new usr/src/cnd/ dtrace/test/tst/comon/aggs/tst.subr.d

R R R R

2951 Tue Jan 14 16:49:58 2014
new usr/src/cnd/ dtrace/test/tst/comon/aggs/tst.subr.d
2915 DTrace in a zone shoul d see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have linited provider access
Revi ewed by: Joshua M dul ow <j osh@ysngr. or g>
Revi ewed by: Adam Levent hal <ahl @lel phi x. con»
LEEE R R R R EEEEEEEEE SRR EEEEEREEEEEEEEEEEEEEEEEEEREREEEEEEEEESE]
1/*
* CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.
*

*

*

*

*

*

*

*

*

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END

NRERRRRRRRRER
COONOUITAWNROW©O~NOUTDWN

/

22 /*

23 * Copyright 2007 Sun Mcrosystens, Inc. All rights reserved.
24 * Use is subject to license terns.

25 */

27 #include <sys/dtrace. h>

29 #define | NTFUNC(x) \
30 BEG N \
31 | * DSTYLED*/ \
32 { \
33 subr ++; \
34 @ (long)x] = sum(1); \
35 | * DSTYLED*/ \
36 }

38 #define STRFUNC(x) \
39 BEG N \
40 / *DSTYLED*/ \
41 { \
42 subr ++; \
43 @tr[x] = sum(1l); \
44 | * DSTYLED*/ \
45 }

47 #define VO DFUNC(x) \
48 BEG N \
49 / *DSTYLED*/ \
50 { \
51 subr ++; \
52 | * DSTYLED*/ \
53 }

55 | NTFUNC(rand())
56 | NTFUNC(nut ex_owned(& cpu_I ock))
57 | NTFUNC(nut ex_owner (& cpu_l ock))

new usr/src/cnd/ dtrace/test/tst/comon/aggs/tst.subr.d

108
110

I NTFUNC(mut ex_t ype_adapt i ve(& cpu_| ock))

I NTFUNC(mut ex_t ype_spi n(& cpu_l ock))

I NTFUNC(r w_r ead_hel d(& vfssw_| ock))

I NTFUNC(rw_wri te_hel d(& vfssw_| ock))

I NTFUNC(rw_i swri ter (& vfssw |ock))

I NTFUNC(copyi n(NULL, 1))

STRFUNC(copyi nstr (NULL, 1))

I NTFUNC(specul ation())

1 NTFUNC(progenyof ($pi d))

I NTFUNC(strl en("fooey"))

VO DFUNC(copyout)

VO DFUNC(copyout str)

I NTFUNC(al | oca(10))

VO DFUNC(bcopy)

VO DFUNC(copyi nt 0)

I NTFUNC(nsgdsi ze(NULL))

I NTFUNC(msgsi ze(NULL))

| NTFUNC(get maj or (0))

I NTFUNC(get m nor (0))

STRFUNC(ddi _pat hname(NULL, 0))
STRFUNC(strjoin("foo", "bar"))

STRFUNC(I | tostr(12373))

STRFUNC(basename("/var/crash/systent ap"))
STRFUNC(di r nanme("/ var/crash/ systent ap"))
STRFUNC(cl eanpat h("/var/crash/syst ent ap"))
STRFUNC(strchr (" The Systenirap, The." 't)
STRFUNC(strrchr (" The SystenTap, The. Tt))
STRFUNC(strstr("The Systenilap, The. "The"))
STRFUNC(strtok("The Systenrlap, The.", " T"))
STRFUNC(subst r (" The Systenirap, The."

I NTFUNC(i ndex(" The Systenirap, The. The))
I NTFUNC(ri ndex(" The Systenirap, The.", "The"))
I NTFUNC(ht ons(0x1234))

I NTFUNC(ht onl (0x12345678))

I NTFUNC(ht onl | (0x1234567890abcdef L))

| NTFUNC(nt ohs(0x1234))

I NTFUNC(nt ohl (0x12345678))

I NTFUNC(nt ohl | (0x1234567890abcdef L))
STRFUNC(i net _nt oa((i paddr_t *)alloca(sizeof (ipaddr_t))))
STRFUNC(i net _ntoa6((i1 n6_addr _t *)alloca(sizeof (in6_addr_t
STRFUNC(i net _nt op(AF_I NET, (void *)alloca(sizeof (ipaddr_]
STRFUNC(t oupper ("fo00"))

STRFUNC(t ol ower (" BAR"))

I NTFUNC(get f (0))

#endif /* | codereview */

BEGI N
/'subr == DI F_SUBR MAX + 1/
{

exit(0);

BEG N

111 {

112
113
114

printf("found % subroutines, expected %\ n", subr,

exit(1);

}

1))
t))))

DI F_SUBR MAX + 1);

new usr/src/cnd/ dtrace/test/tst/comon/privs/tst.fds. ksh

R R R R

2018 Tue Jan 14 16:49:58 2014
new usr/src/cnd/ dtrace/test/tst/comon/privs/tst.fds. ksh
2915 DTrace in a zone shoul d see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have linited provider access
Revi ewed by: Joshua M dul ow <j osh@ysngr. or g>
Revi ewed by: Adam Levent hal <ahl @lel phi x. con»

R R R R R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perm ssions
11 # and limtations under the License.

12 #

13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # |f applicable, add the follow ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

22 #

23 # Copyright (c) 2012, Joyent, Inc. Al rights reserved.

24 #

26 tnpin=/tnp/tst.fds.$$.d

27 tnpout1=/tnp/tst.fds.$$. outl

28 tnpout2=/tnp/tst.fds.$$. out 2

30 cat > $tnpin <<EOF
31 #define DUWPFI ELD(fd, fnt, field) \

32 errnsg = "could not dunp field"; \

33 printf("%l: field =fnt\n", fd, fds[fd].field);
35 /*

36 * Note that we are explicitly not |ooking at fi_mount -- it (by design) does
37 */not work if not running with kernel pernissions.
38 *

39 #define DUMP(fd) \

40 DUVPFI ELD(fd, %, fi_name); \

41 DUWPFI ELD(fd, %, fi_dirnane); \

42 DUWVPFI ELD(fd, %, fi_pathnane); \

43 DUVPFI ELD(fd, %, fi_offset); \

44 DUVPFI ELD(fd, %, fi _fs);

45 DUWPFI ELD(fd, %, fi_oflags);

47 BEGA N

48 {

49 DUMP(0) ;

50 DUMP(1) ;

51 DUMP(2) ;

52 DUMP(3) ;

53 DUMP(4) ;

54 exit(0);

55 }

57 ERROR

new usr/src/cnd/ dtrace/test/tst/comon/privs/tst.fds. ksh

{
printf("error: %\n", errnsg);
exit(1);

}

EOF

#

First, with all privs
#

/usr/sbin/dtrace -q -Cs /dev/stdin < $tnpin > $t npout 2
mv $t npout 2 $t npout 1

#

And now with only dtrace_proc and dtrace_user -- the output should be
identical .

#

ppriv -s A=basic, dtrace_proc, dtrace_user $$

/usr/sbin/dtrace -q -Cs /dev/stdin < $tnpin > $tnmpout 2

echo ">>> $tnpout 1"
cat $tnpoutl

echo ">>> $tnpout 2"
cat $tnpout 2

rval =0

if ! cnp $tnpoutl $trpout2 ; then
rval =1

fi

rm $t mpout 1 $t mpout 2 $t npi n

exit $rval
#endi f /* | codereview */

new usr/src/cnd/ dtrace/test/tst/common/ privs/tst.getf.ksh

R R R R

2179 Tue Jan 14 16:49:59 2014
new usr/src/cnd/ dtrace/test/tst/comon/privs/tst.getf.ksh
2915 DTrace in a zone shoul d see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have linited provider access
Revi ewed by: Joshua M dul ow <j osh@ysngr. or g>
Revi ewed by: Adam Levent hal <ahl @lel phi x. con»

R R R R R R R R

1#
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terns of the
5 # Common Devel opnent and Distribution License (the "License").
6 # You may not use this file except in conpliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.
10 # See the License for the specific |anguage governing perm ssions
11 # and limtations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # |f applicable, add the follow ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]
18 #
19 # CDDL HEADER END
20 #
22 #
23 # Copyright (c) 2012, Joyent, Inc. Al rights reserved.

#

26 ppriv -s A=basic,dtrace_proc, dtrace_user $$
28 /usr/sbhin/dtrace -q -Cs /dev/stdin <<EOF
30 #define CANREAD(field) \

31 BEG N { this->fp = getf(0); errnsg = "can’t read field"; \

32 printf("field: "); trace(this->fp->field); printf (" n"); }
34 #define CANTREAD(field) \

35 BEG N { errmsg = ""; this->fp = getf(0); trace(this->fp->field);
36 printf("\nable to successfully read field!'"); exit(1);

38 CANREAD(f _fl ag)

39 CANREAD(f fl ag2)

40 CANREAD(f _vnode)

41 CANREAD(f _of f set)

42 CANREAD(f _cred)

43 CANREAD(f _audit _dat a)
44 CANREAD(f _count)

46 /*
47 * W can potentially read parts of our cred, but we can’'t dereference
48 * through cr_zone.

*/

50 CANTREAD(f _cred->cr_zone->zone_i d)
52 CANREAD(f _vnode->v_pat h)

53 CANREAD(f _vnode->v_op)

54 CANREAD(f _vnode- >v_op->vnop_nane)

56 CANTREAD(f _vnode->v_fI ag)
57 CANTREAD(f _vnode->v_count)

\

new usr/src/cnd/ dtrace/test/tst/comon/ privs/tst.getf.ksh

58 CANTREAD(f _vnode- >v_pages)

59 CANTREAD(f _vnode->v_t ype)

60 CANTREAD(f _vnode- >v_vf snount edher e)
61 CANTREAD(f_vnode- >v_op- >vop_open)

63 BEG N
64 {

p = getf(0);
p2 = getf(l)
h

1l
@..

s->f p->f _vnode) ;
nabl e to successful | y read this->fp!");

74 BEG N
{
76 errmsg = "
77 this->fp = getf(O)
80 BEGA N
82 trace(this->fp->f_vnode);
83 printf("\nable to successfully read this->fp fromprior clause!");
86 BEG N
{
88 exit(0);
91 ERROR
92 /errmsg !=""/
{

94 printf("fatal error: %", errnsg);
95 exit(1);

EOF
99 #endif /* ! codereview */

new usr/src/cnd/ dtrace/test/tst/common/ privs/tst.procpriv.ksh

R R R R

4157 Tue Jan 14 16:49:59 2014
new usr/src/cnd/ dtrace/test/tst/comon/privs/tst.procpriv.ksh
2915 DTrace in a zone shoul d see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have linited provider access
Revi ewed by: Joshua M dul ow <j osh@ysngr. or g>
Revi ewed by: Adam Levent hal <ahl @lel phi x. con»

R R R R R R R R

1

2 # CDDL HEADER START

3

4 # The contents of this file are subject to the terns of the

5 Common Devel opnent and Distribution License (the "License").

6 You may not use this file except in conpliance with the License.
7

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 or http://ww:. opensol aris.org/os/licensing.
10 See the License for the specific |anguage governi ng perm ssions
11 # and limtations under the License.
13 When di stributing Covered Code, include this CDDL HEADER in each
14 file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

15 If applicable, add the follow ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 information: Portions Copyright [yyyy] [name of copyright owner]

18

19 CDDL HEADER END

20

22

23 Copyright (c) 2012, Joyent, Inc. Al rights reserved.

i
N
HHHF HHHHHFHHFHHHFFHHRF TS

26 ppriv -s A=basic,dtrace_proc, dtrace_user $$

28 #

29 # When we have dtrace_proc (but lack dtrace_kernel), we expect to be able to
30 # read certain curpsinfo/curlwsinfo/curcpu fields even though they require

31 # reading in-kernel state. However, there are other fields in these translated
32 # structures that we know we shouldn’t be able to read, as they require reading
33 # in-kernel state that we cannot read with only dtrace_proc. Finally, there
34 # are a few fields that we may or may not be able to read depending on the

35 # specifics of context. This test therefore asserts that we can read what we
36 # think we should be able to, that we can’t read what we think we shouldn't be
37 # able to, and (for purposes of conpleteness) that we are indifferent about

38 # what we cannot assert one way or the other.

39 #

40 /usr/sbin/dtrace -q -Cs /dev/stdin <<EOF

42 #define CANREAD(what, field) \

43 BEG N { errmsg = "can’t read field fromwhat"; printf("field: "); \

44 trace(what->field); printf("\n"); }

46 #define CANTREAD(what, field) \

47 BEG N { errmsg = ""; trace(what->field); \

48 printf("\nable to successfully read field fromwhat!"); exit(1); }
50 #define M GHTREAD(what, field) \

51 BEGN { errmsg = ""; printf("field: "); trace(what->field); printf("\n");

53 #defi ne CANREADVAR(vnane) \
54 BEG N { errmsg = "can’t read vnanme";
55 trace(vnane); printf("\n"); }

printf("vname: "); \

57 #defi ne CANTREADVAR(vnane) \

}

new usr/src/cnd/ dtrace/test/tst/common/ privs/tst.procpriv.ksh

58 BEG N { errnmsg = ""; trace(vname); \
59 printf("\nable to successfully read vnane!");

61 #define M GHTREADVAR(vnane) \

62 BEG N { errmsg = ""; printf("vname: "); trace(vnane);

64 CANREAD(cur psi nfo, pr_pid)

65 CANREAD(cur psi nfo, pr_nlwp)
66 CANREAD(cur psi nfo, pr_ppid)
67 CANREAD(cur psi nfo, pr_uld)

68 CANREAD(cur psi nfo, pr_euid)
69 CANREAD(cur psi nfo, pr_gid)

70 CANREAD(cur psi nfo, pr_egid)
71 CANREAD(cur psi nfo, pr_addr)
72 CANREAD(cur psinfo, pr_start)
73 CANREAD(cur psi nfo, pr_fnane)
74 CANREAD(cur psi nfo, pr_psargs)
75 CANREAD(cur psi nfo, pr_argc)
76 CANREAD(cur psi nfo, pr_argv)
77 CANREAD(cur psi nfo, pr_envp)
78 CANREAD(cur psi nfo, pr_dnodel)

80 /*

exit(1);

printf("\n"); }

81 * If our p_pgidp points to the same pid structure as our p_pidp, we will

82 * be able to read pr_pgid -- but we won't if not.
*/

84 M CGHTREAD(cur psi nfo, pr_pgid)
86 CANTREAD(cur psi nfo, pr_sid)

87 CANTREAD(cur psi nfo, pr_ttydev)
88 CANTREAD(cur psi nfo, pr_projid)
89 CANTREAD(cur psi nf o, pr_zonei d)

90 CANTREAD(cur psi nfo, pr_contract)

92 CANREAD(cur | wpsi nfo, pr_fl ag)
93 CANREAD(cur | wpsi nfo, pr_I wpi d)
94 CANREAD(cur | wpsi nfo, pr_addr)
95 CANREAD(cur | wpsi nf o, pr_wchan)
96 CANREAD(cur | wpsi nfo, pr_stype)
97 CANREAD(cur | wpsi nfo, pr_state)
98 CANREAD(cur | wpsi nf o, pr_snane)
99 CANREAD(cur | wpsi nfo, pr_syscall)
100 CANREAD(cur |l wpsinfo, pr_pri)
101 CANREAD(cur |l wpsi nfo, pr_onpro)
102 CANREAD(cur | wpsi nf o, pr_bi ndpro)

103 CANREAD(cur | wpsi nf o, pr_bi ndpset)

105 CANTREAD(cur |l wpsi nfo, pr_cl nanme)

106 CANTREAD(cur | wpsi nfo, pr_Igrp)

108 CANREAD(curcpu, cpu_id)

110 CANTREAD(curcpu, cpu_pset)

111 CANTREAI(cur cpu, cpu_chip)

112 CANTREAD(cur cpu, cpu_l grp)

113 CANTREAD(cur cpu, cpu_i nfo)

115 /*

116 * We cannot assert one thing or another about the variable "root":
117 * with only dtrace_proc, it will be readable in the gl obal
118 * the non-gl obal .

119 */

120 M GHTREADVAR(1 0ot)

122 CANREADVAR(cpu)
123 CANTREADVAR(pset)

but

not

for those
readable in

new usr/src/cnd/ dtrace/test/tst/common/ privs/tst.procpriv.ksh

124 CANTREADVAR(cwd)
125 CANTREADVAR(chi p)
126 CANTREADVAR(| gr p)
128 BEG N

129 {

130 exit(0);
131 }

133 ERROR

134 /errmsg != ""/
135 {

136 printf("fatal error: %", errnsg);
137 exit(1);
138

139

}
#endif /* | codereview */

new usr/src/cnd/ dtrace/test/tst/common/ privs/tst. providers. ksh

R R R R

3027 Tue Jan 14 16:49:59 2014
new usr/src/cnd/ dtrace/test/tst/comon/ privs/tst. providers. ksh
2915 DTrace in a zone shoul d see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have linited provider access
Revi ewed by: Joshua M dul ow <j osh@ysngr. or g>
Revi ewed by: Adam Levent hal <ahl @lel phi x. con»

R R R R R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perm ssions
11 # and limtations under the License.

12 #

13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # |f applicable, add the follow ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

22 #

23 # Copyright (c) 2012, Joyent, Inc. Al rights reserved.

24 #

26 #

27 # First, nmake sure that we can successfully enable the io provider
28 #

29 if ! dtrace -Pio -n BEGN {exit(0)}' > /dev/null 2>&1 ; then

30 echo failed to enable io provider with full privs

31 exit 1

32 fi

34 ppriv -s A=basic,dtrace_proc, dtrace_user $$

36 #

37 # Now nake sure that we cannot enable the io provider with reduced privs
38 #

39 if | dtrace -x errtags -Pio -n BEGN {exit(1)}' 2>&1 | \

40 grep D_PDESC_ZERO > /dev/null 2>&l ; then

41 echo successfully enabled the io provider with reduced privs

42 exit 1

43 fi

45 #

46 # Keeping our reduced privs, we want to assure that we can see every provider
47 # that we think we should be able to see -- and that we can see curpsinfo

48 # state but can't otherw se see argunents.

49 #

50 /usr/sbin/dtrace -wg -Cs /dev/stdin <<EOF

52 int seen[string];
53 int err;

55 #defi ne CANENABLE(provider) \
56 provider::: \
57 /err == 0 && progenyof (\ $pi d) && !seen["provider"]/ \

new usr/src/cnd/ dtrace/test/tst/common/ privs/tst. providers. ksh

58 {

59 trace(argo);

60 printf("\nsuccessful trace of arg0 in %: %: %: %\n",
61 probeprov, probenod, probefunc, probenane);

62 exit(++err);

63 }

65 provider:::
66 / progenyof (\ $pid)/
{
68 seen["provider"] ++;
69 }

71 provider:::
72 [progenyof (\ $pi d)/
{

74 errstr = "provider";

75 t hi s->i gnore = stringof (curpsinfo->pr_psargs);
76 errstr ="";

77 }

79 END
80 /err == 0 && !seen["provider"]/
{

82 printf("no probes from provider\n");
83 exit(++err);
84 }

86 END
87 lerr == 0/
{

~
w
.

89 printf("saw %l probes from provider\n", seen["provider"]);
90 }

92 CANENABLE(pr oc)
93 CANENABLE(sched)
94 CANENABLE(vni nf 0)
95 CANENABLE(sysi nf o)

97 BEG N

98 {

99 /*

100 * W' Il kick off a system of a do-nothing command -- which shoul d be
101 * enough to kick proc, sched, vm nfo and sysinfo probes.

102 *

103 systenm("echo > /dev/null");

104 }

106 ERROR

107 /err == 0 & errstr I=""/

108 {

109 printf("fatal error: couldn't read curpsinfo->pr_psargs in ");
110 printf("%-provided probe\n", errstr);

111 exit(++err);

112 }

114 proc:::exit
115 / progenyof (\ $pi d)/

116 {

117 exit(0);

118 }

120 tick-10ns

121 /i++ > 500/

122 {

123 printf("exit probe did not seemto fire\n");

new usr/src/cnd/ dtrace/test/tst/common/ privs/tst. providers. ksh

124 exit(++err);

125 }

126 EOF

127 #endif /* ! codereview */

new usr/src/lib/libdtrace/ conmon/dt_open.c

R R R R

53829 Tue Jan 14 16:49:59 2014
new usr/src/lib/libdtrace/ conmon/dt_open.c
2915 DTrace in a zone shoul d see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have linited provider access
Revi ewed by: Joshua M dul ow <j osh@ysngr. or g>
Revi ewed by: Adam Levent hal <ahl @lel phi x. con»

R R R R R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.

10 * See the License for the specific | anguage governing perm ssions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]

18 =

19 * CDDL HEADER END

20 */

22 /*

23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. Al rights reserved.
24 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.

24 * Copyright (c) 2011, Joyent, Inc. Al rights reserved.

25 * Copyright (c) 2012 by Del phix. Al rights reserved.

26 */

28 #include <sys/types. h>

29 #include <sys/nodctl.h>

30 #include <sys/systeni nfo.h>
31 #include <sys/resource. h>

33 #include <libelf.h>
34 #include <strings. h>
35 #include <alloca. h>
36 #include <limts.h>
37 #include <unistd. h>
38 #include <stdlib. h>
39 #include <stdio. h>

40 #include <fcntl. h>

41 #incl ude <errno. h>

42 #include <assert. h>

44 #define _POSI X_PTHREAD_SEMANTI CS
45 #include <dirent. h>
46 #undef _POSI X_PTHREAD SEMANTI CS

48 #include <dt_inpl.h>

49 #incl ude <dt_program h>
50 #include <dt_nodul e. h>
51 #include <dt_printf.h>
52 #include <dt_string. h>
53 #include <dt_provider. h>

55 [*

56 * Stability and versioning definitions. These #defines are used in the tables

new usr/src/lib/libdtrace/ conmon/dt_open.c

B k2 B

*

*/

of identifiers belowto fill in the attribute and version fields associ ated
with each identifier. The DI_ATTR * macros are a convenience to permit nore
conci se declarations of conmon attributes such as Stabl e/ Stabl e/ Conmon. The
DT_VERS_* macros declare the encoded integer values of all versions used so
far. DT_VERS_LATEST nust correspond to the |atest version value anong all

versions exported by the D conpiler. DT_VERS STRING nust be an ASCI| string
that contains DT_VERS LATEST within it along with any suffixes (e.g. Bet a) .

You nust update DT_VERS_LATEST and DT_VERS_STRI NG when addi ng a new versi on,
and then add the new version to the _dtrace_versions[] array declared bel ow.
Refer to the Solaris Dynam ¢ Tracing Cuide Stability and Versioning chapters
respectively for an explanation of these DIrace features and their val ues.

NOTE: Al though the DTrace versioning scheme supports the |abeling and
introduction of inconpatible changes (e.g. dropping an interface in a
maj or release), the libdtrace code does not currently support this.
Al'l versions are assuned to strictly inherit fromone another. |If
we ever need to provide divergent interfaces, this will need work.

#defi ne DT_ATTR_STABCWN { DTRACE_STABI LI TY_STABLE, \

DTRACE_STABI LI TY_STABLE, DTRACE_CLASS_COWON }

#define DT_ATTR_EVOLCWN { DTRACE_STABI LI TY_EVOLVI NG, \

DTRACE_STABI LI TY_EVOLVI NG, DTRACE_CLASS_COWMON \
}
/*
* The version nunber should be increased for every custoner visible rel ease
* of DTrace. The mmjor nunber should be increnmented when a fundanental
* change has been nade that would affect all consuners, and would reflect
* sweepi ng changes to Dfrace or the D | anguage. The minor nunber should be
* increnented when a change is introduced that could break scripts that had
* previously worked; for exanple, adding a new built-in variable could break
* a script which was already using that identifier. The micro nunber shoul d
* be changed when introducing functionality changes or major bug fixes that
* do not affect backward conpatibility -- this is nmerely to make capabilities
* easily determined fromthe version nunber. M nor bugs do not require any
*/erdifi cation to the version nunber.
*
#define DT_VERS 1 0 DT_VERSI ON_NUMBER(1, 0, 0)
#define DT_VERS 1_1 DT_VERSI ON_NUMBER(1, 1, 0)
#define DT_VERS 1_2 DT_VERSI ON_NUMBER(1, 2, 0)
#define DI_VERS 1_2_1 DT_VERSI ON_NUMBER(1, 2, 1)
#define DT_VERS 1 2 2 DT_VERSI ON_NUMBER(1, 2, 2)
#define DT_VERS 1_3 DT_VERSI ON_NUMBER(1, 3, 0)
#define DT_VERS_1_4 DT_VERSI ON_NUMBER(1, 4, 0)
#define DI_VERS 1_4_1 DT_VERS| ON_NUMBER(1, 4, 1)
#define DT_VERS 1 5 DT_VERSI ON_NUMBER(1, 5, 0)
#define DT_VERS 1 6 DT_VERSI ON_NUMBER(1, 6, 0)
#define DT_VERS_1_6_1 DT_VERSI ON_NUMBER(1, 6, 1)
#define DI_VERS 1_6_2 DT_VERSI ON_NUMBER(1, 6, 2)
#define DT_VERS 1 6_3 DT_VERSI ON_NUMBER(1, 6, 3)
#define DT_VERS 1 7 DT_VERSI ON_NUMBER(1, 7, 0)
#define DT_VERS_1_7_1 DT_VERSI ON_NUMBER(1, 7, 1)
#define DT_VERS_1_8 DT_VERSI ON_NUMBER(1, 8, 0)
#define DI_VERS 1_8_1 DT_VERSI ON_NUMBER(1, 8, 1)
#define DT_VERS 1 9 DT_VERSI ON_NUMBER(1, 9, 0)
#define DI_VERS 1 9 1 DT_VERSI ON_NUMBER(1, 9, 1)
#define DI_VERS_1_10 DT_VERSI ON_NUMBER(1, 10, 0)
#define DT_VERS_LATEST DT7VER871710
#define DI_VERS_STRING "Sun D 1.10"
#define DT_VERS_LATEST DT _VERS_ 1 91
#define DI_VERS_STRING "Sun D 1.9.1"
const dt_version_t _dtrace_versions[] = {
DT_VERS_1_0, /* D APl 1.0.0 (PSARC 2001/466) Solaris 10 FCS */
DT_VERS 1_1, /* DAPI 1.1.0 Solaris Express 6/05 */

new usr/src/lib/libdtrace/ conmon/dt_open.c

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

DT_VERS 1_2, /* DAPI 1.2.0 Solaris 10 Update 1 */
DT_VERS_1_2_1, /* DAPI 1.2.1 Solaris Express 4/06 */
DI_VERS 1 2 2, /* DAPI 1.2.2 Solaris Express 6/06 */
DT_VERS 1_3, /* D API 1.3 Solaris Express 10/06 */
DT_VERS 1_4, /* D APl 1.4 Solaris Express 2/07 */
DT_VERS 1 4 1, /* DAPI 1.4.1 Solaris Express 4/07 */
DT_VERS_1_5, /* DAPI 1.5 Solaris Express 7/07 */
DT_VERS_1_6, /* DAPl 1.6 */
DI_VERS 1 6_1, /* DAPl 1.6.1 */
DI _VERS 1 6 2, /* DAPl 1.6.2 */
DI _VERS 1 6 3, /* DAPl 1.6.3 */
DT_VERS 1_7, /* DAPl 1.7 */
DI_VERS 1_7_1, [/* DAPI 1.7.1 */
DT_VERS 1_8, /* D APl 1.8 */
DI _VERS 1 8 1, /* DAPl 1.8.1 */
DT_VERS_1_9, /* DAPl 1.9 */
DI_VERS 1. 9.1, /* DAPI 1.9.1 */
DT_VERS 1_10, /* D APl 1.10 */

#endif /* T codereview */

b5

/

Tabl e of global identifiers. This is used to populate the global identifier
hash when a new dtrace client open occurs. For nore info see dt_ident.h.

The gl obal identifiers that represent functions use the dt_idops_| “func ops
and specify the private data pointer as a prototype string which is parsed
when the identifier is first encountered. These prototypes | ook |ike ANSI

C function prototypes except that the special synbol "@ can be used as a
wildcard to represent a single paranmeter of any type (i.e. any dt_node_t).
The standard " notation can al so be used to represent varargs. An enpty
paraneter list is taken to nean void (that is, no argunents are pernmitted).
A paraneter enclosed in square brackets (e.g. "[int]") denotes an optional
ar gunent .

atic const dt_ident_t _dtrace_globals[] = {

"alloca", DT_I DENT_FUNC 0, DI F_SUBR ALLCX.‘A, DT_ATTR_STABCWN, DT_VERS 1_O0,
&dt _i dops_func, "voi d *(size_t)" },

"arg0", DT_| DENT_SCALAR, 0, DI F_VAR ARQ,
&dt _i dops_type, "int 64_t BE

"argl", DT_I DENT_SCALAR, 0, DI F_VAR ARGI,
&dt _i dops_type, "int64_t" },

"arg2", DT_|I DENT_SCALAR, 0, DI F_VAR ARG,
&dt _i dops_type, "int64_t" },

"arg3", DT_| DENT_SCALAR, 0, DI F_VAR ARG3,
&dt _i dops_type, "int64_t" },

"arg4", DT_| DENT_SCALAR, 0, DI F_VAR ARG4,
&dt i dops_type, "int64_t" },

"arg5", DT_I DENT_SCALAR,
&dt _idops_type, "int64_t" },

"arg6", DT_| DENT_SCALAR, O,

&dt _i dops_type, "int64_t" },

"arg7", DT_I DENT_SCALAR,
&dt _idops_type, "int64_t" },

"arg8", DT_| DENT_SCALAR, 0, DI F_VAR ARGS,

&dt i dops_type, "int64_t" },

DT_I DENT_SCALAR, 0, DI F_VAR_ARG®9,
&dt _idops_type, "int 64 _t"
DT_| DENT_ARRAY, 0, DIF_ VAR ARGS,

&t _idops_args, NULL },

DT_| DENT_. AGGFUNC 0, DTRACEAGG > AVG, DT_ATTR_STABCWN, DT_VERS 1_0,

&dt _i dops_func, "voi d

"basenane”, DT_| DENT_ FUNC, 0, DI F SUBR_BASENAME, DT_ATTR_STABCWN, DT_VERS 1_0,
&dt |dops func, "string(const char *)"

"bcopy", DT_I DENT FUNC 0, DI F_SUBR_ BC(PY DT_. ATTR STABCMN, DT_VERS 1_0,

&dt i dops_func, "void(void *, void *, size t)" },

DT_ATTR_STABCMN, DT_VERS 1_0,

DT_ATTR_STABCWN, DT_VERS 1 0,
DT_ATTR_STABCMN, DT_VERS 1_0,
DT_ATTR STABCWN, DT_VERS 1 0,
DT_ATTR_STABCMN, DT_VERS 1_0,
DT_ATTR_STABCWN, DT_VERS 1 0,
DT_ATTR_STABCMN, DT_VERS 1_0,
DT_ATTR_STABCWN, DT_VERS 1 0,
DT_ATTR_STABCMN, DT_VERS 1_0,

"arg9", DT_ATTR_STABCWN, DT_VERS 1 0,

“args" DT_ATTR STABCWN, DT_VERS 1 0,

"avg",

new usr/src/lib/libdtrace/ conmon/dt_open.c

187
188

{

-~

~— o~

e e e e e e e e e

{

"breakpoi nt", DT_| DENT_ACTFUNC, 0, DT_ACT_BREAKPO NT,
DT_ATTR STABCWN, DT_VERS_1 0,
&dt _i dops_func, "void()"

"cal l er", "DT_I DENT_ SCALAR 0, D F VAR_CALLER, DT_ATTR_STABCMN, DT_VERS_1_0,
&dt _idops_type, "uintptr_t"

“chill", DT_I DENT ACTFUNC 0, DT, ACT CHI LL, DT_ATTR _STABCWN, DT_VERS_1_0,
&dt _i dops_func, "voi d(| nt)" },

"cl eanpath", DT_| | DENT FUNC, 0, DIF_ SUBR CLEANPATH, DT_ATTR_STABCW,
DT_ VERS 1_0, &dt_idops_ func "string(const char *)"

"clear", DT_| DENT ACTFUNC 0, DT_ACT_CLEAR, DT_ATTR_ STABCNN DT_VERS 1_0,
&dt _i dops_func, "void(...)" },

"commit", DT_I DENT_, ACTFUNC 0 DT_ACT_COW T, DT_ATTR_STABCWN, DT_VERS 1 0,
&dt_l dops_func, "void(i nt)

"copyin", DT_I DENT FUNC, 0, DF SUBR COPYI'N, DT_ATTR STABCWN, DT_VERS_ 1_0,
&dt |dops func, “voi d *(uintptr_t, size t)" },

"copyinstr", DT_ IDENT FUNC, 0, DIF_ SUBR COPYI NSTR,
DT_ ATTR STABCWN, DT_VERS 1_0,
&dt _idops_func, "string(uintptr_t, [size t])" },

"copyinto", DT_IDENT_FUNC, 0, DI F_ SUBR CoPYI NTO, DT_ATTR_STABCW\,
DT VERS 1.0, &dt_idops_func, "void(uintptr_t, size t, void *)"

"copyout™, DT_I DENT_| FUNC, 0, DIF_ SUBR COPYQUT, DT_. ATTR STABCWN, DT_ VERS 1.0,
&dt | |dops func, "void(void *, uintptr_t, size t)"

"copyoutstr", DT_ IDENT FUNC, 0, DI F_SUBR | OO:‘YCUTSTR
DT_ATTR STABCWN, DT_VERS 1 0,
&dt _i dops_func, "voi d(char *,

uintptr_t, size_t)"

“count", DT_I DENT AGGFUNC 0, DTRACEAGG COJNT DT_ATTR STABCM\I DT_VERS_1_0,
&dt |dops func, "voi d() 1,
"curthread", DT_| DENT_SCALAR, 0, DI F_VAR CURTHREAD,
{ DTRACE STABI LI TY_STABLE, DTRACE_STABI LI TY_PRI VATE,
DTRACE_CLASS_ CO\/MJ\I }, DT_VERS_ 1 0,
&dt |dops type, "genunix'kthread_t *" },
_pat hnane", DT_I DENT_FUNC, 0, DI F_SUBR DDI _PATHNAME,

DT_ATTR EVO_CNN DT_VERS 1 0,
&dt |dops func, "string(void *, int64_t)" },

"denormal i ze", DT_| DENT_ACTFUNC, 0, DT_ACT_DENORMAL| ZE, DT_ATTR_STABCW,
DT VERS 1.0, &dt_idops_func, "void(...)" },

"di rnane™, DT_ | DENT FUNC 0, DIF SUBR DI RNAI\/E DT_ATTR_STABCWN, DT_VERS_ 1_O0,
&dt | _idops_func, "string(const char *)"

"di scard", DT_I DENT ACTFUNC 0, DT_ACT_DI SOARD DT_ATTR_STABCMN, DT_VERS 1_0,
&dt i dops_func, "void(i nt) T,

"epi d", DT_I DENT_ SCALAR 0, DI F_VAR EPID, DT_ATTR STABCWN, DT_VERS 1_0,
adt _idops_type, "uint_t" ¥,

"errno”, DT_I DENT_ SCALAR 0, DIF_VAR ERRNO, DT_ATTR STABCWN, DT _VERS 1 0,
&dt_l dops_type, "int" },

"execnanme”, DT_I DENT_SCALAR, 0, DI F_VAR EXECNAMNE,
DT_. ATTR STABCWN, DT_VERS 1_0, &dt_idops_type, "strin

"exit", DT_I DENT ACTFUNC 0, DT_ACT_EXIT, DI_ATTR STABCWN, DT VERS 1.0,
&dt_l dops_func, "voi d(| nt)" },

"freopen", DT_| DENT. ACTFUNC 0, DT_, ACT FREOPEN, DT ATTR_STABCMW\,
DT_ VERS 1 1, &dt_idops_ func "voi d(@ T,

"ftruncate", DT_| IDENT ACTFUNC, O, DT ACT FTRUNCATE DT_ATTR_STABCW\,
DT VERS 1-0, &dt_idops_func, "void()" },

"func", DT_I DENT_ ACTFUI\C 0, DT ACT SYM DT_ATTR_STABCW\,
DT VERS 1.2, &dt |dops func, "_symaddr(uintptr_t)" },

"getmajor", DT I DENT_FUNC, 0, DIF SUBR_GETMAJOR,
DT A'I'I'R EVOLCWN, DT _VERS 1 0,
&dt |dops func, "genuni x" maj or _t (genunix‘dev_t)" },

"getmnor", DT_IDENT_FUNC, 0, DI F_SUBR GETM NOR,
DT_ATTR_EVOLCWN, DT_VERS_1_O0,
&dt _i dops_func, "genuni x" ninor_t (genuni x‘ dev_t)" },

"htonl", DT_I DENT FUNC 0, DIF_SUBR _HTONL, DT_ATTR EVOLCWN, DT_VERS_1_3,
&dt _i dops_func, "uint32_t(uint32_t)"

"htonl|", DT_I DENT_ FUNC 0, DI F_SUBR_HTONLL, DT ATTR_EVOLCWN, DT_VERS 1_3,
&dt _idops_func, "uint64_t(uint64 t)"

"htons", DT_I DENT_| FUNC 0, DI F_SUBR_HTONS, DT ATTR_EVOLCWN, DT_VERS 1_3,

&dt _i dops_func, "uint16_t(uint16 t)" },

new usr/src/lib/libdtrace/ conmon/dt_open.c

253 {
254

"getf", DT_IDENT_FUNC, 0, DI F_SUBR GETF, DT_ATTR _STABCW, DT_VERS 1_10,
&dt _idops_func, fllet “*(int)"

255 #endif /* | codereview */

256 {
257

"gid", DT_|DENT_SCALAR, 0, DIF_VAR G D, DT_ATTR STABCWN, DT_VERS 1_0,
&dt _i dops_type, "gi dt"

"id", DT_ITDENT_SCALAR, 0, DF_ VAR I D, DT_ATTR STABCWN, DT_VERS 1_0,
&dt _i dops_type, "uint_t" },

"index", DT_I DENT FUNC 0, DI F_SUBR | NDEX, DT_ATTR_STABCMW, DT VERS_1_1,
&dt |dops func, |nt(const char *, const char *, [int

"inet_ntoa", DT_IDENT_FUNC, 0, DI F_ SUBR I NET_NTOA, DT_ATTR STABCNN
DT VERS 1°5, &dt_idops_ func "string(ipaddr_t *)" },

"inet_ntoa6", DT_ | DENT FUNC, O, Di F SUBR_INET_NTQOAG6, DT_ATTR_STABCMWN,
DT VERS_1_5, &dt i dops_func "string(in6_addr_t *)"

"inet_ntop", DT_IDENT_FUNC, 0, DI F_ SUBR | NET_NTOP, DT_. ATTR STABCNN
DT VERS 1°5, &dt_idops_ func "string(int, void * },

"ipl", DT_|DENT_ SCALAR 0, DI F VAR | PL, DT_ ATTR STABCWN, DT_VERS 1_0,
&dt _i dops_type, "uint_t"

"j stack", DT_I DENT ACTFUNC o, DT ACT_JSTACK, DT_ATTR STABCWN, DT_VERS 1 0,
&dt_l dops_func, "stack(...)™ },

"lltostr", DT_| DENT FUNC 0, DI F SUBR_LLTOSTR, DT_ATTR_STABCWN, DT_VERS_ 1_0,
&dt |dopsfunc strlng(lnt64t [int])"

"Il quantize", DT_|I DENT_AGGFUNC, O, DTRACEAGG LLQJANTI ZE, DT_ATTR _STABCMWN,
DT VERS_1 7, &dt_idops_func,
v0|d(@ |nt32t int32_t, |nt32t int32_t, ..

"l quantize", DT_| DENT AGGFUNQ 0, DTRACEAGG LQJANTI ZE,
DT ATTR STABCWN, DT_VERS_1_0,
&dt _i dops_func, "void(@ |nt32t int32_t, DERE

"max", DT_I DENT AGGFUNC 0, DTRACEAGG_ I\/AX DT_. A'I'I'R STABCNN DT_VERS_1_0,
&dt _i dops_func, "void(@" },

"mn", DT_| DENT _AGGFUNC, 0, DTRACEAGG M N, DT_ATTR_STABCWN, DT_VERS 1_0,
&dt "i dops_func, "void(@" },

"mod", DT_I DENT_. ACTFUNC 0, DT_ACT_MOD, DT_ATTR_STABCW\,
DT_ VERS 12, &dt |dops func, "_symaddr (uintptr_t)" },

"megdsi ze", DT TDENT_FUNC, 0, DIF SUBR_MSGDSI ZE,
DT ATTR STABCMN, DT _VERS 1
&dt i dops_func, "size_t(nmb "y,

R _MVSGSI ZE,

_I
=~ ol
W"’

*
~

"megsi ze", DT_IDENT_FUNC, 0, DI
DT_. ATTR STABCWN, DT_VERS 1_

&dt’ |dops_func "size_t(nmb

"mut ex_owned", DT _| DENT_FUNC, O,
DI_ATTR EVOLCWN, DT_VERS 1

n

H'I'I
gx OQXOU)I

=
ox oo

ba
UBR_MUTEX_OWNED,

*
- S
mutex_t *)"
-~ SUBR_MUTEX O/\NER

&dt _i dops_f unc, "int(genuni
"mut ex_owner", DT_| IDENT FUNC, O
DT ATTR EVOLCWN, DT _VERS 1 0,
&dt _i dops_func, "genuni x" kthread_t *(genunix‘' knutex_t *)
"mut ex_type_adaptive", DT_I DENT_ FUNC 0, DI F_SUBR MUTEX_TYPE._. ADAPTI VE,
DT_ATTR EVO_CI\/N DT_VERS 1 0,
&dt’ |dops func "int(genuni x' kmutex_t *)" 1},
"mut ex_type_spin" DT | DENT_FUNC, 0, DI F_SUBR MJTEX_TYPE_SPI N,
DT_ATTR | EVO_CNN DT_VERS_1_0,

O

&dt _i dops_func, "int(genunix‘kmutex_t *)" },

"ntohl ", DT_I DENT FUNC 0, DI F_SUBR NTOHL, DT_ATTR EVOLCWN, DT_VERS 1 3,
&dt _i dops_func, "ui nt 32 _t(uint32_t)" },

"ntohl 1", DT_I DENT UNC 0, DI F_SUBR NTOHLL, DT_ATTR EVOLCWN, DT_VERS 1_3,
&dt _i dops_func, "uint64_t(uint64 t)"

"nt ohs", DT_I DENT FUNC 0, DI F_SUBR_NTCHS, DT ATTR_EVOLCWN, DT_VERS 1_3,
&dt |dops func, "ui nt 16 t(uintl16_t)" },

"nornalize", DT_ | DENT ACTFUNC, O, DT ACT_NORMALI ZE, DT_ATTR_STABCWN,
DT VERS 10, &dt_idops_ func "void(...)"

"pani c¢", DT_| DENT ACTFUNC 0, DT_. ACT PANI C DT_. ATTR STABCMN, DT_VERS_ 1_0,
&dt _idops_func, "voi d() },

"pid", DT_I DENT SCALAR 0, DI F_VAR PI D, DT_ATTR_STABCWN, DT_VERS_1_0,
&dt _i dops_type, "pi d

"ppi d", DT_I DENT_ SOALAR 0, DI F VAR _PPI D, DT_ATTR _STABCWN, DT_VERS_1_0,
&dt _Tdops_type, "pid_t"

"print", DT_I DENT_ACTFUNC, O, DT ACT_PRI NT, DT_ATTR STABCWN, DT_VERS 1_9,

new usr/src/lib/libdtrace/ conmon/dt_open.c

319
320 {
321
322 {
323
324 {
325
326 {
327
328 {
329
330 {
331
332 {
333
334
335 {
336
337
338 {
339
340 {
341
342 {
343
344 {
345
346
347 {
348
349
350 {
351
352
353
354
355
356
357
358
359
360 {
361
362
363
364
365 {
366
367
368 {
369
370 {
371
372 {
373
374 {
{
{
{
{

~—~ -

-~

375
376
377
378
379
380
381
382
383
384 {

&dt
"printa",
&dt
"printf"
&dt
" pr obef unc”

_idops_func, "void(@" },
DT_| DENT_ACT! FUNC 0, DT_ACT_PRI NTA, DT_ATTR_STABCWN,
_idops_func, "voi d(@)")
DT_| DENT_, ACTFUNC, O, DT_ACT_PRI NTF, DT_ATTR_STABCWN,
|dops func, "voi d(@

DT_| DENT_SCALAR, 0 DI F VAR PROBEFUNC,

DT_VERS_1_0,
DT_VERS_1_0,

DT, A‘I‘I’R STABCWN, DT_VERS 1 0, &dt_idops_type, "string" },

" pr obenod" ,

DT_| DENT_SCALAR, 0, DI F_VAR_PROBEMD,

DT ATTR STABCMN, DT_VERS 1_0, &dt_idops_type, "string" },

" pr obenanme”

DT_I DENT_SCALAR, 0, DI F_VAR PROBENAME,

DT_ATTR STABCMN, DT _VERS 1 0, &dt idops type, "string" },

" probeprov",

DT_| DENT_SCALAR, O, DI F_VAR PROBEPROV,

DT_. ATTR STABCWN, DT_VERS_1 0, &dt_idops_type, "string" },

" pr ogenyof "

DT_I DENT_FUNC, 0, DI F_SUBR_PROGENYCF,

DT_ATTR STABCWN, DT VERS 1 0,

&dt.
"quanti ze"

|dopsfunc "int(pid_t)" },
DT_| DENT_AGGFUNC, 0, DTRACEAGG QUANTI ZE,

DT_ATTR STABCWN, DT_VERS_1_0,

&dt’

i dops_func, "void(@

oo) 1,
"raise", DT_|DENT ACTFUNC 0, DT ACT RAI SE, DT_ATTR _STABCWN, DT_VERS 1_0,

&dt

i dops_func, "voi d(l nt)"

“rand", DT_| DENT FU\IC 0, DI F_SUBR | RAND DT_ATTR_STABCWN, DT_VERS_1_0,

&dt
"rindex",
&dt
"Tw_iswit

_iTdops_func, "int()" },

DT_I| DENT FUNC 0, DI F_SUBR_RI NDEX, DT_ATTR_STABCW\,
|dops func, int(const char *, const char *, [int])"
er", DT_I DENT FUNC, 0, DI F_SUBR_RW.I SWRI TER,

DT_ATTR EVOLCWN, DT_VERS 1 0,

&dt’
"rw_read_h

_idops_func, "int(genunix‘krw ock_t *)" },
el d*, DT_ IDENT FUNC, 0, DI F_SUBR_RW READ_HELD,

DT_ATTR EVO_CI\/N DT_VERS_1_0,

&dt
'rwwite

|dops func, "int(genunix'krw ock_t *)" },
hel d", DT_ IDENT FUNC, 0, DI F_SUBR RWVRI TE_HELD,

DT_ATTR EVO_CNN DT_VERS_1 0

&dt

_idops_func, "int(genunix‘krw ock_t *)" },

"sel f", DT_I DENT_PTR, 0 0, DT_ATTR STABCMN, DT_VERS 1_0,

&dt
"setopt"

_Tdops_type, "voi d" 1,
DT_I DENT_ACTFUNC, 0, DT_ ACT SETOPT, DT_ATTR _STABCMW\,

DT VERS 1 2, &dt_idops_ func "voi d(const char *, [const

"specul ate"

DT_I DENT_ACTFUNC, 0, DT_ACT_SPECULATE,

DT_ATTR STABCWN, DT_VERS_1_0,

&dt’
"specul at i

i dops_f unc, "void(int)" }
on", DT_ IDENT FUNC, 0, DI F_SUBR_SPECULATI ON,

DT_ATTR STABCWN, DT_VERS_1_0,

&dt’

_idops_func, "int()"

DT_VERS_1_1,
b

char *])" },

T
"stack", DT_I DENT ACTFUNC 0, DT_ACT STACK, DT_ATTR STABCWN, DT_VERS 1_0,

&dt
"st ackdept

|dops func, "st ack()"
h", DT_ IDENT SCALAR, 0 DI F VAR_STACKDEPTH,

DT_ATTR STABCWN, DT_VERS_ 1 0,

&dt’
"stddev",

_idops_type, "uint32_t

Ty
DT_| DENT_AGGFUNC, 0, DTRACEA% STDDEV, DT_ATTR_STABCMW,

DT_VERS 1_6, &dt_idops_ func "voi d(@" },
"stop", DT_I DENT ACTFUNC 0, DT ACT STOP, DT_ATTR_STABCMN, DT_VERS 1_0,

adt
"strchr",
&dt
"strlen",
&dt
"strjoin"
&dt |
"strrchr"
&dt |
"strstr"”,
&dt
"strtok",
&dt
"substr",

_idops_func, "void()" Y,

DT_I| DENT FUNC, 0, DI F_SUBR _STRCHR, DT ATTR STABCWN,
_i dops_func, strlng(const char *, char

DT_| DENT FUNC 0, DI F_SUBR STRLEN, DT_ ATTR STABCWN,
_idops_func, "size_t(const char *)"

DT_I DENT FUI\C 0, DI F_SUBR STRJA N, DT ATTR_STABCWN, DT_VERS_1_0,

_idops_func, strlng(const char *, const char *)"

DT_| DENT FUNC 0, DI F_SUBR _STRRCHR, DT ATTR_ STABCI\/N DT_VERS 1_1,

_i dops_func, strlng(const char *, char)™ },

DT_| DENT FUNC 0, DI F_SUBR _STRSTR, DT_ATTR _STABCWN,
_i dops_func, strlng(const char *, const char *)"
DT_| DENT FUNC 0, DI F_SUBR STRTOK, DT_ATTR STABCI\/N
_i dops_func, strlng(const char *, const char *)" },
DT_1 DENT_ FUNC 0, DI F_SUBR _SUBSTR, DT_ATTR _STABCWN,

DT_VERS 1_1,
DT_VERS_1_0,

DT_VERS 1 1,
DT_VERS_1_1,
DT_VERS 1 1,

new usr/src/lib/libdtrace/ conmon/dt_open.c

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

442
443
444
445

446 static const dt
447 { "void", { CT

448
449
450

~

{
{
bs
/

{
{
{

&dt _i dops_func, "string(const char *, int, [int])" },
"sunt, DT_I DENT_. AGGFUNC 0, DTRACEAGG SUM DT_. A'I'I'R STABCMN, DT_VERS 1_0,
&dt "i dops_func, "voi d(@ },
"syni', DT_| DENT_ACT FUNC, 0, DT_ACT_SYM DT_ATTR_STABCW,
DT_VERS 1 2, &dt |dops func, "_symaddr(uintptr_t)" },
"systent, DT_TDENT ACTFUNC 0, DT_ACT_SYSTEM DT_ATTR STABCW, DT_VERS 1_0,
&dt _i dops_func, "void(@ BERE
"this", DT_IDENT_ PTR 0 0, DT_ ATTR STABCMN, DT_VERS 1 0,
&t _idops_type, "voi d" 1,
"tid", DT_I DENT SCALAR 0, DIF_VAR TID, DT_ATTR STABCWN, DT_VERS 1_0,
&dt "i dops_type, "id_t" },
"timestanp", DT_| DENT_SCALAR, 0, DI F_VAR Tl MESTAMP,
DT_ATTR _STABCWN, DT_VERS_1_0,
&dt _idops_type, "uint64_t"
"tol ower”, DT_I DENT FUNC 0, DF SUBR TOLONER, DT_ATTR_STABCWN, DT_VERS 1_8,
&dt _i dops_func, strrng(const char *)"
"toupper", DT_IDENT_ FUNC 0, DI F_SUBR_TQOUPPER, DT ATTR_STABCWN, DT_VERS 1_8,
&dt | _idops_func, "string(const char *)"
"trace", DT_| DENT ACTFUNC 0, DT_ACT_TRACE, DT ATTR_STABCWN, DT_VERS_1_0,
&dt _i dops_func, "voi d(@
"tracement, DT_IDENT_ACTFUNC, O, DT ACT_TRACEMEM
DT ATTR STABCMWN, DT_VERS 1 0,
&dt _i dops_func, "void(@ size_ t, ...)" },
"trunc", DT_I DENT_ ACTFUNC 0, DT ACT TRUNC DT ATTR_STABCMW,
DT VERS_1_0, &dt_idops_func, v0| d(. .
"uaddr", DT_| DENT_ACTFUNC, 0, DT_A UADDR DT ATTR STABCWN,
DT_VERS_l_Z, &dt _i dops_func, "_usymaddr(uintptr_t)" },
"ucal l er", DT_| DENT_SCALAR, 0, DI F VAR UCALLER DT_ATTR_STABCMWN,
DT_ VERS 1_2, &dt_idops type "ur nte4_t" },
"ufunc", DT_| DENT_ACTFUNC, 0, DT_ACT_USYM DT_ATTR _STABCW,
DT VERS 1_2, &dt_idops_func, " usynaddr(ur ntptr_t)" },
"ui d", DT_| DENT_ SCALAR 0, DI F VAR U D, DT_ATTR_STABCWN, DT_VERS_1_0,
&dt _i dops_type, "ui d_t T,
"unod”, DT_|I DENT_ACTFUNC, 0, DT_ACT_UMOD, DT_ATTR _STABCW,
DT VERS 1 2, &dt_idops_func, ™ _usymaddr(uintptr_t)" },
"uregs", DT_IDENT_ARRAY, 0, DIF_ VAR UREGS, DT_ATTR_STABCWN, DT_VERS 1_0,
&dt _idops_regs, NULL },
"ustack", DT_I DENT_ACT FUNC, 0, DT_ACT_USTACK, DT_ATTR STABCWN, DT_VERS_1_0,
&dt |dops func, "stack(. 1,
"ust ackdept h", DT | IDENT SC‘ALAR O DI F_VAR_USTACKDEPTH,
DT_ATTR. STABCW, DT_VERS 1 2,
&dt _i dops_type, "uint32_t" },
"usynt, DT_I DENT_ACTFUNC, 0, DT_ACT_USYM DT_ATTR STABOW\,
DT_VERS 1.2, &dt |dops func, "_usymaddr(uintptr_t)" },
"vnregs", DT IDENT ARRAY, 0, DI F_ VAR VMREGS, DT_ATTR _STABCWN, DT_VERS 1_7,
&dt |dops regs, NULL },
"vtinmestanp”, DT_| DENT_SCALAR 0, DI F_VAR VTI MESTAMP,
DT_ATTR STABCWN, DT_VERS 1 0,
&dt’ rdops type, "uint64_t" },
"wal | timestanp", DT_| DENT_SCALAR, 0, DI F_VAR WALLTI MESTAWP,
DT_ATTR STABCI\/N DT_VERS 1 0,
&dt _i dops_type, "int64_t" T,
"zonename™, DT_TDENT_SCALAR, 0, DI F_VAR ZONENAME,
DT_ATTR_STABCNN DT_VERS_ 1 _0, &dt_idops_type, "string" },
NULL, O, O, O, { O, O, O}, O, NULL, NULL }

*

* Tables of ILP32 intrinsic integer and floating-point type tenplates to use
* to popul ate the dynamic "C' CTF type container.

*/

i insic_t _dtrace_intrinsics_32[] = {

INT_SIGNED, 0, 0 }, CTF_K_INTEGER },

F INT_SIGNED, 0, 32 }, CTF _K_INTEGER },
}, CTFKINTEGER}

"unsi gned", : |
NT_SIGNED | CTF_INT_CHAR, 0, 8 }, CTF_K_INTEGER },

F_
"signed", { CT
{
"char", { CTF

new usr/src/lib/libdtrace/ conmon/dt_open.c

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

514
515
516

“int", { CTF_INT_STGNED, 0

"long", { CTF_I NT_SI GNED,
"I ong long", { CTF_INT
"signed char" , { CTF_

"signed short", { CTF_INT
F INT_S

" Bool ", { CTF_INT_BOOL, 0
“Float”, { CTF_FP_SINGE,

NULL, {0, 0, 0}, 0}

| *

’

"short”, { CTF_INT_SIGNED, 0, 16 }, CTF_K_INTEGER },

32}, CTFKINTEGER}
32'}, CTE K INTEGER },

"SIGNED, 0, 64 }, CTF_K_|I NTEGER },
INT_SI GNED | CTF_INT_CHAR O, 8 }, CTF_K_INTEGER },

SIGNED, 0, 16 }, CTF K INTEGER },

"signed int" { CTl NT_
"si gned Iong { CTF_INT_SI
"signed | ong Iong", { CTF.I
"unsi gned char" , { CTF_INT_
"unsi gned short", { 0, 0, 1
"unsigned int", { 0, 0, 32
"unsi gned long", { 0, 0, 32
unsrgned | ong Iong , { O,

0

"doubl e", { CTF_FP_DOUBLE, 0, 64 }, CT
"l ong double", { CTF_FP_LDOUBLE, 0, 1287}
“float imaginary", { CTF_FP_I MAGRY, 0, 32
"doubl e i magi nary { CTF FP_DI MAGRY, 0, 6 1,

"Iong doubl e |mag| nary , { CTF_FP_LDI MAGRY, 0, 1287}, CTF K FLOAT}
"float conplex", { CTF_FP_CPLX, 0, 64 }, CTF_K FLOAT },
“doubl e conpl ex", { CTE_FP DCPLX, 0, 128 }, CIF_K_FLOAT },
"l ong doubl e conpl ex", { CTF_FP_LDCPLX, 0, 256 7},

GNED, O, 32} CTF_K_I NTEGER
NT

3
SIGNED, 0, 64 }, CTF_K_| NTEGER },
0 b

CHAR 0, 8 }, CTF_K I NTEGER
6 }, CTF_K INTEGER T,
}, CTF_K I NTEGER },
}, CTF_K_INTEGER },
0, 64 }, CTF_K_INTEGER },
8 }, CTF_K TNTEGER },
, 32}, CTF_K FLOAT }.
F_K_FLOAT },
87}, CTF_K FLOAT },
}, CTF_K _FLOAT },
4'}, CTF_K_FLOAT

“CTF_K_FLOAT },

* Tables of LP64 intrinsic integer and floating-point type tenplates to use
* to popul ate the dynamc "C' CIF type container.
=Y

"voi d', { CTF_
"signed", { CTI
unsrgned , {
"char", { CTF_INT_
"short", { CTF_INT
"int", { CTF_INT_S
“long", { CTF_I NT_SI GNED,
"long long", { CT NT_S|
"si gned char",
"signed short", { |
"signed int", { CT NT

"signed long | ong",

Bool *, { CTF_INT_BOOL, 0

"l ong doubl e i magi na
"float conpl ex", { CTI

"l ong doubl e corrp
NuLL, { 0, O, O},

/*

[cTF_
"unsi gned char", { CTF_I NT.
0

, 0,
| GNED, 0, 32 }, CTF_K_INTEGER },
le

dtrace_intrinsics_64[] = {
0 }, CTF_K_INTEGER },

CTF_K_I NTEGER T,

CTE_TNT_CHAR "0, 8 }, CTF_K_INTEGER },

0, 16 }, CTF_K_INTEGER },
32}, CTF K| NTE(ER}
, 64 }, CTF_K_INTEGER },

SIGNED, 0, 16 }, CTF _K_i NTEGER

“unsi gned short", { 0, 0, 1
"unsigned int", { 0, 0, 32
"unsi gned long", { 0, 0, 64
"unsigned long long", { O,

{ CTF_FP_LDCPLX, 0, 256 T,

_SIGNED, 0, 32 }, CTF_K_INTEGER },
"signed | ong", { CTF_INT_SI

I
F I ,
{ CTE_INT_SIGNED | CTF_INT_CHAR 0, 8 }, CTF_K_INTEGER },

b

GNED, 0, 64 }, CTF K |NTEGER },
NT_SI GNED, 0, 64 }, CTF K | NTEGER },
CHAR, 0, 8 }, CTF_K_ INTEGER },

}, CTF_K_INTEGER T,

q”:
~
ﬁl
i
Pl

R},
K_| NTEGER },
NTEGER },

) s F
"float", { CTF_FP_SINGLE, 0, 32 }, CTF_K FLOAT },
"doubl e", { CTF_FP DOUBLE, 0, 64 }, CT
"l ong double", { CTF_FP_LDOUBLE, 0, 1287}, CTF_K FLOAT },
"float imagi nary {TCTF_FP_I MAGRY, 0, 32 }, CTF_K FLOAT
"doubl e irraginary", { CTF FP_DI MAGRY, 0, 64 }, },

ry", [CTF_FP_LDI MAGRY, 0, 128}, CTF_K FLOAT },
FPCPLX064} CTFKFLOAT}
"doubl e conpl ex", { CT FP_DCPLX, 0, 128 }, CTF_K FLOAT },

e ,
0}

* Tabl es of I1LP32 typedefs to use to populate the dynam c

* These aliases ensure that

D definitions can use typical

CTF_K_FLOAT },

"D' CTF contai ner.
<sys/types. h> nanes.

new usr/src/lib/libdtrace/ conmon/dt_open.c 9 new usr/src/lib/libdtrace/ conmon/dt_open.c 10
517 */ 583 /*
518 statl c const dt_typedef_t _dtrace_typedefs_32[] = { 584 * Tables of LP64 integer type tenplates used to popul ate the dtp->dt_ints[]
519 "char", "int8_t" }, 585 * cache when a new dtrace client open occurs. Values are set by dtrace_open().
520 short" "int1l6_t" }, 586 */
521 { "int", "int32 ot), 587 statl c const dt_intdesc_t _dtrace_ints_64[] = {
522 Iong Iong , "int64_t" }, 588 { "int", NULL, CTF_ERR, Ox7fffffffULL },
523 "int", "intptr_t" }, 589 { ' un5|gned int", NULL, CTF_ERR OxffffffffULL },
524 "int", "ssize_t" }, 590 { "long", NULL, CTF ERR, Ox7fffffffffffffffULL },
525 { "unsigned char", "uint8_t" }, 591 { "unsigned Iong NULL, CTF ERR, OxffffffffffffffffULL },
526 "unsi gned short", "uintl16_t" }, 592 { "long | ong", NULL, CTF_ERR, Ox7fffffffffffffffULL },
527 "unsi gned", "uint32_t" }, 593 { "unsigned long long", NULL, CTF_ERR, OxffffffffffffffffULL }
528 "unsi gned |l ong |l ong", "uint64_t" }, 594 };
529 { "unsigned char", "uchar_t" },
530 "unsi gned short", "ushort_t" }, 596 /*
531 "unsi gned", "uint_t" }, 597 * Table of macro variable tenplates used to populate the macro identifier hash
532 "unsi gned | ong", "ulong_t" }, 598 * when a new dtrace client open occurs. Values are set by dtrace_update().
533 { "unsigned long long", "u_longlong_t" }, 599 */
534 "int", "ptrdiff_t" }, 600 static const dt_ident_t _dtrace_macros[] = {
535 "unsi gned", "uintptr_t" }, 601 "egid", DT_IDENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 },
536 { "unsigned" "size t"}, 602 { "euid", DT_IDENT_SCALAR 0, 0, DT_ATTR STABCWMN, DT_VERS 1 0 },
537 { "long", "id_t" }, 603 { "gid", DT_IDENT_SCALAR 0, 0, DT_ATTR STABCW, DT_VERS 1 0 },
538 long", "pid_t" }, 604 { "pid", DT_IDENT_SCALAR 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 },
539 NULL NULL } 605 "pgi d", DT_| DENT_SCALAR, O 0 DT_ATTR STABCWN, DT_VERS 1 0 },
540 }; 606 ppi d", DT_I DENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT_VERS_ 1 0 },
607 { "projid", DT_IDENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT_VERS_1 O },
542 | * 608 "sid", DT | DENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT _VERS 1 0 7,
543 * Tables of LP64 typedefs to use to populate the dynam c "D' CTF contai ner. 609 "taskid", DT_| DENT_ S(“ALAR 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 },
544 * These aliases ensure that D definitions can use typical <sys/types.h> nanes. 610 "target", DT_| DENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 },
545 */ 611 { "uid", DT_I DENT_SCALAR, 0, 0, DT_ATTR STABCWN, DT_VERS 1 0 },
546 static const dt_typedef_t _dtrace_typedefs_64[] = { 612 NULL, O, O, O, { O, O, O }, 0}
547 “char", "int8_t" }, 613 };
548 "short", "int16_t" },
549 { "int", "int32_t" }, 615 /*
550 { "long", "int64_t" }, 616 * Hard-wired definition string to be conpiled and cached every tinme a new
551 "long", "intptr_t" }, 617 * DTrace library handle is initialized. This string should only be used to
552 "l ong", "ssize_t" }, 618 * contain definitions that shoul d be present regardl ess of DTRACE O NOLIBS.
553 "unsi gned char", "uint8_t" }, 619 */
554 { "unsigned short "uint16_t" }, 620 static const char _dtrace_hardwire[] = "\
555 "unsi gned", "ui nt 32_t" }, 621 inline long NULL = 0; \n\
556 "unsi gned | ong", "UI nt64_t" }, 622 #pragma D binding \"1.0\" NULL\nN\
557 "unsi gned char" uchar t" }, 623 ";
558 { "unsigned short" "ushort _t" },
559 "unsi gned", "ui nt _t" 1, 625 /*
560 "unsi gned | ong", "ulong_t" }, 626 * Default DTrace configuration to use when opening |ibdtrace DTRACE_O NODEV.
561 "unsi gned long long", "u_longlong_t" }, 627 * |f DTRACE_O _NODEV is not set, we |oad the configuration fromthe kernel .
562 "Iong", "ptrdiff_t" 1, 628 * The use of CTF_MODEL_NATIVE is nore subtle than it might appear: we are
563 "unsi gned |ong", “uintptr_t" }, 629 * relying on the fact that when running dtrace(1M, isaexec w !l invoke the
564 "unsi gned Iong , "size_t" }, 630 * binary with the sane bitness as the kernel, whi ch is what we want by def aul t
565 "int", "id_t , 631 * when generating our DIF. The user can override the choice using oflags.
566 { "int", "pid_t"}, 632 */
567 NULL, NULL } 633 static const dtrace_conf_t _dtrace_conf = {
568 }; 634 DI F_VERSI ON, /* dtc_difversion */
635 DI F_DI R_NREGS, /* dtc_difintregs */
570 /* 636 DI F_DTR_NREGS, /* dtc_diftupregs */
571 * Tables of ILP32 integer type tenplates used to popul ate the dtp->dt_ints[] 637 CTF_MODEL_NATI VE /* dtc_ctfnodel */
572 * cache when a new dtrace client open occurs. Values are set by dtrace_open(). 638 };
573 */
574 static const dt_intdesc_t _dtrace_ints_32[] = { 640 const dtrace_attribute_t _dtrace_maxattr = {
575 { "i nt", NULL, CTF_ERR ~Ox7fffffffuULL }, 641 DTRACE_STABI LI TY_MAX,
576 { "unsi gned int", NULL, CTF_ERR, OxffffffffULL }, 642 DTRACE_STABI LI TY_MAX,
577 { "long”, NULL, CTF_ERR, OX7fffffffULL }, 643 DTRACE_CLASS MAX_
578 { "unsigned Iong NULL, CTF_ERR, OxffffffffULL }, 644 };
579 { "long | ong", NULL, CTF_ERR, Ox7fffffffffffffffULL },
580 { "unsigned long long", NULL, CTF_ERR, OxffffffffffffffffULL } 646 const dtrace_attribute_t _dtrace_defattr = {
581 }; 647 DTRACE_STABI LI TY_STABLE,
648 DTRACE_STABI LI TY_STABLE,

new usr/src/lib/libdtrace/ conmon/dt_open.c 11 new usr/src/lib/libdtrace/ conmon/dt_open.c 12
649 DTRACE_CLASS_COMMVON 715 static dtrace_hdl _t *
650 }; 716 set_open_errno(dtrace_hdl _t *dtp, int *errp, int err)
717 {
652 const dtrace_attribute_t _dtrace_symattr = { 718 if (dtp !'= NULL)
653 DTRACE_STABI LI TY_PRI VATE, 719 dtrace_cl ose(dtp);
654 DTRACE_STABI LI TY_PRI VATE, 720 if (errp !'= NULL)
655 DTRACE_CLASS_UNKNOWN 721 *errp = err;
656 }; 722 return (NULL);
723 }
658 const dtrace_attribute_t _dtrace_typattr = {
659 DTRACE_STABI LI TY_PRI VATE, 725 static void
660 DTRACE_STABI LI TY_PRI VATE, 726 dt_provnod_open(dt _provnod_t **provnod, dt_fdlist_t *dfp)
661 DTRACE_CLASS_UNKNOWN 727 {
662 }; 728 dt _provnod_t *prov;
729 char pat h[PATH_MAX] ;
664 const dtrace_attribute_t _dtrace_prvattr = { 730 struct dirent *dp, *ep;
665 DTRACE_STABI LI TY_PRI VATE, 731 DI R *dirp;
666 DTRACE STABI LI TY PRI VATE, 732 int fd;
667 DTRACE_CLASS_UNKNOWN
668 }; 734 if ((dirp = opendir(_dtrace_provdir)) == NULL)
735 return; /* failed to open directory; just skip it */
670 const dtrace_pattr_t _dtrace_prvdesc = {
671 { DTRACE_STABI LI TY_UNSTABLE, DTRACE_STABI LI TY_UNSTABLE, DTRACE_CLASS COMMON }, 737 ep = all oca(SI zeof (struct dirent) + PATH MAX + 1);
672 { DTRACE_STABI LI TY_UNSTABLE, DTRACE_STABI LI TY_UNSTABLE, DTRACE_CLASS_COVMN 1}, 738 bzero(ep, sizeof (struct dirent) + PATH MAX + 1);
673 { DTRACE_STABI LI TY_UNSTABLE, DTRACE_STABI LI TY_UNSTABLE, DTRACE_CLASS_COWMMN 1},
674 { DTRACE_STABI LI TY_UNSTABLE, DTRACE_STABI LI TY_UNSTABLE, DTRACE_CLASS COWMMON 1}, 740 while (readdir_r(dirp, ep, &p) == 0 &% dp != NULL) {
675 { DTRACE_STABI LI TY_UNSTABLE, DTRACE_STABI LI TY_UNSTABLE, DTRACE_CLASS COWMMON }, 741 if (dp->d_nane[0] == '.")
676 }; 742 continue; /* skip "." and ".." */
678 const char *_dtrace_defcpp = "/usr/ccs/lib/cpp"; /* default cpp(l) to invoke */ 744 if (dfp->df _ents == df p->df _size) {
679 const char *_dtrace_defld = "/usr/ccs/bin/ld"; /* default 1d(1) to invoke */ 745 uint_t size = dfp->df_size ? dfp->df_size * 2 : 16;
746 int *fds = realloc(dfp >df _fds, size * sizeof (|nt))
681 const char *_dtrace_libdir = "/usr/lib/dtrace"; /* default library directory */
682 const char *_dtrace_provdir = "/dev/dtrace/ provider"; /* provider directory */ 748 if (fds == NULL)
749 break; /* skip the rest of this directory */
684 int _dtrace_strbuckets = 211; /* default nunmber of hash buckets (prinme) */
685 int _dtrace_i ntbuckets = 256; /* default nunber of integer buckets (Pof2) */ 751 df p->df _fds = fds;
686 uint_t _dtrace_strsize = 256; /* default size of string intrinsic type */ 752 df p->df _si ze = size;
687 uint_t _dtrace_stkindent = 14; /* default whitespace indent for stack/ustack */ 753 }
688 uint_t _dtrace_pi dbuckets = 64; /* default nunber of pid hash buckets */
689 uint_t _dtrace_pidlrulim= 8; /* default nunber of pid handles to cache */ 755 (void) snprintf(path, sizeof (path), "%/%",
690 size_t _dtrace_bufsize = 512; /* default dt_buf_create() size */ 756 _dtrace_provdir, dp->d_nane);
691 int _dtrace_argmax = 32; /* default maxi mum nunber of probe argunents */
758 if ((fd = open(path, O RDONLY)) == -1)
693 int _dtrace_debug = O; /* debug nessages enabled (off) */ 759 continue; /* failed to open driver; just skip it */
694 const char *const _dtrace_version = DIT_VERS STRING /* APl version string */
695 int _dtrace_rdvers = RD VERSION, /* rtld_db feature version */ 761 if (((prov = malloc(sizeof (dt_provnod_t))) == NULL)
762 (prov->dp_nanme = nalloc(strlen(dp->d_nane) + 1)) == NULL) {
697 typedef struct dt_fdlist { 763 free(prov);
698 int *df _fds; /* array of provider driver file descriptors */ 764 (void) close(fd);
699 uint_t df_ents; /* nunber of valid elements in df_fds[] */ 765 br eak;
700 uint_t df_size; /* size of df_fds[] */ 766 }
701 } dt_fdlist_t;
768 (void) strcpy(prov->dp_nanme, dp->d_nane);
703 #pragme init(_dtrace_init) 769 prov->dp_next = *provnod;
704 void 770 *provnod = prov;
705 _dtrace_init(void)
706 { 772 dt _dprintf("opened provider °/s\n dp->d_nane);
707 _dtrace_debug = getenv("DTRACE DEBUG') != NULL; 773 df p- >df _fds[df p->df _ents++] = fd;
774 }
709 for (; _dtrace_rdvers > 0; _dtrace_rdvers--) {
710 Tif (rd_init(_ dtrace_ “rdvers) == RD_OK) 776 (void) closedir(dirp);
711 br eak; 777 }
712 }
713 } 779 static void
780 dt_provnod_destroy(dt_provnod_t **provnod)

new usr/src/lib/libdtrace/ common/dt_open.c 13 new usr/src/lib/libdtrace/ comon/dt_open.c 14

781 { 847 * time, this check should change to return EDT_OVERSI ON only
782 dt _provnod_t *next, *current; 848 * if the specified version nunber is |ess than the version
849 * nunber at the time of interface commitnent.
784 for (current = *provnod; current != NULL; current = next) { 850 */
785 next = current->dp_next; 851 return (set_open_errno(dtp, errp, EDI_OVERSIQN));
786 free(current->dp_nane); 852 }
787 free(current);
788 } 854 if (flags & ~DTRACE_O _MASK)
855 return (set_open_errno(dtp, errp, EINVAL));
790 *provmod = NULL;
791 } 857 if ((flags & DTRACE O LP64) && (flags & DTRACE O | LP32))
858 return (set_open_errno(dtp, errp, EINVAL));
793 static const char *
794 dt_get_sysinfo(int cnd, char *buf, size_t |en) 860 if (vector == NULL &% arg != NULL)
795 { 861 return (set_open_errno(dtp, errp, EINVAL));
796 ssize_t rv = sysinfo(cnd, buf, len);
797 char *p = buf; 863 if (elf_version(EV_CURRENT) == EV_NONE)
864 return (set_open_errno(dtp, errp, EDT_ELFVERSION));
799 if (rv <0]| rv >len)
800 (void) snprintf(buf, len, "%", "Unknown"); 866 if (vector !'= NULL || (flags & DTRACE_O NODEV))
867 goto alloc; /* do not attenpt to open dtrace device */
802 while ((p = strchr(p, ".")) !'= NULL)
803 ptt = 869 /*
870 * Before we get going, crank our linmt on file descriptors up to the
805 return (buf); 871 * hard limt. This is to allowfor the fact that |ibproc keeps file
806 } 872 * descriptors to objects open for the lifetine of the proc handle;
873 * without raising our hard limt, we would have an acceptably small
808 static dtrace_hdl _t * 874 * bound on the nunber of processes that we could concurrently
809 dt_vopen(int version, int flags, int *errp, 875 * instrument with the pid provider.
810 const dtrace_vector_t *vector, void *arg) 876 */
811 { 877 if (getrlimt(RLIMT_NOFILE, &l) ==0) {
812 dtrace_hdl _t *dtp = NULL; 878 rl.rlimcur = rl.rlimnax;
813 int dtfd = -1, ftfd = -1, fterr = 0; 879 (v0|d) setrlimt(RLIMT_NCFILE &rl);
814 dtrace_prog_t *pgp; 880 }
815 dt _nmodul e_t *dnp;
816 dt provm)d t *provnod = NULL; 882 /*
817 int i, err; 883 * CGet the device path of each of the providers. W hold them open
818 struct rlimt rl; 884 * in the df.df _fds list until we open the DTrace driver itself,
885 * allowing us to see all of the probes provided on this system Once
820 const dt_intrinsic_t *dinp; 886 * we have the DIrace driver open, we can safely close all the providers
821 const dt_typedef _t *dtyp; 887 * now that they have registered with the franework
822 const dt_ident_t *idp; 888 @]
889 dt _provnod_open(&pr ovnod, &df);
824 dtrace_typeinfo_t dtt;
825 ctf_funcinfo_t ctc; 891 dtfd = open("/dev/dtrace/dtrace", O_) ;
826 ctf_arinfo_t ctr; 892 err = errno; /* save errno from opening dtfd */
828 dt _fdlist_t df = { NULL, 0, O }; 894 ftfd = open(/ dev/ dtrace/ provi der/fasttrap", O RDWR);
895 fterr = ftfd == -1 ? errno : 0; /* save errnofromopenftfd @
830 char isadef[32], utsdef[32];
831 char s1[64], s2[64]; 897 while (df.df_ents-- = 0)
898 (void) close(df.df_fds[df.df_ents]);
833 if (version <= 0)
834 return (set_open_errno(dtp, errp, EINVAL)); 900 free(df.df _fds);
836 if (version > DTRACE_VERSI ON) 902 /*
837 return (set_open_errno(dtp, errp, EDT_VERSION)); 903 * |f we failed to open the dtrace device, fail dtrace_open().
904 * We convert some kernel errnos to customlibdtrace errnos to
839 if (version < DTRACE_VERSION) { 905 * inprove the resulting nessage fromthe usual strerror().
840 /* 906
841 * Currently, increasing the library version nunber is used to 907 if (dtfd == -1) {
842 * denote a binary inconpatible change. That is, a consumer 908 dt _provnod_dest roy(&rovnod);
843 * of the library cannot run on a version of the library with 909 switch (err) {
844 * a hi gher DTRACE_VERSI ON nunber than the consunmer conpil ed 910 case ENCENT:
845 * against. Once the library APl has been committed to, 911 err = EDT_NCENT;
846 * backwards binary conpatibility will be required; at that 912 br eak;

new usr/src/lib/libdtrace/ conmon/dt_open.c

913 case EBUSY:

914 err = EDT_BUSY;

915 br eak;

916 case EACCES:

917 err = EDT_ACCESS;

918 break;

919 }

920 return (set_open_errno(dtp, errp, err));

921 }

923 (void) fentl(dtfd, F_SETFD, FD CLOEXEC);

924 (void) fentl(ftfd, F_SETFD, FD_CLOEXEC);

926 all oc:

927 if ((dtp = malloc(sizeof (dtrace_hdl _t))) == NULL)

928 return (set_open_errno(dtp, errp, EDT_NOVEM);
930 bzero(dtp, sizeof (dtrace_hdl_t));

931 dt p->dt _of l ags = fl ags;

932 dt p- >dt _prcnode = DT_PROC_STOP_PREI NI T;

933 dt p- >dt _| i nknode = DT_LI NK_KERNEL;

934 dt p->dt _| i nktype = DT_LTYP_ELF;

935 dt p- >dt _xI| at enode = DT_XL_STATI C,

936 dt p- >dt _st dcnode = DT_STDC_XA;

937 dt p->dt _versi on = version;

938 dtp->dt_fd = dtfd;

939 dtp->dt_ftfd = ftfd;

940 dtp->dt _fterr —fterr

941 dt p->dt _cdefs_fd =

942 dt p->dt _ddefs_fd =

943 dt p->dt _stdout _fd = —l

944 dt p- >dt _nodbuckets = _dtrace_strbucket S;

945 dt p->dt _nmods = cal | oc(dt p- >dt _nobdbuckets, sizeof (dt_nodule_t *));
946 dt p- >dt _provbuckets = _dtrace_strbuckets;

947 dt p->dt _provs = cal | oc(dt p->dt provbuckets si zeof (dt_provider_t
948 dt _proc_| |n|t(dt p);

949 dt p->dt _vrmax = DT_VERS LATEST;

950 dt p->dt _cpp_path = strdup(_dtrace_defcpp);

951 dt p->dt _cpp_argv = nmal | oc(si zeof (char *));

952 dt p->dt _cpp_argc = 1;

953 dt p->dt _cpp_args = 1;

954 dt p->dt _| d_path = strdup(_dtrace_defld);

955 dt p- >dt _provnod = provnod,

956 dt p- >dt _vector = vector;

957 dt p->dt _varg = arg;

958 dt _dof _init(dtp);

959 (voi d) unane(&dt p->dt_uts);

961 if (dtp->dt_nmpds == NULL || dtp->dt_provs == NULL ||
962 dt p->dt _procs == NULL || dtp->dt_proc_env == NULL ||
963 dt p->dt _l d_path == NULL || dtp->dt_cpp_path == NULL ||
964 dt p->dt _cpp_argv == NULL)

965 return (set_open_errno(dtp, errp, EDT_NOVEM);
967 for (i = 0; i < DTRACECPT_MAX; i ++)

968 dt p->dt _options[i] = DTRACEOPT_UNSET;

970 dt p->dt _cpp_argv[0] = (char *)strbasenane(dtp->dt_cpp_path);
972 (void) snprintf(isadef, sizeof (isadef), "-D_SUNWD %",
973 (uint_t)(sizeof (v0|d *) * NBBY));

975 (void) snprintf(utsdef, sizeof (utsdef), "-D_%_%",
976 dt _get _sysi nfo(SI _SYSNAME, s1, sizeof (sl1)),

977 dt _get _sysi nfo(SI _RELEASE, s2, sizeof (s2)));

15

new usr/src/lib/libdtrace/ conmon/dt_open.c

979
980
981
982
983
984
985

987
988
989
990

992
993
994
995

997
998
999
1000
1001
1002
1003

1005
1006
1007
1008

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

1025
1026

1028
1029
1030
1031

1033
1034
1035

1037
1038

1040
1041

1043
1044

#i f def

#endi f
#i f def

#endi f

if (dt_cpp_add_arg(dtp, "-D__sun") == NULL ||
dt _cpp_add_ar g(dtp, "—D uni x") == NULL ||
dt _cpp_add_arg(dtp, "-D_SVR4") == NULL ||
dt _cpp_add_arg(dtp, "-D__SUNW D:1") == NULL ||
dt _cpp_add_arg(dtp, isadef) == NULL ||
dt _cpp_add_arg(dtp, utsdef) == NULL)
return (set_open_errno(dtp, errp, EDI_NOVEM);

if (flags & DTRACE_O
bcopy(& dtrace_conf, &dtp->dt_conf, sizeof (_dtrace_conf));
else if (dt_ioctl(dtp, ~DTRACEI OC CONF,” &dtp >dt _conf) != 0)
return (set_open_errno(dtp, errp, errnoy);

if (flags & DTRACE_O LP64)

dt p->dt _conf.dtc_ctfnodel = CTF_MODEL_LP64;
else if (flags & DTRACE O I LP32)

dt p- >dt _conf.dtc_ctfndel = CTF_MODEL_I LP32;

__sparc
/*

* On SPARC systenms, __sparc is always defined for <sys/isa_defs.h>
* and __sparcv9 is defined if we are doing a 64-bit conpile.
*/
if (dt_cpp_add_arg(dtp, "-D__sparc") == NULL)
return (set_open_errno(dtp, errp, EDI_NOVEM);

if (dtp->dt_conf.dtc ctfrmdel == CTF_MODEL_LP64 &&
dt _cpp_add_arg(dtp, "-D__sparcv9™) == NULL)
return (set_open_errno(dtp, errp, EDT_NOVEM)) ;

__x86
/*
* On x86 systems, __i386 is defined for <sys/isa_defs.h> for 32-bit
* conpiles and __and64 is defined for 64-bit conpiles. Unlike SPARC,
* they are defined exclusive of one another (see PSARC 2004/ 619).
*

if (dtp->dt_conf.dtc_ctfnodel == CTF_MODEL_LP64) {
if (dt_cpp_add_arg(dtp, "-D__and64") == NULL)
return (set_open_errno(dtp, errp, EDT_NOVEM);
} else {
if (dt_cpp_add_arg(dtp, "-D__i386") == NULL)
return (set_open_errno(dtp, errp, EDT_NOMVEM);

if (dtp->dt_conf.dtc_difversion < DI F_VERSI ON)
return (set_open_errno(dtp, errp, EDT_DI FVERS));

if (dtp->dt_conf.dtc_ctfnodel == CTF_MODEL_I| LP32)

16

bcopy(_dtrace_ints_32, dtp->dt_ints, sizeof (_dtrace_ints_32));

el se

bcopy(_dtrace_ints_64, dtp->dt_ints, sizeof (_dtrace_ints_64));

dt p- >dt_nacros dt _i dhash create(macr o" NULL| 0, U NT_MAX);
dt p->dt _aggs = dt_i dhash_create(" aggregatl on", NULL,
DTRACE_AGGVARI DNONE + 1, U NT_MAX);

dt p->dt _gl obal s = dt_i dhash_create("gl obal ",
D F_VAR OTHER UBASE, DI F_VAR OTHER MAX);

_dtrace_gl obal s,
dtp->dt _tls = dt_idhash_create("thread |ocal", NULL,
Dl F_VAR _OTHER UBASE, DI F_VAR OTHER MAX);

if (dtp->dt_macros == NULL || dtp->dt_aggs == NULL ||
dt p->dt _globals == NULL || dtp->dt_tls == NULL)

new usr/src/lib/libdtrace/ common/dt_open.c 17
1045 return (set_open_errno(dtp, errp, EDT_NOVEM);

1047 /*

1048 * Popul ate the dt_nacros identifier hash table by hand: we can't use
1049 * the dt_idhash_popul ate() mechani sm because we’re not yet conpiling
1050 * and dtrace_update() needs to inmediately reference these idents.
1051 */

1052 for (idp = _dtrace_nmcros; idp->di_name != NULL; idp++) {

1053 i f (dt_idhash |nsert(dtp >dt _macros, idp->di _nane,

1054 i dp->di _kind, idp->di_flags, |dp >di _id, idp->di_attr,
1055 i dp->di _vers, idp->di _ops ? idp->di_ops : &dt_idops_ thaw
1056 idp->di _iarg, 0) == NULL)

1057 return (set_open_errno(dtp, errp, EDT_NOMVEM));

1058 }

1060 /*

1061 * Update the nodule |ist using /systenobject and |oad the val ues for
1062 * the nacro variable definitions according to the current process.
1063 */

1064 dtrace_updat e(dtp);

1066 /*

1067 * Select the intrinsics and typedefs we want based on the data nodel.
1068 * The intrinsics are under "C'. The typedefs are added under "D'.
1069 *

1070 if (dtp->dt_conf.dtc_ctfnodel == CTF_MODEL_I LP32) {

1071 dinp = _dtrace_intrinsics_32;

1072 yp = _dtrace_typedefs_ 32;

1073 } else {

1074 dinp = _dtrace_intrinsics_64;

1075 dtyp = _dtrace_t ypedefs_64;

1076 1

1078 /*

1079 * Create a dynamic CTF container under the "C' scope for intrinsic
1080 * types and types defined in ANSI-C header files that are included.
1081 ki

1082 if ((dnmp = dtp->dt_cdefs = dt_nodul e_create(dtp, "C')) == NULL)

1083 return (set_open_errno(dtp, errp, EDT_NOVEM);

1085 if ((dnmp->dmctfp = ctf_create(&dtp->dt ctferr)) == NULL)

1086 return (set_open_errno(dtp, errp, EDT_CTI));

1088 dt _dprintf("created CTF container for % (%)\n",

1089 dnmp->dm nane, (void *)dnp->dmctfp);

1091 (void) ctf_setnodel (dnp->dmctfp, dtp->dt_conf.dtc_ctfnodel);

1092 ctf_setspecific(dnp->dmctfp, dnp);

1094 dnmp->dm fl ags = DT_DM LOADED; /* fake up |oaded bit */

1095 dmp->dm nodid = -1; /* no nodule ID */

1097 *

1098 * Fill the dynamic "C' CTF container with all of the intrinsic

1099 * integer and floating-point types appropriate for this data nodel.
1100 *

1101 for (; dinp->din_name != NULL; dinp++) {

1102 if (dinp->din_kind == CTF_K_I NTEGER) {

1103 err = ctf_add_i nteger (dnp->dmctfp, CTF_ADD ROOT,
1104 di np->di n_nane, &di np->di n_data);

1105 } else {

1106 err = ctf_add_fl oat (dnp->dmctfp, CTF_ADD_ ROOT,

1107 di np->di n_nane, &di np->di n_data);

1108 }

1110 if (err == CTF_ERR) {

new usr/src/lib/libdtrace/ conmon/dt_open.c

1111
1112
1113
1114
1115
1116

1118
1119
1120
1121
1122

1124
1125
1126
1127
1128
1129

1131
1132

1134
1135

1137
1138
1139
1140
1141

1143
1144
1145
1146
1147
1148
1149

1151
1152

1154
1155

1157
1158

1160
1161

1163
1164
1165
1166
1167

1169
1170
1171
1172
1173
1174
1175
1176

18

dt_dprintf("failed to add % to C container: %\n",
di np->di n_nane, ctf_errnmsg(
ctf_errno(dnp- >dmctfp)))

return (set_open_errno(dtp, errp, EDT_CTF));

}

if (ctf_update(dnp- >dmctfp) 1= 0)
dt _dprintf("failed to update C container: %\n",
ctf_errmsg(ctf_errno(dnp->dmctfp)));
return (set_open_errno(dtp, errp, EDT CTF))
}

/*
* Add intrinsic pointer types that are needed to initialize printf
* format dictionary types (see table in dt_printf.c).
*
(void) ctf_add_pointer(dnmp->dmctfp, CTF_ADD ROOT,
ctf_Il ookup_by_nane(dnp->dmctfp, "void"));

(void) ctf_add_pointer(dnmp->dmctfp, CTF_ADD_ROOT,
ctf_I ookup_by_nane(dnp->dmctfp, "char"));

(void) ctf_add_pointer(dnp->dmctfp, CTF_ADD ROOT,
ctf_| ookup_by_nane(dnmp->dmctfp, "int"));

if (ctf_update(dnmp->dmctfp) != 0)
dt _dprintf("failed to update C container: %\n",
ctf_errmsg(ctf_errno(dnp->dmctfp)));
return (set_open_errno(dtp, errp, EDI_CTF));

*
* Create a dynamic CTF container under the "D' scope for types that

* are defined by the D programitself or on-the-fly by the D conpiler.
* The "D' CTF container is a child of the "C' CTF container.

*

/
if ((dnmp = dtp->dt_ddefs = dt_nodul e_create(dtp, "D')) == NULL)
return (set_open_errno(dtp, errp, EDT_NOVEM);

if ((dmp->dmctfp = ctf_create(&dtp->dt ctferr)) == NULL)
return (set_open_errno(dtp, errp, EDT_CTI));

dt _dprintf("created CTF container for % (%)\n",
dnp- >dm nane, (void *)dnp->dmctfp);

(void) ctf_setnodel (dnp->dmctfp, dtp->dt_conf.dtc_ctfnodel);
ctf_setspecific(dnp->dmctfp, dnp);

dnmp->dm f | ags
dnmp- >dm _nodi d

= DT_DM LOADED; /* fake up |oaded bit */
=-1; /* no nodule ID */
if (ctf_inport(dnp->dmctfp, dtp->dt_cdefs->dmctfp) == CTF_ERR) {
dt _dprintf("failed to inport D parent container: %\n",
ctf_errmsg(ctf_errno(dnp->dmctfp)));
return (set_open_errno(dtp, errp, EDT CTF))
}

/*
* Fill the dynamic "D' CTF container with all of the built-in typedefs
* that we need to use for our D variable and function definitions.
*/ThIS ensures that basic inttypes.h nanes are al ways avail able to us.
*
for (; dtyp->dty_src != NULL; dtyp++) {

if (ctf_add typedef(drrp >dm ctfp, CTF_ADD_ROOT,

dtyp->dty_dst, ctf_l ookup_by name(dnp->dm ctfp,

new usr/src/lib/libdtrace/ conmon/dt_open.c 19 new usr/src/lib/libdtrace/ conmon/dt_open.c 20
1177 dtyp->dty_src)) == CTF_ERR) { 1243 * dt_node_int() for a conplete description of howthis table is used.
1178 dt dp intf("failed to add typedef % % to D" 1244 */
1179 ‘container: %", dtyp->dty_src, dtyp->dty_dst, 1245 for (i =0; i < sizeof (dtp->dt_ints) / sizeof (dtp->dt_ints[0]); i++) {
1180 ctf_errmsg(ctf errno(drrp >dm ctfp))) 1246 if (dtrace_l ookup_by_type(dtp, DTRACE_OBJ_EVERY,
1181 return (set_open_errno(dtp, errp, EDT CTF)); 1247 dtp->dt_ints[i].did_nane, &Jtt) != 0)
1182 } 1248 dt _dprintf("failed to | ookup integer type %: %\n",
1183 } 1249 dtp->dt _ints[i].did_nange,
1250 dtrace_errnsg(dtp, dtrace_errno(dtp)));
1185 /* 1251 return (set_open_errno(dtp, errp, dtp->dt_errno));
1186 * Insert a CTF I D corresponding to a pointer to a type of kind 1252 }
1187 * CTF_K_FUNCTION we can use in the conpiler for function pointers. 1253 dtp->dt _ints[i].did_ctfp = dtt.dtt_ctfp;
1188 * CTF treats all function pointers as "int (*)()" so we only need one. 1254 dtp->dt_ints[i].did_type = dtt.dtt_type;
1189 */ 1255 }
1190 ctc.ctc_return = ctf_I ookup_by_nane(dnp->dmctfp, "int");
1191 ctc.ctc_argc = O; 1257 I*
1192 ctc.ctc_flags = O; 1258 * Now that we’ve created the "C' and "D' containers, nove themto the
1259 * start of the nodule list so that these types and synbols are found
1194 dt p- >dt _type_func = ctf_add_functi on(dnmp->dm ctfp, 1260 * first (for stability) when iterating through the nodule |ist.
1195 F_ADD ROOT, &ctc, NULL); 1261 */
1262 dt _list_del et e(&t p->dt _nodl i st, dt p->dt_ddefs);
1197 dt p- >dt type fptr = ctf_add_pointer(dnp->dmctfp, 1263 dt _|i st_prepend(&dtp->dt_nodlist, dtp->dt_ddefs);
1198 ADD_ROOT, dtp->dt_type_func);
1265 dt _list_del et e(&t p->dt _nodl i st, dtp->dt_cdefs);
1200 l* 1266 dt _|i st _prepend(&dtp->dt_nodlist, dtp->dt_cdef s)
1201 * We also insert CTF definitions for the special Dintrinsic types
1202 * string and <DYN> into the D container. The string type is added 1268 if (dt_pfdict_create(dtp) == -1)
1203 * as a typedef of char[n]. The <DYN> type is an alias for void. 1269 return (set_open_errno(dtp, errp, dtp->dt_errno));
1204 * We conpare types to these special CTF ids throughout the conpiler.
1205 */ 1271 /*
1206 ctr.ctr_contents = ctf_| ookup_by_nane(dmp->dmctfp, "char"); 1272 * |f we are opening |ibdtrace DTRACE_O NODEV enabl e C_ZDEFS by defaul t
1207 ctr.ctr_index = ctf_I ookup_by_nane(dnp->dmctfp, “long"); 1273 * because without /dev/dtrace open, we will not be able to | oad the
1208 ctr.ctr_nelens = _dtrace_strsize; 1274 * nanes and attributes of any providers or probes fromthe kernel.
1275 */
1210 dt p- >dt type str = ctf_add_typedef (dnp->dmctfp, CTF_ADD ROOT, 1276 if (flags & DTRACE_O NCDEV)
1211 “string", ctf_add_array(dnp->dmctfp, CTF_ADD ROOT, &ctr)); 1277 dt p->dt _cflags | = DTRACE_C _ZDEFS;
1213 dt p- >dt _type_dyn = ctf_add_t ypedef (dnp->dm ctfp, CTF_ADD ROOT, 1279 7%
1214 <DYN>", “ctf_l ookup_by_name(dnp->dm ctfp, "void")); 1280 * Load hard-wired inlines into the definition cache by calling the
1281 * conpiler on the raw definition string defined above.
1216 dt p- >dt _type_stack = ctf_add_t ypedef (dnp->dm ctfp, CTF_ADD ROOT, 1282 *
1217 "stack", ctf_| ookup_by_nane(dnp->dmctfp, "void")); 1283 if ((pgp = dtrace_program strconpil e(dtp, _dtrace_hardwire,
1284 DTRACE_PROBESPEC NONE, DTRACE_C EMPTY, 0, NULL)) == NULL) {
1219 dt p->dt _type_synaddr = ctf_add_typedef (dnp->dm ctfp, CTF_ADD_ROOT, 1285 dt dprintf("failed to | oad hard-wired definitions: %\n",
1220 " _symaddr", ctf_I ookup_by_nane(dnp->dmctfp, "void")); 1286 dtrace_errnsg(dtp, dtrace_errno(dtp)));
1287 return (set_open_errno(dtp, errp, EDT HARDWRE));
1222 dt p->dt _type_usynaddr = ctf_add_typedef (dnp->dm ctfp, CTF_ADD ROCT, 1288 }
1223 " _usymaddr", ctf_| ookup_by_nane(dnmp->dmctfp, "void"));
1290 dt _program destroy(dtp, pgp);
1225 if (dtp->dt_type_func == CTF_ERR || dtp->dt_type_ fptr == CTF_ERR ||
1226 dt p->dt _type_str == CTF_ERR || dtp->dt_type_dyn == CTF_ERR || 1292 /*
1227 dt p->dt _type_stack == CTF_ERR || dtp->dt_type_symaddr == CTF_ERR || 1293 * Set up the default DTrace library path. Once set, the next call to
1228 dt p->dt _t ype_ usynaddr == CTF_ERR) { 1294 * dt _conpile() will conpile all the libraries. W intentionally defer
1229 dt _dprintf("failed to add intrinsic to D container: %\n", 1295 * library processing to i nprove overhead for clients that don’t ever
1230 ctf_errmsg(ctf_errno(dnp->dmctfp))); 1296 * conpile, and to provide better error reporting (because the full
1231 return (set_open_errno(dtp, errp, EDT_CTF)); 1297 * reporting of conpiler errors requires dtrace_open() to succeed).
1232 } 1298 *
1299 f (dtrace_setopt(dtp, "libdir", _dtrace_libdir) != 0)
1234 if (ctf_update(dnp->dmctfp) != 0) { 1300 return (set_open_errno(dtp, errp, dtp->dt_errno));
1235 dt _dprintf("failed update D container: %\n",
1236 ctf_errmsg(ctf_errno(dnp->dmctfp))); 1302 return (dtp);
1237 return (set_open_errno(dtp, errp, EDT CTF)) 1303 }
1238 }
1305 dtrace_hdl _t *
1240 /* 1306 dtrace_open(int version, int flags, int *errp)
1241 * Initialize the integer description table used to convert integer 1307 {
1242 * constants to the appropriate types. Refer to the coments above 1308 return (dt_vopen(version, flags, errp, NULL, NULL));

new usr/src/lib/libdtrace/ conmon/dt_open.c
1309 }

1311 dtrace_hdl _t *
1312 dtrace_vopen(int version, int flags, int *errp,

1313 const dtrace_vector_t *vector, void *arg)

1314 {

1315 return (dt_vopen(version, flags, errp, vector, arg));
1316 }

1318 void

1319 dtrace_cl ose(dtrace_hdl _t *dtp)

1320 {

1321 dt_ident_t *idp, *ndp;

1322 dt _nmodul e_t *dnp;

1323 dt _provider_t *pvp;

1324 dtrace_prog_t *pgp;

1325 dt _xlator_t *dxp;

1326 dt _dirpath_t *dirp;

1327 int i;

1329 if (dtp->dt_procs != NULL)

1330 dt _proc_fini(dtp);

1332 whil e ((pgp dt _|ist_next(&dtp->dt_prograns)) != NULL)
1333 _program destroy(dtp, pgp);

1335 while ((dxp = dt_list_next(&dtp->dt_xlators)) != NULL)
1336 dt _xl ator_destroy(dtp, dxp);

1338 dt _free(dtp, dtp->dt_xlatormap);

1340 for (idp = dtp >dt _externs; idp != NULL; idp = ndp) {
1341 ndp = idp->di _next;

1342 dt _i dent _destroy(idp);

1343 }

1345 if (dtp->dt_macros != NULL)

1346 dt _i dhash_dest roy(dt p->dt _macros);

1347 if (dtp->dt_aggs != NULL)

1348 dt _i dhash_dest r oy(dt p- >dt _aggs) ;

1349 if (dtp->dt_globals != NULL)

1350 dt _i dhash_dest roy(dt p- >dt _gl obal s);

1351 if (dtp->dt_tls !'= NULL)

1352 dt _i dhash_destroy(dtp->dt_tls);

1354 while ((dmp = dt_list_next(&dtp->dt_nodlist)) != NULL)
1355 dt _nodul e_destroy(dtp, dmp);

1357 while ((pvp = dt_list_next(&dtp->dt_provlist)) !'= NULL)
1358 dt _provider_destroy(dtp, pvp);

1360 if (dtp->dt_fd != -1)

1361 (void) close(dtp->dt_fd);

1362 if (dtp->dt_ftfd != -1)

1363 (void) close(dtp->dt_ftfd);

1364 if (dtp->dt_cdefs_fd != -1

1365 (void) close(dtp->dt_cdefs_fd);

1366 if (dtp->dt_ddefs_fd != -1)

1367 (voi d) cl ose(dtp- >dt _ddefs_fd);

1368 if (dtp->dt_stdout_fd I= -

1369 (void) close(dtp- >dt _stdout _fd);

1371 dt _epi d_destroy(dtp);

1372 dt _aggi d_destroy(dtp);

1373 dt _format _destroy(dtp);

1374 dt _strdata_destroy(dtp);

21

new usr/src/lib/libdtrace/ conmon/dt_open.c

= NULL) {

= prov->dp_next,

1375 dt _buf f ered_destroy(dtp);

1376 dt _aggr egat e_dest roy(dtp);

1377 dt _pfdict_destroy(dtp);

1378 dt _provnod_dest r oy (&dt p- >dt _pr ovnod) ;

1379 dt _dof _fini(dtp);

1381 for (i =1, i < dtp->dt_cpp_argc; i++)

1382 free(dtp->dt_cpp_argv[i]);

1384 while ((dirp = dt_list_next(&Jtp->dt_l|ib_path))
1385 dt _Iist_del et e(&dt p- >dt I|bp h, dirp);
1386 free(dirp->dir_path);

1387 free(dirp);

1388 }

1390 free(dtp->dt_cpp_argv);

1391 free(dtp->dt_cpp_path);

1392 free(dtp->dt_|d_path);

1394 free(dtp->dt_nods);

1395 free(dtp->dt_provs);

1396 free(dtp);

1397 }

1399 int

1400 dtrace_provi der_nodul es(dtrace_hdl _t *dtp, const char **npds, int nnods)
1401 {

1402 dt _pr ovrmd _t *prov;

1403 int i =0;

1405 for (prov = dtp->dt_provnod; prov != NULL; prov
1406 if (| < nnods)

1407 nods[1] = prov->dp_nang;

1408 }

1410 return (i);

1411 }

1413 int

1414 dtrace_ctlfd(dtrace_hdl _t *dtp)

1415 {

1416 return (dtp->dt_fd);

1417 }

22

i++) {

new usr/src/lib/libdtrace/ common/io.d.in

R R R R

7992 Tue Jan 14 16:50: 00 2014
new usr/src/lib/libdtrace/common/io.d.in
2915 DTrace in a zone shoul d see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have linited provider access
Revi ewed by: Joshua M dul ow <j osh@ysngr. or g>
Revi ewed by: Adam Levent hal <ahl @lel phi x. con»

R R R R R R R R

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governing perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 =
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Mcrosystens, Inc. Al rights reserved.
23 * Use is subject to license terns.

*

/

26 /*

27 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.
*
/

26 #pragma ident " %Y U % %Y SM "

30 #pragnma D depends_on nodul e uni x
31 #pragnma D depends_on provider io

33 inline int B_BUSY = @_BUSY@

34 #pragma D binding "1.0" B _BUSY
35 inline int B DONE = @_DONE@

36 #pragma D binding "1.0" B_DONE
37 inline int BERRO? @_ERROR@
38 #pragma D binding "1.0" B_ERROR
39 inline int B PACGEIO = @PAGEIO@
40 #pragma D binding "1.0" B_PAGEIO
41 inline int BPHYS- @_PHYS@

42 #pragma D bi nding "1.0" B_PHYS
43 inline int B READ = @3_

44 #pragma D binding "1.0" B_READ
45 inline int B WRITE @_\WR TE@
46 #pragma D binding "1.0" B_WRI TE
47 inline int B ASYNC = @ ASYNC@
48 #pragma D binding "1.0" B_ASYNC

I |

50 typedef struct bufinfo {

51 int b_flags; /* buffer status */

52 size_t b_bcount; /* nunber of bytes */

53 caddr _t b_addr; /* buffer address */

54 uint64_t b_| bl kno; /* block # on device */

55 uint64_t b_bl kno; /* expanded bl ock # on device */
56 size_t b_resid; /* # of bytes not transferred */

new usr/src/lib/libdtrace/ common/io.d.in

57 size_t b_bufsi ze; /* size of allocated buffer */
58 caddr _t b_i odone; /* 1/0O conpletion routine */
59 int b_error; /* expanded error field */

60 dev_t b_edev /* extended device */

61 } bufinfo_t;
__unchanged_| portl on_om tted_

202 inline fileinfo_t fds[int fd] = xlate <fileinfo_t> (getf(fd));

200 inline fileinfo_t fds[int fd] = xlate <fileinfo_t>

201 fd >= O && Fd < curthread->t_procp->p_user.u finfo.fi_nfiles ?
202 curthread->t_procp->p_user.u_finfo.fi_list[fd].uf file : NULL);

204 #pragma D attributes Stabl e/ Stabl e/ Conmon fds
205 #pragma D binding "1.1" fds

207 #pragma D binding "1.2" translator
208 translator filei nfo _t < struct vnode *V > {
209

fi_name = V->v_path == NULL ? "<unknown>"
210 basenane(cl eanpat h(V->v_path));
211 fi_dirname = V->v_path == NULL ? " <unknown>"
212 di rnane(cl eanpat h(V->v_path));
213 fi_pathname = V->v_path == NULL ? "<unknown>" : cl eanpath(V->v_path);
214 fi_fs = stri ngof (V- >v_op- >vnop_nane) ;
215 fi_mount V->v_vfsp->vfs_vnodecover ed == NULL ?2 "
216 V- >v vfsp >vfs_vnodecovered->v_path == NULL ? " <unknown>"
217 cl eanpat h(V->v_vf sp->vfs_vnodecover ed- >v_pat h) ;

218 };
__unchanged_portion_onitted_

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

R R R R

119866 Tue Jan 14 16:50: 00 2014
new usr/ src/ pkg/ mani f est s/ system dtrace-tests. nf
2915 DTrace in a zone shoul d see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have linited provider access
Revi ewed by: Joshua M dul ow <j osh@ysngr. or g>
Revi ewed by: Adam Levent hal <ahl @lel phi x. con»

R R R R R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.

7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing permn ssions

11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each

14 # file and include the License file at usr/src/ OPENSOCLARI S. LI CENSE.
15 # |If applicable, add the followi ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]

18 #

19 # CDDL HEADER END

20 #

22 #

23 # Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved.
24 # Copyright (c) 2012 by Del phix. Al rights reserved.

25 #

27 set nane=pkg.fnri val ue=pkg:/system dtrace/tests@(PKGVERS)

28 set nane=pkg. description val ue="DTrace Test Suite Internal Distribution"

29 set nane=pkg. summary val ue="DTrace Test Suite"

30 set nane=info.classification \

31 val ue=or g. opensol ari s. cat egory. 2008: Devel opnent / Syst em
32 set name=variant.arch val ue=$(ARCH)

33 dir path=opt/SUNWItrt group=sys

34 dir path=opt/SUNWItrt/bin

35 dir path=opt/ SUNWit rt/ bi n/ $(ARCH32)
36 dir pat h=opt/ SUNWIt rt/ bi n/ $(ARCH64)
37 dir path=opt/SUNWItrt/lib

38 dir path=opt/SUNWItrt/lib/java

39 dir path=opt/SUNWItrt/tst

r

pat h=opt/ SUNWIt rt/t st/ $(ARCH)

41 dir path=opt/SUNWitrt/tst/$(ARCH)/arrays

42 $(i386_ONLY)dir pat h=opt/SUNWJtrt/tst/$(ARCH)/funcs
43 dir path=opt/SUNWitrt/tst/$(ARCH)/ pid

44 $(sparc ONLY) di r pat h=opt/SUNWIt rt/t st/ $(ARCH)/ usdt
45 dir path=opt/SUNWItrt/tst/$(ARCH)/ ust ack

46 dir path=opt/SUNWItrt/tst/conmmon
47 dir path=opt/SUNWItrt/tst/common/ aggs
48 dir path=opt/SUNWItrt/tst/comon/arithmetic
49 dir path=opt/SUNWItrt/tst/common/ arrays
50 dir path=opt/SUNWItrt/tst/comon/assocs
51 dir path=opt/SUNWItrt/tst/common/begin
52 dir path=opt/SUNWItrt/tst/common/bitfields
53 dir path=opt/SUNWItrt/tst/common/buffering
54 dir path=opt/SUNWItrt/tst/conmmon/builtinvar
55 dir path=opt/SUNWItrt/tst/common/cg

r

r

pat h=opt/ SUNWIt rt/t st/ comron/ cl auses
pat h=opt/ SUNWIt rt/t st/ comron/ cpc

new usr/ src/ pkg/ mani f est s/ system dtrace-tests. nf

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

pat h=opt/ SUNWit rt/tst/common/ decl s

pat h=opt/ SUNWt rt/t st/ comron/ dr ops

pat h=opt/ SUNWIt rt/t st/ conmmon/dtracelti |
pat h=opt/ SUNWit rt/t st/ common/ end

pat h=opt/ SUNWit rt/t st/ common/ enum

pat h=opt/ SUNWIt rt/t st/ comron/ env

pat h=opt/ SUNWit rt/t st/ common/ error

pat h=opt/ SUNWitrt/t st/ common/ exi t

pat h=opt/ SUNWit rt/t st/ comon/ f bt provi der
pat h=opt/ SUNWt rt/t st/ comron/ f uncs

pat h=opt/ SUNWIt rt/t st/ comron/ gr amrar

pat h=opt/ SUNWt rt/t st/ conmmon/i ncl ude
pat h=opt/ SUNWitrt/tst/common/inline

pat h=opt/ SUNWItrt/t st/ comon/i o

pat h=opt/ SUNWIt rt/t st/ comon/ip

pat h=opt/ SUNWIt rt/t st/ conmon/j ava_api
pat h=opt/ SUNWitrt/tst/common/ | exer

pat h=opt/ SUNWItrt/tst/comron/ || quanti ze
pat h=opt/ SUNWt rt/t st/ comron/ mdb

pat h=opt/ SUNWItrt/t st/ conmmon/ m b

pat h=opt/ SUNWitrt/t st/ common/ m sc

pat h=opt/ SUNWIt rt/t st/ comron/ nul ti aggs
pat h=opt/ SUNWIt rt/t st/ comron/ nfs

pat h=opt/ SUNWIt rt/ t st/ conmon/ of f set of
pat h=opt / SUNWit rt/t st/ conmon/ oper at or s
pat h=opt/ SUNWit rt/t st/ common/ pi d

pat h=opt/ SUNWt rt/t st/ comron/ pl ockst at
pat h=opt/ SUNWIt rt/t st/ comon/ poi nters
pat h=opt/ SUNWit rt/ t st/ common/ pr agna

pat h=opt/ SUNWit rt/t st/ common/ pr edi cat es
pat h=opt/ SUNWt rt/t st/ conmon/ pr epr ocessor
pat h=opt/ SUNWIt rt/t st/ comron/ pri nt

pat h=opt/ SUNWitrt/tst/common/printa

pat h=opt/ SUNWitrt/tst/common/printf

pat h=opt/ SUNWIt rt/t st/ comron/ privs

pat h=opt/ SUNWIt rt/ t st/ common/ pr obes

pat h=opt/ SUNWt rt / t st/ common/ pr oc

pat h=opt/ SUNWitrt/tst/common/profile-n
pat h=opt/ SUNWIt rt/t st/ comron/ provi ders
pat h=opt/ SUNWItrt/t st/ conmmon/rai se

pat h=opt/ SUNWIt rt/t st/ comron/rates

pat h=opt/ SUNWitrt/tst/common/ saf ety

pat h=opt/ SUNWItrt/t st/ comron/ scal ars
pat h=opt/ SUNWIt rt/t st/ comron/ sched

pat h=opt/ SUNWIt rt/t st/ common/ scri pting
pat h=opt/ SUNWit rt/t st/ common/ sdt

pat h=opt/ SUNWt rt/t st/ comon/ si zeof

pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on
pat h=opt/ SUNWItrt/tst/comon/stability
pat h=opt/ SUNWit rt/t st/ common/ st ack

pat h=opt/ SUNWit rt/t st/ common/ st ackdept h
pat h=opt/ SUNWIt rt/t st/ comon/ st op

pat h=opt/ SUNWIt rt/t st/ common/strlen

pat h=opt/ SUNWit rt/t st/ common/ struct

pat h=opt/ SUNWit rt/t st/ common/ syscal |

pat h=opt/ SUNWt rt/t st/ common/ sysevent
pat h=opt/ SUNWIt rt/t st/ common/tick-n

pat h=opt/ SUNWitrt/tst/common/trace

pat h=opt/ SUNWitrt/tst/common/tracemem
pat h=opt/ SUNWItrt/t st/ comron/transl ators
pat h=opt/ SUNWIt rt/t st/ comron/ t ypedef

pat h=opt/ SUNWIt rt/t st/ comron/types

pat h=opt/ SUNWit rt/t st/ common/ uni on

pat h=opt/ SUNWt rt/t st/ comon/ usdt

pat h=opt/ SUNWIt rt / t st/ common/ ust ack

pat h=opt/ SUNWIt rt/t st/ comon/ vars

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

dir path=opt/SUNWItrt/tst/common/version

$(i 386_ONLY)dir pat h=opt/SUNWItrt/tst/i86xpv
$(i 386_ONLY)dir path=opt/SUNWAtrt/tst/i86xpv/xdt

pat h=opt / SUNWIt r t / README node=0444

pat h=opt / SUNWAt r t / bi n/ badi oct |

ODODODDDDDDDDDDD

i
i
i
i
i
i
i
i
i
i
i
:
(i

Hhm R h—h

node=0444

$(i 386_ONLY)file path=opt/SUNWItrt/tst/$(ARCH)/funcs/tst.

node=0444

$(i386_ONLY)file path=opt/SUNWItrt/tst/$(ARCH)/funcs/tst.

nmode=0444
$(sparc_ONLY)file \

pat h=opt / SUNWAt r t / bi n/ $(ARCH32) / chkar gs npde=0555
pat h=opt / SUNWit r t / bi n/ $(ARCH64) / chkar gs npde=0555
pat h=opt / SUNWAt r t / bi n/ baddof npde=0555

node=0555

pat h=opt / SUNWIt rt / bi n/ chkar gs node=0555

pat h=opt/ SUNWAt rt / bi n/ dstyl e node=0555

pat h=opt / SUNWAt r t / bi n/ dt est npde=0555

pat h=opt / SUNWdt rt/ bi n/ dt f ai | ures node=0555

pat h=opt/ SUNWAt rt / bi n/ exception. | st node=0444

pat h=opt / SUNWAt rt / bi n/ j dt race npde=0555
path=opt/SUNWItrt/lib/javaljdtrace.jar

pat h=opt/ SUNWIt rt/t st/ $(ARCH)/ arrays/tst.uregsarray.d node=0444
386_ONLY)file path=opt/SUNWItrt/tst/$(ARCH)/funcs/tst.
$(i386_ONLY)file path=opt/SUNWItrt/tst/$(ARCH)/funcs/tst.

badcopyi n. d nbde=0444
badcopyinstr.d \

badcopyout.d \
badcopyoutstr.d \

pat h=opt / SUNWIt rt/t st/ $(ARCH)/ pi d/ err. D_PROC_ALI GN. nmi sal i gned. d npde=0444
\

$(sparc_ONLY)file

pat h=opt / SU\Wdt rt/t st/ $(ARCH)/ pi d/ err. D_PROC_ALI GN. i sal i gned. exe \

node=0555

$(i 386_ONLY) f
$(i 386_ONLY) f
$(sparc_ONLY)
$(sparc_ONLY)
$(sparc_ONLY)
e pat h=opt
pat h= opt

lep
le p
ile
ile
ile

SUI
SUI
SuUI
SUI
ile path=opt/SUNWItrt/t
ile path=opt/SUNWItrt/t
ile path=opt/SUNWMItrt/t
ile path=opt/SUNWMItrt/t
ile path=opt/SUNWItrt/

- - " — " . —h = —h == —

|
S
S
S
S
t

aHERH TN
agag s
w
o]
O’)
999
5

t
t
t
t
S

pat h=opt/ SUNWdt rt/t st
pat h=opt/ SUNWdt rt/t st
pat h=opt/ SUNWtrt/t st
pat h=opt/ SUNWdt rt/t st
pat h=opt/ SUNWAt rt/t st
pat h=opt/ SUNWdt rt/t st

t

/
/
/
/
/
/
pat h=opt/ SUNWitrt/ts ;

TDODOD®MD®MO®O®DD

node=0444

pat h=opt/ SUNWtrt/t st/ common/ aggs/ err.
pat h=opt/ SUNWIt rt/t st/ common/ aggs/ err.
pat h=opt/ SUNWIt rt/t st/ cormon/ aggs/ err.
pat h=opt/ SUNWdtrt/t st/ common/ aggs/ err.
pat h=opt/ SUNWdtrt/t st/ common/ aggs/ err.
pat h=opt/ SUNWAt rt/t st/ common/ aggs/ err.
pat h=opt/ SUNWIt rt/t st/ cormon/ aggs/ err.
node=0444
file path=opt/SUNWItrt/tst/common/aggs/err.
node=0444
pat h=opt/ SUNWIt rt/t st/ common/ aggs/ err.
pat h=opt/ SUNWIt rt/t st/ cormon/ aggs/ err.

—h —h —h —h —h —h —h —h
®OD®MD®D®M®MDCMDD

file
file

ARCH) / pi d/ t st .
$(ARCH) /usdt/tst.tailcall.

pat h=opt/ SUNWdtrt/t st/ common/ aggs/ err.

at h=opt/ SUNWItrt/tst/$(ARCH)/ pi d/ t st. badi nstr.d npbde=0444
at h=opt/ SUNWitrt/t st/ $(ARCH)/ pi d/ t st. badi nstr. exe nbode=0555
pat h=opt/ SUNWAt rt/t st/ $(ARCH) / pi d/ tst. br.d node=0444

pat h=opt/ SUNWAt rt/t st/ $(ARCH) / pi d/tst. br.d. out node=0444
pat h=opt/ SUNWtrt/t st/ $(ARCH)/ pi d/ tst. br. exe node=0555
l\l\Mtrt/tst/$(ARCt—I)/pid/tst.
NWAt rt/tst/$(ARCH) / pid/tst.
NWAt rt/tst/$(ARCH)/ pid/tst.
NWit rt/tst/$(ARCH)/ pid/tst.
[$(ARCH) / pi d/ t st .
/ $(ARCH) / pi d/ t st .
/ $(ARCH) / pi d/ t st .
/)$(
t

branch. d node=0444

branch. exe node=0555

enbedded. d node=0444

enbedded. exe npde=0555

ret.d node=0444
ret.exe node=0555
retlist.exe node=0555
retlist.ksh node=0444
ksh \

$(ARCH) / ust ack/ t st. annot at ed. d node=0444

$(ARCH) / ust ack/ t st . annot at ed. d. out npde=0444

$(ARCH) / ust ack/ t st. annot at ed. exe nbde=0555

$(ARCH) / ust ack/ tst. ci rcstack. d node=0444

$(ARCH) / ust ack/ t st. ci rcstack. exe nbde=0555

$(ARCH) / ust ack/ t st .

$(ARCH) / ust ack/ t st .
pat h=opt/ SUNWit rt/t st/ $(ARCH) / ust ack/ t st.

arc_ONLY)file path=opt/SUNWItrt/tst/$(ARCH)/ustack/tst.trapstat.ksh \

hel per.d node=0444
hel per. d. out npde=0444
hel per. exe npde=0555

D AGG _FUNC. bad. d node=0444

D _AGG MDI M bad. d node=0444

AGG NULL. bad. d nbde=0444
AGG_REDEF. r edef . d node=0444
AGG_SCALAR. avgt oof ew. d npde=0444
AGG_SCALAR. maxnoar g. d nmode=0444
) AGG_SCALAR. mi nt oof ew. d node=0444
) AGG_SCALAR. quant i zet oof ew. d \

) AGG_SCALAR. st ddevt oof ew. d \

) AGG_SCALAR. sunt oof ew. d node=0444
EAR_AGGARG bad. d nbde=0444

U U U U U UIUIUIUI

9

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

190 file path=opt/SUNWItrt/tst/conmon/ aggs/err.
191 file path=opt/SUNWItrt/tst/comon/ aggs/err.
192 file path=opt/SUNWItrt/tst/common/aggs/err.
193 file path=opt/SUNWItrt/tst/conmon/ aggs/err.
194 file path=opt/SUNWItrt/tst/conmon/ aggs/err.
195 file path=opt/SUNWItrt/tst/comon/ aggs/err.
196 file path=opt/SUNWItrt/tst/common/aggs/err.
197 file path=opt/SUNWItrt/tst/common/ aggs/err.
198 file path=opt/SUNWItrt/tst/conmon/ aggs/err.
199 file path=opt/SUNWitrt/tst/conmmon/ aggs/err.
200 node=0444

201 file path=opt/SUNWItrt/tst/common/ aggs/err.
202 node=0444

203 file path=opt/SUNWItrt/tst/common/ aggs/err.
204 file path=opt/SUNWItrt/tst/comon/ aggs/err.
205 file path=opt/SUNWItrt/tst/comon/ aggs/err.
206 file path=opt/SUNWItrt/tst/common/aggs/err.
207 file path=opt/SUNWItrt/tst/comon/ aggs/err.
208 node=0444

209 file path=opt/SUNWItrt/tst/comon/ aggs/err.
210 file path=opt/SUNWItrt/tst/common/ aggs/err.
211 file path=opt/SUNWItrt/tst/common/ aggs/err.
212 file path=opt/SUNWItrt/tst/comon/ aggs/err.
213 node=0444

214 file path=opt/SUNWItrt/tst/common/aggs/err.
215 node=0444

216 file path=opt/SUNWItrt/tst/comon/ aggs/err.
217 file path=opt/SUNWItrt/tst/comon/ aggs/err.
218 node=0444

219 file path=opt/SUNWItrt/tst/common/ aggs/err.
220 file path=opt/SUNWItrt/tst/comon/ aggs/err.
221 file path=opt/SUNWItrt/tst/comon/ aggs/err.
222 file path=opt/SUNWItrt/tst/common/aggs/err.
223 file path=opt/SUNWItrt/tst/common/aggs/err.
224 node=0444

225 file path=opt/SUNWItrt/tst/comon/ aggs/err.
226 file path=opt/SUNWItrt/tst/common/ aggs/err.
227 file path=opt/SUNWItrt/tst/common/aggs/err.
228 node=0444

229 file path=opt/SUNWItrt/tst/comon/ aggs/err.
230 node=0444

231 file path=opt/SUNWItrt/tst/common/aggs/err.
232 node=0444

233 file path=opt/SUNWItrt/tst/comon/ aggs/err.
234 file path=opt/SUNWItrt/tst/comon/ aggs/err.
235 file path=opt/SUNWItrt/tst/common/aggs/err.
236 file path=opt/SUNWItrt/tst/common/ aggs/err.
237 file path=opt/SUNWItrt/tst/comon/ aggs/err.
238 node=0444

239 file path=opt/SUNWItrt/tst/common/aggs/err.
240 node=0444

241 file path=opt/SUNWItrt/tst/comon/ aggs/err.
242 file path=opt/SUNWItrt/tst/comon/ aggs/err.
243 node=0444

244 file path=opt/SUNWItrt/tst/common/aggs/err.
245 file path=opt/SUNWItrt/tst/common/ aggs/err.
246 file path=opt/SUNWItrt/tst/comon/ aggs/err.
247 file path=opt/SUNWItrt/tst/common/ aggs/err.
248 file path=opt/SUNWItrt/tst/common/ aggs/err.
249 file path=opt/SUNWItrt/tst/common/ aggs/err.
250 file path=opt/SUNWItrt/tst/comon/ aggs/tst.
251 file path=opt/SUNWItrt/tst/comon/ aggs/tst.
252 file path=opt/SUNWItrt/tst/common/aggs/tst.
253 file path=opt/SUNWItrt/tst/comon/ aggs/tst.
254 file path=opt/SUNWItrt/tst/comon/ aggs/tst.
255 file path=opt/SUNWItrt/tst/comon/ aggs/tst.

