
new/usr/src/cmd/dtrace/test/tst/common/aggs/tst.subr.d 1

**
 2951 Tue Jan 14 16:49:58 2014
new/usr/src/cmd/dtrace/test/tst/common/aggs/tst.subr.d
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #include <sys/dtrace.h>

29 #define INTFUNC(x) \
30 BEGIN \
31 /*DSTYLED*/ \
32 { \
33 subr++; \
34 @[(long)x] = sum(1); \
35 /*DSTYLED*/ \
36 }

38 #define STRFUNC(x) \
39 BEGIN \
40 /*DSTYLED*/ \
41 { \
42 subr++; \
43 @str[x] = sum(1); \
44 /*DSTYLED*/ \
45 }

47 #define VOIDFUNC(x) \
48 BEGIN \
49 /*DSTYLED*/ \
50 { \
51 subr++; \
52 /*DSTYLED*/ \
53 }

55 INTFUNC(rand())
56 INTFUNC(mutex_owned(&‘cpu_lock))
57 INTFUNC(mutex_owner(&‘cpu_lock))

new/usr/src/cmd/dtrace/test/tst/common/aggs/tst.subr.d 2

58 INTFUNC(mutex_type_adaptive(&‘cpu_lock))
59 INTFUNC(mutex_type_spin(&‘cpu_lock))
60 INTFUNC(rw_read_held(&‘vfssw_lock))
61 INTFUNC(rw_write_held(&‘vfssw_lock))
62 INTFUNC(rw_iswriter(&‘vfssw_lock))
63 INTFUNC(copyin(NULL, 1))
64 STRFUNC(copyinstr(NULL, 1))
65 INTFUNC(speculation())
66 INTFUNC(progenyof($pid))
67 INTFUNC(strlen("fooey"))
68 VOIDFUNC(copyout)
69 VOIDFUNC(copyoutstr)
70 INTFUNC(alloca(10))
71 VOIDFUNC(bcopy)
72 VOIDFUNC(copyinto)
73 INTFUNC(msgdsize(NULL))
74 INTFUNC(msgsize(NULL))
75 INTFUNC(getmajor(0))
76 INTFUNC(getminor(0))
77 STRFUNC(ddi_pathname(NULL, 0))
78 STRFUNC(strjoin("foo", "bar"))
79 STRFUNC(lltostr(12373))
80 STRFUNC(basename("/var/crash/systemtap"))
81 STRFUNC(dirname("/var/crash/systemtap"))
82 STRFUNC(cleanpath("/var/crash/systemtap"))
83 STRFUNC(strchr("The SystemTap, The.", ’t’))
84 STRFUNC(strrchr("The SystemTap, The.", ’t’))
85 STRFUNC(strstr("The SystemTap, The.", "The"))
86 STRFUNC(strtok("The SystemTap, The.", "T"))
87 STRFUNC(substr("The SystemTap, The.", 0))
88 INTFUNC(index("The SystemTap, The.", "The"))
89 INTFUNC(rindex("The SystemTap, The.", "The"))
90 INTFUNC(htons(0x1234))
91 INTFUNC(htonl(0x12345678))
92 INTFUNC(htonll(0x1234567890abcdefL))
93 INTFUNC(ntohs(0x1234))
94 INTFUNC(ntohl(0x12345678))
95 INTFUNC(ntohll(0x1234567890abcdefL))
96 STRFUNC(inet_ntoa((ipaddr_t *)alloca(sizeof (ipaddr_t))))
97 STRFUNC(inet_ntoa6((in6_addr_t *)alloca(sizeof (in6_addr_t))))
98 STRFUNC(inet_ntop(AF_INET, (void *)alloca(sizeof (ipaddr_t))))
99 STRFUNC(toupper("foo"))
100 STRFUNC(tolower("BAR"))
101 INTFUNC(getf(0))
102 #endif /* ! codereview */

104 BEGIN
105 /subr == DIF_SUBR_MAX + 1/
106 {
107 exit(0);
108 }

110 BEGIN
111 {
112 printf("found %d subroutines, expected %d\n", subr, DIF_SUBR_MAX + 1);
113 exit(1);
114 }

new/usr/src/cmd/dtrace/test/tst/common/privs/tst.fds.ksh 1

**
 2018 Tue Jan 14 16:49:58 2014
new/usr/src/cmd/dtrace/test/tst/common/privs/tst.fds.ksh
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 #

26 tmpin=/tmp/tst.fds.$$.d
27 tmpout1=/tmp/tst.fds.$$.out1
28 tmpout2=/tmp/tst.fds.$$.out2

30 cat > $tmpin <<EOF
31 #define DUMPFIELD(fd, fmt, field) \
32 errmsg = "could not dump field"; \
33 printf("%d: field =fmt\n", fd, fds[fd].field);

35 /*
36 * Note that we are explicitly not looking at fi_mount -- it (by design) does
37 * not work if not running with kernel permissions.
38 */
39 #define DUMP(fd) \
40 DUMPFIELD(fd, %s, fi_name); \
41 DUMPFIELD(fd, %s, fi_dirname); \
42 DUMPFIELD(fd, %s, fi_pathname); \
43 DUMPFIELD(fd, %d, fi_offset); \
44 DUMPFIELD(fd, %s, fi_fs); \
45 DUMPFIELD(fd, %o, fi_oflags);

47 BEGIN
48 {
49 DUMP(0);
50 DUMP(1);
51 DUMP(2);
52 DUMP(3);
53 DUMP(4);
54 exit(0);
55 }

57 ERROR

new/usr/src/cmd/dtrace/test/tst/common/privs/tst.fds.ksh 2

58 {
59 printf("error: %s\n", errmsg);
60 exit(1);
61 }
62 EOF

64 #
65 # First, with all privs
66 #
67 /usr/sbin/dtrace -q -Cs /dev/stdin < $tmpin > $tmpout2
68 mv $tmpout2 $tmpout1

70 #
71 # And now with only dtrace_proc and dtrace_user -- the output should be
72 # identical.
73 #
74 ppriv -s A=basic,dtrace_proc,dtrace_user $$

76 /usr/sbin/dtrace -q -Cs /dev/stdin < $tmpin > $tmpout2

78 echo ">>> $tmpout1"
79 cat $tmpout1

81 echo ">>> $tmpout2"
82 cat $tmpout2

84 rval=0

86 if ! cmp $tmpout1 $tmpout2 ; then
87 rval=1
88 fi

90 rm $tmpout1 $tmpout2 $tmpin
91 exit $rval
92 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/privs/tst.getf.ksh 1

**
 2179 Tue Jan 14 16:49:59 2014
new/usr/src/cmd/dtrace/test/tst/common/privs/tst.getf.ksh
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 #

26 ppriv -s A=basic,dtrace_proc,dtrace_user $$

28 /usr/sbin/dtrace -q -Cs /dev/stdin <<EOF

30 #define CANREAD(field) \
31 BEGIN { this->fp = getf(0); errmsg = "can’t read field"; \
32 printf("field: "); trace(this->fp->field); printf("\n"); }

34 #define CANTREAD(field) \
35 BEGIN { errmsg = ""; this->fp = getf(0); trace(this->fp->field); \
36 printf("\nable to successfully read field!"); exit(1); }

38 CANREAD(f_flag)
39 CANREAD(f_flag2)
40 CANREAD(f_vnode)
41 CANREAD(f_offset)
42 CANREAD(f_cred)
43 CANREAD(f_audit_data)
44 CANREAD(f_count)

46 /*
47 * We can potentially read parts of our cred, but we can’t dereference
48 * through cr_zone.
49 */
50 CANTREAD(f_cred->cr_zone->zone_id)

52 CANREAD(f_vnode->v_path)
53 CANREAD(f_vnode->v_op)
54 CANREAD(f_vnode->v_op->vnop_name)

56 CANTREAD(f_vnode->v_flag)
57 CANTREAD(f_vnode->v_count)

new/usr/src/cmd/dtrace/test/tst/common/privs/tst.getf.ksh 2

58 CANTREAD(f_vnode->v_pages)
59 CANTREAD(f_vnode->v_type)
60 CANTREAD(f_vnode->v_vfsmountedhere)
61 CANTREAD(f_vnode->v_op->vop_open)

63 BEGIN
64 {
65 errmsg = "";
66 this->fp = getf(0);
67 this->fp2 = getf(1);

69 trace(this->fp->f_vnode);
70 printf("\nable to successfully read this->fp!");
71 exit(1);
72 }

74 BEGIN
75 {
76 errmsg = "";
77 this->fp = getf(0);
78 }

80 BEGIN
81 {
82 trace(this->fp->f_vnode);
83 printf("\nable to successfully read this->fp from prior clause!");
84 }

86 BEGIN
87 {
88 exit(0);
89 }

91 ERROR
92 /errmsg != ""/
93 {
94 printf("fatal error: %s", errmsg);
95 exit(1);
96 }
97
98 EOF
99 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/privs/tst.procpriv.ksh 1

**
 4157 Tue Jan 14 16:49:59 2014
new/usr/src/cmd/dtrace/test/tst/common/privs/tst.procpriv.ksh
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 #

26 ppriv -s A=basic,dtrace_proc,dtrace_user $$

28 #
29 # When we have dtrace_proc (but lack dtrace_kernel), we expect to be able to
30 # read certain curpsinfo/curlwpsinfo/curcpu fields even though they require
31 # reading in-kernel state. However, there are other fields in these translated
32 # structures that we know we shouldn’t be able to read, as they require reading
33 # in-kernel state that we cannot read with only dtrace_proc. Finally, there
34 # are a few fields that we may or may not be able to read depending on the
35 # specifics of context. This test therefore asserts that we can read what we
36 # think we should be able to, that we can’t read what we think we shouldn’t be
37 # able to, and (for purposes of completeness) that we are indifferent about
38 # what we cannot assert one way or the other.
39 #
40 /usr/sbin/dtrace -q -Cs /dev/stdin <<EOF

42 #define CANREAD(what, field) \
43 BEGIN { errmsg = "can’t read field from what"; printf("field: "); \
44 trace(what->field); printf("\n"); }

46 #define CANTREAD(what, field) \
47 BEGIN { errmsg = ""; trace(what->field); \
48 printf("\nable to successfully read field from what!"); exit(1); }

50 #define MIGHTREAD(what, field) \
51 BEGIN { errmsg = ""; printf("field: "); trace(what->field); printf("\n"); }

53 #define CANREADVAR(vname) \
54 BEGIN { errmsg = "can’t read vname"; printf("vname: "); \
55 trace(vname); printf("\n"); }

57 #define CANTREADVAR(vname) \

new/usr/src/cmd/dtrace/test/tst/common/privs/tst.procpriv.ksh 2

58 BEGIN { errmsg = ""; trace(vname); \
59 printf("\nable to successfully read vname!"); exit(1); }

61 #define MIGHTREADVAR(vname) \
62 BEGIN { errmsg = ""; printf("vname: "); trace(vname); printf("\n"); }

64 CANREAD(curpsinfo, pr_pid)
65 CANREAD(curpsinfo, pr_nlwp)
66 CANREAD(curpsinfo, pr_ppid)
67 CANREAD(curpsinfo, pr_uid)
68 CANREAD(curpsinfo, pr_euid)
69 CANREAD(curpsinfo, pr_gid)
70 CANREAD(curpsinfo, pr_egid)
71 CANREAD(curpsinfo, pr_addr)
72 CANREAD(curpsinfo, pr_start)
73 CANREAD(curpsinfo, pr_fname)
74 CANREAD(curpsinfo, pr_psargs)
75 CANREAD(curpsinfo, pr_argc)
76 CANREAD(curpsinfo, pr_argv)
77 CANREAD(curpsinfo, pr_envp)
78 CANREAD(curpsinfo, pr_dmodel)

80 /*
81 * If our p_pgidp points to the same pid structure as our p_pidp, we will
82 * be able to read pr_pgid -- but we won’t if not.
83 */
84 MIGHTREAD(curpsinfo, pr_pgid)

86 CANTREAD(curpsinfo, pr_sid)
87 CANTREAD(curpsinfo, pr_ttydev)
88 CANTREAD(curpsinfo, pr_projid)
89 CANTREAD(curpsinfo, pr_zoneid)
90 CANTREAD(curpsinfo, pr_contract)

92 CANREAD(curlwpsinfo, pr_flag)
93 CANREAD(curlwpsinfo, pr_lwpid)
94 CANREAD(curlwpsinfo, pr_addr)
95 CANREAD(curlwpsinfo, pr_wchan)
96 CANREAD(curlwpsinfo, pr_stype)
97 CANREAD(curlwpsinfo, pr_state)
98 CANREAD(curlwpsinfo, pr_sname)
99 CANREAD(curlwpsinfo, pr_syscall)
100 CANREAD(curlwpsinfo, pr_pri)
101 CANREAD(curlwpsinfo, pr_onpro)
102 CANREAD(curlwpsinfo, pr_bindpro)
103 CANREAD(curlwpsinfo, pr_bindpset)

105 CANTREAD(curlwpsinfo, pr_clname)
106 CANTREAD(curlwpsinfo, pr_lgrp)

108 CANREAD(curcpu, cpu_id)

110 CANTREAD(curcpu, cpu_pset)
111 CANTREAD(curcpu, cpu_chip)
112 CANTREAD(curcpu, cpu_lgrp)
113 CANTREAD(curcpu, cpu_info)

115 /*
116 * We cannot assert one thing or another about the variable "root": for those
117 * with only dtrace_proc, it will be readable in the global but not readable in
118 * the non-global.
119 */
120 MIGHTREADVAR(root)

122 CANREADVAR(cpu)
123 CANTREADVAR(pset)

new/usr/src/cmd/dtrace/test/tst/common/privs/tst.procpriv.ksh 3

124 CANTREADVAR(cwd)
125 CANTREADVAR(chip)
126 CANTREADVAR(lgrp)

128 BEGIN
129 {
130 exit(0);
131 }

133 ERROR
134 /errmsg != ""/
135 {
136 printf("fatal error: %s", errmsg);
137 exit(1);
138 }
139 #endif /* ! codereview */

new/usr/src/cmd/dtrace/test/tst/common/privs/tst.providers.ksh 1

**
 3027 Tue Jan 14 16:49:59 2014
new/usr/src/cmd/dtrace/test/tst/common/privs/tst.providers.ksh
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 #

26 #
27 # First, make sure that we can successfully enable the io provider
28 #
29 if ! dtrace -P io -n BEGIN’{exit(0)}’ > /dev/null 2>&1 ; then
30 echo failed to enable io provider with full privs
31 exit 1
32 fi

34 ppriv -s A=basic,dtrace_proc,dtrace_user $$

36 #
37 # Now make sure that we cannot enable the io provider with reduced privs
38 #
39 if ! dtrace -x errtags -P io -n BEGIN’{exit(1)}’ 2>&1 | \
40 grep D_PDESC_ZERO > /dev/null 2>&1 ; then
41 echo successfully enabled the io provider with reduced privs
42 exit 1
43 fi

45 #
46 # Keeping our reduced privs, we want to assure that we can see every provider
47 # that we think we should be able to see -- and that we can see curpsinfo
48 # state but can’t otherwise see arguments.
49 #
50 /usr/sbin/dtrace -wq -Cs /dev/stdin <<EOF

52 int seen[string];
53 int err;

55 #define CANENABLE(provider) \
56 provider::: \
57 /err == 0 && progenyof(\$pid) && !seen["provider"]/ \

new/usr/src/cmd/dtrace/test/tst/common/privs/tst.providers.ksh 2

58 { \
59 trace(arg0); \
60 printf("\nsuccessful trace of arg0 in %s:%s:%s:%s\n", \
61 probeprov, probemod, probefunc, probename); \
62 exit(++err); \
63 } \
64 \
65 provider::: \
66 /progenyof(\$pid)/ \
67 { \
68 seen["provider"]++; \
69 } \
70 \
71 provider::: \
72 /progenyof(\$pid)/ \
73 { \
74 errstr = "provider"; \
75 this->ignore = stringof(curpsinfo->pr_psargs); \
76 errstr = ""; \
77 } \
78 \
79 END \
80 /err == 0 && !seen["provider"]/ \
81 { \
82 printf("no probes from provider\n"); \
83 exit(++err); \
84 } \
85 \
86 END \
87 /err == 0/ \
88 { \
89 printf("saw %d probes from provider\n", seen["provider"]); \
90 }

92 CANENABLE(proc)
93 CANENABLE(sched)
94 CANENABLE(vminfo)
95 CANENABLE(sysinfo)

97 BEGIN
98 {
99 /*
100 * We’ll kick off a system of a do-nothing command -- which should be
101 * enough to kick proc, sched, vminfo and sysinfo probes.
102 */
103 system("echo > /dev/null");
104 }

106 ERROR
107 /err == 0 && errstr != ""/
108 {
109 printf("fatal error: couldn’t read curpsinfo->pr_psargs in ");
110 printf("%s-provided probe\n", errstr);
111 exit(++err);
112 }

114 proc:::exit
115 /progenyof(\$pid)/
116 {
117 exit(0);
118 }

120 tick-10ms
121 /i++ > 500/
122 {
123 printf("exit probe did not seem to fire\n");

new/usr/src/cmd/dtrace/test/tst/common/privs/tst.providers.ksh 3

124 exit(++err);
125 }
126 EOF
127 #endif /* ! codereview */

new/usr/src/lib/libdtrace/common/dt_open.c 1

**
 53829 Tue Jan 14 16:49:59 2014
new/usr/src/lib/libdtrace/common/dt_open.c
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 */

28 #include <sys/types.h>
29 #include <sys/modctl.h>
30 #include <sys/systeminfo.h>
31 #include <sys/resource.h>

33 #include <libelf.h>
34 #include <strings.h>
35 #include <alloca.h>
36 #include <limits.h>
37 #include <unistd.h>
38 #include <stdlib.h>
39 #include <stdio.h>
40 #include <fcntl.h>
41 #include <errno.h>
42 #include <assert.h>

44 #define _POSIX_PTHREAD_SEMANTICS
45 #include <dirent.h>
46 #undef _POSIX_PTHREAD_SEMANTICS

48 #include <dt_impl.h>
49 #include <dt_program.h>
50 #include <dt_module.h>
51 #include <dt_printf.h>
52 #include <dt_string.h>
53 #include <dt_provider.h>

55 /*
56 * Stability and versioning definitions. These #defines are used in the tables

new/usr/src/lib/libdtrace/common/dt_open.c 2

57 * of identifiers below to fill in the attribute and version fields associated
58 * with each identifier. The DT_ATTR_* macros are a convenience to permit more
59 * concise declarations of common attributes such as Stable/Stable/Common. The
60 * DT_VERS_* macros declare the encoded integer values of all versions used so
61 * far. DT_VERS_LATEST must correspond to the latest version value among all
62 * versions exported by the D compiler. DT_VERS_STRING must be an ASCII string
63 * that contains DT_VERS_LATEST within it along with any suffixes (e.g. Beta).
64 * You must update DT_VERS_LATEST and DT_VERS_STRING when adding a new version,
65 * and then add the new version to the _dtrace_versions[] array declared below.
66 * Refer to the Solaris Dynamic Tracing Guide Stability and Versioning chapters
67 * respectively for an explanation of these DTrace features and their values.
68 *
69 * NOTE: Although the DTrace versioning scheme supports the labeling and
70 * introduction of incompatible changes (e.g. dropping an interface in a
71 * major release), the libdtrace code does not currently support this.
72 * All versions are assumed to strictly inherit from one another. If
73 * we ever need to provide divergent interfaces, this will need work.
74 */
75 #define DT_ATTR_STABCMN { DTRACE_STABILITY_STABLE, \
76 DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }

78 #define DT_ATTR_EVOLCMN { DTRACE_STABILITY_EVOLVING, \
79 DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON \
80 }

82 /*
83 * The version number should be increased for every customer visible release
84 * of DTrace. The major number should be incremented when a fundamental
85 * change has been made that would affect all consumers, and would reflect
86 * sweeping changes to DTrace or the D language. The minor number should be
87 * incremented when a change is introduced that could break scripts that had
88 * previously worked; for example, adding a new built-in variable could break
89 * a script which was already using that identifier. The micro number should
90 * be changed when introducing functionality changes or major bug fixes that
91 * do not affect backward compatibility -- this is merely to make capabilities
92 * easily determined from the version number. Minor bugs do not require any
93 * modification to the version number.
94 */
95 #define DT_VERS_1_0 DT_VERSION_NUMBER(1, 0, 0)
96 #define DT_VERS_1_1 DT_VERSION_NUMBER(1, 1, 0)
97 #define DT_VERS_1_2 DT_VERSION_NUMBER(1, 2, 0)
98 #define DT_VERS_1_2_1 DT_VERSION_NUMBER(1, 2, 1)
99 #define DT_VERS_1_2_2 DT_VERSION_NUMBER(1, 2, 2)
100 #define DT_VERS_1_3 DT_VERSION_NUMBER(1, 3, 0)
101 #define DT_VERS_1_4 DT_VERSION_NUMBER(1, 4, 0)
102 #define DT_VERS_1_4_1 DT_VERSION_NUMBER(1, 4, 1)
103 #define DT_VERS_1_5 DT_VERSION_NUMBER(1, 5, 0)
104 #define DT_VERS_1_6 DT_VERSION_NUMBER(1, 6, 0)
105 #define DT_VERS_1_6_1 DT_VERSION_NUMBER(1, 6, 1)
106 #define DT_VERS_1_6_2 DT_VERSION_NUMBER(1, 6, 2)
107 #define DT_VERS_1_6_3 DT_VERSION_NUMBER(1, 6, 3)
108 #define DT_VERS_1_7 DT_VERSION_NUMBER(1, 7, 0)
109 #define DT_VERS_1_7_1 DT_VERSION_NUMBER(1, 7, 1)
110 #define DT_VERS_1_8 DT_VERSION_NUMBER(1, 8, 0)
111 #define DT_VERS_1_8_1 DT_VERSION_NUMBER(1, 8, 1)
112 #define DT_VERS_1_9 DT_VERSION_NUMBER(1, 9, 0)
113 #define DT_VERS_1_9_1 DT_VERSION_NUMBER(1, 9, 1)
114 #define DT_VERS_1_10 DT_VERSION_NUMBER(1, 10, 0)
115 #define DT_VERS_LATEST DT_VERS_1_10
116 #define DT_VERS_STRING "Sun D 1.10"
114 #define DT_VERS_LATEST DT_VERS_1_9_1
115 #define DT_VERS_STRING "Sun D 1.9.1"

118 const dt_version_t _dtrace_versions[] = {
119 DT_VERS_1_0, /* D API 1.0.0 (PSARC 2001/466) Solaris 10 FCS */
120 DT_VERS_1_1, /* D API 1.1.0 Solaris Express 6/05 */

new/usr/src/lib/libdtrace/common/dt_open.c 3

121 DT_VERS_1_2, /* D API 1.2.0 Solaris 10 Update 1 */
122 DT_VERS_1_2_1, /* D API 1.2.1 Solaris Express 4/06 */
123 DT_VERS_1_2_2, /* D API 1.2.2 Solaris Express 6/06 */
124 DT_VERS_1_3, /* D API 1.3 Solaris Express 10/06 */
125 DT_VERS_1_4, /* D API 1.4 Solaris Express 2/07 */
126 DT_VERS_1_4_1, /* D API 1.4.1 Solaris Express 4/07 */
127 DT_VERS_1_5, /* D API 1.5 Solaris Express 7/07 */
128 DT_VERS_1_6, /* D API 1.6 */
129 DT_VERS_1_6_1, /* D API 1.6.1 */
130 DT_VERS_1_6_2, /* D API 1.6.2 */
131 DT_VERS_1_6_3, /* D API 1.6.3 */
132 DT_VERS_1_7, /* D API 1.7 */
133 DT_VERS_1_7_1, /* D API 1.7.1 */
134 DT_VERS_1_8, /* D API 1.8 */
135 DT_VERS_1_8_1, /* D API 1.8.1 */
136 DT_VERS_1_9, /* D API 1.9 */
137 DT_VERS_1_9_1, /* D API 1.9.1 */
138 DT_VERS_1_10, /* D API 1.10 */
139 #endif /* ! codereview */
140 0
141 };

143 /*
144 * Table of global identifiers. This is used to populate the global identifier
145 * hash when a new dtrace client open occurs. For more info see dt_ident.h.
146 * The global identifiers that represent functions use the dt_idops_func ops
147 * and specify the private data pointer as a prototype string which is parsed
148 * when the identifier is first encountered. These prototypes look like ANSI
149 * C function prototypes except that the special symbol "@" can be used as a
150 * wildcard to represent a single parameter of any type (i.e. any dt_node_t).
151 * The standard "..." notation can also be used to represent varargs. An empty
152 * parameter list is taken to mean void (that is, no arguments are permitted).
153 * A parameter enclosed in square brackets (e.g. "[int]") denotes an optional
154 * argument.
155 */
156 static const dt_ident_t _dtrace_globals[] = {
157 { "alloca", DT_IDENT_FUNC, 0, DIF_SUBR_ALLOCA, DT_ATTR_STABCMN, DT_VERS_1_0,
158 &dt_idops_func, "void *(size_t)" },
159 { "arg0", DT_IDENT_SCALAR, 0, DIF_VAR_ARG0, DT_ATTR_STABCMN, DT_VERS_1_0,
160 &dt_idops_type, "int64_t" },
161 { "arg1", DT_IDENT_SCALAR, 0, DIF_VAR_ARG1, DT_ATTR_STABCMN, DT_VERS_1_0,
162 &dt_idops_type, "int64_t" },
163 { "arg2", DT_IDENT_SCALAR, 0, DIF_VAR_ARG2, DT_ATTR_STABCMN, DT_VERS_1_0,
164 &dt_idops_type, "int64_t" },
165 { "arg3", DT_IDENT_SCALAR, 0, DIF_VAR_ARG3, DT_ATTR_STABCMN, DT_VERS_1_0,
166 &dt_idops_type, "int64_t" },
167 { "arg4", DT_IDENT_SCALAR, 0, DIF_VAR_ARG4, DT_ATTR_STABCMN, DT_VERS_1_0,
168 &dt_idops_type, "int64_t" },
169 { "arg5", DT_IDENT_SCALAR, 0, DIF_VAR_ARG5, DT_ATTR_STABCMN, DT_VERS_1_0,
170 &dt_idops_type, "int64_t" },
171 { "arg6", DT_IDENT_SCALAR, 0, DIF_VAR_ARG6, DT_ATTR_STABCMN, DT_VERS_1_0,
172 &dt_idops_type, "int64_t" },
173 { "arg7", DT_IDENT_SCALAR, 0, DIF_VAR_ARG7, DT_ATTR_STABCMN, DT_VERS_1_0,
174 &dt_idops_type, "int64_t" },
175 { "arg8", DT_IDENT_SCALAR, 0, DIF_VAR_ARG8, DT_ATTR_STABCMN, DT_VERS_1_0,
176 &dt_idops_type, "int64_t" },
177 { "arg9", DT_IDENT_SCALAR, 0, DIF_VAR_ARG9, DT_ATTR_STABCMN, DT_VERS_1_0,
178 &dt_idops_type, "int64_t" },
179 { "args", DT_IDENT_ARRAY, 0, DIF_VAR_ARGS, DT_ATTR_STABCMN, DT_VERS_1_0,
180 &dt_idops_args, NULL },
181 { "avg", DT_IDENT_AGGFUNC, 0, DTRACEAGG_AVG, DT_ATTR_STABCMN, DT_VERS_1_0,
182 &dt_idops_func, "void(@)" },
183 { "basename", DT_IDENT_FUNC, 0, DIF_SUBR_BASENAME, DT_ATTR_STABCMN, DT_VERS_1_0,
184 &dt_idops_func, "string(const char *)" },
185 { "bcopy", DT_IDENT_FUNC, 0, DIF_SUBR_BCOPY, DT_ATTR_STABCMN, DT_VERS_1_0,
186 &dt_idops_func, "void(void *, void *, size_t)" },

new/usr/src/lib/libdtrace/common/dt_open.c 4

187 { "breakpoint", DT_IDENT_ACTFUNC, 0, DT_ACT_BREAKPOINT,
188 DT_ATTR_STABCMN, DT_VERS_1_0,
189 &dt_idops_func, "void()" },
190 { "caller", DT_IDENT_SCALAR, 0, DIF_VAR_CALLER, DT_ATTR_STABCMN, DT_VERS_1_0,
191 &dt_idops_type, "uintptr_t" },
192 { "chill", DT_IDENT_ACTFUNC, 0, DT_ACT_CHILL, DT_ATTR_STABCMN, DT_VERS_1_0,
193 &dt_idops_func, "void(int)" },
194 { "cleanpath", DT_IDENT_FUNC, 0, DIF_SUBR_CLEANPATH, DT_ATTR_STABCMN,
195 DT_VERS_1_0, &dt_idops_func, "string(const char *)" },
196 { "clear", DT_IDENT_ACTFUNC, 0, DT_ACT_CLEAR, DT_ATTR_STABCMN, DT_VERS_1_0,
197 &dt_idops_func, "void(...)" },
198 { "commit", DT_IDENT_ACTFUNC, 0, DT_ACT_COMMIT, DT_ATTR_STABCMN, DT_VERS_1_0,
199 &dt_idops_func, "void(int)" },
200 { "copyin", DT_IDENT_FUNC, 0, DIF_SUBR_COPYIN, DT_ATTR_STABCMN, DT_VERS_1_0,
201 &dt_idops_func, "void *(uintptr_t, size_t)" },
202 { "copyinstr", DT_IDENT_FUNC, 0, DIF_SUBR_COPYINSTR,
203 DT_ATTR_STABCMN, DT_VERS_1_0,
204 &dt_idops_func, "string(uintptr_t, [size_t])" },
205 { "copyinto", DT_IDENT_FUNC, 0, DIF_SUBR_COPYINTO, DT_ATTR_STABCMN,
206 DT_VERS_1_0, &dt_idops_func, "void(uintptr_t, size_t, void *)" },
207 { "copyout", DT_IDENT_FUNC, 0, DIF_SUBR_COPYOUT, DT_ATTR_STABCMN, DT_VERS_1_0,
208 &dt_idops_func, "void(void *, uintptr_t, size_t)" },
209 { "copyoutstr", DT_IDENT_FUNC, 0, DIF_SUBR_COPYOUTSTR,
210 DT_ATTR_STABCMN, DT_VERS_1_0,
211 &dt_idops_func, "void(char *, uintptr_t, size_t)" },
212 { "count", DT_IDENT_AGGFUNC, 0, DTRACEAGG_COUNT, DT_ATTR_STABCMN, DT_VERS_1_0,
213 &dt_idops_func, "void()" },
214 { "curthread", DT_IDENT_SCALAR, 0, DIF_VAR_CURTHREAD,
215 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_PRIVATE,
216 DTRACE_CLASS_COMMON }, DT_VERS_1_0,
217 &dt_idops_type, "genunix‘kthread_t *" },
218 { "ddi_pathname", DT_IDENT_FUNC, 0, DIF_SUBR_DDI_PATHNAME,
219 DT_ATTR_EVOLCMN, DT_VERS_1_0,
220 &dt_idops_func, "string(void *, int64_t)" },
221 { "denormalize", DT_IDENT_ACTFUNC, 0, DT_ACT_DENORMALIZE, DT_ATTR_STABCMN,
222 DT_VERS_1_0, &dt_idops_func, "void(...)" },
223 { "dirname", DT_IDENT_FUNC, 0, DIF_SUBR_DIRNAME, DT_ATTR_STABCMN, DT_VERS_1_0,
224 &dt_idops_func, "string(const char *)" },
225 { "discard", DT_IDENT_ACTFUNC, 0, DT_ACT_DISCARD, DT_ATTR_STABCMN, DT_VERS_1_0,
226 &dt_idops_func, "void(int)" },
227 { "epid", DT_IDENT_SCALAR, 0, DIF_VAR_EPID, DT_ATTR_STABCMN, DT_VERS_1_0,
228 &dt_idops_type, "uint_t" },
229 { "errno", DT_IDENT_SCALAR, 0, DIF_VAR_ERRNO, DT_ATTR_STABCMN, DT_VERS_1_0,
230 &dt_idops_type, "int" },
231 { "execname", DT_IDENT_SCALAR, 0, DIF_VAR_EXECNAME,
232 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
233 { "exit", DT_IDENT_ACTFUNC, 0, DT_ACT_EXIT, DT_ATTR_STABCMN, DT_VERS_1_0,
234 &dt_idops_func, "void(int)" },
235 { "freopen", DT_IDENT_ACTFUNC, 0, DT_ACT_FREOPEN, DT_ATTR_STABCMN,
236 DT_VERS_1_1, &dt_idops_func, "void(@, ...)" },
237 { "ftruncate", DT_IDENT_ACTFUNC, 0, DT_ACT_FTRUNCATE, DT_ATTR_STABCMN,
238 DT_VERS_1_0, &dt_idops_func, "void()" },
239 { "func", DT_IDENT_ACTFUNC, 0, DT_ACT_SYM, DT_ATTR_STABCMN,
240 DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" },
241 { "getmajor", DT_IDENT_FUNC, 0, DIF_SUBR_GETMAJOR,
242 DT_ATTR_EVOLCMN, DT_VERS_1_0,
243 &dt_idops_func, "genunix‘major_t(genunix‘dev_t)" },
244 { "getminor", DT_IDENT_FUNC, 0, DIF_SUBR_GETMINOR,
245 DT_ATTR_EVOLCMN, DT_VERS_1_0,
246 &dt_idops_func, "genunix‘minor_t(genunix‘dev_t)" },
247 { "htonl", DT_IDENT_FUNC, 0, DIF_SUBR_HTONL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
248 &dt_idops_func, "uint32_t(uint32_t)" },
249 { "htonll", DT_IDENT_FUNC, 0, DIF_SUBR_HTONLL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
250 &dt_idops_func, "uint64_t(uint64_t)" },
251 { "htons", DT_IDENT_FUNC, 0, DIF_SUBR_HTONS, DT_ATTR_EVOLCMN, DT_VERS_1_3,
252 &dt_idops_func, "uint16_t(uint16_t)" },

new/usr/src/lib/libdtrace/common/dt_open.c 5

253 { "getf", DT_IDENT_FUNC, 0, DIF_SUBR_GETF, DT_ATTR_STABCMN, DT_VERS_1_10,
254 &dt_idops_func, "file_t *(int)" },
255 #endif /* ! codereview */
256 { "gid", DT_IDENT_SCALAR, 0, DIF_VAR_GID, DT_ATTR_STABCMN, DT_VERS_1_0,
257 &dt_idops_type, "gid_t" },
258 { "id", DT_IDENT_SCALAR, 0, DIF_VAR_ID, DT_ATTR_STABCMN, DT_VERS_1_0,
259 &dt_idops_type, "uint_t" },
260 { "index", DT_IDENT_FUNC, 0, DIF_SUBR_INDEX, DT_ATTR_STABCMN, DT_VERS_1_1,
261 &dt_idops_func, "int(const char *, const char *, [int])" },
262 { "inet_ntoa", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOA, DT_ATTR_STABCMN,
263 DT_VERS_1_5, &dt_idops_func, "string(ipaddr_t *)" },
264 { "inet_ntoa6", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOA6, DT_ATTR_STABCMN,
265 DT_VERS_1_5, &dt_idops_func, "string(in6_addr_t *)" },
266 { "inet_ntop", DT_IDENT_FUNC, 0, DIF_SUBR_INET_NTOP, DT_ATTR_STABCMN,
267 DT_VERS_1_5, &dt_idops_func, "string(int, void *)" },
268 { "ipl", DT_IDENT_SCALAR, 0, DIF_VAR_IPL, DT_ATTR_STABCMN, DT_VERS_1_0,
269 &dt_idops_type, "uint_t" },
270 { "jstack", DT_IDENT_ACTFUNC, 0, DT_ACT_JSTACK, DT_ATTR_STABCMN, DT_VERS_1_0,
271 &dt_idops_func, "stack(...)" },
272 { "lltostr", DT_IDENT_FUNC, 0, DIF_SUBR_LLTOSTR, DT_ATTR_STABCMN, DT_VERS_1_0,
273 &dt_idops_func, "string(int64_t, [int])" },
274 { "llquantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_LLQUANTIZE, DT_ATTR_STABCMN,
275 DT_VERS_1_7, &dt_idops_func,
276 "void(@, int32_t, int32_t, int32_t, int32_t, ...)" },
277 { "lquantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_LQUANTIZE,
278 DT_ATTR_STABCMN, DT_VERS_1_0,
279 &dt_idops_func, "void(@, int32_t, int32_t, ...)" },
280 { "max", DT_IDENT_AGGFUNC, 0, DTRACEAGG_MAX, DT_ATTR_STABCMN, DT_VERS_1_0,
281 &dt_idops_func, "void(@)" },
282 { "min", DT_IDENT_AGGFUNC, 0, DTRACEAGG_MIN, DT_ATTR_STABCMN, DT_VERS_1_0,
283 &dt_idops_func, "void(@)" },
284 { "mod", DT_IDENT_ACTFUNC, 0, DT_ACT_MOD, DT_ATTR_STABCMN,
285 DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" },
286 { "msgdsize", DT_IDENT_FUNC, 0, DIF_SUBR_MSGDSIZE,
287 DT_ATTR_STABCMN, DT_VERS_1_0,
288 &dt_idops_func, "size_t(mblk_t *)" },
289 { "msgsize", DT_IDENT_FUNC, 0, DIF_SUBR_MSGSIZE,
290 DT_ATTR_STABCMN, DT_VERS_1_0,
291 &dt_idops_func, "size_t(mblk_t *)" },
292 { "mutex_owned", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_OWNED,
293 DT_ATTR_EVOLCMN, DT_VERS_1_0,
294 &dt_idops_func, "int(genunix‘kmutex_t *)" },
295 { "mutex_owner", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_OWNER,
296 DT_ATTR_EVOLCMN, DT_VERS_1_0,
297 &dt_idops_func, "genunix‘kthread_t *(genunix‘kmutex_t *)" },
298 { "mutex_type_adaptive", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_TYPE_ADAPTIVE,
299 DT_ATTR_EVOLCMN, DT_VERS_1_0,
300 &dt_idops_func, "int(genunix‘kmutex_t *)" },
301 { "mutex_type_spin", DT_IDENT_FUNC, 0, DIF_SUBR_MUTEX_TYPE_SPIN,
302 DT_ATTR_EVOLCMN, DT_VERS_1_0,
303 &dt_idops_func, "int(genunix‘kmutex_t *)" },
304 { "ntohl", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
305 &dt_idops_func, "uint32_t(uint32_t)" },
306 { "ntohll", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHLL, DT_ATTR_EVOLCMN, DT_VERS_1_3,
307 &dt_idops_func, "uint64_t(uint64_t)" },
308 { "ntohs", DT_IDENT_FUNC, 0, DIF_SUBR_NTOHS, DT_ATTR_EVOLCMN, DT_VERS_1_3,
309 &dt_idops_func, "uint16_t(uint16_t)" },
310 { "normalize", DT_IDENT_ACTFUNC, 0, DT_ACT_NORMALIZE, DT_ATTR_STABCMN,
311 DT_VERS_1_0, &dt_idops_func, "void(...)" },
312 { "panic", DT_IDENT_ACTFUNC, 0, DT_ACT_PANIC, DT_ATTR_STABCMN, DT_VERS_1_0,
313 &dt_idops_func, "void()" },
314 { "pid", DT_IDENT_SCALAR, 0, DIF_VAR_PID, DT_ATTR_STABCMN, DT_VERS_1_0,
315 &dt_idops_type, "pid_t" },
316 { "ppid", DT_IDENT_SCALAR, 0, DIF_VAR_PPID, DT_ATTR_STABCMN, DT_VERS_1_0,
317 &dt_idops_type, "pid_t" },
318 { "print", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINT, DT_ATTR_STABCMN, DT_VERS_1_9,

new/usr/src/lib/libdtrace/common/dt_open.c 6

319 &dt_idops_func, "void(@)" },
320 { "printa", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINTA, DT_ATTR_STABCMN, DT_VERS_1_0,
321 &dt_idops_func, "void(@, ...)" },
322 { "printf", DT_IDENT_ACTFUNC, 0, DT_ACT_PRINTF, DT_ATTR_STABCMN, DT_VERS_1_0,
323 &dt_idops_func, "void(@, ...)" },
324 { "probefunc", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEFUNC,
325 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
326 { "probemod", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEMOD,
327 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
328 { "probename", DT_IDENT_SCALAR, 0, DIF_VAR_PROBENAME,
329 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
330 { "probeprov", DT_IDENT_SCALAR, 0, DIF_VAR_PROBEPROV,
331 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
332 { "progenyof", DT_IDENT_FUNC, 0, DIF_SUBR_PROGENYOF,
333 DT_ATTR_STABCMN, DT_VERS_1_0,
334 &dt_idops_func, "int(pid_t)" },
335 { "quantize", DT_IDENT_AGGFUNC, 0, DTRACEAGG_QUANTIZE,
336 DT_ATTR_STABCMN, DT_VERS_1_0,
337 &dt_idops_func, "void(@, ...)" },
338 { "raise", DT_IDENT_ACTFUNC, 0, DT_ACT_RAISE, DT_ATTR_STABCMN, DT_VERS_1_0,
339 &dt_idops_func, "void(int)" },
340 { "rand", DT_IDENT_FUNC, 0, DIF_SUBR_RAND, DT_ATTR_STABCMN, DT_VERS_1_0,
341 &dt_idops_func, "int()" },
342 { "rindex", DT_IDENT_FUNC, 0, DIF_SUBR_RINDEX, DT_ATTR_STABCMN, DT_VERS_1_1,
343 &dt_idops_func, "int(const char *, const char *, [int])" },
344 { "rw_iswriter", DT_IDENT_FUNC, 0, DIF_SUBR_RW_ISWRITER,
345 DT_ATTR_EVOLCMN, DT_VERS_1_0,
346 &dt_idops_func, "int(genunix‘krwlock_t *)" },
347 { "rw_read_held", DT_IDENT_FUNC, 0, DIF_SUBR_RW_READ_HELD,
348 DT_ATTR_EVOLCMN, DT_VERS_1_0,
349 &dt_idops_func, "int(genunix‘krwlock_t *)" },
350 { "rw_write_held", DT_IDENT_FUNC, 0, DIF_SUBR_RW_WRITE_HELD,
351 DT_ATTR_EVOLCMN, DT_VERS_1_0,
352 &dt_idops_func, "int(genunix‘krwlock_t *)" },
353 { "self", DT_IDENT_PTR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0,
354 &dt_idops_type, "void" },
355 { "setopt", DT_IDENT_ACTFUNC, 0, DT_ACT_SETOPT, DT_ATTR_STABCMN,
356 DT_VERS_1_2, &dt_idops_func, "void(const char *, [const char *])" },
357 { "speculate", DT_IDENT_ACTFUNC, 0, DT_ACT_SPECULATE,
358 DT_ATTR_STABCMN, DT_VERS_1_0,
359 &dt_idops_func, "void(int)" },
360 { "speculation", DT_IDENT_FUNC, 0, DIF_SUBR_SPECULATION,
361 DT_ATTR_STABCMN, DT_VERS_1_0,
362 &dt_idops_func, "int()" },
363 { "stack", DT_IDENT_ACTFUNC, 0, DT_ACT_STACK, DT_ATTR_STABCMN, DT_VERS_1_0,
364 &dt_idops_func, "stack(...)" },
365 { "stackdepth", DT_IDENT_SCALAR, 0, DIF_VAR_STACKDEPTH,
366 DT_ATTR_STABCMN, DT_VERS_1_0,
367 &dt_idops_type, "uint32_t" },
368 { "stddev", DT_IDENT_AGGFUNC, 0, DTRACEAGG_STDDEV, DT_ATTR_STABCMN,
369 DT_VERS_1_6, &dt_idops_func, "void(@)" },
370 { "stop", DT_IDENT_ACTFUNC, 0, DT_ACT_STOP, DT_ATTR_STABCMN, DT_VERS_1_0,
371 &dt_idops_func, "void()" },
372 { "strchr", DT_IDENT_FUNC, 0, DIF_SUBR_STRCHR, DT_ATTR_STABCMN, DT_VERS_1_1,
373 &dt_idops_func, "string(const char *, char)" },
374 { "strlen", DT_IDENT_FUNC, 0, DIF_SUBR_STRLEN, DT_ATTR_STABCMN, DT_VERS_1_0,
375 &dt_idops_func, "size_t(const char *)" },
376 { "strjoin", DT_IDENT_FUNC, 0, DIF_SUBR_STRJOIN, DT_ATTR_STABCMN, DT_VERS_1_0,
377 &dt_idops_func, "string(const char *, const char *)" },
378 { "strrchr", DT_IDENT_FUNC, 0, DIF_SUBR_STRRCHR, DT_ATTR_STABCMN, DT_VERS_1_1,
379 &dt_idops_func, "string(const char *, char)" },
380 { "strstr", DT_IDENT_FUNC, 0, DIF_SUBR_STRSTR, DT_ATTR_STABCMN, DT_VERS_1_1,
381 &dt_idops_func, "string(const char *, const char *)" },
382 { "strtok", DT_IDENT_FUNC, 0, DIF_SUBR_STRTOK, DT_ATTR_STABCMN, DT_VERS_1_1,
383 &dt_idops_func, "string(const char *, const char *)" },
384 { "substr", DT_IDENT_FUNC, 0, DIF_SUBR_SUBSTR, DT_ATTR_STABCMN, DT_VERS_1_1,

new/usr/src/lib/libdtrace/common/dt_open.c 7

385 &dt_idops_func, "string(const char *, int, [int])" },
386 { "sum", DT_IDENT_AGGFUNC, 0, DTRACEAGG_SUM, DT_ATTR_STABCMN, DT_VERS_1_0,
387 &dt_idops_func, "void(@)" },
388 { "sym", DT_IDENT_ACTFUNC, 0, DT_ACT_SYM, DT_ATTR_STABCMN,
389 DT_VERS_1_2, &dt_idops_func, "_symaddr(uintptr_t)" },
390 { "system", DT_IDENT_ACTFUNC, 0, DT_ACT_SYSTEM, DT_ATTR_STABCMN, DT_VERS_1_0,
391 &dt_idops_func, "void(@, ...)" },
392 { "this", DT_IDENT_PTR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0,
393 &dt_idops_type, "void" },
394 { "tid", DT_IDENT_SCALAR, 0, DIF_VAR_TID, DT_ATTR_STABCMN, DT_VERS_1_0,
395 &dt_idops_type, "id_t" },
396 { "timestamp", DT_IDENT_SCALAR, 0, DIF_VAR_TIMESTAMP,
397 DT_ATTR_STABCMN, DT_VERS_1_0,
398 &dt_idops_type, "uint64_t" },
399 { "tolower", DT_IDENT_FUNC, 0, DIF_SUBR_TOLOWER, DT_ATTR_STABCMN, DT_VERS_1_8,
400 &dt_idops_func, "string(const char *)" },
401 { "toupper", DT_IDENT_FUNC, 0, DIF_SUBR_TOUPPER, DT_ATTR_STABCMN, DT_VERS_1_8,
402 &dt_idops_func, "string(const char *)" },
403 { "trace", DT_IDENT_ACTFUNC, 0, DT_ACT_TRACE, DT_ATTR_STABCMN, DT_VERS_1_0,
404 &dt_idops_func, "void(@)" },
405 { "tracemem", DT_IDENT_ACTFUNC, 0, DT_ACT_TRACEMEM,
406 DT_ATTR_STABCMN, DT_VERS_1_0,
407 &dt_idops_func, "void(@, size_t, ...)" },
408 { "trunc", DT_IDENT_ACTFUNC, 0, DT_ACT_TRUNC, DT_ATTR_STABCMN,
409 DT_VERS_1_0, &dt_idops_func, "void(...)" },
410 { "uaddr", DT_IDENT_ACTFUNC, 0, DT_ACT_UADDR, DT_ATTR_STABCMN,
411 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
412 { "ucaller", DT_IDENT_SCALAR, 0, DIF_VAR_UCALLER, DT_ATTR_STABCMN,
413 DT_VERS_1_2, &dt_idops_type, "uint64_t" },
414 { "ufunc", DT_IDENT_ACTFUNC, 0, DT_ACT_USYM, DT_ATTR_STABCMN,
415 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
416 { "uid", DT_IDENT_SCALAR, 0, DIF_VAR_UID, DT_ATTR_STABCMN, DT_VERS_1_0,
417 &dt_idops_type, "uid_t" },
418 { "umod", DT_IDENT_ACTFUNC, 0, DT_ACT_UMOD, DT_ATTR_STABCMN,
419 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
420 { "uregs", DT_IDENT_ARRAY, 0, DIF_VAR_UREGS, DT_ATTR_STABCMN, DT_VERS_1_0,
421 &dt_idops_regs, NULL },
422 { "ustack", DT_IDENT_ACTFUNC, 0, DT_ACT_USTACK, DT_ATTR_STABCMN, DT_VERS_1_0,
423 &dt_idops_func, "stack(...)" },
424 { "ustackdepth", DT_IDENT_SCALAR, 0, DIF_VAR_USTACKDEPTH,
425 DT_ATTR_STABCMN, DT_VERS_1_2,
426 &dt_idops_type, "uint32_t" },
427 { "usym", DT_IDENT_ACTFUNC, 0, DT_ACT_USYM, DT_ATTR_STABCMN,
428 DT_VERS_1_2, &dt_idops_func, "_usymaddr(uintptr_t)" },
429 { "vmregs", DT_IDENT_ARRAY, 0, DIF_VAR_VMREGS, DT_ATTR_STABCMN, DT_VERS_1_7,
430 &dt_idops_regs, NULL },
431 { "vtimestamp", DT_IDENT_SCALAR, 0, DIF_VAR_VTIMESTAMP,
432 DT_ATTR_STABCMN, DT_VERS_1_0,
433 &dt_idops_type, "uint64_t" },
434 { "walltimestamp", DT_IDENT_SCALAR, 0, DIF_VAR_WALLTIMESTAMP,
435 DT_ATTR_STABCMN, DT_VERS_1_0,
436 &dt_idops_type, "int64_t" },
437 { "zonename", DT_IDENT_SCALAR, 0, DIF_VAR_ZONENAME,
438 DT_ATTR_STABCMN, DT_VERS_1_0, &dt_idops_type, "string" },
439 { NULL, 0, 0, 0, { 0, 0, 0 }, 0, NULL, NULL }
440 };

442 /*
443 * Tables of ILP32 intrinsic integer and floating-point type templates to use
444 * to populate the dynamic "C" CTF type container.
445 */
446 static const dt_intrinsic_t _dtrace_intrinsics_32[] = {
447 { "void", { CTF_INT_SIGNED, 0, 0 }, CTF_K_INTEGER },
448 { "signed", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
449 { "unsigned", { 0, 0, 32 }, CTF_K_INTEGER },
450 { "char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },

new/usr/src/lib/libdtrace/common/dt_open.c 8

451 { "short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
452 { "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
453 { "long", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
454 { "long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
455 { "signed char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
456 { "signed short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
457 { "signed int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
458 { "signed long", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
459 { "signed long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
460 { "unsigned char", { CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
461 { "unsigned short", { 0, 0, 16 }, CTF_K_INTEGER },
462 { "unsigned int", { 0, 0, 32 }, CTF_K_INTEGER },
463 { "unsigned long", { 0, 0, 32 }, CTF_K_INTEGER },
464 { "unsigned long long", { 0, 0, 64 }, CTF_K_INTEGER },
465 { "_Bool", { CTF_INT_BOOL, 0, 8 }, CTF_K_INTEGER },
466 { "float", { CTF_FP_SINGLE, 0, 32 }, CTF_K_FLOAT },
467 { "double", { CTF_FP_DOUBLE, 0, 64 }, CTF_K_FLOAT },
468 { "long double", { CTF_FP_LDOUBLE, 0, 128 }, CTF_K_FLOAT },
469 { "float imaginary", { CTF_FP_IMAGRY, 0, 32 }, CTF_K_FLOAT },
470 { "double imaginary", { CTF_FP_DIMAGRY, 0, 64 }, CTF_K_FLOAT },
471 { "long double imaginary", { CTF_FP_LDIMAGRY, 0, 128 }, CTF_K_FLOAT },
472 { "float complex", { CTF_FP_CPLX, 0, 64 }, CTF_K_FLOAT },
473 { "double complex", { CTF_FP_DCPLX, 0, 128 }, CTF_K_FLOAT },
474 { "long double complex", { CTF_FP_LDCPLX, 0, 256 }, CTF_K_FLOAT },
475 { NULL, { 0, 0, 0 }, 0 }
476 };

478 /*
479 * Tables of LP64 intrinsic integer and floating-point type templates to use
480 * to populate the dynamic "C" CTF type container.
481 */
482 static const dt_intrinsic_t _dtrace_intrinsics_64[] = {
483 { "void", { CTF_INT_SIGNED, 0, 0 }, CTF_K_INTEGER },
484 { "signed", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
485 { "unsigned", { 0, 0, 32 }, CTF_K_INTEGER },
486 { "char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
487 { "short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
488 { "int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
489 { "long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
490 { "long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
491 { "signed char", { CTF_INT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
492 { "signed short", { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },
493 { "signed int", { CTF_INT_SIGNED, 0, 32 }, CTF_K_INTEGER },
494 { "signed long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
495 { "signed long long", { CTF_INT_SIGNED, 0, 64 }, CTF_K_INTEGER },
496 { "unsigned char", { CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },
497 { "unsigned short", { 0, 0, 16 }, CTF_K_INTEGER },
498 { "unsigned int", { 0, 0, 32 }, CTF_K_INTEGER },
499 { "unsigned long", { 0, 0, 64 }, CTF_K_INTEGER },
500 { "unsigned long long", { 0, 0, 64 }, CTF_K_INTEGER },
501 { "_Bool", { CTF_INT_BOOL, 0, 8 }, CTF_K_INTEGER },
502 { "float", { CTF_FP_SINGLE, 0, 32 }, CTF_K_FLOAT },
503 { "double", { CTF_FP_DOUBLE, 0, 64 }, CTF_K_FLOAT },
504 { "long double", { CTF_FP_LDOUBLE, 0, 128 }, CTF_K_FLOAT },
505 { "float imaginary", { CTF_FP_IMAGRY, 0, 32 }, CTF_K_FLOAT },
506 { "double imaginary", { CTF_FP_DIMAGRY, 0, 64 }, CTF_K_FLOAT },
507 { "long double imaginary", { CTF_FP_LDIMAGRY, 0, 128 }, CTF_K_FLOAT },
508 { "float complex", { CTF_FP_CPLX, 0, 64 }, CTF_K_FLOAT },
509 { "double complex", { CTF_FP_DCPLX, 0, 128 }, CTF_K_FLOAT },
510 { "long double complex", { CTF_FP_LDCPLX, 0, 256 }, CTF_K_FLOAT },
511 { NULL, { 0, 0, 0 }, 0 }
512 };

514 /*
515 * Tables of ILP32 typedefs to use to populate the dynamic "D" CTF container.
516 * These aliases ensure that D definitions can use typical <sys/types.h> names.

new/usr/src/lib/libdtrace/common/dt_open.c 9

517 */
518 static const dt_typedef_t _dtrace_typedefs_32[] = {
519 { "char", "int8_t" },
520 { "short", "int16_t" },
521 { "int", "int32_t" },
522 { "long long", "int64_t" },
523 { "int", "intptr_t" },
524 { "int", "ssize_t" },
525 { "unsigned char", "uint8_t" },
526 { "unsigned short", "uint16_t" },
527 { "unsigned", "uint32_t" },
528 { "unsigned long long", "uint64_t" },
529 { "unsigned char", "uchar_t" },
530 { "unsigned short", "ushort_t" },
531 { "unsigned", "uint_t" },
532 { "unsigned long", "ulong_t" },
533 { "unsigned long long", "u_longlong_t" },
534 { "int", "ptrdiff_t" },
535 { "unsigned", "uintptr_t" },
536 { "unsigned", "size_t" },
537 { "long", "id_t" },
538 { "long", "pid_t" },
539 { NULL, NULL }
540 };

542 /*
543 * Tables of LP64 typedefs to use to populate the dynamic "D" CTF container.
544 * These aliases ensure that D definitions can use typical <sys/types.h> names.
545 */
546 static const dt_typedef_t _dtrace_typedefs_64[] = {
547 { "char", "int8_t" },
548 { "short", "int16_t" },
549 { "int", "int32_t" },
550 { "long", "int64_t" },
551 { "long", "intptr_t" },
552 { "long", "ssize_t" },
553 { "unsigned char", "uint8_t" },
554 { "unsigned short", "uint16_t" },
555 { "unsigned", "uint32_t" },
556 { "unsigned long", "uint64_t" },
557 { "unsigned char", "uchar_t" },
558 { "unsigned short", "ushort_t" },
559 { "unsigned", "uint_t" },
560 { "unsigned long", "ulong_t" },
561 { "unsigned long long", "u_longlong_t" },
562 { "long", "ptrdiff_t" },
563 { "unsigned long", "uintptr_t" },
564 { "unsigned long", "size_t" },
565 { "int", "id_t" },
566 { "int", "pid_t" },
567 { NULL, NULL }
568 };

570 /*
571 * Tables of ILP32 integer type templates used to populate the dtp->dt_ints[]
572 * cache when a new dtrace client open occurs. Values are set by dtrace_open().
573 */
574 static const dt_intdesc_t _dtrace_ints_32[] = {
575 { "int", NULL, CTF_ERR, 0x7fffffffULL },
576 { "unsigned int", NULL, CTF_ERR, 0xffffffffULL },
577 { "long", NULL, CTF_ERR, 0x7fffffffULL },
578 { "unsigned long", NULL, CTF_ERR, 0xffffffffULL },
579 { "long long", NULL, CTF_ERR, 0x7fffffffffffffffULL },
580 { "unsigned long long", NULL, CTF_ERR, 0xffffffffffffffffULL }
581 };

new/usr/src/lib/libdtrace/common/dt_open.c 10

583 /*
584 * Tables of LP64 integer type templates used to populate the dtp->dt_ints[]
585 * cache when a new dtrace client open occurs. Values are set by dtrace_open().
586 */
587 static const dt_intdesc_t _dtrace_ints_64[] = {
588 { "int", NULL, CTF_ERR, 0x7fffffffULL },
589 { "unsigned int", NULL, CTF_ERR, 0xffffffffULL },
590 { "long", NULL, CTF_ERR, 0x7fffffffffffffffULL },
591 { "unsigned long", NULL, CTF_ERR, 0xffffffffffffffffULL },
592 { "long long", NULL, CTF_ERR, 0x7fffffffffffffffULL },
593 { "unsigned long long", NULL, CTF_ERR, 0xffffffffffffffffULL }
594 };

596 /*
597 * Table of macro variable templates used to populate the macro identifier hash
598 * when a new dtrace client open occurs. Values are set by dtrace_update().
599 */
600 static const dt_ident_t _dtrace_macros[] = {
601 { "egid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
602 { "euid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
603 { "gid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
604 { "pid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
605 { "pgid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
606 { "ppid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
607 { "projid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
608 { "sid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
609 { "taskid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
610 { "target", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
611 { "uid", DT_IDENT_SCALAR, 0, 0, DT_ATTR_STABCMN, DT_VERS_1_0 },
612 { NULL, 0, 0, 0, { 0, 0, 0 }, 0 }
613 };

615 /*
616 * Hard-wired definition string to be compiled and cached every time a new
617 * DTrace library handle is initialized. This string should only be used to
618 * contain definitions that should be present regardless of DTRACE_O_NOLIBS.
619 */
620 static const char _dtrace_hardwire[] = "\
621 inline long NULL = 0; \n\
622 #pragma D binding \"1.0\" NULL\n\
623 ";

625 /*
626 * Default DTrace configuration to use when opening libdtrace DTRACE_O_NODEV.
627 * If DTRACE_O_NODEV is not set, we load the configuration from the kernel.
628 * The use of CTF_MODEL_NATIVE is more subtle than it might appear: we are
629 * relying on the fact that when running dtrace(1M), isaexec will invoke the
630 * binary with the same bitness as the kernel, which is what we want by default
631 * when generating our DIF. The user can override the choice using oflags.
632 */
633 static const dtrace_conf_t _dtrace_conf = {
634 DIF_VERSION, /* dtc_difversion */
635 DIF_DIR_NREGS, /* dtc_difintregs */
636 DIF_DTR_NREGS, /* dtc_diftupregs */
637 CTF_MODEL_NATIVE /* dtc_ctfmodel */
638 };

640 const dtrace_attribute_t _dtrace_maxattr = {
641 DTRACE_STABILITY_MAX,
642 DTRACE_STABILITY_MAX,
643 DTRACE_CLASS_MAX
644 };

646 const dtrace_attribute_t _dtrace_defattr = {
647 DTRACE_STABILITY_STABLE,
648 DTRACE_STABILITY_STABLE,

new/usr/src/lib/libdtrace/common/dt_open.c 11

649 DTRACE_CLASS_COMMON
650 };

652 const dtrace_attribute_t _dtrace_symattr = {
653 DTRACE_STABILITY_PRIVATE,
654 DTRACE_STABILITY_PRIVATE,
655 DTRACE_CLASS_UNKNOWN
656 };

658 const dtrace_attribute_t _dtrace_typattr = {
659 DTRACE_STABILITY_PRIVATE,
660 DTRACE_STABILITY_PRIVATE,
661 DTRACE_CLASS_UNKNOWN
662 };

664 const dtrace_attribute_t _dtrace_prvattr = {
665 DTRACE_STABILITY_PRIVATE,
666 DTRACE_STABILITY_PRIVATE,
667 DTRACE_CLASS_UNKNOWN
668 };

670 const dtrace_pattr_t _dtrace_prvdesc = {
671 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
672 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
673 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
674 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
675 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_COMMON },
676 };

678 const char *_dtrace_defcpp = "/usr/ccs/lib/cpp"; /* default cpp(1) to invoke */
679 const char *_dtrace_defld = "/usr/ccs/bin/ld"; /* default ld(1) to invoke */

681 const char *_dtrace_libdir = "/usr/lib/dtrace"; /* default library directory */
682 const char *_dtrace_provdir = "/dev/dtrace/provider"; /* provider directory */

684 int _dtrace_strbuckets = 211; /* default number of hash buckets (prime) */
685 int _dtrace_intbuckets = 256; /* default number of integer buckets (Pof2) */
686 uint_t _dtrace_strsize = 256; /* default size of string intrinsic type */
687 uint_t _dtrace_stkindent = 14; /* default whitespace indent for stack/ustack */
688 uint_t _dtrace_pidbuckets = 64; /* default number of pid hash buckets */
689 uint_t _dtrace_pidlrulim = 8; /* default number of pid handles to cache */
690 size_t _dtrace_bufsize = 512; /* default dt_buf_create() size */
691 int _dtrace_argmax = 32; /* default maximum number of probe arguments */

693 int _dtrace_debug = 0; /* debug messages enabled (off) */
694 const char *const _dtrace_version = DT_VERS_STRING; /* API version string */
695 int _dtrace_rdvers = RD_VERSION; /* rtld_db feature version */

697 typedef struct dt_fdlist {
698 int *df_fds; /* array of provider driver file descriptors */
699 uint_t df_ents; /* number of valid elements in df_fds[] */
700 uint_t df_size; /* size of df_fds[] */
701 } dt_fdlist_t;

703 #pragma init(_dtrace_init)
704 void
705 _dtrace_init(void)
706 {
707 _dtrace_debug = getenv("DTRACE_DEBUG") != NULL;

709 for (; _dtrace_rdvers > 0; _dtrace_rdvers--) {
710 if (rd_init(_dtrace_rdvers) == RD_OK)
711 break;
712 }
713 }

new/usr/src/lib/libdtrace/common/dt_open.c 12

715 static dtrace_hdl_t *
716 set_open_errno(dtrace_hdl_t *dtp, int *errp, int err)
717 {
718 if (dtp != NULL)
719 dtrace_close(dtp);
720 if (errp != NULL)
721 *errp = err;
722 return (NULL);
723 }

725 static void
726 dt_provmod_open(dt_provmod_t **provmod, dt_fdlist_t *dfp)
727 {
728 dt_provmod_t *prov;
729 char path[PATH_MAX];
730 struct dirent *dp, *ep;
731 DIR *dirp;
732 int fd;

734 if ((dirp = opendir(_dtrace_provdir)) == NULL)
735 return; /* failed to open directory; just skip it */

737 ep = alloca(sizeof (struct dirent) + PATH_MAX + 1);
738 bzero(ep, sizeof (struct dirent) + PATH_MAX + 1);

740 while (readdir_r(dirp, ep, &dp) == 0 && dp != NULL) {
741 if (dp->d_name[0] == ’.’)
742 continue; /* skip "." and ".." */

744 if (dfp->df_ents == dfp->df_size) {
745 uint_t size = dfp->df_size ? dfp->df_size * 2 : 16;
746 int *fds = realloc(dfp->df_fds, size * sizeof (int));

748 if (fds == NULL)
749 break; /* skip the rest of this directory */

751 dfp->df_fds = fds;
752 dfp->df_size = size;
753 }

755 (void) snprintf(path, sizeof (path), "%s/%s",
756 _dtrace_provdir, dp->d_name);

758 if ((fd = open(path, O_RDONLY)) == -1)
759 continue; /* failed to open driver; just skip it */

761 if (((prov = malloc(sizeof (dt_provmod_t))) == NULL) ||
762 (prov->dp_name = malloc(strlen(dp->d_name) + 1)) == NULL) {
763 free(prov);
764 (void) close(fd);
765 break;
766 }

768 (void) strcpy(prov->dp_name, dp->d_name);
769 prov->dp_next = *provmod;
770 *provmod = prov;

772 dt_dprintf("opened provider %s\n", dp->d_name);
773 dfp->df_fds[dfp->df_ents++] = fd;
774 }

776 (void) closedir(dirp);
777 }

779 static void
780 dt_provmod_destroy(dt_provmod_t **provmod)

new/usr/src/lib/libdtrace/common/dt_open.c 13

781 {
782 dt_provmod_t *next, *current;

784 for (current = *provmod; current != NULL; current = next) {
785 next = current->dp_next;
786 free(current->dp_name);
787 free(current);
788 }

790 *provmod = NULL;
791 }

793 static const char *
794 dt_get_sysinfo(int cmd, char *buf, size_t len)
795 {
796 ssize_t rv = sysinfo(cmd, buf, len);
797 char *p = buf;

799 if (rv < 0 || rv > len)
800 (void) snprintf(buf, len, "%s", "Unknown");

802 while ((p = strchr(p, ’.’)) != NULL)
803 *p++ = ’_’;

805 return (buf);
806 }

808 static dtrace_hdl_t *
809 dt_vopen(int version, int flags, int *errp,
810 const dtrace_vector_t *vector, void *arg)
811 {
812 dtrace_hdl_t *dtp = NULL;
813 int dtfd = -1, ftfd = -1, fterr = 0;
814 dtrace_prog_t *pgp;
815 dt_module_t *dmp;
816 dt_provmod_t *provmod = NULL;
817 int i, err;
818 struct rlimit rl;

820 const dt_intrinsic_t *dinp;
821 const dt_typedef_t *dtyp;
822 const dt_ident_t *idp;

824 dtrace_typeinfo_t dtt;
825 ctf_funcinfo_t ctc;
826 ctf_arinfo_t ctr;

828 dt_fdlist_t df = { NULL, 0, 0 };

830 char isadef[32], utsdef[32];
831 char s1[64], s2[64];

833 if (version <= 0)
834 return (set_open_errno(dtp, errp, EINVAL));

836 if (version > DTRACE_VERSION)
837 return (set_open_errno(dtp, errp, EDT_VERSION));

839 if (version < DTRACE_VERSION) {
840 /*
841 * Currently, increasing the library version number is used to
842 * denote a binary incompatible change. That is, a consumer
843 * of the library cannot run on a version of the library with
844 * a higher DTRACE_VERSION number than the consumer compiled
845 * against. Once the library API has been committed to,
846 * backwards binary compatibility will be required; at that

new/usr/src/lib/libdtrace/common/dt_open.c 14

847 * time, this check should change to return EDT_OVERSION only
848 * if the specified version number is less than the version
849 * number at the time of interface commitment.
850 */
851 return (set_open_errno(dtp, errp, EDT_OVERSION));
852 }

854 if (flags & ~DTRACE_O_MASK)
855 return (set_open_errno(dtp, errp, EINVAL));

857 if ((flags & DTRACE_O_LP64) && (flags & DTRACE_O_ILP32))
858 return (set_open_errno(dtp, errp, EINVAL));

860 if (vector == NULL && arg != NULL)
861 return (set_open_errno(dtp, errp, EINVAL));

863 if (elf_version(EV_CURRENT) == EV_NONE)
864 return (set_open_errno(dtp, errp, EDT_ELFVERSION));

866 if (vector != NULL || (flags & DTRACE_O_NODEV))
867 goto alloc; /* do not attempt to open dtrace device */

869 /*
870 * Before we get going, crank our limit on file descriptors up to the
871 * hard limit. This is to allow for the fact that libproc keeps file
872 * descriptors to objects open for the lifetime of the proc handle;
873 * without raising our hard limit, we would have an acceptably small
874 * bound on the number of processes that we could concurrently
875 * instrument with the pid provider.
876 */
877 if (getrlimit(RLIMIT_NOFILE, &rl) == 0) {
878 rl.rlim_cur = rl.rlim_max;
879 (void) setrlimit(RLIMIT_NOFILE, &rl);
880 }

882 /*
883 * Get the device path of each of the providers. We hold them open
884 * in the df.df_fds list until we open the DTrace driver itself,
885 * allowing us to see all of the probes provided on this system. Once
886 * we have the DTrace driver open, we can safely close all the providers
887 * now that they have registered with the framework.
888 */
889 dt_provmod_open(&provmod, &df);

891 dtfd = open("/dev/dtrace/dtrace", O_RDWR);
892 err = errno; /* save errno from opening dtfd */

894 ftfd = open("/dev/dtrace/provider/fasttrap", O_RDWR);
895 fterr = ftfd == -1 ? errno : 0; /* save errno from open ftfd */

897 while (df.df_ents-- != 0)
898 (void) close(df.df_fds[df.df_ents]);

900 free(df.df_fds);

902 /*
903 * If we failed to open the dtrace device, fail dtrace_open().
904 * We convert some kernel errnos to custom libdtrace errnos to
905 * improve the resulting message from the usual strerror().
906 */
907 if (dtfd == -1) {
908 dt_provmod_destroy(&provmod);
909 switch (err) {
910 case ENOENT:
911 err = EDT_NOENT;
912 break;

new/usr/src/lib/libdtrace/common/dt_open.c 15

913 case EBUSY:
914 err = EDT_BUSY;
915 break;
916 case EACCES:
917 err = EDT_ACCESS;
918 break;
919 }
920 return (set_open_errno(dtp, errp, err));
921 }

923 (void) fcntl(dtfd, F_SETFD, FD_CLOEXEC);
924 (void) fcntl(ftfd, F_SETFD, FD_CLOEXEC);

926 alloc:
927 if ((dtp = malloc(sizeof (dtrace_hdl_t))) == NULL)
928 return (set_open_errno(dtp, errp, EDT_NOMEM));

930 bzero(dtp, sizeof (dtrace_hdl_t));
931 dtp->dt_oflags = flags;
932 dtp->dt_prcmode = DT_PROC_STOP_PREINIT;
933 dtp->dt_linkmode = DT_LINK_KERNEL;
934 dtp->dt_linktype = DT_LTYP_ELF;
935 dtp->dt_xlatemode = DT_XL_STATIC;
936 dtp->dt_stdcmode = DT_STDC_XA;
937 dtp->dt_version = version;
938 dtp->dt_fd = dtfd;
939 dtp->dt_ftfd = ftfd;
940 dtp->dt_fterr = fterr;
941 dtp->dt_cdefs_fd = -1;
942 dtp->dt_ddefs_fd = -1;
943 dtp->dt_stdout_fd = -1;
944 dtp->dt_modbuckets = _dtrace_strbuckets;
945 dtp->dt_mods = calloc(dtp->dt_modbuckets, sizeof (dt_module_t *));
946 dtp->dt_provbuckets = _dtrace_strbuckets;
947 dtp->dt_provs = calloc(dtp->dt_provbuckets, sizeof (dt_provider_t *));
948 dt_proc_init(dtp);
949 dtp->dt_vmax = DT_VERS_LATEST;
950 dtp->dt_cpp_path = strdup(_dtrace_defcpp);
951 dtp->dt_cpp_argv = malloc(sizeof (char *));
952 dtp->dt_cpp_argc = 1;
953 dtp->dt_cpp_args = 1;
954 dtp->dt_ld_path = strdup(_dtrace_defld);
955 dtp->dt_provmod = provmod;
956 dtp->dt_vector = vector;
957 dtp->dt_varg = arg;
958 dt_dof_init(dtp);
959 (void) uname(&dtp->dt_uts);

961 if (dtp->dt_mods == NULL || dtp->dt_provs == NULL ||
962 dtp->dt_procs == NULL || dtp->dt_proc_env == NULL ||
963 dtp->dt_ld_path == NULL || dtp->dt_cpp_path == NULL ||
964 dtp->dt_cpp_argv == NULL)
965 return (set_open_errno(dtp, errp, EDT_NOMEM));

967 for (i = 0; i < DTRACEOPT_MAX; i++)
968 dtp->dt_options[i] = DTRACEOPT_UNSET;

970 dtp->dt_cpp_argv[0] = (char *)strbasename(dtp->dt_cpp_path);

972 (void) snprintf(isadef, sizeof (isadef), "-D__SUNW_D_%u",
973 (uint_t)(sizeof (void *) * NBBY));

975 (void) snprintf(utsdef, sizeof (utsdef), "-D__%s_%s",
976 dt_get_sysinfo(SI_SYSNAME, s1, sizeof (s1)),
977 dt_get_sysinfo(SI_RELEASE, s2, sizeof (s2)));

new/usr/src/lib/libdtrace/common/dt_open.c 16

979 if (dt_cpp_add_arg(dtp, "-D__sun") == NULL ||
980 dt_cpp_add_arg(dtp, "-D__unix") == NULL ||
981 dt_cpp_add_arg(dtp, "-D__SVR4") == NULL ||
982 dt_cpp_add_arg(dtp, "-D__SUNW_D=1") == NULL ||
983 dt_cpp_add_arg(dtp, isadef) == NULL ||
984 dt_cpp_add_arg(dtp, utsdef) == NULL)
985 return (set_open_errno(dtp, errp, EDT_NOMEM));

987 if (flags & DTRACE_O_NODEV)
988 bcopy(&_dtrace_conf, &dtp->dt_conf, sizeof (_dtrace_conf));
989 else if (dt_ioctl(dtp, DTRACEIOC_CONF, &dtp->dt_conf) != 0)
990 return (set_open_errno(dtp, errp, errno));

992 if (flags & DTRACE_O_LP64)
993 dtp->dt_conf.dtc_ctfmodel = CTF_MODEL_LP64;
994 else if (flags & DTRACE_O_ILP32)
995 dtp->dt_conf.dtc_ctfmodel = CTF_MODEL_ILP32;

997 #ifdef __sparc
998 /*
999 * On SPARC systems, __sparc is always defined for <sys/isa_defs.h>

1000 * and __sparcv9 is defined if we are doing a 64-bit compile.
1001 */
1002 if (dt_cpp_add_arg(dtp, "-D__sparc") == NULL)
1003 return (set_open_errno(dtp, errp, EDT_NOMEM));

1005 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64 &&
1006 dt_cpp_add_arg(dtp, "-D__sparcv9") == NULL)
1007 return (set_open_errno(dtp, errp, EDT_NOMEM));
1008 #endif

1010 #ifdef __x86
1011 /*
1012 * On x86 systems, __i386 is defined for <sys/isa_defs.h> for 32-bit
1013 * compiles and __amd64 is defined for 64-bit compiles. Unlike SPARC,
1014 * they are defined exclusive of one another (see PSARC 2004/619).
1015 */
1016 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64) {
1017 if (dt_cpp_add_arg(dtp, "-D__amd64") == NULL)
1018 return (set_open_errno(dtp, errp, EDT_NOMEM));
1019 } else {
1020 if (dt_cpp_add_arg(dtp, "-D__i386") == NULL)
1021 return (set_open_errno(dtp, errp, EDT_NOMEM));
1022 }
1023 #endif

1025 if (dtp->dt_conf.dtc_difversion < DIF_VERSION)
1026 return (set_open_errno(dtp, errp, EDT_DIFVERS));

1028 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_ILP32)
1029 bcopy(_dtrace_ints_32, dtp->dt_ints, sizeof (_dtrace_ints_32));
1030 else
1031 bcopy(_dtrace_ints_64, dtp->dt_ints, sizeof (_dtrace_ints_64));

1033 dtp->dt_macros = dt_idhash_create("macro", NULL, 0, UINT_MAX);
1034 dtp->dt_aggs = dt_idhash_create("aggregation", NULL,
1035 DTRACE_AGGVARIDNONE + 1, UINT_MAX);

1037 dtp->dt_globals = dt_idhash_create("global", _dtrace_globals,
1038 DIF_VAR_OTHER_UBASE, DIF_VAR_OTHER_MAX);

1040 dtp->dt_tls = dt_idhash_create("thread local", NULL,
1041 DIF_VAR_OTHER_UBASE, DIF_VAR_OTHER_MAX);

1043 if (dtp->dt_macros == NULL || dtp->dt_aggs == NULL ||
1044 dtp->dt_globals == NULL || dtp->dt_tls == NULL)

new/usr/src/lib/libdtrace/common/dt_open.c 17

1045 return (set_open_errno(dtp, errp, EDT_NOMEM));

1047 /*
1048 * Populate the dt_macros identifier hash table by hand: we can’t use
1049 * the dt_idhash_populate() mechanism because we’re not yet compiling
1050 * and dtrace_update() needs to immediately reference these idents.
1051 */
1052 for (idp = _dtrace_macros; idp->di_name != NULL; idp++) {
1053 if (dt_idhash_insert(dtp->dt_macros, idp->di_name,
1054 idp->di_kind, idp->di_flags, idp->di_id, idp->di_attr,
1055 idp->di_vers, idp->di_ops ? idp->di_ops : &dt_idops_thaw,
1056 idp->di_iarg, 0) == NULL)
1057 return (set_open_errno(dtp, errp, EDT_NOMEM));
1058 }

1060 /*
1061 * Update the module list using /system/object and load the values for
1062 * the macro variable definitions according to the current process.
1063 */
1064 dtrace_update(dtp);

1066 /*
1067 * Select the intrinsics and typedefs we want based on the data model.
1068 * The intrinsics are under "C". The typedefs are added under "D".
1069 */
1070 if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_ILP32) {
1071 dinp = _dtrace_intrinsics_32;
1072 dtyp = _dtrace_typedefs_32;
1073 } else {
1074 dinp = _dtrace_intrinsics_64;
1075 dtyp = _dtrace_typedefs_64;
1076 }

1078 /*
1079 * Create a dynamic CTF container under the "C" scope for intrinsic
1080 * types and types defined in ANSI-C header files that are included.
1081 */
1082 if ((dmp = dtp->dt_cdefs = dt_module_create(dtp, "C")) == NULL)
1083 return (set_open_errno(dtp, errp, EDT_NOMEM));

1085 if ((dmp->dm_ctfp = ctf_create(&dtp->dt_ctferr)) == NULL)
1086 return (set_open_errno(dtp, errp, EDT_CTF));

1088 dt_dprintf("created CTF container for %s (%p)\n",
1089 dmp->dm_name, (void *)dmp->dm_ctfp);

1091 (void) ctf_setmodel(dmp->dm_ctfp, dtp->dt_conf.dtc_ctfmodel);
1092 ctf_setspecific(dmp->dm_ctfp, dmp);

1094 dmp->dm_flags = DT_DM_LOADED; /* fake up loaded bit */
1095 dmp->dm_modid = -1; /* no module ID */

1097 /*
1098 * Fill the dynamic "C" CTF container with all of the intrinsic
1099 * integer and floating-point types appropriate for this data model.
1100 */
1101 for (; dinp->din_name != NULL; dinp++) {
1102 if (dinp->din_kind == CTF_K_INTEGER) {
1103 err = ctf_add_integer(dmp->dm_ctfp, CTF_ADD_ROOT,
1104 dinp->din_name, &dinp->din_data);
1105 } else {
1106 err = ctf_add_float(dmp->dm_ctfp, CTF_ADD_ROOT,
1107 dinp->din_name, &dinp->din_data);
1108 }

1110 if (err == CTF_ERR) {

new/usr/src/lib/libdtrace/common/dt_open.c 18

1111 dt_dprintf("failed to add %s to C container: %s\n",
1112 dinp->din_name, ctf_errmsg(
1113 ctf_errno(dmp->dm_ctfp)));
1114 return (set_open_errno(dtp, errp, EDT_CTF));
1115 }
1116 }

1118 if (ctf_update(dmp->dm_ctfp) != 0) {
1119 dt_dprintf("failed to update C container: %s\n",
1120 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1121 return (set_open_errno(dtp, errp, EDT_CTF));
1122 }

1124 /*
1125 * Add intrinsic pointer types that are needed to initialize printf
1126 * format dictionary types (see table in dt_printf.c).
1127 */
1128 (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT,
1129 ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1131 (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT,
1132 ctf_lookup_by_name(dmp->dm_ctfp, "char"));

1134 (void) ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT,
1135 ctf_lookup_by_name(dmp->dm_ctfp, "int"));

1137 if (ctf_update(dmp->dm_ctfp) != 0) {
1138 dt_dprintf("failed to update C container: %s\n",
1139 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1140 return (set_open_errno(dtp, errp, EDT_CTF));
1141 }

1143 /*
1144 * Create a dynamic CTF container under the "D" scope for types that
1145 * are defined by the D program itself or on-the-fly by the D compiler.
1146 * The "D" CTF container is a child of the "C" CTF container.
1147 */
1148 if ((dmp = dtp->dt_ddefs = dt_module_create(dtp, "D")) == NULL)
1149 return (set_open_errno(dtp, errp, EDT_NOMEM));

1151 if ((dmp->dm_ctfp = ctf_create(&dtp->dt_ctferr)) == NULL)
1152 return (set_open_errno(dtp, errp, EDT_CTF));

1154 dt_dprintf("created CTF container for %s (%p)\n",
1155 dmp->dm_name, (void *)dmp->dm_ctfp);

1157 (void) ctf_setmodel(dmp->dm_ctfp, dtp->dt_conf.dtc_ctfmodel);
1158 ctf_setspecific(dmp->dm_ctfp, dmp);

1160 dmp->dm_flags = DT_DM_LOADED; /* fake up loaded bit */
1161 dmp->dm_modid = -1; /* no module ID */

1163 if (ctf_import(dmp->dm_ctfp, dtp->dt_cdefs->dm_ctfp) == CTF_ERR) {
1164 dt_dprintf("failed to import D parent container: %s\n",
1165 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1166 return (set_open_errno(dtp, errp, EDT_CTF));
1167 }

1169 /*
1170 * Fill the dynamic "D" CTF container with all of the built-in typedefs
1171 * that we need to use for our D variable and function definitions.
1172 * This ensures that basic inttypes.h names are always available to us.
1173 */
1174 for (; dtyp->dty_src != NULL; dtyp++) {
1175 if (ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1176 dtyp->dty_dst, ctf_lookup_by_name(dmp->dm_ctfp,

new/usr/src/lib/libdtrace/common/dt_open.c 19

1177 dtyp->dty_src)) == CTF_ERR) {
1178 dt_dprintf("failed to add typedef %s %s to D "
1179 "container: %s", dtyp->dty_src, dtyp->dty_dst,
1180 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1181 return (set_open_errno(dtp, errp, EDT_CTF));
1182 }
1183 }

1185 /*
1186 * Insert a CTF ID corresponding to a pointer to a type of kind
1187 * CTF_K_FUNCTION we can use in the compiler for function pointers.
1188 * CTF treats all function pointers as "int (*)()" so we only need one.
1189 */
1190 ctc.ctc_return = ctf_lookup_by_name(dmp->dm_ctfp, "int");
1191 ctc.ctc_argc = 0;
1192 ctc.ctc_flags = 0;

1194 dtp->dt_type_func = ctf_add_function(dmp->dm_ctfp,
1195 CTF_ADD_ROOT, &ctc, NULL);

1197 dtp->dt_type_fptr = ctf_add_pointer(dmp->dm_ctfp,
1198 CTF_ADD_ROOT, dtp->dt_type_func);

1200 /*
1201 * We also insert CTF definitions for the special D intrinsic types
1202 * string and <DYN> into the D container. The string type is added
1203 * as a typedef of char[n]. The <DYN> type is an alias for void.
1204 * We compare types to these special CTF ids throughout the compiler.
1205 */
1206 ctr.ctr_contents = ctf_lookup_by_name(dmp->dm_ctfp, "char");
1207 ctr.ctr_index = ctf_lookup_by_name(dmp->dm_ctfp, "long");
1208 ctr.ctr_nelems = _dtrace_strsize;

1210 dtp->dt_type_str = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1211 "string", ctf_add_array(dmp->dm_ctfp, CTF_ADD_ROOT, &ctr));

1213 dtp->dt_type_dyn = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1214 "<DYN>", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1216 dtp->dt_type_stack = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1217 "stack", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1219 dtp->dt_type_symaddr = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1220 "_symaddr", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1222 dtp->dt_type_usymaddr = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT,
1223 "_usymaddr", ctf_lookup_by_name(dmp->dm_ctfp, "void"));

1225 if (dtp->dt_type_func == CTF_ERR || dtp->dt_type_fptr == CTF_ERR ||
1226 dtp->dt_type_str == CTF_ERR || dtp->dt_type_dyn == CTF_ERR ||
1227 dtp->dt_type_stack == CTF_ERR || dtp->dt_type_symaddr == CTF_ERR ||
1228 dtp->dt_type_usymaddr == CTF_ERR) {
1229 dt_dprintf("failed to add intrinsic to D container: %s\n",
1230 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1231 return (set_open_errno(dtp, errp, EDT_CTF));
1232 }

1234 if (ctf_update(dmp->dm_ctfp) != 0) {
1235 dt_dprintf("failed update D container: %s\n",
1236 ctf_errmsg(ctf_errno(dmp->dm_ctfp)));
1237 return (set_open_errno(dtp, errp, EDT_CTF));
1238 }

1240 /*
1241 * Initialize the integer description table used to convert integer
1242 * constants to the appropriate types. Refer to the comments above

new/usr/src/lib/libdtrace/common/dt_open.c 20

1243 * dt_node_int() for a complete description of how this table is used.
1244 */
1245 for (i = 0; i < sizeof (dtp->dt_ints) / sizeof (dtp->dt_ints[0]); i++) {
1246 if (dtrace_lookup_by_type(dtp, DTRACE_OBJ_EVERY,
1247 dtp->dt_ints[i].did_name, &dtt) != 0) {
1248 dt_dprintf("failed to lookup integer type %s: %s\n",
1249 dtp->dt_ints[i].did_name,
1250 dtrace_errmsg(dtp, dtrace_errno(dtp)));
1251 return (set_open_errno(dtp, errp, dtp->dt_errno));
1252 }
1253 dtp->dt_ints[i].did_ctfp = dtt.dtt_ctfp;
1254 dtp->dt_ints[i].did_type = dtt.dtt_type;
1255 }

1257 /*
1258 * Now that we’ve created the "C" and "D" containers, move them to the
1259 * start of the module list so that these types and symbols are found
1260 * first (for stability) when iterating through the module list.
1261 */
1262 dt_list_delete(&dtp->dt_modlist, dtp->dt_ddefs);
1263 dt_list_prepend(&dtp->dt_modlist, dtp->dt_ddefs);

1265 dt_list_delete(&dtp->dt_modlist, dtp->dt_cdefs);
1266 dt_list_prepend(&dtp->dt_modlist, dtp->dt_cdefs);

1268 if (dt_pfdict_create(dtp) == -1)
1269 return (set_open_errno(dtp, errp, dtp->dt_errno));

1271 /*
1272 * If we are opening libdtrace DTRACE_O_NODEV enable C_ZDEFS by default
1273 * because without /dev/dtrace open, we will not be able to load the
1274 * names and attributes of any providers or probes from the kernel.
1275 */
1276 if (flags & DTRACE_O_NODEV)
1277 dtp->dt_cflags |= DTRACE_C_ZDEFS;

1279 /*
1280 * Load hard-wired inlines into the definition cache by calling the
1281 * compiler on the raw definition string defined above.
1282 */
1283 if ((pgp = dtrace_program_strcompile(dtp, _dtrace_hardwire,
1284 DTRACE_PROBESPEC_NONE, DTRACE_C_EMPTY, 0, NULL)) == NULL) {
1285 dt_dprintf("failed to load hard-wired definitions: %s\n",
1286 dtrace_errmsg(dtp, dtrace_errno(dtp)));
1287 return (set_open_errno(dtp, errp, EDT_HARDWIRE));
1288 }

1290 dt_program_destroy(dtp, pgp);

1292 /*
1293 * Set up the default DTrace library path. Once set, the next call to
1294 * dt_compile() will compile all the libraries. We intentionally defer
1295 * library processing to improve overhead for clients that don’t ever
1296 * compile, and to provide better error reporting (because the full
1297 * reporting of compiler errors requires dtrace_open() to succeed).
1298 */
1299 if (dtrace_setopt(dtp, "libdir", _dtrace_libdir) != 0)
1300 return (set_open_errno(dtp, errp, dtp->dt_errno));

1302 return (dtp);
1303 }

1305 dtrace_hdl_t *
1306 dtrace_open(int version, int flags, int *errp)
1307 {
1308 return (dt_vopen(version, flags, errp, NULL, NULL));

new/usr/src/lib/libdtrace/common/dt_open.c 21

1309 }

1311 dtrace_hdl_t *
1312 dtrace_vopen(int version, int flags, int *errp,
1313 const dtrace_vector_t *vector, void *arg)
1314 {
1315 return (dt_vopen(version, flags, errp, vector, arg));
1316 }

1318 void
1319 dtrace_close(dtrace_hdl_t *dtp)
1320 {
1321 dt_ident_t *idp, *ndp;
1322 dt_module_t *dmp;
1323 dt_provider_t *pvp;
1324 dtrace_prog_t *pgp;
1325 dt_xlator_t *dxp;
1326 dt_dirpath_t *dirp;
1327 int i;

1329 if (dtp->dt_procs != NULL)
1330 dt_proc_fini(dtp);

1332 while ((pgp = dt_list_next(&dtp->dt_programs)) != NULL)
1333 dt_program_destroy(dtp, pgp);

1335 while ((dxp = dt_list_next(&dtp->dt_xlators)) != NULL)
1336 dt_xlator_destroy(dtp, dxp);

1338 dt_free(dtp, dtp->dt_xlatormap);

1340 for (idp = dtp->dt_externs; idp != NULL; idp = ndp) {
1341 ndp = idp->di_next;
1342 dt_ident_destroy(idp);
1343 }

1345 if (dtp->dt_macros != NULL)
1346 dt_idhash_destroy(dtp->dt_macros);
1347 if (dtp->dt_aggs != NULL)
1348 dt_idhash_destroy(dtp->dt_aggs);
1349 if (dtp->dt_globals != NULL)
1350 dt_idhash_destroy(dtp->dt_globals);
1351 if (dtp->dt_tls != NULL)
1352 dt_idhash_destroy(dtp->dt_tls);

1354 while ((dmp = dt_list_next(&dtp->dt_modlist)) != NULL)
1355 dt_module_destroy(dtp, dmp);

1357 while ((pvp = dt_list_next(&dtp->dt_provlist)) != NULL)
1358 dt_provider_destroy(dtp, pvp);

1360 if (dtp->dt_fd != -1)
1361 (void) close(dtp->dt_fd);
1362 if (dtp->dt_ftfd != -1)
1363 (void) close(dtp->dt_ftfd);
1364 if (dtp->dt_cdefs_fd != -1)
1365 (void) close(dtp->dt_cdefs_fd);
1366 if (dtp->dt_ddefs_fd != -1)
1367 (void) close(dtp->dt_ddefs_fd);
1368 if (dtp->dt_stdout_fd != -1)
1369 (void) close(dtp->dt_stdout_fd);

1371 dt_epid_destroy(dtp);
1372 dt_aggid_destroy(dtp);
1373 dt_format_destroy(dtp);
1374 dt_strdata_destroy(dtp);

new/usr/src/lib/libdtrace/common/dt_open.c 22

1375 dt_buffered_destroy(dtp);
1376 dt_aggregate_destroy(dtp);
1377 dt_pfdict_destroy(dtp);
1378 dt_provmod_destroy(&dtp->dt_provmod);
1379 dt_dof_fini(dtp);

1381 for (i = 1; i < dtp->dt_cpp_argc; i++)
1382 free(dtp->dt_cpp_argv[i]);

1384 while ((dirp = dt_list_next(&dtp->dt_lib_path)) != NULL) {
1385 dt_list_delete(&dtp->dt_lib_path, dirp);
1386 free(dirp->dir_path);
1387 free(dirp);
1388 }

1390 free(dtp->dt_cpp_argv);
1391 free(dtp->dt_cpp_path);
1392 free(dtp->dt_ld_path);

1394 free(dtp->dt_mods);
1395 free(dtp->dt_provs);
1396 free(dtp);
1397 }

1399 int
1400 dtrace_provider_modules(dtrace_hdl_t *dtp, const char **mods, int nmods)
1401 {
1402 dt_provmod_t *prov;
1403 int i = 0;

1405 for (prov = dtp->dt_provmod; prov != NULL; prov = prov->dp_next, i++) {
1406 if (i < nmods)
1407 mods[i] = prov->dp_name;
1408 }

1410 return (i);
1411 }

1413 int
1414 dtrace_ctlfd(dtrace_hdl_t *dtp)
1415 {
1416 return (dtp->dt_fd);
1417 }

new/usr/src/lib/libdtrace/common/io.d.in 1

**
 7992 Tue Jan 14 16:50:00 2014
new/usr/src/lib/libdtrace/common/io.d.in
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
28 */
26 #pragma ident "%Z%%M% %I% %E% SMI"

30 #pragma D depends_on module unix
31 #pragma D depends_on provider io

33 inline int B_BUSY = @B_BUSY@;
34 #pragma D binding "1.0" B_BUSY
35 inline int B_DONE = @B_DONE@;
36 #pragma D binding "1.0" B_DONE
37 inline int B_ERROR = @B_ERROR@;
38 #pragma D binding "1.0" B_ERROR
39 inline int B_PAGEIO = @B_PAGEIO@;
40 #pragma D binding "1.0" B_PAGEIO
41 inline int B_PHYS = @B_PHYS@;
42 #pragma D binding "1.0" B_PHYS
43 inline int B_READ = @B_READ@;
44 #pragma D binding "1.0" B_READ
45 inline int B_WRITE = @B_WRITE@;
46 #pragma D binding "1.0" B_WRITE
47 inline int B_ASYNC = @B_ASYNC@;
48 #pragma D binding "1.0" B_ASYNC

50 typedef struct bufinfo {
51 int b_flags; /* buffer status */
52 size_t b_bcount; /* number of bytes */
53 caddr_t b_addr; /* buffer address */
54 uint64_t b_lblkno; /* block # on device */
55 uint64_t b_blkno; /* expanded block # on device */
56 size_t b_resid; /* # of bytes not transferred */

new/usr/src/lib/libdtrace/common/io.d.in 2

57 size_t b_bufsize; /* size of allocated buffer */
58 caddr_t b_iodone; /* I/O completion routine */
59 int b_error; /* expanded error field */
60 dev_t b_edev; /* extended device */
61 } bufinfo_t;

______unchanged_portion_omitted_

202 inline fileinfo_t fds[int fd] = xlate <fileinfo_t> (getf(fd));
200 inline fileinfo_t fds[int fd] = xlate <fileinfo_t> (
201 fd >= 0 && fd < curthread->t_procp->p_user.u_finfo.fi_nfiles ?
202 curthread->t_procp->p_user.u_finfo.fi_list[fd].uf_file : NULL);

204 #pragma D attributes Stable/Stable/Common fds
205 #pragma D binding "1.1" fds

207 #pragma D binding "1.2" translator
208 translator fileinfo_t < struct vnode *V > {
209 fi_name = V->v_path == NULL ? "<unknown>" :
210 basename(cleanpath(V->v_path));
211 fi_dirname = V->v_path == NULL ? "<unknown>" :
212 dirname(cleanpath(V->v_path));
213 fi_pathname = V->v_path == NULL ? "<unknown>" : cleanpath(V->v_path);
214 fi_fs = stringof(V->v_op->vnop_name);
215 fi_mount = V->v_vfsp->vfs_vnodecovered == NULL ? "/" :
216 V->v_vfsp->vfs_vnodecovered->v_path == NULL ? "<unknown>" :
217 cleanpath(V->v_vfsp->vfs_vnodecovered->v_path);
218 };

______unchanged_portion_omitted_

new/usr/src/pkg/manifests/system-dtrace-tests.mf 1

**
 119866 Tue Jan 14 16:50:00 2014
new/usr/src/pkg/manifests/system-dtrace-tests.mf
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright (c) 2012 by Delphix. All rights reserved.
25 #

27 set name=pkg.fmri value=pkg:/system/dtrace/tests@$(PKGVERS)
28 set name=pkg.description value="DTrace Test Suite Internal Distribution"
29 set name=pkg.summary value="DTrace Test Suite"
30 set name=info.classification \
31 value=org.opensolaris.category.2008:Development/System
32 set name=variant.arch value=$(ARCH)
33 dir path=opt/SUNWdtrt group=sys
34 dir path=opt/SUNWdtrt/bin
35 dir path=opt/SUNWdtrt/bin/$(ARCH32)
36 dir path=opt/SUNWdtrt/bin/$(ARCH64)
37 dir path=opt/SUNWdtrt/lib
38 dir path=opt/SUNWdtrt/lib/java
39 dir path=opt/SUNWdtrt/tst
40 dir path=opt/SUNWdtrt/tst/$(ARCH)
41 dir path=opt/SUNWdtrt/tst/$(ARCH)/arrays
42 $(i386_ONLY)dir path=opt/SUNWdtrt/tst/$(ARCH)/funcs
43 dir path=opt/SUNWdtrt/tst/$(ARCH)/pid
44 $(sparc_ONLY)dir path=opt/SUNWdtrt/tst/$(ARCH)/usdt
45 dir path=opt/SUNWdtrt/tst/$(ARCH)/ustack
46 dir path=opt/SUNWdtrt/tst/common
47 dir path=opt/SUNWdtrt/tst/common/aggs
48 dir path=opt/SUNWdtrt/tst/common/arithmetic
49 dir path=opt/SUNWdtrt/tst/common/arrays
50 dir path=opt/SUNWdtrt/tst/common/assocs
51 dir path=opt/SUNWdtrt/tst/common/begin
52 dir path=opt/SUNWdtrt/tst/common/bitfields
53 dir path=opt/SUNWdtrt/tst/common/buffering
54 dir path=opt/SUNWdtrt/tst/common/builtinvar
55 dir path=opt/SUNWdtrt/tst/common/cg
56 dir path=opt/SUNWdtrt/tst/common/clauses
57 dir path=opt/SUNWdtrt/tst/common/cpc

new/usr/src/pkg/manifests/system-dtrace-tests.mf 2

58 dir path=opt/SUNWdtrt/tst/common/decls
59 dir path=opt/SUNWdtrt/tst/common/drops
60 dir path=opt/SUNWdtrt/tst/common/dtraceUtil
61 dir path=opt/SUNWdtrt/tst/common/end
62 dir path=opt/SUNWdtrt/tst/common/enum
63 dir path=opt/SUNWdtrt/tst/common/env
64 dir path=opt/SUNWdtrt/tst/common/error
65 dir path=opt/SUNWdtrt/tst/common/exit
66 dir path=opt/SUNWdtrt/tst/common/fbtprovider
67 dir path=opt/SUNWdtrt/tst/common/funcs
68 dir path=opt/SUNWdtrt/tst/common/grammar
69 dir path=opt/SUNWdtrt/tst/common/include
70 dir path=opt/SUNWdtrt/tst/common/inline
71 dir path=opt/SUNWdtrt/tst/common/io
72 dir path=opt/SUNWdtrt/tst/common/ip
73 dir path=opt/SUNWdtrt/tst/common/java_api
74 dir path=opt/SUNWdtrt/tst/common/lexer
75 dir path=opt/SUNWdtrt/tst/common/llquantize
76 dir path=opt/SUNWdtrt/tst/common/mdb
77 dir path=opt/SUNWdtrt/tst/common/mib
78 dir path=opt/SUNWdtrt/tst/common/misc
79 dir path=opt/SUNWdtrt/tst/common/multiaggs
80 dir path=opt/SUNWdtrt/tst/common/nfs
81 dir path=opt/SUNWdtrt/tst/common/offsetof
82 dir path=opt/SUNWdtrt/tst/common/operators
83 dir path=opt/SUNWdtrt/tst/common/pid
84 dir path=opt/SUNWdtrt/tst/common/plockstat
85 dir path=opt/SUNWdtrt/tst/common/pointers
86 dir path=opt/SUNWdtrt/tst/common/pragma
87 dir path=opt/SUNWdtrt/tst/common/predicates
88 dir path=opt/SUNWdtrt/tst/common/preprocessor
89 dir path=opt/SUNWdtrt/tst/common/print
90 dir path=opt/SUNWdtrt/tst/common/printa
91 dir path=opt/SUNWdtrt/tst/common/printf
92 dir path=opt/SUNWdtrt/tst/common/privs
93 dir path=opt/SUNWdtrt/tst/common/probes
94 dir path=opt/SUNWdtrt/tst/common/proc
95 dir path=opt/SUNWdtrt/tst/common/profile-n
96 dir path=opt/SUNWdtrt/tst/common/providers
97 dir path=opt/SUNWdtrt/tst/common/raise
98 dir path=opt/SUNWdtrt/tst/common/rates
99 dir path=opt/SUNWdtrt/tst/common/safety
100 dir path=opt/SUNWdtrt/tst/common/scalars
101 dir path=opt/SUNWdtrt/tst/common/sched
102 dir path=opt/SUNWdtrt/tst/common/scripting
103 dir path=opt/SUNWdtrt/tst/common/sdt
104 dir path=opt/SUNWdtrt/tst/common/sizeof
105 dir path=opt/SUNWdtrt/tst/common/speculation
106 dir path=opt/SUNWdtrt/tst/common/stability
107 dir path=opt/SUNWdtrt/tst/common/stack
108 dir path=opt/SUNWdtrt/tst/common/stackdepth
109 dir path=opt/SUNWdtrt/tst/common/stop
110 dir path=opt/SUNWdtrt/tst/common/strlen
111 dir path=opt/SUNWdtrt/tst/common/struct
112 dir path=opt/SUNWdtrt/tst/common/syscall
113 dir path=opt/SUNWdtrt/tst/common/sysevent
114 dir path=opt/SUNWdtrt/tst/common/tick-n
115 dir path=opt/SUNWdtrt/tst/common/trace
116 dir path=opt/SUNWdtrt/tst/common/tracemem
117 dir path=opt/SUNWdtrt/tst/common/translators
118 dir path=opt/SUNWdtrt/tst/common/typedef
119 dir path=opt/SUNWdtrt/tst/common/types
120 dir path=opt/SUNWdtrt/tst/common/union
121 dir path=opt/SUNWdtrt/tst/common/usdt
122 dir path=opt/SUNWdtrt/tst/common/ustack
123 dir path=opt/SUNWdtrt/tst/common/vars

new/usr/src/pkg/manifests/system-dtrace-tests.mf 3

124 dir path=opt/SUNWdtrt/tst/common/version
125 $(i386_ONLY)dir path=opt/SUNWdtrt/tst/i86xpv
126 $(i386_ONLY)dir path=opt/SUNWdtrt/tst/i86xpv/xdt
127 file path=opt/SUNWdtrt/README mode=0444
128 file path=opt/SUNWdtrt/bin/$(ARCH32)/chkargs mode=0555
129 file path=opt/SUNWdtrt/bin/$(ARCH64)/chkargs mode=0555
130 file path=opt/SUNWdtrt/bin/baddof mode=0555
131 file path=opt/SUNWdtrt/bin/badioctl mode=0555
132 file path=opt/SUNWdtrt/bin/chkargs mode=0555
133 file path=opt/SUNWdtrt/bin/dstyle mode=0555
134 file path=opt/SUNWdtrt/bin/dtest mode=0555
135 file path=opt/SUNWdtrt/bin/dtfailures mode=0555
136 file path=opt/SUNWdtrt/bin/exception.lst mode=0444
137 file path=opt/SUNWdtrt/bin/jdtrace mode=0555
138 file path=opt/SUNWdtrt/lib/java/jdtrace.jar
139 file path=opt/SUNWdtrt/tst/$(ARCH)/arrays/tst.uregsarray.d mode=0444
140 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/funcs/tst.badcopyin.d mode=0444
141 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/funcs/tst.badcopyinstr.d \
142 mode=0444
143 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/funcs/tst.badcopyout.d \
144 mode=0444
145 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/funcs/tst.badcopyoutstr.d \
146 mode=0444
147 $(sparc_ONLY)file \
148 path=opt/SUNWdtrt/tst/$(ARCH)/pid/err.D_PROC_ALIGN.misaligned.d mode=0444
149 $(sparc_ONLY)file \
150 path=opt/SUNWdtrt/tst/$(ARCH)/pid/err.D_PROC_ALIGN.misaligned.exe \
151 mode=0555
152 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.badinstr.d mode=0444
153 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.badinstr.exe mode=0555
154 $(sparc_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.br.d mode=0444
155 $(sparc_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.br.d.out mode=0444
156 $(sparc_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.br.exe mode=0555
157 file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.branch.d mode=0444
158 file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.branch.exe mode=0555
159 file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.embedded.d mode=0444
160 file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.embedded.exe mode=0555
161 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.ret.d mode=0444
162 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.ret.exe mode=0555
163 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.retlist.exe mode=0555
164 $(i386_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/pid/tst.retlist.ksh mode=0444
165 $(sparc_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/usdt/tst.tailcall.ksh \
166 mode=0444
167 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.annotated.d mode=0444
168 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.annotated.d.out mode=0444
169 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.annotated.exe mode=0555
170 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.circstack.d mode=0444
171 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.circstack.exe mode=0555
172 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.helper.d mode=0444
173 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.helper.d.out mode=0444
174 file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.helper.exe mode=0555
175 $(sparc_ONLY)file path=opt/SUNWdtrt/tst/$(ARCH)/ustack/tst.trapstat.ksh \
176 mode=0444
177 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_FUNC.bad.d mode=0444
178 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_MDIM.bad.d mode=0444
179 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_NULL.bad.d mode=0444
180 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_REDEF.redef.d mode=0444
181 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.avgtoofew.d mode=0444
182 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.maxnoarg.d mode=0444
183 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.mintoofew.d mode=0444
184 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.quantizetoofew.d \
185 mode=0444
186 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.stddevtoofew.d \
187 mode=0444
188 file path=opt/SUNWdtrt/tst/common/aggs/err.D_AGG_SCALAR.sumtoofew.d mode=0444
189 file path=opt/SUNWdtrt/tst/common/aggs/err.D_CLEAR_AGGARG.bad.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 4

190 file path=opt/SUNWdtrt/tst/common/aggs/err.D_CLEAR_PROTO.bad.d mode=0444
191 file path=opt/SUNWdtrt/tst/common/aggs/err.D_FUNC_IDENT.bad.d mode=0444
192 file path=opt/SUNWdtrt/tst/common/aggs/err.D_FUNC_UNDEF.badaggfunc.d mode=0444
193 file path=opt/SUNWdtrt/tst/common/aggs/err.D_IDENT_UNDEF.badexpr.d mode=0444
194 file path=opt/SUNWdtrt/tst/common/aggs/err.D_IDENT_UNDEF.badkey3.d mode=0444
195 file path=opt/SUNWdtrt/tst/common/aggs/err.D_IDENT_UNDEF.noeffect.d mode=0444
196 file path=opt/SUNWdtrt/tst/common/aggs/err.D_KEY_TYPE.badkey1.d mode=0444
197 file path=opt/SUNWdtrt/tst/common/aggs/err.D_KEY_TYPE.badkey2.d mode=0444
198 file path=opt/SUNWdtrt/tst/common/aggs/err.D_KEY_TYPE.badkey4.d mode=0444
199 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_BASETYPE.lqbad1.d \
200 mode=0444
201 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_BASETYPE.lqshort.d \
202 mode=0444
203 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_BASEVAL.bad.d mode=0444
204 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_LIMTYPE.lqbad1.d mode=0444
205 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_LIMVAL.bad.d mode=0444
206 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MATCHBASE.d mode=0444
207 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MATCHBASE.order.d \
208 mode=0444
209 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MATCHLIM.d mode=0444
210 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MATCHLIM.order.d mode=0444
211 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MATCHSTEP.d mode=0444
212 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_MISMATCH.lqbadarg.d \
213 mode=0444
214 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_STEPLARGE.lqtoofew.d \
215 mode=0444
216 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_STEPSMALL.bad.d mode=0444
217 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_STEPTYPE.lqbadinc.d \
218 mode=0444
219 file path=opt/SUNWdtrt/tst/common/aggs/err.D_LQUANT_STEPVAL.bad.d mode=0444
220 file path=opt/SUNWdtrt/tst/common/aggs/err.D_NORMALIZE_AGGARG.bad.d mode=0444
221 file path=opt/SUNWdtrt/tst/common/aggs/err.D_NORMALIZE_PROTO.bad.d mode=0444
222 file path=opt/SUNWdtrt/tst/common/aggs/err.D_NORMALIZE_SCALAR.bad.d mode=0444
223 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_ARG.lquantizetoofew.d \
224 mode=0444
225 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.avgnoarg.d mode=0444
226 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.avgtoomany.d mode=0444
227 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.counttoomany.d \
228 mode=0444
229 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.lquantizenoarg.d \
230 mode=0444
231 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.lquantizetoomany.d \
232 mode=0444
233 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.maxnoarg.d mode=0444
234 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.maxtoomany.d mode=0444
235 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.minnoarg.d mode=0444
236 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.mintoomany.d mode=0444
237 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.quantizenoarg.d \
238 mode=0444
239 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.quantizetoomany.d \
240 mode=0444
241 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.stddevnoarg.d mode=0444
242 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.stddevtoomany.d \
243 mode=0444
244 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.sumnoarg.d mode=0444
245 file path=opt/SUNWdtrt/tst/common/aggs/err.D_PROTO_LEN.sumtoomany.d mode=0444
246 file path=opt/SUNWdtrt/tst/common/aggs/err.D_TRUNC_AGGARG.bad.d mode=0444
247 file path=opt/SUNWdtrt/tst/common/aggs/err.D_TRUNC_PROTO.badmany.d mode=0444
248 file path=opt/SUNWdtrt/tst/common/aggs/err.D_TRUNC_PROTO.badnone.d mode=0444
249 file path=opt/SUNWdtrt/tst/common/aggs/err.D_TRUNC_SCALAR.bad.d mode=0444
250 file path=opt/SUNWdtrt/tst/common/aggs/tst.allquant.d mode=0444
251 file path=opt/SUNWdtrt/tst/common/aggs/tst.allquant.d.out mode=0444
252 file path=opt/SUNWdtrt/tst/common/aggs/tst.avg.d mode=0444
253 file path=opt/SUNWdtrt/tst/common/aggs/tst.avg.d.out mode=0444
254 file path=opt/SUNWdtrt/tst/common/aggs/tst.avg_neg.d mode=0444
255 file path=opt/SUNWdtrt/tst/common/aggs/tst.avg_neg.d.out mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 5

