`11210 libm should be cstyle(1ONBLD) clean`
```*** 20,29 ****
--- 20,30 ----
*/

/*
*/
+
/*
* Use is subject to license terms.
*/

*** 61,73 ****

#define GENERIC long double

static const GENERIC
invsqrtpi = 5.641895835477562869480794515607725858441e-0001L,
! two  = 2.0L,
! zero = 0.0L,
! one  = 1.0L;

GENERIC
jnl(int n, GENERIC x)
{
int i, sgn;
--- 62,74 ----

#define GENERIC long double

static const GENERIC
invsqrtpi = 5.641895835477562869480794515607725858441e-0001L,
!         two = 2.0L,
!         zero = 0.0L,
!         one = 1.0L;

GENERIC
jnl(int n, GENERIC x)
{
int i, sgn;
*** 79,101 ****
*/
if (n < 0) {
n = -n;
x = -x;
}
if (n == 0)
return (j0l(x));
if (n == 1)
return (j1l(x));
if (x != x)
!                 return (x+x);
!         if ((n&1) == 0)
sgn = 0;                        /* even n */
else
sgn = signbitl(x);      /* old n  */
x = fabsl(x);
!         if (x == zero || !finitel(x)) b = zero;
!         else if ((GENERIC)n <= x) {
/*
* Safe to use
* J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
*/
if (x > 1.0e91L) {
--- 80,109 ----
*/
if (n < 0) {
n = -n;
x = -x;
}
+
if (n == 0)
return (j0l(x));
+
if (n == 1)
return (j1l(x));
+
if (x != x)
!                 return (x + x);
!
!         if ((n & 1) == 0)
sgn = 0;                /* even n */
else
sgn = signbitl(x);      /* old n  */
+
x = fabsl(x);
!
!         if (x == zero || !finitel(x)) {
!                 b = zero;
!         } else if ((GENERIC)n <= x) {
/*
* Safe to use
* J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
*/
if (x > 1.0e91L) {
*** 111,155 ****
*         0     s-c             c+s
*         1    -s-c            -c+s
*         2    -s+c            -c-s
*         3     s+c             c-s
*/
!                         switch (n&3) {
case 0:
!                                 temp =  cosl(x)+sinl(x);
break;
case 1:
!                                 temp = -cosl(x)+sinl(x);
break;
case 2:
!                                 temp = -cosl(x)-sinl(x);
break;
case 3:
!                                 temp =  cosl(x)-sinl(x);
break;
}
!                         b = invsqrtpi*temp/sqrtl(x);
} else {
a = j0l(x);
b = j1l(x);
for (i = 1; i < n; i++) {
temp = b;
/* avoid underflow */
!                                 b = b*((GENERIC)(i+i)/x) - a;
a = temp;
}
}
} else {
if (x < 1e-17L) {       /* use J(n,x) = 1/n!*(x/2)^n */
!                         b = powl(0.5L*x, (GENERIC)n);
if (b != zero) {
for (a = one, i = 1; i <= n; i++)
a *= (GENERIC)i;
!                                 b = b/a;
}
} else {
/* BEGIN CSTYLED */
/*
* use backward recurrence
*                      x      x^2      x^2
*  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
*                      2n  - 2(n+1) - 2(n+2)
--- 119,168 ----
*         0     s-c             c+s
*         1    -s-c            -c+s
*         2    -s+c            -c-s
*         3     s+c             c-s
*/
!                         switch (n & 3) {
case 0:
!                                 temp = cosl(x) + sinl(x);
break;
case 1:
!                                 temp = -cosl(x) + sinl(x);
break;
case 2:
!                                 temp = -cosl(x) - sinl(x);
break;
case 3:
!                                 temp = cosl(x) - sinl(x);
break;
}
!
!                         b = invsqrtpi * temp / sqrtl(x);
} else {
a = j0l(x);
b = j1l(x);
+
for (i = 1; i < n; i++) {
temp = b;
/* avoid underflow */
!                                 b = b * ((GENERIC)(i + i) / x) - a;
a = temp;
}
}
} else {
if (x < 1e-17L) {       /* use J(n,x) = 1/n!*(x/2)^n */
!                         b = powl(0.5L * x, (GENERIC)n);
!
if (b != zero) {
for (a = one, i = 1; i <= n; i++)
a *= (GENERIC)i;
!
!                                 b = b / a;
}
} else {
/* BEGIN CSTYLED */
+
/*
* use backward recurrence
*                      x      x^2      x^2
*  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
*                      2n  - 2(n+1) - 2(n+2)
*** 175,207 ****
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4      good for single
* When Q(k) > 1e9      good for double
* When Q(k) > 1e17     good for quaduple
*/
!                         /* END CSTYLED */
!                         /* determine k */
GENERIC t, v;
double q0, q1, h, tmp;
int k, m;
!                         w  = (n+n)/(double)x;
!                         h = 2.0/(double)x;
q0 = w;
!                         z = w+h;
!                         q1 = w*z - 1.0;
k = 1;
while (q1 < 1.0e17) {
k += 1;
z += h;
!                                 tmp = z*q1 - q0;
q0 = q1;
q1 = tmp;
}
!                         m = n+n;
!                         for (t = zero, i = 2*(n+k); i >= m; i -= 2)
!                                 t = one/(i/x-t);
a = t;
b = one;
/*
* Estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* hence, if n*(log(2n/x)) > ...