EAR_PROTO. bad. d node=0444

UNC_| DENT. bad. d node=0444
UNC_UNDEF. badaggf unc. d node=0444
DENT_UNDEF. badexpr . d node=0444
DENT_UNDEF. badkey3. d node=0444
DENT_UNDEF. noef f ect . d node=0444
EY_TYPE. badkeyl. d nbde=0444
EY_TYPE. badkey2. d node=0444

D _KEY_TYPE. badkey4. d node=0444
D_LQUANT BASETYPE. | gbadl. d \

e

|U|U|U|U|U|U|U|U

=
F
|
|
|
Kl
Kl

D_LQUANT_BASETYPE. | gshort. d \

D _LQUANT_BASEVAL. bad. d node=0444
D_LQUANT_LI MIYPE. | gbadl. d node=0444
D_LQUANT_LI WAL. bad. d node=0444

) LQUANT_MATCHBASE. d npde=0444

) LQUANT_MATCHBASE. order. d \

) LQUANT_MATCHLI M d node=0444
QUANT_MATCHLI M or der. d node=0444
D_) LQUANT_MATCHSTEP. d node=0444
D_LQUANT_M SMATCH. | gbadarg. d \

l_l_f_

D_LQUANT_STEPLARGE. | gt oof ew. d \

D_LQUANT_STEPSMALL. bad. d node=0444
D_LQUANT_STEPTYPE. | gbadi nc. d \

D_LQUANT_STEPVAL. bad. d node=0444
D_NORMALT ZE_AGGARG. bad. d node=0444
D_NORMALI ZE_PROTO. bad. d node=0444
D_NORMALI ZE_SCALAR. bad. d node=0444
D_PROTO ARG | quanti zet oof ew. d \

D PROTO_LEN. avgnoar g. d node=0444
D PROTO_LEN. avgt oomany. d node=0444
D PROTO_LEN. countt oomany. d \

D PROTO _LEN. | quanti zenoarg.d \
D PROTO_LEN. | quanti zet oomany. d \

D PROTO _LEN. maxnoar g. d node=0444

D PROTO_LEN. maxt oomany. d node=0444
D PROTO_LEN. mi nnoar g. d node=0444

D PROTO_LEN. m nt oomany. d node=0444
D PROTO _LEN. quanti zenoarg. d \

D PROTO_LEN. quanti zet oomany. d \

D PROTO _LEN. st ddevnoar g. d node=0444
D PROTO_LEN. st ddevt oonany. d \

D PROTO_LEN. sunmoar g. d node=0444
D_PROTO_LEN. sunt oonany. d node=0444
D_TRUNC_AGGARG bad. d npde=0444
D_TRUNC_PROTO. badmany. d node=0444
D_TRUNC_PROTO. badnone. d node=0444
D_TRUNC_SCALAR. bad. d node=0444

al | quant.d node=0444

al | quant . d. out node=0444

avg. d node=0444

avg. d. out node=0444

avg_neg. d node=0444

avg_neg. d. out node=0444

new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf
256 file path=opt/SUNWItrt/tst/common/aggs/tst.clear.d node=0444 322 file path=opt/SUNWItrt/tst/common/aggs/tst.normalize.d.out node=0444
257 file path=opt/SUNWItrt/tst/comon/ aggs/tst.clear.d.out node=0444 323 file path=opt/SUNWItrt/tst/comon/ aggs/tst.order.d node=0444
258 file path=opt/SUNWItrt/tst/comon/aggs/tst.clearavg.d node=0444 324 file path=opt/SUNWItrt/tst/comon/aggs/tst.order.d.out nbde=0444
259 file path=opt/SUNWItrt/tst/common/aggs/tst.clearavg.d. out node=0444 325 file path=opt/SUNWItrt/tst/common/aggs/tst.quantize.d node=0444
260 file path=opt/SUNWItrt/tst/common/aggs/tst.clearavg2.d node=0444 326 file path=opt/SUNWItrt/tst/common/aggs/tst.quantize.d.out node=0444
261 file path=opt/SUNWItrt/tst/common/ aggs/tst.clearavg2. d. out node=0444 327 file path=opt/SUNWItrt/tst/comon/ aggs/tst.quant many.d node=0444
262 file path=opt/SUNWItrt/tst/comon/aggs/tst.cleardenormalize.d nbde=0444 328 file path=opt/SUNWItrt/tst/comon/aggs/tst.quant many. d. out node=0444
263 file path=opt/SUNWItrt/tst/comon/aggs/tst.cleardenormalize.d. out node=0444 329 file path=opt/SUNWItrt/tst/comon/aggs/tst.quantround.d nbde=0444
264 file path=opt/SUNWItrt/tst/comon/aggs/tst.clearlquantize.d node=0444 330 file path=opt/SUNWItrt/tst/common/aggs/tst.quantround. d. out node=0444
265 file path=opt/SUNWItrt/tst/comon/ aggs/tst.clearlquantize.d. out node=0444 331 file path=opt/SUNWItrt/tst/comon/ aggs/tst.quantzero.d node=0444
266 file path=opt/SUNWItrt/tst/comon/aggs/tst.clearnormalize.d node=0444 332 file path=opt/SUNWItrt/tst/comon/ aggs/tst.quantzero. d. out node=0444
267 file path=opt/SUNWItrt/tst/common/aggs/tst.clearnormalize.d. out node=0444 333 file path=opt/SUNWItrt/tst/common/aggs/tst.signature.d node=0444
268 file path=opt/SUNWItrt/tst/common/aggs/tst.clearstddev.d npde=0444 334 file path=opt/SUNWItrt/tst/common/aggs/tst.signedkeys.d npbde=0444
269 file path=opt/SUNWItrt/tst/common/ aggs/tst.cl earstddev. d. out node=0444 335 file path=opt/SUNWItrt/tst/common/ aggs/tst. si gnedkeys. d. out node=0444
270 file path=opt/SUNWItrt/tst/comon/ aggs/tst.count.d node=0444 336 file path=opt/SUNWItrt/tst/comon/ aggs/tst.signedkeyspos.d node=0444
271 file path=opt/SUNWItrt/tst/comon/aggs/tst.count.d.out node=0444 337 file path=opt/SUNWItrt/tst/common/aggs/tst.signedkeyspos. d. out node=0444
272 file path=opt/SUNWItrt/tst/common/aggs/tst.count2.d node=0444 338 file path=opt/SUNWItrt/tst/common/aggs/tst.sizedkeys.d npbde=0444
273 file path=opt/SUNWItrt/tst/common/ aggs/tst.count2.d. out node=0444 339 file path=opt/SUNWItrt/tst/common/ aggs/tst.sizedkeys. d. out node=0444
274 file path=opt/SUNWItrt/tst/comon/aggs/tst.count3.d node=0444 340 file path=opt/SUNWItrt/tst/common/aggs/tst.stddev.d node=0444
275 file path=opt/SUNWItrt/tst/common/ aggs/tst.denornalize.d node=0444 341 file path=opt/SUNWItrt/tst/common/ aggs/tst.stddev. d. out node=0444
276 file path=opt/SUNWItrt/tst/common/ aggs/tst.denormalize.d. out node=0444 342 file path=opt/SUNWItrt/tst/common/aggs/tst.subr.d npde=0444
277 file path=opt/SUNWItrt/tst/comon/ aggs/tst.denormalizeonly.d node=0444 343 file path=opt/SUNWItrt/tst/comon/ aggs/tst.sumd node=0444
278 file path=opt/SUNWItrt/tst/comon/ aggs/tst.denormalizeonly.d. out node=0444 344 file path=opt/SUNWItrt/tst/comon/ aggs/tst.sum d.out node=0444
279 file path=opt/SUNWItrt/tst/comon/aggs/tst.fntnormalize.d node=0444 345 file path=opt/SUNWItrt/tst/comon/aggs/tst.trunc.d node=0444
280 file path=opt/SUNWItrt/tst/common/aggs/tst.fntnormalize.d. out node=0444 346 file path=opt/SUNWItrt/tst/common/aggs/tst.trunc.d.out node=0444
281 file path=opt/SUNWItrt/tst/common/aggs/tst.fornms.d npode=0444 347 file path=opt/SUNWItrt/tst/comon/aggs/tst.trunc0.d node=0444
282 file path=opt/SUNWItrt/tst/comon/ aggs/tst.forns.d. out node=0444 348 file path=opt/SUNWItrt/tst/common/aggs/tst.truncO.d. out node=0444
283 file path=opt/SUNWItrt/tst/comon/aggs/tst.goodkey.d npde=0444 349 file path=opt/SUNWItrt/tst/comon/aggs/tst.truncquant.d npbde=0444
284 file path=opt/SUNWItrt/tst/common/aggs/tst. keysort.d node=0444 350 file path=opt/SUNWItrt/tst/comon/aggs/tst.truncquant.d.out node=0444
285 file path=opt/SUNWItrt/tst/common/aggs/tst.keysort.d. out npde=0444 351 file path=opt/SUNWItrt/tst/common/ aggs/tst.val sortkeypos.d node=0444
286 file path=opt/SUNWItrt/tst/comon/ aggs/tst.|quantize.d node=0444 352 file path=opt/SUNWItrt/tst/common/ aggs/tst.val sortkeypos. d. out node=0444
287 file path=opt/SUNWItrt/tst/comon/aggs/tst.|quantize.d. out node=0444 353 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D D V_ZERO di vby0. d node=0444
288 file path=opt/SUNWItrt/tst/comon/aggs/tst.|quantnornal.d node=0444 354 file path=opt/SUNWtrt/tst/comon/arithnetic/err.D D V_ZERO divby0_1.d \
289 file path=opt/SUNWItrt/tst/common/aggs/tst.|quantnornal.d.out nbde=0444 355 node=0444
290 file path=opt/SUNWItrt/tst/comon/ aggs/tst.|quantrange.d node=0444 356 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D D V_ZERO divby0_2.d \
291 file path=opt/SUNWItrt/tst/comon/aggs/tst.|quantrange.d. out node=0444 357 node=0444
292 file path=opt/SUNWItrt/tst/comon/aggs/tst.|quantround.d node=0444 358 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D D V_ZERO nodby0.d node=0444
293 file path=opt/SUNWItrt/tst/common/aggs/tst.|quantround. d. out node=0444 359 file path=opt/SUNWItrt/tst/comon/arithnmetic/err.D SYNTAX addmi n.d node=0444
294 file path=opt/SUNWItrt/tst/common/aggs/tst.|quantzero.d node=0444 360 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D SYNTAX divm n.d node=0444
295 file path=opt/SUNWItrt/tst/comon/aggs/tst. | quantzero.d. out node=0444 361 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D SYNTAX nmul add. d node=0444
296 file path=opt/SUNWItrt/tst/comon/aggs/tst.max.d node=0444 362 file path=opt/SUNWItrt/tst/comon/arithnetic/err.D SYNTAX mul div.d node=0444
297 file path=opt/SUNWItrt/tst/common/aggs/tst. max. d. out node=0444 363 file path=opt/SUNWItrt/tst/comon/arithnetic/tst.basics.d node=0444
298 file path=opt/SUNWItrt/tst/common/ aggs/tst. max_neg.d node=0444 364 file path=opt/SUNWItrt/tst/comon/arithmetic/tst.basics.d. out node=0444
299 file path=opt/SUNWItrt/tst/comon/ aggs/tst.max_neg. d. out node=0444 365 file path=opt/SUNWItrt/tst/comon/arithnetic/tst.conpcast.d node=0444
300 file path=opt/SUNWItrt/tst/comon/aggs/tst.m n.d nbde=0444 366 file path=opt/SUNWItrt/tst/comon/arithnetic/tst.conpcast.d.out node=0444
301 file path=opt/SUNWItrt/tst/comon/aggs/tst.m n.d.out node=0444 367 file path=opt/SUNWItrt/tst/comon/arithnetic/tst.conpnarrowassi gn.d node=0444
302 file path=opt/SUNWItrt/tst/common/ aggs/tst.m n_neg.d node=0444 368 file path=opt/SUNWItrt/tst/common/arithmetic/tst.conpnarrowassign.d.out \
303 file path=opt/SUNWItrt/tst/comon/ aggs/tst.m n_neg.d. out node=0444 369 node=0444
304 file path=opt/SUNWItrt/tst/comon/aggs/tst. multiaggsl.d nbde=0444 370 file path=opt/SUNWItrt/tst/comon/arithnetic/tst.execcast.d node=0444
305 file path=opt/SUNWItrt/tst/common/aggs/tst. multiaggs2.d npbde=0444 371 file path=opt/SUNWItrt/tst/comon/arithnetic/tst.execcast.d.out node=0444
306 file path=opt/SUNWItrt/tst/common/aggs/tst. multiaggs2.d.out node=0444 372 file path=opt/SUNWItrt/tst/comon/arrays/err. D ARR BADREF. bad. d npde=0444
307 file path=opt/SUNWItrt/tst/common/aggs/tst. mltiaggs3.d node=0444 373 file path=opt/SUNWItrt/tst/comon/arrays/err.D DECL_ARRBI G t oobi g. d node=0444
308 file path=opt/SUNWItrt/tst/comon/aggs/tst. multiaggs3.d.out node=0444 374 file path=opt/SUNWItrt/tst/comon/arrays/err. D DECL_ARRNULL. bad. d node=0444
309 file path=opt/SUNWItrt/tst/comon/aggs/tst.multinornalize.d node=0444 375 file path=opt/SUNWItrt/tst/comon/arrays/err. D DECL_ARRSUB. bad. d node=0444
310 file path=opt/SUNWItrt/tst/comon/aggs/tst. multinornmalize.d.out node=0444 376 file path=opt/SUNWItrt/tst/comon/arrays/err.D DECL_PROTO TYPE. badtuple.d \
311 file path=opt/SUNWItrt/tst/common/ aggs/tst.negl quant.d node=0444 377 node=0444
312 file path=opt/SUNWItrt/tst/comon/ aggs/tst. negl quant. d. out node=0444 378 file path=opt/SUNWItrt/tst/comon/arrays/err.D_ | DENT_UNDEF. badur eg. d node=0444
313 file path=opt/SUNWItrt/tst/common/ aggs/tst.negorder.d node=0444 379 file path=opt/SUNWItrt/tst/comon/arrays/tst.basicl.d node=0444
314 file path=opt/SUNWItrt/tst/common/ aggs/tst.negorder.d.out node=0444 380 file path=opt/SUNWItrt/tst/common/arrays/tst.basic2.d node=0444
315 file path=opt/SUNWItrt/tst/common/ aggs/tst. negquant.d node=0444 381 file path=opt/SUNWItrt/tst/common/arrays/tst.basic3.d node=0444
316 file path=opt/SUNWItrt/tst/common/ aggs/tst.negquant.d. out node=0444 382 file path=opt/SUNWItrt/tst/comon/arrays/tst.basic4.d node=0444
317 file path=opt/SUNWItrt/tst/common/aggs/tst.negtrunc.d node=0444 383 file path=opt/SUNWItrt/tst/comon/arrays/tst.basic5.d node=0444
318 file path=opt/SUNWItrt/tst/common/aggs/tst.negtrunc.d.out node=0444 384 file path=opt/SUNWItrt/tst/common/arrays/tst.basic6.d node=0444
319 file path=opt/SUNWItrt/tst/common/ aggs/tst.negtruncquant.d node=0444 385 file path=opt/SUNWItrt/tst/common/ arrays/tst.uregsarray.d node=0444
320 file path=opt/SUNWItrt/tst/comon/ aggs/tst.negtruncquant.d. out node=0444 386 file path=opt/SUNWItrt/tst/comon/assocs/err.D _OP_I NCOWAT. dupgt ype. d \
321 file path=opt/SUNWItrt/tst/comon/aggs/tst.nornmalize.d node=0444 387 node=0444

new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf 7 new usr/src/ pkg/ mani f est s/ systemdtrace-tests. nf 8
388 file path=opt/SUNWItrt/tst/common/ assocs/err.D_OP_| NCOWPAT. dupt type. d \ 454 node=0444
389 node=0444 455 file path=opt/SUNWitrt/tst/comon/builtinvar/err.D_XLATE_NOCONV. priority.d \
390 file path=opt/SUNWItrt/tst/comon/assocs/err.D _OP_| NCOWPAT. t hi s. d node=0444 456 node=0444
391 file path=opt/SUNWItrt/tst/comon/ assocs/err. D _PROTO ARG badsi g. d node=0444 457 file path=opt/SUNWitrt/tst/comon/ builtinvar/err.D_XLATE_NOCONV. prsize.d \
392 file path=opt/SUNWItrt/tst/common/ assocs/err. D _PROTO _LEN. t oof ew. d node=0444 458 node=0444
393 file path=opt/SUNWItrt/tst/conmon/ assocs/ err. D _PROTO_LEN. toomany. d node=0444 459 file path=opt/SUNWitrt/tst/comon/builtinvar/err.D _XLATE_NOCONV.rssize.d \
394 file path=opt/SUNWItrt/tst/comon/ assocs/err.D_SYNTAX. errassign. d node=0444 460 node=0444
395 file path=opt/SUNWItrt/tst/comon/assocs/err.tupoflow d node=0444 461 file path=opt/SUNWitrt/tst/comon/ builtinvar/tst.arg0.d node=0444
396 file path=opt/SUNWItrt/tst/comon/assocs/tst.cpyarray.d npde=0444 462 file path=opt/SUNWItrt/tst/comon/ builtinvar/tst.argOcl ause.d node=0444
397 file path=opt/SUNWItrt/tst/comon/ assocs/tst.diffprofile.d node=0444 463 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.argl.d node=0444
398 file path=opt/SUNWItrt/tst/common/assocs/tst.initialize.d node=0444 464 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.arglto8.d node=0444
399 file path=opt/SUNWItrt/tst/common/assocs/tst.invalidref.d node=0444 465 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.arglto8clause.d node=0444
400 file path=opt/SUNWitrt/tst/common/assocs/tst. m sc.d npde=0444 466 file path=opt/SUNWItrt/tst/comon/ builtinvar/tst.caller.d npde=0444
401 file path=opt/SUNWitrt/tst/common/ assocs/tst.orthogonality.d node=0444 467 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.callerl.d node=0444
402 file path=opt/SUNWitrt/tst/common/assocs/tst.this.d node=0444 468 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.epid.d node=0444
403 file path=opt/SUNWItrt/tst/common/ assocs/tst.val assi gn.d. out node=0444 469 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.epidl.d node=0444
404 file path=opt/SUNWitrt/tst/comon/ begi n/err.D PDESC ZERO. begi n. d nbde=0444 470 file path=opt/SUNWitrt/tst/comon/ builtinvar/tst.errno.d node=0444
405 file path=opt/SUNWAtrt/tst/comon/ begi n/err.D _PDESC ZERO tick.d npde=0444 471 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.errnol.d node=0444
406 file path=opt/SUNWitrt/tst/comon/begin/tst.begin.d node=0444 472 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.execnane.d node=0444
407 file path=opt/SUNWItrt/tst/comon/begin/tst.begin.d.out node=0444 473 file path=opt/SUNWtrt/tst/common/builtinvar/tst.hpriority.d node=0444
408 file path=opt/SUNWitrt/tst/comon/ begin/tst. mltibegin.d nde=0444 474 file path=opt/SUNWdtrt/tst/comon/ builtinvar/tst.id.d node=0444
409 file path=opt/SUNWitrt/tst/comon/ begin/tst. multibegin.d. out node=0444 475 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.idl.d node=0444
410 file \ 476 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.ipl.d node=0444
411 pat h=opt/ SUNWit rt/tst/comon/ bi tfiel ds/err. D_ADDROF_BI TFI ELD. Bi t f i el dAddr ess 477 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.ipll.d node=0444
412 node=0444 478 file path=opt/SUNWItrt/tst/comon/ builtinvar/tst.|wpsinfo.d node=0444
413 file path=opt/SUNWitrt/tst/comon/ bitfields/err.D DECL_BFCONST. NegBitField.d \ 479 file path=opt/SUNWItrt/tst/comon/ builtinvar/tst.|wpsinfol.d node=0444
414 node=0444 480 file path=opt/SUNWitrt/tst/comon/builtinvar/tst.pid.d node=0444
415 file path=opt/SUNWitrt/tst/comon/ bitfields/err. D DECL_BFCONST. ZeroBitField.d \ 481 file path=opt/SUNWitrt/tst/comon/ builtinvar/tst.pidl.d node=0444
416 node=0444 482 file path=opt/SUNWitrt/tst/comon/ builtinvar/tst.psinfo.d nbde=0444
417 file path=opt/SUNWitrt/tst/comon/ bitfields/err. D DECL_BFSI ZE. ExceedBaseType. d \ 483 file path=opt/SUNWItrt/tst/comon/ builtinvar/tst.psinfol.d npode=0444
418 node=0444 484 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.tid.d node=0444
419 file path=opt/SUNWitrt/tst/comon/bitfields/err.D DECL_BFSIZE. G eat er Than64.d \ 485 file path=opt/SUNWItrt/tst/comon/builtinvar/tst.tidl.d node=0444
420 node=0444 486 file path=opt/SUNWitrt/tst/comon/ builtinvar/tst.timestanp.d node=0444
421 file path=opt/SUNWitrt/tst/comon/ bitfields/err. D DECL_BFTYPE. badtype.d \ 487 file path=opt/SUNWItrt/tst/comon/ builtinvar/tst.vtinestanp.d node=0444
422 nmode=0444 488 file path=opt/SUNWitrt/tst/common/ cg/ err.D NOREG noreg.d node=0444
423 file path=opt/SUNWitrt/tst/comon/bitfields/err.D OFFSETOF_BI TFI ELD.d \ 489 file path=opt/SUNWAtrt/tst/comon/cg/err.baddi f.d node=0444
424 node=0444 490 file path=opt/SUNWitrt/tst/comon/cl auses/ err. D_| DENT_UNDEF. aggf un. d node=0444
425 file \ 491 file path=opt/SUNWItrt/tst/conmon/cl auses/ err.D_| DENT_UNDEF. aggt up. d node=0444
426 pat h=opt/ SUNWItrt/t st/ comron/ bitfiel ds/err.D_SI ZEOF_BI TFI ELD. Si zeof Bitfi el d. 492 file path=opt/SUNWItrt/tst/common/cl auses/ err.D_| DENT_UNDEF. arrtup. d node=0444
427 node=0444 493 file path=opt/SUNWitrt/tst/comon/cl auses/ err. D_| DENT_UNDEF. body. d node=0444
428 file path=opt/SUNWitrt/tst/comon/ bitfields/tst.BitFieldPronotion.d node=0444 494 file path=opt/SUNWItrt/tst/comon/ cl auses/ err.D_| DENT_UNDEF. bot h. d node=0444
429 file path=opt/SUNWitrt/tst/comon/bitfields/tst.SizeofBitField. d nde=0444 495 file path=opt/SUNWItrt/tst/comon/ cl auses/ err.D_| DENT_UNDEF. pred. d node=0444
430 file path=opt/SUNWitrt/tst/comon/buffering/err.end.d node=0444 496 file path=opt/SUNWItrt/tst/comon/cl auses/tst.nopred.d nmode=0444
431 file path=opt/SUNWitrt/tst/comon/buffering/err.resizel.d node=0444 497 file path=opt/SUNWitrt/tst/comon/cl auses/tst.pred.d node=0444
432 file path=opt/SUNWitrt/tst/comon/ buffering/err.resize2.d node=0444 498 file path=opt/SUNWitrt/tst/comon/cl auses/tst.predfirst.d nbde=0444
433 file path=opt/SUNWitrt/tst/comon/ buffering/err.resize3.d nbode=0444 499 file path=opt/SUNWitrt/tst/common/clauses/tst. predl ast.d node=0444
434 file path=opt/SUNWitrt/tst/comon/buffering/err.zerobuf.d node=0444 500 file path=opt/SUNWItrt/tst/common/cpc/err.D PDESC ZERO. | oW r equency. d \
435 file path=opt/SUNWitrt/tst/comon/buffering/tst.alignring.d node=0444 501 node=0444
436 file path=opt/SUNWItrt/tst/comon/buffering/tst.cputinme.ksh node=0444 502 file path=opt/SUNWItrt/tst/comon/cpc/err.D PDESC ZERO nual f or medoverfl ow. d \
437 file path=opt/SUNWItrt/tst/comon/ buffering/tst.dynvarsize.d node=0444 503 node=0444
438 file path=opt/SUNWItrt/tst/comon/buffering/tst.filll. d node=0444 504 file path=opt/SUNWItrt/tst/comon/cpc/err.D PDESC ZERO. nonexi stentevent.d \
439 file path=opt/SUNWitrt/tst/comon/buffering/tst.fill1l.d.out node=0444 505 nmode=0444
440 file path=opt/SUNWItrt/tst/comon/buffering/tst.resizel.d node=0444 506 file path=opt/SUNWItrt/tst/comon/cpc/err.cpcvscpustatpartl. ksh node=0444
441 file path=opt/SUNWitrt/tst/comon/ buffering/tst.resize2.d node=0444 507 file path=opt/SUNWItrt/tst/comon/cpc/err.cpcvscpustatpart2. ksh node=0444
442 file path=opt/SUNWItrt/tst/comon/ buffering/tst.resize3.d node=0444 508 file path=opt/SUNWItrt/tst/comon/cpc/err.cputrackfailtostart.ksh node=0444
443 file path=opt/SUNWitrt/tst/comon/buffering/tst.ringl.d node=0444 509 file path=opt/SUNWItrt/tst/comon/cpc/err.cputracktermn nates. ksh node=0444
444 file path=opt/SUNWItrt/tst/comon/buffering/tst.ring2.d node=0444 510 file path=opt/SUNWItrt/tst/comon/cpc/err.toomanyenablings.d node=0444
445 file path=opt/SUNWitrt/tst/comon/ buffering/tst.ring2.d.out node=0444 511 file path=opt/SUNWItrt/tst/comon/cpc/tst.allcpus. ksh node=0444
446 file path=opt/SUNWItrt/tst/common/ buffering/tst.ring3.d node=0444 512 file path=opt/SUNWItrt/tst/common/cpc/tst.genericevent.d node=0444
447 file path=opt/SUNWitrt/tst/comon/buffering/tst.ring3.d.out node=0444 513 file path=opt/SUNWItrt/tst/comon/cpc/tst. platformevent. ksh node=0444
448 file path=opt/SUNWItrt/tst/comon/buffering/tst.smallring.d node=0444 514 file path=opt/SUNWItrt/tst/comon/decls/err.D DECL_LOCASSC. NonLocal Assoc. d \
449 file path=opt/SUNWItrt/tst/common/buffering/tst.sw tchl.d node=0444 515 node=0444
450 file path=opt/SUNWitrt/tst/comon/ buffering/tst.sw tchl.d. out node=0444 516 file path=opt/SUNWItrt/tst/comon/ decls/err.D DECL_LONG NT. LongStruct.d \
451 file path=opt/SUNWitrt/tst/comon/builtinvar/err.D_XLATE_NOCONV. cpuusage.d \ 517 nmode=0444
452 node=0444 518 file path=opt/SUNWItrt/tst/comon/decl s/err.D DECL_PARMCLASS. BadSt or ageC ass. d \
453 file path=opt/SUNWitrt/tst/comon/ builtinvar/err.D_XLATE_NOCONV. ni ce.d \ 519 node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

file path=opt/SUNWItrt/tst/common/decls/err.D DECL_PROTO NAME. Voi dNane. d \

node=0444
file
file
node=0444

pat h=opt/ SUNWIt rt/t st/ common/ decl s/ err. D _DECL_PROTO TYPE. Dyn. d node=0444
pat h=opt/ SUNWt rt/t st/ common/ decl s/ err. D_DECL_PROTO_VARARGS. Var LenArgs. d \

file path=opt/SUNWitrt/tst/comon/decl s/ err.D_DECL_PROTO VO D. NonSol eVoi d. d \

node=0444

file path=opt/SUNWitrt/tst/comon/decls/err.D DECL_SI GNI NT. Unsi gnedStruct.d \

node=0444

file path=opt/SUNWitrt/tst/comon/decl s/ err.D_DECL_VO DATTR. Short Voi dDecl . d \

node=0444
file path=opt/SUNWitrt/tst/comon/decl s/tst.arrays.d node=0444
file path=opt/SUNWItrt/tst/comon/decl s/tst.basics.d node=0444
file path=opt/SUNWitrt/tst/comon/decls/tst.funcs.d node=0444
file path=opt/SUNWitrt/tst/comon/decl s/tst.pointers.d node=0444
file path=opt/SUNWitrt/tst/comon/decl s/tst.varargsfuncs.d node=0444
file path=opt/SUNWItrt/tst/common/drops/drp. DTRACEDROP_AGGREGATI ON. d nbde=0444
file path=opt/SUNWitrt/tst/comon/drops/ drp. DTRACEDROP_DBLERROR d npde=0444
file path=opt/SUNWitrt/tst/comon/drops/ drp. DTRACEDROP_DYNAM C. d node=0444
file path=opt/SUNWitrt/tst/comon/drops/ drp. DTRACEDROP_PRI NCI PAL. d node=0444
file path=opt/SUNWItrt/tst/common/drops/drp. DTRACEDROP_PRI NCI PAL. end. d \
node=0444

pat h=opt / SUNWdt rt/ t st/ conmon/ dr ops/ dr p. DTRACEDROP_SPECUNAVAI L. d node=0444

pat h=opt/ SUNWitrt/tst/common/ dtraceltil/err. D PDESC ZEROQ. | nval i dDescri ptionl

AddSear chPat h. d. ksh node=0444
Buf si zeG ga. d. ksh node=0444

Buf si zeKi | 0. d.
Buf si zeMega. d.
Buf si zeTer a. d.
Dat aMbdel 32. d. ksh node=0444
Dat aMbdel 64. d. ksh node=0444
Def i neNaneW t hCPP. d. ksh \

ksh
ksh
ksh

node=0444
node=0444
node=0444

file path=opt/SUNWitrt/tst/common/drops/ drp. DTRACEDROP_SPEC. d npde=0444
file
file path=opt/SUNWItrt/tst/comon/ drops/drp. DTRACEDROP_STKSTROVERFLON d \
node=0444
file\
node=0444
file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.
file path=opt/SUNWitrt/tst/common/dtraceltil/tst.
file path=opt/SUNWitrt/tst/comon/dtraceltil/tst.
file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.
file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.
file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.
file path=opt/SUNWitrt/tst/comon/dtraceUtil/tst.
file path=opt/SUNWitrt/tst/common/dtraceltil/tst.
node=0444

file path=opt/SUNWitrt/tst/common/dtraceUltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444
file\

Def i neNanmeW t hCPP. d. ksh. out \
Destruct Wt hFunction. d. ksh \

pat h=opt/ SUNWIt rt/t st/ comron/ dtraceltil/tst.Destruct Wt hFunction. d. ksh. out \

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

nmode=0444

file path=opt/SUNWitrt/tst/comon/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceltil/tst.
node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.
node=0444

file\

Destruct Wthl D. d. ksh \
Destruct Wt hl D. d. ksh. out \
Destruct Wt hMbdul e. d. ksh \
Dest ruct Wt hMbdul e. d. ksh. out \
Destruct Wt hNane. d. ksh \
Destruct Wt hNane. d. ksh. out \
Destruct Wt hProvi der. d. ksh \

pat h=opt/ SUNWIt rt/t st/ comron/dtraceUtil/tst.Destruct Wt hProvider.d. ksh. out \

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

nmode=0444

file path=opt/SUNWIitrt/tst/comon/dtraceltil/tst.

node=0444

Dest ruct Wt hout Wd. ksh \
ELFGener ati onQut . d. ksh \

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

file path=opt/SUNWIitrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.
node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.
node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.
node=0444

file path=opt/SUNWitrt/tst/comon/dtraceltil/tst

file path=opt/SUNWitrt/tst/common/dtraceltil/tst.

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

file path=opt/SUNWitrt/tst/comon/dtraceUtil/tst
node=0444

file path=opt/SUNWitrt/tst/common/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWIitrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

nmode=0444

file path=opt/SUNWitrt/tst/comon/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

nmode=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

10

ELFGenerati onWthQO d. ksh \

Exit Statusl. d. ksh node=0444
Exi t St at us2. d. ksh nbde=0444
Ext r aneousPr obel ds. d. ksh \

I nval i dFuncNanel.

I nval i dFuncNanme2.

.Invalidldl.d. ksh

I nval i dl d2. d. ksh
I nval i dl d3. d. ksh

. I nval i dMobdul el. d.

I nval i dvbdul e2. d.
I nval i dvbdul e3. d.
I nval i dvbdul e4. d.
I nval i dPr obel dent
I nval i dProvi der 1.
I nval i dProvi der 2.
I nval i dProvi der 3.

I nval i dProvi der 4.

I nval i dTraceFuncl.
I nval i dTraceFunc2.
I nval i dTraceFunc3.
I nval i dTr aceFunc4.
I nval i dTr aceFunc5.
I nval i dTr aceFuncé.
I nval i dTraceFunc?.
I nval i dTraceFunc8.

I nval i dTr aceFunc9.

I nval i dTracel D1.

I nval i dTr acel D2.

I nval i dTr acel D4.
I nval i dTracel D5.

I nval i dTr acel D6.

I nval i dTracel D7. d.

I nval i dTr aceMbdul
I nval i dTr aceMbdul

d
d
I nval i dTracel D3. d.
d
d
d

d. ksh
d. ksh
node=
node=
node=
ksh \
ksh \
ksh \
ksh \
ifier
d. ksh
d. ksh
d. ksh
d. ksh
. ks
. ks
. ks

. ks

d

d

d

d

d. ks
d. ks
d. ks
d. ks
d. ks
. ksh
. ksh
ksh
. ksh
. ksh
. ksh
ksh
el.d.
e2.d.

\
\
0444

0444
0444

.d.ksh \

— - - -

h\
h\
h\
h\
h\
h\
h\
h\
h\
\

\

ksh \
ksh \

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceUtil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/common/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWIitrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/comon/dtraceUtil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

nmode=0444

file path=opt/SUNWitrt/tst/comon/dtraceltil/tst.

node=0444
e pat h=opt/SUNWitrt/tst/comon/dtraceltil
e path=opt/SUNWItrt/tst/comon/dtraceltil
e path=opt/SUNWItrt/tst/comon/dtraceltil
e path=opt/SUNWItrt/tst/comon/dtraceltil
node=0444

/ts
/ts
/ts
/ts

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

nmode=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWitrt/tst/comon/dtraceltil/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.

nmode=0444

file path=opt/SUNWIitrt/tst/comon/dtraceltil/tst.

node=0444

11

I nval i dTr aceMbdul e3. d. ksh \

I nval i dTraceMbdul e4. d. ksh \

I nval i dTr aceMbdul e5. d. ksh \

I nval i dTr aceModul e7.

d
d
d

I nval i dTraceMbdul e6. d. ksh \
d. ksh \
d

I nval i dTr aceMbdul e8. d. ksh \

I nval i dTr aceNanel. d. ksh \
I nval i dTr aceNane2. d. ksh \
I nval i dTr aceNane3. d. ksh \

I nval i dTr aceNane4. d. ksh \

I nval i dTr aceNane6. d. ksh \

.ksh \

d
d
d
d
I nval i dTraceNane5. d. ksh \
d
I nval i dTraceNane7. d
d

I nval i dTr aceNane8. d. ksh \
I nval i dTr aceNane9. d. ksh \

I nval i dTraceProvi der 1. d. ksh \

I nval i dTraceProvi der 2. d. ksh \
I nval i dTraceProvi der 3. d. ksh \
I nval i dTraceProvi der 4. d. ksh \
I nval i dTraceProvi der5. d. ksh \

Mul ti pl el nval i dProbel d. d. ksh \

Preprocessor St at enent . d. ksh \

. Qui et Mode. d. ksh node=0444

. Qui et Mode. d. ksh. out node=0444
. Test Conpi | e. d. ksh npde=0444

. Test Conpi | e. d. ksh. out \

UnDef i neNameW t hCPP. d. ksh \
Zer oFuncti onProbes. d. ksh \

Zer oFunct i onProbes. d. ksh. out \
Zer oMbdul eProbes. d. ksh \

Zer oMbdul eProbes. d. ksh. out \
Zer oNarePr obes. d. ksh \

Zer oNarrePr obes. d. ksh. out \

Zer oProbel dentfier.d. ksh \

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 12

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.ZeroProbesWthoutZ. d.ksh \

node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.ZeroProviderProbes.d. ksh \
node=0444

file path=opt/SUNWItrt/tst/comon/dtraceltil/tst.ZeroProviderProbes.d. ksh. out \
node=0444

file path=opt/SUNWItrt/tst/comon/end/ err.D | DENT_UNDEF. ti nespent.d npbde=0444

file path=opt/SUNWItrt/tst/comon/end/tst.end.d node=0444

file path=opt/SUNWItrt/tst/common/end/tst.endw thoutbegin.d node=0444

file path=opt/SUNWitrt/tst/common/end/tst. multibegi nend.d node=0444

file path=opt/SUNWitrt/tst/comon/end/tst.multiend.d node=0444

file path=opt/SUNWItrt/tst/comon/enunierr. D DECL_| DRED. EnunSaneNarne. d \
node=0444

file path=opt/SUNWitrt/tst/comon/ enuni err. D _UNKNOM. Repeat | dentifiers.d \
node=0444

file path=opt/SUNWitrt/tst/common/enunitst.EnunEquality.d node=0444

file path=opt/SUNWItrt/tst/comon/enuntst.EnunSaneVal ue. d node=0444

file path=opt/SUNWitrt/tst/common/ enunitst.EnunVal Assi gn. d node=0444

file path=opt/SUNWitrt/tst/common/env/err.D_PRAGVA OPTSET. setfronscript.d \
node=0444

file path=opt/SUNWItrt/tst/comon/env/err.D PRAGVA OPTSET. unsetfronscript.d \
node=0444

pat h=opt/ SUNWIt rt/t st/ comon/ env/tst.|d_nol azyl oad. ksh nbde=0444

pat h=opt/ SUNWdtrt/t st/ comon/ env/tst. | d_nol azyl oad. ksh. out npbde=0444
pat h=opt/ SUNWdtrt/t st/ comon/ env/tst.setenvl. ksh node=0444
pat h=opt/ SUNWdtrt/t st/ common/ env/ tst. setenvl. ksh. out npde=0444
pat h=opt/ SUNWIt rt/t st/ comon/ env/tst. setenv2. ksh node=0444
pat h=opt/ SUNWdtrt/t st/ common/ env/tst. setenv2. ksh. out npbde=0444
pat h=opt/ SUNWdtrt/t st/ common/ env/ tst. unsetenvl. ksh node=0444
pat h=opt/ SUNWdtrt/t st/ comon/ env/ tst. unsetenvl. ksh. out node=0444
pat h=opt/ SUNWIt rt/t st/ comon/ env/tst. unset env2. ksh node=0444
pat h=opt/ SUNWIt rt/t st/ comon/ env/tst.unset env2. ksh. out nbde=0444
pat h=opt/ SUNWdtrt/t st/ common/ error/tst. DTRACEFLT_BADADDR d npde=0444
pat h=opt / SUNWAt rt/t st/ conmon/ error/tst. DTRACEFLT_DI VZERO. d node=0444
pat h=opt / SUNWAt rt /t st/ common/ error/tst. DTRACEFLT_UNKNOM. d node=0444
pat h=opt / SUNWAt rt/t st/ comon/error/tst.error.d node=0444
pat h=opt/ SUNWItrt/tst/comon/error/tst.errorend.d node=0444
pat h=opt/ SUNWdtrt/t st/ comon/ exi t/err. D _PROTO LEN. noarg. d node=0444
pat h=opt/ SUNWItrt/tst/comon/exit/err.exitargl.d node=0444
pat h=opt/ SUNWIt rt/t st/ comon/exit/tst.basicl.d node=0444
pat h=opt/ SUNWdt rt/t st/ common/ f bt provi der/err. D _PDESC ZERO. notreturn.d \
node=0444
file path=opt/SUNWitrt/tst/comon/fbtprovider/tst.basic.d node=0444
file path=opt/SUNWitrt/tst/comon/fbtprovider/tst.functionentry.d node=0444
file path=opt/SUNWItrt/tst/comon/fbtprovider/tst.functionreturnvalue.d \
node=0444
pat h=opt/ SUNWAt rt/t st/ comon/ f bt provi der/tst.ioctlargs.d node=0444
pat h=opt/ SUNWAt rt/t st/ comon/ f bt provi der/tst.of fset.d node=0444
pat h=opt/ SUNWAtrt/t st/ common/ f bt provi der/tst. of fset zero. d node=0444
pat h=opt/ SUNWdtrt/t st/ common/ f bt provi der/tst.return.d node=0444
pat h=opt/ SUNWdt rt/t st/ common/ f bt provi der/tst.return0.d node=0444
P
P

—h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h
OODODODDDODODDDDDDDDMDMDMDD

at h=opt/ SUNWIt rt/t st/ common/ f bt provi der/tst.tailcall.d node=0444

at h=opt / SUNWAt rt/t st/ common/ f uncs/ err. D_FUNC_UNDEF. pr ogenyof badl. d \
node=0444
file path=opt/SUNWItrt/tst/comon/funcs/err.D OP_VFPTR badop.d npde=0444

file path=opt/SUNWitrt/tst/comon/funcs/err.D_PROTO ARG chill badarg.d \
node=0444

file path=opt/SUNWItrt/tst/comon/funcs/err. D PROTO ARG copyout badarg.d \
node=0444

file path=opt/SUNWitrt/tst/comon/funcs/err.D _PROTO ARG nobadarg.d node=0444

file path=opt/SUNWitrt/tst/comon/funcs/err.D _PROTO ARG rai sebadarg.d \
node=0444

file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO ARG tol ower.d npode=0444

file path=opt/SUNWitrt/tst/comon/funcs/err.D_PROTO ARG toupper.d npde=0444

file path=opt/SUNWitrt/tst/comon/funcs/err.D _PROTO LEN. al | ocanoarg.d \
node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 13 new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 14
784 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. badbreakpoint.d \ 850 file path=opt/SUNWItrt/tst/comon/funcs/tst.index.d node=0444
785 node=0444 851 file path=opt/SUNWItrt/tst/comon/funcs/tst.index.d.out node=0444
786 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN chilltoofew. d \ 852 file path=opt/SUNWItrt/tst/comon/funcs/tst.inet_ntoa.d nbde=0444
787 node=0444 853 file path=opt/SUNWItrt/tst/comon/funcs/tst.inet_ntoa.d. out node=0444
788 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. chilltoonmany.d \ 854 file path=opt/SUNWItrt/tst/comon/funcs/tst.inet_ntoa6.d npde=0444
789 node=0444 855 file path=opt/SUNWItrt/tst/comon/funcs/tst.inet_ntoa6.d. out node=0444
790 file path=opt/SUNWItrt/tst/comon/funcs/err. D PROTO LEN. copyoutstrbadarg.d \ 856 file path=opt/SUNWItrt/tst/comon/funcs/tst.inet_ntop.d nbde=0444
791 node=0444 857 file path=opt/SUNWItrt/tst/comon/funcs/tst.inet_ntop.d.out node=0444
792 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. copyoutstrtoofew d \ 858 file path=opt/SUNWItrt/tst/comon/funcs/tst.lltostr.d node=0444
793 nmode=0444 859 file path=opt/SUNWItrt/tst/comon/funcs/tst.|lltostr.d.out node=0444
794 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. copyouttoofew. d \ 860 file path=opt/SUNWItrt/tst/comon/funcs/tst.||tostrbase.d node=0444
795 node=0444 861 file path=opt/SUNWItrt/tst/common/funcs/tst.||tostrbase.d. out node=0444
796 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. copyouttoomany.d \ 862 file path=opt/SUNWItrt/tst/comon/funcs/tst.nutex_owned.d node=0444
797 nmode=0444 863 file path=opt/SUNWItrt/tst/comon/funcs/tst. nmutex_owner.d node=0444
798 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. not oof ew. d node=0444 864 file path=opt/SUNWItrt/tst/comon/funcs/tst. mutex_type_adaptive.d node=0444
799 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. not oomany. d node=0444 865 file path=opt/SUNWItrt/tst/comon/funcs/tst.progenyof.d node=0444
800 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. ntabadarg.d node=0444 866 file path=opt/SUNWItrt/tst/comon/funcs/tst.rand.d node=0444
801 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. ntat oof ew. d node=0444 867 file path=opt/SUNWItrt/tst/comon/funcs/tst.strchr.d node=0444
802 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. nt at oomany. d node=0444 868 file path=opt/SUNWItrt/tst/comon/funcs/tst.strchr.d.out node=0444
803 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. pani cbadarg.d \ 869 file path=opt/SUNWItrt/tst/comon/funcs/tst.strjoin.d node=0444
804 node=0444 870 file path=opt/SUNWItrt/tst/comon/funcs/tst.strjoin.d. out node=0444
805 file path=opt/SUNWItrt/tst/common/funcs/err.D PROTO LEN. progenyofbad2.d \ 871 file path=opt/SUNWItrt/tst/comon/funcs/tst.strstr.d node=0444
806 node=0444 872 file path=opt/SUNWItrt/tst/comon/funcs/tst.strstr.d.out node=0444
807 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. stopbadarg. d nbde=0444 873 file path=opt/SUNWItrt/tst/comon/funcs/tst.strtok.d node=0444
808 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. tol ower.d node=0444 874 file path=opt/SUNWItrt/tst/comon/funcs/tst.strtok.d.out node=0444
809 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. tol owertoomany.d \ 875 file path=opt/SUNWItrt/tst/comon/funcs/tst.strtok_null.d node=0444
810 node=0444 876 file path=opt/SUNWItrt/tst/comon/funcs/tst.substr.d node=0444
811 file path=opt/SUNWItrt/tst/comon/funcs/err. D PROTO LEN. toupper.d node=0444 877 file path=opt/SUNWItrt/tst/comon/funcs/tst.substr.d.out npde=0444
812 file path=opt/SUNWItrt/tst/comon/funcs/err.D PROTO LEN. touppertoomany.d \ 878 file path=opt/SUNWItrt/tst/comon/funcs/tst.substrm nate.d node=0444
813 node=0444 879 file path=opt/SUNWItrt/tst/comon/funcs/tst.substrm nate.d.out npde=0444
814 file path=opt/SUNWItrt/tst/comon/funcs/err.D STRI NGOF_TYPE. badstringof.d \ 880 file path=opt/SUNWItrt/tst/comon/funcs/tst.systemd node=0444
815 node=0444 881 file path=opt/SUNWItrt/tst/comon/funcs/tst.systemd.out node=0444
816 file path=opt/SUNWAtrt/tst/common/funcs/err. D VAR UNDEF. badvar. d node=0444 882 file path=opt/SUNWAtrt/tst/common/funcs/tst.tol ower.d node=0444
817 file path=opt/SUNWItrt/tst/comon/funcs/err.badal | oca.d nbde=0444 883 file path=opt/SUNWItrt/tst/comon/funcs/tst.toupper.d node=0444
818 file path=opt/SUNWItrt/tst/comon/funcs/err.badal |l oca2.d node=0444 884 file path=opt/SUNWItrt/tst/common/granmar/err. D ADDROF_LVAL. d node=0444
819 file path=opt/SUNWItrt/tst/comon/funcs/err.badbcopy.d node=0444 885 file path=opt/SUNWItrt/tst/comon/gramar/err.D EMPTY. enpty. d npode=0444
820 file path=opt/SUNWItrt/tst/common/funcs/err.badbcopyl.d node=0444 886 file path=opt/SUNWItrt/tst/common/granmar/tst.clauses.d node=0444
821 file path=opt/SUNWItrt/tst/comon/funcs/err.badbcopy2.d npde=0444 887 file path=opt/SUNWItrt/tst/comon/granmar/tst.stnts.d node=0444
822 file path=opt/SUNWItrt/tst/comon/funcs/err.badbcopy3.d node=0444 888 file path=opt/SUNWItrt/tst/comon/include/tst.includefirst.ksh node=0444
823 file path=opt/SUNWItrt/tst/comon/funcs/err.badbcopy4.d node=0444 889 file path=opt/SUNWItrt/tst/comon/inline/err.D DECL_| DRED. redef1.d node=0444
824 file path=opt/SUNWItrt/tst/comon/funcs/err.badbcopy5.d node=0444 890 file path=opt/SUNWItrt/tst/comon/inline/err.D DECL_| DRED. redef 2. d node=0444
825 file path=opt/SUNWItrt/tst/comon/funcs/err.badbcopy6.d node=0444 891 file path=opt/SUNWItrt/tst/comon/inline/err.D_| DENT_UNDEF.recur.d node=0444
826 file path=opt/SUNWItrt/tst/comon/funcs/err.badchill.d node=0444 892 file path=opt/SUNWItrt/tst/comon/inline/err.D OP_| NCOWPAT. baddef 1. d node=0444
827 file path=opt/SUNWItrt/tst/comon/funcs/err.chillbadarg. ksh node=0444 893 file path=opt/SUNWItrt/tst/comon/inline/err.D OP_| NCOWPAT. baddef 2. d node=0444
828 file path=opt/SUNWItrt/tst/comon/funcs/err.copyout.d node=0444 894 file path=opt/SUNWItrt/tst/comon/inline/err.D OP_| NCOWAT. badx| ate.d \
829 file path=opt/SUNWItrt/tst/comon/funcs/err.copyout badaddr. ksh npde=0444 895 node=0444
830 file path=opt/SUNWItrt/tst/comon/funcs/err.copyoutstrbadaddr. ksh node=0444 896 file path=opt/SUNWItrt/tst/comon/inline/tst.|nlineDataAssign.d node=0444
831 file path=opt/SUNWItrt/tst/comon/funcs/err.inet_ntoa6badaddr.d node=0444 897 file path=opt/SUNWItrt/tst/comon/inline/tst.|nlineExpression.d node=0444
832 file path=opt/SUNWItrt/tst/comon/funcs/err.inet_ntoabadaddr.d npde=0444 898 file path=opt/SUNWItrt/tst/comon/inline/tst.InlinekKinds.d node=0444
833 file path=opt/SUNWItrt/tst/comon/funcs/err.inet_ntopbadaddr.d npde=0444 899 file path=opt/SUNWItrt/tst/comon/inline/tst.InlineKinds.d. out node=0444
834 file path=opt/SUNWItrt/tst/comon/funcs/err.inet_ntopbadarg.d npbde=0444 900 file path=opt/SUNWItrt/tst/comon/inline/tst.InlineTypedef.d node=0444
835 file path=opt/SUNWItrt/tst/comon/funcs/tst.badfreopen. ksh node=0444 901 file path=opt/SUNWItrt/tst/comon/inline/tst.InlineWitableAssign.d node=0444
836 file path=opt/SUNWItrt/tst/comon/funcs/tst.basenane.d node=0444 902 file path=opt/SUNWItrt/tst/comon/io/tst.fds.d node=0444
837 file path=opt/SUNWItrt/tst/comon/funcs/tst.basenane. d. out node=0444 903 file path=opt/SUNWItrt/tst/comon/ioltst.fds.d.out node=0444
838 file path=opt/SUNWItrt/tst/comon/funcs/tst.bcopy.d node=0444 904 file path=opt/SUNWItrt/tst/comon/ioltst.fds.exe nbde=0555
839 file path=opt/SUNWItrt/tst/comon/funcs/tst.chill.ksh node=0444 905 file path=opt/SUNWItrt/tst/comon/ip/get.ipvarenote.pl node=0555
840 file path=opt/SUNWItrt/tst/comon/funcs/tst.cleanpath.d node=0444 906 file path=opt/SUNWItrt/tst/comon/ip/get.ipv6renote.pl node=0555
841 file path=opt/SUNWItrt/tst/comon/funcs/tst.cleanpath.d. out node=0444 907 file path=opt/SUNWItrt/tst/comon/ip/tst.ipv4localicnp.ksh node=0444
842 file path=opt/SUNWItrt/tst/comon/funcs/tst.copyin.d node=0444 908 file path=opt/SUNWItrt/tst/comon/ip/tst.ipv4localicnp.ksh.out npde=0444
843 file path=opt/SUNWItrt/tst/comon/funcs/tst.copyinto.d node=0444 909 file path=opt/SUNWItrt/tst/common/ip/tst.ipv4localtcp. ksh node=0444
844 file path=opt/SUNWItrt/tst/comon/funcs/tst.ddi _pathnanme.d node=0444 910 file path=opt/SUNWItrt/tst/comon/ip/tst.ipv4localtcp. ksh. out node=0444
845 file path=opt/SUNWItrt/tst/comon/funcs/tst.default.d node=0444 911 file path=opt/SUNWItrt/tst/common/ip/tst.ipv4l ocal udp. ksh node=0444
846 file path=opt/SUNWItrt/tst/comon/funcs/tst.freopen. ksh node=0444 912 file path=opt/SUNWItrt/tst/comon/ip/tst.ipv4l ocal udp. ksh. out npbde=0444
847 file path=opt/SUNWItrt/tst/comon/funcs/tst.ftruncate. ksh node=0444 913 file path=opt/SUNWItrt/tst/comon/ip/tst.ipvarenoteicnp. ksh node=0444
848 file path=opt/SUNWItrt/tst/comon/funcs/tst.ftruncate. ksh. out node=0444 914 file path=opt/SUNWItrt/tst/comon/ip/tst.ipvarenoteicnp. ksh. out node=0444
849 file path=opt/SUNWItrt/tst/comon/funcs/tst.hton.d node=0444 915 file path=opt/SUNWItrt/tst/comon/ip/tst.ipvadrenotetcp. ksh node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 15 new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 16
916 file path=opt/SUNWItrt/tst/comon/ip/tst.ipvarenotetcp. ksh. out npde=0444 982 file path=opt/SUNWItrt/tst/comon/| | quantize/err.D LLQUANT_FACTORMATCH.d \
917 file path=opt/SUNWItrt/tst/comon/ip/tst.ipvarenoteudp. ksh node=0444 983 node=0444
918 file path=opt/SUNWItrt/tst/comon/ip/tst.ipvadrenoteudp. ksh. out node=0444 984 file path=opt/SUNWItrt/tst/comon/l | quantize/err.D LLQUANT_FACTORNSTEPS. d \
919 file path=opt/SUNWItrt/tst/comon/ip/tst.ipv6localicnp.ksh node=0444 985 node=0444
920 file path=opt/SUNWItrt/tst/comon/ip/tst.ipv6localicnp.ksh.out npde=0444 986 file path=opt/SUNWItrt/tst/comon/| | quantize/err.D LLQUANT_FACTORSMALL.d \
921 file path=opt/SUNWItrt/tst/comon/ip/tst.ipv6erenoteicnp. ksh node=0444 987 node=0444
922 file path=opt/SUNWItrt/tst/comon/ip/tst.ipv6renoteicnp. ksh. out node=0444 988 file path=opt/SUNWItrt/tst/comon/llquantize/err.D LLQUANT_FACTORTYPE. d \
923 file path=opt/SUNWItrt/tst/comon/ip/tst.|ocal tcpstate.ksh node=0444 989 node=0444
924 file path=opt/SUNWItrt/tst/comon/ip/tst.|ocaltcpstate.ksh.out npde=0444 990 file path=opt/SUNWItrt/tst/comon/| | quantize/err.D LLQUANT_FACTORVAL.d \
925 file path=opt/SUNWItrt/tst/common/ip/tst.renotetcpstate. ksh node=0444 991 nmode=0444
926 file path=opt/SUNWItrt/tst/comon/ip/tst.renotetcpstate. ksh. out node=0444 992 file path=opt/SUNWItrt/tst/comon/Il|quantize/err.D LLQUANT_H GHVATCH. d \
927 file path=opt/SUNWItrt/tst/common/java_api/test.jar 993 node=0444
928 file path=opt/SUNWItrt/tst/common/]ava_api/tst.Abort. ksh npde=0444 994 file path=opt/SUNWIitrt/tst/comon/| | quantize/err.D LLQUANT_HI GHTYPE. d \

929 file path=opt/SUNWItrt/tst/comon/java_api/tst.Abort.ksh. out node=0444 995 nmode=0444

930 file path=opt/SUNWItrt/tst/comon/java_api/tst.Bean. ksh node=0444 996 file path=opt/SUNWItrt/tst/comon/l| quantize/err.D LLQUANT_H GHVAL. d npode=0444
931 file path=opt/SUNWItrt/tst/common/java_api/tst.Bean. ksh. out node=0444 997 file path=opt/SUNWItrt/tst/comon/l | quantize/err.D LLQUANT_LOAVATCH. d \
932 file path=opt/SUNWItrt/tst/comon/java_api/tst.C ose. ksh node=0444 998 node=0444

933 file path=opt/SUNWItrt/tst/comon/java_api/tst.Cl ose. ksh. out node=0444 999 file path=opt/SUNWItrt/tst/comon/l | quantize/err.D LLQUANT_LOMYPE. d node=0444
934 file path=opt/SUNWItrt/tst/comon/java_api/tst.Drop. ksh node=0444 1000 file path=opt/SUNWAtrt/tst/comon/ || quantize/err. D LLQUANT _LOWAL. d node=0444
935 file path=opt/SUNWItrt/tst/comon/java_api/tst.Drop. ksh. out node=0444 1001 file path=opt/SUNWItrt/tst/comon/l Il quantize/err.D LLQUANT_MAGRANGE. d \
936 file path=opt/SUNWItrt/tst/comon/]ava_api/tst.Enabl e. ksh node=0444 1002 node=0444

937 file path=opt/SUNWItrt/tst/common/|ava_api/tst.Enabl e. ksh. out node=0444 1003 file path=opt/SUNWItrt/tst/common/|| quantize/err.D LLQUANT_MAGTOOBI G. d \
938 file path=opt/SUNWItrt/tst/comon/|ava_api/tst.Functi onLookup. exe node=0555 1004 node=0444

939 file path=opt/SUNWItrt/tst/comon/java_api/tst.FunctionLookup. ksh node=0444 1005 file path=opt/SUNWItrt/tst/common/ || quantize/err. D LLQUANT_NSTEPMATCH. d \
940 file path=opt/SUNWItrt/tst/comon/java_api/tst.FunctionLookup. ksh. out \ 1006 node=0444

941 node=0444 1007 file path=opt/SUNWItrt/tst/common/ || quantize/err.D LLQUANT_NSTEPTYPE.d \
942 file path=opt/SUNWItrt/tst/common/java_api/tst. Get Aggregate. ksh node=0444 1008 nmode=0444

943 file path=opt/SUNWItrt/tst/comon/java_api/tst. MaxConsuners. ksh node=0444 1009 file path=opt/SUNWItrt/tst/common/ |l quantize/err. D LLQUANT_NSTEPVAL.d \
944 file path=opt/SUNWItrt/tst/comon/java_api/tst. MaxConsuners. ksh. out node=0444 1010 node=0444

945 file path=opt/SUNWItrt/tst/comon/]ava_api/tst. Ml tiAggPrinta. ksh node=0444 1011 file path=opt/SUNWItrt/tst/common/ || quantize/tst.bases.d node=0444

946 file path=opt/SUNWItrt/tst/common/java_api/tst.MiltiAggPrinta.ksh.out \ 1012 file path=opt/SUNWItrt/tst/comon/l | quanti ze/tst.bases. d. out node=0444
947 node=0444 1013 file path=opt/SUNWItrt/tst/comon/l | quanti ze/tst.basic.d node=0444

948 file path=opt/SUNWItrt/tst/comon/java_api/tst.ProbeData. exe node=0555 1014 file path=opt/SUNWItrt/tst/common/ || quantize/tst.basic.d. out node=0444
949 file path=opt/SUNWItrt/tst/common/]ava_api/tst.ProbeData. ksh node=0444 1015 file path=opt/SUNWItrt/tst/common/ || quantize/tst.negorder.d npbde=0444

950 file path=opt/SUNWItrt/tst/comon/|ava_api/tst.ProbeData. ksh. out node=0444 1016 file path=opt/SUNWItrt/tst/comon/l | quantize/tst.negorder.d.out node=0444
951 file path=opt/SUNWItrt/tst/comon/java_api/tst.ProbeDescription.ksh node=0444 1017 file path=opt/SUNWItrt/tst/comon/l | quantize/tst.negval ue.d nbde=0444

952 file path=opt/SUNWItrt/tst/common/java_api/tst.ProbeDescription.ksh.out \ 1018 file path=opt/SUNWItrt/tst/comon/l | quanti ze/tst.negval ue. d. out node=0444
953 node=0444 1019 file path=opt/SUNWItrt/tst/common/ || quantize/tst.normal.d node=0444

954 file path=opt/SUNWItrt/tst/common/java_api/tst. StateMachi ne. ksh node=0444 1020 file path=opt/SUNWItrt/tst/comon/| | quantize/tst.normal.d. out node=0444
955 file path=opt/SUNWItrt/tst/comon/java_api/tst. StateMachi ne. ksh. out node=0444 1021 file path=opt/SUNWItrt/tst/comon/l | quantize/tst.range.d node=0444

956 file path=opt/SUNWItrt/tst/comon/java_api/tst. StopLock. ksh node=0444 1022 file path=opt/SUNWItrt/tst/comon/l | quantize/tst.range.d. out node=0444
957 file path=opt/SUNWItrt/tst/comon/]ava_api/tst.StopLock. ksh. out node=0444 1023 file path=opt/SUNWItrt/tst/common/ || quantize/tst.steps.d node=0444

958 file path=opt/SUNWItrt/tst/common/java_api/tst.printa.d node=0444 1024 file path=opt/SUNWItrt/tst/comon/l | quantize/tst.steps.d. out node=0444
959 file path=opt/SUNWItrt/tst/comon/java_api/tst.printa.d.out node=0444 1025 file path=opt/SUNWItrt/tst/comon/Il | quantize/tst.trunc.d node=0444

960 file path=opt/SUNWItrt/tst/comon/lexer/err.D CHR NL. char.d npode=0444 1026 file path=opt/SUNWItrt/tst/comon/Il | quantize/tst.trunc.d.out node=0444
961 file path=opt/SUNWItrt/tst/common/lexer/err.D CHR NULL. char.d node=0444 1027 file path=opt/SUNWItrt/tst/common/ ndb/tst. dtracedcnd. ksh node=0444

962 file path=opt/SUNWItrt/tst/common/lexer/err.D INT_DIGT.InvalidDigit.d \ 1028 file path=opt/SUNWItrt/tst/comon/ m b/tst.icnp.ksh node=0444

963 nmode=0444 1029 file path=opt/SUNWItrt/tst/comon/ m b/tst.tcp. ksh node=0444

964 file path=opt/SUNWItrt/tst/comon/|exer/err.D | NT_OFLON Bi gl nt.d node=0444 1030 file path=opt/SUNWItrt/tst/comon/ m b/tst.udp. ksh node=0444

965 file path=opt/SUNWItrt/tst/comon/| exer/err.D STR NL.string.d node=0444 1031 file path=opt/SUNWItrt/tst/conmmon/ m sc/err. D _PRAGVA_OPTSET. d npde=0444
966 file path=opt/SUNWItrt/tst/comon/| exer/err.D SYNTAX bracel.d npbde=0444 1032 file path=opt/SUNWItrt/tst/common/ m sc/tst.badopt.d node=0444

967 file path=opt/SUNWItrt/tst/common/l exer/err.D SYNTAX brace2.d node=0444 1033 file path=opt/SUNWItrt/tst/comon/ m sc/tst.bool opt.d node=0444

968 file path=opt/SUNWItrt/tst/comon/| exer/err.D SYNTAX brackl.d npde=0444 1034 file path=opt/SUNWItrt/tst/common/ m sc/tst.bool opt. d. out node=0444

969 file path=opt/SUNWItrt/tst/comon/| exer/err.D SYNTAX brack2.d npbde=0444 1035 file path=opt/SUNWItrt/tst/common/ m sc/tst.dynopt.d node=0444

970 file path=opt/SUNWItrt/tst/comon/| exer/err.D SYNTAX brack3.d npbde=0444 1036 file path=opt/SUNWItrt/tst/common/ m sc/tst.dynopt.d.out node=0444

971 file path=opt/SUNWItrt/tst/common/| exer/err.D SYNTAX parenl.d node=0444 1037 file path=opt/SUNWItrt/tst/comon/ m sc/tst.enabl erace. ksh nbode=0444

972 file path=opt/SUNWItrt/tst/conmon/ | exer/err. D _SYNTAX. paren2. d node=0444 1038 file path=opt/SUNWItrt/tst/comon/ m sc/tst.hasl am d node=0444

973 file path=opt/SUNWItrt/tst/comon/ | exer/err.D SYNTAX. paren3.d node=0444 1039 file path=opt/SUNWItrt/tst/common/ m sc/tst.include. ksh node=0444

974 file path=opt/SUNWItrt/tst/common/ | exer/tst. D MACRO OFLOW Par | nt Ovf | ow. d. ksh \ 1040 file path=opt/SUNWItrt/tst/common/ m sc/tst.macrogl ob. ksh node=0444

975 nmode=0444 1041 file path=opt/SUNWItrt/tst/comon/ m sc/tst.macrogl ob. ksh. out node=0444
976 file \ 1042 file path=opt/SUNWItrt/tst/comon/ m sc/tst.roch.d node=0444

977 pat h=opt/ SUNWIt rt/t st/ comron/ || quanti ze/ err. D _LLQUANT_FACTOREVEN. nodi vi de. d 1043 file path=opt/SUNWItrt/tst/comon/ m sc/tst.schrock. ksh node=0444

978 node=0444 1044 file path=opt/SUNWItrt/tst/conmmon/ mul tiaggs/err.D PRI NTA AGGKEY. d npde=0444
979 file \ 1045 file path=opt/SUNWItrt/tst/comon/ nul tiaggs/err.D PRI NTA_AGGPROTO. d node=0444
980 pat h=opt/ SUNWIt rt/t st/ comron/ || quanti ze/ err. D_LLQUANT_FACTOREVEN. not f act or . d 1046 file path=opt/SUNWItrt/tst/comon/ nul tiaggs/tst.many.d node=0444

981 node=0444 1047 file path=opt/SUNWItrt/tst/comon/ mul tiaggs/tst.many.d.out node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 17

1048 file path=opt/SUNWItrt/tst/common/ mul tiaggs/tst.sanme.d npode=0444

1049 file path=opt/SUNWItrt/tst/comon/ nul tiaggs/tst.sane.d.out node=0444

1050 file path=opt/SUNWItrt/tst/comon/ multiaggs/tst.sort.d npde=0444

1051 file path=opt/SUNWItrt/tst/common/ mul tiaggs/tst.sort.d.out node=0444

1052 file path=opt/SUNWItrt/tst/common/ mul tiaggs/tst.sortpos.d node=0444

1053 file path=opt/SUNWItrt/tst/comon/ nul tiaggs/tst.sortpos.d.out nbde=0444
1054 file path=opt/SUNWItrt/tst/common/ mul tiaggs/tst.tupl econpat.d node=0444
1055 file path=opt/SUNWItrt/tst/conmmon/ mul tiaggs/tst.tupl econpat.d.out node=0444
1056 file path=opt/SUNWItrt/tst/common/ multiaggs/tst.zero.d npode=0444

1057 file path=opt/ SUNWItrt/tst/comon/ nul tiaggs/tst.zero.d. out node=0444

1058 file path=opt/SUNWItrt/tst/comon/ nul tiaggs/tst.zero2.d node=0444

1059 file path=opt/SUNWItrt/tst/comon/ nul tiaggs/tst.zero2.d.out nbde=0444

1060 file path=opt/SUNWItrt/tst/common/ multiaggs/tst.zero3.d node=0444

1061 file path=opt/SUNWItrt/tst/comon/ nultiaggs/tst.zero3.d.out nbde=0444

1062 file path=opt/SUNWItrt/tst/comon/nfs/tst.call.d nbde=0444

1063 file path=opt/SUNWItrt/tst/common/nfs/tst.call.exe nbde=0555

1064 file path=opt/SUNWItrt/tst/common/nfs/tst.call3.d node=0444

1065 file path=opt/SUNWItrt/tst/comon/ nfs/tst.call 3. exe node=0555

1066 file path=opt/SUNWItrt/tst/comon/of fsetof/err.D OFFSETOF_BI TFI ELD. bitfield.d \

1067 node=0444

1068 file path=opt/SUNWItrt/tst/common/ of fsetof/err. D OFFSETOF_TYPE. badtype. d \
1069 node=0444

1070 file path=opt/SUNWItrt/tst/comon/ of fsetof/err. D OFFSETOF_TYPE. not sou. d \
1071 node=0444

1072 file path=opt/SUNWItrt/tst/conmon/ of fsetof/err. D UNKNOMWN. Of f set of NULL. d \
1073 node=0444

1074 file path=opt/ SUNWItrt/tst/comon/ of fsetof/err. D UNKNOMWN. badnmenb. d node=0444
1075 file path=opt/SUNWItrt/tst/common/of fsetof/tst. OFfsetof Alias.d node=0444
1076 file path=opt/SUNWItrt/tst/common/of fsetof/tst.OFfsetof Arith.d node=0444
1077 file path=opt/ SUNWItrt/tst/common/ of fsetof/tst. O fsetof Union.d node=0444
1078 file path=opt/SUNWItrt/tst/comon/of fsetof/tst.struct.d node=0444

1079 file path=opt/SUNWItrt/tst/comon/of fsetof/tst.struct.d.out nbde=0444

1080 file path=opt/SUNWItrt/tst/comon/of fsetof/tst.union.d nmde=0444

1081 file path=opt/SUNWItrt/tst/common/ of fsetof/tst.union.d. out node=0444

1082 file path=opt/SUNWItrt/tst/comon/operators/tst.ternary.d node=0444

1083 file path=opt/SUNWItrt/tst/comon/operators/tst.ternary.d.out node=0444

1084 file path=opt/SUNWItrt/tst/comon/pid/err.D PDESC ZERO. badlib.d node=0444
1085 file path=opt/SUNWItrt/tst/conmmon/ pid/err.D PDESC ZERO badlib. exe nbde=0555
1086 file path=opt/SUNWItrt/tst/comon/ pid/err.D PDESC ZERO. badprocl.d npode=0444
1087 file path=opt/ SUNWItrt/tst/comon/ pid/err.D PROC BADPI D. badproc2.d node=0444
1088 file path=opt/ SUNWItrt/tst/comon/ pid/err.D PROC CREATEFAI L. many. d node=0444
1089 file path=opt/SUNWItrt/tst/common/ pid/err.D PROC CREATEFAI L. many. exe node=0555
1090 file path=opt/SUNWItrt/tst/comon/ pid/err. D _PROC FUNC. badfunc.d node=0444
1091 file path=opt/SUNWItrt/tst/comon/ pid/err.D PROC FUNC. badfunc. exe nbde=0555
1092 file path=opt/SUNWItrt/tst/comon/pid/err.D PROC LIB.I|ibdash.d node=0444
1093 file path=opt/SUNWItrt/tst/common/ pid/err.D PROC LIB.!|ibdash. exe nbde=0555
1094 file path=opt/SUNWItrt/tst/comon/ pid/err. D _PROC NAME. al | dash. d node=0444
1095 file path=opt/SUNWItrt/tst/comon/ pid/err. D PROC NAME. al | dash. exe npbde=0555
1096 file path=opt/SUNWItrt/tst/comon/ pid/err. D PROC NAME. badnane. d node=0444
1097 file path=opt/SUNWItrt/tst/conmon/ pid/ err. D PROC NAME. badnane. exe npde=0555
1098 file path=opt/SUNWItrt/tst/common/ pid/err.D PROC NAME. gl obdash. d node=0444
1099 file path=opt/ SUNWItrt/tst/comon/ pid/err.D PROC NAME. gl obdash. exe node=0555
1100 file path=opt/SUNWItrt/tst/comon/pid/err.D PROC OFF.toobig.d nbde=0444

1101 file path=opt/ SUNWItrt/tst/comon/pid/err. D _PROC_OFF.toobi g. exe node=0555
1102 file path=opt/SUNWItrt/tst/common/ pid/tst.addprobes. ksh node=0444

1103 file path=opt/SUNWItrt/tst/comon/pid/tst.argsl.d node=0444

1104 file path=opt/SUNWItrt/tst/comon/pid/tst.argsl. exe node=0555

1105 file path=opt/SUNWItrt/tst/common/ pid/tst.coverage.d node=0444

1106 file path=opt/SUNWItrt/tst/conmmon/ pid/tst.coverage. exe node=0555

1107 file path=opt/SUNWItrt/tst/comon/ pid/tst.enptystack.d node=0444

1108 file path=opt/SUNWItrt/tst/comon/ pid/tst.enptystack.d.out node=0444

1109 file path=opt/SUNWItrt/tst/comon/ pid/tst.enptystack. exe nbde=0555

1110 file path=opt/SUNWItrt/tst/common/pid/tst.float.d node=0444

1111 file path=opt/SUNWItrt/tst/comon/pid/tst.float.exe npde=0555

1112 file path=opt/ SUNWItrt/tst/comon/pid/tst.fork.d nbde=0444

1113 file path=opt/ SUNWItrt/tst/comon/ pid/tst.fork.exe nbde=0555

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 18
1114 file path=opt/SUNWItrt/tst/common/ pid/tst.gcc.d npde=0444

1115 file path=opt/SUNWItrt/tst/comon/ pid/tst.gcc. exe node=0555

1116 file path=opt/SUNWItrt/tst/common/ pid/tst.killonerror.ksh node=0444

1117 file path=opt/SUNWItrt/tst/common/ pid/tst.main. ksh node=0444

1118 file path=opt/SUNWItrt/tst/common/ pid/tst.manypids. ksh node=0444

1119 file path=opt/SUNWItrt/tst/comon/ pi d/tst.newprobes. ksh node=0444

1120 file path=opt/SUNWItrt/tst/common/ pi d/tst.newprobes. ksh. out npbde=0444
1121 file path=opt/SUNWItrt/tst/comon/pid/tst. probenod. ksh nmbde=0444

1122 file path=opt/SUNWItrt/tst/common/ pid/tst.provregexl. ksh node=0444

1123 file path=opt/ SUNWItrt/tst/comon/ pid/tst.provregex2. ksh node=0444

1124 file path=opt/ SUNWItrt/tst/comon/ pid/tst.provregex2. ksh. out node=0444
1125 file path=opt/SUNWItrt/tst/comon/ pid/tst.provregex3. ksh node=0444

1126 file path=opt/SUNWItrt/tst/common/ pid/tst.provregex3. ksh. out npde=0444
1127 file path=opt/SUNWItrt/tst/comon/ pid/tst.provregex4. ksh node=0444

1128 file path=opt/ SUNWItrt/tst/comon/ pid/tst.provregex4. ksh. out node=0444
1129 file path=opt/SUNWItrt/tst/comon/pid/tst.retl.d node=0444

1130 file path=opt/SUNWItrt/tst/common/ pid/tst.retl. exe node=0555

1131 file path=opt/ SUNWItrt/tst/comon/pid/tst.ret2.d node=0444

1132 file path=opt/ SUNWItrt/tst/comon/pid/tst.ret2. exe nbde=0555

1133 file path=opt/SUNWItrt/tst/comon/ pi d/tst. utf8probefunc. ksh nbde=0444
1134 file path=opt/SUNWItrt/tst/conmon/ pid/tst.utf8probefunc. ksh. out node=0444
1135 file path=opt/ SUNWItrt/tst/comon/ pid/tst.utf8probenpd. ksh node=0444
1136 file path=opt/ SUNWItrt/tst/comon/ pid/tst.utf8probenpd. ksh. out node=0444
1137 file path=opt/SUNWItrt/tst/comon/ pid/tst.vfork.d node=0444

1138 file path=opt/SUNWItrt/tst/common/ pid/tst.vfork. exe node=0555

1139 file path=opt/SUNWItrt/tst/common/ pid/tst.weakl.d node=0444

1140 file path=opt/SUNWItrt/tst/comon/ pid/tst.weakl. exe node=0555

1141 file path=opt/SUNWItrt/tst/comon/ pid/tst.weak2.d node=0444

1142 file path=opt/SUNWItrt/tst/common/ pid/tst.weak2. exe nbode=0555

1143 file path=opt/ SUNWItrt/tst/common/ pl ockstat/tst. avail abl e. d nbde=0444
1144 file path=opt/SUNWItrt/tst/comon/ pl ockstat/tst.avail abl e. exe nbde=0555
1145 file path=opt/SUNWItrt/tst/comon/pl ockstat/tst.|ibmap.d node=0444

1146 file path=opt/SUNWItrt/tst/common/ pl ockstat/tst.|ibmap. exe nbode=0555
1147 file path=opt/SUNWItrt/tst/common/ poi nters/err.BadAlign.d node=0444
1148 file path=opt/SUNWItrt/tst/comron/ poi nters/err. D ADDROF_VAR ArrayVar.d \

1149 node=0444

1150 file path=opt/ SUNWItrt/tst/comron/ poi nters/err.D ADDROF_VAR DynanicVar.d \

1151 node=0444

1152 file path=opt/SUNWItrt/tst/comon/ poi nters/err. D ADDROF_VAR agg.d node=0444
1153 file path=opt/ SUNWItrt/tst/comon/ poi nters/err. D DEREF_NONPTR noptr.d \

1154 node=0444

1155 file path=opt/ SUNWItrt/tst/common/ poi nters/err.D DEREF VO D. Voi dPoi nter Deref.d \
1156 nmode=0444

1157 file path=opt/ SUNWItrt/tst/comon/ pointers/err.D OP_ARRFUN. ArrayAssi gnnment.d \
1158 node=0444

1159 file \
1160 pat h=opt/ SUNWIt rt/t st/ comron/ poi nters/err. D_OP_| NCOWPAT. Voi dPoi nterArith.d \
1161 node=0444

1162 file path=opt/SUNWItrt/tst/comon/ pointers/err.D OP_LVAL. AddressChange. d \
1163 node=0444

1164 file path=opt/ SUNWItrt/tst/common/ pointers/err.D OP_PTR NonPoi nt er Access.d \
1165 nmode=0444

1166 file path=opt/SUNWItrt/tst/comon/ pointers/err.D OP_PTR badpoi nter.d node=0444
1167 file path=opt/ SUNWtrt/tst/common/ pointers/err. D _OP_SOU. BadPoi nter Access. d \
1168 node=0444

1169 file path=opt/ SUNWItrt/tst/comon/ pointers/err.D OP_SOU. badpoi nter.d node=0444
1170 file path=opt/SUNWItrt/tst/comon/ pointers/err.|nvalidAddressl.d node=0444
1171 file path=opt/SUNWItrt/tst/comon/ pointers/err.|nvalidAddress2.d node=0444
1172 file path=opt/ SUNWItrt/tst/common/ pointers/err.|nvali dAddress3.d node=0444
1173 file path=opt/ SUNWItrt/tst/comon/ pointers/err.|nvali dAddress4.d node=0444
1174 file path=opt/ SUNWItrt/tst/comon/ pointers/err.|nvali dAddress5.d node=0444
1175 file path=opt/ SUNWItrt/tst/common/ pointers/tst.ArrayPoi nterl.d node=0444

1176 file path=opt/ SUNWItrt/tst/conmon/ pointers/tst.ArrayPointer2.d node=0444

1177 file path=opt/ SUNWItrt/tst/comon/ pointers/tst. ArrayPointer3.d node=0444

1178 file path=opt/ SUNWItrt/tst/comon/ pointers/tst.d obal Var.d node=0444

1179 file path=opt/ SUNWItrt/tst/common/ pointers/tst.|ntegerArithmeticl.d node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

19

1180 file path=opt/SUNWItrt/tst/common/ pointers/tst.PointerArithnmeticl.d node=0444
1181 file path=opt/SUNWItrt/tst/comon/ pointers/tst.PointerArithnmetic2.d node=0444
1182 file path=opt/SUNWItrt/tst/common/ pointers/tst.PointerArithmetic3.d npde=0444
1183 file path=opt/SUNWItrt/tst/conmon/ poi nters/tst.PointerAssignment.d nbde=0444
1184 file path=opt/ SUNWItrt/tst/common/ pointers/tst.ValidPointerl.d node=0444

1185 file path=opt/ SUNWItrt/tst/comon/ pointers/tst. ValidPointer2.d node=0444

1186 file path=opt/SUNWItrt/tst/common/ poi nters/tst.VoidCast.d node=0444

1187 file path=opt/ SUNWItrt/tst/common/ poi nters/tst.assigncastl.d node=0444

1188 file path=opt/ SUNWItrt/tst/common/ poi nters/tst.assigncast2.d node=0444

1189 file path=opt/SUNWItrt/tst/comon/ pointers/tst.basicl.d node=0444

1190 file path=opt/SUNWItrt/tst/comon/ pointers/tst.basic2.d node=0444

1191 file path=opt/SUNWItrt/tst/comon/ pragma/err. D PRAGERR d node=0444

1192 file path=opt/SUNWItrt/tst/conmon/ pragma/ err. D_PRAGVA DEPEND. nai n. d node=0444
1193 file path=opt/SUNWItrt/tst/comon/ pragne/ err. D PRAGVA | NVAL. d node=0444

1194 file path=opt/SUNWItrt/tst/comron/ pragma/ err. D_PRAGVA_ MALFORM d npde=0444
1195 file path=opt/SUNWitrt/tst/comon/ pragma/ err. D_PRAGVA_UNUSED. UnusedPr agma. d \
1196 node=0444

1197 file path=opt/SUNWItrt/tst/comon/pragne/ err.circlibdep. ksh node=0444

1198 file path=opt/ SUNWItrt/tst/comon/pragna/err.invalidlibdep. ksh node=0444

1199 file path=opt/SUNWItrt/tst/comon/pragnme/tst.|libchain. ksh node=0444

1200 file path=opt/SUNWItrt/tst/common/ pragma/tst.|ibdep. ksh node=0444

1201 file path=opt/SUNWItrt/tst/comon/ pragne/tst.|ibdepfullyconnected. ksh \

1202 node=0444

1203 file path=opt/SUNWItrt/tst/comon/pragne/tst.|ibdepsepdir.ksh nbde=0444

1204 file path=opt/SUNWItrt/tst/conmon/ pragma/tst.tenporal.ksh node=0444

1205 file path=opt/SUNWItrt/tst/conmon/ pragma/tst.tenporal 2. ksh node=0444

1206 file path=opt/SUNWItrt/tst/comon/ pragna/tst.tenporal 3.d node=0444

1207 file path=opt/SUNWItrt/tst/common/ predi cates/err. D PRED SCALAR NonScal arPred. d \
1208 node=0444

1209 file path=opt/SUNWItrt/tst/common/ predicates/err.D SYNTAX. invalid.d node=0444
1210 file path=opt/SUNWItrt/tst/comon/ predicates/err.D _SYNTAX operr.d node=0444
1211 file path=opt/ SUNWItrt/tst/comon/ predi cates/tst.argsnotcached.d node=0444
1212 file path=opt/SUNWItrt/tst/conmmon/ predicates/tst.basics.d node=0444

1213 file path=opt/ SUNWItrt/tst/conmmon/ predicates/tst.basics.d. out node=0444

1214 file path=opt/ SUNWItrt/tst/comon/ predi cates/tst.conpl ex.d node=0444

1215 file path=opt/ SUNWItrt/tst/comon/ predicates/tst.conpl ex.d. out node=0444

1216 file path=opt/SUNWItrt/tst/comon/ preprocessor/err.D | DENT_UNDEF. af t er probe. d \
1217 node=0444

1218 file path=opt/ SUNWItrt/tst/comon/ preprocessor/err.D PRAGCTL_I NVAL. t abdefine.d \
1219 node=0444

1220 file path=opt/SUNWItrt/tst/comon/ preprocessor/err.D SYNTAX wi t hout pound. d \
1221 node=0444

1222 file path=opt/ SUNWItrt/tst/comon/ preprocessor/err.definconp.d node=0444

1223 file path=opt/SUNWItrt/tst/comon/ preprocessor/err.ifdefel senotendif.d \

1224 node=0444

1225 file path=opt/ SUNWItrt/tst/conmon/ preprocessor/err.ifdefinconp.d node=0444
1226 file path=opt/ SUNWItrt/tst/comon/ preprocessor/err.ifdefnotendif.d node=0444
1227 file path=opt/ SUNWItrt/tst/comon/ preprocessor/err.inconpel se.d node=0444
1228 file path=opt/ SUNWItrt/tst/common/ preprocessor/err.mul el se.d node=0444

1229 file path=opt/SUNWItrt/tst/conmon/ preprocessor/tst.ifdef.d node=0444

1230 file path=opt/SUNWItrt/tst/conmon/ preprocessor/tst.ifdef.d.out node=0444

1231 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.ifndef.d nbde=0444

1232 file path=opt/SUNWItrt/tst/common/ preprocessor/tst.ifndef.d.out node=0444
1233 file path=opt/SUNWItrt/tst/conmon/ preprocessor/tst.ifnotdef.d node=0444

1234 file path=opt/SUNWItrt/tst/conmon/ preprocessor/tst.ifnotdef.d.out node=0444
1235 file path=opt/ SUNWItrt/tst/comon/ preprocessor/tst.|ogical and.d node=0444
1236 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.|ogical and. d. out node=0444
1237 file path=opt/SUNWItrt/tst/conmon/ preprocessor/tst.| ogical andor.d npode=0444
1238 file path=opt/SUNWItrt/tst/conmon/ preprocessor/tst. | ogical andor.d. out \

1239 node=0444

1240 file path=opt/ SUNWItrt/tst/comon/ preprocessor/tst.|ogical or.d node=0444

1241 file path=opt/ SUNWItrt/tst/comon/ preprocessor/tst.|ogical or.d. out node=0444
1242 file path=opt/ SUNWItrt/tst/conmon/ preprocessor/tst. mul and. d node=0444

1243 file path=opt/SUNWItrt/tst/comon/ preprocessor/tst.nul and. d. out node=0444
1244 file path=opt/ SUNWItrt/tst/comon/ preprocessor/tst. mlor.d node=0444

1245 file path=opt/ SUNWItrt/tst/comon/ preprocessor/tst.mulor.d. out node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311

file
file
file

node=0444

@ D®Dd®DdDDMD D

node=0444

pat h=opt/ SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt/ SUNWAt rt/t st/ common/ pri
pat h=opt/ SUNWAt rt/t st/ comon/ pri
pat h=opt/ SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt/ SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWAt rt/t st/ comon/ pri
pat h=opt/ SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt/ SUNWtrt/t st/ common/ pri
pat h=opt/ SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWdtrt/t st/ conmmon/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt / SUNWAt rt/t st/ comon/ pri
node=0444
file path=opt/SUNWItrt/tst/comon/pri
node=0444
file path=opt/SUNWItrt/tst/common/pri
node=0444
file path=opt/SUNWitrt/tst/common/ pri
file path=opt/SUNWItrt/tst/comon/pri
node=0444
file path=opt/SUNWItrt/tst/common/pri
node=0444
file path=opt/SUNWItrt/tst/comon/pri
node=0444
pat h=opt/ SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ conmmon/ pri
pat h=opt/ SUNWIt rt/t st/ common/ pri
pat h=opt/ SUNWAt rt/t st/ comon/ pri
pat h=opt/ SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt/ SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt/ SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWIt rt/t st/ comon/ pri
pat h=opt/ SUNWdtrt/t st/ common/ pri
pat h=opt/ SUNWtrt/t st/ common/ pri
pat h=opt/ SUNWIt rt/t st/ common/ pri
pat h=opt / SUNWIt rt/t st/ comon/ pri
node=0444
file path=opt/SUNWItrt/tst/comon/pri
node=0444
file path=opt/SUNWItrt/tst/common/pri
node=0444

—h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h
OCODODOPDODODDDDDDDDDDMDMD

OCODODODOPDODDDD®D®D®DDDDDD

pat h=opt/ SUNWt rt/t st/ common/ pr epr ocessor/tst.
pat h=opt / SUNWAt rt/t st/ cormon/ pr epr ocessor/tst.
pat h=opt/ SUNWIt rt/t st/ cormon/ pr epr ocessor/tst.

pat h=opt/ SUNWdt rt/t st/ common/ pr epr ocessor/tst.
pat h=opt/ SUNWAt rt/t st/ cormon/ pr epr ocessor/tst.
pat h=opt/ SUNWAtrt/t st/ conmmon/ preprocessor/tst.
pat h=opt/ SUNWdt rt/t st/ conmmon/ pr epr ocessor/tst.
pat h=opt/ SUNWt rt/t st/ common/ pr epr ocessor/tst.
pat h=opt/ SUNWAt rt/t st/ cormon/ pr epr ocessor/tst.
pat h=opt/ SUNWAt rt/t st/ cormon/ pr epr ocessor/tst.
pat h=opt/ SUNWdt rt/t st/ conmon/ pr epr ocessor/t st.

pat h=opt/ SUNWAt rt/ t st/ cormon/ pr epr ocessor/tst.

nt/err.
nt/err.
nt/err.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.
nt/tst.

nta/err.
nta/err.
ntalerr.

nta/err.
ntalerr.

nta/err.
ntalerr.

nta/tst.
ntaltst.
ntaltst.
nta/tst.
nta/tst.
ntaltst.
ntaltst.
ntaltst.
nta/tst.
nta/tst.
ntaltst.
ntaltst.
nta/tst.
nta/tst.
ntaltst.
ntaltst.
nta/tst.
ntf/err.

ntf/err.

ntf/err.

20

precondi . d node=0444
precondi . d. out node=0444
predi catedecl are. d \

preexp.d node=0444
preexp. d. out node=0444
preexpel se. d node=0444
preexpel se. d. out node=0444
preexpi f.d node=0444
preexpi f.d. out node=0444
preexpi fel se. d node=0444
preexpifel se.d.out \

wi t hi nprobe. d npode=0444
D PRI NT_AGG bad. d node=0444
D PRI NT_VO D. bad. d nbde=0444
D_PROTO_LEN. bad. d nbde=0444
array.d node=0444

array. d. out node=0444
bitfield. d nde=0444
bitfield.d out node=0444
dyn. d node=0444

enum d node=0444

enum d. out node=0444
primtive.d npbde=0444
primtive.d. out node=0444
struct.d node=0444

struct.d. out node=0444

x| ate. d npde=0444

x| ate. d. out node=0444

D_PRI NTA_AGGARG. badagg. d \

D_PRI NTA AGGARG badfnt.d \

D_PRI NTA_AGGARG badval . d \
D_PRI NTA_PROTO. bad. d node=0444
D_PRI NTF_ARG TYPE. j stack. d \

D_PRI NTF_ARG TYPE. stack. d \
D_PRI NTF_ARG TYPE. ustack.d \

basi cs. d node=0444
basi cs. d. out npbde=0444
def.d node=0444

def. d. out node=0444
dynwi dt h. d node=0444
dynwi dt h. d. out npde=0444
fmt.d node=0444

fnt.d. out npde=0444

| ar geuser sym ksh node=0444
many. d node=0444

nanyval . d node=0444
manyval . d. out npde=0444
stack. d node=0444

tupl e.d node=0444
tupl e. d. out node=0444

wal | ti mest anp. ksh npde=0444
wal | ti mest anp. ksh. out node=0444
D PRI NTF_AGG CONV. aggfnt.d \

D_PRI NTF_ARG_EXTRA. t oomany. d \
D PRI NTF_ARG EXTRA. wi dths.d \

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377

file path=opt/SUNWIitrt/tst/comon/printf/err.

node=0444

file path=opt/SUNWItrt/tst/comon/printf/err.

node=0444

file path=opt/SUNWItrt/tst/comon/printf/err.

nmode=0444

file path=opt/SUNWItrt/tst/comon/printf/err.

node=0444

file path=opt/SUNWItrt/tst/comon/printf/err.

nmode=0444

file path=opt/SUNWitrt/tst/comon/printf/err.

node=0444

file path=opt/SUNWItrt/tst/comon/printf/err.

node=0444
file path=opt/SUNWitrt/tst/comon/printf/err.
node=0444

file path=opt/SUNWItrt/tst/comon/printf/err
file path=opt/SUNWitrt/tst/comon/printf/err
file path=opt/SUNWitrt/tst/comon/printf/err
file path=opt/SUNWitrt/tst/common/printf/err
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/comon/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/comon/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/comon/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/comon/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/common/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/common/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/common/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/comon/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/comon/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWItrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/comon/printf/tst
file path=opt/SUNWitrt/tst/common/printf/tst
file path=opt/SUNWItrt/tst/comon/privs/tst

#endif /* | codereview */

file path=opt/SUNWitrt/tst/comon/privs/tst.
file path=opt/SUNWitrt/tst/comon/privs/tst.
#endif /* | codereview */

file path=opt/SUNWItrt/tst/comon/privs/tst.
file path=opt/SUNWitrt/tst/comon/privs/tst.
file path=opt/SUNWitrt/tst/comon/privs/tst.
file path=opt/SUNWitrt/tst/comon/privs/tst.

21
D_PRI NTF_ARG FM. badfnt.d \
D PRI NTF_ARG PROTO. noval ue. d \
D _PRI NTF_ARG TYPE. aggarg.d \
D _PRI NTF_ARG TYPE. recursive.d \
D_PRI NTF_DYN_PROTO. noprec.d \
D PRI NTF_DYN_PROTO. nowi dt h. d \
D_PRI NTF_DYN_TYPE. badprec. d \
D PRI NTF_DYN_TYPE. badwi dt h. d \

. D_PROTO _LEN. t oof ew. d node=0444
. D_SYNTAX. badconv1l. d node=0444
. D_SYNTAX. badconv2. d node=0444
. D_SYNTAX. badconv3. d node=0444
. basi cs. d node=0444

. basi cs. d. out npde=0444
.flags.d node=0444
.flags. d. out node=0444
.hel l 0. d npde=0444

.hell o.d. out node=0444
.ints.d node=0444
.ints.d.out nbde=0444
.precs.d node=0444

. precs.d. out node=0444
.print-f.d node=0444
.print-f.d. out node=0444
.printT.ksh node=0444
.printT. ksh. out node=0444
.printY.ksh node=0444
.printY.ksh.out node=0444
.printcont.d npde=0444
.printcont.d. out node=0444
.printeE. d node=0444
.printeE. d. out node=0444
.printgG d node=0444
.printgG d. out node=0444
.rawf nt.d node=0444

.rawf nt.d. out node=0444
.signs.d node=0444
.signs.d.out node=0444
.str.d node=0444
.str.d.out npde=0444
.symd node=0444
.symd. out node=0444
.uints.d node=0444
.uints.d. out node=0444

.wi dths. d node=0444
.widths.d. out node=0444
.widthsl.d npde=0444

.wp. d node=0444

.wp. d. out node=0444

. fds. ksh node=0444

func_access. ksh nbde=0444
getf. ksh node=0444

nopri vdrop. ksh node=0444
noprivrestrict. ksh node=0444
op_access. ksh node=0444
procpriv. ksh node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1442

1378 file path=opt/SUNWItrt/tst/common/ privs/tst.providers. ksh node=0444
1379 #endif /* ! codereview */
1380 file path=opt/SUNWItrt/tst/common/ privs/tst.tick.ksh node=0444
1381 file path=opt/SUNWItrt/tst/common/ privs/tst.unpriv_funcs. ksh npde=0444
1382 file path=opt/SUNWItrt/tst/common/ probes/err. D _PDESC ZERO. probeqtn.d node=0444
1383 file path=opt/SUNWItrt/tst/comon/ probes/err. D PDESC ZERO. probestar.d \
1384 node=0444
1385 file path=opt/SUNWtrt/tst/common/ probes/err. D_PDESC ZERO. tickstar.d nbde=0444
1386 file path=opt/SUNWItrt/tst/common/ probes/err.D_SYNTAX. assi gn.d node=0444
1387 file path=opt/SUNWItrt/tst/comon/ probes/err. D _SYNTAX. decl are. d node=0444
1388 file path=opt/SUNWItrt/tst/comon/ probes/err.D _SYNTAX. decl arei n. d node=0444
1389 file path=opt/SUNWItrt/tst/comon/ probes/err.D SYNTAX. | braces.d node=0444
1390 file path=opt/SUNWItrt/tst/conmon/ probes/err.D_SYNTAX. probespec. d node=0444
1391 file path=opt/SUNWItrt/tst/comon/ probes/err. D _SYNTAX. rbraces.d node=0444
1392 file path=opt/ SUNWItrt/tst/comon/ probes/err.D SYNTAX. recdec.d node=0444
1393 file path=opt/SUNWItrt/tst/comon/ probes/tst.basicl.d node=0444
1394 file path=opt/SUNWItrt/tst/common/ probes/tst.check.d npode=0444
1395 file path=opt/SUNWItrt/tst/comon/ probes/tst.decl are.d node=0444
1396 file path=opt/SUNWItrt/tst/comon/ probes/tst.declareafter.d nbde=0444
1397 file path=opt/SUNWItrt/tst/comon/ probes/tst.enptyprobe.d nbde=0444
1398 file path=opt/SUNWItrt/tst/common/ probes/tst.pragnme.d nbde=0444
1399 file path=opt/SUNWItrt/tst/comon/ probes/tst.pragnmaaftertab.d node=0444
1400 file path=opt/SUNWItrt/tst/comon/ probes/tst. pragnai nsi de.d nbde=0444
1401 file path=opt/SUNWItrt/tst/comon/ probes/tst.pragnaoutsi de. d node=0444
1402 file path=opt/SUNWItrt/tst/conmon/ probes/tst. probestar.d node=0444
1403 file path=opt/SUNWItrt/tst/common/ proc/tst.create. ksh node=0444
1404 file path=opt/SUNWItrt/tst/comon/proc/tst.discard. ksh node=0444
1405 file path=opt/SUNWItrt/tst/common/ proc/tst.exec. ksh node=0444
1406 file path=opt/SUNWItrt/tst/common/ proc/tst.execfail.ENCENT. ksh node=0444
1407 file path=opt/SUNWItrt/tst/common/ proc/tst.execfail.ksh node=0444
1408 file path=opt/SUNWItrt/tst/comon/proc/tst.exitcore.ksh node=0444
1409 file path=opt/SUNWItrt/tst/comon/proc/tst.exitexit.ksh node=0444
1410 file path=opt/SUNWItrt/tst/common/ proc/tst.exitkilled. ksh node=0444
1411 file path=opt/ SUNWItrt/tst/common/ proc/tst.signal.ksh node=0444
1412 file path=opt/ SUNWItrt/tst/comon/proc/tst.sigwait.d node=0444
1413 file path=opt/SUNWItrt/tst/comon/ proc/tst.sigwait.exe nbde=0555
1414 file path=opt/SUNWItrt/tst/comon/proc/tst.startexit.ksh node=0444
1415 file path=opt/SUNWItrt/tst/common/profile-n/err.D PDESC ZERO profile.d \
1416 nmode=0444
1417 file path=opt/SUNWItrt/tst/comon/profile-n/err.D PDESC ZEROonens.d node=0444
1418 file path=opt/SUNWItrt/tst/comon/profile-n/err.D PDESC ZEROonensec.d \
1419 node=0444
1420 file path=opt/SUNWItrt/tst/comon/profile-n/err.D PDESC ZEROConeus.d node=0444
1421 file path=opt/SUNWItrt/tst/comon/profile-n/err.D PDESC ZEROConeusec.d \
1422 node=0444
1423 file path=opt/SUNWItrt/tst/conmmon/profile-n/tst.argtest.d node=0444
1424 file path=opt/SUNWItrt/tst/common/profile-n/tst.argtest.d.out node=0444
1425 file path=opt/SUNWItrt/tst/comon/profile-n/tst.basic.d nbde=0444
1426 file path=opt/SUNWItrt/tst/common/profile-n/tst.basic.d.out nbde=0444
1427 file path=opt/SUNWItrt/tst/common/ profile-n/tst.func.ksh node=0444
1428 file path=opt/SUNWItrt/tst/common/ profile-n/tst.nod. ksh node=0444
1429 file path=opt/SUNWItrt/tst/comon/profile-n/tst.profilehz.d node=0444
1430 file path=opt/SUNWItrt/tst/common/profile-n/tst.profilehz.d.out node=0444
1431 file path=opt/SUNWtrt/tst/comon/profile-n/tst.profilenms.d node=0444
1432 file path=opt/SUNWItrt/tst/common/profile-n/tst.profilens.d.out node=0444
1433 file path=opt/SUNWItrt/tst/comon/profile-n/tst.profilensec.d node=0444
1434 file path=opt/SUNWItrt/tst/comon/profile-n/tst.profilensec.d.out node=0444
1435 file path=opt/SUNWItrt/tst/comon/profile-n/tst.profilenhz.d node=0444
1436 file path=opt/SUNWItrt/tst/common/ profile-n/tst.profilenhz.d. out node=0444
1437 file path=opt/SUNWItrt/tst/comon/profile-n/tst.profilens.d nbde=0444
1438 file path=opt/SUNWItrt/tst/comon/profile-n/tst.profilens.d.out nbde=0444
1439 file path=opt/SUNWItrt/tst/common/profile-n/tst.profilensec.d node=0444
1440 file path=opt/SUNWItrt/tst/common/profile-n/tst.profilensec.d.out node=0444
1441 file path=opt/SUNWItrt/tst/comon/profile-n/tst.profiles.d node=0444

file

file

1443

pat h=opt / SUNWIt rt/t st/ comon/profile-n/tst.profiles.d.out node=0444
pat h=opt/ SUNWdtrt/t st/ common/ profile-n/tst.profilesec.d node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1444 file path=opt/SUNWItrt/tst/common/profile-n/tst.profilesec.d.out node=0444
1445 file path=opt/SUNWItrt/tst/comon/profile-n/tst.profileus.d nbde=0444
1446 file path=opt/SUNWItrt/tst/common/profile-n/tst.profileus.d.out node=0444
1447 file path=opt/SUNWItrt/tst/common/profile-n/tst.profileusec.d node=0444
1448 file path=opt/SUNWItrt/tst/common/profile-n/tst.profileusec.d.out npbde=0444
1449 file path=opt/SUNWItrt/tst/comon/profile-n/tst.symksh node=0444

1450 file path=opt/SUNWItrt/tst/comon/profile-n/tst.ufunc. ksh node=0444

1451 file path=opt/SUNWtrt/tst/comon/profile-n/tst.ufuncsort.exe nbde=0555
1452 file path=opt/SUNWItrt/tst/common/ profile-n/tst.ufuncsort.ksh node=0444
1453 file path=opt/SUNWItrt/tst/comon/profile-n/tst.ufuncsort.ksh. out node=0444
1454 file path=opt/SUNWItrt/tst/comon/profile-n/tst.unpd. ksh node=0444

1455 file path=opt/SUNWItrt/tst/common/ profile-n/tst.usym ksh node=0444

1456 file path=opt/ SUNWItrt/tst/common/ providers/err.D PDESC | NVAL. w ongdec4. d \
1457 nmode=0444

1458 file path=opt/SUNWItrt/tst/comon/ providers/err.D PDESC ZERO nonprofile.d \
1459 node=0444

1460 file path=opt/SUNWItrt/tst/common/ providers/err.D PDESC ZERO w ongdecl.d \
1461 nmode=0444

1462 file path=opt/SUNWItrt/tst/comon/ providers/err.D PDESC ZERO. wrongdec?2.d \
1463 node=0444

1464 file path=opt/SUNWItrt/tst/common/ providers/err. D PDESC ZERO w ongdec3.d \
1465 nmode=0444

1466 file path=opt/SUNWItrt/tst/comon/ providers/tst.basics.d node=0444

1467 file path=opt/SUNWItrt/tst/common/ providers/tst. basics.d.out npde=0444
1468 file path=opt/SUNWItrt/tst/conmon/ providers/tst.beginexit.d node=0444
1469 file path=opt/SUNWItrt/tst/common/ providers/tst. begi nprof.d npbde=0444
1470 file path=opt/SUNWItrt/tst/comon/ providers/tst.begi nprof.d. out node=0444
1471 file path=opt/ SUNWItrt/tst/common/ provi ders/tst.probattrs.d npbde=0444
1472 file path=opt/SUNWItrt/tst/conmon/ providers/tst.probattrs.d. out node=0444
1473 file path=opt/ SUNWItrt/tst/common/ provi ders/tst. probefunc.d nbde=0444
1474 file path=opt/SUNWItrt/tst/comon/ providers/tst.probefunc.d. out node=0444
1475 file path=opt/ SUNWItrt/tst/comon/ providers/tst.probenpd.d node=0444

1476 file path=opt/SUNWItrt/tst/comon/ providers/tst.probenod. d. out node=0444
1477 file path=opt/ SUNWItrt/tst/conmon/ provi ders/tst. probenane.d npbde=0444
1478 file path=opt/SUNWItrt/tst/comon/ providers/tst.probenane. d. out node=0444
1479 file path=opt/SUNWItrt/tst/comon/ providers/tst.probprov.d node=0444

1480 file path=opt/SUNWItrt/tst/comon/ providers/tst.probprov.d. out node=0444
1481 file path=opt/SUNWItrt/tst/common/ providers/tst. profend.d node=0444

1482 file path=opt/SUNWItrt/tst/comon/ providers/tst.profend.d. out node=0444
1483 file path=opt/SUNWItrt/tst/comon/ providers/tst.profexit.d node=0444

1484 file path=opt/SUNWItrt/tst/common/ providers/tst.profexit.d.out node=0444
1485 file path=opt/SUNWItrt/tst/common/ providers/tst.trace.d node=0444

1486 file path=opt/SUNWItrt/tst/comon/providers/tst.trace.d.out node=0444

1487 file path=opt/SUNWItrt/tst/comon/ providers/tst.twoprof.d nbde=0444

1488 file path=opt/SUNWItrt/tst/comon/ providers/tst.twoprof.d. out nbde=0444
1489 file path=opt/SUNWItrt/tst/common/raise/tst.raisel.d node=0444

1490 file path=opt/SUNWItrt/tst/common/raise/tst.raisel. exe node=0555

1491 file path=opt/SUNWItrt/tst/comon/raise/tst.raise2.d node=0444

1492 file path=opt/SUNWItrt/tst/common/raise/tst.raise2. exe node=0555

1493 file path=opt/SUNWItrt/tst/conmmon/raise/tst.raise3.d node=0444

1494 file path=opt/SUNWItrt/tst/common/raise/tst.raise3. exe node=0555

1495 file path=opt/SUNWItrt/tst/comon/rates/tst.aggrate.d node=0444

1496 file path=opt/SUNWItrt/tst/common/rates/tst.aggrate.d. out node=0444

1497 file path=opt/SUNWItrt/tst/common/rates/tst.statusrate.d node=0444

1498 file path=opt/SUNWItrt/tst/common/rates/tst.sw tchrate.d node=0444

1499 file path=opt/SUNWItrt/tst/comon/rates/tst.sw tchrate.d. out node=0444
1500 file path=opt/SUNWItrt/tst/comon/safety/tst.basenane.d node=0444

1501 file path=opt/SUNWItrt/tst/common/safety/tst.caller.d nbde=0444

1502 file path=opt/SUNWItrt/tst/conmmon/safety/tst.cleanpath.d node=0444

1503 file path=opt/SUNWItrt/tst/comon/safety/tst.copyin.d node=0444

1504 file path=opt/SUNWItrt/tst/comon/safety/tst.copyin2.d node=0444

1505 file path=opt/SUNWItrt/tst/comon/safety/tst.ddi _pathnane.d nbde=0444

1506 file path=opt/SUNWItrt/tst/common/safety/tst.dirnane.d node=0444

1507 file path=opt/SUNWItrt/tst/comon/safety/tst.errno.d node=0444

1508 file path=opt/SUNWItrt/tst/comon/safety/tst.execnane.d node=0444

1509 file path=opt/SUNWItrt/tst/comon/safety/tst.gid.d node=0444

23

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

24

1510 e pat h=opt/SUNWItrt/tst/comon/safety/tst.hton.d node=0444

1511 e path=opt/SUNWItrt/tst/comon/safety/tst.index.d node=0444

1512 e path=opt/SUNWItrt/tst/comon/safety/tst.nsgdsi ze. d nbde=0444

1513 e path=opt/SUNWItrt/tst/comon/safety/tst.nsgsize.d node=0444

1514 e pat h=opt/SUNWItrt/tst/comon/safety/tst.null.d node=0444

1515 e path=opt/SUNWItrt/tst/comon/safety/tst.pid.d node=0444

1516 e path=opt/SUNWItrt/tst/comon/safety/tst.ppid.d node=0444

1517 e pat h=opt/SUNWItrt/tst/common/safety/tst.progenyof.d node=0444

1518 e pat h=opt/SUNWItrt/tst/common/safety/tst.random d node=0444

1519 e path=opt/SUNWItrt/tst/comon/safety/tst.rw d node=0444

1520 e path=opt/SUNWItrt/tst/comon/safety/tst.shortstr.d nbde=0444

1521 e path=opt/SUNWItrt/tst/comon/safety/tst.stack.d node=0444

1522 e path=opt/SUNWItrt/tst/common/safety/tst.stackdepth.d node=0444

1523 e path=opt/SUNWItrt/tst/comon/safety/tst.stddev.d npode=0444

1524 e path=opt/SUNWItrt/tst/comon/safety/tst.strchr.d node=0444

1525 e path=opt/SUNWItrt/tst/comon/safety/tst.strjoin.d node=0444

1526 e pat h=opt/SUNWItrt/tst/comon/safety/tst.strstr.d node=0444

1527 e path=opt/SUNWItrt/tst/comon/safety/tst.strtok.d node=0444

1528 e path=opt/SUNWItrt/tst/comon/safety/tst.substr.d node=0444

1529 e path=opt/SUNWItrt/tst/comon/safety/tst.ucaller.d node=0444

1530 e pat h=opt/SUNWItrt/tst/comon/safety/tst.uid. d node=0444

1531 e path=opt/SUNWItrt/tst/comon/safety/tst.unalign.d node=0444

1532 e path=opt/SUNWAtrt/tst/comon/safety/tst.uregs.d node=0444

1533 e path=opt/SUNWItrt/tst/comon/saf ety/tst.ustack.d nbde=0444

1534 e pat h=opt/SUNWItrt/tst/comon/safety/tst.ustackdepth.d node=0444

1535 e path=opt/SUNWItrt/tst/common/safety/tst.vahol e.d node=0444

1536 e path=opt/SUNWItrt/tst/comon/saf ety/tst.viol entdeath. ksh node=0444
1537 e path=opt/SUNWItrt/tst/comon/safety/tst.zonenane.d nbde=0444

1538 e pat h=opt/SUNWItrt/tst/comon/scal ars/err. D_ARR LOCAL. t hisarray.d \
1539 node=0444

1540 file path=opt/SUNWItrt/tst/comon/scal ars/err.D DECL_CLASS. sel fthis.d \
1541 node=0444

1542 file path=opt/SUNWItrt/tst/comon/scal ars/err.D DECL_CLASS.thisself.d \
1543 m:)de—04 44

1544 file path=opt/SUNWItrt/tst/comon/scal ars/err.D DECL_| DRED. errval .d node=0444
1545 f e pat h=opt / SUNWAt rt / t st/ cormon/ scal ars/ err. D_OP_| NCOWPAT. dec. err.d \
1546 node=0444

1547 file path=opt/ SUNWItrt/tst/common/scal ars/err. D _OP_I NCOWPAT. dupgt ype. d \
1548 nmode=0444

1549 file path=opt/SUNWItrt/tst/comon/scal ars/err. D _OP_| NCOWPAT. dupl type. d \
1550 node=0444

1551 file path=opt/SUNWItrt/tst/common/scal ars/err. D _OP_I NCOWPAT. dupt type.d \
1552 nmode=0444

1553 e path=opt/SUNWItrt/tst/comon/ scal ars/ err. D _SYNTAX. decl are. d node=0444
1554 e pat h=opt/SUNWItrt/tst/comon/ scal ars/tst.basi cvar.d node=0444

1555 e pat h=opt/SUNWItrt/tst/common/scal ars/tst. basicvar.d. out node=0444
1556 e path=opt/SUNWItrt/tst/common/scal ars/tst.|ocal var.d npde=0444

1557 e path=opt/SUNWAtrt/tst/comon/scal ars/tst.m sc.d node=0444

1558 e path=opt/SUNWItrt/tst/comon/scal ars/tst.self.d node=0444

1559 e path=opt/SUNWItrt/tst/comon/scal ars/tst.selfarray.d node=0444

1560 e pat h=opt/SUNWItrt/tst/comon/scal ars/tst.sel farray2.d node=0444

1561 e path=opt/SUNWItrt/tst/comon/scal ars/tst.selfthis.d node=0444

1562 e path=opt/SUNWItrt/tst/comon/scal ars/tst.this.d node=0444

1563 e pat h=opt/SUNWItrt/tst/common/scal ars/tst.thisself.d npde=0444

1564 e pat h=opt/SUNWItrt/tst/comon/sched/tst.enqueue.d node=0444

1565 e path=opt/SUNWAtrt/tst/comon/sched/tst.oncpu.d node=0444

1566 e path=opt/SUNWItrt/tst/comon/ sched/tst. stackdepth.d node=0444

1567 e pat h=opt/SUNWItrt/tst/comon/scripting/err. D MACRO UNDEF.invalidargs.d \
1568 rmde 0444

1569 e pat h=opt/SUNWitrt/tst/comon/scripting/err.D OP_LVAL.rdonly.d node=0444
1570 e pat h=opt/SUNWItrt/tst/common/ scripting/err.D _OP_WRI TE. usepi dmacro. d \
1571 node=0444

1572 pat h=opt/ SUNWdtrt/t st/ common/ scri pting/ err. D_SYNTAX. concat.d npde=0444
1573 at h=opt / SUNWAt rt/t st/ common/ scri pting/err. D _SYNTAX. desc. d node=0444

1574
1575

P
pat h=opt / SUNWIt rt/t st/ common/ scri pting/err.D SYNTAX. i nval .d node=0444
pat h=opt / SUNWIt rt/t st/ common/ scri pting/err. D _SYNTAX. pi d. d node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 25 new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 26
1576 file path=opt/SUNWItrt/tst/common/scripting/tst. D MACRO UNUSED. overfl ow. ksh \ 1642 node=0444

1577 node=0444 1643 file \

1578 file path=opt/ SUNWItrt/tst/comon/scripting/tst.arg0.d node=0444 1644 pat h=opt/ SUNWIt rt/t st/ common/ specul ati on/ err. D_ACT_SPEC. Specul at eW t hRai se. d
1579 file path=opt/SUNWItrt/tst/common/scripting/tst.argunments. ksh node=0444 1645 node=0444

1580 file path=opt/SUNWItrt/tst/common/scripting/tst.assign.d node=0444 1646 file \

1581 file path=opt/SUNWItrt/tst/comon/scripting/tst.basic.d node=0444 1647 pat h=opt / SUNWIt rt/t st/ comon/ specul ati on/ err. D_ACT_SPEC. Specul ateWt hSt op. d
1582 file path=opt/SUNWItrt/tst/common/scripting/tst.egid.d node=0444 1648 node=0444

1583 file path=opt/SUNWItrt/tst/common/scripting/tst.egid.ksh node=0444 1649 file path=opt/ SUNWItrt/tst/common/ specul ation/err.D_AGG COM AggAftConmit.d \
1584 file path=opt/SUNWItrt/tst/common/scripting/tst.euid. d node=0444 1650 node=0444

1585 file path=opt/SUNWItrt/tst/comon/scripting/tst.euid. ksh node=0444 1651 file \

1586 file path=opt/SUNWItrt/tst/common/scripting/tst.gid.d node=0444 1652 pat h=opt/ SUNWIt rt/t st/ comon/ specul ati on/ err. D_AGG _SPEC. Specul at eWt hAvg. d \
1587 file path=opt/SUNWItrt/tst/comon/scripting/tst.gid. ksh node=0444 1653 node=0444

1588 file path=opt/SUNWItrt/tst/comon/scripting/tst.pgid.d mde=0444 1654 file \

1589 file path=opt/SUNWItrt/tst/comon/scripting/tst.pid.d node=0444 1655 pat h=opt/ SUNWt rt/t st/ comron/ specul ati on/ err. D_AGG _SPEC. Specul at eW t hCount . d
1590 file path=opt/SUNWItrt/tst/comon/scripting/tst.ppid.d node=0444 1656 node=0444

1591 file path=opt/SUNWItrt/tst/comon/scripting/tst.ppid. ksh node=0444 1657 file \

1592 file path=opt/SUNWItrt/tst/common/scripting/tst.projid.d node=0444 1658 pat h=opt/ SUNWit rt/t st/ common/ specul ati on/ err. D_AGG_SPEC. Specul at eW t hLquant .
1593 file path=opt/SUNWItrt/tst/comon/scripting/tst.projid.ksh node=0444 1659 nmode=0444

1594 file path=opt/SUNWItrt/tst/comon/scripting/tst.quite.d node=0444 1660 file \

1595 file path=opt/SUNWItrt/tst/comon/scripting/tst.sid.d node=0444 1661 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_AGG _SPEC. Specul at eWt hMax. d \
1596 file path=opt/SUNWItrt/tst/common/scripting/tst.sid.ksh node=0444 1662 node=0444

1597 file path=opt/SUNWItrt/tst/comon/scripting/tst.stringmacro. ksh node=0444 1663 file \

1598 file path=opt/SUNWItrt/tst/comon/scripting/tst.taskid.d node=0444 1664 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_AGG SPEC. Specul ateWthM n.d \
1599 file path=opt/SUNWItrt/tst/common/scripting/tst.taskid.ksh node=0444 1665 node=0444

1600 file path=opt/SUNWItrt/tst/conmmon/scripting/tst.trace.d node=0444 1666 file \

1601 file path=opt/SUNWItrt/tst/common/scripting/tst.uid.d node=0444 1667 pat h=opt/ SUNWit rt/t st/ common/ specul ati on/ err. D_AGG SPEC. Specul at eWt hQuant . d
1602 file path=opt/SUNWItrt/tst/comon/scripting/tst.uid.ksh node=0444 1668 nmode=0444

1603 file path=opt/SUNWItrt/tst/comon/sdt/tst.sdtargs.d node=0444 1669 file \

1604 file path=opt/SUNWItrt/tst/common/sdt/tst. sdt args exe node=0555 1670 pat h= opt/ SUNWIt rt/t st/ common/ specul ation/ err. D _AGG SPEC. Specul at eW t hSt ddev.
1605 file path=opt/SUNWItrt/tst/common/sizeof/err.D_| DENT_BADREF. Si zeof Assoc. d \ 1671 node=044

1606 node=0444 1672 file \

1607 file path=opt/SUNWItrt/tst/comon/sizeof/err.D_| DENT_UNDEF. UnknownSynbol . d \ 1673 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_AGG SPEC. Specul ateWthSumd \
1608 node=0444 1674 node=0444

1609 file path=opt/SUNWItrt/tst/common/sizeof/err.D_SI ZEOF_TYPE. badstruct.d \ 1675 file \

1610 nmode=0444 1676 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_COMM COW Conmi t Aft Conmit.d \
1611 file path=opt/ SUNWItrt/tst/comon/sizeof/err.D S| ZEOF_TYPE. d node=0444 1677 node=0444

1612 file pat h=opt/SUNWitrt/tst/comon/sizeof/err. D _SYNTAX Si zeof BadType.d \ 1678 file path=opt/SUNWItrt/tst/comon/ specul ati on/err.D COM COW Di sjoi nt Commit.d \
1613 node=0444 1679 node=0444

1614 file path=opt/SUNWItrt/tst/comon/sizeof/tst.Sizeof Array.d node=0444 1680 file \

1615 file path=opt/ SUNWItrt/tst/comon/si zeof/tst.Sizeof Dat aTypes. d node=0444 1681 pat h=opt / SUNWIt rt/t st/ comron/ specul ati on/ err. D_COVM DREC. Conmi t Af t Dat aRec. d
1616 file path=opt/SUNWItrt/tst/comon/si zeof/tst.Si zeof Expressi on.d node=0444 1682 node=0444

1617 file path=opt/SUNWItrt/tst/common/sizeof/tst.Sizeof NULL.d npde=0444 1683 file \

1618 file path=opt/SUNWItrt/tst/comon/sizeof/tst.Sizeof StrConst.d node=0444 1684 pat h=opt / SUNWIt rt/t st/ comron/ specul ati on/ err. D_DREC_COWM Dat aRecAft Commi t. d
1619 file path=opt/SUNWItrt/tst/comon/sizeof/tst.Sizeof StrConst.d. out node=0444 1685 node=0444

1620 file path=opt/SUNWItrt/tst/comon/sizeof/tst.Sizeof Stringl.d node=0444 1686 file \

1621 file path=opt/SUNWItrt/tst/common/sizeof/tst.Sizeof Stringl.d. out node=0444 1687 pat h=opt/ SUNWit rt/t st/ common/ specul ati on/err. D DREC COW ExitAfterCommit.d \
1622 file path=opt/SUNWItrt/tst/common/sizeof/tst.Sizeof String2.d npde=0444 1688 node=0444

1623 file path=opt/SUNWItrt/tst/comon/sizeof/tst.Sizeof String2.d.out node=0444 1689 file path=opt/SUNWItrt/tst/comon/specul ation/err.D EXI T_SPEC. Exi t Aft Spec.d \
1624 file path=opt/SUNWItrt/tst/common/ specul ation/err.BufSizeVariationsl.d \ 1690 node=0444

1625 node=0444 1691 file path=opt/SUNWItrt/tst/common/ specul ation/err.D_PRAGVA_MALFORM NspecExpr.d \
1626 file path=opt/SUNWItrt/tst/common/ specul ation/err.BufSizeVariations2.d \ 1692 node=0444

1627 node=0444 1693 file \

1628 file \ 1694 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_PRAGVA_OPTSET. HugeNspecVal ue.
1629 pat h=opt/ SUNWit rt/t st/ comon/ specul ati on/ err. D_ACT_SPEC. Specul at eW t hBr eakPo 1695 node=0444

1630 node=0444 1696 file \

1631 file \ 1697 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_PRAGVA_OPTSET. | nval i dSpecSi ze
1632 pat h=opt/ SUNWIt rt/t st/ common/ specul ati on/ err. D_ACT_SPEC. Specul ateWthChill.d 1698 node=0444

1633 node=0444 1699 file \

1634 file \ 1700 pat h=opt/ SUNWit rt/t st/ common/ specul ati on/ err. D_PRAGVA_OPTSET. NegSpecSi ze. d \
1635 pat h=opt/ SUNWIt rt/t st/ comron/ specul ati on/ err. D_ACT_SPEC. Specul at eW t hCopyQut 1701 node=0444

1636 node=0444 1702 file path=opt/SUNWItrt/tst/comon/specul ation/err.D PROTO LEN. SpecNold.d \

1637 file \ 1703 node=0444

1638 pat h=opt/ SUNWit rt/t st/ common/ specul ati on/ err. D_ACT_SPEC. Specul at eW t hCopyQut 1704 file path=opt/SUNWItrt/tst/common/ specul ation/err. D _SPEC COW SpecAftCommit.d \
1639 node=0444 1705 node=0444

1640 file \ 1706 file path=opt/SUNWItrt/tst/comon/ specul ation/err. D SPEC DREC. SpecAft Dat aRec. d \
1641 pat h=opt/ SUNWIt rt/t st/ common/ specul ati on/ err. D_ACT_SPEC. Specul at eW t hPani c. d 1707 node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742 f
1743 f
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773

file path=opt/SUNWItrt/tst/comon/specul ation/err.

node=0444

node=0444

file path=opt/SUNWItrt/tst/comon/specul ation/err.

node=0444

file path=opt/SUNWitrt/tst/common/specul ation/tst.

node=0444
file
file
nmode=0444
fil
fil
node=0444

file path=opt/SUNWitrt/tst/common/specul ation/tst.

node=0444

node=0444

file path=opt/SUNWItrt/tst/comon/specul ation/tst.

node=0444

file path=opt/SUNWitrt/tst/common/specul ation/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/specul ation/tst.

node=0444

file path=opt/SUNWitrt/tst/common/specul ation/tst.

node=0444

file path=opt/SUNWItrt/tst/comon/specul ation/tst.

node=0444

| e pat h=opt/SUNWItrt/tst/comon/ specul ation/tst.
| e pat h=opt/SUNWItrt/tst/comon/ specul ation/tst.

node=0444

nmode=0444
pat h=opt/ SUNWIt rt/t st/ comon/ st ack/err.

pat h=opt/ SUNWdtrt/t st/ common/ st ackdept h/ t st.

—h —h —h —h —h —h —h —h —h —h —h —h —h
OODOD®D®MD®D®D®DDMDMDMD

ile path=opt/SUNWItrt/tst/comon/specul ation/err.
ile path=opt/SUNWItrt/tst/common/ specul ation/err.
ile path=opt/SUNWItrt/tst/common/ specul ation/err.
ile path=opt/SUNWItrt/tst/comon/specul ation/err.

pat h=opt/ SUNWdt rt/t st/ common/ specul ati on/ tst.
pat h=opt/ SUNWdtrt/t st/ comon/ specul ati on/tst.

e path=opt/SUNWItrt/tst/comon/specul ation/tst.
e pat h=opt/ SUNWItrt/t st/ comon/ specul ation/tst.

e pat h=opt/SUNWItrt/t st/ comon/ specul ation/tst.
e pat h=opt/SUNWItrt/tst/comon/ specul ation/tst.
e pat h=opt/SUNWAtrt/tst/comron/ specul ation/tst.
e pat h=opt/SUNWItrt/tst/comon/ specul ation/tst.

pat h=opt/ SUNWdtrt/t st/ comon/ specul ati on/tst.
pat h=opt / SUNWAt rt/t st/ common/ specul ati on/tst.
pat h=opt / SUNWIt rt/t st/ common/ specul ati on/tst.
pat h=opt/ SUNWdt rt/t st/ common/ specul ati on/ tst.
pat h=opt/ SUNWdtrt/t st/ comon/stability/err. D ATTR MN M nAttributes.d \

27
D _SPEC_SPEC. SpecAft Spec. d \
Negat i veBuf Si ze. d npde=0444
Negat i veNspec. d node=0444
Negat i veSpecSi ze. d nbde=0444
SpecSi zeVari ationsl.d \
SpecSi zeVariations2.d \
Commi t AfterDi scard. d \

Commi t Wt hZero. d node=0444
Dat aRecAft Di scard. d \

Di scardAft Commt.d node=0444
Di scar dAft Dat aRec. d \

Di scardAftDi scard. d \

Di scardW t hZero. d nbde=0444
Exi t Aft Di scard. d node=0444
NoSpecBuf f er. d node=0444
SpecSi zeVari ationsl.d \
SpecSi zeVari ations2.d \
SpecSi zeVari ations3.d \
Specul at eW t hRandom d \
Specul ati onCommit.d \

Specul ationDi scard. d \

Specul ati onl D. d node=0444
Specul ati onWthZero.d \

TwoSpecBuf fers. d node=0444
negconmi t. d node=0444
negspec. d node=0444

zerosi ze. d node=0444

pat h=opt/ SUNWIt rt/t st/ common/ st ack/ err. D_STACK_PROTO. bad. d nbde=0444
D_STACK_SI ZE. d node=0444

pat h=opt / SUNWdt rt/t st/ conmon/ st ack/ err. D_USTACK_FRAMES. bad. d node=0444
pat h=opt/ SUNWtrt/t st/ comon/ st ack/ err. D _USTACK_PROTO bad. d npde=0444
pat h=opt / SUNWAt rt / t st/ cormon/ st ack/ err. D_USTACK_STRSI ZE. bad. d node=0444
pat h=opt / SUNWAt rt/t st/ conmon/ st ack/ tst. defaul t.d node=0444

defaul t.d npde=0444

pat h=opt/ SUNWdtrt/t st/ comon/ st op/ tst.stopl. d node=0444

pat h=opt / SUNWIt rt/t st/ common/ st op/tst.stopl. exe nbde=0555

pat h=opt/ SUNWdtrt/t st/ common/ st op/ t st. stop2. d nbde=0444

pat h=opt/ SUNWdtrt/t st/ common/ st op/ t st. st op2. exe npde=0555

pat h=opt/ SUNWdtrt/tst/comon/strlen/tst.strlenl.d node=0444

pat h=opt / SUNWIt rt/t st/ comon/ struct/err. D ADDROF_VAR. StructPointer.d \

node=0444

file path=opt/SUNWItrt/tst/comon/struct/err. D_DECL_COMBO. Struct Wt hout Col on.d \
node=0444

file\
pat h=opt/ SUNWIt rt/t st/ comron/ struct/err. D_DECL_COMBO. St ruct Wt hout Col onl1.d \
node=0444

file path=opt/SUNWItrt/tst/comon/struct/err.D DECL_I NCOWLETE. circular.d \
node=0444

file path=opt/SUNWitrt/tst/comon/struct/err.D _DECL_I NCOWLETE. order.d \
node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839

file path=opt/SUNWItrt/tst/comon/struct/err.

node=0444

file path=opt/SUNWitrt/tst/common/struct/err.

node=0444

file path=opt/SUNWItrt/tst/comon/struct/err.

node=0444
file
file
node=0444

e path=opt/SUNWItrt/tst/comon/struct/err.
e pat h=opt/SUNWItrt/tst/comon/struct/err.

pat h=opt / SUNWAt rt/t st/ comon/struct/tst.
pat h=opt / SUNWIt rt/t st/ comon/struct/tst.
pat h=opt/ SUNWIt rt/t st/ comon/ struct/tst.
pat h=opt/ SUNWdtrt/t st/ comon/ struct/tst.
pat h=opt / SUNWIt rt/t st/ comon/struct/tst.
pat h=opt / SUNWIt rt/t st/ comon/ syscal | /tst. args.d nbde=0444

pat h=opt / SUNWIt rt/t st/ common/ syscal | / t st. args. exe nbde=0555
pat h=opt/ SUNWdtrt/t st/ comon/ syscal | / tst. openret. ksh nbde=0444
pat h=opt / SUNWAt rt/t st/ common/ sysevent/t st .
pat h=opt/ SUNWIt rt/t st/ common/ sysevent/t st .
pat h=opt/ SUNWIt rt/t st/ common/ sysevent/t st. post_chan.d node=0444
pat h=opt/ SUNWdtrt/t st/ common/ sysevent/tst.

28
D_DECL_I NCOWPLETE. order2.d \
D_DECL_I NCOWPLETE. recursive. d \
D_DECL_I NCOWPLETE. si npl e. d \

D _DECL_VO DOBJ. baddec. d nbde=0444
D_PROTO_ARG. DupSt ruct Assoc. d \

Struct Assoc. d node=0444
Struct Dat aTypes. d node=0444
Structlnside.d node=0444

cl ausel ocal . d npde=0444

cl ausel ocal . d. out npde=0444

post.d node=0444
post . exe npde=0555

post _chan. exe npde=0555

file

file

file

file

file

file

file

file

file

file

file

file

file path=opt/SUNWitrt/tst/comon/tick-n/err.D PDESC ZERO. tick.d node=0444

file path=opt/SUNWitrt/tst/common/tick-n/err.D PDESC ZERConens. d node=0444

file path=opt/SUNWItrt/tst/comon/tick-n/err.D PDESC ZEROonensec.d npde=0444

file path=opt/SUNWItrt/tst/comon/tick-n/err.D PDESC ZEROConeus. d node=0444

file path=opt/SUNWItrt/tst/comon/tick-n/err. D_PDESC ZEROoneusec. d node=0444

file path=opt/SUNWitrt/tst/comon/tick-n/tst.tickarg0.d node=0444

file path=opt/SUNWItrt/tst/comon/tick-n/tst.ticknms.d node=0444

file path=opt/SUNWItrt/tst/comon/tick-n/tst.tickns.d.out node=0444

file path=opt/SUNWItrt/tst/comon/tick-n/tst.ticknmsec.d npde=0444

file path=opt/SUNWitrt/tst/comon/tick-n/tst.tickmsec.d.out npde=0444

file path=opt/SUNWitrt/tst/common/tick-n/tst.tickns.d node=0444

file path=opt/SUNWItrt/tst/comon/tick-n/tst.tickns.d.out node=0444

file path=opt/SUNWItrt/tst/comon/tick-n/tst.ticknsec.d npde=0444

file path=opt/SUNWitrt/tst/comon/tick-n/tst.ticknsec.d.out npde=0444

file path=opt/SUNWitrt/tst/common/tick-n/tst.ticks.d node=0444

file path=opt/SUNWitrt/tst/common/tick-n/tst.ticks.d.out node=0444

file path=opt/SUNWItrt/tst/comon/tick-n/tst.ticksec.d npbde=0444

file path=opt/SUNWitrt/tst/comon/tick-n/tst.ticksec.d.out node=0444

file path=opt/SUNWitrt/tst/comon/tick-n/tst.tickus.d node=0444

file path=opt/SUNWItrt/tst/common/tick-n/tst.tickus.d.out node=0444

file path=opt/SUNWItrt/tst/comon/tick-n/tst.tickusec.d npbde=0444

file path=opt/SUNWitrt/tst/comon/tick-n/tst.tickusec.d.out node=0444

file path=opt/SUNWitrt/tst/comon/trace/err.D_PROTO LEN. bad.d npde=0444

file path=opt/SUNWitrt/tst/common/trace/err.D _TRACE_AGG bad.d npde=0444

file path=opt/SUNWItrt/tst/comon/trace/ err. D TRACE_VO D. bad. d nbde=0444

file path=opt/SUNWItrt/tst/comon/trace/tst.dyn.d npde=0444

file path=opt/SUNWitrt/tst/comon/trace/tst.m sc.d node=0444

file path=opt/SUNWItrt/tst/comon/trace/tst.qgstring.d node=0444

file path=opt/SUNWItrt/tst/comon/trace/tst.qgstring.d.out node=0444

file path=opt/SUNWItrt/tst/comon/trace/tst.string.d node=0444

file path=opt/SUNWitrt/tst/common/tracenmeni err. D_PROTO ARG badsi ze. d node=0444

file path=opt/SUNWAtrt/tst/comon/tracenmeni err.D PROTO LEN. t oof ew. d node=0444

file pgt h=opt / SUNWt rt/t st/ conmon/ t r acemend er r . D_TRACEMEM ADDR. badaddr . d \
node=0444

file path=opt/SUNWitrt/tst/comon/tracenmeni err. D _TRACEMEM ARGS. d node=0444

file path=opt/SUNWItrt/tst/conmon/tracemeni err. D TRACEMEM DYNSI ZE. d node=0444

file path=opt/SUNWAtrt/tst/comon/tracenmen err.D TRACEMEM Sl ZE. negsi ze. d \
node=0444

file path=opt/SUNWitrt/tst/comon/tracement err. D_TRACEMEM S| ZE. zer osi ze. d \

node=0444

file

file p
file p
file p
file p

pat h=opt/ SUNWIt rt/t st/ comon/tracenen tst.
at h=opt / SUNWIt rt/t st/ common/tracenmen tst.
at h=opt / SUNWItrt/t st/ common/tracenenitst.
at h=opt / SUNWItrt/t st/ comon/tracenenitst.
at h=opt / SUNWdtrt/t st/ comon/tracenen tst.

dynsi ze. d node=0444

dynsi ze. d. out node=0444
rootvp. d node=0444

smal | si ze.d npde=0444
smal | si ze. d. out npde=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 29

1840 file \

1841 pat h=opt/ SUNWIt rt/t st/ comron/transl ators/err. D_DECL_TYPERED. BadTr ansDecl . d \
1842 node=0444

1843 file \

1844 pat h=opt/ SUNWit rt/tst/common/transl ators/err. D _OP_|I NCOWLETE. NonExi st ent | npu
1845 node=0444

1846 file path=opt/SUNWItrt/tst/common/translators/err. D _SYNTAX. BadTransDecl 1.d \
1847 node=0444
1848 file path=opt/SUNWItrt/tst/common/translators/err. D _SYNTAX. BadTransDecl 3.d \
1849 node=0444
1850 file path=opt/SUNWItrt/tst/comon/transl ators/err.D SYNTAX. BadTransDecl 4.d \
1851 node=0444

1852 file \

1853 pat h=opt/ SUNWItrt/t st/ comron/transl ators/ err. D_TYPE_MEMBER. NonExi st ent | nput 2
1854 node=0444

1855 file \

1856 pat h=opt/ SUNWit rt/tst/common/transl ators/err. D _XLATE | NCOWPAT. Badl nput Typel.
1857 node=0444

1858 file \

1859 pat h=opt/ SUNWIt rt/t st/ comron/transl ators/ err. D_XLATE_MEMB. NonExi st ent Qut put 2
1860 node=0444

1861 file path=opt/SUNWItrt/tst/comon/transl ators/err. D XLATE NONE. BadTr ansDecl 6. d \
1862 node=0444

1863 file \
1864 pat h=opt/ SUNWitrt/tst/common/transl ators/err. D XLATE _REDECL. Repeat Tr ansDecl .
1865 node=0444

1866 file path=opt/SUNWItrt/tst/comon/transl ators/err.D XLATE SQOU. BadTransDecl 8. d \
1867 node=0444

1868 file path= opt/SUNV‘dt rt/tst/common/translators/err. D _XLATE_SQU. BadTransint.d \
1869 node=044

1870 file \
1871 pat h=opt/ SUNWIt rt/t st/ comron/transl ators/err. D_XLATE_SOU. NonExi st ent Qut put 1.
1872 node=0444

1873 file path=opt/SUNWItrt/tst/common/translators/tst. G rcul arTransDecl.d \
1874 nmode=0444

1875 file path=opt/SUNWItrt/tst/comon/transl ators/tst.EnptyTransDecl.d node=0444
1876 file path=opt/SUNWItrt/tst/comon/transl ators/tst.ForwardTag. d node=0444

1877 file path=opt/SUNWItrt/tst/common/translators/tst.|nputAliasTrans.d node=0444
1878 file path=opt/SUNWItrt/tst/comon/transl ators/tst.|nputlntTrans.d node=0444
1879 file path=opt/SUNWItrt/tst/comon/transl ators/tst.QutputAliasTrans.d node=0444
1880 file path=opt/SUNWItrt/tst/comon/transl ators/tst.Partial Dereferencing.d \

1881 node=0444

1882 file path=opt/SUNWItrt/tst/comon/transl ators/tst. Partial Qut put TransDefn.d \
1883 node=0444

1884 file path=opt/SUNWItrt/tst/common/translators/tst.ProcMdel Trans. d nbde=0444
1885 file path=opt/SUNWItrt/tst/common/translators/tst. RepeatDeclaration.d \

1886 node=0444

1887 file path=opt/SUNWItrt/tst/comon/transl ators/tst.SinultaneousTranslators.d \
1888 node=0444

1889 file path=opt/SUNWItrt/tst/common/translators/tst. StructureAssignment.d \
1890 node=0444

1891 file path=opt/SUNWItrt/tst/comon/transl ators/tst. Test TransStabilityl. ksh \
1892 node=0444

1893 file path=opt/SUNWItrt/tst/common/translators/tst. TestTransStabilityl. ksh.out \
1894 node=0444

1895 file path=opt/SUNWItrt/tst/comon/transl ators/tst. Test TransStability2. ksh \
1896 node=0444

1897 file path=opt/SUNWItrt/tst/common/translators/tst. TestTransStability2. ksh.out \
1898 node=0444

1899 file path=opt/SUNWItrt/tst/comon/transl ators/tst. TransNonPoi nter.d node=0444
1900 file path=opt/SUNWItrt/tst/comon/translators/tst.TransQutput Pointer.d \

1901 node=0444

1902 file path=opt/SUNWItrt/tst/common/translators/tst. TransPointer.d node=0444
1903 file path=opt/SUNWItrt/tst/comon/transl ators/tst. Transl ateSel f.d node=0444
1904 file path=opt/SUNWItrt/tst/comon/translators/tst.UnionlnputTrans.d node=0444
1905 file path=opt/SUNWItrt/tst/comon/transl ators/tst.Uni onQut put Trans. d node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf

1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971

DODODDDDDDDD

OODOD®DD®D®DD®DDDMDMD D

OCODODODOPDODDDPDODPDDDDDDDDMDDMDMDMDMD

node=0444

file path=opt/SUNWitrt/tst/comon/typedef/err.

node=0444
node=0444

file path=opt/SUNWItrt/tst/common/typedef/err. D _DECL_I DRED. DupTypeDef.d \

D_SYNTAX. BadExi st i ngTypedef.d \

file path=opt/SUNWItrt/tst/comon/typedef/err.D_SYNTAX. Typedef|nC ause.d \

pat h=opt/ SUNWdtrt/t st/ common/t ypedef/tst. Chai nTypedef.d node=0444
at h=opt / SUNWIt rt/t st/ common/ t ypedef/tst. Typedef Dat aAssi gn. d node=0444

P

pat h=opt/ SUNWdtrt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWdtrt/t st/ comon/types/err.

node=0444
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWdtrt/t st/ comon/types/err.
pat h=opt/ SUNWdt rt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWdtrt/t st/ common/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWdtrt/t st/ comon/types/err.
node=0444

pat h=opt/ SUNWdtrt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWdtrt/t st/ common/types/err.
pat h=opt/ SUNWdtrt/t st/ comon/types/err.
pat h=opt/ SUNWdtrt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.
pat h=opt/ SUNWdtrt/t st/ common/types/err.

pat h=opt/ SUNWdtrt/t st/ comon/types/err.
pat h=opt/ SUNWIt rt/t st/ comon/types/err.

pat h=opt/ SUNWIt rt/t st/ comon/types/err.

pat h=opt/ SUNWIt rt/t st/ comon/types/err.

pat h=opt/ SUNWdtrt/t st/ comon/types/err.

pat h=opt/ SUNWAt rt/t st/ comon/types/err.
node=0444

pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ common/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ common/types/tst.
pat h=opt/ SUNWdtrt/t st/ common/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt/ SUNWdtrt/t st/ comon/types/tst.
pat h=opt/ SUNWIt rt/t st/ comon/types/tst.
pat h=opt / SUNWAt rt/t st/ comron/ uni on/ err.

node=0444

D_CHR_OFLOW char const .