256 file path=opt/SUNWdtrt/tst/common/aggs/tst.clear.d mode=0444
257 file path=opt/SUNWdtrt/tst/common/aggs/tst.clear.d.out mode=0444
258 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearavg.d mode=0444
259 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearavg.d.out mode=0444
260 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearavg2.d mode=0444
261 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearavg2.d.out mode=0444
262 file path=opt/SUNWdtrt/tst/common/aggs/tst.cleardenormalize.d mode=0444
263 file path=opt/SUNWdtrt/tst/common/aggs/tst.cleardenormalize.d.out mode=0444
264 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearlquantize.d mode=0444
265 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearlquantize.d.out mode=0444
266 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearnormalize.d mode=0444
267 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearnormalize.d.out mode=0444
268 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearstddev.d mode=0444
269 file path=opt/SUNWdtrt/tst/common/aggs/tst.clearstddev.d.out mode=0444
270 file path=opt/SUNWdtrt/tst/common/aggs/tst.count.d mode=0444
271 file path=opt/SUNWdtrt/tst/common/aggs/tst.count.d.out mode=0444
272 file path=opt/SUNWdtrt/tst/common/aggs/tst.count2.d mode=0444
273 file path=opt/SUNWdtrt/tst/common/aggs/tst.count2.d.out mode=0444
274 file path=opt/SUNWdtrt/tst/common/aggs/tst.count3.d mode=0444
275 file path=opt/SUNWdtrt/tst/common/aggs/tst.denormalize.d mode=0444
276 file path=opt/SUNWdtrt/tst/common/aggs/tst.denormalize.d.out mode=0444
277 file path=opt/SUNWdtrt/tst/common/aggs/tst.denormalizeonly.d mode=0444
278 file path=opt/SUNWdtrt/tst/common/aggs/tst.denormalizeonly.d.out mode=0444
279 file path=opt/SUNWdtrt/tst/common/aggs/tst.fmtnormalize.d mode=0444
280 file path=opt/SUNWdtrt/tst/common/aggs/tst.fmtnormalize.d.out mode=0444
281 file path=opt/SUNWdtrt/tst/common/aggs/tst.forms.d mode=0444
282 file path=opt/SUNWdtrt/tst/common/aggs/tst.forms.d.out mode=0444
283 file path=opt/SUNWdtrt/tst/common/aggs/tst.goodkey.d mode=0444
284 file path=opt/SUNWdtrt/tst/common/aggs/tst.keysort.d mode=0444
285 file path=opt/SUNWdtrt/tst/common/aggs/tst.keysort.d.out mode=0444
286 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantize.d mode=0444
287 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantize.d.out mode=0444
288 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantnormal.d mode=0444
289 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantnormal.d.out mode=0444
290 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantrange.d mode=0444
291 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantrange.d.out mode=0444
292 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantround.d mode=0444
293 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantround.d.out mode=0444
294 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantzero.d mode=0444
295 file path=opt/SUNWdtrt/tst/common/aggs/tst.lquantzero.d.out mode=0444
296 file path=opt/SUNWdtrt/tst/common/aggs/tst.max.d mode=0444
297 file path=opt/SUNWdtrt/tst/common/aggs/tst.max.d.out mode=0444
298 file path=opt/SUNWdtrt/tst/common/aggs/tst.max_neg.d mode=0444
299 file path=opt/SUNWdtrt/tst/common/aggs/tst.max_neg.d.out mode=0444
300 file path=opt/SUNWdtrt/tst/common/aggs/tst.min.d mode=0444
301 file path=opt/SUNWdtrt/tst/common/aggs/tst.min.d.out mode=0444
302 file path=opt/SUNWdtrt/tst/common/aggs/tst.min_neg.d mode=0444
303 file path=opt/SUNWdtrt/tst/common/aggs/tst.min_neg.d.out mode=0444
304 file path=opt/SUNWdtrt/tst/common/aggs/tst.multiaggs1.d mode=0444
305 file path=opt/SUNWdtrt/tst/common/aggs/tst.multiaggs2.d mode=0444
306 file path=opt/SUNWdtrt/tst/common/aggs/tst.multiaggs2.d.out mode=0444
307 file path=opt/SUNWdtrt/tst/common/aggs/tst.multiaggs3.d mode=0444
308 file path=opt/SUNWdtrt/tst/common/aggs/tst.multiaggs3.d.out mode=0444
309 file path=opt/SUNWdtrt/tst/common/aggs/tst.multinormalize.d mode=0444
310 file path=opt/SUNWdtrt/tst/common/aggs/tst.multinormalize.d.out mode=0444
311 file path=opt/SUNWdtrt/tst/common/aggs/tst.neglquant.d mode=0444
312 file path=opt/SUNWdtrt/tst/common/aggs/tst.neglquant.d.out mode=0444
313 file path=opt/SUNWdtrt/tst/common/aggs/tst.negorder.d mode=0444
314 file path=opt/SUNWdtrt/tst/common/aggs/tst.negorder.d.out mode=0444
315 file path=opt/SUNWdtrt/tst/common/aggs/tst.negquant.d mode=0444
316 file path=opt/SUNWdtrt/tst/common/aggs/tst.negquant.d.out mode=0444
317 file path=opt/SUNWdtrt/tst/common/aggs/tst.negtrunc.d mode=0444
318 file path=opt/SUNWdtrt/tst/common/aggs/tst.negtrunc.d.out mode=0444
319 file path=opt/SUNWdtrt/tst/common/aggs/tst.negtruncquant.d mode=0444
320 file path=opt/SUNWdtrt/tst/common/aggs/tst.negtruncquant.d.out mode=0444
321 file path=opt/SUNWdtrt/tst/common/aggs/tst.normalize.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 6

322 file path=opt/SUNWdtrt/tst/common/aggs/tst.normalize.d.out mode=0444
323 file path=opt/SUNWdtrt/tst/common/aggs/tst.order.d mode=0444
324 file path=opt/SUNWdtrt/tst/common/aggs/tst.order.d.out mode=0444
325 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantize.d mode=0444
326 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantize.d.out mode=0444
327 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantmany.d mode=0444
328 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantmany.d.out mode=0444
329 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantround.d mode=0444
330 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantround.d.out mode=0444
331 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantzero.d mode=0444
332 file path=opt/SUNWdtrt/tst/common/aggs/tst.quantzero.d.out mode=0444
333 file path=opt/SUNWdtrt/tst/common/aggs/tst.signature.d mode=0444
334 file path=opt/SUNWdtrt/tst/common/aggs/tst.signedkeys.d mode=0444
335 file path=opt/SUNWdtrt/tst/common/aggs/tst.signedkeys.d.out mode=0444
336 file path=opt/SUNWdtrt/tst/common/aggs/tst.signedkeyspos.d mode=0444
337 file path=opt/SUNWdtrt/tst/common/aggs/tst.signedkeyspos.d.out mode=0444
338 file path=opt/SUNWdtrt/tst/common/aggs/tst.sizedkeys.d mode=0444
339 file path=opt/SUNWdtrt/tst/common/aggs/tst.sizedkeys.d.out mode=0444
340 file path=opt/SUNWdtrt/tst/common/aggs/tst.stddev.d mode=0444
341 file path=opt/SUNWdtrt/tst/common/aggs/tst.stddev.d.out mode=0444
342 file path=opt/SUNWdtrt/tst/common/aggs/tst.subr.d mode=0444
343 file path=opt/SUNWdtrt/tst/common/aggs/tst.sum.d mode=0444
344 file path=opt/SUNWdtrt/tst/common/aggs/tst.sum.d.out mode=0444
345 file path=opt/SUNWdtrt/tst/common/aggs/tst.trunc.d mode=0444
346 file path=opt/SUNWdtrt/tst/common/aggs/tst.trunc.d.out mode=0444
347 file path=opt/SUNWdtrt/tst/common/aggs/tst.trunc0.d mode=0444
348 file path=opt/SUNWdtrt/tst/common/aggs/tst.trunc0.d.out mode=0444
349 file path=opt/SUNWdtrt/tst/common/aggs/tst.truncquant.d mode=0444
350 file path=opt/SUNWdtrt/tst/common/aggs/tst.truncquant.d.out mode=0444
351 file path=opt/SUNWdtrt/tst/common/aggs/tst.valsortkeypos.d mode=0444
352 file path=opt/SUNWdtrt/tst/common/aggs/tst.valsortkeypos.d.out mode=0444
353 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_DIV_ZERO.divby0.d mode=0444
354 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_DIV_ZERO.divby0_1.d \
355 mode=0444
356 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_DIV_ZERO.divby0_2.d \
357 mode=0444
358 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_DIV_ZERO.modby0.d mode=0444
359 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_SYNTAX.addmin.d mode=0444
360 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_SYNTAX.divmin.d mode=0444
361 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_SYNTAX.muladd.d mode=0444
362 file path=opt/SUNWdtrt/tst/common/arithmetic/err.D_SYNTAX.muldiv.d mode=0444
363 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.basics.d mode=0444
364 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.basics.d.out mode=0444
365 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.compcast.d mode=0444
366 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.compcast.d.out mode=0444
367 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.compnarrowassign.d mode=0444
368 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.compnarrowassign.d.out \
369 mode=0444
370 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.execcast.d mode=0444
371 file path=opt/SUNWdtrt/tst/common/arithmetic/tst.execcast.d.out mode=0444
372 file path=opt/SUNWdtrt/tst/common/arrays/err.D_ARR_BADREF.bad.d mode=0444
373 file path=opt/SUNWdtrt/tst/common/arrays/err.D_DECL_ARRBIG.toobig.d mode=0444
374 file path=opt/SUNWdtrt/tst/common/arrays/err.D_DECL_ARRNULL.bad.d mode=0444
375 file path=opt/SUNWdtrt/tst/common/arrays/err.D_DECL_ARRSUB.bad.d mode=0444
376 file path=opt/SUNWdtrt/tst/common/arrays/err.D_DECL_PROTO_TYPE.badtuple.d \
377 mode=0444
378 file path=opt/SUNWdtrt/tst/common/arrays/err.D_IDENT_UNDEF.badureg.d mode=0444
379 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic1.d mode=0444
380 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic2.d mode=0444
381 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic3.d mode=0444
382 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic4.d mode=0444
383 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic5.d mode=0444
384 file path=opt/SUNWdtrt/tst/common/arrays/tst.basic6.d mode=0444
385 file path=opt/SUNWdtrt/tst/common/arrays/tst.uregsarray.d mode=0444
386 file path=opt/SUNWdtrt/tst/common/assocs/err.D_OP_INCOMPAT.dupgtype.d \
387 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 7

388 file path=opt/SUNWdtrt/tst/common/assocs/err.D_OP_INCOMPAT.dupttype.d \
389 mode=0444
390 file path=opt/SUNWdtrt/tst/common/assocs/err.D_OP_INCOMPAT.this.d mode=0444
391 file path=opt/SUNWdtrt/tst/common/assocs/err.D_PROTO_ARG.badsig.d mode=0444
392 file path=opt/SUNWdtrt/tst/common/assocs/err.D_PROTO_LEN.toofew.d mode=0444
393 file path=opt/SUNWdtrt/tst/common/assocs/err.D_PROTO_LEN.toomany.d mode=0444
394 file path=opt/SUNWdtrt/tst/common/assocs/err.D_SYNTAX.errassign.d mode=0444
395 file path=opt/SUNWdtrt/tst/common/assocs/err.tupoflow.d mode=0444
396 file path=opt/SUNWdtrt/tst/common/assocs/tst.cpyarray.d mode=0444
397 file path=opt/SUNWdtrt/tst/common/assocs/tst.diffprofile.d mode=0444
398 file path=opt/SUNWdtrt/tst/common/assocs/tst.initialize.d mode=0444
399 file path=opt/SUNWdtrt/tst/common/assocs/tst.invalidref.d mode=0444
400 file path=opt/SUNWdtrt/tst/common/assocs/tst.misc.d mode=0444
401 file path=opt/SUNWdtrt/tst/common/assocs/tst.orthogonality.d mode=0444
402 file path=opt/SUNWdtrt/tst/common/assocs/tst.this.d mode=0444
403 file path=opt/SUNWdtrt/tst/common/assocs/tst.valassign.d.out mode=0444
404 file path=opt/SUNWdtrt/tst/common/begin/err.D_PDESC_ZERO.begin.d mode=0444
405 file path=opt/SUNWdtrt/tst/common/begin/err.D_PDESC_ZERO.tick.d mode=0444
406 file path=opt/SUNWdtrt/tst/common/begin/tst.begin.d mode=0444
407 file path=opt/SUNWdtrt/tst/common/begin/tst.begin.d.out mode=0444
408 file path=opt/SUNWdtrt/tst/common/begin/tst.multibegin.d mode=0444
409 file path=opt/SUNWdtrt/tst/common/begin/tst.multibegin.d.out mode=0444
410 file \
411 path=opt/SUNWdtrt/tst/common/bitfields/err.D_ADDROF_BITFIELD.BitfieldAddress
412 mode=0444
413 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_DECL_BFCONST.NegBitField.d \
414 mode=0444
415 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_DECL_BFCONST.ZeroBitField.d \
416 mode=0444
417 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_DECL_BFSIZE.ExceedBaseType.d \
418 mode=0444
419 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_DECL_BFSIZE.GreaterThan64.d \
420 mode=0444
421 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_DECL_BFTYPE.badtype.d \
422 mode=0444
423 file path=opt/SUNWdtrt/tst/common/bitfields/err.D_OFFSETOF_BITFIELD.d \
424 mode=0444
425 file \
426 path=opt/SUNWdtrt/tst/common/bitfields/err.D_SIZEOF_BITFIELD.SizeofBitfield.
427 mode=0444
428 file path=opt/SUNWdtrt/tst/common/bitfields/tst.BitFieldPromotion.d mode=0444
429 file path=opt/SUNWdtrt/tst/common/bitfields/tst.SizeofBitField.d mode=0444
430 file path=opt/SUNWdtrt/tst/common/buffering/err.end.d mode=0444
431 file path=opt/SUNWdtrt/tst/common/buffering/err.resize1.d mode=0444
432 file path=opt/SUNWdtrt/tst/common/buffering/err.resize2.d mode=0444
433 file path=opt/SUNWdtrt/tst/common/buffering/err.resize3.d mode=0444
434 file path=opt/SUNWdtrt/tst/common/buffering/err.zerobuf.d mode=0444
435 file path=opt/SUNWdtrt/tst/common/buffering/tst.alignring.d mode=0444
436 file path=opt/SUNWdtrt/tst/common/buffering/tst.cputime.ksh mode=0444
437 file path=opt/SUNWdtrt/tst/common/buffering/tst.dynvarsize.d mode=0444
438 file path=opt/SUNWdtrt/tst/common/buffering/tst.fill1.d mode=0444
439 file path=opt/SUNWdtrt/tst/common/buffering/tst.fill1.d.out mode=0444
440 file path=opt/SUNWdtrt/tst/common/buffering/tst.resize1.d mode=0444
441 file path=opt/SUNWdtrt/tst/common/buffering/tst.resize2.d mode=0444
442 file path=opt/SUNWdtrt/tst/common/buffering/tst.resize3.d mode=0444
443 file path=opt/SUNWdtrt/tst/common/buffering/tst.ring1.d mode=0444
444 file path=opt/SUNWdtrt/tst/common/buffering/tst.ring2.d mode=0444
445 file path=opt/SUNWdtrt/tst/common/buffering/tst.ring2.d.out mode=0444
446 file path=opt/SUNWdtrt/tst/common/buffering/tst.ring3.d mode=0444
447 file path=opt/SUNWdtrt/tst/common/buffering/tst.ring3.d.out mode=0444
448 file path=opt/SUNWdtrt/tst/common/buffering/tst.smallring.d mode=0444
449 file path=opt/SUNWdtrt/tst/common/buffering/tst.switch1.d mode=0444
450 file path=opt/SUNWdtrt/tst/common/buffering/tst.switch1.d.out mode=0444
451 file path=opt/SUNWdtrt/tst/common/builtinvar/err.D_XLATE_NOCONV.cpuusage.d \
452 mode=0444
453 file path=opt/SUNWdtrt/tst/common/builtinvar/err.D_XLATE_NOCONV.nice.d \

new/usr/src/pkg/manifests/system-dtrace-tests.mf 8

454 mode=0444
455 file path=opt/SUNWdtrt/tst/common/builtinvar/err.D_XLATE_NOCONV.priority.d \
456 mode=0444
457 file path=opt/SUNWdtrt/tst/common/builtinvar/err.D_XLATE_NOCONV.prsize.d \
458 mode=0444
459 file path=opt/SUNWdtrt/tst/common/builtinvar/err.D_XLATE_NOCONV.rssize.d \
460 mode=0444
461 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.arg0.d mode=0444
462 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.arg0clause.d mode=0444
463 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.arg1.d mode=0444
464 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.arg1to8.d mode=0444
465 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.arg1to8clause.d mode=0444
466 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.caller.d mode=0444
467 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.caller1.d mode=0444
468 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.epid.d mode=0444
469 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.epid1.d mode=0444
470 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.errno.d mode=0444
471 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.errno1.d mode=0444
472 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.execname.d mode=0444
473 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.hpriority.d mode=0444
474 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.id.d mode=0444
475 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.id1.d mode=0444
476 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.ipl.d mode=0444
477 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.ipl1.d mode=0444
478 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.lwpsinfo.d mode=0444
479 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.lwpsinfo1.d mode=0444
480 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.pid.d mode=0444
481 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.pid1.d mode=0444
482 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.psinfo.d mode=0444
483 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.psinfo1.d mode=0444
484 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.tid.d mode=0444
485 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.tid1.d mode=0444
486 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.timestamp.d mode=0444
487 file path=opt/SUNWdtrt/tst/common/builtinvar/tst.vtimestamp.d mode=0444
488 file path=opt/SUNWdtrt/tst/common/cg/err.D_NOREG.noreg.d mode=0444
489 file path=opt/SUNWdtrt/tst/common/cg/err.baddif.d mode=0444
490 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.aggfun.d mode=0444
491 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.aggtup.d mode=0444
492 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.arrtup.d mode=0444
493 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.body.d mode=0444
494 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.both.d mode=0444
495 file path=opt/SUNWdtrt/tst/common/clauses/err.D_IDENT_UNDEF.pred.d mode=0444
496 file path=opt/SUNWdtrt/tst/common/clauses/tst.nopred.d mode=0444
497 file path=opt/SUNWdtrt/tst/common/clauses/tst.pred.d mode=0444
498 file path=opt/SUNWdtrt/tst/common/clauses/tst.predfirst.d mode=0444
499 file path=opt/SUNWdtrt/tst/common/clauses/tst.predlast.d mode=0444
500 file path=opt/SUNWdtrt/tst/common/cpc/err.D_PDESC_ZERO.lowfrequency.d \
501 mode=0444
502 file path=opt/SUNWdtrt/tst/common/cpc/err.D_PDESC_ZERO.malformedoverflow.d \
503 mode=0444
504 file path=opt/SUNWdtrt/tst/common/cpc/err.D_PDESC_ZERO.nonexistentevent.d \
505 mode=0444
506 file path=opt/SUNWdtrt/tst/common/cpc/err.cpcvscpustatpart1.ksh mode=0444
507 file path=opt/SUNWdtrt/tst/common/cpc/err.cpcvscpustatpart2.ksh mode=0444
508 file path=opt/SUNWdtrt/tst/common/cpc/err.cputrackfailtostart.ksh mode=0444
509 file path=opt/SUNWdtrt/tst/common/cpc/err.cputrackterminates.ksh mode=0444
510 file path=opt/SUNWdtrt/tst/common/cpc/err.toomanyenablings.d mode=0444
511 file path=opt/SUNWdtrt/tst/common/cpc/tst.allcpus.ksh mode=0444
512 file path=opt/SUNWdtrt/tst/common/cpc/tst.genericevent.d mode=0444
513 file path=opt/SUNWdtrt/tst/common/cpc/tst.platformevent.ksh mode=0444
514 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_LOCASSC.NonLocalAssoc.d \
515 mode=0444
516 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_LONGINT.LongStruct.d \
517 mode=0444
518 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_PARMCLASS.BadStorageClass.d \
519 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 9

520 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_PROTO_NAME.VoidName.d \
521 mode=0444
522 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_PROTO_TYPE.Dyn.d mode=0444
523 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_PROTO_VARARGS.VarLenArgs.d \
524 mode=0444
525 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_PROTO_VOID.NonSoleVoid.d \
526 mode=0444
527 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_SIGNINT.UnsignedStruct.d \
528 mode=0444
529 file path=opt/SUNWdtrt/tst/common/decls/err.D_DECL_VOIDATTR.ShortVoidDecl.d \
530 mode=0444
531 file path=opt/SUNWdtrt/tst/common/decls/tst.arrays.d mode=0444
532 file path=opt/SUNWdtrt/tst/common/decls/tst.basics.d mode=0444
533 file path=opt/SUNWdtrt/tst/common/decls/tst.funcs.d mode=0444
534 file path=opt/SUNWdtrt/tst/common/decls/tst.pointers.d mode=0444
535 file path=opt/SUNWdtrt/tst/common/decls/tst.varargsfuncs.d mode=0444
536 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_AGGREGATION.d mode=0444
537 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_DBLERROR.d mode=0444
538 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_DYNAMIC.d mode=0444
539 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_PRINCIPAL.d mode=0444
540 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_PRINCIPAL.end.d \
541 mode=0444
542 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_SPEC.d mode=0444
543 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_SPECUNAVAIL.d mode=0444
544 file path=opt/SUNWdtrt/tst/common/drops/drp.DTRACEDROP_STKSTROVERFLOW.d \
545 mode=0444
546 file \
547 path=opt/SUNWdtrt/tst/common/dtraceUtil/err.D_PDESC_ZERO.InvalidDescription1
548 mode=0444
549 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.AddSearchPath.d.ksh mode=0444
550 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.BufsizeGiga.d.ksh mode=0444
551 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.BufsizeKilo.d.ksh mode=0444
552 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.BufsizeMega.d.ksh mode=0444
553 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.BufsizeTera.d.ksh mode=0444
554 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DataModel32.d.ksh mode=0444
555 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DataModel64.d.ksh mode=0444
556 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DefineNameWithCPP.d.ksh \
557 mode=0444
558 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DefineNameWithCPP.d.ksh.out \
559 mode=0444
560 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithFunction.d.ksh \
561 mode=0444
562 file \
563 path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithFunction.d.ksh.out \
564 mode=0444
565 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithID.d.ksh \
566 mode=0444
567 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithID.d.ksh.out \
568 mode=0444
569 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithModule.d.ksh \
570 mode=0444
571 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithModule.d.ksh.out \
572 mode=0444
573 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithName.d.ksh \
574 mode=0444
575 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithName.d.ksh.out \
576 mode=0444
577 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithProvider.d.ksh \
578 mode=0444
579 file \
580 path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithProvider.d.ksh.out \
581 mode=0444
582 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.DestructWithoutW.d.ksh \
583 mode=0444
584 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ELFGenerationOut.d.ksh \
585 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 10

586 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ELFGenerationWithO.d.ksh \
587 mode=0444
588 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ExitStatus1.d.ksh mode=0444
589 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ExitStatus2.d.ksh mode=0444
590 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ExtraneousProbeIds.d.ksh \
591 mode=0444
592 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidFuncName1.d.ksh \
593 mode=0444
594 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidFuncName2.d.ksh \
595 mode=0444
596 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidId1.d.ksh mode=0444
597 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidId2.d.ksh mode=0444
598 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidId3.d.ksh mode=0444
599 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidModule1.d.ksh \
600 mode=0444
601 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidModule2.d.ksh \
602 mode=0444
603 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidModule3.d.ksh \
604 mode=0444
605 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidModule4.d.ksh \
606 mode=0444
607 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidProbeIdentifier.d.ksh \
608 mode=0444
609 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidProvider1.d.ksh \
610 mode=0444
611 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidProvider2.d.ksh \
612 mode=0444
613 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidProvider3.d.ksh \
614 mode=0444
615 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidProvider4.d.ksh \
616 mode=0444
617 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc1.d.ksh \
618 mode=0444
619 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc2.d.ksh \
620 mode=0444
621 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc3.d.ksh \
622 mode=0444
623 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc4.d.ksh \
624 mode=0444
625 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc5.d.ksh \
626 mode=0444
627 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc6.d.ksh \
628 mode=0444
629 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc7.d.ksh \
630 mode=0444
631 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc8.d.ksh \
632 mode=0444
633 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceFunc9.d.ksh \
634 mode=0444
635 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID1.d.ksh \
636 mode=0444
637 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID2.d.ksh \
638 mode=0444
639 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID3.d.ksh \
640 mode=0444
641 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID4.d.ksh \
642 mode=0444
643 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID5.d.ksh \
644 mode=0444
645 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID6.d.ksh \
646 mode=0444
647 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceID7.d.ksh \
648 mode=0444
649 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule1.d.ksh \
650 mode=0444
651 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule2.d.ksh \

new/usr/src/pkg/manifests/system-dtrace-tests.mf 11

652 mode=0444
653 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule3.d.ksh \
654 mode=0444
655 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule4.d.ksh \
656 mode=0444
657 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule5.d.ksh \
658 mode=0444
659 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule6.d.ksh \
660 mode=0444
661 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule7.d.ksh \
662 mode=0444
663 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceModule8.d.ksh \
664 mode=0444
665 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName1.d.ksh \
666 mode=0444
667 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName2.d.ksh \
668 mode=0444
669 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName3.d.ksh \
670 mode=0444
671 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName4.d.ksh \
672 mode=0444
673 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName5.d.ksh \
674 mode=0444
675 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName6.d.ksh \
676 mode=0444
677 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName7.d.ksh \
678 mode=0444
679 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName8.d.ksh \
680 mode=0444
681 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceName9.d.ksh \
682 mode=0444
683 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceProvider1.d.ksh \
684 mode=0444
685 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceProvider2.d.ksh \
686 mode=0444
687 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceProvider3.d.ksh \
688 mode=0444
689 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceProvider4.d.ksh \
690 mode=0444
691 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.InvalidTraceProvider5.d.ksh \
692 mode=0444
693 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.MultipleInvalidProbeId.d.ksh \
694 mode=0444
695 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.PreprocessorStatement.d.ksh \
696 mode=0444
697 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.QuietMode.d.ksh mode=0444
698 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.QuietMode.d.ksh.out mode=0444
699 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.TestCompile.d.ksh mode=0444
700 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.TestCompile.d.ksh.out \
701 mode=0444
702 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.UnDefineNameWithCPP.d.ksh \
703 mode=0444
704 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroFunctionProbes.d.ksh \
705 mode=0444
706 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroFunctionProbes.d.ksh.out \
707 mode=0444
708 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroModuleProbes.d.ksh \
709 mode=0444
710 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroModuleProbes.d.ksh.out \
711 mode=0444
712 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroNameProbes.d.ksh \
713 mode=0444
714 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroNameProbes.d.ksh.out \
715 mode=0444
716 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroProbeIdentfier.d.ksh \
717 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 12

718 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroProbesWithoutZ.d.ksh \
719 mode=0444
720 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroProviderProbes.d.ksh \
721 mode=0444
722 file path=opt/SUNWdtrt/tst/common/dtraceUtil/tst.ZeroProviderProbes.d.ksh.out \
723 mode=0444
724 file path=opt/SUNWdtrt/tst/common/end/err.D_IDENT_UNDEF.timespent.d mode=0444
725 file path=opt/SUNWdtrt/tst/common/end/tst.end.d mode=0444
726 file path=opt/SUNWdtrt/tst/common/end/tst.endwithoutbegin.d mode=0444
727 file path=opt/SUNWdtrt/tst/common/end/tst.multibeginend.d mode=0444
728 file path=opt/SUNWdtrt/tst/common/end/tst.multiend.d mode=0444
729 file path=opt/SUNWdtrt/tst/common/enum/err.D_DECL_IDRED.EnumSameName.d \
730 mode=0444
731 file path=opt/SUNWdtrt/tst/common/enum/err.D_UNKNOWN.RepeatIdentifiers.d \
732 mode=0444
733 file path=opt/SUNWdtrt/tst/common/enum/tst.EnumEquality.d mode=0444
734 file path=opt/SUNWdtrt/tst/common/enum/tst.EnumSameValue.d mode=0444
735 file path=opt/SUNWdtrt/tst/common/enum/tst.EnumValAssign.d mode=0444
736 file path=opt/SUNWdtrt/tst/common/env/err.D_PRAGMA_OPTSET.setfromscript.d \
737 mode=0444
738 file path=opt/SUNWdtrt/tst/common/env/err.D_PRAGMA_OPTSET.unsetfromscript.d \
739 mode=0444
740 file path=opt/SUNWdtrt/tst/common/env/tst.ld_nolazyload.ksh mode=0444
741 file path=opt/SUNWdtrt/tst/common/env/tst.ld_nolazyload.ksh.out mode=0444
742 file path=opt/SUNWdtrt/tst/common/env/tst.setenv1.ksh mode=0444
743 file path=opt/SUNWdtrt/tst/common/env/tst.setenv1.ksh.out mode=0444
744 file path=opt/SUNWdtrt/tst/common/env/tst.setenv2.ksh mode=0444
745 file path=opt/SUNWdtrt/tst/common/env/tst.setenv2.ksh.out mode=0444
746 file path=opt/SUNWdtrt/tst/common/env/tst.unsetenv1.ksh mode=0444
747 file path=opt/SUNWdtrt/tst/common/env/tst.unsetenv1.ksh.out mode=0444
748 file path=opt/SUNWdtrt/tst/common/env/tst.unsetenv2.ksh mode=0444
749 file path=opt/SUNWdtrt/tst/common/env/tst.unsetenv2.ksh.out mode=0444
750 file path=opt/SUNWdtrt/tst/common/error/tst.DTRACEFLT_BADADDR.d mode=0444
751 file path=opt/SUNWdtrt/tst/common/error/tst.DTRACEFLT_DIVZERO.d mode=0444
752 file path=opt/SUNWdtrt/tst/common/error/tst.DTRACEFLT_UNKNOWN.d mode=0444
753 file path=opt/SUNWdtrt/tst/common/error/tst.error.d mode=0444
754 file path=opt/SUNWdtrt/tst/common/error/tst.errorend.d mode=0444
755 file path=opt/SUNWdtrt/tst/common/exit/err.D_PROTO_LEN.noarg.d mode=0444
756 file path=opt/SUNWdtrt/tst/common/exit/err.exitarg1.d mode=0444
757 file path=opt/SUNWdtrt/tst/common/exit/tst.basic1.d mode=0444
758 file path=opt/SUNWdtrt/tst/common/fbtprovider/err.D_PDESC_ZERO.notreturn.d \
759 mode=0444
760 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.basic.d mode=0444
761 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.functionentry.d mode=0444
762 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.functionreturnvalue.d \
763 mode=0444
764 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.ioctlargs.d mode=0444
765 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.offset.d mode=0444
766 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.offsetzero.d mode=0444
767 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.return.d mode=0444
768 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.return0.d mode=0444
769 file path=opt/SUNWdtrt/tst/common/fbtprovider/tst.tailcall.d mode=0444
770 file path=opt/SUNWdtrt/tst/common/funcs/err.D_FUNC_UNDEF.progenyofbad1.d \
771 mode=0444
772 file path=opt/SUNWdtrt/tst/common/funcs/err.D_OP_VFPTR.badop.d mode=0444
773 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.chillbadarg.d \
774 mode=0444
775 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.copyoutbadarg.d \
776 mode=0444
777 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.mobadarg.d mode=0444
778 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.raisebadarg.d \
779 mode=0444
780 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.tolower.d mode=0444
781 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_ARG.toupper.d mode=0444
782 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.allocanoarg.d \
783 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 13

784 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.badbreakpoint.d \
785 mode=0444
786 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.chilltoofew.d \
787 mode=0444
788 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.chilltoomany.d \
789 mode=0444
790 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.copyoutstrbadarg.d \
791 mode=0444
792 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.copyoutstrtoofew.d \
793 mode=0444
794 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.copyouttoofew.d \
795 mode=0444
796 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.copyouttoomany.d \
797 mode=0444
798 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.motoofew.d mode=0444
799 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.motoomany.d mode=0444
800 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.mtabadarg.d mode=0444
801 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.mtatoofew.d mode=0444
802 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.mtatoomany.d mode=0444
803 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.panicbadarg.d \
804 mode=0444
805 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.progenyofbad2.d \
806 mode=0444
807 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.stopbadarg.d mode=0444
808 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.tolower.d mode=0444
809 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.tolowertoomany.d \
810 mode=0444
811 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.toupper.d mode=0444
812 file path=opt/SUNWdtrt/tst/common/funcs/err.D_PROTO_LEN.touppertoomany.d \
813 mode=0444
814 file path=opt/SUNWdtrt/tst/common/funcs/err.D_STRINGOF_TYPE.badstringof.d \
815 mode=0444
816 file path=opt/SUNWdtrt/tst/common/funcs/err.D_VAR_UNDEF.badvar.d mode=0444
817 file path=opt/SUNWdtrt/tst/common/funcs/err.badalloca.d mode=0444
818 file path=opt/SUNWdtrt/tst/common/funcs/err.badalloca2.d mode=0444
819 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy.d mode=0444
820 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy1.d mode=0444
821 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy2.d mode=0444
822 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy3.d mode=0444
823 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy4.d mode=0444
824 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy5.d mode=0444
825 file path=opt/SUNWdtrt/tst/common/funcs/err.badbcopy6.d mode=0444
826 file path=opt/SUNWdtrt/tst/common/funcs/err.badchill.d mode=0444
827 file path=opt/SUNWdtrt/tst/common/funcs/err.chillbadarg.ksh mode=0444
828 file path=opt/SUNWdtrt/tst/common/funcs/err.copyout.d mode=0444
829 file path=opt/SUNWdtrt/tst/common/funcs/err.copyoutbadaddr.ksh mode=0444
830 file path=opt/SUNWdtrt/tst/common/funcs/err.copyoutstrbadaddr.ksh mode=0444
831 file path=opt/SUNWdtrt/tst/common/funcs/err.inet_ntoa6badaddr.d mode=0444
832 file path=opt/SUNWdtrt/tst/common/funcs/err.inet_ntoabadaddr.d mode=0444
833 file path=opt/SUNWdtrt/tst/common/funcs/err.inet_ntopbadaddr.d mode=0444
834 file path=opt/SUNWdtrt/tst/common/funcs/err.inet_ntopbadarg.d mode=0444
835 file path=opt/SUNWdtrt/tst/common/funcs/tst.badfreopen.ksh mode=0444
836 file path=opt/SUNWdtrt/tst/common/funcs/tst.basename.d mode=0444
837 file path=opt/SUNWdtrt/tst/common/funcs/tst.basename.d.out mode=0444
838 file path=opt/SUNWdtrt/tst/common/funcs/tst.bcopy.d mode=0444
839 file path=opt/SUNWdtrt/tst/common/funcs/tst.chill.ksh mode=0444
840 file path=opt/SUNWdtrt/tst/common/funcs/tst.cleanpath.d mode=0444
841 file path=opt/SUNWdtrt/tst/common/funcs/tst.cleanpath.d.out mode=0444
842 file path=opt/SUNWdtrt/tst/common/funcs/tst.copyin.d mode=0444
843 file path=opt/SUNWdtrt/tst/common/funcs/tst.copyinto.d mode=0444
844 file path=opt/SUNWdtrt/tst/common/funcs/tst.ddi_pathname.d mode=0444
845 file path=opt/SUNWdtrt/tst/common/funcs/tst.default.d mode=0444
846 file path=opt/SUNWdtrt/tst/common/funcs/tst.freopen.ksh mode=0444
847 file path=opt/SUNWdtrt/tst/common/funcs/tst.ftruncate.ksh mode=0444
848 file path=opt/SUNWdtrt/tst/common/funcs/tst.ftruncate.ksh.out mode=0444
849 file path=opt/SUNWdtrt/tst/common/funcs/tst.hton.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 14

850 file path=opt/SUNWdtrt/tst/common/funcs/tst.index.d mode=0444
851 file path=opt/SUNWdtrt/tst/common/funcs/tst.index.d.out mode=0444
852 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntoa.d mode=0444
853 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntoa.d.out mode=0444
854 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntoa6.d mode=0444
855 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntoa6.d.out mode=0444
856 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntop.d mode=0444
857 file path=opt/SUNWdtrt/tst/common/funcs/tst.inet_ntop.d.out mode=0444
858 file path=opt/SUNWdtrt/tst/common/funcs/tst.lltostr.d mode=0444
859 file path=opt/SUNWdtrt/tst/common/funcs/tst.lltostr.d.out mode=0444
860 file path=opt/SUNWdtrt/tst/common/funcs/tst.lltostrbase.d mode=0444
861 file path=opt/SUNWdtrt/tst/common/funcs/tst.lltostrbase.d.out mode=0444
862 file path=opt/SUNWdtrt/tst/common/funcs/tst.mutex_owned.d mode=0444
863 file path=opt/SUNWdtrt/tst/common/funcs/tst.mutex_owner.d mode=0444
864 file path=opt/SUNWdtrt/tst/common/funcs/tst.mutex_type_adaptive.d mode=0444
865 file path=opt/SUNWdtrt/tst/common/funcs/tst.progenyof.d mode=0444
866 file path=opt/SUNWdtrt/tst/common/funcs/tst.rand.d mode=0444
867 file path=opt/SUNWdtrt/tst/common/funcs/tst.strchr.d mode=0444
868 file path=opt/SUNWdtrt/tst/common/funcs/tst.strchr.d.out mode=0444
869 file path=opt/SUNWdtrt/tst/common/funcs/tst.strjoin.d mode=0444
870 file path=opt/SUNWdtrt/tst/common/funcs/tst.strjoin.d.out mode=0444
871 file path=opt/SUNWdtrt/tst/common/funcs/tst.strstr.d mode=0444
872 file path=opt/SUNWdtrt/tst/common/funcs/tst.strstr.d.out mode=0444
873 file path=opt/SUNWdtrt/tst/common/funcs/tst.strtok.d mode=0444
874 file path=opt/SUNWdtrt/tst/common/funcs/tst.strtok.d.out mode=0444
875 file path=opt/SUNWdtrt/tst/common/funcs/tst.strtok_null.d mode=0444
876 file path=opt/SUNWdtrt/tst/common/funcs/tst.substr.d mode=0444
877 file path=opt/SUNWdtrt/tst/common/funcs/tst.substr.d.out mode=0444
878 file path=opt/SUNWdtrt/tst/common/funcs/tst.substrminate.d mode=0444
879 file path=opt/SUNWdtrt/tst/common/funcs/tst.substrminate.d.out mode=0444
880 file path=opt/SUNWdtrt/tst/common/funcs/tst.system.d mode=0444
881 file path=opt/SUNWdtrt/tst/common/funcs/tst.system.d.out mode=0444
882 file path=opt/SUNWdtrt/tst/common/funcs/tst.tolower.d mode=0444
883 file path=opt/SUNWdtrt/tst/common/funcs/tst.toupper.d mode=0444
884 file path=opt/SUNWdtrt/tst/common/grammar/err.D_ADDROF_LVAL.d mode=0444
885 file path=opt/SUNWdtrt/tst/common/grammar/err.D_EMPTY.empty.d mode=0444
886 file path=opt/SUNWdtrt/tst/common/grammar/tst.clauses.d mode=0444
887 file path=opt/SUNWdtrt/tst/common/grammar/tst.stmts.d mode=0444
888 file path=opt/SUNWdtrt/tst/common/include/tst.includefirst.ksh mode=0444
889 file path=opt/SUNWdtrt/tst/common/inline/err.D_DECL_IDRED.redef1.d mode=0444
890 file path=opt/SUNWdtrt/tst/common/inline/err.D_DECL_IDRED.redef2.d mode=0444
891 file path=opt/SUNWdtrt/tst/common/inline/err.D_IDENT_UNDEF.recur.d mode=0444
892 file path=opt/SUNWdtrt/tst/common/inline/err.D_OP_INCOMPAT.baddef1.d mode=0444
893 file path=opt/SUNWdtrt/tst/common/inline/err.D_OP_INCOMPAT.baddef2.d mode=0444
894 file path=opt/SUNWdtrt/tst/common/inline/err.D_OP_INCOMPAT.badxlate.d \
895 mode=0444
896 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineDataAssign.d mode=0444
897 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineExpression.d mode=0444
898 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineKinds.d mode=0444
899 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineKinds.d.out mode=0444
900 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineTypedef.d mode=0444
901 file path=opt/SUNWdtrt/tst/common/inline/tst.InlineWritableAssign.d mode=0444
902 file path=opt/SUNWdtrt/tst/common/io/tst.fds.d mode=0444
903 file path=opt/SUNWdtrt/tst/common/io/tst.fds.d.out mode=0444
904 file path=opt/SUNWdtrt/tst/common/io/tst.fds.exe mode=0555
905 file path=opt/SUNWdtrt/tst/common/ip/get.ipv4remote.pl mode=0555
906 file path=opt/SUNWdtrt/tst/common/ip/get.ipv6remote.pl mode=0555
907 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localicmp.ksh mode=0444
908 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localicmp.ksh.out mode=0444
909 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localtcp.ksh mode=0444
910 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localtcp.ksh.out mode=0444
911 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localudp.ksh mode=0444
912 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4localudp.ksh.out mode=0444
913 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remoteicmp.ksh mode=0444
914 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remoteicmp.ksh.out mode=0444
915 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remotetcp.ksh mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 15

916 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remotetcp.ksh.out mode=0444
917 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remoteudp.ksh mode=0444
918 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv4remoteudp.ksh.out mode=0444
919 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv6localicmp.ksh mode=0444
920 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv6localicmp.ksh.out mode=0444
921 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv6remoteicmp.ksh mode=0444
922 file path=opt/SUNWdtrt/tst/common/ip/tst.ipv6remoteicmp.ksh.out mode=0444
923 file path=opt/SUNWdtrt/tst/common/ip/tst.localtcpstate.ksh mode=0444
924 file path=opt/SUNWdtrt/tst/common/ip/tst.localtcpstate.ksh.out mode=0444
925 file path=opt/SUNWdtrt/tst/common/ip/tst.remotetcpstate.ksh mode=0444
926 file path=opt/SUNWdtrt/tst/common/ip/tst.remotetcpstate.ksh.out mode=0444
927 file path=opt/SUNWdtrt/tst/common/java_api/test.jar
928 file path=opt/SUNWdtrt/tst/common/java_api/tst.Abort.ksh mode=0444
929 file path=opt/SUNWdtrt/tst/common/java_api/tst.Abort.ksh.out mode=0444
930 file path=opt/SUNWdtrt/tst/common/java_api/tst.Bean.ksh mode=0444
931 file path=opt/SUNWdtrt/tst/common/java_api/tst.Bean.ksh.out mode=0444
932 file path=opt/SUNWdtrt/tst/common/java_api/tst.Close.ksh mode=0444
933 file path=opt/SUNWdtrt/tst/common/java_api/tst.Close.ksh.out mode=0444
934 file path=opt/SUNWdtrt/tst/common/java_api/tst.Drop.ksh mode=0444
935 file path=opt/SUNWdtrt/tst/common/java_api/tst.Drop.ksh.out mode=0444
936 file path=opt/SUNWdtrt/tst/common/java_api/tst.Enable.ksh mode=0444
937 file path=opt/SUNWdtrt/tst/common/java_api/tst.Enable.ksh.out mode=0444
938 file path=opt/SUNWdtrt/tst/common/java_api/tst.FunctionLookup.exe mode=0555
939 file path=opt/SUNWdtrt/tst/common/java_api/tst.FunctionLookup.ksh mode=0444
940 file path=opt/SUNWdtrt/tst/common/java_api/tst.FunctionLookup.ksh.out \
941 mode=0444
942 file path=opt/SUNWdtrt/tst/common/java_api/tst.GetAggregate.ksh mode=0444
943 file path=opt/SUNWdtrt/tst/common/java_api/tst.MaxConsumers.ksh mode=0444
944 file path=opt/SUNWdtrt/tst/common/java_api/tst.MaxConsumers.ksh.out mode=0444
945 file path=opt/SUNWdtrt/tst/common/java_api/tst.MultiAggPrinta.ksh mode=0444
946 file path=opt/SUNWdtrt/tst/common/java_api/tst.MultiAggPrinta.ksh.out \
947 mode=0444
948 file path=opt/SUNWdtrt/tst/common/java_api/tst.ProbeData.exe mode=0555
949 file path=opt/SUNWdtrt/tst/common/java_api/tst.ProbeData.ksh mode=0444
950 file path=opt/SUNWdtrt/tst/common/java_api/tst.ProbeData.ksh.out mode=0444
951 file path=opt/SUNWdtrt/tst/common/java_api/tst.ProbeDescription.ksh mode=0444
952 file path=opt/SUNWdtrt/tst/common/java_api/tst.ProbeDescription.ksh.out \
953 mode=0444
954 file path=opt/SUNWdtrt/tst/common/java_api/tst.StateMachine.ksh mode=0444
955 file path=opt/SUNWdtrt/tst/common/java_api/tst.StateMachine.ksh.out mode=0444
956 file path=opt/SUNWdtrt/tst/common/java_api/tst.StopLock.ksh mode=0444
957 file path=opt/SUNWdtrt/tst/common/java_api/tst.StopLock.ksh.out mode=0444
958 file path=opt/SUNWdtrt/tst/common/java_api/tst.printa.d mode=0444
959 file path=opt/SUNWdtrt/tst/common/java_api/tst.printa.d.out mode=0444
960 file path=opt/SUNWdtrt/tst/common/lexer/err.D_CHR_NL.char.d mode=0444
961 file path=opt/SUNWdtrt/tst/common/lexer/err.D_CHR_NULL.char.d mode=0444
962 file path=opt/SUNWdtrt/tst/common/lexer/err.D_INT_DIGIT.InvalidDigit.d \
963 mode=0444
964 file path=opt/SUNWdtrt/tst/common/lexer/err.D_INT_OFLOW.BigInt.d mode=0444
965 file path=opt/SUNWdtrt/tst/common/lexer/err.D_STR_NL.string.d mode=0444
966 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.brace1.d mode=0444
967 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.brace2.d mode=0444
968 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.brack1.d mode=0444
969 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.brack2.d mode=0444
970 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.brack3.d mode=0444
971 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.paren1.d mode=0444
972 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.paren2.d mode=0444
973 file path=opt/SUNWdtrt/tst/common/lexer/err.D_SYNTAX.paren3.d mode=0444
974 file path=opt/SUNWdtrt/tst/common/lexer/tst.D_MACRO_OFLOW.ParIntOvflow.d.ksh \
975 mode=0444
976 file \
977 path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTOREVEN.nodivide.d
978 mode=0444
979 file \
980 path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTOREVEN.notfactor.d
981 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 16

982 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTORMATCH.d \
983 mode=0444
984 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTORNSTEPS.d \
985 mode=0444
986 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTORSMALL.d \
987 mode=0444
988 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTORTYPE.d \
989 mode=0444
990 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_FACTORVAL.d \
991 mode=0444
992 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_HIGHMATCH.d \
993 mode=0444
994 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_HIGHTYPE.d \
995 mode=0444
996 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_HIGHVAL.d mode=0444
997 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_LOWMATCH.d \
998 mode=0444
999 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_LOWTYPE.d mode=0444

1000 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_LOWVAL.d mode=0444
1001 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_MAGRANGE.d \
1002 mode=0444
1003 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_MAGTOOBIG.d \
1004 mode=0444
1005 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_NSTEPMATCH.d \
1006 mode=0444
1007 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_NSTEPTYPE.d \
1008 mode=0444
1009 file path=opt/SUNWdtrt/tst/common/llquantize/err.D_LLQUANT_NSTEPVAL.d \
1010 mode=0444
1011 file path=opt/SUNWdtrt/tst/common/llquantize/tst.bases.d mode=0444
1012 file path=opt/SUNWdtrt/tst/common/llquantize/tst.bases.d.out mode=0444
1013 file path=opt/SUNWdtrt/tst/common/llquantize/tst.basic.d mode=0444
1014 file path=opt/SUNWdtrt/tst/common/llquantize/tst.basic.d.out mode=0444
1015 file path=opt/SUNWdtrt/tst/common/llquantize/tst.negorder.d mode=0444
1016 file path=opt/SUNWdtrt/tst/common/llquantize/tst.negorder.d.out mode=0444
1017 file path=opt/SUNWdtrt/tst/common/llquantize/tst.negvalue.d mode=0444
1018 file path=opt/SUNWdtrt/tst/common/llquantize/tst.negvalue.d.out mode=0444
1019 file path=opt/SUNWdtrt/tst/common/llquantize/tst.normal.d mode=0444
1020 file path=opt/SUNWdtrt/tst/common/llquantize/tst.normal.d.out mode=0444
1021 file path=opt/SUNWdtrt/tst/common/llquantize/tst.range.d mode=0444
1022 file path=opt/SUNWdtrt/tst/common/llquantize/tst.range.d.out mode=0444
1023 file path=opt/SUNWdtrt/tst/common/llquantize/tst.steps.d mode=0444
1024 file path=opt/SUNWdtrt/tst/common/llquantize/tst.steps.d.out mode=0444
1025 file path=opt/SUNWdtrt/tst/common/llquantize/tst.trunc.d mode=0444
1026 file path=opt/SUNWdtrt/tst/common/llquantize/tst.trunc.d.out mode=0444
1027 file path=opt/SUNWdtrt/tst/common/mdb/tst.dtracedcmd.ksh mode=0444
1028 file path=opt/SUNWdtrt/tst/common/mib/tst.icmp.ksh mode=0444
1029 file path=opt/SUNWdtrt/tst/common/mib/tst.tcp.ksh mode=0444
1030 file path=opt/SUNWdtrt/tst/common/mib/tst.udp.ksh mode=0444
1031 file path=opt/SUNWdtrt/tst/common/misc/err.D_PRAGMA_OPTSET.d mode=0444
1032 file path=opt/SUNWdtrt/tst/common/misc/tst.badopt.d mode=0444
1033 file path=opt/SUNWdtrt/tst/common/misc/tst.boolopt.d mode=0444
1034 file path=opt/SUNWdtrt/tst/common/misc/tst.boolopt.d.out mode=0444
1035 file path=opt/SUNWdtrt/tst/common/misc/tst.dynopt.d mode=0444
1036 file path=opt/SUNWdtrt/tst/common/misc/tst.dynopt.d.out mode=0444
1037 file path=opt/SUNWdtrt/tst/common/misc/tst.enablerace.ksh mode=0444
1038 file path=opt/SUNWdtrt/tst/common/misc/tst.haslam.d mode=0444
1039 file path=opt/SUNWdtrt/tst/common/misc/tst.include.ksh mode=0444
1040 file path=opt/SUNWdtrt/tst/common/misc/tst.macroglob.ksh mode=0444
1041 file path=opt/SUNWdtrt/tst/common/misc/tst.macroglob.ksh.out mode=0444
1042 file path=opt/SUNWdtrt/tst/common/misc/tst.roch.d mode=0444
1043 file path=opt/SUNWdtrt/tst/common/misc/tst.schrock.ksh mode=0444
1044 file path=opt/SUNWdtrt/tst/common/multiaggs/err.D_PRINTA_AGGKEY.d mode=0444
1045 file path=opt/SUNWdtrt/tst/common/multiaggs/err.D_PRINTA_AGGPROTO.d mode=0444
1046 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.many.d mode=0444
1047 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.many.d.out mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 17

1048 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.same.d mode=0444
1049 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.same.d.out mode=0444
1050 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.sort.d mode=0444
1051 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.sort.d.out mode=0444
1052 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.sortpos.d mode=0444
1053 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.sortpos.d.out mode=0444
1054 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.tuplecompat.d mode=0444
1055 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.tuplecompat.d.out mode=0444
1056 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero.d mode=0444
1057 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero.d.out mode=0444
1058 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero2.d mode=0444
1059 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero2.d.out mode=0444
1060 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero3.d mode=0444
1061 file path=opt/SUNWdtrt/tst/common/multiaggs/tst.zero3.d.out mode=0444
1062 file path=opt/SUNWdtrt/tst/common/nfs/tst.call.d mode=0444
1063 file path=opt/SUNWdtrt/tst/common/nfs/tst.call.exe mode=0555
1064 file path=opt/SUNWdtrt/tst/common/nfs/tst.call3.d mode=0444
1065 file path=opt/SUNWdtrt/tst/common/nfs/tst.call3.exe mode=0555
1066 file path=opt/SUNWdtrt/tst/common/offsetof/err.D_OFFSETOF_BITFIELD.bitfield.d \
1067 mode=0444
1068 file path=opt/SUNWdtrt/tst/common/offsetof/err.D_OFFSETOF_TYPE.badtype.d \
1069 mode=0444
1070 file path=opt/SUNWdtrt/tst/common/offsetof/err.D_OFFSETOF_TYPE.notsou.d \
1071 mode=0444
1072 file path=opt/SUNWdtrt/tst/common/offsetof/err.D_UNKNOWN.OffsetofNULL.d \
1073 mode=0444
1074 file path=opt/SUNWdtrt/tst/common/offsetof/err.D_UNKNOWN.badmemb.d mode=0444
1075 file path=opt/SUNWdtrt/tst/common/offsetof/tst.OffsetofAlias.d mode=0444
1076 file path=opt/SUNWdtrt/tst/common/offsetof/tst.OffsetofArith.d mode=0444
1077 file path=opt/SUNWdtrt/tst/common/offsetof/tst.OffsetofUnion.d mode=0444
1078 file path=opt/SUNWdtrt/tst/common/offsetof/tst.struct.d mode=0444
1079 file path=opt/SUNWdtrt/tst/common/offsetof/tst.struct.d.out mode=0444
1080 file path=opt/SUNWdtrt/tst/common/offsetof/tst.union.d mode=0444
1081 file path=opt/SUNWdtrt/tst/common/offsetof/tst.union.d.out mode=0444
1082 file path=opt/SUNWdtrt/tst/common/operators/tst.ternary.d mode=0444
1083 file path=opt/SUNWdtrt/tst/common/operators/tst.ternary.d.out mode=0444
1084 file path=opt/SUNWdtrt/tst/common/pid/err.D_PDESC_ZERO.badlib.d mode=0444
1085 file path=opt/SUNWdtrt/tst/common/pid/err.D_PDESC_ZERO.badlib.exe mode=0555
1086 file path=opt/SUNWdtrt/tst/common/pid/err.D_PDESC_ZERO.badproc1.d mode=0444
1087 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_BADPID.badproc2.d mode=0444
1088 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_CREATEFAIL.many.d mode=0444
1089 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_CREATEFAIL.many.exe mode=0555
1090 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_FUNC.badfunc.d mode=0444
1091 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_FUNC.badfunc.exe mode=0555
1092 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_LIB.libdash.d mode=0444
1093 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_LIB.libdash.exe mode=0555
1094 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.alldash.d mode=0444
1095 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.alldash.exe mode=0555
1096 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.badname.d mode=0444
1097 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.badname.exe mode=0555
1098 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.globdash.d mode=0444
1099 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_NAME.globdash.exe mode=0555
1100 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_OFF.toobig.d mode=0444
1101 file path=opt/SUNWdtrt/tst/common/pid/err.D_PROC_OFF.toobig.exe mode=0555
1102 file path=opt/SUNWdtrt/tst/common/pid/tst.addprobes.ksh mode=0444
1103 file path=opt/SUNWdtrt/tst/common/pid/tst.args1.d mode=0444
1104 file path=opt/SUNWdtrt/tst/common/pid/tst.args1.exe mode=0555
1105 file path=opt/SUNWdtrt/tst/common/pid/tst.coverage.d mode=0444
1106 file path=opt/SUNWdtrt/tst/common/pid/tst.coverage.exe mode=0555
1107 file path=opt/SUNWdtrt/tst/common/pid/tst.emptystack.d mode=0444
1108 file path=opt/SUNWdtrt/tst/common/pid/tst.emptystack.d.out mode=0444
1109 file path=opt/SUNWdtrt/tst/common/pid/tst.emptystack.exe mode=0555
1110 file path=opt/SUNWdtrt/tst/common/pid/tst.float.d mode=0444
1111 file path=opt/SUNWdtrt/tst/common/pid/tst.float.exe mode=0555
1112 file path=opt/SUNWdtrt/tst/common/pid/tst.fork.d mode=0444
1113 file path=opt/SUNWdtrt/tst/common/pid/tst.fork.exe mode=0555

new/usr/src/pkg/manifests/system-dtrace-tests.mf 18

1114 file path=opt/SUNWdtrt/tst/common/pid/tst.gcc.d mode=0444
1115 file path=opt/SUNWdtrt/tst/common/pid/tst.gcc.exe mode=0555
1116 file path=opt/SUNWdtrt/tst/common/pid/tst.killonerror.ksh mode=0444
1117 file path=opt/SUNWdtrt/tst/common/pid/tst.main.ksh mode=0444
1118 file path=opt/SUNWdtrt/tst/common/pid/tst.manypids.ksh mode=0444
1119 file path=opt/SUNWdtrt/tst/common/pid/tst.newprobes.ksh mode=0444
1120 file path=opt/SUNWdtrt/tst/common/pid/tst.newprobes.ksh.out mode=0444
1121 file path=opt/SUNWdtrt/tst/common/pid/tst.probemod.ksh mode=0444
1122 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex1.ksh mode=0444
1123 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex2.ksh mode=0444
1124 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex2.ksh.out mode=0444
1125 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex3.ksh mode=0444
1126 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex3.ksh.out mode=0444
1127 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex4.ksh mode=0444
1128 file path=opt/SUNWdtrt/tst/common/pid/tst.provregex4.ksh.out mode=0444
1129 file path=opt/SUNWdtrt/tst/common/pid/tst.ret1.d mode=0444
1130 file path=opt/SUNWdtrt/tst/common/pid/tst.ret1.exe mode=0555
1131 file path=opt/SUNWdtrt/tst/common/pid/tst.ret2.d mode=0444
1132 file path=opt/SUNWdtrt/tst/common/pid/tst.ret2.exe mode=0555
1133 file path=opt/SUNWdtrt/tst/common/pid/tst.utf8probefunc.ksh mode=0444
1134 file path=opt/SUNWdtrt/tst/common/pid/tst.utf8probefunc.ksh.out mode=0444
1135 file path=opt/SUNWdtrt/tst/common/pid/tst.utf8probemod.ksh mode=0444
1136 file path=opt/SUNWdtrt/tst/common/pid/tst.utf8probemod.ksh.out mode=0444
1137 file path=opt/SUNWdtrt/tst/common/pid/tst.vfork.d mode=0444
1138 file path=opt/SUNWdtrt/tst/common/pid/tst.vfork.exe mode=0555
1139 file path=opt/SUNWdtrt/tst/common/pid/tst.weak1.d mode=0444
1140 file path=opt/SUNWdtrt/tst/common/pid/tst.weak1.exe mode=0555
1141 file path=opt/SUNWdtrt/tst/common/pid/tst.weak2.d mode=0444
1142 file path=opt/SUNWdtrt/tst/common/pid/tst.weak2.exe mode=0555
1143 file path=opt/SUNWdtrt/tst/common/plockstat/tst.available.d mode=0444
1144 file path=opt/SUNWdtrt/tst/common/plockstat/tst.available.exe mode=0555
1145 file path=opt/SUNWdtrt/tst/common/plockstat/tst.libmap.d mode=0444
1146 file path=opt/SUNWdtrt/tst/common/plockstat/tst.libmap.exe mode=0555
1147 file path=opt/SUNWdtrt/tst/common/pointers/err.BadAlign.d mode=0444
1148 file path=opt/SUNWdtrt/tst/common/pointers/err.D_ADDROF_VAR.ArrayVar.d \
1149 mode=0444
1150 file path=opt/SUNWdtrt/tst/common/pointers/err.D_ADDROF_VAR.DynamicVar.d \
1151 mode=0444
1152 file path=opt/SUNWdtrt/tst/common/pointers/err.D_ADDROF_VAR.agg.d mode=0444
1153 file path=opt/SUNWdtrt/tst/common/pointers/err.D_DEREF_NONPTR.noptr.d \
1154 mode=0444
1155 file path=opt/SUNWdtrt/tst/common/pointers/err.D_DEREF_VOID.VoidPointerDeref.d \
1156 mode=0444
1157 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_ARRFUN.ArrayAssignment.d \
1158 mode=0444
1159 file \
1160 path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_INCOMPAT.VoidPointerArith.d \
1161 mode=0444
1162 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_LVAL.AddressChange.d \
1163 mode=0444
1164 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_PTR.NonPointerAccess.d \
1165 mode=0444
1166 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_PTR.badpointer.d mode=0444
1167 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_SOU.BadPointerAccess.d \
1168 mode=0444
1169 file path=opt/SUNWdtrt/tst/common/pointers/err.D_OP_SOU.badpointer.d mode=0444
1170 file path=opt/SUNWdtrt/tst/common/pointers/err.InvalidAddress1.d mode=0444
1171 file path=opt/SUNWdtrt/tst/common/pointers/err.InvalidAddress2.d mode=0444
1172 file path=opt/SUNWdtrt/tst/common/pointers/err.InvalidAddress3.d mode=0444
1173 file path=opt/SUNWdtrt/tst/common/pointers/err.InvalidAddress4.d mode=0444
1174 file path=opt/SUNWdtrt/tst/common/pointers/err.InvalidAddress5.d mode=0444
1175 file path=opt/SUNWdtrt/tst/common/pointers/tst.ArrayPointer1.d mode=0444
1176 file path=opt/SUNWdtrt/tst/common/pointers/tst.ArrayPointer2.d mode=0444
1177 file path=opt/SUNWdtrt/tst/common/pointers/tst.ArrayPointer3.d mode=0444
1178 file path=opt/SUNWdtrt/tst/common/pointers/tst.GlobalVar.d mode=0444
1179 file path=opt/SUNWdtrt/tst/common/pointers/tst.IntegerArithmetic1.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 19

1180 file path=opt/SUNWdtrt/tst/common/pointers/tst.PointerArithmetic1.d mode=0444
1181 file path=opt/SUNWdtrt/tst/common/pointers/tst.PointerArithmetic2.d mode=0444
1182 file path=opt/SUNWdtrt/tst/common/pointers/tst.PointerArithmetic3.d mode=0444
1183 file path=opt/SUNWdtrt/tst/common/pointers/tst.PointerAssignment.d mode=0444
1184 file path=opt/SUNWdtrt/tst/common/pointers/tst.ValidPointer1.d mode=0444
1185 file path=opt/SUNWdtrt/tst/common/pointers/tst.ValidPointer2.d mode=0444
1186 file path=opt/SUNWdtrt/tst/common/pointers/tst.VoidCast.d mode=0444
1187 file path=opt/SUNWdtrt/tst/common/pointers/tst.assigncast1.d mode=0444
1188 file path=opt/SUNWdtrt/tst/common/pointers/tst.assigncast2.d mode=0444
1189 file path=opt/SUNWdtrt/tst/common/pointers/tst.basic1.d mode=0444
1190 file path=opt/SUNWdtrt/tst/common/pointers/tst.basic2.d mode=0444
1191 file path=opt/SUNWdtrt/tst/common/pragma/err.D_PRAGERR.d mode=0444
1192 file path=opt/SUNWdtrt/tst/common/pragma/err.D_PRAGMA_DEPEND.main.d mode=0444
1193 file path=opt/SUNWdtrt/tst/common/pragma/err.D_PRAGMA_INVAL.d mode=0444
1194 file path=opt/SUNWdtrt/tst/common/pragma/err.D_PRAGMA_MALFORM.d mode=0444
1195 file path=opt/SUNWdtrt/tst/common/pragma/err.D_PRAGMA_UNUSED.UnusedPragma.d \
1196 mode=0444
1197 file path=opt/SUNWdtrt/tst/common/pragma/err.circlibdep.ksh mode=0444
1198 file path=opt/SUNWdtrt/tst/common/pragma/err.invalidlibdep.ksh mode=0444
1199 file path=opt/SUNWdtrt/tst/common/pragma/tst.libchain.ksh mode=0444
1200 file path=opt/SUNWdtrt/tst/common/pragma/tst.libdep.ksh mode=0444
1201 file path=opt/SUNWdtrt/tst/common/pragma/tst.libdepfullyconnected.ksh \
1202 mode=0444
1203 file path=opt/SUNWdtrt/tst/common/pragma/tst.libdepsepdir.ksh mode=0444
1204 file path=opt/SUNWdtrt/tst/common/pragma/tst.temporal.ksh mode=0444
1205 file path=opt/SUNWdtrt/tst/common/pragma/tst.temporal2.ksh mode=0444
1206 file path=opt/SUNWdtrt/tst/common/pragma/tst.temporal3.d mode=0444
1207 file path=opt/SUNWdtrt/tst/common/predicates/err.D_PRED_SCALAR.NonScalarPred.d \
1208 mode=0444
1209 file path=opt/SUNWdtrt/tst/common/predicates/err.D_SYNTAX.invalid.d mode=0444
1210 file path=opt/SUNWdtrt/tst/common/predicates/err.D_SYNTAX.operr.d mode=0444
1211 file path=opt/SUNWdtrt/tst/common/predicates/tst.argsnotcached.d mode=0444
1212 file path=opt/SUNWdtrt/tst/common/predicates/tst.basics.d mode=0444
1213 file path=opt/SUNWdtrt/tst/common/predicates/tst.basics.d.out mode=0444
1214 file path=opt/SUNWdtrt/tst/common/predicates/tst.complex.d mode=0444
1215 file path=opt/SUNWdtrt/tst/common/predicates/tst.complex.d.out mode=0444
1216 file path=opt/SUNWdtrt/tst/common/preprocessor/err.D_IDENT_UNDEF.afterprobe.d \
1217 mode=0444
1218 file path=opt/SUNWdtrt/tst/common/preprocessor/err.D_PRAGCTL_INVAL.tabdefine.d \
1219 mode=0444
1220 file path=opt/SUNWdtrt/tst/common/preprocessor/err.D_SYNTAX.withoutpound.d \
1221 mode=0444
1222 file path=opt/SUNWdtrt/tst/common/preprocessor/err.defincomp.d mode=0444
1223 file path=opt/SUNWdtrt/tst/common/preprocessor/err.ifdefelsenotendif.d \
1224 mode=0444
1225 file path=opt/SUNWdtrt/tst/common/preprocessor/err.ifdefincomp.d mode=0444
1226 file path=opt/SUNWdtrt/tst/common/preprocessor/err.ifdefnotendif.d mode=0444
1227 file path=opt/SUNWdtrt/tst/common/preprocessor/err.incompelse.d mode=0444
1228 file path=opt/SUNWdtrt/tst/common/preprocessor/err.mulelse.d mode=0444
1229 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifdef.d mode=0444
1230 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifdef.d.out mode=0444
1231 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifndef.d mode=0444
1232 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifndef.d.out mode=0444
1233 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifnotdef.d mode=0444
1234 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.ifnotdef.d.out mode=0444
1235 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicaland.d mode=0444
1236 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicaland.d.out mode=0444
1237 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicalandor.d mode=0444
1238 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicalandor.d.out \
1239 mode=0444
1240 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicalor.d mode=0444
1241 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.logicalor.d.out mode=0444
1242 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.muland.d mode=0444
1243 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.muland.d.out mode=0444
1244 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.mulor.d mode=0444
1245 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.mulor.d.out mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 20

1246 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.precondi.d mode=0444
1247 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.precondi.d.out mode=0444
1248 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.predicatedeclare.d \
1249 mode=0444
1250 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexp.d mode=0444
1251 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexp.d.out mode=0444
1252 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpelse.d mode=0444
1253 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpelse.d.out mode=0444
1254 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpif.d mode=0444
1255 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpif.d.out mode=0444
1256 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpifelse.d mode=0444
1257 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.preexpifelse.d.out \
1258 mode=0444
1259 file path=opt/SUNWdtrt/tst/common/preprocessor/tst.withinprobe.d mode=0444
1260 file path=opt/SUNWdtrt/tst/common/print/err.D_PRINT_AGG.bad.d mode=0444
1261 file path=opt/SUNWdtrt/tst/common/print/err.D_PRINT_VOID.bad.d mode=0444
1262 file path=opt/SUNWdtrt/tst/common/print/err.D_PROTO_LEN.bad.d mode=0444
1263 file path=opt/SUNWdtrt/tst/common/print/tst.array.d mode=0444
1264 file path=opt/SUNWdtrt/tst/common/print/tst.array.d.out mode=0444
1265 file path=opt/SUNWdtrt/tst/common/print/tst.bitfield.d mode=0444
1266 file path=opt/SUNWdtrt/tst/common/print/tst.bitfield.d.out mode=0444
1267 file path=opt/SUNWdtrt/tst/common/print/tst.dyn.d mode=0444
1268 file path=opt/SUNWdtrt/tst/common/print/tst.enum.d mode=0444
1269 file path=opt/SUNWdtrt/tst/common/print/tst.enum.d.out mode=0444
1270 file path=opt/SUNWdtrt/tst/common/print/tst.primitive.d mode=0444
1271 file path=opt/SUNWdtrt/tst/common/print/tst.primitive.d.out mode=0444
1272 file path=opt/SUNWdtrt/tst/common/print/tst.struct.d mode=0444
1273 file path=opt/SUNWdtrt/tst/common/print/tst.struct.d.out mode=0444
1274 file path=opt/SUNWdtrt/tst/common/print/tst.xlate.d mode=0444
1275 file path=opt/SUNWdtrt/tst/common/print/tst.xlate.d.out mode=0444
1276 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTA_AGGARG.badagg.d \
1277 mode=0444
1278 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTA_AGGARG.badfmt.d \
1279 mode=0444
1280 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTA_AGGARG.badval.d \
1281 mode=0444
1282 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTA_PROTO.bad.d mode=0444
1283 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTF_ARG_TYPE.jstack.d \
1284 mode=0444
1285 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTF_ARG_TYPE.stack.d \
1286 mode=0444
1287 file path=opt/SUNWdtrt/tst/common/printa/err.D_PRINTF_ARG_TYPE.ustack.d \
1288 mode=0444
1289 file path=opt/SUNWdtrt/tst/common/printa/tst.basics.d mode=0444
1290 file path=opt/SUNWdtrt/tst/common/printa/tst.basics.d.out mode=0444
1291 file path=opt/SUNWdtrt/tst/common/printa/tst.def.d mode=0444
1292 file path=opt/SUNWdtrt/tst/common/printa/tst.def.d.out mode=0444
1293 file path=opt/SUNWdtrt/tst/common/printa/tst.dynwidth.d mode=0444
1294 file path=opt/SUNWdtrt/tst/common/printa/tst.dynwidth.d.out mode=0444
1295 file path=opt/SUNWdtrt/tst/common/printa/tst.fmt.d mode=0444
1296 file path=opt/SUNWdtrt/tst/common/printa/tst.fmt.d.out mode=0444
1297 file path=opt/SUNWdtrt/tst/common/printa/tst.largeusersym.ksh mode=0444
1298 file path=opt/SUNWdtrt/tst/common/printa/tst.many.d mode=0444
1299 file path=opt/SUNWdtrt/tst/common/printa/tst.manyval.d mode=0444
1300 file path=opt/SUNWdtrt/tst/common/printa/tst.manyval.d.out mode=0444
1301 file path=opt/SUNWdtrt/tst/common/printa/tst.stack.d mode=0444
1302 file path=opt/SUNWdtrt/tst/common/printa/tst.tuple.d mode=0444
1303 file path=opt/SUNWdtrt/tst/common/printa/tst.tuple.d.out mode=0444
1304 file path=opt/SUNWdtrt/tst/common/printa/tst.walltimestamp.ksh mode=0444
1305 file path=opt/SUNWdtrt/tst/common/printa/tst.walltimestamp.ksh.out mode=0444
1306 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_AGG_CONV.aggfmt.d \
1307 mode=0444
1308 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_EXTRA.toomany.d \
1309 mode=0444
1310 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_EXTRA.widths.d \
1311 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 21

1312 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_FMT.badfmt.d \
1313 mode=0444
1314 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_PROTO.novalue.d \
1315 mode=0444
1316 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_TYPE.aggarg.d \
1317 mode=0444
1318 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_ARG_TYPE.recursive.d \
1319 mode=0444
1320 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_DYN_PROTO.noprec.d \
1321 mode=0444
1322 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_DYN_PROTO.nowidth.d \
1323 mode=0444
1324 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_DYN_TYPE.badprec.d \
1325 mode=0444
1326 file path=opt/SUNWdtrt/tst/common/printf/err.D_PRINTF_DYN_TYPE.badwidth.d \
1327 mode=0444
1328 file path=opt/SUNWdtrt/tst/common/printf/err.D_PROTO_LEN.toofew.d mode=0444
1329 file path=opt/SUNWdtrt/tst/common/printf/err.D_SYNTAX.badconv1.d mode=0444
1330 file path=opt/SUNWdtrt/tst/common/printf/err.D_SYNTAX.badconv2.d mode=0444
1331 file path=opt/SUNWdtrt/tst/common/printf/err.D_SYNTAX.badconv3.d mode=0444
1332 file path=opt/SUNWdtrt/tst/common/printf/tst.basics.d mode=0444
1333 file path=opt/SUNWdtrt/tst/common/printf/tst.basics.d.out mode=0444
1334 file path=opt/SUNWdtrt/tst/common/printf/tst.flags.d mode=0444
1335 file path=opt/SUNWdtrt/tst/common/printf/tst.flags.d.out mode=0444
1336 file path=opt/SUNWdtrt/tst/common/printf/tst.hello.d mode=0444
1337 file path=opt/SUNWdtrt/tst/common/printf/tst.hello.d.out mode=0444
1338 file path=opt/SUNWdtrt/tst/common/printf/tst.ints.d mode=0444
1339 file path=opt/SUNWdtrt/tst/common/printf/tst.ints.d.out mode=0444
1340 file path=opt/SUNWdtrt/tst/common/printf/tst.precs.d mode=0444
1341 file path=opt/SUNWdtrt/tst/common/printf/tst.precs.d.out mode=0444
1342 file path=opt/SUNWdtrt/tst/common/printf/tst.print-f.d mode=0444
1343 file path=opt/SUNWdtrt/tst/common/printf/tst.print-f.d.out mode=0444
1344 file path=opt/SUNWdtrt/tst/common/printf/tst.printT.ksh mode=0444
1345 file path=opt/SUNWdtrt/tst/common/printf/tst.printT.ksh.out mode=0444
1346 file path=opt/SUNWdtrt/tst/common/printf/tst.printY.ksh mode=0444
1347 file path=opt/SUNWdtrt/tst/common/printf/tst.printY.ksh.out mode=0444
1348 file path=opt/SUNWdtrt/tst/common/printf/tst.printcont.d mode=0444
1349 file path=opt/SUNWdtrt/tst/common/printf/tst.printcont.d.out mode=0444
1350 file path=opt/SUNWdtrt/tst/common/printf/tst.printeE.d mode=0444
1351 file path=opt/SUNWdtrt/tst/common/printf/tst.printeE.d.out mode=0444
1352 file path=opt/SUNWdtrt/tst/common/printf/tst.printgG.d mode=0444
1353 file path=opt/SUNWdtrt/tst/common/printf/tst.printgG.d.out mode=0444
1354 file path=opt/SUNWdtrt/tst/common/printf/tst.rawfmt.d mode=0444
1355 file path=opt/SUNWdtrt/tst/common/printf/tst.rawfmt.d.out mode=0444
1356 file path=opt/SUNWdtrt/tst/common/printf/tst.signs.d mode=0444
1357 file path=opt/SUNWdtrt/tst/common/printf/tst.signs.d.out mode=0444
1358 file path=opt/SUNWdtrt/tst/common/printf/tst.str.d mode=0444
1359 file path=opt/SUNWdtrt/tst/common/printf/tst.str.d.out mode=0444
1360 file path=opt/SUNWdtrt/tst/common/printf/tst.sym.d mode=0444
1361 file path=opt/SUNWdtrt/tst/common/printf/tst.sym.d.out mode=0444
1362 file path=opt/SUNWdtrt/tst/common/printf/tst.uints.d mode=0444
1363 file path=opt/SUNWdtrt/tst/common/printf/tst.uints.d.out mode=0444
1364 file path=opt/SUNWdtrt/tst/common/printf/tst.widths.d mode=0444
1365 file path=opt/SUNWdtrt/tst/common/printf/tst.widths.d.out mode=0444
1366 file path=opt/SUNWdtrt/tst/common/printf/tst.widths1.d mode=0444
1367 file path=opt/SUNWdtrt/tst/common/printf/tst.wp.d mode=0444
1368 file path=opt/SUNWdtrt/tst/common/printf/tst.wp.d.out mode=0444
1369 file path=opt/SUNWdtrt/tst/common/privs/tst.fds.ksh mode=0444
1370 #endif /* ! codereview */
1371 file path=opt/SUNWdtrt/tst/common/privs/tst.func_access.ksh mode=0444
1372 file path=opt/SUNWdtrt/tst/common/privs/tst.getf.ksh mode=0444
1373 #endif /* ! codereview */
1374 file path=opt/SUNWdtrt/tst/common/privs/tst.noprivdrop.ksh mode=0444
1375 file path=opt/SUNWdtrt/tst/common/privs/tst.noprivrestrict.ksh mode=0444
1376 file path=opt/SUNWdtrt/tst/common/privs/tst.op_access.ksh mode=0444
1377 file path=opt/SUNWdtrt/tst/common/privs/tst.procpriv.ksh mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 22

1378 file path=opt/SUNWdtrt/tst/common/privs/tst.providers.ksh mode=0444
1379 #endif /* ! codereview */
1380 file path=opt/SUNWdtrt/tst/common/privs/tst.tick.ksh mode=0444
1381 file path=opt/SUNWdtrt/tst/common/privs/tst.unpriv_funcs.ksh mode=0444
1382 file path=opt/SUNWdtrt/tst/common/probes/err.D_PDESC_ZERO.probeqtn.d mode=0444
1383 file path=opt/SUNWdtrt/tst/common/probes/err.D_PDESC_ZERO.probestar.d \
1384 mode=0444
1385 file path=opt/SUNWdtrt/tst/common/probes/err.D_PDESC_ZERO.tickstar.d mode=0444
1386 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.assign.d mode=0444
1387 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.declare.d mode=0444
1388 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.declarein.d mode=0444
1389 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.lbraces.d mode=0444
1390 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.probespec.d mode=0444
1391 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.rbraces.d mode=0444
1392 file path=opt/SUNWdtrt/tst/common/probes/err.D_SYNTAX.recdec.d mode=0444
1393 file path=opt/SUNWdtrt/tst/common/probes/tst.basic1.d mode=0444
1394 file path=opt/SUNWdtrt/tst/common/probes/tst.check.d mode=0444
1395 file path=opt/SUNWdtrt/tst/common/probes/tst.declare.d mode=0444
1396 file path=opt/SUNWdtrt/tst/common/probes/tst.declareafter.d mode=0444
1397 file path=opt/SUNWdtrt/tst/common/probes/tst.emptyprobe.d mode=0444
1398 file path=opt/SUNWdtrt/tst/common/probes/tst.pragma.d mode=0444
1399 file path=opt/SUNWdtrt/tst/common/probes/tst.pragmaaftertab.d mode=0444
1400 file path=opt/SUNWdtrt/tst/common/probes/tst.pragmainside.d mode=0444
1401 file path=opt/SUNWdtrt/tst/common/probes/tst.pragmaoutside.d mode=0444
1402 file path=opt/SUNWdtrt/tst/common/probes/tst.probestar.d mode=0444
1403 file path=opt/SUNWdtrt/tst/common/proc/tst.create.ksh mode=0444
1404 file path=opt/SUNWdtrt/tst/common/proc/tst.discard.ksh mode=0444
1405 file path=opt/SUNWdtrt/tst/common/proc/tst.exec.ksh mode=0444
1406 file path=opt/SUNWdtrt/tst/common/proc/tst.execfail.ENOENT.ksh mode=0444
1407 file path=opt/SUNWdtrt/tst/common/proc/tst.execfail.ksh mode=0444
1408 file path=opt/SUNWdtrt/tst/common/proc/tst.exitcore.ksh mode=0444
1409 file path=opt/SUNWdtrt/tst/common/proc/tst.exitexit.ksh mode=0444
1410 file path=opt/SUNWdtrt/tst/common/proc/tst.exitkilled.ksh mode=0444
1411 file path=opt/SUNWdtrt/tst/common/proc/tst.signal.ksh mode=0444
1412 file path=opt/SUNWdtrt/tst/common/proc/tst.sigwait.d mode=0444
1413 file path=opt/SUNWdtrt/tst/common/proc/tst.sigwait.exe mode=0555
1414 file path=opt/SUNWdtrt/tst/common/proc/tst.startexit.ksh mode=0444
1415 file path=opt/SUNWdtrt/tst/common/profile-n/err.D_PDESC_ZERO.profile.d \
1416 mode=0444
1417 file path=opt/SUNWdtrt/tst/common/profile-n/err.D_PDESC_ZEROonens.d mode=0444
1418 file path=opt/SUNWdtrt/tst/common/profile-n/err.D_PDESC_ZEROonensec.d \
1419 mode=0444
1420 file path=opt/SUNWdtrt/tst/common/profile-n/err.D_PDESC_ZEROoneus.d mode=0444
1421 file path=opt/SUNWdtrt/tst/common/profile-n/err.D_PDESC_ZEROoneusec.d \
1422 mode=0444
1423 file path=opt/SUNWdtrt/tst/common/profile-n/tst.argtest.d mode=0444
1424 file path=opt/SUNWdtrt/tst/common/profile-n/tst.argtest.d.out mode=0444
1425 file path=opt/SUNWdtrt/tst/common/profile-n/tst.basic.d mode=0444
1426 file path=opt/SUNWdtrt/tst/common/profile-n/tst.basic.d.out mode=0444
1427 file path=opt/SUNWdtrt/tst/common/profile-n/tst.func.ksh mode=0444
1428 file path=opt/SUNWdtrt/tst/common/profile-n/tst.mod.ksh mode=0444
1429 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilehz.d mode=0444
1430 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilehz.d.out mode=0444
1431 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilems.d mode=0444
1432 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilems.d.out mode=0444
1433 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilemsec.d mode=0444
1434 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilemsec.d.out mode=0444
1435 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilenhz.d mode=0444
1436 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilenhz.d.out mode=0444
1437 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilens.d mode=0444
1438 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilens.d.out mode=0444
1439 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilensec.d mode=0444
1440 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilensec.d.out mode=0444
1441 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profiles.d mode=0444
1442 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profiles.d.out mode=0444
1443 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilesec.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 23

1444 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profilesec.d.out mode=0444
1445 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profileus.d mode=0444
1446 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profileus.d.out mode=0444
1447 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profileusec.d mode=0444
1448 file path=opt/SUNWdtrt/tst/common/profile-n/tst.profileusec.d.out mode=0444
1449 file path=opt/SUNWdtrt/tst/common/profile-n/tst.sym.ksh mode=0444
1450 file path=opt/SUNWdtrt/tst/common/profile-n/tst.ufunc.ksh mode=0444
1451 file path=opt/SUNWdtrt/tst/common/profile-n/tst.ufuncsort.exe mode=0555
1452 file path=opt/SUNWdtrt/tst/common/profile-n/tst.ufuncsort.ksh mode=0444
1453 file path=opt/SUNWdtrt/tst/common/profile-n/tst.ufuncsort.ksh.out mode=0444
1454 file path=opt/SUNWdtrt/tst/common/profile-n/tst.umod.ksh mode=0444
1455 file path=opt/SUNWdtrt/tst/common/profile-n/tst.usym.ksh mode=0444
1456 file path=opt/SUNWdtrt/tst/common/providers/err.D_PDESC_INVAL.wrongdec4.d \
1457 mode=0444
1458 file path=opt/SUNWdtrt/tst/common/providers/err.D_PDESC_ZERO.nonprofile.d \
1459 mode=0444
1460 file path=opt/SUNWdtrt/tst/common/providers/err.D_PDESC_ZERO.wrongdec1.d \
1461 mode=0444
1462 file path=opt/SUNWdtrt/tst/common/providers/err.D_PDESC_ZERO.wrongdec2.d \
1463 mode=0444
1464 file path=opt/SUNWdtrt/tst/common/providers/err.D_PDESC_ZERO.wrongdec3.d \
1465 mode=0444
1466 file path=opt/SUNWdtrt/tst/common/providers/tst.basics.d mode=0444
1467 file path=opt/SUNWdtrt/tst/common/providers/tst.basics.d.out mode=0444
1468 file path=opt/SUNWdtrt/tst/common/providers/tst.beginexit.d mode=0444
1469 file path=opt/SUNWdtrt/tst/common/providers/tst.beginprof.d mode=0444
1470 file path=opt/SUNWdtrt/tst/common/providers/tst.beginprof.d.out mode=0444
1471 file path=opt/SUNWdtrt/tst/common/providers/tst.probattrs.d mode=0444
1472 file path=opt/SUNWdtrt/tst/common/providers/tst.probattrs.d.out mode=0444
1473 file path=opt/SUNWdtrt/tst/common/providers/tst.probefunc.d mode=0444
1474 file path=opt/SUNWdtrt/tst/common/providers/tst.probefunc.d.out mode=0444
1475 file path=opt/SUNWdtrt/tst/common/providers/tst.probemod.d mode=0444
1476 file path=opt/SUNWdtrt/tst/common/providers/tst.probemod.d.out mode=0444
1477 file path=opt/SUNWdtrt/tst/common/providers/tst.probename.d mode=0444
1478 file path=opt/SUNWdtrt/tst/common/providers/tst.probename.d.out mode=0444
1479 file path=opt/SUNWdtrt/tst/common/providers/tst.probprov.d mode=0444
1480 file path=opt/SUNWdtrt/tst/common/providers/tst.probprov.d.out mode=0444
1481 file path=opt/SUNWdtrt/tst/common/providers/tst.profend.d mode=0444
1482 file path=opt/SUNWdtrt/tst/common/providers/tst.profend.d.out mode=0444
1483 file path=opt/SUNWdtrt/tst/common/providers/tst.profexit.d mode=0444
1484 file path=opt/SUNWdtrt/tst/common/providers/tst.profexit.d.out mode=0444
1485 file path=opt/SUNWdtrt/tst/common/providers/tst.trace.d mode=0444
1486 file path=opt/SUNWdtrt/tst/common/providers/tst.trace.d.out mode=0444
1487 file path=opt/SUNWdtrt/tst/common/providers/tst.twoprof.d mode=0444
1488 file path=opt/SUNWdtrt/tst/common/providers/tst.twoprof.d.out mode=0444
1489 file path=opt/SUNWdtrt/tst/common/raise/tst.raise1.d mode=0444
1490 file path=opt/SUNWdtrt/tst/common/raise/tst.raise1.exe mode=0555
1491 file path=opt/SUNWdtrt/tst/common/raise/tst.raise2.d mode=0444
1492 file path=opt/SUNWdtrt/tst/common/raise/tst.raise2.exe mode=0555
1493 file path=opt/SUNWdtrt/tst/common/raise/tst.raise3.d mode=0444
1494 file path=opt/SUNWdtrt/tst/common/raise/tst.raise3.exe mode=0555
1495 file path=opt/SUNWdtrt/tst/common/rates/tst.aggrate.d mode=0444
1496 file path=opt/SUNWdtrt/tst/common/rates/tst.aggrate.d.out mode=0444
1497 file path=opt/SUNWdtrt/tst/common/rates/tst.statusrate.d mode=0444
1498 file path=opt/SUNWdtrt/tst/common/rates/tst.switchrate.d mode=0444
1499 file path=opt/SUNWdtrt/tst/common/rates/tst.switchrate.d.out mode=0444
1500 file path=opt/SUNWdtrt/tst/common/safety/tst.basename.d mode=0444
1501 file path=opt/SUNWdtrt/tst/common/safety/tst.caller.d mode=0444
1502 file path=opt/SUNWdtrt/tst/common/safety/tst.cleanpath.d mode=0444
1503 file path=opt/SUNWdtrt/tst/common/safety/tst.copyin.d mode=0444
1504 file path=opt/SUNWdtrt/tst/common/safety/tst.copyin2.d mode=0444
1505 file path=opt/SUNWdtrt/tst/common/safety/tst.ddi_pathname.d mode=0444
1506 file path=opt/SUNWdtrt/tst/common/safety/tst.dirname.d mode=0444
1507 file path=opt/SUNWdtrt/tst/common/safety/tst.errno.d mode=0444
1508 file path=opt/SUNWdtrt/tst/common/safety/tst.execname.d mode=0444
1509 file path=opt/SUNWdtrt/tst/common/safety/tst.gid.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 24

1510 file path=opt/SUNWdtrt/tst/common/safety/tst.hton.d mode=0444
1511 file path=opt/SUNWdtrt/tst/common/safety/tst.index.d mode=0444
1512 file path=opt/SUNWdtrt/tst/common/safety/tst.msgdsize.d mode=0444
1513 file path=opt/SUNWdtrt/tst/common/safety/tst.msgsize.d mode=0444
1514 file path=opt/SUNWdtrt/tst/common/safety/tst.null.d mode=0444
1515 file path=opt/SUNWdtrt/tst/common/safety/tst.pid.d mode=0444
1516 file path=opt/SUNWdtrt/tst/common/safety/tst.ppid.d mode=0444
1517 file path=opt/SUNWdtrt/tst/common/safety/tst.progenyof.d mode=0444
1518 file path=opt/SUNWdtrt/tst/common/safety/tst.random.d mode=0444
1519 file path=opt/SUNWdtrt/tst/common/safety/tst.rw.d mode=0444
1520 file path=opt/SUNWdtrt/tst/common/safety/tst.shortstr.d mode=0444
1521 file path=opt/SUNWdtrt/tst/common/safety/tst.stack.d mode=0444
1522 file path=opt/SUNWdtrt/tst/common/safety/tst.stackdepth.d mode=0444
1523 file path=opt/SUNWdtrt/tst/common/safety/tst.stddev.d mode=0444
1524 file path=opt/SUNWdtrt/tst/common/safety/tst.strchr.d mode=0444
1525 file path=opt/SUNWdtrt/tst/common/safety/tst.strjoin.d mode=0444
1526 file path=opt/SUNWdtrt/tst/common/safety/tst.strstr.d mode=0444
1527 file path=opt/SUNWdtrt/tst/common/safety/tst.strtok.d mode=0444
1528 file path=opt/SUNWdtrt/tst/common/safety/tst.substr.d mode=0444
1529 file path=opt/SUNWdtrt/tst/common/safety/tst.ucaller.d mode=0444
1530 file path=opt/SUNWdtrt/tst/common/safety/tst.uid.d mode=0444
1531 file path=opt/SUNWdtrt/tst/common/safety/tst.unalign.d mode=0444
1532 file path=opt/SUNWdtrt/tst/common/safety/tst.uregs.d mode=0444
1533 file path=opt/SUNWdtrt/tst/common/safety/tst.ustack.d mode=0444
1534 file path=opt/SUNWdtrt/tst/common/safety/tst.ustackdepth.d mode=0444
1535 file path=opt/SUNWdtrt/tst/common/safety/tst.vahole.d mode=0444
1536 file path=opt/SUNWdtrt/tst/common/safety/tst.violentdeath.ksh mode=0444
1537 file path=opt/SUNWdtrt/tst/common/safety/tst.zonename.d mode=0444
1538 file path=opt/SUNWdtrt/tst/common/scalars/err.D_ARR_LOCAL.thisarray.d \
1539 mode=0444
1540 file path=opt/SUNWdtrt/tst/common/scalars/err.D_DECL_CLASS.selfthis.d \
1541 mode=0444
1542 file path=opt/SUNWdtrt/tst/common/scalars/err.D_DECL_CLASS.thisself.d \
1543 mode=0444
1544 file path=opt/SUNWdtrt/tst/common/scalars/err.D_DECL_IDRED.errval.d mode=0444
1545 file path=opt/SUNWdtrt/tst/common/scalars/err.D_OP_INCOMPAT.dec.err.d \
1546 mode=0444
1547 file path=opt/SUNWdtrt/tst/common/scalars/err.D_OP_INCOMPAT.dupgtype.d \
1548 mode=0444
1549 file path=opt/SUNWdtrt/tst/common/scalars/err.D_OP_INCOMPAT.dupltype.d \
1550 mode=0444
1551 file path=opt/SUNWdtrt/tst/common/scalars/err.D_OP_INCOMPAT.dupttype.d \
1552 mode=0444
1553 file path=opt/SUNWdtrt/tst/common/scalars/err.D_SYNTAX.declare.d mode=0444
1554 file path=opt/SUNWdtrt/tst/common/scalars/tst.basicvar.d mode=0444
1555 file path=opt/SUNWdtrt/tst/common/scalars/tst.basicvar.d.out mode=0444
1556 file path=opt/SUNWdtrt/tst/common/scalars/tst.localvar.d mode=0444
1557 file path=opt/SUNWdtrt/tst/common/scalars/tst.misc.d mode=0444
1558 file path=opt/SUNWdtrt/tst/common/scalars/tst.self.d mode=0444
1559 file path=opt/SUNWdtrt/tst/common/scalars/tst.selfarray.d mode=0444
1560 file path=opt/SUNWdtrt/tst/common/scalars/tst.selfarray2.d mode=0444
1561 file path=opt/SUNWdtrt/tst/common/scalars/tst.selfthis.d mode=0444
1562 file path=opt/SUNWdtrt/tst/common/scalars/tst.this.d mode=0444
1563 file path=opt/SUNWdtrt/tst/common/scalars/tst.thisself.d mode=0444
1564 file path=opt/SUNWdtrt/tst/common/sched/tst.enqueue.d mode=0444
1565 file path=opt/SUNWdtrt/tst/common/sched/tst.oncpu.d mode=0444
1566 file path=opt/SUNWdtrt/tst/common/sched/tst.stackdepth.d mode=0444
1567 file path=opt/SUNWdtrt/tst/common/scripting/err.D_MACRO_UNDEF.invalidargs.d \
1568 mode=0444
1569 file path=opt/SUNWdtrt/tst/common/scripting/err.D_OP_LVAL.rdonly.d mode=0444
1570 file path=opt/SUNWdtrt/tst/common/scripting/err.D_OP_WRITE.usepidmacro.d \
1571 mode=0444
1572 file path=opt/SUNWdtrt/tst/common/scripting/err.D_SYNTAX.concat.d mode=0444
1573 file path=opt/SUNWdtrt/tst/common/scripting/err.D_SYNTAX.desc.d mode=0444
1574 file path=opt/SUNWdtrt/tst/common/scripting/err.D_SYNTAX.inval.d mode=0444
1575 file path=opt/SUNWdtrt/tst/common/scripting/err.D_SYNTAX.pid.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 25

1576 file path=opt/SUNWdtrt/tst/common/scripting/tst.D_MACRO_UNUSED.overflow.ksh \
1577 mode=0444
1578 file path=opt/SUNWdtrt/tst/common/scripting/tst.arg0.d mode=0444
1579 file path=opt/SUNWdtrt/tst/common/scripting/tst.arguments.ksh mode=0444
1580 file path=opt/SUNWdtrt/tst/common/scripting/tst.assign.d mode=0444
1581 file path=opt/SUNWdtrt/tst/common/scripting/tst.basic.d mode=0444
1582 file path=opt/SUNWdtrt/tst/common/scripting/tst.egid.d mode=0444
1583 file path=opt/SUNWdtrt/tst/common/scripting/tst.egid.ksh mode=0444
1584 file path=opt/SUNWdtrt/tst/common/scripting/tst.euid.d mode=0444
1585 file path=opt/SUNWdtrt/tst/common/scripting/tst.euid.ksh mode=0444
1586 file path=opt/SUNWdtrt/tst/common/scripting/tst.gid.d mode=0444
1587 file path=opt/SUNWdtrt/tst/common/scripting/tst.gid.ksh mode=0444
1588 file path=opt/SUNWdtrt/tst/common/scripting/tst.pgid.d mode=0444
1589 file path=opt/SUNWdtrt/tst/common/scripting/tst.pid.d mode=0444
1590 file path=opt/SUNWdtrt/tst/common/scripting/tst.ppid.d mode=0444
1591 file path=opt/SUNWdtrt/tst/common/scripting/tst.ppid.ksh mode=0444
1592 file path=opt/SUNWdtrt/tst/common/scripting/tst.projid.d mode=0444
1593 file path=opt/SUNWdtrt/tst/common/scripting/tst.projid.ksh mode=0444
1594 file path=opt/SUNWdtrt/tst/common/scripting/tst.quite.d mode=0444
1595 file path=opt/SUNWdtrt/tst/common/scripting/tst.sid.d mode=0444
1596 file path=opt/SUNWdtrt/tst/common/scripting/tst.sid.ksh mode=0444
1597 file path=opt/SUNWdtrt/tst/common/scripting/tst.stringmacro.ksh mode=0444
1598 file path=opt/SUNWdtrt/tst/common/scripting/tst.taskid.d mode=0444
1599 file path=opt/SUNWdtrt/tst/common/scripting/tst.taskid.ksh mode=0444
1600 file path=opt/SUNWdtrt/tst/common/scripting/tst.trace.d mode=0444
1601 file path=opt/SUNWdtrt/tst/common/scripting/tst.uid.d mode=0444
1602 file path=opt/SUNWdtrt/tst/common/scripting/tst.uid.ksh mode=0444
1603 file path=opt/SUNWdtrt/tst/common/sdt/tst.sdtargs.d mode=0444
1604 file path=opt/SUNWdtrt/tst/common/sdt/tst.sdtargs.exe mode=0555
1605 file path=opt/SUNWdtrt/tst/common/sizeof/err.D_IDENT_BADREF.SizeofAssoc.d \
1606 mode=0444
1607 file path=opt/SUNWdtrt/tst/common/sizeof/err.D_IDENT_UNDEF.UnknownSymbol.d \
1608 mode=0444
1609 file path=opt/SUNWdtrt/tst/common/sizeof/err.D_SIZEOF_TYPE.badstruct.d \
1610 mode=0444
1611 file path=opt/SUNWdtrt/tst/common/sizeof/err.D_SIZEOF_TYPE.d mode=0444
1612 file path=opt/SUNWdtrt/tst/common/sizeof/err.D_SYNTAX.SizeofBadType.d \
1613 mode=0444
1614 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofArray.d mode=0444
1615 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofDataTypes.d mode=0444
1616 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofExpression.d mode=0444
1617 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofNULL.d mode=0444
1618 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofStrConst.d mode=0444
1619 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofStrConst.d.out mode=0444
1620 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofString1.d mode=0444
1621 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofString1.d.out mode=0444
1622 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofString2.d mode=0444
1623 file path=opt/SUNWdtrt/tst/common/sizeof/tst.SizeofString2.d.out mode=0444
1624 file path=opt/SUNWdtrt/tst/common/speculation/err.BufSizeVariations1.d \
1625 mode=0444
1626 file path=opt/SUNWdtrt/tst/common/speculation/err.BufSizeVariations2.d \
1627 mode=0444
1628 file \
1629 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithBreakPo
1630 mode=0444
1631 file \
1632 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithChill.d
1633 mode=0444
1634 file \
1635 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithCopyOut
1636 mode=0444
1637 file \
1638 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithCopyOut
1639 mode=0444
1640 file \
1641 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithPanic.d

new/usr/src/pkg/manifests/system-dtrace-tests.mf 26

1642 mode=0444
1643 file \
1644 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithRaise.d
1645 mode=0444
1646 file \
1647 path=opt/SUNWdtrt/tst/common/speculation/err.D_ACT_SPEC.SpeculateWithStop.d
1648 mode=0444
1649 file path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_COMM.AggAftCommit.d \
1650 mode=0444
1651 file \
1652 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithAvg.d \
1653 mode=0444
1654 file \
1655 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithCount.d
1656 mode=0444
1657 file \
1658 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithLquant.
1659 mode=0444
1660 file \
1661 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithMax.d \
1662 mode=0444
1663 file \
1664 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithMin.d \
1665 mode=0444
1666 file \
1667 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithQuant.d
1668 mode=0444
1669 file \
1670 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithStddev.
1671 mode=0444
1672 file \
1673 path=opt/SUNWdtrt/tst/common/speculation/err.D_AGG_SPEC.SpeculateWithSum.d \
1674 mode=0444
1675 file \
1676 path=opt/SUNWdtrt/tst/common/speculation/err.D_COMM_COMM.CommitAftCommit.d \
1677 mode=0444
1678 file path=opt/SUNWdtrt/tst/common/speculation/err.D_COMM_COMM.DisjointCommit.d \
1679 mode=0444
1680 file \
1681 path=opt/SUNWdtrt/tst/common/speculation/err.D_COMM_DREC.CommitAftDataRec.d
1682 mode=0444
1683 file \
1684 path=opt/SUNWdtrt/tst/common/speculation/err.D_DREC_COMM.DataRecAftCommit.d
1685 mode=0444
1686 file \
1687 path=opt/SUNWdtrt/tst/common/speculation/err.D_DREC_COMM.ExitAfterCommit.d \
1688 mode=0444
1689 file path=opt/SUNWdtrt/tst/common/speculation/err.D_EXIT_SPEC.ExitAftSpec.d \
1690 mode=0444
1691 file path=opt/SUNWdtrt/tst/common/speculation/err.D_PRAGMA_MALFORM.NspecExpr.d \
1692 mode=0444
1693 file \
1694 path=opt/SUNWdtrt/tst/common/speculation/err.D_PRAGMA_OPTSET.HugeNspecValue.
1695 mode=0444
1696 file \
1697 path=opt/SUNWdtrt/tst/common/speculation/err.D_PRAGMA_OPTSET.InvalidSpecSize
1698 mode=0444
1699 file \
1700 path=opt/SUNWdtrt/tst/common/speculation/err.D_PRAGMA_OPTSET.NegSpecSize.d \
1701 mode=0444
1702 file path=opt/SUNWdtrt/tst/common/speculation/err.D_PROTO_LEN.SpecNoId.d \
1703 mode=0444
1704 file path=opt/SUNWdtrt/tst/common/speculation/err.D_SPEC_COMM.SpecAftCommit.d \
1705 mode=0444
1706 file path=opt/SUNWdtrt/tst/common/speculation/err.D_SPEC_DREC.SpecAftDataRec.d \
1707 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 27

1708 file path=opt/SUNWdtrt/tst/common/speculation/err.D_SPEC_SPEC.SpecAftSpec.d \
1709 mode=0444
1710 file path=opt/SUNWdtrt/tst/common/speculation/err.NegativeBufSize.d mode=0444
1711 file path=opt/SUNWdtrt/tst/common/speculation/err.NegativeNspec.d mode=0444
1712 file path=opt/SUNWdtrt/tst/common/speculation/err.NegativeSpecSize.d mode=0444
1713 file path=opt/SUNWdtrt/tst/common/speculation/err.SpecSizeVariations1.d \
1714 mode=0444
1715 file path=opt/SUNWdtrt/tst/common/speculation/err.SpecSizeVariations2.d \
1716 mode=0444
1717 file path=opt/SUNWdtrt/tst/common/speculation/tst.CommitAfterDiscard.d \
1718 mode=0444
1719 file path=opt/SUNWdtrt/tst/common/speculation/tst.CommitWithZero.d mode=0444
1720 file path=opt/SUNWdtrt/tst/common/speculation/tst.DataRecAftDiscard.d \
1721 mode=0444
1722 file path=opt/SUNWdtrt/tst/common/speculation/tst.DiscardAftCommit.d mode=0444
1723 file path=opt/SUNWdtrt/tst/common/speculation/tst.DiscardAftDataRec.d \
1724 mode=0444
1725 file path=opt/SUNWdtrt/tst/common/speculation/tst.DiscardAftDiscard.d \
1726 mode=0444
1727 file path=opt/SUNWdtrt/tst/common/speculation/tst.DiscardWithZero.d mode=0444
1728 file path=opt/SUNWdtrt/tst/common/speculation/tst.ExitAftDiscard.d mode=0444
1729 file path=opt/SUNWdtrt/tst/common/speculation/tst.NoSpecBuffer.d mode=0444
1730 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpecSizeVariations1.d \
1731 mode=0444
1732 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpecSizeVariations2.d \
1733 mode=0444
1734 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpecSizeVariations3.d \
1735 mode=0444
1736 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpeculateWithRandom.d \
1737 mode=0444
1738 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpeculationCommit.d \
1739 mode=0444
1740 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpeculationDiscard.d \
1741 mode=0444
1742 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpeculationID.d mode=0444
1743 file path=opt/SUNWdtrt/tst/common/speculation/tst.SpeculationWithZero.d \
1744 mode=0444
1745 file path=opt/SUNWdtrt/tst/common/speculation/tst.TwoSpecBuffers.d mode=0444
1746 file path=opt/SUNWdtrt/tst/common/speculation/tst.negcommit.d mode=0444
1747 file path=opt/SUNWdtrt/tst/common/speculation/tst.negspec.d mode=0444
1748 file path=opt/SUNWdtrt/tst/common/speculation/tst.zerosize.d mode=0444
1749 file path=opt/SUNWdtrt/tst/common/stability/err.D_ATTR_MIN.MinAttributes.d \
1750 mode=0444
1751 file path=opt/SUNWdtrt/tst/common/stack/err.D_STACK_PROTO.bad.d mode=0444
1752 file path=opt/SUNWdtrt/tst/common/stack/err.D_STACK_SIZE.d mode=0444
1753 file path=opt/SUNWdtrt/tst/common/stack/err.D_USTACK_FRAMES.bad.d mode=0444
1754 file path=opt/SUNWdtrt/tst/common/stack/err.D_USTACK_PROTO.bad.d mode=0444
1755 file path=opt/SUNWdtrt/tst/common/stack/err.D_USTACK_STRSIZE.bad.d mode=0444
1756 file path=opt/SUNWdtrt/tst/common/stack/tst.default.d mode=0444
1757 file path=opt/SUNWdtrt/tst/common/stackdepth/tst.default.d mode=0444
1758 file path=opt/SUNWdtrt/tst/common/stop/tst.stop1.d mode=0444
1759 file path=opt/SUNWdtrt/tst/common/stop/tst.stop1.exe mode=0555
1760 file path=opt/SUNWdtrt/tst/common/stop/tst.stop2.d mode=0444
1761 file path=opt/SUNWdtrt/tst/common/stop/tst.stop2.exe mode=0555
1762 file path=opt/SUNWdtrt/tst/common/strlen/tst.strlen1.d mode=0444
1763 file path=opt/SUNWdtrt/tst/common/struct/err.D_ADDROF_VAR.StructPointer.d \
1764 mode=0444
1765 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_COMBO.StructWithoutColon.d \
1766 mode=0444
1767 file \
1768 path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_COMBO.StructWithoutColon1.d \
1769 mode=0444
1770 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_INCOMPLETE.circular.d \
1771 mode=0444
1772 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_INCOMPLETE.order.d \
1773 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 28

1774 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_INCOMPLETE.order2.d \
1775 mode=0444
1776 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_INCOMPLETE.recursive.d \
1777 mode=0444
1778 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_INCOMPLETE.simple.d \
1779 mode=0444
1780 file path=opt/SUNWdtrt/tst/common/struct/err.D_DECL_VOIDOBJ.baddec.d mode=0444
1781 file path=opt/SUNWdtrt/tst/common/struct/err.D_PROTO_ARG.DupStructAssoc.d \
1782 mode=0444
1783 file path=opt/SUNWdtrt/tst/common/struct/tst.StructAssoc.d mode=0444
1784 file path=opt/SUNWdtrt/tst/common/struct/tst.StructDataTypes.d mode=0444
1785 file path=opt/SUNWdtrt/tst/common/struct/tst.StructInside.d mode=0444
1786 file path=opt/SUNWdtrt/tst/common/struct/tst.clauselocal.d mode=0444
1787 file path=opt/SUNWdtrt/tst/common/struct/tst.clauselocal.d.out mode=0444
1788 file path=opt/SUNWdtrt/tst/common/syscall/tst.args.d mode=0444
1789 file path=opt/SUNWdtrt/tst/common/syscall/tst.args.exe mode=0555
1790 file path=opt/SUNWdtrt/tst/common/syscall/tst.openret.ksh mode=0444
1791 file path=opt/SUNWdtrt/tst/common/sysevent/tst.post.d mode=0444
1792 file path=opt/SUNWdtrt/tst/common/sysevent/tst.post.exe mode=0555
1793 file path=opt/SUNWdtrt/tst/common/sysevent/tst.post_chan.d mode=0444
1794 file path=opt/SUNWdtrt/tst/common/sysevent/tst.post_chan.exe mode=0555
1795 file path=opt/SUNWdtrt/tst/common/tick-n/err.D_PDESC_ZERO.tick.d mode=0444
1796 file path=opt/SUNWdtrt/tst/common/tick-n/err.D_PDESC_ZEROonens.d mode=0444
1797 file path=opt/SUNWdtrt/tst/common/tick-n/err.D_PDESC_ZEROonensec.d mode=0444
1798 file path=opt/SUNWdtrt/tst/common/tick-n/err.D_PDESC_ZEROoneus.d mode=0444
1799 file path=opt/SUNWdtrt/tst/common/tick-n/err.D_PDESC_ZEROoneusec.d mode=0444
1800 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickarg0.d mode=0444
1801 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickms.d mode=0444
1802 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickms.d.out mode=0444
1803 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickmsec.d mode=0444
1804 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickmsec.d.out mode=0444
1805 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickns.d mode=0444
1806 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickns.d.out mode=0444
1807 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticknsec.d mode=0444
1808 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticknsec.d.out mode=0444
1809 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticks.d mode=0444
1810 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticks.d.out mode=0444
1811 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticksec.d mode=0444
1812 file path=opt/SUNWdtrt/tst/common/tick-n/tst.ticksec.d.out mode=0444
1813 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickus.d mode=0444
1814 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickus.d.out mode=0444
1815 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickusec.d mode=0444
1816 file path=opt/SUNWdtrt/tst/common/tick-n/tst.tickusec.d.out mode=0444
1817 file path=opt/SUNWdtrt/tst/common/trace/err.D_PROTO_LEN.bad.d mode=0444
1818 file path=opt/SUNWdtrt/tst/common/trace/err.D_TRACE_AGG.bad.d mode=0444
1819 file path=opt/SUNWdtrt/tst/common/trace/err.D_TRACE_VOID.bad.d mode=0444
1820 file path=opt/SUNWdtrt/tst/common/trace/tst.dyn.d mode=0444
1821 file path=opt/SUNWdtrt/tst/common/trace/tst.misc.d mode=0444
1822 file path=opt/SUNWdtrt/tst/common/trace/tst.qstring.d mode=0444
1823 file path=opt/SUNWdtrt/tst/common/trace/tst.qstring.d.out mode=0444
1824 file path=opt/SUNWdtrt/tst/common/trace/tst.string.d mode=0444
1825 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_PROTO_ARG.badsize.d mode=0444
1826 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_PROTO_LEN.toofew.d mode=0444
1827 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_TRACEMEM_ADDR.badaddr.d \
1828 mode=0444
1829 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_TRACEMEM_ARGS.d mode=0444
1830 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_TRACEMEM_DYNSIZE.d mode=0444
1831 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_TRACEMEM_SIZE.negsize.d \
1832 mode=0444
1833 file path=opt/SUNWdtrt/tst/common/tracemem/err.D_TRACEMEM_SIZE.zerosize.d \
1834 mode=0444
1835 file path=opt/SUNWdtrt/tst/common/tracemem/tst.dynsize.d mode=0444
1836 file path=opt/SUNWdtrt/tst/common/tracemem/tst.dynsize.d.out mode=0444
1837 file path=opt/SUNWdtrt/tst/common/tracemem/tst.rootvp.d mode=0444
1838 file path=opt/SUNWdtrt/tst/common/tracemem/tst.smallsize.d mode=0444
1839 file path=opt/SUNWdtrt/tst/common/tracemem/tst.smallsize.d.out mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 29

1840 file \
1841 path=opt/SUNWdtrt/tst/common/translators/err.D_DECL_TYPERED.BadTransDecl.d \
1842 mode=0444
1843 file \
1844 path=opt/SUNWdtrt/tst/common/translators/err.D_OP_INCOMPLETE.NonExistentInpu
1845 mode=0444
1846 file path=opt/SUNWdtrt/tst/common/translators/err.D_SYNTAX.BadTransDecl1.d \
1847 mode=0444
1848 file path=opt/SUNWdtrt/tst/common/translators/err.D_SYNTAX.BadTransDecl3.d \
1849 mode=0444
1850 file path=opt/SUNWdtrt/tst/common/translators/err.D_SYNTAX.BadTransDecl4.d \
1851 mode=0444
1852 file \
1853 path=opt/SUNWdtrt/tst/common/translators/err.D_TYPE_MEMBER.NonExistentInput2
1854 mode=0444
1855 file \
1856 path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_INCOMPAT.BadInputType1.
1857 mode=0444
1858 file \
1859 path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_MEMB.NonExistentOutput2
1860 mode=0444
1861 file path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_NONE.BadTransDecl6.d \
1862 mode=0444
1863 file \
1864 path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_REDECL.RepeatTransDecl.
1865 mode=0444
1866 file path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_SOU.BadTransDecl8.d \
1867 mode=0444
1868 file path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_SOU.BadTransInt.d \
1869 mode=0444
1870 file \
1871 path=opt/SUNWdtrt/tst/common/translators/err.D_XLATE_SOU.NonExistentOutput1.
1872 mode=0444
1873 file path=opt/SUNWdtrt/tst/common/translators/tst.CircularTransDecl.d \
1874 mode=0444
1875 file path=opt/SUNWdtrt/tst/common/translators/tst.EmptyTransDecl.d mode=0444
1876 file path=opt/SUNWdtrt/tst/common/translators/tst.ForwardTag.d mode=0444
1877 file path=opt/SUNWdtrt/tst/common/translators/tst.InputAliasTrans.d mode=0444
1878 file path=opt/SUNWdtrt/tst/common/translators/tst.InputIntTrans.d mode=0444
1879 file path=opt/SUNWdtrt/tst/common/translators/tst.OutputAliasTrans.d mode=0444
1880 file path=opt/SUNWdtrt/tst/common/translators/tst.PartialDereferencing.d \
1881 mode=0444
1882 file path=opt/SUNWdtrt/tst/common/translators/tst.PartialOutputTransDefn.d \
1883 mode=0444
1884 file path=opt/SUNWdtrt/tst/common/translators/tst.ProcModelTrans.d mode=0444
1885 file path=opt/SUNWdtrt/tst/common/translators/tst.RepeatDeclaration.d \
1886 mode=0444
1887 file path=opt/SUNWdtrt/tst/common/translators/tst.SimultaneousTranslators.d \
1888 mode=0444
1889 file path=opt/SUNWdtrt/tst/common/translators/tst.StructureAssignment.d \
1890 mode=0444
1891 file path=opt/SUNWdtrt/tst/common/translators/tst.TestTransStability1.ksh \
1892 mode=0444
1893 file path=opt/SUNWdtrt/tst/common/translators/tst.TestTransStability1.ksh.out \
1894 mode=0444
1895 file path=opt/SUNWdtrt/tst/common/translators/tst.TestTransStability2.ksh \
1896 mode=0444
1897 file path=opt/SUNWdtrt/tst/common/translators/tst.TestTransStability2.ksh.out \
1898 mode=0444
1899 file path=opt/SUNWdtrt/tst/common/translators/tst.TransNonPointer.d mode=0444
1900 file path=opt/SUNWdtrt/tst/common/translators/tst.TransOutputPointer.d \
1901 mode=0444
1902 file path=opt/SUNWdtrt/tst/common/translators/tst.TransPointer.d mode=0444
1903 file path=opt/SUNWdtrt/tst/common/translators/tst.TranslateSelf.d mode=0444
1904 file path=opt/SUNWdtrt/tst/common/translators/tst.UnionInputTrans.d mode=0444
1905 file path=opt/SUNWdtrt/tst/common/translators/tst.UnionOutputTrans.d mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 30