*  single:
*    8.8722839355e+01
--- 188,229 ----
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4      good for single
* When Q(k) > 1e9      good for double
* When Q(k) > 1e17     good for quaduple
*/
!
!                         /*
!                          * END CSTYLED
!                          * determine k
!                          */
GENERIC t, v;
double q0, q1, h, tmp;
int k, m;
!
!                         w = (n + n) / (double)x;
!                         h = 2.0 / (double)x;
q0 = w;
!                         z = w + h;
!                         q1 = w * z - 1.0;
k = 1;
+
while (q1 < 1.0e17) {
k += 1;
z += h;
!                                 tmp = z * q1 - q0;
q0 = q1;
q1 = tmp;
}
!
!                         m = n + n;
!
!                         for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
!                                 t = one / (i / x - t);
!
a = t;
b = one;
+
/*
* Estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* hence, if n*(log(2n/x)) > ...
*  single:
*    8.8722839355e+01
*** 211,243 ****
*    1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero.
*/
tmp = n;
!                         v = two/x;
!                         tmp = tmp*logl(fabsl(v*tmp));
if (tmp < 1.1356523406294143949491931077970765e+04L) {
!                                 for (i = n-1; i > 0; i--) {
temp = b;
!                                         b = ((i+i)/x)*b - a;
a = temp;
}
} else {
!                                 for (i = n-1; i > 0; i--) {
temp = b;
!                                         b = ((i+i)/x)*b - a;
a = temp;
if (b > 1e1000L) {
a /= b;
t /= b;
b  = 1.0;
}
}
}
!                         b = (t*j0l(x)/b);
}
}
if (sgn != 0)
return (-b);
else
return (b);
}
--- 233,269 ----
*    1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero.
*/
tmp = n;
!                         v = two / x;
!                         tmp = tmp * logl(fabsl(v * tmp));
!
if (tmp < 1.1356523406294143949491931077970765e+04L) {
!                                 for (i = n - 1; i > 0; i--) {
temp = b;
!                                         b = ((i + i) / x) * b - a;
a = temp;
}
} else {
!                                 for (i = n - 1; i > 0; i--) {
temp = b;
!                                         b = ((i + i) / x) * b - a;
a = temp;
+
if (b > 1e1000L) {
a /= b;
t /= b;
b = 1.0;
}
}
}
!
!                         b = (t * j0l(x) / b);
}
}
+
if (sgn != 0)
return (-b);
else
return (b);
}
*** 248,274 ****
int i;
int sign;
GENERIC a, b, temp = 0;

if (x != x)
!                 return (x+x);
if (x <= zero) {
if (x == zero)
!                         return (-one/zero);
else
!                         return (zero/zero);
}
sign = 1;
if (n < 0) {
n = -n;
!                 if ((n&1) == 1)
sign = -1;
}
if (n == 0)
return (y0l(x));
if (n == 1)
!                 return (sign*y1l(x));
if (!finitel(x))
return (zero);

if (x > 1.0e91L) {
/*
--- 274,307 ----
int i;
int sign;
GENERIC a, b, temp = 0;

if (x != x)
!                 return (x + x);
!
if (x <= zero) {
if (x == zero)
!                         return (-one / zero);
else
!                         return (zero / zero);
}
+
sign = 1;
+
if (n < 0) {
n = -n;
!
!                 if ((n & 1) == 1)
sign = -1;
}
+
if (n == 0)
return (y0l(x));
+
if (n == 1)
!                 return (sign * y1l(x));
!
if (!finitel(x))
return (zero);

if (x > 1.0e91L) {
/*
*** 283,322 ****
*         0     s-c             c+s
*         1    -s-c            -c+s
*         2    -s+c            -c-s
*         3     s+c             c-s
*/
!                 switch (n&3) {
case 0:
!                         temp =  sinl(x)-cosl(x);
break;
case 1:
!                         temp = -sinl(x)-cosl(x);
break;
case 2:
!                         temp = -sinl(x)+cosl(x);
break;
case 3:
!                         temp =  sinl(x)+cosl(x);
break;
}
!                 b = invsqrtpi*temp/sqrtl(x);
} else {
a = y0l(x);
b = y1l(x);
/*
* fix 1262058 and take care of non-default rounding
*/
for (i = 1; i < n; i++) {
temp = b;
!                         b *= (GENERIC) (i + i) / x;
if (b <= -LDBL_MAX)
break;
b -= a;
a = temp;
}
}
if (sign > 0)
return (b);
else
return (-b);
}
--- 316,360 ----
*         0     s-c             c+s
*         1    -s-c            -c+s
*         2    -s+c            -c-s
*         3     s+c             c-s
*/
!                 switch (n & 3) {
case 0:
!                         temp = sinl(x) - cosl(x);
break;
case 1:
!                         temp = -sinl(x) - cosl(x);
break;
case 2:
!                         temp = -sinl(x) + cosl(x);
break;
case 3:
!                         temp = sinl(x) + cosl(x);
break;
}
!
!                 b = invsqrtpi * temp / sqrtl(x);
} else {
a = y0l(x);
b = y1l(x);
+
/*
* fix 1262058 and take care of non-default rounding
*/
for (i = 1; i < n; i++) {
temp = b;
!                         b *= (GENERIC)(i + i) / x;
!
if (b <= -LDBL_MAX)
break;
+
b -= a;
a = temp;
}
}
+
if (sign > 0)
return (b);
else
return (-b);
}
```