UUUUU IUUUUUUUUUU UU
%‘8%9% %‘BQHRHHHHH

D _CAST_I NVAL. badcast . d node=0444
D_CG DVYN. Resul t DynType. d node=0444

d node=0444
) DECL_BADCLASS. bad. d node=0444
CL_CHARATTR. badt ype3. d \

H

CL_COMBO. badt ype4. d node=0444
CL_COMVBO. badt ype5. d npde=0444

CL_SCOPE. scopeop. d node=0444

CL_USELESS. baddec. d node=0444
> ACT. badcond. d node=0444

ARI TH. badoper and. d node=0444
| NCOVPAT. badassi gn. d \

> | NT. badbi t op. d node=0444

| NT. badshi ft.d node=0444

" SCALAR. badcond. d nmode=0444
" SCALAR. badi ncop. d node=0444
" SCALAR. badl ogop. d node= 0444

U
g
C
l—
m
2 ;
o
)
o
o
o
=)
o
=%
o
o
rD
O
=~
>
IS

D_SYNTAX. badenum d node= 0444
D_SYNTAX. badi d. d node=0444

D _SYNTAX. badstruct.d node=0444
D_UNKNOWN. badt ypel. d node=0444
D_UNKNOWN. badt ype2. d node=0444
D_UNKNOWN. dupenum d nmode=0444
D_UNKNOM. dupst ruct . d node=0444
D _XLATE_REDECL. Resul t DynType. d \

assi gnops. d node=0444
badshi ft ops. d node=0444
basi cs. d node=0444
basi cs. d. out node=0444

bi t ops. d nbde=0444
charconstants.d node=0444
conpl ex. d node=0444
condexpr.d node=0444
const.d npde=0444
constants.d node=0444
conv. d npde=0444

enum d node=0444

i ntincop.d node=0444

i ntops. d node=0444

i nttypes.d node=0444
ptrincop.d node=0444
ptrops.d node=0444

rel enum d node=0444

rel string.d nbde=0444
shiftops. d node=0444
stringconstants.d node=0444
struct.d npde=0444
typedef.d npde=0444
unaryop. d node=0444
D_ADDROF_VAR. Uni onPoi nter.d \

CL_ENCONST. badeval . d node=0444
CL_ENOFLOW enof | ow. d node=0444
CL_ENOFLOW enuf | ow. d node=0444

new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 31 new usr/ src/ pkg/ mani f est s/ systemdtrace-tests. nf 32
1972 file path=opt/ SUNWItrt/tst/common/ union/err.D_DECL_COVBO. Uni onW t hout Col on.d \ 2038 file path=opt/SUNWItrt/tst/common/ustack/tst.bigstack.d npde=0444

1973 node=0444 2039 file path=opt/SUNWItrt/tst/common/ustack/tst.bi gstack. exe node=0555
1974 file path=opt/ SUNWItrt/tst/comon/ uni on/err.D_DECL_COVBO. Uni onW t hout Col onl.d \ 2040 file path=opt/SUNWItrt/tst/comon/ustack/tst.depth. ksh nbde=0444

1975 node=0444 2041 file path=opt/SUNWItrt/tst/comon/ustack/tst.spin. exe node=0555

1976 file path=opt/ SUNWItrt/tst/common/ union/err.D_DECL_I NCOWLETE.circular.d \ 2042 file path=opt/SUNWItrt/tst/comon/ustack/tst.spin. ksh node=0444

1977 node=0444 2043 file path=opt/SUNWItrt/tst/common/vars/tst.gid.d node=0444

1978 file path=opt/SUNWItrt/tst/comon/union/err.D DECL_| NCOWPLETE. order.d \ 2044 file path=opt/SUNWItrt/tst/common/vars/tst.nullassign.d node=0444

1979 node=0444 2045 file path=opt/SUNWItrt/tst/comon/vars/tst.ppid.d node=0444

1980 file path=opt/SUNWItrt/tst/common/ union/err.D_DECL_I NCOWLETE. recursive.d \ 2046 file path=opt/SUNWItrt/tst/comon/vars/tst.ucaller.ksh node=0444

1981 node=0444 2047 file path=opt/SUNWItrt/tst/common/vars/tst.ucaller.ksh.out node=0444
1982 file path=opt/SUNWItrt/tst/common/union/err.D DECL_| NCOWLETE. si nple.d \ 2048 file path=opt/SUNWItrt/tst/common/vars/tst.uid.d node=0444

1983 node=0444 2049 file path=opt/SUNWItrt/tst/common/vars/tst.walltinmestanp.d node=0444
1984 file path=opt/SUNWItrt/tst/common/ union/err.D_PROTO ARG DupUni onAssoc.d \ 2050 file path=opt/SUNWItrt/tst/common/version/tst.1.0.d node=0444

1985 nmode=0444 2051 $(i386_ONLY)file path=opt/SUNWItrt/tst/i86xpv/xdt/tst.basic.ksh node=0444
1986 file path=opt/SUNWItrt/tst/comon/ union/tst. Uni onAssoc.d node=0444 2052 $(i386_ONLY)file path=opt/SUNWItrt/tst/i86xpv/xdt/tst.hvmenabl e. ksh node=0444
1987 file path=opt/ SUNWItrt/tst/comon/ uni on/tst. Uni onDat aTypes.d node=0444 2053 $(i386_ONLY)file path=opt/SUNWItrt/tst/i 86xpv/xdt/tst.menenabl e. ksh node=0444
1988 file path=opt/SUNWItrt/tst/common/ union/tst. Unionlnside.d node=0444 2054 $(i386_ONLY)file path=opt/SUNWItrt/tst/i86xpv/xdt/tst.schedargs. ksh node=0444
1989 file path=opt/SUNWItrt/tst/comon/usdt/tst.andpid. ksh node=0444 2055 $(i386_ONLY)file path=opt/SUNWItrt/tst/i86xpv/xdt/tst.schedenable.ksh \
1990 file path=opt/SUNWItrt/tst/comon/usdt/tst.argmap.d node=0444 2056 node=0444

1991 file path=opt/SUNWItrt/tst/comon/usdt/tst.argmap. exe node=0555 2057 | egacy pkg=SUNWItrt category=internal \

1992 file path=opt/SUNWItrt/tst/common/usdt/tst.args.d node=0444 2058 desc="DTrace Test Suite Internal Distribution" \

1993 file path=opt/SUNWItrt/tst/comon/usdt/tst.args. exe node=0555 2059 hot | i ne="Contact the DTrace discussion forun' nane="DIrace Test Suite"
1994 file path=opt/SUNWItrt/tst/comon/usdt/tst.badguess. ksh nbode=0444 2060 |icense cr_Sun |icense=cr_Sun

1995 file path=opt/SUNWItrt/tst/comon/usdt/tst.corruptenv. ksh node=0444 2061 license lic_CDDL |icense=lic_CDDL

1996 file path=opt/SUNWItrt/tst/conmmon/usdt/tst.dlclosel. ksh node=0444 2062 depend fnri=runtine/java type=require

1997 file path=opt/SUNWItrt/tst/common/usdt/tst.dlclosel. ksh. out npbde=0444 2063 depend fnri=runtine/javal/runti ne64 type=require

1998 file path=opt/SUNWItrt/tst/comon/usdt/tst.dlclose2. ksh node=0444

1999 file path=opt/SUNWItrt/tst/common/usdt/tst.dl cl ose2. ksh. out npbde=0444

2000 file path=opt/SUNWItrt/tst/comon/usdt/tst.dl close3. ksh nbde=0444

2001 file path=opt/SUNWItrt/tst/common/usdt/tst.elimnate. ksh node=0444

2002 file path=opt/SUNWItrt/tst/common/usdt/tst.enabl ed. ksh node=0444

2003 file path=opt/SUNWItrt/tst/common/usdt/tst.enabl ed. ksh. out node=0444

2004 file path=opt/SUNWItrt/tst/comon/usdt/tst.enabl ed2. ksh nbde=0444

2005 file path=opt/SUNWItrt/tst/common/usdt/tst.enabl ed2. ksh. out node=0444

2006 file path=opt/SUNWItrt/tst/conmon/usdt/tst.entryreturn.ksh node=0444

2007 file path=opt/SUNWItrt/tst/common/usdt/tst.entryreturn.ksh. out node=0444

2008 file path=opt/SUNWItrt/tst/comon/usdt/tst.fork.ksh node=0444

2009 file path=opt/SUNWItrt/tst/comon/usdt/tst.fork.ksh. out nbde=0444

2010 file path=opt/SUNWItrt/tst/common/usdt/tst.forker.exe node=0555

2011 file path=opt/SUNWItrt/tst/common/usdt/tst.forker.ksh node=0444

2012 file path=opt/SUNWItrt/tst/common/ usdt/tst.guess32. ksh node=0444

2013 file path=opt/SUNWItrt/tst/comon/usdt/tst.guess64. ksh node=0444

2014 file path=opt/SUNWItrt/tst/common/usdt/tst. header. ksh node=0444

2015 file path=opt/SUNWItrt/tst/common/usdt/tst.include. ksh node=0444

2016 file path=opt/SUNWItrt/tst/common/usdt/tst.|azyprobe. exe node=0555

2017 file path=opt/SUNWItrt/tst/comon/usdt/tst.|azyprobel. ksh node=0444

2018 file path=opt/SUNWItrt/tst/common/usdt/tst.|azyprobe2. ksh node=0444

2019 file path=opt/SUNWItrt/tst/common/usdt/tst.linkpriv.ksh node=0444

2020 file path=opt/SUNWItrt/tst/comon/usdt/tst.linkunpriv.ksh node=0444

2021 file path=opt/SUNWItrt/tst/comon/usdt/tst. mltiple.ksh nbode=0444

2022 file path=opt/SUNWItrt/tst/comon/usdt/tst. mltiple.ksh. out node=0444

2023 file path=opt/SUNWItrt/tst/common/usdt/tst. multiprov.ksh node=0444

2024 file path=opt/SUNWItrt/tst/comon/usdt/tst. multiprov. ksh. out node=0444

2025 file path=opt/SUNWItrt/tst/comon/usdt/tst.nodtrace. ksh node=0444

2026 file path=opt/SUNWItrt/tst/comon/usdt/tst.noprobes. ksh nbde=0444

2027 file path=opt/SUNWItrt/tst/common/usdt/tst. noreap. ksh node=0444

2028 file path=opt/SUNWItrt/tst/common/usdt/tst. noreapring. ksh node=0444

2029 file path=opt/SUNWItrt/tst/comon/usdt/tst.onl yenabl ed. ksh node=0444

2030 file path=opt/SUNWItrt/tst/comon/usdt/tst.reap. ksh node=0444

2031 file path=opt/SUNWItrt/tst/common/usdt/tst.reeval.ksh node=0444

2032 file path=opt/SUNWItrt/tst/common/usdt/tst.static.ksh node=0444

2033 file path=opt/SUNWItrt/tst/common/usdt/tst.static. ksh. out node=0444

2034 file path=opt/SUNWItrt/tst/comon/usdt/tst.static2. ksh node=0444

2035 file path=opt/SUNWItrt/tst/common/usdt/tst.static2. ksh. out node=0444

2036 file path=opt/SUNWItrt/tst/common/usdt/tst. user.ksh node=0444

2037 file path=opt/SUNWItrt/tst/common/usdt/tst. user.ksh. out node=0444

new usr/src/uts/comon/ dtrace/ dtrace. c

R R R R

420740 Tue Jan 14 16:50:01 2014
new usr/src/uts/comon/dtrace/ dtrace.c
2915 DTrace in a zone shoul d see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have linited provider access
Revi ewed by: Joshua M dul ow <j osh@ysngr. or g>

Revi ewed by: Adam Levent hal

<ahl @lel phi x. con®

R R R R R R R R

1/*

N
~
R

IS
w
EE I I R T R R I I R A I I I N I

=
[N

B A

-

Copyright (c) 2012 by Del phix. Al
/

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END

Copyright (c) 2003, 2010, Oracle and/or its affiliates. Al
Copyright (c) 2013, Joyent, Inc. Al rights reserved.
rights reserved.

DTrace - Dynamic Tracing for Solaris

This is the inplenentation of the Solaris Dynam c Tracing framework
(DTrace). The user-visible interface to Dirace is described at length in
the "Solaris Dynamic Tracing Guide". The interfaces between the |ibdtrace
library, the in-kernel DTrace franework, and the DTrace providers are
described in the block coments in the <sys/dtrace. h> header file. The
internal architecture of DTrace is described in the block comments in the
<sys/dtrace_i npl . h> header file. The coments contained within the DIrace
inplementation very nuch assune nastery of all of these sources; if one has
an unanswer ed question about the inplenentation, one should consult them
first.

The functions here are ordered roughly as foll ows:

- Probe context functions

- Probe hashing functions

- Non-probe context utility functions
- Matchi ng functions

- Provider-to-Framework APl functions
- Probe nanagenent functions

- DI F object functions

- Format functions

- Predicate functions

- ECB functions

- Buffer functions

- Enabling functions

- DOF functions

- Anonynous enabling functions

rights reserved.

new usr/src/uts/comon/ dtrace/ dtrace. c

* ok kb ok ok kb
~

#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i

* Ok ok ok Sk b ok O 3k OF ok b R Ok Rk b % ok

- Consuner state functions
- Hel per functions

- Hook functions

- Driver cookbook functions

Each group of functions begins with a bl ock coment |abelled the "DIrace
[G oup] Functions", allowi ng one to find each bl ock by searching forward
on capital-f functions.

ncl ude <sys/errno. h>

ncl ude <sys/stat.h>

ncl ude <sys/nodctl . h>

ncl ude <sys/conf.h>

ncl ude <sys/systm h>

ncl ude <sys/ddi. h>

ncl ude <sys/sunddi . h>

ncl ude <sys/cpuvar. h>

ncl ude <sys/kmem h>

ncl ude <sys/strsubr.h>
ncl ude <sys/sysmacros. h>
ncl ude <sys/dtrace_inpl.h>
ncl ude <sys/atom c. h>

ncl ude <sys/cmm_err. h>
ncl ude <sys/mutex_inpl.h>
ncl ude <sys/rw ock_i npl . h>
ncl ude <sys/ctf_api.h>
ncl ude <sys/panic. h>

ncl ude <sys/priv_inpl.h>
ncl ude <sys/policy. h>

ncl ude <sys/cred_i npl . h>
ncl ude <sys/procfs_isa. h>
ncl ude <sys/taskg. h>

ncl ude <sys/ nkdev. h>

ncl ude <sys/kdi . h>

ncl ude <sys/zone. h>

ncl ude <sys/socket. h>

ncl ude <netinet/in.h>

DTrace Tunabl e Vari abl es

The follow ng variables nmay be tuned by adding a line to /etc/systemthat
includes both the name of the DTrace nodule ("dtrace") and the name of the
variable. For exanple:

set dtrace:dtrace_destructive_disallow =1

In general, the only variables that one should be tuning this way are those
that affect systemw de DIrace behavior, and for which the default behavior
is undesirable. Mst of these variables are tunable on a per-consuner
basis using DTrace options, and need not be tuned on a systemw de basis.
When tuning these variabl es, avoid pathol ogi cal values; while sone attenpt
is made to verify the integrity of these variables, they are not considered
part of the supported interface to Dirace, and they are therefore not
checked conprehensively. Further, these variables should not be tuned
dynam cally via "mdb -kw' or other neans; they should only be tuned via
/etc/system

*/

int dtrace_destructive_disallow = 0;

dt
si
dt
si
Si
Si
dt

race_optval _t dtrace_nonroot_mexsize = (16 * 1024 * 1024);
ze_t dtrace_di fo_maxsize = (256 * 1024);
race_optval _t dtrace_dof _maxsize = (256 * 1024);

ze_t dtrace_gl obal _nmaxsi ze = (16 * 1024);

ze_t dtrace_actions_max = (16 * 1024);

ze_t dtrace_retai n_max = 1024;

race_optval _t dtrace_hel per_acti ons_max = 1024;

new usr/src/uts/comon/ dtrace/ dtrace. c

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

150
151
152
153
154
155
156
157
158
159

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

dtrace_optval _t dtrace_hel per_providers_max = 32;
dtrace_optval _t dtrace_dstate_defsize = (1 * 102

si ze

dtrace_optval _t
dtrace_optval _t
dtrace_optval _t
dtrace_optval _t
dtrace_optval _t
dtrace_optval _t
dtrace_optval _t dtrace_switchrate_def aul t = NAI
dtrace_optval _t
dtrace_optval _t
dtrace_optval _t
dtrace_optval _t
dtrace_optval _t
dtrace_optval _t

t

dtrace_strsize_default = 256;
dtrace_cl eanrate_default = 99009
dtrace_cl eanrate_m n = 200000;
dtrace_cleanrate_max = (uint64_t

dtrace_statusrate_max = (hrtime_|
dtrace_nspec_default = 1;
dtrace_specsi ze_default = 32 * 1

dtrace_stackfranes_default = 20;

dtrace_j st ackframes_defaul t
dtrace_j stackstrsize_| def auIt =5

dtrace_aggrate_default = NANOSEC;
dtrace_statusrate_| default = NANGCSEC, /* 1 hz */

dtrace_ust ackframes_default = 20;
= 50;

4 * 1024);

90; [* 101 hz */

/* 5000 hz */
)60 * NANOSEC, /* 1/minute */
[* 1 hz */

t)10 * NANCSEC, /* 6/mnute */

NOSEC; [* 1 hz */

024,

12;

i nt dtrace_nsgdsi ze_max = 128

hrtime_t dtrace_chill _max = 500 * (NANOSEC/ M LLI SEC); [/* 500 ms */
hrtime_t dtrace_chill _interval = NANGCSEC; /* 1000 ns */
int dtrace_devdept h_nmax = 32;

i nt dtrace_err_verbose;

hrtime_t dtrace_deadman_i nterval = NANCSEC,

hrtime_t dtrace_deadman_ti meout = (hrtime_t)10 * NANOSEC,

hrtime_t dtrace_deadman_user = (hrtine t)30 * NANOSEC;

hrtime_t dtrace_unregi ster_defunct_reap = (hrtime_t)60 * NANOSEC;

DTrace External Variables

vari abl es are obviously

avail abl e to DTrace consuners via the backtick (‘) syntax. One of these,
dtrace_zero, is made deliberately so: it is
wel | -known, zero-filled menory. Wile this v

it

*
*
*
* As dtrace(7D) is a kernel nodule, any DTrace
*
*
*
*

const char dtrace_zero[256] ={ 0 };

/*

* DTrace Internal Variables
*/

stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
#endi
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati

[sEeNsNsNsNesNesNsNeNeNeNeNeNe Nl NoNoNoNoNoNoNoNoNoNel

dev_info_t *dtrace_devi ;

vmem t *dtrace_arena;

viem t *dtrace_m nor;
taskq_t *dtrace_t askq;
dtrace_probe_t **dt race_probes;

int dtrace_nprobes;
dtrace_provider_t *dtrace_provider;
dtrace_neta_t *dtrace_neta_pid;

int dtrace_opens;

int dtrace_hel pers;

int dtrace_getf;

/* 1 codereview */

voi d *dtrace_softstate;
dtrace_hash_t *dt race_bynod;
dtrace_hash_t *dt race_byf unc;
dtrace_hash_t *dt race_bynane;
dtrace_t oxrange_t *dtrace_t oxrange;
int dtrace_t oxr anges;

int dtrace_t oxr anges_naex;
dtrace_anon_t dtrace_anon;

kmem cache_t *dtrace_st at e_cache;
ui nt 64_t dtrace_vti nme_ref erences;
kt hread_t *dtrace_pani cked;
dtrace_ech_t *dtrace_ecb_creat e_cache;

dtrace_geni d_t dt race_pr obegen;
dtrace_hel pers_t *dtrace_deferred_pid;

provi ded as a source of
ariable is not documented,

is used by sone translators as an inplenentation detail.

/* zero-filled nenory */

device info */

probe I D arena */

m nor nunber arena */
task queue */

array of all probes */
nunber of probes */
provider list */

user-land nmeta provider */
nunber of opens */

nunber of hel pers */
nunber of unpriv getf()s */

— e~ —
® ok ok ko ok k% 3k

softstate pointer */

probes hashed by nodule */
probes hashed by function */
probes hashed by nanme */
toxic range array */

nunber of toxic ranges */
size of toxic range array */
anonynous enabling */

cache for dynamic state */
/* nunber of vtinestanp refs */
/* panicking thread */

/* cached created ECB */

/* current probe generation */
/* deferred hel per list */

—— e — — —
* Ok Ok k% b % Ok

new usr/src/uts/comon/dtrace/ dtrace.c 4
190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */
191 static dtrace_genid_t dtrace_ret ai ned _gen; /* current retained enab gen */
192 static dtrace_dynvar_t dtrace_dynhash_si nk; /* end of dynam ¢ hash chains */
193 static int dtrace_dynvar _fail cl ean; /* dynvars failed to clean */
195 /*

196 * Dlrace Locking

197 * Dlrace is protected by three (relatively coarse-grai ned) |ocks:

198 *

199 * (1) dtrace_lock is required to manipul ate essentially any DIrace state,
200 * including enabling state, probes, ECBs, consuner state, helper state,
201 * etc. Inportantly, dtrace_lock is _not_ required when in probe context;
202 * probe context is lock-free -- synchronization is handled via the

203 * dtrace_sync() cross call nechanism

204 *

205 * (2) dtrace_provider_lock is required when manipul ating provider state, or
206 * when provider state nust be held constant.

207 *

208 * (3) dtrace_neta_lock is required when mani pulating neta provi der state, or
209 * when neta provider state nust be held constant.

210 *

211 * The |l ock ordering between these three |ocks is dtrace_neta_| ock before
212 * dtrace_provider_lock before dtrace_lock. (In particular, there are

213 * several places where dtrace_provider_lock is held by the framework as it
214 * calls into the providers -- which then call back into the franework,

215 * grabbing dtrace_| ock.)

216 *

217 * There are two other locks in the mix: npd_|lock and cpu_l ock. Wth respect
218 * to dtrace_provider_lock and dtrace_|l ock, cpu_lock continues its historical
219 * role as a coarse-grained lock; it is acquired before both of these |ocks.
220 * Wth respect to dtrace_neta_lock, its behavior is stranger: cpu_lock nust
221 * be acquired _between_ dtrace_neta_l ock and any ot her DTrace | ocks.

222 * nmod_lock is simlar with respect to dtrace_provider_lock in that it nust be
223 * acquired _between_ dtrace_provider_|lock and dtrace_| ock.

224 =/

225 static knutex_t dtrace_| ock; /* probe state |ock */

226 static knmutex_t dtrace_provi der _| ock; /* provider state |ock */

227 static knmutex_t dtrace_net a_| ock; /* meta-provider state |lock */
229 | *

230 * DTrace Provider Variables

231 *

232 * These are the variables relating to Dirace as a provider (that is, the
233 * provider of the BEG N, END, and ERROR probes).

234 */

235 static dtrace_pattr_t dtrace_provider_attr = {

236 { DTRACE_STABI LI TY_ STABLE, DTRACE_STABI LI TY_STABLE, DTRACE CLASS COWVMON 1},

237 { DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS UNKNOM },
238 { DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS UNKNOM },
239 { DTRACE_STABI LI TY_STABLE, DTRACE STABI LI TY_STABLE, DTRACE_CLASS_COVMN },

240 { DTRACE_STABI LI TY_STABLE, DTRACE_STABI LI TY_STABLE, DTRACE_CLASS_COWMN },
241 };

243 static void

244 dtrace_nul | op(voi d)

245 {}

247 static int

248 dtrace_enabl e_nul | op(voi d)

249 {

250 return (0);

251 }

253 static dtrace_pops_t dtrace_provi der_ops = {

254 (void (*)(void *, const dtrace_probedesc_t *))dtrace_null op,

255 (void (*)(void *, struct nmodctl *))dtrace_null op,

new usr/src/uts/comon/ dtrace/ dtrace. c

256
257
258
259
260
261
262
263
264

266
267
268

270
271
272
273
274
275
276

278
279
280
281
282

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

300
301
302
303
304
305
306
307
308
309

311
312

314
315

317
318
319

321

(int (*)(void *, dtrace_id_t, v0|d *))dtrace_enabl e_nul | op,
(void (*)(void *, dtrace_id_t, void *))dtrace_null op,
(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,

* d_t, void *))dtrace_nullop,

(void (*)(void *, dtrace_i
NULL,
NULL,
NULL,
(void (*)(void *, dtrace_id_t, void *))dtrace_nullop

}s

static dtrace_id_t
static dtrace_id_t
dtrace_id_t

dtrace_probei d_begi n;
dtrace_probei d_end;
dtrace_probei d_error;

/* special BEQ N probe */
/* special END probe */
/* special ERROR probe */

/*
* DTrace Hel per Tracing Variabl es
*/

uint32_t dtrace_hel ptrace_next = 0;
uint32_t dtrace_hel ptrace_nl ocal s;

char *dtrace_hel ptrace_buffer;

int dtrace_hel ptrace_bufsize = 512 * 1024;

#i f def DEBUG

i nt dtrace_hel ptrace_enabled = 1;

#el se

int dtrace_hel ptrace_enabl ed = 0;

#endi f

/*

* DTrace Error Hashing

*

* On DEBUG kernels, DIrace will track the errors that has seen in a hash
* table. This is very useful for checking coverage of tests that are

* expected to induce DIF or DOF processing errors, and may be useful for
* debuggi ng problens in the DI F code generator or in DOF generation . The
*

error hash may be examined with the ::dtrace_errhash MDB dcnd.

*
#i f def DEBUG
static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ] ;
static const char *dtrace_errl ast;
static kthread_t *dtrace_errthread;
static kmutex_t dtrace_errl ock;
#endi f

/
DTrace Macros and Constants

inpl ementation, along with a few random constants that have no neani ng
out si de of the inplenentation.

*
*
*
* These are various nacros that are useful in various spots in the
*
*
* m shmash -- but is there ever?

There is no real structure to this cpp

*

#def i ne DTRACE_HASHSTR(hash, probe) \
dtrace_hash_str(* ((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))

#def i ne DTRACE_HASHNEXT(hash, probe)
(dtrace_probe_t **)((uintptr t)(probe) + (hash) - >dt h_next of f s)

#def i ne DTRACE_HASHPREV(hash, probe) \
(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)

#defi ne DTRAC‘E_HASHEQhash, I hs, rhs) \
(stremp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
*((char **)((uintptr_t)(rhs) (hash)->dth_stroffs))) == 0)

#def i ne DTRACE_AGGHASHSI ZE_SLEW 17

new usr/src/uts/comon/dtrace/ dtrace. c

323

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

350
351
352
353

355

357
358

360
361
362
363
364
365
366
367
368
369

371
372
373
374
375
376
377
378
379
174
175
380

382
383
384
385

#def i ne DTRACE_VAMAPPED OFFSET
/

(sizeof (uint32_t) * 3)

The key for a thread-local variable consists of the |ower 61 bits of the
t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
We add DIF_VARIABLE_ MAX to t_did to assure that the thread key is never
equal to a variable identifier. This is necessary (but not sufficient) to
assure that global associative arrays never collide with thread-| ocal
variables. To guarantee that they cannot collide, we nust also define the
order for keying dynam c variables. That order is:

[keyO] [keyn] [variable-key] [tls-key]
Because the variabl e-key and the tls-key are in orthogonal spaces, there is
no way for a global variable key signature to match a thread-1ocal key
signature.

® ok Sk ok OF 3k OF Sk Ok kO k% ok

#def i ne DTRACE_TLS THRKEY(where) { \
uint_t intr = 0; \
uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
for (; actv; actv >>= 1) \
intr++; \
ASSERT(intr < (1 << 3)); \
(where) = ((curthread->t_did + DI F_VARI ABLE_MAX) & \
(((uint64_t)1 << 61) - 1)) | ((uint64_tyintr << 61); \
}

#def i ne DT_BSWAP_8(x) ((x) & Oxff)

#define DI_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP 8((x) >> 8))
#define DT_BSWAP 32(x) ((DT_BSWAP 16(x) << 16) | DT_BSWAP_16((x) >> 16))
#define DT_BSWAP_64(x) ((DT_BSWAP 32(x) << 32) | DT_BSWAP 32((x) >> 32))

#def i ne DT_MASK_LO 0x00000000FFFFFFFFULL

#def i ne DTRACE_STORE(type, tomax, offset, what

*((type *)((uintptr t)(tomax) + (UI ntp%r _t)offset)) = (type)(what);

#i f ndef x86

#def i ne DTRACE_ALI GNCHECK(addr, si ze, flags) \
if (addr & (size - 1)) \
*flags | = CPU_DTRACE_BADALI G\; \
cpu_cor e[CPU->cpu_i d] . cpuc_dtrace_illval = addr; \
return (0); \
#el se
#def i ne DTRACE_ALI GNCHECK(addr, size, flags)
#endi f
/*
* Test whether a range of menory starting at testaddr of size testsz falls
* within the range of nenory described by addr, sz. W take care to avoid
* problens with overflow and underflow of the unsigned quantities, and
* disallow all negative sizes. Ranges of size 0 are allowed.
*/
#def i ne DTRACE_| NRANGE(t est addr, testsz, baseaddr, basesz) \

((testaddr) - (ui ntptr_t)(baseaddr) < (basesz) &&\
(testaddr) + (testsz) (uintptr_t)(baseaddr) <= (basesz) && \
((testaddr) (baseaddr) < (basesz) && \
(testaddr) + (testsz) - (baseaddr) <= (basesz) &&\
(testaddr) + (testsz) >= (testaddr))
/*
* Test whether alloc_sz bytes will fit in the scratch region. W isolate
* alloc_sz on the righthand side of the conparison in order to avoid overflow
* or underflow in the conparison with it. This is sinpler than the | NRANGE

new usr/src/uts/comon/ dtrace/ dtrace. c

386 * check above, because we know that the dtns_scratch_ptr is valid in the
387 * range. Allocations of size zero are allowed.

388 */

389 #define DTRACE_I NSCRATCH(nstate, alloc_sz) \

390 (mstate)->dt ns_scratch_base + (nstate)->dtns_scratch_size - \
391 (nmstate)->dtms_scratch_ptr >= (alloc_sz))

393 #defi ne DTRACE_LOADFUNC(bi t s) \
394 /*CSTYLED*/ \
395 ui nt ##bi t s##_t \
396 dtrace_| oad##bits(uintptr_t addr) \
397 { \
398 size_t size = bits / NBBY; \
399 | * CSTYLED*/ \
400 ui nt ##bi t s##_t rval; \
401 int i; \
402 volatile uint16_t *flags = (volatile uint16_t *) \
403 &cpu_cor e[CPU->cpu_i d] . cpuc_dtrace_fl ags; \
404 \
405 DTRACE_ALI GNCHECK(addr, si ze, flags); t
406

407 for (i = 0; i < dtrace_toxranges; i++) \
408 if (addr >= dtrace_toxrange[i].dtt_limt) \
409 conti nue; \
410 \
411 if (addr + size <= dtrace_toxrange[i].dtt_base) \
412 cont i nue; \
413 \
414 * \
415 * This address falls within a toxic region; return 0. \
416 */ \
417 *flags | = CPU_DTRACE_BADADDR; \
418 cpu_cor e[CPU->cpu_i d]. cpuc_dtrace_illval = addr; \
419 return (0); \
420 } \
421 \
422 *flags | = CPU_DTRACE_NOFAULT; \
423 | * CSTYLED*/ \
424 rval = *((volatile uint##bits##_t *)addr); \
425 *flags & ~CPU DTRACE NOFAULT; \
426 \
427 return (!(*flags & CPU DTRACE_FAULT) ? rval : 0); \
428 }

430 #ifdef _LP64

431 #define dtrace_l oadptr dtrace_| oad64

432 #el se

433 #define dtrace_|l oadptr dtrace_| oad32

434 #endi f

436 #defi ne DTRACE_DYNHASH FREE 0

437 #define DTRACE_DYNHASH_SI NK 1

438 #define DTRACE_DYNHASH VALI D 2

440 #define DTRACE_MATCH FAI L -1

441 #defi ne DTRACE_MATCH NEXT 0

442 #define DTRACE_MATCH DONE 1

443 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0")

444 #define DTRACE_STATE_ALI GN 64

446 #define DTRACE FLAGS2FLT(f! ags) \
447 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
448 ((flags) & CPU DTRACE ILLOP) ? DTRACEFLT_| LLOP : \
449 ((flags) & CPU DTRACE DI VZERO ? DTRACEFLT DI VZERO : \
450 ((flags) & CPU DTRACE KPRIV) ? DTRACEFLT KPRV : \
451 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \

new usr/src/uts/comon/dtrace/ dtrace. c

452 ((flags) & CPU _DTRACE TUPOFLOW ? DTRACEFLT_TUPOFLOW : \
453 ((flags) & CPU DTRACE BADALIGN) ? DTRACEFLT_BADALI GN : \
454 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
455 ((flags) & CPU DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
456 DTRACEFLT_UNKNOWN)

458 #defi ne DTRACEACT_I SSTRI NG(act) \
459 ((act)->dta_ki nd == DTRACEACT_DI FEXPR && \
460 (act)->dta_difo->dtdo_rtype.dtdt_kind == D F_TYPE_STRI NG

462 static size_t dtrace_strlen(const char *, size_t);

463 static dtrace_probe t *dtrace _probe_| ookup_| |d(dtrace idt id);

464 static void dirace_enabling_provide(dtrace_ provi der _t *),

465 static int dtrace_enabli ng_mat ch(dtrace_enabl i ng_t ¥ oint *);

466 static void dtrace_enabling_matchal |l (void);

467 static void dtrace_enabling_reap(void);

468 static dtrace_state_t *dtrace_anon_gr ab(voi d);

469 static uint64_t dtrace_hel per(int, dtrace_nstate_t *,

470 dtrace_state_t *, uint64_t, uint64_t);

471 static dtrace_helpers_t *dtrace_hel pers_| create(proc t *);

472 static void dirace_buffer_drop(dtrace_buffer_t

473 static int dtrace_buffer_consunmed(dtrace_ buffer t *, hrtime_t when);

474 static intptr_t dtrace_buffer_reserve(dtrace _buffer_t *, size_t, size_t,
475 dtrace_state_t *, dtrace_mstate_t *);

476 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,

477 dtrace_optval _t);

478 static int dtrace_ecb_create_enabl e(dtrace_probe_t *, void *);

479 static void dtrace_hel per_provi der_destroy(dtrace_hel per_provider_t *);

480 static int dtrace_priv_proc(dtrace_state_t *, dtrace_nstate_t *);

481 static void dtrace_getf_barrier(void);

482 #endif /* | codereview */

484 | *

485 * DTrace Probe Context Functions

486 *

487 * These functions are called from probe context. Because probe context is
488 * any context in which C nay be called, arbitrarily |ocks nay be held,

489 * interrupts may be disabled, we nay be in arbitrary dispatched state, etc.
490 * As a result, functions called from probe context may only call other DIrace
491 * support functions -- they may not interact at all with the systemat |arge.
492 * (Note that the ASSERT macro iIs nade probe-context safe by redefining it in
493 * terns of dtrace_assfail (), a probe-context safe function.) If arbitrary
494 * |oads are to be performed from probe context, they _nust_ be in terns of
495 * the safe dtrace_|load*() variants.

496 *

497 * Some functions in this block are not actually called from probe context;
498 * for these functions, there will be a comment above the function reading
499 * "Note: not called from probe context."

500 *

501 void

502 dtrace_panic(const char *format, ...)

503 {

504 va_list alist;

506 va_start(alist, format);

507 dtrace_vpani c(forrmt alist);

508 va_end(alist);

509 }

511 int

512 dtrace_assfail (const char *a, const char *f, int |)

513 {

514 dtrace_panic("assertion failed: %, file: %, line: %", a, f, |);
516 /*

517 * We just need sonething here that even the nost clever conpiler

new usr/src/uts/comon/ dtrace/ dtrace. c

518 * cannot optim ze away.

519 */

520 return (a[(uintptr_t)f]);

521 }

523 /| *

524 * Atonmically increnent a specified error counter from probe context.

525 */

526 static void

527 dtrace_error(uint32_t *counter)

528 {

529 /*

530 * Mpst counters stored to in probe context are per-CPU counters.

531 * However, there are some error conditions that are sufficiently

532 * arcane that they don't nerit per-CPU storage. |If these counters
533 * are increnented concurrently on different CPUs, scalability will be
534 * adversely affected -- but we don’t expect themto be white-hot in a
535 * correctly constructed enabling...

536 */

537 uint32_t oval, nval;

539 do {

540 oval = *counter;

542 if ((nval = oval + 1) == 0) {

543 /*

544 * If the counter would wap, set it to 1 -- assuring
545 * that the counter is never zero when we have seen
546 * errors. (The counter nust be 32-bits because we
547 * aren’'t guaranteed a 64-bit conpare&swap operation.)
548 * To save this code both the infanmy of being fingered
549 * by a priggish news story and the indignity of being
550 * the target of a neo-puritan witch trial, we're
551 * careful Iy avoiding any col orful description of the
552 * likelihood of this condition -- but suffice it to
553 * say that it is only slightly nore likely than the
554 * overflow of predicate cache |IDs, as discussed in
555 * dtrace_predicate_create().

556 */

557 nval = 1;

558 }

559 } while (dtrace_cas32(counter, oval, nval) != oval);

560 }

562 /*

563 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
564 * uint8_t, a uintl6_t, a uint32_t and a uint64_t.

565 */

566 DTRACE_LOADFUNC(8)

567 DTRACE_LOADFUNC(16)

568 DTRACE_LOADFUNC(32)

569 DTRACE_LOADFUNC(64)

571 static int

572 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_nstate_t *nstate)

573 {

574 if (dest < nstate->dtns_scratch_base)

575 return (0);

577 if (dest + size < dest)

578 return (0);

580 if (dest + size > nstate->dtns_scratch_ptr)

581 return (0);

583 return (1);

new usr/src/uts/comon/ dtrace/ dtrace. c 10
584 }

586 static int
587 dtrace_canstore_statvar(uint64_t addr, size_t sz,

588 dtrace_statvar_t **svars, int nsvars)

589 {

590 int i;

592 for (i =0; i < nsvars; i++)

593 dtrace_statvar_t *svar = svars[i];

595 if (svar == NULL || svar->dtsv_size == 0)
596 conti nue;

598 if (DTRACE_I NRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
599 return (1);

600 }

602 return (0);

603 }

605 /

*
606 * Check to see if the address is within a menory region to which a store may
607 * be issued. This includes the DTrace scratch areas, and any DIrace variable
608 * region. The caller of dtrace_canstore() is responsible for performng any
609 * alignment checks that are needed before stores are actually executed.

610 */

611 static int

612 dtrace_canstore(uint64_t addr, size_t sz, dtrace_nstate_t *nstate,

613 dtrace_vstate_t *vstate)

614 {

615 I *

616 */Fi rst, check to see if the address is in scratch space...

617 *

618 i f (DTRACE_I NRANGE(addr, sz, nstate->dtnms_scratch_base,

619 mst at e- >dt ms_scr at ch_si ze))

620 return (1);

622 /*

623 * Now check to see if it’'s a dynamic variable. This check will pick
624 * up both thread-1ocal variables and any gl obal dynanically-allocated
625 * vari abl es.

626 */

627 i f (DTRACE_| NRANGE(addr, sz, vstate->dtvs_dynvars. dtds_base,

276 if (DTRACE_I NRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars. dtds_base,
628 vstat e->dtvs_dynvars. dtds_si ze)) {

629 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;

630 uintptr_t base = (uintptr_t)dstate->dtds_base +

631 (dst at e- >dt ds_hashsi ze * sizeof (dtrace_dynhash_t));

632 uintptr_t chunkoffs;

634 /*

635 * Before we assume that we can store here, we need to make
636 * sure that it isn’t in our netadata -- storing to our

637 * dynam ¢ variabl e nmetadata woul d corrupt our state. For
638 * the range to not include any dynam c variabl e netadat a,
639 * it nust:

640 *

641 * (1) Start above the hash table that is at the base of
642 * the dynami c vari abl e space

643 *

644 * (2) Have a starting chunk offset that is beyond the
645 * dtrace_dynvar_t that is at the base of every chunk
646 *

647 * (3) Not span a chunk boundary

648 *

new usr/src/uts/comon/ dtrace/ dtrace. c

649
650
651

653

655
656

658
659

661
662

664
665
666
667
668
669
670

672
673
674

676
677

680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

697
698
699
700
701
702

704
705
706
707
708

710
711
712
713
343

*

if (addr < base)
return (0);

chunkoffs = (addr - base) % dstate->dtds_chunksi ze;

if (chunkoffs < sizeof (dtrace_dynvar_t))

return (0);
if (chunkoffs + sz > dstate->dtds_chunksi ze)
return (0);
return (1);
}
/*

* Finally, check the static local and global variables.
* take the longest, so we performthem]|ast.
*/
if (dtrace_canstore_statvar(addr, sz,
vstate->dtvs_| ocal s, vstate->dtvs_nlocals))
return (1);

if (dtrace_canstore_statvar(addr, sz,
vstate->dtvs_gl obal s, vstate->dtvs_ngl obal s))
return (1);

return (0);

*

* Conveni ence routine to check to see if the address is within a nenory
* region in which a | oad may be issued given the user’s privilege |evel;
* if not, it sets the appropriate error flags and loads 'addr’ into the
* illegal value slot.

*

* DTrace subroutines (D F_SUBR *) should use this hel per to inplenent

* appropriate nenory access protection.

*

static int

dtrace_canl oad(uint64_t addr, size_t sz, dtrace_nstate_t *nstate,

dtrace_vstate_t *vstate)

* |f we hold the privilege to read fromkernel nmenory, then
* everything is readable.

if ((mstate->dtns_access & DTRACE_ACCESS KERNEL) != 0)

return (1);
| *
:/You can obviously read that which you can store.
if (dtrace_canstore(addr, sz, nstate, vstate))
return (1);
/*
:/V‘é’re allowed to read fromour own string table.

i f (DTRACE_| NRANGE(addr, sz, nstate->dtns_difo->dtdo_strtab,

These checks

11

volatile uintptr_t *illval = &pu_core[CPU->cpu_id].cpuc_dtrace_illval;
file_t *fp;

#endif /* ! codereview */
/*

i f (DTRACE_I NRANGE(addr, sz, (uintptr_t)nstate->dtns_difo->dtdo_strtab,

new usr/src/uts/comon/dtrace/ dtrace.c 12
714 nst at e- >dt ms_di f o- >dt do_strl en))

715 return (1);

717 if (vstate->dtvs_state != NULL &&

718 dtrace_priv_proc(vstate->dtvs_state, nstate)) {

719 proc_t *p;

721 /*

722 * \When we have privileges to the current process, there are
723 * several context-related kernel structures that are safe to
724 * read, even absent the privilege to read from kernel menory.
725 * These reads are safe because these structures contain only
726 * state that (1) we're permtted to read, (2) is harmess or
727 * (3) contains pointers to additional kernel state that we're
728 * not permitted to read (and as such, do not present an

729 * opportunity for privilege escalation). Finally (and

730 * critically), because of the nature of their relation with
731 * the current thread context, the nenory associated with these
732 * structures cannot change over the duration of probe context,
733 * and it is therefore inpossible for this nenory to be

734 * deal | ocated and real |l ocated as sonething else while it’s
735 * bei ng operated upon.

736 */

737 if (DTRACE_I NRANGE(addr, sz, curthread, sizeof (kthread_t)))
738 return (1);

740 if ((p = curthread->t_procp) != NULL &% DTRACE_| NRANGE(addr ,
741 sz, curthread->t_procp, sizeof (proc_t))) {

742 return (1);

743 }

745 if (curthread->t_cred != NULL && DTRACE_| NRANGE(addr, sz,

746 curthread->t_cred, sizeof (cred_t))) {

747 return (1);

748 }

750 if (p!= NULL & p->p_pidp != NULL &% DTRACE | NRANGE(addr, sz,
751 &(p->p_pidp->pid_id), sizeof (pid_t))) {

752 return (1);

753 }

755 if (curthread->t_cpu != NULL && DTRACE_| NRANGE(addr, sz,

756 curthread->t _cpu, offsetof(cpu_t, cpu_pause_thread))) {
757 return (1);

758 }

759 }

761 if ((fp = metate->dtnms_getf) != NULL) {

762 uintptr_t psz = sizeof (void *);

763 vnode_t *vp;

764 vnodeops_t *op;

766 /*

767 * When getf() returns a file_t, the enabling is implicitly
768 * granted the (transient) right to read the returned file_t
769 * as well as the v_path and v_op->vnop_nanme of the underlying
770 * vnode. These accesses are allowed after a successful

771 * getf() because the nmenbers that they refer to cannot change
772 * once set -- and the barrier logic in the kernel’s closef()
773 * path assures that the file_t and its referenced vode_t

774 * cannot thenselves be stale (that is, it inpossible for

775 * either dtns_getf itself or its f_vnode nmenmber to reference
776 * freed nmenory).

77 *

778 if (DTRACE_I NRANGE(addr, sz, fp, sizeof (file_t)))

779 return (1);

new usr/src/uts/comon/dtrace/ dtrace. c 13 new usr/src/uts/comon/dtrace/ dtrace.c 14
846 size_t sz;
781 if ((vp = fp->f_vnode) !'= NULL) { 847 ASSERT(type->dtdt_flags & DI F_TF_BYREF);
782 i f (DTRACE_I NRANGE(addr, sz, &p->v_path, psz))
783 return (1); 849 /*
850 * |f we hold the privilege to read fromkernel menory, then
785 if (vp->v_path !'= NULL && DTRACE_| NRANGE(addr, sz, 851 * everything is readable.
786 vp->v_path, strlen(vp->v_path) + 1)) { 852 */
787 return (1); 853 if ((mstate->dtns_access & DTRACE_ACCESS KERNEL) != 0)
788 } 854 return (1);
790 i f (DTRACE_| NRANGE(addr, sz, &p->v_op, psz)) 856 if (type->dtdt kind == DI F_TYPE _STRI NG
791 return (1); 857 sz = dtrace_strlen(src,
858 vst at e- >dt vs_st at e- >dt s_opt i ons[DTRACEOPT_STRSI ZE]) + 1;
793 if ((op = vp->v_op) != NULL && 859 el se
794 DTRACE_| NRANGE(addr, sz, &op->vnop_nane, psz)) { 860 sz = type->dtdt_size;
795 return (1);
796 } 862 return (dtrace_canl oad((uintptr_t)src, sz, nstate, vstate));
863 }
798 if (op !'= NULL & op->vnop_nanme != NULL &&
799 DTRACE_| NRANGE(addr, sz, op->vnop_nane, 865 /*
800 strlen(op->vnop_nanme) + 1)) { 866 * Conpare two strings using safe | oads.
801 return (1); 867 */
802 } 868 static int
803 } 869 dtrace_strncnp(char *sl1, char *s2, size_t linit)
804 } 870 {
871 uint8_t cl, c2;
806 #endif /* | codereview */ 872 volatile uint16_t *fl ags;
807 DTRACE_CPUFLAG SET(CPU_DTRACE_KPRI V) ;
808 *illval = addr; 874 if (s1==s2]| limt == 0)
809 return (0); 875 return (0);
810 }
877 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_fl ags;
812 /*
813 * Convenience routine to check to see if a given string is within a nmenory 879 do {
814 * region in which a |oad nay be issued given the user’s privilege |evel; 880 if (sl == NULL) {
815 * this exists so that we don't need to issue unnecessary dtrace_strlen() 881 cl ='\0";
816 * calls in the event that the user has all privileges. 882 } else {
817 */ 883 cl = dtrace_l oad8((uintptr_t)sl++);
818 static int 884 }
819 dtrace_strcanl oad(uint64_t addr, size_t sz, dtrace_nstate_t *nstate,
820 dtrace_vstate_t *vstate) 886 if (s2 == NULL) {
821 { 887 c2 ='\0";
822 size_t strsz; 888 } else {
889 c2 = dtrace_l oad8((uintptr_t)s2++);
824 /* 890 }
825 * |f we hold the privilege to read fromkernel nmenory, then
826 * everything is readable. 892 if (cl!=c2)
827 */ 893 return (cl - c2);
828 if ((mstate->dtns_access & DTRACE_ACCESS KERNEL) != 0) 894 } while (--limt & cl !'="\0" && !(*flags & CPU_DTRACE_FAULT));
829 return (1);
896 return (0);
831 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 897 }
832 if (dtrace_canl oad(addr, strsz, nstate, vstate))
833 return (1); 899 /*
900 * Conpute strlen(s) for a string using safe nenory accesses. The additional
835 return (0); 901 * len paraneter is used to specify a maxi mumlength to ensure conpl etion.
836 } 902 */
903 static size_t
838 /* 904 dtrace_strlen(const char *s, size_t |im
839 * Convenience routine to check to see if a given variable is within a nmenory 905 {
840 * region in which a load nay be issued given the user’s privilege |evel. 906 uint_t len;
841 */
842 static int 908 for (len =0; len!=1im len++) {
843 dtrace_vcanl oad(void *src, dtrace_diftype_t *type, dtrace_mnstate_t *nstate, 909 if (dtrace_l oad8((uintptr_t)s++) == "\0")
844 dtrace_vstate_t *vstate) 910 br eak;
845 { 911 }

new usr/src/uts/comon/dtrace/ dtrace. c 15 new usr/src/uts/comon/dtrace/ dtrace.c 16
978 * Unlike dtrace_bcopy(), overlapping regions are not handl ed.
913 return (len); 979 */
914 } 980 static void
981 dtrace_strcpy(const void *src, void *dst, size_t len)
916 /* 982
917 * Check if an address falls within a toxic region. 983 if (len !=0)
918 */ 984 uint8_ t *sl1 = dst, c;
919 static int 985 const uint8_t *s2 = src;
920 dtrace_istoxic(uintptr_t kaddr, size_t size)
921 { 987 do {
922 uintptr_t taddr, tsize; 988 *sl++ = ¢ = dtrace_| 0ad8((u| ntptr_t)s2++);
923 int i; 989 } while (--len !'=0 & c !'="\0
990 }
925 for (i = 0; i < dtrace_toxranges; i++) { 991 }
926 taddr = dtrace_toxrange[i].dtt_base;
927 tsize = dtrace_toxrange[i].dtt_limt - taddr; 993 /*
994 * Copy src to dst, deriving the size and type fromthe specified (BYREF)
929 if (kaddr - taddr < tsize) { 995 * variable type. The src is assuned to be unsafe menory specified by the DI F
930 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR) ; 996 * program The dst is assuned to be DIrace variable nmenory that is of the
931 cpu_cor e[CPU->cpu_i d].cpuc_dtrace_illval = kaddr; 997 * specified type; we assune that we can store to directly.
932 return (1); 998 */
933 } 999 static void
1000 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
935 if (taddr - kaddr < size) 1001 {
936 DTRACE_CPUFLAG SET(CPU_DTRACE_BADADDR) ; 1002 ASSERT(type->dtdt _flags & DI F_TF_BYREF);
937 cpu_cor e[CPU->cpu_i d] . cpuc_dtrace_il | val = t addr;
938 return (1); 1004 if (type->dtdt_kind == DI F_TYPE_STRI NG
939 } 1005 dtrace_strcpy(src, dst, type->dtdt_size);
940 } 1006 } else {
1007 dtrace_bcopy(src, dst, type->dtdt_size);
942 return (0); 1008 }
943 } 1009 }
945 [* 1011 /*
946 * Copy src to dst using safe nenory accesses. The src is assuned to be unsafe 1012 * Conpare sl to s2 using safe nenory accesses. The sl data is assunmed to be
947 * menory specified by the DIF program The dst is assunmed to be safe nenory 1013 * unsafe nmenory specified by the DIF program The s2 data is assuned to be
948 * that we can store to directly because it is managed by DTrace. As with 1014 * safe nenory that we can access directly because it is managed by DTrace.
949 * standard bcopy, overl apping copi es are handl ed properly. 1015 */
950 */ 1016 static int
951 static void 1017 dtrace_bcnp(const void *sl1, const void *s2, size_t |en)
952 dtrace_bcopy(const void *src, void *dst, size_t |en) 1018 {
953 { 1019 volatile uintl6_t *flags;
954 if (len !=0)
955 uint8_t *sl1 = dst; 1021 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_fl ags;
956 const uint8_t *s2 = src;
1023 if (sl == s2)
958 if (s1 <=s2) { 1024 return (0);
959 do {
960 *sl++ = dtrace_|l oad8((uintptr_t)s2++); 1026 if (sl == NULL || s2 == NULL)
961 } while (--len !'= 0); 1027 return (1);
962 } else {
963 s2 += | en; 1029 if (s1!=3s2 & len !=0)
964 sl += len; 1030 const uint8_t *psl = sl
1031 const uint8_t *ps2 = s2;
966 do {
967 *--s1 = dtrace_l oad8((uintptr_t)--s2); 1033 do {
968 } while (--Ien 1= 0); 1034 if (dtrace_l oad8((uintptr_t)psl++) ! = *ps2++)
969 } 1035 return (1);
970 } 1036 } while (--len !'= 0 && ! (*flags & CPU_DTRACE_FAULT));
971 } 1037 }
1038 return (0);
973 [* 1039 }
974 * Copy src to dst using safe nenory accesses, up to either the specified
975 * length, or the point that a nul byte is encountered. The src Is assunmed to 1041 /*
976 * be unsafe nenory specified by the DIF program The dst is assumed to be 1042 * Zero the specified region using a sinple byte-by-byte |oop. Note that this
977 * safe menory that we can store to directly because it is nmanaged by DTrace. 1043 * is for safe DTrace-nmanaged nenory only.

new usr/src/uts/comon/ dtrace/ dtrace. c

1044 */
1045 static void
1046 dtrace_bzero(void *dst, size_t len)

1047 {

1048 uchar _t *cp;

1050 for (cp = dst; len !=0; len--)
1051 *cp++ = 0

1052 }

1054 static void
1055 dtrace_add_128(ui nt64_t *addendl, uint64_t *addend2, uint64_t *sum

1056 {

1057 uint64_t result[2];

1059 result[0] = addendl[0] + addend2[O0];

1060 resul t[1] = addendl[1] + addend2[1] +

1061 (result[0] < addendl[O] || result[0O] < addend2[0] ? 1 : 0);
1063 sunf 0] = result[0];

1064 sunf1l] = result[1];

1065 }

1067 /*

1068 * Shift the 128-bit value in a by b. If b is positive, shift left.
1069 * If b is negative, shift right.

1070 */

1071 static void

1072 dtrace_shift_128(uint64_t *a, int b)

1073 {

1074 uint 64_t mask;

1076 if (b ==0)

1077 return;

1079 if (b<0) {

1080 b = -b;

1081 if (b 5= 64) {

1082 a[0] = a[1] >> (b - 64);
1083 a[1] = 0

1084 } else {

1085 a[0] >>= b;

1086 mask = 1LL << (64 - b);
1087 mask -= 1;

1088 a[0] |= ((a[1] & mask) << (64 - b));
1089 a[1] >>= b;

1090 }

1091 } else {

1092 if (b >=64) {

1093 a[1] = a[0] << (b - 64);
1094 a[0] = 0;

1095 } else {

1096 a[1] <<= b;

1097 mask = a[0] >> (64 - b);
1098 a[1] | = mask;

1099 a[0] <<= b;

1100

1101 }

1102 }

1104 /*

1105 * The basic idea is to break the 2 64-bit values into 4 32-bit val ues,
1106 * use native multiplication on those, and then re-conbine into the
1107 * resulting 128-bit val ue.

1108 *

1109 * (hil << 32 + lol) * (hi2 << 32 + 102) =

new usr/src/uts/comon/dtrace/ dtrace. c

1110 * hil* hi2 << 64 +
1111 * hil* lo2 << 32 +
1112 * hi2 * lol << 32 +
1113 * lol * |02

1114 */

1115 static void

1116 dtrace_nultiply_128(uint64_t factorl, uint64_t factor2, uint64_t *product)

1117 {

1118 uint64_t hil, hi2, lol, |o2;

1119 uint64_t tnp[2];

1121 hil = factorl >> 32;

1122 hi2 = factor2 >> 32;

1124 lol = factorl & DT_MASK _LO

1125 lo2 = factor2 & DT_MASK _LO

1127 product[0] =101 * |o02;

1128 product[1] = hil * hi2;

1130 trrp[O] =h|1* | 02;

1131 tnp[1] =

1132 dtrace Shl ft _128(tnp, 32);

1133 dtrace_add_128(product, tnp, product);
1135 tmp[0] = hi2 * |ol;

1136 tnp[1] = O;

1137 dtrace_shift_128(tnp, 32);

1138 dtrace_add_128(product, tnp, product);
1139 }

1141 /*

1142 * This privil ege check shoul d be used by actions and subroutines to
1143 * verify that the user credentials of the process that enabled the
1144 * invoking ECB match the target credentials

1145 */

1146 static int

1147 dtrace_priv_proc_comon_user (dtrace_state_t *state)

1148 {

1149 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;

1151 /*

1152 * W shoul d al ways have a non-NULL state cred here, since if cred
1153 * is null (anonynous tracing), we fast-path bypass this routine.
1154 */

1155 ASSERT(s_cr != NULL);

1157 if ((cr = CRED()) 1= NULL &&

1158 s_cr->cr_uid == cr->cr_uid &&

1159 s cr->cr_uid == cr->cr_ruid &&

1160 s_cr->cr_uid == cr->cr_suid &&

1161 s_cr->cr_gid == cr->cr_gid &&

1162 s_cr->cr_gid == cr->cr_rgid &

1163 s_cr->cr_gid == cr->cr_sgid)

1164 return (1);

1166 return (0);

1167 }

1169 /*

1170 * This privilege check should be used by actions and subroutines to
1171 * verify that the zone of the process that enabled the invoking ECB
1172 * matches the target credentials

1173 */

1174 static int

1175 dtrace_priv_proc_common_zone(dtrace_state_t *state)

new usr/src/uts/comon/ dtrace/ dtrace. c 19

1176 {
1177 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1179 /*
1180 * We should al ways have a non-NULL state cred here, since if cred
1181 * is null (anonynous tracing), we fast-path bypass this routine.
1182 */
1183 ASSERT(s_cr != NULL)
1185 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
347 if ((cr = CRED()) != NULL &&
348 S_Cr->Cr_zone == Cr->Cr_zone)
1186 return (1);
1188 return (0);
1189 }
__unchanged_portion_omtted_
1287 /*

1288 * Determine if the dte_cond of the specified ECB allows for processing of
1289 * the current probe to continue. Note that this routine may allow continued
1290 * processing, but with access(es) stripped fromthe nstate’ s dtns_access
1291 * field.

1292 */

1293 static int

1294 dtrace_priv_probe(dtrace_state_t *state, dtrace_nstate_t *nstate,

1295 dtrace_ecb_t *ecbh)

1296 {

1297 dtrace_probe_t *probe = ecbh->dt e_probe;

1298 dtrace_provi der _t prov = probe->dt pr_provider;

1299 dtrace_pops_t *pops = &prov->dtpv_pops;

1300 int node = DTRACE_MODE_NOPRI V_DROP;

1302 ASSERT(ech- >dt e_cond) ;

1304 if (pops->dt ps_ mode != NULL) {

1305 node = pops- >dt ps_node(prov->dt pv_arg,

1306 probe->dtpr_id, probe->dtpr_arg);

1308 ASSERT(node & (DTRACE_MODE_USER | DTRACE MODE_KERNEL)) ;

1309 ASSERT(mode & (DTRACE_MODE_NOPRI V_RESTRI CT

1310 DTRACE_MODE_NOPRI V_DROP)) ;

471 ASSERT((node & DTRACE_MODE USER) ||

472 (mode & DTRACE_MODE KERNEL)) ;

473 ASSERT((node & DTRACE_MODE | hEPRIV _RESTRICT) |

474 (mode & DTRACE_MODE_NCPRI V_DRCP)) ;

1311 }

1313 /*

1314 * |f the dte_cond bits indicate that this consumer is only allowed to
1315 * see user-node firings of this probe, check that the probe was fired
1316 * while in a user context. |If that’s not the case, use the policy
1317 * specified by the provider to determine if we drop the probe or
1318 * merely restrict operation.

479 * see user-node firings of this probe, call the provider’s dtps_node()
480 * entry point to check that the probe was fired while in a user

481 * context. |If that's not the case, use the policy specified by the
482 * provider to determine if we drop the probe or nmerely restrict

483 * operation.

1319 *

1320 if (ecb->dte_cond & DTRACE_COND_ USERMODE) {

1321 ASSERT(node ! = DTRACE_MODE_NOPRI V_DROP) ;

1323 if (!(nmde & DTRACE_MODE_USER))

1324 if (mode & DTRACE_MODE_NOPRI V_DROP)

1325 return (0);

new usr/src/uts/comon/dtrace/ dtrace. c

1327
1328
1329

1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343

1345

1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357

1359
1360
1361

1363
1364
1365
1366
1367
1368
1369
1370
1371

1373

1375
1376
1377
1378

1380
1381
1382
1383

1385
1386
1387
1388
1389
1390
1391

nst at e- >dt ms_access & ~DTRACE_ACCESS_ARGS;

This is nore subtle than it | ooks. We have to be absol utely certain
that CRED() isn’'t going to change out fromunder us so it's only
legit to examne that structure if we're in constrained situations.
Currently, the only tines we'll this check is if a non-super-user
has enabled the profile or syscall providers -- providers that
allow visibility of all processes. For the profile case, the check
above will ensure that we’'re exam ning a user context.

R EEE
-~

if (ecb->dte_cond & DTRACE_COND OMER) {
cred_t *cr;
cred_t *s_cr = state->dts_cred. dcr_cred;

proc_t *proc;
ASSERT(s_cr != NULL)
if ((cr = CRED()) == NULL ||

s_cr->cr_uid !'=cr->cr_uid ||
s_cr->cr_uid !'= cr->cr_ruid ||
s_cr->cr_uid !'= cr->cr_suid ||
s_cr->cr_gid !'= cr->cr_gid ||
s_cr->cr_gid !'=cr->cr_rgid ||
s_cr->cr_gid !'=cr->cr_sgid ||
(proc = ttoproc(curthread)) == NULL ||

(proc->p_flag &
if (nmode & DTRACE_I\/[DE_NCPRI V_DROP)
return (0);

nst at e- >dt ms_access &= ~DTRACE_ACCESS_PRCC;

/*

* |f our dte_cond is set to DTRACE_COND ZONEOMNER and we are not

* in our zone, check to see if our node policy is to restrict rather
* than to drop; if to restrict, strip away both DTRACE_ACCESS_PRCC
* and DTRACE_ACCESS_ARGS

*/
if (ecb->dte_cond & DTRACE_COND ZONEOMNER) {
cred_t *cr;
cred_t *s_cr = state->dts_cred. dcr_cred;
ASSERT(s_cr != NULL);
if ((cr = CRED()) == NULL ||
s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
if (mde & DTRACE_MODE_NOPRI V_DROP)
return (0);
nst at e- >dt ns_access &=
~(DTRACE_ACCESS_PRCC | DTRACE_ACCESS_ARGS) ;
}
}
/*
* By nerits of being in this code path at all, we have limted
* privileges. |f the provider has indicated that limted privileges

* are to denote restricted operation, strip off the ability to access
* arguments.
S

if (node & DTRACE_MODE LI M TEDPRI V_RESTRI CT)

new usr/src/uts/comon/dtrace/ dtrace. c 21 new usr/src/uts/comon/dtrace/ dtrace.c 22
1392 net at e- >dt ns_access &= ~DTRACE_ACCESS_ARGS; 1458 if (rinser->dtdsc_dirty != NULL)
1459 conti nue;
1394 #endif /* | codereview */
1395 return (1); 1461 if (rinser->dtdsc_clean != NULL)
1396 } 1462 conti nue;
1398 /* 1464 rinsep = &inser->dtdsc_rinsing;
1399 * Note: not called fromprobe context. This function is called 1465 br eak;
1400 * asynchronously (and at a regular interval) fromoutside of probe context to 1466 }
1401 * clean the dirty dynamc variable lists on all CPUs. Dynam c variable
1402 * cleaning is explained in detail in <sys/dtrace_inpl.h>. 1468 if (j == NCPU) {
1403 */ 1469 /*
1404 voi d 1470 * We were unable to find another CPU that
1405 dtrace_dynvar_cl ean(dtrace_dstate_t *dstate) 1471 * could accept this dirty list -- we are
1406 { 1472 * therefore unable to clean it now
1407 dtrace_dynvar _t *dirty; 1473 i
1408 dtrace_dstate_percpu_t *dcpu; 1474 dtrace_dynvar _fail cl ean++;
1409 dtrace_dynvar _t **rinsep; 1475 conti nue;
1410 int i, j, work = O; 1476 }
1477 }
1412 for (i =0; i < NCPU;, i++)
1413 dcpu = &dstate->dtds_percpul[i]; 1479 work = 1;
1414 rinsep = &dcpu->dtdsc_ri nsing;
1481 /*
1416 /* 1482 * Atomcally nove the dirty list aside.
1417 * |f the dirty list is NULL, there is no dirty work to do. 1483 */
1418 */ 1484 do {
1419 if (dcpu->dtdsc_dirty == NULL) 1485 dirty = dcpu->dtdsc_dirty;
1420 conti nue;
1487 /*
1422 if (dcpu->dtdsc_rinsing !'= NULL) { 1488 * Before we zap the dirty list, set the rinsing |ist.
1423 I * 1489 * (This allows for a potential assertion in
1424 * |f the rinsing list is non-NULL, then it is because 1490 * dtrace_dynvar(): if a free dynam c variable appears
1425 * this CPU was sel ected to accept another CPU s 1491 * on a hash chain, either the dirty list or the
1426 * dirty list -- and since that time, dirty buffers 1492 * rinsing list for sone CPU nust be non- NULL.)
1427 * have accunul ated. This is a highly unlikely 1493 */
1428 * condition, but we choose to ignore the dirty 1494 *rinsep = dirty;
1429 * buffers -- they' Il be picked up a future cleanse. 1495 dt race_nenbar _producer ();
1430 */ 1496 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1431 conti nue; 1497 dirty, NULL) !=dirty);
1432 } 1498 }
1434 if (dcpu->dtdsc_clean !'= NULL) { 1500 if (!'work) {
1435 /* 1501 /*
1436 * |f the clean list is non-NULL, then we’'re in a 1502 * W& have no work to do; we can sinply return.
1437 * situation where a CPU has done deal | ocations (we 1503 */
1438 * have a non-NULL dirty list) but no allocations (we 1504 return;
1439 * also have a non-NULL clean list). W can't sinply 1505 }
1440 * nmove the dirty list into the clean list on this
1441 * CPU, yet we also don’t want to allow this condition 1507 dtrace_sync();
1442 * to persist, lest a short clean |ist prevent a
1443 * massive dirty list frombeing cleaned (which in 1509 for (i = 0; i < NCPU;, i++)
1444 * turn could lead to otherw se avoi dabl e dynani c 1510 dcpu = &dstate->dtds_percpul[i];
1445 * drops). To deal with this, we |ook for sone CPU
1446 * with a NULL clean list, NULL dirty list, and NULL 1512 if (dcpu->dtdsc_rinsing == NULL)
1447 * rinsing list -- and then we borrow this CPU to 1513 conti nue;
1448 * rinse our dirty list.
1449 S AGil5) /*
1450 for (j =0; j < NCPU, j++) { 1516 * We are now guaranteed that no hash chain contains a pointer
1451 dtrace_dstate_percpu_t *rinser; 1517 * into this dirty list; we can nake it clean.
1518 */
1453 rinser = &dstate->dtds_percpul[j]; 1519 ASSERT(dcpu->dt dsc_cl ean == NULL);
1520 dcpu- >dtdsc_cl ean = dcpu->dtdsc_ri nsi ng;
1455 if (rinser->dtdsc_rinsing != NULL) 1521 dcpu->dtdsc_rinsing = NULL;
1456 conti nue; 1522 }

new usr/src/uts/comon/ dtrace/ dtrace. c 23

1524 /*

1525 * Before we actually set the state to be DTRACE DSTATE_CLEAN, meke
1526 * sure that all CPUs have seen all of the dtdsc_clean pointers.

1527 * This prevents a race whereby a CPU incorrectly decides that

1528 * the state should be sonething other than DTRACE DSTATE_CLEAN

1529 * after dtrace_dynvar_clean() has conpl et ed.

1530 */

1531 dtrace_sync();

1533 dst at e- >dt ds_st at e = DTRACE_DSTATE_CLEAN,

1534 }

1536 /*

1537 * Depending on the value of the op paraneter, this function |ooks-up,

1538 * allocates or deallocates an arbitrarily-keyed dynamic variable. [If an
1539 * allocation is requested, this function will return a pointer to a

1540 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1541 * variable can be allocated. |If NULL is returned, the appropriate counter
1542 * will be increnented.

1543 */

1544 dtrace_dynvar_t *

1545 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,

1546 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,

1547{ dtrace_nstate_t *nstate, dtrace_vstate_t *vstate)

1548

1549 ui nt64_t hashval = DTRACE_DYNHASH VALI D;

1550 dtrace_dynhash_t *hash = dstat e->dtds_hash;

1551 dtrace_dynvar _t *free *new_free, *next, *dvar, *start, *prev = NULL;
1552 processorid_t ne = CPU->cpu_id, cpu = ne;

1553 dtrace_dstate_percpu_t *dcpu = &dstate- >dt ds _percpu[ne] ;

1554 size_t bucket, ksize;

1555 size_t chunksi ze = dst at e- >dt ds_chunksi ze;

1556 uintptr_t kdata, |ock, nstate;

1557 uint_t i;

1559 ASSERT(nkeys != 0);

1561 /*

1562 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-tinge"
1563 * algorithm For the by-val ue port|ons we performthe algorithmin
1564 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1565 * bit, and seenms to have only a ni nute effect on distribution. For
1566 * the by-reference data, we perform"One-at-a-tinme" iterating (safely)
1567 * over each referenced byte. |It's painful to do this, but it’s nuch
1568 * better than pathol ogi cal hash distribution. The efficacy of the
1569 * hashing algorithm (and a conparison with other algorithns) may be
1570 * found by running the ::dtrace_dynstat MDB dcnd.

1571 *

1572 for (i = 0; i < nkeys; i++) {

1573 if (key[i].dttk_size == 0) {

1574 uint64_t val = key[i].dttk_val ue;

1576 hashval += (val >> 48) & Oxffff;

1577 hashval += (hashval << 10);

1578 hashval ~= (hashval >> 6);

1580 hashval += (val >> 32) & Oxffff;

1581 hashval += (hashval << 10)

1582 hashval ~= (hashval >> 6);

1584 hashval += (val >> 16) & Oxffff;

1585 hashval += (hashval << 10)

1586 hashval ~= (hashval >> 6);

1588 hashval += val & Oxffff;

1589 hashval += (hashval << 10)

new usr/src/uts/comon/ dtrace/ dtrace. c

1590
1591
1592
1593
1594
1595
1596
1597

1599
1600

1602
1603
1604
1605
1606
1607
1608

1610
1611

1613
1614
1615

1617
1618
1619
1620
1621
1622
1623
1624

1626
1627
1628
1629
1630
1631
1632
1633
1634

1636
1637

1639
1640
1641

1643
1644
1645
1646

1648
1649

1651
1652
1653

1655

top:

hashval
} else {

A= (hashval >> 6);

* This is incredibly painful, but it beats the hell

* out of the alternative.
*
/

uint64_t j, size—key[l] dttk_si ze;

uintptr_t base = (uintptr_t)key[i]. dttk _val ue;

if (!dtrace_canl oad(base, size, nstate, vstate))
br eak;

for (j =0; j < size; j++) {
hashval += dtrace_| oad8(base + j);
hashval += (hashval << 10);
hashval ~= (hashval >> 6);

}

i f (DTRACE_CPUFLAG | SSET(CPU_DTRACE_FAULT))
return (NULL);

hashval += (hashval << 3);
hashval ~= (hashval >> 11);
hashval += (hashval << 15);

/

There is a renote chance (ideally, 1 in 2731) that our hashval

*

*

* comes out to be one of our two sentinel hash values. |f this

* actual ly happens, we set the hashval to be a value known to be a

* non-sentinel val ue.

*

f (hashval == DTRACE_DYNHASH FREE || hashval == DTRACE_DYNHASH_SI NK)
hashval = DTRACE_DYNHASH VALI D;

/*

* Yes, it's painful to do a divide here. |f the cycle count becones

* inportant here, tricks can be pulled to reduce it. (However, it's

* critical that hash collisions be kept to an absol ute m ni mum

* they’'re nmuch nore painful than a divide.) It’s better to have a

* solution that generates few collisions and still keeps things

* relatively sinple.

*

bucket = hashval % dst at e->dt ds_hashsi ze;

if (op == DTRACE_DYNVAR DEALLOC)
voI atile uintptr_t *lockp =

for (;;)

&hash[bucket] . dt dh_I ock;

{
while ((lock = *lockp) & 1)
cont i nue;

if (dtrace_casptr((void *)Io
(void *)lock, (void *)(lo ck + 1)) == (void *)l ock)

br eak;
}
dtrace_nenbar _producer();
}
prev = NULL;
| ock = hash[bucket]. dtdh_| ock;

dt race_nenbar _consumer () ;

new usr/src/uts/comon/ dtrace/ dtrace. c

1657
1658
1659
1660

1662
1663
1664

1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677

1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697

1699
1700

1702
1703

1705
1706
1707

1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719

1721

start = hash[bucket]. dtdh_chai n;

ASSERT(start != NULL && (start- >dtdv hashval == DTRACE_DYNHASH_SI NK |
start->dtdv_hashval !|= DTRACE DYNHASH FREE | |
op ! = DTRACE_DYNVAR DEALLCC)) ;

for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
dtrace_key_t *dkey = &dtuple->dtt_key[O];

if (dvar->dtdv_hashval != hashval) {
i f (dvar->dtdv_hashval == DTRACE_DYNHASH SI NK) {
/*

* W' ve reached the sink, and therefore the
* end of the hash chain; we can kick out of
* the | oop knowi ng that we have seen a valid
* snapshot of state.
*

/

ASSERT(dvar - >dt dv_next == NULL);
ASSERT(dvar == &dtrace_dynhash_si nk);
br eak;

}
i f (dvar->dtdv_hashval == DTRACE_DYNHASH FREE) {
/*

* W' ve gone off the rails: sonewhere al ong
* the line, one of the nenbers of this hash

* chain was deleted. Note that we could al so
* detect this by sinply letting this |oop run
* to conpletion, as we would eventually hit

* the end of the dirty list. However, we

* want to avoid running the length of the

* dirty list unnecessarily (it might be quite
* long), so we catch this as early as

* possi bl e by detecting the hash marker. |In
* this case, we sinply set dvar to NULL and

* break; the conditional after the loop wll
* send us back to top.

*

/
dvar = NULL;
br eak;

}

got o next;

}

if (dtuple->dtt_nkeys != nkeys)
goto next;

for (i = 0; i < nkeys; i++, dkey++) {
if (dkey->dttk_size != key[i].dttk_size)
goto next; /* size or type m smatch */

if (dkey->dttk_size != 0) {
if (dtrace_bcnp(
(void *)(uintptr_t)key[i].dttk_val ue,
(void *)(uintptr_t)dkey->dttk_val ue,
dkey->dttk_si ze))

goto next;
} else {
if (dkey->dttk_value != key[i].dttk_val ue)
) goto next;

}
if (op != DTRACE_DYNVAR DEALLCC)

new usr/src/uts/comon/ dtrace/ dtrace. c

1722

1724
1725

1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744

1746

1748
1749
1750
1751
1752

1754

1756
1757
1758
1759
1760
1761
1762
1763

1765
1766
1767
1768
1769
1770

1772
1773
1774
1775
1776

1778
1779
1780
1781
1782
1783
1784
1785
1786
1787

next:

return (dvar);

ASSERT(dvar - >dt dv_next == NULL ||
dvar - >dt dv_next - >dt dv_hashval != DTRACE_DYNHASH FREE) ;

if (prev !'= NULL)
ASSERT(hash[bucket] . dt dh_chain != dvar);
ASSERT(start != dvar);
ASSERT(pr ev- >dt dv_next == dvar);
prev->dtdv_next = dvar->dt dv_next;

} else {
if (dtrace_casptr(&hash[bucket].dtdh_chain,
start, dvar->dtdv_next) != start) {
/*
* W have failed to atom cally swi ng the
* hash tabl e head pointer, presumably because
* of a conflicting allocation on another CPU.
* W need to reread the hash chain and try
* again.
*/
goto top;
}
}

dtrace_nenbar _producer();

/*
* Now set the hash value to indicate that it’'s free.
*

ASSERT(hash[bucket] . dtdh_chain != dvar);
dvar - >dt dv_hashval = DTRACE_DYNHASH_FREE;

dtrace_nenbar _producer();
/ *

* Set the next pointer to point at the dirty Ilist, and
* atomically swng the dirty pointer to the newy freed dvar.
*/

do {
next = dcpu- >dtdsc _di rty,
dvar - >dt dv_next = next
} while (dtrace_casptr(&dcpu- >dt dsc _dirty, next, dvar) != next);

*
* Finally, unlock this hash bucket.
*
/
ASSERT(hash[bucket] . dtdh_l ock == | ock);
ASSERT(l ock & 1);
hash[bucket] . dtdh | ock++;
return (NULL);

prev = dvar;

conti nue;

}

if (dvar == NULL) {
/*
* |f dvar is NULL, it is because we went off the rails:
* one of the elenents that we traversed in the hash chain
* was deleted while we were traversing it. In this case,
* we assert that we aren’t doing a dealloc (deallocs |ock
* the hash bucket to prevent thenselves fromracing with
* one another), and retry the hash chain traversal.
*

ASSERT(op ! = DTRACE_DYNVAR DEALLCC) ;

26

new usr/src/uts/comon/ dtrace/ dtrace. c 27

1788
1789

1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806

1808
1809

1811
1812
1813
1814
1815
1816
1817
1818
1819

1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

1837

1839
1840
1841

1843
1844
1845

1847
1848
1849
1850
1851
1852
1853

retry:

goto top;
}

if (op != DTRACE_DYNVAR ALLQC) {
/*

* |f we are not to allocate a new variable, we want to
* return NULL now. Before we return, check that the value
* of the lock word hasn’t changed. |If it has, we may have
* seen an inconsistent snapshot.
*

/

if (op == DTRACE_DYNVAR NOALLOC) {
i f (hash[bucket].dtdh_l ock != 1ock)
goto top;
} else {
ASSERT(op == DTRACE_DYNVAR DEALLQC);
ASSERT(hash[bucket] . dtdh_I ock == | ock);

ASSERT(| ock & 1);
hash[bucket] . dt dh_| ock++;

}
return (NULL);

We need to allocate a new dynam c variable. The size we need is the
size of dtrace_dynvar plus the size of nkeys dtrace_key_ t’'s plus the
size of any auxiliary key data (rounded up to 8-byte alignment) plus
the size of any referred-to data (dsize). W then round the final
size up to the chunksize for allocation.

O * * % ok * ok ¥
-~

for (ksize = 0, i = 0; i < nkeys; i++)

ksi ze += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));

This should be pretty much inpossible, but could happen if, say,
strange DIF specified the tuple. Ideally, this should be an
assertion and not an error condition -- but that requires that the
chunksi ze cal cul ation in dtrace_difo_chunksize() be absolutely
bul let-proof. (That is, it nmust not be able to be fool ed by
malicious DIF.) Gven the |ack of backwards branches in DI F,
solving this would presunmably not anpunt to solving the Halting
* Problem-- but it still seems awfully hard.
*
/

if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_ t) * (nkeys - 1) +
ksi ze + dsize > chunksi ze)

dcpu- >dt dsc_dr ops++;

return (NULL);

* Ok ok ok k ok ko

}
nst at e = DTRACE_DSTATE_EMPTY;
do {
free = dcpu->dtdsc_free;
if (free == NULL) {
dtrace_dynvar _t *clean = dcpu->dtdsc_cl ean;
voi d *rval
if (clean == NULL) {
/*
* We're out of dynamic variable space on

* this CPU. Unless we have tried all CPUs,
* we'll try to allocate froma different
CPU.

*

*/

new usr/src/uts/comon/ dtrace/ dtrace. c

1854
1855
1856

1858
1859

1861
1862
1863

1865
1866

1868

1870
1871

1873
1874

1876
1877
1878
1879
1880
1881

1883
1884
1885

1887
1888
1889

1891
1892
1893
1894

1896
1897
1898

1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919

switch (dstate->dtds_state) {
case DTRACE DSTATE CLEAN:
void *sp = &dstate->dtds_state;

if (++cpu >= NCPU)
cpu = 0;

if (dcpu->dtdsc_dirty != NULL &&
nstate == DTRACE_DSTATE_EMPTY)
nstate = DTRACE _DSTATE DI RTY;

if (dcpu->dtdsc_rinsing != NULL)
nstate = DTRACE_DSTATE_RI NSI NG

dcpu = &dst at e->dt ds_percpu[cpu] ;

if (cpu!= ne)
goto retry;

(void) dtrace_cas32(sp,
DTRACE_DSTATE_CLEAN, nstate);

/*

* To increnent the correct bean
* counter, take another |ap.

*/

goto retry;

}

case DTRACE_DSTATE_DI RTY:
dcpu->dtdsc_dirty_drops++;
br eak;

case DTRACE_DSTATE_RI NSI NG
dcpu->dt dsc_ri nsi ng_dr ops++;
br eak;

case DTRACE_DSTATE_EMPTY:
dcpu- >dt dsc_dr ops++;
br eak;

}

DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP) ;
return (NULL);

-

*

* The clean |list appears to be non-enpty. W want to
* nove the clean list to the free list; we start by

* nmoving the clean pointer aside.

*/

if (dtrace_casptr(&dcpu->dtdsc_cl ean,
clean, NULL) != clean)
/*

We are in one of two situations:

(a) The clean list was switched to the
free list by another CPU.

(b) The clean |list was added to by the
cl eansing cyclic.

In either of these situations, we can
just reattenpt the free list allocation.
*/

*
*
*
*
*
*
*
*
*
*

goto retry;

28

new usr/src/uts/comon/ dtrace/ dtrace. c 29

1920
1922

1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942

1944
1945
1946

1948
1949
1950
1951
1952
1953
1954
1955
1956

1958
1959
1960

1962
1963
1964
1965
1966
1967
1968
1969
1970

1972
1973

1975
1976
1977

1979
1980

1982
1983
1984
1985

}
ASSERT(¢l ean- >dt dv_hashval == DTRACE_DYNHASH FREE) ;

/*

* Now we’ Il nove the clean list to our free list.

* It's inpossible for this to fail: the only way

* the free list can be updated is through this

* code path, and only one CPU can own the clean |ist.
* Thus, it would only be possible for this to fail if
* this code were racing with dtrace_dynvar_clean().

* (That is, if dtrace_dynvar_clean() updated the clean
* |list, and we ended up racing to update the free

* list.) This race is prevented by the dtrace_sync()
* in dtrace_dynvar_clean() -- which flushes the

* owners of the clean lists out before resetting

* the clean lists.

*

/

dcpu = &dst at e- >dt ds_per cpu[ne] ;

rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
ASSERT(rval == NULL);
goto retry;

}

dvar = free
new free = dvar->dtdv next ;

} while (dtrace_casptr(&dcpu- Sdt dsc _free, free, new free) != free);

/*

* We have now al | ocated a new chunk. W copy the tuple keys into the
* tupl e array and copy any referenced key data into the data space

* following the tuple array. As we do this, we relocate dttk_val ue

* in the final tuple to point to the key data address in the chunk.
*/

kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
dvar->dtdv_data = (void *)(kdata + ksize);
dvar->dtdv_tupl e. dtt_nkeys = nkeys;

for (i = 0; i < nkeys; i++) {
dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
size_t kesize = key[i].dttk_size;

if (kesize !=0)
dtrace_bcopy(
(const void *)(uintptr_t)key[i].dttk_val ue,
(void *)kdata, kesize);
dkey->dttk_val ue = kdat a;
kdat a += P2ROUNDUP(kesi ze, sizeof (uint64_t));

} else {
dkey->dttk_val ue = key[i].dttk_val ue;
}
dkey->dttk_si ze = kesi ze;
}
ASSERT(dvar - >dt dv_hashval == DTRACE_DYNHASH_FREE) ;
dvar - >dt dv_hashval = hashval ;

dvar->dtdv_next = start;

if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
return (dvar);

/*

* The cas has failed. Either another CPU is adding an el enent to
* this hash chain, or another CPU is deleting an element fromthis
* hash chain. The sinplest way to deal with both of these cases

new usr/src/uts/comon/ dtrace/ dtrace. c

1986
1987
1988
1989
1990
1991

1993

1995
1996
1997
1998

2000
2001

2003
2004
2005
2006
2007
2008
2009

2011
2012
2013
2014
2015
2016
2017

2019
2020

eeis
prevent

vstate));

* (though not necessarily the npst efficient) is to free our
* allocated block and tail-call ourselves. Note that the fr
* to the dirty list and _not_ to the free list. This is to
* races with allocators, above.
dvar - >dt dv_hashval = DTRACE_DYNHASH_FREE;
dt race_menbar _producer () ;
do {
free = dcpu->dtdsc_dirty;
dvar - >dt dv_next = free;
} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
return (dtrace_dynvar(dstate, nkeys, key, dsize, op, nstate,
}
/ * ARGSUSED* /
static void

dtrace_aggregate_m n(uint64_t *oval, uint64_t nval, uint64_t arg)

if ((int64_t)nval < (int64_t)*oval)
*oval = nval;
}
| * ARGSUSED* /
static void

dtrace_aggregate_nmax(uint64_t *oval, uint64_t nval, uint64_t arg)
if ((int64_t)nval > (int64_t)*oval)
*oval = nval;

}

static void

dtrace_aggregate_quanti ze(uint64_t *quanta, uint64_t nval, uint64_t i

2021 {

2022
2023

2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038

2040
2041
2042

2044
2045

2047

int i, zero
int64_t val

DTRACE_QUANTI ZE_ZEROBUCKET;
(int64_t)nval;

if (val <0) {
for (i =0; i < zero; i++) {
if (val <= DTRACE_QUANTI ZE_BUCKETVAL(i)) {
quantal[i] += incr;
return;

} else {
for (i = zero + 1; i < DTRACE_QUANTI ZE NBUCKETS; i ++)
if (val < DTRACE_QUANTI ZE_BUCKETVAL(i)) {
quantali - 1] += incr;
return;

}

quant a[DTRACE_QUANTI ZE_NBUCKETS - 1] += incr;
return;

}

: ASSERT(0) ;

static void

2048 dtrace_aggregate_| quantize(uint64_t *lquanta, uint64_t nval, uint64_t
2049 {

2050 uint64_t arg = *l quant at+;

2051 int32_t base = DTRACE LQUANTI ZE BASE(arg);

ncr)

{

incr)

new usr/src/uts/comon/ dtrace/ dtrace. c 31

2052
2053
2054

2056
2057

2059
2060
2061
2062
2063
2064
2065

2067

2069
2070
2071
2072

2074
2075
2076
2077
2078

2080
2081
2082
2083
2084
2085

2087
2088

2090
2091

2093
2094
2095
2096
2097
2098

2100
2101

2103
2104
2105
2106
2107
2108
2109
2110
2111
2112

2114
2115
2116
2117

}

uint16_t step = DTRACE_LQUANTI ZE_STEP(arg);
uintl6_t |evels = DTRACE_LQUANTI ZE_LEVELS(arg);
int32_t val = (int32_t)nval, level;

ASSERT(step != 0);
ASSERT(| evel s != 0);

if (val < base) {
/*

* This is an underfl ow.

&/
| quanta[0] += incr;
return;

}

level = (val - base) / step;

if (level < levels) {
I quanta[l evel + 1] += incr;
return;

}

/*
* This is an overflow
*

I quanta[levels + 1] += incr;

static int
dtrace_aggregate_| | quanti ze_bucket (uint16_t factor, uintl6_t |ow,

{

uintl6_t high, uintl6_t nsteps, int64_t val ue)

int64_t this = 1, |last, next;
int base = 1, order;

ASSERT(factor <= nsteps);
ASSERT(nsteps % factor == 0);

for (order = 0; order < |ow, order++)
this *= factor;

/*
* |f our value is less than our factor taken to the power of the
* | ow order of nmgnitude, it goes into the zeroth bucket.
*
if (value < (last = this))
return (0);

for (this *= factor; order <= high; order++) {
int nbuckets = this > nsteps ? nsteps : this;

if ((next =this * factor) < this) {
*

* We should not generally get |og/linear quantizations
* with a high magnitude that allows 64-bits to
* overflow, but we nonethel ess protect against this
* by explicitly checking for overflow, and cl anping
*/ our val ue accordingly.
*
value = this - 1;

}
if (valu;e < this) {

* |f our value lies within this order of magnitude,
* determine its position by taking the offset within

new usr/src/uts/comon/ dtrace/ dtrace. c

2118
2119
2120
2121
2122

2124
2125
2126
2127

2129
2130
2131
2132
2133
2134 }

* the order of magnitude, dividing by the bucket
* width, and adding to our (accunul ated) base.

*/

return (base + (value - last) / (this / nbuckets));

}

base += nbuckets - (nbuckets / factor);
last = this;

this = next;

}

/*

* Qur value is greater than or equal to our factor taken to the
* power of one plus the high magnitude -- return the top bucket.
*/

return (base);

2136 static void
2137 dtrace_aggregate_ ||l quantize(uint64_t *Illquanta, uint64_t nval, uint64_t incr)

2138 {
2139
2140
2141
2142
2143

2145
2146
2147 }

uint64_t arg = *I| quantat+;

uint16_t factor = DTRACE_LLQUANTI ZE_FACTOR(ar g);
uint16_t |low = DTRACE_LLQUANTI ZE_LOW arg) ;
uint16_t high = DTRACE_LLQUANTI ZE_H GH(arg);
uint16_t nsteps = DTRACE_LLQUANTI ZE_NSTEP(arg);

Il quant a[dt race_aggregat e_| | quanti ze_bucket (factor,
low, high, nsteps, nval)] += incr;

2149 /* ARGSUSED*/
2150 static void
2151 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)

2152 {
2153
2154
2155 }

dat a[0] ++;
data[1] += nval;

2157 | * ARGSUSED*/
2158 static void
2159 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)

2160 {
2161
2162

2164
2165

2167
2168
2169
2170
2171
2172
2173
2174
2175
2176

2178
2179
2180 }

int64_t snval = (int64_t)nval;
uint64_t tnp[2];

dat a[0] ++;
data[1] += nval;

/
What we want to say here is:

data[2] += nval * nval;

But given that nval is 64-bit, we could easily overflow, so
we do this as 128-bit arithmetic.

* Ok K ok kb ko

if (snval < 0)
snval = -snval;

dtrace_nul tiply_128((uint64_t)snval, (uint64_t)snval, tnp);
dtrace_add_128(data + 2, tnp, data + 2);

2182 | * ARGSUSED* /
2183 static void

32

new usr/src/uts/comon/ dtrace/ dtrace. c

2184 dtrace_aggregate_count (uint64_t *oval, uint64_t nval, uint64_t arg)

2185 {

2186 *oval = *oval + 1;

2187 }

2189 /* ARGSUSED*/

2190 static void

2191 dtrace_aggregate_sun(uint64_t *oval, uint64_t nval, uint64_t arg)

2192 {

2193 *oval += nval;

2194 }

2196 /*

2197 * Aggregate given the tuple in the principal data buffer, and the aggregating
2198 * action denoted by the specified dtrace_aggregation_t. The aggregation
2199 * buffer is specified as the buf paraneter. This routine does not return
2200 * failure; if there is no space in the aggregation buffer, the data will be
2201 * dropped, and a correspondi ng counter incremnented.

2202 *

2203 static void

2204 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,

2205 intptr_t offset, dtrace buffer_t *buf, uint64_t expr, uint64_t arg)
2206 {

2207 dtrace_recdesc_t *rec = &gg->dtag_action.dta_rec;

2208 uint32_t i, ndx, size, f5| ze;

2209 uint32_t align = sizeof (uint64_t) - 1,

2210 dtrace_aggbuffer_t *agb;

2211 dtrace_aggkey_t *key;

2212 uint32_t hashval =0, limt, isstr;

2213 caddr _t tonmex, data, kdata;

2214 dtrace_actkind_t action;

2215 dtrace_action_t *act;

2216 uintptr_t offs;

2218 if (buf == NULL)

2219 return;

2221 if (!agg->dtag_hasarg) {

2222 /*

2223 * Currently, only quantize() and | quantize() take additional
2224 * arguments, and they have the same semantics: an increnent
2225 * value that defaults to 1 when not present. |f additional
2226 * aggregating actions take argunents, the setting of the
2227 * default argunent value will presumably have to beconme nore
2228 * sophisticated...

2229 */

2230 arg = 1;

2231 1

2233 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATI ON;

2234 size = rec->dtrd_of fset - agg->dtag_base;

2235 fsize = size + rec->dtrd_si ze;

2237 ASSERT(dbuf - >dtb_tomax != NULL);

2238 data = dbuf->dtb_tomax + offset + agg->dtag_base;

2240 if ((tomax = buf->dtb_tomax) == NULL) {

2241 dtrace_buffer_drop(buf)

2242 return;

2243 }

2245 /*

2246 * The netastructure is always at the bottom of the buffer.

2247 */

2248 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -

2249 si zeof (dtrace_aggbuffer _t));

33

new usr/src/uts/comon/dtrace/ dtrace.c 34
2251 if (buf->dtb_offset == 0) {

2252 /*

2253 * We just kludge up approximately 1/8th of the size to be
2254 * buckets. If this guess ends up being routinely

2255 * of f-the-mark, we nay need to dynamically readjust this
2256 * based on past perfornance.

2257 */

2258 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2260 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_ t *) <
2261 (uintptr_t)tomax || hashsize == 0) {

2262 /*

2263 * W' ve been given a ludicrously small buffer;

2264 * increnent our drop count and | eave.

2265 */

2266 dtrace_buffer_drop(buf);

2267 return;

2268 }

2270 /*

2271 * And now, a pathetic attenpt to try to get a an odd (or
2272 * perchance, a prine) hash size for better hash distribution.
2273 *

2274 if (hashsize > (DTRACE_AGGHASHSI ZE_SLEW << 3))

2275 hashsi ze - = DTRACE_AGGHASHSI ZE_SLEW

2277 agb- >dt agb_hashsi ze = hashsi ze;

2278 agh- >dt agb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -

2279 agb- >dt agb_hashsi ze * sizeof (dtrace_aggkey_t *));

2280 agb- >dtagb_free = (uintptr_t)agb->dtagb_hash;

2282 for (i = 0; i < agb->dtagb_ hash5|ze i++)

2283 agb >dt agb_hash[1] = NULL;

2284 }

2286 ASSERT(agg- >dtag_first != NULL);

2287 ASSERT(agg- >dtag_first->dta_i ntuple);

2289 /*

2290 * Cal cul ate the hash val ue based on the key. Note that we _don’t_
2291 * include the aggid in the hashing (but we will store it as part of
2292 * the key). The hashing algorithmis Bob Jenkins' "One-at-a-tine"
2293 * algorithm a sinple, quick algorithmthat has no known funnels, and
2294 * gets good distribution in practice. The efficacy of the hashing
2295 * algorithm (and a conparison with other algorithnms) may be found by
2296 * running the ::dtrace_aggstat MDB dcnd.

2297 *

2298 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2299 i = act->dta_rec. dird_offset - agg- >dt ag_base;

2300 limit =i + act->dta_rec.dtrd_size;

2301 ASS| ERT(I imt <= size);

2302 isstr = DTRACEACT_ ISSTRI NG act) ;

2304 for (; i <limt; i++) {

2305 hashval += data[i];

2306 hashval += (hashval << 10);

2307 hashval "= (hashval >> 6);

2309 if (isstr & data[i] == "\0")

2310 br eak;

2311 }

2312 }

2314 hashval += (hashval << 3);

2315 hashval "= (hashval >> 11);

new usr/src/uts/comon/ dtrace/ dtrace. c

2316

2318
2319
2320
2321
2322
2323

2325
2326
2327

2329
2330

2332
2333

2335
2336
2337
2338
2339
2340

2342
2343
2344

2346
2347
2348
2349

2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362

2364
2365
2366
2367
2368
2369
2370
2371
2372

2374
2375
2376
2377
2378
2379
2380
2381

next:

hashval += (hashval << 15);

/*
* Yes, the divide here is expensive -- but it's generally the |east
* of the performance i ssues given the amount of data that we iterate
* over to conpute hash val ues, conpare data, etc.
*/
ndx = hashval % agb->dtagb_hashsi ze;

for (key = agb->dtagb_hash[ndx]; key != NULL; key

ASSERT((caddr _t) key >= tomax);
ASSERT((caddr _t)key < tomax + buf->dtb_size);

= key->dt ak_next) {

if (hashval != key->dtak_hashval || key->dtak_size != size)
cont i nue;

kdata = key->dt ak_dat a;
ASSERT(kdata >= tomax &% kdata < tomax + buf->dtb_size);

for (act = agg->dtag_first;
act = act->dta_next)
i = act—>dt a_rec.dtrd_of fset - agg->dtag_base;
limt =i + act->dta_rec.dtrd_size;
ASSERT(I imt <= size);
i sstr DTRACEACT _| SSTRI NG act);

act->dta_i ntupl e;

for (; i < i i ++)
if (k data[l] I=dataf[i])
goto next;
if (isstr & data[i] == '\0")
br eak;
}
}
if (action != key->dtak_action) {
/*
* W are aggregating on the sane value in the sanme
* aggregation with two different aggregating actions.
* (This should have been picked up in the conpiler,
* so we may be dealing with errant or devious D F.)
* This is an error condition; we indicate as much,
* and return.
*/
DTRACE_CPUFLAG SET(CPU_DTRACE | LLOP) ;
return;
}
/*

* This is a hit: we need to apply the aggregator to
* the value at this key.

*/
agg- >dt ag_aggregate((uint64_t *)(kdata + size), expr, arg);
return;
conti nue;
}
/*

* W didn't find it. W need to allocate sonme zero-filled space,

* link it into the hash table appropriately, and apply the aggregator

* to the (zero-filled) val ue.
*/
of fs = buf->dtb_of fset;
while (offs & (align - 1))
offs += sizeof (uint32_t);

35

new usr/src/uts/comon/ dtrace/ dtrace. c

2383
2384
2385
2386
2387
2388
2389
2390
2391

2393
2394
2395
2396

2398
2399

2401
2402
2403
2404

2406
2407

2409
2410
2411
2412
2413
2414
2415

2417
2418

2420
2421
2422

2424
2425
2426
2427
2428

2430
2431

2433
2434
2435

2437
2438

2440
2441
2442
2443
2444

2446
2447

/*
* |f we don’t have enough roomto both allocate a new key _and_
* its associated data, increment the drop count and return.
*
f ((uintptr_t)tomax + offs + fsize >
agb->dtagb_free - sizeof (dtrace_aggkey_t)) {

dtrace_buf fer_drop(buf);

return;

}

/ * CONSTCOND* /

ASSERT(! (si zeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));

key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
agb->dtagb_free -= sizeof (dtrace_aggkey_t);

key->dtak_data = kdata = tomax + offs;
buf->dtb_of fset = offs + fsize;

/*

* Now copy the data across.
*

/

*((dtrace_aggid_t *)kdata) = agg->dtag_id;

for (i = sizeof (dtrace aggid_t); i < size; i++)
kdata[i] = datali];

/*

* Because strings are not zeroed out by default, we need to iterate
* | ooking for actions that store strings, and we need to explicitly
* pad these strings out with zeroes.

*/

for (act = agg >dtag first;
int nul;

act->dta_intuple; act = act->dta_next) {

i f (! DTRACEACT I SSTRI NG(act))
conti nue;

i = act->dta_rec.dtrd_offset - agg->dtag_base;
limt =i + act->dta_rec.dtrd_size;
ASSERT(limt <= size);

for (nul =0; i <limt;
if (nul)

i++) {

{
kdata[i] = '\0’
conti nue;

}

if (data[i] !="'\0")
conti nue;

nul = 1;

}

for (i = size; i < fsize; i++)
kdata[i] = O;

key->dt ak_hashval = hashval;

key- >dt ak_si ze = si ze;

key->dt ak_acti on = acti on;

key->dt ak_next = agb->dtagb_hash[ndx];
agb- >dt agb_hash[ndx] = key;

/*
* Finally, apply the aggregator.

new usr/src/uts/comon/ dtrace/ dtrace. c 37

2448 */

2449 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;

2450 agg- >dt ag_aggregate((ui nt64_t *) (key->dtak_data + size), expr, arg);
2451 }

2453 [*

2454 * G ven consuner state, this routine finds a speculation in the | NACTIVE
2455 * state and transitions it into the ACTIVE state. If there is no speculation
2456 * in the INACTIVE state, O is returned. |In this case, no error counter is
2457 * increnented -- it is up to the caller to take appropriate action.

2458 */

2459 static int
2460 dtrace_specul ation(dtrace_state_t *state)

2461 {

2462 int i =0;

2463 dtrace_specul ation_state_t current;

2464 uint32_t *stat = &state->dts_specul ati ons_unavail, count;

2466 while (i < state->dts_nspecul ations) {

2467 dtrace_specul ation_t *spec = &state->dts_specul ations[i];
2469 current = spec->dtsp_state;

2471 if (current != DTRACESPEC_ | NACTI VE)

2472 if (current == DTRACESPEC_COWM TTI NGVANY | |

2473 current == DTRACESPEC _COWMM TTI NG | |

2474 current == DTRACESPEC_DI SCARDI NG

2475 stat = &state->dts_specul ati ons_busy;

2476 i ++;

2477 conti nue;

2478 }

2480 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,

2481 current, DTRACESPEC ACTIVE) == current)

2482 return (i + 1);

2483 1

2485 /*

2486 * W couldn’t find a speculation. |f we found as nmuch as a single
2487 * busy specul ation buffer, we'll attribute this failure as "busy"
2488 * instead of "unavail".

2489 */

2490 do {

2491 count = *stat;

2492 } while (dtrace_cas32(stat, count, count + 1) != count);

2494 return (0);

2495 }

2497 [*

2498 * This routine commits an active speculation. |f the specified specul ation
2499 * is not in a valid state to performa commt(), this routine will silently do
2500 * nothing. The state of the specified speculation is transitioned according
2501 * to the state transition diagramoutlined in <sys/dtrace_inpl.h>

2502 */
2503 static void
2504 dtrace_specul ation_commit(dtrace_state_t *state, processorid_t cpu,

2505 dtrace_speci d_t which)

2506 {

2507 dtrace_specul ation_t *spec;

2508 dtrace_buffer_t *src, *dest;

2509 uintptr_t daddr, saddr, dlimt, slimt;
2510 dtrace_specul ation_state_t current, new
2511 intptr_t offs;

2512 uint64_t timestanp;

new usr/src/uts/comon/ dtrace/ dtrace. c

2514
2515

2517
2518
2519
2520

2522
2523
2524

2526
2527

2529
2530

2532
2533
2534
2535

2537
2538
2539
2540
2541
2542
2543
2544
2545
2546

2548
2549
2550

2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564

2566
2567
2568

2570
2571
2572
2573
2574

2576
2577
2578
2579

if (which == 0)
return;

if (which > state->dts_nspecul ations) {
cpu_core[cpu].cpuc_dtrace_flags | = CPU_DTRACE_| LLOP;
return;

}

spec = &state->dts_specul ati ons[which - 1];
src = &spec->dtsp_buffer[cpu];
dest = &state->dts_buffer[cpu];

do {
current = spec->dtsp_state;

if (current == DTRACESPEC COWM TTI NGVANY)
br eak;

switch (current) {

case DTRACESPEC | NACTI VE:

case DTRACESPEC_DI SCARDI NG
return;

case DTRACESPEC COWM TTI NG
/*
This is only possible if we are (a) commt()’ing

*

* without having done a prior speculate() on this CPU
* and (b) racing with another commt() on a different
.)

CPU. There’'s nothing to do -- we just assert that
* our offset is 0.
*/
ASSERT(src->dtb_of fset == 0);
return;

case DTRACESPEC_ACTI VE:
new = DTRACESPEC_COWM TTI NG
br eak;

case DTRACESPEC_ACTI VEONE:
/ *

* This speculation is active on one CPU. |f our

* buffer offset is non-zero, we know that the one CPU
* nust be us. Oherwise, we are conmtting on a

* different CPU fromthe specul ate(), and we nust

* rely on being asynchronously cl eaned.

*

/

if (src->dtb_offset !'= 0) {
new = DTRACESPEC_COWM TTI NG
br eak;

}

/ * FALLTHROUGH* /

case DTRACESPEC_ACTI VENVANY:
new = DTRACESPEC_COWM TTI NGVANY;
br eak;

defaul t:
ASSERT(0) ;

}
} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
current, new) != current);

/*

* W have set the state to indicate that we are committing this

* specul ation. Now reserve the necessary space in the destination
* buffer.

38

new usr/src/uts/comon/ dtrace/ dtrace. c

2580
2581
2582
2583
2584
2585

2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599

2601
2602
2603
2604
2605
2606

2608
2609
2610

2612

2614
2615

2617
2618
2619
2620
2621
2622
2623
2624
2625

2627
2628
2629
2630
2631

2633
2634
2635

2637
2638
2639
2640
2641

2643
2644
2645

*
if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
sizeof (uint64_t), state, NULL)) < 0) {
dtrace_buffer_drop(dest);
goto out;

-

* ok k& k%

We have sufficient space to copy the speculative buffer into the
primary buffer. First, nodify the specul ative buffer, filling
inthe timestanp of all entries with the current tine. The data
nmust have the commit() tinme rather than the tine it was traced,
so that all entries in the primary buffer are in tinmestanp order.
*

/
tinestanp = dtrace_gethrtime();
saddr = (uintptr_t)src->dtb_tonax;
slimt = saddr + src->dtb_of fset;
while (saddr < slimt) {
size_t size;
dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;

if (dtrh->dtrh_epi d == DTRACE_EPI DNONE) {
saddr += sizeof (dtrace_epid_t);
conti nue;

}
ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
size = state->dts_ecbs[dtrh->dtrh_epid - 1] ->dte_si ze;

ASSERT3U(saddr + size, <=, slimt);
ASSERT3U(si ze, >=, sizeof (dtrace_rechdr_t));
ASSERT3U(DTRACE_RECORD_LQAD Tl MESTAMP(dtrh), ==, U NT64_MAX);

DTRACE_RECORD_STORE_TI MESTAMP(dtrh, tinestanp)

saddr += si ze;

*
* Copy the buffer across. (Note that this is a
* highly subobtinmal bcopy(); in the unlikely event that this becones
* a serious perfornmance i ssue, a high-performance DTrace-specific
* bcopy() shoul d obviously be invented.)
*

/

daddr = (uintptr_t)dest->dtb_tomax + offs;
dlimt = daddr + src->dtb_of fset;
saddr = (uintptr_t)src->dtb_tonax;

/*
* First, the aligned portion.
*/

while (dlimt - daddr >= sizeof (uint64_t)) {
*((uint64_t *)daddr) = *((uint64_t *)saddr);
daddr += sizeof (uint64_t);
saddr += sizeof (uint64_t);

}

/*

* Now any left-over bit...
*

while (dlinmt - daddr)
*((uint8_t *)daddr++) = *((uint8_t *)saddr++);

* Finally, conmmt the reserved space in the destination buffer.
*/

39

new usr/src/uts/comon/dtrace/ dtrace.c 40
2646 dest->dtb_offset = offs + src->dtb_offset;

2648 out:

2649 /*

2650 * |f we're lucky enough to be the only active CPU on this specul ation
2651 * buffer, we can just set the state back to DTRACESPEC | NACTI VE.

2652 */

2653 if (current == DTRACESPEC ACTI VE ||

2654 (current == DTRACESPEC_ACTI VEONE && new == DTRACESPEC_COMM TTING)) {
2655 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2656 DTRACESPEC_COWM TTI NG DTRACESPEC_| NACTI VE) ;

2658 ASSERT(rval == DTRACESPEC_COWM TTI NG ;

2659 }

2661 src->dtb_of fset = 0;

2662 src->dt b_xanot _drops += src->dtb_drops;

2663 src->dtb_drops = O;

2664 }

2666 /*

2667 * This routine discards an active speculation. |f the specified specul ation
2668 * is not in a valid state to performa discard(), this routine will silently
2669 * do nothing. The state of the specified speculation is transitioned

2670 * according to the state transition diagramoutlined in <sys/dtrace_inpl.h>
2671 */

2672 static void

2673
2674

dtr

2675 {

2676
2677
2678

2680
2681

2683
2684
2685
2686

2688
2689

2691
2692

2694
2695
2696
2697
2698
2699

2701
2702
2703
2704

2706
2707
2708
2709
2710
2711

ace_specul ati on_di scard(dtrace_state_t *state, processorid_t cpu,
dtrace_speci d_t which)

dtrace_specul ation_t *spec;
dtrace_specul ation_state_t current, new,
dtrace_buffer_t *buf;

if (which == 0)
return;

if (which > state->dts_nspecul ations) {
cpu_core[cpu] . cpuc_dtrace_flags | = CPU_DTRACE_| LLOP;
return;

}

spec = &state->dts_specul ations[which - 1];
buf = &spec->dtsp_buffer[cpu];

do {
current = spec->dtsp_state;

switch (current) {

case DTRACESPEC_| NACTI VE

case DTRACESPEC_COWM TTI NGVANY:

case DTRACESPEC COW TTI NG

case DTRACESPEC_DI SCARDI NG
return;

case DTRACESPEC ACTI VE:

case DTRACESPEC_ACTI VENVANY:
new = DTRACESPEC_DI SCARDI NG
br eak;

case DTRACESPEC_ACTI VEONE:
if (buf->dtb_offset != 0) {
new = DTRACESPEC_| NACTI VE
} else {
new = DTRACESPEC_DI SCARDI NG
}

new usr/src/uts/comon/ dtrace/ dtrace. c 41

2712

2714
2715
2716
2717
2718

2720
2721
2722

2724
2725
2726
2727
2728
2729
2730

}
/

EE R
-

br eak;

defaul t:
ASSERT(0) ;

}
} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
current, new) != current);

buf - >dt b_of f set = 0;
buf - >dt b_drops = 0;

not called fromprobe context. This function is called

asynchronously fromcross call context to clean any speculations that are
in the COW TTI NGVANY or DI SCARDI NG st at es.
transitioned back to the I NACTIVE state until all CPUs have cleaned the
specul ati on.

These specul ati ons may not be

2731 static void
dtrace_specul ati on_cl ean_here(dtrace_state_t *state)
{

2732
2733
2734
2735
2736
2737

2739

2741
2742
2743
2744

2746
2747
2748

2750
2751

2753
2754
2755
2756

2758
2759

2761
2762

2764
2765

2767
2768

2770
2771
2772
2773
2774
2775
2776
2777

}
/

* Ok Ok ok E F % O

dtrace_i cooki e_t cooki e;

processorid_t cpu = CPU >cpu_id;

dtrace_buffer_t *dest = &state->dts_buffer[cpu];
dtrace_specid_t i;

cooki e = dtrace_i nterrupt _di sabl e();

if (dest->dtb_tomax == NULL)
dtrace_i nterrupt_enabl e(cooki e);

return;
}
for (i = 0; i < state->dts_nspecul ations; i++)
dtrace_specul ation_t *spec = &state->dts_specul ations[i];
dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
if (src->dtb_tomax == NULL)
cont i nue;
if (spec->dtsp_state == DTRACESPEC DI SCARDI NG {
src->dtb_of fset = O;
cont i nue;
}
if (spec->dtsp_state != DTRACESPEC COWM TTI NGVANY)
cont i nue;
if (src->dtb_offset == 0)
conti nue;
dtrace_specul ati on_comm t(state, cpu, i + 1);
}

dtrace_i nterrupt _enabl e(cooki e);

not called fromprobe context. This function is called

asynchronously (and at a regular interval) to clean any specul ations that
are in the COW TTI NGVANY or DI SCARDI NG states. If it discovers that there
is work to be done, it cross calls all CPUs to performthat work;

COW TMANY and DI SCARDI NG specul ati ons nay not be transitioned back to the
I NACTI VE state until they have been cl eaned by all CPUs.

new usr/src/uts/comon/dtrace/ dtrace. c 42

2778 static void
2779 dtrace_specul ati on_cl ean(dtrace_state_t *state)

2780
2781
2782

2784
2785

2787

2789
2790
2791

2793
2794
2795

2797
2798

2800
2801

2803
2804
2805
2806
2807
2808
2809
2810

2812
2813

2815
2816
2817

2819

2821
2822
2823
2824
2825

2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840

2842
2843

{

* Ok kR Ok Ok ¥
-~

int work =0, rv;
dtrace_specid_t i;

for (i = 0; i < state->dts_nspecul ations; i++)
dtrace_specul ation_t *spec = &state->dts_specul ations[i];

ASSERT(! spec->dt sp_cl eani ng) ;

if (spec->dtsp_state != DTRACESPEC DI SCARDI NG &&
spec- >dt sp_state ! = DTRACESPEC_COWM TTI NGVANY)
conti nue;

wor kK++;
spec->dtsp_cl eaning = 1;

}

if (!work)
return;

dtrace_xcal | (DTRACE_CPUALL,
(dtrace_xcal |l _t)dtrace_specul ati on_cl ean_here, state);

/*

* W now know that all CPUs have committed or discarded their

* specul ation buffers, as appropriate. W can now set the state
* to inactive.

*/

for (i = 0; i < state->dts_nspecul ations; i++)
dtrace_specul ation_t *spec = &state->dts_specul ations[i];
dtrace_specul ation_state_t current, new,

if (!spec->dtsp_cl eaning)
cont i nue;

current = spec->dtsp_state;
ASSERT(current == DTRACESPEC DI SCARDI NG | |
current == DTRACESPEC_COWMM TTI NGVANY) ;

new = DTRACESPEC_| NACTI VE
rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);

ASSERT(rv == current);
spec->dt sp_cl eaning = 0;

Call ed as part of a speculate() to get the specul ative buffer associated
with a given specul ation.
in an ACTI VE state.
the active CPU is not the specified CPU -- the speculation will be
atomically transitioned into the ACTI VEMANY state.

Returns NULL if the specified speculation is not
If the speculation is in the ACTI VEONE state -- and

static dtrace_buffer_t *
dtrace_specul ati on_buffer(dtrace_state_t *state, processorid_t cpuid,

{

dtrace_speci d_t which)

dtrace_specul ation_t *spec;
dtrace_specul ation_state_t current, new,
dtrace_buffer_t *buf;

if (which == 0)
return (NULL);

new usr/src/uts/comon/ dtrace/ dtrace. c 43

2845
2846
2847
2848

2850
2851

2853
2854

2856
2857
2858
2859
2860

2862
2863
2864

2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876

2878
2879

2881
2882

2884
2885
2886

2888
2889
2890
2891
2892

2894

2895

2896 }
/

2898
2899
2900
2901
2902
2903
2904
2905

* ok kb ¥ O

*

*/

if (which > state->dts_nspecul ations) {
cpu_core[cpui d].cpuc_dtrace_flags | = CPU_DTRACE_| LLOP;
return (NULL);

}

spec = &state->dts_specul ati ons[which - 1];
buf = &spec->dtsp_buffer[cpuid];

do {

current = spec->dtsp_state;

switch (current)

case DTRACESPEC | NACTI VE:

case DTRACESPEC_COWM TTI NGVANY:

case DTRACESPEC_DI SCARDI NG
return (NULL);

case DTRACESPEC_COW TTI NG
ASSERT(buf - >dt b_of fset == 0);
return (NULL);

case DTRACESPEC_ACT | VEONE:
/*
* This speculation is currently active on one CPU.
* Check the offset in the buffer; if it’'s non-zero,
* that CPU nust be us (and we leave the state al one).
* If it's zero, assune that we're starting on a new
* CPU -- and change the state to indicate that the
* specul ation is active on nore than one CPU.
*/
f (buf->dtb_offset != 0)

return (buf);

new = DTRACESPEC_ACTI VENVANY;
break;

case DTRACESPEC_ACTI VEMVANY:
return (buf);

case DTRACESPEC_ACTI VE:
new = DTRACESPEC_ACTI VEONE;
break;

defaul t:
ASSERT(0) ;

}

} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
current, new) != current);

ASSERT(new == DTRACESPEC_ACTI VEONE || new == DTRACESPEC_ACTI VENMANY) ;
return (buf);

Return a string. |In the event that the user lacks the privilege to access
arbitrary kernel menory, we copy the string out to scratch menory so that we
don’t fail access checking.

dtrace_dif_variabl e() uses this routine as a hel per for various
builtin val ues such as ’execnane’ and ’probefunc.’

2906 uintptr_t
2907 dtrace_dif_varstr(ui nt ptr_t addr, dtrace_state_t *state,

2908
2909 {

dtrace_nstate_t *nstate)

new usr/src/uts/comon/dtrace/ dtrace.c 44
2910 uint64_t size = state->dts_opti ons[DTRACEOPT_STRSI ZE] ;

2911 uintptr_t ret;

2912 size_t strsz;

2914 /*

2915 * The easy case: this probe is allowed to read all of nmenory, so
2916 * we can just return this as a vanilla pointer.

2917 */

2918 if ((mstate->dtns_access & DTRACE_ACCESS KERNEL) != 0)

2919 return (addr);

2921 /*

2922 * This is the tougher case: we copy the string in question from
2923 * kernel nenory into scratch menmory and return it that way: this
2924 * ensures that we won't trip up when access checking tests the
2925 * BYREF return val ue.

2926 */

2927 strsz = dtrace_strlen((char *)addr, size) + 1;

2929 if (mstate->dtnms_scratch_ptr + strsz >

2930 met at e- >dt ns_scr at ch_base + nst at e- >dt ms_scrat ch_si ze) {

2931 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH) ;

2932 return (NULL);

2933 }

2935 dtrace_strcpy((const void *)addr, (void *)nstate->dtnms_scratch_ptr,
2936 strsz);

2937 ret = nstate->dtnms_scratch_ptr;

2938 nst at e- >dt ms_scratch_ptr += strsz;

2939 return (ret);

2940 }

2942 | *

2943 * This function inplenments the DIF enulator’s variable | ookups. The enul ator
2944 * passes a reserved variable identifier and optional built-in array index.
2945 */

2946 static uint64_t

2947 dtrace_dif_variabl e(dtrace_nstate_t *nstate, dtrace_state_t *state, uint64_t v,
2948 ui nt 64_t ndx)

2949 {

2950 *

2951 * |f we're accessing one of the uncached argunents, we'll turn this
2952 * into a reference in the args array.

2953 */

2954 if (v > DIF_VAR AR && v <= DI F_VAR AR®) {

2955 ndx = v - DI F_VAR ARQD;

2956 v = DI F_VAR ARGS;

2957 1

2959 switch (v) {

2960 case DI F_VAR ARGS:

2961 if (!'(mstate->dtnms_access & DTRACE_ACCESS_ARGS)) {

2962 cpu_cor e[CPU->cpu_| |d] cpuc_dtrace flags |=

2963 CPU_DTRACE_KPRI V.

2964 return (0);

2965 }

2967 ASSERT(st at e- >dt ns_pr esent & DTRACE_MSTATE_ARGS) ;

2968 if (ndx >= sizeof (nstate->dtns_arg) /

2969 si zeof (nstate- >dtms _arg[0])) {

2970 int afranes = nst ate >dt ms_pr obe- >dt pr _afranes + 2;
2971 dtrace_provider_t *pv;

2972 uint64_t val;

2974 pv = mnst at e- >dt ms_pr obe- >dt pr _provi der;

2975 i f (pv->dtpv_pops.dtps_getargval != NULL)

new usr/src/uts/comon/ dtrace/ dtrace. c

2976
2977
2978
2979
2980

2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992

2994
2995

2997

2999
3000

3002
3003

3005
3006
3007
3008
3009

3011
3012

3014
3015

3017
3018

3020

3022
3023

3025

3027
3028

3030
3031

550
3032
3033

3035
3036
3037
3038
3039
3040

val = pv->dtpv_pops. dt ps_get ar gval (pv->dtpv_arg,
mstate >dt ms_pr obe- >dt pr _i d,
st at e- >dt ms_pr obe- >dt pr arg, ndx, afranes);

val = dtrace_getarg(ndx, afranes);

*
* This is regrettably required to keep the conpiler
* fromtail-optimzing the call to dtrace getarg()
* The condition always evaluates to true, but th
* conpiler has no way of figuring that out a pr|or|.
* (None of this would be necessary if the conpiler
* could be relied upon to _always_ tail-optimze
* the call to dtrace_getarg() -- but it can't.)
*
/
if (mstate->dtnms_probe != NULL)

return (val);

| ASSERT(0) ;

return (nstate->dtms_arg[ndx]);

case DI F_VAR UREGS: {
klwp_t *1 wp;

if (!dtrace_priv_proc(state, nstate))
return (0);

if ((Iwp = curthread->t_|wp) == NULL)
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR) ;
cpu_core[CPU->cpu_i d] . cpuc_dtrace_ill val = NULL;
) return (0);

return (dtrace_getreg(lwp->lwp_regs, ndx));
}

case DI F_VAR VMREGS: {
uint64_t rval;

if (!dtrace_priv_kernel (state))
return (0);

DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;

rval = dtrace_getvnr eg(ndx,
&cpu_cor e[CPU->cpu_i d] . cpuc_dtrace_fl ags);

DTRACE_CPUFLAG CLEAR(CPU_DTRACE_NOFAULT) ;

return (rval);

}

case DI F_VAR CURTHREAD:
if (Tdtrace._| priv_proc(state, nstate))
if (!dtrace_priv_kernel (state))
return (0);
return ((uint64_t)(uintptr_t)curthread);

case DI F_VAR Tl NESTAWP:

if (!'(nmstate->dtms_present & DTRACE_NBTATE_TI MESTAWP)) {
nstate->dtns_tinestanp = dtrace_gethrtine();

net at e- >dt ms_pr esent | = DTRACE_MSTATE_TI MESTAMWP;

return (nstate->dtns_tinestanp);

45

new usr/src/uts/comon/dtrace/ dtrace.c 46
3042 case DI F_VAR VTI MESTAMP:

3043 ASSERT(dtrace_vtine_references != 0);

3044 return (curthread->t_dtrace_vtine);

3046 case DI F_VAR WALLTI MESTAMP:

3047 if (T(nmstate->dtms_present & DTRACE_MSTATE WALLTI MESTAMP)) {
3048 mst at e->dt ms_wal | ti mestanp = dtrace_get hrestinme();
3049 nst at e- >dt ms_present | = DTRACE_MSTATE_WALLTI NESTAI\/P;
3050

3051 return (mstate->dtns_walltinestanp);

3053 case DI F_VAR | PL:

3054 if (!dtrace_priv_kernel (state))

3055 return (0);

3056 if (!(nmstate->dtnms_pr esent & DTRACE_ NE;TATE = 1PL)) {

3057 nstate->dtns_i pl = dtrace_geti pl

3058 et at e- >dt ms_present | = DTRACE_| IVSTATE I PL;

3059

3060 return (nmstate->dtns_ipl);

3062 case DI F_VAR EPI D:

3063 ASSERT(nst at e- >dt ns_present & DTRACE_MSTATE _EPI D) ;

3064 return (nstate->dtnms_epid);

3066 case DIF_VAR I D:

3067 ASSERT(nst at e- >dt ns_present & DTRACE_MSTATE_PROBE) ;

3068 return (nstate->dtnms_probe->dtpr_id);

3070 case DI F_VAR _STACKDEPTH:

3071 if (Tdtrace_priv_kernel (state))

3072 return (0);

3073 if (!(mstate->dtns_present & DTRACE_MSTATE_STACKDEPTH)) {
3074 int afranmes = nstate->dtns_probe->dtpr_aframes + 2;
3076 nst at e- >dt ms_st ackdepth = dtrace_get st ackdept h(af ranes);
3077 nst at e- >dt ms_present | = DTRACE_MSTATE_STACKDEPTH,;
3078

3079 return (mstate->dtnms_stackdepth);

3081 case DI F_VAR USTACKDEPTH:

3082 if (!dtrace_priv_proc(state, nstate))

3083 return (0);

3084 if (!(mstate->dtnms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3085 /*

3086 * See comment in DI F_VAR PID.

3087 */

3088 i f (DTRACE_ANCHORED(nst at e- >dt ms_pr obe) &&

3089 CPU_ON_I NTR(CPU)) {

3090 nst at e- >dt ms_ust ackdepth = 0;

3091 } else {

3092 DTRACE_CPUFLAG SET(CPU_DTRACE_NOFAULT) ;
3093 nst at e- >dt ms_ust ackdepth =

3094 dtrace_get ust ackdept h();

3095 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT) ;
3096 }

3097 nst at e- >dt ms_present | = DTRACE_MSTATE_USTACKDEPTH,
3098

3099 return (nstate->dtns_ustackdepth);

3101 case DI F_VAR CALLER

3102 if (!dtrace_priv_kernel (state))

3103 return (0);

3104 if (!(mstate->dtns _pr esent & DTRACE_MSTATE_CALLER))

3105 int aframes = nstate->dtms_probe->dtpr_afranes + 2;

new usr/src/uts/comon/ dtrace/ dtrace. c 47

3107
3108
3109
3110
3111
3112
3113
3114

3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126

3128
3129
3130

3132
3133
3134

3136
3137
3138

3140
3141

3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156

3158

3160
3161
3162
3163
3164

3166
3167
3168
3169
3170

3172

i f (! DTRACE_ANCHORED(st at e- >dt ns_pr obe)) {
/*

* If this is an unanchored probe, we are
* required to go through the slow path:
* dtrace_caller() only guarantees correct
* results for anchored probes.
*

/

pc_t caller[2];

dtrace_get pcstack(cal ler, 2, afranes,
(uint32_t *)(uintptr_t)nstate->dtns_arg[0]);
nstate->dtns_caller = caller[1];
} else if ((nstate->dtnms_caller =
dtrace_cal l er(afranes)) == -1) {
/*
* W have failed to do this the quick way;
* we nust resort to the slower approach of
* calling dtrace_getpcstack().
*
/

pc_t caller;

dtrace_get pcstack(&cal ler, 1, afranes, NULL);
mstate->dtnms_caller = caller;

}

nst at e- >dt ms_present | = DTRACE_MSTATE_CALLER;
}
return (nmstate->dtms_caller);

case DI F_VAR UCALLER:
if (ldtrace_priv_proc(state, nstate))
return (0);

if (!(mstate->dtns_present & DTRACE_MSTATE_UCALLER)) {
uint64_t ustack[3];

/
dtrace_getupcstack() fills in the first uint64_t
with the current PID. The second uint64_t wll
be the program counter at user-level. The third
uint64_t will contain the caller, which is what
we're after.

* ok ok k%

*
/
ustack[2] = NULL;
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;
dtrace_get upcstack(ustack, 3);
DTRACE_CPUFLAG_CLEAR(CPU DTRACE = NOFAULT) ;
mst at e- >dt ms_ucal | er = ustack[2];
st at e- >dt ms_present | = DTRACE MSTATE UCALLER;
}

return (mstate->dtns_ucaller);

case DI F_VAR PROBEPROV:
ASSERT(st at e- >dt ns_present & DTRACE_MSTATE_PROBE) ;
return (dtrace_dif_varstr(
(uintptr_t)mstate->dt ns_probe->dtpr_provider->dt pv_nane,
state, nstate));

case DI F_VAR_ PROBEMOD:
ASSERT(nst at e- >dt ns_present & DTRACE_MSTATE_PROBE) ;
return (dtrace_dif_varstr(
(ui ntptr_t)nstate->dtns_probe->dt pr_nod,
state, mstate));

case DI F_VAR_PROBEFUNC:

new usr/src/uts/comon/dtrace/ dtrace.c 48
3173 ASSERT(st at e- >dt ns_present & DTRACE_MSTATE_PROBE) ;

3174 return (dtrace_dif_varstr(

3175 (ui ntptr_t)nstate->dtns_probe->dtpr_func,

3176 state, nstate));

3178 case DI F_VAR PROBENAME:

3179 ASSERT(st at e- >dt ms_pr esent & DTRACE_MSTATE_PROBE) ;

3180 return (dtrace_dif_varstr(

3181 (ui ntptr_t)nstate->dt ns_probe->dt pr_nane,

3182 state, mstate));

3184 case DI F_VAR PI D

3185 if (Tdtrace_priv_proc(state, nstate))

3186 return (0);

3188 /*

3189 * Note that we are assuming that an unanchored probe is
3190 * always due to a high-level interrupt. (And we' re assum ng
3191 * that there is only a single high level interrupt.)

3192 */

3193 i f (DTRACE_ANCHORED(nst at e- >dt ns_pr obe) && CPU_ON_|I NTR(CPU))
3194 return (pid0.pid_id);

3196 /*

3197 * |t is always safe to dereference one’s own t_procp pointer:
3198 * it always points to a valid, allocated proc structure.
3199 * Further, it is always safe to dereference the p_pi dp nmenber
3200 * of one’s own proc structure. (These are truisnms becuase
3201 * threads and processes don’t clean up their own state --
3202 * they leave that task to whonever reaps them)

3203 */

3204 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);

3206 case DI F_VAR PPI D

3207 if (Tdtrace_priv_proc(state, nstate))

3208 return (0);

3210 /*

3211 * See comment in DI F_VAR PID.

3212 */

3213 i f (DTRACE_ANCHORED(nst at e- >dt ns_probe) && CPU_ON_| NTR(CPU))
3214 return (pid0.pid_id);

3216 /*

3217 * It is always safe to dereference one’s own t_procp pointer:
3218 * it always points to a valid, allocated proc structure.
3219 * (This is true because threads don’t clean up their own
3220 * state -- they leave that task to whonever reaps them)
3221 */

3222 return ((uint64_t)curthread->t_procp->p_ppid);

3224 case DIF_VAR TI D

3225 /*

3226 * See comment in DI F_VAR PID.

3227 */

3228 i f (DTRACE_ANCHORED(nst at e- >dt ns_probe) && CPU_ON_| NTR(CPU))
3229 return (0);

3231 return ((uint64_t)curthread->t_tid);

3233 case DI F_VAR EXECNAME:

3234 if (Tdtrace_priv_proc(state, nstate))

3235 return (0);

3237 /*

3238 * See comment in DI F_VAR PID.

new usr/src/uts/comon/ dtrace/ dtrace. c

3239
3240
3241

3243
3244
3245
3246
3247
3248
3249
3250
3251

3253
3254
3255

3257
3258
3259
3260
3261

3263
3264
3265
3266
3267
3268
3269
3270
3271

3273
3274
3275

3277
3278
3279
3280
3281

3283
3284
3285
3286
3287
3288
3289
3290
3291
3292

3294
3295
3296

3298
3299
3300
3301
3302

3304

*
i f (DTRACE_ANCHORED(nst at e- >dt ns_probe) && CPU_ON_| NTR(CPU))
return ((uint64_t)(uintptr_t)p0.p_user.u_com;

it always points to a valid, allocated proc structure.
(This is true because threads don't clean up their own
state -- they leave that task to whonever reaps them)

EE

*/

return (dtrace_dif_varstr(
(uintptr_t)curthread->t_procp->p_user.u_conm
state, nstate));

case DI F_VAR ZONENAME:
if (Tdtrace_priv_proc(state, nstate))
return (0);

/ *
* See comment in DI F_VAR PID.
*

if (DTRACE_ANCHORED(nst at e- >dt ns_probe) && CPU_ON_| NTR(CPU))
return ((uint64_t)(uintptr_t)p0.p_zone->zone_nane);

/*

* It is always safe to dereference one’s own t_procp pointer:
* it always points to a valid, allocated proc structure.

* (This is true because threads don't clean up their own
*/st ate -- they |leave that task to whonever reaps them)

*

return (dtrace_dif_varstr(
(uintptr_t)curthread->t_procp->p_zone->zone_nane,
state, nstate));

case DI F_VAR Ul D:
if (Tdtrace priv_proc(state, nstate))
return (0);

/ *
* See comrent in DI F_VAR PID.
*

i f (DTRACE_ANCHORED(nst at e- >dt ms_pr obe) && CPU_ON_I NTR(CPU))
return ((uint64_t)p0.p_cred->cr_uid);

Iways points to a valid, allocated proc structure.
s is true because threads don't clean up their own
e -- they leave that task to whonever reaps them)

- = —

hi
a

Additionally, it is safe to dereference one’s own process
edential, since this is never NULL after process birth.

return ((uint64_t)curthread->t_procp->p_cred->cr_uid);

case DIF_VAR G D
if (Tdtrace _priv_proc(state, nstate))

return (0);
/*
* See coment in DI F_VAR PID.
*/

i f (DTRACE_ANCHORED(nst at e- >dt ms_pr obe) && CPU _ON_I NTR(CPU))
return ((uint64_t)p0.p_cred->cr_gid);

| *

It is always safe to dereference one’'s own t_procp pointer:

is always safe to dereference one’s own t_procp pointer:

new usr/src/uts/comon/dtrace/ dtrace.c 50
3305 * It is always safe to dereference one’s own t_procp pointer:
3306 * it always points to a valid, allocated proc structure.
3307 * (This is true because threads don't clean up their own
3308 * state -- they |leave that task to whormever reaps them)
3309 *

3310 * Additionally, it is safe to dereference one’s own process
3311 * credential, since this is never NULL after process birth.
3312 */

3313 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);

3315 case DI F_VAR ERRNO {

3316 Klwp_t *Iwp;

3317 if (!dtrace_priv_proc(state, nstate))

3318 return (0);

3320 /*

3321 * See comment in DI F_VAR PID.

3322 */

3323 i f (DTRACE_ANCHORED(nst at e- >dt ns_probe) && CPU_ON_| NTR(CPU))
3324 return (0);

3326 /*

3327 * It is always safe to dereference one’s own t_lwp pointer in
3328 * the event that this pointer is non-NULL. (This is true
3329 * because threads and Iwps don't clean up their own state --
3330 * they leave that task to whonever reaps them)

3331 */

3332 if ((Iwp = curthread->t_lwp) == NULL)

3333 return (0);

3335 return ((uint64_t)l wp->lwp_errno);

3336 1

3337 defaul t:

3338 DTRACE_CPUFLAG_SET(CPU_DTRACE_| LLCP) ;

3339 return (0);

3340 1

3341 }

3343 [*

3344 * Enul ate the execution of DIrace |ID subroutines invoked by the call opcode.
3345 * Notice that we don't bother validating the proper nunber of argunents or
3346 * their types in the tuple stack. This isn't needed because all argunent
3347 * interpretation is safe because of our |oad safety -- the worst that can
3348 * happen is that a bogus program can obtain bogus results.

3349 */

3350 static void

3351 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,

3352 dtrace_key_t *tupregs, int nargs,

3353{ dtrace_nstate_t *nstate, dtrace_state_t *state)

3354

3355 volatile uint16_t *flags = &cpu_core[CPU->cpu_i d]. cpuc_dtrace_fI| ags;
3356 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3357 dtrace_vstate_t *vstate = &state->dts_vstate;

3359 uni on {

3360 mutex_inpl _t m;

3361 uint64_t nx;

3362 }m

3364 uni on {

3365 krw ock_t ri;

3366 uintptr_t rw

3367 }or;

3369 switch (subr) {

3370 case DI F_SUBR_RAND:

new usr/src/uts/comon/ dtrace/ dtrace. c 51

3371
3372

3374
3375
3376
3377
3378
3379

3381
3382
3383
3384
3385
3386

3388
3389
3390
3391
3392
3393

3395
3396
3397
3398
3399
3400
3401

3403
3404
3405
3406
3407
3408

3410
3411
3412

3414
3415
3416
3417
3418
3419

3421
3422
3423

3425
3426

3428
3429
3430
3431
3432

3434
3435
3436

regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
br eak;

case DI F_SUBR_MJTEX_OWNED:
if (!dtrace_canl oad(tupregs[o] dttk_val ue, sizeof (kmutex_t),
netate, vstate)) {
regs[rd] = NULL;
br eak;

}
mnx = dtrace_| oad64(tupregs[0].dttk_val ue);
i f (MJTEX_TYPE_ADAPTI VE(&m mi))

regs[rd] = MJUTEX_OANER(&m nmi) != MJTEX _NO OMNNER

regs[rd] = LOCK_HELD(&m mi . m spi n. m spi nl ock);
br eak;

case DI F_SUBR MUTEX_OWNER:
if (!dtrace_canl oad(tupregs[0].dttk_val ue, sizeof (knmutex_t),
nmetate, vstate)) {
regs[rd] = NULL;
br eak;

}
mnx = dtrace_| oad64(tupregs[0]. dttk _val ue);
if (NUTEX TYPE_ADAPTI VE(&m m) &
MUTEX O/\NER(&mm) = MJT _NO OWNER)
regs[rd] (uintptr_t)MITEX_ OMNER(&m mi) ;
el se
regs[rd] = 0;
br eak;

case DI F_SUBR MJTEX_TYPE_ADAPTI VE:
if (!dtrace_canl oad(tupregs[O0].dttk_val ue, sizeof (kmutex_t),
netate, vstate)) {
regs[rd] = NULL;

br eak;
}
mnx = dtrace_| oad64(tupregs[0].dttk_val ue);
regs[rd] = MJTEX_TYPE_ADAPTI VE(&m mi);
br eak;

case DI F_SUBR MJTEX_TYPE_SPI N:
if (!dtrace_canl oad(tupregs[0].dttk_val ue, sizeof (knmutex_t),
nstate, vstate)) {
regs[rd] = NULL;
break;

}

mnx = dtrace_| oad64(tupregs[0].dttk_val ue);
regs[rd] = MJUTEX_TYPE_SPI N(&m ni);
br eak;

case DI F_SUBR_RW READ HELD: {
uintptr_t tnp;

if (!dtrace_canl oad(tupregs[O0].dttk_val ue, sizeof (uintptr_t),
nstate, vstate)) {
regs[rd] = NULL;

br eak;
}
r.rw = dtrace Ioadptr(tupregs[O] dttk_val ue);
regs[rd] = _RW READ HELD(&r . tnp) ;
br eak;

new usr/src/uts/comon/ dtrace/ dtrace. c

3437

3439
3440
3441
3442
3443
3444

3446
3447
3448

3450
3451
3452
3453
3454
3455

3457
3458
3459

3461
3462
3463
3464
3465
3466
3467
3468

3470
3471
3472
3473
3474

3476
3477
3478
3479

3481
3482
3483

3485
3486
3487
3488
3489
3490

3492
3493
3494
3495
3496

3498
3499
3500
3501
3502

}

case DI F_SUBR RWWRI TE_HELD:
if (!dtrace_canl oad(tupregs[0].dttk_val ue, sizeof (krw ock_t),
nstate, vstate))
regs[rd] = NULL;
br eak;

}

r.rw = dtrace_| oadptr (tupr gs[0] . dttk_val ue);
regs[rd] = _RWWRI TE_HELD(& .ri);
br eak;

case DI F_SUBR RW | SWRI TER:
if (!dtrace_canl oad(tupregs[O].dttk_val ue, sizeof (krw ock_t),
nstate, vstate)) {
regs[rd] = NULL;
br eak;

}

r.rw = dtrace Ioadptr(tupregs[o] dttk_val ue);
regs[rd] = _RW.I SWRI TER(&r.
br eak;

case DI F_SUBR _BCOPY: {
/ *

* W need to be sure that the destination is in the scratch
* region -- no other region is allowed.
*/

uintptr_t src = tupregs[0].dttk_val ue;
uintptr_t dest = tupregs[1].dttk_val ue;
size_t size = tupregs[2].dttk_val ue;

if (!dtrace_inscratch(dest, size, nstate)) {
*flags | = CPU_DTRACE_BADADDR;
*illval = regs[rd];
br eak;

}

if (!dtrace_canl oad(src, size, nstate, vstate)) {
regs[rd] = NULL;

br eak;
}
dtrace_bcopy((void *)src, (void *)dest, size);
br eak;

}

case DI F_SUBR ALLOCA:
case DI F_SUBR COPYIN: {
uintptr_t dest = P2ROUNDUP(nst at e- >dt ms_scratch_ptr, 8);
uint64_t size =
tupregs[subr == DIF_SUBR ALLOCA ? 0 : 1].dttk_val ue;
size_t scratch_size = (dest - nstate->dtnms_scratch_ptr) + size;

/
This action doesn’t require any credential checks since
probes will not activate in user contexts to which the
enabl i ng user does not have permi ssions.

/

* ok kb ok

/*

* Rounding up the user allocation size could have overfl owed
* a large, bogus allocation (like -1ULL) to O.

*/

if (scratch_size < size ||

new usr/src/uts/comon/ dtrace/ dtrace. c

3503
3504
3505
3506
3507

3509
3510
3511
3512
3513

3515
3516
3517
3518

3520
3521
3522

3524
3525
3526
3527
3528
3529
3530
3531
3532
3533

3535
3536
3537
3538
3539

3541
3542
3543

3545
3546

3548
3549
3550
3551
3552
3553
3554
3555
3556
3557

3559
3560
3561

3563
3564
3565
3566
3567

}

| DTRACE_| NSCRATCH(nst at e, scratch_size)) {
DTRACE_CPUFLAG SET(CPU_DTRACE_NOSCRATCH) ;
regs[rd] = NULL;
br eak;

}

if (subr == DIF_SUBR COPYIN) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;

53

dtrace_copyi n(tupregs[0].dttk_val ue, dest, size, flags);

DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT) ;
}

net at e- >dt ns_scratch_ptr += scratch_si ze;
regs[rd] = dest;
br eak;

case DI F_SUBR_COPYI NTO {

}

uint64_t size = tupregs[1].dttk_val ue;
uintptr_t dest = tupregs[2].dttk_val ue;

/*

* This action doesn’t require any credential checks since
* probes will not activate in user contexts to which the
* enabl ing user does not have permi ssions.

*/

if (!dtrace_inscratch(dest, size, nstate)) {
*flags | = CPU_DTRACE BADADDR
*illval = regs[rd];
br eak;

}

DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;

dtrace_copyi n(tupregs[0].dttk_val ue, dest, size, flags);
DTRACE_CPUFLAG CLEAR(CPU_DTRACE_NOFAULT) ;

br eak;

case DI F_SUBR_COPYI NSTR:

uintptr_t dest = nstate->dtns_scratch_ptr;
uint64_t size = state->dts_opti ons[DTRACEOPT_STRSI ZF] ;

if (nargs > 1 && tupregs[1].dttk_value < size)
size = tupregs[1].dttk_value + 1;

This action doesn’t require any credential checks since
probes will not activate in user contexts to which the
enabl i ng user does not have perm ssions.

* ok Ok k%
-

if (!DTRACE_I NSCRATCH(nstate, size)) {
DTRACE_CPUFLAG SET(CPU_DTRACE_NOSCRATCH) ;
regs[rd] = NULL;
br eak;

}

DTRACE_CPUFLAG SET(CPU_DTRACE_NOFAULT) ;
dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT) ;

((char *)dest)[size - 1] ='\0";
net at e- >dt ns_scratch_ptr += size;
regs[rd] = dest;

br eak;

new usr/src/uts/comon/ dtrace/ dtrace. c

3569
3570
3571
3572
3573
3574

3576

3578
3579
3580
3581
3582

3584
3585

3587
3588

3590
3591
3592
3593
3594

3596
3597

3599
3600

3602
3603
3604
3605
3606
3607
3608
3609
3610

3612
3613
3614
3615
3616

3618
3619

3621
3622

3624
3625

3627
3628
3629
3630
3632

3634

case DI F_SUBR MSGSI ZE:

case DI F_SUBR_MBSGDSI ZE: {
uintptr_t baddr = tupregs[0].dttk_val ue, daddr;
uintptr_t wptr, rptr;
size_t count = 0;

int

cont = 0;

while (baddr !'= NULL && !(*flags & CPU_DTRACE FAULT)) {

}

if (!dtrace_canl oad(baddr, sizeof (mblk_t), nstate,
vstate)) {
regs[rd] = NULL;
br eak;

}

wptr = dtrace_| oadptr (baddr +
of fsetof (nbl k_t, b_wptr));

rptr = dtrace_l oadptr(baddr +
of fsetof (nbl k_t, b_rptr));

if (wptr < rptr)

*flags | = CPU DTRACE BADADDR;
*illval = tupregs[O].dttk_val ue;
br eak;

}

daddr = dtrace_| oadptr(baddr +
of fsetof (nbl k_t, b_datap));

baddr = dtrace_|
|

oadpt r (baddr +
of f set of (bl k_t

k_t, b_cont));

/*

* W want to prevent against denial -of-service here,
* so we're only going to search the list for

* dtrace_nsgdsi ze_max nbl ks.

*/

if (cont++ > dtrace_nsgdsi ze_max) {
*flags | = CPU_DTRACE_| LLOP;
br eak;

}

if (subr == DI F_SUBR MBGDSI ZE) {
if (dtrace_l oad8(daddr +
of fsetof (dbl k_t, db_type)) != M DATA)
conti nue;

}

count += wptr - rptr;

if (1(*flags & CPU_DTRACE FAULT))

regs[rd] = count;

br eak;
}
case DI F_SUBR_PROGENYOF: {
pid_t pid = tupregs[O].dttk_val ue;
proc_t *p;
int rval =0

DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;

for (p = curthread->t_procp; p != NULL; p = p->p_parent) {

new usr/src/uts/comon/ dtrace/ dtrace. c

3635
3636
3637
3638
3639

3641

3643
3644
3645

3647
3648
3649

3651
3652
3653
3654

3656
3657
3658
3659
3660
3661
3662
3663
3664

3666
3667
3668
3669

3671
3672
3673
3674
3675
3676
3677
3678
3679

3681
3682
3683
3684
3685

3687
3688
3689
3690

3692

3694
3695

3697
3698
3699
3700

if (p->p_pidp->pid_id == pid) {
rval 1;
br eak;

}
DTRACE_CPUFLAG CLEAR(CPU_DTRACE_NOFAULT) ;

regs[rd] = rval;
br eak;

}

case DI F_SUBR_SPECULATI ON:
regs[rd] = dtrace_specul ation(state);
br eak;

case DI F_SUBR _COPYQUT:
uintptr_t kaddr = tupregs[O].dttk_val ue;
uintptr_t uaddr = tupregs[1].dttk_val ue;
uint64_t size = tupregs[2].dttk_val ue;

if (!dtrace_destructive_disallow &
dtrace_priv_proc_control (state, nstate) &&
Idtrace_i stoxi c(kaddr, size)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;
dtrace_copyout (kaddr, uaddr, size, flags)
DTRACE_CPUFLAG CLEAR(CPU_ DTRACE NO=AULT)

}
br eak;

}

case DI F_SUBR COPYOUTSTR: {
uintptr_t kaddr = tupregs[O0].dttk_val ue;
uintptr_t uaddr = tupregs[1].dttk_val ue;
uint64_t size = tupregs[2].dttk_val ue;

if (!dtrace_destructive_disallow &&
dtrace_priv_proc_ control (state, nstate) &&
Idtrace_i stoxi c(kaddr, size)) {
DTRACE_CPUFLAG SET(CPU_DTRACE_NCFAULT) ;
dtrace_copyout str(kaddr, uaddr, size, flags);
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NCFAULT) ;

br eak;
}
case DI F_SUBR_STRLEN: {
size_t sz;
uintptr_t addr = (uintptr_t)tupregs[O0].dttk_val ue;
sz = dtrace_strlen((char *)addr,
st at e->dt s_opti ons[DTRACEOPT_STRSI ZE]) ;
if (!dtrace_canl oad(addr, sz + 1, nstate, vstate)) {
regs[rd] = NULL;
br eak;
}
regs[rd] = sz;
br eak;
}

case DI F_SUBR _STRCHR:
case DI F_SUBR_STRRCHR {
/ *

* W're going to iterate over the string |ooking for the

55

new usr/src/uts/comon/dtrace/ dtrace. c

3701
3702
3703
3704
3705
3706
3707
3708
3709

3711
3712
3713

3715
3716
3717

3719
3720
3721

3723
3724
3725
3726

3728
3729

3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750

3752

3754
3755
3756
3757

3759
3760
3761
3762
3763

3765
3766

}

56

* specified character. W will iterate until we have reached
* the string length or we have found the character. |If thi

* is DIF_SUBR_STRRCHR, we will look for the [ast occurrence
*/of the specified character instead of the first.

*

uintptr_t saddr = tupregs[O].dttk_val ue;

uintptr_t addr = tupregs[O].dttk_val ue;

uintptr_t limt = addr + state->dts_opti ons[DTRACEOPT_STRSI ZF] ;
char c, target = (char)tupregs[1].dttk_val ue;

for (regs[rd] = NULL; addr < limt; addr++) {
if ((c = dtrace I0ad8(addr)) == target) {
regs[rd] = add

if (subr == DI F_SUBR STRCHR)
br eak;

}

if (c =='\0)
br eak;

}

if (!dtrace_canl oad(saddr, addr - saddr, nstate, vstate)) {
regs[rd] = NULL;
br eak;

}

br eak;

case DI F_SUBR_STRSTR:
case DI F_SUBR_| NDEX:
case DI F_SUBR RI NDEX: {

/
We're going to iterate over the string | ooking for the
specified string. W will iterate until we have reached
the string length or we have found the string. (Yes, this
is done in the nost naive way possible -- but considering
that the string we're searching for is likely to be
relatively short, the conplexity of Rabin-Karp or simlar
hardly seens neri ted.)

* ok ok k% ok % ok %

char *addr = (char *)(uintptr_t)tupregs[O0].dttk_val ue;
char *substr = (char *)(uintptr_t)tupregs[1].dttk_val ue;
uint64_t size = state->dts_options[DTRACEOPT_STRSI ZE] ;
size_t len = dtrace_strlen(addr, size);

size_t sublen = dtrace_strlen(substr, size);

char *linmt = addr + len, *orig = addr;

int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;

int inc = 1;

regs[rd] = notfound;

if (!dtrace_canload((uintptr_t)addr, len + 1, nstate, vstate)) {
regs[rd] = NULL;

br eak;
}
if (!dtrace_canl oad((uintptr_t)substr, sublen + 1, nstate,
vstate))
regs[rd] = NULL;
br eak;
}

/*
* strstr() and index()/rindex() have simlar semantics if

new usr/src/uts/comon/ dtrace/ dtrace. c

3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777

3779
3780
3781
3782
3783
3784

3786
3787
3788
3789
3790
3791

3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832

* both strings are the enpty string: strstr() returns a
* pointer to the (enpty) string, and index() and rindex()
*/both return index O (regardl ess of any position argunent).
*
if (sublen == 0 && len == 0) {
if (subr == DI F_SUBR STRSTR)
regs[rd] = (uintptr_t)addr;

regs[rd] = 0;
}

if (subr !'= DI F_SUBR _STRSTR) {
if (subr == DI F_SUBR RI NDEX) {
limt =orig - 1;
addr += len;
inc = -1;

}

/*

* Both index() and rindex() take an optional position
* argunent that denotes the starting position.

*/

if (nargs == 3) {
int64_t pos = (int64_t)tupregs[2].dttk_val ue;

/*

* |f the position argument to index() is

* negative, Perl inplicitly clanps it at

* zero. This semantic is a little surprising
* given the special neaning of negative

* positions to simlar Perl functions |like
* substr(), but it appears to reflect a

* notion that index() can start froma

* negative index and increment its way up to
* the string. Gven this notion, Perl’s

* rindex() is at |least self-consistent in
* that it inplicitly clanps positions greater
* than the string length to be the string

* length. \here Perl conpletely |oses

* coherence, however, is when the specified
* substring is the enpty string (""). In

* this case, even if the position is

* negative, rindex() returns 0 -- and even if
* the position is greater than the |ength,
* index() returns the string length. These

* semantics violate the notion that index()

* shoul d never return a value less than the

* specified position and that rindex() should
* never return a value greater than the

* specified position. (One assunes that

* these semantics are artifacts of Perl’s

* inplermentation and not the results of

* deliberate design -- it beggars belief that
* even Larry Wall coul d desire such oddness.)
* While in the abstract one would w sh for

* consistent position semantics across

* substr(), index() and rindex() -- or at the
* very |east self-consistent position

* semantics for index() and rindex() -- we

* instead opt to keep with the extant Perl

* semantics, in all their broken glory. (Do
* we have nore desire to nmaintain Perl’s

* semantics than Perl does? Probably.)

*

/
if

(subr == DI F_SUBR RI NDEX) {

new usr/src/uts/comon/dtrace/ dtrace.c 58
3833 if (pos < 0) {

3834 if (sublen == 0)

3835 regs[rd] = 0;

3836 br eak;

3837 }

3839 if (pos > len)

3840 pos = len;

3841 } else {

3842 if (pos < 0)

3843 pos = 0;

3845 if (pos >= len) {

3846 if (sublen == 0)

3847 regs[rd] = len;
3848 br eak;

3849 }

3850 }

3852 addr = orig + pos;

3853 }

3854 }

3856 for (regs[rd] = notfound; addr !=1limt; addr += inc) {
3857 if (dtrace_strncnp(addr, substr, sublen) == 0)

3858 if (subr !''= DIF_SUBR STRSTR) {

3859 /*

3860 * As D index() and rindex() are
3861 * nodel ed on Perl (and not on awk),
3862 * we return a zero-based (and not a
3863 * one-based) index. (For you Perl
3864 * weenies: no, we're not going to add
3865 * $[-- and shouldn’t you be at a con
3866 * or sonet hing?)

3867 */

3868 regs[rd] = (uintptr_t)(addr - orig);
3869 br eak;

3870 }

3872 ASSERT(subr == DI F_SUBR STRSTR) ;

3873 regs[rd] = (uintptr_t)addr;

3874 br eak;

3875 }

3876 }

3878 br eak;

3879 }

3881 case DI F_SUBR_STRTOK: {

3882 uintptr_t addr = tupregs[O0].dttk_val ue;

3883 uintptr_t tokaddr = tupregs[1].dttk_val ue;

3884 uint64_t size = state->dts_options[DTRACEOPT_STRSI ZE] ;

3885 uintptr_t limt, toklimt = tokaddr + size;

3886 uint8_t c, tokmap[32]; /* 256 | 8 */

3887 char *dest = (char *)nstate->dtnms_scratch_ptr;

3888 int i;

3890 /*

3891 * Check both the token buffer and (later) the input buffer,
3892 * since both could be non-scratch addresses.

3893 */

3894 if (!dtrace_strcanl oad(tokaddr, size, nstate, vstate)) {
3895 regs[rd] = NULL;

3896 break;

3897 }

new usr/src/uts/comon/ dtrace/ dtrace. c 59

3899
3900
3901
3902
3903

3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927

3929
3930
3931
3932
3933
3934
3935

3937
3938
3939

3941
3942
3943

3945
3946
3947
3948
3949
3950
3951

3953
3954
3955

3957
3958
3959
3960
3961
3962
3963
3964

if (!DTRACE_I NSCRATCH(nstate, size)) {
DTRACE_CPUFLAG SET(CPU_DTRACE_NOSCRATCH) ;
regs[rd] = NULL;
br eak;

}
if (addr/:: NULL) {

* |f the address specified is NULL, we use our saved
* strtok pointer fromthe nstate. Note that this
* means that the saved strtok pointer is _only_
* valid within multiple enablings of the same probe --
* it behaves like an inplicit clause-local variable.
*

/

addr = nstate->dtns_strtok;
} else {/
If the user-specified address is non-NULL we nust
access check it. This is the only tine we have
a chance to do so, since this address nay reside
in the string table of this clause-- future calls
(when we fetch addr from nstate->dtns_strtok)
* would fail this access check.
*

* ok kb % ok

if (!dtrace_strcanl oad(addr, size, nstate, vstate)) {
regs[rd] = NULL;

br eak;

}
}
/*
* First, zero the token map, and then process the token
* string -- setting a bit in the map for every character
* found in the token string.
*/
for (i =0; i < sizeof (tokmap); i++)

tokmap[i] = O;

for (; tokaddr < toklimit; tokaddr++)
if ((c = dtrace_l oad8(tokaddr)) == "\0")
br eak;

ASSERT((c >> 3) < sizeof (tokmap));
) tokmap[c >> 3] |= (1 << (¢ & 0x7));

for (limt = addr + size; addr < limt; addr++) {
/*

* We're looking for a character that is _not_ contained
* in the token string.
*
/
if ((c = dtrace_load8(addr)) == "'\0")

br eak;

if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
br eak;

}

if (c =="\0") {
/*
* W reached the end of the string without finding
* any character that was not in the token string.
* We return NULL in this case, and we set the saved
* address to NULL as well.
*/

regs[rd] = NULL;

new usr/src/uts/comon/ dtrace/ dtrace. c

3965
3966
3967

3969
3970
3971
3972
3973
3974

3976
3977

3979
3980
3981

3983
3984
3985
3986
3987
3988
3989

3991
3992
3993
3994
3995
3996
3997
3998

4000
4001
4002
4003

4005
4006
4007
4008
4009

4011
4012

4014
4015

4017
4018
4019
4020
4021

4023
4024
4025
4026
4027
4028
4029

nst at e- >dt ms_strt ok = NULL;

break;
}
/*
* From here on, we're copying into the destination string.
*/
for (i =0; addr < limt & & i < size - 1; addr++) {
if ((c = dtrace_l oad8(addr)) == "'\0")
break;
if (tokmap[c >> 3] & (1 << (c & 0x7)))
br eak;
ASSERT(i < size);
dest[i++] = c;
}

ASSERT(i < size);

dest[i] ="'\0";

regs[rd] = (uintptr_t)dest;

met at e- >dt ms_scratch_ptr += size;
met at e- >dt ms_strtok = addr;

br eak;

}

case DI F_SUBR_SUBSTR: {
uintptr_t s = tupregs[0].dttk_val ue;
uint64_t size = state->dts_options[DTRACEOPT_STRSI ZE] ;
char *d = (char *)nstate->dtns_scratch_ptr;
int64_t index = (1nt64_t)tupregs[1].dttk_val ue;
int64_t remaining = (int64_t)tupregs[2].dttk_val ue;
size_t len = dtrace_strlen((char *)s, size);
int64_t i;

if (!dtrace_canload(s, len + 1, nstate, vstate)) {
regs[rd] = NULL;
br eak;

}

if (!DTRACE_I NSCRATCH(nstate, size)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_NGOSCRATCH) ;
regs[rd] = NULL;
break;

}

if (nargs <= 2)
remaining = (int64_t)size;

if (index < 0) {
index += len;

if (index < 0 & index + remaining > 0) {
remai ni ng += i ndex;

index = 0;
}
}
if (index >=len || index < 0) {
remaining = 0;
} elseif (remaining < 0) {
remai ning += len - index
} else if (index + remaining > size) {
remai ning = size - index;
}

new usr/src/uts/comon/ dtrace/ dtrace. c

4031
4032
4033
4034

4036

4038
4039
4040
4041

4043
4044
4045
4046
4047
4048
4049
4050

4052
4053
4054
4055
4056
4057
4058
4059
4060

4062
4063
4064
4065

4067
4068
4069
4070
4071

4073
4074
4075

4077
4078

4080
4081

4083
4084
4085
4086
4087
4088

4090
4091
4092
4093
4094
4095
4096

}

for (i =0; i < remining; i++
if ((d[i] = dtrace_load8(s + index +i)) == "\0")
br eak;
}
dli] ="'\0";

nst at e- >dt ns_scratch_ptr += size;
regs[rd] = (uintptr_t)d;
br eak;

case DI F_SUBR _TOUPPER:
case DI F_SUBR TOLOVER: {

uintptr_t s = tupregs[0].dttk_val ue;

uint64_t size = state->dts_options[DTRACEOPT_STRSI ZF] ;
char *dest = (char *)nstate->dtns_scratch_ptr, c;
size_t len = dtrace_strlen((char *)s, size);
char | ower, upper, convert;
int6d_t i;
if (subr == DI F_SUBR TOUPPER) {
lower = 'a’';
upper ="'z ;
convert ='A;
} else {
lower = "A';
upper ='2Z";
) convert =’'a’;

if (!dtrace_canload(s, len + 1, nstate, vstate)) {
regs[rd] = NULL;

br eak;
}
if (!DTRACE_I NSCRATCH(nstate, size)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_NGOSCRATCH) ;
regs[rd] = NULL;
break;
}
for (i =0; i <size - 1; i++)
if ((c = dtrace_load8(s +i)) =="'\0")
br eak;
if (c > lower &% c <= upper)
c = convert + (c - lower);
dest[i] = c;
ASSERT(i < size);
dest[i] = "\0";
regs[rd] = (uintptr_t)dest;

met at e- >dt ms_scratch_ptr += size;
br eak;

case DI F_SUBR_GETMAJOR:

}
#ifdef LP64
#el se
#endi f

regs[rd] = (tupregs[0].dttk_value >> NBI TSM NOR64) & MAXMAJ64;
regs[rd] = (tupregs[O].dttk_value >> NBI TSM NOR) & MAXNMAJ;

br eak;

61

new usr/src/uts/comon/dtrace/ dtrace.c 62
4098 case DI F_SUBR_GETM NOR:

4099 #ifdef _LP64

4100 regs[rd] = tupregs[0].dttk_value & MAXM N64;

4101 #el se

4102 regs[rd] = tupregs[O].dttk_value & MAXM N,

4103 #endi f

4104 br eak;

4106 case DI F_SUBR DDl _PATHNAME: {

4107 I*

4108 * This one is a galactic ness. W are going to roughly

4109 * enul ate ddi _pathnanme(), but it’'s nade nore conplicated
4110 * by the fact that we (a) want to include the mnor name and
4111 * (b) nust proceed iteratively instead of recursively.

4112 */

4113 uintptr_t dest = nstate->dtns_scratch_ptr;

4114 uint64_t size = state->dts_options[DTRACEOPT_STRSI ZE] ;

4115 char *start = (char *)dest, *end = start + size - 1;

4116 uintptr_t daddr = tupregs[O0].dttk_val ue;

4117 int64_t minor = (int64_t)tupregs[1].dttk_val ue;

4118 char *s;

4119 int i, len, depth = 0;

4121 /*

4122 * Due to all the pointer junping we do and context we nust
4123 * rely upon, we just nandate that the user nmust have kernel
4124 * read privileges to use this routine.

4125 *

4126 if ((nmstate->dtns_access & DTRACE_ACCESS KERNEL) == 0) {

4127 *flags | = CPU DTRACE KPRl V;

4128 *illval = daddr;

4129 regs[rd] = NULL;

4130 }

4132 if (!DTRACE | NSCRATCH(mstate, size)) {

4133 DTRACE_CPUFLAG_SET(CPU_DTRACE_NGCSCRATCH) ;

4134 regs[rd] = NULL;

4135 break;

4136 }

4138 *end = '\0";

4140 /*

4141 * W want to have a nane for the minor. |In order to do this,
4142 * we need to walk the minor list fromthe devinfo. W want
4143 * to be sure that we don't infinitely walk a circular Iist,
4144 * so we check for circularity by sending a scout pointer
4145 * ahead two elenents for every elenent that we iterate over;
4146 * if the list is circular, these will ultimately point to the
4147 * same element. You may recognize this little trick as the
4148 * answer to a stupid interview question -- one that always
4149 * seenms to be asked by those who had to have it |aboriously
4150 * explained to them and who can’t even concisely describe
4151 * the conditions under which one would be forced to resort to
4152 * this technique. Needless to say, those conditions are
4153 * found here -- and probably only here. 1Is this the only use
4154 * of this infanous trick in shipping, production code? If it
4155 * isn't, it probably should be...

4156 */

4157 if (mnor I=-1)

4158 uintptr_t nmaddr = dtrace_| oadptr(daddr +

4159 of fsetof (struct dev_info, devi_minor));

4161 uintptr_t next = offsetof(struct ddi _m nor_data, next);
4162 uintptr_t name = offsetof (struct ddi_m nor_data,

new usr/src/uts/comon/ dtrace/ dtrace. c

4163
4164
4165
4166

4168
4169

4171
4172
4173
4174
4175
4176
4177
4178
4179

4181
4182

4184

4186
4187

4189

4191
4192

4194
4195
4196
4197

4199
4200

4202
4203
4204
4205
4206
4207
4208

4210
4211

4213
4214
4215

4217
4218

4220
4221
4222
4223
4224

4226
4227

#i f def
#el se

#endi f

_LP64

}

d_mnor) + offsetof(struct ddi _mi nor, nane);
uintptr_t dev = offsetof(struct ddi _minor_data,

d_mnor) + offsetof(struct ddi_mnor, dev);
uintptr_t scout;

if (maddr != NULL)
scout = dtrace_| oadptr(nmaddr + next);

while (maddr !'= NULL && ! (*flags & CPU DTRACE_FAULT)) {
uinté4_t m

m = dtrace_|l oad64(maddr + dev) & MAXM N64;

m = dtrace_| oad32(maddr + dev) & MAXM N,

if (m!=mnor) {
maddr = dtrace_| oadptr (nmaddr + next);

if (scout == NULL)
conti nue;

scout = dtrace_| oadptr(scout + next);

if (scout == NULL)
conti nue;

scout = dtrace_| oadptr(scout + next);

if (scout == NULL)
conti nue;

if (scout == maddr) {
lags | = CPU_DTRACE_| LLOP;
break

}

continue;

*
* We have the minor data. Now we need to
* copy the minor’s name into the end of the
* pat hnane.
*/

(char *)dtrace_| oadptr (naddr + nane);
Ien = dtrace_strlen(s, size);

if (*flags & CPU_DTRACE_FAULT)

br eak;
if (len!=0)

if ((end -= (len + 1)) < start)

br eak;

*end = "7
}
for (i =1; i <=len; i++4)

end[i] = dtrace_l oad8((uintptr_t)s++);
break;

while (daddr !'= NULL && ! (*flags & CPU _DTRACE FAULT)) {

ddi _node_state_t devi_state;

63

new usr/src/uts/comon/ dtrace/ dtrace. c

4229
4230

4232
4233

4235
4236
4237
4238

4240
4241

4243
4244
4245

4247
4248

4250
4251
4252

4254
4255
4256
4257
4258

4260
4261

4263
4264
4265
4266
4267
4268
4269

4271
4272
4273

4275
4276

4278
4279
4280

4282
4283
4284
4285
4286

4288
4289

4291
4292
4293
4294

}

devi _state = dtrace_| oad32(daddr +
of fsetof (struct dev_info, devi_node_state));

if (*flags & CPU_DTRACE_FAULT)
br eak;

if (devi_state >= DS | NI TIALI ZED) {
= (char *)dtrace_| oadptr(daddr +
of fsetof (struct dev_info, devi_addr));
len = dtrace_strlen(s, size);

if (*flags & CPU_DTRACE_FAULT)
br eak;

if (len !=0)
if ((end -= (len + 1)) < start)
br eak;

*end = ' @;
}
for (i =1; i <=len; i++)
end[i] = dtrace_l oad8((uintptr_t)s++);
}
/*
* Now for the node nane...
*
/

= (char *)dtrace_| oadptr(daddr +
of fsetof (struct dev_info, devi_node_nane));

daddr = dtrace_| oadptr(daddr +
of fsetof (struct dev_info, devi_parent));

/*
* I'f our parent is NULL (that is, if we're the root
* node), we re going to use the special path
* "devi ces"
*/
if (daddr == NULL)
s = "devices";

len = dtrace_strlen(s, size);
if (*flags & CPU_DTRACE_FAULT)

br eak;
if ((end -= (len + 1)) < start)
br eak;
(i =1; i <=len; i++)

ena[i] = dtrace_l oad8((uintptr_t)s++);
*end = '/

if (depth++ > dtrace_devdept h_max) {
*flags | = CPU_DTRACE_I LLOP;
break;

if (end < start

DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH) ;

if (daddr == NULL)

regs[rd] = (uintptr_t)end;
nst at e- >dt ms_scratch_ptr += si ze;

64

new usr/src/uts/comon/ dtrace/ dtrace. c

4296
4297

4299
4300
4301
4302
4303
4304

4306
4307
4308
4309
4310

4312
4313
4314
4315
4316

4318
4319
4320
4321
4322
4323

4325
4326
4327
4328
4329

4331
4332
4333
4334
4335
4336

4338
4339
4340

4342
4343
4344
4345

4347
4348

4350
4351
4352
4353
4354
4355

4357
4358
4359
4360

br eak;

}

case DI F_SUBR_STRJO N:
char *d = (char *)mst ate->dt ns_scratch_ptr;
uint64_t size = state->dts ophons[DTRACE(PT STRSI ZE] ;
uintptr_t si tupregs[O] dttk_val ue;
uintptr_t s2 = tupregs[1]. dttk_val ue;
int i =0;

if (!dtrace_strcanl oad(sl, size, nstate, vstate) ||
Idtrace_strcanl oad(s2, size, nstate, vstate)) {
regs[rd] = NULL;
break;

}

if (!DTRACE_I NSCRATCH(nstate, size)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH) ;
regs[rd] = NULL;

br eak;
}
for (53) {
if (i >= size) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_NGCSCRATCH) ;
regs[rd] = NULL;
br eak;
}
if ((d[i++] = dtrace_l oad8(sl++)) == '\0") {
P--
br eak;
}
}
for (53) {
if (i >= size) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH) ;
regs[rd] = NULL;
br eak;
}
if ((d[i++] = dtrace_l oad8(s2++)) == '\0")
) br eak;

if (i <size) {
nst at e- >dt ms_scratch_ptr += i;
regs[rd] = (uintptr_t)d;

br eak;
}
case DI F_SUBR | LLTOSTR {
inté4_t i (int64_t)tupregs[O0].dttk_val ue;

ui nt 64_t val d| git;
uint64_t size = 65;
char *end = (char *)nstate->dtns_scratch_ptr + size - 1;
int base = 10,

if (nargs > 1)
if ((base = tupregs[1].dttk_value) <=1 ||
base > ("z' -a +1) ¥ (9 -0 + 1)) {
*flags | = CPU_DTRACE_I LLOP;

/* enough room for 27”64 in binary */

new usr/src/uts/comon/dtrace/ dtrace.c 66
4361 br eak;

4362 }

4363 }

4365 val = (base == 10 && i < 0) ? i * -1 : i;

4367 if (!DTRACE | NSCRATCH(mstate, size)) {

4368 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH) ;
4369 regs[rd] = NULL;

4370 br eak;

4371 }

4373 for (*end-- = '\0"; val; val /= base) {

4374 if ((dlglt = val %base) <=9 "0) {
4375 end-- ='0 + digit;

4376 } else {

4377 *end-- ='a + (digit - ("9 - '0") - 1);
4378 }

4379 }

4381 if (i ==0 &% base == 16)

4382 *end-- ='0";

4384 if (base == 16)

4385 *end-- = 'x’;

4387 if (i == 0| base == 8 || base == 16)

4388 *end-- =0 ;

4390 if (i <0 &% base == 10)

4391 *end-- ="'-";

4393 regs[rd] = (uintptr_t)end + 1;

4394 net at e- >dt ns_scratch_ptr += size;

4395 br eak;

4396 1

4398 case DI F_SUBR_HTONS:

4399 case DI F_SUBR_NTOHS:

4400 #ifdef Bl G ENDI AN

4401 regs[rd] = (uint16_t)tupregs[0].dttk_val ue;

4402 #el se

4403 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[O0].dttk_val ue);
4404 #endi f

4405 br eak;

4408 case DI F_SUBR HTONL:

4409 case DI F_SUBR_NTOHL

4410 #ifdef _BlI G_ENDI AN

4411 regs[rd] = (uint32_t)tupregs[O0].dttk_val ue;

4412 t#el se

4413 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[O0].dttk_val ue);
4414 #endi f

4415 br eak;

4418 case DI F_SUBR HTONLL:

4419 case DI F_SUBR_NTOHLL:

4420 #ifdef _BI G ENDI AN

4421 regs[rd] = (uint64_t)tupregs[O0].dttk_val ue;

4422 tel se

4423 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[O0].dttk_val ue);
4424 #endi f

4425 br eak;

new usr/src/uts/comon/ dtrace/ dtrace. c 67 new usr/src/uts/comon/ dtrace/ dtrace. c 68

4493 if (i >=0)
4428 case DI F_SUBR DI RNAME: 4494 lastdir =i;
4429 case DI F_SUBR_ BASENANE
4430 char *dest = (char *)nstate->dtns_scratch_ptr 4496 ASSERT(! (| astbase == -1 && firstbase != -1));
4431 uint64_t size = state->dts_opti ons[DTRACECPT_ STRSI ZE] ; 4497 ASSERT(! (firstbase == -1 && lastdir != -1));
4432 uintptr_t src = tupregs[O0].dttk_val ue;
4433 int 1, j, len = dtrace_strlen((char *)src, si ze); 4499 if (lastbase == -1) {
4434 int lastbase = -1, firstbase = -1, lastdir = -1; 4500 /*
4435 int start, end; 4501 * W didn't find a non-slash character. W know that
4502 * the length is non-zero, so the whole string nust be
4437 if (!dtrace_canload(src, len + 1, nstate, vstate)) { 4503 * slashes. In either the dirnane or the basenanme
4438 regs[rd] = NULL; 4504 * case, we return '/’
4439 br eak; 4505 *
4440 } 4506 ASSERT(firstbase == -1);
4507 firstbase = lastbase = lastdir = 0;
4442 if (!DTRACE_I NSCRATCH(nstate, size)) { 4508 }
4443 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH) ;
4444 regs[rd] = NULL; 4510 if (firstbase == -1) {
4445 br eak; 4511 /*
4446 } 4512 * The entire stri ng consists only of a basenane
4513 * conponent. |f we’'re |ooking for dirname, we need
4448 l* 4514 * to change our string to bejust Ui f owe're
4449 * The basenane and dirnane for a zero-length string is 4515 * | ooking for a basenane, we'll just set the first
4450 * defined to be "." 4516 * character of the basename to be O.
4451 */ 4517 */
4452 if (len == 0) { 4518 if (subr == DI F_SUBR DI RNAME) {
4453 len = 1; 4519 ASSERT(I astdir == —l)
4454 src = (uintptr_t)"."; 4520 src (umtptr _t)"
4455 } 4521 Iastd = 0;
4522 } else {
4457 /* 4523 firstbase = 0;
4458 * Start fromthe back of the string, noving back toward the 4524 }
4459 * front until we see a character that isn't a slash. That 4525 }
4460 * character is the |ast character in the basenane.
4461 */ 4527 if (subr == DI F_SUBR DI RNAME) {
4462 for (i =len - 1; i >=0; i--) { 4528 if (lastdir == -1) {
4463 |f (dtraceload8(src+|) 1="7") 4529 /*
4464 br eak; 4530 * We know that we have a slash in the name --
4465 } 4531 * or lastdir would be set to 0, above. And
4532 * because lastdir is -1, we know that this
4467 if (i >=0) 4533 * slash nust be the first character. (That
4468 | astbase = i; 4534 * is, the full string nmust be of the form
4535 * "/basenane".) In this case, the |ast
4470 /* 4536 * character of the directory nane is 0.
4471 * Starting fromthe last character in the basenanme, nove 4537 *
4472 * towards the front until we find a slash. The character 4538 lastdir = 0;
4473 * that we processed i mediately before that is the first 4539 }
4474 * character in the basenane.
4475 */ 4541 start = 0;
4476 for (; i >=0; i--) { 4542 end = | stdlr
4477 if (dtrace_load8(src + i) =="/") 4543 } else {
4478 br eak; 4544 ASSERT(subr == DI F_SUBR_BASENAME) ;
4479 } 4545 ASSERT(firstbase !'= -1 & lastbase != -1);
4546 start = firstbase;
4481 if (i >=0) 4547 end = | ast base;
4482 firstbase =i + 1; 4548 }
4484 /* 4550 for (i = start, j =0; i <=end & j < size - 1; i++, j+4)
4485 * Now keep going until we find a non-slash character. That 4551 dest[j] = dtrace_load8(src + i);
4486 * character is the last character in the dirnane.
4487 */ 4553 dest[j] = '\0;
4488 for (; i >=0; i--) { 4554 regs[rd] = (uintptr_t)dest;
4489 if (dtrace | oad8(src + i) !'="/") 4555 net at e- >dt ns_scratch_ptr += size;
4490 break; 4556 break;

4491 } 4557 }

new usr/src/uts/comon/ dtrace/ dtrace. c

4559
4560
4561
4562

4564
4565
4566
4567

4569
4570
4571
4572
4573
4574
4575

4577
4578
4579
4580

4582
4583
4584
4585
4586
4587
4588
4589

4591
4592
4593
4594

4596
4597
4598
4599
4600

4602
4603
4604
4605
4606
4607
4608
4609

4611
4612
4613
4614

4616

4618
4619
4620
4621
4622
4623
4624

#endi f

#endi f

next:

case DI F_SUBR_CETF:

}

| *

ui ntptr t fd = tupregs[O0].dttk_val ue;
uf info_t *finfo = &urthread->t_procp->p_user.u_finfo;
file_t *fp;

if (!dtrace_priv_proc(state, nstate)) {
regs[rd] = NULL;
br eak;

}

/
This is safe because fi_nfiles only increases, and the
fi_list array is not freed when the array size doubl es.
(See the comrent in flist_grow() for details on the
managenent of the u_finfo structure.)
*

*
*
*
*
*

fp =fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;

met at e- >dt ms_getf = fp;
regs[rd] = (uintptr_t)fp;
br eak;

coder evi ew */

case DI F_SUBR CLEANPATH:

| *

char *dest = (char *)nstate->dtnms_scratch_ptr, c;
uint64_t size = state->dts_options[DTRACEOPT STRSI ZE] ;

uintptr_t src = tupregs[0].dttk_val ue;
int 1 =0, j = O;
zone_t *z;

coder evi ew */

if (!dtrace_: strcanload(src size, nstate, vstate)) {
regs[rd] = NULL
br eak;

}

if (! DTRACE_I NSCRATCH(nstate, size)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH) ;
regs[rd] = NULL;

br eak;
}
/*
* Move forward, |oading each character.
*
/
do {

c = dtrace_l oad8(src + i++);

if (j +5 >=size) /* 5 = strlen("/..c\0") */

br eak;

if (ct="171")
dest[j++] = c;
conti nue;

= dtrace_|l oad8(src + i++);
if (c =="/1"){
/*
* W have two sl ashes -- we can just advance
* to the next character.

*/
got 0o next;

new usr/src/uts/comon/ dtrace/ dtrace. c

4626
4627
4628
4629
4630
4631
4632
4633
4634
4635

4637

4639
4640
4641
4642
4643
4644
4645
4646

4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658

4660

4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673

4675
4676
4677
4678
4679
4680
4681

4683
4684
4685
4687

4689
4690

if (c !: 7)) 4

*Th|S|s not and it’s not -- we can
* just store the "/" and this character and
* drive on.

*/

dest[j ++]
dest[] ++]
cont i nue;

s
c

}
c = dtrace_l oad8(src + i++);
if (c="/1"){

/*

* This is a "/./" conmponent. We're not going

* to store anything in the destination buffer;
* we're just going to go to the next conponent.
*/

got o next;

}
if (ct="."){
/*

* This is not -- we can just store the
* "/." and this character and continue

* processing.

*/

dest[] ++] VA
dest[] ++] r
dest[] ++]
conti nue;

c

}

c = dtrace_l oad8(src + i++);

if (ct!="/1" & c !="\0") {
/*

* This is not ".." -- it's "..[munble]".

* W' || store the "/.." and this character
* and continue proce55| ng.

*/
dest[] ++] e
dest[] ++]
dest[]++%

(]

conti nue;

}

/*

* This is "/../" or "/..\0" W need to back up
* our destination p0|nter until we find a "/".
*/

fooo
whi i e (j '=0 & dest[--j] !="/")
cont i nue;

if (c =="\0")
dest[++] ="/";
} while (c !'="\0");
dest[j] ="'\0";

if (metate->dtms_getf != NULL &&
I (nst at e- >dt ns_access & DTRACE_ACCESS_KERNEL) &&

70

new usr/src/uts/comon/ dtrace/ dtrace. c

4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703

4705
4706
4707
4708
4709

4711
4712
4713
4714
4715
4716

4718
4719
4720
4721
4722
4723
4724

4726
4727
4728

4730
4731
4732
4733

4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745

4747
4748
4749
4750
4751
4752
4753

4755
4756

(z = state->dts_cred. dcr_cred->cr_zone) != kcred->cr_zone)
/*

* |f we’ve done a getf() as a part of this ECB and we
* don’t have kernel access (and we’re not in the glob
* zone), check if the path we cleaned up begins wth
* the zone's root path, and trimit off if so. Note
* that this is an output cleanliness issue, not a

* security issue: knowing one’s zone root path does

* not enable privilege escal ation.

*

/
if

(strstr(dest, z->zone_rootpath) == dest)
dest += strlen(z->zone_rootpath) - 1;

}

coderevi ew */

regs[rd] = (uintptr_t)dest;
net at e- >dt ns_scratch_ptr += size;
br eak;

case DI F_SUBR | NET_NTQA:
case DI F_SUBR_ | NET_NTQA6:
case DI F_SUBR | NET_NTOP: {

size_t size;
int af, argi, i;
char *base, *end;

if (subr == DI F_SUBR_I NET_NTOP) {
af = (int)tupregs[0].dttk_val ue;
argi = 1;
} else {
af = subr == DIF_SUBR | NET_NTOA ? AF_ I NET: AF_| NET6;
argi = 0;
}
if (af == AF_INET) {
i paddr _t i p4;

uint8_t *ptr8, val;

/*
* Safely load the | Pv4 address.
*/

i p4 = dtrace_|l oad32(tupregs[argi].dttk_val ue);

/*

*/Check an | Pv4 string will fit in scratch.

*

si ze = | NET_ADDRSTRLEN;

if (!DTRACE_|I NSCRATCH(st ate, size)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH) ;
regs[rd] = NULL;
br eak;

base = (char *)nstate->dtns_scratch_ptr;
end = (char *)nstate->dtns_scratch_ptr + size - 1;

/*
* Stringify as a dotted deci nal quad.
*/
*end-- = '\0
ptr8 = (uint8_t *)& p4;
for (i =3; i >=0; i--) {

val = ptr8[i];

if (val == 0) {

*end-- ='0;

71
{

al

new usr/src/uts/comon/dtrace/ dtrace.c 72
4757 } else {

4758 for (; val; val /= 10) {

4759 *end-- ='0 + (val %10);
4760 }

4761 }

4763 if (i >0)

4764 *end-- ="'."’

4765 }

4766 ASSERT(end + 1 >= base);

4768 } else if (af == AF_INET6) {

4769 struct in6_addr ip6;

4770 int firstzero, tryzero, nunzero, v6end;

4771 uint16_t val

4772 const char digits[] = "0123456789%9abcdef";

4774 /*

4775 * Stringify using RFC 1884 convention 2 - 16 bit
4776 * hexadeci mal values with a zero-run conpression.
4777 * Lower case hexadecimal digits are used.

4778 k& eg, fe80::214: 4fff:feOb: 76c8.

4779 * The | Pv4 enbedded formis returned for inet_ntop,
4780 * just the IPv4 string is returned for inet_ntoa6.
4781 */

4783 /*

4784 * Safely load the | Pv6 address.

4785 */

4786 dt race_bcopy(

4787 (void *)(uintptr_t)tupregs[argi].dttk_val ue,
4788 (void *)(uintptr_t)& p6, sizeof (struct in6_addr));
4790 /*

4791 * Check an IPv6 string will fit in scratch.

4792 */

4793 size = | NET6_ADDRSTRLEN,

4794 i f (! DTRACE_|I NSCRATCH(nstate, size)) {

4795 DTRACE_CPUFLAG SET(CPU_DTRACE_NOSCRATCH) ;
4796 regs[rd] = NULL;

4797 br eak;

4798

4799 base = (char *)nstate->dtms_scratch_ptr;

4800 end = (char *)nstate->dtns_scratch_ptr + size - 1;
4801 *end-- = '\0";

4803 /*

4804 * Find the longest run of 16 bit zero val ues
4805 * for the single allowed zero conpression - "::".
4806 */

4807 firstzero = -1;

4808 tryzero = -1,

4809 nunzero = 1;

4810 for (i =0; i < sizeof (struct in6_addr); i++) {
4811 if (ip6._S6_un._S6_u8[i] == 0 &&

4812 tryzero == -1 && I %2 == 0) {

4813 tryzero = i;

4814 conti nue;

4815 }

4817 if (tryzero != -1 &&

4818 (ip6._S6_un._S6_u8[i] !'=0 ||

4819 i == sizeof (struct in6_addr) - 1)) {
4821 if (i - tryzero <= nunzero) {
4822 tryzero = -1,

new usr/src/uts/comon/ dtrace/ dtrace. c

4823
4824

4826
4827
4828

4830
4831
4832
4833
4834
4835

4837
4838
4839
4840
4841
4842
4843
4844
4845

4847

4849
4850
4851
4852
4853
4854
4855

4857
4858
4859

4861
4862

4864
4865
4866
4867
4868
4869

4871
4872
4873
4874
4875
4876

4878
4879
4880
4881
4882
4883

4885
4886

4888

conti nue;
}
firstzero = tryzero;
nunzero =i - I %2 - tryzero;
tryzero = -1,

if (|p6 S6_un. _S6_u8[i] ==
== si zeof (struct i n6 addr)
nunzero += 2;

73

1)

% 10;

}
}
ASSERT(firstzero + nunzero <= sizeof (struct in6_addr));
/*
* Check for an | Pv4 enbedded address.
*/
véend = sizeof (struct in6_addr) - 2;
if (IN6_I'S ADDR VANAPPED(& p6) | |
IN6_I'S_. _ADDR_V4COVPAT(&i p6))
“for (i = sizeof (struct in6_addr) - 1;
i >= DITRACE_VAMAPPED OFFSET; i--) {
ASSERT(end >= base);
val = ip6._S6_un._S6_u8[i];
if (val == 0) {
*end-- ='0;
} else {
for (; val; val /= 10) {
*end-- ='0 + val
}
}
if (i > DTRACE_ V4M°\PPED) OFFSET)
*end-- ="'.";
}
if (subr == DI F_SUBR_| NET_NTOAG)
goto inetout;
/*
* Set v6end to skip the |Pv4 address that
* we have already stringified.
*
v6éend = 10;
}

*

* Build the IPv6 string by working through the
* address in reverse.

*
/
for (i =v6end; i >=0; i -=2) {
ASSERT(end >= base);
if (i ::flrstzero + _Nunzero - 2) {
*end-- =
*end-- = ":";
i -= nunzero - 2;
conti nue;
}
if (i <14 & i !=firstzero - 2)
*end-- = ":";

val = (ip6. S6_un. S6_u8[i] << 8) +

new usr/src/uts/comon/ dtrace/ dtrace. c

4889

4891
4892
4893
4894
4895
4896
4897
4898
4899

4901
4902
4903
4904
4905
4906
4907
4908

4910
4911
4912
4913

4915
4916

4918
4919
4920
4921
4922
4923
4924
4925

i netout:

}
/*
* Enu
* DIF
* the
*/

static

ip6._S6_un._S6_u8[i + 1];
if (val == 0) {

end-- "0
} else {
for (; val; val /= 16) {
*end-- = digits[val % 16];
}
}
ASSERT(end + 1 >= base);
} else {
/*
* The user didn't use AH_ I NET or AH | NET6.
*
/

DTRACE_CPUFLAG_SET(CPU_DTRACE_| LLCP) ;
regs[rd] = NULL;

br eak;
}
regs[rd] = (uintptr_t)end + 1;
met at e- >dt ms_scratch_ptr += size;
br eak;
}
}

ate the execution of DIrace IR instructions specified by the given
object. This function is deliberately void of assertions as all of
necessary checks are handled by a call to dtrace_difo_validate().

ui nt 64_t

dtrace_dif_emul ate(dtrace_difo_t *difo, dtrace _mstate_t *nstate,
dtrace_vstate_t *vstate, dtrace_state_t *state)

4926 {

4927
4928
4929
4930

4932
4933
4934
4935
4936
4937

4939
4940
4941

4943
4944
4945
4946
4947
4948

4950
4951
4952
4953
4954

const dif_instr_t *text = difo->dtdo_buf;
const uint_t textlen = difo->dtdo_|en;
const char *strtab = difo->dtdo_strtab;
const uint64_t *inttab = difo->dtdo_inttab;

uint64_t rval = 0;
dtrace_statvar_t *svar;
dtrace_dstate_t *dstate
dtrace_difv_t *v;
volatile uint16_t *flags = &pu_core[CPU->cpu_i d].cpuc_dtrace_fl ags;
volatile uintptr_t *illval = &pu_core[CPU->cpu_id].cpuc_dtrace_illval;

= &vstat e->dtvs_dynvars;

dtrace_key_t tu p egs[DIF DTR_NREGS + 2]; /* +2 for thread and id */
uint64_t regs[Dl F_DI R_NREGS];
uint64_t *tnp;

uint8_t cc_.n =0, cc_z =0, cc_.v =0, cc_c =0;
int64_t cc_r;

uint_t pc =0, id, opc;

uint8_t ttop = 0;

dif _instr_t instr;

uint_t rl, r2, rd;

*
* We stash the current DIF object into the nmachine state: we need it
* for subsequent access checking.

*/

nmstate->dtns_difo = difo;

74

new usr/src/uts/comon/ dtrace/ dtrace. c

4956

4958
4959

4961
4962
4963
4964

4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999

5001
5002
5003
5004
5005
5006
5007
5008

5010
5011
5012
5013
5014
5015
5016
5017
5018

5020

regs[Dl F_REG RO] = O;

/* %0 is fixed at zero */

while (pc < textlen && ! (*flags & CPU_DTRACE FAULT)) {

{
0;
CPU_DTRACE_DI VZEROQ,

int64_t)regs[rl] /
)regs[r2];

= 0;
*flags | = CPU_DTRACE DI VZERO

regs[rl] / regs[r2];

{
0;
CPU_DTRACE_DI VZERQ,

int64_t)regs[ril] %
)regs[r2];

opc = pc;
instr = text[pc++];
rl = DIF_I NSTR Rl(l nstr);
r2 = DIF_INSTR_R2(instr);
rd = DIF_INSTR_RD(instr);
switch (DI F_INSTR OP(instr)) {
case DIF_OP_OR
regs[rd] = regs[rl1] | regs[r2];
break;
case DI F_OP_XOR
regs[rd] = regs[rl] ~ regs[r2];
break;
case DI F_OP_AND:
regs[rd] = regs[rl] & regs[r2];
br eak;
case DIF_OP_SLL
regs[rd] = regs[rl] << regs[r2];
br eak;
case DIF_OP_SRL:
regs[rd] = regs[rl] >> regs[r2];
break;
case DI F_OP_SUB:
regs[rd] = regs[rl] - regs[r2];
br eak;
case DI F_OP_ADD:
regs[rd] = regs[rl] + regs[r2];
br eak;
case DI F_OP_MJL
regs[rd] = regs[rl] * regs[r2];
br eak;
case DIF_OP_ SDI V:
if (regs[r2] == 0)
regs[rd] =
*flags | =
} else {
regs[rd] = (i
(int64_t
}
br eak;
case DIF_OP_UDIV:
if (regs[r2] == O) {
regs[rd]
} else {
regs[rd] =
br eak;
case DI F_OP_SREM
if (regs[r2] == 0)
regs[rd] =
*flags | =
} else {
regs[rd] = (i
(int64_t
break;
case DI F_OP_UREM

75

new usr/src/uts/comon/ dtrace/ dtrace. c

5021
5022
5023
5024
5025
5026
5027

5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

if (regs[r2]

regs|
*flags | = CPU DTRACE_DI VZERQ,

} else
regs

br eak;

Dl F_OP_NOT:
regs[rd] = ~
break;

=T

,
)
Q
(21
2.9
-
&
I

= regs|
= cc_r
cc_z = cc_r

régs[

pc =
break;
DI F_OP_BNE:
if (cc_z ==
pc =
break;
DI F_OP_BG
if ((cc_z |
pc =
break;
DI F_OP_BGU:
if ((cc_c |
pc =
br eak;
DI F_OP_| BGE
if ((cc_n »
pc =

br eak;
DI F_OP_| BL
if (ccn”c
pc =
br eak;
DI F_OP BLU
if (cc_c)
pc =
break;
DI F_OP BLE:
if (cc_z | (
pc =
br eak;
DI F_OP BLEU
if (cc_c| c

== 0){

rd] =

[rd] = regs[rl] %regs[r2];

regs[ri];
egs[ri];

rl] - regs[r2]
<

rl] < regs[r2]

= cc_c = 0;
ri] == 0;

DI F_I NSTR_LABEL (i

0)
DI F_I NSTR_LABEL (i

(ccn"ccv)==
DI F_I NSTR_LABEL(i

cc_z) == 0
DI F_I NSTR_LABEL(i

cc_v) == 0
DI F_I NSTR_LABEL(i

DI F_I NSTR_LABEL (i

cv)
Dl F_I NSTR_LABEL(i

DI F_I NSTR_LABEL(i

cc_n ” cc_v))
DI F_I NSTR_LABEL(i

c_z)

nstr);

nstr);

0)

nstr);

nstr);

nstr);

nstr);

nstr);

nstr);

nstr);

new usr/src/uts/comon/ dtrace/ dtrace. c

5087
5088
5089
5090
2078
2079
2080
5091
2082
5092
5093
5094
5095
5096
5097
2088
2089
2090
5098
2092
5099
5100
5101
5102
5103
5104
2098
2099
2100
5105
2102
5106
5107
5108
5109
5110
5111
2108
2109
2110
5112
2112
5113
5114
5115
5116
5117
5118
2118
2119
2120
5119
2122
5120
5121
5122
5123
5124
511725
2128
2129
2130
5126
2132
5127
5128

pc = DI F_I NSTR_LABEL(i nstr);
break;
case DI F_OP_RLDSB:
if (!dtrace_canload(regs[rl1], 1, nstate, vstate))
if (!dtrace_canstore(regs[rl], 1, nstate, vstate))
*flags | = CPU_DTRACE_KPRIV;
*illval = regs[rl];
br eak;

}
[* FALLTHROUGH* /
case DI F_OP_LDSB:
regs[rd] = (int8_t)dtrace_l oad8(regs[r1]);
br eak
case DI F_OD_RLDSH:
if (!dtrace_canload(regs[rl], 2, nstate, vstate))
if (!dtrace_canstore(regs[rl], 2, nstate, vstate))
*flags | = CPU_DTRACE_KPRI V;
*illval = regs[ri];
break;

* FALLTHROUGH* /
case DI F_OP_LDSH:
regs[rd] = (intl6_t)dtrace_|l oadl6(regs[r1]);

case DI F_OP_RLDSW
if (!dtrace_canload(regs[rl], 4, nstate, vstate))
if (!dtrace_canstore(regs[rl], 4, nstate, vstate))
*flags | = CPU_DTRACE_KPRIV;
*illval = regs[rl];
br eak;

}
/ * FALLTHROUGH* /
case DI F_OP_LDSW
regs[rd] = (int32_t)dtrace_|l oad32(regs[r1]);

case DI F_OP_RLDUB:
(!dtrace_canl oad(regs[rl], 1, nstate, vstate))
(!dtrace_canst or e(regs[rl] 1, nstate, vstate))
*flags | = CPU_DTRACE_KPRI Vv,
*illval = regs[ri];
br eak;

}
1 * FALLTHROUGH* /
case DI F_OP_LDUB:

case DI F_OP_RLDUH:
if (!dtrace_canl oad(regs[rl], 2, nstate, vstate))
if (!dtrace_ canstore(regs[rl] 2, netate, vstate))
CPU

*flags | = DTRACE _ KPRI V;
*illval = regs[ri];
break;

}

[* FALLTHROUGH* /

case DI F_OP_LDUH:
regs[rd] = dtrace_l oadl6(regs[r1]);
break;
case DI F_OP_RLDUW
if (!dtrace_canload(regs[r1], 4, nstate, vstate))
if (!dtrace_canstore(regs[rl], 4, nstate, vstate))
*flags | = CPU DTRACE KPRIV;
*illval = regs[rl]
br eak;

}
/ * FALLTHROUGH* /
case DI F_OP_LDUW

new usr/src/uts/comon/ dtrace/ dtrace. c

5129
5130
5131
5132
2138
2139
2140
5133
2142
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182

5184
5185
5186
5187
5188
5189

case

case

case

case

case

case

case

case

case

case

case

case

case

case

regs[rd] = dtrace_|l oad32(regs[r1]);

br eak;
DI F_OP_RLDX:
if (!dtrace_canload(regs[rl1l], 8, nstate, vstate))
if (!dtrace_canstore(regs[rl], 8, nstate, vstate)) {
*flags | = CPU_DTRACE_KPRI V;
*illval = regs[rl];
) br eak;
[* FALLTHROUGH* /
DI F_OP_LDX:
regs[rd] = dtrace_| oad64(regs[r1]);
br eak;
D F_OP ULDSB
regs[rd] (int8_t)
dtrace _fuword8((void *)(uintptr_t)regs[ri]);
br eak;
D F_OP ULDSH

regs[rd] (intl16_t)
dtrace_fuworle((void *)(uintptr_t)regs[ril]);
br eak;
D F_OP ULDSN
regs[rd] (int32_t)
dtrace _fuword32((void *)(uintptr_t)regs[ri]);
br eak;
DI F_OP_ULDUB:
regs[rd] =
dtrace_fuword8((void *)(uintptr_t)regs[ri]);

br eak;
D F CP UL DUH:
regs[rd] =
dtrace_fuwordl6((void *)(uintptr_t)regs[ri1]);
br eak;
DI F_OP_ULDUW
regs[rd] =
dtrace_fuword32((void *)(uintptr_t)regs[ri1]);
br eak;
DI F_OP_ULDX:
regs[rd] =
dtrace_fuword6é4((void *)(uintptr_t)regs[ri1]);
br eak;
DI F_OP_RET:
rval = regs[rd];
pc = textlen;
br eak;
DI F_OP_NOP:
break;
Dl F_OP_SETX:
regs[rd] = inttab[D F_I NSTR | NTEGER(i nstr)];
br eak;
DI F_OP_SETS:
regs[rd] (uint64_t)(uintptr_t)
(strtab + DI F_INSTR_STRING(I nstr));

si ze_t sz = state->dts _opti ons[DTRACEOPT_STRSI ZE] ;
uintptr_t sl = regs[ri];
uintptr_t s2 = regs[r2];

if (sl != NULL &&
Idtrace_strcanl oad(sl, sz, nstate, vstate))
br eak;
if (s2 !'= NULL &&
ldtrace_strcanl oad(s2, sz, nstate, vstate))
break;

new usr/src/uts/comon/dtrace/ dtrace. c 79 new usr/src/uts/comon/dtrace/ dtrace.c 80
5191 cc_r = dtrace_strncnp((char *)sl, (char *)s2, sz); 5257 *(uint8_t *)a = 0;
5258 a += sizeof (uint64_t);
5193 cc_n = cc_r < 0; 5259
5194 cc_z = cc_r == 0; 5260 if (!dtrace_vcanl oad(
5195 cc_v = cc_c = 0; 5261 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5196 break; 5262 nmstate, vstate))
5197 } 5263 br eak;
5198 case DI F_OP_LDGA:
5199 regs[rd] = dtrace_dif_variabl e(nstate, state, 5265 dtrace vcopy((v0| d *)(uintptr_t)regs[rd],
5200 rl, regs[r2]); 5266 (void *)a, &->dtdv_type);
5201 break; 5267 break;
5202 case DI F_OP_LDGS: 5268 }
5203 id = D F_INSTR_VAR(instr);
5270 svar->dtsv_data = regs[rd];
5205 if (id > DIF_VAR OTHER UBASE) { 5271 br eak;
5206 uintptr_t a;
5273 case DI F_OP_LDTA:
5208 id -= D F_VAR OTHER UBASE; 5274 T+
5209 svar = vstate->dtvs_gl obal s[id]; 5275 * There are no DTrace built-in thread-local arrays at
5210 ASSERT(svar != NULL); 5276 * present. This opcode is saved for future work.
5211 v = &svar->dtsv_var; 5277 */
5278 *flags | = CPU_DTRACE_I LLOP;
5213 if (!(v->dtdv_type.dtdt_flags & DI F_TF_BYREF)) { 5279 regs[rd] = 0;
5214 regs[rd] = svar->dtsv_data; 5280 br eak;
5215 br eak;
5216 } 5282 case DIF_OP_LDLS:
5283 id = DIF_INSTR_VAR(instr);
5218 a = (uintptr_t)svar->dtsv_data;
5285 if (id < D F_VAR OTHER UBASE) {
5220 if (*(uint8_t *)a == U NT8_MAX) { 5286 /*
5221 /* 5287 * For now, this has no neaning.
5222 * |f the Oth byte is set to U NT8_MAX 5288 */
5223 * then this is to be treated as a 5289 regs[rd] = 0;
5224 * reference to a NULL variabl e. 5290 br eak;
5225 */ 5291 }
5226 regs[rd] = NULL;
5227 } else { 5293 id -= DI F_VAR OTHER UBASE;
5228 regs[rd] = a + sizeof (uint64_t);
5229 } 5295 ASSERT(id < vstate->dtvs_nl ocal s);
5296 ASSERT(vstate->dtvs_|l ocal s != NULL);
5231 br eak;
5232 } 5298 svar = vstate->dtvs_local s[id];
5299 ASSERT(svar != NULL);
5234 regs[rd] = dtrace_dif_variable(nstate, state, id, 0); 5300 v = &svar->dtsv_var;
5235 br eak;
5302 if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF) {
5237 case DI F_OP_STGS: 5303 uintptr_t a = (uintptr_t)svar->dtsv_data;
5238 id = DIF_INSTR_VAR(instr); 5304 size_t sz = v->dtdv_type. dtdt_size;
5240 ASSERT(id >= DI F_VAR_OTHER_UBASE) ; 5306 sz += sizeof (uint64_t);
5241 id -= D F_VAR OTHER UBASE; 5307 ASSERT(svar - >dt sv_si ze == NCPU * sz);
5308 a += CPU->cpu_id * sz;
5243 svar = vstate->dtvs_gl obal s[id];
5244 ASSERT(svar I'= NULL); 5310 if (*(uint8_t *)a == U NT8_MAX) {
5245 v = &svar->dtsv_var; 5311 /*
5312 * If the Oth byte is set to U NT8_MAX
5247 if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF) { 5313 * then this is to be treated as a
5248 uintptr_t a = (uintptr_t)svar->dtsv_data; 5314 */ref erence to a NULL variable.
5315 *
5250 ASSERT(a != NULL); 5316 regs[rd] = NULL;
5251 ASSERT(svar - >dtsv_si ze != 0); 5317 } else {
5318 regs[rd] = a + sizeof (uint64_t);
5253 if (regs[rd] == NULL) { 5319 }
5254 |nt8 _t *)a = U NT8_MAX;
5255 reak 5321 break;
5256 } else { 5322 }

new usr/src/uts/comon/ dtrace/ dtrace. c

5324
5325
5326
5327

5329
5330

5332
5333
5334

5336
5337
5338
5339

5341
5342
5343

5345
5346
5347

5349
5350
5351
5352
5353
5354
5355

5357
5358
5359
5360

5362
5363
5364
5365

5367
5368
5369
5370

5372
5373
5374

5376
5377
5378
5379

5381
5382
5383
5384
5385

5387
5388

ASSERT(svar >dt sv_size == NCPU * sizeof (uint64_t));
tnp = (uint64_t *)(ui ntptr _t)svar->dtsv_data;
regs[rd] = tnp[CPU->cpu_i dT;

br eak;

case DIF_OP_STLS:

id = D F_INSTR_VAR(instr);

ASSERT(id >= DI F_VAR OTHER UBASE) ;
id -= DF_VAR_ OTHER_UBASE;
ASSERT(i d < vstate->dtvs_| nl ocal s);

ASSERT(vst ate->dtvs_locals != NULL);
svar = vstate->dtvs_local s[id];
ASSERT(svar != NULL);

v = &svar->dtsv_var;

if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF) {
uintptr_t a = (uintptr_t)svar->dtsv_data;
size_t sz = v->dtdv_type.dtdt_size;

sz += sizeof (uint64_t);
ASSERT(svar - >dt sv_si ze == NCPU * sz);
a += CPU->cpu_id * sz;

if (regs[rd] == NULL) {
*(uint8_t *)a = Ul NT8_MAX
br eak;
} else {
*(uint8_t *)a = 0;
a += sizeof (uint64_t);

}

if (!dtrace_vcanl oad(

81

(void *)(uintptr_t)regs[rd], &v->dtdv_type,

nstate, vstate))
br eak;

dtrace vcopy((vm d *)(uintptr_t)regs[rd],
(void *)a, &->dtdv_type);
br eak;

}

ASSERT(svar >dt sv_size == NCPU * sizeof (uint64_t));
tnp = (uint64_t *)(U| ntptr _t)svar->dtsv_data;

tp[CPU->cpu_id] = regs[rd];

break;

case DIF_OP_LDTS: {

dtrace_dynvar_t *dvar;
dtrace_key_t *key;

id = D F_INSTR VAR(instr);
ASSERT(id >= DIF_VAR OT HER _UBASE) ;
|d -= DI F_VAR OTHER UBASE;

v = &state->dtvs_tTocal s[| d];

key = &tupregs[Dl F_DTR _NREGS];

key[0] . dttk value-(U|nt64t)|d
key[0] .dttk_size = 0;

DTRACE_TLS THRKEY(key[l] dttk_val ue);
key[1] . dttk_size = O;

dvar = dtrace_dynvar(dstate, 2, key,
sizeof (uint64_t), DTRACE_DYNVAR NOALLCC,

new usr/src/uts/comon/ dtrace/ dtrace. c

5389

5391
5392
5393
5394

5396
5397
5398
5399
5400

5402
5403

5405
5406
5407

5409
5410
5411

5413
5414
5415
5416
5417
5418

5420
5421
5422
5423
5424

5426
5427
5428
5429
5430

5432
5433

5435
5436
5437
5438
5439

5441
5442
5443
5444
5445

5447
5448

5450
5451
5452

5454

}

82
nstate, vstate);

if (dvar == NULL) {

regs[rd] = 0;
br eak;
}
if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_dat a;
} else {
regs[rd] = *((uint64_t *)dvar->dtdv_data);
}
break;

case DI F_OP_STTS:

}

dtrace _dynvar _t *dvar;
dtrace_key_t *key;

id = D F_INSTR VAR(instr);
ASSERT(id >= DI F_VAR OTHER UBASE) ;
id -= DI F_VAR OTHER UBASE;

key = &tupregs[Dl F_DTR_NREGS];

key[0] . dttk_val ue = (uint64_t)id;
key[0] .dttk_size = 0;

DTRACE_TLS THRKEY(key[l] dt t k_val ue)
key[l] Tdttk_size = 0;

v = &vstate->dtvs tlocals[l d];

dvar = dtrace_dynvar(dstate, 2, key
v>dtdvtype dt dt S|ze>sizeof (uint64_t) 2
v->dtdv_type.dtdt_size : sizeof (uint64_t)
regs[rd] ? DTRACE_DYNVAR ALLCC :
DTRACE_DYNVAR DEALLCC, nstate, vstate);

/*

* Gven that we're storing to thread-1ocal data,
* we need to flush our predicate cache.

*

curthread->t _predcache = NULL;

if (dvar == NULL)
br eak;

if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF) {
if (!dtrace_vcanl oad(
(void *)(uintptr_t)regs[rd],
&->dtdv_type, nstate, vstate))
br eak;

dtrace_vcopy((void *)(uintptr_t)regs[rd],

dvar->dt dv_data, &v->dtdv_type);
} else

}

br eak;

{
*((uint64_t *)dvar->dtdv_data) = regs[rd];

case DI F_OP_SRA:

regs[rd] = (int64_t)regs[rl] >> regs[r2];
break;

case DI F_OP_CALL:

new usr/src/uts/comon/dtrace/ dtrace. c 83 new usr/src/uts/comon/dtrace/ dtrace.c 84
5455 dtrace_di f _subr (DI F_I NSTR_SUBR(i nstr), rd, 5521 } else {
5456 regs, tupregs, ttop, nstate, state); 5522 v = &state->dtvs_gl obal s[id]->dtsv_var;
5457 br eak; 5523 }
5459 case DI F_OP_PUSHTR: 5525 dvar = dtrace_dynvar(dstate, nkeys, key,
5460 if (ttop == DI F_DTR_NREGS) { 5526 V- >dt dv_type. dtdt_size > sizeof (uint64_t) ?
5461 *flags [= CPU_DTRACE_TUPOFLOW 5527 v->dt dv_type. dtdt_size : sizeof (uint64_t),
5462) br eak; 5528 DTRACE_DYNVAR NOALLCC, nstate, vstate);
5463
5530 if (dvar == NULL) {
5465 if (r1 == DIF_TYPE_STRING { 5531 regs[rd] = 0;
5466 /* 5532 br eak;
5467 *Ifth|S|sastr|ngtype and the size is O, 5533 }
5468 * we'll use the systemw de default string
5469 * size. Note that we are _not_ |ooking at 5535 if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF)
5470 * the value of the DTRACEOPT_STRSI ZE opti on; 5536 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_dat a;
5471 * had this been set, we woul d expect to have 5537 } else {
5472 * a non-zero size value in the " pushtr". 5538 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5473 */ 5539 }
5474 tupregs[ttop].dttk_size =
5475 dtrace_strl en((char *) (uintptr_t)regs[rd], 5541 br eak;
5476 regs[r2] ? regs[r2] 5542 }
5477 dtrace_strsize default) + 1;
5478 } else { 5544 case DI F_OP_STGAA:
5479 tupregs[ttop].dttk_size = regs[r2]; 5545 case DI F_OP_STTAA:
5480 } 5546 dtrace_dynvar _t *dvar;
5547 dtrace_key_t *key = tupregs;
5482 tupregs[ttop++].dttk_value = regs[rd]; 5548 uint_t nkeys = ttop;
5483 br eak;
5550 id = D F_INSTR VAR(instr);
5485 case DI F_OP_PUSHTV: 5551 ASSERT(id >= DIF_VAR OTHER UBASE);
5486 if (ttop == DIF_DTR NREGS) { 5552 id -= D F_VAR OTHER UBASE;
5487 *flags | = CPU_DTRACE_TUPOFLOW
5488 br eak; 5554 key[nkeys].dttk_value = (uint64_t)id;
5489 } 5555 key[nkeys++] . dttk_si ze = 0;
5491 tupregs[ttop].dttk_value = regs[rd]; 5557 if (DIF_INSTR OP(instr) == DI F_OP_STTAA) {
5492 tupregs[ttop++].dttk_size = 0; 5558 DTRACE_TLS_THRKEY(key|[nkeys] . dttk_val ue);
5493 br eak; 5559 key[nkeys++] dttk_size = 0;
5560 \Y &vst at e->dt vs_t | ocal S[I d];
5495 case DI F_OP_POPTS: 5561 } else {
5496 if (ttop !'= O) 5562 v = &vstate->dtvs_gl obal s[id]->dtsv_var;
5497 ttop-- 5563 }
5498 break;
5565 dvar = dtrace_dynvar (dstate, nkeys, key,
5500 case DI F_OP_FLUSHTS: 5566 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5501 ttop = O; 5567 v->dtdv_type. dtdt_size : sizeof (uint64_t),
5502 br eak; 5568 regs[rd] ? DTRACE_DYNVAR ALLCC :
5569 DTRACE_DYNVAR DEALLCC, nstate, vstate);
5504 case DI F_OP_LDGAA:
5505 case DI F_OP_LDTAA: { 5571 if (dvar == NULL)
5506 dtrace_dynvar _t *dvar; 5572 br eak;
5507 dtrace_key_t *key = tupregs;
5508 uint_t nkeys = ttop; 5574 if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF) {
5575 if (!dtrace_vcanl oad(
5510 id = DIF_INSTR_VAR(i nstr); 5576 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5511 ASSERT(| d >= DIF_VAR_ OTHER _UBASE) ; 5577 nstate, vstate))
5512 id -= D F_VAR OTHER UBASE; 5578 br eak;
5514 key[nkeys] . dttk_value = (uint64_t)id; 5580 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5515 key[nkeys++] . dttk_si ze = 0; 5581 dvar->dt dv_data, &v->dtdv_type);
5582 } else {
5517 if (DIF_INSTR OP(instr) == DI F_OP_LDTAA) { 5583 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5518 DTRACE_TLS THRKEY(key[nkeys] dttk_val ue); 5584 }
5519 key[nkeys++] . dttk_si ze = 0;
5520 v = &state->dtvs_tl ocal s[i d] ; 5586 br eak;

new usr/src/uts/comon/ dtrace/ dtrace. c 85

5587

5589
5590
5591

5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603

5605
5606
5607
5608
5609

5611
5612
5613
5614
5615
5616
5617

5619
5620

5622
5623
5624

5626
5627
5628
5629
5630
5631
5632
5633

5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647

5649
5650
5651
5652

}

case DI F_OP_ALLCCS:
uintptr_t ptr = P2ROUNDUP(nst at e->dt ms_scratch_ptr, 8);
size_t size = ptr - nstate->dtns_scratch_ptr + regs[r1];

/*

* Rounding up the user allocation size could have

* overflowed | arge, bogus allocations (like -1ULL) to
* 0.

*
/
if (size <regs[ri] ||
| DTRACE_I NSCRATCH(nst at e, size)) {
DTRACE_CPUFLAG SET(CPU DTRACE_NOSCRATCH) ;
regs[rd] = NULL;
br eak;

}

dtrace_bzero((void *) nstate->dtns_scratch_ptr, size);
nst at e- >dt ms_scratch_ptr += si ze;

regs[rd] = ptr;

br eak

}

case DI F_OP_COPYS:
if (!dtrace_canstore(regs[rd], regs[r2],
nmstate, vstate))
*flags | = CPU DTRACE_BADADDR,

*illval = regs[rd];
br eak;

}

if (!dtrace_canload(regs[rl], regs[r2], nstate, vstate))
br eak;

dtrace bcopy((void *)(uintptr_t)regs[r1],
b (kv0| *)(uintptr_t)regs[rd], (size_ t)regs[rZ])
reak;

case DI F_OP_STB:
if (ldtrace canstore(regs[rd], 1, nstate, vstate)) {
*flags | = CPU_DTRACE_ BADADDR;

*illval = regs[rd];

break;
}
*((U|nt8t *)(uintptr_t)regs[rd]) = (uint8_t)regs[ri];
br eal

case DIF_OP_STH:
if (!dtrace_canstore(regs[rd], 2, nstate, vstate)) {
*flags | = CPU_DTRACE_BADADDR;
*illval = regs[rd];
br eak;

}
i f (regs[rd] & 1) {
ags | = CPU_DTRACE_BADALI GN

*|IIvaI regs[rd];
) br eak;
*((uint1l6_t *)(uintptr_t)regs[rd]) = (uintl6_t)regs[ri];
br eak;

case DI F_OP_STW
if (!dtrace_canstore(regs[rd], 4, nstate, vstate)) {
*flags | = CPU_DIRACE_BADADDR;
*illval = regs[rd];

new usr/src/uts/comon/ dtrace/ dtrace. c 86

5653 br eak;

5654 }

5655 if (regs[rd] & 3)

5656 *flags | = CPU_DTRACE_BADALI G\,

5657 *illval = regs[rd];

5658 br eak;

5659 }

5660 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[ri];
5661 br eak;

5663 case DI F_OP_STX

5664 if (!dtrace_canstore(regs[rd], 8, nstate, vstate)) {

5665 *flags | = CPU_DTRACE_BADADDR;

5666 *illval = regs[rd];

5667 break;

5668 }

5669 if (regs[rd] & 7) {

5670 | = CPU_DTRACE_BADALI G\,

5671 *|IIvaI = regs[rd];

5672 br eak;

5673
(
r

*ee

5674
5675 b
5676 }

5677 }

5679 if (!(*flags & CPU_DTRACE_FAULT))
5680 return (rval);

(U|nt64t *)(uintptr_t)regs[rd]) = regs[ri];
eal

5682 nstate->dtnms_fltoffs = opc * sizeof (dif_instr_t);
5683 nst at e- >dt ms_present | = DTRACE_MSTATE_FLTOFFS;

5685 return (0);
5686 }
__unchanged_portion_onitted_

5972 | *

5973 * |f you're looking for the epicenter of DTrace, you just found it. This
5974 * is the function called by the provider to fire a probe -- fromwhich all
5975 * subsequent probe-context DIrace activity emanates.

5976 */

5977 void

5978 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t argl,

5979 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)

5980 {

5981 processorid_t cpuid;

5982 dtrace_i cooki e_t cooki e;

5983 dtrace_probe_t *probe;

5984 dtrace_nstate_t nstate;

5985 dtrace_ech_t *ecb;

5986 dtrace_action_t *act;

5987 intptr_t offs;

5988 size_t size;

5989 int vtine, onintr;

5990 volatile uintl6_t *flags;

5991 hrtime_t now, end;

5993 /
5994

5995

5996

5997

5998 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5999 return;

Kick out immediately if this CPUis still being born (in which case
curthread will be set to -1) or the current thread can't allow
probes in its current context.

* ok ok ok ¥
-~

6001 cookie = dtrace_i nterrupt _di sabl e();

new usr/src/uts/comon/ dtrace/ dtrace. c

6002
6003
6004

6006

6008
6009
6010
6011
6012
6013
6014
6015
6016

6018
6019
6020
6021
6022
6023
6024

6026
6027

6029
6030

6032
6033
6034
6035
6036
6037
6038
6039

6041

6043
6044
6045
6046
6047
6048
6049
6050
6051
6052

6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067

probe = dtrace_probes[id - 1];
cpuid = CPU->cpu_id;
onintr = CPU_ON_I NTR(CPU) ;

CPU- >cpu_dtrace_probes++;

if (lonintr & probe->dtpr_predcache ! = DTRACE_CACHEI DNONE &&
probe- >dt pr _predcache == curthread->t _predcache) {
/*

* W have hit in the predicate cache; we know that
* this predicate would evaluate to be false.

*/

dtrace_i nterrupt _enabl e(cooki e);

return;

}
if (panic_quiesce) {
/'k

* W don’t trace anything if we’re panicking.

*/
dtrace_i nterrupt _enabl e(cooki e);
return;
}
now = dtrace_gethrtinme();
vtime = dtrace_vtine_references != 0;

if (vtine & curthread->t_dtrace_start)
curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;

mstate. dtms_di fo = NULL;
nmst at e. dt ms_pr obe = probe;

nmstate. dt ms_strtok = NULL;
nstate.dtns_arg[0] = argO;
mstate.dtnms_arg[1] = argl;
mstate.dtnms_arg[2] = arg2;
nstate.dtns_arg[3] = arg3;
nstate.dtns_arg[4] = arg4;

flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_fl ags;

for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ech->dte_next) {
dtrace_predicate_t *pred = ecb->dte_predicate,;
dtrace_state_t *state = ecb->dte_state;
dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
dtrace_vstate_t *vstate = &state->dts_vstate;
dtrace_provider_t *prov = probe->dtpr_provider;
uint64_t tracenensize = 0;
int comitted = 0;
caddr _t tomax;

/*
* Alittle subtlety with the follow ng (seemi ngly innocuous)
* declaration of the automatic 'val’': by |ooking at the
* code, you might think that it could be declared in the
* action processing |oop, below (That is, it’s only used in
* the action processing loop.) However, it nust be declared
* out of that scope because in the case of DI F expression
* argunments to aggregating actions, one iteration of the
* action loop will use the last iteration’ s value.
*
/
#ifdef |int
uint64_t val = 0;
#el se

uint64_t val;

87

new usr/src/uts/comon/dtrace/ dtrace.c 88
6068 #endi f

6070 mst at e. dt ms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6071 nst at e. dt ms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PRCC;
6072 netate. dtns_getf = NULL;

6074 #endif /* | codereview */

6075 *flags & ~CPU_DTRACE_ERROR;

6077 if (prov == dtrace_provider) {

6078 /*

6079 * |f dtrace itself is the provider of this probe,
6080 * we're only going to continue processing the ECB if
6081 * arg0 (the dtrace_state_t) is equal to the ECB s
6082 * creating state. (This prevents disjoint consuners
6083 * from seei ng one anot her’s netaprobes.)

6084 *

6085 if (arg0 !'= (uint64_t)(uintptr_t)state)

6086 cont i nue;

6087 }

6089 if (state->dts_activity != DITRACE_ACTI VI TY_ACTI VE) {

6090 /*

6091 * W're not currently active. |If our provider isn't
6092 * the dtrace pseudo provider, we’'re not interested.
6093 */

6094 if (prov != dtrace_provider)

6095 conti nue;

6097 /*

6098 * Now we nust further check if we are in the BEG N
6099 * probe. If we are, we will only continue processing
6100 *if we're still in WARMUP -- if one BEG N enabling
6101 * has invoked the exit() action, we don't want to
6102 * eval uate subsequent BEG N enabl i ngs.

6103 *

6104 if (probe->dtpr_id == dtrace_probei d_begin &&

6105 state->dts_activity ! = DTRACE_ACTI VI TY_WARMUP) {
6106 ASSERT(state->dts_activity ==

6107 DTRACE_ACTI VI TY_DRAI NI NG) ;

6108 conti nue;

6109 }

6110 }

6112 if (ecb->dte_cond && !dtrace_priv_probe(state, &nmstate, ech))
6113 conti nue;

6115 if (now - state->dts_alive > dtrace_deadman_tineout) {

6116 /*

6117 * W seemto be dead. Unless we (a) have kernel

6118 * destructive perm ssions (b) have explicitly enabl ed
6119 * destructive actions and (c) destructive actions have
6120 * not been disabled, we're going to transition into
6121 * the KILLED state, fromwhich no further processing

6122 * on this state will be perforned.

6123 */

6124 if (!dtrace_priv_kernel _destructive(state) ||
6125 Istate->dts_cred. dcr_destructive ||

6126 dtrace_destructive_di sal | ow)

6127 void *activity = &state->dts_activity;
6128 dtrace_activity_t current;

6130 do {

6131 current = state->dts_activity;
6132 } while (dtrace_cas32(activity, current,

6133 DTRACE_ACTI VITY_KI LLED) != current);

new usr/src/uts/comon/ dtrace/ dtrace. c 89

6135
6136
6137

6139
6140
6141

6143
6144

6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157

6159
6160

6162
6163

6165
6166
6167

6169

6171
6172

6174
6175
6176
6177
6178
6179
6180

6182
6183
6184

6186
6187
6188
6189
6190

6192
6193

6195
6196
6197

6199

conti nue;

}

if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
ecbh->dte_alignnent, state, &nstate)) < 0)
conti nue;

tomax = buf->dt b_t onax;
ASSERT(t omax != NULL);

if (ecb->dte_size != 0)
dtrace_rechdr_t dtrh;
if (!(mstate.dtms_present & DTRACE_MSTATE_TI MESTAWP)) {
nmstate. dtns_timestanp = dtrace_gethrtine();
nst at e. dt ns_present | = DTRACE_MSTATE_TI MESTAWP;

}
ASSERT3U(ecb- >dte_si ze, >=, sizeof (dtrace_rechdr_t));
dtrh.dtrh_epid = ecb->dte_epid;
DTRACE_RECORD_STORE_TI MESTAVP(&dtrh

nmetate. dt ms_t i mest anp) ;
*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;

}
netate. dtns_epid = ecbh->dte_epid;
nmet at e. dt ms_present | = DTRACE_MSTATE_EPI D

if (state->dts_cred.dcr_visible & DTRACE _CRV_KERNEL)
nst at e. dt ms_access | = DTRACE_ACCESS_KERNEL;

if (pred !'= NULL) {
dtrace_difo_t *dp = pred->dtp_difo;
int rval;
rval = dtrace_dif_enul ate(dp, &rmstate, vstate, state);

if (!(*flags & CPU DTRACE ERROR) && !rval) {
dtrace_cacheid_t cid = probe->dtpr_predcache;

if (cid != DTRACE_CACHEI DNONE && !onintr) {
/*
* Update the predicate cache...
*
/

ASSERT(cid == pred->dtp_cachei d);
curthread->t_predcache = cid;

}
conti nue;
}
}
for (act = ecb->dte_action; !(*flags & CPU DTRACE _ERROR) &&
act !'= NULL; act = act->dta_next) {

size_t valoffs;
dtrace_difo_t *dp;
dtrace_recdesc_t *rec = &act->dta_rec;

size = rec->dtrd_si ze;
valof fs = offs + rec->dtrd_of fset;

i f (DTRACEACT_I SAGH act ->dta_ki nd)) {
uint64_t v = Oxbad;
dtrace_aggregation_t *agg;

agg = (dtrace_aggregation_t *)act;

new usr/src/uts/comon/ dtrace/ dtrace. c

6201
6202
6203

6205
6206

6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219

6221
6222
6223
6224
6225
6226

6228
6229
6230
6231

6233
6234
6235
6236

6238
6239
6240

6242
6243
6244
6245

6247

6249
6250
6251
6252

6254
6255
6256
6257
6258
6259
6260

6262
6263
6264

90

if ((dp act->dta_difo) !'= NULL)
= dtrace_di f _enul at e(dp,

&nmstate, vstate, state);

Vv

if (*flags & CPU_DTRACE_ERROR)
conti nue;

Note that we al ways pass the expression
value fromthe previous iteration of the
action loop. This value will only be used
if there is an expression argunment to the
aggregati ng action, denoted by the
dtag_hasarg field.

* Ok k k k ok F o
-~

dtrace_aggregat e(agg, buf,
of fs, aggbuf, v, val);
cont i nue;

}

switch (act->dta_kind) {
case DTRACEACT_STOP:
if (dtrace_priv_proc_destructive(state,
&rstate))
dtrace_action_stop();
cont i nue;

case DTRACEACT_BREAKPO NT
if (dtrace_priv_kernel _destructive(state))
dtrace_acti on_br eakpoi nt (ecb);
cont i nue;

case DTRACEACT_PANI C:
if (dtrace_priv_kernel _destructive(state))
dtrace_acti on_pani c(ech);
conti nue;

case DTRACEACT_STACK:
if (!dtrace_priv_kernel (state))
cont i nue;

dtrace_get pcstack((pc_t *)(tomax + val offs),
size | sizeof (pc_t), probe->dtpr_afranes,
DTRACE_ANCHORED(pr obe) ? NULL :
(uint32_t *)arg0);

conti nue;
case DTRACEACT_JSTACK:

case DTRACEACT_USTACK:
if (!dtrace_priv_proc(state, &mstate))

conti nue;
/*
* See comment in DI F_VAR PID.
*/

i f (DTRACE_ANCHORED(nst at e. dt ns_pr obe) &&
CPU_ON_I NTR(CPU)) {
int depth = DTRACE_USTACK_NFRAVES(
rec->dtrd_arg) + 1;

dtrace_bzero((void *)(tomax + valoffs),
DTRACE_USTACK_STRSI ZE(r ec->dtrd_arg)
+ depth * sizeof (uint64_t));

new usr/src/uts/comon/dtrace/ dtrace. c 91 new usr/src/uts/comon/dtrace/ dtrace.c 92
6266 conti nue;
6267 } 6333 of fs = dtrace_buffer_reserve(buf,
6334 ecb- >dt e_needed, ecb->dte_alignnent,
6269 i f (DTRACE_USTACK_STRSI ZE(rec->dtrd_arg) != 0 && 6335 state, NULL);
6270 curproc->p_dtrace_hel pers !'= NULL) {
6271 /* 6337 if (offs <0) {
6272 * This is the slow path -- we have 6338 *fl ags | = CPU_DTRACE_DROP;
6273 * allocated string space, and we're 6339 conti nue;
6274 * getting the stack of a process that 6340 }
6275 * has helpers. Call into a separate
6276 * routine to performthis processing. 6342 tomax = buf->dtb_t omax;
6277 */ 6343 ASSERT(tomax != NULL);
6278 dtrace_action_ustack(&mstate, state,
6279 (uint64_t *)(tomax + valoffs), 6345 if (ech->dte_size == 0)
6280 rec->dtrd_arg); 6346 conti nue;
6281 conti nue;
6282 } 6348 ASSERT3U(ecb- >dt e_si ze, >=,
6349 sizeof (dtrace_rechdr_t));
6284 /* 6350 dtrh = ((void *)(tomax + offs));
6285 * Clear the string space, since there’s no 6351 dtrh->dtrh_epid = ecb->dte_epid;
6286 * helper to do it for us. 6352 /*
6287 & 6353 * When the speculation is commtted, all of
6288 if (DTRACE_USTACK_STRSI ZE(rec->dtrd_arg) != 0) { 6354 * the records in the speculative buffer wll
6289 int depth = DTRACE_USTACK_NFRAMES(6355 * have their timestanps set to the commit
6290 rec->dtrd_arg); 6356 * time. Until then, It is set to a sentinel
6291 size_t strsize = DTRACE_USTACK_STRSI ZE(6357 * val ue, for debugability.
6292 rec->dtrd_arg); 6358 */
6293 uint64 t *buf = (uint64 t *)(tomax + 6359 DTRACE_RECORD_STORE_TI MESTAMP(dtrh, Ul NT64_NAX) ;
6294 val of fs); 6360 conti nue;
6295 void *strspace = &buf[depth + 1]; 6361 }
6297 dtrace_bzero(strspace, 6363 case DTRACEACT_CHI LL:
6298 M N(dept h, strsize)); 6364 if (dtrace_priv_kernel _destructive(state))
6299 } 6365 dtrace_action_chill (&wstate, val);
6366 conti nue;
6301 DTRACE_CPUFLAG SET(CPU_DTRACE_NOFAULT) ;
6302 dtrace_getupcstack((uint64_t *) 6368 case DTRACEACT_RAI SE:
6303 (tomax + val offs), 6369 if (dtrace_priv_proc_destructive(state,
6304 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 6370 &nrstate))
6305 DTRACE_CPUFLAG CLEAR(CPU_DTRACE_NOFAULT) ; 6371 dtrace_action_raise(val);
6306 conti nue; 6372 conti nue;
6308 defaul t: 6374 case DTRACEACT_COWM T:
6309 br eak; 6375 ASSERT(! commi tted);
6310 }
6377 /*
6312 dp = act->dta_difo; 6378 * W& need to conmit our buffer state.
6313 ASSERT(dp !'= NULL); 6379 *
6380 if (ecb->dte_size)
6315 val = dtrace_dif_enul ate(dp, &state, vstate, state); 6381 buf->dtb_of fset = offs + ech->dte_size;
6382 buf = &state->dts_buffer[cpuid];
6317 if (*flags & CPU _DTRACE_ERROR) 6383 dtrace_specul ati on_commit(state, cpuid, val);
6318 continue; 6384 conmitted = 1;
6385 conti nue;
6320 switch (act->dta_kind) {
6321 case DTRACEACT_SPECULATE: { 6387 case DTRACEACT_DI SCARD:
6322 dtrace_rechdr _t *dtrh; 6388 dtrace_specul ation_di scard(state, cpuid, val);
6389 conti nue;
6324 ASSERT(buf == &state->dts_buffer[cpuid]);
6325 buf = dtrace_specul ati on_buffer(state, 6391 case DTRACEACT_DI FEXPR:
6326 cpuid, val); 6392 case DTRACEACT_LI BACT:
6393 case DTRACEACT_PRI NTF:
6328 if (buf == NULL) { 6394 case DTRACEACT_PRI NTA:
6329 *flags | = CPU_DTRACE_DROP; 6395 case DTRACEACT_SYSTEM
6330 conti nue; 6396 case DTRACEACT_FREOPEN:
6331 } 6397 case DTRACEACT_TRACEMEM

new usr/src/uts/comon/ dtrace/ dtrace. c 93

6398

6400
6401
6402

6404
6405
6406
6407
6408

6410
6411
6412
6413

6415
6416

6418
6419
6420
6421

6423
6424

6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443

6445
6446

6448
6449

6451
6452
6453
6454
6455

6457
6458

6460
6461
6462

br eak;

case DTRACEACT_TRACEMEM DYNSI ZE:

tracenensi ze = val;
br eak;

case DTRACEACT_SYM
case DTRACEACT_MOD:

if (!dtrace_priv_kernel (state))
cont i nue;
br eak;

case DTRACEACT_USYM
case DTRACEACT_UMOD:
case DTRACEACT_UADDR:

}

{
struct pid *pid = curthread->t_procp->p_pidp;

if (!dtrace_priv_proc(state, &nmstate))
cont i nue;

DTRACE_STORE(ui nt64_t, tomax,

val of fs, (uint64_t)pid->pid_id);
DTRACE_STORE(ui nt 64_t, tomax,

val of fs + sizeof (uint64_t), val);

conti nue;

case DTRACEACT_EXIT: {
*

}
defaul t:

}

For the exit action, we are going to attenpt
to atomcally set our activity to be
draining. |If this fails (either because
anot her CPU has beat us to the exit action,
or because our current activity is sonething
other than ACTIVE or WARMUP), we will
continue. This assures that the exit action
can be successfully recorded at npst once
when we’'re in the ACTIVE state. |f we're
encountering the exit() action while in
COOLDOMN, however, we want to honor the new
status code. (We know that we're the only
thread in COOLDOMW, so there is no race.)

* ok % ok % ok kb ok F ok 3k

&l
void *activity = &state->dts_activity;
dtrace_activity_t current = state->dts_activity;

if (current == DTRACE_ACTI VI TY_COOLDON)
br eak;

if (current != DTRACE_ACTI VI TY_WARMUP)
current = DTRACE_ACTI VI TY_ACTI VE;

if (dtrace_cas32(activity, current,
DTRACE_ACTIVITY_DRAINING != current) {
*flags | = CPU_DTRACE_DROP;

cont i nue;
}
br eak;
ASSERT(0) ;

new usr/src/uts/comon/dtrace/ dtrace.c 94
6464 if (dp->dtdo_rtype.dtdt_flags & D F_TF_BYREF) {

6465 uintptr_t end = val offs + size;

6467 if (tracenensize != 0 &&

6468 val of fs + tracenmensi ze < end) {

6469 end = val offs + tracenensi ze;

6470 tracenensi ze = 0;

6471 }

6473 if (!dtrace_vcanl oad((void *)(uintptr_t)val,
6474 &dp->dtdo_rtype, &nstate, vstate))

6475 conti nue;

6477 l*

6478 * If this is a string, we're going to only
6479 * load until we find the zero byte -- after
6480 * which we'll store zero bytes.

6481 */

6482 if (dp->dtdo_rtype.dtdt_kind ==

6483 DI F_TYPE_STRING {

6484 char ¢ = '\0" + 1,

6485 int intuple = act->dta_intuple;

6486 size_t s;

6488 for (s = 0; s < size; s++) {

6489 if (ct!="\0

6490 c = dtrace_| oad8(val ++);
6492 DTRACE_STORE(ui nt8_t, tomax,
6493 val of fs++, «c);

6495 if (c =="'\0 && intuple)
6496 br eak;

6497 }

6499 conti nue;

6500 }

6502 while (valoffs < end) {

6503 DTRACE_STORE(ui nt8_t, tomax, val of fs++,
6504 dtrace_| oad8(val ++));

6505 }

6507 cont i nue;

6508 }

6510 switch (size) {

6511 case O:

6512 br eak;

6514 case sizeof (uint8_t):

6515 DTRACE_STORE(ui nt8_t, tomax, valoffs, val);
6516 br eak;

6517 case sizeof (uintl6_t):

6518 DTRACE_STORE(ui nt16_t, tomax, valoffs, val);
6519 br eak;

6520 case sizeof (uint32_t):

6521 DTRACE_STORE(ui nt32_t, tomax, valoffs, val);
6522 br eak;

6523 case sizeof (uint64_t):

6524 DTRACE_STORE(ui nt64_t, tomax, valoffs, val);
6525 br eak;

6526 defaul t:

6527 /*

6528 * Any ot her size should have been returned by
6529 * reference, not by val ue.

new usr/src/uts/comon/ dtrace/ dtrace. c 95

6530
6531
6532
6533
6534

6536
6537

6539
6540
6541

6543

6545
6546
6547
6548
6549
6550
6551
6552
6553
6554

6556
6557
6558
6559
6560
6561
6562
6563
6564

6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576

6578
6579
6580
6581

6583
6584

6586
6587
6588

6590
6591
6592

6594

}

=]
ASSERT(0) ;
br eak;

}

if (*flags & CPU DTRACE_DROP)
conti nue;

if (*flags & CPU DTRACE FAULT) {
int ndx;
dtrace_action_t *err;

buf - >dt b_errors++;
if (probe->dtpr_id == dtrace_probeid_error) {

/*

* There’s nothing we can do -- we had an
* error on the error probe. W bunp an
*
*

error counter to at |east indicate that
this condition happened.

*/
dtrace_error(&state->dts_dblerrors);
continue;

}

if (vtime) {
/*
* Before recursing on dtrace_probe(), we
* need to explicitly clear out our start
* tine to prevent it from being accunul ated
* into t_dtrace_vtine.
*/
curthread->t _dtrace_start = 0;

}

/

*
* |terate over the actions to figure out which action
* we were processing when we experienced the error.
* Note that act points _past_ the faulting action; if
* act is ecbhb->dte_action, the fault was in the

* predicate, if it's ecb->dte_action->dta_next it’'s

* In action #1, and so on.

o/
for (err = ecb->dte_action, ndx = 0;
err != act; err = err->dta_next, ndx++)
conti nue;

dtrace_probe_error(state, ecbh->dte_epid, ndx,
(nstate. dtms_present & DTRACE_MSTATE_FLTOFFS) ?
nstate.dtns_fltoffs : -1, DIRACE FLAGS2FLT(*fl ags),
cpu_core[cpuid].cpuc_dtrace_illval);

conti nue;

}

if (commtted)
buf ->dtb_offset = offs + ecb->dte_size;

end = dtrace_gethrtine();
if (vtine)

curthread->t_dtrace_start = end;

CPU->cpu_dtrace_nsec += end - now,

new usr/src/uts/comon/ dtrace/ dtrace. c

6596 dtrace_i nterrupt_enabl e(cooki e);

6597 }

6599 /*

6600 * DTrace Probe Hashing Functions

6601 *

6602 * The functions in this section (and indeed, the functions in renaining
6603 * sections) are not _called_ fromprobe context. (Any exceptions to this are
6604 * marked wth a "Note:".) Rather, they are called fromel sewhere in the
6605 * DTrace franework to | ook-up probes in, add probes to and renove probes from
6606 * the DIrace probe hashes. (Each probe is hashed by each el ement of the
6607 * probe tuple -- allowing for fast |ookups, regardl ess of what was

6608 * specified.)

6609 */

6610 static uint_t

6611 dtrace_hash_str(char *p)

6612 {

6613 unsigned int g;

6614 uint_t hval = 0;

6616 while (*p) {

6617 hval = (hval << 4) + *p++;

6618 if ((g = (hval & 0xf0000000)) != 0)

6619 hval "= g >> 24;

6620 hval &= ~g;

6621 }

6622 return (hval);

6623 }

6625 static dtrace_hash_t *

6626 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6627 {

6628 dtrace_hash_t *hash = knem zal | oc(si zeof (dtrace_hash_t), KM SLEEP);
6630 hash->dth_stroffs = stroffs;

6631 hash->dt h_nextof fs = nextoffs;

6632 hash->dth_prevoffs = prevoffs

6634 hash->dt h_si ze = 1;

6635 hash- >dt h_mask = hash->dth_size - 1;

6637 hash->dth_tab = kmem zal | oc(hash->dth_si ze *

6638 si zeof (dtrace_hashbucket_t *), KM SLEEP);

6640 return (hash);

6641 }

6643 static void

6644 dtrace_hash_destroy(dtrace_hash_t *hash)

6645 {

6646 #ifdef DEBUG

6647 int i;

6649 for (i = 0; i < hash->dth_size; i++)

6650 ASSERT(hash->dth_tab[i] == NULL);

6651 #endi f

6653 kmem f ree(hash->dt h_t ab,

6654 hash->dth_si ze * sizeof (dtrace_hashbucket_t *));

6655 kmem free(hash, sizeof (dtrace_hash_t));

6656 }

6658 static void

6659

dtrace_hash_resi ze(dtrace_hash_t *hash)

6660 {

6661

int size = hash->dth_size, i, ndx;

new usr/src/uts/comon/ dtrace/ dtrace. c 97

6662
6663
6664

6666
6668

6670
6671
6672

6674
6675

6677
6678
6679
6680
6681

6683
6684
6685
6686
6687 }

int new size = hash->dth_size << 1;
int new_mask = new_size - 1;
dtrace_hashbucket _t **new tab, *bucket, *next;

ASSERT((new_si ze & new_mask) == 0);
new_tab = kmem zal | oc(new_size * sizeof (void *), KM SLEEP);

(i =0; i <size; i++) {
for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
dtrace_probe_t *probe = bucket->dt hb_chai n;

ASSERT(probe !'= NULL);
ndx = DTRACE_HASHSTR(hash probe) & new_mask;

next = bucket - >dt hb_next;
bucket - >dt hb_next = new_t ab[ndx] ;
new_t ab[ndx] = bucket;

}

kmem free(hash->dt h_tab, hash->dth_size * sizeof (void *));
hash->dth_tab = new_t ab;

hash->dt h_si ze new_si ze;

hash- >dt h_nmask new_nask;

6689 static void
6690 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)

6691 {
6692
6693
6694
6695

6697
6698
6699
6700

6702
6703
6704
6705
6706

6708
6709
6710
6711

6713 add:

6714
6715
6716

6718
6719
6720
6721
6722

6724
6725
6726 }

int hashval = DTRACE_HASHSTR(hash, new);

int ndx = hashval & hash- >dth mask;
dtrace_hashbucket _t *bucket = hash->dth_tab[ndx];
dtrace_probe_t **nextp, **prevp

for (; bucket !'= NULL; bucket = bucket->dthb_next) {
if (DTRACE_HASHEQ hash, bucket->dt hb_chain, new))
goto add;
}

if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
dtrace_hash_resi ze(hash);
dtrace_hash_add(hash, new);
return;

}

bucket = kmem zal | oc(sizeof (dtrace_hashbucket_t), KM SLEEP);
bucket - >dt hb_next = hash->dt h_t ab[ndx] ;

hash->dt h_t ab[ndx] = bucket;

hash- >dt h_nbucket s++;

nextp = DTRACE H/-\SHNEXT(hash, new);
ASSERT(*nextp == NULL &% *(DTRACE HASHPREV(hash, new)) == NULL)
*nextp = bucket - >dt hb_chai n;

if (bucket->dthb_chain I'= NULL) {
prevp = DTRACE HASHPREV(hash, bucket->dt hb_chain);
ASSERT(prevp == NULL);
*prevp = new,

}

bucket - >dt hb_chai n = new,
bucket - >dt hb_| en++;

new usr/src/uts/comon/ dtrace/ dtrace. c 98

6728 static dtrace_probe_t *
6729 dtrace_hash_| ookup(dtrace_hash_t *hash, dtrace_probe_t *tenpl ate)

6730 {
6731
6732
6733

6735
6736
6737
6738

6740
6741 }

int hashval = DTRACE_HASHSTR(hash, tenplate);
int ndx = hashval & hash- >dth mask
dtrace_hashbucket _t *bucket = hash->dt h_t ab[ndx] ;

for (; bucket !'= NULL; bucket = bucket->dthb_next) {
if (DTRACE_HASHEQ hash, bucket->dthb_chain, tenplate))
return (bucket->dthb_chain);
}

return (NULL);

6743 static int
6744 dtrace_hash_col | isions(dtrace_hash_t *hash, dtrace_probe_t *tenplate)

6745 {
6746
6747
6748

6750
6751
6752
6753

6755
6756 }

int hashval = DTRACE_HASHSTR(hash, terrpl ate);
int ndx = hashval & hash- >dth mask
dtrace_hashbucket _t *bucket ="hash->dt h _tab[ndx];

for (; bucket != NULL; bucket = bucket->dthb_next) {
if (DTRACE_HASHEQ hash, bucket->dthb_chain, tenplate))
return (bucket->dthb_Ien);

}
return (NULL);

6758 static void
6759 dtrace_hash_renove(dtrace_hash_t *hash, dtrace_probe_t *probe)

6760 {
6761
6762

6764
6765

6767
6768
6769
6770
6771
6772
6773

6775

6777
6778
6779
6780
6781
6782
6783

6785
6786

6788
6789
6790
6791
6792
6793

int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
dtrace_hashbucket _t *bucket = hash->dth_t ab[ndx];

DTRACE_HASHPREV(hash, probe);
DTRACE_HASHNEXT(hash, probe);

dtrace_probe_t **prevp
dtrace_probe_t **nextp

*

* Find the bucket that we're removing this probe from
S

for (; bucket !'= NULL; bucket = bucket->dthb_next) {
if (DTRACE_HASHEQ hash, bucket->dthb_chain, probe))
br eak;
}

ASSERT(bucket != NULL);

if (*prevp == NULL) {
if (* nextp == NULL) {

* The renoved probe was the only probe on this
* bucket; we need to renpve the bucket.

*/

dtrace_hashbucket _t *b = hash->dt h_t ab[ndx] ;

ASSERT(bucket - >dt hb_chai n == probe);
ASSERT(b !'= NULL);

if (b == bucket) {
hash- >dt h_t ab[ndx] = bucket - >dt hb_next;
} else {
whi | e (b->dthb_next != bucket)
b = b->dt hb_next;
b- >dt hb_next = bucket - >dt hb_next;

99

new usr/src/uts/comon/dtrace/ dtrace. c

6794 }

6796 ASSERT(hash- >dt h_nbuckets > 0);

6797 hash- >dt h_nbucket s- - ;

6798 kmem f ree(bucket, sizeof (dtrace_hashbucket_t));
6799 return;

6800 }

6802 bucket - >dt hb_chai n = *nextp;

6803 } else {

6804 * (DTRACE_HASHNEXT(hash, *prevp)) = *nextp;

6805 }

6807 if (*nextp !'= NULL)

6808 * (DTRACE_HASHPREV(hash, *nextp)) = *prevp;

6809 }

6811 /*

6812 * DfTrace Utility Functions

6813 *

6814 * These are randomutility functions that are _not_ called from probe context.
6815 */

6816 static int

6817 dtrace_badattr(const dtrace_attribute_t *a)

6818 {

6819 return (a->dtat_name > DTRACE_STABI LI TY_MAX ||

6820 a->dt at _data > DTRACE_STABI LI TY_MAX | |

6821 a->dt at _cl ass > DTRACE_CLASS_MAX) ;

6822 }

6824 [*

6825 * Return a duplicate copy of a string. |If the specified string is NULL,
6826 * this function returns a zero-length string.

6827 */

6828 static char *

6829 dtrace_strdup(const char *str)

6830 {

6831 char *new = kmem zal l oc((str !'= NULL ? strlen(str) 0) + 1, KM SLEEP);
6833 if (str 1= NULL)

6834 (void) strcpy(new, str);

6836 return (new);

6837 }

6839 #define DTRACE_I SALPHA(c) \

6840 (((c) >="a & (c) <='2z") || ((c) >="'A && (c) <='Z"))
6842 static int

6843 dtrace_badnane(const char *s)

6844 {

6845 char c;

6847 if (s == NULL || (c = *s++) == '\0")

6848 return (0);

6850 if (IDTRACE ISALPHA(C) & c !="'-' & c !="' "' & c !="'.")
6851 return (1);

6853 while ((c = *s++) = "\0") {

6854 if(lDTRACEISALPHA(c)&&(c< 0 || ¢c>'9) &&
6855 cl="-" & c!="_" cl="." & c!=""")
6856 return (1);

6857 }

6859 return (0);

new usr/src/uts/comon/ dtrace/ dtrace. c
6860 }
6862 static void

6863 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6864 {

6865 uint32_t priv;

6867 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6868 /*

6869 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6870 */

6871 priv = DTRACE PRI V_ALL

6872 } else {

6873 *uidp = crgetuid(cr);

6874 *zonei dp = crgetzoneid(cr);

6876 priv = 0;

6877 if (PRIV_POLICY_ ONLY(cr, PRIV_DTRACE KERNEL, B_FALSE))
6878 priv | = DTRACE_PRI V_KERNEL | DTRACE_PRIV_USER
6879 else if (PRI V_PQOLI CY_ONLY(cr, PRIV_DTRACE USER, B_FALSE))
6880 priv [= DTRACE_PRI V_USER

6881 if (PRIV_POLICY_ONLY(cr, PRIV _DTRACE PROC, B FALSE))
6882 priv | = DTRACE_PRI V_PROC;

6883 if (PRIV_POLICY_ONLY(cr, PRIV_PROC OMNER, B_FALSE))
6884 priv | = DTRACE_PRI V_OMER;

6885 if (PRIV_POLICY_ONLY(cr, PRIV_PROC ZONE, B FALSE))

6886 priv | = DTRACE PRI V_ZONEOWNER;

6887 }

6889 *privp = priv;

6890 }

6892 #ifdef DTRACE_ERRDEBUG
6893 static void
6894 dtrace_errdebug(const char *str)

6895 {

6896 int hval = dtrace hash_str((char *)str) % DTRACE_ERRHASHSZ;
6897 int occupied =

6899 mut ex_enter (&Jtrace_errl ock);

6900 dtrace_errlast = str;

6901 dtrace_errthread = curthread;

6903 whi | e (occupi ed++ < DTRACE_ERRHASHSZ) {

6904 if (dtrace_errhash[hval].dter_nsg == str) {
6905 dtrace_errhash[hval].dt er _count ++;
6906 goto out;

6907 }

6909 if (dtrace_errhash[hval].dter_nmsg != NULL) {
6910 hval = (hval + 1) % DTRACE_ERRHASHSZ;
6911 cont i nue;

6912 }

6914 dtrace_errhash[hval].dter_nmsg = str;

6915 dtrace_errhash[hval].dter_count = 1;

6916 goto out;

6917 }

6919 pani c("dtrace: undersized error hash");

6920 out:

6921 mut ex_exit (&dtrace_errl ock);

6922 }

6923 #endi f

6925 /*

new usr/src/uts/comon/dtrace/ dtrace. c 101 new usr/src/uts/comon/dtrace/ dtrace.c 102
6926 * DTrace Matching Functions 6992 return (rv);
6927 *
6928 * These functions are used to match groups of probes, given sone el enents of 6994 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6929 */a probe tuple, or some gl obbed expressions for elenents of a probe tuple. 6995 return (rv);
6930 *
6931 static int 6997 if ((rv = pkp->dtpk_nmatch(prp->dtpr_nanme, pkp->dtpk_nane, 0)) <= 0)
6932 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 6998 return (rv);
6933 zonei d_t zonei d)
6934 { 7000 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6935 if (priv != DTRACE PRI V_ALL) { 7001 return (0);
6936 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6937 uint32_t match = priv & ppriv; 7003 return (rv);
7004 }
6939 /*
6940 * No PRIV_DTRACE * privileges... 7006 /*
6941) 7007 * dtrace_match_glob() is a safe kernel inplenentation of the gnmatch(3GEN)
6942 if ((priv & (DTRACE_PRI V_PROC | DTRACE_PRI V_USER | 7008 * interface for matching a glob pattern 'p’ to an input string 's’. Unlike
6943 DTRACE_PRI V_KERNEL)) == 0) 7009 * libc's version, the kernel version only applies to 8-bit ASCI| strings.
6944 return (0); 7010 * In addition, all of the recursion cases except for '*' matching have been
7011 * unwound. For '*’, we still inplement recursive evaluation, but a depth
6946 /* 7012 * counter is maintained and matching is aborted if we recurse too deep.
6947 * No matching bits, but there were bits to match... 7013 * The function returns O if no match, >0 if match, and <0 if recursion error.
6948 */ 7014 */
6949 if (mtch == 0 & ppriv !=0) 7015 static int
6950 return (0); 7016 ?trace_match_gl ob(const char *s, const char *p, int depth)
7017
6952 /% 7018 const char *ol ds;
6953 * Need to have permissions to the process, but don't... 7019 char si1, c;
6954 * 7020 int gs;
6955 if (((ppriv & ~match) & DTRACE_PRIV_OMER) != 0 &&
6956 uid !'= prp->dtpr_provider->dtpv_priv.dtpp_uid) { 7022 if (depth > DTRACE PROBEKEY_MAXDEPTH)
6957 return (0); 7023 return (-1);
6958 }
7025 if (s == NULL)
6960 /* 7026 s =""; /* treat NULL as enpty string */
6961 * Need to be in the sane zone unl ess we possess the
6962 * privilege to exami ne all zones. 7028 top:
6963 */ 7029 olds = s;
6964 if (((ppriv & ~match) & DTRACE_PRI V_ZONEOMNER) != 0 && 7030 Sl = *s++;
6965 zoneid ! = prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6966 return (0); 7032 if (p == NULL)
6967 } 7033 return (0);
6968 }
7035 if ((c =*p++) =='\0")
6970 return (1); 7036 return (sl =='\0");
6971 }
7038 switch (c¢) {
6973 /* 7039 case '[':
6974 * dtrace_natch_probe conpares a dtrace_probe_t to a pre-conpiled key, which 7040 int ok =0, notflag = O;
6975 * consists of input pattern strings and an ops-vector to eval uate them 7041 char lc ="\0";
6976 * This function returns >0 for match, O for no natch, and <0 for error.
6977 */ 7043 if (s1 =="\0")
6978 static int 7044 return (0);
6979 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6980 uint32_t priv, uid_t uid, zoneid_t zoneid) 7046 if (*p=="1")
6981 { 7047 notflag = 1;
6982 dtrace_provider_t *pvp = prp->dtpr_provider; 7048 p++;
6983 int rv; 7049 }
6985 if (pvp->dtpv_defunct) 7051 if ((c =*p++) =="'\0")
6986 return (0); 7052 return (0);
6988 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_nanme, pkp->dtpk_prov, 0)) <= 0) 7054 do {
6989 return (rv); 7055 if (c=="-" & lc !="\0 && *p!="1") {
7056 if ((c = *p++) == '\0")
6991 if ((rv = pkp->dtpk_mmat ch(prp->dtpr_nod, pkp->dtpk_nod, 0)) <= 0) 7057 return (0);

new usr/src/uts/comon/ dtrace/ dtrace. c 103

7058
7059

7061
7062
7063
7064
7065
7066
7067

7069
7070

7072

7074
7075
7076
7077
7078
7079
7080

7082
7083

7085

7087
7088

7090
7091

7093
7094
7095
7096

7098
7099
7100
7101

7103
7104
7105
7106

7108
7109
7110

7112
7113

7115
7116
7117
7118

7120
7121
7122 }

if (c =="\\" & (c = *p++) == "\0")
return (0);
if (notflag) {
if (sl <lc || sl >c¢)
ok++;
el se
return (0);
} elseif (Ic <= sl & sl <= ¢)
ok++;
} elseif (c =="\\" & (c = *p++) == "\0")
return (0);

lc =c; /* save left-hand '¢c’ for next iteration */

if (notflag) {
if (

sl !=c¢)
ok++;
el se
return (0);
} elseif (sl == c¢)
ok++;
if ((c = *p+s) =="\0")
return (0);
} while (c!'="1");
if (ok)
goto top;
return (0);
}
case "\\':
if ((c=*p+H) =="10")
return (0);
[* FALLTHRU*/
defaul t:
if (c!=s1)
return (0);
[* FALLTHRU*/
case '?':
if (s1!="\0")
goto top;
return (0);
case '*':
while (*p == "*")
p++; /* consecutive *'s are identical to a single one */
if (*p =="'\0")
return (1);
for (s = olds; *s !="\0"; s++) {
if ((gs = dtrace_match_gl ob(s, p, depth + 1)) != 0)
return (gs);
}
return (0);
}

new usr/src/uts/comon/ dtrace/ dtrace. c

7124 | * ARGSUSED* /

7125 static int

7126 dtrace_match_string(const char *s, const char *p, int depth)

7127 {

7128 return (s !'= NULL && strcnmp(s, p) == 0);

7129 }

7131 | * ARGSUSED*/

7132 static int

7133 dtrace_nmatch_nul (const char *s, const char *p, int depth)

7134 {

7135 return (1); /* always match the enpty pattern */

7136 }

7138 | * ARGSUSED*/

7139 static int

7140 dtrace_match_nonzero(const char *s, const char *p, int depth)

7141 {

7142 return (s !'= NULL && s[0] !="\0");

7143 }

7145 static int

7146 dtrace_natch(const dtrace_probekey t *pkp, uint32_t priv, uid_t uid,

7147 zonei d_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7148 {

7149 dtrace_probe_t tenplate, *probe;

7150 dtrace_hash_t *hash = NULL;

7151 int len, rc, best = I NT_MAX, nnatched = O;

7152 dtrace_id_t i;

7154 ASSERT(MUTEX_HELD(&dt r ace_| ock));

7156 *

7157 * |f the probe IDis specified in the key, just |ookup by ID and
7158 * invoke the match cal |l back once if a matching probe Is found.
7159 */

7160 if (pkp->dtpk_id != DTRACE_ | DNONE) {

7161 if ((probe = dtrace_probe_| ookup_i d(pkp->dtpk_id)) != NULL &&
7162 dtrace_mat ch_probe(probe, pkp, priv, uid, zoneid) > 0) {
7163 if ((*matched) (probe, arg) == DTRACE_MATCH FAIL)
7164 return (DTRACE_MATCH FAIL);

7165 nmat ched++;

7166 }

7167 return (nmatched);

7168 }

7170 tenpl ate. dtpr_nod = (char *)pkp->dtpk_nod;

7171 tenpl ate.dtpr_func = (char *)pkp->dtpk_func;

7172 tenpl ate. dtpr_name = (char *)pkp->dtpk_namne;

7174 /*

7175 * W want to find the npst distinct of the nodul e nane, function
7176 * nane, and nane. So for each one that is not a glob pattern or
7177 * enpty string, we performa |ookup in the correspondi ng hash and
7178 * use the hash table with the fewest collisions to do our search.
7179 */

7180 if (pkp->dtpk_mmatch == &dtrace_natch_string &&

7181 (len = dtrace_hash_col i sions(dtrace_bynod, & enplate)) < best) {
7182 best = len;

7183 hash = dtrace_bynod;

7184 1

7186 if (pkp->dtpk_fmatch == &Jtrace_match_string &&

7187 (len = dtrace_hash_col | i si ons(dtrace_byfunc, & enplate)) < best) {
7188 best = len;

7189 hash = dtrace_byf unc;

new usr/src/uts/comon/dtrace/ dtrace. c 105 new usr/src/uts/comon/dtrace/ dtrace.c 106
7190 } 7256 if (p == NULL || *p == "\0")
7257 return (&dJtrace_match_nul);
7192 if (pkp->dtpk_nnmatch == &Jtrace_match_string &&
7193 (len = dtrace_hash_col i sions(dtrace_bynane, & enplate)) < best) { 7259 while ((c = *p++) 1="\0")
7194 best = len; 7260 if (c="["1]] c="72 | =="'*" || ¢ = "\\")
7195 hash = dtrace_bynane; 7261 return (&dtrace_| natch _gl ob);
7196 } 7262 }
7198 * 7264 return (&trace_match_string);
7199 * |If we did not select a hash table, iterate over every probe and 7265 }
7200 * invoke our callback for each one that matches our input probe key.
7201 */ 7267 | *
7202 if (hash == NULL) { 7268 * Build a probe conparison key for use with dtrace_nmatch_probe() fromthe
7203 or (i = 0; i < dtrace_nprobes; i++) { 7269 * given probe description. By convention, a null key only matches anchored
7204 |f ((probe = dtrace_probes[i]) == NULL || 7270 * probes: if each field is the enpty string, reset dtpk_fmatch to
7205 dtrace_mat ch_probe(probe, pkp, priv, uid, 7271 * dtrace_match_nonzero().
7206 zonei d) <= 0) 7272 *
7207 conti nue; 7273 static void
7274 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7209 nmat ched++; 7275 {
7276 pkp- >dt pk_prov = pdp->dt pd_provi der;
7211 if ((rc = (*matched)(probe, arg)) != 7277 pkp- >dt pk_pmat ch = dtrace_probekey_func(pdp->dt pd_provi der);
7212 DTRACE_MATCH_NEXT) {
7213 if (rc == DTRACE_MATCH_ FAI L) 7279 pkp->dt pk_nod = pdp >dt pd_nod;
7214 b " return (DTRACE_MATCH FAIL); 7280 pkp- >dt pk_mmatch = dtrace probekey f unc(pdp- >dt pd_nod) ;
7215 r eak;
7216 } 7282 pkp- >dt pk_func = pdp->dt pd_func;
7217 } 7283 pkp->dt pk_f match = dtrace_probekey_func(pdp->dtpd_func);
7219 return (nmatched); 7285 pkp- >dt pk_name = pdp- >dt pd_nane;
7220 } 7286 pkp- >dt pk_nmat ch = dtrace_probekey_func(pdp->dt pd_nane) ;
7222 /* 7288 pkp->dt pk_i d = pdp->dt pd_i d;
7223 * |f we selected a hash table, iterate over each probe of the sane key
7224 * nane and invoke the callback for every probe that matches the ot her 7290 if (pkp->dtpk_id == DTRACE_| DNONE &&
7225 * attributes of our input probe key. 7291 pkp- >dt pk_pmat ch == &dtrace_match_nul &&
7226 “f 7292 pkp- >dt pk_nmmat ch == &dtrace_match_nul &&
7227 for (probe = dtrace_hash_| ookup(hash, &t enplate); probe != NULL; 7293 pkp->dt pk_f match == &dtrace_nmatch_nul &&
7228 probe = *(DTRACE_HASHNEXT(hash, probe))) { 7294 pkp- >dt pk_nmat ch == &dtrace_natch_nul)
7295 pkp- >dt pk_f mat ch &dtrace_mat ch_nonzer o;
7230 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 7296 }
7231 conti nue;
7298 [*
7233 nmat ched++; 7299 * DTrace Provider-to-Framework APl Functions
7300 *
7235 if ((rc = (mat ched) (probe, arg)) != DTRACE_MATCH_NEXT) { 7301 * These functions inplenent much of the Provider-to-Framework API, as
7236 f (rc == DTRACE_MATCH FAI L) 7302 * described in <sys/dtrace.h> The parts of the APl not in this section are
7237 return (DTRACE_MATCH FAIL); 7303 * the functions in the APl for probe managenent (found bel ow), and
7238 br eak; 7304 * dtrace_probe() itself (found above).
7239 } 7305 */
7240 }
7307 [*
7242 return (nmatched); 7308 * Register the calling provider with the DIrace framework. This should
7243 } 7309 */generally be called by DIrace providers in their attach(9E) entry point.
7310 *
7245 | * 7311 int
7246 * Return the function pointer dtrace_probecnp() should use to conpare the 7312 dtrace_regi ster(const char *nane, const dtrace_pattr_t *pap, uint32_t priv,
7247 * specified pattern with a string. For NULL or enpty patterns, we select 7313 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7248 * dtrace_match_nul (). For glob pattern strings, we use dtrace_nmatch_glob(). 7314 {
7249 * For non-enpty non-glob strings, we use dtrace_match_string(). 7315 dtrace_provider_t *provider;
7250 */
7251 static dtrace_probekey f * 7317 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7252 dtrace_probekey_func(const char *p) 7318 com_err (CE_WARN, “"failed to register provider "%’': invalid "
7253 { 7319 "arguments”, name ? name @ "<NULL>");
7254 char c; 7320 return (EINVAL);
7321 }

new usr/src/uts/comon/ dtrace/ dtrace. c

7323
7324
7325
7326
7327

7329
7330
7331
7332
7333
7334
7335
7336

7338
7339
7340
7341
7342
7343
7344
7345
7346

7348
7349
7350
7351
7352

7354
7355
7356
7357
7358
7359
7360

7362
7363
7364

7366
7367
7368
7369
7370
7371
7372

7374
7375
7376
7377
7378

7380
7381
7382
7383
7384

7386
7387

if (name[0] == '\0" || dtrace_badnane(nane)) {
crm_err (CE_WARN, "failed to register provider '%’:
"provi der name", nane);
return (EINVAL);

invalid "

}

if ((pops->dtps_provi de == NULL && pops->dtps_provi de_nodul e == NULL) ||
pops- >dt ps_enabl e == NULL || pops—>dt ps_di sabl e == NULL ||
pops- >dt ps_destroy == NULL
((pops->dt ps_resune == MJLL) I = (pops->dt ps_suspend == NULL))) {
cmm_err (CE_WARN, "fai led to register provider '%’': invalid "
"provi der ops", nane);
return (EINVAL);
}

if (dtrace_badattr(&pap->dtpa_provider) ||
dtrace_badat t r (&pap- >dt pa_nod) ||
dtrace_badat t r (&pap->dt pa_func) ||
dt race_badat t r (&pap- >dt pa_nane) ||
dtrace_badat tr (&pap->dt pa_args))
"fa

cm err(CE WARN, iled to register provider '%’: invalid "
"provi der attrlbutes nane) ;
return (EINVAL);
}
if (priv & ~DTRACE_PRI V_ALL) {
cm err(CE WARN, “"failed to register provider "%’: invalid "

"privil ege attributes", nane);
return (EINVAL);
}

if ((priv & DTRACE PRI V_KERNEL) &&
(priv & (DTRACE PRI V_USER | DTRACE_PRIV_OMER)) &&
pops- >dt ps_node == NULL) {
crm_err (CE_WARN, "failed to register provider '%’': need "
"dt ps_node() op for given privilege attributes", nane);
return (EINVAL);
}

provi der = knmem zal | oc(si zeof (dtrace_provider_t), KM SLEEP);
provi der->dt pv_name = kmem al | oc(strlen(nane) + 1, KM SLEEP);
(void) strcpy(provider->dtpv_nanme, nane);

provider->dtpv_attr = *pap;
provi der->dt pv_priv. dtpp flags = priv;
if (cr !'= NULL) {
provi der->dtpv_priv.dtpp_uid = crgetuid(cr);
provi der->dtpv_priv. dtpp_zoneid = crgetzoneid(cr);

}
provi der - >dt pv_pops = *pops;

if (pops->dtps_provide == NULL) {
ASSERT(pops->dt ps_provi de_nmodul e ! = NULL);
provi der - >dt pv_pops. dt ps_provi de =
(void (*)(void *, const dtrace_probedesc_t *))dtrace_null op;

}

if (pops->dtps_provide_nodul e == NULL) {
ASSERT(pops- >dt ps_provide != NULL);
provi der - >dt pv_pops. dt ps_provi de modul e =
(void (*)(void *, struct nodctl *))dtrace_nullop;

}

if (pops->dtps_suspend == NULL) {
ASSERT(pops->dt ps_resune == NULL);

new usr/src/uts/comon/ dtrace/ dtrace. c

7388 provi der - >dt pv_pops. dt ps_suspend =

7389 (void (*)(void *, dtrace_id_t, void *))dtrace_null op;
7390 provi der - >dt pv_pops. dt ps_resune =

7391 (void (*)(void *, dtrace_id_t, void *))dtrace_null op;
7392 }

7394 provi der->dtpv_arg = arg;

7395 *idp = (dtrace_provider_id_t)provider;

7397 if (pops == &dtrace_provider_ops) {

7398 ASSERT(MUTEX_HELD(&dt r ace_pr ovi der _| ock)) ;

7399 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

7400 ASSERT(dt race_anon. dt a_enabl i ng == NULL) ;

7402 /*

7403 * We make sure that the DIrace provider is at the head of
7404 * the provider chain.

7405 *

7406 provi der - >dt pv_next = dtrace_provider;

7407 dtrace_provi der = provider;

7408 return (0);

7409 }

7411 mut ex_ent er (&t race_provi der _| ock);

7412 nmut ex_ent er (&dtrace_| ock) ;

7414 /*

7415 * |If there is at |east one provider registered, we'll add this
7416 * provider after the first provider.

7417 */

7418 if (dtrace_provider != NULL) {

7419 provi der - >dt pv_next dtrace _provi der - >dt pv_next ;

7420 dtrace_provi der->dt pv next = provider;

7421 } else {

7422 dtrace_provi der = provider;

7423 1

7425 if (dtrace_retained !'= NULL) {

7426 dtrace_enabl i ng_provi de(provider);

7428 /*

7429 * Now we need to call dtrace_enabling_matchall () -- which
7430 * Wi II acquire cpu_|l ock and dtrace_l ock. W therefore need
7431 * to drop all of our locks before calling into it...
7432 */

7433 mut ex_exi t (&t race_l ock);

7434 mut ex_exi t (&t race_provi der_| ock);

7435 dtrace_enabl i ng_matchal | ();

7437 return (0);

7438 }

7440 mut ex_exi t (&dtrace_l ock);

7441 nmut ex_exi t (&dtrace_provi der _| ock);

7443 return (0);

7444 }

7446 [*

7447 * Unregister the specified provider fromthe DTrace framework. This should
7448 * generally be called by DIrace providers in their detach(9E) entry point.
7449 */

7450 int

7451 dtrace_unregi ster(dtrace_provider_id_t id)

7452 {

7453 dtrace_provider_t *old = (dtrace_provider_t *)id;

new usr/src/uts/comon/ dtrace/ dtrace. c

7454
7455
7456

7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468

7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480

7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496

7498
7499
7500
7501
7502
7503

7505
7506

7508
7509

7511
7512
7513
7514
7515
7516
7517
7518
7519

dtrace_provider_t *prev = NULL;
int i, self =0, noreap = 0
dtrace_probe_t *probe, *first = NULL;

if (ol d->dtpv_pops.dtps_enable ==
(int (*)(v0|d *, dtrace_id_t, void *))dtrace_enabl e_nullop) {

* |f DTrace itself is the provider, we're called with | ocks
* already held
*/

ASSERT(ol d == dtrace_provider);
ASSERT(dtrace_devi != NULL);

ASSERT(MUTEX_HELD(&dt r ace_pr ovi der _| ock));
ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

self = 1;

if (dtrace_provider->dtpv_next != NULL) {
/*

* There’'s anot her provider here; return failure.
*/
return (EBUSY);

} else {
mut ex_ent er (&Jtrace_provi der _| ock);
mut ex_ent er (&od_| ock) ;
mut ex_ent er (&dtrace_| ock) ;

probes, we refuse to let providers slither away, unless this

*

* |f anyone has /dev/dtrace open, or if there are anonynpus enabl ed
*

* provider has already been explicitly invalidated.

if (!old->dtpv_defunct &&

(dtrace_opens || (dtrace_anon.dta_state != NULL &&
dtrace_anon. dta_stat e->dt's_nechs > 0))) {
if (!self) {

nut ex_exi t (&dtrace_| ock);
mut ex_exi t (&od_| ock) ;
mut ex_exit (&dtrace_provi der _| ock);

. Eeturn (EBUSY) ;

*

* Attenpt to destroy the probes associated with this provider.
*
/

for (i = 0; i < dtrace_nprobes; i++) {
if ((probe = dtrace_probes[i]) == NULL)
conti nue;

if (probe->dtpr_provider != old)
conti nue;

if (probe->dtpr_ecb == NULL)
cont i nue;

If we are trying to unregister a defunct provider, and the
provi der was made defunct within the interval dictated by
dtrace_unregi ster_defunct _reap, we'll (asynchronously)
attenpt to reap our enablings. To denote that the provider
shoul d reattenpt to unregister itself at sonme point in the
future, we will return a differentiable error code (EAGAIN
instead of EBUSY) in this case.
/

* ok % ok % ok Ok ok ¥

new usr/src/uts/comon/ dtrace/ dtrace. c

7520
7521
7522

7524
7525
7526
7527
7528

7530
7531

7533
7534

7536
7537

7539
7540
7541
7542
7543
7544
7545

7547
7548

7550

7552
7553
7554

7556
7557
7558
7559
7560
7561
7562
7563

7565
7566
7567
7568
7569
7570

7572
7573

7575
7576
7577
7578
7579
7580
7581
7582

7584
7585

if (dtrace_gethrtime() - ol d->dtpv_defunct >
dtrace_unregi st er_defunct _reap)
noreap =

if (!self) {
mut ex_exi t (&dtrace_| ock);
nut ex_exi t (&d_| ock) ;
nut ex_exi t (&dtrace_provi der _| ock);

}

if (noreap)
return (EBUSY);

(voi d) taskqg_di spatch(dtrace_taskq,
(task_func_t *)dtrace_enabling_reap, NULL, TQ SLEEP);

return (EAGAIN);
}
/*
* Al of the probes for this provider are disabled; we can safely

110

* renove all of themfromtheir hash chains and fromthe probe array.

*/
for (i = 0; i < dtrace_nprobes; i++)
if ((probe = dtrace probes[l]) == NULL)
conti nue;
if (probe->dtpr_provider !'= old)
conti nue;
dtrace_probes[i] = NULL;
dtrace_hash_renove(dtrace_bynod, probe);
dtrace_hash_r enove(dt race_byf unc, probe)
dtrace_hash_renove(dtrace_byname, probe);
if (first == NULL) {
first = probe;
probe- >dt pr_next mod = NULL;
} else {
probe->dt pr_nextnmod = first;
first = probe;
}
}
/*

* The provider’s probes have been renpved fromthe hash chains and
* fromthe probe array. Now issue a dtrace_sync() to be sure that
* everyone has cleared out fromany probe array processing.

*/

dtrace_sync();

for (probe = first; probe != NULL; probe = first) {
first = probe->dtpr_nextnod;

ol d- >dt pv_pops. dt ps_destroy(ol d->dt pv_arg, probe->dtpr_id,
probe->dt pr_arg);

kmem free(probe->dtpr_nod, strlen(probe->dtpr_nod) + 1);

kmem free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);

kmem free(probe->dt pr_nane, strlen(probe->dtpr_nanme) + 1);

vieem free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id),

kmem free(probe, si zeof (dtrace_probe_t));

}

if ((prev = dtrace_provider) == old) {
ASSERT(sel f || dtrace_devi == NULL);

1);

new usr/src/uts/comon/dtrace/ dtrace. c 111 new usr/src/uts/comon/dtrace/ dtrace.c
7586 ASSERT(ol d->dt pv_next == NULL || dtrace_devi == NULL); 7652 int
7587 dtrace_provi der = ol d->dt pv_next; 7653 dtrace_condense(dtrace_provider_id_t id)
7588 } else { 7654 {
7589 while (prev !'= NULL && prev->dtpv_next != old) 7655 dtrace_provider_t *prov = (dtrace_provider_t *)id;
7590 prev = prev->dtpv_next; 7656 int i;
7657 dtrace_probe_t *probe;
7592 if (prev == NULL) {
7593 pani c("attenpt to unregi ster non-existent " 7659 /*
7594 "dtrace provider 9%\n", (void *)id); 7660 * Make sure this isn't the dtrace provider itself.
7595 } 7661 */
7662 ASSERT(pr ov- >dt pv_pops. dt ps_enabl e ! =
7597) prev->dt pv_next = ol d->dt pv_next; 7663 (int (*)(void *, dtrace_id_t, void *))dtrace_enabl e_nullop);
7598
7665 mut ex_ent er (&t race_provi der _| ock);
7600 if (!self) { 7666 mut ex_ent er (&Jtrace_| ock);
7601 mut ex_exi t (&Jtrace_l ock);
7602 mut ex_exi t (&od_| ock) ; 7668 /*
7603 mut ex_exi t (&Jtrace_provi der _| ock); 7669 * Attenpt to destroy the probes associated with this provider.
7604 } 7670 */
7671 for (i = 0; i < dtrace_nprobes; i++)
7606 kmem free(ol d->dt pv_name, strlen(old->dtpv_name) + 1); 7672 if ((probe = dtrace probes[l]) == NULL)
7607 kmem free(ol d, sizeof (dtrace_provider_t)); 7673 conti nue;
7609 return (0); 7675 if (probe->dtpr_provider != prov)
7610 } 7676 conti nue;
7612 | * 7678 if (probe->dtpr_ecb !'= NULL)
7613 * Invalidate the specified provider. Al subsequent probe | ookups for the 7679 conti nue;
7614 * specified provider will fail, but its probes will not be renpved.
7615 */ 7681 dtrace_probes[i] = NULL;
7616 void
7617 dtrace_invalidate(dtrace_provider_id_t id) 7683 dtrace_hash_renove(dtrace_bynod, probe);
7618 { 7684 dtrace_hash_r enove(dt r ace_byf unc, probe)
7619 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 7685 dtrace_hash_r enove(dtrace_byname, pr obe);
7621 ASSERT(pvp- >dt pv_pops. dt ps_enabl e ! = 7687 prov->dt pv_pops. dt ps_destroy(prov->dtpv_arg, i + 1,
7622 (int (*)(void *, dtrace_id_t, void *))dtrace_enabl e_nullop); 7688 probe->dtpr_arg);
7689 kmem f ree(probe->dtpr_nod, strlen(probe->dtpr_nod) + 1);
7624 mut ex_ent er (&t race_provi der _| ock) ; 7690 kmem free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7625 mut ex_ent er (&Jtrace_| ock); 7691 kmem f ree(probe->dt pr_nane, strlen(probe->dtpr_nane) + 1);
7692 kmem free(probe, sizeof (dtrace probe_t));
7627 pvp- >dt pv_def unct = dtrace_gethrtine(); 7693 vrem free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7694 }
7629 mut ex_exi t (&dtrace_| ock);
7630 mut ex_exi t (&dtrace_provi der _lock); 7696 mut ex_exi t (&dtrace_l ock);
7631 } 7697 mut ex_exi t (&dtrace_provi der _| ock);
7633 [* 7699 return (0);
7634 * Indicate whether or not DTrace has attached. 7700 }
7635 */
7636 int 7702 [*
7637 dtrace_attached(voi d) 7703 * DIrace Probe Managenent Functions
7638 { 7704 *
7639 /* 7705 * The functions in this section performthe DIrace probe nanagenent,
7640 * dtrace_provider will be non-NULL iff the DIrace driver has 7706 * including functions to create probes, |ook-up probes, and call into the
7641 * attached. (It’s non-NULL because DTrace is always itself a 7707 * providers to request that probes be provided. Sonme of these functions are
7642 * provider.) 7708 * in the Provider-to-Franework API; these functions can be identified by the
7643 “f 7709 * fact that they are not declared "static".
7644 return (dtrace_provider !'= NULL); 7710 */
7645 }
7712 | *
7647 | * 7713 * Create a probe with the specified nodul e nanme, function nane, and nane.
7648 * Renpbve all the unenabl ed probes for the given provider. This functionis 7714 */
7649 * not unlike dtrace_unregister(), except that it doesn't remove the provider 7715 dtrace_id_t
7650 * -- just as many of its associ ated probes as it can. 7716 dtrace_probe_create(dtrace_provider_id_t prov, const char *nod,
7651 */ 7717 const char *func, const char *nane, int aframes, void *arg)

new usr/src/uts/comon/ dtrace/ dtrace. c 113

7718 {
7719
7720
7721

7723
7724
7725
7726
7727

7729
7730
7731

7733
7734
7735
7736
7737
7738
7739
7740

7742
7743
7744

7746
7747
7748

7750
7751
7752
7753
7754

7756

7758
7759
7760
7761
7762
7763

7765
7766
7767

7769

7771
7772
7773
7774
7775
7776
T

7779
7780

7782
7783

dtrace_probe_t *probe, **probes;
dtrace_provider_t *provider = (dtrace_provider_t *)prov;
dtrace_id_t id;

if (provider == dtrace_provider) {
ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;
} else {
mut ex_ent er (&Jtrace_| ock);
}

id = (dtrace_id_t)(uintptr_t)vmemalloc(dtrace_arena, 1,
VM BESTFI T | VM SLEEP);
probe = kmem zal | oc(si zeof (dtrace_probe_t), KM SLEEP);

probe->dtpr_id = id;

pr obe- >dt pr _gen dtrace_probegen++;

pr obe- >dt pr _nod dtrace_strdup(nod);
pr obe- >dt pr _f unc dtrace_strdup(func);
pr obe- >dt pr _nane dtrace_strdup(nane);
probe->dtpr_arg = arg;

probe- >dt pr_aframes = afranes;

probe- >dt pr _provi der = provider;

dtrace_hash_add(dtrace_bynod, probe);
dtrace_hash_add(dtrace_byf unc, probe)
dt race_hash_add(dt race_byname, probe);

if (id- 1 >= dtrace nprobes)
size_t osize = dtrace _nprobes * sizeof (dtrace_probe_t *);
size_t nsize = osize << 1,

if (nsize == 0) {
ASSERT(osi ze == 0);
ASSERT(dtrace probes == NULL);
nsize = sizeof (dtrace_probe_ t *);

}
probes = kmem zal | oc(nsi ze, KM SLEEP);

if (dtrace_probes == NULL) {
ASSERT(osi ze == 0);
dtrace_probes = probes;
dtrace_nprobes = 1;

} else {
dtrace_probe_t **oprobes = dtrace_probes;

bcopy(oprobes, probes, osize);

dt race_nenbar _producer ();

dtrace_probes = probes;

dtrace_sync();

/*

* Al CPUs are now seeing the new probes array; we can
* safely free the old array.

*/

kmem f ree(opr obes, osize);
dtrace_nprobes <<= 1;

}

ASSERT(id - 1 < dtrace_nprobes);
}

ASSERT(dtrace_probes[id - 1] == NULL);
dtrace_probes[id - 1] = probe;

new usr/src/uts/comon/ dtrace/ dtrace. c

7785 if (provider != dtrace_provider)

7786 mut ex_exi t (&Jtrace_| ock)

7788 return (id)

7789 }

7791 static dtrace_probe_t *

7792 dtrace_probe_Tookup_id(dtrace_id_t id)

7793 {

7794 ASSERT(MUTEX_HELD(&dt r ace_| ock));

7796 if (id==01]] id > dtrace_nprobes)

7797 return (NULL)

7799 return (dtrace_probes[id - 1])

7800 }

7802 static int

7803 dtrace_probe_| ookup_nat ch(dtrace_probe_t *probe, void *arg)

7804

7805 *((dtrace_id_t *)arg) = probe->dtpr_id

7807 return (DTRACE_MATCH_DONE) ;

7808 }

7810 /*

7811 * Look up a probe based on provider and one or nore of npdul e nane, function
7812 * nane and probe nane

7813 */

7814 dtrace_id_t

7815 dtrace_probe_| ookup(dtrace_provider_id_t prid, const char *nod
7816 const char *func, const char *nane)

7817 {

7818 dtrace_probekey_t pkey;

7819 dtrace_id_t id;

7820 int match;

7822 pkey. dt pk_prov = ((dtrace_provider_t *) prid)->dt pv_naneg;
7823 pkey. dt pk_| pnatch &dtrace mat ch_stri ng;

7824 pkey. dt pk_nmod =

7825 pkey. dt pk_| nnatch = mod ? &dtrace_match_string : &dtrace_match_nul
7826 pkey. dt pk_func = func

7827 pkey. dt pk_| fnatch = func ? &dtrace _match_string : &dtrace_match_nul;
7828 pkey. dt pk_nanme = nane;

7829 pkey. dt pk_nmatch = nane ? &dtrace_match_string : &dtrace_match_nul
7830 pkey. dt pk_i d = DTRACE_| DNONE;

7832 mut ex_ent er (&dt race_| ock)

7833 mat ch = dtrace_nat ch(&pkey, DTRACE_PRIV_ALL, 0, O

7834 dtrace_probe_| ookup_match, &id)

7835 mut ex_exit (&dtrace_l ock);

7837 ASSERT(match == 1 || match == 0)

7838 return (match ? id : 0);

7839 }

7841 | *

7842 * Returns the probe argunent associated with the specified probe
7843 */

7844 void *

7845 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)

7846 {

7847 dtrace_probe_t *probe;

7848 void *rval = NULL;

new usr/src/uts/comon/ dtrace/ dtrace. c 115

7850 mut ex_ent er (&dtrace_| ock) ;

7852 if ((probe = dtrace_probe_| ookup_id(pid)) != NULL &&

7853 probe->dt pr_provider == (dtrace_provider_t *)id)

7854 rval = probe->dtpr_arg;

7856 mut ex_exi t (&Jtrace_l ock);

7858 return (rval);

7859 }

7861 /*

7862 * Copy a probe into a probe description.

7863 */

7864 static void

7865 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7866 {

7867 bzero(pdp, sizeof (dtrace_probedesc_t));

7868 pdp->dtpd_i d = prp->dtpr_id,;

7870 (voi d) strncpy(pdp->dtpd_provider,

7871 pr p- >dt pr_provi der - >dt pv_nanme, DTRACE_PROVNAMELEN - 1);

7873 (voi d) strncpy(pdp->dtpd_nod, prp->dtpr_nod, DTRACE_MODNAMELEN - 1);
7874 (voi d) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE _FUNCNAMELEN - 1);
7875 (voi d) strncpy(pdp->dtpd_nane, prp->dtpr_name, DTRACE_NAMELEN - 1);
7876 }

7878 [*

7879 * Called to indicate that a probe -- or probes -- should be provided by a
7880 * specfied provider. |If the specified description is NULL, the provider wll
7881 * be told to provide all of its probes. (This is done whenever a new

7882 * consumer comes along, or whenever a retained enabling is to be matched.) If
7883 * the specified description is non-NULL, the provider is given the

7884 * opportunity to dynam cally provide the specified probe, allow ng providers
7885 * to support the creation of probes on-the-fly. (So-called _autocreated_
7886 * probes.) If the provider is NULL, the operations will be applied to all
7887 * providers; if the provider is non-NULL the operations will only be applied
7888 * to the specified provider. The dtrace_provider_|ock nmust be held, and the
7889 * dtrace_lock nust _not_ be held -- the provider’s dtps_provide() operation
7890 * will need to grab the dtrace_l ock when it reenters the framework through
7891 * dtrace_probe_|l ookup(), dtrace_probe_create(), etc.

7892 */

7893 static void

7894 dtrace_probe_provi de(dtrace_probedesc_t *desc, dtrace_provider_t *prv)

7895 {

7896 struct nodctl *ctl;

7897 int all = 0;

7899 ASSERT(MUTEX_HELD(&dt r ace_pr ovi der _| ock));

7901 if (prv == NULL) {

7902 all = 1;

7903 prv = dtrace_provider;

7904 }

7906 do {

7907 /*

7908 * First, call the blanket provide operation.

7909 */

7910 prv->dt pv_pops. dt ps_provi de(prv->dtpv_arg, desc);

7912 /*

7913 * Now cal | the per-nodul e provide operation. We will grab
7914 * mod_l ock to prevent the list frombeing nodified. Note
7915 * that this also prevents the nod_busy bits from changing.

new usr/src/uts/comon/ dtrace/ dtrace. c

7916
7917
7918

7920
7921
7922
7923

7925
7927

7929
7930
7931

7933
7934
7935
7936
7937

* (nod_busy can only be changed wi th nod_| ock held.)
*
/
mut ex_ent er (&mod_| ock) ;
ctl = &mdul es;
do {
if (ctl->mod_busy || ctl->npd_np == NULL)
conti nue;
prv->dt pv_pops. dt ps_provi de_nodul e(prv->dtpv_arg, ctl);
} while ((ctl = ctl->npd_next) != &mdul es);
mut ex_exi t (&mod_| ock) ;
} while (all && (prv = prv->dtpv_next) != NULL);
}
/*
* |terate over each probe, and call the Framework-to-Provider APl function
* denoted by offs.
*
/
static void

7938 dtrace_probe_foreach(uintptr_t offs)

7939 {

7940 dtrace_provider_t *prov;

7941 void (*func)(void *, dtrace_id_t, void *);

7942 dtrace_probe_t *probe;

7943 dtrace_i cooki e_t cooki e;

7944 int i;

7946 /*

7947 * We disable interrupts to wal k through the probe array. This is
7948 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7949 * won't see stale data.

7950 */

7951 cooki e = dtrace_i nterrupt _di sabl e();

7953 for (i =0; i < dtrace_nprobes; i++) {

7954 if ((probe = dtrace_probes[i]) == NULL)

7955 cont i nue;

7957 if (probe->dtpr_ecb == NULL) {

7958 /*

7959 * This probe isn't enabled -- don't call the function.
7960 */

7961 conti nue;

7962 }

7964 prov = probe->dtpr_provider;

7965 func = *((void(**)(void *, dtrace_id_t, void *))

7966 ((uintptr_t)&prov->dtpv_pops + offs));

7968 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);

7969 }

7971 dtrace_i nterrupt _enabl e(cooki e);

7972 }

7974 static int

7975 dtrace_probe_enabl e(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7976 {

7977 dtrace_probekey_t pkey;

7978 uint32_t priv;

7979 uid_t uid;

7980 zonei d_t zonei d;

new usr/src/uts/comon/dtrace/ dtrace. c 117
7982 ASSERT(MUTEX_HELD(&dtrace_| ock));

7983 dtrace_ecb_create_cache = NULL;

7985 if (desc == NULL) {

7986 /*

7987 * If we're passed a NULL description, we're being asked to
7988 * create an ECB with a NULL probe.

7989 */

7990 (void) dtrace_ecbh_create_enabl e(NULL, enab);

7991 return (0);

7992 1

7994 dtrace_probekey(desc, &pkey);

7995 dtrace_cred2pri v(enab->dt en_vst at e->dt vs_stat e- >dts_cred. dcr_cred,

7996 &priv, &uid, &zoneid);

7998 return (dtrace_nmatch(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7999 enab));

8000 }

8002 /*

8003 * DTrace Hel per Provider Functions

8004 */

8005 static void
8006 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)

8007 {

8008 attr->dtat _nane = DOF_ATTR NAME(dofattr);
8009 attr->dtat_data = DOF_ATTR_DATA(dofattr);
8010 attr->dtat_class = DOF_ATTR_CLASS(dof attr)
8011 }

8013 static void
8014 dtrace_dof prov2hprov(dtrace_hel per_provdesc_t *hprov,

8015 const dof _provider_t *dof prov, char *strtab)

8016 {

8017 hprov- >dt hpv_provnane = strtab + dof prov->dof pv_nane;
8018 dtrace_dof attr2attr(&hprov->dthpv_pattr.dtpa_provider,
8019 dof prov- >dof pv_provattr);

8020 dtrace_dof attr2attr (&prov->dt hpv_pattr.dtpa_nod,
8021 dof pr ov- >dof pv_nodattr);

8022 dtrace_dof attr2attr(&hprov->dthpv_pattr.dtpa_func,
8023 dof prov- >dof pv_funcattr);

8024 dtrace_dof attr2attr (&hprov->dthpv_pattr.dtpa_nane,
8025 dof pr ov- >dof pv_naneattr);

8026 dtrace_dof attr2attr(&hprov->dthpv_pattr.dtpa_args,
8027 dof prov- >dof pv_argsattr);

8028 }

8030 static void
8031 dtrace_hel per_provi de_one(dof _hel per_t *dhp, dof_sec_t *sec, pid_t pid)

8032 {

8033 uintptr_t daddr = (uintptr t)dhp >dof hp_dof ;
8034 dof _hdr_t *dof = (dof hdr_t *)daddr;

8035 dof “sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8036 dof _provi der _t *pr ovi der;

8037 dof _probe_t *probe;

8038 uint32_t *off, *enoff;

8039 uint8_t *arg;

8040 char *strtab;

8041 uint_t i, nprobes;

8042 dtrace_hel per _provdesc_t dhpyv;

8043 dtrace_hel per _probedesc_t dhpb;

8044 dtrace_nmeta_t *meta = dtrace_neta_pid;

8045 dtrace_nops_t *nops = &neta->dt m nops;
8046 voi d *parg;

new usr/src/uts/comon/ dtrace/ dtrace. c

118

8048 provi der = (dof _provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8049 str_sec = (dof _sec_t *)(uintptr_t)(daddr + dof->dof h_secoff +
8050 prow der - >dof pv strtab * dof - >dof h_secsi ze);

8051 prb_sec = (dof _sec_t *)(uintptr_t)(daddr + dof- >dof h _secof f +
8052 prow der - >dof pv_probes * dof->dof h_secsi ze) ;

8053 arg_sec (dof _sec_t *)(uintptr_t)(daddr + dof - >dof h_secoff +
8054 prow der->dof pv prargs * dof - >dof h_secsi ze);

8055 of f _sec (dof _sec_t *)(uintptr_t)(daddr + dof- >dof h _secof f +
8056 provi der—>dof pv_proffs * dof->dof h_secsi ze);

8058 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8059 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8060 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8061 enof f = NULL;

8063 /*

8064 * See dtrace_hel per_provider_validate().

8065 */

8066 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION 1 &&

8067 provi der - >dof pv_| prenoffs !'= DOF_SECT_NONE) {

8068 enof f _sec (dof _sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8069 provi der >dof pv_prenoffs * dof - >dof h_secsi ze);
8070 enof f = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dof s_offset);
8071 }

8073 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;

8075 /*

8076 * Create the provider.

8077 */

8078 dt race_dof prov2hprov(&hpv, provider, strtab);

8080 if ((parg = nops->dtns_provide_pid(neta->dtmarg, &dhpv, pid)) == NULL)
8081 return;

8083 met a- >dt m_count ++;

8085 /*

8086 * Create the probes.

8087 */

8088 for (i = 0; i < nprobes; i++)

8089 probe = (dof _probe_t *)(U| ntptr_t)(daddr +

8090 prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8092 dhpb. dt hpb_nmod = dhp- >dof hp_nod;

8093 dhpb. dt hpb_func = strtab + probe->dof pr_func;

8094 dhpb. dt hpb_name = strtab + probe- >dof pr_naneg;

8095 dhpb. dt hpb_base = probe->dof pr_addr;

8096 dhpb. dt hpb_of fs = of f + probe->dof pr_of fi dx;

8097 dhpb. dt hpb_nof fs = probe- >dof pr_noffs;

8098 if (enoff !'= NULL) {

8099 dhpb. dt hpb_enof fs = enoff + probe->dof pr_enoffi dx;
8100 dhpb. dt hpb_nenof fs = probe->dof pr _nenoffs;
8101 } else {

8102 dhpb. dt hpb_enof fs = NULL;

8103 dhpb. dt hpb_nenoffs = 0;

8104 }

8105 dhpb. dt hpb_args = arg + probe->dof pr_argi dx;

8106 dhpb. dt hpb_nargc = probe- >dof pr _nargc;

8107 dhpb. dt hpb_xar gc = probe->dof pr _xar gc;

8108 dhpb. dt hpb_ntypes = strtab + probe->dof pr_nargv;

8109 dhpb. dt hpb_xtypes = strtab + probe->dof pr_xargv;

8111 nmops- >dt ms_cr eat e_pr obe(net a- >dt m arg, parg, &dhpb);
8112

8113 }

new usr/src/uts/comon/dtrace/ dtrace. c 119 new usr/src/uts/comon/dtrace/ dtrace.c 120
8115 static void 8181 for (i = 0; i < dof->dofh_secnum i++) {
8116 dtrace_hel per _provi de(dof _hel per_t *dhp, pid_t pid) 8182 dof _sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8117 { 8183 dof - >dof h_secof f + i * dof ->dof h_secsi ze);
8118 uintptr_t daddr = (uintptr_t)dhp->dof hp_dof;
8119 dof _hdr_t *dof = (dof_hdr_t *)daddr; 8185 if (sec->dofs_type != DOF_SECT_PROVI DER)
8120 int i; 8186 conti nue;
8122 ASSERT(MUTEX_HELD(&t race_net a_| ock)); 8188 dtrace_hel per_provi der _renove_one(dhp, sec, pid);
8189 }
8124 for (i = 0; i < dof->dofh_secnum i++) { 8190 }
8125 dof _sec_t *sec = (dof _sec_t *)(uintptr_t)(daddr +
8126 dof - >dof h_secof f + i * dof - >dof h_secsi ze); 8192 /*
8193 * DTrace Meta Provider-to-Framework APl Functions
8128 if (sec->dofs type != DOF_SECT PROVI DER) 8194 *
8129 conti nue; 8195 * These functions inplenent the Meta Provider-to-Framework APlI, as descri bed
8196 * in <sys/dtrace. h>.
8131 dtrace_hel per_provi de_one(dhp, sec, pid); 8197 */
8132 } 8198 int
8199 dtrace_neta_register(const char *nane, const dtrace_nops_t *nops, void *arg,
8134 g 8200 dtrace_neta_provider_id_t *idp)
8135 * W may have just created probes, so we nmust now rematch agai nst 8201 {
8136 * any retained enablings. Note that this call will acquire both 8202 dtrace_neta_t *neta;
8137 * cpu_l ock and dtrace_l ock; the fact that we are hol di ng 8203 dtrace_hel pers_t *hel p, *next;
8138 * dtrace_nmeta_| ock now is what defines the ordering with respect to 8204 int i;
8139 * these three |ocks.
8140 */ 8206 *i dp = DTRACE_METAPROVNONE;
8141 dtrace_enabling_nmatchal | ();
8142 } 8208 /*
8209 * W& strictly don't need the nane, but we hold onto it for
8144 static void 8210 * debuggability. Al hail error queues!
8145 dtrace_hel per _provider _renove_one(dof _hel per_t *dhp, dof_sec_t *sec, pid_t pid) 8211 */
8146 { 8212 if (name == NULL)
8147 uintptr_t daddr = (uintptr_t)dhp->dof hp_dof; 8213 com_err (CE_WARN, “"failed to register nmeta-provider: "
8148 dof _hdr_t *dof = (dof_hdr_t *)daddr; 8214 "invalid name");
8149 dof _sec_t *str_sec; 8215 return (EINVAL);
8150 dof _provider_t *provider; 8216 }
8151 char *strtab;
8152 dtrace_hel per _provdesc_t dhpyv; 8218 if (mops == NULL ||
8153 dtrace_neta_t *neta = dtrace_neta_pid; 8219 nops- >dt ms_creat e_probe == NULL ||
8154 dtrace_nops_t *nops = &neta->dt m nops; 8220 nops- >dt ns_provide_pid == NULL ||
8221 nops- >dt ns_renove_pid == NULL)
8156 provider = (dof _provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8222 crm_err (CE_WARN, "failed to register neta-register %:
8157 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8223 "invalid ops", nane);
8158 provi der - >dof pv_strtab * dof - >dof h_secsi ze) ; 8224) return (EINVAL);
8225
8160 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8227 meta = kmem zal | oc(sizeof (dtrace_neta_t), KM SLEEP);
8162 /* 8228 met a- >dt m_nops = *nops;
8163 * Create the provider. 8229 net a- >dt m name = knmem al | oc(strlen(nanme) + 1, KM SLEEP);
8164 */ 8230 (void) strcpy(neta->dtmnane, nane);
8165 dt race_dof prov2hprov(&hpv, provider, strtab); 8231 meta->dtmarg = arg;
8167 nops- >dt ns_r enove_pi d(net a- >dt m arg, &dhpv, pid); 8233 nmut ex_ent er (&trace_neta_| ock);
8234 mut ex_ent er (&dtrace_| ock) ;
8169 met a- >dt m count - - ;
8170 } 8236 if (dtrace_nmeta_pid !'= NULL) {
8237 mut ex_exi t (&t race_l ock);
8172 static void 8238 mut ex_exi t (&dtrace_neta_l ock);
8173 dtrace_hel per _provider _renove(dof _hel per_t *dhp, pid_t pid) 8239 crm_err (CE_WARN, "failed to register neta-register %:
8174 { 8240 "user-land neta-provider exists", nane);
8175 uintptr_t daddr = (uintptr_t)dhp->dof hp_dof; 8241 kmem free(et a- >dt m_nane, strlen(neta->dtmnane) + 1);
8176 dof _hdr_t *dof = (dof_hdr_t *)daddr; 8242 kmem free(neta, sizeof (dtrace_neta_t));
8177 int i; 8243 return (EINVAL);
8244 1
8179 ASSERT(MUTEX_HELD(&dt race_neta_| ock));

new usr/src/uts/comon/ dtrace/ dtrace. c

8246
8247

8249
8250
8251
8252

8254
8255

8257

8259
8260
8261
8262
8263

8265
8266
8267
8268
8269
8270

8272

8274
8275 }

8277 i

dtrace_neta_pid = neta
*idp = (dtrace_neta prow der_id_t)neta;

/*
* |f there are providers and probes ready to go, pass them

* off to the new neta provider now.
*/

hel p = dtrace_deferred_pid;
dtrace_deferred_pid = NULL;

mut ex_exit (&dJtrace_l ock);

while (help !'= NULL) {
for (i =0; i < help->dthps_nprovs; i++) {

dtrace_hel per _provi de(&hel p->dt hps_provs[i]->dthp_prov,

hel p- >dt hps_pi d) ;
}

next = hel p->dt hps_next;

hel p- >dt hps_next = NULL;

hel p->dt hps_prev = NULL;

hel p- >dthps deferred = 0;
hel p = next;

}

mut ex_exit (&dtrace_meta_l ock);

return (0);

nt

8278 dtrace_neta_unregi ster(dtrace_neta_provider_id_t id)

8279 {
8280

8282
8283

8285
8286
8287
8288
8289
8290

8292
8293
8294
8295
8296

8298

8300
8301

8303
8304

8306
8307 }

8310 /
8311

dtrace_neta_t **pp, *old = (dtrace_neta_t *)id;

mut ex_enter (&Jtrace_neta_l ock);
mut ex_ent er (&dtrace_| ock) ;

if (old == dtrace_neta_pid) {
pp = &dtrace_neta_pid;
} else {
pani c("attenpt to unregister non-existent

dtrace neta-provider %\n", (void *)old);

}
if (old->dtmcount != 0)

mut ex_exi t (&dtrace_l ock);

mut ex_exit (&Jtrace_neta Iock)

return (EBUSY);
}
*pp = NULL

mut ex_exi t (&dtrace_| ock);
mut ex_exit (&dJtrace_neta Iock)

kmem free(ol d->dt m nane, strlen(old->dtmnanme) + 1);
kmem free(ol d, sizeof (dtrace_neta_t));

return (0);

*

* DIrace DI F Object Functions

new usr/src/uts/comon/dtrace/ dtrace. c

8312 */

8313 static int

8314 dtrace_difo_err(uint_t pc, const char *format, ...)
8315 {

8316 if (dtrace_err_verbose) {

8317 va_list alist;

8319 (void) uprintf("dtrace DIF object error: [%]: ", pc);
8320 va_start(alist, format);

8321 (void) vuprintf(format, alist);

8322 va_end(alist);

8323 }

8325 #ifdef DTRACE_ERRDEBUG

The fol |l owi ng

== 0;

8326 dtrace_errdebug(fornat);

8327 #endi f

8328 return (1);

8329 }

8331 /*

8332 * Validate a DTrace DI F object by checking the IR instructions.

8333 * rules are currently enforced by dtrace_difo_validate():

8334 *

8335 * 1. Each instruction nust have a valid opcode

8336 * 2. Each register, string, variable, or subroutine reference nust be valid
8337 * 3. No instruction can nodi fy register %0 (nust be zero)

8338 * 4. Al instruction reserved bits nust be set to zero

8339 * 5. The last instruction nust be a "ret" instruction

8340 */6. Al'l branch targets nust reference a valid instruction _after_ the branch
8341 *

8342 static int

8343 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate t *vstate, uint_t nregs,
8344 cred_t *cr)

8345

8346 int err =0, i;

8347 int (* efunc)(w nt_t pc, const char *, ...) = dtrace_difo_err;
8348 i nt kcheckl oad;

8349 uint _t pc;

8351 kcheckl oad = cr == NULL ||

8352 (vstate->dtvs_state->dts_cred. dcr _vi si bl e & DTRACE_CRV_KERNEL)
8354 dp- >dt do_destructive = O;

8356 for (pc = 0; pc < dp- >dtdo|en&&err == 0; pc++) {

8357 dif_instr_t instr = dp->dtdo buf[pc]

8359 uint_t rl = DIF_INSTR RL(instr);

8360 uint_t r2 = DIF_INSTR_R2(instr);

8361 uint_t rd = DIF_INSTR_RD(instr);

8362 uint_t rs = DIF_INSTR_RS(instr);

8363 uint_t label = DIF_I NSTR_LABEL(l nstr);

8364 uint_t v = DIF_INSTR_VAR(instr);

8365 uint_t subr = DIF_INSTR _SUBR(i nstr)

8366 uint_t type = DI F I NSTR_TYPE(i nstr);

8367 uint_t op = DIF_INSTR OP(instr);

8369 switch (op) {

8370 case DIF_OP_OR

8371 case DI F_OP_XOR

8372 case DI F_OP_AND:

8373 case DIF_OP_SLL:

8374 case DIF_OP_SRL:

8375 case DI F_OP_SRA:

8376 case DI F_OP_SUB:

8377 case DI F_OP_ADD:

new usr/src/uts/comon/ dtrace/ dtrace. c

8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443

case
case
case

f (r1 >= nregs)

err += efunc(pc,

if (r2 >= nregs)

err += efunc(pc,

if (rd >= nregs)

err += efunc(pc,

if (rd == 0)

err += efunc(pc,

break;
DI F_OP_NOT:
DI F_OP_MOV:
DI F OP_ALLCCS:
if (r1 >= nregs)

err += efunc(pc,

if (r2 1= 0)

err += efunc(pc,

if (rd >= nregs)

if (rd ==

err += efunc(pc,

if (r1 >= nregs)

err += efunc(pc,

if (r21=0)

err += efunc(pc,

if (rd >= nregs)

—

(rd ==

err += efunc(pc,

i f (kcheckl oad)

dp- >dt do_buf [pc]
DI F_OP_RLDSB

o
=
()
Q

Roaas
5288

3333831
20 0 0

L DUH:

" RLDUW

" RLDX:

f (rl1 >= nregs)

jwjvjvjvjviviv)
ST T T T

err += efunc(pc,

if (r21=0)

err += efunc(pc,

if (rd >= nregs)

err += efunc(pc,

if (rd == 0)

err += efunc(pc,

err += efunc(pc,
0

err += efunc(pc,
0)

123

"invalid register %\n", ri);

"invalid register %\n", r2);

"invalid register %\n", rd);

"cannot wite to %0\n");

"invalid register %\n", ri);

"non-zero reserved bits\n");

"invalid register %\n", rd);

"cannot wite to %0\n");

"invalid register %\n", ri);

"non-zero reserved bits\n");

"invalid register %\n", rd);

"cannot wite to %0\n");

= DI F_INSTR_LOAD(0p +
- DIF_OP_LDSB, ri, rd);

"invalid register %\n", ril);

"non-zero reserved bits\n");

"“invalid register %\n", rd);

"cannot wite to %0\n");

new usr/src/uts/comon/ dtrace/ dtrace. c

8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509

case
case
case

case
case
case
case

case
case

case

case

DI F_OP_ULDUH:
DI F_OP_ULDUW
DI F_OP_ULDX:
if (rl1 >= nregs)
err += efunc(pc,
if (r21=0)
err += efunc(pc,
if (rd >= nregs)
err += efunc(pc,
if (rd == 0)
err += efunc(pc,

err += efunc(pc,
if (rd >= nregs)

err += efunc(pc,
if (rd ==

err += efunc(pc,
br eak;

SCMVP:
f (r1 >= nregs)

err += efunc(pc,
if (r2 >= nregs)

err += efunc(pc,
if (rd!=0)
err += efunc(pc,

DI F_OP_
D F_OP

br eak;
DI F_OP_TST:
if (r1 >= nregs)
err += efunc(pc,
if (r2!'=01]] rd!=0)
err += efunc(pc,

=
Fo
D
WX

mmc' - HHEYRT =
< <

jvjejvjvjviviviviviviv)

T T T T T T T T

gf%%fagf%%fagf%
oo ususivelosNoeNoeNosNos)

=
—~l

err += efunc(pc,
| abel) ;

}
if (label <= pc)
err += efunc(pc,
| abel);
}
break;
DI F_OP_RET:
if (ri!'=01]] r21!=0)
err += efunc(pc,
if (rd >= nregs)
err += efunc(pc,
br eak;

abel >= dp- >dt do_| en)
"invalid branch target %\n",

"“invalid register %\n", ri);
"non-zero reserved bits\n");
"invalid register %\n", rd);

"cannot wite to %0\n");

“invalid register %\n", rl);
"non-zero reserved bits\n");
“invalid register %\n", rd);

"cannot wite to O address\n");

"invalid register %\n", ril);
“invalid register %\n", r2);

"non-zero reserved bits\n");

"invalid register %\n", ri);

"non-zero reserved bits\n");

"backward branch to %\n",

"non-zero reserved bits\n");

"invalid register %\n", rd);

new usr/src/uts/comon/ dtrace/ dtrace. c

8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575

case
case
case

case

case

case
case

case

DI F_CP_NCP:
Dl F_OP_PCPTS:

DI F_OP_FLUSHTS:

if (r1!'=0
err
br eak;

DI F_OP_ SETX:
if (DI F_INSTR INTEC-ER(|nstr) >= dp->dtdo_intl| en)

err

|| r2!'=01]] rd !=0)
+= efunc(pc, "non-zero reserved bits\n");

{
+= efunc(pc, "invalid integer ref %\n",
DI F_I NSTR_| NTEGER(i nstr));

}
if (rd >= nregs)

err

if (rd == 0)

err
br eak;

Dl F_OP_SETS:
if (D F_INSTR_STRINGinstr) >= dp->dtdo_strlen) {

Di
Di

DIF_OP L
DIF_OP_L
DIF_OP_LDLS:
DI F_OP_L
DI F oP_L

F_
E

err

+= efunc(pc, "invalid register %\n", rd);

+= efunc(pc, "cannot wite to %0\n");

+= efunc(pc, "invalid string ref %w\n",
DI F_I NSTR_STRI NG(i nstr));

if (rd >= nregs)

err
if (rd ==
err
br eak;
OP_LDGA:
OP_LDTA:

+= efunc(pc, "invalid register %\n", rd);

+= efunc(pc, "cannot wite to %0\n");

if (r1 > DI F_VAR ARRAY_

err

+= efunc(pc, "invalid array %\n", ri);

if (r2 >= nregs)

err

+= efunc(pc, "invalid register %\n", r2);

if (rd >= nregs)

err

if (rd == 0)

err
br eak;

DTS

DGAA:
DTAA:

—

err

+= efunc(pc, "invalid register %\n", rd);

+= efunc(pc, "cannot wite to %0\n");

(v < DIF_VAR OTHER MN || v > DI F_VAR OTHER MAX)

+= efunc(pc, "invalid variable %\n", v);

if (rd >= nregs)

err

if (rd == 0)

err
br eak;

- OP_STGS:

CP STTAA:

+= efunc(pc, "invalid register %\n", rd);

+= efunc(pc, "cannot wite to %0\n");

f (v < DIF_VAR OTHER UBASE || v > DI F_VAR OTHER NAX)

err

+= efunc(pc, "invalid variable %\n", v);

if (rs >= nregs)

err
br eak;

DI F_OP _CALL:
if (subr > DI F_SUBR _MAX)

err

+= efunc(pc, "invalid register %\n", rd);

+= efunc(pc, "invalid subr %\n", subr);

if (rd >= nregs)

err

if (rd == 0)

err

+= efunc(pc, "invalid register %\n", rd);

+= efunc(pc, "cannot wite to %0\n");

new usr/src/uts/comon/ dtrace/ dtrace. c

8577
8578
8579
8580

8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593

8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617

8619
8620
8621
8622
8623

8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636

8638
8639
8640
8641

DI F_SUBR_COPYOUT | |
DI F_SUBR_COPYQUTSTR) {
>dt do_destructive = 1;

DI F_SUBR GETF) {

If we have a getf() we need to record that
in our state. Note that our state can be
NULL if this is a helper -- but in that
case, the call to getf() is itself illegal,
and will be caught (sllghtly | ater) when

the hel per is validated
/

(vstate->dtvs_state != NULL)
vstat e- >dtvs_st at e- >dt s_get f ++;

DI F_TYPE STRING && type !'= DI F_TYPE CTH

+= efunc(pc, "invalid ref type %\n", type)
regs)

+= efunc(pc, "invalid register %\n", r2)
regs)

+= efunc(pc, "invalid register %\n", rs);

DI F_TYPE CTF)

+= efunc(pc, "invalid val type %\n", type)
regs)

+= efunc(pc, "invalid register %\n", r2)
regs)

+= efunc(pc, "invalid register %\n", rs);

c(pc, "invalid opcode %\n",

DI F_I NSTR _OP(instr));

if (subr ==
subr ==
dp-
}
if (subr ==
/*
*
*
*
*
*
*
*
f
}
#endif /* | codereview */
br eak;
case DI F_OP_PUSHTR:
if (type !=
err
if (r2>=n
err
if (rs >=n
err
br eak;
case DI F 03 PUSHTV:
if (type !=
err
if (r2>=n
err
if (rs >=n
err
br eak;
defaul t:
err += efun
}
}
if (dp->dtdo_len = 0 &&
DI F_I NSTR_OP(dp- >dtdo_b
err += efunc(dp->dt
"expected 'ret’
}
if (! (dp; >dtdo_rtype. dtdt_f
*
* If we're not ret
* 0 or the size of
*/
switch (dp->dtdo_rt
case 0:
case sizeof (uint8_
case sizeof (uintl6
case sizeof (uint32
case sizeof (uint64
break;
defaul t:
err += efun
}
}

uf [dp->dtdo_len - 1]) != DIF_OP_RET) {
do_len - 1,

as last DI F instruction\n");

lags & DIF_TF_BYREF)) {

urning by reference, the size nust be either
one of the base types.

ype. dtdt_size) {
t):

_t):

_t):

_t):

c(dp->dtdo_len - 1, "bad return size\n");

new usr/src/uts/comon/dtrace/ dtrace. c 127 new usr/src/uts/comon/dtrace/ dtrace.c 128
8708 if (vt->dtdt_size == 0)
8643 for (i =0; i < dp->dtdo_varlen & err == 0; i++) { 8709 err += efunc(i, "zero-sized variable\n");
8644 dtrace_difv_t *v = &Ip->dtdo_vartab[i], *existing = NULL; 8710 br eak;
8645 dtrace_diftype_t *vt, *et; 8711 }
8646 uint_t id, ndx;
8713 if (v->dtdv_scope == DI FV_SCOPE_GLOBAL &&
8648 if (v->dtdv_scope != DI FV_SCOPE_G.OBAL && 8714 vt->dtdt_size > dtrace gl obal _maxsi ze) {
8649 v->dtdv_scope ! = DI FV_SCOPE_THREAD && 8715 err += efunc(i, "oversized by-ref global\n");
8650 v->dtdv_scope != DI FV_SCOPE_LOCAL) { 8716 br eak;
8651 err += efunc(i, "unrecognized variabl e scope %\ n", 8717 }
8652 v->dt dv_scope) ; 8718 }
8653 br eak;
8654 } 8720 if (existi ng == NULL || existing->dtdv_id == 0)
8721 conti nue;
8656 if (v->dtdv_kind !'= DI FV_KI ND_ARRAY &&
8657 v->dtdv_kind != Dl FV KI ND_.) SCALAR) { 8723 ASSERT(exi sting->dtdv_id == v->dtdv_id);
8658 err += efunc(i, unrecognl zed variable type %\ n", 8724 ASSERT(exi sti ng- >dt dv_scope == v->dtdv_scope);
8659 v->dtdv_kin
8660 br eak; 8726 if (existing->dtdv_kind != v->dtdv_kind)
8661 } 8727 err += efunc(i, "% changed variable kind\n", id);
8663 if ((id = v->dtdv_id) > D F_VARI ABLE_MAX) { 8729 et = &existing->dtdv_type;
8664 err += efunc(i, "% exceeds variable id limt\n", id);
8665 br eak; 8731 if (vt->dtdt_flags != et->dtdt_flags) {
8666 } 8732 err += efunc(i, "% changed variable type flags\n", id);
8733 br eak;
8668 if (id < D F_VAR OTHER_UBASE) 8734 }
8669 conti nue;
8736 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt S|ze)
8671 1= 8737 err += efunc(i, "% changed variable type size\n", id);
8672 * For user-defined variables, we need to check that this 8738 break;
8673 * definition is identical to any previous definition that we 8739 }
8674 * encount er ed. 8740 }
8675 */
8676 ndx = id - DI F_VAR OTHER UBASE; 8742 return (err);
8743 }
8678 switch (v->dtdv_scope) {
8679 case DI FV_SCOPE_GLOBAL: 8745 [*
8680 if (ndx < vstate->dtvs_ngl obals) { 8746 * Validate a Dirace DI F object that it is to be used as a hel per. Helpers
8681 dtrace_statvar_t *svar; 8747 * are nuch nore constrained than normal DI FCs. Specifically, they may
8748 * not:
8683 if ((svar = vstate->dtvs_global s[ndx]) != NULL) 8749 *
8684 exi sting = &svar->dtsv_var; 8750 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8685 } 8751 * m scel | aneous string routines
8752 * 2. Access DIrace variables other than the args[] array, and the
8687 br eak; 8753 * curthread, pid, ppid, tid, execname, zonenane, uid and gid variabl es.
8754 * 3. Have thread-local variables.
8689 case DI FV_SCOPE_THREAD: 8755 * 4. Have dynanic vari abl es.
8690 if (ndx < vstate->dtvs_ntlocal s) 8756 */
8691 existing = &state->dtvs_tlocal s[ndx]; 8757 static int
8692 br eak; 8758 dtrace_difo_validate_hel per(dtrace_difo_t *dp)
8759 {
8694 case DI FV_SCOPE_LOCAL: 8760 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8695 if (ndx < vstate->dtvs_nlocals) { 8761 int err = 0;
8696 dtrace_statvar_t *svar; 8762 uint _t pc;
8698 if ((svar = vstate->dtvs_local s[ndx]) != NULL) 8764 for (pc = 0; pc < dp->dtdo_len; pc++) {
8699) exi sting = &svar->dtsv_var; 8765 dif_instr_t instr = dp->dtdo_buf[pc];
8700
8767 uint_t v = DIF_I NSTR_VAR(instr);
8702 br eak; 8768 uint_t subr = DI F_I NSTR_SUBR(i nstr)
8703 } 8769 uint_t op = DIF_INSTR OP(instr);
8705 vt = &v->dtdv_type; 8771 switch (op) {
8772 case DIF_OP_OR
8707 if (vt->dtdt_flags & DI F_TF_BYREF) { 8773 case DI F_OP_XOR

new usr/src/uts/comon/ dtrace/ dtrace. c

8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833

8835
8836
8837

8839

case
case
case

case

Q
m
3
g
AF6

_n
3
%)
%
=

11 (BN R RN |
|
C(DC(D§)>M(D
2a83g20r a0

TI'I']'HITITITI'HTITITI'HTI'I'ITIITT

3939393939393999393939393999393939393939393939393939393

EERERRRERRERY

LDX

|
2T

%;Eg(DUHnC(:C(:CC:C:UD:UNINUE
..é?ﬁ

3

alelelor ity

CWWWmWmWWW®W®EwW WY

Crrr
mme
[

A
%%ﬂ

LUSHTS

_'
8§§55

'HTITIITII'HTITITII'HTITITIT]'r'l'l'lﬂ'ﬂ'r'l'l'lﬂﬂﬂ'l‘lﬂlﬂlﬂl'l'lﬂﬂﬂ'l'l'l'l

nnNCC-nWTT

T

sfelele]elelole]elololefolololol o ololol o olo] ol o olo] ol sl lol ol ol elol el ol lo] ol ol olo] ol ol olo] el ol olo] e ol o o] o o o)
TT

cCC

nun

TLOU

<3

g

ol
=
®
o
&

DI F_OP_LDGS:
if (v >= DI F_VAR_OTHER _UBASE)
br eak;

if (v > DIF_VAR AR® && v <= DI F_VAR AR®)

new usr/src/uts/comon/ dtrace/ dtrace. c 130
8840 br eak;

8842 if (v ==DF_VAR CURTHREAD || v == DIF_ VAR PID ||
8843 v == DIF_ VAR PPID || v == DIF_VAR TID ||
8844 v == DIF_VAR EXECNAME || v == DI F_VAR ZONENAME | |
8845 v ==DIF VAR UD || v == Dl F_VAR_G D)
8846 br eak;

8848 err += efunc(pc, "illegal variable %\n", v);
8849 break;

8851 case DI F_OP_LDTA:

8852 case DI F_OP_LDTS:

8853 case DI F_OP_LDGAA:

8854 case DI F_OP_LDTAA:

8855 err += efunc(pc, "illegal dynami c variable [oad\n");
8856 br eak;

8858 case DI F_OP_STTS

8859 case DI F_OP_STGAA:

8860 case DI F_OP_STTAA

8861 err += efunc(pc, "illegal dynanmic variable store\n");
8862 break;

8864 case DI F_OP_CALL:

8865 if (subr == DIF_SUBR ALLCCA ||

8866 subr == DI F_SUBR_BCCPY | |

8867 subr == DI F_SUBR_COPYIN ||

8868 subr == DI F_SUBR_COPYI NTO | |

8869 subr == DI F_SUBR_COPYI NSTR | |

8870 subr == DI F_SUBR_| NDEX | |

8871 subr == DI F_SUBR_| NET_NTOA | |

8872 subr == DI F_SUBR_| NET_NTQA6 | |

8873 subr == DI F_SUBR_I NET_NTCP | |

8874 subr == DI F_SUBR_LLTOSTR ||

8875 subr == DI F_SUBR_RI NDEX |

8876 subr == DI F_SUBR_STRCHR | |

8877 subr == DI F_SUBR_STRIJO N ||

8878 subr == DI F_SUBR_STRRCHR | |

8879 subr == DI F_SUBR_STRSTR | |

8880 subr == DI F_SUBR_HTONS | |

8881 subr == DI F_SUBR _HTONL |

8882 subr == DI F_SUBR_HTONLL ||

8883 subr == DI F_SUBR_NTOHS | |

8884 subr == DI F_SUBR_NTOHL |

8885 subr == DI F_SUBR_NTCHLL)

8886 br eak;

8888 err += efunc(pc, "invalid subr %\n", subr);
8889 br eak;

8891 defaul t:

8892 err += efunc(pc, "invalid opcode %u\n",

8893 DI F_INSTR_OP(instr));

8894 }

8895 }

8897 return (err);

8898 }

8900 /*

8901 * Returns 1 if the expression in the DIF object can be cached on a per-thread
8902 * basis; 0 if not.

8903 */

8904 static int

8905 dtrace_difo_cacheabl e(dtrace_difo_t *dp)

new usr/src/uts/comon/ dtrace/ dtrace. c

8906
8907

8909
8910

8912
8913

8915
8916

8918
8919
8920
8921
8922
8923
8924

8926
8927
8928
8929

8931
8932
8933
8934
8935
8936
8937

8939
8940
8941
8942
8943
8944

8946
8947

8949
8950

8952
8954

8956
8957

8959
8960
8961
8962
8963
8964

8966
8967

8969
8970
8971

{

}

int i;
if (dp == NULL)
return (0);
for (i =0; i < dp->dtdo_varlen; i++)
dtrace_difv_t *v = &dp->dtdo_vartab[i];
if (v->dtdv_scope != DI FV_SCOPE_GLOBAL)
cont i nue;
switch (v->dtdv_id) {
case DI F_VAR CURTHREAD:
case DIF_VAR PID:
case DI F_VAR TID:
case DI F_VAR EXECNAME:
case DI F_VAR_ZONENAME:
break;
defaul t:
return (0);
}
}
/*

* This DI F object may be cacheable. Now we need to | ook for any
* array |loading instructions, any menory | oading instructions, or
* any stores to thread-local variables.

*/

for (i =0; i < dp->dtdo_len; i++) {
uint_t op = DI F_INSTR OP(dp->dtdo_buf[i]);

if ((op > DIF_OP_LDSB && op <= DIF_COP_LDX) ||
(op >= DIF_OP_ULDSB && op <= DI F_OP_ULDX) ||
P

E
(op >= DIF_OP_RLDSB &% op <= DIF_OP _RLDX) ||
op == DIF_OP_LDGA || op == DI F_OP_STTS)
return (0);
}
return (1);

static void
dtrace_di fo_hol d(dtrace_difo_t *dp)
8951 {

int i;

ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

dp- >dt do_r ef cnt ++;

ASSERT(dp->dtdo_refcnt != 0);

*

* We need to check this DI F object for references to the variable
* Dl

F_VAR_VTI MESTAMP.

for (i =0; i < dp->dtdo_varlen; i++)
dtrace_difv_t *v = &JIp->dtdo_vartab[i];

if (v->dtdv_id !'= DI F_VAR VTI MESTAMP)
conti nue;

if (dtrace_vtime_references++ == 0)
dtrace_vtine_enabl e();

new usr/src/uts/comon/ dtrace/ dtrace. c

- proof,

ari abl e chunksi ze for a given DIF

and can probably be tricked by
conpi | er-generated DI F. Because this
ce_dynvar() is able to gracefully fail
e chunksi ze.

dtrace_vstate_t *vstate)

/* +2 for thread and id */
do_buf;

pc++)
[pcl;

NSTR_OP(I nstr)

(instr);

egs;

_inttab[DI F_I NSTR_I NTEGER(i nstr)];

key = &t upr egs[DI F_ DTR _NREGS] ;

0;

if (DIF_INSTR OP(instr) == DI F_OP_STTAA)

s++] . dttk_size = 0;

k _size = 0;

DI FV_SCOPE_THREAD;
DI FV_SCOPE_GLOBAL;

DTR_NREGS)

8972 }

8974 | *

8975 * This routine calculates the dynamc v
8976 * object. The calculation is not fool
8977 * malicious DIF -- but it works for all
8978 * calculation is likely inperfect, dtra
8979 * if a dynamic variable size exceeds th
8980 */

8981 static void

8982 dtrace_difo_chunksize(dtrace_difo_t *dp,
8983 {

8984 uint64_t sval;

8985 dtrace_key t tupregs[DI F DTR_NREGS + 2];
8986 const dif_instr_t *text = dp->dt
8987 uint_t pc, srd = 0;

8988 uint_t ttop = 0O;

8989 size_t size, Kksize;

8990 uint_t id, i;

8992 r (pc = 0; pc < dp->dtdo_len;
8993 dif_instr_t instr = text
8994 uint_ t op = DIF_I

8995 uint_t rd = DIF_INSTR_RD(instr);
8996 uint_t rl = DIF_INSTR RL
8997 uint_t nkeys = O;

8998 uchar _t scope;

9000 dtrace_key_t *key = tupr
9002 switch (op) {

9003 case DI F_OP_SETX:

9004 sval = dp->dtdo
9005 srd = rd;

9006 conti nue;

9008 case DIF_OP_STTS:

9009

9010 key[0] . dttk_si ze
9011 key[1] . dttk si ze
9012 nkeys =

9013 scope = DI FV_SCOPE_THREAD;
9014 break;

9016 case DI F_OP_STGAA:

9017 case D F_OP_STTAA

9018 nkeys = ttop;
9020

9021 key[nkey
9023 key[nkeys++] . dt t k_
9025 if (op == DIF_OP_STTAA)
9026 scope =
9027 } else {

9028 scope =
9029 }

9031 break;

9033 case DI F_OP_PUSHTR:

9034 if (ttop == DIF_
9035 return;
9037 if ((srd==0]|

sval == 0) && r1 == DI F_TYPE_STRI NQ

new usr/src/uts/comon/dtrace/ dtrace. c 133 new usr/src/uts/comon/dtrace/ dtrace.c
9038 /*
9039 * If the register for the size of the "pushtr" 9105 /*
9040 *is %0 (or the value is 0) and the type is 9106 * We have the size. If this is larger than the chunk size
9041 * astring, we'll use the systemw de default 9107 * for our dynanmic variable state, reset the chunk size.
9042 * string size. 9108 */
9043 */ 9109 size = P2ROUNDUP(si ze, sizeof (uint64_t));
9044 tupregs[ttop++].dttk_size =
9045 dtrace_strsize_defaul t; 9111 if (size > vstate->dtvs_dynvars. dtds_chunksi ze)
9046 } else { 9112 vst at e- >dt vs_dynvars. dt ds_chunksi ze = si ze;
9047 if (srd == 0) 9113 }
9048 return; 9114 }
9050 tupregs[ttop++].dttk_size = sval; 9116 static void
9051 } 9117 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9118 {
9053 br eak; 9119 int i, oldsvars, osz, nsz, otlocals, ntlocals;
9120 uint_t id;
9055 case DI F_OP_PUSHTV:
9056 if (ttop == DI F_DTR NREGS) 9122 ASSERT(MUTEX_HELD(&dt race | ock));
9057 return; 9123 ASSERT(dp->dt do_buf != NULL && dp >dtdo_len = 0);
9059 tupregs[ttop++].dttk_size = 0; 9125 for (i = 0; i < dp->dtdo_varlen; i++)
9060 br eak; 9126 dtrace_difv_t *v = &Jp->dtdo_vartab[i];
9127 dtrace_statvar_t *svar, ***svarp;
9062 case DI F_OP_FLUSHTS: 9128 size_t dsize = 0;
9063 ttop = O; 9129 uint8_t scope = v->dtdv_scope;
9064 break; 9130 int *np;
9066 case DI F_OP_POPTS: 9132 if ((id = v->dtdv_id) < DI F_VAR OTHER UBASE)
9067 if (ttop !'= 0) 9133 conti nue;
9068 ttop--;
9069 br eak; 9135 id -= DI F_VAR _OTHER UBASE;
9070 }
9137 switch (scope) {
9072 sval = 0; 9138 case DI FV_SCOPE_THREAD:
9073 srd = 0; 9139 while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9140 dtrace_difv_t *tlocals;
9075 if (nkeys == 0)
9076 conti nue; 9142 if ((ntlocals = (otlocals << 1)) == 0)
9143 ntlocals = 1;
9078 /*
9079 * We have a dynamic variable allocation; calculate its size. 9145 osz = otlocals * sizeof (dtrace_difv_t);
9080 */ 9146 nsz = ntlocals * sizeof (dtrace_difv_t);
9081 for (ksize =0, i i < nkeys; i++)
9082 k5| ze += P2RCUNDUP(key[i].dttk_size, sizeof (uint64_t)); 9148 tlocals = knem zal | oc(nsz, KM SLEEP);
9084 size = sizeof (dtrace_dynvar t); 9150 if (osz '=0) {
9085 size += sizeof (dtrace_key_t) * (nkeys - 1); 9151 bcopy(vstate->dtvs_tl ocal s,
9086 size += ksi ze; 9152 tlocals, 0sz);
9153 knem_f ree(vst at e- >dt vs_tlocal s, o0sz);
9088 /* 9154 }
9089 * Now we need to determine the size of the stored data.
9090 */ 9156 vstate->dtvs_tlocals = tlocals;
9091 id = DIF_INSTR_VAR(instr); 9157) vstate->dtvs_ntlocal s = ntlocal s;
9158
9093 for (i =0; i < dp->dtdo_varlen; i++) {
9094 dtrace_difv_t *v = &Jp->dtdo_vartab[i]; 9160 vstate->dtvs_tlocal s[id] = *v;
9161 conti nue;
9096 if (v->dtdv_id == id && v->dtdv_scope == scope) {
9097 size += v->dtdv_type. dtdt_si ze; 9163 case DI FV_SCOPE_LOCAL:
9098 br eak; 9164 np = &vstate->dtvs_nl ocal s;
9099 } 9165 svarp = &state->dtvs Iocals
9100 }
9167 if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF)
9102 if (i == dp->dtdo_varlen) 9168 dsize = NCPU * (v->dtdv_type.dtdt_size +
9103 return; 9169 sizeof (uint64_t));

new usr/src/uts/comon/dtrace/ dtrace. c 135 new usr/src/uts/comon/dtrace/ dtrace.c
9170 el se 9236 ASSERT(dp->dtdo_refcnt !'= 0);
9171 dsize = NCPU * sizeof (uint64_t);
9238 new = knem zal | oc(si zeof (dtrace_difo_t), KM SLEEP);
9173 br eak;
9240 ASSERT(dp- >dt do_buf != NULL);
9175 case DI FV_SCOPE_GLOBAL: 9241 sz = dp->dtdo_len * sizeof (dif_instr_t);
9176 np = &vstat e->dtvs_ngl obal s; 9242 new >dt do_buf = kmem al | oc(sz, KM SLEEP);
9177 svarp = &vstate->dtvs_gl obal s; 9243 bcopy(dp->dt do_buf, new >dtdo_buf, sz);
9244 new >dtdo_| en = dp->dtdo_| en;
9179 if (v->dtdv_type.dtdt_flags & DI F_TF_BYREF)
9180 dsize = v->dtdv_type.dtdt_size + 9246 if (dp->dtdo_strtab != NULL)
9181 sizeof (uint64_t); 9247 ASSERT(dp->dtdo_strlen != 0);
9248 new >dt do_strtab = kmem al | oc(dp->dtdo_strlen, KM SLEEP);
9183 br eak; 9249 bcopy(dp->dtdo_strtab, new >dtdo_strtab, dp->dtdo_strlen);
9250 new >dt do_strlen = dp->dtdo_strlen;
9185 defaul t: 9251 }
9186 ASSERT(0) ;
9187 } 9253 if (dp->dtdo_inttab != NULL) {
9254 ASSERT(dp->dtdo_intlen != 0);
9189 while (id >= (oldsvars = *np)) { 9255 sz = dp->dtdo_intlen * sizeof (uint64_t);
9190 dtrace_statvar_t **statics; 9256 new >dtdo_i nttab = kmem al | oc(sz, KM SLEEP);
9191 int newsvars, ol dsize, newsize; 9257 bcopy(dp->dtdo_i nttab, new >dtdo_inttab, sz);
9258 new >dtdo_i ntl en = dp->dtdo_intlen;
9193 if ((newsvars = (oldsvars << 1)) == 0) 9259 }
9194 newsvars = 1;
9261 if (dp->dtdo_vartab != NULL) {
9196 ol dsi ze = ol dsvars * sizeof (dtrace_statvar_t *); 9262 ASSERT(dp->dtdo_varlen != 0);
9197 newsi ze = newsvars * sizeof (dtrace_statvar_t *); 9263 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9264 new >dt do_vartab = kmem al | oc(sz, KM SLEEP);
9199 statics = kmem zal | oc(newsi ze, KM SLEEP); 9265 bcopy(dp->dt do_vartab, new >dtdo_vartab, sz);
9266 new >dt do_varl en = dp->dtdo_varl en;
9201 if (oldsize I=0) { 9267 1
9202 bcopy(*svarp, statics, oldsize);
9203 kmem free(*svarp, ol dsize); 9269 dtrace_difo_init(new, vstate);
9204 } 9270 return (new);
9271 }
9206 *svarp = statics;
9207 *np = newsvars; 9273 static void
9208 } 9274 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9275 {
9210 if ((svar = (*svarp)[id]) == NULL) { 9276 int i;
9211 svar = knmem zal | oc(si zeof (dtrace_statvar_t), KM SLEEP);
9212 svar->dtsv_var = *v; 9278 ASSERT(dp->dtdo_refcnt == 0);
9214 if ((svar->dtsv_size = dsize) = 0) { 9280 for (i =0; i < dp->dtdo_varlen; i++) {
9215 svar->dtsv_data = (uint64_t)(uintptr_t) 9281 dtrace_difv_t *v = &Jp->dtdo_vartab[i];
9216 knmem zal | oc(dsi ze, KM SLEEP); 9282 dtrace_statvar_t *svar, **svarp;
9217 } 9283 uint_tid;
9284 uint8_t scope = v->dtdv_scope;
9219 (*svarp)[id] = svar; 9285 int *np;
9220 }
9287 switch (scope) {
9222 svar->dt sv_refcnt ++; 9288 case DI FV_SCOPE_THREAD:
9223 } 9289 conti nue;
9225 dtrace_di f o_chunksi ze(dp, vstate); 9291 case DI FV_SCOPE_LOCAL:
9226 dtrace_di fo_hol d(dp); 9292 np = &vstate->dtvs_nl ocal s;
9227 } 9293 svarp = vstate->dtvs_|ocal s;
9294 br eak;
9229 static dtrace_difo_t *
9230 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9296 case DI FV_SCOPE_GLOBAL:
9231 { 9297 np = &vst at e- >dt vs_ngl obal s;
9232 dtrace_difo_t *new, 9298 svarp = vstate->dtvs_gl obal s;
9233 size_t sz; 9299 break;
9235 ASSERT(dp- >dt do_buf != NULL); 9301 defaul t:

new usr/src/uts/comon/ dtrace/ dtrace. c 137

9302
9303

9305
9306

9308
9309

9311
9312
9313

9315
9316

9318
9319
9320
9321
9322

9324
9325
9326

9328
9329
9330
9331

9333
9334

9336
9337

9339

9341
9342

9344
9345

9347
9348

9350
9351
9352
9353

9355
9356
9357

9359
9360
9361
9362
9363

9365
9366

}

ASSERT(0)

if ((id = v->dtdv_id) < D F_VAR OTHER UBASE)
conti nue;

id -= DI F_VAR OTHER_UBASE;
ASSERT(id < *np);

svar = svarp[id];
ASSERT(svar !|= NULL)
ASSERT(svar->dtsv_refcnt > 0);

if (--svar->dtsv_refcnt > 0)
cont i nue;

if (svar->dtsv_size != 0) {
ASSERT(svar - >dt sv_data ! = NULL);
kmem free((void *)(uintptr_t)svar->dtsv_data,
svar - >dt sv_si ze);

}

kmem free(svar, sizeof (dtrace_statvar_t));
svarp[id] = NULL;
}
kmem f ree(dp->dt do_buf, dp->dtdo_len * sizeof (dif_instr_t));
kmem free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
kmem free(dp->dtdo_strtab, dp->dtdo_strlen);
kmem f ree(dp- >dt do_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));

kmem free(dp, sizeof (dtrace_difo_t));

static void
dtrace_difo_rel ease(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9338 {

}
| *

*

int i;
ASSERT(MUTEX_HELD(&dt r ace_| ock));
ASSERT(dp->dtdo_refcnt != 0);

for (i = 0; i < dp->dtdo_varlen; i++)
dtrace_difv_t *v = &Jp->dtdo_vartab[i];

if (v->dtdv_id != DI F_VAR VTI MESTAMP)
conti nue;

ASSERT(dtrace_vtine_references > 0);
if (--dtrace_vtine_references == 0)
dtrace_vtine_di sabl e();

}

if (--dp->dtdo_refcnt ==
dtrace_di fo_destroy(dp, vstate);

DTrace Format Functions

static uint16_t
dtrace_format _add(dtrace_state_t *state, char *str)
9364 {

char *fnmt, **new,
uintl6_t ndx, len = strlen(str) + 1;

new usr/src/uts/comon/dtrace/ dtrace.c 138
9368 fm = knmem zal | oc(l en, KM SLEEP);

9369 bcopy(str, fnt, len);

9371 for (ndx = 0; ndx < state->dts_nformats; ndx++) {

9372 if (state->dts_formats[ndx] == NULL) {

9373 state->dts_formats[ndx] = fnt;

9374 return (ndx + 1);

9375 }

9376 }

9378 if (state->dts_nformats == USHRT_MAX) {

9379 /*

9380 * This is only likely if a denial-of-service attack is being
9381 * attenpted. As such, it’'s okay to fail silently here.
9382 */

9383 kmem free(fnt, len);

9384 return (0);

9385 }

9387 /*

9388 * For sinplicity, we always resize the formats array to be exactly the
9389 * nunber of formats.

9390 */

9391 ndx = state->dts_nformats++;

9392 new = knem al l oc((ndx + 1) * sizeof (char *), KM SLEEP);
9394 if (state->dts_formats != NULL) {

9395 ASSERT(ndx != 0);

9396 bcopy(state->dts_formats, new, ndx * sizeof (char *));
9397 knmem free(state->dts_formats, ndx * sizeof (char *));
9398 }

9400 state->dts_formats = new,

9401 state->dts_formats[ndx] = fnt;

9403 return (ndx + 1);

9404 }

9406 static void

9407 dtrace_fornat _renove(dtrace_state t *state, uintl6_t format)

9408 {

9409 char *fnt;

9411 ASSERT(state->dts_formats ! = NULL);

9412 ASSERT(format <= state->dts_nformats);

9413 ASSERT(state->dts_formats[format - 1] != NULL);

9415 fm = state->dts_formats[format - 1];

9416 kmem free(fnt, strlien(fnt) + 1);

9417 state->dts_formats[format - 1] = NULL;

9418 }

9420 static void

9421 dtrace_format _destroy(dtrace_state_t *state)

9422 {

9423 int i;

9425 if (state->dts_nformats == 0) {

9426 ASSERT(state->dts_formats == NULL);

9427 return;

9428 1

9430 ASSERT(state->dts_formats != NULL);

9432 for (i =0; i < state->dts_nformats; i++) {

9433 char *fnmt = state->dts_formats[i];

new usr/src/uts/comon/dtrace/ dtrace. c 139 new usr/src/uts/comon/dtrace/ dtrace.c 140
9500 if (--pred->dtp_refcnt == 0) {
9435 if (fmt == NULL) 9501 dtrace_difo_rel ease(pred->dtp_difo, vstate);
9436 conti nue; 9502) kmem free(pred, sizeof (dtrace_predicate_t));
9503
9438 kmem free(fmt, strlien(fnt) + 1); 9504 }
9439 }
9506 /*
9441 kmem free(state->dts_formats, state->dts_nformats * sizeof (char *)); 9507 * DTrace Action Description Functions
9442 state->dts_nformats = 0; 9508 */
9443 state->dts_formats = NULL; 9509 static dtrace actdesc t *
9444 } 9510 dtrace_actdesc_creat e(dtrace_actkind_t kind, uint32_t ntuple,
9511 uint64_t uarg, uint64_t arg)
9446 [* 9512 {
9447 * DTrace Predicate Functions 9513 dtrace_actdesc_t *act;
9448 */
9449 static dtrace predicate t * 9515 ASSERT(! DTRACEACT | SPRI NTFLI KE(kind) || (arg != NULL &&
9450 dtrace_predicate_create(dtrace_difo_t *dp) 9516 arg >= KERNELBASE) || (arg == NULL && ki nd == DTRACEACT_PRI NTA));
9451 {
9452 dtrace_predicate_t *pred; 9518 act = knmem zal | oc(sizeof (dtrace_actdesc_t), KM SLEEP);
9519 act->dtad_kind = ki nd;
9454 ASSERT(MUTEX_HELD(&dt r ace Iock)) 9520 act->dtad_ntuple = ntuple;
9455 ASSERT(dp->dtdo_refcnt != 0); 9521 act->dtad_uarg = uarg;
9522 act->dtad_arg = arg;
9457 pred = knem zal | oc(si zeof (dtrace_predicate_t), KM SLEEP); 9523 act->dtad_refcnt = 1;
9458 pred->dtp_difo = dp;
9459 pred->dtp_refcnt = 1; 9525 return (act);
9526 }
9461 if (!dtrace_difo_cacheabl e(dp))
9462 return (pred); 9528 static void
9529 dtrace_actdesc_hol d(dtrace_actdesc_t *act)
9464 if (dtrace_predcache_i d == DTRACE_CACHEI DNONE) { 9530 {
9465 /* 9531 ASSERT(act ->dtad_refcnt >= 1);
9466 * This is only theoretically possible -- we have had 2732 9532 act - >dt ad_r ef cnt ++;
9467 * cacheabl e predicates on this machine. W cannot allow any 9533 }
9468 * nore predicates to becone cacheable: as unlikely as it is,
9469 * there may be a thread caching a (now stale) predicate cache 9535 static void
9470 * ID. (N.B.: the tenptation is being successfully resisted to 9536 dtrace_actdesc_rel ease(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9471 * have this crm_err() "Holy shit -- we executed this code!") 9537
9472 */ 9538 dtrace_actkind_t kind = act->dtad_kind,
9473 return (pred); 9539 dtrace_difo_t *dp;
9474 }
9541 ASSERT(act - >dtad_refcnt >= 1);
9476 pred->dt p_cachei d = dtrace_predcache_i d++;
9543 if (--act->dtad_refcnt 1= 0)
9478 return (pred); 9544 return;
9479 }
9546 if ((dp = act->dtad_difo) != NULL)
9481 static void 9547 dtrace_difo_rel ease(dp, vstate);
9482 dtrace_predicate_hol d(dtrace_predicate_t *pred)
9483 { 9549 i f (DTRACEACT_I| SPRI NTFLI KE(ki nd)) {
9484 ASSERT(MUTEX_HELD(&t race_| ock)); 9550 char *str = (char *)(uintptr_t)act->dtad_arg;
9485 ASSERT(pred->dtp_difo != NULL & pred->dtp_difo->dtdo_refcnt != 0);
9486 ASSERT(pred- >dt p_refcnt > 0); 9552 ASSERT((str != NULL & (uintptr_t)str >= KERNELBASE) ||
9553 (str == NULL && act->dtad_ki nd == DTRACEACT_PRI NTA)) ;
9488 pred- >dt p_r ef cnt ++;
9489 } 9555 if (str !'= NULL)
9556 kmem free(str, strlen(str) + 1);
9491 static void 9557 }
9492 dtrace_predicate_rel ease(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9493 { 9559 kmem free(act, sizeof (dtrace_actdesc_t));
9494 dtrace_difo_t *dp = pred->dtp_difo; 9560 }
9496 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ; 9562 /*
9497 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 9563 * DTIrace ECB Functions
9498 ASSERT(pred->dtp_refcnt > 0); 9564 */
9565 static dtrace_ecb_t *

new usr/src/uts/comon/ dtrace/ dtrace. c 141

9566 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)

9567 {
9568
9569

9571

9573
9574
9575

9577
9578
9579
9580
9581
9582

9584

9586
9587
9588

9590

9592
9593
9594
9595

9597

9599
9600

9602
9603

9605
9606
9607
9608
9609
9610
9611
9612
9613
9614

9616
9617

9619
9620
9621

9623
9625
9626
9627

9629
9630 }

dtrace_ecb_t *ecb;
dtrace_epid_t epid;

ASSERT(MUTEX_HELD(&dt r ace_| ock));

ecb = kmem zal | oc(si zeof (dtrace_ecb_t), KM SLEEP);
ech->dte_predi cate = NULL;
ech->dt e_probe = probe;

/*

* The default size is the size of the default action: recording
* the header.

*/

ecb->dte_si ze = ecb->dte_needed = sizeof (dtrace_rechdr_t);
ech->dte_al i gnment = sizeof (dtrace_epid_t);

epi d = state->dts_epid++;

if (epid - 1 >= state->dts_nechs)
dtrace_ech_t **oecbs = state->dts_ecbs, **ecbs;
int nechs = state->dts_necbs << 1;

ASSERT(epid == state->dts_nechs + 1);

if (nechs == 0) {
ASSERT(oecbs == NULL);
necbs = 1;

}

echs = kmem zal | oc(necbs * sizeof (*ecbs), KM SLEEP);

if (oecbs !'= NULL)
bcopy(oechs, echs, state->dts_necbs * sizeof (*ecbs));

dtrace_nenbar _producer();
st at e->dts_ecbs = ecbs;

if (oecbs !'= NULL) {
/*

* |f this state is active, we nust dtrace_sync()

* before we can free the old dts_echs array: we're
* coming in hot, and there may be active ring

* buffer processing (which indexes into the dts_echs
*/array) on anot her CPU.

*

if (state->dts_activity != DTRACE_ACTI VI TY_I NACTI VE)
dtrace_sync();

kmem free(oecbs, state->dts_nechs * sizeof (*ecbs));

}

dtrace_nenbar _producer();
stat e->dt s_nechs = necbs;

}

ech->dte_state = state;

ASSERT(st at e->dts_echs[epid - 1] == NULL);
dtrace_nenbar _producer();
state->dts_ecbs[(ecbh->dte_epid = epid) - 1] = ecb;

return (ech);

new usr/src/uts/comon/ dtrace/ dtrace. c 142

9632 static int
9633 dtrace_ecb_enabl e(dtrace_ecb_t *ecbh)

9634
9635

9637
9638
9639

9641
9642
9643
9644
9645
9646

9648
9649

9651
9652
9653
9654

9656
9657

9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670

9672
9673
9674
9675

9677
9678

9680
9681
9682

9684
9685
9686
9687
9688
9689

9691
9692
9693

9695
9696

{

}

dtrace_probe_t *probe = ech->dte_probe;

ASSERT(MUTEX_HELD(& pu_l ock)) ;
ASSERT(MUTEX_HELD(&dt race_I ock));
ASSERT(ecb- >dt e_next == NULL);

if (probe == NULL) {
/*
* This is the NULL probe -- there's nothing to do.
*

return (0);

}

if (probe->dtpr_ecb == NULL)
dtrace_provi der_t *prov = probe->dtpr_provider;

/*

* We're the first ECB on this probe.
*

/

probe->dt pr_ecb = probe->dtpr_ecb_|l ast = ecb;

if (ecb->dte_predicate != NULL)
probe- >dt pr _predcache = ecb->dte_predi cat e->dt p_cachei d;

return (prov->dtpv_pops. dt ps_enabl e(prov->dtpv_arg,
probe->dtpr_id, probe->dtpr_arg));
} else {
/*

* This probe is already active. Swing the |last pointer to
* point to the new ECB, and issue a dtrace_sync() to assure
* that all CPUs have seen the change.

*/

ASSERT(pr obe- >dt pr _ecb_l ast != NULL);

probe->dt pr_ecb_| ast->dte_next = ecbh;

probe- >dt pr_ecb_| ast = ech;

pr obe- >dt pr _predcache = 0;

dtrace_sync();
return (0);

static void
dtrace_ecb_resize(dtrace_ech_t *ech)
9679 {

dtrace_action_t *act;
ui nt32_t curneeded = Ul NT32_NMNAX;
ui nt32_t aggbase = Ul NT32_MAX;

*

* |f we record anything, we always record the dtrace_rechdr_t. (And
* we always record it first.)

*/

ecb->dte_si ze = sizeof (dtrace_rechdr_t);

ech->dte_al i gnment = sizeof (dtrace_epid_t);

for (act = ech->dte_action; act != NULL; act = act->dta_next) {
dtrace_recdesc_t *rec = &act->dta_rec;
ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignnent == 1);

ech->dte_al i gnment = MAX(ech->dte_al i gnnent,
rec->dtrd_al i gnnment);

new usr/src/uts/comon/ dtrace/ dtrace. c 143

9698
9699

9701
9702
9703
9704
9705

9707

9709
9710
9711
9712

9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727

9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739

9741
9742
9743
9744
9745
9746
9747

9749
9750
9751
9752
9753
9754
9755
9756
9757

9759
9760
9761
9762
9763 }

if (DTRACEACT_I SAGH act ->dta_ki nd)) {
dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;

ASSERT(rec->dtrd_size != 0);
ASSERT(agg->dtag first != NULL)
ASSERT(act - >dt a_prev->dta |ntup| e);
ASSERT(aggbase = Ul NT32_NAX) ;
ASSERT(cur needed ! = Ul NT32 NAX);

agg- >dt ag_base = aggbase;

curneeded = P2ROUNDUP(cur needed, rec->dtrd_alignnent);
rec->dtrd_of fset = curneeded;

curneeded += rec->dtrd_si ze;

ech->dt e_needed = MAX(ecbh->dte_needed, curneeded);

aggbase = Ul NT32_MAX;
curneeded = Ul NT32_NAX;
} else if (act->dta_intuple) {
if (curn/eeded == Ul NT32_MAX) {
*

* This is the first record in a tuple. Align
* curneeded to be at offset 4 in an 8-byte

* aligned bl ock.

*/

ASSERT(act - >dta_prev == NULL ||
lact->dta_prev->dta_intuple);
ASSERT3U(aggbase ==, UI NT32 NAX)
curneeded = P2PHASEUP(ecb- >dte_si ze,
sizeof (uint64_t), sizeof (dtrace_aggi d_t));

aggbase = curneeded - sizeof (dtrace_aggid_t);
ASSERT(| S_P2ALI GNED(aggbase,
sizeof (uint64_t)));

}
curneeded = P2ROUNDUP(cur needed, rec->dtrd_alignnent);
rec->dtrd_of fset = curneeded;
curneeded += rec->dtrd_si ze;

} else {
/* tuples nust be followed by an aggregation */
ASSERT(act->dta_prev == NULL ||

lact->dta_prev->dta_intuple);

ech->dt e_si ze = P2ROUNDUP(ecbh->dt e_si ze,
rec->dtrd_al i gnment);
rec->dtrd_of fset = ech->dte_size;
ecbh->dte_size += rec->dtrd_si ze;
ech->dt e_needed = MAX(ecbh->dte_needed, ecb->dte_size);

}

if ((act = ech->dte_action) != NULL &&
I'(act->dta_ki nd == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
ech->dte_size == sizeof (dtrace_rechdr_t)) {
/*
* If the size is still sizeof (dtrace_rechdr_t), then all
* actions store no data; set the size to 0O
*/
ecb->dte_size = 0;

}

ech->dt e_si ze = P2ROUNDUP(ecbh->dt e_si ze, sizeof (dtrace_epid_t));
ech->dt e_needed = P2ROUNDUP(ecb- >dt e_needed, (sizeof (dtrace_epid_t)));
ech->dt e_st at e- >dt s_needed = MAX(ecb->dte_st at e- >dt s_needed,

ecb- >dt e_needed) ;

new usr/src/uts/comon/dtrace/ dtrace. c

9765 static dtrace_action_t *
9766 dtrace_ecb_aggregation_create(dtrace_ecb_t *ech, dtrace_actdesc_t *desc)

9767 {
9768
9769
9770
9771
9772
9773
9774

9776
9777

9779

9781
9782
9783
9784
9785

9787
9788
9789
9790

9792
9793
9794

9796
9797
9798
9799
9800

9802
9803
9804

9806
9807

9809
9810

9812
9813
9814

9816
9817
9818
9819
9820
9821

9823
9824

9826
9827

9829

dtrace aggregatl on_t *agg;

size_t S|ze = sizeof (uint64_t);

int ntuple = desc->dtad_ntuple;
dtrace_acti on_t *act ;

dtrace_recdesc_t *frec;

dtrace_aggi d_t aggid;

dtrace_state_t *state = ecb->dte_state;

agg = kmem zal | oc(si zeof (dtrace_aggregation_t), KM SLEEP);
agg- >dt ag_ecb = ecb;

ASSERT(DTRACEACT_| SAGG(desc- >dt ad_ki nd)) ;

switch (desc->dt ad ki nd) {
case DTRACEAGG M
agg- >dt. ag_l nitial = | NT64_NAX;
agg- >dt ag_aggregate = dtrace_aggregate_min;

br eak;
case DTRACEAGG _MAX:
agg->dtag_initial = INT64_M N,
agg- >dt ag_aggregate = dtrace_aggregat e_nax;
break;

case DTRACEAGG_COUNT:
agg- >dt ag_aggregate = dtrace_aggregate_count;
break;

case DTRACEAGG _QUANTI ZE:
agg- >dt ag_aggregate = dtrace_aggregate_quanti ze;
size = (((sizeof (uint64_t) NBBY) - 1) * 2 + 1) *
si zeof (uint64_t);
br eak;

case DTRACEAGG LQUANTI ZE: {
uint16_t step = DTRACE_LQUANTI ZE_STEP(desc->dtad_arQg);
uint16_t |evels = DTRACE_LQUANTI ZE_LEVELS(desc->dtad_arg);

agg->dtag_initial = desc->dtad_arg;
agg- >dt ag_aggregate = dtrace_aggregate_| quanti ze;

if (step ==0]| levels == 0)

goto err;
size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
br eak;

}

case DTRACEAGG _LLQUANTI ZE
uint16_t factor = DTRACE_LLQUANTI ZE _FACTOR(desc- >dtad_arg);
uint16_t | ow = DTRACE_LLQUANTI ZE_LON desc- >dtad_arg) ;
uint16_t high = DTRACE_LLQUANTI ZE_Hl GH(desc->dtad_ar g)
uint16_t nsteps = DTRACE_LLQUANTI ZE_NSTEP(desc->dtad_arg);
inté4_t v;

agg->dtag_initial desc >dt ad_a
agg- >dt ag_aggregate = dtrace aggr egat e_| I quanti ze;

if (factor < 2 || low >= high || nsteps < factor)
goto err;

/| *

144

new usr/src/uts/comon/ dtrace/ dtrace. c

9830
9831
9832
9833
9834
9835

9837
9838

9840
9841
9842
9843

9845
9846
9847
9848

9850
9851
9852
9853

9855
9856
9857

9859
9860
9861

9863

9865
9866

9868
9869
9870
9871
9872
9873

9875
9876
9877
9878
9879
9880
9881
9882

9884
9885
9886
9887
9888
9889
9890

9892
9893
9894
9895

err:

success:

* Now check that the nunber of steps evenly divides a power
* of the factor. (This assures both integer bucket size and
* linearity within each nagnitude.)

*

= factor;
conti nue;

for (v v < nsteps; v *= factor)

if ((v %nsteps) ||
goto err;

(nsteps % factor))

size = (dtrace_aggregat I
| ow, high, nsteps,
br eak;

quanti ze_bucket (factor,
NT64_MAX) + 2) * sizeof (UI nté4_t);

}

case DTRACEAGG AVG
agg- >dtag_aggregate = dtrace_aggregat e_avg;
size = sizeof (uint64_t) * 2;
br eak;

case DTRACEAGG _STDDEV:
agg- >dt ag_aggregate = dtrace_aggregat e_st ddev;
size = sizeof (uint64_t) * 4
br eak;

case DTRACEAGG SUM
agg- >dt ag_aggr egat e
br eak;

= dtrace_aggregate_sum

def aul t:
goto err;
}

agg->dtag_action.dta_rec.dtrd_size = size;

if (ntuple == 0)

goto err;
/*
* W nust neke sure that we have enough actions for the n-tuple.
*
for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
if (DTRACEACT_| SAGH act - >dt a_ki nd))
break;

if (--ntuple == 0) {
/*
* This is the action with which our n-tuple begins.
*

agg->dtag_first = act;
goto success;

}

/*

* This n-tuple is short by ntuple elenments. Return failure.
*/

ASSERT(ntuple !'= 0);

kmem f ree(agg,
return (NULL);

si zeof (dtrace_aggregation_t));

*

* If the last action in the tuple has a size of zero,
* an expression argurment for the aggregating action.

it’s actually

145

new usr/src/uts/comon/ dtrace/ dtrace. c

9896
9897
9898

9900
9901

9903
9904
9905

9907
9908
9909
9910
9911

9913
9914
9915
9916
9917

9919

9921
9922
9923
9924

9926

9928
9929
9930
9931

9933
9934
9935

9937
9938

9940
9941
9942

9944
9945
9946
9947

9949
9950

9952
9953

9955
9956
9957

9959
9960

}

*/
ASSERT(ecb->dt e_acti on_| ast
act = ecb->dte_action_Ilast;

if (act->dta_kind == DTRACEACT_DI FEXPR) {
ASSERT(act->dta_difo != NULL);

= NULL);

if (act->dta_difo->dtdo rtype dtdt _size == 0)
agg- >dt ag_hasarg =
}

/*

* We need to allocate an id for this aggregation.
*

/

aggid = (dtrace_aggid_t)(uintptr_t)vnem all oc(state->dts_aggi d_arena,
VM BESTFI T | VM SLEEP);

if (aggid - 1 >= state->dts_naggregations) {
dtrace_aggregation_t **oaggs = state->dts_aggregations;
dtrace_aggregati on_t **aggs;
int naggs = state->dts_naggregations << 1;
int onaggs = state->dts_naggregations;

ASSERT(aggi d == state->dts_naggregations + 1);

if (naggs == 0) {
ASSERT(0aggs == NULL);
naggs = 1,
}
aggs = kmem zal | oc(naggs * sizeof (*aggs), KM SLEEP);
if (oaggs != NULL) {
bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
kmem f ree(oaggs, onaggs * sizeof (*aggs));

}

stat e->dt s_aggregati ons = aggs;
st at e- >dt s_naggr egat i ons = naggs;

}

ASSERT(st at e- >dt s_aggr egations[aggi d - 1] == NULL);

stat e->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;

frec = &gg->dtag _first->dta_rec;

if (frec->dtrd_alignnent < sizeof (dtrace_aggid_t))
frec->dtrd_alignnment = sizeof (dtrace_aggid_t);

for (act = agg->dtag_first; act != NULL; act = act->dta_next) {

ASSERT(! act->dta_i ntupl e);

act->dta_intuple = 1;

}
return (&gg->dtag_action);

static void
dtrace_ecb_aggregati on_destroy(dtrace_ecb_t *ech, dtrace_action_t *act)
9954 {

dtrace_aggregation_t *agg = (dtrace_aggregation_t
dtrace_state_t *state = ecb->dte_state;
dtrace_aggid_t aggid = agg->dtag_i d;

*)act;

ASSERT(DTRACEACT_I| SAGG(act - >dt a_ki nd)) ;
viem free(st at e->dts_aggi d_ar ena, (v0|d *)(uintptr_t)aggid, 1);

146

1,

new' u

sr/src/uts/comon/ dtrace/ dtrace. ¢ 147

9962 ASSERT(st at e- >dt s_aggr egat i ons[aggl d - 1] == agg);

9963 state->dts_aggregations[aggid - 1] = NULL

9965 kmem free(agg, sizeof (dtrace_aggregation_t));

9966 }

9968 static int

9969 ?trace_ecb_acti on_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)

9970

9971 dtrace_action_t *action, *last;

9972 dtrace_difo_t *dp = desc->dtad_difo;

9973 uint32_t size = 0, align = sizeof (uint8_t), mask;

9974 uintl6_t format = O;

9975 dtrace_recdesc_t *rec;

9976 dtrace_state_t *state = ech->dte_state;

9977 dtrace_optval _t *opt = state->dts_options, nframes, strsize;

9978 uint64_t arg = desc- >dt ad_arg;

9980 ASSERT(MUTEX_HELD(&dtrace _lock));

9981 ASSERT(ech->dt e_action == NULL || ecb->dte_action->dta_refcnt == 1);
9983 i f (DTRACEACT_| SAGH desc->dt ad_ki nd)) {

9984 /*

9985 * If this is an aggregating action, there nust be neither
9986 * a speculate nor a commit on the action chain.

9987 */

9988 dtrace_action_t *act;

9990 for (act = ech->dte_action; act != NULL; act = act->dta_next) {
9991 f (act->dta_ki nd == DTRACEACT. CO\/MT)

9992 return (EINVAL);

9994 if (act->dta_kind == DTRACEACT_SPECULATE)

9995 return (EI NVAL);

9996 }

9998 action = dtrace_ecb_aggregati on_create(ech, desc);

10000 if (action == NULL)

10001 return (EINVAL);

10002 } else {

10003 i f (DTRACEACT_| SDESTRUCTI VE(desc->dt ad_ki nd) ||

10004 (desc >dt ad_ki nd == DTRACEACT_DI FEXPR &&

10005 dp !'= NULL && dp->dtdo_destructive)) {

10006 state->dts_destructive = 1;

10007 }

10009 switch (desc->dtad_kind) {

10010 case DTRACEACT_PRI NTF:

10011 case DTRACEACT_PRI NTA:

10012 case DTRACEACT_SYSTEM

10013 case DTRACEACT_FREOPEN:

10014 case DTRACEACT_DI FEXPR:

10015 /*

10016 * We know that our arg is a string -- turn it into a
10017 * format.

10018 */

10019 if (arg == NULL) {

10020 ASSERT(desc- >dt ad_ki nd == DTRACEACT_PRI NTA | |
10021 desc->dt ad_ki nd == DTRACEACT_DI FEXPR) ;
10022 format = O;

10023 } else {

10024 ASSERT(arg != NULL);

10025 ASSERT(arg > KERNELBASE);

10026 format = dtrace_fornat_add(state,

10027 (char *)(uintptr_t)arg);

new usr/src/uts/comon/dtrace/ dtrace.c 148
10028 }

10030 [* FALLTHROUGH* /

10031 case DTRACEACT_LI BACT:

10032 case DTRACEACT_TRACEMEM

10033 case DTRACEACT_TRACEMEM DYNSI ZE:

10034 if (dp == NULL)

10035 return (EINVAL);

10037 if ((size = dp->dtdo_rtype.dtdt_size) != 0)

10038 break;

10040 if (dp- >dt do_rtype.dtdt_kind == DI F_ TYPE STRING {
10041 (T(dp->dtdo_rtype.dtdt_fTags & DI F_TF_BYREF))
10042 return (EINVAL);

10044 si ze = opt [DTRACEOPT_STRSI ZE] ;

10045 }

10047 br eak;

10049 case DTRACEACT_STACK:

10050 if ((nframes = arg) == 0) {

10051 nframes = opt [DTRACEOPT_STACKFRAMES] ;
10052 ASSERT(nfranes > 0);

10053 arg = nfranes;

10054 }

10056 size = nfranes * sizeof (pc_t);

10057 br eak;

10059 case DTRACEACT_JSTACK:

10060 if ((strsize = DTRACE_USTACK_STRSI ZE(arg)) == 0)
10061 strsize = opt[DTRACEOPT_JSTACKSTRSI ZE] ;
10063 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10064 nfranmes = opt [DTRACEOPT_JSTACKFRAMES] ;
10066 arg = DTRACE_USTACK_ARG(nfranes, strsize);

10068 [* FALLTHROUGH* /

10069 case DTRACEACT_USTACK:

10070 if (desc->dtad_kind != DTRACEACT_JSTACK &&

10071 (nframes = DTRACE_USTACK NFRAMES(arg)) == 0) {
10072 strsize = DTRACE_USTACK_STRSI ZE(ar g)

10073 nframes = opt[DTRACECPT_USTACKFRAIVES]
10074 ASSERT(nfranes > 0);

10075 arg = DTRACE_USTACK_ARQ nfranes, strsize);
10076 }

10078 /*

10079 * Save a slot for the pid.

10080 */

10081 size = (nframes + 1) * sizeof (uint64_t);

10082 si ze += DTRACE_USTACK_STRSI ZE(ar g) ;

10083 si ze = P2ROUNDUP(si ze, (uint 32_t)(S| zeof (uintptr_t)));
10085 br eak;

10087 case DTRACEACT_SYM

10088 case DTRACEACT_MOD:

10089 if (dp == NULL || ((si = dp->dtdo_rtype.dtdt_size) !=
10090 Si zeof (uint64_t)) ||

10091 (dp->dtdo_rtype. dtdt_flags & DI F_TF_BYREF))
10092 return (EINV L);

10093 br eak;

new usr/src/uts/comon/ dtrace/ dtrace. c

10095
10096
10097
10098
10099
10100
10101

10103
10104
10105
10106
10107
10108
10109
10110

10112
10113
10114
10115

10117
10118
10119
10120
10121
10122

10124
10125
10126
10127
10128
10129

10131
10132
10133

10135
10136

10138
10139

10141
10142

10144
10145
10146
10147

10149
10150
10151
10152

10154
10155
10156

10158
10159

case DTRACEACT_USYM
case DTRACEACT_UMOD:
case DTRACEACT_UADDR:
if (dp == NULL ||
(dp->dtdo_rtype. dtdt_size !=
(dp->dtdo_rtype. dtdt_fl ags
return (ElI NVAL);

eof (u
- TF_BYREF))

520 I

We have a slot for the pid, plus a slot for the
argunent. To keep things sinple (aligned with

bi tness-neutral sizing), we store each as a 64-bit
quantity.

* Ok kb F ok
-

size = 2 * sizeof (uint64_t);
br eak;

case DTRACEACT_STOP:
case DTRACEACT_BREAKPO NT:
case DTRACEACT_PAN C:

br eak;

case DTRACEACT_CHI LL:
case DTRACEACT_DI SCARD:
case DTRACEACT_RAI SE:
if (dp == NULL)
return (EI NVAL);
br eak;

case DTRACEACT_EXIT:
if (dp == NULL ||
(size = dp->dtdo_rtype.dtdt_size) != sizeof (int)
(dp->dtdo_rtype.dtdt_flags & D F_TF_BYREF))
return (El NVAL);
br eak;

case DTRACEACT_SPECULATE:
if (ech->dte_size > sizeof (dtrace_rechdr_t))
return (EINVAL);

if (dp == NULL)
return (ElINVAL);

stat e->dts_specul ates = 1;
br eak;

case DTRACEACT_COW T: {
dtrace_action_t *act = ecb->dte_action;

for (; act != NULL; act = act->dta_next) {
if (act->dta_ki nd == DTRACEACT_COWM T)
return (EINVAL);

}
if (dp == NULL)
return (ElINVAL);
br eak;
}
defaul t:
return (EINVAL);
}

if (size !'=0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
/*

int64_t)) ||

149

new usr/src/uts/comon/ dtrace/ dtrace. c

10160 * If this is a data-sto
10161 * we nust be sure that
10162 * action chain.

10163 */

10164 dtrace_action_t *act = e
10166 for (; act != NULL; act
10167 if (act->dta_kin
10168 return (
10169 }

10170 1

10172 action = kmem zal | oc(si zeof (dtr
10173 action->dta_rec.dtrd_size = size;
10174 }

10176 action->dta_refcnt = 1;

10177 rec = &action->dta_rec;

10178 size = rec->dtrd_si ze;

10180 r (mask = sizeof (uint64_t) - 1; size
10181 if ('(S|ze&mask)) {

10182 align = mask + 1;

10183 br eak;

10184 }

10185 }

10187 action->dta_ki nd = desc->dt ad_ki nd;
10189 if ((action->dta_difo = dp) != NULL)
10190 dtrace_di f o_hol d(dp);

10192 rec->dtrd_action = action->dta_kind;
10193 rec->dtrd_arg = arg;

10194 rec->dtrd_uarg = desc->dtad_uarg;

10195 rec->dtrd_alignment = (uintl6_t)align;
10196 rec->dtrd_format = format;

10198 if ((last = ecbh->dte_action_last) != NUL
10199 ASSERT(ecb->dte_action ! = NULL);
10200 action->dta_prev = | ast;

10201 | ast->dta_next = action;

10202 } else {

10203 ASSERT(ecbh->dt e_ actl on == NULL);
10204 ech->dte_action = action;

10205 }

10207 ech->dte_action_l ast = action;

10209 return (0);

10210 }

10212 static void

10213 dtrace_ecb_action_renpve(dtrace_ecb_t *ecbh)
10214 {

10215 dtrace_action_t *act = ecb->dte_action,
10216 dtrace_vstate_t *vstate = &ch->dte_stat
10217 dtrace_di fo_t *dp;

10218 uint16_t format;

10220 if (act !'= NULL && act->dta_refcnt > 1)
10221 ASSERT(act - >dt a_next == NULL ||
10222 act->dta_refcnt--;

10223 } else {

10224 for (; act != NULL; act = next)
10225 next = act->dta_next;

150

ring action or a specul ate,
there isn't a coonmt on the

cb->dte_acti on;
= act->dta_next) {

d == DTRACEACT_COW T)
EI NVAL) ;

ace_action_t), KM SLEEP);

1= 0 & mask > 0; mask >>= 1)

L {

*next ;
e->dts_vstate;

act->dta_next->dta_refcnt ==

{

1);

10226
10227

new usr/src/uts/comon/dtrace/ dtrace. c
ASSERT(next != NULL || act == ecb->dte_action_|ast);
ASSERT(act ->dta_refcnt == 1);
if ((format = act->dta_rec.dtrd_format) !'= 0

10229
10230

10232
10233

10235
10236
10237
10238
10239
10240
10241

10243
10244
10245
10246

10248
10249

10251
10252
10253
10254
10255

10257

10259
10260
10261
10262
10263
10264

10266
10267
10268
10269
10270

10272

10274
10275
10276
10277
10278

10280
10281
10282
10283

10285
10286
10287
10288
10289

10291

}

dtrace_format_renpove(ech->dte_state,

if ((dp = act->dta_difo) != NULL)
dtrace_di fo_rel ease(dp, vstate);

i f (DTRACEACT_| SAGH act ->dta_kind)) {
dtrace_echb_aggregati on_destroy(ecb, act);
} else {

kmem free(act, sizeof (dtrace_action_t));
}

}

ech->dte_acti on = NULL;
ech->dte_action_l ast = NULL;
ech->dte_si ze = 0;

static void
dtrace_ecb_di sabl e(dtrace_ecbh_t *ecbh)
10250 {

/*

* W disable the ECB by renpving it fromits probe.
*

/

dtrace_ecb_t *pecb, *prev = NULL;
dtrace_probe_t *probe = ech->dte_probe;

ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;
if (probe == NULL) {
/*

* This is the NULL probe; there is nothing to disable.
*/

return;
}
for (pecb = probe->dtpr_ech; pecb !'= NULL; pecb = pecbh->dte_next) {
if (pecb == ecbh)
br eak;
prev = pech;
}

ASSERT(pecbh !'= NULL);

if (prev == NULL) {

probe- >dt pr _ecb = ecb->dte_next;

} else {
prev->dte_next = ecb->dte_next;

}

if (ecb == probe->dtpr_ecb_last) {
ASSERT(ecb- >dt e_next == NULL);
probe->dt pr_ecb_l ast = prev;

}

/*

* The ECB has been di sconnected fromthe probe; now sync to assure
* that all CPUs have seen the change before returning.

*/

dtrace_sync();

if (probe->dtpr_ecb == NULL) {

format);

new usr/src/uts/comon/ dtrace/ dtrace. c

10292
10293
10294
10295
10296
10297

10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312

10314
10315

10317

10319
10320
10321

10323
10324
10325

10327
10328

10330
10331
10332
10333

10335
10336
10337

10339
10340

10342

10344
10345

10347
10348

10350
10351
10352
10353
10354
10355
10356
10357

}

/*
* That was the | ast ECB on the probe;
* cache ID for the probe,
*/to assure that we’ll never hit it again.
*
dtrace_provider_t *prov = probe->dtpr_provider;
ASSERT(ecb- >dt e_next == NULL)
ASSERT(pr obe- >dt pr _ ecb last == NULL);
probe- >dt pr_predcache = DTRACE CACHEI DNONE;
prov- >dt pv_pops. dt ps_di sabl e(prov->dt pv_arg,
probe->dtpr_id, probe->dtpr_arg);
dtrace_sync();
} else {

* There is at | east one ECB renmi ning on the probe.
* is _exactly_ one,
* the predicate cache ID of the remal ning ECB.

*/
ASSERT(pr obe->dt pr_ecb_l ast ! = NULL)
ASSERT(pr obe- >dt pr_pr edcache == DTRACE CACHE!I DNONE) ;

if (probe->dtpr_ecb == probe->dtpr_ecb_| ast)
dtrace_predicate_t *p

ASSERT(pr obe- >dt pr _ecbh- >dt e_next == NULL);
if (p!= NULL)

clear the predicate
disable it and sync one nore tine

If there

set the probe’'s predicate cache ID to be

= probe->dt pr_ech->dt e_predi cate;

probe- >dt pr _predcache = p->dtp_cachei d;

}
ecb->dt e_next = NULL;

static void
dtrace_ecb_destroy(dtrace_ech_t *ech)
10329 {

}

dtrace_state_t *state = ecb->dte_state;
dtrace_vstate_t *vstate = &state->dts_vstate;
dtrace_predicate_t *pred;

dtrace_epid_t epid = ecb->dte_epid;

ASSERT(MUTEX_HELD(&dtrace l ock))
ASSERT(ecbh- >dt e_next == NULL

ASSERT(ecb- >dt e_probe == NULL' || ecb->dte_probe->dtpr_ech !=

if ((pred = ecb->dte_predicate) != NULL)
dtrace_predicate_rel ease(pred, vstate);
dtrace_ecb_action_renmpve(ech);

ASSERT(st at e->dts_ecbs[epid - 1] == ech);
state->dts_ecbs[epid - 1] = NULL;

kmem free(ech, sizeof (dtrace_ecb_t));

static dtrace_ech_t *

dtrace_ech create(dtrace state_t *state,

{

dtrace_probe_t *probe,

dtrace_enabl i ng_t *enab)

dtrace_ecb_t *ecb;
dtrace_predi cate_t *pred;
dtrace_actdesc_t *act;
dtrace_provider_t *prov;

ech);

new usr/src/uts/comon/ dtrace/ dtrace. c 153 new usr/src/uts/comon/ dtrace/ dtrace. c 154

10358 dtrace_ecbdesc_t *desc = enab->dten_current; 10424 if ((enab->dten_error = dtrace_ecb_action_add(ech, act)) != 0) {
10425 dtrace_ecb_destroy(ecb);
10360 ASSERT(MUTEX_HELD(&dt r ace_l ock)) ; 10426 return (NULL);
10361 ASSERT(state != NULL); 10427 }
10428 }
10363 ech = dtrace_ecb_add(state, probe);
10364 ech->dte_uarg = desc->dted_uarg; 10430 dtrace_ecb_resize(ech);
10366 if ((pred = desc->dted_pred. dt pdd_predicate) != NULL) { 10432 return (dtrace_ech_create_cache = ech);
10367 dtrace_predi cat e_hol d(pre) 10433 }
10368 ech->dte_predi cate pred;
10369 } 10435 static int
10436 dtrace_ecb_create_enabl e(dtrace_probe_t *probe, void *arg)
10371 if (probe !'= NULL) { 10437 {
10372 /* 10438 dtrace_ecb_t *ech;
10373 * |f the provider shows nore |leg than the consumer is old 10439 dtrace_enabling_t *enab =
10374 * enough to see, we need to enable the appropriate inplicit 10440 dtrace_state_t *state = enab >dt en_vstate->dtvs_state;
10375 * predicate bits to prevent the ecb fromactivating at
10376 * revealing tines. 10442 ASSERT(state != NULL);
10377 *
10378 * Providers specifying DIRACE PRI V_USER at register tinme 10444 if (probe != NULL & probe->dtpr_gen < enab->dten_probegen) {
10379 * are stating that they need the /proc-style privilege 10445 /*
10380 * nodel to be enforced, and this is what DTRACE COND OMNER 10446 * This probe was created in a generation for which this
10381 * and DTRACE_COND ZONEOMER wi || then do at probe time. 10447 * enabling has previously created ECBs; we don’t want to
10382 */ 10448 * enable it again, so just kick out.
10383 prov = probe->dtpr_provider; 10449 */
10384 if (!(state->dts_cred.dcr_visible & DTRACE_ CRV_ALLPROC) && 10450 return (DTRACE_NMATCH NEXT);
10385 (prov->dtpv_priv. dtpp_flags & DTRACE_PRI V_USER)) 10451 }
10386 ech->dte_cond | = DTRACE_COND_OANER;
10453 if ((ecb = dtrace_ech_create(state, probe, enab)) == NULL)
10388 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 10454 return (DTRACE_MATCH_ DONE) ;
10389 (prov->dtpv_priv. dtpp_flags & DTRACE_PRI V_USER))
10390 ech->dte_cond | = DTRACE_COND_ZONEOANER; 10456 if (dtrace_ecb_enabl e(ecbh) < 0)
10457 return (DTRACE_MATCH FAIL);
10392 /*
10393 * |f the provider shows us kernel innards and the user 10459 return (DTRACE_MATCH _NEXT) ;
10394 * is lacking sufficient privilege, enable the 10460 }
10395 * DTRACE_COND_USERMCDE inplicit predicate.
10396 */ 10462 static dtrace_ecb_t *
10397 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 10463 dtrace_epi d2ecb(dtrace_state_t *state, dtrace_epid_t id)
10398 (prov->dtpv_priv.dtpp_flags & DTRACE_PRI V_KERNEL)) 10464 {
10399 ech->dte_cond | = DTRACE_COND_USERMODE; 10465 dtrace_ech_t *ech;
10400 }
10467 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;
10402 if (dtrace_ecb_create_cache != NULL) {
10403 /* 10469 if (id==01]| id > state->dts_nechs)
10404 * |f we have a cached ecb, we'll use its action |list instead 10470 return (NULL);
10405 * of creating our own (saving both tinme and space).
10406 */ 10472 ASSERT(st ate->dts_necbs > 0 &% state->dts_ecbs != NULL);
10407 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 10473 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10408 dtrace_action_t *act = cached->dte_action;
10475 return (state->dts_echs[id - 1]);
10410 if (act !'= NULL) { 10476 }
10411 ASSERT(act->dta_refcnt > 0);
10412 act->dta_refcnt it 10478 static dtrace_aggregation_t *
10413 ech->dte_action = act; 10479 dtrace_aggi d2agg(dtrace_state t *state, dtrace_aggid_t id)
10414 ecbh->dte_action_l ast = cached->dte_action_| ast; 10480 {
10415 ech->dte_ needed = cached- >dt e_needed; 10481 dtrace_aggregation_t *agg;
10416 ecb->dte_si ze = cached->dte_si ze;
10417 ech->dte_al i gnment = cached->dte_al i gnnent; 10483 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;
10418 1
10485 if (id==01]] id > state->dts_naggregations)
10420 return (ech); 10486 return (NULL);
10421 }
10488 ASSERT(st at e- >dt s_naggregations > 0 & state->dts_aggregations != NULL);

10423 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 10489 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||

new usr/src/uts/comon/ dtrace/ dtrace. c 155

10490 agg->dtag_id == id);

10492 return (state->dts_aggregations[id - 1]);

10493 }

10495 /*

10496 * DTrace Buffer Functions

10497 *

10498 * The following functions nmani pul ate DTrace buffers. Mst of these functions
10499 * are called in the context of establishing or processing consunmer state;
10500 * exceptions are explicitly noted.

10501 */

10503 /*

10504 * Note: <called fromcross call context. This function switches the two
10505 * buffers on a given CPU. The atomicity of this operation is assured by
10506 * disabling interrupts while the actual switch takes place; the disabling of
10507 * interrupts seriallzes the execution with any execution of dtrace_probe() on
10508 * the sane CPU.

10509 */

10510 static void

10511 dtrace_buffer_swi tch(dtrace_buffer_t *buf)

10512 {

10513 caddr _t tomax = buf->dtb_tonax;

10514 caddr _t xanot = buf->dtb_xanot;

10515 dtrace_i cooki e_t cooki e;

10516 hrti me_t now,

10518 ASSERT(! (buf->dtb_flags & DTRACEBUF_NOSW TCH)) ;

10519 ASSERT(! (buf->dtb_flags & DTRACEBUF_RI NG) ;

10521 cooki e = dtrace_i nterrupt _disabl e();

10522 now = dtrace_gethrtine();

10523 buf->dtb_t omax = xanot;

10524 buf - >dt b_xanmot = tomax;

10525 buf - >dt b_xanot _drops = buf ->dt b_dr ops;

10526 buf - >dt b_xanot _of f set = buf->dtb_of f set;

10527 buf ->dtb_xanmot _errors = buf->dtb_errors;

10528 buf - >dt b_xanot _fl ags = buf->dtb_fl ags;

10529 buf ->dtb_of fset = O;

10530 buf - >dtb_drops = 0;

10531 buf->dtb_errors = 0;

10532 buf->dtb_flags & ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED) ;

10533 buf->dtb_i nterval = now - buf->dtb_switched;

10534 buf - >dt b_swi t ched = now,

10535 dtrace_i nterrupt _enabl e(cooki e);

10536 }

10538 /*

10539 * Note: called fromcross call context. This function activates a buffer
10540 * on a CPU. As with dtrace_buffer_switch(), the atomcity of the operation
10541 * is guaranteed by the disabling of interrupts.

10542 */

10543 static void

10544 dtrace_buffer_activate(dtrace_state_t *state)

10545 {

10546 dtrace_buffer_t *buf;

10547 dtrace_i cooki e_t cookie = dtrace_interrupt_disable();

10549 buf = &state->dts_buffer[CPU->cpu_id];

10551 if (buf->dtb_tomax != NULL) {

10552 /*

10553 * W nmight like to assert that the buffer is marked inactive,
10554 * but this isn't necessarily true: the buffer for the CPU
10555 * that processes the BEG N probe has its buffer activated

new usr/src/uts/comon/ dtrace/ dtrace. c

10556 * manually. In this case, we take the (harnless) action
10557 * re-clearing the bit I NACTIVE bit.

10558 */

10559 buf ->dtb_fl ags & ~DTRACEBUF_| NACTI VE;

10560

10562 dtrace_i nterrupt _enabl e(cooki e);

10563 }

10565 static int

10566 dtrace_buffer_all oc(dtrace_buffer_t *bufs, size_t size, int flags,
10567 processorid_t cpu, int *factor)

10568 {

10569 cpu_t *cp;

10570 dtrace_buffer_t *buf;

10571 int allocated = 0, desired = 0;

10573 ASSERT(MUTEX_HELD(&pu_| ock)) ;

10574 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

10576 *factor = 1,

10578 if (size > dtrace_nonroot_nexsize &&

10579 ! PRI'V_POLI CY_CHO CE(CRED(), PRIV_ALL, B FALSE))

10580 return (EFBIG;

10582 cp = cpu_list;

10584 do {

10585 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10586 conti nue;

10588 buf = &buf s[cp->cpu_id];

10590 /*

10591 * If there is already a buffer allocated for this CPU, it
10592 * is only possible that this is a DR event. In this case,
10593 * the buffer size nust match our specified size.
10594 */

10595 if (buf->dtb _tomax != NULL) {

10596 ASSERT(buf - >dt b_si ze == si ze);

10597 continue;

10598 }

10600 ASSERT(buf - >dt b_xanot == NULL);

10602 if ((buf->dtb_tomax = kmem zal | oc(si ze,

10603 KM NOSLEEP | KM NORMALPRI)) == NULL)

10604 goto err;

10606 buf - >dt b_si ze = si ze;

10607 buf->dtb_flags = fl ags;

10608 buf - >dtb_of fset = 0;

10609 buf - >dt b_drops = 0;

10611 if (flags & DTRACEBUF_NOSW TCH)

10612 cont i nue;

10614 if ((buf->dtb_xamot = kmem zal |l oc(si ze,

10615 KM NOSLEEP | KM NORMALPRI)) == NULL)

10616 goto err;

10617 } while ((cp = cp->cpu_next) != cpu_list);

10619 return (0);

10621 err:

new usr/src/uts/comon/ dtrace/ dtrace. c 157

10622 cp = cpu_list;

10624 do {

10625 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)

10626 conti nue;

10628 buf = &bufs[cp->cpu_id];

10629 desi red += 2;

10631 if (buf->dtb_xampt != NULL)

10632 ASSERT(buf - >dt b_t onax != NULL);

10633 ASSERT(buf - >dt b_si ze == si ze);

10634 knmem f ree(buf - >dt b_xanot, size);

10635 al | ocat ed++;

10636 }

10638 if (buf->dtb_tomax != NULL) {

10639 ASSERT(buf - >dt b_si ze == si ze);

10640 kmem free(buf->dtb_t omax, size);

10641 al | ocat ed++;

10642 }

10644 buf - >dt b_t omax = NULL;

10645 buf - >dt b_xanmot = NULL;

10646 buf - >dt b_si ze = 0;

10647 } while ((cp = cp->cpu_next) != cpu_list);

10649 *factor = desired / (allocated > 0 ? allocated : 1);

10651 return (ENOVEM) ;

10652 }

10654 /*

10655 * Note: called fromprobe context. This function just increnents the drop
10656 * count on a buffer. It has been nade a function to allow for the

10657 * possibility of understanding the source of nysterious drop counts. (A
10658 * problem for which one may be particul arly di sappoi nted that DTrace cannot
10659 * be used to understand DTrace.)

10660 */

10661 static void

10662 dtrace_buffer_drop(dtrace_buffer_t *buf)

10663 {

10664 buf - >dt b_dr ops++;

10665 }

10667 /*

10668 * Note: <called fromprobe context. This function is called to reserve space
10669 * in a buffer. |If nstate is non-NULL, sets the scratch base and size in the
10670 * nstate. Returns the new offset in the buffer, or a negative value if an
10671 * error has occurred.

10672 */

10673 static intptr_t

10674
10675
10676
10677
10678
10679
10680

10682
10683

10685
10686
10687

dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,

{

dtrace_state_t *state, dirace_mstate_t *nstate)

intptr_t offs = buf->dtb_offset, soffs;
intptr_t woffs;

caddr _t tomax;

size_t total;

if (buf->dtb_flags & DTRACEBUF_I NACTI VE)
return (-1);

if ((tomax = buf->dtb_tonmax) == NULL) {
dtrace_buf f er _drop(buf)
return (-1);

new usr/src/uts/comon/dtrace/ dtrace. c 158
10688 }

10690 if (!(buf->dtb_flags & (DTRACEBUF_RI NG | DTRACEBUF_FILL))) {

10691 while (offs & (align - 1)) {

10692 /*

10693 * Assert that our alignnent is off by a nunber which
10694 * is itself sizeof (uint32_t) aligned.

10695 */

10696 ASSERT(! ((align - (ffs&(allgn— 1))) &

10697 (sizeof (uint32_t) -)

10698 DTRACE_STORE(ui nt 32_t, tomax, offs DTRACE_EPI DNONE) ;
10699 of fs += sizeof (uint32_t);

10700 }

10702 if ((soffs = offs + needed) > buf->dtb_size) {

10703 dtrace_buf f er _drop(buf);

10704 return (-1);

10705 }

10707 if (mstate == NULL)

10708 return (offs);

10710 nmst at e- >dt ms_scrat ch_base = (uintptr_t)tomax + soffs;

10711 mst at e- >dt ms_scratch_si ze = buf->dtb_size - soffs;

10712 mst at e- >dt ms_scratch_ptr = nst at e- >dt ns_scr at ch_base;

10714 return (offs);

10715 }

10717 if (buf->dtb_flags & DTRACEBUF_FI LL) {

10718 if (state->dts_activity != DTRACE_ACTI VI TY_COOLDOWN &&

10719 (buf->dtb_flags & DTRACEBUF FULL))

10720 return (-1);

10721 goto out;

10722 }

10724 total = needed + (offs & (align - 1));

10726 /*

10727 * For aring buffer, life is quite a bit nore conplicated. Before
10728 * we can store any paddi ng, we need to adjust our w apping offset.
10729 * (1f we’ve never before wapped or we’'re not about to, no adjustnent
10730 * is required.)

10731 */

10732 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||

10733 offs + total > buf->dtb_size) {

10734 wof fs = buf->dtb_xanot _of f set;

10736 if (offs + total > buf->dtb_size) {

10737 /*

10738 * We can’t fit in the end of the buffer. First, a
10739 * sanity check that we can fit in the buffer at all.
10740 *

10741 if (total > buf->dtb_size) {

10742 dtrace_buffer_drop(buf);

10743 return (-1);

10744 }

10746 /*

10747 * W're going to be storing at the top of the buffer,
10748 so now we need to deal with the w apped offset. Ve
10749 Ed only reset our wapped offset to O if it is

10750 * currently greater than the current offset. If it
10751 * is less than the current offset, it is because a
10752 * previous allocation induced a wap -- but the
10753 * allocation didn't subsequently take the space due

new usr/src/uts/comon/ dtrace/ dtrace. c 159

10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765

10767
10768
10769
10770
10771
10772
10773
10774

10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808

10810
10811
10812

10814
10815
10816
10817
10818

while (offs + total > wof

to an error or false predicate evaluation. |In this
case, we'll just |eave the wapped offset alone: if
the wapped offset hasn’t been advanced far enough
for this allocation, it will be adjusted in the

| ower | oop.

* ok kb ko

if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
if (woffs >= offs)

woffs = 0;

} else {

woffs = 0;
}
/*
* Now we know that we’'re going to be storing to the
* top of the buffer and that there is roomfor us
* there. W need to clear the buffer fromthe current
* offset to the end (there may be ol d gunk there).
*

/
while (offs < buf->dtb_size)
tomax[of f s++] = 0;

/*

* W need to set our offset to zero. And because we
* are wapping, we need to set the bit indicating as
* much. We can al so adjust our needed space back

* down to the space required by the ECB -- we know
* that the top of the buffer is aligned.

*

/
offs = 0;
total = needed,;

buf->dtb_fl ags | = DTRACEBUF_WRAPPED;

* There is roomfor us in the buffer, so we sinply
* need to check the wapped of fset.

|f (woffs < offs) {

The w apped offset is less than the offset.
This can happen if we allocated buffer space
that induced a wap, but then we didn't
subsequently take the space due to an error
or false predicate evaluation. This is
okay; we know that _this_ allocation isn't
going to induce a wap. W still can't
reset the wapped offset to be zero,
however: the space may have been trashed in
the previous failed probe attenpt. But at
| east the wapped of fset doesn’t need to
be adjusted at all...

>f>(->(-a(-:k>(->(->(-af>(—>(—x-x-

*/

goto out;

fs) {
dtrace_epid_t epid = *
size_t size;

(uint32_t *)(tomax + woffs);

if (epid == DTRACE_EPI DNONE) {
size = sizeof (uint32_t);

} else {
ASSERT3U(epi d, <=, state->dts_nechs);
ASSERT(st at e->dts_ecbs[epid - 1] != NULL);

new usr/src/uts/comon/dtrace/ dtrace.c 160
10820 size = state->dts_echs[epid - 1]->dte_size;
10821 }

10823 ASSERT(wof fs + size <= buf->dtb_size);

10824 ASSERT(si ze != 0);

10826 if (woffs + size == buf->dtb_size) {

10827 /*

10828 * W' ve reached the end of the buffer; we want
10829 * to set the wapped offset to O and break
10830 * out. However, if the offs is 0, then we're
10831 * in a strange edge-condition: the anpunt of
10832 * space that we want to reserve plus the size
10833 * of the record that we're overwiting is
10834 * greater than the size of the buffer. This
10835 * is problenmatic because if we reserve the
10836 * space but subsequently don’t consune it (due
10837 * to a failed predicate or error) the w apped
10838 * offset will be O -- yet the EPID at offset 0O
10839 * will not be committed. This situation is
10840 * relatively easy to deal with: if we're in
10841 * this case, the buffer is indistinguishable
10842 * fromone that hasn’'t w apped; we need only
10843 * finish the job by clearing the wapped bit,
10844 * explicitly setting the offset to be 0, and
10845 * zero'ing out the old data in the buffer.
10846 */

10847 f (offs == 0) {

10848 buf >dt b_fl ags & ~DTRACEBUF_WRAPPED;
10849 buf - >dt b_of fset = 0;

10850 woffs = total;

10852 while (woffs < buf->dtb_size)

10853 t omax[wof f s++] = O;

10854 }

10856 woffs = 0O;

10857 br eak

10858 }

10860 wof fs += si ze;

10861 }

10863 I *

10864 * W have a wapped offset. It may be that the w apped of fset
10865 * has becone zero -- that’'s okay.

10866 */

10867 buf - >dt b_xanot _of fset = woffs;

10868 }

10870 out:

10871 /*

10872 * Now we can plow the buffer with any necessary padding.

10873 */

10874 while (offs & (align - 1)) {

10875 /*

10876 * Assert that our alignnent is off by a nunber which

10877 * is itself sizeof (uint32_t) aligned.

10878 */

10879 ASSERT(! ((align - (offs&(allgn— 1))) &

10880 (sizeof (uint32_t) -

10881 DTRACE_STORE(ui nt 32_t, to X, offs, DTRACE_EPI DNONE) ;

10882 of fs += sizeof (uint32_t);

10883 }

10885 if (buf->dtb_flags & DTRACEBUF_FI LL) {

new usr/src/uts/comon/ dtrace/ dtrace. c 161 new usr/src/uts/comon/ dtrace/ dtrace. c 162

10886 if (offs + needed > buf->dtb_size - state->dts_reserve) { 10952 /*
10887 buf->dtb_fl ags | = DTRACEBUF_FULL; 10953 * This routine determines if data generated at the specified time has |likely
10888 return (-1); 10954 * been entirely consuned at user-level. This routine is called to determ ne
10889 } 10955 * if an ECB on a defunct probe (but for an active enabling) can be safely
10890 } 10956 * disabl ed and destroyed.
10957 */
10892 if (mstate == NULL) 10958 static int
10893 return (offs); 10959 ?trace_buffer_consuned(dtrace_buffer_t *bufs, hrtine_t when)
10960
10895 /* 10961 int i;
10896 * For ring buffers and fill buffers, the scratch space is al ways
10897 * the inactive buffer. 10963 for (i =0; i < NCPU, i++) {
10898 */ 10964 dtrace_buffer_t *buf = &bufs[i];
10899 net at e- >dt ms_scrat ch_base = (ui ntptr_t) buf->dtb_xanot;
10900 nst at e- >dt ms_scrat ch_si ze = buf->dtb_si ze; 10966 if (buf->dtb_size == 0)
10901 nst at e- >dt ns_scratch_ptr = nst at e->dt ms_scrat ch_base; 10967 conti nue;
10903 return (offs); 10969 if (buf->dtb_flags & DTRACEBUF_RI NG
10904 } 10970 return (0);
10906 static void 10972 if (!buf->dtb_switched && buf->dtb_offset != 0)
10907 dtrace_buffer_polish(dtrace_buffer_t *buf) 10973 return (0);
10908 {
10909 ASSERT(buf - >dt b_f | ags & DTRACEBUF_RI NG ; 10975 if (buf->dtb_swi tched - buf->dtb_interval < when)
10910 ASSERT(MUTEX_HELD(&t r ace_| ock)) ; 10976) return (0);
10977
10912 if (!(buf->dtb flags & DTRACEBUF_WRAPPED))
10913 return; 10979 return (1);
10980 }
10915 /*
10916 * W need to polish the ring buffer. There are three cases: 10982 static void
10917 * 10983 dtrace_buffer_free(dtrace_buffer_t *bufs)
10918 * - The first (and presunebly npst conmon) is that there is no gap 10984 {
10919 * between the buffer offset and the wapped offset. In this case, 10985 int i;
10920 & there is nothing in the buffer that isn't valid data; we can
10921 * mark the buffer as polished and return. 10987 for (i =0; i < NCPU, i++) {
10922 i 10988 dtrace_buffer_t *buf = &bufs[i];
10923 * - The second (Il ess conmon than the first but still nmore common
10924 * than the third) is that there is a gap between the buffer offset 10990 if (buf->dtb_tomax == NULL) {
10925 * and the wapped offset, and the wapped offset is |larger than the 10991 ASSERT(buf - >dt b_xanpt == NULL);
10926 * buffer offset. This can happen because of an alignnment issue, or 10992 ASSERT(buf - >dt b_si ze == 0);
10927 * can happen because of a call to dtrace_buffer_reserve() that 10993 conti nue;
10928 * didn’t subsequently consune the buffer space. In this case, 10994 }
10929 * we need to zero the data fromthe buffer offset to the wapped
10930 * of fset. 10996 if (buf->dtb_xampt != NULL) {
10931 * 10997 ASSERT(! (buf->dtb_flags & DTRACEBUF_NOSW TCH)) ;
10932 * - The third (and | east common) is that there is a gap between the 10998 kmem f ree(buf - >dt b_xanot, buf->dtb_size);
10933 * buffer offset and the wapped offset, but the wapped offset is 10999 }
10934 * _less_ than the buffer offset. This can only happen because a
10935 * call to dtrace_buffer_reserve() induced a wap, but the space 11001 kmem f ree(buf - >dt b_t onax, buf->dtb_si ze);
10936 * was not subsequently consuned. In this case, we need to zero the 11002 buf - >dt b_si ze = 0;
10937 * space fromthe offset to the end of the buffer _and_ fromthe 11003 buf - >dt b_t omax = NULL;
10938 * top of the buffer to the w apped offset. 11004 buf - >dt b_xanot = NULL;
10939 */ 11005 }
10940 if (buf->dtb_offset < buf->dtb_xampt_offset) { 11006 }
10941 bzer o(buf->dtb_t omax + buf->dtb_of f set,
10942 buf - >dt b_xanot _of f set - buf->dtb_offset); 11008 /*
10943 } 11009 * DTrace Enabling Functions
11010 */
10945 if (buf->dtb_offset > buf->dtb_xanot_offset) { 11011 static dtrace_enabling_t *
10946 bzero(buf->dtb_tomax + buf->dtb_of fset, 11012 dtrace_enabling_create(dtrace_vstate_t *vstate)
10947 buf - >dt b_si ze - buf->dtb_offset); 11013 {
10948 bzer o(buf - >dt b_t omax, buf->dtb_xanot _of fset); 11014 dtrace_enabling_t *enab;
10949 }
10950 } 11016 enab = krmem zal | oc(si zeof (dtrace_enabling_t), KM SLEEP);

11017 enab- >dt en_vstate = vstate;

new usr/src/uts/comon/ dtrace/ dtrace. c 163

11019
11020

11022
11023

11025
11026

11028
11029
11030
11031
11032
11033

11035
11036
11037
11038

11040

11042
11043
11044
11045
11046

11048

11050
11051
11052
11053

11055
11056
11057

11059
11060
11061

}

return (enab);

static void
dtrace_enabl i ng_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecbh)
11024 {

}

dtrace_echdesc_t **ndesc;
si ze_t osize, nsize;

/*

* W can’t add to enablings after we' ve enabled them or after we’ve
* retained them

*/

ASSERT(enab- >dt en_pr obegen == 0);
ASSERT(enab- >dt en_next == NULL && enab->dten_prev == NULL);

if (enab->dten_ndesc < enab->dt en_naxdesc) {
enab- >dt en_desc[enab- >dt en_ndesc++] = ecb;
return;

}

osi ze = enab->dten_naxdesc * sizeof (dtrace_enabling_t *);

if (enab->dten_naxdesc == 0)
enab- >dt en_nmaxdesc = 1;

} else {

) enab- >dt en_nmaxdesc <<= 1;

ASSERT(enab- >dt en_ndesc < enab- >dt en_naxdesc) ;

nsi ze = enab->dten_naxdesc * sizeof (dtrace_enabling_t *);
ndesc = krmem zal | oc(nsi ze, KM SLEEP);

bcopy(enab->dt en_desc, ndesc, osize);

kmem f r ee(enab- >dt en_desc, osi ze);

enab- >dt en_desc = ndesc;
enab- >dt en_desc[enab- >dt en_ndesc++] = ecb;

static void
dtrace_enabl i ng_addl i ke(dtrace_enabl ing_t *enab, dtrace_echdesc_t *ech,

11062 {

11063
11064
11065

11067
11068
11069
11070
11071

11073
11074

11076
11077

11079
11080
11081
11082

dtrace_probedesc_t *pd)

dtrace_echdesc_t *new,
dtrace_predicate_t *pred;
dtrace_actdesc_t *act;

/*

* W’'re going to create a new ECB description that matches the

* specified ECB in every way, but has the specified probe description.
*/

new = knem zal | oc(si zeof (dtrace_ecbdesc_t), KM SLEEP);

if ((pred = ecb->dted_pred. dt pdd_predicate) != NULL)
dtrace_predicat e_hol d(pred);

for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
dtrace_actdesc_hol d(act);

new >dt ed_acti on = ech->dted_acti on;
new >dt ed_pred = ech->dted_pred;
new >dt ed_probe = *pd;

new >dt ed_uarg = ech->dt ed_uarg;

new usr/src/uts/comon/ dtrace/ dtrace. c

11084 dtrace_enabl i ng_add(enab, new);

11085 }

11087 static void

11088 dtrace_enabl i ng_dunp(dtrace_enabling_t *enab)

11089 {

11090 int i;

11092 for (i = 0; i < enab->dten_ndesc; i++) {

11093 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11095 cmm_err (CE_NOTE, "enabling probe % (%:%:%:%)", i,
11096 desc->dt pd_provi der, desc->dtpd_nod,

11097 desc->dt pd_func, desc->dtpd_nane);

11098 }

11099 }

11101 static void

11102 dtrace_enabl i ng_destroy(dtrace_enabling_t *enab)

11103 {

11104 int i;

11105 dtrace_echdesc_t *ep;

11106 dtrace_vstate_t *vstate = enab->dten_vstate;

11108 ASSERT(MUTEX_HELD(&t r ace_| ock)) ;

11110 for (i = 0; i < enab->dten_ndesc; i++) {

11111 dtrace_actdesc_t *act, *next;

11112 dtrace_predicate_t *pred;

11114 ep = enab->dten_desc[i];

11116 if ((pred = ep->dted_pred. dtpdd_predicate) != NULL)
11117 dtrace_predicate_rel ease(pred, vstate);
11119 for (act = ep->dted_action; act != NULL; act = next) {
11120 next = act->dtad_next;

11121 dtrace_actdesc_rel ease(act, vstate);

11122 }

11124 kmem free(ep, sizeof (dtrace_ecbdesc_t));

11125 }

11127 kmem f r ee(enab- >dt en_desc,

11128 enab- >dt en_maxdesc * sizeof (dtrace_enabling t *));
11130 /*

11131 * If this was a retained enabling, decrement the dts_nretai ned count
11132 * and take it off of the dtrace_retained |ist.

11133 */

11134 if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11135 dtrace_retal ned == enab)

11136 ASSERT(enab- >dt en_vst at e->dtvs_state != NULL);
11137 ASSERT(enab- >dt en_vst at e- >dt vs_st at e- >dt s_nretai ned > 0);
11138 enab- >dt en_vst at e- >dt vs_st at e- >dt s_nr et ai ned- - ;
11139 dtrace_retai ned_gen++;

11140 }

11142 if (enab->dten_prev == NULL)

11143 if (dtrace_retained == enab) {

11144 dtrace_retai ned = enab->dten_next;

11146 if (dtrace_retained != NULL)

11147 dtrace_retai ned->dten_prev = NULL;
11148

11149 } else {

new usr/src/uts/comon/ dtrace/ dtrace. c 165

11150 ASSERT(enab != dtrace_retained);

11151 ASSERT(dtrace_retai ned ! = NULL);

11152 enab- >dt en_pr ev- >dt en_next = enab- >dt en_next;
11153 }

11155 if (enab->dten _next != NULL) {

11156 ASSERT(dtrace_retained != NULL);

11157 enab- >dt en_next - >dt en_prev = enab- >dt en_prev;
11158 }

11160 kmem free(enab, sizeof (dtrace_enabling_t));

11161 }

11163 static int

11164 dtrace_enabling_retai n(dtrace_enabling_t *enab)

11165 {

11166 dtrace_state_t *state;

11168 ASSERT(MUTEX_HELD(&dt r ace_ I ock));

11169 ASSERT(enab- >dt en_next == NULL 8&& enab- >dten_prev == NULL);
11170 ASSERT(enab- >dt en_vstate != NULL);

11172 state = enab->dten_vstate->dtvs_state;

11173 ASSERT(state != NULL)

11175 /*

11176 * W only allow each state to retain dtrace_retai n_max enablings.
11177

11178 |f (state->dts_nretained >= dtrace_retain_max)

11179 return (ENCSPO);

11181 st at e- >dt s_nr et ai ned++;

11182 dtrace_retai ned_gen++;

11184 if (dtrace_retained == NULL) {

11185 dtrace_retai ned = enab;

11186 return (0);

11187 }

11189 enab- >dt en_next = dtrace_ ret ai ned;

11190 dtrace_r et ai ned- >dt en_prev = enab;

11191 dtrace_retai ned = enab;

11193 return (0);

11194 }

11196 static int

11197 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11198 dtrace_probedesc_t *create)

11199 {

11200 dtrace_enabling_t *new, *enab;

11201 int found = 0, err = ENCENT;

11203 ASSERT(MUTEX_HELD(&t r ace_| ock)) ;

11204 ASSERT(st rl en(mat ch- >dt pd_pr ovi der) < DTRACE_PROVNAMELEN) ;
11205 ASSERT(st rl en(mat ch- >dt pd_nmod) < DTRACE_MODNAMELEN) ;

11206 ASSERT(st rl en(mat ch- >dt pd_f unc) < DTRACE FUNCNANELEN)
11207 ASSERT(strl en(mat ch- >dt pd_nanme) < DTRACE_NAMELEN);

11209 new = dtrace_enabling_create(&state->dts_vstate);

11211 /*

11212 * |terate over all retained enablings, |ooking for enablings that
11213 * match the specified state.

11214 */

11215 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) ({

new usr/src/uts/comon/ dtrace/ dtrace. c

11216 int i;

11218 /*

11219 * dtvs_state can only be NULL for hel per enablings -- and
11220 * hel per enablings can’t be retained.

11221 */

11222 ASSERT(enab- >dt en_vst at e->dtvs_state != NULL);

11224 if (enab->dten_vstate->dtvs_state != state)

11225 cont i nue;

11227 /*

11228 * Now iterate over each probe description; we're |ooking for
11229 * an exact match to the specified probe description.
11230 */

11231 for (i = 0; i < enab->dten_ndesc; i++) {

11232 dtrace_echdesc_t *ep = enab->dten_desc[i];
11233 dtrace_probedesc_t *pd = &ep->dted_probe;
11235 if (strcnp(pd->dtpd_provider, nmatch->dtpd_provider))
11236 conti nue;

11238 if (strcnp(pd->dtpd_nod, natch->dtpd_nod))
11239 conti nue;

11241 if (strcnp(pd->dtpd_func, match->dtpd_func))
11242 conti nue;

11244 if (strcnp(pd >dt pd_nane, mat ch->dt pd_nane))
11245 conti nue;

11247 /*

11248 * We have a winning probe! Add it to our grow ng
11249 * enabling.

11250 */

11251 found = 1;

11252 dtrace_enabl i ng_addl i ke(new, ep, create);
11253 }

11254 }

11256 if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11257 dtrace_enabl i ng_destroy(new);

11258 return (err);

11259 }

11261 return (0);

11262 }

11264 static void

11265 dtrace_enabling_retract(dtrace_state_t *state)

11266 {

11267 dtrace_enabling_t *enab, *next;

11269 ASSERT(MUTEX_HELD(&dt r ace_l ock)) ;

11271 /*

11272 * Iterate over all retained enablings, destroy the enablings retained
11273 * for the specified state.

11274 */

11275 for (enab = dtrace_retained; enab != NULL; enab = next) {
11276 next = enab->dten_next;

11278 /*

11279 * dtvs_state can only be NULL for hel per enablings --
11280 * hel per enablings can’t be retained.

11281 */

new usr/src/uts/comon/ dtrace/ dtrace. c 167

11282

11284
11285
11286
11287
11288

11290
11291 }

ASSERT(enab- >dt en_vst at e->dtvs_state != NULL);
if (enab->dten_vstate->dtvs_state == state) {

ASSERT(st ate->dts_nretai ned > 0);
dtrace_enabl i ng_destroy(enab);

}
ASSERT(st at e->dts_nretai ned == 0);

11293 static int
11294 dtrace_enabl i ng_nmat ch(dtrace_enabling_t *enab, int *nmatched)

11295 {
11296
11297

11299
11300

11302
11303

11305
11306

11308
11309
11310
11311
11312
11313

11315

11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335

11337
11338
11339

11341
11342
11343

11345
11346 }

int i =0;
int total _matched = 0, natched =

ASSERT(MUTEX_HELD(&pu_| ock)) ;
ASSERT(MUTEX_HELD(&dt r ace_| ock))

(i =0; i < enab->dten_ndesc; i++) {
dtrace_ecbdesc_t *ep = enab->dten_desc[i];

enab->dten_current = ep;
enab->dten_error = 0;

/*

* |If a provider failed to enable a probe then get out and
* let the consumer know we faile

S

if ((matched = dtrace_probe_enabl e(&p- >dt ed_probe, enab)) < 0)
return (EBUSY);

total _matched += matched;
if (enab->dten_error != 0) {
*

* |f we get an error half-way through enabling the
probes, we kick out -- perhaps with sone nunber of
them enabl ed. Leavi ng enabl ed probes enabl ed may
be slightly confusing for user-level, but we expect
that no one will attenpt to actually drive on in
the face of such errors. |If this is an anonynous
enabling (indicated with a NULL nmat ched pointer),
we com_err() a nmessage. W aren’t expecting to
get such an error -- such as it can exist at all,
it would be a result of corrupted DOF in the driver
properties.

* ok % ok % ok k ok ko

if (nmatched == NULL) {
cmm_err (CE_WARN, "dtrace_enabling_match()
"error on %: %", (void *)ep,
enab->dten_error);

}
return (enab->dten_error);
}
enab- >dt en_pr obegen = dtrace_probegen;
if (nmatched != NULL)
*nmat ched = total _natched;

return (0);

new usr/src/uts/comon/ dtrace/ dtrace. c 168

11348 static void
11349 dtrace_enabl i ng_mat chal | (voi d)

11350
11351

11353
11354

11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369

11371
11372
11373
11374

11376
11377
11378

11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391

11393
11394

11396
11397

11399
11400

11402
11403
11404
11405
11406
11407
11408
11409
11410

11412
11413

{

* ok Ok ok F ok Xk ok %

*/

dtrace_enabling_t *enab;

mut ex_ent er (&cpu_| ock) ;
nut ex_ent er (&t race_| ock) ;

/*

* |terate over all retained enablings to see if any probes match

* against them W only performthis operation on enablings for which

* we have sufficient permssions by virtue of being in the gl obal zone

* or in the sane zone as the DIrace client. Because we can be called

* after dtrace_detach() has been called, we cannot assert that there

* are retained enablings. W can safely | oad from dtrace_retained,

* however: the taskq_destroy() at the end of dtrace_det ach() will

* bl ock pending our conpletion.

