```11210 libm should be cstyle(1ONBLD) clean
```

 Split Close Expand all Collapse all
```          --- old/usr/src/lib/libm/common/LD/__tanl.c
+++ new/usr/src/lib/libm/common/LD/__tanl.c
```
 ↓ open down ↓ 14 lines elided ↑ open up ↑
```  15   15   * If applicable, add the following below this CDDL HEADER, with the
16   16   * fields enclosed by brackets "[]" replaced with your own identifying
17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
18   18   *
19   19   * CDDL HEADER END
20   20   */
21   21
22   22  /*
24   24   */
25 +
25   26  /*
27   28   * Use is subject to license terms.
28   29   */
29   30
30      -/* INDENT OFF */
31 +
31   32  /*
32   33   * __k_tanl( long double x;  long double y; int k )
33   34   * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164
34   35   * Input x is assumed to be bounded by ~pi/4 in magnitude.
35   36   * Input y is the tail of x.
36   37   * Input k indicate -- tan if k=0; else -1/tan
37   38   *
38   39   * Table look up algorithm
39   40   *      1. by tan(-x) = -tan(x), need only to consider positive x
40   41   *      2. if x < 5/32 = [0x3ffc4000, 0] = 0.15625 , then
41   42   *           if x < 2^-57 (hx < 0x3fc40000 0), set w=x with inexact if x !=  0
42   43   *           else
43   44   *              z = x*x;
44   45   *              w = x + (y+(x*z)*(t1+z*(t2+z*(t3+z*(t4+z*(t5+z*t6))))))
45   46   *         return (k == 0 ? w : 1/w);
46   47   *      3. else
47   48   *              ht = (hx + 0x400)&0x7ffff800    (round x to a break point t)
48   49   *              lt = 0
49   50   *              i  = (hy-0x3ffc4000)>>11;       (i<=64)
50      - *              x' = (x - t)+y                  (|x'| ~<= 2^-7)
51 + *              x' = (x - t)+y                  (|x'| ~<= 2^-7)
51   52   *         By
52   53   *              tan(t+x')
53   54   *                = (tan(t)+tan(x'))/(1-tan(x')tan(t))
54   55   *         We have
55   56   *                           sin(x')+tan(t)*(tan(t)*sin(x'))
56   57   *                = tan(t) + -------------------------------    for k=0
57   58   *                              cos(x') - tan(t)*sin(x')
58   59   *
59   60   *                           cos(x') - tan(t)*sin(x')
60   61   *                = - --------------------------------------    for k=1
61   62   *                     tan(t) + tan(t)*(cos(x')-1) + sin(x')
62   63   *
63   64   *
64      - *         where        tan(t) is from the table,
65 + *         where        tan(t) is from the table,
65   66   *                      sin(x') = x + pp1*x^3 + ...+ pp5*x^11
66   67   *                      cos(x') = 1 + qq1*x^2 + ...+ qq5*x^10
67   68   */
68   69
69   70  #include "libm.h"
70   71
71   72  #include <sys/isa_defs.h>
72   73
73   74  extern const long double _TBL_tanl_hi[], _TBL_tanl_lo[];
74      -static const long double
75      -one     = 1.0,
75 +static const long double one = 1.0;
76 +
76   77  /*
77   78   * |sin(x) - (x+pp1*x^3+...+ pp5*x^11)| <= 2^-122.32 for |x|<1/64
78   79   */
79      -pp1     = -1.666666666666666666666666666586782940810e-0001L,
80      -pp2     =  8.333333333333333333333003723660929317540e-0003L,
81      -pp3     = -1.984126984126984076045903483778337804470e-0004L,
82      -pp4     =  2.755731922361906641319723106210900949413e-0006L,
83      -pp5     = -2.505198398570947019093998469135012057673e-0008L,
80 +static const long double
81 +        pp1 = -1.666666666666666666666666666586782940810e-0001L,
82 +        pp2 = 8.333333333333333333333003723660929317540e-0003L,
83 +        pp3 = -1.984126984126984076045903483778337804470e-0004L,
84 +        pp4 = 2.755731922361906641319723106210900949413e-0006L,
85 +        pp5 = -2.505198398570947019093998469135012057673e-0008L;
86 +
84   87  /*
85   88   *                   2           10        -123.84
86   89   * |cos(x) - (1+qq1*x +...+ qq5*x  )| <= 2        for |x|<=1/128
87   90   */
88      -qq1     = -4.999999999999999999999999999999378373641e-0001L,
89      -qq2     =  4.166666666666666666666665478399327703130e-0002L,
90      -qq3     = -1.388888888888888888058211230618051613494e-0003L,
91      -qq4     =  2.480158730156105377771585658905303111866e-0005L,
92      -qq5     = -2.755728099762526325736488376695157008736e-0007L,
91 +static const long double
92 +        qq1 = -4.999999999999999999999999999999378373641e-0001L,
93 +        qq2 = 4.166666666666666666666665478399327703130e-0002L,
94 +        qq3 = -1.388888888888888888058211230618051613494e-0003L,
95 +        qq4 = 2.480158730156105377771585658905303111866e-0005L,
96 +        qq5 = -2.755728099762526325736488376695157008736e-0007L;
97 +
93   98  /*
94   99   * |tan(x) - (x+t1*x^3+...+t6*x^13)|
95  100   * |------------------------------ | <= 2^-59.73 for |x|<0.15625
96  101   * |                x              |
97  102   */
98      -t1      =  3.333333333333333333333333333333423342490e-0001L,
99      -t2      =  1.333333333333333333333333333093838744537e-0001L,
100      -t3      =  5.396825396825396825396827906318682662250e-0002L,
101      -t4      =  2.186948853615520282185576976994418486911e-0002L,