1906 file path=opt/SUNWdtrt/tst/common/typedef/err.D_DECL_IDRED.DupTypeDef.d \
1907 mode=0444
1908 file path=opt/SUNWdtrt/tst/common/typedef/err.D_SYNTAX.BadExistingTypedef.d \
1909 mode=0444
1910 file path=opt/SUNWdtrt/tst/common/typedef/err.D_SYNTAX.TypedefInClause.d \
1911 mode=0444
1912 file path=opt/SUNWdtrt/tst/common/typedef/tst.ChainTypedef.d mode=0444
1913 file path=opt/SUNWdtrt/tst/common/typedef/tst.TypedefDataAssign.d mode=0444
1914 file path=opt/SUNWdtrt/tst/common/types/err.D_CAST_INVAL.badcast.d mode=0444
1915 file path=opt/SUNWdtrt/tst/common/types/err.D_CG_DYN.ResultDynType.d mode=0444
1916 file path=opt/SUNWdtrt/tst/common/types/err.D_CHR_OFLOW.charconst.d mode=0444
1917 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_BADCLASS.bad.d mode=0444
1918 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_CHARATTR.badtype3.d \
1919 mode=0444
1920 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_COMBO.badtype4.d mode=0444
1921 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_COMBO.badtype5.d mode=0444
1922 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_ENCONST.badeval.d mode=0444
1923 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_ENOFLOW.enoflow.d mode=0444
1924 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_ENOFLOW.enuflow.d mode=0444
1925 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_SCOPE.scopeop.d mode=0444
1926 file path=opt/SUNWdtrt/tst/common/types/err.D_DECL_USELESS.baddec.d mode=0444
1927 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_ACT.badcond.d mode=0444
1928 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_ARITH.badoperand.d mode=0444
1929 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_INCOMPAT.badassign.d \
1930 mode=0444
1931 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_INT.badbitop.d mode=0444
1932 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_INT.badshift.d mode=0444
1933 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_SCALAR.badcond.d mode=0444
1934 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_SCALAR.badincop.d mode=0444
1935 file path=opt/SUNWdtrt/tst/common/types/err.D_OP_SCALAR.badlogop.d mode=0444
1936 file path=opt/SUNWdtrt/tst/common/types/err.D_PROTO_LEN.badcond1.d mode=0444
1937 file path=opt/SUNWdtrt/tst/common/types/err.D_SYNTAX.badenum.d mode=0444
1938 file path=opt/SUNWdtrt/tst/common/types/err.D_SYNTAX.badid.d mode=0444
1939 file path=opt/SUNWdtrt/tst/common/types/err.D_SYNTAX.badstruct.d mode=0444
1940 file path=opt/SUNWdtrt/tst/common/types/err.D_UNKNOWN.badtype1.d mode=0444
1941 file path=opt/SUNWdtrt/tst/common/types/err.D_UNKNOWN.badtype2.d mode=0444
1942 file path=opt/SUNWdtrt/tst/common/types/err.D_UNKNOWN.dupenum.d mode=0444
1943 file path=opt/SUNWdtrt/tst/common/types/err.D_UNKNOWN.dupstruct.d mode=0444
1944 file path=opt/SUNWdtrt/tst/common/types/err.D_XLATE_REDECL.ResultDynType.d \
1945 mode=0444
1946 file path=opt/SUNWdtrt/tst/common/types/tst.assignops.d mode=0444
1947 file path=opt/SUNWdtrt/tst/common/types/tst.badshiftops.d mode=0444
1948 file path=opt/SUNWdtrt/tst/common/types/tst.basics.d mode=0444
1949 file path=opt/SUNWdtrt/tst/common/types/tst.basics.d.out mode=0444
1950 file path=opt/SUNWdtrt/tst/common/types/tst.bitops.d mode=0444
1951 file path=opt/SUNWdtrt/tst/common/types/tst.charconstants.d mode=0444
1952 file path=opt/SUNWdtrt/tst/common/types/tst.complex.d mode=0444
1953 file path=opt/SUNWdtrt/tst/common/types/tst.condexpr.d mode=0444
1954 file path=opt/SUNWdtrt/tst/common/types/tst.const.d mode=0444
1955 file path=opt/SUNWdtrt/tst/common/types/tst.constants.d mode=0444
1956 file path=opt/SUNWdtrt/tst/common/types/tst.conv.d mode=0444
1957 file path=opt/SUNWdtrt/tst/common/types/tst.enum.d mode=0444
1958 file path=opt/SUNWdtrt/tst/common/types/tst.intincop.d mode=0444
1959 file path=opt/SUNWdtrt/tst/common/types/tst.intops.d mode=0444
1960 file path=opt/SUNWdtrt/tst/common/types/tst.inttypes.d mode=0444
1961 file path=opt/SUNWdtrt/tst/common/types/tst.ptrincop.d mode=0444
1962 file path=opt/SUNWdtrt/tst/common/types/tst.ptrops.d mode=0444
1963 file path=opt/SUNWdtrt/tst/common/types/tst.relenum.d mode=0444
1964 file path=opt/SUNWdtrt/tst/common/types/tst.relstring.d mode=0444
1965 file path=opt/SUNWdtrt/tst/common/types/tst.shiftops.d mode=0444
1966 file path=opt/SUNWdtrt/tst/common/types/tst.stringconstants.d mode=0444
1967 file path=opt/SUNWdtrt/tst/common/types/tst.struct.d mode=0444
1968 file path=opt/SUNWdtrt/tst/common/types/tst.typedef.d mode=0444
1969 file path=opt/SUNWdtrt/tst/common/types/tst.unaryop.d mode=0444
1970 file path=opt/SUNWdtrt/tst/common/union/err.D_ADDROF_VAR.UnionPointer.d \
1971 mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 31

1972 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_COMBO.UnionWithoutColon.d \
1973 mode=0444
1974 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_COMBO.UnionWithoutColon1.d \
1975 mode=0444
1976 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_INCOMPLETE.circular.d \
1977 mode=0444
1978 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_INCOMPLETE.order.d \
1979 mode=0444
1980 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_INCOMPLETE.recursive.d \
1981 mode=0444
1982 file path=opt/SUNWdtrt/tst/common/union/err.D_DECL_INCOMPLETE.simple.d \
1983 mode=0444
1984 file path=opt/SUNWdtrt/tst/common/union/err.D_PROTO_ARG.DupUnionAssoc.d \
1985 mode=0444
1986 file path=opt/SUNWdtrt/tst/common/union/tst.UnionAssoc.d mode=0444
1987 file path=opt/SUNWdtrt/tst/common/union/tst.UnionDataTypes.d mode=0444
1988 file path=opt/SUNWdtrt/tst/common/union/tst.UnionInside.d mode=0444
1989 file path=opt/SUNWdtrt/tst/common/usdt/tst.andpid.ksh mode=0444
1990 file path=opt/SUNWdtrt/tst/common/usdt/tst.argmap.d mode=0444
1991 file path=opt/SUNWdtrt/tst/common/usdt/tst.argmap.exe mode=0555
1992 file path=opt/SUNWdtrt/tst/common/usdt/tst.args.d mode=0444
1993 file path=opt/SUNWdtrt/tst/common/usdt/tst.args.exe mode=0555
1994 file path=opt/SUNWdtrt/tst/common/usdt/tst.badguess.ksh mode=0444
1995 file path=opt/SUNWdtrt/tst/common/usdt/tst.corruptenv.ksh mode=0444
1996 file path=opt/SUNWdtrt/tst/common/usdt/tst.dlclose1.ksh mode=0444
1997 file path=opt/SUNWdtrt/tst/common/usdt/tst.dlclose1.ksh.out mode=0444
1998 file path=opt/SUNWdtrt/tst/common/usdt/tst.dlclose2.ksh mode=0444
1999 file path=opt/SUNWdtrt/tst/common/usdt/tst.dlclose2.ksh.out mode=0444
2000 file path=opt/SUNWdtrt/tst/common/usdt/tst.dlclose3.ksh mode=0444
2001 file path=opt/SUNWdtrt/tst/common/usdt/tst.eliminate.ksh mode=0444
2002 file path=opt/SUNWdtrt/tst/common/usdt/tst.enabled.ksh mode=0444
2003 file path=opt/SUNWdtrt/tst/common/usdt/tst.enabled.ksh.out mode=0444
2004 file path=opt/SUNWdtrt/tst/common/usdt/tst.enabled2.ksh mode=0444
2005 file path=opt/SUNWdtrt/tst/common/usdt/tst.enabled2.ksh.out mode=0444
2006 file path=opt/SUNWdtrt/tst/common/usdt/tst.entryreturn.ksh mode=0444
2007 file path=opt/SUNWdtrt/tst/common/usdt/tst.entryreturn.ksh.out mode=0444
2008 file path=opt/SUNWdtrt/tst/common/usdt/tst.fork.ksh mode=0444
2009 file path=opt/SUNWdtrt/tst/common/usdt/tst.fork.ksh.out mode=0444
2010 file path=opt/SUNWdtrt/tst/common/usdt/tst.forker.exe mode=0555
2011 file path=opt/SUNWdtrt/tst/common/usdt/tst.forker.ksh mode=0444
2012 file path=opt/SUNWdtrt/tst/common/usdt/tst.guess32.ksh mode=0444
2013 file path=opt/SUNWdtrt/tst/common/usdt/tst.guess64.ksh mode=0444
2014 file path=opt/SUNWdtrt/tst/common/usdt/tst.header.ksh mode=0444
2015 file path=opt/SUNWdtrt/tst/common/usdt/tst.include.ksh mode=0444
2016 file path=opt/SUNWdtrt/tst/common/usdt/tst.lazyprobe.exe mode=0555
2017 file path=opt/SUNWdtrt/tst/common/usdt/tst.lazyprobe1.ksh mode=0444
2018 file path=opt/SUNWdtrt/tst/common/usdt/tst.lazyprobe2.ksh mode=0444
2019 file path=opt/SUNWdtrt/tst/common/usdt/tst.linkpriv.ksh mode=0444
2020 file path=opt/SUNWdtrt/tst/common/usdt/tst.linkunpriv.ksh mode=0444
2021 file path=opt/SUNWdtrt/tst/common/usdt/tst.multiple.ksh mode=0444
2022 file path=opt/SUNWdtrt/tst/common/usdt/tst.multiple.ksh.out mode=0444
2023 file path=opt/SUNWdtrt/tst/common/usdt/tst.multiprov.ksh mode=0444
2024 file path=opt/SUNWdtrt/tst/common/usdt/tst.multiprov.ksh.out mode=0444
2025 file path=opt/SUNWdtrt/tst/common/usdt/tst.nodtrace.ksh mode=0444
2026 file path=opt/SUNWdtrt/tst/common/usdt/tst.noprobes.ksh mode=0444
2027 file path=opt/SUNWdtrt/tst/common/usdt/tst.noreap.ksh mode=0444
2028 file path=opt/SUNWdtrt/tst/common/usdt/tst.noreapring.ksh mode=0444
2029 file path=opt/SUNWdtrt/tst/common/usdt/tst.onlyenabled.ksh mode=0444
2030 file path=opt/SUNWdtrt/tst/common/usdt/tst.reap.ksh mode=0444
2031 file path=opt/SUNWdtrt/tst/common/usdt/tst.reeval.ksh mode=0444
2032 file path=opt/SUNWdtrt/tst/common/usdt/tst.static.ksh mode=0444
2033 file path=opt/SUNWdtrt/tst/common/usdt/tst.static.ksh.out mode=0444
2034 file path=opt/SUNWdtrt/tst/common/usdt/tst.static2.ksh mode=0444
2035 file path=opt/SUNWdtrt/tst/common/usdt/tst.static2.ksh.out mode=0444
2036 file path=opt/SUNWdtrt/tst/common/usdt/tst.user.ksh mode=0444
2037 file path=opt/SUNWdtrt/tst/common/usdt/tst.user.ksh.out mode=0444

new/usr/src/pkg/manifests/system-dtrace-tests.mf 32

2038 file path=opt/SUNWdtrt/tst/common/ustack/tst.bigstack.d mode=0444
2039 file path=opt/SUNWdtrt/tst/common/ustack/tst.bigstack.exe mode=0555
2040 file path=opt/SUNWdtrt/tst/common/ustack/tst.depth.ksh mode=0444
2041 file path=opt/SUNWdtrt/tst/common/ustack/tst.spin.exe mode=0555
2042 file path=opt/SUNWdtrt/tst/common/ustack/tst.spin.ksh mode=0444
2043 file path=opt/SUNWdtrt/tst/common/vars/tst.gid.d mode=0444
2044 file path=opt/SUNWdtrt/tst/common/vars/tst.nullassign.d mode=0444
2045 file path=opt/SUNWdtrt/tst/common/vars/tst.ppid.d mode=0444
2046 file path=opt/SUNWdtrt/tst/common/vars/tst.ucaller.ksh mode=0444
2047 file path=opt/SUNWdtrt/tst/common/vars/tst.ucaller.ksh.out mode=0444
2048 file path=opt/SUNWdtrt/tst/common/vars/tst.uid.d mode=0444
2049 file path=opt/SUNWdtrt/tst/common/vars/tst.walltimestamp.d mode=0444
2050 file path=opt/SUNWdtrt/tst/common/version/tst.1.0.d mode=0444
2051 $(i386_ONLY)file path=opt/SUNWdtrt/tst/i86xpv/xdt/tst.basic.ksh mode=0444
2052 $(i386_ONLY)file path=opt/SUNWdtrt/tst/i86xpv/xdt/tst.hvmenable.ksh mode=0444
2053 $(i386_ONLY)file path=opt/SUNWdtrt/tst/i86xpv/xdt/tst.memenable.ksh mode=0444
2054 $(i386_ONLY)file path=opt/SUNWdtrt/tst/i86xpv/xdt/tst.schedargs.ksh mode=0444
2055 $(i386_ONLY)file path=opt/SUNWdtrt/tst/i86xpv/xdt/tst.schedenable.ksh \
2056 mode=0444
2057 legacy pkg=SUNWdtrt category=internal \
2058 desc="DTrace Test Suite Internal Distribution" \
2059 hotline="Contact the DTrace discussion forum" name="DTrace Test Suite"
2060 license cr_Sun license=cr_Sun
2061 license lic_CDDL license=lic_CDDL
2062 depend fmri=runtime/java type=require
2063 depend fmri=runtime/java/runtime64 type=require

new/usr/src/uts/common/dtrace/dtrace.c 1

**
 420740 Tue Jan 14 16:50:01 2014
new/usr/src/uts/common/dtrace/dtrace.c
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 */

28 /*
29 * DTrace - Dynamic Tracing for Solaris
30 *
31 * This is the implementation of the Solaris Dynamic Tracing framework
32 * (DTrace). The user-visible interface to DTrace is described at length in
33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
34 * library, the in-kernel DTrace framework, and the DTrace providers are
35 * described in the block comments in the <sys/dtrace.h> header file. The
36 * internal architecture of DTrace is described in the block comments in the
37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
38 * implementation very much assume mastery of all of these sources; if one has
39 * an unanswered question about the implementation, one should consult them
40 * first.
41 *
42 * The functions here are ordered roughly as follows:
43 *
44 * - Probe context functions
45 * - Probe hashing functions
46 * - Non-probe context utility functions
47 * - Matching functions
48 * - Provider-to-Framework API functions
49 * - Probe management functions
50 * - DIF object functions
51 * - Format functions
52 * - Predicate functions
53 * - ECB functions
54 * - Buffer functions
55 * - Enabling functions
56 * - DOF functions
57 * - Anonymous enabling functions

new/usr/src/uts/common/dtrace/dtrace.c 2

58 * - Consumer state functions
59 * - Helper functions
60 * - Hook functions
61 * - Driver cookbook functions
62 *
63 * Each group of functions begins with a block comment labelled the "DTrace
64 * [Group] Functions", allowing one to find each block by searching forward
65 * on capital-f functions.
66 */
67 #include <sys/errno.h>
68 #include <sys/stat.h>
69 #include <sys/modctl.h>
70 #include <sys/conf.h>
71 #include <sys/systm.h>
72 #include <sys/ddi.h>
73 #include <sys/sunddi.h>
74 #include <sys/cpuvar.h>
75 #include <sys/kmem.h>
76 #include <sys/strsubr.h>
77 #include <sys/sysmacros.h>
78 #include <sys/dtrace_impl.h>
79 #include <sys/atomic.h>
80 #include <sys/cmn_err.h>
81 #include <sys/mutex_impl.h>
82 #include <sys/rwlock_impl.h>
83 #include <sys/ctf_api.h>
84 #include <sys/panic.h>
85 #include <sys/priv_impl.h>
86 #include <sys/policy.h>
87 #include <sys/cred_impl.h>
88 #include <sys/procfs_isa.h>
89 #include <sys/taskq.h>
90 #include <sys/mkdev.h>
91 #include <sys/kdi.h>
92 #include <sys/zone.h>
93 #include <sys/socket.h>
94 #include <netinet/in.h>

96 /*
97 * DTrace Tunable Variables
98 *
99 * The following variables may be tuned by adding a line to /etc/system that
100 * includes both the name of the DTrace module ("dtrace") and the name of the
101 * variable. For example:
102 *
103 * set dtrace:dtrace_destructive_disallow = 1
104 *
105 * In general, the only variables that one should be tuning this way are those
106 * that affect system-wide DTrace behavior, and for which the default behavior
107 * is undesirable. Most of these variables are tunable on a per-consumer
108 * basis using DTrace options, and need not be tuned on a system-wide basis.
109 * When tuning these variables, avoid pathological values; while some attempt
110 * is made to verify the integrity of these variables, they are not considered
111 * part of the supported interface to DTrace, and they are therefore not
112 * checked comprehensively. Further, these variables should not be tuned
113 * dynamically via "mdb -kw" or other means; they should only be tuned via
114 * /etc/system.
115 */
116 int dtrace_destructive_disallow = 0;
117 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
118 size_t dtrace_difo_maxsize = (256 * 1024);
119 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024);
120 size_t dtrace_global_maxsize = (16 * 1024);
121 size_t dtrace_actions_max = (16 * 1024);
122 size_t dtrace_retain_max = 1024;
123 dtrace_optval_t dtrace_helper_actions_max = 1024;

new/usr/src/uts/common/dtrace/dtrace.c 3

124 dtrace_optval_t dtrace_helper_providers_max = 32;
125 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
126 size_t dtrace_strsize_default = 256;
127 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */
128 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */
129 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */
130 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */
131 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */
132 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */
133 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */
134 dtrace_optval_t dtrace_nspec_default = 1;
135 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
136 dtrace_optval_t dtrace_stackframes_default = 20;
137 dtrace_optval_t dtrace_ustackframes_default = 20;
138 dtrace_optval_t dtrace_jstackframes_default = 50;
139 dtrace_optval_t dtrace_jstackstrsize_default = 512;
140 int dtrace_msgdsize_max = 128;
141 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */
142 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */
143 int dtrace_devdepth_max = 32;
144 int dtrace_err_verbose;
145 hrtime_t dtrace_deadman_interval = NANOSEC;
146 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
147 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
148 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;

150 /*
151 * DTrace External Variables
152 *
153 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
154 * available to DTrace consumers via the backtick (‘) syntax. One of these,
155 * dtrace_zero, is made deliberately so: it is provided as a source of
156 * well-known, zero-filled memory. While this variable is not documented,
157 * it is used by some translators as an implementation detail.
158 */
159 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */

161 /*
162 * DTrace Internal Variables
163 */
164 static dev_info_t *dtrace_devi; /* device info */
165 static vmem_t *dtrace_arena; /* probe ID arena */
166 static vmem_t *dtrace_minor; /* minor number arena */
167 static taskq_t *dtrace_taskq; /* task queue */
168 static dtrace_probe_t **dtrace_probes; /* array of all probes */
169 static int dtrace_nprobes; /* number of probes */
170 static dtrace_provider_t *dtrace_provider; /* provider list */
171 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */
172 static int dtrace_opens; /* number of opens */
173 static int dtrace_helpers; /* number of helpers */
174 static int dtrace_getf; /* number of unpriv getf()s */
175 #endif /* ! codereview */
176 static void *dtrace_softstate; /* softstate pointer */
177 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */
178 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */
179 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */
180 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */
181 static int dtrace_toxranges; /* number of toxic ranges */
182 static int dtrace_toxranges_max; /* size of toxic range array */
183 static dtrace_anon_t dtrace_anon; /* anonymous enabling */
184 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */
185 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */
186 static kthread_t *dtrace_panicked; /* panicking thread */
187 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */
188 static dtrace_genid_t dtrace_probegen; /* current probe generation */
189 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */

new/usr/src/uts/common/dtrace/dtrace.c 4

190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */
191 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */
192 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */
193 static int dtrace_dynvar_failclean; /* dynvars failed to clean */

195 /*
196 * DTrace Locking
197 * DTrace is protected by three (relatively coarse-grained) locks:
198 *
199 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
200 * including enabling state, probes, ECBs, consumer state, helper state,
201 * etc. Importantly, dtrace_lock is _not_ required when in probe context;
202 * probe context is lock-free -- synchronization is handled via the
203 * dtrace_sync() cross call mechanism.
204 *
205 * (2) dtrace_provider_lock is required when manipulating provider state, or
206 * when provider state must be held constant.
207 *
208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
209 * when meta provider state must be held constant.
210 *
211 * The lock ordering between these three locks is dtrace_meta_lock before
212 * dtrace_provider_lock before dtrace_lock. (In particular, there are
213 * several places where dtrace_provider_lock is held by the framework as it
214 * calls into the providers -- which then call back into the framework,
215 * grabbing dtrace_lock.)
216 *
217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect
218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
219 * role as a coarse-grained lock; it is acquired before both of these locks.
220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
223 * acquired _between_ dtrace_provider_lock and dtrace_lock.
224 */
225 static kmutex_t dtrace_lock; /* probe state lock */
226 static kmutex_t dtrace_provider_lock; /* provider state lock */
227 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */

229 /*
230 * DTrace Provider Variables
231 *
232 * These are the variables relating to DTrace as a provider (that is, the
233 * provider of the BEGIN, END, and ERROR probes).
234 */
235 static dtrace_pattr_t dtrace_provider_attr = {
236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
241 };

243 static void
244 dtrace_nullop(void)
245 {}

247 static int
248 dtrace_enable_nullop(void)
249 {
250 return (0);
251 }

253 static dtrace_pops_t dtrace_provider_ops = {
254 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
255 (void (*)(void *, struct modctl *))dtrace_nullop,

new/usr/src/uts/common/dtrace/dtrace.c 5

256 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
257 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
259 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
260 NULL,
261 NULL,
262 NULL,
263 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
264 };

266 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */
267 static dtrace_id_t dtrace_probeid_end; /* special END probe */
268 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */

270 /*
271 * DTrace Helper Tracing Variables
272 */
273 uint32_t dtrace_helptrace_next = 0;
274 uint32_t dtrace_helptrace_nlocals;
275 char *dtrace_helptrace_buffer;
276 int dtrace_helptrace_bufsize = 512 * 1024;

278 #ifdef DEBUG
279 int dtrace_helptrace_enabled = 1;
280 #else
281 int dtrace_helptrace_enabled = 0;
282 #endif

284 /*
285 * DTrace Error Hashing
286 *
287 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
288 * table. This is very useful for checking coverage of tests that are
289 * expected to induce DIF or DOF processing errors, and may be useful for
290 * debugging problems in the DIF code generator or in DOF generation . The
291 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
292 */
293 #ifdef DEBUG
294 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
295 static const char *dtrace_errlast;
296 static kthread_t *dtrace_errthread;
297 static kmutex_t dtrace_errlock;
298 #endif

300 /*
301 * DTrace Macros and Constants
302 *
303 * These are various macros that are useful in various spots in the
304 * implementation, along with a few random constants that have no meaning
305 * outside of the implementation. There is no real structure to this cpp
306 * mishmash -- but is there ever?
307 */
308 #define DTRACE_HASHSTR(hash, probe) \
309 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))

311 #define DTRACE_HASHNEXT(hash, probe) \
312 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)

314 #define DTRACE_HASHPREV(hash, probe) \
315 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)

317 #define DTRACE_HASHEQ(hash, lhs, rhs) \
318 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
319 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)

321 #define DTRACE_AGGHASHSIZE_SLEW 17

new/usr/src/uts/common/dtrace/dtrace.c 6

323 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)

325 /*
326 * The key for a thread-local variable consists of the lower 61 bits of the
327 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
328 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
329 * equal to a variable identifier. This is necessary (but not sufficient) to
330 * assure that global associative arrays never collide with thread-local
331 * variables. To guarantee that they cannot collide, we must also define the
332 * order for keying dynamic variables. That order is:
333 *
334 * [key0] ... [keyn] [variable-key] [tls-key]
335 *
336 * Because the variable-key and the tls-key are in orthogonal spaces, there is
337 * no way for a global variable key signature to match a thread-local key
338 * signature.
339 */
340 #define DTRACE_TLS_THRKEY(where) { \
341 uint_t intr = 0; \
342 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
343 for (; actv; actv >>= 1) \
344 intr++; \
345 ASSERT(intr < (1 << 3)); \
346 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
347 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
348 }

350 #define DT_BSWAP_8(x) ((x) & 0xff)
351 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
352 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
353 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))

355 #define DT_MASK_LO 0x00000000FFFFFFFFULL

357 #define DTRACE_STORE(type, tomax, offset, what) \
358 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);

360 #ifndef __x86
361 #define DTRACE_ALIGNCHECK(addr, size, flags) \
362 if (addr & (size - 1)) { \
363 *flags |= CPU_DTRACE_BADALIGN; \
364 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
365 return (0); \
366 }
367 #else
368 #define DTRACE_ALIGNCHECK(addr, size, flags)
369 #endif

371 /*
372 * Test whether a range of memory starting at testaddr of size testsz falls
373 * within the range of memory described by addr, sz. We take care to avoid
374 * problems with overflow and underflow of the unsigned quantities, and
375 * disallow all negative sizes. Ranges of size 0 are allowed.
376 */
377 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
378 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
379 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
174 ((testaddr) - (baseaddr) < (basesz) && \
175 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \
380 (testaddr) + (testsz) >= (testaddr))

382 /*
383 * Test whether alloc_sz bytes will fit in the scratch region. We isolate
384 * alloc_sz on the righthand side of the comparison in order to avoid overflow
385 * or underflow in the comparison with it. This is simpler than the INRANGE

new/usr/src/uts/common/dtrace/dtrace.c 7

386 * check above, because we know that the dtms_scratch_ptr is valid in the
387 * range. Allocations of size zero are allowed.
388 */
389 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
390 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
391 (mstate)->dtms_scratch_ptr >= (alloc_sz))

393 #define DTRACE_LOADFUNC(bits) \
394 /*CSTYLED*/ \
395 uint##bits##_t \
396 dtrace_load##bits(uintptr_t addr) \
397 { \
398 size_t size = bits / NBBY; \
399 /*CSTYLED*/ \
400 uint##bits##_t rval; \
401 int i; \
402 volatile uint16_t *flags = (volatile uint16_t *) \
403 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \
404 \
405 DTRACE_ALIGNCHECK(addr, size, flags); \
406 \
407 for (i = 0; i < dtrace_toxranges; i++) { \
408 if (addr >= dtrace_toxrange[i].dtt_limit) \
409 continue; \
410 \
411 if (addr + size <= dtrace_toxrange[i].dtt_base) \
412 continue; \
413 \
414 /* \
415 * This address falls within a toxic region; return 0. \
416 */ \
417 *flags |= CPU_DTRACE_BADADDR; \
418 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
419 return (0); \
420 } \
421 \
422 *flags |= CPU_DTRACE_NOFAULT; \
423 /*CSTYLED*/ \
424 rval = *((volatile uint##bits##_t *)addr); \
425 *flags &= ~CPU_DTRACE_NOFAULT; \
426 \
427 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \
428 }

430 #ifdef _LP64
431 #define dtrace_loadptr dtrace_load64
432 #else
433 #define dtrace_loadptr dtrace_load32
434 #endif

436 #define DTRACE_DYNHASH_FREE 0
437 #define DTRACE_DYNHASH_SINK 1
438 #define DTRACE_DYNHASH_VALID 2

440 #define DTRACE_MATCH_FAIL -1
441 #define DTRACE_MATCH_NEXT 0
442 #define DTRACE_MATCH_DONE 1
443 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != ’\0’)
444 #define DTRACE_STATE_ALIGN 64

446 #define DTRACE_FLAGS2FLT(flags) \
447 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
448 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
449 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
450 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
451 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \

new/usr/src/uts/common/dtrace/dtrace.c 8

452 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
453 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
454 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
455 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
456 DTRACEFLT_UNKNOWN)

458 #define DTRACEACT_ISSTRING(act) \
459 ((act)->dta_kind == DTRACEACT_DIFEXPR && \
460 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)

462 static size_t dtrace_strlen(const char *, size_t);
463 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
464 static void dtrace_enabling_provide(dtrace_provider_t *);
465 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
466 static void dtrace_enabling_matchall(void);
467 static void dtrace_enabling_reap(void);
468 static dtrace_state_t *dtrace_anon_grab(void);
469 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
470 dtrace_state_t *, uint64_t, uint64_t);
471 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
472 static void dtrace_buffer_drop(dtrace_buffer_t *);
473 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
474 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
475 dtrace_state_t *, dtrace_mstate_t *);
476 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
477 dtrace_optval_t);
478 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
479 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
480 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *);
481 static void dtrace_getf_barrier(void);
482 #endif /* ! codereview */

484 /*
485 * DTrace Probe Context Functions
486 *
487 * These functions are called from probe context. Because probe context is
488 * any context in which C may be called, arbitrarily locks may be held,
489 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
490 * As a result, functions called from probe context may only call other DTrace
491 * support functions -- they may not interact at all with the system at large.
492 * (Note that the ASSERT macro is made probe-context safe by redefining it in
493 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
494 * loads are to be performed from probe context, they _must_ be in terms of
495 * the safe dtrace_load*() variants.
496 *
497 * Some functions in this block are not actually called from probe context;
498 * for these functions, there will be a comment above the function reading
499 * "Note: not called from probe context."
500 */
501 void
502 dtrace_panic(const char *format, ...)
503 {
504 va_list alist;

506 va_start(alist, format);
507 dtrace_vpanic(format, alist);
508 va_end(alist);
509 }

511 int
512 dtrace_assfail(const char *a, const char *f, int l)
513 {
514 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);

516 /*
517 * We just need something here that even the most clever compiler

new/usr/src/uts/common/dtrace/dtrace.c 9

518 * cannot optimize away.
519 */
520 return (a[(uintptr_t)f]);
521 }

523 /*
524 * Atomically increment a specified error counter from probe context.
525 */
526 static void
527 dtrace_error(uint32_t *counter)
528 {
529 /*
530 * Most counters stored to in probe context are per-CPU counters.
531 * However, there are some error conditions that are sufficiently
532 * arcane that they don’t merit per-CPU storage. If these counters
533 * are incremented concurrently on different CPUs, scalability will be
534 * adversely affected -- but we don’t expect them to be white-hot in a
535 * correctly constructed enabling...
536 */
537 uint32_t oval, nval;

539 do {
540 oval = *counter;

542 if ((nval = oval + 1) == 0) {
543 /*
544 * If the counter would wrap, set it to 1 -- assuring
545 * that the counter is never zero when we have seen
546 * errors. (The counter must be 32-bits because we
547 * aren’t guaranteed a 64-bit compare&swap operation.)
548 * To save this code both the infamy of being fingered
549 * by a priggish news story and the indignity of being
550 * the target of a neo-puritan witch trial, we’re
551 * carefully avoiding any colorful description of the
552 * likelihood of this condition -- but suffice it to
553 * say that it is only slightly more likely than the
554 * overflow of predicate cache IDs, as discussed in
555 * dtrace_predicate_create().
556 */
557 nval = 1;
558 }
559 } while (dtrace_cas32(counter, oval, nval) != oval);
560 }

562 /*
563 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
564 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
565 */
566 DTRACE_LOADFUNC(8)
567 DTRACE_LOADFUNC(16)
568 DTRACE_LOADFUNC(32)
569 DTRACE_LOADFUNC(64)

571 static int
572 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
573 {
574 if (dest < mstate->dtms_scratch_base)
575 return (0);

577 if (dest + size < dest)
578 return (0);

580 if (dest + size > mstate->dtms_scratch_ptr)
581 return (0);

583 return (1);

new/usr/src/uts/common/dtrace/dtrace.c 10

584 }

586 static int
587 dtrace_canstore_statvar(uint64_t addr, size_t sz,
588 dtrace_statvar_t **svars, int nsvars)
589 {
590 int i;

592 for (i = 0; i < nsvars; i++) {
593 dtrace_statvar_t *svar = svars[i];

595 if (svar == NULL || svar->dtsv_size == 0)
596 continue;

598 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
599 return (1);
600 }

602 return (0);
603 }

605 /*
606 * Check to see if the address is within a memory region to which a store may
607 * be issued. This includes the DTrace scratch areas, and any DTrace variable
608 * region. The caller of dtrace_canstore() is responsible for performing any
609 * alignment checks that are needed before stores are actually executed.
610 */
611 static int
612 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
613 dtrace_vstate_t *vstate)
614 {
615 /*
616 * First, check to see if the address is in scratch space...
617 */
618 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
619 mstate->dtms_scratch_size))
620 return (1);

622 /*
623 * Now check to see if it’s a dynamic variable. This check will pick
624 * up both thread-local variables and any global dynamically-allocated
625 * variables.
626 */
627 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
276 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
628 vstate->dtvs_dynvars.dtds_size)) {
629 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
630 uintptr_t base = (uintptr_t)dstate->dtds_base +
631 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
632 uintptr_t chunkoffs;

634 /*
635 * Before we assume that we can store here, we need to make
636 * sure that it isn’t in our metadata -- storing to our
637 * dynamic variable metadata would corrupt our state. For
638 * the range to not include any dynamic variable metadata,
639 * it must:
640 *
641 * (1) Start above the hash table that is at the base of
642 * the dynamic variable space
643 *
644 * (2) Have a starting chunk offset that is beyond the
645 * dtrace_dynvar_t that is at the base of every chunk
646 *
647 * (3) Not span a chunk boundary
648 *

new/usr/src/uts/common/dtrace/dtrace.c 11

649 */
650 if (addr < base)
651 return (0);

653 chunkoffs = (addr - base) % dstate->dtds_chunksize;

655 if (chunkoffs < sizeof (dtrace_dynvar_t))
656 return (0);

658 if (chunkoffs + sz > dstate->dtds_chunksize)
659 return (0);

661 return (1);
662 }

664 /*
665 * Finally, check the static local and global variables. These checks
666 * take the longest, so we perform them last.
667 */
668 if (dtrace_canstore_statvar(addr, sz,
669 vstate->dtvs_locals, vstate->dtvs_nlocals))
670 return (1);

672 if (dtrace_canstore_statvar(addr, sz,
673 vstate->dtvs_globals, vstate->dtvs_nglobals))
674 return (1);

676 return (0);
677 }

680 /*
681 * Convenience routine to check to see if the address is within a memory
682 * region in which a load may be issued given the user’s privilege level;
683 * if not, it sets the appropriate error flags and loads ’addr’ into the
684 * illegal value slot.
685 *
686 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
687 * appropriate memory access protection.
688 */
689 static int
690 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
691 dtrace_vstate_t *vstate)
692 {
693 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
694 file_t *fp;
695 #endif /* ! codereview */

697 /*
698 * If we hold the privilege to read from kernel memory, then
699 * everything is readable.
700 */
701 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
702 return (1);

704 /*
705 * You can obviously read that which you can store.
706 */
707 if (dtrace_canstore(addr, sz, mstate, vstate))
708 return (1);

710 /*
711 * We’re allowed to read from our own string table.
712 */
713 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
343 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,

new/usr/src/uts/common/dtrace/dtrace.c 12

714 mstate->dtms_difo->dtdo_strlen))
715 return (1);

717 if (vstate->dtvs_state != NULL &&
718 dtrace_priv_proc(vstate->dtvs_state, mstate)) {
719 proc_t *p;

721 /*
722 * When we have privileges to the current process, there are
723 * several context-related kernel structures that are safe to
724 * read, even absent the privilege to read from kernel memory.
725 * These reads are safe because these structures contain only
726 * state that (1) we’re permitted to read, (2) is harmless or
727 * (3) contains pointers to additional kernel state that we’re
728 * not permitted to read (and as such, do not present an
729 * opportunity for privilege escalation). Finally (and
730 * critically), because of the nature of their relation with
731 * the current thread context, the memory associated with these
732 * structures cannot change over the duration of probe context,
733 * and it is therefore impossible for this memory to be
734 * deallocated and reallocated as something else while it’s
735 * being operated upon.
736 */
737 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
738 return (1);

740 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
741 sz, curthread->t_procp, sizeof (proc_t))) {
742 return (1);
743 }

745 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
746 curthread->t_cred, sizeof (cred_t))) {
747 return (1);
748 }

750 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
751 &(p->p_pidp->pid_id), sizeof (pid_t))) {
752 return (1);
753 }

755 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
756 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
757 return (1);
758 }
759 }

761 if ((fp = mstate->dtms_getf) != NULL) {
762 uintptr_t psz = sizeof (void *);
763 vnode_t *vp;
764 vnodeops_t *op;

766 /*
767 * When getf() returns a file_t, the enabling is implicitly
768 * granted the (transient) right to read the returned file_t
769 * as well as the v_path and v_op->vnop_name of the underlying
770 * vnode. These accesses are allowed after a successful
771 * getf() because the members that they refer to cannot change
772 * once set -- and the barrier logic in the kernel’s closef()
773 * path assures that the file_t and its referenced vode_t
774 * cannot themselves be stale (that is, it impossible for
775 * either dtms_getf itself or its f_vnode member to reference
776 * freed memory).
777 */
778 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
779 return (1);

new/usr/src/uts/common/dtrace/dtrace.c 13

781 if ((vp = fp->f_vnode) != NULL) {
782 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
783 return (1);

785 if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
786 vp->v_path, strlen(vp->v_path) + 1)) {
787 return (1);
788 }

790 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
791 return (1);

793 if ((op = vp->v_op) != NULL &&
794 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
795 return (1);
796 }

798 if (op != NULL && op->vnop_name != NULL &&
799 DTRACE_INRANGE(addr, sz, op->vnop_name,
800 strlen(op->vnop_name) + 1)) {
801 return (1);
802 }
803 }
804 }

806 #endif /* ! codereview */
807 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
808 *illval = addr;
809 return (0);
810 }

812 /*
813 * Convenience routine to check to see if a given string is within a memory
814 * region in which a load may be issued given the user’s privilege level;
815 * this exists so that we don’t need to issue unnecessary dtrace_strlen()
816 * calls in the event that the user has all privileges.
817 */
818 static int
819 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
820 dtrace_vstate_t *vstate)
821 {
822 size_t strsz;

824 /*
825 * If we hold the privilege to read from kernel memory, then
826 * everything is readable.
827 */
828 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
829 return (1);

831 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
832 if (dtrace_canload(addr, strsz, mstate, vstate))
833 return (1);

835 return (0);
836 }

838 /*
839 * Convenience routine to check to see if a given variable is within a memory
840 * region in which a load may be issued given the user’s privilege level.
841 */
842 static int
843 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
844 dtrace_vstate_t *vstate)
845 {

new/usr/src/uts/common/dtrace/dtrace.c 14

846 size_t sz;
847 ASSERT(type->dtdt_flags & DIF_TF_BYREF);

849 /*
850 * If we hold the privilege to read from kernel memory, then
851 * everything is readable.
852 */
853 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
854 return (1);

856 if (type->dtdt_kind == DIF_TYPE_STRING)
857 sz = dtrace_strlen(src,
858 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
859 else
860 sz = type->dtdt_size;

862 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
863 }

865 /*
866 * Compare two strings using safe loads.
867 */
868 static int
869 dtrace_strncmp(char *s1, char *s2, size_t limit)
870 {
871 uint8_t c1, c2;
872 volatile uint16_t *flags;

874 if (s1 == s2 || limit == 0)
875 return (0);

877 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;

879 do {
880 if (s1 == NULL) {
881 c1 = ’\0’;
882 } else {
883 c1 = dtrace_load8((uintptr_t)s1++);
884 }

886 if (s2 == NULL) {
887 c2 = ’\0’;
888 } else {
889 c2 = dtrace_load8((uintptr_t)s2++);
890 }

892 if (c1 != c2)
893 return (c1 - c2);
894 } while (--limit && c1 != ’\0’ && !(*flags & CPU_DTRACE_FAULT));

896 return (0);
897 }

899 /*
900 * Compute strlen(s) for a string using safe memory accesses. The additional
901 * len parameter is used to specify a maximum length to ensure completion.
902 */
903 static size_t
904 dtrace_strlen(const char *s, size_t lim)
905 {
906 uint_t len;

908 for (len = 0; len != lim; len++) {
909 if (dtrace_load8((uintptr_t)s++) == ’\0’)
910 break;
911 }

new/usr/src/uts/common/dtrace/dtrace.c 15

913 return (len);
914 }

916 /*
917 * Check if an address falls within a toxic region.
918 */
919 static int
920 dtrace_istoxic(uintptr_t kaddr, size_t size)
921 {
922 uintptr_t taddr, tsize;
923 int i;

925 for (i = 0; i < dtrace_toxranges; i++) {
926 taddr = dtrace_toxrange[i].dtt_base;
927 tsize = dtrace_toxrange[i].dtt_limit - taddr;

929 if (kaddr - taddr < tsize) {
930 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
931 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
932 return (1);
933 }

935 if (taddr - kaddr < size) {
936 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
937 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
938 return (1);
939 }
940 }

942 return (0);
943 }

945 /*
946 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
947 * memory specified by the DIF program. The dst is assumed to be safe memory
948 * that we can store to directly because it is managed by DTrace. As with
949 * standard bcopy, overlapping copies are handled properly.
950 */
951 static void
952 dtrace_bcopy(const void *src, void *dst, size_t len)
953 {
954 if (len != 0) {
955 uint8_t *s1 = dst;
956 const uint8_t *s2 = src;

958 if (s1 <= s2) {
959 do {
960 *s1++ = dtrace_load8((uintptr_t)s2++);
961 } while (--len != 0);
962 } else {
963 s2 += len;
964 s1 += len;

966 do {
967 *--s1 = dtrace_load8((uintptr_t)--s2);
968 } while (--len != 0);
969 }
970 }
971 }

973 /*
974 * Copy src to dst using safe memory accesses, up to either the specified
975 * length, or the point that a nul byte is encountered. The src is assumed to
976 * be unsafe memory specified by the DIF program. The dst is assumed to be
977 * safe memory that we can store to directly because it is managed by DTrace.

new/usr/src/uts/common/dtrace/dtrace.c 16

978 * Unlike dtrace_bcopy(), overlapping regions are not handled.
979 */
980 static void
981 dtrace_strcpy(const void *src, void *dst, size_t len)
982 {
983 if (len != 0) {
984 uint8_t *s1 = dst, c;
985 const uint8_t *s2 = src;

987 do {
988 *s1++ = c = dtrace_load8((uintptr_t)s2++);
989 } while (--len != 0 && c != ’\0’);
990 }
991 }

993 /*
994 * Copy src to dst, deriving the size and type from the specified (BYREF)
995 * variable type. The src is assumed to be unsafe memory specified by the DIF
996 * program. The dst is assumed to be DTrace variable memory that is of the
997 * specified type; we assume that we can store to directly.
998 */
999 static void

1000 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1001 {
1002 ASSERT(type->dtdt_flags & DIF_TF_BYREF);

1004 if (type->dtdt_kind == DIF_TYPE_STRING) {
1005 dtrace_strcpy(src, dst, type->dtdt_size);
1006 } else {
1007 dtrace_bcopy(src, dst, type->dtdt_size);
1008 }
1009 }

1011 /*
1012 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
1013 * unsafe memory specified by the DIF program. The s2 data is assumed to be
1014 * safe memory that we can access directly because it is managed by DTrace.
1015 */
1016 static int
1017 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1018 {
1019 volatile uint16_t *flags;

1021 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;

1023 if (s1 == s2)
1024 return (0);

1026 if (s1 == NULL || s2 == NULL)
1027 return (1);

1029 if (s1 != s2 && len != 0) {
1030 const uint8_t *ps1 = s1;
1031 const uint8_t *ps2 = s2;

1033 do {
1034 if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1035 return (1);
1036 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1037 }
1038 return (0);
1039 }

1041 /*
1042 * Zero the specified region using a simple byte-by-byte loop. Note that this
1043 * is for safe DTrace-managed memory only.

new/usr/src/uts/common/dtrace/dtrace.c 17

1044 */
1045 static void
1046 dtrace_bzero(void *dst, size_t len)
1047 {
1048 uchar_t *cp;

1050 for (cp = dst; len != 0; len--)
1051 *cp++ = 0;
1052 }

1054 static void
1055 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1056 {
1057 uint64_t result[2];

1059 result[0] = addend1[0] + addend2[0];
1060 result[1] = addend1[1] + addend2[1] +
1061 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);

1063 sum[0] = result[0];
1064 sum[1] = result[1];
1065 }

1067 /*
1068 * Shift the 128-bit value in a by b. If b is positive, shift left.
1069 * If b is negative, shift right.
1070 */
1071 static void
1072 dtrace_shift_128(uint64_t *a, int b)
1073 {
1074 uint64_t mask;

1076 if (b == 0)
1077 return;

1079 if (b < 0) {
1080 b = -b;
1081 if (b >= 64) {
1082 a[0] = a[1] >> (b - 64);
1083 a[1] = 0;
1084 } else {
1085 a[0] >>= b;
1086 mask = 1LL << (64 - b);
1087 mask -= 1;
1088 a[0] |= ((a[1] & mask) << (64 - b));
1089 a[1] >>= b;
1090 }
1091 } else {
1092 if (b >= 64) {
1093 a[1] = a[0] << (b - 64);
1094 a[0] = 0;
1095 } else {
1096 a[1] <<= b;
1097 mask = a[0] >> (64 - b);
1098 a[1] |= mask;
1099 a[0] <<= b;
1100 }
1101 }
1102 }

1104 /*
1105 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1106 * use native multiplication on those, and then re-combine into the
1107 * resulting 128-bit value.
1108 *
1109 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =

new/usr/src/uts/common/dtrace/dtrace.c 18

1110 * hi1 * hi2 << 64 +
1111 * hi1 * lo2 << 32 +
1112 * hi2 * lo1 << 32 +
1113 * lo1 * lo2
1114 */
1115 static void
1116 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1117 {
1118 uint64_t hi1, hi2, lo1, lo2;
1119 uint64_t tmp[2];

1121 hi1 = factor1 >> 32;
1122 hi2 = factor2 >> 32;

1124 lo1 = factor1 & DT_MASK_LO;
1125 lo2 = factor2 & DT_MASK_LO;

1127 product[0] = lo1 * lo2;
1128 product[1] = hi1 * hi2;

1130 tmp[0] = hi1 * lo2;
1131 tmp[1] = 0;
1132 dtrace_shift_128(tmp, 32);
1133 dtrace_add_128(product, tmp, product);

1135 tmp[0] = hi2 * lo1;
1136 tmp[1] = 0;
1137 dtrace_shift_128(tmp, 32);
1138 dtrace_add_128(product, tmp, product);
1139 }

1141 /*
1142 * This privilege check should be used by actions and subroutines to
1143 * verify that the user credentials of the process that enabled the
1144 * invoking ECB match the target credentials
1145 */
1146 static int
1147 dtrace_priv_proc_common_user(dtrace_state_t *state)
1148 {
1149 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;

1151 /*
1152 * We should always have a non-NULL state cred here, since if cred
1153 * is null (anonymous tracing), we fast-path bypass this routine.
1154 */
1155 ASSERT(s_cr != NULL);

1157 if ((cr = CRED()) != NULL &&
1158 s_cr->cr_uid == cr->cr_uid &&
1159 s_cr->cr_uid == cr->cr_ruid &&
1160 s_cr->cr_uid == cr->cr_suid &&
1161 s_cr->cr_gid == cr->cr_gid &&
1162 s_cr->cr_gid == cr->cr_rgid &&
1163 s_cr->cr_gid == cr->cr_sgid)
1164 return (1);

1166 return (0);
1167 }

1169 /*
1170 * This privilege check should be used by actions and subroutines to
1171 * verify that the zone of the process that enabled the invoking ECB
1172 * matches the target credentials
1173 */
1174 static int
1175 dtrace_priv_proc_common_zone(dtrace_state_t *state)

new/usr/src/uts/common/dtrace/dtrace.c 19

1176 {
1177 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;

1179 /*
1180 * We should always have a non-NULL state cred here, since if cred
1181 * is null (anonymous tracing), we fast-path bypass this routine.
1182 */
1183 ASSERT(s_cr != NULL);

1185 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
347 if ((cr = CRED()) != NULL &&
348 s_cr->cr_zone == cr->cr_zone)
1186 return (1);

1188 return (0);
1189 }
______unchanged_portion_omitted_

1287 /*
1288 * Determine if the dte_cond of the specified ECB allows for processing of
1289 * the current probe to continue. Note that this routine may allow continued
1290 * processing, but with access(es) stripped from the mstate’s dtms_access
1291 * field.
1292 */
1293 static int
1294 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1295 dtrace_ecb_t *ecb)
1296 {
1297 dtrace_probe_t *probe = ecb->dte_probe;
1298 dtrace_provider_t *prov = probe->dtpr_provider;
1299 dtrace_pops_t *pops = &prov->dtpv_pops;
1300 int mode = DTRACE_MODE_NOPRIV_DROP;

1302 ASSERT(ecb->dte_cond);

1304 if (pops->dtps_mode != NULL) {
1305 mode = pops->dtps_mode(prov->dtpv_arg,
1306 probe->dtpr_id, probe->dtpr_arg);

1308 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL));
1309 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT |
1310 DTRACE_MODE_NOPRIV_DROP));
471 ASSERT((mode & DTRACE_MODE_USER) ||
472 (mode & DTRACE_MODE_KERNEL));
473 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
474 (mode & DTRACE_MODE_NOPRIV_DROP));
1311 }

1313 /*
1314 * If the dte_cond bits indicate that this consumer is only allowed to
1315 * see user-mode firings of this probe, check that the probe was fired
1316 * while in a user context. If that’s not the case, use the policy
1317 * specified by the provider to determine if we drop the probe or
1318 * merely restrict operation.
479 * see user-mode firings of this probe, call the provider’s dtps_mode()
480 * entry point to check that the probe was fired while in a user
481 * context. If that’s not the case, use the policy specified by the
482 * provider to determine if we drop the probe or merely restrict
483 * operation.
1319 */
1320 if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1321 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);

1323 if (!(mode & DTRACE_MODE_USER)) {
1324 if (mode & DTRACE_MODE_NOPRIV_DROP)
1325 return (0);

new/usr/src/uts/common/dtrace/dtrace.c 20

1327 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1328 }
1329 }

1331 /*
1332 * This is more subtle than it looks. We have to be absolutely certain
1333 * that CRED() isn’t going to change out from under us so it’s only
1334 * legit to examine that structure if we’re in constrained situations.
1335 * Currently, the only times we’ll this check is if a non-super-user
1336 * has enabled the profile or syscall providers -- providers that
1337 * allow visibility of all processes. For the profile case, the check
1338 * above will ensure that we’re examining a user context.
1339 */
1340 if (ecb->dte_cond & DTRACE_COND_OWNER) {
1341 cred_t *cr;
1342 cred_t *s_cr = state->dts_cred.dcr_cred;
1343 proc_t *proc;

1345 ASSERT(s_cr != NULL);

1347 if ((cr = CRED()) == NULL ||
1348 s_cr->cr_uid != cr->cr_uid ||
1349 s_cr->cr_uid != cr->cr_ruid ||
1350 s_cr->cr_uid != cr->cr_suid ||
1351 s_cr->cr_gid != cr->cr_gid ||
1352 s_cr->cr_gid != cr->cr_rgid ||
1353 s_cr->cr_gid != cr->cr_sgid ||
1354 (proc = ttoproc(curthread)) == NULL ||
1355 (proc->p_flag & SNOCD)) {
1356 if (mode & DTRACE_MODE_NOPRIV_DROP)
1357 return (0);

1359 mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1360 }
1361 }

1363 /*
1364 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1365 * in our zone, check to see if our mode policy is to restrict rather
1366 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1367 * and DTRACE_ACCESS_ARGS
1368 */
1369 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1370 cred_t *cr;
1371 cred_t *s_cr = state->dts_cred.dcr_cred;

1373 ASSERT(s_cr != NULL);

1375 if ((cr = CRED()) == NULL ||
1376 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1377 if (mode & DTRACE_MODE_NOPRIV_DROP)
1378 return (0);

1380 mstate->dtms_access &=
1381 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1382 }
1383 }

1385 /*
1386 * By merits of being in this code path at all, we have limited
1387 * privileges. If the provider has indicated that limited privileges
1388 * are to denote restricted operation, strip off the ability to access
1389 * arguments.
1390 */
1391 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT)

new/usr/src/uts/common/dtrace/dtrace.c 21

1392 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;

1394 #endif /* ! codereview */
1395 return (1);
1396 }

1398 /*
1399 * Note: not called from probe context. This function is called
1400 * asynchronously (and at a regular interval) from outside of probe context to
1401 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
1402 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1403 */
1404 void
1405 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1406 {
1407 dtrace_dynvar_t *dirty;
1408 dtrace_dstate_percpu_t *dcpu;
1409 dtrace_dynvar_t **rinsep;
1410 int i, j, work = 0;

1412 for (i = 0; i < NCPU; i++) {
1413 dcpu = &dstate->dtds_percpu[i];
1414 rinsep = &dcpu->dtdsc_rinsing;

1416 /*
1417 * If the dirty list is NULL, there is no dirty work to do.
1418 */
1419 if (dcpu->dtdsc_dirty == NULL)
1420 continue;

1422 if (dcpu->dtdsc_rinsing != NULL) {
1423 /*
1424 * If the rinsing list is non-NULL, then it is because
1425 * this CPU was selected to accept another CPU’s
1426 * dirty list -- and since that time, dirty buffers
1427 * have accumulated. This is a highly unlikely
1428 * condition, but we choose to ignore the dirty
1429 * buffers -- they’ll be picked up a future cleanse.
1430 */
1431 continue;
1432 }

1434 if (dcpu->dtdsc_clean != NULL) {
1435 /*
1436 * If the clean list is non-NULL, then we’re in a
1437 * situation where a CPU has done deallocations (we
1438 * have a non-NULL dirty list) but no allocations (we
1439 * also have a non-NULL clean list). We can’t simply
1440 * move the dirty list into the clean list on this
1441 * CPU, yet we also don’t want to allow this condition
1442 * to persist, lest a short clean list prevent a
1443 * massive dirty list from being cleaned (which in
1444 * turn could lead to otherwise avoidable dynamic
1445 * drops). To deal with this, we look for some CPU
1446 * with a NULL clean list, NULL dirty list, and NULL
1447 * rinsing list -- and then we borrow this CPU to
1448 * rinse our dirty list.
1449 */
1450 for (j = 0; j < NCPU; j++) {
1451 dtrace_dstate_percpu_t *rinser;

1453 rinser = &dstate->dtds_percpu[j];

1455 if (rinser->dtdsc_rinsing != NULL)
1456 continue;

new/usr/src/uts/common/dtrace/dtrace.c 22

1458 if (rinser->dtdsc_dirty != NULL)
1459 continue;

1461 if (rinser->dtdsc_clean != NULL)
1462 continue;

1464 rinsep = &rinser->dtdsc_rinsing;
1465 break;
1466 }

1468 if (j == NCPU) {
1469 /*
1470 * We were unable to find another CPU that
1471 * could accept this dirty list -- we are
1472 * therefore unable to clean it now.
1473 */
1474 dtrace_dynvar_failclean++;
1475 continue;
1476 }
1477 }

1479 work = 1;

1481 /*
1482 * Atomically move the dirty list aside.
1483 */
1484 do {
1485 dirty = dcpu->dtdsc_dirty;

1487 /*
1488 * Before we zap the dirty list, set the rinsing list.
1489 * (This allows for a potential assertion in
1490 * dtrace_dynvar(): if a free dynamic variable appears
1491 * on a hash chain, either the dirty list or the
1492 * rinsing list for some CPU must be non-NULL.)
1493 */
1494 *rinsep = dirty;
1495 dtrace_membar_producer();
1496 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1497 dirty, NULL) != dirty);
1498 }

1500 if (!work) {
1501 /*
1502 * We have no work to do; we can simply return.
1503 */
1504 return;
1505 }

1507 dtrace_sync();

1509 for (i = 0; i < NCPU; i++) {
1510 dcpu = &dstate->dtds_percpu[i];

1512 if (dcpu->dtdsc_rinsing == NULL)
1513 continue;

1515 /*
1516 * We are now guaranteed that no hash chain contains a pointer
1517 * into this dirty list; we can make it clean.
1518 */
1519 ASSERT(dcpu->dtdsc_clean == NULL);
1520 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1521 dcpu->dtdsc_rinsing = NULL;
1522 }

new/usr/src/uts/common/dtrace/dtrace.c 23

1524 /*
1525 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1526 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1527 * This prevents a race whereby a CPU incorrectly decides that
1528 * the state should be something other than DTRACE_DSTATE_CLEAN
1529 * after dtrace_dynvar_clean() has completed.
1530 */
1531 dtrace_sync();

1533 dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1534 }

1536 /*
1537 * Depending on the value of the op parameter, this function looks-up,
1538 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
1539 * allocation is requested, this function will return a pointer to a
1540 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1541 * variable can be allocated. If NULL is returned, the appropriate counter
1542 * will be incremented.
1543 */
1544 dtrace_dynvar_t *
1545 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1546 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1547 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1548 {
1549 uint64_t hashval = DTRACE_DYNHASH_VALID;
1550 dtrace_dynhash_t *hash = dstate->dtds_hash;
1551 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1552 processorid_t me = CPU->cpu_id, cpu = me;
1553 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1554 size_t bucket, ksize;
1555 size_t chunksize = dstate->dtds_chunksize;
1556 uintptr_t kdata, lock, nstate;
1557 uint_t i;

1559 ASSERT(nkeys != 0);

1561 /*
1562 * Hash the key. As with aggregations, we use Jenkins’ "One-at-a-time"
1563 * algorithm. For the by-value portions, we perform the algorithm in
1564 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1565 * bit, and seems to have only a minute effect on distribution. For
1566 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1567 * over each referenced byte. It’s painful to do this, but it’s much
1568 * better than pathological hash distribution. The efficacy of the
1569 * hashing algorithm (and a comparison with other algorithms) may be
1570 * found by running the ::dtrace_dynstat MDB dcmd.
1571 */
1572 for (i = 0; i < nkeys; i++) {
1573 if (key[i].dttk_size == 0) {
1574 uint64_t val = key[i].dttk_value;

1576 hashval += (val >> 48) & 0xffff;
1577 hashval += (hashval << 10);
1578 hashval ^= (hashval >> 6);

1580 hashval += (val >> 32) & 0xffff;
1581 hashval += (hashval << 10);
1582 hashval ^= (hashval >> 6);

1584 hashval += (val >> 16) & 0xffff;
1585 hashval += (hashval << 10);
1586 hashval ^= (hashval >> 6);

1588 hashval += val & 0xffff;
1589 hashval += (hashval << 10);

new/usr/src/uts/common/dtrace/dtrace.c 24

1590 hashval ^= (hashval >> 6);
1591 } else {
1592 /*
1593 * This is incredibly painful, but it beats the hell
1594 * out of the alternative.
1595 */
1596 uint64_t j, size = key[i].dttk_size;
1597 uintptr_t base = (uintptr_t)key[i].dttk_value;

1599 if (!dtrace_canload(base, size, mstate, vstate))
1600 break;

1602 for (j = 0; j < size; j++) {
1603 hashval += dtrace_load8(base + j);
1604 hashval += (hashval << 10);
1605 hashval ^= (hashval >> 6);
1606 }
1607 }
1608 }

1610 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1611 return (NULL);

1613 hashval += (hashval << 3);
1614 hashval ^= (hashval >> 11);
1615 hashval += (hashval << 15);

1617 /*
1618 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1619 * comes out to be one of our two sentinel hash values. If this
1620 * actually happens, we set the hashval to be a value known to be a
1621 * non-sentinel value.
1622 */
1623 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1624 hashval = DTRACE_DYNHASH_VALID;

1626 /*
1627 * Yes, it’s painful to do a divide here. If the cycle count becomes
1628 * important here, tricks can be pulled to reduce it. (However, it’s
1629 * critical that hash collisions be kept to an absolute minimum;
1630 * they’re much more painful than a divide.) It’s better to have a
1631 * solution that generates few collisions and still keeps things
1632 * relatively simple.
1633 */
1634 bucket = hashval % dstate->dtds_hashsize;

1636 if (op == DTRACE_DYNVAR_DEALLOC) {
1637 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;

1639 for (;;) {
1640 while ((lock = *lockp) & 1)
1641 continue;

1643 if (dtrace_casptr((void *)lockp,
1644 (void *)lock, (void *)(lock + 1)) == (void *)lock)
1645 break;
1646 }

1648 dtrace_membar_producer();
1649 }

1651 top:
1652 prev = NULL;
1653 lock = hash[bucket].dtdh_lock;

1655 dtrace_membar_consumer();

new/usr/src/uts/common/dtrace/dtrace.c 25

1657 start = hash[bucket].dtdh_chain;
1658 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1659 start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1660 op != DTRACE_DYNVAR_DEALLOC));

1662 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1663 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1664 dtrace_key_t *dkey = &dtuple->dtt_key[0];

1666 if (dvar->dtdv_hashval != hashval) {
1667 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1668 /*
1669 * We’ve reached the sink, and therefore the
1670 * end of the hash chain; we can kick out of
1671 * the loop knowing that we have seen a valid
1672 * snapshot of state.
1673 */
1674 ASSERT(dvar->dtdv_next == NULL);
1675 ASSERT(dvar == &dtrace_dynhash_sink);
1676 break;
1677 }

1679 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1680 /*
1681 * We’ve gone off the rails: somewhere along
1682 * the line, one of the members of this hash
1683 * chain was deleted. Note that we could also
1684 * detect this by simply letting this loop run
1685 * to completion, as we would eventually hit
1686 * the end of the dirty list. However, we
1687 * want to avoid running the length of the
1688 * dirty list unnecessarily (it might be quite
1689 * long), so we catch this as early as
1690 * possible by detecting the hash marker. In
1691 * this case, we simply set dvar to NULL and
1692 * break; the conditional after the loop will
1693 * send us back to top.
1694 */
1695 dvar = NULL;
1696 break;
1697 }

1699 goto next;
1700 }

1702 if (dtuple->dtt_nkeys != nkeys)
1703 goto next;

1705 for (i = 0; i < nkeys; i++, dkey++) {
1706 if (dkey->dttk_size != key[i].dttk_size)
1707 goto next; /* size or type mismatch */

1709 if (dkey->dttk_size != 0) {
1710 if (dtrace_bcmp(
1711 (void *)(uintptr_t)key[i].dttk_value,
1712 (void *)(uintptr_t)dkey->dttk_value,
1713 dkey->dttk_size))
1714 goto next;
1715 } else {
1716 if (dkey->dttk_value != key[i].dttk_value)
1717 goto next;
1718 }
1719 }

1721 if (op != DTRACE_DYNVAR_DEALLOC)

new/usr/src/uts/common/dtrace/dtrace.c 26

1722 return (dvar);

1724 ASSERT(dvar->dtdv_next == NULL ||
1725 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);

1727 if (prev != NULL) {
1728 ASSERT(hash[bucket].dtdh_chain != dvar);
1729 ASSERT(start != dvar);
1730 ASSERT(prev->dtdv_next == dvar);
1731 prev->dtdv_next = dvar->dtdv_next;
1732 } else {
1733 if (dtrace_casptr(&hash[bucket].dtdh_chain,
1734 start, dvar->dtdv_next) != start) {
1735 /*
1736 * We have failed to atomically swing the
1737 * hash table head pointer, presumably because
1738 * of a conflicting allocation on another CPU.
1739 * We need to reread the hash chain and try
1740 * again.
1741 */
1742 goto top;
1743 }
1744 }

1746 dtrace_membar_producer();

1748 /*
1749 * Now set the hash value to indicate that it’s free.
1750 */
1751 ASSERT(hash[bucket].dtdh_chain != dvar);
1752 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;

1754 dtrace_membar_producer();

1756 /*
1757 * Set the next pointer to point at the dirty list, and
1758 * atomically swing the dirty pointer to the newly freed dvar.
1759 */
1760 do {
1761 next = dcpu->dtdsc_dirty;
1762 dvar->dtdv_next = next;
1763 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);

1765 /*
1766 * Finally, unlock this hash bucket.
1767 */
1768 ASSERT(hash[bucket].dtdh_lock == lock);
1769 ASSERT(lock & 1);
1770 hash[bucket].dtdh_lock++;

1772 return (NULL);
1773 next:
1774 prev = dvar;
1775 continue;
1776 }

1778 if (dvar == NULL) {
1779 /*
1780 * If dvar is NULL, it is because we went off the rails:
1781 * one of the elements that we traversed in the hash chain
1782 * was deleted while we were traversing it. In this case,
1783 * we assert that we aren’t doing a dealloc (deallocs lock
1784 * the hash bucket to prevent themselves from racing with
1785 * one another), and retry the hash chain traversal.
1786 */
1787 ASSERT(op != DTRACE_DYNVAR_DEALLOC);

new/usr/src/uts/common/dtrace/dtrace.c 27

1788 goto top;
1789 }

1791 if (op != DTRACE_DYNVAR_ALLOC) {
1792 /*
1793 * If we are not to allocate a new variable, we want to
1794 * return NULL now. Before we return, check that the value
1795 * of the lock word hasn’t changed. If it has, we may have
1796 * seen an inconsistent snapshot.
1797 */
1798 if (op == DTRACE_DYNVAR_NOALLOC) {
1799 if (hash[bucket].dtdh_lock != lock)
1800 goto top;
1801 } else {
1802 ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1803 ASSERT(hash[bucket].dtdh_lock == lock);
1804 ASSERT(lock & 1);
1805 hash[bucket].dtdh_lock++;
1806 }

1808 return (NULL);
1809 }

1811 /*
1812 * We need to allocate a new dynamic variable. The size we need is the
1813 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t’s plus the
1814 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1815 * the size of any referred-to data (dsize). We then round the final
1816 * size up to the chunksize for allocation.
1817 */
1818 for (ksize = 0, i = 0; i < nkeys; i++)
1819 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));

1821 /*
1822 * This should be pretty much impossible, but could happen if, say,
1823 * strange DIF specified the tuple. Ideally, this should be an
1824 * assertion and not an error condition -- but that requires that the
1825 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1826 * bullet-proof. (That is, it must not be able to be fooled by
1827 * malicious DIF.) Given the lack of backwards branches in DIF,
1828 * solving this would presumably not amount to solving the Halting
1829 * Problem -- but it still seems awfully hard.
1830 */
1831 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1832 ksize + dsize > chunksize) {
1833 dcpu->dtdsc_drops++;
1834 return (NULL);
1835 }

1837 nstate = DTRACE_DSTATE_EMPTY;

1839 do {
1840 retry:
1841 free = dcpu->dtdsc_free;

1843 if (free == NULL) {
1844 dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1845 void *rval;

1847 if (clean == NULL) {
1848 /*
1849 * We’re out of dynamic variable space on
1850 * this CPU. Unless we have tried all CPUs,
1851 * we’ll try to allocate from a different
1852 * CPU.
1853 */

new/usr/src/uts/common/dtrace/dtrace.c 28

1854 switch (dstate->dtds_state) {
1855 case DTRACE_DSTATE_CLEAN: {
1856 void *sp = &dstate->dtds_state;

1858 if (++cpu >= NCPU)
1859 cpu = 0;

1861 if (dcpu->dtdsc_dirty != NULL &&
1862 nstate == DTRACE_DSTATE_EMPTY)
1863 nstate = DTRACE_DSTATE_DIRTY;

1865 if (dcpu->dtdsc_rinsing != NULL)
1866 nstate = DTRACE_DSTATE_RINSING;

1868 dcpu = &dstate->dtds_percpu[cpu];

1870 if (cpu != me)
1871 goto retry;

1873 (void) dtrace_cas32(sp,
1874 DTRACE_DSTATE_CLEAN, nstate);

1876 /*
1877 * To increment the correct bean
1878 * counter, take another lap.
1879 */
1880 goto retry;
1881 }

1883 case DTRACE_DSTATE_DIRTY:
1884 dcpu->dtdsc_dirty_drops++;
1885 break;

1887 case DTRACE_DSTATE_RINSING:
1888 dcpu->dtdsc_rinsing_drops++;
1889 break;

1891 case DTRACE_DSTATE_EMPTY:
1892 dcpu->dtdsc_drops++;
1893 break;
1894 }

1896 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1897 return (NULL);
1898 }

1900 /*
1901 * The clean list appears to be non-empty. We want to
1902 * move the clean list to the free list; we start by
1903 * moving the clean pointer aside.
1904 */
1905 if (dtrace_casptr(&dcpu->dtdsc_clean,
1906 clean, NULL) != clean) {
1907 /*
1908 * We are in one of two situations:
1909 *
1910 * (a) The clean list was switched to the
1911 * free list by another CPU.
1912 *
1913 * (b) The clean list was added to by the
1914 * cleansing cyclic.
1915 *
1916 * In either of these situations, we can
1917 * just reattempt the free list allocation.
1918 */
1919 goto retry;

new/usr/src/uts/common/dtrace/dtrace.c 29

1920 }

1922 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);

1924 /*
1925 * Now we’ll move the clean list to our free list.
1926 * It’s impossible for this to fail: the only way
1927 * the free list can be updated is through this
1928 * code path, and only one CPU can own the clean list.
1929 * Thus, it would only be possible for this to fail if
1930 * this code were racing with dtrace_dynvar_clean().
1931 * (That is, if dtrace_dynvar_clean() updated the clean
1932 * list, and we ended up racing to update the free
1933 * list.) This race is prevented by the dtrace_sync()
1934 * in dtrace_dynvar_clean() -- which flushes the
1935 * owners of the clean lists out before resetting
1936 * the clean lists.
1937 */
1938 dcpu = &dstate->dtds_percpu[me];
1939 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1940 ASSERT(rval == NULL);
1941 goto retry;
1942 }

1944 dvar = free;
1945 new_free = dvar->dtdv_next;
1946 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);

1948 /*
1949 * We have now allocated a new chunk. We copy the tuple keys into the
1950 * tuple array and copy any referenced key data into the data space
1951 * following the tuple array. As we do this, we relocate dttk_value
1952 * in the final tuple to point to the key data address in the chunk.
1953 */
1954 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1955 dvar->dtdv_data = (void *)(kdata + ksize);
1956 dvar->dtdv_tuple.dtt_nkeys = nkeys;

1958 for (i = 0; i < nkeys; i++) {
1959 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1960 size_t kesize = key[i].dttk_size;

1962 if (kesize != 0) {
1963 dtrace_bcopy(
1964 (const void *)(uintptr_t)key[i].dttk_value,
1965 (void *)kdata, kesize);
1966 dkey->dttk_value = kdata;
1967 kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1968 } else {
1969 dkey->dttk_value = key[i].dttk_value;
1970 }

1972 dkey->dttk_size = kesize;
1973 }

1975 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1976 dvar->dtdv_hashval = hashval;
1977 dvar->dtdv_next = start;

1979 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1980 return (dvar);

1982 /*
1983 * The cas has failed. Either another CPU is adding an element to
1984 * this hash chain, or another CPU is deleting an element from this
1985 * hash chain. The simplest way to deal with both of these cases

new/usr/src/uts/common/dtrace/dtrace.c 30

1986 * (though not necessarily the most efficient) is to free our
1987 * allocated block and tail-call ourselves. Note that the free is
1988 * to the dirty list and _not_ to the free list. This is to prevent
1989 * races with allocators, above.
1990 */
1991 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;

1993 dtrace_membar_producer();

1995 do {
1996 free = dcpu->dtdsc_dirty;
1997 dvar->dtdv_next = free;
1998 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);

2000 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
2001 }

2003 /*ARGSUSED*/
2004 static void
2005 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2006 {
2007 if ((int64_t)nval < (int64_t)*oval)
2008 *oval = nval;
2009 }

2011 /*ARGSUSED*/
2012 static void
2013 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2014 {
2015 if ((int64_t)nval > (int64_t)*oval)
2016 *oval = nval;
2017 }

2019 static void
2020 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2021 {
2022 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2023 int64_t val = (int64_t)nval;

2025 if (val < 0) {
2026 for (i = 0; i < zero; i++) {
2027 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2028 quanta[i] += incr;
2029 return;
2030 }
2031 }
2032 } else {
2033 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2034 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2035 quanta[i - 1] += incr;
2036 return;
2037 }
2038 }

2040 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2041 return;
2042 }

2044 ASSERT(0);
2045 }

2047 static void
2048 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2049 {
2050 uint64_t arg = *lquanta++;
2051 int32_t base = DTRACE_LQUANTIZE_BASE(arg);

new/usr/src/uts/common/dtrace/dtrace.c 31

2052 uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2053 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2054 int32_t val = (int32_t)nval, level;

2056 ASSERT(step != 0);
2057 ASSERT(levels != 0);

2059 if (val < base) {
2060 /*
2061 * This is an underflow.
2062 */
2063 lquanta[0] += incr;
2064 return;
2065 }

2067 level = (val - base) / step;

2069 if (level < levels) {
2070 lquanta[level + 1] += incr;
2071 return;
2072 }

2074 /*
2075 * This is an overflow.
2076 */
2077 lquanta[levels + 1] += incr;
2078 }

2080 static int
2081 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2082 uint16_t high, uint16_t nsteps, int64_t value)
2083 {
2084 int64_t this = 1, last, next;
2085 int base = 1, order;

2087 ASSERT(factor <= nsteps);
2088 ASSERT(nsteps % factor == 0);

2090 for (order = 0; order < low; order++)
2091 this *= factor;

2093 /*
2094 * If our value is less than our factor taken to the power of the
2095 * low order of magnitude, it goes into the zeroth bucket.
2096 */
2097 if (value < (last = this))
2098 return (0);

2100 for (this *= factor; order <= high; order++) {
2101 int nbuckets = this > nsteps ? nsteps : this;

2103 if ((next = this * factor) < this) {
2104 /*
2105 * We should not generally get log/linear quantizations
2106 * with a high magnitude that allows 64-bits to
2107 * overflow, but we nonetheless protect against this
2108 * by explicitly checking for overflow, and clamping
2109 * our value accordingly.
2110 */
2111 value = this - 1;
2112 }

2114 if (value < this) {
2115 /*
2116 * If our value lies within this order of magnitude,
2117 * determine its position by taking the offset within

new/usr/src/uts/common/dtrace/dtrace.c 32

2118 * the order of magnitude, dividing by the bucket
2119 * width, and adding to our (accumulated) base.
2120 */
2121 return (base + (value - last) / (this / nbuckets));
2122 }

2124 base += nbuckets - (nbuckets / factor);
2125 last = this;
2126 this = next;
2127 }

2129 /*
2130 * Our value is greater than or equal to our factor taken to the
2131 * power of one plus the high magnitude -- return the top bucket.
2132 */
2133 return (base);
2134 }

2136 static void
2137 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2138 {
2139 uint64_t arg = *llquanta++;
2140 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2141 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2142 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2143 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);

2145 llquanta[dtrace_aggregate_llquantize_bucket(factor,
2146 low, high, nsteps, nval)] += incr;
2147 }

2149 /*ARGSUSED*/
2150 static void
2151 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2152 {
2153 data[0]++;
2154 data[1] += nval;
2155 }

2157 /*ARGSUSED*/
2158 static void
2159 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2160 {
2161 int64_t snval = (int64_t)nval;
2162 uint64_t tmp[2];

2164 data[0]++;
2165 data[1] += nval;

2167 /*
2168 * What we want to say here is:
2169 *
2170 * data[2] += nval * nval;
2171 *
2172 * But given that nval is 64-bit, we could easily overflow, so
2173 * we do this as 128-bit arithmetic.
2174 */
2175 if (snval < 0)
2176 snval = -snval;

2178 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2179 dtrace_add_128(data + 2, tmp, data + 2);
2180 }

2182 /*ARGSUSED*/
2183 static void

new/usr/src/uts/common/dtrace/dtrace.c 33

2184 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2185 {
2186 *oval = *oval + 1;
2187 }

2189 /*ARGSUSED*/
2190 static void
2191 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2192 {
2193 *oval += nval;
2194 }

2196 /*
2197 * Aggregate given the tuple in the principal data buffer, and the aggregating
2198 * action denoted by the specified dtrace_aggregation_t. The aggregation
2199 * buffer is specified as the buf parameter. This routine does not return
2200 * failure; if there is no space in the aggregation buffer, the data will be
2201 * dropped, and a corresponding counter incremented.
2202 */
2203 static void
2204 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2205 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2206 {
2207 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2208 uint32_t i, ndx, size, fsize;
2209 uint32_t align = sizeof (uint64_t) - 1;
2210 dtrace_aggbuffer_t *agb;
2211 dtrace_aggkey_t *key;
2212 uint32_t hashval = 0, limit, isstr;
2213 caddr_t tomax, data, kdata;
2214 dtrace_actkind_t action;
2215 dtrace_action_t *act;
2216 uintptr_t offs;

2218 if (buf == NULL)
2219 return;

2221 if (!agg->dtag_hasarg) {
2222 /*
2223 * Currently, only quantize() and lquantize() take additional
2224 * arguments, and they have the same semantics: an increment
2225 * value that defaults to 1 when not present. If additional
2226 * aggregating actions take arguments, the setting of the
2227 * default argument value will presumably have to become more
2228 * sophisticated...
2229 */
2230 arg = 1;
2231 }

2233 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2234 size = rec->dtrd_offset - agg->dtag_base;
2235 fsize = size + rec->dtrd_size;

2237 ASSERT(dbuf->dtb_tomax != NULL);
2238 data = dbuf->dtb_tomax + offset + agg->dtag_base;

2240 if ((tomax = buf->dtb_tomax) == NULL) {
2241 dtrace_buffer_drop(buf);
2242 return;
2243 }

2245 /*
2246 * The metastructure is always at the bottom of the buffer.
2247 */
2248 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2249 sizeof (dtrace_aggbuffer_t));

new/usr/src/uts/common/dtrace/dtrace.c 34

2251 if (buf->dtb_offset == 0) {
2252 /*
2253 * We just kludge up approximately 1/8th of the size to be
2254 * buckets. If this guess ends up being routinely
2255 * off-the-mark, we may need to dynamically readjust this
2256 * based on past performance.
2257 */
2258 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);

2260 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2261 (uintptr_t)tomax || hashsize == 0) {
2262 /*
2263 * We’ve been given a ludicrously small buffer;
2264 * increment our drop count and leave.
2265 */
2266 dtrace_buffer_drop(buf);
2267 return;
2268 }

2270 /*
2271 * And now, a pathetic attempt to try to get a an odd (or
2272 * perchance, a prime) hash size for better hash distribution.
2273 */
2274 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2275 hashsize -= DTRACE_AGGHASHSIZE_SLEW;

2277 agb->dtagb_hashsize = hashsize;
2278 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2279 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2280 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;

2282 for (i = 0; i < agb->dtagb_hashsize; i++)
2283 agb->dtagb_hash[i] = NULL;
2284 }

2286 ASSERT(agg->dtag_first != NULL);
2287 ASSERT(agg->dtag_first->dta_intuple);

2289 /*
2290 * Calculate the hash value based on the key. Note that we _don’t_
2291 * include the aggid in the hashing (but we will store it as part of
2292 * the key). The hashing algorithm is Bob Jenkins’ "One-at-a-time"
2293 * algorithm: a simple, quick algorithm that has no known funnels, and
2294 * gets good distribution in practice. The efficacy of the hashing
2295 * algorithm (and a comparison with other algorithms) may be found by
2296 * running the ::dtrace_aggstat MDB dcmd.
2297 */
2298 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2299 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2300 limit = i + act->dta_rec.dtrd_size;
2301 ASSERT(limit <= size);
2302 isstr = DTRACEACT_ISSTRING(act);

2304 for (; i < limit; i++) {
2305 hashval += data[i];
2306 hashval += (hashval << 10);
2307 hashval ^= (hashval >> 6);

2309 if (isstr && data[i] == ’\0’)
2310 break;
2311 }
2312 }

2314 hashval += (hashval << 3);
2315 hashval ^= (hashval >> 11);

new/usr/src/uts/common/dtrace/dtrace.c 35

2316 hashval += (hashval << 15);

2318 /*
2319 * Yes, the divide here is expensive -- but it’s generally the least
2320 * of the performance issues given the amount of data that we iterate
2321 * over to compute hash values, compare data, etc.
2322 */
2323 ndx = hashval % agb->dtagb_hashsize;

2325 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2326 ASSERT((caddr_t)key >= tomax);
2327 ASSERT((caddr_t)key < tomax + buf->dtb_size);

2329 if (hashval != key->dtak_hashval || key->dtak_size != size)
2330 continue;

2332 kdata = key->dtak_data;
2333 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);

2335 for (act = agg->dtag_first; act->dta_intuple;
2336 act = act->dta_next) {
2337 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2338 limit = i + act->dta_rec.dtrd_size;
2339 ASSERT(limit <= size);
2340 isstr = DTRACEACT_ISSTRING(act);

2342 for (; i < limit; i++) {
2343 if (kdata[i] != data[i])
2344 goto next;

2346 if (isstr && data[i] == ’\0’)
2347 break;
2348 }
2349 }

2351 if (action != key->dtak_action) {
2352 /*
2353 * We are aggregating on the same value in the same
2354 * aggregation with two different aggregating actions.
2355 * (This should have been picked up in the compiler,
2356 * so we may be dealing with errant or devious DIF.)
2357 * This is an error condition; we indicate as much,
2358 * and return.
2359 */
2360 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2361 return;
2362 }

2364 /*
2365 * This is a hit: we need to apply the aggregator to
2366 * the value at this key.
2367 */
2368 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2369 return;
2370 next:
2371 continue;
2372 }

2374 /*
2375 * We didn’t find it. We need to allocate some zero-filled space,
2376 * link it into the hash table appropriately, and apply the aggregator
2377 * to the (zero-filled) value.
2378 */
2379 offs = buf->dtb_offset;
2380 while (offs & (align - 1))
2381 offs += sizeof (uint32_t);

new/usr/src/uts/common/dtrace/dtrace.c 36

2383 /*
2384 * If we don’t have enough room to both allocate a new key _and_
2385 * its associated data, increment the drop count and return.
2386 */
2387 if ((uintptr_t)tomax + offs + fsize >
2388 agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2389 dtrace_buffer_drop(buf);
2390 return;
2391 }

2393 /*CONSTCOND*/
2394 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2395 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2396 agb->dtagb_free -= sizeof (dtrace_aggkey_t);

2398 key->dtak_data = kdata = tomax + offs;
2399 buf->dtb_offset = offs + fsize;

2401 /*
2402 * Now copy the data across.
2403 */
2404 *((dtrace_aggid_t *)kdata) = agg->dtag_id;

2406 for (i = sizeof (dtrace_aggid_t); i < size; i++)
2407 kdata[i] = data[i];

2409 /*
2410 * Because strings are not zeroed out by default, we need to iterate
2411 * looking for actions that store strings, and we need to explicitly
2412 * pad these strings out with zeroes.
2413 */
2414 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2415 int nul;

2417 if (!DTRACEACT_ISSTRING(act))
2418 continue;

2420 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2421 limit = i + act->dta_rec.dtrd_size;
2422 ASSERT(limit <= size);

2424 for (nul = 0; i < limit; i++) {
2425 if (nul) {
2426 kdata[i] = ’\0’;
2427 continue;
2428 }

2430 if (data[i] != ’\0’)
2431 continue;

2433 nul = 1;
2434 }
2435 }

2437 for (i = size; i < fsize; i++)
2438 kdata[i] = 0;

2440 key->dtak_hashval = hashval;
2441 key->dtak_size = size;
2442 key->dtak_action = action;
2443 key->dtak_next = agb->dtagb_hash[ndx];
2444 agb->dtagb_hash[ndx] = key;

2446 /*
2447 * Finally, apply the aggregator.

new/usr/src/uts/common/dtrace/dtrace.c 37

2448 */
2449 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2450 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2451 }

2453 /*
2454 * Given consumer state, this routine finds a speculation in the INACTIVE
2455 * state and transitions it into the ACTIVE state. If there is no speculation
2456 * in the INACTIVE state, 0 is returned. In this case, no error counter is
2457 * incremented -- it is up to the caller to take appropriate action.
2458 */
2459 static int
2460 dtrace_speculation(dtrace_state_t *state)
2461 {
2462 int i = 0;
2463 dtrace_speculation_state_t current;
2464 uint32_t *stat = &state->dts_speculations_unavail, count;

2466 while (i < state->dts_nspeculations) {
2467 dtrace_speculation_t *spec = &state->dts_speculations[i];

2469 current = spec->dtsp_state;

2471 if (current != DTRACESPEC_INACTIVE) {
2472 if (current == DTRACESPEC_COMMITTINGMANY ||
2473 current == DTRACESPEC_COMMITTING ||
2474 current == DTRACESPEC_DISCARDING)
2475 stat = &state->dts_speculations_busy;
2476 i++;
2477 continue;
2478 }

2480 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2481 current, DTRACESPEC_ACTIVE) == current)
2482 return (i + 1);
2483 }

2485 /*
2486 * We couldn’t find a speculation. If we found as much as a single
2487 * busy speculation buffer, we’ll attribute this failure as "busy"
2488 * instead of "unavail".
2489 */
2490 do {
2491 count = *stat;
2492 } while (dtrace_cas32(stat, count, count + 1) != count);

2494 return (0);
2495 }

2497 /*
2498 * This routine commits an active speculation. If the specified speculation
2499 * is not in a valid state to perform a commit(), this routine will silently do
2500 * nothing. The state of the specified speculation is transitioned according
2501 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2502 */
2503 static void
2504 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2505 dtrace_specid_t which)
2506 {
2507 dtrace_speculation_t *spec;
2508 dtrace_buffer_t *src, *dest;
2509 uintptr_t daddr, saddr, dlimit, slimit;
2510 dtrace_speculation_state_t current, new;
2511 intptr_t offs;
2512 uint64_t timestamp;

new/usr/src/uts/common/dtrace/dtrace.c 38

2514 if (which == 0)
2515 return;

2517 if (which > state->dts_nspeculations) {
2518 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2519 return;
2520 }

2522 spec = &state->dts_speculations[which - 1];
2523 src = &spec->dtsp_buffer[cpu];
2524 dest = &state->dts_buffer[cpu];

2526 do {
2527 current = spec->dtsp_state;

2529 if (current == DTRACESPEC_COMMITTINGMANY)
2530 break;

2532 switch (current) {
2533 case DTRACESPEC_INACTIVE:
2534 case DTRACESPEC_DISCARDING:
2535 return;

2537 case DTRACESPEC_COMMITTING:
2538 /*
2539 * This is only possible if we are (a) commit()’ing
2540 * without having done a prior speculate() on this CPU
2541 * and (b) racing with another commit() on a different
2542 * CPU. There’s nothing to do -- we just assert that
2543 * our offset is 0.
2544 */
2545 ASSERT(src->dtb_offset == 0);
2546 return;

2548 case DTRACESPEC_ACTIVE:
2549 new = DTRACESPEC_COMMITTING;
2550 break;

2552 case DTRACESPEC_ACTIVEONE:
2553 /*
2554 * This speculation is active on one CPU. If our
2555 * buffer offset is non-zero, we know that the one CPU
2556 * must be us. Otherwise, we are committing on a
2557 * different CPU from the speculate(), and we must
2558 * rely on being asynchronously cleaned.
2559 */
2560 if (src->dtb_offset != 0) {
2561 new = DTRACESPEC_COMMITTING;
2562 break;
2563 }
2564 /*FALLTHROUGH*/

2566 case DTRACESPEC_ACTIVEMANY:
2567 new = DTRACESPEC_COMMITTINGMANY;
2568 break;

2570 default:
2571 ASSERT(0);
2572 }
2573 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2574 current, new) != current);

2576 /*
2577 * We have set the state to indicate that we are committing this
2578 * speculation. Now reserve the necessary space in the destination
2579 * buffer.

new/usr/src/uts/common/dtrace/dtrace.c 39

2580 */
2581 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2582 sizeof (uint64_t), state, NULL)) < 0) {
2583 dtrace_buffer_drop(dest);
2584 goto out;
2585 }

2587 /*
2588 * We have sufficient space to copy the speculative buffer into the
2589 * primary buffer. First, modify the speculative buffer, filling
2590 * in the timestamp of all entries with the current time. The data
2591 * must have the commit() time rather than the time it was traced,
2592 * so that all entries in the primary buffer are in timestamp order.
2593 */
2594 timestamp = dtrace_gethrtime();
2595 saddr = (uintptr_t)src->dtb_tomax;
2596 slimit = saddr + src->dtb_offset;
2597 while (saddr < slimit) {
2598 size_t size;
2599 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;

2601 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2602 saddr += sizeof (dtrace_epid_t);
2603 continue;
2604 }
2605 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2606 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;

2608 ASSERT3U(saddr + size, <=, slimit);
2609 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2610 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);

2612 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);

2614 saddr += size;
2615 }

2617 /*
2618 * Copy the buffer across. (Note that this is a
2619 * highly subobtimal bcopy(); in the unlikely event that this becomes
2620 * a serious performance issue, a high-performance DTrace-specific
2621 * bcopy() should obviously be invented.)
2622 */
2623 daddr = (uintptr_t)dest->dtb_tomax + offs;
2624 dlimit = daddr + src->dtb_offset;
2625 saddr = (uintptr_t)src->dtb_tomax;

2627 /*
2628 * First, the aligned portion.
2629 */
2630 while (dlimit - daddr >= sizeof (uint64_t)) {
2631 *((uint64_t *)daddr) = *((uint64_t *)saddr);

2633 daddr += sizeof (uint64_t);
2634 saddr += sizeof (uint64_t);
2635 }

2637 /*
2638 * Now any left-over bit...
2639 */
2640 while (dlimit - daddr)
2641 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);

2643 /*
2644 * Finally, commit the reserved space in the destination buffer.
2645 */

new/usr/src/uts/common/dtrace/dtrace.c 40

2646 dest->dtb_offset = offs + src->dtb_offset;

2648 out:
2649 /*
2650 * If we’re lucky enough to be the only active CPU on this speculation
2651 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2652 */
2653 if (current == DTRACESPEC_ACTIVE ||
2654 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2655 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2656 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);

2658 ASSERT(rval == DTRACESPEC_COMMITTING);
2659 }

2661 src->dtb_offset = 0;
2662 src->dtb_xamot_drops += src->dtb_drops;
2663 src->dtb_drops = 0;
2664 }

2666 /*
2667 * This routine discards an active speculation. If the specified speculation
2668 * is not in a valid state to perform a discard(), this routine will silently
2669 * do nothing. The state of the specified speculation is transitioned
2670 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2671 */
2672 static void
2673 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2674 dtrace_specid_t which)
2675 {
2676 dtrace_speculation_t *spec;
2677 dtrace_speculation_state_t current, new;
2678 dtrace_buffer_t *buf;

2680 if (which == 0)
2681 return;

2683 if (which > state->dts_nspeculations) {
2684 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2685 return;
2686 }

2688 spec = &state->dts_speculations[which - 1];
2689 buf = &spec->dtsp_buffer[cpu];

2691 do {
2692 current = spec->dtsp_state;

2694 switch (current) {
2695 case DTRACESPEC_INACTIVE:
2696 case DTRACESPEC_COMMITTINGMANY:
2697 case DTRACESPEC_COMMITTING:
2698 case DTRACESPEC_DISCARDING:
2699 return;

2701 case DTRACESPEC_ACTIVE:
2702 case DTRACESPEC_ACTIVEMANY:
2703 new = DTRACESPEC_DISCARDING;
2704 break;

2706 case DTRACESPEC_ACTIVEONE:
2707 if (buf->dtb_offset != 0) {
2708 new = DTRACESPEC_INACTIVE;
2709 } else {
2710 new = DTRACESPEC_DISCARDING;
2711 }

new/usr/src/uts/common/dtrace/dtrace.c 41

2712 break;

2714 default:
2715 ASSERT(0);
2716 }
2717 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2718 current, new) != current);

2720 buf->dtb_offset = 0;
2721 buf->dtb_drops = 0;
2722 }

2724 /*
2725 * Note: not called from probe context. This function is called
2726 * asynchronously from cross call context to clean any speculations that are
2727 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
2728 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2729 * speculation.
2730 */
2731 static void
2732 dtrace_speculation_clean_here(dtrace_state_t *state)
2733 {
2734 dtrace_icookie_t cookie;
2735 processorid_t cpu = CPU->cpu_id;
2736 dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2737 dtrace_specid_t i;

2739 cookie = dtrace_interrupt_disable();

2741 if (dest->dtb_tomax == NULL) {
2742 dtrace_interrupt_enable(cookie);
2743 return;
2744 }

2746 for (i = 0; i < state->dts_nspeculations; i++) {
2747 dtrace_speculation_t *spec = &state->dts_speculations[i];
2748 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];

2750 if (src->dtb_tomax == NULL)
2751 continue;

2753 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2754 src->dtb_offset = 0;
2755 continue;
2756 }

2758 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2759 continue;

2761 if (src->dtb_offset == 0)
2762 continue;

2764 dtrace_speculation_commit(state, cpu, i + 1);
2765 }

2767 dtrace_interrupt_enable(cookie);
2768 }

2770 /*
2771 * Note: not called from probe context. This function is called
2772 * asynchronously (and at a regular interval) to clean any speculations that
2773 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
2774 * is work to be done, it cross calls all CPUs to perform that work;
2775 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2776 * INACTIVE state until they have been cleaned by all CPUs.
2777 */

new/usr/src/uts/common/dtrace/dtrace.c 42

2778 static void
2779 dtrace_speculation_clean(dtrace_state_t *state)
2780 {
2781 int work = 0, rv;
2782 dtrace_specid_t i;

2784 for (i = 0; i < state->dts_nspeculations; i++) {
2785 dtrace_speculation_t *spec = &state->dts_speculations[i];

2787 ASSERT(!spec->dtsp_cleaning);

2789 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2790 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2791 continue;

2793 work++;
2794 spec->dtsp_cleaning = 1;
2795 }

2797 if (!work)
2798 return;

2800 dtrace_xcall(DTRACE_CPUALL,
2801 (dtrace_xcall_t)dtrace_speculation_clean_here, state);

2803 /*
2804 * We now know that all CPUs have committed or discarded their
2805 * speculation buffers, as appropriate. We can now set the state
2806 * to inactive.
2807 */
2808 for (i = 0; i < state->dts_nspeculations; i++) {
2809 dtrace_speculation_t *spec = &state->dts_speculations[i];
2810 dtrace_speculation_state_t current, new;

2812 if (!spec->dtsp_cleaning)
2813 continue;

2815 current = spec->dtsp_state;
2816 ASSERT(current == DTRACESPEC_DISCARDING ||
2817 current == DTRACESPEC_COMMITTINGMANY);

2819 new = DTRACESPEC_INACTIVE;

2821 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2822 ASSERT(rv == current);
2823 spec->dtsp_cleaning = 0;
2824 }
2825 }

2827 /*
2828 * Called as part of a speculate() to get the speculative buffer associated
2829 * with a given speculation. Returns NULL if the specified speculation is not
2830 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
2831 * the active CPU is not the specified CPU -- the speculation will be
2832 * atomically transitioned into the ACTIVEMANY state.
2833 */
2834 static dtrace_buffer_t *
2835 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2836 dtrace_specid_t which)
2837 {
2838 dtrace_speculation_t *spec;
2839 dtrace_speculation_state_t current, new;
2840 dtrace_buffer_t *buf;

2842 if (which == 0)
2843 return (NULL);

new/usr/src/uts/common/dtrace/dtrace.c 43

2845 if (which > state->dts_nspeculations) {
2846 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2847 return (NULL);
2848 }

2850 spec = &state->dts_speculations[which - 1];
2851 buf = &spec->dtsp_buffer[cpuid];

2853 do {
2854 current = spec->dtsp_state;

2856 switch (current) {
2857 case DTRACESPEC_INACTIVE:
2858 case DTRACESPEC_COMMITTINGMANY:
2859 case DTRACESPEC_DISCARDING:
2860 return (NULL);

2862 case DTRACESPEC_COMMITTING:
2863 ASSERT(buf->dtb_offset == 0);
2864 return (NULL);

2866 case DTRACESPEC_ACTIVEONE:
2867 /*
2868 * This speculation is currently active on one CPU.
2869 * Check the offset in the buffer; if it’s non-zero,
2870 * that CPU must be us (and we leave the state alone).
2871 * If it’s zero, assume that we’re starting on a new
2872 * CPU -- and change the state to indicate that the
2873 * speculation is active on more than one CPU.
2874 */
2875 if (buf->dtb_offset != 0)
2876 return (buf);

2878 new = DTRACESPEC_ACTIVEMANY;
2879 break;

2881 case DTRACESPEC_ACTIVEMANY:
2882 return (buf);

2884 case DTRACESPEC_ACTIVE:
2885 new = DTRACESPEC_ACTIVEONE;
2886 break;

2888 default:
2889 ASSERT(0);
2890 }
2891 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2892 current, new) != current);

2894 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2895 return (buf);
2896 }

2898 /*
2899 * Return a string. In the event that the user lacks the privilege to access
2900 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2901 * don’t fail access checking.
2902 *
2903 * dtrace_dif_variable() uses this routine as a helper for various
2904 * builtin values such as ’execname’ and ’probefunc.’
2905 */
2906 uintptr_t
2907 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2908 dtrace_mstate_t *mstate)
2909 {

new/usr/src/uts/common/dtrace/dtrace.c 44

2910 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2911 uintptr_t ret;
2912 size_t strsz;

2914 /*
2915 * The easy case: this probe is allowed to read all of memory, so
2916 * we can just return this as a vanilla pointer.
2917 */
2918 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2919 return (addr);

2921 /*
2922 * This is the tougher case: we copy the string in question from
2923 * kernel memory into scratch memory and return it that way: this
2924 * ensures that we won’t trip up when access checking tests the
2925 * BYREF return value.
2926 */
2927 strsz = dtrace_strlen((char *)addr, size) + 1;

2929 if (mstate->dtms_scratch_ptr + strsz >
2930 mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2931 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2932 return (NULL);
2933 }

2935 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2936 strsz);
2937 ret = mstate->dtms_scratch_ptr;
2938 mstate->dtms_scratch_ptr += strsz;
2939 return (ret);
2940 }

2942 /*
2943 * This function implements the DIF emulator’s variable lookups. The emulator
2944 * passes a reserved variable identifier and optional built-in array index.
2945 */
2946 static uint64_t
2947 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2948 uint64_t ndx)
2949 {
2950 /*
2951 * If we’re accessing one of the uncached arguments, we’ll turn this
2952 * into a reference in the args array.
2953 */
2954 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2955 ndx = v - DIF_VAR_ARG0;
2956 v = DIF_VAR_ARGS;
2957 }

2959 switch (v) {
2960 case DIF_VAR_ARGS:
2961 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
2962 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
2963 CPU_DTRACE_KPRIV;
2964 return (0);
2965 }

2967 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2968 if (ndx >= sizeof (mstate->dtms_arg) /
2969 sizeof (mstate->dtms_arg[0])) {
2970 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2971 dtrace_provider_t *pv;
2972 uint64_t val;

2974 pv = mstate->dtms_probe->dtpr_provider;
2975 if (pv->dtpv_pops.dtps_getargval != NULL)

new/usr/src/uts/common/dtrace/dtrace.c 45

2976 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2977 mstate->dtms_probe->dtpr_id,
2978 mstate->dtms_probe->dtpr_arg, ndx, aframes);
2979 else
2980 val = dtrace_getarg(ndx, aframes);

2982 /*
2983 * This is regrettably required to keep the compiler
2984 * from tail-optimizing the call to dtrace_getarg().
2985 * The condition always evaluates to true, but the
2986 * compiler has no way of figuring that out a priori.
2987 * (None of this would be necessary if the compiler
2988 * could be relied upon to _always_ tail-optimize
2989 * the call to dtrace_getarg() -- but it can’t.)
2990 */
2991 if (mstate->dtms_probe != NULL)
2992 return (val);

2994 ASSERT(0);
2995 }

2997 return (mstate->dtms_arg[ndx]);

2999 case DIF_VAR_UREGS: {
3000 klwp_t *lwp;

3002 if (!dtrace_priv_proc(state, mstate))
3003 return (0);

3005 if ((lwp = curthread->t_lwp) == NULL) {
3006 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3007 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
3008 return (0);
3009 }

3011 return (dtrace_getreg(lwp->lwp_regs, ndx));
3012 }

3014 case DIF_VAR_VMREGS: {
3015 uint64_t rval;

3017 if (!dtrace_priv_kernel(state))
3018 return (0);

3020 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);

3022 rval = dtrace_getvmreg(ndx,
3023 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);

3025 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);

3027 return (rval);
3028 }

3030 case DIF_VAR_CURTHREAD:
3031 if (!dtrace_priv_proc(state, mstate))
550 if (!dtrace_priv_kernel(state))
3032 return (0);
3033 return ((uint64_t)(uintptr_t)curthread);

3035 case DIF_VAR_TIMESTAMP:
3036 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3037 mstate->dtms_timestamp = dtrace_gethrtime();
3038 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3039 }
3040 return (mstate->dtms_timestamp);

new/usr/src/uts/common/dtrace/dtrace.c 46

3042 case DIF_VAR_VTIMESTAMP:
3043 ASSERT(dtrace_vtime_references != 0);
3044 return (curthread->t_dtrace_vtime);

3046 case DIF_VAR_WALLTIMESTAMP:
3047 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3048 mstate->dtms_walltimestamp = dtrace_gethrestime();
3049 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3050 }
3051 return (mstate->dtms_walltimestamp);

3053 case DIF_VAR_IPL:
3054 if (!dtrace_priv_kernel(state))
3055 return (0);
3056 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3057 mstate->dtms_ipl = dtrace_getipl();
3058 mstate->dtms_present |= DTRACE_MSTATE_IPL;
3059 }
3060 return (mstate->dtms_ipl);

3062 case DIF_VAR_EPID:
3063 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3064 return (mstate->dtms_epid);

3066 case DIF_VAR_ID:
3067 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3068 return (mstate->dtms_probe->dtpr_id);

3070 case DIF_VAR_STACKDEPTH:
3071 if (!dtrace_priv_kernel(state))
3072 return (0);
3073 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3074 int aframes = mstate->dtms_probe->dtpr_aframes + 2;

3076 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3077 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3078 }
3079 return (mstate->dtms_stackdepth);

3081 case DIF_VAR_USTACKDEPTH:
3082 if (!dtrace_priv_proc(state, mstate))
3083 return (0);
3084 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3085 /*
3086 * See comment in DIF_VAR_PID.
3087 */
3088 if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3089 CPU_ON_INTR(CPU)) {
3090 mstate->dtms_ustackdepth = 0;
3091 } else {
3092 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3093 mstate->dtms_ustackdepth =
3094 dtrace_getustackdepth();
3095 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3096 }
3097 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3098 }
3099 return (mstate->dtms_ustackdepth);

3101 case DIF_VAR_CALLER:
3102 if (!dtrace_priv_kernel(state))
3103 return (0);
3104 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3105 int aframes = mstate->dtms_probe->dtpr_aframes + 2;

new/usr/src/uts/common/dtrace/dtrace.c 47

3107 if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3108 /*
3109 * If this is an unanchored probe, we are
3110 * required to go through the slow path:
3111 * dtrace_caller() only guarantees correct
3112 * results for anchored probes.
3113 */
3114 pc_t caller[2];

3116 dtrace_getpcstack(caller, 2, aframes,
3117 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3118 mstate->dtms_caller = caller[1];
3119 } else if ((mstate->dtms_caller =
3120 dtrace_caller(aframes)) == -1) {
3121 /*
3122 * We have failed to do this the quick way;
3123 * we must resort to the slower approach of
3124 * calling dtrace_getpcstack().
3125 */
3126 pc_t caller;

3128 dtrace_getpcstack(&caller, 1, aframes, NULL);
3129 mstate->dtms_caller = caller;
3130 }

3132 mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3133 }
3134 return (mstate->dtms_caller);

3136 case DIF_VAR_UCALLER:
3137 if (!dtrace_priv_proc(state, mstate))
3138 return (0);

3140 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3141 uint64_t ustack[3];

3143 /*
3144 * dtrace_getupcstack() fills in the first uint64_t
3145 * with the current PID. The second uint64_t will
3146 * be the program counter at user-level. The third
3147 * uint64_t will contain the caller, which is what
3148 * we’re after.
3149 */
3150 ustack[2] = NULL;
3151 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3152 dtrace_getupcstack(ustack, 3);
3153 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3154 mstate->dtms_ucaller = ustack[2];
3155 mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3156 }

3158 return (mstate->dtms_ucaller);

3160 case DIF_VAR_PROBEPROV:
3161 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3162 return (dtrace_dif_varstr(
3163 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3164 state, mstate));

3166 case DIF_VAR_PROBEMOD:
3167 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3168 return (dtrace_dif_varstr(
3169 (uintptr_t)mstate->dtms_probe->dtpr_mod,
3170 state, mstate));

3172 case DIF_VAR_PROBEFUNC:

new/usr/src/uts/common/dtrace/dtrace.c 48

3173 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3174 return (dtrace_dif_varstr(
3175 (uintptr_t)mstate->dtms_probe->dtpr_func,
3176 state, mstate));

3178 case DIF_VAR_PROBENAME:
3179 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3180 return (dtrace_dif_varstr(
3181 (uintptr_t)mstate->dtms_probe->dtpr_name,
3182 state, mstate));

3184 case DIF_VAR_PID:
3185 if (!dtrace_priv_proc(state, mstate))
3186 return (0);

3188 /*
3189 * Note that we are assuming that an unanchored probe is
3190 * always due to a high-level interrupt. (And we’re assuming
3191 * that there is only a single high level interrupt.)
3192 */
3193 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3194 return (pid0.pid_id);

3196 /*
3197 * It is always safe to dereference one’s own t_procp pointer:
3198 * it always points to a valid, allocated proc structure.
3199 * Further, it is always safe to dereference the p_pidp member
3200 * of one’s own proc structure. (These are truisms becuase
3201 * threads and processes don’t clean up their own state --
3202 * they leave that task to whomever reaps them.)
3203 */
3204 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);

3206 case DIF_VAR_PPID:
3207 if (!dtrace_priv_proc(state, mstate))
3208 return (0);

3210 /*
3211 * See comment in DIF_VAR_PID.
3212 */
3213 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3214 return (pid0.pid_id);

3216 /*
3217 * It is always safe to dereference one’s own t_procp pointer:
3218 * it always points to a valid, allocated proc structure.
3219 * (This is true because threads don’t clean up their own
3220 * state -- they leave that task to whomever reaps them.)
3221 */
3222 return ((uint64_t)curthread->t_procp->p_ppid);

3224 case DIF_VAR_TID:
3225 /*
3226 * See comment in DIF_VAR_PID.
3227 */
3228 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3229 return (0);

3231 return ((uint64_t)curthread->t_tid);

3233 case DIF_VAR_EXECNAME:
3234 if (!dtrace_priv_proc(state, mstate))
3235 return (0);

3237 /*
3238 * See comment in DIF_VAR_PID.

new/usr/src/uts/common/dtrace/dtrace.c 49

3239 */
3240 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3241 return ((uint64_t)(uintptr_t)p0.p_user.u_comm);

3243 /*
3244 * It is always safe to dereference one’s own t_procp pointer:
3245 * it always points to a valid, allocated proc structure.
3246 * (This is true because threads don’t clean up their own
3247 * state -- they leave that task to whomever reaps them.)
3248 */
3249 return (dtrace_dif_varstr(
3250 (uintptr_t)curthread->t_procp->p_user.u_comm,
3251 state, mstate));

3253 case DIF_VAR_ZONENAME:
3254 if (!dtrace_priv_proc(state, mstate))
3255 return (0);

3257 /*
3258 * See comment in DIF_VAR_PID.
3259 */
3260 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3261 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);

3263 /*
3264 * It is always safe to dereference one’s own t_procp pointer:
3265 * it always points to a valid, allocated proc structure.
3266 * (This is true because threads don’t clean up their own
3267 * state -- they leave that task to whomever reaps them.)
3268 */
3269 return (dtrace_dif_varstr(
3270 (uintptr_t)curthread->t_procp->p_zone->zone_name,
3271 state, mstate));

3273 case DIF_VAR_UID:
3274 if (!dtrace_priv_proc(state, mstate))
3275 return (0);

3277 /*
3278 * See comment in DIF_VAR_PID.
3279 */
3280 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3281 return ((uint64_t)p0.p_cred->cr_uid);

3283 /*
3284 * It is always safe to dereference one’s own t_procp pointer:
3285 * it always points to a valid, allocated proc structure.
3286 * (This is true because threads don’t clean up their own
3287 * state -- they leave that task to whomever reaps them.)
3288 *
3289 * Additionally, it is safe to dereference one’s own process
3290 * credential, since this is never NULL after process birth.
3291 */
3292 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);

3294 case DIF_VAR_GID:
3295 if (!dtrace_priv_proc(state, mstate))
3296 return (0);

3298 /*
3299 * See comment in DIF_VAR_PID.
3300 */
3301 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3302 return ((uint64_t)p0.p_cred->cr_gid);

3304 /*

new/usr/src/uts/common/dtrace/dtrace.c 50

3305 * It is always safe to dereference one’s own t_procp pointer:
3306 * it always points to a valid, allocated proc structure.
3307 * (This is true because threads don’t clean up their own
3308 * state -- they leave that task to whomever reaps them.)
3309 *
3310 * Additionally, it is safe to dereference one’s own process
3311 * credential, since this is never NULL after process birth.
3312 */
3313 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);

3315 case DIF_VAR_ERRNO: {
3316 klwp_t *lwp;
3317 if (!dtrace_priv_proc(state, mstate))
3318 return (0);

3320 /*
3321 * See comment in DIF_VAR_PID.
3322 */
3323 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3324 return (0);

3326 /*
3327 * It is always safe to dereference one’s own t_lwp pointer in
3328 * the event that this pointer is non-NULL. (This is true
3329 * because threads and lwps don’t clean up their own state --
3330 * they leave that task to whomever reaps them.)
3331 */
3332 if ((lwp = curthread->t_lwp) == NULL)
3333 return (0);

3335 return ((uint64_t)lwp->lwp_errno);
3336 }
3337 default:
3338 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3339 return (0);
3340 }
3341 }

3343 /*
3344 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3345 * Notice that we don’t bother validating the proper number of arguments or
3346 * their types in the tuple stack. This isn’t needed because all argument
3347 * interpretation is safe because of our load safety -- the worst that can
3348 * happen is that a bogus program can obtain bogus results.
3349 */
3350 static void
3351 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3352 dtrace_key_t *tupregs, int nargs,
3353 dtrace_mstate_t *mstate, dtrace_state_t *state)
3354 {
3355 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3356 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3357 dtrace_vstate_t *vstate = &state->dts_vstate;

3359 union {
3360 mutex_impl_t mi;
3361 uint64_t mx;
3362 } m;

3364 union {
3365 krwlock_t ri;
3366 uintptr_t rw;
3367 } r;

3369 switch (subr) {
3370 case DIF_SUBR_RAND:

new/usr/src/uts/common/dtrace/dtrace.c 51

3371 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3372 break;

3374 case DIF_SUBR_MUTEX_OWNED:
3375 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3376 mstate, vstate)) {
3377 regs[rd] = NULL;
3378 break;
3379 }

3381 m.mx = dtrace_load64(tupregs[0].dttk_value);
3382 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3383 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3384 else
3385 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3386 break;

3388 case DIF_SUBR_MUTEX_OWNER:
3389 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3390 mstate, vstate)) {
3391 regs[rd] = NULL;
3392 break;
3393 }

3395 m.mx = dtrace_load64(tupregs[0].dttk_value);
3396 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3397 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3398 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3399 else
3400 regs[rd] = 0;
3401 break;

3403 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3404 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3405 mstate, vstate)) {
3406 regs[rd] = NULL;
3407 break;
3408 }

3410 m.mx = dtrace_load64(tupregs[0].dttk_value);
3411 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3412 break;

3414 case DIF_SUBR_MUTEX_TYPE_SPIN:
3415 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3416 mstate, vstate)) {
3417 regs[rd] = NULL;
3418 break;
3419 }

3421 m.mx = dtrace_load64(tupregs[0].dttk_value);
3422 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3423 break;

3425 case DIF_SUBR_RW_READ_HELD: {
3426 uintptr_t tmp;

3428 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3429 mstate, vstate)) {
3430 regs[rd] = NULL;
3431 break;
3432 }

3434 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3435 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3436 break;

new/usr/src/uts/common/dtrace/dtrace.c 52

3437 }

3439 case DIF_SUBR_RW_WRITE_HELD:
3440 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3441 mstate, vstate)) {
3442 regs[rd] = NULL;
3443 break;
3444 }

3446 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3447 regs[rd] = _RW_WRITE_HELD(&r.ri);
3448 break;

3450 case DIF_SUBR_RW_ISWRITER:
3451 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3452 mstate, vstate)) {
3453 regs[rd] = NULL;
3454 break;
3455 }

3457 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3458 regs[rd] = _RW_ISWRITER(&r.ri);
3459 break;

3461 case DIF_SUBR_BCOPY: {
3462 /*
3463 * We need to be sure that the destination is in the scratch
3464 * region -- no other region is allowed.
3465 */
3466 uintptr_t src = tupregs[0].dttk_value;
3467 uintptr_t dest = tupregs[1].dttk_value;
3468 size_t size = tupregs[2].dttk_value;

3470 if (!dtrace_inscratch(dest, size, mstate)) {
3471 *flags |= CPU_DTRACE_BADADDR;
3472 *illval = regs[rd];
3473 break;
3474 }

3476 if (!dtrace_canload(src, size, mstate, vstate)) {
3477 regs[rd] = NULL;
3478 break;
3479 }

3481 dtrace_bcopy((void *)src, (void *)dest, size);
3482 break;
3483 }

3485 case DIF_SUBR_ALLOCA:
3486 case DIF_SUBR_COPYIN: {
3487 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3488 uint64_t size =
3489 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3490 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;

3492 /*
3493 * This action doesn’t require any credential checks since
3494 * probes will not activate in user contexts to which the
3495 * enabling user does not have permissions.
3496 */

3498 /*
3499 * Rounding up the user allocation size could have overflowed
3500 * a large, bogus allocation (like -1ULL) to 0.
3501 */
3502 if (scratch_size < size ||

new/usr/src/uts/common/dtrace/dtrace.c 53

3503 !DTRACE_INSCRATCH(mstate, scratch_size)) {
3504 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3505 regs[rd] = NULL;
3506 break;
3507 }

3509 if (subr == DIF_SUBR_COPYIN) {
3510 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3511 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3512 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3513 }

3515 mstate->dtms_scratch_ptr += scratch_size;
3516 regs[rd] = dest;
3517 break;
3518 }

3520 case DIF_SUBR_COPYINTO: {
3521 uint64_t size = tupregs[1].dttk_value;
3522 uintptr_t dest = tupregs[2].dttk_value;

3524 /*
3525 * This action doesn’t require any credential checks since
3526 * probes will not activate in user contexts to which the
3527 * enabling user does not have permissions.
3528 */
3529 if (!dtrace_inscratch(dest, size, mstate)) {
3530 *flags |= CPU_DTRACE_BADADDR;
3531 *illval = regs[rd];
3532 break;
3533 }

3535 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3536 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3537 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3538 break;
3539 }

3541 case DIF_SUBR_COPYINSTR: {
3542 uintptr_t dest = mstate->dtms_scratch_ptr;
3543 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];

3545 if (nargs > 1 && tupregs[1].dttk_value < size)
3546 size = tupregs[1].dttk_value + 1;

3548 /*
3549 * This action doesn’t require any credential checks since
3550 * probes will not activate in user contexts to which the
3551 * enabling user does not have permissions.
3552 */
3553 if (!DTRACE_INSCRATCH(mstate, size)) {
3554 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3555 regs[rd] = NULL;
3556 break;
3557 }

3559 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3560 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3561 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);

3563 ((char *)dest)[size - 1] = ’\0’;
3564 mstate->dtms_scratch_ptr += size;
3565 regs[rd] = dest;
3566 break;
3567 }

new/usr/src/uts/common/dtrace/dtrace.c 54

3569 case DIF_SUBR_MSGSIZE:
3570 case DIF_SUBR_MSGDSIZE: {
3571 uintptr_t baddr = tupregs[0].dttk_value, daddr;
3572 uintptr_t wptr, rptr;
3573 size_t count = 0;
3574 int cont = 0;

3576 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {

3578 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3579 vstate)) {
3580 regs[rd] = NULL;
3581 break;
3582 }

3584 wptr = dtrace_loadptr(baddr +
3585 offsetof(mblk_t, b_wptr));

3587 rptr = dtrace_loadptr(baddr +
3588 offsetof(mblk_t, b_rptr));

3590 if (wptr < rptr) {
3591 *flags |= CPU_DTRACE_BADADDR;
3592 *illval = tupregs[0].dttk_value;
3593 break;
3594 }

3596 daddr = dtrace_loadptr(baddr +
3597 offsetof(mblk_t, b_datap));

3599 baddr = dtrace_loadptr(baddr +
3600 offsetof(mblk_t, b_cont));

3602 /*
3603 * We want to prevent against denial-of-service here,
3604 * so we’re only going to search the list for
3605 * dtrace_msgdsize_max mblks.
3606 */
3607 if (cont++ > dtrace_msgdsize_max) {
3608 *flags |= CPU_DTRACE_ILLOP;
3609 break;
3610 }

3612 if (subr == DIF_SUBR_MSGDSIZE) {
3613 if (dtrace_load8(daddr +
3614 offsetof(dblk_t, db_type)) != M_DATA)
3615 continue;
3616 }

3618 count += wptr - rptr;
3619 }

3621 if (!(*flags & CPU_DTRACE_FAULT))
3622 regs[rd] = count;

3624 break;
3625 }

3627 case DIF_SUBR_PROGENYOF: {
3628 pid_t pid = tupregs[0].dttk_value;
3629 proc_t *p;
3630 int rval = 0;

3632 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);

3634 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {

new/usr/src/uts/common/dtrace/dtrace.c 55

3635 if (p->p_pidp->pid_id == pid) {
3636 rval = 1;
3637 break;
3638 }
3639 }

3641 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);

3643 regs[rd] = rval;
3644 break;
3645 }

3647 case DIF_SUBR_SPECULATION:
3648 regs[rd] = dtrace_speculation(state);
3649 break;

3651 case DIF_SUBR_COPYOUT: {
3652 uintptr_t kaddr = tupregs[0].dttk_value;
3653 uintptr_t uaddr = tupregs[1].dttk_value;
3654 uint64_t size = tupregs[2].dttk_value;

3656 if (!dtrace_destructive_disallow &&
3657 dtrace_priv_proc_control(state, mstate) &&
3658 !dtrace_istoxic(kaddr, size)) {
3659 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3660 dtrace_copyout(kaddr, uaddr, size, flags);
3661 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3662 }
3663 break;
3664 }

3666 case DIF_SUBR_COPYOUTSTR: {
3667 uintptr_t kaddr = tupregs[0].dttk_value;
3668 uintptr_t uaddr = tupregs[1].dttk_value;
3669 uint64_t size = tupregs[2].dttk_value;

3671 if (!dtrace_destructive_disallow &&
3672 dtrace_priv_proc_control(state, mstate) &&
3673 !dtrace_istoxic(kaddr, size)) {
3674 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3675 dtrace_copyoutstr(kaddr, uaddr, size, flags);
3676 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3677 }
3678 break;
3679 }

3681 case DIF_SUBR_STRLEN: {
3682 size_t sz;
3683 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3684 sz = dtrace_strlen((char *)addr,
3685 state->dts_options[DTRACEOPT_STRSIZE]);

3687 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3688 regs[rd] = NULL;
3689 break;
3690 }

3692 regs[rd] = sz;

3694 break;
3695 }

3697 case DIF_SUBR_STRCHR:
3698 case DIF_SUBR_STRRCHR: {
3699 /*
3700 * We’re going to iterate over the string looking for the

new/usr/src/uts/common/dtrace/dtrace.c 56

3701 * specified character. We will iterate until we have reached
3702 * the string length or we have found the character. If this
3703 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3704 * of the specified character instead of the first.
3705 */
3706 uintptr_t saddr = tupregs[0].dttk_value;
3707 uintptr_t addr = tupregs[0].dttk_value;
3708 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3709 char c, target = (char)tupregs[1].dttk_value;

3711 for (regs[rd] = NULL; addr < limit; addr++) {
3712 if ((c = dtrace_load8(addr)) == target) {
3713 regs[rd] = addr;

3715 if (subr == DIF_SUBR_STRCHR)
3716 break;
3717 }

3719 if (c == ’\0’)
3720 break;
3721 }

3723 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3724 regs[rd] = NULL;
3725 break;
3726 }

3728 break;
3729 }

3731 case DIF_SUBR_STRSTR:
3732 case DIF_SUBR_INDEX:
3733 case DIF_SUBR_RINDEX: {
3734 /*
3735 * We’re going to iterate over the string looking for the
3736 * specified string. We will iterate until we have reached
3737 * the string length or we have found the string. (Yes, this
3738 * is done in the most naive way possible -- but considering
3739 * that the string we’re searching for is likely to be
3740 * relatively short, the complexity of Rabin-Karp or similar
3741 * hardly seems merited.)
3742 */
3743 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3744 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3745 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3746 size_t len = dtrace_strlen(addr, size);
3747 size_t sublen = dtrace_strlen(substr, size);
3748 char *limit = addr + len, *orig = addr;
3749 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3750 int inc = 1;

3752 regs[rd] = notfound;

3754 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3755 regs[rd] = NULL;
3756 break;
3757 }

3759 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3760 vstate)) {
3761 regs[rd] = NULL;
3762 break;
3763 }

3765 /*
3766 * strstr() and index()/rindex() have similar semantics if

new/usr/src/uts/common/dtrace/dtrace.c 57

3767 * both strings are the empty string: strstr() returns a
3768 * pointer to the (empty) string, and index() and rindex()
3769 * both return index 0 (regardless of any position argument).
3770 */
3771 if (sublen == 0 && len == 0) {
3772 if (subr == DIF_SUBR_STRSTR)
3773 regs[rd] = (uintptr_t)addr;
3774 else
3775 regs[rd] = 0;
3776 break;
3777 }

3779 if (subr != DIF_SUBR_STRSTR) {
3780 if (subr == DIF_SUBR_RINDEX) {
3781 limit = orig - 1;
3782 addr += len;
3783 inc = -1;
3784 }

3786 /*
3787 * Both index() and rindex() take an optional position
3788 * argument that denotes the starting position.
3789 */
3790 if (nargs == 3) {
3791 int64_t pos = (int64_t)tupregs[2].dttk_value;

3793 /*
3794 * If the position argument to index() is
3795 * negative, Perl implicitly clamps it at
3796 * zero. This semantic is a little surprising
3797 * given the special meaning of negative
3798 * positions to similar Perl functions like
3799 * substr(), but it appears to reflect a
3800 * notion that index() can start from a
3801 * negative index and increment its way up to
3802 * the string. Given this notion, Perl’s
3803 * rindex() is at least self-consistent in
3804 * that it implicitly clamps positions greater
3805 * than the string length to be the string
3806 * length. Where Perl completely loses
3807 * coherence, however, is when the specified
3808 * substring is the empty string (""). In
3809 * this case, even if the position is
3810 * negative, rindex() returns 0 -- and even if
3811 * the position is greater than the length,
3812 * index() returns the string length. These
3813 * semantics violate the notion that index()
3814 * should never return a value less than the
3815 * specified position and that rindex() should
3816 * never return a value greater than the
3817 * specified position. (One assumes that
3818 * these semantics are artifacts of Perl’s
3819 * implementation and not the results of
3820 * deliberate design -- it beggars belief that
3821 * even Larry Wall could desire such oddness.)
3822 * While in the abstract one would wish for
3823 * consistent position semantics across
3824 * substr(), index() and rindex() -- or at the
3825 * very least self-consistent position
3826 * semantics for index() and rindex() -- we
3827 * instead opt to keep with the extant Perl
3828 * semantics, in all their broken glory. (Do
3829 * we have more desire to maintain Perl’s
3830 * semantics than Perl does? Probably.)
3831 */
3832 if (subr == DIF_SUBR_RINDEX) {

new/usr/src/uts/common/dtrace/dtrace.c 58

3833 if (pos < 0) {
3834 if (sublen == 0)
3835 regs[rd] = 0;
3836 break;
3837 }

3839 if (pos > len)
3840 pos = len;
3841 } else {
3842 if (pos < 0)
3843 pos = 0;

3845 if (pos >= len) {
3846 if (sublen == 0)
3847 regs[rd] = len;
3848 break;
3849 }
3850 }

3852 addr = orig + pos;
3853 }
3854 }

3856 for (regs[rd] = notfound; addr != limit; addr += inc) {
3857 if (dtrace_strncmp(addr, substr, sublen) == 0) {
3858 if (subr != DIF_SUBR_STRSTR) {
3859 /*
3860 * As D index() and rindex() are
3861 * modeled on Perl (and not on awk),
3862 * we return a zero-based (and not a
3863 * one-based) index. (For you Perl
3864 * weenies: no, we’re not going to add
3865 * $[-- and shouldn’t you be at a con
3866 * or something?)
3867 */
3868 regs[rd] = (uintptr_t)(addr - orig);
3869 break;
3870 }

3872 ASSERT(subr == DIF_SUBR_STRSTR);
3873 regs[rd] = (uintptr_t)addr;
3874 break;
3875 }
3876 }

3878 break;
3879 }

3881 case DIF_SUBR_STRTOK: {
3882 uintptr_t addr = tupregs[0].dttk_value;
3883 uintptr_t tokaddr = tupregs[1].dttk_value;
3884 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3885 uintptr_t limit, toklimit = tokaddr + size;
3886 uint8_t c, tokmap[32]; /* 256 / 8 */
3887 char *dest = (char *)mstate->dtms_scratch_ptr;
3888 int i;

3890 /*
3891 * Check both the token buffer and (later) the input buffer,
3892 * since both could be non-scratch addresses.
3893 */
3894 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3895 regs[rd] = NULL;
3896 break;
3897 }

new/usr/src/uts/common/dtrace/dtrace.c 59

3899 if (!DTRACE_INSCRATCH(mstate, size)) {
3900 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3901 regs[rd] = NULL;
3902 break;
3903 }

3905 if (addr == NULL) {
3906 /*
3907 * If the address specified is NULL, we use our saved
3908 * strtok pointer from the mstate. Note that this
3909 * means that the saved strtok pointer is _only_
3910 * valid within multiple enablings of the same probe --
3911 * it behaves like an implicit clause-local variable.
3912 */
3913 addr = mstate->dtms_strtok;
3914 } else {
3915 /*
3916 * If the user-specified address is non-NULL we must
3917 * access check it. This is the only time we have
3918 * a chance to do so, since this address may reside
3919 * in the string table of this clause-- future calls
3920 * (when we fetch addr from mstate->dtms_strtok)
3921 * would fail this access check.
3922 */
3923 if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3924 regs[rd] = NULL;
3925 break;
3926 }
3927 }

3929 /*
3930 * First, zero the token map, and then process the token
3931 * string -- setting a bit in the map for every character
3932 * found in the token string.
3933 */
3934 for (i = 0; i < sizeof (tokmap); i++)
3935 tokmap[i] = 0;

3937 for (; tokaddr < toklimit; tokaddr++) {
3938 if ((c = dtrace_load8(tokaddr)) == ’\0’)
3939 break;

3941 ASSERT((c >> 3) < sizeof (tokmap));
3942 tokmap[c >> 3] |= (1 << (c & 0x7));
3943 }

3945 for (limit = addr + size; addr < limit; addr++) {
3946 /*
3947 * We’re looking for a character that is _not_ contained
3948 * in the token string.
3949 */
3950 if ((c = dtrace_load8(addr)) == ’\0’)
3951 break;

3953 if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3954 break;
3955 }

3957 if (c == ’\0’) {
3958 /*
3959 * We reached the end of the string without finding
3960 * any character that was not in the token string.
3961 * We return NULL in this case, and we set the saved
3962 * address to NULL as well.
3963 */
3964 regs[rd] = NULL;

new/usr/src/uts/common/dtrace/dtrace.c 60

3965 mstate->dtms_strtok = NULL;
3966 break;
3967 }

3969 /*
3970 * From here on, we’re copying into the destination string.
3971 */
3972 for (i = 0; addr < limit && i < size - 1; addr++) {
3973 if ((c = dtrace_load8(addr)) == ’\0’)
3974 break;

3976 if (tokmap[c >> 3] & (1 << (c & 0x7)))
3977 break;

3979 ASSERT(i < size);
3980 dest[i++] = c;
3981 }

3983 ASSERT(i < size);
3984 dest[i] = ’\0’;
3985 regs[rd] = (uintptr_t)dest;
3986 mstate->dtms_scratch_ptr += size;
3987 mstate->dtms_strtok = addr;
3988 break;
3989 }

3991 case DIF_SUBR_SUBSTR: {
3992 uintptr_t s = tupregs[0].dttk_value;
3993 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3994 char *d = (char *)mstate->dtms_scratch_ptr;
3995 int64_t index = (int64_t)tupregs[1].dttk_value;
3996 int64_t remaining = (int64_t)tupregs[2].dttk_value;
3997 size_t len = dtrace_strlen((char *)s, size);
3998 int64_t i;

4000 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4001 regs[rd] = NULL;
4002 break;
4003 }

4005 if (!DTRACE_INSCRATCH(mstate, size)) {
4006 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4007 regs[rd] = NULL;
4008 break;
4009 }

4011 if (nargs <= 2)
4012 remaining = (int64_t)size;

4014 if (index < 0) {
4015 index += len;

4017 if (index < 0 && index + remaining > 0) {
4018 remaining += index;
4019 index = 0;
4020 }
4021 }

4023 if (index >= len || index < 0) {
4024 remaining = 0;
4025 } else if (remaining < 0) {
4026 remaining += len - index;
4027 } else if (index + remaining > size) {
4028 remaining = size - index;
4029 }

new/usr/src/uts/common/dtrace/dtrace.c 61

4031 for (i = 0; i < remaining; i++) {
4032 if ((d[i] = dtrace_load8(s + index + i)) == ’\0’)
4033 break;
4034 }

4036 d[i] = ’\0’;

4038 mstate->dtms_scratch_ptr += size;
4039 regs[rd] = (uintptr_t)d;
4040 break;
4041 }

4043 case DIF_SUBR_TOUPPER:
4044 case DIF_SUBR_TOLOWER: {
4045 uintptr_t s = tupregs[0].dttk_value;
4046 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4047 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4048 size_t len = dtrace_strlen((char *)s, size);
4049 char lower, upper, convert;
4050 int64_t i;

4052 if (subr == DIF_SUBR_TOUPPER) {
4053 lower = ’a’;
4054 upper = ’z’;
4055 convert = ’A’;
4056 } else {
4057 lower = ’A’;
4058 upper = ’Z’;
4059 convert = ’a’;
4060 }

4062 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4063 regs[rd] = NULL;
4064 break;
4065 }

4067 if (!DTRACE_INSCRATCH(mstate, size)) {
4068 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4069 regs[rd] = NULL;
4070 break;
4071 }

4073 for (i = 0; i < size - 1; i++) {
4074 if ((c = dtrace_load8(s + i)) == ’\0’)
4075 break;

4077 if (c >= lower && c <= upper)
4078 c = convert + (c - lower);

4080 dest[i] = c;
4081 }

4083 ASSERT(i < size);
4084 dest[i] = ’\0’;
4085 regs[rd] = (uintptr_t)dest;
4086 mstate->dtms_scratch_ptr += size;
4087 break;
4088 }

4090 case DIF_SUBR_GETMAJOR:
4091 #ifdef _LP64
4092 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4093 #else
4094 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4095 #endif
4096 break;

new/usr/src/uts/common/dtrace/dtrace.c 62

4098 case DIF_SUBR_GETMINOR:
4099 #ifdef _LP64
4100 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4101 #else
4102 regs[rd] = tupregs[0].dttk_value & MAXMIN;
4103 #endif
4104 break;

4106 case DIF_SUBR_DDI_PATHNAME: {
4107 /*
4108 * This one is a galactic mess. We are going to roughly
4109 * emulate ddi_pathname(), but it’s made more complicated
4110 * by the fact that we (a) want to include the minor name and
4111 * (b) must proceed iteratively instead of recursively.
4112 */
4113 uintptr_t dest = mstate->dtms_scratch_ptr;
4114 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4115 char *start = (char *)dest, *end = start + size - 1;
4116 uintptr_t daddr = tupregs[0].dttk_value;
4117 int64_t minor = (int64_t)tupregs[1].dttk_value;
4118 char *s;
4119 int i, len, depth = 0;

4121 /*
4122 * Due to all the pointer jumping we do and context we must
4123 * rely upon, we just mandate that the user must have kernel
4124 * read privileges to use this routine.
4125 */
4126 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4127 *flags |= CPU_DTRACE_KPRIV;
4128 *illval = daddr;
4129 regs[rd] = NULL;
4130 }

4132 if (!DTRACE_INSCRATCH(mstate, size)) {
4133 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4134 regs[rd] = NULL;
4135 break;
4136 }

4138 *end = ’\0’;

4140 /*
4141 * We want to have a name for the minor. In order to do this,
4142 * we need to walk the minor list from the devinfo. We want
4143 * to be sure that we don’t infinitely walk a circular list,
4144 * so we check for circularity by sending a scout pointer
4145 * ahead two elements for every element that we iterate over;
4146 * if the list is circular, these will ultimately point to the
4147 * same element. You may recognize this little trick as the
4148 * answer to a stupid interview question -- one that always
4149 * seems to be asked by those who had to have it laboriously
4150 * explained to them, and who can’t even concisely describe
4151 * the conditions under which one would be forced to resort to
4152 * this technique. Needless to say, those conditions are
4153 * found here -- and probably only here. Is this the only use
4154 * of this infamous trick in shipping, production code? If it
4155 * isn’t, it probably should be...
4156 */
4157 if (minor != -1) {
4158 uintptr_t maddr = dtrace_loadptr(daddr +
4159 offsetof(struct dev_info, devi_minor));

4161 uintptr_t next = offsetof(struct ddi_minor_data, next);
4162 uintptr_t name = offsetof(struct ddi_minor_data,

new/usr/src/uts/common/dtrace/dtrace.c 63

4163 d_minor) + offsetof(struct ddi_minor, name);
4164 uintptr_t dev = offsetof(struct ddi_minor_data,
4165 d_minor) + offsetof(struct ddi_minor, dev);
4166 uintptr_t scout;

4168 if (maddr != NULL)
4169 scout = dtrace_loadptr(maddr + next);

4171 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4172 uint64_t m;
4173 #ifdef _LP64
4174 m = dtrace_load64(maddr + dev) & MAXMIN64;
4175 #else
4176 m = dtrace_load32(maddr + dev) & MAXMIN;
4177 #endif
4178 if (m != minor) {
4179 maddr = dtrace_loadptr(maddr + next);

4181 if (scout == NULL)
4182 continue;

4184 scout = dtrace_loadptr(scout + next);

4186 if (scout == NULL)
4187 continue;

4189 scout = dtrace_loadptr(scout + next);

4191 if (scout == NULL)
4192 continue;

4194 if (scout == maddr) {
4195 *flags |= CPU_DTRACE_ILLOP;
4196 break;
4197 }

4199 continue;
4200 }

4202 /*
4203 * We have the minor data. Now we need to
4204 * copy the minor’s name into the end of the
4205 * pathname.
4206 */
4207 s = (char *)dtrace_loadptr(maddr + name);
4208 len = dtrace_strlen(s, size);

4210 if (*flags & CPU_DTRACE_FAULT)
4211 break;

4213 if (len != 0) {
4214 if ((end -= (len + 1)) < start)
4215 break;

4217 *end = ’:’;
4218 }

4220 for (i = 1; i <= len; i++)
4221 end[i] = dtrace_load8((uintptr_t)s++);
4222 break;
4223 }
4224 }

4226 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4227 ddi_node_state_t devi_state;

new/usr/src/uts/common/dtrace/dtrace.c 64

4229 devi_state = dtrace_load32(daddr +
4230 offsetof(struct dev_info, devi_node_state));

4232 if (*flags & CPU_DTRACE_FAULT)
4233 break;

4235 if (devi_state >= DS_INITIALIZED) {
4236 s = (char *)dtrace_loadptr(daddr +
4237 offsetof(struct dev_info, devi_addr));
4238 len = dtrace_strlen(s, size);

4240 if (*flags & CPU_DTRACE_FAULT)
4241 break;

4243 if (len != 0) {
4244 if ((end -= (len + 1)) < start)
4245 break;

4247 *end = ’@’;
4248 }

4250 for (i = 1; i <= len; i++)
4251 end[i] = dtrace_load8((uintptr_t)s++);
4252 }

4254 /*
4255 * Now for the node name...
4256 */
4257 s = (char *)dtrace_loadptr(daddr +
4258 offsetof(struct dev_info, devi_node_name));

4260 daddr = dtrace_loadptr(daddr +
4261 offsetof(struct dev_info, devi_parent));

4263 /*
4264 * If our parent is NULL (that is, if we’re the root
4265 * node), we’re going to use the special path
4266 * "devices".
4267 */
4268 if (daddr == NULL)
4269 s = "devices";

4271 len = dtrace_strlen(s, size);
4272 if (*flags & CPU_DTRACE_FAULT)
4273 break;

4275 if ((end -= (len + 1)) < start)
4276 break;

4278 for (i = 1; i <= len; i++)
4279 end[i] = dtrace_load8((uintptr_t)s++);
4280 *end = ’/’;

4282 if (depth++ > dtrace_devdepth_max) {
4283 *flags |= CPU_DTRACE_ILLOP;
4284 break;
4285 }
4286 }

4288 if (end < start)
4289 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);

4291 if (daddr == NULL) {
4292 regs[rd] = (uintptr_t)end;
4293 mstate->dtms_scratch_ptr += size;
4294 }

new/usr/src/uts/common/dtrace/dtrace.c 65

4296 break;
4297 }

4299 case DIF_SUBR_STRJOIN: {
4300 char *d = (char *)mstate->dtms_scratch_ptr;
4301 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4302 uintptr_t s1 = tupregs[0].dttk_value;
4303 uintptr_t s2 = tupregs[1].dttk_value;
4304 int i = 0;

4306 if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4307 !dtrace_strcanload(s2, size, mstate, vstate)) {
4308 regs[rd] = NULL;
4309 break;
4310 }

4312 if (!DTRACE_INSCRATCH(mstate, size)) {
4313 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4314 regs[rd] = NULL;
4315 break;
4316 }

4318 for (;;) {
4319 if (i >= size) {
4320 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4321 regs[rd] = NULL;
4322 break;
4323 }

4325 if ((d[i++] = dtrace_load8(s1++)) == ’\0’) {
4326 i--;
4327 break;
4328 }
4329 }

4331 for (;;) {
4332 if (i >= size) {
4333 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4334 regs[rd] = NULL;
4335 break;
4336 }

4338 if ((d[i++] = dtrace_load8(s2++)) == ’\0’)
4339 break;
4340 }

4342 if (i < size) {
4343 mstate->dtms_scratch_ptr += i;
4344 regs[rd] = (uintptr_t)d;
4345 }

4347 break;
4348 }

4350 case DIF_SUBR_LLTOSTR: {
4351 int64_t i = (int64_t)tupregs[0].dttk_value;
4352 uint64_t val, digit;
4353 uint64_t size = 65; /* enough room for 2^64 in binary */
4354 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4355 int base = 10;

4357 if (nargs > 1) {
4358 if ((base = tupregs[1].dttk_value) <= 1 ||
4359 base > (’z’ - ’a’ + 1) + (’9’ - ’0’ + 1)) {
4360 *flags |= CPU_DTRACE_ILLOP;

new/usr/src/uts/common/dtrace/dtrace.c 66

4361 break;
4362 }
4363 }

4365 val = (base == 10 && i < 0) ? i * -1 : i;

4367 if (!DTRACE_INSCRATCH(mstate, size)) {
4368 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4369 regs[rd] = NULL;
4370 break;
4371 }

4373 for (*end-- = ’\0’; val; val /= base) {
4374 if ((digit = val % base) <= ’9’ - ’0’) {
4375 *end-- = ’0’ + digit;
4376 } else {
4377 *end-- = ’a’ + (digit - (’9’ - ’0’) - 1);
4378 }
4379 }

4381 if (i == 0 && base == 16)
4382 *end-- = ’0’;

4384 if (base == 16)
4385 *end-- = ’x’;

4387 if (i == 0 || base == 8 || base == 16)
4388 *end-- = ’0’;

4390 if (i < 0 && base == 10)
4391 *end-- = ’-’;

4393 regs[rd] = (uintptr_t)end + 1;
4394 mstate->dtms_scratch_ptr += size;
4395 break;
4396 }

4398 case DIF_SUBR_HTONS:
4399 case DIF_SUBR_NTOHS:
4400 #ifdef _BIG_ENDIAN
4401 regs[rd] = (uint16_t)tupregs[0].dttk_value;
4402 #else
4403 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4404 #endif
4405 break;

4408 case DIF_SUBR_HTONL:
4409 case DIF_SUBR_NTOHL:
4410 #ifdef _BIG_ENDIAN
4411 regs[rd] = (uint32_t)tupregs[0].dttk_value;
4412 #else
4413 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4414 #endif
4415 break;

4418 case DIF_SUBR_HTONLL:
4419 case DIF_SUBR_NTOHLL:
4420 #ifdef _BIG_ENDIAN
4421 regs[rd] = (uint64_t)tupregs[0].dttk_value;
4422 #else
4423 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4424 #endif
4425 break;

new/usr/src/uts/common/dtrace/dtrace.c 67

4428 case DIF_SUBR_DIRNAME:
4429 case DIF_SUBR_BASENAME: {
4430 char *dest = (char *)mstate->dtms_scratch_ptr;
4431 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4432 uintptr_t src = tupregs[0].dttk_value;
4433 int i, j, len = dtrace_strlen((char *)src, size);
4434 int lastbase = -1, firstbase = -1, lastdir = -1;
4435 int start, end;

4437 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4438 regs[rd] = NULL;
4439 break;
4440 }

4442 if (!DTRACE_INSCRATCH(mstate, size)) {
4443 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4444 regs[rd] = NULL;
4445 break;
4446 }

4448 /*
4449 * The basename and dirname for a zero-length string is
4450 * defined to be "."
4451 */
4452 if (len == 0) {
4453 len = 1;
4454 src = (uintptr_t)".";
4455 }

4457 /*
4458 * Start from the back of the string, moving back toward the
4459 * front until we see a character that isn’t a slash. That
4460 * character is the last character in the basename.
4461 */
4462 for (i = len - 1; i >= 0; i--) {
4463 if (dtrace_load8(src + i) != ’/’)
4464 break;
4465 }

4467 if (i >= 0)
4468 lastbase = i;

4470 /*
4471 * Starting from the last character in the basename, move
4472 * towards the front until we find a slash. The character
4473 * that we processed immediately before that is the first
4474 * character in the basename.
4475 */
4476 for (; i >= 0; i--) {
4477 if (dtrace_load8(src + i) == ’/’)
4478 break;
4479 }

4481 if (i >= 0)
4482 firstbase = i + 1;

4484 /*
4485 * Now keep going until we find a non-slash character. That
4486 * character is the last character in the dirname.
4487 */
4488 for (; i >= 0; i--) {
4489 if (dtrace_load8(src + i) != ’/’)
4490 break;
4491 }

new/usr/src/uts/common/dtrace/dtrace.c 68

4493 if (i >= 0)
4494 lastdir = i;

4496 ASSERT(!(lastbase == -1 && firstbase != -1));
4497 ASSERT(!(firstbase == -1 && lastdir != -1));

4499 if (lastbase == -1) {
4500 /*
4501 * We didn’t find a non-slash character. We know that
4502 * the length is non-zero, so the whole string must be
4503 * slashes. In either the dirname or the basename
4504 * case, we return ’/’.
4505 */
4506 ASSERT(firstbase == -1);
4507 firstbase = lastbase = lastdir = 0;
4508 }

4510 if (firstbase == -1) {
4511 /*
4512 * The entire string consists only of a basename
4513 * component. If we’re looking for dirname, we need
4514 * to change our string to be just "."; if we’re
4515 * looking for a basename, we’ll just set the first
4516 * character of the basename to be 0.
4517 */
4518 if (subr == DIF_SUBR_DIRNAME) {
4519 ASSERT(lastdir == -1);
4520 src = (uintptr_t)".";
4521 lastdir = 0;
4522 } else {
4523 firstbase = 0;
4524 }
4525 }

4527 if (subr == DIF_SUBR_DIRNAME) {
4528 if (lastdir == -1) {
4529 /*
4530 * We know that we have a slash in the name --
4531 * or lastdir would be set to 0, above. And
4532 * because lastdir is -1, we know that this
4533 * slash must be the first character. (That
4534 * is, the full string must be of the form
4535 * "/basename".) In this case, the last
4536 * character of the directory name is 0.
4537 */
4538 lastdir = 0;
4539 }

4541 start = 0;
4542 end = lastdir;
4543 } else {
4544 ASSERT(subr == DIF_SUBR_BASENAME);
4545 ASSERT(firstbase != -1 && lastbase != -1);
4546 start = firstbase;
4547 end = lastbase;
4548 }

4550 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4551 dest[j] = dtrace_load8(src + i);

4553 dest[j] = ’\0’;
4554 regs[rd] = (uintptr_t)dest;
4555 mstate->dtms_scratch_ptr += size;
4556 break;
4557 }

new/usr/src/uts/common/dtrace/dtrace.c 69

4559 case DIF_SUBR_GETF: {
4560 uintptr_t fd = tupregs[0].dttk_value;
4561 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo;
4562 file_t *fp;

4564 if (!dtrace_priv_proc(state, mstate)) {
4565 regs[rd] = NULL;
4566 break;
4567 }

4569 /*
4570 * This is safe because fi_nfiles only increases, and the
4571 * fi_list array is not freed when the array size doubles.
4572 * (See the comment in flist_grow() for details on the
4573 * management of the u_finfo structure.)
4574 */
4575 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;

4577 mstate->dtms_getf = fp;
4578 regs[rd] = (uintptr_t)fp;
4579 break;
4580 }

4582 #endif /* ! codereview */
4583 case DIF_SUBR_CLEANPATH: {
4584 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4585 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4586 uintptr_t src = tupregs[0].dttk_value;
4587 int i = 0, j = 0;
4588 zone_t *z;
4589 #endif /* ! codereview */

4591 if (!dtrace_strcanload(src, size, mstate, vstate)) {
4592 regs[rd] = NULL;
4593 break;
4594 }

4596 if (!DTRACE_INSCRATCH(mstate, size)) {
4597 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4598 regs[rd] = NULL;
4599 break;
4600 }

4602 /*
4603 * Move forward, loading each character.
4604 */
4605 do {
4606 c = dtrace_load8(src + i++);
4607 next:
4608 if (j + 5 >= size) /* 5 = strlen("/..c\0") */
4609 break;

4611 if (c != ’/’) {
4612 dest[j++] = c;
4613 continue;
4614 }

4616 c = dtrace_load8(src + i++);

4618 if (c == ’/’) {
4619 /*
4620 * We have two slashes -- we can just advance
4621 * to the next character.
4622 */
4623 goto next;
4624 }

new/usr/src/uts/common/dtrace/dtrace.c 70

4626 if (c != ’.’) {
4627 /*
4628 * This is not "." and it’s not ".." -- we can
4629 * just store the "/" and this character and
4630 * drive on.
4631 */
4632 dest[j++] = ’/’;
4633 dest[j++] = c;
4634 continue;
4635 }

4637 c = dtrace_load8(src + i++);

4639 if (c == ’/’) {
4640 /*
4641 * This is a "/./" component. We’re not going
4642 * to store anything in the destination buffer;
4643 * we’re just going to go to the next component.
4644 */
4645 goto next;
4646 }

4648 if (c != ’.’) {
4649 /*
4650 * This is not ".." -- we can just store the
4651 * "/." and this character and continue
4652 * processing.
4653 */
4654 dest[j++] = ’/’;
4655 dest[j++] = ’.’;
4656 dest[j++] = c;
4657 continue;
4658 }

4660 c = dtrace_load8(src + i++);

4662 if (c != ’/’ && c != ’\0’) {
4663 /*
4664 * This is not ".." -- it’s "..[mumble]".
4665 * We’ll store the "/.." and this character
4666 * and continue processing.
4667 */
4668 dest[j++] = ’/’;
4669 dest[j++] = ’.’;
4670 dest[j++] = ’.’;
4671 dest[j++] = c;
4672 continue;
4673 }

4675 /*
4676 * This is "/../" or "/..\0". We need to back up
4677 * our destination pointer until we find a "/".
4678 */
4679 i--;
4680 while (j != 0 && dest[--j] != ’/’)
4681 continue;

4683 if (c == ’\0’)
4684 dest[++j] = ’/’;
4685 } while (c != ’\0’);

4687 dest[j] = ’\0’;

4689 if (mstate->dtms_getf != NULL &&
4690 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&

new/usr/src/uts/common/dtrace/dtrace.c 71

4691 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
4692 /*
4693 * If we’ve done a getf() as a part of this ECB and we
4694 * don’t have kernel access (and we’re not in the global
4695 * zone), check if the path we cleaned up begins with
4696 * the zone’s root path, and trim it off if so. Note
4697 * that this is an output cleanliness issue, not a
4698 * security issue: knowing one’s zone root path does
4699 * not enable privilege escalation.
4700 */
4701 if (strstr(dest, z->zone_rootpath) == dest)
4702 dest += strlen(z->zone_rootpath) - 1;
4703 }

4705 #endif /* ! codereview */
4706 regs[rd] = (uintptr_t)dest;
4707 mstate->dtms_scratch_ptr += size;
4708 break;
4709 }

4711 case DIF_SUBR_INET_NTOA:
4712 case DIF_SUBR_INET_NTOA6:
4713 case DIF_SUBR_INET_NTOP: {
4714 size_t size;
4715 int af, argi, i;
4716 char *base, *end;

4718 if (subr == DIF_SUBR_INET_NTOP) {
4719 af = (int)tupregs[0].dttk_value;
4720 argi = 1;
4721 } else {
4722 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4723 argi = 0;
4724 }

4726 if (af == AF_INET) {
4727 ipaddr_t ip4;
4728 uint8_t *ptr8, val;

4730 /*
4731 * Safely load the IPv4 address.
4732 */
4733 ip4 = dtrace_load32(tupregs[argi].dttk_value);

4735 /*
4736 * Check an IPv4 string will fit in scratch.
4737 */
4738 size = INET_ADDRSTRLEN;
4739 if (!DTRACE_INSCRATCH(mstate, size)) {
4740 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4741 regs[rd] = NULL;
4742 break;
4743 }
4744 base = (char *)mstate->dtms_scratch_ptr;
4745 end = (char *)mstate->dtms_scratch_ptr + size - 1;

4747 /*
4748 * Stringify as a dotted decimal quad.
4749 */
4750 *end-- = ’\0’;
4751 ptr8 = (uint8_t *)&ip4;
4752 for (i = 3; i >= 0; i--) {
4753 val = ptr8[i];

4755 if (val == 0) {
4756 *end-- = ’0’;

new/usr/src/uts/common/dtrace/dtrace.c 72

4757 } else {
4758 for (; val; val /= 10) {
4759 *end-- = ’0’ + (val % 10);
4760 }
4761 }

4763 if (i > 0)
4764 *end-- = ’.’;
4765 }
4766 ASSERT(end + 1 >= base);

4768 } else if (af == AF_INET6) {
4769 struct in6_addr ip6;
4770 int firstzero, tryzero, numzero, v6end;
4771 uint16_t val;
4772 const char digits[] = "0123456789abcdef";

4774 /*
4775 * Stringify using RFC 1884 convention 2 - 16 bit
4776 * hexadecimal values with a zero-run compression.
4777 * Lower case hexadecimal digits are used.
4778 * eg, fe80::214:4fff:fe0b:76c8.
4779 * The IPv4 embedded form is returned for inet_ntop,
4780 * just the IPv4 string is returned for inet_ntoa6.
4781 */

4783 /*
4784 * Safely load the IPv6 address.
4785 */
4786 dtrace_bcopy(
4787 (void *)(uintptr_t)tupregs[argi].dttk_value,
4788 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));

4790 /*
4791 * Check an IPv6 string will fit in scratch.
4792 */
4793 size = INET6_ADDRSTRLEN;
4794 if (!DTRACE_INSCRATCH(mstate, size)) {
4795 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4796 regs[rd] = NULL;
4797 break;
4798 }
4799 base = (char *)mstate->dtms_scratch_ptr;
4800 end = (char *)mstate->dtms_scratch_ptr + size - 1;
4801 *end-- = ’\0’;

4803 /*
4804 * Find the longest run of 16 bit zero values
4805 * for the single allowed zero compression - "::".
4806 */
4807 firstzero = -1;
4808 tryzero = -1;
4809 numzero = 1;
4810 for (i = 0; i < sizeof (struct in6_addr); i++) {
4811 if (ip6._S6_un._S6_u8[i] == 0 &&
4812 tryzero == -1 && i % 2 == 0) {
4813 tryzero = i;
4814 continue;
4815 }

4817 if (tryzero != -1 &&
4818 (ip6._S6_un._S6_u8[i] != 0 ||
4819 i == sizeof (struct in6_addr) - 1)) {

4821 if (i - tryzero <= numzero) {
4822 tryzero = -1;

new/usr/src/uts/common/dtrace/dtrace.c 73

4823 continue;
4824 }

4826 firstzero = tryzero;
4827 numzero = i - i % 2 - tryzero;
4828 tryzero = -1;

4830 if (ip6._S6_un._S6_u8[i] == 0 &&
4831 i == sizeof (struct in6_addr) - 1)
4832 numzero += 2;
4833 }
4834 }
4835 ASSERT(firstzero + numzero <= sizeof (struct in6_addr));

4837 /*
4838 * Check for an IPv4 embedded address.
4839 */
4840 v6end = sizeof (struct in6_addr) - 2;
4841 if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4842 IN6_IS_ADDR_V4COMPAT(&ip6)) {
4843 for (i = sizeof (struct in6_addr) - 1;
4844 i >= DTRACE_V4MAPPED_OFFSET; i--) {
4845 ASSERT(end >= base);

4847 val = ip6._S6_un._S6_u8[i];

4849 if (val == 0) {
4850 *end-- = ’0’;
4851 } else {
4852 for (; val; val /= 10) {
4853 *end-- = ’0’ + val % 10;
4854 }
4855 }

4857 if (i > DTRACE_V4MAPPED_OFFSET)
4858 *end-- = ’.’;
4859 }

4861 if (subr == DIF_SUBR_INET_NTOA6)
4862 goto inetout;

4864 /*
4865 * Set v6end to skip the IPv4 address that
4866 * we have already stringified.
4867 */
4868 v6end = 10;
4869 }

4871 /*
4872 * Build the IPv6 string by working through the
4873 * address in reverse.
4874 */
4875 for (i = v6end; i >= 0; i -= 2) {
4876 ASSERT(end >= base);

4878 if (i == firstzero + numzero - 2) {
4879 *end-- = ’:’;
4880 *end-- = ’:’;
4881 i -= numzero - 2;
4882 continue;
4883 }

4885 if (i < 14 && i != firstzero - 2)
4886 *end-- = ’:’;

4888 val = (ip6._S6_un._S6_u8[i] << 8) +

new/usr/src/uts/common/dtrace/dtrace.c 74

4889 ip6._S6_un._S6_u8[i + 1];

4891 if (val == 0) {
4892 *end-- = ’0’;
4893 } else {
4894 for (; val; val /= 16) {
4895 *end-- = digits[val % 16];
4896 }
4897 }
4898 }
4899 ASSERT(end + 1 >= base);

4901 } else {
4902 /*
4903 * The user didn’t use AH_INET or AH_INET6.
4904 */
4905 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4906 regs[rd] = NULL;
4907 break;
4908 }

4910 inetout: regs[rd] = (uintptr_t)end + 1;
4911 mstate->dtms_scratch_ptr += size;
4912 break;
4913 }

4915 }
4916 }

4918 /*
4919 * Emulate the execution of DTrace IR instructions specified by the given
4920 * DIF object. This function is deliberately void of assertions as all of
4921 * the necessary checks are handled by a call to dtrace_difo_validate().
4922 */
4923 static uint64_t
4924 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4925 dtrace_vstate_t *vstate, dtrace_state_t *state)
4926 {
4927 const dif_instr_t *text = difo->dtdo_buf;
4928 const uint_t textlen = difo->dtdo_len;
4929 const char *strtab = difo->dtdo_strtab;
4930 const uint64_t *inttab = difo->dtdo_inttab;

4932 uint64_t rval = 0;
4933 dtrace_statvar_t *svar;
4934 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4935 dtrace_difv_t *v;
4936 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4937 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;

4939 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4940 uint64_t regs[DIF_DIR_NREGS];
4941 uint64_t *tmp;

4943 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4944 int64_t cc_r;
4945 uint_t pc = 0, id, opc;
4946 uint8_t ttop = 0;
4947 dif_instr_t instr;
4948 uint_t r1, r2, rd;

4950 /*
4951 * We stash the current DIF object into the machine state: we need it
4952 * for subsequent access checking.
4953 */
4954 mstate->dtms_difo = difo;

new/usr/src/uts/common/dtrace/dtrace.c 75

4956 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */

4958 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4959 opc = pc;

4961 instr = text[pc++];
4962 r1 = DIF_INSTR_R1(instr);
4963 r2 = DIF_INSTR_R2(instr);
4964 rd = DIF_INSTR_RD(instr);

4966 switch (DIF_INSTR_OP(instr)) {
4967 case DIF_OP_OR:
4968 regs[rd] = regs[r1] | regs[r2];
4969 break;
4970 case DIF_OP_XOR:
4971 regs[rd] = regs[r1] ^ regs[r2];
4972 break;
4973 case DIF_OP_AND:
4974 regs[rd] = regs[r1] & regs[r2];
4975 break;
4976 case DIF_OP_SLL:
4977 regs[rd] = regs[r1] << regs[r2];
4978 break;
4979 case DIF_OP_SRL:
4980 regs[rd] = regs[r1] >> regs[r2];
4981 break;
4982 case DIF_OP_SUB:
4983 regs[rd] = regs[r1] - regs[r2];
4984 break;
4985 case DIF_OP_ADD:
4986 regs[rd] = regs[r1] + regs[r2];
4987 break;
4988 case DIF_OP_MUL:
4989 regs[rd] = regs[r1] * regs[r2];
4990 break;
4991 case DIF_OP_SDIV:
4992 if (regs[r2] == 0) {
4993 regs[rd] = 0;
4994 *flags |= CPU_DTRACE_DIVZERO;
4995 } else {
4996 regs[rd] = (int64_t)regs[r1] /
4997 (int64_t)regs[r2];
4998 }
4999 break;

5001 case DIF_OP_UDIV:
5002 if (regs[r2] == 0) {
5003 regs[rd] = 0;
5004 *flags |= CPU_DTRACE_DIVZERO;
5005 } else {
5006 regs[rd] = regs[r1] / regs[r2];
5007 }
5008 break;

5010 case DIF_OP_SREM:
5011 if (regs[r2] == 0) {
5012 regs[rd] = 0;
5013 *flags |= CPU_DTRACE_DIVZERO;
5014 } else {
5015 regs[rd] = (int64_t)regs[r1] %
5016 (int64_t)regs[r2];
5017 }
5018 break;

5020 case DIF_OP_UREM:

new/usr/src/uts/common/dtrace/dtrace.c 76

5021 if (regs[r2] == 0) {
5022 regs[rd] = 0;
5023 *flags |= CPU_DTRACE_DIVZERO;
5024 } else {
5025 regs[rd] = regs[r1] % regs[r2];
5026 }
5027 break;

5029 case DIF_OP_NOT:
5030 regs[rd] = ~regs[r1];
5031 break;
5032 case DIF_OP_MOV:
5033 regs[rd] = regs[r1];
5034 break;
5035 case DIF_OP_CMP:
5036 cc_r = regs[r1] - regs[r2];
5037 cc_n = cc_r < 0;
5038 cc_z = cc_r == 0;
5039 cc_v = 0;
5040 cc_c = regs[r1] < regs[r2];
5041 break;
5042 case DIF_OP_TST:
5043 cc_n = cc_v = cc_c = 0;
5044 cc_z = regs[r1] == 0;
5045 break;
5046 case DIF_OP_BA:
5047 pc = DIF_INSTR_LABEL(instr);
5048 break;
5049 case DIF_OP_BE:
5050 if (cc_z)
5051 pc = DIF_INSTR_LABEL(instr);
5052 break;
5053 case DIF_OP_BNE:
5054 if (cc_z == 0)
5055 pc = DIF_INSTR_LABEL(instr);
5056 break;
5057 case DIF_OP_BG:
5058 if ((cc_z | (cc_n ^ cc_v)) == 0)
5059 pc = DIF_INSTR_LABEL(instr);
5060 break;
5061 case DIF_OP_BGU:
5062 if ((cc_c | cc_z) == 0)
5063 pc = DIF_INSTR_LABEL(instr);
5064 break;
5065 case DIF_OP_BGE:
5066 if ((cc_n ^ cc_v) == 0)
5067 pc = DIF_INSTR_LABEL(instr);
5068 break;
5069 case DIF_OP_BGEU:
5070 if (cc_c == 0)
5071 pc = DIF_INSTR_LABEL(instr);
5072 break;
5073 case DIF_OP_BL:
5074 if (cc_n ^ cc_v)
5075 pc = DIF_INSTR_LABEL(instr);
5076 break;
5077 case DIF_OP_BLU:
5078 if (cc_c)
5079 pc = DIF_INSTR_LABEL(instr);
5080 break;
5081 case DIF_OP_BLE:
5082 if (cc_z | (cc_n ^ cc_v))
5083 pc = DIF_INSTR_LABEL(instr);
5084 break;
5085 case DIF_OP_BLEU:
5086 if (cc_c | cc_z)

new/usr/src/uts/common/dtrace/dtrace.c 77

5087 pc = DIF_INSTR_LABEL(instr);
5088 break;
5089 case DIF_OP_RLDSB:
5090 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
2078 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
2079 *flags |= CPU_DTRACE_KPRIV;
2080 *illval = regs[r1];
5091 break;
2082 }
5092 /*FALLTHROUGH*/
5093 case DIF_OP_LDSB:
5094 regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5095 break;
5096 case DIF_OP_RLDSH:
5097 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
2088 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
2089 *flags |= CPU_DTRACE_KPRIV;
2090 *illval = regs[r1];
5098 break;
2092 }
5099 /*FALLTHROUGH*/
5100 case DIF_OP_LDSH:
5101 regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5102 break;
5103 case DIF_OP_RLDSW:
5104 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
2098 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
2099 *flags |= CPU_DTRACE_KPRIV;
2100 *illval = regs[r1];
5105 break;
2102 }
5106 /*FALLTHROUGH*/
5107 case DIF_OP_LDSW:
5108 regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5109 break;
5110 case DIF_OP_RLDUB:
5111 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
2108 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
2109 *flags |= CPU_DTRACE_KPRIV;
2110 *illval = regs[r1];
5112 break;
2112 }
5113 /*FALLTHROUGH*/
5114 case DIF_OP_LDUB:
5115 regs[rd] = dtrace_load8(regs[r1]);
5116 break;
5117 case DIF_OP_RLDUH:
5118 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
2118 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
2119 *flags |= CPU_DTRACE_KPRIV;
2120 *illval = regs[r1];
5119 break;
2122 }
5120 /*FALLTHROUGH*/
5121 case DIF_OP_LDUH:
5122 regs[rd] = dtrace_load16(regs[r1]);
5123 break;
5124 case DIF_OP_RLDUW:
5125 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
2128 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
2129 *flags |= CPU_DTRACE_KPRIV;
2130 *illval = regs[r1];
5126 break;
2132 }
5127 /*FALLTHROUGH*/
5128 case DIF_OP_LDUW:

new/usr/src/uts/common/dtrace/dtrace.c 78

5129 regs[rd] = dtrace_load32(regs[r1]);
5130 break;
5131 case DIF_OP_RLDX:
5132 if (!dtrace_canload(regs[r1], 8, mstate, vstate))
2138 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
2139 *flags |= CPU_DTRACE_KPRIV;
2140 *illval = regs[r1];
5133 break;
2142 }
5134 /*FALLTHROUGH*/
5135 case DIF_OP_LDX:
5136 regs[rd] = dtrace_load64(regs[r1]);
5137 break;
5138 case DIF_OP_ULDSB:
5139 regs[rd] = (int8_t)
5140 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5141 break;
5142 case DIF_OP_ULDSH:
5143 regs[rd] = (int16_t)
5144 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5145 break;
5146 case DIF_OP_ULDSW:
5147 regs[rd] = (int32_t)
5148 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5149 break;
5150 case DIF_OP_ULDUB:
5151 regs[rd] =
5152 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5153 break;
5154 case DIF_OP_ULDUH:
5155 regs[rd] =
5156 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5157 break;
5158 case DIF_OP_ULDUW:
5159 regs[rd] =
5160 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5161 break;
5162 case DIF_OP_ULDX:
5163 regs[rd] =
5164 dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5165 break;
5166 case DIF_OP_RET:
5167 rval = regs[rd];
5168 pc = textlen;
5169 break;
5170 case DIF_OP_NOP:
5171 break;
5172 case DIF_OP_SETX:
5173 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5174 break;
5175 case DIF_OP_SETS:
5176 regs[rd] = (uint64_t)(uintptr_t)
5177 (strtab + DIF_INSTR_STRING(instr));
5178 break;
5179 case DIF_OP_SCMP: {
5180 size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5181 uintptr_t s1 = regs[r1];
5182 uintptr_t s2 = regs[r2];

5184 if (s1 != NULL &&
5185 !dtrace_strcanload(s1, sz, mstate, vstate))
5186 break;
5187 if (s2 != NULL &&
5188 !dtrace_strcanload(s2, sz, mstate, vstate))
5189 break;

new/usr/src/uts/common/dtrace/dtrace.c 79

5191 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);

5193 cc_n = cc_r < 0;
5194 cc_z = cc_r == 0;
5195 cc_v = cc_c = 0;
5196 break;
5197 }
5198 case DIF_OP_LDGA:
5199 regs[rd] = dtrace_dif_variable(mstate, state,
5200 r1, regs[r2]);
5201 break;
5202 case DIF_OP_LDGS:
5203 id = DIF_INSTR_VAR(instr);

5205 if (id >= DIF_VAR_OTHER_UBASE) {
5206 uintptr_t a;

5208 id -= DIF_VAR_OTHER_UBASE;
5209 svar = vstate->dtvs_globals[id];
5210 ASSERT(svar != NULL);
5211 v = &svar->dtsv_var;

5213 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5214 regs[rd] = svar->dtsv_data;
5215 break;
5216 }

5218 a = (uintptr_t)svar->dtsv_data;

5220 if (*(uint8_t *)a == UINT8_MAX) {
5221 /*
5222 * If the 0th byte is set to UINT8_MAX
5223 * then this is to be treated as a
5224 * reference to a NULL variable.
5225 */
5226 regs[rd] = NULL;
5227 } else {
5228 regs[rd] = a + sizeof (uint64_t);
5229 }

5231 break;
5232 }

5234 regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5235 break;

5237 case DIF_OP_STGS:
5238 id = DIF_INSTR_VAR(instr);

5240 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5241 id -= DIF_VAR_OTHER_UBASE;

5243 svar = vstate->dtvs_globals[id];
5244 ASSERT(svar != NULL);
5245 v = &svar->dtsv_var;

5247 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5248 uintptr_t a = (uintptr_t)svar->dtsv_data;

5250 ASSERT(a != NULL);
5251 ASSERT(svar->dtsv_size != 0);

5253 if (regs[rd] == NULL) {
5254 *(uint8_t *)a = UINT8_MAX;
5255 break;
5256 } else {

new/usr/src/uts/common/dtrace/dtrace.c 80

5257 *(uint8_t *)a = 0;
5258 a += sizeof (uint64_t);
5259 }
5260 if (!dtrace_vcanload(
5261 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5262 mstate, vstate))
5263 break;

5265 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5266 (void *)a, &v->dtdv_type);
5267 break;
5268 }

5270 svar->dtsv_data = regs[rd];
5271 break;

5273 case DIF_OP_LDTA:
5274 /*
5275 * There are no DTrace built-in thread-local arrays at
5276 * present. This opcode is saved for future work.
5277 */
5278 *flags |= CPU_DTRACE_ILLOP;
5279 regs[rd] = 0;
5280 break;

5282 case DIF_OP_LDLS:
5283 id = DIF_INSTR_VAR(instr);

5285 if (id < DIF_VAR_OTHER_UBASE) {
5286 /*
5287 * For now, this has no meaning.
5288 */
5289 regs[rd] = 0;
5290 break;
5291 }

5293 id -= DIF_VAR_OTHER_UBASE;

5295 ASSERT(id < vstate->dtvs_nlocals);
5296 ASSERT(vstate->dtvs_locals != NULL);

5298 svar = vstate->dtvs_locals[id];
5299 ASSERT(svar != NULL);
5300 v = &svar->dtsv_var;

5302 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5303 uintptr_t a = (uintptr_t)svar->dtsv_data;
5304 size_t sz = v->dtdv_type.dtdt_size;

5306 sz += sizeof (uint64_t);
5307 ASSERT(svar->dtsv_size == NCPU * sz);
5308 a += CPU->cpu_id * sz;

5310 if (*(uint8_t *)a == UINT8_MAX) {
5311 /*
5312 * If the 0th byte is set to UINT8_MAX
5313 * then this is to be treated as a
5314 * reference to a NULL variable.
5315 */
5316 regs[rd] = NULL;
5317 } else {
5318 regs[rd] = a + sizeof (uint64_t);
5319 }

5321 break;
5322 }

new/usr/src/uts/common/dtrace/dtrace.c 81

5324 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5325 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5326 regs[rd] = tmp[CPU->cpu_id];
5327 break;

5329 case DIF_OP_STLS:
5330 id = DIF_INSTR_VAR(instr);

5332 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5333 id -= DIF_VAR_OTHER_UBASE;
5334 ASSERT(id < vstate->dtvs_nlocals);

5336 ASSERT(vstate->dtvs_locals != NULL);
5337 svar = vstate->dtvs_locals[id];
5338 ASSERT(svar != NULL);
5339 v = &svar->dtsv_var;

5341 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5342 uintptr_t a = (uintptr_t)svar->dtsv_data;
5343 size_t sz = v->dtdv_type.dtdt_size;

5345 sz += sizeof (uint64_t);
5346 ASSERT(svar->dtsv_size == NCPU * sz);
5347 a += CPU->cpu_id * sz;

5349 if (regs[rd] == NULL) {
5350 *(uint8_t *)a = UINT8_MAX;
5351 break;
5352 } else {
5353 *(uint8_t *)a = 0;
5354 a += sizeof (uint64_t);
5355 }

5357 if (!dtrace_vcanload(
5358 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5359 mstate, vstate))
5360 break;

5362 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5363 (void *)a, &v->dtdv_type);
5364 break;
5365 }

5367 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5368 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5369 tmp[CPU->cpu_id] = regs[rd];
5370 break;

5372 case DIF_OP_LDTS: {
5373 dtrace_dynvar_t *dvar;
5374 dtrace_key_t *key;

5376 id = DIF_INSTR_VAR(instr);
5377 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5378 id -= DIF_VAR_OTHER_UBASE;
5379 v = &vstate->dtvs_tlocals[id];

5381 key = &tupregs[DIF_DTR_NREGS];
5382 key[0].dttk_value = (uint64_t)id;
5383 key[0].dttk_size = 0;
5384 DTRACE_TLS_THRKEY(key[1].dttk_value);
5385 key[1].dttk_size = 0;

5387 dvar = dtrace_dynvar(dstate, 2, key,
5388 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,

new/usr/src/uts/common/dtrace/dtrace.c 82

5389 mstate, vstate);

5391 if (dvar == NULL) {
5392 regs[rd] = 0;
5393 break;
5394 }

5396 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5397 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5398 } else {
5399 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5400 }

5402 break;
5403 }

5405 case DIF_OP_STTS: {
5406 dtrace_dynvar_t *dvar;
5407 dtrace_key_t *key;

5409 id = DIF_INSTR_VAR(instr);
5410 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5411 id -= DIF_VAR_OTHER_UBASE;

5413 key = &tupregs[DIF_DTR_NREGS];
5414 key[0].dttk_value = (uint64_t)id;
5415 key[0].dttk_size = 0;
5416 DTRACE_TLS_THRKEY(key[1].dttk_value);
5417 key[1].dttk_size = 0;
5418 v = &vstate->dtvs_tlocals[id];

5420 dvar = dtrace_dynvar(dstate, 2, key,
5421 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5422 v->dtdv_type.dtdt_size : sizeof (uint64_t),
5423 regs[rd] ? DTRACE_DYNVAR_ALLOC :
5424 DTRACE_DYNVAR_DEALLOC, mstate, vstate);

5426 /*
5427 * Given that we’re storing to thread-local data,
5428 * we need to flush our predicate cache.
5429 */
5430 curthread->t_predcache = NULL;

5432 if (dvar == NULL)
5433 break;

5435 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5436 if (!dtrace_vcanload(
5437 (void *)(uintptr_t)regs[rd],
5438 &v->dtdv_type, mstate, vstate))
5439 break;

5441 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5442 dvar->dtdv_data, &v->dtdv_type);
5443 } else {
5444 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5445 }

5447 break;
5448 }

5450 case DIF_OP_SRA:
5451 regs[rd] = (int64_t)regs[r1] >> regs[r2];
5452 break;

5454 case DIF_OP_CALL:

new/usr/src/uts/common/dtrace/dtrace.c 83

5455 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5456 regs, tupregs, ttop, mstate, state);
5457 break;

5459 case DIF_OP_PUSHTR:
5460 if (ttop == DIF_DTR_NREGS) {
5461 *flags |= CPU_DTRACE_TUPOFLOW;
5462 break;
5463 }

5465 if (r1 == DIF_TYPE_STRING) {
5466 /*
5467 * If this is a string type and the size is 0,
5468 * we’ll use the system-wide default string
5469 * size. Note that we are _not_ looking at
5470 * the value of the DTRACEOPT_STRSIZE option;
5471 * had this been set, we would expect to have
5472 * a non-zero size value in the "pushtr".
5473 */
5474 tupregs[ttop].dttk_size =
5475 dtrace_strlen((char *)(uintptr_t)regs[rd],
5476 regs[r2] ? regs[r2] :
5477 dtrace_strsize_default) + 1;
5478 } else {
5479 tupregs[ttop].dttk_size = regs[r2];
5480 }

5482 tupregs[ttop++].dttk_value = regs[rd];
5483 break;

5485 case DIF_OP_PUSHTV:
5486 if (ttop == DIF_DTR_NREGS) {
5487 *flags |= CPU_DTRACE_TUPOFLOW;
5488 break;
5489 }

5491 tupregs[ttop].dttk_value = regs[rd];
5492 tupregs[ttop++].dttk_size = 0;
5493 break;

5495 case DIF_OP_POPTS:
5496 if (ttop != 0)
5497 ttop--;
5498 break;

5500 case DIF_OP_FLUSHTS:
5501 ttop = 0;
5502 break;

5504 case DIF_OP_LDGAA:
5505 case DIF_OP_LDTAA: {
5506 dtrace_dynvar_t *dvar;
5507 dtrace_key_t *key = tupregs;
5508 uint_t nkeys = ttop;

5510 id = DIF_INSTR_VAR(instr);
5511 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5512 id -= DIF_VAR_OTHER_UBASE;

5514 key[nkeys].dttk_value = (uint64_t)id;
5515 key[nkeys++].dttk_size = 0;

5517 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5518 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5519 key[nkeys++].dttk_size = 0;
5520 v = &vstate->dtvs_tlocals[id];

new/usr/src/uts/common/dtrace/dtrace.c 84

5521 } else {
5522 v = &vstate->dtvs_globals[id]->dtsv_var;
5523 }

5525 dvar = dtrace_dynvar(dstate, nkeys, key,
5526 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5527 v->dtdv_type.dtdt_size : sizeof (uint64_t),
5528 DTRACE_DYNVAR_NOALLOC, mstate, vstate);

5530 if (dvar == NULL) {
5531 regs[rd] = 0;
5532 break;
5533 }

5535 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5536 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5537 } else {
5538 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5539 }

5541 break;
5542 }

5544 case DIF_OP_STGAA:
5545 case DIF_OP_STTAA: {
5546 dtrace_dynvar_t *dvar;
5547 dtrace_key_t *key = tupregs;
5548 uint_t nkeys = ttop;

5550 id = DIF_INSTR_VAR(instr);
5551 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5552 id -= DIF_VAR_OTHER_UBASE;

5554 key[nkeys].dttk_value = (uint64_t)id;
5555 key[nkeys++].dttk_size = 0;

5557 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5558 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5559 key[nkeys++].dttk_size = 0;
5560 v = &vstate->dtvs_tlocals[id];
5561 } else {
5562 v = &vstate->dtvs_globals[id]->dtsv_var;
5563 }

5565 dvar = dtrace_dynvar(dstate, nkeys, key,
5566 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5567 v->dtdv_type.dtdt_size : sizeof (uint64_t),
5568 regs[rd] ? DTRACE_DYNVAR_ALLOC :
5569 DTRACE_DYNVAR_DEALLOC, mstate, vstate);

5571 if (dvar == NULL)
5572 break;

5574 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5575 if (!dtrace_vcanload(
5576 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5577 mstate, vstate))
5578 break;

5580 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5581 dvar->dtdv_data, &v->dtdv_type);
5582 } else {
5583 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5584 }

5586 break;

new/usr/src/uts/common/dtrace/dtrace.c 85

5587 }

5589 case DIF_OP_ALLOCS: {
5590 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5591 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];

5593 /*
5594 * Rounding up the user allocation size could have
5595 * overflowed large, bogus allocations (like -1ULL) to
5596 * 0.
5597 */
5598 if (size < regs[r1] ||
5599 !DTRACE_INSCRATCH(mstate, size)) {
5600 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5601 regs[rd] = NULL;
5602 break;
5603 }

5605 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5606 mstate->dtms_scratch_ptr += size;
5607 regs[rd] = ptr;
5608 break;
5609 }

5611 case DIF_OP_COPYS:
5612 if (!dtrace_canstore(regs[rd], regs[r2],
5613 mstate, vstate)) {
5614 *flags |= CPU_DTRACE_BADADDR;
5615 *illval = regs[rd];
5616 break;
5617 }

5619 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5620 break;

5622 dtrace_bcopy((void *)(uintptr_t)regs[r1],
5623 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5624 break;

5626 case DIF_OP_STB:
5627 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5628 *flags |= CPU_DTRACE_BADADDR;
5629 *illval = regs[rd];
5630 break;
5631 }
5632 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5633 break;

5635 case DIF_OP_STH:
5636 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5637 *flags |= CPU_DTRACE_BADADDR;
5638 *illval = regs[rd];
5639 break;
5640 }
5641 if (regs[rd] & 1) {
5642 *flags |= CPU_DTRACE_BADALIGN;
5643 *illval = regs[rd];
5644 break;
5645 }
5646 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5647 break;

5649 case DIF_OP_STW:
5650 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5651 *flags |= CPU_DTRACE_BADADDR;
5652 *illval = regs[rd];

new/usr/src/uts/common/dtrace/dtrace.c 86

5653 break;
5654 }
5655 if (regs[rd] & 3) {
5656 *flags |= CPU_DTRACE_BADALIGN;
5657 *illval = regs[rd];
5658 break;
5659 }
5660 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5661 break;

5663 case DIF_OP_STX:
5664 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5665 *flags |= CPU_DTRACE_BADADDR;
5666 *illval = regs[rd];
5667 break;
5668 }
5669 if (regs[rd] & 7) {
5670 *flags |= CPU_DTRACE_BADALIGN;
5671 *illval = regs[rd];
5672 break;
5673 }
5674 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5675 break;
5676 }
5677 }

5679 if (!(*flags & CPU_DTRACE_FAULT))
5680 return (rval);

5682 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5683 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;

5685 return (0);
5686 }
______unchanged_portion_omitted_

5972 /*
5973 * If you’re looking for the epicenter of DTrace, you just found it. This
5974 * is the function called by the provider to fire a probe -- from which all
5975 * subsequent probe-context DTrace activity emanates.
5976 */
5977 void
5978 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5979 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5980 {
5981 processorid_t cpuid;
5982 dtrace_icookie_t cookie;
5983 dtrace_probe_t *probe;
5984 dtrace_mstate_t mstate;
5985 dtrace_ecb_t *ecb;
5986 dtrace_action_t *act;
5987 intptr_t offs;
5988 size_t size;
5989 int vtime, onintr;
5990 volatile uint16_t *flags;
5991 hrtime_t now, end;

5993 /*
5994 * Kick out immediately if this CPU is still being born (in which case
5995 * curthread will be set to -1) or the current thread can’t allow
5996 * probes in its current context.
5997 */
5998 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5999 return;

6001 cookie = dtrace_interrupt_disable();

new/usr/src/uts/common/dtrace/dtrace.c 87

6002 probe = dtrace_probes[id - 1];
6003 cpuid = CPU->cpu_id;
6004 onintr = CPU_ON_INTR(CPU);

6006 CPU->cpu_dtrace_probes++;

6008 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6009 probe->dtpr_predcache == curthread->t_predcache) {
6010 /*
6011 * We have hit in the predicate cache; we know that
6012 * this predicate would evaluate to be false.
6013 */
6014 dtrace_interrupt_enable(cookie);
6015 return;
6016 }

6018 if (panic_quiesce) {
6019 /*
6020 * We don’t trace anything if we’re panicking.
6021 */
6022 dtrace_interrupt_enable(cookie);
6023 return;
6024 }

6026 now = dtrace_gethrtime();
6027 vtime = dtrace_vtime_references != 0;

6029 if (vtime && curthread->t_dtrace_start)
6030 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;

6032 mstate.dtms_difo = NULL;
6033 mstate.dtms_probe = probe;
6034 mstate.dtms_strtok = NULL;
6035 mstate.dtms_arg[0] = arg0;
6036 mstate.dtms_arg[1] = arg1;
6037 mstate.dtms_arg[2] = arg2;
6038 mstate.dtms_arg[3] = arg3;
6039 mstate.dtms_arg[4] = arg4;

6041 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;

6043 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6044 dtrace_predicate_t *pred = ecb->dte_predicate;
6045 dtrace_state_t *state = ecb->dte_state;
6046 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6047 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6048 dtrace_vstate_t *vstate = &state->dts_vstate;
6049 dtrace_provider_t *prov = probe->dtpr_provider;
6050 uint64_t tracememsize = 0;
6051 int committed = 0;
6052 caddr_t tomax;

6054 /*
6055 * A little subtlety with the following (seemingly innocuous)
6056 * declaration of the automatic ’val’: by looking at the
6057 * code, you might think that it could be declared in the
6058 * action processing loop, below. (That is, it’s only used in
6059 * the action processing loop.) However, it must be declared
6060 * out of that scope because in the case of DIF expression
6061 * arguments to aggregating actions, one iteration of the
6062 * action loop will use the last iteration’s value.
6063 */
6064 #ifdef lint
6065 uint64_t val = 0;
6066 #else
6067 uint64_t val;

new/usr/src/uts/common/dtrace/dtrace.c 88

6068 #endif

6070 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6071 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
6072 mstate.dtms_getf = NULL;

6074 #endif /* ! codereview */
6075 *flags &= ~CPU_DTRACE_ERROR;

6077 if (prov == dtrace_provider) {
6078 /*
6079 * If dtrace itself is the provider of this probe,
6080 * we’re only going to continue processing the ECB if
6081 * arg0 (the dtrace_state_t) is equal to the ECB’s
6082 * creating state. (This prevents disjoint consumers
6083 * from seeing one another’s metaprobes.)
6084 */
6085 if (arg0 != (uint64_t)(uintptr_t)state)
6086 continue;
6087 }

6089 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6090 /*
6091 * We’re not currently active. If our provider isn’t
6092 * the dtrace pseudo provider, we’re not interested.
6093 */
6094 if (prov != dtrace_provider)
6095 continue;

6097 /*
6098 * Now we must further check if we are in the BEGIN
6099 * probe. If we are, we will only continue processing
6100 * if we’re still in WARMUP -- if one BEGIN enabling
6101 * has invoked the exit() action, we don’t want to
6102 * evaluate subsequent BEGIN enablings.
6103 */
6104 if (probe->dtpr_id == dtrace_probeid_begin &&
6105 state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6106 ASSERT(state->dts_activity ==
6107 DTRACE_ACTIVITY_DRAINING);
6108 continue;
6109 }
6110 }

6112 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
6113 continue;

6115 if (now - state->dts_alive > dtrace_deadman_timeout) {
6116 /*
6117 * We seem to be dead. Unless we (a) have kernel
6118 * destructive permissions (b) have explicitly enabled
6119 * destructive actions and (c) destructive actions have
6120 * not been disabled, we’re going to transition into
6121 * the KILLED state, from which no further processing
6122 * on this state will be performed.
6123 */
6124 if (!dtrace_priv_kernel_destructive(state) ||
6125 !state->dts_cred.dcr_destructive ||
6126 dtrace_destructive_disallow) {
6127 void *activity = &state->dts_activity;
6128 dtrace_activity_t current;

6130 do {
6131 current = state->dts_activity;
6132 } while (dtrace_cas32(activity, current,
6133 DTRACE_ACTIVITY_KILLED) != current);

new/usr/src/uts/common/dtrace/dtrace.c 89

6135 continue;
6136 }
6137 }

6139 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6140 ecb->dte_alignment, state, &mstate)) < 0)
6141 continue;

6143 tomax = buf->dtb_tomax;
6144 ASSERT(tomax != NULL);

6146 if (ecb->dte_size != 0) {
6147 dtrace_rechdr_t dtrh;
6148 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6149 mstate.dtms_timestamp = dtrace_gethrtime();
6150 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6151 }
6152 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6153 dtrh.dtrh_epid = ecb->dte_epid;
6154 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6155 mstate.dtms_timestamp);
6156 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6157 }

6159 mstate.dtms_epid = ecb->dte_epid;
6160 mstate.dtms_present |= DTRACE_MSTATE_EPID;

6162 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6163 mstate.dtms_access |= DTRACE_ACCESS_KERNEL;

6165 if (pred != NULL) {
6166 dtrace_difo_t *dp = pred->dtp_difo;
6167 int rval;

6169 rval = dtrace_dif_emulate(dp, &mstate, vstate, state);

6171 if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6172 dtrace_cacheid_t cid = probe->dtpr_predcache;

6174 if (cid != DTRACE_CACHEIDNONE && !onintr) {
6175 /*
6176 * Update the predicate cache...
6177 */
6178 ASSERT(cid == pred->dtp_cacheid);
6179 curthread->t_predcache = cid;
6180 }

6182 continue;
6183 }
6184 }

6186 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6187 act != NULL; act = act->dta_next) {
6188 size_t valoffs;
6189 dtrace_difo_t *dp;
6190 dtrace_recdesc_t *rec = &act->dta_rec;

6192 size = rec->dtrd_size;
6193 valoffs = offs + rec->dtrd_offset;

6195 if (DTRACEACT_ISAGG(act->dta_kind)) {
6196 uint64_t v = 0xbad;
6197 dtrace_aggregation_t *agg;

6199 agg = (dtrace_aggregation_t *)act;

new/usr/src/uts/common/dtrace/dtrace.c 90

6201 if ((dp = act->dta_difo) != NULL)
6202 v = dtrace_dif_emulate(dp,
6203 &mstate, vstate, state);

6205 if (*flags & CPU_DTRACE_ERROR)
6206 continue;

6208 /*
6209 * Note that we always pass the expression
6210 * value from the previous iteration of the
6211 * action loop. This value will only be used
6212 * if there is an expression argument to the
6213 * aggregating action, denoted by the
6214 * dtag_hasarg field.
6215 */
6216 dtrace_aggregate(agg, buf,
6217 offs, aggbuf, v, val);
6218 continue;
6219 }

6221 switch (act->dta_kind) {
6222 case DTRACEACT_STOP:
6223 if (dtrace_priv_proc_destructive(state,
6224 &mstate))
6225 dtrace_action_stop();
6226 continue;

6228 case DTRACEACT_BREAKPOINT:
6229 if (dtrace_priv_kernel_destructive(state))
6230 dtrace_action_breakpoint(ecb);
6231 continue;

6233 case DTRACEACT_PANIC:
6234 if (dtrace_priv_kernel_destructive(state))
6235 dtrace_action_panic(ecb);
6236 continue;

6238 case DTRACEACT_STACK:
6239 if (!dtrace_priv_kernel(state))
6240 continue;

6242 dtrace_getpcstack((pc_t *)(tomax + valoffs),
6243 size / sizeof (pc_t), probe->dtpr_aframes,
6244 DTRACE_ANCHORED(probe) ? NULL :
6245 (uint32_t *)arg0);

6247 continue;

6249 case DTRACEACT_JSTACK:
6250 case DTRACEACT_USTACK:
6251 if (!dtrace_priv_proc(state, &mstate))
6252 continue;

6254 /*
6255 * See comment in DIF_VAR_PID.
6256 */
6257 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6258 CPU_ON_INTR(CPU)) {
6259 int depth = DTRACE_USTACK_NFRAMES(
6260 rec->dtrd_arg) + 1;

6262 dtrace_bzero((void *)(tomax + valoffs),
6263 DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6264 + depth * sizeof (uint64_t));

new/usr/src/uts/common/dtrace/dtrace.c 91

6266 continue;
6267 }

6269 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6270 curproc->p_dtrace_helpers != NULL) {
6271 /*
6272 * This is the slow path -- we have
6273 * allocated string space, and we’re
6274 * getting the stack of a process that
6275 * has helpers. Call into a separate
6276 * routine to perform this processing.
6277 */
6278 dtrace_action_ustack(&mstate, state,
6279 (uint64_t *)(tomax + valoffs),
6280 rec->dtrd_arg);
6281 continue;
6282 }

6284 /*
6285 * Clear the string space, since there’s no
6286 * helper to do it for us.
6287 */
6288 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
6289 int depth = DTRACE_USTACK_NFRAMES(
6290 rec->dtrd_arg);
6291 size_t strsize = DTRACE_USTACK_STRSIZE(
6292 rec->dtrd_arg);
6293 uint64_t *buf = (uint64_t *)(tomax +
6294 valoffs);
6295 void *strspace = &buf[depth + 1];

6297 dtrace_bzero(strspace,
6298 MIN(depth, strsize));
6299 }

6301 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6302 dtrace_getupcstack((uint64_t *)
6303 (tomax + valoffs),
6304 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6305 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6306 continue;

6308 default:
6309 break;
6310 }

6312 dp = act->dta_difo;
6313 ASSERT(dp != NULL);

6315 val = dtrace_dif_emulate(dp, &mstate, vstate, state);

6317 if (*flags & CPU_DTRACE_ERROR)
6318 continue;

6320 switch (act->dta_kind) {
6321 case DTRACEACT_SPECULATE: {
6322 dtrace_rechdr_t *dtrh;

6324 ASSERT(buf == &state->dts_buffer[cpuid]);
6325 buf = dtrace_speculation_buffer(state,
6326 cpuid, val);

6328 if (buf == NULL) {
6329 *flags |= CPU_DTRACE_DROP;
6330 continue;
6331 }

new/usr/src/uts/common/dtrace/dtrace.c 92

6333 offs = dtrace_buffer_reserve(buf,
6334 ecb->dte_needed, ecb->dte_alignment,
6335 state, NULL);

6337 if (offs < 0) {
6338 *flags |= CPU_DTRACE_DROP;
6339 continue;
6340 }

6342 tomax = buf->dtb_tomax;
6343 ASSERT(tomax != NULL);

6345 if (ecb->dte_size == 0)
6346 continue;

6348 ASSERT3U(ecb->dte_size, >=,
6349 sizeof (dtrace_rechdr_t));
6350 dtrh = ((void *)(tomax + offs));
6351 dtrh->dtrh_epid = ecb->dte_epid;
6352 /*
6353 * When the speculation is committed, all of
6354 * the records in the speculative buffer will
6355 * have their timestamps set to the commit
6356 * time. Until then, it is set to a sentinel
6357 * value, for debugability.
6358 */
6359 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
6360 continue;
6361 }

6363 case DTRACEACT_CHILL:
6364 if (dtrace_priv_kernel_destructive(state))
6365 dtrace_action_chill(&mstate, val);
6366 continue;

6368 case DTRACEACT_RAISE:
6369 if (dtrace_priv_proc_destructive(state,
6370 &mstate))
6371 dtrace_action_raise(val);
6372 continue;

6374 case DTRACEACT_COMMIT:
6375 ASSERT(!committed);

6377 /*
6378 * We need to commit our buffer state.
6379 */
6380 if (ecb->dte_size)
6381 buf->dtb_offset = offs + ecb->dte_size;
6382 buf = &state->dts_buffer[cpuid];
6383 dtrace_speculation_commit(state, cpuid, val);
6384 committed = 1;
6385 continue;

6387 case DTRACEACT_DISCARD:
6388 dtrace_speculation_discard(state, cpuid, val);
6389 continue;

6391 case DTRACEACT_DIFEXPR:
6392 case DTRACEACT_LIBACT:
6393 case DTRACEACT_PRINTF:
6394 case DTRACEACT_PRINTA:
6395 case DTRACEACT_SYSTEM:
6396 case DTRACEACT_FREOPEN:
6397 case DTRACEACT_TRACEMEM:

new/usr/src/uts/common/dtrace/dtrace.c 93

6398 break;

6400 case DTRACEACT_TRACEMEM_DYNSIZE:
6401 tracememsize = val;
6402 break;

6404 case DTRACEACT_SYM:
6405 case DTRACEACT_MOD:
6406 if (!dtrace_priv_kernel(state))
6407 continue;
6408 break;

6410 case DTRACEACT_USYM:
6411 case DTRACEACT_UMOD:
6412 case DTRACEACT_UADDR: {
6413 struct pid *pid = curthread->t_procp->p_pidp;

6415 if (!dtrace_priv_proc(state, &mstate))
6416 continue;

6418 DTRACE_STORE(uint64_t, tomax,
6419 valoffs, (uint64_t)pid->pid_id);
6420 DTRACE_STORE(uint64_t, tomax,
6421 valoffs + sizeof (uint64_t), val);

6423 continue;
6424 }

6426 case DTRACEACT_EXIT: {
6427 /*
6428 * For the exit action, we are going to attempt
6429 * to atomically set our activity to be
6430 * draining. If this fails (either because
6431 * another CPU has beat us to the exit action,
6432 * or because our current activity is something
6433 * other than ACTIVE or WARMUP), we will
6434 * continue. This assures that the exit action
6435 * can be successfully recorded at most once
6436 * when we’re in the ACTIVE state. If we’re
6437 * encountering the exit() action while in
6438 * COOLDOWN, however, we want to honor the new
6439 * status code. (We know that we’re the only
6440 * thread in COOLDOWN, so there is no race.)
6441 */
6442 void *activity = &state->dts_activity;
6443 dtrace_activity_t current = state->dts_activity;

6445 if (current == DTRACE_ACTIVITY_COOLDOWN)
6446 break;

6448 if (current != DTRACE_ACTIVITY_WARMUP)
6449 current = DTRACE_ACTIVITY_ACTIVE;

6451 if (dtrace_cas32(activity, current,
6452 DTRACE_ACTIVITY_DRAINING) != current) {
6453 *flags |= CPU_DTRACE_DROP;
6454 continue;
6455 }

6457 break;
6458 }

6460 default:
6461 ASSERT(0);
6462 }

new/usr/src/uts/common/dtrace/dtrace.c 94

6464 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6465 uintptr_t end = valoffs + size;

6467 if (tracememsize != 0 &&
6468 valoffs + tracememsize < end) {
6469 end = valoffs + tracememsize;
6470 tracememsize = 0;
6471 }

6473 if (!dtrace_vcanload((void *)(uintptr_t)val,
6474 &dp->dtdo_rtype, &mstate, vstate))
6475 continue;

6477 /*
6478 * If this is a string, we’re going to only
6479 * load until we find the zero byte -- after
6480 * which we’ll store zero bytes.
6481 */
6482 if (dp->dtdo_rtype.dtdt_kind ==
6483 DIF_TYPE_STRING) {
6484 char c = ’\0’ + 1;
6485 int intuple = act->dta_intuple;
6486 size_t s;

6488 for (s = 0; s < size; s++) {
6489 if (c != ’\0’)
6490 c = dtrace_load8(val++);

6492 DTRACE_STORE(uint8_t, tomax,
6493 valoffs++, c);

6495 if (c == ’\0’ && intuple)
6496 break;
6497 }

6499 continue;
6500 }

6502 while (valoffs < end) {
6503 DTRACE_STORE(uint8_t, tomax, valoffs++,
6504 dtrace_load8(val++));
6505 }

6507 continue;
6508 }

6510 switch (size) {
6511 case 0:
6512 break;

6514 case sizeof (uint8_t):
6515 DTRACE_STORE(uint8_t, tomax, valoffs, val);
6516 break;
6517 case sizeof (uint16_t):
6518 DTRACE_STORE(uint16_t, tomax, valoffs, val);
6519 break;
6520 case sizeof (uint32_t):
6521 DTRACE_STORE(uint32_t, tomax, valoffs, val);
6522 break;
6523 case sizeof (uint64_t):
6524 DTRACE_STORE(uint64_t, tomax, valoffs, val);
6525 break;
6526 default:
6527 /*
6528 * Any other size should have been returned by
6529 * reference, not by value.

new/usr/src/uts/common/dtrace/dtrace.c 95

6530 */
6531 ASSERT(0);
6532 break;
6533 }
6534 }

6536 if (*flags & CPU_DTRACE_DROP)
6537 continue;

6539 if (*flags & CPU_DTRACE_FAULT) {
6540 int ndx;
6541 dtrace_action_t *err;

6543 buf->dtb_errors++;

6545 if (probe->dtpr_id == dtrace_probeid_error) {
6546 /*
6547 * There’s nothing we can do -- we had an
6548 * error on the error probe. We bump an
6549 * error counter to at least indicate that
6550 * this condition happened.
6551 */
6552 dtrace_error(&state->dts_dblerrors);
6553 continue;
6554 }

6556 if (vtime) {
6557 /*
6558 * Before recursing on dtrace_probe(), we
6559 * need to explicitly clear out our start
6560 * time to prevent it from being accumulated
6561 * into t_dtrace_vtime.
6562 */
6563 curthread->t_dtrace_start = 0;
6564 }

6566 /*
6567 * Iterate over the actions to figure out which action
6568 * we were processing when we experienced the error.
6569 * Note that act points _past_ the faulting action; if
6570 * act is ecb->dte_action, the fault was in the
6571 * predicate, if it’s ecb->dte_action->dta_next it’s
6572 * in action #1, and so on.
6573 */
6574 for (err = ecb->dte_action, ndx = 0;
6575 err != act; err = err->dta_next, ndx++)
6576 continue;

6578 dtrace_probe_error(state, ecb->dte_epid, ndx,
6579 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6580 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6581 cpu_core[cpuid].cpuc_dtrace_illval);

6583 continue;
6584 }

6586 if (!committed)
6587 buf->dtb_offset = offs + ecb->dte_size;
6588 }

6590 end = dtrace_gethrtime();
6591 if (vtime)
6592 curthread->t_dtrace_start = end;

6594 CPU->cpu_dtrace_nsec += end - now;

new/usr/src/uts/common/dtrace/dtrace.c 96

6596 dtrace_interrupt_enable(cookie);
6597 }

6599 /*
6600 * DTrace Probe Hashing Functions
6601 *
6602 * The functions in this section (and indeed, the functions in remaining
6603 * sections) are not _called_ from probe context. (Any exceptions to this are
6604 * marked with a "Note:".) Rather, they are called from elsewhere in the
6605 * DTrace framework to look-up probes in, add probes to and remove probes from
6606 * the DTrace probe hashes. (Each probe is hashed by each element of the
6607 * probe tuple -- allowing for fast lookups, regardless of what was
6608 * specified.)
6609 */
6610 static uint_t
6611 dtrace_hash_str(char *p)
6612 {
6613 unsigned int g;
6614 uint_t hval = 0;

6616 while (*p) {
6617 hval = (hval << 4) + *p++;
6618 if ((g = (hval & 0xf0000000)) != 0)
6619 hval ^= g >> 24;
6620 hval &= ~g;
6621 }
6622 return (hval);
6623 }

6625 static dtrace_hash_t *
6626 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6627 {
6628 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);

6630 hash->dth_stroffs = stroffs;
6631 hash->dth_nextoffs = nextoffs;
6632 hash->dth_prevoffs = prevoffs;

6634 hash->dth_size = 1;
6635 hash->dth_mask = hash->dth_size - 1;

6637 hash->dth_tab = kmem_zalloc(hash->dth_size *
6638 sizeof (dtrace_hashbucket_t *), KM_SLEEP);

6640 return (hash);
6641 }

6643 static void
6644 dtrace_hash_destroy(dtrace_hash_t *hash)
6645 {
6646 #ifdef DEBUG
6647 int i;

6649 for (i = 0; i < hash->dth_size; i++)
6650 ASSERT(hash->dth_tab[i] == NULL);
6651 #endif

6653 kmem_free(hash->dth_tab,
6654 hash->dth_size * sizeof (dtrace_hashbucket_t *));
6655 kmem_free(hash, sizeof (dtrace_hash_t));
6656 }

6658 static void
6659 dtrace_hash_resize(dtrace_hash_t *hash)
6660 {
6661 int size = hash->dth_size, i, ndx;

new/usr/src/uts/common/dtrace/dtrace.c 97

6662 int new_size = hash->dth_size << 1;
6663 int new_mask = new_size - 1;
6664 dtrace_hashbucket_t **new_tab, *bucket, *next;

6666 ASSERT((new_size & new_mask) == 0);

6668 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);

6670 for (i = 0; i < size; i++) {
6671 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6672 dtrace_probe_t *probe = bucket->dthb_chain;

6674 ASSERT(probe != NULL);
6675 ndx = DTRACE_HASHSTR(hash, probe) & new_mask;

6677 next = bucket->dthb_next;
6678 bucket->dthb_next = new_tab[ndx];
6679 new_tab[ndx] = bucket;
6680 }
6681 }

6683 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6684 hash->dth_tab = new_tab;
6685 hash->dth_size = new_size;
6686 hash->dth_mask = new_mask;
6687 }

6689 static void
6690 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6691 {
6692 int hashval = DTRACE_HASHSTR(hash, new);
6693 int ndx = hashval & hash->dth_mask;
6694 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6695 dtrace_probe_t **nextp, **prevp;

6697 for (; bucket != NULL; bucket = bucket->dthb_next) {
6698 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6699 goto add;
6700 }

6702 if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6703 dtrace_hash_resize(hash);
6704 dtrace_hash_add(hash, new);
6705 return;
6706 }

6708 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6709 bucket->dthb_next = hash->dth_tab[ndx];
6710 hash->dth_tab[ndx] = bucket;
6711 hash->dth_nbuckets++;

6713 add:
6714 nextp = DTRACE_HASHNEXT(hash, new);
6715 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6716 *nextp = bucket->dthb_chain;

6718 if (bucket->dthb_chain != NULL) {
6719 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6720 ASSERT(*prevp == NULL);
6721 *prevp = new;
6722 }

6724 bucket->dthb_chain = new;
6725 bucket->dthb_len++;
6726 }

new/usr/src/uts/common/dtrace/dtrace.c 98

6728 static dtrace_probe_t *
6729 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6730 {
6731 int hashval = DTRACE_HASHSTR(hash, template);
6732 int ndx = hashval & hash->dth_mask;
6733 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];

6735 for (; bucket != NULL; bucket = bucket->dthb_next) {
6736 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6737 return (bucket->dthb_chain);
6738 }

6740 return (NULL);
6741 }

6743 static int
6744 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6745 {
6746 int hashval = DTRACE_HASHSTR(hash, template);
6747 int ndx = hashval & hash->dth_mask;
6748 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];

6750 for (; bucket != NULL; bucket = bucket->dthb_next) {
6751 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6752 return (bucket->dthb_len);
6753 }

6755 return (NULL);
6756 }

6758 static void
6759 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6760 {
6761 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6762 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];

6764 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6765 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);

6767 /*
6768 * Find the bucket that we’re removing this probe from.
6769 */
6770 for (; bucket != NULL; bucket = bucket->dthb_next) {
6771 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6772 break;
6773 }

6775 ASSERT(bucket != NULL);

6777 if (*prevp == NULL) {
6778 if (*nextp == NULL) {
6779 /*
6780 * The removed probe was the only probe on this
6781 * bucket; we need to remove the bucket.
6782 */
6783 dtrace_hashbucket_t *b = hash->dth_tab[ndx];

6785 ASSERT(bucket->dthb_chain == probe);
6786 ASSERT(b != NULL);

6788 if (b == bucket) {
6789 hash->dth_tab[ndx] = bucket->dthb_next;
6790 } else {
6791 while (b->dthb_next != bucket)
6792 b = b->dthb_next;
6793 b->dthb_next = bucket->dthb_next;

new/usr/src/uts/common/dtrace/dtrace.c 99

6794 }

6796 ASSERT(hash->dth_nbuckets > 0);
6797 hash->dth_nbuckets--;
6798 kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6799 return;
6800 }

6802 bucket->dthb_chain = *nextp;
6803 } else {
6804 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6805 }

6807 if (*nextp != NULL)
6808 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6809 }

6811 /*
6812 * DTrace Utility Functions
6813 *
6814 * These are random utility functions that are _not_ called from probe context.
6815 */
6816 static int
6817 dtrace_badattr(const dtrace_attribute_t *a)
6818 {
6819 return (a->dtat_name > DTRACE_STABILITY_MAX ||
6820 a->dtat_data > DTRACE_STABILITY_MAX ||
6821 a->dtat_class > DTRACE_CLASS_MAX);
6822 }

6824 /*
6825 * Return a duplicate copy of a string. If the specified string is NULL,
6826 * this function returns a zero-length string.
6827 */
6828 static char *
6829 dtrace_strdup(const char *str)
6830 {
6831 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);

6833 if (str != NULL)
6834 (void) strcpy(new, str);

6836 return (new);
6837 }

6839 #define DTRACE_ISALPHA(c) \
6840 (((c) >= ’a’ && (c) <= ’z’) || ((c) >= ’A’ && (c) <= ’Z’))

6842 static int
6843 dtrace_badname(const char *s)
6844 {
6845 char c;

6847 if (s == NULL || (c = *s++) == ’\0’)
6848 return (0);

6850 if (!DTRACE_ISALPHA(c) && c != ’-’ && c != ’_’ && c != ’.’)
6851 return (1);

6853 while ((c = *s++) != ’\0’) {
6854 if (!DTRACE_ISALPHA(c) && (c < ’0’ || c > ’9’) &&
6855 c != ’-’ && c != ’_’ && c != ’.’ && c != ’‘’)
6856 return (1);
6857 }

6859 return (0);

new/usr/src/uts/common/dtrace/dtrace.c 100

6860 }

6862 static void
6863 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6864 {
6865 uint32_t priv;

6867 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6868 /*
6869 * For DTRACE_PRIV_ALL, the uid and zoneid don’t matter.
6870 */
6871 priv = DTRACE_PRIV_ALL;
6872 } else {
6873 *uidp = crgetuid(cr);
6874 *zoneidp = crgetzoneid(cr);

6876 priv = 0;
6877 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6878 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6879 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6880 priv |= DTRACE_PRIV_USER;
6881 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6882 priv |= DTRACE_PRIV_PROC;
6883 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6884 priv |= DTRACE_PRIV_OWNER;
6885 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6886 priv |= DTRACE_PRIV_ZONEOWNER;
6887 }

6889 *privp = priv;
6890 }

6892 #ifdef DTRACE_ERRDEBUG
6893 static void
6894 dtrace_errdebug(const char *str)
6895 {
6896 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
6897 int occupied = 0;

6899 mutex_enter(&dtrace_errlock);
6900 dtrace_errlast = str;
6901 dtrace_errthread = curthread;

6903 while (occupied++ < DTRACE_ERRHASHSZ) {
6904 if (dtrace_errhash[hval].dter_msg == str) {
6905 dtrace_errhash[hval].dter_count++;
6906 goto out;
6907 }

6909 if (dtrace_errhash[hval].dter_msg != NULL) {
6910 hval = (hval + 1) % DTRACE_ERRHASHSZ;
6911 continue;
6912 }

6914 dtrace_errhash[hval].dter_msg = str;
6915 dtrace_errhash[hval].dter_count = 1;
6916 goto out;
6917 }

6919 panic("dtrace: undersized error hash");
6920 out:
6921 mutex_exit(&dtrace_errlock);
6922 }
6923 #endif

6925 /*

new/usr/src/uts/common/dtrace/dtrace.c 101

6926 * DTrace Matching Functions
6927 *
6928 * These functions are used to match groups of probes, given some elements of
6929 * a probe tuple, or some globbed expressions for elements of a probe tuple.
6930 */
6931 static int
6932 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6933 zoneid_t zoneid)
6934 {
6935 if (priv != DTRACE_PRIV_ALL) {
6936 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6937 uint32_t match = priv & ppriv;

6939 /*
6940 * No PRIV_DTRACE_* privileges...
6941 */
6942 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6943 DTRACE_PRIV_KERNEL)) == 0)
6944 return (0);

6946 /*
6947 * No matching bits, but there were bits to match...
6948 */
6949 if (match == 0 && ppriv != 0)
6950 return (0);

6952 /*
6953 * Need to have permissions to the process, but don’t...
6954 */
6955 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6956 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6957 return (0);
6958 }

6960 /*
6961 * Need to be in the same zone unless we possess the
6962 * privilege to examine all zones.
6963 */
6964 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6965 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6966 return (0);
6967 }
6968 }

6970 return (1);
6971 }

6973 /*
6974 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6975 * consists of input pattern strings and an ops-vector to evaluate them.
6976 * This function returns >0 for match, 0 for no match, and <0 for error.
6977 */
6978 static int
6979 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6980 uint32_t priv, uid_t uid, zoneid_t zoneid)
6981 {
6982 dtrace_provider_t *pvp = prp->dtpr_provider;
6983 int rv;

6985 if (pvp->dtpv_defunct)
6986 return (0);

6988 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6989 return (rv);

6991 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)

new/usr/src/uts/common/dtrace/dtrace.c 102

6992 return (rv);

6994 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6995 return (rv);

6997 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6998 return (rv);

7000 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7001 return (0);

7003 return (rv);
7004 }

7006 /*
7007 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7008 * interface for matching a glob pattern ’p’ to an input string ’s’. Unlike
7009 * libc’s version, the kernel version only applies to 8-bit ASCII strings.
7010 * In addition, all of the recursion cases except for ’*’ matching have been
7011 * unwound. For ’*’, we still implement recursive evaluation, but a depth
7012 * counter is maintained and matching is aborted if we recurse too deep.
7013 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7014 */
7015 static int
7016 dtrace_match_glob(const char *s, const char *p, int depth)
7017 {
7018 const char *olds;
7019 char s1, c;
7020 int gs;

7022 if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7023 return (-1);

7025 if (s == NULL)
7026 s = ""; /* treat NULL as empty string */

7028 top:
7029 olds = s;
7030 s1 = *s++;

7032 if (p == NULL)
7033 return (0);

7035 if ((c = *p++) == ’\0’)
7036 return (s1 == ’\0’);

7038 switch (c) {
7039 case ’[’: {
7040 int ok = 0, notflag = 0;
7041 char lc = ’\0’;

7043 if (s1 == ’\0’)
7044 return (0);

7046 if (*p == ’!’) {
7047 notflag = 1;
7048 p++;
7049 }

7051 if ((c = *p++) == ’\0’)
7052 return (0);

7054 do {
7055 if (c == ’-’ && lc != ’\0’ && *p != ’]’) {
7056 if ((c = *p++) == ’\0’)
7057 return (0);

new/usr/src/uts/common/dtrace/dtrace.c 103

7058 if (c == ’\\’ && (c = *p++) == ’\0’)
7059 return (0);

7061 if (notflag) {
7062 if (s1 < lc || s1 > c)
7063 ok++;
7064 else
7065 return (0);
7066 } else if (lc <= s1 && s1 <= c)
7067 ok++;

7069 } else if (c == ’\\’ && (c = *p++) == ’\0’)
7070 return (0);

7072 lc = c; /* save left-hand ’c’ for next iteration */

7074 if (notflag) {
7075 if (s1 != c)
7076 ok++;
7077 else
7078 return (0);
7079 } else if (s1 == c)
7080 ok++;

7082 if ((c = *p++) == ’\0’)
7083 return (0);

7085 } while (c != ’]’);

7087 if (ok)
7088 goto top;

7090 return (0);
7091 }

7093 case ’\\’:
7094 if ((c = *p++) == ’\0’)
7095 return (0);
7096 /*FALLTHRU*/

7098 default:
7099 if (c != s1)
7100 return (0);
7101 /*FALLTHRU*/

7103 case ’?’:
7104 if (s1 != ’\0’)
7105 goto top;
7106 return (0);

7108 case ’*’:
7109 while (*p == ’*’)
7110 p++; /* consecutive *’s are identical to a single one */

7112 if (*p == ’\0’)
7113 return (1);

7115 for (s = olds; *s != ’\0’; s++) {
7116 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7117 return (gs);
7118 }

7120 return (0);
7121 }
7122 }

new/usr/src/uts/common/dtrace/dtrace.c 104

7124 /*ARGSUSED*/
7125 static int
7126 dtrace_match_string(const char *s, const char *p, int depth)
7127 {
7128 return (s != NULL && strcmp(s, p) == 0);
7129 }

7131 /*ARGSUSED*/
7132 static int
7133 dtrace_match_nul(const char *s, const char *p, int depth)
7134 {
7135 return (1); /* always match the empty pattern */
7136 }

7138 /*ARGSUSED*/
7139 static int
7140 dtrace_match_nonzero(const char *s, const char *p, int depth)
7141 {
7142 return (s != NULL && s[0] != ’\0’);
7143 }

7145 static int
7146 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7147 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7148 {
7149 dtrace_probe_t template, *probe;
7150 dtrace_hash_t *hash = NULL;
7151 int len, rc, best = INT_MAX, nmatched = 0;
7152 dtrace_id_t i;

7154 ASSERT(MUTEX_HELD(&dtrace_lock));

7156 /*
7157 * If the probe ID is specified in the key, just lookup by ID and
7158 * invoke the match callback once if a matching probe is found.
7159 */
7160 if (pkp->dtpk_id != DTRACE_IDNONE) {
7161 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7162 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7163 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
7164 return (DTRACE_MATCH_FAIL);
7165 nmatched++;
7166 }
7167 return (nmatched);
7168 }

7170 template.dtpr_mod = (char *)pkp->dtpk_mod;
7171 template.dtpr_func = (char *)pkp->dtpk_func;
7172 template.dtpr_name = (char *)pkp->dtpk_name;

7174 /*
7175 * We want to find the most distinct of the module name, function
7176 * name, and name. So for each one that is not a glob pattern or
7177 * empty string, we perform a lookup in the corresponding hash and
7178 * use the hash table with the fewest collisions to do our search.
7179 */
7180 if (pkp->dtpk_mmatch == &dtrace_match_string &&
7181 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7182 best = len;
7183 hash = dtrace_bymod;
7184 }

7186 if (pkp->dtpk_fmatch == &dtrace_match_string &&
7187 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7188 best = len;
7189 hash = dtrace_byfunc;

new/usr/src/uts/common/dtrace/dtrace.c 105

7190 }

7192 if (pkp->dtpk_nmatch == &dtrace_match_string &&
7193 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7194 best = len;
7195 hash = dtrace_byname;
7196 }

7198 /*
7199 * If we did not select a hash table, iterate over every probe and
7200 * invoke our callback for each one that matches our input probe key.
7201 */
7202 if (hash == NULL) {
7203 for (i = 0; i < dtrace_nprobes; i++) {
7204 if ((probe = dtrace_probes[i]) == NULL ||
7205 dtrace_match_probe(probe, pkp, priv, uid,
7206 zoneid) <= 0)
7207 continue;

7209 nmatched++;

7211 if ((rc = (*matched)(probe, arg)) !=
7212 DTRACE_MATCH_NEXT) {
7213 if (rc == DTRACE_MATCH_FAIL)
7214 return (DTRACE_MATCH_FAIL);
7215 break;
7216 }
7217 }

7219 return (nmatched);
7220 }

7222 /*
7223 * If we selected a hash table, iterate over each probe of the same key
7224 * name and invoke the callback for every probe that matches the other
7225 * attributes of our input probe key.
7226 */
7227 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7228 probe = *(DTRACE_HASHNEXT(hash, probe))) {

7230 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7231 continue;

7233 nmatched++;

7235 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7236 if (rc == DTRACE_MATCH_FAIL)
7237 return (DTRACE_MATCH_FAIL);
7238 break;
7239 }
7240 }

7242 return (nmatched);
7243 }

7245 /*
7246 * Return the function pointer dtrace_probecmp() should use to compare the
7247 * specified pattern with a string. For NULL or empty patterns, we select
7248 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
7249 * For non-empty non-glob strings, we use dtrace_match_string().
7250 */
7251 static dtrace_probekey_f *
7252 dtrace_probekey_func(const char *p)
7253 {
7254 char c;

new/usr/src/uts/common/dtrace/dtrace.c 106

7256 if (p == NULL || *p == ’\0’)
7257 return (&dtrace_match_nul);

7259 while ((c = *p++) != ’\0’) {
7260 if (c == ’[’ || c == ’?’ || c == ’*’ || c == ’\\’)
7261 return (&dtrace_match_glob);
7262 }

7264 return (&dtrace_match_string);
7265 }

7267 /*
7268 * Build a probe comparison key for use with dtrace_match_probe() from the
7269 * given probe description. By convention, a null key only matches anchored
7270 * probes: if each field is the empty string, reset dtpk_fmatch to
7271 * dtrace_match_nonzero().
7272 */
7273 static void
7274 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7275 {
7276 pkp->dtpk_prov = pdp->dtpd_provider;
7277 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);

7279 pkp->dtpk_mod = pdp->dtpd_mod;
7280 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);

7282 pkp->dtpk_func = pdp->dtpd_func;
7283 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);

7285 pkp->dtpk_name = pdp->dtpd_name;
7286 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);

7288 pkp->dtpk_id = pdp->dtpd_id;

7290 if (pkp->dtpk_id == DTRACE_IDNONE &&
7291 pkp->dtpk_pmatch == &dtrace_match_nul &&
7292 pkp->dtpk_mmatch == &dtrace_match_nul &&
7293 pkp->dtpk_fmatch == &dtrace_match_nul &&
7294 pkp->dtpk_nmatch == &dtrace_match_nul)
7295 pkp->dtpk_fmatch = &dtrace_match_nonzero;
7296 }

7298 /*
7299 * DTrace Provider-to-Framework API Functions
7300 *
7301 * These functions implement much of the Provider-to-Framework API, as
7302 * described in <sys/dtrace.h>. The parts of the API not in this section are
7303 * the functions in the API for probe management (found below), and
7304 * dtrace_probe() itself (found above).
7305 */

7307 /*
7308 * Register the calling provider with the DTrace framework. This should
7309 * generally be called by DTrace providers in their attach(9E) entry point.
7310 */
7311 int
7312 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7313 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7314 {
7315 dtrace_provider_t *provider;

7317 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7318 cmn_err(CE_WARN, "failed to register provider ’%s’: invalid "
7319 "arguments", name ? name : "<NULL>");
7320 return (EINVAL);
7321 }

new/usr/src/uts/common/dtrace/dtrace.c 107

7323 if (name[0] == ’\0’ || dtrace_badname(name)) {
7324 cmn_err(CE_WARN, "failed to register provider ’%s’: invalid "
7325 "provider name", name);
7326 return (EINVAL);
7327 }

7329 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7330 pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7331 pops->dtps_destroy == NULL ||
7332 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7333 cmn_err(CE_WARN, "failed to register provider ’%s’: invalid "
7334 "provider ops", name);
7335 return (EINVAL);
7336 }

7338 if (dtrace_badattr(&pap->dtpa_provider) ||
7339 dtrace_badattr(&pap->dtpa_mod) ||
7340 dtrace_badattr(&pap->dtpa_func) ||
7341 dtrace_badattr(&pap->dtpa_name) ||
7342 dtrace_badattr(&pap->dtpa_args)) {
7343 cmn_err(CE_WARN, "failed to register provider ’%s’: invalid "
7344 "provider attributes", name);
7345 return (EINVAL);
7346 }

7348 if (priv & ~DTRACE_PRIV_ALL) {
7349 cmn_err(CE_WARN, "failed to register provider ’%s’: invalid "
7350 "privilege attributes", name);
7351 return (EINVAL);
7352 }

7354 if ((priv & DTRACE_PRIV_KERNEL) &&
7355 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7356 pops->dtps_mode == NULL) {
7357 cmn_err(CE_WARN, "failed to register provider ’%s’: need "
7358 "dtps_mode() op for given privilege attributes", name);
7359 return (EINVAL);
7360 }

7362 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7363 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7364 (void) strcpy(provider->dtpv_name, name);

7366 provider->dtpv_attr = *pap;
7367 provider->dtpv_priv.dtpp_flags = priv;
7368 if (cr != NULL) {
7369 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7370 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7371 }
7372 provider->dtpv_pops = *pops;

7374 if (pops->dtps_provide == NULL) {
7375 ASSERT(pops->dtps_provide_module != NULL);
7376 provider->dtpv_pops.dtps_provide =
7377 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
7378 }

7380 if (pops->dtps_provide_module == NULL) {
7381 ASSERT(pops->dtps_provide != NULL);
7382 provider->dtpv_pops.dtps_provide_module =
7383 (void (*)(void *, struct modctl *))dtrace_nullop;
7384 }

7386 if (pops->dtps_suspend == NULL) {
7387 ASSERT(pops->dtps_resume == NULL);

new/usr/src/uts/common/dtrace/dtrace.c 108

7388 provider->dtpv_pops.dtps_suspend =
7389 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7390 provider->dtpv_pops.dtps_resume =
7391 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7392 }

7394 provider->dtpv_arg = arg;
7395 *idp = (dtrace_provider_id_t)provider;

7397 if (pops == &dtrace_provider_ops) {
7398 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7399 ASSERT(MUTEX_HELD(&dtrace_lock));
7400 ASSERT(dtrace_anon.dta_enabling == NULL);

7402 /*
7403 * We make sure that the DTrace provider is at the head of
7404 * the provider chain.
7405 */
7406 provider->dtpv_next = dtrace_provider;
7407 dtrace_provider = provider;
7408 return (0);
7409 }

7411 mutex_enter(&dtrace_provider_lock);
7412 mutex_enter(&dtrace_lock);

7414 /*
7415 * If there is at least one provider registered, we’ll add this
7416 * provider after the first provider.
7417 */
7418 if (dtrace_provider != NULL) {
7419 provider->dtpv_next = dtrace_provider->dtpv_next;
7420 dtrace_provider->dtpv_next = provider;
7421 } else {
7422 dtrace_provider = provider;
7423 }

7425 if (dtrace_retained != NULL) {
7426 dtrace_enabling_provide(provider);

7428 /*
7429 * Now we need to call dtrace_enabling_matchall() -- which
7430 * will acquire cpu_lock and dtrace_lock. We therefore need
7431 * to drop all of our locks before calling into it...
7432 */
7433 mutex_exit(&dtrace_lock);
7434 mutex_exit(&dtrace_provider_lock);
7435 dtrace_enabling_matchall();

7437 return (0);
7438 }

7440 mutex_exit(&dtrace_lock);
7441 mutex_exit(&dtrace_provider_lock);

7443 return (0);
7444 }

7446 /*
7447 * Unregister the specified provider from the DTrace framework. This should
7448 * generally be called by DTrace providers in their detach(9E) entry point.
7449 */
7450 int
7451 dtrace_unregister(dtrace_provider_id_t id)
7452 {
7453 dtrace_provider_t *old = (dtrace_provider_t *)id;

new/usr/src/uts/common/dtrace/dtrace.c 109

7454 dtrace_provider_t *prev = NULL;
7455 int i, self = 0, noreap = 0;
7456 dtrace_probe_t *probe, *first = NULL;

7458 if (old->dtpv_pops.dtps_enable ==
7459 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
7460 /*
7461 * If DTrace itself is the provider, we’re called with locks
7462 * already held.
7463 */
7464 ASSERT(old == dtrace_provider);
7465 ASSERT(dtrace_devi != NULL);
7466 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7467 ASSERT(MUTEX_HELD(&dtrace_lock));
7468 self = 1;

7470 if (dtrace_provider->dtpv_next != NULL) {
7471 /*
7472 * There’s another provider here; return failure.
7473 */
7474 return (EBUSY);
7475 }
7476 } else {
7477 mutex_enter(&dtrace_provider_lock);
7478 mutex_enter(&mod_lock);
7479 mutex_enter(&dtrace_lock);
7480 }

7482 /*
7483 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7484 * probes, we refuse to let providers slither away, unless this
7485 * provider has already been explicitly invalidated.
7486 */
7487 if (!old->dtpv_defunct &&
7488 (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7489 dtrace_anon.dta_state->dts_necbs > 0))) {
7490 if (!self) {
7491 mutex_exit(&dtrace_lock);
7492 mutex_exit(&mod_lock);
7493 mutex_exit(&dtrace_provider_lock);
7494 }
7495 return (EBUSY);
7496 }

7498 /*
7499 * Attempt to destroy the probes associated with this provider.
7500 */
7501 for (i = 0; i < dtrace_nprobes; i++) {
7502 if ((probe = dtrace_probes[i]) == NULL)
7503 continue;

7505 if (probe->dtpr_provider != old)
7506 continue;

7508 if (probe->dtpr_ecb == NULL)
7509 continue;

7511 /*
7512 * If we are trying to unregister a defunct provider, and the
7513 * provider was made defunct within the interval dictated by
7514 * dtrace_unregister_defunct_reap, we’ll (asynchronously)
7515 * attempt to reap our enablings. To denote that the provider
7516 * should reattempt to unregister itself at some point in the
7517 * future, we will return a differentiable error code (EAGAIN
7518 * instead of EBUSY) in this case.
7519 */

new/usr/src/uts/common/dtrace/dtrace.c 110

7520 if (dtrace_gethrtime() - old->dtpv_defunct >
7521 dtrace_unregister_defunct_reap)
7522 noreap = 1;

7524 if (!self) {
7525 mutex_exit(&dtrace_lock);
7526 mutex_exit(&mod_lock);
7527 mutex_exit(&dtrace_provider_lock);
7528 }

7530 if (noreap)
7531 return (EBUSY);

7533 (void) taskq_dispatch(dtrace_taskq,
7534 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);

7536 return (EAGAIN);
7537 }

7539 /*
7540 * All of the probes for this provider are disabled; we can safely
7541 * remove all of them from their hash chains and from the probe array.
7542 */
7543 for (i = 0; i < dtrace_nprobes; i++) {
7544 if ((probe = dtrace_probes[i]) == NULL)
7545 continue;

7547 if (probe->dtpr_provider != old)
7548 continue;

7550 dtrace_probes[i] = NULL;

7552 dtrace_hash_remove(dtrace_bymod, probe);
7553 dtrace_hash_remove(dtrace_byfunc, probe);
7554 dtrace_hash_remove(dtrace_byname, probe);

7556 if (first == NULL) {
7557 first = probe;
7558 probe->dtpr_nextmod = NULL;
7559 } else {
7560 probe->dtpr_nextmod = first;
7561 first = probe;
7562 }
7563 }

7565 /*
7566 * The provider’s probes have been removed from the hash chains and
7567 * from the probe array. Now issue a dtrace_sync() to be sure that
7568 * everyone has cleared out from any probe array processing.
7569 */
7570 dtrace_sync();

7572 for (probe = first; probe != NULL; probe = first) {
7573 first = probe->dtpr_nextmod;

7575 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7576 probe->dtpr_arg);
7577 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7578 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7579 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7580 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7581 kmem_free(probe, sizeof (dtrace_probe_t));
7582 }

7584 if ((prev = dtrace_provider) == old) {
7585 ASSERT(self || dtrace_devi == NULL);

new/usr/src/uts/common/dtrace/dtrace.c 111

7586 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7587 dtrace_provider = old->dtpv_next;
7588 } else {
7589 while (prev != NULL && prev->dtpv_next != old)
7590 prev = prev->dtpv_next;

7592 if (prev == NULL) {
7593 panic("attempt to unregister non-existent "
7594 "dtrace provider %p\n", (void *)id);
7595 }

7597 prev->dtpv_next = old->dtpv_next;
7598 }

7600 if (!self) {
7601 mutex_exit(&dtrace_lock);
7602 mutex_exit(&mod_lock);
7603 mutex_exit(&dtrace_provider_lock);
7604 }

7606 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7607 kmem_free(old, sizeof (dtrace_provider_t));

7609 return (0);
7610 }

7612 /*
7613 * Invalidate the specified provider. All subsequent probe lookups for the
7614 * specified provider will fail, but its probes will not be removed.
7615 */
7616 void
7617 dtrace_invalidate(dtrace_provider_id_t id)
7618 {
7619 dtrace_provider_t *pvp = (dtrace_provider_t *)id;

7621 ASSERT(pvp->dtpv_pops.dtps_enable !=
7622 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);

7624 mutex_enter(&dtrace_provider_lock);
7625 mutex_enter(&dtrace_lock);

7627 pvp->dtpv_defunct = dtrace_gethrtime();

7629 mutex_exit(&dtrace_lock);
7630 mutex_exit(&dtrace_provider_lock);
7631 }

7633 /*
7634 * Indicate whether or not DTrace has attached.
7635 */
7636 int
7637 dtrace_attached(void)
7638 {
7639 /*
7640 * dtrace_provider will be non-NULL iff the DTrace driver has
7641 * attached. (It’s non-NULL because DTrace is always itself a
7642 * provider.)
7643 */
7644 return (dtrace_provider != NULL);
7645 }

7647 /*
7648 * Remove all the unenabled probes for the given provider. This function is
7649 * not unlike dtrace_unregister(), except that it doesn’t remove the provider
7650 * -- just as many of its associated probes as it can.
7651 */

new/usr/src/uts/common/dtrace/dtrace.c 112

7652 int
7653 dtrace_condense(dtrace_provider_id_t id)
7654 {
7655 dtrace_provider_t *prov = (dtrace_provider_t *)id;
7656 int i;
7657 dtrace_probe_t *probe;

7659 /*
7660 * Make sure this isn’t the dtrace provider itself.
7661 */
7662 ASSERT(prov->dtpv_pops.dtps_enable !=
7663 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);

7665 mutex_enter(&dtrace_provider_lock);
7666 mutex_enter(&dtrace_lock);

7668 /*
7669 * Attempt to destroy the probes associated with this provider.
7670 */
7671 for (i = 0; i < dtrace_nprobes; i++) {
7672 if ((probe = dtrace_probes[i]) == NULL)
7673 continue;

7675 if (probe->dtpr_provider != prov)
7676 continue;

7678 if (probe->dtpr_ecb != NULL)
7679 continue;

7681 dtrace_probes[i] = NULL;

7683 dtrace_hash_remove(dtrace_bymod, probe);
7684 dtrace_hash_remove(dtrace_byfunc, probe);
7685 dtrace_hash_remove(dtrace_byname, probe);

7687 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7688 probe->dtpr_arg);
7689 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7690 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7691 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7692 kmem_free(probe, sizeof (dtrace_probe_t));
7693 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7694 }

7696 mutex_exit(&dtrace_lock);
7697 mutex_exit(&dtrace_provider_lock);

7699 return (0);
7700 }

7702 /*
7703 * DTrace Probe Management Functions
7704 *
7705 * The functions in this section perform the DTrace probe management,
7706 * including functions to create probes, look-up probes, and call into the
7707 * providers to request that probes be provided. Some of these functions are
7708 * in the Provider-to-Framework API; these functions can be identified by the
7709 * fact that they are not declared "static".
7710 */

7712 /*
7713 * Create a probe with the specified module name, function name, and name.
7714 */
7715 dtrace_id_t
7716 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7717 const char *func, const char *name, int aframes, void *arg)

new/usr/src/uts/common/dtrace/dtrace.c 113

7718 {
7719 dtrace_probe_t *probe, **probes;
7720 dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7721 dtrace_id_t id;

7723 if (provider == dtrace_provider) {
7724 ASSERT(MUTEX_HELD(&dtrace_lock));
7725 } else {
7726 mutex_enter(&dtrace_lock);
7727 }

7729 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7730 VM_BESTFIT | VM_SLEEP);
7731 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);

7733 probe->dtpr_id = id;
7734 probe->dtpr_gen = dtrace_probegen++;
7735 probe->dtpr_mod = dtrace_strdup(mod);
7736 probe->dtpr_func = dtrace_strdup(func);
7737 probe->dtpr_name = dtrace_strdup(name);
7738 probe->dtpr_arg = arg;
7739 probe->dtpr_aframes = aframes;
7740 probe->dtpr_provider = provider;

7742 dtrace_hash_add(dtrace_bymod, probe);
7743 dtrace_hash_add(dtrace_byfunc, probe);
7744 dtrace_hash_add(dtrace_byname, probe);

7746 if (id - 1 >= dtrace_nprobes) {
7747 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7748 size_t nsize = osize << 1;

7750 if (nsize == 0) {
7751 ASSERT(osize == 0);
7752 ASSERT(dtrace_probes == NULL);
7753 nsize = sizeof (dtrace_probe_t *);
7754 }

7756 probes = kmem_zalloc(nsize, KM_SLEEP);

7758 if (dtrace_probes == NULL) {
7759 ASSERT(osize == 0);
7760 dtrace_probes = probes;
7761 dtrace_nprobes = 1;
7762 } else {
7763 dtrace_probe_t **oprobes = dtrace_probes;

7765 bcopy(oprobes, probes, osize);
7766 dtrace_membar_producer();
7767 dtrace_probes = probes;

7769 dtrace_sync();

7771 /*
7772 * All CPUs are now seeing the new probes array; we can
7773 * safely free the old array.
7774 */
7775 kmem_free(oprobes, osize);
7776 dtrace_nprobes <<= 1;
7777 }

7779 ASSERT(id - 1 < dtrace_nprobes);
7780 }

7782 ASSERT(dtrace_probes[id - 1] == NULL);
7783 dtrace_probes[id - 1] = probe;

new/usr/src/uts/common/dtrace/dtrace.c 114

7785 if (provider != dtrace_provider)
7786 mutex_exit(&dtrace_lock);

7788 return (id);
7789 }

7791 static dtrace_probe_t *
7792 dtrace_probe_lookup_id(dtrace_id_t id)
7793 {
7794 ASSERT(MUTEX_HELD(&dtrace_lock));

7796 if (id == 0 || id > dtrace_nprobes)
7797 return (NULL);

7799 return (dtrace_probes[id - 1]);
7800 }

7802 static int
7803 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7804 {
7805 *((dtrace_id_t *)arg) = probe->dtpr_id;

7807 return (DTRACE_MATCH_DONE);
7808 }

7810 /*
7811 * Look up a probe based on provider and one or more of module name, function
7812 * name and probe name.
7813 */
7814 dtrace_id_t
7815 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
7816 const char *func, const char *name)
7817 {
7818 dtrace_probekey_t pkey;
7819 dtrace_id_t id;
7820 int match;

7822 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7823 pkey.dtpk_pmatch = &dtrace_match_string;
7824 pkey.dtpk_mod = mod;
7825 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7826 pkey.dtpk_func = func;
7827 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7828 pkey.dtpk_name = name;
7829 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7830 pkey.dtpk_id = DTRACE_IDNONE;

7832 mutex_enter(&dtrace_lock);
7833 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7834 dtrace_probe_lookup_match, &id);
7835 mutex_exit(&dtrace_lock);

7837 ASSERT(match == 1 || match == 0);
7838 return (match ? id : 0);
7839 }

7841 /*
7842 * Returns the probe argument associated with the specified probe.
7843 */
7844 void *
7845 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7846 {
7847 dtrace_probe_t *probe;
7848 void *rval = NULL;

new/usr/src/uts/common/dtrace/dtrace.c 115

7850 mutex_enter(&dtrace_lock);

7852 if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7853 probe->dtpr_provider == (dtrace_provider_t *)id)
7854 rval = probe->dtpr_arg;

7856 mutex_exit(&dtrace_lock);

7858 return (rval);
7859 }

7861 /*
7862 * Copy a probe into a probe description.
7863 */
7864 static void
7865 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7866 {
7867 bzero(pdp, sizeof (dtrace_probedesc_t));
7868 pdp->dtpd_id = prp->dtpr_id;

7870 (void) strncpy(pdp->dtpd_provider,
7871 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);

7873 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7874 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7875 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7876 }

7878 /*
7879 * Called to indicate that a probe -- or probes -- should be provided by a
7880 * specfied provider. If the specified description is NULL, the provider will
7881 * be told to provide all of its probes. (This is done whenever a new
7882 * consumer comes along, or whenever a retained enabling is to be matched.) If
7883 * the specified description is non-NULL, the provider is given the
7884 * opportunity to dynamically provide the specified probe, allowing providers
7885 * to support the creation of probes on-the-fly. (So-called _autocreated_
7886 * probes.) If the provider is NULL, the operations will be applied to all
7887 * providers; if the provider is non-NULL the operations will only be applied
7888 * to the specified provider. The dtrace_provider_lock must be held, and the
7889 * dtrace_lock must _not_ be held -- the provider’s dtps_provide() operation
7890 * will need to grab the dtrace_lock when it reenters the framework through
7891 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7892 */
7893 static void
7894 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7895 {
7896 struct modctl *ctl;
7897 int all = 0;

7899 ASSERT(MUTEX_HELD(&dtrace_provider_lock));

7901 if (prv == NULL) {
7902 all = 1;
7903 prv = dtrace_provider;
7904 }

7906 do {
7907 /*
7908 * First, call the blanket provide operation.
7909 */
7910 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);

7912 /*
7913 * Now call the per-module provide operation. We will grab
7914 * mod_lock to prevent the list from being modified. Note
7915 * that this also prevents the mod_busy bits from changing.

new/usr/src/uts/common/dtrace/dtrace.c 116

7916 * (mod_busy can only be changed with mod_lock held.)
7917 */
7918 mutex_enter(&mod_lock);

7920 ctl = &modules;
7921 do {
7922 if (ctl->mod_busy || ctl->mod_mp == NULL)
7923 continue;

7925 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);

7927 } while ((ctl = ctl->mod_next) != &modules);

7929 mutex_exit(&mod_lock);
7930 } while (all && (prv = prv->dtpv_next) != NULL);
7931 }

7933 /*
7934 * Iterate over each probe, and call the Framework-to-Provider API function
7935 * denoted by offs.
7936 */
7937 static void
7938 dtrace_probe_foreach(uintptr_t offs)
7939 {
7940 dtrace_provider_t *prov;
7941 void (*func)(void *, dtrace_id_t, void *);
7942 dtrace_probe_t *probe;
7943 dtrace_icookie_t cookie;
7944 int i;

7946 /*
7947 * We disable interrupts to walk through the probe array. This is
7948 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7949 * won’t see stale data.
7950 */
7951 cookie = dtrace_interrupt_disable();

7953 for (i = 0; i < dtrace_nprobes; i++) {
7954 if ((probe = dtrace_probes[i]) == NULL)
7955 continue;

7957 if (probe->dtpr_ecb == NULL) {
7958 /*
7959 * This probe isn’t enabled -- don’t call the function.
7960 */
7961 continue;
7962 }

7964 prov = probe->dtpr_provider;
7965 func = *((void(**)(void *, dtrace_id_t, void *))
7966 ((uintptr_t)&prov->dtpv_pops + offs));

7968 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7969 }

7971 dtrace_interrupt_enable(cookie);
7972 }

7974 static int
7975 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7976 {
7977 dtrace_probekey_t pkey;
7978 uint32_t priv;
7979 uid_t uid;
7980 zoneid_t zoneid;

new/usr/src/uts/common/dtrace/dtrace.c 117

7982 ASSERT(MUTEX_HELD(&dtrace_lock));
7983 dtrace_ecb_create_cache = NULL;

7985 if (desc == NULL) {
7986 /*
7987 * If we’re passed a NULL description, we’re being asked to
7988 * create an ECB with a NULL probe.
7989 */
7990 (void) dtrace_ecb_create_enable(NULL, enab);
7991 return (0);
7992 }

7994 dtrace_probekey(desc, &pkey);
7995 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7996 &priv, &uid, &zoneid);

7998 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7999 enab));
8000 }

8002 /*
8003 * DTrace Helper Provider Functions
8004 */
8005 static void
8006 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8007 {
8008 attr->dtat_name = DOF_ATTR_NAME(dofattr);
8009 attr->dtat_data = DOF_ATTR_DATA(dofattr);
8010 attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8011 }

8013 static void
8014 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8015 const dof_provider_t *dofprov, char *strtab)
8016 {
8017 hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8018 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8019 dofprov->dofpv_provattr);
8020 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8021 dofprov->dofpv_modattr);
8022 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8023 dofprov->dofpv_funcattr);
8024 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8025 dofprov->dofpv_nameattr);
8026 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8027 dofprov->dofpv_argsattr);
8028 }

8030 static void
8031 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8032 {
8033 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8034 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8035 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8036 dof_provider_t *provider;
8037 dof_probe_t *probe;
8038 uint32_t *off, *enoff;
8039 uint8_t *arg;
8040 char *strtab;
8041 uint_t i, nprobes;
8042 dtrace_helper_provdesc_t dhpv;
8043 dtrace_helper_probedesc_t dhpb;
8044 dtrace_meta_t *meta = dtrace_meta_pid;
8045 dtrace_mops_t *mops = &meta->dtm_mops;
8046 void *parg;

new/usr/src/uts/common/dtrace/dtrace.c 118

8048 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8049 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8050 provider->dofpv_strtab * dof->dofh_secsize);
8051 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8052 provider->dofpv_probes * dof->dofh_secsize);
8053 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8054 provider->dofpv_prargs * dof->dofh_secsize);
8055 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8056 provider->dofpv_proffs * dof->dofh_secsize);

8058 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8059 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8060 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8061 enoff = NULL;

8063 /*
8064 * See dtrace_helper_provider_validate().
8065 */
8066 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8067 provider->dofpv_prenoffs != DOF_SECT_NONE) {
8068 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8069 provider->dofpv_prenoffs * dof->dofh_secsize);
8070 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8071 }

8073 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;

8075 /*
8076 * Create the provider.
8077 */
8078 dtrace_dofprov2hprov(&dhpv, provider, strtab);

8080 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8081 return;

8083 meta->dtm_count++;

8085 /*
8086 * Create the probes.
8087 */
8088 for (i = 0; i < nprobes; i++) {
8089 probe = (dof_probe_t *)(uintptr_t)(daddr +
8090 prb_sec->dofs_offset + i * prb_sec->dofs_entsize);

8092 dhpb.dthpb_mod = dhp->dofhp_mod;
8093 dhpb.dthpb_func = strtab + probe->dofpr_func;
8094 dhpb.dthpb_name = strtab + probe->dofpr_name;
8095 dhpb.dthpb_base = probe->dofpr_addr;
8096 dhpb.dthpb_offs = off + probe->dofpr_offidx;
8097 dhpb.dthpb_noffs = probe->dofpr_noffs;
8098 if (enoff != NULL) {
8099 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8100 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8101 } else {
8102 dhpb.dthpb_enoffs = NULL;
8103 dhpb.dthpb_nenoffs = 0;
8104 }
8105 dhpb.dthpb_args = arg + probe->dofpr_argidx;
8106 dhpb.dthpb_nargc = probe->dofpr_nargc;
8107 dhpb.dthpb_xargc = probe->dofpr_xargc;
8108 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8109 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;

8111 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8112 }
8113 }

new/usr/src/uts/common/dtrace/dtrace.c 119

8115 static void
8116 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8117 {
8118 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8119 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8120 int i;

8122 ASSERT(MUTEX_HELD(&dtrace_meta_lock));

8124 for (i = 0; i < dof->dofh_secnum; i++) {
8125 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8126 dof->dofh_secoff + i * dof->dofh_secsize);

8128 if (sec->dofs_type != DOF_SECT_PROVIDER)
8129 continue;

8131 dtrace_helper_provide_one(dhp, sec, pid);
8132 }

8134 /*
8135 * We may have just created probes, so we must now rematch against
8136 * any retained enablings. Note that this call will acquire both
8137 * cpu_lock and dtrace_lock; the fact that we are holding
8138 * dtrace_meta_lock now is what defines the ordering with respect to
8139 * these three locks.
8140 */
8141 dtrace_enabling_matchall();
8142 }

8144 static void
8145 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8146 {
8147 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8148 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8149 dof_sec_t *str_sec;
8150 dof_provider_t *provider;
8151 char *strtab;
8152 dtrace_helper_provdesc_t dhpv;
8153 dtrace_meta_t *meta = dtrace_meta_pid;
8154 dtrace_mops_t *mops = &meta->dtm_mops;

8156 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8157 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8158 provider->dofpv_strtab * dof->dofh_secsize);

8160 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);

8162 /*
8163 * Create the provider.
8164 */
8165 dtrace_dofprov2hprov(&dhpv, provider, strtab);

8167 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);

8169 meta->dtm_count--;
8170 }

8172 static void
8173 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8174 {
8175 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8176 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8177 int i;

8179 ASSERT(MUTEX_HELD(&dtrace_meta_lock));

new/usr/src/uts/common/dtrace/dtrace.c 120

8181 for (i = 0; i < dof->dofh_secnum; i++) {
8182 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8183 dof->dofh_secoff + i * dof->dofh_secsize);

8185 if (sec->dofs_type != DOF_SECT_PROVIDER)
8186 continue;

8188 dtrace_helper_provider_remove_one(dhp, sec, pid);
8189 }
8190 }

8192 /*
8193 * DTrace Meta Provider-to-Framework API Functions
8194 *
8195 * These functions implement the Meta Provider-to-Framework API, as described
8196 * in <sys/dtrace.h>.
8197 */
8198 int
8199 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8200 dtrace_meta_provider_id_t *idp)
8201 {
8202 dtrace_meta_t *meta;
8203 dtrace_helpers_t *help, *next;
8204 int i;

8206 *idp = DTRACE_METAPROVNONE;

8208 /*
8209 * We strictly don’t need the name, but we hold onto it for
8210 * debuggability. All hail error queues!
8211 */
8212 if (name == NULL) {
8213 cmn_err(CE_WARN, "failed to register meta-provider: "
8214 "invalid name");
8215 return (EINVAL);
8216 }

8218 if (mops == NULL ||
8219 mops->dtms_create_probe == NULL ||
8220 mops->dtms_provide_pid == NULL ||
8221 mops->dtms_remove_pid == NULL) {
8222 cmn_err(CE_WARN, "failed to register meta-register %s: "
8223 "invalid ops", name);
8224 return (EINVAL);
8225 }

8227 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8228 meta->dtm_mops = *mops;
8229 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8230 (void) strcpy(meta->dtm_name, name);
8231 meta->dtm_arg = arg;

8233 mutex_enter(&dtrace_meta_lock);
8234 mutex_enter(&dtrace_lock);

8236 if (dtrace_meta_pid != NULL) {
8237 mutex_exit(&dtrace_lock);
8238 mutex_exit(&dtrace_meta_lock);
8239 cmn_err(CE_WARN, "failed to register meta-register %s: "
8240 "user-land meta-provider exists", name);
8241 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8242 kmem_free(meta, sizeof (dtrace_meta_t));
8243 return (EINVAL);
8244 }

new/usr/src/uts/common/dtrace/dtrace.c 121

8246 dtrace_meta_pid = meta;
8247 *idp = (dtrace_meta_provider_id_t)meta;

8249 /*
8250 * If there are providers and probes ready to go, pass them
8251 * off to the new meta provider now.
8252 */

8254 help = dtrace_deferred_pid;
8255 dtrace_deferred_pid = NULL;

8257 mutex_exit(&dtrace_lock);

8259 while (help != NULL) {
8260 for (i = 0; i < help->dthps_nprovs; i++) {
8261 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8262 help->dthps_pid);
8263 }

8265 next = help->dthps_next;
8266 help->dthps_next = NULL;
8267 help->dthps_prev = NULL;
8268 help->dthps_deferred = 0;
8269 help = next;
8270 }

8272 mutex_exit(&dtrace_meta_lock);

8274 return (0);
8275 }

8277 int
8278 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8279 {
8280 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;

8282 mutex_enter(&dtrace_meta_lock);
8283 mutex_enter(&dtrace_lock);

8285 if (old == dtrace_meta_pid) {
8286 pp = &dtrace_meta_pid;
8287 } else {
8288 panic("attempt to unregister non-existent "
8289 "dtrace meta-provider %p\n", (void *)old);
8290 }

8292 if (old->dtm_count != 0) {
8293 mutex_exit(&dtrace_lock);
8294 mutex_exit(&dtrace_meta_lock);
8295 return (EBUSY);
8296 }

8298 *pp = NULL;

8300 mutex_exit(&dtrace_lock);
8301 mutex_exit(&dtrace_meta_lock);

8303 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8304 kmem_free(old, sizeof (dtrace_meta_t));

8306 return (0);
8307 }

8310 /*
8311 * DTrace DIF Object Functions

new/usr/src/uts/common/dtrace/dtrace.c 122

8312 */
8313 static int
8314 dtrace_difo_err(uint_t pc, const char *format, ...)
8315 {
8316 if (dtrace_err_verbose) {
8317 va_list alist;

8319 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
8320 va_start(alist, format);
8321 (void) vuprintf(format, alist);
8322 va_end(alist);
8323 }

8325 #ifdef DTRACE_ERRDEBUG
8326 dtrace_errdebug(format);
8327 #endif
8328 return (1);
8329 }

8331 /*
8332 * Validate a DTrace DIF object by checking the IR instructions. The following
8333 * rules are currently enforced by dtrace_difo_validate():
8334 *
8335 * 1. Each instruction must have a valid opcode
8336 * 2. Each register, string, variable, or subroutine reference must be valid
8337 * 3. No instruction can modify register %r0 (must be zero)
8338 * 4. All instruction reserved bits must be set to zero
8339 * 5. The last instruction must be a "ret" instruction
8340 * 6. All branch targets must reference a valid instruction _after_ the branch
8341 */
8342 static int
8343 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8344 cred_t *cr)
8345 {
8346 int err = 0, i;
8347 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8348 int kcheckload;
8349 uint_t pc;

8351 kcheckload = cr == NULL ||
8352 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;

8354 dp->dtdo_destructive = 0;

8356 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8357 dif_instr_t instr = dp->dtdo_buf[pc];

8359 uint_t r1 = DIF_INSTR_R1(instr);
8360 uint_t r2 = DIF_INSTR_R2(instr);
8361 uint_t rd = DIF_INSTR_RD(instr);
8362 uint_t rs = DIF_INSTR_RS(instr);
8363 uint_t label = DIF_INSTR_LABEL(instr);
8364 uint_t v = DIF_INSTR_VAR(instr);
8365 uint_t subr = DIF_INSTR_SUBR(instr);
8366 uint_t type = DIF_INSTR_TYPE(instr);
8367 uint_t op = DIF_INSTR_OP(instr);

8369 switch (op) {
8370 case DIF_OP_OR:
8371 case DIF_OP_XOR:
8372 case DIF_OP_AND:
8373 case DIF_OP_SLL:
8374 case DIF_OP_SRL:
8375 case DIF_OP_SRA:
8376 case DIF_OP_SUB:
8377 case DIF_OP_ADD:

new/usr/src/uts/common/dtrace/dtrace.c 123

8378 case DIF_OP_MUL:
8379 case DIF_OP_SDIV:
8380 case DIF_OP_UDIV:
8381 case DIF_OP_SREM:
8382 case DIF_OP_UREM:
8383 case DIF_OP_COPYS:
8384 if (r1 >= nregs)
8385 err += efunc(pc, "invalid register %u\n", r1);
8386 if (r2 >= nregs)
8387 err += efunc(pc, "invalid register %u\n", r2);
8388 if (rd >= nregs)
8389 err += efunc(pc, "invalid register %u\n", rd);
8390 if (rd == 0)
8391 err += efunc(pc, "cannot write to %r0\n");
8392 break;
8393 case DIF_OP_NOT:
8394 case DIF_OP_MOV:
8395 case DIF_OP_ALLOCS:
8396 if (r1 >= nregs)
8397 err += efunc(pc, "invalid register %u\n", r1);
8398 if (r2 != 0)
8399 err += efunc(pc, "non-zero reserved bits\n");
8400 if (rd >= nregs)
8401 err += efunc(pc, "invalid register %u\n", rd);
8402 if (rd == 0)
8403 err += efunc(pc, "cannot write to %r0\n");
8404 break;
8405 case DIF_OP_LDSB:
8406 case DIF_OP_LDSH:
8407 case DIF_OP_LDSW:
8408 case DIF_OP_LDUB:
8409 case DIF_OP_LDUH:
8410 case DIF_OP_LDUW:
8411 case DIF_OP_LDX:
8412 if (r1 >= nregs)
8413 err += efunc(pc, "invalid register %u\n", r1);
8414 if (r2 != 0)
8415 err += efunc(pc, "non-zero reserved bits\n");
8416 if (rd >= nregs)
8417 err += efunc(pc, "invalid register %u\n", rd);
8418 if (rd == 0)
8419 err += efunc(pc, "cannot write to %r0\n");
8420 if (kcheckload)
8421 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8422 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8423 break;
8424 case DIF_OP_RLDSB:
8425 case DIF_OP_RLDSH:
8426 case DIF_OP_RLDSW:
8427 case DIF_OP_RLDUB:
8428 case DIF_OP_RLDUH:
8429 case DIF_OP_RLDUW:
8430 case DIF_OP_RLDX:
8431 if (r1 >= nregs)
8432 err += efunc(pc, "invalid register %u\n", r1);
8433 if (r2 != 0)
8434 err += efunc(pc, "non-zero reserved bits\n");
8435 if (rd >= nregs)
8436 err += efunc(pc, "invalid register %u\n", rd);
8437 if (rd == 0)
8438 err += efunc(pc, "cannot write to %r0\n");
8439 break;
8440 case DIF_OP_ULDSB:
8441 case DIF_OP_ULDSH:
8442 case DIF_OP_ULDSW:
8443 case DIF_OP_ULDUB:

new/usr/src/uts/common/dtrace/dtrace.c 124

8444 case DIF_OP_ULDUH:
8445 case DIF_OP_ULDUW:
8446 case DIF_OP_ULDX:
8447 if (r1 >= nregs)
8448 err += efunc(pc, "invalid register %u\n", r1);
8449 if (r2 != 0)
8450 err += efunc(pc, "non-zero reserved bits\n");
8451 if (rd >= nregs)
8452 err += efunc(pc, "invalid register %u\n", rd);
8453 if (rd == 0)
8454 err += efunc(pc, "cannot write to %r0\n");
8455 break;
8456 case DIF_OP_STB:
8457 case DIF_OP_STH:
8458 case DIF_OP_STW:
8459 case DIF_OP_STX:
8460 if (r1 >= nregs)
8461 err += efunc(pc, "invalid register %u\n", r1);
8462 if (r2 != 0)
8463 err += efunc(pc, "non-zero reserved bits\n");
8464 if (rd >= nregs)
8465 err += efunc(pc, "invalid register %u\n", rd);
8466 if (rd == 0)
8467 err += efunc(pc, "cannot write to 0 address\n");
8468 break;
8469 case DIF_OP_CMP:
8470 case DIF_OP_SCMP:
8471 if (r1 >= nregs)
8472 err += efunc(pc, "invalid register %u\n", r1);
8473 if (r2 >= nregs)
8474 err += efunc(pc, "invalid register %u\n", r2);
8475 if (rd != 0)
8476 err += efunc(pc, "non-zero reserved bits\n");
8477 break;
8478 case DIF_OP_TST:
8479 if (r1 >= nregs)
8480 err += efunc(pc, "invalid register %u\n", r1);
8481 if (r2 != 0 || rd != 0)
8482 err += efunc(pc, "non-zero reserved bits\n");
8483 break;
8484 case DIF_OP_BA:
8485 case DIF_OP_BE:
8486 case DIF_OP_BNE:
8487 case DIF_OP_BG:
8488 case DIF_OP_BGU:
8489 case DIF_OP_BGE:
8490 case DIF_OP_BGEU:
8491 case DIF_OP_BL:
8492 case DIF_OP_BLU:
8493 case DIF_OP_BLE:
8494 case DIF_OP_BLEU:
8495 if (label >= dp->dtdo_len) {
8496 err += efunc(pc, "invalid branch target %u\n",
8497 label);
8498 }
8499 if (label <= pc) {
8500 err += efunc(pc, "backward branch to %u\n",
8501 label);
8502 }
8503 break;
8504 case DIF_OP_RET:
8505 if (r1 != 0 || r2 != 0)
8506 err += efunc(pc, "non-zero reserved bits\n");
8507 if (rd >= nregs)
8508 err += efunc(pc, "invalid register %u\n", rd);
8509 break;

new/usr/src/uts/common/dtrace/dtrace.c 125

8510 case DIF_OP_NOP:
8511 case DIF_OP_POPTS:
8512 case DIF_OP_FLUSHTS:
8513 if (r1 != 0 || r2 != 0 || rd != 0)
8514 err += efunc(pc, "non-zero reserved bits\n");
8515 break;
8516 case DIF_OP_SETX:
8517 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8518 err += efunc(pc, "invalid integer ref %u\n",
8519 DIF_INSTR_INTEGER(instr));
8520 }
8521 if (rd >= nregs)
8522 err += efunc(pc, "invalid register %u\n", rd);
8523 if (rd == 0)
8524 err += efunc(pc, "cannot write to %r0\n");
8525 break;
8526 case DIF_OP_SETS:
8527 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8528 err += efunc(pc, "invalid string ref %u\n",
8529 DIF_INSTR_STRING(instr));
8530 }
8531 if (rd >= nregs)
8532 err += efunc(pc, "invalid register %u\n", rd);
8533 if (rd == 0)
8534 err += efunc(pc, "cannot write to %r0\n");
8535 break;
8536 case DIF_OP_LDGA:
8537 case DIF_OP_LDTA:
8538 if (r1 > DIF_VAR_ARRAY_MAX)
8539 err += efunc(pc, "invalid array %u\n", r1);
8540 if (r2 >= nregs)
8541 err += efunc(pc, "invalid register %u\n", r2);
8542 if (rd >= nregs)
8543 err += efunc(pc, "invalid register %u\n", rd);
8544 if (rd == 0)
8545 err += efunc(pc, "cannot write to %r0\n");
8546 break;
8547 case DIF_OP_LDGS:
8548 case DIF_OP_LDTS:
8549 case DIF_OP_LDLS:
8550 case DIF_OP_LDGAA:
8551 case DIF_OP_LDTAA:
8552 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8553 err += efunc(pc, "invalid variable %u\n", v);
8554 if (rd >= nregs)
8555 err += efunc(pc, "invalid register %u\n", rd);
8556 if (rd == 0)
8557 err += efunc(pc, "cannot write to %r0\n");
8558 break;
8559 case DIF_OP_STGS:
8560 case DIF_OP_STTS:
8561 case DIF_OP_STLS:
8562 case DIF_OP_STGAA:
8563 case DIF_OP_STTAA:
8564 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8565 err += efunc(pc, "invalid variable %u\n", v);
8566 if (rs >= nregs)
8567 err += efunc(pc, "invalid register %u\n", rd);
8568 break;
8569 case DIF_OP_CALL:
8570 if (subr > DIF_SUBR_MAX)
8571 err += efunc(pc, "invalid subr %u\n", subr);
8572 if (rd >= nregs)
8573 err += efunc(pc, "invalid register %u\n", rd);
8574 if (rd == 0)
8575 err += efunc(pc, "cannot write to %r0\n");

new/usr/src/uts/common/dtrace/dtrace.c 126

8577 if (subr == DIF_SUBR_COPYOUT ||
8578 subr == DIF_SUBR_COPYOUTSTR) {
8579 dp->dtdo_destructive = 1;
8580 }

8582 if (subr == DIF_SUBR_GETF) {
8583 /*
8584 * If we have a getf() we need to record that
8585 * in our state. Note that our state can be
8586 * NULL if this is a helper -- but in that
8587 * case, the call to getf() is itself illegal,
8588 * and will be caught (slightly later) when
8589 * the helper is validated.
8590 */
8591 if (vstate->dtvs_state != NULL)
8592 vstate->dtvs_state->dts_getf++;
8593 }

8595 #endif /* ! codereview */
8596 break;
8597 case DIF_OP_PUSHTR:
8598 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8599 err += efunc(pc, "invalid ref type %u\n", type);
8600 if (r2 >= nregs)
8601 err += efunc(pc, "invalid register %u\n", r2);
8602 if (rs >= nregs)
8603 err += efunc(pc, "invalid register %u\n", rs);
8604 break;
8605 case DIF_OP_PUSHTV:
8606 if (type != DIF_TYPE_CTF)
8607 err += efunc(pc, "invalid val type %u\n", type);
8608 if (r2 >= nregs)
8609 err += efunc(pc, "invalid register %u\n", r2);
8610 if (rs >= nregs)
8611 err += efunc(pc, "invalid register %u\n", rs);
8612 break;
8613 default:
8614 err += efunc(pc, "invalid opcode %u\n",
8615 DIF_INSTR_OP(instr));
8616 }
8617 }

8619 if (dp->dtdo_len != 0 &&
8620 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8621 err += efunc(dp->dtdo_len - 1,
8622 "expected ’ret’ as last DIF instruction\n");
8623 }

8625 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8626 /*
8627 * If we’re not returning by reference, the size must be either
8628 * 0 or the size of one of the base types.
8629 */
8630 switch (dp->dtdo_rtype.dtdt_size) {
8631 case 0:
8632 case sizeof (uint8_t):
8633 case sizeof (uint16_t):
8634 case sizeof (uint32_t):
8635 case sizeof (uint64_t):
8636 break;

8638 default:
8639 err += efunc(dp->dtdo_len - 1, "bad return size\n");
8640 }
8641 }

new/usr/src/uts/common/dtrace/dtrace.c 127

8643 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8644 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8645 dtrace_diftype_t *vt, *et;
8646 uint_t id, ndx;

8648 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8649 v->dtdv_scope != DIFV_SCOPE_THREAD &&
8650 v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8651 err += efunc(i, "unrecognized variable scope %d\n",
8652 v->dtdv_scope);
8653 break;
8654 }

8656 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8657 v->dtdv_kind != DIFV_KIND_SCALAR) {
8658 err += efunc(i, "unrecognized variable type %d\n",
8659 v->dtdv_kind);
8660 break;
8661 }

8663 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8664 err += efunc(i, "%d exceeds variable id limit\n", id);
8665 break;
8666 }

8668 if (id < DIF_VAR_OTHER_UBASE)
8669 continue;

8671 /*
8672 * For user-defined variables, we need to check that this
8673 * definition is identical to any previous definition that we
8674 * encountered.
8675 */
8676 ndx = id - DIF_VAR_OTHER_UBASE;

8678 switch (v->dtdv_scope) {
8679 case DIFV_SCOPE_GLOBAL:
8680 if (ndx < vstate->dtvs_nglobals) {
8681 dtrace_statvar_t *svar;

8683 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8684 existing = &svar->dtsv_var;
8685 }

8687 break;

8689 case DIFV_SCOPE_THREAD:
8690 if (ndx < vstate->dtvs_ntlocals)
8691 existing = &vstate->dtvs_tlocals[ndx];
8692 break;

8694 case DIFV_SCOPE_LOCAL:
8695 if (ndx < vstate->dtvs_nlocals) {
8696 dtrace_statvar_t *svar;

8698 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8699 existing = &svar->dtsv_var;
8700 }

8702 break;
8703 }

8705 vt = &v->dtdv_type;

8707 if (vt->dtdt_flags & DIF_TF_BYREF) {

new/usr/src/uts/common/dtrace/dtrace.c 128

8708 if (vt->dtdt_size == 0) {
8709 err += efunc(i, "zero-sized variable\n");
8710 break;
8711 }

8713 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8714 vt->dtdt_size > dtrace_global_maxsize) {
8715 err += efunc(i, "oversized by-ref global\n");
8716 break;
8717 }
8718 }

8720 if (existing == NULL || existing->dtdv_id == 0)
8721 continue;

8723 ASSERT(existing->dtdv_id == v->dtdv_id);
8724 ASSERT(existing->dtdv_scope == v->dtdv_scope);

8726 if (existing->dtdv_kind != v->dtdv_kind)
8727 err += efunc(i, "%d changed variable kind\n", id);

8729 et = &existing->dtdv_type;

8731 if (vt->dtdt_flags != et->dtdt_flags) {
8732 err += efunc(i, "%d changed variable type flags\n", id);
8733 break;
8734 }

8736 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8737 err += efunc(i, "%d changed variable type size\n", id);
8738 break;
8739 }
8740 }

8742 return (err);
8743 }

8745 /*
8746 * Validate a DTrace DIF object that it is to be used as a helper. Helpers
8747 * are much more constrained than normal DIFOs. Specifically, they may
8748 * not:
8749 *
8750 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8751 * miscellaneous string routines
8752 * 2. Access DTrace variables other than the args[] array, and the
8753 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8754 * 3. Have thread-local variables.
8755 * 4. Have dynamic variables.
8756 */
8757 static int
8758 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8759 {
8760 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8761 int err = 0;
8762 uint_t pc;

8764 for (pc = 0; pc < dp->dtdo_len; pc++) {
8765 dif_instr_t instr = dp->dtdo_buf[pc];

8767 uint_t v = DIF_INSTR_VAR(instr);
8768 uint_t subr = DIF_INSTR_SUBR(instr);
8769 uint_t op = DIF_INSTR_OP(instr);

8771 switch (op) {
8772 case DIF_OP_OR:
8773 case DIF_OP_XOR:

new/usr/src/uts/common/dtrace/dtrace.c 129

8774 case DIF_OP_AND:
8775 case DIF_OP_SLL:
8776 case DIF_OP_SRL:
8777 case DIF_OP_SRA:
8778 case DIF_OP_SUB:
8779 case DIF_OP_ADD:
8780 case DIF_OP_MUL:
8781 case DIF_OP_SDIV:
8782 case DIF_OP_UDIV:
8783 case DIF_OP_SREM:
8784 case DIF_OP_UREM:
8785 case DIF_OP_COPYS:
8786 case DIF_OP_NOT:
8787 case DIF_OP_MOV:
8788 case DIF_OP_RLDSB:
8789 case DIF_OP_RLDSH:
8790 case DIF_OP_RLDSW:
8791 case DIF_OP_RLDUB:
8792 case DIF_OP_RLDUH:
8793 case DIF_OP_RLDUW:
8794 case DIF_OP_RLDX:
8795 case DIF_OP_ULDSB:
8796 case DIF_OP_ULDSH:
8797 case DIF_OP_ULDSW:
8798 case DIF_OP_ULDUB:
8799 case DIF_OP_ULDUH:
8800 case DIF_OP_ULDUW:
8801 case DIF_OP_ULDX:
8802 case DIF_OP_STB:
8803 case DIF_OP_STH:
8804 case DIF_OP_STW:
8805 case DIF_OP_STX:
8806 case DIF_OP_ALLOCS:
8807 case DIF_OP_CMP:
8808 case DIF_OP_SCMP:
8809 case DIF_OP_TST:
8810 case DIF_OP_BA:
8811 case DIF_OP_BE:
8812 case DIF_OP_BNE:
8813 case DIF_OP_BG:
8814 case DIF_OP_BGU:
8815 case DIF_OP_BGE:
8816 case DIF_OP_BGEU:
8817 case DIF_OP_BL:
8818 case DIF_OP_BLU:
8819 case DIF_OP_BLE:
8820 case DIF_OP_BLEU:
8821 case DIF_OP_RET:
8822 case DIF_OP_NOP:
8823 case DIF_OP_POPTS:
8824 case DIF_OP_FLUSHTS:
8825 case DIF_OP_SETX:
8826 case DIF_OP_SETS:
8827 case DIF_OP_LDGA:
8828 case DIF_OP_LDLS:
8829 case DIF_OP_STGS:
8830 case DIF_OP_STLS:
8831 case DIF_OP_PUSHTR:
8832 case DIF_OP_PUSHTV:
8833 break;

8835 case DIF_OP_LDGS:
8836 if (v >= DIF_VAR_OTHER_UBASE)
8837 break;

8839 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)

new/usr/src/uts/common/dtrace/dtrace.c 130

8840 break;

8842 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8843 v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8844 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8845 v == DIF_VAR_UID || v == DIF_VAR_GID)
8846 break;

8848 err += efunc(pc, "illegal variable %u\n", v);
8849 break;

8851 case DIF_OP_LDTA:
8852 case DIF_OP_LDTS:
8853 case DIF_OP_LDGAA:
8854 case DIF_OP_LDTAA:
8855 err += efunc(pc, "illegal dynamic variable load\n");
8856 break;

8858 case DIF_OP_STTS:
8859 case DIF_OP_STGAA:
8860 case DIF_OP_STTAA:
8861 err += efunc(pc, "illegal dynamic variable store\n");
8862 break;

8864 case DIF_OP_CALL:
8865 if (subr == DIF_SUBR_ALLOCA ||
8866 subr == DIF_SUBR_BCOPY ||
8867 subr == DIF_SUBR_COPYIN ||
8868 subr == DIF_SUBR_COPYINTO ||
8869 subr == DIF_SUBR_COPYINSTR ||
8870 subr == DIF_SUBR_INDEX ||
8871 subr == DIF_SUBR_INET_NTOA ||
8872 subr == DIF_SUBR_INET_NTOA6 ||
8873 subr == DIF_SUBR_INET_NTOP ||
8874 subr == DIF_SUBR_LLTOSTR ||
8875 subr == DIF_SUBR_RINDEX ||
8876 subr == DIF_SUBR_STRCHR ||
8877 subr == DIF_SUBR_STRJOIN ||
8878 subr == DIF_SUBR_STRRCHR ||
8879 subr == DIF_SUBR_STRSTR ||
8880 subr == DIF_SUBR_HTONS ||
8881 subr == DIF_SUBR_HTONL ||
8882 subr == DIF_SUBR_HTONLL ||
8883 subr == DIF_SUBR_NTOHS ||
8884 subr == DIF_SUBR_NTOHL ||
8885 subr == DIF_SUBR_NTOHLL)
8886 break;

8888 err += efunc(pc, "invalid subr %u\n", subr);
8889 break;

8891 default:
8892 err += efunc(pc, "invalid opcode %u\n",
8893 DIF_INSTR_OP(instr));
8894 }
8895 }

8897 return (err);
8898 }

8900 /*
8901 * Returns 1 if the expression in the DIF object can be cached on a per-thread
8902 * basis; 0 if not.
8903 */
8904 static int
8905 dtrace_difo_cacheable(dtrace_difo_t *dp)

new/usr/src/uts/common/dtrace/dtrace.c 131

8906 {
8907 int i;

8909 if (dp == NULL)
8910 return (0);

8912 for (i = 0; i < dp->dtdo_varlen; i++) {
8913 dtrace_difv_t *v = &dp->dtdo_vartab[i];

8915 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8916 continue;

8918 switch (v->dtdv_id) {
8919 case DIF_VAR_CURTHREAD:
8920 case DIF_VAR_PID:
8921 case DIF_VAR_TID:
8922 case DIF_VAR_EXECNAME:
8923 case DIF_VAR_ZONENAME:
8924 break;

8926 default:
8927 return (0);
8928 }
8929 }

8931 /*
8932 * This DIF object may be cacheable. Now we need to look for any
8933 * array loading instructions, any memory loading instructions, or
8934 * any stores to thread-local variables.
8935 */
8936 for (i = 0; i < dp->dtdo_len; i++) {
8937 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);

8939 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8940 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8941 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8942 op == DIF_OP_LDGA || op == DIF_OP_STTS)
8943 return (0);
8944 }

8946 return (1);
8947 }

8949 static void
8950 dtrace_difo_hold(dtrace_difo_t *dp)
8951 {
8952 int i;

8954 ASSERT(MUTEX_HELD(&dtrace_lock));

8956 dp->dtdo_refcnt++;
8957 ASSERT(dp->dtdo_refcnt != 0);

8959 /*
8960 * We need to check this DIF object for references to the variable
8961 * DIF_VAR_VTIMESTAMP.
8962 */
8963 for (i = 0; i < dp->dtdo_varlen; i++) {
8964 dtrace_difv_t *v = &dp->dtdo_vartab[i];

8966 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8967 continue;

8969 if (dtrace_vtime_references++ == 0)
8970 dtrace_vtime_enable();
8971 }

new/usr/src/uts/common/dtrace/dtrace.c 132

8972 }

8974 /*
8975 * This routine calculates the dynamic variable chunksize for a given DIF
8976 * object. The calculation is not fool-proof, and can probably be tricked by
8977 * malicious DIF -- but it works for all compiler-generated DIF. Because this
8978 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8979 * if a dynamic variable size exceeds the chunksize.
8980 */
8981 static void
8982 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8983 {
8984 uint64_t sval;
8985 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8986 const dif_instr_t *text = dp->dtdo_buf;
8987 uint_t pc, srd = 0;
8988 uint_t ttop = 0;
8989 size_t size, ksize;
8990 uint_t id, i;

8992 for (pc = 0; pc < dp->dtdo_len; pc++) {
8993 dif_instr_t instr = text[pc];
8994 uint_t op = DIF_INSTR_OP(instr);
8995 uint_t rd = DIF_INSTR_RD(instr);
8996 uint_t r1 = DIF_INSTR_R1(instr);
8997 uint_t nkeys = 0;
8998 uchar_t scope;

9000 dtrace_key_t *key = tupregs;

9002 switch (op) {
9003 case DIF_OP_SETX:
9004 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9005 srd = rd;
9006 continue;

9008 case DIF_OP_STTS:
9009 key = &tupregs[DIF_DTR_NREGS];
9010 key[0].dttk_size = 0;
9011 key[1].dttk_size = 0;
9012 nkeys = 2;
9013 scope = DIFV_SCOPE_THREAD;
9014 break;

9016 case DIF_OP_STGAA:
9017 case DIF_OP_STTAA:
9018 nkeys = ttop;

9020 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9021 key[nkeys++].dttk_size = 0;

9023 key[nkeys++].dttk_size = 0;

9025 if (op == DIF_OP_STTAA) {
9026 scope = DIFV_SCOPE_THREAD;
9027 } else {
9028 scope = DIFV_SCOPE_GLOBAL;
9029 }

9031 break;

9033 case DIF_OP_PUSHTR:
9034 if (ttop == DIF_DTR_NREGS)
9035 return;

9037 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {

new/usr/src/uts/common/dtrace/dtrace.c 133

9038 /*
9039 * If the register for the size of the "pushtr"
9040 * is %r0 (or the value is 0) and the type is
9041 * a string, we’ll use the system-wide default
9042 * string size.
9043 */
9044 tupregs[ttop++].dttk_size =
9045 dtrace_strsize_default;
9046 } else {
9047 if (srd == 0)
9048 return;

9050 tupregs[ttop++].dttk_size = sval;
9051 }

9053 break;

9055 case DIF_OP_PUSHTV:
9056 if (ttop == DIF_DTR_NREGS)
9057 return;

9059 tupregs[ttop++].dttk_size = 0;
9060 break;

9062 case DIF_OP_FLUSHTS:
9063 ttop = 0;
9064 break;

9066 case DIF_OP_POPTS:
9067 if (ttop != 0)
9068 ttop--;
9069 break;
9070 }

9072 sval = 0;
9073 srd = 0;

9075 if (nkeys == 0)
9076 continue;

9078 /*
9079 * We have a dynamic variable allocation; calculate its size.
9080 */
9081 for (ksize = 0, i = 0; i < nkeys; i++)
9082 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));

9084 size = sizeof (dtrace_dynvar_t);
9085 size += sizeof (dtrace_key_t) * (nkeys - 1);
9086 size += ksize;

9088 /*
9089 * Now we need to determine the size of the stored data.
9090 */
9091 id = DIF_INSTR_VAR(instr);

9093 for (i = 0; i < dp->dtdo_varlen; i++) {
9094 dtrace_difv_t *v = &dp->dtdo_vartab[i];

9096 if (v->dtdv_id == id && v->dtdv_scope == scope) {
9097 size += v->dtdv_type.dtdt_size;
9098 break;
9099 }
9100 }

9102 if (i == dp->dtdo_varlen)
9103 return;

new/usr/src/uts/common/dtrace/dtrace.c 134

9105 /*
9106 * We have the size. If this is larger than the chunk size
9107 * for our dynamic variable state, reset the chunk size.
9108 */
9109 size = P2ROUNDUP(size, sizeof (uint64_t));

9111 if (size > vstate->dtvs_dynvars.dtds_chunksize)
9112 vstate->dtvs_dynvars.dtds_chunksize = size;
9113 }
9114 }

9116 static void
9117 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9118 {
9119 int i, oldsvars, osz, nsz, otlocals, ntlocals;
9120 uint_t id;

9122 ASSERT(MUTEX_HELD(&dtrace_lock));
9123 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);

9125 for (i = 0; i < dp->dtdo_varlen; i++) {
9126 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9127 dtrace_statvar_t *svar, ***svarp;
9128 size_t dsize = 0;
9129 uint8_t scope = v->dtdv_scope;
9130 int *np;

9132 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9133 continue;

9135 id -= DIF_VAR_OTHER_UBASE;

9137 switch (scope) {
9138 case DIFV_SCOPE_THREAD:
9139 while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9140 dtrace_difv_t *tlocals;

9142 if ((ntlocals = (otlocals << 1)) == 0)
9143 ntlocals = 1;

9145 osz = otlocals * sizeof (dtrace_difv_t);
9146 nsz = ntlocals * sizeof (dtrace_difv_t);

9148 tlocals = kmem_zalloc(nsz, KM_SLEEP);

9150 if (osz != 0) {
9151 bcopy(vstate->dtvs_tlocals,
9152 tlocals, osz);
9153 kmem_free(vstate->dtvs_tlocals, osz);
9154 }

9156 vstate->dtvs_tlocals = tlocals;
9157 vstate->dtvs_ntlocals = ntlocals;
9158 }

9160 vstate->dtvs_tlocals[id] = *v;
9161 continue;

9163 case DIFV_SCOPE_LOCAL:
9164 np = &vstate->dtvs_nlocals;
9165 svarp = &vstate->dtvs_locals;

9167 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9168 dsize = NCPU * (v->dtdv_type.dtdt_size +
9169 sizeof (uint64_t));

new/usr/src/uts/common/dtrace/dtrace.c 135

9170 else
9171 dsize = NCPU * sizeof (uint64_t);

9173 break;

9175 case DIFV_SCOPE_GLOBAL:
9176 np = &vstate->dtvs_nglobals;
9177 svarp = &vstate->dtvs_globals;

9179 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9180 dsize = v->dtdv_type.dtdt_size +
9181 sizeof (uint64_t);

9183 break;

9185 default:
9186 ASSERT(0);
9187 }

9189 while (id >= (oldsvars = *np)) {
9190 dtrace_statvar_t **statics;
9191 int newsvars, oldsize, newsize;

9193 if ((newsvars = (oldsvars << 1)) == 0)
9194 newsvars = 1;

9196 oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9197 newsize = newsvars * sizeof (dtrace_statvar_t *);

9199 statics = kmem_zalloc(newsize, KM_SLEEP);

9201 if (oldsize != 0) {
9202 bcopy(*svarp, statics, oldsize);
9203 kmem_free(*svarp, oldsize);
9204 }

9206 *svarp = statics;
9207 *np = newsvars;
9208 }

9210 if ((svar = (*svarp)[id]) == NULL) {
9211 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9212 svar->dtsv_var = *v;

9214 if ((svar->dtsv_size = dsize) != 0) {
9215 svar->dtsv_data = (uint64_t)(uintptr_t)
9216 kmem_zalloc(dsize, KM_SLEEP);
9217 }

9219 (*svarp)[id] = svar;
9220 }

9222 svar->dtsv_refcnt++;
9223 }

9225 dtrace_difo_chunksize(dp, vstate);
9226 dtrace_difo_hold(dp);
9227 }

9229 static dtrace_difo_t *
9230 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9231 {
9232 dtrace_difo_t *new;
9233 size_t sz;

9235 ASSERT(dp->dtdo_buf != NULL);

new/usr/src/uts/common/dtrace/dtrace.c 136

9236 ASSERT(dp->dtdo_refcnt != 0);

9238 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);

9240 ASSERT(dp->dtdo_buf != NULL);
9241 sz = dp->dtdo_len * sizeof (dif_instr_t);
9242 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9243 bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9244 new->dtdo_len = dp->dtdo_len;

9246 if (dp->dtdo_strtab != NULL) {
9247 ASSERT(dp->dtdo_strlen != 0);
9248 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9249 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9250 new->dtdo_strlen = dp->dtdo_strlen;
9251 }

9253 if (dp->dtdo_inttab != NULL) {
9254 ASSERT(dp->dtdo_intlen != 0);
9255 sz = dp->dtdo_intlen * sizeof (uint64_t);
9256 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9257 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9258 new->dtdo_intlen = dp->dtdo_intlen;
9259 }

9261 if (dp->dtdo_vartab != NULL) {
9262 ASSERT(dp->dtdo_varlen != 0);
9263 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9264 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9265 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9266 new->dtdo_varlen = dp->dtdo_varlen;
9267 }

9269 dtrace_difo_init(new, vstate);
9270 return (new);
9271 }

9273 static void
9274 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9275 {
9276 int i;

9278 ASSERT(dp->dtdo_refcnt == 0);

9280 for (i = 0; i < dp->dtdo_varlen; i++) {
9281 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9282 dtrace_statvar_t *svar, **svarp;
9283 uint_t id;
9284 uint8_t scope = v->dtdv_scope;
9285 int *np;

9287 switch (scope) {
9288 case DIFV_SCOPE_THREAD:
9289 continue;

9291 case DIFV_SCOPE_LOCAL:
9292 np = &vstate->dtvs_nlocals;
9293 svarp = vstate->dtvs_locals;
9294 break;

9296 case DIFV_SCOPE_GLOBAL:
9297 np = &vstate->dtvs_nglobals;
9298 svarp = vstate->dtvs_globals;
9299 break;

9301 default:

new/usr/src/uts/common/dtrace/dtrace.c 137

9302 ASSERT(0);
9303 }

9305 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9306 continue;

9308 id -= DIF_VAR_OTHER_UBASE;
9309 ASSERT(id < *np);

9311 svar = svarp[id];
9312 ASSERT(svar != NULL);
9313 ASSERT(svar->dtsv_refcnt > 0);

9315 if (--svar->dtsv_refcnt > 0)
9316 continue;

9318 if (svar->dtsv_size != 0) {
9319 ASSERT(svar->dtsv_data != NULL);
9320 kmem_free((void *)(uintptr_t)svar->dtsv_data,
9321 svar->dtsv_size);
9322 }

9324 kmem_free(svar, sizeof (dtrace_statvar_t));
9325 svarp[id] = NULL;
9326 }

9328 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9329 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9330 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9331 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));

9333 kmem_free(dp, sizeof (dtrace_difo_t));
9334 }

9336 static void
9337 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9338 {
9339 int i;

9341 ASSERT(MUTEX_HELD(&dtrace_lock));
9342 ASSERT(dp->dtdo_refcnt != 0);

9344 for (i = 0; i < dp->dtdo_varlen; i++) {
9345 dtrace_difv_t *v = &dp->dtdo_vartab[i];

9347 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9348 continue;

9350 ASSERT(dtrace_vtime_references > 0);
9351 if (--dtrace_vtime_references == 0)
9352 dtrace_vtime_disable();
9353 }

9355 if (--dp->dtdo_refcnt == 0)
9356 dtrace_difo_destroy(dp, vstate);
9357 }

9359 /*
9360 * DTrace Format Functions
9361 */
9362 static uint16_t
9363 dtrace_format_add(dtrace_state_t *state, char *str)
9364 {
9365 char *fmt, **new;
9366 uint16_t ndx, len = strlen(str) + 1;

new/usr/src/uts/common/dtrace/dtrace.c 138

9368 fmt = kmem_zalloc(len, KM_SLEEP);
9369 bcopy(str, fmt, len);

9371 for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9372 if (state->dts_formats[ndx] == NULL) {
9373 state->dts_formats[ndx] = fmt;
9374 return (ndx + 1);
9375 }
9376 }

9378 if (state->dts_nformats == USHRT_MAX) {
9379 /*
9380 * This is only likely if a denial-of-service attack is being
9381 * attempted. As such, it’s okay to fail silently here.
9382 */
9383 kmem_free(fmt, len);
9384 return (0);
9385 }

9387 /*
9388 * For simplicity, we always resize the formats array to be exactly the
9389 * number of formats.
9390 */
9391 ndx = state->dts_nformats++;
9392 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);

9394 if (state->dts_formats != NULL) {
9395 ASSERT(ndx != 0);
9396 bcopy(state->dts_formats, new, ndx * sizeof (char *));
9397 kmem_free(state->dts_formats, ndx * sizeof (char *));
9398 }

9400 state->dts_formats = new;
9401 state->dts_formats[ndx] = fmt;

9403 return (ndx + 1);
9404 }

9406 static void
9407 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9408 {
9409 char *fmt;

9411 ASSERT(state->dts_formats != NULL);
9412 ASSERT(format <= state->dts_nformats);
9413 ASSERT(state->dts_formats[format - 1] != NULL);

9415 fmt = state->dts_formats[format - 1];
9416 kmem_free(fmt, strlen(fmt) + 1);
9417 state->dts_formats[format - 1] = NULL;
9418 }

9420 static void
9421 dtrace_format_destroy(dtrace_state_t *state)
9422 {
9423 int i;

9425 if (state->dts_nformats == 0) {
9426 ASSERT(state->dts_formats == NULL);
9427 return;
9428 }

9430 ASSERT(state->dts_formats != NULL);

9432 for (i = 0; i < state->dts_nformats; i++) {
9433 char *fmt = state->dts_formats[i];

new/usr/src/uts/common/dtrace/dtrace.c 139

9435 if (fmt == NULL)
9436 continue;

9438 kmem_free(fmt, strlen(fmt) + 1);
9439 }

9441 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9442 state->dts_nformats = 0;
9443 state->dts_formats = NULL;
9444 }

9446 /*
9447 * DTrace Predicate Functions
9448 */
9449 static dtrace_predicate_t *
9450 dtrace_predicate_create(dtrace_difo_t *dp)
9451 {
9452 dtrace_predicate_t *pred;

9454 ASSERT(MUTEX_HELD(&dtrace_lock));
9455 ASSERT(dp->dtdo_refcnt != 0);

9457 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9458 pred->dtp_difo = dp;
9459 pred->dtp_refcnt = 1;

9461 if (!dtrace_difo_cacheable(dp))
9462 return (pred);

9464 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9465 /*
9466 * This is only theoretically possible -- we have had 2^32
9467 * cacheable predicates on this machine. We cannot allow any
9468 * more predicates to become cacheable: as unlikely as it is,
9469 * there may be a thread caching a (now stale) predicate cache
9470 * ID. (N.B.: the temptation is being successfully resisted to
9471 * have this cmn_err() "Holy shit -- we executed this code!")
9472 */
9473 return (pred);
9474 }

9476 pred->dtp_cacheid = dtrace_predcache_id++;

9478 return (pred);
9479 }

9481 static void
9482 dtrace_predicate_hold(dtrace_predicate_t *pred)
9483 {
9484 ASSERT(MUTEX_HELD(&dtrace_lock));
9485 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9486 ASSERT(pred->dtp_refcnt > 0);

9488 pred->dtp_refcnt++;
9489 }

9491 static void
9492 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9493 {
9494 dtrace_difo_t *dp = pred->dtp_difo;

9496 ASSERT(MUTEX_HELD(&dtrace_lock));
9497 ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9498 ASSERT(pred->dtp_refcnt > 0);

new/usr/src/uts/common/dtrace/dtrace.c 140

9500 if (--pred->dtp_refcnt == 0) {
9501 dtrace_difo_release(pred->dtp_difo, vstate);
9502 kmem_free(pred, sizeof (dtrace_predicate_t));
9503 }
9504 }

9506 /*
9507 * DTrace Action Description Functions
9508 */
9509 static dtrace_actdesc_t *
9510 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9511 uint64_t uarg, uint64_t arg)
9512 {
9513 dtrace_actdesc_t *act;

9515 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9516 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));

9518 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9519 act->dtad_kind = kind;
9520 act->dtad_ntuple = ntuple;
9521 act->dtad_uarg = uarg;
9522 act->dtad_arg = arg;
9523 act->dtad_refcnt = 1;

9525 return (act);
9526 }

9528 static void
9529 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9530 {
9531 ASSERT(act->dtad_refcnt >= 1);
9532 act->dtad_refcnt++;
9533 }

9535 static void
9536 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9537 {
9538 dtrace_actkind_t kind = act->dtad_kind;
9539 dtrace_difo_t *dp;

9541 ASSERT(act->dtad_refcnt >= 1);

9543 if (--act->dtad_refcnt != 0)
9544 return;

9546 if ((dp = act->dtad_difo) != NULL)
9547 dtrace_difo_release(dp, vstate);

9549 if (DTRACEACT_ISPRINTFLIKE(kind)) {
9550 char *str = (char *)(uintptr_t)act->dtad_arg;

9552 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9553 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));

9555 if (str != NULL)
9556 kmem_free(str, strlen(str) + 1);
9557 }

9559 kmem_free(act, sizeof (dtrace_actdesc_t));
9560 }

9562 /*
9563 * DTrace ECB Functions
9564 */
9565 static dtrace_ecb_t *

new/usr/src/uts/common/dtrace/dtrace.c 141

9566 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9567 {
9568 dtrace_ecb_t *ecb;
9569 dtrace_epid_t epid;

9571 ASSERT(MUTEX_HELD(&dtrace_lock));

9573 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9574 ecb->dte_predicate = NULL;
9575 ecb->dte_probe = probe;

9577 /*
9578 * The default size is the size of the default action: recording
9579 * the header.
9580 */
9581 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
9582 ecb->dte_alignment = sizeof (dtrace_epid_t);

9584 epid = state->dts_epid++;

9586 if (epid - 1 >= state->dts_necbs) {
9587 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9588 int necbs = state->dts_necbs << 1;

9590 ASSERT(epid == state->dts_necbs + 1);

9592 if (necbs == 0) {
9593 ASSERT(oecbs == NULL);
9594 necbs = 1;
9595 }

9597 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);

9599 if (oecbs != NULL)
9600 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));

9602 dtrace_membar_producer();
9603 state->dts_ecbs = ecbs;

9605 if (oecbs != NULL) {
9606 /*
9607 * If this state is active, we must dtrace_sync()
9608 * before we can free the old dts_ecbs array: we’re
9609 * coming in hot, and there may be active ring
9610 * buffer processing (which indexes into the dts_ecbs
9611 * array) on another CPU.
9612 */
9613 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9614 dtrace_sync();

9616 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9617 }

9619 dtrace_membar_producer();
9620 state->dts_necbs = necbs;
9621 }

9623 ecb->dte_state = state;

9625 ASSERT(state->dts_ecbs[epid - 1] == NULL);
9626 dtrace_membar_producer();
9627 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;

9629 return (ecb);
9630 }

new/usr/src/uts/common/dtrace/dtrace.c 142

9632 static int
9633 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9634 {
9635 dtrace_probe_t *probe = ecb->dte_probe;

9637 ASSERT(MUTEX_HELD(&cpu_lock));
9638 ASSERT(MUTEX_HELD(&dtrace_lock));
9639 ASSERT(ecb->dte_next == NULL);

9641 if (probe == NULL) {
9642 /*
9643 * This is the NULL probe -- there’s nothing to do.
9644 */
9645 return (0);
9646 }

9648 if (probe->dtpr_ecb == NULL) {
9649 dtrace_provider_t *prov = probe->dtpr_provider;

9651 /*
9652 * We’re the first ECB on this probe.
9653 */
9654 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;

9656 if (ecb->dte_predicate != NULL)
9657 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;

9659 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9660 probe->dtpr_id, probe->dtpr_arg));
9661 } else {
9662 /*
9663 * This probe is already active. Swing the last pointer to
9664 * point to the new ECB, and issue a dtrace_sync() to assure
9665 * that all CPUs have seen the change.
9666 */
9667 ASSERT(probe->dtpr_ecb_last != NULL);
9668 probe->dtpr_ecb_last->dte_next = ecb;
9669 probe->dtpr_ecb_last = ecb;
9670 probe->dtpr_predcache = 0;

9672 dtrace_sync();
9673 return (0);
9674 }
9675 }

9677 static void
9678 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9679 {
9680 dtrace_action_t *act;
9681 uint32_t curneeded = UINT32_MAX;
9682 uint32_t aggbase = UINT32_MAX;

9684 /*
9685 * If we record anything, we always record the dtrace_rechdr_t. (And
9686 * we always record it first.)
9687 */
9688 ecb->dte_size = sizeof (dtrace_rechdr_t);
9689 ecb->dte_alignment = sizeof (dtrace_epid_t);

9691 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9692 dtrace_recdesc_t *rec = &act->dta_rec;
9693 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);

9695 ecb->dte_alignment = MAX(ecb->dte_alignment,
9696 rec->dtrd_alignment);

new/usr/src/uts/common/dtrace/dtrace.c 143

9698 if (DTRACEACT_ISAGG(act->dta_kind)) {
9699 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;

9701 ASSERT(rec->dtrd_size != 0);
9702 ASSERT(agg->dtag_first != NULL);
9703 ASSERT(act->dta_prev->dta_intuple);
9704 ASSERT(aggbase != UINT32_MAX);
9705 ASSERT(curneeded != UINT32_MAX);

9707 agg->dtag_base = aggbase;

9709 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9710 rec->dtrd_offset = curneeded;
9711 curneeded += rec->dtrd_size;
9712 ecb->dte_needed = MAX(ecb->dte_needed, curneeded);

9714 aggbase = UINT32_MAX;
9715 curneeded = UINT32_MAX;
9716 } else if (act->dta_intuple) {
9717 if (curneeded == UINT32_MAX) {
9718 /*
9719 * This is the first record in a tuple. Align
9720 * curneeded to be at offset 4 in an 8-byte
9721 * aligned block.
9722 */
9723 ASSERT(act->dta_prev == NULL ||
9724 !act->dta_prev->dta_intuple);
9725 ASSERT3U(aggbase, ==, UINT32_MAX);
9726 curneeded = P2PHASEUP(ecb->dte_size,
9727 sizeof (uint64_t), sizeof (dtrace_aggid_t));

9729 aggbase = curneeded - sizeof (dtrace_aggid_t);
9730 ASSERT(IS_P2ALIGNED(aggbase,
9731 sizeof (uint64_t)));
9732 }
9733 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9734 rec->dtrd_offset = curneeded;
9735 curneeded += rec->dtrd_size;
9736 } else {
9737 /* tuples must be followed by an aggregation */
9738 ASSERT(act->dta_prev == NULL ||
9739 !act->dta_prev->dta_intuple);

9741 ecb->dte_size = P2ROUNDUP(ecb->dte_size,
9742 rec->dtrd_alignment);
9743 rec->dtrd_offset = ecb->dte_size;
9744 ecb->dte_size += rec->dtrd_size;
9745 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
9746 }
9747 }

9749 if ((act = ecb->dte_action) != NULL &&
9750 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9751 ecb->dte_size == sizeof (dtrace_rechdr_t)) {
9752 /*
9753 * If the size is still sizeof (dtrace_rechdr_t), then all
9754 * actions store no data; set the size to 0.
9755 */
9756 ecb->dte_size = 0;
9757 }

9759 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
9760 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
9761 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
9762 ecb->dte_needed);
9763 }

new/usr/src/uts/common/dtrace/dtrace.c 144

9765 static dtrace_action_t *
9766 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9767 {
9768 dtrace_aggregation_t *agg;
9769 size_t size = sizeof (uint64_t);
9770 int ntuple = desc->dtad_ntuple;
9771 dtrace_action_t *act;
9772 dtrace_recdesc_t *frec;
9773 dtrace_aggid_t aggid;
9774 dtrace_state_t *state = ecb->dte_state;

9776 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9777 agg->dtag_ecb = ecb;

9779 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));

9781 switch (desc->dtad_kind) {
9782 case DTRACEAGG_MIN:
9783 agg->dtag_initial = INT64_MAX;
9784 agg->dtag_aggregate = dtrace_aggregate_min;
9785 break;

9787 case DTRACEAGG_MAX:
9788 agg->dtag_initial = INT64_MIN;
9789 agg->dtag_aggregate = dtrace_aggregate_max;
9790 break;

9792 case DTRACEAGG_COUNT:
9793 agg->dtag_aggregate = dtrace_aggregate_count;
9794 break;

9796 case DTRACEAGG_QUANTIZE:
9797 agg->dtag_aggregate = dtrace_aggregate_quantize;
9798 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9799 sizeof (uint64_t);
9800 break;

9802 case DTRACEAGG_LQUANTIZE: {
9803 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9804 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);

9806 agg->dtag_initial = desc->dtad_arg;
9807 agg->dtag_aggregate = dtrace_aggregate_lquantize;

9809 if (step == 0 || levels == 0)
9810 goto err;

9812 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9813 break;
9814 }

9816 case DTRACEAGG_LLQUANTIZE: {
9817 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
9818 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
9819 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
9820 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
9821 int64_t v;

9823 agg->dtag_initial = desc->dtad_arg;
9824 agg->dtag_aggregate = dtrace_aggregate_llquantize;

9826 if (factor < 2 || low >= high || nsteps < factor)
9827 goto err;

9829 /*

new/usr/src/uts/common/dtrace/dtrace.c 145

9830 * Now check that the number of steps evenly divides a power
9831 * of the factor. (This assures both integer bucket size and
9832 * linearity within each magnitude.)
9833 */
9834 for (v = factor; v < nsteps; v *= factor)
9835 continue;

9837 if ((v % nsteps) || (nsteps % factor))
9838 goto err;

9840 size = (dtrace_aggregate_llquantize_bucket(factor,
9841 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
9842 break;
9843 }

9845 case DTRACEAGG_AVG:
9846 agg->dtag_aggregate = dtrace_aggregate_avg;
9847 size = sizeof (uint64_t) * 2;
9848 break;

9850 case DTRACEAGG_STDDEV:
9851 agg->dtag_aggregate = dtrace_aggregate_stddev;
9852 size = sizeof (uint64_t) * 4;
9853 break;

9855 case DTRACEAGG_SUM:
9856 agg->dtag_aggregate = dtrace_aggregate_sum;
9857 break;

9859 default:
9860 goto err;
9861 }

9863 agg->dtag_action.dta_rec.dtrd_size = size;

9865 if (ntuple == 0)
9866 goto err;

9868 /*
9869 * We must make sure that we have enough actions for the n-tuple.
9870 */
9871 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9872 if (DTRACEACT_ISAGG(act->dta_kind))
9873 break;

9875 if (--ntuple == 0) {
9876 /*
9877 * This is the action with which our n-tuple begins.
9878 */
9879 agg->dtag_first = act;
9880 goto success;
9881 }
9882 }

9884 /*
9885 * This n-tuple is short by ntuple elements. Return failure.
9886 */
9887 ASSERT(ntuple != 0);
9888 err:
9889 kmem_free(agg, sizeof (dtrace_aggregation_t));
9890 return (NULL);

9892 success:
9893 /*
9894 * If the last action in the tuple has a size of zero, it’s actually
9895 * an expression argument for the aggregating action.

new/usr/src/uts/common/dtrace/dtrace.c 146

9896 */
9897 ASSERT(ecb->dte_action_last != NULL);
9898 act = ecb->dte_action_last;

9900 if (act->dta_kind == DTRACEACT_DIFEXPR) {
9901 ASSERT(act->dta_difo != NULL);

9903 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9904 agg->dtag_hasarg = 1;
9905 }

9907 /*
9908 * We need to allocate an id for this aggregation.
9909 */
9910 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9911 VM_BESTFIT | VM_SLEEP);

9913 if (aggid - 1 >= state->dts_naggregations) {
9914 dtrace_aggregation_t **oaggs = state->dts_aggregations;
9915 dtrace_aggregation_t **aggs;
9916 int naggs = state->dts_naggregations << 1;
9917 int onaggs = state->dts_naggregations;

9919 ASSERT(aggid == state->dts_naggregations + 1);

9921 if (naggs == 0) {
9922 ASSERT(oaggs == NULL);
9923 naggs = 1;
9924 }

9926 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);

9928 if (oaggs != NULL) {
9929 bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9930 kmem_free(oaggs, onaggs * sizeof (*aggs));
9931 }

9933 state->dts_aggregations = aggs;
9934 state->dts_naggregations = naggs;
9935 }

9937 ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9938 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;

9940 frec = &agg->dtag_first->dta_rec;
9941 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9942 frec->dtrd_alignment = sizeof (dtrace_aggid_t);

9944 for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9945 ASSERT(!act->dta_intuple);
9946 act->dta_intuple = 1;
9947 }

9949 return (&agg->dtag_action);
9950 }

9952 static void
9953 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9954 {
9955 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9956 dtrace_state_t *state = ecb->dte_state;
9957 dtrace_aggid_t aggid = agg->dtag_id;

9959 ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9960 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);

new/usr/src/uts/common/dtrace/dtrace.c 147

9962 ASSERT(state->dts_aggregations[aggid - 1] == agg);
9963 state->dts_aggregations[aggid - 1] = NULL;

9965 kmem_free(agg, sizeof (dtrace_aggregation_t));
9966 }

9968 static int
9969 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9970 {
9971 dtrace_action_t *action, *last;
9972 dtrace_difo_t *dp = desc->dtad_difo;
9973 uint32_t size = 0, align = sizeof (uint8_t), mask;
9974 uint16_t format = 0;
9975 dtrace_recdesc_t *rec;
9976 dtrace_state_t *state = ecb->dte_state;
9977 dtrace_optval_t *opt = state->dts_options, nframes, strsize;
9978 uint64_t arg = desc->dtad_arg;

9980 ASSERT(MUTEX_HELD(&dtrace_lock));
9981 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);

9983 if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9984 /*
9985 * If this is an aggregating action, there must be neither
9986 * a speculate nor a commit on the action chain.
9987 */
9988 dtrace_action_t *act;

9990 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9991 if (act->dta_kind == DTRACEACT_COMMIT)
9992 return (EINVAL);

9994 if (act->dta_kind == DTRACEACT_SPECULATE)
9995 return (EINVAL);
9996 }

9998 action = dtrace_ecb_aggregation_create(ecb, desc);

10000 if (action == NULL)
10001 return (EINVAL);
10002 } else {
10003 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10004 (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10005 dp != NULL && dp->dtdo_destructive)) {
10006 state->dts_destructive = 1;
10007 }

10009 switch (desc->dtad_kind) {
10010 case DTRACEACT_PRINTF:
10011 case DTRACEACT_PRINTA:
10012 case DTRACEACT_SYSTEM:
10013 case DTRACEACT_FREOPEN:
10014 case DTRACEACT_DIFEXPR:
10015 /*
10016 * We know that our arg is a string -- turn it into a
10017 * format.
10018 */
10019 if (arg == NULL) {
10020 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10021 desc->dtad_kind == DTRACEACT_DIFEXPR);
10022 format = 0;
10023 } else {
10024 ASSERT(arg != NULL);
10025 ASSERT(arg > KERNELBASE);
10026 format = dtrace_format_add(state,
10027 (char *)(uintptr_t)arg);

new/usr/src/uts/common/dtrace/dtrace.c 148

10028 }

10030 /*FALLTHROUGH*/
10031 case DTRACEACT_LIBACT:
10032 case DTRACEACT_TRACEMEM:
10033 case DTRACEACT_TRACEMEM_DYNSIZE:
10034 if (dp == NULL)
10035 return (EINVAL);

10037 if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10038 break;

10040 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10041 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10042 return (EINVAL);

10044 size = opt[DTRACEOPT_STRSIZE];
10045 }

10047 break;

10049 case DTRACEACT_STACK:
10050 if ((nframes = arg) == 0) {
10051 nframes = opt[DTRACEOPT_STACKFRAMES];
10052 ASSERT(nframes > 0);
10053 arg = nframes;
10054 }

10056 size = nframes * sizeof (pc_t);
10057 break;

10059 case DTRACEACT_JSTACK:
10060 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10061 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];

10063 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10064 nframes = opt[DTRACEOPT_JSTACKFRAMES];

10066 arg = DTRACE_USTACK_ARG(nframes, strsize);

10068 /*FALLTHROUGH*/
10069 case DTRACEACT_USTACK:
10070 if (desc->dtad_kind != DTRACEACT_JSTACK &&
10071 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10072 strsize = DTRACE_USTACK_STRSIZE(arg);
10073 nframes = opt[DTRACEOPT_USTACKFRAMES];
10074 ASSERT(nframes > 0);
10075 arg = DTRACE_USTACK_ARG(nframes, strsize);
10076 }

10078 /*
10079 * Save a slot for the pid.
10080 */
10081 size = (nframes + 1) * sizeof (uint64_t);
10082 size += DTRACE_USTACK_STRSIZE(arg);
10083 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));

10085 break;

10087 case DTRACEACT_SYM:
10088 case DTRACEACT_MOD:
10089 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10090 sizeof (uint64_t)) ||
10091 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10092 return (EINVAL);
10093 break;

new/usr/src/uts/common/dtrace/dtrace.c 149

10095 case DTRACEACT_USYM:
10096 case DTRACEACT_UMOD:
10097 case DTRACEACT_UADDR:
10098 if (dp == NULL ||
10099 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10100 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10101 return (EINVAL);

10103 /*
10104 * We have a slot for the pid, plus a slot for the
10105 * argument. To keep things simple (aligned with
10106 * bitness-neutral sizing), we store each as a 64-bit
10107 * quantity.
10108 */
10109 size = 2 * sizeof (uint64_t);
10110 break;

10112 case DTRACEACT_STOP:
10113 case DTRACEACT_BREAKPOINT:
10114 case DTRACEACT_PANIC:
10115 break;

10117 case DTRACEACT_CHILL:
10118 case DTRACEACT_DISCARD:
10119 case DTRACEACT_RAISE:
10120 if (dp == NULL)
10121 return (EINVAL);
10122 break;

10124 case DTRACEACT_EXIT:
10125 if (dp == NULL ||
10126 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10127 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10128 return (EINVAL);
10129 break;

10131 case DTRACEACT_SPECULATE:
10132 if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10133 return (EINVAL);

10135 if (dp == NULL)
10136 return (EINVAL);

10138 state->dts_speculates = 1;
10139 break;

10141 case DTRACEACT_COMMIT: {
10142 dtrace_action_t *act = ecb->dte_action;

10144 for (; act != NULL; act = act->dta_next) {
10145 if (act->dta_kind == DTRACEACT_COMMIT)
10146 return (EINVAL);
10147 }

10149 if (dp == NULL)
10150 return (EINVAL);
10151 break;
10152 }

10154 default:
10155 return (EINVAL);
10156 }

10158 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10159 /*

new/usr/src/uts/common/dtrace/dtrace.c 150

10160 * If this is a data-storing action or a speculate,
10161 * we must be sure that there isn’t a commit on the
10162 * action chain.
10163 */
10164 dtrace_action_t *act = ecb->dte_action;

10166 for (; act != NULL; act = act->dta_next) {
10167 if (act->dta_kind == DTRACEACT_COMMIT)
10168 return (EINVAL);
10169 }
10170 }

10172 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10173 action->dta_rec.dtrd_size = size;
10174 }

10176 action->dta_refcnt = 1;
10177 rec = &action->dta_rec;
10178 size = rec->dtrd_size;

10180 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10181 if (!(size & mask)) {
10182 align = mask + 1;
10183 break;
10184 }
10185 }

10187 action->dta_kind = desc->dtad_kind;

10189 if ((action->dta_difo = dp) != NULL)
10190 dtrace_difo_hold(dp);

10192 rec->dtrd_action = action->dta_kind;
10193 rec->dtrd_arg = arg;
10194 rec->dtrd_uarg = desc->dtad_uarg;
10195 rec->dtrd_alignment = (uint16_t)align;
10196 rec->dtrd_format = format;

10198 if ((last = ecb->dte_action_last) != NULL) {
10199 ASSERT(ecb->dte_action != NULL);
10200 action->dta_prev = last;
10201 last->dta_next = action;
10202 } else {
10203 ASSERT(ecb->dte_action == NULL);
10204 ecb->dte_action = action;
10205 }

10207 ecb->dte_action_last = action;

10209 return (0);
10210 }

10212 static void
10213 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10214 {
10215 dtrace_action_t *act = ecb->dte_action, *next;
10216 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10217 dtrace_difo_t *dp;
10218 uint16_t format;

10220 if (act != NULL && act->dta_refcnt > 1) {
10221 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10222 act->dta_refcnt--;
10223 } else {
10224 for (; act != NULL; act = next) {
10225 next = act->dta_next;

new/usr/src/uts/common/dtrace/dtrace.c 151

10226 ASSERT(next != NULL || act == ecb->dte_action_last);
10227 ASSERT(act->dta_refcnt == 1);

10229 if ((format = act->dta_rec.dtrd_format) != 0)
10230 dtrace_format_remove(ecb->dte_state, format);

10232 if ((dp = act->dta_difo) != NULL)
10233 dtrace_difo_release(dp, vstate);

10235 if (DTRACEACT_ISAGG(act->dta_kind)) {
10236 dtrace_ecb_aggregation_destroy(ecb, act);
10237 } else {
10238 kmem_free(act, sizeof (dtrace_action_t));
10239 }
10240 }
10241 }

10243 ecb->dte_action = NULL;
10244 ecb->dte_action_last = NULL;
10245 ecb->dte_size = 0;
10246 }

10248 static void
10249 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10250 {
10251 /*
10252 * We disable the ECB by removing it from its probe.
10253 */
10254 dtrace_ecb_t *pecb, *prev = NULL;
10255 dtrace_probe_t *probe = ecb->dte_probe;

10257 ASSERT(MUTEX_HELD(&dtrace_lock));

10259 if (probe == NULL) {
10260 /*
10261 * This is the NULL probe; there is nothing to disable.
10262 */
10263 return;
10264 }

10266 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10267 if (pecb == ecb)
10268 break;
10269 prev = pecb;
10270 }

10272 ASSERT(pecb != NULL);

10274 if (prev == NULL) {
10275 probe->dtpr_ecb = ecb->dte_next;
10276 } else {
10277 prev->dte_next = ecb->dte_next;
10278 }

10280 if (ecb == probe->dtpr_ecb_last) {
10281 ASSERT(ecb->dte_next == NULL);
10282 probe->dtpr_ecb_last = prev;
10283 }

10285 /*
10286 * The ECB has been disconnected from the probe; now sync to assure
10287 * that all CPUs have seen the change before returning.
10288 */
10289 dtrace_sync();

10291 if (probe->dtpr_ecb == NULL) {

new/usr/src/uts/common/dtrace/dtrace.c 152

10292 /*
10293 * That was the last ECB on the probe; clear the predicate
10294 * cache ID for the probe, disable it and sync one more time
10295 * to assure that we’ll never hit it again.
10296 */
10297 dtrace_provider_t *prov = probe->dtpr_provider;

10299 ASSERT(ecb->dte_next == NULL);
10300 ASSERT(probe->dtpr_ecb_last == NULL);
10301 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10302 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10303 probe->dtpr_id, probe->dtpr_arg);
10304 dtrace_sync();
10305 } else {
10306 /*
10307 * There is at least one ECB remaining on the probe. If there
10308 * is _exactly_ one, set the probe’s predicate cache ID to be
10309 * the predicate cache ID of the remaining ECB.
10310 */
10311 ASSERT(probe->dtpr_ecb_last != NULL);
10312 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);

10314 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10315 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;

10317 ASSERT(probe->dtpr_ecb->dte_next == NULL);

10319 if (p != NULL)
10320 probe->dtpr_predcache = p->dtp_cacheid;
10321 }

10323 ecb->dte_next = NULL;
10324 }
10325 }

10327 static void
10328 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10329 {
10330 dtrace_state_t *state = ecb->dte_state;
10331 dtrace_vstate_t *vstate = &state->dts_vstate;
10332 dtrace_predicate_t *pred;
10333 dtrace_epid_t epid = ecb->dte_epid;

10335 ASSERT(MUTEX_HELD(&dtrace_lock));
10336 ASSERT(ecb->dte_next == NULL);
10337 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);

10339 if ((pred = ecb->dte_predicate) != NULL)
10340 dtrace_predicate_release(pred, vstate);

10342 dtrace_ecb_action_remove(ecb);

10344 ASSERT(state->dts_ecbs[epid - 1] == ecb);
10345 state->dts_ecbs[epid - 1] = NULL;

10347 kmem_free(ecb, sizeof (dtrace_ecb_t));
10348 }

10350 static dtrace_ecb_t *
10351 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10352 dtrace_enabling_t *enab)
10353 {
10354 dtrace_ecb_t *ecb;
10355 dtrace_predicate_t *pred;
10356 dtrace_actdesc_t *act;
10357 dtrace_provider_t *prov;

new/usr/src/uts/common/dtrace/dtrace.c 153

10358 dtrace_ecbdesc_t *desc = enab->dten_current;

10360 ASSERT(MUTEX_HELD(&dtrace_lock));
10361 ASSERT(state != NULL);

10363 ecb = dtrace_ecb_add(state, probe);
10364 ecb->dte_uarg = desc->dted_uarg;

10366 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10367 dtrace_predicate_hold(pred);
10368 ecb->dte_predicate = pred;
10369 }

10371 if (probe != NULL) {
10372 /*
10373 * If the provider shows more leg than the consumer is old
10374 * enough to see, we need to enable the appropriate implicit
10375 * predicate bits to prevent the ecb from activating at
10376 * revealing times.
10377 *
10378 * Providers specifying DTRACE_PRIV_USER at register time
10379 * are stating that they need the /proc-style privilege
10380 * model to be enforced, and this is what DTRACE_COND_OWNER
10381 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10382 */
10383 prov = probe->dtpr_provider;
10384 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10385 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10386 ecb->dte_cond |= DTRACE_COND_OWNER;

10388 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10389 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10390 ecb->dte_cond |= DTRACE_COND_ZONEOWNER;

10392 /*
10393 * If the provider shows us kernel innards and the user
10394 * is lacking sufficient privilege, enable the
10395 * DTRACE_COND_USERMODE implicit predicate.
10396 */
10397 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10398 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10399 ecb->dte_cond |= DTRACE_COND_USERMODE;
10400 }

10402 if (dtrace_ecb_create_cache != NULL) {
10403 /*
10404 * If we have a cached ecb, we’ll use its action list instead
10405 * of creating our own (saving both time and space).
10406 */
10407 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10408 dtrace_action_t *act = cached->dte_action;

10410 if (act != NULL) {
10411 ASSERT(act->dta_refcnt > 0);
10412 act->dta_refcnt++;
10413 ecb->dte_action = act;
10414 ecb->dte_action_last = cached->dte_action_last;
10415 ecb->dte_needed = cached->dte_needed;
10416 ecb->dte_size = cached->dte_size;
10417 ecb->dte_alignment = cached->dte_alignment;
10418 }

10420 return (ecb);
10421 }

10423 for (act = desc->dted_action; act != NULL; act = act->dtad_next) {

new/usr/src/uts/common/dtrace/dtrace.c 154

10424 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10425 dtrace_ecb_destroy(ecb);
10426 return (NULL);
10427 }
10428 }

10430 dtrace_ecb_resize(ecb);

10432 return (dtrace_ecb_create_cache = ecb);
10433 }

10435 static int
10436 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10437 {
10438 dtrace_ecb_t *ecb;
10439 dtrace_enabling_t *enab = arg;
10440 dtrace_state_t *state = enab->dten_vstate->dtvs_state;

10442 ASSERT(state != NULL);

10444 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10445 /*
10446 * This probe was created in a generation for which this
10447 * enabling has previously created ECBs; we don’t want to
10448 * enable it again, so just kick out.
10449 */
10450 return (DTRACE_MATCH_NEXT);
10451 }

10453 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10454 return (DTRACE_MATCH_DONE);

10456 if (dtrace_ecb_enable(ecb) < 0)
10457 return (DTRACE_MATCH_FAIL);

10459 return (DTRACE_MATCH_NEXT);
10460 }

10462 static dtrace_ecb_t *
10463 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10464 {
10465 dtrace_ecb_t *ecb;

10467 ASSERT(MUTEX_HELD(&dtrace_lock));

10469 if (id == 0 || id > state->dts_necbs)
10470 return (NULL);

10472 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10473 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);

10475 return (state->dts_ecbs[id - 1]);
10476 }

10478 static dtrace_aggregation_t *
10479 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10480 {
10481 dtrace_aggregation_t *agg;

10483 ASSERT(MUTEX_HELD(&dtrace_lock));

10485 if (id == 0 || id > state->dts_naggregations)
10486 return (NULL);

10488 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10489 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||

new/usr/src/uts/common/dtrace/dtrace.c 155

10490 agg->dtag_id == id);

10492 return (state->dts_aggregations[id - 1]);
10493 }

10495 /*
10496 * DTrace Buffer Functions
10497 *
10498 * The following functions manipulate DTrace buffers. Most of these functions
10499 * are called in the context of establishing or processing consumer state;
10500 * exceptions are explicitly noted.
10501 */

10503 /*
10504 * Note: called from cross call context. This function switches the two
10505 * buffers on a given CPU. The atomicity of this operation is assured by
10506 * disabling interrupts while the actual switch takes place; the disabling of
10507 * interrupts serializes the execution with any execution of dtrace_probe() on
10508 * the same CPU.
10509 */
10510 static void
10511 dtrace_buffer_switch(dtrace_buffer_t *buf)
10512 {
10513 caddr_t tomax = buf->dtb_tomax;
10514 caddr_t xamot = buf->dtb_xamot;
10515 dtrace_icookie_t cookie;
10516 hrtime_t now;

10518 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10519 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));

10521 cookie = dtrace_interrupt_disable();
10522 now = dtrace_gethrtime();
10523 buf->dtb_tomax = xamot;
10524 buf->dtb_xamot = tomax;
10525 buf->dtb_xamot_drops = buf->dtb_drops;
10526 buf->dtb_xamot_offset = buf->dtb_offset;
10527 buf->dtb_xamot_errors = buf->dtb_errors;
10528 buf->dtb_xamot_flags = buf->dtb_flags;
10529 buf->dtb_offset = 0;
10530 buf->dtb_drops = 0;
10531 buf->dtb_errors = 0;
10532 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10533 buf->dtb_interval = now - buf->dtb_switched;
10534 buf->dtb_switched = now;
10535 dtrace_interrupt_enable(cookie);
10536 }

10538 /*
10539 * Note: called from cross call context. This function activates a buffer
10540 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
10541 * is guaranteed by the disabling of interrupts.
10542 */
10543 static void
10544 dtrace_buffer_activate(dtrace_state_t *state)
10545 {
10546 dtrace_buffer_t *buf;
10547 dtrace_icookie_t cookie = dtrace_interrupt_disable();

10549 buf = &state->dts_buffer[CPU->cpu_id];

10551 if (buf->dtb_tomax != NULL) {
10552 /*
10553 * We might like to assert that the buffer is marked inactive,
10554 * but this isn’t necessarily true: the buffer for the CPU
10555 * that processes the BEGIN probe has its buffer activated

new/usr/src/uts/common/dtrace/dtrace.c 156

10556 * manually. In this case, we take the (harmless) action
10557 * re-clearing the bit INACTIVE bit.
10558 */
10559 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10560 }

10562 dtrace_interrupt_enable(cookie);
10563 }

10565 static int
10566 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10567 processorid_t cpu, int *factor)
10568 {
10569 cpu_t *cp;
10570 dtrace_buffer_t *buf;
10571 int allocated = 0, desired = 0;

10573 ASSERT(MUTEX_HELD(&cpu_lock));
10574 ASSERT(MUTEX_HELD(&dtrace_lock));

10576 *factor = 1;

10578 if (size > dtrace_nonroot_maxsize &&
10579 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10580 return (EFBIG);

10582 cp = cpu_list;

10584 do {
10585 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10586 continue;

10588 buf = &bufs[cp->cpu_id];

10590 /*
10591 * If there is already a buffer allocated for this CPU, it
10592 * is only possible that this is a DR event. In this case,
10593 * the buffer size must match our specified size.
10594 */
10595 if (buf->dtb_tomax != NULL) {
10596 ASSERT(buf->dtb_size == size);
10597 continue;
10598 }

10600 ASSERT(buf->dtb_xamot == NULL);

10602 if ((buf->dtb_tomax = kmem_zalloc(size,
10603 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10604 goto err;

10606 buf->dtb_size = size;
10607 buf->dtb_flags = flags;
10608 buf->dtb_offset = 0;
10609 buf->dtb_drops = 0;

10611 if (flags & DTRACEBUF_NOSWITCH)
10612 continue;

10614 if ((buf->dtb_xamot = kmem_zalloc(size,
10615 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10616 goto err;
10617 } while ((cp = cp->cpu_next) != cpu_list);

10619 return (0);

10621 err:

new/usr/src/uts/common/dtrace/dtrace.c 157

10622 cp = cpu_list;

10624 do {
10625 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10626 continue;

10628 buf = &bufs[cp->cpu_id];
10629 desired += 2;

10631 if (buf->dtb_xamot != NULL) {
10632 ASSERT(buf->dtb_tomax != NULL);
10633 ASSERT(buf->dtb_size == size);
10634 kmem_free(buf->dtb_xamot, size);
10635 allocated++;
10636 }

10638 if (buf->dtb_tomax != NULL) {
10639 ASSERT(buf->dtb_size == size);
10640 kmem_free(buf->dtb_tomax, size);
10641 allocated++;
10642 }

10644 buf->dtb_tomax = NULL;
10645 buf->dtb_xamot = NULL;
10646 buf->dtb_size = 0;
10647 } while ((cp = cp->cpu_next) != cpu_list);

10649 *factor = desired / (allocated > 0 ? allocated : 1);

10651 return (ENOMEM);
10652 }

10654 /*
10655 * Note: called from probe context. This function just increments the drop
10656 * count on a buffer. It has been made a function to allow for the
10657 * possibility of understanding the source of mysterious drop counts. (A
10658 * problem for which one may be particularly disappointed that DTrace cannot
10659 * be used to understand DTrace.)
10660 */
10661 static void
10662 dtrace_buffer_drop(dtrace_buffer_t *buf)
10663 {
10664 buf->dtb_drops++;
10665 }

10667 /*
10668 * Note: called from probe context. This function is called to reserve space
10669 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
10670 * mstate. Returns the new offset in the buffer, or a negative value if an
10671 * error has occurred.
10672 */
10673 static intptr_t
10674 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10675 dtrace_state_t *state, dtrace_mstate_t *mstate)
10676 {
10677 intptr_t offs = buf->dtb_offset, soffs;
10678 intptr_t woffs;
10679 caddr_t tomax;
10680 size_t total;

10682 if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10683 return (-1);

10685 if ((tomax = buf->dtb_tomax) == NULL) {
10686 dtrace_buffer_drop(buf);
10687 return (-1);

new/usr/src/uts/common/dtrace/dtrace.c 158

10688 }

10690 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10691 while (offs & (align - 1)) {
10692 /*
10693 * Assert that our alignment is off by a number which
10694 * is itself sizeof (uint32_t) aligned.
10695 */
10696 ASSERT(!((align - (offs & (align - 1))) &
10697 (sizeof (uint32_t) - 1)));
10698 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10699 offs += sizeof (uint32_t);
10700 }

10702 if ((soffs = offs + needed) > buf->dtb_size) {
10703 dtrace_buffer_drop(buf);
10704 return (-1);
10705 }

10707 if (mstate == NULL)
10708 return (offs);

10710 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10711 mstate->dtms_scratch_size = buf->dtb_size - soffs;
10712 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;

10714 return (offs);
10715 }

10717 if (buf->dtb_flags & DTRACEBUF_FILL) {
10718 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10719 (buf->dtb_flags & DTRACEBUF_FULL))
10720 return (-1);
10721 goto out;
10722 }

10724 total = needed + (offs & (align - 1));

10726 /*
10727 * For a ring buffer, life is quite a bit more complicated. Before
10728 * we can store any padding, we need to adjust our wrapping offset.
10729 * (If we’ve never before wrapped or we’re not about to, no adjustment
10730 * is required.)
10731 */
10732 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10733 offs + total > buf->dtb_size) {
10734 woffs = buf->dtb_xamot_offset;

10736 if (offs + total > buf->dtb_size) {
10737 /*
10738 * We can’t fit in the end of the buffer. First, a
10739 * sanity check that we can fit in the buffer at all.
10740 */
10741 if (total > buf->dtb_size) {
10742 dtrace_buffer_drop(buf);
10743 return (-1);
10744 }

10746 /*
10747 * We’re going to be storing at the top of the buffer,
10748 * so now we need to deal with the wrapped offset. We
10749 * only reset our wrapped offset to 0 if it is
10750 * currently greater than the current offset. If it
10751 * is less than the current offset, it is because a
10752 * previous allocation induced a wrap -- but the
10753 * allocation didn’t subsequently take the space due

new/usr/src/uts/common/dtrace/dtrace.c 159

10754 * to an error or false predicate evaluation. In this
10755 * case, we’ll just leave the wrapped offset alone: if
10756 * the wrapped offset hasn’t been advanced far enough
10757 * for this allocation, it will be adjusted in the
10758 * lower loop.
10759 */
10760 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10761 if (woffs >= offs)
10762 woffs = 0;
10763 } else {
10764 woffs = 0;
10765 }

10767 /*
10768 * Now we know that we’re going to be storing to the
10769 * top of the buffer and that there is room for us
10770 * there. We need to clear the buffer from the current
10771 * offset to the end (there may be old gunk there).
10772 */
10773 while (offs < buf->dtb_size)
10774 tomax[offs++] = 0;

10776 /*
10777 * We need to set our offset to zero. And because we
10778 * are wrapping, we need to set the bit indicating as
10779 * much. We can also adjust our needed space back
10780 * down to the space required by the ECB -- we know
10781 * that the top of the buffer is aligned.
10782 */
10783 offs = 0;
10784 total = needed;
10785 buf->dtb_flags |= DTRACEBUF_WRAPPED;
10786 } else {
10787 /*
10788 * There is room for us in the buffer, so we simply
10789 * need to check the wrapped offset.
10790 */
10791 if (woffs < offs) {
10792 /*
10793 * The wrapped offset is less than the offset.
10794 * This can happen if we allocated buffer space
10795 * that induced a wrap, but then we didn’t
10796 * subsequently take the space due to an error
10797 * or false predicate evaluation. This is
10798 * okay; we know that _this_ allocation isn’t
10799 * going to induce a wrap. We still can’t
10800 * reset the wrapped offset to be zero,
10801 * however: the space may have been trashed in
10802 * the previous failed probe attempt. But at
10803 * least the wrapped offset doesn’t need to
10804 * be adjusted at all...
10805 */
10806 goto out;
10807 }
10808 }

10810 while (offs + total > woffs) {
10811 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10812 size_t size;

10814 if (epid == DTRACE_EPIDNONE) {
10815 size = sizeof (uint32_t);
10816 } else {
10817 ASSERT3U(epid, <=, state->dts_necbs);
10818 ASSERT(state->dts_ecbs[epid - 1] != NULL);

new/usr/src/uts/common/dtrace/dtrace.c 160

10820 size = state->dts_ecbs[epid - 1]->dte_size;
10821 }

10823 ASSERT(woffs + size <= buf->dtb_size);
10824 ASSERT(size != 0);

10826 if (woffs + size == buf->dtb_size) {
10827 /*
10828 * We’ve reached the end of the buffer; we want
10829 * to set the wrapped offset to 0 and break
10830 * out. However, if the offs is 0, then we’re
10831 * in a strange edge-condition: the amount of
10832 * space that we want to reserve plus the size
10833 * of the record that we’re overwriting is
10834 * greater than the size of the buffer. This
10835 * is problematic because if we reserve the
10836 * space but subsequently don’t consume it (due
10837 * to a failed predicate or error) the wrapped
10838 * offset will be 0 -- yet the EPID at offset 0
10839 * will not be committed. This situation is
10840 * relatively easy to deal with: if we’re in
10841 * this case, the buffer is indistinguishable
10842 * from one that hasn’t wrapped; we need only
10843 * finish the job by clearing the wrapped bit,
10844 * explicitly setting the offset to be 0, and
10845 * zero’ing out the old data in the buffer.
10846 */
10847 if (offs == 0) {
10848 buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10849 buf->dtb_offset = 0;
10850 woffs = total;

10852 while (woffs < buf->dtb_size)
10853 tomax[woffs++] = 0;
10854 }

10856 woffs = 0;
10857 break;
10858 }

10860 woffs += size;
10861 }

10863 /*
10864 * We have a wrapped offset. It may be that the wrapped offset
10865 * has become zero -- that’s okay.
10866 */
10867 buf->dtb_xamot_offset = woffs;
10868 }

10870 out:
10871 /*
10872 * Now we can plow the buffer with any necessary padding.
10873 */
10874 while (offs & (align - 1)) {
10875 /*
10876 * Assert that our alignment is off by a number which
10877 * is itself sizeof (uint32_t) aligned.
10878 */
10879 ASSERT(!((align - (offs & (align - 1))) &
10880 (sizeof (uint32_t) - 1)));
10881 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10882 offs += sizeof (uint32_t);
10883 }

10885 if (buf->dtb_flags & DTRACEBUF_FILL) {

new/usr/src/uts/common/dtrace/dtrace.c 161

10886 if (offs + needed > buf->dtb_size - state->dts_reserve) {
10887 buf->dtb_flags |= DTRACEBUF_FULL;
10888 return (-1);
10889 }
10890 }

10892 if (mstate == NULL)
10893 return (offs);

10895 /*
10896 * For ring buffers and fill buffers, the scratch space is always
10897 * the inactive buffer.
10898 */
10899 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10900 mstate->dtms_scratch_size = buf->dtb_size;
10901 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;

10903 return (offs);
10904 }

10906 static void
10907 dtrace_buffer_polish(dtrace_buffer_t *buf)
10908 {
10909 ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10910 ASSERT(MUTEX_HELD(&dtrace_lock));

10912 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
10913 return;

10915 /*
10916 * We need to polish the ring buffer. There are three cases:
10917 *
10918 * - The first (and presumably most common) is that there is no gap
10919 * between the buffer offset and the wrapped offset. In this case,
10920 * there is nothing in the buffer that isn’t valid data; we can
10921 * mark the buffer as polished and return.
10922 *
10923 * - The second (less common than the first but still more common
10924 * than the third) is that there is a gap between the buffer offset
10925 * and the wrapped offset, and the wrapped offset is larger than the
10926 * buffer offset. This can happen because of an alignment issue, or
10927 * can happen because of a call to dtrace_buffer_reserve() that
10928 * didn’t subsequently consume the buffer space. In this case,
10929 * we need to zero the data from the buffer offset to the wrapped
10930 * offset.
10931 *
10932 * - The third (and least common) is that there is a gap between the
10933 * buffer offset and the wrapped offset, but the wrapped offset is
10934 * _less_ than the buffer offset. This can only happen because a
10935 * call to dtrace_buffer_reserve() induced a wrap, but the space
10936 * was not subsequently consumed. In this case, we need to zero the
10937 * space from the offset to the end of the buffer _and_ from the
10938 * top of the buffer to the wrapped offset.
10939 */
10940 if (buf->dtb_offset < buf->dtb_xamot_offset) {
10941 bzero(buf->dtb_tomax + buf->dtb_offset,
10942 buf->dtb_xamot_offset - buf->dtb_offset);
10943 }

10945 if (buf->dtb_offset > buf->dtb_xamot_offset) {
10946 bzero(buf->dtb_tomax + buf->dtb_offset,
10947 buf->dtb_size - buf->dtb_offset);
10948 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
10949 }
10950 }

new/usr/src/uts/common/dtrace/dtrace.c 162

10952 /*
10953 * This routine determines if data generated at the specified time has likely
10954 * been entirely consumed at user-level. This routine is called to determine
10955 * if an ECB on a defunct probe (but for an active enabling) can be safely
10956 * disabled and destroyed.
10957 */
10958 static int
10959 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
10960 {
10961 int i;

10963 for (i = 0; i < NCPU; i++) {
10964 dtrace_buffer_t *buf = &bufs[i];

10966 if (buf->dtb_size == 0)
10967 continue;

10969 if (buf->dtb_flags & DTRACEBUF_RING)
10970 return (0);

10972 if (!buf->dtb_switched && buf->dtb_offset != 0)
10973 return (0);

10975 if (buf->dtb_switched - buf->dtb_interval < when)
10976 return (0);
10977 }

10979 return (1);
10980 }

10982 static void
10983 dtrace_buffer_free(dtrace_buffer_t *bufs)
10984 {
10985 int i;

10987 for (i = 0; i < NCPU; i++) {
10988 dtrace_buffer_t *buf = &bufs[i];

10990 if (buf->dtb_tomax == NULL) {
10991 ASSERT(buf->dtb_xamot == NULL);
10992 ASSERT(buf->dtb_size == 0);
10993 continue;
10994 }

10996 if (buf->dtb_xamot != NULL) {
10997 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10998 kmem_free(buf->dtb_xamot, buf->dtb_size);
10999 }

11001 kmem_free(buf->dtb_tomax, buf->dtb_size);
11002 buf->dtb_size = 0;
11003 buf->dtb_tomax = NULL;
11004 buf->dtb_xamot = NULL;
11005 }
11006 }

11008 /*
11009 * DTrace Enabling Functions
11010 */
11011 static dtrace_enabling_t *
11012 dtrace_enabling_create(dtrace_vstate_t *vstate)
11013 {
11014 dtrace_enabling_t *enab;

11016 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11017 enab->dten_vstate = vstate;

new/usr/src/uts/common/dtrace/dtrace.c 163

11019 return (enab);
11020 }

11022 static void
11023 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11024 {
11025 dtrace_ecbdesc_t **ndesc;
11026 size_t osize, nsize;

11028 /*
11029 * We can’t add to enablings after we’ve enabled them, or after we’ve
11030 * retained them.
11031 */
11032 ASSERT(enab->dten_probegen == 0);
11033 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);

11035 if (enab->dten_ndesc < enab->dten_maxdesc) {
11036 enab->dten_desc[enab->dten_ndesc++] = ecb;
11037 return;
11038 }

11040 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);

11042 if (enab->dten_maxdesc == 0) {
11043 enab->dten_maxdesc = 1;
11044 } else {
11045 enab->dten_maxdesc <<= 1;
11046 }

11048 ASSERT(enab->dten_ndesc < enab->dten_maxdesc);

11050 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11051 ndesc = kmem_zalloc(nsize, KM_SLEEP);
11052 bcopy(enab->dten_desc, ndesc, osize);
11053 kmem_free(enab->dten_desc, osize);

11055 enab->dten_desc = ndesc;
11056 enab->dten_desc[enab->dten_ndesc++] = ecb;
11057 }

11059 static void
11060 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11061 dtrace_probedesc_t *pd)
11062 {
11063 dtrace_ecbdesc_t *new;
11064 dtrace_predicate_t *pred;
11065 dtrace_actdesc_t *act;

11067 /*
11068 * We’re going to create a new ECB description that matches the
11069 * specified ECB in every way, but has the specified probe description.
11070 */
11071 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);

11073 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11074 dtrace_predicate_hold(pred);

11076 for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11077 dtrace_actdesc_hold(act);

11079 new->dted_action = ecb->dted_action;
11080 new->dted_pred = ecb->dted_pred;
11081 new->dted_probe = *pd;
11082 new->dted_uarg = ecb->dted_uarg;

new/usr/src/uts/common/dtrace/dtrace.c 164

11084 dtrace_enabling_add(enab, new);
11085 }

11087 static void
11088 dtrace_enabling_dump(dtrace_enabling_t *enab)
11089 {
11090 int i;

11092 for (i = 0; i < enab->dten_ndesc; i++) {
11093 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;

11095 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11096 desc->dtpd_provider, desc->dtpd_mod,
11097 desc->dtpd_func, desc->dtpd_name);
11098 }
11099 }

11101 static void
11102 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11103 {
11104 int i;
11105 dtrace_ecbdesc_t *ep;
11106 dtrace_vstate_t *vstate = enab->dten_vstate;

11108 ASSERT(MUTEX_HELD(&dtrace_lock));

11110 for (i = 0; i < enab->dten_ndesc; i++) {
11111 dtrace_actdesc_t *act, *next;
11112 dtrace_predicate_t *pred;

11114 ep = enab->dten_desc[i];

11116 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11117 dtrace_predicate_release(pred, vstate);

11119 for (act = ep->dted_action; act != NULL; act = next) {
11120 next = act->dtad_next;
11121 dtrace_actdesc_release(act, vstate);
11122 }

11124 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11125 }

11127 kmem_free(enab->dten_desc,
11128 enab->dten_maxdesc * sizeof (dtrace_enabling_t *));

11130 /*
11131 * If this was a retained enabling, decrement the dts_nretained count
11132 * and take it off of the dtrace_retained list.
11133 */
11134 if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11135 dtrace_retained == enab) {
11136 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11137 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11138 enab->dten_vstate->dtvs_state->dts_nretained--;
11139 dtrace_retained_gen++;
11140 }

11142 if (enab->dten_prev == NULL) {
11143 if (dtrace_retained == enab) {
11144 dtrace_retained = enab->dten_next;

11146 if (dtrace_retained != NULL)
11147 dtrace_retained->dten_prev = NULL;
11148 }
11149 } else {

new/usr/src/uts/common/dtrace/dtrace.c 165

11150 ASSERT(enab != dtrace_retained);
11151 ASSERT(dtrace_retained != NULL);
11152 enab->dten_prev->dten_next = enab->dten_next;
11153 }

11155 if (enab->dten_next != NULL) {
11156 ASSERT(dtrace_retained != NULL);
11157 enab->dten_next->dten_prev = enab->dten_prev;
11158 }

11160 kmem_free(enab, sizeof (dtrace_enabling_t));
11161 }

11163 static int
11164 dtrace_enabling_retain(dtrace_enabling_t *enab)
11165 {
11166 dtrace_state_t *state;

11168 ASSERT(MUTEX_HELD(&dtrace_lock));
11169 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11170 ASSERT(enab->dten_vstate != NULL);

11172 state = enab->dten_vstate->dtvs_state;
11173 ASSERT(state != NULL);

11175 /*
11176 * We only allow each state to retain dtrace_retain_max enablings.
11177 */
11178 if (state->dts_nretained >= dtrace_retain_max)
11179 return (ENOSPC);

11181 state->dts_nretained++;
11182 dtrace_retained_gen++;

11184 if (dtrace_retained == NULL) {
11185 dtrace_retained = enab;
11186 return (0);
11187 }

11189 enab->dten_next = dtrace_retained;
11190 dtrace_retained->dten_prev = enab;
11191 dtrace_retained = enab;

11193 return (0);
11194 }

11196 static int
11197 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11198 dtrace_probedesc_t *create)
11199 {
11200 dtrace_enabling_t *new, *enab;
11201 int found = 0, err = ENOENT;

11203 ASSERT(MUTEX_HELD(&dtrace_lock));
11204 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11205 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11206 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11207 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);

11209 new = dtrace_enabling_create(&state->dts_vstate);

11211 /*
11212 * Iterate over all retained enablings, looking for enablings that
11213 * match the specified state.
11214 */
11215 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {

new/usr/src/uts/common/dtrace/dtrace.c 166

11216 int i;

11218 /*
11219 * dtvs_state can only be NULL for helper enablings -- and
11220 * helper enablings can’t be retained.
11221 */
11222 ASSERT(enab->dten_vstate->dtvs_state != NULL);

11224 if (enab->dten_vstate->dtvs_state != state)
11225 continue;

11227 /*
11228 * Now iterate over each probe description; we’re looking for
11229 * an exact match to the specified probe description.
11230 */
11231 for (i = 0; i < enab->dten_ndesc; i++) {
11232 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11233 dtrace_probedesc_t *pd = &ep->dted_probe;

11235 if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11236 continue;

11238 if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11239 continue;

11241 if (strcmp(pd->dtpd_func, match->dtpd_func))
11242 continue;

11244 if (strcmp(pd->dtpd_name, match->dtpd_name))
11245 continue;

11247 /*
11248 * We have a winning probe! Add it to our growing
11249 * enabling.
11250 */
11251 found = 1;
11252 dtrace_enabling_addlike(new, ep, create);
11253 }
11254 }

11256 if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11257 dtrace_enabling_destroy(new);
11258 return (err);
11259 }

11261 return (0);
11262 }

11264 static void
11265 dtrace_enabling_retract(dtrace_state_t *state)
11266 {
11267 dtrace_enabling_t *enab, *next;

11269 ASSERT(MUTEX_HELD(&dtrace_lock));

11271 /*
11272 * Iterate over all retained enablings, destroy the enablings retained
11273 * for the specified state.
11274 */
11275 for (enab = dtrace_retained; enab != NULL; enab = next) {
11276 next = enab->dten_next;

11278 /*
11279 * dtvs_state can only be NULL for helper enablings -- and
11280 * helper enablings can’t be retained.
11281 */

new/usr/src/uts/common/dtrace/dtrace.c 167

11282 ASSERT(enab->dten_vstate->dtvs_state != NULL);

11284 if (enab->dten_vstate->dtvs_state == state) {
11285 ASSERT(state->dts_nretained > 0);
11286 dtrace_enabling_destroy(enab);
11287 }
11288 }

11290 ASSERT(state->dts_nretained == 0);
11291 }

11293 static int
11294 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11295 {
11296 int i = 0;
11297 int total_matched = 0, matched = 0;

11299 ASSERT(MUTEX_HELD(&cpu_lock));
11300 ASSERT(MUTEX_HELD(&dtrace_lock));

11302 for (i = 0; i < enab->dten_ndesc; i++) {
11303 dtrace_ecbdesc_t *ep = enab->dten_desc[i];

11305 enab->dten_current = ep;
11306 enab->dten_error = 0;

11308 /*
11309 * If a provider failed to enable a probe then get out and
11310 * let the consumer know we failed.
11311 */
11312 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
11313 return (EBUSY);

11315 total_matched += matched;

11317 if (enab->dten_error != 0) {
11318 /*
11319 * If we get an error half-way through enabling the
11320 * probes, we kick out -- perhaps with some number of
11321 * them enabled. Leaving enabled probes enabled may
11322 * be slightly confusing for user-level, but we expect
11323 * that no one will attempt to actually drive on in
11324 * the face of such errors. If this is an anonymous
11325 * enabling (indicated with a NULL nmatched pointer),
11326 * we cmn_err() a message. We aren’t expecting to
11327 * get such an error -- such as it can exist at all,
11328 * it would be a result of corrupted DOF in the driver
11329 * properties.
11330 */
11331 if (nmatched == NULL) {
11332 cmn_err(CE_WARN, "dtrace_enabling_match() "
11333 "error on %p: %d", (void *)ep,
11334 enab->dten_error);
11335 }

11337 return (enab->dten_error);
11338 }
11339 }

11341 enab->dten_probegen = dtrace_probegen;
11342 if (nmatched != NULL)
11343 *nmatched = total_matched;

11345 return (0);
11346 }

new/usr/src/uts/common/dtrace/dtrace.c 168

11348 static void
11349 dtrace_enabling_matchall(void)
11350 {
11351 dtrace_enabling_t *enab;

11353 mutex_enter(&cpu_lock);
11354 mutex_enter(&dtrace_lock);

11356 /*
11357 * Iterate over all retained enablings to see if any probes match
11358 * against them. We only perform this operation on enablings for which
11359 * we have sufficient permissions by virtue of being in the global zone
11360 * or in the same zone as the DTrace client. Because we can be called
11361 * after dtrace_detach() has been called, we cannot assert that there
11362 * are retained enablings. We can safely load from dtrace_retained,
11363 * however: the taskq_destroy() at the end of dtrace_detach() will
11364 * block pending our completion.
11365 */
11366 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11367 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
11368 cred_t *cr = dcr->dcr_cred;
11369 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;

11371 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
11372 (zone == GLOBAL_ZONEID || getzoneid() == zone)))
11373 (void) dtrace_enabling_match(enab, NULL);
11374 }

11376 mutex_exit(&dtrace_lock);
11377 mutex_exit(&cpu_lock);
11378 }

11380 /*
11381 * If an enabling is to be enabled without having matched probes (that is, if
11382 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11383 * enabling must be _primed_ by creating an ECB for every ECB description.
11384 * This must be done to assure that we know the number of speculations, the
11385 * number of aggregations, the minimum buffer size needed, etc. before we
11386 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
11387 * enabling any probes, we create ECBs for every ECB decription, but with a
11388 * NULL probe -- which is exactly what this function does.
11389 */
11390 static void
11391 dtrace_enabling_prime(dtrace_state_t *state)
11392 {
11393 dtrace_enabling_t *enab;
11394 int i;

11396 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11397 ASSERT(enab->dten_vstate->dtvs_state != NULL);

11399 if (enab->dten_vstate->dtvs_state != state)
11400 continue;

11402 /*
11403 * We don’t want to prime an enabling more than once, lest
11404 * we allow a malicious user to induce resource exhaustion.
11405 * (The ECBs that result from priming an enabling aren’t
11406 * leaked -- but they also aren’t deallocated until the
11407 * consumer state is destroyed.)
11408 */
11409 if (enab->dten_primed)
11410 continue;

11412 for (i = 0; i < enab->dten_ndesc; i++) {
11413 enab->dten_current = enab->dten_desc[i];

new/usr/src/uts/common/dtrace/dtrace.c 169

11414 (void) dtrace_probe_enable(NULL, enab);
11415 }

11417 enab->dten_primed = 1;
11418 }
11419 }

11421 /*
11422 * Called to indicate that probes should be provided due to retained
11423 * enablings. This is implemented in terms of dtrace_probe_provide(), but it
11424 * must take an initial lap through the enabling calling the dtps_provide()
11425 * entry point explicitly to allow for autocreated probes.
11426 */
11427 static void
11428 dtrace_enabling_provide(dtrace_provider_t *prv)
11429 {
11430 int i, all = 0;
11431 dtrace_probedesc_t desc;
11432 dtrace_genid_t gen;

11434 ASSERT(MUTEX_HELD(&dtrace_lock));
11435 ASSERT(MUTEX_HELD(&dtrace_provider_lock));

11437 if (prv == NULL) {
11438 all = 1;
11439 prv = dtrace_provider;
11440 }

11442 do {
11443 dtrace_enabling_t *enab;
11444 void *parg = prv->dtpv_arg;

11446 retry:
11447 gen = dtrace_retained_gen;
11448 for (enab = dtrace_retained; enab != NULL;
11449 enab = enab->dten_next) {
11450 for (i = 0; i < enab->dten_ndesc; i++) {
11451 desc = enab->dten_desc[i]->dted_probe;
11452 mutex_exit(&dtrace_lock);
11453 prv->dtpv_pops.dtps_provide(parg, &desc);
11454 mutex_enter(&dtrace_lock);
11455 /*
11456 * Process the retained enablings again if
11457 * they have changed while we weren’t holding
11458 * dtrace_lock.
11459 */
11460 if (gen != dtrace_retained_gen)
11461 goto retry;
11462 }
11463 }
11464 } while (all && (prv = prv->dtpv_next) != NULL);

11466 mutex_exit(&dtrace_lock);
11467 dtrace_probe_provide(NULL, all ? NULL : prv);
11468 mutex_enter(&dtrace_lock);
11469 }

11471 /*
11472 * Called to reap ECBs that are attached to probes from defunct providers.
11473 */
11474 static void
11475 dtrace_enabling_reap(void)
11476 {
11477 dtrace_provider_t *prov;
11478 dtrace_probe_t *probe;
11479 dtrace_ecb_t *ecb;

new/usr/src/uts/common/dtrace/dtrace.c 170

11480 hrtime_t when;
11481 int i;

11483 mutex_enter(&cpu_lock);
11484 mutex_enter(&dtrace_lock);

11486 for (i = 0; i < dtrace_nprobes; i++) {
11487 if ((probe = dtrace_probes[i]) == NULL)
11488 continue;

11490 if (probe->dtpr_ecb == NULL)
11491 continue;

11493 prov = probe->dtpr_provider;

11495 if ((when = prov->dtpv_defunct) == 0)
11496 continue;

11498 /*
11499 * We have ECBs on a defunct provider: we want to reap these
11500 * ECBs to allow the provider to unregister. The destruction
11501 * of these ECBs must be done carefully: if we destroy the ECB
11502 * and the consumer later wishes to consume an EPID that
11503 * corresponds to the destroyed ECB (and if the EPID metadata
11504 * has not been previously consumed), the consumer will abort
11505 * processing on the unknown EPID. To reduce (but not, sadly,
11506 * eliminate) the possibility of this, we will only destroy an
11507 * ECB for a defunct provider if, for the state that
11508 * corresponds to the ECB:
11509 *
11510 * (a) There is no speculative tracing (which can effectively
11511 * cache an EPID for an arbitrary amount of time).
11512 *
11513 * (b) The principal buffers have been switched twice since the
11514 * provider became defunct.
11515 *
11516 * (c) The aggregation buffers are of zero size or have been
11517 * switched twice since the provider became defunct.
11518 *
11519 * We use dts_speculates to determine (a) and call a function
11520 * (dtrace_buffer_consumed()) to determine (b) and (c). Note
11521 * that as soon as we’ve been unable to destroy one of the ECBs
11522 * associated with the probe, we quit trying -- reaping is only
11523 * fruitful in as much as we can destroy all ECBs associated
11524 * with the defunct provider’s probes.
11525 */
11526 while ((ecb = probe->dtpr_ecb) != NULL) {
11527 dtrace_state_t *state = ecb->dte_state;
11528 dtrace_buffer_t *buf = state->dts_buffer;
11529 dtrace_buffer_t *aggbuf = state->dts_aggbuffer;

11531 if (state->dts_speculates)
11532 break;

11534 if (!dtrace_buffer_consumed(buf, when))
11535 break;

11537 if (!dtrace_buffer_consumed(aggbuf, when))
11538 break;

11540 dtrace_ecb_disable(ecb);
11541 ASSERT(probe->dtpr_ecb != ecb);
11542 dtrace_ecb_destroy(ecb);
11543 }
11544 }

new/usr/src/uts/common/dtrace/dtrace.c 171

11546 mutex_exit(&dtrace_lock);
11547 mutex_exit(&cpu_lock);
11548 }

11550 /*
11551 * DTrace DOF Functions
11552 */
11553 /*ARGSUSED*/
11554 static void
11555 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11556 {
11557 if (dtrace_err_verbose)
11558 cmn_err(CE_WARN, "failed to process DOF: %s", str);

11560 #ifdef DTRACE_ERRDEBUG
11561 dtrace_errdebug(str);
11562 #endif
11563 }

11565 /*
11566 * Create DOF out of a currently enabled state. Right now, we only create
11567 * DOF containing the run-time options -- but this could be expanded to create
11568 * complete DOF representing the enabled state.
11569 */
11570 static dof_hdr_t *
11571 dtrace_dof_create(dtrace_state_t *state)
11572 {
11573 dof_hdr_t *dof;
11574 dof_sec_t *sec;
11575 dof_optdesc_t *opt;
11576 int i, len = sizeof (dof_hdr_t) +
11577 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11578 sizeof (dof_optdesc_t) * DTRACEOPT_MAX;

11580 ASSERT(MUTEX_HELD(&dtrace_lock));

11582 dof = kmem_zalloc(len, KM_SLEEP);
11583 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11584 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11585 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11586 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;

11588 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11589 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11590 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11591 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11592 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11593 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;

11595 dof->dofh_flags = 0;
11596 dof->dofh_hdrsize = sizeof (dof_hdr_t);
11597 dof->dofh_secsize = sizeof (dof_sec_t);
11598 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */
11599 dof->dofh_secoff = sizeof (dof_hdr_t);
11600 dof->dofh_loadsz = len;
11601 dof->dofh_filesz = len;
11602 dof->dofh_pad = 0;

11604 /*
11605 * Fill in the option section header...
11606 */
11607 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11608 sec->dofs_type = DOF_SECT_OPTDESC;
11609 sec->dofs_align = sizeof (uint64_t);
11610 sec->dofs_flags = DOF_SECF_LOAD;
11611 sec->dofs_entsize = sizeof (dof_optdesc_t);

new/usr/src/uts/common/dtrace/dtrace.c 172

11613 opt = (dof_optdesc_t *)((uintptr_t)sec +
11614 roundup(sizeof (dof_sec_t), sizeof (uint64_t)));

11616 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11617 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;

11619 for (i = 0; i < DTRACEOPT_MAX; i++) {
11620 opt[i].dofo_option = i;
11621 opt[i].dofo_strtab = DOF_SECIDX_NONE;
11622 opt[i].dofo_value = state->dts_options[i];
11623 }

11625 return (dof);
11626 }

11628 static dof_hdr_t *
11629 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11630 {
11631 dof_hdr_t hdr, *dof;

11633 ASSERT(!MUTEX_HELD(&dtrace_lock));

11635 /*
11636 * First, we’re going to copyin() the sizeof (dof_hdr_t).
11637 */
11638 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11639 dtrace_dof_error(NULL, "failed to copyin DOF header");
11640 *errp = EFAULT;
11641 return (NULL);
11642 }

11644 /*
11645 * Now we’ll allocate the entire DOF and copy it in -- provided
11646 * that the length isn’t outrageous.
11647 */
11648 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11649 dtrace_dof_error(&hdr, "load size exceeds maximum");
11650 *errp = E2BIG;
11651 return (NULL);
11652 }

11654 if (hdr.dofh_loadsz < sizeof (hdr)) {
11655 dtrace_dof_error(&hdr, "invalid load size");
11656 *errp = EINVAL;
11657 return (NULL);
11658 }

11660 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);

11662 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
11663 dof->dofh_loadsz != hdr.dofh_loadsz) {
11664 kmem_free(dof, hdr.dofh_loadsz);
11665 *errp = EFAULT;
11666 return (NULL);
11667 }

11669 return (dof);
11670 }

11672 static dof_hdr_t *
11673 dtrace_dof_property(const char *name)
11674 {
11675 uchar_t *buf;
11676 uint64_t loadsz;
11677 unsigned int len, i;

new/usr/src/uts/common/dtrace/dtrace.c 173

11678 dof_hdr_t *dof;

11680 /*
11681 * Unfortunately, array of values in .conf files are always (and
11682 * only) interpreted to be integer arrays. We must read our DOF
11683 * as an integer array, and then squeeze it into a byte array.
11684 */
11685 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11686 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11687 return (NULL);

11689 for (i = 0; i < len; i++)
11690 buf[i] = (uchar_t)(((int *)buf)[i]);

11692 if (len < sizeof (dof_hdr_t)) {
11693 ddi_prop_free(buf);
11694 dtrace_dof_error(NULL, "truncated header");
11695 return (NULL);
11696 }

11698 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11699 ddi_prop_free(buf);
11700 dtrace_dof_error(NULL, "truncated DOF");
11701 return (NULL);
11702 }

11704 if (loadsz >= dtrace_dof_maxsize) {
11705 ddi_prop_free(buf);
11706 dtrace_dof_error(NULL, "oversized DOF");
11707 return (NULL);
11708 }

11710 dof = kmem_alloc(loadsz, KM_SLEEP);
11711 bcopy(buf, dof, loadsz);
11712 ddi_prop_free(buf);

11714 return (dof);
11715 }

11717 static void
11718 dtrace_dof_destroy(dof_hdr_t *dof)
11719 {
11720 kmem_free(dof, dof->dofh_loadsz);
11721 }

11723 /*
11724 * Return the dof_sec_t pointer corresponding to a given section index. If the
11725 * index is not valid, dtrace_dof_error() is called and NULL is returned. If
11726 * a type other than DOF_SECT_NONE is specified, the header is checked against
11727 * this type and NULL is returned if the types do not match.
11728 */
11729 static dof_sec_t *
11730 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11731 {
11732 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11733 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);

11735 if (i >= dof->dofh_secnum) {
11736 dtrace_dof_error(dof, "referenced section index is invalid");
11737 return (NULL);
11738 }

11740 if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11741 dtrace_dof_error(dof, "referenced section is not loadable");
11742 return (NULL);
11743 }

new/usr/src/uts/common/dtrace/dtrace.c 174

11745 if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11746 dtrace_dof_error(dof, "referenced section is the wrong type");
11747 return (NULL);
11748 }

11750 return (sec);
11751 }

11753 static dtrace_probedesc_t *
11754 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11755 {
11756 dof_probedesc_t *probe;
11757 dof_sec_t *strtab;
11758 uintptr_t daddr = (uintptr_t)dof;
11759 uintptr_t str;
11760 size_t size;

11762 if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11763 dtrace_dof_error(dof, "invalid probe section");
11764 return (NULL);
11765 }

11767 if (sec->dofs_align != sizeof (dof_secidx_t)) {
11768 dtrace_dof_error(dof, "bad alignment in probe description");
11769 return (NULL);
11770 }

11772 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11773 dtrace_dof_error(dof, "truncated probe description");
11774 return (NULL);
11775 }

11777 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11778 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);

11780 if (strtab == NULL)
11781 return (NULL);

11783 str = daddr + strtab->dofs_offset;
11784 size = strtab->dofs_size;

11786 if (probe->dofp_provider >= strtab->dofs_size) {
11787 dtrace_dof_error(dof, "corrupt probe provider");
11788 return (NULL);
11789 }

11791 (void) strncpy(desc->dtpd_provider,
11792 (char *)(str + probe->dofp_provider),
11793 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));

11795 if (probe->dofp_mod >= strtab->dofs_size) {
11796 dtrace_dof_error(dof, "corrupt probe module");
11797 return (NULL);
11798 }

11800 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11801 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));

11803 if (probe->dofp_func >= strtab->dofs_size) {
11804 dtrace_dof_error(dof, "corrupt probe function");
11805 return (NULL);
11806 }

11808 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11809 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));

new/usr/src/uts/common/dtrace/dtrace.c 175

11811 if (probe->dofp_name >= strtab->dofs_size) {
11812 dtrace_dof_error(dof, "corrupt probe name");
11813 return (NULL);
11814 }

11816 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11817 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));

11819 return (desc);
11820 }

11822 static dtrace_difo_t *
11823 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11824 cred_t *cr)
11825 {
11826 dtrace_difo_t *dp;
11827 size_t ttl = 0;
11828 dof_difohdr_t *dofd;
11829 uintptr_t daddr = (uintptr_t)dof;
11830 size_t max = dtrace_difo_maxsize;
11831 int i, l, n;

11833 static const struct {
11834 int section;
11835 int bufoffs;
11836 int lenoffs;
11837 int entsize;
11838 int align;
11839 const char *msg;
11840 } difo[] = {
11841 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11842 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11843 sizeof (dif_instr_t), "multiple DIF sections" },

11845 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11846 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11847 sizeof (uint64_t), "multiple integer tables" },

11849 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11850 offsetof(dtrace_difo_t, dtdo_strlen), 0,
11851 sizeof (char), "multiple string tables" },

11853 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11854 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11855 sizeof (uint_t), "multiple variable tables" },

11857 { DOF_SECT_NONE, 0, 0, 0, NULL }
11858 };

11860 if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11861 dtrace_dof_error(dof, "invalid DIFO header section");
11862 return (NULL);
11863 }

11865 if (sec->dofs_align != sizeof (dof_secidx_t)) {
11866 dtrace_dof_error(dof, "bad alignment in DIFO header");
11867 return (NULL);
11868 }

11870 if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11871 sec->dofs_size % sizeof (dof_secidx_t)) {
11872 dtrace_dof_error(dof, "bad size in DIFO header");
11873 return (NULL);
11874 }

new/usr/src/uts/common/dtrace/dtrace.c 176

11876 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11877 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;

11879 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11880 dp->dtdo_rtype = dofd->dofd_rtype;

11882 for (l = 0; l < n; l++) {
11883 dof_sec_t *subsec;
11884 void **bufp;
11885 uint32_t *lenp;

11887 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11888 dofd->dofd_links[l])) == NULL)
11889 goto err; /* invalid section link */

11891 if (ttl + subsec->dofs_size > max) {
11892 dtrace_dof_error(dof, "exceeds maximum size");
11893 goto err;
11894 }

11896 ttl += subsec->dofs_size;

11898 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11899 if (subsec->dofs_type != difo[i].section)
11900 continue;

11902 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11903 dtrace_dof_error(dof, "section not loaded");
11904 goto err;
11905 }

11907 if (subsec->dofs_align != difo[i].align) {
11908 dtrace_dof_error(dof, "bad alignment");
11909 goto err;
11910 }

11912 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11913 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);

11915 if (*bufp != NULL) {
11916 dtrace_dof_error(dof, difo[i].msg);
11917 goto err;
11918 }

11920 if (difo[i].entsize != subsec->dofs_entsize) {
11921 dtrace_dof_error(dof, "entry size mismatch");
11922 goto err;
11923 }

11925 if (subsec->dofs_entsize != 0 &&
11926 (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11927 dtrace_dof_error(dof, "corrupt entry size");
11928 goto err;
11929 }

11931 *lenp = subsec->dofs_size;
11932 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11933 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11934 *bufp, subsec->dofs_size);

11936 if (subsec->dofs_entsize != 0)
11937 *lenp /= subsec->dofs_entsize;

11939 break;
11940 }

new/usr/src/uts/common/dtrace/dtrace.c 177

11942 /*
11943 * If we encounter a loadable DIFO sub-section that is not
11944 * known to us, assume this is a broken program and fail.
11945 */
11946 if (difo[i].section == DOF_SECT_NONE &&
11947 (subsec->dofs_flags & DOF_SECF_LOAD)) {
11948 dtrace_dof_error(dof, "unrecognized DIFO subsection");
11949 goto err;
11950 }
11951 }

11953 if (dp->dtdo_buf == NULL) {
11954 /*
11955 * We can’t have a DIF object without DIF text.
11956 */
11957 dtrace_dof_error(dof, "missing DIF text");
11958 goto err;
11959 }

11961 /*
11962 * Before we validate the DIF object, run through the variable table
11963 * looking for the strings -- if any of their size are under, we’ll set
11964 * their size to be the system-wide default string size. Note that
11965 * this should _not_ happen if the "strsize" option has been set --
11966 * in this case, the compiler should have set the size to reflect the
11967 * setting of the option.
11968 */
11969 for (i = 0; i < dp->dtdo_varlen; i++) {
11970 dtrace_difv_t *v = &dp->dtdo_vartab[i];
11971 dtrace_diftype_t *t = &v->dtdv_type;

11973 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
11974 continue;

11976 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
11977 t->dtdt_size = dtrace_strsize_default;
11978 }

11980 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
11981 goto err;

11983 dtrace_difo_init(dp, vstate);
11984 return (dp);

11986 err:
11987 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
11988 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
11989 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
11990 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));

11992 kmem_free(dp, sizeof (dtrace_difo_t));
11993 return (NULL);
11994 }

11996 static dtrace_predicate_t *
11997 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11998 cred_t *cr)
11999 {
12000 dtrace_difo_t *dp;

12002 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12003 return (NULL);

12005 return (dtrace_predicate_create(dp));
12006 }

new/usr/src/uts/common/dtrace/dtrace.c 178

12008 static dtrace_actdesc_t *
12009 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12010 cred_t *cr)
12011 {
12012 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12013 dof_actdesc_t *desc;
12014 dof_sec_t *difosec;
12015 size_t offs;
12016 uintptr_t daddr = (uintptr_t)dof;
12017 uint64_t arg;
12018 dtrace_actkind_t kind;

12020 if (sec->dofs_type != DOF_SECT_ACTDESC) {
12021 dtrace_dof_error(dof, "invalid action section");
12022 return (NULL);
12023 }

12025 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12026 dtrace_dof_error(dof, "truncated action description");
12027 return (NULL);
12028 }

12030 if (sec->dofs_align != sizeof (uint64_t)) {
12031 dtrace_dof_error(dof, "bad alignment in action description");
12032 return (NULL);
12033 }

12035 if (sec->dofs_size < sec->dofs_entsize) {
12036 dtrace_dof_error(dof, "section entry size exceeds total size");
12037 return (NULL);
12038 }

12040 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12041 dtrace_dof_error(dof, "bad entry size in action description");
12042 return (NULL);
12043 }

12045 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12046 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12047 return (NULL);
12048 }

12050 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12051 desc = (dof_actdesc_t *)(daddr +
12052 (uintptr_t)sec->dofs_offset + offs);
12053 kind = (dtrace_actkind_t)desc->dofa_kind;

12055 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12056 (kind != DTRACEACT_PRINTA ||
12057 desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12058 (kind == DTRACEACT_DIFEXPR &&
12059 desc->dofa_strtab != DOF_SECIDX_NONE)) {
12060 dof_sec_t *strtab;
12061 char *str, *fmt;
12062 uint64_t i;

12064 /*
12065 * The argument to these actions is an index into the
12066 * DOF string table. For printf()-like actions, this
12067 * is the format string. For print(), this is the
12068 * CTF type of the expression result.
12069 */
12070 if ((strtab = dtrace_dof_sect(dof,
12071 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12072 goto err;

new/usr/src/uts/common/dtrace/dtrace.c 179

12074 str = (char *)((uintptr_t)dof +
12075 (uintptr_t)strtab->dofs_offset);

12077 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12078 if (str[i] == ’\0’)
12079 break;
12080 }

12082 if (i >= strtab->dofs_size) {
12083 dtrace_dof_error(dof, "bogus format string");
12084 goto err;
12085 }

12087 if (i == desc->dofa_arg) {
12088 dtrace_dof_error(dof, "empty format string");
12089 goto err;
12090 }

12092 i -= desc->dofa_arg;
12093 fmt = kmem_alloc(i + 1, KM_SLEEP);
12094 bcopy(&str[desc->dofa_arg], fmt, i + 1);
12095 arg = (uint64_t)(uintptr_t)fmt;
12096 } else {
12097 if (kind == DTRACEACT_PRINTA) {
12098 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12099 arg = 0;
12100 } else {
12101 arg = desc->dofa_arg;
12102 }
12103 }

12105 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12106 desc->dofa_uarg, arg);

12108 if (last != NULL) {
12109 last->dtad_next = act;
12110 } else {
12111 first = act;
12112 }

12114 last = act;

12116 if (desc->dofa_difo == DOF_SECIDX_NONE)
12117 continue;

12119 if ((difosec = dtrace_dof_sect(dof,
12120 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12121 goto err;

12123 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);

12125 if (act->dtad_difo == NULL)
12126 goto err;
12127 }

12129 ASSERT(first != NULL);
12130 return (first);

12132 err:
12133 for (act = first; act != NULL; act = next) {
12134 next = act->dtad_next;
12135 dtrace_actdesc_release(act, vstate);
12136 }

12138 return (NULL);
12139 }

new/usr/src/uts/common/dtrace/dtrace.c 180

12141 static dtrace_ecbdesc_t *
12142 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12143 cred_t *cr)
12144 {
12145 dtrace_ecbdesc_t *ep;
12146 dof_ecbdesc_t *ecb;
12147 dtrace_probedesc_t *desc;
12148 dtrace_predicate_t *pred = NULL;

12150 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12151 dtrace_dof_error(dof, "truncated ECB description");
12152 return (NULL);
12153 }

12155 if (sec->dofs_align != sizeof (uint64_t)) {
12156 dtrace_dof_error(dof, "bad alignment in ECB description");
12157 return (NULL);
12158 }

12160 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12161 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);

12163 if (sec == NULL)
12164 return (NULL);

12166 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12167 ep->dted_uarg = ecb->dofe_uarg;
12168 desc = &ep->dted_probe;

12170 if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12171 goto err;

12173 if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12174 if ((sec = dtrace_dof_sect(dof,
12175 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12176 goto err;

12178 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12179 goto err;

12181 ep->dted_pred.dtpdd_predicate = pred;
12182 }

12184 if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12185 if ((sec = dtrace_dof_sect(dof,
12186 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12187 goto err;

12189 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);

12191 if (ep->dted_action == NULL)
12192 goto err;
12193 }

12195 return (ep);

12197 err:
12198 if (pred != NULL)
12199 dtrace_predicate_release(pred, vstate);
12200 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12201 return (NULL);
12202 }

12204 /*
12205 * Apply the relocations from the specified ’sec’ (a DOF_SECT_URELHDR) to the

new/usr/src/uts/common/dtrace/dtrace.c 181

12206 * specified DOF. At present, this amounts to simply adding ’ubase’ to the
12207 * site of any user SETX relocations to account for load object base address.
12208 * In the future, if we need other relocations, this function can be extended.
12209 */
12210 static int
12211 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12212 {
12213 uintptr_t daddr = (uintptr_t)dof;
12214 dof_relohdr_t *dofr =
12215 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12216 dof_sec_t *ss, *rs, *ts;
12217 dof_relodesc_t *r;
12218 uint_t i, n;

12220 if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12221 sec->dofs_align != sizeof (dof_secidx_t)) {
12222 dtrace_dof_error(dof, "invalid relocation header");
12223 return (-1);
12224 }

12226 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12227 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12228 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);

12230 if (ss == NULL || rs == NULL || ts == NULL)
12231 return (-1); /* dtrace_dof_error() has been called already */

12233 if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12234 rs->dofs_align != sizeof (uint64_t)) {
12235 dtrace_dof_error(dof, "invalid relocation section");
12236 return (-1);
12237 }

12239 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12240 n = rs->dofs_size / rs->dofs_entsize;

12242 for (i = 0; i < n; i++) {
12243 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;

12245 switch (r->dofr_type) {
12246 case DOF_RELO_NONE:
12247 break;
12248 case DOF_RELO_SETX:
12249 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12250 sizeof (uint64_t) > ts->dofs_size) {
12251 dtrace_dof_error(dof, "bad relocation offset");
12252 return (-1);
12253 }

12255 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12256 dtrace_dof_error(dof, "misaligned setx relo");
12257 return (-1);
12258 }

12260 *(uint64_t *)taddr += ubase;
12261 break;
12262 default:
12263 dtrace_dof_error(dof, "invalid relocation type");
12264 return (-1);
12265 }

12267 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12268 }

12270 return (0);
12271 }

new/usr/src/uts/common/dtrace/dtrace.c 182

12273 /*
12274 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12275 * header: it should be at the front of a memory region that is at least
12276 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12277 * size. It need not be validated in any other way.
12278 */
12279 static int
12280 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12281 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12282 {
12283 uint64_t len = dof->dofh_loadsz, seclen;
12284 uintptr_t daddr = (uintptr_t)dof;
12285 dtrace_ecbdesc_t *ep;
12286 dtrace_enabling_t *enab;
12287 uint_t i;

12289 ASSERT(MUTEX_HELD(&dtrace_lock));
12290 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));

12292 /*
12293 * Check the DOF header identification bytes. In addition to checking
12294 * valid settings, we also verify that unused bits/bytes are zeroed so
12295 * we can use them later without fear of regressing existing binaries.
12296 */
12297 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12298 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12299 dtrace_dof_error(dof, "DOF magic string mismatch");
12300 return (-1);
12301 }

12303 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12304 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12305 dtrace_dof_error(dof, "DOF has invalid data model");
12306 return (-1);
12307 }

12309 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12310 dtrace_dof_error(dof, "DOF encoding mismatch");
12311 return (-1);
12312 }

12314 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12315 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12316 dtrace_dof_error(dof, "DOF version mismatch");
12317 return (-1);
12318 }

12320 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12321 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12322 return (-1);
12323 }

12325 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12326 dtrace_dof_error(dof, "DOF uses too many integer registers");
12327 return (-1);
12328 }

12330 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12331 dtrace_dof_error(dof, "DOF uses too many tuple registers");
12332 return (-1);
12333 }

12335 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12336 if (dof->dofh_ident[i] != 0) {
12337 dtrace_dof_error(dof, "DOF has invalid ident byte set");

new/usr/src/uts/common/dtrace/dtrace.c 183

12338 return (-1);
12339 }
12340 }

12342 if (dof->dofh_flags & ~DOF_FL_VALID) {
12343 dtrace_dof_error(dof, "DOF has invalid flag bits set");
12344 return (-1);
12345 }

12347 if (dof->dofh_secsize == 0) {
12348 dtrace_dof_error(dof, "zero section header size");
12349 return (-1);
12350 }

12352 /*
12353 * Check that the section headers don’t exceed the amount of DOF
12354 * data. Note that we cast the section size and number of sections
12355 * to uint64_t’s to prevent possible overflow in the multiplication.
12356 */
12357 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;

12359 if (dof->dofh_secoff > len || seclen > len ||
12360 dof->dofh_secoff + seclen > len) {
12361 dtrace_dof_error(dof, "truncated section headers");
12362 return (-1);
12363 }

12365 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12366 dtrace_dof_error(dof, "misaligned section headers");
12367 return (-1);
12368 }

12370 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12371 dtrace_dof_error(dof, "misaligned section size");
12372 return (-1);
12373 }

12375 /*
12376 * Take an initial pass through the section headers to be sure that
12377 * the headers don’t have stray offsets. If the ’noprobes’ flag is
12378 * set, do not permit sections relating to providers, probes, or args.
12379 */
12380 for (i = 0; i < dof->dofh_secnum; i++) {
12381 dof_sec_t *sec = (dof_sec_t *)(daddr +
12382 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);

12384 if (noprobes) {
12385 switch (sec->dofs_type) {
12386 case DOF_SECT_PROVIDER:
12387 case DOF_SECT_PROBES:
12388 case DOF_SECT_PRARGS:
12389 case DOF_SECT_PROFFS:
12390 dtrace_dof_error(dof, "illegal sections "
12391 "for enabling");
12392 return (-1);
12393 }
12394 }

12396 if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
12397 !(sec->dofs_flags & DOF_SECF_LOAD)) {
12398 dtrace_dof_error(dof, "loadable section with load "
12399 "flag unset");
12400 return (-1);
12401 }

12403 if (!(sec->dofs_flags & DOF_SECF_LOAD))

new/usr/src/uts/common/dtrace/dtrace.c 184

12404 continue; /* just ignore non-loadable sections */

12406 if (sec->dofs_align & (sec->dofs_align - 1)) {
12407 dtrace_dof_error(dof, "bad section alignment");
12408 return (-1);
12409 }

12411 if (sec->dofs_offset & (sec->dofs_align - 1)) {
12412 dtrace_dof_error(dof, "misaligned section");
12413 return (-1);
12414 }

12416 if (sec->dofs_offset > len || sec->dofs_size > len ||
12417 sec->dofs_offset + sec->dofs_size > len) {
12418 dtrace_dof_error(dof, "corrupt section header");
12419 return (-1);
12420 }

12422 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12423 sec->dofs_offset + sec->dofs_size - 1) != ’\0’) {
12424 dtrace_dof_error(dof, "non-terminating string table");
12425 return (-1);
12426 }
12427 }

12429 /*
12430 * Take a second pass through the sections and locate and perform any
12431 * relocations that are present. We do this after the first pass to
12432 * be sure that all sections have had their headers validated.
12433 */
12434 for (i = 0; i < dof->dofh_secnum; i++) {
12435 dof_sec_t *sec = (dof_sec_t *)(daddr +
12436 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);

12438 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12439 continue; /* skip sections that are not loadable */

12441 switch (sec->dofs_type) {
12442 case DOF_SECT_URELHDR:
12443 if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12444 return (-1);
12445 break;
12446 }
12447 }

12449 if ((enab = *enabp) == NULL)
12450 enab = *enabp = dtrace_enabling_create(vstate);

12452 for (i = 0; i < dof->dofh_secnum; i++) {
12453 dof_sec_t *sec = (dof_sec_t *)(daddr +
12454 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);

12456 if (sec->dofs_type != DOF_SECT_ECBDESC)
12457 continue;

12459 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12460 dtrace_enabling_destroy(enab);
12461 *enabp = NULL;
12462 return (-1);
12463 }

12465 dtrace_enabling_add(enab, ep);
12466 }

12468 return (0);
12469 }

new/usr/src/uts/common/dtrace/dtrace.c 185

12471 /*
12472 * Process DOF for any options. This routine assumes that the DOF has been
12473 * at least processed by dtrace_dof_slurp().
12474 */
12475 static int
12476 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12477 {
12478 int i, rval;
12479 uint32_t entsize;
12480 size_t offs;
12481 dof_optdesc_t *desc;

12483 for (i = 0; i < dof->dofh_secnum; i++) {
12484 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12485 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);

12487 if (sec->dofs_type != DOF_SECT_OPTDESC)
12488 continue;

12490 if (sec->dofs_align != sizeof (uint64_t)) {
12491 dtrace_dof_error(dof, "bad alignment in "
12492 "option description");
12493 return (EINVAL);
12494 }

12496 if ((entsize = sec->dofs_entsize) == 0) {
12497 dtrace_dof_error(dof, "zeroed option entry size");
12498 return (EINVAL);
12499 }

12501 if (entsize < sizeof (dof_optdesc_t)) {
12502 dtrace_dof_error(dof, "bad option entry size");
12503 return (EINVAL);
12504 }

12506 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12507 desc = (dof_optdesc_t *)((uintptr_t)dof +
12508 (uintptr_t)sec->dofs_offset + offs);

12510 if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12511 dtrace_dof_error(dof, "non-zero option string");
12512 return (EINVAL);
12513 }

12515 if (desc->dofo_value == DTRACEOPT_UNSET) {
12516 dtrace_dof_error(dof, "unset option");
12517 return (EINVAL);
12518 }

12520 if ((rval = dtrace_state_option(state,
12521 desc->dofo_option, desc->dofo_value)) != 0) {
12522 dtrace_dof_error(dof, "rejected option");
12523 return (rval);
12524 }
12525 }
12526 }

12528 return (0);
12529 }

12531 /*
12532 * DTrace Consumer State Functions
12533 */
12534 int
12535 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)

new/usr/src/uts/common/dtrace/dtrace.c 186

12536 {
12537 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12538 void *base;
12539 uintptr_t limit;
12540 dtrace_dynvar_t *dvar, *next, *start;
12541 int i;

12543 ASSERT(MUTEX_HELD(&dtrace_lock));
12544 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);

12546 bzero(dstate, sizeof (dtrace_dstate_t));

12548 if ((dstate->dtds_chunksize = chunksize) == 0)
12549 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;

12551 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12552 size = min;

12554 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12555 return (ENOMEM);

12557 dstate->dtds_size = size;
12558 dstate->dtds_base = base;
12559 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12560 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));

12562 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));

12564 if (hashsize != 1 && (hashsize & 1))
12565 hashsize--;

12567 dstate->dtds_hashsize = hashsize;
12568 dstate->dtds_hash = dstate->dtds_base;

12570 /*
12571 * Set all of our hash buckets to point to the single sink, and (if
12572 * it hasn’t already been set), set the sink’s hash value to be the
12573 * sink sentinel value. The sink is needed for dynamic variable
12574 * lookups to know that they have iterated over an entire, valid hash
12575 * chain.
12576 */
12577 for (i = 0; i < hashsize; i++)
12578 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;

12580 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12581 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;

12583 /*
12584 * Determine number of active CPUs. Divide free list evenly among
12585 * active CPUs.
12586 */
12587 start = (dtrace_dynvar_t *)
12588 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12589 limit = (uintptr_t)base + size;

12591 maxper = (limit - (uintptr_t)start) / NCPU;
12592 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;

12594 for (i = 0; i < NCPU; i++) {
12595 dstate->dtds_percpu[i].dtdsc_free = dvar = start;

12597 /*
12598 * If we don’t even have enough chunks to make it once through
12599 * NCPUs, we’re just going to allocate everything to the first
12600 * CPU. And if we’re on the last CPU, we’re going to allocate
12601 * whatever is left over. In either case, we set the limit to

new/usr/src/uts/common/dtrace/dtrace.c 187

12602 * be the limit of the dynamic variable space.
12603 */
12604 if (maxper == 0 || i == NCPU - 1) {
12605 limit = (uintptr_t)base + size;
12606 start = NULL;
12607 } else {
12608 limit = (uintptr_t)start + maxper;
12609 start = (dtrace_dynvar_t *)limit;
12610 }

12612 ASSERT(limit <= (uintptr_t)base + size);

12614 for (;;) {
12615 next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12616 dstate->dtds_chunksize);

12618 if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12619 break;

12621 dvar->dtdv_next = next;
12622 dvar = next;
12623 }

12625 if (maxper == 0)
12626 break;
12627 }

12629 return (0);
12630 }

12632 void
12633 dtrace_dstate_fini(dtrace_dstate_t *dstate)
12634 {
12635 ASSERT(MUTEX_HELD(&cpu_lock));

12637 if (dstate->dtds_base == NULL)
12638 return;

12640 kmem_free(dstate->dtds_base, dstate->dtds_size);
12641 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12642 }

12644 static void
12645 dtrace_vstate_fini(dtrace_vstate_t *vstate)
12646 {
12647 /*
12648 * Logical XOR, where are you?
12649 */
12650 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));

12652 if (vstate->dtvs_nglobals > 0) {
12653 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12654 sizeof (dtrace_statvar_t *));
12655 }

12657 if (vstate->dtvs_ntlocals > 0) {
12658 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12659 sizeof (dtrace_difv_t));
12660 }

12662 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));

12664 if (vstate->dtvs_nlocals > 0) {
12665 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12666 sizeof (dtrace_statvar_t *));
12667 }

new/usr/src/uts/common/dtrace/dtrace.c 188

12668 }

12670 static void
12671 dtrace_state_clean(dtrace_state_t *state)
12672 {
12673 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12674 return;

12676 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12677 dtrace_speculation_clean(state);
12678 }

12680 static void
12681 dtrace_state_deadman(dtrace_state_t *state)
12682 {
12683 hrtime_t now;

12685 dtrace_sync();

12687 now = dtrace_gethrtime();

12689 if (state != dtrace_anon.dta_state &&
12690 now - state->dts_laststatus >= dtrace_deadman_user)
12691 return;

12693 /*
12694 * We must be sure that dts_alive never appears to be less than the
12695 * value upon entry to dtrace_state_deadman(), and because we lack a
12696 * dtrace_cas64(), we cannot store to it atomically. We thus instead
12697 * store INT64_MAX to it, followed by a memory barrier, followed by
12698 * the new value. This assures that dts_alive never appears to be
12699 * less than its true value, regardless of the order in which the
12700 * stores to the underlying storage are issued.
12701 */
12702 state->dts_alive = INT64_MAX;
12703 dtrace_membar_producer();
12704 state->dts_alive = now;
12705 }

12707 dtrace_state_t *
12708 dtrace_state_create(dev_t *devp, cred_t *cr)
12709 {
12710 minor_t minor;
12711 major_t major;
12712 char c[30];
12713 dtrace_state_t *state;
12714 dtrace_optval_t *opt;
12715 int bufsize = NCPU * sizeof (dtrace_buffer_t), i;

12717 ASSERT(MUTEX_HELD(&dtrace_lock));
12718 ASSERT(MUTEX_HELD(&cpu_lock));

12720 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12721 VM_BESTFIT | VM_SLEEP);

12723 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12724 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12725 return (NULL);
12726 }

12728 state = ddi_get_soft_state(dtrace_softstate, minor);
12729 state->dts_epid = DTRACE_EPIDNONE + 1;

12731 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
12732 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12733 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);

new/usr/src/uts/common/dtrace/dtrace.c 189

12735 if (devp != NULL) {
12736 major = getemajor(*devp);
12737 } else {
12738 major = ddi_driver_major(dtrace_devi);
12739 }

12741 state->dts_dev = makedevice(major, minor);

12743 if (devp != NULL)
12744 *devp = state->dts_dev;

12746 /*
12747 * We allocate NCPU buffers. On the one hand, this can be quite
12748 * a bit of memory per instance (nearly 36K on a Starcat). On the
12749 * other hand, it saves an additional memory reference in the probe
12750 * path.
12751 */
12752 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12753 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12754 state->dts_cleaner = CYCLIC_NONE;
12755 state->dts_deadman = CYCLIC_NONE;
12756 state->dts_vstate.dtvs_state = state;

12758 for (i = 0; i < DTRACEOPT_MAX; i++)
12759 state->dts_options[i] = DTRACEOPT_UNSET;

12761 /*
12762 * Set the default options.
12763 */
12764 opt = state->dts_options;
12765 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12766 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12767 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12768 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12769 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12770 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12771 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12772 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12773 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12774 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12775 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12776 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12777 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12778 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;

12780 state->dts_activity = DTRACE_ACTIVITY_INACTIVE;

12782 /*
12783 * Depending on the user credentials, we set flag bits which alter probe
12784 * visibility or the amount of destructiveness allowed. In the case of
12785 * actual anonymous tracing, or the possession of all privileges, all of
12786 * the normal checks are bypassed.
12787 */
12788 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12789 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12790 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12791 } else {
12792 /*
12793 * Set up the credentials for this instantiation. We take a
12794 * hold on the credential to prevent it from disappearing on
12795 * us; this in turn prevents the zone_t referenced by this
12796 * credential from disappearing. This means that we can
12797 * examine the credential and the zone from probe context.
12798 */
12799 crhold(cr);

new/usr/src/uts/common/dtrace/dtrace.c 190

12800 state->dts_cred.dcr_cred = cr;

12802 /*
12803 * CRA_PROC means "we have *some* privilege for dtrace" and
12804 * unlocks the use of variables like pid, zonename, etc.
12805 */
12806 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12807 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12808 state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12809 }

12811 /*
12812 * dtrace_user allows use of syscall and profile providers.
12813 * If the user also has proc_owner and/or proc_zone, we
12814 * extend the scope to include additional visibility and
12815 * destructive power.
12816 */
12817 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12818 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12819 state->dts_cred.dcr_visible |=
12820 DTRACE_CRV_ALLPROC;

12822 state->dts_cred.dcr_action |=
12823 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12824 }

12826 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12827 state->dts_cred.dcr_visible |=
12828 DTRACE_CRV_ALLZONE;

12830 state->dts_cred.dcr_action |=
12831 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12832 }

12834 /*
12835 * If we have all privs in whatever zone this is,
12836 * we can do destructive things to processes which
12837 * have altered credentials.
12838 */
12839 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12840 cr->cr_zone->zone_privset)) {
12841 state->dts_cred.dcr_action |=
12842 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12843 }
12844 }

12846 /*
12847 * Holding the dtrace_kernel privilege also implies that
12848 * the user has the dtrace_user privilege from a visibility
12849 * perspective. But without further privileges, some
12850 * destructive actions are not available.
12851 */
12852 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12853 /*
12854 * Make all probes in all zones visible. However,
12855 * this doesn’t mean that all actions become available
12856 * to all zones.
12857 */
12858 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12859 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;

12861 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12862 DTRACE_CRA_PROC;
12863 /*
12864 * Holding proc_owner means that destructive actions
12865 * for *this* zone are allowed.

new/usr/src/uts/common/dtrace/dtrace.c 191

12866 */
12867 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12868 state->dts_cred.dcr_action |=
12869 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;

12871 /*
12872 * Holding proc_zone means that destructive actions
12873 * for this user/group ID in all zones is allowed.
12874 */
12875 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12876 state->dts_cred.dcr_action |=
12877 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;

12879 /*
12880 * If we have all privs in whatever zone this is,
12881 * we can do destructive things to processes which
12882 * have altered credentials.
12883 */
12884 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12885 cr->cr_zone->zone_privset)) {
12886 state->dts_cred.dcr_action |=
12887 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12888 }
12889 }

12891 /*
12892 * Holding the dtrace_proc privilege gives control over fasttrap
12893 * and pid providers. We need to grant wider destructive
12894 * privileges in the event that the user has proc_owner and/or
12895 * proc_zone.
12896 */
12897 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12898 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12899 state->dts_cred.dcr_action |=
12900 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;

12902 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12903 state->dts_cred.dcr_action |=
12904 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12905 }
12906 }

12908 return (state);
12909 }

12911 static int
12912 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
12913 {
12914 dtrace_optval_t *opt = state->dts_options, size;
12915 processorid_t cpu;
12916 int flags = 0, rval, factor, divisor = 1;

12918 ASSERT(MUTEX_HELD(&dtrace_lock));
12919 ASSERT(MUTEX_HELD(&cpu_lock));
12920 ASSERT(which < DTRACEOPT_MAX);
12921 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
12922 (state == dtrace_anon.dta_state &&
12923 state->dts_activity == DTRACE_ACTIVITY_ACTIVE));

12925 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
12926 return (0);

12928 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
12929 cpu = opt[DTRACEOPT_CPU];

12931 if (which == DTRACEOPT_SPECSIZE)

new/usr/src/uts/common/dtrace/dtrace.c 192

12932 flags |= DTRACEBUF_NOSWITCH;

12934 if (which == DTRACEOPT_BUFSIZE) {
12935 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
12936 flags |= DTRACEBUF_RING;

12938 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
12939 flags |= DTRACEBUF_FILL;

12941 if (state != dtrace_anon.dta_state ||
12942 state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12943 flags |= DTRACEBUF_INACTIVE;
12944 }

12946 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
12947 /*
12948 * The size must be 8-byte aligned. If the size is not 8-byte
12949 * aligned, drop it down by the difference.
12950 */
12951 if (size & (sizeof (uint64_t) - 1))
12952 size -= size & (sizeof (uint64_t) - 1);

12954 if (size < state->dts_reserve) {
12955 /*
12956 * Buffers always must be large enough to accommodate
12957 * their prereserved space. We return E2BIG instead
12958 * of ENOMEM in this case to allow for user-level
12959 * software to differentiate the cases.
12960 */
12961 return (E2BIG);
12962 }

12964 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);

12966 if (rval != ENOMEM) {
12967 opt[which] = size;
12968 return (rval);
12969 }

12971 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12972 return (rval);

12974 for (divisor = 2; divisor < factor; divisor <<= 1)
12975 continue;
12976 }

12978 return (ENOMEM);
12979 }

12981 static int
12982 dtrace_state_buffers(dtrace_state_t *state)
12983 {
12984 dtrace_speculation_t *spec = state->dts_speculations;
12985 int rval, i;

12987 if ((rval = dtrace_state_buffer(state, state->dts_buffer,
12988 DTRACEOPT_BUFSIZE)) != 0)
12989 return (rval);

12991 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
12992 DTRACEOPT_AGGSIZE)) != 0)
12993 return (rval);

12995 for (i = 0; i < state->dts_nspeculations; i++) {
12996 if ((rval = dtrace_state_buffer(state,
12997 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)

new/usr/src/uts/common/dtrace/dtrace.c 193

12998 return (rval);
12999 }

13001 return (0);
13002 }

13004 static void
13005 dtrace_state_prereserve(dtrace_state_t *state)
13006 {
13007 dtrace_ecb_t *ecb;
13008 dtrace_probe_t *probe;

13010 state->dts_reserve = 0;

13012 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13013 return;

13015 /*
13016 * If our buffer policy is a "fill" buffer policy, we need to set the
13017 * prereserved space to be the space required by the END probes.
13018 */
13019 probe = dtrace_probes[dtrace_probeid_end - 1];
13020 ASSERT(probe != NULL);

13022 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13023 if (ecb->dte_state != state)
13024 continue;

13026 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13027 }
13028 }

13030 static int
13031 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13032 {
13033 dtrace_optval_t *opt = state->dts_options, sz, nspec;
13034 dtrace_speculation_t *spec;
13035 dtrace_buffer_t *buf;
13036 cyc_handler_t hdlr;
13037 cyc_time_t when;
13038 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13039 dtrace_icookie_t cookie;

13041 mutex_enter(&cpu_lock);
13042 mutex_enter(&dtrace_lock);

13044 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13045 rval = EBUSY;
13046 goto out;
13047 }

13049 /*
13050 * Before we can perform any checks, we must prime all of the
13051 * retained enablings that correspond to this state.
13052 */
13053 dtrace_enabling_prime(state);

13055 if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13056 rval = EACCES;
13057 goto out;
13058 }

13060 dtrace_state_prereserve(state);

13062 /*
13063 * Now we want to do is try to allocate our speculations.

new/usr/src/uts/common/dtrace/dtrace.c 194

13064 * We do not automatically resize the number of speculations; if
13065 * this fails, we will fail the operation.
13066 */
13067 nspec = opt[DTRACEOPT_NSPEC];
13068 ASSERT(nspec != DTRACEOPT_UNSET);

13070 if (nspec > INT_MAX) {
13071 rval = ENOMEM;
13072 goto out;
13073 }

13075 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
13076 KM_NOSLEEP | KM_NORMALPRI);

13078 if (spec == NULL) {
13079 rval = ENOMEM;
13080 goto out;
13081 }

13083 state->dts_speculations = spec;
13084 state->dts_nspeculations = (int)nspec;

13086 for (i = 0; i < nspec; i++) {
13087 if ((buf = kmem_zalloc(bufsize,
13088 KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
13089 rval = ENOMEM;
13090 goto err;
13091 }

13093 spec[i].dtsp_buffer = buf;
13094 }

13096 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13097 if (dtrace_anon.dta_state == NULL) {
13098 rval = ENOENT;
13099 goto out;
13100 }

13102 if (state->dts_necbs != 0) {
13103 rval = EALREADY;
13104 goto out;
13105 }

13107 state->dts_anon = dtrace_anon_grab();
13108 ASSERT(state->dts_anon != NULL);
13109 state = state->dts_anon;

13111 /*
13112 * We want "grabanon" to be set in the grabbed state, so we’ll
13113 * copy that option value from the grabbing state into the
13114 * grabbed state.
13115 */
13116 state->dts_options[DTRACEOPT_GRABANON] =
13117 opt[DTRACEOPT_GRABANON];

13119 *cpu = dtrace_anon.dta_beganon;

13121 /*
13122 * If the anonymous state is active (as it almost certainly
13123 * is if the anonymous enabling ultimately matched anything),
13124 * we don’t allow any further option processing -- but we
13125 * don’t return failure.
13126 */
13127 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13128 goto out;
13129 }

new/usr/src/uts/common/dtrace/dtrace.c 195

13131 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13132 opt[DTRACEOPT_AGGSIZE] != 0) {
13133 if (state->dts_aggregations == NULL) {
13134 /*
13135 * We’re not going to create an aggregation buffer
13136 * because we don’t have any ECBs that contain
13137 * aggregations -- set this option to 0.
13138 */
13139 opt[DTRACEOPT_AGGSIZE] = 0;
13140 } else {
13141 /*
13142 * If we have an aggregation buffer, we must also have
13143 * a buffer to use as scratch.
13144 */
13145 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13146 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13147 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13148 }
13149 }
13150 }

13152 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13153 opt[DTRACEOPT_SPECSIZE] != 0) {
13154 if (!state->dts_speculates) {
13155 /*
13156 * We’re not going to create speculation buffers
13157 * because we don’t have any ECBs that actually
13158 * speculate -- set the speculation size to 0.
13159 */
13160 opt[DTRACEOPT_SPECSIZE] = 0;
13161 }
13162 }

13164 /*
13165 * The bare minimum size for any buffer that we’re actually going to
13166 * do anything to is sizeof (uint64_t).
13167 */
13168 sz = sizeof (uint64_t);

13170 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13171 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13172 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13173 /*
13174 * A buffer size has been explicitly set to 0 (or to a size
13175 * that will be adjusted to 0) and we need the space -- we
13176 * need to return failure. We return ENOSPC to differentiate
13177 * it from failing to allocate a buffer due to failure to meet
13178 * the reserve (for which we return E2BIG).
13179 */
13180 rval = ENOSPC;
13181 goto out;
13182 }

13184 if ((rval = dtrace_state_buffers(state)) != 0)
13185 goto err;

13187 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13188 sz = dtrace_dstate_defsize;

13190 do {
13191 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);

13193 if (rval == 0)
13194 break;

new/usr/src/uts/common/dtrace/dtrace.c 196

13196 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13197 goto err;
13198 } while (sz >>= 1);

13200 opt[DTRACEOPT_DYNVARSIZE] = sz;

13202 if (rval != 0)
13203 goto err;

13205 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13206 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;

13208 if (opt[DTRACEOPT_CLEANRATE] == 0)
13209 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;

13211 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13212 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;

13214 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13215 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;

13217 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13218 hdlr.cyh_arg = state;
13219 hdlr.cyh_level = CY_LOW_LEVEL;

13221 when.cyt_when = 0;
13222 when.cyt_interval = opt[DTRACEOPT_CLEANRATE];

13224 state->dts_cleaner = cyclic_add(&hdlr, &when);

13226 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13227 hdlr.cyh_arg = state;
13228 hdlr.cyh_level = CY_LOW_LEVEL;

13230 when.cyt_when = 0;
13231 when.cyt_interval = dtrace_deadman_interval;

13233 state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13234 state->dts_deadman = cyclic_add(&hdlr, &when);

13236 state->dts_activity = DTRACE_ACTIVITY_WARMUP;

13238 if (state->dts_getf != 0 &&
13239 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
13240 /*
13241 * We don’t have kernel privs but we have at least one call
13242 * to getf(); we need to bump our zone’s count, and (if
13243 * this is the first enabling to have an unprivileged call
13244 * to getf()) we need to hook into closef().
13245 */
13246 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;

13248 if (dtrace_getf++ == 0) {
13249 ASSERT(dtrace_closef == NULL);
13250 dtrace_closef = dtrace_getf_barrier;
13251 }
13252 }

13254 #endif /* ! codereview */
13255 /*
13256 * Now it’s time to actually fire the BEGIN probe. We need to disable
13257 * interrupts here both to record the CPU on which we fired the BEGIN
13258 * probe (the data from this CPU will be processed first at user
13259 * level) and to manually activate the buffer for this CPU.
13260 */
13261 cookie = dtrace_interrupt_disable();

new/usr/src/uts/common/dtrace/dtrace.c 197

13262 *cpu = CPU->cpu_id;
13263 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13264 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;

13266 dtrace_probe(dtrace_probeid_begin,
13267 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13268 dtrace_interrupt_enable(cookie);
13269 /*
13270 * We may have had an exit action from a BEGIN probe; only change our
13271 * state to ACTIVE if we’re still in WARMUP.
13272 */
13273 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13274 state->dts_activity == DTRACE_ACTIVITY_DRAINING);

13276 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13277 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;

13279 /*
13280 * Regardless of whether or not now we’re in ACTIVE or DRAINING, we
13281 * want each CPU to transition its principal buffer out of the
13282 * INACTIVE state. Doing this assures that no CPU will suddenly begin
13283 * processing an ECB halfway down a probe’s ECB chain; all CPUs will
13284 * atomically transition from processing none of a state’s ECBs to
13285 * processing all of them.
13286 */
13287 dtrace_xcall(DTRACE_CPUALL,
13288 (dtrace_xcall_t)dtrace_buffer_activate, state);
13289 goto out;

13291 err:
13292 dtrace_buffer_free(state->dts_buffer);
13293 dtrace_buffer_free(state->dts_aggbuffer);

13295 if ((nspec = state->dts_nspeculations) == 0) {
13296 ASSERT(state->dts_speculations == NULL);
13297 goto out;
13298 }

13300 spec = state->dts_speculations;
13301 ASSERT(spec != NULL);

13303 for (i = 0; i < state->dts_nspeculations; i++) {
13304 if ((buf = spec[i].dtsp_buffer) == NULL)
13305 break;

13307 dtrace_buffer_free(buf);
13308 kmem_free(buf, bufsize);
13309 }

13311 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13312 state->dts_nspeculations = 0;
13313 state->dts_speculations = NULL;

13315 out:
13316 mutex_exit(&dtrace_lock);
13317 mutex_exit(&cpu_lock);

13319 return (rval);
13320 }

13322 static int
13323 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13324 {
13325 dtrace_icookie_t cookie;

13327 ASSERT(MUTEX_HELD(&dtrace_lock));

new/usr/src/uts/common/dtrace/dtrace.c 198

13329 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13330 state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13331 return (EINVAL);

13333 /*
13334 * We’ll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13335 * to be sure that every CPU has seen it. See below for the details
13336 * on why this is done.
13337 */
13338 state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13339 dtrace_sync();

13341 /*
13342 * By this point, it is impossible for any CPU to be still processing
13343 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
13344 * DTRACE_ACTIVITY_COOLDOWN and know that we’re not racing with any
13345 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
13346 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13347 * iff we’re in the END probe.
13348 */
13349 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13350 dtrace_sync();
13351 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);

13353 /*
13354 * Finally, we can release the reserve and call the END probe. We
13355 * disable interrupts across calling the END probe to allow us to
13356 * return the CPU on which we actually called the END probe. This
13357 * allows user-land to be sure that this CPU’s principal buffer is
13358 * processed last.
13359 */
13360 state->dts_reserve = 0;

13362 cookie = dtrace_interrupt_disable();
13363 *cpu = CPU->cpu_id;
13364 dtrace_probe(dtrace_probeid_end,
13365 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13366 dtrace_interrupt_enable(cookie);

13368 state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13369 dtrace_sync();

13371 if (state->dts_getf != 0 &&
13372 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
13373 /*
13374 * We don’t have kernel privs but we have at least one call
13375 * to getf(); we need to lower our zone’s count, and (if
13376 * this is the last enabling to have an unprivileged call
13377 * to getf()) we need to clear the closef() hook.
13378 */
13379 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
13380 ASSERT(dtrace_closef == dtrace_getf_barrier);
13381 ASSERT(dtrace_getf > 0);

13383 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;

13385 if (--dtrace_getf == 0)
13386 dtrace_closef = NULL;
13387 }

13389 #endif /* ! codereview */
13390 return (0);
13391 }

13393 static int

new/usr/src/uts/common/dtrace/dtrace.c 199

13394 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13395 dtrace_optval_t val)
13396 {
13397 ASSERT(MUTEX_HELD(&dtrace_lock));

13399 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13400 return (EBUSY);

13402 if (option >= DTRACEOPT_MAX)
13403 return (EINVAL);

13405 if (option != DTRACEOPT_CPU && val < 0)
13406 return (EINVAL);

13408 switch (option) {
13409 case DTRACEOPT_DESTRUCTIVE:
13410 if (dtrace_destructive_disallow)
13411 return (EACCES);

13413 state->dts_cred.dcr_destructive = 1;
13414 break;

13416 case DTRACEOPT_BUFSIZE:
13417 case DTRACEOPT_DYNVARSIZE:
13418 case DTRACEOPT_AGGSIZE:
13419 case DTRACEOPT_SPECSIZE:
13420 case DTRACEOPT_STRSIZE:
13421 if (val < 0)
13422 return (EINVAL);

13424 if (val >= LONG_MAX) {
13425 /*
13426 * If this is an otherwise negative value, set it to
13427 * the highest multiple of 128m less than LONG_MAX.
13428 * Technically, we’re adjusting the size without
13429 * regard to the buffer resizing policy, but in fact,
13430 * this has no effect -- if we set the buffer size to
13431 * ~LONG_MAX and the buffer policy is ultimately set to
13432 * be "manual", the buffer allocation is guaranteed to
13433 * fail, if only because the allocation requires two
13434 * buffers. (We set the the size to the highest
13435 * multiple of 128m because it ensures that the size
13436 * will remain a multiple of a megabyte when
13437 * repeatedly halved -- all the way down to 15m.)
13438 */
13439 val = LONG_MAX - (1 << 27) + 1;
13440 }
13441 }

13443 state->dts_options[option] = val;

13445 return (0);
13446 }

13448 static void
13449 dtrace_state_destroy(dtrace_state_t *state)
13450 {
13451 dtrace_ecb_t *ecb;
13452 dtrace_vstate_t *vstate = &state->dts_vstate;
13453 minor_t minor = getminor(state->dts_dev);
13454 int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13455 dtrace_speculation_t *spec = state->dts_speculations;
13456 int nspec = state->dts_nspeculations;
13457 uint32_t match;

13459 ASSERT(MUTEX_HELD(&dtrace_lock));

new/usr/src/uts/common/dtrace/dtrace.c 200

13460 ASSERT(MUTEX_HELD(&cpu_lock));

13462 /*
13463 * First, retract any retained enablings for this state.
13464 */
13465 dtrace_enabling_retract(state);
13466 ASSERT(state->dts_nretained == 0);

13468 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13469 state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13470 /*
13471 * We have managed to come into dtrace_state_destroy() on a
13472 * hot enabling -- almost certainly because of a disorderly
13473 * shutdown of a consumer. (That is, a consumer that is
13474 * exiting without having called dtrace_stop().) In this case,
13475 * we’re going to set our activity to be KILLED, and then
13476 * issue a sync to be sure that everyone is out of probe
13477 * context before we start blowing away ECBs.
13478 */
13479 state->dts_activity = DTRACE_ACTIVITY_KILLED;
13480 dtrace_sync();
13481 }

13483 /*
13484 * Release the credential hold we took in dtrace_state_create().
13485 */
13486 if (state->dts_cred.dcr_cred != NULL)
13487 crfree(state->dts_cred.dcr_cred);

13489 /*
13490 * Now we can safely disable and destroy any enabled probes. Because
13491 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13492 * (especially if they’re all enabled), we take two passes through the
13493 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13494 * in the second we disable whatever is left over.
13495 */
13496 for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13497 for (i = 0; i < state->dts_necbs; i++) {
13498 if ((ecb = state->dts_ecbs[i]) == NULL)
13499 continue;

13501 if (match && ecb->dte_probe != NULL) {
13502 dtrace_probe_t *probe = ecb->dte_probe;
13503 dtrace_provider_t *prov = probe->dtpr_provider;

13505 if (!(prov->dtpv_priv.dtpp_flags & match))
13506 continue;
13507 }

13509 dtrace_ecb_disable(ecb);
13510 dtrace_ecb_destroy(ecb);
13511 }

13513 if (!match)
13514 break;
13515 }

13517 /*
13518 * Before we free the buffers, perform one more sync to assure that
13519 * every CPU is out of probe context.
13520 */
13521 dtrace_sync();

13523 dtrace_buffer_free(state->dts_buffer);
13524 dtrace_buffer_free(state->dts_aggbuffer);

new/usr/src/uts/common/dtrace/dtrace.c 201

13526 for (i = 0; i < nspec; i++)
13527 dtrace_buffer_free(spec[i].dtsp_buffer);

13529 if (state->dts_cleaner != CYCLIC_NONE)
13530 cyclic_remove(state->dts_cleaner);

13532 if (state->dts_deadman != CYCLIC_NONE)
13533 cyclic_remove(state->dts_deadman);

13535 dtrace_dstate_fini(&vstate->dtvs_dynvars);
13536 dtrace_vstate_fini(vstate);
13537 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));

13539 if (state->dts_aggregations != NULL) {
13540 #ifdef DEBUG
13541 for (i = 0; i < state->dts_naggregations; i++)
13542 ASSERT(state->dts_aggregations[i] == NULL);
13543 #endif
13544 ASSERT(state->dts_naggregations > 0);
13545 kmem_free(state->dts_aggregations,
13546 state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13547 }

13549 kmem_free(state->dts_buffer, bufsize);
13550 kmem_free(state->dts_aggbuffer, bufsize);

13552 for (i = 0; i < nspec; i++)
13553 kmem_free(spec[i].dtsp_buffer, bufsize);

13555 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));

13557 dtrace_format_destroy(state);

13559 vmem_destroy(state->dts_aggid_arena);
13560 ddi_soft_state_free(dtrace_softstate, minor);
13561 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13562 }

13564 /*
13565 * DTrace Anonymous Enabling Functions
13566 */
13567 static dtrace_state_t *
13568 dtrace_anon_grab(void)
13569 {
13570 dtrace_state_t *state;

13572 ASSERT(MUTEX_HELD(&dtrace_lock));

13574 if ((state = dtrace_anon.dta_state) == NULL) {
13575 ASSERT(dtrace_anon.dta_enabling == NULL);
13576 return (NULL);
13577 }

13579 ASSERT(dtrace_anon.dta_enabling != NULL);
13580 ASSERT(dtrace_retained != NULL);

13582 dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13583 dtrace_anon.dta_enabling = NULL;
13584 dtrace_anon.dta_state = NULL;

13586 return (state);
13587 }

13589 static void
13590 dtrace_anon_property(void)
13591 {

new/usr/src/uts/common/dtrace/dtrace.c 202

13592 int i, rv;
13593 dtrace_state_t *state;
13594 dof_hdr_t *dof;
13595 char c[32]; /* enough for "dof-data-" + digits */

13597 ASSERT(MUTEX_HELD(&dtrace_lock));
13598 ASSERT(MUTEX_HELD(&cpu_lock));

13600 for (i = 0; ; i++) {
13601 (void) snprintf(c, sizeof (c), "dof-data-%d", i);

13603 dtrace_err_verbose = 1;

13605 if ((dof = dtrace_dof_property(c)) == NULL) {
13606 dtrace_err_verbose = 0;
13607 break;
13608 }

13610 /*
13611 * We want to create anonymous state, so we need to transition
13612 * the kernel debugger to indicate that DTrace is active. If
13613 * this fails (e.g. because the debugger has modified text in
13614 * some way), we won’t continue with the processing.
13615 */
13616 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13617 cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13618 "enabling ignored.");
13619 dtrace_dof_destroy(dof);
13620 break;
13621 }

13623 /*
13624 * If we haven’t allocated an anonymous state, we’ll do so now.
13625 */
13626 if ((state = dtrace_anon.dta_state) == NULL) {
13627 state = dtrace_state_create(NULL, NULL);
13628 dtrace_anon.dta_state = state;

13630 if (state == NULL) {
13631 /*
13632 * This basically shouldn’t happen: the only
13633 * failure mode from dtrace_state_create() is a
13634 * failure of ddi_soft_state_zalloc() that
13635 * itself should never happen. Still, the
13636 * interface allows for a failure mode, and
13637 * we want to fail as gracefully as possible:
13638 * we’ll emit an error message and cease
13639 * processing anonymous state in this case.
13640 */
13641 cmn_err(CE_WARN, "failed to create "
13642 "anonymous state");
13643 dtrace_dof_destroy(dof);
13644 break;
13645 }
13646 }

13648 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13649 &dtrace_anon.dta_enabling, 0, B_TRUE);

13651 if (rv == 0)
13652 rv = dtrace_dof_options(dof, state);

13654 dtrace_err_verbose = 0;
13655 dtrace_dof_destroy(dof);

13657 if (rv != 0) {

new/usr/src/uts/common/dtrace/dtrace.c 203

13658 /*
13659 * This is malformed DOF; chuck any anonymous state
13660 * that we created.
13661 */
13662 ASSERT(dtrace_anon.dta_enabling == NULL);
13663 dtrace_state_destroy(state);
13664 dtrace_anon.dta_state = NULL;
13665 break;
13666 }

13668 ASSERT(dtrace_anon.dta_enabling != NULL);
13669 }

13671 if (dtrace_anon.dta_enabling != NULL) {
13672 int rval;

13674 /*
13675 * dtrace_enabling_retain() can only fail because we are
13676 * trying to retain more enablings than are allowed -- but
13677 * we only have one anonymous enabling, and we are guaranteed
13678 * to be allowed at least one retained enabling; we assert
13679 * that dtrace_enabling_retain() returns success.
13680 */
13681 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13682 ASSERT(rval == 0);

13684 dtrace_enabling_dump(dtrace_anon.dta_enabling);
13685 }
13686 }

13688 /*
13689 * DTrace Helper Functions
13690 */
13691 static void
13692 dtrace_helper_trace(dtrace_helper_action_t *helper,
13693 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13694 {
13695 uint32_t size, next, nnext, i;
13696 dtrace_helptrace_t *ent;
13697 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;

13699 if (!dtrace_helptrace_enabled)
13700 return;

13702 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);

13704 /*
13705 * What would a tracing framework be without its own tracing
13706 * framework? (Well, a hell of a lot simpler, for starters...)
13707 */
13708 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13709 sizeof (uint64_t) - sizeof (uint64_t);

13711 /*
13712 * Iterate until we can allocate a slot in the trace buffer.
13713 */
13714 do {
13715 next = dtrace_helptrace_next;

13717 if (next + size < dtrace_helptrace_bufsize) {
13718 nnext = next + size;
13719 } else {
13720 nnext = size;
13721 }
13722 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);

new/usr/src/uts/common/dtrace/dtrace.c 204

13724 /*
13725 * We have our slot; fill it in.
13726 */
13727 if (nnext == size)
13728 next = 0;

13730 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13731 ent->dtht_helper = helper;
13732 ent->dtht_where = where;
13733 ent->dtht_nlocals = vstate->dtvs_nlocals;

13735 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13736 mstate->dtms_fltoffs : -1;
13737 ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13738 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;

13740 for (i = 0; i < vstate->dtvs_nlocals; i++) {
13741 dtrace_statvar_t *svar;

13743 if ((svar = vstate->dtvs_locals[i]) == NULL)
13744 continue;

13746 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13747 ent->dtht_locals[i] =
13748 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
13749 }
13750 }

13752 static uint64_t
13753 dtrace_helper(int which, dtrace_mstate_t *mstate,
13754 dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13755 {
13756 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13757 uint64_t sarg0 = mstate->dtms_arg[0];
13758 uint64_t sarg1 = mstate->dtms_arg[1];
13759 uint64_t rval;
13760 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13761 dtrace_helper_action_t *helper;
13762 dtrace_vstate_t *vstate;
13763 dtrace_difo_t *pred;
13764 int i, trace = dtrace_helptrace_enabled;

13766 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);

13768 if (helpers == NULL)
13769 return (0);

13771 if ((helper = helpers->dthps_actions[which]) == NULL)
13772 return (0);

13774 vstate = &helpers->dthps_vstate;
13775 mstate->dtms_arg[0] = arg0;
13776 mstate->dtms_arg[1] = arg1;

13778 /*
13779 * Now iterate over each helper. If its predicate evaluates to ’true’,
13780 * we’ll call the corresponding actions. Note that the below calls
13781 * to dtrace_dif_emulate() may set faults in machine state. This is
13782 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
13783 * the stored DIF offset with its own (which is the desired behavior).
13784 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13785 * from machine state; this is okay, too.
13786 */
13787 for (; helper != NULL; helper = helper->dtha_next) {
13788 if ((pred = helper->dtha_predicate) != NULL) {
13789 if (trace)

new/usr/src/uts/common/dtrace/dtrace.c 205

13790 dtrace_helper_trace(helper, mstate, vstate, 0);

13792 if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13793 goto next;

13795 if (*flags & CPU_DTRACE_FAULT)
13796 goto err;
13797 }

13799 for (i = 0; i < helper->dtha_nactions; i++) {
13800 if (trace)
13801 dtrace_helper_trace(helper,
13802 mstate, vstate, i + 1);

13804 rval = dtrace_dif_emulate(helper->dtha_actions[i],
13805 mstate, vstate, state);

13807 if (*flags & CPU_DTRACE_FAULT)
13808 goto err;
13809 }

13811 next:
13812 if (trace)
13813 dtrace_helper_trace(helper, mstate, vstate,
13814 DTRACE_HELPTRACE_NEXT);
13815 }

13817 if (trace)
13818 dtrace_helper_trace(helper, mstate, vstate,
13819 DTRACE_HELPTRACE_DONE);

13821 /*
13822 * Restore the arg0 that we saved upon entry.
13823 */
13824 mstate->dtms_arg[0] = sarg0;
13825 mstate->dtms_arg[1] = sarg1;

13827 return (rval);

13829 err:
13830 if (trace)
13831 dtrace_helper_trace(helper, mstate, vstate,
13832 DTRACE_HELPTRACE_ERR);

13834 /*
13835 * Restore the arg0 that we saved upon entry.
13836 */
13837 mstate->dtms_arg[0] = sarg0;
13838 mstate->dtms_arg[1] = sarg1;

13840 return (NULL);
13841 }

13843 static void
13844 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13845 dtrace_vstate_t *vstate)
13846 {
13847 int i;

13849 if (helper->dtha_predicate != NULL)
13850 dtrace_difo_release(helper->dtha_predicate, vstate);

13852 for (i = 0; i < helper->dtha_nactions; i++) {
13853 ASSERT(helper->dtha_actions[i] != NULL);
13854 dtrace_difo_release(helper->dtha_actions[i], vstate);
13855 }

new/usr/src/uts/common/dtrace/dtrace.c 206

13857 kmem_free(helper->dtha_actions,
13858 helper->dtha_nactions * sizeof (dtrace_difo_t *));
13859 kmem_free(helper, sizeof (dtrace_helper_action_t));
13860 }

13862 static int
13863 dtrace_helper_destroygen(int gen)
13864 {
13865 proc_t *p = curproc;
13866 dtrace_helpers_t *help = p->p_dtrace_helpers;
13867 dtrace_vstate_t *vstate;
13868 int i;

13870 ASSERT(MUTEX_HELD(&dtrace_lock));

13872 if (help == NULL || gen > help->dthps_generation)
13873 return (EINVAL);

13875 vstate = &help->dthps_vstate;

13877 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13878 dtrace_helper_action_t *last = NULL, *h, *next;

13880 for (h = help->dthps_actions[i]; h != NULL; h = next) {
13881 next = h->dtha_next;

13883 if (h->dtha_generation == gen) {
13884 if (last != NULL) {
13885 last->dtha_next = next;
13886 } else {
13887 help->dthps_actions[i] = next;
13888 }

13890 dtrace_helper_action_destroy(h, vstate);
13891 } else {
13892 last = h;
13893 }
13894 }
13895 }

13897 /*
13898 * Interate until we’ve cleared out all helper providers with the
13899 * given generation number.
13900 */
13901 for (;;) {
13902 dtrace_helper_provider_t *prov;

13904 /*
13905 * Look for a helper provider with the right generation. We
13906 * have to start back at the beginning of the list each time
13907 * because we drop dtrace_lock. It’s unlikely that we’ll make
13908 * more than two passes.
13909 */
13910 for (i = 0; i < help->dthps_nprovs; i++) {
13911 prov = help->dthps_provs[i];

13913 if (prov->dthp_generation == gen)
13914 break;
13915 }

13917 /*
13918 * If there were no matches, we’re done.
13919 */
13920 if (i == help->dthps_nprovs)
13921 break;

new/usr/src/uts/common/dtrace/dtrace.c 207

13923 /*
13924 * Move the last helper provider into this slot.
13925 */
13926 help->dthps_nprovs--;
13927 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
13928 help->dthps_provs[help->dthps_nprovs] = NULL;

13930 mutex_exit(&dtrace_lock);

13932 /*
13933 * If we have a meta provider, remove this helper provider.
13934 */
13935 mutex_enter(&dtrace_meta_lock);
13936 if (dtrace_meta_pid != NULL) {
13937 ASSERT(dtrace_deferred_pid == NULL);
13938 dtrace_helper_provider_remove(&prov->dthp_prov,
13939 p->p_pid);
13940 }
13941 mutex_exit(&dtrace_meta_lock);

13943 dtrace_helper_provider_destroy(prov);

13945 mutex_enter(&dtrace_lock);
13946 }

13948 return (0);
13949 }

13951 static int
13952 dtrace_helper_validate(dtrace_helper_action_t *helper)
13953 {
13954 int err = 0, i;
13955 dtrace_difo_t *dp;

13957 if ((dp = helper->dtha_predicate) != NULL)
13958 err += dtrace_difo_validate_helper(dp);

13960 for (i = 0; i < helper->dtha_nactions; i++)
13961 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);

13963 return (err == 0);
13964 }

13966 static int
13967 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
13968 {
13969 dtrace_helpers_t *help;
13970 dtrace_helper_action_t *helper, *last;
13971 dtrace_actdesc_t *act;
13972 dtrace_vstate_t *vstate;
13973 dtrace_predicate_t *pred;
13974 int count = 0, nactions = 0, i;

13976 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
13977 return (EINVAL);

13979 help = curproc->p_dtrace_helpers;
13980 last = help->dthps_actions[which];
13981 vstate = &help->dthps_vstate;

13983 for (count = 0; last != NULL; last = last->dtha_next) {
13984 count++;
13985 if (last->dtha_next == NULL)
13986 break;
13987 }

new/usr/src/uts/common/dtrace/dtrace.c 208

13989 /*
13990 * If we already have dtrace_helper_actions_max helper actions for this
13991 * helper action type, we’ll refuse to add a new one.
13992 */
13993 if (count >= dtrace_helper_actions_max)
13994 return (ENOSPC);

13996 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
13997 helper->dtha_generation = help->dthps_generation;

13999 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14000 ASSERT(pred->dtp_difo != NULL);
14001 dtrace_difo_hold(pred->dtp_difo);
14002 helper->dtha_predicate = pred->dtp_difo;
14003 }

14005 for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14006 if (act->dtad_kind != DTRACEACT_DIFEXPR)
14007 goto err;

14009 if (act->dtad_difo == NULL)
14010 goto err;

14012 nactions++;
14013 }

14015 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14016 (helper->dtha_nactions = nactions), KM_SLEEP);

14018 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14019 dtrace_difo_hold(act->dtad_difo);
14020 helper->dtha_actions[i++] = act->dtad_difo;
14021 }

14023 if (!dtrace_helper_validate(helper))
14024 goto err;

14026 if (last == NULL) {
14027 help->dthps_actions[which] = helper;
14028 } else {
14029 last->dtha_next = helper;
14030 }

14032 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14033 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14034 dtrace_helptrace_next = 0;
14035 }

14037 return (0);
14038 err:
14039 dtrace_helper_action_destroy(helper, vstate);
14040 return (EINVAL);
14041 }

14043 static void
14044 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14045 dof_helper_t *dofhp)
14046 {
14047 ASSERT(MUTEX_NOT_HELD(&dtrace_lock));

14049 mutex_enter(&dtrace_meta_lock);
14050 mutex_enter(&dtrace_lock);

14052 if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14053 /*

new/usr/src/uts/common/dtrace/dtrace.c 209

14054 * If the dtrace module is loaded but not attached, or if
14055 * there aren’t isn’t a meta provider registered to deal with
14056 * these provider descriptions, we need to postpone creating
14057 * the actual providers until later.
14058 */

14060 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14061 dtrace_deferred_pid != help) {
14062 help->dthps_deferred = 1;
14063 help->dthps_pid = p->p_pid;
14064 help->dthps_next = dtrace_deferred_pid;
14065 help->dthps_prev = NULL;
14066 if (dtrace_deferred_pid != NULL)
14067 dtrace_deferred_pid->dthps_prev = help;
14068 dtrace_deferred_pid = help;
14069 }

14071 mutex_exit(&dtrace_lock);

14073 } else if (dofhp != NULL) {
14074 /*
14075 * If the dtrace module is loaded and we have a particular
14076 * helper provider description, pass that off to the
14077 * meta provider.
14078 */

14080 mutex_exit(&dtrace_lock);

14082 dtrace_helper_provide(dofhp, p->p_pid);

14084 } else {
14085 /*
14086 * Otherwise, just pass all the helper provider descriptions
14087 * off to the meta provider.
14088 */

14090 int i;
14091 mutex_exit(&dtrace_lock);

14093 for (i = 0; i < help->dthps_nprovs; i++) {
14094 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14095 p->p_pid);
14096 }
14097 }

14099 mutex_exit(&dtrace_meta_lock);
14100 }

14102 static int
14103 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14104 {
14105 dtrace_helpers_t *help;
14106 dtrace_helper_provider_t *hprov, **tmp_provs;
14107 uint_t tmp_maxprovs, i;

14109 ASSERT(MUTEX_HELD(&dtrace_lock));

14111 help = curproc->p_dtrace_helpers;
14112 ASSERT(help != NULL);

14114 /*
14115 * If we already have dtrace_helper_providers_max helper providers,
14116 * we’re refuse to add a new one.
14117 */
14118 if (help->dthps_nprovs >= dtrace_helper_providers_max)
14119 return (ENOSPC);

new/usr/src/uts/common/dtrace/dtrace.c 210

14121 /*
14122 * Check to make sure this isn’t a duplicate.
14123 */
14124 for (i = 0; i < help->dthps_nprovs; i++) {
14125 if (dofhp->dofhp_dof ==
14126 help->dthps_provs[i]->dthp_prov.dofhp_dof)
14127 return (EALREADY);
14128 }

14130 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14131 hprov->dthp_prov = *dofhp;
14132 hprov->dthp_ref = 1;
14133 hprov->dthp_generation = gen;

14135 /*
14136 * Allocate a bigger table for helper providers if it’s already full.
14137 */
14138 if (help->dthps_maxprovs == help->dthps_nprovs) {
14139 tmp_maxprovs = help->dthps_maxprovs;
14140 tmp_provs = help->dthps_provs;

14142 if (help->dthps_maxprovs == 0)
14143 help->dthps_maxprovs = 2;
14144 else
14145 help->dthps_maxprovs *= 2;
14146 if (help->dthps_maxprovs > dtrace_helper_providers_max)
14147 help->dthps_maxprovs = dtrace_helper_providers_max;

14149 ASSERT(tmp_maxprovs < help->dthps_maxprovs);

14151 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14152 sizeof (dtrace_helper_provider_t *), KM_SLEEP);

14154 if (tmp_provs != NULL) {
14155 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14156 sizeof (dtrace_helper_provider_t *));
14157 kmem_free(tmp_provs, tmp_maxprovs *
14158 sizeof (dtrace_helper_provider_t *));
14159 }
14160 }

14162 help->dthps_provs[help->dthps_nprovs] = hprov;
14163 help->dthps_nprovs++;

14165 return (0);
14166 }

14168 static void
14169 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14170 {
14171 mutex_enter(&dtrace_lock);

14173 if (--hprov->dthp_ref == 0) {
14174 dof_hdr_t *dof;
14175 mutex_exit(&dtrace_lock);
14176 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14177 dtrace_dof_destroy(dof);
14178 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14179 } else {
14180 mutex_exit(&dtrace_lock);
14181 }
14182 }

14184 static int
14185 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)

new/usr/src/uts/common/dtrace/dtrace.c 211

14186 {
14187 uintptr_t daddr = (uintptr_t)dof;
14188 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14189 dof_provider_t *provider;
14190 dof_probe_t *probe;
14191 uint8_t *arg;
14192 char *strtab, *typestr;
14193 dof_stridx_t typeidx;
14194 size_t typesz;
14195 uint_t nprobes, j, k;

14197 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);

14199 if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14200 dtrace_dof_error(dof, "misaligned section offset");
14201 return (-1);
14202 }

14204 /*
14205 * The section needs to be large enough to contain the DOF provider
14206 * structure appropriate for the given version.
14207 */
14208 if (sec->dofs_size <
14209 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14210 offsetof(dof_provider_t, dofpv_prenoffs) :
14211 sizeof (dof_provider_t))) {
14212 dtrace_dof_error(dof, "provider section too small");
14213 return (-1);
14214 }

14216 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14217 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14218 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14219 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14220 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);

14222 if (str_sec == NULL || prb_sec == NULL ||
14223 arg_sec == NULL || off_sec == NULL)
14224 return (-1);

14226 enoff_sec = NULL;

14228 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14229 provider->dofpv_prenoffs != DOF_SECT_NONE &&
14230 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14231 provider->dofpv_prenoffs)) == NULL)
14232 return (-1);

14234 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);

14236 if (provider->dofpv_name >= str_sec->dofs_size ||
14237 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14238 dtrace_dof_error(dof, "invalid provider name");
14239 return (-1);
14240 }

14242 if (prb_sec->dofs_entsize == 0 ||
14243 prb_sec->dofs_entsize > prb_sec->dofs_size) {
14244 dtrace_dof_error(dof, "invalid entry size");
14245 return (-1);
14246 }

14248 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14249 dtrace_dof_error(dof, "misaligned entry size");
14250 return (-1);
14251 }

new/usr/src/uts/common/dtrace/dtrace.c 212

14253 if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14254 dtrace_dof_error(dof, "invalid entry size");
14255 return (-1);
14256 }

14258 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14259 dtrace_dof_error(dof, "misaligned section offset");
14260 return (-1);
14261 }

14263 if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14264 dtrace_dof_error(dof, "invalid entry size");
14265 return (-1);
14266 }

14268 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);

14270 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;

14272 /*
14273 * Take a pass through the probes to check for errors.
14274 */
14275 for (j = 0; j < nprobes; j++) {
14276 probe = (dof_probe_t *)(uintptr_t)(daddr +
14277 prb_sec->dofs_offset + j * prb_sec->dofs_entsize);

14279 if (probe->dofpr_func >= str_sec->dofs_size) {
14280 dtrace_dof_error(dof, "invalid function name");
14281 return (-1);
14282 }

14284 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14285 dtrace_dof_error(dof, "function name too long");
14286 return (-1);
14287 }

14289 if (probe->dofpr_name >= str_sec->dofs_size ||
14290 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14291 dtrace_dof_error(dof, "invalid probe name");
14292 return (-1);
14293 }

14295 /*
14296 * The offset count must not wrap the index, and the offsets
14297 * must also not overflow the section’s data.
14298 */
14299 if (probe->dofpr_offidx + probe->dofpr_noffs <
14300 probe->dofpr_offidx ||
14301 (probe->dofpr_offidx + probe->dofpr_noffs) *
14302 off_sec->dofs_entsize > off_sec->dofs_size) {
14303 dtrace_dof_error(dof, "invalid probe offset");
14304 return (-1);
14305 }

14307 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14308 /*
14309 * If there’s no is-enabled offset section, make sure
14310 * there aren’t any is-enabled offsets. Otherwise
14311 * perform the same checks as for probe offsets
14312 * (immediately above).
14313 */
14314 if (enoff_sec == NULL) {
14315 if (probe->dofpr_enoffidx != 0 ||
14316 probe->dofpr_nenoffs != 0) {
14317 dtrace_dof_error(dof, "is-enabled "

new/usr/src/uts/common/dtrace/dtrace.c 213

14318 "offsets with null section");
14319 return (-1);
14320 }
14321 } else if (probe->dofpr_enoffidx +
14322 probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14323 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14324 enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14325 dtrace_dof_error(dof, "invalid is-enabled "
14326 "offset");
14327 return (-1);
14328 }

14330 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14331 dtrace_dof_error(dof, "zero probe and "
14332 "is-enabled offsets");
14333 return (-1);
14334 }
14335 } else if (probe->dofpr_noffs == 0) {
14336 dtrace_dof_error(dof, "zero probe offsets");
14337 return (-1);
14338 }

14340 if (probe->dofpr_argidx + probe->dofpr_xargc <
14341 probe->dofpr_argidx ||
14342 (probe->dofpr_argidx + probe->dofpr_xargc) *
14343 arg_sec->dofs_entsize > arg_sec->dofs_size) {
14344 dtrace_dof_error(dof, "invalid args");
14345 return (-1);
14346 }

14348 typeidx = probe->dofpr_nargv;
14349 typestr = strtab + probe->dofpr_nargv;
14350 for (k = 0; k < probe->dofpr_nargc; k++) {
14351 if (typeidx >= str_sec->dofs_size) {
14352 dtrace_dof_error(dof, "bad "
14353 "native argument type");
14354 return (-1);
14355 }

14357 typesz = strlen(typestr) + 1;
14358 if (typesz > DTRACE_ARGTYPELEN) {
14359 dtrace_dof_error(dof, "native "
14360 "argument type too long");
14361 return (-1);
14362 }
14363 typeidx += typesz;
14364 typestr += typesz;
14365 }

14367 typeidx = probe->dofpr_xargv;
14368 typestr = strtab + probe->dofpr_xargv;
14369 for (k = 0; k < probe->dofpr_xargc; k++) {
14370 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14371 dtrace_dof_error(dof, "bad "
14372 "native argument index");
14373 return (-1);
14374 }

14376 if (typeidx >= str_sec->dofs_size) {
14377 dtrace_dof_error(dof, "bad "
14378 "translated argument type");
14379 return (-1);
14380 }

14382 typesz = strlen(typestr) + 1;
14383 if (typesz > DTRACE_ARGTYPELEN) {

new/usr/src/uts/common/dtrace/dtrace.c 214

14384 dtrace_dof_error(dof, "translated argument "
14385 "type too long");
14386 return (-1);
14387 }

14389 typeidx += typesz;
14390 typestr += typesz;
14391 }
14392 }

14394 return (0);
14395 }

14397 static int
14398 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14399 {
14400 dtrace_helpers_t *help;
14401 dtrace_vstate_t *vstate;
14402 dtrace_enabling_t *enab = NULL;
14403 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14404 uintptr_t daddr = (uintptr_t)dof;

14406 ASSERT(MUTEX_HELD(&dtrace_lock));

14408 if ((help = curproc->p_dtrace_helpers) == NULL)
14409 help = dtrace_helpers_create(curproc);

14411 vstate = &help->dthps_vstate;

14413 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14414 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14415 dtrace_dof_destroy(dof);
14416 return (rv);
14417 }

14419 /*
14420 * Look for helper providers and validate their descriptions.
14421 */
14422 if (dhp != NULL) {
14423 for (i = 0; i < dof->dofh_secnum; i++) {
14424 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14425 dof->dofh_secoff + i * dof->dofh_secsize);

14427 if (sec->dofs_type != DOF_SECT_PROVIDER)
14428 continue;

14430 if (dtrace_helper_provider_validate(dof, sec) != 0) {
14431 dtrace_enabling_destroy(enab);
14432 dtrace_dof_destroy(dof);
14433 return (-1);
14434 }

14436 nprovs++;
14437 }
14438 }

14440 /*
14441 * Now we need to walk through the ECB descriptions in the enabling.
14442 */
14443 for (i = 0; i < enab->dten_ndesc; i++) {
14444 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14445 dtrace_probedesc_t *desc = &ep->dted_probe;

14447 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14448 continue;

new/usr/src/uts/common/dtrace/dtrace.c 215

14450 if (strcmp(desc->dtpd_mod, "helper") != 0)
14451 continue;

14453 if (strcmp(desc->dtpd_func, "ustack") != 0)
14454 continue;

14456 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14457 ep)) != 0) {
14458 /*
14459 * Adding this helper action failed -- we are now going
14460 * to rip out the entire generation and return failure.
14461 */
14462 (void) dtrace_helper_destroygen(help->dthps_generation);
14463 dtrace_enabling_destroy(enab);
14464 dtrace_dof_destroy(dof);
14465 return (-1);
14466 }

14468 nhelpers++;
14469 }

14471 if (nhelpers < enab->dten_ndesc)
14472 dtrace_dof_error(dof, "unmatched helpers");

14474 gen = help->dthps_generation++;
14475 dtrace_enabling_destroy(enab);

14477 if (dhp != NULL && nprovs > 0) {
14478 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14479 if (dtrace_helper_provider_add(dhp, gen) == 0) {
14480 mutex_exit(&dtrace_lock);
14481 dtrace_helper_provider_register(curproc, help, dhp);
14482 mutex_enter(&dtrace_lock);

14484 destroy = 0;
14485 }
14486 }

14488 if (destroy)
14489 dtrace_dof_destroy(dof);

14491 return (gen);
14492 }

14494 static dtrace_helpers_t *
14495 dtrace_helpers_create(proc_t *p)
14496 {
14497 dtrace_helpers_t *help;

14499 ASSERT(MUTEX_HELD(&dtrace_lock));
14500 ASSERT(p->p_dtrace_helpers == NULL);

14502 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14503 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14504 DTRACE_NHELPER_ACTIONS, KM_SLEEP);

14506 p->p_dtrace_helpers = help;
14507 dtrace_helpers++;

14509 return (help);
14510 }

14512 static void
14513 dtrace_helpers_destroy(void)
14514 {
14515 dtrace_helpers_t *help;

new/usr/src/uts/common/dtrace/dtrace.c 216

14516 dtrace_vstate_t *vstate;
14517 proc_t *p = curproc;
14518 int i;

14520 mutex_enter(&dtrace_lock);

14522 ASSERT(p->p_dtrace_helpers != NULL);
14523 ASSERT(dtrace_helpers > 0);

14525 help = p->p_dtrace_helpers;
14526 vstate = &help->dthps_vstate;

14528 /*
14529 * We’re now going to lose the help from this process.
14530 */
14531 p->p_dtrace_helpers = NULL;
14532 dtrace_sync();

14534 /*
14535 * Destory the helper actions.
14536 */
14537 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14538 dtrace_helper_action_t *h, *next;

14540 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14541 next = h->dtha_next;
14542 dtrace_helper_action_destroy(h, vstate);
14543 h = next;
14544 }
14545 }

14547 mutex_exit(&dtrace_lock);

14549 /*
14550 * Destroy the helper providers.
14551 */
14552 if (help->dthps_maxprovs > 0) {
14553 mutex_enter(&dtrace_meta_lock);
14554 if (dtrace_meta_pid != NULL) {
14555 ASSERT(dtrace_deferred_pid == NULL);

14557 for (i = 0; i < help->dthps_nprovs; i++) {
14558 dtrace_helper_provider_remove(
14559 &help->dthps_provs[i]->dthp_prov, p->p_pid);
14560 }
14561 } else {
14562 mutex_enter(&dtrace_lock);
14563 ASSERT(help->dthps_deferred == 0 ||
14564 help->dthps_next != NULL ||
14565 help->dthps_prev != NULL ||
14566 help == dtrace_deferred_pid);

14568 /*
14569 * Remove the helper from the deferred list.
14570 */
14571 if (help->dthps_next != NULL)
14572 help->dthps_next->dthps_prev = help->dthps_prev;
14573 if (help->dthps_prev != NULL)
14574 help->dthps_prev->dthps_next = help->dthps_next;
14575 if (dtrace_deferred_pid == help) {
14576 dtrace_deferred_pid = help->dthps_next;
14577 ASSERT(help->dthps_prev == NULL);
14578 }

14580 mutex_exit(&dtrace_lock);
14581 }

new/usr/src/uts/common/dtrace/dtrace.c 217

14583 mutex_exit(&dtrace_meta_lock);

14585 for (i = 0; i < help->dthps_nprovs; i++) {
14586 dtrace_helper_provider_destroy(help->dthps_provs[i]);
14587 }

14589 kmem_free(help->dthps_provs, help->dthps_maxprovs *
14590 sizeof (dtrace_helper_provider_t *));
14591 }

14593 mutex_enter(&dtrace_lock);

14595 dtrace_vstate_fini(&help->dthps_vstate);
14596 kmem_free(help->dthps_actions,
14597 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14598 kmem_free(help, sizeof (dtrace_helpers_t));

14600 --dtrace_helpers;
14601 mutex_exit(&dtrace_lock);
14602 }

14604 static void
14605 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14606 {
14607 dtrace_helpers_t *help, *newhelp;
14608 dtrace_helper_action_t *helper, *new, *last;
14609 dtrace_difo_t *dp;
14610 dtrace_vstate_t *vstate;
14611 int i, j, sz, hasprovs = 0;

14613 mutex_enter(&dtrace_lock);
14614 ASSERT(from->p_dtrace_helpers != NULL);
14615 ASSERT(dtrace_helpers > 0);

14617 help = from->p_dtrace_helpers;
14618 newhelp = dtrace_helpers_create(to);
14619 ASSERT(to->p_dtrace_helpers != NULL);

14621 newhelp->dthps_generation = help->dthps_generation;
14622 vstate = &newhelp->dthps_vstate;

14624 /*
14625 * Duplicate the helper actions.
14626 */
14627 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14628 if ((helper = help->dthps_actions[i]) == NULL)
14629 continue;

14631 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14632 new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14633 KM_SLEEP);
14634 new->dtha_generation = helper->dtha_generation;

14636 if ((dp = helper->dtha_predicate) != NULL) {
14637 dp = dtrace_difo_duplicate(dp, vstate);
14638 new->dtha_predicate = dp;
14639 }

14641 new->dtha_nactions = helper->dtha_nactions;
14642 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14643 new->dtha_actions = kmem_alloc(sz, KM_SLEEP);

14645 for (j = 0; j < new->dtha_nactions; j++) {
14646 dtrace_difo_t *dp = helper->dtha_actions[j];

new/usr/src/uts/common/dtrace/dtrace.c 218

14648 ASSERT(dp != NULL);
14649 dp = dtrace_difo_duplicate(dp, vstate);
14650 new->dtha_actions[j] = dp;
14651 }

14653 if (last != NULL) {
14654 last->dtha_next = new;
14655 } else {
14656 newhelp->dthps_actions[i] = new;
14657 }

14659 last = new;
14660 }
14661 }

14663 /*
14664 * Duplicate the helper providers and register them with the
14665 * DTrace framework.
14666 */
14667 if (help->dthps_nprovs > 0) {
14668 newhelp->dthps_nprovs = help->dthps_nprovs;
14669 newhelp->dthps_maxprovs = help->dthps_nprovs;
14670 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14671 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14672 for (i = 0; i < newhelp->dthps_nprovs; i++) {
14673 newhelp->dthps_provs[i] = help->dthps_provs[i];
14674 newhelp->dthps_provs[i]->dthp_ref++;
14675 }

14677 hasprovs = 1;
14678 }

14680 mutex_exit(&dtrace_lock);

14682 if (hasprovs)
14683 dtrace_helper_provider_register(to, newhelp, NULL);
14684 }

14686 /*
14687 * DTrace Hook Functions
14688 */
14689 static void
14690 dtrace_module_loaded(struct modctl *ctl)
14691 {
14692 dtrace_provider_t *prv;

14694 mutex_enter(&dtrace_provider_lock);
14695 mutex_enter(&mod_lock);

14697 ASSERT(ctl->mod_busy);

14699 /*
14700 * We’re going to call each providers per-module provide operation
14701 * specifying only this module.
14702 */
14703 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14704 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);

14706 mutex_exit(&mod_lock);
14707 mutex_exit(&dtrace_provider_lock);

14709 /*
14710 * If we have any retained enablings, we need to match against them.
14711 * Enabling probes requires that cpu_lock be held, and we cannot hold
14712 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14713 * module. (In particular, this happens when loading scheduling

new/usr/src/uts/common/dtrace/dtrace.c 219

14714 * classes.) So if we have any retained enablings, we need to dispatch
14715 * our task queue to do the match for us.
14716 */
14717 mutex_enter(&dtrace_lock);

14719 if (dtrace_retained == NULL) {
14720 mutex_exit(&dtrace_lock);
14721 return;
14722 }

14724 (void) taskq_dispatch(dtrace_taskq,
14725 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);

14727 mutex_exit(&dtrace_lock);

14729 /*
14730 * And now, for a little heuristic sleaze: in general, we want to
14731 * match modules as soon as they load. However, we cannot guarantee
14732 * this, because it would lead us to the lock ordering violation
14733 * outlined above. The common case, of course, is that cpu_lock is
14734 * _not_ held -- so we delay here for a clock tick, hoping that that’s
14735 * long enough for the task queue to do its work. If it’s not, it’s
14736 * not a serious problem -- it just means that the module that we
14737 * just loaded may not be immediately instrumentable.
14738 */
14739 delay(1);
14740 }

14742 static void
14743 dtrace_module_unloaded(struct modctl *ctl)
14744 {
14745 dtrace_probe_t template, *probe, *first, *next;
14746 dtrace_provider_t *prov;

14748 template.dtpr_mod = ctl->mod_modname;

14750 mutex_enter(&dtrace_provider_lock);
14751 mutex_enter(&mod_lock);
14752 mutex_enter(&dtrace_lock);

14754 if (dtrace_bymod == NULL) {
14755 /*
14756 * The DTrace module is loaded (obviously) but not attached;
14757 * we don’t have any work to do.
14758 */
14759 mutex_exit(&dtrace_provider_lock);
14760 mutex_exit(&mod_lock);
14761 mutex_exit(&dtrace_lock);
14762 return;
14763 }

14765 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14766 probe != NULL; probe = probe->dtpr_nextmod) {
14767 if (probe->dtpr_ecb != NULL) {
14768 mutex_exit(&dtrace_provider_lock);
14769 mutex_exit(&mod_lock);
14770 mutex_exit(&dtrace_lock);

14772 /*
14773 * This shouldn’t _actually_ be possible -- we’re
14774 * unloading a module that has an enabled probe in it.
14775 * (It’s normally up to the provider to make sure that
14776 * this can’t happen.) However, because dtps_enable()
14777 * doesn’t have a failure mode, there can be an
14778 * enable/unload race. Upshot: we don’t want to
14779 * assert, but we’re not going to disable the

new/usr/src/uts/common/dtrace/dtrace.c 220

14780 * probe, either.
14781 */
14782 if (dtrace_err_verbose) {
14783 cmn_err(CE_WARN, "unloaded module ’%s’ had "
14784 "enabled probes", ctl->mod_modname);
14785 }

14787 return;
14788 }
14789 }

14791 probe = first;

14793 for (first = NULL; probe != NULL; probe = next) {
14794 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);

14796 dtrace_probes[probe->dtpr_id - 1] = NULL;

14798 next = probe->dtpr_nextmod;
14799 dtrace_hash_remove(dtrace_bymod, probe);
14800 dtrace_hash_remove(dtrace_byfunc, probe);
14801 dtrace_hash_remove(dtrace_byname, probe);

14803 if (first == NULL) {
14804 first = probe;
14805 probe->dtpr_nextmod = NULL;
14806 } else {
14807 probe->dtpr_nextmod = first;
14808 first = probe;
14809 }
14810 }

14812 /*
14813 * We’ve removed all of the module’s probes from the hash chains and
14814 * from the probe array. Now issue a dtrace_sync() to be sure that
14815 * everyone has cleared out from any probe array processing.
14816 */
14817 dtrace_sync();

14819 for (probe = first; probe != NULL; probe = first) {
14820 first = probe->dtpr_nextmod;
14821 prov = probe->dtpr_provider;
14822 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14823 probe->dtpr_arg);
14824 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14825 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14826 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14827 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14828 kmem_free(probe, sizeof (dtrace_probe_t));
14829 }

14831 mutex_exit(&dtrace_lock);
14832 mutex_exit(&mod_lock);
14833 mutex_exit(&dtrace_provider_lock);
14834 }

14836 void
14837 dtrace_suspend(void)
14838 {
14839 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14840 }

14842 void
14843 dtrace_resume(void)
14844 {
14845 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));

new/usr/src/uts/common/dtrace/dtrace.c 221

14846 }

14848 static int
14849 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14850 {
14851 ASSERT(MUTEX_HELD(&cpu_lock));
14852 mutex_enter(&dtrace_lock);

14854 switch (what) {
14855 case CPU_CONFIG: {
14856 dtrace_state_t *state;
14857 dtrace_optval_t *opt, rs, c;

14859 /*
14860 * For now, we only allocate a new buffer for anonymous state.
14861 */
14862 if ((state = dtrace_anon.dta_state) == NULL)
14863 break;

14865 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14866 break;

14868 opt = state->dts_options;
14869 c = opt[DTRACEOPT_CPU];

14871 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14872 break;

14874 /*
14875 * Regardless of what the actual policy is, we’re going to
14876 * temporarily set our resize policy to be manual. We’re
14877 * also going to temporarily set our CPU option to denote
14878 * the newly configured CPU.
14879 */
14880 rs = opt[DTRACEOPT_BUFRESIZE];
14881 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
14882 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;

14884 (void) dtrace_state_buffers(state);

14886 opt[DTRACEOPT_BUFRESIZE] = rs;
14887 opt[DTRACEOPT_CPU] = c;

14889 break;
14890 }

14892 case CPU_UNCONFIG:
14893 /*
14894 * We don’t free the buffer in the CPU_UNCONFIG case. (The
14895 * buffer will be freed when the consumer exits.)
14896 */
14897 break;

14899 default:
14900 break;
14901 }

14903 mutex_exit(&dtrace_lock);
14904 return (0);
14905 }

14907 static void
14908 dtrace_cpu_setup_initial(processorid_t cpu)
14909 {
14910 (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
14911 }

new/usr/src/uts/common/dtrace/dtrace.c 222

14913 static void
14914 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
14915 {
14916 if (dtrace_toxranges >= dtrace_toxranges_max) {
14917 int osize, nsize;
14918 dtrace_toxrange_t *range;

14920 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);

14922 if (osize == 0) {
14923 ASSERT(dtrace_toxrange == NULL);
14924 ASSERT(dtrace_toxranges_max == 0);
14925 dtrace_toxranges_max = 1;
14926 } else {
14927 dtrace_toxranges_max <<= 1;
14928 }

14930 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14931 range = kmem_zalloc(nsize, KM_SLEEP);

14933 if (dtrace_toxrange != NULL) {
14934 ASSERT(osize != 0);
14935 bcopy(dtrace_toxrange, range, osize);
14936 kmem_free(dtrace_toxrange, osize);
14937 }

14939 dtrace_toxrange = range;
14940 }

14942 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
14943 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);

14945 dtrace_toxrange[dtrace_toxranges].dtt_base = base;
14946 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
14947 dtrace_toxranges++;
14948 }

14950 static void
14951 dtrace_getf_barrier()
14952 {
14953 /*
14954 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
14955 * that contain calls to getf(), this routine will be called on every
14956 * closef() before either the underlying vnode is released or the
14957 * file_t itself is freed. By the time we are here, it is essential
14958 * that the file_t can no longer be accessed from a call to getf()
14959 * in probe context -- that assures that a dtrace_sync() can be used
14960 * to clear out any enablings referring to the old structures.
14961 */
14962 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
14963 kcred->cr_zone->zone_dtrace_getf != 0)
14964 dtrace_sync();
14965 }

14967 #endif /* ! codereview */
14968 /*
14969 * DTrace Driver Cookbook Functions
14970 */
14971 /*ARGSUSED*/
14972 static int
14973 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
14974 {
14975 dtrace_provider_id_t id;
14976 dtrace_state_t *state = NULL;
14977 dtrace_enabling_t *enab;

new/usr/src/uts/common/dtrace/dtrace.c 223

14979 mutex_enter(&cpu_lock);
14980 mutex_enter(&dtrace_provider_lock);
14981 mutex_enter(&dtrace_lock);

14983 if (ddi_soft_state_init(&dtrace_softstate,
14984 sizeof (dtrace_state_t), 0) != 0) {
14985 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
14986 mutex_exit(&cpu_lock);
14987 mutex_exit(&dtrace_provider_lock);
14988 mutex_exit(&dtrace_lock);
14989 return (DDI_FAILURE);
14990 }

14992 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
14993 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
14994 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
14995 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
14996 cmn_err(CE_NOTE, "/dev/dtrace couldn’t create minor nodes");
14997 ddi_remove_minor_node(devi, NULL);
14998 ddi_soft_state_fini(&dtrace_softstate);
14999 mutex_exit(&cpu_lock);
15000 mutex_exit(&dtrace_provider_lock);
15001 mutex_exit(&dtrace_lock);
15002 return (DDI_FAILURE);
15003 }

15005 ddi_report_dev(devi);
15006 dtrace_devi = devi;

15008 dtrace_modload = dtrace_module_loaded;
15009 dtrace_modunload = dtrace_module_unloaded;
15010 dtrace_cpu_init = dtrace_cpu_setup_initial;
15011 dtrace_helpers_cleanup = dtrace_helpers_destroy;
15012 dtrace_helpers_fork = dtrace_helpers_duplicate;
15013 dtrace_cpustart_init = dtrace_suspend;
15014 dtrace_cpustart_fini = dtrace_resume;
15015 dtrace_debugger_init = dtrace_suspend;
15016 dtrace_debugger_fini = dtrace_resume;

15018 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);

15020 ASSERT(MUTEX_HELD(&cpu_lock));

15022 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15023 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15024 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15025 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15026 VM_SLEEP | VMC_IDENTIFIER);
15027 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15028 1, INT_MAX, 0);

15030 dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15031 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15032 NULL, NULL, NULL, NULL, NULL, 0);

15034 ASSERT(MUTEX_HELD(&cpu_lock));
15035 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15036 offsetof(dtrace_probe_t, dtpr_nextmod),
15037 offsetof(dtrace_probe_t, dtpr_prevmod));

15039 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15040 offsetof(dtrace_probe_t, dtpr_nextfunc),
15041 offsetof(dtrace_probe_t, dtpr_prevfunc));

15043 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),

new/usr/src/uts/common/dtrace/dtrace.c 224

15044 offsetof(dtrace_probe_t, dtpr_nextname),
15045 offsetof(dtrace_probe_t, dtpr_prevname));

15047 if (dtrace_retain_max < 1) {
15048 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15049 "setting to 1", dtrace_retain_max);
15050 dtrace_retain_max = 1;
15051 }

15053 /*
15054 * Now discover our toxic ranges.
15055 */
15056 dtrace_toxic_ranges(dtrace_toxrange_add);

15058 /*
15059 * Before we register ourselves as a provider to our own framework,
15060 * we would like to assert that dtrace_provider is NULL -- but that’s
15061 * not true if we were loaded as a dependency of a DTrace provider.
15062 * Once we’ve registered, we can assert that dtrace_provider is our
15063 * pseudo provider.
15064 */
15065 (void) dtrace_register("dtrace", &dtrace_provider_attr,
15066 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);

15068 ASSERT(dtrace_provider != NULL);
15069 ASSERT((dtrace_provider_id_t)dtrace_provider == id);

15071 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15072 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15073 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15074 dtrace_provider, NULL, NULL, "END", 0, NULL);
15075 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15076 dtrace_provider, NULL, NULL, "ERROR", 1, NULL);

15078 dtrace_anon_property();
15079 mutex_exit(&cpu_lock);

15081 /*
15082 * If DTrace helper tracing is enabled, we need to allocate the
15083 * trace buffer and initialize the values.
15084 */
15085 if (dtrace_helptrace_enabled) {
15086 ASSERT(dtrace_helptrace_buffer == NULL);
15087 dtrace_helptrace_buffer =
15088 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15089 dtrace_helptrace_next = 0;
15090 }

15092 /*
15093 * If there are already providers, we must ask them to provide their
15094 * probes, and then match any anonymous enabling against them. Note
15095 * that there should be no other retained enablings at this time:
15096 * the only retained enablings at this time should be the anonymous
15097 * enabling.
15098 */
15099 if (dtrace_anon.dta_enabling != NULL) {
15100 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);

15102 dtrace_enabling_provide(NULL);
15103 state = dtrace_anon.dta_state;

15105 /*
15106 * We couldn’t hold cpu_lock across the above call to
15107 * dtrace_enabling_provide(), but we must hold it to actually
15108 * enable the probes. We have to drop all of our locks, pick
15109 * up cpu_lock, and regain our locks before matching the

new/usr/src/uts/common/dtrace/dtrace.c 225

15110 * retained anonymous enabling.
15111 */
15112 mutex_exit(&dtrace_lock);
15113 mutex_exit(&dtrace_provider_lock);

15115 mutex_enter(&cpu_lock);
15116 mutex_enter(&dtrace_provider_lock);
15117 mutex_enter(&dtrace_lock);

15119 if ((enab = dtrace_anon.dta_enabling) != NULL)
15120 (void) dtrace_enabling_match(enab, NULL);

15122 mutex_exit(&cpu_lock);
15123 }

15125 mutex_exit(&dtrace_lock);
15126 mutex_exit(&dtrace_provider_lock);

15128 if (state != NULL) {
15129 /*
15130 * If we created any anonymous state, set it going now.
15131 */
15132 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15133 }

15135 return (DDI_SUCCESS);
15136 }

15138 /*ARGSUSED*/
15139 static int
15140 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15141 {
15142 dtrace_state_t *state;
15143 uint32_t priv;
15144 uid_t uid;
15145 zoneid_t zoneid;

15147 if (getminor(*devp) == DTRACEMNRN_HELPER)
15148 return (0);

15150 /*
15151 * If this wasn’t an open with the "helper" minor, then it must be
15152 * the "dtrace" minor.
15153 */
15154 if (getminor(*devp) != DTRACEMNRN_DTRACE)
15155 return (ENXIO);

15157 /*
15158 * If no DTRACE_PRIV_* bits are set in the credential, then the
15159 * caller lacks sufficient permission to do anything with DTrace.
15160 */
15161 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15162 if (priv == DTRACE_PRIV_NONE)
15163 return (EACCES);

15165 /*
15166 * Ask all providers to provide all their probes.
15167 */
15168 mutex_enter(&dtrace_provider_lock);
15169 dtrace_probe_provide(NULL, NULL);
15170 mutex_exit(&dtrace_provider_lock);

15172 mutex_enter(&cpu_lock);
15173 mutex_enter(&dtrace_lock);
15174 dtrace_opens++;
15175 dtrace_membar_producer();

new/usr/src/uts/common/dtrace/dtrace.c 226

15177 /*
15178 * If the kernel debugger is active (that is, if the kernel debugger
15179 * modified text in some way), we won’t allow the open.
15180 */
15181 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15182 dtrace_opens--;
15183 mutex_exit(&cpu_lock);
15184 mutex_exit(&dtrace_lock);
15185 return (EBUSY);
15186 }

15188 state = dtrace_state_create(devp, cred_p);
15189 mutex_exit(&cpu_lock);

15191 if (state == NULL) {
15192 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15193 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15194 mutex_exit(&dtrace_lock);
15195 return (EAGAIN);
15196 }

15198 mutex_exit(&dtrace_lock);

15200 return (0);
15201 }

15203 /*ARGSUSED*/
15204 static int
15205 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15206 {
15207 minor_t minor = getminor(dev);
15208 dtrace_state_t *state;

15210 if (minor == DTRACEMNRN_HELPER)
15211 return (0);

15213 state = ddi_get_soft_state(dtrace_softstate, minor);

15215 mutex_enter(&cpu_lock);
15216 mutex_enter(&dtrace_lock);

15218 if (state->dts_anon) {
15219 /*
15220 * There is anonymous state. Destroy that first.
15221 */
15222 ASSERT(dtrace_anon.dta_state == NULL);
15223 dtrace_state_destroy(state->dts_anon);
15224 }

15226 dtrace_state_destroy(state);
15227 ASSERT(dtrace_opens > 0);

15229 /*
15230 * Only relinquish control of the kernel debugger interface when there
15231 * are no consumers and no anonymous enablings.
15232 */
15233 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15234 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);

15236 mutex_exit(&dtrace_lock);
15237 mutex_exit(&cpu_lock);

15239 return (0);
15240 }

new/usr/src/uts/common/dtrace/dtrace.c 227

15242 /*ARGSUSED*/
15243 static int
15244 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15245 {
15246 int rval;
15247 dof_helper_t help, *dhp = NULL;

15249 switch (cmd) {
15250 case DTRACEHIOC_ADDDOF:
15251 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15252 dtrace_dof_error(NULL, "failed to copyin DOF helper");
15253 return (EFAULT);
15254 }

15256 dhp = &help;
15257 arg = (intptr_t)help.dofhp_dof;
15258 /*FALLTHROUGH*/

15260 case DTRACEHIOC_ADD: {
15261 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);

15263 if (dof == NULL)
15264 return (rval);

15266 mutex_enter(&dtrace_lock);

15268 /*
15269 * dtrace_helper_slurp() takes responsibility for the dof --
15270 * it may free it now or it may save it and free it later.
15271 */
15272 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15273 *rv = rval;
15274 rval = 0;
15275 } else {
15276 rval = EINVAL;
15277 }

15279 mutex_exit(&dtrace_lock);
15280 return (rval);
15281 }

15283 case DTRACEHIOC_REMOVE: {
15284 mutex_enter(&dtrace_lock);
15285 rval = dtrace_helper_destroygen(arg);
15286 mutex_exit(&dtrace_lock);

15288 return (rval);
15289 }

15291 default:
15292 break;
15293 }

15295 return (ENOTTY);
15296 }

15298 /*ARGSUSED*/
15299 static int
15300 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15301 {
15302 minor_t minor = getminor(dev);
15303 dtrace_state_t *state;
15304 int rval;

15306 if (minor == DTRACEMNRN_HELPER)
15307 return (dtrace_ioctl_helper(cmd, arg, rv));

new/usr/src/uts/common/dtrace/dtrace.c 228

15309 state = ddi_get_soft_state(dtrace_softstate, minor);

15311 if (state->dts_anon) {
15312 ASSERT(dtrace_anon.dta_state == NULL);
15313 state = state->dts_anon;
15314 }

15316 switch (cmd) {
15317 case DTRACEIOC_PROVIDER: {
15318 dtrace_providerdesc_t pvd;
15319 dtrace_provider_t *pvp;

15321 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15322 return (EFAULT);

15324 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = ’\0’;
15325 mutex_enter(&dtrace_provider_lock);

15327 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15328 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15329 break;
15330 }

15332 mutex_exit(&dtrace_provider_lock);

15334 if (pvp == NULL)
15335 return (ESRCH);

15337 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15338 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15339 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15340 return (EFAULT);

15342 return (0);
15343 }

15345 case DTRACEIOC_EPROBE: {
15346 dtrace_eprobedesc_t epdesc;
15347 dtrace_ecb_t *ecb;
15348 dtrace_action_t *act;
15349 void *buf;
15350 size_t size;
15351 uintptr_t dest;
15352 int nrecs;

15354 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15355 return (EFAULT);

15357 mutex_enter(&dtrace_lock);

15359 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15360 mutex_exit(&dtrace_lock);
15361 return (EINVAL);
15362 }

15364 if (ecb->dte_probe == NULL) {
15365 mutex_exit(&dtrace_lock);
15366 return (EINVAL);
15367 }

15369 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15370 epdesc.dtepd_uarg = ecb->dte_uarg;
15371 epdesc.dtepd_size = ecb->dte_size;

15373 nrecs = epdesc.dtepd_nrecs;

new/usr/src/uts/common/dtrace/dtrace.c 229

15374 epdesc.dtepd_nrecs = 0;
15375 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15376 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15377 continue;

15379 epdesc.dtepd_nrecs++;
15380 }

15382 /*
15383 * Now that we have the size, we need to allocate a temporary
15384 * buffer in which to store the complete description. We need
15385 * the temporary buffer to be able to drop dtrace_lock()
15386 * across the copyout(), below.
15387 */
15388 size = sizeof (dtrace_eprobedesc_t) +
15389 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));

15391 buf = kmem_alloc(size, KM_SLEEP);
15392 dest = (uintptr_t)buf;

15394 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15395 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);

15397 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15398 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15399 continue;

15401 if (nrecs-- == 0)
15402 break;

15404 bcopy(&act->dta_rec, (void *)dest,
15405 sizeof (dtrace_recdesc_t));
15406 dest += sizeof (dtrace_recdesc_t);
15407 }

15409 mutex_exit(&dtrace_lock);

15411 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15412 kmem_free(buf, size);
15413 return (EFAULT);
15414 }

15416 kmem_free(buf, size);
15417 return (0);
15418 }

15420 case DTRACEIOC_AGGDESC: {
15421 dtrace_aggdesc_t aggdesc;
15422 dtrace_action_t *act;
15423 dtrace_aggregation_t *agg;
15424 int nrecs;
15425 uint32_t offs;
15426 dtrace_recdesc_t *lrec;
15427 void *buf;
15428 size_t size;
15429 uintptr_t dest;

15431 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15432 return (EFAULT);

15434 mutex_enter(&dtrace_lock);

15436 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15437 mutex_exit(&dtrace_lock);
15438 return (EINVAL);
15439 }

new/usr/src/uts/common/dtrace/dtrace.c 230

15441 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;

15443 nrecs = aggdesc.dtagd_nrecs;
15444 aggdesc.dtagd_nrecs = 0;

15446 offs = agg->dtag_base;
15447 lrec = &agg->dtag_action.dta_rec;
15448 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;

15450 for (act = agg->dtag_first; ; act = act->dta_next) {
15451 ASSERT(act->dta_intuple ||
15452 DTRACEACT_ISAGG(act->dta_kind));

15454 /*
15455 * If this action has a record size of zero, it
15456 * denotes an argument to the aggregating action.
15457 * Because the presence of this record doesn’t (or
15458 * shouldn’t) affect the way the data is interpreted,
15459 * we don’t copy it out to save user-level the
15460 * confusion of dealing with a zero-length record.
15461 */
15462 if (act->dta_rec.dtrd_size == 0) {
15463 ASSERT(agg->dtag_hasarg);
15464 continue;
15465 }

15467 aggdesc.dtagd_nrecs++;

15469 if (act == &agg->dtag_action)
15470 break;
15471 }

15473 /*
15474 * Now that we have the size, we need to allocate a temporary
15475 * buffer in which to store the complete description. We need
15476 * the temporary buffer to be able to drop dtrace_lock()
15477 * across the copyout(), below.
15478 */
15479 size = sizeof (dtrace_aggdesc_t) +
15480 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));

15482 buf = kmem_alloc(size, KM_SLEEP);
15483 dest = (uintptr_t)buf;

15485 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15486 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);

15488 for (act = agg->dtag_first; ; act = act->dta_next) {
15489 dtrace_recdesc_t rec = act->dta_rec;

15491 /*
15492 * See the comment in the above loop for why we pass
15493 * over zero-length records.
15494 */
15495 if (rec.dtrd_size == 0) {
15496 ASSERT(agg->dtag_hasarg);
15497 continue;
15498 }

15500 if (nrecs-- == 0)
15501 break;

15503 rec.dtrd_offset -= offs;
15504 bcopy(&rec, (void *)dest, sizeof (rec));
15505 dest += sizeof (dtrace_recdesc_t);

new/usr/src/uts/common/dtrace/dtrace.c 231

15507 if (act == &agg->dtag_action)
15508 break;
15509 }

15511 mutex_exit(&dtrace_lock);

15513 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15514 kmem_free(buf, size);
15515 return (EFAULT);
15516 }

15518 kmem_free(buf, size);
15519 return (0);
15520 }

15522 case DTRACEIOC_ENABLE: {
15523 dof_hdr_t *dof;
15524 dtrace_enabling_t *enab = NULL;
15525 dtrace_vstate_t *vstate;
15526 int err = 0;

15528 *rv = 0;

15530 /*
15531 * If a NULL argument has been passed, we take this as our
15532 * cue to reevaluate our enablings.
15533 */
15534 if (arg == NULL) {
15535 dtrace_enabling_matchall();

15537 return (0);
15538 }

15540 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15541 return (rval);

15543 mutex_enter(&cpu_lock);
15544 mutex_enter(&dtrace_lock);
15545 vstate = &state->dts_vstate;

15547 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15548 mutex_exit(&dtrace_lock);
15549 mutex_exit(&cpu_lock);
15550 dtrace_dof_destroy(dof);
15551 return (EBUSY);
15552 }

15554 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15555 mutex_exit(&dtrace_lock);
15556 mutex_exit(&cpu_lock);
15557 dtrace_dof_destroy(dof);
15558 return (EINVAL);
15559 }

15561 if ((rval = dtrace_dof_options(dof, state)) != 0) {
15562 dtrace_enabling_destroy(enab);
15563 mutex_exit(&dtrace_lock);
15564 mutex_exit(&cpu_lock);
15565 dtrace_dof_destroy(dof);
15566 return (rval);
15567 }

15569 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15570 err = dtrace_enabling_retain(enab);
15571 } else {

new/usr/src/uts/common/dtrace/dtrace.c 232

15572 dtrace_enabling_destroy(enab);
15573 }

15575 mutex_exit(&cpu_lock);
15576 mutex_exit(&dtrace_lock);
15577 dtrace_dof_destroy(dof);

15579 return (err);
15580 }

15582 case DTRACEIOC_REPLICATE: {
15583 dtrace_repldesc_t desc;
15584 dtrace_probedesc_t *match = &desc.dtrpd_match;
15585 dtrace_probedesc_t *create = &desc.dtrpd_create;
15586 int err;

15588 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15589 return (EFAULT);

15591 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = ’\0’;
15592 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = ’\0’;
15593 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = ’\0’;
15594 match->dtpd_name[DTRACE_NAMELEN - 1] = ’\0’;

15596 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = ’\0’;
15597 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = ’\0’;
15598 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = ’\0’;
15599 create->dtpd_name[DTRACE_NAMELEN - 1] = ’\0’;

15601 mutex_enter(&dtrace_lock);
15602 err = dtrace_enabling_replicate(state, match, create);
15603 mutex_exit(&dtrace_lock);

15605 return (err);
15606 }

15608 case DTRACEIOC_PROBEMATCH:
15609 case DTRACEIOC_PROBES: {
15610 dtrace_probe_t *probe = NULL;
15611 dtrace_probedesc_t desc;
15612 dtrace_probekey_t pkey;
15613 dtrace_id_t i;
15614 int m = 0;
15615 uint32_t priv;
15616 uid_t uid;
15617 zoneid_t zoneid;

15619 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15620 return (EFAULT);

15622 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = ’\0’;
15623 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = ’\0’;
15624 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = ’\0’;
15625 desc.dtpd_name[DTRACE_NAMELEN - 1] = ’\0’;

15627 /*
15628 * Before we attempt to match this probe, we want to give
15629 * all providers the opportunity to provide it.
15630 */
15631 if (desc.dtpd_id == DTRACE_IDNONE) {
15632 mutex_enter(&dtrace_provider_lock);
15633 dtrace_probe_provide(&desc, NULL);
15634 mutex_exit(&dtrace_provider_lock);
15635 desc.dtpd_id++;
15636 }

new/usr/src/uts/common/dtrace/dtrace.c 233

15638 if (cmd == DTRACEIOC_PROBEMATCH) {
15639 dtrace_probekey(&desc, &pkey);
15640 pkey.dtpk_id = DTRACE_IDNONE;
15641 }

15643 dtrace_cred2priv(cr, &priv, &uid, &zoneid);

15645 mutex_enter(&dtrace_lock);

15647 if (cmd == DTRACEIOC_PROBEMATCH) {
15648 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15649 if ((probe = dtrace_probes[i - 1]) != NULL &&
15650 (m = dtrace_match_probe(probe, &pkey,
15651 priv, uid, zoneid)) != 0)
15652 break;
15653 }

15655 if (m < 0) {
15656 mutex_exit(&dtrace_lock);
15657 return (EINVAL);
15658 }

15660 } else {
15661 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15662 if ((probe = dtrace_probes[i - 1]) != NULL &&
15663 dtrace_match_priv(probe, priv, uid, zoneid))
15664 break;
15665 }
15666 }

15668 if (probe == NULL) {
15669 mutex_exit(&dtrace_lock);
15670 return (ESRCH);
15671 }

15673 dtrace_probe_description(probe, &desc);
15674 mutex_exit(&dtrace_lock);

15676 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15677 return (EFAULT);

15679 return (0);
15680 }

15682 case DTRACEIOC_PROBEARG: {
15683 dtrace_argdesc_t desc;
15684 dtrace_probe_t *probe;
15685 dtrace_provider_t *prov;

15687 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15688 return (EFAULT);

15690 if (desc.dtargd_id == DTRACE_IDNONE)
15691 return (EINVAL);

15693 if (desc.dtargd_ndx == DTRACE_ARGNONE)
15694 return (EINVAL);

15696 mutex_enter(&dtrace_provider_lock);
15697 mutex_enter(&mod_lock);
15698 mutex_enter(&dtrace_lock);

15700 if (desc.dtargd_id > dtrace_nprobes) {
15701 mutex_exit(&dtrace_lock);
15702 mutex_exit(&mod_lock);
15703 mutex_exit(&dtrace_provider_lock);

new/usr/src/uts/common/dtrace/dtrace.c 234

15704 return (EINVAL);
15705 }

15707 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
15708 mutex_exit(&dtrace_lock);
15709 mutex_exit(&mod_lock);
15710 mutex_exit(&dtrace_provider_lock);
15711 return (EINVAL);
15712 }

15714 mutex_exit(&dtrace_lock);

15716 prov = probe->dtpr_provider;

15718 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
15719 /*
15720 * There isn’t any typed information for this probe.
15721 * Set the argument number to DTRACE_ARGNONE.
15722 */
15723 desc.dtargd_ndx = DTRACE_ARGNONE;
15724 } else {
15725 desc.dtargd_native[0] = ’\0’;
15726 desc.dtargd_xlate[0] = ’\0’;
15727 desc.dtargd_mapping = desc.dtargd_ndx;

15729 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
15730 probe->dtpr_id, probe->dtpr_arg, &desc);
15731 }

15733 mutex_exit(&mod_lock);
15734 mutex_exit(&dtrace_provider_lock);

15736 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15737 return (EFAULT);

15739 return (0);
15740 }

15742 case DTRACEIOC_GO: {
15743 processorid_t cpuid;
15744 rval = dtrace_state_go(state, &cpuid);

15746 if (rval != 0)
15747 return (rval);

15749 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15750 return (EFAULT);

15752 return (0);
15753 }

15755 case DTRACEIOC_STOP: {
15756 processorid_t cpuid;

15758 mutex_enter(&dtrace_lock);
15759 rval = dtrace_state_stop(state, &cpuid);
15760 mutex_exit(&dtrace_lock);

15762 if (rval != 0)
15763 return (rval);

15765 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15766 return (EFAULT);

15768 return (0);
15769 }

new/usr/src/uts/common/dtrace/dtrace.c 235

15771 case DTRACEIOC_DOFGET: {
15772 dof_hdr_t hdr, *dof;
15773 uint64_t len;

15775 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15776 return (EFAULT);

15778 mutex_enter(&dtrace_lock);
15779 dof = dtrace_dof_create(state);
15780 mutex_exit(&dtrace_lock);

15782 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15783 rval = copyout(dof, (void *)arg, len);
15784 dtrace_dof_destroy(dof);

15786 return (rval == 0 ? 0 : EFAULT);
15787 }

15789 case DTRACEIOC_AGGSNAP:
15790 case DTRACEIOC_BUFSNAP: {
15791 dtrace_bufdesc_t desc;
15792 caddr_t cached;
15793 dtrace_buffer_t *buf;

15795 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15796 return (EFAULT);

15798 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
15799 return (EINVAL);

15801 mutex_enter(&dtrace_lock);

15803 if (cmd == DTRACEIOC_BUFSNAP) {
15804 buf = &state->dts_buffer[desc.dtbd_cpu];
15805 } else {
15806 buf = &state->dts_aggbuffer[desc.dtbd_cpu];
15807 }

15809 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
15810 size_t sz = buf->dtb_offset;

15812 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
15813 mutex_exit(&dtrace_lock);
15814 return (EBUSY);
15815 }

15817 /*
15818 * If this buffer has already been consumed, we’re
15819 * going to indicate that there’s nothing left here
15820 * to consume.
15821 */
15822 if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
15823 mutex_exit(&dtrace_lock);

15825 desc.dtbd_size = 0;
15826 desc.dtbd_drops = 0;
15827 desc.dtbd_errors = 0;
15828 desc.dtbd_oldest = 0;
15829 sz = sizeof (desc);

15831 if (copyout(&desc, (void *)arg, sz) != 0)
15832 return (EFAULT);

15834 return (0);
15835 }

new/usr/src/uts/common/dtrace/dtrace.c 236

15837 /*
15838 * If this is a ring buffer that has wrapped, we want
15839 * to copy the whole thing out.
15840 */
15841 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
15842 dtrace_buffer_polish(buf);
15843 sz = buf->dtb_size;
15844 }

15846 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
15847 mutex_exit(&dtrace_lock);
15848 return (EFAULT);
15849 }

15851 desc.dtbd_size = sz;
15852 desc.dtbd_drops = buf->dtb_drops;
15853 desc.dtbd_errors = buf->dtb_errors;
15854 desc.dtbd_oldest = buf->dtb_xamot_offset;
15855 desc.dtbd_timestamp = dtrace_gethrtime();

15857 mutex_exit(&dtrace_lock);

15859 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15860 return (EFAULT);

15862 buf->dtb_flags |= DTRACEBUF_CONSUMED;

15864 return (0);
15865 }

15867 if (buf->dtb_tomax == NULL) {
15868 ASSERT(buf->dtb_xamot == NULL);
15869 mutex_exit(&dtrace_lock);
15870 return (ENOENT);
15871 }

15873 cached = buf->dtb_tomax;
15874 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));

15876 dtrace_xcall(desc.dtbd_cpu,
15877 (dtrace_xcall_t)dtrace_buffer_switch, buf);

15879 state->dts_errors += buf->dtb_xamot_errors;

15881 /*
15882 * If the buffers did not actually switch, then the cross call
15883 * did not take place -- presumably because the given CPU is
15884 * not in the ready set. If this is the case, we’ll return
15885 * ENOENT.
15886 */
15887 if (buf->dtb_tomax == cached) {
15888 ASSERT(buf->dtb_xamot != cached);
15889 mutex_exit(&dtrace_lock);
15890 return (ENOENT);
15891 }

15893 ASSERT(cached == buf->dtb_xamot);

15895 /*
15896 * We have our snapshot; now copy it out.
15897 */
15898 if (copyout(buf->dtb_xamot, desc.dtbd_data,
15899 buf->dtb_xamot_offset) != 0) {
15900 mutex_exit(&dtrace_lock);
15901 return (EFAULT);

new/usr/src/uts/common/dtrace/dtrace.c 237

15902 }

15904 desc.dtbd_size = buf->dtb_xamot_offset;
15905 desc.dtbd_drops = buf->dtb_xamot_drops;
15906 desc.dtbd_errors = buf->dtb_xamot_errors;
15907 desc.dtbd_oldest = 0;
15908 desc.dtbd_timestamp = buf->dtb_switched;

15910 mutex_exit(&dtrace_lock);

15912 /*
15913 * Finally, copy out the buffer description.
15914 */
15915 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15916 return (EFAULT);

15918 return (0);
15919 }

15921 case DTRACEIOC_CONF: {
15922 dtrace_conf_t conf;

15924 bzero(&conf, sizeof (conf));
15925 conf.dtc_difversion = DIF_VERSION;
15926 conf.dtc_difintregs = DIF_DIR_NREGS;
15927 conf.dtc_diftupregs = DIF_DTR_NREGS;
15928 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;

15930 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
15931 return (EFAULT);

15933 return (0);
15934 }

15936 case DTRACEIOC_STATUS: {
15937 dtrace_status_t stat;
15938 dtrace_dstate_t *dstate;
15939 int i, j;
15940 uint64_t nerrs;

15942 /*
15943 * See the comment in dtrace_state_deadman() for the reason
15944 * for setting dts_laststatus to INT64_MAX before setting
15945 * it to the correct value.
15946 */
15947 state->dts_laststatus = INT64_MAX;
15948 dtrace_membar_producer();
15949 state->dts_laststatus = dtrace_gethrtime();

15951 bzero(&stat, sizeof (stat));

15953 mutex_enter(&dtrace_lock);

15955 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
15956 mutex_exit(&dtrace_lock);
15957 return (ENOENT);
15958 }

15960 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
15961 stat.dtst_exiting = 1;

15963 nerrs = state->dts_errors;
15964 dstate = &state->dts_vstate.dtvs_dynvars;

15966 for (i = 0; i < NCPU; i++) {
15967 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];

new/usr/src/uts/common/dtrace/dtrace.c 238

15969 stat.dtst_dyndrops += dcpu->dtdsc_drops;
15970 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
15971 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;

15973 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
15974 stat.dtst_filled++;

15976 nerrs += state->dts_buffer[i].dtb_errors;

15978 for (j = 0; j < state->dts_nspeculations; j++) {
15979 dtrace_speculation_t *spec;
15980 dtrace_buffer_t *buf;

15982 spec = &state->dts_speculations[j];
15983 buf = &spec->dtsp_buffer[i];
15984 stat.dtst_specdrops += buf->dtb_xamot_drops;
15985 }
15986 }

15988 stat.dtst_specdrops_busy = state->dts_speculations_busy;
15989 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
15990 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
15991 stat.dtst_dblerrors = state->dts_dblerrors;
15992 stat.dtst_killed =
15993 (state->dts_activity == DTRACE_ACTIVITY_KILLED);
15994 stat.dtst_errors = nerrs;

15996 mutex_exit(&dtrace_lock);

15998 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
15999 return (EFAULT);

16001 return (0);
16002 }

16004 case DTRACEIOC_FORMAT: {
16005 dtrace_fmtdesc_t fmt;
16006 char *str;
16007 int len;

16009 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16010 return (EFAULT);

16012 mutex_enter(&dtrace_lock);

16014 if (fmt.dtfd_format == 0 ||
16015 fmt.dtfd_format > state->dts_nformats) {
16016 mutex_exit(&dtrace_lock);
16017 return (EINVAL);
16018 }

16020 /*
16021 * Format strings are allocated contiguously and they are
16022 * never freed; if a format index is less than the number
16023 * of formats, we can assert that the format map is non-NULL
16024 * and that the format for the specified index is non-NULL.
16025 */
16026 ASSERT(state->dts_formats != NULL);
16027 str = state->dts_formats[fmt.dtfd_format - 1];
16028 ASSERT(str != NULL);

16030 len = strlen(str) + 1;

16032 if (len > fmt.dtfd_length) {
16033 fmt.dtfd_length = len;

new/usr/src/uts/common/dtrace/dtrace.c 239

16035 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16036 mutex_exit(&dtrace_lock);
16037 return (EINVAL);
16038 }
16039 } else {
16040 if (copyout(str, fmt.dtfd_string, len) != 0) {
16041 mutex_exit(&dtrace_lock);
16042 return (EINVAL);
16043 }
16044 }

16046 mutex_exit(&dtrace_lock);
16047 return (0);
16048 }

16050 default:
16051 break;
16052 }

16054 return (ENOTTY);
16055 }

16057 /*ARGSUSED*/
16058 static int
16059 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16060 {
16061 dtrace_state_t *state;

16063 switch (cmd) {
16064 case DDI_DETACH:
16065 break;

16067 case DDI_SUSPEND:
16068 return (DDI_SUCCESS);

16070 default:
16071 return (DDI_FAILURE);
16072 }

16074 mutex_enter(&cpu_lock);
16075 mutex_enter(&dtrace_provider_lock);
16076 mutex_enter(&dtrace_lock);

16078 ASSERT(dtrace_opens == 0);

16080 if (dtrace_helpers > 0) {
16081 mutex_exit(&dtrace_provider_lock);
16082 mutex_exit(&dtrace_lock);
16083 mutex_exit(&cpu_lock);
16084 return (DDI_FAILURE);
16085 }

16087 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16088 mutex_exit(&dtrace_provider_lock);
16089 mutex_exit(&dtrace_lock);
16090 mutex_exit(&cpu_lock);
16091 return (DDI_FAILURE);
16092 }

16094 dtrace_provider = NULL;

16096 if ((state = dtrace_anon_grab()) != NULL) {
16097 /*
16098 * If there were ECBs on this state, the provider should
16099 * have not been allowed to detach; assert that there is

new/usr/src/uts/common/dtrace/dtrace.c 240

16100 * none.
16101 */
16102 ASSERT(state->dts_necbs == 0);
16103 dtrace_state_destroy(state);

16105 /*
16106 * If we’re being detached with anonymous state, we need to
16107 * indicate to the kernel debugger that DTrace is now inactive.
16108 */
16109 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16110 }

16112 bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16113 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16114 dtrace_cpu_init = NULL;
16115 dtrace_helpers_cleanup = NULL;
16116 dtrace_helpers_fork = NULL;
16117 dtrace_cpustart_init = NULL;
16118 dtrace_cpustart_fini = NULL;
16119 dtrace_debugger_init = NULL;
16120 dtrace_debugger_fini = NULL;
16121 dtrace_modload = NULL;
16122 dtrace_modunload = NULL;

16124 ASSERT(dtrace_getf == 0);
16125 ASSERT(dtrace_closef == NULL);

16127 #endif /* ! codereview */
16128 mutex_exit(&cpu_lock);

16130 if (dtrace_helptrace_enabled) {
16131 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16132 dtrace_helptrace_buffer = NULL;
16133 }

16135 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16136 dtrace_probes = NULL;
16137 dtrace_nprobes = 0;

16139 dtrace_hash_destroy(dtrace_bymod);
16140 dtrace_hash_destroy(dtrace_byfunc);
16141 dtrace_hash_destroy(dtrace_byname);
16142 dtrace_bymod = NULL;
16143 dtrace_byfunc = NULL;
16144 dtrace_byname = NULL;

16146 kmem_cache_destroy(dtrace_state_cache);
16147 vmem_destroy(dtrace_minor);
16148 vmem_destroy(dtrace_arena);

16150 if (dtrace_toxrange != NULL) {
16151 kmem_free(dtrace_toxrange,
16152 dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16153 dtrace_toxrange = NULL;
16154 dtrace_toxranges = 0;
16155 dtrace_toxranges_max = 0;
16156 }

16158 ddi_remove_minor_node(dtrace_devi, NULL);
16159 dtrace_devi = NULL;

16161 ddi_soft_state_fini(&dtrace_softstate);

16163 ASSERT(dtrace_vtime_references == 0);
16164 ASSERT(dtrace_opens == 0);
16165 ASSERT(dtrace_retained == NULL);

new/usr/src/uts/common/dtrace/dtrace.c 241

16167 mutex_exit(&dtrace_lock);
16168 mutex_exit(&dtrace_provider_lock);

16170 /*
16171 * We don’t destroy the task queue until after we have dropped our
16172 * locks (taskq_destroy() may block on running tasks). To prevent
16173 * attempting to do work after we have effectively detached but before
16174 * the task queue has been destroyed, all tasks dispatched via the
16175 * task queue must check that DTrace is still attached before
16176 * performing any operation.
16177 */
16178 taskq_destroy(dtrace_taskq);
16179 dtrace_taskq = NULL;

16181 return (DDI_SUCCESS);
16182 }

16184 /*ARGSUSED*/
16185 static int
16186 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16187 {
16188 int error;

16190 switch (infocmd) {
16191 case DDI_INFO_DEVT2DEVINFO:
16192 *result = (void *)dtrace_devi;
16193 error = DDI_SUCCESS;
16194 break;
16195 case DDI_INFO_DEVT2INSTANCE:
16196 *result = (void *)0;
16197 error = DDI_SUCCESS;
16198 break;
16199 default:
16200 error = DDI_FAILURE;
16201 }
16202 return (error);
16203 }

16205 static struct cb_ops dtrace_cb_ops = {
16206 dtrace_open, /* open */
16207 dtrace_close, /* close */
16208 nulldev, /* strategy */
16209 nulldev, /* print */
16210 nodev, /* dump */
16211 nodev, /* read */
16212 nodev, /* write */
16213 dtrace_ioctl, /* ioctl */
16214 nodev, /* devmap */
16215 nodev, /* mmap */
16216 nodev, /* segmap */
16217 nochpoll, /* poll */
16218 ddi_prop_op, /* cb_prop_op */
16219 0, /* streamtab */
16220 D_NEW | D_MP /* Driver compatibility flag */
16221 };

16223 static struct dev_ops dtrace_ops = {
16224 DEVO_REV, /* devo_rev */
16225 0, /* refcnt */
16226 dtrace_info, /* get_dev_info */
16227 nulldev, /* identify */
16228 nulldev, /* probe */
16229 dtrace_attach, /* attach */
16230 dtrace_detach, /* detach */
16231 nodev, /* reset */

new/usr/src/uts/common/dtrace/dtrace.c 242

16232 &dtrace_cb_ops, /* driver operations */
16233 NULL, /* bus operations */
16234 nodev, /* dev power */
16235 ddi_quiesce_not_needed, /* quiesce */
16236 };

16238 static struct modldrv modldrv = {
16239 &mod_driverops, /* module type (this is a pseudo driver) */
16240 "Dynamic Tracing", /* name of module */
16241 &dtrace_ops, /* driver ops */
16242 };

16244 static struct modlinkage modlinkage = {
16245 MODREV_1,
16246 (void *)&modldrv,
16247 NULL
16248 };

16250 int
16251 _init(void)
16252 {
16253 return (mod_install(&modlinkage));
16254 }

16256 int
16257 _info(struct modinfo *modinfop)
16258 {
16259 return (mod_info(&modlinkage, modinfop));
16260 }

16262 int
16263 _fini(void)
16264 {
16265 return (mod_remove(&modlinkage));
16266 }

new/usr/src/uts/common/dtrace/sdt_subr.c 1

**
 55331 Tue Jan 14 16:50:02 2014
new/usr/src/uts/common/dtrace/sdt_subr.c
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 #endif /* ! codereview */
25 */

27 #include <sys/sdt_impl.h>

29 static dtrace_pattr_t vtrace_attr = {
30 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_ISA },
31 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
32 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
33 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
34 { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_ISA },
35 };

37 static dtrace_pattr_t info_attr = {
38 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
39 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
40 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
41 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
42 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
43 };

45 static dtrace_pattr_t fc_attr = {
46 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
47 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
48 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
49 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
50 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
51 };

53 static dtrace_pattr_t fpu_attr = {
54 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
55 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
56 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
57 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_CPU },

new/usr/src/uts/common/dtrace/sdt_subr.c 2

58 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
59 };

61 static dtrace_pattr_t fsinfo_attr = {
62 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
63 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
64 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
65 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
66 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
67 };

69 static dtrace_pattr_t stab_attr = {
70 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
71 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
72 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
73 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
74 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
75 };

77 static dtrace_pattr_t sdt_attr = {
78 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
79 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
80 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
81 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
82 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
83 };

85 static dtrace_pattr_t xpv_attr = {
86 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_PLATFORM },
87 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
88 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
89 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_PLATFORM },
90 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_PLATFORM },
91 };

93 static dtrace_pattr_t iscsi_attr = {
94 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
95 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
96 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
97 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
98 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA },
99 };

101 sdt_provider_t sdt_providers[] = {
102 { "vtrace", "__vtrace_", &vtrace_attr },
103 { "sysinfo", "__cpu_sysinfo_", &info_attr, DTRACE_PRIV_USER },
104 { "vminfo", "__cpu_vminfo_", &info_attr, DTRACE_PRIV_USER },
105 { "fpuinfo", "__fpuinfo_", &fpu_attr },
106 { "sched", "__sched_", &stab_attr, DTRACE_PRIV_USER },
107 { "proc", "__proc_", &stab_attr, DTRACE_PRIV_USER },
108 { "io", "__io_", &stab_attr },
109 { "ip", "__ip_", &stab_attr },
110 { "tcp", "__tcp_", &stab_attr },
111 { "udp", "__udp_", &stab_attr },
112 { "mib", "__mib_", &stab_attr },
113 { "fsinfo", "__fsinfo_", &fsinfo_attr },
114 { "iscsi", "__iscsi_", &iscsi_attr },
115 { "nfsv3", "__nfsv3_", &stab_attr },
116 { "nfsv4", "__nfsv4_", &stab_attr },
117 { "xpv", "__xpv_", &xpv_attr },
118 { "fc", "__fc_", &fc_attr },
119 { "srp", "__srp_", &fc_attr },
120 { "sysevent", "__sysevent_", &stab_attr },
121 { "sdt", NULL, &sdt_attr },
23 { "vtrace", "__vtrace_", &vtrace_attr, 0 },
24 { "sysinfo", "__cpu_sysinfo_", &info_attr, 0 },

new/usr/src/uts/common/dtrace/sdt_subr.c 3

25 { "vminfo", "__cpu_vminfo_", &info_attr, 0 },
26 { "fpuinfo", "__fpuinfo_", &fpu_attr, 0 },
27 { "sched", "__sched_", &stab_attr, 0 },
28 { "proc", "__proc_", &stab_attr, 0 },
29 { "io", "__io_", &stab_attr, 0 },
30 { "ip", "__ip_", &stab_attr, 0 },
31 { "tcp", "__tcp_", &stab_attr, 0 },
32 { "udp", "__udp_", &stab_attr, 0 },
33 { "mib", "__mib_", &stab_attr, 0 },
34 { "fsinfo", "__fsinfo_", &fsinfo_attr, 0 },
35 { "iscsi", "__iscsi_", &iscsi_attr, 0 },
36 { "nfsv3", "__nfsv3_", &stab_attr, 0 },
37 { "nfsv4", "__nfsv4_", &stab_attr, 0 },
38 { "xpv", "__xpv_", &xpv_attr, 0 },
39 { "fc", "__fc_", &fc_attr, 0 },
40 { "srp", "__srp_", &fc_attr, 0 },
41 { "sysevent", "__sysevent_", &stab_attr, 0 },
42 { "sdt", NULL, &sdt_attr, 0 },
122 { NULL }
123 };

______unchanged_portion_omitted_

1159 /*ARGSUSED*/
1160 int
1161 sdt_mode(void *arg, dtrace_id_t id, void *parg)
1162 {
1163 /*
1164 * We tell DTrace that we’re in kernel mode, that the firing needs to
1165 * be dropped for anything that doesn’t have necessary privileges, and
1166 * that it needs to be restricted for anything that has restricted
1167 * (i.e., not all-zone) privileges.
1168 */
1169 return (DTRACE_MODE_KERNEL | DTRACE_MODE_NOPRIV_DROP |
1170 DTRACE_MODE_LIMITEDPRIV_RESTRICT);
1171 }

1173 /*ARGSUSED*/
1174 #endif /* ! codereview */
1175 void
1176 sdt_getargdesc(void *arg, dtrace_id_t id, void *parg, dtrace_argdesc_t *desc)
1177 {
1178 sdt_probe_t *sdp = parg;
1179 int i;

1181 desc->dtargd_native[0] = ’\0’;
1182 desc->dtargd_xlate[0] = ’\0’;

1184 for (i = 0; sdt_args[i].sda_provider != NULL; i++) {
1185 sdt_argdesc_t *a = &sdt_args[i];

1187 if (strcmp(sdp->sdp_provider->sdtp_name, a->sda_provider) != 0)
1188 continue;

1190 if (a->sda_name != NULL &&
1191 strcmp(sdp->sdp_name, a->sda_name) != 0)
1192 continue;

1194 if (desc->dtargd_ndx != a->sda_ndx)
1195 continue;

1197 if (a->sda_native != NULL)
1198 (void) strcpy(desc->dtargd_native, a->sda_native);

1200 if (a->sda_xlate != NULL)
1201 (void) strcpy(desc->dtargd_xlate, a->sda_xlate);

new/usr/src/uts/common/dtrace/sdt_subr.c 4

1203 desc->dtargd_mapping = a->sda_mapping;
1204 return;
1205 }

1207 desc->dtargd_ndx = DTRACE_ARGNONE;
1208 }

new/usr/src/uts/common/os/dtrace_subr.c 1

**
 9558 Tue Jan 14 16:50:03 2014
new/usr/src/uts/common/os/dtrace_subr.c
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #include <sys/dtrace.h>
28 #include <sys/cmn_err.h>
29 #include <sys/tnf.h>
30 #include <sys/atomic.h>
31 #include <sys/prsystm.h>
32 #include <sys/modctl.h>
33 #include <sys/aio_impl.h>

35 #ifdef __sparc
36 #include <sys/privregs.h>
37 #endif

39 void (*dtrace_cpu_init)(processorid_t);
40 void (*dtrace_modload)(struct modctl *);
41 void (*dtrace_modunload)(struct modctl *);
42 void (*dtrace_helpers_cleanup)(void);
43 void (*dtrace_helpers_fork)(proc_t *, proc_t *);
44 void (*dtrace_cpustart_init)(void);
45 void (*dtrace_cpustart_fini)(void);
46 void (*dtrace_cpc_fire)(uint64_t);
47 void (*dtrace_closef)(void);
48 #endif /* ! codereview */

50 void (*dtrace_debugger_init)(void);
51 void (*dtrace_debugger_fini)(void);

53 dtrace_vtime_state_t dtrace_vtime_active = 0;
54 dtrace_cacheid_t dtrace_predcache_id = DTRACE_CACHEIDNONE + 1;

56 /*
57 * dtrace_cpc_in_use usage statement: this global variable is used by the cpc

new/usr/src/uts/common/os/dtrace_subr.c 2

58 * hardware overflow interrupt handler and the kernel cpc framework to check
59 * whether or not the DTrace cpc provider is currently in use. The variable is
60 * set before counters are enabled with the first enabling and cleared when
61 * the last enabling is disabled. Its value at any given time indicates the
62 * number of active dcpc based enablings. The global ’kcpc_cpuctx_lock’ rwlock
63 * is held during initial setting to protect races between kcpc_open() and the
64 * first enabling. The locking provided by the DTrace subsystem, the kernel
65 * cpc framework and the cpu management framework protect consumers from race
66 * conditions on enabling and disabling probes.
67 */
68 uint32_t dtrace_cpc_in_use = 0;

70 typedef struct dtrace_hrestime {
71 lock_t dthr_lock; /* lock for this element */
72 timestruc_t dthr_hrestime; /* hrestime value */
73 int64_t dthr_adj; /* hrestime_adj value */
74 hrtime_t dthr_hrtime; /* hrtime value */
75 } dtrace_hrestime_t;

77 static dtrace_hrestime_t dtrace_hrestime[2];

79 /*
80 * Making available adjustable high-resolution time in DTrace is regrettably
81 * more complicated than one might think it should be. The problem is that
82 * the variables related to adjusted high-resolution time (hrestime,
83 * hrestime_adj and friends) are adjusted under hres_lock -- and this lock may
84 * be held when we enter probe context. One might think that we could address
85 * this by having a single snapshot copy that is stored under a different lock
86 * from hres_tick(), using the snapshot iff hres_lock is locked in probe
87 * context. Unfortunately, this too won’t work: because hres_lock is grabbed
88 * in more than just hres_tick() context, we could enter probe context
89 * concurrently on two different CPUs with both locks (hres_lock and the
90 * snapshot lock) held. As this implies, the fundamental problem is that we
91 * need to have access to a snapshot of these variables that we _know_ will
92 * not be locked in probe context. To effect this, we have two snapshots
93 * protected by two different locks, and we mandate that these snapshots are
94 * recorded in succession by a single thread calling dtrace_hres_tick(). (We
95 * assure this by calling it out of the same CY_HIGH_LEVEL cyclic that calls
96 * hres_tick().) A single thread can’t be in two places at once: one of the
97 * snapshot locks is guaranteed to be unheld at all times. The
98 * dtrace_gethrestime() algorithm is thus to check first one snapshot and then
99 * the other to find the unlocked snapshot.
100 */
101 void
102 dtrace_hres_tick(void)
103 {
104 int i;
105 ushort_t spl;

107 for (i = 0; i < 2; i++) {
108 dtrace_hrestime_t tmp;

110 spl = hr_clock_lock();
111 tmp.dthr_hrestime = hrestime;
112 tmp.dthr_adj = hrestime_adj;
113 tmp.dthr_hrtime = dtrace_gethrtime();
114 hr_clock_unlock(spl);

116 lock_set(&dtrace_hrestime[i].dthr_lock);
117 dtrace_hrestime[i].dthr_hrestime = tmp.dthr_hrestime;
118 dtrace_hrestime[i].dthr_adj = tmp.dthr_adj;
119 dtrace_hrestime[i].dthr_hrtime = tmp.dthr_hrtime;
120 dtrace_membar_producer();

122 /*
123 * To allow for lock-free examination of this lock, we use

new/usr/src/uts/common/os/dtrace_subr.c 3

124 * the same trick that is used hres_lock; for more details,
125 * see the description of this technique in sun4u/sys/clock.h.
126 */
127 dtrace_hrestime[i].dthr_lock++;
128 }
129 }

131 hrtime_t
132 dtrace_gethrestime(void)
133 {
134 dtrace_hrestime_t snap;
135 hrtime_t now;
136 int i = 0, adj, nslt;

138 for (;;) {
139 snap.dthr_lock = dtrace_hrestime[i].dthr_lock;
140 dtrace_membar_consumer();
141 snap.dthr_hrestime = dtrace_hrestime[i].dthr_hrestime;
142 snap.dthr_hrtime = dtrace_hrestime[i].dthr_hrtime;
143 snap.dthr_adj = dtrace_hrestime[i].dthr_adj;
144 dtrace_membar_consumer();

146 if ((snap.dthr_lock & ~1) == dtrace_hrestime[i].dthr_lock)
147 break;

149 /*
150 * If we’re here, the lock was either locked, or it
151 * transitioned while we were taking the snapshot. Either
152 * way, we’re going to try the other dtrace_hrestime element;
153 * we know that it isn’t possible for both to be locked
154 * simultaneously, so we will ultimately get a good snapshot.
155 */
156 i ^= 1;
157 }

159 /*
160 * We have a good snapshot. Now perform any necessary adjustments.
161 */
162 nslt = dtrace_gethrtime() - snap.dthr_hrtime;
163 ASSERT(nslt >= 0);

165 now = ((hrtime_t)snap.dthr_hrestime.tv_sec * (hrtime_t)NANOSEC) +
166 snap.dthr_hrestime.tv_nsec;

168 if (snap.dthr_adj != 0) {
169 if (snap.dthr_adj > 0) {
170 adj = (nslt >> adj_shift);
171 if (adj > snap.dthr_adj)
172 adj = (int)snap.dthr_adj;
173 } else {
174 adj = -(nslt >> adj_shift);
175 if (adj < snap.dthr_adj)
176 adj = (int)snap.dthr_adj;
177 }
178 now += adj;
179 }

181 return (now);
182 }

184 void
185 dtrace_vtime_enable(void)
186 {
187 dtrace_vtime_state_t state, nstate;

189 do {

new/usr/src/uts/common/os/dtrace_subr.c 4

190 state = dtrace_vtime_active;

192 switch (state) {
193 case DTRACE_VTIME_INACTIVE:
194 nstate = DTRACE_VTIME_ACTIVE;
195 break;

197 case DTRACE_VTIME_INACTIVE_TNF:
198 nstate = DTRACE_VTIME_ACTIVE_TNF;
199 break;

201 case DTRACE_VTIME_ACTIVE:
202 case DTRACE_VTIME_ACTIVE_TNF:
203 panic("DTrace virtual time already enabled");
204 /*NOTREACHED*/
205 }

207 } while (cas32((uint32_t *)&dtrace_vtime_active,
208 state, nstate) != state);
209 }

211 void
212 dtrace_vtime_disable(void)
213 {
214 dtrace_vtime_state_t state, nstate;

216 do {
217 state = dtrace_vtime_active;

219 switch (state) {
220 case DTRACE_VTIME_ACTIVE:
221 nstate = DTRACE_VTIME_INACTIVE;
222 break;

224 case DTRACE_VTIME_ACTIVE_TNF:
225 nstate = DTRACE_VTIME_INACTIVE_TNF;
226 break;

228 case DTRACE_VTIME_INACTIVE:
229 case DTRACE_VTIME_INACTIVE_TNF:
230 panic("DTrace virtual time already disabled");
231 /*NOTREACHED*/
232 }

234 } while (cas32((uint32_t *)&dtrace_vtime_active,
235 state, nstate) != state);
236 }

238 void
239 dtrace_vtime_enable_tnf(void)
240 {
241 dtrace_vtime_state_t state, nstate;

243 do {
244 state = dtrace_vtime_active;

246 switch (state) {
247 case DTRACE_VTIME_ACTIVE:
248 nstate = DTRACE_VTIME_ACTIVE_TNF;
249 break;

251 case DTRACE_VTIME_INACTIVE:
252 nstate = DTRACE_VTIME_INACTIVE_TNF;
253 break;

255 case DTRACE_VTIME_ACTIVE_TNF:

new/usr/src/uts/common/os/dtrace_subr.c 5

256 case DTRACE_VTIME_INACTIVE_TNF:
257 panic("TNF already active");
258 /*NOTREACHED*/
259 }

261 } while (cas32((uint32_t *)&dtrace_vtime_active,
262 state, nstate) != state);
263 }

265 void
266 dtrace_vtime_disable_tnf(void)
267 {
268 dtrace_vtime_state_t state, nstate;

270 do {
271 state = dtrace_vtime_active;

273 switch (state) {
274 case DTRACE_VTIME_ACTIVE_TNF:
275 nstate = DTRACE_VTIME_ACTIVE;
276 break;

278 case DTRACE_VTIME_INACTIVE_TNF:
279 nstate = DTRACE_VTIME_INACTIVE;
280 break;

282 case DTRACE_VTIME_ACTIVE:
283 case DTRACE_VTIME_INACTIVE:
284 panic("TNF already inactive");
285 /*NOTREACHED*/
286 }

288 } while (cas32((uint32_t *)&dtrace_vtime_active,
289 state, nstate) != state);
290 }

292 void
293 dtrace_vtime_switch(kthread_t *next)
294 {
295 dtrace_icookie_t cookie;
296 hrtime_t ts;

298 if (tnf_tracing_active) {
299 tnf_thread_switch(next);

301 if (dtrace_vtime_active == DTRACE_VTIME_INACTIVE_TNF)
302 return;
303 }

305 cookie = dtrace_interrupt_disable();
306 ts = dtrace_gethrtime();

308 if (curthread->t_dtrace_start != 0) {
309 curthread->t_dtrace_vtime += ts - curthread->t_dtrace_start;
310 curthread->t_dtrace_start = 0;
311 }

313 next->t_dtrace_start = ts;

315 dtrace_interrupt_enable(cookie);
316 }

318 void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
319 void (*dtrace_fasttrap_exec_ptr)(proc_t *);
320 void (*dtrace_fasttrap_exit_ptr)(proc_t *);

new/usr/src/uts/common/os/dtrace_subr.c 6

322 /*
323 * This function is called by cfork() in the event that it appears that
324 * there may be dtrace tracepoints active in the parent process’s address
325 * space. This first confirms the existence of dtrace tracepoints in the
326 * parent process and calls into the fasttrap module to remove the
327 * corresponding tracepoints from the child. By knowing that there are
328 * existing tracepoints, and ensuring they can’t be removed, we can rely
329 * on the fasttrap module remaining loaded.
330 */
331 void
332 dtrace_fasttrap_fork(proc_t *p, proc_t *cp)
333 {
334 ASSERT(p->p_proc_flag & P_PR_LOCK);
335 ASSERT(p->p_dtrace_count > 0);
336 ASSERT(dtrace_fasttrap_fork_ptr != NULL);

338 dtrace_fasttrap_fork_ptr(p, cp);
339 }

new/usr/src/uts/common/os/fio.c 1

**
 46744 Tue Jan 14 16:50:04 2014
new/usr/src/uts/common/os/fio.c
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, Joyent Inc. All rights reserved.
25 #endif /* ! codereview */
26 */

28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
29 /* All Rights Reserved */

31 #include <sys/types.h>
32 #include <sys/sysmacros.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/errno.h>
36 #include <sys/signal.h>
37 #include <sys/cred.h>
38 #include <sys/user.h>
39 #include <sys/conf.h>
40 #include <sys/vfs.h>
41 #include <sys/vnode.h>
42 #include <sys/pathname.h>
43 #include <sys/file.h>
44 #include <sys/proc.h>
45 #include <sys/var.h>
46 #include <sys/cpuvar.h>
47 #include <sys/open.h>
48 #include <sys/cmn_err.h>
49 #include <sys/priocntl.h>
50 #include <sys/procset.h>
51 #include <sys/prsystm.h>
52 #include <sys/debug.h>
53 #include <sys/kmem.h>
54 #include <sys/atomic.h>
55 #include <sys/fcntl.h>
56 #include <sys/poll.h>
57 #include <sys/rctl.h>

new/usr/src/uts/common/os/fio.c 2

58 #include <sys/port_impl.h>
59 #include <sys/dtrace.h>
60 #endif /* ! codereview */

62 #include <c2/audit.h>
63 #include <sys/nbmlock.h>

65 #ifdef DEBUG

67 static uint32_t afd_maxfd; /* # of entries in maximum allocated array */
68 static uint32_t afd_alloc; /* count of kmem_alloc()s */
69 static uint32_t afd_free; /* count of kmem_free()s */
70 static uint32_t afd_wait; /* count of waits on non-zero ref count */
71 #define MAXFD(x) (afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x)))
72 #define COUNT(x) atomic_add_32(&x, 1)

74 #else /* DEBUG */

76 #define MAXFD(x)
77 #define COUNT(x)

79 #endif /* DEBUG */

81 kmem_cache_t *file_cache;

83 static void port_close_fd(portfd_t *);

85 /*
86 * File descriptor allocation.
87 *
88 * fd_find(fip, minfd) finds the first available descriptor >= minfd.
89 * The most common case is open(2), in which minfd = 0, but we must also
90 * support fcntl(fd, F_DUPFD, minfd).
91 *
92 * The algorithm is as follows: we keep all file descriptors in an infix
93 * binary tree in which each node records the number of descriptors
94 * allocated in its right subtree, including itself. Starting at minfd,
95 * we ascend the tree until we find a non-fully allocated right subtree.
96 * We then descend that subtree in a binary search for the smallest fd.
97 * Finally, we ascend the tree again to increment the allocation count
98 * of every subtree containing the newly-allocated fd. Freeing an fd
99 * requires only the last step: we ascend the tree to decrement allocation
100 * counts. Each of these three steps (ascent to find non-full subtree,
101 * descent to find lowest fd, ascent to update allocation counts) is
102 * O(log n), thus the algorithm as a whole is O(log n).
103 *
104 * We don’t implement the fd tree using the customary left/right/parent
105 * pointers, but instead take advantage of the glorious mathematics of
106 * full infix binary trees. For reference, here’s an illustration of the
107 * logical structure of such a tree, rooted at 4 (binary 100), covering
108 * the range 1-7 (binary 001-111). Our canonical trees do not include
109 * fd 0; we’ll deal with that later.
110 *
111 * 100
112 * / \
113 * / \
114 * 010 110
115 * / \ / \
116 * 001 011 101 111
117 *
118 * We make the following observations, all of which are easily proven by
119 * induction on the depth of the tree:
120 *
121 * (T1) The least-significant bit (LSB) of any node is equal to its level
122 * in the tree. In our example, nodes 001, 011, 101 and 111 are at
123 * level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2.

new/usr/src/uts/common/os/fio.c 3

124 *
125 * (T2) The child size (CSIZE) of node N -- that is, the total number of
126 * right-branch descendants in a child of node N, including itself -- is
127 * given by clearing all but the least significant bit of N. This
128 * follows immediately from (T1). Applying this rule to our example, we
129 * see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1.
130 *
131 * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest
132 * ancestor containing node N in its right child -- is given by clearing
133 * the LSB of N. For example, LPARENT(111) = 110 and LPARENT(110) = 100.
134 * Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting
135 * the fact that these are leftmost nodes. Note that this algorithm
136 * automatically skips generations as necessary. For example, the parent
137 * of node 101 is 110, which is a *right* ancestor (not what we want);
138 * but its grandparent is 100, which is a left ancestor. Clearing the LSB
139 * of 101 gets us to 100 directly, skipping right past the uninteresting
140 * generation (110).
141 *
142 * Note that since LPARENT clears the LSB, whereas CSIZE clears all *but*
143 * the LSB, we can express LPARENT() nicely in terms of CSIZE():
144 *
145 * LPARENT(N) = N - CSIZE(N)
146 *
147 * (T4) The nearest right ancestor (RPARENT) of node N is given by:
148 *
149 * RPARENT(N) = N + CSIZE(N)
150 *
151 * (T5) For every interior node, the children differ from their parent by
152 * CSIZE(parent) / 2. In our example, CSIZE(100) / 2 = 2 = 10 binary,
153 * and indeed, the children of 100 are 100 +/- 10 = 010 and 110.
154 *
155 * Next, we’ll need a few two’s-complement math tricks. Suppose a number,
156 * N, has the following form:
157 *
158 * N = xxxx10...0
159 *
160 * That is, the binary representation of N consists of some string of bits,
161 * then a 1, then all zeroes. This amounts to nothing more than saying that
162 * N has a least-significant bit, which is true for any N != 0. If we look
163 * at N and N - 1 together, we see that we can combine them in useful ways:
164 *
165 * N = xxxx10...0
166 * N - 1 = xxxx01...1
167 * ------------------------
168 * N & (N - 1) = xxxx000000
169 * N | (N - 1) = xxxx111111
170 * N ^ (N - 1) = 111111
171 *
172 * In particular, this suggests several easy ways to clear all but the LSB,
173 * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0.
174 * We’ll opt for this formulation:
175 *
176 * (C1) CSIZE(N) = (N - 1) ^ (N | (N - 1))
177 *
178 * Similarly, we have an easy way to determine LPARENT(N), which requires
179 * that we clear the LSB of N:
180 *
181 * (L1) LPARENT(N) = N & (N - 1)
182 *
183 * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1.
184 * When combined with (T4), this yields an easy way to compute RPARENT(N):
185 *
186 * (R1) RPARENT(N) = (N | (N - 1)) + 1
187 *
188 * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to
189 * move the fd range from [1, 2^n) to [0, 2^n - 1). This is straightforward,

new/usr/src/uts/common/os/fio.c 4

190 * so there’s no need to belabor the algebra; the revised relations become:
191 *
192 * (C1a) CSIZE(N) = N ^ (N | (N + 1))
193 *
194 * (L1a) LPARENT(N) = (N & (N + 1)) - 1
195 *
196 * (R1a) RPARENT(N) = N | (N + 1)
197 *
198 * This completes the mathematical framework. We now have all the tools
199 * we need to implement fd_find() and fd_reserve().
200 *
201 * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd.
202 * It does not actually allocate the descriptor; that’s done by fd_reserve().
203 * fd_find() proceeds in two steps:
204 *
205 * (1) Find the leftmost subtree that contains a descriptor >= minfd.
206 * We start at the right subtree rooted at minfd. If this subtree is
207 * not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then
208 * step 1 is done. Otherwise, we know that all fds in this subtree
209 * are taken, so we ascend to RPARENT(minfd) using (R1a). We repeat
210 * this process until we either find a candidate subtree or exceed
211 * fip->fi_nfiles. We use (C1a) to compute CSIZE().
212 *
213 * (2) Find the smallest fd in the subtree discovered by step 1.
214 * Starting at the root of this subtree, we descend to find the
215 * smallest available fd. Since the left children have the smaller
216 * fds, we will descend rightward only when the left child is full.
217 *
218 * We begin by comparing the number of allocated fds in the root
219 * to the number of allocated fds in its right child; if they differ
220 * by exactly CSIZE(child), we know the left subtree is full, so we
221 * descend right; that is, the right child becomes the search root.
222 * Otherwise we leave the root alone and start following the right
223 * child’s left children. As fortune would have it, this is very
224 * simple computationally: by (T5), the right child of fd is just
225 * fd + size, where size = CSIZE(fd) / 2. Applying (T5) again,
226 * we find that the right child’s left child is fd + size - (size / 2) =
227 * fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) =
228 * fd + (size / 4), and so on. In general, fd’s right child’s
229 * leftmost nth descendant is fd + (size >> n). Thus, to follow
230 * the right child’s left descendants, we just halve the size in
231 * each iteration of the search.
232 *
233 * When we descend leftward, we must keep track of the number of fds
234 * that were allocated in all the right subtrees we rejected, so we
235 * know how many of the root fd’s allocations are in the remaining
236 * (as yet unexplored) leftmost part of its right subtree. When we
237 * encounter a fully-allocated left child -- that is, when we find
238 * that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right
239 * (as described earlier), resetting ralloc to zero.
240 *
241 * fd_reserve(fip, fd, incr) either allocates or frees fd, depending
242 * on whether incr is 1 or -1. Starting at fd, fd_reserve() ascends
243 * the leftmost ancestors (see (T3)) and updates the allocation counts.
244 * At each step we use (L1a) to compute LPARENT(), the next left ancestor.
245 *
246 * flist_minsize() finds the minimal tree that still covers all
247 * used fds; as long as the allocation count of a root node is zero, we
248 * don’t need that node or its right subtree.
249 *
250 * flist_nalloc() counts the number of allocated fds in the tree, by starting
251 * at the top of the tree and summing the right-subtree allocation counts as
252 * it descends leftwards.
253 *
254 * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form
255 * 2^n - 1. This ensures that the fd trees are always full, which saves

new/usr/src/uts/common/os/fio.c 5

256 * quite a bit of boundary checking.
257 */
258 static int
259 fd_find(uf_info_t *fip, int minfd)
260 {
261 int size, ralloc, fd;

263 ASSERT(MUTEX_HELD(&fip->fi_lock));
264 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);

266 for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) {
267 size = fd ^ (fd | (fd + 1));
268 if (fip->fi_list[fd].uf_alloc == size)
269 continue;
270 for (ralloc = 0, size >>= 1; size != 0; size >>= 1) {
271 ralloc += fip->fi_list[fd + size].uf_alloc;
272 if (fip->fi_list[fd].uf_alloc == ralloc + size) {
273 fd += size;
274 ralloc = 0;
275 }
276 }
277 return (fd);
278 }
279 return (-1);
280 }

282 static void
283 fd_reserve(uf_info_t *fip, int fd, int incr)
284 {
285 int pfd;
286 uf_entry_t *ufp = &fip->fi_list[fd];

288 ASSERT((uint_t)fd < fip->fi_nfiles);
289 ASSERT((ufp->uf_busy == 0 && incr == 1) ||
290 (ufp->uf_busy == 1 && incr == -1));
291 ASSERT(MUTEX_HELD(&ufp->uf_lock));
292 ASSERT(MUTEX_HELD(&fip->fi_lock));

294 for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1)
295 fip->fi_list[pfd].uf_alloc += incr;

297 ufp->uf_busy += incr;
298 }

300 static int
301 flist_minsize(uf_info_t *fip)
302 {
303 int fd;

305 /*
306 * We’d like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we’re called
307 * by flist_fork(), which relies on other mechanisms for mutual
308 * exclusion.
309 */
310 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);

312 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
313 if (fip->fi_list[fd >> 1].uf_alloc != 0)
314 break;

316 return (fd);
317 }

319 static int
320 flist_nalloc(uf_info_t *fip)
321 {

new/usr/src/uts/common/os/fio.c 6

322 int fd;
323 int nalloc = 0;

325 ASSERT(MUTEX_HELD(&fip->fi_lock));
326 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);

328 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
329 nalloc += fip->fi_list[fd >> 1].uf_alloc;

331 return (nalloc);
332 }

334 /*
335 * Increase size of the fi_list array to accommodate at least maxfd.
336 * We keep the size of the form 2^n - 1 for benefit of fd_find().
337 */
338 static void
339 flist_grow(int maxfd)
340 {
341 uf_info_t *fip = P_FINFO(curproc);
342 int newcnt, oldcnt;
343 uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend;
344 uf_rlist_t *urp;

346 for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1)
347 continue;

349 newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP);

351 mutex_enter(&fip->fi_lock);
352 oldcnt = fip->fi_nfiles;
353 if (newcnt <= oldcnt) {
354 mutex_exit(&fip->fi_lock);
355 kmem_free(newlist, newcnt * sizeof (uf_entry_t));
356 return;
357 }
358 ASSERT((newcnt & (newcnt + 1)) == 0);
359 oldlist = fip->fi_list;
360 oldend = oldlist + oldcnt;
361 newend = newlist + oldcnt; /* no need to lock beyond old end */

363 /*
364 * fi_list and fi_nfiles cannot change while any uf_lock is held,
365 * so we must grab all the old locks *and* the new locks up to oldcnt.
366 * (Locks beyond the end of oldcnt aren’t visible until we store
367 * the new fi_nfiles, which is the last thing we do before dropping
368 * all the locks, so there’s no need to acquire these locks).
369 * Holding the new locks is necessary because when fi_list changes
370 * to point to the new list, fi_nfiles won’t have been stored yet.
371 * If we *didn’t* hold the new locks, someone doing a UF_ENTER()
372 * could see the new fi_list, grab the new uf_lock, and then see
373 * fi_nfiles change while the lock is held -- in violation of
374 * UF_ENTER() semantics.
375 */
376 for (src = oldlist; src < oldend; src++)
377 mutex_enter(&src->uf_lock);

379 for (dst = newlist; dst < newend; dst++)
380 mutex_enter(&dst->uf_lock);

382 for (src = oldlist, dst = newlist; src < oldend; src++, dst++) {
383 dst->uf_file = src->uf_file;
384 dst->uf_fpollinfo = src->uf_fpollinfo;
385 dst->uf_refcnt = src->uf_refcnt;
386 dst->uf_alloc = src->uf_alloc;
387 dst->uf_flag = src->uf_flag;

new/usr/src/uts/common/os/fio.c 7

388 dst->uf_busy = src->uf_busy;
389 dst->uf_portfd = src->uf_portfd;
390 }

392 /*
393 * As soon as we store the new flist, future locking operations
394 * will use it. Therefore, we must ensure that all the state
395 * we’ve just established reaches global visibility before the
396 * new flist does.
397 */
398 membar_producer();
399 fip->fi_list = newlist;

401 /*
402 * Routines like getf() make an optimistic check on the validity
403 * of the supplied file descriptor: if it’s less than the current
404 * value of fi_nfiles -- examined without any locks -- then it’s
405 * safe to attempt a UF_ENTER() on that fd (which is a valid
406 * assumption because fi_nfiles only increases). Therefore, it
407 * is critical that the new value of fi_nfiles not reach global
408 * visibility until after the new fi_list: if it happened the
409 * other way around, getf() could see the new fi_nfiles and attempt
410 * a UF_ENTER() on the old fi_list, which would write beyond its
411 * end if the fd exceeded the old fi_nfiles.
412 */
413 membar_producer();
414 fip->fi_nfiles = newcnt;

416 /*
417 * The new state is consistent now, so we can drop all the locks.
418 */
419 for (dst = newlist; dst < newend; dst++)
420 mutex_exit(&dst->uf_lock);

422 for (src = oldlist; src < oldend; src++) {
423 /*
424 * If any threads are blocked on the old cvs, wake them.
425 * This will force them to wake up, discover that fi_list
426 * has changed, and go back to sleep on the new cvs.
427 */
428 cv_broadcast(&src->uf_wanted_cv);
429 cv_broadcast(&src->uf_closing_cv);
430 mutex_exit(&src->uf_lock);
431 }

433 mutex_exit(&fip->fi_lock);

435 /*
436 * Retire the old flist. We can’t actually kmem_free() it now
437 * because someone may still have a pointer to it. Instead,
438 * we link it onto a list of retired flists. The new flist
439 * is at least double the size of the previous flist, so the
440 * total size of all retired flists will be less than the size
441 * of the current one (to prove, consider the sum of a geometric
442 * series in powers of 2). exit() frees the retired flists.
443 */
444 urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP);
445 urp->ur_list = oldlist;
446 urp->ur_nfiles = oldcnt;

448 mutex_enter(&fip->fi_lock);
449 urp->ur_next = fip->fi_rlist;
450 fip->fi_rlist = urp;
451 mutex_exit(&fip->fi_lock);
452 }

new/usr/src/uts/common/os/fio.c 8

454 /*
455 * Utility functions for keeping track of the active file descriptors.
456 */
457 void
458 clear_stale_fd() /* called from post_syscall() */
459 {
460 afd_t *afd = &curthread->t_activefd;
461 int i;

463 /* uninitialized is ok here, a_nfd is then zero */
464 for (i = 0; i < afd->a_nfd; i++) {
465 /* assert that this should not be necessary */
466 ASSERT(afd->a_fd[i] == -1);
467 afd->a_fd[i] = -1;
468 }
469 afd->a_stale = 0;
470 }

472 void
473 free_afd(afd_t *afd) /* called below and from thread_free() */
474 {
475 int i;

477 /* free the buffer if it was kmem_alloc()ed */
478 if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
479 COUNT(afd_free);
480 kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0]));
481 }

483 /* (re)initialize the structure */
484 afd->a_fd = &afd->a_buf[0];
485 afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]);
486 afd->a_stale = 0;
487 for (i = 0; i < afd->a_nfd; i++)
488 afd->a_fd[i] = -1;
489 }

491 static void
492 set_active_fd(int fd)
493 {
494 afd_t *afd = &curthread->t_activefd;
495 int i;
496 int *old_fd;
497 int old_nfd;
498 int *new_fd;
499 int new_nfd;

501 if (afd->a_nfd == 0) { /* first time initialization */
502 ASSERT(fd == -1);
503 mutex_enter(&afd->a_fdlock);
504 free_afd(afd);
505 mutex_exit(&afd->a_fdlock);
506 }

508 /* insert fd into vacant slot, if any */
509 for (i = 0; i < afd->a_nfd; i++) {
510 if (afd->a_fd[i] == -1) {
511 afd->a_fd[i] = fd;
512 return;
513 }
514 }

516 /*
517 * Reallocate the a_fd[] array to add one more slot.
518 */
519 ASSERT(fd == -1);

new/usr/src/uts/common/os/fio.c 9

520 old_nfd = afd->a_nfd;
521 old_fd = afd->a_fd;
522 new_nfd = old_nfd + 1;
523 new_fd = kmem_alloc(new_nfd * sizeof (afd->a_fd[0]), KM_SLEEP);
524 MAXFD(new_nfd);
525 COUNT(afd_alloc);

527 mutex_enter(&afd->a_fdlock);
528 afd->a_fd = new_fd;
529 afd->a_nfd = new_nfd;
530 for (i = 0; i < old_nfd; i++)
531 afd->a_fd[i] = old_fd[i];
532 afd->a_fd[i] = fd;
533 mutex_exit(&afd->a_fdlock);

535 if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
536 COUNT(afd_free);
537 kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0]));
538 }
539 }

541 void
542 clear_active_fd(int fd) /* called below and from aio.c */
543 {
544 afd_t *afd = &curthread->t_activefd;
545 int i;

547 for (i = 0; i < afd->a_nfd; i++) {
548 if (afd->a_fd[i] == fd) {
549 afd->a_fd[i] = -1;
550 break;
551 }
552 }
553 ASSERT(i < afd->a_nfd); /* not found is not ok */
554 }

556 /*
557 * Does this thread have this fd active?
558 */
559 static int
560 is_active_fd(kthread_t *t, int fd)
561 {
562 afd_t *afd = &t->t_activefd;
563 int i;

565 ASSERT(t != curthread);
566 mutex_enter(&afd->a_fdlock);
567 /* uninitialized is ok here, a_nfd is then zero */
568 for (i = 0; i < afd->a_nfd; i++) {
569 if (afd->a_fd[i] == fd) {
570 mutex_exit(&afd->a_fdlock);
571 return (1);
572 }
573 }
574 mutex_exit(&afd->a_fdlock);
575 return (0);
576 }

578 /*
579 * Convert a user supplied file descriptor into a pointer to a file
580 * structure. Only task is to check range of the descriptor (soft
581 * resource limit was enforced at open time and shouldn’t be checked
582 * here).
583 */
584 file_t *
585 getf(int fd)

new/usr/src/uts/common/os/fio.c 10

586 {
587 uf_info_t *fip = P_FINFO(curproc);
588 uf_entry_t *ufp;
589 file_t *fp;

591 if ((uint_t)fd >= fip->fi_nfiles)
592 return (NULL);

594 /*
595 * Reserve a slot in the active fd array now so we can call
596 * set_active_fd(fd) for real below, while still inside UF_ENTER().
597 */
598 set_active_fd(-1);

600 UF_ENTER(ufp, fip, fd);

602 if ((fp = ufp->uf_file) == NULL) {
603 UF_EXIT(ufp);

605 if (fd == fip->fi_badfd && fip->fi_action > 0)
606 tsignal(curthread, fip->fi_action);

608 return (NULL);
609 }
610 ufp->uf_refcnt++;

612 set_active_fd(fd); /* record the active file descriptor */

614 UF_EXIT(ufp);

616 return (fp);
617 }

619 /*
620 * Close whatever file currently occupies the file descriptor slot
621 * and install the new file, usually NULL, in the file descriptor slot.
622 * The close must complete before we release the file descriptor slot.
623 * If newfp != NULL we only return an error if we can’t allocate the
624 * slot so the caller knows that it needs to free the filep;
625 * in the other cases we return the error number from closef().
626 */
627 int
628 closeandsetf(int fd, file_t *newfp)
629 {
630 proc_t *p = curproc;
631 uf_info_t *fip = P_FINFO(p);
632 uf_entry_t *ufp;
633 file_t *fp;
634 fpollinfo_t *fpip;
635 portfd_t *pfd;
636 int error;

638 if ((uint_t)fd >= fip->fi_nfiles) {
639 if (newfp == NULL)
640 return (EBADF);
641 flist_grow(fd);
642 }

644 if (newfp != NULL) {
645 /*
646 * If ufp is reserved but has no file pointer, it’s in the
647 * transition between ufalloc() and setf(). We must wait
648 * for this transition to complete before assigning the
649 * new non-NULL file pointer.
650 */
651 mutex_enter(&fip->fi_lock);

new/usr/src/uts/common/os/fio.c 11

652 if (fd == fip->fi_badfd) {
653 mutex_exit(&fip->fi_lock);
654 if (fip->fi_action > 0)
655 tsignal(curthread, fip->fi_action);
656 return (EBADF);
657 }
658 UF_ENTER(ufp, fip, fd);
659 while (ufp->uf_busy && ufp->uf_file == NULL) {
660 mutex_exit(&fip->fi_lock);
661 cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250);
662 UF_EXIT(ufp);
663 mutex_enter(&fip->fi_lock);
664 UF_ENTER(ufp, fip, fd);
665 }
666 if ((fp = ufp->uf_file) == NULL) {
667 ASSERT(ufp->uf_fpollinfo == NULL);
668 ASSERT(ufp->uf_flag == 0);
669 fd_reserve(fip, fd, 1);
670 ufp->uf_file = newfp;
671 UF_EXIT(ufp);
672 mutex_exit(&fip->fi_lock);
673 return (0);
674 }
675 mutex_exit(&fip->fi_lock);
676 } else {
677 UF_ENTER(ufp, fip, fd);
678 if ((fp = ufp->uf_file) == NULL) {
679 UF_EXIT(ufp);
680 return (EBADF);
681 }
682 }

684 ASSERT(ufp->uf_busy);
685 ufp->uf_file = NULL;
686 ufp->uf_flag = 0;

688 /*
689 * If the file descriptor reference count is non-zero, then
690 * some other lwp in the process is performing system call
691 * activity on the file. To avoid blocking here for a long
692 * time (the other lwp might be in a long term sleep in its
693 * system call), we scan all other lwps in the process to
694 * find the ones with this fd as one of their active fds,
695 * set their a_stale flag, and set them running if they
696 * are in an interruptible sleep so they will emerge from
697 * their system calls immediately. post_syscall() will
698 * test the a_stale flag and set errno to EBADF.
699 */
700 ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1);
701 if (ufp->uf_refcnt > 0) {
702 kthread_t *t;

704 /*
705 * We call sprlock_proc(p) to ensure that the thread
706 * list will not change while we are scanning it.
707 * To do this, we must drop ufp->uf_lock and then
708 * reacquire it (so we are not holding both p->p_lock
709 * and ufp->uf_lock at the same time). ufp->uf_lock
710 * must be held for is_active_fd() to be correct
711 * (set_active_fd() is called while holding ufp->uf_lock).
712 *
713 * This is a convoluted dance, but it is better than
714 * the old brute-force method of stopping every thread
715 * in the process by calling holdlwps(SHOLDFORK1).
716 */

new/usr/src/uts/common/os/fio.c 12

718 UF_EXIT(ufp);
719 COUNT(afd_wait);

721 mutex_enter(&p->p_lock);
722 sprlock_proc(p);
723 mutex_exit(&p->p_lock);

725 UF_ENTER(ufp, fip, fd);
726 ASSERT(ufp->uf_file == NULL);

728 if (ufp->uf_refcnt > 0) {
729 for (t = curthread->t_forw;
730 t != curthread;
731 t = t->t_forw) {
732 if (is_active_fd(t, fd)) {
733 thread_lock(t);
734 t->t_activefd.a_stale = 1;
735 t->t_post_sys = 1;
736 if (ISWAKEABLE(t))
737 setrun_locked(t);
738 thread_unlock(t);
739 }
740 }
741 }

743 UF_EXIT(ufp);

745 mutex_enter(&p->p_lock);
746 sprunlock(p);

748 UF_ENTER(ufp, fip, fd);
749 ASSERT(ufp->uf_file == NULL);
750 }

752 /*
753 * Wait for other lwps to stop using this file descriptor.
754 */
755 while (ufp->uf_refcnt > 0) {
756 cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250);
757 /*
758 * cv_wait_stop() drops ufp->uf_lock, so the file list
759 * can change. Drop the lock on our (possibly) stale
760 * ufp and let UF_ENTER() find and lock the current ufp.
761 */
762 UF_EXIT(ufp);
763 UF_ENTER(ufp, fip, fd);
764 }

766 #ifdef DEBUG
767 /*
768 * catch a watchfd on device’s pollhead list but not on fpollinfo list
769 */
770 if (ufp->uf_fpollinfo != NULL)
771 checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo);
772 #endif /* DEBUG */

774 /*
775 * We may need to cleanup some cached poll states in t_pollstate
776 * before the fd can be reused. It is important that we don’t
777 * access a stale thread structure. We will do the cleanup in two
778 * phases to avoid deadlock and holding uf_lock for too long.
779 * In phase 1, hold the uf_lock and call pollblockexit() to set
780 * state in t_pollstate struct so that a thread does not exit on
781 * us. In phase 2, we drop the uf_lock and call pollcacheclean().
782 */
783 pfd = ufp->uf_portfd;

new/usr/src/uts/common/os/fio.c 13

784 ufp->uf_portfd = NULL;
785 fpip = ufp->uf_fpollinfo;
786 ufp->uf_fpollinfo = NULL;
787 if (fpip != NULL)
788 pollblockexit(fpip);
789 UF_EXIT(ufp);
790 if (fpip != NULL)
791 pollcacheclean(fpip, fd);
792 if (pfd)
793 port_close_fd(pfd);

795 /*
796 * Keep the file descriptor entry reserved across the closef().
797 */
798 error = closef(fp);

800 setf(fd, newfp);

802 /* Only return closef() error when closing is all we do */
803 return (newfp == NULL ? error : 0);
804 }

806 /*
807 * Decrement uf_refcnt; wakeup anyone waiting to close the file.
808 */
809 void
810 releasef(int fd)
811 {
812 uf_info_t *fip = P_FINFO(curproc);
813 uf_entry_t *ufp;

815 UF_ENTER(ufp, fip, fd);
816 ASSERT(ufp->uf_refcnt > 0);
817 clear_active_fd(fd); /* clear the active file descriptor */
818 if (--ufp->uf_refcnt == 0)
819 cv_broadcast(&ufp->uf_closing_cv);
820 UF_EXIT(ufp);
821 }

823 /*
824 * Identical to releasef() but can be called from another process.
825 */
826 void
827 areleasef(int fd, uf_info_t *fip)
828 {
829 uf_entry_t *ufp;

831 UF_ENTER(ufp, fip, fd);
832 ASSERT(ufp->uf_refcnt > 0);
833 if (--ufp->uf_refcnt == 0)
834 cv_broadcast(&ufp->uf_closing_cv);
835 UF_EXIT(ufp);
836 }

838 /*
839 * Duplicate all file descriptors across a fork.
840 */
841 void
842 flist_fork(uf_info_t *pfip, uf_info_t *cfip)
843 {
844 int fd, nfiles;
845 uf_entry_t *pufp, *cufp;

847 mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL);
848 cfip->fi_rlist = NULL;

new/usr/src/uts/common/os/fio.c 14

850 /*
851 * We don’t need to hold fi_lock because all other lwp’s in the
852 * parent have been held.
853 */
854 cfip->fi_nfiles = nfiles = flist_minsize(pfip);

856 cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP);

858 for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles;
859 fd++, pufp++, cufp++) {
860 cufp->uf_file = pufp->uf_file;
861 cufp->uf_alloc = pufp->uf_alloc;
862 cufp->uf_flag = pufp->uf_flag;
863 cufp->uf_busy = pufp->uf_busy;
864 if (pufp->uf_file == NULL) {
865 ASSERT(pufp->uf_flag == 0);
866 if (pufp->uf_busy) {
867 /*
868 * Grab locks to appease ASSERTs in fd_reserve
869 */
870 mutex_enter(&cfip->fi_lock);
871 mutex_enter(&cufp->uf_lock);
872 fd_reserve(cfip, fd, -1);
873 mutex_exit(&cufp->uf_lock);
874 mutex_exit(&cfip->fi_lock);
875 }
876 }
877 }
878 }

880 /*
881 * Close all open file descriptors for the current process.
882 * This is only called from exit(), which is single-threaded,
883 * so we don’t need any locking.
884 */
885 void
886 closeall(uf_info_t *fip)
887 {
888 int fd;
889 file_t *fp;
890 uf_entry_t *ufp;

892 ufp = fip->fi_list;
893 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
894 if ((fp = ufp->uf_file) != NULL) {
895 ufp->uf_file = NULL;
896 if (ufp->uf_portfd != NULL) {
897 portfd_t *pfd;
898 /* remove event port association */
899 pfd = ufp->uf_portfd;
900 ufp->uf_portfd = NULL;
901 port_close_fd(pfd);
902 }
903 ASSERT(ufp->uf_fpollinfo == NULL);
904 (void) closef(fp);
905 }
906 }

908 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
909 fip->fi_list = NULL;
910 fip->fi_nfiles = 0;
911 while (fip->fi_rlist != NULL) {
912 uf_rlist_t *urp = fip->fi_rlist;
913 fip->fi_rlist = urp->ur_next;
914 kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t));
915 kmem_free(urp, sizeof (uf_rlist_t));

new/usr/src/uts/common/os/fio.c 15

916 }
917 }

919 /*
920 * Internal form of close. Decrement reference count on file
921 * structure. Decrement reference count on the vnode following
922 * removal of the referencing file structure.
923 */
924 int
925 closef(file_t *fp)
926 {
927 vnode_t *vp;
928 int error;
929 int count;
930 int flag;
931 offset_t offset;

933 /*
934 * audit close of file (may be exit)
935 */
936 if (AU_AUDITING())
937 audit_closef(fp);
938 ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock));

940 mutex_enter(&fp->f_tlock);

942 ASSERT(fp->f_count > 0);

944 count = fp->f_count--;
945 flag = fp->f_flag;
946 offset = fp->f_offset;

948 vp = fp->f_vnode;

950 error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred, NULL);

952 if (count > 1) {
953 mutex_exit(&fp->f_tlock);
954 return (error);
955 }
956 ASSERT(fp->f_count == 0);
957 mutex_exit(&fp->f_tlock);

959 /*
960 * If DTrace has getf() subroutines active, it will set dtrace_closef
961 * to point to code that implements a barrier with respect to probe
962 * context. This must be called before the file_t is freed (and the
963 * vnode that it refers to is released) -- but it must be after the
964 * file_t has been removed from the uf_entry_t. That is, there must
965 * be no way for a racing getf() in probe context to yield the fp that
966 * we’re operating upon.
967 */
968 if (dtrace_closef != NULL)
969 (*dtrace_closef)();

971 #endif /* ! codereview */
972 VN_RELE(vp);
973 /*
974 * deallocate resources to audit_data
975 */
976 if (audit_active)
977 audit_unfalloc(fp);
978 crfree(fp->f_cred);
979 kmem_cache_free(file_cache, fp);
980 return (error);
981 }

new/usr/src/uts/common/os/fio.c 16

983 /*
984 * This is a combination of ufalloc() and setf().
985 */
986 int
987 ufalloc_file(int start, file_t *fp)
988 {
989 proc_t *p = curproc;
990 uf_info_t *fip = P_FINFO(p);
991 int filelimit;
992 uf_entry_t *ufp;
993 int nfiles;
994 int fd;

996 /*
997 * Assertion is to convince the correctness of the following
998 * assignment for filelimit after casting to int.
999 */

1000 ASSERT(p->p_fno_ctl <= INT_MAX);
1001 filelimit = (int)p->p_fno_ctl;

1003 for (;;) {
1004 mutex_enter(&fip->fi_lock);
1005 fd = fd_find(fip, start);
1006 if (fd >= 0 && fd == fip->fi_badfd) {
1007 start = fd + 1;
1008 mutex_exit(&fip->fi_lock);
1009 continue;
1010 }
1011 if ((uint_t)fd < filelimit)
1012 break;
1013 if (fd >= filelimit) {
1014 mutex_exit(&fip->fi_lock);
1015 mutex_enter(&p->p_lock);
1016 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1017 p->p_rctls, p, RCA_SAFE);
1018 mutex_exit(&p->p_lock);
1019 return (-1);
1020 }
1021 /* fd_find() returned -1 */
1022 nfiles = fip->fi_nfiles;
1023 mutex_exit(&fip->fi_lock);
1024 flist_grow(MAX(start, nfiles));
1025 }

1027 UF_ENTER(ufp, fip, fd);
1028 fd_reserve(fip, fd, 1);
1029 ASSERT(ufp->uf_file == NULL);
1030 ufp->uf_file = fp;
1031 UF_EXIT(ufp);
1032 mutex_exit(&fip->fi_lock);
1033 return (fd);
1034 }

1036 /*
1037 * Allocate a user file descriptor greater than or equal to "start".
1038 */
1039 int
1040 ufalloc(int start)
1041 {
1042 return (ufalloc_file(start, NULL));
1043 }

1045 /*
1046 * Check that a future allocation of count fds on proc p has a good
1047 * chance of succeeding. If not, do rctl processing as if we’d failed

new/usr/src/uts/common/os/fio.c 17

1048 * the allocation.
1049 *
1050 * Our caller must guarantee that p cannot disappear underneath us.
1051 */
1052 int
1053 ufcanalloc(proc_t *p, uint_t count)
1054 {
1055 uf_info_t *fip = P_FINFO(p);
1056 int filelimit;
1057 int current;

1059 if (count == 0)
1060 return (1);

1062 ASSERT(p->p_fno_ctl <= INT_MAX);
1063 filelimit = (int)p->p_fno_ctl;

1065 mutex_enter(&fip->fi_lock);
1066 current = flist_nalloc(fip); /* # of in-use descriptors */
1067 mutex_exit(&fip->fi_lock);

1069 /*
1070 * If count is a positive integer, the worst that can happen is
1071 * an overflow to a negative value, which is caught by the >= 0 check.
1072 */
1073 current += count;
1074 if (count <= INT_MAX && current >= 0 && current <= filelimit)
1075 return (1);

1077 mutex_enter(&p->p_lock);
1078 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1079 p->p_rctls, p, RCA_SAFE);
1080 mutex_exit(&p->p_lock);
1081 return (0);
1082 }

1084 /*
1085 * Allocate a user file descriptor and a file structure.
1086 * Initialize the descriptor to point at the file structure.
1087 * If fdp is NULL, the user file descriptor will not be allocated.
1088 */
1089 int
1090 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp)
1091 {
1092 file_t *fp;
1093 int fd;

1095 if (fdp) {
1096 if ((fd = ufalloc(0)) == -1)
1097 return (EMFILE);
1098 }
1099 fp = kmem_cache_alloc(file_cache, KM_SLEEP);
1100 /*
1101 * Note: falloc returns the fp locked
1102 */
1103 mutex_enter(&fp->f_tlock);
1104 fp->f_count = 1;
1105 fp->f_flag = (ushort_t)flag;
1106 fp->f_flag2 = (flag & (FSEARCH|FEXEC)) >> 16;
1107 fp->f_vnode = vp;
1108 fp->f_offset = 0;
1109 fp->f_audit_data = 0;
1110 crhold(fp->f_cred = CRED());
1111 /*
1112 * allocate resources to audit_data
1113 */

new/usr/src/uts/common/os/fio.c 18

1114 if (audit_active)
1115 audit_falloc(fp);
1116 *fpp = fp;
1117 if (fdp)
1118 *fdp = fd;
1119 return (0);
1120 }

1122 /*ARGSUSED*/
1123 static int
1124 file_cache_constructor(void *buf, void *cdrarg, int kmflags)
1125 {
1126 file_t *fp = buf;

1128 mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL);
1129 return (0);
1130 }

1132 /*ARGSUSED*/
1133 static void
1134 file_cache_destructor(void *buf, void *cdrarg)
1135 {
1136 file_t *fp = buf;

1138 mutex_destroy(&fp->f_tlock);
1139 }

1141 void
1142 finit()
1143 {
1144 file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0,
1145 file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0);
1146 }

1148 void
1149 unfalloc(file_t *fp)
1150 {
1151 ASSERT(MUTEX_HELD(&fp->f_tlock));
1152 if (--fp->f_count <= 0) {
1153 /*
1154 * deallocate resources to audit_data
1155 */
1156 if (audit_active)
1157 audit_unfalloc(fp);
1158 crfree(fp->f_cred);
1159 mutex_exit(&fp->f_tlock);
1160 kmem_cache_free(file_cache, fp);
1161 } else
1162 mutex_exit(&fp->f_tlock);
1163 }

1165 /*
1166 * Given a file descriptor, set the user’s
1167 * file pointer to the given parameter.
1168 */
1169 void
1170 setf(int fd, file_t *fp)
1171 {
1172 uf_info_t *fip = P_FINFO(curproc);
1173 uf_entry_t *ufp;

1175 if (AU_AUDITING())
1176 audit_setf(fp, fd);

1178 if (fp == NULL) {
1179 mutex_enter(&fip->fi_lock);

new/usr/src/uts/common/os/fio.c 19

1180 UF_ENTER(ufp, fip, fd);
1181 fd_reserve(fip, fd, -1);
1182 mutex_exit(&fip->fi_lock);
1183 } else {
1184 UF_ENTER(ufp, fip, fd);
1185 ASSERT(ufp->uf_busy);
1186 }
1187 ASSERT(ufp->uf_fpollinfo == NULL);
1188 ASSERT(ufp->uf_flag == 0);
1189 ufp->uf_file = fp;
1190 cv_broadcast(&ufp->uf_wanted_cv);
1191 UF_EXIT(ufp);
1192 }

1194 /*
1195 * Given a file descriptor, return the file table flags, plus,
1196 * if this is a socket in asynchronous mode, the FASYNC flag.
1197 * getf() may or may not have been called before calling f_getfl().
1198 */
1199 int
1200 f_getfl(int fd, int *flagp)
1201 {
1202 uf_info_t *fip = P_FINFO(curproc);
1203 uf_entry_t *ufp;
1204 file_t *fp;
1205 int error;

1207 if ((uint_t)fd >= fip->fi_nfiles)
1208 error = EBADF;
1209 else {
1210 UF_ENTER(ufp, fip, fd);
1211 if ((fp = ufp->uf_file) == NULL)
1212 error = EBADF;
1213 else {
1214 vnode_t *vp = fp->f_vnode;
1215 int flag = fp->f_flag | (fp->f_flag2 << 16);

1217 /*
1218 * BSD fcntl() FASYNC compatibility.
1219 */
1220 if (vp->v_type == VSOCK)
1221 flag |= sock_getfasync(vp);
1222 *flagp = flag;
1223 error = 0;
1224 }
1225 UF_EXIT(ufp);
1226 }

1228 return (error);
1229 }

1231 /*
1232 * Given a file descriptor, return the user’s file flags.
1233 * Force the FD_CLOEXEC flag for writable self-open /proc files.
1234 * getf() may or may not have been called before calling f_getfd_error().
1235 */
1236 int
1237 f_getfd_error(int fd, int *flagp)
1238 {
1239 uf_info_t *fip = P_FINFO(curproc);
1240 uf_entry_t *ufp;
1241 file_t *fp;
1242 int flag;
1243 int error;

1245 if ((uint_t)fd >= fip->fi_nfiles)

new/usr/src/uts/common/os/fio.c 20

1246 error = EBADF;
1247 else {
1248 UF_ENTER(ufp, fip, fd);
1249 if ((fp = ufp->uf_file) == NULL)
1250 error = EBADF;
1251 else {
1252 flag = ufp->uf_flag;
1253 if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode))
1254 flag |= FD_CLOEXEC;
1255 *flagp = flag;
1256 error = 0;
1257 }
1258 UF_EXIT(ufp);
1259 }

1261 return (error);
1262 }

1264 /*
1265 * getf() must have been called before calling f_getfd().
1266 */
1267 char
1268 f_getfd(int fd)
1269 {
1270 int flag = 0;
1271 (void) f_getfd_error(fd, &flag);
1272 return ((char)flag);
1273 }

1275 /*
1276 * Given a file descriptor and file flags, set the user’s file flags.
1277 * At present, the only valid flag is FD_CLOEXEC.
1278 * getf() may or may not have been called before calling f_setfd_error().
1279 */
1280 int
1281 f_setfd_error(int fd, int flags)
1282 {
1283 uf_info_t *fip = P_FINFO(curproc);
1284 uf_entry_t *ufp;
1285 int error;

1287 if ((uint_t)fd >= fip->fi_nfiles)
1288 error = EBADF;
1289 else {
1290 UF_ENTER(ufp, fip, fd);
1291 if (ufp->uf_file == NULL)
1292 error = EBADF;
1293 else {
1294 ufp->uf_flag = flags & FD_CLOEXEC;
1295 error = 0;
1296 }
1297 UF_EXIT(ufp);
1298 }
1299 return (error);
1300 }

1302 void
1303 f_setfd(int fd, char flags)
1304 {
1305 (void) f_setfd_error(fd, flags);
1306 }

1308 #define BADFD_MIN 3
1309 #define BADFD_MAX 255

1311 /*

new/usr/src/uts/common/os/fio.c 21

1312 * Attempt to allocate a file descriptor which is bad and which
1313 * is "poison" to the application. It cannot be closed (except
1314 * on exec), allocated for a different use, etc.
1315 */
1316 int
1317 f_badfd(int start, int *fdp, int action)
1318 {
1319 int fdr;
1320 int badfd;
1321 uf_info_t *fip = P_FINFO(curproc);

1323 #ifdef _LP64
1324 /* No restrictions on 64 bit _file */
1325 if (get_udatamodel() != DATAMODEL_ILP32)
1326 return (EINVAL);
1327 #endif

1329 if (start > BADFD_MAX || start < BADFD_MIN)
1330 return (EINVAL);

1332 if (action >= NSIG || action < 0)
1333 return (EINVAL);

1335 mutex_enter(&fip->fi_lock);
1336 badfd = fip->fi_badfd;
1337 mutex_exit(&fip->fi_lock);

1339 if (badfd != -1)
1340 return (EAGAIN);

1342 fdr = ufalloc(start);

1344 if (fdr > BADFD_MAX) {
1345 setf(fdr, NULL);
1346 return (EMFILE);
1347 }
1348 if (fdr < 0)
1349 return (EMFILE);

1351 mutex_enter(&fip->fi_lock);
1352 if (fip->fi_badfd != -1) {
1353 /* Lost race */
1354 mutex_exit(&fip->fi_lock);
1355 setf(fdr, NULL);
1356 return (EAGAIN);
1357 }
1358 fip->fi_action = action;
1359 fip->fi_badfd = fdr;
1360 mutex_exit(&fip->fi_lock);
1361 setf(fdr, NULL);

1363 *fdp = fdr;

1365 return (0);
1366 }

1368 /*
1369 * Allocate a file descriptor and assign it to the vnode "*vpp",
1370 * performing the usual open protocol upon it and returning the
1371 * file descriptor allocated. It is the responsibility of the
1372 * caller to dispose of "*vpp" if any error occurs.
1373 */
1374 int
1375 fassign(vnode_t **vpp, int mode, int *fdp)
1376 {
1377 file_t *fp;

new/usr/src/uts/common/os/fio.c 22

1378 int error;
1379 int fd;

1381 if (error = falloc((vnode_t *)NULL, mode, &fp, &fd))
1382 return (error);
1383 if (error = VOP_OPEN(vpp, mode, fp->f_cred, NULL)) {
1384 setf(fd, NULL);
1385 unfalloc(fp);
1386 return (error);
1387 }
1388 fp->f_vnode = *vpp;
1389 mutex_exit(&fp->f_tlock);
1390 /*
1391 * Fill in the slot falloc reserved.
1392 */
1393 setf(fd, fp);
1394 *fdp = fd;
1395 return (0);
1396 }

1398 /*
1399 * When a process forks it must increment the f_count of all file pointers
1400 * since there is a new process pointing at them. fcnt_add(fip, 1) does this.
1401 * Since we are called when there is only 1 active lwp we don’t need to
1402 * hold fi_lock or any uf_lock. If the fork fails, fork_fail() calls
1403 * fcnt_add(fip, -1) to restore the counts.
1404 */
1405 void
1406 fcnt_add(uf_info_t *fip, int incr)
1407 {
1408 int i;
1409 uf_entry_t *ufp;
1410 file_t *fp;

1412 ufp = fip->fi_list;
1413 for (i = 0; i < fip->fi_nfiles; i++, ufp++) {
1414 if ((fp = ufp->uf_file) != NULL) {
1415 mutex_enter(&fp->f_tlock);
1416 ASSERT((incr == 1 && fp->f_count >= 1) ||
1417 (incr == -1 && fp->f_count >= 2));
1418 fp->f_count += incr;
1419 mutex_exit(&fp->f_tlock);
1420 }
1421 }
1422 }

1424 /*
1425 * This is called from exec to close all fd’s that have the FD_CLOEXEC flag
1426 * set and also to close all self-open for write /proc file descriptors.
1427 */
1428 void
1429 close_exec(uf_info_t *fip)
1430 {
1431 int fd;
1432 file_t *fp;
1433 fpollinfo_t *fpip;
1434 uf_entry_t *ufp;
1435 portfd_t *pfd;

1437 ufp = fip->fi_list;
1438 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
1439 if ((fp = ufp->uf_file) != NULL &&
1440 ((ufp->uf_flag & FD_CLOEXEC) ||
1441 ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) {
1442 fpip = ufp->uf_fpollinfo;
1443 mutex_enter(&fip->fi_lock);

new/usr/src/uts/common/os/fio.c 23

1444 mutex_enter(&ufp->uf_lock);
1445 fd_reserve(fip, fd, -1);
1446 mutex_exit(&fip->fi_lock);
1447 ufp->uf_file = NULL;
1448 ufp->uf_fpollinfo = NULL;
1449 ufp->uf_flag = 0;
1450 /*
1451 * We may need to cleanup some cached poll states
1452 * in t_pollstate before the fd can be reused. It
1453 * is important that we don’t access a stale thread
1454 * structure. We will do the cleanup in two
1455 * phases to avoid deadlock and holding uf_lock for
1456 * too long. In phase 1, hold the uf_lock and call
1457 * pollblockexit() to set state in t_pollstate struct
1458 * so that a thread does not exit on us. In phase 2,
1459 * we drop the uf_lock and call pollcacheclean().
1460 */
1461 pfd = ufp->uf_portfd;
1462 ufp->uf_portfd = NULL;
1463 if (fpip != NULL)
1464 pollblockexit(fpip);
1465 mutex_exit(&ufp->uf_lock);
1466 if (fpip != NULL)
1467 pollcacheclean(fpip, fd);
1468 if (pfd)
1469 port_close_fd(pfd);
1470 (void) closef(fp);
1471 }
1472 }

1474 /* Reset bad fd */
1475 fip->fi_badfd = -1;
1476 fip->fi_action = -1;
1477 }

1479 /*
1480 * Utility function called by most of the *at() system call interfaces.
1481 *
1482 * Generate a starting vnode pointer for an (fd, path) pair where ’fd’
1483 * is an open file descriptor for a directory to be used as the starting
1484 * point for the lookup of the relative pathname ’path’ (or, if path is
1485 * NULL, generate a vnode pointer for the direct target of the operation).
1486 *
1487 * If we successfully return a non-NULL startvp, it has been the target
1488 * of VN_HOLD() and the caller must call VN_RELE() on it.
1489 */
1490 int
1491 fgetstartvp(int fd, char *path, vnode_t **startvpp)
1492 {
1493 vnode_t *startvp;
1494 file_t *startfp;
1495 char startchar;

1497 if (fd == AT_FDCWD && path == NULL)
1498 return (EFAULT);

1500 if (fd == AT_FDCWD) {
1501 /*
1502 * Start from the current working directory.
1503 */
1504 startvp = NULL;
1505 } else {
1506 if (path == NULL)
1507 startchar = ’\0’;
1508 else if (copyin(path, &startchar, sizeof (char)))
1509 return (EFAULT);

new/usr/src/uts/common/os/fio.c 24

1511 if (startchar == ’/’) {
1512 /*
1513 * ’path’ is an absolute pathname.
1514 */
1515 startvp = NULL;
1516 } else {
1517 /*
1518 * ’path’ is a relative pathname or we will
1519 * be applying the operation to ’fd’ itself.
1520 */
1521 if ((startfp = getf(fd)) == NULL)
1522 return (EBADF);
1523 startvp = startfp->f_vnode;
1524 VN_HOLD(startvp);
1525 releasef(fd);
1526 }
1527 }
1528 *startvpp = startvp;
1529 return (0);
1530 }

1532 /*
1533 * Called from fchownat() and fchmodat() to set ownership and mode.
1534 * The contents of *vap must be set before calling here.
1535 */
1536 int
1537 fsetattrat(int fd, char *path, int flags, struct vattr *vap)
1538 {
1539 vnode_t *startvp;
1540 vnode_t *vp;
1541 int error;

1543 /*
1544 * Since we are never called to set the size of a file, we don’t
1545 * need to check for non-blocking locks (via nbl_need_check(vp)).
1546 */
1547 ASSERT(!(vap->va_mask & AT_SIZE));

1549 if ((error = fgetstartvp(fd, path, &startvp)) != 0)
1550 return (error);
1551 if (AU_AUDITING() && startvp != NULL)
1552 audit_setfsat_path(1);

1554 /*
1555 * Do lookup for fchownat/fchmodat when path not NULL
1556 */
1557 if (path != NULL) {
1558 if (error = lookupnameat(path, UIO_USERSPACE,
1559 (flags == AT_SYMLINK_NOFOLLOW) ?
1560 NO_FOLLOW : FOLLOW,
1561 NULLVPP, &vp, startvp)) {
1562 if (startvp != NULL)
1563 VN_RELE(startvp);
1564 return (error);
1565 }
1566 } else {
1567 vp = startvp;
1568 ASSERT(vp);
1569 VN_HOLD(vp);
1570 }

1572 if (vn_is_readonly(vp)) {
1573 error = EROFS;
1574 } else {
1575 error = VOP_SETATTR(vp, vap, 0, CRED(), NULL);

new/usr/src/uts/common/os/fio.c 25

1576 }

1578 if (startvp != NULL)
1579 VN_RELE(startvp);
1580 VN_RELE(vp);

1582 return (error);
1583 }

1585 /*
1586 * Return true if the given vnode is referenced by any
1587 * entry in the current process’s file descriptor table.
1588 */
1589 int
1590 fisopen(vnode_t *vp)
1591 {
1592 int fd;
1593 file_t *fp;
1594 vnode_t *ovp;
1595 uf_info_t *fip = P_FINFO(curproc);
1596 uf_entry_t *ufp;

1598 mutex_enter(&fip->fi_lock);
1599 for (fd = 0; fd < fip->fi_nfiles; fd++) {
1600 UF_ENTER(ufp, fip, fd);
1601 if ((fp = ufp->uf_file) != NULL &&
1602 (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) {
1603 UF_EXIT(ufp);
1604 mutex_exit(&fip->fi_lock);
1605 return (1);
1606 }
1607 UF_EXIT(ufp);
1608 }
1609 mutex_exit(&fip->fi_lock);
1610 return (0);
1611 }

1613 /*
1614 * Return zero if at least one file currently open (by curproc) shouldn’t be
1615 * allowed to change zones.
1616 */
1617 int
1618 files_can_change_zones(void)
1619 {
1620 int fd;
1621 file_t *fp;
1622 uf_info_t *fip = P_FINFO(curproc);
1623 uf_entry_t *ufp;

1625 mutex_enter(&fip->fi_lock);
1626 for (fd = 0; fd < fip->fi_nfiles; fd++) {
1627 UF_ENTER(ufp, fip, fd);
1628 if ((fp = ufp->uf_file) != NULL &&
1629 !vn_can_change_zones(fp->f_vnode)) {
1630 UF_EXIT(ufp);
1631 mutex_exit(&fip->fi_lock);
1632 return (0);
1633 }
1634 UF_EXIT(ufp);
1635 }
1636 mutex_exit(&fip->fi_lock);
1637 return (1);
1638 }

1640 #ifdef DEBUG

new/usr/src/uts/common/os/fio.c 26

1642 /*
1643 * The following functions are only used in ASSERT()s elsewhere.
1644 * They do not modify the state of the system.
1645 */

1647 /*
1648 * Return true (1) if the current thread is in the fpollinfo
1649 * list for this file descriptor, else false (0).
1650 */
1651 static int
1652 curthread_in_plist(uf_entry_t *ufp)
1653 {
1654 fpollinfo_t *fpip;

1656 ASSERT(MUTEX_HELD(&ufp->uf_lock));
1657 for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next)
1658 if (fpip->fp_thread == curthread)
1659 return (1);
1660 return (0);
1661 }

1663 /*
1664 * Sanity check to make sure that after lwp_exit(),
1665 * curthread does not appear on any fd’s fpollinfo list.
1666 */
1667 void
1668 checkfpollinfo(void)
1669 {
1670 int fd;
1671 uf_info_t *fip = P_FINFO(curproc);
1672 uf_entry_t *ufp;

1674 mutex_enter(&fip->fi_lock);
1675 for (fd = 0; fd < fip->fi_nfiles; fd++) {
1676 UF_ENTER(ufp, fip, fd);
1677 ASSERT(!curthread_in_plist(ufp));
1678 UF_EXIT(ufp);
1679 }
1680 mutex_exit(&fip->fi_lock);
1681 }

1683 /*
1684 * Return true (1) if the current thread is in the fpollinfo
1685 * list for this file descriptor, else false (0).
1686 * This is the same as curthread_in_plist(),
1687 * but is called w/o holding uf_lock.
1688 */
1689 int
1690 infpollinfo(int fd)
1691 {
1692 uf_info_t *fip = P_FINFO(curproc);
1693 uf_entry_t *ufp;
1694 int rc;

1696 UF_ENTER(ufp, fip, fd);
1697 rc = curthread_in_plist(ufp);
1698 UF_EXIT(ufp);
1699 return (rc);
1700 }

1702 #endif /* DEBUG */

1704 /*
1705 * Add the curthread to fpollinfo list, meaning this fd is currently in the
1706 * thread’s poll cache. Each lwp polling this file descriptor should call
1707 * this routine once.

new/usr/src/uts/common/os/fio.c 27

1708 */
1709 void
1710 addfpollinfo(int fd)
1711 {
1712 struct uf_entry *ufp;
1713 fpollinfo_t *fpip;
1714 uf_info_t *fip = P_FINFO(curproc);

1716 fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP);
1717 fpip->fp_thread = curthread;
1718 UF_ENTER(ufp, fip, fd);
1719 /*
1720 * Assert we are not already on the list, that is, that
1721 * this lwp did not call addfpollinfo twice for the same fd.
1722 */
1723 ASSERT(!curthread_in_plist(ufp));
1724 /*
1725 * addfpollinfo is always done inside the getf/releasef pair.
1726 */
1727 ASSERT(ufp->uf_refcnt >= 1);
1728 fpip->fp_next = ufp->uf_fpollinfo;
1729 ufp->uf_fpollinfo = fpip;
1730 UF_EXIT(ufp);
1731 }

1733 /*
1734 * Delete curthread from fpollinfo list if it is there.
1735 */
1736 void
1737 delfpollinfo(int fd)
1738 {
1739 struct uf_entry *ufp;
1740 struct fpollinfo *fpip;
1741 struct fpollinfo **fpipp;
1742 uf_info_t *fip = P_FINFO(curproc);

1744 UF_ENTER(ufp, fip, fd);
1745 for (fpipp = &ufp->uf_fpollinfo;
1746 (fpip = *fpipp) != NULL;
1747 fpipp = &fpip->fp_next) {
1748 if (fpip->fp_thread == curthread) {
1749 *fpipp = fpip->fp_next;
1750 kmem_free(fpip, sizeof (fpollinfo_t));
1751 break;
1752 }
1753 }
1754 /*
1755 * Assert that we are not still on the list, that is, that
1756 * this lwp did not call addfpollinfo twice for the same fd.
1757 */
1758 ASSERT(!curthread_in_plist(ufp));
1759 UF_EXIT(ufp);
1760 }

1762 /*
1763 * fd is associated with a port. pfd is a pointer to the fd entry in the
1764 * cache of the port.
1765 */

1767 void
1768 addfd_port(int fd, portfd_t *pfd)
1769 {
1770 struct uf_entry *ufp;
1771 uf_info_t *fip = P_FINFO(curproc);

1773 UF_ENTER(ufp, fip, fd);

new/usr/src/uts/common/os/fio.c 28

1774 /*
1775 * addfd_port is always done inside the getf/releasef pair.
1776 */
1777 ASSERT(ufp->uf_refcnt >= 1);
1778 if (ufp->uf_portfd == NULL) {
1779 /* first entry */
1780 ufp->uf_portfd = pfd;
1781 pfd->pfd_next = NULL;
1782 } else {
1783 pfd->pfd_next = ufp->uf_portfd;
1784 ufp->uf_portfd = pfd;
1785 pfd->pfd_next->pfd_prev = pfd;
1786 }
1787 UF_EXIT(ufp);
1788 }

1790 void
1791 delfd_port(int fd, portfd_t *pfd)
1792 {
1793 struct uf_entry *ufp;
1794 uf_info_t *fip = P_FINFO(curproc);

1796 UF_ENTER(ufp, fip, fd);
1797 /*
1798 * delfd_port is always done inside the getf/releasef pair.
1799 */
1800 ASSERT(ufp->uf_refcnt >= 1);
1801 if (ufp->uf_portfd == pfd) {
1802 /* remove first entry */
1803 ufp->uf_portfd = pfd->pfd_next;
1804 } else {
1805 pfd->pfd_prev->pfd_next = pfd->pfd_next;
1806 if (pfd->pfd_next != NULL)
1807 pfd->pfd_next->pfd_prev = pfd->pfd_prev;
1808 }
1809 UF_EXIT(ufp);
1810 }

1812 static void
1813 port_close_fd(portfd_t *pfd)
1814 {
1815 portfd_t *pfdn;

1817 /*
1818 * At this point, no other thread should access
1819 * the portfd_t list for this fd. The uf_file, uf_portfd
1820 * pointers in the uf_entry_t struct for this fd would
1821 * be set to NULL.
1822 */
1823 for (; pfd != NULL; pfd = pfdn) {
1824 pfdn = pfd->pfd_next;
1825 port_close_pfd(pfd);
1826 }
1827 }

new/usr/src/uts/common/sys/dtrace.h 1

**
 101928 Tue Jan 14 16:50:04 2014
new/usr/src/uts/common/sys/dtrace.h
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2011, Joyent, Inc. All rights reserved.
29 * Copyright (c) 2012 by Delphix. All rights reserved.
30 */

32 #ifndef _SYS_DTRACE_H
33 #define _SYS_DTRACE_H

35 #ifdef __cplusplus
36 extern "C" {
37 #endif

39 /*
40 * DTrace Dynamic Tracing Software: Kernel Interfaces
41 *
42 * Note: The contents of this file are private to the implementation of the
43 * Solaris system and DTrace subsystem and are subject to change at any time
44 * without notice. Applications and drivers using these interfaces will fail
45 * to run on future releases. These interfaces should not be used for any
46 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
47 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
48 */

50 #ifndef _ASM

52 #include <sys/types.h>
53 #include <sys/modctl.h>
54 #include <sys/processor.h>
55 #include <sys/systm.h>
56 #include <sys/ctf_api.h>

new/usr/src/uts/common/sys/dtrace.h 2

57 #include <sys/cyclic.h>
58 #include <sys/int_limits.h>

60 /*
61 * DTrace Universal Constants and Typedefs
62 */
63 #define DTRACE_CPUALL -1 /* all CPUs */
64 #define DTRACE_IDNONE 0 /* invalid probe identifier */
65 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
66 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
67 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
68 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
69 #define DTRACE_PROVNONE 0 /* invalid provider identifier */
70 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
71 #define DTRACE_ARGNONE -1 /* invalid argument index */

73 #define DTRACE_PROVNAMELEN 64
74 #define DTRACE_MODNAMELEN 64
75 #define DTRACE_FUNCNAMELEN 128
76 #define DTRACE_NAMELEN 64
77 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
78 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
79 #define DTRACE_ARGTYPELEN 128

81 typedef uint32_t dtrace_id_t; /* probe identifier */
82 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
83 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
84 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
85 typedef uint16_t dtrace_actkind_t; /* action kind */
86 typedef int64_t dtrace_optval_t; /* option value */
87 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */

89 typedef enum dtrace_probespec {
90 DTRACE_PROBESPEC_NONE = -1,
91 DTRACE_PROBESPEC_PROVIDER = 0,
92 DTRACE_PROBESPEC_MOD,
93 DTRACE_PROBESPEC_FUNC,
94 DTRACE_PROBESPEC_NAME
95 } dtrace_probespec_t;

97 /*
98 * DTrace Intermediate Format (DIF)
99 *
100 * The following definitions describe the DTrace Intermediate Format (DIF), a
101 * a RISC-like instruction set and program encoding used to represent
102 * predicates and actions that can be bound to DTrace probes. The constants
103 * below defining the number of available registers are suggested minimums; the
104 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
105 * registers provided by the current DTrace implementation.
106 */
107 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
108 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
109 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
110 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */
111 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */

113 #define DIF_OP_OR 1 /* or r1, r2, rd */
114 #define DIF_OP_XOR 2 /* xor r1, r2, rd */
115 #define DIF_OP_AND 3 /* and r1, r2, rd */
116 #define DIF_OP_SLL 4 /* sll r1, r2, rd */
117 #define DIF_OP_SRL 5 /* srl r1, r2, rd */
118 #define DIF_OP_SUB 6 /* sub r1, r2, rd */
119 #define DIF_OP_ADD 7 /* add r1, r2, rd */
120 #define DIF_OP_MUL 8 /* mul r1, r2, rd */
121 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
122 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */

new/usr/src/uts/common/sys/dtrace.h 3

123 #define DIF_OP_SREM 11 /* srem r1, r2, rd */
124 #define DIF_OP_UREM 12 /* urem r1, r2, rd */
125 #define DIF_OP_NOT 13 /* not r1, rd */
126 #define DIF_OP_MOV 14 /* mov r1, rd */
127 #define DIF_OP_CMP 15 /* cmp r1, r2 */
128 #define DIF_OP_TST 16 /* tst r1 */
129 #define DIF_OP_BA 17 /* ba label */
130 #define DIF_OP_BE 18 /* be label */
131 #define DIF_OP_BNE 19 /* bne label */
132 #define DIF_OP_BG 20 /* bg label */
133 #define DIF_OP_BGU 21 /* bgu label */
134 #define DIF_OP_BGE 22 /* bge label */
135 #define DIF_OP_BGEU 23 /* bgeu label */
136 #define DIF_OP_BL 24 /* bl label */
137 #define DIF_OP_BLU 25 /* blu label */
138 #define DIF_OP_BLE 26 /* ble label */
139 #define DIF_OP_BLEU 27 /* bleu label */
140 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */
141 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */
142 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */
143 #define DIF_OP_LDUB 31 /* ldub [r1], rd */
144 #define DIF_OP_LDUH 32 /* lduh [r1], rd */
145 #define DIF_OP_LDUW 33 /* lduw [r1], rd */
146 #define DIF_OP_LDX 34 /* ldx [r1], rd */
147 #define DIF_OP_RET 35 /* ret rd */
148 #define DIF_OP_NOP 36 /* nop */
149 #define DIF_OP_SETX 37 /* setx intindex, rd */
150 #define DIF_OP_SETS 38 /* sets strindex, rd */
151 #define DIF_OP_SCMP 39 /* scmp r1, r2 */
152 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */
153 #define DIF_OP_LDGS 41 /* ldgs var, rd */
154 #define DIF_OP_STGS 42 /* stgs var, rs */
155 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */
156 #define DIF_OP_LDTS 44 /* ldts var, rd */
157 #define DIF_OP_STTS 45 /* stts var, rs */
158 #define DIF_OP_SRA 46 /* sra r1, r2, rd */
159 #define DIF_OP_CALL 47 /* call subr, rd */
160 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
161 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
162 #define DIF_OP_POPTS 50 /* popts */
163 #define DIF_OP_FLUSHTS 51 /* flushts */
164 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */
165 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */
166 #define DIF_OP_STGAA 54 /* stgaa var, rs */
167 #define DIF_OP_STTAA 55 /* sttaa var, rs */
168 #define DIF_OP_LDLS 56 /* ldls var, rd */
169 #define DIF_OP_STLS 57 /* stls var, rs */
170 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */
171 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */
172 #define DIF_OP_STB 60 /* stb r1, [rd] */
173 #define DIF_OP_STH 61 /* sth r1, [rd] */
174 #define DIF_OP_STW 62 /* stw r1, [rd] */
175 #define DIF_OP_STX 63 /* stx r1, [rd] */
176 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
177 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
178 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
179 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */
180 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
181 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
182 #define DIF_OP_ULDX 70 /* uldx [r1], rd */
183 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
184 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
185 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
186 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */
187 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
188 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */

new/usr/src/uts/common/sys/dtrace.h 4

189 #define DIF_OP_RLDX 77 /* rldx [r1], rd */
190 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
191 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */

193 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
194 #define DIF_STROFF_MAX 0xffff /* highest string table offset */
195 #define DIF_REGISTER_MAX 0xff /* highest register number */
196 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
197 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */

199 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
200 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
201 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */

203 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
204 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
205 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */

207 #define DIF_VAR_ARGS 0x0000 /* arguments array */
208 #define DIF_VAR_REGS 0x0001 /* registers array */
209 #define DIF_VAR_UREGS 0x0002 /* user registers array */
210 #define DIF_VAR_VMREGS 0x0003 /* virtual machine registers array */
211 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
212 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
213 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
214 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */
215 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */
216 #define DIF_VAR_ID 0x0105 /* probe ID */
217 #define DIF_VAR_ARG0 0x0106 /* first argument */
218 #define DIF_VAR_ARG1 0x0107 /* second argument */
219 #define DIF_VAR_ARG2 0x0108 /* third argument */
220 #define DIF_VAR_ARG3 0x0109 /* fourth argument */
221 #define DIF_VAR_ARG4 0x010a /* fifth argument */
222 #define DIF_VAR_ARG5 0x010b /* sixth argument */
223 #define DIF_VAR_ARG6 0x010c /* seventh argument */
224 #define DIF_VAR_ARG7 0x010d /* eighth argument */
225 #define DIF_VAR_ARG8 0x010e /* ninth argument */
226 #define DIF_VAR_ARG9 0x010f /* tenth argument */
227 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
228 #define DIF_VAR_CALLER 0x0111 /* caller */
229 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
230 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */
231 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
232 #define DIF_VAR_PROBENAME 0x0115 /* probe name */
233 #define DIF_VAR_PID 0x0116 /* process ID */
234 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
235 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */
236 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
237 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
238 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
239 #define DIF_VAR_UCALLER 0x011c /* user-level caller */
240 #define DIF_VAR_PPID 0x011d /* parent process ID */
241 #define DIF_VAR_UID 0x011e /* process user ID */
242 #define DIF_VAR_GID 0x011f /* process group ID */
243 #define DIF_VAR_ERRNO 0x0120 /* thread errno */

245 #define DIF_SUBR_RAND 0
246 #define DIF_SUBR_MUTEX_OWNED 1
247 #define DIF_SUBR_MUTEX_OWNER 2
248 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
249 #define DIF_SUBR_MUTEX_TYPE_SPIN 4
250 #define DIF_SUBR_RW_READ_HELD 5
251 #define DIF_SUBR_RW_WRITE_HELD 6
252 #define DIF_SUBR_RW_ISWRITER 7
253 #define DIF_SUBR_COPYIN 8
254 #define DIF_SUBR_COPYINSTR 9

new/usr/src/uts/common/sys/dtrace.h 5

255 #define DIF_SUBR_SPECULATION 10
256 #define DIF_SUBR_PROGENYOF 11
257 #define DIF_SUBR_STRLEN 12
258 #define DIF_SUBR_COPYOUT 13
259 #define DIF_SUBR_COPYOUTSTR 14
260 #define DIF_SUBR_ALLOCA 15
261 #define DIF_SUBR_BCOPY 16
262 #define DIF_SUBR_COPYINTO 17
263 #define DIF_SUBR_MSGDSIZE 18
264 #define DIF_SUBR_MSGSIZE 19
265 #define DIF_SUBR_GETMAJOR 20
266 #define DIF_SUBR_GETMINOR 21
267 #define DIF_SUBR_DDI_PATHNAME 22
268 #define DIF_SUBR_STRJOIN 23
269 #define DIF_SUBR_LLTOSTR 24
270 #define DIF_SUBR_BASENAME 25
271 #define DIF_SUBR_DIRNAME 26
272 #define DIF_SUBR_CLEANPATH 27
273 #define DIF_SUBR_STRCHR 28
274 #define DIF_SUBR_STRRCHR 29
275 #define DIF_SUBR_STRSTR 30
276 #define DIF_SUBR_STRTOK 31
277 #define DIF_SUBR_SUBSTR 32
278 #define DIF_SUBR_INDEX 33
279 #define DIF_SUBR_RINDEX 34
280 #define DIF_SUBR_HTONS 35
281 #define DIF_SUBR_HTONL 36
282 #define DIF_SUBR_HTONLL 37
283 #define DIF_SUBR_NTOHS 38
284 #define DIF_SUBR_NTOHL 39
285 #define DIF_SUBR_NTOHLL 40
286 #define DIF_SUBR_INET_NTOP 41
287 #define DIF_SUBR_INET_NTOA 42
288 #define DIF_SUBR_INET_NTOA6 43
289 #define DIF_SUBR_TOUPPER 44
290 #define DIF_SUBR_TOLOWER 45
291 #define DIF_SUBR_GETF 46
292 #endif /* ! codereview */

294 #define DIF_SUBR_MAX 46 /* max subroutine value */
291 #define DIF_SUBR_MAX 45 /* max subroutine value */

296 typedef uint32_t dif_instr_t;

298 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
299 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
300 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
301 #define DIF_INSTR_RD(i) ((i) & 0xff)
302 #define DIF_INSTR_RS(i) ((i) & 0xff)
303 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
304 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
305 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
306 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
307 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
308 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
309 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)

311 #define DIF_INSTR_FMT(op, r1, r2, d) \
312 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))

314 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
315 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
316 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
317 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
318 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
319 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))

new/usr/src/uts/common/sys/dtrace.h 6

320 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
321 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
322 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
323 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
324 #define DIF_INSTR_NOP (DIF_OP_NOP << 24)
325 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
326 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
327 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
328 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
329 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
330 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
331 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
332 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
333 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
334 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))

336 #define DIF_REG_R0 0 /* %r0 is always set to zero */

338 /*
339 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
340 * of variables, function and associative array arguments, and the return type
341 * for each DIF object (shown below). It contains a description of the type,
342 * its size in bytes, and a module identifier.
343 */
344 typedef struct dtrace_diftype {
345 uint8_t dtdt_kind; /* type kind (see below) */
346 uint8_t dtdt_ckind; /* type kind in CTF */
347 uint8_t dtdt_flags; /* type flags (see below) */
348 uint8_t dtdt_pad; /* reserved for future use */
349 uint32_t dtdt_size; /* type size in bytes (unless string) */
350 } dtrace_diftype_t;

______unchanged_portion_omitted_

1351 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1352 #define DTRACEMNR_HELPER "helper" /* node for helpers */
1353 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1354 #define DTRACEMNRN_HELPER 1 /* minor for helpers */
1355 #define DTRACEMNRN_CLONE 2 /* first clone minor */

1357 #ifdef _KERNEL

1359 /*
1360 * DTrace Provider API
1361 *
1362 * The following functions are implemented by the DTrace framework and are
1363 * used to implement separate in-kernel DTrace providers. Common functions
1364 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1365 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1366 *
1367 * The provider API has two halves: the API that the providers consume from
1368 * DTrace, and the API that providers make available to DTrace.
1369 *
1370 * 1 Framework-to-Provider API
1371 *
1372 * 1.1 Overview
1373 *
1374 * The Framework-to-Provider API is represented by the dtrace_pops structure
1375 * that the provider passes to the framework when registering itself. This
1376 * structure consists of the following members:
1377 *
1378 * dtps_provide() <-- Provide all probes, all modules
1379 * dtps_provide_module() <-- Provide all probes in specified module
1380 * dtps_enable() <-- Enable specified probe
1381 * dtps_disable() <-- Disable specified probe
1382 * dtps_suspend() <-- Suspend specified probe
1383 * dtps_resume() <-- Resume specified probe

new/usr/src/uts/common/sys/dtrace.h 7

1384 * dtps_getargdesc() <-- Get the argument description for args[X]
1385 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1386 * dtps_mode() <-- Return the mode of the fired probe
1387 * dtps_destroy() <-- Destroy all state associated with this probe
1388 *
1389 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1390 *
1391 * 1.2.1 Overview
1392 *
1393 * Called to indicate that the provider should provide all probes. If the
1394 * specified description is non-NULL, dtps_provide() is being called because
1395 * no probe matched a specified probe -- if the provider has the ability to
1396 * create custom probes, it may wish to create a probe that matches the
1397 * specified description.
1398 *
1399 * 1.2.2 Arguments and notes
1400 *
1401 * The first argument is the cookie as passed to dtrace_register(). The
1402 * second argument is a pointer to a probe description that the provider may
1403 * wish to consider when creating custom probes. The provider is expected to
1404 * call back into the DTrace framework via dtrace_probe_create() to create
1405 * any necessary probes. dtps_provide() may be called even if the provider
1406 * has made available all probes; the provider should check the return value
1407 * of dtrace_probe_create() to handle this case. Note that the provider need
1408 * not implement both dtps_provide() and dtps_provide_module(); see
1409 * "Arguments and Notes" for dtrace_register(), below.
1410 *
1411 * 1.2.3 Return value
1412 *
1413 * None.
1414 *
1415 * 1.2.4 Caller’s context
1416 *
1417 * dtps_provide() is typically called from open() or ioctl() context, but may
1418 * be called from other contexts as well. The DTrace framework is locked in
1419 * such a way that providers may not register or unregister. This means that
1420 * the provider may not call any DTrace API that affects its registration with
1421 * the framework, including dtrace_register(), dtrace_unregister(),
1422 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1423 * that the provider may (and indeed, is expected to) call probe-related
1424 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1425 * and dtrace_probe_arg().
1426 *
1427 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1428 *
1429 * 1.3.1 Overview
1430 *
1431 * Called to indicate that the provider should provide all probes in the
1432 * specified module.
1433 *
1434 * 1.3.2 Arguments and notes
1435 *
1436 * The first argument is the cookie as passed to dtrace_register(). The
1437 * second argument is a pointer to a modctl structure that indicates the
1438 * module for which probes should be created.
1439 *
1440 * 1.3.3 Return value
1441 *
1442 * None.
1443 *
1444 * 1.3.4 Caller’s context
1445 *
1446 * dtps_provide_module() may be called from open() or ioctl() context, but
1447 * may also be called from a module loading context. mod_lock is held, and
1448 * the DTrace framework is locked in such a way that providers may not
1449 * register or unregister. This means that the provider may not call any

new/usr/src/uts/common/sys/dtrace.h 8

1450 * DTrace API that affects its registration with the framework, including
1451 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1452 * dtrace_condense(). However, the context is such that the provider may (and
1453 * indeed, is expected to) call probe-related DTrace routines, including
1454 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1455 * that the provider need not implement both dtps_provide() and
1456 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1457 * below.
1458 *
1459 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1460 *
1461 * 1.4.1 Overview
1462 *
1463 * Called to enable the specified probe.
1464 *
1465 * 1.4.2 Arguments and notes
1466 *
1467 * The first argument is the cookie as passed to dtrace_register(). The
1468 * second argument is the identifier of the probe to be enabled. The third
1469 * argument is the probe argument as passed to dtrace_probe_create().
1470 * dtps_enable() will be called when a probe transitions from not being
1471 * enabled at all to having one or more ECB. The number of ECBs associated
1472 * with the probe may change without subsequent calls into the provider.
1473 * When the number of ECBs drops to zero, the provider will be explicitly
1474 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1475 * be called for a probe identifier that hasn’t been explicitly enabled via
1476 * dtps_enable().
1477 *
1478 * 1.4.3 Return value
1479 *
1480 * On success, dtps_enable() should return 0. On failure, -1 should be
1481 * returned.
1482 *
1483 * 1.4.4 Caller’s context
1484 *
1485 * The DTrace framework is locked in such a way that it may not be called
1486 * back into at all. cpu_lock is held. mod_lock is not held and may not
1487 * be acquired.
1488 *
1489 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1490 *
1491 * 1.5.1 Overview
1492 *
1493 * Called to disable the specified probe.
1494 *
1495 * 1.5.2 Arguments and notes
1496 *
1497 * The first argument is the cookie as passed to dtrace_register(). The
1498 * second argument is the identifier of the probe to be disabled. The third
1499 * argument is the probe argument as passed to dtrace_probe_create().
1500 * dtps_disable() will be called when a probe transitions from being enabled
1501 * to having zero ECBs. dtrace_probe() should never be called for a probe
1502 * identifier that has been explicitly enabled via dtps_disable().
1503 *
1504 * 1.5.3 Return value
1505 *
1506 * None.
1507 *
1508 * 1.5.4 Caller’s context
1509 *
1510 * The DTrace framework is locked in such a way that it may not be called
1511 * back into at all. cpu_lock is held. mod_lock is not held and may not
1512 * be acquired.
1513 *
1514 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1515 *

new/usr/src/uts/common/sys/dtrace.h 9

1516 * 1.6.1 Overview
1517 *
1518 * Called to suspend the specified enabled probe. This entry point is for
1519 * providers that may need to suspend some or all of their probes when CPUs
1520 * are being powered on or when the boot monitor is being entered for a
1521 * prolonged period of time.
1522 *
1523 * 1.6.2 Arguments and notes
1524 *
1525 * The first argument is the cookie as passed to dtrace_register(). The
1526 * second argument is the identifier of the probe to be suspended. The
1527 * third argument is the probe argument as passed to dtrace_probe_create().
1528 * dtps_suspend will only be called on an enabled probe. Providers that
1529 * provide a dtps_suspend entry point will want to take roughly the action
1530 * that it takes for dtps_disable.
1531 *
1532 * 1.6.3 Return value
1533 *
1534 * None.
1535 *
1536 * 1.6.4 Caller’s context
1537 *
1538 * Interrupts are disabled. The DTrace framework is in a state such that the
1539 * specified probe cannot be disabled or destroyed for the duration of
1540 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1541 * little latitude; the provider is expected to do no more than a store to
1542 * memory.
1543 *
1544 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1545 *
1546 * 1.7.1 Overview
1547 *
1548 * Called to resume the specified enabled probe. This entry point is for
1549 * providers that may need to resume some or all of their probes after the
1550 * completion of an event that induced a call to dtps_suspend().
1551 *
1552 * 1.7.2 Arguments and notes
1553 *
1554 * The first argument is the cookie as passed to dtrace_register(). The
1555 * second argument is the identifier of the probe to be resumed. The
1556 * third argument is the probe argument as passed to dtrace_probe_create().
1557 * dtps_resume will only be called on an enabled probe. Providers that
1558 * provide a dtps_resume entry point will want to take roughly the action
1559 * that it takes for dtps_enable.
1560 *
1561 * 1.7.3 Return value
1562 *
1563 * None.
1564 *
1565 * 1.7.4 Caller’s context
1566 *
1567 * Interrupts are disabled. The DTrace framework is in a state such that the
1568 * specified probe cannot be disabled or destroyed for the duration of
1569 * dtps_resume(). As interrupts are disabled, the provider is afforded
1570 * little latitude; the provider is expected to do no more than a store to
1571 * memory.
1572 *
1573 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1574 * dtrace_argdesc_t *desc)
1575 *
1576 * 1.8.1 Overview
1577 *
1578 * Called to retrieve the argument description for an args[X] variable.
1579 *
1580 * 1.8.2 Arguments and notes
1581 *

new/usr/src/uts/common/sys/dtrace.h 10

1582 * The first argument is the cookie as passed to dtrace_register(). The
1583 * second argument is the identifier of the current probe. The third
1584 * argument is the probe argument as passed to dtrace_probe_create(). The
1585 * fourth argument is a pointer to the argument description. This
1586 * description is both an input and output parameter: it contains the
1587 * index of the desired argument in the dtargd_ndx field, and expects
1588 * the other fields to be filled in upon return. If there is no argument
1589 * corresponding to the specified index, the dtargd_ndx field should be set
1590 * to DTRACE_ARGNONE.
1591 *
1592 * 1.8.3 Return value
1593 *
1594 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1595 * members of the dtrace_argdesc_t structure are all output values.
1596 *
1597 * 1.8.4 Caller’s context
1598 *
1599 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1600 * the DTrace framework is locked in such a way that providers may not
1601 * register or unregister. This means that the provider may not call any
1602 * DTrace API that affects its registration with the framework, including
1603 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1604 * dtrace_condense().
1605 *
1606 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1607 * int argno, int aframes)
1608 *
1609 * 1.9.1 Overview
1610 *
1611 * Called to retrieve a value for an argX or args[X] variable.
1612 *
1613 * 1.9.2 Arguments and notes
1614 *
1615 * The first argument is the cookie as passed to dtrace_register(). The
1616 * second argument is the identifier of the current probe. The third
1617 * argument is the probe argument as passed to dtrace_probe_create(). The
1618 * fourth argument is the number of the argument (the X in the example in
1619 * 1.9.1). The fifth argument is the number of stack frames that were used
1620 * to get from the actual place in the code that fired the probe to
1621 * dtrace_probe() itself, the so-called artificial frames. This argument may
1622 * be used to descend an appropriate number of frames to find the correct
1623 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1624 * function is used.
1625 *
1626 * 1.9.3 Return value
1627 *
1628 * The value of the argument.
1629 *
1630 * 1.9.4 Caller’s context
1631 *
1632 * This is called from within dtrace_probe() meaning that interrupts
1633 * are disabled. No locks should be taken within this entry point.
1634 *
1635 * 1.10 int dtps_mode(void *arg, dtrace_id_t id, void *parg)
1636 *
1637 * 1.10.1 Overview
1638 *
1639 * Called to determine the mode of a fired probe.
1640 *
1641 * 1.10.2 Arguments and notes
1642 *
1643 * The first argument is the cookie as passed to dtrace_register(). The
1644 * second argument is the identifier of the current probe. The third
1645 * argument is the probe argument as passed to dtrace_probe_create(). This
1646 * entry point must not be left NULL for providers whose probes allow for
1647 * mixed mode tracing, that is to say those unanchored probes that can fire

new/usr/src/uts/common/sys/dtrace.h 11

1648 * during kernel- or user-mode execution.
1649 *
1650 * 1.10.3 Return value
1651 *
1652 * A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL
1653 * or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1654 * is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP,
1655 * DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT). If
1656 * DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result
1657 * in the probe firing being silently ignored for the enabling; if the
1658 * DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not
1659 * prevent probe processing for the enabling, but restrictions will be in
1660 * place that induce a UPRIV fault upon attempt to examine probe arguments
1661 * or current process state. If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit
1662 * is set, similar restrictions will be placed upon operation if the
1663 * privilege is sufficient to process the enabling, but does not otherwise
1664 * entitle the enabling to all zones. The DTRACE_MODE_NOPRIV_DROP and
1665 * DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these
1666 * two policies must be specified), but either may be combined (or not)
1667 * with DTRACE_MODE_LIMITEDPRIV_RESTRICT.
1651 * is insufficient for that mode (either DTRACE_MODE_NOPRIV_DROP or
1652 * DTRACE_MODE_NOPRIV_RESTRICT). If the policy is DTRACE_MODE_NOPRIV_DROP,
1653 * insufficient privilege will result in the probe firing being silently
1654 * ignored for the enabling; if the policy is DTRACE_NODE_NOPRIV_RESTRICT,
1655 * insufficient privilege will not prevent probe processing for the
1656 * enabling, but restrictions will be in place that induce a UPRIV fault
1657 * upon attempt to examine probe arguments or current process state.
1668 *
1669 * 1.10.4 Caller’s context
1670 *
1671 * This is called from within dtrace_probe() meaning that interrupts
1672 * are disabled. No locks should be taken within this entry point.
1673 *
1674 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1675 *
1676 * 1.11.1 Overview
1677 *
1678 * Called to destroy the specified probe.
1679 *
1680 * 1.11.2 Arguments and notes
1681 *
1682 * The first argument is the cookie as passed to dtrace_register(). The
1683 * second argument is the identifier of the probe to be destroyed. The third
1684 * argument is the probe argument as passed to dtrace_probe_create(). The
1685 * provider should free all state associated with the probe. The framework
1686 * guarantees that dtps_destroy() is only called for probes that have either
1687 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1688 * Once dtps_disable() has been called for a probe, no further call will be
1689 * made specifying the probe.
1690 *
1691 * 1.11.3 Return value
1692 *
1693 * None.
1694 *
1695 * 1.11.4 Caller’s context
1696 *
1697 * The DTrace framework is locked in such a way that it may not be called
1698 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1699 * acquired.
1700 *
1701 *
1702 * 2 Provider-to-Framework API
1703 *
1704 * 2.1 Overview
1705 *
1706 * The Provider-to-Framework API provides the mechanism for the provider to

new/usr/src/uts/common/sys/dtrace.h 12

1707 * register itself with the DTrace framework, to create probes, to lookup
1708 * probes and (most importantly) to fire probes. The Provider-to-Framework
1709 * consists of:
1710 *
1711 * dtrace_register() <-- Register a provider with the DTrace framework
1712 * dtrace_unregister() <-- Remove a provider’s DTrace registration
1713 * dtrace_invalidate() <-- Invalidate the specified provider
1714 * dtrace_condense() <-- Remove a provider’s unenabled probes
1715 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1716 * dtrace_probe_create() <-- Create a DTrace probe
1717 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1718 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1719 * dtrace_probe() <-- Fire the specified probe
1720 *
1721 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1722 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1723 * dtrace_provider_id_t *idp)
1724 *
1725 * 2.2.1 Overview
1726 *
1727 * dtrace_register() registers the calling provider with the DTrace
1728 * framework. It should generally be called by DTrace providers in their
1729 * attach(9E) entry point.
1730 *
1731 * 2.2.2 Arguments and Notes
1732 *
1733 * The first argument is the name of the provider. The second argument is a
1734 * pointer to the stability attributes for the provider. The third argument
1735 * is the privilege flags for the provider, and must be some combination of:
1736 *
1737 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1738 *
1739 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1740 * enable probes from this provider
1741 *
1742 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1743 * enable probes from this provider
1744 *
1745 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1746 * may enable probes from this provider
1747 *
1748 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1749 * the privilege requirements above. These probes
1750 * require either (a) a user ID matching the user
1751 * ID of the cred passed in the fourth argument
1752 * or (b) the PRIV_PROC_OWNER privilege.
1753 *
1754 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1755 * the privilege requirements above. These probes
1756 * require either (a) a zone ID matching the zone
1757 * ID of the cred passed in the fourth argument
1758 * or (b) the PRIV_PROC_ZONE privilege.
1759 *
1760 * Note that these flags designate the _visibility_ of the probes, not
1761 * the conditions under which they may or may not fire.
1762 *
1763 * The fourth argument is the credential that is associated with the
1764 * provider. This argument should be NULL if the privilege flags don’t
1765 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1766 * framework stashes the uid and zoneid represented by this credential
1767 * for use at probe-time, in implicit predicates. These limit visibility
1768 * of the probes to users and/or zones which have sufficient privilege to
1769 * access them.
1770 *
1771 * The fifth argument is a DTrace provider operations vector, which provides
1772 * the implementation for the Framework-to-Provider API. (See Section 1,

new/usr/src/uts/common/sys/dtrace.h 13

1773 * above.) This must be non-NULL, and each member must be non-NULL. The
1774 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1775 * members (if the provider so desires, _one_ of these members may be left
1776 * NULL -- denoting that the provider only implements the other) and (2)
1777 * the dtps_suspend() and dtps_resume() members, which must either both be
1778 * NULL or both be non-NULL.
1779 *
1780 * The sixth argument is a cookie to be specified as the first argument for
1781 * each function in the Framework-to-Provider API. This argument may have
1782 * any value.
1783 *
1784 * The final argument is a pointer to dtrace_provider_id_t. If
1785 * dtrace_register() successfully completes, the provider identifier will be
1786 * stored in the memory pointed to be this argument. This argument must be
1787 * non-NULL.
1788 *
1789 * 2.2.3 Return value
1790 *
1791 * On success, dtrace_register() returns 0 and stores the new provider’s
1792 * identifier into the memory pointed to by the idp argument. On failure,
1793 * dtrace_register() returns an errno:
1794 *
1795 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
1796 * This may because a parameter that must be non-NULL was NULL,
1797 * because the name was invalid (either empty or an illegal
1798 * provider name) or because the attributes were invalid.
1799 *
1800 * No other failure code is returned.
1801 *
1802 * 2.2.4 Caller’s context
1803 *
1804 * dtrace_register() may induce calls to dtrace_provide(); the provider must
1805 * hold no locks across dtrace_register() that may also be acquired by
1806 * dtrace_provide(). cpu_lock and mod_lock must not be held.
1807 *
1808 * 2.3 int dtrace_unregister(dtrace_provider_t id)
1809 *
1810 * 2.3.1 Overview
1811 *
1812 * Unregisters the specified provider from the DTrace framework. It should
1813 * generally be called by DTrace providers in their detach(9E) entry point.
1814 *
1815 * 2.3.2 Arguments and Notes
1816 *
1817 * The only argument is the provider identifier, as returned from a
1818 * successful call to dtrace_register(). As a result of calling
1819 * dtrace_unregister(), the DTrace framework will call back into the provider
1820 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
1821 * completes, however, the DTrace framework will no longer make calls through
1822 * the Framework-to-Provider API.
1823 *
1824 * 2.3.3 Return value
1825 *
1826 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
1827 * returns an errno:
1828 *
1829 * EBUSY There are currently processes that have the DTrace pseudodevice
1830 * open, or there exists an anonymous enabling that hasn’t yet
1831 * been claimed.
1832 *
1833 * No other failure code is returned.
1834 *
1835 * 2.3.4 Caller’s context
1836 *
1837 * Because a call to dtrace_unregister() may induce calls through the
1838 * Framework-to-Provider API, the caller may not hold any lock across

new/usr/src/uts/common/sys/dtrace.h 14

1839 * dtrace_register() that is also acquired in any of the Framework-to-
1840 * Provider API functions. Additionally, mod_lock may not be held.
1841 *
1842 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
1843 *
1844 * 2.4.1 Overview
1845 *
1846 * Invalidates the specified provider. All subsequent probe lookups for the
1847 * specified provider will fail, but its probes will not be removed.
1848 *
1849 * 2.4.2 Arguments and note
1850 *
1851 * The only argument is the provider identifier, as returned from a
1852 * successful call to dtrace_register(). In general, a provider’s probes
1853 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
1854 * an entire provider, regardless of whether or not probes are enabled or
1855 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
1856 * probes from firing -- it will merely prevent any new enablings of the
1857 * provider’s probes.
1858 *
1859 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1860 *
1861 * 2.5.1 Overview
1862 *
1863 * Removes all the unenabled probes for the given provider. This function is
1864 * not unlike dtrace_unregister(), except that it doesn’t remove the
1865 * provider just as many of its associated probes as it can.
1866 *
1867 * 2.5.2 Arguments and Notes
1868 *
1869 * As with dtrace_unregister(), the sole argument is the provider identifier
1870 * as returned from a successful call to dtrace_register(). As a result of
1871 * calling dtrace_condense(), the DTrace framework will call back into the
1872 * given provider’s dtps_destroy() entry point for each of the provider’s
1873 * unenabled probes.
1874 *
1875 * 2.5.3 Return value
1876 *
1877 * Currently, dtrace_condense() always returns 0. However, consumers of this
1878 * function should check the return value as appropriate; its behavior may
1879 * change in the future.
1880 *
1881 * 2.5.4 Caller’s context
1882 *
1883 * As with dtrace_unregister(), the caller may not hold any lock across
1884 * dtrace_condense() that is also acquired in the provider’s entry points.
1885 * Also, mod_lock may not be held.
1886 *
1887 * 2.6 int dtrace_attached()
1888 *
1889 * 2.6.1 Overview
1890 *
1891 * Indicates whether or not DTrace has attached.
1892 *
1893 * 2.6.2 Arguments and Notes
1894 *
1895 * For most providers, DTrace makes initial contact beyond registration.
1896 * That is, once a provider has registered with DTrace, it waits to hear
1897 * from DTrace to create probes. However, some providers may wish to
1898 * proactively create probes without first being told by DTrace to do so.
1899 * If providers wish to do this, they must first call dtrace_attached() to
1900 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
1901 * the provider must not make any other Provider-to-Framework API call.
1902 *
1903 * 2.6.3 Return value
1904 *

new/usr/src/uts/common/sys/dtrace.h 15

1905 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1906 *
1907 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1908 * const char *func, const char *name, int aframes, void *arg)
1909 *
1910 * 2.7.1 Overview
1911 *
1912 * Creates a probe with specified module name, function name, and name.
1913 *
1914 * 2.7.2 Arguments and Notes
1915 *
1916 * The first argument is the provider identifier, as returned from a
1917 * successful call to dtrace_register(). The second, third, and fourth
1918 * arguments are the module name, function name, and probe name,
1919 * respectively. Of these, module name and function name may both be NULL
1920 * (in which case the probe is considered to be unanchored), or they may both
1921 * be non-NULL. The name must be non-NULL, and must point to a non-empty
1922 * string.
1923 *
1924 * The fifth argument is the number of artificial stack frames that will be
1925 * found on the stack when dtrace_probe() is called for the new probe. These
1926 * artificial frames will be automatically be pruned should the stack() or
1927 * stackdepth() functions be called as part of one of the probe’s ECBs. If
1928 * the parameter doesn’t add an artificial frame, this parameter should be
1929 * zero.
1930 *
1931 * The final argument is a probe argument that will be passed back to the
1932 * provider when a probe-specific operation is called. (e.g., via
1933 * dtps_enable(), dtps_disable(), etc.)
1934 *
1935 * Note that it is up to the provider to be sure that the probe that it
1936 * creates does not already exist -- if the provider is unsure of the probe’s
1937 * existence, it should assure its absence with dtrace_probe_lookup() before
1938 * calling dtrace_probe_create().
1939 *
1940 * 2.7.3 Return value
1941 *
1942 * dtrace_probe_create() always succeeds, and always returns the identifier
1943 * of the newly-created probe.
1944 *
1945 * 2.7.4 Caller’s context
1946 *
1947 * While dtrace_probe_create() is generally expected to be called from
1948 * dtps_provide() and/or dtps_provide_module(), it may be called from other
1949 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1950 *
1951 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1952 * const char *func, const char *name)
1953 *
1954 * 2.8.1 Overview
1955 *
1956 * Looks up a probe based on provdider and one or more of module name,
1957 * function name and probe name.
1958 *
1959 * 2.8.2 Arguments and Notes
1960 *
1961 * The first argument is the provider identifier, as returned from a
1962 * successful call to dtrace_register(). The second, third, and fourth
1963 * arguments are the module name, function name, and probe name,
1964 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
1965 * the identifier of the first probe that is provided by the specified
1966 * provider and matches all of the non-NULL matching criteria.
1967 * dtrace_probe_lookup() is generally used by a provider to be check the
1968 * existence of a probe before creating it with dtrace_probe_create().
1969 *
1970 * 2.8.3 Return value

new/usr/src/uts/common/sys/dtrace.h 16

1971 *
1972 * If the probe exists, returns its identifier. If the probe does not exist,
1973 * return DTRACE_IDNONE.
1974 *
1975 * 2.8.4 Caller’s context
1976 *
1977 * While dtrace_probe_lookup() is generally expected to be called from
1978 * dtps_provide() and/or dtps_provide_module(), it may also be called from
1979 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
1980 *
1981 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1982 *
1983 * 2.9.1 Overview
1984 *
1985 * Returns the probe argument associated with the specified probe.
1986 *
1987 * 2.9.2 Arguments and Notes
1988 *
1989 * The first argument is the provider identifier, as returned from a
1990 * successful call to dtrace_register(). The second argument is a probe
1991 * identifier, as returned from dtrace_probe_lookup() or
1992 * dtrace_probe_create(). This is useful if a probe has multiple
1993 * provider-specific components to it: the provider can create the probe
1994 * once with provider-specific state, and then add to the state by looking
1995 * up the probe based on probe identifier.
1996 *
1997 * 2.9.3 Return value
1998 *
1999 * Returns the argument associated with the specified probe. If the
2000 * specified probe does not exist, or if the specified probe is not provided
2001 * by the specified provider, NULL is returned.
2002 *
2003 * 2.9.4 Caller’s context
2004 *
2005 * While dtrace_probe_arg() is generally expected to be called from
2006 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2007 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2008 *
2009 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2010 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2011 *
2012 * 2.10.1 Overview
2013 *
2014 * The epicenter of DTrace: fires the specified probes with the specified
2015 * arguments.
2016 *
2017 * 2.10.2 Arguments and Notes
2018 *
2019 * The first argument is a probe identifier as returned by
2020 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
2021 * arguments are the values to which the D variables "arg0" through "arg4"
2022 * will be mapped.
2023 *
2024 * dtrace_probe() should be called whenever the specified probe has fired --
2025 * however the provider defines it.
2026 *
2027 * 2.10.3 Return value
2028 *
2029 * None.
2030 *
2031 * 2.10.4 Caller’s context
2032 *
2033 * dtrace_probe() may be called in virtually any context: kernel, user,
2034 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2035 * dispatcher locks held, with interrupts disabled, etc. The only latitude
2036 * that must be afforded to DTrace is the ability to make calls within

new/usr/src/uts/common/sys/dtrace.h 17

2037 * itself (and to its in-kernel subroutines) and the ability to access
2038 * arbitrary (but mapped) memory. On some platforms, this constrains
2039 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
2040 * from any context in which TL is greater than zero. dtrace_probe() may
2041 * also not be called from any routine which may be called by dtrace_probe()
2042 * -- which includes functions in the DTrace framework and some in-kernel
2043 * DTrace subroutines. All such functions "dtrace_"; providers that
2044 * instrument the kernel arbitrarily should be sure to not instrument these
2045 * routines.
2046 */
2047 typedef struct dtrace_pops {
2048 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2049 void (*dtps_provide_module)(void *arg, struct modctl *mp);
2050 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2051 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2052 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2053 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2054 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2055 dtrace_argdesc_t *desc);
2056 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2057 int argno, int aframes);
2058 int (*dtps_mode)(void *arg, dtrace_id_t id, void *parg);
2059 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2060 } dtrace_pops_t;

2062 #define DTRACE_MODE_KERNEL 0x01
2063 #define DTRACE_MODE_USER 0x02
2064 #define DTRACE_MODE_NOPRIV_DROP 0x10
2065 #define DTRACE_MODE_NOPRIV_RESTRICT 0x20
2066 #define DTRACE_MODE_LIMITEDPRIV_RESTRICT 0x40
2067 #endif /* ! codereview */

2069 typedef uintptr_t dtrace_provider_id_t;

2071 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2072 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2073 extern int dtrace_unregister(dtrace_provider_id_t);
2074 extern int dtrace_condense(dtrace_provider_id_t);
2075 extern void dtrace_invalidate(dtrace_provider_id_t);
2076 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2077 const char *, const char *);
2078 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2079 const char *, const char *, int, void *);
2080 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2081 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2082 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);

2084 /*
2085 * DTrace Meta Provider API
2086 *
2087 * The following functions are implemented by the DTrace framework and are
2088 * used to implement meta providers. Meta providers plug into the DTrace
2089 * framework and are used to instantiate new providers on the fly. At
2090 * present, there is only one type of meta provider and only one meta
2091 * provider may be registered with the DTrace framework at a time. The
2092 * sole meta provider type provides user-land static tracing facilities
2093 * by taking meta probe descriptions and adding a corresponding provider
2094 * into the DTrace framework.
2095 *
2096 * 1 Framework-to-Provider
2097 *
2098 * 1.1 Overview
2099 *
2100 * The Framework-to-Provider API is represented by the dtrace_mops structure
2101 * that the meta provider passes to the framework when registering itself as
2102 * a meta provider. This structure consists of the following members:

new/usr/src/uts/common/sys/dtrace.h 18

2103 *
2104 * dtms_create_probe() <-- Add a new probe to a created provider
2105 * dtms_provide_pid() <-- Create a new provider for a given process
2106 * dtms_remove_pid() <-- Remove a previously created provider
2107 *
2108 * 1.2 void dtms_create_probe(void *arg, void *parg,
2109 * dtrace_helper_probedesc_t *probedesc);
2110 *
2111 * 1.2.1 Overview
2112 *
2113 * Called by the DTrace framework to create a new probe in a provider
2114 * created by this meta provider.
2115 *
2116 * 1.2.2 Arguments and notes
2117 *
2118 * The first argument is the cookie as passed to dtrace_meta_register().
2119 * The second argument is the provider cookie for the associated provider;
2120 * this is obtained from the return value of dtms_provide_pid(). The third
2121 * argument is the helper probe description.
2122 *
2123 * 1.2.3 Return value
2124 *
2125 * None
2126 *
2127 * 1.2.4 Caller’s context
2128 *
2129 * dtms_create_probe() is called from either ioctl() or module load context.
2130 * The DTrace framework is locked in such a way that meta providers may not
2131 * register or unregister. This means that the meta provider cannot call
2132 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2133 * such that the provider may (and is expected to) call provider-related
2134 * DTrace provider APIs including dtrace_probe_create().
2135 *
2136 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2137 * pid_t pid)
2138 *
2139 * 1.3.1 Overview
2140 *
2141 * Called by the DTrace framework to instantiate a new provider given the
2142 * description of the provider and probes in the mprov argument. The
2143 * meta provider should call dtrace_register() to insert the new provider
2144 * into the DTrace framework.
2145 *
2146 * 1.3.2 Arguments and notes
2147 *
2148 * The first argument is the cookie as passed to dtrace_meta_register().
2149 * The second argument is a pointer to a structure describing the new
2150 * helper provider. The third argument is the process identifier for
2151 * process associated with this new provider. Note that the name of the
2152 * provider as passed to dtrace_register() should be the contatenation of
2153 * the dtmpb_provname member of the mprov argument and the processs
2154 * identifier as a string.
2155 *
2156 * 1.3.3 Return value
2157 *
2158 * The cookie for the provider that the meta provider creates. This is
2159 * the same value that it passed to dtrace_register().
2160 *
2161 * 1.3.4 Caller’s context
2162 *
2163 * dtms_provide_pid() is called from either ioctl() or module load context.
2164 * The DTrace framework is locked in such a way that meta providers may not
2165 * register or unregister. This means that the meta provider cannot call
2166 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2167 * is such that the provider may -- and is expected to -- call
2168 * provider-related DTrace provider APIs including dtrace_register().

new/usr/src/uts/common/sys/dtrace.h 19

2169 *
2170 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2171 * pid_t pid)
2172 *
2173 * 1.4.1 Overview
2174 *
2175 * Called by the DTrace framework to remove a provider that had previously
2176 * been instantiated via the dtms_provide_pid() entry point. The meta
2177 * provider need not remove the provider immediately, but this entry
2178 * point indicates that the provider should be removed as soon as possible
2179 * using the dtrace_unregister() API.
2180 *
2181 * 1.4.2 Arguments and notes
2182 *
2183 * The first argument is the cookie as passed to dtrace_meta_register().
2184 * The second argument is a pointer to a structure describing the helper
2185 * provider. The third argument is the process identifier for process
2186 * associated with this new provider.
2187 *
2188 * 1.4.3 Return value
2189 *
2190 * None
2191 *
2192 * 1.4.4 Caller’s context
2193 *
2194 * dtms_remove_pid() is called from either ioctl() or exit() context.
2195 * The DTrace framework is locked in such a way that meta providers may not
2196 * register or unregister. This means that the meta provider cannot call
2197 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2198 * is such that the provider may -- and is expected to -- call
2199 * provider-related DTrace provider APIs including dtrace_unregister().
2200 */
2201 typedef struct dtrace_helper_probedesc {
2202 char *dthpb_mod; /* probe module */
2203 char *dthpb_func; /* probe function */
2204 char *dthpb_name; /* probe name */
2205 uint64_t dthpb_base; /* base address */
2206 uint32_t *dthpb_offs; /* offsets array */
2207 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2208 uint32_t dthpb_noffs; /* offsets count */
2209 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2210 uint8_t *dthpb_args; /* argument mapping array */
2211 uint8_t dthpb_xargc; /* translated argument count */
2212 uint8_t dthpb_nargc; /* native argument count */
2213 char *dthpb_xtypes; /* translated types strings */
2214 char *dthpb_ntypes; /* native types strings */
2215 } dtrace_helper_probedesc_t;

2217 typedef struct dtrace_helper_provdesc {
2218 char *dthpv_provname; /* provider name */
2219 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2220 } dtrace_helper_provdesc_t;

2222 typedef struct dtrace_mops {
2223 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2224 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2225 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2226 } dtrace_mops_t;

2228 typedef uintptr_t dtrace_meta_provider_id_t;

2230 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2231 dtrace_meta_provider_id_t *);
2232 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);

2234 /*

new/usr/src/uts/common/sys/dtrace.h 20

2235 * DTrace Kernel Hooks
2236 *
2237 * The following functions are implemented by the base kernel and form a set of
2238 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2239 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2240 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2241 */

2243 typedef enum dtrace_vtime_state {
2244 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2245 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2246 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2247 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2248 } dtrace_vtime_state_t;

2250 extern dtrace_vtime_state_t dtrace_vtime_active;
2251 extern void dtrace_vtime_switch(kthread_t *next);
2252 extern void dtrace_vtime_enable_tnf(void);
2253 extern void dtrace_vtime_disable_tnf(void);
2254 extern void dtrace_vtime_enable(void);
2255 extern void dtrace_vtime_disable(void);

2257 struct regs;

2259 extern int (*dtrace_pid_probe_ptr)(struct regs *);
2260 extern int (*dtrace_return_probe_ptr)(struct regs *);
2261 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2262 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2263 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2264 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);

2266 typedef uintptr_t dtrace_icookie_t;
2267 typedef void (*dtrace_xcall_t)(void *);

2269 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2270 extern void dtrace_interrupt_enable(dtrace_icookie_t);

2272 extern void dtrace_membar_producer(void);
2273 extern void dtrace_membar_consumer(void);

2275 extern void (*dtrace_cpu_init)(processorid_t);
2276 extern void (*dtrace_modload)(struct modctl *);
2277 extern void (*dtrace_modunload)(struct modctl *);
2278 extern void (*dtrace_helpers_cleanup)();
2279 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2280 extern void (*dtrace_cpustart_init)();
2281 extern void (*dtrace_cpustart_fini)();
2282 extern void (*dtrace_closef)();
2283 #endif /* ! codereview */

2285 extern void (*dtrace_debugger_init)();
2286 extern void (*dtrace_debugger_fini)();
2287 extern dtrace_cacheid_t dtrace_predcache_id;

2289 extern hrtime_t dtrace_gethrtime(void);
2290 extern void dtrace_sync(void);
2291 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2292 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2293 extern void dtrace_vpanic(const char *, __va_list);
2294 extern void dtrace_panic(const char *, ...);

2296 extern int dtrace_safe_defer_signal(void);
2297 extern void dtrace_safe_synchronous_signal(void);

2299 extern int dtrace_mach_aframes(void);

new/usr/src/uts/common/sys/dtrace.h 21

2301 #if defined(__i386) || defined(__amd64)
2302 extern int dtrace_instr_size(uchar_t *instr);
2303 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2304 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2305 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2306 extern void dtrace_invop_callsite(void);
2307 #endif

2309 #ifdef __sparc
2310 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2311 extern void dtrace_getfsr(uint64_t *);
2312 #endif

2314 #define DTRACE_CPUFLAG_ISSET(flag) \
2315 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))

2317 #define DTRACE_CPUFLAG_SET(flag) \
2318 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))

2320 #define DTRACE_CPUFLAG_CLEAR(flag) \
2321 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))

2323 #endif /* _KERNEL */

2325 #endif /* _ASM */

2327 #if defined(__i386) || defined(__amd64)

2329 #define DTRACE_INVOP_PUSHL_EBP 1
2330 #define DTRACE_INVOP_POPL_EBP 2
2331 #define DTRACE_INVOP_LEAVE 3
2332 #define DTRACE_INVOP_NOP 4
2333 #define DTRACE_INVOP_RET 5

2335 #endif

2337 #ifdef __cplusplus
2338 }
2339 #endif

2341 #endif /* _SYS_DTRACE_H */

new/usr/src/uts/common/sys/dtrace_impl.h 1

**
 64642 Tue Jan 14 16:50:05 2014
new/usr/src/uts/common/sys/dtrace_impl.h
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**
______unchanged_portion_omitted_

887 /*
888 * DTrace Machine State
889 *
890 * In the process of processing a fired probe, DTrace needs to track and/or
891 * cache some per-CPU state associated with that particular firing. This is
892 * state that is always discarded after the probe firing has completed, and
893 * much of it is not specific to any DTrace consumer, remaining valid across
894 * all ECBs. This state is tracked in the dtrace_mstate structure.
895 */
896 #define DTRACE_MSTATE_ARGS 0x00000001
897 #define DTRACE_MSTATE_PROBE 0x00000002
898 #define DTRACE_MSTATE_EPID 0x00000004
899 #define DTRACE_MSTATE_TIMESTAMP 0x00000008
900 #define DTRACE_MSTATE_STACKDEPTH 0x00000010
901 #define DTRACE_MSTATE_CALLER 0x00000020
902 #define DTRACE_MSTATE_IPL 0x00000040
903 #define DTRACE_MSTATE_FLTOFFS 0x00000080
904 #define DTRACE_MSTATE_WALLTIMESTAMP 0x00000100
905 #define DTRACE_MSTATE_USTACKDEPTH 0x00000200
906 #define DTRACE_MSTATE_UCALLER 0x00000400

908 typedef struct dtrace_mstate {
909 uintptr_t dtms_scratch_base; /* base of scratch space */
910 uintptr_t dtms_scratch_ptr; /* current scratch pointer */
911 size_t dtms_scratch_size; /* scratch size */
912 uint32_t dtms_present; /* variables that are present */
913 uint64_t dtms_arg[5]; /* cached arguments */
914 dtrace_epid_t dtms_epid; /* current EPID */
915 uint64_t dtms_timestamp; /* cached timestamp */
916 hrtime_t dtms_walltimestamp; /* cached wall timestamp */
917 int dtms_stackdepth; /* cached stackdepth */
918 int dtms_ustackdepth; /* cached ustackdepth */
919 struct dtrace_probe *dtms_probe; /* current probe */
920 uintptr_t dtms_caller; /* cached caller */
921 uint64_t dtms_ucaller; /* cached user-level caller */
922 int dtms_ipl; /* cached interrupt pri lev */
923 int dtms_fltoffs; /* faulting DIFO offset */
924 uintptr_t dtms_strtok; /* saved strtok() pointer */
925 uint32_t dtms_access; /* memory access rights */
926 dtrace_difo_t *dtms_difo; /* current dif object */
927 file_t *dtms_getf; /* cached rval of getf() */
928 #endif /* ! codereview */
929 } dtrace_mstate_t;

931 #define DTRACE_COND_OWNER 0x1
932 #define DTRACE_COND_USERMODE 0x2
933 #define DTRACE_COND_ZONEOWNER 0x4

935 #define DTRACE_PROBEKEY_MAXDEPTH 8 /* max glob recursion depth */

937 /*
938 * Access flag used by dtrace_mstate.dtms_access.
939 */
940 #define DTRACE_ACCESS_KERNEL 0x1 /* the priv to read kmem */
941 #define DTRACE_ACCESS_PROC 0x2 /* the priv for proc state */

new/usr/src/uts/common/sys/dtrace_impl.h 2

942 #define DTRACE_ACCESS_ARGS 0x4 /* the priv to examine args */

944 /*
945 * DTrace Activity
946 *
947 * Each DTrace consumer is in one of several states, which (for purposes of
948 * avoiding yet-another overloading of the noun "state") we call the current
949 * _activity_. The activity transitions on dtrace_go() (from DTRACIOCGO), on
950 * dtrace_stop() (from DTRACIOCSTOP) and on the exit() action. Activities may
951 * only transition in one direction; the activity transition diagram is a
952 * directed acyclic graph. The activity transition diagram is as follows:
953 *
954 *
955 * +----------+ +--------+ +--------+
956 * | INACTIVE |------------------>| WARMUP |------------------>| ACTIVE |
957 * +----------+ dtrace_go(), +--------+ dtrace_go(), +--------+
958 * before BEGIN | after BEGIN | | |
959 * | | | |
960 * exit() action | | | |
961 * from BEGIN ECB | | | |
962 * | | | |
963 * v | | |
964 * +----------+ exit() action | | |
965 * +-----------------------------| DRAINING |<-------------------+ | |
966 * | +----------+ | |
967 * | | | |
968 * | dtrace_stop(), | | |
969 * | before END | | |
970 * | | | |
971 * | v | |
972 * | +---------+ +----------+ | |
973 * | | STOPPED |<----------------| COOLDOWN |<----------------------+ |
974 * | +---------+ dtrace_stop(), +----------+ dtrace_stop(), |
975 * | after END before END |
976 * | |
977 * | +--------+ |
978 * +----------------------------->| KILLED |<--------------------------+
979 * deadman timeout or +--------+ deadman timeout or
980 * killed consumer killed consumer
981 *
982 * Note that once a DTrace consumer has stopped tracing, there is no way to
983 * restart it; if a DTrace consumer wishes to restart tracing, it must reopen
984 * the DTrace pseudodevice.
985 */
986 typedef enum dtrace_activity {
987 DTRACE_ACTIVITY_INACTIVE = 0, /* not yet running */
988 DTRACE_ACTIVITY_WARMUP, /* while starting */
989 DTRACE_ACTIVITY_ACTIVE, /* running */
990 DTRACE_ACTIVITY_DRAINING, /* before stopping */
991 DTRACE_ACTIVITY_COOLDOWN, /* while stopping */
992 DTRACE_ACTIVITY_STOPPED, /* after stopping */
993 DTRACE_ACTIVITY_KILLED /* killed */
994 } dtrace_activity_t;

996 /*
997 * DTrace Helper Implementation
998 *
999 * A description of the helper architecture may be found in <sys/dtrace.h>.

1000 * Each process contains a pointer to its helpers in its p_dtrace_helpers
1001 * member. This is a pointer to a dtrace_helpers structure, which contains an
1002 * array of pointers to dtrace_helper structures, helper variable state (shared
1003 * among a process’s helpers) and a generation count. (The generation count is
1004 * used to provide an identifier when a helper is added so that it may be
1005 * subsequently removed.) The dtrace_helper structure is self-explanatory,
1006 * containing pointers to the objects needed to execute the helper. Note that
1007 * helpers are _duplicated_ across fork(2), and destroyed on exec(2). No more

new/usr/src/uts/common/sys/dtrace_impl.h 3

1008 * than dtrace_helpers_max are allowed per-process.
1009 */
1010 #define DTRACE_HELPER_ACTION_USTACK 0
1011 #define DTRACE_NHELPER_ACTIONS 1

1013 typedef struct dtrace_helper_action {
1014 int dtha_generation; /* helper action generation */
1015 int dtha_nactions; /* number of actions */
1016 dtrace_difo_t *dtha_predicate; /* helper action predicate */
1017 dtrace_difo_t **dtha_actions; /* array of actions */
1018 struct dtrace_helper_action *dtha_next; /* next helper action */
1019 } dtrace_helper_action_t;

1021 typedef struct dtrace_helper_provider {
1022 int dthp_generation; /* helper provider generation */
1023 uint32_t dthp_ref; /* reference count */
1024 dof_helper_t dthp_prov; /* DOF w/ provider and probes */
1025 } dtrace_helper_provider_t;

1027 typedef struct dtrace_helpers {
1028 dtrace_helper_action_t **dthps_actions; /* array of helper actions */
1029 dtrace_vstate_t dthps_vstate; /* helper action var. state */
1030 dtrace_helper_provider_t **dthps_provs; /* array of providers */
1031 uint_t dthps_nprovs; /* count of providers */
1032 uint_t dthps_maxprovs; /* provider array size */
1033 int dthps_generation; /* current generation */
1034 pid_t dthps_pid; /* pid of associated proc */
1035 int dthps_deferred; /* helper in deferred list */
1036 struct dtrace_helpers *dthps_next; /* next pointer */
1037 struct dtrace_helpers *dthps_prev; /* prev pointer */
1038 } dtrace_helpers_t;

1040 /*
1041 * DTrace Helper Action Tracing
1042 *
1043 * Debugging helper actions can be arduous. To ease the development and
1044 * debugging of helpers, DTrace contains a tracing-framework-within-a-tracing-
1045 * framework: helper tracing. If dtrace_helptrace_enabled is non-zero (which
1046 * it is by default on DEBUG kernels), all helper activity will be traced to a
1047 * global, in-kernel ring buffer. Each entry includes a pointer to the specific
1048 * helper, the location within the helper, and a trace of all local variables.
1049 * The ring buffer may be displayed in a human-readable format with the
1050 * ::dtrace_helptrace mdb(1) dcmd.
1051 */
1052 #define DTRACE_HELPTRACE_NEXT (-1)
1053 #define DTRACE_HELPTRACE_DONE (-2)
1054 #define DTRACE_HELPTRACE_ERR (-3)

1056 typedef struct dtrace_helptrace {
1057 dtrace_helper_action_t *dtht_helper; /* helper action */
1058 int dtht_where; /* where in helper action */
1059 int dtht_nlocals; /* number of locals */
1060 int dtht_fault; /* type of fault (if any) */
1061 int dtht_fltoffs; /* DIF offset */
1062 uint64_t dtht_illval; /* faulting value */
1063 uint64_t dtht_locals[1]; /* local variables */
1064 } dtrace_helptrace_t;

1066 /*
1067 * DTrace Credentials
1068 *
1069 * In probe context, we have limited flexibility to examine the credentials
1070 * of the DTrace consumer that created a particular enabling. We use
1071 * the Least Privilege interfaces to cache the consumer’s cred pointer and
1072 * some facts about that credential in a dtrace_cred_t structure. These
1073 * can limit the consumer’s breadth of visibility and what actions the

new/usr/src/uts/common/sys/dtrace_impl.h 4

1074 * consumer may take.
1075 */
1076 #define DTRACE_CRV_ALLPROC 0x01
1077 #define DTRACE_CRV_KERNEL 0x02
1078 #define DTRACE_CRV_ALLZONE 0x04

1080 #define DTRACE_CRV_ALL (DTRACE_CRV_ALLPROC | DTRACE_CRV_KERNEL | \
1081 DTRACE_CRV_ALLZONE)

1083 #define DTRACE_CRA_PROC 0x0001
1084 #define DTRACE_CRA_PROC_CONTROL 0x0002
1085 #define DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER 0x0004
1086 #define DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE 0x0008
1087 #define DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG 0x0010
1088 #define DTRACE_CRA_KERNEL 0x0020
1089 #define DTRACE_CRA_KERNEL_DESTRUCTIVE 0x0040

1091 #define DTRACE_CRA_ALL (DTRACE_CRA_PROC | \
1092 DTRACE_CRA_PROC_CONTROL | \
1093 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER | \
1094 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE | \
1095 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG | \
1096 DTRACE_CRA_KERNEL | \
1097 DTRACE_CRA_KERNEL_DESTRUCTIVE)

1099 typedef struct dtrace_cred {
1100 cred_t *dcr_cred;
1101 uint8_t dcr_destructive;
1102 uint8_t dcr_visible;
1103 uint16_t dcr_action;
1104 } dtrace_cred_t;

1106 /*
1107 * DTrace Consumer State
1108 *
1109 * Each DTrace consumer has an associated dtrace_state structure that contains
1110 * its in-kernel DTrace state -- including options, credentials, statistics and
1111 * pointers to ECBs, buffers, speculations and formats. A dtrace_state
1112 * structure is also allocated for anonymous enablings. When anonymous state
1113 * is grabbed, the grabbing consumers dts_anon pointer is set to the grabbed
1114 * dtrace_state structure.
1115 */
1116 struct dtrace_state {
1117 dev_t dts_dev; /* device */
1118 int dts_necbs; /* total number of ECBs */
1119 dtrace_ecb_t **dts_ecbs; /* array of ECBs */
1120 dtrace_epid_t dts_epid; /* next EPID to allocate */
1121 size_t dts_needed; /* greatest needed space */
1122 struct dtrace_state *dts_anon; /* anon. state, if grabbed */
1123 dtrace_activity_t dts_activity; /* current activity */
1124 dtrace_vstate_t dts_vstate; /* variable state */
1125 dtrace_buffer_t *dts_buffer; /* principal buffer */
1126 dtrace_buffer_t *dts_aggbuffer; /* aggregation buffer */
1127 dtrace_speculation_t *dts_speculations; /* speculation array */
1128 int dts_nspeculations; /* number of speculations */
1129 int dts_naggregations; /* number of aggregations */
1130 dtrace_aggregation_t **dts_aggregations; /* aggregation array */
1131 vmem_t *dts_aggid_arena; /* arena for aggregation IDs */
1132 uint64_t dts_errors; /* total number of errors */
1133 uint32_t dts_speculations_busy; /* number of spec. busy */
1134 uint32_t dts_speculations_unavail; /* number of spec unavail */
1135 uint32_t dts_stkstroverflows; /* stack string tab overflows */
1136 uint32_t dts_dblerrors; /* errors in ERROR probes */
1137 uint32_t dts_reserve; /* space reserved for END */
1138 hrtime_t dts_laststatus; /* time of last status */
1139 cyclic_id_t dts_cleaner; /* cleaning cyclic */

new/usr/src/uts/common/sys/dtrace_impl.h 5

1140 cyclic_id_t dts_deadman; /* deadman cyclic */
1141 hrtime_t dts_alive; /* time last alive */
1142 char dts_speculates; /* boolean: has speculations */
1143 char dts_destructive; /* boolean: has dest. actions */
1144 int dts_nformats; /* number of formats */
1145 char **dts_formats; /* format string array */
1146 dtrace_optval_t dts_options[DTRACEOPT_MAX]; /* options */
1147 dtrace_cred_t dts_cred; /* credentials */
1148 size_t dts_nretained; /* number of retained enabs */
1149 int dts_getf; /* number of getf() calls */
1150 #endif /* ! codereview */
1151 };

1153 struct dtrace_provider {
1154 dtrace_pattr_t dtpv_attr; /* provider attributes */
1155 dtrace_ppriv_t dtpv_priv; /* provider privileges */
1156 dtrace_pops_t dtpv_pops; /* provider operations */
1157 char *dtpv_name; /* provider name */
1158 void *dtpv_arg; /* provider argument */
1159 hrtime_t dtpv_defunct; /* when made defunct */
1160 struct dtrace_provider *dtpv_next; /* next provider */
1161 };

1163 struct dtrace_meta {
1164 dtrace_mops_t dtm_mops; /* meta provider operations */
1165 char *dtm_name; /* meta provider name */
1166 void *dtm_arg; /* meta provider user arg */
1167 uint64_t dtm_count; /* no. of associated provs. */
1168 };

1170 /*
1171 * DTrace Enablings
1172 *
1173 * A dtrace_enabling structure is used to track a collection of ECB
1174 * descriptions -- before they have been turned into actual ECBs. This is
1175 * created as a result of DOF processing, and is generally used to generate
1176 * ECBs immediately thereafter. However, enablings are also generally
1177 * retained should the probes they describe be created at a later time; as
1178 * each new module or provider registers with the framework, the retained
1179 * enablings are reevaluated, with any new match resulting in new ECBs. To
1180 * prevent probes from being matched more than once, the enabling tracks the
1181 * last probe generation matched, and only matches probes from subsequent
1182 * generations.
1183 */
1184 typedef struct dtrace_enabling {
1185 dtrace_ecbdesc_t **dten_desc; /* all ECB descriptions */
1186 int dten_ndesc; /* number of ECB descriptions */
1187 int dten_maxdesc; /* size of ECB array */
1188 dtrace_vstate_t *dten_vstate; /* associated variable state */
1189 dtrace_genid_t dten_probegen; /* matched probe generation */
1190 dtrace_ecbdesc_t *dten_current; /* current ECB description */
1191 int dten_error; /* current error value */
1192 int dten_primed; /* boolean: set if primed */
1193 struct dtrace_enabling *dten_prev; /* previous enabling */
1194 struct dtrace_enabling *dten_next; /* next enabling */
1195 } dtrace_enabling_t;

1197 /*
1198 * DTrace Anonymous Enablings
1199 *
1200 * Anonymous enablings are DTrace enablings that are not associated with a
1201 * controlling process, but rather derive their enabling from DOF stored as
1202 * properties in the dtrace.conf file. If there is an anonymous enabling, a
1203 * DTrace consumer state and enabling are created on attach. The state may be
1204 * subsequently grabbed by the first consumer specifying the "grabanon"
1205 * option. As long as an anonymous DTrace enabling exists, dtrace(7D) will

new/usr/src/uts/common/sys/dtrace_impl.h 6

1206 * refuse to unload.
1207 */
1208 typedef struct dtrace_anon {
1209 dtrace_state_t *dta_state; /* DTrace consumer state */
1210 dtrace_enabling_t *dta_enabling; /* pointer to enabling */
1211 processorid_t dta_beganon; /* which CPU BEGIN ran on */
1212 } dtrace_anon_t;

1214 /*
1215 * DTrace Error Debugging
1216 */
1217 #ifdef DEBUG
1218 #define DTRACE_ERRDEBUG
1219 #endif

1221 #ifdef DTRACE_ERRDEBUG

1223 typedef struct dtrace_errhash {
1224 const char *dter_msg; /* error message */
1225 int dter_count; /* number of times seen */
1226 } dtrace_errhash_t;

1228 #define DTRACE_ERRHASHSZ 256 /* must be > number of err msgs */

1230 #endif /* DTRACE_ERRDEBUG */

1232 /*
1233 * DTrace Toxic Ranges
1234 *
1235 * DTrace supports safe loads from probe context; if the address turns out to
1236 * be invalid, a bit will be set by the kernel indicating that DTrace
1237 * encountered a memory error, and DTrace will propagate the error to the user
1238 * accordingly. However, there may exist some regions of memory in which an
1239 * arbitrary load can change system state, and from which it is impossible to
1240 * recover from such a load after it has been attempted. Examples of this may
1241 * include memory in which programmable I/O registers are mapped (for which a
1242 * read may have some implications for the device) or (in the specific case of
1243 * UltraSPARC-I and -II) the virtual address hole. The platform is required
1244 * to make DTrace aware of these toxic ranges; DTrace will then check that
1245 * target addresses are not in a toxic range before attempting to issue a
1246 * safe load.
1247 */
1248 typedef struct dtrace_toxrange {
1249 uintptr_t dtt_base; /* base of toxic range */
1250 uintptr_t dtt_limit; /* limit of toxic range */
1251 } dtrace_toxrange_t;

1253 extern uint64_t dtrace_getarg(int, int);
1254 extern greg_t dtrace_getfp(void);
1255 extern int dtrace_getipl(void);
1256 extern uintptr_t dtrace_caller(int);
1257 extern uint32_t dtrace_cas32(uint32_t *, uint32_t, uint32_t);
1258 extern void *dtrace_casptr(void *, void *, void *);
1259 extern void dtrace_copyin(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1260 extern void dtrace_copyinstr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1261 extern void dtrace_copyout(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1262 extern void dtrace_copyoutstr(uintptr_t, uintptr_t, size_t,
1263 volatile uint16_t *);
1264 extern void dtrace_getpcstack(pc_t *, int, int, uint32_t *);
1265 extern ulong_t dtrace_getreg(struct regs *, uint_t);
1266 extern uint64_t dtrace_getvmreg(uint_t, volatile uint16_t *);
1267 extern int dtrace_getstackdepth(int);
1268 extern void dtrace_getupcstack(uint64_t *, int);
1269 extern void dtrace_getufpstack(uint64_t *, uint64_t *, int);
1270 extern int dtrace_getustackdepth(void);
1271 extern uintptr_t dtrace_fulword(void *);

new/usr/src/uts/common/sys/dtrace_impl.h 7

1272 extern uint8_t dtrace_fuword8(void *);
1273 extern uint16_t dtrace_fuword16(void *);
1274 extern uint32_t dtrace_fuword32(void *);
1275 extern uint64_t dtrace_fuword64(void *);
1276 extern void dtrace_probe_error(dtrace_state_t *, dtrace_epid_t, int, int,
1277 int, uintptr_t);
1278 extern int dtrace_assfail(const char *, const char *, int);
1279 extern int dtrace_attached(void);
1280 extern hrtime_t dtrace_gethrestime();

1282 #ifdef __sparc
1283 extern void dtrace_flush_windows(void);
1284 extern void dtrace_flush_user_windows(void);
1285 extern uint_t dtrace_getotherwin(void);
1286 extern uint_t dtrace_getfprs(void);
1287 #else
1288 extern void dtrace_copy(uintptr_t, uintptr_t, size_t);
1289 extern void dtrace_copystr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1290 #endif

1292 /*
1293 * DTrace Assertions
1294 *
1295 * DTrace calls ASSERT from probe context. To assure that a failed ASSERT
1296 * does not induce a markedly more catastrophic failure (e.g., one from which
1297 * a dump cannot be gleaned), DTrace must define its own ASSERT to be one that
1298 * may safely be called from probe context. This header file must thus be
1299 * included by any DTrace component that calls ASSERT from probe context, and
1300 * _only_ by those components. (The only exception to this is kernel
1301 * debugging infrastructure at user-level that doesn’t depend on calling
1302 * ASSERT.)
1303 */
1304 #undef ASSERT
1305 #ifdef DEBUG
1306 #define ASSERT(EX) ((void)((EX) || \
1307 dtrace_assfail(#EX, __FILE__, __LINE__)))
1308 #else
1309 #define ASSERT(X) ((void)0)
1310 #endif

1312 #ifdef __cplusplus
1313 }
1314 #endif

1316 #endif /* _SYS_DTRACE_IMPL_H */

new/usr/src/uts/common/sys/sdt_impl.h 1

**
 2764 Tue Jan 14 16:50:05 2014
new/usr/src/uts/common/sys/sdt_impl.h
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
29 */

31 #endif /* ! codereview */
32 #ifndef _SYS_SDT_IMPL_H
33 #define _SYS_SDT_IMPL_H

27 #pragma ident "%Z%%M% %I% %E% SMI"

35 #ifdef __cplusplus
36 extern "C" {
37 #endif

39 #include <sys/dtrace.h>

41 #if defined(__i386) || defined(__amd64)
42 typedef uint8_t sdt_instr_t;
43 #else
44 typedef uint32_t sdt_instr_t;
45 #endif

47 typedef struct sdt_provider {
48 char *sdtp_name; /* name of provider */
49 char *sdtp_prefix; /* prefix for probe names */
50 dtrace_pattr_t *sdtp_attr; /* stability attributes */
51 uint32_t sdtp_priv; /* privilege, if any */
52 #endif /* ! codereview */
53 dtrace_provider_id_t sdtp_id; /* provider ID */
54 } sdt_provider_t;

new/usr/src/uts/common/sys/sdt_impl.h 2

56 extern sdt_provider_t sdt_providers[]; /* array of providers */

58 typedef struct sdt_probe {
59 sdt_provider_t *sdp_provider; /* provider */
60 char *sdp_name; /* name of probe */
61 int sdp_namelen; /* length of allocated name */
62 dtrace_id_t sdp_id; /* probe ID */
63 struct modctl *sdp_ctl; /* modctl for module */
64 int sdp_loadcnt; /* load count for module */
65 int sdp_primary; /* non-zero if primary mod */
66 sdt_instr_t *sdp_patchpoint; /* patch point */
67 sdt_instr_t sdp_patchval; /* instruction to patch */
68 sdt_instr_t sdp_savedval; /* saved instruction value */
69 struct sdt_probe *sdp_next; /* next probe */
70 struct sdt_probe *sdp_hashnext; /* next on hash */
71 } sdt_probe_t;

73 typedef struct sdt_argdesc {
74 const char *sda_provider; /* provider for arg */
75 const char *sda_name; /* name of probe */
76 const int sda_ndx; /* argument index */
77 const int sda_mapping; /* mapping of argument */
78 const char *sda_native; /* native type of argument */
79 const char *sda_xlate; /* translated type of arg */
80 } sdt_argdesc_t;

82 extern void sdt_getargdesc(void *, dtrace_id_t, void *, dtrace_argdesc_t *);
83 extern int sdt_mode(void *, dtrace_id_t, void *);
84 #endif /* ! codereview */

86 #ifdef __cplusplus
87 }
88 #endif

90 #endif /* _SYS_SDT_IMPL_H */

new/usr/src/uts/common/sys/zone.h 1

**
 24110 Tue Jan 14 16:50:06 2014
new/usr/src/uts/common/sys/zone.h
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**
______unchanged_portion_omitted_

378 struct cpucap;

380 typedef struct zone {
381 /*
382 * zone_name is never modified once set.
383 */
384 char *zone_name; /* zone’s configuration name */
385 /*
386 * zone_nodename and zone_domain are never freed once allocated.
387 */
388 char *zone_nodename; /* utsname.nodename equivalent */
389 char *zone_domain; /* srpc_domain equivalent */
390 /*
391 * zone_hostid is used for per-zone hostid emulation.
392 * Currently it isn’t modified after it’s set (so no locks protect
393 * accesses), but that might have to change when we allow
394 * administrators to change running zones’ properties.
395 *
396 * The global zone’s zone_hostid must always be HW_INVALID_HOSTID so
397 * that zone_get_hostid() will function correctly.
398 */
399 uint32_t zone_hostid; /* zone’s hostid, HW_INVALID_HOSTID */
400 /* if not emulated */
401 /*
402 * zone_lock protects the following fields of a zone_t:
403 * zone_ref
404 * zone_cred_ref
405 * zone_subsys_ref
406 * zone_ref_list
407 * zone_ntasks
408 * zone_flags
409 * zone_zsd
410 * zone_pfexecd
411 */
412 kmutex_t zone_lock;
413 /*
414 * zone_linkage is the zone’s linkage into the active or
415 * death-row list. The field is protected by zonehash_lock.
416 */
417 list_node_t zone_linkage;
418 zoneid_t zone_id; /* ID of zone */
419 uint_t zone_ref; /* count of zone_hold()s on zone */
420 uint_t zone_cred_ref; /* count of zone_hold_cred()s on zone */
421 /*
422 * Fixed-sized array of subsystem-specific reference counts
423 * The sum of all of the counts must be less than or equal to zone_ref.
424 * The array is indexed by the counts’ subsystems’ zone_ref_subsys_t
425 * constants.
426 */
427 uint_t zone_subsys_ref[ZONE_REF_NUM_SUBSYS];
428 list_t zone_ref_list; /* list of zone_ref_t structs */
429 /*
430 * zone_rootvp and zone_rootpath can never be modified once set.
431 */
432 struct vnode *zone_rootvp; /* zone’s root vnode */

new/usr/src/uts/common/sys/zone.h 2

433 char *zone_rootpath; /* Path to zone’s root + ’/’ */
434 ushort_t zone_flags; /* misc flags */
435 zone_status_t zone_status; /* protected by zone_status_lock */
436 uint_t zone_ntasks; /* number of tasks executing in zone */
437 kmutex_t zone_nlwps_lock; /* protects zone_nlwps, and *_nlwps */
438 /* counters in projects and tasks */
439 /* that are within the zone */
440 rctl_qty_t zone_nlwps; /* number of lwps in zone */
441 rctl_qty_t zone_nlwps_ctl; /* protected by zone_rctls->rcs_lock */
442 rctl_qty_t zone_shmmax; /* System V shared memory usage */
443 ipc_rqty_t zone_ipc; /* System V IPC id resource usage */

445 uint_t zone_rootpathlen; /* strlen(zone_rootpath) + 1 */
446 uint32_t zone_shares; /* FSS shares allocated to zone */
447 rctl_set_t *zone_rctls; /* zone-wide (zone.*) rctls */
448 kmutex_t zone_mem_lock; /* protects zone_locked_mem and */
449 /* kpd_locked_mem for all */
450 /* projects in zone. */
451 /* Also protects zone_max_swap */
452 /* grab after p_lock, before rcs_lock */
453 rctl_qty_t zone_locked_mem; /* bytes of locked memory in */
454 /* zone */
455 rctl_qty_t zone_locked_mem_ctl; /* Current locked memory */
456 /* limit. Protected by */
457 /* zone_rctls->rcs_lock */
458 rctl_qty_t zone_max_swap; /* bytes of swap reserved by zone */
459 rctl_qty_t zone_max_swap_ctl; /* current swap limit. */
460 /* Protected by */
461 /* zone_rctls->rcs_lock */
462 kmutex_t zone_rctl_lock; /* protects zone_max_lofi */
463 rctl_qty_t zone_max_lofi; /* lofi devs for zone */
464 rctl_qty_t zone_max_lofi_ctl; /* current lofi limit. */
465 /* Protected by */
466 /* zone_rctls->rcs_lock */
467 list_t zone_zsd; /* list of Zone-Specific Data values */
468 kcondvar_t zone_cv; /* used to signal state changes */
469 struct proc *zone_zsched; /* Dummy kernel "zsched" process */
470 pid_t zone_proc_initpid; /* pid of "init" for this zone */
471 char *zone_initname; /* fs path to ’init’ */
472 int zone_boot_err; /* for zone_boot() if boot fails */
473 char *zone_bootargs; /* arguments passed via zone_boot() */
474 uint64_t zone_phys_mcap; /* physical memory cap */
475 /*
476 * zone_kthreads is protected by zone_status_lock.
477 */
478 kthread_t *zone_kthreads; /* kernel threads in zone */
479 struct priv_set *zone_privset; /* limit set for zone */
480 /*
481 * zone_vfslist is protected by vfs_list_lock().
482 */
483 struct vfs *zone_vfslist; /* list of FS’s mounted in zone */
484 uint64_t zone_uniqid; /* unique zone generation number */
485 struct cred *zone_kcred; /* kcred-like, zone-limited cred */
486 /*
487 * zone_pool is protected by pool_lock().
488 */
489 struct pool *zone_pool; /* pool the zone is bound to */
490 hrtime_t zone_pool_mod; /* last pool bind modification time */
491 /* zone_psetid is protected by cpu_lock */
492 psetid_t zone_psetid; /* pset the zone is bound to */

494 time_t zone_boot_time; /* Similar to boot_time */

496 /*
497 * The following two can be read without holding any locks. They are
498 * updated under cpu_lock.

new/usr/src/uts/common/sys/zone.h 3

499 */
500 int zone_ncpus; /* zone’s idea of ncpus */
501 int zone_ncpus_online; /* zone’s idea of ncpus_online */
502 /*
503 * List of ZFS datasets exported to this zone.
504 */
505 list_t zone_datasets; /* list of datasets */

507 ts_label_t *zone_slabel; /* zone sensitivity label */
508 int zone_match; /* require label match for packets */
509 tsol_mlp_list_t zone_mlps; /* MLPs on zone-private addresses */

511 boolean_t zone_restart_init; /* Restart init if it dies? */
512 struct brand *zone_brand; /* zone’s brand */
513 void *zone_brand_data; /* store brand specific data */
514 id_t zone_defaultcid; /* dflt scheduling class id */
515 kstat_t *zone_swapresv_kstat;
516 kstat_t *zone_lockedmem_kstat;
517 /*
518 * zone_dl_list is protected by zone_lock
519 */
520 list_t zone_dl_list;
521 netstack_t *zone_netstack;
522 struct cpucap *zone_cpucap; /* CPU caps data */
523 /*
524 * Solaris Auditing per-zone audit context
525 */
526 struct au_kcontext *zone_audit_kctxt;
527 /*
528 * For private use by mntfs.
529 */
530 struct mntelem *zone_mntfs_db;
531 krwlock_t zone_mntfs_db_lock;

533 struct klpd_reg *zone_pfexecd;

535 char *zone_fs_allowed;
536 rctl_qty_t zone_nprocs; /* number of processes in the zone */
537 rctl_qty_t zone_nprocs_ctl; /* current limit protected by */
538 /* zone_rctls->rcs_lock */
539 kstat_t *zone_nprocs_kstat;

541 /*
542 * DTrace-private per-zone state
543 */
544 int zone_dtrace_getf; /* # of unprivileged getf()s */
545 #endif /* ! codereview */
546 } zone_t;

548 /*
549 * Special value of zone_psetid to indicate that pools are disabled.
550 */
551 #define ZONE_PS_INVAL PS_MYID

554 extern zone_t zone0;
555 extern zone_t *global_zone;
556 extern uint_t maxzones;
557 extern rctl_hndl_t rc_zone_nlwps;
558 extern rctl_hndl_t rc_zone_nprocs;

560 extern long zone(int, void *, void *, void *, void *);
561 extern void zone_zsd_init(void);
562 extern void zone_init(void);
563 extern void zone_hold(zone_t *);
564 extern void zone_rele(zone_t *);

new/usr/src/uts/common/sys/zone.h 4

565 extern void zone_init_ref(zone_ref_t *);
566 extern void zone_hold_ref(zone_t *, zone_ref_t *, zone_ref_subsys_t);
567 extern void zone_rele_ref(zone_ref_t *, zone_ref_subsys_t);
568 extern void zone_cred_hold(zone_t *);
569 extern void zone_cred_rele(zone_t *);
570 extern void zone_task_hold(zone_t *);
571 extern void zone_task_rele(zone_t *);
572 extern zone_t *zone_find_by_id(zoneid_t);
573 extern zone_t *zone_find_by_label(const ts_label_t *);
574 extern zone_t *zone_find_by_name(char *);
575 extern zone_t *zone_find_by_any_path(const char *, boolean_t);
576 extern zone_t *zone_find_by_path(const char *);
577 extern zoneid_t getzoneid(void);
578 extern zone_t *zone_find_by_id_nolock(zoneid_t);
579 extern int zone_datalink_walk(zoneid_t, int (*)(datalink_id_t, void *), void *);
580 extern int zone_check_datalink(zoneid_t *, datalink_id_t);

582 /*
583 * Zone-specific data (ZSD) APIs
584 */
585 /*
586 * The following is what code should be initializing its zone_key_t to if it
587 * calls zone_getspecific() without necessarily knowing that zone_key_create()
588 * has been called on the key.
589 */
590 #define ZONE_KEY_UNINITIALIZED 0

592 typedef uint_t zone_key_t;

594 extern void zone_key_create(zone_key_t *, void *(*)(zoneid_t),
595 void (*)(zoneid_t, void *), void (*)(zoneid_t, void *));
596 extern int zone_key_delete(zone_key_t);
597 extern void *zone_getspecific(zone_key_t, zone_t *);
598 extern int zone_setspecific(zone_key_t, zone_t *, const void *);

600 /*
601 * The definition of a zsd_entry is truly private to zone.c and is only
602 * placed here so it can be shared with mdb.
603 *
604 * State maintained for each zone times each registered key, which tracks
605 * the state of the create, shutdown and destroy callbacks.
606 *
607 * zsd_flags is used to keep track of pending actions to avoid holding locks
608 * when calling the create/shutdown/destroy callbacks, since doing so
609 * could lead to deadlocks.
610 */
611 struct zsd_entry {
612 zone_key_t zsd_key; /* Key used to lookup value */
613 void *zsd_data; /* Caller-managed value */
614 /*
615 * Callbacks to be executed when a zone is created, shutdown, and
616 * destroyed, respectively.
617 */
618 void *(*zsd_create)(zoneid_t);
619 void (*zsd_shutdown)(zoneid_t, void *);
620 void (*zsd_destroy)(zoneid_t, void *);
621 list_node_t zsd_linkage;
622 uint16_t zsd_flags; /* See below */
623 kcondvar_t zsd_cv;
624 };

626 /*
627 * zsd_flags
628 */
629 #define ZSD_CREATE_NEEDED 0x0001
630 #define ZSD_CREATE_INPROGRESS 0x0002

new/usr/src/uts/common/sys/zone.h 5

631 #define ZSD_CREATE_COMPLETED 0x0004
632 #define ZSD_SHUTDOWN_NEEDED 0x0010
633 #define ZSD_SHUTDOWN_INPROGRESS 0x0020
634 #define ZSD_SHUTDOWN_COMPLETED 0x0040
635 #define ZSD_DESTROY_NEEDED 0x0100
636 #define ZSD_DESTROY_INPROGRESS 0x0200
637 #define ZSD_DESTROY_COMPLETED 0x0400

639 #define ZSD_CREATE_ALL \
640 (ZSD_CREATE_NEEDED|ZSD_CREATE_INPROGRESS|ZSD_CREATE_COMPLETED)
641 #define ZSD_SHUTDOWN_ALL \
642 (ZSD_SHUTDOWN_NEEDED|ZSD_SHUTDOWN_INPROGRESS|ZSD_SHUTDOWN_COMPLETED)
643 #define ZSD_DESTROY_ALL \
644 (ZSD_DESTROY_NEEDED|ZSD_DESTROY_INPROGRESS|ZSD_DESTROY_COMPLETED)

646 #define ZSD_ALL_INPROGRESS \
647 (ZSD_CREATE_INPROGRESS|ZSD_SHUTDOWN_INPROGRESS|ZSD_DESTROY_INPROGRESS)

649 /*
650 * Macros to help with zone visibility restrictions.
651 */

653 /*
654 * Is process in the global zone?
655 */
656 #define INGLOBALZONE(p) \
657 ((p)->p_zone == global_zone)

659 /*
660 * Can process view objects in given zone?
661 */
662 #define HASZONEACCESS(p, zoneid) \
663 ((p)->p_zone->zone_id == (zoneid) || INGLOBALZONE(p))

665 /*
666 * Convenience macro to see if a resolved path is visible from within a
667 * given zone.
668 *
669 * The basic idea is that the first (zone_rootpathlen - 1) bytes of the
670 * two strings must be equal. Since the rootpathlen has a trailing ’/’,
671 * we want to skip everything in the path up to (but not including) the
672 * trailing ’/’.
673 */
674 #define ZONE_PATH_VISIBLE(path, zone) \
675 (strncmp((path), (zone)->zone_rootpath, \
676 (zone)->zone_rootpathlen - 1) == 0)

678 /*
679 * Convenience macro to go from the global view of a path to that seen
680 * from within said zone. It is the responsibility of the caller to
681 * ensure that the path is a resolved one (ie, no ’..’s or ’.’s), and is
682 * in fact visible from within the zone.
683 */
684 #define ZONE_PATH_TRANSLATE(path, zone) \
685 (ASSERT(ZONE_PATH_VISIBLE(path, zone)), \
686 (path) + (zone)->zone_rootpathlen - 2)

688 /*
689 * Special processes visible in all zones.
690 */
691 #define ZONE_SPECIALPID(x) ((x) == 0 || (x) == 1)

693 /*
694 * Zone-safe version of thread_create() to be used when the caller wants to
695 * create a kernel thread to run within the current zone’s context.
696 */

new/usr/src/uts/common/sys/zone.h 6

697 extern kthread_t *zthread_create(caddr_t, size_t, void (*)(), void *, size_t,
698 pri_t);
699 extern void zthread_exit(void);

701 /*
702 * Functions for an external observer to register interest in a zone’s status
703 * change. Observers will be woken up when the zone status equals the status
704 * argument passed in (in the case of zone_status_timedwait, the function may
705 * also return because of a timeout; zone_status_wait_sig may return early due
706 * to a signal being delivered; zone_status_timedwait_sig may return for any of
707 * the above reasons).
708 *
709 * Otherwise these behave identically to cv_timedwait(), cv_wait(), and
710 * cv_wait_sig() respectively.
711 */
712 extern clock_t zone_status_timedwait(zone_t *, clock_t, zone_status_t);
713 extern clock_t zone_status_timedwait_sig(zone_t *, clock_t, zone_status_t);
714 extern void zone_status_wait(zone_t *, zone_status_t);
715 extern int zone_status_wait_sig(zone_t *, zone_status_t);

717 /*
718 * Get the status of the zone (at the time it was called). The state may
719 * have progressed by the time it is returned.
720 */
721 extern zone_status_t zone_status_get(zone_t *);

723 /*
724 * Safely get the hostid of the specified zone (defaults to machine’s hostid
725 * if the specified zone doesn’t emulate a hostid). Passing NULL retrieves
726 * the global zone’s (i.e., physical system’s) hostid.
727 */
728 extern uint32_t zone_get_hostid(zone_t *);

730 /*
731 * Get the "kcred" credentials corresponding to the given zone.
732 */
733 extern struct cred *zone_get_kcred(zoneid_t);

735 /*
736 * Get/set the pool the zone is currently bound to.
737 */
738 extern struct pool *zone_pool_get(zone_t *);
739 extern void zone_pool_set(zone_t *, struct pool *);

741 /*
742 * Get/set the pset the zone is currently using.
743 */
744 extern psetid_t zone_pset_get(zone_t *);
745 extern void zone_pset_set(zone_t *, psetid_t);

747 /*
748 * Get the number of cpus/online-cpus visible from the given zone.
749 */
750 extern int zone_ncpus_get(zone_t *);
751 extern int zone_ncpus_online_get(zone_t *);

753 /*
754 * Returns true if the named pool/dataset is visible in the current zone.
755 */
756 extern int zone_dataset_visible(const char *, int *);

758 /*
759 * zone version of kadmin()
760 */
761 extern int zone_kadmin(int, int, const char *, cred_t *);
762 extern void zone_shutdown_global(void);

new/usr/src/uts/common/sys/zone.h 7

764 extern void mount_in_progress(void);
765 extern void mount_completed(void);

767 extern int zone_walk(int (*)(zone_t *, void *), void *);

769 extern rctl_hndl_t rc_zone_locked_mem;
770 extern rctl_hndl_t rc_zone_max_swap;
771 extern rctl_hndl_t rc_zone_max_lofi;

773 #endif /* _KERNEL */

775 #ifdef __cplusplus
776 }
777 #endif

779 #endif /* _SYS_ZONE_H */

new/usr/src/uts/intel/dtrace/sdt.c 1

**
 13145 Tue Jan 14 16:50:06 2014
new/usr/src/uts/intel/dtrace/sdt.c
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
28 */
29 #endif /* ! codereview */

31 #include <sys/modctl.h>
32 #include <sys/sunddi.h>
33 #include <sys/dtrace.h>
34 #include <sys/kobj.h>
35 #include <sys/stat.h>
36 #include <sys/conf.h>
37 #include <vm/seg_kmem.h>
38 #include <sys/stack.h>
39 #include <sys/frame.h>
40 #include <sys/dtrace_impl.h>
41 #include <sys/cmn_err.h>
42 #include <sys/sysmacros.h>
43 #include <sys/privregs.h>
44 #include <sys/sdt_impl.h>

46 #define SDT_PATCHVAL 0xf0
47 #define SDT_ADDR2NDX(addr) ((((uintptr_t)(addr)) >> 4) & sdt_probetab_mask)
48 #define SDT_PROBETAB_SIZE 0x1000 /* 4k entries -- 16K total */

50 static dev_info_t *sdt_devi;
51 static int sdt_verbose = 0;
52 static sdt_probe_t **sdt_probetab;
53 static int sdt_probetab_size;
54 static int sdt_probetab_mask;

56 /*ARGSUSED*/
57 static int

new/usr/src/uts/intel/dtrace/sdt.c 2

58 sdt_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax)
59 {
60 uintptr_t stack0, stack1, stack2, stack3, stack4;
61 int i = 0;
62 sdt_probe_t *sdt = sdt_probetab[SDT_ADDR2NDX(addr)];

64 #ifdef __amd64
65 /*
66 * On amd64, stack[0] contains the dereferenced stack pointer,
67 * stack[1] contains savfp, stack[2] contains savpc. We want
68 * to step over these entries.
69 */
70 i += 3;
71 #endif

73 for (; sdt != NULL; sdt = sdt->sdp_hashnext) {
74 if ((uintptr_t)sdt->sdp_patchpoint == addr) {
75 /*
76 * When accessing the arguments on the stack, we must
77 * protect against accessing beyond the stack. We can
78 * safely set NOFAULT here -- we know that interrupts
79 * are already disabled.
80 */
81 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
82 stack0 = stack[i++];
83 stack1 = stack[i++];
84 stack2 = stack[i++];
85 stack3 = stack[i++];
86 stack4 = stack[i++];
87 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT |
88 CPU_DTRACE_BADADDR);

90 dtrace_probe(sdt->sdp_id, stack0, stack1,
91 stack2, stack3, stack4);

93 return (DTRACE_INVOP_NOP);
94 }
95 }

97 return (0);
98 }

100 /*ARGSUSED*/
101 static void
102 sdt_provide_module(void *arg, struct modctl *ctl)
103 {
104 struct module *mp = ctl->mod_mp;
105 char *modname = ctl->mod_modname;
106 sdt_probedesc_t *sdpd;
107 sdt_probe_t *sdp, *old;
108 sdt_provider_t *prov;
109 int len;

111 /*
112 * One for all, and all for one: if we haven’t yet registered all of
113 * our providers, we’ll refuse to provide anything.
114 */
115 for (prov = sdt_providers; prov->sdtp_name != NULL; prov++) {
116 if (prov->sdtp_id == DTRACE_PROVNONE)
117 return;
118 }

120 if (mp->sdt_nprobes != 0 || (sdpd = mp->sdt_probes) == NULL)
121 return;

123 for (sdpd = mp->sdt_probes; sdpd != NULL; sdpd = sdpd->sdpd_next) {

new/usr/src/uts/intel/dtrace/sdt.c 3

124 char *name = sdpd->sdpd_name, *func, *nname;
125 int i, j;
126 sdt_provider_t *prov;
127 ulong_t offs;
128 dtrace_id_t id;

130 for (prov = sdt_providers; prov->sdtp_prefix != NULL; prov++) {
131 char *prefix = prov->sdtp_prefix;

133 if (strncmp(name, prefix, strlen(prefix)) == 0) {
134 name += strlen(prefix);
135 break;
136 }
137 }

139 nname = kmem_alloc(len = strlen(name) + 1, KM_SLEEP);

141 for (i = 0, j = 0; name[j] != ’\0’; i++) {
142 if (name[j] == ’_’ && name[j + 1] == ’_’) {
143 nname[i] = ’-’;
144 j += 2;
145 } else {
146 nname[i] = name[j++];
147 }
148 }

150 nname[i] = ’\0’;

152 sdp = kmem_zalloc(sizeof (sdt_probe_t), KM_SLEEP);
153 sdp->sdp_loadcnt = ctl->mod_loadcnt;
154 sdp->sdp_ctl = ctl;
155 sdp->sdp_name = nname;
156 sdp->sdp_namelen = len;
157 sdp->sdp_provider = prov;

159 func = kobj_searchsym(mp, sdpd->sdpd_offset, &offs);

161 if (func == NULL)
162 func = "<unknown>";

164 /*
165 * We have our provider. Now create the probe.
166 */
167 if ((id = dtrace_probe_lookup(prov->sdtp_id, modname,
168 func, nname)) != DTRACE_IDNONE) {
169 old = dtrace_probe_arg(prov->sdtp_id, id);
170 ASSERT(old != NULL);

172 sdp->sdp_next = old->sdp_next;
173 sdp->sdp_id = id;
174 old->sdp_next = sdp;
175 } else {
176 sdp->sdp_id = dtrace_probe_create(prov->sdtp_id,
177 modname, func, nname, 3, sdp);

179 mp->sdt_nprobes++;
180 }

182 sdp->sdp_hashnext =
183 sdt_probetab[SDT_ADDR2NDX(sdpd->sdpd_offset)];
184 sdt_probetab[SDT_ADDR2NDX(sdpd->sdpd_offset)] = sdp;

186 sdp->sdp_patchval = SDT_PATCHVAL;
187 sdp->sdp_patchpoint = (uint8_t *)sdpd->sdpd_offset;
188 sdp->sdp_savedval = *sdp->sdp_patchpoint;
189 }

new/usr/src/uts/intel/dtrace/sdt.c 4

190 }

192 /*ARGSUSED*/
193 static void
194 sdt_destroy(void *arg, dtrace_id_t id, void *parg)
195 {
196 sdt_probe_t *sdp = parg, *old, *last, *hash;
197 struct modctl *ctl = sdp->sdp_ctl;
198 int ndx;

200 if (ctl != NULL && ctl->mod_loadcnt == sdp->sdp_loadcnt) {
201 if ((ctl->mod_loadcnt == sdp->sdp_loadcnt &&
202 ctl->mod_loaded)) {
203 ((struct module *)(ctl->mod_mp))->sdt_nprobes--;
204 }
205 }

207 while (sdp != NULL) {
208 old = sdp;

210 /*
211 * Now we need to remove this probe from the sdt_probetab.
212 */
213 ndx = SDT_ADDR2NDX(sdp->sdp_patchpoint);
214 last = NULL;
215 hash = sdt_probetab[ndx];

217 while (hash != sdp) {
218 ASSERT(hash != NULL);
219 last = hash;
220 hash = hash->sdp_hashnext;
221 }

223 if (last != NULL) {
224 last->sdp_hashnext = sdp->sdp_hashnext;
225 } else {
226 sdt_probetab[ndx] = sdp->sdp_hashnext;
227 }

229 kmem_free(sdp->sdp_name, sdp->sdp_namelen);
230 sdp = sdp->sdp_next;
231 kmem_free(old, sizeof (sdt_probe_t));
232 }
233 }

235 /*ARGSUSED*/
236 static int
237 sdt_enable(void *arg, dtrace_id_t id, void *parg)
238 {
239 sdt_probe_t *sdp = parg;
240 struct modctl *ctl = sdp->sdp_ctl;

242 ctl->mod_nenabled++;

244 /*
245 * If this module has disappeared since we discovered its probes,
246 * refuse to enable it.
247 */
248 if (!ctl->mod_loaded) {
249 if (sdt_verbose) {
250 cmn_err(CE_NOTE, "sdt is failing for probe %s "
251 "(module %s unloaded)",
252 sdp->sdp_name, ctl->mod_modname);
253 }
254 goto err;
255 }

new/usr/src/uts/intel/dtrace/sdt.c 5

257 /*
258 * Now check that our modctl has the expected load count. If it
259 * doesn’t, this module must have been unloaded and reloaded -- and
260 * we’re not going to touch it.
261 */
262 if (ctl->mod_loadcnt != sdp->sdp_loadcnt) {
263 if (sdt_verbose) {
264 cmn_err(CE_NOTE, "sdt is failing for probe %s "
265 "(module %s reloaded)",
266 sdp->sdp_name, ctl->mod_modname);
267 }
268 goto err;
269 }

271 while (sdp != NULL) {
272 *sdp->sdp_patchpoint = sdp->sdp_patchval;
273 sdp = sdp->sdp_next;
274 }
275 err:
276 return (0);
277 }

279 /*ARGSUSED*/
280 static void
281 sdt_disable(void *arg, dtrace_id_t id, void *parg)
282 {
283 sdt_probe_t *sdp = parg;
284 struct modctl *ctl = sdp->sdp_ctl;

286 ctl->mod_nenabled--;

288 if (!ctl->mod_loaded || ctl->mod_loadcnt != sdp->sdp_loadcnt)
289 goto err;

291 while (sdp != NULL) {
292 *sdp->sdp_patchpoint = sdp->sdp_savedval;
293 sdp = sdp->sdp_next;
294 }

296 err:
297 ;
298 }

300 /*ARGSUSED*/
301 uint64_t
302 sdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno, int aframes)
303 {
304 uintptr_t val;
305 struct frame *fp = (struct frame *)dtrace_getfp();
306 uintptr_t *stack;
307 int i;
308 #if defined(__amd64)
309 /*
310 * A total of 6 arguments are passed via registers; any argument with
311 * index of 5 or lower is therefore in a register.
312 */
313 int inreg = 5;
314 #endif

316 for (i = 1; i <= aframes; i++) {
317 fp = (struct frame *)(fp->fr_savfp);

319 if (fp->fr_savpc == (pc_t)dtrace_invop_callsite) {
320 #if !defined(__amd64)
321 /*

new/usr/src/uts/intel/dtrace/sdt.c 6

322 * If we pass through the invalid op handler, we will
323 * use the pointer that it passed to the stack as the
324 * second argument to dtrace_invop() as the pointer to
325 * the stack.
326 */
327 stack = ((uintptr_t **)&fp[1])[1];
328 #else
329 /*
330 * In the case of amd64, we will use the pointer to the
331 * regs structure that was pushed when we took the
332 * trap. To get this structure, we must increment
333 * beyond the frame structure. If the argument that
334 * we’re seeking is passed on the stack, we’ll pull
335 * the true stack pointer out of the saved registers
336 * and decrement our argument by the number of
337 * arguments passed in registers; if the argument
338 * we’re seeking is passed in regsiters, we can just
339 * load it directly.
340 */
341 struct regs *rp = (struct regs *)((uintptr_t)&fp[1] +
342 sizeof (uintptr_t));

344 if (argno <= inreg) {
345 stack = (uintptr_t *)&rp->r_rdi;
346 } else {
347 stack = (uintptr_t *)(rp->r_rsp);
348 argno -= (inreg + 1);
349 }
350 #endif
351 goto load;
352 }
353 }

355 /*
356 * We know that we did not come through a trap to get into
357 * dtrace_probe() -- the provider simply called dtrace_probe()
358 * directly. As this is the case, we need to shift the argument
359 * that we’re looking for: the probe ID is the first argument to
360 * dtrace_probe(), so the argument n will actually be found where
361 * one would expect to find argument (n + 1).
362 */
363 argno++;

365 #if defined(__amd64)
366 if (argno <= inreg) {
367 /*
368 * This shouldn’t happen. If the argument is passed in a
369 * register then it should have been, well, passed in a
370 * register...
371 */
372 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
373 return (0);
374 }

376 argno -= (inreg + 1);
377 #endif
378 stack = (uintptr_t *)&fp[1];

380 load:
381 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
382 val = stack[argno];
383 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);

385 return (val);
386 }

new/usr/src/uts/intel/dtrace/sdt.c 7

388 static dtrace_pops_t sdt_pops = {
389 NULL,
390 sdt_provide_module,
391 sdt_enable,
392 sdt_disable,
393 NULL,
394 NULL,
395 sdt_getargdesc,
396 sdt_getarg,
397 NULL,
398 sdt_destroy
399 };

401 /*ARGSUSED*/
402 static int
403 sdt_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
404 {
405 sdt_provider_t *prov;

407 if (ddi_create_minor_node(devi, "sdt", S_IFCHR,
408 0, DDI_PSEUDO, NULL) == DDI_FAILURE) {
409 cmn_err(CE_NOTE, "/dev/sdt couldn’t create minor node");
410 ddi_remove_minor_node(devi, NULL);
411 return (DDI_FAILURE);
412 }

414 ddi_report_dev(devi);
415 sdt_devi = devi;

417 if (sdt_probetab_size == 0)
418 sdt_probetab_size = SDT_PROBETAB_SIZE;

420 sdt_probetab_mask = sdt_probetab_size - 1;
421 sdt_probetab =
422 kmem_zalloc(sdt_probetab_size * sizeof (sdt_probe_t *), KM_SLEEP);
423 dtrace_invop_add(sdt_invop);

425 for (prov = sdt_providers; prov->sdtp_name != NULL; prov++) {
426 uint32_t priv;

428 if (prov->sdtp_priv == DTRACE_PRIV_NONE) {
429 priv = DTRACE_PRIV_KERNEL;
430 sdt_pops.dtps_mode = NULL;
431 } else {
432 priv = prov->sdtp_priv;
433 ASSERT(priv == DTRACE_PRIV_USER);
434 sdt_pops.dtps_mode = sdt_mode;
435 }

437 #endif /* ! codereview */
438 if (dtrace_register(prov->sdtp_name, prov->sdtp_attr,
439 priv, NULL, &sdt_pops, prov, &prov->sdtp_id) != 0) {
26 DTRACE_PRIV_KERNEL, NULL,
27 &sdt_pops, prov, &prov->sdtp_id) != 0) {
440 cmn_err(CE_WARN, "failed to register sdt provider %s",
441 prov->sdtp_name);
442 }
443 }

445 return (DDI_SUCCESS);
446 }

______unchanged_portion_omitted_

new/usr/src/uts/sparc/dtrace/sdt.c 1

**
 11768 Tue Jan 14 16:50:07 2014
new/usr/src/uts/sparc/dtrace/sdt.c
2915 DTrace in a zone should see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have limited provider access
Reviewed by: Joshua M. Clulow <josh@sysmgr.org>
Reviewed by: Adam Leventhal <ahl@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
28 */
29 #endif /* ! codereview */

31 #include <sys/modctl.h>
32 #include <sys/sunddi.h>
33 #include <sys/dtrace.h>
34 #include <sys/kobj.h>
35 #include <sys/stat.h>
36 #include <sys/conf.h>
37 #include <vm/seg_kmem.h>
38 #include <sys/stack.h>
39 #include <sys/sdt_impl.h>

41 static dev_info_t *sdt_devi;

43 int sdt_verbose = 0;

45 #define SDT_REG_G0 0
46 #define SDT_REG_O0 8
47 #define SDT_REG_O1 9
48 #define SDT_REG_O2 10
49 #define SDT_REG_O3 11
50 #define SDT_REG_O4 12
51 #define SDT_REG_O5 13
52 #define SDT_REG_I0 24
53 #define SDT_REG_I1 25
54 #define SDT_REG_I2 26
55 #define SDT_REG_I3 27
56 #define SDT_REG_I4 28
57 #define SDT_REG_I5 29

new/usr/src/uts/sparc/dtrace/sdt.c 2

59 #define SDT_SIMM13_MASK 0x1fff
60 #define SDT_SIMM13_MAX ((int32_t)0xfff)
61 #define SDT_CALL(from, to) (((uint32_t)1 << 30) | \
62 (((uintptr_t)(to) - (uintptr_t)(from) >> 2) & \
63 0x3fffffff))
64 #define SDT_SAVE (0x9de3a000 | (-SA(MINFRAME) & SDT_SIMM13_MASK))
65 #define SDT_RET 0x81c7e008
66 #define SDT_RESTORE 0x81e80000

68 #define SDT_OP_SETHI 0x1000000
69 #define SDT_OP_OR 0x80100000

71 #define SDT_FMT2_RD_SHIFT 25
72 #define SDT_IMM22_SHIFT 10
73 #define SDT_IMM22_MASK 0x3fffff
74 #define SDT_IMM10_MASK 0x3ff

76 #define SDT_FMT3_RD_SHIFT 25
77 #define SDT_FMT3_RS1_SHIFT 14
78 #define SDT_FMT3_RS2_SHIFT 0
79 #define SDT_FMT3_IMM (1 << 13)

81 #define SDT_MOV(rs, rd) \
82 (SDT_OP_OR | (SDT_REG_G0 << SDT_FMT3_RS1_SHIFT) | \
83 ((rs) << SDT_FMT3_RS2_SHIFT) | ((rd) << SDT_FMT3_RD_SHIFT))

85 #define SDT_ORLO(rs, val, rd) \
86 (SDT_OP_OR | ((rs) << SDT_FMT3_RS1_SHIFT) | \
87 ((rd) << SDT_FMT3_RD_SHIFT) | SDT_FMT3_IMM | ((val) & SDT_IMM10_MASK))

89 #define SDT_ORSIMM13(rs, val, rd) \
90 (SDT_OP_OR | ((rs) << SDT_FMT3_RS1_SHIFT) | \
91 ((rd) << SDT_FMT3_RD_SHIFT) | SDT_FMT3_IMM | ((val) & SDT_SIMM13_MASK))

93 #define SDT_SETHI(val, reg) \
94 (SDT_OP_SETHI | (reg << SDT_FMT2_RD_SHIFT) | \
95 ((val >> SDT_IMM22_SHIFT) & SDT_IMM22_MASK))

97 #define SDT_ENTRY_SIZE (11 * sizeof (uint32_t))

99 static void
100 sdt_initialize(sdt_probe_t *sdp, uint32_t **trampoline)
101 {
102 uint32_t *instr = *trampoline;

104 *instr++ = SDT_SAVE;

106 if (sdp->sdp_id > (uint32_t)SDT_SIMM13_MAX) {
107 *instr++ = SDT_SETHI(sdp->sdp_id, SDT_REG_O0);
108 *instr++ = SDT_ORLO(SDT_REG_O0, sdp->sdp_id, SDT_REG_O0);
109 } else {
110 *instr++ = SDT_ORSIMM13(SDT_REG_G0, sdp->sdp_id, SDT_REG_O0);
111 }

113 *instr++ = SDT_MOV(SDT_REG_I0, SDT_REG_O1);
114 *instr++ = SDT_MOV(SDT_REG_I1, SDT_REG_O2);
115 *instr++ = SDT_MOV(SDT_REG_I2, SDT_REG_O3);
116 *instr++ = SDT_MOV(SDT_REG_I3, SDT_REG_O4);
117 *instr = SDT_CALL(instr, dtrace_probe);
118 instr++;
119 *instr++ = SDT_MOV(SDT_REG_I4, SDT_REG_O5);

121 *instr++ = SDT_RET;
122 *instr++ = SDT_RESTORE;
123 *trampoline = instr;

new/usr/src/uts/sparc/dtrace/sdt.c 3

124 }

126 /*ARGSUSED*/
127 static void
128 sdt_provide_module(void *arg, struct modctl *ctl)
129 {
130 struct module *mp = ctl->mod_mp;
131 char *modname = ctl->mod_modname;
132 int primary, nprobes = 0;
133 sdt_probedesc_t *sdpd;
134 sdt_probe_t *sdp, *old;
135 uint32_t *tab;
136 sdt_provider_t *prov;
137 int len;

139 /*
140 * One for all, and all for one: if we haven’t yet registered all of
141 * our providers, we’ll refuse to provide anything.
142 */
143 for (prov = sdt_providers; prov->sdtp_name != NULL; prov++) {
144 if (prov->sdtp_id == DTRACE_PROVNONE)
145 return;
146 }

148 if (mp->sdt_nprobes != 0 || (sdpd = mp->sdt_probes) == NULL)
149 return;

151 kobj_textwin_alloc(mp);

153 /*
154 * Hack to identify unix/genunix/krtld.
155 */
156 primary = vmem_contains(heap_arena, (void *)ctl,
157 sizeof (struct modctl)) == 0;

159 /*
160 * If there hasn’t been an sdt table allocated, we’ll do so now.
161 */
162 if (mp->sdt_tab == NULL) {
163 for (; sdpd != NULL; sdpd = sdpd->sdpd_next) {
164 nprobes++;
165 }

167 /*
168 * We could (should?) determine precisely the size of the
169 * table -- but a reasonable maximum will suffice.
170 */
171 mp->sdt_size = nprobes * SDT_ENTRY_SIZE;
172 mp->sdt_tab = kobj_texthole_alloc(mp->text, mp->sdt_size);

174 if (mp->sdt_tab == NULL) {
175 cmn_err(CE_WARN, "couldn’t allocate SDT table "
176 "for module %s", modname);
177 return;
178 }
179 }

181 tab = (uint32_t *)mp->sdt_tab;

183 for (sdpd = mp->sdt_probes; sdpd != NULL; sdpd = sdpd->sdpd_next) {
184 char *name = sdpd->sdpd_name, *func, *nname;
185 int i, j;
186 sdt_provider_t *prov;
187 ulong_t offs;
188 dtrace_id_t id;

new/usr/src/uts/sparc/dtrace/sdt.c 4

190 for (prov = sdt_providers; prov->sdtp_prefix != NULL; prov++) {
191 char *prefix = prov->sdtp_prefix;

193 if (strncmp(name, prefix, strlen(prefix)) == 0) {
194 name += strlen(prefix);
195 break;
196 }
197 }

199 nname = kmem_alloc(len = strlen(name) + 1, KM_SLEEP);

201 for (i = 0, j = 0; name[j] != ’\0’; i++) {
202 if (name[j] == ’_’ && name[j + 1] == ’_’) {
203 nname[i] = ’-’;
204 j += 2;
205 } else {
206 nname[i] = name[j++];
207 }
208 }

210 nname[i] = ’\0’;

212 sdp = kmem_zalloc(sizeof (sdt_probe_t), KM_SLEEP);
213 sdp->sdp_loadcnt = ctl->mod_loadcnt;
214 sdp->sdp_primary = primary;
215 sdp->sdp_ctl = ctl;
216 sdp->sdp_name = nname;
217 sdp->sdp_namelen = len;
218 sdp->sdp_provider = prov;

220 func = kobj_searchsym(mp, sdpd->sdpd_offset +
221 (uintptr_t)mp->text, &offs);

223 if (func == NULL)
224 func = "<unknown>";

226 /*
227 * We have our provider. Now create the probe.
228 */
229 if ((id = dtrace_probe_lookup(prov->sdtp_id, modname,
230 func, nname)) != DTRACE_IDNONE) {
231 old = dtrace_probe_arg(prov->sdtp_id, id);
232 ASSERT(old != NULL);

234 sdp->sdp_next = old->sdp_next;
235 sdp->sdp_id = id;
236 old->sdp_next = sdp;
237 } else {
238 sdp->sdp_id = dtrace_probe_create(prov->sdtp_id,
239 modname, func, nname, 1, sdp);

241 mp->sdt_nprobes++;
242 }

244 sdp->sdp_patchval = SDT_CALL((uintptr_t)mp->text +
245 sdpd->sdpd_offset, tab);
246 sdp->sdp_patchpoint = (uint32_t *)((uintptr_t)mp->textwin +
247 sdpd->sdpd_offset);
248 sdp->sdp_savedval = *sdp->sdp_patchpoint;
249 sdt_initialize(sdp, &tab);
250 }
251 }

253 /*ARGSUSED*/
254 static void
255 sdt_destroy(void *arg, dtrace_id_t id, void *parg)

new/usr/src/uts/sparc/dtrace/sdt.c 5

256 {
257 sdt_probe_t *sdp = parg, *old;
258 struct modctl *ctl = sdp->sdp_ctl;

260 if (ctl != NULL && ctl->mod_loadcnt == sdp->sdp_loadcnt) {
261 if ((ctl->mod_loadcnt == sdp->sdp_loadcnt &&
262 ctl->mod_loaded) || sdp->sdp_primary) {
263 ((struct module *)(ctl->mod_mp))->sdt_nprobes--;
264 }
265 }

267 while (sdp != NULL) {
268 old = sdp;
269 kmem_free(sdp->sdp_name, sdp->sdp_namelen);
270 sdp = sdp->sdp_next;
271 kmem_free(old, sizeof (sdt_probe_t));
272 }
273 }

275 /*ARGSUSED*/
276 static int
277 sdt_enable(void *arg, dtrace_id_t id, void *parg)
278 {
279 sdt_probe_t *sdp = parg;
280 struct modctl *ctl = sdp->sdp_ctl;

282 ctl->mod_nenabled++;

284 /*
285 * If this module has disappeared since we discovered its probes,
286 * refuse to enable it.
287 */
288 if (!sdp->sdp_primary && !ctl->mod_loaded) {
289 if (sdt_verbose) {
290 cmn_err(CE_NOTE, "sdt is failing for probe %s "
291 "(module %s unloaded)",
292 sdp->sdp_name, ctl->mod_modname);
293 }
294 goto err;
295 }

297 /*
298 * Now check that our modctl has the expected load count. If it
299 * doesn’t, this module must have been unloaded and reloaded -- and
300 * we’re not going to touch it.
301 */
302 if (ctl->mod_loadcnt != sdp->sdp_loadcnt) {
303 if (sdt_verbose) {
304 cmn_err(CE_NOTE, "sdt is failing for probe %s "
305 "(module %s reloaded)",
306 sdp->sdp_name, ctl->mod_modname);
307 }
308 goto err;
309 }

311 while (sdp != NULL) {
312 *sdp->sdp_patchpoint = sdp->sdp_patchval;
313 sdp = sdp->sdp_next;
314 }

316 err:
317 return (0);
318 }

320 /*ARGSUSED*/
321 static void

new/usr/src/uts/sparc/dtrace/sdt.c 6

322 sdt_disable(void *arg, dtrace_id_t id, void *parg)
323 {
324 sdt_probe_t *sdp = parg;
325 struct modctl *ctl = sdp->sdp_ctl;

327 ASSERT(ctl->mod_nenabled > 0);
328 ctl->mod_nenabled--;

330 if ((!sdp->sdp_primary && !ctl->mod_loaded) ||
331 (ctl->mod_loadcnt != sdp->sdp_loadcnt))
332 goto err;

334 while (sdp != NULL) {
335 *sdp->sdp_patchpoint = sdp->sdp_savedval;
336 sdp = sdp->sdp_next;
337 }

339 err:
340 ;
341 }

343 static dtrace_pops_t sdt_pops = {
344 NULL,
345 sdt_provide_module,
346 sdt_enable,
347 sdt_disable,
348 NULL,
349 NULL,
350 sdt_getargdesc,
351 NULL,
352 NULL,
353 sdt_destroy
354 };

356 static int
357 sdt_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
358 {
359 sdt_provider_t *prov;

361 switch (cmd) {
362 case DDI_ATTACH:
363 break;
364 case DDI_RESUME:
365 return (DDI_SUCCESS);
366 default:
367 return (DDI_FAILURE);
368 }

370 if (ddi_create_minor_node(devi, "sdt", S_IFCHR, 0,
371 DDI_PSEUDO, NULL) == DDI_FAILURE) {
372 ddi_remove_minor_node(devi, NULL);
373 return (DDI_FAILURE);
374 }

376 ddi_report_dev(devi);
377 sdt_devi = devi;

379 for (prov = sdt_providers; prov->sdtp_name != NULL; prov++) {
380 uint32_t priv;

382 if (prov->sdtp_priv == DTRACE_PRIV_NONE) {
383 priv = DTRACE_PRIV_KERNEL;
384 sdt_pops.dtps_mode = NULL;
385 } else {
386 priv = prov->sdtp_priv;
387 ASSERT(priv == DTRACE_PRIV_USER);

new/usr/src/uts/sparc/dtrace/sdt.c 7

388 sdt_pops.dtps_mode = sdt_mode;
389 }

391 #endif /* ! codereview */
392 if (dtrace_register(prov->sdtp_name, prov->sdtp_attr,
393 priv, NULL, &sdt_pops, prov, &prov->sdtp_id) != 0) {
26 DTRACE_PRIV_KERNEL, NULL,
27 &sdt_pops, prov, &prov->sdtp_id) != 0) {
394 cmn_err(CE_WARN, "failed to register sdt provider %s",
395 prov->sdtp_name);
396 }
397 }

399 return (DDI_SUCCESS);
400 }

______unchanged_portion_omitted_