*

/

for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) ({
dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
cred_t *cr = dcr->dcr_cred;
zonei d_t zone = cr != NULL ? crgetzoneid(cr) : O;

if ((dcr->dcr vi si bl e & DTRACE_CRV. ALLZCNE) || (cr !'= NULL &&
(zone == GLOBAL_ZONEID || getzoneid() == zone)))
(voi d) dtrace_enabling_match(enab, NULL);
}

nut ex_exi t (&dtrace_| ock);
nmut ex_exi t (&cpu_l ock) ;

If an enabling is to be enabl ed without having matched probes (that is, if
dtrace_state_go() is to be called on the underlying dtrace_state_t), the
enabl i ng nust _prinmed_ by creating an ECB for every ECB description.
This nust be done to assure that we know the number of specul ations, the
nunber of aggregations, the mnimumbuffer size needed, etc. before we
transition out of DTRACE_ACTIVITY_INACTIVE. To do this w thout actually
enabl i ng any probes, we create ECBs for every ECB decription, but with a
NULL probe -- which is exactly what this function does.

static void
dtrace_enabling_prine(dtrace_state_t *state)
11392 {

dtrace_enabling_t *enab;

int i;
for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
ASSERT(enab- >dt en_vst at e- >dt vs_state != NULL);
if (enab->dten_vstate->dtvs_state != state)
conti nue;

*
* W& don't want to prime an enabling nore than once, |est
* we allow a malicious user to induce resource exhaust| on.
* (The ECBs that result fromprimng an enabling aren’t
* | eaked -- but they also aren't deallocated until the
* consuner state is destroyed.)
*

/

if (enab->dten_prinmed)
conti nue;

for (i = 0; i < enab->dten_ndesc; i++)
enab->dt en_current = enab->dten_desc[i];

new usr/src/uts/comon/ dtrace/ dtrace. c

11414
11415

11417
11418
11419

11421
11422
11423
11424
11425
11426
11427
11428

*
*
*
*
*

(voi d) dtrace_probe_enabl e(NULL, enab);

}

enab->dten_primed =

Called to indicate that probes should be provided due to retained

enabl i ngs.

This is inplenented in terns of dtrace_probe_provide(), but it

must take an initial lap through the enabling calling the dtps_provide()

entry point explicitly to allow for autocreated probes.

*/

st
dt

11429 {

11430
11431
11432

11434
11435

11437
11438
11439
11440

11442
11443
11444

11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464

11466
11467
11468
11469

11471
11472
11473
11474
11475

atic void
race_enabl i ng_provi de(dtrace_provider_t *prv)

int i, all =0;
dtrace_probedesc_t desc;
dtrace_geni d_t gen;

ASSERT(MUTEX_HELD(&dt race_| ock));
ASSERT(MUTEX_HELD(&dt r ace_pr ovi der _lock));

if (prv == NULL) {

all = 1;

prv = dtrace_provider;
do {

dtrace_enabling_t *enab;
void *parg = prv->dtpv_arg;

retry:

}
| *

*

gen = dtrace_retai ned_gen;
for (enab = dtrace_retained;
enab = enab >dten_next) {
for (i = 0; i < enab->dten_ndesc; i++)

enab != NULL;

{
desc = enab- >dt en_desc[l] >dt ed_pr obe;

mut ex_exit (&dtrace_| ock) ;

prv->dt pv_pops. dt ps_provi de(parg, &desc);

nut ex_ent er (&dtrace_| ock) ;
/*

* Process the retained enablings again if
* they have changed while we weren't hol di ng

* dtrace_| ock.
*/

if (gen != dtrace_retained_gen)
goto retry;

}
}
} while (all && (prv = prv->dtpv_next) != NULL);
mut ex_exi t (&dtrace_l ock);

dtrace_probe_provi de(NULL, all ? NULL : prv);
nut ex_ent er (&dtrace_| ock) ;

Called to reap ECBs that are attached to probes from defunct

*/

st
dt

11476 {

11477
11478
11479

atic void
race_enabl i ng_reap(void)

dtrace_provider_t *prov;
dtrace_probe_t *probe;
dtrace_ecb_t *ecb;

provi ders.

new usr/src/uts/comon/dtrace/ dtrace.c 170
11480 hrtime_t when;

11481 int i;

11483 nut ex_ent er (&cpu_l ock) ;

11484 nut ex_ent er (&t race_| ock) ;

11486 for (i = 0; i < dtrace_nprobes; i++) {

11487 if ((probe = dtrace_probes[i]) == NULL)

11488 conti nue;

11490 if (probe->dtpr_ecb == NULL)

11491 conti nue;

11493 prov = probe->dtpr_provider;

11495 if ((when = prov->dtpv_defunct) == 0)

11496 conti nue;

11498 I *

11499 * W have ECBs on a defunct provider: we want to reap these
11500 * ECBs to allow the provider to unregister. The destruction
11501 * of these ECBs nust be done carefully: if we destroy the ECB
11502 * and the consumer |ater wi shes to consume an EPI D that

11503 * corresponds to the destroyed ECB (and if the EPID netadata
11504 * has not been previously consuned), the consumer will abort
11505 * processing on the unknown EPID. To reduce (but not, sadly,
11506 * elimnate) the possibility of this, we will only destroy an
11507 * ECB for a defunct provider if, for the state that

11508 * corresponds to the ECB:

11509 *

11510 * (a) There is no specul ative tracing (which can effectively
11511 * cache an EPID for an arbitrary anpunt of tine).

11512 *

11513 * (b) The principal buffers have been sw tched twi ce since the
11514 * provi der becane defunct.

11515 *

11516 * (c) The aggregation buffers are of zero size or have been
11517 * switched twice since the provider becane defunct.
11518 *

11519 * W use dts_speculates to determine (a) and call a function
11520 * (dtrace_buffer_consuned()) to deternmine (b) and (c). Note
11521 * that as soon as we’ve been unable to destroy one of the ECBs
11522 * associated with the probe, we quit trying -- reaping is only
11523 * fruitful in as nuch as we can destroy all ECBs associ ated
11524 * with the defunct provider’s probes.

11525 *

11526 while ((ecb = probe->dtpr_ecb) != NULL)

11527 dtrace_state_t *state = ecb->dte_state;

11528 dtrace_buffer_t *buf = state->dts_buffer;

11529 dtrace_buffer_t *aggbuf = state->dts_aggbuffer;

11531 if (state->dts_specul ates)

11532 br eak;

11534 if (!dtrace_buffer_consumed(buf, when))

11535 break;

11537 if (!dtrace_buffer_consunmed(aggbuf, when))

11538 br eak;

11540 dtrace_ecb_di sabl e(ecb);

11541 ASSERT(pr obe- >dt pr _ecb ! = ecbh);

11542 dtrace_ech_destroy(ech);

11543 }

11544 }

new usr/src/uts/comon/dtrace/ dtrace. c 171
11546 nut ex_exi t (&dtrace_| ock);

11547 mut ex_exi t (&cpu_l ock) ;

11548 }

11550 /*

11551 * DTrace DOF Functions

11552 */

11553 /* ARGSUSED*/

11554 static void

11555 dtrace_dof _error(dof _hdr_t *dof, const char *str)

11556 {

11557 if (dtrace_err_verbose)

11558 crm_err (CE_WARN, “failed to process DOF: %", str);
11560 #i f def DTRACE_ERRDEBUG

11561 dtrace_errdebug(str);

11562 #endi f

11563 }

11565 /*

11566 * Create DOF out of a currently enabled state. R ght now, we only create
11567 * DO: containing the run-tine options -- but this could be expanded to create
11568 * conpl ete DOF representing the enabled state.

11569 *

11570 static dof _hdr_t *

11571 dtrace_dof _create(dtrace_state_t *state)

11572 {

11573 dof _hdr_t *dof;

11574 dof _sec_t *sec;

11575 dof _opt desct *opt

11576 int i, len = si zeof (dof _hdr_t) +

11577 roundup(si zeof (dof_sec t) sizeof (uint64_t)) +
11578 si zeof (dof _optdesc_t) * DTRACEODT MAX;

11580 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

11582 dof = kmem zal |l oc(l en, KM SLEEP)

11583 dof - >dofh i dent [DOF_| D_MAQD] D(]=_MAG_M£\GO

11584 dof - >dof h_i dent [DOF_I D_MAGL] = DOF_MAG MAGL;

11585 dof - >dof h_i dent [DOF_| D_ MAG2] = DOF_MAG MAGZ;

11586 dof - >dof h_i dent [DOF_| D_MAG3] = DOF_MAG_MAGS3;

11588 dof - >dof h_i dent [DOF_| D MODEL] = DOF_MODEL_NATI VE;
11589 dof - >dof h_i dent [DOF_| D_ENCODI NG] = DOF_ENCODE_NATI VE;
11590 dof - >dof h_i dent [DOF_I D_VERSI ON] = DOF_VERSI ON;

11591 dof - >dof h_i dent [DOF_| D_DI FVERS] = DI F_VERSI ON,

11592 dof - >dof h_i dent [DOF_I D_DI FI REG = DI F_DI R_NREGS
11593 dof - >dof h_i dent [DOF_| D_DI FTREG = DI F_DTR _NREGS
11595 dof ->dof h_flags = O;

11596 dof - >dof h_hdrsi ze = sizeof (dof_hdr_t);

11597 dof - >dof h_secsi ze = sizeof (dof_sec_t);

11598 dof - >dof h_secnum = 1; /* only DOF_ SECT OPTDESC */
11599 dof - >dof h_secof f = sizeof (dof_hdr_t);

11600 dof - >dof h_| oadsz = | en;

11601 dof ->dof h_filesz = | en;

11602 dof - >dof h_pad = 0;

11604 /*

11605 * Fill in the option section header...

11606 */

11607 sec = (dof _sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11608 sec->dof s_type = DOF_SECT_OPTDESC;

11609 sec->dofs_al 1 gn = sizeof (uint64_t);

11610 sec->dof s_fl ags = DOF_SECF_LQAD;

11611 sec->dof s_entsize = si zeof (dof_optdesc_t);

new usr/src/uts/comon/dtrace/ dtrace.c 172
11613 opt = (dof _optdesc_t *)((uintptr_t)sec +

11614 roundup(si zeof (dof_sec_t), sizeof (uint64_t)));
11616 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11617 sec- >dof s_si ze = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11619 for (i = 0; i < DTRACEOPT_| NAX i++) {

11620 opt[i].dofo_option = i;

11621 opt[i].dofo_strtab = DCF_SECI DX_NONE;

11622 opt[i].dofo_value = state->dts_options[i];

11623 }

11625 return (dof);

11626 }

11628 static dof _hdr_t *

11629 dtrace_dof _copyi n(uintptr_t uarg, int *errp)

11630 {

11631 dof _hdr_t hdr, *dof;

11633 ASSERT(! MUTEX_HELD(&dt r ace_| ock));

11635 /*

11636 * First, we're going to copyin() the sizeof (dof_hdr_t).
11637 */

11638 if (copyin((void *)uarg, &hdr, sizeof (hdr)) !'= 0) {
11639 dtrace_dof _error (NULL, "failed to copyin DOF header");
11640 *errp = EFAULT;

11641 return (NULL);

11642 }

11644 /*

11645 * Now we' ||l allocate the entire DOF and copy it in -- provided
11646 * that the length isn't outrageous.

11647 */

11648 if (hdr.dofh_l oadsz >= dtrace_dof _maxsi ze) {

11649 dtrace_dof _error(&hdr, "load size exceeds nmaxi muni);
11650 *errp = E2BI G

11651 return (NULL);

11652 }

11654 if (hdr.dofh_l oadsz < sizeof (hdr))

11655 dtrace_dof _error(&hdr, "invalid | oad size");
11656 *errp = ElI NVAL;

11657 return (NULL);

11658 }

11660 dof = kmem al | oc(hdr. dof h_|l oadsz, KM SLEEP);

11662 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) !'= 0 ||
11663 dof - >dof h_I| oadsz ! = hdr. dof h_| oadsz) {

11664 kmem free(dof, hdr.dofh_| oadsz);

11665 *errp = EFAULT;

11666 return (NULL);

11667 }

11669 return (dof);

11670 }

11672 static dof _hdr_t *

11673 dtrace_dof _property(const char *nane)

11674 {

11675 uchar _t *buf;

11676 uint64_t | oadsz;

11677 unsigned int len, i;

new usr/src/uts/comon/ dtrace/ dtrace. c 173

11678

11680
11681
11682
11683
11684
11685
11686
11687

11689
11690

11692
11693
11694
11695
11696

11698
11699
11700
11701
11702

11704
11705
11706
11707
11708

11710
11711
11712

11714
11715

11717
11718

11720
11721

11723
11724
11725
11726
11727
11728
11729
11730

11732
11733

11735
11736
11737
11738

11740
11741
11742
11743

}

dof _hdr_t *dof;

/*

* Unfortunately, array of values in .conf files are always (and
* only) interpreted to be integer arrays. W nust read our DOF
* as an integer array, and then squeeze it into a byte array.

*

/
if (ddi_prop_l ookup_int_array(DDI _DEV_T_ANY, dtrace_devi, O,

(char *)name, (int **)&buf, & en) != DDl _PROP_SUCCESS)
return (NULL);

for (i =0; i <len; i++)
buf[i] = (uchar_t)(((int *)buf)[i]);

if (len < sizeof (dof_hdr_t)) {
ddi _prop_free(buf);
dtrace_dof _error (NULL, "truncated header");
return (NULL);

if (len < (loadsz = ((dof _hdr_t *)buf)->dofh_| oadsz)) {
ddi _prop_free(buf);
dtrace_dof _error (NULL, "truncated DOF");
return (NULL);

}

if (loadsz >= dtrace_dof _nmaxsize) {
ddi _prop_free(buf);
dtrace_dof _error(NULL, "oversized DOF");
return (NULL);

}

dof = kmem al |l oc(| oadsz, KM SLEEP);

bcopy(buf, dof, |oadsz);

ddi _prop_free(buf);

return (dof);

static void
dtrace_dof _destroy(dof _hdr_t *dof)
11719 {

* ok ok k%

*/

kmem f ree(dof, dof->dof h_| oadsz);

Return the dof _sec_t pointer corresponding to a given section index. |If the
index is not valid, dtrace_dof _error() is called and NULL is returned. |If

a type other than DOF_SECT_NONE is specified, the header is checked agai nst
this type and NULL is returned if the types do not natch.

static dof _sec_t *
dtrace_dof _sect (dof _hdr_t *dof, uint32_t type, dof_secidx_t i)
11731 {

dof _sec_t *sec = (dof_sec_t *)(uintptr_t
((uintptr_t)dof + dof->dofh_secoff + i * dof->dof h_secsize);

if (i >= dof->dof h_secnum {
dtrace_dof _error(dof, "referenced section index is invalid");
return (NULL);

}

if (!(sec->dofs_flags & DOF_SECF_LOAD))
dtrace_dof _error(dof, "referenced section is not |oadable");
return (NULL);

new usr/src/uts/comon/ dtrace/ dtrace. c

11745
11746
11747
11748

11750
11751

11753
11754

11756
11757
11758
11759
11760

11762
11763
11764
11765

11767
11768
11769
11770

11772
11773
11774
11775

11777
11778

11780
11781

11783
11784

11786
11787
11788
11789

11791
11792
11793

11795
11796
11797
11798

11800
11801

11803
11804
11805
11806

11808
11809

}

if (type != DOF_SECT_NONE && type != sec->dofs_type) {
dtrace_dof _error(dof, "referenced section is the wong type");
return (NULL);

}

return (sec);

static dtrace_probedesc_t *
dtrace_dof _probedesc(dof _hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11755 {

dof _probedesc_t *probe;

dof _sec_t *strtab;

uintptr_t daddr = (uintptr_t)dof;
uintptr_t str;

size_t size;

if (sec->dofs_type != DOF_SECT_PROBEDESC)
dtrace_dof _error(dof, "invalid probe section");
return (NULL);

}

if (sec->dofs_align != sizeof (dof_secidx_t)) {
dtrace_dof _error(dof, "bad alignment in probe description");
return (NULL);

}

if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_|oadsz) {
dtrace_dof _error(dof, "truncated probe description");
return (NULL);

}

probe = (dof _probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
strtab = dtrace_dof _sect (dof, DOF_SECT_STRTAB, probe->dofp_strtab);

if (strtab == NULL)
return (NULL);

str = daddr + strtab->dofs_of fset;
size = strtab->dof s_si ze;

if (probe->dof p_provider >= strtab->dofs_size)
dtrace_dof _error(dof, "corrupt probe provider");
return (NULL);

}

(voi d) strncpy(desc->dtpd_provider,
(char *)(str + probe->dof p_provider),
M N(DTRACE_PROVNAMELEN - 1, size - probe->dof p_provider));

if (probe->dof p_npd >= strtab->dofs_size) {
dtrace_dof _error(dof, "corrupt probe nodule");
return (NULL);

}

(void) strncpy(desc->dtpd_nod, (char *)(str + probe->dofp_nod),
M N(DTRACE_MODNAMELEN - 1, size - probe->dofp_nod));

if (probe->dofp_func >= strtab->dofs_size) {
dtrace_dof _error(dof, "corrupt probe function");
return (NULL);

}

(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
M N(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));

new usr/src/uts/comon/dtrace/ dtrace. c 175 new usr/src/uts/comon/dtrace/ dtrace.c 176
11876 dofd (dof _difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11811 if (probe->dof p_nanme >= strtab->dofs_size) { 11877 = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11812 dtrace_dof _error(dof, "corrupt probe name");
11813 return (NULL); 11879 dp = kmem zal | oc(si zeof (dtrace_difo_t), KM SLEEP);
11814 } 11880 dp->dtdo_rtype = dofd->dofd_rtype;
11816 (void) strncpy(desc->dtpd_nane, (char *)(str + probe->dofp_nane), 11882 for (I =0; I <n; [++) {
11817 M N(DTRACE_NAMELEN - 1, size - probe->dofp_nane)); 11883 dof _sec_t *subsec;
11884 voi d **buf p;
11819 return (desc); 11885 uint32_t *lenp;
11820 }
11887 if ((subsec = dtrace_dof _sect(dof, DOF_SECT_NONE,
11822 static dtrace_difo_t * 11888 dof d->dof d_l i nks[1])) == NULL)
11823 dtrace_dof _difo(dof _hdr_t *dof, dof sec_t *sec, dtrace_vstate t *vstate, 11889 goto err; /* invalid section link */
11824 cred_t *cr)
11825 { 11891 if (ttl + subsec->dofs_size > max) {
11826 dtrace_difo_t *dp; 11892 dtrace_dof _error(dof, "exceeds maxi mum size");
11827 size_t “ttl = 0; 11893 goto err;
11828 dof _di f ohdr _t *dofd 11894 }
11829 uintptr_t daddr (U| ntptr_t)dof;
11830 size_t max = dtrace di f o_maxsi ze; 11896 ttl += subsec->dofs_si ze;
11831 int i, |, n;
11898 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11833 static const struct { 11899 if (subsec->dofs_type != difo[i]. sectlon)
11834 int section; 11900 conti nue;
11835 int bufoffs;
11836 i nt Ienoffs; 11902 if (!(subsec->dofs_flags & DO: SECF_LOAD)) {
11837 int entsize; 11903 dtrace_dof _error(dof, "section not |oaded");
11838 int align; 11904 goto err;
11839 const char *msg; 11905 }
11840 } difo[] = {
11841 { DG:SECT DI F, offsetof(dtrace_difo_t, dtdo_buf), 11907 if (subsec->dofs_align != difo[i].align) {
11842 of f set’ of(dtrace difo_t, dtdo_len), si T zeof (dl f_instr_t), 11908 dtrace_dof _error(dof, "bad alignment");
11843 sizeof (dif_instr_t), "multiple D F sections” T, 11909 goto err;
11910 }
11845 { DOF_SECT_I NTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11846 of f set of (dtrace_ dlfot dtdo_intlen), si zeof (uint64_t), 11912 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11847 sizeof (uint64_t), rrultipleinteger tabl es" }, 11913 lenp = (uint32_t *)((uintptr_t)dp + difo[i]. Ienoffs);
11849 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 11915 if (*bufp !'= NULL) {
11850 of f setof (dtr ace_ di fo_t, dtdo_strlen), 0, 11916 dtrace_dof _error(dof, difo[i].nsg);
11851 sizeof (char), "multi pl e string tabl es” 1, 11917 goto err;
11918 }
11853 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11854 of f setof (dtrace_ d| fo_t, dtdo_varlen), si zeof (dtrace_di fv _t), 11920 if (difo[i].entsize != subsec->dofs_entsize) {
11855 sizeof (uint_t), "multiple variable t abl es” 1, 11921 dtrace_dof _error(dof, "entry size msmatch");
11922 goto err;
11857 { DOF_SECT NONE, 0, 0, 0, NULL } 11923 }
11858 }:
11925 if (subsec->dofs_entsize != 0 &&
11860 if (sec->dofs_type != DOF SECT DI FOHDR) { 11926 (subsec->dofs_si ze %subsec >dofs_entsize) !'= 0) {
11861 dtrace_dof _error(dof, "invalid D FO header section"); 11927 dtrace_dof _error(dof, "corrupt entry size");
11862 return (NULL); 11928 goto err;
11863 } 11929 }
11865 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11931 *| enp = subsec->dof s_si ze;
11866 dtrace_dof _error(dof, "bad alignnent in D FO header"); 11932 *buf p = kmem al | oc(subsec->dofs_si ze, KM SLEEP);
11867 return (NULL); 11933 bcopy((char *) (uintptr _t)(daddr + subsec->dof s offset)
11868 } 11934 *buf p, subsec->dofs_si ze);
11870 if (sec->dofs_size < sizeof (dof_difohdr_t) || 11936 if (subsec->dofs_entsize != 0)
11871 sec->dof s_si ze % si zeof (dof _seci dx _t)) { 11937 *| enp /= subsec- >dof s_ent si ze;
11872 dtrace_dof _error(dof, "bad size in D FO header");
11873 return (NULL); 11939 br eak;
11874 } 11940 }

new usr/src/uts/comon/ dtrace/ dtrace. c 177

11942 /*

11943 * |f we encounter a | oadabl e DI FO sub-section that is not
11944 * known to us, assunme this is a broken programand fail.
11945 */

11946 if (difo[i].section == DOF_SECT_NONE &&

11947 (subsec->dof s_fl ags & DOF_SECF_LQAD))

11948 dtrace_dof _error(dof, "unrecognized DI FO subsection");
11949 goto err;

11950 }

11951 }

11953 if (dp->dtdo_buf == NULL) {

11954 /*

11955 * W can’'t have a DI F object without DI F text.

11956 */

11957 dtrace_dof _error(dof, "missing DIF text");

11958 goto err;

11959 }

11961 /*

11962 * Before we validate the DIF object, run through the variable table
11963 * | ooking for the strings -- if any of their size are under, we'll set
11964 * their size to be the systemw de default string size. Note that
11965 * this should _not_ happen if the "strsize" option has been set --
11966 * in this case, the conpiler should have set the size to reflect the
11967 * setting of the option.

11968 */

11969 for (i =0; i < dp->dtdo_varlen; i++) {

11970 dtrace_difv_t *v = &Jp->dtdo_vartab[i];

11971 dtrace_diftype_t *t = &->dtdv_type;

11973 if (v->dtdv_id < DI F_VAR OTHER UBASE)

11974 conti nue;

11976 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
11977 t->dtdt_size = dtrace_strsize_default;

11978 }

11980 if (dtrace_difo_validate(dp, vstate, DI F_D R NREGS, cr) != 0)

11981 goto err;

11983 dtrace_difo_init(dp, vstate);

11984 return (dp);

11986 err:

11987 kmem free(dp->dtdo_buf, dp->dtdo_|len * sizeof (dif_instr_t));

11988 kmem f ree(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
11989 kmem free(dp->dtdo_strtab, dp->dtdo_strlen);

11990 kmem free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
11992 kmem free(dp, sizeof (dtrace_difo_t));

11993 return (NULL);

11994 }

11996 static dtrace_predicate_t *
11997 dtrace_dof _predi cate(dof _hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11998 cred_t *cr)

11999 {

12000 dtrace_difo_t *dp;

12002 if ((dp = dtrace_dof _difo(dof, sec, vstate, cr)) == NULL)
12003 return (NULL);

12005 return (dtrace_predi cate_create(dp));

12006 }

new usr/src/uts/comon/ dtrace/ dtrace. c 178

12008 static dtrace_actdesc_t *
12009 dtrace_dof _actdesc(dof _hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,

12010
12011
12012
12013
12014
12015
12016
12017
12018

12020
12021
12022
12023

12025
12026
12027
12028

12030
12031
12032
12033

12035
12036
12037
12038

12040
12041
12042
12043

12045
12046
12047
12048

12050
12051
12052
12053

12055
12056
12057
12058
12059
12060
12061
12062

12064
12065
12066
12067
12068
12069
12070
12071
12072

{

cred_t *cr)

dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
dof _actdesc_t *desc;

dof _sec_t *difosec;

size_t offs;

uintptr_t daddr = (uintptr_t)dof;

uint64_t arg;

dtrace_actki nd_t Kkind;

if (sec->dofs_type != DOF_SECT_ACTDESC)
dtrace_dof _error(dof, "invalid action section");
return (NULL);

if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_| oadsz) {
dtrace_dof _error(dof, "truncated action description");
return (NULL);

}

if (sec->dofs_align != sizeof (uint64_t))
dtrace_dof _error(dof, "bad alignnent in action description");
return (NULL);

}

if (sec->dofs_size < sec->dofs_entsize)
dtrace_dof _error(dof, "section entry size exceeds total size");
return (NULL);

}

if (sec->dofs_entsize != sizeof (dof_actdesc_t))
dtrace_dof _error(dof, "bad entry size in action description");
return (NULL);

}

if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_nmax) {
dtrace_dof _error(dof, "actions exceed dtrace_actions_max");
return (NULL);

}

for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
desc = (dof _actdesc_t *)(daddr +
(uintptr_t)sec->dofs_offset + offs);
kind = (dtrace_actkind_t)desc->dof a_ki nd;

i f ((DTRACEACT | SPRI NTFLI KE(ki nd) &&
(kind ! = DTRACEACT_PRI NTA |
desc->dofa_strtab !'= DOF_SECI DX_NONE)) ||
(ki nd == DTRACEACT_DI FEXPR &&
desc->dofa_strtab != DOF_SECI DX NONE)) {
dof _sec_t *strtab;
char *str, *fnt;

uinté4d_t i;

/*

* The argunment to these actions is an index into the
* DOF string table. For printf()-like actions, this
* is the format string. For print(), this is the

* CTF type of the expression result.

*/

if ((strtab = dtrace_dof _sect (dof,
DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
goto err;

new usr/src/uts/comon/ dtrace/ dtrace. c 179

12074
12075

12077
12078
12079
12080

12082
12083
12084
12085

12087
12088
12089
12090

12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103

12105
12106

12108
12109
12110
12111
12112

12114

12116
12117

12119
12120
12121

12123
12125
12126
12127

12129
12130

12132 err:

12133
12134
12135
12136

12138
12139 }

str = (char *)((uintptr_t)dof +
(uintptr_t)strtab->dofs_offset);

for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {

if (str[i] =="\0")
br eak;

}

if (i >= strtab->dofs_size) {
dtrace_dof _error(dof, "bogus format string");
goto err;

}

if (i == desc->dofa_arg) {
dtrace_dof _error(dof, "enpty fornmat string");
goto err;

}

i -= desc->dofa_arg;

fm = kmemalloc(i + 1, KM SLEEP);

bcopy(&str[desc->dofa_arg], fnt, i + 1);

arg = (uint64_t)(uintptr_t)fnt;

} else {

if (kind == DTRACEACT_PRI NTA)
ASSERT(desc->dof a_strtab == DOF_SECI DX_NONE) ;
arg = O;

arg = desc->dofa_arg;

act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
desc->dofa_uarg, arg);

if (last !'= NULL)

| ast - >dt ad_next = act;
} else {

first = act;
}

last = act;

if (desc->dofa_difo == DOF_SECI DX_NONE)
cont i nue;

if ((difosec = dtrace_dof_sect (dof,
DOF_SECT_DI FOHDR, desc->dofa_difo)) == NULL)
goto err;

act->dtad_difo = dtrace_dof _di fo(dof, difosec, vstate, cr);

if (act->dtad_difo == NULL)
goto err;

}

ASSERT(first !'= NULL);
return (first);

for (act = first; act != NULL; act = next) {
next = act->dtad_next;
dtrace_actdesc_rel ease(act, vstate);

}
return (NULL);

new usr/src/uts/comon/ dtrace/ dtrace. c 180

12141 static dtrace_ecbdesc_t *
12142 dtrace_dof _ecbdesc(dof _hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,

12143
12144 {
12145
12146
12147
12148

12150
12151
12152
12153

12155
12156
12157
12158

12160
12161

12163
12164

12166
12167
12168

12170
12171

12173
12174
12175
12176

12178
12179

12181
12182

12184
12185
12186
12187

12189
12191
12192
12193

12195

12197 err:

12198
12199
12200
12201
12202 }

12204 /| *

12205 * Apply the relocations fromthe specified

cred_t *cr)

dtrace_echdesc_t *ep;

dof _ecbdesc_t *ecb;
dtrace_probedesc_t *desc;
dtrace_predicate_t *pred = NULL;

if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
dtrace_dof _error(dof, "truncated ECB description");
return (NULL);

}
if (sec->dofs_align != sizeof (uint64_t)) {
dtrace_dof _error(dof, "bad alignment in ECB description");
return (NULL);
}
ecb = (dof _echdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
sec = dtrace_dof _sect (dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);

if (sec == NULL)
return (NULL);

ep = kmem zal | oc(si zeof (dtrace_ecbdesc_t), KM SLEEP);
ep->dt ed_uarg = ecbh->dof e_uarg;
desc = &ep->dted_probe;

if (dtrace_dof _probedesc(dof, sec, desc) == NULL)
goto err;

if (ecb->dofe_pred != DOF_SECI DX_NONE) {
if ((sec = dtrace_dof _sect (dof,
DOF_SECT_DI FOHDR, ech->dof e_pred)) == NULL)
goto err;

if ((pred = dtrace_dof _predi cate(dof, sec, vstate, cr)) == NULL)
goto err;

ep- >dt ed_pr ed. dt pdd_predi cate = pred;
}

if (ecb->dofe_actions != DOF_SECI DX _NONE) {
if ((sec = dtrace_dof _sect (dof,
DOF_SECT_ACTDESC, ech->dof e_actions)) == NULL)
goto err;

ep->dted_action = dtrace_dof _actdesc(dof, sec, vstate, cr);

if (ep->dted_action == NULL)
goto err;

}

return (ep);

if (pred !'= NULL)

dtrace_predicate_rel ease(pred, vstate);
kmem free(ep, sizeof (dtrace_echdesc_t));
return (NULL);

sec’ (a DOF_SECT_URELHDR) to the

new usr/src/uts/comon/ dtrace/ dtrace. c 181

12206
12207
12208
12209

*
*
*

*/

specified DOF. At present,
site of any user SETX relocations to account for |oad object base address.
In the future,

this anmounts to sinply adding 'ubase’ to the

if we need other relocations, this function can be extended.

12210 static int

12211 dtrace_dof _rel ocat e(dof _hdr_t *dof,

12212 {
12213
12214
12215
12216
12217
12218

12220
12221
12222
12223
12224

12226
12227
12228

12230
12231

12233
12234
12235
12236
12237

12239
12240

12242
12243

12245
12246
12247
12248
12249
12250
12251
12252
12253

12255
12256
12257
12258

12260
12261
12262
12263
12264
12265

12267
12268

12270
12271 }

dof _sec_t *sec, uint64_t ubase)

uintptr_t daddr

dof _rel ohdr _t *do
(dof _rel ohdr _t *)(U| ntptr_t)(daddr + sec->dofs_offset);

dof _sec_t *ss, *rs, *ts;

dof _r el odesc t *r;

uint_t i, n;

(Luntptr _t)dof;

if (sec->dofs_size < sizeof (dof_relohdr_t) ||
sec->dofs_align != sizeof (dof_secidx_t)) {
dtrace_dof _error(dof, "invalid relocation header");
return (-1);

}

ss = dtrace_dof _sect (dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
rs = dtrace_dof _sect (dof, DOF_SECT RELTAB, dofr->dofr _relsec);
ts = dtrace_dof _sect (dof, DOF_SECT_NONE, dof r->dof r _tgtsec);

if (ss == NULL || rs == NULL || ts == NULL)
return (-1); /* dtrace_dof error() has been called al ready */

if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
rs->dofs_align ! = sizeof (ul nt64_t))
dtrace_dof _error(dof, "invalid relocation section");
return (-1);

}
r = (dof rel odesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
n = rs->dofs_size / rs->dofs_entsize;
for (i =0; i <n; i++)
uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
switch (r->dofr_type) {
case DOF_RELO_NONE:
br eak;
case DOF RELO SETX:
if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
sizeof (uint64_t) > ts->dofs_size)
dtrace_dof _error(dof, "bad relocation offset");
return (-1);
}
if (!'I'S_P2ALI GNED(taddr, sizeof (uint64_t))) {
dtrace_dof _error(dof, "m saligned setx relo");
return (-1);
}
*(uint64_t *)taddr += ubase;
br eak;
defaul t:
dtrace_dof _error(dof, "invalid relocation type");
return (-1);
}
= (dof _relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
}
return (0);

new usr/src/uts/comon/dtrace/ dtrace.c 182
12273 /| *

12274 * The dof _hdr_t passed to dtrace_dof _slurp() should be a partially validated
12275 * header: it should be at the front of a menory region that is at |east
12276 * sizeof (dof_hdr_t) in size -- and then at |east dof_hdr.dofh_|l oadsz in
12277 * si It need not be validated in any other way.

12278 */

12279 static int

12280 dtrace_dof _sl urp(dof _hdr _t *dof, dtrace_vstate_t *vstate, cred_t *cr,

12281 dtrace_enabl ing_t **enabp, uint64_t ubase, int noprobes)

12282 {

12283 uint64_t |en = dof->dof h_l oadsz, seclen;

12284 uintptr_t daddr = (uintptr_t)dof;

12285 dtrace_echdesc_t *ep;

12286 dtrace_enabling_t *enab;

12287 uint_ti;

12289 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

12290 ASSERT(dof - >dof h_| oadsz >= si zeof (dof _hdr_t));

12292 /*

12293 * Check the DOF header identification bytes. |In addition to checking
12294 * valid settings, we also verify that unused bits/bytes are zeroed so
12295 * we can use themlater without fear of regressing existing binaries.
12296 *

12297 if (bcnp(&dof->dof h_i dent[DOF_I D_MAQD] ,

12298 DOF_MAG _STRI NG DOF_MAG STRLEN) 1= 0)

12299 “dtrace_dof _error(dof, "DOF magic string nismatch");

12300 return (-1);

12301 }

12303 if (dof->dofh_ident[DOF_| D MODEL] != DOF_MODEL_|LP32 &&

12304 dof - >dof h_i dent [DOF_I| D_MODEL] != DOF_MODEL_LP64)

12305 dtrace_dof error(dof, "DOF has invalid data nodel");

12306 return (-1);

12307 }

12309 if (dof->dofh_ident[DOF_| D_ENCODI NG != DOF_ENCCODE_NATI VE) {

12310 dtrace_dof _error(dof, "DOF encoding m smatch");

12311 return (-1);

12312 }

12314 if (dof->dofh_ident[DOF_|D VERSION] != DOF_VERSION 1 &&

12315 dof - >dof h_i dent [DOF_| D_VERSI ON] ! = DOF_VERSI ON 2) {

12316 dtrace_dof _error(dof, "DOF version m smatch");

12317 return (-1);

12318 }

12320 if (dof->dof h_ident[DOF_| D_ DI FVERS] != Di F_VERSI ON 2) {

12321 dtrace_dof _error(dof, "DOF uses unsupported instruction set");
12322 return (-1);

12323 }

12325 if (dof->dofh_ident[DOF_I D_DI FIREG > DI F_DI R NREGS) {

12326 dtrace_dof _error(dof, "DOF uses too many integer registers");
12327 return (-1);

12328 }

12330 if (dof->dofh_ident[DOF_| D DI FTREG > DI F_DTR_NREGS)

12331 dtrace_dof _error(dof, "DOF uses too many tuple registers");
12332 return (-1);

12333 }

12335 for (i = DOF_ID PAD;, i < DOF_ID SIZE; i++) {

12336 if (dof->dofh_ident[i] T= 0) {

12337 dtrace_dof _error(dof, "DOF has invalid ident byte set");

new usr/src/uts/comon/ dtrace/ dtrace. c

12338
12339
12340

12342
12343
12344
12345

12347
12348
12349
12350

12352
12353
12354
12355
12356
12357

12359
12360
12361
12362
12363

12365
12366
12367
12368

12370
12371
12372
12373

12375
12376
12377
12378
12379
12380
12381
12382

12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394

12396
12397
12398
12399
12400
12401

12403

return (-1);

}

if (dof->dofh_flags & ~DOF_FL_VALI D)
dtrace_dof _error(dof, "DOF has invalid flag bits set");
return (-1);

}

if (dof->dofh_secsize == 0)
dtrace_dof _error(dof, "zero section header size");
return (-1);

}

/*

* Check that the section headers don't exceed the anount of DOF

* data. Note that we cast the section size and nunber of sections
* to uint64_t’'s to prevent possible overflowin the multiplication.
*/

secl en = (uint64_t)dof->dof h_secnum * (uint64_t)dof->dof h_secsi ze;

if (dof->dofh_secoff > 1len || seclen > len ||
dof - >dof h_secof f + seclen > | en)
dtrace_dof _error(dof, "truncated section headers");
return (-1);

}

if (!IS_P2ALI GNED(dof - >dof h_secof f, sizeof (uint64_t)))
dtrace_dof _error(dof, "misaligned section headers");
return (-1);

}

if (!IS_P2ALI GNED(dof - >dof h_secsi ze, sizeof (uint64_t))) {
dtrace_dof _error(dof, "misaligned section size");
return (-1);

}

/*
* Take an initial pass through the section headers to be sure that
* the headers don’t have stray offsets. |If the 'noprobes’ flag is

* set, do not permit sections relating to providers, probes, or args.

*/
for (i = 0; i < dof->dofh_secnum i++)
dof _sec_t *sec = (dof _sec_t *)(daddr +
(uintptr_t)dof->dof h_secoff + i * dof->dof h_secsize);

if (noprobes) {
switch (sec->dofs_type) {
case DOF_SECT_PROVI DER
case DOF_SECT_PROBES:
case DOF_SECT_PRARGS:
case DOF_SECT_PROFFS:
dtrace_dof _error(dof, "illegal sections "
"for enabling");
return (-1);

}

i f (DOF_SEC | SLOADABLE(sec->dofs_type) &&
| (sec->dofs_flags & DOF_SECF_LOAD))
dtrace_dof _error(dof, "loadable section with |oad "
"flag unset");
return (-1);

}
if (!(sec->dofs_flags & DOF_SECF_LQAD))

183

new usr/src/uts/comon/ dtrace/ dtrace. c

12404

12406
12407
12408
12409

12411
12412
12413
12414

12416
12417
12418
12419
12420

12422
12423
12424
12425
12426
12427

12429
12430
12431
12432
12433
12434
12435
12436

12438
12439

12441
12442
12443
12444
12445
12446
12447

12449
12450

12452
12453
12454

12456
12457

12459
12460
12461
12462
12463

12465
12466

12468
12469 }

continue; /* just ignore non-loadable sections */

if (sec->dofs_align & (sec->dofs_align - 1)) {
dtrace_dof _error(dof, "bad section alignment");
return (-1);

}

if (sec->dofs_offset & (sec->dofs_align - 1)) {
dtrace_dof _error(dof, "m saligned section");
return (-1);

}
if (sec->dofs_offset > len || sec->dofs_size > len ||
sec->dof s_of fset + sec->dofs_size > len) {
dtrace_dof _error(dof, "corrupt section header");
return (-1);
}
if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
sec->dof s_of fset + sec->dofs_size - 1) !="\0
dtrace_dof _error(dof, "non-terminating string table");
return (-1);
}
}
/*

* Take a second pass through the sections and | ocate and perform any
* relocations that are present. W do this after the first pass to
* be sure that all sections have had their headers validated.

*/

for (i = 0; i < dof->dofh_secnum i++)
dof _sec_t *sec = (dof _sec_t *)(daddr +
(uintptr_t)dof->dof h_secoff + i * dof->dofh_secsize);

if (!(sec->dofs_flags & DOF_SECF_LQAD))
continue; /* skip sections that are not |oadable */

switch (sec->dofs_type) {

case DOF_SECT_URELHDR:

if (dtrace_dof _rel ocate(dof, sec, ubase) != 0)
return (-1);

br eak;

}

if ((enab = *enabp) == NULL)
enab = *enabp = dtrace_enabling_create(vstate);
for (i =0; i < dof->dofh_secnum i++) {
dof _sec_t *sec = (dof_sec_t *)(daddr +
(uintptr_t)dof->dof h_secoff + i * dof->dof h_secsize);

if (sec->dofs_type != DOF_SECT_ECBDESC)

continue;
if ((ep = dtrace_dof _ecbhdesc(dof, sec, vstate, cr)) == NULL) {
dtrace_enabl i ng_destroy(enab);

*enabp = NULL;
return (-1);

}
) dtrace_enabl i ng_add(enab, ep);
return (0);

new usr/src/uts/comon/dtrace/ dtrace. c 185
12471 /| *

12472 * Process DOF for any options. This routine assunmes that the DOF has been
12473 * at |east processed by dtrace_dof _slurp().

12474 */

12475 static int

12476 dtrace_dof _options(dof_hdr_t *dof, dtrace_state_t *state)

12477 {

12478 int i, rval;

12479 ui nt 32_t entsi ze;

12480 size_t offs;

12481 dof _optdesc_t *desc;

12483 for (i = 0; i < dof->dofh_secnum i++) {

12484 dof _sec_t *sec = (dof _sec_t *)((uintptr_t)dof +

12485 (uintptr_t)dof->dof h_secoff + i * dof->dof h_secsize);
12487 if (sec->dofs_type != DOF_SECT_OPTDESC)

12488 cont i nue;

12490 if (sec->dofs_align != sizeof (uinté64_t)) {

12491 dtrace_dof _error(dof, "bad alignment in "

12492 "option description");

12493 return (EINVAL);

12494 }

12496 if ((entsize = sec->dofs_entsize) == 0) {

12497 dtrace_dof _error(dof, "zeroed option entry size");
12498 return (EINVAL);

12499 }

12501 if (entsize < sizeof (dof_optdesc_t)) {

12502 dtrace_dof _error(dof, "bad option entry size");
12503 return (EINVAL);

12504 }

12506 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12507 desc = (dof _optdesc_t *)((uintptr_t)dof +

12508 (uintptr_t)sec->dofs_offset + offs);

12510 if (desc->dofo_strtab != DOF_SECI DX_NONE) {
12511 dtrace_dof _error(dof, "non-zero option string");
12512 return (ElINVAL);

12513 }

12515 if (desc->dof o_val ue == DTRACEOPT_UNSET) {

12516 dtrace_dof _error(dof, "unset option");
12517 return (ElINVAL);

12518 }

12520 if ((rval = dtrace_state_option(state,

12521 desc- >dof o_opti on, desc->dofo_value)) != 0)
12522 dtrace_dof _error(dof, "rejected option");
12523 return (rval);

12524 }

12525 }

12526 }

12528 return (0);

12529 }

12531 /*

12532 * DIrace Consumer State Functions

12533 */

12534 int

12535 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)

new usr/src/uts/comon/dtrace/ dtrace.c 186
12536 {

12537 si ze_t hashsi ze, maxper, nmin, chunksize = dstate->dtds_chunksi ze;
12538 voi d *base;

12539 uintptr_t limt;

12540 dtrace_dynvar_t *dvar, *next, *start;

12541 int i;

12543 ASSERT(MUTEX_HELD(&t r ace_l ock)) ;

12544 ASSERT(dst at e- >dt ds_base == NULL && dstate->dtds_percpu == NULL);
12546 bzero(dstate, sizeof (dtrace_dstate_t));

12548 if ((dstate->dtds_chunksize = chunksize) == 0)

12549 dst at e- >dt ds_chunksi ze = DTRACE_DYNVAR_CHUNKSI ZE;

12551 if (size < (mn = dstate->dtds_chunksi ze + sizeof (dtrace_dynhash_t)))
12552 size = mn;

12554 if ((base = kmem zal | oc(size, KM NOSLEEP | KM NORVALPRI)) == NULL)
12555 return (ENOVEM ;

12557 dst at e- >dt ds_si ze = si ze;

12558 dst at e- >dt ds_base = base;

12559 dst at e- >dt ds_percpu = knem cache_al | oc(dtrace_st ate_cache, KM SLEEP);
12560 bzero(dst at e- >dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12562 hashsi ze = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12564 if (hashsize !'= 1 & (hashsize & 1))

12565 hashsi ze- -;

12567 dst at e- >dt ds_hashsi ze = hashsi ze;

12568 dst at e- >dt ds_hash = dst at e- >dt ds_base;

12570 /*

12571 * Set all of our hash buckets to point to the single sink, and (if
12572 * it hasn't already been set), set the sink’s hash value to be the
12573 * sink sentinel value. The sink is needed for dynamic variable
12574 * | ookups to know that they have iterated over an entire, valid hash
12575 * chain.

12576 *

12577 for (i = 0; i < hashsize; i++)

12578 dst at e->dt ds_hash[i]. dtdh_chai n = &dtrace_dynhash_si nk;

12580 if (dtrace_dynhash_sink. dtdv_hashval != DTRACE DYNHASH SI NK)

12581 dtrace_dynhash_si nk. dt dv_hashval = DTRACE_DYNHASH_SI NK;

12583 /*

12584 * Determ ne nunber of active CPUs. Divide free |list evenly anbng
12585 * active CPUs.

12586 */

12587 start = (dtrace_dynvar_t *)

12588 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));

12589 limt = (uintptr_t)base + size;

12591 maxper = (limt - (uintptr_t)start) / NCPY;

12592 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksi ze;
12594 for (i =0; i < NCPU; i++)

12595 dstate->dtds_percpu[i].dtdsc_free = dvar = start;

12597 /*

12598 * |f we don't even have enough chunks to make it once through
12599 * NCPUs, we’'re just going to allocate everything to the first
12600 * CPU. And if we're on the last CPU, we're going to allocate
12601 * whatever is left over. |In either case, we set the limt to

new usr/src/uts/comon/dtrace/ dtrace. c 187 new usr/src/uts/comon/dtrace/ dtrace.c 188
12602 * be the limt of the dynami c variabl e space. 12668 }
12603 */
12604 if (maxper == 0 || i == NCPU - 1) { 12670 static void
12605 limt = (uintptr_t)base + size; 12671 dtrace_state_clean(dtrace_state_t *state)
12606 start = NULL; 12672 {
12607 } else { 12673 if (state->dts_activity == DTRACE_ACTI VI TY_I NACTI VE)
12608 limt = (uintptr_t)start + maxper; 12674 return;
12609 start = (dtrace_dynvar_t *)limt;
12610 } 12676 dtrace_dynvar_cl ean(&st ate->dts_vstate. dtvs_dynvars);
12677 dtrace_specul ati on_cl ean(state);
12612 ASSERT(limt <= (uintptr_t)base + size); 12678 }
12614 for (;;) { 12680 static void
12615 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 12681 dtrace_state_deadman(dtrace_state_t *state)
12616 dst at e- >dt ds_chunksi ze) ; 12682 {
12683 hrti ne_t now,
12618 if ((uintptr_t)next + dstate->dtds_chunksize >= limt)
12619 br eak; 12685 dtrace_sync();
12621 dvar - >dt dv_next = next; 12687 now = dtrace_gethrtime();
12622 dvar = next;
12623 } 12689 if (state != dtrace_anon.dta_state &&
12690 now - state->dts_| aststatus >= dtrace_deadman_user)
12625 if (maxper == 0) 12691 return;
12626 br eak;
12627 } 12693 /*
12694 * W nust be sure that dts_alive never appears to be |less than the
12629 return (0); 12695 * val ue upon entry to dtrace_state_deadman(), and because we |ack a
12630 } 12696 * dtrace_cas64(), we cannot store to it atomically. W thus instead
12697 * store INT64_MAX to it, followed by a menory barrier, followed by
12632 void 12698 * the new value. This assures that dts_alive never appears to be
12633 dtrace_dstate_fini(dtrace_dstate_t *dstate) 12699 * |ess than its true value, regardl ess of the order in which the
12634 { 12700 * stores to the underlying storage are issued.
12635 ASSERT(MUTEX_HELD(& pu_| ock)) ; 12701 */
12702 state->dts_alive = | NT64_NAX;
12637 if (dstate->dtds_base == NULL) 12703 dtrace_nenbar _producer ();
12638 return; 12704 state->dts_alive = now,
12705 }
12640 kmem f ree(dst at e- >dt ds_base, dst ate->dtds_si ze);
12641 kmem cache_free(dtrace_state_cache, dstate->dtds_percpu); 12707 dtrace_state_t *
12642 } 12708 dtrace_state_create(dev_t *devp, cred_t *cr)
12709 {
12644 static void 12710 m nor _t mnor;
12645 dtrace_vstate_fini (dtrace_vstate_t *vstate) 12711 maj or _t maj or;
12646 { 12712 char ¢c[30];
12647 /* 12713 dtrace_state_t *state;
12648 * Logi cal XOR, where are you? 12714 dtrace_optval _t *opt;
12649 */ 12715 int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12650 ASSERT((vst at e->dtvs_ngl obal s == 0) ~ (vstate->dtvs_globals !'= NULL));
12717 ASSERT(MUTEX_HELD(&t r ace_| ock)) ;
12652 if (vstate->dtvs_nglobals > 0) { 12718 ASSERT(MUTEX_HELD(& pu_| ock)) ;
12653 kmem free(vstate->dtvs_gl obal s, vstate->dtvs_ngl obal s *
12654 sizeof (dtrace_statvar_t *)); 12720 mnor = (mnor_t)(uintptr_t)vmemalloc(dtrace_minor, 1,
12655 } 12721 VM BESTFI T | VM SLEEP);
12657 if (vstate->dtvs_ntlocals > 0) { 12723 if (ddi_soft_state_zalloc(dtrace_softstate, mnor) != DDl _SUCCESS) {
12658 kmem free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 12724 veem free(dtrace_mnor, (void *)(uintptr_t)mnor, 1);
12659 sizeof (dtrace_difv_t)); 12725 return (NULL);
12660 } 12726 }
12662 ASSERT((vstate->dtvs_nlocals == 0) " (vstate->dtvs_locals != NULL)); 12728 state = ddi _get_soft_state(dtrace_softstate, mnor);
12729 state->dts_epi d = DTRACE_EPI DNONE + 1;
12664 if (vstate->dtvs_nlocals > 0)
12665 kmem free(vstate->dtvs_| ocal s, vstate->dtvs_nlocals * 12731 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", mnor);
12666 sizeof (dtrace_statvar_t *)); 12732 state->dts_aggi d_arena = vhemcreate(c, (void *)1, U NT32_MAX, 1,
12667 } 12733 NULL, NULL, NULL, 0, VM SLEEP | VMC_IDENTIFI ER);

new usr/src/uts/comon/ dtrace/ dtrace. c 189

12735
12736
12737
12738
12739

12741

12743
12744

12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756

12758
12759

12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778

12780

12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799

if (devp !'= NULL) {

maj or = get emsj or (*devp) ;
} else {

mej or = ddi _driver_major(dtrace_devi);
}

state->dts_dev = nmkedevi ce(ngjor, mnor);

if (devp !'= NULL)
*devp = state->dts_dev;

/*

* W allocate NCPU buffers. On the one hand, this can be quite

* a bit of nenory per instance (nearly 36K on a Starcat). On the
* other hand, it saves an additional nmenory reference in the probe
*

*/path

state->dts_buffer = knmem zal | oc(bufsize, KM SLEEP);

st at e- >dt s_aggbuffer = kmem zal | oc(buf si ze, KM SLEEP);

st at e->dts_cl eaner = CYCLI C_NONE;

st at e- >dt s_deadman = CYCLI C_NONE;

state->dts_vstate.dtvs_state = state;

(i = 0; i < DTRACEOPT_MAX; i ++)
state->dts_options[i] = DTRACEOPT_UNSET;

| *

* Set the default options.
*/

opt = state->dts_options;

opt [DTRACEOPT_BUFPQOLI CY] = DTRACEOPT_BUFPOLI CY_SW TCH;

opt [DTRACECPT_ BUFRESIZE = DTRACEOPT_BUFRESI ZE_AUTO,

opt [DTRACEOPT_NSPEC] = dtrace_nspec_default;

opt [DTRACEOPT_SPECSI ZE] = dtrace_specsi ze_def aul t;

opt [DTRACEOPT_CPU] = (dtrace opt val _t) DTRACE_CPUALL;

opt [DTRACEOPT_STRSI ZE] = dtrace strsize_defaul t;

opt [DTRACEOPT_STACKFRAMES] = dtrace_st ackframas_def aul t;
opt DTRACECPT_USTACKFRAI\/ES] = dtrace_ust ackfranes_defaul t;
opt [DTRACECPT CLEANRATE] = dtrace_cl eanrate_defaul t;

opt [DTRACEOPT_AGGRATE] = dtrace aggrate defaul t;

opt [DTRACECPT_SW TCHRATE] = dtrace_swi tchrat e_def aul t;

opt [DTRACEOPT_STATUSRATE] = dtrace statusrate_defaul t;

opt [DTRACEOPT_JSTACKFRAMES] dtraceJ st ackf rames_def ault
opt [DTRACEOPT_JSTACKSTRSI ZE] = dtrace_j st ackstrsi ze_def aul t;

state->dts_activity = DTRACE_ACTI VI TY_I NACTI VE;

/
Dependi ng on the user credentials, we set flag bits which alter probe
visibility or the amount of destructiveness allowed. |In the case of

actual anonynous tracing, or the possession of all privileges, all of
the normal checks are bypassed.

if (cr == NULL || PRIV_PCLICY_ONLY(cr, PRIV_ALL, B FALSE)) {
state->dts_cred. dcr_visible = DTRACE_CRV_AL
state->dts_cred. dcr_action = DTRACE_CRA_ALL

} else {/

* Ok %k F %

*

* Set up the credentials for this instantiation. W take a
* hold on the credential to prevent it from di sappearing on
* us; this in turn prevents the zone_t referenced by this

* credential fromdisappearing. This neans that we can

* exami ne the credential and the zone from probe context.

*

/

cr

hol d(cr);

new usr/src/uts/comon/ dtrace/ dtrace. c 190

12800

12802
12803
12804
12805
12806
12807
12808
12809

12811
12812
12813
12814
12815
12816
12817
12818
12819
12820

12822
12823
12824

12826
12827
12828

12830
12831
12832

12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844

12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859

12861
12862
12863
12864
12865

state->dts_cred.dcr_cred = cr;

/*

* CRA_PROC neans "we have *sonme* privilege for dtrace" and
* unl ocks the use of variables |ike pid, zonenane, etc.

S

if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
PRI V_POLI CY_ONLY(cr, PRIV_DTRACE_PROC, B FALSE)) {
state->dts_cred. dcr_action | = DTRACE_CRA PRCC;

}

/*
* dtrace_user allows use of syscall and profile providers.
* |f the user also has proc_owner and/or proc_zone, we
* extend the scope to include additional visibility and
* destructive power.
*
if (PRIV_POLICY ONLY(cr, PRIV _DTRACE USER, B FALSE)) {
if (PRIV_POLICY ONLY(cr, PRIV PROC OMER, B FALSE)) {
state->dts_cred. dcr_visible | =
DTRACE_CRV_ALLPRCC;

state->dts_cred.dcr_action | =
DTRACE_CRA_PROC_DESTRUCTI VE_ALLUSER;
}

if (PRIV_POLICY ONLY(cr, PRIV_PROC ZONE, B FALSE)) {
state->dts_cred.dcr_visible | =
DTRACE_CRV_ALLZONE;

state->dts_cred.dcr_action | =
DTRACE_CRA_PROC_DESTRUCTI VE_ALLZONE;

*

* If we have all privs in whatever zone this is,
* we can do destructive things to processes which
* have altered credentials.

*/

}
/

if (priv_isequal set(priv_getset(cr, PR V_EFFECTIVE),
cr->cr_zone->zone_privset))
state->dts_cred. dcr_action |=
DTRACE_CRA PROC_DESTRUCTI VE_CREDCHG,

= oo

—h ok % ok ok F
-~

Hol di ng the dtrace_kernel privilege also inplies that
the user has the dtrace_user privilege froma visibility
perspective. But w thout further privileges, sone
destructive actions are not avail abl e.
if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
/*
* Make all probes in all zones visible. However,
* this doesn't nean that all actions become avail abl e
* to all zones.
*/
state->dts_cred. dcr_visi bl e | = DTRACE_CRV_KERNEL |
DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;

state->dts_cred. dcr_action | = DTRACE_CRA KERNEL |
DTRACE_CRA_PRCC;

/'k

* Hol di ng proc_owner neans that destructive actions

* for *this* zone are allowed.

new usr/src/uts/comon/ dtrace/ dtrace. c 191

12866 *

12867 if (PRIV_POLICY ONLY(cr, PRIV_PROC OMNER, B FALSE))
12868 state->dts_cred. dcr_action | =

12869 DTRACE_CRA_PROC_DESTRUCTI VE_ALLUSER,
12871 /*

12872 * Hol di ng proc_zone neans that destructive actions
12873 * for this user/group IDin all zones is allowed.
12874 *

12875 if (PRIV_POLICY ONLY(cr, PRIV_PROC ZONE, B FALSE))
12876 state->dts_cred.dcr_action | =

12877 DTRACE_CRA_PROC_DESTRUCTI VE_ALLZONE;
12879 /*

12880 * If we have all privs in whatever zone this is,
12881 * we can do destructive things to processes which
12882 * have altered credentials.

12883 */

12884 if (priv_isequal set(priv_getset(cr, PR V_EFFECTIVE),
12885 cr->cr_zone->zone_privset)) {

12886 state->dts_cred. dcr_action | =

12887 DTRACE_CRA PROC_DESTRUCTI VE_CREDCHG,
12888 }

12889 }

12891 /*

12892 * Hol ding the dtrace_proc privilege gives control over fasttrap
12893 * and pid providers. W need to grant w der destructive
12894 * privileges in the event that the user has proc_owner and/or
12895 * proc_zone.

12896 */

12897 if (PRIV_POLICY ONLY(cr, PRIV _DTRACE PROC, B FALSE)) {
12898 if (PRIV_PCLICY_ONLY(cr, PRIV_PROC OMNER, B_FALSE))
12899 state->dts_cred. dcr_action | =

12900 DTRACE_CRA PROC_DESTRUCTI VE_ALLUSER;
12902 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12903 state->dts_cred. dcr_action | =

12904 DTRACE_CRA PROC_DESTRUCTI VE_ALLZONE;
12905 }

12906 }

12908 return (state);

12909

12911 static int

12912 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
12913 {

12914 dtrace_optval _t *opt = state->dts_options, size;

12915 processorid_t cpu;

12916 int flags = 0, rval, factor, divisor = 1;

12918 ASSERT(MUTEX_HELD(&t r ace_| ock)) ;

12919 ASSERT(MUTEX_HELD(&pu_| ock)) ;

12920 ASSERT(whi ch < DTRACEOPT_MAX) ;

12921 ASSERT(state->dts_activity == DTRACE_ACTI VI TY_I NACTI VE | |

12922 (state == dtrace_anon.dta_state &&

12923 state->dts_activity == DITRACE_ACTI VI TY_ACTI VE)) ;

12925 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)

12926 return (0);

12928 if (opt[DTRACECPT_CPU] != DTRACEOPT_UNSET)

12929 cpu = opt [DTRACEOPT_CPU] ;

12931 i f (which == DTRACEOPT_SPECSI ZE)

new usr/src/uts/comon/ dtrace/ dtrace. c

12932 flags | = DTRACEBUF_NOSW TCH;

12934 i f (which == DTRACEOPT_BUFSI ZE)

12935 i f (opt[DTRACEOPT_BUFPOLI CY] == DTRACEOPT_BUFPOLI CY_RI NGO
12936 flags | = DTRACEBUF_RI NG

12938 i f (opt[DTRACEOPT_BUFPOLI CY] == DTRACEOPT_BUFPQLI CY_FI LL)
12939 flags | = DTRACEBUF_FI LL;

12941 if (state != dtrace_anon.dta_state ||

12942 state->dts activity ! = DIRACE_ACTI VI TY_ACTI VE)

12943 flags | = DTRACEBUF_I NACTI VE;

12944 }

12946 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
12947 /*

12948 * The size nust be 8-byte aligned. |f the size is not 8-byte
12949 * aligned, drop it down by the difference.

12950 */

12951 if (size & (sizeof (uint64_t) - 1))

12952 size -= size & (sizeof (uint64_t) - 1);

12954 if (size < state->dts_reserve) {

12955 /*

12956 * Buffers always nust be |arge enough to acconmpdate
12957 * their prereserved space. W return E2BIG instead
12958 * of ENOVEMin this case to allow for user-Ievel
12959 * software to differentiate the cases.

12960 *

12961 return (E2BI G;

12962 }

12964 rval = dtrace_buffer_alloc(buf, size, flags, cpu, & actor);
12966 if (rval !'= ENOVEM

12967 opt [whi ch] = si ze;

12968 return (rval);

12969 }

12971 i f (opt[DTRACEOPT BUFRESI ZE] == DTRACEOPT BUFRESI ZE_MANUAL)
12972 return (rval);

12974 for (divisor = 2; divisor < factor; divisor <<= 1)

12975 cont i nue;

12976 }

12978 return (ENOVEM ;

12979

12981 static int

12982 dtrace_state_buffers(dtrace_state_t *state)

12983 {

12984 dtrace_specul ation_t *spec = state->dts_specul ati ons;

12985 int rval, i;

12987 if ((rval = dtrace_state_buffer(state, state->dts_buffer,

12988 DTRACEOPT BUFSIZE)) T= 0)

12989 return (rval);

12991 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,

12992 DTRACEOPT AGGSI ZE)) T'= 0)

12993 return (rval);

12995 for (i = 0; i < state->dts_nspecul ations; i++) {

12996 if ((rval = dtrace_state_buffer(state,

12997 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)

new usr/src/uts/comon/ dtrace/ dtrace. c 193

12998
12999

13001
13002

return (rval);

}

return (0);

13004 static void

13005 dtrace_state_prereserve(dtrace_state_t *state)

13006 {

13007 dtrace_ecb_t *ecb;

13008 dtrace_probe_t *probe;

13010 state->dts_reserve = 0;

13012 if (state->dts_options[DTRACEOPT BUFPOLI CY] != DTRACEOPT BUFPOLICY FILL)
13013 return;

13015 /*

13016 * If our buffer policy is a "fill" buffer policy, we need to set the
13017 * prereserved space to be the space required by the END probes.
13018 */

13019 probe = dtrace_probes[dtrace_probeid_end - 1];

13020 ASSERT(probe !'= NULL);

13022 (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ech->dte_next) {
13023 if (ech->dte_state != state)

13024 conti nue;

13026 state->dts_reserve += ecb->dte_needed + ecb->dte_alignnent;
13027 }

13028

13030 static int

13031 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)

13032 {

13033 dtrace_optval _t *opt = state->dts_options, sz, nspec;

13034 dtrace_specul ati on_t *spec;

13035 dtrace_buffer_t *buf;

13036 cyc_handl er_t hdlr;

13037 cyc_time_t when;

13038 int rval =0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13039 dtrace_i cooki e_t cooki e;

13041 mut ex_ent er (&cpu_| ock) ;

13042 mut ex_ent er (&t race_| ock);

13044 if (state->dts_activity != DTRACE_ACTI VI TY_I NACTI VE) {

13045 rval = EBUSY;

13046 goto out;

13047 }

13049 /*

13050 * Before we can performany checks, we nust prime all of the
13051 * retained enablings that correspond to this state.

13052 */

13053 dtrace_enabl i ng_prinme(state);

13055 if (state->dts_destructive & !state->dts_cred. dcr_destructive) {
13056 rval = EACCES;

13057 goto out;

13058 }

13060 dtrace_state_prereserve(state);

13062 /*

13063 * Now we want to do is try to allocate our specul ations.

new usr/src/uts/comon/ dtrace/ dtrace. c

13064
13065
13066
13067
13068

13070
13071
13072
13073

13075
13076

13078
13079
13080
13081

13083
13084

13086
13087
13088
13089
13090
13091

13093
13094

13096
13097
13098
13099
13100

13102
13103
13104
13105

13107
13108
13109

13111
13112
13113
13114
13115
13116
13117

13119

13121
13122
13123
13124
13125
13126
13127
13128
13129

* We do not autonmtically resize the number of specul ations; if
* this fails, we will fail the operation.
*
/
nspec = opt [DTRACEOPT_NSPEC] ;
ASSERT(nspec ! = DTRACECPT UNSET)

if (nspec > INT_MAX) {
rval = ENOVEM
goto out;

}

spec = knmem zal | oc(nspec * sizeof (dtrace_specul ation_t),
KM NOSLEEP | KM _NORMALPRI) ;

if (spec == NULL) {
rval = ENOVEM
goto out;

}

st at e- >dt s_specul ati ons = spec;
stat e- >dts_nspecul ati ons = (i nt)nspec;

for (i = 0; i < nspec; i++)
if ((buf = kmem zal | oc(buf si ze,
KM _NOSLEEP | KM NORVALPRI)) == NULL) {
rval = ENOVEM
goto err;

}

spec[i].dtsp_buffer = buf;
}

if (opt[DTRACEOPT_GRAB | = DTRACEOPT_UNSET) {
if (dtrace_anon.dta_state == NULL) {
rval = ENCENT;
goto out;

}

if (state->dts_necbs != 0) {
rval = EALREADY;
goto out;

}

state->dts_anon = dtrace_anon_grab();
ASSERT(st at e- >dts _anon !'= NULL);
state = state->dts_anon;

/*

* W want "grabanon" to be set in the grabbed state, so we'll
* copy that option value fromthe grabbing state into the

* grabbed state.

*

/
st at e- >dt s_opt i ons[DTRACEOPT_GRABANON] =

opt [DTRACEOPT_GRABANON] ;

*cpu = dtrace_anon. dt a_beganon;

/
If the anonynpus state is active (as it alnost certainly
is if the anonynous enabling ultinmately matched anything),
we don’t allow any further option processing -- but we
don’t return failure.

* Ok ok Ok ¥

*/
if (state->dts_activity != DTRACE_ACTI VI TY_I NACTI VE)
goto out;

new usr/src/uts/comon/dtrace/ dtrace. c 195 new usr/src/uts/comon/dtrace/ dtrace.c 196
13196 i f (opt[DTRACEOPT _BUFRESI ZE] == DTRACEOPT_BUFRESI ZE_NMANUAL)
13131 i f (opt[DTRACEOPT AGGSI ZE] != DTRACEOPT UNSET && 13197 goto err;
13132 opt [DTRACEOPT_AGGSI ZE] != 0) { 13198 } while (sz >>= 1);
13133 if (state->dts_aggregations == NULL) {
13134 /* 13200 opt [DTRACEOPT_DYNVARSI ZE] = sz;
13135 * W're not going to create an aggregation buffer
13136 * because we don't have any ECBs that contain 13202 if (rval 1= 0)
13137 * aggregations -- set this option to O. 13203 goto err;
13138 */
13139 opt [DTRACEOPT_AGGSI ZE] = 0; 13205 if (opt[DTRACEOPT_STATUSRATE] > dtrace st at usr at e_max)
13140 } else { 13206 opt [DTRACEOPT_STATUSRATE] = dtrace_st at usrat e_nax;
13141 *
13142 * |f we have an aggregation buffer, we nust also have 13208 if (opt[DTRACEOPT_CLEANRATE] == 0)
13143 * a buffer to use as scratch. 13209 opt [DTRACEOPT_CLEANRATE] = dtrace_cl eanr at e_max;
13144 */
13145 i f (opt[DTRACEOPT_BUFSI ZE] == DTRACEOPT_UNSET | | 13211 if (opt[DTRACECPT_CLEANRATE] < dtrace_cl eanrate_nin)
13146 opt [DTRACECPT_BUFSI ZE] < state->dts_needed) { 13212 opt [DTRACEOPT_CLEANRATE] = dtrace_cl eanrate_min;
13147 opt [DTRACEOPT_BUFSI ZE] = st at e- >dt s_needed,;
13148 } 13214 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cl eanrat e_nax)
13149) } 13215 opt [DTRACEOPT_CLEANRATE] = dtrace_cl eanr at e_nmax;
13150
13217 hdl r.cyh_func = (cyc_func_t)dtrace_state_cl ean;
13152 i f (opt[DTRACEOPT SPECSI ZE] != DTRACEODT_UNSET && 13218 hdl r.cyh_arg = state;
13153 opt [DTRACEOPT_SPECSI ZE] != 0) 13219 hdl r.cyh_l evel = CY_LOW LEVEL;
13154 if ('state >dt s_specul at es) {
13155 1= 13221 when. cyt _when = 0;
13156 * W're not going to create specul ation buffers 13222 when. cyt _i nterval = opt[DTRACEOPT_CLEANRATE] ;
13157 * because we don’t have any ECBs that actually
13158 */ specul ate -- set the speculation size to 0. 13224 state->dts_cl eaner = cyclic_add(&hdlr, &when);
13159 *
13160 opt [DTRACEOPT_SPECSI ZE] = 0; 13226 hdl r. cyh_func (cyc func_t)dtrace_state_deadman;
13161 } 13227 hdl r.cyh_arg = stat
13162 } 13228 hdlr.cyh_l evel = CY_ LQN LEVEL;
13164 /* 13230 when. cyt _when = 0;
13165 * The bare mi ninum size for any buffer that we’'re actually going to 13231 when. cyt _interval = dtrace_deadman_interval;
13166 * do anything to is sizeof (uint64_t)
13167 */ 13233 state->dts_alive = state->dts_| aststatus = dtrace_gethrtinme();
13168 sz = sizeof (uint64_t); 13234 st at e->dt s_deadman = cyclic_add(&hdlr, &when);
13170 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSI ZE] < sz) || 13236 state->dts_activity = DTRACE_ACTI VI TY_WARMUP;
13171 (state->dts_specul at es & opt [DTRACEOPT_SPECSI ZE] < sz) ||
13172 (state->dts_aggregations != NULL && opt [DTRACEOPT_AGGSI ZE|] < sz)) { 13238 if (state->dts_getf != 0 &&
13173 I * 13239 I (state->dts_cred. dcr_visible & DTRACE_CRV_KERNEL)) {
13174 * A buffer size has been explicitly set to 0 (or to a size 13240 *
13175 * that will be adjusted to 0) and we need the space -- we 13241 * We don’t have kernel privs but we have at |east one call
13176 * need to return failure. W return ENOSPC to differentiate 13242 * to getf(); we need to bunp our zone's count, and (if
13177 * it fromfailing to allocate a buffer due to failure to neet 13243 * this is the first enabling to have an unprivileged call
13178 * the reserve (for which we return E2BI Q). 13244 * to getf()) we need to hook into closef()
13179 */ 13245 */
13180 rval = ENOSPC; 13246 state->dts_cred. dcr _cred->cr_zone- >zone_dtrace_get f ++;
13181 goto out;
13182 } 13248 if (dtrace_getf++ == 0) {
13249 ASSERT(dtrace_cl osef == NULL);
13184 if ((rval = dtrace_state_buffers(state)) != 0) 13250 dtrace_cl osef = dtrace_getf_barrier;
13185 goto err; 13251 }
13252 }
13187 if ((sz = opt[DTRACEOPT_DYNVARSI ZE]) == DTRACEOPT_UNSET)
13188 sz = dtrace_dst at e_def si ze; 13254 #endif /* | codereview */
13255 /*
13190 do { 13256 * Now it's tine to actually fire the BEG N probe. W need to disable
13191 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 13257 * interrupts here both to record the CPU on which we fired the BEG N
13258 * probe (the data fromthis CPU will be processed first at user
13193 if (rval == 0) 13259 * level) and to nanual ly activate the buffer for this CPU.
13194 br eak; 13260 */
13261 cooki e = dtrace_i nterrupt _di sabl e();

new usr/src/uts/comon/ dtrace/ dtrace. c 197

13262 *cpu = CPU >cpu_i d;

13263 ASSERT(st at e- >dts buffer[cpu] . dtb_fl ags & DTRACEBUF_I NACTI VE) ;
13264 state->dts_buffer[*cpu].dtb_flags & ~DTRACEBUF_| NACTI VE;
13266 dtrace_probe(dtrace_probei d_begin,

13267 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);

13268 dtrace_i nt errupt _enabl e(cooki e) ;

13269 /*

13270 * W& may have had an exit action froma BEG N probe; only change our
13271 * state to ACTIVE if we're still in WARMUP.

13272 */

13273 ASSERT(st at e->dts_acti vi ty == DTRACE_ACTI VI TY_WARMUP | |

13274 state->dts_activity == DTRACE_ACTI VI TY_DRAI NI NG ;

13276 if (state->dts_activity == DTRACE_ACTI VI TY_WARMUP)

13277 state->dts_activity = DTRACE_ACTI VI TY_ACTI VE;

13279 /*

13280 * Regardl ess of whether or not now we're in ACTIVE or DRAINI NG we
13281 * want each CPU to transition its principal buffer out of the
13282 * | NACTIVE state. Doing this assures that no CPU will suddenly begl n
13283 * processing an ECB hal fway down a probe’s ECB chain; all CPUs w |
13284 * atomically transition from processing none of a state’s ECBs to
13285 * processing all of them

13286 *

13287 dtrace_xcal | (DTRACE_CPUALL,

13288 (dtrace_xcal | _t)dtrace_buffer_activate, state);

13289 goto out;

13291 err:

13292 dtrace_buffer_free(state->dts_buffer);

13293 dtrace_buffer_free(state->dts_aggbuffer);

13295 if ((nspec = state->dts_nspecul ations) == 0) {

13296 ASSERT(st at e- >dt s_specul ati ons == NULL);

13297 goto out;

13298 }

13300 spec = state->dts_specul ations;

13301 ASSERT(spec ! = NULL)

13303 (i =0; i < state->dts_nspecul ations; i++) {

13304 if ((buf = spec[i].dtsp_buffer) == NULL)

13305 br eak;

13307 dtrace_buffer_free(buf);

13308 kmem free(buf, bufsize);

13309 }

13311 kmem free(spec, nspec * sizeof (dtrace_speculation_t));

13312 state->dts_nspecul ations = 0;

13313 st at e- >dt s_specul ati ons = NULL;

13315 out:

13316 nut ex_exi t (&dtrace_| ock);

13317 mut ex_exi t (&pu_l ock) ;

13319 return (rval);

13320 }

13322 static int

13323 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)

13324 {

13325 dtrace_i cooki e_t cooki e;

13327 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

new usr/src/uts/comon/dtrace/ dtrace.c 198
13329 if (state->dts_activity != DTRACE ACTI VI TY_ACTI VE &&

13330 state->dts_activity != DTRACE_ACTI VI TY_DRAI Nl NG

13331 return (EI NVAL);

13333 /*

13334 * W' || set the activity to DTRACE_ACTI VI TY_DRAINING and issue a sync
13335 * to be sure that every CPU has seen it. See below for the details
13336 * on why this is done.

13337 */

13338 state->dts_activity = DTRACE_ACTI VI TY_DRAI NI NG

13339 dtrace_sync();

13341 /*

13342 * By this point, it is inpossible for any CPU to be still processing
13343 * with DTRACE_ACTI VITY_ACTIVE. W can thus set our activity to
13344 * DTRACE_ACTI VI TY_COOLDOWN and know that we’'re not racing wth any
13345 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
13346 * and callees to know that the activity i s DTRACE_ACTI VI TY_COOLDOMNN
13347 * iff we're in the END probe.

13348 */

13349 state->dts_activity = DTRACE_ACTI VI TY_COOLDOW,

13350 dtrace_sync();

13351 ASSERT(st at e->dts_activity == DTRACE_ACTI VI TY_COOLDOW) ;

13353 /*

13354 * Finally, we can release the reserve and call the END probe. W
13355 * disable interrupts across calling the END probe to allow us to
13356 * return the CPU on which we actually called the END probe. This
13357 * allows user-land to be sure that this CPU s principal buffer is
13358 * processed | ast.

13359 */

13360 state->dts_reserve = 0;

13362 cooki e = dtrace_i nterrupt _disabl e();

13363 *cpu = CPU->cpu_i d;

13364 dtrace_probe(dtrace_probei d_end,

13365 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);

13366 dtrace_i nterrupt _enabl e(cooki e);

13368 state->dts_activity = DTRACE_ACTI VI TY_STOPPED;

13369 dtrace_sync();

13371 if (state->dts_getf != 0 &&

13372 ! (state->dts_cred. dcr_visible & DTRACE_CRV_KERNEL)) {

13373 /*

13374 * We don’t have kernel privs but we have at |east one call
13375 * to getf(); we need to |ower our zone's count, and (if
13376 * this is the last enabling to have an unprivileged call
13377 * to getf()) we need to clear the closef() hook.

13378 */

13379 ASSERT(st at e- >dt s cred dcr cred->cr_zone->zone_dtrace_getf > 0);
13380 ASSERT(dtrace_cl osef == dtrace_getf barrier);

13381 ASSERT(dtrace_getf > 0);

13383 state->dts_cred. dcr _cred->cr_zone->zone_dtrace_getf--;

13385 if (--dtrace_getf ==

13386 dtrace_cl osef = NULL;

13387 }

13389 #endif /*
13390
13391 }

13393 static int

coder evi ew */

return (0);

new usr/src/uts/comon/ dtrace/ dtrace. c 199

13394 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,

13395
13396
13397

13399
13400

13402
13403

13405
13406

13408
13409
13410
13411

13413
13414

13416
13417
13418
13419
13420
13421
13422

13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441

13443

13445
13446

13448
13449

13451
13452
13453
13454
13455
13456
13457

13459

dtrace_optval _t val)

ASSERT(MUTEX_HELD(&t r ace_| ock));

if (state->dts_activity != DTRACE_ACTI VI TY_I NACTI VE)
return (EBUSY);

if (option >= DTRACECPT_MAX)
return (EINVAL);

if (option !'= DTRACEOPT_CPU && val < 0)
return (EI NVAL);

switch (option) {
case DTRACECPT_DESTRUCTI VE:
if (dtrace_destructive_ dl sal | ow)
return (EACCE

state->dts_cred. dcr_destructive = 1;
br eak;

case DTRACECPT_BUFSI ZE
case DTRACEOPT_DYNVARSI ZE
case DTRACEOPT_AGGSI ZE:
case DTRACECPT_SPECSI ZE:
case DTRACECPT_STRSI ZE:
if (val <0)
return (EINVAL);

if (val >= LONG MAX) {
/*

* |f this is an otherw se negative value, set it to
the highest nultiple of 128m | ess than LONG MAX.
Technically, we’'re adjusting the size without
regard to the buffer resizing policy, but in fact,
this has no effect -- if we set the buffer size to
~LONG_MAX and the buffer policy is ultimately set to
be "manual ", the buffer allocation is guaranteed to
fail, if only because the allocation requires two
buffers. (W set the the size to the highest
nmul tiple of 128m because it ensures that the size
will remain a nultiple of a nmegabyte when
repeatedly halved -- all the way down to 15m)

I
-

val = LONG MAX - (1 << 27) + 1;
}
state->dts_options[option] = val;

return (0);

static void
dtrace_state_destroy(dtrace_state_t *state)
13450 {

dtrace_ecbh_t *ech;

dtrace_vstate_ t *vstate = &state->dts_vstate;

mnor _t minor = get m nor (state->dts_dev);

int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
dtrace_specul ation_t *spec = state->dts_specul ati ons;
int nspec = state->dts_nspecul ati ons;

uint32_t match;

ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

new usr/src/uts/comon/ dtrace/ dtrace. c

13460

13462
13463
13464
13465
13466

13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481

13483
13484
13485
13486
13487

13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499

13501
13502
13503

13505
13506
13507

13509
13510
13511

13513
13514
13515

13517
13518
13519
13520
13521

13523
13524

200
ASSERT(MUTEX_HELD(& pu_| ock));

/*

* First, retract any retained enablings for this state.
*/

dtrace_enabling_retract(state);

ASSERT(st ate->dts_nretai ned == 0);

if (state->dts_activity == DTRACE_ACTI VI TY_ACTI VE | |
state->dts_activity == DTRACE_ACTI VI TY_DRAI NI NG {
/
W have nanaged to come into dtrace_state_destroy() on a
hot enabling -- alnost certainly because of a di sorderly
shut down of a consuner. (That is, a consumer that is
exiting w thout having called dtrace_stop()) In this case,
we're going to set our activity to be KILLED, and then
issue a sync to be sure that everyone is out of probe
* context before we start blow ng away ECBs.
*
/
state->dts_activity = DITRACE_ACTI VI TY_KI LLED;
dtrace_sync();

E

}

/*
* Rel ease the credential hold we took in dtrace_state_create().
*/
if (state->dts_cred.dcr_cred != NULL)
crfree(state->dts_cred. dcr_cred);

Now we can safely di sable and destroy any enabl ed probes. Because
any DTRACE_PRI V_KERNEL probes may actually be sl ow ng our progress
(especi aIIy if they're all enabl ed), we take two passes through the
ECBs: in the first, we disable just DTRACE_PRI V_KERNEL probes, and
* in the second we disable whatever is |eft over.

R

*/
for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
for (i =0; i < state->dts_nechs; i++) {
if ((ech = state->dts_ecbs[i]) == NULL)
conti nue;
if (match && ecb->dte_probe != NULL) {
dtrace_probe_t *probe = ecb->dte_probe;
dtrace_provider_t *prov = probe->dtpr_provider;
if (!(prov->dtpv_priv.dtpp_flags & match))
conti nue;
}
dtrace_ecb_di sabl e(ech);
dtrace_ech_destroy(ech);
}
if (!match)
br eak;
}
/*

* Before we free the buffers, performone nore sync to assure that
* every CPU is out of probe context.
*/

dtrace_sync();

dtrace_buffer_free(state->dts_buffer);
dtrace_buffer_free(state->dts_aggbuffer);

new usr/src/uts/comon/ dtrace/ dtrace. c 201

13526
13527

13529
13530

13532
13533

13535
13536
13537

13539

(i =0; i < nspec; i++)
dtrace_buffer_free(spec[i].dtsp_buffer);

if (state->dts_cleaner != CYCLI C_NONE)
cyclic_renove(state->dts_cl eaner);

if (state->dts_deadman != CYCLI C_NONE)
cyclic_renove(state->dts_deadman) ;

dtrace_dstate_fini(&vstate->dtvs_dynvars);
dtrace_vstate_fini(vstate);
kmem free(state->dts_ecbs, state->dts _necbs * sizeof (dtrace_ech_t *));

if (state->dts_aggregations != NULL) {

13540 #i fdef DEBUG

13541
13542

13543 #endi f

13544
13545
13546
13547

13549
13550

13552
13553

13555
13557
13559
13560
13561
13562 }

13564 /*

for (i = 0; i < state->dts_naggregations; i++)
ASSERT(SI ate->dts_aggregations[i] == NULL);

ASSERT(st at e- >dt s_naggr egati ons > 0);
kmem f ree(st at e- >dt s_aggr egati ons,

stat e->dt s_naggregati ons * sizeof (dtrace_aggregation_t *));

}

kmem free(state->dts_buffer, bufsize);
kmem free(state->dts_aggbuffer, bufsize);

for (i = 0; i < nspec; i++)
kmem free(spec[i].dtsp_buffer, bufsize);

kmem free(spec, nspec * sizeof (dtrace_speculation_t));
dtrace_format_destroy(state);
vrem dest roy(st at e- >dt s_aggi d_arena);

ddi _soft_state_free(dtrace_softstate, mnor);
viem free(dtrace_minor, (void *)(uintptr_t)mnor, 1);

13565 * DTrace Anonynous Enabling Functions
*/

13566

13567 static dtrace_state_t *
13568 dtrace_anon_grab(voi d)

13569 {
13570

13572

13574
13575
13576
13577

13579
13580

13582
13583
13584

13586
13587 }

dtrace_state_t *state;
ASSERT(MUTEX_HELD(&t r ace_| ock));

if ((state = dtrace_anon.dta_state) == NULL) {
ASSERT(dt race_anon. dt a_enabl i ng == NULL);
return (NULL);

}

ASSERT(dt race_anon. dta_enabling != NULL);
ASSERT(dtrace_retained != NULL);

dtrace_enabl i ng_destroy(dtrace_anon. dta_enabl i ng);
dtrace_anon. dta_enabl i ng = NULL;
dtrace_anon.dta_state = NULL;

return (state);

13589 static void
13590 dtrace_anon_property(void)

13591 {

new usr/src/uts/comon/dtrace/ dtrace.c 202
13592 int i, rv;

13593 dtrace_state_t *state;

13594 dof _hdr_t *dof;

13595 char c[32]; /* enough for "dof-data-" + digits */

13597 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

13598 ASSERT(MUTEX_HELD(&pu_l ock)) ;

13600 (i =05 ; i++) {

13601 (voi d) snprintf(c, sizeof (c), "dof-data-%", i);

13603 dtrace_err_verbose = 1;

13605 if ((dof = dtrace_dof_property(c)) == NULL) {

13606 dtrace err_verbose = 0;

13607 br eak;

13608 }

13610 I *

13611 * W want to create anonynous state, so we need to transition
13612 * the kernel debugger to indicate that Dfrace is active. |If
13613 * this fails (e.g. because the debugger has nodified text in
13614 * some way), we won’'t continue with the processing.

13615 *

13616 if (kdi _dtrace_set (KDl _DTSET_DTRACE_ACTI VATE) != 0)

13617 cmm_err (CE_NOTE, "kernel debugger active; anonynous "
13618 "enabl ing ignored.");

13619 dtrace_dof _destroy(dof);

13620 br eak;

13621 }

13623 /*

13624 * |If we haven't allocated an anonynous state, we'll do so now.
13625 */

13626 if ((state = dtrace_anon.dta_state) == NULL

13627 state = dtrace_state_create(NULL, NULL);

13628 dtrace_anon.dta_state = state;

13630 if (state == NULL) {

13631 /*

13632 * This basically shouldn’t happen: the only
13633 * failure node fromdtrace_state_create() is a
13634 * failure of ddi_soft_state_zalloc() that
13635 * jtself should never happen. Still, the
13636 * interface allows for a failure node, and
13637 * we want to fail as gracefully as possible:
13638 * we'll emt an error nmessage and cease
13639 * processing anonynous state in this case.
13640 *

13641 crm_err (CE_WARN, “"failed to create "

13642 "anonynous state");

13643 dtrace_dof _destroy(dof);

13644 br eak;

13645 }

13646 }

13648 rv = dtrace_dof _slurp(dof, &state->dts_vstate, CRED(),

13649 &dtrace_anon. dta_enabling, 0, B_TRUE);

13651 if (rv == 0)

13652 rv = dtrace_dof _options(dof, state);

13654 dtrace_err_verbose = 0;

13655 dtrace_dof _dest roy(dof);

13657 if (rv!=0) {

new usr/src/uts/comon/ dtrace/ dtrace. c

13658
13659
13660
13661
13662
13663
13664
13665
13666

13668
13669

13671
13672

13674
13675
13676
13677
13678
13679
13680
13681
13682

13684
13685
13686 }

13688 /*
* DIrace Hel per Functions
*/

13689
13690

/*
* This is mal forned DOF;
*/that we created.
*

ASSERT(dt race_anon. dt a_enabl i ng == NULL);

dtrace_state_destroy(state);

dtrace_anon. dta_state = NULL;

) br eak;

ASSERT(dt race_anon. dta_enabling != NULL);
}

if (dtrace_anon.dta_enabling != NULL) {
int rval;

/*

* dtrace_enabling_retain() can only fail

* trying to retain nore enablings than are all owed
* we only have one anonynous enabling,

* to be allowed at |east one retained enabling; we
* that dtrace_enabling_retain() returns success.

*

/

rval = dtrace_enabling_retain(dtrace_anon. dta_enabl
ASSERT(rval == 0);

dtrace_enabl i ng_dunp(dtrace_anon. dt a_enabl i ng) ;

13691 static void
13692 dtrace_hel per_trace(dtrace_hel per_action_t *hel per,

13693
13694 {
13695
13696
13697

13699
13700

13702

13704
13705
13706
13707
13708
13709

13711
13712
13713
13714
13715

13717
13718
13719
13720
13721
13722

dtrace_nstate_t *nstate, dtrace_vstate_t *vstate, int where)
uint32_t size, next, nnext, i;
dtrace_hel ptrace_t *ent;

uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_fl ags;

if (!dtrace_hel ptrace_enabl ed)
return;

ASSERT(vst at e->dt vs_nl ocal s <= dtrace_hel ptrace_nl ocal s);
/*

* What would a tracing franework be without its own tracin
* framework? (Well, a hell of a lot sinpler,
*/

for starters...

chuck any anonynous state

because we are

-- but

assert

ing);

9
)

size = sizeof (dtrace_helptrace_t) + dtrace_hel ptrace_nlocals *

si zeof (uint64_t) - sizeof (uint64_t);
/*
* |terate until

*

do {

we can allocate a slot

next = dtrace_hel ptrace_next;

if (next + size < dtrace_hel ptrace_bufsize) {
nnext = next + size;

} else {
nnext = size;

next,

}
} while (dtrace_cas32(&dtrace_hel ptrace_next, nnext)

in the trace buffer.

I= next);

203

and we are guar ant eed

new usr/src/uts/comon/ dtrace/ dtrace. c

13724
13725
13726
13727
13728

13730
13731
13732
13733

13735
13736
13737
13738

13740
13741

13743
13744

13746
13747
13748
13749
13750

13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764

13766

13768
13769

13771
13772

13774
13775
13776

13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789

}

/*
* W have our slot; fill it in.
*/
if (nnext == size)
next = 0;
ent = (dtrace_hel ptrace_t *)&dtrace_hel ptrace_buffer[next];
ent - >dt ht _hel per = hel per
ent - >dt ht _where = where;
ent->dtht _nl ocal s = vstate->dtvs_nl ocal s;
ent->dtht _fltoffs = (nstate->dtns_present & DTRACE_MSTATE FLTOFFS) ?
st at e- >dt ms fItoffs -1
ent->dtht _fault = DTRACE_FLAGS2FLT(f!I ags);
ent->dtht _illval = cpu_core[CPU->cpu_id]. cpuc_dt race_illval;
(i =0; i < vstate->dtvs_nlocals; i++) {
dtrace_statvar_t *svar;
if ((svar = vstate->dtvs_locals[i]) == NULL)
continue;
ASSERT(svar - >dt sv_si ze >= NCPU * sizeof (uint64_t));
ent->dtht _local s[i] =
((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU >cpu_id];
}

static uint64_t

dtrace_hel per (i nt which, dtrace_nstate_t

{

*nst at e,

dtrace_state_t *state, uint64_t arg0, uint64_t argl)
uint16_t *flags = &pu_core[CPU- >cpu i d].cpuc_dtrace_fl ags;
uint64_t sarg0 = nstate->dtns_arg[0];
uint64_t sargl = nstate->dtns_arg[1];

uint64_t rval;

dtr
dtr
dtr
dtr
int

ace_hel pers t *hel pers = curproc->p_dtrace_hel pers;
ace_hel per _action_t *hel per;
ace_vstate_t *vstate;
ace_difo_t *pred;
i, trace = dtrace_hel ptrace_enabl ed;

ASSERT(whi ch >= 0 && which < DTRACE _NHELPER ACTI ONS);

if

if

vst
st
st

/

* Ok % Rk kK

*
*/
for

(hel pers == NULL)

return (0);
((hel per = hel pers->dthps_actions[which]) == NULL)

return (0);
ate = &hel pers->dt hps_vstate;
ate->dtns_arg[0] = argO;
ate->dtnms_arg[1] = argl;
Now iterate over each helper. |If its predicate evaluates to 'true’,
we' Il call the corresponding actions. Note that the below calls
to dtrace_dif_emulate() nay set faults in machine state. This is
okay: our caller (the outer dtrace_dif_emulate()) will sinply plow
the stored DIF offset with its own (which is the desired behavior).
Al so, note the calls to dtrace_dif_enulate() nmay allocate scratch

from nmachine state; this is okay, too.
(; hel per !'= NULL; hel per
if ((pred = hel per - >dtha _predi cate)

if (trace)

= hel per->dt ha_next) {
1= NULL) {

new usr/src/uts/comon/dtrace/ dtrace. c 205
13790 dtrace_hel per_trace(hel per, nstate, vstate, 0);
13792 if (!dtrace_dif_enmul ate(pred, nstate, vstate, state))
13793 got o next;

13795 if (*flags & CPU DTRACE FAULT)

13796 goto err;

13797 }

13799 for (i = 0; i < helper->dtha_nactions; i++) {

13800 if (trace)

13801 dtrace_hel per _trace(hel per,

13802 nmetate, vstate, i + 1),

13804 rval = dtrace_dif_enul at e(hel per->dt ha_actions[i],
13805 nstate, vstate, state);

13807 if (*flags & CPU DTRACE FAULT)

13808 goto err;

13809 }

13811 next:

13812 if (trace)

13813 dtrace_hel per _trace(hel per, nstate, vstate,
13814 DTRACE_HELPTRACE_NEXT) ;

13815 }

13817 if (trace)

13818 dtrace_hel per _trace(hel per, nstate, vstate,

13819 DTRACE_HELPTRACE_DONE) ;

13821 /*

13822 * Restore the arg0 that we saved upon entry.

13823 */

13824 net at e- >dt ms_arg[0] = sargo0;

13825 nstate->dt ms_arg[1] = sargil;

13827 return (rval);

13829 err:

13830 if (trace)

13831 dtrace_hel per _trace(hel per, nstate, vstate,

13832 DTRACE_HELPTRACE_ERR) ;

13834 /*

13835 * Restore the arg0 that we saved upon entry.

13836 */

13837 net at e- >dt ms_arg[0] = sargo0;

13838 nstate->dt ms_arg[1] = sargil;

13840 return (NULL);

13841 }

13843 static void

13844 dtrace_hel per_acti on_destroy(dtrace_hel per _action_t *hel per,

13845 dtrace_vstate_t *vstate)

13846 {

13847 int i;

13849 if (hel per->dtha_predicate != NULL)

13850 dtrace_di fo_rel ease(hel per->dtha_predi cate, vstate);
13852 (i = 0; i < hel per->dtha_nactions; i++)

13853 ASSERT(hel per->dtha_actions[i] != NULL);

13854 dtrace_di fo_rel ease(hel per->dtha_actions[i], vstate);
13855 }

new usr/src/uts/comon/dtrace/ dtrace.c 206
13857 kmem f ree(hel per->dt ha_acti ons,

13858 hel per - >dt ha_nactions * sizeof (dtrace_difo_t *));

13859 kmem free(hel per, sizeof (dtrace_helper_action_t));

13860

13862 static int

13863 dtrace_hel per _destroygen(int gen)

13864 {

13865 proc_t *p = curproc;

13866 dtrace_hel pers_t *help = p->p_dtrace_hel pers;

13867 dtrace_vstate_t *vstate;

13868 int i;

13870 ASSERT(MUTEX_HELD(&dt r ace_| ock));

13872 if (help == NULL || gen > hel p->dt hps_generati on)

13873 return (EINVAL);

13875 vstate = &hel p->dt hps_vst at e;

13877 for (i = 0; i < DTRACE_NHELPER ACTI ONS; i ++)

13878 dtrace_hel per _action_t *last = NULL, *h, *next;

13880 (h = hel p->dthps_actions[i]; h !'= NULL; h = next) {
13881 next = h->dtha_next;

13883 if (h->dtha_generation == gen) {

13884 if (last !'= NULL)

13885 | ast - >dt ha_next = next;

13886 } else {

13887 hel p->dt hps_actions[i] = next;
13888 }

13890 dtrace_hel per _action_destroy(h, vstate);
13891 } else {

13892 last = h;

13893 }

13894 }

13895 }

13897 /*

13898 * Interate until we’ve cleared out all hel per providers with the
13899 * given generation nunber.

13900 *

13901 for (;;) {

13902 dtrace_hel per _provider_t *prov;

13904 /*

13905 * Look for a helper provider with the right generation. W
13906 * have to start back at the beginning of the list each tine
13907 * because we drop dtrace_lock. It’s unlikely that we'll make
13908 * nore than two passes.

13909 */

13910 (i =0; i < help->dthps_nprovs; i++) {

13911 prov = hel p->dthps_provs[i];

13913 if (prov->dthp_generation == gen)

13914 br eak;

13915 }

13917 /*

13918 * |f there were no matches, we're done.

13919 */

13920 if (i == hel p->dthps_nprovs)

13921 br eak;

new usr/src/uts/comon/ dtrace/ dtrace. c

13923 /*

13924 * Move the |ast hel per provider into this slot.
13925 */

13926 hel p- >dt hps_nprovs- -

13927 hel p- >dt hps_pr ovs[i] = hel p- >dt hps_pr ovs[hel p->dt hps_nprovs] ;
13928 hel p- >dt hps_pr ovs|[hel p- >dt hps_nprovs] = NULL;
13930 nmut ex_exi t (&dtrace_| ock);

13932 /*

13933 * |f we have a nmeta provider, renove this hel per provider.
13934 */

13935 mut ex_ent er (&t race_met a_| ock) ;

13936 if (dtrace_neta_pid != NOLL) {

13937 ASSERT(dtrace_deferred_pid == NULL);
13938 dt race_hel per _provi der _r enove(&pr ov- >dt hp_prov,
13939 p->p_pid);

13940 }

13941 mut ex_exit (&dJtrace_neta_l ock);

13943 dtrace_hel per _provi der _destroy(prov);

13945 mut ex_ent er (&Jtrace_| ock);

13946 }

13948 return (0);

13949 }

13951 static int

13952 dtrace_hel per_val i date(dtrace_hel per _action_t *hel per)

13953 {

13954 int err =

13955 dtrace_| dlfo t *dp

13957 if ((dp = hel per->dtha_predicate) != NULL)

13958 err += dtrace_difo_validate_hel per(dp);

13960 for (i = 0; i < hel per->dtha_nactions; i++)

13961 err += dtrace_di fo_val i date_hel per (hel per->dtha_actions[i]);
13963 return (err == 0);

13964 }

13966 static int

13967 dtrace_hel per_action_add(int which, dtrace_echdesc_t *ep)

13968 {

13969 dtrace_hel pers_t *hel p;

13970 dtrace_hel per_action_t *hel per, *last;

13971 dtrace_actdesc_t *act;

13972 dtrace_vstate_t *vst ate;

13973 dtrace_predicate_t *pred;

13974 int count = 0, nactions =0, i;

13976 if (which < 0 || which >= DTRACE_NHELPER_ACTI ONS)

13977 return (EINVAL);

13979 hel p = curproc->p_dtrace_hel pers;

13980 | ast = hel p->dt hps_acti ons[whi ch];

13981 vstate = &hel p->dt hps_vst at e;

13983 for (count = 0; last != NULL; last = last->dtha_next) {
13984 count ++;

13985 if (last->dtha_next == NULL)

13986 br eak;

13987 }

new usr/src/uts/comon/dtrace/ dtrace.c 208
13989 /*

13990 * |f we already have dtrace_hel per_actions_nax hel per actions for this
13991 * hel per action type, we'll refuse to add a new one.

13992 *

13993 if (count >= dtrace_hel per_actions_nax)

13994 return (ENCSPO);

13996 hel per = knmem zal | oc(si zeof (dtrace_hel per_action_t), KM SLEEP);
13997 hel per - >dt ha_generati on = hel p->dt hps_generati on;

13999 if ((pred = ep->dted_pred.dtpdd_predicate) !'= NULL) {

14000 ASSERT(pred->dtp_difo !'= NULL);

14001 dtrace_di f o_hol d(pr ed- >dtp di fo)

14002 hel per->dt ha_predi cat e pred- >dt p_di fo;

14003 }

14005 for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14006 if (act->dtad_kind ! = DTRACEACT DI FEXPR)

14007 goto err;

14009 if (act->dtad_difo == NULL)

14010 goto err;

14012 nactions++;

14013 }

14015 hel per->dtha_actions = kmem zal l oc(si zeof (dtrace_difo_t *) *
14016 (hel per->dt ha_nactions = nactions), KM SLEEP);

14018 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14019 dtrace_di fo_hol d(act - >dt ad_di f 0) ;

14020 hel per->dtha_actions[i++] = act->dtad_difo;

14021 }

14023 if (!dtrace_hel per_vali date(hel per))

14024 goto err;

14026 if (last == NULL)

14027 hel p- >dt hps_acti ons[whi ch] = hel per;

14028 } else {

14029 | ast - >dt ha_next = hel per;

14030 }

14032 if (vstate->dtvs_nlocals > dtrace_hel ptrace_nlocals) {

14033 dtrace_hel ptrace_nl ocal s = vstate->dtvs_nlocal s;
14034 dtrace_hel ptrace_next = 0;

14035 }

14037 return (0);

14038 err:

14039 dtrace_hel per _acti on_destroy(hel per, vstate);

14040 return (EI NVAL);

14041 }

14043 static void

14044 dtrace_hel per_provi der _regi ster(proc_t *p, dtrace_hel pers_t *hel p,
14045 dof _hel per _t *dof hp)

14046 {

14047 ASSERT(MUTEX_NOT_HELD(&t r ace_| ock)) ;

14049 mut ex_enter (&t race_neta_| ock) ;

14050 nut ex_ent er (&dtrace_| ock) ;

14052 if (!dtrace_attached() || dtrace_neta_pid == NULL) {

14053 /*

new usr/src/uts/comon/ dtrace/ dtrace. c 209

14054 * |f the dtrace nodule is |oaded but not attached, or if
14055 * there aren’t isn't a nmeta provider registered to deal with
14056 * these provider descriptions, we need to postpone creating
14057 * the actual providers until iater.

14058 */

14060 if (hel p->dthps_next == NULL && hel p->dt hps_prev == NULL &&
14061 dtrace_deferred_pid !'= help) {

14062 hel p- >dt hps_deferred = 1;

14063 hel p->dt hps_pid = b >p_pi d;

14064 hel p->dt hps_next = dtrace_deferred_pid;

14065 hel p- >dt hps_prev = NULL;

14066 if (dtrace_def erred _pid !'= NULL)

14067 dtrace_def erred_pi d->dt hps_prev = hel p;
14068 dtrace_deferred_pid = hel p;

14069 }

14071 mut ex_exit (&dtrace_| ock);

14073 } else if (dofhp !'= NULL) {

14074 /*

14075 * |f the dtrace nodule is | oaded and we have a particul ar
14076 * hel per provider description, pass that off to the

14077 * meta provider.

14078 */

14080 mut ex_exit (&dtrace_l ock);

14082 dtrace_hel per _provi de(dof hp, p->p_pid);

14084 } else {

14085 /*

14086 * Otherw se, just pass all the hel per provider descriptions
14087 * off to the nmeta provider.

14088 */

14090 int i;

14091 nut ex_exi t (&dtrace_| ock);

14093 for (i = 0; i < help->dthps_nprovs; i++) {

14094 dt race_hel per _provi de(&hel p- >dt hps_provs[i]->dthp_prov,
14095 p->p_pid);

14096 }

14097 }

14099 nut ex_exi t (&dtrace_neta_l ock);

14100

14102 static int

14103 dtrace_hel per_provi der _add(dof _hel per _t *dof hp, int gen)

14104 {

14105 dtrace_hel pers_t *hel p;

14106 dtrace_hel per _provider_t *hprov, **tnp_provs;

14107 ui nt _t t np_maxprovs, i

14109 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

14111 hel p = curproc->p_dtrace_hel pers;

14112 ASSERT(hel p ! = NULL);

14114 /*

14115 * |If we already have dtrace_hel per_provi ders_nmax hel per providers,
14116 * we're refuse to add a new one.

14117 *

14118 if (hel p->dthps_nprovs >= dtrace_hel per_provi ders_max)

14119 return (ENGSPC);

new usr/src/uts/comon/ dtrace/ dtrace. c

14121
14122
14123
14124
14125
14126
14127
14128

14130
14131
14132
14133

14135
14136
14137
14138
14139
14140

14142
14143
14144
14145
14146
14147

14149

14151
14152

14154
14155
14156
14157
14158
14159
14160

14162
14163

14165
14166 }

/*
* Check to neke sure this isn't a duplicate.
*/
for (i =0; i < help- >dthps nprovs; i++) {
i f (dof hp->dof hp_dof ==
hel p- >dt hps_| provs[l] >dt hp_pr ov. dof hp_dof)
return (EALREADY);
}

hprov = kmem zal | oc(si zeof (dtrace_hel per_provider_t), KM SLEEP);
hprov- >dt hp_prov = *dof hp;

hprov->dthp_ref = 1;

hprov->dt hp_generati on = gen;

/*
* Allocate a bigger table for helper providers if it’'s already full.
=

if (hel p->dthps_naxprovs == hel p->dt hps_nprovs) {
t np_maxprovs = hel p- >dt hps_naxpr ovs;
tnp_provs = hel p- >dt hps_provs;

i f (hel p->dthps_maxprovs ==
hel p- >dt hps_maxprovs = 2;
el se
hel p- >dt hps_maxprovs *= 2;
i f (hel p->dt hps_maxprovs > dtrace_hel per _provi ders_nax)
hel p- >dt hps_maxprovs = dtrace_hel per _provi ders_nax;

ASSERT(t mp_nmaxprovs < hel p->dt hps_maxprovs);

hel p- >dt hps_provs = knem zal | oc(hel p >dt hps_nmaxprovs *
si zeof (dtrace_hel per_provider_t *), KM SLEEP);

if (tnmp_provs != NULL) {
bcopy(tnp_provs, hel p->dthps_provs, tnp_naxprovs *
si zeof (dtrace_hel per_provider_t *));
kmem free(tnp_provs, tnp_nmaxprovs *
si zeof (dtrace_hel per_provider_t *));

}

hel p- >dt hps_provs][hel p->dt hps_nprovs] = hprov;
hel p- >dt hps_npr ovs++;

return (0);

14168 static void
14169 dtrace_hel per_provi der _destroy(dtrace_hel per_provider_t *hprov)

14170 {
14171

14173
14174
14175
14176
14177
14178
14179
14180
14181
14182 }

mut ex_ent er (&dtrace_| ock) ;

if (--hprov->dthp_ref == 0) {
dof _hdr_t =*dof;
nmut ex _exit(&dtrace_l ock);
dof (dof _hdr_t *)(uintptr_t)hprov->dthp_prov. dof hp_dof;
dtrace dof destroy(dof)
kmem free(hprov, sizeof (dtrace_hel per_provider_t));
} else {
mut ex_exi t (&dtrace_l ock);

14184 static int
14185 dtrace_hel per_provi der _val i dat e(dof _hdr _t *dof, dof_sec_t *sec)

new usr/src/uts/comon/ dtrace/ dtrace. c 211

14186 {
14187
14188
14189
14190
14191
14192
14193
14194
14195

14197

14199
14200
14201
14202

14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214

14216
14217
14218
14219
14220

14222
14223
14224

14226

14228
14229
14230
14231
14232

14234

14236
14237
14238
14239
14240

14242
14243
14244
14245
14246

14248
14249
14250
14251

uintptr_t daddr = (uintptr_t)dof;

dof _sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
dof _provider_t *provider;

dof _probe_t *probe;

uint8_t *arg;

char *strtab, *typestr;

dof _stridx_t typei dx;

size_t typesz;

uint_t nprobes, j, k;

ASSERT(sec->dof s_type == DOF_SECT_PROVI DER) ;

if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
dtrace_dof _error(dof, "msaligned section offset");
return (-1);

}

/*

* The section needs to be |arge enough to contain the DOF provider
* structure appropriate for the given version.

S

if (sec->dofs_size <
((dof ->dof h_i dent [DOF_I D_VERSI ON] == DOF_VERSI ON 1) ?
of f set of (dof _provi der _t, dof pv_prenoffs) :
si zeof (dof _provi der_t))) {
dtrace_dof _error(dof, "provider section too small");
return (-1);

}

provi der = (dof _provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
str_sec

prb_sec = dtrace_dof _sect (dof, DOF_SECT_PROBES, provi der->dof pv_probes);
arg_sec = dtrace_dof _sect (dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
of f _sec = dtrace_dof _sect (dof, DOF_SECT_PROFFS, provider->dofpv_proffs);

if (str_sec == NULL || prb_sec == NULL ||
arg_sec == NULL || off_sec == NULL)
return (-1);

enof f _sec = NULL;

if (dof->dofh_ident[DOF_|D VERSION] != DOF_VERSION 1 &%
provi der - >dof pv_prenoffs | = DOF_SECT_NONE &&
(enof f _sec = dtrace_dof sect(dof DOF_SECT_PRENOFFS,
provi der - >dof pv_prenoffs)) == NU LL)
return (-1);

strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);

if (provider->dofpv_nane >= str_sec->dofs_size ||
strlen(strtab + provider- >dof pv_nane) >= DTRACE PRO\/NANELEN) {
dtrace_dof _error(dof, "invalid provider nane");
return (-1);

}
if (prb_sec->dofs_entsize == 0 ||
prb_sec->dof s_entsize > prb_sec->dofs_si ze) {
dtrace_dof _error(dof, "invalid entry size");
return (-1);
}

if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1))
dtrace_dof _error(dof, "misaligned entry size");
return (-1);

dt race_dof sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);

14253

new usr/src/uts/comon/ dtrace/ dtrace. c 212
if (off_sec->dofs_entsize != sizeof (uint32_t)) {
dtrace_dof _error(dof, "invalid entry size");

14254
14255
14256

14258
14259
14260
14261

14263
14264
14265
14266

14268
14270

14272
14273
14274
14275
14276
14277

14279
14280
14281
14282

14284
14285
14286
14287

14289
14290
14291
14292
14293

14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305

14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317

return (-1);

}

if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
dtrace_dof _error(dof, "misaligned section offset");
return (-1);

}

if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
dtrace_dof error(dof, "invalid entry size");
return (-1);

}

arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;

/*
* Take a pass through the probes to check for errors.
*
/
for (j = 0; j < nprobes; j++)

probe = (dof_probe_t *)(UI ntptr_t)(daddr +
prb_sec->dofs_offset + j * prb_sec->dofs_entsize);

if (probe->dofpr_func >= str _sec- >dof s_si ze)
dtrace_| dof error(dof "invalid function name");
return (-1

}

if (strlen(strtab + probe->dof pr_func) >= DTRACE_FUNCNAMELEN) {
dtrace_dof _error(dof, "function name too |ong");
return (-1);

}

if (probe->dofpr_name >= str_sec->dofs_size ||
strlen(strtab + probe->dofpr_name) >= DTRACE _NAMELEN) {
dtrace_dof _error(dof, "invalid probe name");
return (-1);

}

/*
* The of fset count nust not wap the index, and the offsets
*/mJSt al so not overflow the section’s data.
*
if (probe->dofpr_offidx + probe->dofpr_noffs <
probe- >dof pr_of fidx ||
(probe->dof pr_of fi dx + probe->dof pr_noffs) *
of f _sec- >dof s_ent si ze > off sec->dofs_size) {
“dtrace_dof _error(dof, "invalid probe offset");
return (-1);

}
i f (dof->dof h_i dent[DOF_I D_VERSI ON] != DOF_VERSI ON 1) {
/ *

* |f there’s no is-enabled of fset section, make sure
* there aren’t any is-enabled offsets. Oherwise
* performthe sane checks as for probe offsets
* (imredi ately above).
*
/

if (enoff_sec == NULL)
i f (probe->dofpr_enoffidx !'=0 ||
pr obe- >dof pr_nenoffs ! = 0)
dtrace_dof _error(dof, "is-enabled "

new usr/src/uts/comon/ dtrace/ dtrace. c 213

14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328

14330
14331
14332
14333
14334
14335
14336
14337
14338

14340
14341
14342
14343
14344
14345
14346

14348
14349
14350
14351
14352
14353
14354
14355

14357
14358
14359
14360
14361
14362
14363
14364
14365

14367
14368
14369
14370
14371
14372
14373
14374

14376
14377
14378
14379
14380

14382
14383

"offsets with null section");
return (-1);

}
} else if (probe->dofpr_enoffidx +
probe- >dof pr _nenof fs < probe->dof pr_enof fidx ||
(probe->dof pr_enof fi dx + probe->dof pr_nenoffs) *
enof f_sec->dofs_entsi ze > enoff sec->dofs_size) {
dtrace_dof _error(dof, "invalid is-enabled "
"of fset");
return (-1);

}

if (probe->dofpr_noffs + probe >dof pr_nenoffs == 0) {
dt race dof _error(dof, "zero probe and "
"is-enabl ed of fsets”)
return (-1);

}

} else if (probe->dofpr_noffs == 0)
dtrace_dof _error(dof, "zero probe offsets");
return (-1);

}

if (probe->dofpr_argidx + probe->dofpr_xargc <
probe- >dof pr_argi dx ||
(probe->dof pr_argi dx + probe->dof pr_xargc) *
arg_sec- >dof s_ent si ze > arg_sec- >dof s S|ze) {
dtrace_dof _error(dof, "invalid args");
return (-1);

}

typei dx = probe->dof pr_nargv;
typestr = strtab + probe->dof pr_nargv;
for (k = 0; k < probe->dofpr_nargc; k++)
if (typeldx >= str_sec->dofs_size) {
dtrace_dof _error(dof, "bad "
"native argunent type");
return (-1);

}

typesz = strlen(typestr) + 1;
if (typesz > DTRACE_ARGTYPELEN) {
dtrace_dof _error(dof, "native
"argument type too |ong");
return (-1);

}
typei dx += typesz;
typestr += typesz;

typei dx = probe->dof pr_xargv;
typestr = strtab + probe->dof pr_xargv;
for (k = 0; k < probe->dof pr_xargc; k++) {
if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
dtrace_dof _error(dof, "bad "
"native argunent index");
return (-1);
}

if (typeidx >= str_sec->dofs_size) {
dtrace_dof _error(dof, "bad "
"transl ated argunent type");
return (-1);

}

typesz = strlen(typestr) + 1;
if (typesz > DTRACE_ARGTYPELEN) {

new usr/src/uts/comon/dtrace/ dtrace.c

14384 dtrace_dof _error(dof, "translated argunent
14385 "type too long");

14386 return (-1);

14387 }

14389 typei dx += typesz;

14390 typestr += typesz;

14391 }

14392 }

14394 return (0);

14395 }

14397 static int

14398 dtrace_hel per_sl urp(dof _hdr_t *dof, dof _hel per_t *dhp)

14399 {

14400 dtrace_hel pers_t *hel p;

14401 dtrace_vstate_t *vstate;

14402 dtrace_enabling_t *enab = NULL;

14403 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;

14404 uintptr_t daddr = (uintptr_t)dof;

14406 ASSERT(MUTEX_HELD(&dt r ace_| ock)) ;

14408 if ((help = curproc->p_dtrace_hel pers) == NULL)

14409 hel p = dtrace_hel pers_creat e(curproc)

14411 vstate = &hel p->dt hps_vstate;

14413 if ((rv = dtrace_dof _slurp(dof, vstate, NULL, &enab,

14414 dhp !'= NULL ? dhp->dofhp_addr : 0, B FALSE)) != 0) {
14415 dtrace_dof _destroy(dof);

14416 return (rv)

14417 }

14419 *

14420 * Look for hel per providers and validate their descriptions.
14421 */

14422 if (dhp !'= NULL) {

14423 for (i = 0; i < dof->dofh_secnum i++) {

14424 dof _sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14425 dof - >dof h_secof f + i * dof - >dof h_secsi ze);
14427 if (sec->dofs type != DOF_SECT PROVI DER)
14428 conti nue;

14430 if (dtrace_hel per_provider_validate(dof, sec) !=0) {
14431 dtrace_enabl i ng_dest r oy(enab);

14432 dtrace_ dof destroy(do);

14433 return (-1

14434 }

14436 nprovs++

14437 }

14438 }

14440 /*

14441 * Now we need to wal k through the ECB descriptions in the enabling.
14442 */

14443 for (i = 0; i < enab->dten_ndesc; i++) {

14444 dtrace_ecbdesc_t *ep = enab- >dt en_desc[i];

14445 dtrace_probedesc_t *desc = &ep->dted probe

14447 if (strcnp(desc->dtpd_provider, "dtrace") != 0)
14448 cont i nue;

new usr/src/uts/comon/ dtrace/ dtrace. c 215

14450
14451

14453
14454

14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466

14468
14469

14471
14472

14474
14475

14477
14478
14479
14480
14481
14482

14484
14485
14486

14488
14489

14491
14492

14494
14495

14497

14499
14500

14502
14503
14504

14506
14507

14509
14510

14512
14513

14515

}

if (strcnp(desc->dtpd_nod, "hel per") != 0)
conti nue;

if (strcnp(desc->dtpd_func, "ustack") != 0)

conti nue;
if ((rv = dtrace_hel per_acti on_add(DTRACE_HELPER_ACTI ON_USTACK,
ep)) '=0) {
/*
* Adding this helper action failed -- we are now goi ng

* torip out the entire generation and return failure.

(v0| d) dtrace_hel per_destroygen(hel p->dt hps_generation);

dtrace_enabl i ng_dest roy(enab);
dt race_dof _destroy(dof);
return (-1);

}

nhel per s++;

}

if (nhel pers < enab->dten_ndesc)
dtrace_dof _error(dof, "unnatched hel pers");

gen = hel p->dt hps_gener ati on++;
dtrace_enabl i ng_dest roy(enab);

if (dhp !'= NULL && nprovs > 0) {
dhp->dof hp_dof = (uint64_t) (uintptr_t)dof;
if (dtrace_hel per_provider_add(dhp, gen) == 0) {
nmut ex_exi t (&dtrace_l ock);
dt race_hel per_provider_r egi ster(curproc, help, dhp);
nmut ex_ent er (&trace_| ock) ;

destroy = O;
}

if (destroy)
dtrace_dof _destroy(dof);

return (gen);

static dtrace_hel pers_t *
dtrace_hel pers_create(proc_t *p)
14496 {

}

dtrace_hel pers_t *hel p;

ASSERT(MUTEX_HELD(&t r ace_| ock)) ;
ASSERT(p- >p_dtrace_hel pers == NULL);

hel p = knem zal | oc(5| zeof (dtrace_helpers_t), KM SLEEP);
hel p- >dt hps_acti ons = kmem zal | oc(si zeof (dtrace_hel per_action_t *) *
DTRACE_NHELPER_ACTI ONS, KM SLEEP) ;

p->p_dtrace_hel pers = hel p;
dtrace_hel pers++;

return (help);

static void
dtrace_hel pers_destroy(voi d)
14514 {

dtrace_hel pers_t *hel p;

new usr/src/uts/comon/dtrace/ dtrace.c 216
14516 dtrace_vstate_t *vstate;

14517 proc_t *p = curproc;

14518 int i;

14520 nut ex_ent er (&dtrace_| ock);

14522 ASSERT(p- >p_dtrace_hel pers = NULL);

14523 ASSERT(dt race_hel pers > 0);

14525 hel p = p->p_dtrace_hel pers;

14526 vstate = &hel p->dt hps_vst at e;

14528 /*

14529 * W're now going to lose the help fromthis process.

14530 */

14531 p->p_dtrace_hel pers = NULL;

14532 dtrace_sync();

14534 /*

14535 * Destory the hel per actions.

14536 *

14537 for (i = 0; i < DTRACE_NHELPER ACTI ONS; i ++) {

14538 dtrace_hel per_action_t *h, *next;

14540 (h = hel p->dthps_actions[i]; h !'= NULL; h = next) {
14541 next = h->dtha_next;

14542 dtrace_hel per _action_destroy(h, vstate);

14543 h = next;

14544 }

14545 }

14547 mut ex_exi t (&dtrace_l ock);

14549 /*

14550 * Destroy the hel per providers.

14551 */

14552 if (hel p->dthps_naxprovs > 0) {

14553 nut ex_ent er (&trace_neta_| ock);

14554 if (dtrace_neta_pid != NULL)

14555 ASSERT(dtrace_deferred_pid == NULL);

14557 for (i = 0; i < help->dthps_nprovs; i++) {
14558 dtrace_hel per _provi der _renove(

14559 &hel p->dt hps_provs[i]->dt hp_prov, p->p_pid);
14560

14561 } else {

14562 mut ex_ent er (&dtrace_| ock) ;

14563 ASSERT(hel p- >dt hps_deferred == 0 ||

14564 hel p->dt hps_next != NULL ||

14565 hel p->dt hps_prev != NULL ||

14566 hel p == dtrace_deferred_pid);

14568 /*

14569 * Renmove the helper fromthe deferred list.
14570 */

14571 if (hel p->dthps_next !'= NULL)

14572 hel p- >dt hps_next - >dt hps_prev = hel p->dt hps_prev;
14573 if (help->dthps_prev != NULL)

14574 hel p- >dt hps_pr ev- >dt hps_next = hel p- >dt hps_next;
14575 if (dtrace_deferred_pid == heI p) {

14576 dtrace_deferred_pid = hel p->dt hps_next;
14577 ASSERT(hel p->dt hps_prev == NULL);

14578 }

14580 mut ex_exit (&dJtrace_l ock);

14581 }

new usr/src/uts/comon/ dtrace/ dtrace. c 217

14583

14585
14586
14587

14589
14590
14591

14593

14595
14596
14597
14598

14600
14601
14602

}

mut ex_exit (&dtrace_neta_l ock);

(i = 0; i < help->dthps_nprovs; i++) {
dtrace_hel per _provi der_destroy(hel p->dthps_provs[i]);
}

kmem f ree(hel p- >dt hps_provs, hel p->dt hps_maxprovs *
si zeof (dtrace_hel per_provider_t *));

}
mut ex_ent er (&t race_| ock);

dtrace_vstate_fini(&hel p->dt hps_vstate);
kmem f r ee(hel p- >dt hps_acti ons,

si zeof (dtrace_hel per _ action_t *) * DTRACE_NHELPER_ACTI ONS) ;
kmem free(hel p, sizeof (dtrace_helpers_t));

--dtrace_hel pers;
mut ex_exi t (&dtrace_l ock);

14604 static void
dtrace_hel pers_duplicate(proc_t *from proc_t *to)
14606 {

14605

14607
14608
14609
14610
14611

14613
14614
14615

14617
14618
14619

14621
14622

14624
14625
14626
14627
14628
14629

14631
14632
14633
14634

14636
14637
14638
14639

14641
14642
14643

14645
14646

dtrace_hel pers_t *hel p, *newhel p;

dtrace_hel per_action_t *hel per, *new, *|ast;
dtrace_difo_t *dp;

dtrace_vstate_t *vstate;

int i, j, sz, hasprovs = 0;

mut ex_ent er (&t race_| ock) ;
ASSERT(from >p_dtrace_hel pers !'= NULL);
ASSERT(dt race_hel pers > 0);

help = from>p dtrace_hel pers;
newhel p = dtrace_hel pers_create(to);
ASSERT(t 0->p_dtrace_hel pers != NULL)

newhel p- >dt hps_gener ati on = hel p->dt hps_generati on;
vstate = &newhel p- >dt hps_vst at e;

/*
* Duplicate the hel per actions.
*

(i = 0; i < DTRACE_NHELPER_ACTI ONS; i ++) {
if ((hel per = hel p->dthps_actions[i]) == NULL)
cont i nue;

(last = NULL; hel per != NULL; hel per = hel per->dtha_next) {
new = knmem zal | oc(si zeof (dtrace_hel per_action_t),
KM SLEEP) ;
new >dt ha_generati on = hel per->dtha_generati on;
if ((dp = hel per->dtha_predicate) != NULL) {
dp = dtrace_difo_duplicate(dp, vstate);
new >dt ha_predi cate = dp;

}

new >dt ha_nacti ons = hel per->dt ha_nacti ons;
sz = sizeof (dtrace_difo_t *) new >dt ha_nacti ons;
new >dt ha_actions = knem al | oc(sz, KM SLEEP);

for (j = 0; j < new >dtha_nactions; j++) {
dtrace_difo_t *dp = hel per->dtha_actions[j];

new usr/src/uts/comon/dtrace/ dtrace.c 218
14648 ASSERT(dp 1= NULL);

14649 dp = dtrace_difo dupl i cate(dp, vstate);
14650 new >dt ha_actions[j] = dp;

14651 }

14653 if (last !'= NULL) {

14654 | ast - >dt ha_next = new,

14655 } else {

14656 newhel p->dt hps_actions[i] = new,

14657 }

14659 last = new,

14660 }

14661 }

14663 /*

14664 * Duplicate the hel per providers and register themwth the
14665 * DTrace framework.

14666 */

14667 if (hel p->dthps_nprovs > 0) {

14668 newhel p- >dt hps_nprovs = hel p->dt hps_nprovs;

14669 newhel p- >dt hps_maxpr ovs = hel p- >dt hps_npr ovs;

14670 newhel p- >dt hps_provs = krmem al | oc(newhel p->dt hps_nprovs *
14671 si zeof (dtrace_hel per_provider_t *), KM SLEEP);
14672 for (i = 0; i < newhel p->dt hps_ nprovs; i++)

14673 newhel p- >dt hps_provs[i] = hel p->dthps_provs[i];
14674 newhel p- >dt hps_provs[i]->dthp_ref ++;

14675 }

14677 hasprovs = 1;

14678 }

14680 nut ex_exi t (&dtrace_| ock);

14682 if (hasprovs)

14683 dtrace_hel per _provider_register(to, newhel p, NULL);
14684 }

14686 /*

14687 * DTrace Hook Functions

14688 */

14689 static void
14690 dtrace_nodul e_| oaded(struct nodctl *ctl)

14691 {
14692

14694
14695

14697

14699
14700
14701
14702
14703
14704

14706
14707

14709
14710
14711
14712
14713

dtrace_provider_t *prv;

nut ex_ent er (&dt r ace_provi der _| ock) ;
mut ex_ent er (&od_| ock) ;

ASSERT(ct | - >npd_busy) ;

/*

* W're going to call each providers per-npdul e provi de operation
* specifying only this nodul e.

*/

for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
prv->dt pv_pops. dt ps_provi de_nodul e(prv->dtpv_arg, ctl);

nut ex_exi t (&md_| ock) ;
mut ex_exi t (&dt race_provi der _| ock);

/
If we have any retained enablings, we need to match agai nst them
Enabl i ng probes requires that cpu_l ock be held, and we cannot hold
cpu_l ock here -- it is legal for cpu_lock to be held when | oading a
nmodul e. (In particular, this happens when | oadi ng schedul i ng

* Ok Ok ok %

new usr/src/uts/comon/ dtrace/ dtrace. c

14714
14715
14716
14717

14719
14720
14721
14722

14724
14725

14727

14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740

14742
14743

14745
14746

14748

14750
14751
14752

14754
14755
14756
14757
14758
14759
14760
14761
14762
14763

14765
14766
14767
14768
14769
14770

14772
14773
14774
14775
14776
14777
14778
14779

* classes.) So if we have any retained enablings, we need to dispatch

* our task queue to do the match for us.
*/
nut ex_ent er (&dtrace_| ock) ;
if (dtrace_retained == NULL) {
nmut ex_exi t (&dtrace_l ock);
return;

}

(voi d) taskq_di spatch(dtrace_taskq,
(task_func_t *)dtrace_enabling_matchall, NULL, TQ SLEEP);

mut ex_exit (&dt race_| ock) ;

/*

* And now, for a little heuristic sleaze: in general, we want to

* match nodul es as soon as they |oad. However, we cannot guarantee
* this, because it would lead us to the | ock ordering violation

* outlined above. The common case, of course, is that cpu_lock is
* not_ held -- so we delay here for a clock tick, hoping that that’'s
* | ong enough for the task queue to do its work. |If i1t’s not, it's
* not a serious problem-- it just nmeans that the nodul e that we

* just | oaded may not be inmmediately instrunentable.

*

del ay(1);

static void
dt race_nodul e_unl oaded(struct nodctl *ctl)
14744 {

dtrace_probe_t tenplate, *probe, *first, *next;
dtrace_provider_t *prov;

tenpl ate.dtpr_nod = ctl->npd_npdnane;

nmut ex_ent er (&dt race_provi der _| ock) ;
nut ex_ent er (&od_| ock) ;
mut ex_ent er (&dtrace_| ock) ;

if (dtra;:e_bym)d == NULL) {
*

* The DTrace nodul e is | oaded (obviously) but not attached;
* we don't have any work to do.
*/

nut ex_exi t (&dtrace_provi der _| ock);
nmut ex_exi t (&md_| ock);

mut ex_exit (&dtrace_l ock);

return;

for (probe = first = dtrace_hash_| ookup(dtrace_bynod, &t enplate);
probe != NULL; probe = probe->dtpr_nextnod) {
if (probe->dtpr_ecb != NULL)
mut ex_exi t (&dt race_provi der _| ock);
mut ex_exi t (&mod_| ock) ;
mut ex_exit (&dJtrace_l ock);

/
This shouldn’t _actually_ be possible -- we're

unl oadi ng a nodul e that has an enabled probe init.
(It’s normally up to the provider to make sure that
this can’t happen.) However, because dtps_enabl e()
doesn’t have a failure nobde, there can be an

enabl e/unl oad race. Upshot: we don't want to
assert, but we’'re not going to disable the

* ok ok ok F bk Ok

219

new usr/src/uts/comon/ dtrace/ dtrace. c

14780
14781
14782
14783
14784
14785

14787
14788
14789

14791

14793
14794

14796

14798
14799
14800
14801

14803
14804
14805
14806
14807
14808
14809
14810

14812
14813
14814
14815
14816
14817

14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829

14831
14832
14833
14834

14836
14837

14839

}

voi d

* probe, either.
@

if (dtrace_err_verbose) {
cmm_err (CE_WARN, "unl oaded nodule ' %’ had "
"enabl ed probes", ctl->npd_nodnane);

}

return;

}
probe = first;

for (first = NULL; probe != NULL; probe = next) {
ASSERT(dt race_probes[probe->dtpr_id - 1] == probe);

dtrace_probes[probe->dtpr_id - 1] = NULL;

next = probe->dt pr_next nod;
dtrace_hash_renove(dtrace_bynod, probe);
dtrace_hash_renmove(dtrace_byfunc, probe);
dtrace_hash_renove(dtrace_bynane, probe);

if (first == NULL) {
first = probe;
probe- >dt pr _next nod = NULL;
} else {
probe->dtpr_nextnod = first;
first = probe;

}

/*

* W' ve renpved all of the nodule’s probes fromthe hash chains and
* fromthe probe array. Now issue a dtrace_sync() to be sure that
* everyone has cleared out from any probe array processing.

*

dtrace_sync();

for (probe = first; probe !'= NULL; probe = first) {
first = probe->dtpr_next nod;
prov = probe->dtpr_provider;
prov- >dt pv_pops. dt ps_destroy(prov->dtpv_arg, probe->dtpr_id,

probe->dt pr_arg);

kmem f ree(probe->dt pr_nod, strlen(probe->dtpr_nod) + 1);
kmem f ree(probe->dt pr_func, strlen(probe->dtpr_func) + 1);
kmem f r ee(pr obe->dt pr_nane, strlen(probe->dtpr_name) + 1);
vimem free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
kmem f ree(probe, sizeof (dtrace_probe_t));

}

mut ex_exi t (&dt race_| ock);
mut ex_exi t (&md_l ock) ;
nut ex_exi t (&t race_provi der _| ock);

dtrace_suspend(voi d)
14838 {

14840 }

14842
14843

14845

void

dtrace_probe_f oreach(of f set of (dtrace_pops_t, dtps_suspend));

dtrace_resune(void)
14844 {

dtrace_probe_foreach(of f setof (dtrace_pops_t, dtps_resune));

220

new usr/src/uts/comon/dtrace/ dtrace. c

14846 }

14848 static int

14849 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)

14850 {

14851 ASSERT(MUTEX_HELD(&pu_| ock)) ;

14852 nut ex_ent er (&dtrace_| ock) ;

14854 switch (what) {

14855 case CPU_CONFI G

14856 dtrace_state_t *state;

14857 dtrace_optval _t *opt, rs, c;

14859 /*

14860 * For now, we only allocate a new buffer for anonynous state.
14861 */

14862 if ((state = dtrace_anon.dta_state) == NULL)

14863 br eak;

14865 if (state->dts_activity != DTRACE_ACTI VI TY_ACTI VE)

14866 br eak;

14868 opt = state->dts_options;

14869 ¢ = opt [DTRACEOPT_CPU] ;

14871 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14872 br eak;

14874 /*

14875 * Regardl ess of what the actual policy is, we're going to
14876 * tenporarily set our resize policy to be manual. W're
14877 * also going to tenporarily set our CPU option to denote
14878 * the newy configured CPU.

14879 */

14880 rs = opt[DTRACEOPT BUFRESI ZE] ;

14881 opt [DTRACEOPT BUFRESI ZE] = DTRACEOPT BUFRESI ZE_MANUAL;
14882 opt [DTRACEOPT_CPU] = (dtrace_optval _t)cpu;

14884 (void) dtrace_state_buffers(state);

14886 opt [DTRACEOPT_BUFRESI ZE] = rs;

14887 opt [DTRACEOPT_CPU] = c;

14889 break;

14890 }

14892 case CPU_UNCONFI G

14893 I*

14894 * W& don’t free the buffer in the CPU UNCONFI G case. (The
14895 * buffer will be freed when the consuner exits.)

14896 */

14897 br eak;

14899 defaul t:

14900 br eak;

14901 }

14903 nut ex_exi t (&trace_| ock);

14904 return (0);

14905 }

14907 static void
14908 dtrace_cpu_setup_initial (processorid_t cpu)

14909 {
14910
14911 }

(void) dtrace_cpu_setup(CPU_CONFI G cpu);

new usr

/'src/uts/ common/ dtrace/ dtrace. c 222

14913 static void
14914 dtrace_toxrange_add(uintptr_t base, uintptr_t limt)

14915 {
14916
14917
14918

14920

14922
14923
14924
14925
14926
14927
14928

14930
14931

14933
14934
14935
14936
14937

14939
14940

14942
14943

14945
14946
14947
14948 }

if (dtrace_toxranges >= dtrace_toxranges_nax) {
int osize, nsize;
dtrace_toxrange_t *range;

osi ze = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);

if (osize == 0) {
ASSERT(dtrace_t oxrange == NULL);
ASSERT(dt race_t oxr anges_max == 0)
dtrace_t oxranges_nax = 1;

} else {
dtrace_t oxranges_nax <<= 1;

nsi ze
range

= dtrace_t oxranges_max * sizeof (dtrace_toxrange_t);
= kmem zal | oc(nsi ze, KM SLEEP);

if (dtrace_toxrange != NULL) {

ASSERT(0si ze !'= 0);

bcopy(dtrace_t oxrange, range, o0size);

kmem free(dtrace_t oxrange, osize);

}

dtrace_t oxrange = range;
}
ASSERT(dt race_t oxrange[dtrace_t oxranges] . dtt_base == NULL);
ASSERT(dtrace_t oxrange[dtrace_t oxranges].dtt_limt == NULL);

dtrace_t oxrange[dtrace_t oxranges].dtt_base = base;
dtrace_toxrange[dtrace_toxranges].dtt_limt = limt;
dtrace_t oxranges++;

14950 static void
14951 dtrace_getf_barrier()

14952 {
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965 }

/
Wien we have unprivileged (that is, non- DTRACE_CRV_KERNEL) enablings
that contain calls to getf(), this routine will be called on every
cl osef () before either the underlying vnode is released or the
file_t itself is freed. By the time we are here, it is essential
that the file_t can no | onger be accessed froma call to getf()

in probe context -- that assures that a dtrace_sync() can be used
to clear out any enablings referring to the old structures.

* Ok kR % R % k¥
-~

if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
kcred- >cr_zone->zone_dtrace_getf != 0)
dtrace_sync();

14967 #endif /* | codereview */
*

14968 /
14969
14970
14971 /

* DTrace Driver Cookbook Functions
*/
* ARGSUSED* /

14972 static int
14973 dtrace_attach(dev_info_t *devi, ddi_attach_cnd_t cnd)

14974 {
14975
14976
14977

dtrace_provider_id_t id;
dtrace_state_t *state = NULL;
dtrace_enabling_t *enab;

new usr/src/uts/comon/ dtrace/ dtrace. c

14979
14980
14981

14983
14984
14985
14986
14987
14988
14989
14990

14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003

15005
15006

15008
15009
15010
15011
15012
15013
15014
15015
15016

15018
15020

15022
15023
15024
15025
15026
15027
15028

15030
15031
15032

15034
15035
15036
15037

15039
15040
15041

15043

mut ex_ent er (&cpu_| ock) ;
mut ex_ent er (&dt race_provi der _| ock) ;
nut ex_ent er (&dtrace_| ock) ;

if (ddi_soft_state_init(&dtrace_softstate,

}

si zeof (dtrace_state_t), 0) != 0)
cmm_er r (CE_NOTE, "Jdev/dtrace failed to initialize soft state");
mut ex_exi t (&pu_l ock) ;
mut ex_exit (&dtrace_pr ovi der _| ock);
mut ex_exi t (&dtrace_l ock);
return (DDI _FAI LURE);

if (ddi_create_m nor_node(devi, DTRACEWMNR DTRACE, S |FCHR,

DTRACEMNRN_DTRACE, DDI _PSEUDO, NULL) == DDI _FAI LURE |
ddi _creat e_ni nor _node(devi, DTRACENNR HELPER S | FCHR,
DTRACEM\RN_HELPER, DD PSEUDO, NULL) == DDI _FAI LURE) {
cmm_err (CE_NOTE, "7Tdev/dtrace couldn’t create m nor nodes");
ddi _renove_mi nor _node(devi, NULL);
ddi _soft_state_fini (&dt race_softst ate);
mut ex_exi t (&cpu_l ock) ;
mut ex_exi t (&dtrace_provi der _| ock);
mut ex_exi t (&dtrace_l ock);
return (DDI _FAI LURE);

}
ddi _report_dev(devi);
dtrace_devi = devi;

dtrace_nodl oad = dtrace_nodul e_| oaded;
dtrace_modunl oad = dtrace_nodul e_unl oaded;
dtrace_cpu_init = dtrace_cpu_setup_initial;
dtrace_hel pers_cl eanup = dtrace_hel pers_ destroy
dtrace_hel pers_fork = dtrace_hel pers_duplicate;

dtrace_cpustart_init
dtrace_cpustart_fini
dtrace_debugger _init
dtrace_debugger _fi ni

dt race_suspend;
dtrace_resune;
dtrace_suspend;
dtrace_resune;

regi ster_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);

ASSERT(MUTEX_HELD(&pu_| ock)) ;

dtrace_arena = vnemcreate("dtrace", (void *)1, U NT32_MAX, 1,

NUCL, NULL, NULL, O, VM SLEEP | VMC_I DENTIFIER);

dtrace_minor = vnem_create("dtrace_minor", (void *)DTRACEMNRN CLONE,

U'NT32_MAX - DTRACEMNRN CLONE, "1, NULL, NULL, NULL, O,
VM SLEEP | VMC_| DENTI FI ER) ;

dtrace_taskq = taskg_create("dtrace_taskq", 1, maxclsyspri,

1, INT_MAX, 0)

dtrace_state_cache = knem cache creat e("dtrace_state_cache",

si zeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ AL G\,
NULL, NULL, NULL, NULL, NULL, 0);

ASSERT(MUTEX_HELD(&pu_l ock)) ;
dtrace_bynod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_nod),

of f set of (dtrace_probe_t, dtpr_nextnod),
of f set of (dtrace_probe_t, dtpr_prevnod));

dtrace_byfunc = dtrace_hash_creat e(of f set of (dtrace_probe_t, dtpr_func),

of f set of (dtrace_probe_t, dtpr_nextfunc),
of f set of (dtrace_probe_t, dtpr_prevfunc));

dtrace_byname = dtrace_hash_creat e(of f set of (dtrace_probe_t, dtpr_nane),

223

new usr/src/uts/comon/ dtrace/ dtrace. c

15044
15045

15047
15048
15049
15050
15051

15053
15054
15055
15056

15058
15059
15060
15061
15062
15063
15064
15065
15066

15068
15069

15071
15072
15073
15074
15075
15076

15078
15079

15081
15082
15083
15084
15085
15086
15087
15088
15089
15090

15092
15093
15094
15095
15096
15097
15098
15099
15100

15102
15103

15105
15106
15107
15108
15109

of f set of (dtrace_probe_t, dtpr_nextnane),
of f setof (dtrace_probe_t, dtpr_prevnane));

if (dtrace_retain_max < 1)
crm_err (CE_WARN, "illegal value (%u) for dtrace_retain_nmax;
"setting to 1", dtrace_retain_nax);
dtrace_retain_max = 1;

}

/*
* Now di scover our toxic ranges.
*/
dtrace_t oxi c_ranges(dtrace_t oxrange_add);

/*
* Before we register ourselves as a provider to our own framework,
* we would like to assert that dtrace_provider is NULL -- but that’'s
* not true if we were | oaded as a dependency of a DTrace provider.
* Once we’'ve registered, we can assert that dtrace_provider is our
*/pseudo provi der.
*
(void) dtrace_register("dtrace", &dtrace_provider_attr,

DTRACE_PRI V_NONE, O, &dtrace_pr ovi der _ops, NULL, & d);

ASSERT(dt race_provider != NULL);
ASSERT((dtrace_provider_id_t)dtrace_provider == id);

dtrace_probei d_begin = dtrace_probe_create((dtrace_provider_id_t)
dtrace_provider, NULL, NULL, "BEG N', O, NULL);

dtrace_probei d_end = dtrace_pr obe_creat e((dt race_provider_id_t)
dtrace_provider, NULL NULL, "END', 0, NULL);

dtrace_probeid_error = dtrace probe creat e((dtrace provider_id_t)
dtrace_provider, NULL, NULL, "ERROR', 1, NULL);

dtrace_anon_property();
mut ex_exi t (& pu_l ock) ;

/*

* |f DTrace helper tracing is enabled, we need to allocate the
* trace buffer and initialize the val ues.

*

if (dtrace_hel ptrace_enabl ed) {
ASSERT(dt race_hel ptrace_buffer == NULL);
dtrace_hel ptrace_buffer =
kmem zal | oc(dtrace_hel ptrace_bufsi ze, KM SLEEP);

) dtrace_hel ptrace_next = 0;

/
If there are already providers, we nust ask themto provide their
probes, and then match any anonynous enabling against them Note
that there should be no other retained enablings at this tinme:

*
*
*
*
* the only retained enablings at this time should be the anonynous
* enabl i ng.

*/

if

(dtrace_anon. dta_enabling != NULL) {
ASSERT(dtrace_retai ned == dtrace_anon. dta_enabl i ng);

dtrace_enabl i ng_provi de(NULL);
state = dtrace_anon. dta_st at e;

/
We couldn’t hold cpu_l ock across the above call to
dtrace_enabl i ng provide(), but we nust hold it to actually
enabl e the probes. W have to drop all of our |ocks, pick
up cpu_l ock, and regain our |ocks before matching the

* Ok ok Ok ¥

new usr/src/uts/comon/ dtrace/ dtrace. c

15110 * retained anonynous enabling.

15111 */

15112 mut ex_exi t (&dtrace_| ock);

15113 nut ex_exi t (&dtrace_provi der _| ock);

15115 mut ex_ent er (&cpu_l ock) ;

15116 nut ex_ent er (&dtrace_provi der _| ock);

15117 nut ex_ent er (&dtrace_| ock) ;

15119 if ((enab = dtrace_anon. dta_enabling) != NULL)
15120 (void) dtrace_enabling_match(enab, NULL);
15122 nmut ex_exi t (&cpu_I ock);

15123 }

15125 mut ex_exi t (&dtrace_| ock) ;

15126 nut ex_exi t (&t race_provi der _| ock);

15128 if (state !'= NULL) {

15129 /*

15130 * |f we created any anonynobus state, set it going now.
15131 */

15132 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15133 }

15135 return (DDl _SUCCESS);

15136 }

15138 / * ARGSUSED*/

15139 static int

15140 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15141 {

15142 dtrace_state_t *state;

15143 uint32_t priv;

15144 uid_t uid;

15145 zonei d_t zonei d;

15147 if (getmnor(*devp) == DTRACEMNRN_ HELPER)

15148 return (0);

15150 *

15151 * |f this wasn’t an open with the "helper" minor, then it nust be
15152 * the "dtrace" mnor.

15153 */

15154 if (getmnor(*devp) != DTRACEMNRN DTRACE)

15155 return (ENXIO;

15157 /*

15158 * |f no DTRACE_PRIV_* bits are set in the credential, then the
15159 * caller lacks sufficient permission to do anything w th DTrace.
15160 */

15161 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);

15162 if (priv == DTRACE_PRIV_NONE)

15163 return (EACCES);

15165 *

15166 * Ask all providers to provide all their probes.

15167 */

15168 nut ex_ent er (&dtrace_provi der _| ock);

15169 dtrace_probe_provi de(NULL, NULL);

15170 mut ex_exi t (&dt race_provi der _| ock);

15172 nut ex_ent er (&cpu_l ock) ;

15173 nmut ex_ent er (&dtrace_| ock) ;

15174 dtrace_opens++;

15175 dtrace_nenbar _producer();

new usr/src/uts/comon/ dtrace/ dtrace. c

15177
15178
15179
15180
15181
15182
15183
15184
15185
15186

15188
15189

15191
15192
15193
15194
15195
15196

15198

15200
15201 }

/*
* |f the kernel debugger is active (that is, if the kernel debugger
* nodified text in some way), we won't allow the open.
*
if (kdi_dtrace_set (KDl _DTSET_DTRACE_ACTI VATE) != 0) {
dtrace_opens--;
nmut ex_exi t (&cpu_l ock);
nut ex_exi t (&dtrace_| ock);
return (EBUSY);
}

state = dtrace_state_create(devp, cred_p);
mut ex_exi t (&cpu_l ock);

if (state == NULL)
if (--dtrace_opens == 0 && dtrace_anon. dta_enabling == NULL)
(voi d) kdi_dtrace_set (KDl _DTSET_DTRACE_DEACTI VATE) ;
mut ex_exi t (&Jtrace_l ock);
) return (EAGAIN);

mut ex_exi t (&dt race_| ock) ;

return (0);

15203 / * ARGSUSED*/
15204 static int
15205 dtrace_cl ose(dev_t dev, int flag, int otyp, cred_t *cred_p)

15206 {
15207
15208

15210
15211

15213

15215
15216

15218
15219
15220
15221
15222
15223
15224

15226
15227

15229
15230
15231
15232
15233
15234

15236
15237

15239
15240 }

m nor_t mnor = getm nor(dev);
dtrace_state_t *state;

if (mnor == DTRACEMNRN_HELPER)
return (0);

state = ddi _get_soft_state(dtrace_softstate, mnor);

mut ex_ent er (&cpu_| ock) ;
nmut ex_ent er (&t race_| ock) ;

if (state->dts_anon) {
/*
* There is anonynous state. Destroy that first.
*/

ASSERT(dtrace_anon. dta_state == NULL);
dtrace_state_destroy(state->dts_anon);

}

dtrace_state_destroy(state);

ASSERT(dtrace_opens > 0);

/*

* Only relinquish control of the kernel debugger interface when there
* are no consuners and no anonynous enablings.

*/

if (--dtrace_opens == 0 && dtrace_anon. dta_enabling == NULL)
(voi d) kdi _dtrace_set (KDl _DTSET_DTRACE_DEACTI VATE) ;

mut ex_exi t (&dt race_| ock) ;
mut ex_exi t (& pu_l ock) ;

return (0);

new usr/src/uts/comon/dtrace/ dtrace. c 227 new usr/src/uts/comon/dtrace/ dtrace. c 228
15242 | * ARGSUSED*/
15243 static int 15309 state = ddi _get_soft_state(dtrace_softstate, mnor);
15244 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15245 { 15311 if (state->dts_anon)
15246 int rval; 15312 ASSERT(dtrace_anon. dta_state == NULL);
15247 dof _hel per_t help, *dhp = NULL; 15313 state = state->dts_anon;
15314 }
15249 switch (cnd) {
15250 case DTRACEH OC_ADDDOF: 15316 switch (cmd) {
15251 if (copyin((void *)arg, &help, sizeof (help)) !'=0) { 15317 case DTRACEI OC_PROVI DER:
15252 dtrace_dof _error(NULL, "failed to copyin DOF hel per"); 15318 dtrace_provi derdesc_t pvd;
15253 return (EFAULT); 15319 dtrace_provider_t *pvp;
15254 }
15321 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15256 dhp = &hel p; 15322 return (EFAULT);
15257 arg = (intptr t)hel p. dof hp_dof ;
15258 / * FALLTHROUGH* / 15324 pvd. dt vd_name[DTRACE_PROVNAMELEN - 1] = '\0’;
15325 mut ex_ent er (&t race_provi der _| ock) ;
15260 case DTRACEH OC_ADD: {
15261 dof _hdr_t *dof = dtrace_dof _copyin(arg, &rval); 15327 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp- >dt pv_next) {
15328 if (st rcnp(pvp >dt pv_nane, pvd. dtvd nane) == 0)
15263 if (dof == NULL) 15329 br eak;
15264 return (rval); 15330 }
15266 nut ex_ent er (&dtrace_| ock) ; 15332 nut ex_exi t (&dtrace_provi der _| ock);
15268 /* 15334 if (pvp == NULL)
15269 * dtrace_hel per_slurp() takes responsibility for the dof -- 15335 return (ESRCH);
15270 * it may free it nowor it may save it and free it |ater.
15271 */ 15337 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15272 if ((rval = dtrace_hel per_slurp(dof, dhp)) !=-1) { 15338 bcopy(&pvp->dt pv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15273 *rv = rval; 15339 if (copyout(&vd, (void *)arg, sizeof (pvd)) != 0)
15274 rval = 0; 15340 return (EFAULT);
15275 } else {
15276 rval = ElI NVAL; 15342 return (0);
15277 1 15343 }
15279 nut ex_exi t (&dtrace_| ock); 15345 case DTRACEI OC_EPROBE: {
15280 return (rval); 15346 dtrace_eprobedesc_t epdesc;
15281 } 15347 dtrace_ecb_t *ecbh;
15348 dtrace_action_t *act;
15283 case DTRACEH OC_REMOVE: ({ 15349 voi d *buf;
15284 mut ex ent er (&dtrace_| ock); 15350 size_t size;
15285 rval = dtrace_hel per_dest roygen(ar 9); 15351 uintptr_t dest;
15286 mut ex_exi t (&trace_| ock); 15352 int nrecs;
15288 return (rval); 15354 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15289 } 15355 return (EFAULT);
15291 defaul t: 15357 nut ex_ent er (&dtrace_| ock) ;
15292 br eak;
15293 } 15359 if ((ecb = dtrace_epi d2ecb(state, epdesc.dtepd_epid)) == NULL) {
15360 mut ex_exi t (&t race_l ock);
15295 return (ENOTTY); 15361 return (EINVAL);
15296 } 15362 }
15298 / * ARGSUSED* / 15364 if (ecb->dte _probe == NULL) {
15299 static int 15365 nut ex_exi t (&trace_| ock);
15300 dtrace_ioctl (dev_t dev, int cnd, intptr_t arg, int nd, cred_t *cr, int *rv) 15366 return (EI NVAL);
15301 { 15367 }
15302 m nor_t mnor = getm nor(dev);
15303 dtrace_state_t *state; 15369 epdesc. dt epd_probei d = ecb->dt e_probe->dtpr_id;
15304 int rval; 15370 epdesc. dt epd_uarg = ecb->dte_uarg;
15371 epdesc. dt epd_si ze = ecb->dte_si ze;
15306 if (minor == DTRACEM\RN HELPER)
15307 return (dtrace_ioctl_hel per(cnd, arg, rv)); 15373 nrecs = epdesc. dtepd_nrecs;

new usr/src/uts/comon/ dtrace/ dtrace. c 229

15374
15375
15376
15377

15379
15380

15382
15383
15384
15385
15386
15387
15388
15389

15391
15392

15394
15395

15397
15398
15399

15401
15402

15404
15405
15406
15407

15409

15411
15412
15413
15414

15416
15417
15418

15420
15421
15422
15423
15424
15425
15426
15427
15428
15429

15431
15432

15434

15436
15437
15438
15439

}

epdesc. dt epd_nrecs = 0;

for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
if (DTRACEACT_| SAGH act->dta_kind) || act->dta_intuple)
conti nue;

epdesc. dt epd_nrecs++;

/*
* Now that we have the size, we need to allocate a tenporary
* buffer in which to store the conplete description. W need
* the tenmporary buffer to be able to drop dtrace_l ock()
* across the copyout(), bel ow
*/

size = sizeof (dtrace_eprobedesc_t) +

(epdesc. dtepd_nrecs * sizeof (dtrace_recdesc_t));

buf = kmem al | oc(si ze, KM SLEEP);
dest = (uintptr_t)buf;

bcopy(&epdesc (void *)dest, sizeof (epdesc));
dest += of fsetof (dtrace_epr obedesc _t, dtepd_ rec[O])

for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
if (DTRACEACT_| SAGH act->dta_kind) || act->dta_intuple)
conti nue;
if (nrecs-- ==
br eak;

bcopy(&act->dta_rec, (void *)dest,
si zeof (dtrace_ recdesc _t));
dest += sizeof (dtrace_recdesc_t);

}

mut ex_exit (&dtrace_l ock);

if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) !=0) {
krremfree(buf si ze);
return (EFAULT)

}

kmem f ree(buf, size);
return (0);

case DTRACEI OC_AGCDESC:

dtrace_aggdesc_t aggdesc;
dtrace_action_t *act;
dtrace_aggregation_t *agg;
int nrecs;

uint32_t offs;
dtrace_recdesc_t *lrec;
voi d *buf;

size_t size;

uintptr_t dest;

if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
return (EFAULT);

mut ex_ent er (&Jtrace_| ock);
if ((agg = dtrace_aggi d2agg(state, aggdesc.dtagd_id)) == NULL) {

mut ex_exi t (&Jtrace_| ock);
return (EI NVAL);

new usr/src/uts/comon/dtrace/ dtrace. c 230
15441 aggdesc. dt agd_epi d = agg- >dt ag_ecb- >dt e_epi d;

15443 nrecs = aggdesc. dtagd_nrecs;

15444 aggdesc. dtagd_nrecs = 0;

15446 of fs = agg->dt ag_base;

15447 Irec = &agg->dtag_ actl on.dta_rec

15448 aggdesc. dt agd_si ze = | rec->dtrd_ offset + lrec->dtrd_size - offs;
15450 for (act = agg->dtag first; ; act = act->dta_next) {

15451 ASSERT(act->dta_i ntuple ||

15452 DTRACEACT_| SAGH act - >dt a_ki nd)) ;

15454 /*

15455 * |f this action has a record size of zero, it
15456 * denotes an argunent to the aggregating action.
15457 * Because the presence of this record doesn’'t (or
15458 * shouldn’t) affect the way the data is interpreted,
15459 * we don't copy it out to save user-level the
15460 * confusion of dealing with a zero-length record.
15461 */

15462 if (act->dta_rec.dtrd_size == 0)

15463 ASSERT(agg- >dt ag_hasarg) ;

15464 conti nue;

15465 }

15467 aggdesc. dt agd_nr ecs++;

15469 if (act == &agg->dtag_action)

15470 br eak;

15471 1

15473 /*

15474 * Now that we have the size, we need to allocate a tenporary
15475 * buffer in which to store the conplete description. W need
15476 * the tenporary buffer to be able to drop dtrace_| ock()
15477 * across the copyout(), bel ow

15478 */

15479 size = sizeof (dtrace_aggdesc_t) +

15480 (aggdesc. dt agd_nrecs * sizeof (dtrace_recdesc_t));

15482 buf = kmem al | oc(si ze, KM SLEEP);

15483 dest = (uintptr_t)buf;

15485 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));

15486 dest += of fsetof (dtrace_aggdesc_t, dtagd_rec[0]);

15488 for (act = agg->dtag first; ; act = act->dta_next) {

15489 dtrace_recdesc_t rec = act->dta_rec;

15491 /*

15492 * See the comment in the above | oop for why we pass
15493 * over zero-length records.

15494 */

15495 if (rec.dtrd_size == 0) {

15496 ASSERT(agg- >dt ag_hasar g) ;

15497 conti nue;

15498 }

15500 if (nrecs-- == 0)

15501 br eak;

15503 rec.dtrd_offset -= offs

15504 bcopy(&ec, (void *)dest sizeof (rec));

15505 dest += sizeof (dtrace_r ecdesc_t);

new usr/src/uts/comon/ dtrace/ dtrace. c 231

15507
15508
15509

15511

15513
15514
15515
15516

15518
15519
15520

15522
15523
15524
15525
15526

15528

15530
15531
15532
15533
15534
15535

15537
15538

15540
15541

15543
15544
15545

15547
15548
15549
15550
15551
15552

15554
15555
15556
15557
15558
15559

15561
15562
15563
15564
15565
15566
15567

15569
15570
15571

}

if (act == &agg->dtag_action)
br eak;

}

mut ex_exit (&dtrace_| ock);

if (copyout(buf (void *)arg, dest - (uintptr_t)buf) !=0) {
kmem f ree(buf si ze);
return (EFAULT)

}

kmem free(buf, size);
return (0);

case DTRACEI OC_ENABLE: {

dof _hdr_t *dof;
dtrace_enabling_t *enab = NULL;
dtrace_vstate_t *vstate;

int err = 0;

*rv = 0;

/*

* |f a NULL argunent has been passed, we take this as our
* cue to reevaluate our enablings.

*/

if (arg == NULL) {

dtrace_enabl i ng_matchal | ();

return (0);

}

if ((dof = dtrace_dof _copyin(arg, &val)) == NULL)
return (rval);

nut ex_ent er (&cpu_| ock) ;
mut ex_ent er (&Jtrace_| ock);
vstate = &state->dts_vstate;

if (state->dts_activity !'= DTRACE_ACTI VI TY_I NACTI VE) {
mut ex_exi t (&dtrace_| ock);
mut ex_exi t (&pu_l ock) ;
dtrace_dof _destroy(dof);

) return (EBUSY);

if (dtrace_dof _slurp(dof, vstate, cr, &nab, 0, B TRUE) != 0) {
mut ex_exi t (&dtrace_| ock);
mut ex_exi t (& pu_I ock);
dtrace_dof _destroy(dof);
return (EINVAL);
}

if ((rval = dtrace_dof _options(dof, state)) != 0) {
dtrace_enabl i ng_destroy(enab);
mut ex_exi t (&t race_l ock);
mut ex_exi t (& pu_I ock);
dtrace_dof _destroy(dof);
return (rval);

}

if ((err = dtrace_enabling_match(enab, rv)) == 0) {
err = dtrace_enabling_retain(enab);
} else {

new usr/src/uts/comon/dtrace/ dtrace. c 232
15572 dtrace_enabl i ng_destroy(enab);

15573 }

15575 nmut ex_exi t (&cpu_| ock);

15576 nut ex_exi t (&dtrace_ Iock)

15577 dtrace_dof _destroy(dof);

15579 return (err);

15580 }

15582 case DTRACEI OC_REPLI CATE: {

15583 dtrace_repl desc_t desc;

15584 dtrace_probedesc_t *match = &desc. dtrpd_match;
15585 dtrace_probedesc_t *create = &desc.dtrpd_create;
15586 int err;

15588 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15589 return (EFAULT);

15591 mat ch- >dt pd_pr ovi der [DTRACE_PROVNAMELEN - 1] = '\0";
15592 mat ch- >dt pd_nod[DTRACE_ MODNAMELEN - 1] = "\0’;
15593 mat ch- >dt pd_f unc[DTRACE_FUNCNAVELEN - 1] = '\ 0’;
15594 mat ch- >dt pd_nanme[DTRACE_NAMELEN - 1] = '\0’;

15596 creat e- >dt pd_provi der [DTRACE_PROVNAMELEN - 1] = '\0’;
15597 creat e- >dt pd_nod[DTRACE_ MODNAMELEN - 1] = '\0’;
15598 creat e- >dt pd_f unc[DTRACE_FUNCNAMELEN - 1] = '"\0’;
15599 creat e- >dt pd_nane[DTRACE_NAMELEN - 1] = "\0’;

15601 nut ex_ent er (&dtrace_| ock) ;

15602 err = dtrace_enabling_replicate(state, match, create);
15603 mut ex_exit (&dtrace_l ock);

15605 return (err);

15606 }

15608 case DTRACEI OC_PROBENMATCH:

15609 case DTRACEI OC_PROBES: {

15610 dtrace_probe_t *probe = NULL;

15611 dtrace_probedesc_t desc;

15612 dtrace_probekey_t pkey;

15613 dtrace_id_t i;

15614 int m=0;

15615 uint32_t priv;

15616 uid_t uid;

15617 zonei d_t zonei d;

15619 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15620 return (EFAULT);

15622 desc. dt pd_provi der [DTRACE_PROVNAMELEN - 1] = '\ 0’;
15623 desc. dt pd_nod[DTRACE_MODNAMELEN - 1] = '\0’;

15624 desc. dt pd_f unc[DTRACE_FUNCNAMELEN - 1] = ’\0’;
15625 desc. dt pd_name[DTRACE_NAMELEN - 1] = "\0O’

15627 /*

15628 * Before we attenpt to match this probe, we want to give
15629 * all providers the opportunity to provide it.
15630 */

15631 if (desc.dtpd_id == DTRACE_| DNONE) {

15632 mut ex_ent er (&Jtrace_provi der _| ock);

15633 dtrace_probe_provi de(&esc, NULL);

15634 nmut ex_exi t (&dt race_provi der _| ock);

15635 desc. dt pd_i d++;

15636 }

new usr/src/uts/comon/ dtrace/ dtrace. c 233

15638
15639
15640
15641

15643
15645

15647
15648
15649
15650
15651
15652
15653

15655
15656
15657
15658

15660
15661
15662
15663
15664
15665
15666

15668
15669
15670
15671

15673
15674

15676
15677

15679
15680

15682
15683
15684
15685

15687
15688

15690
15691

15693
15694

15696
15697
15698

15700
15701
15702
15703

}

if (cmd == DTRACEI OC_PROBEMATCH) {
dtrace_probekey(&desc, &pkey);
pkey. dt pk_i d = DTRACE_| DNONE;

dtrace_cred2priv(cr, &priv, &uid, &zoneid);
nut ex_ent er (&dtrace_| ock) ;

if (cmd == DTRACEI OC_PROBEVATCH) {
for (i = desc.dtpd_id; I <= dtrace_nprobes; i++) {
if ((probe = dtrace_probes[i - 1]) != NULL &&
(m = dtrace_match_pr obe(probe &pkey,
priv, uid, zoneid)) !=

br eak;
}
if (m<o0) {
mut ex_exi t (&dtrace_l ock);
return (EI NVAL);
}
} else {
for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
|f ((probe = dtrace _probes[i - 1]) !'= NULL &&
dtrace_match_priv(probe, priv, uid, zoneid))
break;
}
}

if (probe == NULL)
mut ex_exi t (&Jtrace_l ock);
return (ESRCH);

}

dtrace_probe_descri ption(probe, &desc);
mut ex_exit (&dtrace_l ock);

if (copyout(&dJesc, (void *)arg, sizeof (desc)) != 0)
return (EFAULT);

return (0);

case DTRACEI OC_PROBEARG {

dtrace_argdesc_t desc;
dtrace_probe_t *probe;
dtrace_provider_t *prov;

if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
return (EFAULT);

if (desc.dtargd_i d == DTRACE_| DNONE)
return (EINVAL);

if (desc.dtargd_ndx == DTRACE_ARGNONE)
return (EINVAL);

nut ex_ent er (&dtrace_provi der _| ock);
mut ex_ent er (&rod_| ock) ;
mut ex_ent er (&Jtrace_| ock);

if (desc.dtargd_id > dtrace_nprobes) {
mut ex_exi t (&dtrace_| ock);
mut ex_exi t (&mod_| ock) ;
nmut ex_exi t (&t race_pr ovi der _I ock) ;

new usr/src/uts/comon/dtrace/ dtrace.c 234
15704 return (EINVAL);

15705 }

15707 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
15708 mut ex_exi t (&dtrace_l ock);

15709 mut ex_exi t (&mod_| ock) ;

15710 mut ex_exi t (&dtrace_pr ovi der _I ock);

15711 return (EINVAL);

15712 }

15714 mut ex_exit (&dtrace_l ock);

15716 prov = probe->dtpr_provider;

15718 if (prov->dtpv_pops. dtps_getargdesc == NULL) {

15719 /*

15720 * There isn't any typed information for this probe.
15721 * Set the argunment nunber to DTRACE._. E.
15722 */

15723 desc. dt argd_ndx = DTRACE_ARGNONE;

15724 } else {

15725 desc.dtargd_native[0] = "'\0";

15726 desc. dtargd_xlate[0] = "\0";

15727 desc. dt argd_nappi ng = desc. dt ar gd_ndx;

15729 prov->dt pv_pops. dt ps_get ar gdesc(prov->dt pv_arg,
15730 probe->dtpr_i d, probe->dtpr_arg, &desc);
15731 }

15733 nmut ex_exi t (&md_| ock);

15734 mut ex_exi t (&dtrace_provi der _| ock);

15736 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15737 return (EFAULT);

15739 return (0);

15740 }

15742 case DTRACEI OC_GO

15743 processorid_t cpuid;

15744 rval = dtrace_state_go(state, &cpuid);

15746 if (rval !'=0)

15747 return (rval);

15749 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15750 return (EFAULT);

15752 return (0);

15753 }

15755 case DTRACEI OC_STOP: {

15756 processorid_t cpuid;

15758 nmut ex ent er (&dtrace_| ock);

15759 rval = dtrace_state_stop(state, &cpuid);

15760 mut ex_exi t (&dtrace_Tock);

15762 if (rval !'=0)

15763 return (rval);

15765 if (copyout(&puid, (void *)arg, sizeof (cpuid)) != 0)
15766 return (EFAULT);

15768 return (0);

15769 }

new usr/src/uts/comon/dtrace/ dtrace. c 235 new usr/src/uts/comon/dtrace/ dtrace.c 236
15771 case DTRACEI OC_DOFGET: ({ 15837 /*
15772 dof _hdr_t hdr, *dof; 15838 * If this is aring buffer that has w apped, we want
15773 uint64_t len; 15839 * to copy the whole thing out.
15840 */
15775 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 15841 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
15776 return (EFAULT); 15842 dtrace_buffer_polish(buf);
15843 sz = buf->dtb_size;
15778 nut ex_ent er (&dtrace_| ock) ; 15844 }
15779 dof = dtrace_dof _create(state);
15780 mut ex_exit (&dtrace_l ock); 15846 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
15847 mut ex_exi t (&t race_| ock);
15782 len = M N(hdr. dof h_| oadsz, dof->dofh_| oadsz); 15848 return (EFAULT);
15783 rval = copyout (dof, (void *)arg, len); 15849 }
15784 dtrace_dof _destroy(dof);
15851 desc. dtbd_size = sz;
15786 return (rval == 0 ? 0 : EFAULT); 15852 desc. dt bd_drops = buf - >dt b _drops;
15787 } 15853 desc.dtbd_errors = buf->dtb_errors;
15854 desc. dt bd_ol dest = buf - >dt b_xanot offset
15789 case DTRACElI OC_AGGSNAP: 15855 desc. dt bd_ti nest anp dtrace_gethrtinme();
15790 case DTRACEI OC_BUFSNAP:
15791 dtrace_bufdesc_t desc; 15857 mut ex_exi t (&dtrace_| ock);
15792 caddr _t cached;
15793 dtrace_buffer_t *buf; 15859 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15860 return (EFAULT);
15795 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15796 return (EFAULT); 15862 buf->dtb_fl ags | = DTRACEBUF_CONSUMED;
15798 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 15864 return (0);
15799 return (EINVAL); 15865 }
15801 mut ex_ent er (&Jtrace_| ock); 15867 if (buf->dtb_tomax == NULL) {
15868 ASSERT(buf - >dt b_xanot == NULL);
15803 if (cmd == DTRACEI OC_BUFSNAP) { 15869 mut ex_exi t (&t race_l ock);
15804 buf = &state->dts_buffer[desc.dtbd_cpu]; 15870 return (ENCENT);
15805 } else { 15871 1
15806 buf = &state->dts_aggbuffer[desc.dtbd_cpu];
15807 } 15873 cached = buf->dtb_t omax;
15874 ASSERT(! (buf->dtb_flags & DTRACEBUF_NOSW TCH)) ;
15809 if (buf->dtb flags & (DTRACEBUF RING | DTRACEBUF_FILL)) {
15810 size t sz = buf->dtbh_offset; 15876 dtrace_xcal | (desc. dt bd_cpu,
15877 (dtrace_xcal | _t)dtrace_buffer_sw tch, buf);
15812 if (state->dts_activity != DTRACE_ACTI VI TY_STOPPED) {
15813 mut ex_exit (&dtrace_| ock); 15879 state->dts_errors += buf->dtb_xanot _errors;
15814 return (EBUSY);
15815 } 15881 /*
15882 * |f the buffers did not actually switch, then the cross call
15817 1* 15883 * did not take place -- presumably because the given CPU is
15818 * |f this buffer has already been consuned, we're 15884 * not in the ready set. If this is the case, we'll return
15819 * going to indicate that there’s nothing left here 15885 * ENOCENT.
15820 * to consune. 15886 */
15821 */ 15887 if (buf->dtb_tomax == cached) {
15822 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 15888 ASSERT(buf - >dt b_xanot != cached);
15823 nut ex_exi t (&dtrace_| ock) ; 15889 mut ex_exi t (&t race_l ock);
15890 return (ENCENT);
15825 desc. dtbd_si ze = 0; 15891 }
15826 desc. dtbd_drops = O;
15827 desc. dtbd_errors = 0; 15893 ASSERT(cached == buf->dtb_xanot);
15828 desc. dt bd_ol dest = 0;
15829 sz = sizeof (desc); 15895 /*
15896 * W have our snapshot; now copy it out.
15831 if (copyout(&desc, (void *)arg, sz) != 0) 15897 */
15832 return (EFAULT); 15898 if (copyout (buf->dtb_xanmot, desc.dtbd_data,
15899 buf - >dt b_xanot _of fset) != 0) {
15834 return (0); 15900 mut ex_exi t (&dtrace_l ock);
15835 } 15901 return (EFAULT);

new usr/src/uts/comon/dtrace/ dtrace. c 237 new usr/src/uts/comon/dtrace/ dtrace.c 238
15902 }
15969 stat.dtst_dyndrops += dcpu->dtdsc_drops;
15904 desc. dt bd_si ze = buf->dt b_xanot _of f set; 15970 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
15905 desc. dt bd_drops = buf->dtb_xanot _dr ops; 15971 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
15906 desc. dtbd_errors = buf->dtb_xanot_errors;
15907 desc. dt bd_ol dest = 0; 15973 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
15908 desc. dtbd_timestanp = buf->dtb_sw tched; 15974 stat.dtst_filled++;
15910 nmut ex_exi t (&dtrace_| ock); 15976 nerrs += state->dts_buffer[i].dtb_errors;
15912 /* 15978 for (j =0; j < state->dts_nspecul ations; j++) {
15913 * Finally, copy out the buffer description. 15979 dtrace_specul ati on_t *spec;
15914 */ 15980 dtrace_buffer_t *buf;
15915 if (copyout(&dJesc, (void *)arg, sizeof (desc)) != 0)
15916 return (EFAULT); 15982 spec = &state->dts_specul ations[j];
15983 buf = &spec->dtsp_buffer[i];
15918 return (0); 15984 stat. dtst_specdrops += buf->dt b_xanot _drops;
15919 } 15985 }
15986 }
15921 case DTRACEI OC_CONF:
15922 dtrace_conf_t conf; 15988 stat.dtst_specdrops_busy = state->dts_specul ati ons_busy;
15989 stat. dtst_specdrops_unavail = state->dts_specul ati ons_unavail ;
15924 bzero(&conf, sizeof (conf)); 15990 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
15925 conf.dtc_difversion = DI F_VERSI ON; 15991 stat.dtst_dblerrors = state->dts_dblerrors;
15926 conf.dtc_difintregs = D F_DI R NREGS; 15992 stat.dtst_killed =
15927 conf.dtc_diftupregs = DI F_DTR NREGS; 15993 (state->dts_activity == DTRACE_ACTI VI TY_KI LLED);
15928 conf.dtc_ctfnodel = CTF_MODEL_NATI VE; 15994 stat.dtst_errors = nerrs;
15930 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 15996 nmut ex_exi t (&dtrace_| ock);
15931 return (EFAULT);
15998 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
15933 return (0); 15999 return (EFAULT);
15934 }
16001 return (0);
15936 case DTRACEI OC _STATUS: { 16002 }
15937 dtrace_status_t stat;
15938 dtrace_dstate_t *dstate; 16004 case DTRACEI OC_FORMAT: {
15939 int i, j; 16005 dtrace_fntdesc_t fnt;
15940 uint64_t nerrs; 16006 char *str;
16007 int |en;
15942 /*
15943 * See the comment in dtrace_state_deadnan() for the reason 16009 if (copyin((void *)arg, & nt, sizeof (fnt)) != 0)
15944 * for setting dts_|laststatus to | NT64_MAX before setting 16010 return (EFAULT);
15945 * it to the correct val ue.
15946 * 16012 mut ex_ent er (&Jtrace_| ock);
15947 state->dts_| aststatus = | NT64_MAX;
15948 dt race_nenbar _producer (); 16014 if (fm.dtfd_format == 0 ||
15949 state->dts_l aststatus = dtrace_gethrtine(); 16015 fnt.dtfd_format > state->dts_nformats) {
16016 mut ex_exit (&dJtrace_l ock);
15951 bzero(&stat, sizeof (stat)); 16017 return (EINVAL);
16018 }
15953 mut ex_ent er (&Jtrace_| ock);
16020 /*
15955 if (state->dts_activity == DTRACE_ACTI VI TY_I NACTI VE) { 16021 * Format strings are allocated contiguously and they are
15956 mut ex_exi t (&t race_l ock); 16022 * never freed; if a format index is less than the nunber
15957 return (ENCENT); 16023 * of formats, we can assert that the format map is non- NULL
15958 } 16024 * and that the format for the specified index is non-NULL.
16025 */
15960 if (state->dts_activity == DTRACE_ACTI VI TY_DRAI NI NG 16026 ASSERT(state->dts_formats != NULL);
15961 stat.dtst_exiting = 1; 16027 str = state->dts_formats[fnt.dtfd_format - 1];
16028 ASSERT(str != NULL);
15963 nerrs = state->dts_errors;
15964 dstate = &state->dts_vstate.dtvs_dynvars; 16030 len = strlen(str) + 1;
15966 for (i =0; i < NCPU;, i++) { 16032 if (len > fnt.dtfd_l ength) {
15967 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpul[i]; 16033 fnt.dtfd_length = Il en;

new usr/src/uts/comon/dtrace/ dtrace. c 239 new usr/src/uts/comon/dtrace/ dtrace. c 240
16100 * none.
16035 if (copyout(& mt, (void *)arg, sizeof (fnt)) !'= 0) { 16101 */
16036 mut ex_exi t (&dtrace_l ock); 16102 ASSERT(st at e- >dt s_nechs == 0);
16037 return (EI NVAL); 16103 dtrace_state_destroy(state);
16038 }
16039 } else { 16105 /*
16040 if (copyout(str, fm.dtfd_string, len) !'=0) { 16106 * |If we're being detached with anonynous state, we need to
16041 nut ex_exi t (&trace_| ock); 16107 * indicate to the kernel debugger that DTrace is now inactive.
16042 return (ElI NVAL); 16108 *
16043 } 16109 (void) kdi_dtrace_set (KDl _DTSET_DTRACE_DEACTI VATE) ;
16044 1 16110 }
16046 nut ex_exi t (&dtrace_| ock); 16112 bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16047 return (0); 16113 unr egi ster_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16048 } 16114 dtrace_cpu_init = NULL;
16115 dtrace_hel pers_cl eanup = NULL;
16050 defaul t: 16116 dtrace_hel pers_fork = NULL;
16051 br eak; 16117 dtrace_cpustart_init = NULL;
16052 } 16118 dtrace_cpustart_fini = NULL;
16119 dtrace_debugger _i nit = NULL;
16054 return (ENOTTY); 16120 dtrace_debugger _fini = NULL;
16055 } 16121 dtrace_nodl oad = NULL;
16122 dtrace_nodunl oad = NULL;
16057 /* ARGSUSED*/
16058 static int 16124 ASSERT(dtrace_getf == 0);
16059 dtrace_detach(dev_info_t *dip, ddi_detach_cnd_t cnd) 16125 ASSERT(dtrace_cl osef == NULL);
16060 {
16061 dtrace_state_t *state; 16127 #endif /* | codereview */
16128 nut ex_exi t (&pu_l ock) ;
16063 switch (cnd) {
16064 case DDI _DETACH: 16130 if (dtrace_hel ptrace_enabl ed)
16065 br eak; 16131 kmem free(dtrace_hel ptrace_buffer, dtrace_hel ptrace_bufsize);
16132 dtrace_hel ptrace_buffer = NULL;
16067 case DDl _SUSPEND: 16133 }
16068 return (DDl _SUCCESS);
16135 kmem free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16070 defaul t: 16136 dtrace_probes = NULL;
16071 return (DDl _FAI LURE); 16137 dtrace_nprobes = 0;
16072 }
16139 dtrace_hash_destroy(dtrace_bynod);
16074 nmut ex_ent er (&cpu_|l ock) ; 16140 dtrace_hash_destroy(dtrace_byfunc);
16075 nut ex_ent er (&dt race_provi der _| ock) ; 16141 dtrace_hash_destroy(dtrace_bynane);
16076 mut ex_ent er (&dtrace_| ock) ; 16142 dtrace_bymod = NULL;
16143 dtrace_byfunc = NULL;
16078 ASSERT(dt race_opens == 0); 16144 dtrace_byname = NULL;
16080 if (dtrace_hel pers > 0) { 16146 kmem cache_destroy(dtrace_state_cache);
16081 mut ex_exi t (&dtrace_provi der _| ock); 16147 vem destroy(dtrace_m nor);
16082 mut ex_exit (&dtrace_l ock); 16148 viem dest roy(dtrace_arena);
16083 nmut ex_exi t (&cpu_I ock);
16084 return (DDI _FAI LURE); 16150 if (dtrace_toxrange != NULL)
16085 } 16151 kmem f ree(dtrace_t oxrange,
16152 dtrace_t oxranges_max * sizeof (dtrace_toxrange_t));
16087 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 16153 dtrace_t oxrange = NULL;
16088 nut ex_exi t (&dtrace_provi der _| ock); 16154 dtrace_t oxranges = O;
16089 mut ex_exit (&dtrace_| ock); 16155 dtrace_t oxranges_nmax = O;
16090 mut ex_exi t (&cpu_l ock) ; 16156 }
16091 return (DDl _FAI LURE);
16092 } 16158 ddi _renove_mi nor _node(dtrace_devi, NULL);
16159 dtrace_devi = NULL;
16094 dtrace_provi der = NULL;
16161 ddi _soft_state_fini(&trace_softstate);
16096 if ((state = dtrace_anon_grab()) != NULL) {
16097 /* 16163 ASSERT(dtrace_vtine_references == 0);
16098 * If there were ECBs on this state, the provider should 16164 ASSERT(dtrace_opens == 0);
16099 * have not been allowed to detach; assert that there is 16165 ASSERT(dt race_retai ned == NULL);

new usr/src/uts/comon/ dtrace/ dtrace. c 241 new usr/src/uts/comon/ dtrace/ dtrace. c 242

16232 &dtrace_cb_ops, /* driver operations */
16167 mut ex_exi t (&dt race_| ock); 16233 NULL, /* bus operations */
16168 mut ex_exi t (&dt race_provi der _| ock); 16234 nodev, /* dev power */
16235 ddi _qui esce_not _needed, /* quiesce */
16170 /* 16236 };
16171 * W don’t destroy the task queue until after we have dropped our
16172 * locks (taskg_destroy() may block on running tasks). To prevent 16238 static struct nodldrv nodldrv = {
16173 * attenpting to do work after we have effectively detached but before 16239 &nmod_dri ver ops, /* modul e type (this is a pseudo driver) */
16174 * the task queue has been destroyed, all tasks dispatched via the 16240 "Dynam ¢ Tracing", /* name of nodul e */
16175 * task queue nust check that DIrace is still attached before 16241 &dtrace_ops, /* driver ops */
16176 * perform ng any operation. 16242 };
16177 */
16178 taskqg_destroy(dtrace_taskq); 16244 static struct nodlinkage nodlinkage = {
16179 dtrace_taskq = NULL; 16245 MODREV_1,
16246 (void *)&nmodl drv,
16181 return (DDl _SUCCESS); 16247 NULL
16182 } 16248 };
16184 /* ARGSUSED*/ 16250 i nt
16185 static int 16251 _init(void)
16186 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocnd, void *arg, void **result) 16252 {
16187 { 16253 return (nod_install (&odl i nkage));
16188 int error; 16254 }
16190 switch (infocmd) { 16256 int
16191 case DDl _I NFO_DEVT2DEVI NFO 16257 _info(struct nodinfo *nodi nfop)
16192 *result = (void *)dtrace_devi; 16258 {
16193 error = DDI _SUCCESS; 16259 return (nod_i nfo(&odl i nkage, nodinfop));
16194 br eak; 16260 }
16195 case DDl _I NFO_DEVT2I NSTANCE:
16196 *result = (void *)O0; 16262 int
16197 error = DDI _SUCCESS; 16263 _fini (void)
16198 br eak; 16264 {
16199 defaul t: 16265 return (nod_renove(&modlinkage));
16200 error = DDI _FAI LURE; 16266 }
16201 }
16202 return (error);
16203 }
16205 static struct cb_ops dtrace_cb_ops = {
16206 dtrace_open, * open */
16207 dtrace_cl ose, /* close */
16208 nul | dev, /* strategy */
16209 nul | dev, /* print */
16210 nodev, /* dunp */
16211 nodev, [* read */
16212 nodev, /* wite */
16213 dtrace_ioctl, /* ioctl */
16214 nodev, /* devmap */
16215 nodev, /* mmap */
16216 nodev, /* segmap */
16217 nochpol | , /* poll */
16218 ddi _prop_op, /* cb_prop_op */
16219 0, [* streantab */
16220 D NEW| D_MP /* Driver conpatibility flag */
16221 };

16223 static struct dev_ops dtrace_ops = {

16224 DEVO_REV, /* devo_rev */
16225 0, /* refcnt */
16226 dtrace_info, /* get_dev_info */
16227 nul | dev, /* identify */
16228 nul | dev, /* probe */

16229 dtrace_attach, /* attach */
16230 dtrace_det ach, /* detach */
16231 nodev, /* reset */

new usr/src/uts/comon/dtrace/ sdt_subr.c

R R R R

55331 Tue Jan 14 16:50: 02 2014
new usr/src/uts/comon/dtrace/sdt_subr.c
2915 DTrace in a zone shoul d see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have linited provider access
Revi ewed by: Joshua M dul ow <j osh@ysngr. or g>
Revi ewed by: Adam Levent hal <ahl @lel phi x. con»

R R R R R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governing perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 =
19 * CDDL HEADER END
20 */
21 /*

22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. Al rights reserved.

23 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.
24 #endif /* | codereview */
25 */

27 #include <sys/sdt_inpl.h>

29 static dtrace_pattr_t vtrace_attr = {
30 DTRACE_STABI LI TY_UNSTABLE, DTRACE_STABI LI TY_UNSTABLE, DTRACE CLASS | SA },

31 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE CLASS_UNKNOWN }
32 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS_UNKNOWN }
33 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS_UNKNOWN }

34 DTRACE_STABI LI TY_UNSTABLE, DTRACE_STABI LI TY_UNSTABLE, DTRACE CLASS | SA },
35 };

37 static dtrace_pattr_t info_attr = {
38 DTRACE_STABI LI TY_EVOLVI NG DTRACE_STABI LI TY_EVOLVI NG, DTRACE CLASS | SA },

39 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE CLASS_UNKNOMN },
40 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS_UNKNOWN },

41 { DTRACE_STABI LI TY_EVOLVI NG DTRACE_STABI LI TY_EVOLVI NG, DTRACE CLASS | SA },
42 DTRACE STABI LI TY PRI VATE, DTRACE | STABI LI TY_ PRI VATE, DTRACE CLASS I SA },
43 };

45 static dtrace_pattr_t fc_attr = {
46 { DTRACE_STABI LI TY_EVOLVI NG DTRACE_STABI LI TY_EVOLVI NG, DTRACE CLASS | SA },

a7 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE CLASS_UNKNOWN },
48 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS_UNKNOWN },

49 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS_| SA },
50 DTRACE_STABI LI TY_EVOLVI NG, DTRACE_STABI LI TY_EVOLVI NG DTRACE_CLASS_| SA },
51 };

53 static dtrace_pattr_t fpu_attr = {
54 { DTRACE_STABI LI TY_EVOLVI NG DTRACE_STABI LI TY_EVOLVI NG, DTRACE CLASS | SA },

55 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS_UNKNOWN },
56 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS_UNKNOM },

57 DTRACE_STABI LI TY_EVOLVI NG, DTRACE_STABI LI TY_EVOLVI NG, DTRACE_CLASS_CPU },

new usr/src/uts/ comon/dtrace/ sdt_subr.c

58 { DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS | SA },

59 };

61 static dtrace_pattr_t fsinfo_attr = {

62 DTRACE_STABI LI TY_EVOLVI NG, DTRACE_STABI LI TY_EVOLVI NG, DTRACE CLASS | SA },
63 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS_ UNKNOMN },
64 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS_UNKNOWN },
65 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS_UNKNOWN 1,
66 { DTRACE_STABI LI TY_EVOLVI NG DTRACE STABI LI TY_EVOLVI NG DTRACE_CLASS_| SA },

67 };

69 static dtrace_pattr_t stab_attr = {

70 { DTRACE_STABI LI TY_EVOLVI NG DTRACE STABI LI TY_EVOLVI NG DTRACE CLASS_| SA },
71 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS_UNKNO/\N 1,
72 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS_ UNKNOWN },
73 DTRACE_STABI LI TY_EVOLVI NG, DTRACE STABI LI TY_EVOLVI NG DTRACE_CLASS | SA },

74 { DTRACE_STABI LI TY_EVOLVI NG, DTRACE_STABI LI TY_EVOLVI NG DTRACE_CLASS_| SA },
75 };

77 static dtrace_pattr_t sdt_attr = {

78 { DTRACE_STABI LI TY_EVOLVI NG DTRACE_STABI LI TY_EVOLVI NG DTRACE_CLASS | SA },
79 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS_UNKNOWN },
80 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS UNKNOWN },
81 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS | SA },

82 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS | SA },

83 };

85 static dtrace_pattr_t xpv_attr = {

86 { DTRACE_STABI LI TY_EVOLVI NG DTRACE_STABI LI TY_EVOLVI NG, DTRACE_CLASS_PLATFORM },
87 DTRACE_STABI LI TY_PRI VATE, DTRACE STABI LI TY_PRI VATE, DTRACE_CLASS_UNKNOWN },
88 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS_UNKNOWN },
89 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS_PLATFORM }
90 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE_CLASS_PLATFORM 1,
@il Fp

93 static dtrace_pattr_t iscsi_attr = {

94 DTRACE_STABI LI TY_EVOLVI NG, DTRACE_STABI LI TY_EVOLVI NG, DTRACE CLASS | SA },
95 { DTRACE_STABI LI TY_PRI VATE, DTRACE STABI LI TY_PRI VATE, DTRACE_CLASS_UNKNOWN },
96 DTRACE STABI LI TY PRI VATE, DTRACE STABI LI TY PRI VATE, DTRACE CLASS UNKNOWN },
97 DTRACE_STABI LI TY_PRI VATE, DTRACE_STABI LI TY_PRI VATE, DTRACE _CLASS | SA },

98 DTRACE_STABI LI TY_EVOLVI NG, DTRACE STABI LI TY_EVOLVI NG DTRACE_CLASS | SA },
99 };

101 sdt_provider_t sdt_providers[] = {

102 "vtrace", "__vtrace_", &trace_attr },

103 "sysinfo", "_ cpu_sysinfo_", & nfo_attr, DTRACE PRI V_USER },

104 "vminfo", " “cpu_vmnfo ", & nfo_attr, DTRACE PRI V_USER },

105 “fpuinfo", "_fpuinfo ", & pu_attr },

106 "sched", "__sched_", &stab_attr, DTRACE PRI V_USER },

107 "proc", " __proc_", &stab_attr, DTRACE PRI V_USER },

108 "1o", "__io_", &stab_attr },

109 “ip", "__ip_", &stab_attr },

110 "tcp", "__tcp_", &stab_attr },

111 "udp", " udp_, &stab_attr },

112 "mib", "__nmib_", &tab_attr },

113 “fsinfo", "_ fsinfo_ ", “& sinfo_attr },

114 "iscsi", "__iscsi_", & scsi_attr },

115 "nfsv3d", "__nfsv3_", &stab_attr },

116 "nfsv4", "__nfsv4 ", &stab_attr },

117 "xpv", "__xpv_", &pv_attr },

118 "fe", "__fc_", & c_attr },

119 "sr p", "__srp_", & c_attr },

120 "sysevent", "__sysevent_ ", &stab_attr },

121 "sdt", NULL, &sdt_attr },

23 "vtrace", "__vtrace_", &trace_attr, 0 },

24 "sysinfo", "__cpu_sysinfo_", & nfo_attr, 0 },

new usr/src/uts/comon/dtrace/ sdt_subr.c

25 “vmnfo", "__cpu_vmnfo_", & nfo_attr, 0},
26 "fpuinfo", "_ fpuinfo_", & pu_attr, 0 },
27 "sched", __sched_", &stab_attr, 0 },

28 "proc", "__proc_", &stab_attr, 0},

29 "1o", "_|o ", &stab_attr, 0},

30 ip", "__ip_", &stab_attr, 0},

31 "tcp", '_tcp_, &stab_attr, 0 },

32 "udp", "__udp_", &stab_attr, 0},

33 "mb", "_mb_", &tab_attr, 0},

34 “fsinfo", "_fsinfo ", & sinfo_attr, 0 },
35 "iscsi", " _“iscsi_", & scsi_attr, 0},

36 "nfsv3", "__nfsv3 ", &stab_attr, 0},

37 "nfsv4", "__nfsv4 ", &stab_attr, 0},

38 "xpv', "__Xpv_", &pv_attr, 0},

39 "fe", "__fc_", & c_attr, 0},

40 "srp", "__srp_", & c_attr, 0},

41 "sysevent", "__sysevent_", &stab_attr, 0},
42 "sdt”, NULL, &sdt_attr, 0},

122 NULL }

123

_hnchanged_port ion_onmtted_

1159 /* ARGSUSED*/

1160 int

1161 sdt_node(void *arg, dtrace_id_t id, void *parg)
{

that the firing needs to
necessary privileges, an

1163 /*

1164 * W tell DTrace that we’re in kernel node,

1165 * be dropped for anything that doesn’t have

1166 * that it needs to be restricted for anything that has restricted
1167 * (i e., not all-zone) privileges.

1168

1169 return (DTRACE_MODE_KERNEL | DTRACE_MODE_NCPRI V_DROP |

1170 DTRACE_MODE LI M TEDPRI V_RESTRI CT) ;

1171 }

1173 /* ARGSUSED*/
1174 #endif /* ! codereview */
1175 void

1176 sdt_getargdesc(void *arg, dtrace_id_t id, void *parg,

dtrace_argdesc_t *desc)

1178 sdt _probe_t *sdp = parg;

1179 int i;

1181 desc->dtargd_native[0] = '\0";

1182 desc->dtargd_xlate[0] = '\0";

1184 for (i = 0; sdt_args[i]. sda _provider !'= NULL; i++) {

1185 sdt _argdesc_t *a = &sdt_args[i];

1187 if (strcnp(sdp->sdp_provider->sdtp_name, a->sda_provider) !=
1188 cont i nue;

1190 if (a->sda_nane != NULL &&

1191 strcnp(sdp- >sdp_nane, a->sda_nane) != 0)

1192 cont i nue;

1194 if (desc->dtargd_ndx != a->sda_ndx)

1195 conti nue;

1197 if (a->sda_native != NULL)

1198 (void) strcpy(desc->dtargd_native, a->sda_native);
1200 if (a->sda_xlate !'= NULL

L)
1201 (voi d) strcpy(desc->dtargd_xl|

ate, a->sda_xlate);

d

0)

new usr/src/uts/ common/dtrace/ sdt _subr.c

1203 desc- >dt ar gd_mappi ng = a- >sda_mappi ng
1204 return

1205 }

1207 desc->dt argd_ndx = DTRACE_ARGNONE;

1208 }

new usr/src/uts/comon/os/dtrace_subr.c

R R R R

9558 Tue Jan 14 16:50: 03 2014
new usr/src/uts/comon/os/dtrace_subr.c
2915 DTrace in a zone shoul d see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have linited provider access
Revi ewed by: Joshua M dul ow <j osh@ysngr. or g>
Revi ewed by: Adam Levent hal <ahl @lel phi x. con»

R R R R R R R R

1/*

2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governing perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 =
19 * CDDL HEADER END
*/

22 | *

23 * Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
24 * Use is subject to |license terns.

25 */

27 #include <sys/dtrace. h>
28 #include <sys/cm_err. h>
29 #include <sys/tnf.h>

30 #include <sys/atonic.h>
31 #include <sys/prsystm h>
32 #include <sys/nodctl . h>
33 #include <sys/aio_inpl.h>

35 #ifdef __sparc
36 #include <sys/privregs. h>

37 #endif

39 void (*dtrace_cpu_init)(processorid_t);

40 void (*dtrace_nodl oad) (struct nodctl *);

41 void (*dtrace_nodunl oad) (struct nodctl *);

42 void (*dtrace_hel pers_cl eanup) (voi d);

43 void (*dtrace_hel pers_fork)(proc_t *, proc_t *);
44 void (*dtrace_cpustart_init)(void);

45 void (*dtrace_cpustart_fini)(void);

46 void (*dtrace_cpc_fire)(uint64_t);

47 void (*dtrace_cl osef) (void);

48 #endif /* 1 codereview */

50 void (*dtrace_debugger_in
(

it)(void);
51 void (*dtrace_debugger_fini)(void);

tive

53 dtrace_vtine_state_t dtrace_vtine_acti = 0;
i d = DTRACE_CACHEI DNONE + 1;

c
54 dtrace_cacheid_t dtrace_predcache_id

56 /*

57 * dtrace_cpc_in_use usage statenment: this global variable is used by the cpc

new usr/src/uts/comon/os/dtrace_subr.c

114

116
117
118
119
120

122
123

hardware overflow interrupt handl er and the kernel cpc framework to check

whet her or not the DTrace cpc provider is currently in use. The variable is

set before counters are enabled with the first enabling and cl eared when
the last enabling is disabled. Its value at any given tine indicates the

nunber of active dcpc based enablings. The global ’kcpc_cpuctx_| ock’ rw ock

*
*
*
*
*
* is held during initial setting to protect races between kcpc_open() and the
* first enabling. The locking provided by the DTrace subsystem the kernel
* cpc framework and the cpu managenent franmework protect consuners fromrace
* condi tions on enabling and disabling probes.
*
/
i

uint32_t dtrace_cpc_in_use = 0;

typedef struct dtrace_hrestinme {
I ock_t dt hr _| ock;
tinestruc_t dt hr _hresti ne;
int64_t dt hr _adj ;
hrtime_t dthr_hrtime;

} dtrace_hrestine_t;

/* lock for this elenent */
/* hrestine value */

/* hrestine_adj value */
/* hrtime value */

static dtrace_hrestime_t dtrace_hrestine[2];

/
Maki ng avai |l abl e adj ustabl e high-resolution tine in Dirace is regrettably
nore conplicated than one might think it should be. The problemis that
the variables related to adjusted high-resolution time (hrestine,

fromhres_tick(), using the snapshot iff hres_lock is |ocked in probe

in nore than just hres_tick() context, we could enter probe context
concurrently on two different CPUs with both | ocks (hres_lock and the
snapshot lock) held. As this inplies, the fundamental problemis that we
need to have access to a snapshot of these variables that we _know_ will
not be | ocked in probe context. To effect this, we have two snapshots
protected by two different |ocks, and we nandate that these snapshots are
recorded in succession by a single thread calling dtrace_hres_tick(). (W
assure this by calling it out of the same CY_H GH LEVEL cyclic that calls
hres_tick().) A single thread can't be in two places at once: one of the
snapshot locks is guaranteed to be unheld at all times. The

T T T T

the other to find the unl ocked snapshot.
*
/

voi d

dtrace_hres_tick(void)

int i;
ushort_t spl;

for (i =0; i <2; i++) {
dtrace_hrestime_t tnp;

spl = hr_clock_l ock();
tnp.dthr_hrestinme = hrestineg;
tnmp.dthr_adj = hrestinme_adj;
tnp.dthr_hrtine = dtrace_gethrtine();
hr_cl ock_unl ock(spl);

| ock_set (&Jtrace_hrestine[i].dthr_|ock);
dtrace_hrestinme[i].dthr_hrestinme = tnp.dthr_hresting;
dtrace_hrestinme[i].dthr_adj = tnp.dthr_adj;
dtrace_hrestinme[i].dthr_hrtime = tnp.dthr_hrtine;
dtrace_nenbar _producer();

/*
* To allow for |ock-free exam nation of this |lock, we use

hrestime_adj and friends) are adjusted under hres_|lock -- and this |ock may
be hel d when we enter probe context. One might think that we coul d address
this by having a single snapshot copy that is stored under a different |ock

context. Unfortunately, this too won't work: because hres_|lock is grabbed

dtrace_gethrestinme() algorithmis thus to check first one snapshot and then

new usr/src/uts/comon/os/dtrace_subr.c

124 * the same trick that is used hres_|lock; for nore details,
125 * see the description of this technique in sun4u/sys/clock. h.
126 */

127 dtrace_hrestime[i].dthr_| ock++;

128

129 }

131 hrtime_t

132 dtrace_get hrestine(voi d)

133 {

134 dtrace_hrestine_t snap;

135 hrtime_t now,

136 int i =0, adj, nslt;

138 for (;;) {

139 snap. dthr | ock = dtrace_hrestine[i].dthr_I ock;

140 dtrace_nenbar _consuner () ;

141 snap. dthr_hrestine = dtrace_hrestime[i].dthr_hrestine;

142 snap.dthr_hrtine = dtrace_hrestinme[i].dthr_hrtine;

143 snap.dthr_adj = dtrace_hrestine[i].dthr_adj;

144 dtrace_nenbar _consuner () ;

146 if ((snap.dthr_lock & ~1) == dtrace_hrestine[i].dthr_Iock)
147 br eak;

149 1=

150 * |f we're here, the lock was either |ocked, or it

151 * transitioned while we were taking the snapshot. Either
152 * way, we're going to try the other dtrace_hrestine el enent;
153 * we know that it isn't possible for both to be | ocked
154 * sinmul taneously, so we will ultimtely get a good snapshot.
155 */

156 i A= 1;

157 }

159 I*

160 * W have a good snapshot. Now perform any necessary adj ustnents.
161 */

162 nslt = dtrace_gethrtime() - snap.dthr_hrting;

163 ASSERT(nslt >= 0);

165 now = ((hrtime_t)snap.dthr_hrestine.tv_sec * (hrtinme_t)NANCSEC) +
166 snap. dt hr _hrestine.tv_nsec;

168 if (snap.dthr_adj != 0) {

169 if (snap.dthr_ad] > 0)

170 adj = (nslt >> adj_shift);

171 if (adj > snap.dthr_adj)

172 adj = (int)snap.dthr_adj;

173 } else {

174 adj = -(nslt >> adj_shift);

175 if (adj < snap.dthr_adj)

176 adj = (int)snap.dthr_adj;

177

178 now += adj ;

179 }

181 return (now);

182 }

184 void

185 dtrace_vti me_enabl e(voi d)

186 {

187 dtrace_vtine_state_t state, nstate;

189 do {

new usr/src/uts/comon/os/dtrace_subr.c

190 state = dtrace_vtine_active;

192 switch (state) {

193 case DTRACE_VTI ME_I NACTI VE:

194 nstate = DTRACE_VTI ME_ACTI VE;

195 break;

197 case DTRACE_VTI ME_I NACTI VE_TNF:

198 nstate = DTRACE_VTI ME_ACTI VE_TNF;
199 break;

201 case DTRACE_VTI ME_ACTI VE:

202 case DTRACE_VTI ME_ACTI VE_TNF:

203 pani c("DTrace virtual time already enabl ed");
204 | * NOTREACHED* /

205 }

207 } while (cas32((uint32_t *)&dJtrace_vtime_active,
208 state, nstate) != state);

209 }

211 void

212 dtrace_vti me_di sabl e(voi d)

213 {

214 dtrace_vtine_state_t state, nstate;

216 do {

217 state = dtrace_vtine_active;

219 switch (state) {

220 case DTRACE_VTI ME_ACTI VE:

221 nst at e = DTRACE_VTI ME_I NACTI VE;
222 br eak;

224 case DTRACE_VTI ME_ACTI VE_TNF:

225 nstate = DTRACE_VTI ME_I NACTI VE_TNF;
226 br eak;

228 case DTRACE_VTI ME_I NACTI VE:

229 case DTRACE_VTI ME_I NACTI VE_TNF:

230 pani c("DTrace virtual tinme already disabled");
231 / * NOTREACHED* /

232 }

234 } while (cas32((uint32_t *)&Jtrace_vtinme_active,
235 state, nstate) != state);

236 }

238 void

239 dtrace_vti me_enabl e_t nf (voi d)

240 {

241 dtrace_vtine_state_t state, nstate;

243 do {

244 state = dtrace_vtine_active;

246 switch (state) {

247 case DTRACE_VTI ME_ACTI VE:

248 nstate = DTRACE_VTI ME_ACTI VE_TNF;
249 break;

251 case DTRACE_VTI ME_I NACTI VE:

252 nstate = DTRACE_VTI ME_I NACTI VE_TNF;
253 break;

255 case DTRACE VTI ME_ACTI VE_TNF:

new usr/src/uts/comon/os/dtrace_subr.c

256 case DTRACE_VTI ME_I NACTI VE_TNF:

257 pani c("TNF al ready active");
258 | * NOTREACHED* /

259 }

261 } while (cas32((uint32_t *)&dJtrace_vtime_active,
262 state, nstate) != state);

263 }

265 void

266 dtrace_vti me_di sabl e_t nf (voi d)

267 {

268 dtrace_vtinme_state_t state, nstate;

270 do {

271 state = dtrace_vtine_active;

273 switch (state) {

274 case DTRACE VTI ME_ACTI VE_TNF:

275 nstate = DTRACE VTI ME_ACTI VE;
276 br eak;

278 case DTRACE_VTI ME_| NACTI VE_TNF:

279 nstate = DTRACE_VTI ME_I NACTI VE;
280 br eak;

282 case DTRACE_VTI ME_ACTI VE:

283 case DTRACE_VTI ME_| NACTI VE:

284 pani c("TNF al ready inactive");
285 / * NOTREACHED* /

286 }

288 } while (cas32((uint32_t *)&dtrace_vtine_active,
289 state, nstate) != state);

290 }

292 void

293 dtrace_vtime_sw tch(kthread_t *next)

294 {

295 dtrace_i cooki e_t cooki e;

296 hrtime_t ts;

298 if (tnf_tracing_active)

299 tnf _thread_swi tch(next);

301 if (dtrace_vtinme_active == DTRACE_VTI ME_| NACTI VE_TNF)
302 return;

303 1

305 cookie = dtrace_i nterrupt_disable();

306 ts = dtrace_gethrtinme();

308 if (curthread->t_dtrace_start = 0) {

309 curthread->t _dtrace_vtine += ts - curthread->t_dtrace_start;
310 curthread->t_dtrace_start = 0;

311 }

313 next->t_dtrace_start =ts;

315 dtrace_i nterrupt _enabl e(cooki e);

316 }

318 void (*dtrace_fasttrap_fork_ptr)(proc_t *
319 void (*dtrace_fasttrap_exec_ptr)(proc_t
320 void (*dtrace_fasttrap_exit_ptr)(proc_t

proc_t *);

*3;
*);

new usr/src/uts/comon/os/dtrace_subr.c

322 /| *

323 * This function is called by cfork() in the event that it appears that
324 * there may be dtrace tracepoints active in the parent process’s address
325 * space. This first confirms the existence of dtrace tracepoints in the
326 * parent process and calls into the fasttrap nodule to renove the

327 * corresponding tracepoints fromthe child. By know ng that there are
328 * existing tracepoints, and ensuring they can’t be renopved, we can rely
329 * on the fasttrap nodul e remai ni ng | oaded.

330 */

331 void

332 dtrace_fasttrap_fork(proc_t *p, proc_t *cp)

333 {

334 ASSERT(p->p_proc_flag & P_PR _LOCK);

335 ASSERT(p- >p_dtrace_count > 0);

336 ASSERT(dtrace_fasttrap_fork_ptr != NULL);

338 dtrace_fasttrap_fork_ptr(p, cp);

339 }

new usr/src/uts/comon/os/fio.c

R R R R

46744 Tue Jan 14 16:50: 04 2014
new usr/src/uts/comon/os/fio.c
2915 DTrace in a zone shoul d see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have linited provider access
Revi ewed by: Joshua M dul ow <j osh@ysngr. or g>
Revi ewed by: Adam Levent hal <ahl @lel phi x. con»

R R R R R R R R

1/*

2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governing perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 =
19 * CDDL HEADER END
*/

22 | *

23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. Al rights reserved.

24 * Copyright (c) 2012, Joyent Inc. Al rights reserved.
25 #endif /* ! codereview */

26 */
28 [* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
29 [* Al Rights Reserved */

31 #include <sys/types. h>

32 #include <sys/sysnmacros. h>
33 #incl ude <sys/param h>

34 #include <sys/systm h>

35 #include <sys/errno. h>

36 #include <sys/signal.h>
37 #include <sys/cred. h>

38 #include <sys/user.h>

39 #include <sys/conf.h>

40 #include <sys/vfs. h>

41 #i ncl ude <sys/vnode. h>

42 #incl ude <sys/ pathnane. h>
43 #include <sys/file.h>

44 #incl ude <sys/proc. h>

45 #include <sys/var.h>

46 #incl ude <sys/cpuvar. h>
47 #i ncl ude <sys/open. h>

48 #include <sys/cmm_err. h>
49 #include <sys/priocntl.h>
50 #include <sys/procset. h>
51 #include <sys/prsystm h>
52 #incl ude <sys/debug. h>

53 #i ncl ude <sys/knmem h>

54 #incl ude <sys/atom c. h>
55 #include <sys/fcntl.h>

56 #i nclude <sys/poll.h>

57 #include <sys/rctl.h>

new usr/src/uts/comon/os/fio.c

58
59
60

62
63

#i ncl ude <sys/port_inpl.h>
#i ncl ude <sys/dtrace. h>
#endif /* | codereview */

#i ncl ude <c2/audit.h>
#i ncl ude <sys/nbm ock. h>

#i f def DEBUG

static uint32_t afd_nexfd, /* # of entries in maximum al |l ocated array */
static uint32_t afd_all oc; /* count of kmem.alloc()s */

static uint32_t afd_free; /* count of knmemfree()s */

static uint32_t afd wait; /* count of waits on non-zero ref count */
#def i ne MAXFD(x)

#def i ne COUNT(x)

(afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x)))
atom c_add_32(&x, 1)

#el se /* DEBUG */

#def i ne MAXFD(x)
#def i ne COUNT(x)

#endi f /* DEBUG */

kmem cache_t *file_cache;

static void port_close_fd(portfd_t *);

/

I I T T

Fil e descriptor allocation.

fd_find(fip, minfd) finds the first available descriptor >= ninfd.
The nost common case is open(2), in which mnfd = 0, but we nust also
support fecntl(fd, F_DUPFD, m nfd).

The algorithmis as follows: we keep all file descriptors in an infix
binary tree in which each node records the nunber of descriptors
allocated in its right subtree, including itself. Starting at mnfd,
we ascend the tree until we find a non-fully allocated right subtree.
We then descend that subtree in a binary search for the smallest fd.
Finally, we ascend the tree again to increment the allocation count
of every subtree containing the newly-allocated fd. Freeing an fd
requires only the |ast step: we ascend the tree to decrenent allocation
counts. Each of these three steps (ascent to find non-full subtree,
descent to find | owest fd, ascent to update allocation counts) is
Q(log n), thus the algorithmas a whole is Q(log n).

We don’t inplenment the fd tree using the customary |eft/right/parent
pointers, but instead take advantage of the glorious mathematics of
full infix binary trees. For reference, here’s an illustration of the
| ogi cal structure of such a tree, rooted at 4 (binary 100), covering
the range 1-7 (binary 001-111). Qur canonical trees do not include
fd 0; we'll deal with that |ater.

100
/ \
/ \
010 110
/\ I\

001 011 101 111

We neke the followi ng observations, all of which are easily proven by
induction on the depth of the tree:

(T1) The least-significant bit (LSB) of any node is equal to its |evel
inthe tree. |In our exanple, nodes 001, 011, 101 and 111 are at
level 0; nodes 010 and 110 are at level 1; and node 100 is at |evel 2.

new usr/src/uts/comon/os/fio.c

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

B I I T T T 2

(T2) The child size (CSIZE) of node N -- that is, the total nunber of
ri ght-branch descendants in a child of node N, including itself -- is
given by clearing all but the least significant bit of N This
follows immediately from (T1l). Applying this rule to our exanple, we
see that CSIZE(100) = 100, CSlZE(x10) = 10, and CSl ZE(xx1) = 1.

(T3) The nearest |eft ancestor (LPARENT) of node N -- that is, the nearest
ancestor containing node Nin its right child -- is given by clearing
the LSB of N. For exanple, LPARENT(111) = 110 and LPARENT(110) = 100.
Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting
the fact that these are leftnopst nodes. Note that this algorithm
automatical |y skips generations as necessary. For exanple, the parent
of node 101 is 110, which is a *right* ancestor (not what we want);
but its grandparent is 100, which is a left ancestor. Cearing the LSB
of 101 gets us to 100 di rectly, ski pping right past the uninteresting
generation (110).

Not e that since LPARENT clears the LSB, whereas CSIZE clears all *but*
the LSB, we can express LPARENT() nicely in terms of CSIZE():

LPARENT(N) = N - CSI ZE(N)

(T4) The nearest right ancestor (RPARENT) of node N is given by:
RPARENT(N) = N + CSI ZE(N)

(T5) For every interior node, the children differ fromtheir parent by
CSl ZE(parent) / 2. In our exanple, CSIZE(100) / 2 = 2 = 10 binary,
and indeed, the children of 100 are 100 +/- 10 = 010 and 110.

Next, we'll need a few two’ s-conpl ement math tricks.
N, has the followi ng form

Suppose a nunber,

N = xxxx10...0

That is, the binary representation of N consists of some string of bits,
then a 1, then all zeroes. This amobunts to nothing nore than saying that
N has a |l east-significant bit, which is true for any N!= 0. If we |ook
at Nand N - 1 together, we see that we can conbine themin useful ways:

N = xxxx10...0

N - 1 = xxxx01...1

N & (N - 1) = xxxx000000
N| (N- 1) = xxxx111111
N~ (N- 1) = 111111

In particular, this suggests several easy ways to clear all
which by (T2) is exactly what we need to determine CSIZE(N) =
We' Il opt for this formulation:

(Cl) CSIZE(N) = (N -

but the LSB,
. 0.

) ~ (N| (N- 1))

Simlarly, we have an easy way to determ ne LPARENT(N), which requires
that we clear the LSB of N

(L1) LPARENT(N) = N & (N - 1)

W note in the above relations that (N| (N- 1)) - N = CSIZE(N - 1.
When conbined with (T4), this yields an easy way to conpute RPARENT(N):

(RL) RPARENT(N) = (N | (N- 1)) + 1

Finally, to acconmpdate fd O we nust adjust all
nove the fd range from[1, 2*n) to [0, 2*n - 1).

of our results by +/-1 to
This is straightforward,

new usr/src/uts/comon/os/fio.c

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

so there’s no need to bel abor the algebra; the revised relations becone:
(Cla) CSIZE(N) = N~ (N |
(Lla) LPARENT(N) = (N & (N + 1))

(Rla) RPARENT(N) = N | (N + 1)

(N + 1))

This conpletes the mathenmatical framework. W now have all the tools
we need to inplenent fd_find() and fd_reserve().

fd_find(fip, mnfd) finds the snallest available file descriptor >= mnfd.
It does not actually allocate the descriptor; that’'s done by fd_reserve().
fd_find() proceeds in two steps:

(1) Find the leftnost subtree that contains a descriptor >= mnfd.
We start at the right subtree rooted at minfd. |If this subtree is

not full -- if fip->fi_list[mnfd].uf_alloc !'= CSIZE(m nfd) -- then
step 1 is done. Oherwise, we know that all fds in this subtree
are taken, so we ascend to RPARENT(m nfd) using (Rla). W repeat

this process until we either find a candi date subtree or exceed
fip->fi_nfiles. W use (Cla) to conpute CSI ZE().

(2) Find the smallest fd in the subtree discovered by step 1.
Starting at the root of this subtree, we descend to find the
smal | est available fd. Since the left children have the snaller
fds, we will descend rightward only when the left child is full.

W begin by conparing the nunmber of allocated fds in the root

to the nunmber of allocated fds inits right child; if they differ
by exactly CSIZE(child), we know the left subtree is full, so we
descend right; that is, the right child becones the search root.

G herwi se we | eave the root alone and start follow ng the right
child s left children. As fortune would have it, this is very
sinple conputationally: by (T5), the right child of fd is just

fd + size, where size = CSIZE(fd) / 2. Applying (T5) again,

we find that the right child s left childis fd + size - (size / 2) =
fd+ (size/ 2); *its* left childis fd + (size / 2) (size | 4) =
fd + (size / 4), and so on. In general, fd s right child‘s
leftmost nth descendant is fd + (size >> n). Thus, to follow

the right child s left descendants, we just halve the size in

each iteration of the search.

Wien we descend | eftward, we nmust keep track of the nunber of fds
that were allocated in all the right subtrees we rejected, so we
know how many of the root fd' s allocations are in the renaining

(as yet unexplored) leftnost part of its right subtree. Wen we
encounter a fully-allocated left child -- that is, when we find
that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right

(as described earlier), resetting ralloc to zero.

fd_reserve(fip, fd, incr) either allocates or frees fd, depending

on whether incr is 1 or -1. Starting at fd, fd reserve() ascends

the | eftmost ancestors (see (T3)) and updates the allocation counts.

At each step we use (Lla) to conpute LPARENT(), the next left ancestor.

flist_mnsize() finds the minimal tree that still covers all
used fds; as long as the allocation count of a root node is zero, we
don’t need that node or its right subtree.

flist_nalloc() counts the nunber of allocated fds in the tree, by starting
at the top of the tree and summing the right-subtree allocation counts as
it descends |eftwards.

Note: we assune that flist_growm) will keep fip->fi_nfiles of the form
2"n - 1. This ensures that the fd trees are always full, which saves

new usr/src/uts/comon/os/fio.c

256 * quite a bit of boundary checking.

257 */

258 static int

259 fd ind(uf _info_t *fip, int mnfd)

260 {

261 int size, ralloc, fd;

263 ASSERT(MUTEX_HELD(&f i p->fi _| ock));

264 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);

266 for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |=fd + 1) {
267 size = fd ~ (fd | (fd + 1));

268 if (fip->fi_list[fd].uf aIIoc == size)

269 conti nue;

270 for (ralloc = 0, size >>= 1; size != 0; size >>= 1) {
271 ralloc += fip->fi_list[fd + size].uf_alloc;
272 if (fip->fi_list[fd].uf_alloc == ralloc + size) {
273 fd += size;

274 ralloc = 0;

275 }

276

277 return (fd);

278 1

279 return (-1);

280 }

282 static void

283 fd_reserve(uf_info_t *fip, int fd, int incr)

284 {

285 int pfd;

286 uf _entry_t *ufp = & ip->fi_list[fd];

288 ASSERT((uint_t)fd < fip->fi_nfiles);

289 ASSERT((uf p->uf _busy == 0 & & incr == 1) ||

290 (uf p->uf _busy == 1 & & incr == -1));

291 ASSERT(MUTEX_HELD(&uf p- >uf | ock));

292 ASSERT(MUTEX_HELD(&f i p->fi _| ock));

294 for (pfd = fd, pfd >= 0; pfd = (pfd & (pfd + 1)) - 1)

295 fip->fi_list[pfd].uf_alloc += incr;

297 uf p- >uf _busy += incr;

298 }

300 static int

301 flist_minsize(uf_info_t *fip)

302 {

303 int fd;

305 /*

306 * We'd |ike to ASSERT(MJTEX_HELD(&f i p->fi_lock)), but we're called
307 * by flist_fork(), which relies on other nmechani sms for nutual
308 * excl usi on.

309 */

310 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);

312 for (fd = fip->fi_nfiles; fd !=0; fd >>= 1)

313 if (fip->fi_list[fd > 1].uf_alloc != 0)

314 br eak;

316 return (fd);

317 }

319 static int

320 flist_nalloc(uf_info_t *fip)

321 {

new usr/src/uts/comon/os/fio.c

322
323

325
326

328
329

331
332

334
335
336
337
338
339

}
/

340 {

341
342
343
344

346
347

349

351
352
353
354
355
356
357
358
359
360
361

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

379
380

382
383
384
385
386
387

ASSERT(MUTEX_HELD(&f i p- >fi)),
ASSERT((fip->fi_nfiles &(>fi

for (fd = fip->fi_nfiles; fd !
lis

S
f

/

int fd;
int nalloc = 0;

_nfiles + 1)) == 0);

0; fd >>=1)
fd >> 1].uf _alloc;

stlf

nalloc += fip->fi_|

return (nalloc);

I ncrease size of the fi_list array to accomodate at | east naxfd.
W keep the size of the form2~n - 1 for benefit of fd_find().
/

ic void
t_grow(int nmaxfd)

uf _info_t *fip = P_FINFQ(curproc);

int newcnt, oldcnt;

uf _entry_t *src, *dst, *newlist, *oldlist, *newend, *ol dend;
uf _rlist_t *urp;

(newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1)
conti nue;

new i st = kmem zal | oc(newcnt * sizeof (uf_entry_t), KM SLEEP);

mut ex_ent er (& i p->fi _| ock);

oldent = fip->fi_nfiles;

if (newcnt <= oldcnt) {
nut ex_exi t (& i p->fi_l ock);
kmem free(new i st, newcnt * sizeof (uf_entry_t));
return;

}ASSERT((newcnt & (newcnt + 1)) == 0);

oldlist = fip->fi_list;
ol dend = ol dlist + oldcnt;

newend new i st + ol dcnt; /* no need to | ock beyond old end */

*

* fi_list and fi_nfiles cannot change while any uf_lock is held,

* so we nust grab all the old | ocks *and* the new | ocks up to ol dcnt.
* (Locks beyond the end of oldcnt aren’t visible until we store

* the new fi_nfiles, which is the last thing we do before dropping

* all the locks, so there’'s no need to acquire these | ocks).

* Hol ding the new | ocks i s necessary because when fi_list changes

* to point to the newlist, fi_nfiles won’t have been stored yet.

* |f we *didn’t* hold the new | ocks, soneone doing a UF_ENTER()

* could see the new fi_list, grab the new uf_lock, and then see

* fi_nfiles change while the lock is held -- in violation of

* UF_ENTER() semantics.

*

/

for

(src = oldlist; src < oldend; src++)
mut ex_ent er (&src->uf _| ock);

(dst = newlist; dst < newend; dst++)
mut ex_ent er (&dst - >uf _| ock) ;

for (src = oldlist, dst = neWist; src < oldend; src++, dst++) {

dst->uf _file = src->uf _file;
dst—>uf_fpo||info = src->uf _fpollinfo;
dst - >uf refcnt = src->uf _refcnt;
dst->uf _all oc = src->uf_alloc;

dst->uf _flag = src->uf _flag;

new usr/src/uts/comon/os/fio.c

388
389
390

392
393
394
395
396
397
398
399

401
402
403
404
405
406
407
408
409
410
411
412
413
414

416
417
418
419
420

422
423
424
425
426
427
428
429
430
431

433

435
436
437
438
439
440
441
442
443
444
445
446

448
449
450
451
452 }

dst - >uf _busy = src->uf_busy;
dst->uf _portfd = src->uf _portfd;

*
* As soon as we store the new flist, future |ocking operations
* wWill use it. Therefore, we nust ensure that all the state
* we've just established reaches global visibility before the
* new flist does.
*

/

menbar _producer () ;
fip->fi_list = newist;

/*

* Routines like getf() make an optim stic check on the validity
* of the supplied file descriptor: if it’s less than the current
* value of fi_nfiles -- exam ned wi thout any locks -- thenit’s
* safe to attenpt a UF_ENTER() on that fd (which is a valid

* assunption because fi_nfiles only increases). Therefore, it

* is critical that the new value of fi_nfiles not reach gl obal

* visibility until after the new fi_list: if it happened the

* other way around, getf() could see the new fi_nfiles and attenpt
* a UF_ENTER() on the old fi_list, which would wite beyond its
* end if the fd exceeded the old fi_nfiles.

*
ne

nbar _producer () ;
fip->fi_nfiles = newcnt;
*
* The new state is consistent now, so we can drop all the | ocks.
*/
for (dst = newist; dst < newend; dst++)
mut ex_exi t (&dst - >uf _| ock) ;

for (src
/

oldlist; src < oldend; src++) {

This will force themto wake up, discover that fi_list

5

* |f any threads are bl ocked on the old cvs, wake them
*

* has changed, and go back to sleep on the new cvs.

*/
cv_broadcast (&src->uf _wanted_cv);
cv_broadcast (&src->uf _closing_cv);
mut ex_exi t (&src->uf _| ock);

}
mut ex_exi t (& i p->fi_l ock);

/
Retire the old flist. W can’t actually kmemfree() it now
because sonmeone may still have a pointer to it. |Instead,

we link it onto a list of retired flists. The new flist

is at |east double the size of the previous flist, so the
total size of all retired flists will be less than the size
of the current one (to prove, consider the sumof a geonetric
series in powers of 2). exit() frees the retired flists.

* ok kb k% o F

*/
urp = kmem zal | oc(si zeof (uf_rlist_t), KM SLEEP);
urp->ur_list = oldlist;
urp->ur_nfiles = oldcnt;

mut ex_enter (& i p->fi_l ock);
urp->ur_next = fip->fi_rlist;
fip->fi_rlist = urp;

mut ex_exi t (& i p->fi_| ock);

new usr/src/uts/comon/os/fio.c

454 | *

455 * Utility functions for keeping track of the active file descriptors.
456 */

457 void

458 clear_stal e_fd() /* called from post_syscall () */
459 {

460 afd_t *afd = &curthread->t_activefd;

461 int i;

463 /* uninitialized is ok here, a_nfd is then zero */

464 for (i =0; i < afd->a_nfd; i++) {

465 /* assert that this should not be necessary */
466 ASSERT(afd->a_fd[i] == -1);

467 afd->a_fd[i] = -1,

468 1

469 afd->a_stale = 0;

470 }

472 void

473 {ree_afd(af d_t *afd) /* called below and fromthread_free() */
474

475 int i;

477 /* free the buffer if it was knmemalloc()ed */

478 if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
479 COUNT(afd_free);

480 kmem free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0]));
481 }

483 /* (re)initialize the structure */

484 afd->a_fd = &afd->a_buf[0];

485 afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]);
486 afd->a_stale = 0;

487 for (i =0; i < afd->a_nfd; i++)

488 afd->a_fd[i] = -1;

489 }

491 static void

492 set _active_fd(int fd)

493 {

494 afd_t *afd = &curthread->t_activefd;

495 int i;

496 int *old_fd;

497 int old_nfd;

498 int *new fd;

499 int new nfd;

501 if (afd->a_nfd == 0) { /* first tine initialization */
502 ASSERT(fd == -1);

503 mut ex_ent er (&f d- >a_f dl ock);

504 free_afd(afd);

505 mut ex_exi t (&af d->a_f dl ock) ;

506 }

508 /* insert fd into vacant slot, if any */

509 for (i =0; i < afd->a_nfd; i++) {

510 if (afd->a_fd[i] == -1) {

511 afd->a_fd[i] = fd;

512 return;

513 }

514 1

516 /*

517 * Real locate the a_fd[] array to add one nore slot.

518 */

519 ASSERT(fd == -1);

new usr/src/uts/comon/os/fio.c

520 old_nfd = afd->a_nfd;

521 old_fd = afd->a_fd;

522 new nfd = old_nfd + 1;

523 new fd = knmem al | oc(new nfd * sizeof (afd->a_fd[0]), KM SLEEP);
524 MAXFD(new_nf d);

525 COUNT(af d_al | oc)

527 nmut ex_ent er (&af d- >a_f dl ock);

528 afd->a_fd = new fd;

529 af d->a_nfd = new_nfd;

530 for (i =0; i <old nfd i ++)

531 afd->a_fd[i] =o|dfd[i];

532 afd->a_fd[i] = fd;

533 mut ex_exi t (&af d->a_f dl ock) ;

535 if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
536 COUNT(afd_free);

537 kmem free(ol d_ fd old_nfd * sizeof (afd->a_fd[0]));
538 1

539 }

541 void

542 clear_active_fd(int fd) /* called below and fromaio.c */
543 {

544 afd_t *afd = &curthread->t_activefd;

545 int i;

547 for (i =0; i < afd->a_nfd; i++) {

548 if (afd->a_fd[i] —-fd) {

549 afd->a_fd[i] = -1;

550 br eak;

551 }

B2 }

553 ASSERT(i < afd->a_nfd); /* not found is not ok */
554 }

556 /*

557 * Does this thread have this fd active?

558 */

559 static int
560 is_active_fd(kthread_t *t, int fd)

561 {

562 afd_t *afd = & ->t_activefd,

563 int i;

565 ASSERT(t != curthread);

566 nmut ex_ent er (&af d- >a_f dl ock);

567 /* uninitialized is ok here, a_nfd is then zero */

568 for (i =0; i < afd->a_nfd; i++) {

569 if (afd->a_fd[i] == fd) {

570 nut ex_exi t (&af d- >a_f dl ock);

571 return (1);

572 }

573 }

574 nmut ex_exi t (&af d->a_f dl ock) ;

575 return (0);

576 }

578 [*

579 * Convert a user supplied file descriptor into a pointer to a file
580 * structure. Only task is to check range of the descriptor (soft
581 * resource limt was enforced at open tine and shouldn’t be checked
582 * here).

583 */

584 file *

585 get (nt fd)

new usr/src/uts/comon/os/fio.c

586 {

587 uf _info_t *fip = P_FINFQ(curproc);

588 uf _entry_t *ufp;

589 file_t *fp;

591 if ((uint_t)fd >= fip->fi_nfiles)

592 return (NULL);

594 /*

595 * Reserve a slot in the active fd array now so we can cal |

596 * set_active_fd(fd) for real below, while still inside UF_ENTER().
597 */

598 set _active_fd(-1);

600 UF_ENTER(ufp, fip, fd);

602 if ((fp = ufp->uf _file) == NULL) {

603 UF_EXI T(uf p);

605 if (fd == fip->fi_badfd & fip->fi_action > 0)

606 ISI gnal (curthread, fip->fi_action);

608 return (NULL);

609 }

610 uf p- >uf _refcnt ++;

612 set _active_fd(fd); /* record the active file descriptor */
614 UF_EXI T(uf p);

616 return (fp);

617 }

619 /*

620 * Close whatever file currently occupies the file descriptor slot

621 * and install the new file, usually NULL, in the file descriptor slot.
622 * The cl ose nust conplete before we release the file descriptor slot.
623 * |f newfp != NULL we only return an error if we can't allocate the
624 * slot so the caller knows that it needs to free the filep;

625 * in the other cases we return the error nunber from closef().

626 */

627 int

628 cl oseandsetf(int fd, file_t *newf p)

629 {

630 proc_t *p = cu c;

631 uf _info_t *fi p = P FI NFQ(p) ;

632 uf _entry_t *ufp;

633 file_t *fp;

634 fpollinfo_t *fpip;

635 portfd_t *pfd;

636 int error;

638 if ((uint_t)fd >—f|p >fi_nfiles) {

639 it (newfp == NULL)

640 return (EBADF);

641 flist_grow(fd);

642 1

644 if (newfp !'= NULL) {

645 /*

646 * If ufp is reserved but has no file pointer, it’s in the
647 * transition between ufalloc() and setf(). W nust wait
648 * for this transition to conplete before assigning the
649 * new non-NULL file pointer.

650 *

651 mut ex_enter (& i p->fi_l ock);

10

new usr/src/uts/comon/os/fio.c

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682

684
685
686

688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

704
705
706
707
708
709
710
711
712
713
714
715
716

if (fd == fip->fi_badfd) {
mut ex_exit (& i p->fi_l ock);
if (fip->fi_action > 0)

tsignal (curthread,
return (EBADF);

fip->fi_action);

}

UF_ENTER(ufp, fip, fd);

while (ufp->uf_busy &% ufp->uf _file == NULL) {
nut ex_exi t (& i p->fi_l ock);
cv_wait _st op(&uf p->uf _want ed_cv,
UF_EXI T(uf p);
mut ex enter(&fi p->fi
UF_ENTER(ufp, fip,

&uf p- >uf _| ock, 250);
_lock);
IE

}

if ((fp = ufp->uf _file) == NULL) {
ASSERT(uf p->uf _f pol i nfo == NULL);
ASSERT(uf p->uf _flag == 0);
fd_reserve(fip, fd, 1);
ufp->uf _file = new p;
UF_EXI T(ufp);
nut ex_exi t (& i p->fi _| ock);
return (0);

}
mut ex_exit (& i p->fi
} else {
UF EN‘I’ER(ufp, fip, fd);
if ((fp = ufp->uf flle) == NULL) {
UF_EXI T(ufp);
return (EBADF)

_lock);

}
}
ASSERT(uf p- >uf busy)
ufp->uf _file =
uf p->uf flag = 0;
/*
* |f the file descriptor reference count is non-zero, then
* sone other Iwp in the process is performng system call
* activity on the file. To avoid blocking here for a |ong
* tinme (the other Iwp might be in along termsleep inits
* systemcall), we scan all other Iwps in the process to
* find the ones with this fd as one of their active fds,
* set their a_stale flag, and set themrunning if they
* are in an interruptible sleep so they will enmerge from
* their systemcalls imediately. post_syscall() will
* test the a_stale flag and set errno to EBADF.
*
/

ASSERT(uf p->uf _refcnt == 0 || p->p_lwecnt > 1);
if (ufp->uf_refcnt > 0) {

kthread_t *t;

*

* We call
list will

sprlock_proc(p) to ensure that the thread
* not change while we are scanning it.

* To do this, we nust drop ufp->uf_lock and then

* reacquire it (so we are not hol ding both p->p_l ock

* and ufp->uf _|ock at the same tine). ufp->uf_lock

* nust be held for is_active_fd() to be correct

* (set_active_fd() is called while holding ufp->uf_lock).
*

*

*

*

*

This is a convoluted dance, but it is better than
the old brute-force nethod of stopping every thread
in the process by calling hol dl wps(SHOLDFORK1) .

/

11

new usr/src/uts/comon/os/fio.c

718
719

721
722
723

725
726

728
729
730
731
732
733
734
735
736
737
738
739
740
741

743

745
746

748
749
750

752
753
754
755
756
757
758
759
760
761
762
763
764

766
767
768
769
770
771
772

774
775
776
77
778
779
780
781
782
783

}
!

UF_EXI T(uf p);
COUNT(af d_wai t);

mut ex_ent er (&p- >p_| ock) ;
sprlock_proc(p);
mut ex_exi t (&p->p_| ock) ;

UF_ENTER(ufp, fip, d)
ASSERT(uf p->uf _file == NULL);

if (ufp->uf_refcnt > 0)
for (t = curthread->t_forw
t !'= curthread;
t =t->t_forw)
if (is_active_fd(t, fd)) {
thread_Il ock(t);
t->t_activefd.a_stale = 1;
t->t_post_sys = 1;
i f (TSWAKEABLE(t))
setrun_| ocked(t);
thread_unl ock(t);

}
UF_EXI T(uf p);

mut ex_ent er (&p->p_l ock) ;
sprunl ock(p);

UF_ENTER(ufp, fip, fd);
ASSERT(uf p->uf _file == NULL);

*

* Wit for other Iwps to stop using this file descriptor.
*

while (ufp->uf_refcnt > 0) {

}

cv_wai t _st op(&uf p->uf _cl osi ng_cv,
/*
* cv_wait_stop() drops ufp->uf_lock, so the file |ist
* can change. Drop the lock on our (possibly) stale
* ufp and let UF_ENTER() find and | ock the current ufp.
*
/
UF_EXI T(uf p);
UF_ENTER(ufp, fip, fd);

&uf p->uf _| ock, 250);

#i f def DEBUG
/*

#endi f

i
/
/

p

* catch a watchfd on device's pollhead list but not on fpollinfo Iist
S

f (ufp->uf_fpollinfo !'= NULL)
checkwf dl i st (fp->f_vnode, ufp->uf_fpollinfo);
* DEBUG */

We may need to cleanup sone cached poll states in t_pollstate
before the fd can be reused. It is inportant that we don’t
access a stale thread structure. We will do the cleanup in two
phases to avoi d deadl ock and hol ding uf _| ock for too |ong.

In phase 1, hold the uf _lock and call pollblockexit() to set
state in t_pollstate struct so that a thread does not exit on
us. In phase 2, we drop the uf_lock and call pollcacheclean().

SRk ok ok ok k ok

/
d = uf p->uf _portfd;

12

new usr/src/uts/comon/os/fio.c

784 uf p->uf _portfd = NULL;

785 fpip = ufp->uf_fpollinfo;

786 uf p->uf _fpollinfo = NULL;

787 if (fpip !'= NULL)

788 pol I bl ockexi t (fpip);

789 UF_EXI T(uf p);

790 if (fpip !'= NULL)

791 pol | cachecl ean(fpip, fd);

792 if (pfd)

793 port_cl ose_fd(pfd);

795 /*

796 * Keep the file descriptor entry reserved across the closef().
797 */

798 error = closef(fp);

800 setf(fd, newfp);

802 /* Only return closef() error when closing is all we do */
803 return (newfp == NULL ? error : 0);

804 }

806 /*

807 */Decrement uf _refcnt; wakeup anyone waiting to close the file.
808 *

809 void

810 rel easef (int fd)

811 {

812 uf _info_t *fip = P_FINFQ(curproc);

813 uf _entry_t *ufp;

815 UF_ENTER(ufp, fip, fd);

816 ASSERT(uf p->uf _refcnt > 0);

817 clear_active_fd(fd); /* clear the active file descriptor */
818 if (--ufp->uf_refcnt == 0)

819 cv_broadcast (&uf p- >uf _cl osi ng_cv);

820 UF_EXI T(uf p);

821 }

823 /*

824 */ Identical to releasef() but can be called from another process.
825 *

826 void

827 arel easef (int fd, uf_info_t *fip)

828 {

829 uf _entry_t *ufp;

831 UF_ENTER(ufp, fip, fd);

832 ASSERT(uf p->uf _refcnt > 0);

833 if (--ufp->uf_refcnt ==

834 cv_broadcast (&uf p->uf _cl osing_cv);

835 UF_EXI T(uf p);

836 }

838 /*

839 * Duplicate all file descriptors across a fork.

840 */

841 void

842 flist_fork(uf_info_t *pfip, uf_info_t *cfip)

843 {

844 int fd, nfiles;

845 uf _entry_t *pufp, *cufp;

847 mutex_init(&cfip->fi_lock, NULL, MJUTEX_DEFAULT, NULL);
848 cfip->fi_rlist = NULL;

13

new usr/src/uts/comon/os/fio.c

850
851
852
853
854

856

858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878

880
881
882
883
884
885
886
887
888
889
890

892
893
894
895
896
897
898
899
900
901
902
903
904
905
906

908
909
910
911
912
913
914
915

}
!

*
*
*
*
*

/

/: We don’t need to hold fi_lock because all other Iwp's in the

: parent have been hel d.

cfip->fi_nfiles = nfiles = flist_mnsize(pfip);

cfip->fi_list = knem zalloc(nfiles * sizeof (uf_entry_t), KM SLEEP);
for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles;

fd++, pufp++, cufp++)

cufp->uf _file = pufp->uf _file;

cuf p->uf _al l oc = pufp->uf _all oc;

cuf p->uf _flag = pufp->uf _flag;

cuf p->uf _busy = puf p->uf _busy;

if (pufp->uf_file == NULL) {
ASSERT(puf p->uf _flag == 0);
if (pufp->uf_busy) {

/*

* Gab locks to appease ASSERTs in fd_reserve
*/

mut ex_ent er (&cfip->fi _| ock);
mut ex_ent er (&cuf p- >uf _| ock) ;
fd_reserve(cfip, fd, -1);

mut ex_exi t (&cuf p- >uf _| ock);
mut ex_exi t (&cfip->fi_l ock);

Close all open file descriptors for the current process.

T
S

his is only called fromexit(),
o we don’t need any | ocking.

whi ch is single-threaded,

voi d
closeal | (uf _info_t *fip)

int fd;
file_t *fp;
uf _entry_t *ufp;
ufp = fip->fi_list;
for (fd = 0; fd < fip->fi_nfiles; fd++ ufp++) {
if ((fp = ufp->uf _file) !'= NULL) {
uf p->uf _file = NULL;
if (ufp->uf_portfd !'= NULL) {
portfd_t *pfd;
/* renpbve event port association */
pfd = ufp->uf_portfd;
uf p->uf _portfd = NULL;
port_cl ose_fd(pfd);
}
ASSERT(uf p->uf _fpollinfo == NULL);
(void) closef(fp);
}
}
kmem free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));

fip->fi_list = NULL;
fip->fi_nfiles = 0;
while (fip->fi_rlist !'= NULL) {
uf _rlist_t *urp = fip->fi_rlist;
fip->fi_rlist = urp->ur_next;
kmem free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_ t));
kmem free(urp, sizeof (uf_rlist_t));

14

new usr/src/uts/comon/os/fio.c 15 new usr/src/uts/comon/os/fio.c

916 }

917 } 983 /*
984 * This is a conbination of ufalloc() and setf().

919 /* 985 */

920 * Internal formof close. Decrement reference count on file 986 int

921 * structure. Decrenent reference count on the vnode foll ow ng 987 ufalloc_file(int start, file_t *fp)

922 * renoval of the referencing file structure. 988 {

923 */ 989 proc_t *p = cur proc;

924 int 990 uf _info_t *fl p = P_FI NFQ(p) ;

925 closef (file_t *fp) 991 int filelim

926 { 992 uf _entry_t *ufp,

927 vnode_t *vp; 993 int nfiles;

928 int error; 994 int fd;

929 int count;

930 int flag; 996 s

931 of fset _t offset; 997 * Assertion is to convince the correctness of the follow ng
998 * assignment for filelimt after casting to int.

933 /* 999 */

934 * audit close of file (may be exit) 1000 ASSERT(p- >pfno ctl <= I NT_MAX);

935 */ 1001 filelimt (int)p->p_fno_ctl;

936 if (AU_AUDI TI NX))

937 audi t _cl osef (fp); 1003 for (;;) {

938 ASSERT(MUTEX_NOT_HELD(&_FI NFQ(cur proc) - >fi _| ock)); 1004 mut ex_enter (& i p->fi_l ock);
1005 fd :fd_find(fip, start)

940 nmut ex_ent er (& p->f _t 1 ock); 1006 if (fd >= && fd == f| p->fi_badfd) {
1007 start = fd +

942 ASSERT(f p->f _count > 0); 1008 mut ex_exi I(&fl p >fi_l ock);
1009 conti nue;

944 count = fp->f_count--; 1010 }

945 flag = fp->f_flag; 1011 if ((uint_t)fd < filelimt)

946 of fset = fp->f_of fset; 1012 br eak;
1013 if (fd >=filelimt) {

948 vp = fp->f_vnode; 1014 nut ex_exi t (& i p->fi _l ock);
1015 mut ex_ent er (&p->p_| ock);

950 error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred, NULL); 1016 (void) rctl_action(rctlproc_| egacy[RLI M T_NCFI LE],
1017 p->p_rctls, p, RCA SAFE);

952 if (count > 1) { 1018 mut ex_exi t (&p->p_|l ock);

953 mut ex_exi t (& p->f _tlock); 1019 return (-1);

954 return (error); 1020 1

955 } 1021 /* fd find() returned -1 */

956 ASSERT(f p->f _count == 0) 1022 nfiles = fip->fi_nfiles;

957 mut ex_exi t (& p- >f tIock) 1023 mut ex_exi t (& i p->fi _l ock);
1024 flist_grow(MAX(start, nfiles));

959 /* 1025 }

960 * If Dirace has getf() subroutines active, it will set dtrace_closef

961 * to point to code that inplements a barrier with respect to probe 1027 UF_ENTER(ufp, fip, fd);

962 * context. This nust be called before the f|| e_t is freed (and the 1028 fd_reserve(fip, fd, 1);

963 * vnode that it refers to is released) -- but it nust be after the 1029 ASSERT(uf p->uf _file == NULL);

964 * file_t has been renpved fromthe uf_entry_t. That is, there nust 1030 ufp->uf _file = fp;

965 * be no way for a racing getf() in probe context to yield the fp that 1031 UF_EXI T(uf p);

966 * we're operating upon. 1032 mut ex_exi t (& i p->fi_l ock);

967 */ 1033 return (fd);

968 if (dtrace_cl osef != NULL) 1034 }

969 (*dtrace_cl osef)();
1036 /*

971 #endif /* | codereview */ 1037 * Allocate a user file descriptor greater than or equal to "start"

972 VN_RELE(vp) ; 1038 */

973 /* 1039 int

974 * deal | ocate resources to audit_data 1040 ufalloc(int start)

975 */ 1041 {

976 if (audit_active) 1042 return (ufalloc_file(start, NULL));

977 audi t _unfall oc(fp); 1043 }

978 crfree(fp->f_cred);

979 kmem cache_free(file_cache, fp); 1045 /*

980 return (error); 1046 * Check that a future allocation of count fds on proc p has a good

981 } 1047 * chance of succeeding. If not, do rctl processing as if we’'d failed

new usr/src/uts/comon/os/fio.c 17

1048
1049
1050
1051
1052
1053

1
u

1054 {

1055
1056
1057

1059
1060

1062
1063

1065
1066
1067

1069
1070
1071
1072
1073
1074
1075

1077
1078
1079
1080
1081
1082

1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113

*

*
*
int
f

the all ocation.

Qur caller nust guarantee that p cannot di sappear underneath us.
/

canal | oc(proc_t *p, uint_t count)
uf _info_t *fip =
int filelimt;

int current;

P_FI NFQ(p) ;

if (count == 0)
return (1);

ASSERT(p- >p fno_ctl <= INT NAX),
filelimt (int)p->p_fno_ct

mut ex_enter (& i p->fi_l ock);

current = flist_nalloc(fip); /* # of in-use descriptors */
mut ex_exi t (& i p->fi_l ock);

/*

* |If count is a positive integer, the worst that can happen is

* an overflow to a negative value, which is caught by the >= 0 check.
&/

current += count;
if (count <= | NT_MAX && current
return (I);

>= 0 & current <= filelinmt)

mut ex_ent er (&p->p_| ock);

(void) rctl_action(rctlproc_| egacy[RLI M T_NOFI LE],
p->p_rctls, p, RCA SAFE);

mut ex_exi t (&p->p_| ock) ;

return (0);
Al locate a user file descriptor and a file structure.
Initialize the descriptor to point at the file structure.
If fdp is NULL, the user file descriptor will not be allocated.
/
t
I'loc(vnode_t *vp, int flag, file_t **fpp, int *fdp)

file_t *fp;

int fd;

if (fdp) {

if ((fd = ufalloc(0)) == -1)
return (EMFILE);

}

fp = knem cache_al l oc(file_cache, KM SLEEP);

/*

* Note: falloc returns the fp | ocked

*/

mut ex_ent er (& p->f _tl ock);

fp->f _count = 1;

fp->f flag = (ushort t)fla

fp->f_flag2 = (flag & (FSEARCH| FEXEC)) >> 16;
fp->f _vnode = vp;

fp->f_offset = 0;

fp->f_audit_data = O;

crhol d(fp->f_cred = CRED());

/*

* allocate resources to audit_data
*/

new usr/src/uts/comon/os/fio.c

1114
1115
1116
1117
1118
1119
1120

1122
1123
1124

if (audit_active)
audi t _falloc(fp);
*fpp = fp;
if (fdp)
*

return (0);

= fd;
}
| * ARGSUSED* /

static int
file_cache_constructor(void *buf,

1125 {

1126

1128
1129
1130

1132
1133
1134

file_t *fp = buf;

mut ex_i ni t (& p->f _t 1 ock,
return (0);
}

| * ARGSUSED* /
static void
file_cache_destructor(void *buf,

1135 {

1136

1138
1139

1141
1142

file_t *fp = buf;

) nmut ex_destroy(& p->f _tl ock);
voi d
finit()

1143 {

1144
1145
1146

1148
1149

file_cache = kmem cache_create("fil e_cache"
file_cache_dest ruct or,

file_cache_constructor,

}

voi d

unfal loc(file_t *fp)

1150 {

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163

1165
1166
1167
1168
1169
1170
1171
1172
1173

1175
1176

1178
1179

ASSERT(MUTEX_HELD(& p->f _t | ock));
if (--fp- >f _count <= 0) {

void *cdrarg,

voi d *cdrarg)

int knflags)

NULL, MJTEX_DEFAULT, NULL)

sizeof (file_t), O,
NULL, NULL NULL

* deal |l ocate resources to audit_data
S

if (audit_active)

audi t _unfal | oc(fp);
crfree(fp->f _cred);
mut ex_exi t (& p->f _t1ock);

kmem cache_free(fil e_cache,

} else
mut ex_exi t (& p->f _t1ock);

| e descriptor, set the user’s
er to the given paraneter.

©
2=

(int fd, file_t *fp)
uf _info_t *fip = P_FINFQ(curproc);
uf _entry_t *ufp;

if (AU_AUDI TINGE))
audi t _setf(fp,

if (fp == NULL)
mut ex_enter (& i p->fi

fd);

_lock);

fp);

18

0)

new usr/src/uts/comon/os/fio.c

1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192

1194
1195
1196
1197
1198

1199 int
f_getfl(int fd, int *flagp)
{

1200
1201
1202
1203
1204
1205

1207
1208
1209
1210
1211
1212
1213
1214
1215

1217
1218
1219
1220
1221
1222
1223
1224
1225
1226

1228
1229

1231
1232
1233
1234
1235
1236
1237

1239
1240
1241
1242
1243

1245

}
/*

* Gven a file descriptor,

UF_ENTER(uf p, fip, fd);

fd_reserve(fip, fd, -1);

mut ex_exi t (& 1 p->fi_l ock);
} else {

UF_ENTER(ufp, fip, fd);

ASSERT(uf p- >uf _busy);

}

ASSERT(uf p- >uf fpolllnfo == NULL)
ASSERT(uf p->uf _flag == 0);
ufp->uf _file = fp;

cv_broadcast (&uf p->uf _wanted_cv);
UF_EXI T(uf p) ;

return the file table flags, plus,

* if this is a socket in asynchronous node, the FASYNC fl ag.
* getf() nay or nmay not have been called before calling f_getfl().
*

/

}
/*

* Gven a file descriptor,

uf _info_t *fip =
uf _entry_t *ufp;
file_t *fp;
int error;

P_FI NFQ(cur proc) ;

if ((uint_t)fd >= fip->fi_nfiles)
error = EBADF,;

el se {
UF ENTER(ufp, fip, fd);
if ((fp = ufp->uf f|Ie) == NULL)
error = EBADF;
el se {
vnode_t *vp = fp->f_vnode;
int flag = fp->f_flag | (fp->f_flag2 << 16);
/*
* BSD fcntl () FASYNC conpatibility.
*
/
if (vp->v_type == VSOCK)
flag | = sock_getfasync(vp);
*flagp = fl ag;
error = 0;
}
UF_EXI T(ufp);
}

return (error);

return the user’s file flags.

* Force the FD_CLOEXEC flag for witable self-open /proc files.

* getf() may or may not have been called before calling f_getfd_error().
&/

int

f_getfd_error(int fd, int *flagp)
1238 {

uf _info_t *fip =
uf _entry_t *ufp;
file_t *fp;

int flag;

int error;

P_FI NFQ(cur proc) ;

if ((uint_t)fd >= fip->fi _nfiles)

19

new usr/src/uts/comon/os/fio.c

1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259

1261
1262

1264
1265
1266
1267
1268

error = EBADF;
el se {
UF ENTER(ufp, fip, fd)
if ((fp = ufp- >uf flle) == NULL)
error = EBADF
el se {

flag = ufp->uf_fl ag;

if ((fp- >f _flag & FWRITE) && pr_issel f (fp->f_vnode))

flag | = FD_CLOEXEC,
*flagp = fl ag;
error = 0;

LF_EXIT(ufp);

return (error);
}
/*
:/getf() must have been called before calling f_getfd().

char
f_getfd(int fd)

1269 {

1270
1271
1272
1273

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285

1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300

1302
1303
1304
1305
1306

1308
1309

1311

int flag = 0;
(void) f getfd error(fd, &flag);
return ((char)flag);

}

/*

* Gven a file descriptor and file flags, set the user’s file flags.

* At present, the only valid flag is FD CLOEXEC.

* getf() may or may not have been called before calling f_setfd_ error().

*/

i nt

f_setfd_error(int fd, int flags)

{
uf _info_t *fip =
uf _entry_t *ufp;
int error;

P_FI NFQ(cur proc) ;

if ((uint_t)fd >= fip->fi_nfiles)
error = EBADF;
el se {
UF_ENTER(ufp, fip, fd);
if (ufp->uf _file == NULL)
error = EBADF;
el se {
uf p->uf _flag
error = 0;

= flags & FD_CLOEXEC

LF_EXI T(ufp);

return (error);
}
voi d
f_setfd(int fd, char flags)
{

}

#defi ne BADFD_M N 3
#def i ne BADFD_MAX 255

(void) f_setfd_error(fd, flags);

| *

new usr/src/uts/comon/os/fio.c 21 new usr/src/uts/comon/os/fio.c 22
1312 * Atten"pt to allocate a file descriptor which is bad and which 1378 int error;
1313 * 'poi son" to the application. It cannot be cl osed (except 1379 int fd;
1314 * on exec), allocated for a different use, etc.
1315 */ 1381 if (error = falloc((vnode_t *)NULL, node, & p, &fd))
1316 int 1382 return (error);
1317 f_badfd(int start, int *fdp, int action) 1383 if (error = VOP OJEN(vpp nmode, fp->f_cred, NULL)) {
1318 { 1384 setf(fd, NULL);
1319 int fdr; 1385 unfal | oc(fp);
1320 int badfd; 1386 return (error);
1321 uf _info_t *fip = P_FINFQ(curproc); 1387 }
1388 fp->f _vnode = *vpp;
1323 #ifdef _LP64 1389 mut ex_exi t (& p->f _tlock);
1324 /* No restrictions on 64 bit _file */ 1390 g
1325 if (get_udatanodel () != DATAMODEL_I| LP32) 1391 * Fill inthe slot falloc reserved.
1326 return (EINVAL); 1392 */
1327 #endi f 1393 setf(fd fp);
1394 *fdp = fd;
1329 if (start > BADFD_MAX || start < BADFD_MN) 1395 return (0);
1330 return (ETNVAL); 1396 }
1332 if (action >= NSIG || action < 0) 1398 /*
1333 return (EINVAL); 1399 * Wen a process forks it nust increnent the f_count of all file pointers
1400 * since there is a new process pointing at them fcnt_add(fip, 1) does this.
1335 mut ex_enter (& i p->fi_l ock); 1401 * Since we are called when there is only 1 active |wp we don't need to
1336 badfd = fip->fi_badfd; 1402 * hold fi_lock or any uf_lock. |If the fork fails, fork_fail() calls
1337 mut ex_exi t (& i p- >fi Iock), 1403 * fcnt_add(fip, -1) to restore the counts.
1404 */
1339 if (badfd !'= -1) 1405 voi d
1340 return (EAGAI N) ; 1406 {cnt_add(uf_i nfo_t *fip, int incr)
1407
1342 fdr = ufalloc(start); 1408 int i;
1409 uf _entry_t *ufp;
1344 if (fdr > BADFD MAX) { 1410 file_t *fp;
1345 setf(fdr, NULL);
1346 return (EMFILE); 1412 ufp = fip->fi_list;
1347 } 1413 for (i =0; i < fip->fi_nfiles; i++, ufp++) {
1348 if (fdr < 0) 1414 if ((fp = ufp->uf_file) !'= NULL) {
1349 return (EMFILE); 1415 nut ex_ent er (& p->f _tl ock);
1416 ASSERT((incr == 1 & fp->f_count >= 1) ||
1351 mut ex_enter (& i p->fi_l ock); 1417 (incr == -1 && fp->f_count >= 2));
1352 if (fip->fi_badfd I'= -1) { 1418 fp->f_count += incr;
1353 /* Lost race */ 1419 nut ex_exi t (& p->f _t1 ock);
1354 mut ex_exi t (& i p->fi _l ock); 1420 }
1355 setf(fdr, NULL); 1421 1
1356 return (EAGAIN); 1422 }
1357 }
1358 fip->fi_action = action; 1424 | *
1359 fip->fi_badfd = fdr; 1425 * This is called fromexec to close all fd s that have the FD CLOEXEC fl ag
1360 mut ex_exi t (& i p->fi_l ock); 1426 * set and also to close all self-open for wite /proc file descriptors.
1361 setf(fdr, NULL); 1427 */
1428 voi d
1363 *fdp = fdr; 1429 cl ose_exec(uf_info_t *fip)
1430 {
1365 return (0); 1431 int fd;
1366 } 1432 file_t *fp;
1433 fpollinfo_t *fpip;
1368 /* 1434 uf entry t *ufp;
1369 * Allocate a file descriptor and assign it to the vnode "*vpp", 1435 portfd_t *pfd;
1370 * performing the usual open protocol upon it and returning the
1371 * file descriptor allocated. It is the responsibility of the 1437 ufp = fip->fi_list;
1372 * caller to dispose of "*vpp" if any error occurs. 1438 for (fd = 0; fd < fip->fi_nfiles; fd++ ufp++) {
1373 */ 1439 if ((fp = ufp->uf_file) I—NU &&
1374 int 1440 ((uf p->uf _flag & FD_CLOEXEC)
1375 fassign(vnode_t **vpp, int node, int *fdp) 1441 ((fp->f_flag & FWRITE) && pr_issel f(fp->f_vnode)))) {
1376 { 1442 pi p = uf p->uf _fpollinfo;
1377 file_t *fp; 1443 nut ex_ent er (& i p->fi _I ock);

new usr/src/uts/comon/os/fio.c

1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472

1474
1475
1476
1477

1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495

1497
1498

1500
1501
1502
1503
1504
1505
1506
1507
1508
1509

nut ex_ent er (&uf p- >uf _I ock);

fd_reserve(fip, fd, -1);

nut ex_exi t (& 1 p->fi _l ock);

uf p->uf _file = NULL;

uf p->uf fpollinfo = NULL;

uf p->uf _flag = 0;

/*
We may need to cleanup sone cached poll states
int_pollstate before the fd can be reused. It
is inmportant that we don't access a stale thread
structure. W will do the cleanup in tw

too long. In phase 1, hold the uf_lock and call
pol I bl ockexit() to set state in t_pollstate struct

so that a thread does not exit on us.

we drop the uf_lock and call pollcachecl ean().

*/
pfd = ufp->uf_portfd;
uf p->uf _portfd = NULL;
if (fpip !'= NULL)

pol I bl ockexi t (f p| p);
mut ex_exi t (&uf p- >uf _| ock);
if (fpip !'= NULL)

pol | cachecl ean(fpip, fd);
if (pfd)

port _cl ose_fd(pfd);
(void) closef(fp);

}

}

/* Reset bad fd */

fip->fi_badfd = -1;

fip->f | “action = -L
}
/*
* Uility function called by npbst of the *at() systemcall interfaces.
*
* Cenerate a starting vnode pointer for an (fd, path) pair where ’
* is an open file descriptor for a directory to be used as the starting
* point for the | ookup of the relative pathname 'path’ (or, if path is
* NULL, generate a vnode pointer for the direct target of the operation).
*
* |f we successfully return a non-NULL startvp, it has been the target
* of VN_HOLD() and the caller nust call VN _RELE() on it.
*/
i nt
fgetstartvp(int fd, char *path, vnode_t **startvpp)
{

vnode_t *startvp;

file_t *startfp;

char startchar;

if (fd == AT_FDOWD &8 path == NULL)
return (EFAULT);

if (fd == AT_FDOWD) {
/*

* Start fromthe current working directory.

*/
startvp = NULL;
} else {
if (path == NULL)

startchar = '\0’;
else if (copyin(path, &startchar, sizeof (char)))
return (EFAULT);

*
*
*
*
* phases to avoid deadl ock and hol ding uf _Il ock for
*
*
*
*

new usr/src/uts/comon/os/fio.c

1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530

1532
1533
1534
1535
1536

}

/*
* Called fromfchownat () and fchnodat() to set ownership and node.
* The contents of *vap nust be set before calling here.
*
/

i nt

if (startchar == "'/") {
/*
* "path’ is an absol ute pathnane.
*/

startvp = NULL;
} else {
/*

* "path’ is a relative pathnane or we will
* be applying the operation to 'fd itself.
*/

if ((startfp = getf(fd)) == NULL)
return (EBADF);

startvp = startfp->f vnode

VN_HOLD(st art vp) ;

rel easef (fd);

}

*startvpp = startvp;
return (0);

fsetattrat(int fd, char *path, int flags, struct vattr *vap)

vnode_t *startvp;
vnode_t *vp;

int error;

/*

* Since we are never called to set the size of a file, we don't
* need to check for non-blocking |ocks (via nbl_need_check(vp)).

*

ASSERT(! (vap->va_mask & AT_SIZE));

if ((error = fgetstartvp(fd, path, &startvp)) != 0)
return (error);

if (AU_AUDITING() && startvp != NULL)
audi t _setfsat_path(1);

*

* Do | ookup for fchownat/fchnodat when path not NULL
*/

if (path !'= NULL) {
if (error = | ookupnaneat (path, U O USERSPACE,
(flags == AT_SYM.I NK_NOFOLLOW 2
NO_FOLLOW : FOLLOW
NULLVPP, &vp, startvp)) {
if (startvp !'= NULL)
VN_RELE(startvp);
return (error);

} else {
vp = startvp;
ASSERT(vp) ;
VN_HOLD(vp) ;
}

if (vn_is_readonl y(vp)) {
error = ERCFS;
} else {
error = VOP_SETATTR(vp, vap, 0, CRED(), NULL);

new usr/src/uts/comon/os/fio.c
1576 }
1578

1579
1580

if (startvp !'= NULL)
VN_RELE(startvp);
VN_RELE(vp) ;

1582
1583 }

return (error);

1585 /*
1586 * Return true if the given vnode is referenced by any
1587
1588 */

1589 i nt

1590 fi sopen(vnode_t
1591 {
1592
1593
1594
1595
1596

*vp)

int fd;
file_t
vnode_t *ovp;

uf _info_t *fip = P_FINFQ(curproc);
uf _entry_t *ufp;

*fp;

1598 mut ex_enter (& i p->fi_l ock);

1599 for (fd = 0; fd < fip->fi_nfiles;
1600 UF_ENTER(ufp, fip, fd);
1601 if ((fp = ufp->uf_file)
1602 (ovp = fp->f_vnode)
1603 UF_EXI T(uf p);
1604 nut ex_exi t (& i p->fi _| ock);
1605 return (1);

1606
1607
1608
1609
1610
1611 }

fd++) {
I'= NULL &&

LF_EXI T(ufp);

mut ex_exi t (& i p->fi_l ock);
return (0);

1613 /*

1614 * Return zero if at |east
1615 * allowed to change zones
1616
1617 i
1618 f
1619 {
1620
1621
1622
1623

one file currently open (by

*/
nt
il es_can_change_zones(voi d)

int fd;

file_t *fp;

uf _info_t *fip = P_FINFQ(curproc);

uf _entry_t *ufp;

1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638 }

1640 #ifdef DEBUG

mut ex_enter (& i p->fi_l ock);
for (fd =0; fd < fip->fi_nfiles; fd++) {
UF_ENTER(ufp, fip, fd);
if ((fp = ufp->uf _file) !'= NULL &&
Ivn_can_change_zones(f p->f_vnode))
UF_EXI T(ufp);
mut ex_exi t (& i p->fi_l ock);
return (0);

{JFiEXI T(ufp);

}
mut ex_exi t (& i p->fi_l ock);
return (1);

I'= NULL && VN _CMP(vp,

* entry in the current process’'s file descriptor table.

cur proc)

~

ovp)) {

shoul dn’t be

25

new usr/src/uts/comon/os/fio.c

1642 /*

1643 * The followi ng functions are only used in ASSERT()s el sewhere.
1644 * They do not nodify the state of the system

1645 */

1647 /| *

1648 * Return true (1) if the current thread is in the fpollinfo
1649 * list for this file descriptor, else false (0).

1650 */

1651 static int

1652 curthread_in_plist(uf_entry_t *ufp)

1653 {

1654 fpollinfo_t *fpip;

1656 ASSERT(MUTEX_HELD(&uf p- >uf | ock));

1657 for (fpip = ufp->uf _fpollinfo; fpip; fpip = fpip->fp_next)
1658 i1f (fpip->fp_thread == curthread)

1659 return (1);

1660 return (0);

1661 }

1663 /*

1664 * Sanity check to make sure that after Iwp_exit(),

1665 * curthread does not appear on any fd's fpollinfo |ist.
1666 */

1667 void

1668 checkf pol |i nfo(voi d)

1669 {

1670 int fd;

1671 uf _info_t *fip = P_FINFQ(curproc);

1672 uf _entry_t *ufp;

1674 nut ex_enter (& i p->fi _| ock);

1675 for (fd = 0; fd < fip->fi_nfiles; fd++) {

1676 UF_ENTER(ufp, fip, fd);

1677 ASSERT(! curthread_i n_pli st (ufp));

1678 UF_EXI T(ufp);

1679

1680 mut ex_exi t (& i p->fi_l ock);

1681 }

1683 /*

1684 * Return true (1) if the current thread is in the fpollinfo
1685 * list for this file descriptor, else false (0).

1686 * This is the same as curthread_in_plist(),

1687 * but is called w o holding uf_|ock.

1688 */

1689 int

1690 infpollinfo(int fd)

1691 {

1692 uf _info_t *fip = P_FINFQ(curproc);

1693 uf _entry_t *ufp;

1694 int rc;

1696 UF_ENTER(ufp, fip, fd);

1697 rc = curthread_in_plist(ufp);

1698 UF_EXI T(uf p) ;

1699 return (rc);

1700 }

1702 #endif /* DEBUG */

1704 /*

1705 * Add the curthread to fpollinfo list, neaning this fd is currently in the
1706 * thread' s poll cache. Each Iwp polling this file descriptor should call

1707

* this routine once.

26

new usr/src/uts/comon/os/fio.c

1708 */

1709 voi d

1710 addfpollinfo(int fd)

1711 {

1712 struct uf_entry *ufp;

1713 fpollinfo_t *fpp

1714 uf _info_t *fip = P_FINFQ(curproc);

1716 fpip = kmem zal | oc(si zeof (fpollinfo_t), KM SLEEP);
1717 fpi p->fp_thread = curthread;

1718 UF_ENTER(ufp, fip, fd);

1719 /*

1720 * Assert we are not already on the list, that is, that
1721 * this Iwp did not call addfpollinfo twice for the same fd.
1722 */

1723 ASSERT(! curthread_i n_plist(ufp));

1724 /*

1725 * addfpollinfo is always done inside the getf/rel easef pair.
1726 */

1727 ASSERT(uf p->uf _refcnt >= 1);

1728 fpi p->f p_next = ufp->uf_fpollinfo;

1729 uf p->uf _fpollinfo = fpip;

1730 UF_EXI T(uf p);

1731 }

1733 /*

1734 * Delete curthread fromfpollinfo list if it is there.

1735 */

1736 voi d

1737 del fpollinfo(int fd)

1738 {

1739 struct uf_entry *ufp

1740 struct fpollinfo *fpip;

1741 struct fpollinfo **fpipp;

1742 uf _info_t *fip = P_FI NFchrproc)

1744 UF_ENTER(ufp, fip, fd);

1745 for (fpipp = &ufp->uf _fpollinfo;

1746 (fpip = *fpipp) !'= NULL;

1747 fpipp = & pi p->fp_next) {

1748 1f (fpip->fp_thread == curthread) {

1749 *fpipp = fpip->fp_next;

1750 kmem free(fpip, sizeof (fpollinfo_t));
1751 break;

1752 }

1753 }

1754 [*

1755 * Assert that we are not still on the list, that is, that
1756 * this Iwp did not call addfpollinfo twice for the same fd.
1757 */

1758 ASSERT(! curthread_i n_plist(ufp));

1759 UF_EXI T(ufp);

1760 }

1762 /*

1763 * fd is associated with a port. pfd is a pointer to the fd entry in the
1764 * cache of the port.

1765 */

1767 void

1768 addfd_port(int fd, portfd_t *pfd)

1769 {

1770 struct uf_entry *ufp;

1771 uf _info_t *fip = P_FINFQ(curproc);

1773 UF_ENTER(ufp, fip, fd);

27

new usr/src/uts/comon/os/fio.c 28
1774 *

1775 * addfd_port is always done inside the getf/rel easef pair.
1776 */

1777 ASSERT(uf p->uf _refcnt >= 1);

1778 if (ufp->uf_portfd == NULL) {

1779 /* first entry */

1780 uf p->uf _portfd = pfd;

1781 pfd->pfd_next = NULL

1782 } else {

1783 pf d- >pf d_next = uf p->uf _portfd;

1784 uf p->uf _portfd = pfd;

1785 pf d- >pf d_next - >pfd_prev = pfd;

1786

1787 UF_EXI T(ufp);

1788 }

1790 voi d

1791 del fd_port(int fd, portfd_t *pfd)

1792 {

1793 struct uf_entry *ufp;

1794 uf _info_t *fip = P_FINFQ(curproc);

1796 UF_ENTER(ufp, fip, fd);

1797 /*

1798 */del fd_port is always done inside the getf/rel easef pair.
1799 *

1800 ASSERT(uf p->uf _refcnt >= 1);

1801 if (ufp->uf_portfd == pfd) {

1802 /* renpve first entry */

1803 uf p->uf _portfd = pfd->pfd_next;

1804 } else {

1805 pf d- >pf d_prev->pf d_next = pfd->pfd_next;

1806 i1 f (pfd->pfd_next = NULL)

1807 pf d- >pf d_next->pfd_prev = pfd->pfd_prev;
1808 }

1809 UF_EXI T(ufp);

1810 }

1812 static void

1813 port_cl ose_fd(portfd_t *pfd)

1814 {

1815 portfd_t *pfdn;

1817 /*

1818 * At this point, no other thread shoul d access

1819 * the portfd_t list for this fd. The uf_file, uf_portfd
1820 * pointers in the uf _entry_t struct for this fd would
1821 * be set to NULL.

1822 *

1823 for (; pfd != NULL; pfd = pfdn) {

1824 pfdn = pfd->pfd_next;

1825 port_cl ose_pfd(pfd);

1826 }

1827 }

new usr/src/uts/comon/sys/dtrace. h

R R R R

101928 Tue Jan 14 16:50: 04 2014
new usr/src/uts/comon/sys/dtrace. h

2915 DTrace in a zone shoul d see "cpu",

"curpsinfo", et al

2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have linited provider access

Revi ewed by:
Revi ewed by: Adam Levent hal

Joshua M Cl ul ow <j osh@ysnygr. or g>
<ahl @lel phi x. con®

R R R R R R R R

1/*

22 /*

23 * Copyright 2009 Sun Mcrosystens, Inc. Al

=
[N

B A

-

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END

rights reserved.

24 * Use is subject to license terns.
25 */

27 |*

28 * Copyright (c) 2012, Joyent, Inc. Al
28 * Copyright (c) 2011, Joyent, Inc. Al
29 * Copyright (c) 2012 by Del phix. All
*
/

rights reserved.
rights reserved.
rights reserved.

Pl ease refer to the '

30
32 #ifndef _SYS _DTRACE_H
33 #define _SYS_DTRACE_H
35 #ifdef __cplusplus
36 extern "C' {
37 #endif
39 /*
40 * DTrace Dynamic Tracing Software: Kernel Interfaces
41 *
42 * Note: The contents of this file are private to the inplenentation of the
43 * Solaris systemand DTrace subsystem and are subject to change at any tine
44 * without notice. Applications and drivers using these interfaces will fail
45 * to run on future releases. These interfaces should not be used for any
46 * purpose except those expressly outlined in dtrace(?D) and |ibdtrace(3LIB).
*
*

50 #ifndef

/

"Sol aris Dynamic Tracing Guide" for nore information.

_ASM

52 #include <sys/types. h>

53 #include <sys/nodctl . h>

54 #include <sys/processor. h>
55 #incl ude <sys/systm h>

56 #include <sys/ctf_api.h>

new usr/src/uts/comon/sys/dtrace. h

57
58

122

#i ncl ude <sys/cyclic. h>

#i ncl ude <sys/int

_limts. h>

/*

* DTrace Universal Constants and Typedefs
#def i ne DTRACE_CPUALL -1 /* all CPUs */
#def i ne DTRACE_| DNONE 0 /* invalid probe identifier */
#def i ne DTRACE_EPI DNONE 0 /* invalid enabl ed probe identifier */
#def i ne DTRACE_AGG DNONE 0 /* invalid aggregation identifier */
#def i ne DTRACE_AGGVARI DNONE 0 /* invalid aggregation variable ID */
#def i ne DTRACE_CACHEI DNONE 0 /* invalid predicate cache */
#def i ne DTRACE_PROVNONE 0 /* invalid provider identifier */
#def i ne DTRACE_METAPROVNONE 0 /* invalid neta-provider identifier */
#def i ne DTRACE_ARGNONE -1 /* invalid argunent index */
#def i ne DTRACE_PROVNAMELEN 64
#def i ne DTRACE_MODNAMELEN 64
#def i ne DTRACE_FUNCNAMELEN 128
#def i ne DTRACE_NAMELEN 64

#defi ne DTRACE_FULLNAMELEN

(DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \

DTRACE_FUNCNAMELEN + DTRACE _NAMELEN + 4)
#def i ne DTRACE_ARGTYPELEN 128
typedef uint32_t dtrace_id_t; /* probe identifier */
typedef uint32_t dtrace_epid_t; /* enabl ed probe identifier */
typedef uint32_t dtrace_aggi _t /* aggregation identifier */
typedef int 64_ dtrace_aggvarid_t; /* aggregation variable identifier */
typedef uintl1l6_t dtrace_actkind_t; /* action kind *
typedef int64_t dtrace_optval t; /* option value */
typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */

typedef enum dtrace_probespec {

DTRACE_PROBESPEC_NONE = -1,
DTRACE_PROBESPEC_PROVI DER = 0,
DTRACE_PROBESPEC_MOD,
DTRACE_PROBESPEC_FUNC,

DTRACE_PROBESPEC_NANME

} dtrace_probespec_t;
/*

* DTrace I nternediate Format (DI F)

*

* The following definitions describe the DIrace Internediate Format (DIF), a
* a RISC-like instruction set and program encodi ng used to represent

* predicates and actions that can be bound to DTrace probes. The constants
* bel ow defining the nunber of available registers are suggested mininunms; the
* conpil er should use DTRACEI OC_CONF to dynamically obtain the nunber of

* registers provided by the current DTrace inplenentation.

*

/
#define DI F_VERSI ON_1 1 /* DIF version 1: Solaris 10 Beta */
#define DI F_VERSI ON_2 2 /* DIF version 2: Solaris 10 FCS */
#define DI F_VERSION_ DI F_VERSI ON_2 /* latest DIF instruction set version */
#define DIF_DIR NREGS 8 /* nunber of DIF integer registers */
#define DIF_DTR_NREGS 8 /* nunber of DIF tuple registers */
#define D F_OP_OR 1 /* or rl, r2, rd */
#define DI F_OP_XOR 2 /[* xor rl, r2, rd */
#defi ne DI F_OP_AND 3 /* and rl, r2, rd */
#define D F_OP_SLL 4 /* sl r1, r2, rd */
#define DI F_OP_SRL 5 /* srl r1, r2, rd */
#defi ne DI F_OP_SUB 6 /[* sub r1, r2, rd */
#defi ne DI F_OP_ADD 7 /* add rl, r2, rd */
#define D F_OP_MJL 8 /* mul r1, r2, rd */
#define D F_OP_SDIV 9 /* sdiv r1, r2, rd */
#define DI F_OP_UDIV 10 [* udiv rl, r2, rd */

new usr/src/uts/comon/sys/dtrace. h 3 new usr/src/uts/comon/sys/dtrace. h 4
123 #define D F_OP_SREM 11 /* sremrl, r2, rd */ 189 #define DI F_OP_RLDX 77 /* rldx [r1], rd */

124 #define DI F_OP_UREM 12 /* uremrl, r2, rd */ 190 #define DI F_OP_XLATE 78 /* xlate xlrindex, rd */

125 #define DI F_OP_NOT 13 /* not rl, rd */ 191 #define DI F_OP_XLARG 79 /* xlarg xlrindex, rd */

126 #define D F_OP_MWV 14 /* mov rl, rd */

127 #define D F_OP_CWP 15 /* cnp rl, r2 */ 193 #define DI F_I NTOFF_MAX oxffff /* highest integer table offset */
128 #define DI F_OP_TST 16 /* tst rl */ 194 #define DI F_STROFF_MAX oxffff /* highest string table offset */
129 #define DI F_OP_BA 17 /* ba | abel */ 195 #define DI F_REG STER MAX Ooxf f /* highest register nunber */

130 #define D F_OP_BE 18 /* be | abel */ 196 #define DI F_VARI ABLE_MAX oxffff /* highest variable identifier */
131 #define DI F_OP_BNE 19 /* bne |abel */ 197 #define DI F_SUBROUTI NE_MAX oxffff /* highest subroutine code */

132 #define DI F_OP_BG 20 /* bg | abel */

133 #define D F_OP_BG&U 21 /* bgu |abel */ 199 #define DI F_VAR ARRAY_M N 0x0000 /* |owest nunbered array variable */
134 #define D F_OP_BCGE 22 /* bge |abel */ 200 #define DI F_VAR_ARRAY_UBASE 0x0080 /* |owest user-defined array */

135 #define DI F_OP_BGEU 23 /* bgeu | abel */ 201 #define DI F_VAR_ARRAY_MAX 0x00ff /* highest nunmbered array variable */
136 #define DI F_OP_BL 24 /* bl | abel */

137 #define D F_OP_BLU 25 /* blu |abel */ 203 #define DI F_VAR OTHER M N 0x0100 /* |owest nunbered scal ar or assc */
138 #define D F_OP_BLE 26 /* ble |abel */ 204 #define DI F_VAR_OTHER UBASE 0x0500 /* |owest user-defined scalar or assc */
139 #define DI F_OP_BLEU 27 /* bleu | abel */ 205 #define DI F_VAR_OTHER_MAX oxffff /* highest nunmbered scalar or assc */
140 #define DI F_OP_LDSB 28 [* ldsb [r1], rd */

141 #define DI F_OP_LDSH 29 /* ldsh [r1], rd */ 207 #define DI F_VAR_ARGS 0x0000 /* argunents array */

142 #define DI F_OP_LDSW 30 /[* ldsw [r1], rd */ 208 #define DI F_VAR REGS 0x0001 /* registers array */

143 #define D F_OP_LDUB 31 /* ldub [r1], rd */ 209 #define DI F_VAR UREGS 0x0002 /* user registers array */

144 #define DI F_OP_LDUH 32 /* Iduh [r1], rd */ 210 #define DI F_VAR VMREGS 0x0003 /* virtual nachine registers array */
145 #define DI F_OP_LDUW 33 /* lduw [r1], rd */ 211 #define DI F_VAR_CURTHREAD 0x0100 /* thread pointer */

146 #define DI F_OP_LDX 34 [* 1dx [r1], rd */ 212 #define DI F_VAR TI MESTAMP 0x0101 /* timestanp */

147 #define DIF_OP_RET 35 /* ret rd */ 213 #define DI F_VAR VTl MESTAMP 0x0102 /* virtual timestanmp */

148 #define DI F_OP_NOP 36 /* nop */ 214 #define DI F_VAR | PL 0x0103 /* interrupt priority level */

149 #define DI F_OP_SETX 37 /* setx intindex, rd */ 215 #define DI F_VAR EPID 0x0104 /* enabl ed probe 1D */

150 #define DI F_OP_SETS 38 /* sets strindex, rd */ 216 #define DI F_VAR ID 0x0105 /* probe ID */

151 #define DI F_OP_SCMP 39 /* scnp rl, r2 */ 217 #define DI F_VAR_AR®) 0x0106 /* first argument */

152 #define DI F_OP_LDGA 40 /* ldga var, ri, rd */ 218 #define DI F_VAR_ARGL 0x0107 /* second argunent */

153 #define DI F_OP_LDGS 41 /* ldgs var, rd */ 219 #define DI F_VAR_ AR® 0x0108 /* third argunent */

154 #define DI F_OP_STGS 42 /* stgs var, rs */ 220 #define DI F_VAR_ARG3 0x0109 /* fourth argunent */

155 #define DI F_OP_LDTA 43 /* ldta var, ri, rd */ 221 #define DI F_VAR_ARG4 0x010a /* fifth argument */

156 #define DI F_OP_LDTS 44 /* ldts var, rd */ 222 #define DI F_VAR_ARGS 0x010b /* sixth argument */

157 #define DI F_OP_STTS 45 /* stts var, rs */ 223 #define DI F_VAR ARG5S 0x010c /* seventh argunent */

158 #define DI F_OP_SRA 46 /* sra rl, r2, rd */ 224 #define DI F_VAR ARG/ 0x010d /* eighth argunent */

159 #define D F_OP_CALL 47 /* call subr, rd */ 225 #define DI F_VAR_ARGS 0x010e /* ninth argument */

160 #define D F_OP_PUSHTR 48 /* pushtr type, rs, rr */ 226 #define DI F_VAR_AR® 0x010f /* tenth argument */

161 #define DI F_OP_PUSHTV 49 /* pushtv type, rs, rv */ 227 #define DI F_VAR_STACKDEPTH 0x0110 /* stack depth */

162 #define D F_OP_POPTS 50 /* popts */ 228 #define DI F_VAR CALLER 0x0111 /* caller */

163 #define DI F_OP_FLUSHTS 51 /* flushts */ 229 #define DI F_VAR_PROBEPROV 0x0112 /* probe provider */

164 #define DI F_OP_LDGAA 52 /* ldgaa var, rd */ 230 #define DI F_VAR_PROBEMOD 0x0113 /* probe nodule */

165 #define DI F_OP_LDTAA 53 /* ldtaa var, rd */ 231 #define DI F_VAR_PROBEFUNC 0x0114 /* probe function */

166 #define DI F_OP_STGAA 54 /* stgaa var, rs */ 232 #define DI F_VAR_PROBENAVE 0x0115 /* probe nane */

167 #define DI F_OP_STTAA 55 /* sttaa var, rs */ 233 #define DIF_VAR PID 0x0116 /* process ID */

168 #define DI F_OP_LDLS 56 /* 1dl's var, rd */ 234 #define DIF_VAR TID 0x0117 /* (per-process) thread ID */

169 #define DI F_OP_STLS 57 /* stls var, rs */ 235 #define DI F_VAR_EXECNAMVE 0x0118 /* nane of executable */

170 #define DIF_OP_ALLOCS 58 /* allocs rl, rd */ 236 #define DI F_VAR_ZONENANE 0x0119 /* zone nane associated with process */
171 #define DI F_OP_COPYS 59 [* copys rl, r2, rd */ 237 #define DIF_VAR WALLTI MESTAMP 0x01la /* wall-clock timestanp *

172 #define D F_OP_STB 60 /* stb r1, [rd] */ 238 #define DI F_VAR_USTACKDEPTH 0x011lb /* user-land stack depth */

173 #define D F_OP_STH 61 /* sth r1, [rd] */ 239 #define DI F_VAR UCALLER 0x01lc /* user-level caller */

174 #define D F_OP_STW 62 /* stw rl, [rd] */ 240 #define DI F_VAR PPID 0x011d /* parent process ID */

175 #define DI F_OP_STX 63 [* stx rl, [rd] */ 241 #define DIF_VAR U D 0x0lle /* process user ID */

176 #define DI F_OP_ULDSB 64 /* uldsb [r1], rd */ 242 #define DIF_VAR G D 0x011f /* process group ID */

177 #define D F_OP_ULDSH 65 /* uldsh [r1], rd */ 243 #define DI F_VAR_ERRNO 0x0120 /* thread errno */

178 #define D F_OP_ULDSW 66 /* uldsw [r1], rd */

179 #define D F_OP_ULDUB 67 /* uldub [r1], rd */ 245 #define DI F_SUBR_RAND 0

180 #define DI F_OP_ULDUH 68 /* ulduh [r1], rd */ 246 #define DI F_SUBR_MJUTEX_OANED 1

181 #define DI F_OP_ULDUW 69 [* ulduw [r1], rd */ 247 #define D F_SUBR_MJTEX_OANER 2

182 #define DI F_OP_ULDX 70 /* ul dx ril], rd */ 248 #define DI F_SUBR_MJUTEX_TYPE_ADAPTI VE 3

183 #define DI F_OP_RLDSB 71 /* rldsb [r1], rd */ 249 #define DI F_SUBR_MJUTEX_TYPE_SPIN 4

184 #define D F_OP_RLDSH 72 /* rldsh [r1], rd */ 250 #define DI F_SUBR_RW READ HELD 5

185 #define DI F_OP_RLDSW 73 [* rldsw [r1], rd */ 251 #define DI F_SUBR_RWWRI TE_HELD 6

186 #define DI F_OP_RLDUB 74 /* rldub [r1], rd */ 252 #define DI F_SUBR_RW| SWRI TER 7

187 #define DI F_OP_RLDUH 75 /* rlduh [r1], rd */ 253 #define DI F_SUBR_COPYI N 8

188 #define D F_OP_RLDUW 76 /* rlduw [r1], rd */ 254 #define DI F_SUBR_COPYI NSTR 9

new usr/src/uts/comon/sys/dtrace. h

255 #define DI F_SUBR_SPECULATI ON

256 #define DI F_SUBR_PROGENYOF
257 #define DI F_SUBR_STRLEN
258 #define DI F_SUBR COPYOUT
259 #define DI F_SUBR COPYOUTSTR
260 #define DI F_SUBR ALLOCA
261 #defi ne DI F_SUBR_BCOPY

262 #define DI F_SUBR_COPYI NTO
263 #define DI F_SUBR MSGDSI ZE
264 #define DI F_SUBR _MSGSI ZE
265 #define DI F_SUBR_GETMAJOR
266 #define DI F_SUBR GETM NOR
267 #define DI F_SUBR DDl _PATHNAVE
268 #define DI F_SUBR STRJO N
269 #define DI F_SUBR _LLTOSTR
270 #define DI F_SUBR_BASENAVE
271 #define DI F_SUBR DI RNAVE
272 #define DI F_SUBR_CLEANPATH
273 #define DI F_SUBR_STRCHR
274 #define DI F_SUBR_STRRCHR
275 #define DI F_SUBR_STRSTR
276 #define D F_SUBR _STRTCK
277 #define DI F_SUBR SUBSTR
278 #define DI F_SUBR_|I NDEX

279 #define DI F_SUBR_RI NDEX
280 #define DI F_SUBR_HTONS

281 #define DI F_SUBR_HTONL

282 #define DI F_SUBR HTONLL
283 #define DI F_SUBR_NTOHS

284 #define DI F_SUBR NTOHL

285 #define DI F_SUBR NTOHLL
286 #define DI F_SUBR_| NET_NTOP
287 #define DI F_SUBR_I NET NTQA
288 #define DI F_SUBR_| NET_NTQA6
289 #define DI F_SUBR TOUPPER
290 #define DI F_SUBR_TOLONER
291 #define DI F_SUBR GETF

292 #endif /* ! codereview */

294 #define DI F_SUBR MAX
291 #define DI F_SUBR_MAX

296 typedef uint32_t dif_instr_t;

298 #define DI F_I NSTR OP(i)

299 #define DI F_I NSTR RL(i)

300 #define DI F_I NSTR R2(i)

301 #define DI F_I NSTR_ RD(i)

302 #define DI F_I NSTR_RS(i)

303 #define DI F_I NSTR_LABEL(i)

304 #define DI F_I NSTR_VAR(i)

305 #define DI F_I NSTR | NTEGER(i)

306 #define DI F_I NSTR_STRI NG(i)

307 #define DI F_I NSTR_SUBR(i)

308 #define DI F_I NSTR TYPE(i)

309 #define DI F_I NSTR_XLREF(1)

311 #define DI F_INSTR FMI(op, ri1, r2, d) \
312 (((op) << 24) | ((r1) << 16)
314 #define DI F_INSTR_NOT(r1, d)

315 #define DI F_INSTR_.MOV(r1, d)

316 #define DI F_I NSTR CMP(op, r1, r2)
317 #define DI F_INSTR TST(r1)

318 #define DI F_I NSTR_BRANCH(op, | abel)
319 #define DI F_INSTR_LOAD(op, rl, d)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

46 /* max subroutine val ue */
45 /* max subroutine val ue */
(((i) >> 24) & Oxff)
(((i) >> 16) & Oxff)
(((i) > 8) & 0xff)

((i) & Oxff)

((i) & Oxff)

((i) & Oxffffff)

(((1) > 8) & Oxffff)
(((i) > 8) & Oxffff)
(((i) > 8) & Oxffff)
(((i) >> 8) & Oxffff)
(((i) >> 16) & Oxff)
(((i) > 8) & Oxffff)
((r2) << 8) | (d))

(DI F_I NSTR_FMI(DI F_OP_NOT,
(DI F_I NSTR_FMT(DI F_OP_MOV,
(DI F_I NSTR_FMI(op, r1, r2,
(DI F_I NSTR_FMI(DI F_OP_TST,
(((op) << 24) | (label))
(DIF_INSTR_FMI(op, r1, 0, d

new usr/src/uts/comon/sys/dtrace. h 6
320 #define DI F_INSTR STORE(op, r1, d) (DI F_INSTR_FMI(op, r1, 0, d))

321 #define DI F_INSTR SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
322 #define DI F_I NSTR_SETS(s, d) ((IF_GD_SEFS << 24) | ((s) << 8) | (d))
323 #define DI F_I NSTR_RET(d) (DI F_INSTR_FMI(DI F_OP_RET, 0, 0, d))

324 #define DI F_I NSTR_NOP (DI F_OP_NOP << 24)

325 #define DI F_INSTR_LDA(op, v, r, d) (DI F_INSTR_FMI(op, v, r, d))

326 #define DI F_INSTR LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))

327 #define DI F_INSTR STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))

328 #define DI F_I NSTR CALL(s, d) ((D F_GD CALL << 24) | s) << 8) | (d))
329 #define DI F_I NSTR_PUSHTS(op, t, r2, rs) (D F_INSTR FMI(op, t, r2, rs))

330 #define DI F_I NSTR_POPTS (DI E_OP_POPTS << 24)

331 #define DI F_I NSTR_FLUSHTS (DI F_OP_FLUSHTS << 24)

332 #define DI F_I NSTR ALLOCS(r1, d) (DI F_INSTR_FMI(DI F_OP_ALLCCS, r1, 0, d))
333 #define DI F_I NSTR COPYS(r1, r2, d) (DI F_INSTR_FMI(DI F_OP_COPYS, r1, r2, d))
334 #define DI F_I NSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))

336 #define DIF_REG RO 0 /* %0 is always set to zero */

338 /*

339 * A DIrace Internediate Format Type (DIF Type) is used to represent the types
340 * of variables, function and associative array argunents, and the return type
341 * for each DI F object (shown below). It contains a description of the type,
342 * its size in bytes, and a nodule identifier.

343 *

344 typedef struct dtrace_diftype {

345 ui nt8_t dtdt_kind; /* type kind (see bel ow)

346 uint8_t dtdt_cki nd /* type kind in CTF */

347 uint8_t dtdt flags; /* type flags (see below) */

348 uint8_t dtdt_pad; /* reserved for future use */

349 uint32_t dtdt_size; /* type size in bytes (unless string) */

350 } dtrace_diftype_t;

1351
1352
1353
1354
1355

1357

1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383

__unchanged_porti

on_om tted_

#def i ne DTRACEMNR_DTRACE
#def i ne DTRACEMNR_HELPER
#def i ne DTRACEMNRN_DTRACE
#def i ne DTRACEMNRN_HELPER
#def i ne DTRACEMNRN_CLONE

#i f def

/

* Ok ok ok Sk Rk O Sk O ok b Sk b R ok R R % b % b % o

_KERNEL

DTrace Provider APl

0
1

dtrace"” /* node for DTrace ops */
"hel per" /* node for hel pers */
/* mnor for DTrace ops */
/* mnor for hel pers */
/* first clone mnor */

2

The follow ng functions are inplenmented by the DIrace franework and are

used to inplement separate in-kernel
are provided in uts/comon/os/dtrace.c.

DTrace providers. Conmon functions
| SA- dependent subroutines are

defined in uts/<isa> dtrace/dtrace_asms or uts/<isa>/dtrace/dtrace_isa.c.

The provider AP
DTrace, and the APl

1 Franmewor k-t o-Provi der API
1.1 Overview

The Franewor k-t o- Provi der API

that the provider passes to the framework when registering itself.

has two hal ves:

the APl that the providers consune from

that providers make available to DTrace.

is represented by the dtrace_pops structure
This

structure consists of the follow ng nenbers:

dt ps_provi de() <--
dt ps_provi de_nodul e() <--
dt ps_enabl e() <--
dt ps_di sabl e() <--
dt ps_suspend() <--
dt ps_resune() <--

Provi de all probes, all nodul es
Provide all probes in specified nodul e
Enabl e specified probe

Di sabl e specified probe

Suspend specified probe

Resune specified probe

new usr/src/uts/comon/sys/dtrace. h 7

1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449

® Ok ok ok E ok 3k O E b R b SE OF 3k ok Sk b SR oF Sk F S 3k O F O R b Sk F 3k ok Sk ok SR F SR F b 3k O F O 3k b Sk F ok ok Sk ok R S ok % b % Ok O ok o ok 3k

dt ps_get ar gdesc() <-- Get the argunent description for args[X]

dt ps_get argval () <-- Get the value for an argX or args[X] variable
dt ps_node() <-- Return the node of the fired probe

dt ps_destroy() <-- Destroy all state associated with this probe

.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)

.2.1 Overview

Called to indicate that the provider should provide all probes. [If the
speci fied description is non-NULL, dtps_provide() is being called because
no probe matched a specified probe -- if the provider has the ability to
create custom probes, it may wish to create a probe that matches the
speci fied description.

.2.2 Argunents and notes

The first argunent is the cookie as passed to dtrace_register(). The
second argunent is a pointer to a probe description that the provider nay
wi sh to consider when creating custom probes. The provider is expected to
call back into the DTrace framework via dtrace_probe_create() to create
any necessary probes. dtps_provide() nay be called even if the provider
has made avail able all probes; the provider should check the return val ue
of dtrace_probe_create() to handle this case. Note that the provider need
not inplenent both dtps_provide() and dtps_provi de_nodul e(); see
"Argunments and Notes" for dtrace_register(), below

.2.3 Return val ue

None.

.2.4 Caller’s context

dtps_provide() is typically called fromopen() or ioctl() context, but may
be called fromother contexts as well. The DIrace framework is |ocked in
such a way that providers may not register or unregister. This neans that
the provider may not call any DTrace APl that affects its registration with
the framework, including dtrace_register(), dtrace_unregister(),
dtrace_invalidate(), and dtrace_condense(). However, the context is such
that the provider may (and indeed, is expected to) call probe-related
DTrace routines, including dtrace_probe_create(), dtrace_probe_| ookup(),
and dtrace_probe_arg().

.3 void dtps_provide_nodul e(void *arg, struct nodctl *np)

.3.1 Overview

Called to indicate that the provider should provide all probes in the
speci fi ed nodul e.

.3.2 Argunents and notes

The first argunent is the cookie as passed to dtrace_register(). The
second argunent is a pointer to a nodctl structure that indicates the
nmodul e for which probes should be created.

.3.3 Return val ue

None.

.3.4 Caller’s context

dt ps_provi de_nodul e() may be called fromopen() or ioctl() context, but
may al so be called froma nodul e | oading context. nod_|lock is held, and
the Dirace franework is |ocked in such a way that providers nay not
register or unregister. This neans that the provider nmay not call any

new usr/src/uts/comon/sys/dtrace. h 8
1450 * DTrace APl that affects its registration with the framework, including
1451 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and

1452 * dtrace_condense(). However, the context is such that the provider nmay (and
1453 * indeed, is expected to) call probe-related DTrace routines, including
1454 * dtrace_probe_create(), dtrace_probe_l ookup(), and dtrace_probe_arg(). Note
1455 * that the provider need not inplenment both dtps_provide() and

1456 * dt ps_provi de_nodul e(); see "Arguments and Notes" for dtrace_register(),
1457 * bel ow.

1458 *

1459 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parQg)

1460 *

1461 * 1.4.1 Overview

1462 *

1463 * Call ed to enabl e the specified probe.

1464 *

1465 * 1.4.2 Argunents and notes

1466 *

1467 * The first argunent is the cookie as passed to dtrace_register(). The
1468 * second argunent is the identifier of the probe to be enabled. The third
1469 * argunment is the probe argunent as passed to dtrace_probe_create().

1470 * dtps_enabl e() will be called when a probe transitions fromnot being
1471 * enabl ed at all to having one or nore ECB. The nunber of ECBs associ at ed
1472 * with the probe nay change without subsequent calls into the provider.
1473 * When the nunber of ECBs drops to zero, the provider will be explicitly
1474 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1475 * be called for a probe identifier that hasn't been explicitly enabled via
1476 * dt ps_enabl e() .

1477 *

1478 * 1.4.3 Return value

1479 *

1480 * On success, dtps_enable() should return 0. On failure, -1 should be

1481 * returned.

1482 *

1483 * 1.4.4 Caller’s context

1484 *

1485 * The DTrace franework is locked in such a way that it may not be called
1486 * back into at all. <cpu_lock is held. nod_lock is not held and may not
1487 * be acquired.

1488 *

1489 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)

1490 *

1491 * 1.5.1 Overview

1492 *

1493 * Called to disable the specified probe.

1494 *

1495 * 1.5.2 Argunents and notes

1496 *

1497 * The first argunent is the cookie as passed to dtrace_register(). The
1498 * second argurment is the identifier of the probe to be disabled. The third
1499 * argurment is the probe argunment as passed to dtrace_probe_create().

1500 * dtps_di sable() will be called when a probe transitions from being enabl ed
1501 * to having zero ECBs. dtrace_probe() should never be called for a probe
1502 * identifier that has been explicitly enabled via dtps_disable().

1503 *

1504 * 1.5.3 Return value

1505 *

1506 * None

1507 *

1508 * 1.5.4 Caller’s context

1509 *

1510 * The DTrace franework is locked in such a way that it may not be called
1511 * back into at all. «cpu_lock is held. nod_lock is not held and may not
1512 * be acquired.

1513 *

1514 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)

1515 *

new usr/src/uts/comon/sys/dtrace. h

1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

1.6.1 Overview

Called to suspend the specified enabled probe. This entry point is for
providers that nmay need to suspend some or all of their probes when CPUs
are being powered on or when the boot nonitor is being entered for a
prol onged period of tinme.

1.6.2 Argunents and notes

The first argunent is the cookie as passed to dtrace_register(). The
second argunment is the identifier of the probe to be suspended. The
third argunent is the probe argunent as passed to dtrace_probe_create().
dtps_suspend will only be called on an enabl ed probe. Providers that
provide a dtps_suspend entry point will want to take roughly the action
that it takes for dtps_disable.

1.6.3 Return val ue
None.
1.6.4 Caller’s context

Interrupts are disabled. The DTrace framework is in a state such that the
speci fied probe cannot be disabled or destroyed for the duration of
dtps_suspend(). As interrupts are disabled, the provider is afforded
little latitude; the provider is expected to do no nore than a store to
nenory.

1.7 void dtps_resune(void *arg, dtrace_id_t id, void *parg)

1.7.1 Overview

Called to resune the specified enabled probe. This entry point is for
providers that nay need to resume sone or all of their probes after the
conpl etion of an event that induced a call to dtps_suspend().

1.7.2 Argunents and notes

The first argunent is the cookie as passed to dtrace_register(). The
second argunment is the identifier of the probe to be resumed. The
third argunent is the probe argunent as passed to dtrace_probe_create().
dtps_resune will only be called on an enabl ed probe. Providers that
provide a dtps_resunme entry point will want to take roughly the action
that it takes for dtps_enable.

1.7.3 Return val ue
None.

1.7.4 Caller’s context
Interrupts are disabled. The DTrace framework is in a state such that the
speci fied probe cannot be disabled or destroyed for the duration of
dtps_resune(). As interrupts are disabled, the provider is afforded
little latitude; the provider is expected to do no nore than a store to
nenory.

1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
dtrace_argdesc_t *desc)

1.8.1 Overview
Called to retrieve the argunent description for an args[X] vari able.

1.8.2 Argunents and notes

new usr/src/uts/comon/sys/dtrace. h 10
1582 * The first argument is the cookie as passed to dtrace_register(). The
1583 * second argunent is the identifier of the current probe. The third

1584 * argunment is the probe argunent as passed to dtrace_probe_create(). The
1585 * fourth argunent Is a pointer to the argument description. This

1586 * description is both an input and output parameter: it contains the
1587 * index of the desired argunent in the dtargd_ndx field, and expects

1588 * the other fields to be filled in upon return. |[If there is no argument
1589 * corresponding to the specified index, the dtargd_ndx field should be set
1590 * t o DTRACE_ARGNONE

1591 *

1592 * 1.8.3 Return value

1593 *

1594 = None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mappi ng
1595 * menbers of the dtrace_argdesc_t structure are all output val ues.

1596 *

1597 * 1.8.4 Caller’s context

1598 *

1599 * dt ps_getargdesc() is called fromioctl () context. mod_|l ock is held, and
1600 * the Dirace franework is locked in such a way that providers nay not
1601 * register or unregister. This neans that the provider may not call any
1602 * Dirace APl that affects its registration with the franmework, including
1603 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and

1604 * dtrace_condense().

1605 *

1606 * 1.9 uint64_t dtps_getargval (void *arg, dtrace_id_t id, void *parg,

1607 * int argno, int afranes)

1608 *

1609 * 1.9.1 Overview

1610 *

1611 * Called to retrieve a value for an argX or args[X variable.

1612 *

1613 * 1.9.2 Argunents and notes

1614 *

1615 * The first argument is the cookie as passed to dtrace_register(). The
1616 * second argunent is the identifier of the current probe. The third

1617 * argunment is the probe argunent as passed to dtrace_probe_create(). The
1618 * fourth argunent 1s the nunber of the argument (the X in the exanple in
1619 * 1.9.1). The fifth argument is the nunber of stack franmes that were used
1620 * to get fromthe actual place in the code that fired the probe to

1621 * dtrace_probe() itself, the so-called artificial frames. This argunment may
1622 * be used to descend an appropriate nunber of franes to find the correct
1623 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1624 * function is used.

1625 *

1626 * 1.9.3 Return value

1627 *

1628 * The val ue of the argunent.

1629 *

1630 * 1.9.4 Caller’s context

1631 *

1632 * This is called fromw thin dtrace_probe() neaning that interrupts

1633 * are disabled. No | ocks should be taken within this entry point.

1634 *

1635 * 1.10 int dtps_node(void *arg, dtrace_id_t id, void *parg)

1636 *

1637 * 1.10.1 Overview

1638 *

1639 * Called to determine the node of a fired probe.

1640 *

1641 * 1.10.2 Argunents and notes

1642 *

1643 * The first argunent is the cookie as passed to dtrace_register(). The
1644 * second argunent is the identifier of the current probe. The third

1645 * argunment is the probe argunent as passed to dtrace_probe_create(). This
1646 * entry point nmust not be left NULL for providers whose probes allow for
1647 * m xed node tracing, that is to say those unanchored probes that can fire

new usr/src/uts/comon/sys/dtrace. h 11

1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1651
1652
1653
1654
1655
1656
1657
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706

B i T T T R S S I S

.11 void dtps_destroy(void *arg,

The Provider-to-Framework API

during kernel - or user-nobde execution.

.10.3 Return val ue

A bitwi se OR that encapsul ates both the node (either DTRACE_MODE_KERNEL
or DTRACE_MODE_USER) and the policy when the privilege of the enabling
is insufficient for that node (a conbination of DTRACE_MODE_NOPRI V_DRCP,
DTRACE_MODE_NOPRI V_RESTRI CT, and DTRACE_MODE_LI M TEDPRI' V. RESTRICT) | f
DTRACE_MODE_NOPRI V_DROP bit is set, insufficient privilege will result
in the probe firing being silently ignored for the enabling; if the
DTRACE_NODE_NOPRI V_RESTRICT bit is set, insufficient privilege will not
prevent probe processing for the enabling, but restrictions will be in
place that induce a UPRIV fault upon attenpt to exam ne probe argunents
or current process state. |f the DITRACE_MODE LI M TEDPRI V_RESTRI CT bi t
is set, simlar restrictions will be placed upon operation if the
privilege is sufficient to process the enabling, but does not otherw se
entitle the enabling to all zones. The DTRACE_MODE_NOPRI V_DROP and
DTRACE_MODE_NOPRI V_RESTRI CT are nutual | y exclusive (and one of these
two policies nust be specified), but either may be conbi ned (or not)

wi th DTRACE_MODE LI M TEDPRI V_RESTRI CT.

is insufficient for that node (either DTRACE_MODE_NOPRI V_DROP or
DTRACE_MODE_NOPRI V_RESTRICT). If the policy is DTRACE MODE_NOPRI V_DROP,
insufficient priviTege will result in the probe firing being silently
ignored for the enabling; if the policy is DTRACE_NODE_NOPRI V_RESTRI CT,
insufficient privilege will not prevent probe processing for the
enabling, but restrictions will be in place that induce a UPRIV fault
upon attenpt to exami ne probe arguments or current process state.

.10.4 Caller’s context

This is called fromw thin dtrace_probe() nmeaning that interrupts
are disabled. No | ocks should be taken within this entry point.

dtrace_id_t id, void *parg)

.11.1 Overview

Called to destroy the specified probe.

.11.2 Argunents and notes

The first argument is the cookie as passed to dtrace_register(). The
second argunent is the identifier of the probe to be destroyed. The third
argunment is the probe argunent as passed to dtrace_probe_create(). The
provi der should free all state associated with the probe. The framework
guarantees that dtps_destroy() is only called for probes that have either
been di sabl ed via dtps_disable() or were never enabled via dtps_enable().
Once dtps_disable() has been called for a probe, no further call will be
made specifying the probe.

.11. 3 Return val ue

None.

.11.4 Caller’s context

be call ed
and may not be

The DTrace franework is locked in such a way that it may not
back into at all. nod_lock is held. cpu_lock is not held,
acqui r ed.

2 Provider-to-Framework API

2.1 Overview

provi des the nechanismfor the provider to

new usr/src/uts/comon/sys/dtrace. h

1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

register itself with the DTrace franmework,

probes and (nost
consi sts of:

inmportantly) to fire probes.

12

to create probes, to | ookup
The Provi der -t o- Franewor k

dtrace_register() <-- Register a provider with the DTrace franmework
dtrace_unregister() <-- Renobve a provider’s DTrace registration
dtrace_invalidate() <-- Invalidate the specified provider
dtrace_condense() <-- Renopve a provider’s unenabl ed probes

dtrace_attached()

<-- Indicates whether or not

DTrace has attached

dtrace_probe_create() <-- Create a DTrace probe

dtrace_probe_l ookup() <--
dtrace_probe_arg() <--
dt race_probe() <--

2.2 int dtrace_register(const char *nane,
cred_t *cr,
dtrace_provider_id_t

uint32_t priv,

2.2.1 Overview

dtrace_register()

framework. It

attach(9E) entry point.
2.2.2 Argunents and Notes

The first argunent is the

pointer to the stability attributes for the provider.
Is the privilege flags for the provider,

DTRACE_PRI V_NONE <=
DTRACE_PRI V_PRCC <=
DTRACE_PRI V_USER <=

DTRACE_ PRI V_KERNEL <=

DTRACE PRI V_OWNER <=

DTRACE_PRI V_ZONEONNER<=

Note that these flags designate the

Lookup a DTrace probe based on its nane
Return the probe argunent for a specific probe
Fire the specified probe

const dtrace_pattr_t *pap,
const dtrace_pops_t *pops, void *arg,
*i dp)

registers the calling provider with the DIrace
shoul d generally be called by DIrace providers in their

nane of the provider. The second argunent is a
The third argument

and nust be sone conbination of:
Al'l users nay enable probes fromthis provider

Any user with privilege of PRI V_DTRACE_PRCC nmay
enabl e probes fromthis provider

Any user with privilege of PRI V_DTRACE USER may
enabl e probes fromthis provider

Any user with privilege of PRI V_DTRACE KERNEL
may enabl e probes fromthis provider

This flag places an additional constraint on
the privilege requirenents above. These probes
require either (a) a user ID natching the user
ID of the cred passed in the fourth argunent
or (b) the PRI V_PROC OMER privil ege.

This flag places an additional constraint on
the privilege requirements above. These probes
require either (a) a zone |ID natching the zone
ID of the cred passed in the fourth argunent
or (b) the PRIV_PROC_ZONE privil ege.

visibility of the probes, not

the conditions under which they may or may not fire.

The fourth argunent
provider.

framework stashes the uid
for use at probe-tine, in

is the credential
This argunment should be NULL if the privilege flags don't
i ncl ude DTRACE_PRI V_OMER or

that is associated with the
DTRACE_PRI V_ZONEOMWNER. | f non- NULL, the
and zonei d represented by this credential
inplicit predicates. These linit visibility

of the probes to users and/or zones which have sufficient privilege to

access them

The fifth argunent

is a DTrace provider operations vector,
the inplenentation for the Franework-to-Provider API.

whi ch provides
(See Section 1,

new usr/src/uts/comon/sys/dtrace. h

1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838

® Ok ok ok E ok 3k O E b R b SE OF 3k ok Sk b SR oF Sk F S 3k O F O R b Sk F 3k ok Sk ok SR F SR F b 3k O F O 3k b Sk F ok ok Sk ok R S ok % b % Ok O ok o ok 3k

above.) This nust be non-NULL, and each nenber nust be non-NULL. The
exceptions to this are (1) the dtps_provide() and dtps_provi de_nodul e()
menbers (if the provider so desires, _one_ of these nenbers may be left
NULL -- denoting that the provider only inplenents the other) and (2)
the dt ps_suspend() and dtps_resune() nenbers, which nust either both be
NULL or both be non- NULL.

The sixth argunent is a cookie to be specified as the first argument for
each function in the Framework-to-Provider API. This argunment may have
any val ue.

The final argument is a pointer to dtrace_provider_id_t. |If
dtrace_register() successfully conpletes, the provider identifier will be
stored in the nenory pointed to be this argument. This argument nust be
non- NULL

.2.3 Return val ue

On success, dtrace_register() returns 0 and stores the new provider’s
identifier into the nmenory pointed to by the idp argunent. On failure,
dtrace_register() returns an errno:

El NVAL The argunents passed to dtrace_register() were sonehow invalid.
This nmay because a paraneter that nust be non- NULL was NULL,
because the nane was invalid (either enpty or an illegal
provi der name) or because the attributes were invalid.

No other failure code is returned.

.2.4 Caller’s context

dtrace_register() may induce calls to dtrace_provide(); the provider nust
hol d no | ocks across dtrace_register() that may also be acquired by
dtrace_provide(). cpu_lock and nod_l ock nust not be held.

.3 int dtrace_unregister(dtrace_provider_t id)

.3.1 Overview

Unregi sters the specified provider fromthe DIrace franework. It should
general ly be called by DTrace providers in their detach(9E) entry point.

.3.2 Argunents and Notes

The only argunent is the provider identifier, as returned froma
successful call to dtrace_register(). As a result of calling
dtrace_unregister(), the Dirace franmework will call back into the provider
via the dtps_destroy() entry point. Once dtrace_unregister() successfully
conpl etes, however, the DTrace framework will no | onger nmaeke calls through
the Framework-to-Provider API.

.3.3 Return val ue

On success, dtrace_unregister returns 0.
returns an errno:

On failure, dtrace_unregister()

EBUSY There are currently processes that have the DTrace pseudodevice
open, or there exists an anonynous enabling that hasn't yet

been cl ai ned.

No other failure code is returned.

.3.4 Caller’s context

Because a call to dtrace_unregister() may induce calls through the
Fr amewor k-t o- Provi der API, the caller may not hold any |ock across

13

new usr/src/uts/comon/sys/dtrace. h 14
1839 * dtrace_register() that is also acquired in any of the Framework-to-

1840 * Provi der APl functions. Additionally, nod_lock nay not be held.

1841 *

1842 * 2.4 wvoid dtrace_invalidate(dtrace_provider_id_t id)

1843 *

1844 * 2.4.1 Overview

1845 *

1846 * Inval i dates the specified provider. Al subsequent probe |ookups for the
1847 * specified provider will fail, but its probes will not be renoved.

1848 *

1849 * 2.4.2 Argunents and note

1850 *

1851 * The only argunment is the provider identifier, as returned froma

1852 * successful call to dtrace_register(). |In general, a provider’s probes
1853 * always remain valid; dtrace_invalidate() is a nechanismfor invalidating
1854 * an entire provider, regardl ess of whether or not probes are enabled or
1855 * not. Note that dtrace_invalidate() will _not_ prevent already enabl ed
1856 * probes fromfiring -- it will nerely prevent any new enablings of the
1857 * provi der’s probes.

1858 *

1859 * 2.5 int dtrace_condense(dtrace_provider_id_t id)

1860 *

1861 * 2.5.1 Overview

1862 *

1863 * Rermoves all the unenabl ed probes for the given provider. This function is
1864 * not unlike dtrace_unregister(), except that it doesn’t renove the

1865 * provider just as many of its associated probes as it can.

1866 *

1867 * 2.5.2 Argunents and Notes

1868 *

1869 * As with dtrace_unregister(), the sole argunment is the provider identifier
1870 * as returned froma successful call to dtrace_register(). As a result of
1871 * calling dtrace_condense(), the DTrace framework will call back into the
1872 * gi ven provider’s dtps_destroy() entry point for each of the provider’s
1873 * unenabl ed probes.

1874 *

1875 * 2.5.3 Return value

1876 *

1877 * Currently, dtrace_condense() always returns 0. However, consunmers of this
1878 * function should check the return value as appropriate; its behavior nay
1879 * change in the future.

1880 *

1881 * 2.5.4 Caller’s context

1882 *

1883 * As with dtrace_unregister(), the caller may not hold any | ock across
1884 * dtrace_condense() that is also acquired in the provider’s entry points.
1885 * Al so, nod_|l ock nay not be held.

1886 *

1887 * 2.6 int dtrace_attached()

1888 *

1889 * 2.6.1 Overview

1890 *

1891 * I ndi cates whether or not DIrace has attached.

1892 *

1893 * 2.6.2 Argunents and Notes

1894 *

1895 * For nost providers, DTrace nmakes initial contact beyond registration.
1896 * That is, once a provider has registered with DIrace, it waits to hear
1897 * fromDlrace to create probes. However, sone providers may w sh to

1898 * proactively create probes without first being told by DTrace to do so.
1899 * If providers wish to do this, they nmust first call dtrace_attached() to
1900 * determne if DTrace itself has attached. |If dtrace_attached() returns O,
1901 * the provider nmust not make any other Provider-to-Framework APl call.
1902 *

1903 * 2.6.3 Return value

1904 *

new usr/src/uts/comon/sys/dtrace. h

1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970

® Ok ok ok E ok 3k O E b R b SE OF 3k ok Sk b SR oF Sk F S 3k O F O R b Sk F 3k ok Sk ok SR F SR F b 3k O F O 3k b Sk F ok ok Sk ok R S ok % b % Ok O ok o ok 3k

dtrace_attached() returns 1 if DTrace has attached, 0 otherw se.

.7 int dtrace_probe_create(dtrace_provider_t id, const char *nod,

const char *func, const char *nanme, int afranes, void *arg)

.7.1 Overview

Creates a probe with specified nodul e nane, function nane, and nane.

.7.2 Argunents and Notes

The first argument is the provider identifier, as returned froma
successful call to dtrace_register(). The second, third, and fourth
argunments are the nodul e nane, function nane, and probe nane,
respectively. O these, nodule nane and function name may both be NULL
(in which case the probe is considered to be unanchored), or they may both
be non-NULL. The nanme nust be non-NULL, and nust point to a non-enpty
string.

The fifth argument is the nunmber of artificial stack franes that will be
found on the stack when dtrace_probe() is called for the new probe. These
artificial frames will be autonatically be pruned should the stack() or
stackdept h() functions be called as part of one of the probe’s ECBs. |If
the paranmeter doesn’t add an artificial frane, this paraneter should be
zero.

The final argunent is a probe argunment that will be passed back to the
provi der when a probe-specific operation is called. (e.g., via
dt ps_enabl e(), dtps_disable(), etc.)

Note that it is up to the provider to be sure that the probe that it
creates does not already exist -- if the provider is unsure of the probe’s
exi stence, it should assure its absence wth dtrace_probe_| ookup() before
calling dtrace_probe_create().

.7.3 Return val ue

dtrace_probe_create() always succeeds, and always returns the identifier
of the new y-created probe.

.7.4 Caller’s context

Wil e dtrace_probe_create() is generally expected to be called from
dt ps_provi de() and/or dtps_provide_nodule(), it nay be called from other
non-DTrace contexts. Neither cpu_lock nor nod_|l ock may be held

.8 dtrace_id_t dtrace_probe_| ookup(dtrace_provider_t id, const char *nod,

const char *func, const char *nane)

.8.1 Overview

Looks up a probe based on provdi der and one or nore of nodul e nane,
function nane and probe nane.

.8.2 Argunents and Notes

The first argunent is the provider identifier, as returned froma
successful call to dtrace_register(). The second, third, and fourth
argunments are the nodul e nane, function nane, and probe nane,
respectively. Any of these nmay be NULL; dtrace_probe_| ookup() will return
the identifier of the first probe that is provided by the specified

provi der and matches all of the non-NULL natching criteria.

dtrace_probe_l| ookup() is generally used by a provider to be check the

exi stence of a probe before creating it with dtrace_probe_create().

.8.3 Return val ue

15

new usr/src/uts/comon/sys/dtrace. h 16
1971 *

1972 * If the probe exists, returns its identifier. |If the probe does not exist,
1973 * return DTRACE_I DNONE

1974 *

1975 * 2.8.4 Caller’s context

1976 *

1977 * Whi |l e dtrace_probe_l ookup() is generally expected to be called from
1978 * dt ps_provide() and/or dtps_provide_nodule(), it nay also be called from
1979 * ot her non-DTrace contexts. Neither cpu_lock nor nod_| ock may be held.
1980 *

1981 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)

1982 *

1983 * 2.9.1 Overview

1984 *

1985 * Returns the probe argunment associated with the specified probe.

1986 *

1987 * 2.9.2 Argunents and Notes

1988 *

1989 * The first argunent is the provider identifier, as returned froma

1990 * successful call to dtrace_register(). The second argunment is a probe
1991 * identifier, as returned fromdtrace_probe_| ookup() or

1992 * dtrace_probe_create(). This is useful if a probe has nultiple

1993 * provi der-specific conponents to it: the provider can create the probe
1994 * once with provider-specific state, and then add to the state by | ooking
1995 * up the probe based on probe identifier.

1996 *

1997 * 2.9.3 Return value

1998 *

1999 * Returns the argument associated with the specified probe. |If the

2000 * speci fied probe does not exist, or if the specified probe is not provided
2001 * by the specified provider, NULL is returned.

2002 *

2003 * 2.9.4 Caller’s context

2004 *

2005 * Wil e dtrace_probe_arg() is generally expected to be called from

2006 * dt ps_provi de() and/or dtps_provide_nodule(), it may also be called from
2007 * ot her non-DTrace contexts. Neither cpu_lock nor nod_|l ock may be held.
2008 *

2009 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t argO, uintptr_t argl,
2010 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)

2011 *

2012 * 2.10.1 Overview

2013 *

2014 * The epicenter of DIrace: fires the specified probes with the specified
2015 * argument s.

2016 *

2017 * 2.10.2 Argunents and Notes

2018 *

2019 * The first argunent is a probe identifier as returned by

2020 * dtrace_probe_create() or dtrace_probe_| ookup(). The second through sixth
2021 * argunments are the values to which the D variables "arg0" through "arg4"
2022 * wi || be napped.

2023 *

2024 * dtrace_probe() should be called whenever the specified probe has fired --
2025 * however the provider defines it.

2026 *

2027 * 2.10.3 Return value

2028 *

2029 * None

2030 *

2031 * 2.10.4 Caller’s context

2032 *

2033 * dtrace_probe() nmay be called in virtually any context: kernel, user,
2034 * interrupt, high-level interrupt, with arbitrary adaptive |ocks held, with
2035 * di spatcher locks held, with interrupts disabled, etc. The only latitude
2036 * that nust be afforded to DTrace is the ability to make calls within

new usr/src/uts/comon/sys/dtrace. h

2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060

2062
2063
2064
2065
2066
2067

2069

2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082

2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102

itself (and to its in-kernel subroutines) and the ability to access
arbitrary (but mapped) nenory. On sone platforns, this constrains

context. For exanple, on UtraSPARC, dtrace_probe() cannot be called
fromany context in which TL is greater than zero. dtrace_probe() may
al so not be called fromany routine which may be called by dtrace_probe()

-- which includes functions in the DTrace framework and sone in-Kkernel
DTrace subroutines. Al such functions "dtrace_"; providers that
instrument the kernel arbitrarily should be sure to not instrunent these
* routines.

*/

typedef struct dtrace_pops {

N

voi d (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
voi d (*dtps_provide_nodul e)(void *arg, struct nodctl *nmp);

int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);

voi d (*dtps disable)(void *arg, dtrace_id_t id, void *parg);

voi d (*dt ps_suspend)(void *arg, dtrace_id_t id, void *parg);
void (*dtps_resune)(void *arg, dtrace_id_t id, void *parg);

voi d (*dtps_getargdesc)(void *arg, dtrace_id_t id,
dtrace_argdesc_t *desc);
uint64_t (*dtps_ getargval)(vm d *arg,
int argno, int afranes);
int (*dtps_node)(void *arg, dtrace_id_t id, void *parg);
void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
} dtrace_pops_t;

voi d *parg,

dtrace_id_t id, void *parg,

#def i ne DTRACE_MODE_KERNEL 0x01
#def i ne DTRACE_MODE_USER 0x02
#def i ne DTRACE_MODE_NOPRI V_DROP 0x10
#def i ne DTRACE_MODE_NOPRI V_RESTRI CT 0x20
#def i ne DTRACE_MODE_LI M TEDPRI V_RESTRI CT 0x40

#endi f /* | codereview */

typedef uintptr_t dtrace_provider_id_t;

extern int dtrace_register(const char *,
cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);

extern int dtrace_unregister(dtrace_| provider_id_t);

extern int dtrace_condense(dtrace_provider id_t);

extern void dtrace_invalidate(dtrace_provider_id _t);

extern dtrace_id_t dtrace_probe_| ookup(dtrace_provi der
const char *, const char *);

extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t,
const char *, const char *, int, void *);

extern void *dtrace_probe_arg(dtrace_provider_id_t,

extern void dtrace_probe(dtrace_id_t, uintptr_t argO,
uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);

const dtrace_pattr_t *, uint32_t,

_id_t, const char *,

const char *,

dtrace_id_t);
uintptr_t argl

/
DTrace Meta Provi der API

The follow ng functions are inplenmented by the DTrace framework and are
used to inplement nmeta providers. Meta providers plug into the DTrace
framework and are used to instantiate new providers on the fly. At
present, there is only one type of neta provider and only one neta
provider may be registered with the Dfrace framework at a tine. The

sol e neta provider type provides user-land static tracing facilities

by taking neta probe descriptions and addi ng a correspondi ng provider
into the DIrace framework

1 Framewor k-t o- Provi der
1.1 Overview
The Franewor k-to-Provider APl is represented by the dtrace_nops structure

that the neta provider passes to the framework when registering itself as
a neta provider. This structure consists of the foll ow ng nmenbers:

® Ok R ok Rk ok Sk R % O % OF % ok ok Ok 3k

17

new usr/src/uts/comon/sys/dtrace. h

2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168

B I i T S R

.2 void dtnms_create_probe(void *arg,

.2.4 Caller’

.3 void *dtnms_provide_pid(void *arg,

.3.4 Caller’

dt ms_cr eat e_pr obe() <-- Add a new probe to a created provider
dt ms_provi de_pi d() <-- Create a new provider for a given process
dt ns_r enove_pi d() <-- Renpve a previously created provider

void *parg,

dtrace_hel per _probedesc_t *probedesc);

.2.1 Overview

Call ed by the DTrace franework to create a new probe in a provider
created by this neta provider.

.2.2 Argunents and notes

The first argunent
The second ar gunent
this is obtained fromthe return val ue of dtms_provide_pid().
argunment is the hel per probe description.

is the cookie as passed to dtrace_neta_register().
is the provider cookie for the associated provider;
The third

.2.3 Return value

None
s cont ext

dtms_create_probe() is called fromeither ioctl () or
The DTrace franmework is |ocked in such a way that neta providers may not
register or unregister. This neans that the nmeta provider cannot call
dtrace_neta_register() or dtrace_neta_unregister(). However, the context
such that the provider may (and is expected to) call provider-related
DTrace provider APlIs including dtrace_probe_create().
dtrace_neta_provider_t *nprov,

pid_t pid)

.3.1 Overview

Call ed by the DTrace framework to instantiate a new provi der given the
description of the provider and probes in the nprov argunment. The
meta provider should call dtrace_register() to insert the new provider
into the DIrace framework.

.3.2 Argunents and notes

The first argument is the cookie as passed to dtrace_neta_register().
The second argunent is a pointer to a structure describing the new
hel per provider. The third argunent is the process identifier for
process associated with this new provider. Note that the name of the
provi der as passed to dtrace_register() should be the contatenation of
the dt npb_provnane nenber of the nprov argunent and the processs
identifier as a string.

.3.3 Return val ue

The cookie for the provider that the nmeta provider creates. This is

the sane value that it passed to dtrace_register().
s cont ext

dtms_provide_pid() is called fromeither ioctl() or nodul e | oad context.
The DTrace franmework is |ocked in such a way that neta providers may not
register or unregister. This nmeans that the meta provider cannot call
dtrace_meta_register() or dtrace_neta_unregister(). However, the context
is such that the provider may -- “and is expected to -- call
provider-rel ated DTrace provider APls including dtrace_register().

nmodul e | oad cont ext.

18

is

new usr/src/uts/comon/sys/dtrace. h

2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215

2217
2218
2219
2220

2222
2223
2224
2225
2226

2228
2230
2231
2232

2234

1.4 void dtnms_renove_pid(void *arg, dtrace_neta_provider_t
pid_t pid)

1.4.1 Overview

*prov,

Cal l ed by the DIrace framework to renove a provider that had previously
been instantiated via the dtns_provide_pid() entry point. The neta
provi der need not renpve the provider immediately, but this entry

point indicates that the provider should be renpbved as soon as possible
using the dtrace_unregister() API.

1.4.2 Argunents and notes

The first argunent is the cookie as passed to dtrace_neta_register().
The second argunment is a pointer to a structure describing the hel per
provider. The third argument is the process identifier for process
associ ated with this new provider.

1.4.3 Return value
None
1.4.4 Caller’s context

dtns_renmpve_pid() is called fromeither ioctl() or exit() context.
The DTrace franework is |ocked in such a way that nmeta providers may not
register or unregister. This nmeans that the meta provider cannot call
dtrace_meta_register() or dtrace_meta_unregister(). However, the context
is such that the provider may -- “and is expected to -- call
* provi der-rel ated DTrace provider APls including dtrace_unregister().
*
/
typedef struct dtrace_hel per_probedesc {
char *dt hpb_nod;
char *dt hpb_ func
char *dt hpb_nane;
uint64_t dt hpb_base;
uint32_t *dthpb_offs;
uint32_t *dthpb_enoffs;
uint32_t dthpb_noffs;
uint32_t dthpb_nenoffs;
uint8_t *dthpb_args;
ui nt8_t dthpb_xargc;
nt8_t dthpb_nargc;
char *dt hpb_xt ypes;
char *dt hpb_ntypes;
} dtrace_hel per_probedesc_t;

B T T A I I

probe nodul e */

probe function */

probe nane */

base address */

of fsets array */

is-enabl ed offsets array */
of fsets count */

i s-enabl ed of fsets count */
argunment mapping array */
transl ated argunent count */
native argument count */
transl ated types strings */
native types strings */

——
B T I

typedef struct dtrace_hel per_provdesc {
char *dt hpv_provnane;
dtrace_pattr_t dthpv_pattr;

} dtrace_hel per_provdesc_t;

provi der name */
stability attributes */

—~—
* o

typedef struct dtrace_nops {
voi d (*dtnms_create_probe)(void *,
void *(*dtns_provide_pid)(void *,
void (*dtns_renove_pid)(void *,
} dtrace_nops_t;

void *, dtrace_hel per_probedesc_t *);
dtrace_hel per_provdesc_t *,
dtrace_hel per_provdesc_t *, pi

typedef uintptr_t dtrace_neta_provider_id_t;

extern int dtrace_neta_register(const char *, const dtrace_nops_t *, void *,
dtrace_meta_provider_id_t *);
extern int dtrace_meta_unregi ster(dtrace meta_provider_id_t);

| *

19

new usr/src/uts/comon/sys/dtrace. h 20

2235
2236
2237
2238
2239
2240
2241

2243
2244
2245
2246
2247
2248

2250
2251
2252
2253
2254
2255

2257

2259
2260
2261
2262
2263
2264

2266
2267

2269
2270

2272
2273

2275
2276
2277
2278
2279
2280
2281
2282
2283

2285
2286
2287

2289
2290
2291
2292
2293
2294

2296
2297

2299

DTrace Kernel Hooks

The followi ng functions are inplemented by the base kernel and forma set of
hooks used by the DTrace framework. DTrace hooks are inplenmented in either
ut s/ common/ os/ dtrace_subr.c, an | SA-specific assenbly file, or in a

ut s/ <pl atfornm/ os/ dtrace_subr.c correspondi ng to each har dwar e platform

/

* Ok ok ok % k¥

typedef enumdtrace_vtime_state {
DTRACE_VTI ME_| | VE = O, No DTrace, no TNF */
DTRACE_VTI ME_ DTrace virtual tinme, no TNF */

TNF active */
and TNF */

No DTrace,
DTrace virtual time
} dtrace vtlne state | _t;

extern dtrace_vtine_state_t dtrace_vtime_active;
extern void dtrace_vtime_sw tch(kthread_t *next)
extern void dtrace_vtime_enabl e_tnf(void);

extern void dtrace_vtime_di sabl e_t nf (voi d)
extern voi d dtrace_vtime_enabl e(void);

extern void dtrace_vtine_di sabl e(voi d);

struct regs;

extern int (*dtrace_pid_probe_ptr)(struct regs *);

extern int (*dtrace_return_probe_ptr)(struct regs *);
extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);

extern void (*dtrace_fasttrap_exit ptr)(proc t *)

extern void dtrace fasttrap_fork(proc_t *, proc_t *);

t ypedef uint ptr t dtrace_icookie_t;
typedef void (*dtrace_xcall t)(v0|d *);

extern dtrace_i cookie_t dtrace_interrupt_disabl e(void);
extern void dtrace_interrupt_enabl e(dtrace_i cookie_t);

extern void dtrace_nenbar _producer (void);
extern voi d dtrace_nenbar _consuner (void);
extern void (*dtrace_cpu_init)(processorid_t);
extern void (*dtrace_nodl oad) (struct nodctl *);
extern void (*dtrace_nodunl oad) (struct nodctl *);
extern void (*dtrace_hel pers_cl eanup) ();

extern void (*dtrace_hel pers_fork)(proc_t

extern void (*dtrace_cpustart_init)();
extern void (*dtrace_cpustart_fini)();
extern void (*dtrace_cl osef)();

#endif /* | codereview */

*parent, proc_t *child);

extern void (*dtrace_debugger_init)();
extern void (*dtrace_debugger _fini)();
extern dtrace_cacheid_t dtrace_predcache_id;

extern hrtime_t dtrace_gethrtine(void);

extern void dtrace_sync(void);

extern void dtrace_toxic_ranges(void (*)(uintptr_t, uint ptr t)
extern void dtrace_xcal | (processorid_t, dtrace_xcall_t, void *
extern void dtrace_vpanic(const char *, _ va_list);

extern void dtrace_panic(const char *, ...);

DE
)i
extern int dtrace_safe_defer_signal (void);

extern void dtrace_safe_synchronous_signal (voi d);

extern int dtrace_mach_afranes(void);

new usr/src/uts/comon/sys/dtrace. h 21

2301 #if defined(__i386) || defined(__and64)
2302 extern int dtrace_instr_size(uchar_t *instr);

2303 extern int dtrace_instr_size_isa(uchar_t *, nodel _t, int *);
2304 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2305 extern void dtrace_invop_renmove(int (*)(uintptr_t, uintptr_t *, uintptr_t));

2306 extern void dtrace_i nvop_callsite(void);
2307 #endi f

2309 #ifdef __sparc

2310 extern int dtrace_bl ksuword32(uintptr_t, uint32_t *, int);
2311 extern void dtrace_getfsr(uint64_t *);

2312 #endi f

2314 #define DTRACE_CPUFLAG | SSET(flag) \
2315 (cpu_core[CPU->cpu_i d] . cpuc_dtrace_flags & (flag))

2317 #define DTRACE_CPUFLAG SET(flag) \
2318 (cpu_core[CPU->cpu_i d] . cpuc_dtrace_flags |= (flag))

2320 #define DTRACE CPUFLAG CLEAR(flag) \
2321 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & ~(flag))

2323 #endif /* KERNEL */
2325 #endif /* _ASM */

2327 #if defined(_ i386) || defined(__ anu64)
2329 #define DTRACE | NVOP_PUSHL_EBP

2330 #define DTRACE_| N\VOP_POPL_EBP

2331 #define DTRACE | NVOP_LEAVE

2332 #define DTRACE | NVOP_NOP
2333 #define DTRACE | NVOP_RET

ObhwWNE

2335 #endi f

2337 #ifdef __cplusplus
2338 }

2339 #endif

2341 #endif /* _SYS DTRACE H */

new usr/src/uts/comon/sys/dtrace_inpl.h

R R R R

64642 Tue Jan 14 16:50: 05 2014
new usr/src/uts/comon/sys/dtrace_inpl.h

2915 DTrace in a zone shoul d see

"cpu", "curpsinfo", et al

2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have linited provider access

Revi ewed by:
Revi ewed by: Adam Levent hal

Joshua M Cl ul ow <j osh@ysnygr. or g>
<ahl @lel phi x. con®

R R R R R R R R

887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906

908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929

931
932
933

937
938
939
940
941

__unchanged_portion_onitted_

/*

* DTrace Machine State

*

* In the process of processing a fired probe, DTrace needs to track and/or

* cache sone per-CPU state associated wth that particular firing. This is

* state that Is always discarded after the probe firing has conpleted, and

* much of it is not specific to any DTrace consumer, remaining valid across

* all ECBs. This state is tracked in the dtrace_nstate structure.

*

/

#def i ne DTRACE_MSTATE_ARGS 0x00000001

#def i ne DTRACE_MSTATE_PROBE 0x00000002

#def i ne DTRACE_MSTATE_EPI D 0x00000004

#def i ne DTRACE_MSTATE_TI MESTAMP 0x00000008

#def i ne DTRACE_MSTATE_STACKDEPTH 0x00000010

#def i ne DTRACE_MSTATE_CALLER 0x00000020

#defi ne DTRACE_MSTATE | PL 0x00000040

#def i ne DTRACE_MSTATE_FLTOFFS 0x00000080

#defi ne DTRACE_MSTATE_WALLTI MESTAMP 0x00000100

#def i ne DTRACE_MSTATE_USTACKDEPTH 0x00000200

#def i ne DTRACE_MSTATE_UCALLER 0x00000400

typedef struct dtrace_nstate {
uintptr_t dtms_scratch_base; /* base of scratch space */
uintptr_t dtms_scratch_ptr; /* current scratch pointer */
size_t dtns_scratch_size; /* scratch size */
uint32_t dtns_present; /* variables that are present */
uint64_t dtns_arg[5]; /* cached arguments */
dtrace_epid_t dtns_epid, /* current EPID */
uint64_t dtnms_tinmestanp; /* cached tinestanp */
hrtime_t dtms_walltinestanp; /* cached wal |l tinmestamp */
int dtns_stackdepth; /* cached stackdepth */
int dtms_ustackdepth; /* cached ustackdepth */
struct dtrace_probe *dtns_probe; /* current probe */
uintptr_t dtms_caller; /* cached caller */
uint64_t dtns_ucaller; /* cached user-level caller */
int dtms_ipl; /* cached interrupt pri lev */
int dtmsfltoffs /* faulting DI FO of fset */
uintptr_t dtns_strtok; /* saved strtok() pointer */
ui nt32_t dtms_access; /* menory access rights */
dtrace_difo_t *dtns_difo; /* current dif object */
file_t *dtms_getf; /* cached rval of getf() */

#endif /* | codereview */

} dtrace_nstate_t;

#def i ne DTRACE_COND_ OWNER Ox1

#def i ne DTRACE_COND_USERMODE 0x2

#def i ne DTRACE_COND_ZONEOWNER 0x4

#def i ne DTRACE_PROBEKEY_MAXDEPTH 8 /* max gl ob recursion depth */

| *

*

#def i ne DTRACE_ACCESS_KERNEL
#def i ne DTRACE_ACCESS_PROC

Access flag used by dtrace_nstate.dtns_access.
&/

Ox1 /* the priv to read knem */
0x2 /* the priv for proc state */

new usr/src/uts/comon/sys/dtrace_inpl.h

942 #define DTRACE_ACCESS ARGS

944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994

996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007

/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0x4 /* the priv to exami ne args */

DTrace Activity

Each DTrace consuner is in one of several states, which (for purposes of
avoi di ng yet-another overl oading of the noun "state") we call the current
activity. The activity transitions on dtrace_go() (from DTRACI OCGO), on
dtrace_stop() (from DTRACI OCSTOP) and on the exit() action. Activities may
only transition in one direction; the activity transition diagramis a
directed acyclic graph. The activity transition diagramis as follows:

fooooooooon + foocooooo + foooooooo +
| 1 NACTI VE| ------------------ > WARMUP | ------------------ >| ACTI VE|
Fomoeoiono- dtrace_go(), ooeonn dtrace_go(), teoeen--
before BEG N after BEG N |
I
exit() action |
from BEG N ECB |
|
v I
Fooao - + exit() action |
T R T L | DRAINING |<-----------mmmmmo -
B +
dtrace_stop(),
bef ore END
v
Foooooonoo + foococooonoo +
| STOPPED | <--------mmmnnn-- | COOLDOWN | <----mmmmmmmmmmmammeeo - +
Fomeeenn + dtrace_stop(), +---------- + dtrace_stop(),
after END bef ore END
o +
fccccossccccoosscccososcccasas =] [RIUUED @ ccccccccscccscscscacccses +
deadnan tinmeout or oo + deadnan tineout or

killed consumner killed consumer

Note that once a DTrace consuner has stopped tracing, there is no way to
restart it; if a DIrace consuner wi shes to restart tracing, it nust reopen

the DTrace pseudodevi ce.
*
/

typedef enum dtrace_activity {
DTRACE_ACTI VI TY_I NACTI VE = 0, /* not yet running */
DTRACE_ACTI VI TY_WARMUP, /* while starting */
DTRACE_ACTI VI TY_ACTI VE, /* running */
DTRACE_ACTI VI TY_DRAI NI NG, /* before stopping */
DTRACE_ACTI VI TY_COOLDOWN, /* while stopping */
DTRACE_ACTI VI TY_STOPPED, /* after stopping */
DTRACE_ACTI VI TY_KI LLED /* killed */

} dtrace_activity_t;

/*

* DTrace Hel per |nplenentation

*

* A description of the helper architecture may be found in <sys/dtrace. h>.

* Each process contains a pointer to its helpers in its p_dtrace_hel pers

* menber. This is a pointer to a dtrace_hel pers structure, which contains an

* array of pointers to dtrace_hel per structures, hel per variable state (shared

* anong a process’s hel pers) and a generation count. (The generation count is

* used to provide an identifier when a helper is added so that it may be

* subsequently renoved.) The dtrace_hel per structure is self-explanatory,

* containing pointers to the objects needed to execute the helper. Note that

* hel pers are _duplicated_ across fork(2), and destroyed on exec(2). No nore

new usr/src/uts/comon/sys/dtrace_inpl.h

1008
1009
1010
1011

1013
1014
1015
1016
1017
1018
1019

1021
1022
1023
1024
1025

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

1056
1057
1058
1059
1060
1061
1062
1063
1064

1066
1067
1068
1069
1070
1071
1072
1073

* than dtrace_hel pers_max are al |l owed per-process.
&/

#def i ne DTRACE_HELPER_ACTI ON_USTACK
#def i ne DTRACE_NHELPER_ACTI ONS

typedef struct dtrace_hel per_action
int dtha_generation;
int dtha_nactions;

0
1

{

dtrace_difo_t *dtha_predicate;

dtrace_difo_t

} dtrace_hel per_action_t;

**dt ha_act i ons;
struct dtrace_hel per_action *dtha next ;

typedef struct dtrace_hel per_provider {

int dthp_generation;

uint32_t dthp_ref;

dof _hel per _t dthp prov;
} dtrace_helper_provider_t;

typedef struct dtrace_hel pers {

dtrace_hel per _action_t **dthps_actions;

dtrace_vstate_t dthps_vstate;

dtrace_hel per _provider _t **dt hps_provs;

ui nt _t dt hps_nprovs;

ui nt _t dt hps_maxpr ovs;
int dthps_generation;
pid_t dthps_pid;

Int dthps_deferred;

struct dtrace_hel pers *dt hps_next;
struct dtrace_hel pers *dt hps_prev;

} dtrace_hel pers_t;

/
DTrace Hel per Action Tracing

Debuggi ng hel per actions can be
debuggi ng of hel pers,
framewor k: hel per tracing.
it is by default
gl obal, in-kernel ring buffer.

hel per, the location within the

::dtrace_hel ptrace mdb(1) dcnd.

T R
-

#def i ne DTRACE_HELPTRACE_NEXT (-
#def i ne DTRACE_HELPTRACE_DONE (-
#def i ne DTRACE_HELPTRACE_ERR (-
{
*

typedef struct dtrace_hel ptrace

dtrace_hel per _action_t

int dtht_where;

int dtht_nlocals;

int dtht_fault;

int dtht fltoff
i
il

dt

uint64_t dtht
uint64_t dtht
} dtrace_hel ptrace_t;

/

ival ;
cal Is[l]

S;
|
o]
DTrace Credentials

I'n probe context,
of the DIrace consuner that

sone facts about that credenti al

* Ok Ok ok Ok F % O

on DEBUG kernel s),

ar duous.

al |

hel per,

ht _hel per;

—~————
* ok kb

hel per action generation */
nunber of actions */

hel per action predicate */
array of actions */

next hel per action */

hel per provi der generation */
reference count */
DOF w provider and probes */

array of hel per actions */
hel per action var. state */
array of providers */

count of providers */
provider array size */
current generation */

pid of associated proc */
hel per in deferred list */
next pointer */

prev pointer */

To ease the devel opnent and

DTrace contains a tracing-framework-w thin-a-tracing-
If dtrace_hel ptrace_enabled is non-zero (which
hel per activity wll
Each entry includes a pointer to the specific
and a trace of all
The ring buffer may be displayed in a human-readable format with the

be traced to a

| ocal vari abl es.

hel per action */

where in hel per action */
nunber of locals */

type of fault (if any) */
DI F of fset */

faul ting value */

| ocal variables */

we have linmited flexibility to exanmi ne the credentials
created a particular enabling.
the Least Privilege interfaces to cache the consunmer’s cred pointer and
in a dtrace_cred_t structure.
can limt the consunmer’s breadth of visibility and what actions the

W use

These

new usr/src/uts/comon/sys/dtrace_inpl.h

1074
1075
1076
1077
1078

1080
1081

1083
1084
1085
1086
1087
1088
1089

1091
1092
1093
1094
1095
1096
1097

1099
1100
1101
1102
1103
1104

1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

1116 s

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139

* consumer may take.

*/
#def i
#def i
#def i

#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

ne
ne
ne

ne

ne
ne
ne
ne
ne
ne
ne

ne

t ypedef

DTRACE_CRV_ALLPRCC
DTRACE_CRV_KERNEL
DTRACE_CRV_ALLZONE

0x01
0x02
0x04

DTRACE_CRV_ALL
DTRACE_CRV_ALLZONE)

DTRACE_CRA_PRCC
DTRACE_CRA_PROC_CONTROL
DTRACE_CRA_PROC_DESTRUCTI VE_ALLUSER
DTRACE_CRA_PROC_DESTRUCTI VE_ALLZONE
DTRACE_CRA_PROC_DESTRUCTI VE_CREDCHG

(DTRACE_CRV_ALLPRCC |

DTRACE_CRV_KERNEL | \

0x0001
0x0002
0x0004
0x0008
0x0010

DTRACE_CRA_KERNEL
DTRACE_CRA_KERNEL_DESTRUCTI VE

DTRACE_CRA ALL
DTRACE_CRA_PROC_CONTROL | \

0x0020
0x0040

(DTRACE_CRA PRCC | \

DTRACE_CRA_PROC_DESTRUCTI VE_ALLUSER | \
DTRACE_CRA_PROC_DESTRUCTI VE_ALLZONE | \
DTRACE_CRA_PROC_DESTRUCTI VE_CREDCHG | \

DTRACE_CRA_KERNEL | \
DTRACE_CRA_KERNEL_DESTRUCTI VE)

struct dtrace_cred {

cred_t *dcr
ui nt 8_t

uint8_t

uint16_t

} dtrace_cred_t

/

DTrace Consuner

Each DTrace consuner
its in-kernel

structure is also al l ocated for anonynous enabl i ngs.
i s grabbed,

State

DTrace state --

dtrace_state structure.
/

*
*
*
*
*
* pointers to ECBs, buffers,
*
*
*
*
t

ruct

dtrace_state {

dev_t dts_dev;

int dts_necbs;

dtrace_ecbh_t **dts_ecbs;
dtrace_epid_t dts_epid;

size_t dts_needed;

struct dtrace_state *dts_anon;
dtrace_activity_t dts_activity;
dtrace_vstate_t dts_vstate;
dtrace_buffer_t *dts_buffer;
dtrace_buffer_t *dts aggbuffer

dtrace_specul ation_t *dts specul ations;

int dts_nspecul ati ons;
int dts_naggregations;
dtrace_aggregation_t
vem t *dt s_aggi d_ar ena;
uint64_t dts_errors;

i dt s_specul ati ons_busy;

t dts_stkstroverflows;
t dts_dblerrors;
_t dts_reserve;
t dts_| aststatus;
id_t dts_cleaner;

t he grabbing consuners dts_anon pointer

*xdt s _aggr egati ons;

dt s_specul ati ons_unavai l ;

_cred;
dcr_destructi ve;
dcr_vi si bl e;
dcr_action;

has an associated dtrace_state structure that contains
i ncl udi ng options,
specul ations and formats.

credentials, statistics and
A dtrace_st ate
When anonynous state
is set to the grabbed

/* device */

/* total nunber of ECBs */
/* array of ECBs */

/* next EPID to allocate */
/* greatest needed space */
/* anon. state, if grabbed */
/* current activity */

/* variable state */

/* principal buffer */

/* aggregation buffer */

/* specul ation array */

/* nunber of specul ations */
/* nunber of aggregations */
/* aggregation array *

/* arena for aggregation IDs */
/* total nunber of errors */
/* nunber of spec. busy */
/* nunber of spec unavail */
/* stack string tab overflows */
/* errors in ERROR probes */
/* space reserved for END */
/* tinme of last status */

/* cleaning cyclic */

new usr/src/uts/comon/sys/dtrace_inpl.h

1140 cyclic_id_t dts_deadman; /* deadman cyclic */

1141 hrtime_t dts_alive; /* tinme |last alive */

1142 char dts_specul at es; /* bool ean: has specul ations */
1143 char dt s_destructive; /* bool ean: has dest. actions */
1144 int dts_nformats; /* nunber of formats */

1145 char **dts_formats; /* format string array */
1146 dtrace_optval _t dts_options[DTRACEOPT_MAX]; /* options */

1147 dtrace_cred_t dts_cred,; /* credentials */

1148 size_t dts_nretained; /* nunber of retained enabs */
1149 int dts_getf; /* nunber of getf() calls */
1150 #endif /* ! codereview */

1151 };

1153 struct dtrace_provider {

1154 dtrace_pattr_t dtpv_attr; /* provider attributes */
1155 dtrace_ppriv_t dtpv_priv; /* provider privileges */

1156 dtrace_pops_t dt pv_pops; /* provider operations */
1157 char *dt pv_nane; /* provider nane */

1158 voi d *dtpv_arg; /* provider argunent */

1159 hrtime_t dtpv_defunct; /* when made defunct */

1160 struct dtrace_provider *dtpv_next; /* next provider */

1161 };

1163 struct dtrace_neta {

1164 dtrace_nops_t dtm nops; /* meta provider operations */
1165 char *dt m nane; /* meta provider nanme */

1166 void *dtmarg; /* nmeta provider user arg */
1167 uint64_t dtmcount; /* no. of associated provs. */
1168 };

1170 /*

1171 * DTrace Enablings

1172 *

1173 * A dtrace_enabling structure is used to track a collection of ECB

1174 * descriptions -- before they have been turned into actual ECBs. This is
1175 * created as a result of DOF processing, and is generally used to generate
1176 * ECBs immedi ately thereafter. However, enablings are al so generally

1177 * retained should the probes they describe be created at a later tine; as
1178 * each new nodul e or provider registers with the framework, the retained
1179 * enablings are reevaluated, with any new natch resulting in new ECBs. To
1180 * prevent probes from being natched nore than once, the enabling tracks the
1181 * |ast probe generation matched, and only natches probes from subsequent

1182 * generations.

1183 */

1184 typedef struct dtrace_enabling {

1185 dtrace_ecbhdesc_t **dten_desc; /* all ECB descriptions */
1186 int dten_ndesc; /* nunber of ECB descriptions */
1187 int dten_maxdesc; /* size of ECB array */

1188 dtrace_vstate_t *dten_vstate; /* associated variable state */
1189 dtrace_geni d_t dten_probegen; /* matched probe generation */
1190 dtrace_echdesc_t *dten_current; /* current ECB description */
1191 int dten_error; /* current error value */
1192 int dten_prinmed, /* bool ean: set if primed */
1193 struct dtrace_enabling *dten_prev; /* previous enabling */

1194 struct dtrace_enabling *dten_next; /* next enabling */

1195 } dtrace_enabling_t;

1197 /*

1198 * DTrace Anonynous Enablings

1199 *

1200 * Anonynous enablings are DIrace enablings that are not associated with a
1201 * controlling process, but rather derive their enabling from DOF stored as
1202 * properties in the dtrace.conf file. |If there is an anonynbus enabling, a
1203 * DTrace consunmer state and enabling are created on attach. The state may be
1204 * subsequently grabbed by the first consuner specifying the "grabanon"

1205 * option. As long as an anonynous DTrace enabling exists, dtrace(7D) wll

new usr/src/uts/comon/sys/dtrace_inpl.h

1206
1207
1208
1209
1210
1211
1212

1214
1215
1216
1217
1218
1219

1221

1223
1224
1225
1226

1228
1230

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

1248 t

1249
1250
1251

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

*

ty

}
/*

*

refuse to unl oad.
S

pedef struct dtrace_anon {
dtrace_state_t *dta_state;]
dtrace_enabling_t *dta_enabling; /*
processorid_t dta_beganon; /*
dtrace_anon_t;

DTrace consuner state */
pointer to enabling */
which CPU BEG N ran on */

DTrace Error Debuggi ng

*/

#i f def DEBUG

#d
#e

ef i ne DTRACE_ERRDEBUG
ndi f

#i f def DTRACE_ERRDEBUG

ty

}
#d

#e
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
y

}

extern uint64_t
extern greg_t

pedef struct dtrace_errhash {
const char *dt er _nsg;
i dter_count;

/* error nessage */
int /* nunber of times seen */

dtrace_errhash_t;

ef i ne DTRACE_ERRHASHSZ 256 /*

must be > nunber of err nmsgs */

ndi f /* DTRACE_ERRDEBUG */

DTrace Toxi ¢ Ranges

DTrace supports safe | oads from probe context; if the address turns out to
be invalid, a bit will be set by the kernel indicating that DTrace
encountered a nenory error, and DIirace will propagate the error to the user
accordingly However, there nay exist sone regions of nenmory in which an
arbitrary load can change systemstate, and fromwhich it is inpossible to
recover fromsuch a |load after it has been attenpted. Exanples of this may
include nmenory in which programmable 1/O registers are mapped (for which a
read may have sone inplications for the device) or (in the specific case of
U traSPARC-| and -11) the virtual address hole. The platformis required
to nmake DTrace aware of these toxic ranges; DTrace will then check that
target addresses are not in a toxic range before attenpting to issue a

safe | oad.
/

pedef struct dtrace_toxrange {
uintptr_t dtt_base; I *
uintptr_t dtt_llmt /*
dtrace_t oxrange_t;

base of toxic range */
limt of toxic range */

dtrace_getar g(l nt
“dtrace_getfp(void

int);

extern int dtrace_getipl(void);

extern uintptr_t dtrace_call er(l
extern uint32_t
extern void *dtrace_casptr(void

extern voi d dtrace_copyi n(uint pt
extern void dtrace_copyinstr(uin
extern voi d dtrace_copyout (ui ntp
extern void dtrace_copyoutstr (ui

extern void dtrace_get pcstack(pcft *,int, int,
extern ulong_t dtrace_getreg(struct
extern uint64_t

dtrace_cas32(uin uint32_t,
id*, void *);
uintptr_t, size_t, volatile uintl6_t *);
_t, uintptr_t, size_t, volatile uintl6_t *);
_t, umtptr size_t, volatile uint16_t *);
ptr_t, t t, S|ze _t,

uint32_t);

nt);
t32_t *,
* vo
r_t, :
tptr r_|
tr_t _t,
nt pt uintptr_
volatile uint16_t *);

uint32_t *);
regs *, uint t);
dtrace_getvnreg(uint_t, volatile ui nt16 t *);

extern int dtrace_getstackdepth(int);

extern void dtrace_getupcstack(uint64_
extern voi d dtrace_get uf pst ack(ui nt 64_
extern int dtrace_getustackdepth(void
extern uintptr_t dtrace_ful word(void

t *, int);
t *, U|nt64t *,oint);
5,

new usr/src/uts/comon/sys/dtrace_inpl.h

1272
1273
1274
1275
1276
1277
1278
1279
1280

1282
1283
1284
1285
1286
1287
1288
1289
1290

1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310

1312
1314
1316

extern uint8_t dtrace_fuword8(void *);

extern uint16_t dtrace_fuwordl6(void *);

extern uint32_t dtrace_fuword32(void *);

extern uint64_t dtrace_fuword64(void *);

extern void dtrace_probe_error(dtrace_state_t *, dtrace_epid_t, int, int,

int, uintptr_t);

extern int dtrace_assfail (const char *, const char *, int);
extern int dtrace_attached(void);
extern hrtime_t dtrace_gethrestinme();

#i fdef __sparc

extern void dtrace_fl ush_w ndows(void);

extern void dtrace_flush_user_w ndows(void);

extern uint_t dtrace_getotherw n(void);

extern uint_t dtrace_getfprs(void);

#el se

extern void dtrace_copy(uintptr_t, uintptr_t, size_t);

extern void dtrace_copystr(uintptr_t, uintptr_t, size_t, volatile uintl6_t *);
#endi f

/

® ok Gk ok R % R kR ¥

*

*/

DTrace Assertions

DTrace calls ASSERT from probe context. To assure that a failed ASSERT
does not induce a markedly nore catastrophic failure (e.g., one fromwhich
a dunmp cannot be gl eaned), DTrace nust define its own ASSERT to be one that
may safely be called fromprobe context. This header file nust thus be
included by any DTrace conponent that calls ASSERT from probe context, and
only by those conponents. (The only exception to this is kernel

debuggi ng infrastructure at user-level that doesn't depend on calling
ASSERT.)

#undef ASSERT
#i f def DEBUG

#def i ne ASSERT(EX)

\

(void)((EX) ||
[(#EX, _FILE_, _LINE_)))

(
dtrace_assf ai

#el se
#def i ne ASSERT(X) ((void)0)
#endi f

#i fdef __ cpl usplus
1313 }
#endi f

#endif /* _SYS DTRACE | MPL_H */

new

* ok kK

new
2915
2916
2917
Revi
Revi

* ok kK

usr/src/ uts/ common/ sys/sdt_i npl . h

B R

2764 Tue Jan 14 16:50: 05 2014

usr/src/ uts/ common/ sys/sdt_i npl . h

Dirace in a zone should see "cpu", "curpsinfo", et al
DTrace in a zone should be able to access fds[]
DTrace in a zone should have |limted provider access
ewed by: Joshua M dul ow <j osh@ysngr. org>

ewed by: Adam Leventhal <ahl @el phi x. con>

B R R R R R R

/*

* CDDL HEADER START

*

* The contents of this file are subject to the terns of the

* Common Devel opnent and Distribution License, Version 1.0 only

* (the "License"). You may not use this file except in conpliance
* with the License.

*

* You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governing perm ssions

* and |initations under the License.

*

* \When distributing Covered Code, include this CDDL HEADER i n each
* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
* fields enclosed by brackets "“[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*

* CDDL HEADER END

*

/*/

* Copyright 2004 Sun Mcrosystens, Inc. Al rights reserved.

* Use is subject to |license terns.

*/

/*

* Copyright (c) 2012, Joyent, Inc. Al rights reserved.

*/

#endif /* | codereview */

#i fndef _SYS SDT_| MPL_H

#define _SYS SDT_I MPL_H

#pragna i dent " VYW % % %E% SM "

#ifdef _ cplusplus

extern "C' {

#endi f

#i ncl ude <sys/dtrace. h>

#if defined(__i386) || defined(__and64)

typedef uint8_t sdt_instr_t;

#el se

typedef uint32_t sdt_instr_t;

#endi f

typedef struct sdt_provider {
char *sdt p_nane; /* nanme of provider */
char *sdt p_prefix; /* prefix for probe names */
dtrace_pattr_t *sdtp_attr; /* stability attributes */
ui nt32_t sdtp_priv; /* privilege, if any */

#endif /* | codereview */
dtrace_provider_id_t sdtp_i d; /* provider ID */

} sdt_provider_t;

new usr/src/uts/comon/sys/sdt _inpl.h
56 extern sdt_provider_t sdt_providers[];

58 typedef struct sdt_probe {

59 sdt _provider_t *sdp_provider;
60 char *sdp_nane;

61 i nt sdp_nanel en;

62 dtrace_id_t sdp_i d;

63 struct nodct| *sdp_ctl ;

64 int sdp_I| oadcnt ;

65 int sdp_primary;

66 sdt _instr_t *sdp_pat chpoi nt ;
67 sdt _instr_t sdp_pat chval ;
68 sdt _instr_t sdp_savedval ;
69 struct sdt_probe *sdp_next;

70 struct sdt_probe *sdp_hashnext;

71 } sdt_probe_t;
73 typedef struct sdt_argdesc {

74 const char *sda_provider;
75 const char *sda_nane;

76 const int sda_ndx;

77 const int sda_nmappi ng;
78 const char *sda_nati ve;
79 const char *sda_xl at e;

—

80 } sdt_argdesc_

82 extern void sdt_getargdesc(void *, dtrace_id_t,

83 extern int sdt_node(void *,
84 #endif /* | codereview */

dtrace_id_t,

86 #ifdef _ cplusplus

87 }

88 #endi f

90 #endif /* _SYS SDT_| MPL_H */

—— e —

I T

—~——— — —

* Ok Ok ok H %

void *);

array of providers */

provider */

nane of probe */
length of allocated name */
probe ID */

nmodct| for nodule */

| oad count for nodule */
non-zero if primary nod */
patch point */

instruction to patch */
saved instruction value */
next probe */

next on hash */

provider for arg */

nanme of probe */

argunent index */

mappi ng of argument */
native type of argunment */
transl ated type of arg */

void *, dtrace_argdesc_t *);

new usr/ src/ uts/comon/sys/ zone. h 1

R R R R

24110 Tue Jan 14 16:50: 06 2014
new usr/src/uts/comon/sys/zone. h
2915 DTrace in a zone shoul d see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have linited provider access
Revi ewed by: Joshua M dul ow <j osh@ysngr. or g>
Revi ewed by: Adam Levent hal <ahl @lel phi x. con»

R R R R R R R R

__unchanged_portion_onitted_
378 struct cpucap;
380 typedef struct zone {

381 /*

382 * zone_nane is never nodified once set.

383 */

384 char *zone_nane; /* zone's configuration nane */
385 /*

386 */zone_nodenama and zone_domain are never freed once all ocated.
387 *

388 char *zone_nodenane; /* utsname.nodenanme equival ent */
389 char *zone_domai n; /* srpc_donmi n equival ent */

390 /*

391 * zone_hostid is used for per-zone hostid enul ation.

392 * Currently it isn't nodified after it’'s set (so no | ocks protect
393 * accesses), but that mght have to change when we all ow

394 * administrators to change running zones’ properties.

395 *

396 * The gl obal zone's zone_hostid nust always be HW.I NVALI D HOSTI D so
397 * that zone_get_hostid() will function correctly.

398 */

399 ui nt32_t zone_hosti d; /* zone's hostid, HW.INVALID HOSTID */
400 /[* if not enulated */

401 /*

402 * zone_l ock protects the following fields of a zone_t:

403 * zone_r ef

404 * zone_cred_ref

405 * zone_subsys_r ef

406 * zone_ref _list

407 * zone_nt asks

408 * zone_f | ags

409 * zone_zsd

410 * zone_pf execd

411 */

412 kmut ex_t zone_| ock;

413 /*

414 * zone_linkage is the zone' s linkage into the active or

415 */deat h-row list. The field is protected by zonehash_| ock.

416 *

417 i st _node_t zone_| i nkage;

418 zonei d_t zone_i d; /* 1D of zone */

419 uint_t zone_ref; /* count of zone_hold()s on zone */
420 ;Ji nt_t zone_cred_ref; /* count of zone_hold_cred()s on zone */
421 *

422 * Fixed-sized array of subsystemspecific reference counts

423 * The sumof all of the counts nmust be less than or equal to zone_ref.
424 * The array is indexed by the counts’ subsystens’ zone_ref_subsys_t
425 * constants.

426 */

427 uint_t zone_subsys_ref [ZONE_REF_NUM SUBSYS] ;

428 list_t zone_ref _list; /* list of zone_ref_t structs */
429 /*

430 * zone_rootvp and zone_rootpath can never be nodified once set.
431 */

432 struct vnode *zone_r oot vp; /* zone's root vnode */

new usr/src/uts/common/sys/ zone. h

433
434
435
436
437
438
439
440
441
442
443

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

494
496

497
498

2
char *zone_rootpath; /* Path to zone's root + '/’ */
ushort _t zone_f1 ags; /* misc flags */
zone_status_t zone_st at us; /* protected by zone_status_|ock */
uint_t zone_nt asks; /* nunber of tasks executing in zone */
kmut ex_t zone_nl wps_l ock; /* protects zone_nlwps, and *_nlwps */

/* counters in projects and tasks */
/* that are within the zone */

rctl_qgty_t zone_nl wps; /* nunber of |wps in zone */
rctl_qgty_t zone_nlwps_ctl; /* protected by zone_rctls->rcs_|lock */
rctl_qgty_t zone_shmmax; /* System V shared nenory usage */
ipc_rqty_t zone_i pc; /* SystemV IPC id resource usage */
ui nt _t zone_rootpathlen; /* strlen(zone_rootpath) + 1 */
ui nt 32_t zone_shares; /* S shares allocated to zone */
rctl_set_t *zone_rctls; /* zone-wi de (zone.*) rctls */
kmut ex_t zone_mem | ock; /* protects zone_|l ocked_nem and */

/* kpd_| ocked_mem for all */

/* projects in zone. */

/* Al'so protects zone_nax_swap */

/* grab after p_lock, before rcs_lock */
rctl_qgty_t zone_| ocked_nem /* bytes of |ocked nenmory in */

/* zone */
rctl_qty_t zone_| ocked_nemctl ; /* Current |ocked nenory */

/* limt. Protected by */

/* zone_rctls->rcs_lock */
rctl_qgty_t zone_max_swap; /* bytes of swap reserved by zone */
rctl_qgty_t zone_max_swap_ctl ; /* current swap limt. */

/* Protected by */

/* zone_rctls->rcs_lock */
kmut ex_t zone_rctl _lock; /* protects zone_max_| ofi */
rctl_qty_t zone_max_l ofi; /* lofi devs for zone */
rctl_qty_t zone_max_| ofi _ctl; /* current lofi limt. */

/* Protected by */

/* zone_rctls->rcs_lock */
list_t zone_zsd; /* list of Zone-Specific Data values */
kcondvar _t zone_cv; /* used to signal state changes */
struct proc *zone_zsched; /* mry kernel "zsched" process */
pid_t zone_proc_initpid; /* pid of "init" for this zone */
char *zone_initnane; /* fs path to "init’ */
int zone_boot _err; /* for zone_boot() if boot fails */
char *zone_boot args; /* argunments passed via zone_boot() */
ui nt 64_t zone_phys_ntap; /* physical nenory cap */

/*

* zone_kthreads is protected by zone_status_| ock.
*/

kt hread_t *zone_kt hreads; /* kernel threads in zone */
struct priv_set *zone_privset; /* limt set for zone */

/*

* zone_vfslist is protected by vfs_list_|ock().

*/

struct vfs *zone_vfslist; /* list of FS's nounted in zone */
ui nt 64_t zone_uni qi d; /* unique zone generation nunber */
struct cred *zone_kcr ed; /* kcred-1ike, zone-limted cred */
/*

* zone_pool is protected by pool _| ock().

*/

struct pool *zone_pool ; /* pool the zone is bound to */
hrtime_t zone_pool _nod; /* |ast pool bind nodification tine */
/* zone_psetid is protected by cpu_|l ock */

psetid_t zone_pseti d; /* pset the zone is bound to */
tine_t zone_boot _tinme; /* Simlar to boot_tine */

/*

* The following two can be read w thout holding any | ocks. They are
* updat ed under cpu_l| ock.

499
500
501
502
503
504
505

507
508
509

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

new usr/ src/ uts/comon/sys/ zone. h 3
*/
int zone_ncpus; /* zone's idea of ncpus */
int zone_ncpus_online; /* zone’s idea of ncpus_online */
/*
* List of ZFS datasets exported to this zone.
*/
list_t zone_datasets; /* list of datasets */
ts_|l abel _t *zone_sl abel ; /* zone sensitivity |abel */
int zone_mat ch; /* require | abel match for packets */
tsol _mp_list_t zone_n ps; /* M.Ps on zone-private addresses */
bool ean_t zone_restart_init; /* Restart init if it dies? */
struct brand *zone_br and; /* zone's brand */
voi d *zone_brand_dat a; /* store brand specific data */
id_t zone_def aul tci d; /* dflt scheduling class id */
kstat _t *zone_swapresv_kstat;
kstat _t *zone_| ockednem kst at ;
/*
* zone_dl _list is protected by zone_l ock
*/
list_t zone_dl _list;
net st ack_t *zone, netstack

533

535
536
537
538
539

541
542
543
544
545
546

548
549
550
551

554
555
556
557
558

560
561
562
563
564

siruct cpucap *zone_cpucap; /* CPU caps data */
/: Sol aris Auditing per-zone audit context

siﬁuct au_kcont ext *zone_audi t _kct xt;
/:/For private use by mtfs.

*zone_mt f s_db;
zone_mtfs_db_ Iock

struct mtel em
krw ock_t

struct klpd_reg *zone_pf execd;

char *zone_fs_al | owned;

rctl_qgty_t zone_nprocs; /* nunber of processes in the zone */

rctl_qgty_t zone_nprocs_ctl ; /* current limt protected by */
/* zone_rctls->rcs_lock */

kstat _t *zone_nprocs_kst at ;

/*

* DIrace-private per-zone state
*

nt zone_dtrace_getf; /* # of unprivileged getf()s */
#endi f /* | codereview */
} zone_t;
/*
* Speci al value of zone_psetid to indicate that pools are disabled.
*
#define ZONE_PS_INVAL PS_MYI D
extern zone_t zoneO;
extern zone_t *gl obal _zone;
extern uint_t nmaxzones;
extern rctl_hndl _t rc_zone_nl wps;
extern rctl_hndl _t rc_zone_nprocs;
extern long zone(int, void *, void *, void *, void *);
extern void zone_zsd_init(void);
extern void zone_init(void);
extern void zone_hol d(zone_t *);
extern void zone_rel e(zone_t *);

new usr/ src/ uts/common/sys/ zone. h

565
566
567
568
569
570
571
572
573
574

575 extern zone_t *zone_find_by_any path(const char *, boolean_t);

576 extern zone_t *zone_find_by_| path(const char *);

577 extern zonei d_t getzonei d(voi d

578 extern zone_t *zone_find_by id nol ock(zoneld t)

579 extern int zone_datalink_walk(zoneid_ t, int (*)(datalink_i d_t, void *), void *);
580 extern int zone_check_datalink(zoneid_ t *, datalink_id_t);

582 /*

583 * Zone-specific data (ZSD) APls

584 */

585 /*

586 * The following is what code should be initializing its zone_key_t to if it
587 * calls zone_getspecific() wthout necessarily know ng that zone_key_create()
588 * has been called on the key.

589 *

590 #define ZONE_KEY_UNI NI TI ALI ZED 0

592 typedef uint_t zone_key_t;

594 extern void zone_key_create(zone_key_t *, void *(*)(zoneid_t),

595 void (*)(zoneid_t, void *), void (*)(zoneid_t, void *));

596 extern int zone_key_del et e(zone_key_t);

597 extern void *zone_get speci fi c(zone_key_t, zone_t *);

598 extern int zone_set speci fic(zone_key_t, zone_t *, const void *);

600 /*

601 * The definition of a zsd_entry is truly private to zone.c and is only
602 * placed here so it can be shared with ndb

603 *

604 * State mmintained for each zone tines each registered key, which tracks
605 * the state of the create, shutdown and destroy call backs.

606 *

607 * zsd_flags is used to keep track of pending actions to avoid hol di ng | ocks
608 * when calling the create/shutdown/destroy call backs, since doing so

609 * could |lead to deadl ocks.

610 */

611 struct zsd_entry {

612 zone_key_t zsd_key; /* Key used to |ookup value */
613 voi d *zsd_dat a; /* Call er-nmanaged val ue */
614 /*

615 * Cal | backs to be executed when a zone is created, shutdown, and
616 * destroyed, respectively.

617 */

618 voi d *(*zsd_create)(zoneid_t);

619 voi d (*zsd_shut down) (zoneid_t, void *);

620 voi d (*zsd_destroy) (zoneid_t, void *);

621 l'ist_node_t zsd_l i nkage;

622 ui nt16_t zsd_f | ags; /* See bel ow */

623 kcondvar _t zsd_cv;

624 };

626 /*

627 * zsd_fl ags

628 */

629 #define ZSD_CREATE_NEEDED 0x0001

630 #define ZSD CREATE_|I NPROGRESS 0x0002

extern void zone_init_ref(zone_ref_t *);

extern void zone_hol d_ref(zone_t *, zone_ref_t *,
extern void zone_rele_ref(zone_ref _t *,
extern void zone_cred_hol d(zone_t *);
extern void zone_cred_rel e(zone_t *);
extern void zone_task_hol d(zone_t *),
extern void zone_task_rel e(zone_t *);
extern zone_t *zone_find_by_id(zonei d _t);
extern zone_t *zone_find_by | abel (const ts_| abel
extern zone_t *zone_find_by _name(char *);

zone_ref _subsys_t);
zone_ref _subsys_t);

_to*);

new usr/ src/ uts/comon/sys/ zone. h

631
632
633
634
635
636
637

639
640
641
642
643
644

646
647

649
650
651

653
654
655
656
657

659
660
661
662
663

665
666
667
668
669
670
671
672
673
674
675
676

678
679
680
681
682
683
684
685
686

688
689
690
691

693
694
695
696

#def i ne ZSD_CREATE_COMPLETED 0x0004
#def i ne ZSD_SHUTDOWN_NEEDED 0x0010
#def i ne ZSD_SHUTDOAK_| NPROGRESS 0x0020
#def i ne ZSD_SHUTDOAN_COMPLETED 0x0040
#def i ne ZSD_DESTROY_NEEDED 0x0100
#def i ne ZSD_DESTROY_| NPROGRESS 0x0200
#def i ne ZSD_DESTROY_COMPLETED ~ 0x0400

#def i ne ZSD_CREATE ALL \

(ZSD_CREATE_NEEDED| ZSD_CREATE_| NPROGRESS| ZSD_CREATE_COVPLETED)
#def i ne ZSD_SHUTDOAR ALL \

(ZSD_SHUTDOWN_NEEDED| ZSD_SHUTDOWN_| NPROGRESS| ZSD_SHUTDOWN_COVPLETED)
#def i ne ZSD_DESTROY_ALL \

(ZSD_DESTROY_NEEDED| ZSD_DESTROY_| NPROGRESS| ZSD_DESTROY_COWPLETED)

#def i ne ZSD_ALL_| NPROGRESS \
(ZSD_CREATE_| NPROGRESS| ZSD_SHUTDOWN_| NPROGRESS| ZSD_DESTROY_| NPROGRESS)

/*

* Macros to help with zone visibility restrictions.
*/

/*

* |s process in the global zone?

*

#def i ne | NGLOBALZONE(p) \

((p)->p_zone == gl obal _zone)
/*
* Can process view objects in given zone?
*/
#def i ne HASZONEACCESS(p, zoneid) \
(p)->p_zone->zone_id == (zoneid) || | NGLOBALZONE(p))
/*
* Conveni ence nacro to see if a resolved path is visible fromw thin a
* given zone.
*
* The basic idea is that the first (zone_rootpathlen - 1) bytes of the
* two strings nust be equal. Since the rootpathlen has a trailing /',
* we want to skip everything in the path up to (but not including) the
* trailing '/’.
*/
#def i ne ZONE_PATH VI SI BLE(pat h, zone) \
(strncnp((path), (zone)->zone_rootpath, \
(zone) - >zone_rootpathlen - 1) == 0)

*

* Conveni ence macro to go fromthe global view of a path to that seen

* fromwithin said zone. It is the responsibility of the caller to

* ensure that the path is a resolved one (ie, no’'.."s or '.’s), and is
* in fact visible fromwithin the zone.

*

#defi ne ZONE_PATH_TRANSLATE(pat h, zone) \

(ASSERT(ZONE_PATH_VI SI BLE(pat h, zone)), \

(path) + (zone)->zone_rootpathlen - 2)

/*

* Special processes visible in all zones.

*

#def i ne ZONE_SPECI ALPI D(x) ((x) == 0[] (x) ==1)
/*

* Zone-safe version of thread_create() to be used when the caller wants to
* create a kernel thread to run within the current zone's context.
*/

new usr/ src/ uts/common/sys/ zone. h

697
698
699

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

717
718
719
720
721

723
724
725
726
727
728

730
731
732
733

735
736
737
738
739

741
742
743
744
745

747
748
749
750
751

753
754
755
756

758
759
760
761
762

extern kthread_t *zthread_create(caddr_t, size_t, void (*)(), void *, size_t,
pri_t);
extern void zthread_exit(void);

/
Functions for an external observer to register interest in a zone's status
change. bservers will be woken up when the zone status equals the status
argurment passed in (in the case of zone_status_tinedwait, the function may
al so return because of a tineout; zone_status_wait_sig may return early due
to a signal being delivered; zone_status_tinmedwait_sig may return for any of
t he above reasons).

* ok Gk ko k k F 3k

O herwi se these behave identically to cv_tinmedwait(), cv_wait(), and

* cv_wait_sig() respectively.

*

/

extern clock_t zone_status_tinedwait(zone_t *, clock_t, zone_status_t);
extern clock_t zone_status_tinedwait_sig(zone_t *, clock_t, zone_status_t);
extern void zone_status_wait(zone_t *, zone_status_t);
extern int zone_status_wait_sig(zone_t *, zone_status_t);

/*

* Cet the status of the zone (at the time it was called).
* have progressed by the tine it is returned.

*/

The state may

extern zone_status_t zone_status_get(zone_t *);

/
Safely get the hostid of the specified zone (defaults to machine’s hostid
if the specified zone doesn't ermulate a hostid). Passing NULL retrieves
the global zone's (i.e., physical systenis) hostid.

* ok kb 3k

extern uint32_t zone_get _hostid(zone_t *);

/*

* CGet the "kcred" credentials corresponding to the given zone.
*/

extern struct cred *zone_get _kcred(zoneid_t);

/*

* Cet/set the pool the zone is currently bound to.
*/

extern struct pool *zone_pool _get(zone_t *);

extern void zone_pool _set(zone_t *, struct pool *);

/*

* Get/set the pset the zone is currently using.

*/

extern psetid_t zone_pset_get(zone_t *);

extern void zone_pset_set(zone_t *, psetid_t);

/*

* CGet the nunber of cpus/online-cpus visible fromthe given zone.
*/

extern int zone_ncpus_get(zone_t *);

extern int zone_ncpus_online_get(zone_t *);

/*

* Returns true if the naned pool/dataset is visible in the current zone.
*/

extern int zone_dataset_visible(const char *, int *);

/*

* zone version of kadm n()

*/

extern int zone_kadm n(int, int, const char *, cred_t *);

extern void zone_shutdown_gl obal (voi d);

new usr/ src/ uts/comon/sys/ zone. h
764 extern voi d nmount _i n_progress(void);
765 extern voi d nount _conpl et ed(voi d);
767 extern int zone_wal k(int (*)(zone_t *, void *), void *);
769 extern rctl_hndl _t rc_zone_| ocked_nmem
770 extern rctl_hndl _t rc_zone_max_swap;
771 extern rctl_hndl _t rc_zone_max_| of i ;
773 #endif [/* _KERNEL */
775 #ifdef __cplusplus
776 }
777 #endif

779 #endif /* _SYS ZONE H */

new usr/src/uts/intel/dtrace/sdt.c

R R R R

13145 Tue Jan 14 16:50: 06 2014
new usr/src/uts/intel/dtrace/sdt.c
2915 DTrace in a zone shoul d see "cpu", "curpsinfo", et al
2916 DTrace in a zone should be able to access fds[]
2917 DTrace in a zone should have linited provider access
Revi ewed by: Joshua M dul ow <j osh@ysngr. or g>
Revi ewed by: Adam Levent hal <ahl @lel phi x. con»

R R R R R R R R

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governing perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 =
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
23 * Use is subject to license terns.

*

/

26 /*

27 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.
*
/

29 #endif /* ! codereview */

31 #include <sys/nodctl.h>

32 #include <sys/sunddi. h>

33 #include <sys/dtrace. h>

34 #include <sys/kobj . h>

35 #include <sys/stat.h>

36 #include <sys/conf.h>

37 #include <vnl seg_kmem h>
38 #include <sys/stack. h>

39 #include <sys/frane. h>

40 #include <sys/dtrace_inpl.h>
41 #include <sys/cm_err. h>
42 #incl ude <sys/sysmacros. h>
43 #include <sys/privregs. h>
44 #incl ude <sys/sdt_inpl.h>

46 #define SDT_PATCHVAL 0xf 0

47 #define SDT_ADDR2NDX(addr) ((((uintptr_t)(addr)) >> 4) & sdt_probetab_nask)
48 #define SDT_PROBETAB_SI ZE 0x1000 /* 4k entries -- 16K total

50 static dev_info_t *sdt _devi ;

51 static int sdt _verbose = 0;

52 static sdt_probe_t **sdt _probet ab;

53 static int sdt _probet ab_si ze;

54 static int sdt _probet ab_mask;

56 /* ARGSUSED*/
57 static int

new usr/src/uts/intel/dtrace/sdt.c

58 sdt_i nvop(uintptr_t addr, uintptr_t *stack, uintptr_t eax)
59 {

60 uintptr_t stackO, stackl, stack2, stack3, stack4;

61 int 1 =0;

62 sdt _probe_t *sdt = sdt_probet ab[SDT_ADDR2NDX(addr)];

64 #ifdef __and64

65 /*

66 * On and64, stack[O] contains the dereferenced stack pointer,
67 * stack[1] contains savfp, stack[2] contains savpc. W want
68 * to step over these entries.

69 *

70 i += 3;

71 #endi f

73 for (; sdt !'= NULL; sdt = sdt->sdp_hashnext) {

74 if ((uintptr_t)sdt->sdp_patchpoint == addr) {

75 /*

76 When accessing the argunents on the stack, we nust

*

* protect against accessing beyond the stack. W can
78 * safely set NOFAULT here -- we know that interrupts

*

79 are al ready disabl ed.

80 */

81 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT) ;
82 stack0 = stack[i ++];

83 stackl = stack[i++];

84 stack2 = stack[i ++];

85 stack3 = stack[i ++];

86 stack4 = stack[i ++];

87 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NCFAULT |
88 CPU_DTRACE_BADADDR) ;

90 dtrace_probe(sdt->sdp_id, stackO, stackl,
91 stack2, stack3, stack4);

93 return (DTRACE_| NVOP_NOP) ;

94 }

95 }

97 return (0);

98 }

100 /* ARGSUSED*/
101 static void
102 sdt_provi de_nodul e(void *arg, struct nodctl *ctl)

103

104 struct nodule *np = ctl->nod_np;

105 char *nodnane = ctl->npd_nodnane;

106 sdt _probedesc_t *sdpd;

107 sdt _probe_t *sdp, *old;

108 sdt _provider_t *prov;

109 int |en;

111 /*

112 * One for all, and all for one: if we haven't yet registered all of
113 * our providers, we'll refuse to provide anything.

114 */

115 for (prov = sdt_providers; prov->sdtp_nanme != NULL; prov++) {
116 if (prov->sdtp_id == DTRACE_PROVNONE)

117 return;

118 1

120 if (nmp->sdt_nprobes !'= 0 || (sdpd = np->sdt_probes) == NULL)
121 return;

123 for (sdpd = np->sdt_probes; sdpd != NULL; sdpd = sdpd->sdpd_next) {

new usr/src/uts/intel/dtrace/sdt.c

124
125
126
127
128

130
131

133
134
135
136
137

139

141
142
143
144
145
146
147
148

150

152
153
154
155
156
157

159

161
162

164
165
166
167
168
169
170

172
173
174
175
176
177

179
180

182
183
184

186
187
188
189

char *nane = sdpd- >sdpd_nane, *func, *nnang;
int i, j;

sdt _provider_t *prov;

ulong_t offs;

dtrace_id_t id;

for (prov = sdt_providers; prov->sdtp_prefix != NULL; prov++) {
char *prefix = prov->sdtp_prefix;

if (strncmp(name, prefix, strlen(prefix)) == 0) {
name += strlen(prefix);
br eak;
}
}
nnane = knem.alloc(len = strlen(nane) + 1, KM SLEEP);
for (i =0, j =0; nane[j] !'="\0"; i++) {
if (name[j] =="_ & name[j + 1] =="_") {
nnanme[i] ="-";
j += 2;
} else {
nnanme[i] = nanme[j ++];
}
}
nnanme[i] ='\0";

sdp = kmem zal | oc(si zeof (sdt_probe_t), KM SLEEP);
sdp- >sdp_| oadcnt = ctl->npd_| oadcnt ;

sdp->sdp_ctl = ctl;
sdp- >sdp_nanme = nnang;
sdp- >sdp_nanel en = |en;

sdp- >sdp_provi der = prov;
func = kobj _searchsyn{np, sdpd->sdpd_offset, &offs);

if (func == NULL)
func = "<unknown>";

*

* We have our provider. Now create the probe.
*
/
if ((id = dtrace_probe_| ookup(prov->sdtp_id, nodnane,
func, nnane)) != DTRACE_| DNONE) {
old = dtrace_probe_arg(prov->sdtp_id, id);
ASSERT(ol d !'= NULL);

sdp- >sdp_next = ol d- >sdp_next ;
sdp->sdp_id = id;
ol d->sdp_next = sdp;
} else {
sdp->sdp_i d = dtrace_probe_create(prov->sdtp_id,
nodname, func, nname, 3, sdp);

np- >sdt _npr obes++;

}

sdp- >sdp_hashnext =
sdt _pr obet ab[SDT_ADDR2NDX(sdpd- >sdpd_of fset)];
sdt _pr obet ab[SDT_ADDR2NDX(sdpd- >sdpd_of fset)] = sdp;

sdp- >sdp_pat chval = SDT_PATCHVAL;
sdp- >sdp_pat chpoint = (uint8_t *)sdpd->sdpd_of fset;
sdp- >sdp_savedval = *sdp->sdp_pat chpoi nt;

new usr/src/uts/intel/dtrace/sdt.c

190

}

192 /* ARGSUSED*/
193 static void
194 sdt _destroy(void *arg, dtrace_id_t id, void *parg)

195 {

196 sdt _probe_t *sdp = parg, *old, *last, *hash;

197 struct nodctl *ctl = sdp->sdp_ctl;

198 int ndx;

200 if (ctl !'= NULL & ctl->nod_| oadcnt == sdp->sdp_| oadcnt) {
201 if ((ctl->nmod_| oadcnt == sdp->sdp_| oadcnt &&
202 ctl->nmod_| oaded)) {

203 ((struct nmodule *)(ctl->nmod_np))->sdt_nprobes--;
204

205 }

207 while (sdp !'= NULL) {

208 old = sdp;

210 /*

211 * Now we need to renpve this probe fromthe sdt_probetab.
212 */

213 ndx = SDT_ADDR2NDX(sdp- >sdp_pat chpoi nt) ;

214 last = NULL;

215 hash = sdt _probet ab[ndx];

217 while (hash != sdp) {

218 ASSERT(hash != NULL);

219 | ast = hash;

220 hash = hash- >sdp_hashnext;

221 }

223 if (last !'= NULL) {

224 | ast - >sdp_hashnext = sdp->sdp_hashnext;
225 } else {

226 sdt _probet ab[ndx] = sdp->sdp_hashnext ;
227 }

229 kmem f ree(sdp- >sdp_nane, sdp->sdp_nanel en);

230 sdp = sdp->sdp_next;

231 kmem free(ol d, sizeof (sdt_probe_t));

232 }

233 }

235 [* ARGSUSED*/

236 static int

237 sdt_enabl e(void *arg, dtrace_id_t id, void *parQg)

238 {

239 sdt _probe_t *sdp = parg;

240 struct nodct! *ctl = sdp->sdp_ctl;

242 ctl ->nod_nenabl ed++;

244 /*

245 * |f this nodul e has di sappeared since we discovered its probes,
246 * refuse to enable it.

247 */

248 if (!ctl->nmpd_| oaded) {

249 if (sdt_verbose) {

250 crm_err (CE_NOTE, "sdt is failing for probe % "
251 "(modul e % unl oaded) ",

252 sdp->sdp_nane, ctl->nmpd_nodnane);
253

254 goto err;

255 }

new usr/src/uts/intel/dtrace/sdt.c

257
258
259
260
261
262
263
264
265
266
267
268
269

271
272
273
274
275
276
277

279
280
281

Now check that our npdctl has the expected |oad count. If it
doesn’t, this npbdul e nust have been unl oaded and rel oaded -- and
we're not going to touch it.

R

if (ctl->nod_|l oadcnt != sdp->sdp_| oadcnt) {
if (sdt_verbose) {
cmm_err (CE_NOTE, "sdt is failing for probe %
"(modul e % rel oaded) ",
sdp- >sdp_nane, ctl->nod_nodnane) ;

goto err;

}

while (sdp !'= NULL) {
*sdp- >sdp_pat chpoi nt = sdp->sdp_pat chval ;
sdp = sdp->sdp_next;

}

return (0);

err:

}

/ * ARGSUSED* /
static void
sdt _di sabl e(void *arg, dtrace_id_t id, void *parg)

282 {

283
284

288
289

291
292
293
294

296
297
298

300
301
302

sdt _probe_t *sdp = parg;
struct nodctl *ctl = sdp->sdp_ctl;

ctl ->nmod_nenabl ed- -;

if (!ctl->npd_|l oaded || ctl->npd_| oadcnt != sdp->sdp_| oadcnt)
goto err;

while (sdp != NULL)

{
*sdp- >sdp_pat chpoi nt = sdp->sdp_savedval ;
sdp = sdp->sdp_next;

err:

}

| * ARGSUSED* /
ui nt64_t
sdt _getarg(void *arg, dtrace_id_t id, void *parg, int argno, int afranes)

303 {

304
305
306
307
308
309
310
311
312
313
314

316
317

319
320
321

uintptr_t val;
struct franme *fp = (struct frane *)dtrace_getfp();
uintptr_t *stack;

int i;
#if defined(_ and64)
/*

* Atotal of 6 argunents are passed via registers; any argunment with
* index of 5 or lower is therefore in a register.
*/
int inreg = 5;
#endi f

1; i <= afranes; i++) {
fp = (struct frame *)(fp->fr_savfp);
if

(fp->fr_savpc == (pc_t)dtrace_invop_callsite) {
#i f !defined(__and64)

| *

new usr/src/uts/intel/dtrace/sdt.c

322
323
324
325
326
327

328 #el se

329
330
331
332
333
334
335
336
337
338
339
340
341
342

344
345
346
347
348
349

350 #endi f

351
352
353

355
356
357
358
359
360
361
362
363

365 #if defi

367
368
369
370
371
372
373
374

376

377 #endif

378

380 | oad:

381
382
383

385
386 }

If we pass through the invalid op handler, we will

use the pointer that it passed to the stack as the
second argunent to dtrace_invop() as the pointer to
the stack.

*
stack = ((uintptr_t **)& p[1])[1];

/*
* In the case of and64, we will use the pointer to the
* regs structure that was pushed when we took the
* trap. To get this structure, we nust increnent

* beyond the frame structure. |If the argunent that

* we're seeking is passed on the stack, we' |l pull

* the true stack pointer out of the saved registers

* and decrenent our argunent by the nunber of

* argunents passed in registers; if the argunent

* we're seeking is passed in regsiters, we can just

* load it directly.

*/

struct regs *rp = (struct regs *)((uintptr_t)& p[1l] +

sizeof (uintptr_t));

if (argno <= inreg) {
stack = (uintptr_t *)&p->r_rdi;
} else {
stack = (uintptr_t *)(rp->r_rsp);
argno -= (inreg + 1);

}

goto | oad;

We know that we did not come through a trap to get into
dtrace_probe() -- the provider sinply called dtrace_probe()
directly. As this is the case, we need to shift the argunent
that we're looking for: the probe IDis the first argunment to
dtrace_probe(), so the argunent n will actually be found where
one woul d expect to find argunent (n + 1).

* Ok ok ok k ok F o
-~

ar gno++;

ned(__and64)
if (argno <= inreg) {
/*
* This shouldn’t happen. |[If the argunent is passed in a
* register then it should have been, well, passed in a
* register...
*
/

DTRACE_CPUFLAG_SET(CPU_DTRACE_| LLOP) ;
return (0);

}

argno -= (inreg + 1);

stack = (uintptr_t *)& p[1];
DTRACE_CPUFLAG SET(CPU_DTRACE_NOFAULT) ;
val = stack[argno];

DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NCFAULT) ;

return (val);

new

usr/src/uts/intel/dtrace/sdt.c

388 static dtrace_pops_t sdt_pops = {

389 N

390 sdt _provi de_nodul e,

391 sdt _enabl e,

392 sdt _di sabl e,

393 NULL,

394 NULL,

395 sdt _get ar gdesc,

396 sdt _get arg,

397 NULL,

398 sdt _destroy

399 };

401 /* ARGSUSED*/

402 static int

403 {sdt _attach(dev_info_t *devi, ddi_attach_cnd_t cnd)

404

405 sdt _provider_t *prov;

407 if (ddi _create_m nor_node(devi, "sdt", S |FCHR

408 0, DDI _PSEUDO, NULL) == DDI _FAI LURE)

409 cmm_err (CE_NOTE, "/dev/sdt couldn’t create m nor node");

410 ddi _renove_m nor _node(devi, NULL);

411 return (DDl _FAI LURE);

412 }

414 ddi _report_dev(devi);

415 sdt _devi = devi;

417 if (sdt_probetab_size == 0)

418 sdt _probet ab_si ze = SDT_PROBETAB_SI ZE;

420 sdt _probetab_mask = sdt_probetab_size - 1;

421 sdt _probetab =

422 kmem zal | oc(sdt _probetab_size * sizeof (sdt_probe_t *), KM SLEEP);

423 dtrace_i nvop_add(sdt _i nvop) ;

425 for (prov = sdt_providers; prov->sdtp_name != NULL; prov++) {

426 uint32_t priv;

428 if (prov->sdtp_priv == DTRACE_PRI V_NONE) {

429 priv = DTRACE_PRI V_KERNEL;

430 sdt _pops. dt ps_node = NULL;

431 } else {

432 priv = prov->sdtp_priv;

433 ASSERT(priv == DITRACE_PRI V_USER);

434 sdt _pops. dt ps_npde = sdt _node;

435 }

437 #endif /* | codereview */

438 if (dtrace_register(prov->sdtp_nane, prov->sdtp_attr,

439 priv, NULL, &sdt_pops, prov, &prov->sdtp_id) != 0) {
26 DTRACE_PRI V_KERNEL, NULL,
27 &sdt _pops, prov, &prov->sdtp_id) != 0) {

440 crm_err (CE_WARN, “failed to register sdt provider %",

441 prov- >sdt p_nane) ;

442 }

443 }

445 return (DDl _SUCCESS);

446 }

____unchanged_portion_onitted_

new usr/src/uts/sparc/dtrace/sdt.c 1 new usr/src/uts/sparc/dtrace/sdt.c 2

R R R R

11768 Tue Jan 14 16:50: 07 2014 59 #define SDT_SI MML3_IASK Ox1f ff
new usr/src/uts/sparc/dtrace/sdt.c 60 #define SDT_SI MML3_MAX ((int32_t)oxfff)
2915 DTrace in a zone shoul d see "cpu", "curpsinfo", et al 61 #define SDT_CALL(from to) (((uint32_t)1 << 30) | \
2916 DTrace in a zone should be able to access fds[] 62 (((uintptr_t)(to) - (uintptr_t)(from >> 2) &\
2917 DTrace in a zone should have linited provider access 63 Ox3fffffff))
Revi ewed by: Joshua M dul ow <j osh@ysngr . or g> 64 #define SDT_SAVE (0x9de3a000 | (-SA(M NFRAME) & SDT_SI MML3_VASK))
Revi ewed by: Adam Levent hal <ahl @lel phi x. con» 65 #define SDT_RET 0x81c7e008
IR E SR SR RS RS SRR SRR RS R R R R R R R RS EEEEEEEREEEEEEEERERSE] 66 #def| ne SDT RESTmE OX81980000
1/*
2 * CDDL HEADER START 68 #define SDT_OP_SETHI 0x1000000
3 * 69 #define SDT_OP_OR 0x80100000
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License"). 71 #define SDT_FMr2_RD_SHI FT 25
6 * You may not use this file except in conpliance with the License. 72 #define SDT_I MVR2_SHI FT 10
7 * 73 #define SDT_| MVR2_MASK Ox3fffff
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 #define SDT_| MMLO_MASK Ox3f f
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governing perm ssions 76 #define SDT_FMI3_RD_SHI FT 25
11 * and limtations under the License. 77 #define SDT_FMI3_RSI_SHI FT 14
12 = 78 #define SDT_FMI3_RS2_SHI FT 0
13 * When distributing Covered Code, include this CDDL HEADER in each 79 #define SDT_FMI3_I MM (1 << 13)
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CDDL HEADER, wth the 81 #define SDT_MOV(rs, rd) \
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 (SDT_OP_OR | (SDT_REG @0 << SDT_FMI3_RS1_SHI FT) | \
17 * information: Portions Copyright [yyyy] [name of copyright owner] 83 ((rs) << SDT_FMTI3_RS2_SHI FT) | ((rd) << SDT_FMI3_RD _SH FT))
18 =
19 * CDDL HEADER END 85 #define SDT_ORLO(rs, val, rd) \
20 */ 86 (SDT_OP_OR | ((rs) << SDT_FMI3_RS1_SHIFT) | \
21 /* 87 ((rd) << SDT_FMT3_RD SHIFT) | SDT_FMI3_IM | ((val) & SDT_| MMLO_MASK))
22 * Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
23 * Use is subject to license terns. 89 #define SDT_ORSI ML3(rs, val, rd) \
24 *| 90 (SDT_OP_OR | ((rs) << SDT_FMI3_RS1_SHIFT) | \
91 ((rd) << SDT_FMTI3_RD SHIFT) | SDT_FMI3_IM| ((val) & SDT_SI MML3_MASK))
26 /*
27 * Copyright (c) 2012, Joyent, Inc. Al rights reserved. 93 #define SDT_SETHI (val, reg) \
28 */ 94 (SDT_OP_SETHI | (reg << SDT_FMI2_RD SHIFT) | \
29 #endif /* ! codereview */ 95 ((val >> SDT_I MVR2_SHI FT) & SDT_I MVR2_NASK))
31 #include <sys/nodctl.h> 97 #define SDT_ENTRY_SIZE (11 * sizeof (uint32_t))
32 #include <sys/sunddi. h>
33 #include <sys/dtrace. h> 99 static void
34 #include <sys/kobj . h> 100 sdt_initialize(sdt_probe_t *sdp, uint32_t **tranpoline)
35 #include <sys/stat.h> 101 {
36 #include <sys/conf.h> 102 uint32_t *instr = *tranpoline;
37 #include <vnl seg_kmem h>
38 #include <sys/stack. h> 104 *instr++ = SDT_SAVE;

39 #include <sys/sdt_inpl.h>

106 if (sdp- >sdp|d>(U|nt32t)SDT SI ML3_MAX) {
41 static dev_info_t *sdt _devi ; 107 *instr++ = SDT_SETHI (sdp->sdp_i d, SDT_REG Q0);
108 *instr++ = SDT_ORLQ(SDT_REG (0, sdp >sdp_i d, SDT REG Q0) ;
43 int sdt_verbose = O; 109 } else {
110 *instr++ = SDT_ORSI MML3(SDT_REG G0, sdp->sdp_id, SDT_REG);
45 #define SDT_REG (0 0 111 }
46 #define SDT_REG Q0 8
47 #define SDT_REG Ol 9 113 *instr++ = SDT_MOV(SDT_REG |0, SDT_REG O1);
48 #define SDI_REG O2 10 114 *instr++ = SDT_MOV(SDT_REG |1, SDT_REG ?);
49 #define SDT_REG (3 11 115 *instr++ = SDT_MOV(SDT_REG |2, SDT_REG) ;
50 #define SDT_REG O4 12 116 *instr++ = SDT_MOV(SDT_REG |3, SDT_REG O4);
51 #define SDI_REG Ob 13 117 *instr = SDT_CALL(instr, dtrace_probe);
52 #define SDT_REG |0 24 118 instr++;
53 #define SDT_REG |1 25 119 *instr++ = SDT_MOV(SDT_REG | 4, SDT_REG (6);
54 #define SDT_REG |2 26
55 #define SDT_REG |3 27 121 *instr++ = SDT_RET;
56 #define SDT_REG |4 28 122 *instr++ = SDT_RESTORE;
57 #define SDT_REG |5 29 123 *tranpoline = instr;

new usr/src/uts/sparc/dtrace/sdt.c
124 }
126 /* ARGSUSED*/

127 static void
128 sdt _provi de_nodul e(void *arg, struct nodctl *ctl)

129 {

130 struct nmodule *np = ctl->nod_np;

131 char *nmodnane = ctl ->rr0d_rmdnarre;

132 int primary, nprobes = O;

133 sdt _probedesc_t *sdpd;

134 sdt _probe_t *sdp, *old;

135 uint32_t *tab;

136 sdt _provi der_t *prov;

137 int |en;

139 /*

140 * One for all, and all for one: if we haven't yet registered all
141 * our providers, we'll refuse to provide anything.

142 */

143 for (prov = sdt_providers; prov->sdtp_name != NULL; prov++) {
144 if (prov->sdtp_id == DTRACE_PROVNONE)

145 return;

146 1

148 if (nmp->sdt_nprobes !'= 0 || (sdpd = np->sdt_probes) == NULL)
149 return;

151 kobj _textw n_al |l oc(np);

153 /*

154 * Hack to identify unix/genunix/krtld.

155 */

156 primary = viem contai ns(heap_arena, (void *)ctl,

157 sizeof (struct nodctl)) == 0;

159 I*

160 * |f there hasn’t been an sdt table allocated, we'll do so now.
161 */

162 if (np->sdt_tab == NULL) {

163 for (; sdpd != NULL; sdpd = sdpd->sdpd_next) {

164 npr obes++;

165 }

167 /*

168 * We could (shoul d?) determ ne precisely the size of the
169 * table -- but a reasonable maximumwi |l suffice.

170 */

171 nmp- >sdt _si ze = nprobes * SDT_ENTRY_SI ZE;

172 np->sdt _tab = kobj _texthol e_al | oc(np->text, np->sdt_size);
174 if (nmp->sdt_tab == NULL) {

175 cm err(CE WARN, “"couldn’t allocate SDT table "
176 "for nmodule %", nodnane);

177 return;

178 }

179 }

181 tab = (uint32_t *)np->sdt_tab;

183 for (sdpd = np->sdt_probes; sdpd != NULL; sdpd = sdpd->sdpd_next) {
184 char *nanme = sdpd->sdpd_nane, *func, *nnane;

185 int i, j;

186 sdt _provider_t *prov;

187 ulong_t offs;

188 dtrace_id_t id;

of

new usr/src/uts/sparc/dtrace/sdt.c

190 for (prov = sdt_providers; prov->sdtp_prefix != NULL; prov++) {
191 char *prefix = prov->sdtp_prefix;

193 if (strncnp(nane, prefix, strlen(prefix)) == 0) {
194 name += strlen(prefix);

195 br eak;

196 }

197 }

199 nnanme = kmem al l oc(len = strlen(nane) + 1, KM SLEEP);
201 for (i =0, j =0; name[j] !="\0"; i++) {

202 if (nama[j] =="'_" && nane[j + 1] =="_) {
203 nname[i] ="-";

204 jo+= 2

205 } else {

206 nname[i] = nanme[j ++];

207 }

208 }

210 nnane[i] = '\0;

212 sdp = knem zal | oc(si zeof (sdt_probe_t), KM SLEEP);
213 sdp->sdp_| oadcnt = ctl->npnd_| oadcnt ;

214 sdp->sdp_primary = primary;

215 sdp->sdp_ctl = ctl;

216 sdp- >sdp_nane = nnane;

217 sdp- >sdp_nanel en = |en;

218 sdp- >sdp_provi der = prov;

220 func = kobj _searchsyn(np, sdpd->sdpd_of fset +

221 (uintptr_t)nmp->text, &offs);

223 if (func == NULL)

224 func = "<unknown>";

226 /*

227 * We have our provider. Now create the probe.

228 */

229 if ((id = dtrace_probe_| ookup(prov->sdtp_id, nodnane,
230 func, nnanme)) != DTRACE | DNONE) {

231 old = dtrace_probe_arg(prov->sdtp_id, id);
232 ASSERT(old !'= NULL);

234 sdp- >sdp_next = ol d- >sdp_next;

235 sdp->sdp_id = id;

236 ol d->sdp_next = sdp;

237 } else {

238 sdp->sdp_i d = dtrace_probe_create(prov->sdtp_id,
239 nodnane, func, nname, 1, sdp);

241 np- >sdt _npr obes++;

242 }

244 sdp- >sdp_pat chval = SDT_CALL((uintptr_t)np->text +
245 sdpd- >sdpd_ offset tab);

246 sdp- >sdp_pat chpoi nt = (ui nt 32 t *)((uintptr_t)nmp->textwin +
247 sdpd- >sdpd_of f set) ;

248 sdp- >sdp_savedval = *sdp— >sdp_pat chpoi nt ;

249 sdt _initiali ze(sdp, &t ab) ;

250 1

251 }

253 /[* ARGSUSED*/

254 static void

255 sdt _destroy(void *arg, dtrace_id_t id, void *parQg)

4

new usr/src/uts/sparc/dtrace/sdt.c

256 {
257
258

260
261
262
263
264
265

267
268
269
270
271
272
273 }

sdt _probe_t *sdp = parg, *old;

struct nodctl *ctl = sdp->sdp_ctl;
if (ctl !'= NULL && ctl->npd_| oadcnt == sdp->sdp_| oadcnt) {
if ((ctl->nmod_| oadcnt == sdp->sdp_| oadcnt &&
ctl->nmod_| oaded) || sdp->sdp_primary)

{
((struct nodule *)(ctl->nmpd_np))->sdt_nprobes--;
}
while (sdp !'= NULL) {
old = sd
kmem f ree(sdp >sdp_nane, sdp->sdp_nanel en);

sdp = sdp->sdp_next;
kmem free(ol d, si zeof (sdt_probe_t));

275 | * ARGSUSED* /
276 static int
277 sdt_enabl e(void *arg, dtrace_id_t id, void *parQg)

278 {
279
280

282

284
285
286
287
288
289
290
291
292
293
294
295

297
298
299
300
301
302
303
304
305
306
307
308
309

311
312
313
314

316 err:

317
318 }

sdt _probe_t *sdp = parg;
struct nodctl *ctl = sdp->sdp_ctl;

ctl ->nmod_nenabl ed++;

*

* |f this npdul e has di sappeared since we discovered its probes,
* refuse to enable it.

|f (!sdp->sdp_primary && !ctl->nod_| oaded) {
if (sdt_verbose) {
crm_err (CE_NOTE, "sdt is failing for probe % "
"(rmodul e % unl oaded) ",
sdp- >sdp_nane, ctl->nod_nodnane) ;

goto err;
}
/*
* Now check that our nodctl has the expected |oad count. If it
* doesn’t, this nmpodul e nust have been unl oaded and rel oaded -- and
* we're not going to touch it.
*
/
if (ctl->npd_| oadcnt != sdp->sdp_| oadcnt) {
if (sdt_verbose) {
crm_err (CE_NOTE, "sdt is failing for probe % "
"(nmodul e % rel oaded)"
sdp- >sdp_nane, ctl->nmpd_nodnane);
}
goto err;
}

while (sdp != NULL) {
*sdp- >sdp_pat chpoi nt = sdp->sdp_pat chval ;
sdp = sdp->sdp_next;

return (0);

320 /* ARGSUSED*/
321 static void

new usr/src/uts/sparc/dtrace/sdt.c

322 sdt_disabl e(void *arg, dtrace_id_t id, void *parg)

323 {

324 sdt _probe_t *sdp = parg;

325 struct nodct!l *ctl = sdp->sdp_ctl;

327 ASSERT(ct| - >npbd_nenabl ed > 0);

328 ctl ->nod_nenabl ed- -;

330 if ((‘sdp >sdp_prinmary && !ctl->nod_| oaded) ||
331 | ->mod_| oadcnt ! = sdp->sdp_| oadcnt))
332 goto err;

334 while (sdp !'= NULL) {

335 *sdp- >sdp_pat chpoi nt = sdp->sdp_savedval ;
336 sdp = sdp->sdp_next;

337 }

339 err:

340 ;

341 }

343 static dtrace_pops_t sdt_pops = {

344 NULL,

345 sdt _provi de_nodul e,

346 sdt _enabl e,

347 sdt _di sabl e,

348 NULL,

349 NULL,

350 sdt _get ar gdesc,

351 NULL,

352 NULL,

353 sdt _destroy

354 };

356 static int

357 sdt_attach(dev_info_t *devi, ddi_attach_cnd_t cnd)
358 {

359 sdt _provider_t *prov;

361 switch (cnd) {

362 case DDI _ATTACH:

363 br eak;

364 case DDI _RESUME:

365 return (DDl _SUCCESS);

366 defaul t:

367 return (DDl _FAI LURE);

368 }

370 if (ddi_create_m nor_node(devi, "sdt", S IFCHR 0O,
371 DDl _PSEUDG, NULL) == DDI _FAI LURE) {

372 “ddi _renove_m nor _node(devi, NULL);

373 return (DDl _FAI LURE);

374 }

376 ddi _report_dev(devi);

377 sdt _devi = devi;

379 (prov = sdt_providers; prov->sdtp_name != NULL; prov++)
380 uint32_t priv;

382 if (prov- >sdtp priv == DTRACE_PRI V_NONE) {
383 priv = DTRACE PRI V_KERNEL;

384 sdt _pops. dt ps_nmode = NULL;

385 } else {

386 priv = prov->sdtp_priv;

387 ASSERT(priv == DIRACE_PRI V_USER) ;

new usr/src/uts/sparc/dtrace/sdt.c

388 sdt _pops. dt ps_npde = sdt _node;

389 }

391 #endif /* | codereview */

392 if (dtrace_register(prov->sdtp_nanme, prov->sdtp_attr,

393 priv, NULL, &sdt_pops, prov, &prov->sdtp_id) != 0) {
26 DTRACE_PRI V_KERNEL, NULL,
27 &sdt _pops, prov, &prov->sdtp_id) != 0) {

394 crm_err (CE_WARN, “failed to register sdt provider %",

395 prov- >sdt p_nane) ;

396 }

397 }

399 return (DDl _SUCCESS);

400 }

____unchanged_portion_onitted_