102      -t5      =  8.863235529902196573354554519991152936246e-0003L,
103      -t6      =  3.592128036572480064652191427543994878790e-0003L,
104      -t7      =  1.455834387051455257856833807581901305474e-0003L,
105      -t8      =  5.900274409318599857829983256201725587477e-0004L,
106      -t9      =  2.391291152117265181501116961901122362937e-0004L,
107      -t10     =  9.691533169382729742394024173194981882375e-0005L,
108      -t11     =  3.927994733186415603228178184225780859951e-0005L,
109      -t12     =  1.588300018848323824227640064883334101288e-0005L,
110      -t13     =  6.916271223396808311166202285131722231723e-0006L;
111      -/* INDENT ON */
103 +static const long double
104 +        t1 = 3.333333333333333333333333333333423342490e-0001L,
105 +        t2 = 1.333333333333333333333333333093838744537e-0001L,
106 +        t3 = 5.396825396825396825396827906318682662250e-0002L,
107 +        t4 = 2.186948853615520282185576976994418486911e-0002L,
108 +        t5 = 8.863235529902196573354554519991152936246e-0003L,
109 +        t6 = 3.592128036572480064652191427543994878790e-0003L,
110 +        t7 = 1.455834387051455257856833807581901305474e-0003L,
111 +        t8 = 5.900274409318599857829983256201725587477e-0004L,
112 +        t9 = 2.391291152117265181501116961901122362937e-0004L,
113 +        t10 = 9.691533169382729742394024173194981882375e-0005L,
114 +        t11 = 3.927994733186415603228178184225780859951e-0005L,
115 +        t12 = 1.588300018848323824227640064883334101288e-0005L,
116 +        t13 = 6.916271223396808311166202285131722231723e-0006L;
117 +
118 +
112  119  long double
113      -__k_tanl(long double x, long double y, int k) {
120 +__k_tanl(long double x, long double y, int k)
121 +{
114  122          long double a, t, z, w = 0.0, s, c;
115      -        int *pt = (int *) &t, *px = (int *) &x;
123 +        int *pt = (int *)&t, *px = (int *)&x;
116  124          int i, j, hx, ix;
117  125
118  126          t = 1.0;
119  127  #if defined(__i386) || defined(__amd64)
120  128          XTOI(px, hx);
121  129  #else
122  130          hx = px[0];
123  131  #endif
124  132          ix = hx & 0x7fffffff;
133 +
125  134          if (ix < 0x3ffc4000) {
126  135                  if (ix < 0x3fc60000) {
127      -                        if ((i = (int) x) == 0) /* generate inexact */
136 +                        if ((i = (int)x) == 0)  /* generate inexact */
128  137                                  w = x;
129  138                  } else {
130  139                          z = x * x;
131      -                        if (ix < 0x3ff30000)    /* 2**-12 */
140 +
141 +                        if (ix < 0x3ff30000) {  /* 2**-12 */
132  142                                  t = z * (t1 + z * (t2 + z * (t3 + z * t4)));
133      -                        else
134      -                                t = z * (t1 + z * (t2 + z * (t3 + z * (t4 +
135      -                                        z * (t5 + z * (t6 + z * (t7 + z *
136      -                                        (t8 + z * (t9 + z * (t10 + z * (t11 +
137      -                                        z * (t12 + z * t13))))))))))));
143 +                        } else {
144 +                                t = z * (t1 + z * (t2 + z * (t3 + z * (t4 + z *
145 +                                    (t5 + z * (t6 + z * (t7 + z * (t8 + z *
146 +                                    (t9 + z * (t10 + z * (t11 + z * (t12 + z *
147 +                                    t13))))))))))));
148 +                        }
149 +
138  150                          t = y + x * t;
139  151                          w = x + t;
140  152                  }
153 +
141  154                  return (k == 0 ? w : -one / w);
142  155          }
156 +
143  157          j = (ix + 0x400) & 0x7ffff800;
144  158          i = (j - 0x3ffc4000) >> 11;
145  159  #if defined(__i386) || defined(__amd64)
146  160          ITOX(j, pt);
147  161  #else
148  162          pt[0] = j;
149  163  #endif
164 +
150  165          if (hx > 0)
151  166                  x = y - (t - x);
152  167          else
153  168                  x = (-y) - (t + x);
169 +
154  170          a = _TBL_tanl_hi[i];
155  171          z = x * x;
156  172          /* cos(x)-1 */
157  173          t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
158  174          /* sin(x) */
159      -        s = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z *
160      -                pp5)))));
175 +        s = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z * pp5)))));
176 +
161  177          if (k == 0) {
162  178                  w = a * s;
163  179                  t = _TBL_tanl_lo[i] + (s + a * w) / (one - (w - t));
164  180                  return (hx < 0 ? -a - t : a + t);
165  181          } else {
166  182                  w = s + a * t;
167  183                  c = w + _TBL_tanl_lo[i];
168  184                  z = (one - (a * s - t));
169  185                  return (hx >= 0 ? z / (-a - c) : z / (a + c));
170  186          }
171  187  }
```
`XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX`