_name;
1324 sip->dts_name = idp->di_name;
1325 sip->dts_id = idp->di_id;
1326 }

1328 return (0);
1329 }
1330 }

1332 return (dt_set_errno(dtp, EDT_NOSYM));
1333 }

1335 /*
1336 * Exported interface to look up a symbol by address. We return the GElf_Sym
1337 * and complete symbol information for the matching symbol.
1338 */
1339 int
1340 dtrace_lookup_by_addr(dtrace_hdl_t *dtp, GElf_Addr addr,
1341 GElf_Sym *symp, dtrace_syminfo_t *sip)
1342 {
1343 dt_module_t *dmp;
1344 uint_t id;
1345 const dtrace_vector_t *v = dtp->dt_vector;

1347 if (v != NULL)
1348 return (v->dtv_lookup_by_addr(dtp->dt_varg, addr, symp, sip));

1350 for (dmp = dt_list_next(&dtp->dt_modlist); dmp != NULL;
1351 dmp = dt_list_next(dmp)) {
1352 if (addr - dmp->dm_text_va < dmp->dm_text_size ||
1353 addr - dmp->dm_data_va < dmp->dm_data_size ||
1354 addr - dmp->dm_bss_va < dmp->dm_bss_size)
1355 break;
1356 }

1358 if (dmp == NULL)
1359 return (dt_set_errno(dtp, EDT_NOSYMADDR));

1361 if (dt_module_load(dtp, dmp) == -1)
1362 return (-1); /* dt_errno is set for us */

1364 if (symp != NULL) {
1365 if (dmp->dm_ops->do_symaddr(dmp, addr, symp, &id) == NULL)
1366 return (dt_set_errno(dtp, EDT_NOSYMADDR));
1367 }

1369 if (sip != NULL) {
1370 sip->dts_object = dmp->dm_name;

1372 if (symp != NULL) {
1373 sip->dts_name = (const char *)
1374 dmp->dm_strtab.cts_data + symp->st_name;
1375 sip->dts_id = id;
1376 } else {

new/usr/src/lib/libdtrace/common/dt_module.c 22

1377 sip->dts_name = NULL;
1378 sip->dts_id = 0;
1379 }
1380 }

1382 return (0);
1383 }

1385 int
1386 dtrace_lookup_by_type(dtrace_hdl_t *dtp, const char *object, const char *name,
1387 dtrace_typeinfo_t *tip)
1388 {
1389 dtrace_typeinfo_t ti;
1390 dt_module_t *dmp;
1391 int found = 0;
1392 ctf_id_t id;
1393 uint_t n, i;
25 uint_t n;

1394 int justone;
1395 ctf_file_t *fp;
1396 char *buf, *p, *q;
1397 #endif /* ! codereview */

1399 uint_t mask = 0; /* mask of dt_module flags to match */
1400 uint_t bits = 0; /* flag bits that must be present */

1402 if (object != DTRACE_OBJ_EVERY &&
1403 object != DTRACE_OBJ_KMODS &&
1404 object != DTRACE_OBJ_UMODS) {
1405 if ((dmp = dt_module_from_object(dtp, object)) == NULL)
1406 return (-1); /* dt_errno is set for us */

1408 if (dt_module_load(dtp, dmp) == -1)
1409 return (-1); /* dt_errno is set for us */
1410 n = 1;
1411 justone = 1;

1412 } else {
1413 if (object == DTRACE_OBJ_KMODS)
1414 mask = bits = DT_DM_KERNEL;
1415 else if (object == DTRACE_OBJ_UMODS)
1416 mask = DT_DM_KERNEL;

1418 dmp = dt_list_next(&dtp->dt_modlist);
1419 n = dtp->dt_nmods;
1420 justone = 0;
1421 }

1423 if (tip == NULL)
1424 tip = &ti;

1426 for (; n > 0; n--, dmp = dt_list_next(dmp)) {
1427 if ((dmp->dm_flags & mask) != bits)
1428 continue; /* failed to match required attributes */

1430 /*
1431 * If we can’t load the CTF container, continue on to the next
1432 * module. If our search was scoped to only one module then
1433 * return immediately leaving dt_errno unmodified.
1434 */
1435 if (dt_module_hasctf(dtp, dmp) == 0) {
51 if (dt_module_getctf(dtp, dmp) == NULL) {

1436 if (justone)
1437 return (-1);
1438 continue;
1439 }

new/usr/src/lib/libdtrace/common/dt_module.c 23

1441 /*
1442 * Look up the type in the module’s CTF container. If our
1443 * match is a forward declaration tag, save this choice in
1444 * ’tip’ and keep going in the hope that we will locate the
1445 * underlying structure definition. Otherwise just return.
1446 */
1447 if (dmp->dm_pid == 0) {
1448 id = ctf_lookup_by_name(dmp->dm_ctfp, name);
1449 fp = dmp->dm_ctfp;
1450 } else {
1451 if ((p = strchr(name, ’‘’)) != NULL) {
1452 buf = strdup(name);
1453 if (buf == NULL)
1454 return (dt_set_errno(dtp, EDT_NOMEM));
1455 p = strchr(buf, ’‘’);
1456 if ((q = strchr(p + 1, ’‘’)) != NULL)
1457 p = q;
1458 *p = ’\0’;
1459 fp = dt_module_getctflib(dtp, dmp, buf);
1460 if (fp == NULL || (id = ctf_lookup_by_name(fp,
1461 p + 1)) == CTF_ERR)
1462 id = CTF_ERR;
1463 free(buf);
1464 } else {
1465 for (i = 0; i < dmp->dm_nctflibs; i++) {
1466 fp = dmp->dm_libctfp[i];
1467 id = ctf_lookup_by_name(fp, name);
1468 if (id != CTF_ERR)
1469 break;
1470 }
1471 }
1472 }
1473 if (id != CTF_ERR) {
63 if ((id = ctf_lookup_by_name(dmp->dm_ctfp, name)) != CTF_ERR) {

1474 tip->dtt_object = dmp->dm_name;
1475 tip->dtt_ctfp = fp;
65 tip->dtt_ctfp = dmp->dm_ctfp;

1476 tip->dtt_type = id;
1477 if (ctf_type_kind(fp, ctf_type_resolve(fp, id)) !=
1478 CTF_K_FORWARD)

68 if (ctf_type_kind(dmp->dm_ctfp, ctf_type_resolve(
69 dmp->dm_ctfp, id)) != CTF_K_FORWARD)

1479 return (0);

1481 found++;
1482 }
1483 }

1485 if (found == 0)
1486 return (dt_set_errno(dtp, EDT_NOTYPE));

1488 return (0);
1489 }

1491 int
1492 dtrace_symbol_type(dtrace_hdl_t *dtp, const GElf_Sym *symp,
1493 const dtrace_syminfo_t *sip, dtrace_typeinfo_t *tip)
1494 {
1495 dt_module_t *dmp;

1497 tip->dtt_object = NULL;
1498 tip->dtt_ctfp = NULL;
1499 tip->dtt_type = CTF_ERR;
1500 tip->dtt_flags = 0;

new/usr/src/lib/libdtrace/common/dt_module.c 24

1501 #endif /* ! codereview */

1503 if ((dmp = dt_module_lookup_by_name(dtp, sip->dts_object)) == NULL)
1504 return (dt_set_errno(dtp, EDT_NOMOD));

1506 if (symp->st_shndx == SHN_UNDEF && dmp->dm_extern != NULL) {
1507 dt_ident_t *idp =
1508 dt_idhash_lookup(dmp->dm_extern, sip->dts_name);

1510 if (idp == NULL)
1511 return (dt_set_errno(dtp, EDT_NOSYM));

1513 tip->dtt_ctfp = idp->di_ctfp;
1514 tip->dtt_type = idp->di_type;

1516 } else if (GELF_ST_TYPE(symp->st_info) != STT_FUNC) {
1517 if (dt_module_getctf(dtp, dmp) == NULL)
1518 return (-1); /* errno is set for us */

1520 tip->dtt_ctfp = dmp->dm_ctfp;
1521 tip->dtt_type = ctf_lookup_by_symbol(dmp->dm_ctfp, sip->dts_id);

1523 if (tip->dtt_type == CTF_ERR) {
1524 dtp->dt_ctferr = ctf_errno(tip->dtt_ctfp);
1525 return (dt_set_errno(dtp, EDT_CTF));
1526 }

1528 } else {
1529 tip->dtt_ctfp = DT_FPTR_CTFP(dtp);
1530 tip->dtt_type = DT_FPTR_TYPE(dtp);
1531 }

1533 tip->dtt_object = dmp->dm_name;
1534 return (0);
1535 }

1537 static dtrace_objinfo_t *
1538 dt_module_info(const dt_module_t *dmp, dtrace_objinfo_t *dto)
1539 {
1540 dto->dto_name = dmp->dm_name;
1541 dto->dto_file = dmp->dm_file;
1542 dto->dto_id = dmp->dm_modid;
1543 dto->dto_flags = 0;

1545 if (dmp->dm_flags & DT_DM_KERNEL)
1546 dto->dto_flags |= DTRACE_OBJ_F_KERNEL;
1547 if (dmp->dm_flags & DT_DM_PRIMARY)
1548 dto->dto_flags |= DTRACE_OBJ_F_PRIMARY;

1550 dto->dto_text_va = dmp->dm_text_va;
1551 dto->dto_text_size = dmp->dm_text_size;
1552 dto->dto_data_va = dmp->dm_data_va;
1553 dto->dto_data_size = dmp->dm_data_size;
1554 dto->dto_bss_va = dmp->dm_bss_va;
1555 dto->dto_bss_size = dmp->dm_bss_size;

1557 return (dto);
1558 }

1560 int
1561 dtrace_object_iter(dtrace_hdl_t *dtp, dtrace_obj_f *func, void *data)
1562 {
1563 const dt_module_t *dmp = dt_list_next(&dtp->dt_modlist);
1564 dtrace_objinfo_t dto;
1565 int rv;

new/usr/src/lib/libdtrace/common/dt_module.c 25

1567 for (; dmp != NULL; dmp = dt_list_next(dmp)) {
1568 if ((rv = (*func)(dtp, dt_module_info(dmp, &dto), data)) != 0)
1569 return (rv);
1570 }

1572 return (0);
1573 }

1575 int
1576 dtrace_object_info(dtrace_hdl_t *dtp, const char *object, dtrace_objinfo_t *dto)
1577 {
1578 dt_module_t *dmp;

1580 if (object == DTRACE_OBJ_EVERY || object == DTRACE_OBJ_KMODS ||
1581 object == DTRACE_OBJ_UMODS || dto == NULL)
1582 return (dt_set_errno(dtp, EINVAL));

1584 if ((dmp = dt_module_from_object(dtp, object)) == NULL)
1585 return (-1); /* dt_errno is set for us */

1587 if (dt_module_load(dtp, dmp) == -1)
1588 return (-1); /* dt_errno is set for us */

1590 (void) dt_module_info(dmp, dto);
1591 return (0);
1592 }

new/usr/src/lib/libdtrace/common/dt_module.h 1

**
 2049 Tue Jan 14 16:48:56 2014
new/usr/src/lib/libdtrace/common/dt_module.h
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28 */
29 #endif /* ! codereview */

31 #ifndef _DT_MODULE_H
32 #define _DT_MODULE_H

26 #pragma ident "%Z%%M% %I% %E% SMI"

34 #include <dt_impl.h>

36 #ifdef __cplusplus
37 extern "C" {
38 #endif

40 extern dt_module_t *dt_module_create(dtrace_hdl_t *, const char *);
41 extern int dt_module_load(dtrace_hdl_t *, dt_module_t *);
42 extern void dt_module_unload(dtrace_hdl_t *, dt_module_t *);
43 extern void dt_module_destroy(dtrace_hdl_t *, dt_module_t *);

45 extern dt_module_t *dt_module_lookup_by_name(dtrace_hdl_t *, const char *);
46 extern dt_module_t *dt_module_lookup_by_ctf(dtrace_hdl_t *, ctf_file_t *);

48 extern int dt_module_hasctf(dtrace_hdl_t *, dt_module_t *);
49 #endif /* ! codereview */
50 extern ctf_file_t *dt_module_getctf(dtrace_hdl_t *, dt_module_t *);
51 extern dt_ident_t *dt_module_extern(dtrace_hdl_t *, dt_module_t *,
52 const char *, const dtrace_typeinfo_t *);

54 extern const char *dt_module_modelname(dt_module_t *);

new/usr/src/lib/libdtrace/common/dt_module.h 2

55 extern int dt_module_getlibid(dtrace_hdl_t *, dt_module_t *,
56 const ctf_file_t *);
57 extern ctf_file_t *dt_module_getctflib(dtrace_hdl_t *, dt_module_t *,
58 const char *);
59 #endif /* ! codereview */

61 #ifdef __cplusplus
62 }
63 #endif

65 #endif /* _DT_MODULE_H */

new/usr/src/lib/libdtrace/common/dt_open.c 1

**
 54253 Tue Jan 14 16:48:56 2014
new/usr/src/lib/libdtrace/common/dt_open.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 */

28 #include <sys/types.h>
29 #include <sys/modctl.h>
30 #include <sys/systeminfo.h>
31 #include <sys/resource.h>

33 #include <libelf.h>
34 #include <strings.h>
35 #include <alloca.h>
36 #include <limits.h>
37 #include <unistd.h>
38 #include <stdlib.h>
39 #include <stdio.h>
40 #include <fcntl.h>
41 #include <errno.h>
42 #include <assert.h>

44 #define _POSIX_PTHREAD_SEMANTICS
45 #include <dirent.h>
46 #undef _POSIX_PTHREAD_SEMANTICS

48 #include <dt_impl.h>
49 #include <dt_program.h>
50 #include <dt_module.h>
51 #include <dt_printf.h>
52 #include <dt_string.h>
53 #include <dt_provider.h>

55 /*

new/usr/src/lib/libdtrace/common/dt_open.c 2

56 * Stability and versioning definitions. These #defines are used in the tables
57 * of identifiers below to fill in the attribute and version fields associated
58 * with each identifier. The DT_ATTR_* macros are a convenience to permit more
59 * concise declarations of common attributes such as Stable/Stable/Common. The
60 * DT_VERS_* macros declare the encoded integer values of all versions used so
61 * far. DT_VERS_LATEST must correspond to the latest version value among all
62 * versions exported by the D compiler. DT_VERS_STRING must be an ASCII string
63 * that contains DT_VERS_LATEST within it along with any suffixes (e.g. Beta).
64 * You must update DT_VERS_LATEST and DT_VERS_STRING when adding a new version,
65 * and then add the new version to the _dtrace_versions[] array declared below.
66 * Refer to the Solaris Dynamic Tracing Guide Stability and Versioning chapters
67 * respectively for an explanation of these DTrace features and their values.
68 *
69 * NOTE: Although the DTrace versioning scheme supports the labeling and
70 * introduction of incompatible changes (e.g. dropping an interface in a
71 * major release), the libdtrace code does not currently support this.
72 * All versions are assumed to strictly inherit from one another. If
73 * we ever need to provide divergent interfaces, this will need work.
74 */
75 #define DT_ATTR_STABCMN { DTRACE_STABILITY_STABLE, \
76 DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }

78 #define DT_ATTR_EVOLCMN { DTRACE_STABILITY_EVOLVING, \
79 DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON \
80 }

82 /*
83 * The version number should be increased for every customer visible release
84 * of DTrace. The major number should be incremented when a fundamental
85 * change has been made that would affect all consumers, and would reflect
86 * sweeping changes to DTrace or the D language. The minor number should be
87 * incremented when a change is introduced that could break scripts that had
88 * previously worked; for example, adding a new built-in variable could break
89 * a script which was already using that identifier. The micro number should
90 * be changed when introducing functionality changes or major bug fixes that
91 * do not affect backward compatibility -- this is merely to make capabilities
92 * easily determined from the version number. Minor bugs do not require any
93 * modification to the version number.
94 */
95 #define DT_VERS_1_0 DT_VERSION_NUMBER(1, 0, 0)
96 #define DT_VERS_1_1 DT_VERSION_NUMBER(1, 1, 0)
97 #define DT_VERS_1_2 DT_VERSION_NUMBER(1, 2, 0)
98 #define DT_VERS_1_2_1 DT_VERSION_NUMBER(1, 2, 1)
99 #define DT_VERS_1_2_2 DT_VERSION_NUMBER(1, 2, 2)
100 #define DT_VERS_1_3 DT_VERSION_NUMBER(1, 3, 0)
101 #define DT_VERS_1_4 DT_VERSION_NUMBER(1, 4, 0)
102 #define DT_VERS_1_4_1 DT_VERSION_NUMBER(1, 4, 1)
103 #define DT_VERS_1_5 DT_VERSION_NUMBER(1, 5, 0)
104 #define DT_VERS_1_6 DT_VERSION_NUMBER(1, 6, 0)
105 #define DT_VERS_1_6_1 DT_VERSION_NUMBER(1, 6, 1)
106 #define DT_VERS_1_6_2 DT_VERSION_NUMBER(1, 6, 2)
107 #define DT_VERS_1_6_3 DT_VERSION_NUMBER(1, 6, 3)
108 #define DT_VERS_1_7 DT_VERSION_NUMBER(1, 7, 0)
109 #define DT_VERS_1_7_1 DT_VERSION_NUMBER(1, 7, 1)
110 #define DT_VERS_1_8 DT_VERSION_NUMBER(1, 8, 0)
111 #define DT_VERS_1_8_1 DT_VERSION_NUMBER(1, 8, 1)
112 #define DT_VERS_1_9 DT_VERSION_NUMBER(1, 9, 0)
113 #define DT_VERS_1_9_1 DT_VERSION_NUMBER(1, 9, 1)
114 #define DT_VERS_1_10 DT_VERSION_NUMBER(1, 10, 0)
115 #define DT_VERS_1_11 DT_VERSION_NUMBER(1, 11, 0)
116 #define DT_VERS_1_12 DT_VERSION_NUMBER(1, 12, 0)
117 #endif /* ! codereview */
118 #define DT_VERS_LATEST DT_VERS_1_11
119 #define DT_VERS_STRING "Sun D 1.12"
116 #define DT_VERS_STRING "Sun D 1.11"

new/usr/src/lib/libdtrace/common/dt_open.c 3

121 const dt_version_t _dtrace_versions[] = {
122 DT_VERS_1_0, /* D API 1.0.0 (PSARC 2001/466) Solaris 10 FCS */
123 DT_VERS_1_1, /* D API 1.1.0 Solaris Express 6/05 */
124 DT_VERS_1_2, /* D API 1.2.0 Solaris 10 Update 1 */
125 DT_VERS_1_2_1, /* D API 1.2.1 Solaris Express 4/06 */
126 DT_VERS_1_2_2, /* D API 1.2.2 Solaris Express 6/06 */
127 DT_VERS_1_3, /* D API 1.3 Solaris Express 10/06 */
128 DT_VERS_1_4, /* D API 1.4 Solaris Express 2/07 */
129 DT_VERS_1_4_1, /* D API 1.4.1 Solaris Express 4/07 */
130 DT_VERS_1_5, /* D API 1.5 Solaris Express 7/07 */
131 DT_VERS_1_6, /* D API 1.6 */
132 DT_VERS_1_6_1, /* D API 1.6.1 */
133 DT_VERS_1_6_2, /* D API 1.6.2 */
134 DT_VERS_1_6_3, /* D API 1.6.3 */
135 DT_VERS_1_7, /* D API 1.7 */
136 DT_VERS_1_7_1, /* D API 1.7.1 */
137 DT_VERS_1_8, /* D API 1.8 */
138 DT_VERS_1_8_1, /* D API 1.8.1 */
139 DT_VERS_1_9, /* D API 1.9 */
140 DT_VERS_1_9_1, /* D API 1.9.1 */
141 DT_VERS_1_10, /* D API 1.10 */
142 DT_VERS_1_11, /* D API 1.11 */
143 DT_VERS_1_12, /* D API 1.12 */
144 #endif /* ! codereview */
145 0
146 };

148 /*
149 * Table of global identifiers. This is used to populate the global identifier
150 * hash when a new dtrace client open occurs. For more info see dt_ident.h.
151 * The global identifiers that represent functions use the dt_idops_func ops
152 * and specify the private data pointer as a prototype string which is parsed
153 * when the identifier is first encountered. These prototypes look like ANSI
154 * C function prototypes except that the special symbol "@" can be used as a
155 * wildcard to represent a single parameter of any type (i.e. any dt_node_t).
156 * The standard "..." notation can also be used to represent varargs. An empty
157 * parameter list is taken to mean void (that is, no arguments are permitted).
158 * A parameter enclosed in square brackets (e.g. "[int]") denotes an optional
159 * argument.
160 */
161 static const dt_ident_t _dtrace_globals[] = {
162 { "alloca", DT_IDENT_FUNC, 0, DIF_SUBR_ALLOCA, DT_ATTR_STABCMN, DT_VERS_1_0,
163 &dt_idops_func, "void *(size_t)" },
164 { "arg0", DT_IDENT_SCALAR, 0, DIF_VAR_ARG0, DT_ATTR_STABCMN, DT_VERS_1_0,
165 &dt_idops_type, "int64_t" },
166 { "arg1", DT_IDENT_SCALAR, 0, DIF_VAR_ARG1, DT_ATTR_STABCMN, DT_VERS_1_0,
167 &dt_idops_type, "int64_t" },
168 { "arg2", DT_IDENT_SCALAR, 0, DIF_VAR_ARG2, DT_ATTR_STABCMN, DT_VERS_1_0,
169 &dt_idops_type, "int64_t" },
170 { "arg3", DT_IDENT_SCALAR, 0, DIF_VAR_ARG3, DT_ATTR_STABCMN, DT_VERS_1_0,
171 &dt_idops_type, "int64_t" },
172 { "arg4", DT_IDENT_SCALAR, 0, DIF_VAR_ARG4, DT_ATTR_STABCMN, DT_VERS_1_0,
173 &dt_idops_type, "int64_t" },
174 { "arg5", DT_IDENT_SCALAR, 0, DIF_VAR_ARG5, DT_ATTR_STABCMN, DT_VERS_1_0,
175 &dt_idops_type, "int64_t" },
176 { "arg6", DT_IDENT_SCALAR, 0, DIF_VAR_ARG6, DT_ATTR_STABCMN, DT_VERS_1_0,
177 &dt_idops_type, "int64_t" },
178 { "arg7", DT_IDENT_SCALAR, 0, DIF_VAR_ARG7, DT_ATTR_STABCMN, DT_VERS_1_0,
179 &dt_idops_type, "int64_t" },
180 { "arg8", DT_IDENT_SCALAR, 0, DIF_VAR_ARG8, DT_ATTR_STABCMN, DT_VERS_1_0,
181 &dt_idops_type, "int64_t" },
182 { "arg9", DT_IDENT_SCALAR, 0, DIF_VAR_ARG9, DT_ATTR_STABCMN, DT_VERS_1_0,
183 &dt_idops_type, "int64_t" },
184 { "args", DT_IDENT_ARRAY, 0, DIF_VAR_ARGS, DT_ATTR_STABCMN, DT_VERS_1_0,
185 &dt_idops_args, NULL },
186 { "avg", DT_IDENT_AGGFUNC, 0, DTRACEAGG_AVG, DT_ATTR_STABCMN, DT_VERS_1_0,

new/usr/src/lib/libdtrace/common/dt_open.c 4

187 &dt_idops_func, "void(@)" },
188 { "basename", DT_IDENT_FUNC, 0, DIF_SUBR_BASENAME, DT_ATTR_STABCMN, DT_VERS_1_0,
189 &dt_idops_func, "string(const char *)" },
190 { "bcopy", DT_IDENT_FUNC, 0, DIF_SUBR_BCOPY, DT_ATTR_STABCMN, DT_VERS_1_0,
191 &dt_idops_func, "void(void *, void *, size_t)" },
192 { "breakpoint", DT_IDENT_ACTFUNC, 0, DT_ACT_BREAKPOINT,
193 DT_ATTR_STABCMN, DT_VERS_1_0,
194 &dt_idops_func, "void()" },
195 { "caller", DT_IDENT_SCALAR, 0, DIF_VAR_CALLER, DT_ATTR_STABCMN, DT_VERS_1_0,
196 &dt_idops_type, "uintptr_t" },
197 { "chill", DT_IDENT_ACTFUNC, 0, DT_ACT_CHILL, DT_ATTR_STABCMN, DT_VERS_1_0,
198 &dt_idops_func, "void(int)" },
199 { "cleanpath", DT_IDENT_FUNC, 0, DIF_SUBR_CLEANPATH, DT_ATTR_STABCMN,
200 DT_VERS_1_0, &dt_idops_func, "string(const char *)" },
201 { "clear", DT_IDENT_ACTFUNC, 0, DT_ACT_CLEAR, DT_ATTR_STABCMN, DT_VERS_1_0,
202 &dt_idops_func, "void(...)" },
203 { "commit", DT_IDENT_ACTFUNC, 0, DT_ACT_COMMIT, DT_ATTR_STABCMN, DT_VERS_1_0,
204 &dt_idops_func, "void(int)" },
205 { "copyin", DT_IDENT_FUNC, 0, DIF_SUBR_COPYIN, DT_ATTR_STABCMN, DT_VERS_1_0,
206 &dt_idops_func, "void *(uintptr_t, size_t)" },
207 { "copyinstr", DT_IDENT_FUNC, 0, DIF_SUBR_COPYINSTR,
208 DT_ATTR_STABCMN, DT_VERS_1_0,
209 &dt_idops_func, "string(uintptr_t, [size_t])" },
210 { "copyinto", DT_IDENT_FUNC, 0, DIF_SUBR_COPYINTO, DT_ATTR_STABCMN,
211 DT_VERS_1_0, &dt_idops_func, "void(uintptr_t, size_t, void *)" },
212 { "copyout", DT_IDENT_FUNC, 0, DIF_SUBR_COPYOUT, DT_ATTR_STABCMN, DT_VERS_1_0,
213 &dt_idops_func, "void(void *, uintptr_t, size_t)" },
214 { "copyoutstr", DT_IDENT_FUNC, 0, DIF_SUBR_COPYOUTSTR,
215 DT_ATTR_STABCMN, DT_VERS_1_0,
216 &dt_idops_func, "void(char *, uintptr_t, size_t)" },
217 { "count", DT_IDENT_AGGFUNC, 0, DTRACEAGG_COUNT, DT_ATTR_STABCMN, DT_VERS_1_0,
218 &dt_idops_func, "void()" },
219 { "curthread", DT_IDENT_SCALAR, 0, DIF_VAR_CURTHREAD,
220 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_PRIVATE,
221 DTRACE_CLASS_COMMON }, DT_VERS_1_0,
222 &dt_idops_type, "genunix‘kthread_t *" },
223 { "ddi_pathname", DT_IDENT_FUNC, 0, DIF_SUBR_DDI_PATHNAME,
224 DT_ATTR_EVOLCMN, DT_VERS_1_0,
225 &dt_idops_func, "string(void *, int64_t)" },
226 { "denormalize", DT_IDENT_ACTFUNC, 0, DT_ACT_DENORMALIZE, DT_ATTR_STABCMN,
227 DT_VERS_1_0, &dt_idops_func, "void(...)" },
228 { "dirname", DT_IDENT_FUNC, 0, DIF_SUBR_DIRNAME, DT_ATTR_STABCMN, DT_VERS_1_0,
229 &dt_idops_func, "string(const char *)" },
230 { "discard", DT_IDENT_ACTFUNC, 0, DT_ACT_DISCARD, DT_ATTR_STABCMN, DT_VERS_1_0,
231 &dt_idops_func, "void(int)" },
232 { "epid", DT_IDENT_SCALAR, 0, DIF_VAR_EPID, DT_ATTR_STABCMN, DT_VERS_1_0,
233 &dt_idops_type, "uint_t" },
234 { "errno", DT_IDENT_SCALAR, 0, DIF_VAR_ERRNO, DT_ATTR_STABCMN, DT_VERS_1_0,
235 &dt_idops_type, "int" },
236 { "execname", DT_IDENT_SCALAR, 0, DIF_VAR_EXECNAME,
237 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
238 { "exit", DT_IDENT_ACTFUNC, 0, DT_ACT_EXIT, DT_ATTR_STABCMN, DT_VERS_1_0,
239 &dt_idops_func, "void(int)" },
240 { "freopen", DT_IDENT_ACTFUNC, 0, DT_ACT_FREOPEN, DT_ATTR_STABCMN,
241 DT_VERS_1_1, &dt_idops_func, "void(@, ...)" },
242 { "ftruncate", DT_IDENT_ACTFUNC, 0, DT_ACT_FTRUNCATE, DT_ATTR_STABCMN,
243 DT_VERS_1_0, &dt_idops_func, "void()" },
244 { "func", DT_IDENT_ACTFUNC, 0, DT_ACT_SYM, DT_ATTR_STABCMN,
245 DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" },
246 { "getmajor", DT_IDENT_FUNC, 0, DIF_SUBR_GETMAJOR,
247 DT_ATTR_EVOLCMN, DT_VERS_1_0,
248 &dt_idops_func, "genunix‘major_t(genunix‘dev_t)" },
249 { "getminor", DT_IDENT_FUNC, 0, DIF_SUBR_GETMINOR,
250 DT_ATTR_EVOLCMN, DT_VERS_1_0,
251 &dt_idops_func, "genunix‘minor_t(genunix‘dev_t)" },
252 { "htonl", DT_IDENT_FUNC, 0, DIF_SUBR_HTONL, DT_ATTR_EVOLCMN, DT_VERS_1_3,

new/usr/src/lib/libdtrace/common/dt_open.c 5

253 &dt_idops_func, "uint32_t(uint32_t)" },
254 { "htonll", DT_IDENT_FUNC, 0, DIF_SUBR_HTONLL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
255 &dt_idops_func, "uint64_t(uint64_t)" },
256 { "htons", DT_IDENT_FUNC, 0, DIF_SUBR_HTONS, DT_ATTR_EVOLCMN, DT_VERS_1_3,
257 &dt_idops_func, "uint16_t(uint16_t)" },
258 { "getf", DT_IDENT_FUNC, 0, DIF_SUBR_GETF, DT_ATTR_STABCMN, DT_VERS_1_10,
259 &dt_idops_func, "file_t *(int)" },
260 { "gid", DT_IDENT_SCALAR, 0, DIF_VAR_GID, DT_ATTR_STABCMN, DT_VERS_1_0,
261 &dt_idops_type, "gid_t" },
262 { "id", DT_IDENT_SCALAR, 0, DIF_VAR_ID, DT_ATTR_STABCMN, DT_VERS_1_0,
263 &dt_idops_type, "uint_t" },
264 { "index", DT_IDENT_FUNC, 0, DIF_SUBR_INDEX, DT_ATTR_STABCMN, DT_VERS_1_1,
265 &dt_idops_func, "int(const char *, const char *, [int])" },
266 { "inet_ntoa", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOA, DT_ATTR_STABCMN,
267 DT_VERS_1_5, &dt_idops_func, "string(ipaddr_t *)" },
268 { "inet_ntoa6", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOA6, DT_ATTR_STABCMN,
269 DT_VERS_1_5, &dt_idops_func, "string(in6_addr_t *)" },
270 { "inet_ntop", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOP, DT_ATTR_STABCMN,
271 DT_VERS_1_5, &dt_idops_func, "string(int, void *)" },
272 { "ipl", DT_IDENT_SCALAR, 0, DIF_VAR_IPL, DT_ATTR_STABCMN, DT_VERS_1_0,
273 &dt_idops_type, "uint_t" },
274 { "json", DT_IDENT_FUNC, 0, DIF_SUBR_JSON, DT_ATTR_STABCMN, DT_VERS_1_11,
275 &dt_idops_func, "string(const char *, const char *)" },
276 { "jstack", DT_IDENT_ACTFUNC, 0, DT_ACT_JSTACK, DT_ATTR_STABCMN, DT_VERS_1_0,
277 &dt_idops_func, "stack(...)" },
278 { "lltostr", DT_IDENT_FUNC, 0, DIF_SUBR_LLTOSTR, DT_ATTR_STABCMN, DT_VERS_1_0,
279 &dt_idops_func, "string(int64_t, [int])" },
280 { "llquantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_LLQUANTIZE, DT_ATTR_STABCMN,
281 DT_VERS_1_7, &dt_idops_func,
282 "void(@, int32_t, int32_t, int32_t, int32_t, ...)" },
283 { "lquantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_LQUANTIZE,
284 DT_ATTR_STABCMN, DT_VERS_1_0,
285 &dt_idops_func, "void(@, int32_t, int32_t, ...)" },
286 { "max", DT_IDENT_AGGFUNC, 0, DTRACEAGG_MAX, DT_ATTR_STABCMN, DT_VERS_1_0,
287 &dt_idops_func, "void(@)" },
288 { "min", DT_IDENT_AGGFUNC, 0, DTRACEAGG_MIN, DT_ATTR_STABCMN, DT_VERS_1_0,
289 &dt_idops_func, "void(@)" },
290 { "mod", DT_IDENT_ACTFUNC, 0, DT_ACT_MOD, DT_ATTR_STABCMN,
291 DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" },
292 { "msgdsize", DT_IDENT_FUNC, 0, DIF_SUBR_MSGDSIZE,
293 DT_ATTR_STABCMN, DT_VERS_1_0,
294 &dt_idops_func, "size_t(mblk_t *)" },
295 { "msgsize", DT_IDENT_FUNC, 0, DIF_SUBR_MSGSIZE,
296 DT_ATTR_STABCMN, DT_VERS_1_0,
297 &dt_idops_func, "size_t(mblk_t *)" },
298 { "mutex_owned", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_OWNED,
299 DT_ATTR_EVOLCMN, DT_VERS_1_0,
300 &dt_idops_func, "int(genunix‘kmutex_t *)" },
301 { "mutex_owner", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_OWNER,
302 DT_ATTR_EVOLCMN, DT_VERS_1_0,
303 &dt_idops_func, "genunix‘kthread_t *(genunix‘kmutex_t *)" },
304 { "mutex_type_adaptive", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_TYPE_ADAPTIVE,
305 DT_ATTR_EVOLCMN, DT_VERS_1_0,
306 &dt_idops_func, "int(genunix‘kmutex_t *)" },
307 { "mutex_type_spin", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_TYPE_SPIN,
308 DT_ATTR_EVOLCMN, DT_VERS_1_0,
309 &dt_idops_func, "int(genunix‘kmutex_t *)" },
310 { "ntohl", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
311 &dt_idops_func, "uint32_t(uint32_t)" },
312 { "ntohll", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHLL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
313 &dt_idops_func, "uint64_t(uint64_t)" },
314 { "ntohs", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHS, DT_ATTR_EVOLCMN, DT_VERS_1_3,
315 &dt_idops_func, "uint16_t(uint16_t)" },
316 { "normalize", DT_IDENT_ACTFUNC, 0, DT_ACT_NORMALIZE, DT_ATTR_STABCMN,
317 DT_VERS_1_0, &dt_idops_func, "void(...)" },
318 { "panic", DT_IDENT_ACTFUNC, 0, DT_ACT_PANIC, DT_ATTR_STABCMN, DT_VERS_1_0,

new/usr/src/lib/libdtrace/common/dt_open.c 6

319 &dt_idops_func, "void()" },
320 { "pid", DT_IDENT_SCALAR, 0, DIF_VAR_PID, DT_ATTR_STABCMN, DT_VERS_1_0,
321 &dt_idops_type, "pid_t" },
322 { "ppid", DT_IDENT_SCALAR, 0, DIF_VAR_PPID, DT_ATTR_STABCMN, DT_VERS_1_0,
323 &dt_idops_type, "pid_t" },
324 { "print", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINT, DT_ATTR_STABCMN, DT_VERS_1_9,
325 &dt_idops_func, "void(@)" },
326 { "printa", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINTA, DT_ATTR_STABCMN, DT_VERS_1_0,
327 &dt_idops_func, "void(@, ...)" },
328 { "printf", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINTF, DT_ATTR_STABCMN, DT_VERS_1_0,
329 &dt_idops_func, "void(@, ...)" },
330 { "probefunc", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEFUNC,
331 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
332 { "probemod", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEMOD,
333 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
334 { "probename", DT_IDENT_SCALAR, 0, DIF_VAR_PROBENAME,
335 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
336 { "probeprov", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEPROV,
337 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
338 { "progenyof", DT_IDENT_FUNC, 0, DIF_SUBR_PROGENYOF,
339 DT_ATTR_STABCMN, DT_VERS_1_0,
340 &dt_idops_func, "int(pid_t)" },
341 { "quantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_QUANTIZE,
342 DT_ATTR_STABCMN, DT_VERS_1_0,
343 &dt_idops_func, "void(@, ...)" },
344 { "raise", DT_IDENT_ACTFUNC, 0, DT_ACT_RAISE, DT_ATTR_STABCMN, DT_VERS_1_0,
345 &dt_idops_func, "void(int)" },
346 { "rand", DT_IDENT_FUNC, 0, DIF_SUBR_RAND, DT_ATTR_STABCMN, DT_VERS_1_0,
347 &dt_idops_func, "int()" },
348 { "rindex", DT_IDENT_FUNC, 0, DIF_SUBR_RINDEX, DT_ATTR_STABCMN, DT_VERS_1_1,
349 &dt_idops_func, "int(const char *, const char *, [int])" },
350 { "rw_iswriter", DT_IDENT_FUNC, 0, DIF_SUBR_RW_ISWRITER,
351 DT_ATTR_EVOLCMN, DT_VERS_1_0,
352 &dt_idops_func, "int(genunix‘krwlock_t *)" },
353 { "rw_read_held", DT_IDENT_FUNC, 0, DIF_SUBR_RW_READ_HELD,
354 DT_ATTR_EVOLCMN, DT_VERS_1_0,
355 &dt_idops_func, "int(genunix‘krwlock_t *)" },
356 { "rw_write_held", DT_IDENT_FUNC, 0, DIF_SUBR_RW_WRITE_HELD,
357 DT_ATTR_EVOLCMN, DT_VERS_1_0,
358 &dt_idops_func, "int(genunix‘krwlock_t *)" },
359 { "self", DT_IDENT_PTR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0,
360 &dt_idops_type, "void" },
361 { "setopt", DT_IDENT_ACTFUNC, 0, DT_ACT_SETOPT, DT_ATTR_STABCMN,
362 DT_VERS_1_2, &dt_idops_func, "void(const char *, [const char *])" },
363 { "speculate", DT_IDENT_ACTFUNC, 0, DT_ACT_SPECULATE,
364 DT_ATTR_STABCMN, DT_VERS_1_0,
365 &dt_idops_func, "void(int)" },
366 { "speculation", DT_IDENT_FUNC, 0, DIF_SUBR_SPECULATION,
367 DT_ATTR_STABCMN, DT_VERS_1_0,
368 &dt_idops_func, "int()" },
369 { "stack", DT_IDENT_ACTFUNC, 0, DT_ACT_STACK, DT_ATTR_STABCMN, DT_VERS_1_0,
370 &dt_idops_func, "stack(...)" },
371 { "stackdepth", DT_IDENT_SCALAR, 0, DIF_VAR_STACKDEPTH,
372 DT_ATTR_STABCMN, DT_VERS_1_0,
373 &dt_idops_type, "uint32_t" },
374 { "stddev", DT_IDENT_AGGFUNC, 0, DTRACEAGG_STDDEV, DT_ATTR_STABCMN,
375 DT_VERS_1_6, &dt_idops_func, "void(@)" },
376 { "stop", DT_IDENT_ACTFUNC, 0, DT_ACT_STOP, DT_ATTR_STABCMN, DT_VERS_1_0,
377 &dt_idops_func, "void()" },
378 { "strchr", DT_IDENT_FUNC, 0, DIF_SUBR_STRCHR, DT_ATTR_STABCMN, DT_VERS_1_1,
379 &dt_idops_func, "string(const char *, char)" },
380 { "strlen", DT_IDENT_FUNC, 0, DIF_SUBR_STRLEN, DT_ATTR_STABCMN, DT_VERS_1_0,
381 &dt_idops_func, "size_t(const char *)" },
382 { "strjoin", DT_IDENT_FUNC, 0, DIF_SUBR_STRJOIN, DT_ATTR_STABCMN, DT_VERS_1_0,
383 &dt_idops_func, "string(const char *, const char *)" },
384 { "strrchr", DT_IDENT_FUNC, 0, DIF_SUBR_STRRCHR, DT_ATTR_STABCMN, DT_VERS_1_1,

new/usr/src/lib/libdtrace/common/dt_open.c 7

385 &dt_idops_func, "string(const char *, char)" },
386 { "strstr", DT_IDENT_FUNC, 0, DIF_SUBR_STRSTR, DT_ATTR_STABCMN, DT_VERS_1_1,
387 &dt_idops_func, "string(const char *, const char *)" },
388 { "strtok", DT_IDENT_FUNC, 0, DIF_SUBR_STRTOK, DT_ATTR_STABCMN, DT_VERS_1_1,
389 &dt_idops_func, "string(const char *, const char *)" },
390 { "strtoll", DT_IDENT_FUNC, 0, DIF_SUBR_STRTOLL, DT_ATTR_STABCMN, DT_VERS_1_11,
391 &dt_idops_func, "int64_t(const char *, [int])" },
392 { "substr", DT_IDENT_FUNC, 0, DIF_SUBR_SUBSTR, DT_ATTR_STABCMN, DT_VERS_1_1,
393 &dt_idops_func, "string(const char *, int, [int])" },
394 { "sum", DT_IDENT_AGGFUNC, 0, DTRACEAGG_SUM, DT_ATTR_STABCMN, DT_VERS_1_0,
395 &dt_idops_func, "void(@)" },
396 { "sym", DT_IDENT_ACTFUNC, 0, DT_ACT_SYM, DT_ATTR_STABCMN,
397 DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" },
398 { "system", DT_IDENT_ACTFUNC, 0, DT_ACT_SYSTEM, DT_ATTR_STABCMN, DT_VERS_1_0,
399 &dt_idops_func, "void(@, ...)" },
400 { "this", DT_IDENT_PTR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0,
401 &dt_idops_type, "void" },
402 { "tid", DT_IDENT_SCALAR, 0, DIF_VAR_TID, DT_ATTR_STABCMN, DT_VERS_1_0,
403 &dt_idops_type, "id_t" },
404 { "timestamp", DT_IDENT_SCALAR, 0, DIF_VAR_TIMESTAMP,
405 DT_ATTR_STABCMN, DT_VERS_1_0,
406 &dt_idops_type, "uint64_t" },
407 { "tolower", DT_IDENT_FUNC, 0, DIF_SUBR_TOLOWER, DT_ATTR_STABCMN, DT_VERS_1_8,
408 &dt_idops_func, "string(const char *)" },
409 { "toupper", DT_IDENT_FUNC, 0, DIF_SUBR_TOUPPER, DT_ATTR_STABCMN, DT_VERS_1_8,
410 &dt_idops_func, "string(const char *)" },
411 { "trace", DT_IDENT_ACTFUNC, 0, DT_ACT_TRACE, DT_ATTR_STABCMN, DT_VERS_1_0,
412 &dt_idops_func, "void(@)" },
413 { "tracemem", DT_IDENT_ACTFUNC, 0, DT_ACT_TRACEMEM,
414 DT_ATTR_STABCMN, DT_VERS_1_0,
415 &dt_idops_func, "void(@, size_t, ...)" },
416 { "trunc", DT_IDENT_ACTFUNC, 0, DT_ACT_TRUNC, DT_ATTR_STABCMN,
417 DT_VERS_1_0, &dt_idops_func, "void(...)" },
418 { "uaddr", DT_IDENT_ACTFUNC, 0, DT_ACT_UADDR, DT_ATTR_STABCMN,
419 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
420 { "ucaller", DT_IDENT_SCALAR, 0, DIF_VAR_UCALLER, DT_ATTR_STABCMN,
421 DT_VERS_1_2, &dt_idops_type, "uint64_t" },
422 { "ufunc", DT_IDENT_ACTFUNC, 0, DT_ACT_USYM, DT_ATTR_STABCMN,
423 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
424 { "uid", DT_IDENT_SCALAR, 0, DIF_VAR_UID, DT_ATTR_STABCMN, DT_VERS_1_0,
425 &dt_idops_type, "uid_t" },
426 { "umod", DT_IDENT_ACTFUNC, 0, DT_ACT_UMOD, DT_ATTR_STABCMN,
427 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
428 { "uregs", DT_IDENT_ARRAY, 0, DIF_VAR_UREGS, DT_ATTR_STABCMN, DT_VERS_1_0,
429 &dt_idops_regs, NULL },
430 { "ustack", DT_IDENT_ACTFUNC, 0, DT_ACT_USTACK, DT_ATTR_STABCMN, DT_VERS_1_0,
431 &dt_idops_func, "stack(...)" },
432 { "ustackdepth", DT_IDENT_SCALAR, 0, DIF_VAR_USTACKDEPTH,
433 DT_ATTR_STABCMN, DT_VERS_1_2,
434 &dt_idops_type, "uint32_t" },
435 { "usym", DT_IDENT_ACTFUNC, 0, DT_ACT_USYM, DT_ATTR_STABCMN,
436 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
437 { "vmregs", DT_IDENT_ARRAY, 0, DIF_VAR_VMREGS, DT_ATTR_STABCMN, DT_VERS_1_7,
438 &dt_idops_regs, NULL },
439 { "vtimestamp", DT_IDENT_SCALAR, 0, DIF_VAR_VTIMESTAMP,
440 DT_ATTR_STABCMN, DT_VERS_1_0,
441 &dt_idops_type, "uint64_t" },
442 { "walltimestamp", DT_IDENT_SCALAR, 0, DIF_VAR_WALLTIMESTAMP,
443 DT_ATTR_STABCMN, DT_VERS_1_0,
444 &dt_idops_type, "int64_t" },
445 { "zonename", DT_IDENT_SCALAR, 0, DIF_VAR_ZONENAME,
446 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
447 { NULL, 0, 0, 0, { 0, 0, 0 }, 0, NULL, NULL }
448 };

450 /*

new/usr/src/lib/libdtrace/common/dt_open.c 8

451 * Tables of ILP32 intrinsic integer and floating-point type templates to use
452 * to populate the dynamic "C" CTF type container.
453 */
454 static const dt_intrinsic_t _dtrace_intrinsics_32[] = {
455 { "void", { CTF_INT_SIGNED, 0, 0 }, CTF_K_INTEGER },
456 { "signed", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
457 { "unsigned", { 0, 0, 32 }, CTF_K_INTEGER },
458 { "char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
459 { "short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
460 { "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
461 { "long", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
462 { "long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
463 { "signed char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
464 { "signed short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
465 { "signed int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
466 { "signed long", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
467 { "signed long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
468 { "unsigned char", { CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
469 { "unsigned short", { 0, 0, 16 }, CTF_K_INTEGER },
470 { "unsigned int", { 0, 0, 32 }, CTF_K_INTEGER },
471 { "unsigned long", { 0, 0, 32 }, CTF_K_INTEGER },
472 { "unsigned long long", { 0, 0, 64 }, CTF_K_INTEGER },
473 { "_Bool", { CTF_INT_BOOL, 0, 8 }, CTF_K_INTEGER },
474 { "float", { CTF_FP_SINGLE, 0, 32 }, CTF_K_FLOAT },
475 { "double", { CTF_FP_DOUBLE, 0, 64 }, CTF_K_FLOAT },
476 { "long double", { CTF_FP_LDOUBLE, 0, 128 }, CTF_K_FLOAT },
477 { "float imaginary", { CTF_FP_IMAGRY, 0, 32 }, CTF_K_FLOAT },
478 { "double imaginary", { CTF_FP_DIMAGRY, 0, 64 }, CTF_K_FLOAT },
479 { "long double imaginary", { CTF_FP_LDIMAGRY, 0, 128 }, CTF_K_FLOAT },
480 { "float complex", { CTF_FP_CPLX, 0, 64 }, CTF_K_FLOAT },
481 { "double complex", { CTF_FP_DCPLX, 0, 128 }, CTF_K_FLOAT },
482 { "long double complex", { CTF_FP_LDCPLX, 0, 256 }, CTF_K_FLOAT },
483 { NULL, { 0, 0, 0 }, 0 }
484 };

486 /*
487 * Tables of LP64 intrinsic integer and floating-point type templates to use
488 * to populate the dynamic "C" CTF type container.
489 */
490 static const dt_intrinsic_t _dtrace_intrinsics_64[] = {
491 { "void", { CTF_INT_SIGNED, 0, 0 }, CTF_K_INTEGER },
492 { "signed", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
493 { "unsigned", { 0, 0, 32 }, CTF_K_INTEGER },
494 { "char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
495 { "short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
496 { "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
497 { "long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
498 { "long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
499 { "signed char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
500 { "signed short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
501 { "signed int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
502 { "signed long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
503 { "signed long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
504 { "unsigned char", { CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
505 { "unsigned short", { 0, 0, 16 }, CTF_K_INTEGER },
506 { "unsigned int", { 0, 0, 32 }, CTF_K_INTEGER },
507 { "unsigned long", { 0, 0, 64 }, CTF_K_INTEGER },
508 { "unsigned long long", { 0, 0, 64 }, CTF_K_INTEGER },
509 { "_Bool", { CTF_INT_BOOL, 0, 8 }, CTF_K_INTEGER },
510 { "float", { CTF_FP_SINGLE, 0, 32 }, CTF_K_FLOAT },
511 { "double", { CTF_FP_DOUBLE, 0, 64 }, CTF_K_FLOAT },
512 { "long double", { CTF_FP_LDOUBLE, 0, 128 }, CTF_K_FLOAT },
513 { "float imaginary", { CTF_FP_IMAGRY, 0, 32 }, CTF_K_FLOAT },
514 { "double imaginary", { CTF_FP_DIMAGRY, 0, 64 }, CTF_K_FLOAT },
515 { "long double imaginary", { CTF_FP_LDIMAGRY, 0, 128 }, CTF_K_FLOAT },
516 { "float complex", { CTF_FP_CPLX, 0, 64 }, CTF_K_FLOAT },

new/usr/src/lib/libdtrace/common/dt_open.c 9

517 { "double complex", { CTF_FP_DCPLX, 0, 128 }, CTF_K_FLOAT },
518 { "long double complex", { CTF_FP_LDCPLX, 0, 256 }, CTF_K_FLOAT },
519 { NULL, { 0, 0, 0 }, 0 }
520 };

522 /*
523 * Tables of ILP32 typedefs to use to populate the dynamic "D" CTF container.
524 * These aliases ensure that D definitions can use typical <sys/types.h> names.
525 */
526 static const dt_typedef_t _dtrace_typedefs_32[] = {
527 { "char", "int8_t" },
528 { "short", "int16_t" },
529 { "int", "int32_t" },
530 { "long long", "int64_t" },
531 { "int", "intptr_t" },
532 { "int", "ssize_t" },
533 { "unsigned char", "uint8_t" },
534 { "unsigned short", "uint16_t" },
535 { "unsigned", "uint32_t" },
536 { "unsigned long long", "uint64_t" },
537 { "unsigned char", "uchar_t" },
538 { "unsigned short", "ushort_t" },
539 { "unsigned", "uint_t" },
540 { "unsigned long", "ulong_t" },
541 { "unsigned long long", "u_longlong_t" },
542 { "int", "ptrdiff_t" },
543 { "unsigned", "uintptr_t" },
544 { "unsigned", "size_t" },
545 { "long", "id_t" },
546 { "long", "pid_t" },
547 { NULL, NULL }
548 };

550 /*
551 * Tables of LP64 typedefs to use to populate the dynamic "D" CTF container.
552 * These aliases ensure that D definitions can use typical <sys/types.h> names.
553 */
554 static const dt_typedef_t _dtrace_typedefs_64[] = {
555 { "char", "int8_t" },
556 { "short", "int16_t" },
557 { "int", "int32_t" },
558 { "long", "int64_t" },
559 { "long", "intptr_t" },
560 { "long", "ssize_t" },
561 { "unsigned char", "uint8_t" },
562 { "unsigned short", "uint16_t" },
563 { "unsigned", "uint32_t" },
564 { "unsigned long", "uint64_t" },
565 { "unsigned char", "uchar_t" },
566 { "unsigned short", "ushort_t" },
567 { "unsigned", "uint_t" },
568 { "unsigned long", "ulong_t" },
569 { "unsigned long long", "u_longlong_t" },
570 { "long", "ptrdiff_t" },
571 { "unsigned long", "uintptr_t" },
572 { "unsigned long", "size_t" },
573 { "int", "id_t" },
574 { "int", "pid_t" },
575 { NULL, NULL }
576 };

578 /*
579 * Tables of ILP32 integer type templates used to populate the dtp->dt_ints[]
580 * cache when a new dtrace client open occurs. Values are set by dtrace_open().
581 */
582 static const dt_intdesc_t _dtrace_ints_32[] = {

new/usr/src/lib/libdtrace/common/dt_open.c 10

583 { "int", NULL, CTF_ERR, 0x7fffffffULL },
584 { "unsigned int", NULL, CTF_ERR, 0xffffffffULL },
585 { "long", NULL, CTF_ERR, 0x7fffffffULL },
586 { "unsigned long", NULL, CTF_ERR, 0xffffffffULL },
587 { "long long", NULL, CTF_ERR, 0x7fffffffffffffffULL },
588 { "unsigned long long", NULL, CTF_ERR, 0xffffffffffffffffULL }
589 };

591 /*
592 * Tables of LP64 integer type templates used to populate the dtp->dt_ints[]
593 * cache when a new dtrace client open occurs. Values are set by dtrace_open().
594 */
595 static const dt_intdesc_t _dtrace_ints_64[] = {
596 { "int", NULL, CTF_ERR, 0x7fffffffULL },
597 { "unsigned int", NULL, CTF_ERR, 0xffffffffULL },
598 { "long", NULL, CTF_ERR, 0x7fffffffffffffffULL },
599 { "unsigned long", NULL, CTF_ERR, 0xffffffffffffffffULL },
600 { "long long", NULL, CTF_ERR, 0x7fffffffffffffffULL },
601 { "unsigned long long", NULL, CTF_ERR, 0xffffffffffffffffULL }
602 };

604 /*
605 * Table of macro variable templates used to populate the macro identifier hash
606 * when a new dtrace client open occurs. Values are set by dtrace_update().
607 */
608 static const dt_ident_t _dtrace_macros[] = {
609 { "egid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
610 { "euid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
611 { "gid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
612 { "pid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
613 { "pgid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
614 { "ppid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
615 { "projid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
616 { "sid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
617 { "taskid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
618 { "target", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
619 { "uid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
620 { NULL, 0, 0, 0, { 0, 0, 0 }, 0 }
621 };

623 /*
624 * Hard-wired definition string to be compiled and cached every time a new
625 * DTrace library handle is initialized. This string should only be used to
626 * contain definitions that should be present regardless of DTRACE_O_NOLIBS.
627 */
628 static const char _dtrace_hardwire[] = "\
629 inline long NULL = 0; \n\
630 #pragma D binding \"1.0\" NULL\n\
631 ";

633 /*
634 * Default DTrace configuration to use when opening libdtrace DTRACE_O_NODEV.
635 * If DTRACE_O_NODEV is not set, we load the configuration from the kernel.
636 * The use of CTF_MODEL_NATIVE is more subtle than it might appear: we are
637 * relying on the fact that when running dtrace(1M), isaexec will invoke the
638 * binary with the same bitness as the kernel, which is what we want by default
639 * when generating our DIF. The user can override the choice using oflags.
640 */
641 static const dtrace_conf_t _dtrace_conf = {
642 DIF_VERSION, /* dtc_difversion */
643 DIF_DIR_NREGS, /* dtc_difintregs */
644 DIF_DTR_NREGS, /* dtc_diftupregs */
645 CTF_MODEL_NATIVE /* dtc_ctfmodel */
646 };

648 const dtrace_attribute_t _dtrace_maxattr = {

new/usr/src/lib/libdtrace/common/dt_open.c 11

649 DTRACE_STABILITY_MAX,
650 DTRACE_STABILITY_MAX,
651 DTRACE_CLASS_MAX
652 };

654 const dtrace_attribute_t _dtrace_defattr = {
655 DTRACE_STABILITY_STABLE,
656 DTRACE_STABILITY_STABLE,
657 DTRACE_CLASS_COMMON
658 };

660 const dtrace_attribute_t _dtrace_symattr = {
661 DTRACE_STABILITY_PRIVATE,
662 DTRACE_STABILITY_PRIVATE,
663 DTRACE_CLASS_UNKNOWN
664 };

666 const dtrace_attribute_t _dtrace_typattr = {
667 DTRACE_STABILITY_PRIVATE,
668 DTRACE_STABILITY_PRIVATE,
669 DTRACE_CLASS_UNKNOWN
670 };

672 const dtrace_attribute_t _dtrace_prvattr = {
673 DTRACE_STABILITY_PRIVATE,
674 DTRACE_STABILITY_PRIVATE,
675 DTRACE_CLASS_UNKNOWN
676 };

678 const dtrace_pattr_t _dtrace_prvdesc = {
679 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
680 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
681 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
682 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
683 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
684 };

686 const char *_dtrace_defcpp = "/usr/ccs/lib/cpp"; /* default cpp(1) to invoke */
687 const char *_dtrace_defld = "/usr/ccs/bin/ld"; /* default ld(1) to invoke */

689 const char *_dtrace_libdir = "/usr/lib/dtrace"; /* default library directory */
690 const char *_dtrace_provdir = "/dev/dtrace/provider"; /* provider directory */

692 int _dtrace_strbuckets = 211; /* default number of hash buckets (prime) */
693 int _dtrace_intbuckets = 256; /* default number of integer buckets (Pof2) */
694 uint_t _dtrace_strsize = 256; /* default size of string intrinsic type */
695 uint_t _dtrace_stkindent = 14; /* default whitespace indent for stack/ustack */
696 uint_t _dtrace_pidbuckets = 64; /* default number of pid hash buckets */
697 uint_t _dtrace_pidlrulim = 8; /* default number of pid handles to cache */
698 size_t _dtrace_bufsize = 512; /* default dt_buf_create() size */
699 int _dtrace_argmax = 32; /* default maximum number of probe arguments */

701 int _dtrace_debug = 0; /* debug messages enabled (off) */
702 const char *const _dtrace_version = DT_VERS_STRING; /* API version string */
703 int _dtrace_rdvers = RD_VERSION; /* rtld_db feature version */

705 typedef struct dt_fdlist {
706 int *df_fds; /* array of provider driver file descriptors */
707 uint_t df_ents; /* number of valid elements in df_fds[] */
708 uint_t df_size; /* size of df_fds[] */
709 } dt_fdlist_t;

711 #pragma init(_dtrace_init)
712 void
713 _dtrace_init(void)
714 {

new/usr/src/lib/libdtrace/common/dt_open.c 12

715 _dtrace_debug = getenv("DTRACE_DEBUG") != NULL;

717 for (; _dtrace_rdvers > 0; _dtrace_rdvers--) {
718 if (rd_init(_dtrace_rdvers) == RD_OK)
719 break;
720 }
721 }

723 static dtrace_hdl_t *
724 set_open_errno(dtrace_hdl_t *dtp, int *errp, int err)
725 {
726 if (dtp != NULL)
727 dtrace_close(dtp);
728 if (errp != NULL)
729 *errp = err;
730 return (NULL);
731 }

733 static void
734 dt_provmod_open(dt_provmod_t **provmod, dt_fdlist_t *dfp)
735 {
736 dt_provmod_t *prov;
737 char path[PATH_MAX];
738 struct dirent *dp, *ep;
739 DIR *dirp;
740 int fd;

742 if ((dirp = opendir(_dtrace_provdir)) == NULL)
743 return; /* failed to open directory; just skip it */

745 ep = alloca(sizeof (struct dirent) + PATH_MAX + 1);
746 bzero(ep, sizeof (struct dirent) + PATH_MAX + 1);

748 while (readdir_r(dirp, ep, &dp) == 0 && dp != NULL) {
749 if (dp->d_name[0] == ’.’)
750 continue; /* skip "." and ".." */

752 if (dfp->df_ents == dfp->df_size) {
753 uint_t size = dfp->df_size ? dfp->df_size * 2 : 16;
754 int *fds = realloc(dfp->df_fds, size * sizeof (int));

756 if (fds == NULL)
757 break; /* skip the rest of this directory */

759 dfp->df_fds = fds;
760 dfp->df_size = size;
761 }

763 (void) snprintf(path, sizeof (path), "%s/%s",
764 _dtrace_provdir, dp->d_name);

766 if ((fd = open(path, O_RDONLY)) == -1)
767 continue; /* failed to open driver; just skip it */

769 if (((prov = malloc(sizeof (dt_provmod_t))) == NULL) ||
770 (prov->dp_name = malloc(strlen(dp->d_name) + 1)) == NULL) {
771 free(prov);
772 (void) close(fd);
773 break;
774 }

776 (void) strcpy(prov->dp_name, dp->d_name);
777 prov->dp_next = *provmod;
778 *provmod = prov;

780 dt_dprintf("opened provider %s\n", dp->d_name);

new/usr/src/lib/libdtrace/common/dt_open.c 13

781 dfp->df_fds[dfp->df_ents++] = fd;
782 }

784 (void) closedir(dirp);
785 }

787 static void
788 dt_provmod_destroy(dt_provmod_t **provmod)
789 {
790 dt_provmod_t *next, *current;

792 for (current = *provmod; current != NULL; current = next) {
793 next = current->dp_next;
794 free(current->dp_name);
795 free(current);
796 }

798 *provmod = NULL;
799 }

801 static const char *
802 dt_get_sysinfo(int cmd, char *buf, size_t len)
803 {
804 ssize_t rv = sysinfo(cmd, buf, len);
805 char *p = buf;

807 if (rv < 0 || rv > len)
808 (void) snprintf(buf, len, "%s", "Unknown");

810 while ((p = strchr(p, ’.’)) != NULL)
811 *p++ = ’_’;

813 return (buf);
814 }

816 static dtrace_hdl_t *
817 dt_vopen(int version, int flags, int *errp,
818 const dtrace_vector_t *vector, void *arg)
819 {
820 dtrace_hdl_t *dtp = NULL;
821 int dtfd = -1, ftfd = -1, fterr = 0;
822 dtrace_prog_t *pgp;
823 dt_module_t *dmp;
824 dt_provmod_t *provmod = NULL;
825 int i, err;
826 struct rlimit rl;

828 const dt_intrinsic_t *dinp;
829 const dt_typedef_t *dtyp;
830 const dt_ident_t *idp;

832 dtrace_typeinfo_t dtt;
833 ctf_funcinfo_t ctc;
834 ctf_arinfo_t ctr;

836 dt_fdlist_t df = { NULL, 0, 0 };

838 char isadef[32], utsdef[32];
839 char s1[64], s2[64];

841 if (version <= 0)
842 return (set_open_errno(dtp, errp, EINVAL));

844 if (version > DTRACE_VERSION)
845 return (set_open_errno(dtp, errp, EDT_VERSION));

new/usr/src/lib/libdtrace/common/dt_open.c 14

847 if (version < DTRACE_VERSION) {
848 /*
849 * Currently, increasing the library version number is used to
850 * denote a binary incompatible change. That is, a consumer
851 * of the library cannot run on a version of the library with
852 * a higher DTRACE_VERSION number than the consumer compiled
853 * against. Once the library API has been committed to,
854 * backwards binary compatibility will be required; at that
855 * time, this check should change to return EDT_OVERSION only
856 * if the specified version number is less than the version
857 * number at the time of interface commitment.
858 */
859 return (set_open_errno(dtp, errp, EDT_OVERSION));
860 }

862 if (flags & ~DTRACE_O_MASK)
863 return (set_open_errno(dtp, errp, EINVAL));

865 if ((flags & DTRACE_O_LP64) && (flags & DTRACE_O_ILP32))
866 return (set_open_errno(dtp, errp, EINVAL));

868 if (vector == NULL && arg != NULL)
869 return (set_open_errno(dtp, errp, EINVAL));

871 if (elf_version(EV_CURRENT) == EV_NONE)
872 return (set_open_errno(dtp, errp, EDT_ELFVERSION));

874 if (vector != NULL || (flags & DTRACE_O_NODEV))
875 goto alloc; /* do not attempt to open dtrace device */

877 /*
878 * Before we get going, crank our limit on file descriptors up to the
879 * hard limit. This is to allow for the fact that libproc keeps file
880 * descriptors to objects open for the lifetime of the proc handle;
881 * without raising our hard limit, we would have an acceptably small
882 * bound on the number of processes that we could concurrently
883 * instrument with the pid provider.
884 */
885 if (getrlimit(RLIMIT_NOFILE, &rl) == 0) {
886 rl.rlim_cur = rl.rlim_max;
887 (void) setrlimit(RLIMIT_NOFILE, &rl);
888 }

890 /*
891 * Get the device path of each of the providers. We hold them open
892 * in the df.df_fds list until we open the DTrace driver itself,
893 * allowing us to see all of the probes provided on this system. Once
894 * we have the DTrace driver open, we can safely close all the providers
895 * now that they have registered with the framework.
896 */
897 dt_provmod_open(&provmod, &df);

899 dtfd = open("/dev/dtrace/dtrace", O_RDWR);
900 err = errno; /* save errno from opening dtfd */

902 ftfd = open("/dev/dtrace/provider/fasttrap", O_RDWR);
903 fterr = ftfd == -1 ? errno : 0; /* save errno from open ftfd */

905 while (df.df_ents-- != 0)
906 (void) close(df.df_fds[df.df_ents]);

908 free(df.df_fds);

910 /*
911 * If we failed to open the dtrace device, fail dtrace_open().
912 * We convert some kernel errnos to custom libdtrace errnos to

new/usr/src/lib/libdtrace/common/dt_open.c 15

913 * improve the resulting message from the usual strerror().
914 */
915 if (dtfd == -1) {
916 dt_provmod_destroy(&provmod);
917 switch (err) {
918 case ENOENT:
919 err = EDT_NOENT;
920 break;
921 case EBUSY:
922 err = EDT_BUSY;
923 break;
924 case EACCES:
925 err = EDT_ACCESS;
926 break;
927 }
928 return (set_open_errno(dtp, errp, err));
929 }

931 (void) fcntl(dtfd, F_SETFD, FD_CLOEXEC);
932 (void) fcntl(ftfd, F_SETFD, FD_CLOEXEC);

934 alloc:
935 if ((dtp = malloc(sizeof (dtrace_hdl_t))) == NULL)
936 return (set_open_errno(dtp, errp, EDT_NOMEM));

938 bzero(dtp, sizeof (dtrace_hdl_t));
939 dtp->dt_oflags = flags;
940 dtp->dt_prcmode = DT_PROC_STOP_PREINIT;
941 dtp->dt_linkmode = DT_LINK_KERNEL;
942 dtp->dt_linktype = DT_LTYP_ELF;
943 dtp->dt_xlatemode = DT_XL_STATIC;
944 dtp->dt_stdcmode = DT_STDC_XA;
945 dtp->dt_version = version;
946 dtp->dt_fd = dtfd;
947 dtp->dt_ftfd = ftfd;
948 dtp->dt_fterr = fterr;
949 dtp->dt_cdefs_fd = -1;
950 dtp->dt_ddefs_fd = -1;
951 dtp->dt_stdout_fd = -1;
952 dtp->dt_modbuckets = _dtrace_strbuckets;
953 dtp->dt_mods = calloc(dtp->dt_modbuckets, sizeof (dt_module_t *));
954 dtp->dt_provbuckets = _dtrace_strbuckets;
955 dtp->dt_provs = calloc(dtp->dt_provbuckets, sizeof (dt_provider_t *));
956 dt_proc_init(dtp);
957 dtp->dt_vmax = DT_VERS_LATEST;
958 dtp->dt_cpp_path = strdup(_dtrace_defcpp);
959 dtp->dt_cpp_argv = malloc(sizeof (char *));
960 dtp->dt_cpp_argc = 1;
961 dtp->dt_cpp_args = 1;
962 dtp->dt_ld_path = strdup(_dtrace_defld);
963 dtp->dt_provmod = provmod;
964 dtp->dt_vector = vector;
965 dtp->dt_varg = arg;
966 dt_dof_init(dtp);
967 (void) uname(&dtp->dt_uts);

969 if (dtp->dt_mods == NULL || dtp->dt_provs == NULL ||
970 dtp->dt_procs == NULL || dtp->dt_proc_env == NULL ||
971 dtp->dt_ld_path == NULL || dtp->dt_cpp_path == NULL ||
972 dtp->dt_cpp_argv == NULL)
973 return (set_open_errno(dtp, errp, EDT_NOMEM));

975 for (i = 0; i < DTRACEOPT_MAX; i++)
976 dtp->dt_options[i] = DTRACEOPT_UNSET;

978 dtp->dt_cpp_argv[0] = (char *)strbasename(dtp->dt_cpp_path);

new/usr/src/lib/libdtrace/common/dt_open.c 16

980 (void) snprintf(isadef, sizeof (isadef), "-D__SUNW_D_%u",
981 (uint_t)(sizeof (void *) * NBBY));

983 (void) snprintf(utsdef, sizeof (utsdef), "-D__%s_%s",
984 dt_get_sysinfo(SI_SYSNAME, s1, sizeof (s1)),
985 dt_get_sysinfo(SI_RELEASE, s2, sizeof (s2)));

987 if (dt_cpp_add_arg(dtp, "-D__sun") == NULL ||
988 dt_cpp_add_arg(dtp, "-D__unix") == NULL ||
989 dt_cpp_add_arg(dtp, "-D__SVR4") == NULL ||
990 dt_cpp_add_arg(dtp, "-D__SUNW_D=1") == NULL ||
991 dt_cpp_add_arg(dtp, isadef) == NULL ||
992 dt_cpp_add_arg(dtp, utsdef) == NULL)
993 return (set_open_errno(dtp, errp, EDT_NOMEM));

995 if (flags & DTRACE_O_NODEV)
996 bcopy(&_dtrace_conf, &dtp->dt_conf, sizeof (_dtrace_conf));
997 else if (dt_ioctl(dtp, DTRACEIOC_CONF, &dtp->dt_conf) != 0)
998 return (set_open_errno(dtp, errp, errno));

1000 if (flags & DTRACE_O_LP64)
1001 dtp->dt_conf.dtc_ctfmodel = CTF_MODEL_LP64;
1002 else if (flags & DTRACE_O_ILP32)
1003 dtp->dt_conf.dtc_ctfmodel = CTF_MODEL_ILP32;

1005 #ifdef __sparc
1006 /*
1007 * On SPARC systems, __sparc is always defined for <sys/isa_defs.h>
1008 * and __sparcv9 is defined if we are doing a 64-bit compile.
1009 */
1010 if (dt_cpp_add_arg(dtp, "-D__sparc") == NULL)
1011 return (set_open_errno(dtp, errp, EDT_NOMEM));

1013 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64 &&
1014 dt_cpp_add_arg(dtp, "-D__sparcv9") == NULL)
1015 return (set_open_errno(dtp, errp, EDT_NOMEM));
1016 #endif

1018 #ifdef __x86
1019 /*
1020 * On x86 systems, __i386 is defined for <sys/isa_defs.h> for 32-bit
1021 * compiles and __amd64 is defined for 64-bit compiles. Unlike SPARC,
1022 * they are defined exclusive of one another (see PSARC 2004/619).
1023 */
1024 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64) {
1025 if (dt_cpp_add_arg(dtp, "-D__amd64") == NULL)
1026 return (set_open_errno(dtp, errp, EDT_NOMEM));
1027 } else {
1028 if (dt_cpp_add_arg(dtp, "-D__i386") == NULL)
1029 return (set_open_errno(dtp, errp, EDT_NOMEM));
1030 }
1031 #endif

1033 if (dtp->dt_conf.dtc_difversion < DIF_VERSION)
1034 return (set_open_errno(dtp, errp, EDT_DIFVERS));

1036 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_ILP32)
1037 bcopy(_dtrace_ints_32, dtp->dt_ints, sizeof (_dtrace_ints_32));
1038 else
1039 bcopy(_dtrace_ints_64, dtp->dt_ints, sizeof (_dtrace_ints_64));

1041 dtp->dt_macros = dt_idhash_create("macro", NULL, 0, UINT_MAX);
1042 dtp->dt_aggs = dt_idhash_create("aggregation", NULL,
1043 DTRACE_AGGVARIDNONE + 1, UINT_MAX);

new/usr/src/lib/libdtrace/common/dt_open.c 17

1045 dtp->dt_globals = dt_idhash_create("global", _dtrace_globals,
1046 DIF_VAR_OTHER_UBASE, DIF_VAR_OTHER_MAX);

1048 dtp->dt_tls = dt_idhash_create("thread local", NULL,
1049 DIF_VAR_OTHER_UBASE, DIF_VAR_OTHER_MAX);

1051 if (dtp->dt_macros == NULL || dtp->dt_aggs == NULL ||
1052 dtp->dt_globals == NULL || dtp->dt_tls == NULL)
1053 return (set_open_errno(dtp, errp, EDT_NOMEM));

1055 /*
1056 * Populate the dt_macros identifier hash table by hand: we can’t use
1057 * the dt_idhash_populate() mechanism because we’re not yet compiling
1058 * and dtrace_update() needs to immediately reference these idents.
1059 */
1060 for (idp = _dtrace_macros; idp->di_name != NULL; idp++) {
1061 if (dt_idhash_insert(dtp->dt_macros, idp->di_name,
1062 idp->di_kind, idp->di_flags, idp->di_id, idp->di_attr,
1063 idp->di_vers, idp->di_ops ? idp->di_ops : &dt_idops_thaw,
1064 idp->di_iarg, 0) == NULL)
1065 return (set_open_errno(dtp, errp, EDT_NOMEM));
1066 }

1068 /*
1069 * Update the module list using /system/object and load the values for
1070 * the macro variable definitions according to the current process.
1071 */
1072 dtrace_update(dtp);

1074 /*
1075 * Select the intrinsics and typedefs we want based on the data model.
1076 * The intrinsics are under "C". The typedefs are added under "D".
1077 */
1078 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_ILP32) {
1079 dinp = _dtrace_intrinsics_32;
1080 dtyp = _dtrace_typedefs_32;
1081 } else {
1082 dinp = _dtrace_intrinsics_64;
1083 dtyp = _dtrace_typedefs_64;
1084 }

1086 /*
1087 * Create a dynamic CTF container under the "C" scope for intrinsic
1088 * types and types defined in ANSI-C header files that are included.
1089 */
1090 if ((dmp = dtp->dt_cdefs = dt_module_create(dtp, "C")) == NULL)
1091 return (set_open_errno(dtp, errp, EDT_NOMEM));

1093 if ((dmp->dm_ctfp = ctf_create(&dtp->dt_ctferr)) == NULL)
1094 return (set_open_errno(dtp, errp, EDT_CTF));

1096 dt_dprintf("created CTF container for %s (%p)\n",
1097 dmp->dm_name, (void *)dmp->dm_ctfp);

1099 (void) ctf_setmodel(dmp->dm_ctfp, dtp->dt_conf.dtc_ctfmodel);
1100 ctf_setspecific(dmp->dm_ctfp, dmp);

1102 dmp->dm_flags = DT_DM_LOADED; /* fake up loaded bit */
1103 dmp->dm_modid = -1; /* no module ID */

1105 /*
1106 * Fill the dynamic "C" CTF container with all of the intrinsic
1107 * integer and floating-point types appropriate for this data model.
1108 */
1109 for (; dinp->din_name != NULL; dinp++) {
1110 if (dinp->din_kind == CTF_K_INTEGER) {

new/usr/src/lib/libdtrace/common/dt_open.c 18

1111 err = ctf_add_integer(dmp->dm_ctfp, CTF_ADD_ROOT,
1112 dinp->din_name, &dinp->din_data);
1113 } else {
1114 err = ctf_add_float(dmp->dm_ctfp, CTF_ADD_ROOT,
1115 dinp->din_name, &dinp->din_data);
1116 }

1118 if (err == CTF_ERR) {
1119 dt_dprintf("failed to add %s to C container: %s\n",
1120 dinp->din_name, ctf_errmsg(
1121 ctf_errno(dmp->dm_ctfp)));
1122 return (set_open_errno(dtp, errp, EDT_CTF));
1123 }
1124 }

1126 if (ctf_update(dmp->dm_ctfp) != 0) {
1127 dt_dprintf("failed to update C container: %s\n",
1128 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1129 return (set_open_errno(dtp, errp, EDT_CTF));
1130 }

1132 /*
1133 * Add intrinsic pointer types that are needed to initialize printf
1134 * format dictionary types (see table in dt_printf.c).
1135 */
1136 (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT,
1137 ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1139 (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT,
1140 ctf_lookup_by_name(dmp->dm_ctfp, "char"));

1142 (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT,
1143 ctf_lookup_by_name(dmp->dm_ctfp, "int"));

1145 if (ctf_update(dmp->dm_ctfp) != 0) {
1146 dt_dprintf("failed to update C container: %s\n",
1147 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1148 return (set_open_errno(dtp, errp, EDT_CTF));
1149 }

1151 /*
1152 * Create a dynamic CTF container under the "D" scope for types that
1153 * are defined by the D program itself or on-the-fly by the D compiler.
1154 * The "D" CTF container is a child of the "C" CTF container.
1155 */
1156 if ((dmp = dtp->dt_ddefs = dt_module_create(dtp, "D")) == NULL)
1157 return (set_open_errno(dtp, errp, EDT_NOMEM));

1159 if ((dmp->dm_ctfp = ctf_create(&dtp->dt_ctferr)) == NULL)
1160 return (set_open_errno(dtp, errp, EDT_CTF));

1162 dt_dprintf("created CTF container for %s (%p)\n",
1163 dmp->dm_name, (void *)dmp->dm_ctfp);

1165 (void) ctf_setmodel(dmp->dm_ctfp, dtp->dt_conf.dtc_ctfmodel);
1166 ctf_setspecific(dmp->dm_ctfp, dmp);

1168 dmp->dm_flags = DT_DM_LOADED; /* fake up loaded bit */
1169 dmp->dm_modid = -1; /* no module ID */

1171 if (ctf_import(dmp->dm_ctfp, dtp->dt_cdefs->dm_ctfp) == CTF_ERR) {
1172 dt_dprintf("failed to import D parent container: %s\n",
1173 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1174 return (set_open_errno(dtp, errp, EDT_CTF));
1175 }

new/usr/src/lib/libdtrace/common/dt_open.c 19

1177 /*
1178 * Fill the dynamic "D" CTF container with all of the built-in typedefs
1179 * that we need to use for our D variable and function definitions.
1180 * This ensures that basic inttypes.h names are always available to us.
1181 */
1182 for (; dtyp->dty_src != NULL; dtyp++) {
1183 if (ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1184 dtyp->dty_dst, ctf_lookup_by_name(dmp->dm_ctfp,
1185 dtyp->dty_src)) == CTF_ERR) {
1186 dt_dprintf("failed to add typedef %s %s to D "
1187 "container: %s", dtyp->dty_src, dtyp->dty_dst,
1188 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1189 return (set_open_errno(dtp, errp, EDT_CTF));
1190 }
1191 }

1193 /*
1194 * Insert a CTF ID corresponding to a pointer to a type of kind
1195 * CTF_K_FUNCTION we can use in the compiler for function pointers.
1196 * CTF treats all function pointers as "int (*)()" so we only need one.
1197 */
1198 ctc.ctc_return = ctf_lookup_by_name(dmp->dm_ctfp, "int");
1199 ctc.ctc_argc = 0;
1200 ctc.ctc_flags = 0;

1202 dtp->dt_type_func = ctf_add_function(dmp->dm_ctfp,
1203 CTF_ADD_ROOT, &ctc, NULL);

1205 dtp->dt_type_fptr = ctf_add_pointer(dmp->dm_ctfp,
1206 CTF_ADD_ROOT, dtp->dt_type_func);

1208 /*
1209 * We also insert CTF definitions for the special D intrinsic types
1210 * string and <DYN> into the D container. The string type is added
1211 * as a typedef of char[n]. The <DYN> type is an alias for void.
1212 * We compare types to these special CTF ids throughout the compiler.
1213 */
1214 ctr.ctr_contents = ctf_lookup_by_name(dmp->dm_ctfp, "char");
1215 ctr.ctr_index = ctf_lookup_by_name(dmp->dm_ctfp, "long");
1216 ctr.ctr_nelems = _dtrace_strsize;

1218 dtp->dt_type_str = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1219 "string", ctf_add_array(dmp->dm_ctfp, CTF_ADD_ROOT, &ctr));

1221 dtp->dt_type_dyn = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1222 "<DYN>", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1224 dtp->dt_type_stack = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1225 "stack", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1227 dtp->dt_type_symaddr = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1228 "_symaddr", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1230 dtp->dt_type_usymaddr = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1231 "_usymaddr", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1233 if (dtp->dt_type_func == CTF_ERR || dtp->dt_type_fptr == CTF_ERR ||
1234 dtp->dt_type_str == CTF_ERR || dtp->dt_type_dyn == CTF_ERR ||
1235 dtp->dt_type_stack == CTF_ERR || dtp->dt_type_symaddr == CTF_ERR ||
1236 dtp->dt_type_usymaddr == CTF_ERR) {
1237 dt_dprintf("failed to add intrinsic to D container: %s\n",
1238 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1239 return (set_open_errno(dtp, errp, EDT_CTF));
1240 }

1242 if (ctf_update(dmp->dm_ctfp) != 0) {

new/usr/src/lib/libdtrace/common/dt_open.c 20

1243 dt_dprintf("failed update D container: %s\n",
1244 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1245 return (set_open_errno(dtp, errp, EDT_CTF));
1246 }

1248 /*
1249 * Initialize the integer description table used to convert integer
1250 * constants to the appropriate types. Refer to the comments above
1251 * dt_node_int() for a complete description of how this table is used.
1252 */
1253 for (i = 0; i < sizeof (dtp->dt_ints) / sizeof (dtp->dt_ints[0]); i++) {
1254 if (dtrace_lookup_by_type(dtp, DTRACE_OBJ_EVERY,
1255 dtp->dt_ints[i].did_name, &dtt) != 0) {
1256 dt_dprintf("failed to lookup integer type %s: %s\n",
1257 dtp->dt_ints[i].did_name,
1258 dtrace_errmsg(dtp, dtrace_errno(dtp)));
1259 return (set_open_errno(dtp, errp, dtp->dt_errno));
1260 }
1261 dtp->dt_ints[i].did_ctfp = dtt.dtt_ctfp;
1262 dtp->dt_ints[i].did_type = dtt.dtt_type;
1263 }

1265 /*
1266 * Now that we’ve created the "C" and "D" containers, move them to the
1267 * start of the module list so that these types and symbols are found
1268 * first (for stability) when iterating through the module list.
1269 */
1270 dt_list_delete(&dtp->dt_modlist, dtp->dt_ddefs);
1271 dt_list_prepend(&dtp->dt_modlist, dtp->dt_ddefs);

1273 dt_list_delete(&dtp->dt_modlist, dtp->dt_cdefs);
1274 dt_list_prepend(&dtp->dt_modlist, dtp->dt_cdefs);

1276 if (dt_pfdict_create(dtp) == -1)
1277 return (set_open_errno(dtp, errp, dtp->dt_errno));

1279 /*
1280 * If we are opening libdtrace DTRACE_O_NODEV enable C_ZDEFS by default
1281 * because without /dev/dtrace open, we will not be able to load the
1282 * names and attributes of any providers or probes from the kernel.
1283 */
1284 if (flags & DTRACE_O_NODEV)
1285 dtp->dt_cflags |= DTRACE_C_ZDEFS;

1287 /*
1288 * Load hard-wired inlines into the definition cache by calling the
1289 * compiler on the raw definition string defined above.
1290 */
1291 if ((pgp = dtrace_program_strcompile(dtp, _dtrace_hardwire,
1292 DTRACE_PROBESPEC_NONE, DTRACE_C_EMPTY, 0, NULL)) == NULL) {
1293 dt_dprintf("failed to load hard-wired definitions: %s\n",
1294 dtrace_errmsg(dtp, dtrace_errno(dtp)));
1295 return (set_open_errno(dtp, errp, EDT_HARDWIRE));
1296 }

1298 dt_program_destroy(dtp, pgp);

1300 /*
1301 * Set up the default DTrace library path. Once set, the next call to
1302 * dt_compile() will compile all the libraries. We intentionally defer
1303 * library processing to improve overhead for clients that don’t ever
1304 * compile, and to provide better error reporting (because the full
1305 * reporting of compiler errors requires dtrace_open() to succeed).
1306 */
1307 if (dtrace_setopt(dtp, "libdir", _dtrace_libdir) != 0)
1308 return (set_open_errno(dtp, errp, dtp->dt_errno));

new/usr/src/lib/libdtrace/common/dt_open.c 21

1310 return (dtp);
1311 }

1313 dtrace_hdl_t *
1314 dtrace_open(int version, int flags, int *errp)
1315 {
1316 return (dt_vopen(version, flags, errp, NULL, NULL));
1317 }

1319 dtrace_hdl_t *
1320 dtrace_vopen(int version, int flags, int *errp,
1321 const dtrace_vector_t *vector, void *arg)
1322 {
1323 return (dt_vopen(version, flags, errp, vector, arg));
1324 }

1326 void
1327 dtrace_close(dtrace_hdl_t *dtp)
1328 {
1329 dt_ident_t *idp, *ndp;
1330 dt_module_t *dmp;
1331 dt_provider_t *pvp;
1332 dtrace_prog_t *pgp;
1333 dt_xlator_t *dxp;
1334 dt_dirpath_t *dirp;
1335 int i;

1337 if (dtp->dt_procs != NULL)
1338 dt_proc_fini(dtp);

1340 while ((pgp = dt_list_next(&dtp->dt_programs)) != NULL)
1341 dt_program_destroy(dtp, pgp);

1343 while ((dxp = dt_list_next(&dtp->dt_xlators)) != NULL)
1344 dt_xlator_destroy(dtp, dxp);

1346 dt_free(dtp, dtp->dt_xlatormap);

1348 for (idp = dtp->dt_externs; idp != NULL; idp = ndp) {
1349 ndp = idp->di_next;
1350 dt_ident_destroy(idp);
1351 }

1353 if (dtp->dt_macros != NULL)
1354 dt_idhash_destroy(dtp->dt_macros);
1355 if (dtp->dt_aggs != NULL)
1356 dt_idhash_destroy(dtp->dt_aggs);
1357 if (dtp->dt_globals != NULL)
1358 dt_idhash_destroy(dtp->dt_globals);
1359 if (dtp->dt_tls != NULL)
1360 dt_idhash_destroy(dtp->dt_tls);

1362 while ((dmp = dt_list_next(&dtp->dt_modlist)) != NULL)
1363 dt_module_destroy(dtp, dmp);

1365 while ((pvp = dt_list_next(&dtp->dt_provlist)) != NULL)
1366 dt_provider_destroy(dtp, pvp);

1368 if (dtp->dt_fd != -1)
1369 (void) close(dtp->dt_fd);
1370 if (dtp->dt_ftfd != -1)
1371 (void) close(dtp->dt_ftfd);
1372 if (dtp->dt_cdefs_fd != -1)
1373 (void) close(dtp->dt_cdefs_fd);
1374 if (dtp->dt_ddefs_fd != -1)

new/usr/src/lib/libdtrace/common/dt_open.c 22

1375 (void) close(dtp->dt_ddefs_fd);
1376 if (dtp->dt_stdout_fd != -1)
1377 (void) close(dtp->dt_stdout_fd);

1379 dt_epid_destroy(dtp);
1380 dt_aggid_destroy(dtp);
1381 dt_format_destroy(dtp);
1382 dt_strdata_destroy(dtp);
1383 dt_buffered_destroy(dtp);
1384 dt_aggregate_destroy(dtp);
1385 dt_pfdict_destroy(dtp);
1386 dt_provmod_destroy(&dtp->dt_provmod);
1387 dt_dof_fini(dtp);

1389 for (i = 1; i < dtp->dt_cpp_argc; i++)
1390 free(dtp->dt_cpp_argv[i]);

1392 while ((dirp = dt_list_next(&dtp->dt_lib_path)) != NULL) {
1393 dt_list_delete(&dtp->dt_lib_path, dirp);
1394 free(dirp->dir_path);
1395 free(dirp);
1396 }

1398 free(dtp->dt_cpp_argv);
1399 free(dtp->dt_cpp_path);
1400 free(dtp->dt_ld_path);

1402 free(dtp->dt_mods);
1403 free(dtp->dt_provs);
1404 free(dtp);
1405 }

1407 int
1408 dtrace_provider_modules(dtrace_hdl_t *dtp, const char **mods, int nmods)
1409 {
1410 dt_provmod_t *prov;
1411 int i = 0;

1413 for (prov = dtp->dt_provmod; prov != NULL; prov = prov->dp_next, i++) {
1414 if (i < nmods)
1415 mods[i] = prov->dp_name;
1416 }

1418 return (i);
1419 }

1421 int
1422 dtrace_ctlfd(dtrace_hdl_t *dtp)
1423 {
1424 return (dtp->dt_fd);
1425 }

new/usr/src/lib/libdtrace/common/dt_parser.c 1

**
 142714 Tue Jan 14 16:48:57 2014
new/usr/src/lib/libdtrace/common/dt_parser.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, Joyent Inc. All rights reserved.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2011, Joyent Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 */

28 /*
29 * DTrace D Language Parser
30 *
31 * The D Parser is a lex/yacc parser consisting of the lexer dt_lex.l, the
32 * parsing grammar dt_grammar.y, and this file, dt_parser.c, which handles
33 * the construction of the parse tree nodes and their syntactic validation.
34 * The parse tree is constructed of dt_node_t structures (see <dt_parser.h>)
35 * that are built in two passes: (1) the "create" pass, where the parse tree
36 * nodes are allocated by calls from the grammar to dt_node_*() subroutines,
37 * and (2) the "cook" pass, where nodes are coalesced, assigned D types, and
38 * validated according to the syntactic rules of the language.
39 *
40 * All node allocations are performed using dt_node_alloc(). All node frees
41 * during the parsing phase are performed by dt_node_free(), which frees node-
42 * internal state but does not actually free the nodes. All final node frees
43 * are done as part of the end of dt_compile() or as part of destroying
44 * persistent identifiers or translators which have embedded nodes.
45 *
46 * The dt_node_* routines that implement pass (1) may allocate new nodes. The
47 * dt_cook_* routines that implement pass (2) may *not* allocate new nodes.
48 * They may free existing nodes using dt_node_free(), but they may not actually
49 * deallocate any dt_node_t’s. Currently dt_cook_op2() is an exception to this
50 * rule: see the comments therein for how this issue is resolved.
51 *
52 * The dt_cook_* routines are responsible for (at minimum) setting the final
53 * node type (dn_ctfp/dn_type) and attributes (dn_attr). If dn_ctfp/dn_type
54 * are set manually (i.e. not by one of the type assignment functions), then

new/usr/src/lib/libdtrace/common/dt_parser.c 2

55 * the DT_NF_COOKED flag must be set manually on the node.
56 *
57 * The cooking pass can be applied to the same parse tree more than once (used
58 * in the case of a comma-separated list of probe descriptions). As such, the
59 * cook routines must not perform any parse tree transformations which would
60 * be invalid if the tree were subsequently cooked using a different context.
61 *
62 * The dn_ctfp and dn_type fields form the type of the node. This tuple can
63 * take on the following set of values, which form our type invariants:
64 *
65 * 1. dn_ctfp = NULL, dn_type = CTF_ERR
66 *
67 * In this state, the node has unknown type and is not yet cooked. The
68 * DT_NF_COOKED flag is not yet set on the node.
69 *
70 * 2. dn_ctfp = DT_DYN_CTFP(dtp), dn_type = DT_DYN_TYPE(dtp)
71 *
72 * In this state, the node is a dynamic D type. This means that generic
73 * operations are not valid on this node and only code that knows how to
74 * examine the inner details of the node can operate on it. A <DYN> node
75 * must have dn_ident set to point to an identifier describing the object
76 * and its type. The DT_NF_REF flag is set for all nodes of type <DYN>.
77 * At present, the D compiler uses the <DYN> type for:
78 *
79 * - associative arrays that do not yet have a value type defined
80 * - translated data (i.e. the result of the xlate operator)
81 * - aggregations
82 *
83 * 3. dn_ctfp = DT_STR_CTFP(dtp), dn_type = DT_STR_TYPE(dtp)
84 *
85 * In this state, the node is of type D string. The string type is really
86 * a char[0] typedef, but requires special handling throughout the compiler.
87 *
88 * 4. dn_ctfp != NULL, dn_type = any other type ID
89 *
90 * In this state, the node is of some known D/CTF type. The normal libctf
91 * APIs can be used to learn more about the type name or structure. When
92 * the type is assigned, the DT_NF_SIGNED, DT_NF_REF, and DT_NF_BITFIELD
93 * flags cache the corresponding attributes of the underlying CTF type.
94 */

96 #include <sys/param.h>
97 #include <sys/sysmacros.h>
98 #include <limits.h>
99 #include <setjmp.h>
100 #include <strings.h>
101 #include <assert.h>
102 #include <alloca.h>
103 #include <stdlib.h>
104 #include <stdarg.h>
105 #include <stdio.h>
106 #include <errno.h>
107 #include <ctype.h>

109 #include <dt_impl.h>
110 #include <dt_grammar.h>
111 #include <dt_module.h>
112 #include <dt_provider.h>
113 #include <dt_string.h>
114 #include <dt_as.h>

116 dt_pcb_t *yypcb; /* current control block for parser */
117 dt_node_t *yypragma; /* lex token list for control lines */
118 char yyintprefix; /* int token macro prefix (+/-) */
119 char yyintsuffix[4]; /* int token suffix string [uU][lL] */
120 int yyintdecimal; /* int token format flag (1=decimal, 0=octal/hex) */

new/usr/src/lib/libdtrace/common/dt_parser.c 3

122 static const char *
123 opstr(int op)
124 {
125 switch (op) {
126 case DT_TOK_COMMA: return (",");
127 case DT_TOK_ELLIPSIS: return ("...");
128 case DT_TOK_ASGN: return ("=");
129 case DT_TOK_ADD_EQ: return ("+=");
130 case DT_TOK_SUB_EQ: return ("-=");
131 case DT_TOK_MUL_EQ: return ("*=");
132 case DT_TOK_DIV_EQ: return ("/=");
133 case DT_TOK_MOD_EQ: return ("%=");
134 case DT_TOK_AND_EQ: return ("&=");
135 case DT_TOK_XOR_EQ: return ("^=");
136 case DT_TOK_OR_EQ: return ("|=");
137 case DT_TOK_LSH_EQ: return ("<<=");
138 case DT_TOK_RSH_EQ: return (">>=");
139 case DT_TOK_QUESTION: return ("?");
140 case DT_TOK_COLON: return (":");
141 case DT_TOK_LOR: return ("||");
142 case DT_TOK_LXOR: return ("^^");
143 case DT_TOK_LAND: return ("&&");
144 case DT_TOK_BOR: return ("|");
145 case DT_TOK_XOR: return ("^");
146 case DT_TOK_BAND: return ("&");
147 case DT_TOK_EQU: return ("==");
148 case DT_TOK_NEQ: return ("!=");
149 case DT_TOK_LT: return ("<");
150 case DT_TOK_LE: return ("<=");
151 case DT_TOK_GT: return (">");
152 case DT_TOK_GE: return (">=");
153 case DT_TOK_LSH: return ("<<");
154 case DT_TOK_RSH: return (">>");
155 case DT_TOK_ADD: return ("+");
156 case DT_TOK_SUB: return ("-");
157 case DT_TOK_MUL: return ("*");
158 case DT_TOK_DIV: return ("/");
159 case DT_TOK_MOD: return ("%");
160 case DT_TOK_LNEG: return ("!");
161 case DT_TOK_BNEG: return ("~");
162 case DT_TOK_ADDADD: return ("++");
163 case DT_TOK_PREINC: return ("++");
164 case DT_TOK_POSTINC: return ("++");
165 case DT_TOK_SUBSUB: return ("--");
166 case DT_TOK_PREDEC: return ("--");
167 case DT_TOK_POSTDEC: return ("--");
168 case DT_TOK_IPOS: return ("+");
169 case DT_TOK_INEG: return ("-");
170 case DT_TOK_DEREF: return ("*");
171 case DT_TOK_ADDROF: return ("&");
172 case DT_TOK_OFFSETOF: return ("offsetof");
173 case DT_TOK_SIZEOF: return ("sizeof");
174 case DT_TOK_STRINGOF: return ("stringof");
175 case DT_TOK_XLATE: return ("xlate");
176 case DT_TOK_LPAR: return ("(");
177 case DT_TOK_RPAR: return (")");
178 case DT_TOK_LBRAC: return ("[");
179 case DT_TOK_RBRAC: return ("]");
180 case DT_TOK_PTR: return ("->");
181 case DT_TOK_DOT: return (".");
182 case DT_TOK_STRING: return ("<string>");
183 case DT_TOK_IDENT: return ("<ident>");
184 case DT_TOK_TNAME: return ("<type>");
185 case DT_TOK_INT: return ("<int>");
186 default: return ("<?>");

new/usr/src/lib/libdtrace/common/dt_parser.c 4

187 }
188 }

190 int
191 dt_type_lookup(const char *s, dtrace_typeinfo_t *tip)
192 {
193 static const char delimiters[] = " \t\n\r\v\f*‘";
194 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
195 const char *p, *q, *r, *end, *obj;
195 const char *p, *q, *end, *obj;

197 for (p = s, end = s + strlen(s); *p != ’\0’; p = q) {
198 while (isspace(*p))
199 p++; /* skip leading whitespace prior to token */

201 if (p == end || (q = strpbrk(p + 1, delimiters)) == NULL)
202 break; /* empty string or single token remaining */

204 if (*q == ’‘’) {
205 char *object = alloca((size_t)(q - p) + 1);
206 char *type = alloca((size_t)(end - s) + 1);

208 /*
209 * Copy from the start of the token (p) to the location
210 * backquote (q) to extract the nul-terminated object.
211 */
212 bcopy(p, object, (size_t)(q - p));
213 object[(size_t)(q - p)] = ’\0’;

215 /*
216 * Copy the original string up to the start of this
217 * token (p) into type, and then concatenate everything
218 * after q. This is the type name without the object.
219 */
220 bcopy(s, type, (size_t)(p - s));
221 bcopy(q + 1, type + (size_t)(p - s), strlen(q + 1) + 1);

223 /*
224 * There may be at most three delimeters. The second
225 * delimeter is usually used to distinguish the type
226 * within a given module, however, there could be a link
227 * map id on the scene in which case that delimeter
228 * would be the third. We determine presence of the lmid
229 * if it rouglhly meets the from LM[0-9]
230 */
231 if ((r = strchr(q + 1, ’‘’)) != NULL &&
232 ((r = strchr(r + 1, ’‘’)) != NULL)) {
233 if (strchr(r + 1, ’‘’) != NULL)
234 return (dt_set_errno(dtp,
235 EDT_BADSCOPE));
236 if (q[1] != ’L’ || q[2] != ’M’)
237 return (dt_set_errno(dtp,
238 EDT_BADSCOPE));
239 }
223 if (strchr(q + 1, ’‘’) != NULL)
224 return (dt_set_errno(dtp, EDT_BADSCOPE));

241 return (dtrace_lookup_by_type(dtp, object, type, tip));
242 }
243 }

245 if (yypcb->pcb_idepth != 0)
246 obj = DTRACE_OBJ_CDEFS;
247 else
248 obj = DTRACE_OBJ_EVERY;

new/usr/src/lib/libdtrace/common/dt_parser.c 5

250 return (dtrace_lookup_by_type(dtp, obj, s, tip));
251 }

253 /*
254 * When we parse type expressions or parse an expression with unary "&", we
255 * need to find a type that is a pointer to a previously known type.
256 * Unfortunately CTF is limited to a per-container view, so ctf_type_pointer()
257 * alone does not suffice for our needs. We provide a more intelligent wrapper
258 * for the compiler that attempts to compute a pointer to either the given type
259 * or its base (that is, we try both "foo_t *" and "struct foo *"), and also
260 * to potentially construct the required type on-the-fly.
261 */
262 int
263 dt_type_pointer(dtrace_typeinfo_t *tip)
264 {
265 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
266 ctf_file_t *ctfp = tip->dtt_ctfp;
267 ctf_id_t type = tip->dtt_type;
268 ctf_id_t base = ctf_type_resolve(ctfp, type);
269 uint_t bflags = tip->dtt_flags;
270 #endif /* ! codereview */

272 dt_module_t *dmp;
273 ctf_id_t ptr;

275 if ((ptr = ctf_type_pointer(ctfp, type)) != CTF_ERR ||
276 (ptr = ctf_type_pointer(ctfp, base)) != CTF_ERR) {
277 tip->dtt_type = ptr;
278 return (0);
279 }

281 if (yypcb->pcb_idepth != 0)
282 dmp = dtp->dt_cdefs;
283 else
284 dmp = dtp->dt_ddefs;

286 if (ctfp != dmp->dm_ctfp && ctfp != ctf_parent_file(dmp->dm_ctfp) &&
287 (type = ctf_add_type(dmp->dm_ctfp, ctfp, type)) == CTF_ERR) {
288 dtp->dt_ctferr = ctf_errno(dmp->dm_ctfp);
289 return (dt_set_errno(dtp, EDT_CTF));
290 }

292 ptr = ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT, type);

294 if (ptr == CTF_ERR || ctf_update(dmp->dm_ctfp) == CTF_ERR) {
295 dtp->dt_ctferr = ctf_errno(dmp->dm_ctfp);
296 return (dt_set_errno(dtp, EDT_CTF));
297 }

299 tip->dtt_object = dmp->dm_name;
300 tip->dtt_ctfp = dmp->dm_ctfp;
301 tip->dtt_type = ptr;
302 tip->dtt_flags = bflags;
303 #endif /* ! codereview */

305 return (0);
306 }

308 const char *
309 dt_type_name(ctf_file_t *ctfp, ctf_id_t type, char *buf, size_t len)
310 {
311 dtrace_hdl_t *dtp = yypcb->pcb_hdl;

313 if (ctfp == DT_FPTR_CTFP(dtp) && type == DT_FPTR_TYPE(dtp))
314 (void) snprintf(buf, len, "function pointer");
315 else if (ctfp == DT_FUNC_CTFP(dtp) && type == DT_FUNC_TYPE(dtp))

new/usr/src/lib/libdtrace/common/dt_parser.c 6

316 (void) snprintf(buf, len, "function");
317 else if (ctfp == DT_DYN_CTFP(dtp) && type == DT_DYN_TYPE(dtp))
318 (void) snprintf(buf, len, "dynamic variable");
319 else if (ctfp == NULL)
320 (void) snprintf(buf, len, "<none>");
321 else if (ctf_type_name(ctfp, type, buf, len) == NULL)
322 (void) snprintf(buf, len, "unknown");

324 return (buf);
325 }

327 /*
328 * Perform the "usual arithmetic conversions" to determine which of the two
329 * input operand types should be promoted and used as a result type. The
330 * rules for this are described in ISOC[6.3.1.8] and K&R[A6.5].
331 */
332 static void
333 dt_type_promote(dt_node_t *lp, dt_node_t *rp, ctf_file_t **ofp, ctf_id_t *otype)
334 {
335 ctf_file_t *lfp = lp->dn_ctfp;
336 ctf_id_t ltype = lp->dn_type;

338 ctf_file_t *rfp = rp->dn_ctfp;
339 ctf_id_t rtype = rp->dn_type;

341 ctf_id_t lbase = ctf_type_resolve(lfp, ltype);
342 uint_t lkind = ctf_type_kind(lfp, lbase);

344 ctf_id_t rbase = ctf_type_resolve(rfp, rtype);
345 uint_t rkind = ctf_type_kind(rfp, rbase);

347 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
348 ctf_encoding_t le, re;
349 uint_t lrank, rrank;

351 assert(lkind == CTF_K_INTEGER || lkind == CTF_K_ENUM);
352 assert(rkind == CTF_K_INTEGER || rkind == CTF_K_ENUM);

354 if (lkind == CTF_K_ENUM) {
355 lfp = DT_INT_CTFP(dtp);
356 ltype = lbase = DT_INT_TYPE(dtp);
357 }

359 if (rkind == CTF_K_ENUM) {
360 rfp = DT_INT_CTFP(dtp);
361 rtype = rbase = DT_INT_TYPE(dtp);
362 }

364 if (ctf_type_encoding(lfp, lbase, &le) == CTF_ERR) {
365 yypcb->pcb_hdl->dt_ctferr = ctf_errno(lfp);
366 longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
367 }

369 if (ctf_type_encoding(rfp, rbase, &re) == CTF_ERR) {
370 yypcb->pcb_hdl->dt_ctferr = ctf_errno(rfp);
371 longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
372 }

374 /*
375 * Compute an integer rank based on the size and unsigned status.
376 * If rank is identical, pick the "larger" of the equivalent types
377 * which we define as having a larger base ctf_id_t. If rank is
378 * different, pick the type with the greater rank.
379 */
380 lrank = le.cte_bits + ((le.cte_format & CTF_INT_SIGNED) == 0);
381 rrank = re.cte_bits + ((re.cte_format & CTF_INT_SIGNED) == 0);

new/usr/src/lib/libdtrace/common/dt_parser.c 7

383 if (lrank == rrank) {
384 if (lbase - rbase < 0)
385 goto return_rtype;
386 else
387 goto return_ltype;
388 } else if (lrank > rrank) {
389 goto return_ltype;
390 } else
391 goto return_rtype;

393 return_ltype:
394 *ofp = lfp;
395 *otype = ltype;
396 return;

398 return_rtype:
399 *ofp = rfp;
400 *otype = rtype;
401 }

403 void
404 dt_node_promote(dt_node_t *lp, dt_node_t *rp, dt_node_t *dnp)
405 {
406 dt_type_promote(lp, rp, &dnp->dn_ctfp, &dnp->dn_type);
407 dt_node_type_assign(dnp, dnp->dn_ctfp, dnp->dn_type, B_FALSE);
254 dt_node_type_assign(dnp, dnp->dn_ctfp, dnp->dn_type);
408 dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr));
409 }

______unchanged_portion_omitted_

675 void
676 dt_node_type_assign(dt_node_t *dnp, ctf_file_t *fp, ctf_id_t type,
677 boolean_t user)
523 dt_node_type_assign(dt_node_t *dnp, ctf_file_t *fp, ctf_id_t type)
678 {
679 ctf_id_t base = ctf_type_resolve(fp, type);
680 uint_t kind = ctf_type_kind(fp, base);
681 ctf_encoding_t e;

683 dnp->dn_flags &=
684 ~(DT_NF_SIGNED | DT_NF_REF | DT_NF_BITFIELD | DT_NF_USERLAND);

686 if (kind == CTF_K_INTEGER && ctf_type_encoding(fp, base, &e) == 0) {
687 size_t size = e.cte_bits / NBBY;

689 if (size > 8 || (e.cte_bits % NBBY) != 0 || (size & (size - 1)))
690 dnp->dn_flags |= DT_NF_BITFIELD;

692 if (e.cte_format & CTF_INT_SIGNED)
693 dnp->dn_flags |= DT_NF_SIGNED;
694 }

696 if (kind == CTF_K_FLOAT && ctf_type_encoding(fp, base, &e) == 0) {
697 if (e.cte_bits / NBBY > sizeof (uint64_t))
698 dnp->dn_flags |= DT_NF_REF;
699 }

701 if (kind == CTF_K_STRUCT || kind == CTF_K_UNION ||
702 kind == CTF_K_FORWARD ||
703 kind == CTF_K_ARRAY || kind == CTF_K_FUNCTION)
704 dnp->dn_flags |= DT_NF_REF;
705 else if (yypcb != NULL && fp == DT_DYN_CTFP(yypcb->pcb_hdl) &&
706 type == DT_DYN_TYPE(yypcb->pcb_hdl))
707 dnp->dn_flags |= DT_NF_REF;

new/usr/src/lib/libdtrace/common/dt_parser.c 8

709 if (user)
710 dnp->dn_flags |= DT_NF_USERLAND;

712 #endif /* ! codereview */
713 dnp->dn_flags |= DT_NF_COOKED;
714 dnp->dn_ctfp = fp;
715 dnp->dn_type = type;
716 }

718 void
719 dt_node_type_propagate(const dt_node_t *src, dt_node_t *dst)
720 {
721 assert(src->dn_flags & DT_NF_COOKED);
722 dst->dn_flags = src->dn_flags & ~DT_NF_LVALUE;
723 dst->dn_ctfp = src->dn_ctfp;
724 dst->dn_type = src->dn_type;
725 }

727 const char *
728 dt_node_type_name(const dt_node_t *dnp, char *buf, size_t len)
729 {
730 if (dt_node_is_dynamic(dnp) && dnp->dn_ident != NULL) {
731 (void) snprintf(buf, len, "%s",
732 dt_idkind_name(dt_ident_resolve(dnp->dn_ident)->di_kind));
733 return (buf);
734 }

736 if (dnp->dn_flags & DT_NF_USERLAND) {
737 size_t n = snprintf(buf, len, "userland ");
738 len = len > n ? len - n : 0;
739 (void) dt_type_name(dnp->dn_ctfp, dnp->dn_type, buf + n, len);
740 return (buf);
741 }

743 return (dt_type_name(dnp->dn_ctfp, dnp->dn_type, buf, len));
744 }

746 size_t
747 dt_node_type_size(const dt_node_t *dnp)
748 {
749 ctf_id_t base;
750 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
751 #endif /* ! codereview */

753 if (dnp->dn_kind == DT_NODE_STRING)
754 return (strlen(dnp->dn_string) + 1);

756 if (dt_node_is_dynamic(dnp) && dnp->dn_ident != NULL)
757 return (dt_ident_size(dnp->dn_ident));

759 base = ctf_type_resolve(dnp->dn_ctfp, dnp->dn_type);

761 if (ctf_type_kind(dnp->dn_ctfp, base) == CTF_K_FORWARD)
762 return (0);

764 /*
765 * Here we have a 32-bit user pointer that is being used with a 64-bit
766 * kernel. When we’re using it and its tagged as a userland reference --
767 * then we need to keep it as a 32-bit pointer. However, if we are
768 * referring to it as a kernel address, eg. being used after a copyin()
769 * then we need to make sure that we actually return the kernel’s size
770 * of a pointer, 8 bytes.
771 */
772 if (ctf_type_kind(dnp->dn_ctfp, base) == CTF_K_POINTER &&
773 ctf_getmodel(dnp->dn_ctfp) == CTF_MODEL_ILP32 &&
774 !(dnp->dn_flags & DT_NF_USERLAND) &&

new/usr/src/lib/libdtrace/common/dt_parser.c 9

775 dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64)
776 return (8);

778 #endif /* ! codereview */
779 return (ctf_type_size(dnp->dn_ctfp, dnp->dn_type));
780 }

782 /*
783 * Determine if the specified parse tree node references an identifier of the
784 * specified kind, and if so return a pointer to it; otherwise return NULL.
785 * This function resolves the identifier itself, following through any inlines.
786 */
787 dt_ident_t *
788 dt_node_resolve(const dt_node_t *dnp, uint_t idkind)
789 {
790 dt_ident_t *idp;

792 switch (dnp->dn_kind) {
793 case DT_NODE_VAR:
794 case DT_NODE_SYM:
795 case DT_NODE_FUNC:
796 case DT_NODE_AGG:
797 case DT_NODE_INLINE:
798 case DT_NODE_PROBE:
799 idp = dt_ident_resolve(dnp->dn_ident);
800 return (idp->di_kind == idkind ? idp : NULL);
801 }

803 if (dt_node_is_dynamic(dnp)) {
804 idp = dt_ident_resolve(dnp->dn_ident);
805 return (idp->di_kind == idkind ? idp : NULL);
806 }

808 return (NULL);
809 }

811 size_t
812 dt_node_sizeof(const dt_node_t *dnp)
813 {
814 dtrace_syminfo_t *sip;
815 GElf_Sym sym;
816 dtrace_hdl_t *dtp = yypcb->pcb_hdl;

818 /*
819 * The size of the node as used for the sizeof() operator depends on
820 * the kind of the node. If the node is a SYM, the size is obtained
821 * from the symbol table; if it is not a SYM, the size is determined
822 * from the node’s type. This is slightly different from C’s sizeof()
823 * operator in that (for example) when applied to a function, sizeof()
824 * will evaluate to the length of the function rather than the size of
825 * the function type.
826 */
827 if (dnp->dn_kind != DT_NODE_SYM)
828 return (dt_node_type_size(dnp));

830 sip = dnp->dn_ident->di_data;

832 if (dtrace_lookup_by_name(dtp, sip->dts_object,
833 sip->dts_name, &sym, NULL) == -1)
834 return (0);

836 return (sym.st_size);
837 }

839 int
840 dt_node_is_integer(const dt_node_t *dnp)

new/usr/src/lib/libdtrace/common/dt_parser.c 10

841 {
842 ctf_file_t *fp = dnp->dn_ctfp;
843 ctf_encoding_t e;
844 ctf_id_t type;
845 uint_t kind;

847 assert(dnp->dn_flags & DT_NF_COOKED);

849 type = ctf_type_resolve(fp, dnp->dn_type);
850 kind = ctf_type_kind(fp, type);

852 if (kind == CTF_K_INTEGER &&
853 ctf_type_encoding(fp, type, &e) == 0 && IS_VOID(e))
854 return (0); /* void integer */

856 return (kind == CTF_K_INTEGER || kind == CTF_K_ENUM);
857 }

859 int
860 dt_node_is_float(const dt_node_t *dnp)
861 {
862 ctf_file_t *fp = dnp->dn_ctfp;
863 ctf_encoding_t e;
864 ctf_id_t type;
865 uint_t kind;

867 assert(dnp->dn_flags & DT_NF_COOKED);

869 type = ctf_type_resolve(fp, dnp->dn_type);
870 kind = ctf_type_kind(fp, type);

872 return (kind == CTF_K_FLOAT &&
873 ctf_type_encoding(dnp->dn_ctfp, type, &e) == 0 && (
874 e.cte_format == CTF_FP_SINGLE || e.cte_format == CTF_FP_DOUBLE ||
875 e.cte_format == CTF_FP_LDOUBLE));
876 }

878 int
879 dt_node_is_scalar(const dt_node_t *dnp)
880 {
881 ctf_file_t *fp = dnp->dn_ctfp;
882 ctf_encoding_t e;
883 ctf_id_t type;
884 uint_t kind;

886 assert(dnp->dn_flags & DT_NF_COOKED);

888 type = ctf_type_resolve(fp, dnp->dn_type);
889 kind = ctf_type_kind(fp, type);

891 if (kind == CTF_K_INTEGER &&
892 ctf_type_encoding(fp, type, &e) == 0 && IS_VOID(e))
893 return (0); /* void cannot be used as a scalar */

895 return (kind == CTF_K_INTEGER || kind == CTF_K_ENUM ||
896 kind == CTF_K_POINTER);
897 }

899 int
900 dt_node_is_arith(const dt_node_t *dnp)
901 {
902 ctf_file_t *fp = dnp->dn_ctfp;
903 ctf_encoding_t e;
904 ctf_id_t type;
905 uint_t kind;

new/usr/src/lib/libdtrace/common/dt_parser.c 11

907 assert(dnp->dn_flags & DT_NF_COOKED);

909 type = ctf_type_resolve(fp, dnp->dn_type);
910 kind = ctf_type_kind(fp, type);

912 if (kind == CTF_K_INTEGER)
913 return (ctf_type_encoding(fp, type, &e) == 0 && !IS_VOID(e));
914 else
915 return (kind == CTF_K_ENUM);
916 }

918 int
919 dt_node_is_vfptr(const dt_node_t *dnp)
920 {
921 ctf_file_t *fp = dnp->dn_ctfp;
922 ctf_encoding_t e;
923 ctf_id_t type;
924 uint_t kind;

926 assert(dnp->dn_flags & DT_NF_COOKED);

928 type = ctf_type_resolve(fp, dnp->dn_type);
929 if (ctf_type_kind(fp, type) != CTF_K_POINTER)
930 return (0); /* type is not a pointer */

932 type = ctf_type_resolve(fp, ctf_type_reference(fp, type));
933 kind = ctf_type_kind(fp, type);

935 return (kind == CTF_K_FUNCTION || (kind == CTF_K_INTEGER &&
936 ctf_type_encoding(fp, type, &e) == 0 && IS_VOID(e)));
937 }

939 int
940 dt_node_is_dynamic(const dt_node_t *dnp)
941 {
942 if (dnp->dn_kind == DT_NODE_VAR &&
943 (dnp->dn_ident->di_flags & DT_IDFLG_INLINE)) {
944 const dt_idnode_t *inp = dnp->dn_ident->di_iarg;
945 return (inp->din_root ? dt_node_is_dynamic(inp->din_root) : 0);
946 }

948 return (dnp->dn_ctfp == DT_DYN_CTFP(yypcb->pcb_hdl) &&
949 dnp->dn_type == DT_DYN_TYPE(yypcb->pcb_hdl));
950 }

952 int
953 dt_node_is_string(const dt_node_t *dnp)
954 {
955 return (dnp->dn_ctfp == DT_STR_CTFP(yypcb->pcb_hdl) &&
956 dnp->dn_type == DT_STR_TYPE(yypcb->pcb_hdl));
957 }

959 int
960 dt_node_is_stack(const dt_node_t *dnp)
961 {
962 return (dnp->dn_ctfp == DT_STACK_CTFP(yypcb->pcb_hdl) &&
963 dnp->dn_type == DT_STACK_TYPE(yypcb->pcb_hdl));
964 }

966 int
967 dt_node_is_symaddr(const dt_node_t *dnp)
968 {
969 return (dnp->dn_ctfp == DT_SYMADDR_CTFP(yypcb->pcb_hdl) &&
970 dnp->dn_type == DT_SYMADDR_TYPE(yypcb->pcb_hdl));
971 }

new/usr/src/lib/libdtrace/common/dt_parser.c 12

973 int
974 dt_node_is_usymaddr(const dt_node_t *dnp)
975 {
976 return (dnp->dn_ctfp == DT_USYMADDR_CTFP(yypcb->pcb_hdl) &&
977 dnp->dn_type == DT_USYMADDR_TYPE(yypcb->pcb_hdl));
978 }

980 int
981 dt_node_is_strcompat(const dt_node_t *dnp)
982 {
983 ctf_file_t *fp = dnp->dn_ctfp;
984 ctf_encoding_t e;
985 ctf_arinfo_t r;
986 ctf_id_t base;
987 uint_t kind;

989 assert(dnp->dn_flags & DT_NF_COOKED);

991 base = ctf_type_resolve(fp, dnp->dn_type);
992 kind = ctf_type_kind(fp, base);

994 if (kind == CTF_K_POINTER &&
995 (base = ctf_type_reference(fp, base)) != CTF_ERR &&
996 (base = ctf_type_resolve(fp, base)) != CTF_ERR &&
997 ctf_type_encoding(fp, base, &e) == 0 && IS_CHAR(e))
998 return (1); /* promote char pointer to string */

1000 if (kind == CTF_K_ARRAY && ctf_array_info(fp, base, &r) == 0 &&
1001 (base = ctf_type_resolve(fp, r.ctr_contents)) != CTF_ERR &&
1002 ctf_type_encoding(fp, base, &e) == 0 && IS_CHAR(e))
1003 return (1); /* promote char array to string */

1005 return (0);
1006 }

1008 int
1009 dt_node_is_pointer(const dt_node_t *dnp)
1010 {
1011 ctf_file_t *fp = dnp->dn_ctfp;
1012 uint_t kind;

1014 assert(dnp->dn_flags & DT_NF_COOKED);

1016 if (dt_node_is_string(dnp))
1017 return (0); /* string are pass-by-ref but act like structs */

1019 kind = ctf_type_kind(fp, ctf_type_resolve(fp, dnp->dn_type));
1020 return (kind == CTF_K_POINTER || kind == CTF_K_ARRAY);
1021 }

1023 int
1024 dt_node_is_void(const dt_node_t *dnp)
1025 {
1026 ctf_file_t *fp = dnp->dn_ctfp;
1027 ctf_encoding_t e;
1028 ctf_id_t type;

1030 if (dt_node_is_dynamic(dnp))
1031 return (0); /* <DYN> is an alias for void but not the same */

1033 if (dt_node_is_stack(dnp))
1034 return (0);

1036 if (dt_node_is_symaddr(dnp) || dt_node_is_usymaddr(dnp))
1037 return (0);

new/usr/src/lib/libdtrace/common/dt_parser.c 13

1039 type = ctf_type_resolve(fp, dnp->dn_type);

1041 return (ctf_type_kind(fp, type) == CTF_K_INTEGER &&
1042 ctf_type_encoding(fp, type, &e) == 0 && IS_VOID(e));
1043 }

1045 int
1046 dt_node_is_ptrcompat(const dt_node_t *lp, const dt_node_t *rp,
1047 ctf_file_t **fpp, ctf_id_t *tp)
1048 {
1049 ctf_file_t *lfp = lp->dn_ctfp;
1050 ctf_file_t *rfp = rp->dn_ctfp;

1052 ctf_id_t lbase = CTF_ERR, rbase = CTF_ERR;
1053 ctf_id_t lref = CTF_ERR, rref = CTF_ERR;

1055 int lp_is_void, rp_is_void, lp_is_int, rp_is_int, compat;
1056 uint_t lkind, rkind;
1057 ctf_encoding_t e;
1058 ctf_arinfo_t r;

1060 assert(lp->dn_flags & DT_NF_COOKED);
1061 assert(rp->dn_flags & DT_NF_COOKED);

1063 if (dt_node_is_dynamic(lp) || dt_node_is_dynamic(rp))
1064 return (0); /* fail if either node is a dynamic variable */

1066 lp_is_int = dt_node_is_integer(lp);
1067 rp_is_int = dt_node_is_integer(rp);

1069 if (lp_is_int && rp_is_int)
1070 return (0); /* fail if both nodes are integers */

1072 if (lp_is_int && (lp->dn_kind != DT_NODE_INT || lp->dn_value != 0))
1073 return (0); /* fail if lp is an integer that isn’t 0 constant */

1075 if (rp_is_int && (rp->dn_kind != DT_NODE_INT || rp->dn_value != 0))
1076 return (0); /* fail if rp is an integer that isn’t 0 constant */

1078 if ((lp_is_int == 0 && rp_is_int == 0) && (
1079 (lp->dn_flags & DT_NF_USERLAND) ^ (rp->dn_flags & DT_NF_USERLAND)))
1080 return (0); /* fail if only one pointer is a userland address */

1082 /*
1083 * Resolve the left-hand and right-hand types to their base type, and
1084 * then resolve the referenced type as well (assuming the base type
1085 * is CTF_K_POINTER or CTF_K_ARRAY). Otherwise [lr]ref = CTF_ERR.
1086 */
1087 if (!lp_is_int) {
1088 lbase = ctf_type_resolve(lfp, lp->dn_type);
1089 lkind = ctf_type_kind(lfp, lbase);

1091 if (lkind == CTF_K_POINTER) {
1092 lref = ctf_type_resolve(lfp,
1093 ctf_type_reference(lfp, lbase));
1094 } else if (lkind == CTF_K_ARRAY &&
1095 ctf_array_info(lfp, lbase, &r) == 0) {
1096 lref = ctf_type_resolve(lfp, r.ctr_contents);
1097 }
1098 }

1100 if (!rp_is_int) {
1101 rbase = ctf_type_resolve(rfp, rp->dn_type);
1102 rkind = ctf_type_kind(rfp, rbase);

1104 if (rkind == CTF_K_POINTER) {

new/usr/src/lib/libdtrace/common/dt_parser.c 14

1105 rref = ctf_type_resolve(rfp,
1106 ctf_type_reference(rfp, rbase));
1107 } else if (rkind == CTF_K_ARRAY &&
1108 ctf_array_info(rfp, rbase, &r) == 0) {
1109 rref = ctf_type_resolve(rfp, r.ctr_contents);
1110 }
1111 }

1113 /*
1114 * We know that one or the other type may still be a zero-valued
1115 * integer constant. To simplify the code below, set the integer
1116 * type variables equal to the non-integer types and proceed.
1117 */
1118 if (lp_is_int) {
1119 lbase = rbase;
1120 lkind = rkind;
1121 lref = rref;
1122 lfp = rfp;
1123 } else if (rp_is_int) {
1124 rbase = lbase;
1125 rkind = lkind;
1126 rref = lref;
1127 rfp = lfp;
1128 }

1130 lp_is_void = ctf_type_encoding(lfp, lref, &e) == 0 && IS_VOID(e);
1131 rp_is_void = ctf_type_encoding(rfp, rref, &e) == 0 && IS_VOID(e);

1133 /*
1134 * The types are compatible if both are pointers to the same type, or
1135 * if either pointer is a void pointer. If they are compatible, set
1136 * tp to point to the more specific pointer type and return it.
1137 */
1138 compat = (lkind == CTF_K_POINTER || lkind == CTF_K_ARRAY) &&
1139 (rkind == CTF_K_POINTER || rkind == CTF_K_ARRAY) &&
1140 (lp_is_void || rp_is_void || ctf_type_compat(lfp, lref, rfp, rref));

1142 if (compat) {
1143 if (fpp != NULL)
1144 *fpp = rp_is_void ? lfp : rfp;
1145 if (tp != NULL)
1146 *tp = rp_is_void ? lbase : rbase;
1147 }

1149 return (compat);
1150 }

1152 /*
1153 * The rules for checking argument types against parameter types are described
1154 * in the ANSI-C spec (see K&R[A7.3.2] and K&R[A7.17]). We use the same rule
1155 * set to determine whether associative array arguments match the prototype.
1156 */
1157 int
1158 dt_node_is_argcompat(const dt_node_t *lp, const dt_node_t *rp)
1159 {
1160 ctf_file_t *lfp = lp->dn_ctfp;
1161 ctf_file_t *rfp = rp->dn_ctfp;

1163 assert(lp->dn_flags & DT_NF_COOKED);
1164 assert(rp->dn_flags & DT_NF_COOKED);

1166 if (dt_node_is_integer(lp) && dt_node_is_integer(rp))
1167 return (1); /* integer types are compatible */

1169 if (dt_node_is_strcompat(lp) && dt_node_is_strcompat(rp))
1170 return (1); /* string types are compatible */

new/usr/src/lib/libdtrace/common/dt_parser.c 15

1172 if (dt_node_is_stack(lp) && dt_node_is_stack(rp))
1173 return (1); /* stack types are compatible */

1175 if (dt_node_is_symaddr(lp) && dt_node_is_symaddr(rp))
1176 return (1); /* symaddr types are compatible */

1178 if (dt_node_is_usymaddr(lp) && dt_node_is_usymaddr(rp))
1179 return (1); /* usymaddr types are compatible */

1181 switch (ctf_type_kind(lfp, ctf_type_resolve(lfp, lp->dn_type))) {
1182 case CTF_K_FUNCTION:
1183 case CTF_K_STRUCT:
1184 case CTF_K_UNION:
1185 return (ctf_type_compat(lfp, lp->dn_type, rfp, rp->dn_type));
1186 default:
1187 return (dt_node_is_ptrcompat(lp, rp, NULL, NULL));
1188 }
1189 }

1191 /*
1192 * We provide dt_node_is_posconst() as a convenience routine for callers who
1193 * wish to verify that an argument is a positive non-zero integer constant.
1194 */
1195 int
1196 dt_node_is_posconst(const dt_node_t *dnp)
1197 {
1198 return (dnp->dn_kind == DT_NODE_INT && dnp->dn_value != 0 && (
1199 (dnp->dn_flags & DT_NF_SIGNED) == 0 || (int64_t)dnp->dn_value > 0));
1200 }

1202 int
1203 dt_node_is_actfunc(const dt_node_t *dnp)
1204 {
1205 return (dnp->dn_kind == DT_NODE_FUNC &&
1206 dnp->dn_ident->di_kind == DT_IDENT_ACTFUNC);
1207 }

1209 /*
1210 * The original rules for integer constant typing are described in K&R[A2.5.1].
1211 * However, since we support long long, we instead use the rules from ISO C99
1212 * clause 6.4.4.1 since that is where long longs are formally described. The
1213 * rules require us to know whether the constant was specified in decimal or
1214 * in octal or hex, which we do by looking at our lexer’s ’yyintdecimal’ flag.
1215 * The type of an integer constant is the first of the corresponding list in
1216 * which its value can be represented:
1217 *
1218 * unsuffixed decimal: int, long, long long
1219 * unsuffixed oct/hex: int, unsigned int, long, unsigned long,
1220 * long long, unsigned long long
1221 * suffix [uU]: unsigned int, unsigned long, unsigned long long
1222 * suffix [lL] decimal: long, long long
1223 * suffix [lL] oct/hex: long, unsigned long, long long, unsigned long long
1224 * suffix [uU][Ll]: unsigned long, unsigned long long
1225 * suffix ll/LL decimal: long long
1226 * suffix ll/LL oct/hex: long long, unsigned long long
1227 * suffix [uU][ll/LL]: unsigned long long
1228 *
1229 * Given that our lexer has already validated the suffixes by regexp matching,
1230 * there is an obvious way to concisely encode these rules: construct an array
1231 * of the types in the order int, unsigned int, long, unsigned long, long long,
1232 * unsigned long long. Compute an integer array starting index based on the
1233 * suffix (e.g. none = 0, u = 1, ull = 5), and compute an increment based on
1234 * the specifier (dec/oct/hex) and suffix (u). Then iterate from the starting
1235 * index to the end, advancing using the increment, and searching until we
1236 * find a limit that matches or we run out of choices (overflow). To make it

new/usr/src/lib/libdtrace/common/dt_parser.c 16

1237 * even faster, we precompute the table of type information in dtrace_open().
1238 */
1239 dt_node_t *
1240 dt_node_int(uintmax_t value)
1241 {
1242 dt_node_t *dnp = dt_node_alloc(DT_NODE_INT);
1243 dtrace_hdl_t *dtp = yypcb->pcb_hdl;

1245 int n = (yyintdecimal | (yyintsuffix[0] == ’u’)) + 1;
1246 int i = 0;

1248 const char *p;
1249 char c;

1251 dnp->dn_op = DT_TOK_INT;
1252 dnp->dn_value = value;

1254 for (p = yyintsuffix; (c = *p) != ’\0’; p++) {
1255 if (c == ’U’ || c == ’u’)
1256 i += 1;
1257 else if (c == ’L’ || c == ’l’)
1258 i += 2;
1259 }

1261 for (; i < sizeof (dtp->dt_ints) / sizeof (dtp->dt_ints[0]); i += n) {
1262 if (value <= dtp->dt_ints[i].did_limit) {
1263 dt_node_type_assign(dnp,
1264 dtp->dt_ints[i].did_ctfp,
1265 dtp->dt_ints[i].did_type, B_FALSE);
555 dtp->dt_ints[i].did_type);

1267 /*
1268 * If a prefix character is present in macro text, add
1269 * in the corresponding operator node (see dt_lex.l).
1270 */
1271 switch (yyintprefix) {
1272 case ’+’:
1273 return (dt_node_op1(DT_TOK_IPOS, dnp));
1274 case ’-’:
1275 return (dt_node_op1(DT_TOK_INEG, dnp));
1276 default:
1277 return (dnp);
1278 }
1279 }
1280 }

1282 xyerror(D_INT_OFLOW, "integer constant 0x%llx cannot be represented "
1283 "in any built-in integral type\n", (u_longlong_t)value);
1284 /*NOTREACHED*/
1285 return (NULL); /* keep gcc happy */
1286 }

1288 dt_node_t *
1289 dt_node_string(char *string)
1290 {
1291 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
1292 dt_node_t *dnp;

1294 if (string == NULL)
1295 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

1297 dnp = dt_node_alloc(DT_NODE_STRING);
1298 dnp->dn_op = DT_TOK_STRING;
1299 dnp->dn_string = string;
1300 dt_node_type_assign(dnp, DT_STR_CTFP(dtp), DT_STR_TYPE(dtp), B_FALSE);
590 dt_node_type_assign(dnp, DT_STR_CTFP(dtp), DT_STR_TYPE(dtp));

new/usr/src/lib/libdtrace/common/dt_parser.c 17

1302 return (dnp);
1303 }
______unchanged_portion_omitted_

1344 /*
1345 * Create an empty node of type corresponding to the given declaration.
1346 * Explicit references to user types (C or D) are assigned the default
1347 * stability; references to other types are _dtrace_typattr (Private).
1348 */
1349 dt_node_t *
1350 dt_node_type(dt_decl_t *ddp)
1351 {
1352 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
1353 dtrace_typeinfo_t dtt;
1354 dt_node_t *dnp;
1355 char *name = NULL;
1356 int err;

1358 /*
1359 * If ’ddp’ is NULL, we get a decl by popping the decl stack. This
1360 * form of dt_node_type() is used by parameter rules in dt_grammar.y.
1361 */
1362 if (ddp == NULL)
1363 ddp = dt_decl_pop_param(&name);

1365 err = dt_decl_type(ddp, &dtt);
1366 dt_decl_free(ddp);

1368 if (err != 0) {
1369 free(name);
1370 longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER);
1371 }

1373 dnp = dt_node_alloc(DT_NODE_TYPE);
1374 dnp->dn_op = DT_TOK_IDENT;
1375 dnp->dn_string = name;

1377 dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type, dtt.dtt_flags);
666 dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type);

1379 if (dtt.dtt_ctfp == dtp->dt_cdefs->dm_ctfp ||
1380 dtt.dtt_ctfp == dtp->dt_ddefs->dm_ctfp)
1381 dt_node_attr_assign(dnp, _dtrace_defattr);
1382 else
1383 dt_node_attr_assign(dnp, _dtrace_typattr);

1385 return (dnp);
1386 }
______unchanged_portion_omitted_

1405 /*
1406 * Instantiate a decl using the contents of the current declaration stack. As
1407 * we do not currently permit decls to be initialized, this function currently
1408 * returns NULL and no parse node is created. When this function is called,
1409 * the topmost scope’s ds_ident pointer will be set to NULL (indicating no
1410 * init_declarator rule was matched) or will point to the identifier to use.
1411 */
1412 dt_node_t *
1413 dt_node_decl(void)
1414 {
1415 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
1416 dt_scope_t *dsp = &yypcb->pcb_dstack;
1417 dt_dclass_t class = dsp->ds_class;
1418 dt_decl_t *ddp = dt_decl_top();

new/usr/src/lib/libdtrace/common/dt_parser.c 18

1420 dt_module_t *dmp;
1421 dtrace_typeinfo_t dtt;
1422 ctf_id_t type;

1424 char n1[DT_TYPE_NAMELEN];
1425 char n2[DT_TYPE_NAMELEN];

1427 if (dt_decl_type(ddp, &dtt) != 0)
1428 longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER);

1430 /*
1431 * If we have no declaration identifier, then this is either a spurious
1432 * declaration of an intrinsic type (e.g. "extern int;") or declaration
1433 * or redeclaration of a struct, union, or enum type or tag.
1434 */
1435 if (dsp->ds_ident == NULL) {
1436 if (ddp->dd_kind != CTF_K_STRUCT &&
1437 ddp->dd_kind != CTF_K_UNION && ddp->dd_kind != CTF_K_ENUM)
1438 xyerror(D_DECL_USELESS, "useless declaration\n");

1440 dt_dprintf("type %s added as id %ld\n", dt_type_name(
1441 ddp->dd_ctfp, ddp->dd_type, n1, sizeof (n1)), ddp->dd_type);

1443 return (NULL);
1444 }

1446 if (strchr(dsp->ds_ident, ’‘’) != NULL) {
1447 xyerror(D_DECL_SCOPE, "D scoping operator may not be used in "
1448 "a declaration name (%s)\n", dsp->ds_ident);
1449 }

1451 /*
1452 * If we are nested inside of a C include file, add the declaration to
1453 * the C definition module; otherwise use the D definition module.
1454 */
1455 if (yypcb->pcb_idepth != 0)
1456 dmp = dtp->dt_cdefs;
1457 else
1458 dmp = dtp->dt_ddefs;

1460 /*
1461 * If we see a global or static declaration of a function prototype,
1462 * treat this as equivalent to a D extern declaration.
1463 */
1464 if (ctf_type_kind(dtt.dtt_ctfp, dtt.dtt_type) == CTF_K_FUNCTION &&
1465 (class == DT_DC_DEFAULT || class == DT_DC_STATIC))
1466 class = DT_DC_EXTERN;

1468 switch (class) {
1469 case DT_DC_AUTO:
1470 case DT_DC_REGISTER:
1471 case DT_DC_STATIC:
1472 xyerror(D_DECL_BADCLASS, "specified storage class not "
1473 "appropriate in D\n");
1474 /*NOTREACHED*/

1476 case DT_DC_EXTERN: {
1477 dtrace_typeinfo_t ott;
1478 dtrace_syminfo_t dts;
1479 GElf_Sym sym;

1481 int exists = dtrace_lookup_by_name(dtp,
1482 dmp->dm_name, dsp->ds_ident, &sym, &dts) == 0;

1484 if (exists && (dtrace_symbol_type(dtp, &sym, &dts, &ott) != 0 ||
1485 ctf_type_cmp(dtt.dtt_ctfp, dtt.dtt_type,

new/usr/src/lib/libdtrace/common/dt_parser.c 19

1486 ott.dtt_ctfp, ott.dtt_type) != 0)) {
1487 xyerror(D_DECL_IDRED, "identifier redeclared: %s‘%s\n"
1488 "\t current: %s\n\tprevious: %s\n",
1489 dmp->dm_name, dsp->ds_ident,
1490 dt_type_name(dtt.dtt_ctfp, dtt.dtt_type,
1491 n1, sizeof (n1)),
1492 dt_type_name(ott.dtt_ctfp, ott.dtt_type,
1493 n2, sizeof (n2)));
1494 } else if (!exists && dt_module_extern(dtp, dmp,
1495 dsp->ds_ident, &dtt) == NULL) {
1496 xyerror(D_UNKNOWN,
1497 "failed to extern %s: %s\n", dsp->ds_ident,
1498 dtrace_errmsg(dtp, dtrace_errno(dtp)));
1499 } else {
1500 dt_dprintf("extern %s‘%s type=<%s>\n",
1501 dmp->dm_name, dsp->ds_ident,
1502 dt_type_name(dtt.dtt_ctfp, dtt.dtt_type,
1503 n1, sizeof (n1)));
1504 }
1505 break;
1506 }

1508 case DT_DC_TYPEDEF:
1509 if (dt_idstack_lookup(&yypcb->pcb_globals, dsp->ds_ident)) {
1510 xyerror(D_DECL_IDRED, "global variable identifier "
1511 "redeclared: %s\n", dsp->ds_ident);
1512 }

1514 if (ctf_lookup_by_name(dmp->dm_ctfp,
1515 dsp->ds_ident) != CTF_ERR) {
1516 xyerror(D_DECL_IDRED,
1517 "typedef redeclared: %s\n", dsp->ds_ident);
1518 }

1520 /*
1521 * If the source type for the typedef is not defined in the
1522 * target container or its parent, copy the type to the target
1523 * container and reset dtt_ctfp and dtt_type to the copy.
1524 */
1525 if (dtt.dtt_ctfp != dmp->dm_ctfp &&
1526 dtt.dtt_ctfp != ctf_parent_file(dmp->dm_ctfp)) {

1528 dtt.dtt_type = ctf_add_type(dmp->dm_ctfp,
1529 dtt.dtt_ctfp, dtt.dtt_type);
1530 dtt.dtt_ctfp = dmp->dm_ctfp;

1532 if (dtt.dtt_type == CTF_ERR ||
1533 ctf_update(dtt.dtt_ctfp) == CTF_ERR) {
1534 xyerror(D_UNKNOWN, "failed to copy typedef %s "
1535 "source type: %s\n", dsp->ds_ident,
1536 ctf_errmsg(ctf_errno(dtt.dtt_ctfp)));
1537 }
1538 }

1540 type = ctf_add_typedef(dmp->dm_ctfp,
1541 CTF_ADD_ROOT, dsp->ds_ident, dtt.dtt_type);

1543 if (type == CTF_ERR || ctf_update(dmp->dm_ctfp) == CTF_ERR) {
1544 xyerror(D_UNKNOWN, "failed to typedef %s: %s\n",
1545 dsp->ds_ident, ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1546 }

1548 dt_dprintf("typedef %s added as id %ld\n", dsp->ds_ident, type);
1549 break;

1551 default: {

new/usr/src/lib/libdtrace/common/dt_parser.c 20

1552 ctf_encoding_t cte;
1553 dt_idhash_t *dhp;
1554 dt_ident_t *idp;
1555 dt_node_t idn;
1556 int assc, idkind;
1557 uint_t id, kind;
1558 ushort_t idflags;

1560 switch (class) {
1561 case DT_DC_THIS:
1562 dhp = yypcb->pcb_locals;
1563 idflags = DT_IDFLG_LOCAL;
1564 idp = dt_idhash_lookup(dhp, dsp->ds_ident);
1565 break;
1566 case DT_DC_SELF:
1567 dhp = dtp->dt_tls;
1568 idflags = DT_IDFLG_TLS;
1569 idp = dt_idhash_lookup(dhp, dsp->ds_ident);
1570 break;
1571 default:
1572 dhp = dtp->dt_globals;
1573 idflags = 0;
1574 idp = dt_idstack_lookup(
1575 &yypcb->pcb_globals, dsp->ds_ident);
1576 break;
1577 }

1579 if (ddp->dd_kind == CTF_K_ARRAY && ddp->dd_node == NULL) {
1580 xyerror(D_DECL_ARRNULL,
1581 "array declaration requires array dimension or "
1582 "tuple signature: %s\n", dsp->ds_ident);
1583 }

1585 if (idp != NULL && idp->di_gen == 0) {
1586 xyerror(D_DECL_IDRED, "built-in identifier "
1587 "redeclared: %s\n", idp->di_name);
1588 }

1590 if (dtrace_lookup_by_type(dtp, DTRACE_OBJ_CDEFS,
1591 dsp->ds_ident, NULL) == 0 ||
1592 dtrace_lookup_by_type(dtp, DTRACE_OBJ_DDEFS,
1593 dsp->ds_ident, NULL) == 0) {
1594 xyerror(D_DECL_IDRED, "typedef identifier "
1595 "redeclared: %s\n", dsp->ds_ident);
1596 }

1598 /*
1599 * Cache some attributes of the decl to make the rest of this
1600 * code simpler: if the decl is an array which is subscripted
1601 * by a type rather than an integer, then it’s an associative
1602 * array (assc). We then expect to match either DT_IDENT_ARRAY
1603 * for associative arrays or DT_IDENT_SCALAR for anything else.
1604 */
1605 assc = ddp->dd_kind == CTF_K_ARRAY &&
1606 ddp->dd_node->dn_kind == DT_NODE_TYPE;

1608 idkind = assc ? DT_IDENT_ARRAY : DT_IDENT_SCALAR;

1610 /*
1611 * Create a fake dt_node_t on the stack so we can determine the
1612 * type of any matching identifier by assigning to this node.
1613 * If the pre-existing ident has its di_type set, propagate
1614 * the type by hand so as not to trigger a prototype check for
1615 * arrays (yet); otherwise we use dt_ident_cook() on the ident
1616 * to ensure it is fully initialized before looking at it.
1617 */

new/usr/src/lib/libdtrace/common/dt_parser.c 21

1618 bzero(&idn, sizeof (dt_node_t));

1620 if (idp != NULL && idp->di_type != CTF_ERR)
1621 dt_node_type_assign(&idn, idp->di_ctfp, idp->di_type,
1622 B_FALSE);
910 dt_node_type_assign(&idn, idp->di_ctfp, idp->di_type);
1623 else if (idp != NULL)
1624 (void) dt_ident_cook(&idn, idp, NULL);

1626 if (assc) {
1627 if (class == DT_DC_THIS) {
1628 xyerror(D_DECL_LOCASSC, "associative arrays "
1629 "may not be declared as local variables:"
1630 " %s\n", dsp->ds_ident);
1631 }

1633 if (dt_decl_type(ddp->dd_next, &dtt) != 0)
1634 longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER);
1635 }

1637 if (idp != NULL && (idp->di_kind != idkind ||
1638 ctf_type_cmp(dtt.dtt_ctfp, dtt.dtt_type,
1639 idn.dn_ctfp, idn.dn_type) != 0)) {
1640 xyerror(D_DECL_IDRED, "identifier redeclared: %s\n"
1641 "\t current: %s %s\n\tprevious: %s %s\n",
1642 dsp->ds_ident, dt_idkind_name(idkind),
1643 dt_type_name(dtt.dtt_ctfp,
1644 dtt.dtt_type, n1, sizeof (n1)),
1645 dt_idkind_name(idp->di_kind),
1646 dt_node_type_name(&idn, n2, sizeof (n2)));

1648 } else if (idp != NULL && assc) {
1649 const dt_idsig_t *isp = idp->di_data;
1650 dt_node_t *dnp = ddp->dd_node;
1651 int argc = 0;

1653 for (; dnp != NULL; dnp = dnp->dn_list, argc++) {
1654 const dt_node_t *pnp = &isp->dis_args[argc];

1656 if (argc >= isp->dis_argc)
1657 continue; /* tuple length mismatch */

1659 if (ctf_type_cmp(dnp->dn_ctfp, dnp->dn_type,
1660 pnp->dn_ctfp, pnp->dn_type) == 0)
1661 continue;

1663 xyerror(D_DECL_IDRED,
1664 "identifier redeclared: %s\n"
1665 "\t current: %s, key #%d of type %s\n"
1666 "\tprevious: %s, key #%d of type %s\n",
1667 dsp->ds_ident,
1668 dt_idkind_name(idkind), argc + 1,
1669 dt_node_type_name(dnp, n1, sizeof (n1)),
1670 dt_idkind_name(idp->di_kind), argc + 1,
1671 dt_node_type_name(pnp, n2, sizeof (n2)));
1672 }

1674 if (isp->dis_argc != argc) {
1675 xyerror(D_DECL_IDRED,
1676 "identifier redeclared: %s\n"
1677 "\t current: %s of %s, tuple length %d\n"
1678 "\tprevious: %s of %s, tuple length %d\n",
1679 dsp->ds_ident, dt_idkind_name(idkind),
1680 dt_type_name(dtt.dtt_ctfp, dtt.dtt_type,
1681 n1, sizeof (n1)), argc,
1682 dt_idkind_name(idp->di_kind),

new/usr/src/lib/libdtrace/common/dt_parser.c 22

1683 dt_node_type_name(&idn, n2, sizeof (n2)),
1684 isp->dis_argc);
1685 }

1687 } else if (idp == NULL) {
1688 type = ctf_type_resolve(dtt.dtt_ctfp, dtt.dtt_type);
1689 kind = ctf_type_kind(dtt.dtt_ctfp, type);

1691 switch (kind) {
1692 case CTF_K_INTEGER:
1693 if (ctf_type_encoding(dtt.dtt_ctfp, type,
1694 &cte) == 0 && IS_VOID(cte)) {
1695 xyerror(D_DECL_VOIDOBJ, "cannot have "
1696 "void object: %s\n", dsp->ds_ident);
1697 }
1698 break;
1699 case CTF_K_STRUCT:
1700 case CTF_K_UNION:
1701 if (ctf_type_size(dtt.dtt_ctfp, type) != 0)
1702 break; /* proceed to declaring */
1703 /*FALLTHRU*/
1704 case CTF_K_FORWARD:
1705 xyerror(D_DECL_INCOMPLETE,
1706 "incomplete struct/union/enum %s: %s\n",
1707 dt_type_name(dtt.dtt_ctfp, dtt.dtt_type,
1708 n1, sizeof (n1)), dsp->ds_ident);
1709 /*NOTREACHED*/
1710 }

1712 if (dt_idhash_nextid(dhp, &id) == -1) {
1713 xyerror(D_ID_OFLOW, "cannot create %s: limit "
1714 "on number of %s variables exceeded\n",
1715 dsp->ds_ident, dt_idhash_name(dhp));
1716 }

1718 dt_dprintf("declare %s %s variable %s, id=%u\n",
1719 dt_idhash_name(dhp), dt_idkind_name(idkind),
1720 dsp->ds_ident, id);

1722 idp = dt_idhash_insert(dhp, dsp->ds_ident, idkind,
1723 idflags | DT_IDFLG_WRITE | DT_IDFLG_DECL, id,
1724 _dtrace_defattr, 0, assc ? &dt_idops_assc :
1725 &dt_idops_thaw, NULL, dtp->dt_gen);

1727 if (idp == NULL)
1728 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

1730 dt_ident_type_assign(idp, dtt.dtt_ctfp, dtt.dtt_type);

1732 /*
1733 * If we are declaring an associative array, use our
1734 * fake parse node to cook the new assoc identifier.
1735 * This will force the ident code to instantiate the
1736 * array type signature corresponding to the list of
1737 * types pointed to by ddp->dd_node. We also reset
1738 * the identifier’s attributes based upon the result.
1739 */
1740 if (assc) {
1741 idp->di_attr =
1742 dt_ident_cook(&idn, idp, &ddp->dd_node);
1743 }
1744 }
1745 }

1747 } /* end of switch */

new/usr/src/lib/libdtrace/common/dt_parser.c 23

1749 free(dsp->ds_ident);
1750 dsp->ds_ident = NULL;

1752 return (NULL);
1753 }
______unchanged_portion_omitted_

1791 /*
1792 * The offsetof() function is special because it takes a type name as an
1793 * argument. It does not actually construct its own node; after looking up the
1794 * structure or union offset, we just return an integer node with the offset.
1795 */
1796 dt_node_t *
1797 dt_node_offsetof(dt_decl_t *ddp, char *s)
1798 {
1799 dtrace_typeinfo_t dtt;
1800 dt_node_t dn;
1801 char *name;
1802 int err;

1804 ctf_membinfo_t ctm;
1805 ctf_id_t type;
1806 uint_t kind;

1808 name = strdupa(s);
1809 free(s);

1811 err = dt_decl_type(ddp, &dtt);
1812 dt_decl_free(ddp);

1814 if (err != 0)
1815 longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER);

1817 type = ctf_type_resolve(dtt.dtt_ctfp, dtt.dtt_type);
1818 kind = ctf_type_kind(dtt.dtt_ctfp, type);

1820 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) {
1821 xyerror(D_OFFSETOF_TYPE,
1822 "offsetof operand must be a struct or union type\n");
1823 }

1825 if (ctf_member_info(dtt.dtt_ctfp, type, name, &ctm) == CTF_ERR) {
1826 xyerror(D_UNKNOWN, "failed to determine offset of %s: %s\n",
1827 name, ctf_errmsg(ctf_errno(dtt.dtt_ctfp)));
1828 }

1830 bzero(&dn, sizeof (dn));
1831 dt_node_type_assign(&dn, dtt.dtt_ctfp, ctm.ctm_type, B_FALSE);
1119 dt_node_type_assign(&dn, dtt.dtt_ctfp, ctm.ctm_type);

1833 if (dn.dn_flags & DT_NF_BITFIELD) {
1834 xyerror(D_OFFSETOF_BITFIELD,
1835 "cannot take offset of a bit-field: %s\n", name);
1836 }

1838 return (dt_node_int(ctm.ctm_offset / NBBY));
1839 }

1841 dt_node_t *
1842 dt_node_op1(int op, dt_node_t *cp)
1843 {
1844 dt_node_t *dnp;

1846 if (cp->dn_kind == DT_NODE_INT) {
1847 switch (op) {
1848 case DT_TOK_INEG:

new/usr/src/lib/libdtrace/common/dt_parser.c 24

1849 /*
1850 * If we’re negating an unsigned integer, zero out any
1851 * extra top bits to truncate the value to the size of
1852 * the effective type determined by dt_node_int().
1853 */
1854 cp->dn_value = -cp->dn_value;
1855 if (!(cp->dn_flags & DT_NF_SIGNED)) {
1856 cp->dn_value &= ~0ULL >>
1857 (64 - dt_node_type_size(cp) * NBBY);
1858 }
1859 /*FALLTHRU*/
1860 case DT_TOK_IPOS:
1861 return (cp);
1862 case DT_TOK_BNEG:
1863 cp->dn_value = ~cp->dn_value;
1864 return (cp);
1865 case DT_TOK_LNEG:
1866 cp->dn_value = !cp->dn_value;
1867 return (cp);
1868 }
1869 }

1871 /*
1872 * If sizeof is applied to a type_name or string constant, we can
1873 * transform ’cp’ into an integer constant in the node construction
1874 * pass so that it can then be used for arithmetic in this pass.
1875 */
1876 if (op == DT_TOK_SIZEOF &&
1877 (cp->dn_kind == DT_NODE_STRING || cp->dn_kind == DT_NODE_TYPE)) {
1878 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
1879 size_t size = dt_node_type_size(cp);

1881 if (size == 0) {
1882 xyerror(D_SIZEOF_TYPE, "cannot apply sizeof to an "
1883 "operand of unknown size\n");
1884 }

1886 dt_node_type_assign(cp, dtp->dt_ddefs->dm_ctfp,
1887 ctf_lookup_by_name(dtp->dt_ddefs->dm_ctfp, "size_t"),
1888 B_FALSE);
1175 ctf_lookup_by_name(dtp->dt_ddefs->dm_ctfp, "size_t"));

1890 cp->dn_kind = DT_NODE_INT;
1891 cp->dn_op = DT_TOK_INT;
1892 cp->dn_value = size;

1894 return (cp);
1895 }

1897 dnp = dt_node_alloc(DT_NODE_OP1);
1898 assert(op <= USHRT_MAX);
1899 dnp->dn_op = (ushort_t)op;
1900 dnp->dn_child = cp;

1902 return (dnp);
1903 }
______unchanged_portion_omitted_

1937 dt_node_t *
1938 dt_node_op2(int op, dt_node_t *lp, dt_node_t *rp)
1939 {
1940 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
1941 dt_node_t *dnp;

1943 /*
1944 * First we check for operations that are illegal -- namely those that

new/usr/src/lib/libdtrace/common/dt_parser.c 25

1945 * might result in integer division by zero, and abort if one is found.
1946 */
1947 if (rp->dn_kind == DT_NODE_INT && rp->dn_value == 0 &&
1948 (op == DT_TOK_MOD || op == DT_TOK_DIV ||
1949 op == DT_TOK_MOD_EQ || op == DT_TOK_DIV_EQ))
1950 xyerror(D_DIV_ZERO, "expression contains division by zero\n");

1952 /*
1953 * If both children are immediate values, we can just perform inline
1954 * calculation and return a new immediate node with the result.
1955 */
1956 if (lp->dn_kind == DT_NODE_INT && rp->dn_kind == DT_NODE_INT) {
1957 uintmax_t l = lp->dn_value;
1958 uintmax_t r = rp->dn_value;

1960 dnp = dt_node_int(0); /* allocate new integer node for result */

1962 switch (op) {
1963 case DT_TOK_LOR:
1964 dnp->dn_value = l || r;
1965 dt_node_type_assign(dnp,
1966 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE);
1253 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp));
1967 break;
1968 case DT_TOK_LXOR:
1969 dnp->dn_value = (l != 0) ^ (r != 0);
1970 dt_node_type_assign(dnp,
1971 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE);
1258 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp));
1972 break;
1973 case DT_TOK_LAND:
1974 dnp->dn_value = l && r;
1975 dt_node_type_assign(dnp,
1976 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE);
1263 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp));
1977 break;
1978 case DT_TOK_BOR:
1979 dnp->dn_value = l | r;
1980 dt_node_promote(lp, rp, dnp);
1981 break;
1982 case DT_TOK_XOR:
1983 dnp->dn_value = l ^ r;
1984 dt_node_promote(lp, rp, dnp);
1985 break;
1986 case DT_TOK_BAND:
1987 dnp->dn_value = l & r;
1988 dt_node_promote(lp, rp, dnp);
1989 break;
1990 case DT_TOK_EQU:
1991 dnp->dn_value = l == r;
1992 dt_node_type_assign(dnp,
1993 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE);
1280 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp));
1994 break;
1995 case DT_TOK_NEQ:
1996 dnp->dn_value = l != r;
1997 dt_node_type_assign(dnp,
1998 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE);
1285 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp));
1999 break;
2000 case DT_TOK_LT:
2001 dt_node_promote(lp, rp, dnp);
2002 if (dnp->dn_flags & DT_NF_SIGNED)
2003 dnp->dn_value = (intmax_t)l < (intmax_t)r;
2004 else
2005 dnp->dn_value = l < r;

new/usr/src/lib/libdtrace/common/dt_parser.c 26

2006 dt_node_type_assign(dnp,
2007 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE);
1294 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp));
2008 break;
2009 case DT_TOK_LE:
2010 dt_node_promote(lp, rp, dnp);
2011 if (dnp->dn_flags & DT_NF_SIGNED)
2012 dnp->dn_value = (intmax_t)l <= (intmax_t)r;
2013 else
2014 dnp->dn_value = l <= r;
2015 dt_node_type_assign(dnp,
2016 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE);
1303 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp));
2017 break;
2018 case DT_TOK_GT:
2019 dt_node_promote(lp, rp, dnp);
2020 if (dnp->dn_flags & DT_NF_SIGNED)
2021 dnp->dn_value = (intmax_t)l > (intmax_t)r;
2022 else
2023 dnp->dn_value = l > r;
2024 dt_node_type_assign(dnp,
2025 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE);
1312 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp));
2026 break;
2027 case DT_TOK_GE:
2028 dt_node_promote(lp, rp, dnp);
2029 if (dnp->dn_flags & DT_NF_SIGNED)
2030 dnp->dn_value = (intmax_t)l >= (intmax_t)r;
2031 else
2032 dnp->dn_value = l >= r;
2033 dt_node_type_assign(dnp,
2034 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE);
1321 DT_INT_CTFP(dtp), DT_INT_TYPE(dtp));
2035 break;
2036 case DT_TOK_LSH:
2037 dnp->dn_value = l << r;
2038 dt_node_type_propagate(lp, dnp);
2039 dt_node_attr_assign(rp,
2040 dt_attr_min(lp->dn_attr, rp->dn_attr));
2041 break;
2042 case DT_TOK_RSH:
2043 dnp->dn_value = l >> r;
2044 dt_node_type_propagate(lp, dnp);
2045 dt_node_attr_assign(rp,
2046 dt_attr_min(lp->dn_attr, rp->dn_attr));
2047 break;
2048 case DT_TOK_ADD:
2049 dnp->dn_value = l + r;
2050 dt_node_promote(lp, rp, dnp);
2051 break;
2052 case DT_TOK_SUB:
2053 dnp->dn_value = l - r;
2054 dt_node_promote(lp, rp, dnp);
2055 break;
2056 case DT_TOK_MUL:
2057 dnp->dn_value = l * r;
2058 dt_node_promote(lp, rp, dnp);
2059 break;
2060 case DT_TOK_DIV:
2061 dt_node_promote(lp, rp, dnp);
2062 if (dnp->dn_flags & DT_NF_SIGNED)
2063 dnp->dn_value = (intmax_t)l / (intmax_t)r;
2064 else
2065 dnp->dn_value = l / r;
2066 break;
2067 case DT_TOK_MOD:

new/usr/src/lib/libdtrace/common/dt_parser.c 27

2068 dt_node_promote(lp, rp, dnp);
2069 if (dnp->dn_flags & DT_NF_SIGNED)
2070 dnp->dn_value = (intmax_t)l % (intmax_t)r;
2071 else
2072 dnp->dn_value = l % r;
2073 break;
2074 default:
2075 dt_node_free(dnp);
2076 dnp = NULL;
2077 }

2079 if (dnp != NULL) {
2080 dt_node_free(lp);
2081 dt_node_free(rp);
2082 return (dnp);
2083 }
2084 }

2086 if (op == DT_TOK_LPAR && rp->dn_kind == DT_NODE_INT &&
2087 dt_node_is_integer(lp)) {
2088 dt_cast(lp, rp);
2089 dt_node_type_propagate(lp, rp);
2090 dt_node_attr_assign(rp, dt_attr_min(lp->dn_attr, rp->dn_attr));
2091 dt_node_free(lp);

2093 return (rp);
2094 }

2096 /*
2097 * If no immediate optimizations are available, create an new OP2 node
2098 * and glue the left and right children into place and return.
2099 */
2100 dnp = dt_node_alloc(DT_NODE_OP2);
2101 assert(op <= USHRT_MAX);
2102 dnp->dn_op = (ushort_t)op;
2103 dnp->dn_left = lp;
2104 dnp->dn_right = rp;

2106 return (dnp);
2107 }
______unchanged_portion_omitted_

2217 dt_node_t *
2218 dt_node_inline(dt_node_t *expr)
2219 {
2220 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
2221 dt_scope_t *dsp = &yypcb->pcb_dstack;
2222 dt_decl_t *ddp = dt_decl_top();

2224 char n[DT_TYPE_NAMELEN];
2225 dtrace_typeinfo_t dtt;

2227 dt_ident_t *idp, *rdp;
2228 dt_idnode_t *inp;
2229 dt_node_t *dnp;

2231 if (dt_decl_type(ddp, &dtt) != 0)
2232 longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER);

2234 if (dsp->ds_class != DT_DC_DEFAULT) {
2235 xyerror(D_DECL_BADCLASS, "specified storage class not "
2236 "appropriate for inline declaration\n");
2237 }

2239 if (dsp->ds_ident == NULL)
2240 xyerror(D_DECL_USELESS, "inline declaration requires a name\n");

new/usr/src/lib/libdtrace/common/dt_parser.c 28

2242 if ((idp = dt_idstack_lookup(
2243 &yypcb->pcb_globals, dsp->ds_ident)) != NULL) {
2244 xyerror(D_DECL_IDRED, "identifier redefined: %s\n\t current: "
2245 "inline definition\n\tprevious: %s %s\n",
2246 idp->di_name, dt_idkind_name(idp->di_kind),
2247 (idp->di_flags & DT_IDFLG_INLINE) ? "inline" : "");
2248 }

2250 /*
2251 * If we are declaring an inlined array, verify that we have a tuple
2252 * signature, and then recompute ’dtt’ as the array’s value type.
2253 */
2254 if (ddp->dd_kind == CTF_K_ARRAY) {
2255 if (ddp->dd_node == NULL) {
2256 xyerror(D_DECL_ARRNULL, "inline declaration requires "
2257 "array tuple signature: %s\n", dsp->ds_ident);
2258 }

2260 if (ddp->dd_node->dn_kind != DT_NODE_TYPE) {
2261 xyerror(D_DECL_ARRNULL, "inline declaration cannot be "
2262 "of scalar array type: %s\n", dsp->ds_ident);
2263 }

2265 if (dt_decl_type(ddp->dd_next, &dtt) != 0)
2266 longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER);
2267 }

2269 /*
2270 * If the inline identifier is not defined, then create it with the
2271 * orphan flag set. We do not insert the identifier into dt_globals
2272 * until we have successfully cooked the right-hand expression, below.
2273 */
2274 dnp = dt_node_alloc(DT_NODE_INLINE);
2275 dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type, B_FALSE);
1562 dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type);
2276 dt_node_attr_assign(dnp, _dtrace_defattr);

2278 if (dt_node_is_void(dnp)) {
2279 xyerror(D_DECL_VOIDOBJ,
2280 "cannot declare void inline: %s\n", dsp->ds_ident);
2281 }

2283 if (ctf_type_kind(dnp->dn_ctfp, ctf_type_resolve(
2284 dnp->dn_ctfp, dnp->dn_type)) == CTF_K_FORWARD) {
2285 xyerror(D_DECL_INCOMPLETE,
2286 "incomplete struct/union/enum %s: %s\n",
2287 dt_node_type_name(dnp, n, sizeof (n)), dsp->ds_ident);
2288 }

2290 if ((inp = malloc(sizeof (dt_idnode_t))) == NULL)
2291 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

2293 bzero(inp, sizeof (dt_idnode_t));

2295 idp = dnp->dn_ident = dt_ident_create(dsp->ds_ident,
2296 ddp->dd_kind == CTF_K_ARRAY ? DT_IDENT_ARRAY : DT_IDENT_SCALAR,
2297 DT_IDFLG_INLINE | DT_IDFLG_REF | DT_IDFLG_DECL | DT_IDFLG_ORPHAN, 0,
2298 _dtrace_defattr, 0, &dt_idops_inline, inp, dtp->dt_gen);

2300 if (idp == NULL) {
2301 free(inp);
2302 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
2303 }

2305 /*

new/usr/src/lib/libdtrace/common/dt_parser.c 29

2306 * If we’re inlining an associative array, create a private identifier
2307 * hash containing the named parameters and store it in inp->din_hash.
2308 * We then push this hash on to the top of the pcb_globals stack.
2309 */
2310 if (ddp->dd_kind == CTF_K_ARRAY) {
2311 dt_idnode_t *pinp;
2312 dt_ident_t *pidp;
2313 dt_node_t *pnp;
2314 uint_t i = 0;

2316 for (pnp = ddp->dd_node; pnp != NULL; pnp = pnp->dn_list)
2317 i++; /* count up parameters for din_argv[] */

2319 inp->din_hash = dt_idhash_create("inline args", NULL, 0, 0);
2320 inp->din_argv = calloc(i, sizeof (dt_ident_t *));

2322 if (inp->din_hash == NULL || inp->din_argv == NULL)
2323 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

2325 /*
2326 * Create an identifier for each parameter as a scalar inline,
2327 * and store it in din_hash and in position in din_argv[]. The
2328 * parameter identifiers also use dt_idops_inline, but we leave
2329 * the dt_idnode_t argument ’pinp’ zeroed. This will be filled
2330 * in by the code generation pass with references to the args.
2331 */
2332 for (i = 0, pnp = ddp->dd_node;
2333 pnp != NULL; pnp = pnp->dn_list, i++) {

2335 if (pnp->dn_string == NULL)
2336 continue; /* ignore anonymous parameters */

2338 if ((pinp = malloc(sizeof (dt_idnode_t))) == NULL)
2339 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

2341 pidp = dt_idhash_insert(inp->din_hash, pnp->dn_string,
2342 DT_IDENT_SCALAR, DT_IDFLG_DECL | DT_IDFLG_INLINE, 0,
2343 _dtrace_defattr, 0, &dt_idops_inline,
2344 pinp, dtp->dt_gen);

2346 if (pidp == NULL) {
2347 free(pinp);
2348 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
2349 }

2351 inp->din_argv[i] = pidp;
2352 bzero(pinp, sizeof (dt_idnode_t));
2353 dt_ident_type_assign(pidp, pnp->dn_ctfp, pnp->dn_type);
2354 }

2356 dt_idstack_push(&yypcb->pcb_globals, inp->din_hash);
2357 }

2359 /*
2360 * Unlike most constructors, we need to explicitly cook the right-hand
2361 * side of the inline definition immediately to prevent recursion. If
2362 * the right-hand side uses the inline itself, the cook will fail.
2363 */
2364 expr = dt_node_cook(expr, DT_IDFLG_REF);

2366 if (ddp->dd_kind == CTF_K_ARRAY)
2367 dt_idstack_pop(&yypcb->pcb_globals, inp->din_hash);

2369 /*
2370 * Set the type, attributes, and flags for the inline. If the right-
2371 * hand expression has an identifier, propagate its flags. Then cook

new/usr/src/lib/libdtrace/common/dt_parser.c 30

2372 * the identifier to fully initialize it: if we’re declaring an inline
2373 * associative array this will construct a type signature from ’ddp’.
2374 */
2375 if (dt_node_is_dynamic(expr))
2376 rdp = dt_ident_resolve(expr->dn_ident);
2377 else if (expr->dn_kind == DT_NODE_VAR || expr->dn_kind == DT_NODE_SYM)
2378 rdp = expr->dn_ident;
2379 else
2380 rdp = NULL;

2382 if (rdp != NULL) {
2383 idp->di_flags |= (rdp->di_flags &
2384 (DT_IDFLG_WRITE | DT_IDFLG_USER | DT_IDFLG_PRIM));
2385 }

2387 idp->di_attr = dt_attr_min(_dtrace_defattr, expr->dn_attr);
2388 dt_ident_type_assign(idp, dtt.dtt_ctfp, dtt.dtt_type);
2389 (void) dt_ident_cook(dnp, idp, &ddp->dd_node);

2391 /*
2392 * Store the parse tree nodes for ’expr’ inside of idp->di_data (’inp’)
2393 * so that they will be preserved with this identifier. Then pop the
2394 * inline declaration from the declaration stack and restore the lexer.
2395 */
2396 inp->din_list = yypcb->pcb_list;
2397 inp->din_root = expr;

2399 dt_decl_free(dt_decl_pop());
2400 yybegin(YYS_CLAUSE);

2402 /*
2403 * Finally, insert the inline identifier into dt_globals to make it
2404 * visible, and then cook ’dnp’ to check its type against ’expr’.
2405 */
2406 dt_idhash_xinsert(dtp->dt_globals, idp);
2407 return (dt_node_cook(dnp, DT_IDFLG_REF));
2408 }

2410 dt_node_t *
2411 dt_node_member(dt_decl_t *ddp, char *name, dt_node_t *expr)
2412 {
2413 dtrace_typeinfo_t dtt;
2414 dt_node_t *dnp;
2415 int err;

2417 if (ddp != NULL) {
2418 err = dt_decl_type(ddp, &dtt);
2419 dt_decl_free(ddp);

2421 if (err != 0)
2422 longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER);
2423 }

2425 dnp = dt_node_alloc(DT_NODE_MEMBER);
2426 dnp->dn_membname = name;
2427 dnp->dn_membexpr = expr;

2429 if (ddp != NULL)
2430 dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type,
2431 dtt.dtt_flags);
1717 dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type);

2433 return (dnp);
2434 }

2436 dt_node_t *

new/usr/src/lib/libdtrace/common/dt_parser.c 31

2437 dt_node_xlator(dt_decl_t *ddp, dt_decl_t *sdp, char *name, dt_node_t *members)
2438 {
2439 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
2440 dtrace_typeinfo_t src, dst;
2441 dt_node_t sn, dn;
2442 dt_xlator_t *dxp;
2443 dt_node_t *dnp;
2444 int edst, esrc;
2445 uint_t kind;

2447 char n1[DT_TYPE_NAMELEN];
2448 char n2[DT_TYPE_NAMELEN];

2450 edst = dt_decl_type(ddp, &dst);
2451 dt_decl_free(ddp);

2453 esrc = dt_decl_type(sdp, &src);
2454 dt_decl_free(sdp);

2456 if (edst != 0 || esrc != 0) {
2457 free(name);
2458 longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER);
2459 }

2461 bzero(&sn, sizeof (sn));
2462 dt_node_type_assign(&sn, src.dtt_ctfp, src.dtt_type, B_FALSE);
1748 dt_node_type_assign(&sn, src.dtt_ctfp, src.dtt_type);

2464 bzero(&dn, sizeof (dn));
2465 dt_node_type_assign(&dn, dst.dtt_ctfp, dst.dtt_type, B_FALSE);
1751 dt_node_type_assign(&dn, dst.dtt_ctfp, dst.dtt_type);

2467 if (dt_xlator_lookup(dtp, &sn, &dn, DT_XLATE_EXACT) != NULL) {
2468 xyerror(D_XLATE_REDECL,
2469 "translator from %s to %s has already been declared\n",
2470 dt_node_type_name(&sn, n1, sizeof (n1)),
2471 dt_node_type_name(&dn, n2, sizeof (n2)));
2472 }

2474 kind = ctf_type_kind(dst.dtt_ctfp,
2475 ctf_type_resolve(dst.dtt_ctfp, dst.dtt_type));

2477 if (kind == CTF_K_FORWARD) {
2478 xyerror(D_XLATE_SOU, "incomplete struct/union/enum %s\n",
2479 dt_type_name(dst.dtt_ctfp, dst.dtt_type, n1, sizeof (n1)));
2480 }

2482 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) {
2483 xyerror(D_XLATE_SOU,
2484 "translator output type must be a struct or union\n");
2485 }

2487 dxp = dt_xlator_create(dtp, &src, &dst, name, members, yypcb->pcb_list);
2488 yybegin(YYS_CLAUSE);
2489 free(name);

2491 if (dxp == NULL)
2492 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

2494 dnp = dt_node_alloc(DT_NODE_XLATOR);
2495 dnp->dn_xlator = dxp;
2496 dnp->dn_members = members;

2498 return (dt_node_cook(dnp, DT_IDFLG_REF));
2499 }
______unchanged_portion_omitted_

new/usr/src/lib/libdtrace/common/dt_parser.c 32

2619 /*
2620 * This function provides the underlying implementation of cooking an
2621 * identifier given its node, a hash of dynamic identifiers, an identifier
2622 * kind, and a boolean flag indicating whether we are allowed to instantiate
2623 * a new identifier if the string is not found. This function is either
2624 * called from dt_cook_ident(), below, or directly by the various cooking
2625 * routines that are allowed to instantiate identifiers (e.g. op2 TOK_ASGN).
2626 */
2627 static void
2628 dt_xcook_ident(dt_node_t *dnp, dt_idhash_t *dhp, uint_t idkind, int create)
2629 {
2630 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
2631 const char *sname = dt_idhash_name(dhp);
2632 int uref = 0;

2634 dtrace_attribute_t attr = _dtrace_defattr;
2635 dt_ident_t *idp;
2636 dtrace_syminfo_t dts;
2637 GElf_Sym sym;

2639 const char *scope, *mark;
2640 uchar_t dnkind;
2641 char *name;

2643 /*
2644 * Look for scoping marks in the identifier. If one is found, set our
2645 * scope to either DTRACE_OBJ_KMODS or UMODS or to the first part of
2646 * the string that specifies the scope using an explicit module name.
2647 * If two marks in a row are found, set ’uref’ (user symbol reference).
2648 * Otherwise we set scope to DTRACE_OBJ_EXEC, indicating that normal
2649 * scope is desired and we should search the specified idhash.
2650 */
2651 if ((name = strrchr(dnp->dn_string, ’‘’)) != NULL) {
2652 if (name > dnp->dn_string && name[-1] == ’‘’) {
2653 uref++;
2654 name[-1] = ’\0’;
2655 }

2657 if (name == dnp->dn_string + uref)
2658 scope = uref ? DTRACE_OBJ_UMODS : DTRACE_OBJ_KMODS;
2659 else
2660 scope = dnp->dn_string;

2662 *name++ = ’\0’; /* leave name pointing after scoping mark */
2663 dnkind = DT_NODE_VAR;

2665 } else if (idkind == DT_IDENT_AGG) {
2666 scope = DTRACE_OBJ_EXEC;
2667 name = dnp->dn_string + 1;
2668 dnkind = DT_NODE_AGG;
2669 } else {
2670 scope = DTRACE_OBJ_EXEC;
2671 name = dnp->dn_string;
2672 dnkind = DT_NODE_VAR;
2673 }

2675 /*
2676 * If create is set to false, and we fail our idhash lookup, preset
2677 * the errno code to EDT_NOVAR for our final error message below.
2678 * If we end up calling dtrace_lookup_by_name(), it will reset the
2679 * errno appropriately and that error will be reported instead.
2680 */
2681 (void) dt_set_errno(dtp, EDT_NOVAR);
2682 mark = uref ? "‘‘" : "‘";

new/usr/src/lib/libdtrace/common/dt_parser.c 33

2684 if (scope == DTRACE_OBJ_EXEC && (
2685 (dhp != dtp->dt_globals &&
2686 (idp = dt_idhash_lookup(dhp, name)) != NULL) ||
2687 (dhp == dtp->dt_globals &&
2688 (idp = dt_idstack_lookup(&yypcb->pcb_globals, name)) != NULL))) {
2689 /*
2690 * Check that we are referencing the ident in the manner that
2691 * matches its type if this is a global lookup. In the TLS or
2692 * local case, we don’t know how the ident will be used until
2693 * the time operator -> is seen; more parsing is needed.
2694 */
2695 if (idp->di_kind != idkind && dhp == dtp->dt_globals) {
2696 xyerror(D_IDENT_BADREF, "%s ’%s’ may not be referenced "
2697 "as %s\n", dt_idkind_name(idp->di_kind),
2698 idp->di_name, dt_idkind_name(idkind));
2699 }

2701 /*
2702 * Arrays and aggregations are not cooked individually. They
2703 * have dynamic types and must be referenced using operator [].
2704 * This is handled explicitly by the code for DT_TOK_LBRAC.
2705 */
2706 if (idp->di_kind != DT_IDENT_ARRAY &&
2707 idp->di_kind != DT_IDENT_AGG)
2708 attr = dt_ident_cook(dnp, idp, NULL);
2709 else {
2710 dt_node_type_assign(dnp,
2711 DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp), B_FALSE);
1997 DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp));
2712 attr = idp->di_attr;
2713 }

2715 free(dnp->dn_string);
2716 dnp->dn_string = NULL;
2717 dnp->dn_kind = dnkind;
2718 dnp->dn_ident = idp;
2719 dnp->dn_flags |= DT_NF_LVALUE;

2721 if (idp->di_flags & DT_IDFLG_WRITE)
2722 dnp->dn_flags |= DT_NF_WRITABLE;

2724 dt_node_attr_assign(dnp, attr);

2726 } else if (dhp == dtp->dt_globals && scope != DTRACE_OBJ_EXEC &&
2727 dtrace_lookup_by_name(dtp, scope, name, &sym, &dts) == 0) {

2729 dt_module_t *mp = dt_module_lookup_by_name(dtp, dts.dts_object);
2730 int umod = (mp->dm_flags & DT_DM_KERNEL) == 0;
2731 static const char *const kunames[] = { "kernel", "user" };

2733 dtrace_typeinfo_t dtt;
2734 dtrace_syminfo_t *sip;

2736 if (uref ^ umod) {
2737 xyerror(D_SYM_BADREF, "%s module ’%s’ symbol ’%s’ may "
2738 "not be referenced as a %s symbol\n", kunames[umod],
2739 dts.dts_object, dts.dts_name, kunames[uref]);
2740 }

2742 if (dtrace_symbol_type(dtp, &sym, &dts, &dtt) != 0) {
2743 /*
2744 * For now, we special-case EDT_DATAMODEL to clarify
2745 * that mixed data models are not currently supported.
2746 */
2747 if (dtp->dt_errno == EDT_DATAMODEL) {
2748 xyerror(D_SYM_MODEL, "cannot use %s symbol "

new/usr/src/lib/libdtrace/common/dt_parser.c 34

2749 "%s%s%s in a %s D program\n",
2750 dt_module_modelname(mp),
2751 dts.dts_object, mark, dts.dts_name,
2752 dt_module_modelname(dtp->dt_ddefs));
2753 }

2755 xyerror(D_SYM_NOTYPES,
2756 "no symbolic type information is available for "
2757 "%s%s%s: %s\n", dts.dts_object, mark, dts.dts_name,
2758 dtrace_errmsg(dtp, dtrace_errno(dtp)));
2759 }

2761 idp = dt_ident_create(name, DT_IDENT_SYMBOL, 0, 0,
2762 _dtrace_symattr, 0, &dt_idops_thaw, NULL, dtp->dt_gen);

2764 if (idp == NULL)
2765 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

2767 if (mp->dm_flags & DT_DM_PRIMARY)
2768 idp->di_flags |= DT_IDFLG_PRIM;

2770 idp->di_next = dtp->dt_externs;
2771 dtp->dt_externs = idp;

2773 if ((sip = malloc(sizeof (dtrace_syminfo_t))) == NULL)
2774 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

2776 bcopy(&dts, sip, sizeof (dtrace_syminfo_t));
2777 idp->di_data = sip;
2778 idp->di_ctfp = dtt.dtt_ctfp;
2779 idp->di_type = dtt.dtt_type;

2781 free(dnp->dn_string);
2782 dnp->dn_string = NULL;
2783 dnp->dn_kind = DT_NODE_SYM;
2784 dnp->dn_ident = idp;
2785 dnp->dn_flags |= DT_NF_LVALUE;

2787 dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type,
2788 dtt.dtt_flags);
2073 dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type);
2789 dt_node_attr_assign(dnp, _dtrace_symattr);

2791 if (uref) {
2792 idp->di_flags |= DT_IDFLG_USER;
2793 dnp->dn_flags |= DT_NF_USERLAND;
2794 }

2796 } else if (scope == DTRACE_OBJ_EXEC && create == B_TRUE) {
2797 uint_t flags = DT_IDFLG_WRITE;
2798 uint_t id;

2800 if (dt_idhash_nextid(dhp, &id) == -1) {
2801 xyerror(D_ID_OFLOW, "cannot create %s: limit on number "
2802 "of %s variables exceeded\n", name, sname);
2803 }

2805 if (dhp == yypcb->pcb_locals)
2806 flags |= DT_IDFLG_LOCAL;
2807 else if (dhp == dtp->dt_tls)
2808 flags |= DT_IDFLG_TLS;

2810 dt_dprintf("create %s %s variable %s, id=%u\n",
2811 sname, dt_idkind_name(idkind), name, id);

2813 if (idkind == DT_IDENT_ARRAY || idkind == DT_IDENT_AGG) {

new/usr/src/lib/libdtrace/common/dt_parser.c 35

2814 idp = dt_idhash_insert(dhp, name,
2815 idkind, flags, id, _dtrace_defattr, 0,
2816 &dt_idops_assc, NULL, dtp->dt_gen);
2817 } else {
2818 idp = dt_idhash_insert(dhp, name,
2819 idkind, flags, id, _dtrace_defattr, 0,
2820 &dt_idops_thaw, NULL, dtp->dt_gen);
2821 }

2823 if (idp == NULL)
2824 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

2826 /*
2827 * Arrays and aggregations are not cooked individually. They
2828 * have dynamic types and must be referenced using operator [].
2829 * This is handled explicitly by the code for DT_TOK_LBRAC.
2830 */
2831 if (idp->di_kind != DT_IDENT_ARRAY &&
2832 idp->di_kind != DT_IDENT_AGG)
2833 attr = dt_ident_cook(dnp, idp, NULL);
2834 else {
2835 dt_node_type_assign(dnp,
2836 DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp), B_FALSE);
2121 DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp));
2837 attr = idp->di_attr;
2838 }

2840 free(dnp->dn_string);
2841 dnp->dn_string = NULL;
2842 dnp->dn_kind = dnkind;
2843 dnp->dn_ident = idp;
2844 dnp->dn_flags |= DT_NF_LVALUE | DT_NF_WRITABLE;

2846 dt_node_attr_assign(dnp, attr);

2848 } else if (scope != DTRACE_OBJ_EXEC) {
2849 xyerror(D_IDENT_UNDEF, "failed to resolve %s%s%s: %s\n",
2850 dnp->dn_string, mark, name,
2851 dtrace_errmsg(dtp, dtrace_errno(dtp)));
2852 } else {
2853 xyerror(D_IDENT_UNDEF, "failed to resolve %s: %s\n",
2854 dnp->dn_string, dtrace_errmsg(dtp, dtrace_errno(dtp)));
2855 }
2856 }
______unchanged_portion_omitted_

2904 static dt_node_t *
2905 dt_cook_op1(dt_node_t *dnp, uint_t idflags)
2906 {
2907 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
2908 dt_node_t *cp = dnp->dn_child;

2910 char n[DT_TYPE_NAMELEN];
2911 dtrace_typeinfo_t dtt;
2912 dt_ident_t *idp;

2914 ctf_encoding_t e;
2915 ctf_arinfo_t r;
2916 ctf_id_t type, base;
2917 uint_t kind;

2919 if (dnp->dn_op == DT_TOK_PREINC || dnp->dn_op == DT_TOK_POSTINC ||
2920 dnp->dn_op == DT_TOK_PREDEC || dnp->dn_op == DT_TOK_POSTDEC)
2921 idflags = DT_IDFLG_REF | DT_IDFLG_MOD;
2922 else
2923 idflags = DT_IDFLG_REF;

new/usr/src/lib/libdtrace/common/dt_parser.c 36

2925 /*
2926 * We allow the unary ++ and -- operators to instantiate new scalar
2927 * variables if applied to an identifier; otherwise just cook as usual.
2928 */
2929 if (cp->dn_kind == DT_NODE_IDENT && (idflags & DT_IDFLG_MOD))
2930 dt_xcook_ident(cp, dtp->dt_globals, DT_IDENT_SCALAR, B_TRUE);

2932 cp = dnp->dn_child = dt_node_cook(cp, 0); /* don’t set idflags yet */

2934 if (cp->dn_kind == DT_NODE_VAR && dt_ident_unref(cp->dn_ident)) {
2935 if (dt_type_lookup("int64_t", &dtt) != 0)
2936 xyerror(D_TYPE_ERR, "failed to lookup int64_t\n");

2938 dt_ident_type_assign(cp->dn_ident, dtt.dtt_ctfp, dtt.dtt_type);
2939 dt_node_type_assign(cp, dtt.dtt_ctfp, dtt.dtt_type,
2940 dtt.dtt_flags);
2224 dt_node_type_assign(cp, dtt.dtt_ctfp, dtt.dtt_type);
2941 }

2943 if (cp->dn_kind == DT_NODE_VAR)
2944 cp->dn_ident->di_flags |= idflags;

2946 switch (dnp->dn_op) {
2947 case DT_TOK_DEREF:
2948 /*
2949 * If the deref operator is applied to a translated pointer,
2950 * we set our output type to the output of the translation.
2951 */
2952 if ((idp = dt_node_resolve(cp, DT_IDENT_XLPTR)) != NULL) {
2953 dt_xlator_t *dxp = idp->di_data;

2955 dnp->dn_ident = &dxp->dx_souid;
2956 dt_node_type_assign(dnp,
2957 dnp->dn_ident->di_ctfp, dnp->dn_ident->di_type,
2958 cp->dn_flags & DT_NF_USERLAND);
2241 dnp->dn_ident->di_ctfp, dnp->dn_ident->di_type);
2959 break;
2960 }

2962 type = ctf_type_resolve(cp->dn_ctfp, cp->dn_type);
2963 kind = ctf_type_kind(cp->dn_ctfp, type);

2965 if (kind == CTF_K_ARRAY) {
2966 if (ctf_array_info(cp->dn_ctfp, type, &r) != 0) {
2967 dtp->dt_ctferr = ctf_errno(cp->dn_ctfp);
2968 longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
2969 } else
2970 type = r.ctr_contents;
2971 } else if (kind == CTF_K_POINTER) {
2972 type = ctf_type_reference(cp->dn_ctfp, type);
2973 } else {
2974 xyerror(D_DEREF_NONPTR,
2975 "cannot dereference non-pointer type\n");
2976 }

2978 dt_node_type_assign(dnp, cp->dn_ctfp, type,
2979 cp->dn_flags & DT_NF_USERLAND);
2261 dt_node_type_assign(dnp, cp->dn_ctfp, type);
2980 base = ctf_type_resolve(cp->dn_ctfp, type);
2981 kind = ctf_type_kind(cp->dn_ctfp, base);

2983 if (kind == CTF_K_INTEGER && ctf_type_encoding(cp->dn_ctfp,
2984 base, &e) == 0 && IS_VOID(e)) {
2985 xyerror(D_DEREF_VOID,
2986 "cannot dereference pointer to void\n");

new/usr/src/lib/libdtrace/common/dt_parser.c 37

2987 }

2989 if (kind == CTF_K_FUNCTION) {
2990 xyerror(D_DEREF_FUNC,
2991 "cannot dereference pointer to function\n");
2992 }

2994 if (kind != CTF_K_ARRAY || dt_node_is_string(dnp))
2995 dnp->dn_flags |= DT_NF_LVALUE; /* see K&R[A7.4.3] */

2997 /*
2998 * If we propagated the l-value bit and the child operand was
2999 * a writable D variable or a binary operation of the form
3000 * a + b where a is writable, then propagate the writable bit.
3001 * This is necessary to permit assignments to scalar arrays,
3002 * which are converted to expressions of the form *(a + i).
3003 */
3004 if ((cp->dn_flags & DT_NF_WRITABLE) ||
3005 (cp->dn_kind == DT_NODE_OP2 && cp->dn_op == DT_TOK_ADD &&
3006 (cp->dn_left->dn_flags & DT_NF_WRITABLE)))
3007 dnp->dn_flags |= DT_NF_WRITABLE;

3009 if ((cp->dn_flags & DT_NF_USERLAND) &&
3010 (kind == CTF_K_POINTER || (dnp->dn_flags & DT_NF_REF)))
3011 dnp->dn_flags |= DT_NF_USERLAND;
3012 break;

3014 case DT_TOK_IPOS:
3015 case DT_TOK_INEG:
3016 if (!dt_node_is_arith(cp)) {
3017 xyerror(D_OP_ARITH, "operator %s requires an operand "
3018 "of arithmetic type\n", opstr(dnp->dn_op));
3019 }
3020 dt_node_type_propagate(cp, dnp); /* see K&R[A7.4.4-6] */
3021 break;

3023 case DT_TOK_BNEG:
3024 if (!dt_node_is_integer(cp)) {
3025 xyerror(D_OP_INT, "operator %s requires an operand of "
3026 "integral type\n", opstr(dnp->dn_op));
3027 }
3028 dt_node_type_propagate(cp, dnp); /* see K&R[A7.4.4-6] */
3029 break;

3031 case DT_TOK_LNEG:
3032 if (!dt_node_is_scalar(cp)) {
3033 xyerror(D_OP_SCALAR, "operator %s requires an operand "
3034 "of scalar type\n", opstr(dnp->dn_op));
3035 }
3036 dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp),
3037 B_FALSE);
2318 dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp));
3038 break;

3040 case DT_TOK_ADDROF:
3041 if (cp->dn_kind == DT_NODE_VAR || cp->dn_kind == DT_NODE_AGG) {
3042 xyerror(D_ADDROF_VAR,
3043 "cannot take address of dynamic variable\n");
3044 }

3046 if (dt_node_is_dynamic(cp)) {
3047 xyerror(D_ADDROF_VAR,
3048 "cannot take address of dynamic object\n");
3049 }

3051 if (!(cp->dn_flags & DT_NF_LVALUE)) {

new/usr/src/lib/libdtrace/common/dt_parser.c 38

3052 xyerror(D_ADDROF_LVAL, /* see K&R[A7.4.2] */
3053 "unacceptable operand for unary & operator\n");
3054 }

3056 if (cp->dn_flags & DT_NF_BITFIELD) {
3057 xyerror(D_ADDROF_BITFIELD,
3058 "cannot take address of bit-field\n");
3059 }

3061 dtt.dtt_object = NULL;
3062 dtt.dtt_ctfp = cp->dn_ctfp;
3063 dtt.dtt_type = cp->dn_type;

3065 if (dt_type_pointer(&dtt) == -1) {
3066 xyerror(D_TYPE_ERR, "cannot find type for \"&\": %s*\n",
3067 dt_node_type_name(cp, n, sizeof (n)));
3068 }

3070 dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type,
3071 cp->dn_flags & DT_NF_USERLAND);
2351 dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type);

2353 if (cp->dn_flags & DT_NF_USERLAND)
2354 dnp->dn_flags |= DT_NF_USERLAND;
3072 break;

3074 case DT_TOK_SIZEOF:
3075 if (cp->dn_flags & DT_NF_BITFIELD) {
3076 xyerror(D_SIZEOF_BITFIELD,
3077 "cannot apply sizeof to a bit-field\n");
3078 }

3080 if (dt_node_sizeof(cp) == 0) {
3081 xyerror(D_SIZEOF_TYPE, "cannot apply sizeof to an "
3082 "operand of unknown size\n");
3083 }

3085 dt_node_type_assign(dnp, dtp->dt_ddefs->dm_ctfp,
3086 ctf_lookup_by_name(dtp->dt_ddefs->dm_ctfp, "size_t"),
3087 B_FALSE);
2369 ctf_lookup_by_name(dtp->dt_ddefs->dm_ctfp, "size_t"));
3088 break;

3090 case DT_TOK_STRINGOF:
3091 if (!dt_node_is_scalar(cp) && !dt_node_is_pointer(cp) &&
3092 !dt_node_is_strcompat(cp)) {
3093 xyerror(D_STRINGOF_TYPE,
3094 "cannot apply stringof to a value of type %s\n",
3095 dt_node_type_name(cp, n, sizeof (n)));
3096 }
3097 dt_node_type_assign(dnp, DT_STR_CTFP(dtp), DT_STR_TYPE(dtp),
3098 cp->dn_flags & DT_NF_USERLAND);
2379 dt_node_type_assign(dnp, DT_STR_CTFP(dtp), DT_STR_TYPE(dtp));
3099 break;

3101 case DT_TOK_PREINC:
3102 case DT_TOK_POSTINC:
3103 case DT_TOK_PREDEC:
3104 case DT_TOK_POSTDEC:
3105 if (dt_node_is_scalar(cp) == 0) {
3106 xyerror(D_OP_SCALAR, "operator %s requires operand of "
3107 "scalar type\n", opstr(dnp->dn_op));
3108 }

3110 if (dt_node_is_vfptr(cp)) {
3111 xyerror(D_OP_VFPTR, "operator %s requires an operand "

new/usr/src/lib/libdtrace/common/dt_parser.c 39

3112 "of known size\n", opstr(dnp->dn_op));
3113 }

3115 if (!(cp->dn_flags & DT_NF_LVALUE)) {
3116 xyerror(D_OP_LVAL, "operator %s requires modifiable "
3117 "lvalue as an operand\n", opstr(dnp->dn_op));
3118 }

3120 if (!(cp->dn_flags & DT_NF_WRITABLE)) {
3121 xyerror(D_OP_WRITE, "operator %s can only be applied "
3122 "to a writable variable\n", opstr(dnp->dn_op));
3123 }

3125 dt_node_type_propagate(cp, dnp); /* see K&R[A7.4.1] */
3126 break;

3128 default:
3129 xyerror(D_UNKNOWN, "invalid unary op %s\n", opstr(dnp->dn_op));
3130 }

3132 dt_node_attr_assign(dnp, cp->dn_attr);
3133 return (dnp);
3134 }
______unchanged_portion_omitted_

3161 static dt_node_t *
3162 dt_cook_op2(dt_node_t *dnp, uint_t idflags)
3163 {
3164 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
3165 dt_node_t *lp = dnp->dn_left;
3166 dt_node_t *rp = dnp->dn_right;
3167 int op = dnp->dn_op;

3169 ctf_membinfo_t m;
3170 ctf_file_t *ctfp;
3171 ctf_id_t type;
3172 int kind, val, uref;
3173 dt_ident_t *idp;

3175 char n1[DT_TYPE_NAMELEN];
3176 char n2[DT_TYPE_NAMELEN];

3178 /*
3179 * The expression E1[E2] is identical by definition to *((E1)+(E2)) so
3180 * we convert "[" to "+" and glue on "*" at the end (see K&R[A7.3.1])
3181 * unless the left-hand side is an untyped D scalar, associative array,
3182 * or aggregation. In these cases, we proceed to case DT_TOK_LBRAC and
3183 * handle associative array and aggregation references there.
3184 */
3185 if (op == DT_TOK_LBRAC) {
3186 if (lp->dn_kind == DT_NODE_IDENT) {
3187 dt_idhash_t *dhp;
3188 uint_t idkind;

3190 if (lp->dn_op == DT_TOK_AGG) {
3191 dhp = dtp->dt_aggs;
3192 idp = dt_idhash_lookup(dhp, lp->dn_string + 1);
3193 idkind = DT_IDENT_AGG;
3194 } else {
3195 dhp = dtp->dt_globals;
3196 idp = dt_idstack_lookup(
3197 &yypcb->pcb_globals, lp->dn_string);
3198 idkind = DT_IDENT_ARRAY;
3199 }

3201 if (idp == NULL || dt_ident_unref(idp))

new/usr/src/lib/libdtrace/common/dt_parser.c 40

3202 dt_xcook_ident(lp, dhp, idkind, B_TRUE);
3203 else
3204 dt_xcook_ident(lp, dhp, idp->di_kind, B_FALSE);
3205 } else
3206 lp = dnp->dn_left = dt_node_cook(lp, 0);

3208 /*
3209 * Switch op to ’+’ for *(E1 + E2) array mode in these cases:
3210 * (a) lp is a DT_IDENT_ARRAY variable that has already been
3211 * referenced using [] notation (dn_args != NULL).
3212 * (b) lp is a non-ARRAY variable that has already been given
3213 * a type by assignment or declaration (!dt_ident_unref())
3214 * (c) lp is neither a variable nor an aggregation
3215 */
3216 if (lp->dn_kind == DT_NODE_VAR) {
3217 if (lp->dn_ident->di_kind == DT_IDENT_ARRAY) {
3218 if (lp->dn_args != NULL)
3219 op = DT_TOK_ADD;
3220 } else if (!dt_ident_unref(lp->dn_ident))
3221 op = DT_TOK_ADD;
3222 } else if (lp->dn_kind != DT_NODE_AGG)
3223 op = DT_TOK_ADD;
3224 }

3226 switch (op) {
3227 case DT_TOK_BAND:
3228 case DT_TOK_XOR:
3229 case DT_TOK_BOR:
3230 lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF);
3231 rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF);

3233 if (!dt_node_is_integer(lp) || !dt_node_is_integer(rp)) {
3234 xyerror(D_OP_INT, "operator %s requires operands of "
3235 "integral type\n", opstr(op));
3236 }

3238 dt_node_promote(lp, rp, dnp); /* see K&R[A7.11-13] */
3239 break;

3241 case DT_TOK_LSH:
3242 case DT_TOK_RSH:
3243 lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF);
3244 rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF);

3246 if (!dt_node_is_integer(lp) || !dt_node_is_integer(rp)) {
3247 xyerror(D_OP_INT, "operator %s requires operands of "
3248 "integral type\n", opstr(op));
3249 }

3251 dt_node_type_propagate(lp, dnp); /* see K&R[A7.8] */
3252 dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr));
3253 break;

3255 case DT_TOK_MOD:
3256 lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF);
3257 rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF);

3259 if (!dt_node_is_integer(lp) || !dt_node_is_integer(rp)) {
3260 xyerror(D_OP_INT, "operator %s requires operands of "
3261 "integral type\n", opstr(op));
3262 }

3264 dt_node_promote(lp, rp, dnp); /* see K&R[A7.6] */
3265 break;

3267 case DT_TOK_MUL:

new/usr/src/lib/libdtrace/common/dt_parser.c 41

3268 case DT_TOK_DIV:
3269 lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF);
3270 rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF);

3272 if (!dt_node_is_arith(lp) || !dt_node_is_arith(rp)) {
3273 xyerror(D_OP_ARITH, "operator %s requires operands of "
3274 "arithmetic type\n", opstr(op));
3275 }

3277 dt_node_promote(lp, rp, dnp); /* see K&R[A7.6] */
3278 break;

3280 case DT_TOK_LAND:
3281 case DT_TOK_LXOR:
3282 case DT_TOK_LOR:
3283 lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF);
3284 rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF);

3286 if (!dt_node_is_scalar(lp) || !dt_node_is_scalar(rp)) {
3287 xyerror(D_OP_SCALAR, "operator %s requires operands "
3288 "of scalar type\n", opstr(op));
3289 }

3291 dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp),
3292 B_FALSE);
2572 dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp));
3293 dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr));
3294 break;

3296 case DT_TOK_LT:
3297 case DT_TOK_LE:
3298 case DT_TOK_GT:
3299 case DT_TOK_GE:
3300 case DT_TOK_EQU:
3301 case DT_TOK_NEQ:
3302 /*
3303 * The D comparison operators provide the ability to transform
3304 * a right-hand identifier into a corresponding enum tag value
3305 * if the left-hand side is an enum type. To do this, we cook
3306 * the left-hand side, and then see if the right-hand side is
3307 * an unscoped identifier defined in the enum. If so, we
3308 * convert into an integer constant node with the tag’s value.
3309 */
3310 lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF);

3312 kind = ctf_type_kind(lp->dn_ctfp,
3313 ctf_type_resolve(lp->dn_ctfp, lp->dn_type));

3315 if (kind == CTF_K_ENUM && rp->dn_kind == DT_NODE_IDENT &&
3316 strchr(rp->dn_string, ’‘’) == NULL && ctf_enum_value(
3317 lp->dn_ctfp, lp->dn_type, rp->dn_string, &val) == 0) {

3319 if ((idp = dt_idstack_lookup(&yypcb->pcb_globals,
3320 rp->dn_string)) != NULL) {
3321 xyerror(D_IDENT_AMBIG,
3322 "ambiguous use of operator %s: %s is "
3323 "both a %s enum tag and a global %s\n",
3324 opstr(op), rp->dn_string,
3325 dt_node_type_name(lp, n1, sizeof (n1)),
3326 dt_idkind_name(idp->di_kind));
3327 }

3329 free(rp->dn_string);
3330 rp->dn_string = NULL;
3331 rp->dn_kind = DT_NODE_INT;
3332 rp->dn_flags |= DT_NF_COOKED;

new/usr/src/lib/libdtrace/common/dt_parser.c 42

3333 rp->dn_op = DT_TOK_INT;
3334 rp->dn_value = (intmax_t)val;

3336 dt_node_type_assign(rp, lp->dn_ctfp, lp->dn_type,
3337 B_FALSE);
2616 dt_node_type_assign(rp, lp->dn_ctfp, lp->dn_type);
3338 dt_node_attr_assign(rp, _dtrace_symattr);
3339 }

3341 rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF);

3343 /*
3344 * The rules for type checking for the relational operators are
3345 * described in the ANSI-C spec (see K&R[A7.9-10]). We perform
3346 * the various tests in order from least to most expensive. We
3347 * also allow derived strings to be compared as a first-class
3348 * type (resulting in a strcmp(3C)-style comparison), and we
3349 * slightly relax the A7.9 rules to permit void pointer
3350 * comparisons as in A7.10. Our users won’t be confused by
3351 * this since they understand pointers are just numbers, and
3352 * relaxing this constraint simplifies the implementation.
3353 */
3354 if (ctf_type_compat(lp->dn_ctfp, lp->dn_type,
3355 rp->dn_ctfp, rp->dn_type))
3356 /*EMPTY*/;
3357 else if (dt_node_is_integer(lp) && dt_node_is_integer(rp))
3358 /*EMPTY*/;
3359 else if (dt_node_is_strcompat(lp) && dt_node_is_strcompat(rp) &&
3360 (dt_node_is_string(lp) || dt_node_is_string(rp)))
3361 /*EMPTY*/;
3362 else if (dt_node_is_ptrcompat(lp, rp, NULL, NULL) == 0) {
3363 xyerror(D_OP_INCOMPAT, "operands have "
3364 "incompatible types: \"%s\" %s \"%s\"\n",
3365 dt_node_type_name(lp, n1, sizeof (n1)), opstr(op),
3366 dt_node_type_name(rp, n2, sizeof (n2)));
3367 }

3369 dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp),
3370 B_FALSE);
2648 dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp));
3371 dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr));
3372 break;

3374 case DT_TOK_ADD:
3375 case DT_TOK_SUB: {
3376 /*
3377 * The rules for type checking for the additive operators are
3378 * described in the ANSI-C spec (see K&R[A7.7]). Pointers and
3379 * integers may be manipulated according to specific rules. In
3380 * these cases D permits strings to be treated as pointers.
3381 */
3382 int lp_is_ptr, lp_is_int, rp_is_ptr, rp_is_int;

3384 lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF);
3385 rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF);

3387 lp_is_ptr = dt_node_is_string(lp) ||
3388 (dt_node_is_pointer(lp) && !dt_node_is_vfptr(lp));
3389 lp_is_int = dt_node_is_integer(lp);

3391 rp_is_ptr = dt_node_is_string(rp) ||
3392 (dt_node_is_pointer(rp) && !dt_node_is_vfptr(rp));
3393 rp_is_int = dt_node_is_integer(rp);

3395 if (lp_is_int && rp_is_int) {
3396 dt_type_promote(lp, rp, &ctfp, &type);

new/usr/src/lib/libdtrace/common/dt_parser.c 43

3397 uref = 0;
3398 } else if (lp_is_ptr && rp_is_int) {
3399 ctfp = lp->dn_ctfp;
3400 type = lp->dn_type;
3401 uref = lp->dn_flags & DT_NF_USERLAND;
3402 } else if (lp_is_int && rp_is_ptr && op == DT_TOK_ADD) {
3403 ctfp = rp->dn_ctfp;
3404 type = rp->dn_type;
3405 uref = rp->dn_flags & DT_NF_USERLAND;
3406 } else if (lp_is_ptr && rp_is_ptr && op == DT_TOK_SUB &&
3407 dt_node_is_ptrcompat(lp, rp, NULL, NULL)) {
3408 ctfp = dtp->dt_ddefs->dm_ctfp;
3409 type = ctf_lookup_by_name(ctfp, "ptrdiff_t");
3410 uref = 0;
3411 } else {
3412 xyerror(D_OP_INCOMPAT, "operands have incompatible "
3413 "types: \"%s\" %s \"%s\"\n",
3414 dt_node_type_name(lp, n1, sizeof (n1)), opstr(op),
3415 dt_node_type_name(rp, n2, sizeof (n2)));
3416 }

3418 dt_node_type_assign(dnp, ctfp, type, B_FALSE);
2696 dt_node_type_assign(dnp, ctfp, type);
3419 dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr));

3421 if (uref)
3422 dnp->dn_flags |= DT_NF_USERLAND;
3423 break;
3424 }

3426 case DT_TOK_OR_EQ:
3427 case DT_TOK_XOR_EQ:
3428 case DT_TOK_AND_EQ:
3429 case DT_TOK_LSH_EQ:
3430 case DT_TOK_RSH_EQ:
3431 case DT_TOK_MOD_EQ:
3432 if (lp->dn_kind == DT_NODE_IDENT) {
3433 dt_xcook_ident(lp, dtp->dt_globals,
3434 DT_IDENT_SCALAR, B_TRUE);
3435 }

3437 lp = dnp->dn_left =
3438 dt_node_cook(lp, DT_IDFLG_REF | DT_IDFLG_MOD);

3440 rp = dnp->dn_right =
3441 dt_node_cook(rp, DT_IDFLG_REF | DT_IDFLG_MOD);

3443 if (!dt_node_is_integer(lp) || !dt_node_is_integer(rp)) {
3444 xyerror(D_OP_INT, "operator %s requires operands of "
3445 "integral type\n", opstr(op));
3446 }
3447 goto asgn_common;

3449 case DT_TOK_MUL_EQ:
3450 case DT_TOK_DIV_EQ:
3451 if (lp->dn_kind == DT_NODE_IDENT) {
3452 dt_xcook_ident(lp, dtp->dt_globals,
3453 DT_IDENT_SCALAR, B_TRUE);
3454 }

3456 lp = dnp->dn_left =
3457 dt_node_cook(lp, DT_IDFLG_REF | DT_IDFLG_MOD);

3459 rp = dnp->dn_right =
3460 dt_node_cook(rp, DT_IDFLG_REF | DT_IDFLG_MOD);

new/usr/src/lib/libdtrace/common/dt_parser.c 44

3462 if (!dt_node_is_arith(lp) || !dt_node_is_arith(rp)) {
3463 xyerror(D_OP_ARITH, "operator %s requires operands of "
3464 "arithmetic type\n", opstr(op));
3465 }
3466 goto asgn_common;

3468 case DT_TOK_ASGN:
3469 /*
3470 * If the left-hand side is an identifier, attempt to resolve
3471 * it as either an aggregation or scalar variable. We pass
3472 * B_TRUE to dt_xcook_ident to indicate that a new variable can
3473 * be created if no matching variable exists in the namespace.
3474 */
3475 if (lp->dn_kind == DT_NODE_IDENT) {
3476 if (lp->dn_op == DT_TOK_AGG) {
3477 dt_xcook_ident(lp, dtp->dt_aggs,
3478 DT_IDENT_AGG, B_TRUE);
3479 } else {
3480 dt_xcook_ident(lp, dtp->dt_globals,
3481 DT_IDENT_SCALAR, B_TRUE);
3482 }
3483 }

3485 lp = dnp->dn_left = dt_node_cook(lp, 0); /* don’t set mod yet */
3486 rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF);

3488 /*
3489 * If the left-hand side is an aggregation, verify that we are
3490 * assigning it the result of an aggregating function. Once
3491 * we’ve done so, hide the func node in the aggregation and
3492 * return the aggregation itself up to the parse tree parent.
3493 * This transformation is legal since the assigned function
3494 * cannot change identity across disjoint cooking passes and
3495 * the argument list subtree is retained for later cooking.
3496 */
3497 if (lp->dn_kind == DT_NODE_AGG) {
3498 const char *aname = lp->dn_ident->di_name;
3499 dt_ident_t *oid = lp->dn_ident->di_iarg;

3501 if (rp->dn_kind != DT_NODE_FUNC ||
3502 rp->dn_ident->di_kind != DT_IDENT_AGGFUNC) {
3503 xyerror(D_AGG_FUNC,
3504 "@%s must be assigned the result of "
3505 "an aggregating function\n", aname);
3506 }

3508 if (oid != NULL && oid != rp->dn_ident) {
3509 xyerror(D_AGG_REDEF,
3510 "aggregation redefined: @%s\n\t "
3511 "current: @%s = %s()\n\tprevious: @%s = "
3512 "%s() : line %d\n", aname, aname,
3513 rp->dn_ident->di_name, aname, oid->di_name,
3514 lp->dn_ident->di_lineno);
3515 } else if (oid == NULL)
3516 lp->dn_ident->di_iarg = rp->dn_ident;

3518 /*
3519 * Do not allow multiple aggregation assignments in a
3520 * single statement, e.g. (@a = count()) = count();
3521 * We produce a message as if the result of aggregating
3522 * function does not propagate DT_NF_LVALUE.
3523 */
3524 if (lp->dn_aggfun != NULL) {
3525 xyerror(D_OP_LVAL, "operator = requires "
3526 "modifiable lvalue as an operand\n");
3527 }

new/usr/src/lib/libdtrace/common/dt_parser.c 45

3529 lp->dn_aggfun = rp;
3530 lp = dt_node_cook(lp, DT_IDFLG_MOD);

3532 dnp->dn_left = dnp->dn_right = NULL;
3533 dt_node_free(dnp);

3535 return (lp);
3536 }

3538 /*
3539 * If the right-hand side is a dynamic variable that is the
3540 * output of a translator, our result is the translated type.
3541 */
3542 if ((idp = dt_node_resolve(rp, DT_IDENT_XLSOU)) != NULL) {
3543 ctfp = idp->di_ctfp;
3544 type = idp->di_type;
3545 uref = idp->di_flags & DT_IDFLG_USER;
3546 } else {
3547 ctfp = rp->dn_ctfp;
3548 type = rp->dn_type;
3549 uref = rp->dn_flags & DT_NF_USERLAND;
3550 }

3552 /*
3553 * If the left-hand side of an assignment statement is a virgin
3554 * variable created by this compilation pass, reset the type of
3555 * this variable to the type of the right-hand side.
3556 */
3557 if (lp->dn_kind == DT_NODE_VAR &&
3558 dt_ident_unref(lp->dn_ident)) {
3559 dt_node_type_assign(lp, ctfp, type, B_FALSE);
2837 dt_node_type_assign(lp, ctfp, type);
3560 dt_ident_type_assign(lp->dn_ident, ctfp, type);

3562 if (uref) {
3563 lp->dn_flags |= DT_NF_USERLAND;
3564 lp->dn_ident->di_flags |= DT_IDFLG_USER;
3565 }
3566 }

3568 if (lp->dn_kind == DT_NODE_VAR)
3569 lp->dn_ident->di_flags |= DT_IDFLG_MOD;

3571 /*
3572 * The rules for type checking for the assignment operators are
3573 * described in the ANSI-C spec (see K&R[A7.17]). We share
3574 * most of this code with the argument list checking code.
3575 */
3576 if (!dt_node_is_string(lp)) {
3577 kind = ctf_type_kind(lp->dn_ctfp,
3578 ctf_type_resolve(lp->dn_ctfp, lp->dn_type));

3580 if (kind == CTF_K_ARRAY || kind == CTF_K_FUNCTION) {
3581 xyerror(D_OP_ARRFUN, "operator %s may not be "
3582 "applied to operand of type \"%s\"\n",
3583 opstr(op),
3584 dt_node_type_name(lp, n1, sizeof (n1)));
3585 }
3586 }

3588 if (idp != NULL && idp->di_kind == DT_IDENT_XLSOU &&
3589 ctf_type_compat(lp->dn_ctfp, lp->dn_type, ctfp, type))
3590 goto asgn_common;

3592 if (dt_node_is_argcompat(lp, rp))

new/usr/src/lib/libdtrace/common/dt_parser.c 46

3593 goto asgn_common;

3595 xyerror(D_OP_INCOMPAT,
3596 "operands have incompatible types: \"%s\" %s \"%s\"\n",
3597 dt_node_type_name(lp, n1, sizeof (n1)), opstr(op),
3598 dt_node_type_name(rp, n2, sizeof (n2)));
3599 /*NOTREACHED*/

3601 case DT_TOK_ADD_EQ:
3602 case DT_TOK_SUB_EQ:
3603 if (lp->dn_kind == DT_NODE_IDENT) {
3604 dt_xcook_ident(lp, dtp->dt_globals,
3605 DT_IDENT_SCALAR, B_TRUE);
3606 }

3608 lp = dnp->dn_left =
3609 dt_node_cook(lp, DT_IDFLG_REF | DT_IDFLG_MOD);

3611 rp = dnp->dn_right =
3612 dt_node_cook(rp, DT_IDFLG_REF | DT_IDFLG_MOD);

3614 if (dt_node_is_string(lp) || dt_node_is_string(rp)) {
3615 xyerror(D_OP_INCOMPAT, "operands have "
3616 "incompatible types: \"%s\" %s \"%s\"\n",
3617 dt_node_type_name(lp, n1, sizeof (n1)), opstr(op),
3618 dt_node_type_name(rp, n2, sizeof (n2)));
3619 }

3621 /*
3622 * The rules for type checking for the assignment operators are
3623 * described in the ANSI-C spec (see K&R[A7.17]). To these
3624 * rules we add that only writable D nodes can be modified.
3625 */
3626 if (dt_node_is_integer(lp) == 0 ||
3627 dt_node_is_integer(rp) == 0) {
3628 if (!dt_node_is_pointer(lp) || dt_node_is_vfptr(lp)) {
3629 xyerror(D_OP_VFPTR,
3630 "operator %s requires left-hand scalar "
3631 "operand of known size\n", opstr(op));
3632 } else if (dt_node_is_integer(rp) == 0 &&
3633 dt_node_is_ptrcompat(lp, rp, NULL, NULL) == 0) {
3634 xyerror(D_OP_INCOMPAT, "operands have "
3635 "incompatible types: \"%s\" %s \"%s\"\n",
3636 dt_node_type_name(lp, n1, sizeof (n1)),
3637 opstr(op),
3638 dt_node_type_name(rp, n2, sizeof (n2)));
3639 }
3640 }
3641 asgn_common:
3642 dt_assign_common(dnp);
3643 break;

3645 case DT_TOK_PTR:
3646 /*
3647 * If the left-hand side of operator -> is the name "self",
3648 * then we permit a TLS variable to be created or referenced.
3649 */
3650 if (lp->dn_kind == DT_NODE_IDENT &&
3651 strcmp(lp->dn_string, "self") == 0) {
3652 if (rp->dn_kind != DT_NODE_VAR) {
3653 dt_xcook_ident(rp, dtp->dt_tls,
3654 DT_IDENT_SCALAR, B_TRUE);
3655 }

3657 if (idflags != 0)
3658 rp = dt_node_cook(rp, idflags);

new/usr/src/lib/libdtrace/common/dt_parser.c 47

3660 dnp->dn_right = dnp->dn_left; /* avoid freeing rp */
3661 dt_node_free(dnp);
3662 return (rp);
3663 }

3665 /*
3666 * If the left-hand side of operator -> is the name "this",
3667 * then we permit a local variable to be created or referenced.
3668 */
3669 if (lp->dn_kind == DT_NODE_IDENT &&
3670 strcmp(lp->dn_string, "this") == 0) {
3671 if (rp->dn_kind != DT_NODE_VAR) {
3672 dt_xcook_ident(rp, yypcb->pcb_locals,
3673 DT_IDENT_SCALAR, B_TRUE);
3674 }

3676 if (idflags != 0)
3677 rp = dt_node_cook(rp, idflags);

3679 dnp->dn_right = dnp->dn_left; /* avoid freeing rp */
3680 dt_node_free(dnp);
3681 return (rp);
3682 }

3684 /*FALLTHRU*/

3686 case DT_TOK_DOT:
3687 lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF);

3689 if (rp->dn_kind != DT_NODE_IDENT) {
3690 xyerror(D_OP_IDENT, "operator %s must be followed by "
3691 "an identifier\n", opstr(op));
3692 }

3694 if ((idp = dt_node_resolve(lp, DT_IDENT_XLSOU)) != NULL ||
3695 (idp = dt_node_resolve(lp, DT_IDENT_XLPTR)) != NULL) {
3696 /*
3697 * If the left-hand side is a translated struct or ptr,
3698 * the type of the left is the translation output type.
3699 */
3700 dt_xlator_t *dxp = idp->di_data;

3702 if (dt_xlator_member(dxp, rp->dn_string) == NULL) {
3703 xyerror(D_XLATE_NOCONV,
3704 "translator does not define conversion "
3705 "for member: %s\n", rp->dn_string);
3706 }

3708 ctfp = idp->di_ctfp;
3709 type = ctf_type_resolve(ctfp, idp->di_type);
3710 uref = idp->di_flags & DT_IDFLG_USER;
3711 } else {
3712 ctfp = lp->dn_ctfp;
3713 type = ctf_type_resolve(ctfp, lp->dn_type);
3714 uref = lp->dn_flags & DT_NF_USERLAND;
3715 }

3717 kind = ctf_type_kind(ctfp, type);

3719 if (op == DT_TOK_PTR) {
3720 if (kind != CTF_K_POINTER) {
3721 xyerror(D_OP_PTR, "operator %s must be "
3722 "applied to a pointer\n", opstr(op));
3723 }
3724 type = ctf_type_reference(ctfp, type);

new/usr/src/lib/libdtrace/common/dt_parser.c 48

3725 type = ctf_type_resolve(ctfp, type);
3726 kind = ctf_type_kind(ctfp, type);
3727 }

3729 /*
3730 * If we follow a reference to a forward declaration tag,
3731 * search the entire type space for the actual definition.
3732 */
3733 while (kind == CTF_K_FORWARD) {
3734 char *tag = ctf_type_name(ctfp, type, n1, sizeof (n1));
3735 dtrace_typeinfo_t dtt;

3737 if (tag != NULL && dt_type_lookup(tag, &dtt) == 0 &&
3738 (dtt.dtt_ctfp != ctfp || dtt.dtt_type != type)) {
3739 ctfp = dtt.dtt_ctfp;
3740 type = ctf_type_resolve(ctfp, dtt.dtt_type);
3741 kind = ctf_type_kind(ctfp, type);
3742 } else {
3743 xyerror(D_OP_INCOMPLETE,
3744 "operator %s cannot be applied to a "
3745 "forward declaration: no %s definition "
3746 "is available\n", opstr(op), tag);
3747 }
3748 }

3750 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) {
3751 if (op == DT_TOK_PTR) {
3752 xyerror(D_OP_SOU, "operator -> cannot be "
3753 "applied to pointer to type \"%s\"; must "
3754 "be applied to a struct or union pointer\n",
3755 ctf_type_name(ctfp, type, n1, sizeof (n1)));
3756 } else {
3757 xyerror(D_OP_SOU, "operator %s cannot be "
3758 "applied to type \"%s\"; must be applied "
3759 "to a struct or union\n", opstr(op),
3760 ctf_type_name(ctfp, type, n1, sizeof (n1)));
3761 }
3762 }

3764 if (ctf_member_info(ctfp, type, rp->dn_string, &m) == CTF_ERR) {
3765 xyerror(D_TYPE_MEMBER,
3766 "%s is not a member of %s\n", rp->dn_string,
3767 ctf_type_name(ctfp, type, n1, sizeof (n1)));
3768 }

3770 type = ctf_type_resolve(ctfp, m.ctm_type);
3771 kind = ctf_type_kind(ctfp, type);

3773 dt_node_type_assign(dnp, ctfp, m.ctm_type, B_FALSE);
3051 dt_node_type_assign(dnp, ctfp, m.ctm_type);
3774 dt_node_attr_assign(dnp, lp->dn_attr);

3776 if (op == DT_TOK_PTR && (kind != CTF_K_ARRAY ||
3777 dt_node_is_string(dnp)))
3778 dnp->dn_flags |= DT_NF_LVALUE; /* see K&R[A7.3.3] */

3780 if (op == DT_TOK_DOT && (lp->dn_flags & DT_NF_LVALUE) &&
3781 (kind != CTF_K_ARRAY || dt_node_is_string(dnp)))
3782 dnp->dn_flags |= DT_NF_LVALUE; /* see K&R[A7.3.3] */

3784 if (lp->dn_flags & DT_NF_WRITABLE)
3785 dnp->dn_flags |= DT_NF_WRITABLE;

3787 if (uref && (kind == CTF_K_POINTER ||
3788 (dnp->dn_flags & DT_NF_REF)))
3789 dnp->dn_flags |= DT_NF_USERLAND;

new/usr/src/lib/libdtrace/common/dt_parser.c 49

3790 break;

3792 case DT_TOK_LBRAC: {
3793 /*
3794 * If op is DT_TOK_LBRAC, we know from the special-case code at
3795 * the top that lp is either a D variable or an aggregation.
3796 */
3797 dt_node_t *lnp;

3799 /*
3800 * If the left-hand side is an aggregation, just set dn_aggtup
3801 * to the right-hand side and return the cooked aggregation.
3802 * This transformation is legal since we are just collapsing
3803 * nodes to simplify later processing, and the entire aggtup
3804 * parse subtree is retained for subsequent cooking passes.
3805 */
3806 if (lp->dn_kind == DT_NODE_AGG) {
3807 if (lp->dn_aggtup != NULL) {
3808 xyerror(D_AGG_MDIM, "improper attempt to "
3809 "reference @%s as a multi-dimensional "
3810 "array\n", lp->dn_ident->di_name);
3811 }

3813 lp->dn_aggtup = rp;
3814 lp = dt_node_cook(lp, 0);

3816 dnp->dn_left = dnp->dn_right = NULL;
3817 dt_node_free(dnp);

3819 return (lp);
3820 }

3822 assert(lp->dn_kind == DT_NODE_VAR);
3823 idp = lp->dn_ident;

3825 /*
3826 * If the left-hand side is a non-global scalar that hasn’t yet
3827 * been referenced or modified, it was just created by self->
3828 * or this-> and we can convert it from scalar to assoc array.
3829 */
3830 if (idp->di_kind == DT_IDENT_SCALAR && dt_ident_unref(idp) &&
3831 (idp->di_flags & (DT_IDFLG_LOCAL | DT_IDFLG_TLS)) != 0) {

3833 if (idp->di_flags & DT_IDFLG_LOCAL) {
3834 xyerror(D_ARR_LOCAL,
3835 "local variables may not be used as "
3836 "associative arrays: %s\n", idp->di_name);
3837 }

3839 dt_dprintf("morph variable %s (id %u) from scalar to "
3840 "array\n", idp->di_name, idp->di_id);

3842 dt_ident_morph(idp, DT_IDENT_ARRAY,
3843 &dt_idops_assc, NULL);
3844 }

3846 if (idp->di_kind != DT_IDENT_ARRAY) {
3847 xyerror(D_IDENT_BADREF, "%s ’%s’ may not be referenced "
3848 "as %s\n", dt_idkind_name(idp->di_kind),
3849 idp->di_name, dt_idkind_name(DT_IDENT_ARRAY));
3850 }

3852 /*
3853 * Now that we’ve confirmed our left-hand side is a DT_NODE_VAR
3854 * of idkind DT_IDENT_ARRAY, we need to splice the [node from
3855 * the parse tree and leave a cooked DT_NODE_VAR in its place

new/usr/src/lib/libdtrace/common/dt_parser.c 50

3856 * where dn_args for the VAR node is the right-hand ’rp’ tree,
3857 * as shown in the parse tree diagram below:
3858 *
3859 * / /
3860 * [OP2 "["]=dnp [VAR]=dnp
3861 * / \ => |
3862 * / \ +- dn_args -> [???]=rp
3863 * [VAR]=lp [???]=rp
3864 *
3865 * Since the final dt_node_cook(dnp) can fail using longjmp we
3866 * must perform the transformations as a group first by over-
3867 * writing ’dnp’ to become the VAR node, so that the parse tree
3868 * is guaranteed to be in a consistent state if the cook fails.
3869 */
3870 assert(lp->dn_kind == DT_NODE_VAR);
3871 assert(lp->dn_args == NULL);

3873 lnp = dnp->dn_link;
3874 bcopy(lp, dnp, sizeof (dt_node_t));
3875 dnp->dn_link = lnp;

3877 dnp->dn_args = rp;
3878 dnp->dn_list = NULL;

3880 dt_node_free(lp);
3881 return (dt_node_cook(dnp, idflags));
3882 }

3884 case DT_TOK_XLATE: {
3885 dt_xlator_t *dxp;

3887 assert(lp->dn_kind == DT_NODE_TYPE);
3888 rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF);
3889 dxp = dt_xlator_lookup(dtp, rp, lp, DT_XLATE_FUZZY);

3891 if (dxp == NULL) {
3892 xyerror(D_XLATE_NONE,
3893 "cannot translate from \"%s\" to \"%s\"\n",
3894 dt_node_type_name(rp, n1, sizeof (n1)),
3895 dt_node_type_name(lp, n2, sizeof (n2)));
3896 }

3898 dnp->dn_ident = dt_xlator_ident(dxp, lp->dn_ctfp, lp->dn_type);
3899 dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp),
3900 B_FALSE);
3177 dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp));
3901 dt_node_attr_assign(dnp,
3902 dt_attr_min(rp->dn_attr, dnp->dn_ident->di_attr));
3903 break;
3904 }

3906 case DT_TOK_LPAR: {
3907 ctf_id_t ltype, rtype;
3908 uint_t lkind, rkind;

3910 assert(lp->dn_kind == DT_NODE_TYPE);
3911 rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF);

3913 ltype = ctf_type_resolve(lp->dn_ctfp, lp->dn_type);
3914 lkind = ctf_type_kind(lp->dn_ctfp, ltype);

3916 rtype = ctf_type_resolve(rp->dn_ctfp, rp->dn_type);
3917 rkind = ctf_type_kind(rp->dn_ctfp, rtype);

3919 /*
3920 * The rules for casting are loosely explained in K&R[A7.5]

new/usr/src/lib/libdtrace/common/dt_parser.c 51

3921 * and K&R[A6]. Basically, we can cast to the same type or
3922 * same base type, between any kind of scalar values, from
3923 * arrays to pointers, and we can cast anything to void.
3924 * To these rules D adds casts from scalars to strings.
3925 */
3926 if (ctf_type_compat(lp->dn_ctfp, lp->dn_type,
3927 rp->dn_ctfp, rp->dn_type))
3928 /*EMPTY*/;
3929 else if (dt_node_is_scalar(lp) &&
3930 (dt_node_is_scalar(rp) || rkind == CTF_K_FUNCTION))
3931 /*EMPTY*/;
3932 else if (dt_node_is_void(lp))
3933 /*EMPTY*/;
3934 else if (lkind == CTF_K_POINTER && dt_node_is_pointer(rp))
3935 /*EMPTY*/;
3936 else if (dt_node_is_string(lp) && (dt_node_is_scalar(rp) ||
3937 dt_node_is_pointer(rp) || dt_node_is_strcompat(rp)))
3938 /*EMPTY*/;
3939 else {
3940 xyerror(D_CAST_INVAL,
3941 "invalid cast expression: \"%s\" to \"%s\"\n",
3942 dt_node_type_name(rp, n1, sizeof (n1)),
3943 dt_node_type_name(lp, n2, sizeof (n2)));
3944 }

3946 dt_node_type_propagate(lp, dnp); /* see K&R[A7.5] */
3947 dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr));

3949 /*
3950 * If it’s a pointer then should be able to (attempt to)
3951 * assign to it.
3952 */
3953 if (lkind == CTF_K_POINTER)
3954 dnp->dn_flags |= DT_NF_WRITABLE;

3956 break;
3957 }

3959 case DT_TOK_COMMA:
3960 lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF);
3961 rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF);

3963 if (dt_node_is_dynamic(lp) || dt_node_is_dynamic(rp)) {
3964 xyerror(D_OP_DYN, "operator %s operands "
3965 "cannot be of dynamic type\n", opstr(op));
3966 }

3968 if (dt_node_is_actfunc(lp) || dt_node_is_actfunc(rp)) {
3969 xyerror(D_OP_ACT, "operator %s operands "
3970 "cannot be actions\n", opstr(op));
3971 }

3973 dt_node_type_propagate(rp, dnp); /* see K&R[A7.18] */
3974 dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr));
3975 break;

3977 default:
3978 xyerror(D_UNKNOWN, "invalid binary op %s\n", opstr(op));
3979 }

3981 /*
3982 * Complete the conversion of E1[E2] to *((E1)+(E2)) that we started
3983 * at the top of our switch() above (see K&R[A7.3.1]). Since E2 is
3984 * parsed as an argument_expression_list by dt_grammar.y, we can
3985 * end up with a comma-separated list inside of a non-associative
3986 * array reference. We check for this and report an appropriate error.

new/usr/src/lib/libdtrace/common/dt_parser.c 52

3987 */
3988 if (dnp->dn_op == DT_TOK_LBRAC && op == DT_TOK_ADD) {
3989 dt_node_t *pnp;

3991 if (rp->dn_list != NULL) {
3992 xyerror(D_ARR_BADREF,
3993 "cannot access %s as an associative array\n",
3994 dt_node_name(lp, n1, sizeof (n1)));
3995 }

3997 dnp->dn_op = DT_TOK_ADD;
3998 pnp = dt_node_op1(DT_TOK_DEREF, dnp);

4000 /*
4001 * Cook callbacks are not typically permitted to allocate nodes.
4002 * When we do, we must insert them in the middle of an existing
4003 * allocation list rather than having them appended to the pcb
4004 * list because the sub-expression may be part of a definition.
4005 */
4006 assert(yypcb->pcb_list == pnp);
4007 yypcb->pcb_list = pnp->dn_link;

4009 pnp->dn_link = dnp->dn_link;
4010 dnp->dn_link = pnp;

4012 return (dt_node_cook(pnp, DT_IDFLG_REF));
4013 }

4015 return (dnp);
4016 }

4018 /*ARGSUSED*/
4019 static dt_node_t *
4020 dt_cook_op3(dt_node_t *dnp, uint_t idflags)
4021 {
4022 dt_node_t *lp, *rp;
4023 ctf_file_t *ctfp;
4024 ctf_id_t type;

4026 dnp->dn_expr = dt_node_cook(dnp->dn_expr, DT_IDFLG_REF);
4027 lp = dnp->dn_left = dt_node_cook(dnp->dn_left, DT_IDFLG_REF);
4028 rp = dnp->dn_right = dt_node_cook(dnp->dn_right, DT_IDFLG_REF);

4030 if (!dt_node_is_scalar(dnp->dn_expr)) {
4031 xyerror(D_OP_SCALAR,
4032 "operator ?: expression must be of scalar type\n");
4033 }

4035 if (dt_node_is_dynamic(lp) || dt_node_is_dynamic(rp)) {
4036 xyerror(D_OP_DYN,
4037 "operator ?: operands cannot be of dynamic type\n");
4038 }

4040 /*
4041 * The rules for type checking for the ternary operator are complex and
4042 * are described in the ANSI-C spec (see K&R[A7.16]). We implement
4043 * the various tests in order from least to most expensive.
4044 */
4045 if (ctf_type_compat(lp->dn_ctfp, lp->dn_type,
4046 rp->dn_ctfp, rp->dn_type)) {
4047 ctfp = lp->dn_ctfp;
4048 type = lp->dn_type;
4049 } else if (dt_node_is_integer(lp) && dt_node_is_integer(rp)) {
4050 dt_type_promote(lp, rp, &ctfp, &type);
4051 } else if (dt_node_is_strcompat(lp) && dt_node_is_strcompat(rp) &&
4052 (dt_node_is_string(lp) || dt_node_is_string(rp))) {

new/usr/src/lib/libdtrace/common/dt_parser.c 53

4053 ctfp = DT_STR_CTFP(yypcb->pcb_hdl);
4054 type = DT_STR_TYPE(yypcb->pcb_hdl);
4055 } else if (dt_node_is_ptrcompat(lp, rp, &ctfp, &type) == 0) {
4056 xyerror(D_OP_INCOMPAT,
4057 "operator ?: operands must have compatible types\n");
4058 }

4060 if (dt_node_is_actfunc(lp) || dt_node_is_actfunc(rp)) {
4061 xyerror(D_OP_ACT, "action cannot be "
4062 "used in a conditional context\n");
4063 }

4065 dt_node_type_assign(dnp, ctfp, type, B_FALSE);
3342 dt_node_type_assign(dnp, ctfp, type);
4066 dt_node_attr_assign(dnp, dt_attr_min(dnp->dn_expr->dn_attr,
4067 dt_attr_min(lp->dn_attr, rp->dn_attr)));

4069 return (dnp);
4070 }
______unchanged_portion_omitted_

4081 /*
4082 * If dn_aggfun is set, this node is a collapsed aggregation assignment (see
4083 * the special case code for DT_TOK_ASGN in dt_cook_op2() above), in which
4084 * case we cook both the tuple and the function call. If dn_aggfun is NULL,
4085 * this node is just a reference to the aggregation’s type and attributes.
4086 */
4087 /*ARGSUSED*/
4088 static dt_node_t *
4089 dt_cook_aggregation(dt_node_t *dnp, uint_t idflags)
4090 {
4091 dtrace_hdl_t *dtp = yypcb->pcb_hdl;

4093 if (dnp->dn_aggfun != NULL) {
4094 dnp->dn_aggfun = dt_node_cook(dnp->dn_aggfun, DT_IDFLG_REF);
4095 dt_node_attr_assign(dnp, dt_ident_cook(dnp,
4096 dnp->dn_ident, &dnp->dn_aggtup));
4097 } else {
4098 dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp),
4099 B_FALSE);
3375 dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp));
4100 dt_node_attr_assign(dnp, dnp->dn_ident->di_attr);
4101 }

4103 return (dnp);
4104 }
______unchanged_portion_omitted_

4270 /*ARGSUSED*/
4271 static dt_node_t *
4272 dt_cook_xlator(dt_node_t *dnp, uint_t idflags)
4273 {
4274 dtrace_hdl_t *dtp = yypcb->pcb_hdl;
4275 dt_xlator_t *dxp = dnp->dn_xlator;
4276 dt_node_t *mnp;

4278 char n1[DT_TYPE_NAMELEN];
4279 char n2[DT_TYPE_NAMELEN];

4281 dtrace_attribute_t attr = _dtrace_maxattr;
4282 ctf_membinfo_t ctm;

4284 /*
4285 * Before cooking each translator member, we push a reference to the
4286 * hash containing translator-local identifiers on to pcb_globals to
4287 * temporarily interpose these identifiers in front of other globals.

new/usr/src/lib/libdtrace/common/dt_parser.c 54

4288 */
4289 dt_idstack_push(&yypcb->pcb_globals, dxp->dx_locals);

4291 for (mnp = dnp->dn_members; mnp != NULL; mnp = mnp->dn_list) {
4292 if (ctf_member_info(dxp->dx_dst_ctfp, dxp->dx_dst_type,
4293 mnp->dn_membname, &ctm) == CTF_ERR) {
4294 xyerror(D_XLATE_MEMB,
4295 "translator member %s is not a member of %s\n",
4296 mnp->dn_membname, ctf_type_name(dxp->dx_dst_ctfp,
4297 dxp->dx_dst_type, n1, sizeof (n1)));
4298 }

4300 (void) dt_node_cook(mnp, DT_IDFLG_REF);
4301 dt_node_type_assign(mnp, dxp->dx_dst_ctfp, ctm.ctm_type,
4302 B_FALSE);
3577 dt_node_type_assign(mnp, dxp->dx_dst_ctfp, ctm.ctm_type);
4303 attr = dt_attr_min(attr, mnp->dn_attr);

4305 if (dt_node_is_argcompat(mnp, mnp->dn_membexpr) == 0) {
4306 xyerror(D_XLATE_INCOMPAT,
4307 "translator member %s definition uses "
4308 "incompatible types: \"%s\" = \"%s\"\n",
4309 mnp->dn_membname,
4310 dt_node_type_name(mnp, n1, sizeof (n1)),
4311 dt_node_type_name(mnp->dn_membexpr,
4312 n2, sizeof (n2)));
4313 }
4314 }

4316 dt_idstack_pop(&yypcb->pcb_globals, dxp->dx_locals);

4318 dxp->dx_souid.di_attr = attr;
4319 dxp->dx_ptrid.di_attr = attr;

4321 dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp), B_FALSE);
3596 dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp));
4322 dt_node_attr_assign(dnp, _dtrace_defattr);

4324 return (dnp);
4325 }
______unchanged_portion_omitted_

4596 /*
4597 * Compute the DOF dtrace_diftype_t representation of a node’s type. This is
4598 * called from a variety of places in the library so it cannot assume yypcb
4599 * is valid: any references to handle-specific data must be made through ’dtp’.
4600 */
4601 void
4602 dt_node_diftype(dtrace_hdl_t *dtp, const dt_node_t *dnp, dtrace_diftype_t *tp)
4603 {
4604 if (dnp->dn_ctfp == DT_STR_CTFP(dtp) &&
4605 dnp->dn_type == DT_STR_TYPE(dtp)) {
4606 tp->dtdt_kind = DIF_TYPE_STRING;
4607 tp->dtdt_ckind = CTF_K_UNKNOWN;
4608 } else {
4609 tp->dtdt_kind = DIF_TYPE_CTF;
4610 tp->dtdt_ckind = ctf_type_kind(dnp->dn_ctfp,
4611 ctf_type_resolve(dnp->dn_ctfp, dnp->dn_type));
4612 }

4614 tp->dtdt_flags = (dnp->dn_flags & DT_NF_REF) ?
4615 (dnp->dn_flags & DT_NF_USERLAND) ? DIF_TF_BYUREF :
4616 DIF_TF_BYREF : 0;
3889 tp->dtdt_flags = (dnp->dn_flags & DT_NF_REF) ? DIF_TF_BYREF : 0;
4617 tp->dtdt_pad = 0;
4618 tp->dtdt_size = ctf_type_size(dnp->dn_ctfp, dnp->dn_type);

new/usr/src/lib/libdtrace/common/dt_parser.c 55

4619 }
______unchanged_portion_omitted_

new/usr/src/lib/libdtrace/common/dt_parser.h 1

**
 11453 Tue Jan 14 16:48:57 2014
new/usr/src/lib/libdtrace/common/dt_parser.h
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2013 by Delphix. All rights reserved.
27 * Copyright (c) 2013 Joyent, Inc. All rights reserved.
28 */
29 #endif /* ! codereview */

31 #ifndef _DT_PARSER_H
32 #define _DT_PARSER_H

25 #pragma ident "%Z%%M% %I% %E% SMI"

34 #include <sys/types.h>
35 #include <sys/dtrace.h>

37 #include <libctf.h>
38 #include <stdarg.h>
39 #include <stdio.h>

41 #ifdef __cplusplus
42 extern "C" {
43 #endif

45 #include <dt_errtags.h>
46 #include <dt_ident.h>
47 #include <dt_decl.h>
48 #include <dt_xlator.h>
49 #include <dt_list.h>

51 typedef struct dt_node {
52 ctf_file_t *dn_ctfp; /* CTF type container for node’s type */
53 ctf_id_t dn_type; /* CTF type reference for node’s type */
54 uchar_t dn_kind; /* node kind (DT_NODE_*, defined below) */

new/usr/src/lib/libdtrace/common/dt_parser.h 2

55 uchar_t dn_flags; /* node flags (DT_NF_*, defined below) */
56 ushort_t dn_op; /* operator (DT_TOK_*, defined by lex) */
57 int dn_line; /* line number for error messages */
58 int dn_reg; /* register allocated by cg */
59 dtrace_attribute_t dn_attr; /* node stability attributes */

61 /*
62 * D compiler nodes, as is the usual style, contain a union of the
63 * different sub-elements required by the various kinds of nodes.
64 * These sub-elements are accessed using the macros defined below.
65 */
66 union {
67 struct {
68 uintmax_t _value; /* integer value */
69 char *_string; /* string value */
70 } _const;

72 struct {
73 dt_ident_t *_ident; /* identifier reference */
74 struct dt_node *_links[3]; /* child node pointers */
75 } _nodes;

77 struct {
78 struct dt_node *_descs; /* list of descriptions */
79 struct dt_node *_pred; /* predicate expression */
80 struct dt_node *_acts; /* action statement list */
81 dt_idhash_t *_locals; /* local variable hash */
82 dtrace_attribute_t _attr; /* context attributes */
83 } _clause;

85 struct {
86 char *_spec; /* specifier string (if any) */
87 dtrace_probedesc_t *_desc; /* final probe description */
88 } _pdesc;

90 struct {
91 char *_name; /* string name of member */
92 struct dt_node *_expr; /* expression node pointer */
93 dt_xlator_t *_xlator; /* translator reference */
94 uint_t _id; /* member identifier */
95 } _member;

97 struct {
98 dt_xlator_t *_xlator; /* translator reference */
99 struct dt_node *_xmemb; /* individual xlator member */
100 struct dt_node *_membs; /* list of member nodes */
101 } _xlator;

103 struct {
104 char *_name; /* string name of provider */
105 struct dt_provider *_pvp; /* provider references */
106 struct dt_node *_probes; /* list of probe nodes */
107 int _redecl; /* provider redeclared */
108 } _provider;
109 } dn_u;

111 struct dt_node *dn_list; /* parse tree list link */
112 struct dt_node *dn_link; /* allocation list link */
113 } dt_node_t;

115 #define dn_value dn_u._const._value /* DT_NODE_INT */
116 #define dn_string dn_u._const._string /* STRING, IDENT, TYPE */
117 #define dn_ident dn_u._nodes._ident /* VAR,SYM,FUN,AGG,INL,PROBE */
118 #define dn_args dn_u._nodes._links[0] /* DT_NODE_VAR, FUNC */
119 #define dn_child dn_u._nodes._links[0] /* DT_NODE_OP1 */
120 #define dn_left dn_u._nodes._links[0] /* DT_NODE_OP2, OP3 */

new/usr/src/lib/libdtrace/common/dt_parser.h 3

121 #define dn_right dn_u._nodes._links[1] /* DT_NODE_OP2, OP3 */
122 #define dn_expr dn_u._nodes._links[2] /* DT_NODE_OP3, DEXPR */
123 #define dn_aggfun dn_u._nodes._links[0] /* DT_NODE_AGG */
124 #define dn_aggtup dn_u._nodes._links[1] /* DT_NODE_AGG */
125 #define dn_pdescs dn_u._clause._descs /* DT_NODE_CLAUSE */
126 #define dn_pred dn_u._clause._pred /* DT_NODE_CLAUSE */
127 #define dn_acts dn_u._clause._acts /* DT_NODE_CLAUSE */
128 #define dn_locals dn_u._clause._locals /* DT_NODE_CLAUSE */
129 #define dn_ctxattr dn_u._clause._attr /* DT_NODE_CLAUSE */
130 #define dn_spec dn_u._pdesc._spec /* DT_NODE_PDESC */
131 #define dn_desc dn_u._pdesc._desc /* DT_NODE_PDESC */
132 #define dn_membname dn_u._member._name /* DT_NODE_MEMBER */
133 #define dn_membexpr dn_u._member._expr /* DT_NODE_MEMBER */
134 #define dn_membxlator dn_u._member._xlator /* DT_NODE_MEMBER */
135 #define dn_membid dn_u._member._id /* DT_NODE_MEMBER */
136 #define dn_xlator dn_u._xlator._xlator /* DT_NODE_XLATOR */
137 #define dn_xmember dn_u._xlator._xmemb /* DT_NODE_XLATOR */
138 #define dn_members dn_u._xlator._membs /* DT_NODE_XLATOR */
139 #define dn_provname dn_u._provider._name /* DT_NODE_PROVIDER */
140 #define dn_provider dn_u._provider._pvp /* DT_NODE_PROVIDER */
141 #define dn_provred dn_u._provider._redecl /* DT_NODE_PROVIDER */
142 #define dn_probes dn_u._provider._probes /* DT_NODE_PROVIDER */

144 #define DT_NODE_FREE 0 /* unused node (waiting to be freed) */
145 #define DT_NODE_INT 1 /* integer value */
146 #define DT_NODE_STRING 2 /* string value */
147 #define DT_NODE_IDENT 3 /* identifier */
148 #define DT_NODE_VAR 4 /* variable reference */
149 #define DT_NODE_SYM 5 /* symbol reference */
150 #define DT_NODE_TYPE 6 /* type reference or formal parameter */
151 #define DT_NODE_FUNC 7 /* function call */
152 #define DT_NODE_OP1 8 /* unary operator */
153 #define DT_NODE_OP2 9 /* binary operator */
154 #define DT_NODE_OP3 10 /* ternary operator */
155 #define DT_NODE_DEXPR 11 /* D expression action */
156 #define DT_NODE_DFUNC 12 /* D function action */
157 #define DT_NODE_AGG 13 /* aggregation */
158 #define DT_NODE_PDESC 14 /* probe description */
159 #define DT_NODE_CLAUSE 15 /* clause definition */
160 #define DT_NODE_INLINE 16 /* inline definition */
161 #define DT_NODE_MEMBER 17 /* member definition */
162 #define DT_NODE_XLATOR 18 /* translator definition */
163 #define DT_NODE_PROBE 19 /* probe definition */
164 #define DT_NODE_PROVIDER 20 /* provider definition */
165 #define DT_NODE_PROG 21 /* program translation unit */

167 #define DT_NF_SIGNED 0x01 /* data is a signed quantity (else unsigned) */
168 #define DT_NF_COOKED 0x02 /* data is a known type (else still cooking) */
169 #define DT_NF_REF 0x04 /* pass by reference (array, struct, union) */
170 #define DT_NF_LVALUE 0x08 /* node is an l-value according to ANSI-C */
171 #define DT_NF_WRITABLE 0x10 /* node is writable (can be modified) */
172 #define DT_NF_BITFIELD 0x20 /* node is an integer bitfield */
173 #define DT_NF_USERLAND 0x40 /* data is a userland address */

175 #define DT_TYPE_NAMELEN 128 /* reasonable size for ctf_type_name() */

177 extern int dt_node_is_integer(const dt_node_t *);
178 extern int dt_node_is_float(const dt_node_t *);
179 extern int dt_node_is_scalar(const dt_node_t *);
180 extern int dt_node_is_arith(const dt_node_t *);
181 extern int dt_node_is_vfptr(const dt_node_t *);
182 extern int dt_node_is_dynamic(const dt_node_t *);
183 extern int dt_node_is_stack(const dt_node_t *);
184 extern int dt_node_is_symaddr(const dt_node_t *);
185 extern int dt_node_is_usymaddr(const dt_node_t *);
186 extern int dt_node_is_string(const dt_node_t *);

new/usr/src/lib/libdtrace/common/dt_parser.h 4

187 extern int dt_node_is_strcompat(const dt_node_t *);
188 extern int dt_node_is_pointer(const dt_node_t *);
189 extern int dt_node_is_void(const dt_node_t *);
190 extern int dt_node_is_ptrcompat(const dt_node_t *, const dt_node_t *,
191 ctf_file_t **, ctf_id_t *);
192 extern int dt_node_is_argcompat(const dt_node_t *, const dt_node_t *);
193 extern int dt_node_is_posconst(const dt_node_t *);
194 extern int dt_node_is_actfunc(const dt_node_t *);

196 extern dt_node_t *dt_node_int(uintmax_t);
197 extern dt_node_t *dt_node_string(char *);
198 extern dt_node_t *dt_node_ident(char *);
199 extern dt_node_t *dt_node_type(dt_decl_t *);
200 extern dt_node_t *dt_node_vatype(void);
201 extern dt_node_t *dt_node_decl(void);
202 extern dt_node_t *dt_node_func(dt_node_t *, dt_node_t *);
203 extern dt_node_t *dt_node_offsetof(dt_decl_t *, char *);
204 extern dt_node_t *dt_node_op1(int, dt_node_t *);
205 extern dt_node_t *dt_node_op2(int, dt_node_t *, dt_node_t *);
206 extern dt_node_t *dt_node_op3(dt_node_t *, dt_node_t *, dt_node_t *);
207 extern dt_node_t *dt_node_statement(dt_node_t *);
208 extern dt_node_t *dt_node_pdesc_by_name(char *);
209 extern dt_node_t *dt_node_pdesc_by_id(uintmax_t);
210 extern dt_node_t *dt_node_clause(dt_node_t *, dt_node_t *, dt_node_t *);
211 extern dt_node_t *dt_node_inline(dt_node_t *);
212 extern dt_node_t *dt_node_member(dt_decl_t *, char *, dt_node_t *);
213 extern dt_node_t *dt_node_xlator(dt_decl_t *, dt_decl_t *, char *, dt_node_t *);
214 extern dt_node_t *dt_node_probe(char *, int, dt_node_t *, dt_node_t *);
215 extern dt_node_t *dt_node_provider(char *, dt_node_t *);
216 extern dt_node_t *dt_node_program(dt_node_t *);

218 extern dt_node_t *dt_node_link(dt_node_t *, dt_node_t *);
219 extern dt_node_t *dt_node_cook(dt_node_t *, uint_t);

221 extern dt_node_t *dt_node_xalloc(dtrace_hdl_t *, int);
222 extern void dt_node_free(dt_node_t *);

224 extern dtrace_attribute_t dt_node_list_cook(dt_node_t **, uint_t);
225 extern void dt_node_list_free(dt_node_t **);
226 extern void dt_node_link_free(dt_node_t **);

228 extern void dt_node_attr_assign(dt_node_t *, dtrace_attribute_t);
229 extern void dt_node_type_assign(dt_node_t *, ctf_file_t *, ctf_id_t, boolean_t);
222 extern void dt_node_type_assign(dt_node_t *, ctf_file_t *, ctf_id_t);
230 extern void dt_node_type_propagate(const dt_node_t *, dt_node_t *);
231 extern const char *dt_node_type_name(const dt_node_t *, char *, size_t);
232 extern size_t dt_node_type_size(const dt_node_t *);

234 extern dt_ident_t *dt_node_resolve(const dt_node_t *, uint_t);
235 extern size_t dt_node_sizeof(const dt_node_t *);
236 extern void dt_node_promote(dt_node_t *, dt_node_t *, dt_node_t *);

238 extern void dt_node_diftype(dtrace_hdl_t *,
239 const dt_node_t *, dtrace_diftype_t *);
240 extern void dt_node_printr(dt_node_t *, FILE *, int);
241 extern const char *dt_node_name(const dt_node_t *, char *, size_t);
242 extern int dt_node_root(dt_node_t *);

244 struct dtrace_typeinfo; /* see <dtrace.h> */
245 struct dt_pcb; /* see <dt_impl.h> */

247 #define IS_CHAR(e) \
248 (((e).cte_format & (CTF_INT_CHAR | CTF_INT_SIGNED)) == \
249 (CTF_INT_CHAR | CTF_INT_SIGNED) && (e).cte_bits == NBBY)

251 #define IS_VOID(e) \

new/usr/src/lib/libdtrace/common/dt_parser.h 5

252 ((e).cte_offset == 0 && (e).cte_bits == 0)

254 extern int dt_type_lookup(const char *, struct dtrace_typeinfo *);
255 extern int dt_type_pointer(struct dtrace_typeinfo *);
256 extern const char *dt_type_name(ctf_file_t *, ctf_id_t, char *, size_t);

258 typedef enum {
259 YYS_CLAUSE, /* lex/yacc state for finding program clauses */
260 YYS_DEFINE, /* lex/yacc state for parsing persistent definitions */
261 YYS_EXPR, /* lex/yacc state for parsing D expressions */
262 YYS_DONE, /* lex/yacc state for indicating parse tree is done */
263 YYS_CONTROL /* lex/yacc state for parsing control lines */
264 } yystate_t;

______unchanged_portion_omitted_

new/usr/src/lib/libdtrace/common/dt_pid.c 1

**
 24082 Tue Jan 14 16:48:58 2014
new/usr/src/lib/libdtrace/common/dt_pid.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28 */
29 #endif /* ! codereview */

31 #include <assert.h>
32 #include <strings.h>
33 #include <stdlib.h>
34 #include <stdio.h>
35 #include <errno.h>
36 #include <ctype.h>
37 #include <alloca.h>
38 #include <libgen.h>
39 #include <stddef.h>
40 #include <sys/sysmacros.h>
41 #endif /* ! codereview */

43 #include <dt_impl.h>
44 #include <dt_program.h>
45 #include <dt_pid.h>
46 #include <dt_string.h>
47 #include <dt_module.h>
48 #endif /* ! codereview */

50 typedef struct dt_pid_probe {
51 dtrace_hdl_t *dpp_dtp;
52 dt_pcb_t *dpp_pcb;
53 dt_proc_t *dpp_dpr;
54 struct ps_prochandle *dpp_pr;
55 const char *dpp_mod;
56 char *dpp_func;

new/usr/src/lib/libdtrace/common/dt_pid.c 2

57 const char *dpp_name;
58 const char *dpp_obj;
59 uintptr_t dpp_pc;
60 size_t dpp_size;
61 Lmid_t dpp_lmid;
62 uint_t dpp_nmatches;
63 uint64_t dpp_stret[4];
64 GElf_Sym dpp_last;
65 uint_t dpp_last_taken;
66 } dt_pid_probe_t;

68 /*
69 * Compose the lmid and object name into the canonical representation. We
70 * omit the lmid for the default link map for convenience.
71 */
72 static void
73 dt_pid_objname(char *buf, size_t len, Lmid_t lmid, const char *obj)
74 {
75 if (lmid == LM_ID_BASE)
76 (void) strncpy(buf, obj, len);
77 else
78 (void) snprintf(buf, len, "LM%lx‘%s", lmid, obj);
79 }

81 static int
82 dt_pid_error(dtrace_hdl_t *dtp, dt_pcb_t *pcb, dt_proc_t *dpr,
83 fasttrap_probe_spec_t *ftp, dt_errtag_t tag, const char *fmt, ...)
84 {
85 va_list ap;
86 int len;

88 if (ftp != NULL)
89 dt_free(dtp, ftp);

91 va_start(ap, fmt);
92 if (pcb == NULL) {
93 assert(dpr != NULL);
94 len = vsnprintf(dpr->dpr_errmsg, sizeof (dpr->dpr_errmsg),
95 fmt, ap);
96 assert(len >= 2);
97 if (dpr->dpr_errmsg[len - 2] == ’\n’)
98 dpr->dpr_errmsg[len - 2] = ’\0’;
99 } else {
100 dt_set_errmsg(dtp, dt_errtag(tag), pcb->pcb_region,
101 pcb->pcb_filetag, pcb->pcb_fileptr ? yylineno : 0, fmt, ap);
102 }
103 va_end(ap);

105 return (1);
106 }

108 static int
109 dt_pid_per_sym(dt_pid_probe_t *pp, const GElf_Sym *symp, const char *func)
110 {
111 dtrace_hdl_t *dtp = pp->dpp_dtp;
112 dt_pcb_t *pcb = pp->dpp_pcb;
113 dt_proc_t *dpr = pp->dpp_dpr;
114 fasttrap_probe_spec_t *ftp;
115 uint64_t off;
116 char *end;
117 uint_t nmatches = 0;
118 ulong_t sz;
119 int glob, err;
120 int isdash = strcmp("-", func) == 0;
121 pid_t pid;

new/usr/src/lib/libdtrace/common/dt_pid.c 3

123 pid = Pstatus(pp->dpp_pr)->pr_pid;

125 dt_dprintf("creating probe pid%d:%s:%s:%s\n", (int)pid, pp->dpp_obj,
126 func, pp->dpp_name);

128 sz = sizeof (fasttrap_probe_spec_t) + (isdash ? 4 :
129 (symp->st_size - 1) * sizeof (ftp->ftps_offs[0]));

131 if ((ftp = dt_alloc(dtp, sz)) == NULL) {
132 dt_dprintf("proc_per_sym: dt_alloc(%lu) failed\n", sz);
133 return (1); /* errno is set for us */
134 }

136 ftp->ftps_pid = pid;
137 (void) strncpy(ftp->ftps_func, func, sizeof (ftp->ftps_func));

139 dt_pid_objname(ftp->ftps_mod, sizeof (ftp->ftps_mod), pp->dpp_lmid,
140 pp->dpp_obj);

142 if (!isdash && gmatch("return", pp->dpp_name)) {
143 if (dt_pid_create_return_probe(pp->dpp_pr, dtp, ftp, symp,
144 pp->dpp_stret) < 0) {
145 return (dt_pid_error(dtp, pcb, dpr, ftp,
146 D_PROC_CREATEFAIL, "failed to create return probe "
147 "for ’%s’: %s", func,
148 dtrace_errmsg(dtp, dtrace_errno(dtp))));
149 }

151 nmatches++;
152 }

154 if (!isdash && gmatch("entry", pp->dpp_name)) {
155 if (dt_pid_create_entry_probe(pp->dpp_pr, dtp, ftp, symp) < 0) {
156 return (dt_pid_error(dtp, pcb, dpr, ftp,
157 D_PROC_CREATEFAIL, "failed to create entry probe "
158 "for ’%s’: %s", func,
159 dtrace_errmsg(dtp, dtrace_errno(dtp))));
160 }

162 nmatches++;
163 }

165 glob = strisglob(pp->dpp_name);
166 if (!glob && nmatches == 0) {
167 off = strtoull(pp->dpp_name, &end, 16);
168 if (*end != ’\0’) {
169 return (dt_pid_error(dtp, pcb, dpr, ftp, D_PROC_NAME,
170 "’%s’ is an invalid probe name", pp->dpp_name));
171 }

173 if (off >= symp->st_size) {
174 return (dt_pid_error(dtp, pcb, dpr, ftp, D_PROC_OFF,
175 "offset 0x%llx outside of function ’%s’",
176 (u_longlong_t)off, func));
177 }

179 err = dt_pid_create_offset_probe(pp->dpp_pr, pp->dpp_dtp, ftp,
180 symp, off);

182 if (err == DT_PROC_ERR) {
183 return (dt_pid_error(dtp, pcb, dpr, ftp,
184 D_PROC_CREATEFAIL, "failed to create probe at "
185 "’%s+0x%llx’: %s", func, (u_longlong_t)off,
186 dtrace_errmsg(dtp, dtrace_errno(dtp))));
187 }

new/usr/src/lib/libdtrace/common/dt_pid.c 4

189 if (err == DT_PROC_ALIGN) {
190 return (dt_pid_error(dtp, pcb, dpr, ftp, D_PROC_ALIGN,
191 "offset 0x%llx is not aligned on an instruction",
192 (u_longlong_t)off));
193 }

195 nmatches++;

197 } else if (glob && !isdash) {
198 if (dt_pid_create_glob_offset_probes(pp->dpp_pr,
199 pp->dpp_dtp, ftp, symp, pp->dpp_name) < 0) {
200 return (dt_pid_error(dtp, pcb, dpr, ftp,
201 D_PROC_CREATEFAIL,
202 "failed to create offset probes in ’%s’: %s", func,
203 dtrace_errmsg(dtp, dtrace_errno(dtp))));
204 }

206 nmatches++;
207 }

209 pp->dpp_nmatches += nmatches;

211 dt_free(dtp, ftp);

213 return (0);
214 }

216 static int
217 dt_pid_sym_filt(void *arg, const GElf_Sym *symp, const char *func)
218 {
219 dt_pid_probe_t *pp = arg;

221 if (symp->st_shndx == SHN_UNDEF)
222 return (0);

224 if (symp->st_size == 0) {
225 dt_dprintf("st_size of %s is zero\n", func);
226 return (0);
227 }

229 if (pp->dpp_last_taken == 0 ||
230 symp->st_value != pp->dpp_last.st_value ||
231 symp->st_size != pp->dpp_last.st_size) {
232 /*
233 * Due to 4524008, _init and _fini may have a bloated st_size.
234 * While this bug has been fixed for a while, old binaries
235 * may exist that still exhibit this problem. As a result, we
236 * don’t match _init and _fini though we allow users to
237 * specify them explicitly.
238 */
239 if (strcmp(func, "_init") == 0 || strcmp(func, "_fini") == 0)
240 return (0);

242 if ((pp->dpp_last_taken = gmatch(func, pp->dpp_func)) != 0) {
243 pp->dpp_last = *symp;
244 return (dt_pid_per_sym(pp, symp, func));
245 }
246 }

248 return (0);
249 }

251 static int
252 dt_pid_per_mod(void *arg, const prmap_t *pmp, const char *obj)
253 {
254 dt_pid_probe_t *pp = arg;

new/usr/src/lib/libdtrace/common/dt_pid.c 5

255 dtrace_hdl_t *dtp = pp->dpp_dtp;
256 dt_pcb_t *pcb = pp->dpp_pcb;
257 dt_proc_t *dpr = pp->dpp_dpr;
258 GElf_Sym sym;

260 if (obj == NULL)
261 return (0);

263 (void) Plmid(pp->dpp_pr, pmp->pr_vaddr, &pp->dpp_lmid);

265 if ((pp->dpp_obj = strrchr(obj, ’/’)) == NULL)
266 pp->dpp_obj = obj;
267 else
268 pp->dpp_obj++;

270 if (Pxlookup_by_name(pp->dpp_pr, pp->dpp_lmid, obj, ".stret1", &sym,
271 NULL) == 0)
272 pp->dpp_stret[0] = sym.st_value;
273 else
274 pp->dpp_stret[0] = 0;

276 if (Pxlookup_by_name(pp->dpp_pr, pp->dpp_lmid, obj, ".stret2", &sym,
277 NULL) == 0)
278 pp->dpp_stret[1] = sym.st_value;
279 else
280 pp->dpp_stret[1] = 0;

282 if (Pxlookup_by_name(pp->dpp_pr, pp->dpp_lmid, obj, ".stret4", &sym,
283 NULL) == 0)
284 pp->dpp_stret[2] = sym.st_value;
285 else
286 pp->dpp_stret[2] = 0;

288 if (Pxlookup_by_name(pp->dpp_pr, pp->dpp_lmid, obj, ".stret8", &sym,
289 NULL) == 0)
290 pp->dpp_stret[3] = sym.st_value;
291 else
292 pp->dpp_stret[3] = 0;

294 dt_dprintf("%s stret %llx %llx %llx %llx\n", obj,
295 (u_longlong_t)pp->dpp_stret[0], (u_longlong_t)pp->dpp_stret[1],
296 (u_longlong_t)pp->dpp_stret[2], (u_longlong_t)pp->dpp_stret[3]);

298 /*
299 * If pp->dpp_func contains any globbing meta-characters, we need
300 * to iterate over the symbol table and compare each function name
301 * against the pattern.
302 */
303 if (!strisglob(pp->dpp_func)) {
304 /*
305 * If we fail to lookup the symbol, try interpreting the
306 * function as the special "-" function that indicates that the
307 * probe name should be interpreted as a absolute virtual
308 * address. If that fails and we were matching a specific
309 * function in a specific module, report the error, otherwise
310 * just fail silently in the hopes that some other object will
311 * contain the desired symbol.
312 */
313 if (Pxlookup_by_name(pp->dpp_pr, pp->dpp_lmid, obj,
314 pp->dpp_func, &sym, NULL) != 0) {
315 if (strcmp("-", pp->dpp_func) == 0) {
316 sym.st_name = 0;
317 sym.st_info =
318 GELF_ST_INFO(STB_LOCAL, STT_FUNC);
319 sym.st_other = 0;
320 sym.st_value = 0;

new/usr/src/lib/libdtrace/common/dt_pid.c 6

321 sym.st_size = Pstatus(pp->dpp_pr)->pr_dmodel ==
322 PR_MODEL_ILP32 ? -1U : -1ULL;

324 } else if (!strisglob(pp->dpp_mod)) {
325 return (dt_pid_error(dtp, pcb, dpr, NULL,
326 D_PROC_FUNC,
327 "failed to lookup ’%s’ in module ’%s’",
328 pp->dpp_func, pp->dpp_mod));
329 } else {
330 return (0);
331 }
332 }

334 /*
335 * Only match defined functions of non-zero size.
336 */
337 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC ||
338 sym.st_shndx == SHN_UNDEF || sym.st_size == 0)
339 return (0);

341 /*
342 * We don’t instrument PLTs -- they’re dynamically rewritten,
343 * and, so, inherently dicey to instrument.
344 */
345 if (Ppltdest(pp->dpp_pr, sym.st_value) != NULL)
346 return (0);

348 (void) Plookup_by_addr(pp->dpp_pr, sym.st_value, pp->dpp_func,
349 DTRACE_FUNCNAMELEN, &sym);

351 return (dt_pid_per_sym(pp, &sym, pp->dpp_func));
352 } else {
353 uint_t nmatches = pp->dpp_nmatches;

355 if (Psymbol_iter_by_addr(pp->dpp_pr, obj, PR_SYMTAB,
356 BIND_ANY | TYPE_FUNC, dt_pid_sym_filt, pp) == 1)
357 return (1);

359 if (nmatches == pp->dpp_nmatches) {
360 /*
361 * If we didn’t match anything in the PR_SYMTAB, try
362 * the PR_DYNSYM.
363 */
364 if (Psymbol_iter_by_addr(pp->dpp_pr, obj, PR_DYNSYM,
365 BIND_ANY | TYPE_FUNC, dt_pid_sym_filt, pp) == 1)
366 return (1);
367 }
368 }

370 return (0);
371 }

373 static int
374 dt_pid_mod_filt(void *arg, const prmap_t *pmp, const char *obj)
375 {
376 char name[DTRACE_MODNAMELEN];
377 dt_pid_probe_t *pp = arg;

379 if ((pp->dpp_obj = strrchr(obj, ’/’)) == NULL)
380 pp->dpp_obj = obj;
381 else
382 pp->dpp_obj++;

384 if (gmatch(pp->dpp_obj, pp->dpp_mod))
385 return (dt_pid_per_mod(pp, pmp, obj));

new/usr/src/lib/libdtrace/common/dt_pid.c 7

387 (void) Plmid(pp->dpp_pr, pmp->pr_vaddr, &pp->dpp_lmid);

389 dt_pid_objname(name, sizeof (name), pp->dpp_lmid, pp->dpp_obj);

391 if (gmatch(name, pp->dpp_mod))
392 return (dt_pid_per_mod(pp, pmp, obj));

394 return (0);
395 }

397 static const prmap_t *
398 dt_pid_fix_mod(dtrace_probedesc_t *pdp, struct ps_prochandle *P)
399 {
400 char m[MAXPATHLEN];
401 Lmid_t lmid = PR_LMID_EVERY;
402 const char *obj;
403 const prmap_t *pmp;

405 /*
406 * Pick apart the link map from the library name.
407 */
408 if (strchr(pdp->dtpd_mod, ’‘’) != NULL) {
409 char *end;

411 if (strncmp(pdp->dtpd_mod, "LM", 2) != 0 ||
412 !isdigit(pdp->dtpd_mod[2]))
413 return (NULL);

415 lmid = strtoul(&pdp->dtpd_mod[2], &end, 16);

417 obj = end + 1;

419 if (*end != ’‘’ || strchr(obj, ’‘’) != NULL)
420 return (NULL);

422 } else {
423 obj = pdp->dtpd_mod;
424 }

426 if ((pmp = Plmid_to_map(P, lmid, obj)) == NULL)
427 return (NULL);

429 (void) Pobjname(P, pmp->pr_vaddr, m, sizeof (m));
430 if ((obj = strrchr(m, ’/’)) == NULL)
431 obj = &m[0];
432 else
433 obj++;

435 (void) Plmid(P, pmp->pr_vaddr, &lmid);
436 dt_pid_objname(pdp->dtpd_mod, sizeof (pdp->dtpd_mod), lmid, obj);

438 return (pmp);
439 }

442 static int
443 dt_pid_create_pid_probes(dtrace_probedesc_t *pdp, dtrace_hdl_t *dtp,
444 dt_pcb_t *pcb, dt_proc_t *dpr)
445 {
446 dt_pid_probe_t pp;
447 int ret = 0;

449 pp.dpp_dtp = dtp;
450 pp.dpp_dpr = dpr;
451 pp.dpp_pr = dpr->dpr_proc;
452 pp.dpp_pcb = pcb;

new/usr/src/lib/libdtrace/common/dt_pid.c 8

454 /*
455 * We can only trace dynamically-linked executables (since we’ve
456 * hidden some magic in ld.so.1 as well as libc.so.1).
457 */
458 if (Pname_to_map(pp.dpp_pr, PR_OBJ_LDSO) == NULL) {
459 return (dt_pid_error(dtp, pcb, dpr, NULL, D_PROC_DYN,
460 "process %s is not a dynamically-linked executable",
461 &pdp->dtpd_provider[3]));
462 }

464 pp.dpp_mod = pdp->dtpd_mod[0] != ’\0’ ? pdp->dtpd_mod : "*";
465 pp.dpp_func = pdp->dtpd_func[0] != ’\0’ ? pdp->dtpd_func : "*";
466 pp.dpp_name = pdp->dtpd_name[0] != ’\0’ ? pdp->dtpd_name : "*";
467 pp.dpp_last_taken = 0;

469 if (strcmp(pp.dpp_func, "-") == 0) {
470 const prmap_t *aout, *pmp;

472 if (pdp->dtpd_mod[0] == ’\0’) {
473 pp.dpp_mod = pdp->dtpd_mod;
474 (void) strcpy(pdp->dtpd_mod, "a.out");
475 } else if (strisglob(pp.dpp_mod) ||
476 (aout = Pname_to_map(pp.dpp_pr, "a.out")) == NULL ||
477 (pmp = Pname_to_map(pp.dpp_pr, pp.dpp_mod)) == NULL ||
478 aout->pr_vaddr != pmp->pr_vaddr) {
479 return (dt_pid_error(dtp, pcb, dpr, NULL, D_PROC_LIB,
480 "only the a.out module is valid with the "
481 "’-’ function"));
482 }

484 if (strisglob(pp.dpp_name)) {
485 return (dt_pid_error(dtp, pcb, dpr, NULL, D_PROC_NAME,
486 "only individual addresses may be specified "
487 "with the ’-’ function"));
488 }
489 }

491 /*
492 * If pp.dpp_mod contains any globbing meta-characters, we need
493 * to iterate over each module and compare its name against the
494 * pattern. An empty module name is treated as ’*’.
495 */
496 if (strisglob(pp.dpp_mod)) {
497 ret = Pobject_iter(pp.dpp_pr, dt_pid_mod_filt, &pp);
498 } else {
499 const prmap_t *pmp;
500 char *obj;

502 /*
503 * If we can’t find a matching module, don’t sweat it -- either
504 * we’ll fail the enabling because the probes don’t exist or
505 * we’ll wait for that module to come along.
506 */
507 if ((pmp = dt_pid_fix_mod(pdp, pp.dpp_pr)) != NULL) {
508 if ((obj = strchr(pdp->dtpd_mod, ’‘’)) == NULL)
509 obj = pdp->dtpd_mod;
510 else
511 obj++;

513 ret = dt_pid_per_mod(&pp, pmp, obj);
514 }
515 }

517 return (ret);
518 }

new/usr/src/lib/libdtrace/common/dt_pid.c 9

520 static int
521 dt_pid_usdt_mapping(void *data, const prmap_t *pmp, const char *oname)
522 {
523 struct ps_prochandle *P = data;
524 GElf_Sym sym;
525 prsyminfo_t sip;
526 dof_helper_t dh;
527 GElf_Half e_type;
528 const char *mname;
529 const char *syms[] = { "___SUNW_dof", "__SUNW_dof" };
530 int i, fd = -1;

532 /*
533 * The symbol ___SUNW_dof is for lazy-loaded DOF sections, and
534 * __SUNW_dof is for actively-loaded DOF sections. We try to force
535 * in both types of DOF section since the process may not yet have
536 * run the code to instantiate these providers.
537 */
538 for (i = 0; i < 2; i++) {
539 if (Pxlookup_by_name(P, PR_LMID_EVERY, oname, syms[i], &sym,
540 &sip) != 0) {
541 continue;
542 }

544 if ((mname = strrchr(oname, ’/’)) == NULL)
545 mname = oname;
546 else
547 mname++;

549 dt_dprintf("lookup of %s succeeded for %s\n", syms[i], mname);

551 if (Pread(P, &e_type, sizeof (e_type), pmp->pr_vaddr +
552 offsetof(Elf64_Ehdr, e_type)) != sizeof (e_type)) {
553 dt_dprintf("read of ELF header failed");
554 continue;
555 }

557 dh.dofhp_dof = sym.st_value;
558 dh.dofhp_addr = (e_type == ET_EXEC) ? 0 : pmp->pr_vaddr;

560 dt_pid_objname(dh.dofhp_mod, sizeof (dh.dofhp_mod),
561 sip.prs_lmid, mname);

563 if (fd == -1 &&
564 (fd = pr_open(P, "/dev/dtrace/helper", O_RDWR, 0)) < 0) {
565 dt_dprintf("pr_open of helper device failed: %s\n",
566 strerror(errno));
567 return (-1); /* errno is set for us */
568 }

570 if (pr_ioctl(P, fd, DTRACEHIOC_ADDDOF, &dh, sizeof (dh)) < 0)
571 dt_dprintf("DOF was rejected for %s\n", dh.dofhp_mod);
572 }

574 if (fd != -1)
575 (void) pr_close(P, fd);

577 return (0);
578 }

580 static int
581 dt_pid_create_usdt_probes(dtrace_probedesc_t *pdp, dtrace_hdl_t *dtp,
582 dt_pcb_t *pcb, dt_proc_t *dpr)
583 {
584 struct ps_prochandle *P = dpr->dpr_proc;

new/usr/src/lib/libdtrace/common/dt_pid.c 10

585 int ret = 0;

587 assert(MUTEX_HELD(&dpr->dpr_lock));

589 (void) Pupdate_maps(P);
590 if (Pobject_iter(P, dt_pid_usdt_mapping, P) != 0) {
591 ret = -1;
592 (void) dt_pid_error(dtp, pcb, dpr, NULL, D_PROC_USDT,
593 "failed to instantiate probes for pid %d: %s",
594 (int)Pstatus(P)->pr_pid, strerror(errno));
595 }

597 /*
598 * Put the module name in its canonical form.
599 */
600 (void) dt_pid_fix_mod(pdp, P);

602 return (ret);
603 }

605 static pid_t
606 dt_pid_get_pid(dtrace_probedesc_t *pdp, dtrace_hdl_t *dtp, dt_pcb_t *pcb,
607 dt_proc_t *dpr)
608 {
609 pid_t pid;
610 char *c, *last = NULL, *end;

612 for (c = &pdp->dtpd_provider[0]; *c != ’\0’; c++) {
613 if (!isdigit(*c))
614 last = c;
615 }

617 if (last == NULL || (*(++last) == ’\0’)) {
618 (void) dt_pid_error(dtp, pcb, dpr, NULL, D_PROC_BADPROV,
619 "’%s’ is not a valid provider", pdp->dtpd_provider);
620 return (-1);
621 }

623 errno = 0;
624 pid = strtol(last, &end, 10);

626 if (errno != 0 || end == last || end[0] != ’\0’ || pid <= 0) {
627 (void) dt_pid_error(dtp, pcb, dpr, NULL, D_PROC_BADPID,
628 "’%s’ does not contain a valid pid", pdp->dtpd_provider);
629 return (-1);
630 }

632 return (pid);
633 }

635 int
636 dt_pid_create_probes(dtrace_probedesc_t *pdp, dtrace_hdl_t *dtp, dt_pcb_t *pcb)
637 {
638 char provname[DTRACE_PROVNAMELEN];
639 struct ps_prochandle *P;
640 dt_proc_t *dpr;
641 pid_t pid;
642 int err = 0;

644 assert(pcb != NULL);

646 if ((pid = dt_pid_get_pid(pdp, dtp, pcb, NULL)) == -1)
647 return (-1);

649 if (dtp->dt_ftfd == -1) {
650 if (dtp->dt_fterr == ENOENT) {

new/usr/src/lib/libdtrace/common/dt_pid.c 11

651 (void) dt_pid_error(dtp, pcb, NULL, NULL, D_PROC_NODEV,
652 "pid provider is not installed on this system");
653 } else {
654 (void) dt_pid_error(dtp, pcb, NULL, NULL, D_PROC_NODEV,
655 "pid provider is not available: %s",
656 strerror(dtp->dt_fterr));
657 }

659 return (-1);
660 }

662 (void) snprintf(provname, sizeof (provname), "pid%d", (int)pid);

664 if (gmatch(provname, pdp->dtpd_provider) != 0) {
665 if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE,
666 0)) == NULL) {
667 (void) dt_pid_error(dtp, pcb, NULL, NULL, D_PROC_GRAB,
668 "failed to grab process %d", (int)pid);
669 return (-1);
670 }

672 dpr = dt_proc_lookup(dtp, P, 0);
673 assert(dpr != NULL);
674 (void) pthread_mutex_lock(&dpr->dpr_lock);

676 if ((err = dt_pid_create_pid_probes(pdp, dtp, pcb, dpr)) == 0) {
677 /*
678 * Alert other retained enablings which may match
679 * against the newly created probes.
680 */
681 (void) dt_ioctl(dtp, DTRACEIOC_ENABLE, NULL);
682 }

684 (void) pthread_mutex_unlock(&dpr->dpr_lock);
685 dt_proc_release(dtp, P);
686 }

688 /*
689 * If it’s not strictly a pid provider, we might match a USDT provider.
690 */
691 if (strcmp(provname, pdp->dtpd_provider) != 0) {
692 if ((P = dt_proc_grab(dtp, pid, 0, 1)) == NULL) {
693 (void) dt_pid_error(dtp, pcb, NULL, NULL, D_PROC_GRAB,
694 "failed to grab process %d", (int)pid);
695 return (-1);
696 }

698 dpr = dt_proc_lookup(dtp, P, 0);
699 assert(dpr != NULL);
700 (void) pthread_mutex_lock(&dpr->dpr_lock);

702 if (!dpr->dpr_usdt) {
703 err = dt_pid_create_usdt_probes(pdp, dtp, pcb, dpr);
704 dpr->dpr_usdt = B_TRUE;
705 }

707 (void) pthread_mutex_unlock(&dpr->dpr_lock);
708 dt_proc_release(dtp, P);
709 }

711 return (err ? -1 : 0);
712 }

714 int
715 dt_pid_create_probes_module(dtrace_hdl_t *dtp, dt_proc_t *dpr)
716 {

new/usr/src/lib/libdtrace/common/dt_pid.c 12

717 dtrace_prog_t *pgp;
718 dt_stmt_t *stp;
719 dtrace_probedesc_t *pdp, pd;
720 pid_t pid;
721 int ret = 0, found = B_FALSE;
722 char provname[DTRACE_PROVNAMELEN];

724 (void) snprintf(provname, sizeof (provname), "pid%d",
725 (int)dpr->dpr_pid);

727 for (pgp = dt_list_next(&dtp->dt_programs); pgp != NULL;
728 pgp = dt_list_next(pgp)) {

730 for (stp = dt_list_next(&pgp->dp_stmts); stp != NULL;
731 stp = dt_list_next(stp)) {

733 pdp = &stp->ds_desc->dtsd_ecbdesc->dted_probe;
734 pid = dt_pid_get_pid(pdp, dtp, NULL, dpr);
735 if (pid != dpr->dpr_pid)
736 continue;

738 found = B_TRUE;

740 pd = *pdp;

742 if (gmatch(provname, pdp->dtpd_provider) != 0 &&
743 dt_pid_create_pid_probes(&pd, dtp, NULL, dpr) != 0)
744 ret = 1;

746 /*
747 * If it’s not strictly a pid provider, we might match
748 * a USDT provider.
749 */
750 if (strcmp(provname, pdp->dtpd_provider) != 0 &&
751 dt_pid_create_usdt_probes(&pd, dtp, NULL, dpr) != 0)
752 ret = 1;
753 }
754 }

756 if (found) {
757 /*
758 * Give DTrace a shot to the ribs to get it to check
759 * out the newly created probes.
760 */
761 (void) dt_ioctl(dtp, DTRACEIOC_ENABLE, NULL);
762 }

764 return (ret);
765 }

767 /*
768 * libdtrace has a backroom deal with us to ask us for type information on
769 * behalf of pid provider probes when fasttrap doesn’t return any type
770 * information. Instead we’ll look up the module and see if there is type
771 * information available. However, if there is no type information available due
772 * to a lack of CTF data, then we want to make sure that DTrace still carries on
773 * in face of that. As such we don’t have a meaningful exit code about failure.
774 * We emit information about why we failed to the dtrace debug log so someone
775 * can figure it out by asking nicely for DTRACE_DEBUG.
776 */
777 void
778 dt_pid_get_types(dtrace_hdl_t *dtp, const dtrace_probedesc_t *pdp,
779 dtrace_argdesc_t *adp, int *nargs)
780 {
781 dt_module_t *dmp;
782 ctf_file_t *fp;

new/usr/src/lib/libdtrace/common/dt_pid.c 13

783 ctf_funcinfo_t f;
784 ctf_id_t argv[32];
785 GElf_Sym sym;
786 prsyminfo_t si;
787 struct ps_prochandle *p;
788 int i, args;
789 char buf[DTRACE_ARGTYPELEN];
790 const char *mptr;
791 char *eptr;
792 int ret = 0;
793 int argc = sizeof (argv) / sizeof (ctf_id_t);
794 Lmid_t lmid;

796 /* Set up a potential outcome */
797 args = *nargs;
798 *nargs = 0;

800 /*
801 * If we don’t have an entry or return probe then we can just stop right
802 * now as we don’t have arguments for offset probes.
803 */
804 if (strcmp(pdp->dtpd_name, "entry") != 0 &&
805 strcmp(pdp->dtpd_name, "return") != 0)
806 return;

808 dmp = dt_module_create(dtp, pdp->dtpd_provider);
809 if (dmp == NULL) {
810 dt_dprintf("failed to find module for %s\n",
811 pdp->dtpd_provider);
812 return;
813 }
814 if (dt_module_load(dtp, dmp) != 0) {
815 dt_dprintf("failed to load module for %s\n",
816 pdp->dtpd_provider);
817 return;
818 }

820 /*
821 * We may be working with a module that doesn’t have ctf. If that’s the
822 * case then we just return now and move on with life.
823 */
824 fp = dt_module_getctflib(dtp, dmp, pdp->dtpd_mod);
825 if (fp == NULL) {
826 dt_dprintf("no ctf container for %s\n",
827 pdp->dtpd_mod);
828 return;
829 }
830 p = dt_proc_grab(dtp, dmp->dm_pid, 0, PGRAB_RDONLY | PGRAB_FORCE);
831 if (p == NULL) {
832 dt_dprintf("failed to grab pid\n");
833 return;
834 }
835 dt_proc_lock(dtp, p);

837 /*
838 * Check to see if the D module has a link map ID and separate that out
839 * for properly interrogating libproc.
840 */
841 if ((mptr = strchr(pdp->dtpd_mod, ’‘’)) != NULL) {
842 if (strlen(pdp->dtpd_mod) < 3) {
843 dt_dprintf("found weird modname with linkmap, "
844 "aborting: %s\n", pdp->dtpd_mod);
845 goto out;
846 }
847 if (pdp->dtpd_mod[0] != ’L’ || pdp->dtpd_mod[1] != ’M’) {
848 dt_dprintf("missing leading ’LM’, "

new/usr/src/lib/libdtrace/common/dt_pid.c 14

849 "aborting: %s\n", pdp->dtpd_mod);
850 goto out;
851 }
852 errno = 0;
853 lmid = strtol(pdp->dtpd_mod + 2, &eptr, 16);
854 if (errno == ERANGE || eptr != mptr) {
855 dt_dprintf("failed to parse out lmid, aborting: %s\n",
856 pdp->dtpd_mod);
857 goto out;
858 }
859 mptr++;
860 } else {
861 mptr = pdp->dtpd_mod;
862 lmid = 0;
863 }

865 if (Pxlookup_by_name(p, lmid, mptr, pdp->dtpd_func,
866 &sym, &si) != 0) {
867 dt_dprintf("failed to find function %s in %s‘%s\n",
868 pdp->dtpd_func, pdp->dtpd_provider, pdp->dtpd_mod);
869 goto out;
870 }
871 if (ctf_func_info(fp, si.prs_id, &f) == CTF_ERR) {
872 dt_dprintf("failed to get ctf information for %s in %s‘%s\n",
873 pdp->dtpd_func, pdp->dtpd_provider, pdp->dtpd_mod);
874 goto out;
875 }

877 (void) snprintf(buf, sizeof (buf), "%s‘%s", pdp->dtpd_provider,
878 pdp->dtpd_mod);

880 if (strcmp(pdp->dtpd_name, "return") == 0) {
881 if (args < 2)
882 goto out;

884 bzero(adp, sizeof (dtrace_argdesc_t));
885 adp->dtargd_ndx = 0;
886 adp->dtargd_id = pdp->dtpd_id;
887 adp->dtargd_mapping = adp->dtargd_ndx;
888 /*
889 * We explicitly leave out the library here, we only care that
890 * it is some int. We are assuming that there is no ctf
891 * container in here that is lying about what an int is.
892 */
893 (void) snprintf(adp->dtargd_native, DTRACE_ARGTYPELEN,
894 "user %s‘%s", pdp->dtpd_provider, "int");
895 adp++;
896 bzero(adp, sizeof (dtrace_argdesc_t));
897 adp->dtargd_ndx = 1;
898 adp->dtargd_id = pdp->dtpd_id;
899 adp->dtargd_mapping = adp->dtargd_ndx;
900 ret = snprintf(adp->dtargd_native, DTRACE_ARGTYPELEN,
901 "userland ");
902 (void) ctf_type_qname(fp, f.ctc_return, adp->dtargd_native +
903 ret, DTRACE_ARGTYPELEN - ret, buf);
904 *nargs = 2;
905 } else {
906 if (ctf_func_args(fp, si.prs_id, argc, argv) == CTF_ERR)
907 goto out;

909 *nargs = MIN(args, f.ctc_argc);
910 for (i = 0; i < *nargs; i++, adp++) {
911 bzero(adp, sizeof (dtrace_argdesc_t));
912 adp->dtargd_ndx = i;
913 adp->dtargd_id = pdp->dtpd_id;
914 adp->dtargd_mapping = adp->dtargd_ndx;

new/usr/src/lib/libdtrace/common/dt_pid.c 15

915 ret = snprintf(adp->dtargd_native, DTRACE_ARGTYPELEN,
916 "userland ");
917 (void) ctf_type_qname(fp, argv[i], adp->dtargd_native +
918 ret, DTRACE_ARGTYPELEN - ret, buf);
919 }
920 }
921 out:
922 dt_proc_unlock(dtp, p);
923 dt_proc_release(dtp, p);
924 }
925 #endif /* ! codereview */

new/usr/src/lib/libdtrace/common/dt_pid.h 1

**
 2080 Tue Jan 14 16:48:59 2014
new/usr/src/lib/libdtrace/common/dt_pid.h
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */

23 /*
24 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */
27 /*
28 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
29 */
30 #endif /* ! codereview */

32 #ifndef _DT_PID_H
33 #define _DT_PID_H

27 #pragma ident "%Z%%M% %I% %E% SMI"

35 #include <libproc.h>
36 #include <sys/fasttrap.h>
37 #include <dt_impl.h>

39 #ifdef __cplusplus
40 extern "C" {
41 #endif

43 #define DT_PROC_ERR (-1)
44 #define DT_PROC_ALIGN (-2)

46 extern int dt_pid_create_probes(dtrace_probedesc_t *, dtrace_hdl_t *,
47 dt_pcb_t *pcb);
48 extern int dt_pid_create_probes_module(dtrace_hdl_t *, dt_proc_t *);

50 extern int dt_pid_create_entry_probe(struct ps_prochandle *, dtrace_hdl_t *,
51 fasttrap_probe_spec_t *, const GElf_Sym *);

53 extern int dt_pid_create_return_probe(struct ps_prochandle *, dtrace_hdl_t *,
54 fasttrap_probe_spec_t *, const GElf_Sym *, uint64_t *);

new/usr/src/lib/libdtrace/common/dt_pid.h 2

56 extern int dt_pid_create_offset_probe(struct ps_prochandle *, dtrace_hdl_t *,
57 fasttrap_probe_spec_t *, const GElf_Sym *, ulong_t);

59 extern int dt_pid_create_glob_offset_probes(struct ps_prochandle *,
60 dtrace_hdl_t *, fasttrap_probe_spec_t *, const GElf_Sym *, const char *);

62 extern void dt_pid_get_types(dtrace_hdl_t *, const dtrace_probedesc_t *,
63 dtrace_argdesc_t *, int *);

65 #endif /* ! codereview */
66 #ifdef __cplusplus
67 }
68 #endif

70 #endif /* _DT_PID_H */

new/usr/src/lib/libdtrace/common/dt_print.c 1

**
 19075 Tue Jan 14 16:48:59 2014
new/usr/src/lib/libdtrace/common/dt_print.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_

640 /*
641 * Main print function invoked by dt_consume_cpu().
642 */
643 int
644 dtrace_print(dtrace_hdl_t *dtp, FILE *fp, const char *typename,
645 caddr_t addr, size_t len)
646 {
647 const char *s;
648 char *object;
649 dt_printarg_t pa;
650 ctf_id_t id;
651 dt_module_t *dmp;
652 ctf_file_t *ctfp;
653 int libid;
654 #endif /* ! codereview */

656 /*
657 * Split the fully-qualified type ID (module‘id). This should
658 * always be the format, but if for some reason we don’t find the
659 * expected value, return 0 to fall back to the generic trace()
660 * behavior. In the case of userland CTF modules this will actually be
661 * of the format (module‘lib‘id). This is due to the fact that those
662 * modules have multiple CTF containers which ‘lib‘ identifies.
652 * behavior.
663 */
664 for (s = typename; *s != ’\0’ && *s != ’‘’; s++)
665 ;

667 if (*s != ’‘’)
668 return (0);

670 object = alloca(s - typename + 1);
671 bcopy(typename, object, s - typename);
672 object[s - typename] = ’\0’;
673 dmp = dt_module_lookup_by_name(dtp, object);
674 if (dmp == NULL)
675 return (0);

677 if (dmp->dm_pid != 0) {
678 libid = atoi(s + 1);
679 s = strchr(s + 1, ’‘’);
680 if (s == NULL || libid > dmp->dm_nctflibs)
681 return (0);
682 ctfp = dmp->dm_libctfp[libid];
683 } else {
684 ctfp = dt_module_getctf(dtp, dmp);
685 }

687 #endif /* ! codereview */
688 id = atoi(s + 1);

690 /*
691 * Try to get the CTF kind for this id. If something has gone horribly
692 * wrong and we can’t resolve the ID, bail out and let trace() do the

new/usr/src/lib/libdtrace/common/dt_print.c 2

693 * work.
694 */
695 if (ctfp == NULL || ctf_type_kind(ctfp, id) == CTF_ERR)
663 dmp = dt_module_lookup_by_name(dtp, object);
664 if (dmp == NULL || ctf_type_kind(dt_module_getctf(dtp, dmp),
665 id) == CTF_ERR) {
696 return (0);
667 }

698 /* setup the print structure and kick off the main print routine */
699 pa.pa_dtp = dtp;
700 pa.pa_addr = addr;
701 pa.pa_ctfp = ctfp;
672 pa.pa_ctfp = dt_module_getctf(dtp, dmp);
702 pa.pa_nest = 0;
703 pa.pa_depth = 0;
704 pa.pa_file = fp;
705 (void) ctf_type_visit(pa.pa_ctfp, id, dt_print_member, &pa);

707 dt_print_trailing_braces(&pa, 0);

709 return (len);
710 }

______unchanged_portion_omitted_

new/usr/src/lib/libdtrace/common/dt_printf.c 1

**
 53312 Tue Jan 14 16:49:00 2014
new/usr/src/lib/libdtrace/common/dt_printf.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2011, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 */

28 #include <sys/sysmacros.h>
29 #include <strings.h>
30 #include <stdlib.h>
31 #include <alloca.h>
32 #include <assert.h>
33 #include <ctype.h>
34 #include <errno.h>
35 #include <limits.h>
36 #include <sys/socket.h>
37 #include <netdb.h>
38 #include <netinet/in.h>
39 #include <arpa/inet.h>
40 #include <arpa/nameser.h>

42 #include <dt_printf.h>
43 #include <dt_string.h>
44 #include <dt_impl.h>

46 /*ARGSUSED*/
47 static int
48 pfcheck_addr(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
49 {
50 return (dt_node_is_pointer(dnp) || dt_node_is_integer(dnp));
51 }

______unchanged_portion_omitted_

1017 void

new/usr/src/lib/libdtrace/common/dt_printf.c 2

1018 dt_printf_validate(dt_pfargv_t *pfv, uint_t flags,
1019 dt_ident_t *idp, int foff, dtrace_actkind_t kind, dt_node_t *dnp)
1020 {
1021 dt_pfargd_t *pfd = pfv->pfv_argv;
1022 const char *func = idp->di_name;

1024 char n[DT_TYPE_NAMELEN];
1025 dtrace_typeinfo_t dtt;
1026 const char *aggtype;
1027 dt_node_t aggnode;
1028 int i, j;

1030 if (pfv->pfv_format[0] == ’\0’) {
1031 xyerror(D_PRINTF_FMT_EMPTY,
1032 "%s() format string is empty\n", func);
1033 }

1035 pfv->pfv_flags = flags;

1037 /*
1038 * We fake up a parse node representing the type that can be used with
1039 * an aggregation result conversion, which -- for all but count() --
1040 * is a signed quantity.
1041 */
1042 if (kind != DTRACEAGG_COUNT)
1043 aggtype = "int64_t";
1044 else
1045 aggtype = "uint64_t";

1047 if (dt_type_lookup(aggtype, &dtt) != 0)
1048 xyerror(D_TYPE_ERR, "failed to lookup agg type %s\n", aggtype);

1050 bzero(&aggnode, sizeof (aggnode));
1051 dt_node_type_assign(&aggnode, dtt.dtt_ctfp, dtt.dtt_type, B_FALSE);
1051 dt_node_type_assign(&aggnode, dtt.dtt_ctfp, dtt.dtt_type);

1053 for (i = 0, j = 0; i < pfv->pfv_argc; i++, pfd = pfd->pfd_next) {
1054 const dt_pfconv_t *pfc = pfd->pfd_conv;
1055 const char *dyns[2];
1056 int dync = 0;

1058 char vname[64];
1059 dt_node_t *vnp;

1061 if (pfc == NULL)
1062 continue; /* no checking if argd is just a prefix */

1064 if (pfc->pfc_print == &pfprint_pct) {
1065 (void) strcat(pfd->pfd_fmt, pfc->pfc_ofmt);
1066 continue;
1067 }

1069 if (pfd->pfd_flags & DT_PFCONV_DYNPREC)
1070 dyns[dync++] = ".*";
1071 if (pfd->pfd_flags & DT_PFCONV_DYNWIDTH)
1072 dyns[dync++] = "*";

1074 for (; dync != 0; dync--) {
1075 if (dnp == NULL) {
1076 xyerror(D_PRINTF_DYN_PROTO,
1077 "%s() prototype mismatch: conversion "
1078 "#%d (%%%s) is missing a corresponding "
1079 "\"%s\" argument\n", func, i + 1,
1080 pfc->pfc_name, dyns[dync - 1]);
1081 }

new/usr/src/lib/libdtrace/common/dt_printf.c 3

1083 if (dt_node_is_integer(dnp) == 0) {
1084 xyerror(D_PRINTF_DYN_TYPE,
1085 "%s() argument #%d is incompatible "
1086 "with conversion #%d prototype:\n"
1087 "\tconversion: %% %s %s\n"
1088 "\t prototype: int\n\t argument: %s\n",
1089 func, j + foff + 1, i + 1,
1090 dyns[dync - 1], pfc->pfc_name,
1091 dt_node_type_name(dnp, n, sizeof (n)));
1092 }

1094 dnp = dnp->dn_list;
1095 j++;
1096 }

1098 /*
1099 * If this conversion is consuming the aggregation data, set
1100 * the value node pointer (vnp) to a fake node based on the
1101 * aggregating function result type. Otherwise assign vnp to
1102 * the next parse node in the argument list, if there is one.
1103 */
1104 if (pfd->pfd_flags & DT_PFCONV_AGG) {
1105 if (!(flags & DT_PRINTF_AGGREGATION)) {
1106 xyerror(D_PRINTF_AGG_CONV,
1107 "%%@ conversion requires an aggregation"
1108 " and is not for use with %s()\n", func);
1109 }
1110 (void) strlcpy(vname, "aggregating action",
1111 sizeof (vname));
1112 vnp = &aggnode;
1113 } else if (dnp == NULL) {
1114 xyerror(D_PRINTF_ARG_PROTO,
1115 "%s() prototype mismatch: conversion #%d (%%"
1116 "%s) is missing a corresponding value argument\n",
1117 func, i + 1, pfc->pfc_name);
1118 } else {
1119 (void) snprintf(vname, sizeof (vname),
1120 "argument #%d", j + foff + 1);
1121 vnp = dnp;
1122 dnp = dnp->dn_list;
1123 j++;
1124 }

1126 /*
1127 * Fill in the proposed final format string by prepending any
1128 * size-related prefixes to the pfconv’s format string. The
1129 * pfc_check() function below may optionally modify the format
1130 * as part of validating the type of the input argument.
1131 */
1132 if (pfc->pfc_print == &pfprint_sint ||
1133 pfc->pfc_print == &pfprint_uint ||
1134 pfc->pfc_print == &pfprint_dint) {
1135 if (dt_node_type_size(vnp) == sizeof (uint64_t))
1136 (void) strcpy(pfd->pfd_fmt, "ll");
1137 } else if (pfc->pfc_print == &pfprint_fp) {
1138 if (dt_node_type_size(vnp) == sizeof (long double))
1139 (void) strcpy(pfd->pfd_fmt, "L");
1140 }

1142 (void) strcat(pfd->pfd_fmt, pfc->pfc_ofmt);

1144 /*
1145 * Validate the format conversion against the value node type.
1146 * If the conversion is good, create the descriptor format
1147 * string by concatenating together any required printf(3C)
1148 * size prefixes with the conversion’s native format string.

new/usr/src/lib/libdtrace/common/dt_printf.c 4

1149 */
1150 if (pfc->pfc_check(pfv, pfd, vnp) == 0) {
1151 xyerror(D_PRINTF_ARG_TYPE,
1152 "%s() %s is incompatible with "
1153 "conversion #%d prototype:\n\tconversion: %%%s\n"
1154 "\t prototype: %s\n\t argument: %s\n", func,
1155 vname, i + 1, pfc->pfc_name, pfc->pfc_tstr,
1156 dt_node_type_name(vnp, n, sizeof (n)));
1157 }
1158 }

1160 if ((flags & DT_PRINTF_EXACTLEN) && dnp != NULL) {
1161 xyerror(D_PRINTF_ARG_EXTRA,
1162 "%s() prototype mismatch: only %d arguments "
1163 "required by this format string\n", func, j);
1164 }
1165 }
______unchanged_portion_omitted_

new/usr/src/lib/libdtrace/common/dt_provider.c 1

**
 23597 Tue Jan 14 16:49:00 2014
new/usr/src/lib/libdtrace/common/dt_provider.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

30 #include <sys/types.h>
31 #include <sys/sysmacros.h>

33 #include <assert.h>
34 #include <limits.h>
35 #include <strings.h>
36 #include <stdlib.h>
37 #include <alloca.h>
38 #include <unistd.h>
39 #include <errno.h>

41 #include <dt_provider.h>
42 #include <dt_module.h>
43 #include <dt_string.h>
44 #include <dt_list.h>
45 #include <dt_pid.h>
46 #include <dtrace.h>
47 #endif /* ! codereview */

49 static dt_provider_t *
50 dt_provider_insert(dtrace_hdl_t *dtp, dt_provider_t *pvp, uint_t h)
51 {
52 dt_list_append(&dtp->dt_provlist, pvp);

54 pvp->pv_next = dtp->dt_provs[h];

new/usr/src/lib/libdtrace/common/dt_provider.c 2

55 dtp->dt_provs[h] = pvp;
56 dtp->dt_nprovs++;

58 return (pvp);
59 }

61 dt_provider_t *
62 dt_provider_lookup(dtrace_hdl_t *dtp, const char *name)
63 {
64 uint_t h = dt_strtab_hash(name, NULL) % dtp->dt_provbuckets;
65 dtrace_providerdesc_t desc;
66 dt_provider_t *pvp;

68 for (pvp = dtp->dt_provs[h]; pvp != NULL; pvp = pvp->pv_next) {
69 if (strcmp(pvp->pv_desc.dtvd_name, name) == 0)
70 return (pvp);
71 }

73 if (strisglob(name) || name[0] == ’\0’) {
74 (void) dt_set_errno(dtp, EDT_NOPROV);
75 return (NULL);
76 }

78 bzero(&desc, sizeof (desc));
79 (void) strlcpy(desc.dtvd_name, name, DTRACE_PROVNAMELEN);

81 if (dt_ioctl(dtp, DTRACEIOC_PROVIDER, &desc) == -1) {
82 (void) dt_set_errno(dtp, errno == ESRCH ? EDT_NOPROV : errno);
83 return (NULL);
84 }

86 if ((pvp = dt_provider_create(dtp, name)) == NULL)
87 return (NULL); /* dt_errno is set for us */

89 bcopy(&desc, &pvp->pv_desc, sizeof (desc));
90 pvp->pv_flags |= DT_PROVIDER_IMPL;
91 return (pvp);
92 }

94 dt_provider_t *
95 dt_provider_create(dtrace_hdl_t *dtp, const char *name)
96 {
97 dt_provider_t *pvp;

99 if ((pvp = dt_zalloc(dtp, sizeof (dt_provider_t))) == NULL)
100 return (NULL);

102 (void) strlcpy(pvp->pv_desc.dtvd_name, name, DTRACE_PROVNAMELEN);
103 pvp->pv_probes = dt_idhash_create(pvp->pv_desc.dtvd_name, NULL, 0, 0);
104 pvp->pv_gen = dtp->dt_gen;
105 pvp->pv_hdl = dtp;

107 if (pvp->pv_probes == NULL) {
108 dt_free(dtp, pvp);
109 (void) dt_set_errno(dtp, EDT_NOMEM);
110 return (NULL);
111 }

113 pvp->pv_desc.dtvd_attr.dtpa_provider = _dtrace_prvattr;
114 pvp->pv_desc.dtvd_attr.dtpa_mod = _dtrace_prvattr;
115 pvp->pv_desc.dtvd_attr.dtpa_func = _dtrace_prvattr;
116 pvp->pv_desc.dtvd_attr.dtpa_name = _dtrace_prvattr;
117 pvp->pv_desc.dtvd_attr.dtpa_args = _dtrace_prvattr;

119 return (dt_provider_insert(dtp, pvp,
120 dt_strtab_hash(name, NULL) % dtp->dt_provbuckets));

new/usr/src/lib/libdtrace/common/dt_provider.c 3

121 }

123 void
124 dt_provider_destroy(dtrace_hdl_t *dtp, dt_provider_t *pvp)
125 {
126 dt_provider_t **pp;
127 uint_t h;

129 assert(pvp->pv_hdl == dtp);

131 h = dt_strtab_hash(pvp->pv_desc.dtvd_name, NULL) % dtp->dt_provbuckets;
132 pp = &dtp->dt_provs[h];

134 while (*pp != NULL && *pp != pvp)
135 pp = &(*pp)->pv_next;

137 assert(*pp != NULL && *pp == pvp);
138 *pp = pvp->pv_next;

140 dt_list_delete(&dtp->dt_provlist, pvp);
141 dtp->dt_nprovs--;

143 if (pvp->pv_probes != NULL)
144 dt_idhash_destroy(pvp->pv_probes);

146 dt_node_link_free(&pvp->pv_nodes);
147 dt_free(dtp, pvp->pv_xrefs);
148 dt_free(dtp, pvp);
149 }

151 int
152 dt_provider_xref(dtrace_hdl_t *dtp, dt_provider_t *pvp, id_t id)
153 {
154 size_t oldsize = BT_SIZEOFMAP(pvp->pv_xrmax);
155 size_t newsize = BT_SIZEOFMAP(dtp->dt_xlatorid);

157 assert(id >= 0 && id < dtp->dt_xlatorid);

159 if (newsize > oldsize) {
160 ulong_t *xrefs = dt_zalloc(dtp, newsize);

162 if (xrefs == NULL)
163 return (-1);

165 bcopy(pvp->pv_xrefs, xrefs, oldsize);
166 dt_free(dtp, pvp->pv_xrefs);

168 pvp->pv_xrefs = xrefs;
169 pvp->pv_xrmax = dtp->dt_xlatorid;
170 }

172 BT_SET(pvp->pv_xrefs, id);
173 return (0);
174 }

176 static uint8_t
177 dt_probe_argmap(dt_node_t *xnp, dt_node_t *nnp)
178 {
179 uint8_t i;

181 for (i = 0; nnp != NULL; i++) {
182 if (nnp->dn_string != NULL &&
183 strcmp(nnp->dn_string, xnp->dn_string) == 0)
184 break;
185 else
186 nnp = nnp->dn_list;

new/usr/src/lib/libdtrace/common/dt_provider.c 4

187 }

189 return (i);
190 }

192 static dt_node_t *
193 dt_probe_alloc_args(dt_provider_t *pvp, int argc)
194 {
195 dt_node_t *args = NULL, *pnp = NULL, *dnp;
196 int i;

198 for (i = 0; i < argc; i++, pnp = dnp) {
199 if ((dnp = dt_node_xalloc(pvp->pv_hdl, DT_NODE_TYPE)) == NULL)
200 return (NULL);

202 dnp->dn_link = pvp->pv_nodes;
203 pvp->pv_nodes = dnp;

205 if (args == NULL)
206 args = dnp;
207 else
208 pnp->dn_list = dnp;
209 }

211 return (args);
212 }

214 static size_t
215 dt_probe_keylen(const dtrace_probedesc_t *pdp)
216 {
217 return (strlen(pdp->dtpd_mod) + 1 +
218 strlen(pdp->dtpd_func) + 1 + strlen(pdp->dtpd_name) + 1);
219 }

221 static char *
222 dt_probe_key(const dtrace_probedesc_t *pdp, char *s)
223 {
224 (void) snprintf(s, INT_MAX, "%s:%s:%s",
225 pdp->dtpd_mod, pdp->dtpd_func, pdp->dtpd_name);
226 return (s);
227 }

229 /*
230 * If a probe was discovered from the kernel, ask dtrace(7D) for a description
231 * of each of its arguments, including native and translated types.
232 */
233 static dt_probe_t *
234 dt_probe_discover(dt_provider_t *pvp, const dtrace_probedesc_t *pdp)
235 {
236 dtrace_hdl_t *dtp = pvp->pv_hdl;
237 char *name = dt_probe_key(pdp, alloca(dt_probe_keylen(pdp)));

239 dt_node_t *xargs, *nargs;
240 dt_ident_t *idp;
241 dt_probe_t *prp;

243 dtrace_typeinfo_t dtt;
244 int i, nc, xc;

246 int adc = _dtrace_argmax;
247 dtrace_argdesc_t *adv = alloca(sizeof (dtrace_argdesc_t) * adc);
248 dtrace_argdesc_t *adp = adv;

250 assert(strcmp(pvp->pv_desc.dtvd_name, pdp->dtpd_provider) == 0);
251 assert(pdp->dtpd_id != DTRACE_IDNONE);

new/usr/src/lib/libdtrace/common/dt_provider.c 5

253 dt_dprintf("discovering probe %s:%s id=%d\n",
254 pvp->pv_desc.dtvd_name, name, pdp->dtpd_id);

256 for (nc = -1, i = 0; i < adc; i++, adp++) {
257 bzero(adp, sizeof (dtrace_argdesc_t));
258 adp->dtargd_ndx = i;
259 adp->dtargd_id = pdp->dtpd_id;

261 if (dt_ioctl(dtp, DTRACEIOC_PROBEARG, adp) != 0) {
262 (void) dt_set_errno(dtp, errno);
263 return (NULL);
264 }

266 if (adp->dtargd_ndx == DTRACE_ARGNONE)
267 break; /* all argument descs have been retrieved */

269 nc = MAX(nc, adp->dtargd_mapping);
270 }

272 xc = i;
273 nc++;

275 /*
276 * The pid provider believes in giving the kernel a break. No reason to
277 * give the kernel all the ctf containers that we’re keeping ourselves
278 * just to get it back from it. So if we’re coming from a pid provider
279 * probe and the kernel gave us no argument information we’ll get some
280 * here. If for some crazy reason the kernel knows about our userland
281 * types then we just ignore this.
282 */
283 if (xc == 0 && nc == 0 &&
284 strncmp(pvp->pv_desc.dtvd_name, "pid", 3) == 0) {
285 nc = adc;
286 dt_pid_get_types(dtp, pdp, adv, &nc);
287 xc = nc;
288 }

290 /*
291 #endif /* ! codereview */
292 * Now that we have discovered the number of native and translated
293 * arguments from the argument descriptions, allocate a new probe ident
294 * and corresponding dt_probe_t and hash it into the provider.
295 */
296 xargs = dt_probe_alloc_args(pvp, xc);
297 nargs = dt_probe_alloc_args(pvp, nc);

299 if ((xc != 0 && xargs == NULL) || (nc != 0 && nargs == NULL))
300 return (NULL); /* dt_errno is set for us */

302 idp = dt_ident_create(name, DT_IDENT_PROBE,
303 DT_IDFLG_ORPHAN, pdp->dtpd_id, _dtrace_defattr, 0,
304 &dt_idops_probe, NULL, dtp->dt_gen);

306 if (idp == NULL) {
307 (void) dt_set_errno(dtp, EDT_NOMEM);
308 return (NULL);
309 }

311 if ((prp = dt_probe_create(dtp, idp, 2,
312 nargs, nc, xargs, xc)) == NULL) {
313 dt_ident_destroy(idp);
314 return (NULL);
315 }

317 dt_probe_declare(pvp, prp);

new/usr/src/lib/libdtrace/common/dt_provider.c 6

319 /*
320 * Once our new dt_probe_t is fully constructed, iterate over the
321 * cached argument descriptions and assign types to prp->pr_nargv[]
322 * and prp->pr_xargv[] and assign mappings to prp->pr_mapping[].
323 */
324 for (adp = adv, i = 0; i < xc; i++, adp++) {
325 if (dtrace_type_strcompile(dtp,
326 adp->dtargd_native, &dtt) != 0) {
327 dt_dprintf("failed to resolve input type %s "
328 "for %s:%s arg #%d: %s\n", adp->dtargd_native,
329 pvp->pv_desc.dtvd_name, name, i + 1,
330 dtrace_errmsg(dtp, dtrace_errno(dtp)));

332 dtt.dtt_object = NULL;
333 dtt.dtt_ctfp = NULL;
334 dtt.dtt_type = CTF_ERR;
335 } else {
336 dt_node_type_assign(prp->pr_nargv[adp->dtargd_mapping],
337 dtt.dtt_ctfp, dtt.dtt_type,
338 dtt.dtt_flags & DTT_FL_USER ? B_TRUE : B_FALSE);
44 dtt.dtt_ctfp, dtt.dtt_type);
339 }

341 if (dtt.dtt_type != CTF_ERR && (adp->dtargd_xlate[0] == ’\0’ ||
342 strcmp(adp->dtargd_native, adp->dtargd_xlate) == 0)) {
343 dt_node_type_propagate(prp->pr_nargv[
344 adp->dtargd_mapping], prp->pr_xargv[i]);
345 } else if (dtrace_type_strcompile(dtp,
346 adp->dtargd_xlate, &dtt) != 0) {
347 dt_dprintf("failed to resolve output type %s "
348 "for %s:%s arg #%d: %s\n", adp->dtargd_xlate,
349 pvp->pv_desc.dtvd_name, name, i + 1,
350 dtrace_errmsg(dtp, dtrace_errno(dtp)));

352 dtt.dtt_object = NULL;
353 dtt.dtt_ctfp = NULL;
354 dtt.dtt_type = CTF_ERR;
355 } else {
356 dt_node_type_assign(prp->pr_xargv[i],
357 dtt.dtt_ctfp, dtt.dtt_type, B_FALSE);
63 dtt.dtt_ctfp, dtt.dtt_type);
358 }

360 prp->pr_mapping[i] = adp->dtargd_mapping;
361 prp->pr_argv[i] = dtt;
362 }

364 return (prp);
365 }

______unchanged_portion_omitted_

621 /*
622 * Lookup the dynamic translator type tag for the specified probe argument and
623 * assign the type to the specified node. If the type is not yet defined, add
624 * it to the "D" module’s type container as a typedef for an unknown type.
625 */
626 dt_node_t *
627 dt_probe_tag(dt_probe_t *prp, uint_t argn, dt_node_t *dnp)
628 {
629 dtrace_hdl_t *dtp = prp->pr_pvp->pv_hdl;
630 dtrace_typeinfo_t dtt;
631 size_t len;
632 char *tag;

634 len = snprintf(NULL, 0, "__dtrace_%s___%s_arg%u",
635 prp->pr_pvp->pv_desc.dtvd_name, prp->pr_name, argn);

new/usr/src/lib/libdtrace/common/dt_provider.c 7

637 tag = alloca(len + 1);

639 (void) snprintf(tag, len + 1, "__dtrace_%s___%s_arg%u",
640 prp->pr_pvp->pv_desc.dtvd_name, prp->pr_name, argn);

642 if (dtrace_lookup_by_type(dtp, DTRACE_OBJ_DDEFS, tag, &dtt) != 0) {
643 dtt.dtt_object = DTRACE_OBJ_DDEFS;
644 dtt.dtt_ctfp = DT_DYN_CTFP(dtp);
645 dtt.dtt_type = ctf_add_typedef(DT_DYN_CTFP(dtp),
646 CTF_ADD_ROOT, tag, DT_DYN_TYPE(dtp));

648 if (dtt.dtt_type == CTF_ERR ||
649 ctf_update(dtt.dtt_ctfp) == CTF_ERR) {
650 xyerror(D_UNKNOWN, "cannot define type %s: %s\n",
651 tag, ctf_errmsg(ctf_errno(dtt.dtt_ctfp)));
652 }
653 }

655 bzero(dnp, sizeof (dt_node_t));
656 dnp->dn_kind = DT_NODE_TYPE;

658 dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type, B_FALSE);
364 dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type);
659 dt_node_attr_assign(dnp, _dtrace_defattr);

661 return (dnp);
662 }

______unchanged_portion_omitted_

new/usr/src/lib/libdtrace/common/dt_xlator.c 1

**
 11557 Tue Jan 14 16:49:01 2014
new/usr/src/lib/libdtrace/common/dt_xlator.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright (c) 2013 by Delphix. All rights reserved.
28 * Copyright (c) 2013 Joyent, Inc. All rights reserved.
29 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

31 #include <strings.h>
32 #include <assert.h>

34 #include <dt_xlator.h>
35 #include <dt_parser.h>
36 #include <dt_grammar.h>
37 #include <dt_module.h>
38 #include <dt_impl.h>

40 /*
41 * Create a member node corresponding to one of the output members of a dynamic
42 * translator. We set the member’s dn_membexpr to a DT_NODE_XLATOR node that
43 * has dn_op set to DT_TOK_XLATE and refers back to the translator itself. The
44 * code generator will then use this as the indicator for dynamic translation.
45 */
46 /*ARGSUSED*/
47 static int
48 dt_xlator_create_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
49 {
50 dt_xlator_t *dxp = arg;
51 dtrace_hdl_t *dtp = dxp->dx_hdl;
52 dt_node_t *enp, *mnp;

54 if ((enp = dt_node_xalloc(dtp, DT_NODE_XLATOR)) == NULL)

new/usr/src/lib/libdtrace/common/dt_xlator.c 2

55 return (dt_set_errno(dtp, EDT_NOMEM));

57 enp->dn_link = dxp->dx_nodes;
58 dxp->dx_nodes = enp;

60 if ((mnp = dt_node_xalloc(dtp, DT_NODE_MEMBER)) == NULL)
61 return (dt_set_errno(dtp, EDT_NOMEM));

63 mnp->dn_link = dxp->dx_nodes;
64 dxp->dx_nodes = mnp;

66 /*
67 * For the member expression, we use a DT_NODE_XLATOR/TOK_XLATE whose
68 * xlator refers back to the translator and whose dn_xmember refers to
69 * the current member. These refs will be used by dt_cg.c and dt_as.c.
70 */
71 enp->dn_op = DT_TOK_XLATE;
72 enp->dn_xlator = dxp;
73 enp->dn_xmember = mnp;
74 dt_node_type_assign(enp, dxp->dx_dst_ctfp, type, B_FALSE);
72 dt_node_type_assign(enp, dxp->dx_dst_ctfp, type);

76 /*
77 * For the member itself, we use a DT_NODE_MEMBER as usual with the
78 * appropriate name, output type, and member expression set to ’enp’.
79 */
80 if (dxp->dx_members != NULL) {
81 assert(enp->dn_link->dn_kind == DT_NODE_MEMBER);
82 enp->dn_link->dn_list = mnp;
83 } else
84 dxp->dx_members = mnp;

86 mnp->dn_membname = strdup(name);
87 mnp->dn_membexpr = enp;
88 dt_node_type_assign(mnp, dxp->dx_dst_ctfp, type, B_FALSE);
86 dt_node_type_assign(mnp, dxp->dx_dst_ctfp, type);

90 if (mnp->dn_membname == NULL)
91 return (dt_set_errno(dtp, EDT_NOMEM));

93 return (0);
94 }

______unchanged_portion_omitted_

257 dt_xlator_t *
258 dt_xlator_lookup(dtrace_hdl_t *dtp, dt_node_t *src, dt_node_t *dst, int flags)
259 {
260 ctf_file_t *src_ctfp = src->dn_ctfp;
261 ctf_id_t src_type = src->dn_type;
262 ctf_id_t src_base = ctf_type_resolve(src_ctfp, src_type);

264 ctf_file_t *dst_ctfp = dst->dn_ctfp;
265 ctf_id_t dst_type = dst->dn_type;
266 ctf_id_t dst_base = ctf_type_resolve(dst_ctfp, dst_type);
267 uint_t dst_kind = ctf_type_kind(dst_ctfp, dst_base);

269 int ptr = dst_kind == CTF_K_POINTER;
270 dtrace_typeinfo_t src_dtt, dst_dtt;
271 dt_node_t xn = { 0 };
272 dt_xlator_t *dxp = NULL;

274 if (src_base == CTF_ERR || dst_base == CTF_ERR)
275 return (NULL); /* fail if these are unresolvable types */

277 /*
278 * Translators are always defined using a struct or union type, so if

new/usr/src/lib/libdtrace/common/dt_xlator.c 3

279 * we are attempting to translate to type "T *", we internally look
280 * for a translation to type "T" by following the pointer reference.
281 */
282 if (ptr) {
283 dst_type = ctf_type_reference(dst_ctfp, dst_type);
284 dst_base = ctf_type_resolve(dst_ctfp, dst_type);
285 dst_kind = ctf_type_kind(dst_ctfp, dst_base);
286 }

288 if (dst_kind != CTF_K_UNION && dst_kind != CTF_K_STRUCT)
289 return (NULL); /* fail if the output isn’t a struct or union */

291 /*
292 * In order to find a matching translator, we iterate over the set of
293 * available translators in three passes. First, we look for a
294 * translation from the exact source type to the resolved destination.
295 * Second, we look for a translation from the resolved source type to
296 * the resolved destination. Third, we look for a translation from a
297 * compatible source type (using the same rules as parameter formals)
298 * to the resolved destination. If all passes fail, return NULL.
299 */
300 for (dxp = dt_list_next(&dtp->dt_xlators); dxp != NULL;
301 dxp = dt_list_next(dxp)) {
302 if (ctf_type_compat(dxp->dx_src_ctfp, dxp->dx_src_type,
303 src_ctfp, src_type) &&
304 ctf_type_compat(dxp->dx_dst_ctfp, dxp->dx_dst_base,
305 dst_ctfp, dst_base))
306 goto out;
307 }

309 if (flags & DT_XLATE_EXACT)
310 goto out; /* skip remaining passes if exact match required */

312 for (dxp = dt_list_next(&dtp->dt_xlators); dxp != NULL;
313 dxp = dt_list_next(dxp)) {
314 if (ctf_type_compat(dxp->dx_src_ctfp, dxp->dx_src_base,
315 src_ctfp, src_type) &&
316 ctf_type_compat(dxp->dx_dst_ctfp, dxp->dx_dst_base,
317 dst_ctfp, dst_base))
318 goto out;
319 }

321 for (dxp = dt_list_next(&dtp->dt_xlators); dxp != NULL;
322 dxp = dt_list_next(dxp)) {
323 dt_node_type_assign(&xn, dxp->dx_src_ctfp, dxp->dx_src_type,
324 B_FALSE);
321 dt_node_type_assign(&xn, dxp->dx_src_ctfp, dxp->dx_src_type);
325 if (ctf_type_compat(dxp->dx_dst_ctfp, dxp->dx_dst_base,
326 dst_ctfp, dst_base) && dt_node_is_argcompat(src, &xn))
327 goto out;
328 }

330 out:
331 if (ptr && dxp != NULL && dxp->dx_ptrid.di_type == CTF_ERR)
332 return (NULL); /* no translation available to pointer type */

334 if (dxp != NULL || !(flags & DT_XLATE_EXTERN) ||
335 dtp->dt_xlatemode == DT_XL_STATIC)
336 return (dxp); /* we succeeded or not allowed to extern */

338 /*
339 * If we get here, then we didn’t find an existing translator, but the
340 * caller and xlatemode permit us to create an extern to a dynamic one.
341 */
342 src_dtt.dtt_object = dt_module_lookup_by_ctf(dtp, src_ctfp)->dm_name;
343 src_dtt.dtt_ctfp = src_ctfp;

new/usr/src/lib/libdtrace/common/dt_xlator.c 4

344 src_dtt.dtt_type = src_type;

346 dst_dtt.dtt_object = dt_module_lookup_by_ctf(dtp, dst_ctfp)->dm_name;
347 dst_dtt.dtt_ctfp = dst_ctfp;
348 dst_dtt.dtt_type = dst_type;

350 return (dt_xlator_create(dtp, &src_dtt, &dst_dtt, NULL, NULL, NULL));
351 }

______unchanged_portion_omitted_

new/usr/src/lib/libdtrace/common/dtrace.h 1

**
 23420 Tue Jan 14 16:49:01 2014
new/usr/src/lib/libdtrace/common/dtrace.h
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright (c) 2013 by Delphix. All rights reserved.
29 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2011, Joyent, Inc. All rights reserved.
30 */

32 #ifndef _DTRACE_H
33 #define _DTRACE_H

35 #include <sys/dtrace.h>
36 #include <stdarg.h>
37 #include <stdio.h>
38 #include <gelf.h>

40 #ifdef __cplusplus
41 extern "C" {
42 #endif

44 /*
45 * DTrace Dynamic Tracing Software: Library Interfaces
46 *
47 * Note: The contents of this file are private to the implementation of the
48 * Solaris system and DTrace subsystem and are subject to change at any time
49 * without notice. Applications and drivers using these interfaces will fail
50 * to run on future releases. These interfaces should not be used for any
51 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
52 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
53 */

55 #define DTRACE_VERSION 3 /* library ABI interface version */

new/usr/src/lib/libdtrace/common/dtrace.h 2

57 struct ps_prochandle;
58 typedef struct dtrace_hdl dtrace_hdl_t;
59 typedef struct dtrace_prog dtrace_prog_t;
60 typedef struct dtrace_vector dtrace_vector_t;
61 typedef struct dtrace_aggdata dtrace_aggdata_t;

63 #define DTRACE_O_NODEV 0x01 /* do not open dtrace(7D) device */
64 #define DTRACE_O_NOSYS 0x02 /* do not load /system/object modules */
65 #define DTRACE_O_LP64 0x04 /* force D compiler to be LP64 */
66 #define DTRACE_O_ILP32 0x08 /* force D compiler to be ILP32 */
67 #define DTRACE_O_MASK 0x0f /* mask of valid flags to dtrace_open */

69 extern dtrace_hdl_t *dtrace_open(int, int, int *);
70 extern dtrace_hdl_t *dtrace_vopen(int, int, int *,
71 const dtrace_vector_t *, void *);

73 extern int dtrace_go(dtrace_hdl_t *);
74 extern int dtrace_stop(dtrace_hdl_t *);
75 extern void dtrace_sleep(dtrace_hdl_t *);
76 extern void dtrace_close(dtrace_hdl_t *);

78 extern int dtrace_errno(dtrace_hdl_t *);
79 extern const char *dtrace_errmsg(dtrace_hdl_t *, int);
80 extern const char *dtrace_faultstr(dtrace_hdl_t *, int);
81 extern const char *dtrace_subrstr(dtrace_hdl_t *, int);

83 extern int dtrace_setopt(dtrace_hdl_t *, const char *, const char *);
84 extern int dtrace_getopt(dtrace_hdl_t *, const char *, dtrace_optval_t *);

86 extern void dtrace_update(dtrace_hdl_t *);
87 extern int dtrace_ctlfd(dtrace_hdl_t *);

89 /*
90 * DTrace Program Interface
91 *
92 * DTrace programs can be created by compiling ASCII text files containing
93 * D programs or by compiling in-memory C strings that specify a D program.
94 * Once created, callers can examine the list of program statements and
95 * enable the probes and actions described by these statements.
96 */

98 typedef struct dtrace_proginfo {
99 dtrace_attribute_t dpi_descattr; /* minimum probedesc attributes */
100 dtrace_attribute_t dpi_stmtattr; /* minimum statement attributes */
101 uint_t dpi_aggregates; /* number of aggregates specified in program */
102 uint_t dpi_recgens; /* number of record generating probes in prog */
103 uint_t dpi_matches; /* number of probes matched by program */
104 uint_t dpi_speculations; /* number of speculations specified in prog */
105 } dtrace_proginfo_t;

______unchanged_portion_omitted_

485 extern int dtrace_lookup_by_name(dtrace_hdl_t *, const char *, const char *,
486 GElf_Sym *, dtrace_syminfo_t *);

488 extern int dtrace_lookup_by_addr(dtrace_hdl_t *, GElf_Addr addr,
489 GElf_Sym *, dtrace_syminfo_t *);

491 typedef struct dtrace_typeinfo {
492 const char *dtt_object; /* object containing type */
493 ctf_file_t *dtt_ctfp; /* CTF container handle */
494 ctf_id_t dtt_type; /* CTF type identifier */
495 uint_t dtt_flags; /* Misc. flags */
496 #endif /* ! codereview */
497 } dtrace_typeinfo_t;

new/usr/src/lib/libdtrace/common/dtrace.h 3

499 #define DTT_FL_USER 0x1 /* user type */

501 #endif /* ! codereview */
502 extern int dtrace_lookup_by_type(dtrace_hdl_t *, const char *, const char *,
503 dtrace_typeinfo_t *);

505 extern int dtrace_symbol_type(dtrace_hdl_t *, const GElf_Sym *,
506 const dtrace_syminfo_t *, dtrace_typeinfo_t *);

508 extern int dtrace_type_strcompile(dtrace_hdl_t *,
509 const char *, dtrace_typeinfo_t *);

511 extern int dtrace_type_fcompile(dtrace_hdl_t *,
512 FILE *, dtrace_typeinfo_t *);

514 /*
515 * DTrace Probe Interface
516 *
517 * Library clients can use these functions to iterate over the set of available
518 * probe definitions and inquire as to their attributes. The probe iteration
519 * interfaces report probes that are declared as well as those from dtrace(7D).
520 */
521 typedef struct dtrace_probeinfo {
522 dtrace_attribute_t dtp_attr; /* name attributes */
523 dtrace_attribute_t dtp_arga; /* arg attributes */
524 const dtrace_typeinfo_t *dtp_argv; /* arg types */
525 int dtp_argc; /* arg count */
526 } dtrace_probeinfo_t;

528 typedef int dtrace_probe_f(dtrace_hdl_t *, const dtrace_probedesc_t *, void *);

530 extern int dtrace_probe_iter(dtrace_hdl_t *,
531 const dtrace_probedesc_t *pdp, dtrace_probe_f *, void *);

533 extern int dtrace_probe_info(dtrace_hdl_t *,
534 const dtrace_probedesc_t *, dtrace_probeinfo_t *);

536 /*
537 * DTrace Vector Interface
538 *
539 * The DTrace library normally speaks directly to dtrace(7D). However,
540 * this communication may be vectored elsewhere. Consumers who wish to
541 * perform a vectored open must fill in the vector, and use the dtrace_vopen()
542 * entry point to obtain a library handle.
543 */
544 struct dtrace_vector {
545 int (*dtv_ioctl)(void *, int, void *);
546 int (*dtv_lookup_by_addr)(void *, GElf_Addr, GElf_Sym *,
547 dtrace_syminfo_t *);
548 int (*dtv_status)(void *, processorid_t);
549 long (*dtv_sysconf)(void *, int);
550 };

552 /*
553 * DTrace Utility Functions
554 *
555 * Library clients can use these functions to convert addresses strings, to
556 * convert between string and integer probe descriptions and the
557 * dtrace_probedesc_t representation, and to perform similar conversions on
558 * stability attributes.
559 */
560 extern int dtrace_addr2str(dtrace_hdl_t *, uint64_t, char *, int);
561 extern int dtrace_uaddr2str(dtrace_hdl_t *, pid_t, uint64_t, char *, int);

563 extern int dtrace_xstr2desc(dtrace_hdl_t *, dtrace_probespec_t,
564 const char *, int, char *const [], dtrace_probedesc_t *);

new/usr/src/lib/libdtrace/common/dtrace.h 4

566 extern int dtrace_str2desc(dtrace_hdl_t *, dtrace_probespec_t,
567 const char *, dtrace_probedesc_t *);

569 extern int dtrace_id2desc(dtrace_hdl_t *, dtrace_id_t, dtrace_probedesc_t *);

571 #define DTRACE_DESC2STR_MAX 1024 /* min buf size for dtrace_desc2str() */

573 extern char *dtrace_desc2str(const dtrace_probedesc_t *, char *, size_t);

575 #define DTRACE_ATTR2STR_MAX 64 /* min buf size for dtrace_attr2str() */

577 extern char *dtrace_attr2str(dtrace_attribute_t, char *, size_t);
578 extern int dtrace_str2attr(const char *, dtrace_attribute_t *);

580 extern const char *dtrace_stability_name(dtrace_stability_t);
581 extern const char *dtrace_class_name(dtrace_class_t);

583 extern int dtrace_provider_modules(dtrace_hdl_t *, const char **, int);

585 extern const char *const _dtrace_version;
586 extern int _dtrace_debug;

588 #ifdef __cplusplus
589 }
590 #endif

592 #endif /* _DTRACE_H */

new/usr/src/pkg/manifests/system-dtrace-tests.mf 1

**
 122351 Tue Jan 14 16:49:01 2014
new/usr/src/pkg/manifests/system-dtrace-tests.mf
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright (c) 2012 by Delphix. All rights reserved.
25 #

27 set name=pkg.fmri value=pkg:/system/dtrace/tests@$(PKGVERS)
28 set name=pkg.description value="DTrace Test Suite Internal Distribution"
29 set name=pkg.summary value="DTrace Test Suite"
30 set name=info.classification \
31 value=org.opensolaris.category.2008:Development/System
32 set name=variant.arch value=$(ARCH)
33 dir path=opt/SUNWdtrt group=sys
34 dir path=opt/SUNWdtrt/bin
35 dir path=opt/SUNWdtrt/bin/$(ARCH32)
36 dir path=opt/SUNWdtrt/bin/$(ARCH64)
37 dir path=opt/SUNWdtrt/lib
38 dir path=opt/SUNWdtrt/lib/java
39 dir path=opt/SUNWdtrt/tst
40 dir path=opt/SUNWdtrt/tst/$(ARCH)
41 dir path=opt/SUNWdtrt/tst/$(ARCH)/arrays
42 $(i386_ONLY)dir path=opt/SUNWdtrt/tst/$(ARCH)/funcs
43 dir path=opt/SUNWdtrt/tst/$(ARCH)/pid
44 $(sparc_ONLY)dir path=opt/SUNWdtrt/tst/$(ARCH)/usdt
45 dir path=opt/SUNWdtrt/tst/$(ARCH)/ustack
46 dir path=opt/SUNWdtrt/tst/common
47 dir path=opt/SUNWdtrt/tst/common/aggs
48 dir path=opt/SUNWdtrt/tst/common/arithmetic
49 dir path=opt/SUNWdtrt/tst/common/arrays
50 dir path=opt/SUNWdtrt/tst/common/assocs
51 dir path=opt/SUNWdtrt/tst/common/begin
52 dir path=opt/SUNWdtrt/tst/common/bitfields
53 dir path=opt/SUNWdtrt/tst/common/buffering
54 dir path=opt/SUNWdtrt/tst/common/builtinvar
55 dir path=opt/SUNWdtrt/tst/common/cg
56 dir path=opt/SUNWdtrt/tst/common/clauses

new/usr/src/pkg/manifests/system-dtrace-tests.mf 2

57 dir path=opt/SUNWdtrt/tst/common/cpc
58 dir path=opt/SUNWdtrt/tst/common/decls
59 dir path=opt/SUNWdtrt/tst/common/drops
60 dir path=opt/SUNWdtrt/tst/common/dtraceUtil
61 dir path=opt/SUNWdtrt/tst/common/end
62 dir path=opt/SUNWdtrt/tst/common/enum
63 dir path=opt/SUNWdtrt/tst/common/env
64 dir path=opt/SUNWdtrt/tst/common/error
65 dir path=opt/SUNWdtrt/tst/common/exit
66 dir path=opt/SUNWdtrt/tst/common/fbtprovider
67 dir path=opt/SUNWdtrt/tst/common/funcs
68 dir path=opt/SUNWdtrt/tst/common/grammar
69 dir path=opt/SUNWdtrt/tst/common/include
70 dir path=opt/SUNWdtrt/tst/common/inline
71 dir path=opt/SUNWdtrt/tst/common/io
72 dir path=opt/SUNWdtrt/tst/common/ip
73 dir path=opt/SUNWdtrt/tst/common/java_api
74 dir path=opt/SUNWdtrt/tst/common/json
75 dir path=opt/SUNWdtrt/tst/common/lexer
76 dir path=opt/SUNWdtrt/tst/common/llquantize
77 dir path=opt/SUNWdtrt/tst/common/mdb
78 dir path=opt/SUNWdtrt/tst/common/mib
79 dir path=opt/SUNWdtrt/tst/common/misc
80 dir path=opt/SUNWdtrt/tst/common/multiaggs
81 dir path=opt/SUNWdtrt/tst/common/nfs
82 dir path=opt/SUNWdtrt/tst/common/offsetof
83 dir path=opt/SUNWdtrt/tst/common/operators
84 dir path=opt/SUNWdtrt/tst/common/pid
85 dir path=opt/SUNWdtrt/tst/common/plockstat
86 dir path=opt/SUNWdtrt/tst/common/pointers
87 dir path=opt/SUNWdtrt/tst/common/pragma
88 dir path=opt/SUNWdtrt/tst/common/predicates
89 dir path=opt/SUNWdtrt/tst/common/preprocessor
90 dir path=opt/SUNWdtrt/tst/common/print
91 dir path=opt/SUNWdtrt/tst/common/printa
92 dir path=opt/SUNWdtrt/tst/common/printf
93 dir path=opt/SUNWdtrt/tst/common/privs
94 dir path=opt/SUNWdtrt/tst/common/probes
95 dir path=opt/SUNWdtrt/tst/common/proc
96 dir path=opt/SUNWdtrt/tst/common/profile-n
97 dir path=opt/SUNWdtrt/tst/common/providers
98 dir path=opt/SUNWdtrt/tst/common/raise
99 dir path=opt/SUNWdtrt/tst/common/rates
100 dir path=opt/SUNWdtrt/tst/common/safety
101 dir path=opt/SUNWdtrt/tst/common/scalars
102 dir path=opt/SUNWdtrt/tst/common/sched
103 dir path=opt/SUNWdtrt/tst/common/scripting
104 dir path=opt/SUNWdtrt/tst/common/sdt
105 dir path=opt/SUNWdtrt/tst/common/sizeof
106 dir path=opt/SUNWdtrt/tst/common/speculation
107 dir path=opt/SUNWdtrt/tst/common/stability
108 dir path=opt/SUNWdtrt/tst/common/stack
109 dir path=opt/SUNWdtrt/tst/common/stackdepth
110 dir path=opt/SUNWdtrt/tst/common/stop
111 dir path=opt/SUNWdtrt/tst/common/strlen
112 dir path=opt/SUNWdtrt/tst/common/strtoll
113 dir path=opt/SUNWdtrt/tst/common/struct
114 dir path=opt/SUNWdtrt/tst/common/syscall
115 dir path=opt/SUNWdtrt/tst/common/sysevent
116 dir path=opt/SUNWdtrt/tst/common/tick-n
117 dir path=opt/SUNWdtrt/tst/common/trace
118 dir path=opt/SUNWdtrt/tst/common/tracemem
119 dir path=opt/SUNWdtrt/tst/common/translators
120 dir path=opt/SUNWdtrt/tst/common/typedef
121 dir path=opt/SUNWdtrt/tst/common/types
122 dir path=opt/SUNWdtrt/tst/common/uctf

new/usr/src/pkg/manifests/system-dtrace-tests.mf 3

123 #endif /* ! codereview */
124 dir path=opt/SUNWdtrt/tst/common/union
125 dir path=opt/SUNWdtrt/tst/common/usdt
126 dir path=opt/SUNWdtrt/tst/common/ustack
127 dir path=opt/SUNWdtrt/tst/common/vars
128 dir path=opt/SUNWdtrt/tst/common/version
129 $(i386_ONLY)dir path=opt/SUNWdtrt/tst/i86xpv
130 $(i386_ONLY)dir path=opt/SUNWdtrt/tst/i86xpv/xdt
131 file path=opt/SUNWdtrt/README mode=0444
132 file path=opt/SUNWdtrt/bin/$(ARCH32)/chkargs mode=0555
133 file path=opt/SUNWdtrt/bin/$(ARCH64)/chkargs mode=0555
134 file path=opt/SUNWdtrt/bin/baddof mode=0555
135 file path=opt/SUNWdtrt/bin/badioctl mode=0555
136 file path=opt/SUNWdtrt/bin/chkargs mode=0555
137 file path=opt/SUNWdtrt/bin/dstyle mode=0555
138 file path=opt/SUNWdtrt/bin/dtest mode=0555
139 file path=opt/SUNWdtrt/bin/dtfailures mode=0555
140 file path=opt/SUNWdtrt/bin/exception.lst mode=0444
141 file path=opt/SUNWdtrt/bin/jdtrace mode=0555
142 file path=opt/SUNWdtrt/lib/java/jdtrace.jar
143 file path=opt/SUNWdtrt/tst/$(ARCH)/arrays/tst.uregsarray.d mode=0444
144 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/funcs/tst.badcopyin.d mode=0444
145 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/funcs/tst.badcopyinstr.d \
146 mode=0444
147 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/funcs/tst.badcopyout.d \
148 mode=0444
149 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/funcs/tst.badcopyoutstr.d \
150 mode=0444
151 $(sparc_ONLY)file \
152 path=opt/SUNWdtrt/tst/$(ARCH)/pid/err.D_PROC_ALIGN.misaligned.d mode=0444
153 $(sparc_ONLY)file \
154 path=opt/SUNWdtrt/tst/$(ARCH)/pid/err.D_PROC_ALIGN.misaligned.exe \
155 mode=0555
156 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.badinstr.d mode=0444
157 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.badinstr.exe mode=0555
158 $(sparc_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.br.d mode=0444
159 $(sparc_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.br.d.out mode=0444
160 $(sparc_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.br.exe mode=0555
161 file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.branch.d mode=0444
162 file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.branch.exe mode=0555
163 file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.embedded.d mode=0444
164 file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.embedded.exe mode=0555
165 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.ret.d mode=0444
166 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.ret.exe mode=0555
167 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.retlist.exe mode=0555
168 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.retlist.ksh mode=0444
169 $(sparc_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/usdt/tst.tailcall.ksh \
170 mode=0444
171 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.annotated.d mode=0444
172 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.annotated.d.out mode=0444
173 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.annotated.exe mode=0555
174 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.circstack.d mode=0444
175 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.circstack.exe mode=0555
176 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.helper.d mode=0444
177 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.helper.d.out mode=0444
178 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.helper.exe mode=0555
179 $(sparc_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.trapstat.ksh \
180 mode=0444
181 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_FUNC.bad.d mode=0444
182 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_MDIM.bad.d mode=0444
183 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_NULL.bad.d mode=0444
184 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_REDEF.redef.d mode=0444
185 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.avgtoofew.d mode=0444
186 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.maxnoarg.d mode=0444
187 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.mintoofew.d mode=0444
188 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.quantizetoofew.d \

new/usr/src/pkg/manifests/system-dtrace-tests.mf 4

189 mode=0444
190 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.stddevtoofew.d \
191 mode=0444
192 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.sumtoofew.d mode=0444
193 file path=opt/SUNWdtrt/tst/common/aggs/err.D_CLEAR_AGGARG.bad.d mode=0444
194 file path=opt/SUNWdtrt/tst/common/aggs/err.D_CLEAR_PROTO.bad.d mode=0444
195 file path=opt/SUNWdtrt/tst/common/aggs/err.D_FUNC_IDENT.bad.d mode=0444
196 file path=opt/SUNWdtrt/tst/common/aggs/err.D_FUNC_UNDEF.badaggfunc.d mode=0444
197 file path=opt/SUNWdtrt/tst/common/aggs/err.D_IDENT_UNDEF.badexpr.d mode=0444
198 file path=opt/SUNWdtrt/tst/common/aggs/err.D_IDENT_UNDEF.badkey3.d mode=0444
199 file path=opt/SUNWdtrt/tst/common/aggs/err.D_IDENT_UNDEF.noeffect.d mode=0444
200 file path=opt/SUNWdtrt/tst/common/aggs/err.D_KEY_TYPE.badkey1.d mode=0444
201 file path=opt/SUNWdtrt/tst/common/aggs/err.D_KEY_TYPE.badkey2.d mode=0444
202 file path=opt/SUNWdtrt/tst/common/aggs/err.D_KEY_TYPE.badkey4.d mode=0444
203 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_BASETYPE.lqbad1.d \
204 mode=0444
205 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_BASETYPE.lqshort.d \
206 mode=0444
207 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_BASEVAL.bad.d mode=0444
208 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_LIMTYPE.lqbad1.d mode=0444
209 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_LIMVAL.bad.d mode=0444
210 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MATCHBASE.d mode=0444
211 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MATCHBASE.order.d \
212 mode=0444
213 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MATCHLIM.d mode=0444
214 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MATCHLIM.order.d mode=0444
215 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MATCHSTEP.d mode=0444
216 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MISMATCH.lqbadarg.d \
217 mode=0444
218 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_STEPLARGE.lqtoofew.d \
219 mode=0444
220 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_STEPSMALL.bad.d mode=0444
221 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_STEPTYPE.lqbadinc.d \
222 mode=0444
223 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_STEPVAL.bad.d mode=0444
224 file path=opt/SUNWdtrt/tst/common/aggs/err.D_NORMALIZE_AGGARG.bad.d mode=0444
225 file path=opt/SUNWdtrt/tst/common/aggs/err.D_NORMALIZE_PROTO.bad.d mode=0444
226 file path=opt/SUNWdtrt/tst/common/aggs/err.D_NORMALIZE_SCALAR.bad.d mode=0444
227 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_ARG.lquantizetoofew.d \
228 mode=0444
229 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.avgnoarg.d mode=0444
230 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.avgtoomany.d mode=0444
231 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.counttoomany.d \
232 mode=0444
233 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.lquantizenoarg.d \
234 mode=0444
235 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.lquantizetoomany.d \
236 mode=0444
237 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.maxnoarg.d mode=0444
238 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.maxtoomany.d mode=0444
239 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.minnoarg.d mode=0444
240 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.mintoomany.d mode=0444
241 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.quantizenoarg.d \
242 mode=0444
243 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.quantizetoomany.d \
244 mode=0444
245 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.stddevnoarg.d mode=0444
246 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.stddevtoomany.d \
247 mode=0444
248 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.sumnoarg.d mode=0444
249 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.sumtoomany.d mode=0444
250 file path=opt/SUNWdtrt/tst/common/aggs/err.D_TRUNC_AGGARG.bad.d mode=0444
251 file path=opt/SUNWdtrt/tst/common/aggs/err.D_TRUNC_PROTO.badmany.d mode=0444
252 file path=opt/SUNWdtrt/tst/common/aggs/err.D_TRUNC_PROTO.badnone.d mode=0444
253 file path=opt/SUNWdtrt/tst/common/aggs/err.D_TRUNC_SCALAR.bad.d mode=0444
254 file path=opt/SUNWdtrt/tst/common/aggs/tst.allquant.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 5

255 file path=opt/SUNWdtrt/tst/common/aggs/tst.allquant.d.out mode=0444
256 file path=opt/SUNWdtrt/tst/common/aggs/tst.avg.d mode=0444
257 file path=opt/SUNWdtrt/tst/common/aggs/tst.avg.d.out mode=0444
258 file path=opt/SUNWdtrt/tst/common/aggs/tst.avg_neg.d mode=0444
259 file path=opt/SUNWdtrt/tst/common/aggs/tst.avg_neg.d.out mode=0444
260 file path=opt/SUNWdtrt/tst/common/aggs/tst.clear.d mode=0444
261 file path=opt/SUNWdtrt/tst/common/aggs/tst.clear.d.out mode=0444
262 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearavg.d mode=0444
263 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearavg.d.out mode=0444
264 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearavg2.d mode=0444
265 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearavg2.d.out mode=0444
266 file path=opt/SUNWdtrt/tst/common/aggs/tst.cleardenormalize.d mode=0444
267 file path=opt/SUNWdtrt/tst/common/aggs/tst.cleardenormalize.d.out mode=0444
268 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearlquantize.d mode=0444
269 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearlquantize.d.out mode=0444
270 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearnormalize.d mode=0444
271 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearnormalize.d.out mode=0444
272 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearstddev.d mode=0444
273 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearstddev.d.out mode=0444
274 file path=opt/SUNWdtrt/tst/common/aggs/tst.count.d mode=0444
275 file path=opt/SUNWdtrt/tst/common/aggs/tst.count.d.out mode=0444
276 file path=opt/SUNWdtrt/tst/common/aggs/tst.count2.d mode=0444
277 file path=opt/SUNWdtrt/tst/common/aggs/tst.count2.d.out mode=0444
278 file path=opt/SUNWdtrt/tst/common/aggs/tst.count3.d mode=0444
279 file path=opt/SUNWdtrt/tst/common/aggs/tst.denormalize.d mode=0444
280 file path=opt/SUNWdtrt/tst/common/aggs/tst.denormalize.d.out mode=0444
281 file path=opt/SUNWdtrt/tst/common/aggs/tst.denormalizeonly.d mode=0444
282 file path=opt/SUNWdtrt/tst/common/aggs/tst.denormalizeonly.d.out mode=0444
283 file path=opt/SUNWdtrt/tst/common/aggs/tst.fmtnormalize.d mode=0444
284 file path=opt/SUNWdtrt/tst/common/aggs/tst.fmtnormalize.d.out mode=0444
285 file path=opt/SUNWdtrt/tst/common/aggs/tst.forms.d mode=0444
286 file path=opt/SUNWdtrt/tst/common/aggs/tst.forms.d.out mode=0444
287 file path=opt/SUNWdtrt/tst/common/aggs/tst.goodkey.d mode=0444
288 file path=opt/SUNWdtrt/tst/common/aggs/tst.keysort.d mode=0444
289 file path=opt/SUNWdtrt/tst/common/aggs/tst.keysort.d.out mode=0444
290 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantize.d mode=0444
291 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantize.d.out mode=0444
292 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantnormal.d mode=0444
293 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantnormal.d.out mode=0444
294 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantrange.d mode=0444
295 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantrange.d.out mode=0444
296 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantround.d mode=0444
297 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantround.d.out mode=0444
298 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantzero.d mode=0444
299 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantzero.d.out mode=0444
300 file path=opt/SUNWdtrt/tst/common/aggs/tst.max.d mode=0444
301 file path=opt/SUNWdtrt/tst/common/aggs/tst.max.d.out mode=0444
302 file path=opt/SUNWdtrt/tst/common/aggs/tst.max_neg.d mode=0444
303 file path=opt/SUNWdtrt/tst/common/aggs/tst.max_neg.d.out mode=0444
304 file path=opt/SUNWdtrt/tst/common/aggs/tst.min.d mode=0444
305 file path=opt/SUNWdtrt/tst/common/aggs/tst.min.d.out mode=0444
306 file path=opt/SUNWdtrt/tst/common/aggs/tst.min_neg.d mode=0444
307 file path=opt/SUNWdtrt/tst/common/aggs/tst.min_neg.d.out mode=0444
308 file path=opt/SUNWdtrt/tst/common/aggs/tst.multiaggs1.d mode=0444
309 file path=opt/SUNWdtrt/tst/common/aggs/tst.multiaggs2.d mode=0444
310 file path=opt/SUNWdtrt/tst/common/aggs/tst.multiaggs2.d.out mode=0444
311 file path=opt/SUNWdtrt/tst/common/aggs/tst.multiaggs3.d mode=0444
312 file path=opt/SUNWdtrt/tst/common/aggs/tst.multiaggs3.d.out mode=0444
313 file path=opt/SUNWdtrt/tst/common/aggs/tst.multinormalize.d mode=0444
314 file path=opt/SUNWdtrt/tst/common/aggs/tst.multinormalize.d.out mode=0444
315 file path=opt/SUNWdtrt/tst/common/aggs/tst.neglquant.d mode=0444
316 file path=opt/SUNWdtrt/tst/common/aggs/tst.neglquant.d.out mode=0444
317 file path=opt/SUNWdtrt/tst/common/aggs/tst.negorder.d mode=0444
318 file path=opt/SUNWdtrt/tst/common/aggs/tst.negorder.d.out mode=0444
319 file path=opt/SUNWdtrt/tst/common/aggs/tst.negquant.d mode=0444
320 file path=opt/SUNWdtrt/tst/common/aggs/tst.negquant.d.out mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 6

321 file path=opt/SUNWdtrt/tst/common/aggs/tst.negtrunc.d mode=0444
322 file path=opt/SUNWdtrt/tst/common/aggs/tst.negtrunc.d.out mode=0444
323 file path=opt/SUNWdtrt/tst/common/aggs/tst.negtruncquant.d mode=0444
324 file path=opt/SUNWdtrt/tst/common/aggs/tst.negtruncquant.d.out mode=0444
325 file path=opt/SUNWdtrt/tst/common/aggs/tst.normalize.d mode=0444
326 file path=opt/SUNWdtrt/tst/common/aggs/tst.normalize.d.out mode=0444
327 file path=opt/SUNWdtrt/tst/common/aggs/tst.order.d mode=0444
328 file path=opt/SUNWdtrt/tst/common/aggs/tst.order.d.out mode=0444
329 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantize.d mode=0444
330 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantize.d.out mode=0444
331 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantmany.d mode=0444
332 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantmany.d.out mode=0444
333 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantround.d mode=0444
334 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantround.d.out mode=0444
335 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantzero.d mode=0444
336 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantzero.d.out mode=0444
337 file path=opt/SUNWdtrt/tst/common/aggs/tst.signature.d mode=0444
338 file path=opt/SUNWdtrt/tst/common/aggs/tst.signedkeys.d mode=0444
339 file path=opt/SUNWdtrt/tst/common/aggs/tst.signedkeys.d.out mode=0444
340 file path=opt/SUNWdtrt/tst/common/aggs/tst.signedkeyspos.d mode=0444
341 file path=opt/SUNWdtrt/tst/common/aggs/tst.signedkeyspos.d.out mode=0444
342 file path=opt/SUNWdtrt/tst/common/aggs/tst.sizedkeys.d mode=0444
343 file path=opt/SUNWdtrt/tst/common/aggs/tst.sizedkeys.d.out mode=0444
344 file path=opt/SUNWdtrt/tst/common/aggs/tst.stddev.d mode=0444
345 file path=opt/SUNWdtrt/tst/common/aggs/tst.stddev.d.out mode=0444
346 file path=opt/SUNWdtrt/tst/common/aggs/tst.subr.d mode=0444
347 file path=opt/SUNWdtrt/tst/common/aggs/tst.sum.d mode=0444
348 file path=opt/SUNWdtrt/tst/common/aggs/tst.sum.d.out mode=0444
349 file path=opt/SUNWdtrt/tst/common/aggs/tst.trunc.d mode=0444
350 file path=opt/SUNWdtrt/tst/common/aggs/tst.trunc.d.out mode=0444
351 file path=opt/SUNWdtrt/tst/common/aggs/tst.trunc0.d mode=0444
352 file path=opt/SUNWdtrt/tst/common/aggs/tst.trunc0.d.out mode=0444
353 file path=opt/SUNWdtrt/tst/common/aggs/tst.truncquant.d mode=0444
354 file path=opt/SUNWdtrt/tst/common/aggs/tst.truncquant.d.out mode=0444
355 file path=opt/SUNWdtrt/tst/common/aggs/tst.valsortkeypos.d mode=0444
356 file path=opt/SUNWdtrt/tst/common/aggs/tst.valsortkeypos.d.out mode=0444
357 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_DIV_ZERO.divby0.d mode=0444
358 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_DIV_ZERO.divby0_1.d \
359 mode=0444
360 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_DIV_ZERO.divby0_2.d \
361 mode=0444
362 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_DIV_ZERO.modby0.d mode=0444
363 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_SYNTAX.addmin.d mode=0444
364 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_SYNTAX.divmin.d mode=0444
365 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_SYNTAX.muladd.d mode=0444
366 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_SYNTAX.muldiv.d mode=0444
367 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.basics.d mode=0444
368 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.basics.d.out mode=0444
369 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.compcast.d mode=0444
370 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.compcast.d.out mode=0444
371 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.compnarrowassign.d mode=0444
372 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.compnarrowassign.d.out \
373 mode=0444
374 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.execcast.d mode=0444
375 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.execcast.d.out mode=0444
376 file path=opt/SUNWdtrt/tst/common/arrays/err.D_ARR_BADREF.bad.d mode=0444
377 file path=opt/SUNWdtrt/tst/common/arrays/err.D_DECL_ARRBIG.toobig.d mode=0444
378 file path=opt/SUNWdtrt/tst/common/arrays/err.D_DECL_ARRNULL.bad.d mode=0444
379 file path=opt/SUNWdtrt/tst/common/arrays/err.D_DECL_ARRSUB.bad.d mode=0444
380 file path=opt/SUNWdtrt/tst/common/arrays/err.D_DECL_PROTO_TYPE.badtuple.d \
381 mode=0444
382 file path=opt/SUNWdtrt/tst/common/arrays/err.D_IDENT_UNDEF.badureg.d mode=0444
383 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic1.d mode=0444
384 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic2.d mode=0444
385 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic3.d mode=0444
386 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic4.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 7

387 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic5.d mode=0444
388 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic6.d mode=0444
389 file path=opt/SUNWdtrt/tst/common/arrays/tst.uregsarray.d mode=0444
390 file path=opt/SUNWdtrt/tst/common/assocs/err.D_OP_INCOMPAT.dupgtype.d \
391 mode=0444
392 file path=opt/SUNWdtrt/tst/common/assocs/err.D_OP_INCOMPAT.dupttype.d \
393 mode=0444
394 file path=opt/SUNWdtrt/tst/common/assocs/err.D_OP_INCOMPAT.this.d mode=0444
395 file path=opt/SUNWdtrt/tst/common/assocs/err.D_PROTO_ARG.badsig.d mode=0444
396 file path=opt/SUNWdtrt/tst/common/assocs/err.D_PROTO_LEN.toofew.d mode=0444
397 file path=opt/SUNWdtrt/tst/common/assocs/err.D_PROTO_LEN.toomany.d mode=0444
398 file path=opt/SUNWdtrt/tst/common/assocs/err.D_SYNTAX.errassign.d mode=0444
399 file path=opt/SUNWdtrt/tst/common/assocs/err.tupoflow.d mode=0444
400 file path=opt/SUNWdtrt/tst/common/assocs/tst.cpyarray.d mode=0444
401 file path=opt/SUNWdtrt/tst/common/assocs/tst.diffprofile.d mode=0444
402 file path=opt/SUNWdtrt/tst/common/assocs/tst.initialize.d mode=0444
403 file path=opt/SUNWdtrt/tst/common/assocs/tst.invalidref.d mode=0444
404 file path=opt/SUNWdtrt/tst/common/assocs/tst.misc.d mode=0444
405 file path=opt/SUNWdtrt/tst/common/assocs/tst.orthogonality.d mode=0444
406 file path=opt/SUNWdtrt/tst/common/assocs/tst.this.d mode=0444
407 file path=opt/SUNWdtrt/tst/common/assocs/tst.valassign.d.out mode=0444
408 file path=opt/SUNWdtrt/tst/common/begin/err.D_PDESC_ZERO.begin.d mode=0444
409 file path=opt/SUNWdtrt/tst/common/begin/err.D_PDESC_ZERO.tick.d mode=0444
410 file path=opt/SUNWdtrt/tst/common/begin/tst.begin.d mode=0444
411 file path=opt/SUNWdtrt/tst/common/begin/tst.begin.d.out mode=0444
412 file path=opt/SUNWdtrt/tst/common/begin/tst.multibegin.d mode=0444
413 file path=opt/SUNWdtrt/tst/common/begin/tst.multibegin.d.out mode=0444
414 file \
415 path=opt/SUNWdtrt/tst/common/bitfields/err.D_ADDROF_BITFIELD.BitfieldAddress
416 mode=0444
417 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_DECL_BFCONST.NegBitField.d \
418 mode=0444
419 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_DECL_BFCONST.ZeroBitField.d \
420 mode=0444
421 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_DECL_BFSIZE.ExceedBaseType.d \
422 mode=0444
423 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_DECL_BFSIZE.GreaterThan64.d \
424 mode=0444
425 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_DECL_BFTYPE.badtype.d \
426 mode=0444
427 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_OFFSETOF_BITFIELD.d \
428 mode=0444
429 file \
430 path=opt/SUNWdtrt/tst/common/bitfields/err.D_SIZEOF_BITFIELD.SizeofBitfield.
431 mode=0444
432 file path=opt/SUNWdtrt/tst/common/bitfields/tst.BitFieldPromotion.d mode=0444
433 file path=opt/SUNWdtrt/tst/common/bitfields/tst.SizeofBitField.d mode=0444
434 file path=opt/SUNWdtrt/tst/common/buffering/err.end.d mode=0444
435 file path=opt/SUNWdtrt/tst/common/buffering/err.resize1.d mode=0444
436 file path=opt/SUNWdtrt/tst/common/buffering/err.resize2.d mode=0444
437 file path=opt/SUNWdtrt/tst/common/buffering/err.resize3.d mode=0444
438 file path=opt/SUNWdtrt/tst/common/buffering/err.zerobuf.d mode=0444
439 file path=opt/SUNWdtrt/tst/common/buffering/tst.alignring.d mode=0444
440 file path=opt/SUNWdtrt/tst/common/buffering/tst.cputime.ksh mode=0444
441 file path=opt/SUNWdtrt/tst/common/buffering/tst.dynvarsize.d mode=0444
442 file path=opt/SUNWdtrt/tst/common/buffering/tst.fill1.d mode=0444
443 file path=opt/SUNWdtrt/tst/common/buffering/tst.fill1.d.out mode=0444
444 file path=opt/SUNWdtrt/tst/common/buffering/tst.resize1.d mode=0444
445 file path=opt/SUNWdtrt/tst/common/buffering/tst.resize2.d mode=0444
446 file path=opt/SUNWdtrt/tst/common/buffering/tst.resize3.d mode=0444
447 file path=opt/SUNWdtrt/tst/common/buffering/tst.ring1.d mode=0444
448 file path=opt/SUNWdtrt/tst/common/buffering/tst.ring2.d mode=0444
449 file path=opt/SUNWdtrt/tst/common/buffering/tst.ring2.d.out mode=0444
450 file path=opt/SUNWdtrt/tst/common/buffering/tst.ring3.d mode=0444
451 file path=opt/SUNWdtrt/tst/common/buffering/tst.ring3.d.out mode=0444
452 file path=opt/SUNWdtrt/tst/common/buffering/tst.smallring.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 8

453 file path=opt/SUNWdtrt/tst/common/buffering/tst.switch1.d mode=0444
454 file path=opt/SUNWdtrt/tst/common/buffering/tst.switch1.d.out mode=0444
455 file path=opt/SUNWdtrt/tst/common/builtinvar/err.D_XLATE_NOCONV.cpuusage.d \
456 mode=0444
457 file path=opt/SUNWdtrt/tst/common/builtinvar/err.D_XLATE_NOCONV.nice.d \
458 mode=0444
459 file path=opt/SUNWdtrt/tst/common/builtinvar/err.D_XLATE_NOCONV.priority.d \
460 mode=0444
461 file path=opt/SUNWdtrt/tst/common/builtinvar/err.D_XLATE_NOCONV.prsize.d \
462 mode=0444
463 file path=opt/SUNWdtrt/tst/common/builtinvar/err.D_XLATE_NOCONV.rssize.d \
464 mode=0444
465 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.arg0.d mode=0444
466 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.arg0clause.d mode=0444
467 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.arg1.d mode=0444
468 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.arg1to8.d mode=0444
469 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.arg1to8clause.d mode=0444
470 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.caller.d mode=0444
471 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.caller1.d mode=0444
472 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.epid.d mode=0444
473 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.epid1.d mode=0444
474 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.errno.d mode=0444
475 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.errno1.d mode=0444
476 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.execname.d mode=0444
477 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.hpriority.d mode=0444
478 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.id.d mode=0444
479 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.id1.d mode=0444
480 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.ipl.d mode=0444
481 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.ipl1.d mode=0444
482 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.lwpsinfo.d mode=0444
483 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.lwpsinfo1.d mode=0444
484 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.pid.d mode=0444
485 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.pid1.d mode=0444
486 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.psinfo.d mode=0444
487 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.psinfo1.d mode=0444
488 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.tid.d mode=0444
489 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.tid1.d mode=0444
490 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.timestamp.d mode=0444
491 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.vtimestamp.d mode=0444
492 file path=opt/SUNWdtrt/tst/common/cg/err.D_NOREG.noreg.d mode=0444
493 file path=opt/SUNWdtrt/tst/common/cg/err.baddif.d mode=0444
494 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.aggfun.d mode=0444
495 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.aggtup.d mode=0444
496 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.arrtup.d mode=0444
497 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.body.d mode=0444
498 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.both.d mode=0444
499 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.pred.d mode=0444
500 file path=opt/SUNWdtrt/tst/common/clauses/tst.nopred.d mode=0444
501 file path=opt/SUNWdtrt/tst/common/clauses/tst.pred.d mode=0444
502 file path=opt/SUNWdtrt/tst/common/clauses/tst.predfirst.d mode=0444
503 file path=opt/SUNWdtrt/tst/common/clauses/tst.predlast.d mode=0444
504 file path=opt/SUNWdtrt/tst/common/cpc/err.D_PDESC_ZERO.lowfrequency.d \
505 mode=0444
506 file path=opt/SUNWdtrt/tst/common/cpc/err.D_PDESC_ZERO.malformedoverflow.d \
507 mode=0444
508 file path=opt/SUNWdtrt/tst/common/cpc/err.D_PDESC_ZERO.nonexistentevent.d \
509 mode=0444
510 file path=opt/SUNWdtrt/tst/common/cpc/err.cpcvscpustatpart1.ksh mode=0444
511 file path=opt/SUNWdtrt/tst/common/cpc/err.cpcvscpustatpart2.ksh mode=0444
512 file path=opt/SUNWdtrt/tst/common/cpc/err.cputrackfailtostart.ksh mode=0444
513 file path=opt/SUNWdtrt/tst/common/cpc/err.cputrackterminates.ksh mode=0444
514 file path=opt/SUNWdtrt/tst/common/cpc/err.toomanyenablings.d mode=0444
515 file path=opt/SUNWdtrt/tst/common/cpc/tst.allcpus.ksh mode=0444
516 file path=opt/SUNWdtrt/tst/common/cpc/tst.genericevent.d mode=0444
517 file path=opt/SUNWdtrt/tst/common/cpc/tst.platformevent.ksh mode=0444
518 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_LOCASSC.NonLocalAssoc.d \

new/usr/src/pkg/manifests/system-dtrace-tests.mf 9

519 mode=0444
520 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_LONGINT.LongStruct.d \
521 mode=0444
522 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_PARMCLASS.BadStorageClass.d \
523 mode=0444
524 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_PROTO_NAME.VoidName.d \
525 mode=0444
526 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_PROTO_TYPE.Dyn.d mode=0444
527 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_PROTO_VARARGS.VarLenArgs.d \
528 mode=0444
529 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_PROTO_VOID.NonSoleVoid.d \
530 mode=0444
531 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_SIGNINT.UnsignedStruct.d \
532 mode=0444
533 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_VOIDATTR.ShortVoidDecl.d \
534 mode=0444
535 file path=opt/SUNWdtrt/tst/common/decls/tst.arrays.d mode=0444
536 file path=opt/SUNWdtrt/tst/common/decls/tst.basics.d mode=0444
537 file path=opt/SUNWdtrt/tst/common/decls/tst.funcs.d mode=0444
538 file path=opt/SUNWdtrt/tst/common/decls/tst.pointers.d mode=0444
539 file path=opt/SUNWdtrt/tst/common/decls/tst.varargsfuncs.d mode=0444
540 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_AGGREGATION.d mode=0444
541 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_DBLERROR.d mode=0444
542 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_DYNAMIC.d mode=0444
543 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_PRINCIPAL.d mode=0444
544 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_PRINCIPAL.end.d \
545 mode=0444
546 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_SPEC.d mode=0444
547 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_SPECUNAVAIL.d mode=0444
548 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_STKSTROVERFLOW.d \
549 mode=0444
550 file \
551 path=opt/SUNWdtrt/tst/common/dtraceUtil/err.D_PDESC_ZERO.InvalidDescription1
552 mode=0444
553 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.AddSearchPath.d.ksh mode=0444
554 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.BufsizeGiga.d.ksh mode=0444
555 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.BufsizeKilo.d.ksh mode=0444
556 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.BufsizeMega.d.ksh mode=0444
557 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.BufsizeTera.d.ksh mode=0444
558 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DataModel32.d.ksh mode=0444
559 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DataModel64.d.ksh mode=0444
560 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DefineNameWithCPP.d.ksh \
561 mode=0444
562 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DefineNameWithCPP.d.ksh.out \
563 mode=0444
564 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithFunction.d.ksh \
565 mode=0444
566 file \
567 path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithFunction.d.ksh.out \
568 mode=0444
569 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithID.d.ksh \
570 mode=0444
571 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithID.d.ksh.out \
572 mode=0444
573 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithModule.d.ksh \
574 mode=0444
575 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithModule.d.ksh.out \
576 mode=0444
577 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithName.d.ksh \
578 mode=0444
579 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithName.d.ksh.out \
580 mode=0444
581 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithProvider.d.ksh \
582 mode=0444
583 file \
584 path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithProvider.d.ksh.out \

new/usr/src/pkg/manifests/system-dtrace-tests.mf 10

585 mode=0444
586 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithoutW.d.ksh \
587 mode=0444
588 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ELFGenerationOut.d.ksh \
589 mode=0444
590 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ELFGenerationWithO.d.ksh \
591 mode=0444
592 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ExitStatus1.d.ksh mode=0444
593 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ExitStatus2.d.ksh mode=0444
594 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ExtraneousProbeIds.d.ksh \
595 mode=0444
596 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidFuncName1.d.ksh \
597 mode=0444
598 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidFuncName2.d.ksh \
599 mode=0444
600 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidId1.d.ksh mode=0444
601 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidId2.d.ksh mode=0444
602 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidId3.d.ksh mode=0444
603 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidModule1.d.ksh \
604 mode=0444
605 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidModule2.d.ksh \
606 mode=0444
607 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidModule3.d.ksh \
608 mode=0444
609 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidModule4.d.ksh \
610 mode=0444
611 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidProbeIdentifier.d.ksh \
612 mode=0444
613 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidProvider1.d.ksh \
614 mode=0444
615 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidProvider2.d.ksh \
616 mode=0444
617 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidProvider3.d.ksh \
618 mode=0444
619 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidProvider4.d.ksh \
620 mode=0444
621 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc1.d.ksh \
622 mode=0444
623 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc2.d.ksh \
624 mode=0444
625 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc3.d.ksh \
626 mode=0444
627 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc4.d.ksh \
628 mode=0444
629 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc5.d.ksh \
630 mode=0444
631 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc6.d.ksh \
632 mode=0444
633 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc7.d.ksh \
634 mode=0444
635 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc8.d.ksh \
636 mode=0444
637 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc9.d.ksh \
638 mode=0444
639 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID1.d.ksh \
640 mode=0444
641 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID2.d.ksh \
642 mode=0444
643 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID3.d.ksh \
644 mode=0444
645 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID4.d.ksh \
646 mode=0444
647 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID5.d.ksh \
648 mode=0444
649 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID6.d.ksh \
650 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 11

651 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID7.d.ksh \
652 mode=0444
653 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule1.d.ksh \
654 mode=0444
655 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule2.d.ksh \
656 mode=0444
657 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule3.d.ksh \
658 mode=0444
659 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule4.d.ksh \
660 mode=0444
661 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule5.d.ksh \
662 mode=0444
663 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule6.d.ksh \
664 mode=0444
665 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule7.d.ksh \
666 mode=0444
667 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule8.d.ksh \
668 mode=0444
669 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName1.d.ksh \
670 mode=0444
671 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName2.d.ksh \
672 mode=0444
673 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName3.d.ksh \
674 mode=0444
675 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName4.d.ksh \
676 mode=0444
677 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName5.d.ksh \
678 mode=0444
679 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName6.d.ksh \
680 mode=0444
681 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName7.d.ksh \
682 mode=0444
683 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName8.d.ksh \
684 mode=0444
685 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName9.d.ksh \
686 mode=0444
687 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceProvider1.d.ksh \
688 mode=0444
689 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceProvider2.d.ksh \
690 mode=0444
691 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceProvider3.d.ksh \
692 mode=0444
693 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceProvider4.d.ksh \
694 mode=0444
695 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceProvider5.d.ksh \
696 mode=0444
697 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.MultipleInvalidProbeId.d.ksh \
698 mode=0444
699 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.PreprocessorStatement.d.ksh \
700 mode=0444
701 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.QuietMode.d.ksh mode=0444
702 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.QuietMode.d.ksh.out mode=0444
703 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.TestCompile.d.ksh mode=0444
704 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.TestCompile.d.ksh.out \
705 mode=0444
706 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.UnDefineNameWithCPP.d.ksh \
707 mode=0444
708 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroFunctionProbes.d.ksh \
709 mode=0444
710 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroFunctionProbes.d.ksh.out \
711 mode=0444
712 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroModuleProbes.d.ksh \
713 mode=0444
714 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroModuleProbes.d.ksh.out \
715 mode=0444
716 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroNameProbes.d.ksh \

new/usr/src/pkg/manifests/system-dtrace-tests.mf 12

717 mode=0444
718 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroNameProbes.d.ksh.out \
719 mode=0444
720 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroProbeIdentfier.d.ksh \
721 mode=0444
722 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroProbesWithoutZ.d.ksh \
723 mode=0444
724 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroProviderProbes.d.ksh \
725 mode=0444
726 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroProviderProbes.d.ksh.out \
727 mode=0444
728 file path=opt/SUNWdtrt/tst/common/end/err.D_IDENT_UNDEF.timespent.d mode=0444
729 file path=opt/SUNWdtrt/tst/common/end/tst.end.d mode=0444
730 file path=opt/SUNWdtrt/tst/common/end/tst.endwithoutbegin.d mode=0444
731 file path=opt/SUNWdtrt/tst/common/end/tst.multibeginend.d mode=0444
732 file path=opt/SUNWdtrt/tst/common/end/tst.multiend.d mode=0444
733 file path=opt/SUNWdtrt/tst/common/enum/err.D_DECL_IDRED.EnumSameName.d \
734 mode=0444
735 file path=opt/SUNWdtrt/tst/common/enum/err.D_UNKNOWN.RepeatIdentifiers.d \
736 mode=0444
737 file path=opt/SUNWdtrt/tst/common/enum/tst.EnumEquality.d mode=0444
738 file path=opt/SUNWdtrt/tst/common/enum/tst.EnumSameValue.d mode=0444
739 file path=opt/SUNWdtrt/tst/common/enum/tst.EnumValAssign.d mode=0444
740 file path=opt/SUNWdtrt/tst/common/env/err.D_PRAGMA_OPTSET.setfromscript.d \
741 mode=0444
742 file path=opt/SUNWdtrt/tst/common/env/err.D_PRAGMA_OPTSET.unsetfromscript.d \
743 mode=0444
744 file path=opt/SUNWdtrt/tst/common/env/tst.ld_nolazyload.ksh mode=0444
745 file path=opt/SUNWdtrt/tst/common/env/tst.ld_nolazyload.ksh.out mode=0444
746 file path=opt/SUNWdtrt/tst/common/env/tst.setenv1.ksh mode=0444
747 file path=opt/SUNWdtrt/tst/common/env/tst.setenv1.ksh.out mode=0444
748 file path=opt/SUNWdtrt/tst/common/env/tst.setenv2.ksh mode=0444
749 file path=opt/SUNWdtrt/tst/common/env/tst.setenv2.ksh.out mode=0444
750 file path=opt/SUNWdtrt/tst/common/env/tst.unsetenv1.ksh mode=0444
751 file path=opt/SUNWdtrt/tst/common/env/tst.unsetenv1.ksh.out mode=0444
752 file path=opt/SUNWdtrt/tst/common/env/tst.unsetenv2.ksh mode=0444
753 file path=opt/SUNWdtrt/tst/common/env/tst.unsetenv2.ksh.out mode=0444
754 file path=opt/SUNWdtrt/tst/common/error/tst.DTRACEFLT_BADADDR.d mode=0444
755 file path=opt/SUNWdtrt/tst/common/error/tst.DTRACEFLT_DIVZERO.d mode=0444
756 file path=opt/SUNWdtrt/tst/common/error/tst.DTRACEFLT_UNKNOWN.d mode=0444
757 file path=opt/SUNWdtrt/tst/common/error/tst.error.d mode=0444
758 file path=opt/SUNWdtrt/tst/common/error/tst.errorend.d mode=0444
759 file path=opt/SUNWdtrt/tst/common/exit/err.D_PROTO_LEN.noarg.d mode=0444
760 file path=opt/SUNWdtrt/tst/common/exit/err.exitarg1.d mode=0444
761 file path=opt/SUNWdtrt/tst/common/exit/tst.basic1.d mode=0444
762 file path=opt/SUNWdtrt/tst/common/fbtprovider/err.D_PDESC_ZERO.notreturn.d \
763 mode=0444
764 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.basic.d mode=0444
765 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.functionentry.d mode=0444
766 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.functionreturnvalue.d \
767 mode=0444
768 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.ioctlargs.d mode=0444
769 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.offset.d mode=0444
770 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.offsetzero.d mode=0444
771 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.return.d mode=0444
772 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.return0.d mode=0444
773 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.tailcall.d mode=0444
774 file path=opt/SUNWdtrt/tst/common/funcs/err.D_FUNC_UNDEF.progenyofbad1.d \
775 mode=0444
776 file path=opt/SUNWdtrt/tst/common/funcs/err.D_OP_VFPTR.badop.d mode=0444
777 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.chillbadarg.d \
778 mode=0444
779 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.copyoutbadarg.d \
780 mode=0444
781 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.mobadarg.d mode=0444
782 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.raisebadarg.d \

new/usr/src/pkg/manifests/system-dtrace-tests.mf 13

783 mode=0444
784 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.tolower.d mode=0444
785 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.toupper.d mode=0444
786 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.allocanoarg.d \
787 mode=0444
788 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.badbreakpoint.d \
789 mode=0444
790 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.chilltoofew.d \
791 mode=0444
792 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.chilltoomany.d \
793 mode=0444
794 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.copyoutstrbadarg.d \
795 mode=0444
796 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.copyoutstrtoofew.d \
797 mode=0444
798 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.copyouttoofew.d \
799 mode=0444
800 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.copyouttoomany.d \
801 mode=0444
802 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.motoofew.d mode=0444
803 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.motoomany.d mode=0444
804 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.mtabadarg.d mode=0444
805 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.mtatoofew.d mode=0444
806 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.mtatoomany.d mode=0444
807 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.panicbadarg.d \
808 mode=0444
809 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.progenyofbad2.d \
810 mode=0444
811 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.stopbadarg.d mode=0444
812 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.tolower.d mode=0444
813 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.tolowertoomany.d \
814 mode=0444
815 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.toupper.d mode=0444
816 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.touppertoomany.d \
817 mode=0444
818 file path=opt/SUNWdtrt/tst/common/funcs/err.D_STRINGOF_TYPE.badstringof.d \
819 mode=0444
820 file path=opt/SUNWdtrt/tst/common/funcs/err.D_VAR_UNDEF.badvar.d mode=0444
821 file path=opt/SUNWdtrt/tst/common/funcs/err.badalloca.d mode=0444
822 file path=opt/SUNWdtrt/tst/common/funcs/err.badalloca2.d mode=0444
823 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy.d mode=0444
824 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy1.d mode=0444
825 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy2.d mode=0444
826 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy3.d mode=0444
827 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy4.d mode=0444
828 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy5.d mode=0444
829 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy6.d mode=0444
830 file path=opt/SUNWdtrt/tst/common/funcs/err.badchill.d mode=0444
831 file path=opt/SUNWdtrt/tst/common/funcs/err.chillbadarg.ksh mode=0444
832 file path=opt/SUNWdtrt/tst/common/funcs/err.copyout.d mode=0444
833 file path=opt/SUNWdtrt/tst/common/funcs/err.copyoutbadaddr.ksh mode=0444
834 file path=opt/SUNWdtrt/tst/common/funcs/err.copyoutstrbadaddr.ksh mode=0444
835 file path=opt/SUNWdtrt/tst/common/funcs/err.inet_ntoa6badaddr.d mode=0444
836 file path=opt/SUNWdtrt/tst/common/funcs/err.inet_ntoabadaddr.d mode=0444
837 file path=opt/SUNWdtrt/tst/common/funcs/err.inet_ntopbadaddr.d mode=0444
838 file path=opt/SUNWdtrt/tst/common/funcs/err.inet_ntopbadarg.d mode=0444
839 file path=opt/SUNWdtrt/tst/common/funcs/tst.badfreopen.ksh mode=0444
840 file path=opt/SUNWdtrt/tst/common/funcs/tst.basename.d mode=0444
841 file path=opt/SUNWdtrt/tst/common/funcs/tst.basename.d.out mode=0444
842 file path=opt/SUNWdtrt/tst/common/funcs/tst.bcopy.d mode=0444
843 file path=opt/SUNWdtrt/tst/common/funcs/tst.chill.ksh mode=0444
844 file path=opt/SUNWdtrt/tst/common/funcs/tst.cleanpath.d mode=0444
845 file path=opt/SUNWdtrt/tst/common/funcs/tst.cleanpath.d.out mode=0444
846 file path=opt/SUNWdtrt/tst/common/funcs/tst.copyin.d mode=0444
847 file path=opt/SUNWdtrt/tst/common/funcs/tst.copyinto.d mode=0444
848 file path=opt/SUNWdtrt/tst/common/funcs/tst.ddi_pathname.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 14

849 file path=opt/SUNWdtrt/tst/common/funcs/tst.default.d mode=0444
850 file path=opt/SUNWdtrt/tst/common/funcs/tst.freopen.ksh mode=0444
851 file path=opt/SUNWdtrt/tst/common/funcs/tst.ftruncate.ksh mode=0444
852 file path=opt/SUNWdtrt/tst/common/funcs/tst.ftruncate.ksh.out mode=0444
853 file path=opt/SUNWdtrt/tst/common/funcs/tst.hton.d mode=0444
854 file path=opt/SUNWdtrt/tst/common/funcs/tst.index.d mode=0444
855 file path=opt/SUNWdtrt/tst/common/funcs/tst.index.d.out mode=0444
856 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntoa.d mode=0444
857 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntoa.d.out mode=0444
858 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntoa6.d mode=0444
859 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntoa6.d.out mode=0444
860 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntop.d mode=0444
861 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntop.d.out mode=0444
862 file path=opt/SUNWdtrt/tst/common/funcs/tst.lltostr.d mode=0444
863 file path=opt/SUNWdtrt/tst/common/funcs/tst.lltostr.d.out mode=0444
864 file path=opt/SUNWdtrt/tst/common/funcs/tst.lltostrbase.d mode=0444
865 file path=opt/SUNWdtrt/tst/common/funcs/tst.lltostrbase.d.out mode=0444
866 file path=opt/SUNWdtrt/tst/common/funcs/tst.mutex_owned.d mode=0444
867 file path=opt/SUNWdtrt/tst/common/funcs/tst.mutex_owner.d mode=0444
868 file path=opt/SUNWdtrt/tst/common/funcs/tst.mutex_type_adaptive.d mode=0444
869 file path=opt/SUNWdtrt/tst/common/funcs/tst.progenyof.d mode=0444
870 file path=opt/SUNWdtrt/tst/common/funcs/tst.rand.d mode=0444
871 file path=opt/SUNWdtrt/tst/common/funcs/tst.strchr.d mode=0444
872 file path=opt/SUNWdtrt/tst/common/funcs/tst.strchr.d.out mode=0444
873 file path=opt/SUNWdtrt/tst/common/funcs/tst.strjoin.d mode=0444
874 file path=opt/SUNWdtrt/tst/common/funcs/tst.strjoin.d.out mode=0444
875 file path=opt/SUNWdtrt/tst/common/funcs/tst.strstr.d mode=0444
876 file path=opt/SUNWdtrt/tst/common/funcs/tst.strstr.d.out mode=0444
877 file path=opt/SUNWdtrt/tst/common/funcs/tst.strtok.d mode=0444
878 file path=opt/SUNWdtrt/tst/common/funcs/tst.strtok.d.out mode=0444
879 file path=opt/SUNWdtrt/tst/common/funcs/tst.strtok_null.d mode=0444
880 file path=opt/SUNWdtrt/tst/common/funcs/tst.substr.d mode=0444
881 file path=opt/SUNWdtrt/tst/common/funcs/tst.substr.d.out mode=0444
882 file path=opt/SUNWdtrt/tst/common/funcs/tst.substrminate.d mode=0444
883 file path=opt/SUNWdtrt/tst/common/funcs/tst.substrminate.d.out mode=0444
884 file path=opt/SUNWdtrt/tst/common/funcs/tst.system.d mode=0444
885 file path=opt/SUNWdtrt/tst/common/funcs/tst.system.d.out mode=0444
886 file path=opt/SUNWdtrt/tst/common/funcs/tst.tolower.d mode=0444
887 file path=opt/SUNWdtrt/tst/common/funcs/tst.toupper.d mode=0444
888 file path=opt/SUNWdtrt/tst/common/grammar/err.D_ADDROF_LVAL.d mode=0444
889 file path=opt/SUNWdtrt/tst/common/grammar/err.D_EMPTY.empty.d mode=0444
890 file path=opt/SUNWdtrt/tst/common/grammar/tst.clauses.d mode=0444
891 file path=opt/SUNWdtrt/tst/common/grammar/tst.stmts.d mode=0444
892 file path=opt/SUNWdtrt/tst/common/include/tst.includefirst.ksh mode=0444
893 file path=opt/SUNWdtrt/tst/common/inline/err.D_DECL_IDRED.redef1.d mode=0444
894 file path=opt/SUNWdtrt/tst/common/inline/err.D_DECL_IDRED.redef2.d mode=0444
895 file path=opt/SUNWdtrt/tst/common/inline/err.D_IDENT_UNDEF.recur.d mode=0444
896 file path=opt/SUNWdtrt/tst/common/inline/err.D_OP_INCOMPAT.baddef1.d mode=0444
897 file path=opt/SUNWdtrt/tst/common/inline/err.D_OP_INCOMPAT.baddef2.d mode=0444
898 file path=opt/SUNWdtrt/tst/common/inline/err.D_OP_INCOMPAT.badxlate.d \
899 mode=0444
900 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineDataAssign.d mode=0444
901 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineExpression.d mode=0444
902 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineKinds.d mode=0444
903 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineKinds.d.out mode=0444
904 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineTypedef.d mode=0444
905 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineWritableAssign.d mode=0444
906 file path=opt/SUNWdtrt/tst/common/io/tst.fds.d mode=0444
907 file path=opt/SUNWdtrt/tst/common/io/tst.fds.d.out mode=0444
908 file path=opt/SUNWdtrt/tst/common/io/tst.fds.exe mode=0555
909 file path=opt/SUNWdtrt/tst/common/ip/get.ipv4remote.pl mode=0555
910 file path=opt/SUNWdtrt/tst/common/ip/get.ipv6remote.pl mode=0555
911 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localicmp.ksh mode=0444
912 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localicmp.ksh.out mode=0444
913 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localtcp.ksh mode=0444
914 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localtcp.ksh.out mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 15

915 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localudp.ksh mode=0444
916 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localudp.ksh.out mode=0444
917 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remoteicmp.ksh mode=0444
918 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remoteicmp.ksh.out mode=0444
919 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remotetcp.ksh mode=0444
920 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remotetcp.ksh.out mode=0444
921 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remoteudp.ksh mode=0444
922 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remoteudp.ksh.out mode=0444
923 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv6localicmp.ksh mode=0444
924 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv6localicmp.ksh.out mode=0444
925 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv6remoteicmp.ksh mode=0444
926 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv6remoteicmp.ksh.out mode=0444
927 file path=opt/SUNWdtrt/tst/common/ip/tst.localtcpstate.ksh mode=0444
928 file path=opt/SUNWdtrt/tst/common/ip/tst.localtcpstate.ksh.out mode=0444
929 file path=opt/SUNWdtrt/tst/common/ip/tst.remotetcpstate.ksh mode=0444
930 file path=opt/SUNWdtrt/tst/common/ip/tst.remotetcpstate.ksh.out mode=0444
931 file path=opt/SUNWdtrt/tst/common/java_api/test.jar
932 file path=opt/SUNWdtrt/tst/common/java_api/tst.Abort.ksh mode=0444
933 file path=opt/SUNWdtrt/tst/common/java_api/tst.Abort.ksh.out mode=0444
934 file path=opt/SUNWdtrt/tst/common/java_api/tst.Bean.ksh mode=0444
935 file path=opt/SUNWdtrt/tst/common/java_api/tst.Bean.ksh.out mode=0444
936 file path=opt/SUNWdtrt/tst/common/java_api/tst.Close.ksh mode=0444
937 file path=opt/SUNWdtrt/tst/common/java_api/tst.Close.ksh.out mode=0444
938 file path=opt/SUNWdtrt/tst/common/java_api/tst.Drop.ksh mode=0444
939 file path=opt/SUNWdtrt/tst/common/java_api/tst.Drop.ksh.out mode=0444
940 file path=opt/SUNWdtrt/tst/common/java_api/tst.Enable.ksh mode=0444
941 file path=opt/SUNWdtrt/tst/common/java_api/tst.Enable.ksh.out mode=0444
942 file path=opt/SUNWdtrt/tst/common/java_api/tst.FunctionLookup.exe mode=0555
943 file path=opt/SUNWdtrt/tst/common/java_api/tst.FunctionLookup.ksh mode=0444
944 file path=opt/SUNWdtrt/tst/common/java_api/tst.FunctionLookup.ksh.out \
945 mode=0444
946 file path=opt/SUNWdtrt/tst/common/java_api/tst.GetAggregate.ksh mode=0444
947 file path=opt/SUNWdtrt/tst/common/java_api/tst.MaxConsumers.ksh mode=0444
948 file path=opt/SUNWdtrt/tst/common/java_api/tst.MaxConsumers.ksh.out mode=0444
949 file path=opt/SUNWdtrt/tst/common/java_api/tst.MultiAggPrinta.ksh mode=0444
950 file path=opt/SUNWdtrt/tst/common/java_api/tst.MultiAggPrinta.ksh.out \
951 mode=0444
952 file path=opt/SUNWdtrt/tst/common/java_api/tst.ProbeData.exe mode=0555
953 file path=opt/SUNWdtrt/tst/common/java_api/tst.ProbeData.ksh mode=0444
954 file path=opt/SUNWdtrt/tst/common/java_api/tst.ProbeData.ksh.out mode=0444
955 file path=opt/SUNWdtrt/tst/common/java_api/tst.ProbeDescription.ksh mode=0444
956 file path=opt/SUNWdtrt/tst/common/java_api/tst.ProbeDescription.ksh.out \
957 mode=0444
958 file path=opt/SUNWdtrt/tst/common/java_api/tst.StateMachine.ksh mode=0444
959 file path=opt/SUNWdtrt/tst/common/java_api/tst.StateMachine.ksh.out mode=0444
960 file path=opt/SUNWdtrt/tst/common/java_api/tst.StopLock.ksh mode=0444
961 file path=opt/SUNWdtrt/tst/common/java_api/tst.StopLock.ksh.out mode=0444
962 file path=opt/SUNWdtrt/tst/common/java_api/tst.printa.d mode=0444
963 file path=opt/SUNWdtrt/tst/common/java_api/tst.printa.d.out mode=0444
964 file path=opt/SUNWdtrt/tst/common/json/tst.general.d mode=0444
965 file path=opt/SUNWdtrt/tst/common/json/tst.general.d.out mode=0444
966 file path=opt/SUNWdtrt/tst/common/json/tst.strsize.d mode=0444
967 file path=opt/SUNWdtrt/tst/common/json/tst.strsize.d.out mode=0444
968 file path=opt/SUNWdtrt/tst/common/json/tst.usdt.d mode=0444
969 file path=opt/SUNWdtrt/tst/common/json/tst.usdt.d.out mode=0444
970 file path=opt/SUNWdtrt/tst/common/json/tst.usdt.exe mode=0555
971 file path=opt/SUNWdtrt/tst/common/lexer/err.D_CHR_NL.char.d mode=0444
972 file path=opt/SUNWdtrt/tst/common/lexer/err.D_CHR_NULL.char.d mode=0444
973 file path=opt/SUNWdtrt/tst/common/lexer/err.D_INT_DIGIT.InvalidDigit.d \
974 mode=0444
975 file path=opt/SUNWdtrt/tst/common/lexer/err.D_INT_OFLOW.BigInt.d mode=0444
976 file path=opt/SUNWdtrt/tst/common/lexer/err.D_STR_NL.string.d mode=0444
977 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.brace1.d mode=0444
978 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.brace2.d mode=0444
979 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.brack1.d mode=0444
980 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.brack2.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 16

981 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.brack3.d mode=0444
982 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.paren1.d mode=0444
983 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.paren2.d mode=0444
984 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.paren3.d mode=0444
985 file path=opt/SUNWdtrt/tst/common/lexer/tst.D_MACRO_OFLOW.ParIntOvflow.d.ksh \
986 mode=0444
987 file \
988 path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTOREVEN.nodivide.d
989 mode=0444
990 file \
991 path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTOREVEN.notfactor.d
992 mode=0444
993 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTORMATCH.d \
994 mode=0444
995 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTORNSTEPS.d \
996 mode=0444
997 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTORSMALL.d \
998 mode=0444
999 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTORTYPE.d \

1000 mode=0444
1001 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTORVAL.d \
1002 mode=0444
1003 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_HIGHMATCH.d \
1004 mode=0444
1005 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_HIGHTYPE.d \
1006 mode=0444
1007 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_HIGHVAL.d mode=0444
1008 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_LOWMATCH.d \
1009 mode=0444
1010 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_LOWTYPE.d mode=0444
1011 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_LOWVAL.d mode=0444
1012 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_MAGRANGE.d \
1013 mode=0444
1014 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_MAGTOOBIG.d \
1015 mode=0444
1016 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_NSTEPMATCH.d \
1017 mode=0444
1018 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_NSTEPTYPE.d \
1019 mode=0444
1020 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_NSTEPVAL.d \
1021 mode=0444
1022 file path=opt/SUNWdtrt/tst/common/llquantize/tst.bases.d mode=0444
1023 file path=opt/SUNWdtrt/tst/common/llquantize/tst.bases.d.out mode=0444
1024 file path=opt/SUNWdtrt/tst/common/llquantize/tst.basic.d mode=0444
1025 file path=opt/SUNWdtrt/tst/common/llquantize/tst.basic.d.out mode=0444
1026 file path=opt/SUNWdtrt/tst/common/llquantize/tst.negorder.d mode=0444
1027 file path=opt/SUNWdtrt/tst/common/llquantize/tst.negorder.d.out mode=0444
1028 file path=opt/SUNWdtrt/tst/common/llquantize/tst.negvalue.d mode=0444
1029 file path=opt/SUNWdtrt/tst/common/llquantize/tst.negvalue.d.out mode=0444
1030 file path=opt/SUNWdtrt/tst/common/llquantize/tst.normal.d mode=0444
1031 file path=opt/SUNWdtrt/tst/common/llquantize/tst.normal.d.out mode=0444
1032 file path=opt/SUNWdtrt/tst/common/llquantize/tst.range.d mode=0444
1033 file path=opt/SUNWdtrt/tst/common/llquantize/tst.range.d.out mode=0444
1034 file path=opt/SUNWdtrt/tst/common/llquantize/tst.steps.d mode=0444
1035 file path=opt/SUNWdtrt/tst/common/llquantize/tst.steps.d.out mode=0444
1036 file path=opt/SUNWdtrt/tst/common/llquantize/tst.trunc.d mode=0444
1037 file path=opt/SUNWdtrt/tst/common/llquantize/tst.trunc.d.out mode=0444
1038 file path=opt/SUNWdtrt/tst/common/mdb/tst.dtracedcmd.ksh mode=0444
1039 file path=opt/SUNWdtrt/tst/common/mib/tst.icmp.ksh mode=0444
1040 file path=opt/SUNWdtrt/tst/common/mib/tst.tcp.ksh mode=0444
1041 file path=opt/SUNWdtrt/tst/common/mib/tst.udp.ksh mode=0444
1042 file path=opt/SUNWdtrt/tst/common/misc/err.D_PRAGMA_OPTSET.d mode=0444
1043 file path=opt/SUNWdtrt/tst/common/misc/tst.badopt.d mode=0444
1044 file path=opt/SUNWdtrt/tst/common/misc/tst.boolopt.d mode=0444
1045 file path=opt/SUNWdtrt/tst/common/misc/tst.boolopt.d.out mode=0444
1046 file path=opt/SUNWdtrt/tst/common/misc/tst.dynopt.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 17

1047 file path=opt/SUNWdtrt/tst/common/misc/tst.dynopt.d.out mode=0444
1048 file path=opt/SUNWdtrt/tst/common/misc/tst.enablerace.ksh mode=0444
1049 file path=opt/SUNWdtrt/tst/common/misc/tst.haslam.d mode=0444
1050 file path=opt/SUNWdtrt/tst/common/misc/tst.include.ksh mode=0444
1051 file path=opt/SUNWdtrt/tst/common/misc/tst.macroglob.ksh mode=0444
1052 file path=opt/SUNWdtrt/tst/common/misc/tst.macroglob.ksh.out mode=0444
1053 file path=opt/SUNWdtrt/tst/common/misc/tst.roch.d mode=0444
1054 file path=opt/SUNWdtrt/tst/common/misc/tst.schrock.ksh mode=0444
1055 file path=opt/SUNWdtrt/tst/common/multiaggs/err.D_PRINTA_AGGKEY.d mode=0444
1056 file path=opt/SUNWdtrt/tst/common/multiaggs/err.D_PRINTA_AGGPROTO.d mode=0444
1057 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.many.d mode=0444
1058 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.many.d.out mode=0444
1059 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.same.d mode=0444
1060 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.same.d.out mode=0444
1061 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.sort.d mode=0444
1062 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.sort.d.out mode=0444
1063 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.sortpos.d mode=0444
1064 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.sortpos.d.out mode=0444
1065 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.tuplecompat.d mode=0444
1066 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.tuplecompat.d.out mode=0444
1067 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero.d mode=0444
1068 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero.d.out mode=0444
1069 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero2.d mode=0444
1070 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero2.d.out mode=0444
1071 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero3.d mode=0444
1072 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero3.d.out mode=0444
1073 file path=opt/SUNWdtrt/tst/common/nfs/tst.call.d mode=0444
1074 file path=opt/SUNWdtrt/tst/common/nfs/tst.call.exe mode=0555
1075 file path=opt/SUNWdtrt/tst/common/nfs/tst.call3.d mode=0444
1076 file path=opt/SUNWdtrt/tst/common/nfs/tst.call3.exe mode=0555
1077 file path=opt/SUNWdtrt/tst/common/offsetof/err.D_OFFSETOF_BITFIELD.bitfield.d \
1078 mode=0444
1079 file path=opt/SUNWdtrt/tst/common/offsetof/err.D_OFFSETOF_TYPE.badtype.d \
1080 mode=0444
1081 file path=opt/SUNWdtrt/tst/common/offsetof/err.D_OFFSETOF_TYPE.notsou.d \
1082 mode=0444
1083 file path=opt/SUNWdtrt/tst/common/offsetof/err.D_UNKNOWN.OffsetofNULL.d \
1084 mode=0444
1085 file path=opt/SUNWdtrt/tst/common/offsetof/err.D_UNKNOWN.badmemb.d mode=0444
1086 file path=opt/SUNWdtrt/tst/common/offsetof/tst.OffsetofAlias.d mode=0444
1087 file path=opt/SUNWdtrt/tst/common/offsetof/tst.OffsetofArith.d mode=0444
1088 file path=opt/SUNWdtrt/tst/common/offsetof/tst.OffsetofUnion.d mode=0444
1089 file path=opt/SUNWdtrt/tst/common/offsetof/tst.struct.d mode=0444
1090 file path=opt/SUNWdtrt/tst/common/offsetof/tst.struct.d.out mode=0444
1091 file path=opt/SUNWdtrt/tst/common/offsetof/tst.union.d mode=0444
1092 file path=opt/SUNWdtrt/tst/common/offsetof/tst.union.d.out mode=0444
1093 file path=opt/SUNWdtrt/tst/common/operators/tst.ternary.d mode=0444
1094 file path=opt/SUNWdtrt/tst/common/operators/tst.ternary.d.out mode=0444
1095 file path=opt/SUNWdtrt/tst/common/pid/err.D_PDESC_ZERO.badlib.d mode=0444
1096 file path=opt/SUNWdtrt/tst/common/pid/err.D_PDESC_ZERO.badlib.exe mode=0555
1097 file path=opt/SUNWdtrt/tst/common/pid/err.D_PDESC_ZERO.badproc1.d mode=0444
1098 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_BADPID.badproc2.d mode=0444
1099 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_CREATEFAIL.many.d mode=0444
1100 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_CREATEFAIL.many.exe mode=0555
1101 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_FUNC.badfunc.d mode=0444
1102 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_FUNC.badfunc.exe mode=0555
1103 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_LIB.libdash.d mode=0444
1104 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_LIB.libdash.exe mode=0555
1105 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.alldash.d mode=0444
1106 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.alldash.exe mode=0555
1107 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.badname.d mode=0444
1108 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.badname.exe mode=0555
1109 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.globdash.d mode=0444
1110 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.globdash.exe mode=0555
1111 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_OFF.toobig.d mode=0444
1112 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_OFF.toobig.exe mode=0555

new/usr/src/pkg/manifests/system-dtrace-tests.mf 18

1113 file path=opt/SUNWdtrt/tst/common/pid/tst.addprobes.ksh mode=0444
1114 file path=opt/SUNWdtrt/tst/common/pid/tst.args1.d mode=0444
1115 file path=opt/SUNWdtrt/tst/common/pid/tst.args1.exe mode=0555
1116 file path=opt/SUNWdtrt/tst/common/pid/tst.coverage.d mode=0444
1117 file path=opt/SUNWdtrt/tst/common/pid/tst.coverage.exe mode=0555
1118 file path=opt/SUNWdtrt/tst/common/pid/tst.emptystack.d mode=0444
1119 file path=opt/SUNWdtrt/tst/common/pid/tst.emptystack.d.out mode=0444
1120 file path=opt/SUNWdtrt/tst/common/pid/tst.emptystack.exe mode=0555
1121 file path=opt/SUNWdtrt/tst/common/pid/tst.float.d mode=0444
1122 file path=opt/SUNWdtrt/tst/common/pid/tst.float.exe mode=0555
1123 file path=opt/SUNWdtrt/tst/common/pid/tst.fork.d mode=0444
1124 file path=opt/SUNWdtrt/tst/common/pid/tst.fork.exe mode=0555
1125 file path=opt/SUNWdtrt/tst/common/pid/tst.gcc.d mode=0444
1126 file path=opt/SUNWdtrt/tst/common/pid/tst.gcc.exe mode=0555
1127 file path=opt/SUNWdtrt/tst/common/pid/tst.killonerror.ksh mode=0444
1128 file path=opt/SUNWdtrt/tst/common/pid/tst.main.ksh mode=0444
1129 file path=opt/SUNWdtrt/tst/common/pid/tst.manypids.ksh mode=0444
1130 file path=opt/SUNWdtrt/tst/common/pid/tst.newprobes.ksh mode=0444
1131 file path=opt/SUNWdtrt/tst/common/pid/tst.newprobes.ksh.out mode=0444
1132 file path=opt/SUNWdtrt/tst/common/pid/tst.probemod.ksh mode=0444
1133 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex1.ksh mode=0444
1134 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex2.ksh mode=0444
1135 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex2.ksh.out mode=0444
1136 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex3.ksh mode=0444
1137 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex3.ksh.out mode=0444
1138 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex4.ksh mode=0444
1139 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex4.ksh.out mode=0444
1140 file path=opt/SUNWdtrt/tst/common/pid/tst.ret1.d mode=0444
1141 file path=opt/SUNWdtrt/tst/common/pid/tst.ret1.exe mode=0555
1142 file path=opt/SUNWdtrt/tst/common/pid/tst.ret2.d mode=0444
1143 file path=opt/SUNWdtrt/tst/common/pid/tst.ret2.exe mode=0555
1144 file path=opt/SUNWdtrt/tst/common/pid/tst.utf8probefunc.ksh mode=0444
1145 file path=opt/SUNWdtrt/tst/common/pid/tst.utf8probefunc.ksh.out mode=0444
1146 file path=opt/SUNWdtrt/tst/common/pid/tst.utf8probemod.ksh mode=0444
1147 file path=opt/SUNWdtrt/tst/common/pid/tst.utf8probemod.ksh.out mode=0444
1148 file path=opt/SUNWdtrt/tst/common/pid/tst.vfork.d mode=0444
1149 file path=opt/SUNWdtrt/tst/common/pid/tst.vfork.exe mode=0555
1150 file path=opt/SUNWdtrt/tst/common/pid/tst.weak1.d mode=0444
1151 file path=opt/SUNWdtrt/tst/common/pid/tst.weak1.exe mode=0555
1152 file path=opt/SUNWdtrt/tst/common/pid/tst.weak2.d mode=0444
1153 file path=opt/SUNWdtrt/tst/common/pid/tst.weak2.exe mode=0555
1154 file path=opt/SUNWdtrt/tst/common/plockstat/tst.available.d mode=0444
1155 file path=opt/SUNWdtrt/tst/common/plockstat/tst.available.exe mode=0555
1156 file path=opt/SUNWdtrt/tst/common/plockstat/tst.libmap.d mode=0444
1157 file path=opt/SUNWdtrt/tst/common/plockstat/tst.libmap.exe mode=0555
1158 file path=opt/SUNWdtrt/tst/common/pointers/err.BadAlign.d mode=0444
1159 file path=opt/SUNWdtrt/tst/common/pointers/err.D_ADDROF_VAR.ArrayVar.d \
1160 mode=0444
1161 file path=opt/SUNWdtrt/tst/common/pointers/err.D_ADDROF_VAR.DynamicVar.d \
1162 mode=0444
1163 file path=opt/SUNWdtrt/tst/common/pointers/err.D_ADDROF_VAR.agg.d mode=0444
1164 file path=opt/SUNWdtrt/tst/common/pointers/err.D_DEREF_NONPTR.noptr.d \
1165 mode=0444
1166 file path=opt/SUNWdtrt/tst/common/pointers/err.D_DEREF_VOID.VoidPointerDeref.d \
1167 mode=0444
1168 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_ARRFUN.ArrayAssignment.d \
1169 mode=0444
1170 file \
1171 path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_INCOMPAT.VoidPointerArith.d \
1172 mode=0444
1173 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_LVAL.AddressChange.d \
1174 mode=0444
1175 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_PTR.NonPointerAccess.d \
1176 mode=0444
1177 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_PTR.badpointer.d mode=0444
1178 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_SOU.BadPointerAccess.d \

new/usr/src/pkg/manifests/system-dtrace-tests.mf 19

1179 mode=0444
1180 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_SOU.badpointer.d mode=0444
1181 file path=opt/SUNWdtrt/tst/common/pointers/err.InvalidAddress1.d mode=0444
1182 file path=opt/SUNWdtrt/tst/common/pointers/err.InvalidAddress2.d mode=0444
1183 file path=opt/SUNWdtrt/tst/common/pointers/err.InvalidAddress3.d mode=0444
1184 file path=opt/SUNWdtrt/tst/common/pointers/err.InvalidAddress4.d mode=0444
1185 file path=opt/SUNWdtrt/tst/common/pointers/err.InvalidAddress5.d mode=0444
1186 file path=opt/SUNWdtrt/tst/common/pointers/tst.ArrayPointer1.d mode=0444
1187 file path=opt/SUNWdtrt/tst/common/pointers/tst.ArrayPointer2.d mode=0444
1188 file path=opt/SUNWdtrt/tst/common/pointers/tst.ArrayPointer3.d mode=0444
1189 file path=opt/SUNWdtrt/tst/common/pointers/tst.GlobalVar.d mode=0444
1190 file path=opt/SUNWdtrt/tst/common/pointers/tst.IntegerArithmetic1.d mode=0444
1191 file path=opt/SUNWdtrt/tst/common/pointers/tst.PointerArithmetic1.d mode=0444
1192 file path=opt/SUNWdtrt/tst/common/pointers/tst.PointerArithmetic2.d mode=0444
1193 file path=opt/SUNWdtrt/tst/common/pointers/tst.PointerArithmetic3.d mode=0444
1194 file path=opt/SUNWdtrt/tst/common/pointers/tst.PointerAssignment.d mode=0444
1195 file path=opt/SUNWdtrt/tst/common/pointers/tst.ValidPointer1.d mode=0444
1196 file path=opt/SUNWdtrt/tst/common/pointers/tst.ValidPointer2.d mode=0444
1197 file path=opt/SUNWdtrt/tst/common/pointers/tst.VoidCast.d mode=0444
1198 file path=opt/SUNWdtrt/tst/common/pointers/tst.assigncast1.d mode=0444
1199 file path=opt/SUNWdtrt/tst/common/pointers/tst.assigncast2.d mode=0444
1200 file path=opt/SUNWdtrt/tst/common/pointers/tst.basic1.d mode=0444
1201 file path=opt/SUNWdtrt/tst/common/pointers/tst.basic2.d mode=0444
1202 file path=opt/SUNWdtrt/tst/common/pragma/err.D_PRAGERR.d mode=0444
1203 file path=opt/SUNWdtrt/tst/common/pragma/err.D_PRAGMA_DEPEND.main.d mode=0444
1204 file path=opt/SUNWdtrt/tst/common/pragma/err.D_PRAGMA_INVAL.d mode=0444
1205 file path=opt/SUNWdtrt/tst/common/pragma/err.D_PRAGMA_MALFORM.d mode=0444
1206 file path=opt/SUNWdtrt/tst/common/pragma/err.D_PRAGMA_UNUSED.UnusedPragma.d \
1207 mode=0444
1208 file path=opt/SUNWdtrt/tst/common/pragma/err.circlibdep.ksh mode=0444
1209 file path=opt/SUNWdtrt/tst/common/pragma/err.invalidlibdep.ksh mode=0444
1210 file path=opt/SUNWdtrt/tst/common/pragma/tst.libchain.ksh mode=0444
1211 file path=opt/SUNWdtrt/tst/common/pragma/tst.libdep.ksh mode=0444
1212 file path=opt/SUNWdtrt/tst/common/pragma/tst.libdepfullyconnected.ksh \
1213 mode=0444
1214 file path=opt/SUNWdtrt/tst/common/pragma/tst.libdepsepdir.ksh mode=0444
1215 file path=opt/SUNWdtrt/tst/common/pragma/tst.temporal.ksh mode=0444
1216 file path=opt/SUNWdtrt/tst/common/pragma/tst.temporal2.ksh mode=0444
1217 file path=opt/SUNWdtrt/tst/common/pragma/tst.temporal3.d mode=0444
1218 file path=opt/SUNWdtrt/tst/common/predicates/err.D_PRED_SCALAR.NonScalarPred.d \
1219 mode=0444
1220 file path=opt/SUNWdtrt/tst/common/predicates/err.D_SYNTAX.invalid.d mode=0444
1221 file path=opt/SUNWdtrt/tst/common/predicates/err.D_SYNTAX.operr.d mode=0444
1222 file path=opt/SUNWdtrt/tst/common/predicates/tst.argsnotcached.d mode=0444
1223 file path=opt/SUNWdtrt/tst/common/predicates/tst.basics.d mode=0444
1224 file path=opt/SUNWdtrt/tst/common/predicates/tst.basics.d.out mode=0444
1225 file path=opt/SUNWdtrt/tst/common/predicates/tst.complex.d mode=0444
1226 file path=opt/SUNWdtrt/tst/common/predicates/tst.complex.d.out mode=0444
1227 file path=opt/SUNWdtrt/tst/common/preprocessor/err.D_IDENT_UNDEF.afterprobe.d \
1228 mode=0444
1229 file path=opt/SUNWdtrt/tst/common/preprocessor/err.D_PRAGCTL_INVAL.tabdefine.d \
1230 mode=0444
1231 file path=opt/SUNWdtrt/tst/common/preprocessor/err.D_SYNTAX.withoutpound.d \
1232 mode=0444
1233 file path=opt/SUNWdtrt/tst/common/preprocessor/err.defincomp.d mode=0444
1234 file path=opt/SUNWdtrt/tst/common/preprocessor/err.ifdefelsenotendif.d \
1235 mode=0444
1236 file path=opt/SUNWdtrt/tst/common/preprocessor/err.ifdefincomp.d mode=0444
1237 file path=opt/SUNWdtrt/tst/common/preprocessor/err.ifdefnotendif.d mode=0444
1238 file path=opt/SUNWdtrt/tst/common/preprocessor/err.incompelse.d mode=0444
1239 file path=opt/SUNWdtrt/tst/common/preprocessor/err.mulelse.d mode=0444
1240 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifdef.d mode=0444
1241 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifdef.d.out mode=0444
1242 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifndef.d mode=0444
1243 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifndef.d.out mode=0444
1244 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifnotdef.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 20

1245 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifnotdef.d.out mode=0444
1246 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicaland.d mode=0444
1247 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicaland.d.out mode=0444
1248 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicalandor.d mode=0444
1249 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicalandor.d.out \
1250 mode=0444
1251 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicalor.d mode=0444
1252 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicalor.d.out mode=0444
1253 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.muland.d mode=0444
1254 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.muland.d.out mode=0444
1255 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.mulor.d mode=0444
1256 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.mulor.d.out mode=0444
1257 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.precondi.d mode=0444
1258 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.precondi.d.out mode=0444
1259 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.predicatedeclare.d \
1260 mode=0444
1261 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexp.d mode=0444
1262 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexp.d.out mode=0444
1263 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpelse.d mode=0444
1264 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpelse.d.out mode=0444
1265 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpif.d mode=0444
1266 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpif.d.out mode=0444
1267 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpifelse.d mode=0444
1268 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpifelse.d.out \
1269 mode=0444
1270 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.withinprobe.d mode=0444
1271 file path=opt/SUNWdtrt/tst/common/print/err.D_PRINT_AGG.bad.d mode=0444
1272 file path=opt/SUNWdtrt/tst/common/print/err.D_PRINT_VOID.bad.d mode=0444
1273 file path=opt/SUNWdtrt/tst/common/print/err.D_PROTO_LEN.bad.d mode=0444
1274 file path=opt/SUNWdtrt/tst/common/print/tst.array.d mode=0444
1275 file path=opt/SUNWdtrt/tst/common/print/tst.array.d.out mode=0444
1276 file path=opt/SUNWdtrt/tst/common/print/tst.bitfield.d mode=0444
1277 file path=opt/SUNWdtrt/tst/common/print/tst.bitfield.d.out mode=0444
1278 file path=opt/SUNWdtrt/tst/common/print/tst.dyn.d mode=0444
1279 file path=opt/SUNWdtrt/tst/common/print/tst.enum.d mode=0444
1280 file path=opt/SUNWdtrt/tst/common/print/tst.enum.d.out mode=0444
1281 file path=opt/SUNWdtrt/tst/common/print/tst.primitive.d mode=0444
1282 file path=opt/SUNWdtrt/tst/common/print/tst.primitive.d.out mode=0444
1283 file path=opt/SUNWdtrt/tst/common/print/tst.struct.d mode=0444
1284 file path=opt/SUNWdtrt/tst/common/print/tst.struct.d.out mode=0444
1285 file path=opt/SUNWdtrt/tst/common/print/tst.xlate.d mode=0444
1286 file path=opt/SUNWdtrt/tst/common/print/tst.xlate.d.out mode=0444
1287 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTA_AGGARG.badagg.d \
1288 mode=0444
1289 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTA_AGGARG.badfmt.d \
1290 mode=0444
1291 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTA_AGGARG.badval.d \
1292 mode=0444
1293 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTA_PROTO.bad.d mode=0444
1294 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTF_ARG_TYPE.jstack.d \
1295 mode=0444
1296 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTF_ARG_TYPE.stack.d \
1297 mode=0444
1298 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTF_ARG_TYPE.ustack.d \
1299 mode=0444
1300 file path=opt/SUNWdtrt/tst/common/printa/tst.basics.d mode=0444
1301 file path=opt/SUNWdtrt/tst/common/printa/tst.basics.d.out mode=0444
1302 file path=opt/SUNWdtrt/tst/common/printa/tst.def.d mode=0444
1303 file path=opt/SUNWdtrt/tst/common/printa/tst.def.d.out mode=0444
1304 file path=opt/SUNWdtrt/tst/common/printa/tst.dynwidth.d mode=0444
1305 file path=opt/SUNWdtrt/tst/common/printa/tst.dynwidth.d.out mode=0444
1306 file path=opt/SUNWdtrt/tst/common/printa/tst.fmt.d mode=0444
1307 file path=opt/SUNWdtrt/tst/common/printa/tst.fmt.d.out mode=0444
1308 file path=opt/SUNWdtrt/tst/common/printa/tst.largeusersym.ksh mode=0444
1309 file path=opt/SUNWdtrt/tst/common/printa/tst.many.d mode=0444
1310 file path=opt/SUNWdtrt/tst/common/printa/tst.manyval.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 21

1311 file path=opt/SUNWdtrt/tst/common/printa/tst.manyval.d.out mode=0444
1312 file path=opt/SUNWdtrt/tst/common/printa/tst.stack.d mode=0444
1313 file path=opt/SUNWdtrt/tst/common/printa/tst.tuple.d mode=0444
1314 file path=opt/SUNWdtrt/tst/common/printa/tst.tuple.d.out mode=0444
1315 file path=opt/SUNWdtrt/tst/common/printa/tst.walltimestamp.ksh mode=0444
1316 file path=opt/SUNWdtrt/tst/common/printa/tst.walltimestamp.ksh.out mode=0444
1317 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_AGG_CONV.aggfmt.d \
1318 mode=0444
1319 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_EXTRA.toomany.d \
1320 mode=0444
1321 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_EXTRA.widths.d \
1322 mode=0444
1323 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_FMT.badfmt.d \
1324 mode=0444
1325 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_PROTO.novalue.d \
1326 mode=0444
1327 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_TYPE.aggarg.d \
1328 mode=0444
1329 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_TYPE.recursive.d \
1330 mode=0444
1331 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_DYN_PROTO.noprec.d \
1332 mode=0444
1333 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_DYN_PROTO.nowidth.d \
1334 mode=0444
1335 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_DYN_TYPE.badprec.d \
1336 mode=0444
1337 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_DYN_TYPE.badwidth.d \
1338 mode=0444
1339 file path=opt/SUNWdtrt/tst/common/printf/err.D_PROTO_LEN.toofew.d mode=0444
1340 file path=opt/SUNWdtrt/tst/common/printf/err.D_SYNTAX.badconv1.d mode=0444
1341 file path=opt/SUNWdtrt/tst/common/printf/err.D_SYNTAX.badconv2.d mode=0444
1342 file path=opt/SUNWdtrt/tst/common/printf/err.D_SYNTAX.badconv3.d mode=0444
1343 file path=opt/SUNWdtrt/tst/common/printf/tst.basics.d mode=0444
1344 file path=opt/SUNWdtrt/tst/common/printf/tst.basics.d.out mode=0444
1345 file path=opt/SUNWdtrt/tst/common/printf/tst.flags.d mode=0444
1346 file path=opt/SUNWdtrt/tst/common/printf/tst.flags.d.out mode=0444
1347 file path=opt/SUNWdtrt/tst/common/printf/tst.hello.d mode=0444
1348 file path=opt/SUNWdtrt/tst/common/printf/tst.hello.d.out mode=0444
1349 file path=opt/SUNWdtrt/tst/common/printf/tst.ints.d mode=0444
1350 file path=opt/SUNWdtrt/tst/common/printf/tst.ints.d.out mode=0444
1351 file path=opt/SUNWdtrt/tst/common/printf/tst.precs.d mode=0444
1352 file path=opt/SUNWdtrt/tst/common/printf/tst.precs.d.out mode=0444
1353 file path=opt/SUNWdtrt/tst/common/printf/tst.print-f.d mode=0444
1354 file path=opt/SUNWdtrt/tst/common/printf/tst.print-f.d.out mode=0444
1355 file path=opt/SUNWdtrt/tst/common/printf/tst.printT.ksh mode=0444
1356 file path=opt/SUNWdtrt/tst/common/printf/tst.printT.ksh.out mode=0444
1357 file path=opt/SUNWdtrt/tst/common/printf/tst.printY.ksh mode=0444
1358 file path=opt/SUNWdtrt/tst/common/printf/tst.printY.ksh.out mode=0444
1359 file path=opt/SUNWdtrt/tst/common/printf/tst.printcont.d mode=0444
1360 file path=opt/SUNWdtrt/tst/common/printf/tst.printcont.d.out mode=0444
1361 file path=opt/SUNWdtrt/tst/common/printf/tst.printeE.d mode=0444
1362 file path=opt/SUNWdtrt/tst/common/printf/tst.printeE.d.out mode=0444
1363 file path=opt/SUNWdtrt/tst/common/printf/tst.printgG.d mode=0444
1364 file path=opt/SUNWdtrt/tst/common/printf/tst.printgG.d.out mode=0444
1365 file path=opt/SUNWdtrt/tst/common/printf/tst.rawfmt.d mode=0444
1366 file path=opt/SUNWdtrt/tst/common/printf/tst.rawfmt.d.out mode=0444
1367 file path=opt/SUNWdtrt/tst/common/printf/tst.signs.d mode=0444
1368 file path=opt/SUNWdtrt/tst/common/printf/tst.signs.d.out mode=0444
1369 file path=opt/SUNWdtrt/tst/common/printf/tst.str.d mode=0444
1370 file path=opt/SUNWdtrt/tst/common/printf/tst.str.d.out mode=0444
1371 file path=opt/SUNWdtrt/tst/common/printf/tst.sym.d mode=0444
1372 file path=opt/SUNWdtrt/tst/common/printf/tst.sym.d.out mode=0444
1373 file path=opt/SUNWdtrt/tst/common/printf/tst.uints.d mode=0444
1374 file path=opt/SUNWdtrt/tst/common/printf/tst.uints.d.out mode=0444
1375 file path=opt/SUNWdtrt/tst/common/printf/tst.widths.d mode=0444
1376 file path=opt/SUNWdtrt/tst/common/printf/tst.widths.d.out mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 22

1377 file path=opt/SUNWdtrt/tst/common/printf/tst.widths1.d mode=0444
1378 file path=opt/SUNWdtrt/tst/common/printf/tst.wp.d mode=0444
1379 file path=opt/SUNWdtrt/tst/common/printf/tst.wp.d.out mode=0444
1380 file path=opt/SUNWdtrt/tst/common/privs/tst.fds.ksh mode=0444
1381 file path=opt/SUNWdtrt/tst/common/privs/tst.func_access.ksh mode=0444
1382 file path=opt/SUNWdtrt/tst/common/privs/tst.getf.ksh mode=0444
1383 file path=opt/SUNWdtrt/tst/common/privs/tst.noprivdrop.ksh mode=0444
1384 file path=opt/SUNWdtrt/tst/common/privs/tst.noprivrestrict.ksh mode=0444
1385 file path=opt/SUNWdtrt/tst/common/privs/tst.op_access.ksh mode=0444
1386 file path=opt/SUNWdtrt/tst/common/privs/tst.procpriv.ksh mode=0444
1387 file path=opt/SUNWdtrt/tst/common/privs/tst.providers.ksh mode=0444
1388 file path=opt/SUNWdtrt/tst/common/privs/tst.tick.ksh mode=0444
1389 file path=opt/SUNWdtrt/tst/common/privs/tst.unpriv_funcs.ksh mode=0444
1390 file path=opt/SUNWdtrt/tst/common/probes/err.D_PDESC_ZERO.probeqtn.d mode=0444
1391 file path=opt/SUNWdtrt/tst/common/probes/err.D_PDESC_ZERO.probestar.d \
1392 mode=0444
1393 file path=opt/SUNWdtrt/tst/common/probes/err.D_PDESC_ZERO.tickstar.d mode=0444
1394 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.assign.d mode=0444
1395 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.declare.d mode=0444
1396 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.declarein.d mode=0444
1397 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.lbraces.d mode=0444
1398 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.probespec.d mode=0444
1399 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.rbraces.d mode=0444
1400 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.recdec.d mode=0444
1401 file path=opt/SUNWdtrt/tst/common/probes/tst.basic1.d mode=0444
1402 file path=opt/SUNWdtrt/tst/common/probes/tst.check.d mode=0444
1403 file path=opt/SUNWdtrt/tst/common/probes/tst.declare.d mode=0444
1404 file path=opt/SUNWdtrt/tst/common/probes/tst.declareafter.d mode=0444
1405 file path=opt/SUNWdtrt/tst/common/probes/tst.emptyprobe.d mode=0444
1406 file path=opt/SUNWdtrt/tst/common/probes/tst.pragma.d mode=0444
1407 file path=opt/SUNWdtrt/tst/common/probes/tst.pragmaaftertab.d mode=0444
1408 file path=opt/SUNWdtrt/tst/common/probes/tst.pragmainside.d mode=0444
1409 file path=opt/SUNWdtrt/tst/common/probes/tst.pragmaoutside.d mode=0444
1410 file path=opt/SUNWdtrt/tst/common/probes/tst.probestar.d mode=0444
1411 file path=opt/SUNWdtrt/tst/common/proc/tst.create.ksh mode=0444
1412 file path=opt/SUNWdtrt/tst/common/proc/tst.discard.ksh mode=0444
1413 file path=opt/SUNWdtrt/tst/common/proc/tst.exec.ksh mode=0444
1414 file path=opt/SUNWdtrt/tst/common/proc/tst.execfail.ENOENT.ksh mode=0444
1415 file path=opt/SUNWdtrt/tst/common/proc/tst.execfail.ksh mode=0444
1416 file path=opt/SUNWdtrt/tst/common/proc/tst.exitcore.ksh mode=0444
1417 file path=opt/SUNWdtrt/tst/common/proc/tst.exitexit.ksh mode=0444
1418 file path=opt/SUNWdtrt/tst/common/proc/tst.exitkilled.ksh mode=0444
1419 file path=opt/SUNWdtrt/tst/common/proc/tst.signal.ksh mode=0444
1420 file path=opt/SUNWdtrt/tst/common/proc/tst.sigwait.d mode=0444
1421 file path=opt/SUNWdtrt/tst/common/proc/tst.sigwait.exe mode=0555
1422 file path=opt/SUNWdtrt/tst/common/proc/tst.startexit.ksh mode=0444
1423 file path=opt/SUNWdtrt/tst/common/profile-n/err.D_PDESC_ZERO.profile.d \
1424 mode=0444
1425 file path=opt/SUNWdtrt/tst/common/profile-n/err.D_PDESC_ZEROonens.d mode=0444
1426 file path=opt/SUNWdtrt/tst/common/profile-n/err.D_PDESC_ZEROonensec.d \
1427 mode=0444
1428 file path=opt/SUNWdtrt/tst/common/profile-n/err.D_PDESC_ZEROoneus.d mode=0444
1429 file path=opt/SUNWdtrt/tst/common/profile-n/err.D_PDESC_ZEROoneusec.d \
1430 mode=0444
1431 file path=opt/SUNWdtrt/tst/common/profile-n/tst.argtest.d mode=0444
1432 file path=opt/SUNWdtrt/tst/common/profile-n/tst.argtest.d.out mode=0444
1433 file path=opt/SUNWdtrt/tst/common/profile-n/tst.basic.d mode=0444
1434 file path=opt/SUNWdtrt/tst/common/profile-n/tst.basic.d.out mode=0444
1435 file path=opt/SUNWdtrt/tst/common/profile-n/tst.func.ksh mode=0444
1436 file path=opt/SUNWdtrt/tst/common/profile-n/tst.mod.ksh mode=0444
1437 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilehz.d mode=0444
1438 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilehz.d.out mode=0444
1439 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilems.d mode=0444
1440 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilems.d.out mode=0444
1441 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilemsec.d mode=0444
1442 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilemsec.d.out mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 23

1443 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilenhz.d mode=0444
1444 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilenhz.d.out mode=0444
1445 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilens.d mode=0444
1446 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilens.d.out mode=0444
1447 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilensec.d mode=0444
1448 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilensec.d.out mode=0444
1449 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profiles.d mode=0444
1450 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profiles.d.out mode=0444
1451 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilesec.d mode=0444
1452 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilesec.d.out mode=0444
1453 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profileus.d mode=0444
1454 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profileus.d.out mode=0444
1455 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profileusec.d mode=0444
1456 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profileusec.d.out mode=0444
1457 file path=opt/SUNWdtrt/tst/common/profile-n/tst.sym.ksh mode=0444
1458 file path=opt/SUNWdtrt/tst/common/profile-n/tst.ufunc.ksh mode=0444
1459 file path=opt/SUNWdtrt/tst/common/profile-n/tst.ufuncsort.exe mode=0555
1460 file path=opt/SUNWdtrt/tst/common/profile-n/tst.ufuncsort.ksh mode=0444
1461 file path=opt/SUNWdtrt/tst/common/profile-n/tst.ufuncsort.ksh.out mode=0444
1462 file path=opt/SUNWdtrt/tst/common/profile-n/tst.umod.ksh mode=0444
1463 file path=opt/SUNWdtrt/tst/common/profile-n/tst.usym.ksh mode=0444
1464 file path=opt/SUNWdtrt/tst/common/providers/err.D_PDESC_INVAL.wrongdec4.d \
1465 mode=0444
1466 file path=opt/SUNWdtrt/tst/common/providers/err.D_PDESC_ZERO.nonprofile.d \
1467 mode=0444
1468 file path=opt/SUNWdtrt/tst/common/providers/err.D_PDESC_ZERO.wrongdec1.d \
1469 mode=0444
1470 file path=opt/SUNWdtrt/tst/common/providers/err.D_PDESC_ZERO.wrongdec2.d \
1471 mode=0444
1472 file path=opt/SUNWdtrt/tst/common/providers/err.D_PDESC_ZERO.wrongdec3.d \
1473 mode=0444
1474 file path=opt/SUNWdtrt/tst/common/providers/tst.basics.d mode=0444
1475 file path=opt/SUNWdtrt/tst/common/providers/tst.basics.d.out mode=0444
1476 file path=opt/SUNWdtrt/tst/common/providers/tst.beginexit.d mode=0444
1477 file path=opt/SUNWdtrt/tst/common/providers/tst.beginprof.d mode=0444
1478 file path=opt/SUNWdtrt/tst/common/providers/tst.beginprof.d.out mode=0444
1479 file path=opt/SUNWdtrt/tst/common/providers/tst.probattrs.d mode=0444
1480 file path=opt/SUNWdtrt/tst/common/providers/tst.probattrs.d.out mode=0444
1481 file path=opt/SUNWdtrt/tst/common/providers/tst.probefunc.d mode=0444
1482 file path=opt/SUNWdtrt/tst/common/providers/tst.probefunc.d.out mode=0444
1483 file path=opt/SUNWdtrt/tst/common/providers/tst.probemod.d mode=0444
1484 file path=opt/SUNWdtrt/tst/common/providers/tst.probemod.d.out mode=0444
1485 file path=opt/SUNWdtrt/tst/common/providers/tst.probename.d mode=0444
1486 file path=opt/SUNWdtrt/tst/common/providers/tst.probename.d.out mode=0444
1487 file path=opt/SUNWdtrt/tst/common/providers/tst.probprov.d mode=0444
1488 file path=opt/SUNWdtrt/tst/common/providers/tst.probprov.d.out mode=0444
1489 file path=opt/SUNWdtrt/tst/common/providers/tst.profend.d mode=0444
1490 file path=opt/SUNWdtrt/tst/common/providers/tst.profend.d.out mode=0444
1491 file path=opt/SUNWdtrt/tst/common/providers/tst.profexit.d mode=0444
1492 file path=opt/SUNWdtrt/tst/common/providers/tst.profexit.d.out mode=0444
1493 file path=opt/SUNWdtrt/tst/common/providers/tst.trace.d mode=0444
1494 file path=opt/SUNWdtrt/tst/common/providers/tst.trace.d.out mode=0444
1495 file path=opt/SUNWdtrt/tst/common/providers/tst.twoprof.d mode=0444
1496 file path=opt/SUNWdtrt/tst/common/providers/tst.twoprof.d.out mode=0444
1497 file path=opt/SUNWdtrt/tst/common/raise/tst.raise1.d mode=0444
1498 file path=opt/SUNWdtrt/tst/common/raise/tst.raise1.exe mode=0555
1499 file path=opt/SUNWdtrt/tst/common/raise/tst.raise2.d mode=0444
1500 file path=opt/SUNWdtrt/tst/common/raise/tst.raise2.exe mode=0555
1501 file path=opt/SUNWdtrt/tst/common/raise/tst.raise3.d mode=0444
1502 file path=opt/SUNWdtrt/tst/common/raise/tst.raise3.exe mode=0555
1503 file path=opt/SUNWdtrt/tst/common/rates/tst.aggrate.d mode=0444
1504 file path=opt/SUNWdtrt/tst/common/rates/tst.aggrate.d.out mode=0444
1505 file path=opt/SUNWdtrt/tst/common/rates/tst.statusrate.d mode=0444
1506 file path=opt/SUNWdtrt/tst/common/rates/tst.switchrate.d mode=0444
1507 file path=opt/SUNWdtrt/tst/common/rates/tst.switchrate.d.out mode=0444
1508 file path=opt/SUNWdtrt/tst/common/safety/tst.basename.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 24

1509 file path=opt/SUNWdtrt/tst/common/safety/tst.caller.d mode=0444
1510 file path=opt/SUNWdtrt/tst/common/safety/tst.cleanpath.d mode=0444
1511 file path=opt/SUNWdtrt/tst/common/safety/tst.copyin.d mode=0444
1512 file path=opt/SUNWdtrt/tst/common/safety/tst.copyin2.d mode=0444
1513 file path=opt/SUNWdtrt/tst/common/safety/tst.ddi_pathname.d mode=0444
1514 file path=opt/SUNWdtrt/tst/common/safety/tst.dirname.d mode=0444
1515 file path=opt/SUNWdtrt/tst/common/safety/tst.errno.d mode=0444
1516 file path=opt/SUNWdtrt/tst/common/safety/tst.execname.d mode=0444
1517 file path=opt/SUNWdtrt/tst/common/safety/tst.gid.d mode=0444
1518 file path=opt/SUNWdtrt/tst/common/safety/tst.hton.d mode=0444
1519 file path=opt/SUNWdtrt/tst/common/safety/tst.index.d mode=0444
1520 file path=opt/SUNWdtrt/tst/common/safety/tst.msgdsize.d mode=0444
1521 file path=opt/SUNWdtrt/tst/common/safety/tst.msgsize.d mode=0444
1522 file path=opt/SUNWdtrt/tst/common/safety/tst.null.d mode=0444
1523 file path=opt/SUNWdtrt/tst/common/safety/tst.pid.d mode=0444
1524 file path=opt/SUNWdtrt/tst/common/safety/tst.ppid.d mode=0444
1525 file path=opt/SUNWdtrt/tst/common/safety/tst.progenyof.d mode=0444
1526 file path=opt/SUNWdtrt/tst/common/safety/tst.random.d mode=0444
1527 file path=opt/SUNWdtrt/tst/common/safety/tst.rw.d mode=0444
1528 file path=opt/SUNWdtrt/tst/common/safety/tst.shortstr.d mode=0444
1529 file path=opt/SUNWdtrt/tst/common/safety/tst.stack.d mode=0444
1530 file path=opt/SUNWdtrt/tst/common/safety/tst.stackdepth.d mode=0444
1531 file path=opt/SUNWdtrt/tst/common/safety/tst.stddev.d mode=0444
1532 file path=opt/SUNWdtrt/tst/common/safety/tst.strchr.d mode=0444
1533 file path=opt/SUNWdtrt/tst/common/safety/tst.strjoin.d mode=0444
1534 file path=opt/SUNWdtrt/tst/common/safety/tst.strstr.d mode=0444
1535 file path=opt/SUNWdtrt/tst/common/safety/tst.strtok.d mode=0444
1536 file path=opt/SUNWdtrt/tst/common/safety/tst.substr.d mode=0444
1537 file path=opt/SUNWdtrt/tst/common/safety/tst.ucaller.d mode=0444
1538 file path=opt/SUNWdtrt/tst/common/safety/tst.uid.d mode=0444
1539 file path=opt/SUNWdtrt/tst/common/safety/tst.unalign.d mode=0444
1540 file path=opt/SUNWdtrt/tst/common/safety/tst.uregs.d mode=0444
1541 file path=opt/SUNWdtrt/tst/common/safety/tst.ustack.d mode=0444
1542 file path=opt/SUNWdtrt/tst/common/safety/tst.ustackdepth.d mode=0444
1543 file path=opt/SUNWdtrt/tst/common/safety/tst.vahole.d mode=0444
1544 file path=opt/SUNWdtrt/tst/common/safety/tst.violentdeath.ksh mode=0444
1545 file path=opt/SUNWdtrt/tst/common/safety/tst.zonename.d mode=0444
1546 file path=opt/SUNWdtrt/tst/common/scalars/err.D_ARR_LOCAL.thisarray.d \
1547 mode=0444
1548 file path=opt/SUNWdtrt/tst/common/scalars/err.D_DECL_CLASS.selfthis.d \
1549 mode=0444
1550 file path=opt/SUNWdtrt/tst/common/scalars/err.D_DECL_CLASS.thisself.d \
1551 mode=0444
1552 file path=opt/SUNWdtrt/tst/common/scalars/err.D_DECL_IDRED.errval.d mode=0444
1553 file path=opt/SUNWdtrt/tst/common/scalars/err.D_OP_INCOMPAT.dec.err.d \
1554 mode=0444
1555 file path=opt/SUNWdtrt/tst/common/scalars/err.D_OP_INCOMPAT.dupgtype.d \
1556 mode=0444
1557 file path=opt/SUNWdtrt/tst/common/scalars/err.D_OP_INCOMPAT.dupltype.d \
1558 mode=0444
1559 file path=opt/SUNWdtrt/tst/common/scalars/err.D_OP_INCOMPAT.dupttype.d \
1560 mode=0444
1561 file path=opt/SUNWdtrt/tst/common/scalars/err.D_SYNTAX.declare.d mode=0444
1562 file path=opt/SUNWdtrt/tst/common/scalars/tst.basicvar.d mode=0444
1563 file path=opt/SUNWdtrt/tst/common/scalars/tst.basicvar.d.out mode=0444
1564 file path=opt/SUNWdtrt/tst/common/scalars/tst.localvar.d mode=0444
1565 file path=opt/SUNWdtrt/tst/common/scalars/tst.misc.d mode=0444
1566 file path=opt/SUNWdtrt/tst/common/scalars/tst.self.d mode=0444
1567 file path=opt/SUNWdtrt/tst/common/scalars/tst.selfarray.d mode=0444
1568 file path=opt/SUNWdtrt/tst/common/scalars/tst.selfarray2.d mode=0444
1569 file path=opt/SUNWdtrt/tst/common/scalars/tst.selfthis.d mode=0444
1570 file path=opt/SUNWdtrt/tst/common/scalars/tst.this.d mode=0444
1571 file path=opt/SUNWdtrt/tst/common/scalars/tst.thisself.d mode=0444
1572 file path=opt/SUNWdtrt/tst/common/sched/tst.enqueue.d mode=0444
1573 file path=opt/SUNWdtrt/tst/common/sched/tst.oncpu.d mode=0444
1574 file path=opt/SUNWdtrt/tst/common/sched/tst.stackdepth.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 25

1575 file path=opt/SUNWdtrt/tst/common/scripting/err.D_MACRO_UNDEF.invalidargs.d \
1576 mode=0444
1577 file path=opt/SUNWdtrt/tst/common/scripting/err.D_OP_LVAL.rdonly.d mode=0444
1578 file path=opt/SUNWdtrt/tst/common/scripting/err.D_OP_WRITE.usepidmacro.d \
1579 mode=0444
1580 file path=opt/SUNWdtrt/tst/common/scripting/err.D_SYNTAX.concat.d mode=0444
1581 file path=opt/SUNWdtrt/tst/common/scripting/err.D_SYNTAX.desc.d mode=0444
1582 file path=opt/SUNWdtrt/tst/common/scripting/err.D_SYNTAX.inval.d mode=0444
1583 file path=opt/SUNWdtrt/tst/common/scripting/err.D_SYNTAX.pid.d mode=0444
1584 file path=opt/SUNWdtrt/tst/common/scripting/tst.D_MACRO_UNUSED.overflow.ksh \
1585 mode=0444
1586 file path=opt/SUNWdtrt/tst/common/scripting/tst.arg0.d mode=0444
1587 file path=opt/SUNWdtrt/tst/common/scripting/tst.arguments.ksh mode=0444
1588 file path=opt/SUNWdtrt/tst/common/scripting/tst.assign.d mode=0444
1589 file path=opt/SUNWdtrt/tst/common/scripting/tst.basic.d mode=0444
1590 file path=opt/SUNWdtrt/tst/common/scripting/tst.egid.d mode=0444
1591 file path=opt/SUNWdtrt/tst/common/scripting/tst.egid.ksh mode=0444
1592 file path=opt/SUNWdtrt/tst/common/scripting/tst.euid.d mode=0444
1593 file path=opt/SUNWdtrt/tst/common/scripting/tst.euid.ksh mode=0444
1594 file path=opt/SUNWdtrt/tst/common/scripting/tst.gid.d mode=0444
1595 file path=opt/SUNWdtrt/tst/common/scripting/tst.gid.ksh mode=0444
1596 file path=opt/SUNWdtrt/tst/common/scripting/tst.pgid.d mode=0444
1597 file path=opt/SUNWdtrt/tst/common/scripting/tst.pid.d mode=0444
1598 file path=opt/SUNWdtrt/tst/common/scripting/tst.ppid.d mode=0444
1599 file path=opt/SUNWdtrt/tst/common/scripting/tst.ppid.ksh mode=0444
1600 file path=opt/SUNWdtrt/tst/common/scripting/tst.projid.d mode=0444
1601 file path=opt/SUNWdtrt/tst/common/scripting/tst.projid.ksh mode=0444
1602 file path=opt/SUNWdtrt/tst/common/scripting/tst.quite.d mode=0444
1603 file path=opt/SUNWdtrt/tst/common/scripting/tst.sid.d mode=0444
1604 file path=opt/SUNWdtrt/tst/common/scripting/tst.sid.ksh mode=0444
1605 file path=opt/SUNWdtrt/tst/common/scripting/tst.stringmacro.ksh mode=0444
1606 file path=opt/SUNWdtrt/tst/common/scripting/tst.taskid.d mode=0444
1607 file path=opt/SUNWdtrt/tst/common/scripting/tst.taskid.ksh mode=0444
1608 file path=opt/SUNWdtrt/tst/common/scripting/tst.trace.d mode=0444
1609 file path=opt/SUNWdtrt/tst/common/scripting/tst.uid.d mode=0444
1610 file path=opt/SUNWdtrt/tst/common/scripting/tst.uid.ksh mode=0444
1611 file path=opt/SUNWdtrt/tst/common/sdt/tst.sdtargs.d mode=0444
1612 file path=opt/SUNWdtrt/tst/common/sdt/tst.sdtargs.exe mode=0555
1613 file path=opt/SUNWdtrt/tst/common/sizeof/err.D_IDENT_BADREF.SizeofAssoc.d \
1614 mode=0444
1615 file path=opt/SUNWdtrt/tst/common/sizeof/err.D_IDENT_UNDEF.UnknownSymbol.d \
1616 mode=0444
1617 file path=opt/SUNWdtrt/tst/common/sizeof/err.D_SIZEOF_TYPE.badstruct.d \
1618 mode=0444
1619 file path=opt/SUNWdtrt/tst/common/sizeof/err.D_SIZEOF_TYPE.d mode=0444
1620 file path=opt/SUNWdtrt/tst/common/sizeof/err.D_SYNTAX.SizeofBadType.d \
1621 mode=0444
1622 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofArray.d mode=0444
1623 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofDataTypes.d mode=0444
1624 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofExpression.d mode=0444
1625 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofNULL.d mode=0444
1626 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofStrConst.d mode=0444
1627 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofStrConst.d.out mode=0444
1628 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofString1.d mode=0444
1629 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofString1.d.out mode=0444
1630 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofString2.d mode=0444
1631 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofString2.d.out mode=0444
1632 file path=opt/SUNWdtrt/tst/common/speculation/err.BufSizeVariations1.d \
1633 mode=0444
1634 file path=opt/SUNWdtrt/tst/common/speculation/err.BufSizeVariations2.d \
1635 mode=0444
1636 file \
1637 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithBreakPo
1638 mode=0444
1639 file \
1640 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithChill.d

new/usr/src/pkg/manifests/system-dtrace-tests.mf 26

1641 mode=0444
1642 file \
1643 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithCopyOut
1644 mode=0444
1645 file \
1646 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithCopyOut
1647 mode=0444
1648 file \
1649 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithPanic.d
1650 mode=0444
1651 file \
1652 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithRaise.d
1653 mode=0444
1654 file \
1655 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithStop.d
1656 mode=0444
1657 file path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_COMM.AggAftCommit.d \
1658 mode=0444
1659 file \
1660 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithAvg.d \
1661 mode=0444
1662 file \
1663 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithCount.d
1664 mode=0444
1665 file \
1666 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithLquant.
1667 mode=0444
1668 file \
1669 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithMax.d \
1670 mode=0444
1671 file \
1672 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithMin.d \
1673 mode=0444
1674 file \
1675 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithQuant.d
1676 mode=0444
1677 file \
1678 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithStddev.
1679 mode=0444
1680 file \
1681 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithSum.d \
1682 mode=0444
1683 file \
1684 path=opt/SUNWdtrt/tst/common/speculation/err.D_COMM_COMM.CommitAftCommit.d \
1685 mode=0444
1686 file path=opt/SUNWdtrt/tst/common/speculation/err.D_COMM_COMM.DisjointCommit.d \
1687 mode=0444
1688 file \
1689 path=opt/SUNWdtrt/tst/common/speculation/err.D_COMM_DREC.CommitAftDataRec.d
1690 mode=0444
1691 file \
1692 path=opt/SUNWdtrt/tst/common/speculation/err.D_DREC_COMM.DataRecAftCommit.d
1693 mode=0444
1694 file \
1695 path=opt/SUNWdtrt/tst/common/speculation/err.D_DREC_COMM.ExitAfterCommit.d \
1696 mode=0444
1697 file path=opt/SUNWdtrt/tst/common/speculation/err.D_EXIT_SPEC.ExitAftSpec.d \
1698 mode=0444
1699 file path=opt/SUNWdtrt/tst/common/speculation/err.D_PRAGMA_MALFORM.NspecExpr.d \
1700 mode=0444
1701 file \
1702 path=opt/SUNWdtrt/tst/common/speculation/err.D_PRAGMA_OPTSET.HugeNspecValue.
1703 mode=0444
1704 file \
1705 path=opt/SUNWdtrt/tst/common/speculation/err.D_PRAGMA_OPTSET.InvalidSpecSize
1706 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 27

1707 file \
1708 path=opt/SUNWdtrt/tst/common/speculation/err.D_PRAGMA_OPTSET.NegSpecSize.d \
1709 mode=0444
1710 file path=opt/SUNWdtrt/tst/common/speculation/err.D_PROTO_LEN.SpecNoId.d \
1711 mode=0444
1712 file path=opt/SUNWdtrt/tst/common/speculation/err.D_SPEC_COMM.SpecAftCommit.d \
1713 mode=0444
1714 file path=opt/SUNWdtrt/tst/common/speculation/err.D_SPEC_DREC.SpecAftDataRec.d \
1715 mode=0444
1716 file path=opt/SUNWdtrt/tst/common/speculation/err.D_SPEC_SPEC.SpecAftSpec.d \
1717 mode=0444
1718 file path=opt/SUNWdtrt/tst/common/speculation/err.NegativeBufSize.d mode=0444
1719 file path=opt/SUNWdtrt/tst/common/speculation/err.NegativeNspec.d mode=0444
1720 file path=opt/SUNWdtrt/tst/common/speculation/err.NegativeSpecSize.d mode=0444
1721 file path=opt/SUNWdtrt/tst/common/speculation/err.SpecSizeVariations1.d \
1722 mode=0444
1723 file path=opt/SUNWdtrt/tst/common/speculation/err.SpecSizeVariations2.d \
1724 mode=0444
1725 file path=opt/SUNWdtrt/tst/common/speculation/tst.CommitAfterDiscard.d \
1726 mode=0444
1727 file path=opt/SUNWdtrt/tst/common/speculation/tst.CommitWithZero.d mode=0444
1728 file path=opt/SUNWdtrt/tst/common/speculation/tst.DataRecAftDiscard.d \
1729 mode=0444
1730 file path=opt/SUNWdtrt/tst/common/speculation/tst.DiscardAftCommit.d mode=0444
1731 file path=opt/SUNWdtrt/tst/common/speculation/tst.DiscardAftDataRec.d \
1732 mode=0444
1733 file path=opt/SUNWdtrt/tst/common/speculation/tst.DiscardAftDiscard.d \
1734 mode=0444
1735 file path=opt/SUNWdtrt/tst/common/speculation/tst.DiscardWithZero.d mode=0444
1736 file path=opt/SUNWdtrt/tst/common/speculation/tst.ExitAftDiscard.d mode=0444
1737 file path=opt/SUNWdtrt/tst/common/speculation/tst.NoSpecBuffer.d mode=0444
1738 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpecSizeVariations1.d \
1739 mode=0444
1740 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpecSizeVariations2.d \
1741 mode=0444
1742 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpecSizeVariations3.d \
1743 mode=0444
1744 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpeculateWithRandom.d \
1745 mode=0444
1746 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpeculationCommit.d \
1747 mode=0444
1748 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpeculationDiscard.d \
1749 mode=0444
1750 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpeculationID.d mode=0444
1751 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpeculationWithZero.d \
1752 mode=0444
1753 file path=opt/SUNWdtrt/tst/common/speculation/tst.TwoSpecBuffers.d mode=0444
1754 file path=opt/SUNWdtrt/tst/common/speculation/tst.negcommit.d mode=0444
1755 file path=opt/SUNWdtrt/tst/common/speculation/tst.negspec.d mode=0444
1756 file path=opt/SUNWdtrt/tst/common/speculation/tst.zerosize.d mode=0444
1757 file path=opt/SUNWdtrt/tst/common/stability/err.D_ATTR_MIN.MinAttributes.d \
1758 mode=0444
1759 file path=opt/SUNWdtrt/tst/common/stack/err.D_STACK_PROTO.bad.d mode=0444
1760 file path=opt/SUNWdtrt/tst/common/stack/err.D_STACK_SIZE.d mode=0444
1761 file path=opt/SUNWdtrt/tst/common/stack/err.D_USTACK_FRAMES.bad.d mode=0444
1762 file path=opt/SUNWdtrt/tst/common/stack/err.D_USTACK_PROTO.bad.d mode=0444
1763 file path=opt/SUNWdtrt/tst/common/stack/err.D_USTACK_STRSIZE.bad.d mode=0444
1764 file path=opt/SUNWdtrt/tst/common/stack/tst.default.d mode=0444
1765 file path=opt/SUNWdtrt/tst/common/stackdepth/tst.default.d mode=0444
1766 file path=opt/SUNWdtrt/tst/common/stop/tst.stop1.d mode=0444
1767 file path=opt/SUNWdtrt/tst/common/stop/tst.stop1.exe mode=0555
1768 file path=opt/SUNWdtrt/tst/common/stop/tst.stop2.d mode=0444
1769 file path=opt/SUNWdtrt/tst/common/stop/tst.stop2.exe mode=0555
1770 file path=opt/SUNWdtrt/tst/common/strlen/tst.strlen1.d mode=0444
1771 file path=opt/SUNWdtrt/tst/common/strtoll/err.BaseTooLarge.d mode=0444
1772 file path=opt/SUNWdtrt/tst/common/strtoll/err.BaseTooSmall.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 28

1773 file path=opt/SUNWdtrt/tst/common/strtoll/tst.strtoll.d mode=0444
1774 file path=opt/SUNWdtrt/tst/common/strtoll/tst.strtoll.d.out mode=0444
1775 file path=opt/SUNWdtrt/tst/common/struct/err.D_ADDROF_VAR.StructPointer.d \
1776 mode=0444
1777 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_COMBO.StructWithoutColon.d \
1778 mode=0444
1779 file \
1780 path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_COMBO.StructWithoutColon1.d \
1781 mode=0444
1782 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_INCOMPLETE.circular.d \
1783 mode=0444
1784 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_INCOMPLETE.order.d \
1785 mode=0444
1786 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_INCOMPLETE.order2.d \
1787 mode=0444
1788 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_INCOMPLETE.recursive.d \
1789 mode=0444
1790 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_INCOMPLETE.simple.d \
1791 mode=0444
1792 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_VOIDOBJ.baddec.d mode=0444
1793 file path=opt/SUNWdtrt/tst/common/struct/err.D_PROTO_ARG.DupStructAssoc.d \
1794 mode=0444
1795 file path=opt/SUNWdtrt/tst/common/struct/tst.StructAssoc.d mode=0444
1796 file path=opt/SUNWdtrt/tst/common/struct/tst.StructDataTypes.d mode=0444
1797 file path=opt/SUNWdtrt/tst/common/struct/tst.StructInside.d mode=0444
1798 file path=opt/SUNWdtrt/tst/common/struct/tst.clauselocal.d mode=0444
1799 file path=opt/SUNWdtrt/tst/common/struct/tst.clauselocal.d.out mode=0444
1800 file path=opt/SUNWdtrt/tst/common/syscall/tst.args.d mode=0444
1801 file path=opt/SUNWdtrt/tst/common/syscall/tst.args.exe mode=0555
1802 file path=opt/SUNWdtrt/tst/common/syscall/tst.openret.ksh mode=0444
1803 file path=opt/SUNWdtrt/tst/common/sysevent/tst.post.d mode=0444
1804 file path=opt/SUNWdtrt/tst/common/sysevent/tst.post.exe mode=0555
1805 file path=opt/SUNWdtrt/tst/common/sysevent/tst.post_chan.d mode=0444
1806 file path=opt/SUNWdtrt/tst/common/sysevent/tst.post_chan.exe mode=0555
1807 file path=opt/SUNWdtrt/tst/common/tick-n/err.D_PDESC_ZERO.tick.d mode=0444
1808 file path=opt/SUNWdtrt/tst/common/tick-n/err.D_PDESC_ZEROonens.d mode=0444
1809 file path=opt/SUNWdtrt/tst/common/tick-n/err.D_PDESC_ZEROonensec.d mode=0444
1810 file path=opt/SUNWdtrt/tst/common/tick-n/err.D_PDESC_ZEROoneus.d mode=0444
1811 file path=opt/SUNWdtrt/tst/common/tick-n/err.D_PDESC_ZEROoneusec.d mode=0444
1812 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickarg0.d mode=0444
1813 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickms.d mode=0444
1814 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickms.d.out mode=0444
1815 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickmsec.d mode=0444
1816 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickmsec.d.out mode=0444
1817 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickns.d mode=0444
1818 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickns.d.out mode=0444
1819 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticknsec.d mode=0444
1820 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticknsec.d.out mode=0444
1821 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticks.d mode=0444
1822 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticks.d.out mode=0444
1823 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticksec.d mode=0444
1824 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticksec.d.out mode=0444
1825 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickus.d mode=0444
1826 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickus.d.out mode=0444
1827 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickusec.d mode=0444
1828 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickusec.d.out mode=0444
1829 file path=opt/SUNWdtrt/tst/common/trace/err.D_PROTO_LEN.bad.d mode=0444
1830 file path=opt/SUNWdtrt/tst/common/trace/err.D_TRACE_AGG.bad.d mode=0444
1831 file path=opt/SUNWdtrt/tst/common/trace/err.D_TRACE_VOID.bad.d mode=0444
1832 file path=opt/SUNWdtrt/tst/common/trace/tst.dyn.d mode=0444
1833 file path=opt/SUNWdtrt/tst/common/trace/tst.misc.d mode=0444
1834 file path=opt/SUNWdtrt/tst/common/trace/tst.qstring.d mode=0444
1835 file path=opt/SUNWdtrt/tst/common/trace/tst.qstring.d.out mode=0444
1836 file path=opt/SUNWdtrt/tst/common/trace/tst.string.d mode=0444
1837 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_PROTO_ARG.badsize.d mode=0444
1838 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_PROTO_LEN.toofew.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 29

1839 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_TRACEMEM_ADDR.badaddr.d \
1840 mode=0444
1841 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_TRACEMEM_ARGS.d mode=0444
1842 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_TRACEMEM_DYNSIZE.d mode=0444
1843 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_TRACEMEM_SIZE.negsize.d \
1844 mode=0444
1845 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_TRACEMEM_SIZE.zerosize.d \
1846 mode=0444
1847 file path=opt/SUNWdtrt/tst/common/tracemem/tst.dynsize.d mode=0444
1848 file path=opt/SUNWdtrt/tst/common/tracemem/tst.dynsize.d.out mode=0444
1849 file path=opt/SUNWdtrt/tst/common/tracemem/tst.rootvp.d mode=0444
1850 file path=opt/SUNWdtrt/tst/common/tracemem/tst.smallsize.d mode=0444
1851 file path=opt/SUNWdtrt/tst/common/tracemem/tst.smallsize.d.out mode=0444
1852 file \
1853 path=opt/SUNWdtrt/tst/common/translators/err.D_DECL_TYPERED.BadTransDecl.d \
1854 mode=0444
1855 file \
1856 path=opt/SUNWdtrt/tst/common/translators/err.D_OP_INCOMPLETE.NonExistentInpu
1857 mode=0444
1858 file path=opt/SUNWdtrt/tst/common/translators/err.D_SYNTAX.BadTransDecl1.d \
1859 mode=0444
1860 file path=opt/SUNWdtrt/tst/common/translators/err.D_SYNTAX.BadTransDecl3.d \
1861 mode=0444
1862 file path=opt/SUNWdtrt/tst/common/translators/err.D_SYNTAX.BadTransDecl4.d \
1863 mode=0444
1864 file \
1865 path=opt/SUNWdtrt/tst/common/translators/err.D_TYPE_MEMBER.NonExistentInput2
1866 mode=0444
1867 file \
1868 path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_INCOMPAT.BadInputType1.
1869 mode=0444
1870 file \
1871 path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_MEMB.NonExistentOutput2
1872 mode=0444
1873 file path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_NONE.BadTransDecl6.d \
1874 mode=0444
1875 file \
1876 path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_REDECL.RepeatTransDecl.
1877 mode=0444
1878 file path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_SOU.BadTransDecl8.d \
1879 mode=0444
1880 file path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_SOU.BadTransInt.d \
1881 mode=0444
1882 file \
1883 path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_SOU.NonExistentOutput1.
1884 mode=0444
1885 file path=opt/SUNWdtrt/tst/common/translators/tst.CircularTransDecl.d \
1886 mode=0444
1887 file path=opt/SUNWdtrt/tst/common/translators/tst.EmptyTransDecl.d mode=0444
1888 file path=opt/SUNWdtrt/tst/common/translators/tst.ForwardTag.d mode=0444
1889 file path=opt/SUNWdtrt/tst/common/translators/tst.InputAliasTrans.d mode=0444
1890 file path=opt/SUNWdtrt/tst/common/translators/tst.InputIntTrans.d mode=0444
1891 file path=opt/SUNWdtrt/tst/common/translators/tst.OutputAliasTrans.d mode=0444
1892 file path=opt/SUNWdtrt/tst/common/translators/tst.PartialDereferencing.d \
1893 mode=0444
1894 file path=opt/SUNWdtrt/tst/common/translators/tst.PartialOutputTransDefn.d \
1895 mode=0444
1896 file path=opt/SUNWdtrt/tst/common/translators/tst.ProcModelTrans.d mode=0444
1897 file path=opt/SUNWdtrt/tst/common/translators/tst.RepeatDeclaration.d \
1898 mode=0444
1899 file path=opt/SUNWdtrt/tst/common/translators/tst.SimultaneousTranslators.d \
1900 mode=0444
1901 file path=opt/SUNWdtrt/tst/common/translators/tst.StructureAssignment.d \
1902 mode=0444
1903 file path=opt/SUNWdtrt/tst/common/translators/tst.TestTransStability1.ksh \
1904 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 30

1905 file path=opt/SUNWdtrt/tst/common/translators/tst.TestTransStability1.ksh.out \
1906 mode=0444
1907 file path=opt/SUNWdtrt/tst/common/translators/tst.TestTransStability2.ksh \
1908 mode=0444
1909 file path=opt/SUNWdtrt/tst/common/translators/tst.TestTransStability2.ksh.out \
1910 mode=0444
1911 file path=opt/SUNWdtrt/tst/common/translators/tst.TransNonPointer.d mode=0444
1912 file path=opt/SUNWdtrt/tst/common/translators/tst.TransOutputPointer.d \
1913 mode=0444
1914 file path=opt/SUNWdtrt/tst/common/translators/tst.TransPointer.d mode=0444
1915 file path=opt/SUNWdtrt/tst/common/translators/tst.TranslateSelf.d mode=0444
1916 file path=opt/SUNWdtrt/tst/common/translators/tst.UnionInputTrans.d mode=0444
1917 file path=opt/SUNWdtrt/tst/common/translators/tst.UnionOutputTrans.d mode=0444
1918 file path=opt/SUNWdtrt/tst/common/typedef/err.D_DECL_IDRED.DupTypeDef.d \
1919 mode=0444
1920 file path=opt/SUNWdtrt/tst/common/typedef/err.D_SYNTAX.BadExistingTypedef.d \
1921 mode=0444
1922 file path=opt/SUNWdtrt/tst/common/typedef/err.D_SYNTAX.TypedefInClause.d \
1923 mode=0444
1924 file path=opt/SUNWdtrt/tst/common/typedef/tst.ChainTypedef.d mode=0444
1925 file path=opt/SUNWdtrt/tst/common/typedef/tst.TypedefDataAssign.d mode=0444
1926 file path=opt/SUNWdtrt/tst/common/types/err.D_CAST_INVAL.badcast.d mode=0444
1927 file path=opt/SUNWdtrt/tst/common/types/err.D_CG_DYN.ResultDynType.d mode=0444
1928 file path=opt/SUNWdtrt/tst/common/types/err.D_CHR_OFLOW.charconst.d mode=0444
1929 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_BADCLASS.bad.d mode=0444
1930 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_CHARATTR.badtype3.d \
1931 mode=0444
1932 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_COMBO.badtype4.d mode=0444
1933 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_COMBO.badtype5.d mode=0444
1934 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_ENCONST.badeval.d mode=0444
1935 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_ENOFLOW.enoflow.d mode=0444
1936 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_ENOFLOW.enuflow.d mode=0444
1937 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_SCOPE.scopeop.d mode=0444
1938 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_USELESS.baddec.d mode=0444
1939 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_ACT.badcond.d mode=0444
1940 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_ARITH.badoperand.d mode=0444
1941 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_INCOMPAT.badassign.d \
1942 mode=0444
1943 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_INT.badbitop.d mode=0444
1944 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_INT.badshift.d mode=0444
1945 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_SCALAR.badcond.d mode=0444
1946 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_SCALAR.badincop.d mode=0444
1947 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_SCALAR.badlogop.d mode=0444
1948 file path=opt/SUNWdtrt/tst/common/types/err.D_PROTO_LEN.badcond1.d mode=0444
1949 file path=opt/SUNWdtrt/tst/common/types/err.D_SYNTAX.badenum.d mode=0444
1950 file path=opt/SUNWdtrt/tst/common/types/err.D_SYNTAX.badid.d mode=0444
1951 file path=opt/SUNWdtrt/tst/common/types/err.D_SYNTAX.badstruct.d mode=0444
1952 file path=opt/SUNWdtrt/tst/common/types/err.D_UNKNOWN.badtype1.d mode=0444
1953 file path=opt/SUNWdtrt/tst/common/types/err.D_UNKNOWN.badtype2.d mode=0444
1954 file path=opt/SUNWdtrt/tst/common/types/err.D_UNKNOWN.dupenum.d mode=0444
1955 file path=opt/SUNWdtrt/tst/common/types/err.D_UNKNOWN.dupstruct.d mode=0444
1956 file path=opt/SUNWdtrt/tst/common/types/err.D_XLATE_REDECL.ResultDynType.d \
1957 mode=0444
1958 file path=opt/SUNWdtrt/tst/common/types/tst.assignops.d mode=0444
1959 file path=opt/SUNWdtrt/tst/common/types/tst.badshiftops.d mode=0444
1960 file path=opt/SUNWdtrt/tst/common/types/tst.basics.d mode=0444
1961 file path=opt/SUNWdtrt/tst/common/types/tst.basics.d.out mode=0444
1962 file path=opt/SUNWdtrt/tst/common/types/tst.bitops.d mode=0444
1963 file path=opt/SUNWdtrt/tst/common/types/tst.charconstants.d mode=0444
1964 file path=opt/SUNWdtrt/tst/common/types/tst.complex.d mode=0444
1965 file path=opt/SUNWdtrt/tst/common/types/tst.condexpr.d mode=0444
1966 file path=opt/SUNWdtrt/tst/common/types/tst.const.d mode=0444
1967 file path=opt/SUNWdtrt/tst/common/types/tst.constants.d mode=0444
1968 file path=opt/SUNWdtrt/tst/common/types/tst.conv.d mode=0444
1969 file path=opt/SUNWdtrt/tst/common/types/tst.enum.d mode=0444
1970 file path=opt/SUNWdtrt/tst/common/types/tst.intincop.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 31

1971 file path=opt/SUNWdtrt/tst/common/types/tst.intops.d mode=0444
1972 file path=opt/SUNWdtrt/tst/common/types/tst.inttypes.d mode=0444
1973 file path=opt/SUNWdtrt/tst/common/types/tst.ptrincop.d mode=0444
1974 file path=opt/SUNWdtrt/tst/common/types/tst.ptrops.d mode=0444
1975 file path=opt/SUNWdtrt/tst/common/types/tst.relenum.d mode=0444
1976 file path=opt/SUNWdtrt/tst/common/types/tst.relstring.d mode=0444
1977 file path=opt/SUNWdtrt/tst/common/types/tst.shiftops.d mode=0444
1978 file path=opt/SUNWdtrt/tst/common/types/tst.stringconstants.d mode=0444
1979 file path=opt/SUNWdtrt/tst/common/types/tst.struct.d mode=0444
1980 file path=opt/SUNWdtrt/tst/common/types/tst.typedef.d mode=0444
1981 file path=opt/SUNWdtrt/tst/common/types/tst.unaryop.d mode=0444
1982 file path=opt/SUNWdtrt/tst/common/uctf/err.invalidpid.d mode=0444
1983 file path=opt/SUNWdtrt/tst/common/uctf/err.invalidpid2.d mode=0444
1984 file path=opt/SUNWdtrt/tst/common/uctf/err.invalidpid3.d mode=0444
1985 file path=opt/SUNWdtrt/tst/common/uctf/err.invalidtype.ksh mode=0444
1986 file path=opt/SUNWdtrt/tst/common/uctf/err.invalidtype2.ksh mode=0444
1987 file path=opt/SUNWdtrt/tst/common/uctf/err.user64mode.ksh mode=0444
1988 file path=opt/SUNWdtrt/tst/common/uctf/tst.aouttype.exe mode=0555
1989 file path=opt/SUNWdtrt/tst/common/uctf/tst.aouttype.ksh mode=0444
1990 file path=opt/SUNWdtrt/tst/common/uctf/tst.chasestrings.exe mode=0555
1991 file path=opt/SUNWdtrt/tst/common/uctf/tst.chasestrings.ksh mode=0444
1992 file path=opt/SUNWdtrt/tst/common/uctf/tst.chasestrings.ksh.out mode=0444
1993 file path=opt/SUNWdtrt/tst/common/uctf/tst.libtype.exe mode=0555
1994 file path=opt/SUNWdtrt/tst/common/uctf/tst.libtype.ksh mode=0444
1995 file path=opt/SUNWdtrt/tst/common/uctf/tst.linkmap.ksh mode=0444
1996 file path=opt/SUNWdtrt/tst/common/uctf/tst.pidprint.ksh mode=0444
1997 file path=opt/SUNWdtrt/tst/common/uctf/tst.pidprinttarg.ksh mode=0444
1998 file path=opt/SUNWdtrt/tst/common/uctf/tst.printtype.exe mode=0555
1999 file path=opt/SUNWdtrt/tst/common/uctf/tst.printtype.ksh mode=0444
2000 file path=opt/SUNWdtrt/tst/common/uctf/tst.printtype.ksh.out mode=0444
2001 file path=opt/SUNWdtrt/tst/common/uctf/tst.printtypetarg.ksh mode=0444
2002 file path=opt/SUNWdtrt/tst/common/uctf/tst.userlandkey.ksh mode=0444
2003 file path=opt/SUNWdtrt/tst/common/uctf/tst.userlandkey.ksh.out mode=0444
2004 file path=opt/SUNWdtrt/tst/common/uctf/tst.userstrings.ksh mode=0444
2005 file path=opt/SUNWdtrt/tst/common/uctf/tst.userstrings.ksh.out mode=0444
2006 #endif /* ! codereview */
2007 file path=opt/SUNWdtrt/tst/common/union/err.D_ADDROF_VAR.UnionPointer.d \
2008 mode=0444
2009 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_COMBO.UnionWithoutColon.d \
2010 mode=0444
2011 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_COMBO.UnionWithoutColon1.d \
2012 mode=0444
2013 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_INCOMPLETE.circular.d \
2014 mode=0444
2015 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_INCOMPLETE.order.d \
2016 mode=0444
2017 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_INCOMPLETE.recursive.d \
2018 mode=0444
2019 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_INCOMPLETE.simple.d \
2020 mode=0444
2021 file path=opt/SUNWdtrt/tst/common/union/err.D_PROTO_ARG.DupUnionAssoc.d \
2022 mode=0444
2023 file path=opt/SUNWdtrt/tst/common/union/tst.UnionAssoc.d mode=0444
2024 file path=opt/SUNWdtrt/tst/common/union/tst.UnionDataTypes.d mode=0444
2025 file path=opt/SUNWdtrt/tst/common/union/tst.UnionInside.d mode=0444
2026 file path=opt/SUNWdtrt/tst/common/usdt/tst.andpid.ksh mode=0444
2027 file path=opt/SUNWdtrt/tst/common/usdt/tst.argmap.d mode=0444
2028 file path=opt/SUNWdtrt/tst/common/usdt/tst.argmap.exe mode=0555
2029 file path=opt/SUNWdtrt/tst/common/usdt/tst.args.d mode=0444
2030 file path=opt/SUNWdtrt/tst/common/usdt/tst.args.exe mode=0555
2031 file path=opt/SUNWdtrt/tst/common/usdt/tst.badguess.ksh mode=0444
2032 file path=opt/SUNWdtrt/tst/common/usdt/tst.corruptenv.ksh mode=0444
2033 file path=opt/SUNWdtrt/tst/common/usdt/tst.dlclose1.ksh mode=0444
2034 file path=opt/SUNWdtrt/tst/common/usdt/tst.dlclose1.ksh.out mode=0444
2035 file path=opt/SUNWdtrt/tst/common/usdt/tst.dlclose2.ksh mode=0444
2036 file path=opt/SUNWdtrt/tst/common/usdt/tst.dlclose2.ksh.out mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 32

2037 file path=opt/SUNWdtrt/tst/common/usdt/tst.dlclose3.ksh mode=0444
2038 file path=opt/SUNWdtrt/tst/common/usdt/tst.eliminate.ksh mode=0444
2039 file path=opt/SUNWdtrt/tst/common/usdt/tst.enabled.ksh mode=0444
2040 file path=opt/SUNWdtrt/tst/common/usdt/tst.enabled.ksh.out mode=0444
2041 file path=opt/SUNWdtrt/tst/common/usdt/tst.enabled2.ksh mode=0444
2042 file path=opt/SUNWdtrt/tst/common/usdt/tst.enabled2.ksh.out mode=0444
2043 file path=opt/SUNWdtrt/tst/common/usdt/tst.entryreturn.ksh mode=0444
2044 file path=opt/SUNWdtrt/tst/common/usdt/tst.entryreturn.ksh.out mode=0444
2045 file path=opt/SUNWdtrt/tst/common/usdt/tst.fork.ksh mode=0444
2046 file path=opt/SUNWdtrt/tst/common/usdt/tst.fork.ksh.out mode=0444
2047 file path=opt/SUNWdtrt/tst/common/usdt/tst.forker.exe mode=0555
2048 file path=opt/SUNWdtrt/tst/common/usdt/tst.forker.ksh mode=0444
2049 file path=opt/SUNWdtrt/tst/common/usdt/tst.guess32.ksh mode=0444
2050 file path=opt/SUNWdtrt/tst/common/usdt/tst.guess64.ksh mode=0444
2051 file path=opt/SUNWdtrt/tst/common/usdt/tst.header.ksh mode=0444
2052 file path=opt/SUNWdtrt/tst/common/usdt/tst.include.ksh mode=0444
2053 file path=opt/SUNWdtrt/tst/common/usdt/tst.lazyprobe.exe mode=0555
2054 file path=opt/SUNWdtrt/tst/common/usdt/tst.lazyprobe1.ksh mode=0444
2055 file path=opt/SUNWdtrt/tst/common/usdt/tst.lazyprobe2.ksh mode=0444
2056 file path=opt/SUNWdtrt/tst/common/usdt/tst.linkpriv.ksh mode=0444
2057 file path=opt/SUNWdtrt/tst/common/usdt/tst.linkunpriv.ksh mode=0444
2058 file path=opt/SUNWdtrt/tst/common/usdt/tst.multiple.ksh mode=0444
2059 file path=opt/SUNWdtrt/tst/common/usdt/tst.multiple.ksh.out mode=0444
2060 file path=opt/SUNWdtrt/tst/common/usdt/tst.multiprov.ksh mode=0444
2061 file path=opt/SUNWdtrt/tst/common/usdt/tst.multiprov.ksh.out mode=0444
2062 file path=opt/SUNWdtrt/tst/common/usdt/tst.nodtrace.ksh mode=0444
2063 file path=opt/SUNWdtrt/tst/common/usdt/tst.noprobes.ksh mode=0444
2064 file path=opt/SUNWdtrt/tst/common/usdt/tst.noreap.ksh mode=0444
2065 file path=opt/SUNWdtrt/tst/common/usdt/tst.noreapring.ksh mode=0444
2066 file path=opt/SUNWdtrt/tst/common/usdt/tst.onlyenabled.ksh mode=0444
2067 file path=opt/SUNWdtrt/tst/common/usdt/tst.reap.ksh mode=0444
2068 file path=opt/SUNWdtrt/tst/common/usdt/tst.reeval.ksh mode=0444
2069 file path=opt/SUNWdtrt/tst/common/usdt/tst.static.ksh mode=0444
2070 file path=opt/SUNWdtrt/tst/common/usdt/tst.static.ksh.out mode=0444
2071 file path=opt/SUNWdtrt/tst/common/usdt/tst.static2.ksh mode=0444
2072 file path=opt/SUNWdtrt/tst/common/usdt/tst.static2.ksh.out mode=0444
2073 file path=opt/SUNWdtrt/tst/common/usdt/tst.user.ksh mode=0444
2074 file path=opt/SUNWdtrt/tst/common/usdt/tst.user.ksh.out mode=0444
2075 file path=opt/SUNWdtrt/tst/common/ustack/tst.bigstack.d mode=0444
2076 file path=opt/SUNWdtrt/tst/common/ustack/tst.bigstack.exe mode=0555
2077 file path=opt/SUNWdtrt/tst/common/ustack/tst.depth.ksh mode=0444
2078 file path=opt/SUNWdtrt/tst/common/ustack/tst.spin.exe mode=0555
2079 file path=opt/SUNWdtrt/tst/common/ustack/tst.spin.ksh mode=0444
2080 file path=opt/SUNWdtrt/tst/common/vars/tst.gid.d mode=0444
2081 file path=opt/SUNWdtrt/tst/common/vars/tst.nullassign.d mode=0444
2082 file path=opt/SUNWdtrt/tst/common/vars/tst.ppid.d mode=0444
2083 file path=opt/SUNWdtrt/tst/common/vars/tst.ucaller.ksh mode=0444
2084 file path=opt/SUNWdtrt/tst/common/vars/tst.ucaller.ksh.out mode=0444
2085 file path=opt/SUNWdtrt/tst/common/vars/tst.uid.d mode=0444
2086 file path=opt/SUNWdtrt/tst/common/vars/tst.walltimestamp.d mode=0444
2087 file path=opt/SUNWdtrt/tst/common/version/tst.1.0.d mode=0444
2088 $(i386_ONLY)file path=opt/SUNWdtrt/tst/i86xpv/xdt/tst.basic.ksh mode=0444
2089 $(i386_ONLY)file path=opt/SUNWdtrt/tst/i86xpv/xdt/tst.hvmenable.ksh mode=0444
2090 $(i386_ONLY)file path=opt/SUNWdtrt/tst/i86xpv/xdt/tst.memenable.ksh mode=0444
2091 $(i386_ONLY)file path=opt/SUNWdtrt/tst/i86xpv/xdt/tst.schedargs.ksh mode=0444
2092 $(i386_ONLY)file path=opt/SUNWdtrt/tst/i86xpv/xdt/tst.schedenable.ksh \
2093 mode=0444
2094 legacy pkg=SUNWdtrt category=internal \
2095 desc="DTrace Test Suite Internal Distribution" \
2096 hotline="Contact the DTrace discussion forum" name="DTrace Test Suite"
2097 license cr_Sun license=cr_Sun
2098 license lic_CDDL license=lic_CDDL
2099 depend fmri=runtime/java type=require
2100 depend fmri=runtime/java/runtime64 type=require

new/usr/src/uts/common/dtrace/dtrace.c 1

**
 437125 Tue Jan 14 16:49:02 2014
new/usr/src/uts/common/dtrace/dtrace.c
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**
______unchanged_portion_omitted_

5501 /*
5502 * Emulate the execution of DTrace IR instructions specified by the given
5503 * DIF object. This function is deliberately void of assertions as all of
5504 * the necessary checks are handled by a call to dtrace_difo_validate().
5505 */
5506 static uint64_t
5507 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5508 dtrace_vstate_t *vstate, dtrace_state_t *state)
5509 {
5510 const dif_instr_t *text = difo->dtdo_buf;
5511 const uint_t textlen = difo->dtdo_len;
5512 const char *strtab = difo->dtdo_strtab;
5513 const uint64_t *inttab = difo->dtdo_inttab;

5515 uint64_t rval = 0;
5516 dtrace_statvar_t *svar;
5517 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5518 dtrace_difv_t *v;
5519 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5520 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;

5522 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5523 uint64_t regs[DIF_DIR_NREGS];
5524 uint64_t *tmp;

5526 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5527 int64_t cc_r;
5528 uint_t pc = 0, id, opc;
5529 uint8_t ttop = 0;
5530 dif_instr_t instr;
5531 uint_t r1, r2, rd;

5533 /*
5534 * We stash the current DIF object into the machine state: we need it
5535 * for subsequent access checking.
5536 */
5537 mstate->dtms_difo = difo;

5539 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */

5541 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5542 opc = pc;

5544 instr = text[pc++];
5545 r1 = DIF_INSTR_R1(instr);
5546 r2 = DIF_INSTR_R2(instr);
5547 rd = DIF_INSTR_RD(instr);

5549 switch (DIF_INSTR_OP(instr)) {
5550 case DIF_OP_OR:
5551 regs[rd] = regs[r1] | regs[r2];
5552 break;
5553 case DIF_OP_XOR:
5554 regs[rd] = regs[r1] ^ regs[r2];

new/usr/src/uts/common/dtrace/dtrace.c 2

5555 break;
5556 case DIF_OP_AND:
5557 regs[rd] = regs[r1] & regs[r2];
5558 break;
5559 case DIF_OP_SLL:
5560 regs[rd] = regs[r1] << regs[r2];
5561 break;
5562 case DIF_OP_SRL:
5563 regs[rd] = regs[r1] >> regs[r2];
5564 break;
5565 case DIF_OP_SUB:
5566 regs[rd] = regs[r1] - regs[r2];
5567 break;
5568 case DIF_OP_ADD:
5569 regs[rd] = regs[r1] + regs[r2];
5570 break;
5571 case DIF_OP_MUL:
5572 regs[rd] = regs[r1] * regs[r2];
5573 break;
5574 case DIF_OP_SDIV:
5575 if (regs[r2] == 0) {
5576 regs[rd] = 0;
5577 *flags |= CPU_DTRACE_DIVZERO;
5578 } else {
5579 regs[rd] = (int64_t)regs[r1] /
5580 (int64_t)regs[r2];
5581 }
5582 break;

5584 case DIF_OP_UDIV:
5585 if (regs[r2] == 0) {
5586 regs[rd] = 0;
5587 *flags |= CPU_DTRACE_DIVZERO;
5588 } else {
5589 regs[rd] = regs[r1] / regs[r2];
5590 }
5591 break;

5593 case DIF_OP_SREM:
5594 if (regs[r2] == 0) {
5595 regs[rd] = 0;
5596 *flags |= CPU_DTRACE_DIVZERO;
5597 } else {
5598 regs[rd] = (int64_t)regs[r1] %
5599 (int64_t)regs[r2];
5600 }
5601 break;

5603 case DIF_OP_UREM:
5604 if (regs[r2] == 0) {
5605 regs[rd] = 0;
5606 *flags |= CPU_DTRACE_DIVZERO;
5607 } else {
5608 regs[rd] = regs[r1] % regs[r2];
5609 }
5610 break;

5612 case DIF_OP_NOT:
5613 regs[rd] = ~regs[r1];
5614 break;
5615 case DIF_OP_MOV:
5616 regs[rd] = regs[r1];
5617 break;
5618 case DIF_OP_CMP:
5619 cc_r = regs[r1] - regs[r2];
5620 cc_n = cc_r < 0;

new/usr/src/uts/common/dtrace/dtrace.c 3

5621 cc_z = cc_r == 0;
5622 cc_v = 0;
5623 cc_c = regs[r1] < regs[r2];
5624 break;
5625 case DIF_OP_TST:
5626 cc_n = cc_v = cc_c = 0;
5627 cc_z = regs[r1] == 0;
5628 break;
5629 case DIF_OP_BA:
5630 pc = DIF_INSTR_LABEL(instr);
5631 break;
5632 case DIF_OP_BE:
5633 if (cc_z)
5634 pc = DIF_INSTR_LABEL(instr);
5635 break;
5636 case DIF_OP_BNE:
5637 if (cc_z == 0)
5638 pc = DIF_INSTR_LABEL(instr);
5639 break;
5640 case DIF_OP_BG:
5641 if ((cc_z | (cc_n ^ cc_v)) == 0)
5642 pc = DIF_INSTR_LABEL(instr);
5643 break;
5644 case DIF_OP_BGU:
5645 if ((cc_c | cc_z) == 0)
5646 pc = DIF_INSTR_LABEL(instr);
5647 break;
5648 case DIF_OP_BGE:
5649 if ((cc_n ^ cc_v) == 0)
5650 pc = DIF_INSTR_LABEL(instr);
5651 break;
5652 case DIF_OP_BGEU:
5653 if (cc_c == 0)
5654 pc = DIF_INSTR_LABEL(instr);
5655 break;
5656 case DIF_OP_BL:
5657 if (cc_n ^ cc_v)
5658 pc = DIF_INSTR_LABEL(instr);
5659 break;
5660 case DIF_OP_BLU:
5661 if (cc_c)
5662 pc = DIF_INSTR_LABEL(instr);
5663 break;
5664 case DIF_OP_BLE:
5665 if (cc_z | (cc_n ^ cc_v))
5666 pc = DIF_INSTR_LABEL(instr);
5667 break;
5668 case DIF_OP_BLEU:
5669 if (cc_c | cc_z)
5670 pc = DIF_INSTR_LABEL(instr);
5671 break;
5672 case DIF_OP_RLDSB:
5673 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5674 break;
5675 /*FALLTHROUGH*/
5676 case DIF_OP_LDSB:
5677 regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5678 break;
5679 case DIF_OP_RLDSH:
5680 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5681 break;
5682 /*FALLTHROUGH*/
5683 case DIF_OP_LDSH:
5684 regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5685 break;
5686 case DIF_OP_RLDSW:

new/usr/src/uts/common/dtrace/dtrace.c 4

5687 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5688 break;
5689 /*FALLTHROUGH*/
5690 case DIF_OP_LDSW:
5691 regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5692 break;
5693 case DIF_OP_RLDUB:
5694 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5695 break;
5696 /*FALLTHROUGH*/
5697 case DIF_OP_LDUB:
5698 regs[rd] = dtrace_load8(regs[r1]);
5699 break;
5700 case DIF_OP_RLDUH:
5701 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5702 break;
5703 /*FALLTHROUGH*/
5704 case DIF_OP_LDUH:
5705 regs[rd] = dtrace_load16(regs[r1]);
5706 break;
5707 case DIF_OP_RLDUW:
5708 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5709 break;
5710 /*FALLTHROUGH*/
5711 case DIF_OP_LDUW:
5712 regs[rd] = dtrace_load32(regs[r1]);
5713 break;
5714 case DIF_OP_RLDX:
5715 if (!dtrace_canload(regs[r1], 8, mstate, vstate))
5716 break;
5717 /*FALLTHROUGH*/
5718 case DIF_OP_LDX:
5719 regs[rd] = dtrace_load64(regs[r1]);
5720 break;
5721 case DIF_OP_ULDSB:
5722 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5723 #endif /* ! codereview */
5724 regs[rd] = (int8_t)
5725 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5726 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5727 #endif /* ! codereview */
5728 break;
5729 case DIF_OP_ULDSH:
5730 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5731 #endif /* ! codereview */
5732 regs[rd] = (int16_t)
5733 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5734 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5735 #endif /* ! codereview */
5736 break;
5737 case DIF_OP_ULDSW:
5738 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5739 #endif /* ! codereview */
5740 regs[rd] = (int32_t)
5741 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5742 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5743 #endif /* ! codereview */
5744 break;
5745 case DIF_OP_ULDUB:
5746 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5747 #endif /* ! codereview */
5748 regs[rd] =
5749 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5750 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5751 #endif /* ! codereview */
5752 break;

new/usr/src/uts/common/dtrace/dtrace.c 5

5753 case DIF_OP_ULDUH:
5754 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5755 #endif /* ! codereview */
5756 regs[rd] =
5757 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5758 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5759 #endif /* ! codereview */
5760 break;
5761 case DIF_OP_ULDUW:
5762 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5763 #endif /* ! codereview */
5764 regs[rd] =
5765 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5766 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5767 #endif /* ! codereview */
5768 break;
5769 case DIF_OP_ULDX:
5770 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5771 #endif /* ! codereview */
5772 regs[rd] =
5773 dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5774 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5775 #endif /* ! codereview */
5776 break;
5777 case DIF_OP_RET:
5778 rval = regs[rd];
5779 pc = textlen;
5780 break;
5781 case DIF_OP_NOP:
5782 break;
5783 case DIF_OP_SETX:
5784 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5785 break;
5786 case DIF_OP_SETS:
5787 regs[rd] = (uint64_t)(uintptr_t)
5788 (strtab + DIF_INSTR_STRING(instr));
5789 break;
5790 case DIF_OP_SCMP: {
5791 size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5792 uintptr_t s1 = regs[r1];
5793 uintptr_t s2 = regs[r2];

5795 if (s1 != NULL &&
5796 !dtrace_strcanload(s1, sz, mstate, vstate))
5797 break;
5798 if (s2 != NULL &&
5799 !dtrace_strcanload(s2, sz, mstate, vstate))
5800 break;

5802 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);

5804 cc_n = cc_r < 0;
5805 cc_z = cc_r == 0;
5806 cc_v = cc_c = 0;
5807 break;
5808 }
5809 case DIF_OP_LDGA:
5810 regs[rd] = dtrace_dif_variable(mstate, state,
5811 r1, regs[r2]);
5812 break;
5813 case DIF_OP_LDGS:
5814 id = DIF_INSTR_VAR(instr);

5816 if (id >= DIF_VAR_OTHER_UBASE) {
5817 uintptr_t a;

new/usr/src/uts/common/dtrace/dtrace.c 6

5819 id -= DIF_VAR_OTHER_UBASE;
5820 svar = vstate->dtvs_globals[id];
5821 ASSERT(svar != NULL);
5822 v = &svar->dtsv_var;

5824 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5825 regs[rd] = svar->dtsv_data;
5826 break;
5827 }

5829 a = (uintptr_t)svar->dtsv_data;

5831 if (*(uint8_t *)a == UINT8_MAX) {
5832 /*
5833 * If the 0th byte is set to UINT8_MAX
5834 * then this is to be treated as a
5835 * reference to a NULL variable.
5836 */
5837 regs[rd] = NULL;
5838 } else {
5839 regs[rd] = a + sizeof (uint64_t);
5840 }

5842 break;
5843 }

5845 regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5846 break;

5848 case DIF_OP_STGS:
5849 id = DIF_INSTR_VAR(instr);

5851 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5852 id -= DIF_VAR_OTHER_UBASE;

5854 svar = vstate->dtvs_globals[id];
5855 ASSERT(svar != NULL);
5856 v = &svar->dtsv_var;

5858 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5859 uintptr_t a = (uintptr_t)svar->dtsv_data;

5861 ASSERT(a != NULL);
5862 ASSERT(svar->dtsv_size != 0);

5864 if (regs[rd] == NULL) {
5865 *(uint8_t *)a = UINT8_MAX;
5866 break;
5867 } else {
5868 *(uint8_t *)a = 0;
5869 a += sizeof (uint64_t);
5870 }
5871 if (!dtrace_vcanload(
5872 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5873 mstate, vstate))
5874 break;

5876 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5877 (void *)a, &v->dtdv_type);
5878 break;
5879 }

5881 svar->dtsv_data = regs[rd];
5882 break;

5884 case DIF_OP_LDTA:

new/usr/src/uts/common/dtrace/dtrace.c 7

5885 /*
5886 * There are no DTrace built-in thread-local arrays at
5887 * present. This opcode is saved for future work.
5888 */
5889 *flags |= CPU_DTRACE_ILLOP;
5890 regs[rd] = 0;
5891 break;

5893 case DIF_OP_LDLS:
5894 id = DIF_INSTR_VAR(instr);

5896 if (id < DIF_VAR_OTHER_UBASE) {
5897 /*
5898 * For now, this has no meaning.
5899 */
5900 regs[rd] = 0;
5901 break;
5902 }

5904 id -= DIF_VAR_OTHER_UBASE;

5906 ASSERT(id < vstate->dtvs_nlocals);
5907 ASSERT(vstate->dtvs_locals != NULL);

5909 svar = vstate->dtvs_locals[id];
5910 ASSERT(svar != NULL);
5911 v = &svar->dtsv_var;

5913 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5914 uintptr_t a = (uintptr_t)svar->dtsv_data;
5915 size_t sz = v->dtdv_type.dtdt_size;

5917 sz += sizeof (uint64_t);
5918 ASSERT(svar->dtsv_size == NCPU * sz);
5919 a += CPU->cpu_id * sz;

5921 if (*(uint8_t *)a == UINT8_MAX) {
5922 /*
5923 * If the 0th byte is set to UINT8_MAX
5924 * then this is to be treated as a
5925 * reference to a NULL variable.
5926 */
5927 regs[rd] = NULL;
5928 } else {
5929 regs[rd] = a + sizeof (uint64_t);
5930 }

5932 break;
5933 }

5935 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5936 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5937 regs[rd] = tmp[CPU->cpu_id];
5938 break;

5940 case DIF_OP_STLS:
5941 id = DIF_INSTR_VAR(instr);

5943 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5944 id -= DIF_VAR_OTHER_UBASE;
5945 ASSERT(id < vstate->dtvs_nlocals);

5947 ASSERT(vstate->dtvs_locals != NULL);
5948 svar = vstate->dtvs_locals[id];
5949 ASSERT(svar != NULL);
5950 v = &svar->dtsv_var;

new/usr/src/uts/common/dtrace/dtrace.c 8

5952 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5953 uintptr_t a = (uintptr_t)svar->dtsv_data;
5954 size_t sz = v->dtdv_type.dtdt_size;

5956 sz += sizeof (uint64_t);
5957 ASSERT(svar->dtsv_size == NCPU * sz);
5958 a += CPU->cpu_id * sz;

5960 if (regs[rd] == NULL) {
5961 *(uint8_t *)a = UINT8_MAX;
5962 break;
5963 } else {
5964 *(uint8_t *)a = 0;
5965 a += sizeof (uint64_t);
5966 }

5968 if (!dtrace_vcanload(
5969 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5970 mstate, vstate))
5971 break;

5973 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5974 (void *)a, &v->dtdv_type);
5975 break;
5976 }

5978 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5979 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5980 tmp[CPU->cpu_id] = regs[rd];
5981 break;

5983 case DIF_OP_LDTS: {
5984 dtrace_dynvar_t *dvar;
5985 dtrace_key_t *key;

5987 id = DIF_INSTR_VAR(instr);
5988 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5989 id -= DIF_VAR_OTHER_UBASE;
5990 v = &vstate->dtvs_tlocals[id];

5992 key = &tupregs[DIF_DTR_NREGS];
5993 key[0].dttk_value = (uint64_t)id;
5994 key[0].dttk_size = 0;
5995 DTRACE_TLS_THRKEY(key[1].dttk_value);
5996 key[1].dttk_size = 0;

5998 dvar = dtrace_dynvar(dstate, 2, key,
5999 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6000 mstate, vstate);

6002 if (dvar == NULL) {
6003 regs[rd] = 0;
6004 break;
6005 }

6007 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6008 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6009 } else {
6010 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6011 }

6013 break;
6014 }

6016 case DIF_OP_STTS: {

new/usr/src/uts/common/dtrace/dtrace.c 9

6017 dtrace_dynvar_t *dvar;
6018 dtrace_key_t *key;

6020 id = DIF_INSTR_VAR(instr);
6021 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6022 id -= DIF_VAR_OTHER_UBASE;

6024 key = &tupregs[DIF_DTR_NREGS];
6025 key[0].dttk_value = (uint64_t)id;
6026 key[0].dttk_size = 0;
6027 DTRACE_TLS_THRKEY(key[1].dttk_value);
6028 key[1].dttk_size = 0;
6029 v = &vstate->dtvs_tlocals[id];

6031 dvar = dtrace_dynvar(dstate, 2, key,
6032 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6033 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6034 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6035 DTRACE_DYNVAR_DEALLOC, mstate, vstate);

6037 /*
6038 * Given that we’re storing to thread-local data,
6039 * we need to flush our predicate cache.
6040 */
6041 curthread->t_predcache = NULL;

6043 if (dvar == NULL)
6044 break;

6046 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6047 if (!dtrace_vcanload(
6048 (void *)(uintptr_t)regs[rd],
6049 &v->dtdv_type, mstate, vstate))
6050 break;

6052 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6053 dvar->dtdv_data, &v->dtdv_type);
6054 } else {
6055 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6056 }

6058 break;
6059 }

6061 case DIF_OP_SRA:
6062 regs[rd] = (int64_t)regs[r1] >> regs[r2];
6063 break;

6065 case DIF_OP_CALL:
6066 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6067 regs, tupregs, ttop, mstate, state);
6068 break;

6070 case DIF_OP_PUSHTR:
6071 if (ttop == DIF_DTR_NREGS) {
6072 *flags |= CPU_DTRACE_TUPOFLOW;
6073 break;
6074 }

6076 if (r1 == DIF_TYPE_STRING) {
6077 /*
6078 * If this is a string type and the size is 0,
6079 * we’ll use the system-wide default string
6080 * size. Note that we are _not_ looking at
6081 * the value of the DTRACEOPT_STRSIZE option;
6082 * had this been set, we would expect to have

new/usr/src/uts/common/dtrace/dtrace.c 10

6083 * a non-zero size value in the "pushtr".
6084 */
6085 tupregs[ttop].dttk_size =
6086 dtrace_strlen((char *)(uintptr_t)regs[rd],
6087 regs[r2] ? regs[r2] :
6088 dtrace_strsize_default) + 1;
6089 } else {
6090 tupregs[ttop].dttk_size = regs[r2];
6091 }

6093 tupregs[ttop++].dttk_value = regs[rd];
6094 break;

6096 case DIF_OP_PUSHTV:
6097 if (ttop == DIF_DTR_NREGS) {
6098 *flags |= CPU_DTRACE_TUPOFLOW;
6099 break;
6100 }

6102 tupregs[ttop].dttk_value = regs[rd];
6103 tupregs[ttop++].dttk_size = 0;
6104 break;

6106 case DIF_OP_POPTS:
6107 if (ttop != 0)
6108 ttop--;
6109 break;

6111 case DIF_OP_FLUSHTS:
6112 ttop = 0;
6113 break;

6115 case DIF_OP_LDGAA:
6116 case DIF_OP_LDTAA: {
6117 dtrace_dynvar_t *dvar;
6118 dtrace_key_t *key = tupregs;
6119 uint_t nkeys = ttop;

6121 id = DIF_INSTR_VAR(instr);
6122 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6123 id -= DIF_VAR_OTHER_UBASE;

6125 key[nkeys].dttk_value = (uint64_t)id;
6126 key[nkeys++].dttk_size = 0;

6128 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6129 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6130 key[nkeys++].dttk_size = 0;
6131 v = &vstate->dtvs_tlocals[id];
6132 } else {
6133 v = &vstate->dtvs_globals[id]->dtsv_var;
6134 }

6136 dvar = dtrace_dynvar(dstate, nkeys, key,
6137 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6138 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6139 DTRACE_DYNVAR_NOALLOC, mstate, vstate);

6141 if (dvar == NULL) {
6142 regs[rd] = 0;
6143 break;
6144 }

6146 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6147 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6148 } else {

new/usr/src/uts/common/dtrace/dtrace.c 11

6149 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6150 }

6152 break;
6153 }

6155 case DIF_OP_STGAA:
6156 case DIF_OP_STTAA: {
6157 dtrace_dynvar_t *dvar;
6158 dtrace_key_t *key = tupregs;
6159 uint_t nkeys = ttop;

6161 id = DIF_INSTR_VAR(instr);
6162 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6163 id -= DIF_VAR_OTHER_UBASE;

6165 key[nkeys].dttk_value = (uint64_t)id;
6166 key[nkeys++].dttk_size = 0;

6168 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6169 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6170 key[nkeys++].dttk_size = 0;
6171 v = &vstate->dtvs_tlocals[id];
6172 } else {
6173 v = &vstate->dtvs_globals[id]->dtsv_var;
6174 }

6176 dvar = dtrace_dynvar(dstate, nkeys, key,
6177 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6178 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6179 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6180 DTRACE_DYNVAR_DEALLOC, mstate, vstate);

6182 if (dvar == NULL)
6183 break;

6185 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6186 if (!dtrace_vcanload(
6187 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6188 mstate, vstate))
6189 break;

6191 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6192 dvar->dtdv_data, &v->dtdv_type);
6193 } else {
6194 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6195 }

6197 break;
6198 }

6200 case DIF_OP_ALLOCS: {
6201 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6202 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];

6204 /*
6205 * Rounding up the user allocation size could have
6206 * overflowed large, bogus allocations (like -1ULL) to
6207 * 0.
6208 */
6209 if (size < regs[r1] ||
6210 !DTRACE_INSCRATCH(mstate, size)) {
6211 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6212 regs[rd] = NULL;
6213 break;
6214 }

new/usr/src/uts/common/dtrace/dtrace.c 12

6216 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6217 mstate->dtms_scratch_ptr += size;
6218 regs[rd] = ptr;
6219 break;
6220 }

6222 case DIF_OP_COPYS:
6223 if (!dtrace_canstore(regs[rd], regs[r2],
6224 mstate, vstate)) {
6225 *flags |= CPU_DTRACE_BADADDR;
6226 *illval = regs[rd];
6227 break;
6228 }

6230 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6231 break;

6233 dtrace_bcopy((void *)(uintptr_t)regs[r1],
6234 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6235 break;

6237 case DIF_OP_STB:
6238 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6239 *flags |= CPU_DTRACE_BADADDR;
6240 *illval = regs[rd];
6241 break;
6242 }
6243 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6244 break;

6246 case DIF_OP_STH:
6247 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6248 *flags |= CPU_DTRACE_BADADDR;
6249 *illval = regs[rd];
6250 break;
6251 }
6252 if (regs[rd] & 1) {
6253 *flags |= CPU_DTRACE_BADALIGN;
6254 *illval = regs[rd];
6255 break;
6256 }
6257 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6258 break;

6260 case DIF_OP_STW:
6261 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6262 *flags |= CPU_DTRACE_BADADDR;
6263 *illval = regs[rd];
6264 break;
6265 }
6266 if (regs[rd] & 3) {
6267 *flags |= CPU_DTRACE_BADALIGN;
6268 *illval = regs[rd];
6269 break;
6270 }
6271 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6272 break;

6274 case DIF_OP_STX:
6275 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6276 *flags |= CPU_DTRACE_BADADDR;
6277 *illval = regs[rd];
6278 break;
6279 }
6280 if (regs[rd] & 7) {

new/usr/src/uts/common/dtrace/dtrace.c 13

6281 *flags |= CPU_DTRACE_BADALIGN;
6282 *illval = regs[rd];
6283 break;
6284 }
6285 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6286 break;
6287 }
6288 }

6290 if (!(*flags & CPU_DTRACE_FAULT))
6291 return (rval);

6293 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6294 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;

6296 return (0);
6297 }

6299 static void
6300 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6301 {
6302 dtrace_probe_t *probe = ecb->dte_probe;
6303 dtrace_provider_t *prov = probe->dtpr_provider;
6304 char c[DTRACE_FULLNAMELEN + 80], *str;
6305 char *msg = "dtrace: breakpoint action at probe ";
6306 char *ecbmsg = " (ecb ";
6307 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6308 uintptr_t val = (uintptr_t)ecb;
6309 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;

6311 if (dtrace_destructive_disallow)
6312 return;

6314 /*
6315 * It’s impossible to be taking action on the NULL probe.
6316 */
6317 ASSERT(probe != NULL);

6319 /*
6320 * This is a poor man’s (destitute man’s?) sprintf(): we want to
6321 * print the provider name, module name, function name and name of
6322 * the probe, along with the hex address of the ECB with the breakpoint
6323 * action -- all of which we must place in the character buffer by
6324 * hand.
6325 */
6326 while (*msg != ’\0’)
6327 c[i++] = *msg++;

6329 for (str = prov->dtpv_name; *str != ’\0’; str++)
6330 c[i++] = *str;
6331 c[i++] = ’:’;

6333 for (str = probe->dtpr_mod; *str != ’\0’; str++)
6334 c[i++] = *str;
6335 c[i++] = ’:’;

6337 for (str = probe->dtpr_func; *str != ’\0’; str++)
6338 c[i++] = *str;
6339 c[i++] = ’:’;

6341 for (str = probe->dtpr_name; *str != ’\0’; str++)
6342 c[i++] = *str;

6344 while (*ecbmsg != ’\0’)
6345 c[i++] = *ecbmsg++;

new/usr/src/uts/common/dtrace/dtrace.c 14

6347 while (shift >= 0) {
6348 mask = (uintptr_t)0xf << shift;

6350 if (val >= ((uintptr_t)1 << shift))
6351 c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6352 shift -= 4;
6353 }

6355 c[i++] = ’)’;
6356 c[i] = ’\0’;

6358 debug_enter(c);
6359 }

6361 static void
6362 dtrace_action_panic(dtrace_ecb_t *ecb)
6363 {
6364 dtrace_probe_t *probe = ecb->dte_probe;

6366 /*
6367 * It’s impossible to be taking action on the NULL probe.
6368 */
6369 ASSERT(probe != NULL);

6371 if (dtrace_destructive_disallow)
6372 return;

6374 if (dtrace_panicked != NULL)
6375 return;

6377 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6378 return;

6380 /*
6381 * We won the right to panic. (We want to be sure that only one
6382 * thread calls panic() from dtrace_probe(), and that panic() is
6383 * called exactly once.)
6384 */
6385 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6386 probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6387 probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6388 }

6390 static void
6391 dtrace_action_raise(uint64_t sig)
6392 {
6393 if (dtrace_destructive_disallow)
6394 return;

6396 if (sig >= NSIG) {
6397 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6398 return;
6399 }

6401 /*
6402 * raise() has a queue depth of 1 -- we ignore all subsequent
6403 * invocations of the raise() action.
6404 */
6405 if (curthread->t_dtrace_sig == 0)
6406 curthread->t_dtrace_sig = (uint8_t)sig;

6408 curthread->t_sig_check = 1;
6409 aston(curthread);
6410 }

6412 static void

new/usr/src/uts/common/dtrace/dtrace.c 15

6413 dtrace_action_stop(void)
6414 {
6415 if (dtrace_destructive_disallow)
6416 return;

6418 if (!curthread->t_dtrace_stop) {
6419 curthread->t_dtrace_stop = 1;
6420 curthread->t_sig_check = 1;
6421 aston(curthread);
6422 }
6423 }

6425 static void
6426 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6427 {
6428 hrtime_t now;
6429 volatile uint16_t *flags;
6430 cpu_t *cpu = CPU;

6432 if (dtrace_destructive_disallow)
6433 return;

6435 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;

6437 now = dtrace_gethrtime();

6439 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6440 /*
6441 * We need to advance the mark to the current time.
6442 */
6443 cpu->cpu_dtrace_chillmark = now;
6444 cpu->cpu_dtrace_chilled = 0;
6445 }

6447 /*
6448 * Now check to see if the requested chill time would take us over
6449 * the maximum amount of time allowed in the chill interval. (Or
6450 * worse, if the calculation itself induces overflow.)
6451 */
6452 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6453 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6454 *flags |= CPU_DTRACE_ILLOP;
6455 return;
6456 }

6458 while (dtrace_gethrtime() - now < val)
6459 continue;

6461 /*
6462 * Normally, we assure that the value of the variable "timestamp" does
6463 * not change within an ECB. The presence of chill() represents an
6464 * exception to this rule, however.
6465 */
6466 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6467 cpu->cpu_dtrace_chilled += val;
6468 }

6470 static void
6471 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6472 uint64_t *buf, uint64_t arg)
6473 {
6474 int nframes = DTRACE_USTACK_NFRAMES(arg);
6475 int strsize = DTRACE_USTACK_STRSIZE(arg);
6476 uint64_t *pcs = &buf[1], *fps;
6477 char *str = (char *)&pcs[nframes];
6478 int size, offs = 0, i, j;

new/usr/src/uts/common/dtrace/dtrace.c 16

6479 uintptr_t old = mstate->dtms_scratch_ptr, saved;
6480 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6481 char *sym;

6483 /*
6484 * Should be taking a faster path if string space has not been
6485 * allocated.
6486 */
6487 ASSERT(strsize != 0);

6489 /*
6490 * We will first allocate some temporary space for the frame pointers.
6491 */
6492 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6493 size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6494 (nframes * sizeof (uint64_t));

6496 if (!DTRACE_INSCRATCH(mstate, size)) {
6497 /*
6498 * Not enough room for our frame pointers -- need to indicate
6499 * that we ran out of scratch space.
6500 */
6501 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6502 return;
6503 }

6505 mstate->dtms_scratch_ptr += size;
6506 saved = mstate->dtms_scratch_ptr;

6508 /*
6509 * Now get a stack with both program counters and frame pointers.
6510 */
6511 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6512 dtrace_getufpstack(buf, fps, nframes + 1);
6513 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);

6515 /*
6516 * If that faulted, we’re cooked.
6517 */
6518 if (*flags & CPU_DTRACE_FAULT)
6519 goto out;

6521 /*
6522 * Now we want to walk up the stack, calling the USTACK helper. For
6523 * each iteration, we restore the scratch pointer.
6524 */
6525 for (i = 0; i < nframes; i++) {
6526 mstate->dtms_scratch_ptr = saved;

6528 if (offs >= strsize)
6529 break;

6531 sym = (char *)(uintptr_t)dtrace_helper(
6532 DTRACE_HELPER_ACTION_USTACK,
6533 mstate, state, pcs[i], fps[i]);

6535 /*
6536 * If we faulted while running the helper, we’re going to
6537 * clear the fault and null out the corresponding string.
6538 */
6539 if (*flags & CPU_DTRACE_FAULT) {
6540 *flags &= ~CPU_DTRACE_FAULT;
6541 str[offs++] = ’\0’;
6542 continue;
6543 }

new/usr/src/uts/common/dtrace/dtrace.c 17

6545 if (sym == NULL) {
6546 str[offs++] = ’\0’;
6547 continue;
6548 }

6550 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);

6552 /*
6553 * Now copy in the string that the helper returned to us.
6554 */
6555 for (j = 0; offs + j < strsize; j++) {
6556 if ((str[offs + j] = sym[j]) == ’\0’)
6557 break;
6558 }

6560 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);

6562 offs += j + 1;
6563 }

6565 if (offs >= strsize) {
6566 /*
6567 * If we didn’t have room for all of the strings, we don’t
6568 * abort processing -- this needn’t be a fatal error -- but we
6569 * still want to increment a counter (dts_stkstroverflows) to
6570 * allow this condition to be warned about. (If this is from
6571 * a jstack() action, it is easily tuned via jstackstrsize.)
6572 */
6573 dtrace_error(&state->dts_stkstroverflows);
6574 }

6576 while (offs < strsize)
6577 str[offs++] = ’\0’;

6579 out:
6580 mstate->dtms_scratch_ptr = old;
6581 }

6583 static void
6584 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
6585 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6586 {
6587 volatile uint16_t *flags;
6588 uint64_t val = *valp;
6589 size_t valoffs = *valoffsp;

6591 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6592 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);

6594 /*
6595 * If this is a string, we’re going to only load until we find the zero
6596 * byte -- after which we’ll store zero bytes.
6597 */
6598 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
6599 char c = ’\0’ + 1;
6600 size_t s;

6602 for (s = 0; s < size; s++) {
6603 if (c != ’\0’ && dtkind == DIF_TF_BYREF) {
6604 c = dtrace_load8(val++);
6605 } else if (c != ’\0’ && dtkind == DIF_TF_BYUREF) {
6606 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6607 c = dtrace_fuword8((void *)(uintptr_t)val++);
6608 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6609 if (*flags & CPU_DTRACE_FAULT)
6610 break;

new/usr/src/uts/common/dtrace/dtrace.c 18

6611 }

6613 DTRACE_STORE(uint8_t, tomax, valoffs++, c);

6615 if (c == ’\0’ && intuple)
6616 break;
6617 }
6618 } else {
6619 uint8_t c;
6620 while (valoffs < end) {
6621 if (dtkind == DIF_TF_BYREF) {
6622 c = dtrace_load8(val++);
6623 } else if (dtkind == DIF_TF_BYUREF) {
6624 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6625 c = dtrace_fuword8((void *)(uintptr_t)val++);
6626 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6627 if (*flags & CPU_DTRACE_FAULT)
6628 break;
6629 }

6631 DTRACE_STORE(uint8_t, tomax,
6632 valoffs++, c);
6633 }
6634 }

6636 *valp = val;
6637 *valoffsp = valoffs;
6638 }

6640 #endif /* ! codereview */
6641 /*
6642 * If you’re looking for the epicenter of DTrace, you just found it. This
6643 * is the function called by the provider to fire a probe -- from which all
6644 * subsequent probe-context DTrace activity emanates.
6645 */
6646 void
6647 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6648 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6649 {
6650 processorid_t cpuid;
6651 dtrace_icookie_t cookie;
6652 dtrace_probe_t *probe;
6653 dtrace_mstate_t mstate;
6654 dtrace_ecb_t *ecb;
6655 dtrace_action_t *act;
6656 intptr_t offs;
6657 size_t size;
6658 int vtime, onintr;
6659 volatile uint16_t *flags;
6660 hrtime_t now, end;

6662 /*
6663 * Kick out immediately if this CPU is still being born (in which case
6664 * curthread will be set to -1) or the current thread can’t allow
6665 * probes in its current context.
6666 */
6667 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6668 return;

6670 cookie = dtrace_interrupt_disable();
6671 probe = dtrace_probes[id - 1];
6672 cpuid = CPU->cpu_id;
6673 onintr = CPU_ON_INTR(CPU);

6675 CPU->cpu_dtrace_probes++;

new/usr/src/uts/common/dtrace/dtrace.c 19

6677 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6678 probe->dtpr_predcache == curthread->t_predcache) {
6679 /*
6680 * We have hit in the predicate cache; we know that
6681 * this predicate would evaluate to be false.
6682 */
6683 dtrace_interrupt_enable(cookie);
6684 return;
6685 }

6687 if (panic_quiesce) {
6688 /*
6689 * We don’t trace anything if we’re panicking.
6690 */
6691 dtrace_interrupt_enable(cookie);
6692 return;
6693 }

6695 now = dtrace_gethrtime();
6696 vtime = dtrace_vtime_references != 0;

6698 if (vtime && curthread->t_dtrace_start)
6699 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;

6701 mstate.dtms_difo = NULL;
6702 mstate.dtms_probe = probe;
6703 mstate.dtms_strtok = NULL;
6704 mstate.dtms_arg[0] = arg0;
6705 mstate.dtms_arg[1] = arg1;
6706 mstate.dtms_arg[2] = arg2;
6707 mstate.dtms_arg[3] = arg3;
6708 mstate.dtms_arg[4] = arg4;

6710 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;

6712 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6713 dtrace_predicate_t *pred = ecb->dte_predicate;
6714 dtrace_state_t *state = ecb->dte_state;
6715 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6716 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6717 dtrace_vstate_t *vstate = &state->dts_vstate;
6718 dtrace_provider_t *prov = probe->dtpr_provider;
6719 uint64_t tracememsize = 0;
6720 int committed = 0;
6721 caddr_t tomax;

6723 /*
6724 * A little subtlety with the following (seemingly innocuous)
6725 * declaration of the automatic ’val’: by looking at the
6726 * code, you might think that it could be declared in the
6727 * action processing loop, below. (That is, it’s only used in
6728 * the action processing loop.) However, it must be declared
6729 * out of that scope because in the case of DIF expression
6730 * arguments to aggregating actions, one iteration of the
6731 * action loop will use the last iteration’s value.
6732 */
6733 #ifdef lint
6734 uint64_t val = 0;
6735 #else
6736 uint64_t val;
6737 #endif

6739 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6740 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
6741 mstate.dtms_getf = NULL;

new/usr/src/uts/common/dtrace/dtrace.c 20

6743 *flags &= ~CPU_DTRACE_ERROR;

6745 if (prov == dtrace_provider) {
6746 /*
6747 * If dtrace itself is the provider of this probe,
6748 * we’re only going to continue processing the ECB if
6749 * arg0 (the dtrace_state_t) is equal to the ECB’s
6750 * creating state. (This prevents disjoint consumers
6751 * from seeing one another’s metaprobes.)
6752 */
6753 if (arg0 != (uint64_t)(uintptr_t)state)
6754 continue;
6755 }

6757 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6758 /*
6759 * We’re not currently active. If our provider isn’t
6760 * the dtrace pseudo provider, we’re not interested.
6761 */
6762 if (prov != dtrace_provider)
6763 continue;

6765 /*
6766 * Now we must further check if we are in the BEGIN
6767 * probe. If we are, we will only continue processing
6768 * if we’re still in WARMUP -- if one BEGIN enabling
6769 * has invoked the exit() action, we don’t want to
6770 * evaluate subsequent BEGIN enablings.
6771 */
6772 if (probe->dtpr_id == dtrace_probeid_begin &&
6773 state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6774 ASSERT(state->dts_activity ==
6775 DTRACE_ACTIVITY_DRAINING);
6776 continue;
6777 }
6778 }

6780 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
6781 continue;

6783 if (now - state->dts_alive > dtrace_deadman_timeout) {
6784 /*
6785 * We seem to be dead. Unless we (a) have kernel
6786 * destructive permissions (b) have explicitly enabled
6787 * destructive actions and (c) destructive actions have
6788 * not been disabled, we’re going to transition into
6789 * the KILLED state, from which no further processing
6790 * on this state will be performed.
6791 */
6792 if (!dtrace_priv_kernel_destructive(state) ||
6793 !state->dts_cred.dcr_destructive ||
6794 dtrace_destructive_disallow) {
6795 void *activity = &state->dts_activity;
6796 dtrace_activity_t current;

6798 do {
6799 current = state->dts_activity;
6800 } while (dtrace_cas32(activity, current,
6801 DTRACE_ACTIVITY_KILLED) != current);

6803 continue;
6804 }
6805 }

6807 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6808 ecb->dte_alignment, state, &mstate)) < 0)

new/usr/src/uts/common/dtrace/dtrace.c 21

6809 continue;

6811 tomax = buf->dtb_tomax;
6812 ASSERT(tomax != NULL);

6814 if (ecb->dte_size != 0) {
6815 dtrace_rechdr_t dtrh;
6816 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6817 mstate.dtms_timestamp = dtrace_gethrtime();
6818 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6819 }
6820 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6821 dtrh.dtrh_epid = ecb->dte_epid;
6822 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6823 mstate.dtms_timestamp);
6824 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6825 }

6827 mstate.dtms_epid = ecb->dte_epid;
6828 mstate.dtms_present |= DTRACE_MSTATE_EPID;

6830 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6831 mstate.dtms_access |= DTRACE_ACCESS_KERNEL;

6833 if (pred != NULL) {
6834 dtrace_difo_t *dp = pred->dtp_difo;
6835 int rval;

6837 rval = dtrace_dif_emulate(dp, &mstate, vstate, state);

6839 if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6840 dtrace_cacheid_t cid = probe->dtpr_predcache;

6842 if (cid != DTRACE_CACHEIDNONE && !onintr) {
6843 /*
6844 * Update the predicate cache...
6845 */
6846 ASSERT(cid == pred->dtp_cacheid);
6847 curthread->t_predcache = cid;
6848 }

6850 continue;
6851 }
6852 }

6854 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6855 act != NULL; act = act->dta_next) {
6856 size_t valoffs;
6857 dtrace_difo_t *dp;
6858 dtrace_recdesc_t *rec = &act->dta_rec;

6860 size = rec->dtrd_size;
6861 valoffs = offs + rec->dtrd_offset;

6863 if (DTRACEACT_ISAGG(act->dta_kind)) {
6864 uint64_t v = 0xbad;
6865 dtrace_aggregation_t *agg;

6867 agg = (dtrace_aggregation_t *)act;

6869 if ((dp = act->dta_difo) != NULL)
6870 v = dtrace_dif_emulate(dp,
6871 &mstate, vstate, state);

6873 if (*flags & CPU_DTRACE_ERROR)
6874 continue;

new/usr/src/uts/common/dtrace/dtrace.c 22

6876 /*
6877 * Note that we always pass the expression
6878 * value from the previous iteration of the
6879 * action loop. This value will only be used
6880 * if there is an expression argument to the
6881 * aggregating action, denoted by the
6882 * dtag_hasarg field.
6883 */
6884 dtrace_aggregate(agg, buf,
6885 offs, aggbuf, v, val);
6886 continue;
6887 }

6889 switch (act->dta_kind) {
6890 case DTRACEACT_STOP:
6891 if (dtrace_priv_proc_destructive(state,
6892 &mstate))
6893 dtrace_action_stop();
6894 continue;

6896 case DTRACEACT_BREAKPOINT:
6897 if (dtrace_priv_kernel_destructive(state))
6898 dtrace_action_breakpoint(ecb);
6899 continue;

6901 case DTRACEACT_PANIC:
6902 if (dtrace_priv_kernel_destructive(state))
6903 dtrace_action_panic(ecb);
6904 continue;

6906 case DTRACEACT_STACK:
6907 if (!dtrace_priv_kernel(state))
6908 continue;

6910 dtrace_getpcstack((pc_t *)(tomax + valoffs),
6911 size / sizeof (pc_t), probe->dtpr_aframes,
6912 DTRACE_ANCHORED(probe) ? NULL :
6913 (uint32_t *)arg0);

6915 continue;

6917 case DTRACEACT_JSTACK:
6918 case DTRACEACT_USTACK:
6919 if (!dtrace_priv_proc(state, &mstate))
6920 continue;

6922 /*
6923 * See comment in DIF_VAR_PID.
6924 */
6925 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6926 CPU_ON_INTR(CPU)) {
6927 int depth = DTRACE_USTACK_NFRAMES(
6928 rec->dtrd_arg) + 1;

6930 dtrace_bzero((void *)(tomax + valoffs),
6931 DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6932 + depth * sizeof (uint64_t));

6934 continue;
6935 }

6937 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6938 curproc->p_dtrace_helpers != NULL) {
6939 /*
6940 * This is the slow path -- we have

new/usr/src/uts/common/dtrace/dtrace.c 23

6941 * allocated string space, and we’re
6942 * getting the stack of a process that
6943 * has helpers. Call into a separate
6944 * routine to perform this processing.
6945 */
6946 dtrace_action_ustack(&mstate, state,
6947 (uint64_t *)(tomax + valoffs),
6948 rec->dtrd_arg);
6949 continue;
6950 }

6952 /*
6953 * Clear the string space, since there’s no
6954 * helper to do it for us.
6955 */
6956 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
6957 int depth = DTRACE_USTACK_NFRAMES(
6958 rec->dtrd_arg);
6959 size_t strsize = DTRACE_USTACK_STRSIZE(
6960 rec->dtrd_arg);
6961 uint64_t *buf = (uint64_t *)(tomax +
6962 valoffs);
6963 void *strspace = &buf[depth + 1];

6965 dtrace_bzero(strspace,
6966 MIN(depth, strsize));
6967 }

6969 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6970 dtrace_getupcstack((uint64_t *)
6971 (tomax + valoffs),
6972 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6973 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6974 continue;

6976 default:
6977 break;
6978 }

6980 dp = act->dta_difo;
6981 ASSERT(dp != NULL);

6983 val = dtrace_dif_emulate(dp, &mstate, vstate, state);

6985 if (*flags & CPU_DTRACE_ERROR)
6986 continue;

6988 switch (act->dta_kind) {
6989 case DTRACEACT_SPECULATE: {
6990 dtrace_rechdr_t *dtrh;

6992 ASSERT(buf == &state->dts_buffer[cpuid]);
6993 buf = dtrace_speculation_buffer(state,
6994 cpuid, val);

6996 if (buf == NULL) {
6997 *flags |= CPU_DTRACE_DROP;
6998 continue;
6999 }

7001 offs = dtrace_buffer_reserve(buf,
7002 ecb->dte_needed, ecb->dte_alignment,
7003 state, NULL);

7005 if (offs < 0) {
7006 *flags |= CPU_DTRACE_DROP;

new/usr/src/uts/common/dtrace/dtrace.c 24

7007 continue;
7008 }

7010 tomax = buf->dtb_tomax;
7011 ASSERT(tomax != NULL);

7013 if (ecb->dte_size == 0)
7014 continue;

7016 ASSERT3U(ecb->dte_size, >=,
7017 sizeof (dtrace_rechdr_t));
7018 dtrh = ((void *)(tomax + offs));
7019 dtrh->dtrh_epid = ecb->dte_epid;
7020 /*
7021 * When the speculation is committed, all of
7022 * the records in the speculative buffer will
7023 * have their timestamps set to the commit
7024 * time. Until then, it is set to a sentinel
7025 * value, for debugability.
7026 */
7027 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7028 continue;
7029 }

7031 case DTRACEACT_CHILL:
7032 if (dtrace_priv_kernel_destructive(state))
7033 dtrace_action_chill(&mstate, val);
7034 continue;

7036 case DTRACEACT_RAISE:
7037 if (dtrace_priv_proc_destructive(state,
7038 &mstate))
7039 dtrace_action_raise(val);
7040 continue;

7042 case DTRACEACT_COMMIT:
7043 ASSERT(!committed);

7045 /*
7046 * We need to commit our buffer state.
7047 */
7048 if (ecb->dte_size)
7049 buf->dtb_offset = offs + ecb->dte_size;
7050 buf = &state->dts_buffer[cpuid];
7051 dtrace_speculation_commit(state, cpuid, val);
7052 committed = 1;
7053 continue;

7055 case DTRACEACT_DISCARD:
7056 dtrace_speculation_discard(state, cpuid, val);
7057 continue;

7059 case DTRACEACT_DIFEXPR:
7060 case DTRACEACT_LIBACT:
7061 case DTRACEACT_PRINTF:
7062 case DTRACEACT_PRINTA:
7063 case DTRACEACT_SYSTEM:
7064 case DTRACEACT_FREOPEN:
7065 case DTRACEACT_TRACEMEM:
7066 break;

7068 case DTRACEACT_TRACEMEM_DYNSIZE:
7069 tracememsize = val;
7070 break;

7072 case DTRACEACT_SYM:

new/usr/src/uts/common/dtrace/dtrace.c 25

7073 case DTRACEACT_MOD:
7074 if (!dtrace_priv_kernel(state))
7075 continue;
7076 break;

7078 case DTRACEACT_USYM:
7079 case DTRACEACT_UMOD:
7080 case DTRACEACT_UADDR: {
7081 struct pid *pid = curthread->t_procp->p_pidp;

7083 if (!dtrace_priv_proc(state, &mstate))
7084 continue;

7086 DTRACE_STORE(uint64_t, tomax,
7087 valoffs, (uint64_t)pid->pid_id);
7088 DTRACE_STORE(uint64_t, tomax,
7089 valoffs + sizeof (uint64_t), val);

7091 continue;
7092 }

7094 case DTRACEACT_EXIT: {
7095 /*
7096 * For the exit action, we are going to attempt
7097 * to atomically set our activity to be
7098 * draining. If this fails (either because
7099 * another CPU has beat us to the exit action,
7100 * or because our current activity is something
7101 * other than ACTIVE or WARMUP), we will
7102 * continue. This assures that the exit action
7103 * can be successfully recorded at most once
7104 * when we’re in the ACTIVE state. If we’re
7105 * encountering the exit() action while in
7106 * COOLDOWN, however, we want to honor the new
7107 * status code. (We know that we’re the only
7108 * thread in COOLDOWN, so there is no race.)
7109 */
7110 void *activity = &state->dts_activity;
7111 dtrace_activity_t current = state->dts_activity;

7113 if (current == DTRACE_ACTIVITY_COOLDOWN)
7114 break;

7116 if (current != DTRACE_ACTIVITY_WARMUP)
7117 current = DTRACE_ACTIVITY_ACTIVE;

7119 if (dtrace_cas32(activity, current,
7120 DTRACE_ACTIVITY_DRAINING) != current) {
7121 *flags |= CPU_DTRACE_DROP;
7122 continue;
7123 }

7125 break;
7126 }

7128 default:
7129 ASSERT(0);
7130 }

7132 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7133 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
5722 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
7134 uintptr_t end = valoffs + size;

7136 if (tracememsize != 0 &&
7137 valoffs + tracememsize < end) {

new/usr/src/uts/common/dtrace/dtrace.c 26

7138 end = valoffs + tracememsize;
7139 tracememsize = 0;
7140 }

7142 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7143 !dtrace_vcanload((void *)(uintptr_t)val,
5731 if (!dtrace_vcanload((void *)(uintptr_t)val,
7144 &dp->dtdo_rtype, &mstate, vstate))
7145 continue;

7147 dtrace_store_by_ref(dp, tomax, size, &valoffs,
7148 &val, end, act->dta_intuple,
7149 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7150 DIF_TF_BYREF: DIF_TF_BYUREF);
5735 /*
5736 * If this is a string, we’re going to only
5737 * load until we find the zero byte -- after
5738 * which we’ll store zero bytes.
5739 */
5740 if (dp->dtdo_rtype.dtdt_kind ==
5741 DIF_TYPE_STRING) {
5742 char c = ’\0’ + 1;
5743 int intuple = act->dta_intuple;
5744 size_t s;

5746 for (s = 0; s < size; s++) {
5747 if (c != ’\0’)
5748 c = dtrace_load8(val++);

5750 DTRACE_STORE(uint8_t, tomax,
5751 valoffs++, c);

5753 if (c == ’\0’ && intuple)
5754 break;
5755 }

5757 continue;
5758 }

5760 while (valoffs < end) {
5761 DTRACE_STORE(uint8_t, tomax, valoffs++,
5762 dtrace_load8(val++));
5763 }

7151 continue;
7152 }

7154 switch (size) {
7155 case 0:
7156 break;

7158 case sizeof (uint8_t):
7159 DTRACE_STORE(uint8_t, tomax, valoffs, val);
7160 break;
7161 case sizeof (uint16_t):
7162 DTRACE_STORE(uint16_t, tomax, valoffs, val);
7163 break;
7164 case sizeof (uint32_t):
7165 DTRACE_STORE(uint32_t, tomax, valoffs, val);
7166 break;
7167 case sizeof (uint64_t):
7168 DTRACE_STORE(uint64_t, tomax, valoffs, val);
7169 break;
7170 default:
7171 /*
7172 * Any other size should have been returned by

new/usr/src/uts/common/dtrace/dtrace.c 27

7173 * reference, not by value.
7174 */
7175 ASSERT(0);
7176 break;
7177 }
7178 }

7180 if (*flags & CPU_DTRACE_DROP)
7181 continue;

7183 if (*flags & CPU_DTRACE_FAULT) {
7184 int ndx;
7185 dtrace_action_t *err;

7187 buf->dtb_errors++;

7189 if (probe->dtpr_id == dtrace_probeid_error) {
7190 /*
7191 * There’s nothing we can do -- we had an
7192 * error on the error probe. We bump an
7193 * error counter to at least indicate that
7194 * this condition happened.
7195 */
7196 dtrace_error(&state->dts_dblerrors);
7197 continue;
7198 }

7200 if (vtime) {
7201 /*
7202 * Before recursing on dtrace_probe(), we
7203 * need to explicitly clear out our start
7204 * time to prevent it from being accumulated
7205 * into t_dtrace_vtime.
7206 */
7207 curthread->t_dtrace_start = 0;
7208 }

7210 /*
7211 * Iterate over the actions to figure out which action
7212 * we were processing when we experienced the error.
7213 * Note that act points _past_ the faulting action; if
7214 * act is ecb->dte_action, the fault was in the
7215 * predicate, if it’s ecb->dte_action->dta_next it’s
7216 * in action #1, and so on.
7217 */
7218 for (err = ecb->dte_action, ndx = 0;
7219 err != act; err = err->dta_next, ndx++)
7220 continue;

7222 dtrace_probe_error(state, ecb->dte_epid, ndx,
7223 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7224 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7225 cpu_core[cpuid].cpuc_dtrace_illval);

7227 continue;
7228 }

7230 if (!committed)
7231 buf->dtb_offset = offs + ecb->dte_size;
7232 }

7234 end = dtrace_gethrtime();
7235 if (vtime)
7236 curthread->t_dtrace_start = end;

7238 CPU->cpu_dtrace_nsec += end - now;

new/usr/src/uts/common/dtrace/dtrace.c 28

7240 dtrace_interrupt_enable(cookie);
7241 }
______unchanged_portion_omitted_

8975 /*
8976 * Validate a DTrace DIF object by checking the IR instructions. The following
8977 * rules are currently enforced by dtrace_difo_validate():
8978 *
8979 * 1. Each instruction must have a valid opcode
8980 * 2. Each register, string, variable, or subroutine reference must be valid
8981 * 3. No instruction can modify register %r0 (must be zero)
8982 * 4. All instruction reserved bits must be set to zero
8983 * 5. The last instruction must be a "ret" instruction
8984 * 6. All branch targets must reference a valid instruction _after_ the branch
8985 */
8986 static int
8987 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8988 cred_t *cr)
8989 {
8990 int err = 0, i;
8991 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8992 int kcheckload;
8993 uint_t pc;

8995 kcheckload = cr == NULL ||
8996 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;

8998 dp->dtdo_destructive = 0;

9000 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9001 dif_instr_t instr = dp->dtdo_buf[pc];

9003 uint_t r1 = DIF_INSTR_R1(instr);
9004 uint_t r2 = DIF_INSTR_R2(instr);
9005 uint_t rd = DIF_INSTR_RD(instr);
9006 uint_t rs = DIF_INSTR_RS(instr);
9007 uint_t label = DIF_INSTR_LABEL(instr);
9008 uint_t v = DIF_INSTR_VAR(instr);
9009 uint_t subr = DIF_INSTR_SUBR(instr);
9010 uint_t type = DIF_INSTR_TYPE(instr);
9011 uint_t op = DIF_INSTR_OP(instr);

9013 switch (op) {
9014 case DIF_OP_OR:
9015 case DIF_OP_XOR:
9016 case DIF_OP_AND:
9017 case DIF_OP_SLL:
9018 case DIF_OP_SRL:
9019 case DIF_OP_SRA:
9020 case DIF_OP_SUB:
9021 case DIF_OP_ADD:
9022 case DIF_OP_MUL:
9023 case DIF_OP_SDIV:
9024 case DIF_OP_UDIV:
9025 case DIF_OP_SREM:
9026 case DIF_OP_UREM:
9027 case DIF_OP_COPYS:
9028 if (r1 >= nregs)
9029 err += efunc(pc, "invalid register %u\n", r1);
9030 if (r2 >= nregs)
9031 err += efunc(pc, "invalid register %u\n", r2);
9032 if (rd >= nregs)
9033 err += efunc(pc, "invalid register %u\n", rd);
9034 if (rd == 0)
9035 err += efunc(pc, "cannot write to %r0\n");

new/usr/src/uts/common/dtrace/dtrace.c 29

9036 break;
9037 case DIF_OP_NOT:
9038 case DIF_OP_MOV:
9039 case DIF_OP_ALLOCS:
9040 if (r1 >= nregs)
9041 err += efunc(pc, "invalid register %u\n", r1);
9042 if (r2 != 0)
9043 err += efunc(pc, "non-zero reserved bits\n");
9044 if (rd >= nregs)
9045 err += efunc(pc, "invalid register %u\n", rd);
9046 if (rd == 0)
9047 err += efunc(pc, "cannot write to %r0\n");
9048 break;
9049 case DIF_OP_LDSB:
9050 case DIF_OP_LDSH:
9051 case DIF_OP_LDSW:
9052 case DIF_OP_LDUB:
9053 case DIF_OP_LDUH:
9054 case DIF_OP_LDUW:
9055 case DIF_OP_LDX:
9056 if (r1 >= nregs)
9057 err += efunc(pc, "invalid register %u\n", r1);
9058 if (r2 != 0)
9059 err += efunc(pc, "non-zero reserved bits\n");
9060 if (rd >= nregs)
9061 err += efunc(pc, "invalid register %u\n", rd);
9062 if (rd == 0)
9063 err += efunc(pc, "cannot write to %r0\n");
9064 if (kcheckload)
9065 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9066 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9067 break;
9068 case DIF_OP_RLDSB:
9069 case DIF_OP_RLDSH:
9070 case DIF_OP_RLDSW:
9071 case DIF_OP_RLDUB:
9072 case DIF_OP_RLDUH:
9073 case DIF_OP_RLDUW:
9074 case DIF_OP_RLDX:
9075 if (r1 >= nregs)
9076 err += efunc(pc, "invalid register %u\n", r1);
9077 if (r2 != 0)
9078 err += efunc(pc, "non-zero reserved bits\n");
9079 if (rd >= nregs)
9080 err += efunc(pc, "invalid register %u\n", rd);
9081 if (rd == 0)
9082 err += efunc(pc, "cannot write to %r0\n");
9083 break;
9084 case DIF_OP_ULDSB:
9085 case DIF_OP_ULDSH:
9086 case DIF_OP_ULDSW:
9087 case DIF_OP_ULDUB:
9088 case DIF_OP_ULDUH:
9089 case DIF_OP_ULDUW:
9090 case DIF_OP_ULDX:
9091 if (r1 >= nregs)
9092 err += efunc(pc, "invalid register %u\n", r1);
9093 if (r2 != 0)
9094 err += efunc(pc, "non-zero reserved bits\n");
9095 if (rd >= nregs)
9096 err += efunc(pc, "invalid register %u\n", rd);
9097 if (rd == 0)
9098 err += efunc(pc, "cannot write to %r0\n");
9099 break;
9100 case DIF_OP_STB:
9101 case DIF_OP_STH:

new/usr/src/uts/common/dtrace/dtrace.c 30

9102 case DIF_OP_STW:
9103 case DIF_OP_STX:
9104 if (r1 >= nregs)
9105 err += efunc(pc, "invalid register %u\n", r1);
9106 if (r2 != 0)
9107 err += efunc(pc, "non-zero reserved bits\n");
9108 if (rd >= nregs)
9109 err += efunc(pc, "invalid register %u\n", rd);
9110 if (rd == 0)
9111 err += efunc(pc, "cannot write to 0 address\n");
9112 break;
9113 case DIF_OP_CMP:
9114 case DIF_OP_SCMP:
9115 if (r1 >= nregs)
9116 err += efunc(pc, "invalid register %u\n", r1);
9117 if (r2 >= nregs)
9118 err += efunc(pc, "invalid register %u\n", r2);
9119 if (rd != 0)
9120 err += efunc(pc, "non-zero reserved bits\n");
9121 break;
9122 case DIF_OP_TST:
9123 if (r1 >= nregs)
9124 err += efunc(pc, "invalid register %u\n", r1);
9125 if (r2 != 0 || rd != 0)
9126 err += efunc(pc, "non-zero reserved bits\n");
9127 break;
9128 case DIF_OP_BA:
9129 case DIF_OP_BE:
9130 case DIF_OP_BNE:
9131 case DIF_OP_BG:
9132 case DIF_OP_BGU:
9133 case DIF_OP_BGE:
9134 case DIF_OP_BGEU:
9135 case DIF_OP_BL:
9136 case DIF_OP_BLU:
9137 case DIF_OP_BLE:
9138 case DIF_OP_BLEU:
9139 if (label >= dp->dtdo_len) {
9140 err += efunc(pc, "invalid branch target %u\n",
9141 label);
9142 }
9143 if (label <= pc) {
9144 err += efunc(pc, "backward branch to %u\n",
9145 label);
9146 }
9147 break;
9148 case DIF_OP_RET:
9149 if (r1 != 0 || r2 != 0)
9150 err += efunc(pc, "non-zero reserved bits\n");
9151 if (rd >= nregs)
9152 err += efunc(pc, "invalid register %u\n", rd);
9153 break;
9154 case DIF_OP_NOP:
9155 case DIF_OP_POPTS:
9156 case DIF_OP_FLUSHTS:
9157 if (r1 != 0 || r2 != 0 || rd != 0)
9158 err += efunc(pc, "non-zero reserved bits\n");
9159 break;
9160 case DIF_OP_SETX:
9161 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9162 err += efunc(pc, "invalid integer ref %u\n",
9163 DIF_INSTR_INTEGER(instr));
9164 }
9165 if (rd >= nregs)
9166 err += efunc(pc, "invalid register %u\n", rd);
9167 if (rd == 0)

new/usr/src/uts/common/dtrace/dtrace.c 31

9168 err += efunc(pc, "cannot write to %r0\n");
9169 break;
9170 case DIF_OP_SETS:
9171 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9172 err += efunc(pc, "invalid string ref %u\n",
9173 DIF_INSTR_STRING(instr));
9174 }
9175 if (rd >= nregs)
9176 err += efunc(pc, "invalid register %u\n", rd);
9177 if (rd == 0)
9178 err += efunc(pc, "cannot write to %r0\n");
9179 break;
9180 case DIF_OP_LDGA:
9181 case DIF_OP_LDTA:
9182 if (r1 > DIF_VAR_ARRAY_MAX)
9183 err += efunc(pc, "invalid array %u\n", r1);
9184 if (r2 >= nregs)
9185 err += efunc(pc, "invalid register %u\n", r2);
9186 if (rd >= nregs)
9187 err += efunc(pc, "invalid register %u\n", rd);
9188 if (rd == 0)
9189 err += efunc(pc, "cannot write to %r0\n");
9190 break;
9191 case DIF_OP_LDGS:
9192 case DIF_OP_LDTS:
9193 case DIF_OP_LDLS:
9194 case DIF_OP_LDGAA:
9195 case DIF_OP_LDTAA:
9196 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9197 err += efunc(pc, "invalid variable %u\n", v);
9198 if (rd >= nregs)
9199 err += efunc(pc, "invalid register %u\n", rd);
9200 if (rd == 0)
9201 err += efunc(pc, "cannot write to %r0\n");
9202 break;
9203 case DIF_OP_STGS:
9204 case DIF_OP_STTS:
9205 case DIF_OP_STLS:
9206 case DIF_OP_STGAA:
9207 case DIF_OP_STTAA:
9208 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9209 err += efunc(pc, "invalid variable %u\n", v);
9210 if (rs >= nregs)
9211 err += efunc(pc, "invalid register %u\n", rd);
9212 break;
9213 case DIF_OP_CALL:
9214 if (subr > DIF_SUBR_MAX)
9215 err += efunc(pc, "invalid subr %u\n", subr);
9216 if (rd >= nregs)
9217 err += efunc(pc, "invalid register %u\n", rd);
9218 if (rd == 0)
9219 err += efunc(pc, "cannot write to %r0\n");

9221 if (subr == DIF_SUBR_COPYOUT ||
9222 subr == DIF_SUBR_COPYOUTSTR) {
9223 dp->dtdo_destructive = 1;
9224 }

9226 if (subr == DIF_SUBR_GETF) {
9227 /*
9228 * If we have a getf() we need to record that
9229 * in our state. Note that our state can be
9230 * NULL if this is a helper -- but in that
9231 * case, the call to getf() is itself illegal,
9232 * and will be caught (slightly later) when
9233 * the helper is validated.

new/usr/src/uts/common/dtrace/dtrace.c 32

9234 */
9235 if (vstate->dtvs_state != NULL)
9236 vstate->dtvs_state->dts_getf++;
9237 }

9239 break;
9240 case DIF_OP_PUSHTR:
9241 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9242 err += efunc(pc, "invalid ref type %u\n", type);
9243 if (r2 >= nregs)
9244 err += efunc(pc, "invalid register %u\n", r2);
9245 if (rs >= nregs)
9246 err += efunc(pc, "invalid register %u\n", rs);
9247 break;
9248 case DIF_OP_PUSHTV:
9249 if (type != DIF_TYPE_CTF)
9250 err += efunc(pc, "invalid val type %u\n", type);
9251 if (r2 >= nregs)
9252 err += efunc(pc, "invalid register %u\n", r2);
9253 if (rs >= nregs)
9254 err += efunc(pc, "invalid register %u\n", rs);
9255 break;
9256 default:
9257 err += efunc(pc, "invalid opcode %u\n",
9258 DIF_INSTR_OP(instr));
9259 }
9260 }

9262 if (dp->dtdo_len != 0 &&
9263 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9264 err += efunc(dp->dtdo_len - 1,
9265 "expected ’ret’ as last DIF instruction\n");
9266 }

9268 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
7882 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
9269 /*
9270 * If we’re not returning by reference, the size must be either
9271 * 0 or the size of one of the base types.
9272 */
9273 switch (dp->dtdo_rtype.dtdt_size) {
9274 case 0:
9275 case sizeof (uint8_t):
9276 case sizeof (uint16_t):
9277 case sizeof (uint32_t):
9278 case sizeof (uint64_t):
9279 break;

9281 default:
9282 err += efunc(dp->dtdo_len - 1, "bad return size\n");
9283 }
9284 }

9286 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9287 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9288 dtrace_diftype_t *vt, *et;
9289 uint_t id, ndx;

9291 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9292 v->dtdv_scope != DIFV_SCOPE_THREAD &&
9293 v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9294 err += efunc(i, "unrecognized variable scope %d\n",
9295 v->dtdv_scope);
9296 break;
9297 }

new/usr/src/uts/common/dtrace/dtrace.c 33

9299 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9300 v->dtdv_kind != DIFV_KIND_SCALAR) {
9301 err += efunc(i, "unrecognized variable type %d\n",
9302 v->dtdv_kind);
9303 break;
9304 }

9306 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9307 err += efunc(i, "%d exceeds variable id limit\n", id);
9308 break;
9309 }

9311 if (id < DIF_VAR_OTHER_UBASE)
9312 continue;

9314 /*
9315 * For user-defined variables, we need to check that this
9316 * definition is identical to any previous definition that we
9317 * encountered.
9318 */
9319 ndx = id - DIF_VAR_OTHER_UBASE;

9321 switch (v->dtdv_scope) {
9322 case DIFV_SCOPE_GLOBAL:
9323 if (ndx < vstate->dtvs_nglobals) {
9324 dtrace_statvar_t *svar;

9326 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9327 existing = &svar->dtsv_var;
9328 }

9330 break;

9332 case DIFV_SCOPE_THREAD:
9333 if (ndx < vstate->dtvs_ntlocals)
9334 existing = &vstate->dtvs_tlocals[ndx];
9335 break;

9337 case DIFV_SCOPE_LOCAL:
9338 if (ndx < vstate->dtvs_nlocals) {
9339 dtrace_statvar_t *svar;

9341 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9342 existing = &svar->dtsv_var;
9343 }

9345 break;
9346 }

9348 vt = &v->dtdv_type;

9350 if (vt->dtdt_flags & DIF_TF_BYREF) {
9351 if (vt->dtdt_size == 0) {
9352 err += efunc(i, "zero-sized variable\n");
9353 break;
9354 }

9356 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
9357 vt->dtdt_size > dtrace_global_maxsize) {
9358 err += efunc(i, "oversized by-ref global\n");
9359 break;
9360 }
9361 }

9363 if (existing == NULL || existing->dtdv_id == 0)
9364 continue;

new/usr/src/uts/common/dtrace/dtrace.c 34

9366 ASSERT(existing->dtdv_id == v->dtdv_id);
9367 ASSERT(existing->dtdv_scope == v->dtdv_scope);

9369 if (existing->dtdv_kind != v->dtdv_kind)
9370 err += efunc(i, "%d changed variable kind\n", id);

9372 et = &existing->dtdv_type;

9374 if (vt->dtdt_flags != et->dtdt_flags) {
9375 err += efunc(i, "%d changed variable type flags\n", id);
9376 break;
9377 }

9379 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9380 err += efunc(i, "%d changed variable type size\n", id);
9381 break;
9382 }
9383 }

9385 return (err);
9386 }
______unchanged_portion_omitted_

new/usr/src/uts/common/sys/ctf_api.h 1

**
 9576 Tue Jan 14 16:49:04 2014
new/usr/src/uts/common/sys/ctf_api.h
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
28 */

30 /*
31 * This header file defines the interfaces available from the CTF debugger
32 * library, libctf, and an equivalent kernel module. This API can be used by
33 * a debugger to operate on data in the Compact ANSI-C Type Format (CTF).
34 * This is NOT a public interface, although it may eventually become one in
35 * the fullness of time after we gain more experience with the interfaces.
36 *
37 * In the meantime, be aware that any program linked with this API in this
38 * release of Solaris is almost guaranteed to break in the next release.
39 *
40 * In short, do not user this header file or the CTF routines for any purpose.
41 */

43 #ifndef _CTF_API_H
44 #define _CTF_API_H

46 #include <sys/types.h>
47 #include <sys/param.h>
48 #include <sys/elf.h>
49 #include <sys/ctf.h>

51 #ifdef __cplusplus
52 extern "C" {
53 #endif

55 /*

new/usr/src/uts/common/sys/ctf_api.h 2

56 * Clients can open one or more CTF containers and obtain a pointer to an
57 * opaque ctf_file_t. Types are identified by an opaque ctf_id_t token.
58 * These opaque definitions allow libctf to evolve without breaking clients.
59 */
60 typedef struct ctf_file ctf_file_t;
61 typedef long ctf_id_t;

63 /*
64 * If the debugger needs to provide the CTF library with a set of raw buffers
65 * for use as the CTF data, symbol table, and string table, it can do so by
66 * filling in ctf_sect_t structures and passing them to ctf_bufopen():
67 */
68 typedef struct ctf_sect {
69 const char *cts_name; /* section name (if any) */
70 ulong_t cts_type; /* section type (ELF SHT_... value) */
71 ulong_t cts_flags; /* section flags (ELF SHF_... value) */
72 const void *cts_data; /* pointer to section data */
73 size_t cts_size; /* size of data in bytes */
74 size_t cts_entsize; /* size of each section entry (symtab only) */
75 off64_t cts_offset; /* file offset of this section (if any) */
76 } ctf_sect_t;

______unchanged_portion_omitted_

110 #define CTF_FUNC_VARARG 0x1 /* function arguments end with varargs */

112 /*
113 * Functions that return integer status or a ctf_id_t use the following value
114 * to indicate failure. ctf_errno() can be used to obtain an error code.
115 */
116 #define CTF_ERR (-1L)

118 /*
119 * The CTF data model is inferred to be the caller’s data model or the data
120 * model of the given object, unless ctf_setmodel() is explicitly called.
121 */
122 #define CTF_MODEL_ILP32 1 /* object data model is ILP32 */
123 #define CTF_MODEL_LP64 2 /* object data model is LP64 */
124 #ifdef _LP64
125 #define CTF_MODEL_NATIVE CTF_MODEL_LP64
126 #else
127 #define CTF_MODEL_NATIVE CTF_MODEL_ILP32
128 #endif

130 /*
131 * Dynamic CTF containers can be created using ctf_create(). The ctf_add_*
132 * routines can be used to add new definitions to the dynamic container.
133 * New types are labeled as root or non-root to determine whether they are
134 * visible at the top-level program scope when subsequently doing a lookup.
135 */
136 #define CTF_ADD_NONROOT 0 /* type only visible in nested scope */
137 #define CTF_ADD_ROOT 1 /* type visible at top-level scope */

139 /*
140 * These typedefs are used to define the signature for callback functions
141 * that can be used with the iteration and visit functions below:
142 */
143 typedef int ctf_visit_f(const char *, ctf_id_t, ulong_t, int, void *);
144 typedef int ctf_member_f(const char *, ctf_id_t, ulong_t, void *);
145 typedef int ctf_enum_f(const char *, int, void *);
146 typedef int ctf_type_f(ctf_id_t, void *);
147 typedef int ctf_label_f(const char *, const ctf_lblinfo_t *, void *);

149 extern ctf_file_t *ctf_bufopen(const ctf_sect_t *, const ctf_sect_t *,
150 const ctf_sect_t *, int *);
151 extern ctf_file_t *ctf_fdopen(int, int *);
152 extern ctf_file_t *ctf_open(const char *, int *);

new/usr/src/uts/common/sys/ctf_api.h 3

153 extern ctf_file_t *ctf_create(int *);
154 extern ctf_file_t *ctf_dup(ctf_file_t *);
155 #endif /* ! codereview */
156 extern void ctf_close(ctf_file_t *);

158 extern ctf_file_t *ctf_parent_file(ctf_file_t *);
159 extern const char *ctf_parent_name(ctf_file_t *);

161 extern int ctf_import(ctf_file_t *, ctf_file_t *);
162 extern int ctf_setmodel(ctf_file_t *, int);
163 extern int ctf_getmodel(ctf_file_t *);

165 extern void ctf_setspecific(ctf_file_t *, void *);
166 extern void *ctf_getspecific(ctf_file_t *);

168 extern int ctf_errno(ctf_file_t *);
169 extern const char *ctf_errmsg(int);
170 extern int ctf_version(int);

172 extern int ctf_func_info(ctf_file_t *, ulong_t, ctf_funcinfo_t *);
173 extern int ctf_func_args(ctf_file_t *, ulong_t, uint_t, ctf_id_t *);

175 extern ctf_id_t ctf_lookup_by_name(ctf_file_t *, const char *);
176 extern ctf_id_t ctf_lookup_by_symbol(ctf_file_t *, ulong_t);

178 extern ctf_id_t ctf_type_resolve(ctf_file_t *, ctf_id_t);
179 extern ssize_t ctf_type_lname(ctf_file_t *, ctf_id_t, char *, size_t);
180 extern char *ctf_type_name(ctf_file_t *, ctf_id_t, char *, size_t);
181 extern char *ctf_type_qname(ctf_file_t *, ctf_id_t, char *, size_t,
182 const char *);
183 #endif /* ! codereview */
184 extern ssize_t ctf_type_size(ctf_file_t *, ctf_id_t);
185 extern ssize_t ctf_type_align(ctf_file_t *, ctf_id_t);
186 extern int ctf_type_kind(ctf_file_t *, ctf_id_t);
187 extern ctf_id_t ctf_type_reference(ctf_file_t *, ctf_id_t);
188 extern ctf_id_t ctf_type_pointer(ctf_file_t *, ctf_id_t);
189 extern int ctf_type_encoding(ctf_file_t *, ctf_id_t, ctf_encoding_t *);
190 extern int ctf_type_visit(ctf_file_t *, ctf_id_t, ctf_visit_f *, void *);
191 extern int ctf_type_cmp(ctf_file_t *, ctf_id_t, ctf_file_t *, ctf_id_t);
192 extern int ctf_type_compat(ctf_file_t *, ctf_id_t, ctf_file_t *, ctf_id_t);

194 extern int ctf_member_info(ctf_file_t *, ctf_id_t, const char *,
195 ctf_membinfo_t *);
196 extern int ctf_array_info(ctf_file_t *, ctf_id_t, ctf_arinfo_t *);

198 extern const char *ctf_enum_name(ctf_file_t *, ctf_id_t, int);
199 extern int ctf_enum_value(ctf_file_t *, ctf_id_t, const char *, int *);

201 extern const char *ctf_label_topmost(ctf_file_t *);
202 extern int ctf_label_info(ctf_file_t *, const char *, ctf_lblinfo_t *);

204 extern int ctf_member_iter(ctf_file_t *, ctf_id_t, ctf_member_f *, void *);
205 extern int ctf_enum_iter(ctf_file_t *, ctf_id_t, ctf_enum_f *, void *);
206 extern int ctf_type_iter(ctf_file_t *, ctf_type_f *, void *);
207 extern int ctf_label_iter(ctf_file_t *, ctf_label_f *, void *);

209 extern ctf_id_t ctf_add_array(ctf_file_t *, uint_t, const ctf_arinfo_t *);
210 extern ctf_id_t ctf_add_const(ctf_file_t *, uint_t, ctf_id_t);
211 extern ctf_id_t ctf_add_enum(ctf_file_t *, uint_t, const char *);
212 extern ctf_id_t ctf_add_float(ctf_file_t *, uint_t,
213 const char *, const ctf_encoding_t *);
214 extern ctf_id_t ctf_add_forward(ctf_file_t *, uint_t, const char *, uint_t);
215 extern ctf_id_t ctf_add_function(ctf_file_t *, uint_t,
216 const ctf_funcinfo_t *, const ctf_id_t *);
217 extern ctf_id_t ctf_add_integer(ctf_file_t *, uint_t,
218 const char *, const ctf_encoding_t *);

new/usr/src/uts/common/sys/ctf_api.h 4

219 extern ctf_id_t ctf_add_pointer(ctf_file_t *, uint_t, ctf_id_t);
220 extern ctf_id_t ctf_add_type(ctf_file_t *, ctf_file_t *, ctf_id_t);
221 extern ctf_id_t ctf_add_typedef(ctf_file_t *, uint_t, const char *, ctf_id_t);
222 extern ctf_id_t ctf_add_restrict(ctf_file_t *, uint_t, ctf_id_t);
223 extern ctf_id_t ctf_add_struct(ctf_file_t *, uint_t, const char *);
224 extern ctf_id_t ctf_add_union(ctf_file_t *, uint_t, const char *);
225 extern ctf_id_t ctf_add_volatile(ctf_file_t *, uint_t, ctf_id_t);

227 extern int ctf_add_enumerator(ctf_file_t *, ctf_id_t, const char *, int);
228 extern int ctf_add_member(ctf_file_t *, ctf_id_t, const char *, ctf_id_t);

230 extern int ctf_set_array(ctf_file_t *, ctf_id_t, const ctf_arinfo_t *);

232 extern int ctf_delete_type(ctf_file_t *, ctf_id_t);

234 extern int ctf_update(ctf_file_t *);
235 extern int ctf_discard(ctf_file_t *);
236 extern int ctf_write(ctf_file_t *, int);

238 #ifdef _KERNEL

240 struct module;
241 extern ctf_file_t *ctf_modopen(struct module *, int *);

243 #endif

245 #ifdef __cplusplus
246 }
247 #endif

249 #endif /* _CTF_API_H */

new/usr/src/uts/common/sys/dtrace.h 1

**
 102050 Tue Jan 14 16:49:04 2014
new/usr/src/uts/common/sys/dtrace.h
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation missing checks
Reviewed by: Bryan Cantrill <bryan@joyent.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
29 * Copyright (c) 2013 by Delphix. All rights reserved.
28 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
29 * Copyright (c) 2012 by Delphix. All rights reserved.
30 */

32 #ifndef _SYS_DTRACE_H
33 #define _SYS_DTRACE_H

35 #ifdef __cplusplus
36 extern "C" {
37 #endif

39 /*
40 * DTrace Dynamic Tracing Software: Kernel Interfaces
41 *
42 * Note: The contents of this file are private to the implementation of the
43 * Solaris system and DTrace subsystem and are subject to change at any time
44 * without notice. Applications and drivers using these interfaces will fail
45 * to run on future releases. These interfaces should not be used for any
46 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
47 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
48 */

50 #ifndef _ASM

52 #include <sys/types.h>
53 #include <sys/modctl.h>
54 #include <sys/processor.h>

new/usr/src/uts/common/sys/dtrace.h 2

55 #include <sys/systm.h>
56 #include <sys/ctf_api.h>
57 #include <sys/cyclic.h>
58 #include <sys/int_limits.h>

60 /*
61 * DTrace Universal Constants and Typedefs
62 */
63 #define DTRACE_CPUALL -1 /* all CPUs */
64 #define DTRACE_IDNONE 0 /* invalid probe identifier */
65 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
66 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
67 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
68 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
69 #define DTRACE_PROVNONE 0 /* invalid provider identifier */
70 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
71 #define DTRACE_ARGNONE -1 /* invalid argument index */

73 #define DTRACE_PROVNAMELEN 64
74 #define DTRACE_MODNAMELEN 64
75 #define DTRACE_FUNCNAMELEN 128
76 #define DTRACE_NAMELEN 64
77 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
78 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
79 #define DTRACE_ARGTYPELEN 128

81 typedef uint32_t dtrace_id_t; /* probe identifier */
82 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
83 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
84 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
85 typedef uint16_t dtrace_actkind_t; /* action kind */
86 typedef int64_t dtrace_optval_t; /* option value */
87 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */

89 typedef enum dtrace_probespec {
90 DTRACE_PROBESPEC_NONE = -1,
91 DTRACE_PROBESPEC_PROVIDER = 0,
92 DTRACE_PROBESPEC_MOD,
93 DTRACE_PROBESPEC_FUNC,
94 DTRACE_PROBESPEC_NAME
95 } dtrace_probespec_t;

______unchanged_portion_omitted_

353 #define DIF_TYPE_CTF 0 /* type is a CTF type */
354 #define DIF_TYPE_STRING 1 /* type is a D string */

356 #define DIF_TF_BYREF 0x1 /* type is passed by reference */
357 #define DIF_TF_BYUREF 0x2 /* user type is passed by reference */
358 #endif /* ! codereview */

360 /*
361 * A DTrace Intermediate Format variable record is used to describe each of the
362 * variables referenced by a given DIF object. It contains an integer variable
363 * identifier along with variable scope and properties, as shown below. The
364 * size of this structure must be sizeof (int) aligned.
365 */
366 typedef struct dtrace_difv {
367 uint32_t dtdv_name; /* variable name index in dtdo_strtab */
368 uint32_t dtdv_id; /* variable reference identifier */
369 uint8_t dtdv_kind; /* variable kind (see below) */
370 uint8_t dtdv_scope; /* variable scope (see below) */
371 uint16_t dtdv_flags; /* variable flags (see below) */
372 dtrace_diftype_t dtdv_type; /* variable type (see above) */
373 } dtrace_difv_t;

375 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */

new/usr/src/uts/common/sys/dtrace.h 3

376 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */

378 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
379 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
380 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */

382 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
383 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */

385 /*
386 * DTrace Actions
387 *
388 * The upper byte determines the class of the action; the low bytes determines
389 * the specific action within that class. The classes of actions are as
390 * follows:
391 *
392 * [no class] <= May record process- or kernel-related data
393 * DTRACEACT_PROC <= Only records process-related data
394 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
395 * DTRACEACT_KERNEL <= Only records kernel-related data
396 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
397 * DTRACEACT_SPECULATIVE <= Speculation-related action
398 * DTRACEACT_AGGREGATION <= Aggregating action
399 */
400 #define DTRACEACT_NONE 0 /* no action */
401 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
402 #define DTRACEACT_EXIT 2 /* exit() action */
403 #define DTRACEACT_PRINTF 3 /* printf() action */
404 #define DTRACEACT_PRINTA 4 /* printa() action */
405 #define DTRACEACT_LIBACT 5 /* library-controlled action */
406 #define DTRACEACT_TRACEMEM 6 /* tracemem() action */
407 #define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */

409 #define DTRACEACT_PROC 0x0100
410 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
411 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
412 #define DTRACEACT_USYM (DTRACEACT_PROC + 3)
413 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
414 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5)

416 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200
417 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
418 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
419 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
420 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)

422 #define DTRACEACT_PROC_CONTROL 0x0300

424 #define DTRACEACT_KERNEL 0x0400
425 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
426 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
427 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)

429 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
430 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
431 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
432 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)

434 #define DTRACEACT_SPECULATIVE 0x0600
435 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
436 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
437 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)

439 #define DTRACEACT_CLASS(x) ((x) & 0xff00)

441 #define DTRACEACT_ISDESTRUCTIVE(x) \

new/usr/src/uts/common/sys/dtrace.h 4

442 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
443 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)

445 #define DTRACEACT_ISSPECULATIVE(x) \
446 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)

448 #define DTRACEACT_ISPRINTFLIKE(x) \
449 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
450 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)

452 /*
453 * DTrace Aggregating Actions
454 *
455 * These are functions f(x) for which the following is true:
456 *
457 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
458 *
459 * where x_n is a set of arbitrary data. Aggregating actions are in their own
460 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
461 * for easier processing of the aggregation argument and data payload for a few
462 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
463 */
464 #define DTRACEACT_AGGREGATION 0x0700
465 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
466 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
467 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
468 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
469 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
470 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
471 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
472 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
473 #define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9)

475 #define DTRACEACT_ISAGG(x) \
476 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)

478 #define DTRACE_QUANTIZE_NBUCKETS \
479 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)

481 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)

483 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \
484 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
485 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
486 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
487 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))

489 #define DTRACE_LQUANTIZE_STEPSHIFT 48
490 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
491 #define DTRACE_LQUANTIZE_LEVELSHIFT 32
492 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
493 #define DTRACE_LQUANTIZE_BASESHIFT 0
494 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX

496 #define DTRACE_LQUANTIZE_STEP(x) \
497 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
498 DTRACE_LQUANTIZE_STEPSHIFT)

500 #define DTRACE_LQUANTIZE_LEVELS(x) \
501 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
502 DTRACE_LQUANTIZE_LEVELSHIFT)

504 #define DTRACE_LQUANTIZE_BASE(x) \
505 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
506 DTRACE_LQUANTIZE_BASESHIFT)

new/usr/src/uts/common/sys/dtrace.h 5

508 #define DTRACE_LLQUANTIZE_FACTORSHIFT 48
509 #define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48)
510 #define DTRACE_LLQUANTIZE_LOWSHIFT 32
511 #define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32)
512 #define DTRACE_LLQUANTIZE_HIGHSHIFT 16
513 #define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16)
514 #define DTRACE_LLQUANTIZE_NSTEPSHIFT 0
515 #define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX

517 #define DTRACE_LLQUANTIZE_FACTOR(x) \
518 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
519 DTRACE_LLQUANTIZE_FACTORSHIFT)

521 #define DTRACE_LLQUANTIZE_LOW(x) \
522 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
523 DTRACE_LLQUANTIZE_LOWSHIFT)

525 #define DTRACE_LLQUANTIZE_HIGH(x) \
526 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
527 DTRACE_LLQUANTIZE_HIGHSHIFT)

529 #define DTRACE_LLQUANTIZE_NSTEP(x) \
530 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
531 DTRACE_LLQUANTIZE_NSTEPSHIFT)

533 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
534 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
535 #define DTRACE_USTACK_ARG(x, y) \
536 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))

538 #ifndef _LP64
539 #ifndef _LITTLE_ENDIAN
540 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name
541 #else
542 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad
543 #endif
544 #else
545 #define DTRACE_PTR(type, name) type *name
546 #endif

548 /*
549 * DTrace Object Format (DOF)
550 *
551 * DTrace programs can be persistently encoded in the DOF format so that they
552 * may be embedded in other programs (for example, in an ELF file) or in the
553 * dtrace driver configuration file for use in anonymous tracing. The DOF
554 * format is versioned and extensible so that it can be revised and so that
555 * internal data structures can be modified or extended compatibly. All DOF
556 * structures use fixed-size types, so the 32-bit and 64-bit representations
557 * are identical and consumers can use either data model transparently.
558 *
559 * The file layout is structured as follows:
560 *
561 * +---------------+-------------------+----- ... ----+---- ... ------+
562 * | dof_hdr_t | dof_sec_t[...] | loadable | non-loadable |
563 * | (file header) | (section headers) | section data | section data |
564 * +---------------+-------------------+----- ... ----+---- ... ------+
565 * |<------------ dof_hdr.dofh_loadsz --------------->| |
566 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
567 *
568 * The file header stores meta-data including a magic number, data model for
569 * the instrumentation, data encoding, and properties of the DIF code within.
570 * The header describes its own size and the size of the section headers. By
571 * convention, an array of section headers follows the file header, and then
572 * the data for all loadable sections and unloadable sections. This permits
573 * consumer code to easily download the headers and all loadable data into the

new/usr/src/uts/common/sys/dtrace.h 6

574 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
575 *
576 * The section headers describe the size, offset, alignment, and section type
577 * for each section. Sections are described using a set of #defines that tell
578 * the consumer what kind of data is expected. Sections can contain links to
579 * other sections by storing a dof_secidx_t, an index into the section header
580 * array, inside of the section data structures. The section header includes
581 * an entry size so that sections with data arrays can grow their structures.
582 *
583 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
584 * are represented themselves as a collection of related DOF sections. This
585 * permits us to change the set of sections associated with a DIFO over time,
586 * and also permits us to encode DIFOs that contain different sets of sections.
587 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
588 * section of type DOF_SECT_DIFOHDR. This section’s data is then an array of
589 * dof_secidx_t’s which in turn denote the sections associated with this DIFO.
590 *
591 * This loose coupling of the file structure (header and sections) to the
592 * structure of the DTrace program itself (ECB descriptions, action
593 * descriptions, and DIFOs) permits activities such as relocation processing
594 * to occur in a single pass without having to understand D program structure.
595 *
596 * Finally, strings are always stored in ELF-style string tables along with a
597 * string table section index and string table offset. Therefore strings in
598 * DOF are always arbitrary-length and not bound to the current implementation.
599 */

601 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */

603 typedef struct dof_hdr {
604 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
605 uint32_t dofh_flags; /* file attribute flags (if any) */
606 uint32_t dofh_hdrsize; /* size of file header in bytes */
607 uint32_t dofh_secsize; /* size of section header in bytes */
608 uint32_t dofh_secnum; /* number of section headers */
609 uint64_t dofh_secoff; /* file offset of section headers */
610 uint64_t dofh_loadsz; /* file size of loadable portion */
611 uint64_t dofh_filesz; /* file size of entire DOF file */
612 uint64_t dofh_pad; /* reserved for future use */
613 } dof_hdr_t;

615 #define DOF_ID_MAG0 0 /* first byte of magic number */
616 #define DOF_ID_MAG1 1 /* second byte of magic number */
617 #define DOF_ID_MAG2 2 /* third byte of magic number */
618 #define DOF_ID_MAG3 3 /* fourth byte of magic number */
619 #define DOF_ID_MODEL 4 /* DOF data model (see below) */
620 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
621 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
622 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */
623 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
624 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
625 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */

627 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
628 #define DOF_MAG_MAG1 ’D’
629 #define DOF_MAG_MAG2 ’O’
630 #define DOF_MAG_MAG3 ’F’

632 #define DOF_MAG_STRING "\177DOF"
633 #define DOF_MAG_STRLEN 4

635 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
636 #define DOF_MODEL_ILP32 1
637 #define DOF_MODEL_LP64 2

639 #ifdef _LP64

new/usr/src/uts/common/sys/dtrace.h 7

640 #define DOF_MODEL_NATIVE DOF_MODEL_LP64
641 #else
642 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32
643 #endif

645 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
646 #define DOF_ENCODE_LSB 1
647 #define DOF_ENCODE_MSB 2

649 #ifdef _BIG_ENDIAN
650 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
651 #else
652 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
653 #endif

655 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
656 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
657 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */

659 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */

661 typedef uint32_t dof_secidx_t; /* section header table index type */
662 typedef uint32_t dof_stridx_t; /* string table index type */

664 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */
665 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */

667 typedef struct dof_sec {
668 uint32_t dofs_type; /* section type (see below) */
669 uint32_t dofs_align; /* section data memory alignment */
670 uint32_t dofs_flags; /* section flags (if any) */
671 uint32_t dofs_entsize; /* size of section entry (if table) */
672 uint64_t dofs_offset; /* offset of section data within file */
673 uint64_t dofs_size; /* size of section data in bytes */
674 } dof_sec_t;

676 #define DOF_SECT_NONE 0 /* null section */
677 #define DOF_SECT_COMMENTS 1 /* compiler comments */
678 #define DOF_SECT_SOURCE 2 /* D program source code */
679 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
680 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
681 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
682 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
683 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */
684 #define DOF_SECT_STRTAB 8 /* string table */
685 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
686 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
687 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
688 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
689 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
690 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
691 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */
692 #define DOF_SECT_PROBES 16 /* dof_probe_t array */
693 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
694 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
695 #define DOF_SECT_INTTAB 19 /* uint64_t array */
696 #define DOF_SECT_UTSNAME 20 /* struct utsname */
697 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
698 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
699 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
700 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
701 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
702 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */

704 #define DOF_SECF_LOAD 1 /* section should be loaded */

new/usr/src/uts/common/sys/dtrace.h 8

706 #define DOF_SEC_ISLOADABLE(x) \
707 (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \
708 ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \
709 ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \
710 ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \
711 ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \
712 ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \
713 ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \
714 ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \
715 ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \
716 ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \
717 ((x) == DOF_SECT_XLIMPORT) || ((x) == DOF_SECT_XLEXPORT) || \
718 ((x) == DOF_SECT_PREXPORT) || ((x) == DOF_SECT_PRENOFFS))

720 typedef struct dof_ecbdesc {
721 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
722 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
723 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
724 uint32_t dofe_pad; /* reserved for future use */
725 uint64_t dofe_uarg; /* user-supplied library argument */
726 } dof_ecbdesc_t;

728 typedef struct dof_probedesc {
729 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
730 dof_stridx_t dofp_provider; /* provider string */
731 dof_stridx_t dofp_mod; /* module string */
732 dof_stridx_t dofp_func; /* function string */
733 dof_stridx_t dofp_name; /* name string */
734 uint32_t dofp_id; /* probe identifier (or zero) */
735 } dof_probedesc_t;

737 typedef struct dof_actdesc {
738 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
739 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
740 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
741 uint32_t dofa_ntuple; /* number of subsequent tuple actions */
742 uint64_t dofa_arg; /* kind-specific argument */
743 uint64_t dofa_uarg; /* user-supplied argument */
744 } dof_actdesc_t;

746 typedef struct dof_difohdr {
747 dtrace_diftype_t dofd_rtype; /* return type for this fragment */
748 dof_secidx_t dofd_links[1]; /* variable length array of indices */
749 } dof_difohdr_t;

751 typedef struct dof_relohdr {
752 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
753 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
754 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
755 } dof_relohdr_t;

757 typedef struct dof_relodesc {
758 dof_stridx_t dofr_name; /* string name of relocation symbol */
759 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
760 uint64_t dofr_offset; /* byte offset for relocation */
761 uint64_t dofr_data; /* additional type-specific data */
762 } dof_relodesc_t;

764 #define DOF_RELO_NONE 0 /* empty relocation entry */
765 #define DOF_RELO_SETX 1 /* relocate setx value */

767 typedef struct dof_optdesc {
768 uint32_t dofo_option; /* option identifier */
769 dof_secidx_t dofo_strtab; /* string table, if string option */
770 uint64_t dofo_value; /* option value or string index */
771 } dof_optdesc_t;

new/usr/src/uts/common/sys/dtrace.h 9

773 typedef uint32_t dof_attr_t; /* encoded stability attributes */

775 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
776 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
777 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
778 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)

780 typedef struct dof_provider {
781 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
782 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
783 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
784 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
785 dof_stridx_t dofpv_name; /* provider name string */
786 dof_attr_t dofpv_provattr; /* provider attributes */
787 dof_attr_t dofpv_modattr; /* module attributes */
788 dof_attr_t dofpv_funcattr; /* function attributes */
789 dof_attr_t dofpv_nameattr; /* name attributes */
790 dof_attr_t dofpv_argsattr; /* args attributes */
791 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
792 } dof_provider_t;

794 typedef struct dof_probe {
795 uint64_t dofpr_addr; /* probe base address or offset */
796 dof_stridx_t dofpr_func; /* probe function string */
797 dof_stridx_t dofpr_name; /* probe name string */
798 dof_stridx_t dofpr_nargv; /* native argument type strings */
799 dof_stridx_t dofpr_xargv; /* translated argument type strings */
800 uint32_t dofpr_argidx; /* index of first argument mapping */
801 uint32_t dofpr_offidx; /* index of first offset entry */
802 uint8_t dofpr_nargc; /* native argument count */
803 uint8_t dofpr_xargc; /* translated argument count */
804 uint16_t dofpr_noffs; /* number of offset entries for probe */
805 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
806 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
807 uint16_t dofpr_pad1; /* reserved for future use */
808 uint32_t dofpr_pad2; /* reserved for future use */
809 } dof_probe_t;

811 typedef struct dof_xlator {
812 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
813 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
814 dof_stridx_t dofxl_argv; /* input parameter type strings */
815 uint32_t dofxl_argc; /* input parameter list length */
816 dof_stridx_t dofxl_type; /* output type string name */
817 dof_attr_t dofxl_attr; /* output stability attributes */
818 } dof_xlator_t;

820 typedef struct dof_xlmember {
821 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
822 dof_stridx_t dofxm_name; /* member name */
823 dtrace_diftype_t dofxm_type; /* member type */
824 } dof_xlmember_t;

826 typedef struct dof_xlref {
827 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
828 uint32_t dofxr_member; /* index of referenced dof_xlmember */
829 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
830 } dof_xlref_t;

832 /*
833 * DTrace Intermediate Format Object (DIFO)
834 *
835 * A DIFO is used to store the compiled DIF for a D expression, its return
836 * type, and its string and variable tables. The string table is a single
837 * buffer of character data into which sets instructions and variable

new/usr/src/uts/common/sys/dtrace.h 10

838 * references can reference strings using a byte offset. The variable table
839 * is an array of dtrace_difv_t structures that describe the name and type of
840 * each variable and the id used in the DIF code. This structure is described
841 * above in the DIF section of this header file. The DIFO is used at both
842 * user-level (in the library) and in the kernel, but the structure is never
843 * passed between the two: the DOF structures form the only interface. As a
844 * result, the definition can change depending on the presence of _KERNEL.
845 */
846 typedef struct dtrace_difo {
847 dif_instr_t *dtdo_buf; /* instruction buffer */
848 uint64_t *dtdo_inttab; /* integer table (optional) */
849 char *dtdo_strtab; /* string table (optional) */
850 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
851 uint_t dtdo_len; /* length of instruction buffer */
852 uint_t dtdo_intlen; /* length of integer table */
853 uint_t dtdo_strlen; /* length of string table */
854 uint_t dtdo_varlen; /* length of variable table */
855 dtrace_diftype_t dtdo_rtype; /* return type */
856 uint_t dtdo_refcnt; /* owner reference count */
857 uint_t dtdo_destructive; /* invokes destructive subroutines */
858 #ifndef _KERNEL
859 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
860 dof_relodesc_t *dtdo_ureltab; /* user relocations */
861 struct dt_node **dtdo_xlmtab; /* translator references */
862 uint_t dtdo_krelen; /* length of krelo table */
863 uint_t dtdo_urelen; /* length of urelo table */
864 uint_t dtdo_xlmlen; /* length of translator table */
865 #endif
866 } dtrace_difo_t;

868 /*
869 * DTrace Enabling Description Structures
870 *
871 * When DTrace is tracking the description of a DTrace enabling entity (probe,
872 * predicate, action, ECB, record, etc.), it does so in a description
873 * structure. These structures all end in "desc", and are used at both
874 * user-level and in the kernel -- but (with the exception of
875 * dtrace_probedesc_t) they are never passed between them. Typically,
876 * user-level will use the description structures when assembling an enabling.
877 * It will then distill those description structures into a DOF object (see
878 * above), and send it into the kernel. The kernel will again use the
879 * description structures to create a description of the enabling as it reads
880 * the DOF. When the description is complete, the enabling will be actually
881 * created -- turning it into the structures that represent the enabling
882 * instead of merely describing it. Not surprisingly, the description
883 * structures bear a strong resemblance to the DOF structures that act as their
884 * conduit.
885 */
886 struct dtrace_predicate;

888 typedef struct dtrace_probedesc {
889 dtrace_id_t dtpd_id; /* probe identifier */
890 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
891 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
892 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
893 char dtpd_name[DTRACE_NAMELEN]; /* probe name */
894 } dtrace_probedesc_t;

896 typedef struct dtrace_repldesc {
897 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
898 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
899 } dtrace_repldesc_t;

901 typedef struct dtrace_preddesc {
902 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
903 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */

new/usr/src/uts/common/sys/dtrace.h 11

904 } dtrace_preddesc_t;

906 typedef struct dtrace_actdesc {
907 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
908 struct dtrace_actdesc *dtad_next; /* next action */
909 dtrace_actkind_t dtad_kind; /* kind of action */
910 uint32_t dtad_ntuple; /* number in tuple */
911 uint64_t dtad_arg; /* action argument */
912 uint64_t dtad_uarg; /* user argument */
913 int dtad_refcnt; /* reference count */
914 } dtrace_actdesc_t;

916 typedef struct dtrace_ecbdesc {
917 dtrace_actdesc_t *dted_action; /* action description(s) */
918 dtrace_preddesc_t dted_pred; /* predicate description */
919 dtrace_probedesc_t dted_probe; /* probe description */
920 uint64_t dted_uarg; /* library argument */
921 int dted_refcnt; /* reference count */
922 } dtrace_ecbdesc_t;

924 /*
925 * DTrace Metadata Description Structures
926 *
927 * DTrace separates the trace data stream from the metadata stream. The only
928 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
929 * timestamp) or (in the case of aggregations) aggregation identifiers. To
930 * determine the structure of the data, DTrace consumers pass the token to the
931 * kernel, and receive in return a corresponding description of the enabled
932 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
933 * dtrace_aggdesc structure). Both of these structures are expressed in terms
934 * of record descriptions (via the dtrace_recdesc structure) that describe the
935 * exact structure of the data. Some record descriptions may also contain a
936 * format identifier; this additional bit of metadata can be retrieved from the
937 * kernel, for which a format description is returned via the dtrace_fmtdesc
938 * structure. Note that all four of these structures must be bitness-neutral
939 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
940 */
941 typedef struct dtrace_recdesc {
942 dtrace_actkind_t dtrd_action; /* kind of action */
943 uint32_t dtrd_size; /* size of record */
944 uint32_t dtrd_offset; /* offset in ECB’s data */
945 uint16_t dtrd_alignment; /* required alignment */
946 uint16_t dtrd_format; /* format, if any */
947 uint64_t dtrd_arg; /* action argument */
948 uint64_t dtrd_uarg; /* user argument */
949 } dtrace_recdesc_t;

951 typedef struct dtrace_eprobedesc {
952 dtrace_epid_t dtepd_epid; /* enabled probe ID */
953 dtrace_id_t dtepd_probeid; /* probe ID */
954 uint64_t dtepd_uarg; /* library argument */
955 uint32_t dtepd_size; /* total size */
956 int dtepd_nrecs; /* number of records */
957 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
958 } dtrace_eprobedesc_t;

960 typedef struct dtrace_aggdesc {
961 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
962 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
963 int dtagd_flags; /* not filled in by kernel */
964 dtrace_aggid_t dtagd_id; /* aggregation ID */
965 dtrace_epid_t dtagd_epid; /* enabled probe ID */
966 uint32_t dtagd_size; /* size in bytes */
967 int dtagd_nrecs; /* number of records */
968 uint32_t dtagd_pad; /* explicit padding */
969 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */

new/usr/src/uts/common/sys/dtrace.h 12

970 } dtrace_aggdesc_t;

972 typedef struct dtrace_fmtdesc {
973 DTRACE_PTR(char, dtfd_string); /* format string */
974 int dtfd_length; /* length of format string */
975 uint16_t dtfd_format; /* format identifier */
976 } dtrace_fmtdesc_t;

978 #define DTRACE_SIZEOF_EPROBEDESC(desc) \
979 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
980 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))

982 #define DTRACE_SIZEOF_AGGDESC(desc) \
983 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
984 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))

986 /*
987 * DTrace Option Interface
988 *
989 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
990 * in a DOF image. The dof_optdesc structure contains an option identifier and
991 * an option value. The valid option identifiers are found below; the mapping
992 * between option identifiers and option identifying strings is maintained at
993 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
994 * following are potentially valid option values: all positive integers, zero
995 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
996 * predefined tokens as their values; these are defined with
997 * DTRACEOPT_{option}_{token}.
998 */
999 #define DTRACEOPT_BUFSIZE 0 /* buffer size */

1000 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
1001 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
1002 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */
1003 #define DTRACEOPT_SPECSIZE 4 /* speculation size */
1004 #define DTRACEOPT_NSPEC 5 /* number of speculations */
1005 #define DTRACEOPT_STRSIZE 6 /* string size */
1006 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
1007 #define DTRACEOPT_CPU 8 /* CPU to trace */
1008 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
1009 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
1010 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
1011 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
1012 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
1013 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
1014 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
1015 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
1016 #define DTRACEOPT_STATUSRATE 17 /* status rate */
1017 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
1018 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
1019 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
1020 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
1021 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
1022 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
1023 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
1024 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
1025 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
1026 #define DTRACEOPT_TEMPORAL 27 /* temporally ordered output */
1027 #define DTRACEOPT_MAX 28 /* number of options */

1029 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */

1031 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
1032 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
1033 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */

1035 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */

new/usr/src/uts/common/sys/dtrace.h 13

1036 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */

1038 /*
1039 * DTrace Buffer Interface
1040 *
1041 * In order to get a snapshot of the principal or aggregation buffer,
1042 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1043 * structure. This describes which CPU user-level is interested in, and
1044 * where user-level wishes the kernel to snapshot the buffer to (the
1045 * dtbd_data field). The kernel uses the same structure to pass back some
1046 * information regarding the buffer: the size of data actually copied out, the
1047 * number of drops, the number of errors, the offset of the oldest record,
1048 * and the time of the snapshot.
1049 *
1050 * If the buffer policy is a "switch" policy, taking a snapshot of the
1051 * principal buffer has the additional effect of switching the active and
1052 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1053 * the additional effect of switching the active and inactive buffers.
1054 */
1055 typedef struct dtrace_bufdesc {
1056 uint64_t dtbd_size; /* size of buffer */
1057 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
1058 uint32_t dtbd_errors; /* number of errors */
1059 uint64_t dtbd_drops; /* number of drops */
1060 DTRACE_PTR(char, dtbd_data); /* data */
1061 uint64_t dtbd_oldest; /* offset of oldest record */
1062 uint64_t dtbd_timestamp; /* hrtime of snapshot */
1063 } dtrace_bufdesc_t;

1065 /*
1066 * Each record in the buffer (dtbd_data) begins with a header that includes
1067 * the epid and a timestamp. The timestamp is split into two 4-byte parts
1068 * so that we do not require 8-byte alignment.
1069 */
1070 typedef struct dtrace_rechdr {
1071 dtrace_epid_t dtrh_epid; /* enabled probe id */
1072 uint32_t dtrh_timestamp_hi; /* high bits of hrtime_t */
1073 uint32_t dtrh_timestamp_lo; /* low bits of hrtime_t */
1074 } dtrace_rechdr_t;

1076 #define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \
1077 ((dtrh)->dtrh_timestamp_lo + \
1078 ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))

1080 #define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \
1081 (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \
1082 (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \
1083 }

1085 /*
1086 * DTrace Status
1087 *
1088 * The status of DTrace is relayed via the dtrace_status structure. This
1089 * structure contains members to count drops other than the capacity drops
1090 * available via the buffer interface (see above). This consists of dynamic
1091 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1092 * speculative drops (including capacity speculative drops, drops due to busy
1093 * speculative buffers and drops due to unavailable speculative buffers).
1094 * Additionally, the status structure contains a field to indicate the number
1095 * of "fill"-policy buffers have been filled and a boolean field to indicate
1096 * that exit() has been called. If the dtst_exiting field is non-zero, no
1097 * further data will be generated until tracing is stopped (at which time any
1098 * enablings of the END action will be processed); if user-level sees that
1099 * this field is non-zero, tracing should be stopped as soon as possible.
1100 */
1101 typedef struct dtrace_status {

new/usr/src/uts/common/sys/dtrace.h 14

1102 uint64_t dtst_dyndrops; /* dynamic drops */
1103 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1104 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1105 uint64_t dtst_specdrops; /* speculative drops */
1106 uint64_t dtst_specdrops_busy; /* spec drops due to busy */
1107 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
1108 uint64_t dtst_errors; /* total errors */
1109 uint64_t dtst_filled; /* number of filled bufs */
1110 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1111 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1112 char dtst_killed; /* non-zero if killed */
1113 char dtst_exiting; /* non-zero if exit() called */
1114 char dtst_pad[6]; /* pad out to 64-bit align */
1115 } dtrace_status_t;

1117 /*
1118 * DTrace Configuration
1119 *
1120 * User-level may need to understand some elements of the kernel DTrace
1121 * configuration in order to generate correct DIF. This information is
1122 * conveyed via the dtrace_conf structure.
1123 */
1124 typedef struct dtrace_conf {
1125 uint_t dtc_difversion; /* supported DIF version */
1126 uint_t dtc_difintregs; /* # of DIF integer registers */
1127 uint_t dtc_diftupregs; /* # of DIF tuple registers */
1128 uint_t dtc_ctfmodel; /* CTF data model */
1129 uint_t dtc_pad[8]; /* reserved for future use */
1130 } dtrace_conf_t;

1132 /*
1133 * DTrace Faults
1134 *
1135 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1136 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1137 * postprocessing at user-level. Probe processing faults induce an ERROR
1138 * probe and are replicated in unistd.d to allow users’ ERROR probes to decode
1139 * the error condition using thse symbolic labels.
1140 */
1141 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1142 #define DTRACEFLT_BADADDR 1 /* Bad address */
1143 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1144 #define DTRACEFLT_ILLOP 3 /* Illegal operation */
1145 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1146 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1147 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1148 #define DTRACEFLT_UPRIV 7 /* Illegal user access */
1149 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1150 #define DTRACEFLT_BADSTACK 9 /* Bad stack */

1152 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */

1154 /*
1155 * DTrace Argument Types
1156 *
1157 * Because it would waste both space and time, argument types do not reside
1158 * with the probe. In order to determine argument types for args[X]
1159 * variables, the D compiler queries for argument types on a probe-by-probe
1160 * basis. (This optimizes for the common case that arguments are either not
1161 * used or used in an untyped fashion.) Typed arguments are specified with a
1162 * string of the type name in the dtragd_native member of the argument
1163 * description structure. Typed arguments may be further translated to types
1164 * of greater stability; the provider indicates such a translated argument by
1165 * filling in the dtargd_xlate member with the string of the translated type.
1166 * Finally, the provider may indicate which argument value a given argument
1167 * maps to by setting the dtargd_mapping member -- allowing a single argument

new/usr/src/uts/common/sys/dtrace.h 15

1168 * to map to multiple args[X] variables.
1169 */
1170 typedef struct dtrace_argdesc {
1171 dtrace_id_t dtargd_id; /* probe identifier */
1172 int dtargd_ndx; /* arg number (-1 iff none) */
1173 int dtargd_mapping; /* value mapping */
1174 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
1175 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
1176 } dtrace_argdesc_t;

1178 /*
1179 * DTrace Stability Attributes
1180 *
1181 * Each DTrace provider advertises the name and data stability of each of its
1182 * probe description components, as well as its architectural dependencies.
1183 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1184 * order to compute the properties of an input program and report them.
1185 */
1186 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
1187 typedef uint8_t dtrace_class_t; /* architectural dependency class */

1189 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1190 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1191 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1192 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1193 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1194 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1195 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1196 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1197 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */

1199 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1200 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1201 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1202 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1203 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1204 #define DTRACE_CLASS_COMMON 5 /* common to all systems */
1205 #define DTRACE_CLASS_MAX 5 /* maximum valid class */

1207 #define DTRACE_PRIV_NONE 0x0000
1208 #define DTRACE_PRIV_KERNEL 0x0001
1209 #define DTRACE_PRIV_USER 0x0002
1210 #define DTRACE_PRIV_PROC 0x0004
1211 #define DTRACE_PRIV_OWNER 0x0008
1212 #define DTRACE_PRIV_ZONEOWNER 0x0010

1214 #define DTRACE_PRIV_ALL \
1215 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1216 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)

1218 typedef struct dtrace_ppriv {
1219 uint32_t dtpp_flags; /* privilege flags */
1220 uid_t dtpp_uid; /* user ID */
1221 zoneid_t dtpp_zoneid; /* zone ID */
1222 } dtrace_ppriv_t;

1224 typedef struct dtrace_attribute {
1225 dtrace_stability_t dtat_name; /* entity name stability */
1226 dtrace_stability_t dtat_data; /* entity data stability */
1227 dtrace_class_t dtat_class; /* entity data dependency */
1228 } dtrace_attribute_t;

1230 typedef struct dtrace_pattr {
1231 dtrace_attribute_t dtpa_provider; /* provider attributes */
1232 dtrace_attribute_t dtpa_mod; /* module attributes */
1233 dtrace_attribute_t dtpa_func; /* function attributes */

new/usr/src/uts/common/sys/dtrace.h 16

1234 dtrace_attribute_t dtpa_name; /* name attributes */
1235 dtrace_attribute_t dtpa_args; /* args[] attributes */
1236 } dtrace_pattr_t;

1238 typedef struct dtrace_providerdesc {
1239 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
1240 dtrace_pattr_t dtvd_attr; /* stability attributes */
1241 dtrace_ppriv_t dtvd_priv; /* privileges required */
1242 } dtrace_providerdesc_t;

1244 /*
1245 * DTrace Pseudodevice Interface
1246 *
1247 * DTrace is controlled through ioctl(2)’s to the in-kernel dtrace:dtrace
1248 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1249 * DTrace.
1250 */
1251 #define DTRACEIOC ((’d’ << 24) | (’t’ << 16) | (’r’ << 8))
1252 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1253 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1254 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1255 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1256 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1257 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1258 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1259 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1260 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1261 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1262 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1263 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1264 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1265 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1266 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1267 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */

1269 /*
1270 * DTrace Helpers
1271 *
1272 * In general, DTrace establishes probes in processes and takes actions on
1273 * processes without knowing their specific user-level structures. Instead of
1274 * existing in the framework, process-specific knowledge is contained by the
1275 * enabling D program -- which can apply process-specific knowledge by making
1276 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1277 * operate on user-level data. However, there may exist some specific probes
1278 * of particular semantic relevance that the application developer may wish to
1279 * explicitly export. For example, an application may wish to export a probe
1280 * at the point that it begins and ends certain well-defined transactions. In
1281 * addition to providing probes, programs may wish to offer assistance for
1282 * certain actions. For example, in highly dynamic environments (e.g., Java),
1283 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1284 * names (the translation from instruction addresses to corresponding symbol
1285 * names may only be possible in situ); these environments may wish to define
1286 * a series of actions to be applied in situ to obtain a meaningful stack
1287 * trace.
1288 *
1289 * These two mechanisms -- user-level statically defined tracing and assisting
1290 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1291 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1292 * providers, probes and their arguments. If a helper wishes to provide
1293 * action assistance, probe descriptions and corresponding DIF actions may be
1294 * specified in the helper DOF. For such helper actions, however, the probe
1295 * description describes the specific helper: all DTrace helpers have the
1296 * provider name "dtrace" and the module name "helper", and the name of the
1297 * helper is contained in the function name (for example, the ustack() helper
1298 * is named "ustack"). Any helper-specific name may be contained in the name
1299 * (for example, if a helper were to have a constructor, it might be named

new/usr/src/uts/common/sys/dtrace.h 17

1300 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1301 * action that they are helping is taken. Helper actions may only return DIF
1302 * expressions, and may only call the following subroutines:
1303 *
1304 * alloca() <= Allocates memory out of the consumer’s scratch space
1305 * bcopy() <= Copies memory to scratch space
1306 * copyin() <= Copies memory from user-level into consumer’s scratch
1307 * copyinto() <= Copies memory into a specific location in scratch
1308 * copyinstr() <= Copies a string into a specific location in scratch
1309 *
1310 * Helper actions may only access the following built-in variables:
1311 *
1312 * curthread <= Current kthread_t pointer
1313 * tid <= Current thread identifier
1314 * pid <= Current process identifier
1315 * ppid <= Parent process identifier
1316 * uid <= Current user ID
1317 * gid <= Current group ID
1318 * execname <= Current executable name
1319 * zonename <= Current zone name
1320 *
1321 * Helper actions may not manipulate or allocate dynamic variables, but they
1322 * may have clause-local and statically-allocated global variables. The
1323 * helper action variable state is specific to the helper action -- variables
1324 * used by the helper action may not be accessed outside of the helper
1325 * action, and the helper action may not access variables that like outside
1326 * of it. Helper actions may not load from kernel memory at-large; they are
1327 * restricting to loading current user state (via copyin() and variants) and
1328 * scratch space. As with probe enablings, helper actions are executed in
1329 * program order. The result of the helper action is the result of the last
1330 * executing helper expression.
1331 *
1332 * Helpers -- composed of either providers/probes or probes/actions (or both)
1333 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1334 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1335 * encapsulates the name and base address of the user-level library or
1336 * executable publishing the helpers and probes as well as the DOF that
1337 * contains the definitions of those helpers and probes.
1338 *
1339 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1340 * helpers and should no longer be used. No other ioctls are valid on the
1341 * helper minor node.
1342 */
1343 #define DTRACEHIOC ((’d’ << 24) | (’t’ << 16) | (’h’ << 8))
1344 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1345 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1346 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */

1348 typedef struct dof_helper {
1349 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
1350 uint64_t dofhp_addr; /* base address of object */
1351 uint64_t dofhp_dof; /* address of helper DOF */
1352 } dof_helper_t;

1354 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1355 #define DTRACEMNR_HELPER "helper" /* node for helpers */
1356 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1357 #define DTRACEMNRN_HELPER 1 /* minor for helpers */
1358 #define DTRACEMNRN_CLONE 2 /* first clone minor */

1360 #ifdef _KERNEL

1362 /*
1363 * DTrace Provider API
1364 *
1365 * The following functions are implemented by the DTrace framework and are

new/usr/src/uts/common/sys/dtrace.h 18

1366 * used to implement separate in-kernel DTrace providers. Common functions
1367 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1368 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1369 *
1370 * The provider API has two halves: the API that the providers consume from
1371 * DTrace, and the API that providers make available to DTrace.
1372 *
1373 * 1 Framework-to-Provider API
1374 *
1375 * 1.1 Overview
1376 *
1377 * The Framework-to-Provider API is represented by the dtrace_pops structure
1378 * that the provider passes to the framework when registering itself. This
1379 * structure consists of the following members:
1380 *
1381 * dtps_provide() <-- Provide all probes, all modules
1382 * dtps_provide_module() <-- Provide all probes in specified module
1383 * dtps_enable() <-- Enable specified probe
1384 * dtps_disable() <-- Disable specified probe
1385 * dtps_suspend() <-- Suspend specified probe
1386 * dtps_resume() <-- Resume specified probe
1387 * dtps_getargdesc() <-- Get the argument description for args[X]
1388 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1389 * dtps_mode() <-- Return the mode of the fired probe
1390 * dtps_destroy() <-- Destroy all state associated with this probe
1391 *
1392 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1393 *
1394 * 1.2.1 Overview
1395 *
1396 * Called to indicate that the provider should provide all probes. If the
1397 * specified description is non-NULL, dtps_provide() is being called because
1398 * no probe matched a specified probe -- if the provider has the ability to
1399 * create custom probes, it may wish to create a probe that matches the
1400 * specified description.
1401 *
1402 * 1.2.2 Arguments and notes
1403 *
1404 * The first argument is the cookie as passed to dtrace_register(). The
1405 * second argument is a pointer to a probe description that the provider may
1406 * wish to consider when creating custom probes. The provider is expected to
1407 * call back into the DTrace framework via dtrace_probe_create() to create
1408 * any necessary probes. dtps_provide() may be called even if the provider
1409 * has made available all probes; the provider should check the return value
1410 * of dtrace_probe_create() to handle this case. Note that the provider need
1411 * not implement both dtps_provide() and dtps_provide_module(); see
1412 * "Arguments and Notes" for dtrace_register(), below.
1413 *
1414 * 1.2.3 Return value
1415 *
1416 * None.
1417 *
1418 * 1.2.4 Caller’s context
1419 *
1420 * dtps_provide() is typically called from open() or ioctl() context, but may
1421 * be called from other contexts as well. The DTrace framework is locked in
1422 * such a way that providers may not register or unregister. This means that
1423 * the provider may not call any DTrace API that affects its registration with
1424 * the framework, including dtrace_register(), dtrace_unregister(),
1425 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1426 * that the provider may (and indeed, is expected to) call probe-related
1427 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1428 * and dtrace_probe_arg().
1429 *
1430 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1431 *

new/usr/src/uts/common/sys/dtrace.h 19

1432 * 1.3.1 Overview
1433 *
1434 * Called to indicate that the provider should provide all probes in the
1435 * specified module.
1436 *
1437 * 1.3.2 Arguments and notes
1438 *
1439 * The first argument is the cookie as passed to dtrace_register(). The
1440 * second argument is a pointer to a modctl structure that indicates the
1441 * module for which probes should be created.
1442 *
1443 * 1.3.3 Return value
1444 *
1445 * None.
1446 *
1447 * 1.3.4 Caller’s context
1448 *
1449 * dtps_provide_module() may be called from open() or ioctl() context, but
1450 * may also be called from a module loading context. mod_lock is held, and
1451 * the DTrace framework is locked in such a way that providers may not
1452 * register or unregister. This means that the provider may not call any
1453 * DTrace API that affects its registration with the framework, including
1454 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1455 * dtrace_condense(). However, the context is such that the provider may (and
1456 * indeed, is expected to) call probe-related DTrace routines, including
1457 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1458 * that the provider need not implement both dtps_provide() and
1459 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1460 * below.
1461 *
1462 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1463 *
1464 * 1.4.1 Overview
1465 *
1466 * Called to enable the specified probe.
1467 *
1468 * 1.4.2 Arguments and notes
1469 *
1470 * The first argument is the cookie as passed to dtrace_register(). The
1471 * second argument is the identifier of the probe to be enabled. The third
1472 * argument is the probe argument as passed to dtrace_probe_create().
1473 * dtps_enable() will be called when a probe transitions from not being
1474 * enabled at all to having one or more ECB. The number of ECBs associated
1475 * with the probe may change without subsequent calls into the provider.
1476 * When the number of ECBs drops to zero, the provider will be explicitly
1477 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1478 * be called for a probe identifier that hasn’t been explicitly enabled via
1479 * dtps_enable().
1480 *
1481 * 1.4.3 Return value
1482 *
1483 * On success, dtps_enable() should return 0. On failure, -1 should be
1484 * returned.
1485 *
1486 * 1.4.4 Caller’s context
1487 *
1488 * The DTrace framework is locked in such a way that it may not be called
1489 * back into at all. cpu_lock is held. mod_lock is not held and may not
1490 * be acquired.
1491 *
1492 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1493 *
1494 * 1.5.1 Overview
1495 *
1496 * Called to disable the specified probe.
1497 *

new/usr/src/uts/common/sys/dtrace.h 20

1498 * 1.5.2 Arguments and notes
1499 *
1500 * The first argument is the cookie as passed to dtrace_register(). The
1501 * second argument is the identifier of the probe to be disabled. The third
1502 * argument is the probe argument as passed to dtrace_probe_create().
1503 * dtps_disable() will be called when a probe transitions from being enabled
1504 * to having zero ECBs. dtrace_probe() should never be called for a probe
1505 * identifier that has been explicitly enabled via dtps_disable().
1506 *
1507 * 1.5.3 Return value
1508 *
1509 * None.
1510 *
1511 * 1.5.4 Caller’s context
1512 *
1513 * The DTrace framework is locked in such a way that it may not be called
1514 * back into at all. cpu_lock is held. mod_lock is not held and may not
1515 * be acquired.
1516 *
1517 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1518 *
1519 * 1.6.1 Overview
1520 *
1521 * Called to suspend the specified enabled probe. This entry point is for
1522 * providers that may need to suspend some or all of their probes when CPUs
1523 * are being powered on or when the boot monitor is being entered for a
1524 * prolonged period of time.
1525 *
1526 * 1.6.2 Arguments and notes
1527 *
1528 * The first argument is the cookie as passed to dtrace_register(). The
1529 * second argument is the identifier of the probe to be suspended. The
1530 * third argument is the probe argument as passed to dtrace_probe_create().
1531 * dtps_suspend will only be called on an enabled probe. Providers that
1532 * provide a dtps_suspend entry point will want to take roughly the action
1533 * that it takes for dtps_disable.
1534 *
1535 * 1.6.3 Return value
1536 *
1537 * None.
1538 *
1539 * 1.6.4 Caller’s context
1540 *
1541 * Interrupts are disabled. The DTrace framework is in a state such that the
1542 * specified probe cannot be disabled or destroyed for the duration of
1543 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1544 * little latitude; the provider is expected to do no more than a store to
1545 * memory.
1546 *
1547 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1548 *
1549 * 1.7.1 Overview
1550 *
1551 * Called to resume the specified enabled probe. This entry point is for
1552 * providers that may need to resume some or all of their probes after the
1553 * completion of an event that induced a call to dtps_suspend().
1554 *
1555 * 1.7.2 Arguments and notes
1556 *
1557 * The first argument is the cookie as passed to dtrace_register(). The
1558 * second argument is the identifier of the probe to be resumed. The
1559 * third argument is the probe argument as passed to dtrace_probe_create().
1560 * dtps_resume will only be called on an enabled probe. Providers that
1561 * provide a dtps_resume entry point will want to take roughly the action
1562 * that it takes for dtps_enable.
1563 *

new/usr/src/uts/common/sys/dtrace.h 21

1564 * 1.7.3 Return value
1565 *
1566 * None.
1567 *
1568 * 1.7.4 Caller’s context
1569 *
1570 * Interrupts are disabled. The DTrace framework is in a state such that the
1571 * specified probe cannot be disabled or destroyed for the duration of
1572 * dtps_resume(). As interrupts are disabled, the provider is afforded
1573 * little latitude; the provider is expected to do no more than a store to
1574 * memory.
1575 *
1576 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1577 * dtrace_argdesc_t *desc)
1578 *
1579 * 1.8.1 Overview
1580 *
1581 * Called to retrieve the argument description for an args[X] variable.
1582 *
1583 * 1.8.2 Arguments and notes
1584 *
1585 * The first argument is the cookie as passed to dtrace_register(). The
1586 * second argument is the identifier of the current probe. The third
1587 * argument is the probe argument as passed to dtrace_probe_create(). The
1588 * fourth argument is a pointer to the argument description. This
1589 * description is both an input and output parameter: it contains the
1590 * index of the desired argument in the dtargd_ndx field, and expects
1591 * the other fields to be filled in upon return. If there is no argument
1592 * corresponding to the specified index, the dtargd_ndx field should be set
1593 * to DTRACE_ARGNONE.
1594 *
1595 * 1.8.3 Return value
1596 *
1597 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1598 * members of the dtrace_argdesc_t structure are all output values.
1599 *
1600 * 1.8.4 Caller’s context
1601 *
1602 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1603 * the DTrace framework is locked in such a way that providers may not
1604 * register or unregister. This means that the provider may not call any
1605 * DTrace API that affects its registration with the framework, including
1606 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1607 * dtrace_condense().
1608 *
1609 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1610 * int argno, int aframes)
1611 *
1612 * 1.9.1 Overview
1613 *
1614 * Called to retrieve a value for an argX or args[X] variable.
1615 *
1616 * 1.9.2 Arguments and notes
1617 *
1618 * The first argument is the cookie as passed to dtrace_register(). The
1619 * second argument is the identifier of the current probe. The third
1620 * argument is the probe argument as passed to dtrace_probe_create(). The
1621 * fourth argument is the number of the argument (the X in the example in
1622 * 1.9.1). The fifth argument is the number of stack frames that were used
1623 * to get from the actual place in the code that fired the probe to
1624 * dtrace_probe() itself, the so-called artificial frames. This argument may
1625 * be used to descend an appropriate number of frames to find the correct
1626 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1627 * function is used.
1628 *
1629 * 1.9.3 Return value

new/usr/src/uts/common/sys/dtrace.h 22

1630 *
1631 * The value of the argument.
1632 *
1633 * 1.9.4 Caller’s context
1634 *
1635 * This is called from within dtrace_probe() meaning that interrupts
1636 * are disabled. No locks should be taken within this entry point.
1637 *
1638 * 1.10 int dtps_mode(void *arg, dtrace_id_t id, void *parg)
1639 *
1640 * 1.10.1 Overview
1641 *
1642 * Called to determine the mode of a fired probe.
1643 *
1644 * 1.10.2 Arguments and notes
1645 *
1646 * The first argument is the cookie as passed to dtrace_register(). The
1647 * second argument is the identifier of the current probe. The third
1648 * argument is the probe argument as passed to dtrace_probe_create(). This
1649 * entry point must not be left NULL for providers whose probes allow for
1650 * mixed mode tracing, that is to say those unanchored probes that can fire
1651 * during kernel- or user-mode execution.
1652 *
1653 * 1.10.3 Return value
1654 *
1655 * A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL
1656 * or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1657 * is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP,
1658 * DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT). If
1659 * DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result
1660 * in the probe firing being silently ignored for the enabling; if the
1661 * DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not
1662 * prevent probe processing for the enabling, but restrictions will be in
1663 * place that induce a UPRIV fault upon attempt to examine probe arguments
1664 * or current process state. If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit
1665 * is set, similar restrictions will be placed upon operation if the
1666 * privilege is sufficient to process the enabling, but does not otherwise
1667 * entitle the enabling to all zones. The DTRACE_MODE_NOPRIV_DROP and
1668 * DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these
1669 * two policies must be specified), but either may be combined (or not)
1670 * with DTRACE_MODE_LIMITEDPRIV_RESTRICT.
1671 *
1672 * 1.10.4 Caller’s context
1673 *
1674 * This is called from within dtrace_probe() meaning that interrupts
1675 * are disabled. No locks should be taken within this entry point.
1676 *
1677 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1678 *
1679 * 1.11.1 Overview
1680 *
1681 * Called to destroy the specified probe.
1682 *
1683 * 1.11.2 Arguments and notes
1684 *
1685 * The first argument is the cookie as passed to dtrace_register(). The
1686 * second argument is the identifier of the probe to be destroyed. The third
1687 * argument is the probe argument as passed to dtrace_probe_create(). The
1688 * provider should free all state associated with the probe. The framework
1689 * guarantees that dtps_destroy() is only called for probes that have either
1690 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1691 * Once dtps_disable() has been called for a probe, no further call will be
1692 * made specifying the probe.
1693 *
1694 * 1.11.3 Return value
1695 *

new/usr/src/uts/common/sys/dtrace.h 23

1696 * None.
1697 *
1698 * 1.11.4 Caller’s context
1699 *
1700 * The DTrace framework is locked in such a way that it may not be called
1701 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1702 * acquired.
1703 *
1704 *
1705 * 2 Provider-to-Framework API
1706 *
1707 * 2.1 Overview
1708 *
1709 * The Provider-to-Framework API provides the mechanism for the provider to
1710 * register itself with the DTrace framework, to create probes, to lookup
1711 * probes and (most importantly) to fire probes. The Provider-to-Framework
1712 * consists of:
1713 *
1714 * dtrace_register() <-- Register a provider with the DTrace framework
1715 * dtrace_unregister() <-- Remove a provider’s DTrace registration
1716 * dtrace_invalidate() <-- Invalidate the specified provider
1717 * dtrace_condense() <-- Remove a provider’s unenabled probes
1718 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1719 * dtrace_probe_create() <-- Create a DTrace probe
1720 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1721 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1722 * dtrace_probe() <-- Fire the specified probe
1723 *
1724 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1725 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1726 * dtrace_provider_id_t *idp)
1727 *
1728 * 2.2.1 Overview
1729 *
1730 * dtrace_register() registers the calling provider with the DTrace
1731 * framework. It should generally be called by DTrace providers in their
1732 * attach(9E) entry point.
1733 *
1734 * 2.2.2 Arguments and Notes
1735 *
1736 * The first argument is the name of the provider. The second argument is a
1737 * pointer to the stability attributes for the provider. The third argument
1738 * is the privilege flags for the provider, and must be some combination of:
1739 *
1740 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1741 *
1742 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1743 * enable probes from this provider
1744 *
1745 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1746 * enable probes from this provider
1747 *
1748 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1749 * may enable probes from this provider
1750 *
1751 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1752 * the privilege requirements above. These probes
1753 * require either (a) a user ID matching the user
1754 * ID of the cred passed in the fourth argument
1755 * or (b) the PRIV_PROC_OWNER privilege.
1756 *
1757 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1758 * the privilege requirements above. These probes
1759 * require either (a) a zone ID matching the zone
1760 * ID of the cred passed in the fourth argument
1761 * or (b) the PRIV_PROC_ZONE privilege.

new/usr/src/uts/common/sys/dtrace.h 24

1762 *
1763 * Note that these flags designate the _visibility_ of the probes, not
1764 * the conditions under which they may or may not fire.
1765 *
1766 * The fourth argument is the credential that is associated with the
1767 * provider. This argument should be NULL if the privilege flags don’t
1768 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1769 * framework stashes the uid and zoneid represented by this credential
1770 * for use at probe-time, in implicit predicates. These limit visibility
1771 * of the probes to users and/or zones which have sufficient privilege to
1772 * access them.
1773 *
1774 * The fifth argument is a DTrace provider operations vector, which provides
1775 * the implementation for the Framework-to-Provider API. (See Section 1,
1776 * above.) This must be non-NULL, and each member must be non-NULL. The
1777 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1778 * members (if the provider so desires, _one_ of these members may be left
1779 * NULL -- denoting that the provider only implements the other) and (2)
1780 * the dtps_suspend() and dtps_resume() members, which must either both be
1781 * NULL or both be non-NULL.
1782 *
1783 * The sixth argument is a cookie to be specified as the first argument for
1784 * each function in the Framework-to-Provider API. This argument may have
1785 * any value.
1786 *
1787 * The final argument is a pointer to dtrace_provider_id_t. If
1788 * dtrace_register() successfully completes, the provider identifier will be
1789 * stored in the memory pointed to be this argument. This argument must be
1790 * non-NULL.
1791 *
1792 * 2.2.3 Return value
1793 *
1794 * On success, dtrace_register() returns 0 and stores the new provider’s
1795 * identifier into the memory pointed to by the idp argument. On failure,
1796 * dtrace_register() returns an errno:
1797 *
1798 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
1799 * This may because a parameter that must be non-NULL was NULL,
1800 * because the name was invalid (either empty or an illegal
1801 * provider name) or because the attributes were invalid.
1802 *
1803 * No other failure code is returned.
1804 *
1805 * 2.2.4 Caller’s context
1806 *
1807 * dtrace_register() may induce calls to dtrace_provide(); the provider must
1808 * hold no locks across dtrace_register() that may also be acquired by
1809 * dtrace_provide(). cpu_lock and mod_lock must not be held.
1810 *
1811 * 2.3 int dtrace_unregister(dtrace_provider_t id)
1812 *
1813 * 2.3.1 Overview
1814 *
1815 * Unregisters the specified provider from the DTrace framework. It should
1816 * generally be called by DTrace providers in their detach(9E) entry point.
1817 *
1818 * 2.3.2 Arguments and Notes
1819 *
1820 * The only argument is the provider identifier, as returned from a
1821 * successful call to dtrace_register(). As a result of calling
1822 * dtrace_unregister(), the DTrace framework will call back into the provider
1823 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
1824 * completes, however, the DTrace framework will no longer make calls through
1825 * the Framework-to-Provider API.
1826 *
1827 * 2.3.3 Return value

new/usr/src/uts/common/sys/dtrace.h 25

1828 *
1829 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
1830 * returns an errno:
1831 *
1832 * EBUSY There are currently processes that have the DTrace pseudodevice
1833 * open, or there exists an anonymous enabling that hasn’t yet
1834 * been claimed.
1835 *
1836 * No other failure code is returned.
1837 *
1838 * 2.3.4 Caller’s context
1839 *
1840 * Because a call to dtrace_unregister() may induce calls through the
1841 * Framework-to-Provider API, the caller may not hold any lock across
1842 * dtrace_register() that is also acquired in any of the Framework-to-
1843 * Provider API functions. Additionally, mod_lock may not be held.
1844 *
1845 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
1846 *
1847 * 2.4.1 Overview
1848 *
1849 * Invalidates the specified provider. All subsequent probe lookups for the
1850 * specified provider will fail, but its probes will not be removed.
1851 *
1852 * 2.4.2 Arguments and note
1853 *
1854 * The only argument is the provider identifier, as returned from a
1855 * successful call to dtrace_register(). In general, a provider’s probes
1856 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
1857 * an entire provider, regardless of whether or not probes are enabled or
1858 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
1859 * probes from firing -- it will merely prevent any new enablings of the
1860 * provider’s probes.
1861 *
1862 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1863 *
1864 * 2.5.1 Overview
1865 *
1866 * Removes all the unenabled probes for the given provider. This function is
1867 * not unlike dtrace_unregister(), except that it doesn’t remove the
1868 * provider just as many of its associated probes as it can.
1869 *
1870 * 2.5.2 Arguments and Notes
1871 *
1872 * As with dtrace_unregister(), the sole argument is the provider identifier
1873 * as returned from a successful call to dtrace_register(). As a result of
1874 * calling dtrace_condense(), the DTrace framework will call back into the
1875 * given provider’s dtps_destroy() entry point for each of the provider’s
1876 * unenabled probes.
1877 *
1878 * 2.5.3 Return value
1879 *
1880 * Currently, dtrace_condense() always returns 0. However, consumers of this
1881 * function should check the return value as appropriate; its behavior may
1882 * change in the future.
1883 *
1884 * 2.5.4 Caller’s context
1885 *
1886 * As with dtrace_unregister(), the caller may not hold any lock across
1887 * dtrace_condense() that is also acquired in the provider’s entry points.
1888 * Also, mod_lock may not be held.
1889 *
1890 * 2.6 int dtrace_attached()
1891 *
1892 * 2.6.1 Overview
1893 *

new/usr/src/uts/common/sys/dtrace.h 26

1894 * Indicates whether or not DTrace has attached.
1895 *
1896 * 2.6.2 Arguments and Notes
1897 *
1898 * For most providers, DTrace makes initial contact beyond registration.
1899 * That is, once a provider has registered with DTrace, it waits to hear
1900 * from DTrace to create probes. However, some providers may wish to
1901 * proactively create probes without first being told by DTrace to do so.
1902 * If providers wish to do this, they must first call dtrace_attached() to
1903 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
1904 * the provider must not make any other Provider-to-Framework API call.
1905 *
1906 * 2.6.3 Return value
1907 *
1908 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1909 *
1910 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1911 * const char *func, const char *name, int aframes, void *arg)
1912 *
1913 * 2.7.1 Overview
1914 *
1915 * Creates a probe with specified module name, function name, and name.
1916 *
1917 * 2.7.2 Arguments and Notes
1918 *
1919 * The first argument is the provider identifier, as returned from a
1920 * successful call to dtrace_register(). The second, third, and fourth
1921 * arguments are the module name, function name, and probe name,
1922 * respectively. Of these, module name and function name may both be NULL
1923 * (in which case the probe is considered to be unanchored), or they may both
1924 * be non-NULL. The name must be non-NULL, and must point to a non-empty
1925 * string.
1926 *
1927 * The fifth argument is the number of artificial stack frames that will be
1928 * found on the stack when dtrace_probe() is called for the new probe. These
1929 * artificial frames will be automatically be pruned should the stack() or
1930 * stackdepth() functions be called as part of one of the probe’s ECBs. If
1931 * the parameter doesn’t add an artificial frame, this parameter should be
1932 * zero.
1933 *
1934 * The final argument is a probe argument that will be passed back to the
1935 * provider when a probe-specific operation is called. (e.g., via
1936 * dtps_enable(), dtps_disable(), etc.)
1937 *
1938 * Note that it is up to the provider to be sure that the probe that it
1939 * creates does not already exist -- if the provider is unsure of the probe’s
1940 * existence, it should assure its absence with dtrace_probe_lookup() before
1941 * calling dtrace_probe_create().
1942 *
1943 * 2.7.3 Return value
1944 *
1945 * dtrace_probe_create() always succeeds, and always returns the identifier
1946 * of the newly-created probe.
1947 *
1948 * 2.7.4 Caller’s context
1949 *
1950 * While dtrace_probe_create() is generally expected to be called from
1951 * dtps_provide() and/or dtps_provide_module(), it may be called from other
1952 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1953 *
1954 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1955 * const char *func, const char *name)
1956 *
1957 * 2.8.1 Overview
1958 *
1959 * Looks up a probe based on provdider and one or more of module name,

new/usr/src/uts/common/sys/dtrace.h 27

1960 * function name and probe name.
1961 *
1962 * 2.8.2 Arguments and Notes
1963 *
1964 * The first argument is the provider identifier, as returned from a
1965 * successful call to dtrace_register(). The second, third, and fourth
1966 * arguments are the module name, function name, and probe name,
1967 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
1968 * the identifier of the first probe that is provided by the specified
1969 * provider and matches all of the non-NULL matching criteria.
1970 * dtrace_probe_lookup() is generally used by a provider to be check the
1971 * existence of a probe before creating it with dtrace_probe_create().
1972 *
1973 * 2.8.3 Return value
1974 *
1975 * If the probe exists, returns its identifier. If the probe does not exist,
1976 * return DTRACE_IDNONE.
1977 *
1978 * 2.8.4 Caller’s context
1979 *
1980 * While dtrace_probe_lookup() is generally expected to be called from
1981 * dtps_provide() and/or dtps_provide_module(), it may also be called from
1982 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1983 *
1984 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1985 *
1986 * 2.9.1 Overview
1987 *
1988 * Returns the probe argument associated with the specified probe.
1989 *
1990 * 2.9.2 Arguments and Notes
1991 *
1992 * The first argument is the provider identifier, as returned from a
1993 * successful call to dtrace_register(). The second argument is a probe
1994 * identifier, as returned from dtrace_probe_lookup() or
1995 * dtrace_probe_create(). This is useful if a probe has multiple
1996 * provider-specific components to it: the provider can create the probe
1997 * once with provider-specific state, and then add to the state by looking
1998 * up the probe based on probe identifier.
1999 *
2000 * 2.9.3 Return value
2001 *
2002 * Returns the argument associated with the specified probe. If the
2003 * specified probe does not exist, or if the specified probe is not provided
2004 * by the specified provider, NULL is returned.
2005 *
2006 * 2.9.4 Caller’s context
2007 *
2008 * While dtrace_probe_arg() is generally expected to be called from
2009 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2010 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2011 *
2012 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2013 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2014 *
2015 * 2.10.1 Overview
2016 *
2017 * The epicenter of DTrace: fires the specified probes with the specified
2018 * arguments.
2019 *
2020 * 2.10.2 Arguments and Notes
2021 *
2022 * The first argument is a probe identifier as returned by
2023 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
2024 * arguments are the values to which the D variables "arg0" through "arg4"
2025 * will be mapped.

new/usr/src/uts/common/sys/dtrace.h 28

2026 *
2027 * dtrace_probe() should be called whenever the specified probe has fired --
2028 * however the provider defines it.
2029 *
2030 * 2.10.3 Return value
2031 *
2032 * None.
2033 *
2034 * 2.10.4 Caller’s context
2035 *
2036 * dtrace_probe() may be called in virtually any context: kernel, user,
2037 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2038 * dispatcher locks held, with interrupts disabled, etc. The only latitude
2039 * that must be afforded to DTrace is the ability to make calls within
2040 * itself (and to its in-kernel subroutines) and the ability to access
2041 * arbitrary (but mapped) memory. On some platforms, this constrains
2042 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
2043 * from any context in which TL is greater than zero. dtrace_probe() may
2044 * also not be called from any routine which may be called by dtrace_probe()
2045 * -- which includes functions in the DTrace framework and some in-kernel
2046 * DTrace subroutines. All such functions "dtrace_"; providers that
2047 * instrument the kernel arbitrarily should be sure to not instrument these
2048 * routines.
2049 */
2050 typedef struct dtrace_pops {
2051 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2052 void (*dtps_provide_module)(void *arg, struct modctl *mp);
2053 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2054 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2055 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2056 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2057 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2058 dtrace_argdesc_t *desc);
2059 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2060 int argno, int aframes);
2061 int (*dtps_mode)(void *arg, dtrace_id_t id, void *parg);
2062 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2063 } dtrace_pops_t;

2065 #define DTRACE_MODE_KERNEL 0x01
2066 #define DTRACE_MODE_USER 0x02
2067 #define DTRACE_MODE_NOPRIV_DROP 0x10
2068 #define DTRACE_MODE_NOPRIV_RESTRICT 0x20
2069 #define DTRACE_MODE_LIMITEDPRIV_RESTRICT 0x40

2071 typedef uintptr_t dtrace_provider_id_t;

2073 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2074 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2075 extern int dtrace_unregister(dtrace_provider_id_t);
2076 extern int dtrace_condense(dtrace_provider_id_t);
2077 extern void dtrace_invalidate(dtrace_provider_id_t);
2078 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2079 const char *, const char *);
2080 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2081 const char *, const char *, int, void *);
2082 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2083 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2084 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);

2086 /*
2087 * DTrace Meta Provider API
2088 *
2089 * The following functions are implemented by the DTrace framework and are
2090 * used to implement meta providers. Meta providers plug into the DTrace
2091 * framework and are used to instantiate new providers on the fly. At

new/usr/src/uts/common/sys/dtrace.h 29

2092 * present, there is only one type of meta provider and only one meta
2093 * provider may be registered with the DTrace framework at a time. The
2094 * sole meta provider type provides user-land static tracing facilities
2095 * by taking meta probe descriptions and adding a corresponding provider
2096 * into the DTrace framework.
2097 *
2098 * 1 Framework-to-Provider
2099 *
2100 * 1.1 Overview
2101 *
2102 * The Framework-to-Provider API is represented by the dtrace_mops structure
2103 * that the meta provider passes to the framework when registering itself as
2104 * a meta provider. This structure consists of the following members:
2105 *
2106 * dtms_create_probe() <-- Add a new probe to a created provider
2107 * dtms_provide_pid() <-- Create a new provider for a given process
2108 * dtms_remove_pid() <-- Remove a previously created provider
2109 *
2110 * 1.2 void dtms_create_probe(void *arg, void *parg,
2111 * dtrace_helper_probedesc_t *probedesc);
2112 *
2113 * 1.2.1 Overview
2114 *
2115 * Called by the DTrace framework to create a new probe in a provider
2116 * created by this meta provider.
2117 *
2118 * 1.2.2 Arguments and notes
2119 *
2120 * The first argument is the cookie as passed to dtrace_meta_register().
2121 * The second argument is the provider cookie for the associated provider;
2122 * this is obtained from the return value of dtms_provide_pid(). The third
2123 * argument is the helper probe description.
2124 *
2125 * 1.2.3 Return value
2126 *
2127 * None
2128 *
2129 * 1.2.4 Caller’s context
2130 *
2131 * dtms_create_probe() is called from either ioctl() or module load context.
2132 * The DTrace framework is locked in such a way that meta providers may not
2133 * register or unregister. This means that the meta provider cannot call
2134 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2135 * such that the provider may (and is expected to) call provider-related
2136 * DTrace provider APIs including dtrace_probe_create().
2137 *
2138 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2139 * pid_t pid)
2140 *
2141 * 1.3.1 Overview
2142 *
2143 * Called by the DTrace framework to instantiate a new provider given the
2144 * description of the provider and probes in the mprov argument. The
2145 * meta provider should call dtrace_register() to insert the new provider
2146 * into the DTrace framework.
2147 *
2148 * 1.3.2 Arguments and notes
2149 *
2150 * The first argument is the cookie as passed to dtrace_meta_register().
2151 * The second argument is a pointer to a structure describing the new
2152 * helper provider. The third argument is the process identifier for
2153 * process associated with this new provider. Note that the name of the
2154 * provider as passed to dtrace_register() should be the contatenation of
2155 * the dtmpb_provname member of the mprov argument and the processs
2156 * identifier as a string.
2157 *

new/usr/src/uts/common/sys/dtrace.h 30

2158 * 1.3.3 Return value
2159 *
2160 * The cookie for the provider that the meta provider creates. This is
2161 * the same value that it passed to dtrace_register().
2162 *
2163 * 1.3.4 Caller’s context
2164 *
2165 * dtms_provide_pid() is called from either ioctl() or module load context.
2166 * The DTrace framework is locked in such a way that meta providers may not
2167 * register or unregister. This means that the meta provider cannot call
2168 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2169 * is such that the provider may -- and is expected to -- call
2170 * provider-related DTrace provider APIs including dtrace_register().
2171 *
2172 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2173 * pid_t pid)
2174 *
2175 * 1.4.1 Overview
2176 *
2177 * Called by the DTrace framework to remove a provider that had previously
2178 * been instantiated via the dtms_provide_pid() entry point. The meta
2179 * provider need not remove the provider immediately, but this entry
2180 * point indicates that the provider should be removed as soon as possible
2181 * using the dtrace_unregister() API.
2182 *
2183 * 1.4.2 Arguments and notes
2184 *
2185 * The first argument is the cookie as passed to dtrace_meta_register().
2186 * The second argument is a pointer to a structure describing the helper
2187 * provider. The third argument is the process identifier for process
2188 * associated with this new provider.
2189 *
2190 * 1.4.3 Return value
2191 *
2192 * None
2193 *
2194 * 1.4.4 Caller’s context
2195 *
2196 * dtms_remove_pid() is called from either ioctl() or exit() context.
2197 * The DTrace framework is locked in such a way that meta providers may not
2198 * register or unregister. This means that the meta provider cannot call
2199 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2200 * is such that the provider may -- and is expected to -- call
2201 * provider-related DTrace provider APIs including dtrace_unregister().
2202 */
2203 typedef struct dtrace_helper_probedesc {
2204 char *dthpb_mod; /* probe module */
2205 char *dthpb_func; /* probe function */
2206 char *dthpb_name; /* probe name */
2207 uint64_t dthpb_base; /* base address */
2208 uint32_t *dthpb_offs; /* offsets array */
2209 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2210 uint32_t dthpb_noffs; /* offsets count */
2211 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2212 uint8_t *dthpb_args; /* argument mapping array */
2213 uint8_t dthpb_xargc; /* translated argument count */
2214 uint8_t dthpb_nargc; /* native argument count */
2215 char *dthpb_xtypes; /* translated types strings */
2216 char *dthpb_ntypes; /* native types strings */
2217 } dtrace_helper_probedesc_t;

2219 typedef struct dtrace_helper_provdesc {
2220 char *dthpv_provname; /* provider name */
2221 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2222 } dtrace_helper_provdesc_t;

new/usr/src/uts/common/sys/dtrace.h 31

2224 typedef struct dtrace_mops {
2225 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2226 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2227 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2228 } dtrace_mops_t;

2230 typedef uintptr_t dtrace_meta_provider_id_t;

2232 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2233 dtrace_meta_provider_id_t *);
2234 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);

2236 /*
2237 * DTrace Kernel Hooks
2238 *
2239 * The following functions are implemented by the base kernel and form a set of
2240 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2241 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2242 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2243 */

2245 typedef enum dtrace_vtime_state {
2246 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2247 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2248 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2249 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2250 } dtrace_vtime_state_t;

2252 extern dtrace_vtime_state_t dtrace_vtime_active;
2253 extern void dtrace_vtime_switch(kthread_t *next);
2254 extern void dtrace_vtime_enable_tnf(void);
2255 extern void dtrace_vtime_disable_tnf(void);
2256 extern void dtrace_vtime_enable(void);
2257 extern void dtrace_vtime_disable(void);

2259 struct regs;

2261 extern int (*dtrace_pid_probe_ptr)(struct regs *);
2262 extern int (*dtrace_return_probe_ptr)(struct regs *);
2263 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2264 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2265 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2266 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);

2268 typedef uintptr_t dtrace_icookie_t;
2269 typedef void (*dtrace_xcall_t)(void *);

2271 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2272 extern void dtrace_interrupt_enable(dtrace_icookie_t);

2274 extern void dtrace_membar_producer(void);
2275 extern void dtrace_membar_consumer(void);

2277 extern void (*dtrace_cpu_init)(processorid_t);
2278 extern void (*dtrace_modload)(struct modctl *);
2279 extern void (*dtrace_modunload)(struct modctl *);
2280 extern void (*dtrace_helpers_cleanup)();
2281 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2282 extern void (*dtrace_cpustart_init)();
2283 extern void (*dtrace_cpustart_fini)();
2284 extern void (*dtrace_closef)();

2286 extern void (*dtrace_debugger_init)();
2287 extern void (*dtrace_debugger_fini)();
2288 extern dtrace_cacheid_t dtrace_predcache_id;

new/usr/src/uts/common/sys/dtrace.h 32

2290 extern hrtime_t dtrace_gethrtime(void);
2291 extern void dtrace_sync(void);
2292 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2293 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2294 extern void dtrace_vpanic(const char *, __va_list);
2295 extern void dtrace_panic(const char *, ...);

2297 extern int dtrace_safe_defer_signal(void);
2298 extern void dtrace_safe_synchronous_signal(void);

2300 extern int dtrace_mach_aframes(void);

2302 #if defined(__i386) || defined(__amd64)
2303 extern int dtrace_instr_size(uchar_t *instr);
2304 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2305 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2306 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2307 extern void dtrace_invop_callsite(void);
2308 #endif

2310 #ifdef __sparc
2311 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2312 extern void dtrace_getfsr(uint64_t *);
2313 #endif

2315 #define DTRACE_CPUFLAG_ISSET(flag) \
2316 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))

2318 #define DTRACE_CPUFLAG_SET(flag) \
2319 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))

2321 #define DTRACE_CPUFLAG_CLEAR(flag) \
2322 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))

2324 #endif /* _KERNEL */

2326 #endif /* _ASM */

2328 #if defined(__i386) || defined(__amd64)

2330 #define DTRACE_INVOP_PUSHL_EBP 1
2331 #define DTRACE_INVOP_POPL_EBP 2
2332 #define DTRACE_INVOP_LEAVE 3
2333 #define DTRACE_INVOP_NOP 4
2334 #define DTRACE_INVOP_RET 5

2336 #endif

2338 #ifdef __cplusplus
2339 }
2340 #endif

2342 #endif /* _SYS_DTRACE_H */

